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PRE F ACE

The 4th Aarhus conference on algebraic topology in

connection with the I.C.M. was held August 1.-7.

1982 at the Mathematics Institute, Aarhus Univer-

sity. The conference was supported by the Danish

Natural Science Research Council, the Aarhus Uni-

versity Research Fund and the Danish Mathematical

Society.

The conference was structured with plenary talks

in the morning together with special sessions in

the afternoon in three parallel running tracks.

The special sessions were divided according to sub-

ject into four categories:

Algebraic K-theory and L-theory

Geometry of manifolds

Homotopy theory

Transformation groups.

Titles of all talks given at the conference are

listed below.

These Proceedings contain papers which were pre-

sented at the conference, and some related papers.

All papers have been refereed and we take this

opportunity to thank the many referees. He would

like to thank the City of Aarhus for inviting the

participants of the conference and companions to

a soupe in the Town Hall. Thanks also go to the

Aarhus Congress bureau for arranging the accomoda-

tions for the participants. Especially we would

like to thank Kirsten Boddum and Sonja Eld who

handled the administrative and secretarial duties.

Aarhus, October 1983

Ib Madsen, Bob Oliver
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A NORM THEOREM FOR K2

OF GLOBAL FIELDS

Anthony Bak

A.S. Merkurjev and A.A. Suslin have provided recently in [7] and [11]

an important tool for studying problems envolving the functor K2 applied to

division rings. The tool is a reduced norm homomorphism N
D

: K2(D) --+ K2(K)
where K is any conanura t Lva field and D is an arbitrary finite, central, K-divi-

sion algebra. One promising area of application for the new tool is that of

arithmetic. In [7], the authors take already a step in this direction by

proving the following theorem [7, 17.4] : If K is a global field and if

the index I[D:K] of D/K is square free then the cOker(N
D)

(Z/ZZ)ILI

where L is the set of all real primes of K which do not split D. Further-

more, they conjecture that the restriction imposed on the index of D/K is

unnecessary. The purpose of this note is to verify their conjecture.

The main theorem of this note will establish a result slightly sharper

than that conjectured by Merkurjev and Suslin. The sharpened result is suggested

by the Hasse-Schilling norm theorem (cf. [10, 33.15]). We recall this theorem

next. If K is a global field, we shall let v denote any noncomplex prime

of K. We let Kv denote the completion of K at v and we let

Dv = D 8K Kv' We let (resp. denote the group of all roots of

unity of K (resp. K) and we set m = and m = )1. We let

(L) : KO x KO --+ denote the m 'th power norm :esidue :ymbOl on K
v'v v v v v

Finally, we let LD denote the set of all real primes v of K which do not

split D and if L is any finite (possibly empty) set of noncomplex primes
m

of K, we let L(K) = {c IcE KO, c E (Ko) v for all VEL}. The Hasse-
v

Schilling norm theorem says the following: If K is a global field and if

Nrd
D

: DO --+ KO denotes the usual reduced norm homomorphism on DO then the
Nrd

sequence below is exact DO KO --+ KO/LD(K)o --+ 1. The following theorem

is the analogon for K
2

of the theorem above.

THEOREM 1. If K is a global field then the sequence below is exact

.lL
VEL

(±l) ->- 1 .



].l(K ) --+ 1
v

2

It is worth mentioning in connection with the arithmetic applications

of Nn that the theorem above is sufficient to resolve the ambiguity of (±l)

appearing in certain cases of the solution [2], [3], [4] to the congruence

subgroup and metaplectic problems for classical groups of K-rank > 1. The

resolution takes the form conjectured in these papers.

We prepare now for the proof of Theorem 1. It will be assumed that the

reader is familiar with the definition of the functor K
2

and with Matsumoto's

presentation of K2 of a field in terms of symbols. A good reference for

these materials is Milnor [8].

If K is a global field and if E is a finite set of noncomplex primes

of K, we define the group K
2(E(K))

= K" @ E(K)"/<(l-a)" a I a E E(K)", (l-a) *0>.

By Matsumoto's theorem (cf. [8, §ll]), it is clear that there is a canonical

homomorphism K
2(E(K))

--+ K
2(K)

which is an isomorphism whenever E is the

empty set. The next result will be required in the proof of Theorem 1.

THEOREM 2. If K is a global field and if E is a finite set of non-

complex primes of K then the zero-sequence

K
2(E(K))

--+ K
2(K)

--+ lL
vEE

is exact, except possibly at

Moreover, if 8 (m for all
v

here, its homology has order at most

then the sequence is exact.

2.

in order that the sequence above be exact.

I do not know if the condition that 8 ( mv for all vEE is necessary

PROOF. By the Moore reciprocity law (cf. (']), there is an exact sequence

(*)

(a,b)

1;v t------>-

---.L... JL ]J (K )}-----:'---+
v v

m
v

IT 1; m
v v

---+ 1

and by a generalization [4, 3.2] of the Moore reciprocity law, there is an

exact sequence



m
v
m

1;;v

(**)

3

JL 1;;v t--->- II
v¢r v¢r

Ar dr
--->- .lL \l(K) -----+ \l(K)

v¢r v

(a,b) t----->- .lL

v¢r

--->- 1 .

Consider the following commutative diagram

A
---.l...... \l(K)K2(K) JL \l(K )

v v

t t tI Ar drK2(r(K»
--->- JL \l(K ) -----+ u(K)

v¢r
v

-----+ 1

-----+ 1 •

The diagram induces a homomorphism ker(Ar) -----+ ker(>"). We shall show that

<

in general

if 8 m for all v E r .
v

Once this has been done, the theorem will follow by chasing the commutative

diagram above.

By a result of Tate [12, (33) ], (Kz'K»n is a subgroup of ker(>")

such that Iker(>..)/ (K2(K»nl 2 Let k denote the least common multiple

of all such that v E r . If a,b E " then it follows from the definitionm Kv
kof K2(r(K» that the symbol (a,b) of K2(K) lies in image(K2(r(K».

Thus, Q image(K
2(r(K».

This establishes the first asser-

tion of the theorem. By another result of Tate [12, (33)] (cf. also

[5, Theoreme 9 and Corollaire]), ker(>") (K2(K»n providing 8 n. If

8 i mv for all v E z then clearly 8 x . Thus, ker(>..) (K2(K»k

image(K2(r(K». This establishes the second assertion of the theorem.

The next result will also be required in the proof of Theorem 1. Let

Nrdo : 0" --+ K" denote the usual reduced norm homomorFhism on 0".

Let K2(NrdO(O» = K" 8 Nrdo(O")/<O-a) 8 a I a E NrdO(O"), I-a'" 0> By



4

Matsumoto's theorem, it is clear that there is a canonical homomorphism

K
2
(Nr d

D
(D » --+ K

2(K)
which is an isomorphism whenever NrdD(Do) = KO

If K is a local or a global field then by a theorem[9, 2.2] of Rehmann and

Stuhler, there is a homomorphism WD : K
2(NrdD(D

» --+ K2(D),
(a,NrdD(S» I-->- (a,S) .

PROPOSITION. If K is a local or a global field then the diagram below

commutes

K
2
(D)

y
K
2(NrdD(D

» ------>- K
2(K)

PROOF. If E is any field extension of K which splits D, let

DE = D 8K E For a unique natural number n, there is an E-isomorphism

DE --+'lMn(E) where :Mn(E) denotes the full matrix ring of n x n-ma t r Lces

with coeeficients in E. The induced isomorphism K2(DE)
--+ K2OMn(E» is

independent of the choice of E-isomorphism above. Furthermore, there is a

unique Morita isomorphism (cf. [10, 16.18 and §37]) K2OM
n(E»

--+ K2(E)
The composite of the two isomorphisms above will be denoted by

By [4, 2.5], the diagram below commutes

By Sus1in [II, 5.7], the diagram below commutes

Kz<D) ) K
2(DE)

ND j j
K2(K)

, K
2(E)

.

Moreover, by Merkurjev-Sus1in [7, §7] (cf. also [II, 3.6]), there is an E
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such that the homomorphism K
2(K)

--+ K
2(E)

is injective. The proposition

follows now, by chasing the following commutative diagram

COROLLARY. If K is a global field with no real primes or if K is a

nonarchimedean local field then NrdD(Do) ° and the homomorphism= K

ljID : K
2(K)

--+ K
2(D) splits the homomorphism ND : K2(D) --+ KzCK)

PROOF. If K is a global field with no real primes then by the Hasse-

Schilling norm theorem cited above, NrdDCDo) = K' and if K is a nonarchi-

medean local Held then by a simple norm theorem (cf , [10, 33.4 D,
NrdDCDo) = KO. The remaining assertion of the corollary follows now from

the proposition.

PROOF OF TREORE}! 1 . It is worth mentioning at the outset that because

of the corollary above, one can restrict, if he likes, his attention to the case

that K is a number field with at least one real prime. Recall that

E = {v [v is a real prime of K, v does not split D}. By the Hasse-Schil-
D
ling norm theorem, "D(K) = NrdD(Do) . Let M= image(K

2(ED(K))
--+ K2(K))

and N = image(N
D

: K
2(D)

--+ K
2(K))

. By Theorem 2, it suffices to show that

M= N. By the proposition above, MeN. If A is defined as in (*) above

then the proof of Theorem 2 shows that ker(A) eM. Thus, it is enough to

show that A(M) A(N)

Consider the following commutative diagram

K2(D)
]] K2(D)v

ND I I ]] N
Dv V

K/K) ]] K/K )
v v

1]]

]] II(K )
v v
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By Alperin-Dennis [1) (cf. also [7, (17.1.1»)), the composite map ( )ND
is trivial for each v E: E. Thus, A(N) c ...u.. Il(K) (c II Il(K ») . v

v¢E v \ v¢E v

By the exact sequence (*), it follows that A(N) C kerr JL Il(K) --+ Il(K»)
\,¢ E v

and by the exact sequence (**), it follows that ker(...u.. Il(K) --+ Il(K») = A(M).
v¢ E v

QUESTION. The corollary above and Theorems 1 and Z suggest the following

question: If K is a global field and E is a finite set of nonarchimedean

primes of K such that 8 %m for all v E: E then is the canonical homo-
v

morphism KZ(E(K» --+ KZ(K) injective? If this were the case then it would

follow that the Rehmann-Stuhler map o/D always induces a splitting to the

Merkurjev-Suslin reduced norm N
D

.
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THE NON-EXISTENCE OF TENSORPRODUCTS FOR

FREE GROUP ACTIONS ON SPHERES

Steffen Bentzen

§o. Introduction.

This paper gives two examples in the theory of finite

group actions on spheres. The first example is a counterexample

to the existence of tensorproducts of free actions. The second

example shows that the finiteness obstruction of the group

Q(8a,b,c) cannot be detected on the subgroups Q(8a,b), Q(8a,c)

and Q(8b,c) .

Suppose we are given a finite group G that allows a free

representation, i.e. a complex representation T such that T(g)

never has' as eigenvalue for g E G'{'}. This representation

2d-'will induce a free action of G on the sphere S where d is

the complex dimension of T. Such an action (or rather the orbit

space s2d-'/G) is called an orthogonal space form. For orthogonal

space forms there are standard procedures for constructing new

ones from old ones: direct sum and tensorproduct are the basic

constructions. The direct sum operation can be generalized to

arbitrary non-linear actions by taking the join of the given

actions. The tensorproduct cannot be generalized.

Consider two finite groups G
1

and G2 of coprime orders and

let T, and T2 be free linear representations of them. The

exterior tensorproduct T, 8 T2 is easily seen to be free so we

get an orthogonal space form in dimension 2d,d2- 1 where d i is

the dimension of T .. We shall give an example which shows that

a similar construction is not possible for free non-linear

. f G G S2d,-',actions. We give an example of free 0 "2 on
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such that GlxG2 has no free action on s2d ld2-1 .

More precisely, let a,b,c be pairwise prime integers and

let Q(8) be the quaternion group of order 8. We consider the

group Q(8a,b,c). This is the semidirect product of with

Q(B) such that Q(8) acts on via its commutator factor

group, in such a way that is the (+,-)-

eigenspace, is the (-,+)-eigenspace and is the

(-,-)-eigenspace (Milnors notation). We write Q(8a,b) for

Q(Ba,b,l). Obviously the cyclic group has a free linear

action on sl. We shall prove:

Theorem A. There exist distinct primes p,q,r such that

3+8kQ(8p,q) acts freely on the sphere S (k>O), but such that

Q(Bp,q)x has no free action on a finite complex of the

3+8khomotopy type of the sphere S . Actually (p,q,r) (3,313,7)

is such an example.

Our second example is connected with the question of free

actions of the group Q(8p,q,r) on spheres, or more generally,

3+Bk
on finite complexes of the homotopy type of the sphere S

The existence of such an action is detected by the vanishing of

a certain element (the finiteness obstruction 04(G) ) of

CI(G)/S(G) - G Q(Bp,q,r). Here Cl(G) is the projective class

group and S(G) is the Swan group of G. The finiteness obstruction

of groups of the type Q(Ba,b) is fairly well understood, cf.

[BM], [Bl] . Recall from [HM] that the existence of a semifree

action on the Euclidian space (mn,O) can be detected on the

subgroups of type Q(Ba,b). One could hope that similarly the

finiteness obstruction of the group Q(8a,b,c) could be detected

on the subgroups Q(Ba,b), Q(8a,c) and Q(8b,c). We give an

example that shows that this is not the case.
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Theorem B. There exist tlistinct primes p,q,r such that

the finiteness obstruction 04(Q(8p,q,r)) + 0, but such that

the finiteness obstructions of Q(8p,q), Q(8p,r) and Q(8q,r)

all vanish.

Both theorems are proved via calculations of the finiteness

obstruction. We briefly recall its definition.

For groups with periodic cohomology, the Tate cohomology

And
groups H (G,2Z) are isomorphic to 2Z/IGI for all multiples of

And
the period d. Each generator e of H (G, 2Z) can be realized by

a periodic resolution P* of 2Z by finitely generated projective

2ZG-modules and the resolution can be taken to be free exactly

if the element

nd-l .
:= I
i=l

of CI(G) is zero. Topologically the vanishing of some 0nd(e)

is equivalent to the existence of a free simplicial action of G

on a finite simplicial complex, homotopy equivalent to the

nd-l
sphere S

The finiteness obstruction of different generators are

related by

where S: (2Z/!GI)x .... CI(G) is the Swan map sending s E (?L./!G!)"

to the projective ideal of 2ZG generated by s and the norm

element }' g of ZlG.
g G

Hence there exists a unique element 0nd(G) Cl(G)/S(G),

and the vanishing of this element is equivalent to the existence

of a free action of G on a finite complex of the homotopy

nd-ltype of the sphere S •
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§1. Proof of Theorem A.

We calculate the finiteness obstruction using the same

technique as in [B1]. In particular we use Frohlich's descrip-

tion of the class group: There is an exact sequence

(1 • 1 ) ZI.llG): -!. J(Z(.llG»+/Nrd(O( Cl(G) .... 0

Here Z denotes the center, J denotes the idele group, Nrd is

the reduced norm and 0 is the group of unit ideles:

o ( '= II G)
p P

Osing the formalism of character homomorphisms, the above

sequence becomes

(1.2) Hom; (R(G),ar ) Hom; (R(G) ,J /Det (0 ( Cl (G)'" 0

where n is the full Galois group of

Similarly there is an exact sequence

(1.3)

describing the kernel group. Here F is any number field containing
1\

all character values. The middle term in (1.3) is denoted D(G)

and it decomposes into a product

(1.4)
1\
D(G)

The component at £ is called the local kernel group at £ and is

1\
denoted D£ (G) •

For details on the above we refer to [F1] and the appendix

of [F2].

We consider the group TI = Q(8p,q)x where p,q,r are

distinct primes. This group has cohomology of period 4 and the

restriction maps induce an isomorphism
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We take the almost linear k-invariant e. This is the generator

"4 -1of H which on the Sylow parts restricts to ) for

to c 2 for and to c
2
t r) on Q(8). Here, c

2

denotes the second Chern class, X£ denotes a faithfull character

on and r is the unique 2-dimensional irreducible

representation of 0(8) .

Remark· Comoaring with the formula for the Chern class of the

tensorproduct of free representations we see that this gene-

rator is what should be considered the tensorproduct of the

"4generators e IQ(8p,q) and c
1
(X
r)

of H (Q (8p,q) resp.

"2
H

We prove Theorem A in 5 steps. First we use idempotent

endomorphisms of Q(8p,q) x<Z/r to decompose the sequence (1.2)

into a top component plus several lower components. Then we

calculate the top component of (1.2) and then we detect the

top component of the middle term of (1.2) on the cyclic sub-

"group <Z/2pqr. Wall has specified an element T
4
(e ) of

J(Z(tlTI»+/Nrd(U(<ZTI» that maps to (J4(e) via 3. As the fourth

step we use restriction to 2Z/2pqr to calculate the top

"component of T
4
(e ) . The fifth and final step is then to prove

that p,q,r can be chosen such that Q(8p,q) has a free action

3+8k ". 1on S but the top component of dT (e) 1.S not equa to the
4

top component of any Swan module S(s). Therefore TI cannot act

freely on a finite complex of the homotooy type of the sphere

s3+8k. Since the calculations are very similar to the calcu-

lations of [BM] and [Bl] we shall be brief.

Step 1: The group TI Q(8p,q) x 2Z/r allows three idempotent

endomorphisrns: E , E and E • The endomorphism En (£=p,q,r)oar ,.,

is defined as mapping the to 1 and is the identity

on the rest. They induce commuting idempotents, also denoted
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on the virtual character ring and

Id E E E + E E (1-E ) + E (1-E)E + (1-E )E EP q r P q r P q r P q r

+ E (1-E ) (1-E ) + (1-E )E (1-E ) + (1-E ) (1-E )EP q r p q r p q r

+ (1-E ) (1-E ) (1-E )
P q r

is a decomposition af the identity on R(TI) into a sum of

orthogonal idempotents. This decomposition will innucp a

of the sequence (1.2) into 8 sequences. The

sequence corresponding to E = (1-E ) (1-E ) (1-E ) is called
top p q r

the top component.

Step 2: start by decomosing .oTI:

.o[Q(8p,q) x Zl/r] = .o[O(8p,q)] 6l .o(1;r) [Q(8p,q)]

.0++ 6l .0_+ 6l .0+_ 6l __ 6l E.o
6l H

2
(.o ( n )) 6l M

2(IO(np))_
6l ill

P + .o(n 4p)

6l M2(.o(nq))+ 6l M
2

(lD (n )) 6l ill
q - .0 (n 4q)

6l M4 (.o(np,nq)) 6l

6l 6l 6l Q(1;r)+- @ 6l
;(1;r)

6l M2(G:)(np,1;r))+
6l 6l ill

6l 6l 6l ill
III (n 4q,

6l M4 6l )/Ill(n,n ,1;r))pqr p q

Here A(L/K) denotes some simple algebra with center K and split

by L.

Corresponding to this decomposition we choose represen-

tatives for Irr (Q (8p,q) x Zl/r) /r/:

X++, X -+' X , X , X+- -- 0

Xp,+' X , Xp,- p,o

xq, +' X , Xq,- q,o

Xpq,+' X
Pq,-

xr,++,xr , _ +' x , x , x
r,+- r,-- r,o
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Xpr,+' Xpr,_' Xpr,o

Xq r,+' Xq r,_' xqr,o

x , x
pqr,+ oqr,-

It is easy to see that E is zero on these characters, excepttop

for xpq r,+ and xpq r,_ and on these characters Et o p is :

E (x Itop pqr,+ x - (x + x + x + x + x )
pqr,+ pq,+ qr,+ qr,- pr,+ pr,-

+ (x + x + x + x + x + x
q,+ q,- p,+ p,- r,++ r,+-

+ x + x )r,-+ r,--

x - (xpqr,- pq,-

+ (x + xO
q,o q,o

- (2xo +

+ x
qr,o

+ 2x
r,o

+ x
p,o

Hence E
t o p(R(1f)/n)

lQ(np,nq,l;r)X Ell

where ° is the generator of

Zl • xpq r , + Ell za- xpq r , _ and Et o p (Z I : I

!Q(np,nq,l;r 1x •

We turn to the calculation of the top component of

There are four prime divisors of ITII: p,q,r and 2.

The case = p: In the decomposition of Zl TI we are onlyp

interested in the top component. By the above this is the two

blocks

B, (Zl 0Zl[ Zl/D][I; ,I; ])t[x,YI x 2 ; 1]
P . q r

t x
2 y 2 -1]B2 = (Zl e zs t Zl/P][I; ,I; ]) [x,yl

p q r

where X and Yare generators of Q(8) •

Lemma ,.,. The 2-primary part of

(Zl@Zl[n,n,1;1)XEIl2.(Zl@Zl[n,n,1;1IX/Nrd(B,XI
p p q r p p q r

is equal to
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Proof: We assume that 'S 's ) doesn't split at p.q r q r

The block B1 is contained in

t 2 210 [zz/p][s 's ]) lx .v ] X = y = 1]p q r

and it is easy to see that the three components of the reduced

norm are related by

(1.5)

for x E: B1 Here p is the prime of ()p (n p' nq, sr) . Let A be ap

generator of zz/p and consider the ideal I = (A -1) of B1· Wep

have an exact sequence

(1+1) x
x t I 2 2 x1 --. , B
1

.zz [s 's ] [X,y X =y =1]"'1

1
p q r

Nrd INrd 1Nrd

... zz [np,n 's ]x ... zz l n , n .r; ]xe 2 ZZ Ln 's ]x 2ZZ l n 's ] x...
p q r p p q r p q r p q r

Using the relation (1.5) we see that Nrd«l+I) ) u1 (ZZp[np,nq,sr]).

Since ZZp[Sq'Sr]t[X,YI x 2 y 2 = 1] is a maximal order in

t 2 2
() (s 's ) [x,YI X = Y = 1] the right hand Nrd is onto. Anp q r

application of the snake lemma and the relation (1.5) completes

the proof.11

Similarly we can prove

Lemma 1.2. The 2-primary part of

is equal to

Lemma 1.3. The top component of the map

¢
p
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from (1.3) is the reduction map

--
zzp[np,nq,l',;r1X $ ZZp[np,nq,l',;r]x

( :IFp@ zz [ np' nq , l',; r II 2) $ (:IFp@ ZZ [ np' nq, l',; r]) 2)

Similar calculations show that

/I

Et op (Dr (n) ) (2)

while

2· ( :IF
q e ZZ[np,nq,l',;r ll

ZZ[np,nq,l',;r])

This determines the 2-primary part of the top component of

the sequence

0; (l)ll) +

/I
D(ll) D(ll) o.

Proposition 1.4. The top component of

/I

-- D(ll) (2)

is the reduction map

2· zz[np,nq,l',;r]x -- z-n ( :lF1 e ZZ[np,nq,l',;r])
l=p,q,r

This completes step 2.

Step 3: We consider the cyclic subgroup C =ZZ/2pqr of ll.

The top component of is equal to $

The top component of is therefore equal to ZZ·w $pqr,+

ZZ·w where w (w ) is a character on C withpqr,- pqr,+ pqr,-

kernel equal to ZZ/2 (resp. 1). The 2-primary part of the top

component of e(C) is easily calculated:



17

Proposition 1.5.
r;

The top component of IT D£(C) (2) is
{=p,q,r

equal to and the map

is the reduction map

Proposition 1.6. The restriction map

Et o p (J (Z +/Nrd (U ( ZllT» ) (2, f) -+Et op (J (llC) /Nrd (U ( ZlC»)

is injective.Here (2,f) denotes the 2-primary part plus the

free part.

Proof: This is proved just as the corresponding statement

in [BM] or [Bl]. We have a commutative diagram where the rows

are split exact sequences:

"o -+ D (IT) (2) -+ (J(Z(lllT»+/Nrd(U( ZllT») (2,f)

1 Res 1 Res

"o -+ D(C) (2) -+ (J (alC) /Nrd (U ( ZlC) ) ) (2, f)

-+ l(lT) -+ 0

1Res

-+ I(C) -+ 0

It is easy to see that induction of characters commutes with

the endomorphisms E£ (£=p,q,r). Since Res is induced by the

induction map on the character ring, the above diagram stays

of C

right hand Res is

But the character wpqr,±
of IT. Hence the left hand Res

commutative when applying Et op.

induces to the character xpqr, ±

is just inclusion of residue fields and the

extension of ideals. Therefore the middle Res is injective./I

This completes step 3.

Step 4: By Proposition 1.4, the top component of D(lT) (2)

has two parts, one corresponding to the character x + (thepqr,

plus part) and one corresponding to x (the minus part).pqr,-

The finiteness obstruction a
4(e)

is known to be an element of
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D(n) of order at most 2. We calculate the plus part of Et op(04(e)).

Lemma 1.7. The plus part of Et o p (04 (e ) ) is the image

under d of the element

«2-n ) (1-1; )2, (2-n ) (1-1; )2, (2-n ) (2-n ))
q r p r p q

of (lFp@ 2Z[np,nq,r;r]) lFq@ 2Z[np,nq,r;r)) lFr @ 2Z[np,nq,r;r))

Proof: The restriction of e to C is seen to be equal to

-1 -1
the Chern class of the representation = XpXqXrX2 + Xp Xq XrX2

where X£ is a faithfull character on 2Z/£ (t= p,q,r,2).
to.

Therefore 04(elc) = O. The idelic Reidemeister torsion"4(eIC),

defined by Wall (cf. [W)) is therefore the usual Reidemeister

torsion T(C2 (W) ) of a lens space. This torsion is known. cf. [Mil.

Excppt for the ( which is (4p2q2 r2)-1 ) it is the

image under the isomorphism

Ql Ql Ql Ql Ql

Ql Ql Ql Ql Ql Ql

Ql W(l;qr)+ Ql Ql Ql

of the element (1-t) (1-tx) where t generates C and x is determined

by

x = { -:
mod pq

mod 2r

The action of Et o p on can easily

trivial on all blocks except

E (w )
top pqr,-

be calculated: Et o p is

and )x where
pqr -

W (w w w )-1 (w w w }w- 1
pqr,+ pq,+ pr,+ qr,+ p,+ q,+ r,+ 1,+

w (w w w )-1 (w w w )w- 1
pqr,- pq,- pr,- qr,- p,- q,- r,- 1,-

d

Therefore the plus part of the top component of is

equal to n/d E )+ wherepqr
-1 -1 2 2 2 2 2

n = (1-l;pr;qr;r -r;p I;q I;r +r;r) (2-np) (2-nq) (1-r;r) 4p q r

-1 -1 -1 2 -1 2
(1-r;pr;q -l;p r;q + 1) (1-l;pl;r - r;p l;r + 1;;r) (1-r;q1;;r-r;q l;r+1;;r)
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Since the factor (2-n ) (2-n ) )2 4p2q2r2 lies in
p q r

E
t

we can ignore it. Lemma 1.7 now follows from Pro-op

position 1.5 and 1.6. II

This completes step 4.

Step 5:

Lemma 1.8: Assume that p = 3 mod 4, q - 1 mod 8, r - 3 mod 4

and = -1, = 1. Then 04(e) ¢ S(TI).

Proof: First of all we note that the Swan group S(TIt is

a 2-group. This is because TI is a 2-hyperelementary group. The
A

Swan module S (5) 5 E (2Z/Spqr) x) is represented in D (TI) by

the character homomorphism that sends xl to s and all other :

irreducible characters to 1. Hence the top component of S(s)

has a trivial minus part and a plus part equal to

(s,s,s)E II
9,=p,q,r

Assume that 04(e) = S(s). By (BM} we have 04(eIQ(Sp,q» 0

so S(s) must restrict to zero under S(TI) S(Q(Sp,q». By

Proposition 3 of (BM]

to the subfield

this implies that = 1. We take normsq

of ,n ,I; ). The norm of (5,5,5) is
p q r

(q-1) (r-l) /4
p ,

(p-l) (r-l) /4
q ,

(p-l) (q-l) /S
r

where 0 is the ring of integers of The norm of

«2-n )(1-1; )2, (2-n )(1-1; )2, (2-n )(2-n» is (1,-1,1).
q r p r p q

To prove Lemma 1.S we must show that there is no unit of 0

that reduces to (1,-1,1). Let £ be the fundamental unit of O.
q

The group II ( IF 9,0 0) x is equal to

lF
x

allF
x

allF
x

aJ IF
P P q r

Let £q map to (a
1,a2,b,c).

Using that N:£q) = -1 we see that

a, has odd order and a
2
has order equal to 2 times an odd number.
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Furthermore, the order of b is 4 while the order of c must be

divisible by 8. Then it is easy to see that

reduce to (1,-1,1) or (-1,1,-1). Since OX =

proves Lemma 1.8.1/

no power of (
q

<-1,( > this
q

can

Now we can easily prove Theorem A. First we choose p = 3 mod 4,

q - mod 8 such that the order of p modulo q is odd and the

order of q modulo p is maximal odd. By Theorem C of [B2), the

3+8kgroup Q(8p,q) acts freely on the sphere S Then we choose

r = 3 mod 4 such that (£) = -1. By Lemma 1.8 , Q(8p,q)x
q

does not act freely on any finite complex having the homotopy

3+8k
type of the sphere S . This proves Theorem A.

§2. Proof of Theorem B.

We consider the group IT = Q(8p,q,r). The proof of Theorem

B is divided into five steps stmilar to the proof of Theorem A.

The first step is again a decomposition of the sequence (1.2).

The second step is the calculation of the top component of (1.2).

The third step is to detect the top component of (1.2) on the

cyclic subgroup C = The fourth step is to calculate
1\

the top component of '4(e) for e the almost linear generator
1\4

of H (Q (8p,q,r) , The fifth and final step is to choose p,q

and r such that 04(e) ¢ S(Q(8p,q,r» but the finiteness obstruc-

tion of Q(8p,q), Q(8p,r) and Q(8q,r) all vanish.

Since the calculations are very similar to the calculations

in §1 we shall be very brief.

Step 1: This is quite similar to step 1 of §1. The group

allows three idempotent endomorphisms E , E and E • These induce
p q r

a decomposition of the character ring into 8 parts and we

concentrate on the top component, i.e. the component correspon-

ding to the idempotent (1-E ) (1-E ) (l-E ).
P q r
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Step 2: The rational group algebra splits like

1Il++ 1Il+_ 1Il_+ 1Il__ llilll M211llInp» M211llInp»

llilllln4P) M211llInq» M211llInq» llilllln4q) M2111ln r»

M211llInr» llilllln4r) M411llInp,nq»

$ M411llInp,nr» M411llInq,nr»

M411llIa»

-1 -1 -1 -1 -1-1
Here a = + + sr + Sq and

AIL/K) denotes some simple algebra with center K and split by

L. We denote the characters corresponding to M
411llIa»

,

Alllllspqr)/lIlla» by xpqr , + ' xpq r , _ • The top component of

RI1T) /0. is ?l·x zz -x and E (OX ) = OXED OX
pqr,+ pqr,- top ZIIll1T)

where 0 is the ring of integers of lila). Using the same

technique as in §1 we get

Lemma 2.1. The top component of the map

1\

(1T) (2)

from 1.3 is the reduction map

Therefore we get

Proposition 2.2. The top component of

1\

o (1T) (2)

is the reduction map

OX OX ... IT e IT e

Step 3: This is similar to step 3 of §1.

Proposition 2.3. The restriction map

Et op(J(Zlll1T))+/Nrd(U( ?l1T)) (2,f) ... Etop(J(IIlC)/Nrd(U( ?lC»))

is injective and induced by inclusion maps of ideal groups

and residue fields.
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Step 4. The restriction map induce an isomorphism

"4 "4 "4
H (TT, 22.) ""II H (72.19.-,22.) Ell H (Q(8), 22.)

9.-

"4 + -1 )We let e ,be the generator of H (TT,72.) that maps to cZ(XQ, X9.-

on the Sylow-Q,-parts for 9.- = p,q,r and to cZlf) on Q(8).

The restriction to C of this generator is equal to

-1 -1 -1
cZIXpXqXrXz + Xp Xq Xr Xz ) . The idelic Reidemeister torsion

of etC is the Reidemeister torsion of the lens space corresponding

to this representation and this can be calculated using

[Mi]. From this the top component can be calculated: It has a

plus part and a minus part, and the plus part is

IZ-n ) IZ-n ) IZ-n ) IZ-n )4pZq
ZrZIIZ-n

) IZ-n ) (Z-n ) E :QIl',;pqr)·pqr p q r pq pr qr

From Proposition Z.3 we get

Proposition Z.4. The plus part of Etoplo4Ie» is the image

under a of the Z-primary part of the element

of

( 12-nq) (2- nr) ,

(:IF 0 0) x Ell (:IF 0
P q

(Z-n ) 12-n ) , (Z-n ) (2-n )p r p q

0) xEll I:IF e 0)
r

Step 5: We choose p = 3 mod 4 ; q,r = 1 mod 8 and = -1.q

By Proposition 5 of [BM] the finiteness obstructions of QI8p,q),

Q(8p,r) and Q(8q,r) are all zero. To finish the proof of Theorem

B we must prove that 04(e) ¢ SIlT).

Lemma Z.5. The unit index of :Qla) is equal to 1, so

OX where 0
0
is the ring of integers of :Q(np,nq,nr).

Proof: The maximal real subfield of Uta) is :Q(np,nq,nr) •

Since :O(l',;pqr)/:Qla) is unramified at p,q and rand :QIl',;pqr)/:Q(np,nq,nr)

has some ramification at p,q and r, the extension :Q(a)/:Qlnp,nq,n r)

must have some ramification at p,q and r. By Satz 15 of [Ha]

(and the remark following it) the unit index must be 1. II



23

Assume now that 04(e) = S(s). Then Et op(04(e)) = Etop(S(s».
1\

Let x be the element of D(w) (2) that has a trivial minus part

and a plus part equal to (s,s,s) E IT( lFl',0 The top component
l',

of the Swan module Sis) is equal to a(x). If Et op(04(e)) = Etop(S(S»

there would by Lemma 2.3 exist a unit of 0
0

reducing to

-1 -1 -1
( (2-nq) (2-nr) s , (2-np) (2-nr) s , (2-np) (2-nq) s ) (2)

in IT (lFl',00 ) x(2) • We take norms from !l(n ,n ,n ) to :Q and get
tOp q r

a unit of 2Z reducing to

(51) (r-l)/2(E.) (q-l) (r-l)/4 (E) (r-l)/2 E.) (r-l) (p-l)/4
p p p , q (q q ,

(E) (q-l)/2(51) (p-l) (q-l)/4
r r r

( 1 , (E) , (9:) ) (1 , -1 -1 )q r
x x x

in IF lB IF lB IF . But this is cearly impossible.p q r

This completes the proof of Theorem B.

Remark: This last example shows that the finiteness

obstruction of Q(8a,b,c) presents new problems when compared

to the finiteness obstruction of Q(8a,b). In [B1] we saw that

the plus part of a (e) could always be "made rational" for
4

groups of type Q(8a,b). The above example shows that this is

not possible for groups of type Q(8a,b,c).
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THE RATIONAL HOMOTOPY TYPE OF nWh
Di f f (*) .

Marcel Bokstedt

Let WhDi f f(*) be the double delooping of the smooth

stable concordancespace of a point. In [11], Waldhausen defined

a map f: G/O -> nWhDiff (*), using the framework of algebraic K-

theory of topological spaces.

Theorem 1. The map f is a rational homotopy equivalence.

Such a theorem was originally conjectured by Hatcher,

using a different definition of a map G/O -> nWh
Diff

( * ) •

There is a map WhDiff (*) -> K (Z) which is known to be a

rational homotopy equivalence [10]. The space K(Z) has recent-

ly been studied using etale homotopy theory [3], [5], [8]. We

are going to prove Theorem 1 by comparing geometrical informa-

tion related to the map f: G/o->nWhDiff ( * ) with input from

etale homotopy theory. It then turns out that this procedure

Z x BOll
2

yields information about K(Z).

Let be the fibre of the composite

1/J3 - id

where 1/J3 is the Adams operation, and the Sullivan-

Bousfield-Kan completion of X at the prime 2.

Theorem 2. splits as a product up to homotopy

OJK (Z) x ? •

In particular, we get new descriptions of the Borel classes

completed at 2.
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The author is indepted to F. Waldhausen for explaining the

algebraic K-theory of spaces to him in a very large number of

discussions.

§1. The main argument.

We begin be recalling the construction of the map

G/O + QWh Di f f (*). We need some preliminary recollections and

definitions.

Let A(*) be Waldhausens algebraic K-theory of a point

[10], [11], [12].

Fact 1.1. There are maps QSO A(*) K(Z) such that the

composition is the standard map, induced by the inclusion of the

permutation matrices:

QSO = l!:m(BL:n) +
n

lim(BGL Z)+
+ n
n

K(Z) .

Fact 1.2. There is a splitting A(*) cs QSO x WhDiff ( * ) x u (*)

[11], [12]. The inclusion of the first factor in this splitting

is the map of 1.1.

Fact 1.3. Let SG be the monoid of stable, orientation

preserving homotopy equivalences of the sphere. There is a map

BSG A(*) with the following three properties:

(i) A(*) K(Z) is the trivial map.

(ii) There is a nullhomotopy of the map [12]

BSO BSG A(*) WhDiff ( * )

(lli) The composite map BSG A(*) QSO is homotopic to

a different composite BSG SG QSO. In this second com-
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posite, the map n: BSG SG is defined as "multiplication

by the Hopf map". ?recisely, BSG is an infinite loop-

space in a standard way. In particular, we can write BSG

The Hopf map induces n: BSG =

The map SG ->- QSO is the inclusion of

the 1-component [1].

Fact 1.4. *. At the time of writing, there is no

pUblished proof of this very important theorem. However, there

are at least two independent unpublished proofs, due to Waldhau-

sen [13] respectively Igusa [6].

The nullhomotopy of 1.3(ii) gives rise to a map

G/O ->- Diff (*). Because of 1.1, 1.2 and 1.3 (i), the composites

o Diff Diffr 1: xWh ...

o Diffr 2: QS x Wh (*) x \.1(*) ...

sum up to a nullhomotopic map BSG ... K(Z).

"'K(Z)

According to 1.3(lli), r 2 is homotopic to the composite

Since n is 2-torsion, this also implies r 1 By the

vanishing of \.1(*), even the composite

r: BSG A(*) ... ... K(Z)

is homotopic to r 3• Note that we are using the deep fact 1.4

in an essential way at this point

In other words, we have the following strictly commutative

diagram:
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s
II

BSO

BSO ----+. BSG

n1 K (Z)

and a homotopy F from to r.

Composing F with the nullhomotopy of 1.3(ii), we obtain

a strictly commutative diagram:

G/o • BSO ' BSG

1 1= nl
1.5. Fiber(s) BSO

s
SG- •

1 1 1
11K (Z) , (EI<: (:,z) , K(Z)

The composite of the two maps in the left column is homoto-

pic to the map f: G/O .... 11K (Z) induced by the null-homotopy of

1.3(ii).

Up to homotopy, the map s: BSO .... SG actually factors as

BSO .... BO :;. SO .... SG, where n: BO .... SO is multiplication by the

generator n E 111 (BO), and BSO .... BO is the inclusion.

Recall that by the solution to the Adams conjecture [7), [9),

the map SO .... SG factors over a ceratin torsion space SJ. The

p-part SJp of this space is homotopy equivalent to the fiber

of the map

where £ generates the multiplicative group of ZA
p' Choose such

a number £.

Let t denote the composite BSO
A

P
.... SOA ....

P
SJ •

P

He obtain the following diagram which commutes up to homo-

topy:
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BSOA t
I SJ

P

(::: K(Z);II
BSOA s • SG

P p

Combining this with 1.5, we can summarize our information

in the following diagram, commutative up to homotopy as usual:

(G/O)A , Fiber(s)A • Fiber(t)

1.6. gl /
r2K(Z)A

p

Definition 1.7. JK(Z)A is the fiber of the map
p

1jJ2_ i d , BSpinAp
c

The map c: BSpinA
p

vectorbundles.

is induced by complexification of

There is a diagram of fibrations up to homotopy:

1.8.

----+. BBSOA
P

nl
----.... EspinA

p

cl
BSUA

p

Here we have used that n: BBSOA BSpin
A

is homotopic top p

the inclusion of the fiber of c: BspinA BSUA.
P p

In lemma 2.1 we will show that Qere exists a map

K(Z); JK; such that the composite

JK(Z)A is homotopic to the map i: SJA
P P

diagram 1.8. We claim that the map

SJA (QSO)A K(Z)pA
P P

JK(Z)A occuring in
p

is a homotopy equi-

valence for p = 2, proving Theorem 2.
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Consider the following diagram:

-- BSO
A t SJA--2 2

hi 1 1
1. 9. -> --

rI<pi 1 <pi

-- --
The rows of 1.9 are fibrations, and the vertical maps de-

fine maps of fibrations. We want to prove that the composite of

the maps in the left column is a homotopy equivalence. This is

equivalent to showing that the induced map between the fibres of

the composites of the two other columns is a homotopy equiva-

lence. According to the assumtion on <p, the composite of the

right column is homotopic to i:

Using 1.8, we see that both fibres in question are homotopy

equivalent to Furthermore, under these homotopy equiva-

lences, the map of fibres correspond to a map
A As: BS0 2 BS02,

such that Theorem 2 now follows from this condition and

the following

Lemma 1.10. Let t be the composite

Given any map a: BSOA BSOA

2 2 so that ta, the map a is

a homotopy equivalence.

It suffices to show that a induces an isomorphism

on homology with coefficients in Z/2. To do so, we first

determine the image of t*: H*(SJ;Z/2) H*(BSO;Z/2).

By a spectral sequence argument [14], H*(SJ;Z/2)

surjects, so that im(t*) = im(n*).

Recall that H*(BSO;Z/2) = Z/2[w2,w3, ••• ]. One can show
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that im(n*) is the subalgebra Pc H*(BSO;Z/2) generated by the

Newton-polynomials o i in w1 = 0, w2, w3, ••. , for instance by

looking at the Serre spectral sequence of the fibration

BU .... BSO .... Spin.

We claim that if a*: H*(BSO;Z/2) .... H*(BSO;Z/2) is any map

of algebras, fixing the subalgebra P and commuting with the

standard Bockstein map, then a* is an isomorphism.

But this is an easy consequence of the two relations

02i+1 = w2i+ 1 + decomposable;
1

Sq w2i = w2i+ 1•

Finally, we will show that Theorem 2 implies Theorem 1.

Recall from [10] that the maps wlPiff (*) .... A(*) and A(*) .... K(Z)

induce rational isomorphisms on TI i for i> 1. Furthermore,

by Borel [2],

if i=4j,

else

so that it is enough to show that the map TIi(G/O) ....

is injective after tensoring with Q. Since TIi(G/O) is finite-

ly generated, this is equivalent to the statement that

1\ 1\TI i(G/02[1/2]) .... is injective [9].

Now consider the diagram, whose rows are fibrations

1\----+. BS02

II

1\----+. BSG2

In
fiber(s);

r 1\
(Z) 2 "" fiber (t) 2

1\
BS02

II

1\ 1\ 1\ 1\
The maps G/02 .... respectively

factor up to homotopy over a map The spaces



32

in the right column of the diagram above are all torsion spaces,

so that the maps in the left column induce maps which become

equivalences after inverting the prime 2. The statement above

now follows trivially from Theorem 2, saying that

A
is a split injection.

§2. Etale homotopy theory.

ATI irlJK(Z)2 ...

In this paragraph we will use the etaIe homotopy of simpli-

cial schemes as developed by Friedlander to prove.

Lemma 2.1. There is a map K(Z) ... JK(Z)A such that the

composite

... JK(Z)A
P

is homotopic to the map of 1.8.

Following ideas by Quillen, Friedlander defines a homotopy

class (.Q, prime * p) (BGL(Z/.Q,) +) ... BUA• The way we prove lemma
p

2.1 is to consider the following diagram (where K(Z)l denotes

the l-component of K(Z»:

2.2.

K (Z) 1

1

We will show that this diagram commutes up to homotopy.

This homotopy defines a map K(Z)l'" PB, where PB is the homo-

topy pullback of the two maps in 2.2 with abutment in The

map of 2.1 is the lifting of this map to a certain covering space

of PB, homotopy equivalent to JK(Z);.

We note that for .Q, = p, there is no such homotopy commuta-

tive diagram, since is contractible but the map
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QSO K(Z) is non-trivial for all

Recall that to a locally noetherian simplicial scheme X.

we can associate its etale topological type (X.)et. The etale

topological type is a functor to the category of pro-bi-simpli-

cial sets, and H*((X.)et) is the etale cohomology of X. As

an example of this construction, consider the case where

G Spec R is a groupscheme over the spectrum of the Noetherian

ring R. The classifying simplicial scheme BG is defined to

x G
Spec R

------>
be G x G x GSpec R Spec R

< n

in degree n.

The face and degeneracy maps are defined using the product

j.l: G R G G and the unit e: Spec G in the usual way.

We consider the special case of this construction where

G = GLn(R). More precisely, let GLn(R) be the scheme over

Spec R defined by

GLn (R) = Spec A

A i,j 1, ••• ,n.

The groupstructure on GLn(R)

j.l: A A @ A where j.l(x i j) =

is given as the dual of

Let GL (R)o be the group of sections (in the category of
n

schemes over Spec (R) ) of the structure map GLn (R) Spec R •

We can identify this group in a canonical way with the group of

invertible n-by-n matrices with entries in R.

oThere is an adjunction map ev: GLn(R) x Spec(R) GLn(R),

such that for

over Spec R .

and even ev:

gE GLn(R)o the map ev(g,-) is a map of schemes

oIt induces ev: GLn (R) x (Spec R) et GLn (R) ,

BGLn (R) x (Spec R) et BGLn (R) et. In the last

formula, one schould interprete the left hand side as a pro-bi-

simplicial set, which is a product of a simplicial set with a

pro-simplicial set.
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Let a: R -+ S be a ring homomorphism. Consider the conmut.a-

tive diagran:

(Spec S) et
BGLn (a) 6 x id 6

(Spec S) et • BGLn (S) x

ev1
BGLn(S)et

BGLn(R)et

BGL (R) 6 x
n

Ldx (Spec a) et 1
6

BGLn(R) x

2.3. ev

Let be the prinefield with elements. Let

be the ring of Witt vectors on its algebraic closure F We

choose (noncanonically) an ambedding 1: -+ C, the complex

numbers.

It is known that (Spec R) et is weakly contractible if

either R is a separably closed field, or a local ring satis-

fying Hensel's lemma, with separably closed residue field. In

particular it is true for R = C, or

Theorem 2.4. (Friedlander [3],[5]). The base change maps

+ BGLn(C)et induce isomorphisms on

homology groups with coefficients in zip, p *

The Friedlander map -+ BUA mentioned in thep p

beginning of this paragraph, is defined by constructing a map

-+ and then using 2.4 to identify the

homotopy limit of the latter pro-object with
A

at least up

to homotopy.

This map is given by identifying with the pro-

simplicial set x and then including the

groupscheme GLn (Z I 6 x Spec in GLn (F as the kerne1 of

the Frobenius map. Note that this last inclusion is exactly the
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composite lev) 0 (GLn (a) °x id) related to the map a: Z/ Q, .... FQ,'

Lemma 2.5. The following diagram commutes

{BGLn (FQ,))et (BGLn (C) )et

The proof of the lemma consists of repeated application of 2.3.

Let {Z/p)oo be the Bousfield-Ran completion at p. Let

holim denote the Bousfield-Ran homotopy limit. After applying
<-

the composite functor holim (Zip)
<- 00

the maps of 2.4 become

homotopy equivalences of simply connected simplicial sets. The

map BGL {Z/Q,)o .... BGL {Z/Q,)o x (Spec F ) t .... {GL (Fn ) ) t deter-
nne n '" e

mines a homotopy class (BGL (Z/Q,)o)+ .... holim{Z/p) {BGL (C)) t
n -+- 00 n e

(where "+" denotes the plusconstruction of Quillen). Because

of 2.5, the composite of the natural map (BGLn{Z)o)+ ....

(BGLn{Z/Q,)o)+ with this map is homotopic to the composite

(BGLn{Z)o)+ .... (BGLn{Z)o)+ x C)et ....

.... holim{Z/p) (BGL (C)) t'
<- 00 n e

Recall that for any topological space X there is a sim-

plicial set Sing{X). If X is a scheme of finite type over C,

there is a map Sing{X) .... (X)et' inducing a homotopy equivalence

(Z/p)ooSing{X) .... holim{z/p)oo{X) t' Applying this for the simpli-
<- e

cial scheme X = BGLn{C) , we get a map {BGL (Z/Q,)o)+ .... {BU )A.n n p

Since the map Sing{X) .... {X)et is natural in X, we have

the following commutative diagram
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BGL (Z) °xn

1
(Spec C) et

sing(BGLn(C»

It follows that the composite

(BGLn(C»et

BGL (C)A is homotopic to the standard map. Passing to the limit
n p

in n, we obtain the diagram promised in the beginning of the

section, that is,

determine PB.

we can find a map K(Z)1 PB. We want to

Theorem 2.6. (Friedlander). The map (BGL(Z/t)+); BU;

defined above is homotopic to the inclusion of the fiber of the

map I/Jt _ id: BUA BUA
P p '

Proof of 2.1. We can identify the homotopy type of PB

by the following diagram of fibrations up to homotopy:

PB > BOA (1jJt_ id),
BUA

1
p (1

1jJt _ id
(BGL(Z/t)+); , BUA , BUA

P P

From definition 1.7, and the long exact sequence of homotopy

groups of the upper row, we see that each component in JK(Z);

is the covering space of PB corresponding to a certain group

Z/2

to

ZA. In particular, we can lift the map defined by 2.2
p

JK(Z);.

From the construction it follows that the obstruction to

finding a homotopy between this lifting and the map of 1.8 is

an element of K1 (SG) = O.
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ON NOVIKOV's CONJECTURE FOR COCOMPACT

DISCRETE SUBGROUPS OF A LIE GROUP

by

F.T. Farrell (1) and W.C. HSiang(2)

I. Introduction and Statement of Results.

Let G be a linear analytic group; i.e. a connected Lie group which admits a

faithful representation into GL (R)
n

for some integer n. If K is a maximal

compact subgroup of G, then X = K\G is diffeomorphic to the Euclidean space R
n

Suppose that feG is a torsion-free descrete subgroup such that the double coset

space

x/f K\ G/f

is a closed K(f,l) manifold (i,e., an aspherical manifold of the homotopy type of

K(f,l)}. If G is semi-simple, then x/f is a locally symmetric space with non-

positive sectional curvature and the so-called Novikov conjecture was verified in

[10](2]. In this paper, we shall combine [2][4][5] to prove that the main result of

[2] is valid for G any linear analytic group.

Let us now state our results precisely. Let denote the closed i-dim disc

and let M
n

be a closed topological manifold. Recall the surgery exact sequence of

[16][9] (n+i>4):

[WxIt,3; G/Top,*J

(1) Partially supported by NSF grant number MCS-7701124.
(2) Partially supported by NSF grant number MCS 82-01604.
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We have the following theorem.

Theorem A. Let W = xr: be given as above. Then, the surgery map.

e: [ wxIDi,a; G/Top,*J - (11"lW, wI (W))

of (1) is a split monomorphism provided n + i > 4

As we observed in [ 2], the following corollary follows from Theorem A.

Corollary B. Let W=x/r be given as above. Let g: Nn be a homotopy

equivalence where Nn is a closed manifold. Then,

is homotopic to a homeomorphism.

Let us now recall the so-called Novikov's conjecture. Let be a closed

oriented manifold and x Eo If (11", Q) a rational cohomology class of K(11",l) •

given a homomorphism 11"lX 11" , we have a natural map

Let

(2)

H
4*

be a total L-genus of Consider the number

t (x) = (L* V :r* (x), Q

It is called the higher signature of Xn associated to x .

Novikov's conjecture: For every group 11" and each element x Eo H*(lI,Q)

the numbers L (x) ( are homotopy invariants.

Again, it follows from [2] that the following corollary is an immediate

consequence of Theorem A.

Corollary C. If r is a torsion-free cocompact discrete subgroup of a linear ana-

lytic group G with a finite number of components, then Novikov's conjecture is true.

It has been claimed by Kasparov that Novikov's conjecture is true for any

discrete subgroup of GL (n,a:) [8J. At times it was also claimed by

[10J [11] that the conjecture is valid if 11 is the fundamental
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group of a non-positively curved complete manifold MP. As pointed

out in the critique [6] , did not prove the full conjecture if

MF is not closed. If either one of them were correct, Corollary C would

be a consequence of the claim but not the stronger statement Theorem A or

its geometric consequence Corollary B.

Let us examine our MP x/r more closely. Consider the Levi decomposition

S n K

P
1 --+ S ----r G--+ L -- 1

of G where S (a solvable group) is the radical of G and L is a semi-

simple group [ 7] [13]. Let K be a maximal subgroup that K
S

KL = p(K) are maximal compact sUbgroups of S anQ L respectively. Similarly,

we have r S = r n S , r
L

= p ( r) may have torsion elements) are

discrete subgroups of Sand L respectively [13J .

We have the following facts:

(a) S
o K

S
\ sirS is a compact so.Lvarnani f'o.Ld ,

(4 ) S
o

'9-
K\G/r

s
14
0

= \ \L , then we have a fibration

If --> 1:19-
o

and ve may give M9-
o

a non-positively curved global space structure.

Therefore M9- is diffeorr.orphic to JR9- and (4) is topologically a trivial
o

fibration.

(c) r is a normal subgroup of r and r = r/r acts on
S L S

;,n and
'9-

that !<f = ;,ntt fibration [ 1]M such and such that \Ie have a Siefert
0 L

(5) s -->-
0

(d) It follows from [ 4] [5] that if f: (Nt +j +i ,0) --

(SOXTjXIDi,o) (t=dim So) is a homotopy equivalence uhich is a homeomorphism

between the boundaries and t + j + i > 4 , then f is homotopic to a

homeomorphism relative to the boundaries.
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't t
Mo has a compactification such that the action

on Mt extends to
o This action satisfies Condition (*) of [2] •

speaking, it only satisfies (*) after we restrict the action f L

to a torsion-free subgroup but this is not an essential point and we shall

make it more precise shortly.)

What we realize is that these are the essential properties of the cocompact

discrete subgroup I' of G which make the proof work. Naturally, we should.

forr.alize these properties and prove a somewhat stronger version of Theorem A

Let

(6) S _W_Mt
o 0

be a Seifert fibration [1] over an orbifold Mt .
o

(See [ 15] for the

definition of an orbifold.) Assume that is an aspherical manifold.

We say that W satisfies if (6) verifies the following conditions:

The inclusion i: 8 c!>f of the regular fiber induces a map
o

r = 11 (8 ) - r = 111 (r,f)
S 1 0

such that f
S
is a normal subgroup of f , and f

L
= f/fs is finitely presented.

W2) The regular covering space of W corresponding the inclusion

I' c I' Lnduces a fibre bundle
S

(8) S
o 0

such that f
L
= f/fS acts on

automorphisms with W= if/f
L

properly discontinuously as a group of bundle

Moreover, the quotient of if
gives arise the Seifert fibration as constructed in [1] .

is a homotopy

equivalence which is a homeomorphism between the boundaries and t + j + i > 4 ,

then f is homotopic to a homeomorphism relative to the

is an open simply connected manifold with a compactification

that the action on extends to . Any equivariant
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extends to an equivariant homotopy

Ai
homotopy equivalence h: Mo

Ai
x EM)

o

d( , ) be a metric on

with h (x,0) (for all

[0,1] ---+ Mi with h (y,t)
o

Furthermore, let

Ai
x [0,1] -- Mo

- -i
x

o

orif either t = 0

be any compact subset of Mi and
o

E: > 0 • Then there exists a number Ii > 0

such that the following statement is true for any YE f
L

• If there exist points

x t K and y E anl such that d (yx,y) < 15 • then the d i amet.er- of YK (with

respect to d ( ,)) is less than £

Clearly, Theorem A is a special case of

Theorem At. Let be a closed (triangulable) (3) aspherical manifold

satisfying'll) • Then the surgery map

of Q) is a split monomorphism provided n + i > 4 .

A special case of the above theorem was proved in [14].

2. Proof of Theorem A' .

As we observed in [2] , it suffices to show that the surgery map

[ t.fXIDi xr ,a; G/Top, *]

L:+i+l (1I1lf 'Wl (If))

e

is split monomorphic for i > 1 • n + i 5 I = [0,1]) .

Let x (111 ,wl (If)) be represented by a surgery problem

a
\W ,o_w , 0

satisfying the following conditions:

(3) We do not have to assume that Mil is triangulable, but it makes the argument
simpler.
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<9' )

(i) f : 3 \fl+i+l W x :n:/ x 0 is a homeomorphism;

+i+l lJi x(ii) W x 1 is a simple homotopy equivalence;

(iii) f :3 W x 3JDi x I is a homeomorphism.
0 0

3 :vi denote the upper and the lower hemispheres of

Write tfl+i = 3 and 3 If+i = f- l (W x
+ ± +

3 JDi Xl) where 3 Ili and
± +

Si-l = 3Ili , respectively.

n+i
3_U (r-el . 3) , we may identify

s-cobordismIdentify

theorem to un+i with respect to

f
o

Applying the

1f+i as

x :vi and f+ may be interpreted as a simple homotopy equivalence

(10) h: W x JDi----+ t.f1 x JDi

such that x 3_JDi = id and hlw x 3+:vi is a homeomorphism.

Let us now consider

(11)

where denotes the universal cover of Let d±A3n+i be the part of

aA2n+i corresponding to Mn x 3±X!i (of the second facto:" of A2n+i)

respectively. Let r act on A2n+i diagonally such that the action of the

second factor is factored through rL = r/rs We have a fibration

(12) l:f/r

the map id x h which h is the lift of h to 111 x JDi with h\;;r x 3_ Jd-
= id , induces a bundle map (again denoted by h

Mnx JDi ---4 Etn+i

(13) jh
;f x ])i If-n+i

q

such that hla_E
2n

+
i = id and h[d+E2n+i is a homeomorphism (where

3
tE

2D+i are the parts of dE2n+i corresponding to

The compactification of M.l, to JD.l, induces a compactification of
o

;;r x JDR. View M.l, as the interior of JD.l,
o

and



It follows from II!) that the fibration (12)

Projectas the boundary of

i 'i
of Y x (Soxl)) (where y No)

point as it gets to ol)i = Si-l)

extends to a fibration

as y
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moves toward

and shrink the size

(and becomes a

(14)

and the bundle map h extends to

(15)

II

Corresponding to

of (14) :

Si-l* (S xO+l)i) c;; Si-l* (S xl)i) , there are two sub-bundleso _ 0

(16) a 3-.. J:l1
±

Each of these fibration is left invariant by h such that hla E2n+i id and

is a homeomorphism.

We need the following lemma.

Lemma 2.1

be a homotopy equivalence such that

is a homeomorphism with f- l (0) = 0 If i + dim So + i + j .::. 5 ,then f is

homotopic to a homeomorphism reI fla

Proof. This lemma essentially follows from the main theorem of [4]

[5]). Let us consider the open regular neighborhood N of Si-l x

It has an open cone bundle over f i - l x .

In fact, it is a product bundle and ue may write N as



45

(17)

with (S XID
i
) x 0 as the cone vertex

o

Set

c .

(18) N
[t,o ]

N (t ,«]

f'or 0 < t < 1. It f'ollows f'ron [4 J [5] that f' is homot.op i c to f'l

reI 0 such that

f
l

induces a homotopy

1

such gl01 is a homeomorphism. It f'ollows from &3) that g is

to a homeomorphism reI a. Combining these two we

produce a homotopy of f' as reQuired.

Lemma 2.2 There is a homotopy h
t (0 ::. t ::.1) of' h such that h

o
h

hI is a homeomorphism, htla'E is a homeomorphism, htld_E id and

(dE) = dE. Furthermore, h
t

(9.-
1 (llj))C q-l (llj) for each t£ [O,lJ and every

closed simplex llj of' a f'ixed triangulation of

Proof'. Since E is a f'iber bundle over MF , it may be viewed as a

block bundle with q-l (lli) as blocks where lli are simplices of a trianglation

n
of M We shall prove our lemma by an induction on the skeleton of .

Consider the induced map

(20) --1 ( 0) --1 ( 0)q II q II .

as
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(21)

then Lemma 2.1 applies and we have a homotopy of fiI<i-I (",0) reI a such that

it becomes a homeomorphism at the end of the homotopy. this

honotopy blockwise, we may assume that fi I<i-I (",0) is a to begin

with. Inductively, we may assume that h is a homeomorphism over the blocks

over the (j-l)-skeleton of and h preseves the blocks. Let ",j

be a j-dim simplex of 1(1 and let us consider the induced map

as

(22) fi!Ci-l(",j) : q-l(",j) ----+ Ci-l(",j) .

Again, trivialize <i-I (",j)

(23)

and then apply Lemma 2.1. By blockwise homotopy, we finish the

induction step. Note that different trivialization of <i-I changes

the map of Lemma 2.1 by a conjugation of the domain and the range where

(24) (8 XID i ) x ",j
o

(8 xIDi ) x ",j
o

is a block homeomorphism induced from an element of as gotten from

'(12) and Ij4). The change makes no difference for our argument and the lemma

is proved.

Let us now continue our proof of Theorem A' Consider the covering

.Jrr+i+l ofw w corresponding to r
s

and set V2n+i+l = x wn+i+l/r

We have the following fibration

(25)

and f induces a bundle map

(26)
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.2n+i+l . .n x ",_. .n+i+lNote that we may identify the parts of v corresponding to MoW

and fil x Cl vf+i+l as E2n+ i x 0 and E2n+ i xl, respectively, such that
+

the maps g_ induced "by f is the identity and the map g+ induced by

f+ is h By Lemma- 2.2 , we may assume that h = g+

I,.,') gl"v2n+ i +1These facts together with I::t ,iii implies 0

is a homeomorphism.

is a homeomorphism.

Let fil x ][)i x j C. E
2n+i x j (j = 0,1) by the submanifolds consisting

of the quotient points corresponding to (x,x,y, j ) for x , Y E ][)i

h . th' f . 'I We have g_-l 1·.nX][)iXO)were x J.S e amage 0 x an " • 1M and

respect to the submanifold

-1 I,.n ig 1I't x][) x I)
+

",.2.n+i+l
in av Applying transversality to g a) with

x ][)i x I c. E2n+i x I consisting of the quotient

points corresponding to points of the form (x,x,y) for x E and

i
y E][) x I , we obtain a submanifold connecting -1 I.,n i )g_ II', x][) x 0 and

-1 I•..n ig 11'1 x][) '(1)
+

This gives a degree 1 f N
n+i +l

map rom to

which is a homeomor-phd am when restricted to aNn+i+l and determines an element

of [rfx][)i x I, Cl; G/Top"*]. As we argued in [2, pp. 205-206] ,

splitting of e. ThiH completes the proof of Theorem A' .
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An Introduction to Maps

Between Surgery Obstruction Groups

by

Ian Harnbleton*, Laurence Taylor**,

and Bruce Williarns**

In order to apply surgery theory we need methods for

determining whether a given surgery obstruction

o(f: N + M,f) E Ln(lZG,Ul) is trivial. Notice. that it is

more important to have invariants which detect L-groups than

to be able to compute the L-group themselves.

One approach is to use numerical invariants such as

Arf invariant3, multisignatures, or the new "semi-invariants"

[MIJ, [DaJ, [H-MadJ, [PJ. Another approach is to use transfer

maps. For example,

(1) Dress [D) has shown that when G is a finite

is detected under the transfer

by using all sUbgroups of G which are hyper-

elementary.

