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1. Key insights and central organizing principles

1.1. Background. One of the main things we do as algebraic topologists
is we take a gigantic object that has way too much data, such as a topological
space with uncountably many points, and we distill that data down into a small,
computable object like a finitely-generated abelian group. If we do our job well,
the small invariant captures something essential about the big unruly space, and
we can use that something to answer questions that would otherwise be out of
reach.

Algebraic K-theory is a part of this larger story. It accepts as input any
category C with a notion of weak equivalence and cofibration, and outputs a
sequence of abelian groups K0(C), K1(C), . . .. In particular, we can take the
K-theory of a ring, by feeding in the category of finitely-generated projective
modules. Or, we can take the K-theory of a ring spectrum by feeding in the
category of dualizable R-modules. It is also possible to take the K-theory of a
topological ring such as C or R. We can even define the K-theory of “spaces” by
feeding in the category of retractive spaces over a fixed space X.
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So, the algebraic K-theory machine boils the category C down to a manage-
able collection of abelian groups. These groups still contain essential information
about C. The group K0(C) is just the free abelian group on the objects of C,
but for any cofiber sequence X → Y → Z we impose the relation [Y ] = [X]+[Z].
So K0(C) remembers the information in C that adds over cofiber sequences, just
like the Euler characteristic. The higher K-groups do not admit such a nice
description, but they often contain obstructions for classical problems, such as
recognizing families of finite cell complexes and constructing families of diffeo-
morphisms.

It’s helpful to know that the groups Kn(C) are actually the homotopy groups
of a spectrum, or infinite loop space, K(C). In particular, they form an extraordi-
nary cohomology theory. In fact, when we take the algebraic K-theory spectrum
of the complex numbers C, the resulting cohomology theory K(C)0(X) agrees
with the more familiar topological K-theory, K0(X). This explains why the term
“K-theory” is used in both contexts.

1.2. The introduction and setup. These algebraic K-groups are very
difficult to compute, so we sometimes just focus on their relationship to each
other and to simpler groups. As we remark in the introduction to [Mal15], we
get an assembly map

Hn(BG;K(R))
α−→ Kn(R[G])

for any ring or ring spectrum R, and any topological group G. We seek cases
where this map is injective, since that allows us to build nontrivial classes in
Kn(R[G]) by first constructing them on the left-hand side.

Unfortunately, in homotopy theory we don’t have a lot of methods for proving
injectivity. The best we can do is describe α as a map of spectra

BG+ ∧K(R)
α−→ K(R[G])

and then produce some other map K(R[G])→ X so that the composite

BG+ ∧K(R)
α−→ K(R[G]) −→ X

is an equivalence of spectra. This is more than enough to conclude that our
abelian-group version of the assembly map is injective.

In [Mal15] we investigate one such technique. Recall that K(R[G]) is the
K-theory of the category of R[G]-modules that are dualizable over R[G]. If
we instead take the R[G] modules that are dualizable as R-modules, we get a
different category. The K-theory of this new category may be called G(R[G]), the
Swan theory of R[G]. It is the K-theory of representations of G in the category
of R-modules. This functor has been carefully studied in discrete cases such as
R = Z (e.g. [HTW88]), but when R is a ring spectrum such as S, it is relatively
unexplored.
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Using Swan theory we are able to produce a sequence of maps

BG+ ∧K(R)
assembly // K(R[G])

Cartan // G(R[G])
coassembly // F (BG+,K(R))

where F stands for function spectrum. Essentially, the coassembly map at the
end is a map from Swan theory into a kind of cohomology of BG. This is exciting
because the two outside terms are far smaller and more computable than the two
terms on the inside. In particular, one might expect that this composite has an
explicit description. This is actually the main theorem of the paper:

Theorem 1.1. When G is a finite group, the above composite is homotopic
to the equivariant norm map

K(R)hG −→ K(R)hG

on the spectrum K(R) with a trivial G-action.

This equivariant norm map happens to be an equivalence after certain kinds
of localization, so we get a new context in which the assembly map splits. That’s
it for the motivation; we’ll spend the rest of this section digging into the central
ideas of the proof.

