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R[G], when G is a finite group and R is any ring or ring 
spectrum. In this setting, the well-known assembly map for 
K(R[G]) has a companion called the coassembly map. We 
prove that their composite is the equivariant norm of K(R). 
This gives a splitting of both assembly and coassembly after 
K(n)-localization, a new map between Whitehead torsion and 
Tate cohomology, and a partial computation of K-theory of 
representations in the category of spectra.
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1. Introduction

Algebraic K-theory provides a deep set of invariants for each ring R, in the form 
of a sequence of abelian groups Ki(R). In topology, these groups provide obstructions 
for classical problems such as recognizing finite CW complexes, classifying finite group 
actions on spheres, and trivializing smooth cobordisms.

In several of these applications, the most important computation is how the K-theory 
of a group ring R[G] is related to the K-theory of R. They are connected by the assembly 
map: 

H∗(BG;K(R)) −→ K∗(R[G]) (1)

We think of the left-hand side of (1) as very computable when compared to the right-hand 
side. So we may construct classes in Ki(R[G]), by building them first in Hi(BG; K(R)). 
However it is difficult to tell whether the classes built this way are actually nonzero. We 
therefore ask

Question 1.1. Is the assembly map injective, or even an isomorphism?

This question has been studied extensively in many contexts. The K-theoretic Novikov 
conjecture states that (1) is rationally split injective when R = Z. This was proven by 
Bokstedt, Hsiang, and Madsen for any group G whose homology has finite type [7]. The 
Farrell–Jones conjecture (in one instance) states that a nonconnective version of (1) is 
an isomorphism when R is regular and G is torsion-free. Farrell and Jones proved this 
isomorphism rationally for R = Z and G a discrete cocompact subgroup of a Lie group 
with finitely many path components [14]. There also are variants of these conjectures for 
L-theory, implying the Novikov conjecture and Borel conjecture, respectively.

The integral version of the Farrell–Jones conjecture has been quite difficult. Many 
results place additional restrictions on R and G, and even then only get injectivity, 
which is sometimes called the Integral Novikov conjecture. Carlsson and Pedersen proved 
injectivity for a large class of groups G with finite BG, including the word hyperbolic 
groups [9]. Bartels and Reich proved integral isomorphism for any ring R, when G is the 
fundamental group of a Riemannian manifold of negative sectional curvature [4]. There 
are quite a few more results by several different authors, and our brief summary does 
not do them justice. A comprehensive survey can be found in [23]; more recent results 
include [3] and [39].

In light of this earlier work, we know the most about assembly when G is an infinite 
discrete group, and BG is finite in some sense. On the other hand, we know very little 
about the case of G finite, other than injectivity in low degrees [23]. In this case, we 
present a theorem that splits the assembly map after a certain localization.

To describe our result, we first re-interpret assembly as a map of spectra

BG+ ∧K(R) −→ K(R[G]).
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We recall that K(R[G]) has a close cousin called Swan theory, or simply G-theory, 
GR(R[G]) [13]. The Swan theory studies modules over R[G] which are perfect (finitely 
generated projective) over R, instead of those that are perfect over R[G]. In other words, 
it is the K-theory of the representations of G in the category of R-modules. The assembly 
map is defined by a universal property, as we recall in section 5, and the dual of this 
construction gives a coassembly map

GR(R[G]) −→ F (BG+,K(R))

out of Swan theory. When G is finite there is also a Cartan map

K(R[G]) −→ GR(R[G])

which takes each perfect R[G]-module M to itself, regarded as an R[G]-module whose 
underlying R-module is perfect.

Of course, we can define K-theory and Swan theory for each ring spectrum R and 
topological group G. When R is the sphere spectrum, this yields Waldhausen’s A-theory 
A(BG), and a contravariant version called 

A(BG). This kind of K-theory is well-studied, 
but the corresponding Swan theory is poorly understood. The Swan theory of R[G]
studies the representations of G in the category of R-module spectra, so it might be 
called spectral representation theory.

Now we can state the main theorem.

Theorem 1.2. If G is a finite group and R is a ring or ring spectrum, then the composite

BG+ ∧K(R)
assembly

K(R[G]) Cartan
GR(R[G])

coassembly
F (BG+,K(R))

is homotopic to the norm map on K(R) with the trivial G-action,

K(R)hG −→ K(R)hG.

One can give a rough but intuitive sketch of the argument as follows. If we ignore the 
BG terms, then the assembly map is given by the K-theory of the map of categories that 
sends the R-module M to the perfect R[G]-module G ⊗M =

⊕G
M . The Cartan and 

coassembly maps do not change the module, but merely forget some of the structure. We 
are left with the self-map of the category of perfect R-modules sending M to 

⊕G
M . By 

the additivity property of K-theory, this induces a map on K(R) which is a G-fold sum 
of the identity map with itself. As we rove around BG we get a family of such maps, but 
the ordering of the G-fold sum is shuffled, so the resulting map of spectra is a transfer. 
The transfer corresponding to the norm map is a G-fold sum with G ×Gop-monodromy 
corresponding to the left and right multiplication actions of G on itself (see §7). So it 
remains to show that the G-actions coming from the assembly and coassembly maps have 
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exactly this behavior. This is carried out in §5, 6 for categories of G-spaces, and lifted 
to the relevant categories of G-spectra using technical constructions developed in §4.

One corollary of our result is a K(n)-local Novikov conjecture for finite groups:

Corollary 1.3. Let G be a finite group and R any ring or ring spectrum. Then the assembly 
map

BG+ ∧K(R) α−→ K(R[G])

is split injective after K(n)-localization, at any prime p and for any n ≥ 0.

This is discussed further in §2. We also remark there that Theorem 1.2 implies the 
cofiber of assembly admits a map to the cofiber of the norm. This leads to a map from 
Whitehead groups to Tate cohomology that we believe warrants further study.

Corollary 1.4. If G is a finite group, there is a map from its Whitehead group to its Tate 
cohomology with coefficients in A(∗) or K(Z):

Wh(G) π1(A(∗)tG) π1(K(Z)tG)

We will also prove a variant of Theorem 1.2 which, when combined with the Segal 
conjecture, allows us to partially compute some rings of representations in spectra:

Theorem 1.5. If R is a ring spectrum augmented over the sphere, and G is a finite 
p-group, then the group π0(GR(R[G])∧p ) contains the Burnside ring A(G)∧p as a direct 
summand.

This suggests that the analog of Artin’s induction theorem, relating the representation 
ring of G to that of the cyclic subgroups of G, will fail for representations of G in spectra. 
In the language of [29], we should expect such a theory to have a larger derived defect 
base.

Finally we summarize the technical results that may be of independent interest. It is 
well-known that one can build Waldhausen’s A-theory out of a category of parametrized 
spectra, instead of spaces, because K-theory is preserved under stabilization. Indeed, 
such a category of spectra is necessary to define the assembly and coassembly maps by 
a universal property.

However, it seems that there does not yet exist a category of parametrized spectra that 
is robust enough to allow for a definition of A(B), 

A

(B), and the Cartan map between 
them. The model category of [31] does not work, since a pullback of a cofibration is not 
a cofibration.

We remedy the situation by constructing some Waldhausen categories of parametrized 
spectra which are both geometrically and homotopically well-behaved, and construct 
external pairings on these categories similar to those found in [41,42]:
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Proposition 1.6. For each ring spectrum R there is a covariant homotopy functor A(B; R)
from unbased spaces to spectra. When G is a topological group, A(BG; R) is equivalent 
to K(R[G]). Given two rings R and S there is a pairing

A(B;R) ∧A(B′;S) −→ A(B ×B′;R ∧ S)

which has the obvious associativity property.

Proposition 1.7. For each ring spectrum R there is a contravariant homotopy functor A

(B; R) from unbased spaces to spectra. When G is a topological group, 

A

(BG; R) is 
equivalent to GR(R[G]). There is a pairing as above, and if G is a finitely dominated 
topological group, there is a Cartan map

A(BG;R) −→ A(BG;R)

If G and R are discrete, this map gives on π0 the Cartan map of [13].

This lets us interpret K(R[G]) and GR(R[G]) as functors on unbased spaces, so that 
we may define the assembly and coassembly maps

BG+ ∧K(R) A(BG;R)

A

(BG;R) Map∗(BG+,K(R))

as universal approximations by linear functors. We give an explicit proof that this assem-
bly map agrees with the classic K-theory assembly map, and give a similar combinatorial 
formula for coassembly. Our proof of Theorem 1.2 uses the combinatorial formulas for 
these maps, but the universal property will be important for connecting our theorem to 
applications.

The outline of the paper is as follows. In §2 we discuss in detail the corollaries of 
our main theorem. In §3 we begin the technical work, reviewing Waldhausen K-theory 
and giving a modern adaptation of Waldhausen’s observation that the spectrum K(C)
can be constructed by a classical delooping machine. In §4 we construct the Waldhausen 
categories of spaces and spectra that give the functors A(B; R) and 

A

(B; R). In §5 we 
review the universal properties and constructions of assembly and coassembly. In §6 we 
modify these maps by a homotopy to explicit simplicial maps, which lift to the K-theory 
of finite sets. In §7 we recognize the composite of these maps as the norm, using the E∞
structure on Ω∞K(C) from §3. This proves Theorem 1.2. In §8, we prove a generalization 
of Theorem 1.2 to all subgroups and conclude Theorem 1.5.

The author is grateful to acknowledge Mark Behrens, Andrew Blumberg, Dustin 
Clausen, Ralph Cohen, John Greenlees, Jesper Grodal, John Klein, Akhil Mathew, 
Randy McCarthy, Mona Merling, Justin Noel, and Bruce Williams for their help with 
and enlightening conversations about this project. He thanks Mark Ullmann and Xiaolei 
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Wu for helpful comments on the exposition of the Farrell–Jones conjecture, and the 
anonymous referee for helpful comments on the exposition throughout the paper. The 
K-theoretic results in this paper are motivated by THH-theoretic results in the author’s 
thesis, which was written under the direction of Ralph Cohen at Stanford University.

2. Applications and open questions

In this section we present a bit more background on the applications of Theorem 1.2.
Here is one application. Recall that the Whitehead group Wh(G) of a discrete group 

G is the cokernel of the inclusion

Gab ⊕ Z/2 ∼= H1(BG) ⊕K1(Z) ∼= π1(BG+ ∧K(Z)) −→ K1(Z[G])

This may be identified with π0 of the homotopy fiber of the assembly map of K(Z[G]). 
Following Waldhausen, we call that homotopy fiber the PL Whitehead spectrum for the 
group G with coefficients in Z. For the applications, it turns out to be even better to 
perform the same construction with S instead of Z, though it gives the same group at 
the level of π0.

The celebrated s-cobordism theorem uses this Whitehead group to tell when a given 
h-cobordism from M to N is diffeomorphic to a product M × I. In fact, when the 
manifolds have dimension at least 5, the complete obstruction is simply an element of 
Wh(π1(M)). So when this group vanishes, every h-cobordism is trivial, and to construct a 
diffeomorphism M ∼= N it suffices to construct an h-cobordism. This is true in particular 
when π1(M) is an infinite torsion-free group satisfying the Farrell–Jones conjecture. On 
the other hand, when π1(M) is finite, this is often false. In particular Wh(Z/p) ∼= Z

p−3
2

when p is an odd prime (see [23], Rmk 4).
Theorem 1.2 provides a link between these Whitehead groups and Tate cohomology. 

It allows us to form the map of cofiber sequences 

BG+ ∧A(∗)

∼=

A(BG)

cα◦Cartan

ΣWhPL(BG)

A(∗)hG
N

A(∗)hG A(∗)tG

(2)

where tG denotes Tate cohomology with coefficients in a spectrum [16]. This gives the 
maps of Corollary 1.4

Wh(G) π1(A(∗)tG) π1(K(Z)tG)

and similar maps with coefficients in any ring spectrum R.
The behavior of these maps is not yet known, since they appear to be completely 

new. In the case of G = Z/2, they are reminiscent of the maps from Boardman’s proof 
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of Conner and Floyd’s five-halves conjecture [6], but more work will be needed to see 
how closely they are connected.