(11) Wall [W9J has shown that when M is closed and

G is finite, then image (0 [M,G/TOP) + Ln(lZG,w))

is detected by Ln(2ZG2 , w) , where G2 is the

2-Sylow subgroup of G.

*Supported by NSERC

**Supported by NSF



(iii) If G
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is a finite 2-group, then is

detected under transfer and projection by using

subquotients of G which are dihedral, quater-

nionc, semi-dihedral, and cyclic (see [T-WJ).

The goal of this paper is to give a systematic procedure

(when G is a finite 2-group) for computing transfer maps

and the "twisted" transfer maps arising from codimension 1

surgery theory. Recall that if H is any subgroup of a

finite 2-group G, then there exists a sequence of subgroups

2 subgroup of Hi +l fOl i

G such that Hi is an index

0, ... ,e - 1. Thus we might

as well assume that H is an index 2 subgroup.

Suppose H is an index 2 subgroup of an arbitrary group

G. Then we get the "push forward" exact sequence

(see [RlJ,§2), and the transfer exact sequence

••• -+- -+ •••

(see [RIJ, §7.6).

One can view S = ZW as a twisted quadratic extension

of R = More precisely, suppose we choose t G - H.

We let a = t 2 H, and we let p : R + R be conjugation by

t. Then,

S = R [faJ = R [tJ/(t 2 - a),
p p

where t is viewed as an indeterminate over R such that

tx = p(x)t for all x R.
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Let y denote the Galois automorphism of S over R

given by

y : S + S; x + yt + x - yt (x,y E: R).

We want to extend the classical results in [L] chap. 7

and [M-H] appendix 2 where f: R + S is a quadratic extension

of fields.

Recall that Wall [W2] defined groups Ln(R,a,u) for any

ring with anti-structure, i.e. a is an anti-automorphism,

u is a unit, 2 ( ) -1a r = uru for all r E: R, and a(u) = u- l.

Suppose we have a map of rings with anti-structure

where S is a twisted quatratic extension R [Ia] with
p

Galois automorphism y. Then we also have the following

y-conjugate map

Moreover, we can "twist" Ca,u) to get (c;::li) (ii,u),

where a.(s):=;a ya(s);a-l for all s E: Sand u = ;a ya(;a-l)u.

This yields a map

where ii
O

is the restriction of ii.

r---/

If we twist (ya,u) we get that (ya,u)

and we get a map

(yii, - u),
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Y; (R,iiO' - il) .... (S,yii, - il).

Then we get the following amazing isomorphisms.

r! Ln_ l (f!)
.... Ln (f!) r! Ln_ l (y f!) ;t L (Yf,)n .

, , - , , ,r : Ln (f") "t Ln+1 (f') r' L ( j" r ) .... L (y f . )
n - n+l

,
The maps r! and f· are defined using an algebraic

version of integration along the fibre for line bundles. In

the case of group rings the isomorphism f! is implicit in

[WIJ chap. 12.C, [C-SIJ and explicit in [HJ. The general case

is due to Ranicki (after some prodding by us). (See [RIJ, §7.6

and the appendix by Ranicki in [H-T-WJ).

,
By combining f t for f, r' for Yr , and scaling

isomorphisms

Ranicld. constructed the follow1ng conmutative braid of exact sequences
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(0.1) Twisting Diagram for f

//
L +l(S,a,u) L l(R,ao'u) L l(S,a,u)
n n- n- L (R )=. = = -1 ,aO'u

r: Yf!Yf" !

Thus the problem of computing f! and Yf ! is intimately

related to the problem of computing the "twisted" maps

..-.-,
and Yf'.

Examples:

1. Suppose Ln = LPn' n is even, plus R and S are

semi-simple rings. Recall that is trivial for semi-

simple rings (see [R2]). Thus, all of the groups along the

bottom of (0.1) are trivial and the groups along the top form

the following exact octagon (see also [War] and [Le]).
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(0.2) Semi-simple 8-Fold Way

Y '18. L (R,a.O'u) ---
f"cr / n

Ln(S,ii,u)

"1
Ln(R,iiO'u)

Ln(S,a.,-u)

(a) Suppose we have

Ln(S,ii,-u)

r , I Yf!cr la
Ln(R,a.O'-u)

f : (F,id,l) -+- (K,id,l)

where F -+- K is a quadratic extension of fields. If n = 0,

then Ln(F,id,-l) Ln(K,id,-l) (0); and we get the

following exact sequence

which extends the exact sequences of Lam [LJ, chap. 7 and

Milnor-Husemoller [M-HJ, appendix 2.

(b) Suppose we have

f : (K,id,l) -+- (D,a.,l)

where D is a quaternionic division algebra and K is a

maximal subfield of D. Since a.I K = id, a. must be an

involution of type O. If we let LO(D;O) = LO(D,a.,l),

get the following exact sequence
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(0.4) 0"" LO(D;Sp)"" LO(K,p)"" LO(D;O)"" LOCK) .... LO(D;O)

'"
LO(K,p)

'"LO(D;Sp)

+
o

(c) Suppose D is a division ring with center F. Let

K be a quadratic extension of F such that D@FK is still

a division ring. Then for any (anti) involution aO on D,

we get another example

(d) (trivial quadratic extension) Suppose we have

where d is the diagonal map. Then L (S,a.,+u)
n -

is trivial

and (0.2) breaks into the short exact sequences of the form

2. Codimension 1 Surgery (see [B-L], [Me], [WI] Chap.

12C, [C-Sl], [C-S2], [H], and [Rl] Chap. 7)

Suppose we have

f : (7ZH,aw,l) .... (7ZG,aw,l)

where H is an index 2 subgroup of G. Also, suppose Xn

is a closed manifold with (rr1X,wlX) = (G,w). Let yn-l be

a connected submanifold such that wl(v(y .... X» induces the

map W: G .... G/H = {+l}. Then by combining results of Wall



56

[WIJ, chap. I2C, Cappell-Shaneson [C-SIJ, and Hambleton [HJ,

we get the following commutative diagram with exact rows

II

L (2ZH,w)

n 1f!

••• + SeX) ----+0' ---...., L

n1

( 2ZG,W)

[Y,G/TOPJ

4-
_ ,..J

L l(2ZG,w1jJ) Ln ( 2ZH, a", , - l )n- pot
Ln_1 (2Z G,iiw,l)

r;
Ln_ l (2ZH,iiw' 1)

where t E G - Hand Ln

Assume and n 5. If f : M + X represents

an element in SeX), then O*(f) is trivial if and only if

f is homotopic to a map f l such that fil(y) + Y and

fil(X - y) + X - Yare simple homotopy equivalences.

Cappell-Shaneson [C-SIJ, [C-S2J and Hambleton [HJ have

observed that since

--'Y I timage(o* : [r'l,G/TOPJ + L (2ZG,w» c ker( f'o )n

'ItYf· o (x) can be viewed as the primary obstruction to an

element x E Ln(2ZG,w) arising from surgery on closed

manifolds.

In this paper we compute the twisting diagram (0.1) where



G is a finite 2-group, and Ln
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Our motivation is

that we have used these results to compute [Ii!,G/TOPJ +

(see [HJ, [T-WJ, and [H-T-WJ).

Roughly speaking, we proceed as follows

(i) We show that the Twisting Diagram (0.1) for f

decomposes into a sum of diagrams indexed by the

irreducible of G.

(ii) We use quadratic Morita theory to construct an

isomorphism between each component diagram and

the twisting diagrams associated to integral

versions of Examples 1. (a),(b),(c),(d) i.e.

maximal orders in division rings.

(iii) By using classical results on quadratic forms

over division rings and localization sequences

we are able to finish the calculation.

In Part I we carry out this program for the groups along

the top and bottom of the twisting diagram (0.1). In Part II

we compute the actual diagrams.

This paper is a preliminary version of [H-T-WJ where we

give details, compute the twisting diagrams for other L-groups

in addition to and give geometric applications.

We thank Tony Bak, Bill Dwyer, Chuck Giffen, Karl Kronstein,

Ib Madsen, Bob Oliver, Andrew Ranicki, Carl Riehm, and Richard

Swan for conversations which helped to clarify our thinking.
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Computation of the LP-groups

Let G be a finite 2-group and H an index 2 subgroup.

In the oriented case, the groups have been

computed by Bak-Kolster [KIJ, [K2J, [B-KJ, Pardon [PJ, and

Carlson-Milgram [C-MJ. These results are nicely summarized

by Theorem A in [H-MJ where they give a decomposition of

indexed by the irreducible of G.

Besides extending their computations to the unoriented L-groups,

and the codimension 1 surgery groups

we also have to overcome the following problem. All of the

above computations were based upon choosing a maximal involution

invariant order, MG which contains Unfortunately, it

is not always true that MG n is a maximal involution

invariant order in (Bruce Magurn has observed that this

can happen even when G is the dihedral group of order 8).

Thus it is not clear that the above computations and decom-

positions are functorial and we have had to modify their

method somewhat. We have attempted to keep Part I fairly

self-contained, but we would like to emphasize that Part I

is based upon the work of the above authors and Wall's fun-

damental sequence of papers [WIJ - [W8J. In Section (2.5)

we try to clarify certain questions involving quadratic

r·lorita theory.

§l. Basic Definitions and Overview

(1.1) Intermediate L-group

The use of arithmetic squares forces us to use L-groups
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Thus we shall start by recalling the

relationships between the various L-groups.

A ring with antistructure (R,a,u) is an associative ring

R, an anti-automorphism a : R + R and a unit u R such

that for all a R, and such that a(u) = -1u

For any right R-module M, Da(M) = HomR(M,R) is the right

R-module where

(f • r)(m) = a(r) • f(m) where f DaM, m M, and r R.

Since inner automorphisms act trivially on K-theory, Da

induces involutions on and K. (R) = coker(K. (LZ) +
l l

Ki(R» which we also denote by a.

If Y is an a-invariant subgroup of Ki(R), i=O or 1,

then denotes the standard L-group defined in [CaJ,

[R3J §9, and [Rl1 p. 688.

the following geometric L-groups,

(LZG, Ul)

h
Ln(LZG,Ul )

(LZG, ro )

(see [WIJ)

(see [ShJ)

(see [MaJ, [P-RJ)

If Y2 c Yl c Ki(R), i = 0 or 1 are both a-invariant

subgroups, then we get the following Rothenberg exact

sequence (see [R3J 9.1)
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is the Tate cohomology group

associated to the action of 2Z/2 on Y1/Y2 via a.

Also,

(1.1.2)

If Y

(1.1.3)

Ko ' then

L
Y
n(R1 x R2 , u l N u u) LY(R N u) LY(R N u)x 1 x 2 z, n 1 x n : 2 «,

and

(1.1.4)

(see Section 2 for definition)

not a Morita invariant, (1.3) and (1.4) are false for most

Y : e.g. Y = 0 c KO This problem is overcome by intro-

ducing the following variant L-groups.

If X is an a-invariant subgroup of Ki(R), then we

get L-groups, XL
n
(n,«, u) , (See [W3J for i = I and [B-WJ

for any i 0).

If imageKo(2Z) eX c Ko(R), then

(1.1.5)
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image of X in Ko(H).

If imageKl (2Z) c X c Kl (R) , then we get an exact

sequence

(1.1.6) ... + + + + ••• ,

where X

Again we get Rothenberg sequences as in (1.1.1), and

(1.1.7)
K. (R)

Ln
1 (R,a,u)

OcKi_l(R)

L (R,a,u).
n

Furthermore,

(1.1.8)

and

(1.1.9)

and (R2,a2,u2) are quadratic Morita equivalent.

the Morita equivalence)

(1.1.10) Convention: Henceforth Ln(R,a,u) will denote

OcK
OL (R,a,u).

Our first goal is to compute

finite 2-group and (a,u) any anti-structure.

for G any

First consider the following long exact sequence
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(1.1.11)

(1. 2) Computation of

(1.2.1) Theorem: For any finite 2-group and any anti-

structure (o.,u) on Zz2G, we get

if n - 0(2)

if n - 1(2)

Theorem 1.2.1 follows from the following two results.

(1.2.2) Reduction Theorem: If R is a complete local ring

then for any 2-sided ideal I,

(11) (assuming 0.(1) I)

Proof: See [W5J, [B J .

(1.2.3) Lemma: If G is a finite p-group, then

ker (2Z/p)G + 2Z/p is nilpotent.

Proof: See [SEJ, p. 57.

Notice (1.2.3) implies that kernel

is complete.

(1.3) Computation of + 722G, o. , u )

It is well known that

'"(2Z G + (2Z/p)G + 2Z/p)
p

= ITA.p' (see [SlJ or [YJ)

where the product is taken over the set of isomorphism classes

of irreducible Each A.p is a simple ring,
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for some central idempotent which can not

be expresses as a sum of nontrivial central idempotents.

Since 2a is an inner automorphism a(a¢) is either

or where a(¢) is another irreducible

In fact (see [YJ, p. 4) and is

a order in A¢ (see [Re], p , 379). Res.tric-

tion gives a decomposition of rings with anti-structure.

(1.3.1) ( =

The A¢ x Aa(¢) are called type GL factors and make no

contribution to any Wall group.

We prove the following result in Section 2.

(1.3.2) Decomposition Theorem: For any finite 2-group G

and any anti-structure on ZlG, we get the following

canonical isomorphisms.

; Ln(A¢ + A¢(2),a¢,u¢)

¢=a(¢)

(Recall that Ln denotes

Consider the following where is

a primitive 2j-th root of 1 and - denotes complex conjugation.



(1.3.3)

1) rN
1

ZZ["2] [sN+1 ]

2) RN
1

+ -e-N+2 ]ZZ["2] [sN+2

3) FN
1

-e-N+2 ]ZZ ["2] [sN+2
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4) H = (-1,-1) R
N ZZ "" N-2' where

Cliz-l) = {ZZ + ZZi + ZZj + ZZk I ij -ji -l}

Remark: Each of these is a free

of rank 2N.

Now, consider the following anti-structures.

(1.3.4)

1) On rN, (Id,l), (-,1),

Id is the identity; - is complex conjugation;

= - sN+l or, equivalently, r N_ l is the fixed

field of T; T has fixed field F
N_l

.

2) On RN, (Id,l),

3) On F
N, (Id,l), (-,1)

4) On HN, (al' 1), (&,1) where al(i) &(i) i

a l (j )
a( j ) j

and all R = Id, T •

N-" N-2

In Section 2 we also prove the following result.
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(1.3.5) Identification Theorem: If G is a finite 2-group,

and (a, u) is any anti-structure on 2ZG; then for any

irreducible ¢ with a(¢) = ¢, we get that

with anti-structure in list (1.3.4). Recall that

In Section 3 we compute Ln(6 + for all of the

rings with anti-structure in List (1.3.4) and tabulate the

results in Table 1.

Theoretically we could then calculate LP( but we
n

restrict the anti-structure slightly at the start of Appendix I

in order to easily identify (6¢,8¢,v¢) on List (1.3.4) (see

Appendix I, part 1). In part 2 we settle the remaining questions

involved in using 1.1.11.

§2. Proofs of the Decomposition Theorem (1.3.2)

and of the Identification Theorem (1.3.5)

(2.1) Excision in Arithmetic Squares

Suppose S is a multiplicative subset of a ring A.

Then S-IA is the localization of R away from S,

A

A = lim A/sA is the S-adic completion of A, and
s"S

(2.1.1)

A

A ----+ A

1 !
S-lA + S-IA

is the arithmetic square associated to (A,S).
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(2.1.2) K-theory Excision Theorem: For any integer i,

(2.1.3) Corollary: For any finite 2-group G and any

integer 1,

(same notation as in (1.3»

(2.1.4) L-theory Excision Theorem: (See [R1J. Also [BJ,

[B-WJ, [C-MJ, [PJ, and [W7J.)

We assume that A in (2.1.1) 1s equipped with an anti-

structure (a,u) such that als is the identity. Localization

and completion then induce anti-structures on the other rings

in (2.1.1). Let and Y c K.(A)
1

be a-invariant

and let I

Then,

(2.1.5) Corollary: For any finite 2-group G and any anti-

structure (a,u) on ZlG, letting X and Y be trivial we get

C. (G)
Ln

1
( ZlG .... 7z 2G, a , u ) :t

.... 7f

ep
a(ep)::ep
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rest of the notation is the same as in (1.3).

If i = 1,
C. (G)

then the -groups
t

are the Ln-groups

which were computed by Wall [W8J.

Notice that if we can show that

+ Zz2G), then (2.1.5) would imply the Decomposition

Theorem (1.3.2).

(2.2) Representation Theory for Finite 2-groups

Definition: A finite 2-group n is special if it has no

noncyclic, normal abelian subgroups.

(2.2.1) Proposition: A group n is special if and only if

it is one of the following groups

(i) cyclic,

dihedral,
2

Y 1, yxy -1x >, N > 3

(iii) semi-dihedral, SDN

2N-2_1
x >, N > 3

2N-1
<x,y I x 2

Y
-11, yxy

(iv) quaternionic, QN = <x,y
2

1, Y

-1yxy -1x >, N 3.

Each special group n has a unique faithful, irreducible,

representation Wen).

For any irreducible of a group G

p G + GL(V), we let
p
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Schur's lemma implies that

D
p

D
p

is a division ring.

(2.2.2) Theorem: For any irreducible on

a finite 2-group G, there exists a subgroup H with normal

subgroup N such that

(i) H/N is special

(ii) If we pull back to H and then induce

up to G, we get

(iii) where =

Proof: (See [FJ)

(2.2.3) Table

n

eN f
N
_
l 0

DN
R
N_3

@ Q

SDN
F
N_3

QN
H
N_l

@ Q

Thus the rings from list (1.3.3) are
1 orders

in the division rings . Notice that the centers of

these division rings are precisely the fields which are sUb-

fields of for some j, namely fields of the form

(Recall is a

primitive 2j-th root of 1.)

(2.2.4) Weber's Theorem: Suppose K is a subfield of

for some j. Let 0 be the ring of algebraic integers in
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(i) K/Q is unramified over all odd primes. Over 2,

it is totally ramified, and the unique dyadic

prime d is principal.

(ii) The ideal class group f(K) - KO(O)

odd order

(iii) The narrow ideal class group

*r (K) (group of ideals)

also has odd order

Proof: For (ii), see Theorem 10.4 in [Was]. Class field

theory implies that if K = + and r*(K) does not

have odd order; then K has a quadratic entension ElK which

is unramified at all finite primes. But, then

would be an unramified, quadratic extension of Thus

(ii) for K = implies (iii) for K

Proof: Notice that if R = rN, RN, or then

where 0 = ring of algebraic rings in a subfield of

for some i. Since HN is a maximal order in the division

algebra HN @ (36.3) in [Re] implies that
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(2.3) (Linear) - Morita Theory: (see [Bass 1J and [ReJ for

details) .

Definition: A Morita eguivalence between two rings A and

B is a 4-tuple (M,N,u,,) where M and N are bimodules

bimodule isomorphisms such that

Len m) • n' = n • u(m 0 n'),

and

u(m n ) • m' m',(n0m')

for all n, n' E N, and

all m, m' E M.

For any ring A, we let PA denote the category of

finitely generated projective right R-modules.

(2.3.1) Theorem: Assume (M,N,u,,) is a Morita eqUivalence

between A and B. Then, we get an eqUivalence of categories

and an isomorphism

K. (A) -+-+- K. (B).
l - l

Furthermore, center(A) = B - A - bimodule endomorphisms

of M = center(B).

Examples

(2.3.2) Derived Morita eqUivalence

Suppose M E Ob (PA) and A is a direct summand

of Mn for some n > 0, i.e. M is a progenerator. Then
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A and B = EndA(M) are Morita equivalent via (M,N =

Hom
A(M,A),U,1")

where ufm @ n ) • m' = m • n Cm ") and 1" is

the evaluation map.

If : G + GL (Q) is a representation of
n·

a finite group G, then we let denote the simple module

of the simple component c Thus and the division

ring = EndA are Morita equivalent. Furthermore,

(2.3.3) If R is a commutative ring, then a R-algebra A

is Azumaya if there is a R-algebra B and a progenerator

M of PH such that A@RB ;;; EndR(M) as R-algebras. (See [K-OJ.)

If A is an Azumaya R-algebra, then A is central Le.

center A = R. Assume R is a Dedekind domain with field of

fractions K. Then, whenever A is an Azumaya R-algebra,

A is also a R-maximal order in A@RK. Conversely, if A is

a R-maximal order in a simple K-algebra A with center R,

then A is Azumaya if and only if A - M (1< )
p - n p

for all finite

prime ideals in R. (See [Rogj.)

Suppose G + is a irreducible

of a finite group of order m. Then A = a .?l [!JG
tP m

is an

Azumaya where = (See [FJ, Corollaire

1 of Prop. 8.1.)

Definition: For any commutative ring R, Br(R) is the set

of Morita eqUivalence classes of Azumaya R-algebras. It

becomes an abelian group under tensor product over R.
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Suppose R is a Dedekind domain with quotient field K

A

a finite extension of or for some prime p.

(2.3.4) Theorem: Let for j 1,2 be R-maximal

orders in simple K-algebras A
j
, j 1,2. Then Al and A2

are Morita equivalent if and only if Al and A2 are Morita

equivalent.

Proof: See [Re], Theorem (21.6).

(2.3.5) Corollary: The map Br(R) + Br(K) is a momomorphism.

(2.3.6) Theorem: Suppose that G is a finite 2-group.

Then, for any i,

where runs over the irreducible rational representations of

G and is one of the rings on list (1.3.3).

Proof: First apply corollary (2.1.3). The result follows from

(2.3.4) after consulting paragraph two of (2.3.2); (2.2.2) (iii);

and Table 2.2.3.

(2.4) Proof of the Decomposition Theorem (1.3.2)

(2.4.1) Theorem (Swan): If G is a finite group, then

is a finite group.

Then (2.3.6), (2.2.5), and (1.2.2 (i)) imply that CO(LlG) +

KO(LlG) becomes an isomorphism when we localize at 2. A

Rothenberg sequence argument then implies that
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Thus (1.3.2) is a special case of (2.1.5).

(2.5) Quadratic Morita Theory (Compare with [F-McJ and [F-WJ)

Definition: A quadratic Morita equivalence between two rings

with anti-structure (A,a,u) and (B,S,v) is given by a Morita

equivalence plus a B-A-bimodule isomorphism h : M + N

where we make N into a B-A bimodule using a and S. We

also require that

a,(h(mlu) m2) = ,(h(m2) mlv)

for all ml,m2 E M

(2.5.1) Theorem: A quadratic Morita equivalence between (A,a,u)

and (B,S,v) induces isomorphisms

(equivariant with respect

to a* and S*)

and

XLn(A,a,u) + LtP(X) (B S v)
n "

where X is any

a*-invariant

subgroup of Ki(A).

(2.5.2) Derived Quadratic Morita Equivalence Theorem: Suppose

(A,a,u) is a ring with anti-structure and is a

(linear) Morita equivalence between A and B. Let R = center A

center B. Assume h : M + N 1s a right A-module isomorphism,

where we use a to make N into a right A-module. Then,

(1) B admits a unique anti-automorphism B such that

h becomes a B-A-bimodule isomorphism when we use

S to make N a left S-module. (SI R = aiR); and
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(ii) there exists a unique unit v E B such that

(M,N,U,T,h) is a quadratic Morita equivalence

between (A,a,u) and (B,B,v).

(2.5.3) Corollary: Suppose (A,a,u) is a ring with anti

structure where A is a simple algebra over a field K. Let

v = simple right Amodule and let D = the division algebra

EndA(V). Then (A,a,u) is quadratic Morita equivalent to

(D,S,v) for some antistructure (B,v).

Proof: Since V and Va = HomA(V,A) are both simple right

Amodules, there exists a right Amodule isomorphism h : V va.

(2.5.4) Corollary: Suppose (a,u) is an antistructure on

for some finite group G. Then,

11"

ep
ep==a(ep)

(2.5.5) Definition: If (R,a,u) is a ring with antistructure

and w is a unit in R, then the scaling of (a,u) by w

is the new antistructure

(S ,v)

where S(r) = wa(r)w l for all r E R, and v = wa(wl)u.

For any Rmodule M, there exists an isomorphism

Thus we get an lsomorphism

Alternatively, crW can be gotten by applying (2.5.2) with
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R the map that sends r to rw- l.

(2.5.6) Definition: Suppose R is a commutative ring with

involution Then Br(R,aol is the set of quadratic Morita

equivalence classes of rings with anti-structure (A,a,u), where

A is a Azumaya R-algebra and aiR = etO ' Br(R,aO) is an abelian

group under tensor product.

Warning: We shall see in (2.5.9) that the quadratic analogue

of (2.3.4) is not true in general.

Let Bro(R,ao) be the kernel of the forgetful map

Br(R,etO) + Br(R).

that R is a Dedekind domain with quotient field

K. Let r = the group of R-fractional ideals in K, and let

g : K* + r be the map that sends x E K* to the ideal (x).

By sending elements and fractional ideals to their images under

the map a o : K + K we get an action of Ll/2 on and

Warning: The map r + Ko(R) which sends a fractional ideal a

to the underlying module [a] is not equivariant. Indeed,

a
_ [a] a = HomR(a,R) made into a right R-module via

(2.5.7) Theorem: There exists an isomorphism

'I' : Bro(R,ao) + HO(Ll/2,K* + 1)

11

{(x,a) E K* (9 t I eto(x) = x-l,(x)a
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The map 0/ is defined as follows. Suppose (A,a,u)

represents an element in BrO(R,aO)' Choose M so that

A = EndR(M). Let V = and A = A@RK. as in (2.5.3) we

can choose a right A-module isomorphism h : V Va which

yields an anti-structure (S,v) on EndA(V). Notice that

adjoint of h : V Va

Let ad(h) : V x V K be the

HomK(V,K). Then o/(A,a,u) is

represented by where is the fractional ideal

generated by heM x M).

The map 0/ has the following interpretation. Assume h

is choosen so that c R. Then the (linear) Morita equivalence

derived from M and the pairing h : M x M determines an

equivalence of categories Sesq(A,a,u) Sesq(R,aO'v). But,

nonsingular forms are sent to modular forms.

The following result was suggested to us by Karoubi.

(2.5.8) Proposition: Any ring with anti-structure (A,a,u)

is quadratic Morita equivalent to where

Proof: Let {el,e2} be the standard basis for M A 61 A

and * *{e i,e2} be the dual basis for N Then we let

h : M N be given by and and we

apply (2.5.2) to the derived Morita equivalence.

This implies that BrO(R,ao) is isomorphic to BO(R, Zl/2)

in the sense of Frohlich-Wall [F-WJ. Thus (2.5.7) is at least
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implicit in [F-WJ.

(2.5.9) Sample Calculations:

(i) R = K

If charK +2, then Bro(K,id) has two elements

which are represented by (K,ao,l) and (K,ao,-l).

(11)

when

R = finite extension of

or charK = 2.

If a O +1d, we let r be the fixed sub ring of a.
O

Then,

Bro(R,ao)
(1) , when R is inert over r, and

Bro(R,ao) has order 2 when R is ramified over r.

Notice that Br(R,a
o)

+ Br(K,ao) is not an injection.

In cases (iii) and (iv) we let R O(E) where 0 is

a ring of algebraic integers and E is a set of prime ideals

in 0, e.g. the center of the rings in List (1.3.3).

where r = coker(K* + 1), and {x R* I x2 L} •

The isomorphism comes from the following braid
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which is induced by the following exact sequence of 2Z 2Z/2-

modules

1 R* K* r* r I

Remark: The localization sequence (see [RIJ, §4.2) implies

that

cOkerCLgCK,id,l) ffi
p

Similarly, if represents an element

But it is not true in general that

For example if' a is nontrivial and 1"2 E R, then

order

(iv) Assume tid.

2 x order

Case 1: K is unramified over the fixed field of and

E = the set of all prime ideals in O. Then has

order 2, but the map is

trivial. Furthermore, if represents the nontrivial

element in Then

Case 2: Otherwise,
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where we can sum all finite primes p in L which are

ramified over the fixed field of ao .

These results are proven by using the isomorphism

HO (?l/2; K* ... 1) :t HO (?l/2; 7f

PfL
R* 7TP x

pEl:
R* x
P

7T

V

arch

where e(K) is the idele class group of K.

Remark: If R = 0, then caSe (iv) is related to Connor's

book [C]. In fact,

aOH (?l/2; K* ... I) .::.. Gen(K/K )

(see chap. I in [C]), and if = [(x,u)], then

Lb(A,a,u) Hx(u), where Hx(u) is the Witt group of x-

symmetric, u-modular forms studied in chap. IV of [C] .
•" ,

(2.6) Proof of the Identification Theorem (1.3.5)

Theorem (1.3.5) will follow from (2.5.1) (or rather its

relative version) if we can prove that is quadratic

Morita equivalent to where (t.$,S$,l) is one of the

rings with anti-structure in List (1.3.4)

From the proof of Theorem (2.3.6), we know that A$ is

linearly Morita equivalent to rN, FN, RN, or HN for some N. Let

R denote the center of A$' Then (A$,a$,u$) £ Br(R,aO) for

some aO'

The proof divides into three cases.

1) D$ is commutative, aO = Id.

Then (A$,a$,u$) £ Bro(R,Id). From (2.5.9) (iii) and

(2.2.4) (il), Bro(R,Id) ?l/2?l and from (2.5.9) (i) we see
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that (R,Id,l) and (R,Id,-l) are the two elements.

2) is non-commutative, aO = Id.

The calculation in 1) shows that (HN,al,l) and (HN,al,-l)

are the two distinct elements in Br(R,Id) which map to [HN] £

Br(R). From (2.3.6) we know that is linearly Morita equiv-

alent to HN, so done.

3) (l0 l' Id.

First notice that R with each non-trivial involution

occurs on List (1.3.4). From (2.2.4) (i) and (2.5.9) (iv) case 2,

we see BrO(R,aO) = (1). Using (2.3.6) we are finished.

Remark: Notice that if R = rN, FN, or RN, then, for any aO'

Br(R,aO) Br(K,aO) is one to one.

§3. Localization Sequence

The goal of this section is to compute +

where is any of the rings from List (1.3.3) and S is

OeK
any (anti)-involution on Recall that L denotes L 0

n n

Henceforth, we shall suppress writing the 1 in (S, 1) .

The results are summarized in Table 1.

(3.1) General Background

Suppose K is an algebraic number field with ring of algebraic

integers o. Let D = central, simple, K-division

algebra; = R-maximal order in D', and B any (anti)-

involution of We assume has odd order.

Consider the following arithmetic square
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6. ... D
+ +
A A

6. ... D

Then,

<3.1.1)

Ln(6. ... D.8) ... D.8) (by L-theory Excision Theorem (2.1.4»

- L ... D.8) (by 4.1.2 and 4.1.5 in [R1J) ..- n p p'

where we sum over all maximal ideals p in R

such that 8(p) = p.

<3.1.2) Local Quadratic Morita Theorem: Suppose p is a

maximal ideal in R such that 8(p) = p and such that

D - Mk(K) for some k.p - p

If 81 R ids we assume that (6..8,1) Br(R,id)

maps to the t;rivia1 element in Br(K,id) _ {:t1l,

where K is the algebraic closure of K.

If 81 R + id, we assume that p is unramified

over the fixed field for 8l K

Then,

L ... D 8) L (R ... K
p
, 8 )n p p' n p

Proof: Apply (2.5.1) and (2.5.9) (ii).

(3.1.3) Divissage Theorem: Suppose p is a maximal ideal in

R such that 8(p) = p. If SiR f id, we also assume that

p is unramified over the fixed field for 81
K

1 A

2" Rp' we get

Then, since
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L (R + Kp'S) :tn p

where k is the residue field Rip.
p

Proof: See 4.2.1 in [R1] .

If satisfies the assumptions in (3.1.2) and (3.1.3),

then we get the following localization diagram with exact rows

and columns

0.1.4)

Since
1 ,..
2" E: we get that If o contains

,..
a unique dyadic prime, then D2 is a simple ring. Recall

that in Li(kp'S) we are summing over the set of maximal

ideals in R such that S(p) = p. Notice that this is the

same as summing over the S-invariant, N.D. maximal ideals in

o (where N.D. stands for nondyadic).

We shall compute + by computing the map $.

Notice that the domain and range of ¢ is expressed in terms

of L-groups of semi-simple rings.
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(3.1.5) Semi-simple Theorem: If A is a semi-simple ring,

then = 0 for any involution B.

Proof: See [R2J.

(3.1.6) Reduction Theorem: L.<!l,(3)
l p

L.Ck ,6), where
l p

k
P

For any abelian group G, 2G = {g E Glg2 l}.

(3.2) Type a-Commutative Case: (TN'id), (RN,id), (FN,id),

We assume B id which we suppress writing.

Then for any field K with charK +2, Lb(K) = W(K),

the classical Witt ring of symmetric bilinear pairings over

K (see [LJ, [M-H], [arM], and [W4], p. 135). Multiplication

in W(K) comes from the tensor product of pairings. Let

I(K) = kernel r : W(K) + Zl/2 where r is the rank map.

The group (1) because any skew-symmetric non-

singular pairing b has a symplectic basis, i.e. b is

hyperbolic (see [M-H], 3.5).

The Rothenberg sequence plus (3.1.5) then imply that

for n = 3,2,1,0(4)

(3.2.1) Examples

(i) If k is a finite field with chark + 2, then

disc: I(k) -: k*/k*2 has order 2.

( ii) If with R-, then
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disc

Hasse-Witt: r 2(Kp) :!: 2Br CK2) - {+lL If' p is N.D. ,-

then the map LO(Kp)
... LOCRp ... K ) :t Lb(kp)' sendsp

riCK ) onto ri-l(k ) Csee 01-HJ, IV, .i , 4). Thusp p

IiCKp ) ... k*/k*2 can be identified with the Hasse-Witt
p p

invariant. We also get the following exact sequence

v
... R*/R*2 ... 'll/2 ... 1

p p

Hdisc lt r
ICKp ) / I

2CKp ) ... LO(kp)!I(kp ) '

where a is the integral closure of Zl in Kp p p

For any p, .::.. f.\(K ) x fui (see [32 J, XIV, §4),p p p

where f.\(Kp) = roots of unity, Thus

'll/.2 if p is N.D.

'll/2 i+1 if p is dyadic

(iii) I(a:).::.. (0) and sig

(iv) If' with [K,illJ

I(JR.) .:;. 2'll .

the number of embeddings of K into JR., then

r
sig : r 3CK) .:;. r 3CK

y
) :t C8'll) 1, where v

v

varies over the real embeddings of K.
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Suppose K is a field on 2.2.3 , a is the ring of

algebraic integers in K, and Since a has a

unique prime over 2, K2 is a field and the Localization

are trivial. We also get the following commutative diagram

with exact rows and columns.

U.2.2)

1
o

o
-\-

al Ql I(k )
-\- PND P

Ql Lb(k)
P p

N.D.

-\-

'lZ/2

The snake lemma then yields the following exact sequence

U.2.3)

Computation of PI:

If 1 = group of a-fractional ideals in K and r =

ideal class group, then we get the following exact sequence

1 + a* + K* + I + r + 1

Since r has odd order by Weber's Theorem (2.2.4),
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we get the following short exact sequence

i
1 + 0*10*2 + K*/K*2 + 1/1 2 + 1

Since any O-fractional ideal can be expressed uniquely

as a product of prime ideals, we can identify 1 with the

free abelian group generated by the maximal ideals in O.

Thus,

Consider the following commutative braid of exact sequences

(3.2.4)

ker

<3.2.6) Lemma: Assume is a finite extension and p

is odd. Then for any element x E L*, L(IX)/L is unramified

if and only if

valuation map.

v (x)
p

is even, where v : L* + ?Z
p

is the

Proof: Recall that the extension L(IX)/L is determined by

x, the image of x in L*/L*2. is even,

X E A*/A*2; where A is the integral closure of ?zp in L.
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Since p is odd, A*/A*2 1*/1*2 _ where 1 residue

field. Thus we get that either x = 1 and LIX is a product

of two fields i.e. split or I(IX)/I is quadratic and L(IX)/L

is inert.

U.2.7) Corollary: Kernel(iii l) = Kernel(1JJ
l)

= (1)

Proof: Suppose x E 0* represents a nontrivial element x

in the kernel of 1JJ I Since = 1, KIX/K is split

over the unique dyadic prime in K. Since x E 0*, v (x) = 0
p

for all prime ideals in 0, and (3.2.6) implies that KIX/K

is split at all N.D. primes. Global class field theory implies

that Gal(Kv'x/K)::. is a quotient group of r*(K) the

narrow class group. But this is impossible by Weber's Theorem

(2.2.4).

Let = r l + 2r2, where r
l

is the number of

embeddings of K into JR. Then,

0*

and

(Dirichlet Uni t Theorem)

(see [SeJ, XIV, §4, Prop. 10)

Thus
r +1
2

Computation of 1JJ 2

Recall the reciprocity sequence (see [C-FJ).

1 ... Br(K) ... e
all
p

Br(K ) Q)
p

e
real

v

R
Br(I< ) ... ... 1

v
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where R restricted to Br(K) is an isomorphism for any
p

p and R restricted to Br(Kv) maps isomorphically onto

2Zl/Zl. Thus we get the following commutative diagram.

1 ... r 2 (K)/I 3(K) r
2
( 1<2 ) Ql r(k ) Br(Kv) ... Zl/2... Ql (j) Ql ... 1

p

n <I

v
II

1 ... 2Br(K) ) Ql 2Br (Kp ) (j) Ql Br(K
v)

, Zl/2 ... 1
all v
p

Case 1:

Then,

OLe. R

coker 1jJ2

with N

and we get the following commutative diagram with exact rows

and columns
1 1

+ +
1 ---.. r 3 (K) --.. ker 1jJ2 ... ker 1jJ2/I3(K) ... 1

II ! !
1 ... Ql r 3(1< ) ... ED r 2 (K

v)
... (j) r 2(K )/r 3(1< ) - Ql BrCKv)

... 1
v v v -v v

1
v v

1
Zl/2 Zl/2

+ +
1 1

Thus

Case 2: r l o i.e. R

Then, ker 1jJ2 :t Ll(R ... R2 ) :t 0, and we get the following

diagram
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'll12

11
1- 12 (1< )-- LO(K2) ---

All A*2 + 1K2/K2n2 ! 1
1 + colter W2 + Lo(R ->- R ) + coker Wl -+- 12

+ +
Case 2(a): R r 1 12r2

Then Theorem 2.29 in [LI implies the top sequence splits.

*1 *2Since K2 K2 ->- coker W1 splits, we can conclude the bottom

sequence also splits. Thus,

Case 2Cb) :

Then Theorem 2.29 in [LI implies the top sequence does

not split. Thus,

r
L (F ->- F ) _ 'll12 2 Ql 2Z/4.a 2r2 2r2(2)

U.3) Type U-Commutative Case: (rN, - ) , (rN,,), (rN,T), (RN,T),

(FN,-)·

If 13 is nontrivial, BroCK,I3)::. (1). Thus (K,I3,l)

and (K,I3,-l) are quadratic Morita equivalent and LiCK,I3)->-

Li +2(K,I3) for any i. For any field K,

classical Witt ring of hermitian pairings over K (see [CI and

[WI, p. 135). Again, let II3(K) = kernel r : W
13(K)

->- 7212,

where r is the rank map.
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The Rothenberg sequence plus (3.1.5) imply that Ln(K,S)-

(3.3.1) Examples

(1) If k is a finite field, then IS(k) _ (1).

is a finite extension of then(ii)
A

If K
P

disc: I (K ) + INA A R*
P - P K IF P'

o P Po

A

where F is the
Po

fixed field for B. Local class field theory ([82J)

implies that - Gal(K IF ) - 'lZ12.
P Po

If R IF is unramified, then the Divissage Theorem (3.1.3)
P Po

implies that

where "o
P

is the integral closure of
A

'lZ
P

in
A

K
P

(iii) The signature map yields an isomorphism

sig : I (It) + 2'lZ

(iv) If with where is the

number of embeddings of K into JR', then

where F is the fixed field for S. If

sl + s2 where sl is the number of embeddings

of K into JR, then

r l
s - 2"sig + !B + (4'lZ) 1

v
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where we sum over conjugate pairs of embeddings

v : K + a: such that v(P) c JR, but v(K) JR,

i. e. the ramified ar-chImed.Lan places

for KIF.

Suppose K for some j, 0 is the ring of integers

in K, and R = O[iJ. Then we get the following commutative

diagram with exact rows ilnd columns. (Recall that KIF is

unramified over N.D. primes.)

----->l coker ljJl- 1

<1

e
l3(p)=p
N.D.

1

f

t

1--+ ker ljJl--+ F*/NK*

1 1

0.3.2)
1

f

- I:(K)

!
A 1jJ A

1+L2i+l(R+R2,13)+L2i(K,I3)+L2i(K2,13) IB

1 1 (I
1jJ1+ P*/NK* IB P* INK*

2 2 Po P

1 1

Global Class Field Theory (see [C-FJ) yields the following

short exact sequence

1 + F*/NK* + IB
l3(p)=p

R
F* INK* IB IB p* INK* + l'l/2 .... 0
Po P v Vo v

where v varies over the ramified archimedian places for KIF.

Furthermore, R becomes an isomorphism when restricted to

F* INK* for any P
Po P

(N.D. or dyadic) or F* INK* for any v.
"o v

Type UI: r l = 0 and s2 = 0, i.e. K is totally nonreal

and F is totally real. CCr2r ,-) or (F2r ,-»
2 2
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Then Wl is onto, and

We also get the following commutative diagram with exact

rows and columns. 1 1
.j. .j.

1 ,
- L2i+1 CR -+- R2 , S) "- ker Wl -+- 1

! L
1 -+ ill CKv )

arch.
unram.

Thus

-+ ill
arch.

unram.

L2i CKV' S) -+- 6l F* /NK* -+- 1
VOl V

1
7l/2 I 'll/2

t t
1 1

Let D = HN @ Then D is a quaternionic division

ring over K = + If P is a N.D. prime, then

D - M2 (K). Furthermore, for any real embedding v of K,p - p

A

Dv is a division ring. If N

A

ring; but if N > 2, then D
2

A

2, then D2 is a division

The (anti) involution ell is such that ell IK = id and

(D,ell'l) Br(K,id) maps to the trivial element in

Br(X,id) {+l}.
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Then Lb(D,a l) is the classical Witt group of Hermitian

pairings over (D,a l), i.e. what Wall calls Type aD; and

is the classical Witt group of skew-Hermitian pairings

over (D,al), i.e. what Wall calls type SPD' For background

see [W4J, p. 135 and [K].

Examples:

( i) If N =2, then L
n
(D
2,al) - 0,0,0, for- 2 2

n - 3,2,1,0(4).

(ii) For any real embedding v of K,

(iii) For any i, L2i +l(D,a l) = 0 (apply the Semi-

simple Theorem (3.1.5) and the Rothenberg sequence).

N-2
We also get L2(D,al)

L
2
(D

v
, a

l
) _

The discriminate yields an onto map

K+ = {x K*Ivex) JR+ for all real embeddings v l ,

Let 12 ( D) = ker disc, and let 1
3
( D) be the kernel of

the onto map

where we sum over all finite primes p (dyadic or N.D.) such

D - M2 (K). Then
p - p

2.if No

N-2
-2 if N > 2
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From (3.1.4) we get the following exact sequence

<3.4.1)

\fuen i 2 we get,

and

Case 1: CN = 2) Then, when i = 0, (3.4.1) yields the follovring

commutative diagram with exact rows and columns

0.4.2) 1 1

+ +
1
2(D)

l 0 e fJ
N.D. P

1 1
1/1 P

I+L 1 (H2+H2 (2) ,Ct1 )+LO(D,Ct1 )+LO(D2, Ct1 ) III III LO(JFP)+LOCH2+H(2)' Ctl )+1

It [1 .. Nt [1
1 - ker ij}1- -l @@'ll/2-cokerij}1-11 2 2 N.D.

1

\Vhen i = 0, (3.4.1) yields the following commutative diagram

with exact rows and columns
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<3.4.3) 1 1

4- 4-

1
2(D)

---+ 12(K
2
)@ $ 12(K

p
)

K* I N.D.
211 4- !

.... '" ...... p "
$

1 _ " tI
2 1/11 2

r<'" /K* -->- K*/K* $ $ 7l/2 - coker - 0
2 2 N.D. 1

1 !

Consider the following commutative braid of exact

sequences (compare with (3.2.4».

U.4.4)

'll/2 0)

Since (3.2.7) implies that 1/1
1

is injective, we get that

is also injective. Also, in both Case 1 and Case 2, we get

N-2
_ 'll/22 +1 In Case 1, we get that

L1 (H2 + O. In Case 2, we get the following short

exact sequence

U.4.6) (N > 2).
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In Part II, (4.5.6) we show that a twisting braid argument

implies that this sequence splits.

U. 5) Type U - Noncommutat lye Case eHN' &), N > 2

Again, let D = H
N

@ Q with center K. Since &IK t ld,

Furthermore, is the classical Witt group of Hermitian

pairings over (D,a), i.e. what Wall calls Type U
D•

For

background see [W4J, p. 135.

For any i, L
2i+l

(D ,&) = 0 (apply the Semi-simple

Theorem (3.1.1) and the Rothenberg sequence). The discriminate

map yields an isomorphism

where F fixed field for &IK and

F+ {x E F*lw(x) > 0 for all real embeddings w of F}.

C3 . 5 . 1 ) Lemma: ¢

isomorphism.

Proof: Clearly ¢ is injective and the cokerne1 of ¢ is

isomorphic to the cokernel of

N
K* F* .... F*/F+.

Consider the following commutative diagram
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K*
NK/ F , F*

t t
K*/K+ F*/F+

1SK
N

lSF

1Il ->- 63 F*/F+
V

• V W Ww
real real

The vleak Approximation Theorem (see [C-F]) implies that sK

and sF are isomorphisms. Since K and F are both totally

real, N is onto.

We then get the following localization sequence

0+L21+ l+L21;0li:" (k
p'"l+L2i(li'2 ,.)+0

o ----l- ker 1/JI- F*/NK*..2..F*/NK*lIHBF* /NK* ----, coker 1/JI- 0
2 2 Po P

Since both F and K are totally real, (3.3.3) implies that

0.6) Summary: Let fl = r
N
, F

N
, R

W
or H

N,
R = center of s ,

K = the quotient field for R, and K = the algebraic closure

of K. Suppose (n,u) is an anti-structure on fl. Let F

be the quotient field for r, where r is the fixed ring

for niR.

Definition: Assume aiR = id. Then

o

(n,u) has type 1
if u ) maps

Br(K,id),

Sp l otherwise

to the trivial element in
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Assume aiR +id. Then

UI {if K is fake i. e. has no real places and F

(a,u) has type is totally real,

UII otherwise

By combining (2.6) with the computations in this chapter

we get the following result.

(3.6.1) Theorem: Assume (a,u) is any anti-structure on

and the type of (a,u). Furthermore, if (a,u) has type a and

(a',u') has type Sp' then + Z +

the type of (a,u). Thus, there exist the following isomorphisms.

PART II: Maps Between L-groups

§4. Basic definitions for transfers

and twisted quadratic extensions

(4.1) Transfer maps in Algebraic K-Theory

Suppose f : R + S is any ring homomorphism. Then we

get the "push forward"map



If the map f
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makes S into a finitely generated, projective

right R-module map, then restriction of scalers induces a

transfer map

f! : K (S) + K (R).
n n

1
If S is a progenerator as a right R-module, then f" also

has the following alternative description. Let

be the map given by left-multiplication. Then the Morita

equivalence derived from S viewed as a right R-module yields

an isomorphism

diagram commutes

(4.1.1)

If RSS is isomorphic to RHom(S,R)S' then we also get

that the following diagram commutes

(4.1.2)

f,
Kn(R)-----+ Kn(S)

1
Kn (EndR(S) )

,
T(f)·

(4.1.3) Examples:

(L) If t::. : R + R x R is the diagonal map, then T(t::.)

can be identified with the map R x R + M2(R) which
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(ii) Suppose f: K + D is the inclusion map of a

maximal sub field in a division ring where

F = centereD) and 2m = [D,FJ. Then T(f)

can be identified with the map

(4.2) Relative (linear) Morita

D + D@FK - M (K).- m

Suppose M is a progenerator for PR . Let Rl = EndR(M)

and Sl = Then we get the following commutative

diagrams

(4.2.1)
f,

,
K (R)--':""-" K (S) K

Knti
l

'Ml!;M

n

!)I'MORS
f l 1

Kn (Sl) Kn(Rl)Kn(Rl)

where f l: Rl + Sl is given by tensoring with l S' and the

maps and S
R

come from derived Morita equivalences.

(4.2.2) Examples:

Suppose H is an index 2 subgroup of a finite 2-group

G. Then t, the nontrivial element in G/H acts on {a
p
}

the set of primitive central idempotents in H. Furthermore,

the map illH + decomposes as a product of maps

Case 1: a illH ->- a illGp p
(for t(p) = p), and
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For any p we let V be the simple module forp

In Case 1 we let M be Vp' and in Case 2 we let M be

V x Vt(p) In both cases we get that f l : R
1

.... Sl isp

either one of the following maps or T applied to one of the

following maps

(n) F c K, where F and K are sub fields of

for some N', and K is a quadratic extension of F.

or - %N+l) •

Cc) DN .... DN+1

or

Cd) t. : A"" A x A, where A is either a subfield of

or ( -1,-1 )

+
for some N.

(Compare with Example 1 in the Introduction.)

Thus the problem of computing

f I : K (illH) .... K• n n
and f! : K .... K (illH)

n n

can be reduced to the problem of computing the push forward

and transfer maps associated to the maps in (a), (b), (c),

and Cd).

(4.3) Transfer maps in L-Theory

Suppose f: (R,aO'u) .... (S,a,u) is a map of rings with

anti-structure. Then we get the "push forward" map
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(4.3.1) Definition: A trace for f is a map X

such that

(i) X is a right R-linear map where we use f to

make S a right R-module.

(ii) X(a(s» = aOX(s) for all S E S.

S + HomR(S,R) is onto.

and

(iv) S is a finitely-generated projective right

R-module.

Notice that a choice of trace X for f (assuming one

eXists) determines a functor

N x N + S) + (X • bSesq(S,a,u) + Sesq(R,ao'u); (b

and a transfer map

fX Ln(S,a,u) + Ln(R,aO'u)

It x N + R),

X(g)

(4.3.2) Example: Suppose f: (2ZH,<lw,l) + (2ZG,aw,l) is

induced by an inclusion of groups H c G. The 2Z-linear map

X : 2ZG + 2ZH such that

g if g H

o if g E G - H

is a trace. Furthermore, the induced transfer map is the same

as the geometric transfer defined using covering spaces.

Consider the map T( f) : S + EndR(S). By the Derived

Quadratic Morita Equivalence Theorem (2.5.2) we get that

ad(A
X)

determines an anti-structure (B,v) on EndR(S),



103

such that (R,Ct.O'u) and (EndR(S),6,v) are quadratic Morita

equivalent.

(4.3.3) Proposition: We get a map of rings with anti-structure

T( f) : (S,Ct.,u) -+- (EndR(S),B,v),

and the following diagram commutes

(4.4) TWisted quadratic extensions

Recall that in the Introduction we considered the notion

of a twisted quadratic extension.

f: R -+- R [Ia] = S, with Galois automorphism y.
p

Notice that the examples in (4.2.2) can all be viewed as

twisted quadratic extensions. We are particularly interested

in the following examples where we pass to orders.
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(4.4.1) List: (see (1.3.5) for notation)

f : R ->- RpC aJ p t = a

Id l;;N+2 + -R
N_l

->- RN i;N+2

rN-l ->- rN Id l;;N+l

F
N_l

->- rN Id i

R
N_1

->- rN Id i

Id -R
N
_
l

->- FN l;;N+2 - l;;N+2

f+ : r
N
_
l

->- HN, where - j
-

f+(i) = i and f (i) = k-

f : F
N_l

->- HN, where - j

f(l;;N+l - = k(l - i;N)

Id l;;N +
-H

N
_
l

->- H
N l;;N

d : 1:1 ->- 1:1 x 1:1, diagonal Id ( 1,-1)

map, where 1:1 = rN, RN FN, or HN,

(4.4.2) Proposition: Assume 12" E R, a is a unit in R, and

f : R ->- R ClaJ = S
p

is a twisted quadratic extension with Galois automorphism y.

Then

is also a twisted quadratic extension. More

precisely, there exists a ring isomorphism

G : SyCIIJ ->- EndReS) such that the following
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diagram

For any sl + s21I E Sy(II), G(sl + s211) is the endo

morphism of S (as a right Rmodu1e) which sends Z E S to

Slz + s2Y(z), and

(4.4.3) Theorem: If H is an index 2 subgroup of a finite

2group, then .... can be expressed as a product

of maps such that each component map is either in List (4.4.1)

or it is T of a map in List (4.4.1) (up to Morita equivalence).

Thus the problem of computing the Ktheory push

and transfer maps for .... 2Z[!JG is reduced to the

analogous problem for the maps in (4.4.1).

(4.5) LTheory for twisted quadratic extensions

Suppose we have a map of rings with antistructure

where f: R .... R [Ia] = S is a twisted quadratic extensionp

with Galois automorphism y.

Then a trace for f is given by

X : Rp[laJ .... R; X(x + yt) = x, for all x,y E R.

Since our X is fixed, we also denote fX by
,
r.
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As in the Introduction we get a tWisting diagram for

f (R,aO'u) + (S,a,u). Notice that the twisting diagram for

-f (R,uO'U) + (S,u,u) is the same as the twisting diagram

for f (up to reindexing).

If
12" R and a is a unit, then (4.3.3) and (4.4.2)

imply that

T(f) : (S,a,u) + (EndR(S),6,v)

is a map of rings with anti-structure where EndR(S) - SyC/I]

and T(f) is a twisted quadratic extension.

(4.5.1) Proposition: The twisting diagram for T(f) is

isomorphic to the twisting diagram for Yf (up to reindexing).

Suppose we equip one of the twisted quadratic extensions

in (4.4.1) with anti-structure f: CaO'u) + (a,u). Then as

in (3.6.1) one can show that the twisting diagram for f is

determined by the rings, type (ao'u), and type Ca,u).
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(4.5.2) Twisted quadratic extensions with anti-structure

y
f:R"'R [Ia] Type (f) Type (f) Type ( f) Type ( f)

P

f
N
_
1
... f

N
o ... 0 S "'VII o ... VII o ... 0

P

VI ... VI t::I ... VII VI ... VII VI'" VI

... I). o ... 0 S "'VII o ... UII o ... 0
P

... fN
0 ... 0 S ... VI o ... UI o ... 0

P

VII ..... UII UII ... VII VII ..... VII VII + UII

... FN 0+0 S ... UI o ..... VI o ... 0
P

FN_1
... f

N
o .... 0 S + VIII o ... VII 0+0

P

VI .... VI VI ... VII VI ..... VII VI ..... VI

f N_1 + o ..... 0 VI + 0 o ..... 0 VI ... 0

VII -s- VII VII ... VII VII ..... VII VII + VII

FN_1 + o ... 0 VI ... 0 0+0 VI + 0

+ o .... 0 S "'VII o ..... VII 0 + 0
P

d
b. .... b. x b. (aO,l)+(aO,l)X(aO,l) 0.0 , -J)+GI (o.n.l)"'GL (o.O,-l)+(o.O·-l)x(o.O,-l)(13)

(8)

(9)

(7)

(5)

(6)

(2)

(3)

(1)

(4)

(12)

(10)

(11)

In fact we get isomorphisms of twisting diagrams between Cases

(2) and (8), and also between Cases (5) and T of (lO).

(4.5.3) Theorem: Suppose we have a map of rings with anti-

structure where G is a

finite 2-group and H is an index 2 subgroup. Then the

LP-twist diagram for f decomposes into a direct sum of

diagrams such that each component diagram is isomorphic (up

to reindexing) to the LP-twist diagram for one of the twisted

quadratic extensions with anti-structure in List (4.5.2).
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(4.5.4) Definition: For any ring with anti-structure

we let

If f: ->- (Rp[/aJ,a,u) is a twisted quadratic

extension of rings with anti-structure; then we get a "push

forward" exact sequence

f,
••• ->- (R,aO,u)n + (S,a'U)n ->- (f!)n

a transfer exact sequence

+ .•• ,

f! ,
• •• ->- (S, a , u ) n ->- (R,a 0 ' u ) n ->- (f') n ->- ••• ,

and a

(4.5.5) Relative Twist Diagram

(S,ya,u)3

(/
(R,a,u)3 (S,a,u)3 (R,a,u)l

-, I' -, /' -, I -, r
y , y ,

(f,)O ( f")3 (f!)3 ( f")2

/ >: / -, / '\ 1 -,
(S,a,u)o (R,a;U)2 (S,a,u)2 (R,a,u)2

'-..-/' <:.:» II
(S,ya,u)2
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Furthermore, we get a relative version of (4.5.3).

At the end of the paper there are tables giving the relative

push forward and transfer exact sequences for all cases in (4.5.2)

except cases (10) and (13). The twist diagram for (13) is easy:

the one for (10) is T of the one for (5). In particular, the

push forward map for r N_l
+ H

N,
type UII + type UII is read off

Table 3 not Table 2

Each relative twist diagram from (4.5.2) is determined by

the groups along the top and bottom rows of the diagram except

in cases (5) and (10). These are determined by using

f!: + (rN,T)O is trivial, and

+ (rN_l,T)o is trivial.

Both these facts can be derived from the other diagrams.

Recall from (3.4.6) the short exact sequence

We write out the twisting diagram below to show that this

sequence splits.

(4.5.6)
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APPENDIX I: Computing

we shall use the sequence
'!'

----!"..,. .... tz2G,a.u)

To compute LP( tzG.a,u)
r

.... LP ( tzG.a.u) .... LP ( ii.
2
G, a . u )

r r

Since
r even

r odd
(1.2.1). most of the work

comes in computing tz G .... ,zzG.a.u) .

All of the antistructures encountered in surgery theoretic applica-

tions have the following description. We are given a homomorphism

00: G .... ±1 an automorphism 8:G .... G and an element bSG. We require

woe = W ; e'8(g) = bgb-1 for all gSG w (b) = 1; and e(b) = b. We

define two associated antistructures (a.u) by

( -1a g) = W(g)8(g ) for all gSG: u = tb.

We call such an antistructure a geometric antistructure.

Given any anti-automorphism a: 7lG .... tzG which takes G to tG. there

are e and 00 so that a(g) = w(g)8(g-1) for all g S G. No integral group ring

is known to have units of finite order other than tG. so it is conceivable

that all anti-automorphisms have the above form. One can produce units which

are not of the form tb ( scale by some strange unit in the group ring ).

Any geometric antistructure can arise in the codimension 1 surgery

diagram. The small group. H. is our G and the G is

'Tf = G* tz / tgt-1 = e(g); t 2 '" b

where t generates tz. There are two extensions of w to 'Tf and the correct

choice yields a for aw and u for 1.

In Part 1 we compute LP( 7lG ....ii. G a u) for any geometric anti-
r 2 ' ,

structure. In Part 2 we compute '!'2r and settle the extension

questions which arise.
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Part 1:

The goal of this section is to explain how to use Table 1 to compute

... u) for any geometric antistructure given the characters of

the irreducible rational representations. Henceforth, X denotes such a

character.

The subtables of Table 1 are labeled by a type, U or 0: we assign a

type ( GL, U, 0, or

labeled by a symbol

to each X. The columns of these sub tables are

FN, or or by a symbol UIN or UII.

In steps 1 and 2 below we show how to determine Type X. In steps 2 and

3 we show how to assign a symbol EX = f N, F
N
, or HN or a symbol

UX = UI
N
or UII.

Initial crucial remarks.

The type of X really depends on X and (a,u) but as the antistructure

is fixed during one of these calculations we suppress it.

We first determine if X has type GL or not:

Type X is

Define a

GL iff X(g) f- w(g)X(8(g-1)) for some gEG.

Ct. Ct -1character X by X (g) = w(g)X(8(g» for all g£G.

If X has type GL, it makes no contribution to any L theory. If X does

not have type GL, we let Lr(X) denote the contribution of X to

P
In the remaining steps we assume that the type of X is

not GL.

Step 2: Type and initial symbol calculations.

Compute the two numbers

From T and S we find the type of X; partial information about Ex
X

and define a number m for later use. Explicitly
X
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T
X

Type S EX m
XX

positive 0 positive 1

zero U zero f
N
or FN 1

negative S negative H
N Z

p

where N is defined as follows: ZN = m 0 and we can always find cr from
X X X

However. if T t- 0, 0 = IT I
X X X if S t= 0. 0

X X

and S ,. 0,
X

and Sx f 0,

go directly to step 4.

we have UX = UII: go to step 4.

Step 3: Unresolved issues and a pairing.

IfS 0. we must determine a symbol. If the type of X is U. we use
X

xr.r.; below to decide if UX = UI
N
or UII: if the type of X is o or Sp'

we use AI.l.Z below to decide if Ex = f N or FNo

We will determine these symbols by using a pairing

A : QG xQG +

where QG is the rational vector space based on the conjugacy classes of G, and

We shall need some related pairings which. we proceed to define.

For each N there is an on QG which sends a conjugacy

class, C.

N-l
_52

to C

There is an operation. a. on QG which sends a conjugacy class, C,

These pairings are used in the following results.
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S = T 0 and let 2N = m..o • Then UX = UIN or UrI:
x x x x

TI(C,C) = A(C,C) for every conjugacy class C of G.

(ALl.2) Assume Sx = 0 and let 2N = Then EX = f
N
or F

N:

EX = f N iff Tl(C,C) = TN(C,C) for every conjugacy class C of G.

Remark: Of course the symbol EX is just the name for a :zz ['-i]-maximal

order in the division algebra associated to X (see section 2.2) and hence

EX is independent of the antistructure. We could use SX' N, and AI.I.2 to

find EX for any X we wanted. Working through the steps as outlined above

only computes EX if it is needed to read Table 1.

Step 4: Find the contribution of X to

If X has type U, we use subtable U: Lr(X) is found on column UX on

the row "odd" if r is odd or on the row "even" if r is even.

If X has type 0 or Sp' we use sub table 0: Lr(X) is found in column

EX on the row ;, = 3, 2, 1, or 0: 1< ::; r (mod 4) if Type X is 0;

A ::; r+2 (mod 4) if Type X is S
P

Part 2: Compute

We have reduced this problem to understanding a pair of exact sequences

'I'2r
-----..

(for r = 0, 1). Some terminology will be useful.

A representation (or its character X) is called cyclic if it can be

obtained by pulling back the faithful irreducible rational representation

of CN along some epimorphism y: G + N O. A representation (or its

character) is called dihedral if it can be obtained by pulling back the
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faithful irreducible rational representation of D
N

along some epimorphism

y: G ->- D
N,

N 3.

The epimorphism y determines X but not vice versa. The kernel of

;( determines the kernel of '( but X only determines y up to an automorphism

of the quo ient.

Next we determine

trivial or one to one.

p('" )--Since L2r l22G,a,u l2 /2 l2 , is either

Theorem AI.2.1 : is determined by:

is one to one iff there is a type 0 cyclic representation;

'¥2 is one to one iff there is a type S cyclic representation.p

It is easy to describe the right-hand extension.

Theorem AI.2.2: d2r is a split epimorphism.

The left-hand extension is more difficult to describe, since even if

K2r is onto, two different things can happen.

Associated to a dihedral representation y: G ->- DN there are two other

maps; Yl: G ->- ±1 = DN!CN_1
and Y2: ker Yl ->- CN_1 ±1. A dihedral

representation is twisted ( with respect to the geometric antistructure

6,W,b) iff -1
Y1 is 6 invariant and y2 (y 6(y)) = -1 for any (and hence

every) y S G-ker Y
1.