1.3. Key ideas of the proof. To understand where assembly and coassem-
bly really come from, we have to re-interpret what it means to be a module over
R[G].

Key Idea 1.2. Topological groups G correspond to connected spaces X under
the identifications X ' BG and G ' ΩX. Modules over R[G] correspond to
bundles of R-modules over X. The underlying R-module is the fiber, and the G
action is the monodromy.

This idea lets us re-imagine K-theory and Swan theory of R[G], for fixed
R and varying G, as functors on spaces X. We use the notation A(X;R) and

A

(X;R) when we think this way. The assembly map then has a neat interpreta-
tion, which leads to the definition of the coassembly map (described this way in
[Wil00] as well):

Key Idea 1.3. When thinking of modules as bundles, assembly is a co-descent
map, or a homotopy colimit problem map. It is a universal approximation by a
homology theory in spectra. Therefore there is also a descent map, or homotopy
limit problem map, or homotopy sheafification, called coassembly.

Now we know what assembly and coassembly are. The Cartan map is just
an inclusion of categories, since every dualizable R[G]-module is automatically
dualizable over R. But how do we evaluate the composite of these things?

In Section 6 of [Mal15], we start from the universal properties of assembly
and coassembly and produce a pair of maps that have explicit, combinatorial
descriptions. The following key idea captures the result in a rough form.
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Key Idea 1.4. The assembly map takes each R-module M to G+ ∧M or⊕GM . The coassembly map takes each R[G]-module N to its underlying R-
module. So their composite takes each module M to a (twisted) G-fold sum of
copies of M .

This can’t be a full description because we don’t see what the two extra
copies of BG do. In essence, they give a G × Gop-monodromy on that G-fold
sum, permuting the terms of the sum using the left and right actions ofG on itself.
It is maybe not so obvious why this re-interpretation of assembly and coassembly
is possible, but in the next section of the user’s guide, we will attempt to give an
intuitive explanation.

Next, we try to cut the work down as much as possible to the case of R = S,
and from there to the K-theory of finite sets, which is the sphere spectrum. This
is a fairly natural plan of attack:

Key Idea 1.5. Any natural construction on the K-theory of all ring spectra
is likely to be determined by what it does to K(S), and that in turn is often
governed by what happens on K(finite sets).

To make this maxim actually true, we set up our models for K-theory so that
they are functors of spaces X, but still have the usual smash product pairings. So,
in Section 4 of [Mal15], we build some Waldhausen categories of parametrized
spectra. The construction of such things is generally believed to be possible, but
they are rarely ever written up explicitly, perhaps out of fear that the treatment
would be as long as in [MS06].

Finally, in Section 7 we show how to re-arrange some standard definitions
of the transfer and norm maps so that they line up with the maps we saw in
Idea 1.4 above. On the level of infinite loop spaces, we get a really nice and very
classical picture of what a transfer is (compare with [KP72] and [Ada78]):

Key Idea 1.6. Transfer maps are G-fold sums, where the individual terms of
the sum may change their order as you move around the base. More specifically,
if X is an E∞ space, and we form a map BG×X −→ X by taking each point in
X to a G-fold sum of copies of itself, with monodromy around BG that re-orders
the terms of the sum, this gives a transfer map on the spectrum associated to X.

Therefore the composite of assembly and coassembly is something that looks
like a transfer. The bundle involved has base BG×BG, and fiber G with G×Gop

acting by left and right multiplication, so its total space is BG again, which is
not contractible. In truth, the map we have is a transfer from BG × BG up to
BG, followed by a collapse of BG to a point. By a fun geometric argument with
Pontryagin-Thom collapses, we can make this line up with the equivariant norm,
and that’s how the theorem is proven.
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2. Metaphors and imagery

2.1. Spectra. It will be easiest if I begin with how to picture spectra. A
spectrum is a sequence of based spaces X0, X1, X2, . . . with structure maps
ΣXn−1 → Xn. We’ll assume that the spaces are cell complexes, and the maps
are closed inclusions.