Here is a second application of Theorem 1.2. Recall that for each prime p, there is a 
sequence of cohomology theories K(n) for n ≥ 0 that capture the “pieces” of the stable 
homotopy category lying between rational and p-local stable homotopy theory. These 
are the Morava K-theories; intuitively they separate out pieces of stable homotopy that 
occur at different frequencies. One often tries to understand the stable homotopy of a 
spectrum X by building up knowledge of its localizations XK(n). In K-theory the story 
is even cleaner: if R is the integer ring of a number field, the completion K(R)∧ is a 
connective cover of its K(1)-localization LK(1)K(R), so the K(1)-localization actually 
captures all of the important information.

In the K(n)-local category, the equivariant norm is always an equivalence. More pre-
cisely, for any spectrum X with a action by a finite group G, we get the diagram:

(XhG)K(n)

∼

(XK(n))hG

∼

((XK(n))hG)K(n)
N ((XK(n))hG)K(n) ((XK(n))tG)K(n) 	 ∗

(see [18], 8.7). So the norm becomes an isomorphism in the stable category

(XhG)K(n)
∼ (XK(n))hG

Corollary 2.1. Let G be a finite group and R any ring or ring spectrum. Then the assembly 
map is split injective after K(n)-localization on the outside

(BG+ ∧K(R))K(n)
α−→ K(R[G])K(n)

and the coassembly map is split surjective after K(n)-localization on the inside

G(R[G])K(n)
cα−→ Map∗(BG+,K(R)K(n))

This includes Corollary 1.3 from the introduction.
In the case of R = Z, where the K(1)-localization is the only useful one, the Cartan 

map has been well-studied as a means of detecting classes in K(Z[G]). It has been pointed 
out to the author that its image in G(Z[G]) is more or less known for G abelian, though 
it is difficult to find this explicitly worked out. Our theorem actually suggests that the 
assembly map cannot see more than G(Z[G]) in this case, at least after K(1)-localization. 
It underscores the importance of the classical study of K-theory through the lens of Swan 
theory.



C. Malkiewich / Advances in Mathematics 307 (2017) 100–146 107
In the case of R = S, the relevant Swan theory is poorly understood, but the relevant 
assembly map

BG+ ∧A(∗) −→ A(BG)

is quite important for applications to topology. By the above corollary, this is split 
injective after K(n)-localization, at any prime p and for any n ≥ 0. It seems likely that 
all of these localizations carry nontrivial information.

We would like to be able to conclude something about assembly integrally, or 
at p, but the following issue arises. Recall that each spectrum Y sits at the top of a 
tower of E(n)-localizations LE(n)Y , and the nth layer of this tower is detected by the 
K(n)-localization of Y . The spectrum Y has chromatic convergence if the limit of this 
tower is the p-localization of Y . Given this language, if we want to deduce something 
about assembly map for A-theory, we should first answer the following question.

Question 2.2. Does A(X) satisfy chromatic convergence? More broadly, is there a clean 
description of the limit of the chromatic tower under A(X)?

3. Waldhausen categories and K-theory

In this section we briefly recall from [38] the definition of algebraic K-theory of a 
Waldhausen category C, and compare the standard model of K(C) by the iterated S·
construction to a less standard model by a Segal or May type delooping machine. These 
alternative deloopings are essential for our main result.

3.1. Definitions and the S· construction

Definition 3.1. A category C becomes a Waldhausen category when it is equipped with 
two subcategories of cofibrations and weak equivalences, with the following properties.

• Every isomorphism is both a cofibration and a weak equivalence.
• There is a chosen zero object ∗ and every object is cofibrant.
• C has all pushouts along cofibrations. The pushout of a cofibration is a cofibration.
• (Gluing lemma.) A weak equivalence of homotopy pushout diagrams induces a weak 

equivalence of pushouts.

C has the saturation axiom if its weak equivalences satisfy 2 out of 3. If C has a tensoring 
over simplicial sets that satisfies a pushout-product axiom, then C has a cylinder functor
(cf. [38]).

Definition 3.2. Let C be a Waldhausen category. We define S·C to be the following 
simplicial Waldhausen category. The objects of SnC are the diagrams in C of the form
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∗ A0,1 A0,2 . . . A0,n

∗ A1,2 . . . A1,n

∗ . . . . . .

∗ An−1,n

∗

such that the horizontal maps are cofibrations, and the squares are pushouts. This is 
equivalent to a flag of cofibrations in C of the form

∗ A0,1 A0,2 . . . A0,n

because each Ai,j with i > 0 is determined up to canonical isomorphism as the pushout 
of ∗ and A0,j along A0,i. The face and degeneracy maps are straightforward to define, 
see [38, §1.3]. The morphisms in SnC are the natural transformations, and the weak 
equivalences are defined pointwise. The cofibrations are pointwise cofibrations such that, 
for each commuting square thus formed, the map from the pushout to the final vertex 
is also a cofibration (cf. [38, §1.1]).

Definition 3.3. The algebraic K-theory spectrum K(C) is the symmetric spectrum which 
at spectrum level n is the realization of the multisimplicial set

|w·S(n)
· C|

Here w· is shorthand for the nerve on the subcategory of weak equivalences. One may 
take a grid of maps in C and add one more dimension, which has only two layers, the 
first containing only copies of ∗ and the second layer containing the original grid. This 
gives the structure maps

|w·S(n)
· C| −→ Ω|w·S(n+1)

· C|

It is not hard to check that the space |w·S(n)
· C| is (n − 1)-connected.

Theorem 3.4 (Waldhausen). These structure maps are weak equivalences when n ≥ 1. 
Therefore there is an equivalence of loop spaces

Ω∞K(C) 	 Ω|w·S·C|
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Using (see [34], Lem 2.3(ii)) this implies that the homotopy groups of K(C) have 
bounded filtration, so K(C) is a semistable symmetric spectrum. In other words, the 
naïvely defined homotopy groups of K(C) agree with the homotopy groups as measured 
in the homotopy category of symmetric spectra.

3.2. Exact functors and the approximation property

Definition 3.5. A functor F : C → D between Waldhausen categories is exact if it pre-
serves the zero object, cofibrations, weak equivalences, and pushouts along cofibrations. 
F has the approximation property if it satisfies two conditions:

• For any X
f→ Y in C, f is a weak equivalence iff F (f) is a weak equivalence.

• For any X ∈ C, Z ∈ D, and F (X) f→ Z, there is a cofibration X → X ′ in C and 
weak equivalence F (X ′) ∼→ Z in D forming a commuting triangle

F (X) Z

F (X ′)

Theorem 3.6 (Waldhausen). If C is a Waldhausen category, then any exact functor 
F : C → D induces a map K(F ) : K(C) → K(D). If C has a cylinder functor and 
the saturation axiom, and if F satisfies the approximation property, then K(F ) is an 
equivalence of spectra.

If M is any pointed model category, the subcategory of cofibrant objects C forms a 
Waldhausen category. Any left Quillen adjoint F : M → N induces an exact functor on 
the cofibrant objects C → D, and any left Quillen equivalence has the approximation 
property.

Unfortunately this always gives K(C) 	 ∗, because C contains infinite coproducts. 
To fix this we typically restrict to a subcategory A defined by some finiteness condition. 
If A ⊂ C is such a category, closed under weak equivalences and pushouts along cofi-
brations, and if B ⊂ D is the subcategory of all objects equivalent to F (a) for some 
a ∈ A, then F : A → B still has the approximation property. In other words, “Quillen 
equivalences give equivalences on K-theory,” but we always have to keep track of the 
finiteness conditions that define A and B.

3.3. Comparison of Waldhausen, Segal, and May deloopings

We conclude this section by discussing deloopings of K(C) = Ω|w·S·C|. In essence, 
we do not need to iterate the S· construction to get a spectrum; we only need to apply 
S· once, and then we may do the rest with a classical delooping machine.
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Recall that if C is a symmetric monoidal category, the space |C| := |N·C| can be 
delooped infinitely many times. One approach due to Segal uses Γ-spaces; another ap-
proach due to May uses a monadic bar construction and the Barratt–Eccles operad. We 
will use the notation |C|, B1|C|, B2|C|, . . . to refer to the levels of the spectrum produced 
by either of these two machines. There is an infinite string of maps

|C| −→ ΩB1|C| B1|C| ∼−→ ΩB2|C| B2|C| ∼−→ ΩB3|C| . . .

that are all weak equivalences except the first, and the first map is an equivalence if |C| is 
grouplike. Each of these machines may be configured to produce orthogonal spectra [30].

Remark 3.7. It is common practice to restrict to the permutative subcategory of isomor-
phisms in C when defining these deloopings. We have chosen not to state this as part 
of the machinery, because it is unnecessary. The above theory requires no assumptions 
on |N·C|, beyond being the nerve of a permutative category.

Returning to the case where C is a Waldhausen category, we observe that C is also 
a symmetric monoidal category by the coproduct. We apply the usual rectification trick 
to make C permutative under this coproduct [24]. It is easy to see that the subcate-
gory of weak equivalences wC is permutative, and furthermore S(n)

· C and wS(n)
· C are 

multisimplicial objects in permutative categories. In other words, the nth space of the 
Waldhausen spectrum |w·S(n)

· C| is a valid input for the infinite loop space machine B(m). 
In fact, when n ≥ 1 this space is connected, so B(m) gives a true m-fold delooping.

Proposition 3.8. The spaces Ym,n = B(m)|w·S(n)
· C| form a bispectrum which is orthogo-

nal in the m direction and symmetric in the n direction.

Proof. This is straightforward once we decide how B will act on a loopspace. If X is an 
E∞ space, or a Γ-space, then ΩkX is either an E∞ space by “pointwise” operad action, 
or a Γ-space by applying Ωk to every level and every map. In either case, there is a 
natural interchange

B(m)(ΩkX) −→ ΩkB(m)(X)

which is an equivalence if X is (k − 1)-connected. It is now easy to check that B(m) is 
compatible with the symmetric spectrum structure on the spaces |w·S(n)

· C|. �
As usual, such a bispectrum gives a diagram which commutes up to rearrangements 

of the loop coordinates:
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|w·C| Ω|w·S·C| ∼

∼

Ω2|w·S
(2)
· C| ∼

∼

. . .

ΩB|w·C|

∼

Ω2B|w·S·C| ∼

∼

Ω3B|w·S
(2)
· C| ∼

∼

. . .

Ω2B(2)|w·C|
∼

Ω3B(2)|w·S·C| ∼

∼

Ω4B(2)|w·S
(2)
· C| ∼

∼

. . .

...
...

...

The weak equivalences shown follow from easy connectivity arguments. The left-hand 
column gives the group completion of |wC| with respect to the sum, and the right-hand 
region gives the “group completion” which splits all cofiber sequences. In general, these 
two completions are quite different.

Now, we will make use of the construction in the left-hand column, but it does not 
currently give the correct stable homotopy type. To remedy this, we apply a shift and a 
loops in the symmetric-spectrum direction.

Definition 3.9. Let B denote the Segal or May machine. To each Waldhausen category C

we define the bispectrum Xm,n by

Xm,n = ΩB(m)|w·S(n+1)
· C|

This bispectrum is orthogonal in the m slot and symmetric in the n slot.

Remark 3.10. In an earlier draft we tried simply replacing only the terms in the left-hand 
column B(m)|w·C| by B(m)Ω|w·S·C| and leaving the other terms unchanged, but this 
actually breaks the symmetric spectrum structure. In general if X0, X1, X2, . . . are the 
levels of a symmetric spectrum, then ΩX1, X1, X2, . . . give a prespectrum in an obvious 
way, but this prespectrum is not a symmetric spectrum!