A cyclic representation is twisted

sends b to -1.

We have

iff the composite G\. C ... ±1
N

Theorem AI.2.3: If K
O
is onto, then it is split unless there is a type

UI twisted cyclic or a type 0 twisted dihedral representation. Then KO is

not split.

If K2 is onto, then it is split unless there is a type UI twisted cyclic

or a type Sp tWisted dihedral representation. Then K2 is not split.

If K2r is not split, then any x S with K2r (X) -1

has infinite order.
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To apply the above results it is desirable to be able to find cyclic

and dihedral representations. A return to the theory behind the results in

Part I yields the critera below.

A character X is cyclic iff EX = r
N
or Ra and x(e) = ZN or 1. A

character X is dihedral iff EX = and x(e) = ZN+Z. A cyclic character X
ZN

is twisted iff (b ) = -X(e); a dihedral character X is twisted iff

N+l
X«g-18(g»2 ) = -x(e) for at least one g G.

Another way to give such representations is to give the epimorphism y

directly. In this case there is a quicker way to find the type than by

using step Z of Part 1.

In the cyclic case, extend y: G + eN to Y: ±G + CN by defining

y(-g) = -y(g). Recall that a induces a map from G to ±G.

X has type UI iff y(g-l) = y(a(g» for all g G

X has type 0 or S iff y(g) = y(a(g)j for all g G
P

the type is 0 if y(u) = l' the type is Sp if y(u) = -1.,

Any twisted dihedral representation has type 0 or Sp' For any g G,

define, = w(g)X(g8(g)u): , is either 0, x(e), or -X(e). We have type
g g

o if there exists a g G with 'g = X(e): we have type Sp if there exists

a g e G \vith ,
g -xco.

Any cyclic character with x(e) = 1 is called linear: any cyclic

character with x(e) = Z is called quadratic. A linear cyclic character is

either the trivial character or a cyclic character with y: G + C
I•

The

quadratic characters are the cyclic characters with y: G + C
Z"

Notice that

the linear characters are in one to one correspondence with RI(G; ?Z/Z?Z).

Examples:

1) ( -1( ?ZG,c, e) a g) = g : any non-linear cyclic representation is type

U; all the linear ones are type O. Therefore Pz is trivial: Po is one to

one. There are no twisted cyclic or twisted dihedral representations, so

KZ is split.

Z) (?ZG,Clw,e) a(g) w(g)g-I; w non-trivial: any non-quadratic cyclic
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representation has type GL or U. A quadratic representation y: G + Cz has

either type GL or o. The type is 0 iff the composite Gy,. 7l/47l + ±I i.s

to, If we consider w E: HI (G; 7l/Z7l ) , there are type 0 quadratic representa

tions iff wZ '" 0 E HZ (G; 7l/Z7l ). Therefore '¥Z is always trivial: '¥0 is

trivial iff wZ O. There are no twisted cyclic or twisted dihedral

representations, so KZr is split whenever it is onto.

-1
3) ( 7lC

N,
et,x) et(g) = g ; x E: eN a generator: the nonlinear representa

tions have type U. The trivial representation has type 0; the other linear

representation has type Sp. Therefore both '¥O and '¥Z are one to one.

4) ( zzc,«,u) : G C
N

X 71./Z71. generated by x E: and t E: 71./Z71. ; w(x)
ZN1

I = wet); 8(x) = x; 8(t) = tx ; u = x. There is a type UI twisted cyclic

representation and no type 0 or Sp cyclic representations. Hence both KO

and are onto but neither is split.

APPENDIX II: Computing push forward maps and transfers

for all h E: H; t E: GH is a fixed element.

We wish to describe how to compute the push forward and transfer maps

associated to an index Z inclusion of groups, say H c G. We will assume

that we have a map of rings with antistructure and that the antistructures

are geometric, but we begin by describing the "simple pieces" of the

map + alG.

To do this requires some notation. If Xo is the character of an

irreducible rational representation of H, define

t -1
XO(h) = XO(tht )

If X is the character of an irreducible rational representation of G, define

for all g E: G; where W: G + ±I has kernel H.

Recall (1.3) that QH is a product of simple rings indexed by the

characters, XO' of the irreducible rational representations of H: has

a similar description. The map QH + QG is a product of the following three

sorts of maps. In the three descriptions below, Xo is a constituant of

X restricted to H:
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Case I: t f
1jJ

'\0
... A x A '4JXo Xo x x

x X

Case II; t X1jJXo f. Xo X A x A t ... '\
Xo Xo

Case III; t X1jJ ,\ ... ,\Xo Xo X 0

l'hen we add the antistructures to the picture, we need to refine tliis

decomposition further into types. We proceed to describe the various cases

which occur. Recall Xr:J.(g) = w(g)X (B(g-I» (Appendix I, step 1).

The easiest to describe is the GL type. Here, two pieces of the same

sort ( r, II, III) are interchanged by the antistructure. A GL type

makes no contribution to the L theory and so can be ignored.

In case I there are two types in addition to the GL type discussed

above. These further types are

= Xo and Xo. = X1jJ: in rxO!; '

denoted IXOGL and rxO!; '
r:J. r:J.

XQ = Xo and X = X·

There are similar types in case II: denoted IIGLX and IIAX. We have

.0. t a. a a.
type IIGLX 1f Xo = Xo and X = X: we have type IIAX if Xo = Xo and X X.

In case III the type is either GL or = Xo and Xo. = X. This time

we divide into type 1112 and 1113. To describe these two types compute

for X. This was probably done in computing the L

group, but, if not, step 2 in Appendix I will do it.) Compute the

corresponding numbers dO and mO for XO' Finally, decide if X and Xo
have type UII or not.

both

Assume either that m
O
= m or that not both X and Xo have type UII:

we have type IlI2 iff 2d
O
= d

we have type lIB iff dO = 2d

Assume that m
O =m and that both X and Xo have type UII:

we have type :t1I2 iff mO = 2

we have type lID iff m = 2



118

Some further definitions will be useful. To describe the maps which

come up in cases I and II, define the following kinds of maps:

a !:I-map is a map A ->- BO x B! so that the two composites

A ->- B
O

x B
I

->- B
i

are isomorphisms;

an A-map is a map AO x Al ->- B so that the two composites

A. ->- AO x Al ->- B are isomorphisms.
J-

In case III, we introduce the notion of subtype:

if Type Xo Type X is 0, the subtype is o·,

if Type Xo Type X is Sp'
the subtype is S ;

P

if Type Xo Type X is U, the subtype is U:

if Type Xo +Type X we have a mixed subtype.

There are four cases of mixed subtype denoted

o->-U U->-O

S ->- U
P

U ->- S
P

Part !: Relative push forward maps

Our goal is to describe

p A i! p A

(AIL i , n ... ->- L/ 2ZH 2ZG ->- 2ZZG,a,u) ->- .••

This sequence decomposes into a product of exact sequences where the

product is taken over the types in the decomposition of the map ->- QH.

Since GL types make no contribution we need only describe what happens in

the remaining cases. We begin with cases I and II: in the four cases

below we list the contribution of the type to All.!.!.

IXOGL: ... ->- L C;(O) -s- 0 ->- L (IX GL,)->-
r r 0 .

IXO : •.. ->- L CXO) ->- L CX) x L ->- L (LXO!:l,) ->- ...r r r r .

where i! is a !:I-map

IIGLX: ••• ->- 0 ->- L (X) ->- L ( IIGLX,) ->- .. ,
r r .

IIAX: ->- L (XO) xL CXo
t) ->- L (X) ->- L ->- '0'r r r r .

where i! is an A-map.
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In case III we either use Table 2 or Table 3. We must decide which

subtable to use; which row of that subtable; and which columns to use.

An integerZ mod 4 (or mod 2 on the U ->- U subtable) determines a sequence

of three groups on each row: this sequence will be isomorphic to the

contribution of this factor of the map to sequence AII.I.I.

If the type is 1112 we use Table 2. If the subtype is mixed it is

Type Xo ->- Type X.

subtype sub table row ;.
0 0+ 0 EXO

c EX j - r (mod 4)

S 0+ 0 EXO c EX - r+2 (mod 4)
p

U U+ U UXO
+ UX - r (mod

(A. II.1. 2) O+U 0+ UX EXO c EX r (mod 4)

S + U 0+ UX EXO c EX r+2 (mod 4)
p

U+O UX ->- 0 r (mod 4)

U->- S UX"" 0 r+2 (mod 4)
p

Remarks: The - in the row column means that the subtable in question

has only 1 row.ln the 0 + U (or S .... U
P

case we may need to go back to

steps 2 and 3 in Appendix I to compute EX. Note that we do not need EX

if we are using subtable 0 + UII, EX
O
suffices.

If the type is 1113 we use Table 3. If the subtype is mixed, it is

Type X + Type XO'

subtype subtable row

0 0+0 EX c EXO
r (mod 4)

S 0+0 EX c EXO
r+2 (mod 4)

p

U U+U UX + UXO =r (mod 2)

(AIL 1. 3) 0 +U 0+ UX EX c EXO .ll= r (mod 4)

S + U 0+ UX EX c EXO
r+2 (mod 4)

p

U->-O UX + 0 r (mod 4)

U+ S UX + 0 r+2 (mod 4)
p
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Remark: The only visable difference between AII.I.Z and AII.I.3 is that

in the row colunn we have interchanged the role of Xo and X. A closer

study shows that on the 0 + UI
N
subtable we need EX to use Table Z but that

on Table 3, this subtable has only one row.

Part Z: Relative transfer maps

This time our goal is to describe

(AII.Z.l)
1

+ 7ZG + ,zZG,a,u) 7ZH + ,zzH,a,u) + + .•.

As in part I of Appendix II, we get that AII.2.I is a sum of exact

IIGLX:

sequences.

IXrf :

IIAX:

We describe the contribution from each of the non-GL types.

1
. •. + 0 + L (Xo) + L (IX GL') + '"

r r 0

... + L (X) x L (XW) L (Xo) + L (IX c,!)
r r r r a
I

where i' is an A-map

,
•.•+ Lr(X) + 0 + Lr(IIGLX') +

.. , + L (X) + L (Xo) XL (Xo
t )

r r r,
where i' is a c,-map.

If the type is IIIZ, we use Table 3: if the subtype is mixed it is

Type Xo + Type X. The data is read off chart AII.I.Z.

If the type is 1113, we use Table Z: if the subtype is mixed it is

Type X + Type XO' The data is read off chart AII.I.3.

Part 3: Push forward and transfer maps

We want to describe

(AIL 3 .1)

and

(AII.3.Z)

,
+ LP( 7ZG a u) 7ZH a u) + LP(i!) +

r " r' , r

is an isomorphism, is

isomorphic to the relative group computed in part 1 of Appendix II. The map

p " p "Lr ( 7ZZG,CI., u) + Lr ( 7ZZH,CI., u) is always the zero map so we have not yet

computed LP(i!). We leave this for [H-T-WJ.
r
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The maps in AII.3.! and AII.3.Z are almost completely determined by the

corresponding maps in the relative sequences, All.!.! and AII.Z.!. In some

cases the fate of elements which map non-zero into the 2-adic terms is

ambiguous. In one case we can give a complete description.

Define the notion of a twisted quaternionic representation by

replacing DN, N 3 with QN' N 4 everywhere. He say that (7lG,Cl,U)

satisfies condition iff there are no DI twisted cyclic; 0 twisted

dihedral; 0 twisted quaternionic; or 0 cyclic representations: ( 7lG,Ci,U)

satisfies condition ARF2 iff there are no DI twisted cyclic; S twisted
p

dihedral; S t\listed quaternionic; or S cyclic representations.
p p

If (7lG,Cl,U) satisfies condition ARF
Zr'

we can define an element

AZr E: 7lG,Cl,u) such that A2r has order Z; Kz/Azr) = -!; and the

following theorem holds.

Theorem AIL3.3: Let i:( 7lH,Cl,U) -+ (7lG,Cl,U) be the usual map. If

(7lH,Cl,U) satisfies condition ARF
Zr

then so does (7lG,Cl,U). Moreover

The antistructures which arise in ordinary surgery theory ( the ones

with Cl = Cl
W

and u = e) never have any twisted representations. Hence

they satisfy condition ARF
Zr

iff K
Zr

is onto.

Our proofs of these results must wait for [H-T-WJ, but perhaps a word

is in order as to how they go.

The first step is to use representation theory to show that all problems

can be resolved by studying a short list of groups (e.g. Theorem Z.Z.2).

To do the necessary calculations for these groups involves the

calculations in Section 3 and the work of C. T. C. Hall [H4-H8J. Finally,

whenever the going gets tough, we resort to a twisting diagram (e.g. 4.5.6).

Twisting diagrams seem to be a new tool of some power in the long history

of these sorts of calculations.
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Type. 0 r: f J-I N
,.--.

rJ-l

0 0 0 :2.

3 7L
--

2 0 0 0 0
N rJ-2.

1 0 0 7[1 :t -I

7./2

2 I

0
2. :l.t-I

71./1 7.)1 e 7L /2 71./2

Glee u UTN UTJ
wI

odd
2 0

eve ,\1
0

lL-. ----
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TABLE 2

p ,

LJI< ( R ..... <,., I) ----!>

"
••• -3>

R.. 0 0
",-.3 ".l".

::l. ; :l
H._,c H. 2

:

0 0

o

1.
?.

o

o

:2.
1.

o

o ?Lll

t:
"

C
I

7L-r j 0
:.-1 I : ,.-1

R
:l. :I- 2 w.\:;--- :

C 0 Z 0 0 71./2. 0 0
N_\

F" :.. -!

! : 1111 "'114

0
.....-1 : ....

j -I o o
2 .,

?/:J..

O--UIL
N-' ,..., '

R"_,cR,, 0 0 0 0
2 :l. :

0 0 "ZL/J. ; ?ill. 0-:!e 711.1 :
: I r 3 • N-J N-] ,.-J

/-LcH" 7[ 0
:2 -': J .. '""$..'20 0 : 7L/2 712 7/2 : 0 7l1J. '1:/1

C, N_' :I +1

c:! 0 0 0 0 : Z./1 0 0
:l ., 712. 1.12 0, 1/2 ----;'-·i .-

[., N "; 7£ll/!';Z/'l

sU-J>U RJJo r, . 0-, ...,.::.
1 1

0lJI,,-:j"'VI. Z 7L $711.1 0 0
1.1"· - J N-l-

0 0 0 7th
:l.

I,,::o",J][ 7L ®?;1.

U1I ...... UTf 0 : 0 7./2 71/1 7/..12 7/../2: :

u
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TABLE 3

P ' p') L'" ( r ')L (S ..... S, >( I) __ L ( I'? -- r<J , "', ,1..--... .... ...
), 11 ":l\ k /I

Rc 5

s.s,0-'>0
I -

R.;c R,,!
:

I .' , 71
. , .,"-/

0 0 0 0 0 7[1 2- 4.12 7L.11. ?oIl. 7L/:;I

:1.:1.
"'-3:

I ["
_.,

;

_. ,
_.J N" -·3 N-.]

H_,c /-I"l?1. 0 0 0
2 ., :, J. ./ :I. ./ 1. ./ 2.

71.12 7f12 ;7i12 7L!2 7//2 lIz 7L. (f) ZI2.

(1 i
N"' N"'

;2 +1I ,
:POI.......CI 2. ., 2. +2.

0 0 0 0
,

0 7..1:2,c , . 0 0 0 7Lh, ?12 t --2
• 2.

I:;., : :112,

r , N'I, .", .., :2 .l
1

R
"N , ,

2. /tIl .
C 0 , 0 0 0 0 0 0 -----.-- ._-, 7L/::J. 0

"" :
..... I

F;: :; .
: J,Yl ®71/>f:

r 1
' "-2 /1-'-

I N.'

l7Llf"
, N"'

N., : J. +.2.

(7,)/Pl)i ' :2 ./
0

I .2-1 2 +-{ :7/2.
0 0 I 0 0

1
1I

l
1/1

I
71./2. : : --;-"':2---

: ;l/2. 'blJ'i-

o ..-» UI"

o o o o
_./

• .2

::2 o o

I,.,-> 0
: "'-1 I .....,2

r I I ' 1. '1
rAke. C M N i 7L i? o
O->UTI

I ,.._,-r _I -, , ,
I?-/lR"., cR,. ; 0

I 0 '1/2 17f/1 0 0 0
':.2 I 2.

: 1:11 7}./:2, !?
,.-j ; , .... -J r N'J HoJ

, _ / I :; , :; ., 2. +-1l-IN.,cH... 0 :1' ?.h.: 0 0 o '71/1 I 7L/2 7L/'J. :7tJ2 212I ,--1------:-'--r-- _.__'_=----l-
-" .-

,0 10
' 2 ....2. H-'

1
0 ! 0 "k./l "&/2.: 0 I 0

,71.h 2 +/

0 71/2 ;--;:-·-1---- 7,1J:;,
:7J1®'f./tl

.R.JJU-» U

I._;-,Ul.' 7i··'
I

v H

\

, _N-l _0'
:?"" 0 0 0

., .... UTI' I I ?N-.I.
•• j

0 :r 1,' 7./2 0 0

0 0 71../2 7L/2 0

UL

u
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UNITARY K-HOMOLOGY AND THE LICHTENBAUM-QUILLEN CONJECTURE

ON THE ALGEBRAIC K-THEORY OF SCHEMES

Victor Snaith*

il: Introduction - Statement of Results

Let X be a regular scheme, quasiprojective over a noetherian ring,

S, which has finite Krull dimension. Let t be a prime which is invertible

in S. Assume also that the residue fields of X have uniformly bounded

etale cohomological dimension for t-torsion sheaves. Such schemes are

quite commonplace and include the spectrum of a local or global field

or the localisation away from t of the algebraic integers in such a field

(see §5.4 for further examples).

For such schemes, X, the Lichtenbaum-Quillen conjecture may be

formulated succinctly as the assertion that the map from algebraic

p

K-theory to etale K-theory, constructed in [FI,II],

K. (X;Z/tv ) +
1 1

is an isomorphism for all i greater than some integer depending on X

(1.1)

(and possibly t, v). The point about etale K-theory is that it is con-

structed to be computable in terms of etale cohomology. It has an

Atiyah-Hirzebruch type of spectral sequence (see §5.l3) which collapses

if the etale cohomological dimension of X is less than 2t. In [D-F-S-T]

it is shown that (1.1) is eventually onto in many cases (for example, X

a regular quasiprojective scheme over an algebraically closed field of

characteristic not t). In fact this result is much improved in [Th2]

where it is shown that
(1. 2)

where Sv E K 1 (S;Z/tv ) is a so called Bott element (see [D-F-S-T]).
nV

- (t-l)
Actually the primes t = 2 and 3 are somewhat exceptional in the statement

1980 Mathematics Subject Classification l8F25
Key words: algebraic K-theory, scheme

*Research partially supported by NSERC grant #A4633.
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of (1.2) in that S is required to have l6-th or 9-th roots of unity re-

spectively in these cases. In addition (1.2) has the property that it

identifies p with the localisation map

K. (X;Z/iv) + K. (X;Z/iV) [l/S ]
1 1 V

from algebraic K-theory to "Bott periodic" K-theory, introduced in

[Snl,§IV]. See also [Sn3]. With these significant reductions to the

(1. 3)

problem .we are reduced to studying the injectivity of (1. 3) .

The first remark to make is that the case of a general scheme, X,

may readily be reduced (?y Jouanolou 's device, see §5.5) to the case

X = Spec A. That is, we may study the K-theory of commutative rings.

If i is a prime and v is an integer choose any prime t such that

Vi(t-l) v and define j*(_;Z/iv) to be the fibre homology theory of

_ 1 : KU*(_;Z/iv) + KU*(_;Z/iv)

(see §2.l2). Let h* denote either j*(_;Z/iv) or KU*(_;Z/iv).

Let K*(A;Z/e) denote K*(A;Z/iv)

3.24: Theorem. Let i be an odd prime invertible in A. There exists

an integer s (depending on i and v, if v = 1, s = 3) such that the

following diagram commutes for all i > s.

Here H is the Hurewicz map.

If A*, the units of A, have the form Z/ia x H with v a 00

we have a diagram which is the "converse" of §3.24. If a = 00 set

h* = KU*C;Z/iv) and if a < 00 set h, = j*C;Z/iv) where vi(t-l) = a

in the above definition of j*(_;Z/iv).

Let BSLA+ = fibre(det : BGLA+ + BA*).

3.4: Theorem. Let i be any prime (assume a > 2 if i

a commutative diagram for all i > 2

2). There is
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H
--;:.

--"p

h. (BSLA+ x BH)
1

1J
v

K. (A;Z/£''J)
1

When A is such that both §3.4 and §3.24 apply, we obtain

3.25: Corollary. I is injective in §3.24, when A is a Z[l/£.]-algebra

as in §3.4, for h* as in §3.4.

For such A, at odd primes, we obtain from §3.25 a commutative

diagram of the following form.

4.1: Theorem. Let £. be an odd prime and let A be as in §§3.4/3.24 the

diagram

commutes if A(x) = H(x) - H(x)£..
1\

Roughly speaking in §5 we show that if H(x) = 0 implies H(x) = 0

then the Lichtenbaum-Quillen conjecture follows. Precisely we explain

in §5 that to study the injectivity of

p : K
n
+l (A;Z/l) + K

n
+ l (A;Z/l)

it suffices, by work of Dayton-Weibel, to study

(1.4)

on on
p : +

on on . f f Afor a suitable ring, If n > 2 1S the ring 0 "zero orms over

on and the definition is to be found in §5.6. In §5.11 we show that

(1.4) is an isomorphism - i.e. that the Lichtenbaum-Quillen conjecture

is true in dimension n+l for A - if p is onto in dimensions n+l and n+2

and if

(1. 5) on t
{x = x} =Q.

In §§5.l6,5.l7 we give many examples in which the Lichtenbaum-Quillen

conjecture is implied by (virtually equivalent to) the verification of

the J-theoretic/KU-theoretic condition (1.5).
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Invaluable in this work have been the following:

(i) The work of Eric Friedlander, who reformulated the conjecture in

terms of his K-theory [FI,II] and later, with Bill Dwyer [D-F] ex-

tended work [So] on algebraic integers in terms of etale K-theory.

(ii) The work of Chuck Weibel [We] which enables one to work with

Karoubi-Villamayor K-theory and to use his work with Barry Dayton

[D-WI,II] to reduce to dimension two.

(iii) The work of Bob Thomason - the sine qua non - [Thl;Th2] which per-

mits one to replace etale K-theory by "Bott periodic" algebraic K-theory

of [Snl,§IV] and hence to construct the crucial diagrams.

To all of them I would like to express my gratitude for conversa-

tions, correspondence and for keeping me informed of their work.

This paper provides complete proofs of the results announced in [Sn 5].

KU*-Hurewicz homomorphisms

Throughout this section X will denote a connected space which is

a two-fold loop space (X = Eventually our applications will be

to the case when X = BGLA+, where A is a ring with unit. In this example

X is an infinite loop space (see [Ma2] , for example).

Let I be any prime and let v be an integer (1 v In this

section we study the injectivity of the KU-theory map

(2.1)

In (2.1), as elsewhere, we abide by the convention that KU* is considered

(by virtue of Bott periodicity) to be Z/2-graded. Also in (2.1), when

1 v < denotes the (abelian) group of based homotopy

1 2 2classes of maps of the Moore space, Sue = P (v), to X. When v = co

e
denotes lim

v

We will also have need of corresponding results about the analogous

J-theory Hurewicz map. These are given, together with the definition of

J-theory, at the end of the section.

For background on homotopy with coefficients the reader is referred
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to [N;B]. For KU-homology with coefficients and Hurewicz maps I suggest

[A,Part III] as a background source.

2.2: Theorem. With the notation established above the kernel of (2.1),

when 1 < v < 00, is contained in the image of

N{y E TI 2(X) Ii y = 0 for some N}

under reduction mod lV, TI2(X) + TI2(X;Zl l
v) .

Taking the limit over the coefficient exact sequences associated

V

to Z Z -?> us: we obtain the following result.

2.3: Corollary. When V = 00, HK is injective in (2.1).

The proof of Theorem 2.2 will consist of a reduction to the following

special cases, in which Theorem 2.2 asserts that H
K
is injective.

2.4: Lemma. Theorem 2.2 is true for the Eilenberg-MacLane spaces

x = K(Z,2) = [poo or X = K(Zlla,l) = BZIl a.

Proof: The case X = [p
oo is well-known, following from the classical

Hurewicz theorem [Sp] and the fact that the KU-theory Atiyah-Hirzebruch

spectral sequence for [poo collapses.

We reduce the case X = BZIla to that of [p
oo using the canonical

map TI a : BZIla + [p
oo

= BS l which is induced by the inclusion of lila

into sl.

We have the following commutative diagram of Hurewicz maps in which

the horizontal maps are induced by the natural inclusions j : Ziia + Zlla+ l.
a

(2.5)
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By [At;Ho] there is a natural identification of KUO(BG;Z/i
v)

with

Hom(R(G),Z/iv) when G is a finite i-group, R(G) being the complex repre-

sentation ring of G. Since j* is surjective on representation rings,
a

(ja)* is one-one in (2.5). Also, from the coefficient exact sequence

n 2(K(Z/ i
a , 1) ; Z/ i V

) Z/lb

where b = min(a,v) and (ja)# is one-one. From the mod i V homotopy sequence

n a
of the fibring BZ/ia [poo [poo it follows that (n

a
) # is an isomor-

phism when a v. The result now follows from diagram (2.5).

2.6: Corollary. Theorem 2.2 is true in the following cases:

(a) X K(B,2) with B torsion free or

(b) X K(C,I) with C a torsion abelian group or

(c) X K(D,I) an arbitrary abelian group.

Proof: It suffices to assume B, C and D are finitely generated since we

may write each group as the direct limit over its finitely generated sub-

groups and we may identify H
K
with the direct limit of the Hurewicz homo-

morphisms for those

In (b) if C

subgroups.
T

Ci is a product of prime power order cyclic

groups n2(BC;Z/lv) = @ n
2(BC.;Z/lv)

where C. runs through the i-primary
j J J

T
factors of C. This is because BC = IT BC.. However, for any homology

i=l 1.

theory, h*, the natural map h*(XI) @ h*(X2) + h*(XI x X2) is injective.

Hence the result follows from the following commutative diagram.

KUOC !IBCj;Z/'")

v
KUO(BC;Z;lv)
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A similar argument deals with (a) when B is finitely generated.

Finally for (c) the result follows in a similar manner by observing that,

if D is finitely generated, TI 2(BD;Z/L
v) depends only on the L-Sylow sub-

group of D, which is a direct summand, and on its maximal free abelian

summand.

2.7: Proof of Theorem 2.2. We construct a map

(2.8)

and study the following commutative diagram.

TI2(Kl;Z/L
V
) TI 2(K2;Z/L

v)

KUO(Kl;Z/LV) KUO(K2;Z/L
V
)

-->

a* (2.9)

In (2.9) Kl = K(TI1X,1), K2 = K(B,2) and the lower horizontal map is the

canonical injection.

We choose a l in (2.8) to be the first k-invariant of X. It is in

the choice of aZ that we use the condition, X = Q2y .

Firstly we may write TI 2(X) = Bl x B2 where Bl is a maximal divisible

subgroup of TIz(X). Set B = BZ/Tors B2, the quotient of BZ by its torsion

subgroup.

Next consider the following commutative diagram of homomorphisms.

HZ (X) -=->

(Z.lO)

In (Z.lO) the singular homology groups are taken with integer co-

efficients, H' is the Hurewicz homomorphism, e is the evaluation map

QZE 2X = Q2E2Q2y + Q2y = X

and TI is the natural projection onto B. The homomorphism, exists to
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make the triangle commute because [W,p.555] H' is onto with a kernel

which is a Z/2-vector space and B is torsion free. We choose the map,

a2, to represent an element of H2(X;B) which maps to E Hom(H2(X),B)

under the surjection in the universal coefficient theorem [Sp;W].

To complete the proof it remains to determine ker a# in (2.9) since

HK HK is injective by Corollary 2.6.

From the universal coefficient theorem we obtain an exact sequence

B
2

9 Z/iv

where D = {x E Dlnx = O}.
n

An element of ker a# must be in B2 9 Z/iv since eX)

and under this isomorphism (a l)# is identified with the epimorphism in

(2.11). However, (a 2)# maps B2 9 Z/iv to B 9 Z/iv by the canonical pro-

vjection whose kernel is the image of (Tors B2) 9 Z/i. To see this last

assertion, which completes the proof, we observe that e# in (2.10) is

split by the double suspension map

and by definition for b E

2
(b)))

_ (mod iV).

2.12: We conclude this section by recording the results we will need

concerning the J-theory Hurewicz homomorphism, H
J.

For our purpose 1 v a < 00 will be integers and t will be a

prime such that a = viet-I), the i-adic valuation of t-l. We define

j*(Y;Z/iv) to be the homology theory in the fibre sequence

+ •.. (2.13)

where ¢t is the Adams operation [At2]. Note that j*(Y;Z/iv) is a Z/2-

graded theory.
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Setting Y = P
2(v ) = Sl 2 in (2.13) see thatu e we

jo(P
2
(v) ;Zliv)

i V

11 KUO(p2(v);Zli
V
) Zliv is an isomorphism. If

x E jo(P
2
(v) ;Zliv) is a generator then H

J
is defined by sending the

class of f : p2 (v) X to f* (x) E j a(X; Zliv) while HK(f) = f*11(X).

There results a commutative diagram.

From (2.14) we see at once

2.15: Proposition. With the above notation Theorem 2.2 remains true

when HK is replaced by HJ .

(2.14)

§3: Bott periodic algebraic K-theory and the J-theory Hurewicz diagrams

In this section I give two diagrams which involve the localisation map

p : Ki (A;Zle) K. (A;ZliV )
1

and the Hurewicz maps, HK
or H

J
, of §2.

The first of these diagrams, which was established in [Sn2,§ IV. 3]

and improved in [Sn4], is the one which led to this entire programme. In

order to state the result we will need some preliminary conventions.

3.1: Let l be any prime and let v be a positive integer (if l = 2 we

assume v 2). Suppose that A is a commutative ring whose units have a

chosen (and thereafter fixed) decomposition A* Zila x H (v 2 a 2 00 ) .

For example, if A is a ring of algebraic integers in a number field, the

limit of such, a field or if a = 00 then A* decomposes in this manner.

In the result I am about to state it is probable that one can weaken

this condition to require only a central copy of Zila in A*.

Let B E "2(BZlia;Zllv) - Zliv be a generator. The inclusion of

A* GLIA into GLA induces

I a v v
y : "Z(BZ i ;Zli ) K2(A;Zll ) + v

1T2(BGLA ;Zll )
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and we will write B also for the image of B under y. We may define Bott

periodic K-theory (following [Snl,ChIV;Sn2]) by inverting (left) mul-

tiplication by B

(3.2)

If the factor, Z/ia, in A* is generated by the root of unity, ,in a
i
a

]-algebra or a ]-algebra then (3.2) coincides with the
i
a

i
a

definition of

(3.3)

which applies to Z[l/i]-algebras (see below) for which we invert Bv

I v-Iwith IB = 2i (i-I).
v

in [D-F-S-T].

The equivalence of (3.2) and (3.3) is explained

Next we establish our conventions about the identity of h*, the

homology which we use when we are considering a ring whose units have

the above form. When a < 00 choose a prime t with vi(t-l) = a and set

= j*(_;Z/iv ) , the J-theory which appears in (2.13) for this choice

of t. When a = 00 we set = KU*(_;Z/iv). Note that we have sup-

pressed in our notation the dependence of h* upon v, since the context

will make this dependence clear.

Let BSLA+ denote the fibre of the determinant map BGLA+ + BA*.

3.4: Theorem. [Sn2,§IV.3;Sn4] Let A be a commutative ring with A*,

i, v and h* as in §3.l.

There is a commutative diagram for i > 2

'i(BSLA· jBH;Z/t")
v

v
Ki(A;Z/l )

H
-->

-->
P

h. (BSLA+ x BH)
1

1
J

\f

Ki(A;Z/e)

Here H denotes the appropriate Hurewicz map, HK or HJ, as in §2.

3.5: Theorem 3.4 in full generality is proved by the use of localised

stable homotopy to describe h*(BSLA+ x BH). However there exists a very

simple case of Theorem 3.4 which I will describe. Let1Fq denote the

algebraic closure of F , the finite field with q elements and assume
q
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(q.l) 1. Let A be anlFq-algebra then we have an associative pairing

m : (BGLA+) A (BGI¥') .... BGLA+ •
q

Since. at the prime i. BU BGur+ by [QZ]. we have an isomorphism
q

where the limit is taken over successive mUltiplications by a E ;Zliv).
q

using the pairing A
q

induces a map. J. (which is

(BGW) .... BGW. The map. m, therefore.q q

clearly onto) from KU. (BGLA+;Zliv) to
1

In this example p clearly equals HKJ

Throughout the remainder of this section i will denote an odd prime.

I will now give a different description of K*(A:Zliv). suggested to me

during a conversation with Bill Dwyer. and I will use this description

to obtain a diagram which is the "converse" of §3.4.

For 1 n 00 let En denote the symmetric group and let En! (Zli)

denote the wreath product given by the semi-direct product of En with the

n-fold product of the cyclic group of order i. Let = and

let GLnA denote the general linear group of nxn invertible matrices

with entries in A.

Consider the following diagram of homomorphisms.

En! (Zli)
dl-->

il IT
" v

En! GLn(l_l)Z (3.7)

dzl /s
v

/t:
In (3.7) i is induced by sending a generator of zil to the i-cycle.

(l •...• i); dl and dz are induced by sending a E En to the corresponding
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permutation matrix and a generator of Z/l to T is induced by con-

2 l-2 .sidering as the free abelian group on , ... ; s the

Mstabilisation map sending M to ( I
l)

and £ is induced by the localisation

map.

3.8: Lemma. (3.7) commutes up to inner automorphism.

Proof: Firstly s differs by an inner (permutation) automorphism from s',

the stabilisation map which inserts the l's at the kt-th diagonal place

(1 k n) rather than at the (n(l-l)+k)-th place.

l-2
Choose as a basis for as a Z-module then, if

g E Z/l is the chosen generator and a E l: n '

where

(3.9)

T

o

1 °
1 °

-1

-1

° -1

°
°

1 -1 °

With respect to the basis of Ql given by

o 1

(1,1, ... ,1),

(1 , -1 ,°,...),

= (0,0, ... ,0,1,-1)

. I I z-ithe l-cyc1e also has matrix T. = (-1) l

the form a basis of (Z[l/lJ)l. Hence (3.9) implies that Ed i equals
2

£s'Td l up to an inner automorphism.
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Since inner automorphisms induce the identity map on BG, up to

homotopy, we obtain the following result.

3.10: Corollary. There is a homotopy commutative diagram of natural

maps induced by (3.7).

BL:J(Z/l)+
dl BGLZ[l/,c,s,c]+---7

il IT
dz

v

BL: +
BGLZ[l/,c(-->

00

Recall [H-S] that there are homotopy equivalences (of infinite

loop spaces [MaZ])

(3.11)

where QX l i nn QX' h' dYn L: X, 0 1S t e base-po1nt component an +
n

the disjoint union of Y with a base-point.

Y u (p t ) ,

(3.1Z)

Let b l E Z/{ ({ is an odd prime) be a generator.

Since, by (3.11) TIZ(BL:oo!(Z/{)+;Z/,c), we may also denote

by b l the image of this element in TIZ(BL:oo!(Z/,c)+;z/,c). Using the product

induced by that on BZ/,c we may form

{-I S ! +bl E TIZ(,c_l) ((BZ/{)+;Z/,c) TIZ({_l) (BL: oo (Z/{) ;Z/,c).

If e i E Hi (BZ/,c;Z/,c) is a generator the Hurewicz images of bl and

are eZ and eZ({_l) respectively in H*(BL:oo!(Z/,c)+;z/,c) H*(BL:oo!Z/,c;Z/,c).

Thus (see [K-P], for example)

i(bf-l) E TIZ(,c_l) (BL::;Z/,c) (SO;Z/,c) Z/{

has non-zero Hurewicz image and is the generator of the image of the

mod,c J-homomorphism [A,Z]. The Bockstein of i(bf-l) generates the

(integral) {-primary image of J in

Define E KZ(,c_I) (Z[l/,c];Z/,c) by

= (dz)#(i#(bf-
l))

E TIZ(,c-l) (BGLZ[l/,c]+;Z/,c).

Let j : Z[l/,c] Z[l/,c,s{] denote the natural map.

3.13: Lemma. With the notation introduced above



Proof: By [B,§2.8] j#T# (x)

(Z/f)*. Hence

141

L g#(x) where g runs through
g

j# (d2)#i# (bi-
l)

z-rj#T#((dl)#(b l)) by §3.l0,

f-lL g# (Cdl) # (bl))g

(f-l) ((dl)#(bl))f-l

since

3.14: Bott elements. In [D-F-S-T] the Bott element Sy K (Z[l/f];Z/f
Y)

2e- l (f-l)

is characterised as follows. Sl is required to satisfy

_ i-I
j#(Sl) - bl . Hence §3.l3 implies that (up to units) a choice for Sl

may be defined explicitly by (3.12).

any element whose mod f reduction is

For Y 2,Sy may be chosen to be
y-l

Sf
1

The map, d2, of §3.l0 is the "discrete model" (via the equivalences

of (3.11)) for the base-point component of the infinite loop map [Ma2]

d : QsO + Z x BGLZ[l/f]+

determined by sending the non-base-point of Sa into the I-component.

a cc aThe infinite loop space QS corresponds to the suspension spectrum L S

[A;Mal;Ma2] while Z x BGLZ[l/f]+ corresponds to the K-theory spectrum

KZ[l/f]. The infinite loop map, d, corresponds to the unit of the K-theory

spectrum - that is, to the S-map

D : L"'SO + KZ[l/f].

In the stable homotopy category [A]

co a S a
(L S ;Z/f) (S ;Z/f)

and

n i (KZ[l/f] ;Z/f) Ki (Z[l/f] ;Z/f).

(3.15)

Thus the foregoing discussion has shown that Sl may be taken to be the

image under D of (3.15) of an element in the image of the J-homomorphism,

We now proceed to give a similar representation of

Sv 1 (KZ[l/f];Z/fY), for which purpose we must recall how,
2fY- (f-l)
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in stable homotopy, is constructed. Write a
l

and

pn(s) = Sn-l u en.
-es

For sufficiently large q we have a commutative diagram [A2,IV§12].

A
pq+2(f- l) (1) __1_;:. pq(l)

)'_3
CL
I

In (3.16) i, j are the canonical inclusion and collapse respectively.

The map, AI' is a K-theory (and hence J-theory) isomorphism and conse-

quently [A2,IV§12.3] the e-invariant of CL
I
is l/f. In (3.16)

is an isomorphism.

Suppose in (3.16) q = 2s (for convenience of exposition). A re-
v-I

presentative of ai is formed as a composite of the form

where X is the Moore space pairing of [B,§1.4]. In particular x*

sends a generator of

1 2s+2(f-l)to the fV- -fold product of the generator of KUO(P (l);Z/f).

f v - l
Hence a

l
is an isomorphism on KUO(_;Z/f). If s is large enough we may

fill in the following homotopy commutative diagram (f = sfv- l)
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S 0 / v)is the mod i reduction of a E 1T 1 (S ;Z i .
'v U V - (i-I)

i

By construction

is a KUO(_;Z/i) isomorphism and

iv-l
a
l

(3.17)

Therefore, since D is a map of ring spectra [A;Ma2] we may choose Sv to

be given, for all v 1, by

(3.18)

3.19: Let A be a commutative Z[l/i]-algebra. Let f(v) denote the Moore

00-2 2 00 0
spectrum L P (v) and let S denote L S. In addition write K for the

algebraic K-theory spectrum of A. Suppose that g : f(v) + K is a map

of spectra which represents

We have the following commutative diagram of spectra

A'
v

v

f(v) ->

mu1t
--> K

(3.20)

In (3.20) X is the Moore space pairing so that the top row represents the

product Sv[g] E K (A;Z/iv). The middle of (3.20) commutes
i+Uv-l(i_l)

by (3.17) while the right hand triangle commutes because K is a
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KZ[l/I]-module spectrum. The left hand rectangle defines In fact

equals Av' by commutativity of X and its S-dual, j A 1. However, all

we need to know is that is one of Adams maps between Moore spaces -

that is, it induces a KU-theory isomorphism - which is obvious, When

v = 1 this actually shows Ai = Al as they both induce the same

KU*(_;Z/I)-map, which happens in this case to characterise, AI'

Hence we have shown that

(3.21) v
= 6v[g] E K v-I (A;Z/I ).

i+2l (1-1)

From (3.21) we can give the following description of K*(A;Z/Iv).

3.22: Theorem. Let I be an odd prime and suppose there exists a map

v-I
of Moore spaces ps+2l (1-1) (v) -+ pS(v) such that the stablev

homotopy "class of Av is A' of (3.20). (When v = 1 we may take s = 3v

[CMN] .) Let d = 2Iv- l(I_1) and suppose i > s then K. (A;Z/Iv) =
1

K. (A;Z/I )[1/6 ], for a Z[l/I]-algebra, A, is isomorphic to the direct
1 v

limit of

(l:i-s'A ) *
v

>

Proof: By (3.21), K*(A;Z/Iv) may be defined as the limit over iterations

of (A')* on the mod IV homotopy of the K-theory spectrum of A. However
v

the isomorphism

identifies with )*, provided that i s.
v v

3.23: Let h* denote either KU*(_;Z/Iv) or a J-theory, j*(_;Z/lv), which

is given by the fibre of as in (2.13), with vI(t-l) v. For n 2,

pn(v) = Sn-l u en and h. (pn(v)) Z/Iv for each i (mod 2). Since R
v 1 V

I

induces KU*-isomorphisms it induces an isomorphism

)* : h* (pS+2I
v- l

(I-I) (v)) => h*(ps(v)).
v

Hence, up to multiplication by units, we have
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i-SA +
H((Z Av)*(x)) = H(x) E hi (BGLA )

(BGLA+;Z/Iv) and H is the h*-theory Hurewicz map.
1

Conse-

quent1y we obtain the following result in which I = lim H.

3.24: Theorem. Let I be an odd prime and let A be a Z[l/I]-algebra.

Let s be as in §3.22 (so s = 3 when v = 1). Then there is a commutative

diagram as follows, provided that i s.

K. (A;Z/e) -p-> K. (A;Z/IV)
1 1

1

3.25: Corollary. Let A be a commutative ring in which I is invertible.

Suppose that A*, h*, I, v and H are as in §§3.1, 3.4 and 3.24. Then

(a) I is injective in §3.24; (b) ker p = ker H in K. (A;z/Iv) with i > S (.::;»
1 -

K (A'Z/Iv) if i > 3 since BGLA+
i '

Proof: To prove (b) we observe in §3.4 that (BSLA+ x BH;Z/Iv) equals
1

BSLA+ x BH x BZ/Iv. Hence §3.4 and

§3.24 combine to show ker p = ker H.

To prove (a) we observe that the groups {p(K. d(A;Z/IV) [w > 0,
l+W -

v-I v vd = 2I (I-I)} generate Ki (A;Z/I). If x E Ki+wd(A;Z/1 ) represents

an element in ker I then 0 = Ip(x) = H(x) so, by (b), p(x) = 0 and x

represents the zero class.

§4: The J-theory Hurewicz diagram in dimension two

In this section I will be an odd prime. We will construct a diagram

of the following form, analogous to that of §3.24. Let h*(BGLA+) be as in

§3.24, it is an algebra under a product induced by direct sum of matrices.

4.1: Theorem. Let I be an odd prime and let A be a commutative Z[l/I]-

algebra satisfying the conditions of §3.25. Let H denote the h*-theory

Hurewicz map and set = H(x) - H(x)l. Then there is a commutative

diagram
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p
-->

4.Z: This result will be proved in a series of steps, sketched in (SnS, §Z.12]

Recall first that if pn(l) = Sn-l u en then KU (pn(l);Z/l) Z/l
,t c

for each a(mod Z) with generators un,vn having deg(un) = n(mod Z) and

B(un) = vn' where B is the Bockstein. Also the mod l Atiyah-Hirzebruch

homology spectral sequences collapses for pn(l) and therefore for np3(1)

since

L: np3 (1) = L:nL:pZ (1) =
k

v L: (A pZ(1) )
k=l 1

and pa(l) A pb(l) = pa+b(l) v pa+b-l (1) [B]

Therefore we have an isomorphism

KU*(np3(1);Z/,t) {free algebra on uZ,vz}

since H*(np3(1);Z/,t) is the free algebra on two generators which represent

Uz and vz.

Since 1jJt acts like the identity on U z and ": ( as vl(t-l) .?- 1)

the exact sequence of §Z.13 yields

j*(np3Cl);Z/l) - E(w) @ KU*( np3(1);Z/l)

where w generates jl (pt;Z/l).

4.3: Lemma. Let Al : pZl+l(l) + p3(1) denote Adams' map, as in §3.l6.

Let Al :op2.t Cl) + np3cl) be the adjoint of AI' Then in jocnp3Cl);Z/l)

3
or KUOcnp Cl);Z/l)

where c is a primitive which is a linear combination of commutators.

Proof: By the discussion of §4.Z it suffices to treat the case of mod

K-theory. As pointed out in [N] (Al)*(uZl) will be primitive. Further-

more in the Atiyah-Hirzebruch spectral sequence it will be represented

-- - Zas follows. Let u,v E H*CP Cl);Z/,t) represent U z and V z respectively

in the spectral sequence. The only primitives in HZlcnp3Cl);Z/l) are

of the form Au£. + c where c is a linear combination of iterated commuta-
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(QX = lim QnZnX)
n

S ZTIU(P (1);Z/i) so that

= AL*(u)i .

tors of u and v. In addition A t 0 (mod i) since the composite

U 1\1 Z E Z
a : P (1) --> QEP (1) QP (1)

represents a non-zero "image of J" element in

By choosing Al correctly we may assume A= -1 (mod i). Now consider

Zt+l 3 .the suspension of Al from P (1) to EQP (1), wh1ch is a wedge of Moore

spaces. Since = 0 for Z < j < Zl-1 an inspection of the
J

dimensions of the wedge summands in EQP3(1) shows that

(AI)*(uZi) = - + c

where c is a linear combination of commutators. Since (AI)* is an iso-

morphism on K-theory we see t 0 (mod i). In fact = 1 ,for consider

the composite

D
m:BZ/l BZ/l .

Here g generates TIZ(BZ/i;Z/l) and D is the retraction (an H-map) coming

from the H-space structure of BZ/i. Hence in KUO(BZ/l;Z/i)

i- Uz + c)

i- uZ)
l- g*(uz)

(u - 1) s, (u
Z
)

o andlsince g*(uZ) = g*(uZ) But TIz.e(BZ/i;Z/i) = 0 so C*(uZi)

u = 1 (mod i).

4.4: Define 0 KZ(A;Z/i) Kz.e(A;Z/!) by sending f pZ(I) BGLA+ to

the composite

U ..AIc (f) : P (1) --> m:f
-> QZ BGLA+ BGLA+

where Al is as in §4.3 and D comes from the direct sum loop space structure

on BGLA+.

4.5: Proof of Theorem 4.1. Recall that for A as in §3.Z5 we have Bott

periodicity so that we may identify Kn(A;Z/i) and Kn+Z(A;Z/i).
A

As in the proof of §4.3 we see that H(o(f)) = H(f) so from Theorem
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3.24 we obtain an equation Ip' (x) = for x E K2(A;Z/I). It remains

to show that p' (x) = p(x). For this we use §3.25 which accounts for the

+
accumulation of conditions on A. Since I : K2m(A;Z/I) + h2m(BGLA ) is

+ +
injective then, by Bott periodicity, I : K2(A;Z/ I ) + h2(BGLA)

is also injective.

Furthermore, we have an injection (induced by multiplication by v)

-1
v# : \ (A;Z/I) >---? Ki + l (A[v,v ] ;z/I)

and similarly for K*(_;Z/I). Hence p' (x) = p(x) if and only if IV#(p(x))

Iv#(p' (x)). However

Iv#p , (x)

Iv# (H(x) - H(x) )

v#H(x) (v# annihilates decomposables)

Hv#(x)

Iov # (x) (as deg v# (x) 3)

Iv#p(x) , as required.

§5: Concerning injectivity of the localisation map, p

5.1: Throughout this section A will be a regular, commutative ring in

which the odd prime, I, is invertible. In addition we will require, as

in §3.1, that the units of A have the form A* = Z/I a x H, I < a < 00.

Also we will assume that a > 2 when I = 3.

In addition X will be a scheme over a noetherian ring S, which has

finite Krull dimension. The prime, I, is invertible in S. Also all of

the residue fields of X have uniformly bounded etale cohomological dimen-

sion for I-torsion sheaves. If I = 3, S contains a 9-th root of unity.

Under the above conditions on X we have Thomason's result.

5.2: Theorem. If X is as above p, of §l, induces an isomorphism for

all v z,

p : K*(X;Z/Iv) + K;t(X;Z/Iv).

Here K*(X;Z/iv) = K*(X;Z/e)[l/Sv] where Sv is the Batt element of

§3.1S. Hence the effect of Theorem 5.2 is to identify Friedlander's map

between K* and K;t with the localisation map
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p : Ki (X;zll\)) ... K
i
(X;Zll\)). (5.3)

When X Spec A we write K*(X;Zll\)) K*(A;Zll\)) and similarly for K* and

K;t

5.4: Examples of schemes satisfying the conditions of §5.l are quite

common and include the following.

(a) regular quasiprojective varieties over algebraically closed or finite

fields of characteristic not l;

(b) localisations away from l of the algebraic integers, Q, in a local

or global field, k [D-F-S-T] (char k 1 l);

(c) the local or global fields, k, in (b);

closure of ] in 00) where Q, k are as in (b)
t tOO t

the adjunction of all l-primary roots of unity;

the integral

F; indicatesloo
k (F; ) as in (d);tOO
separably closed fields or strictly local Hensel rings containing Ill.

(e)

(f)

(d)

and

5.5: Jouanolou's device [J;Q;FI] Let X be as in §5.l.
/I

There exists an algebraic fibring v : X ... X with affine fibres,

IAN, /I min which X Spec A. When X FS ' A* contains S* as a direct factor.

For X c Qis formed by pulling back the bundle, Hence, if a 00

or if S* Zila x H as in §5.l and if IT : X ... S has a section then A*

has Zila as a split factor, in the manner of §5.l. In addition, if X
/I

satisfies the conditions of §5.1 so does X = Spec A.

The above discussion permits us to restrict our study of (5.3) to

the cases X = Spec A where X and A satisfy the conditions of §5.l.

5.6: Dayton-Weibel Theory. We assume, as in §5.l, that l is invertible

in A and that A is regular.

IN [We,§3] a Karoubi-Villamayor type of K-theory (with coefficients /I)

is defined. It is denoted KV*(A;/I) where the index ranges through the

integers in general but only through non-negative integers for the A

which we study. For such A there is a natural isomorphism

KVi (A; /I) Ki (A; /I)

where i 2 if /I Zll\).

for /I = Z or Zll\),
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For n > Z let

.n
D.A = A[xO•··· .xn]/CCl:xi - l)xd'l" .... xn)

then. from [D-WI.§§Z.4. 4.8 and 5.Z;D-WII]. there is a natural isomor-

phism (A = Z or Z/i v).

(5.7)

This decomposition commutes with multiplication by B
v
and induces

( 8) K (.n / v - v V5. Z D.A;Z i ) = KZ(A;Z/i ) @ Kn+ l (A;Z/i )

(5.9)

From the localisation sequence [Q;G-Q]
-1 _

KZ(A[x.x ];A) = KZ(A;A) @ Kl (A;A)

-1 -1 ZKZ(A[x.y.x ,y ];A) = KZ(A;A) @ (Kl(A;A)) @ KO(A;A)

and similarly for K*.

01 .0 -1 ·-1 -1 -1Set D.A = A, D.A = A[x,x ] and D.A = A[x,y,x ,y ].

5.10: Theorem. Let A and X = Spec A satisfy the conditions of §5.l.

Suppose that h* be, as in §3.l, either KU*(_;Z/i) or j*(_;Z/i). Suppose

-n + Ii.further that the group {z E hO(BGL(D.A) ) z = z } 1S zero. Then

ker(p : Kn+ l (A;Z/i) Kn+ l (A;Z/i)) is contained in the image under reduc-

tion mod i of

M{w E Kn+ l (A) Ii w = 0 for some M}.

A
Proof: When n = lour assumptions ensure that ker p ker H = ker H, by

§4.l, and the result follows from §§Z.Z,Z.15. When n 1 the result fol-

'nlows by application of the argument to D.A.

5.11: Theorem. Let i be an odd prime and suppose A and X = Spec A sat-

-n + Ii.isfy the conditions of §5.l. Suppose that {z E hO(BGL(D.A) ) z = z ) 1S

zero, as in §5.l0. Assume further that

is onto for all v > 1. Then

et
p : KN+ l (A;Z/i) KN+ l (A;Z/i)

is injective.

Proof: Write (K/iv). for K. (A;Z/iv) and similarly (Ket/iv). for
J J J J

Consider the following commutative diagram.
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i (KIIM+ l ) A (Kill) 0
(KI I)N+ 1 -> ...... --> (KII)N+2 --> --> -->

N+2 N+2

Pll P21 P31 P41 (5.12)

v .et A
et

(Ket /lM)
et

(Ket I I)(Ket/l)N+2 _1._> (Ket 1,[1+1) 0 ...... -> --> -->
N+2 N+2 N+l

In (5.12) PI' P2, P3 and P4 are examples of the natural map. Suppose

Z E ker P4'
MBy Theorem 5.10 there exists y E KN+l (A) such that I y = o.

Hence there . t (KIIM) such that ( )exis s E N+2 a = z .

By a diagram chase we will reduce to the case M = 1 and finally we

will show z = O.

There exists w E (Ket/IM+ l)N+2 such that Aet(W) = since

et
a = = P4(z) = o. By surjectivity of P2 there is

v E (KII
M+ l

) with P2(v) = w so thatN+2
et

P3(A(V) - = A P2(v) - w O.

Hence, by §5.10, there exists

r E with ITr a

for some T and E (K/[M-l)N+2 such that

A(V) -

is the sum of the images of and r.

Since the image of r lies in im(A) , = O(A(V) - =

By induction in this manner we are reduced to the case when M = 1 in

(5.12) and z = o(ul). Repeating the induction step once more shows z 0,

as required.

5.13: Let X be a scheme over S satisfying the conditions of §5.1. Then

there exists a spectral sequence [Thl;Th2;FI]

ifq

if q =

Here EP,q is cohomology with Tate-twisted coefficients. From the
2

construction of this spectral sequence [FI,§1.5] - from KU*(_;ZIIv)

Atiyah-Hirzebruch spectral sequences by a delicate limit process - it is

clear that the first differential in this spectral sequence is
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EP, q EP+2i-l,q-2i
2 ... 2

For p > 2 dim X, = ° so this spectral sequence often collapses.

This is true, for example, in §5.4(b)-(f) and in the case of smooth,

connected curves over an algebraically closed field, as in §5.4(a). In

all these cases (X = Spec A in §5.4(b)-(f))

= HO (X;Zlt(i)) ffiOH2t (X;Zlt (i +l ) )1 et e

1 (x;zlt) = HI (X;Zlt(i)) .
1- et

Specific examples of (5.14) may be found in [Sn5;Th2].

I will conclude by stating what Theorem 5.11 boils down to in the

explicit examples of §5.4.

5.15: Let be an t-th root of unity and for those rings A in §5.4(b)-(f)

which do not already contain let denote A with adjoined.

Hence = A if A already possesses this root of unity. Let

h* denote j*(_;Zlt) or KU*(_;Zlt) , chosen for the ring according

to the conventions established in §3.l.

For examples, §5.4(b)-(f), it is known that K. (A;zltv ) ...
1 1

is an isomorphism for i = 1,2.

5.16: Theorem.

§5.6. If

then

Let t be an odd prime and for n > 2 let be as in

P : K (A·Zll) Ket (A· zit)n+l' ... n+l '

is an isomorphism.

Proof: If p is an isomorphism for then it is also an isomorphism

for A, by a transfer argument. Hence, in order to apply Theorem 5.11

it suffices to know that p is onto in dimensions greater than one with

coefficients mod tV. In example §5.4(b) this follows from [D-F], in
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example S.4(d) it follows from (b) by taking limits. In example S.4(c)

it follows from the localisation sequences [Q;G-Q;Sou] for K-theory and

etale cohomology and in §5.4(e) by limits of such. In §5.4(f)

et v v v
K* (A;Z/l ) = Z/l [S] where S E KZ(A;Z/l ), which completes the proof.

5.17: Theorem. Let l be an odd prime.

If X is a connected, smooth curve over an algebraically closed

field. Let A denote the ring provided by Jouanolou's device, in §S.5.

Suppose for n > -1

o

then

if n even

if n Zm-l

where g is the genus of X.

Proof: Thomason has shown (see· [F thatpis onto in all dimensions
with mod! v coefficients for X as above. Hence the result follows as in §S.16 .
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THE CANONICAL INVOLUTION ON THE

ALGEBRAIC X-THEORY OF SPACES

Wolrad Vogell

It is well known, e.g. [4], [l] that in studying the homotopy

type of the stable concordance spaces of manifolds an important

technical tool is provided by a certain canonical involution (up to

homotopy) on these spaces.

On the other hand much of the information we have about con-

cordance spaces comes from their relation with Waldhausen's functor

A(X), the algebraic K-theory of spaces, [8], [9 I.
There is an involution on A(X) which can be defined as to be

rather obviously compatible with the involution on concordance spaces,[9]

One way to obtain numerical information about A(X) is to compare

it with its 'linearization', the algebraic K-theory of (group) rings.

We will show that there is an involution on A(X) linearizing to

the standard involution on the K-theory of group rings which is given

by associating to a matrix its conjugate transpose inverse.

In the context of the categories used to define A(X) this corres-

ponds to the transition from a simplicial G-set to its (equivariant)

Spanier-Whitehead dual.

At this point we are confronted with the problem of having

defined two involutions on A(X) which could possibly disagree.

It is proved in this paper that this is not the case:

Theorea: There is an involution up to homotopy on A(X) such

that the natural transformations A(X) WhCAT(X) to the (CAT-)

Whitehead space, and A(X) K(<Z[lt,x]) to the K-theory of group

rings, are compatible with the involutions, where the involutions

on WhCAT (X) and on K(<Z[lt1X]) are the usual ones.

This result has been anticipated in various papers, e.g. [2 ] [3]

[ 5 ]. There is no publ ished proof, however.

In particular, the theorem establishes the conjecture in [ 5 ,p.135

that the rational isomorphism of It WhDIFF(M) with K.(<Z[G]) is com-
i 1

patible with the involutions, where M is an orientable spherical space

form with fundamental group G.
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To prove the theorem we use three approaches to A(X}, starting

respectively from a certain category of manifolds. hP(X}, from the

category of retractive spaces over X and their homotopy equivalences,

hR(x}, or,finally, from the category hU(G} of simplicial sets with an

action of the loop group of X.

The category hP(X} carries a natural involution leading to the

standard involution on WhCAT (X), cf. [9].

We construct categories hVR(x), hVU(G), and a commutative

diagram

hP(X}

= t

hP(X}

hR(x)

hVR(x)

hU(G}

hVU(G}

The maps in the upper row are homotopy equivalences by [8] [9]

It is shown (in § 3) that the vertical arrows are homotopy

equivalences (after suitable stabilization). Hence the maps in

the lower row are also homotopy equivalences (after stabilization).

It is proved that there is an involution on hVR(x}, and on

hVU(G} and that the maps in the lower row of the diagram are compatible

with the involutions.

Using the definition of A(X) in terms of the category hVU(G)

it is proved that the natural transformation A(X) -

commutes with the involutions.

This will establish the theorem.

I wish to thank F. Waldhausen and M. Bokstedt for helpful

discussions.

§ 1.

Following [9], we will describe a geometrical model of A(X), the

algebraic K-theory of X, and show that this model admits a weak invo-

lution T, in the sense that the restriction of to any compactum

is homotopic to the restriction of the identity.

We briefly review the definitions. Let X be a compact manifold of

dimension d with boundary ax. Let I denote the interval [a,b] . A

partition is a triple (M, F, N), where M is a compact codimension zero

submanifold of X x I, N is the closure of the complement of M, and



158

F = MnN. F is to be standard in a neighborhood of ax x I, i.e. there

exists a number tEl such that F equals X x t in this neighborhood.

Let P(X) denote the simplicial set in which a p-simplex is a (CAT-)

locally trivial p-parameter family of partitions. A partial ordering

on the set of partitions is defined by letting (M,F,N) < (M' ,F' ,N') if

firstly M is contained in M', and secondly the maps

F' M' - (M-F) F

are homotopy equivalences. This defines a simplical partially ordered

set, and hence a simplicial category which will be denoted hP(X).

We have a particular partition given by attaching k trivial m-handles

to X x [a,a'] in such a way that the complementary (d-m)-handles are

trivially attached to X x [b,b'] , a', b'E [a,b] Let be

the connected component of hP(X) containing this particular partition.

An anti-involution on hP(X) is defined by the contravariant functor

T' : hP(X)

where M* (resp. N*) is the image of M (resp. N) under the map

r: X x I X x I, which reflects I at its mid-point. It restricts

to a contravariant functor

T' : •

In [ 8] , it is proved that the categories approximate

A(X). To fit these approximations together one needs a stabilization

process. There are two ways to stabilize a partition (M,F,N), namely

taking the lower (resp. upper) part to its product with an interval.

These disagree because of the condition of standard behaviour near the

boundary. We have to consider a technical modification of the various

spaces of partitions.

We fix some standard choices. Let X' e Int X be a sub-

manifold of X such that Cl(X-X') is a collar on ax.

Similarly, let J denote an interval containing two subintervals

J', J" such that J' e Int J, J" e Int J'; further let [a' ,b'] be

a symmetric subinterval of I.

Let P(X) be the simplicial subset of P(X) of those partitions satis-

fying that

Fe X x [a',b'] F n (X-X') x I (X-X') x a' .

The inclusion P(X) e P(X) (re sp , e hP(X)) is a homotopy equivalence.

Define the lower stabilization as the map

hP(X x J)hP(X)°1 :

which takes the lower part of a partition (M,F,N) to
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MxJ' U Xx[a,a'] xJ C XxIxJ

The upper part of the partition is mapped by 0
1
not to a product but

to a "fibrewise suspension" of N considered as a space over X.

The upper stabilization is the map

defined by

hP(X) hP(X x J)

M .... MxJ' \.JX'x[a,b'] xCl(J'-J") \.J Xx[a,a'] xJ C XxIxJ

The involution T' does not restrict to a map P(X). SO

a slight modification of T' is necessary, e.g. first shrink the lower

part of the partition a little, then take the complement, reflect in

the I-direction, and finally remove a certain standard part near the

boundary to obtain a partition in P(X) again.

This defines a map T : h P(X) hP(X) such that the

following diagram commutes up to homotopy

hP(X)

T

hP(X)

In particular 1" '" id.

We have the following relations:

hP(X)

T'

hP(X)

if

a a (Lt ) a T-u l' u - Tal'

Using a mapping cylinder argument, T can be defined as a map

IUm h.£'{XXJm+n-d)1
m,n

, lim I
m,n

where the maps in the direct system are given by 01' and au ' respectively.

Lemma 1.2. T is a weak involution in the sense that the restriction

of 1" to any compactum is homotopic to the restriction of the identity;

in particular it induces an involution on x*. if

In [9 ]it is proved that a connected component of A(X) can be ob-

tained by performing the +-construction on the space

Il!.m I
k,m,n

We thus obtain a weak involution on A(X).