We arrange the spaces in a line as shown, and we think of X as their colimit.
Their heights are staggered because each Xn is suspended before it is included
into the next Xn+1.

We could say that X is made up of “elements,” just like a set or an abelian
group. An “element” of X is a point in the 0th space X0, or a based loop
S1 → X1, or a based sphere Sn → Xn for any n. We can always increment n,
but we only care about the behavior as n→∞. So an element of X is a collection
of maps Sn → Xn, for all sufficiently large n, that agree along the structure maps
of X. Picture a sequence of spheres Sn inside the spaces Xn, each one casting a
shadow Sn+1 in Xn+1 that lines up with the next sphere.

These elements can be added together. Thinking of them as maps out of
spheres, we add them by pinching the sphere at the equator. The choice of pinch
Sn → Sn ∨ Sn is not unique, but it is more or less equivalent to choosing two
points in Rn, where n can grow as large as we like. So we get a contractible space
of such addition maps. Therefore the addition is commutative up to homotopy
in a very strong sense − to be more precise, the elements form an E∞ space.

Of course, you can have elements of other degrees too. An element of degree
k ∈ Z is a collection of maps Sn+k → Xn for varying n; we may imagine these
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elements living in the kth row of the diagram above. The kth homotopy group
πk(X) can be elegantly described as the homotopy classes of degree k elements. A
map of spectra is an equivalence when it induces isomorphisms on these homotopy
groups.

With this language of “elements,” the sphere spectrum S is just a free spec-
trum on one element of degree 0. Similarly, the n-sphere ΣnS = Sn is freely
generated by a single element of degree n.

Since spectra are similar to abelian groups, it makes sense to talk about ring
spectra and module spectra. A ring spectrum R has a multiplication, which takes
two elements of degrees k and ` as input and returns an element of degree k + `
as output. It also has a unit, which is just a degree 0 element of R. Similarly,
if M is a module over R, that means that an element of degree k in R and an
element of degree ` in M give an element of degree k + ` in M , and the unit
of R acts as the identity. (Of course, multiplication should be associative and
distribute over addition, and indeed this happens up to a contractible set of
choices.) Every ordinary ring R becomes a ring spectrum HR, which only has
interesting elements in degree zero, given by the actual elements of R itself.

If we fix a ring spectrum R then it is easy to build some modules over it.
I can take a finite number of copies of R, multiply them by discs, and glue
them together along the boundaries of these discs, to make something like a cell
complex. Then, if I want, I could cut down to some smaller module spectrum
sitting inside the bigger one as a retract. Every module built this way is “perfect.”
This is the analogue of being a module that is finitely-generated and projective.
Each cell in my complex plays the role of a generator or a relation, or sometimes
a little bit of both. If I allowed infinitely many cells, then I could capture every
R-module this way, up to equivalence.

Finally, if R is a ring spectrum and G is a topological group or monoid, there
is a group ring spectrum R[G], generated freely by R and by a degree 0 element
for every point of G. Formally, the nth level of R[G] is just Rn ∧G+.

As we mentioned in the first part of the user’s guide, these group rings are
closely connected to the study of parametrized spectra, or families of spectra
that vary continuously over a base space B. Just picture a fiber bundle over B,
each fiber of which is one of these spectra. The main idea is that spaces over
B are essentially the same as spaces with an action of ΩB, so the category of
parametrized spectra is essentially the same as the category of module spectra
over the ring spectrum S[ΩB].

2.2. Algebraic K-theory. In [Mal15] we study the algebraic K-theory of
a ring or ring spectrum R. This is a sequence of abelian groups Kn(R), which
are the homotopy groups of a spectrum K(R). So we can think of Kn(R) as the
degree n “elements” of the spectrum K(R), in the sense we discussed in the last
section. Let’s discuss what these elements look like.
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We begin with the first space K(R)0 in the spectrum K(R). If R is a dis-
crete ring, then K(R)0 is the moduli space of all finitely-generated projective
R-modules. A point in this space is an R-module, and a path between two points
is an isomorphism of modules. Similarly, if R is a ring spectrum, then K(R)0

is the moduli space of all perfect R-modules. A point is a perfect R-module,
and a path between points is a weak equivalence of modules. Already, we can
conclude that each perfect R-module M gives us some degree zero element [M ]
of the spectrum K(R).