Theorem 3.11. The orthogonal spectrum

{Xm,0}m≥0 = {ΩB(m)|w·S·C|}m≥0

is naturally equivalent to the prolongation of the symmetric spectrum

{X0,n}n≥0 = {|w·S(n)
· C|}n≥0

and therefore provides an alternate model of Waldhausen K-theory.
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The proof of this theorem reduces to a general statement about bispectra. Let us 
recall some notation from [28]. Define ΣS as the topological category whose objects are 
all finite sets (in some universe), and whose morphism spaces are

ΣS(m,n) = (Σn)+ ∧Σn−m
Sn−m

Similarly, let J be the category whose objects are finite-dimensional inner product 
spaces in some universe U ∼= R

∞, and whose morphisms are

J (V,W ) = O(W )+ ∧O(W−V ) S
W−V

when V ⊂ W and W−V means orthogonal complement. Both ΣS and J are symmetric 
monoidal categories, under disjoint union of sets or direct sum of vector spaces, and there 
is a symmetric monoidal functor ΣS → J which assigns the set T to the space R

T . 
We recall the following facts:

Theorem 3.12. [28] Diagrams of based spaces over ΣS are equivalent to symmetric spec-
tra. Diagrams of based spaces over J are equivalent to orthogonal spectra. The left 
Quillen equivalence P from symmetric to orthogonal spectra is given by left Kan exten-
sion along ΣS → J . The smash product of orthogonal spectra X and Y is the left Kan 
extension of the J × J -diagram ∧ ◦ (X × Y ) along the map J × J → J defining 
the symmetric monoidal structure on J .

In this language, Theorem 3.11 reduces to the following proposition.

Proposition 3.13. To each diagram Xm,n of based spaces over J×ΣS we may functorially 
assign an orthogonal spectrum Y and a zig-zag of orthogonal spectra

P{X0,n} −→ Y ←− {Xm,0}

If Xm,n is semistable in the symmetric direction, then this zig-zag is on homotopy groups 
naturally isomorphic to

colim
n

πn+k(X0,n) −→ colim
m,n

πm+n+k(Xm,n) ←− colim
m

πm+k(Xm,0)

So if each row and column of Xm,n is an Ω-spectrum, these maps are equivalences.

Proof. We make Xm,n cofibrant in the projective model structure on J ×ΣS diagrams, 
then define Y to be the left Kan extension of Xm,n along the map of categories

J × ΣS −→ J × J −→ J

The above zig-zag is then immediate from the definitions. It remains to identify the 
homotopy groups of Y . Prolonging a semistable symmetric spectrum to an orthogonal 
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spectrum does not change level 0, nor does it change the colimit of its homotopy groups, 
so we may as well assume that X is a bi-orthogonal-spectrum. Then there is an obvious 
map from colim

m,n
πm+n+k(Xm,n) into πk(Y ), and our task is to prove it is an isomorphism. 

As in [28], 11.9, this reduces to the case where X is a free diagram on a sphere at a 
single bilevel (m, n). In this case, the left Kan extension is also isomorphic to a free 
spectrum at level m + n on a sphere, and so the map on homotopy groups is clearly an 
isomorphism. �
4. Waldhausen categories of G-spectra and fiberwise spectra

In this section we construct seven distinct Waldhausen categories, each with two 
finiteness conditions, for a total of fourteen examples to which we can apply Waldhausen’s 
S·-construction. They are all necessary for our proof and applications. To keep them 
straight, we introduce some non-standard notation to distinguish them. In this notation, 
B is any unbased space, R is any orthogonal ring spectrum, and G is a well-based 
topological group with the homotopy type of a cell complex. All our spaces are compactly 
generated (i.e. weak Hausdorff k-spaces).

based G-sets K(G)
based G-spaces M(G) R-modules with G action M(G;R)

ex-fibrations over B E(B) R-module fibrations over B E(B;R)
retractive spaces over B R(B) R-modules over B R(B;R)

The exact functors between these categories point in the following directions:

K(G)

M(G)

E

Σ∞

M(G; S)
R∧−

E

M(G;R)

E

E(BG)

I

Σ∞

E(BG; S)
R∧−

I

E(BG;R)

I

R(BG)

P

Σ∞

R(BG; S)
R∧−

P

R(BG;R)

P

The maps labeled E, I, and P all preserve K-theory. The categories R and E are used 
to define assembly and coassembly, respectively. The category M has a good model 
structure that the others lack. We will lift the assembly and coassembly maps from R
and E to M, and then to K, where they can be analyzed in a more combinatorial way. 
We will use the categories with R coefficients in the applications.
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4.1. G-spaces and fiberwise spaces

Throughout this section, G is any well-based topological group with the homotopy 
type of a cell complex and B is any unbased space. We will define Waldhausen categories 
of G-spaces and of spaces over B, and relate them together when B = BG.

Let T be the category of based (compactly generated) topological spaces with the 
Quillen model structure. Then the category GT of spaces with a left G-action inherits a 
projective model structure, in which the weak equivalences and fibrations are determined 
by forgetting the G-action. Let M(G) be the subcategory of cofibrant objects; the model 
structure makes this a Waldhausen category. We say a G-space is finite if it is equivalent 
to one built out of finitely many cells G ×Dn, and finitely dominated if it is a retract of 
a finite space in the homotopy category.

Definition 4.1. Mf (G) is the Waldhausen category of all finitely dominated cofibrant 
G-spaces. Mf (G) is the category of all cofibrant G-spaces whose underlying nonequiv-
ariant space is finitely dominated.

We point out that the K-theory of Mf (G) is one model for Waldhausen’s A(BG), and 
Mf (G) for 

A

(BG). When G is finitely dominated, the inclusion of categories Mf (G) ⊆
Mf (G) defines the Cartan map A(BG) → A

(BG).
Now fix an unbased space B. Recall that a retractive space over B is a diagram 

B → X → B in which the composite is the identity. We call X the total space. A map of 
such retractive spaces X → Y is said to be a weak equivalence if it is a weak homotopy 
equivalence on the total spaces. We will also say that X is fibrant if the projection map 
X → B is a Hurewicz fibration.

We recall two notions of cofibration for these retractive spaces. The map of retractive 
spaces A → X is an h-cofibration if the map of total spaces satisfies the homotopy exten-
sion property (HEP). Equivalently, X × I retracts onto A × I ∪X× 0, in a non-fiberwise 
way. On the other hand, we say A → X is an f -cofibration if it satisfies the fiber-
wise homotopy extension property (FHEP). This means that the retract of X × I onto 
A× I ∪X × 0 may be chosen to respect the map into B. Of course, every f -cofibration is 
an h-cofibration. In this paper we will almost exclusively use f -cofibrations, though a re-
sult of Kieboom [20] appears to imply that we could have gotten away with h-cofibrations 
instead.

Definition 4.2. Let R(B) denote the Waldhausen category of f -cofibrant retractive spaces 
over B. Let E(B) the subcategory of such spaces which are fibrant; these are called 
ex-fibrations in the literature. The subcategories Rf (B) and Ef (B) consist of those X
which are a retract up to weak equivalence under B of a finite relative CW complex 
B → X ′. The subcategories Rf (B) and Ef (B) consist of those X for which the homotopy 
fiber of X → B is finitely dominated.



C. Malkiewich / Advances in Mathematics 307 (2017) 100–146 115
It is straightforward to check that these are all Waldhausen categories with cylinder 
functors. For E(B) this requires the fact that pushouts of fibrations along h-cofibrations 
are again fibrations [10].

The reason we have two categories R(B) and E(B) is that they have opposite func-
toriality. Let f : A → B be any map of base spaces. Then there is an adjoint pair of 
functors f! and f∗ defined by the pushout square, resp. pullback square

A B

X f!X

f∗Y Y

A B

Since topological spaces are both left and right proper, it follows that f! is exact on 
R(B) and f∗ is exact on E(B). This allows us to define a covariant and a contravariant 
functor

A(B) := K(Rf (B))

A

(B) := K(Ef (B))

Remark 4.3. Since pushouts and pullbacks are not strictly unique, only unique up to 
isomorphism, A(B) and 

A(B) are technically not functors. This can be remedied without 
changing the categories involved up to equivalence; see [32], 3.2.1.

Remark 4.4. The categories Rf (∗), Rf (∗), Ef (∗) and Ef (∗) are identical. So we declare 
that A(∗) and 

A

(∗) are the same spectrum, using any of these models.

To define the Cartan map we must relate the categories E and R. The obvious inclusion 
I : E(B) → R(B) is exact, but we need a functor going the other way.

Definition 4.5. Define P : R(B) → E(B) by taking the f -cofibrant retractive space X to 
the pushout

BI

∼ev1

X ×B BI

∼

B PX

Here the product X ×B BI is taken over the evaluation at 0 map BI → B, so that the 
product is a space over B along the evaluation at 1 map.

Our functor P gives a fibrant replacement for spaces, and later spectra, that is much 
simpler and more canonical than the ex-fibrant approximation functor found in [31], 8.3 
and 13.3.
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Proposition 4.6. P is an exact functor. The functors I and P give inverse equivalences 
on K-theory

K(Ef (B)) 	 K(Rf (B)) = A(B) A(B) = K(Ef (B)) 	 K(Rf (B))

Furthermore A(B) and 

A

(B) are homotopy functors.

Proof. It is elementary to check that PX is an ex-fibration and P preserves weak equiv-
alences. Moreover, PX preserves cofibrations, because − ×B BI preserves cofibrations 
and there is a pushout square

X ×B BI Y ×B BI

PX PY

Therefore P is an exact functor. To check K(I) and K(P ) are inverses up to homotopy, 
it suffices to define natural weak equivalences between I ◦ P or P ◦ I and the identity 
functor. This is done by the natural fiberwise equivalence X ∼→ PX. To show that A(B)
is a homotopy functor, we take a weak equivalence f : B → B′ and show that the map 
K(f!) has left inverse K(I ◦ f∗ ◦ P ) and right inverse K(I ◦ f∗ ◦ P ) up to homotopy. To 
define the homotopies it is enough to define natural fiberwise equivalences

X
∼−→ f∗Pf!X, f!f

∗PX
∼−→ PX

∼←− X

These come from the equivalence X ∼→ PX and the adjunction between f! and f∗. 
A similar argument works for A(B). �

If ΩB is finitely dominated for every component of B, then the object

E(ΩB) �B ∈ Rf (B)

lies in the category Rf (B). By induction, all finite complexes Rf (B) are contained in 
Rf (B). Therefore the functor P may be viewed as a functor

Rf (B) P Ef (B)

This defines the Cartan map A(B) → A

(B).

Remark 4.7. Our models for A(B) and 

A(B) are equivalent to the more classical models, 
defined using h-cofibrations and maps that are strong homotopy equivalences on the total 
space. One may define a zig-zag of exact functors with the approximation property
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R(B) ←− R′′(B) −→ R′(B)

in which R is our model, R′ is the classical model, and R′′ is an intermediate model 
consisting of spaces from R that are strongly homotopy equivalent to a finite complex.

Returning to the case where G is a topological group, we let p : EG → BG be the 
principal G-bundle with contractible total space. Then the standard mixing construction 
and its right adjoint

E(X) = EG×G X F (Y ) = MapBG(EG, Y )

define functors M(G) → E(BG) and E(BG) → GT , respectively. By our assumptions 
on G, the functor E is exact, and the space E(X) is a fiber bundle with fiber X. The 
functor F is not exact, but if Y is a fibration then F (Y ) is weakly equivalent to the 
fiber of Y . Therefore X → FEX is always a weak equivalence, and EFY → Y is a weak 
equivalence if Y is a fibration. This is enough to show that E has the approximation 
property, proving

Proposition 4.8. The functor E gives equivalences on K-theory

K(Mf (G)) 	 K(Ef (BG)) K(Mf (G)) 	 K(Ef (BG))

Remark 4.9. Comparisons of this sort are of course not new; see for instance [38, 2.1.5]. 
Waldhausen’s existing argument constructs an exact functor from spaces over BG to 
G-spaces by tensoring with a principal G-bundle, but this does not suit our purposes. 
We are using the cellular model category of G-spaces to allow for easy comparison with 
model categories of spectra, but we are also avoiding cells in the parametrized setting so 
that pullbacks can be exact. These choices force us to make the exact functor go from 
G-spaces to retractive spaces, instead of the other way around.