Further the homotopy fibre of the inclusion -
k k

identified in a dimension range with the h-cobordism space of X.
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From the description given there it is clear that the involution

on induces the canonical involution on the fibre, given by turn

ing an hcobordism upside down.

§ 2.

In this section we will construct an involution on A(X) in a differ

ent way and show that it agrees up to homotopy with the involution de

fined above. The construction starts from the approach to A(X) which

uses as building blocks spaces containing X as a retract, cf. [8 ].

We will need some modifications, however.

Let R(x) denote the category of retractive spaces over X, i.e ..

an object is a diagram Y J: X of simplicial sets such that rs=idX•S
A morphism is a map Y  Y' commuting with the retractions and with

the sections. An hequivalence is a morphism in R(x) which is a weak

homotopy equivalence. Let hR(x) denote the subcategory of hequivalences;

Rf(X) (resp. Rhf(X)) is the subcategory of those objects (Y,r,s) satis

fying that Y!s(X) is finite (resp. finite up to homotopy).

There is an external pairing ("fibrewise smashproduct")

A
X X' R(x) x R(x')

(Y, Y' )

R(xxx' )

YxY' U XxY' UYxX,XxX'

Notation: We will write YAY' instead of the more accurate YXAX'Y'

if the context is clear enough.

A special case of this pairing is the fibrewise suspension over X,

defined as Sn *A
X

Y.

Let denote the connected component of hR(X) containing the

object XuilDn
U
.•• UilDn Dnu ••• U D

n
 X, with trivial attach

ing maps. k - k -

In [8] the following definition of the algebraic Ktheory of X

is given.

The limit in the mvariable

Definition: A(X) ;z x llim
m-:k

is given by

To get an involution on this functor, we translate the concept of

SpanierWhitehead duality into the framework of retractive spaces.

Let denote an (orientable) spherical fibration over X (having

a section) such that the fibre is Sd. Let denote any space
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in R(XxX) satisfying that ;: X2 is in the same component of

hR(xxX) as XxXU
X

I;: XxX, and further that Th(!;;) XxX is a

fibration. Such a space will be called a Thorn space of I;: Note that

Th( 1;:) Ix 2 is essentially the Thorn space of I;: in the usual sense.

Let (Y,r,s) (resp. (Y' ,r' ,s')) denote an object of hRhf(X) , satis

fying that s* (resp. is an isomorphism on Xi (i=O,l).

An nduality map is a map in R(xxX)

u: yAY'

satisfying that it induces an isomorphism

Ct
U

given by Z t-+ u*(t)/z, i.e. slant product with a Thorn class t of I;:

By abuse of language we will call Y' an ndual of Y if there exists

such a duality map.

Define a category in which an object is given by a triple

(Y,Y' ,u), where Y (resp. Y') is an object of Rhf(X). subject to the tech

nical condition that the inclusion of X in Y (resp. Y') induces an iso

morphism on Xo and x.; and u: yAY' Thn_d(l;:) is an nduality map.

A morphism (Y,Y' ,u)  (Z,Z' ,v) is a pair of morphisms in Rhf(X)

f: Y  Z, f': Z'  Y'

such that the diagram

idAf '

Y A Z'

YAY'

fAid

u

v

commutes.

A morphism (f,f') in is called an hequivalence if f

and f' are hequivalences. The subcategory of hequivalences will be

called hVR;h(I;:)(X). Let hVRth(l;:) = 11 •
n .

The category (h)VRTh(I;:)(X) does not depend on the par

ticular choice of the space Th(I;:). Namely, suppose Th'(I;:) is another

model for the Thorn space of I;: in the sense defined above. The con

ditions on such a space imply that there is a fibre homotopy equivalence

Th( 1;:)

Lemma 2.1. A fibre homotopy equivalence Th(l;:)

a homotopy equivalence hVRTh(l;:)(X) hVRTh'(I;:)(X)

Th'(I;:) induces

it
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In view of this lennna we shall use the simplified notationVRI;;(X) for

any of the categories VRTh( 1;;) (X).

There are two suspension functors on the category VRI;;(X) ,

El: VRI;;(X) VRI;;(X) (resp , E
r:

VRI;;(X) VRI;;(X» given by

(Y,Y'.u) .... (Ex(Y),Y' ,E(u» (re sp , (Y,Y' .u ) t+ (Y.ExY'. E(u»).

There is a canonical anti-involution on the category VRI;;(X), It

is given by

T

(Y, Y' .u ) .... (y. ,Y ,ii),

Thn_d(I;;), where the last arrow is

'"where u: Y'IIY YAY' u Thn_d(l;;) In view of later application

we allow for a slight generalization. Assume thatl;; comes equipped with

a In this case ii is defined to be the composite

Y' AY - Y IIY' Thn_d(l;;)

(induced from) the twist on 1;;.

Stably the category VRI;;(X) does not depend on the spherical

fibration I;; • This follows from

Leona 2.2.

where £; = XxSo

There is a homotopy equivalence

lim hVR (X) lim
i
l

E i
is the trivial fibratioJ. (Similarly with El replaced

Proof: Using a suitable version of the Thorn isomorphism one de-

fines a functor hVR£;(x) hVRl;;(X) by

(Y,Y',u) .... (t>*(f,;AY),Y', ii: t>*(f,;AY)AY' - l>i(f,;/x.Th(E) ""' Th(I;;»,

where 8* (r-e sp , 8P denotes the pullback along the diagonal X - X'

(r-e sp , 8 1 = 8 x id : X' X' ). Choosing an inverse for f,; gives a

functor in the other direction. It is easy to check that the composite

gives an iterated suspension on hVR£;(X) (resp. hVRf,;(X) ).

This proves the lennna. #

Proposition 2.3. The forgetful functor

6 :

(Y, Y' .u ) ,...
lim
i

Y

is a homotopy equivalence.

The proof will be given after prop. 3.6.

By imposing a condition on the homotopy type like in the definition

of the categories one defines categories (We drop

the spherical fibration from the notation of these categories.)



163

The map 6 restricts to a homotopy equivalence

6 lim hVRm,n(X) limkm,n m

Corollary 2.4. A(X) :< x IUm hVJ\,n(X) 1+
m,n,k

il

The involution is compatible with the suspension functors, i.e.

,E l = Er " ,Er = El , . Hence it defines a contravariant functor

11m
m,n

In view of the corollary it therefore defines aninvolution on A(X).

We next relate the involution defined above in the context of mani

folds to this one. To compare the categories hf(X) and we

have to make into a simplicial category . . This is done

in a straightforward way:

Objects of are locally trivial pparameter families Y, Y' of

objects of R(X), together with a pparameter fami 1y of duality maps

YAY'

Lemma 2.5. The inclusion

equivalence.

is a homotopy

il

Let X be ddimensional compact (orientable) manifold. To a partition

(M,F,N) E hf(X) there can be associated a duality map. Let M' = MF,

N' = NF. The inclusion

i: M' x N'

induces a map over X x X

rx x [a,b] )2 diagonal

j: WAN' «Xx[a,b])2  t. )u X2x[a,b]xbUX2xax[a,b]X2

( t. = diagonal). Let Z denote the latter space. It is clearly homotopy

equivalent to (X x [a,b])2  t. • Slant product with a Thorn class t in

Hd+
1
«X x [a,b])2, (X x [a,b])' t.) Hd(Z, X2) gives a map

Hd - * (M' ,X)

Lemma 2.6. This map is an isomorphism.

Proof: Let Y = X x [a,b]. We have a commutative diagram
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H.{N', X) - Hd-'{M',X) 0: Hd-'{M, X)

to:
H.{Y-M, Y-{Y-X» Hd+ 1-CY_X, M)

where the vertical isomorphisms come from the exact sequence of the

triple (y2
, y2

_ tx, X2
) Crespo (Y-X, M, X)). The upper row is the pair-

ing inducing the lower row is the pairing inducing the usual Alex-

ander duality isomorphism. Hence the upper row gives a non-singular

pairing, too. (One has to be a little careful since the assumptions

of the duality theorem are not quite satisfied here, e.g. Y-X is not

compact, and, more seriously, M is not contained in the interior of Y.

But in this special situation at hand this does not affect the result

because the intersection of M with the boundary of Y is homotopy equi-

valent to X. )

Let denote the tangent bundle of X; 1;:= e E') is the

sphere bundle associated to the sum of with a trivial line bundle.

There is a 71./2 - action on I; given by reflection in E'• It is easy

to verify that the space 2 defined above is a Thorn space of I; in

the sense defined before, except for the technical condition that

2 - X2 be a fibration which is not satisfied here. Replacing 2 by

another space 2' satisfying this condition we thus obtain a map

iF

cp: hP{X)

Crespo '1':

hVRI;(X) •

hp'll,n{X)
-1<

(M,F ,N) (M',N',j)

, n = d-rn ) •

(We have to add the technical condition that n,X

at this point.)

It is easy to see that the diagram

hP(X) -_'1'_> hVRI;{X),

T I IT

hP{X) > hVRI;{X),
cp

n,M n,N

commutes up to homotopy.

One can obtain a map in the limit

cp lJ.m hp'll,n{X x In+m-d)

k,m,n
4<:

(by suitably modifying the definition of the stabilization maps on

the right hand side).
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This map is a homotopy equivalence since its composition with the

forgetful map of prop. 2.3. is a homotopy equivalence by the argument

of [ 9, prop. 5.4. J
Standard mapping cylinder arguments now show

Proposition 2.7. The map is compatible with the involutions,

up to weak homotopy, i.e. the restrictions of (resp. T) to any

compactum are homotopic. 41

Corollary 2.8.

§ 3.

The involutions T and T agree up to homotopy. #

Let R be a ring with an anti-involution R - R. There is an

involution on Glk(R) given by A (At)-l which induces the usual

involution on K(R), the algebraic K-theory of R.

More generally, if R is a simplicial ring, its algebraic K-theory

is defined, cf. [ 8 J. It can be regarded as a "linearized" version

of the algebraic K-theory of spaces.

In this section we construct an involution on A(X) which "linear-

izes" to an involution on the K-theory of simplicial (group) rings.

It is shown that this involution on A(X) agrees with those defined in

the first two paragraphs, and further that in the case of an ordinary

(group) ring, considered as a simplicial ring in a trivial way, it

agrees with the involution defined in the beginning of this paragraph.

Let G be a simplicial group. U(G) (resp. U(G
op» is the category of

pointed simplicial sets with right (resp. left) G-action, Uf(G) is the

subcategory of those G-sets which are free (in the pointed sense) and

finitely generated over G. An h-equivalence is a G-map which is a ho-

motopy equivalence of the underlying simplicial sets, hUf(G)C Uf(G)

is the subcategory of h-equivalences.

Let M (resp_ M') denote an object of Uf(G) (resp. Uf(G
op».

An n-duality map is a pointed (right) (G x Gop)_map

u: M' A M

satisfying that it induces an isomorphism of lito G]-modules

by

O! :
u

z u- (t)/z, o < q :s n,
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t being a generator of Hn(SnAG ) '" Zl[lIoG].
G +

G G GBy definition, H,(M) = H,(M x E, *x E; Zl[lloG]),

where E is a universal G-bundle.

G GH'(M x E, *x E,ZlliloG]),

Example 3.1- The map Il: (SkAG ) A (Sn-kAG ) ': SnAG AG _ SnAG
+ + + + +

induced from the multi pl ication G x G G is an n-duality map. 11
n

(right) G-equiva-Let FG(M) denote the simplicial set of pointed

riant maps from M to SnAG . G acts freely (pointed) from the left on
+

this function space.

The evaluation map

induces a map

Ol
e

Proof: By induction. The assertion

M = *. For M = GR* we have =

the evaluation map is the mul tiplication

Let MEUf(G) be of (G-)dimension k ,

Lemma 3.2. The map Ole is an isomorphism in the range

o q 2(n-k) - 1 •

is trivially true in the case

Map,(So, s"N:; ) = G , and
+ +

G A SnAG ': SnAG AG SnAG
+ + + + +

So Ole is an isomorphism by example 3.1 •• M has a G-skeleton filtration

c M
k
= M, such that we have cofibration sequences

Mi _1>---> Mi - - - » V siAG+, OlE some finite
Ol

index set. The general case then follows by a five lemma argument and

the fact that the canonical map Sn-iAG Oi(SnAG ) is 2(n-i)-1-
+ +

connected.

Corollary 3.3. Let M be as before. M' a left G-set satisfying

that (M') = 0, i > n , Suppose that n 2k+1. If there exists a

pointed left G-map M' - inducing an isomorphism on G-hom-

ology up to dimension n, then M' is an n-dual of M. #

Corollary 3.4. Let M be an object of Uf(G). There exists an

n-dual of M, if n is large enough.

Proof: Suppose M is k-dimensional as a G-set. Let n 2k+l.

Consider the inclusion of the (n+l)-skeleton i: -

Attaching finitely many G-cells to the (n+l)-skeleton of kills

the homology in dimension n+l without introducing any new homology.
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Let M' be the space obtained by attaching these cells. By construction

i extends to a map i: M' satisfying the assumptions of

cor. 3.3.

Define a category VU(G) in which an object is a triple (M.M:u),

where M (reap. M') is an object of U(G) (resp. U(Gop)), u:M'AM - SnAG
+

a duality map. We add the technical condition that lliM=lliM'= 0, 1=0,1.

A morphism (M,M',u) (N,N',v) is a pair of morphisms M.! N, N'.!' M',

such that the diagram

N' AM id Af > N' AN

f'Aid Iv
M' AM >SnAG commutes.u +

A morphism (f,f') is called an h-equivalence if both f and fl are

homotopy equivalences.

There are two suspension functors on the category VU(G)

given by suspending M (resp. M'). Further there is a canonical involution

given by 1:: (M,M' .u) (M',M, L'u), where 'bar' means that the action

is changed via L: G - G, g

Si ' l l i h fVR() . b . VUm,n(G)ml ar y as n t e case 0 X certaln su categorles k

of VU(G) may be defined. The involution can be defined as a (contra-

variant) functor

Proposition 3.5. The forgetful functor

e

(M,M' .u ) M

is a homotopy equivalence.

Proof: We will use Quillen's theorem A, cf.[ 7 ]. We have to show
fthat for any object N in lim hU (G) the right fibre N/£ is contractible.

To prove this it suffices to show that for every finite diagram

V: I N/£ there exists an initial object. Let the diagram V be re-

presented by (Mi,Mi' ui: Mi AMi - snAG+ ; a i: N - Mi)i£r

Let n >2 max {dim Mi, dim N}+ 1. Further assume that dim Mi < n.
i

Consider the composite
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Since the maps u
i
are (induced from) duality maps,

the composite is an isomorphism on G-homology up to dimension

2 (n - max (dim M.» - 1 > n. Since all the G-sets M I are finite
1 i

and by assumption their dimension is smaller than n, the image of

all the maps aiui is contained in the n-skeleton of since we

are using simplicial maps throughout. Attaching some G-cells to the

(n+l)-skeleton of gives a space N with the properties

(i) eN, (ii) N maps to (iii) this map is the

natural inclusion on sk and it induces an isomorphism on hom-
n GOP.

ology up to dimension n+l, (iv) H.(N); 0, i > n+l.
1 =

We have thus obtained a factorization Mi N of the maps

aiui. This implies that Mi N induces an isomorphism on G-homology

at least up to dimension n, by lemma 3.2 .. Since both spaces have no

homology in dimensions greater than n, and by the Hurewicz theorem,

the map M'
i

is therefore an h-equivalence.

i
The inclusion U a:u. (M!)

111

U (M!)
111

N'

f ac tors

where N I is obtained from the finite G-set U U. (M!) by attaching of
i 1 1. 1-

finitely many G-cells, hence is itself finite. The map

M'
i i 111

N'

is an h-equivalence since its composition with N' N is one.

By construction N' is an n-dual of N. Let v denote the corres-

ponding duality map. The object (N,N' ,v) of hVUf(G) maps to the

diagram (Mi,Mi,ui;a
i)

by (ai,b
i).

Hence ((N,N' ,v); id: N N) is a

cone point for the diagram V •

This proves that every finite diagram in N/E is nullhomotopic,

as was to be shown. #

Remark (i) The proposition remains true if the finiteness condition

on the objects is relaxed to admit objects that are finite up to homo-

topy. (ii) By restriction to a connected component one obtains another

homotopy equivalence

E : 11m hVUm,n(G) 11m hU IF
k

m,n m

Let G denote a loop group of X, [ 6 J. Let E be a universal

G-bundle. There is an adjoint functor pair (c f , [ 8 J. )
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hR(x) hU(G)

(Y,r,s) .... Y xxE/E

'I'G: hU(G) hR(x)

M .... M xGE - * xGE-
Let e: = X x SO

space 'I'GOP xG(G+)

fined above. (Here

be a trivial spherical fibration over X. The

can be used as a Thorn space of e in the sense de-

G is considered as an object of U(GoPxG».
+

Define a functor

hVR (X)
e

(Y,Y' .u ) ,...

where u' is the composite

Simi larly,

D'I' h DR (x)
c

(u : M'AM - Snl\G) ....
+

Proposition 3.6.

valences.

and D'I' are mutually inverse homotopy equi-

Proof: We first remark that and D'I' are not adjoint. Let

f: hVR(x) - hVR(x) be given by (Y,Y',u) .... Cn(Y),Y',u),

u: n(Y)AY' - n(YAY') _ 'I'(SnAG).
+ +

Similarly, f' is the corresponding endofunctor of hVR(x) defined by

a condition on Y'. There is a natural transformation from the identity

to f, and another one from f' to the identity. Therefore = flf

is homotopic to the identity; similarly with the other composition. #

hVRhf(X) _ hVUhf(G)
e

commute for obvious

Remark: (resp. D'I' ) restricts to a functor
--- hf hf

(resp. hVU (G) hVRe: (X». Both functors

reasons with the canonical involution.

Proof of prop. 2.3.: There is a commutative diagram

hVRhf(X) > hVUhf(G)

6 I Ie:

hRhf(X) > hUhf(G)
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is a homotopy equivalence because it has an adjoint, is a homotopy

equivalence by prop. 3.6.;£ becomes a homotopy equivalence after passing

to the limit by prop. 3.5., therefore so does 6 •

We now consider the analogous construction for a simplicial ring

R. Its algebraic K-theory K(R) can be defined from the category of

free simplicial R-modules in a way formally quite similar to the

construction of A(X) from the category of free simplicial G-sets.

In particular, if R = [G] , G a simplicial group, the concept

of duality can be defined, and K(R) can be constructed from a larger

category of R-modules by including duality data. This leads to an

involution on K(R), which will be denoted .'.

There is a linearization map A(X) from the

K-theory of X to the K-theory of the simplicial loop group of X.

It is given by associating to a free pointed simplicial G-set M

the simplicial [G] -module j:[M] , the underlying simplicial

abelian group of which is generated by the non-basepoint elements of M.

By its construction the linearization map is compatible with

the involution.

The connected component map .0: (X)] induces a

map ). Let ." denote the involution on the

latter space defined in the introduction to § 3.

Proposition 3.7.: There is a commutative diagram

A(X)

1r 1·' 1r"
A(X) [G(X)]) K(nn,x] )

free

of R

Proof:

(right)

(meaning

Let R = 2Z[xf{ ]. Let iso Fk (R) denote the category of

R-modules of rank k and their isomorphisms. The K-theory

that of its free modules) may be defined in the follow-

inR way:

K(R) z x I 1j.m iso F
k
(R) I +

k

There is a natural map

iso Fk(R) iso Fk(R)

A HomR(A, R)

This map restricts to the natural involution
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The map A(X) - K(R) may be described by first mapping a duality

u: M'AM - snAG+ in to the induced pairing

and then mapping to the free G]-module of rank k

By definition of a duality map in VU(G), u is nonsingular, i.e.

it gives an identification of

with

considered as a right l-module.

This proves the proposition. If
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ALGEBRAIC K-THEORY OF SPACES, LOCALIZATION, AND THE

CHROMATIC FILTRATION OF STABLE HOMOTOPY.

FriedheIm Waldhausen

This paper represents a first step in applying localization techniques to the compu-

tation of the algebraic K-theory of spaces, and in particular to the task of reducing

that computation to the computation of the algebraic K-theory of rings.

In order not to obscure the essential points by great generality we shall re-

strict ourselves to the special case of the space A(*) , the algebraic K-theory of

a point. What we would like to do is to reduce the computation of A(*) to that

of K(Z) , the algebraic K-theory of the ring of integers, and in particular to com-

pute fibre( A(*) K(Z) ) , the homotopy fibre of the natural map.

That task is not easy. For, as will be explained in an appendix, it follows

from the Lichtenbaum-Quillen conjecture (which is regarded as rather respectable

among experts in the algebraic K-theory of rings) that fibre( A(*) K(Z)) must

in some way or other account for all of that formidable object, the cokernel of J

Here is an outline of what is done in this paper. The space A(*) may be con-

structed according to a certain recipe out of the category of pointed spaces of

finite (homotopy) type; alternatively one could use spectra of finite type for the

purpose (these matters are explained in section I below). The recipe is fairly

general and can be applied in the same way to other categories of spaces or spectra.

In particular if p is a prime, the recipe can be applied to the category of p-Iocal

spectra of finite type.

Let us denote the result of this construction by A(*,p) .

the ring of integers localized at p. There is a natural map

Let denote

A(*,p) K(Z(p))

and we shall show that its homotopy fibre may be identified to the p-local part of

fibre( A(*) K(Z) ). In this sense the task of computing the latter has been

broken up into its p-Iocal parts now.
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In contradistinction to what one might expect by analogy with the algebraic

K-theory of the ring Z , it is possible here to continue fracturing by localization

methods. This is where the chPomatic fiZtration comes in (there is one such for

each prime p). By definition, the chromatic filtration is a particular sequence

of localization functors in stable homotopy. The characteristic feature of these

localization functors, as opposed to localization functors in general, is that they

may be defined in terms of acycZic spaaes of finite type (these matters are explained

in section 2 below). The existence of the sequence is still conjectural beyond the

first few terms; the relevant conjectures are due to Bousfield and Ravenel.

As will be explained (in section 3) the existence of the chromatic filtration

implies the existence of a locaZization tower (whose maps are induced by localization

functors)

The bottom term A(*,p,O) turns out to be the same (up to homotopy) as K(Q) , the

algebraic K-theory of the ring of rational numbers; the next term A(*,p,l) is in

some sense the algebraic K-theory of the non-connective J (image-of-J-theory at

the prime p). The layers of the tower (the homotopy fibres of the maps of conse-

cutive terms) represent the contributions of what in Ravenel's terminology are the

monochromatie phenomena in stable homotopy theory.

There is a second tower associated to the chromatic filtration, an integraZ

(or connective) analogue of the former tower,

A(*,p) = A(*,p,oo) •.• ---+ A(*,p,2) --+A(*,p,l) --+A(*,p,O)

The bottom term A(*,p,O) here is K(Z(» , the algebraic K-theory of the ring of
p

p-Iocal integers, and the next term A(*,p,l) is the algebraic K-theory of the con-

nective J. The construction of the spaces A(*,p,n) is very much like that of

the algebraic K-theory of rings in the framework of the plus construction. This

means that a certain amount of explicit computation is possible in low degrees.

There does not however seem to exist a direct description of the layers in the

tower. This suggests to try reducing to the former tower in order to obtain infor-

mation about the layers.

There is a natural transformation A(*,p,n) A(*,p,n) • Modulo certain tech-

nical assumptions we can give an explicit description of the fibre, by localization

methods again. For n = 0 the map is the natural map K(Z(p» K(Q) • and in that

case our description of the fibre reduces to a case of Quillen's localization theo-

rem.

It is a pleasure to acknowledge that discussions with Marcel Bokstedt have been

helpful in the preparation of this paper.
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I. Review of algebraic K-theory.

We recall the definition of A(*) from the category viewpoint [14], [S ], [16].

Let C be the category of pointed spaces of finite type, that is, pointed spaces

having the homotopy type of a finite CW complex (as a technical point, C is not a

'small' category, but we can replace it by one). Then A(*) is defined as the loop

space of the CW complex

the geometric realization of the bisimplicial set

is the set of commutative diagrams in C ,

>-----+ •.• lo--+yl
O,n

w S Cmn

in which the horizontal arrows >---+ denote cOfibrations, and the vertical arrows

denote (weak) homotopy equivalences.

The face and degeneracy maps in the vertical direction are given by omission

and reduplication of data. This may conveniently be summarized by saying that the

bisimplicial set arises as the nerve of a simplicial category; namely of [n] wSnC

the category of the diagrams

* = YO 0 >-----+ YO 1 >-----+ YO 2 >-----., , ,

and their weak homotopy equivalences.
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The face structure in the horizontal direction is slightly more complicated.

All but one of the face maps are still given by omission of data, but the face map

numbered ° involves a quotient space construction. It takes the above object to

* = Y1,1 -Y1,2 >--7 ... --Y1,n where Y1,k YO,k / YO,I

(As a technical point, quotient spaces are only well defined up to canonical isomor-

phism. This need not concern us very much, however. One just rearranges the con-

struction a little by including the choices of quotients Y.. = YO ./Y
O'

in the
1- ,J ,J,1-

data of the diagrams, cf. [14], [16]).

The construction is formal in the sense that it uses little knowledge about the

category C Indeed, the only thing required (apart from the technical point con-

cerning the existence of an object in C which is both initial and terminal) is the

fact that there are singled out two particular kinds of morphisms which are called

cofibrations and weak equivalences, respectively, and which have suitable properties

(e.g. cofibrations have quotients, and the weak equivalences satisfy a gluing lemma).

This suggests defining the notion of a category with cofibrations and weak

equivalences. This is a category C equipped with subcategories co(C) and w(C) ,

and the data are subject to a short list of plausible axioms (which will not be re-

peated here, cf. [14], [16]). The definition of the simplicial category [n] wSnC

(or wS.C , for short) now carries over word for word. We think of this simplicial

category (or rather of the loop space of its geometric realization) as the algebraic

K-theory of the category C or better, to be precise, as the K-theory of C with

respect to the chosen notions of cofibration and weak equivalence.

In practice it turns out that the notion of cofibration is usually fixed once

and for all. That is, it just doesn't occur in practice that some category C is

considered as a category with cofibrations in more than one way. In particular, for

the spaces and spectra in the present paper the term cofibration will always have

its usual meaning. By contrast, it is not at all pathological nor even exceptional

that some category C is considered as a category with weak equivalences in more

than one way. For example if E is a spectrum, and C the category of pointed

spaces (resp. of spectra) then the notion of E-equivalence is a perfectly acceptable

notion of weak equivalence in C. In fact, the interplay between different notions

of weak equivalence arising in this way is one of the things that localization

theory is going to be about.

It may be appropriate to say a word about the ever recurring finite type condi-

tion. One could take it as one of the facts of life that in connection with alge-

braic K-theory there is always some finiteness condition around, be it explicit or

implicit. But one can also give a simple explanation: in the absense of a finite-

ness condition algebraic K-theory just isn't interesting and therefore is not consi-

dered. For as soon as, say, infinite sums are allowed in the category C one can
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go through a version of the Eilenberg swindle. Namely if the endofunctor F(A)

A v A v .•. is defined then one certainly has an isomorphism Id v F F. On

the other hand the sum in C induces a composition law on Iws.cl making it an in

finite loop space in the manner of Segal [10] and in particular therefore a group

like Hspace (cf. [16] for details). In the homotopy Id v F F one can then

cancel F to conclude that the identity map on Iws.cl is nullhomotopic.

There is one general computation that is easy to do. This is the determination

of KO' the class group, in terms of generators and relations. By definition this

group is or what is the same thing, the fundamental group of the CW com

plex Iws.cl There is a well known recipe on how to compute the fundamental group

of a reduced CW complex in terms of the cells of dimension I and 2. Applying the

recipe in the case at hand one obtains that the class group is the abelian group ge

nerated by the objects A E C , and subject to two kinds of defining relations,

[AO] = [AI] if there is a weak equivalence AO ::. AI, and

In particular, in the case of the pointed spaces of finite type and their weak homo

topy equivalences one obtains the group Z , and the integer represented by

a space is just its (reduced) Euler characteristic. Other cases will be considered

later.

To conclude this review we shall outline an argument now to justify the fact

that the space A(*) may not only be defined in terms of pointed spaces of finite

type but also in terms of spectra of finite type. We will need to know about

general results for this.

A functor between categories with cofibrations and weak equivalences, say

F: C C' , is called exact if it preserves all the relevant structure. In that

case it induces a map wS.F: wS.C wS.C' .

A weak equivatence between exact functors C C' is a natural transformation

F F' so that for every A E C the map F(A) F'(A) is a weak equivalence in

C' . Not very surprisingly there results a homotopy between wS.F and wS.F' in

this case. For example the cone functor on the category of pointed spaces is exact,

so it induces a selfmap on A(*) , and it is weakly equivalent to the trivial map,

so the selfmap is nullhomotopic.

A cofibration sequence of exact functors C C' is a sequence of natural

transformations FI F F" ,or F' >+F *F" as we shall write, having the pro

perty that for every A E C the map FI(A) F(A) is a cofibration in CI , and

F(A) F"(A) represents the associated quotient map. A basic technical tool about

the construction C H wS.C is the additivity theorem. One of several equivalent

formulations says if F' >+F *F" is a cofibration sequence of exact functors
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then there exists a homotopy between wS.F and the sum of the maps wS.F' and

wS.F" •

To come back to the situation at hand, there is a cofibration sequence of exact

functors on the category of pointed spaces,

identity >---+ cone suspension

In view of the additivity theorem therefore the self-map Id v L of A(*) is null-

homotopic, thus the suspension represents a homotopy inverse for the additive H-space

structure on A(*)

A(*) to itself.

In particular the suspension induces a homotopy equivalence of

Now C wS.C is compatible with direct limits, so we obtain that (up to homo-

topy) A(*) is also definable in terms of the category with cofibrations and weak

equivalences C say,

where each C is the category of pointed spaces of finite type, and C .... Cn n n+\
is the suspension map. C is a category of spectra containing the full subcategory

of the finite spectra but it is somewhat smaller than C , say, the category of

spectra of finite (homotopy) type. We will therefore want to know that the inclu-

sion wS.C .... wS.C is a homotopy equivalence. While this is certainly plausible it

is not self-evident, and an argument is required. The argument is provided by the

following useful criterion whose applicability in the present situation is straight-

forward to check.

The criterion gives a sufficient condition for an exact functor F: C .... D to

induce a homotopy equivalence wS.C .... wS.D. We refer to it as the approximation

theorem. The idea behind is that the homotopy type of wS.C should only depend on

the 'homotopy theory underlying C' (whatever that may be). The approximation the-

orem makes this precise in the form of three axioms [16l. The first axiom says,

roughly, that the general setup should be as in homotopy theory (in particular this

rules out some fancy notions of weak equivalence and asks that mapping cylinder con-

structions should be available). The second axiom says if A .... A' is a map in C

then if F(A) .... F(A') is a weak equivalence in D it follows that A .... A' is a

weak equivalence in C (the converse is implied by the exactness of F, of course).

The third axiom finally insists that objects of D are 'homotopy equivalent' to ob-

jects coming from C , and morphisms too; the precise formulation is that given

objects A E C and BED, and a map f: F(A) .... B in D , then there exist a

cofibration g: A .... A' in C and a weak equivalence h: F(A') .... B in D so that

the resulting triangle commutes, i.e. f = hF(g) .
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2. Review of localization.

The main references are to papers by Adams [ I l , Bousfield [ 2], and Ravenel

[ 8].

Let E be a spectrum. A spectrum X is called E-aayaZia if the E-homology

groups E*X = 'JT*(EAX) are trivial. Likewise a map X' .... X" is called an E-equiva-

Zenae if it induces an isomorphism E*X' .... E*X" A spectrum Y is said to be

E-ZoaaZ if it does not admit any non-trivial map from an E-acyclic spectrum; an

equivalent condition is that for every E-equivalence X' .... X" the induced map of

sets of homotopy classes [Xli, y] .... [X', y] is an isomorphism.

By an E-ZoaaZization of a spectrum X is meant any E-Iocal spectrum Y toge-

ther with an E-equivalence X .... Y It follows from the definitions that the E-Io-

calization is unique up to (weak) homotopy equivalence under X. Bousfield has

shown that it always exists, in fact that there exists an E-ZoaaZization LE
[ 2].

There is a correspondence between localization functors and aayaZiaity types.

For on the one hand the E-Iocalization depends only on the class of the E-acyclic

spectra: if E' and E" happen to have the same acyclic spectra then their associ-

ated localization functors are the same, by definition. And on the other hand the

E-acyclic spectra may be recovered from the localization functor L
E

as the 'pre-

image of zero'; that is, the E-acyclic spectra are precisely the ones whose E-Ioca-

lization is trivial (up to homotopy). The correspondence allows us to formulate a

finite type condition on the localization functor L
E

in terms of the associated

acyclicity type. The condition is simply that CI(L
E)

, the class of the E-acyclic

spectra, is in some sense generated by finite spectra.

To make this precise let US say that a class of spectra is if it is

closed under

homotopy equivalence and shifting (suspension and de-suspension)

the formation of (possibly infinite) wedges

the formation of mapping cones.

For any spectrum E the class of the E-acyclic spectra is saturated. Conversely

it is known [ 2] that any saturated class occurs in this fashion from a suitable E

If M is any collection of spectra let the of M mean the smallest sa-

turated class of spectra containing M; we denote it sat(M) We will say that a
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localization functor L , resp. the associated acyclicity type CI(L) , is generated

by a collection of spectra M if CI(L) = sat(M) • And we will say that a localiza

tion functor is of finite type, or that it is a finite localization functor, if it

is generated by some collection M any member of which is a finite spectrum. (Note

that the number of spectra in M may well be infinite, however).

A finite localization functor has an important property which we refer to as

the convergence property. It says that for every X the localization LE(X) may

be obtained, up to homotopy, as the direct limit of a sequence of Eequivalences

each of which has finite homotopy cofibre. In particular if X is finite then

LE(X) is the direct limit (up to homotopy) of a sequence of finite spectra Eequi

valent to X.

The proof may first of all be reduced to the assertion that the Eacyclic spec

trum LE(X)/X , the (homotopy)cofibre of X LE(X) , is the direct limit (up to

homotopy) of a sequence of finite Eacyclic spectra. (For LE(X) can be recon

structed by attaching LE(X)/X to X). By hypothesis now CI(LE) is generated by

some collection M any member of which is finite and therefore certainly has the

property asserted of LE(X)/X Inspection of the individual constructions per

mitted in generating sat(M) out of M now shows that each member of sat(M) must

have the property also; in particular therefore LE(X)/X does.

The following properties of a spectrum E and of the associated localization

functor LE are particularly desirable. It is known that these four properties are

mutually equivalent [8].

Every direct limit of EIocal spectra is EIocal,

LE commutes with direct limit (up to homotopy),

LE(S) , the localization of the sphere spectrum,

LE(X) = TAX (up to homotopy), in particular T = LES = LELES = TATAS = TAT.

A spectrum (resp. localization functor) having these properties is called smashing
[8].

Finite localization functors are smashing. For if LE is any such then for

every X the localization LE(X) is obtainable from X by repeated attaching of

finite Eacyclic spectra (the convergence property). It follows that LE(X) is the

direct limit of the localizations of the finite subspectra of X, thus LE com

mutes with direct limit and is therefore smashing.

It has been conjectured by Bousfield [ 2] and Ravenel [ 8] that, conversely,

all smashing localization functors should be of finite type. Furthermore Ravenel

has formulated some spectacular conjectures which assert a complete classification

of the smashing localization functors. We shall discuss these conjectures below.
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One defines a partial ordering on localization functors by saying that L' L"

if L' retains at least as much information as L" does; in other words if every

L' -trivial spectrum is also L"-trivial. One knows that, up to homotopy, L 'L" = L"

L"L' in this situation.

If a smashing localization is not trivial it is L(O) , the rationalization.

On the other hand every rationally trivial spectrum decomposes into its p-primary

parts. There is therefore no essential loss of generality in restricting attention

to localization functors which are L(p) , the localization at a prime p The

conjectures of Ravenel, below, assert that there is precisely a sequence of smashing

(or indeed, finite) localization functors between L(p) and L(O) ,

L(p) = L(p,oo) > > L(p,2) > L(p,J) > L(p,O) = L(O)

this (conjectural) sequence is the chromatic fiZtration.

Following Ravenel, but adapting the notion a little, let us say that a spectrum

is disharmonic (at p, to be precise) if it is trivial with respect to all finite

localization functors < L(p) Examples of disharmonic spectra are provided by the

bounded-above p-torsion spectra (I am indebted to Bokstedt for pointing out this

fact and for contributing the following argument):

L(p) •
contains asX A zIpis bounded below the Hurewicz theorem applies, andXSince

Let L be a finite localization functor < L(p) Then L is smashing and it

trivializes at least one bounded-below spectrum X not trivialized by

a summand a (shifted) copy of the Eilenberg-MacLane spectrum ZIp The triviality

of L(X) = TAX thus not only entails that of T A X A zIp but also that of T A ZIp
L(Z/p) . We conclude by a cofibration argument that L trivializes every p-tor-

sion spectrum bounded both above and below, i.e. having only finitely many non-zero

homotopy groups. A bounded-above spectrum, finally, is a direct limit of such, so

it is trivialized by L, too.

Here is an interesting special case. Let L be a finite localization functor,

and SL L(S) the localization of the sphere spectrum. Then S SL

valence since L is smashing. Let SL be the connected cover of SL

is bounded above and hence disharmonic. It follows that SL SL and

also SL-equivalences.

is a SL-equi-

Then SL!SL

S SL are

To conclude this review we will now describe in more detail the conjectures of

Ravenel [ 8] as far as they are relevant to the present context. The conjectures

were motivated by the manifestation of certain algebraic phenomena in the context of

the Adams-Novikov spectral sequence associated to the Brown-Peterson spectrum BP

The conjectures seek to say that the algebraic phenomena are there for geometric

reasons.

Let denote the p-localization of BP it is a ring spectrum (in the
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sense of stable homotopy theory - no coherence conditions asserted) and its homotopy

groups form a polynomial ring Z(p)[v].vZ •..•vn •.•. ] where the generator vn has

grading Zpn-Z; it is convenient to let Vo = p • the prime at hand. The multipli-
-1

cation by vn gives a (graded) self-map of BP(p) • and one defines BP(p)[Vn ]

as the telescope of this self-map; that is. the homotopy direct limit of the sequence

·vn

-I
The spectrum BP(p)[Vn ] admits the multiplication by

is thus a periodic spectrum (if n>O).

v
n

as an automorphism. it

denote the localization functor associated toL
n

being understood.

Following Ravenel we let
-I

BP(p)[Vn J • the prime p

if p

The smashing oorujecture [8 I asserts that

be true for n p-Z as well as for n =
L
n

is smashing.

z [8].

This is known to

When combined with the finiteness conjectu:t'e of Bousfield and Ravenel (that

smashing localizations are necessarily finite) it asserts that Ln is finite. This

is known to be true for L] [Z J (and of course for La). The situation is slight-

ly better with regard to the existence of finite Ln-trivial spectra. Such spectra

have been obtained for small values of n in connection with the construction of

the so-called periodic families in the stable homotopy of spheres [8]. [3 J.

The elaee invariance coruieature [8 J finally asserts that. as far as: finite

spectra are concerned. there are no acyclicity types beyond those provided by the L
n

form a sequence with respect to the par-It is known [ 8 J that the functors L
n

tial ordering of the localization functors. namely Ln > Ln_ 1 • The three conjec-

tures taken together then say that the sequence of the Ln is the aforementioned

chromatic filtration.

Independently of the conjectures one knows that all finite spectra X are har-
monic [81. that is. they are local for the homology theory given by the wedge of

all the BP(p) [vn-1J ; in particular if X is finite and non-trivial then Ln(X)

is non-trivial for sufficiently large n

On the other hand one also knows many (infinite) X which are dissonant. that

is. they are trivialized by each of the Ln (if the conjectures are true then

"dissonant" is the same as "disharmonic"). For example the p-torsion Eilenberg-

MacLane spectra are known to be dissonant [8 J.
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3. The local counterparts of A(*) •

Let C denote the category of spectra. Let L: C C be a localization func

tor. Associated to L there is a category of weak equivalences we where, by de

finition, a map in C is in we (or is a w-map, as we shall say) if the homotopy

cofibre is trivialized by L

A spectrum is finite up to if it is in the same connected compo

nent, in we , as some finite spectrum; we denote the subcategory of the wfinite

spectra by Cwf' Let C(L) denote the category of the Llocal spectra, and

C(L)f C(L) n Cwf

If L' is a second localization functor, coarser than L, we let
L'

C denote

the category of the L'trivial spectra, and

C(L) n C
L'

Let the hmaps, finally, mean the weak homotopy equivalences.

Localization theorem. Let Land L' be localization functors of finite type,

and L > L' . There is a homotopy cartesian square

L'
hS,C(L)f hS,C(L)f

t 1
hS,C(L')f hS,C(L')f

where the term on the lower left is contractible.

In other words, if one considers the Ktheories of the Llocal and of the

L'local spectra, respectively, then their difference (i.e. the homotopy fibre of

the natural map) is explicitly describable, namely it is represented by the Ktheory

of the category of those Llocal spectra which are L'trivial.

Proof. There is a similar looking result which is valid in a much more general con

text. In the situation at hand we check that the terms may be rewritten in the

desired form.

Namely if a category with cofibrations is equipped with two notions of weak
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equivalence, one finer than the other, then under rather general hypotheses which

we will not spell out here, there results a homotopy cartesian square of the associ

ated Ktheories [14], [5], [16]. In particular there is such a square in the case

of the category Chf of the homotopyfinite spectra, equipped with the two notions

of weak equivalence wand w' given by Land L' ,respectively. It reads

w'
wS'Chf 

1.
wS,Chf

j
In order to put this square into the desired form we will need to know of the

finiteness of the localization functors, and of the ensuing smashing property (sec

tion 2).

Since L is smashing we can replace it, if necessary, by the functor given by

smashproduct with a Llocalization T of the sphere spectrum. The LIocalization

can thus be an exact functor in the technical sense, so it induces a map in Ktheory.

Similarly L' can be replaced, if necessary, by smashproduct with

it can also be replaced by smashproduct with TAT' (since L > L' ).

T' But

It results

that we can define a natural transformation from the above square to the square of

the theorem: On the upper terms the map is induced by smashproduct with T , and

on the lower terms it is induced by smashproduct with TAT' (We are using here

that hS,C(L)f = wS,C(L)f in view of the fact that hmaps and wmaps are the same

in C(L) ; and similarly with the other terms).

To conclude we check that the map of squares is a homotopy equivalence on each

term. We treat only the case of the map wS,Chf hS,C(L)f' The other cases are

similar.

The map factors as

wS,Chf ---+ wS,Cwf -- hS,C(L)f

so it suffices to show that these two maps are homotopy equivalences.

The inclusion wS,C
hf

wS,Cwf is a homotopy equivalence because of the appro

ximation theorem (section I) which applies in view of the convergence property (sec

tion 2) of the finite localization functor L

The localization map Cwf C(L)f is left inverse to the inclusion C(L)f Cwf
up to a natural transformation which is a wequivalence. It results that the loca

lization map induces a deformation retraction from wS'Cwf to wS,C(L)f = hS,C(L)f

This completes the proof of the localization theorem. _
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Let now P be a set of primes. We denote by A(*,P) the analogue of A(*)

constructed from P-Iocal spaces or spectra; that is, QlhS,C(P)fl .

Lemma I.

from P

There is a natural map A(*,P) K(Z(p» which is an equivalence away

More precisely, the homotopy groups of the homotopy fibre are P-torsion,

and the first p-torsion, pEP, occurs in dimension 2p-2 .

Proof. The map is given by linearization (this involves a definition of the alge-

braic K-theory of rings analogous to that of the algebraic K-theory of spaces, but

in terms of abelian-group-objects, resp. module-objects, cf. [16]). To obtain the

numerical statement we have to know that A(*,P) can also be defined in other terms.

This is one of the main results about the algebraic K-theory of spaces, the argument

is given in [16] for the case where P is the set of all primes, i.e. the case of

A(*). It is not difficult to modify the argument so as to apply to the case of ge-

neral P. The outcome is that A(*,P) may be redefined, up to homotopy, as

Z x llm BH(VkS(p»+

k
where V S(P) denotes a wedge of k P-Iocal sphere spectra, H( .• ) is the sim-

plicial monoid of homotopy equivalences, BH( •• ) its classifying space, and ( .• )+

denotes the plus construction of Quillen. Given that, under the translation, the

A(*,P) K(Z(p»
k themap corresponds to the natural map BH(V S(P» BGlk(Z(p» ,

asserted numerics now follows easily from the fact that the higher homotopy of S(P)
is P-torsion only and the first p-torsion occurs in dimension 2p-3 . -

Lemma 2. The map A(*,(O» K(Q) is a homotopy equivalence.

Proof. This is the special case P = 0 of the preceding lemma. _

Let F(*,P) denote the K-theory of the P-Iocal torsion spaces, or what is the

same, the P-torsion spaces.

Lemma 3. There is a homotopy equivalence

n' F(*,p)
pEP

where n' denotes the restricted product, the direct limit of the products indexed

by the finite subsets of P.

Proof. Every P-torsion spectrum decomposes, up to homotopy, into its p-primary

parts, and only finitely many of these parts are non-trivial because of the finite

type condition on the spectrum. This shows that the approximation theorem (section

J) applies to the reconstruction map which takes a finite collection

of p-primary spectra to the wedge of these spectra. _
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Lemma 4. There is a diagram of homotopy fibrations

F(*,p) I A(*,p) )A(*,(O))

1 j
K(Z/p) ) K(Z(P)) ) K(Q)

In particular the square on the left is homotopy cartesian.

Proof. The upper row is given by the localization theorem applied to the rationali

zation map A(*,P) A(*,(O)) , together with the rewriting provided by lemma 3.

The lower row is the analogous case of Quillen's localization theorem for the map

K(Z(p)) K(Q) . To obtain the map from top to bottom it is necessary to rewrite

the lower row suitably, namely as the analogue of the upper row in the framework of

abeliangroupobjects, cf. [16]. The map on the right is a homotopy equivalence by

lemma 2••

Theorem. The square

A(*) ) n A(*,p)

j
p

1
K(Z) ) n K(Z( ))

p p

is homotopy cartesian, and for every prime p there is a homotopy equivalence

fibre( A(*) K(Z) )(p) fibre( A(*,p) K(Z(p)) ) •

Proof. By lemma 4 there are homotopy cartesian squares

n' F(*,p) F(*,p) A(*,p)
p

1 1 1 1
n' K(Z/p) ) K(Z) K(Z/p) ) K(Z(p))
P

and the localization at p induces a map from the former to the latter. We take

the product of all these maps. Then the square formed by the right hand columns

gives the square of the theorem. To show it is homotopy cartesian it suffices to

show that the square formed by the left hand columns is homotopy cartesian. That is,

we want to show that the map

fibre( n' F(*,p) n' K(Z/p) ) + fibre( n F(*,p) n K(Z/p) )p p p p
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is a weak homotopy equivalence; equivalently (by lemma 4 and since the homotopy fibre

commutes with products and direct limits, up to homotopy) that the inclusion map

fibre( A(*,p) K(Z(p» ) -----+ fibre( A(*,p) K(Z(p»

is one. But by lemma 1 the homotopy group fibre( A(*,p) K(Z(p») is zero

for sufficiently large p (depending on n). So the map induces an isomorphism on

homotopy groups.

The second part of the theorem follows from the first by taking p-localizations

of the vertical fibres and noting that

fibre( A(*,q) K(Z(q» )(p)

in view of lemma I .•

Let us fix a prime p now. Recall from section 2 the localization functors

L >
'"

> L >
n

> >

-I
where Ln is associated to BP(p)[Vn ] (and La is the same as rationalization).

Following the conjectures of Bousfield and Ravenel discussed in section 2 we make the

Hypothesis. Ln is a finite localization functor.

Let us denote the category of the Ln-local spectra by C(p,n) .

A(*,p,n) to be its K-theory,

We define

n IhS.C(p ,n)f I ,

where as usual the subscript f indicates the finite type condition. Localization

induces maps between these spaces, so we obtain a tower of spaces and maps,

interpolating between A(*,p) and the K-theory of the rational numbers.

Next, let C(;:n) be the subcategory of C(p,n) of the spectra which are

Ln_1-trivial; this is what Ravenel calls the n-th monochromatic category [8]. By

the localization theorem its K-theory

n-I
n IhS.C (p,n)f I

represents the n-th layer in the localization tower,

fibre( A(*,p,n) A(*,p,n-I) ) •

The following argument, due to Bokstedt, can be used to prove the non-triviality

of M(*,p,n) in certain cases. Suppose h* is a homology theory coarser than Ln
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(that is, Ln-triviality implies h*-acyclicity). Suppose further that for finite

Ln_1-trivial X the groups hiX are finite and periodic of period 2s, say.

Let ciX denote the order of hiX Then, as one checks, the rational number given

by the alternating product

eX

is multiplicative for cofibration sequences. It results that c defines a homomor-

phism from the class group rrOM(*,p,n) to the multiplicative group of rational num-

bers.

The argument applies in the case of rroM(*,p,l) and shows that this group is

not trivial. For it is known [8] that the localization functor L
I

is definable

in terms of p-Iocal complex K-theory, and KU
i

applied to a finite torsion spectrum

is certainly finite and periodic. It suffices then to note that the number eX is

not in the case of the Moore spectrum Sip

It is likely that a similar argument can be applied to show that rrOM(*,p,2)
is not trivial, and more specifically that the Toda spectrum V(I) represents an

element of infinite order. (Recall that V(I) is the mapping cone of a certain

graded self-map on the Moore spectrum Sip ; the self-map induces multiplication by

(a power of) v j in BP-homology). Assuming this is so, we can deduce a strange

looking consequence. Namely the element [V(I)] in rr
oM(*,p,2)

projects to zero

in rrOA(*,p,2) because the cofibration sequence rk(S/p) >----+ sip _V(J) (where k

is even) implies a relation [V(I)] [Sip] - [Sip] Therefore [V(I)] must be

the image of some element vI ' say, in rr1A(*,p,1) • Thus the periodicity operator
-I

vI E rr*BP(p) [vI ] somehow corresponds to a 'phantom unit' vI in algebraic

K-theory.

As to a general attack on the spaces M(*,p,n) , the first (and perhaps main)

step should be the search for a devissage theorem. Its content would be that for

the purpose of constructing M(*,p,n) one does not really need all of the mono-

chromatic category but only a subcategory of elementary objects. A good

candidate for the elementary objects would seem to be the spectra in C
n- I

which(p,n)
are periodic of minimal period.

We proceed to the construction of the integral localization tower A(*,p,n)

Asis a finite localization functor.Recall our standing hypothesis that L
n

a consequence Ln is smashing (section 2), and Sen) , the Ln-Iocalization of the

sphere spectrum, satisfies Sen) A Sen) Sen) and is thus a very particular kind

of ring spectrum. In particular the associated infinite loop space QS(n) is a

ring space.

Let denote the space of k x k matrices. It is a multiplicative

H-space and, if n I , the monoid of connected components is Mk(Z(p)) . Define
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GLk(QS(n)) as the union of connected components given by pullback with the inclu

sion of GLk(Z(p)) in

Lemma. has a canonical (up to homotopy) classifying space.

set) of maps
k k

Map(V S,V Sen))

a monoid by com

position of maps;
k k
V S V Sen) on the one hand and by smash product with Sen) on the other, using

that Sen) A Sen) Sen) It results that GLk(QS(n)) is homotopy equivalent,

as Hspace, to a monoid. _

Proof. QS(n) may be defined as the space (or better, simplicial

S Sen) ,and may be identified to the mapping space

The latter is homotopy equivalent to Map(Vks( ),vks( ,) which is
n n)

the requisite homotopy equivalences are given by restriction along

We define

The factor Z is the class group of the ring , it has to be taken care of

in this artificial way since the class group is invisible to the plus construction.

The case n = ° is exceptional from the present point of view, we can include it

by defining A(*,p,O) as Z x 11m BGLk(Z(p))+

By exploiting the plus construction one can arrive at a certain amount of nume

rics (as in [14], [16]). There is one general result which can be obtained in this

way, namely the fact that the map

A(*,p,n) A(*,p,nl)

is an equivalence away from p (this uses that QS(n) QS(nl) is an equivalence

away from p , as well as Iconnected). Note this is in sharp distinction from the

situation with the other localization tower.

Beyond that it is possible to obtain quantitative results in (very) low dimen

sions. For example the first homotopy in fibre( A(*,p,l) A(*,p,O)) occurs in

dimension 2p2 and is cyclic of order p

that one can go much further in this way.

But it seems unreasonable to expect

Perhaps the best approach eventually will be to compare the two localization

towers. The idea is that in order to obtain information about

fibre( A(*,p,n) A(*,p,nl)

one should first try to compute with fibre( A(*,p,n) A(*,p,nl)

fibres of a natural transformation

as well as the
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There is no problem in defining a map A(*,p,n) A(*,p,n) . Briefly, one can

also construct A(*,p,n) out of BGLk(QS(n» by group compLetion (with respect

to block sum). And BGLk(QS(n» is practically contained in IhSIC(p,n)fl

(there are some technicalities; in particular the category hSIC(p,n)f should be

blown up to a homotopy equivalent simplicial category in order that one can have an

honest inclusion, cf. corresponding constructions in [16]). The inclusion of

BGLk(QS(n» into IhSIC(p,n)f' , the geometric of the category in

degree I, now induces an inclusion of the suspension BGLk(QS(n») into

IhS.C(p,n)f' , the geometric realization of the full simplicial category. The

adjoint of the latter inclusion then extends, by the group completion principle, to

the desired map of A(*,p,n) into the loop space nlhS.C(p,n)fl •

We will describe a localization theorem for the map A(*,p,n) A(*,p,n) now.

We need a further hypothesis. In fact we need the further hypothesis even for

formulating the theorem.

The hypothesis is that there exists a category of modules over the ring spec

trum Sen) , the connected cover of Sen) (for n I). The hypothetical part

about it is that the morphisms in the category should be actual maps, not homotopy

classes of maps. (There has been done some work on module spectra in this sense by

Robinson [ 9]; recent unpublished work of Schwanzl and Vogt is also relevant). Let

the hypothetical category be denoted Mod (S(n» It will be a category with cofi

brations and weak equivalences in the technical sense of section I. In fact there

are two notions of weak equivalence, the hmaps and the W4napS, where the former are

the weak homotopy equivalences and the latter are the maps which become equivalences

upon changing the ground ring from Sen) to Sen) (or what amounts to the same,

cf. below, the maps which become homotopy equivalences by Lnlocalization).

An object of Mod(S(n» is said to be finite if there is a finite filtration

(sequence of cofibrations, that is) any quotient of which is free of rank I, i.e.

a perhaps shifted copy of Sen) Somewhat more generally we can also speak of

finiteness up to h-equivaLence (resp. w-equivaLence); we indicate this by the sub

script hf (resp. wf). The coarser notion of weak equivalence gives rise to the
w

subcategory Mod(S(n» of the wtrivial modules, or torsion moduLes as we will

say.

The desired localization theorem says that the homotopy fibre

fibre( A(*,p,n) A(*,p,n) )

is represented by the Ktheory of the category of torsion modules over Sen)

The argument of proof is similar to that given in the proof of the localization

theorem in the beginning of this section. Namely for general reasons there is a

homotopy cartesian square
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OlhSO"!'S,n»h"

QIwS.Mod (5(n) I
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· OlhSol':,n»hfl

QlwS.Mod(S(n))hf l

in which the lower left term is contractible. The upper left term is the K-theory

of the category of torsion modules over Sen) It only remains to be shown, there-

fore, that the map on the right may be identified to the map A(*,p,n) A(*,p,n) •

The identification of the upper right term with A(*,p,n) comes from the main

result of [16]; cf. the proofs of lemmas 1 and 4 above for similar points.

The identification of the lower right term with A(*,p,n) is similar to the

argument at the end of the proof of the localization theorem (the last three para-

graphs). Two points deserve mentioning. The first is that one can construct a

Ln-Iocalization of a given S(n)-module by (infinitely) repeated attaching of finite

Ln-acyclic modules; this uses Bokstedt's lemma (section 2) that S Sen) is a S(n)-

equivalence. It results that there exists a Ln-Iocalization functor on MOd(5(n))

which is of finite type (in view of its construction) and therefore also has the

convergence property (section 2). The second point is that a Ln-Iocal spectrum has

a unique S(n)-module structure which may therefore be suppressed or resurrected

according to the need of the moment.

It is a matter of checking the definitions, finally, to see that under these

identifications the two maps correspond as desired.
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4. Appendix: An implication the Lichtenbaum-Quillen conjecture.

We give a quick review of the conjecture, a homotopy theo-

retic reformulation, and finally the application to obtaining a kind of lower bound

on the difference of A(*) and K(Z) .

The content of LQC is that for many rings (and schemes) the algebraic K-theory

ought to be expressible in terms of etale cohomology and thereby computable. With

the advent of the etale K-theory of Dwyer and Friedlander [4] a simpler, and more

explicit, formulation became possible. The new formulation is that the natural

transformation

should be an isomorphism for suitable R. Actually this is conjectured only for

odd primes p, and for sufficiently high degrees; it is known that some such re-

striction is necessary, cf. [lZ].

As usual here K*(R,Z/p) denotes the K-theory of R with coefficients in Zip

We think of it in terms of spectra, namely as the homotopy of K(R,Z/p) , the smash

product of the K-theory spectrum K(R) and the Moore spectrum sip .

The necessity of working with finite coefficients comes from the fact that the

etale homotopy, and therefore also the etaIe K-theory, does not behave properly

unless one restricts to working with finite coefficients.

We will not define the etale K-theory here. We don't have to, in fact. For

Thomason has proved the amazing result that etale K-theory is the same, in many

cases, as "Bott periodic" algebraic Kr t heory [13]. In view of this result LQC trans-

lates into the conjecture that the map

is an isomorphism (for suitable R, odd P , and in sufficiently high degrees).

As to the Bott periodic algebraic K-theory, we find it convenient to use the

qefinition given by Snaith [11]. Namely the Moore spectrum sip supports a self-

map known as the Adams map; if p is odd the map is of degree 2p-Z. It induces

a graded self-map of K(R,Z/p) ,and K(R,Z/p)[S-I] is now defined as the mapping

telescope of the latter, the homotopy direct limit of the sequence

K(R,z/p) __ K(R,Z/p) __ ...

in which each map is the map in question.
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Actually Snaith's procedure is slightly different in that he defines K(R,Z/p)

as the spectrum of maps sip K(R) , so the self-map on K(R,Z/p) is given by com-

position with the Adams map. However the distinction is minor since the Moore spec-

trum and the Adams map are self-dual with respect to Spanier-Whitehead duality.

At any rate, the definition is equivalent to letting

where S/p[S-)j is the mapping telescope of the Adams map.

Recall the localization functor L) (section 2). It is known [ 2 j that

S/p[S-lj L] (Sip) •

Since L) is smashing (section 2) we obtain

K(R,Z/p)[S-lj K(R) A sip A L](S) L](K(R» A sip.

SO LQC translates into a conjecture saying that the homotopy cofibre, F say, of

the localization map

K(R) L) (K(R»

is annihilated by smash product with Sip (for suitable R and odd p, that is,

and in sufficiently high degrees). In view of the cofibration sequence

S ---sip

this means that the self-map of

(in high degrees), so F may be

the self-map; that telescope is

F given by multiplication by p is an equivalence

identified (in high degrees) to the telescope of

F[p-]] , the localization away from p •

Replacing K(R) by K(R)(p) now (the localization at p) we conclude that

the homotopy cofibre of

K(R) (p) --. L) (K(R) (p»

is unchanged (in high degrees) by inverting p , that is, by the rationalization

functor La. Since La = LOL] it follows that the homotopy cofibre is trivial (in

high degrees).

We have thus translated LQC into a conjecture saying that, for suitable R,

and odd p, the localization map

K(R) (p) --. L) (K(R) (p»

should be an equivalence of sufficiently highly connected covers; in other words

that, apart from some bounded piece, the p-local K(R)(p) should already be

L)-local; in still other words that, in terms of the chromatic filtration, K(R)(p)

should support first order phenomena only.
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R the validity of

fractions R[p-I] •
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Before discussing any implications of LQC we must briefly comment on which

rings R are supposed to be 'suitable'. Etale homotopy requires all coefficients

to be finite, as pointed out before, but it also requires them to be prime to the

residue characteristics at hand. As a result the etale K-theory K;t(R,Z/p) is

only defined if p is invertible in R, and there can't possibly be any conjecture

about it otherwise.

sense for general R A standard argument shows that for some

LQC in this sense is equivalent to its validity for the ring of

In particular this is so for Z , the ring of integers. Namely by the theorems of

Quillen, the difference of K(Z) and K(Z[p-I]) is given by K(Z/p) , and that is

trivial at p except in degree °
By naturality of localization applied to the map QSO K(Z) now there is a

commutative diagram

L1(K(Z) (p»

If the right hand vertical map is assumed to be an equivalence it follows that,

at p, the map QSO K(Z) factors through J , the connective cover of LI(QSO)

On the other hand the map QSO K(Z) factors through QSO A(*) which is

known to be a split injection [IS], [17]. If one assumes the validity of LQC it

thus follows that (at least for odd p and in sufficiently high degrees) the diffe-

·rence between

between QSO

and K(Z) must in some way or other account for the difference



195

References.

I. J.F. Adams, Siiabl:e homotopy and generalized homol.ogy, Univ. of Chicago Press
(1974).

2. A.K. Bousfield, The l.oaal.ization of speatra with respeat to homol.ogy, Topology
18 (1979), 257-281.

3. D.M. Davis and M. Mahowald, v1- and v2-periodiaity in stable homotopy theory,
Amer. J. Math. 103 (1981), 615-659.

4. W.G. Dwyer and E.M. Friedlander, Etal.e K-theory and arithmetia. Bull. A.M.S. 6
(]982), 453-455.

5. J.L. Loday, Homotopie des espaaes de aonaordanaes, Semina ire Bourbaki, 30e
annee, 1977/78, nO 516.

6. D.G. Quillen, Cohomol.ogy of groups, Actes, Congres Intern. Math. 1970, tom 2,
47-5].

7. , Higher al.gebraia K-theory. I, Springer Lecture Notes in Math.
341 (]973), 85-147.

8. D.C. Ravenel, Loaal.ization with respeat to aertain periodia homol.ogy theories.

9. A. Robinson, Derived tensor produats in stabl.e homotopy theory, Topology 22
(]983), 1-18 .

10. G. Segal, Categories and aohomol.ogy theories, Topology 13 (1974), 293-312.

11. V.P. Snaith, Towards the Liahtenbaum-Quil.l.en aonjeature aonaerning the al.ge-
braia K-theory of sahemes.

]2. R.W. Thomason, Al.gebraia K-theory and etal.e aohomol.ogy.

13. , The Liahtenbaum-Quil.l.en aonjeature for K/l.*[S-l l .
]4. F. Waldhausen, Al.gebraia K-theory of topol.ogiaal. spaaes. I, Proc. Symp. Pure

Math. vol. 32, part I, A.M.S. (1978), 35-60.

]5. , Al.gebraia K-theory of topol.ogiaal. spaaes. II, Springer Lecture
Notes in Math. 763 (1979), 356-394.

]6. , Al.gebraia K-theory of spaaes.

17. , Al.gebraia K-theory of epacee, a manifol.d approaah.

FAKULTAT FUR MATHEMATIK
UNIVERSITAT BIELEFELD
4800 BIELEFELD, FRG.