When I move up to the space K(R)1, each of these R-modules is now given
by a based loop S1 → K(R)1. Each isomorphism or weak equivalence of modules
is now a homotopy of loops. But K(R)1 is more than ΣK(R)0, and the extra
points do something neat. If I have a cofiber sequence of modules

A −→ X −→ X/A,

then each of the modules A, X, and X/A is a loop in K(R)1. I add in a 2-simplex
so that the composite of the loops for A and X/A is homotopic to the loop for
X:

Then I add some higher-dimensional simplices in a similar way, to make
the rest of K(R)1. (If you want more detail, I’m thinking of Waldhausen’s S·-
construction [Wal85].) As a result, in the spectrum K(R), the elements [A]
and [X/A] now sum to [X], up to homotopy. This is additivity, the fundamental
property of algebraic K-theory.

Additivity gives conceptual meaning to the addition of elements of K(R):
now [A] + [B] is equivalent to [A ∨ B], and to any [X] with a cofiber sequence
A→ X → B. This means that K(R) is a certain kind of “group completion” of
the space of R-modules.

I can repeat this process in a reasonable way to get K(R)2 from K(R)1,
and so on. It turns out that after K(R)1, nothing else interesting happens to
our elements, so I can read off all the K-theory groups by taking the homotopy
groups of the space ΩK(R)1.

There is one final important point. This S· construction on the category of
perfect R-modules builds a tremendously large space. You could say this is the
reason why K-theory groups are hard to compute. We don’t have a nice, small
model to calculate them, as we do in more basic problems in algebraic topology,
like computing the homology of a torus.
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2.3. Assembly and coassembly. Now that we know what K(R) is, we’ll
try to understand how K(R) is connected to K(R[G]) when G is a group. The
relationship between them is the assembly map

BG+ ∧K(R) −→ K(R[G])

We picture the left-hand side as being much smaller than the right-hand side,
though in truth it is still quite big.

There are two ways to understand the assembly map, and in the paper we
explicitly prove that they give the same thing. The first and more classical
perspective is this. Recall that a G-torsor is a left G-space that is isomorphic to
G itself. We can interpret BG as the moduli space of all G-torsors, and K(R)0

as the moduli space of R-modules. Given an R-module M and G-torsor G̃, the
tensor product

M ∧ G̃+ =
G̃⊕
M

is a module over R[G]. This gives the assembly map BG+ ∧K(R) −→ K(R[G])
at spectrum level 0. It extends in a reasonable way to the higher levels of the
spectrum as well. And if we want to think in terms of matrices, rather than
modules and torsors, the assembly map sends a matrix A ∈ GLn(R) and an
element g ∈ G to a matrix in GLn(R[G]) where every entry of A has been
multiplied by g.

The second perspective is more homotopy-theoretic. Suppose F is a functor
from unbased spaces to spectra. Each point of X gives a map ∗ → X. Apply F
to get a map F (∗) → F (X). When F is nice (either topological or a homotopy
functor) then these maps F (∗)→ F (X) “assemble” together into a map

X+ ∧ F (∗) α−→ F (X)

Why does this apply to K(R[G])? Remember that R[G]-modules are bundles of
R-modules over BG. So I can think of K(R[G]) as a group-completed moduli
space, the space of bundles of R-modules over BG, which came from perfect
R[G]-modules. This extends to a functor on other spaces too: for each space X
we take the bundles of R-modules over X. Given a map X → Y , and a bundle

E of modules over X, I can extend E to Ẽ over Y while keeping its total space
weakly equivalent to that of E. This rule allows us to define an assembly map
as above.