Finally, if G is a finite group, we may map the category of finite G-sets into M(G).

Definition 4.10. Let K(G) be the category of based G-sets, with cofibrations the injective 
maps and weak equivalences the isomorphisms. Let N (G) be the category of retracts of 
finite G-cell complexes, not necessarily free. The cofibrations are the retracts of relative 
G-cell complexes and the weak equivalences are the same as M(G). The subcategories 
Kf (G) and N f (G) consist of those spaces which are finitely dominated when the G-action 
is forgotten. The subcategory Kf (G) consists of the finite free G-sets.

We have inclusions Kf (G) ⊆ N f (G) ⊇ Mf (G), the latter of which gives an equiva-
lence on K-theory, and Kf (G) ⊆ Mf (G). So we may include the K-theory of finite sets 
into the K-theory of spaces. When G = 1, Kf (1) = Kf (1) is the category of finite based 
sets F . Its K-theory is the sphere spectrum, by the Barratt–Priddy–Quillen theorem [2].
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4.2. R[G]-module spectra and fiberwise R-modules

We will construct two models for what could be called the K-theory of the group ring 
R[G], or the A-theory of BG with coefficients in R. To define coassembly by a universal 
property, it is essential to use parametrized spectra, and we show how to set this up 
while avoiding the model category-theoretic difficulties encountered in [31].

Let R be an orthogonal ring spectrum and G a topological group. We use R[G] as 
shorthand for the ring spectrum R ∧ G+. Recall that the category of left R[G]-module 
spectra has a cofibrantly generated model structure in which the weak equivalences and 
fibrations are defined by the forgetful functor to orthogonal spectra [28]. We let M(G; R)
be the subcategory of all cofibrant R[G]-modules. Of course, the functor R∧− is an exact 
functor from M(G) into M(G; R).

Definition 4.11. Let Mf (G; R) be the thick subcategory of modules generated by R[G]. 
Let Mf (G; R) be the subcategory of those modules whose underlying R-module is in the 
thick subcategory of R. The K-theory and Swan theory of R[G] is simply the Waldhausen 
K-theory of these two categories:

K(R[G]) := K(Mf (G;R))

GR(R[G]) := K(Mf (G;R))

Remark 4.12. If R and G are discrete, then (HR)[G] 	 H(R[G]) is a ring spectrum, and 
the above definition is equivalent to the definitions of K-theory or Swan theory using 
Quillen’s Q-construction or BGL∞(R) and Quillen’s plus construction.

Now we consider parametrized R-module spectra. Given retractive spaces X and Y
over A and B, respectively, the external smash product X ∧Y is the retractive space over 
A ×B defined by the pushout

(X ×B) ∪ (A× Y ) X × Y

A×B X ∧Y

In particular, if A = ∗ then X is a based space and the external smash product X ∧Y

is another retractive space over B. This operation tensors and enriches the category of 
retractive spaces over B over the category of based spaces.

Definition 4.13. A parametrized prespectrum X over B is a sequence of retractive spaces 
Xn with structure maps S1 ∧Xn−1 → Xn. A parametrized orthogonal spectrum is a 
continuous diagram of retractive spaces indexed by J .
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If X and Y are orthogonal spectra over spaces A and B, respectively, the external 
smash product X ∧Y is a parametrized spectrum over A ×B defined by left Kan exten-
sion of the J × J -diagram {Xm ∧Yn} along the direct sum map J × J → J . In 
other words, it is the Day convolution of X and Y as diagrams over J . If R is an or-
thogonal ring spectrum, a parametrized R-module is an orthogonal spectrum X equipped 
with a map R∧X → X with the usual associativity properties.

Now we will build a Waldhausen category of parametrized R-modules. It would be 
convenient to use the existing model structure from [31], but pullbacks of the cofibrations 
are not cofibrations, so 

A

would not be a functor. Instead we use a less cellular notion 
of cofibration.

Definition 4.14. A map of parametrized prespectra X → Y is a (Reedy) cofibration if in 
each square

S1 ∧Xn−1 Xn

S1 ∧Yn−1 Yn

the map from the pushout to Yn is an f -cofibration of retractive spaces over B. When 
n = 0 we interpret Xn−1 = B, so X0 → Y0 must be an f -cofibration.

We restrict our attention to parametrized spectra X that are Reedy cofibrant. This 
implies that all the structure maps S1 ∧Xn−1 → Xn are f -cofibrations, and each level Xn

is f -cofibrant. So the fibrant replacement PXn from the last section is always defined. 
It turns to have the following convenient property.

Proposition 4.15. For any pair of retractive spaces X and Y , there is a homeomorphism 
PX ∧PY ∼= P (X ∧Y ). This is associative and commutative in the usual way, and agrees 
with the inclusion of X ∧Y . In other words, both P and the transformation 1 → P are 
strong symmetric monoidal.

Proof. Suppose X is a space over B and Y is over B′. There is an obvious homeomor-
phism

(X ×B BI) × (Y ×B′ (B′)I) ∼= (X × Y ) ×B×B′ (B ×B′)I

The spaces PX ∧PY and P (X ∧Y ) are both quotients of this space, since a pushout 
of a quotient map is again a quotient map. It is easy to check that their equivalence 
relations coincide. �

It follows formally that if X is a parametrized spectrum, the spaces PXn assemble 
into another parametrized spectrum PX. The maps of spaces Xn → PXn give a map of 
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spectra X → PX that is a weak equivalence on every spectrum level. Moreover if X is 
a parametrized R-module spectrum, then so is PX, and the map X → PX is R-linear.

Definition 4.16. Let R(B; R) be the category of parametrized R-module spectra whose 
underlying prespectra are Reedy cofibrant. Let E(B; R) be the further subcategory for 
which the projections Xn → B are also Hurewicz fibrations (and so every level is in E(B)).

In both of these categories, we take our cofibrations to be the Reedy cofibrations. If 
X, Y ∈ E(B; R), then a weak equivalence is a map X → Y which when restricted to 
each fiber is a stable equivalence of ordinary spectra. If instead X, Y ∈ R(B; R), then a 
weak equivalence is a map X → Y for which PX → PY is a stable equivalence on each 
fiber. These definitions are consistent because if X ∈ E(B; R) then the map X → PX is 
an equivalence on every fiber.

These choices make R(B; R) and E(B; R) into Waldhausen categories. The only non-
trivial axiom is the gluing lemma, which is proven using the level equivalences

Y ∪X Z −→ PY ∪PX PZ ←− PY ∪PX PX ∧ I+ ∪PX PZ

This last construction gives an ex-fibration, and on each fiber it is the ordinary homotopy 
pushout of spectra, so it preserves all stable equivalences.

The functors E and F from the previous section may be applied to each spectrum 
level of our R-module spectra, giving functors

E : M(G;R) −→ E(BG;R) F : E(BG;R) −→ R[G]-Mod

We define the subcategories Rf (B; R) and Ef (B; R) by taking those spectra which are 
equivalent to E(X) for some X ∈ Mf (G; R). Similarly, we let Ef (B; R) be all spec-
tra whose fibers are retracts of the finite R-cell modules. Equivalently, we take those 
spectra X that are equivalent to some spectrum in the image E(Mf (G; R)).

With these notions in place, we have a definition for “A-theory with coefficients in R,” 
as advertised in the introduction:

A(B;R) := K(Rf (B;R))

A(B;R) := K(Ef (B;R))

It is straightforward to verify that I+ ∧X gives a cylinder functor. The functors I, P , 
and E then give equivalences on K-theory by the same arguments as before, so we get 
equivalences

K(R[G]) = K(Mf (G;R)) 	 K(Rf (BG;R)) = A(BG;R)

GR(R[G]) = K(Mf (G;R)) 	 K(Ef (BG;R)) =

A

(BG;R)
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If f : A → B is any map of base spaces, then f! and f∗ make A(B; R) and 

A

(B; R)
into homotopy functors. We list a few of the details of this argument. The functors f! and 
f∗ are defined on spectra by taking the pushout or pullback along f on each spectrum 
level. They give R-module spectra in a canonical way because f! commutes with fiberwise 
suspension and f∗ commutes with fiberwise loops. It is easy to check that both f! and 
f∗ preserve cofibrations, and that f∗ preserves weak equivalences. It is also true that f!

preserves weak equivalences, but this relies on the following result of Clapp. Recall that 
a parametrized spectrum Z is an Ω-spectrum if every level is a fibration and the adjoint 
structure maps Zn−1 → ΩBZn are all homeomorphisms.

Proposition 4.17 ([11]). The inclusion of Ω-spectra into all spectra has a left adjoint L, 
called spectrification, which on the Reedy cofibrant spectra is given by the usual construc-
tion (LX)n = colimkΩk

BXn+k. Therefore [X, Y ] ∼= [LX, Y ] if Y is an Ω-spectrum. If X
and Y are Reedy cofibrant Ω-spectra with levels homotopy equivalent to relative CW com-
plexes, then X → Y is a weak equivalence iff it is a homotopy equivalence of parametrized 
spectra.

Corollary 4.18. Suppose X and Y are Reedy cofibrant and each level is homotopy equiva-
lent to a relative CW complex. Then X → Y is an equivalence of parametrized prespectra 
iff it induces a bijection [Y, Z] → [X, Z] for all Ω-spectra Z.

Exactness of f! follows immediately, because of the natural isomorphism [f!X, Z] ∼=
[X, f∗Z], and the observation that f∗Z is always an Ω-spectrum. Once we know that f!

and f∗ are exact, the proof that they are homotopy functors is the same as the proof in 
Proposition 4.6.

4.3. Pairings

Next we will construct the external pairings on A(B; R) and 

A

(B; R), similar to those 
found in [41,42]. This requires us to use a more complicated and restrictive definition 
of “cofibration.” Our cofibrations must include the images of R[G]-module cofibrations 
under EG×G −, be preserved by pushouts and pullbacks, and interact well with smash 
products. To our knowledge, there is no notion of “cofibration” in the literature that fits 
the bill, and we address this by establishing one such notion for parametrized orthogonal 
spectra. The definition we give is in fact very close to the notion of a “flat cofibration” 
or “S-cofibration” of symmetric spectra [17, 5.3.6], [35, III, §2].

Definition 4.19. If X is a parametrized orthogonal spectrum, then regard X as a diagram 
J → TopB. Define the n-skeleton SknX by restricting to the objects of J which have 
dimension at most n, and then taking an enriched left Kan extension back to all of J . 
Define the nth latching object LnX to be (Skn−1X)n.
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Concretely, the mth level of SknX is given by the coequalizer
∨

i≤j≤n

Xi ∧J (i, j) ∧ J (j,m) ⇒
∨
i≤n

Xi ∧J (i,m) −→ (SknX)m

where 
∨

refers to coproduct of retractive spaces, or union along B. Of course, if m ≤ n

then (SknX)m ∼= Xm. If m ≥ n, then (SknX)m is a quotient of Xn ∧O(n)J (n, m).

Definition 4.20. A map X → Y of parametrized orthogonal spectra is an orthogonal 
(Reedy) cofibration if in each square

LnX Xn

LnY Yn

the map from the pushout to Yn is an O(n)-equivariant f -cofibration of retractive spaces 
over B. In other words, there is a fiberwise retract of Yn onto an appropriate subspace, 
and this map also respects the O(n)-action.

Clearly the orthogonal Reedy cofibrations are closed under pushouts, transfinite com-
positions, and retracts. We will show that they are generated by semi-free spectra on 
maps of spaces K → L having the O(n)-equivariant fiberwise homotopy extension prop-
erty.

Definition 4.21. A semi-free orthogonal spectrum F �
nK on a based O(n)-space K is a 

spectrum which at level m is K ∧O(n) J (n, m). The functor F �
n(−) is the left adjoint of 

the forgetful functor that sends an orthogonal spectrum X to its nth space Xn with the 
O(n)-action. These definitions still make sense if K is a retractive space with a fiberwise 
O(n)-action.

Lemma 4.22. If K → L is an O(n)-equivariant f -cofibration then F �
nK → F �

nL is an 
orthogonal Reedy cofibration, and on level m it is an O(m)-equivariant f -cofibration.