COXETER GROUPS AND ASPHERICAL MANIFOLDS-----
Michael 1oJ. Davis*

1. Contractible manifolds and aspherica1 manifolds.

Suppose that Mn is a compact. contractible n-man t f oLd with boundary.

These assumptions imply that the boundary of M has the homology of an

(n-l)-sphere; however. they do not imply that it is simply connected. If

n 3. then for Mn to be homeomorphic to a disk it is obviously necessary

that aM be simply connected. For n 5 this condition is also sufficient

(cf . [5]. [13]. [18]. [19]). On the other hand. for n 4. there exist

examples of such Mn with non-simply cormected boundary (cf. [11]. [lZ]. [14]).

In fact. if n 6. then the fundamental group of the boundary can be any group

G satisfying Hl (G) = 0 = HZ(G) (cf , [9]).

A non-compact space W is simply connected at 00 if every neighborhood of

(i.e •• every complement of a compact set) contains a simply connected

neighborhood of Suppose W is a locally compact. second countable.

Hausdorff space with one end (i.e •• it is connected at 00). Then W can be

written as an increasing union of compact sets W = Ci where Cl C Cz C

c= ...• and where each W - C
i

is connected. The space W is semi-stable if

the inverse sequence

satisfies the Mittag-Leffler Condition. i.e •• if there exists a subsequence of

epimorphisms. (This condition is independent of the choice of Ci.) If W is

semi-stable. then the isomorphism class of the inverse limit n7 (W)

11m n1(W-Ci) is independent of all choices (including base points). The space

W is simply connected at

trivial (cf. [6]. [7]. [17]).

if and only if it is semi-stable and n7 (W) is

*Partially supported by NSF grant MCS-8108814(AOl).
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Now suppose that wn is an open contractible n-manifold. If n 3, then

for Wn to be homeomorphic to In it is obviously necessary that it be simply

connected at 00. For n 4 this condition is also sufficient (cf. [5],[20]).

If Wn is the interior of a compact manifold Mn, then, clearly, Wn is

semi-stable and 117 (W) 111 (a:M). Hence, in view of our previous remarks,

there exist examples which are not simply connected at 00, for any n 4.

(For n = 3, there is a well-known example of Whitehead [22] of an open

contractible 3-manifold which is not simply connected at 00.)

A space is aspherical if its universal cover is contractible.

Aspherical manifolds arise naturally in a variety of geometric contexts.

In such contexts the proof that the manifold is aspherical usually consists of a

direct identification of its universal cover with Euclidean space. As examples

we have: 1) the universal cover of a Riemann surface of genus > 0 is either

the plane or the interior of disk, more generally, 2) if Mn is any

complete manifold of non-positive sectional curvature then the exponential map

exp : TxM M (at any point x £ M) is a covering projection; hence, the

universal cover is diffeomorphic to T M _ In,
x

and 3) if G is any Lie group

with maximal compact subgroup K and if reG is any torsion-free discrete

subgroup, then the universal cover of the manifold r\G/K is G/K which is

diffeomorphic to Euclidean space. On the basis of such examples some people

believed the following well-known conjecture (cf. [7], [8; p. 423]).

CONJECTURE. The universal of closed aspherical manifold is

homeomorphic to Euclidean space.

Of course, the issue here is not the existence of exotic contractible

manifolds (they exist), but rather the existence of exotic contractible

manifolds which simultaneously admit a group of covering transformations with

compact quotient. Some positive results (i.e., non-existence results) have been

obtained, ev g , , in [6], [7], [10].
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This paper, which is an expanded version of my lecture, is basically an

exposition of some of the results of [3J. We shall discuss a method of [3] of

using the theory of Coxeter groups to construct a large number of new examples

of closed aspherical manifolds. Although the construction is quite classical,

its full potential had not been realized previously. The most striking

consequence of the construction is the existence of counterexamples to the above

conjecture in each dimension 4.

In Section 2 of this paper we give some background material on Coxeter

groups. In Section 3 we explain the construction in dimension two, where it

reduces to the classical theory of groups generated by reflections on simply

connected complete Riemann surfaces of constant curvature. The main results are

explained in Section 4 where we consider the same construction in higher

dimensions. In Section 5 we discuss a modification of the construction which

gives many further examples. This modification is used in Section 6 to prove a

result (the only new result in this paper) concerning the Novikov Conjecture.

Finally, in Section 7 we discuss a conjecture concerning Euler characteristics

of even-dimensional closed aspherical manifolds.

2. Coxeter groups.

In this section we review some standard material on Coxeter groups. For

the complete details, see [2].

Let n be a finite graph (i.e., a I-dimensional finite simplicial

complex), with vertex set V and edge set E and let m: E + Z be a function

which assigns to each edge an integer 2. For each pair (v,w) E V x V put

m(v,w)

if V" w

1£ {v,w} E E

otherwise.

These data give a presentation of a group:

r <V; (vw)m(v,w) 1>, (v,w) E. V x V.
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be the standard basis for the vector space Define a

symmetric bilinear form B on I.
V

by

- cos(rr/m(v,w))

(where rr/ oo is interpreted as 0). For each v E V, let ° denote thev

linear reflection on IV defined by 0v(x) x - 2B(ev,x)ev and let r be the

subgroup of GL(I
V)

generated by (oV)VEV' (Note that r leaves the form B

invariant.)

Suppose that v,w are distinct elements of V, that P is the plane

spanned by e and
v

ew and that m = m(v,w). The restriction of B to P is

positive semi-definite and it is positive definite if and only if m F 00.

Moreover, if m is finite, then ° Ipv and ° Ipw
are the orthogonal

reflections through the lines orthogonal to e and to
v

respectively, and

these lines make an angle of rr/m. Hence, (J (J Ip is a rotation through and
v w

angle of 2rr/m and (J Ip and (J Ip generate a dihedral group of order 2m.
v w

Since (J (J fixes p.L, it follows that o (J has order m. If m = 00 , thenv w v w

one can easily show that (J (J has order m.
v w

It follows that the map v 0
v extends to an isomorphism r r, called

the canonical representation of r. The construction of this representation

shows that a) the natural map i: V r is an injection, and that b) the

order of i(v)i(w) is equal to m(v,w) (rather than just dividing m(v,w)).

Henceforth, we identify V with i(V). The pair (r,V) is a Coxeter system

and r is a The graph n together with the labelling of its

edges is the associated It follows from property b) above that

the correspondence between labelled graphs and isomorphism classes of Coxeter

systems is bijective.

There is another way to record the same information as is contained in the

associated labelled graph. Let n' be the graph with the same vertex set V

as n but with edge set E' obtained by first deleting the elements of E
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labelled Z and then adding edges for each unordered pair of distinct

vertices {v,w} not in E (i.e., with m(v,w) = 00). As a notational

simplification the edges labelled 3 are usually left unmarked. The graph Q'

together with the labelling of its edges is called the Coxeter diagram of

(f,V). A Coxeter system is irreducible if its Coxeter diagram is connected.

Suppose that (f,V) is a Coxeter system. For any subset S of V

denote by f
S

the subgroup generated by S. (It turns out that the pair

(fS'S) is also a Coxeter system.) If the Coxeter diagram of (r ,V) has k

components with vertex sets Vi'··· ,Vk' then f = f
V

x ... x fV •
1 k

Finite Coxeter groups. A Coxeter group f is finite if and only if the form B

is positive definite. Suppose that this is the case. Let C be the simplicial

cone in IV defined by the equations: B(ev'x) 0, v .V. Thus, (e)V V is

the set of inward pointing unit normals to the "panels" (Le., codimension one

faces) of C. Moreover, C is a closed fundamental domain for r on JIV in

the sense that it intersects each f-orbit in exactly one point. (It follows

that the orbit space JIV/f is homeomorphic to C.)

Still supposing that f is finite, we have that order (vw) = m(v,w) < 00

for each pair (v,w) of vertices. Hence, the associated graph Q is the

i-skeleton of the simplex with vertex set V. On the other hand, it turns out,

that each component of the Coxeter diagram Q' is a tree. The well-known list

of Coxeter diagrams of irreducible Coxeter systems of finite Coxeter groups is

given below. The list contains one infinite family IZ(p) in dimension Z

(where IZ(p) denotes the dihedral group of order Zp), three families

in each dimension (with a few restrictions in low dimensions), and 6

additional groups.

Many of these groups have other convenient descriptions. For example,

is the symmetric group on + symbols, while A3, B
3,

H3 are the full

groups of motions of regular solids, namely, the tetrahedron, the octahedron,

and the icosahedron, respectively.
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Coxeter Diagrams .2i Irreducible Finite Coxeter Groups

(R. vertices)

4
(R. 0: 2 vertices)

-< (R. 4 vertices)

.__.---.--.---.
-'-j-'-'-'

--_._-_._--.---.---.
J

4

5

5

p

3. The construction in dimension

(p i:: 5)

In dimension two all our constructions reduce to well-known classical

results. We shall now review these results.

Let X be a polygon. We shall find it convenient to work with the graph

o which is the dual of ax. Thus, if V denotes the vertex set of 0 and E

the edge set, then

v {edges of ax}

E {{v,w} Iv,w E; v, v -F w, v n w -F 0L

Equivalently, E is the set of vertices of X. Choose a labelling

m : E + {2,3, •.. }. Thus, we label the vertices of X by integers i:: 2.
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The labelled graph II defines a Coxeter system (f,V). For each x in X,

let Vex) denote the set of v in V such that x v , Let fV(x) be the

subgroup generated by Vex). (By convention f 0 is the trivial group.) Thus,

if x belongs to the interior of X, then fV(x) is trivial; if x belongs

to the interior of an edge v, then rVex) is the cyclic group of order 2

generated by v', and if x is a vertex, then is the dihedral group

generated by the edges containing x.

There is an obvious method for constructing a f-space 1< by pasting

together copies of X, one for each element of f. To be precise,

put 'U = (fXX) /-v where the equivalence relation A.I is defined by

(g,x) '" (h,y) <==> x y and
-1

g h fV(x)'

Let [g,x] denote the equivalence class of (g,x). There is a natural f-action

on defined by h[g,x] = [hg,x]. The isotropy group at [g,x] is clearly

-1
gfV(x)g Since each of these isotropy groups is finite, it is easy to see

that the action is proper, It is also not difficult to see that 14 is a

2-manifold. (At each edge two copies of X fit together. At a vertex labelled

m the picture is locally isomorphic to the canonical action of the dihedral

group of order 2m on I
2
. )
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The surface is simply connected. This can be seen geometrically using

the developing map. (See Remark 1 at the end of this section or [21].) It also

follows from the results of the next section. There is also a direct argument

using covering space theory. (Let p: U + U be the universal cover of -U,

X -1 '" be the inverse of thelet be a component of p (X), and let s : X + X

homeomorphism pix. Lift each involution v in V to an involution v on

oJ

such that the fixed set of v contains the corresponding edge of X. This

defines a lift of the r-action toU. N

The mapping s: X + X, then extends to a

r-equivariant section U + fl. Hence, the covering is trivial and U is

simply connected.)

Since 1L is a simply connected surface, it is homeomorphic either to S2

or to The case = S2 occurs if and only if r is finite. By the

classification of finite Coxeter groups described in the previous section, this

happens if and only if X is a triangle and the set of labels {p,q,r} is

either {2,2,r}, {2,3,3}, {2,3,4}, or {2,3,5} (corresponding, respectively, to

The moral to be drawn from the above discussion is that apart from a few

exceptional cases this construction always leads to a contractible 2-manifo1d

t{. As we shall see in the next section, virtually the same construction works

in any dimension. The surprising fact is that, under a mild restriction, the

resulting manifold is also contractible.

At this point we have not yet constructed any closed aspherical manifolds.

The problem is that the transformation group r does not act freely on U.

This can be remedied as follows. Suppose r is infinite and let r' be any

torsion-free subgroup of finite index in r. (There are various algorithms for

finding such subgroups; however, in general, none of them are very satisfactory.

However, as we have seen in the previous section any Coxeter group is a subgroup

of some linear group; hence, it follows from Selberg's Lemma (cf. [15]) that any

Coxeter group is virtually torsion-free.) Since each r-isotropy group is

finite, each r'-isotropy group is trivial; hence, + is a covering
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projection. Since [r:r'] < is compact; hence, £l/r' is a closed

aspherical surface.

REMARK 1. Since the local picture in near a vertex in X labelled m is

isomorphic to the canonical action of the dihedral group of order 2m on

we should think of the label as specifying an interior angle of n/m at this

vertex. Depending on whether the sum of this interior angles is greater than,

equal to, or less than

in. respectively. S2.

n(Card V -2). X can be realized as a convex polygon

the Euclidean plane or the hyperbolic plane H2

with interior angles as specified by the labels. There is then a well-defined

homomorphism from r onto r. the group generated by the orthogonal

reflections through the sides of this convex polygon. Using the r-actions, we

obtain a map GL+ M2• where M2 denotes the appropriate choice of or

H2• This map is easily seen to be a covering projection. Since M
2

is simply

connected, this map is a homeomorphism. It follows that r is discrete and

isomorphic to r.

The classification of finite Coxeter groups in dimension 3 can then be

recovered from the facts that 1) any convex polygon in S2 with non-obtuse

interior angles is a spherical triangle and 2) the sum of the interior angles

in such a triangle is > n.

REMARK 2. In higher dimensions the situation with cocompact geometric

reflection groups is as follows. In the spherical case, the group r is a

finite Coxeter group and the fundamental chamber X is a spherical simplex. In

the flat case, there is also a complete classification of possible Coxeter

groups (cf. [2. p. 199]); moreover, X is a product of Euclidean simplices, one

for each irreducible factor of r. In the hyperbolic case, the Coxeter group r

must be irreducible; however. the chamber X need not be a simplex (as we have

seen already in dimension 2). If it is a simplex, then there are only a few

possibilities: 9 in dimension 3, 5 in dimension 4. and none in higher

dimensions (cf. Exercise 15, p. 133 in [2). In the general hyperbolic case.

the situation is as follows.
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In dimension 3 there is a rich theory and complete result due to Andreev (cf.

[1] or [21]). In dimensions > 3 there are a few isolated examples but no

general understanding of the possibilities; while in very high dimensions

(something like dimensions > 30) Vinberg has apparently proved that cocompact

hyperbolic reflection groups do not exist. In summary. relatively few Coxeter

groups have representations as cocompact geometric reflection groups and in

these cases. at least in dimensions > 3. there are very few combinatorial

types of convex polyhedra which can occur as fundamental chambers. As we shall

see in the next section. if we drop our geometric requirements. then the

situation reverts to its original simplicity.

4. The construction in dimension n.

Let X be a compact. contractible n-manifold with boundary and let L be

a PL-triangulation of its boundary. The simplicial complex L will be used for

two purposes. First. a Coxeter system will be constructed by labelling the

edges of the I-skeleton of L. Second. ax will be given the structure of the

dual cell complex to L.

Let V be the vertex set of L. E the edge set. and n the I-skeleton.

There are two conditions which we want our labelling m: E + {2.3 •••• } to

satisfy. The first condition is the following:

(*) For each simplex S L the subgroup r
S
' generated by S. is finite.

This means that for any S L if we discard the edges labelled 2. then the

resulting labelled graph is the Coxeter diagram of a finite Coxeter group. For

example. if L is an octahedron we could label its edges as below. In general.

for any simplicial complex L if we label every edge by 2. then condition

(*) holds. since in this case for each S 6 L we will have

The second condition is the converse to the first:

(**) If S is a subset of V such that rs is finite. then S« L.
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L is an octahedron with a vertex at

Since by construction an unordered pair of vertices {v,w} belongs to E if

and only if m(v,w) this condition is vacuous for subsets of cardinality

less than 3. Hence, condition (**) means that if Q contains a subgraph

with vertex set S which is isomorphic to the I-skeleton of a simplex and which

is not equal to the I-skeleton of a simplex in L, then the edge labels must be

such that f S is infinite. For example, if L is the suspension of a

triangle, then the labels p,q,r on the edges of the triangle must satisfy

-1 -1 -1
p + q + r 1.

L is the suspension of a triangle with a vertex at
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If any subgraph of 0 which is isomorphic to the 1-skeleton of a simplex is

equal to the 1-skeleton of some simplex in L, then condition (**)

holds vacuously. For example, the octahedron has this property as does any

polygon with more than 3 edges. More generally, if L is any simplicial

complex, then its barycentric subdivision has this property (cf. Lemma 11.3 in

[3J). Therefore, conditions (*) and (**) are always satisfied if we replace

L by its barycentric subdivision and label each edge 2 (or in any other

fashion which satisfies (*». We now assume that we have labelled the edges of

L in some fashion so that conditions (*) and (**) hold and we let (r,V)

denote the resulting Coxeter system.

Next we cellulate ax as the dual cell complex. Thus, for example, if L

is an octahedron, X will be a cube. For each v V,

dual cell of {v} and for each simplex S L, let Xs
S. Thus,

Xs n X
v eS v

let X denote the
v

be the dual cell of

(The Xv' which are faces of codimension one in X, are called the panels of

X.) Also, for each subset S of V put

X
o(S) U

VES

X .
v

If s is actually a simplex of L, then is a regular neighborhood of

S in the barycentric subdivision of L. Hence,

(D) If S Eo L, then the of panels Xo(s) is .2! codimension

in ax.

For each x E X let V(x) = {v vlx EX} be the set of panels which cOntain
v

x and let be the subgroup generated V(x). As before, we define a
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r-space u= where the equivalence relation -v is defined exactly

as in the previous section. The map x + [l,x] induces an embedding X + U

which we regard as an inclusion. Observe that a) X is a fundamental domain

for r on U and that b) for each x E X the isotropy subgroup is rV(x)'

We claim that:

(1) r acts properly on u..

(2) U is a manifold and r acts locally smoothly.

(3) V- is contractible.

(4) If L (=aX) is not simply connected, then U. is not simply

connected at 00 .
Basically, (1) is equivalent to condition (*), while (3) is equivalent to

condition (**).

Proof £f (1) and (2). To say that the cells of a polyhedron intersect in

general position means that the dual polyhedron is a simplicial complex. Hence,

the panels of X intersect in general position. This means that for each

X E X we can find a neighborhood

Let W
x

simplicial cone in j[V(x). rV(x)ux be the corresponding neighborhood

is the standard

of the form j[m x CV(X)

CV(X)and where

in Xx

in

U of
x

xis a neighborhood ofwhere j[m

of x in ZL. Recall that an action of a discrete group is proper if and only

if (i) the orbit space is Hausdorff, (ii) each isotropy group is finite and

(iii) each point has a neighborhood which is invariant under the isotropy

subgroup and which is disjoint from all other translates of itself.

Since Ujr;, X, (L) holds. Condition (*) implies (ii). Also, gWx is a

neighborhood of [g,x] satisfying (iii). Hence, r acts properly. Since

rV(x) is a finite Coxeter group, a fundamental chamber for its canonical action

on j[V(x) is CV(X). Hence, r cV(x) ;, ll.V(x) and W = rV(x)ux ;,Vex) x
..m x ..V(x) • This shows that U is locally Euclidean and that the action is

locally linear, proving (2).

Proof of (3) and (4). For any g E r let t(g) denote its word length with

respect to the generating set V. Let Vg denote the set of "reflections"

through the panels of gX (i.e., g -1V = gVg .) Put
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C(g) {w E vgl R,(wg) < R,(g)} and

B(g) {v 6 vi R,(gv) < R,(g)} = g-lC(g)g.

(C(g) is the set of reflections across panels of gX such that the reflected

image of gX is closer to X than is gX. B(g) is the set of reflections

across these same panels after they have been translated back to X.) Also, put

o(gX) gXcr(B(g»'

i.e., o(gX) is the union of those panels of gX which are indexed by C(g).

LEMMA A (cf , [3, Lennna 7.12] or [16, p. 108]). For g e r , the subgroup

Sketch of Proof, Finite Coxeter groups are distinguished from infinite Coxeter

groups by the fact that each finite one has a unique element of longest length.

It is not hard to see that has such an element. Explicitly, let h be

the (unique) element of shortest length in the coset grB{g)" Then it follows

from Exercises 3 and 22, p. 43, in [2] that

length in rB(g)'

-1
a = gh is the element of longest

Q.E.D.
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Next order the elements of f,

is the unique element of length 0,

gl = 1. For each integer m 1, put

X
m &mX, oX

m

T
m

m

U Xi'
i=1

The next lemma asserts that the chambers intersect as one would expect them to.

(For a proof see [3, Lemma 8.2].)

LEMMA B. For each integer m 2, X
m
n T

m_1
oX •

m

Thus, T
m

is obtained from T
m_1

by pasting on a copy of X along a certain

union of panels.

By Lemma A, for each g. f the group fB(g) is finite. Condition (**)

implies that B(g) L. Statement (D) then implies that the union of panels

XO(B(g» is a disk of codimension zero in ax for each g f. Since oX
m

this means that oX is a disk of codimension zero in ax. Hence
m m

T
m

is the boundary connected sum of m copies of X. Since X is

contractible, so is

proves 3).

T •
m Since U = U:=1 Tm,

Zl is contractible, which

Since 2( is formed by successively pasting on copies of X (which are

contractible) to Tm along disks, Z( - T is homotopy equivalent to aT.m m

Since aTm is the connected sum of m copies of ax, we have (provided

dim X 3) that n1(aTm) is the free product of m copies of n 1(aX).
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inclusion can clearly be identified with the projection onto the first m

factors of the free product. In particular, this map is onto for each m 1.

Thus, U is semi-stable and the inverse limit -«7 (U) is the "projective

free product" of an infinite number of copies of 11
1
(ax). Hence, if 111(aX)

is not trivial, then this inverse limit is not trivial (or even finitely

generated) . This proves (.+).

REMARK 1. As we have previously remarked, f always contains torsion-free

subgroups of finite index and any such subgroup f' leads to a closed

aspherical manifold Zi/f'. In view of the fact that ax may be non-simply

connected whenever dim X 4, statement (4) implies that the conj ecture 0 f

Section 1 is false in dimensions <: 4.

REMARK 2. In the special ease where (f,V) is obtained by labelling each edge

of a graph by 2, there is any easy construction of a torsion-free subgroup

f'. Let (H,V) be the Coxeter system defined by setting m(v,w) 2 for each

pair {v,w} of distinct vertices in V. Thus, H is the finite Coxeter group

(Z/2Z)V. There is a natural epimorphism f H which is the identity on

V. Let f' be the kernel of q7. If S is any subset of V such that f S

is finite, then f
S

- «Z/2Z)S H
S;

hence, for any such S, is an

isomorphism onto HS' Since any finite subgroup of f is contained in some

isotropy group and is consequently conjugate to a subgroup of some f S' we have

that f' is torsion-free. (Incidentally, f' is the commutator subgroup.) If

1.-1. = (fXX)/N, then there is an alternative description of the quotient

utr: .

Thus,

-1
Namely, urr: (HXX)/",' where (g,x) ...... ' (h,x) g h E HV(x)'

H acts a reflection group on 'U/f' with quotient X.

REMARK 3. The construction of this section suggests several questions

concerning fundamental groups at First of all, R. Geoghegan has conjectured

that if the universal cover of a finite complex has one end, then it must be
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semi-stable. After seeing the above construction, H. Sah and R. Schultz both

asked if the fundamental group at of the universal cover of a closed

aspherical manifold can ever be non-trivial and finitely generated (i.e., can

the universal cover be stable at without being simply connected at 00).

REMARK 4. There is some flexibility in the main construction of this section.

First of all, for to be contractible it is not necessary that each face of

X be a cell. All that the proof requires is that X be contractible and that

each proper face be acyclic. (For example, we can change a panel of X by

taking connected sun with a homology sphere.) Secondly and more interestingly,

it is not necessary for the simplicial complex L to be a PL triangulation of

a homology sphere. All that is required is that L have the homology of an

(n-i)-sphere and that it be a polyhedral homology manifold (i.e., the link of

each k-simplex must have the homology of an (n-k-2)-sphere). Any such L can

then be "dualized" (Le., "resolved") to produce a contractible n-manifold X

with contractible faces. This X can then be used to produce a contractible

Zl as before. If one is interested in constructing proper, locally smooth

actions of a discrete group generated by "reflections" on a contractible

manifold with compact quotient, then there is no further flexibility. That is

to say, with the above two provisos, every cocompact reflection on

contractible manifold be constructed above (cf. [3]). However, as we

shall see in the next section, there is quite a bit more flexibility if we are

only interested in producing more examples of aspherical manifolds.

5. ! generalization.

We begin this section by considering a modification of our construction in

dimension 2. Rather than starting with the underlying space of X a 2-disk,

let it be any compact surface with nonempty boundary. Take a polygonal sub-

division of the boundary and label the vertices by integers 2. For example,

X could be one of the "orbifolds" pictured below with random labels on the

vertices. The polygonal subdivision of the boundary together with the labelling
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defines a Coxeter system (r,V). As before, paste together copies of X to

obtain a surface with r-action. The surface LL will no

longer be contractible, but it will be aspherical provided X is not a 2-disk.

(After all, almost every surface is aspherical.) If r' is any closed

torsion-free subgroup of finite index in r, then Zl/r' will be a closed

aspherical surface.

Next let us try to make the same modification in an arbitrary dimension.

Let X be a compact aspherical n-manifold with boundary. (The boundary need

not be aspherical.) Let L be a triangulation of ax. After possibly

replacing L by its barycentric subdivision, we can find a labelling of its

edges so that the resulting Coxeter system (r,V)

(**). As in Section 4, there results an n-manifold

satisfies conditions (*) and

ZL with proper r-action.

The proof of Claim (3) in Section 4 shows that is homeomorphic to the

infinite boundary connected sum of copies of X. Since X is aspherical, so is

(the wedge of two aspherical spaces is again aspherical). The fundamental

group of 1L is an infinite free product of copies of If r' is a

torsion-free subgroup of finite index in r, then is a closed

aspherical manifold; its fundamental group is, of course, an extension of r'

by

REMARK. One can imagine situations where it would be convenient if one could

double a compact aspherical manifold along its boundary and obtain a closed

aspherical manifold as the result. However, the doubled manifold is not
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aspherical unless the boundary is aspherical and its fundamental group injects

into the fundamental group of the original manifold. The method described above

can be viewed as a fancy method of doubling so that the result will be

aspherical.

In [21] Thurston considers the above construction for certain compact

aspherical 3-manifolds. (In fact, the discussion in [21] inspired the results

of Sections 4 and 5.) Thurston shows that with a few more hypotheses the

3-dimensional orbifold can be given a hyperbolic structure. This allows him to

"double" certain hyperbolic 3-manifolds along their boundaries (or actually

sub-surfaces of their boundaries). This "orbifold trick" plays an important

technical role in the proof of his famous theorem on atoroidal Haken

3-manifolds.

6. An observation concerning the Novikov Conjecture.

A group is geometrically finite if it is the fundamental group of an

aspherical finite complex (or equivalently, if it is the fundamental group of an

aspherical compact manifold with boundary).

If Mn is a manifold with boundary with fundamental group n, then there

is a surgery map (J : [(M,aM); (G/TOP,*)] + L (n).
n

The map (J need not be a

homomorphism; however, it is if we replace M by M x ni , i > 0, and aM by

The Novikov Conjecture for a geometrically finite group n asserts that if

Mn is any aspherical compact manifold with fundamental group n, then (J :

[MXI,a(MXI),(G/TOP,*)] + L
n
+1(n) becomes a monomorphism after tensoring with

the rationals. A stronger version of this asserts that (J is a monomorphism.

(See [4] for a discussion of these conjectures.)

PROPOSITION. If the Novikov Conjecture (resp. the strong version of the Novikov

Conjecture) holds for the fundamental group of every closed aspherical manifold,

*then it holds for every geometrically finite group.

*The fact that the construction of the previous section could be used to prove
this proposition first came up during a conversation with John Morgan.
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Proof. Let (X,aX) be an aspherical compact manifold with fundamental group

n. Triangulate ax, take the barycentric subdivision, and label each edge by

2 to form a Coxeter system (f,V). Let H; (I/2Z)V, f'; ker(f+H),

U ; (I'xX) /-v, and U-'; '?Ljf' ; (HxX)/-v', be as in Remark 2 of Section 4.

There is a commutative diagram

[(X, ax) , (G/TOP,*)]..Q.., L (n)
n

.. 11*

[U', G/TOP] __-,,0,->, L (n')
n

where II: Zl' + x/ax is the map which collapses everything outside X to a

point, where n'; n1('Z('), and where i* is the map induced by the inclusion

n ; n1 ; n'.The proposition follows easily from the next claim.

(If ° is not a homomorphism, then replace X by X x n4, ax by a(xxn4) , &C'

by U' x n4 and [U',G/TOP] by [(U'xn
4
, U.'xS

3
) ; (G/TOP,*)].)

*CLAIM. The map II [(X,aX),(G/TOP,*)] + [tt' ,G/TOP} is a monomorphism.

Proof £i Claim. We first proved the corresponding statement in cohomology. The

argument is based on the existence of an "alternation map" (cf. Section 9 in

[3]). If ct is a singular chain in X, then we can "alternate" it to form the

chain

A(ct) r ct
hEH

in The map ct + A(ct) clearly vanishes on c*(aX); hence, there is a

*This induces a homomorphism A *H (U.') +

* *H (x,aX) which is a splitting for II * * *H (X,aX) + H (t{'). Hence, II is a

split monomorphism on cohomology (with arbitrary coefficients). Since for any

space Y, *this is enough to prove that II is

rationally a monomorphism on [(X,aX),(G/TOP,*)]. (Hence, the proposition holds

for the weak version of the Novikov Conjecture.) According to Sullivan's

calculation of the homotopy type of G/TOP, *showing that II is a monomorphism
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*is equivalent to showing that it is a monomorphism on H ( ,1(2)) and on

*KO ( ) We have already proved it for ordinary cohomology with

arbitrary coefficients. To prove the corresponding statement for an

extraordinary cohomology theory we first need to make some small modifications.

Let R be a ring in which IHI is invertible (i.e., in which 2 is

invertible). Put

A IHI- 1 E (_l)g,(h)h E R[H].
heH

For any R[H]-module M define a submodule

easily checked that

(a) A2 = A

-Z,VVEV}. It is

(b) Image (A:M-+-M) •

*For an arbitrary cohomology theory it is not clear how to split A.

ClL*(However, suppose rT is a cohomology theory with value in R-modules and

r,,*( *that 2 is invertible in R (e.g. ) = KO (

the singular set. By excision,

) Let E C 2C be

(c) 7+*Cu.: ,E);;;< E N*(x,ax) from which it follows that
heH

(d) Y*(U',E)Alt;;;< ?f\x,ax).

Using (a), (b), and the sequence of the pair (2(' ,E), we find that

W*(U,)Alt ;;;< 11-*<'21..' ,l:)Alt. Hence, there is a map

1f*(U') ... 7+*(U·)Alt ?f*(X, ax)

*which splits A. This proves the claim and consequently, the proposition.

7. The rational Euler characteristic and some conjectures.

Associated to any orbifold there is a rational number, called its "Euler

characteristic," which is multiplicative with respect to orbifold coverings (cf ,

[21]). If the orbifold is cellulated so that each stratum is a subcomplex, then

this is defined as the alternating sum of the number of cells in each dimension
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where each cell is given a weight of the inverse of the order of its isotropy

group.

We suppose, as usual, that Xn is a compact n-manifold with boundary, that

L is a triangulation of ax, that (f,V) is a Coxeter system obtained by

labelling the edges of L, that condition (*) of Section 4 is satisfied, and

that u.= (fxX)/"'. For each S E L, let Xs C ax be the dual cell of S.

Let e(X) be the ordinary Euler characteristic of the underlying topological

space of X minus that of ax. The rational Euler characteristic of X is

then defined by

(1) x(X) e(X) + I:
S£L

dim Xs(-1) 1

1"9
e(X) + (_l)n I:

S6L

(_l)Card(S) 1

TfJ

where IfSI denotes the order of f
S'

It is then clear that if f' is a

torsion-free subgroup of finite index in f, then X(tl/f') = [f:f'lx(X).

Also, if is contractible, then x(X) = X(f), where X(f) is the rational

Euler characteristic as defined in [16l.

For example, if X is a triangle and f is the (p,q,r)-triangle group,

then

x(X)
3 1 1 1 1 -1 -1 -1

- 2" + (zp + 2q + zr) = 2"«p +q +r )-1).

is a closed surface which is aspherical, then
2

X(M ) 5. o. It

follows that if

surfaces, then

••• x

> O.

is a product of closed aspherical

A well-known conjecture of Hopf is the following:

CONJECTURE 1 (Hopf). If M2k closed manifold of non-positive sectional

curvature, then (_1)kx(M
2k)

> O.
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This was proved by Chern for 4-manifolds and by Serre [16] for local symmetric

spaces. Recently, H. G. Donnelly and F. Xavier have established it under a

hypothesis of pinched negative curvature.

More generally W. Thurston has asked if the following conjecture is true.

CONJECTURE 2 (Thurston). If M2k is closed aspherical manifold, then

(_1)kX(M
2k) > O.

It should be pointed out that this conjecture contradicts another conjecture of

Kan-Thurston which asserts that any closed manifold has the same homology as

some closed aspherical manifold.

Conjecture 2 implies the following conjecture.

2k
CONJECTURE 3. Let X ,r,U. be above and let X(X) denote the rational

Euler characteristic. If 1L is aspherical, then (_1)kx(X2k)
> O.

One might try to construct a 4-dimensional counterexample to the above

conjecture as follows. Let X be a 4-cell and L some specific triangulation

of S3. Label the edges in L in some fashion so that conditions (*) and

(**) hold and calculate X(X) using (1). After making a number of such

calculations and having the result invariably come out non-negative, I now

believe Conjectures 2 and 3 are true. A more or less random example of such a

calculation is included below.

EXAMPLE. Let J be a triangulation of S2 and let L be the suspension of

J. Label each edge in J by2 and each edge in L-J by 3. This satisfies

(*). If J is not the boundary of a tetrahedron and if each circuit of length

three in J bounds a triangle then it also satisfies (**) • Let denote

the number of i-simplices in J. Let us calculate X(X) using

(1) x(X) 1 + l:
Sl:L
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There are two types of triangles:

(weight

1 1
7; a 1 + 3" a O'

of

a
l

of type

hence, the vertices

hence, the edges contribute

of type

(weight f;);
(weight t) and 2a 1

1 1
hence the triangles contribute - (8 a2+ 12 a 3)·

1
(weight ill); hence, the

of type

1
(weight 24);

2a2 tetrahedron each of type

1
contribute 96 a 2• Thus,

1(aO+2) vertices in L each of weight 2;
1- 2 (a O+2). There are two types of edges:

and

type

tetrahedra

contribute

There are

There are

2 and 3a 2 2a1, we can rewrite this as

then the equation implies that either

Ifa
1

< 9.

(aO,a 1) = (4,6)

Thus,48
a 1 "5 < 10.then we must haveIf this is to be 0,

or (5,9). The first case can only happen if J is the boundary of a tetra-

hedron and the second only if J is the suspension of the boundary of a

triangle. In either case (**) does not hold; while in every other case

x(X) O.

The geometric picture of X is as follows. Let Y be a 3-cel1 with ay

cellulated as the dual polyhedron to J and with all dihedral angles 90°.

Combinatorially, X is Y x I; however, the top and bottom faces Y x {O}

and Y x {I} meet each (face of Y) I at a dihedral angle of 60°.
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ACYCLIC MAPS AND POINCARE SPACES

Ian HAMBLETON and Jean-Claude HAUSMANN

1. The "minus" problem for Poincare spaces

Recall that a continous map f : Y Z is called

if its homotopy theoretic fiber is an acyclic space, or equivalently

if it induces an isomorphism on homology or cohomology with any

local coefficients. If the space Y is fixed, the correspondence

ker"lf produces a bijection between equivalence classes of

acyclic maps f Y Z and perfect normal subgroups of "1 (Y). A

representative Y y+ of the class corresponding to the perfect
P

normal subgroup P of "l(Y) can be obtained by a QuIllen

which means that Y; is obtained by attaching cells of

dimension 2 and 3 to Y. For details and other properties of acyclic

maps, see [HH].

A space X is called a (06 n)

if it is homotopy equivalent to a finite complex and if there exists

a class [xl E so that - OX : Hk(X;B) Hn_k(X;B) is an

isomorphism for any B. If Y is a Poincare space and

f : Y X an acyclic map with "l(X) finitely presented, then X is

a Poincare space. The homology condition is obviously satisfied

for X and it only remains to prove that X is homotopy equivalent

to a finite complex. As "l(X) is finitely presented, the group "1 (X)

is finitely presented iff ker"lf is the normal closure of finitely

many elements in "l(Y)' Hence a space Y; homotopy

equivalent to X may be obtained by attaching to finitely

2-cells and then the same number of 3-cells.

Let X be a Poincare space. For each epimorphism

: r (X) with r finitely presented and perfect, we

consider the problem of finding an acyclic map f : Y X, where Y

is a Poincare space, "1 (Y) =- rand "1 f =- In other words : is X

obtained by performing a plus construction on a Poincare space with

fundamental group I') (the "minus" problem for
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First observe that the existence of such an acyclic map

f : Y X implies some conditions on X. The following commutative

diagram :

shows the existence of a lifting a; : X of the

characteristic map aX : X B1T
l(X)

(see [H-H, Proposition 3.1]).

Moreover, recall that for any space Z, the homomorphism

H2aZ : H2(Z;C) H
2(B1T l(Z)

;C) is surjective for any

(since B1T 1 (Z) is obtainable from Z by adding cells of dimension 2: 3) .

Hence the following commutative diagram

H
2
(X;C)

shows that for any (X)-module C, the homomorphisms and

are both surjective. This, of course, implies non-trivial

compatibilities between H2(X;C) and H
2(Bf;C)

=' H2(f;C).

These first remarks suggest a more natural formulation of

the above problem, using the following definition :

(1.1) Definition

(\p,a) , where:

Let X be a Poincare space. Let us consider pairs

1) : is an epimorphism of finitely presented groups

with perfect, and
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2) a x Br+ makes the following diagram commute
kertp

is surjective for any-and H
2a

: H
2(X;C)

(X)-module C.

Such a pair (tp,a) is if there exists an acyclic

map f : with Y a Poincare space, TIl (Y) = r,TIlf = tp and
+a y = a.

Our problem then becomes : given a Poincare space X and a

pair (tp,a) as in (1.1), is this pair realizable? The answer that

we are able to give to this more precise problem is contained in

Theorem (1.2) below. Recall that a group G is called tOQatty

if any finitely generated subgroup of G is contained is a finitely

generated perfect subgroup of G.

is another lifting of ax such that the pair

the conditions of (1,1), then

ii)

(1.2) Theorem Let X be a Poincare space of formal dimension

i) a pair (tp,a) as in (1.1) determines an element o(tp,a) in the

vJall surgery obstruction group Ln(tp). If (tp,a) is realizable,

then o (tp,a) = O.

If at : X Br+
kertp

(tp,a') satisfies to

o (tp,a) = 0 (tp,a') •

iii) If in addition and kertp is locally perfect, then o (tp,a) 0

implies that (tp,a) is realizable.

(1.3) Remarks: a) The Wall group used in (1.2) is the obstruction

group for surgery to a homotopy equivalence (sometimes called L
h)

.
n

Recall that the group L
n(

) fits in the exact sequence

b) The same theory holds for simple Poincare s?aces [,1a, Chapter 2].

using simple acyclic maps (the Whitehead torsion of an acyclic
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map f : Y - X is well defined in Hh('TT
l
(X)) ;if this torsion

vanishes, the acyclic map is called The relevant Wall

group is then
n

c) The same theory holds for non-orientable Poincare spaces. The

relevant Wall group is then L
n

w
l
(X)), where w

l
(X) : 'TTl (X) -+'ll/2:8.

is the orientation character for X.

Proof of (1.2) : Write Bf+ for Let us consider the pull-back

diagram :

-
a-

The fiber of g is the same as the fiber of 1, therefore g is an

acyclic map. If F is the homotopy theoretic fiber of a one has the

following diagram

----.1

1
----, 'TTl (X)

------.." I' ---, 1

---_I 'TTl (T)

1
r

'TTli
F
)

IT 2 (Br + ) - 'TTl (F)

Hence 'TTl(T) f if 'TT
2a

is surjective. But this is the case, as can

be seen by the following diagram

ex
I H

2
(X)

ex

1'TT:a
ex 1 +

'TT
2(Bf

) - H
2(Bf

) -
the right-hand vertical arrow being surjective by Part b) of (1.1).

PLet Z be a space. We denote by Qn(Z) (Polncan!

gnoup) the bordism group of maps f : U Z where U is an oriented

Poincare space of formal dimension n. According to the theory of

Quinn ([Qn], see [HV2] for proofs), these groups =it in a natural

long exact sequence :

H
n
(Z;MSG)
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If Z' is a subspace of Z, one defines similarly,
n

using Poincare pairs, and on gets a corresponding sequence.

Specializing to Z X,Z' T and using the fact that T X is an

acyclic map, one gets the following commutative diagram in which

the rows and columns are exact :

Hn+l (T;!-lSG)

1
Hn+l (X;MSG)

t
o

This permits us to define as the image of

[idx ] E (X) under the composite map (X) - (X,T) 0< Ln

Now, suppose that is realizable by an acyclic map

f Y - X with Y a Poincare space. Thus, f factors through a

f Y - T representing d class in As f is acyclic, its

mapping cylinder constitutes a Poincare cobordism from id to f.
X

Therefore, the class lid ] is mapped to zero in (since f
X n

factors through T) and O. This proves part i) of (1.2).

To prove ii), let us consider the pull-back diagram

T'

!
X

---, Bf'

1+
Bf

and form again the pull-back diagram

l'

1
T

---_I T'

L
----, X

in which all the maps are now acyclic. Then the composed map

T - X is also acyclic. Denote by the induced

homomorphism. One has a commutative diagram
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Therefore, and are both image of a single element

of This proves Part ii) of (1.2).

Let us finally prove part iii) of (1.2). If = 0,

then there is a map So : YO T representing a class in such

that goSo is Poincare cobordant to idx ' To show that is

realizable, we shall find a representative S : Y T of the class

So such that TI1S and S*

isomorphisms.

By construction of the space T, the group acts

trivially on TI 2(T) (use [HH, Proposition 5.4] to the maps 1 and g).

As is locally perfect, one can construct, as in [H2, proof of

Theorem 3.1],a finite complex T
l

and a commutative diagram :

such that g1 is an acyclic map and TIIY is an isomorphism. Thus,

T
l
is a finite complex satisfying Poincare duality with coefficients

and Sl can be covered by a map of the Spivak bundles. By

surgery with coefficients for Poincare spaces (the Cappell-Shaneson

type of generalization of [Qn, Corollary 1.4]; for proofs, see[HV2]),

the map Sl determines an element a (Sl) E: r where r is the
n h n

Cappell-Shaneson surgery obstruction group (X» defined

in [CS]. The existence of the required map S : Y T will be

implied by the nullity of a(Sl)'

As in [Hl,§3] , it can be checked (see [HV2]) that the

image of a(Sl) under the homomorphism Ln(TI1 (X» is the
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obstruction to gloSl being Poincare cobordant to a homotopy equi

valence. The latter is obviously zero since, by construction,

gloSl goSo is Poincare cobordant to idx' Since both r and TIl (X)

are finitely presented, locally perfect is equivalent to

being the normal closure of a finitely generated perfect group.

Therefore, the homomorphism (X)) is an isomorphism

[Hl, Theorem 1]. Then o(S,) 0 and Part ii) of (1.2) is proved.
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2. The invariant as part of a total surgery obstruction

theory

Let X be a Poincare space of formal dimension By (1.2)

to each pair as in (1.1), one can associate the element

E L This gives a large collection of invariants associa
n

ted to X. In this context, Theorem 2.1 of [HV1J may be rephrased as

follows :

(2.1) Theorem Let X be a Poincare space of formal dimension

Let be a pair as in (1.1) with locally perfect. If X has

the homotopy type of a topological closed manifold then = o.

Thus, the elements occurs as obstruction for X being

homotopy equivalent to a closed topological manifold and we can

except some relationship between our 's and the total surgery

obstruction of [Raj. We are indebted to A. Ranicki for pointing out

a mistake in our first draft of this section.

Let X be a Poincare space of formal dimension According

to [Raj, there is an exact sequence:

(2.1) y 1 (X) H (X;lLO) L (TIl (X)) Y (X) H 1 (X;lLO)m+ m  m m m 

and an element s(X) E which vanishes if and only if X is
n

homotopy equivalent to a closed topological manifold. Here the

groups are defined for by

!/(X)
m

where 0* is the assembly map is the lconnective covering of

the (see [Ra, p.285J; we use the notations of [Raj).

Observe that our definition slightly differs from the one
m

in [Raj (we take the whole (X)) instead of its

covering). This difference only affects the group

Since the assembly map 0* can be extended to

0* : we can define %(X) = TIm(O*). This

gives the exact sequences :



L be the composed homo-m _

Define n :Y(X) - Lm m m
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and
A

(2.2) .•. - Hm(X;Z) - (X) S;; (X) - Hm_l (X;Z) - ...

Let us define s(X) A (s(X» E
n n

If is any pair for X as in (1.1), consider the pull-back

diagram :

which gives rise to the following diagram

Hn - L
n
(r) ,Y(T) --. Hn_ l

t 1
n

l
(2.3) Hn - Ln ( 1T l(X» '-?(X) --> Hn_ l

t 1 L L
0 • Ln (\Il) 0n

in which rows and collumns are exact. One has also the corresponding

diagram for Let T) : -
m In m

morphism (X) - (X,T) Lm m m
accordingly, and notice that T) = n OA •m m m

(2.4) Proposition In one has the equalities

Proof This follows directly from the definitions, since there is a

homomorphism Ox nP(x) - such that the following diagram
n n

s(x) [Ra,pp.307-30a].
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(2.5) Corollary Let X be a Poincare complex of formal dimension

and let a pair as in (1.1). Suppose that the Spivak

bundle for X has a TOP-reduction s which defines a surgery obstru-

ction 0 (SJ E Ln (11 1 (X». Then, 0 is the image of a (SJ under the

homomorphism Ln ( 11
l
(X»

Proof By [Ra,p. 298] , the ,element 0(S) has image s(X) under the

homomorphism L (11
l
(X» The result thus follows from (2.4).

n n
Thus, if s(X) = 0, one has = 0 for any pair as in (1.1).

A converse to this fact might be obtained by considering some "test

pairs" for X as follows: let i=O,l, ... , and

.'4' = U . ..w': be the smallest classes of groups such that :
1. 1.

contains the trivial group

G EYf iff at least one of the following
1.

conditions holds

(a) there exist groupsG
l,G2 and GO = G

lnG2,
all in such

that G = Gl *G G
2

and the inclusions GOcGi are v-closed in

the sense of O[Cl) : if g E G
i

and g2 E GO then g EGO.

or

(2.6) Proposition Let X be a finite complex of dimension n. Then

there exists a pair f
X

11
1 (X) ,ax) satisfying 1) and 2) of

(1.1) such that

is a finite complex of dimension n

is a homotopy equivalence.

The pair is associated to a triangulation of X, according an

algorithm as in [B-D-H] or [Ma). Its construction is given in §4.

Recall that a standard conjecture is that KO(G) = 0 = Wh(G)

for G E .'4'(1). (or even for G such that BG is a finite complex).

(2.7) Theorem Suppose that Ko(G) = Wh(G) = 0 for all G E.'4'. Then,

for X a Poincare space of formal dimension the following con-

ditions are equivalent

(1) P. Vogel informs us that he has recently obtained a proof of

this conjecture.
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2)

3)

s (X) 0

a (\jJ,a)

a ($x,ax)

o
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for any pair (\jJ,a) for X as in (1.1)

o for some pair (\jJx,a
x)

of (2.6).

Proof: Condition 1) implies Condition 2) by (2.4). The implication

from 2) to 3) is straightforward. Therefore it remains to prove that

3) implies 1). As the map aX is a homotopy equivalence, the diagram

for similar to (2.3) gives the long exact sequence
m

(2.8)

Therefore, it suffices to establish that = 0

for As dim Bf
x

= n, this follows from the following lemma

(2.9) Lemma Let G E that Ko(P} = 0

P of G with PESt'. Then the homomorphism

WhIP) for any subgroup

a
m

induced by the assembly map a * is an isomorphism for m dim BG and

is injective for m = dim BG - 1.

Proof We shall prove Lemma (2.9) for G by induction on j, using
J

the classical idea of S. Cappell [C3] . The contains only

the trivial group and isomorphic to Lm(l) for mzO

(this is the main point where we need the instead of

Also = 0, thus lemma (2.9) is proved for G

If now G E sf, then
J

Hm(BGl (BG2 HmTG;1LO(1))->

Lm(Gl) e Lm(G2) • Lm(G)

in the first case and

0-

1
0---+

Hm(10 ;1Lo(1))-> 1m (G;1LO(1))-> Im-l (Go ;1LO(1i)-+ I
Lm(GO) - Lm(G) - Lm_l(Go) -- 0
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in the second case, in which all the rows are exact. The exact

sequences involving L-groups are those of [Cl] . As dim BG
l

and

dim BG2 are dim BG and dim BG
O

dim BG-l (in both cases), the

induction step follows from the five lemma.

Using Exact sequences (2.2) and (2.3) together with Lemma

(2.9), one obtains the followinq theorem

(2.10) Theorem Suppose that KO(G) = 0 = Wh(G) , for all G Let

X be a Poincare space of formal dimension and let be a

pair as in (2.6). Then:

a) n : L is an isomorphism form m m

b) One has an exact sequence

o -> (X) n

Finally, we mention the following proposition which will

be of interest in Remarks 4 and 5 below :

(2.11) Proposition Let G be a group as in (2.9) such that BG is a

(finite) complex of dimension n . Let X be a space with TIl (X) = G

and such that the canonical map X -> BG induces an isomorphism on

integral homology. Then Y (X) = 9 (X) = 0 for m>n, (X) ;;:: and
m m n

o.
n

Proof This follows from Lemma (2.9) and from the comparison of the

exact sequences (2.1) and (2.1 bis) for X and for BG.

2.12) Remarks 1) If one is interested in Statements (2.9), (2.10)

and (2.11) only modulo 2-torsion, one can drop the assumption

KO(G) = 0 = Wh(G) for G E s(as well as the condition V---closed in

the definition of the class s(this would simplify §4). Indeed, the

exact sequences of surgery groups used in the proof of (2.9) always

exist when all the groups are tensored by

2) From Proposition (2.11), it follows that = 0 for m>n and
m

= This result is mentioned in [Ra, p.310].
n
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3) The class oWhas been chosen minimal in order to obtain (2.6)

and (2.7). But Lemma (2.9) is valid for a larger class in which we

allow HNN-extension (with the relevant V--closed condition). As in

2), one is then able to prove for instance that = 0 for m>3
m

and = for X belonging to a large class of sufficiently

large 3-manifolds (the result is valid mod 2-torsion for all suffi-

ciently large 3-manifolds).

4) We now construct a Poincare space Y of formal dimension n such

that = 0 for all pairs for Y as in (1.1) but which is

not homotopy equivalent to a closed topological manifold. We assume

that Ko(G) = 0 = Wh (G) for all G E oW thus it suffices to prove that

sty) = 0 by (2.7).

We apply (2.6) to the case X = Sn. We thus obtain a group

f EoWsuch that Bf is a finite complex of dimension nandn nn
= H*(S ;z:).

The Atiyah-Hirzebruch spectral sequence shows that

= Lm(l) for and the homomorphism

induced by the assembly map coincides with the inclusion

Lm(l) Lm(fn). Thus, the reduced surgery group

L rr ) = coker (L (1) L rr )) is isomorphic to (Bf ) = bynn n nn n n
(2.1) and (2.11).

Let us consider the Poincare homology sphere bordism group

) defined in [H3], whose elements are represented by maps
n n

f : L Bf , where L is an oriented Poincare space with the homolo-
n n

gy of S • For the theory of [H3] gives an isomorphism

so that the class of £ : L Bf corresponds to the pair
,,--.....- n

(degf, £*(0)), where oE Ln(TI l (L)) is the surgery obstruction for any

surgery problem with target L. As f n is finitely presented and

HI = = 0, it actually follows from [II3, "proof of the
PHS

surjectivity of On"] that for any class of (Bfn) has a repre-

sentative f : L Bf n with TI
l
£ an isomorphism. Therefore, the pair

(l,k) with kfO corresponds to a map £ : Y Bf
n

such that:
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- f induces an isomorphism on the fundamental groups

- f induces an isomorphism on integral homologv (since deqf = 1)

- Y has not the homotopy type of a closed topological manifold

(otherwise k would be zero).

- sty) = 0 (since ...9'(Y) = 0 by (2.11».
n

5) The following is a version of the Novikov Conjecture : if G is

a group such that BG is a Poincare space of formal dimension n, then

a) ...9' (BG) = 0 for me-n and g (BG)m n
b) s(BG) = 0

Proposition (2.11) shows that a) is satisfied if G EJf

(modulo the vanishing assumptions on Ko and Wh). On the other hand,

the space Y of Remark 4) above has fundamental group I' Esf, the
n

same integral homology as Bf
n

and thus satisfies a) by (2.11).

But sty) This shows some independence between condition a) and

b) and emphasizes the importance of the assumption that BG itself

be a Poincare space in the conjecture.
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3. Homotopy equivalences of closed manifolds

As one might except, the results of §l and 2 have analogues

for homotopy equivalences of closed manifolds. We give here the

"simple homotopy" version of this theory, which seems more natural

in this framework.

(3.1) Theorem Let j : M N be a simple homotopy equivalence

between closed manifolds of dimension n25. Then any pair for

N as in (1.1) with locally perfect determines an element

E such that the following three conditions are

equivalent :

a) there is a commutative diagram :

. a
M J=-. N sr

fMl- fNl- It
M N Bf+

where M_ and N are closed manifolds, f M and f N are simple

acyclic maps and j is a simple homotopy equivalence.

b) any commutative diagram

N
aN

Bf--=-.

f N 1 1\
M

j IN a Bf+

with N a closed manifold and f N a simple acyclic map can be

completed in a diagram as in a) •

c) '" o.

Proof Recall that in the proof of (1.2) we checked that in the

pull-back diagram :

the map g is acyclic, TIl(T) '" f and acts trivially on TI 2(T).
By [H2, Theorem 3.1], there is a commutative diagram:
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such that f
N
is a simple acyclic map and TIl (N_) = TIl (T) = f. (This

existence of f
N

shows that b) implies a).)

For P a closed manifold of dimension n, let be

the Sullivan-Wall set of topological structures on P [Wa, Chapter 10]

According to [Ra, p.277] there is an identification

-+ (P). Let h : Q_ -+ N_ represent a class in (N_).

Using a simple plus cobordism (W,Q_, Q) (i. e. '" W) one gets a

simple homotopy equivalence h+ : Q -- N whose class in

is well defined. One checks that this correspondance [h] -+ [h+] is

actually given by the composite :

57TOP (N ) .=... 57 liN ) liN) 51:.. () . 11 b_ n+ _ n+ TOP N . Flna y, a serve

that one has the following commutative diagram

S:+l (N_) f
N* I (N)

/ s ,
S;:+l (T)

The map 57 1 (N ) -+ 57 1 (T) is an isomorphism by then+ - n+
Ranicki exact sequence [Ra, p.276] indeed the map T induces

an isomorphism on the funcamental groups and on the homology.

These considerations make Theorem (3.1) straightforward if

we define to be the image of under the compo-

site map S':;Op(N) =... (see (2.3) and (2.4)).

If is a pair for N as in (2.6), the homomorphism

: (N) -+ Ln+ l is injective by (2.10). One thus obtains

the analogue of (2.7) :

(3.2) Theorem Let j : M -+ N as in (3.1). Assume that KO(G) =

= Wh(G) = 0 for all GEN. Then, the following conditions are

equivalent :
1) j is homotopic to a homeomorphism

2) = 0 for all pair for N as in (1.1)

3) = 0 for some pair for N as in

(2.6)
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4. Proof of Proposition (2.6)

our proof makes use of Statements (4.1)-(4.4) below. The

proof of (4.1) is given at the end of this section.

(4.1) Lemma Let Ri (iEI) be a familly of groups having a common

subgroup B and let R be the amalgamated product (*B)iEI R
i.

Let

S be a subgroup of R and let Si SnR
i.

Suppose that the following

conditions hold

1) the union of Sisgenerates S

2) Si is V--closed in R
i
for all i

3) if sib§i E B with si'§i E Si and bE B,

Then S is V--closed in R.

then bE S ..

(4.2) Examples a) Condition 3) holds trivially if Be Si for all

For instance, if B 1, case of a free product.

b) If B is Y--closed in R. for all iEl, then B is V--closed in R

(case Si B).

then the subgroup

R. for iEJ and

c) If J E I and B is V--closed in R. for iEI\J,

generated by Ui EJ R
i
is V--closed in R. (Take Si

Si B for i¢J).

(4.3) Lemma If G
l

and G
2
are groups in sf, so is GlxG2•

Proof Let Gl E and G2E sfn . The proof is by induction on m+n.

The statement is trivial if m+n 0 and the induction step is

easily using the isomorphisms

Glx(G2*G G3) (GlxGZ)*GlxG(GlxG3) and

(4.4) Lemma There exists an acyclic group A in such that

dim SA = 2. (G acyclic means that 0 where is endowed

with the trivial G-action).

3 5Proof: Let G b > (the group of the (3.5)-torus knot;

one could take another (p,q)-knot with p and q relatively prime

odd integers). The group G belongs to One has G/[G,G] infinite

cyclic generated by m a- lb2• The commutator group [G,G] is free
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is infinite cyclic on a 3
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1,2 and lsjs4. The center of G

k -k -1.(4.4.a) Sublernma The equation m xm x 1S possible in G only
. k -k iif x 1. The equat10n m xm x is possible in G iff x m z

with zE

As the proof of (4.1), our proof of (4.4.a) uses the Serre

theory of groups acting on trees. It is also posponed till the end

of this section.

The element u = [a,b] generates a Y--closed subgroup U in G.

Indeed, U is in [G,G] (since u is part of a basis of [G,G])

and [G,G] is Y--closed in G (since G/[G,G] has no 2-torsion). On

the other hand, the element m generates a subgroup M of G which is

also Y--closed. Indeed, suppose that g2 mk. As G/[G, G] is

infinite cyclic generated by m, one has k 2i and g = ymi with
2i 2 iii -i 2i

Y E [G,G]. Then, one has m g '" ym ym ym ym m which implies
i -i -1

m ym y . Thus Y = 1 by (4.4.a).

Let Gl and G
2
be two copies of G, with corresponding

elements ml,ul and m2,u2. By the above, the group P = G
l*G2/{ml=u2}

is in the class J(3. By the Mayer-Vietoris sequence for amalgamated

products, one checks easily that H*(P) ° if * t 0,1 and Hl (P)

generated by m
2•

Let us consider the subgroup Q of P generated by u
l

and m2.
As Mn U (1) in G, Q is free on "i and m

2
[Se, Corollary p.14].

and we have Q n Gl U
l

and Q n G
2

= M
2.

We will prove that Q is

Y--closed in P, using (4.1) with R
i

= G
i,

Q S, Sl U
l

and

S2 = M2 • It just remains to check Condition 3) of (4.1) which

d b h . th t th . i s j t dis j twe 0 y s oW1ng a e equat10ns mum u an u m u m

are possible in G only if s = t = 1.

Let us first consider the equation miusmj u t Passing to

G/[G,G] shows that j = -i. Thus u t is the image of US under an

automorphism of the free group [G,G]. This implies that t is.

One checks easily that this contradicts (4.4.a).

As for the equation uimsu j '" mt, one must have s = t for
s j -s -ihomological reasons. The equation is then equivalent tom u m = u
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which drives us back to the former case.

Let P be another copy of P. By the above, the group

A } belongs to Using the Mayer-Vietoris

sequence again, one checks that A is acyclic.Observe that dim BA=2.

(4.5) Remarks on the proof of (4.4) : a) The subgroup UlcGlCQ=A

generated by u l is V--closed in A. Indeed, Ul is V--closed in

Q UlxMl and Q is in A by (4.2.b).

b) Acyclic groups can be obtained by the amalgamation of two copies

of a free group F of rank 2 over a suitable subgroup 5 (see [BOH ,

p.ll]). find such a situation where S is V--closed in F.

(4.6) Proof of Proposition (2. 6) Following the procedure of [Ma], we

consider for any polyedron L (polyedron finite simplicial complex)

the following condition

There exists a map t : (UL,TL) -- (CL,L) (where

CL denotes the cone over L) such that, for each connected

subpolyedron M of L, one has

t-l(CM) - -1
t (M) - M are acyclic

G -> G'

maps

b) t-l(CM) Bf
CM

and t-l(M) Bf
M

' where f M and fCM are groups

in S>f ;moreover ,dim Bfi'! = dim M and d LmI'B CM = dimM + 1

c) ker(fM TIl (M) is locally perfect

d) If M' is a connected subpolyedron of L containing M, the inclu-
-1 -1

sion t (CM,M)c t (CM' ,M') induces four homomorphisms

f rl1 ---- r CM

1 1
fM,- fCM'

which are all monomorphisms and V--closed (a monomorphismy

is v-closed if y-(G) is V--closed in G').

We shall prove that Condition holds by induction on

dimL.

__ =_Q One takes t to be the identity map.

dimL 1 One takes t to be the identity map on TL L and on the
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I-skeleton UL(1) of UL which is L UC (L (0»). Let A be the acyclic

group constructed for (4.4) and u
l
E A be the element considered in

(4.5.a). Then BA can be taken to be a polyedron having a

subpolyedron isomorphic to the boundary of a 2-simplex which re-

present the class u l. Form the polyedron

UL = UL(l)ll (.ll (CA) ) /{oo = (u ) }
o 0 1 0

where (BA)o is a copy of BA and 0 runs over the set of 2-cells

of CL. One easily check Conditions a)-d), using (4.4), (4.5.a),

(4.2.b) and (4.2.c) for the latter.

one assumes by induction that holds if

dimL sn-l. By induction on the number of n-cells of L, it is enough

to prove that implies when L is the union of LO with

one n-simplex o. As 00 is connected and one may assume that

L
O
is connected.

// -1 -1
As /n(L

O)
holds, t (Coo) = Uoo and t (00) = are

subpolyedra of UL
O

and TL
O
respectively. Let TL be TLOUU'oa,

where U'oo is another copy of Uoo attached to Too and extend t to

TL by sending U'oo to a . Then TL = Bf
L

where f L is the free product

fLO*fc,OO with amalgamation over foo (where C'OO is another copy of

-1
Coo). Observe also that t (L U CLO) = srL UCL ' where fLU CL is

the free product fC'oo*f
CLO

with amalgamation
Oover

foo and bRat

fC'OO(*f H c fI:(oo) is a subgroup of fLU CL
O·

As in [BDH,
00 00

Theorem 6.1] one embedds fL(oo) into the acyclic qroup

(Axfoo)*fCoo = f c Loo (amalgamation over foo; A is the acyclic group
-1

of (4.4» by sending g - g if gE f Coo and g - aga if gE fc,oo'

where a A - {l}. Take UL = TL U UL
O
Um where m is the mapping

cylinder of the above embedding and extend t to UL by sending m

onto Co. One easily check Condition a)-c) of (observe that

fCI:oOE sf by (4.4) and (4.3». For Condition d), one checks that

the monomorphisms f y - f x corresponding to all the inclusion

Y -- X of the following diagram :
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are Y--closed. This is done as follows

- inclusions

"
\D

(2)

are V-=-closed because L(La) holds.