We can see why this gives the same assembly map. If M is an R-module,
then for any point b ∈ BG, I can try to make a bundle whose total space is
equivalent to just M sitting above the point b. The way to do this is to thicken
the map ∗ → BG to the bundle EG → BG, then multiply by M to get the
bundle M × EG. If we let the point b vary, then EG itself does not change,
but our choice of basepoint ∗ ∈ EG does vary. If b goes around a closed loop
corresponding to g ∈ G, the basepoint of EG changes by multiplication by G.
Imagine pulling

⊕GM around this loop in the bundle, and when we get back to
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the basepoint, we end up with a map

G⊕
M −→

G⊕
M

which multiplies on the left by G. So our bundle has fiber
⊕GM and monodromy

given by left multiplication. It comes from the R[G]-module
⊕GM , which is

exactly the module we described in the classical version of the assembly map.

This entire discussion can be dualized, and the dual story is shorter. Any
bundle over BG can be restricted to a smaller subspace, giving another bundle.
This allows us to define a coassembly map

K(R[G]) −→ Map∗(BG+,K(R))

Each point in K(R[G]) is a bundle of modules E over BG. Given such a bundle,
and a point b ∈ BG, we take the fiber Eb. That is the complete mental picture
of the coassembly map.

Unfortunately we are lying a bit, because K(R[G]) isn’t really a contravariant
functor. The problem is with the finiteness conditions: the fiber Eb is certainly
an R-module, but it may not be perfect. So this coassembly map isn’t always
defined.

If G happens to be a finite group, then Eb is finite, so coassembly is defined.
More generally, coassembly is defined on those bundles of modules whose fibers
are finite. So, we are studying R[G]-modules whose underlying R-module is finite.
The K-theory of such things is the Swan theory GR(R[G]). There is always a
coassembly map

GR(R[G]) −→ Map∗(BG+,K(R))

When G is finite, every finite R[G]-module is a finite R-module, so K(R[G])
includes into GR(R[G]). This inclusion goes under the fancy name of the Cartan
map.

2.4. The transfer and the norm. The main theorem of [Mal15] identifies
the composite of the assembly and coassembly maps as a norm, so we end by
painting a picture of transfer and norm maps.

Suppose we have two spectra X and Y , and a map X → Y whose fibers are
finite sets. We would like to define a map Y → X going the other way. It would
be nice if we could continuously choose, for each element of Y , some preimage in
X. But this is usually impossible; most covering spaces do not admit a section.
So instead, we take each element of Y to the sum of all its preimages in X.
This eliminates all choices, and it is possible because the elements can be added
together in a somewhat commutative way.

More specifically, suppose G is a finite group, X is a spectrum with a free
left G-action (that is, free away from the basepoint), and Y = XG is the orbits.
I “define” the transfer Y → X by taking each element of Y to the sum of its
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G preimages in X. We have to be careful, because the sum of elements is only
defined up to a choice of point in some contractible space. In particular, we
have a rule for how to sum together |G| different maps, each time I pick an
embedding of G into R∞. So for each element y ∈ Y , I should choose some
embedding p−1(y) → R∞ to define this sum, but I have to make these choices
in a continuous way. In particular, if I pass around a loop based at y, the set of
embedded points will move through R∞and come back to itself, but each point
x inside the set will travel to gx, for some fixed g ∈ G.

So my rule associates to each y ∈ Y the G-fold sum of its preimages in X,
but this rule has a twisting, or monodromy, as I rove around Y . It seems that I
could just pick the rule once, and then change it by a G-action as I rove around
Y . So let’s pick a map of spectra

p : S −→ Σ∞+ G

It should be equivariant with respect to G acting on the right, and it should
send the degree 0 generator on the left to the sum of the |G| distinct degree 0
generators on the right. This isn’t quite possible on the nose, but it becomes
possible if we allow ourselves to replace Σ∞+ G up to equivalence. Anyway, this
map p is called the pretransfer. Once I have the pretransfer, I use it on every
point of Y , only changing it by multiplication by G as I rove around Y . In other
words, I smash the pretransfer with the identity map of X, and divide out by
the G-action:

Y ∼= S ∧G X −→ Σ∞+ G ∧G X ∼= X

The resulting map is the equivariant transfer.