Proof. The relevant map is only nontrivial at spectrum level n, where it is the 
O(n)-cofibration K → L. Therefore F �

nK → F �
nL is an orthogonal Reedy cofibration. It 

is easy to check that the map

K ∧O(n)A −→ L∧O(n)A

has the O(m)-equivariant homotopy extension property for any O(n) ×O(m)-space A. 
In particular, this applies to the map F �

nK → F �
nL at level m, which is

K ∧O(n)J (n,m) −→ L∧O(n)J (n,m) �
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Definition 4.23. If X → Y is a map of parametrized orthogonal spectra, define its 
n-skeleton as the pushout

SknX X

SknY Skn(X −→ Y )

Clearly the map X → Y is filtered by these skeleta, Y is the colimit of the skeleta.

Lemma 4.24. For each map of parametrized orthogonal spectra X → Y there is a natural 
pushout square

F �
n(Xn ∪LnX LnY ) F �

nYn

Skn−1(X −→ Y ) Skn(X −→ Y )

Proof. Just compare the universal properties. �
Corollary 4.25. The class of orthogonal Reedy cofibrations is the smallest class of maps 
that is closed under retracts, pushouts, and transfinite compositions, and containing 
F �
nK → F �

nL for any O(n)-equivariant f -cofibration K → L.

Corollary 4.26. If X → Y is an orthogonal Reedy cofibration, then each map Xn → Yn

is an O(n)-equivariant f -cofibration.

This guarantees that we can take the strict cofiber of X → Y and it will have the 
correct stable homotopy type. It also ensures that pushouts along orthogonal cofibrations 
will behave the way we expect, allowing for A(B) to be a functor.

Our main technical result for these cofibrations is that they satisfy a pushout-product 
axiom. This appears to be a new result even in the non-fiberwise case of B = ∗. It 
suggests that it is possible to further loosen the notion of a “flat spectrum” as in [35]
while preserving the fact that the smash product of two flat spectra preserves weak 
equivalences.

Proposition 4.27. The pushout-product of two orthogonal cofibrations, K → X over A
and L → Y over B, is an orthogonal cofibration over A ×B. If X is cofibrant and Y → Y ′

is a weak equivalence of cofibrant spectra then X ∧Y → X ∧Y ′ is a weak equivalence.

Proof. First we show that a pushout-product of cofibrations is a cofibration. Since our 
cofibrations are generated by maps of the form F �

nK → F �
nL, it suffices to take a pushout-
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product of two such maps. We observe that the product of two semi-free diagrams over 
J gives a semi-free diagram over J × J , and therefore

F �
mX ∧F �

nY
∼= F �

m+n(O(m + n)+ ∧O(m)×O(n)X ∧Y )

This construction sends pushout-products of spaces to pushout-products of spectra, so 
it suffices to show that if K → X is an O(m)-equivariant f -cofibration over A and 
L → Y is an O(n)-equivariant f -cofibration over B, the pushout-product is an O(m) ×
O(n)-cofibration over A ×B. The retraction we want is the one given by the usual formula 
for showing that a pushout-product of NDR-pairs is an NDR-pair, see [37], Thm 6.3. It 
is easy to check that this formula preserves fiberwise and equivariant maps, so we are 
done.

Next we check that smashing with a cofibrant spectrum X preserves weak equiva-
lences between cofibrant spectra Y → Y ′. It suffices to prove this inductively for SknX. 
If Y is cofibrant, the map (Skn−1X) ∧Y → (SknX) ∧Y is a pushout-product of two 
cofibrations, so it is a cofibration and its strict cofiber is a homotopy cofiber. Therefore 
we only have to examine effect of smashing with the cofiber of Skn−1X → SknX.

So without loss of generality, X is a semi-free spectrum F �
nK, and we need to show 

that

(F �
nK ∧ Y )m = (K ∧Ym−n)∧O(n)×O(m−n)O(m)+

preserves stable equivalences in the Y variable when Y is cofibrant. Each level of this 
construction is a smash product over O(n) ×O(m −n) with the free O(n) ×O(m −n)-CW 
complex O(m), so it preserves levelwise weak equivalences. So, without loss of generality 
we can assume that K is a free O(n)-CW complex, the levels Ym−n are O(m − n)-CW 
complexes, and all quotients by a group action are homotopy quotients.

The above spectrum may be rewritten as the smash product of a parametrized pre-
spectrum sh−nY and the retractive space K over O(n):

sh−nY ∧O(n)K

(sh−nY )m = Ym−n ∧
O(m−n)

O(m)+

We choose to think of this as a prespectrum with a free O(n)-action. If sh−n preserves 
stable equivalences, then it is easy to check that tensoring over O(n) with a free O(n)-CW 
complex K preserves stable equivalences, so our construction will preserve all weak equiv-
alences in the Y variable.

We are reduced to showing that sh−n sends weak equivalences of cofibrant orthogonal 
spectra to weak equivalences of prespectra. We will prove that the map of parametrized 
prespectra given at level m by

Ym−n −→ Ym−n ∧ O(m)+

O(m−n)
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is a stable equivalence. We filter Y by its skeleta SkkY and observe that, as before, we 
only need to prove this is true on the cofiber of Skk−1Y → SkkY , which is a semi-free 
spectrum F �

kL on a retractive space L with an O(k)-action. The space

(F �
kL)m−n = (Sm−n−k ∧L)∧O(m−n−k)×O(k)O(m− n)+

has connectivity m − n − k − 1 and so the map

(F �
kL)m−n −→ (F �

kL)m−n ∧
O(m−n)

O(m)+

has connectivity 2(m −n) −k−1. This connectivity increases faster than m, so this map 
is an equivalence of prespectra. This finishes the induction up the skeleta of Y , so sh−n

does indeed preserve stable equivalences. �
Corollary 4.28. If R is orthogonal cofibrant then E(X) = EG ×G X sends every cofi-
bration of R[G]-module spectra to an orthogonal cofibration of parametrized R-module 
spectra.

Proof. A free cell of orthogonal R[G]-module spectra

R[G] ∧ FkS
n−1
+ −→ R[G] ∧ FkD

n
+

is sent under E to

(EG�BG)∧R ∧ FkS
n−1
+ −→ (EG�BG)∧R ∧ FkD

n
+

and this is the external smash product of a free cell of orthogonal spectra with a cofibrant 
parametrized orthogonal spectrum. �

With these lemmas, it is straightforward to verify that the categories R(B; R) and 
E(B; R) from the previous section have all of the same properties if we take instead the 
orthogonal cofibrant objects and the orthogonal cofibrations between them. The least 
obvious property is the fact that f! preserves weak equivalences, but f! already preserves 
level equivalences between spectra whose levels are f -cofibrant, so we may replace our 
orthogonal cofibrant spectra with cofibrant prespectra and then use the same proof.

Since we are changing the definitions, we will also take this opportunity to make a 
standard technical modification so that the pairings below are strictly associative. We al-
low the Waldhausen categories R(B; R) and E(B; R) to also include objects consisting of

• a k-tuple of ring spectra R1, . . . , Rk,
• an isomorphism of rings R1 ∧ . . . ∧Rk

∼= R,
• a k-tuple of parametrized modules M1, . . . , Mk over the spaces B1, . . . , Bk,
• and a homeomorphism B1 × . . .×Bk

∼= B.
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In practice, all but one of these rings will be the sphere spectrum, and all but one of 
these spaces will be ∗. For the purpose of defining the morphisms, we treat the above 
object as if it were the external smash product M1 ∧ . . . ∧Mk, which is an R-module 
over B. Clearly these new categories are equivalent to the old ones and so they give 
homotopy equivalent K-theory.

Now we are ready to define our pairings.

Definition 4.29. A pairing of Waldhausen categories, or biexact functor, is a bifunctor 
F : C ×D → E that is exact in each variable separately, such that for every choice of 
cofibration a → b in C and cofibration x → y in D, in the square of cofibrations

F (a, x) F (b, x)

F (a, y) F (b, y)

the map F (a, y) ∪F (a,x) F (b, x) → F (b, y) is also a cofibration.

The following is a consequence of [5], Thm 2.6:

Proposition 4.30. A pairing of Waldhausen categories C1 × C2 → D induces a map of 
spectra K(C1) ∧ K(C2) → K(D) in a natural way. Given four pairings making this 
diagram of functors commute

C1 × C2 × C3 D1 × C3

C1 ×D2 E

the two induced maps K(C1) ∧K(C2) ∧K(C3) → K(E) are identical.

Proposition 4.31. If B and B′ are unbased spaces, R and S ring spectra, then there are 
pairings of symmetric spectra

A(B;R) ∧A(B′;S) A(B ×B′;R ∧ S)

A

(B;R) ∧ A

(B′;S)

A

(B ×B′;R ∧ S)

which are natural with respect to all pairs of maps of unbased spaces and pairs of maps 
of rings. They have the obvious associativity relation in the case of three base spaces and 
three rings. They commute up to homotopy with the Cartan map when it is defined.
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Proof. We send a parametrized R-module M over B and an S-module N over B′ to 
their external smash product M ∧N as defined above. By Proposition 4.27 this defines 
biexact functors

R(B;R) ×R(B′;S) R(B ×B′;R ∧ S)

E(B;R) × E(B′;S) R(B ×B′;R ∧ S)

We have to check that the second pairing actually lands in E ; in other words, a smash 
product of level-fibrant spectra is level-fibrant. Recall that ex-fibrations are preserved 
under pushouts along f -cofibrations and colimits along f -cofibrations (8.2.1 in [31]). 
Therefore on the space level, an external smash product of ex-fibrations is an ex-fibration. 
If X and Y are level-fibrant spectra over A and B, respectively, we check that X ∧Y

is level-fibrant by showing inductively that (SknX) ∧Y is level-fibrant. By the pushout 
square of Lemma 4.24, we may assume that X is semi-free on an ex-fibration K over A
with a fiberwise O(n)-action. We are reduced to showing that the space

(F �
nK ∧ Y )m = (K ∧Ym−n)∧O(n)×O(m−n)O(m)+

is an ex-fibration. Since K ∧Ym−n is already an ex-fibration, this is an easy induction 
up the free O(n) ×O(m − n)-cells of O(m).

To deal with associativity, we modify the above functor up to natural isomorphism 
(which does not change biexactness). We instead take a k-tuple of modules and an l-tuple 
of modules to the obvious (k+ l)-tuple, and do not actually smash any of them together. 
Now our rule is strictly associative, not just associative up to natural isomorphism.

Finally we check the finiteness conditions. Biexactness means that cofiber sequences 
in each variable are sent to cofiber sequences, so if we wish to check that a pair of thick 
subcategories is sent to a given thick subcategory, we only have to check the generators. 
It’s easy to see that the external smash product of spaces sends B with a single cell 
attached and B′ with a single cell attached to B ×B′ with a single cell attached, so we 
get

Rf (B;R) ×Rf (B′;S) Rf (B ×B′;R ∧ S)

giving the pairing on A-theory. Even easier, since the external smash product is on each 
fiber just the smash product of the fibers, we get

Ef (B;R) × Ef (B′;S) Ef (B ×B′;R ∧ S)

giving the pairing on 

A-theory. Note that these pairings do not commute with the functor 
P defined in the last section on the nose, only up to equivalence. �

We remark in passing that these pairings make topological Swan theory into a ring, 
and K-theory into a module over that ring, just as in the classical case.
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Corollary 4.32. For any space B, 

A

(B) is a ring spectrum, and A(B) and A(B; R) are A(B)-modules.

We are interested in the following special cases. Taking one of our spaces to be the 
one-point space ∗, we get natural pairings

K(R) ∧A(B) K(R) ∧A(B; S) A(B;R)

K(R) ∧ A

(B) K(R) ∧ A

(B; S)

A

(B;R)

This will allow us to reduce the proof of Theorem 1.2 to the case R = S.