" inclusidms (1) are, using

(4 • 2 •b) and (4 . 2 •c) •

- if inclusion (3) is Y--closed, then inclusions (4) are 'I-closed,

using several times (4.2.b) and (4.2.c). For instance, the

inclusion Le CL has to be decomposed :

L e L U CaRe (CLClo U L) U L U cao (CLa) , etc.

It thus remains to prove that Inclusion (3) is v'--closed.

To simplify the notation, write Inclusion (3) under the form

G'*HG (AXH)*HG (G' a copy of G). As for the proof of (4.4.a) and

(4.1), we shall use the Serre theory of amalgamated product acting

on trees [Se, 4 and 5]. Recall that an amalgamated product

Rl*B
R2 R acts on a tree TR characterised by the following

properties : there is a fundamental domain which is a segment

isomorphic to the quotient tree with isotropy

groups Rp Rl,RQ R2 and R
e

B. Applying this to R (AXH)*HG

and making the normal closure G of G act on T
R,

one see that a

fundamental domain isomorphic to is given by. the following

tree :

Qe
)

Set of edges in Q
bijection with {

A - ill (x A-ill) ---.

-1
The isotropy group are : R Hand R xGx . Using

xe xQ
[Se,§5] one deduces that G is the free product of the groups

xGx-
l

(xE A) amalgamated over their common subgroup H. Therefore,

the subgroup G'*HG of R which is the subgroup generated by G and

aGa-
l
is v'--closed in G by (4.2.c) (the inclusion He AxH is

v'--closed since A Es1' and groups in s1' have no 2-torsion). On the
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other hand, G is V--closed in R since RIG A has no 2-torsion.

Therefore, G'*HG is Y--closed in R.

Proof of Sublemma (4.4.a) Observe that the first statement is

implied by the second since mkxm-k x- l implies that m2kxm- 2k

To establish the second statement, observe that the tree T
G
has

fundamental domain P ; with isotropy groups Gp <a>,

GQ <b> and Ge s(G). One has the following situation in TG

x.

me
-1a e _.__

----..

By [Se, Proposition 25 §6), one deduces that the subgraph

drawn above is part of an infinite chain L on which m acts by a

the orientations of the

the oriented-automo-

with x. one deduces from

L and thus xe mie for[Se, Propositions 25 and 27 §6) that xL
-isome i. As Ge s (G), this implies that xm E s (G) .

translation of amplitude 2. Observe that

edges of L imply that m is a generator of

morphisms group of L. Now, if mk commutes

As an oriented automorphism of

Let T
S

be the smallest

{e. ;iEI}c {Edges T
S}

and ST
S

T
S
is connected by the obvious

and thus TS is a subtree of T
R•

2Let 9 E R such that g E S.

Proof of Lemma (4.1) The Serre tree T
R
has here fundamental

domain (isomorphic to a cone on the set of vertices

{Pi}iEI (the cone vertex is called P; the edge from Pi to P is

called e i) , and the isotropy groups are Rp. Ri, Rp Re. B.

subgraph of T
R

such that

TS. As S is generated by Si Sp.'

generalisation of [Se, Lemme 2,

TR, 9 has either a fixed vertex or there is an infinite chain L

in T on which g acts by a non-trivial translation [Se, Proposition

25 §6). Suppose that 9 has a fixed vertex V. Hence g2v V and,

-1
tr.t

.i,

S .•
a

with r. E R.

As Si is V--closed in R
i,

as gTs n TS t ¢, 9 must fix the whole path joining V to TS.
Therefore one may suppose that VETS which implies that 9

2 -1 2(for some L) and tE S. Thus, r. t g tE sn R.
-1

one has t gt E Si and then 9 E S.
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It then remains to check the case where g translates a
2chain L. As g E S, one has Lc T

S
(otherwise gT

S
T
S

=- 0). Therefore,

by replacing if necessary g by one of its conjugate by an element

of S, one may suppose that L contains the edge e i for some iEI.

As T
S
n Orbit (p) =- Orbits (p), there is n c S such that
-1 R 2

b =- h g R =- B. One has g hbhb S which means bhb S. As
P

Lc TS ' the vertex Pi is coromon to the edges e i and siei with siESi.

Observe that the path joining hb(siei) to Pi contains siei,and

therefore bhb(siei) E TS implies that bsie
i

TS. The latter means

bs. =- s. b for some s. E S. and b B. This contradicts Condition 3)
l l l l

of (4.1).
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SOME CLOSED 4-MANIFOLDS WITH EXOTIC

DIFFERENTIABLE STRUCTURE

Meinem Vater zum 75. Geburtstag gewidmet

M. KRECK

§ 1 Introduction

Recently there has been a phantastic progress in the theory of 4-manifolds.

M. Freedman using techniques of A. Casson has solved the topological 4-

dimensional Poincare conjecture and classified all 1-connected closed almost

smooth 4-manifolds showing that in the Spin case (w2=O) they are bijecti-

vely determined by the intersection form and in the non-Spin case (W2FO)

by the intersection form plus the Kirby-Siebenmann smoothing obstruction

([8]. [17]). F. Quinn has shown that the same is true for Top 4-manifolds [)41.

On the other hand S.K. Donaldson has shown that the only definite form

which can be realized as the intersection form of a smooth closed 1-con-

nected 4-manifold is up to sign the standard Euclidean form ([ 6] , [3] ).

These results imply that there are some non-compact 4-manifolds which

have an exotic differentiable structure. In 1978 Freedman has constructed

manifolds which are proper homotopy equivalent to S3 x R but not diffeo-

morphic ([ 7] , [16J ). Combining this with his new results it implies

that S3 x R has at least one exotic differentiable structure. The most

surprising consequence of both Freedman's and Donaldson's results is that

IR 4 has at least one exotic differentiable structure ([ 181).

In the theory of closed 4-manifolds there are some good candidates for

manifolds which might have an exotic differentiable structure,for instance

Cappell and Shaneson have constructed a manifold Q4 which is topologically
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h - cobordant to IR p4 but not diffeomorphic [5J ' But as far as I know it

is not known until now whether they are homeomorphic.

The following observation, which is a consequence of Freedman's results,

shows that there are many closed smooth 4-manifolds which are homeomorphic

but, as we will show, in some cases are not diffeomorphic. Let Kbe the

Kummer surface (compare for instance [19J ).

Lemma 1: Let Mbe a non-orientable closed smooth 4-manifold, Then M# K

is homeomorphic to M# 11 (52 x 52).

Proof: By Freedman's classification of 1-connected topological 4-manifolds

there exists an almost differentiable almost parallelizable 1-connected

closed 4-manifold M(ES) whose intersection form is the form corresponding

to the Lie group ES ([ 46) )[17)). Furthermore it implies that

M(ES) # M(ES) # 3(52 x 52) is homeomorphic to K, as the intersection form

of K is ES $ ES 3H, H the hyperbolic form •

Now, as M is non-orientable, we have that (M(ES) # M(Es)) # Mis homeo-

morphic to (M(Es) # (-M(ES))) # M. Thus K# Mis homeomorphic to

(M(Es) # (-M(ES))) # 3(52 x 52) # M.

On the other hand the intersection form of M(ES) # (-M(ES)) is indefinite

and even and thus classified by the signature, which is zero, and the

rank [121 • Freedman's Theorem implies that M(ES) # (-M(ES) ) is homeomor-

phic to S(52 x 52).

Thus K# Mis homeomorphic to 11(52 x 52) # M.

q.e.d.
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In § 3, Theorem " we will describe some classes of non-orientable closed

smooth 4-manifolds Mfor which M# K is not diffeomorphic to M# "(S2 x S2),

in fact they are even not stably diffeomorphic. As a consequence we formu-

late here the following

Theorem ,: Let 1T be a finitely generated group and w, E H'(1f;?l2) a non-

trivial element. Then there exists a closed smooth 4-manifold Mwith

"IT", ='II' and w, (M) = w, s , t , M# T (S2 x S2) has at least one exotic

differentiable structure for all ".

Examples of manifolds Mwith this property:

1T= il

a)M=lRp4

b) M= total space of the linear S2-bundle over IRp2 with

w, of the S2-bundle trivial and w2 non-trivial

We will describe more examp l es with 7T= 712 in §5.

M= S' x53, the total space of the non-trivial linear

S3-bundle over-S'.

11" = 11", (F), F a closed surface.

a) F non-orientable and Euler characteristic e(F) even:

M= F x S2

b) F non-orientable and e(F) odd:

M= total space of the linear S2-bundle over F with w, = 0 and w2 F O.

c) F orientable of genus Let x t H'(F;?l 2) be non-trivial. M= total

space of the linear S2-bundle over F with w, = x and w2 : O.

For arbitrary Tr we will describe a construction in the proof of Theorem' I (§3).

I would like to thank Stephan Stolz for many helpful and stimulating

discussions when this work was in statu nascendi. Furthermore I would
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like to thank the Matematisk Institut in Aarhus and the Max-Planck

Institut/SFB in Bonn for their support during the periods

I could spend there (summer 1981 in Aarhus and from September 1981 to

September 1982 in Bonn).

§ 2 Manifolds of type B

In [111 I have developed a modified surgery approach to the classification

of closed manifolds. Instead of classifying all manifolds of a given homotopy

t¥pe I classify - roughly spoken - all s-cobordism classes of n-manifolds

with prescribed - skeleton and prescribed normal bundle over it.

This can be better formulated in the language of Postnikov decompositions

(compare [41). In our context only need some basic notations and pro-

perties which we collect in this chapter.

Definition: Let B BO be a k-Postnikov fibration, i.e. a fibration

with fibre F such that Tri(F) = /0\ for all i k. Let n = 2k or 2k + t

We say that a differentiable n-manifold is of type B if there is a Postnikov
IV

decomposition )1M of the normal GauB map )1M : M over B, that is a

k-equivalence
*V

Y t4 : 14 --+B svt ,

commutes.

N

A specific choice of such a Postnikov decomposition YMis called a

B-typisation of M, The set of s-cobordism classes of closed smooth n-mani-

folds of type B is denoted by TYn(B) and the set of s-cobordism classes of
rv

such manifolds together with a typisation is called TYn(B).
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tv

There is a canonical projection Tyn(B) The group of homotopy

classes of fibre homotopy self equivalences of the fibration B is
tv

denoted by Aut(B), It operates on Tyn(B) by composition. It is not diffi-

cult to show, using the uniqueness of a Postnikov decomposition ( [41 ,
rv

Chap. 5.3), that Tyn(B) is the orbit space of Tyn(B) under this action.

Lemma 2( [111 , § 3): Tyn(B) = lYn(B) I Aut(B)'

Let be the cobordism group of B-manifolds in the sense of Lashof

(compare [201). There is a map TY B. As before Aut(B) operatesn n
on '2n

B by composition. This operation is linear and the map Tyn(B)

is equivariant. Thus we have an induced map of sets

We will use this map to distinguish some closed smooth 4-manifolds.

Remark: The main result of [111 is that for the map TYn(B)4QnB/Aut(B)

is surjective if B has finite [;] - skeleton and elements in the same fibre

are distinguished by an invariant in a semi group In+1(1T"1(B),w1) mod sme

indeterminacy, These l-semi groups replace in my surgery approach Wall's

L-groups. It is perhaps interesting in our context to note that for n even

the algebraic obstruction reduces to the Euler characteristic if we pass

from s-cobordism classes to stable diffeomorphism classes ([111 ' §5):

n = 2k•. If Mand Nare in Tyn(B), [M1 =[N] in 9 n
B / Aut(B) and Mand N

have same Euler characteristic then 3 r E s,t. M# r(Sk x Sk) N#r(SkxSk).
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§ 3 Reduction of Theorem 1 to stable homotopy theory

If ME TY4(B) and N is a 1-connected smooth closed almost parallel izable

4-manifold then M# NE TY4(B). Especially for the Kummer surface Kwe have

M# K TY4(B) and more generally M# K# r(5 2 x S2) E TY4(B). On the other
2 2 . 2 2hand M# (r+l1)'(S x 5 ) TY4(B). Thus lf M# K# r(5 x S ) and

M# (r+11).(S2 x 52) are not equivalent in S24
B / Aut(B) and Mis non-

orientable, then these manifolds are not diffeomorphic and thus by Lemma

there exists an exotic differentiable structure on M# (r+11)'(52 x S2).

In general it is not easy to compute and the action of Aut(B) on it.

We have no problems with the action of Aut(B) if ME TY4(B) represents

zero in and M# K is not zero bordant in 5?4B• For the action of

Aut(B) on S24
B is linear and thus M# Kand Mare different in / Aut B'

So, in this case for all r 11 ,M # r(S2 x 52) has an exotic differentiable

structure if Mis non orientable.

With other words we have proved the main part of Theorem 1 if for any

finitely generated group nand w1£ H1(T non-trivial there exists

a 2-Postnikov fibration B-+BO with 1r1(B) = 'II" and a zero-bordant mani-

fold Mof type Bwith w1(M) =w1 and if the Kummer surface is not zero

bordant in

Consider the line bundle Lover K(1I",1) with w1(L) = w1, Let p:B('7I',w1)-+oBO
be the homotopy fibration of the map K(lT,1)x BSpin BO x BO BO,

where f:K(1r ,1) is the classifying map of 3L and p:B

the canonical projection.

Remark: A closed smooth 4-manifold Mis of type B(tr,w1) if and only if

"'If"1(M) 'it T, w1()1(M» E H1(M;71
2) = Hom(V;71 2) corresponds under this
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isomorphism to w, and wZ()I (M)) = w,2()1 (M)) or equivalently w2( -r(M)) 0

(compare [,,1 ' § 2).

Proposition ,: The Kummer surface Kconsidered as a B(1T,w,)-manifold is

not zero-bordant in 2
4
B( 7I" ,w,).

Proof: As f: K(V,1l ----+BD factorizes over lRp
oo
= K(ll2,1l, the fibration

B(1T ,w, )----?BO factori zes over B(ll 2' , ) :

Thus we are finished if K considerd as a 2,')-manifold is non-trivial

in Q4B(ll2,1l. We will show in the next chapter that Q4B(ll2,1) = ll/'6'll

and that K represents the non-trivial element of order 2 in this group

(Proposition 2).

q.e.d,

Now we have all the material to prove a slightly stronger statement than

Theorem "

Theorem l' : a) Let Tr be a finitely generated group and w1 E H1(n ;12)

a non-trivial element. Let Mbe a manifold of type B(lr ,w1) which with

some typisation is zero bordant in ,w,). Then M# r(SZ x S2)

has at least one exotic differentiable structure for r 11. For

all 1T and w1 such a manifold Mexists.

b) For 'IT =1T,(F), F a closed surface, the manifolds M in
. r-. B( 1T (F) x)Theorem 1 are of type B(ir1(F),x) and represent zero ln 1 ' ,
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where x = w,(F) if F is non-orientable and some prescribed non-trivial

element in H'(F;Z2) if F is orientable. Thus M# r(S2 x S2) has an exo-

tic differentiable structure for all r ".

Proof: For a) we have shown everything except the existence of a zero-

bordant manifold of type B(lT ,w,). For this one can either refer

to the surjectivity of TY4(8(lT ,w,)) Q}('" ,w,) /Aut(B) mentioned

in the Remark at the end of § 2 or one can use the following con-

struction.

Consider a presentation of jr : [x" .•. ,xm;r" ... ,rnl • Let X be a geo-

metric realization of this presentation by a 2-complex. Let X--?lRp4

be the classifying map of w1 considered as element of H1(X;?lz). In

Rp4 x R one can approximate this map by an embedding x R.

Let U be a smooth compact regular neighborhood of X. Then M= au
is a closed smooth 4-manifold of type B(1T ,w,) and U is a zero-

bordism of it. For by construction we know that wZ(ir(U)) = 0 and

w1(Y (U)) = w1• Thus)}: U-+- BO factors over B(1T",w1) by a

2 - equivalence. As "1l", (';;> U) 1T1(U) is an isomorphism the re-

striction of the lift to U is a typisation.

b) follows from a) as by the Remark before Proposition' the mani-

fold Mis of type B(1T,(F),x) and Mbounds the corresponding disk-

bundle.

q.e.d.

Remark: In some cases one can use the invariant of ([51,§,) which is

very similar to the invariant we will study in §4 to show that M# K

and M# 1'(S2 x S2) are not stably diffeomorphic.
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§ 4 Some stable homotopy groups

To finish the proof of Proposition 1 we have to compute

P l t i 2 A 7l. /ropos1 lon :,)l 4 = 16 . and the Kummer surface K repre-

sents the non-trivial element or order two in it.

Proof: By the Pontrjagin-Thom construction 2,1) is isomorphic to
cD

11"7(M(3L) 1\ MSpin), where M(3L) is the Thorn space of 3L over lR P

which is equal to IRpOO / IRP '2. and MSpin is the spectrum of Spin-

cobordism. This homotopy group can be interpreted as

IV

1f7(M(3L) 1\ MSpin) = S?7Spi n (M(3L».

The Atiyah-Hirzebruch spectral sequence implies that this group has at

most 16 elements. The corresponding line in the Ez-term consists of

H7(M(3L); QaSPin) = H6(M(3L); Q1
sPin) = H5(M(3L); QzSPin) =lLJ.

and of H3(M(3L);Q4SPin)

Thus we are finished if we can construct a surjective homomorphism

We will do this as follows. Consider a Z,1)-manifold Mrepresented

by a map M----io R pNx B Spin, N>"> 4. Take the composition

M RpNx B Spin --+ R pN and make it transversa.l to R pN-1. We

denote the inverse image of RpN-1 in Mby F. The normal bundle of

F is induced from 4 L x rSpin over R pN-1 x B Spin. If we fix a Spin-
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structure on 4 L we can consider F together with the map F RpN-1

as an element of the bordism group Q/pin(RP"'}. This element is a

bordism invariant of the 2,1)-manifold M.

As a consequence of the next Proposition we will show (Corollary 1) that

every element of Q
3
Spin (R plIO) considered as a 2-fold covering 'F F

1\
bounds an oriented ramified covering where Wis a Spin-manifold

"extending the Spin-structure of F. We denote the involution on Wby 1:.

We define ,.
: = sign MF - I 32 .

where MF =M-(open tubular neigborhood of F)sign is the signature of the

manifold and Fix r 0 Fix1: is the self-intersection number of the fixed

point set.

We have to show that this invariant is well defined. Let M= aX and

y X the inverse image of lR pN-1 as constructed before. Y is a Spin
"-

manifold with ay = F. Let Y Y be the (unramified) 2-fold covering.

A A
Now the manifold M

F
v (-y) bounds and thus sign MF - sign Y =O. On the

A A
other hand (-Y) V Wis a ramified covering over the Spin-manifold (-Y}UW

and by a formula of Hirzebruch we have

sign (-YV W) = 2 • sign (-Yu W) - FixT 0 FixL ([9], § 4).

By Rohlin's Theorem sign (-Y V W) = 0 mod 16 and thus

'" Asign (-Y v W) = - Fix T 0 Fix T mod 32.

Combining these formulas we obtain

1\

sign MF-sign W-Fix or 0 Fix T = 0 mod 32.

To finish the proof of Proposition 2 we have to show that 0{ maps 2,1)
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surjectively onto 2..71. /32 • 71. and that IX (K) = 16 mod 32. The last statement

is obvious as (K) = sign Kmod 32. For the first statement we
4 . 3 A 3 44IRP as a B(71.

2
,1)-man1fold. Then F = IRP , F = Sand IRP F = D. Let H

be the Hopf disk-bund1e over S2 and H2 the disk-bund1e of H H. H2 is a

Spin-manifold. If we choose the B(71. 2,1)-structure on IR p4 appropriately,

then dH2 = F as Spin-manifold. The covering F extends to a ramified

covering H H: ramified along S2. Thus

q.e.d.

In the proof of Proposition 4 we have used the fact that every oriented

"2-f01d covering F over a Spin-manifo1d F bounds an oriented ramified
1\

covering W--}W where Wis a Spin manifold extending the Spin-structure

of F. This follows immediately from the following Proposition.

Proposition 3: Q/Pin(lRp llO
) 71. /8. 71. generated by 53 --HH3

with some Spin-structure on IR p3•

At the end of the proof of Proposition 2 we have constructed a ramified

covering bounding lRp3• This implies:

Corollary 1: Every element in pDO
) bounds an oriented ramified

covering over a Spin manifold such that the given Spin structure extends.
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Proof of Proposition 3: We proceed as in the proof of Proposition 2. The

Atiyah-Hirzebruch sprectral sequence implies that has at most

8 elements. Again we construct a surjective homomorphism
,. I'""IS· co

Let F F represent an element in ). We can assume that F

is connected. Choose a framing on F compatible with the given Spin struc-
,. A

ture. Let be the induced framing on F. Then the invariant is

" A -2e(F,Lll) E /24' where e is the Adams e-invariant.

To show that this is well defined we first observe that the Spin structure

on F fixes a framing on F - {pt} • This implies that any other framing

on F compatible with the given Spin structure is of the form

(F,b{) # for some framing on S3. Thus (F, and

this implies that the invariant is independent of the choice of the framing.

rrhe same statement holds in a more general context ([2] , § 4)). On the

"other hand if W Wis an oriented covering over a connected Spin-mani-,.
fold bounding F then Whas a framing compatible with the Spin-struc-

ture as iilW f 0. Thus the invariant is a bordism invariant.

We compute this invariant in the following

Consider SO(3) with the left-invariant framing. The induced framing on

SU(2) is again the left-invariant framing. It is well known that SO(3)

with this framing represents 2·tSU(2), Ll and that [SUGZ), L1 generates

" / 24 • ([13] , § 1). Thus the invariant of the covering

SU(2) SO(3) with the corresponding Spin-structure has value 3 Eo / •

q.e.d.
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§ 5 Examples with fundamental group 12.

In this Chapter we will discuss the case of manifolds Mwith Tr1(M) =

and w2(liM)) = O. Such a manifold is of type (Remark before Pro

position 1). In Proposition 2 we have shown that and

that K is the element of order 2 in it. Obviously the total space Mof

the linear S2bundle over with w1 = a and w2 F a represents the

zero in

As ffiP4 has odd Euler characteristic it represents a generator

if we fix some typisation. We can construct a representative of k[ffiP4]

by a manifold Mk of type B\4Z2,1) as follows. MO := Mas above

and M1:= For k >1 we construct Mk inductively. Fix a Baz2,1) struc

ture on S1 xD3 and choose an embedding of S1 xD3 into Mk1 which is

compatible with the Baz2,1) structures and such that S1 x {O}represents
1 .. 03 4 1 N 03

a generator of 1T"1 (Mk_ 1). Define Mk as Mk_ 1  S x 0 'tIRP  S x D ,

where f : S1 x S1 xS2 is the B(il':2,1)  structure reversing

diffeomorphism obtained by reflection along a section of this fi

bre bundl e.

extend to a

It is easy to check that the typisation of Mk1 and of Rp4

4typisation of Mk and that Mk is bordant to Mk_ 1 + IRP •

We will show now that for kt.3 Mk # r(S2 x S2) has at least one exotic

differentiable structure for r 11. For this we compute the action of

on The first step is to show that

is a principal fibration. For this we consider the principal fibration

B+BO induced by the map w1
2  w2: BO+>K\4Z2,2). As w1

2V(lRp4) =

w2V (Rp4), the normal GauB map of lRp4 factors over B and the 1ift is

a 2equivalence. Thus
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is a 2-Postnikov decomposition. The uniqueness of a Postnikov decom-

position implies that B is fibre homotopy equivalent to BQZ2,1).

Now, if is a principal fibration with fibre

= = Z2' The operation on is

given by -Id.

Thus under the map -Id the manifolds

Mk # K # (r-11)(S2 x S2) and Mk # r(S2 x S2) have different images for

k 3 and r and thus, by Lemma 1, r\ # r(S2 x S2) has at 1east one

exotic differentiable sructure.

Now we show that the manifolds Mk # r(S2 x S2) and Ml # s(S2 x S2) are

not homeomorphic for k F 1 3. For this we note that the theory of mani-

folds of type B as described in §2 also works for topologicai manifolds.

In our case we have to replace the space B Spin in the definition of B(1T,w1)
by B(Spin Top). We denote it by A simple calculation shows

that the kernel of Q4B(l2' 1) 1) is generated by K. This

implies the desired statement. We summarize:

Proposition 4: Let Mk be as constructed above. For k=3 and the manifolds

Mk # r(S2 x S2) have an exotic differentiable structure and are In

pairs not homeomorphic.

Remark: All our exotic differentiable structures are stable inthe sense that

the structure remains exotic after an arbitrary connected sum with S2 x S2.

On the other hand our computation above and the stable classification result

mentioned in the Remark in §2 imply that has no stable exotic structure.
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§ 6 Relation to the exotic structures on

IR 4 and on S3 x IR

It is natural to ask whether there is a relation between Freedman's

exotic structure on S3 x IR or the exotic structure on IR 4 mentioned in the

beginning of the introduction and our exotic structures on closed 4-mani-

folds. More precisely we ask whether the exotic structures on S3 x IR and

on IR 4 embed into both structures of M# r(5 2 x 52) where Mis a manifold

as in Theorem 1'. If not this would indicate a strong connection between

all these exotic structures. But the answer is, at least stably, that they

embed into both structures.

This is obvious for IR 4, as the exotic IR 4 embeds into K D.'1cl S\S2. ([.f'tl,[-t&l).

For S3 x IR we will show that a typical exotic structure on 53 x IR as con-

structed by Freedman embeds into k(52 x S2) for k sUfficiently large.

Let me recall how Freedman shows the existence of an exotic structure on

53 x IR ([ 71 , [161 ). Let H3 be a smooth homology 3-sphere. He proves

that there exists a smooth 4-manifold V4 which by his recent results is

homeomorphic to 53 x IR and which has a involution "r such that the fixed

point set is H3 and H3 separates V into two parts. If the Rohl in)A--invar-

iant of H3 is nonzero [101 then V4 is not diffeomorphic to 53 x IR.

Proposition 5: For every homology sphere H3 there exists a V4 homeomorphic

to S3 x IR as described above, s.t. V4 embeds into k(52 x 52) for k suffi-

ciently large.

Proof: Let Wbe a 1-connected smooth 4-dimensional Spin manifold boun-

ding H3. There exists an open submanifold V4 homeomorphic to S3 x IR in
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wv -W containing H3 such the interchanging of the two sides of Wu -\>I

restricts to an involution on Vwith fixed point set H3• This follows

from ([21] , Theorem C) or by a similar argument as in ( [16] , § 5).

By Wall [221 WV-W is stably diffeomorphic to b(S2 x S2) where b is

the second Betti number of W.

q.e.d.
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LES IMMERSIONS DE BOY

par J. LANNES

On precise les entiers positifs n pour lesquels il existe une immersion

generique d'une variete fermee de dimension n-1 dans l'espace euclidien de

dimension n ayant un nombre impair de points n-uples. On montre en particu-

lier que le seul n divisible par 4 qui convienne est 4, completant ainsi

les resultats de P. J. Eccles [4].

O. LE PROBLEME DES IMMERSIONS DE BOY

La question que l'on pose est la suivante : pour quels entiers positifs

n existe-t-il une immersion generique, d'une variete fermee de dimension

n-1 dans l'espace euclidien de dimension n, ayant un nombre impair de

points n-uples ?

Un exemple d'une telle immersion est fourni par l'immersion du plan

projectif reel dans l'espace euclidien de dimension 3 dont l'image est

connue sous le nom de surface de Boy [6]. C'est cette venerable curiosite

mathematique qui justifie le nom que nous donnons a l.a question posee ci-

dessus.

Le probleme des immersions de Boy orientees est resolu par P. J. Eccles

dans [3] (voir aussi [9]). Dans [4] P. J. Eccles donne une solution du

probleme sans restriction sur l'orientation dans le cas ou n n'est pas

divisible par 4. Dans la presente note nous completons cette solution.

Les travaux de P. Vogel [13] permettent de ramener le probleme des

immersions de Boy a une question concernant l'homomorphisme d'Hurewicz :

1T rtO SooMO(1)
n

... H n
oosooMO(1)

,
n

aussi avant d'exposer notre solution, a rassembler quelques

resultats relatifs a la topologie algebrique des espaces

des espaces de configurations.

1• RAPPELS SUR LES ESPACES DE CONFIGURATIONS

nooSOOX ou plutOt

Soit X un espace pointe, on note CX l'espace des configurations associe

a X et s : soox l'application naturelle (qui est une equivalence
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d'homotopie si X est connexe le point base etant suppose "bon"). On note

r : l'application stable dont l'adjointe est s (une fleche barree

designe une application stable).

Soient m 1 une entier et E 6
m

un espace contractile sur lequel Ie

groupe symetrique <5 agit librement. On note c5 X le quotient de l'espace
m m

(E Sm) + II. (X II. X 11. ••• 11. X), X m fois, par I' action diagonale de Gm (si Y

est un espace, Y+ designe la reunion disjointe de Y et d'un point base).

On note tp : ex e 6' X les applications de multiplicites de [13]
m m

appe l.ees "James-Hopf invariants" dans La terminologie anglo-saxonne [1] [8].

On note enfin respectivement r
m

: eX--+Gmx,

rm,n : les compositions suivantes

e 6m
x f ) 6m

x

ex tPn -7) e 6 X_ eGG X
n m n

2. QUELQUES FORMULES INSTABLES DANS LA eOHOMOLOGIE DE L'ESPAeE ex.

L'application r : n'etant qu'une application stable ne commute

pas avec les la formule ci-dessous precise Ie defaut de

commutativite.

Proposition 2.1 Soient 11.
1,11.2

deux groupes et u
1
, u 2 deux

,...* ......*classes de cohomologie dans H (X, 11.
1
) , H (X; 11.

2
) respectivement. On a dans

....*H (eX; la formule

* * *(r u
1
) <:» (r u

2
) - r

2tr(u1
x u

2
)

ou tr designe la transfert

2.2 Avant d'enoncer les deux formules suivantes il nous faut d'abord intro-

duire certains polynomes.

une famille finie d'elements2.2.1. Soient A un anneau commutatif et {ai}iE I

de A. Pour toute partie non vide J de A on pose a
J

sm' la m
eme

fonction symetrique des a
i

TT
i E J

a.
a,

. On note

s
m

Plus generalement on pose

s
m,n

c=
#J = m
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On note enfin t la m
eme

fonction symetrique des a
J
, J decrivant l'ensemble

m,n
des parties a n elements de I.

On cons i der-e I' anneau de poIynomes lZ [T ,T
2

r » •• ,T , .•. ]
1 m

on attribue

a la variable T
m

Ie poids m.

11 existe un unique polynome (resp. 0 ) tel que l'on ait,
min min

pour tout anneau commutatif A et toute famille {ai}i E I d'elements de A

s
m,n

resp.

Les polynomes ,0 sont homoqenement; poids mnr ce sont en
m,n m,n

fait des polynomes en T
1
, T

2
, .•. ,T

mn
.

Lemme 2.2.2 Les coefficients de T dans les polynomes

respectivement (_1)m(n-1)n et (-1) (m-T?(n-1) .

et 8 sont
m,n m,n

Scii t u une classe de iiq (X; A) avec A = lZ/2 si q est impair et

A = lZ/2 ou lZ s i, q est pair, on note pula meme puissance externe de
m

Steenrod appartenant a iimq( (5 x;A) [12 ; p.99] .
m

Proposition 2.2.3 (formule de Newton)
* n * * *

rmPmu u,r2P 2u,
r
3P 3u,

•.• ).

,.,,*
On a dans H (eX; A) la formule

Corollaire 2.2.4 On a dans g*(cx;A) la congruence:

r*P un e (_1)m(n-1)n r* P u modulo H*(cX;A) H* (CX;A).
mm mnmn

-*Proposition 2.2.5 On a dans H (cx,A)
* * * *

rm,nPmPnu 8m, n (r u,r2P 2u,r3P 3u, ... ).

la formule

Corollaire

*r P P u
min m n

congruence
,.,,* *

modulo H (CX;A) '-ItT (Cx;A)

2.3

Pontryagin

La derniere formule de ce paragraphe fait intervenir le carre de

fP: ii2k ( ; lZ/2) ( ; lZ/ 4) , e He mesure le "defaut de

stabilite" de cette operation.

Proposition 2.3 Soit u une classe dans H (X;lZ/2), on a dans

H'4k (ex, ZI/4) la formule
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-* ( ; Zl:/4) induite par-*H (2* designant l'application

1 'inclusion de 'll/2 dans 'll/4

Cette formule est une consequence de la proposition 2.2.3 avec

q 2k, A = 'll, m = 1 et n = 2, elle est generalisee dans [16].

3. SOLUTION DU PROBLEME DES IMMERSIONS DE BOY

Le groupe de cobordisme d'immersions de varietes fermees de dimen

sion nl dans ]Rn est isomorphe au groupe d'homotopie stable TI
SMO(1) 7T CMO(l)
n n

[14][13] et en faisant correspondre a une immersion generique le nombre

modulo 2 de ses points nuples on definit un homomorphisme en

qui d'apres [13] est la composition

Hurewicz *r P U
n n

OU U designe la classe de Thom modulo 2 de MO(l).

Le probleme est de determiner les entiers positifs n pour lesquels

cet homomorphisme en est non trivial.

3.1 Le cas ou n n'est pas divisible par 4.

Dans ce cas le problema est resolu dans [4] (a la solution pres

du probleme de l'invariant de Kervaire!). La solution que nous en donnons

cidessous est fondee sur la congruence 2.2.4.

3.1.1 Cas n 5 1 (mod. 2). D'apres 2.2.4 (avec m 1 et 11.= 'll/2 ) e
n

est aussi la composition suivante

Hurewicz * nr U
7T CMO (1) -----.+) H CMO (1) 'll/2
n n

On en deduit que en est la composition

TI CMO(l)
n

h

ou A* designe l'application induite par Le plongement habituel de JRPoo

dans SO et ou h designe l'invariant de Hopf.

Puisque A* est surjectif sur la 2composante de

comme consequence du fameux resultat sur l'invariant de Hopf

Theoreme 3.1.1 (P. J. Eccles) Pour n impair I'homomorphisme e est non
n

trivial si et seulement si n : 1, 3, 7.
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Cas n E 2 (mod. 4). Posons n = 2t d'apres 2.2.4 (avec m 2 et

Hurewicz
1TnCMO(l ) , HnCMO(l)

A ce point la Ie cas n =2 (mod. 4) se subdivise en deux sous-cas.

Si £.+ 1 n 'est pas une puissance de 2 on utilise Le lennne suivant

du a N. Boudriga et S. Zarati pour montrer que e est trivial.
n

Lemme 3.1.2.1 Soient t la classe fondamentale de 2) et I 1 'ideal

d'augmentation de l'algebre de Steenrod modulo 2. Si t+l n'est pas une
t *puissance de 2 alors t appartient a IH

Si t + 1 est une puissance de 2 on montre a partir de la definition

meme des formes de Kervaire que

1T CMO (l)
n

e est la composition
n

K

OU K designe l'invariant de Kervaire.

On obtient done

Theoreme 3.1.2.2 (P. J. Eccles) Pour n = 2 (mod. 4) l'homomorphisme en

est trivial si n + 2n'est pas une puissance de 2; si n + 2 est une puissance

de 2, e est non trivial si et seulement si l'invariant de Kervaire
S n

1T ----+ est non trivial e est done non trivial en particulier si
n n

n = 2,6, 14,30,62).

3.2 Le cas ou n est divisible par 4.

II reste done a traiter Ie cas ou n est divisible par 4. On va voir

que dans Le cas

est suggere dans

e est non trivial si et seulement si n = 4. Ce resultat
n
[4] , signalons egalement qu'en employant une methode analogue

a celIe decrite en 3.1.2 N. Boudriga et S. Zarati montrent dans [2] que pour

n = 4 (mod. B) en est trivial si n + 4 n'est pas une puissance de 2.

On va utiliser cette fois-ci les formules 2.2.6, 2.3 et 2.1.

Theoreme 3.2.1 Soit k un entier positif, il existe une innnersion generique
4k

Il : V , d' une variete fermee de dimension 4k-l dans I' espace eucli-

dien de dimension 4k, ayant un nombre impair de points 4k-uples si et seule-

ment si k = 1.
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Pour preparer la demonstration de ce theoreme il nous faut intro

les deux propositions suivantes.

Proposition 3.2.2 Soient M une variete fermee de dimension 2k et
4k

S : MtlR une immersion generique, alors Le nombre M
2

de points doubles

de S est donnee modulo 2 par la congruence

(mod. 2)

ou Vs designe Ie fibre normal de S et X( V
S
) Le nombre d 'Euler de ce fibre

(qui est un entier pair), V
M
Ie fibre normal stable de M (qui est sous

jacent a Vs ), et [M] la classe d'orientation modulo 2 de M.

Cette proposition, qui generalise des resultats de H. Whitney et

M. Mahowald dans Ie cas de plongements [15] [10] [11], est une consequence

de la formule 2.3 et de l'expression du carre de Pontryagin de la classe de

Thorn modulo 2 d'une fibre de dimension 2k en fonction, de la classe d'Euler,

et des classes de StieffelWhitney w et w l' de ce fibre [11] .
1 2k

Proposition 3.2.3 Soient N une variete fermee de dimension 3k, avec k pair,

et y : N+lR4k une immersion generique, alors Le nombre caracteristique

normal <wlw2k_l(VN)' [N
2
] > de la variete double N

2
de y est nul.

2

Demonstration Soit E; un fibre vectoriel et m un entier positif, on note

<Sm E; Ie fibre vectoriel E 5
m

(5 E;m. Pour demontrer la proposition ci

m *
dessus on ecrit a l'aide de 2.1 la classe r

2
¢ w

1w2k_ 1
«>2 Vy) (¢ designe

l'isomorphisme de Thorn modulo 2) comme une somme de dans

-*H (CTV ;?l/2).
y

Demonstration du theoreme 3.2.1 Soient N
3k

la variete kuple de a,

y : N 4k une immersion generique regulierement homotope a I' immersion

induite par a , M
2k

la variete double de y et S: M __7lR4k une immersion

generique regulierement homotope a l'immersion induite par y . La formule

2.2.6 montre que Ie nombre de points 4kuples de a est congru modulo 2 au

nombre de points quadruples de y ou encore au nombre de points doubles de

S .

La proposition 3.2.2 donne alors

(F) 8
4k

(a )

en effet l'entier X(VS) est nul puisque VS est image reciproque de
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6
2

6
k
11, 11 designant Le fibre eanonique sur BO(l), et que done la elasse

d'Euler e(vS) est de torsion.

D'autre part Ie nombre earaeteristique <w
1w2k_ 1

(v
M)

,[M]> est

nul si k n'est pas une puissance de 2 sans aucune hypothese supplementaire sur

M. En outre, d'apres 3.2.3, comme M est la variete double de y , ce nombre

caracteristique est nul si k i 1.

Enfin pour k = 1 la formule (F) implique que la composition

S
1T
3

est l'invariant de Hopf [5] et donc que 8
4
est non trivial.
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We specify the positive integers n for which there exists a self-tranverse
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Introduction: The Freedman-Casson handle theorem [F] used an

unusual combination of smooth and topological techniques that resulted

in the topological classification of almost smooth l-connected closed

four manifolds. (A compact connected manifold M is almost smooth, if

MO = M - interior point, is smooth.) In this paper we combine

smoothing theory with Freedman's results to further study the structure

of topological and almost smooth manifolds.

In section 1 we give a preliminary discussion of almost smooth

manifolds and show, using Freedman's completion of Scharlemann's

transversality theorem, that if M is a compact four manifold, then
2 2M # k(S x S ), some k, is s-cobordant to an almost smooth manifold.

(Theorem A)

In sections 2-5 we give consequences of our main result that

ni(ToP4/04) = ni (Top/O), i 2, 3. Some of these consequences are:

1. A smoothing of MO x R, M a four manifold, is isotopic to a product

smoothing provided MO admits some smoothing. (Theorem B)

2. If V is a cobordism between almost smooth four manifolds, then V

has a topological handle decomposition on a V. (Theorem C)

3. An s-cobordism between almost smooth four manifolds becomes a
2 2topological product by adding S x S 's along the cobordism.

(Theorem D)

4. Let M be a closed 5-manifold. Then the tangent microbundle of M

splits off a line bundle. (Corollary of Theorem E)
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Finally, in section 5 we prove our main result.

Remark: Quinn [Q] has proved that ITi(ToP4/04) = 0, i = 0, 1, 2.

This implies that every four manifold is almost smoothable. Our proof

that IT2(ToP4/04) = 0 is independent of Quinn's.

1. Remarks on Almost Smooth 4-Manifolds.

If M is a topological manifold, a smoothing of M is a pair (U,a)

where U is a smooth manifold and a : M U is a homeomorphism. Two

such (Ul,a l) and (U2,a 2) are isotopic reI aM if there is an isotopy

I -1.G : M x I M such that GO = 1M, Gt aM = laM and a 2Gla l : Ul U2 lS

a diffeomorphism (where Gt(x) G(x,t».

An almost smoothing of M is a smoothing (U,a) of M minus one

interior point from each compact component. If M is compact and

connected, denote an almost smoothing by (U,a,p), where p is the

interior point. A homotopy class w(p,q) of paths from p to q in M

determines a bijective correspondence between isotopy classes of

smoothings reI aM of m - p and M - q. In fact there is an ambient

isotopy G : M x I I such that GO = 1M, GtiaM = laM' Gl(p) = q

and Gt(p), 0 t 1, is a path in w(p,q). If (U,a) is a smoothing

of M - p, is a of M - q. If G' is another such

"isotopy, then G' is isotopic reI endpoints to G" with Gt(p) = Gt(p),

and it is easy to see that this implies the two smoothings of M - q

are isotopic. This gives an action of the fundamental group on the

smoothings of M - p. Just as for homotopy groups we will often

suppress the base point and simply write MO for M minus any interior

point p.

If (U,a) is a smoothing of M, we will sometimes identify M with

U via a, and write Ma for M with this smoothing.

Note that a four manifold is smoothable if and only if it is a

handlebody. Freedman has shown there are four manifolds which are
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not smoothable and hence not handlebodies. This suggests we

investigate the following notion:

Call a compact 4-manifold M an almost handlebody if one can find

a compact contractible 4-manifold W in the interior of M so that M - W

is a smooth manifold with boundary. Thus M is a handlebody except for

one exotic 4 handle W. Clearly, every almost handlebody 1s almost

smooth. The converse is unknown in general, but we will say more about

it later. For the present we note the following:

1.1. Scharlemann's transversality theory [S] as completed by

k+4 kFreedman [F] allows one to deform a map f ; V + ) of a

topological manifold V into the Thorn space of a k-plane bundle to a

map g topologically transverse to the zero section. This process

yields an almost handlebody M4 as preimage of the zero section.

1.2. The arguments of Freedman and Quinn [FQ] in the smooth

case show that if the Wall obstruction vanishes, one may do surgery

2 2
mod # S x S 's on a normal degree one map f : M + X, M an almost

handlebody, so as to end up with a simple homotopy equivalence of an

almost handlebody M' with X # k(S2 x S2), some k. In fact their

method requires surgery only on 0 and 1 spheres.

Theorem A: If M is a compact 4 manifold, there is a k such that

2 2M # k(S x S ) is s-cobordant rel d to an almost handlebody.

. k+4 k+4Proof: By 1.1 wlth s the normal bundle of M and V = S ,

we obtain an almost handlebody N and a degree one normal map f : N + M,

normally cobordant to 1M. By 1.2 we may assume f is a simple homotopy

equivalence, when we replace M by M # k(S2 x S2). Now we wish to do

surgery on the normal cobordism to make it an s-cobordism, but in

general there is a surgery obstruction. On the other hand, every

surgery obstruction can be realized mod # S2 x s2 by a normal cobordism

of N to N', at least if N is smooth [CS]. By first removing the

interior of the exotic 4-handle in N, and realizing the surgery

obstruction on the resultant smooth manifold, we end up with a normal

cobordism mod S2 x S2,s of N to another almost handlebody N', such
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that the surgery obstruction for the normal cobordism from N' to

2 2M # k(S x S ), some k, vanishes, enabling us to construct an

s-cobordism.

Remark: Alternately, starting with M x [0,00) and making the

projection onto [0,00) transverse to say M x 1, we could construct an

almost handlebody N in M x (0,1), and modify it so that mod S2 x S2,s

the cobordism from M to N is an s-cobordism. Compare [C3L], where

the argument is done in the smooth case.

2. Bundle Reductions and the Product Structure Theorem.

Let j BToP4 BTop and j : B0
4

BO be the maps induced by the

inclusion of TOP4 in Top. Note that j may be considered a map of

fibrations:

BTOP4

3
- BO

!
- BTop ,

j

with fibres TOP4/04 and Top/O, respectively.

Notation: If (X,A) is a relative CW complex, we let

(X,i)i = A u cells of dimension,,; 1.

Proposition Let (X,A) be a relative CW complex of dimension

at most four. Let : X BToP4 and suppose = (X,A)3 lifts to

A 3
: (X,A) B04· Then the correspondence to induces a surjection

of the homotopy classes of lifts of extending onto the homotopy

classes of lifts of extending

Addenda: By replacing A by (X,A)2 and using the fact that

TIi(Top/O) = 0 for i < 3 we have by 2.1:
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2s lifts to B04 extending sol (X,A) if and only if js

lifts to BO extending jsOIA.

By replacing A by (X,A)3 and using the fact that n4(Top/0) 0

we have:

2.Ib: s lifts to B04 extending go if and only if js lifts to

AA 3
BO extending jsO' Any two such lifts of js are homotopic rel(X,A) ;

and in particular if g is such a lift of sand n such a lift of js,

3g is homotopic to n rel(X,A)3.

Proof of £.1 (using the main theorem): Since ni(Top/O) = 0 for

i < 3 we may assume up to homotopy that any lift n of js to BO extending
AA 2

JsOIA actually extends jsol (X,A) . Since n3(ToP4/04) + n3(Top/0) is

surjective, we may change go over the 3 cells of (X,A) so that is

homotopic rel(X,A)2 to nl (X,A)3, and hence we can assume n agrees

with JE o over (X,A)3 Since n3(ToP4/04) + n
3(ToP/0)

is injective go

extends to a lift g of S. Since n4(Top/0) = 0, is homotopic to n

rel(X,A)3.

If M is a 4-manifold, the Kirby-Siebenmann obstruction

4 4K E H (BToP;Z2) yields a class K(M) E H (M,8M;Z2) which can be viewed

as the obstruction to smoothing M x R rel 8M x R.

The following is an immediate consequence of 2.1.

Proposition £.£: Let M be a I-connected almost smoothed closed

4-manifold with K(M) O. Then the corresponding lift of 'M to B04
°extends to a lift of ,M.

Remark: The proposition says there is no bundle theoretic

obstruction to extending the smoothing to M. Nevertheless, a recent

result of Donaldson on Spin manifolds, shows that the smoothing does

not always extend.
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Smoothing theory and 2.1 will allow us to prove the following

weak product structure theorem:

Theorem B: Let M be an almost smoothed 4-manifold, and suppose

we are given a smoothing of M
O

x R which is the product smoothing

on aM x R. Then there exists (a possibly different) smoothing of MO'

unchanged on the boundary, so that the product smoothing of M
O

x R

is isotopic rel aM x R to the given smoothing.

Remark: The reason this theorem is called weak is that the new

smoothing of M
O
is unique only up to concordance - not isotopy or even

sliced concordance.

Addendum B1: Let C c M be a proper closed subset. Under the

hypothesis of Theorem B and supposing C c MO (which can always be

arranged - see section 1) ana that the smoothing of MO
x R restricts

to the product smoothing on U x R, U a neighborhood of C in MO'

then we can conclude that the new smoothing of M
O
agrees with the

original smoothing on a neighborhood of C.

If M is smoothed and we are giver. a smoothing of M x R one

cannot guarantee that this smoothing 1.s isotopic to a product smoothing

on all of M x R, even though all bundle obstructions vanish. However

we can show:

Addendum B2: There is integer k 2 0 with the following

property. With the hypothesis of Theorem B, and assuming

M = X # k(S2 x S2) for some smooth compact connected 4-manifold X; if

we are given a smoothing of all of M x R, which is the product

smoothing on aM x R, then there is a smoothing of all of M such that

the product smoothing on M x R is isotopic rel aM x R to the given

smoothing.

Remark B3: The relative version of Addendum B2 holds provided

C c Xo c M.
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Addendum B4: Let N4 be the twisted S3-bundle over S'. There

exists a smooth 4-manifold, M4, and a homotopy equivalence f : M4 + N
4

which is not homotopic to a diffeomorphism iff k = O.

Proof of The classifying map, : M + BToP4 of the

tangent microbundle of M satisfies: a) '0 = 'IMo lifts to B04 - using

the almost smoothing of M, b) j,o lifts to BO - using the smoothing of

MO x R, so that if is the lift of '0 and nO is the lift of j,o'

A'
By 2.1 there is a lift '0 of '0 so that

A'
'OlaM = 'olaM and

smoothing theory

the conclusion.

AA'
j,o

[LJ,

is homotopic to nO rel aM. It follows from

that there is a smoothing of MO satisfying

Proof of Bl: Take a smooth compact submanifold A4 c D, with

C c Int A. Then the same argument as above with aM u A replacing aM,

proves Bl.

Proof of B2: The classifying map for the tangent bundle of M

factors up to homotopy as follows:

2 2 q 2 2 r vr '
M = X # k(S x S ) --. X v k(S x S ) • BToP4' where q is the

quotient map and, (resp. ,') classifies the tangent bundle of X

(resp. k(S2 x S2)). Since k(S2 x S2) has a trivial stable tangent

bundle, j,' is homotopically trivial by a standard based homotopy.

Since n2(Top/0) = 0, any lift of j'M defines a lift of j,. The lift

is unique up to homotopy since n 4(Top/0) = O. Thus the smoothing of

M x R defines a lift n of j, so that if T is the lift of , given by

the smoothing of X, = nlaX.

Since Top/O is a K(Z2,3), the difference between n and defines

a class a c H3(X,aX;Z2)' We assume a 0, since otherwise the result

1
is trivial. The dual of a is represented by a smoothly embedded S

in X. The normal tube of 3
1 is either E+ = D3 x Sl or
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E = the unoriented D3 bundle over Sl. Let E denote whichever one we

have. Then a is the image of the generator y of

H3(E,dE;Z2) H3(D3,dD;Z2)' In particular, we can assume n on

X - Int E. Then nlE is in the unique non-standard homotopy class 0

of lifts of jTE reI dE. To realize the lift n of jT, it would be

sufficient to change the smoothing on E reI dE from the standard

smoothing represented by to one defining a lift cr, where jcr is in

O. By 2.1, a lift &always exists such that jo is in o. However,

in general, cr only defines a smoothing of E # k(S2 x S2) for some k

[LSJ, but nevertheless with the induced product smoothing of

(E # k(S2 x S2» x R representing 8. Thus if for E+ we chose 0+ with

E 0+ and similarly for E_, then letting k = max(k+,k_), we can

always get a smoothing of X # k(S2 x S2) satisfying B2.

Proof of B4: If k = 0 we can use the homeomorphism h promised

by B2 for f.

Given f it is an easy surgery theoretic calculation to show that

M
4
is topologically h-cobordant to N4 but M4 is not smoothly

4h-cobordant to N .

By a theorem of Quinn [QJ, any sufficiently large cover of this

h-cobordism is a product. Here we can find a smooth manifold M4 and

-4 4a homeomorphism h : M + N by taking a large odd cover. This shows

k = O. The double cover of this picture shows k+ = O.

3. Handlebody Theory.

Remark: These results are largely superseded by Quinn's

results [QJ.

Proposition 3.1: Let V be a five dimensional compact cobordism

between the four manifolds d_V and d+V which is a product between

their boundaries. If V is a topological handlebody on d_V, there
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is a 4-plane bundle n over Va such that n 1

Proof: It suffices to prove 3.1 when V = o_V x I uf oi x 05-i.

In fact, by induction up the handles this will construct a bundle n

over V - F, F a finite collection of interior points, which we can

assume contains at least one point from each component of V. By a

standard argument Vo may be engulfed reI OV into V-F.

Now we can always define a smooth structure on a neighborhood of

f(Si-l x 05-i) c 0 V so the attachment is smooth with rounded corners;

and in particular we have an embedding e : Si-l x S4-i x R + 0 V x 1.

o - V x I

o - V x 0

Define n over W= 0 V x I ue
Ri x S4-i by gluing T(Ri x S4-i) to

T(o V) x I by T (e) . Since V = V - (0,0), (0,0) Oi x 5-i has W as
0

E o ,

a deformation retract, the result follows.

Corollary Under the hypothesis of 3.1 and assuming O+V I 0,

there is a 4-p1ane bundle s over V such that s W 1 = T(V),

slo_V T(O_V) and sl(o+V)o = T(O+V)O.

Proof: Engulf V in Vo by pushing in on an interval from a base

point in O+V to the base point in V. Let s be the pull back of n by

the engulfing.

Proposition 1.}: Let X be a 4-complex and sl' s2 topological

4-plane bundles over X. If a) sl and s2 are stably equivalent, and
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and b) sl and s2 have lifts to B04 over the 3-skeleton x3 ; then sl

and s2 are equivalent over x 3 and sl lifts to B04 over X if and only

if s2 does.

Proof: 71i B04 + 71i BO is an isomorphism for i ,;; 3 and

71i BO + 71i BTop is an isomorphism for i ,;; 3. Thus the lifts gl and g2

of sllx3 and S21x3 to B04 are homotopic over X2. Since 7I
3
B04 = 0,

and S2 are homotopic. Hence Sl and S2 are equivalent over x 3. The

last statement of the proposition follows from 2.1 and hypothesis a).

Remark: In order for Sl and S2 to be equivalent it is necessary

and sufficient that they have the same Euler class.

Proposition }.1: Let V be a compact h-cobordism between

4-manifolds which is a product along the boundary, and suppose V is a

handlebody on d V. Then

a) d V is almost smoothable if and only if d+V is almost smoothable.

b) T(d V) reduces to a vector bundle if and only if T(d+V) reduces to

a vector bundle.

Proof: By 3.2, there is a 4-plane bundle S over V such that

Sld±V T(d±V). Since V is an h-cobordism S = r*T(d V), where

*r : V + d V is the retraction. In particular, T(d+V) r+T(d_V),

where r+ = rld+V. Since d+V has the homotopy type of a 4-complex X

with (d+V)O homotopy equivalent to x 3 [W], the result follows from

3.3 and the fact that if V is a handlebody on d V then it is a

handlebody on d+V.

Proposition } . .2.:
not almost smoothable.

Suppose there is a compact 4-manifold which is

Then

a) there is a compact s-cobordism V5 which does not have a handle

decomposition on d V, and
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b) there is a compact manifold V5 with boundary such that V is not a

handlebody on dV.

Proof:

a) By Theorem A, if M is the compact 4-manifold of the hypothesis,

then M # k(S2 x S2) is s-cobordant to an almost smoothable compact

manifold. But if M is not almost smoothable, neither is

M # k(S2 x S2). Hence by 3.4, the s-cobordism cannot have a handle

decomposition.

b) Let V be the s-cobordism in a). Suppose V is a handlebody on dV.

By 3.2, there is a 4-plane bundle on V which restricts to T(dV)O

on (dV)O' Since = r*T(d_V), T(dV)O has a vector

bundle reduction. But this implies d+V i,; almost smoothable,

giving a contradiction.

Theorem C: Let V be a compact cobordism between almost smoothable

4-manifolds which is a product along the boundary. Then V has a

topological handle decomposition on d V.

Proof:

1. We may assume d_V and d+V are non-empty:

Just remove one or two open discs from V as necessary to make d_V

and d+V non-empty. Obviously if the new V has a handle decomposition

on d V so does the original cobordism.

2. We may assume T(V) reduces to a vector bundle rel L, L

the (possibly empty) "lateral" surface of V:

d (d V) x I

4Suppose the obstruction K(V) E H (V,L;Z2) to extending the

reduction of T(V)IL (induced by the smoothing of d(d_V» is non-zero.

Let a E Hl(V, d+VU d_V; Z2) be the dual class. Then it is easy

to see that a is represented by a finite collection of locally flat

embedded arcs going from d V to d+V. Now each arc is the core of a-

I-handle I x D
4
going from d V to d+V. Let p 4 c Int D

4
be a compact
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contractible 4-manifold with dP the Poincare homology sphere [F].

Remove I x Int P from each of the above I-handles. This gives a new

compact cobordism which is a product along the boundary, and it is

again obvious that if the new V has a handle decomposition on d_V so

did the original cobordism. Since the obstruction to reducing ,(p)

to a vector bundle reI dP is non-zero, it follows that the tangent

bundle of the new V reduces to a vector bundle reI the new L.

3. If ,(V) reduces to a vector bundle reI L, V has a handle

decomposition on d_V:

The reduction of ,(V) defines stable reductions of ,(d±V) and by

2.1, reductions of the ,(d±V) themselves. By Lashof and Shaneson

[LS], there is a compatible smoothing of d±V # k(S2 x S2), for some k.

We may think of d±V # k(S2 x S2) as embedded in outside collar

neighborhoods of the d±V by first adding trivial 2-handles to d±V x I

and then cancelling 3-handles. Thus we have a smoothable manifold W,

d W = d_V # k(S2 x S2) and d+W = d+V # k(S2 x S2). V is constructed

by first adding trivial 2-handles to d V x I to reach d_W, and then

attaching the (smooth) handles of W to reach d+W, and finally attaching

the dual three handles to d+W to get to d+V.

Addendum: We may assume the handles of a given dimension are

attached disjointly in order of increasing dimension.

Proof: In the handle decomposition given in the proof above,

one can certainly assume the 0, 1, 2 handles are attached before any

of the 3, 4, 5 handles, by taking such a handle decomposition for

the smooth manifold W. Hence using only general position arguments

one can arrange the 0, 1, 2 handles in order on d V and the dual

0, 1, 2, handles in order on d+V.

Notation: Let V be a compact connected cobordism between four

manifolds, and let H c V be a I-handle I x D
4
going from d V to d+V.
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22.22We let V #H I x k(S x S ) be the cobordlsm from d_V # k(S x S ) to

2 2 . 4 2 2d+V # k(S x S ) obtalned by replacing H by I x (D # k(S x S ».

Theorem Q: Given a compact s-cobordism V between almost

smoothable four manifolds which is a product along the boundary, then

there is a I-handle H c V from d V to d+V and a k such that

V #H I x k(S2 x S2) is a topological product extending the product

structure along the boundary.

Proof: As in part 2 of the proof of Theorem C, we may assume

that leV) reduces to a vector bundle, after deleting copies of

I x Int P. By 2.1 this defines compatible reductions of l(d±V).

By [LS] there is a k such that d±V # k(S2 x S2) have compatible

smoothings. Further there is an immersion and hence an embedding of

(Ix D4, -Ix D4, Ix D
4)

in (V,d_V,d+V) whose differential is

deformable to a linear map with respect to the above reductions. But

this implies the smoothings of d±V # k(S2 x S2) extend to a smoothing

2 2of V #H I x k(S x S ), where H is the above embedded handle. This

gives a smooth s-cobordism; but then Quinn's stable Whitney trick [Q]

shows that after possibly adding more S2 x S2,s we get a smooth

product. Thus for the original V, V #H I x k(S2 x S2) is a

topological product.

We can now discuss the extent to which almost smooth manifolds

are almost handlebodies: Freedman constructs almost handlebodies [F]

and since he proves a uniqueness theorem for I-connected almost smooth

closed manifolds we have:

Proposition 1.£: Any I-connected almost smooth closed 4-manifold

is an almost handlebody.

In general, all we can say is,
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Proposition }.l: If M is a compact almost smooth 4-manifold,

then there is a k such that M # k(S2 x S2) is an almost handlebody.

Proof: Immediate from Theorems A and D.

We can also add a little to our knowledge of homotopy Rp4,s.

By Theorem D, all the Cappell-Shaneson Rp4,s [CSJ and the

Finteshel-Stern exotic Rp4 [FSJ are homeomorphic to Rp4 mod connected

sums with S2 x S2,s. Secondly, we note that since H3 (Rp4;Z2) f °
there is an exotic almost smoothing of Rp4. The bundle obstruction to

extending this smoothing over the last point is zero, as remarked

above (see B2 and the proof thereof). Thus we get a non-trivial

smoothing of Rp4 # k(S2 x S2) by [LSJ. Also note that we can assume

the smoothing is standard on a neighborhood of Rp2.

4. Disc Bundles.

In [StJ, R. Stern did a detailed study of the problem of finding

a disc bundle inside a given microbundle. He was able to deal with

this question except for five dimensional bundles. We offer,

Theorem E: Let X be a 5-dimensional complex. Any 5-dimensional

microbundle over X contains a topological disc bundle.

Remark: We do not claim the disc bundle is unique. That

involves unknown homotopy groups of TOP4/04.

The following is due to Stern for k > 2.

2k+l .Corollary 4.1: Let M be a closed manlfold. Then the tangent

microbundle of M splits off a line bundle.

Proof of Corollary: Let TOP(I)n' resp. TOP(S)n' denote the group

of homeomorphisms of In, resp. Sn. An n-dimensional microbundle over

X contains a disc bundle if and only if : X + BToPn lifts to

BTop(I)n. Since the restriction map Top(I) + Top(S) 1 is a homotopy
n
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equivalence, one has the fibration:

*
n-lTOPn_ 1 + Top(I)n + S ,

and hence the fibration: sn-l + BToPn_l + BTop(I)n' Thus will

split off a line bundle if its Euler class is zero. But for

n = 2k + 1, the Euler class of ,(M) is zero.

Proof of Theorem E: From (*) we see that TOP4/04 + Top(I)5/05

is a homotopy equivalence and that we have the fibration:

In particular, since TI4(ToP5/05) = ° and TI3(TOP4/04) + TI3(ToP5/05) is

an isomorphism by our main theorem, we see that TI4(ToP5/TOP(I)5) = °
and that TI3(ToP5/05) + TI

3
(ToP

5
/ ToP ( I ) 5 ) is trivial. From the map of

fibrations:

TOP5 /05 - TOP 5/TOP(I)5

1 1
B0

5 BTop(I)5

1 1
X BToP

5 BTOP
5

we see that lifts to B0
5
since TI i(TOP 5/0 5)

= ° for i < 3, and

that the obstruction to getting a lift to B0
5
over x4 in

4 4 4H (X;TI
3(TOP5/05))

maps to zero in H (X;TI3(TOP5/Top(I)5). Thus

lifts to BTop(I)5' The lift extends to X since TI 4(ToP5/ToP(I)5)
= 0.
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Case i = 2:

An element a E n2(ToP4/04) defines an exotic smoothing of

R x S2 x Sl as follows: Since the tangent bundle of the standard

smoothing is trivial, the classifying map L : R x S2 x 31 + BToP4

can be taken to be the constant map to the base point. Define a lift

La of L to B0
4

by La = ifp, where p R x S2 x Sl + S2 is projection,

of the fibre when we consider B0 4 as a fibre space over BToP4. This

defines a homotopy class of lifts La and hence a sliced concordance

class of smoothings (R x S2 x Sl) [LSJ.
a

Proposition 2.1: There is a compact 4-manifold V with

av = S2 x Sl which is h-cobordant rel boundary to D3 x Sl # k(S2 x S2)

and such that the smoothing a of R x S2 x Sl extends to a smoothing of

W = V u open collar (i.e., the open bicollar of av in W identifies

with R x s2 x Sl).

Proof: Since n 2(ToPS/OS) = 0, the smoothing a is stably

equivalent to the standard smoothing. Thus there is a smoothing S of

±1, the smoothing a x 1 on a product neighborhood of

I, I = [-l,lJ, which is the standard smoothing nearR x S2 x Sl x

R x S2 x Sl x

R x S2 x Sl x ° and with S isotopic to the standard smoothing

rel a product neighborhood of the boundary. Identifying R x S2 with

R3 _ 0, we can get a smoothing y of R3 x sl x I which is standard

near R3 x sl x ±l and equal to S outside x Sl x I, a small disc

about ° in R3.