If instead X → Y were a covering space with fiber n = {1, . . . , n} (away from
the basepoint), then I could express

X = X̃ ∧Σn n,

where X̃ has a free Σn-action and Y = X̃Σn . Then I could do essentially the same
thing as above, except that the pretransfer is a Σn-equivariant map S → Σ∞+ n.
This recipe gives the classical transfer map.

Returning to the case where the fiber of X → Y is G, we observe that if
we sum up all the points in a single orbit of X, that sum should really be fixed
by the action of G. So the transfer map Y → X actually factors through the
homotopy fixed points XhG. The resulting map

XhG −→ XhG

is the equivariant norm map. It takes each orbit of X to the sum of the points
in that orbit, regarded as a point of X which is fixed under the G-action.

Let’s tie the pictures from the last four sections together, to see why our
theorem should be true. If I apply the assembly and coassembly maps to BG+ ∧
K(R), the element [M ] is sent to [

⊕GM ]. But this agrees with the G-fold sum
of the element [M ], by the additivity of K-theory. The transfer and norm maps
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are given by a similar sum, so we are led to guess that assembly and coassembly
give some sort of transfer. This is more than just intuition; it is a rough outline
of the proof!

3. Story of the development

The paper [Mal15] is part of a larger project to understand the behavior
of the coassembly map for the K-theory of bundles and representations. This
project started in the summer of 2012, when I attended the West Coast Algebraic
Topology Summer School (WCATSS). I was impressed by the things we could
actually say about A(X), and consequently about diffeomorphisms of manifolds,
and how Goodwillie calculus and linear approximations seemed to play such an
essential role.

At the same time, I was also finishing a project on how Goodwillie calculus
works for contravariant functors, and it seemed natural to ask what happened
when you applied this kind of thinking to the contravariant analogue of Wald-
hausen’s construction,

A

(X). One gets a natural tower of “polynomial approxi-
mations” to

A

(X), but it turns out to be degenerate. We get the coassembly map
at level one, which is highly interesting, but after that, the higher-order approx-
imations give nothing more than the coassembly map. This seemed suggestive,
and I believed for a short time that the coassembly map was an isomorphism. I
discussed these ideas with John Klein and Bruce Williams, and learned that this
was not the case. Later on, I had a very fun week with my office mate Daniel
Litt doing a rough computation for π0

A

(S1) and seeing how false this claim was.

There is still, however, a grain of truth:

A

(X) takes the moduli space of
fibrations over X with finite fibers, and applies the kind of “group completion”
which splits cofiber sequences of such fibrations. But the moduli space itself is

Map

X,∐
[F ]

Bhaut(F )


where [F ] ranges over weak equivalence classes of finite CW complexes F , and
this is indeed excisive. Somehow, though group completion makes this space
smaller and easier to understand overall, it breaks the property of excision.

In the fall of 2012 I discussed these ideas with my advisor Ralph Cohen, and
we formulated a “dual Novikov conjecture” for

A

-theory. Our conjecture stated
that the coassembly map is rationally split surjective when X is a finite CW
complex that is also a K(G, 1). We also formulated a “strong dual Novikov”
conjecture, which made the same claim for the functor K(DX). As the names
suggest, the strong conjecture implies the weak one.

I studied the strong form of this conjecture through the academic year 2012-
2013. Over the course of the year, I learned the constructions of topological
Hochschild homology (THH) and topological cyclic homology (TC). I solidified
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my understanding of G-spectra and of p-completion, both of which are essen-
tial for understanding TC computations. I even attended a course by Gunnar
Carlsson on G-spectra and the Segal conjecture.

The process was very slow: long sessions of sitting at home, in an airport, at a
friend’s house in another city, early in the morning when they were asleep, trying
to write down relations and conjectures, realizing that they were inconsistent,
erasing them and starting again. I would try to piece together how genuine
fixed points interact with Spanier-Whitehead duality, or how to relate the tom
Dieck splitting to the restriction and Frobenius maps of THH. I would stare at
incomprehensible papers, make laughably näıve guesses as to what was going on,
prove the guesses were wrong, make slightly less wrong guesses, and continue.