Remark 4.33. Our construction of A(B; R) and 

A

(B; R) is not natural with respect to all 
maps of ring spectra, only those maps R → S for which S is cofibrant as an R-module. 
One might be able to modify our definition of “cofibration” even further to get naturality 
for all maps of rings, without breaking the biexactness we proved above.

5. Assembly and coassembly of R-modules

In this section we briefly recall both the precise definitions and universal properties 
of assembly and coassembly maps, cf. [40,42].

Definition 5.1. If X· is a simplicial set, the category of simplices ΔX· is a small category 
whose objects are 

∐
p≥0 Xp. The morphisms from x ∈ Xp to x′ ∈ Xq consists of all 

injective maps of simplicial sets Δ[p]· → Δ[q]· making the following square commute.

Δ[p]·
x

X·

Δ[q]·
x′

X·

If X is an unbased space, its singular simplices S·X form a simplicial set. Each object 
in ΔS·X gives a continuous map Δp → X, and the morphisms between such objects are 
the factorizations Δp → Δq → X through compositions of face maps.

We will make use of the last vertex map |N·ΔX· | 
∼→ |X·|. It is most easily defined in 

the special case where X· is the nerve of a category C. In that case, we define the last 
vertex map on the flag of face maps

Δ[p0] −→ Δ[p1] −→ . . . −→ Δ[pk] −→ N·C

by regarding them as functors

[p0] −→ [p1] −→ . . . −→ [pk] −→ C
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where [p] is the poset of integers from 0 to p. We let fi denote the composite functor 
[pi] → C, and we send this flag to the k-simplex in NkC

f0(p0)
f1(f0(p0)→p1)

f1(p1)
f2(f1(p1)→p2)

. . .
fk(fk−1(pk−1)→pk)

fk(pk)

It is straightforward to check that this agrees with faces and degeneracies and so gives a 
well-defined map of simplicial sets.

N·ΔN·C −→ N·C

Furthermore it is natural with respect to functors in C, and so taking C = [n] we get a 
collection of maps of simplicial sets

N·ΔΔ[n] −→ Δ[n]

which are natural with respect to maps [n] → [m] in the simplicial category Δ. Since any 
simplicial set X· is a colimit of these standard simplices, the definition of the last-vertex 
map extends to all X·, and it is always a weak equivalence, using Lemma A.5 from [36].

Now we may define the assembly and coassembly maps. Recall that a functor F is a 
homotopy functor if it sends weak equivalences to weak equivalences. Our main examples 
of interest are the covariant functors A(B) and A(B; R) and the contravariant functors A

(B), and 

A

(B; R).

Definition 5.2. If F is any covariant homotopy functor from unbased spaces to spectra, 
the assembly map of F (X) is the zig-zag

X+ ∧ F (∗) ∼←− |N·ΔS·X |+ ∧ F (∗) ∼= hocolim
(Δp→X)∈ΔS·X

F (∗) ∼←− hocolim
Δp→X

F (Δp) −→ F (X)

Definition 5.3. If F is any contravariant homotopy functor from unbased spaces to spec-
tra, the coassembly map of F (X) is the zig-zag

F (X) −→ holim
(Δp→X)∈Δop

S·X

F (Δp) ∼←− holim
Δp→X

F (∗)

∼= Map∗(|N·ΔS·X |+, F (∗)) ∼←− Map∗(X+, F (∗))

The assembly and coassembly maps are characterized by a universal property. Recall 
that a homotopy functor F is linear if F (∅) 	 ∗ and F takes homotopy pushout squares 
to homotopy pushout/pullback squares of spectra. The homotopy category of functors 
is obtained by inverting the natural transformations of functors that induce a weak 
equivalence F (X) ∼→ G(X) for every space X. These definitions are unchanged if F is a 
contravariant functor.
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Proposition 5.4. Assume that F (∅) 	 ∗. If F is covariant, then the assembly map is the 
universal approximation of F on the left by a linear functor in the homotopy category of 
functors. If F is contravariant, the coassembly map is the universal approximation of F
on the right by a linear functor.

In fact, the proof of this is quite formal and follows the method of (see [15], 1.8). It 
is also possible to modify the definitions of assembly and coassembly so as to drop the 
requirement that F (∅) 	 ∗, or to make higher-order polynomial approximations to F ; 
see [26].

It turns out that assembly and coassembly play well with multiplicative structure. If 
F is a functor into R-modules, then the assembly and coassembly maps are R-module 
maps. If F lands in ring spectra then the coassembly map is a map of rings, and if F
lands in coalgebra spectra then the assembly map is a map of coalgebras. These facts 
motivated our proof of Theorem 1.2, but the final form of the proof only requires this 
simple observation:

Proposition 5.5. If M is a spectrum and F a covariant functor, the assembly map for the 
functor M ∧ F is the smash product of the identity of M and the assembly map for F . 
If F is contravariant then the adjoint of the coassembly map

X+ ∧ (M ∧ F (X+)) −→ M ∧ F (∗)

is the smash of the identity of M and the coassembly map of F .

6. A combinatorial lift of assembly and coassembly

We have defined the assembly map for A-theory as a morphism [α] in the stable 
homotopy category. In this section we lift [α] to an explicit map of spectra

BG+ ∧A(∗) α−→ A(BG)

Our description will agree with the more classical notion of “assembly” by the units of 
a ring. We then proceed to do the same thing for coassembly, resulting in an apparently 
new definition of coassembly that does not appeal to a universal property.

Definition 6.1. Let G be a finite group. By abuse of notation, let G refer also to the 
category with one object, whose set of morphisms (with composition from right to left) 
is the group G. Let G̃ refer to the category whose objects are the elements of the group G, 
and each ordered pair of objects has a unique isomorphism connecting them. We will 
draw the arrows of these categories from right to left. When taking the nerve, we apply 
the usual conventions for the face and degeneracy maps, so for example d0 deletes the 
object on the left:
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d0(•
g1←− • g2←− . . .

gk←− •) = • g2←− . . .
gk←− •

Then we define BG = |N·G| and EG = |N·G̃|.

Of course, these are isomorphic to the usual definitions of BG and EG. We think of the 
arrow g ← h in G̃ as multiplication on the left by gh−1, since this description is invariant 
under the obvious right G-action on the category G̃. This labeling of the arrows of G̃
defines a functor G̃ → G, which on realizations is the familiar map EG → EG/G ∼= BG.

It will be necessary to make some precise statements about monodromy, so let us fix 
our conventions here. When E −→ BG is a covering space, and F is the fiber over the 
0-simplex of BG, we define the monodromy left action of G on F as follows. Take the 
1-simplex Δ1 ∈ BG given by

• g←− •

and take the map F × Δ1 → E which on the right-hand end of Δ1 is the inclusion of 
F into E. The left-hand end maps to F back into F , but in a nontrivial way, and we 
declare this to be the action of g on F . The reader can check that this defines a left 
action, and that canonically E ∼= EG ×G F and F ∼= MapBG(EG, E).

Now we may return to our formula for the assembly map.

Definition 6.2. Define the map of spectra

BG+ ∧K(Mf (∗)) α−→ K(Mf (G))

as the map of bisimplicial spaces

(NpG)+ ∧ wpSqMf (∗) −→ wpSqMf (G)

g1, . . . , gn; X0,1

∼ w1,1

X0,2

∼ w1,2

. . .

X1,1

∼ w2,1

X1,2

∼ w2,2

. . .

...
...

�→ X0,1 ∧G+

∼ w1,1∧(−·g1)

X0,2 ∧G+

∼ w1,2∧(−·g1)

. . .

X1,1 ∧G+

∼ w2,1∧(−·g2)

X1,2 ∧G+

∼ w2,2∧(−·g2)

. . .

...
...

and similarly for iterates of the S·-construction. Here the horizontal direction is the 
S· direction, viewed as a flag of cofibrations. The quotients are suppressed from the 
notation, but the map is defined on them by the same rule.

Proposition 6.3. The following diagram commutes up to homotopy, and therefore α de-
fines the assembly map for A(BG):
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BG+ ∧A(∗) α
K(Mf (G)) ∼

K(I◦E)
K(Rf (BG))

|N·ΔN·G|+ ∧A(∗)

∼ last vertex

hocolim
Δp→X

A(Δp)∼

Proof. We define an explicit simplicial homotopy between the two legs of the diagram 

(NkG)+ ∧ wkRf (∗)
K(I◦E)◦α

wkRf (BG)

(NkΔN·G)+ ∧ wkRf (∗)

last vertex

Bk(wkRf (Δ−),ΔN·G, ∗)

(3)

where B• refers to the categorical bar construction. The proof is then finished by ap-
plying S· as many times as necessary to define the homotopy on level n of the K-theory 
spectrum.

A k-simplex in the lower-right corner of the diagram (3) is given by a flag of categories

[p0] −→ [p1] −→ . . . −→ [pk] −→ G

and a flag of weak equivalences of retractive spaces over Δp0

X0
w1−→ X1

w2−→ . . .
wk−→ Xk

The long route of the diagram pushes these spaces forward along r : Δp0 −→ ∗ to get a 
flag of based spaces

r!X0
r!w1−→ r!X1

r!w1−→ . . .
r!w1−→ r!Xk

and selects the k-simplex in the nerve of G

• g1←− • g2←− . . .
gk←− •

where gi is the image in the category G of the unique arrow in the poset [pi] connecting 
the image of the last vertex of [pi−1] to the last vertex of [pi]. This brings us to the top-left 
corner of the diagram; the final step transforms this into the single flag of retractive spaces 
over BG

(r!X0)∧EG+ w1×·g1−→ (r!X1)∧EG+ w2×·g2−→ . . .
wk×·gk−→ (r!Xk)∧EG+

where EG+ = EG � BG is the bundle EG → BG with an extra basepoint section. On 
the other hand, the short route of (3) takes our original data to the flag
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i!X0
i!w1−→ i!X1

i!w2−→ . . .
i!wk−→ i!Xk

where i : Δp0 → BG is the inclusion induced by the functor [p0] → G. It is enough to 
define a commuting diagram of weak equivalences of retractive spaces over BG

i!X0
i!w1

f0

i!X1
i!w2

f1

. . .
i!wk

i!Xk

fk

(r!X0)∧EG+ w1×·g1 (r!X1)∧EG+ w2×·g2
. . .

wk×·gk (r!Xk)∧EG+

that agrees with deletion or duplication of elements in each flag, and that is natural with 
respect to the Xj and wj (to get compatibility with the S· construction). We define fj
as the product of the identity map of Xj and the composite

Xj Δp0 Δpj EG

Here the first map is the projection map of the retractive space Xj, the second map 
comes from our flag of categories, and the final map is the unique lift of Δpj −→ BG to 
EG by sending the final vertex of [pj] to the object of G̃ labeled by 1 ∈ G. This sends the 
basepoint section of Xj to the basepoint section of (r!Xj) ∧EG+, so fj is well-defined 
on the quotient i!Xj . With this definition, the commutativity of the jth square above 
boils down to the commutativity of the square of categories

[pj−1] [pj ]

G̃
·gj

G̃

where the vertical maps are our lifts sending the final vertex to 1. This square commutes 
by our definition of gj . �

Now that we have established a combinatorial model of the assembly map, we turn 
our attention to the coassembly map. Recall the category N f (G) from Definition 4.10.

Definition 6.4. Define the map of spectra

K(N f (G)) cα−→ Map∗(BG+,K(Mf (∗)))

whose adjoint is given by the map of bisimplicial spaces
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(NpG)+ ∧ wpSqN f (G) −→ wpSqMf (∗)

g1, . . . , gn; X0,1

∼ w1,1

X0,2

∼ w1,2

. . .

X1,1

∼ w2,1

X1,2

∼ w2,2

. . .

...
...

�→ X0,1

∼ g−1
1 ·w1,1

X0,2

∼ g−1
1 ·w1,2

. . .

X1,1

∼ g−1
2 ·w2,1

X1,2

∼ g−1
2 ·w2,2

. . .

...
...

and similarly for iterates of the S·-construction.