We can deform the projection p : (R 3 x sl x I)y + I to a smooth

map p' transverse to ° in I, rel the complement of x Sl x I and a
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collar neighborhood of the boundary. Let W = pl-l(O). Then W is

smooth and the end of W is topologically the same as the end of

R3 x Sl and has the smoothing a. The composition qj : W + R3 x Sl,

j the inclusion of W in R3 x Sl x I and q the projection of

R3 x Sl x I onto R3 x Sl, is a proper degree one normal map. Let V

be the compact topological manifold with av = S2 x Sl such that

W V u open collar. Then qj restricts to a degree one normal map

h + (03 x Sl, S2 x Sl), the identity on the boundary. Following

2 2[FQ] or [CS] we can do smooth framed surgery on Int V mod S x S 's

so that we get a homotopy equivalence of the new V with

0 3 x Sl # k(S2 x S2) rel boundary. In fact, as in the proof of

Theorem A, we can assume the homotopy equivalence is actually an

h-cobordism.

Lemma Let a and S be smoothings of Wand Ta and T
S
the

corresponding lifts of T : W + BToP4 to B0
4.

If Ta T
S

on the base

point (p,q) E s2 x sl, then T
a

T
S

on S2 x q. homotopic

through lifts.)

Proof: Since V is h-cobordant to 0 3 x Sl # k(S2 x S2), the

Stiefel-Whitney classes wl(V) and w2(V) are zero. It follows that TWa

and hence TW is trivial. Thus we may assume T sends W to the base

point. Again since V is homotopy equivalent rel boundary to

0 3 x Sl # k(S2 x S2), the inclusion i : s2 x q + av c W is homotopic

to the constant map to (p,q). Since Ta T
S

on (p,q), Tai TSi

2over Ti; i.e., Ta T
S

on S x q.

Proposition 2.1: Let V be homotopy equivalent reI boundary to

0 3 x Sl # k(S2 x S2) and let W = V u open collar. Let M = V u 0 3 x Sl,

identified along their boundaries, and let a be a smoothing of W

which is standard on a neighborhood of (p,q) E S2 x Sl in the bicollar.

If M is almost smoothable, Ta is homotopic to the standard lift on a

neighborhood of S2 x q in the bicollar.
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Proof: We identify Wwith an open neighborhood of V in M.
Let S be an almost smoothing of M. Since TW is trivial, if

T(l,' T
S

: W .... TOP4 /04 c B04 do not land in the same component we can

always change T(l, by composition with an element g of TOP4 to achieve

, I

this; and then T(l, T
S

on the base point, T(l, = gT(l,. By 6.2, T(l, TS

on S2. Since we can take M
O
= M - (O,q'), (O,q') E D3 x Sl, q' t- q,

TS extends over D3 x q. Take the trivialization of TW to be that

given by T(MO)S so that T : M
O

.... base point and

Since T(l,
2 I 2

T on S x q, T Is x q is- S (l,

homotopic to the constant map onto (1). By composing with g-l we see

2that T Is x q is homotopic to a constant map, and since (l, was(l,

standard on a neighborhood of the base point, T(l, must be homotopic to

2the standard lift on a neighborhood of S x q.

Corollary 2.1: Let (l, E and let M = V u D3 x Sl,

where V is given by 5.1. If M is almost smoothable (l, = 0.

Proposition 2.2: Let (l, and M be as in 5.4. If the universal

cover of M is smoothable, (l, = O.

Proof: The obstruction to smoothing Mo with a given smoothing S

in a neighborhood of the base point is a class Os E

Indeed if S is isotopic to (l, on a neighborhood of the base point it

extends to W, and the obstruction to extending T
S'

and hence S, to MO

is a class Os as above. If T
S

corresponds to a different component

,
of TOP4/04 than T(l, on the base point, T(l, = gT(l, will be in the same

component for some g E TOP4' and hence T
S
will extend over W in any

case so that we get an obstruction to smoothing MO as above.

If f : M .... M is the universal cover,

f*
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has the homotopy type of S3 x Sl # k(S2 x S2). If Os is non zero,

f*OS F 0; but f*OS is the obstruction to smoothing M with the pull

back smoothing S on a neighborhood of the base point in M. Thus

if M is smoothable f*OS = 0 for some S, so Os = 0 and M
O
is smoothable.

Hence a = 0 by 5.4.

Proposition Let a and M be as in 5.5. Then M is

3 2 2homeomorphic to S x R # oo(S x S ) and hence smoothable.

Proof: M = V u D3 x Sl and M - 0 x Sl is homeomorphic to W.

So M = V u D3 x Rand M 0 x R is homeomorphic to W. Since W is

properly h-cobordant to R3 x Sl # k(S2 x S2), Wis properly

h-cobordant to R4 # 00(S2 x S2). Since W is smoothable by the pull

back of a, Freedman's theorem says W= R4 # 00(S2 x S2). In

4
particular, we can perform topological surgery on W to obtain Rand

this changes M to a manifold M', the proper homotopy type of S3 x R.

But Siebenmann [F] has shown that such a manifold is homeomorphic to

S3 x R. But then M= S3 x R # 00(S2 x S2), connected along an

embedding f of R4 in S3 x R. The Lemma below shows that there is a

homeomorphism h of S3 x R such that hf is isotopic to the standard

embedding of R4 and hence M is homeomorphic to the standard (smooth)

connected sum.

Lemma If f : R
4

s3 x R is any embedding, then there is a

smooth embedding g : R4 S3 x R and a homeomorphism h of S3 x R such

4
that hf = g on D .

Proof: We can smoothly

that f(O) is identified with

is an ambient homeomorphism k

4
Choose t;, > 0 such that q f Dt;,

identify S3 x R with R4 - q, q F 0, so

o in R4 • By Kister's theorem [K] there

4 4 4
of R with k(O) = 0 and kiD = flD .

u Then we may assume klD
4 = flD

4
s t;, t;,

and k(q) q. Thus k restricts to a homeomorphism of S3 x R so that
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. fl 4 . D4 S3 ikl = Ds' where l: S + x R is the smooth embedd ng so that

composed with the inclusion of S3 x R in R4 it is the standard (smooth)

embedding of Di in R
4.

Then k- lflD4 is isotopic to a smooth embedding

g and so using the isotopy extension theorem, we can find a

homeomorphism h such that hf = g on D4.

Proof: This follows immediately from 5.5 and 5.6.

Case i = 3:

1et a E IT3(TOP4/04)' then a defines a smoothing, unique up to

sliced concordance, of S3 x R which is standard near the base point.

We denote this by (S3 x R). In [1SJ, it is shown that if a isa

stably trivial this is the end of a smooth manifold W the proper

homotopy type of R4 # k(S2 x S2) = (k(S2 x S2))0' By Freedman's

classification theorem the underlying topological manifold W is

homeomorphic to R4 # k(S2 x S2). Since the tangent bundle of the

latter is trivial, we can assume, : W + BToP4 is the constant map

to the base point, and the standard smoothing S gives a constant

lift 's to the base point of B04. Then Wa defines a lift

'a W + TOP4/04 c B0 4 of ,. Since the inclusion of S3 x ° c S3 x R c W

is homotopically trivial, 'als3 is homotopic to 'sls3.

We wish to show that a = 0; but we cannot conclude this directly

from the above. That is, if h W + R4 # k(S2 x S2) is the

homeomorphism and i : s3 x R + W is the inclusion, then we do not know

that hi is the standard inclusion of the end in R4 # k(S2 x S2)

and hence we do not know that the pull back by hi of S is the standard

smoothing of S3 x R. On the other hand, , is homotopic to " IW,

where " is a classifying map for W, the one point compactification of

4 2 2W. W is homeomorphic to S # k(S x S ) and we take " to be the
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constant map to the base point on a neighborhood of the point at 00.

,
By the covering homotopy property T

a
and T

S
are homotopic to lifts Ta

and T
S
of T' IW, where T

S
extends to a lift of T' with T

S
constant on

a neighborhood of 00. But since the compactification of one end of

3 4 3 4 ' , 3 '3S x R is R (with 3 x R R - 0) and since T - T
S

on 3 , T Is x R
Ct a

extends to a lift of T' IR4. But T' IR4 has only one homotopy class

Thus T' 133 is standard
a

and Ct = O.

Proof: The above argument shows the stabilization homomorphism

j* is a monomorphism. On the other hand, Freedman [F] has exhibited

an almost smoothed almost parallelizable closed I-connected manifold

of index 8. It follows that the smoothing of the end of this manifold

represents a stably non-trivial element of Hence j* is

an isomorphism.

Remark: The base point is irrelevant in the main theorems since

TOP4/04 is homogeneous.
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A TWO STAGE PROCEDURE FOR THE CLASSIFICATION OF

VECTOR BUNDLE MONOMORPHISMS WITH APPLICATIONS TO THE CLASSIFICATION

OF IMMERSIONS HOMOTOPIC TO A MAP

by

Li Banghe and Nathan Habegger

§O. Introduction

Let A be a subspace of a path connected space B. Let * E B

be a base point and denote by TIl(B,A,*) the set of homotopy classes of

paths c; [O,lJ B with c(l) = *, c(O) E A. Then TIl(B,*) acts on

TIl(B,A,*) on the right with orbit space TIO(A). Thus the problem of cal

culating TIO(A) may be divided into two stages;

I Calculate TIl(B,A,*)

II Calculate the action of TIl(B,*) on TIl(B,A,*)

0.2. If Nn are differentiable manifolds, the space Imm(M,N) of

immersions of M in N is a subspace of the space of all maps M to N

(with the compact open topology). For fixed f E let denote its path

component. Applying 0.1 we have that n Imm(M,N» (the set of regular

homotopy classes of immersions homotopic to f, which we will denote by

[Mj+ N][f]) is the orbit space of TIl (the set of regular homotopy

classes of immersions with a homotopy to f given, denoted by [Mt+ N]f)

under an action of TIl

This work is an investigption into the second stage of the classification

procedure. We were motivated to look closer at step two as we had observed

in the literature several misstated results due to a failure to consider this

step.

In §l we recall the notion of affine structure and affine action.
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In many situations, the sets encountered come equipped with an affine structure

and the group actions are affine. This additional algebraic structure

facilitates the expression of the final results.

In §2 we discuss general properties of TIl actions in lifting problems.

Here we give the general homotopy theoretic framework which is then applied

in §3 to the lifting problem associated to the classification of mono-

morphisms of vector bundles. In §4 we give examples of trivial and non-trivial

affine actions of immersion theory. In the appendix we give some calculations

of X
TI1 (Y ,f).

§1. Affine Structures

Definition 1.1. A set X is said to (over a group G)

if there is a map fl.:X x X-+G satisfying

a) fl.(x,y) fl.(y,z) = fl.(x, z)

b) for all x E X, fl.(x,. ) : X-+G is a bijection

Remark 1.1.1. fl. determines (and Ls determined by) a simplll transitive action

r : X x G -+ X by the equation r(x,fl.(x,y» = y.

Definition 1.2. An affine map is a pair (f,f) making the diagram

X' x X'------+

G

commute.

G'

Definition 1.3. The group of affine transformations of X (over G,

w.r.t. fl.) will be denoted by Aut(X,G,fl.) (or just Aut(X».

Remark 1.3.1. There is a split exact sequence

1 -+ G -+ Aut(G) -+ 1, where res: Aut(X) -+ Aut(G) is given by

(f,f) -+ f. The action of G as automorphisms (on the left) of X is called

translation.
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§2. TIl actions in lifting problems

2.1. actions on fibers

Given a (Serre) fibration
E

With B path connected and fiber F, one
B

has a right action of TIl(B) on TIa(F) given by taking the end point of

lifts of paths. The orbit space of this operation is TIa(E).

The above situation is equivalent to that of a.l, since if the inclusion
E

A c B is replaced by a fibration then TIl(B,A) TIO(F) and this
B

bijection is compatible with the action of TIl(B).

2.1.1. Naturality

If E' E is a pullback (in the homotopy category)

B' B

then the action of TIl(B') factors through TIl(B).

2.2. Maps into fibrations

E
Let be a (Serre) fibration and X a complex. (These assumptions

B

foverf E BX, the fiberForis a Serre fibration.The map

will be made throughout, although this is more restrictive than necessary).

EX

P X
B

(possibly empty) is the space of lifts over f. By 2.1 XTII(B ,f) acts on

-1 X
TIa(ff) with orbit space TIa(p B[f]) (denoted respectively by [X,E]f and

[X,E][f]') Thus the homotopy classification of liftings and of liftings

"up to homotopy" differ by an action of TIl'

2.2.1. Naturality

If E' E is a pullback, so is

B' ! B

so, by 2.1.1, the action

of factors through XTIl(B , go f ) ,
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2.3. Two stage lifting problems

E B

r(!)cSuppose -} and -} are fibrations. Let B
X denote the space of

B X

sections.

TIO(rf) ( = [X,El
f,

see 2.2) with orbit space

Thus classification of liftings of a

The diagram

For r e r (!) denote by

TIl(r(!) , f) acts on

) (denoted by'\X <f>

EX

t t p

r(Dc B
X

r(D<f>

is a pullback.

the path component of f. By 2.1

two stage fibration involves calculating an action of TIl'

Remark. By 2.1.1, the action of factors through TIl(B
X)

so little

generality Ln lost by considering only the situation of 2.2.

2.4. Affine Structures

Proposition 2.4.1.

G B
Let -} be a local coefficient system with fiber G and let -} be a

B B
covering space with fiber F. Suppose we are given a fiberwise action

Bx G B such that for x E F, r(x,.) : G F is a bijection, i.e., so that

F is affine over G. Then the action of TIl(B) on F is affine.

Proof: Let G G be the maps given

by path lifting. Then = f E Aut (G) •
a

Example 2.4.2.
E T

Suppose -}, -} are fibrations with fibers Fb,Q b and suppose that the
B B

Q
b

are groups (H-spaces) and that we are given a fiberwise (H-space) action

ExT E such that for x E F
b

r(x,.) : Q
b

F
b

is a (homotopy) equivalence.
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Then ITO(Qb) is a local coefficient system over B acting on the covering

Example 2.4.3.

E
Let + be a fibration with fiber F. Let (SX,*) be a reduced suspension.

B

Then the product (B,*)(SX,*) x (F,*)(SX,*) acts fiberwise on the fibration

(E,*)(SX,*) as in 2.4.2.

(B:*) (SX,*)

over the group [(SX,*), (F,*)]. Moreover the affine action of ITl«B,*)(SX,*»

is via translations (since path lifting in products is trivial, see proof of

2.4.1) •

Example 2.4.4.

Let E
+
B

, T be as in 2.4.2.
+
B

are also as in 2.4.2 (except that p-l(f) may possibly be

empty). Applying 2.4.1 and 2.4.2 we get that [X,E]f is affine over [X,T]f

and the action of is affine.

2.5. Affine structures for lifting problems in the stable range

2.5.1. For spaces we have the functor 6, the unreduced

suspension with distinguished points Sand N, the south and north poles.

For spaces with a base point, *, we have the functor Q*, loops at *, and P*,

paths ending at * For spaces with two base points *0 and *1' we have the

functor P* of paths beginning at * and ending at * 2* acts on P** 0 1·
0' 1

from the right. Q* acts on P*
0'*1

from the right and for c E P* *
(X),

1 0' 1

r(c,.) : 5G* (X) -+ P* * (X) is a homotopy equivalence.
1 0' 1

E
If + is a fibration (with section s, or sections sO,sl) then

B
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EB, P EB, P EB denote the fiberwise application of the functors
s s sO,sl

Z. P*, P* *
0' 1

Theorem 2.5.2. (Becker [Be]).

E
Let be a fibration with n-l connected fiber F. Let X be a 2n-l

B
coconnected complex and f: X B a map. Then [X,E]f is affine. Moreover,

the action of X11
1
(B ,f) on is affine.

Lemma 2.5.3.

connected.

For X n-l connected, the inclusion X PS,N ZX is 2n-l

Lemma 2.5.4.
E-+E'

Let "d
B 1. B

be a map of fibrations such that the map of

fibers F F' is m connected. Then if X is m coconnected,

[X,E]f [X,E']f is 1-1 and onto.

2.4.4 to the fibrations

Proof of 2.5.2. By 2.5.3 and 2.5.4 we may replace

PS,N Z EB, Z EB•

B B

E
by

B
Now apply

2.6. Affine structures for lifting problems with fiber an Eilenberg MacLane space

Theorem 2.6.1.

E
Let

B
[X,E]f has

be a fibration with fiber F a

an affine structure with group

K(G,n), n> 1. Then the set

n
H (X,Gf) (where G

f
is the

local coefficient system on X induced by f from the local coefficient system

X11
1
(B ,f) on [X,E]f ia affine.

Moreover let B K(11 1(B) ,1) = K be a map· inducing the isomorphism

X n I"V n I'V

11
l(B)

= 111 (K). Then the composite 111 (B ,f) Aut([X,E]f' H Aut(H (X,Gf))

coincides with the composite

X11
1
(B ,f)
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The affine structure is classical obstruction theory. Let G denote

an operation of rr on G (or a local coefficient system over K = K(rr,l).

Let K denote the universal cover). Let Z be a pointed K(G,n+l) with

based IT action inducing G on rrn(z) G. Set L(G,n+l) K x Z,
n

a K(G,n+l) fibration over K K(rr,l) with section u and projection p.

page 298)

, given byThe map E
{

L(G,n+1)

evaluating a path at its origin, is the universal (see [Ba],

Consider

K(G,n) fibration. (The fiber over x E Z C L(G,n+l) is a K(G,n).)

By naturality, it will be enough to prove 2.6.1 in the universal case.

Note that the fibers over u(K) are H-spaces (the fiber over * E Z C L(G,n+l)

is saZ) and The fibrations E
{

L({;,n+1)

* *and p u E
{

L(G,n+1)

satisfy 2.4.4. So [X,E]f is affine over

This latter is isomorphic to as groups. By 2.4.2 and 2.1.1, the

Xaction of rrl(B ,f) is affine. Moreover, by the proof of 2.4.1, the map

X n
rrl(L(G,n+l) ,f) Aut(H (X,Gf» is given by path lifting in the fibration

(sa L(G,n+l)K)X (more precisely, by 2.4.2, by path lifting in the associated
u {

KX

local coefficient system over KX with fiber [X,sa L(G,n+l)K] f
u po

This is easily seen to be given hy the coefficient automorphism.

Corollary 2.6.2.

E
Let X have dimension n and let { be a fibration with n-l connected

B
fiber F. Then [X,E]f is affine over H = rln(X, rrf(F». The map

n

factors through

E
Let -l-n be the first stage of a Postnikov tower for

B

K(rrn(F),n). Then by 2.5.4 [X,E]f [X,En]f is a bijection.

E
{- with fiber
B

Apply 2.6.1 to
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Proposition 2.6.3.

be a fibration with simply connected

IT
l
(B» translation group of

The

Furthermore, the

with group

factors through

E
X = Sn, the n-sphere, and let +

B
has an affine structure

Let

fiber F. Then [X,E]f
n

composite ITl(B
S)

Aut(ITn(F»)

cf 5.3 s''
ITn+l (B) -+ ker(IT l (B ,f)map

is the boundary homomorphism.

Proof: Let Ek ---+ be a Postnikov decomposition for

Pk\1
E where
+
B

B

has fiber an Eilenberg MacLane Space, K(ITk(F),k). The fibers of

Sn
E
! are connected and simply connected for k S n-l, hence by induction
Sn

E
k_l

n
S En_l,Pn_log E [f]} is connected and

Sn
En-l,f

Sn
En_I, [f) {g

s'' E l'P 1ofn- n-
f} is connected and simply connected and thus

nS E
n_l

lifts f.

It follows that n n
[S ,E]f [S ,E]f is a bijection and one can apply 2.6.2.

The last assertion is an elementary verification.

§3. IT l actions and monomorphisms of vector bundles

3.1. The fibration yX

Let n
Tj
+
y

be vector bundles and let Mono(s,Tj) be the space of all

vector bundle maps S to Tj which are monomorphisms on each fiber. Each such

map induced a map X Y. The map yX is a (Serre) fibration.
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be the fiber space over x x Y with fiber x, y

has the two stage fibration E
t

morphic to the space The space of sections

x, y
V and structuren,m

x x Y
t
X

is homeo-

is homeo-

f:X-+Ymorphic to the space

acts on

(denoted by

Thus, for

(denoted by

(Here

Xwe have (see 2.3) TIl(Y,f)

with quotient

is the space of monomorphisms covering

f and is the space of monomorphisms covering maps homotopic

*to f). We remark that is homeomorphic to f

3.2. Naturality

Suppose

1 !
y-Ly'

is a pullback of vector bundles.

Then the diagram

-+
t

-+ X x Y'

is also a pullback

so the action of

Example 3.2.1.

X
TIl(Y ,f) ( , Xfactors through TIl Y ,gof).

Let \jr:

The action of

see 5.L3.)

Y -+ BO(m)

X
TI1 (Y 'f)

classify

factors through

Example 3.2.2.

Let dimension X = r and suppose is trivial on the r+l skeleton

of Y. Then the action of X
TIl(Y ,f) is trivial.

Proof: We may suppose f : X -+ Yr+l• The action of is trivial

since it factors through the trivial group But since
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Xnl(Y ,f) also acts trivially.

3.3. Codimension zero monomorphisms

3.3.1. Theorem. be vector bundles of dimension n.

Let g : Y .... BO(n)

Let I; Y]
+ +
X Y

class ify T]. Then is affine over X
"i (BO(n) ,gof).

3.3.2. Corollary.

X
nl(BO(n) ,gof)

X
im nl(Y ,f)

[1;,T]][f] corresponds bijectively with the coset space

Proof of theorem.

group. So [1;,T]]f

action group.

= Monoid (I; ,

*has nO(Aut(f (T]» ( =

* *f (T]» has Aut(f (T]», as action

Xnl (BO(n) , gof), see 5.1.3) as

3.4. Codimension one monomorphisms

Let I; T]
+ +
X Y

be vector bundles with dim 1;+1 dim T] n.

class WI(00)

Let 00 be the bundle of dimension 1 with first Stiefel Whitney class
+
X

Wl(f*(T]»_Wl(I;). The map is a 2 fold covering

+
Mono [f] (I; ,T])

which is split if T] is orientable (by fixing orientations of I; $ 00 and

T] and requiring an extension to preserve orientations). The 2-fold covering

$ 00,T]) is split (by requiring orientations to be preserved at the base
+

Mono
f(I;

,T])

*point). Monof(I; ,T]) has commuting action groups Aut+(1; $ 00), Aut+(F (T]»

where Aut+ c Aut is the normal subgroup of orientation perserving automorphisms.

Hence with respect to the affine structure given by the action of

*», nO(Aut+(f (T]» is the translation group and the action of

*nO(Aut(f (Y]» is affine. We have proven:
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Theorem 3.4.1.

Let 1;; '1 be vector bundles with dim 1;+1 = dim '1 = n ,

'" '"X Y
Let g: Y BO(n) classify '1' Then [1;''1lf has an affine structure with

X
ker(TI1(Be (n), gof) TIl(BO(n» acting as the translation group, and the action

X
of TIl(BO(n) ,gof) is affine. If '1 is orientable and g: Y BSO(n)

classifies '1, then

acting as translation group.

Corollary 3.4.2.

has an affine structure with X
TIl(BSO(n) ,gof)

If g: Y BSO(n) classifies '1, then [1;''1l[fl corresponds bijectively

with the coset space

X
TIl(BSO(n) ,gof)

im TIl(yX,f)

3.5. The case of a sphere

Let I;m n be a vector bundles, m+2 ::: and let Y BO(n)'1 n, g

"'k '"S Y

classify '1 . The fiber V of B(I;,'1) is simply-connected so 2.6.3
n,m

applies. Combining 2.6.3 with 3.2.1 we obtain:

Theorem 3.5.1.

is affine over TIk(V ).n,m

Moreover the diagram

The action of is affine.

a
TIk+l(Y)----+ TIk+l(BO(n»

'" k '" kS S
TIl(Y ,f)->TI1(BO(n) ,gof)-Aut([I;,'1l,lTk(Vn,m)'Y)

'" '" '"

is commutative, where a is the boundary homomorphism of the fibration

V BO(n-m) BO(n). is given by post multiplication by a non-rotation.
n,m
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Corollary 3.5.2.

If is orientable or is trivial, then is in bijection

with a coset space of TIk(V ).n,m

If

action of

Corollary 3.5.3.

Sk
TIl(Y ,f) TIl(BO(n» =

Sk
TIl(Y ,f) is non-trivial.

and are non-trivial then the

Corollary 3.5.4.

Theis the zero homomorphism.

is orientable and factors through
Sk

Suppose in addition there is a E TIl(Y ,f)otherwise.

with non-trivial image in TIl(BO(n» (i.e. res(a) E TIl(Y)

which fixes some element of Then the action of

reverses orientation)
Sk

TIl(Y ,f) is trivial

if and only if is trivial and is in bijection with the set

of orbits of TIk(V ) under the operation ofn,m

Proof: Follows from 3.5.1. and 1.3.1.

Example 3.5.4. a).

If k+l + 2m < 2n, 13 n-m and k+2 n then a is zero (cf. [BM).

If k+2 nand k = 2,4,5 or 6 mod 8 then TIk+l(BO(n» = TIk+l(BO) = o.

Example 3.5.4. b).

Let f: Sk Y be homotopic to a constant map. Let = and

suppose admits an orientation reversing automorphism (e.g. if is

odd or if admits a section). Then the map Sn x Sl Sl Y, where c is

an orientation reversing loop, fixes the monomorphism c @

Example 3.5.4. c).

The map on TI (V k) has been calculated by James [3] to ber n,
/),* n-k-l S* n-k u*

where TI (V k) -+ TI l(S ) -> TI (S ) -+ TI (V k)r n , r- r r n,



305

and
P", n-l S", n 11",

Tl (V k) --+ Tl (S ) -.. Tl +l(S ) - Tl (V k)r n , r r r n,
is projection onto

base, u'" the inclusion of fiber and 11", are boundary homomorphisms of the

obvious fibrations. S", is suspension.

For example if r=k=m with n m+2, then I1",S",P", = 0 since

Hence = id-u",S*I1", = A", (A", is premultiplication by a non-rotation). Since

1
2

and
n

we get 0, if n-m is odd.

From [PJ Tln (V2n_ 2,n) = + Z2 if n = 2 mod 4. Moreover one can check

'"22 + 22 Tlm_l(S ) = 22 is surjective, S is an isomorphism and

22 + 22 is injective. Hence = id-u",S",I1", fixes two elements

and exchanges the other 2.

From [PJ, TlS(V12,S) = 22 + 22 + 22 and one may check 11 is onto

3 '" 3 4Tl 7(S ) = 22, S : Tl 7(S ) TlS(S) 2
2
+ 2

2
is injective and

4
u'" : TlS(S ) TlS(V12,S) is injective. Hence = id-u",S",I1", fixes 4

and exchanges the other 4 in pairs.

One can also show the following:

If n 1 mod 4 and n 5 then Tl (V
2

1 )n n-,n
22 + 2

2
and there are

3 orbits.

If n = 3 mod 4, then Tln (V2n_l,n)
= 2/42 and = Ld ,

If n = 1 mod 4 and n > 9, then Tl n (V2n-3, n) 2/122 and -x

so there are 7 orbits.

If k = n+2 then Tln (Vn+2,n) Tln(SO) and id.

3.6. The case of the first obstruction

r,m n and let : y BO(n) classifyLet n g Tj.
+ +
X y

X

is the

B(r"Tj) is k-l connectedof

be the local coefficient system overso 2.6.5. applies. Let

Suppose n-m = dimension of
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orientation homomorphism of and Z2 x Z2 Aut is induced

by pre and post composition with non-rotations.

Proposition 3.6.1.

induces a non-trivial automorphism of

In the above

Corollary 3.6.2.

If

morphism [1.*

k
is affine over H (X, » = H. The mapn,m

'"*factors through = Z2---+ Aut(TIk(Vn,m»'

is non-trivial and the coefficient auto-

k
H (X,TIk(V ), then then,m

action of is non-triviaL

§4. Applications to Immersion Theory

4.1. Smale Hirsch Theorem

Let be differentiable manifolds their respective tangent

bundles. One has a map Imm(M,N) given by taking the differential.

Smale-Hirsch theory says that this map is a weak homotopy equivalence provided

either m < n or (if m=n) M has no closed components.

One may think of this theorem as saying that the inclusion Imm(M,N) c

(see 0.1) may be replaced

the sets [M N]f and

respectively

by the fibration (see 2.1). Thus

[M N][f] are equal to the sets

4.2. Immersions of surfaces in orientable 3 manifolds (cf [Lil])

Let 6
2

be any surface and N3 any orientable 3-manifold. If f is

any map, then [6 J"-+ N] [f ] is in bijection with H
l(6'

Z2)'

_.In 2m-lAny map M N is hOlllOtopic to an immersion (cf [LPJ).

orientable implies N3 parallelizable (since

is trivial.the action of

fiber of over x N is

Hence

TI
2(SO(3»

= 0) so by 3.2.2.

2 3
N ] [f] The

Since TI1(V3,2) = Z/2Z,
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has an affine structure with group

4.3. Periodic Isotopy

A periodic isotopy is a map Sl x N N which is the identify for

t = * E Sl and an embedding for all t E Sl. It is easy to see the following.

Proposition 4.3.1.

Let a E IT be induced by a periodic isotopy on N. Then a acts
1

trivially on [My--+ N]f'

Example 4.3.2.

Let L2n-l denote a lens space.
m

is induced by a periodic isotopy. If

Then each element of ITl(L) = Z/mZ

dim MS 2n-3, then ITl(LM,f) ITl(L)

is an isomorphism (see 5.2.3).

4.4. Immersions of disks

Hence by 4.3.1, M
IT 1 (L ,f) acts trivially.

Let M = Om. If m < n then [Om t-+ N
n ] has one element. If m = n

then is affine over 2/2Z and the action of n
IT1 (N ,f) is

trivial if and only if N is orientable.

4.5. Immersions of in Sm+l (cf [Li 2])

Proposition 4.5.1. sm+l] is in bijection with [M,SO], provided

Sm+1] in non empty.

Proof: Let SO(m+l) SO(m+2) Sm+l be the natural fibration. Then

is the principal bundle associated to the tangent bundle (cf. [H]).SO (m+2)

+m+l
S

In particular, in the fibration Sm+l BSO(m+l) BSO(m+2), the inclusion of

the fiber classifies the tangent bundle of sm+l. By 3.4.1, [TM,TS]f is

Maffine over IT I (BSO(m+l» and by corollary 3.4.2, [TM,TS][f] is in bijection

IT1 (BSO(m+l)M) M M
with M IT I (BSO(m+2» IT I (BSO) [M,SO] (cf,5.1.5).

im ITl(Sm+l )
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Example 4.5.Z.

while

[Sm ']-+ Rm+l]

[Sm }J--+ sm+l]

TTm(SO(m+l»

TTm(SO).

4.6. Immersions of spheres in manifolds

Applying 3.5.1, 3.5.Z, 3.5.3, for n m+Z we have

Proposition 4.6.1.

isNn]f is affine over TT (V ) and the action of
m ll,m

affine. If e: TTl (M) Zz is the orientation homomorphism and

: Zz Aut TT (V ) is given by postmultiplication by a non-rotation, thenn m,n

Sm
TTl(N ,f) Aut(TT (V» is the composite where

m m n,ID

res: TTl(N
S
,f) TTl(N) is the restriction.

Corollary 4.6.Z.

If

TT (V).n n,m

or

If

eores

eores

is trivial then N
U
] [f] is a coset space of

Sm
aud are non-trivial, the action of TTl(N , f)

is non-trivial.

Theorem 4.6.3. (m+Z s n)

a) Suppose the compositie TT +l(N) TT +l(BO(n» TT (V ) is zero.
m m m n,m

The set of regular homotopy classes of immersion of Sm in Nn which are

homotopic to a constant is in bijection with TT (V )
m n,m

if N is orientable

and with the set of orbits of the operation of on TT (V )
ro n,m

if N is

non-orientable.

the map TTm+l(BO(n» TT (V ) is zero. The action ofm n,ID

[SmJ--+ Nn]f is trivial if N is orientable and factors

b) Suppose
Sm

TTl (N ,f) on

through z/ZZ if

which is fixed by

N is nou-orientable. If there is a E [Sm9-- Nn] f
Sm

h E TTl(N ,f) having non-zero image in TTl (BO(m» = z/zz,

then [SmJ--+ Nn][f] corresponds bijectively with the set of orbits of the

operation of on TT (V).
ill n,rn



Proof:

309

b) follows from 4.6.1 and 1.3.1.

a) follows from 3.5.4 b) and 5.2.1.

if

4.7. Immersions of in N2m

Applying 3.6.1 and 3.6.2 we obtain

Proposition 4.7.1.

N
2m]

is affine over Hm(M,Z/2Z) if m is odd and Hm(M.Z)
f

if m is even (Z is the integers twisted by f*Wl(N) - Wl(M». For m

odd and f*Wl(N) = o. induces multiplication by -Ion Hn(M,2) = Z, hence

( M f)res (N) Wl(Nl Z/2Z . 1 h . f ( M f)TTl .... TTl is non-i t r Lvf.a , t e ac t i.on 0 TTl

is non-trivial.

Remark.

..IU 2mOne can show [Lil] that the action is trivial if N ]f Z/2Z

and factors through Z/2Z if N2m]f
Z. Note that Z/2Z can act

on Z, up to isomorphism, either by x .... -x (one fixed point) or by x .... I-x

(no fixed points).

§5. Appendix. Some calculations of X
TT 1 (Y ,f)

5.1. The universal case

Let be a vector bundle of dimension n (or a local coefficient system
+
Y

or other object) satisfying the following universal property: let s be a
+
X

n-dimensional vector bundle, A c X and a bundle map which is an

isomorphism on each fiber. Then there is an extension to a bundle map s ....

which is an isomorphism on each fiber. (Technically, A is assumed to be a

subcomplex of the complex X).

Let be the space of all bundle maps which are isomorphisms

on each fiber.
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Lemma 5.5.1.

If is universal, then is contractible.

Proof: A map of the cone C extending the identity of

is produced as follows: Let p C x X X denote the

*projection and define f· p x X x by. 'I"

(a,v) a(v). By universality, f may be extended to all of = C x

If is universal and F E the map f: X Y induced by F..
Y

is said to classify

Proposition 5.1.2.

Then

Let be universal and let f..
Y

B

X Y classify •
..
X

Proof: Follows from 5.1.1 since acts effectively on the left of

with orbit space

Corollary 5.1.3.

Example 5.1. 4.

X
"i (Y ,f)

If f : X BO(n) is homotopically trivial then
X

"i (BO(n) ,f) [X,O(n)].

Example 5.1. 5.

Let X be a finite complex. The space BOX is an H-space, so

X
lT
l
(BO ,f)

X
lT
l
(BO ,f)

X
"i (BO ,f)

'" [X,D].

where c X BO is the constant map. So

5.2. The map

Let X be a space with base point *

homomorphism lT
l
(yX,f) lTl(Y,f(*».

Restriction to * yields a
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Proposition 5.2.1.

Suppose f is null homotopic. Then Res is split.

Proof: We may assume f is the constant map. The projection X * induces

the splitting

Proposition 5.2.2.

lmage(Res) C centralizer of f*(ITl (X)).

Proof:

As a partial converse, we have

Proposition 5.2.3.

Suppose ITi(Y) o for 2 SiS dim X m. There is an exact sequence

f.is the local coefficient system induced by

m f X
I H (X,ITm+l(Y)) ITI(Y ,f) centralizer of f*(IT1(X)) I

f
ITm+I(Y)where

Proof:
X

ITl(Y,f) consists of homotopy classes of maps Sl x X rel*x X to Y.

By the assumption on ITi(Y) any extension on the 2 skeleton of

(rel* x X) can be extended to all of Sl x X. An extension to the 2-skeleton

exists if and only if there is e making the diagram

= IT
l
(X x S')

x S')

<,
x X

e ;
I

X S')

ITl(Y)-ITl(Y

f*1
ITl(X)-----+ ITl(X

commute (cf. [Bal page 265)

i.e. if and only if there is a making

commute

i.e. if and only if a(t) commutes with f*ITl(X) where t is the generator of
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u be the composite 51 x X X ! Y.

f*(TT l (X».

X
ker TTl (Y ,f)

consists of homotopy classes of maps 51 x X Y which are (rel* x X)

homotopic to u on 51 V X. By our assumption on TTi(Y) , these correspond to

homotopy classes of maps which are homotopic to u on the m skeleton of

51 x X. By the spectral sequence (cf [Ba] page 277) these are just

H
m+l(51

x X, * x X; (Y» = Hm(X,

Example 5.2.4.

Let Mn be a connected manifold and Y

M

{Then TT
l
( 5n+l ) Z if M is orientable and closed

Z!2Z if M is non-orientable and closed

0 if M is open.

Example 5.2.5.

Let Y = JU'n+l and dim X S n ,

Then n n+l X
1 H (X;Zf) TTl(RP ,f) Z/2Z 1 is exact where is the

integers twisted by

f* n+l
TTl (X)--+ TTl (RP )

5.3. The case X 5n

Proposition 5.3.1.

There is an exact sequence

and t acts on Z by

where d is the Whitehead product with [f) E TTn(Y) and image(Res)

of [f).

Corollary 5.3.2.

If f is homotopic to a constant, then

stabilizer
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Sn
1 TIn+l(Y) TIl(Y ,f) TIl(Y) 1 is a split exact sequence.

Proof of 5.3.1.

imageCRes) C stabilizer of [fl. (In the following we use the decomposition

Sn c Sl V Sn c Sl x Sn). If an extension of f to 51 V 5n is given,

the obstruction to extending to 51 x Sn is just

n+l 1 n n
a[f]-[f] E H (5 x 5 , * x S , TInCY» ; TIn(Y) where

by Sl 51 V 5
n Y. So image(Res) ; stabilizer of

1 n n f .
5 x 5 S Y. Then ker(res) 1S the set of maps

a E TIl(Y)

[f]. Let u

Sl x 5n Y

is given

be the map

homotopic,

rel* x Sn to u on (which is the n skeleton of

since there are no cells of dimension less than n+l). Thus by the spectral

sequence (lBa], page 277) we have ker(res); TIn+l (Y) / dn (TI 2 (Y» • d is the
n

is exact since Whitehead products

Whitehead product ([Ba] page 285).

Example 5.3.3.
5
n

1 TI n+l (BO) TIl(BO ,f) TIl(BO) 1

in TIi(BO) are trivial, and the operation of

H-space).

is trivial (BO is an
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LA DEMONSTRATION DE J. LEVINE DES THEOREMES DE A, PLANS

par Claude WEBER

1. Introduction

En 1927, J.W. Alexander et G.B. Briggs calculent l'homologie

des revetements cycliques ramifies a 2 et 3 feuilles des noeuds ayant

au plus 9 croisements. Cf. [lJ. Ces calculs sont repris dans le livre

de K. Reidemeister [9J. Un phenomene etonnant se manifeste : les

coefficients de torsion pour le revetement cyclique a 3 feuilles vont

toujours par paires.

Ce n'est qu'en 1953 que l'explication est fournie par

A. Plans, dans un article (en espagnol) extremement complique [8J.

En 1971, C. Mc Gordon en donne une demonstration beaucoup

plus simple [3J.

Mais c'est J. Levine, [6J, qui, par un argument tres ingenieux

fait toute la lurniere sur les phenomenes en question. Contrairement

aux demonstrations precedentes, la preuve de J. Levine ne consiste

pas a trouver une presentation astucieuse de l'homologie cherchee.

11 montre que la decomposition en "double direct" est intimement liee

a la presence d'une forme bilineaire alternee sur le sous-groupe de

torsion.

La methode de J. Levine a egalement l'avantage de s'appliquer

aux reveternents cycliques d'ordre pair. (Ce cas fut traite par

A. Plans, mais pas par C. Mc Gordon.)
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Definition: On dira qu'un groupe abelien G de type fini est un

double direct s' il existe un groupe H tel que G"" H Ell H.

Theoreme (A. Plans) : Soit KCL un noeud (apprivoise) dans une sphere

Am
d'homologie entiere, de dimension 3. Soit X

K
le revetement cyclique

a m feuilles de L, ramifie sur K. Alors :

1
0
Si m est impair, est un double direct.

20 Si m est pair, la projection

homomorphisme surjectif IT*

est un double direct.

Commentaires

de revetement IT : -> x; induit un

: Hl ->Hl (X;;:ll:) dont le noyau

1
0

Pour nous, un noeud est toujours connexe. Le theoreme est faux

pour les enlacements a plusieurs composantes.

2
0

La demonstration de A. Plans' est ecrite pour le cas L = s3 Il

semble bien qu'elle s'etend sans difficulte au cas d'une sphere

d'homoloqie entiere.

3
0

La partie du theoreme qui concerne le cas ou m est pair est, a

peu de choses pres, utilisee par R. Hartley [5J. Pour une demons-

tration, il refere au commentaire de R.H. Fox dans Math. Reviews

1954, p. 147 et donc indirectement a l'article de A. Plans. La

demonstration "a la Levine" que nous donnerons ici est certaine-

ment beaucoup plus simple! Nous reviendrons sur ce sujet au § 4.
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2. Formes unimodulaires alternees sur les groupes finis

Soit G un groupe abelien fini. Une forme alternee sur G est

une application

11 G x G .... qui est

a) Z-bilineaire;

b) alternee, c'est-a.-dire telle que 11 (x,x) = 0 pour tout x E G.

Bien sur, ceci implique que 11 est antisymetrique, c'est-a.-

dire 11(x,y) =-11(Y,X) et la reciproque est vraie lorsque G n'a pas de

2-torsion.

On dira qu'une telle forme est unimodulaire si

Ad 11 G .... Hom(G;l1l/:lI:) est un isomorphisme.

La proposition suivante est un classique. Elle me semble due

a. G. de Rham. Voir sa these [lOJ, p. 165.

Proposition 1 : Supposons que Ie groupe abelien fini G puisse etre

muni d'une forme unimodulaire alternee. Alors G est un double direct.

Par souci de completude, nous allons donner une preuve de

cette proposition. C'est essentiellement celIe de G. de Rham et

d'ailleurs aussi celIe de C.T.C. Wall [12J.

Preuve de la proposition 1

Soit G
p
la p-composante du groupe G. (p est un nombre

premier.) Comme G est abelien, on a bien sur
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G = Ell G , la somme etant, en principe, une somme directe de
p p

groupes abeliens.

En fait, Ell est une somme orthogonale. En effet, soient p et

q deux premiers distincts. Soit N un entier suffisamment grand pour

N
que la multiplication par q soit nulle sur Gq • Alors, si x E G

p
'

Y E G
q
, on a :

>l(x,y) NIl
q >l(N x,y) =]1(N

q q

N 1
x, q y) = ]..I(N x,o)

q
o •

1
x a un sens puisque la multiplication par q est un iso

qN

morphisme de Gp '

II suffit donc de dernont.re r la proposition 1 pour G = G •
P

Pour cela, consLdezons I' entier r 2 1 tel que p r soit l' ordre maximum

des elements de G. Soit x E G un element dont l'ordre est exactementp
r

p •

Affirmation II existe un element y E G tel que ]1 (x ,y) = pr

Preuve de l'affirmation : Comme x est d'ordre maximum, Ie sousgroupe

de G engendre par x, note (x), est un facteur direct de G. Soit alors

un homomorphisme de G dans obtenu en projetant d'abord G sur

(x), puis en envoyant x sur pr

Comme >l est unimodulaire, il existe un element y E G tel que

En particulier ]1 (x,y)

tp (z)

tp(x)

u (z ,y) pour tout z E G.

-r
p

fin de 1 'affirmation.
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Remarque : y est d'ordre exactement pro En effet, comme u Ix j y ) =p-r,

l' ordre de y est un multiple de pr. Comme G = G
p
' 1 I ordre de y est

une puissance de p. Par maximalite, pr est alors exactement l'ordre

de y.

Affirmation (x ) n (y) {a}.

Preuve de l'affirmation : Raisonnons par l'absurde en supposant qu'il

existe deux entiers u et v , tels que 0 < u < pr et 0 < v < pr avec ux = vy.

Alors : 0

dans

jJ(x,x) ujJ(x,x) jJ(x,ux) jJ(x,vy) vjJ(x,y)
-rvp ;t 0

Contradiction.

Par consequent, le sous-groupe (x,y) engendre par x et y dans G est

isomorphe a z/pr $ z/pr. Manifestement, c'est un double direct!

Affirmation

laire.

La restriction de jJ au sous-groupe (x,y) est unimodu-

Preuve de 1 I affirmation : Soi t <j) : (x, y) -+ q)/Z un homomorphisme. Pour

fixer les idees, supposons que <j)(x) = ap-u, <j)(y) = bp-v pour certains

entiers u et v tels que 0" u" r, 0" V" r; a et b etant premiers a p ,

cons rderons l'element z e: (x,y) defini par

z = apr-uy - bpr-vx• Calculons :

r-u -r
ap p

-u
ap

De faqon analogue jJ(y,z)
-v

bp •

jJ(-,z) est donc un homomorphisme de (x,y) dans qui coincide avec

<j) sur x et sur y. Ces deux homomorphismes sont donc egaux.
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Ceci implique que

Ad11 I (x,y) Hom((x,y)

est surjective. Elle est donc bijective, puisque (x,y) est un groupe

fini.

fin de l'affirmation.

La demonstration de la proposition 1 s'acheve alors par une

recurrence facile, en utilisant le lemme suivant, qui est un classique

des formes ± symetriques.

Lemme classique : Soit r un groupe abe lien fini et soit

11 : r x r Q/"" une forme bilineaire, ± syrne t r Lque , unimodulaire. Soi t

Her un sous-qroupe tel que 11 IH x H Q/rJ, soi t encore unimodulaire.

Alors : G = H (la somme etant orthogonale par construction) et

III x est encore unimodulaire.

Preuve du Lemme classique : Bien sur, est l' ensemble des x E r tels

que u Cx j y ) =0, pour tout yEH. Cons Lder ons alors ¢=lllrxH. L'adjointe

de ¢ donne un homomorphisme :

Ad¢ : r Hom dont le noyau est, par definition,

exactement

De plus, comme IlIH x H est unimodulaire, la restriction Ad¢ IH

est un isomorphisme de H sur Nous avons donc une suite

exacte

o ---+ ---+ r Ad¢

et cette suite exacte est scindee. D'ou
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..L ..L
Reste a voir que u IH x H est unimodulaire. Mais ceci est automatique,

car on a un isomorphisme

r Adjl

Ce dernier groupe est isomorphe a

Hom (H;lD/2l:) Ell Hom est comme la decomposition r = H Ell H..L

est orthogonale, Adjl respecte les facteurs. La restriction de Ad

induit done necessairement un isomorphisme

fin du lemme classique.

Note : La demonstration de la proposition 1 montre aussi que, si G

est un double direct, il peut etre muni d'une unique (a isometrie

pres) forme alternee unimodulaire.

3. Demonstration du theoreme de A. Plans

La proposition suivante nous ramene a demontrer Ie theoreme

Am
de Plans pour Ie sous-groupe de torsion de HI (X

K;2l:),
ce qui est la

partie vraiment interessante de la demonstration.

Proposition
Am

Le rang sur 2l: de est toujours pair.

II Y a plusieurs preuves de cette proposition classique.

Voir, par exemple, [4J.

Considerons maintenant la variete Elle est de dimension

trois, close et orientable (et meme orientee par une orientation de
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L, via la projection de

Soit Tm le sous-groupe de torsion de Hl La dualite de

Poincare (via les enlacements) munit T
m
d'une forme bilineaire,

symetrique, unimodulaire :

D'autre part, est munie d'un automorphisme de

t, generateur du groupe de Galois. Comme t conserve l'orientation, t

agit par isometries sur <,>.

Definition (J. Levine)

-1[a,SJ=«t-t la,S>.

Proprietes de [,J

Soit [,:I T x T -> q)/Z definie parm m

1. [,:I est Z-bilineaire. C'est evident, puisque <,> l'est.

2. [,J est alternee. En effet :

-1 -1
[y,yJ= «t-t )Y,Y> = <ty,y>-<t y,y>=<ty,y>-<y,ty>=O puisque

<,> est symetrique.

30 [,J n'est pas necessairement unimodulaire. Mais on a

Lemme 3 : Le radical de [,J est egal au noyau de (la multiplication

par) l_t2•

Preuve du lemme 3 : Par construction, l'adjointe de [,J est la com-

posee de la multiplication par l-t2, suivie de la multiplication par

t- l et enfin de l'adjointe de <,>. Comme les deux applica-

tions sont des isomorphismes, le noyau de l'adjointe de [,J est egal

2au noyau de (l-t ).

fin du lemme 3.
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Proposition 4

10 5i m est impair, Ker(1-t2) = 0 •

2
0
5i m est pair, T /Ker(1-t2) est isomorphe au noyau de

m

Preuve de la proposition 4 : La suite exacte de J. Milnor pour le

revetement infini cyclique x; .... X
K
fournit une suite exacte :

Cf. [4J et [7J pour plus de details.

rci, designe le revetement cyclique a m feuilles non

"'mramifie, et x
K
le revetement ramifie.

La derniere application de la suite exacte est essentielle-

ment induite par la projection de revetement. D'ou une identifica-

tion

(*)

Par consequent, si kim, on a une suite exacte analogue

et done une suite exacte courte

<'Jrl ko --+ Hl (XK;Z) /Ker (l-t )

Posons k = 2 et prenons les intersections avec Tm• Nous

obtenons exactement l'affirmation 20 du theoreme. Remarquer que nous

"'2n'affirmons pas que est surjective. Nous verrons au § 4
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un exemple montrant que ce n'est pas necessairement le cas.

Maintenant, si m est impair, l'identification (*) montre que

m Am
la multiplication par I-t est nulle sur Supposons par

."-..Ill 2
l'absurde qu'il existe un xEH1{XK;Z':), x>'O, tel que (l-t }x=O.

dedut r a t t que, cornrne m est impair : tx = x, ce qui contredirai t Le

On

fait que la multiplication pour (l-t) est un isomorphisme de HI (XK;Z':}

Am
et done aussi de H

l
(XK;Z) •

fin de la proposition 4.

Nous pouvons maintenant passer a la demonstration proprement

dite du theoreme de A. Plans :

Si m est impair, nous savons par la proposition 2 que Ie

rang de est pair et que [,J munit le sous-groupe de torsion

T
m

d'une forme alternee et unimodulaire. La proposition 1 acheve

alors la demonstration dans ce cas.

Si m est pair, on peut raisonner ainsi : Le rang du noyau de

n* est egal au rang de puisque le groupe Hl est fini.

II est done pair par la proposition 2. Par la proposition 4, la

2
torsion de Kern* est isomorphe a Tm/Ker(l-t ). Par le lernrne 3, [,J

induit sur ce dernier groupe une forme alternee et unimodulaire. La

proposition 1 acheve a nouveau la demonstration.

Remarques

1
0

Une fa90n un peu differente d'enoncer Ie theoreme pour m pair

consisterait a dire que est un groupe de rang pair tel

que T
m
n Kern * est un double direct.
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2
0

Pour m pair, le theoreme de A. Plans implique que la p-torsion de

Hl est un double direct pour tout premier p qui ne divise

pas A(-l), puisque A(-l) est, en valeur absolue, l'ordre de

A2
H
l

rei, A(t) designe le polynome d'Alexander du noeud K.

Note : Dans ce paragraphe, nous avons utilise a plusieurs reprises

la "suite exacte de Milnor" [7J et les consequences qu'on peut en

tirer. Elles s'appliquent ici, puisque le complementaire du noeud K

dans L a l'homologie entiere d'un cercle, a cause de la dualite

d'Alexander. C'est ici qu'intervient le fait que Lest une sphere

d'homologie sur Z et l'on n'a pas besoin d'hypotheses plus fortes

que celle-la.

4. Le cas des revetements d'ordre pair

Ce paragraphe est consacre a quelques remarques et exemples

concernant le cas m pair.

1. Pour m pair, le theoreme enonce par A. Plans n'est pas tout a

fait equivalent a l'enonce que nous avons donne ici. De fait, son

enonce est un peu plus faible. Voici quelques details :

Un argument du a H. Seifert [llJ, fournit pour un noeud K de

genre h, une matrice de presentation F
m

pour HI A. Plans

montre apres des calculs tres compliques que, pour m pair, Fm est

equivalente, comme matrice de presentation, a un produit matriciel

F2·W, OU West une matrice de presentation d'un double direct.

On deduit de la, comme Ie fait R. Hartley dans [5J qu'il

existe un homomorphisme surjectif
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dont Ie noyau est un double direct.

Notre enonce est un peu plus precis puisqu'il montre qu'on

peut prendre pour cet homomorphisme surjectif celui induit par la

projection xi. Reciproquement, il est tres facile de voir que

notre enonce implique celui donne par A. Plans.

2. Dans l'enonce de A. Plans que nous venons de rappeler, on ne peut

pas manipuler la matrice F2 a volonte. En principe, il s'agit de la

matrice de presentation donnee par H. Seifert et on ne peut pas la

remplacer arbitrairement par n'importe quelle matrice diagonale de

presentation. Nous allons illustrer cette remarque par plusieurs

exemples.

2A. Soit m un entier pair. Nous savons que

induit un homomorphisme surjectif

general, cet homomorphisme n* n'est plus surjectif si on se restreint

au sous-groupe de torsion Tm• (En fait, les deux cas peuvent se

produire, comme les exemples ci-dessous le montrent.)

,,2
Ceci a pour consequence que peut tres bien un

double direct sans que Ie soit.

Exemples

On a

Soit K Ie noeud de trefle.
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(De fait, d lja HI ... 7/: EIl:lZ. Comrne Le sous-groupe de torsion est

nul, la restriction de IT. au sous-groupe de torsion ne peut pas

surjective. Nous allons construire des exemples ou Ie sous-groupe de

torsion est non trivial.)

Soit L un noeud ayant pour module d'Alexander

On a

o et

On a

Soit N un noeud ayant pour module d'Alexander

et
A12

Hl(XN ;7/:) est un groupe de torsion. II ne

peut donc un double direct a cause du th loreme de A. Plans.

Consid lrons maintenant la somrne connexe P = K# N. La

"'12
restriction de IT. : Hl{Xp ;Z)

n'est pas surjective.

"'2HI (Xp;:IZ) au sous-groupe de torsion

"'2
HI (Xp;:IZ) est un double direct, tandis que

"'12
La somrne connexe Q = L# N est un exemple ou Hl(XQ ;:IZ) n'est

pas de torsion et ou la restriction de IT. au sous-groupe de torsion

est encore surjective.
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soit de torsion sans etre un double direct; de sorte que la presence

de facteurs libres n'est pas seule responsable des phenomenes rencon-

tres dans 2A. Voici un exemple :

Soit U un noeud dont Ie module d'Alexander est

On a

Soit V un noeud dont Ie module d'Alexander est

•

On a

Considerons alors u# V Y. On voit que

e est un double direct tandis que

ne l'est pas.

Conclusion : Ces calculs montrent que, pour avoir une certaine intui-

tion de la situation, il faut aller au-dela des noeuds de genre 1 et

des calculs donnes par R.H. Fox dans [2]. Ils montrent aussi qu'il

ne faut pas faire dire au theoreme de A. Plans davantage que ce qu'il

dit.
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Summary

The relationship between Yoneda Ext algebras of local rings and the homology

rings of loop spaces on simply connected CW complexes has been observed by several

authors [ 7] [ 8] [11] [16]. Most of the work has been done over characteristic

zero. In this paper we will use the Adams-Hilton construction [ 2] to understand

this connection over arbitrary characteristics.

Fourconsequences of the resulting theory are especially noteworthy. The

concept of formal spaces generalized to non-zero Characteristics. The Eilenberg-

Moore spectral sequence for the homology of the loop space has E2 E
oo

as

algebras for many spaces, and as algebras "up to sign" for others. We compute the

Poincare series and Pontrjagin structures for the loop space on a r-wedge (to bti

of suspensions. Finally, we observe that all Ext algebras of commutative

monomial k-algebras occur as the Pontrjagin rings of loop spaces.

IntrOduction

Throughout this paper, a CW complex will be assumed to be locally finite,

1-connected, and to have l-skeleton equal to the base point. In the well-known

work [ 2] Adams and Hilton described a (multi-valued) functor A(') from CW

complexes to chain algebras, such that as graded rings.

This may also be done with coefficients in any commutative ring with unity S ,

so as to obtain a chain algebra with homology isomorphic to H*(nK;S) •

Fix a CW complex X. As X is taken to be locally finite, we may label its

cells as eo (= base point), e 1,e2, .•. , where 2 leil le i +1I for i > 1 .
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The algebra A(X) lS the free associative algebra over S with generators

la. [ = Ie. I - 1 . The differential A(X) A(X) lS
l l A

defined on generators in accordance with the way cells are attached (see [2]

and has degree -1; there is some flexibility in the choice of dX' Precisely,

the indeterminacy for dX(a
i)

is generated by the of products of two

or more generators of lower dimensions. For Y X a subcomplex, dX may be

chosen so that it is an extension of any suitable dy ' under the natural

embedding A(Y) A(X). If {y.} C X are subcomplexes satisfying
J -

d I ( ) for all j1 and j2 ,then dX can be chosenY. A Y. nY.
J 2 J 1 J 2

so as to simultaneously extend each dy • These properties motivate our unusually
j

heavy reliance on specific CW structures for spaces, when we are ultimately

seeking results which depend only on homotopy types.

We shall omit the subscript X on dXwhen no confusion can result.

p-Minimal Complexes

In general, a differential d on a locally finite free S-algebra

A = s(a
1,a2, .•. 'l is determined by constants Ci,Cij,Cijl"'" almost all being

zero for each i , where

In our case, dimensional constraints imply that each ci = 0 . We shall find that

our analysis of H*(A,d) is considerably simplified when the linear part is also

zero, i.e., all the c· .'s are zero. The next two lemmas prove that when S is alJ

field, we may always choose a cell structure for X so as to make the linear part

of d vanish.

Let p denote any prime (or zero), let be the integers mod p (or Q),
p

and let k be any field containing
p

Def A CW complex X lS p-minimal iff, in each dimension r > a , its cells are

in one-to-one correspondence with a basis for Hr(X; •
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The universal coefficient theorem shows that could be replaced by k
P

in this definition. Henceforth, whenever we are dealing with a p-minimal space

x , it will be assumed unless otherwise stated that A(X) is constructed with

coefficients k.

Lemma 1. Let X be any CW complex. The linear part of the differential d on

A(X) zero if and only if X p-minimal.

is chain isomorphic in positive dimensions by an isomorphism of

Proof: Let

= 1: c .. a. ;
j J

1(A (X),d
1
)

then

= Span(a
1,a2, ••• ) and let d

1:A
1(X)

-r A1(X) be d
1(ai)

d2 = 0 . Borrowing notation from [21, it is easy to see that
1

degree +1 with the complex (B(X),TId) , which is a free k-module with basis

corresponding to all the cells of X. The latter has homology isomorphic with

H*(X;k) • The cells of X correspond to a basis for H*(X;k) if and only if

TId = 0 , which in turn occurs if and only if d 1 = 0

Lemma 2. Let X be any CW complex. There is a p-minimal CW complex Y and a

p-homotopy equivalence f:Y -r X .

Proof: Only the outline of a proof is given, since it is a straightforward

exercise in working with homotopy and homology groups. Let R , the

integers localized at (p), and let TI (.) denote the group of a
n

space or pair, tensored with R. h:TI
n(·)

-r Hn( • ; R) denotes the Hurewicz

homomorphism.

and inductively construct complexes 123
Y ,Y ,Y ,""", together

with maps f :yr -r X , satisfying all of the following properties: (1) yr c yr+l
r

as a subcomplex; (2) f r = f r+ 1ly ; (3) 2 r+l ;
r

is an isomorphism for m< r ( 5) yr is p-minimal; and

(4) f :TI -r TI (X)
r m m
it- r

(6) h(TIr+ 1(y ))

yr+l from yr , first one wedges on the minimum number. To obtain

of Sr+l,s needed so that f r can be extended to a map fl
r

inducing a surjection

of TIr+ 1" Then one attaches a minimum number of r+2-cells, obtaining yr+l • so

that extended over yr+l induces an isomorphism of TI
r+ 1 .
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and

Letting

f: Y -+- X

Y = lim(yr) , f = lim(f ) ,
.---... --.,. r

having f...: 7Tm(Y)"'&" 7Tm(X)

one obtains a p-minimal space

for all m > 0 .

Y

Lemma 3. Let X be a p-minimal CW complex, and let Y be any subcomplex. Then

Y is p-minimal, and the inclusion i: Y -+- X induces a monomorphism of homology

and an epimorphism of cohomology with coefficients in k .

Proof: Because d
X

may be taken to extend dy , Y is p-;ninimal

if X 1S. 1: X 1S a cellular map, which induces an injection on the

cellular chain complexes with coefficients in k for Y and X . The cellular

chain complexes have trivial differentials, so this induces an injection of

H*( o;k) . It follows that i* is a surjection of H*( o;k) •

p-Quadratic Complexes

When (A(X),d) is the Adams-Hilton algebra for X and the linear part of

d vanishes, the quadratic part reflects the cup coproduct on X. Precisely,

fix p and k with charjk ) = p as before and note that the diagonal

For a p-minimal X, there is a natural basis {bO,b 1,b2 , ••• } for H*(X;k)

in correspondence with the cells of X and consistent with s(ai) =bi in

the notation of [2]. This basis determines constants y .. 0 E k by the formula
1JN

lI*(b i) = bi " bO + bO " bi + L Yijt bj " b t On the other hand, d(ai) =
j ,t>O

L cijtajat + (cubic and higher terms). We will show that ( ) Ib.1
C i j t -1 J Y- -R,.

j ,R,>O 1J

there is a natural decomposition of xxY into {e'!.}. '>0 , where . e- x e t ,
1J 1,J_ 1J 1 J

We denote the generator of A(Xx Y) corresponding to _ by a.'.' . for
1J 1J

(i,j) * (0,0) , and the corresponding basis element of B(X x Y) by b " .
1J

The embedding X = Xx eO Xx Y sends a
i
to aio 1n the respective Adams-

Hilton algebras; likewise Y = eO x Y "-->- Xx Y has a!
J

going to When

X and Y are p-minimal, the Kunneth formula shows that Xx Y is p-minimal.
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has e(b'!,) =
J

Lemma 4. Suppose X and Y are p-minimal CW complexes. Let I be the two-sided

ideal of A(X x Y) generated by all cubic and higher monomials, as well as by

all quadratic monomials not of the form Then E (-1) ,e
s
I + 1.

Proof: That the term must be present, with the stated sign, follows from

the universal example 2, p.320]. To see that there are no others, let

superscripts denoting skeleta here. X' x Y' is a subcomplex of

and consider the subcomplexes X' = U

Xx Y , so d (a") must be a valid choice for dX' xY' (as"t) , up to an indeter-
XXy' st

minacy which lies in I by p-minimality. In A(X' x Y'), however, is the only

term of the form of dimension m+n-2. So no other may contribute to

•

Lemma 5 (cf [5]).

above. Then c·· =

Let X be p-minimal,
jej I

(-1) y. 'n'

and let

Proof: First observe that if 11: X ... X x X is the diagonal, then the induced

map 11*: A(X) ... A(X x X) has 11*( a i) E aio + + J , where J is the two-sided

ideal of A(X x X) generated by quadratic terms and all a'! for j > 0
Ji

and

i > 0 • This follows from projecting 11*(a
i)

back onto each coordinate. Let K

be the cube of the augmentation ideal of A(X) and let I be as in lemma 4.