Over time, my guesses became more and more correct, and my confidence
improved. It was very gratifying, this feeling of tackling a very arcane subject,
and sinking into it until you really start to “get it.” Even better, by the end of
the year, I produced an actual computation of TC(DS1). And I was shocked to
find that our strong dual Novikov conjecture was false!

This computation gave the TC of a very small category of modules over
S[Z]. In the summer of 2013, I began considering whether the computation could
be expanded to the TC of a somewhat larger category, in order to get some
evidence for or against the dual Novikov conjecture for

A

(S1). The most natu-
ral modules to consider are the S[Z/n] for varying n, and they each come with
an “assembly” map into the THH of the larger module category. I did some
geometrically-flavored calculations of how coassembly worked for those modules,
using parametrized spectra, and the results were surprisingly understandable
compared to earlier calculations. In fact the maps that appeared were remini-
scient of the maps of the Segal conjecture equivalence

 ∨
(H)≤G

Σ∞BWH+

∧
p

∼−→ F (BG+, S)∧p

Excited by this connection, I switched my attention to coassembly for

A

(BG)
with G a finite group. I worked harder than usual, since I was applying for jobs
that fall, but everything seemed to come together. By the end of the summer, I
proved that the composite of some assembly maps with coassembly on THH did
indeed give the equivalence of the Segal conjecture. As a consequence, the THH
coassembly map for BG was split surjective after p-completion. So something
like the dual Novikov conjecture was true − but it was wildly different from our
original claim. The final push happened while I was visiting Vanderbilt and my
wife’s family in August. I can clearly remember pacing through the balmy night
air, putting together a geometric picture of what a transfer map really is. At
one point I had a proof that it was a transfer, and I only had to calculate the
monodromy; when the monodromy turned out to be correct, I was ecstatic.
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However the project soon took a disappointing turn. I believed that I had
proven a similar splitting for K-theory. But this was wrong, because the Segal
conjecture does not apply to the non-finite spectrum A(∗). Even worse, the THH
result did not even lift to the level of TC, because F (BG, S) is not a cyclotomic
spectrum. I became worried that the THH argument would say little to nothing
about K theory, and this particular project stayed mostly inert for the rest of
my time as a graduate student at Stanford. I did learn how to reinterpret my
maps as the equivariant norm map, and I began to believe that the composite
on K-theory was also a norm map.

In November of 2014, shortly after the start of my postdoc at UIUC, I had a
very productive visit to Notre Dame, discussing many of these ideas with Bruce
Williams and getting many more. I became inspired after a conversation with
Mark Behrens, because what I had proven so far was enough to conclude that
the assembly map splits after K(n) localization. My postdoc mentor Randy
McCarthy gave me the wonderful idea of lifting the argument to the level of
finite sets, and that was the last conceptual hurdle.

It still took a few months to write the paper, for a few reasons. First, I
realized that the definition of

A

(X) for spaces and for spectra do not agree, and
I had a long, productive conversation about this with John Klein and Bruce
Williams. Second, I found a new argument that would work at the level of K-
theory and not THH, which was much cleaner. Third, I had been wanting to
write about how to build good Waldhausen categories of parametrized spectra,
and this seemed to be the right time to do it. Finally, I spent almost a month
writing careful proofs that various kinds of transfers were the same, so that I
could state the result with confidence. The paper was posted to the arXiv in
March of 2015, and submitted for publication later that year.

The point, which I imagine every mathematician already knows, is that a lot
of hidden work goes into most papers. Papers have a long history, with many
moments of joy and heartbreak. Most of the promising thoughts, ideas, and
calculations become dead ends. Sometimes even several months worth of work
can suddenly become useless. But every once in a while, a stray thought or
calculation will lead you in a new, completely unexpected direction. I suppose
the best we can do as mathematicians is to keep an open mind, and let the winds
and currents of mathematics take us wherever they go.

4. Colloquial summary

I’m going to focus on the subject of topology as a whole, before zooming in
on the ideas of the paper [Mal15].