Proposition 6.5. The following diagram commutes up to homotopy, and therefore cα
defines the coassembly map for 

A

(BG):

K(Mf (G)) ∼

∼ K(E)

K(N f (G)) cα
F (BG+, A(∗))

∼ last vertex

K(Ef (BG)) holim
Δp→X

A
(Δp) ∼

F (|N·ΔN·G|+, A(∗))

Proof. This proof is in many ways dual to the previous one. It is enough to define an 
explicit simplicial homotopy between the two legs of the diagram 

wkMf (G) cα
F ((NkG)+, wkRf (∗))

last vertex

Ck(∗,ΔN·G, wkEf (Δ−)) F ((NkΔN·G)+, wkRf (∗))

(4)

where C• refers to the categorical cobar construction. Once this is accomplished, the 
proof is finished by applying S· as many times as necessary to define the homotopy on 
level n of the K-theory spectrum. Though the target spectrum in our holim system is 
not fibrant, both of our maps factor through this one, so after composing with fibrant 
replacement they are still homotopic.

A k-simplex in the upper-left corner of (4) is given by a flag of coarse weak equivalences 
of spaces with a left G-action

Y0
w1−→ Y1

w2−→ . . .
wk−→ Yk

Given this and a flag of simplices
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[p0] −→ [p1] −→ . . . −→ [pk] −→ G

the long route of (4) gives the flag of retractive spaces over Δpk

Δpk × Y0
id×(g−1

1 ·w1)−→ Δpk × Y1
id×(g−1

2 ·w2)−→ . . .
id×(g−1

k ·wk)−→ Δpk × Yk

Here gi has the same definition as before. Note that the maps g−1
i ·wi(−) and wi(g−1

i ·−)
are identical because wi is equivariant. The short route of our diagram ends with the 
flag of retractive spaces

(i∗EG) ×G Y0
id×w1−→ (i∗EG) ×G Y1

id×w2−→ . . .
id×wk−→ (i∗EG) ×G Yk

where i is the inclusion Δpk → BG coming from our functor [pk] −→ G. Next we define 
homeomorphisms fj of retractive spaces over Δpk

Δpk × Y0
g−1
1 ·w1

f0

Δpk × Y1
g−1
2 ·w2

f1

. . .
g−1
k ·wk

Δpk × Yk

fk

(i∗EG) ×G Y0
id×w1 (i∗EG) ×G Y1

id×w2
. . .

id×wk (i∗EG) ×G Yk

which agree with deletion or duplication of the spaces Yj . To define fj , we take the 
unique lift of Δpj → BG to EG which takes the final vertex to 1. This extends uniquely 
to a lift of Δpk which takes the final vertex to g−1

k g−1
k−1 . . . g

−1
j+1. It follows that this square 

commutes:

Δpk

j−1 × Yj−1
id×g−1

j ·wj

Δpk

j × Yj

EG×G Yj−1
·gj×g−1

j ·wj

EG×G Yj

Furthermore, the gj and g−1
j along on the bottom row cancel out, leaving us with id×wj . 

So our definition of fj has the correct properties, and we are done. �
Our combinatorial model for the assembly and coassembly maps fit into a strictly 

commuting diagram
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BG+ ∧K(F) α
K(Kf (G)) K(Kf (G)) cα

F (BG+,K(F))

BG+ ∧K(Mf (∗)) α
K(Mf (G))

K(E)∼

K(N f (G)) cα
F (BG+,K(Mf (∗)))

K(Ef (BG)) K(Mf (G))

K(E)∼

∼

K(Rf (BG))
Cartan

∼ K(P )

K(Ef (BG))

The maps along the top row are the obvious restrictions of α and cα from all finite based 
spaces to finite based sets. The remaining unlabeled maps are all induced by inclusions of 
Waldhausen categories. Therefore we get a commuting diagram in the homotopy category

BG+ ∧K(F) α
K(Kf (G)) K(Kf (G)) cα

F (BG+,K(F))

BG+ ∧A(∗)
assembly

A(BG) Cartan A
(BG)

coassembly
F (BG+, A(∗))

This gives us a strategy for proving Theorem 1.2. It is enough to prove that our combi-
natorial model for assembly gives the norm on K(F), because then we can deduce the 
general case using the pairings of Proposition 4.31.

7. Proof that the lift is the norm

In this section we recall and provide some results on equivariant transfer and norm 
maps. Then we prove that the composite of the assembly and coassembly maps, on the 
K-theory of finite sets, is the norm. Finally, we use this to finish the proof of the main 
theorem.

In this section the term “G-spectrum” refers to an orthogonal spectrum with a 
G-action, or an S[G]-module. We let f denote any fibrant replacement functor in this 
model category. Our constructions could easily be interpreted as taking place in the 
model category of genuine G-spectra from [27], but we do not need that interpretation 
here.

If G is a finite group, we think of it as a left (G ×G)-set with action (g, h)k = hkg−1. 
We pick any equivariant embedding of G into a (G × G)-representation V , and then 
Pontryagin–Thom collapse to produce a map

S0 −→ ΩV (SV ∧G+)
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Here SV is the one-point compactification of V , and ΩV denotes the space of maps out 
of SV . We add trivial representations to V to make this a map of spectra:

S −→ ΩV ΣV Σ∞
+ G

∼←− Σ∞
+ G

This zig-zag is the pretransfer [τ ]. It is well-defined as a map in the homotopy category 
of (G ×G)-spectra.

If X is a cofibrant S[G]-module, we smash the pretransfer over G with the identity 
of X. This gives the equivariant transfer map [τ(X)]:

XhG 	 S ∧G X −→ (ΩV ΣV Σ∞
+ G) ∧G X

∼←− Σ∞
+ G ∧G X ∼= X

This is still a map of G-spectra, when we give XhG the trivial G-action. Therefore [τ(X)]
has an equivariant lift into the fibrant replacement fX, and this lift must factor through 
the homotopy fixed points (fX)hG. That factorization is the equivariant norm map of X:

N(X) : XhG −→ (fX)hG

We will occasionally drop the fibrant replacement f from the notation, when the meaning 
is clear.

Remark 7.1. This definition is translated from [22], III.7. It only gives a natural transfor-
mation between −hG and −hG in the homotopy category, though it could be modified to 
be natural with respect to any small collection of maps. In [33] this definition is modified 
to give a natural transformation on the entire category of spectra.

We first prove that the norm can simplify if X is a suspension spectrum Σ∞
+ E, and 

p : E → B is a principal G-bundle but with G acting on the left. Recall that E may be 
embedded equivariantly into U×B over B, when U is a countable-dimensional real inner 
product space U with an orthogonal G-action. Then the Pontryagin–Thom collapse gives 
a map in the equivariant homotopy category

Σ∞B+
θ(p)−→ fΣ∞E+

It is well-known that this agrees with the equivariant transfer [τ(Σ∞
+ E)], so we omit the 

proof. Now if h : E → K is an equivariant map to a space K with a trivial G-action, we 
consider the composite

Σ∞
+ B

N−→ (fΣ∞
+ E)hG −→ (fΣ∞

+ K)hG = Map(BG, fΣ∞
+ K)

Proposition 7.2. This is adjoint to a Pontryagin–Thom collapse along the bundle

EG×G E −→ BG×B

followed by the map EG ×G E → K coming from h.
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To avoid confusion with left and right actions, we always assume EG = B(∗, G, G)
has a right G-action. We let EG� denote the same space, but with a left G-action given 
by composing the existing right G-action with the inverse map g �→ g−1. It is then easy 
to identify the quotient (EG� × E)/G with the balanced product EG ×G E as spaces 
over BG.

Proof. We use an explicit model for the Pontryagin–Thom collapse following [12]. Let 
SV
ε = V/(V − Bε(0)), for any G-representation V and ε > 0. The identity of V induces 

an equivariant homotopy equivalence SV −→ SV
ε . We use ΣV

ε X as shorthand for SV
ε ∧X, 

and ΩUΣU
ε as shorthand for the colimit of ΩV ΣV

ε over all inclusions of representations. 
Then we define the Pontryagin–Thom collapse

B+
θ(p)−→ ΩUΣU

ε E+

by the formula (b, u) �→ (u − e, e), with e the preimage of b closest to u. To give a simple 
formula for the norm, we fill the dotted line in the square

B
θ(p)

MapG(EG�,ΩUΣU
ε E+)

∼

MapG(EG�,ΩR
∞ΣR

∞
ε E+) ∼ MapG(EG�,ΩR

∞⊕UΣR
∞⊕U

ε E+)

by choosing an equivariant map φ of EG� into the space of fiberwise embeddings of E
into R∞ × B whose fibers are always at least ε apart. This latter space has the usual 
conjugation left G-action, and it is weakly contractible, so φ exists and is unique up to 
equivariant homotopy. We rewrite φ as a map E×EG� −→ R

∞ and notice that φ(x, y) =
φ(gx, gy). Then we take the dotted map to be the adjoint of the Pontryagin–Thom 
collapse

B × EG� −→ ΩR
∞

ΣR
∞

ε E+

which for each point y ∈ EG� collapses onto the image of φ(−, y). So these two branches 
give

(s, u, b, y) ∈ R
∞ × U ×B × EG� �→ (s, u− ẽ, ẽ) ∈ ΩR

∞⊕UΣR
∞⊕U

ε E+

(s, u, b, y) ∈ R
∞ × U ×B ×EG� �→ (s− φ(ẽ, y), u, ẽ) ∈ ΩR

∞⊕UΣR
∞⊕U

ε E+

where ẽ is in the first case the point in E ⊂ U closest to U , and in the second case the 
point of φ(−, y) closest to s.

We can define an explicit, G-equivariant homotopy between these two maps by

(s− (cos t)φ(ẽ, y), u− (sin t)ẽ, ẽ) ∈ ΩR
∞⊕UΣR

∞⊕U
ε E+
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Here ẽ is always chosen so that the first two quantities are smaller than ε, and if this 
is not possible, we go to the basepoint instead. This provides a homotopy between the 
norm and a much simpler map, which when composed with h gives

(s, b, y) ∈ R
∞ ×B ×EG� �→ (s− φ(ẽ, y), h(ẽ)) ∈ Ω∞Σ∞

ε K+

This is invariant under the left G-action on EG� and so descends to a map on BG. 
We reinterpret φ as a fiberwise embedding of the bundle EG ×G E → BG × B into 
R

∞ ×BG ×B, and then the composite is clearly a Pontryagin–Thom collapse followed 
by h. �

Taking the special case E = EG� and K = ∗, the norm for the sphere spectrum

Σ∞
+ BG −→ Map∗(BG+,Ω∞S∞

ε )

is adjoint to a Pontryagin–Thom collapse along the bundle

EG×G EG� ∼= (EG× EG)/G → BG×BG

followed by collapsing the total space of that bundle to a point, as in Thm 8 of [21]. It 
is easy to verify that this bundle is equivalent to the diagonal map BG → BG × BG. 
In a somewhat non-symmetric way, we identify its fiber with G along the isomorphism 
G → (G ×G)/G sending γ to (γ, 1). Then the left (G ×G)-action on the fiber is given 
by left and right multiplication, (g, h)γ = gγh−1.

Next we describe how the norm simplifies when X has a trivial G-action. The proof 
follows the previous proposition, as the X term remains inert at every step. For simplicity, 
we suppress the fibrant replacements in the final answer.

Proposition 7.3. If X has trivial G-action, the transfer for EG�
+ ∧ X is the smash of 

the transfer for Σ∞
+ EG� and the identity of X. The norm is adjoint to the smash of the 

identity of X and the Pontryagin–Thom collapse along (EG × EG)/G, followed by the 
collapse of (EG ×EG)/G to a point.

The reader is invited to compare this norm map to the composite of assembly and 
coassembly on the K-theory of finite sets:

(BG×BG)+ ∧K(F) −→ K(F)

Informally, this map uses the infinite loop space structure on K(F) to add a given point 
to itself G times. This sum has a monodromy as we rove around BG ×BG that agrees 
with the bundle described in Proposition 7.3, so we expect this composite map to be a 
Pontryagin–Thom collapse as well. We will now make this idea precise.
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Let C be a Σ-free E∞ operad of unbased spaces, with May’s convention of C(0) = ∗. 
Let X be a C-algebra, Y an ordinary based space, and f : Y → X a map of based 
spaces. Let B∞X be the (essentially unique) spectrum whose zeroth space is X, so that 
f must come from some map in the stable homotopy category f : Σ∞Y → B∞X. Let 
B be an unbased space with fundamental group Γ, and Γ 

φ→ Σj a homomorphism. Let 
E → B be the j-sheeted covering space whose monodromy is given by φ. (Since all of our 
monodromy actions are left actions, we assume that the composition of permutations 
in Σn is being written from right to left.) Finally, let EΣj

i→ C(j) be any Σj-equivariant 
map, necessarily an equivalence. Consider the composite

B × Y BΓ ×X ∼= EΓ ×Γ X
Eφ×Δ

EΣj ×Σj
Xj

i×id C(j) ×Σj
Xj X

If the point in B × Y is of the form (b, ∗) then its image in X is the basepoint, so this 
can be interpreted as a map out of B+ ∧ Y . Intuitively, this composite takes each point 
y ∈ Y to a sum of j copies of f(y) ∈ X, but as we rove around B, the ordering in this 
sum is permuted according to the rule given by Γ → Σj .

Proposition 7.4. In the homotopy category, this composite is adjoint to the map of spectra

Σ∞B+ ∧ Y
θ(p)∧id

Σ∞E+ ∧ Y
r∧f

B∞X

where θ(p) is Pontryagin–Thom collapse, and r : E → ∗ is the collapse of E onto a 
point.

This theorem is apparently quite classical (cf. [19] and [1]) so we will give only a brief 
sketch of the proof.

Proof. It suffices to prove this for one fixed E∞ operad, since any two are related by 
a zig-zag of weak equivalences of operads C → C′. We take C to be the little ∞-cubes 
operad. Our composite map from B × Y into X factors through C(j) ×Σj

Xj . This 
gives for each point of B × Y a 1-simplex in the space Ω∞B(Σ∞, C, X), arising from 
some finite level ΩnB(Σn, Cn, X). That family of 1-simplices defines a homotopy of 
maps B × Y → Ω∞B∞X, which at one end is our original composite included along 
X

∼→ Ω∞B∞X, and which at the other end instead maps

C(j) ×Σj
Xj −→ Ω∞Σ∞X

using the map of monads C → Ω∞Σ∞. One may write an explicit homotopy between 
this latter map and a Pontryagin–Thom collapse along the covering space E → B with 
the monodromy we described. Therefore the above composite is homotopic to the com-
posite
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B × Y
1×f

B ×X
θp

Ω∞Σ∞
ε (E ×X)+ Ω∞Σ∞

ε X
∼ Ω∞Σ∞X Ω∞B∞X

Checking basepoints, we rearrange this into the composite map stated in the proposi-
tion. �

We can now prove Theorem 1.2 from the introduction.

Theorem 7.5. If G is a finite group and R is a ring spectrum then the composite of 
assembly, Cartan, and coassembly

BG+ ∧K(R)
assembly

A(BG;R) Cartan A(BG;R)
coassembly

F (BG+,K(R))

is the equivariant norm map

K(R)hG −→ K(R)hG

on K(R) with the trivial G-action.

Proof. Take n = |G| and fix a bijection between G and the standard set of n elements. 
Define the homomorphism φ : Γ = G × G → Σn by sending the pair (g, h) to the 
permutation x �→ gxh−1.

Let C be the Barratt–Eccles operad, so that C(n) = EΣn = |N·Σ̃n|. If C is any 
permutative category, the action map

|N·Σ̃n| × |N·C|n −→ |N·C|

can be defined the 0-skeleta by

σ, c1, . . . , cn �→ cσ−1(1) ∨ cσ−1(2) ∨ . . . ∨ cσ−1(n) =: Sσ

and on |N·Σ̃n| times the 0-skeleton of |N·C|n by sending (σ1, . . . , σk; σ) to the flag

Sσ1σ2...σkσ
σ−1
1−→ Sσ2...σkσ

σ−1
2−→ . . .

σ−1
k−1−→ Sσkσ

σ−1
k−→ Sσ

where each map shuffles the summands according to the permutation listed above the 
arrow. This extends to the higher skeleta of |N·C|n, by allowing ourselves to put flags 
of k composable nontrivial maps into each of the ci slots.

By Propositions 6.3 and 6.5, the composite of assembly and coassembly on the 
K-theory of finite sets is, when restricted to Y = S0, the map of spaces

(BG×BG)+ −→ K(F) 	 Ω∞S∞

defined simplicially by
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NkG×NkG −→ wkF

(g1, . . . , gk;h1, . . . , hk) �→ G+
g−1
1 ·−·h1

G+
g−1
2 ·−·h2

. . .
g−1
k ·−·hk

G+

and then we apply the usual inclusion |w·F| → Ω|w·S·F|.
Under our choice of homomorphism Γ = G ×G −→ Σn, this agrees with the operad 

action of EΣn on |w·F| that we described above. (Technically, the two agree up to a 
natural isomorphism in w·F , so the two maps are homotopic, not identical.) This allows 
us to rewrite our assembly and coassembly composite as

BΓ ∼= EΓ/Γ
Eφ×(Δ◦f)

EΣn ×Σn
Ω|w·S·F|n Ω|w·S·F|

where f the inclusion of the object (S0) in w0F → w0S1F . Note that f : S →
B∞Ω|w·S·F| is an equivalence of spectra, using Theorem 3.11 to identify the latter 
spectrum with K(F) 	 S.

Now apply Proposition 7.4 with X = Ω|w·S·F| 	 QS0 and Y = S0. We conclude that 
this is the transfer and collapse map of BG ×BG along the bundle whose fiber is G and 
whose G × G-monodromy is given by left and right multiplication. By Proposition 7.3, 
this is the equivariant norm map of S.

To move from finite sets to modules over a ring spectrum R, we observe that the 
assembly and coassembly maps for K(R[G]) fit into the bottom row of a diagram

BG+ ∧ S ∧K(R)

BG+ ∧A(∗) ∧K(R)
assem∧id

η

A(BG) ∧K(R)
Cartan∧id

η

A

(BG) ∧K(R)
coassem∧id

η

F (BG+, A(∗) ∧K(R))

η

BG+ ∧K(R)
assem

A(BG;R)
Cartan A

(BG;R)
coassem

F (BG+,K(R))

in which the pairings η are described at the end of section 4.3. By Propositions 4.31
and 5.5, this diagram commutes up to homotopy. The composite of the vertical maps on 
the left-hand side is an equivalence, so the composite of assembly and coassembly can be 
evaluated by determining the image of BG+ ∧K(R) along the top part of the diagram. 
The desired map has adjoint

(BG×BG)+ ∧K(R) −→ K(R)

which is the smash product of the identity map of K(R) and the map we just exam-
ined above. Applying Proposition 7.3 again, we conclude that this is the adjoint of the 
equivariant norm of K(R). �
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Remark 7.6. Our key claim about the K-theory of finite sets also follows from a THH

result in the author’s thesis (see [25], section 3.7). This reduction is possible because 
the assembly and coassembly maps on K-theory commute with the trace maps into 
THH, and the composite map K(F) −→ THH(Mf (1; S)) is an equivalence. We will 
save the THH-level argument for a future paper, since it seems to generalize well but 
uses somewhat elaborate geometric coherence machinery.

8. A generalization to all subgroups

In this final section, we briefly examine a broader collection of assembly maps, and 
relate them to the Segal conjecture.

We continue to assume that G is a finite group. If S denotes a fibrant version of the 
genuinely G-equivariant sphere spectrum, then we may consider its tom Dieck splitting 
and the map from its fixed points to homotopy fixed points:

∨
(H)≤G

Σ∞
+ BWH

∼−→ S
G −→ S

hG = F (BG+, S)

Here (H) denotes conjugacy classes of subgroups, and WH = NH/H is the Weyl group 
of H. The first map above is always an equivalence, by tom Dieck’s splitting theorem. 
If G is a p-group, then the second map is an equivalence after p-completion, by the 
affirmed Segal conjecture [8]. More generally, it is an equivalence after a certain kind of 
completion at the augmentation ideal of the Burnside ring.

We recall a nonequivariant description of this composite from [21], which one can also 
verify using the method of Proposition 7.2.

Proposition 8.1. The above map Σ∞
+ BWH → F (BG+, S) is adjoint to a transfer along 

the bundle

EG×NH EWH� −→ BG×BWH

followed by the collapse of EG ×NH EWH� to a point.

It is not hard to check that this bundle has fiber

G×NH WH ∼= G/H

with G ×WH-monodromy given by left and right multiplication:

(g, n) · (γH) = gγHn−1 = gγn−1H, g, γ ∈ G, n ∈ NH
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Now consider the composite

BWH+ ∧K(R)
assembly

K(R[WH])
G+∧NH−

GR(R[G])
coassembly

F (BG+,K(R))

The exact functor in the middle takes the WH-module M to the G-module G+ ∧NH M . 
In particular, this sends the module R ∧WH+ to the module R ∧G/H+.

Theorem 8.2. This composite is adjoint to the identity map of K(R) smashed with the 
map of the Segal conjecture from Proposition 8.1.

Proof. As in the proof of Theorem 1.2, it suffices to examine the effect of these maps 
on the K-theory of finite sets. We let n = |G/H| and fix a bijection between G/H

and the standard set of n elements. Define a homomorphism Γ = G × WH → Σn by 
sending the pair (g, n) to the permutation x �→ gxn−1. The composite of the assembly 
and coassembly maps on finite sets becomes

(BG×BWH)+ −→ K(F) 	 Ω∞S∞

defined simplicially by

NkG×NkWH −→ wkF

(g1, . . . , gk;n1H, . . . , nkH) �→ G/H+
g−1
1 ·−·n1

G/H+
g−1
2 ·−·n2

. . .
g−1
k ·−·nk

G/H+

and then we apply the usual inclusion |w·F| → Ω|w·S·F|. For the same reasons as before, 
this must be the transfer and collapse map of BG ×BWH along the bundle whose fiber 
is G/H and whose G × WH-monodromy is given by left and right multiplication. By 
Proposition 8.1, this is the map of the Segal conjecture. �

We have included this generalization, because it allows us to partially compute the 
Swan theory of S[G], when G is a finite p-group. This was stated in the introduction 
under Theorem 1.5.

Corollary 8.3. If R is a ring spectrum augmented over the sphere, and G is a finite 
p-group, then the group π0(GR(R[G])∧p ) contains the Burnside ring A(G)∧p as a direct 
summand.

Proof. Since R is augmented, so is K(R). We choose η : S → K(R) by picking out R
as a module over itself. We define ε : K(R) → S by composing the topological Dennis 
trace K(R) → THH(R) with the augmentation THH(R) → THH(S) 	 S. Though 
the Dennis trace is difficult to describe on most elements, it is easy to check that the 
sphere in K(R) picked out by η goes to the unit map S −→ R at level 0 of the cyclic 
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bar construction for THH(R). So ε ◦ η can be identified up to homotopy with the map 
induced on THH by the map of rings S → R → S, but this is just the identity map of S.

Now take the maps of Theorem 8.2, for varying H, and compose them with the 
augmentation of K(R):

∨
(H)≤G Σ∞

+ BWH

id∧η

∨
(H)≤G Σ∞

+ BWH ∧K(R)
α ∨

(H)≤G K(R[WH])
G+∧NH

GR(R[G])
cα

F (BG+,K(R))

F (id,ε)

F (BG+, S)

This is adjoint to the maps of the Segal conjecture, smashed with the composite ε ◦η 	 id. 
So the above composite agrees with the map of the Segal conjecture.

Now let G be a finite p-group, take the p-completion of every spectrum above, and 
take π0 to get a diagram of abelian groups. Then the first and last terms are isomorphic 
to the p-completed Burnside ring A(G)∧p , and the map between them is an isomorphism. 
It follows that every group along the middle row has A(G)∧p as a direct summand. �
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