In topology, we study shapes. You already have some idea of what a shape is:
squares, circles, triangles, silhouettes of dogs, etc. are all two-dimensional shapes.
There are three-dimensional shapes too, like cubes, cylinders, and helixes. It’s
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possible to study shapes in higher dimensions as well. You might think that
the study of higher-dimensional shapes is really cool and mind-blowing, or you
might suspect that it’s silly and pointless. But in truth, these higher-dimensional
shapes are not as hard to understand as you might think, and they’re also pretty
important. Though we only have three dimensions of space, any mathematical
model that uses 4 coordinates is actually a system that lives in abstract, four-
dimensional space. If I study cancer patients, and I measure ten characteristics
of each patient, those patients become data points inside a 10-dimensional space.
I can work with such shapes without blowing my mind, because each point in
10-dimensional space is just a list of 10 numbers, and that’s not so bad. On the
other hand, it can be pretty important to understand the shape that these points
form. I might learn something new about cancer by studying it closely.

Topologists have lots of fancy techniques for studying and quantifying shapes.
What do we do with these tools? You might imagine that we apply them to one
shape at a time, as part of a quest to “understand all shapes.” But this is not
quite what we do, for two reasons.

First, there really are a tremendous number of different shapes out there,
just as there are many flowers in a meadow. If you’ve never seen the flowers in
some particular area before, it can be a lot of fun to examine a few of them very
closely. But carefully observing one hundred or one thousand of them would be
quite a bore. Instead, you would start thinking about how the flowers in this
area are different from the flowers in that other meadow, or how they’re different
from last year. Similarly, when we learn a new tool in topology, it’s a lot of fun
to try it out on a few examples. But as we dig deeply into the subject, we don’t
simply keep applying the same tools to more and more examples. Instead, we
focus on these larger-scale patterns.

Secondly, shapes turn out to be very complicated, and even our best tools
aren’t powerful enough to give complete answers to the simplest questions. So
even the most basic shapes, like the sphere, are not completely understood. This
is both frustrating and exciting, because sometimes after a tremendous amount
of work you really can understand these examples better.

We also think about much more than just spheres. We think about some
really tremendous, really huge shapes. Usually we build them by taking a bunch
of triangles, and tetrahedra, and so on, and we describe some recipe that says
how to glue all of these pieces together. This might seem like a strange thing
to do. But the shapes we build this way are much easier to study, and in some
sense, every shape out there looks an awful lot like one of the shapes that we can
build out of triangles.

Sometimes the shape you want to understand was created for some ulterior
purpose. There is a function, the Riemann zeta function, that contains astound-
ingly deep information about prime numbers. This is unexpected, because prime
numbers are just whole numbers, you wouldn’t expect them to be related to a
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smooth function. Similarly, there are some shapes that contain an unexpected
amount of information about the primes. One of these shapes is called the “alge-
braic K-theory space of the integers.” You only really need to know that this is
indeed a shape, and it is quite hard to describe explicitly, but if you were able to
understand all of its features, you would learn some difficult facts about prime
numbers. The subject of algebraic K-theory builds lots of shapes like this. They
contain really interesting information, but they are super hard to figure out.

In the paper [Mal15], we study something called the K-theory assembly
map. You can think of it as a relationship between two of these shapes: one
smaller, simpler shape that gets folded and deformed before it is stuffed into a
larger, more mysterious shape. We are trying to understand something about
this folding process. We would really like to show that, somehow, the small shape
does not get destroyed beyond recognition as it is stuffed into the bigger shape.
This is hard though. We don’t have a small, simple picture of what’s happening
in the folding process. Instead, these shapes are formed by gluing together, say,
thousands of triangles according to complex and arcane rules. So we can’t really
visualize directly what is happening to them. Instead, we have to pay attention
to these gluing rules, and do some detective work to figure out how they behave
as they get folded up. This is still hard though. The larger, second shape is much
harder to quantify than the smaller, first shape.

However, we have a trick: we construct a third shape that will fit the second
inside. Now the first shape is contained in the second, which is contained in the
third, like a sequence of Russian dolls. Moreover, the first and last shapes are
much easier to describe than the second. So our detective work gets a lot easier.
We can show that, to some extent, that first shape was not destroyed beyond
recognition, and so we understand these relationships a little bit better.
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