We use the fact that 11* is a chain map preserving multiplication.

Say

in [ 2 l- Consider sl1*(a.) = l1*s(a.) = A (b,) = b" + b". + L y b"
'-'* j ,i>O iji Ji

= s(a'.' ) + s(a".) + L Y"n s(a'\) . Since ker(s) is non-zero only in
a.O oi j ,i>O J",
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a '.' a" (mod I),Ja a£

as desired.

In view of lemma 5, any spaces for which d lS concentrated entirely in

its quadratic part should have properties which depend more heavily than usual

on their cohomology ring structures. This is indeed true and motivates the

following definition.

Def. Let X be a p-minimal CW complex. X is p-guadratic iff d may be

chosen for A(X) so that, for all i > a , for some

constants c.. E k .
lJ£

This definition does not depend upon the choice of the field k so long

as char(k) = p , since the {c .. } will always lie in the canonical prime
lJ£

subfield of k , and thus there exists a purely quadratic d for A(X)

constructed over k if and only if it exists for A(X) constructed over
p

When X is p-quadratic, it will always be assumed that d is chosen for

A(X) so that d(a
l
· ) = c a a By lemma 5,

L.. ij £ j £ . is uniquely determined

for X p-quadratic.

The connection with rational homotopy theory may be made at once for p = a

By [5], the Adams-Hilton functor for a-minimal spaces coincides with Quillen's

minimal Lie algebra model [15] over the rationals. Thus our definition of

a-quadratic coincides with the much-studied concept of formal spaces [8] [13] ,

about which many beautiful results are known. In this way p-quadratic spaces

are a natural generalization of formal spaces to non-zero characteristics.

Lemma 6 (cf [8]). Let X be p-quadratic. Then (A(X),d) has a natural structure

as abigraded algebra such that d has bidegree (+1,-1) .

Thus H*(A(X),d) =H*(nX;k) has the structure of a bigraded algebra.

by induction. This gives the first gradation, the second one

Proof: Let

and

Ar = (A1)r

d(A
1
) c A2

1A = Span(a
1,a2

, •.• ) A , and let

Ar +s. Because X is p-quadratic,

, letA =A(X)

A = Ql A
r and A

r .As

r;::a

d(Ar) c Ar +1

Then

then



337

being the gradation by dimension we have always had. Since d respects both

grades, the homology H*(A,d) is also bigraded. This completes the proof.

The additional gradation is called the "lower gradation" to be consistent

with the definition in [8], which coincides with ours over characteristic

zero. If A = A(X) with X p-quadratic, the component of A with bidegree

(s,t)

W=A1

will be denoted As,t
If W is the (singly) graded k-module

Ell A1,t ' then AS= Ell As,t"" W,IiI IiI,W and A(X) "" TW , the.t>O s

tensor algebra on W . Recall also that Wt = A1,t "" Ht+ 1(X;k) , so W may be

viewed as the desuspension of the reduced k-homology of X , and that

Fix a p-quadratic space X, let A = A(X) , and set R = H*(X;k) • We

want to compare the bigraded algebras

H* *(Rx;k) = ffi H t(Rx;k)
, s, s,

Ht(Rx;k) with lower grade s

ffi Ext:,t(k,k) and
s,t:::O

, where H t(Rx;k) denotes the component ofs,

Eilenberg and Moore [6 ] have given a spectral

andR
Tor t(k,k)s,

gives a spectral sequence with

ffi E:,t "" . Dualizing this
t-s=n

ExtRs,t(k,k) and ffi Es,t "" H (nX;k) .
00 n

t-s

In this paper, it is the latter spectral sequence we refer to when we speak of

sequence with

the Eilenberg-Moore spectral sequence.

Let R be the augmentation ideal of R, R H*(X;k) . There is a natural

free R-module resolution of k , called the bar resolution [12 ]:

0-<- k -<- R..LRIiIR ...Q..RIiIRIiIR..iL ... , in which u : RXR ->- R is (cup) multi-
s-1

plication and 0(x1 iii ••• iii xs) = L (_1)j-1 x1 iii ••• iii jJ(xJo iii xJo+1) iii ••• iii Xsj=1

Taking Hom(·,k) of this sequence after omitting the term k gives a chain

complex whose cohomology is

o ->- k ...Q... U UIiIU .L UIiIUIiIU .L
It is

where U

jJ* is dual to u IR IiiR ' and

s
d(u

1
@ ••• liIu) = L (_1)j-1 u

1
o•. liIjJ*(u.) iii ••• filu

s j=1 J s
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Furthermore, the pairing (y @ ••• @ 3 ({J 3 •.• @ .... ,u 3 .•. 3 UI

81 's2 s1+ s2

makes this complex into a bigraded cochain algebra and induces the Yoneda multi-

plication on Extr*(k,k) [1]. Let F = U 3 ... 3 U
I

and let
S' .

be the

component of Fs in total degree t ,so d(F t) C F 1 t .s, - s+ ,

At this point, observe that As,t-s and Fs,t are isomorphic k-modules

for each (s,t) ,since A TW, F = Fs TU , and W is U desuspended.
s

Is there a chain isomorphism? Indeed there 1S: letting the basis element bi

of U correspond to the basis element a i of W, we define Fs,t .... As,t-s

by setting
arb 3 ... 3b )

n n
(-1) 1 s a

n s

and extending linearly. Here arb 3 •.. 3 b
n 1 ns

for s even and

L Ib I the sum equaling
s-j odd nj

equaling Ib I + Ib I +
n2 n4

+ ••• + Ibn I for s odd. To prove that this lS a chain isomorphism, recall
s-1

first from lemma 5 that

d(a )
n·
1

d(a •.. a )
n 1 Us

lb. I
l: (-1) J Y . R, a

J
. a R, , and

j ,R, niJ

sian" .an . I
L (-1) 1 1-1 a ... d(a )
i=1 n 1 ni

while

Then if b = b
n
1

deb ) =n.
1

3 b
n s

and

is given by formula (1).

[a ... a I Ib I
(_1)a(b) (-1) n1 ni-1 L (-1) j

i=1 j ,R,

Ib I + (i-1) +
n
m

has the parity of

s-m
odd

(i-1) + alb ('! ••• 3 b. i& b
n
@ ... @ b

n 1 J x- n
s

i-1
... L

m=1

YnijR, an1···ajaR, ... ans

alb) + [a I + ... + la I + Ib·l =
n 1 n i - 1 J

The sign on the term
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On the other hand,

E
j,l

s
E
i=l

s
= (_l)i-l E Y '1 b 6 .. , 6 b. 6 b1 6 ... 6 bni=l j,1 ni J n 1 J s

a(b 6 ..•6b.6b16 ..•6b
(-1 )i-l (-1) n 1 J ns

as desired.

Because a chain isomorphism induces an isomorphism on homology, we have at once

Lemma 7. For a p-quadratic space X with cohomology ring R = H*(X;k),

s t
Ext

R
' (k,k) is isomorphic with H t (llX;k)

S, -6
for each bidegree (s,t).

An immediate consequence is

Theorem 1. Let X have the p-homotopy type of a p-quadratic CW complex. Then

the Eilenberg-Moore spectral sequence for x degenerates, i.e.,E
2

E
oo

as

k-modules.

We can go further, however, with the isomorphism ",. F As,t s,t-s

Does this induce an isomorphism of algebras? Perhaps surprisingly, it does not;

a simple counterexample follows.

Example. Let X = 82 x 83 X p-quadratic for all p and R = H*(X;k) is

the commuting polynomial ring on two generators whose squares vanish. It follows

*,*( )that ExtR k,k a polynomial ring (non-vanishing squares) on two anti-

commuting generators Sl and S2 of bidegrees (1,2) and (1,3). However; H*(llX;k)

is a commutative polynomial ring on two generators U
1
and U2 of bidegrees

(1,1) and (1,2). The problem is that, although both algebras are commutative

with the convention xy = (_l)(deg x)(deg when {x,y} as the generating set,

"deg" is understood to mean homological degree (corresponding to' lower degree)

in the Ext algebra, but total degree for the loop space homology:

YEAs' ,t Ix E As,t and

be bigraded k-algebras. An isomorphism

for

A = l& A and A I = Ql AI

s,t s,t s,t s,t
of bigraded vector spaces is called an algebra isomorphism

Let

f: A ... A's,t s,t-s

to iff fIx y) = (_l)s
lt

f(x)f(y)

Def.

In our case, if b s band b 'n s
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a ... a
n 1 ns +s'

a •.. a
n 1 ns+s'

where

= (_1)s't <j>(b) <j>(b') ,

t = Ib I + ••• +
n
1

Ib In s
1S the total degree of b .

It is clear that a chain algebra isomorphism up to sign induces an

isomorphism of algebras up to sign on homology. We have proved

Theorem 2. Let X have the p-homotopy type of a p-quadratic CW complex. Then

for R = H*(X;k) , e and
s,t

algebras up to slgn. If p = 2 or if

e H t (aK;k) are isomorphic as
s, t s,-s

H*(X;k) 1S concentrated in even degrees

only, it is an isomorphism of bigraded algebras.

In applying theorem 2, we must of course be careful to allow for the shift

1n bidegrees from the Ext algebra to the Pontrjagin ring.

The next two lemmas provide examples of p-quadratic spaces. Still further

examples will be offered in the last section.

Lemma 8. Suppose X is a suspension. Then X has the p-homotopy type of a

p-quadratic CW complex for each p

Proof; By lemma 2 we may choose Y , with the p-homotopy type of X , to be

A(Y) is isomorphic to a

tensor algebra on the desuspended reduced k-homology of X . By [9] H*(aK;k)

is also isomorphic to this tensor algebra. Thus we must have dy = 0

Lemma 9 (cf [ 8 ]). Suppose there 1S some r > 1 such that = 0 for

m < r and for m > 3r+1 . Then X has the p-homotopy type of a p-quadratic

CW complex.

Proof; By lemma 2, let Y be p-minimal with the p-homotopy type of X. The

non-trivial cells of Y have r+1 < [e. I ::: 3r+1
1

, hence r<la·I<3r
- 1

and

r-1 S d(ai) ::: 3r-1 . It follows that only the linear and quadratic parts of d

may be non-zero. As Y is p-minimal, it must be p-quadratic.

Application to Poincare Series

Let R be a locally finite commutative graded k-algebra. Define the double

Poincare ser1es of R by
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R ( s tPR(y,z) = rank(Tor t k,k))y z
s>o t;::O s,

The usual Poincare series 1S then PR(y) = PR(y,l) . Similarly, if nx 1S

the loop space on a p-quadratic complex, its homology is doubly graded by

lemma 6 and we may define

pI (y,z) = rank(H t(nx;k))ySzt
nx t>O s,

The usual Poincare series is then Pnx(z)

are closely related.

. These two double ser1es

LemmalO. Suppose X has the p-homotopy type of a p-quadratic space. Then if

R = H*(X;k) ,

Proof: These are an immediate consequence of the vector space isomorphism of

bigraded modules R =1n lemma 7. Let hs,t = r ankf I'or- •t(k,k)) =s,

rank(Hs t_s(nx;k)) and set h = 0 for s < 0 or t < 0 Then, s,t

s t
hs,t y z and

s,t

s,t

t-s
Z

-1 s t
h t(Yz ) Z

s,t S,

Substituting yz for y gives the other formula.

A certain special case of lemma 10 has been much celebrated. Let X be a

CW complex with cells in dimensions two and four only, and suppose that

R = H*(X;k) 1S generated as a ring in degree two. Then X
2
is a wedge of n

S2's with H*(nx
2;k)

R; k (o.
1
, ... ,o.n), and the at.t.achi.ng maps of the four-cells

, let

determine certain primitive elements Sl"",Sm

two-sided ideal in k <0.
1
' " • ,o.n> generated by

2
E H

2
(nx ;k)

{Sl , ... ,Sm}

Calling

GX

I the

be the

graded Hopf algebra k(o.
1
, ••• ,o.n) II . By filtering the bar resolution for R ,

Lemaire obtained in [11] a formula which in our notation gives rise to
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-1 X -1 -1 2 2(Hy z lG (yz ) - y z( 1-nyz+my z ) ,

where GX\u) = 1S the Hilbert seraes for GX •
J

Using purely algebraic methods, Roos obtained in [16] a double Poincare

series formula when R has the property that its maximal ideal cubed vanishes.

After replacing z by z2 to account for R occurring in grades two and four

instead of one and two, it 1S

easily shown to be isomorphic with GX.

-1 R 2 -1 -1 2 2 4(Hy )G (yz) - y (1-nyz +my z )PR(y,z)

where G
R

1S the subalgebra of

situation we are considering here! G
R
is

generated by
1

ExtR(k,k) . In the

When dim(X) 4 , X 1S p-quadratic by an application of lemma 9 with

r = 1 . The equiValence between formulas (2) and (3) is thus seen to be a special

case of lemma 10.

Products

Theorem 3. Suppose X and Y are p-quadratic CW complexes. Then Xx Y is p-quadratic.

Proof: Xx Y is p-minimal because X and Yare. As before, we let the cells of

ej Let be

to be consistent with

e.
1

U
i>O

we define

e. x e l } ,where X
1 J

A(XXY). If t=O

Xx Y be {e '-' .
1J

and Y U

d (a" )xxy so

the identification Xx eO ce X , likewise if s = 0 • For s > 0 and t > 0 let

m = jesl , n = letl ' and let X' = xn- 1 Ue s ,y I = yll-1 Uet • We will show that

a generator of

if d may be chosen to be quadratic on A(XI x YI) - ,then d extends

quadratically over X' • This provides the inductive step in the proof, for

if we know d to be quadratic on A((XXy)r) and apply this extension separately

to each r+1-cell, then the extensions may be pieced together for a d which is

valid on all of A( (X x y)r+1) . Consequently it suffices to prove that Xx Y is

p-quadratic when X = xn- 1 U e
s

Y = yn-1 Ue
t

' and Z = X x Y - is

p-quadratic. We now restrict our attention to this situation. Let R = H*(X;k) and
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S H*(Y;k), so that H*(xxY;k) F::l R0S .

For a CW complex V , let 1(V) denote the Pontrjagin ring H*(nV;k) .

F(P)

to be bigraded. For a gradedL(V)

and F(P) = F (p), so
s,t::=:O s,t

is a bigraded algebra. From purely algebraic considerations one sees that

When V is known to be p-quadratic we take

k-algebra P , let Fg,l(P) =

the bigraded F(R) Iii F(S)

if y 1EFt (S),
s l' 1

x2 EF t (R) . As X and Y are p-quadratic, there are isomorphisms of algebras
s2' 2

up to sign, + 1(X) , ¢S:F(S) + L(Y) . Together these define a map

3 S:F(R3S) + L(X) 31(Y) which is also an isomorphism up to sign, the b i.gr-adi.ng

on L(X) 31(Y) coming from the bigradings on 1(X) and 1(Y) , and the algebra

structure on L(X) I!!I 1(Y) being chosen so as to be consistent with its natural

identification with 1(X x y) .

By dualizing the bar resolution for R @ S (the reverse of the process

used in proving theorem 2) we obtain a bigraded chain algebra (A',d'), with

A' = A(Xx Y) , which is the natural candidate for (A(Xx Y),d). (A',d') has

the following properties:

for

d' (a'! .) is purely quadratic for each generator a'!. E A(Xx x) ;
l.J l.J

d'IA(Z) is the unique quadratic differential which is a suitable choice

d
Z

on A(Z);

(3) H* *(A',d') is isomorphic as a bigraded algebra with H* *(nx; k)3 H* *(ny; k)., , ,
We want to be certain that d'(a" )

st is a suitable choice for

1et o=d'(a" )EA(Z)
st

o is a quadratic cycle in A(Z). If 0 were not

a boundary in (A(Xx Y),d), then it would represent a sum of products of non-

zero homology in H*(nX; k) and H*(ny; k), since all the homology in

H*(A(Xx Y),d) F::l H*(n(xxY);k) has this form. But then 0 would also be non-zero

in H*(A' ,d'), which it is not. So 0 = d(a) for some aE A(Xx Y).
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From dimensional considerations we know that a = cea" +
st

where cE k

and ;;,"EA(Z) •

d(a" ) = c- 1d(;;,')
st

c = 0 would contradict 6 being quadratic, so c +0 and

c- 1d(;;,") =c- 16 - c- 1d(;;,") . The flexibility in the choice

choose d so that

of d allows us to add elements which are boundaries in A(Z) • Thus we may

-1= c 6.

This proves d to be quadratic. As a final remark, c = by lemma 5 and by

observation that and d(a" ) = c- 16 must both correspond to the
st

cup coproduct in Xx Y

Theorem 3 greatly increases the class of spaces known to be p-quadratic.

We obtain even more examples by taking subcomplexes of products in the most

general way. To facilitate this we have the following definition.

Let r be a simplicial complex with n vertices labeled 1, ••• ,n

Let X1, •.. ,Xn be pointed spaces. The I-wedge of (x1, ••• ,Xn) is the space

Xr = {(x1'·· .,xn)E X1 X ••• X xnlhl xi +*JE r} .

When r is an n-l simplex on-1 then X
r

is the product X
1

x ••• x X
n

When r lS n disjoint points, Xr is the usual wedge Xl v ... v Xn When

r is the j-skeleton of n-1o , is the "generalized fat we1ige" considered by

Porter [14] , Lemaire [10], and others. The r-wedge lS therefore a natural genera-

lization of this already generalized concept.

f.
l

If
--4

X· +-- Y.
l lg.

l

are homotopy equivalences of pointed spaces for i 1, .... ,n,

then Xr and Yr are homotopy equivalent. One simply restricts the homotopy

between g 0 f and id: X
1
x ••• x X

n
-+ X

1
x •.• x X

n
to X

r
x I , and likewise for

Yr .

Since most of our results involve p-homotopy equivalence, we wish to show that

r-wedges preserve p-homotopy equivalence. Let X d Y ii an i' 1, ... ,n , be CW

complexes, and suppose g. :X. -+ Y.
l l l are p-homotopy equivalences. By Whitehead's

theorem this is equivalent to inducing an isomorphism
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of homology for each i , where C*(o) denotes the cellular chain complex with

coefficients in n(p)' As each g. induces an isomorphism of homology and

cellular chain complexes consist of free there are chain homotopy

inverses C*(Yi) C*(Xi) .

Omitting details, the proof proceeds as follows. Let T denote the n-1-

simplex and let r be any simplicial subcomplex containing all n vertices.

The define gT: XT YT and gr gTlx
r:

Xr Yr while induce

C*(XT) and C*(Yr) C*(Xr) . Chain homotopies Gi

between and (idX.)* induce Gr between and (idX )*, and
r

likewise for . We deduce that gr: Xr Yr induces an isomorphism of

cellular homology (coefficients still n(p)) and hence is a p-homotopy equivalence.

We have shown

Lemma 11. Suppose that for i = 1, ... ,n , Xi and Y
i
are CW complexes with the same

p-homotopy type and let r be any simplicial complex on n vertices. Then Xr

and Yr have the same p-homotopy type.

Lemma 12. Let r be a simplicial complex on n vertices and let X1"",Xn be

p-quadratic CW complexes. Then Xr has a CW decomposition for which it is

p-quadratic.

decomposition for X
r

X. have cells
(i) (L) (i)

{eO = *, e 1 ' e 2 , ... }. A natural cellular

{e(1) xe(2) x ... x e(n) I him. ",O}Ef} . With this
m1 m

2
mn

decomposition X
r

a subcomplex of X
1
x .. , x X

n

Proof: Let

We may write X = Xa ' the union being over all faces of r. The proof

as then by induction on the number of faces of r. Let f be obtained by removing

from r a face a of maximal dimension, and suppose inductively that

are p-quadratic.

X and X
r rna

Xa ' being a product of p-quadratic spaces, is p-quadratic, so

the differentials dX_ and both extend the unique quadratic differential for
r a

Xfna . It follows that dX_ and dX together define a quadratic differential
r a

which is a valid choice for
T'
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A corollary of lemmas 11 and 12 lS that r-wedges of locally finite formal

spaces are formal.

Theorem 4. Let r be a simplicial complex on n vertices, let SX
1"",SXn

be

CW complexes which are suspensions, and let X
r

be the r-wedge of (SX
1
, ••• ,SX

n).

Then (a) Xr has the p-homotopy type of a p-quadratic complex for any p ;

ao oj , the ideal of relations
lJ 2
Consequently,

(b) the double Poincare series of using any coefficient field lS a national

function of two variables; and (c) the Pontrjagin ring is finitely

presented as an algebra for any field k

Proof: Part (a) is immediate from lemmas 8, 11, and 12.Parts (b) and (c) rely on

some theorems of Backelin [ 3] and of Backelin and Rco s [4] on the structure of

Ext algebras of monomial rings.

R '" H*(SX1 x ••• x SXn;k) f'" R
1

0 •.. 0 R
n

. Each R
i
is finitely generated and

has a presentation as R. '" k[a. 1, .•. ,a' t
]/[a.o

l l l i lJ 1

being generated by all products of two generators.

R '" k[a· ·11 < i n ,1 < j < t.]/[a.. a .. 11 < i < n , 1 j1 S j2 < t.]
lJ - - L lJ 1 lJ

2
- L

By lemma 3, Rr lS a quotient of R . One sees easily that

So Rr '" k[ao.]/[M
1,
... ,M],

lJ s

where M1, ..• ,Ms are monomials in the anti-commuting generators {a. .I . In [3]
lJ

it is shown that local rings of this form always have rational double Poincare

series, i.e., the series are the expansions about the origin of quotients of

polynomials. [3] actually deals only with the commutative case, but the methods

of proof are easily generalized to anti-commutative rings as well. Part (b) of

the theorem follows from this and lemma 10 and part (a).

In [ 4] Backelin and Roos observe that Ext;'*(k,k) is finitely presented

as an algebra when S is an anti-commutative Noetherian graded k-algebra whose

ideal of relations is generated by a set of monomials in the generators. Since

H* is isomorphic with Ext;'*(k,k) as algebras up to sign, it too
, r

is finitely presented ..
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(Qf)*
--------+, H*(QY;k)

Naturality and Examples

Let f:X + Y be a map between two p-quadratic CW complexes. Let R =H*(X;k)

and S = H*(Y;k). f*:S + R induces f**:Ext;'*(k,k) + Ext;'*(k,k) • If $*

is the isomorphism of theorem 2, the diagram

f**,

(4)

in general does not commute. A simple example is the Hopf map n:s3 + S2 ,

for which (Qn)* is injective but n* and hence n** are zero. However, ln

a special case we have commutativity.

Lemma 13. Let f:X + Y be a map between p-quadratic CW complexes. Suppose that

the chain map f*:(A(X),dx) + (A(Y),dy ) induced by f respects the lower

gradation, i.e., suppose f* sends generators of A(X) to linear combinations

of generators in A(Y) . Then (4) commutes as a diagram of bigraded algebras.

Proof: We always have a diagram

( f*)*
TR+ ' TS+

(5) $+ f* $+
TL- 1R _ TL- 1S

+ + '

"L:-
1
" denoting desuspension and the vertical maps being chain isomorphisms of

algebras. Under the stated hYPotheses (5) commutes for generators, hence it

commutes. The lemma follows by taking homology of each chain complex.

We conclude with the observation that all monomial rings with degree two

generators and all "monomial maps" between them are covered by p-quadratic

theory. We wish to consider quotients of polynomial rings whose ideals of

relations are generated by monomials, and maps between them whose kernels are

also generated by monomials. One way to formalize this is to consider a category

whose objects are graded rings, together with specified minimal sets of

generators with respect to which the rings are monomial. A simpler formalization,
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which disallows permutations of generators but still allows any monomial maps

up to isomorphism, is given next.

Let e be any (presumably large) set, and think of e as a set of degree-

two generators for k[el. Let I,J denote ideals of k[el generated by

monomials in C . Let M(resp. MO) be the category whose objects are rings

(resp. finitely generated rings) of the form k[el!I . A morphism in M(resp. MO)

lS a composition of any projections k[el!I k[el!(I+J) and of injections

k[el!(I+J) k[el!I when J lS the ideal of k[el generated by a subset

For the counterpart In topology , let {Xex} for ex E e be copies of

with the usual cell structure, and for a finite subset Lee let

II y where Y = Xex if ex E L and Y = * if ex ¢ L For any
exEC ex ex ex

p,=e Xp lim, XL lS a ew complex which comes with a natural projection
LcP

L finite

Let the category C (resp.Co) have as objects all subcomplexes

(resp. all locally finite subcomplexes) of Xc . A morphism In C (or CO) is

a composition of subcomplex inclusions among the objects and projections

To define a functor G:M,Mo C,Co ' consider the free abelian monoid

M= M(e) on the set e. Elements of M may be denoted as sums l: niexi, where

and only finitely many ni's are non-zero. k[el is the monoid

algebra over M , i.e., there is a natural monoid homomorphism g:M k[el

whose image is a k-basis. For the topology, when the 2j-cell of X
ex

is identified

with j. ex and products of cells are identified with sums in M, we obtain a

bijection between M and the cells of Xc . For B c M a monoid ideal

(this means that + Y E B whenever S E Band y EM),

let RB =k[el![g(B)l and let X(B) U {cells corresponding to M-B} . As B

runs through all proper monoid ideals of M (resp. proper monoid ideals

containing almost all 1· ex for ex E C) , {R
B}

runs through ObM (resp. ObMO)
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and {X(B)} runs through Ob C(resp. Ob CO), [Note that we must include the

empty ideal as one possibility for B.] We may define G:M.MO + C,Co by

it is clear that f:RB + R corresponds to a unique
1 B2

G(f):X(B ) + X(B) for f E Hom M(resp. HomMO) such that G is a contra-
2 1

variant functor.

L =H* *(no;k) . Then there is a natural equivalence,

Theorem 5. The functors

inverses. Restricting to

H = H*(';k):C,CO + M.MO are

E = Ext*'*(k k) and
( • ) s

+ LoG. That is,

each map between Ext algebras of monomial rings which is induced by a monomial

map is realized by a map between bigraded Pontrjagin algebras. Furthermore,

the algebras which occur In the image of L are finitely presented.

Proof: That GH and HG are the identity functors comes easily out of our

definitions of and X(B)' That each lS p-quadratic follows

from the fact that is p-quadratic for any p (see [10]). The subcomplex

inclusions and projections which generate Hom C induce homomorphisms preserving

both gradations as needed for lemma 13, so the diagram (4) always commutes for

f E Hom Co . Since all X(B)'s have cohomology in even degrees only, lS

In fact an equivalence of algebras. Finally, the remark about these algebras

being finitely presented is a consequence of the corresponding fact about

monomial rings [4], as observed before.
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A construction of p-Iocal H-spaces

by

F. R. Cohen and J. A. Neisendorfer *

o. Introduction

The existence of an H-space structure on an odd dimensional sphere which has

been localized at an odd prime has been useful in homotopy theory. One way of

exhibiting this II-space structure is to use Serre's decomposition [9] nS
2n

at
2n-1 4n-l

odd primes into S x ns The point of view of this paper is that Serre's

decomposition is a prototype which extends to other examples. For certain X, we

split nEX at an odd prime and obtain the sorts of low rank torsion free H-spaces

previously given by Cooke-Harper-Zabrodsky [4] and by Mimura-Toda [7].

1. The results

n1 n2
S v e v ••• '" e with

Our standing assumptions are that spaces have a basepoint, are simply

connected, have the homotopy type of a ew complex, and are localized at an odd

prime p.

Let X be the localization at p of a cell complex

ni ni +l and ni odd. Our main theorem is:

Theorem 1.1. If is less than p-l, then there is a p-Iocal H-space M(X) and a

map 1: X + M(X) such that H*(M(X) is the exterior Hopf algebra generated by the

injection of H*(X).

Remarks: i) M is a functor on homotopy categories and 1 is a natural trans-

formation. ii) We construct a natural map p: nEX + M(X) together with a natural

section s: M(X) + nEx such that 1 is the composite pE: X + nEX + M(X) and the

H-space multiplication on M(X) is the composite p(mult)(sxs):

M(X) x M(X) + nEX x nEX + nEX + M(X). iii) Since H*(X) is a trivial coalgebra

with free Z(p) module basis 1, ul' , where u
i
has degree n

i,
H*(M(X)) is

the primitively generated exterior Hopf algebra A(u
l,

••• ,u£) A(H*(X)).

* The authors were supported in part by NSF grants. The first
is an A. P. Sloan fellow.
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There do exist H-spaces which cannot be constructed by the method of 1.1.
358

For example, if we localize at 2 and let X = S un e , then SU(3) = X v e is not

in the image of
2k+l

e , then a

fibrations. In particular,
n
2

n ,
e ..... v e ] and

a retract of 3 ]

However, 1.1 is more general than we have yet indicated. For example,
2n+l .localize at 3 and let A be an element of TI

2k
(S ) such that A 1S

. 2 2 2n+l
the double suspens10n and such that L*(A) = O. If X = S VA

2n+l 2k+l 2n+2k+23-1ocal H-space S uAe v e exists.

The functor M converts certain cofibrations into
n
lS ..let X and X' be the respective localizations of

n.+1 n£
X .. e ] ..... v e where all n

i
are odd and let X" be the cofibre of the

inclusion X X'.

Proposition 1.2. If £ is less than p-l, then M(X) is the homotopy theoretic

fibre of M(X') M(X").

. 2n+l 2n+lSlnce M(S ) has the homotopy type of S at p, 1.2 shows that M(X) can be

constructed by successive fibrations over localized spheres.

If X' is the bouquet X v X", then 1. 2 shows that the natural map

M(X ., X") + M(X) x M(X") is a homotogv equivalence. Hence, if X is again the
"i "z £localization of S v e ..... v e , then the following is a formal consequence

of naturality and of the H-maps M(X y X) M(X) and M(Xv X ¥ X) M(X) induced by

folding.

Corollary 1.3. If 2£ is less than p-l, then M(X) is homotopy commutative. If

3£ is less than p-l, then it is homotopy associative.

We also have analogues of the double suspension:

Proposition 1.4. If £ is less than p-l, then there exist natural maps

E2 : M(X) + such that, if X is the localization of s2n-l, then E
2
is the

localized double suspension Z2: s2n-1

The homotopy type of can be expressed simply in terms of Wk, a

contractible space on which the symmetric group on k letters acts freely, and
[k]

X , the k-fold smash of X.

Proposition

the bouquet

1.5.

s.
V
k=l

If £ is less than p-l, then ZM(X) has the homotopy type of
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2. The method

Throughout this paper. we adopt the notationnof thfi next threenparagraphs.

X is the localization at an odd prime p of S 1.., e 2 .... , 01 e t with n , odd.

V = H*(X) is the free Z(p) module with basis ul •••• ,ut where ui has ni•
Since H*(X) is a trivial coalgebra. H*(QZX) is the primitively generated

tensor Hopf algebra T(V) = T(ul ••••• u
t
) generated by V. Also. T(V) = UL. the

universal enveloping Hopf algebra of the free Lie algebra L = L(V) generated by V.

We shall construct M(X) SO that H*(M(X)) is the primitively generated

exterior Hopf algebra A(V) A(ul •.••• u
t
) . In turn. A(V) = UV. the universal

enveloping Hopf algebra of the abelian Lie algebra V. Note that the abelianization

of L is abeL) = L/[L.LJ V.

Our method invol-ves two steps. The first step is to construct a space A(X)

and a map 8: A(X) + IX such that. if M(X) is the homotopy theoretic fibre of 8

and QA(X) + QIX + M(X) + AeX)+ IX is the associated fibration sequence. then

Q8* maps H*(QA(X)) isomorphically onto U[L.LJ. This is done in section 3. but

we shall show now that this determines the coalgebra H*(M(X)).

Consider the principal fibration sequence QA(X) + QZX + M(X). Since H*(QIX)

UL is a free H*(QA(X)) = U[L.LJ module [2]. the Eilenberg-Moore spectral sequence

with abutment H*(M(X)) collapses. That is. E2 = TorU[L.L](z(p)'UL)

Z(p) GtU[L.LJ UL = Uab(L) = UV = A(V). Hence. H*(M(X)) = A(V) as a coalgebra.

The second step is to show that, if 1 is the composite pI: X + QIX + M(X).

then the suspension I1: zx + ZM(X) admits a retraction r: ZM(X) + IX. This is

done in section 4. but we shall show now that this implies that p: QIX + M(X)

has a section s and hence that M(X) is an H-space.

Define s' to be the composite (Qr)Z: M(X) + QIM(X) QIX and note that

PS'l = 1. Thus, the induced map (ps')* on H*(M(X)) = A(V) restricts to an

isomorphism on the primitives V. Hence, (ps')* is an isomorphism and ps' is a

homotopy equivalence. If s = s'(ps,)-l. then s is a section for p.

If we use the section s to define the H-space multiplication on M(X) by the

composite M(X) x M(X) + QIx x QIX + QIX + M(X), then H*(M(X)) = A(V) as a Hopf

algebra. In other words, QA(X) + QZX + M(X) induces in homology the short exact

sequence of homology Hopf algebras U[L.L] + UL + Uab(L). [8]

All of our constructions will be natural. Thus. this completes the proof of

1.1, subject to constructing 8 and r. It is worthwhile to stress that we do not

construct the finite H-space M(X) directly but rather we construct an infinite

complement QA(X) for M(X) in QZX.
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3. Constructing A(X)

Let be Z( )[L:kJ. the group ring of the symmetric group on k letters.
p [kJ

Since L:
k
acts on the k-fold smash X and we localize spaces at P. it is easy to

see that "acts" on the suspension L:x[kJ. More precisely. there is a map

R - h h h' d d H (- ( [kJ) - ( [kJ»-K sue t at t e 1n uce map om H* L:X .H* L:X gives
k k

a( a* (X» a( V). where a indicates
j=l j=l

the suspension of a module.

Suppose splits into a direct sum of right ideals. = Ilea .•. Is'

Write 1 = e l + •.. + e s with e
i
in Ii' Then the e

i
are orthogonal idempotents and

Ii = Furthermore. if M is a left module. then M = 11M ••• E9 IsM =

elM a '" $ esM as a Z(p) module. The method in [lJ extends to the following

geometric realization of this splitting.

the homotopy type of a bouquet

Ii (H*(L:i
kJ».

[kJ [kJ e. [kJ e. [kJ
Proof: Let I.(L:X ) be the mapping telescope of L:x ....1 L:X ....1 L:X ....

_ [kJ [kJ [kJ [kJ
Add the maps Ii(L:X ) to get a map f: L:X .... Il(L:X ) y .•. y I (L:X ).

Since homology commutes with direct limits. H*(Ii(L:x[kJ» eiH*(L:x[kJ) and
s

f is a homology isomorphism. II

To give an example. define the Dynkin-Specht-Wever element Sk in

recursively as follows: S2 = 1-O.2),Sk = (l-(k.k-l ..... where

Ri Q9 .... denotes the natural pairing. When acts on
k

v, Sk(xlGD • .. = [xl.[x2 ... .. ]]
J=l

ad(xl)ad(x2) ... where [x.yJ = ad(x)(y) = - (_l)degx degy yo.ox.

2
We have Sk = kSk' [5J Hence. if k < P. then el = (l/k)Sk and e2 = l-e l are

orthogonal idempotents Thus. = 12 with Ii = 11 = and

k k k k k k
V = e1 ( @ V). where V) = Sk(® V) = L(V) " =

j=l j=l j=l j=l j=l j=l

the module generated by length k Lie brackets in L(V) which is embedded in T(V)

UL(V). [5J Hence. L:X[kJ splits into a bouquet where the homology of the first

piece is the suspension of the length k Lie tensors in T(V).

To continue we must compute [L.LJ explicitly where L = L(V) = L(ul •.•.• u£)

and degree u
i

is odd. We need the following lemma. whose proof is implicit in [2J.
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Now. Dku is the intersection of [[L.L].[L.L]]with those length k Lie tensors

S with exactly one occurence of each u
i'

Likewise. Bku is the intersection of

[L.L] with S. Since [[L.L].[L.L]]is a Z(p) summand of [L.L]. it follows that

is a Z(p) summand of Bk•
Since [L.L] is a Z(p) summand in Land L is one in T(V). it follows that

Bk is a z(p) summand II

For k < p. write = Dk and use 3.1 to obtain a bouquet summand

A(X)k = Gk(EX[k]) of EX[k]with H*(A(X)k) = the suspension oW
k•

Define e
k:

A(X)k + EX as follows. Let E: X + be the suspension map and let

adk-l(E)(E): X[k] + QEX be the k-fold iterated Samelson product. Let

¢k: EX[k] + EX be the adjoint and let e
k

be the restriction of ¢k'

If < p-l. let A(X) be the bouquet of A(X)k' 2 k Let e: A(X) + EX

restrict to e
k

on each summand. In the fibration sequence

+ + M(X) + A(X) + EX. we have:

Lemma 3.5. is mapped isomorphically onto U[L.L] in UL = H*(QEX).

[k]
Proof: Since A(X)k is a retract of EX • H*(A(X)k) is a trivial coalgebra and.

2
in the Eilenberg-Moore spectral sequence which abuts to H*(QA(X)k)' E =

cotorH*(A(X)k)(Z(p)'Z(p» = T(O-lH*(A(X)k» = T(Wk). Since this spectral
. [k] 2

sequence retracts from the one WhlCh abuts to ). E = Hence.

T(W
k)

and. since it retracts from it is primitively

generated.

Similarly. = T(W) as a Hopf algebra.

Examine the homology suspension to see that + maps Wk
isomorphically to W

k
modulo decomposable primitives in Since

k-l k-lrestricts to ad (E)(E) and ad (E) (E) induces Sk in homology. it follows

that maps W
k

isomorphically to W
k
in modulo primitive tensors of

length greater than k. Note also that is mapped into U[L.L] = UL(W).

Now. a simple filtration argument shows that H*(nA(X» is mapped

isomorphically onto U[L.L]. II

4. Constructing the retraction

We have a map p: nEX + M(X) which induces in homology the natural map

T(ul •..•• + A(ul' •••• We need only assume that < p to get the existence
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Suppose that the degree of u is odd and consider the map L(u,u ) <u> to the
a

abelian Lie algebra generated by u which sends u to u and u to o.
ex

Lemma 3.2. The kernel of this map is the free Lie algebra generated by

u ,[u,uJ, and [u,u J.
a a

Apply 3.2 to the short exact sequences L
l

L <u£>, L2 Ll <u£_l>'

, L£ L£_l <ul> and note that L£ = [L,LJ. This gives:

Lemma 3.3. [L,LJ is the free Lie algebra generated by:

,[ui,u.JJJ, with I j i < £ and
2 1 J

1 kt < k t-l < ••• < k2 < kl < i.

[ui,uJ-J, [uk ,[u.,u.JJ,
1 J

For example, if £ = 2, then [L,LJ is generated by a basis for the length 2

and length 3 Lie tensors. In general, it is at least true that [L,LJ is generated

by some Lie tensors of lengths between 2 and £+1. We express this as follows.

Suppose that [L,LJ = WE9 [[L,LJ,[L,LJJ as z(p) mOdules, where W is homogeneous

with respect to length in L. Then W is a direct sum of homogeneous modules W
k

of length k with 2 k < £+1. And [L,LJ = L(W) = the free Lie algebra generated

by W.

Set [B.,B.J = (1-0 .. B.) in R where i+j = k, 0 .. (s) = j+s if
J J k

1 < s < i, and 0 .. (S) = s-i if i < s < k. Let Dk be the right ideal in R
- -K

generated by all [B.,B.J with i+j k and 2 _< i,j < k-2, and let B
k

be the
J -

If Gk is a right ideal such that Bk = D
k
, Wk

direct sum of W
k
with 2 < k < £+1, then [L,LJ = L(W).

right ideal generated by B
k
•

length k in L, k > 2.

lenth k in L.

Hence,

k
Then B

k
(0 V) is the intersection of [L, LJ with

k j=l

D
k
( V) is the intersection of [[L,LJ,[L,LJJ with
j=l

k
G
k
( @ V), and W is the
j=l

module

that a

Lemma 3.4. If k< p, then there exist right ideals G
k

and C
k
in such that

Bk = Gk (& Dk and = Cke Bk•

Proof: Recall that, if k < p, then is semi-simple in the sense

submodule has an module complement if and only if it has a z(p)

complement.

If V is free on a basis uI' ••• , then acts faithfully on u

u, ••• (8) u,., that is, au = Bu implies that a = B.
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of a retraction r: LM(X) LX. This follows at once from 4.1 below.

If k < p, let ok = (11k!) Then Ok and I-Ok are orthogonal
OELk

idempotents which generate right ideals Sk and T
k

wi th = Sk Ef> T
k.

Lemma 4.1. If £ < p, then LM(X) has the homotopy type of the bouquet of

Sk(LX[kJ), 1 < k < £, and SI(LX) = LX.

[kJ
Proof: Recall that LQLX has the homotopy type of the bouquet of LX ,

I < k < £, and the homology of LX[kJ corresponds to the sospension of the length

k tensors. Since the homology of LM(X) is the suspension of the symmetric
. [kJ. [kJ [kJtensors, 3.1 shows that, if we LX Sk(LX ) v Tk(LX ) for k < p,

LP: LQLX gives a homotopy equivalence between the bouquet
[kJ\I Sk(LX ) and LM(X). It is clear that SI(LX) = LX. II

k=l

Proposition 4.2. If k < p and W is a contractible space on which L
k
acts freely,

then S (Lx[kJ) has the homotopy type of L(W x x[kJ).
k L

k

II

is a covering map. Since p does not divide
[kJ

the natural map H*(X ;Z/pZ)

X[ k J )xL •
k

[kJ [kJ
Proof: The map W x X W xL X

k!, it induces in mod p
..,. [kJ

Z/pZww
L

H*(X ;z/pz). Thus, the suspension of this map restricts to a homotopy
k

equivalence S (LX[kJ) L(W
k

5. Cofibrations and fibrations

If X X' X" is a cofibration sequence which satisfies the hypotheses of 1.2,

then we shall show that the sequence M(X) M(X') M(X") is a fibration sequence

up to homotopy.

Let F be the homotopy theoretic fibre of M(X') M(X"). Since H*(M(x');Z/pz)

is a free H*(M(r');z/pZ) module, the mod p cohomology Serre spectral sequence of

F M(X') M(XU
) collapses at E

Z'
Hence, the mod p Euler-Poincare series of F

is the same as that of M(X).

Since M(X) M(X") is null, we can factor M(X) -e- F M(X'). But, M(X) M(X')

is a mod p homology monomorphism and M(X) F must be a mod p homology isomorphism.

6. Analogues of the double suspension

z Z?
If £ <p-l, then we generalize the double suspension to a map E : M(X) Q M(L-X).
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Since M(X) is the fibre of 8: A(X) LX where 8 factors through a generalized

HI [k] 2
Whitehead product V LX LX, the composite L8: A(X) LX nL X is null

k=2

homotopic. Hence, there is a homotopy commutative diagram

A(X)

i-8
LX

and a map of homotopy theoretic fibres a: M(X) Q3L3X• Let E2 be the composite

(n
2p)a : M(X) n3L3X

2n-l 2If X is the localization of S , then the transgression shows that E is

degree one on the bottom cell and hence is the double suspension.

7. Extensions of the method

An examination of sections 3 and 4 shows that, if arbitrary, then an

H-space M(X) can be constructed with H*(M(X» = A(H*(X» = A(ul' ••• provided

that two things can be done.

First, find a space I(X) and a map 8: A(X) nLX which maps H*(I(X»

isomorphically onto a generating module for U[L,L] in UL = H*(QLX). This

corresponds to section 3 by setting A(X) and 8 the adjoint of 8.

Second, find a space and a map which induces an

isomorphism of onto exterior products a A(ul' •••

In section 4, we did this for < p.

It may happen in other cases that we can still do these two things. For

example, in the trivial case that X = [Y and that L2X is a bouquet of localized

spheres, Lx[k]is also a bouquet of localized spheres and-the two steps are easy

to perform.
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DESUSPENSION AT AN ODD PRIME

Brayton Gray

It is classical that for 2n-1
r < 2np-3, TIr(S 1 is isomorphic to

the stable group and contains the stable group as a direct

summand at the prime p. It is natural to ask to what extend this

result can be extended to other spaces. We will investigate spaces X

which satisfy the following map desuspension condition: X is 2n-2

connected and TI (Xl TIS(Xl is epic for r < 2np-3 and split for
r r

r < 2np-4. Not all spaces satisfy this condition (e.g., -a product

of spheres) but we will show how to construct spaces that do.

Given a desuspension theorem for maps, there ought to be a

corresponding desuspension theorem for spectra. Such a theorem would

input a spectrum and output a space whose suspension spectrum is the

given spectrum. We will begin with a theorem of this type. The desus-

pension thus constructed will be shown to satisfy the map desuspension

theorem.

Let us assume for the remainder of this paper that all spaces and

spectra are of finite type and localized at p.

Theorem 1. Suppose that X is a 2n-2 connected spectrum and

dim X < 2np-1. Then there is a space d (X)
n -

such that X.

We need to refine the map desuspension condition.

Definition 2. A space X is n-semistable if

1)

21

X is 2n-2

There exists

connected; TI 1 (Xl is abelian if n = 1.

F 0
3n- 1x such that the composite
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is a (2p-3)n-2 equivalence.

Here Q(X) and a map is an r-equivalence if it induces

isomorphisms in homology in dimensions less than r and an epimorphism

in dimension r.

Being n-semistable clearly implies the map desuspension condition

if r = k+3n-1, k O. If r < 3n-1, TIr(X) TIS (X).
r

Theorem 3. is n +
2

semistable.

We apply these results to the Xk construction of Barratt and

Mahowald and obtain some technical information about

the first element in the kernel of E2.

2n-1
w ETI2 3(S ),n np-

We will describe a spectrum or a space as a if it is a finite

one point union of localized spheres and

The following lemma is easily obtained.

Z
rp

Moore spectra (spaces) .

Lemma 4. Suppose B is 2n-2 connected and dim B < 2n+q - 1.

Then B is a bit spectrum and B

ing bit space.

where b is the correspond-

Proof of Theorem 1. Ne will use induction on n. The case n= 1

. . I' d b L 4' th 1 S > and B = x 2n+q- 2.l.S rmp ae y emma Wl. n =. uppose n

Then = Let X' = X' is 2n-4 connected

and has dimension

Thus

<2(n-1)p- 1. Thus by induction
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f corresponds to a map

f: L2p-1d' Q(b). We introduce a lemma upon which the remainder of

the proof rests.

Lemma 5. Suppose b is a 2n-2 connected bit space. Then

3F, F so that the composite

is a 2np-5 equivalence.

and hence X is homotopy equivalent to the sus-

Returning to our proof, let g: L2p-3d' be the double

Since dim(L 2p-3d') 2p-3 + 2(n-1)p- 2 = 2np- 5,

and hence Thus f is the suspension of a

loop adjoint of f.

g factors trough F

map h: L2p-1d' b

pension spectrum of the mapping cone of h. Let this be

____---+. (b)

r
F

Observe in the proof that, by induction, the homotopy type of

dn is unambiguously determined if dim X < 2np - 2.

Proof of Lemma 5:

Case 1. b 2n-1 Let F and 1.S • = =

Case 2. b S2n. Let F and .... be the

loops on the inclusion.

Case 3. Let b = s2n-1 U
d

e 2n with d = pr We then have a

commutative diagram in which the upper and lower horizontal sequences

are fiberings:
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S2n-1 (d) S2n-1 d S2n-1--- ---
1 1 1

li(S2n-1 U
d

e 2n) liS
2n d liS 2n- ... --+

1 1 1
liQ(S2n-1 2n Q(S2n-1) Q(S2n-1)U

d
e )-... ---

The right and center vertical composites are 2np-3 equivalences;

hence the left verticle composite is a 2np-4 equivalence. Now let

F = I1S2n- 1 (d).

Case 4. Let b = s2n U 2n+1 with ded

F s2n-1 (d) and take the composite

F ... li (S2n-1 U
d
e 2n) ... 11 2 (S2n U

d
e 2n+ 1)

pro Here we set

Case 5. Suppose b = vb.
1

is a finite wedge of spaces for which

Lemma 5 holds. We thus have, for each i,

F = TIF .... li2(TIb.)
1 1

compositions 11
2 ( TIb . )

1

where Ci.

Let

is the loop sum of the

one for each i.

This completes the proof of Lemma 5. Note that in Case 3 and 4

the spaces F are universal for coextensions. Thus we might say that

the mapping h in Theorem 1 is chosen so that it has no component in

the "cross terms" of the wedge (e.g., no Whitehead products) and is a

coextension onto each of the Moore spaces. Since the mapping cone of a

coextension is also the mapping cone of an extension, these spaces are

obtained by attaching spaces to spheres, i.e., building upside down.

Hhether or not this is sufficient for Theorem 3 eludes me for the time

being.

Let us designate F F(b) •

Lemma 6. 3 a map B: F(b) ... I1F(Zb) so that the diagrams
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Si 2b I Si
3 (I::b)

ISiP'

F(b) B , SiF (I::b)

homotopy commutes.

Proof. He will use the same cases as in Lemma 5. In Case 1 we

let 13 = 1 as F(b) = SiF (I::b) = Si 2S 2n- 1. In Case 2, 13 is the inclu-

sion SiS2n- 1 c Si 3S 2n+ 1• In Case 3, 13 = 1 as again F(b) = SiF (I::b) •

In Case 4, we must establish a homotopy commutative diagram:

Si 2(S2n U
d

e 2n+ 1) Si 3(S2n+1 U
d

e 2n+ 2)

r
s2n-1 (d)

In fact, for any f: X Y let F f be the fiber of f and

c f: F f Si(Y Uf CX) the universal coextension. Then we have a

commutative diagram:

ISFf -----'-..::....., SiF I:: f

lC f l0.Cl:: f

Si
2 (I::Y Ua CI::X)

where II3(y,w) (s) = ((y,s) ,A) with A(t) = (w(t) ,s). Applying this

diagram tWice, the map 13 in the first square is constructed.

In Case 5 we simply take 13 nb ..

Corollary 7. There is a commutative diagram:

F(b)
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Lemma 8. There exists E(k,n) such that the
n

composite

is a k(2p-3)n + 2p["2] - 2 equivalence.

Proof of Theorem 3. Apply Lemma 8 with F [k/2]E (k,n) •

Proof of Lemma 8. In case p= 2 this follows readily since

n+2k-2 skeletons of and are equivalent.
n n

In case p> 2 I we first observe that Corollary 7 implies the commuta-

tivity of the triangle:

where 6 is the k-fold adjoint of Sk 06. Thus we have a commutative

square:

1

We now construct the diagram:
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•

11 R
) -----.. • (Lk+1b)

i n r i
O:kd ) -----.. (Lk+2Pd') • n3n- 1 (Lk+ 1b)

i n i i
-----.. ... O:kb)

i I i
-----.. • (Lkb)

i i II
E(k,n) -----.. E(k+2p-3, n-1) y • (Lk b)

where E is the fiber of Lkh, E' is the fiber of 0 and E(k,n)

is the fiber of y. Thus all horizontal sequences except the second

are fiber sequences.

We now use induction on n. In case n= 1, Lkd is a k

connected bit space, so kE(k,1) = F(L d 1). The composite is thus a

k
2 ( [2"] + 1) P - 5 equivalence by Lemma 5, as desired. In the inductive

step we apply Lemma 5 to see that the right hand vertical sequence is

k
a 2(n+ [2"])p- 5- (3n-4) equivalence. By induction the middle vertical

k+2p-3sequence is a (2p-3) (n-1) + 2p[ 2 ] - 2 equivalence. Since the

top and bottom horizontal sequences are fiberings, the left hand

vertical sequence is an m-equivalence where m = minimum -

m-1 k k+2p-3min(2(n+[2"])p-5-(3n-4), (2p-3)(n-1l+2p[ 2 ]-2)

. k k+2p-3]ml.n(12p-3)n+2p[2"]-1, (2p-3)n+2p([ 2 -1) + 1).

Thus it suffices to show that

This follows immediately of

follows in case k = 2s.

k = 2s+1,

< 2 ([k+2p-3] - 1)
- P 2

while if p > 3

+ 1).

it also
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In this section we will apply the result above to the desuspension

of the Baratt-Mahowald construction Xk• Let us recall that for

n
r/> E 1Tk +n - 1 (S) they construct complexes

x = skn u e kn+ r U ••• U e k (n+r)
k

nZ XkcXk+ 1 where the relative attaching maps of the cells are r/>, 2r/>,

3¢, .•• , kr/>. This is constructed similarly to the James construction:

The spectrum X
oo

= lim z-knx is in fact the free monoid in the
-.- k

category of spectra over So.

We concern ourselves with the case 3¢ = Cl
1E1T2p(S).

X
k
(Cl

1)
= s3k u ••• U e k{2p+1).

S2k+1 U ••• U e 2kp+ 1 •

Thus

satisfies the conditions of Theorem 1, with n

dn(Xk{r/») is defined.

Theorem 9. There exist complexes

k+1, thus

whose suspension spectrum is X
k
{Cl

1
) . Yk is not a suspension if

p-l i k and Yk is never a double suspension.

Proof. It remains to prove the second statement. Since p k * 0

in the by construction, if Yk = Z¥, the

thP power map must be nonzero in Y. Thus the two remarks immediately

follow.

The first two desuspensions are
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We will now use this desuspension to make some remarks about

2n-1
w E 112 3 (S ), the first element in the kernel of the double sus-n np-

pension.

By construction, Yn
g : L2p- 1y ' S2n+1 is not
n n

S2n+1 U CL2p- 1y ' where
gn n

a double suspension. Consider the double

adjoint

**
gn , r/2 s2n+1 = s2n-1 U e 2np-2 U

w
n

factors through**2np- 2, gn S2n-1 U e 2np- 2
w
n

and since it is not a double suspension, it does not factor through

Since dim(L 2p-3y ' )
n

2n-1
S • Consequently it induces a nonzero homomorphism in

H (;Zp)' In order to proceed we make two direct observations:2np-2

(1) L2d
n_ 1

when both are defined.

(2) If X is torsion free, d (X)k where the super-
n

script denotes the skeleton.

Consequently

and ,,2 y • y'
L> n C n+1'

Now

over

2np+1
e • Suppose extends

We claim that g may be chosen so that L
2g = gn+1. Both of these

2n+3
11 (S) is onto, so g may be2(n+1)p

are extensions of L2g
n,

2 2n+1
but E: 1l 2 (n +1 ) p _2 (S )

thus the difference lies in
2n+3

112 (n+1)p(S ),
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However since 2
Yn +1*L Y,

this is impossible. Thus such an extension does not exist. It follows

that the composite

S2(n+1)p-3

is nonzero. Since the double suspension of this composite is zero, we

set this equal to wn+1 ,

We now examine the fiber sequences of Toda [ 3J.

2n i n 2s 2n+ 1 H n2s2np+1
nS(p_1) -- --
s2n-1 .a., 2n k nS 2np-· 1

nS(p_1) --
H 0 ... n 2S 2n+ 1 ... n2s2np+1 is null homotopic for dimensional

**reasons. Thus gn = i 0 hn• If k 0 hn
**0, gn would factor through

which is impossible;

composition of the projection on

could only be a multiple of the

followed by the inclusion

into S2np-1. This multiple cannot be divisible by p, for otherwise

we could alter hn to make it O. Thus we have

Proposition 10. H' (w n +1 ) = u(n+1)cx 1, u$ Oi[mod p)

S2(n+1)p-5

This was conjectured in [1]. In case pln+1, consider the diagram



l:f
S2np+1 n,,, ,,,,,,,,,,,,,

\I

u
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S2n-2p+5

and the factor i-

If factors
n

Using techniques of Mahowald [2] it can be shown that

through iff pk[n at least for k < p-2

zation projects onto a unit multiple of a k, the generator of 1m J.

Consequently we have

Theorem 11. If k < p-2, w ksp

[ 1] Gray, B.
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H-spaces and self-maps

J. Harper and A. Zabrodsky

INTRODUCTION. An outstanding feature of the classical Lie groups is their

appearance as iterated bundles over spheres. The question arises whether

(torsion free) finite H-spaces display similar structure. We give examples

showing that such structure is not the case in general. Both the construc-

tion and analysis of the examples depend on some recent results concerning

power like self-maps of H-spaces. Here is our main example.

Theorem 1. For each prime p 5, there is a mod pH-space W of

rank p +1 such that

* i PH (W,Z!p) =A(x2p+l, ... ,P x2p+l' .. , ,P x2p+l
2

O",i sp , Furthermore, there is no map f :W->- X2p +1 with deg f:::

1 mod p.

Section 1. The construction of W

In order to construct W, we make use of a result from [HZ].

*Suppose X is an H-space with H (X) primitively generated in dimensions

< n (suppressed coefficients are Z/pZ and p is an odd prime). With

a given choice of generators, we define GtcH (X),*<n, t=1,2, ... , to be

the subspace spanned by t-fold products of primitive generators. Let ¢

be the A-th power map of X where A is a primitive (p-l )-st root of
*uni ty. Let EA be the eigenspace of A-eigenvectors of (¢A¢) on

Hn(XAX) . We can wri te

EAc E9 EB Ga e Gbs:::l (p-l ) a+b=s

Next, we write s:::l(p-l) in the form s=9,(p-l)+l and introduce

u = [ + 1 ] (p-l) where [] is the greatest integer function. From [HZ]

we have

Theorem 2. If EAcE9 E9 Gr 0 Gs_r' then X hasamultiplica-
s-u<r<u

*tion such that H (X) is primitively generated in dimension <n+l. We now
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apply Theorem 2 to construct the H-space W. Let Xo be an H-space of rank

p +2 such that

* 1 p-2 P 1 )H (Xo) = A(x3, P x3' Y4p-l' ... , P Y4p-l' P P x3 .

Such a space arises from Nishida's decomposition of SU(p2+1). Let Xl

be the 3-connective cover of XO' By standard methods one obtains

* _ 1 p
H (Xl )-A(x2p+l ,P x2p+l' ... ,P x2p+l

3 * 2Note that for pd, 2p >dim H (W)=(p+l)(p +p+l). We can take W to be

the homology approximation through this dimension (even this skeleton would

suffice). Then we have a rational equivalence W-+X l and the pair is

2p3_1 connected. Now we kill un-wanted cohomology, beginning with Xl' to

produce a pair W-+X such that the inclusion of W is a rational equiva-

lence and the connectivity of the pair is greater than twice the dimension

of W. The inductive step is displayed

with > 2 3nk - p and for * < nk. To apply Theorem 2, note

that G = 0 for r>p+l and G =0 in dimensions > dimr p-l
( 2 P 3 2 Hence Gl e G =0 in dimensionsP ;2 P+12u ... u P x2p+1 P +2p - 4p +1 . p-l
> P +4p - 4p + 2 which is smaller than 2p3 for p 3. For p 5,

2p - 2 < P+1, so for p 5 the hypotheses of Theorem 2 are satisfied.

Hence, Xk has a multiplication for which fk is an H-map.

Remark. The case p =3 involves making explicit calculation through a

range of Xk in order to analyze the obstructions corresponding to s=2p-l.

2
Section 2. Here we show that there is no map f: W-+S 2p +1

deg f =: 1 mod p, or in other words, every map from W to must

induce 0 on mod p cohomology. The results of this section are based on

the study of a certain p-th order unstable cohomology operation. The details

are deferred to a longer paper. Here we state a useful relation which
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emerges from that study.

Definition. A Q\-space X is a space with a self-map ¢ such that ¢*

*induces multiplication by the mod p integer \ on QH (X). In practice,

we choose \ to be a primitive (p-l )-st root of unity.

*Theorem 3. Let X be a Q\-space with QH (X) concentrated in

dimensions congruent to d mod (2p-2) where d is odd and d $ -1 mod p.

If x E H2n+l (X) is A-characteristic and pnx:o O. Then

1 p-l 1x u P x u .•.uP x s P y

for some y (we allow the possibil ity y =0).

We apply Theorem 3 to obtain the rest of Theorem 1. If a map
2
+1 exists with deg f:=l mod p , then by the lifting theorem of

[Z], there is a map f inducing the same map in mod p cohomology as f and
k

for sufficiently large k, f commutes up to homotopy with the \p -th

power maps of the source and target. Let F=fiber f. Then F is a

Q\-space with

* 1H (F) = J\(x2p+l' P x2p+l'
p-l )

P x2p+1 .

But Theorem 3 rules out such a cohomology algebra for Q\-spaces.

Research supported by grants from the National Science Foundation (USA) and

The Binational Science Foundation (Israel-USA).
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Unstable algebras over the Steenrod algebra

S.P. Lam

§l. Introduction

Let X be a l-connected space whose loop space is

equivalent to a finite complex; a notable example is X = BG

where G is a compact and connected Lie group. Then what is the

algebraic structure of H* (X, F ) ?
p

Throughout p is a prime

and F is the field with p elements.
p

In [Ad-W], Adams and Wilkerson have given results that are

"best possible" when the prime p is sufficiently large. Rector

[R) has suggested a plausible extension of this program; when the

prime p is small, one should seek to generalize the following

result due to Quillen.

Theorem 1.1 [Q, 7.1) Let QG be the category of elementary

abelian p-subgroups of a compact Lie group G, with morphisms

generated by conjugations and inclusions. Then the following

induced homomorphism is a purely inseparable isogeny.

H* (BG, F ) lim H* (BV, F )
P - Petc>-

II

Here a homomorphism f: A B

purely inseparable isogeny if (i)

of algebras over F is a
p

Ker f consists of nilpotent

elements, and (ii) for each z E B, there is some m 0 s.t.
m

zp E 1m f.

Rector's idea is that H*(X, F) might also be determined
p

up to inseparable isogeny by a finite category {; with the

following properties:



375

(i) obG consists of elementary abelian p-groups;

(ii) MorG(V', V) consists of group homomorphisms V'_V for

V, V' E ob

For simplicity, we shall write EA for elementary abelian;

thus an EA p-group means an elementary abelian p-group.

There is a construction, due to Rector, which leads from an

unstable algebra over the Steenrod algebra H* to an associated

canonical category with properties (i) & (ii) such that

F
p
» is equivalent to Gt

G
for a compact Lie group G;

moreover there, is an induced homomorphism

H* ---'> lim '(; (H*) .

Here lim r; (H*)
to-

means H*(BV, F )/Nil*; this is an algebra
p

consisting of compatible families

in

z(V)takes

{z(V) E: H*(BV, F )/Nil*:
p

the sense that if If: V' _ V is a morphismin

lM; H*(BV F F )/Nil*7-- 'p , p

z(V'); Nil* means nilradical.

V E ob C; (H*)}

o (H*), then

to

Rector proves the following.

Theorem 1.2 [R) Suppose H* is a finitely generated unstable

algebra over the Steenrod algebra. Then

(i) the category b(H*) is finite and every morphism in

is a group monomorphism;

(ii) the induced homomorphism is a purely

inseparable isogeny.

In this paper, we will show that Theorem 1.2 follows from a

seemingly unrelated result, Theorem 1.3, which is a new result

and is interesting as a result in pure algebra. We shall indicate

how one can obtain 1.3 by calculations with Steenrod operations.



376

All proofs are to be found in later sections.

Our approach to 1.2 is different from that of Rector, and it

has the advantage that we can generalize 1.2(ii). We shall

comment on this in

For brevity, we shall write for H*(BV, F VNil* for
p

an EA p-group V. S(V#) is the symmetric algebra of V*, the

dual of V; we also identify

1H (BV, F2) if p = 2).

(or

Theorem 1.3 Let V be an EA p-group. Let H* be a subalgebra

of which is closed under the Steenrod algebra action and

closed under purely inseparable extension. Suppose

is an algebraic extension with Galois group Wand H* is

finitely generated. Then

c C H* •
o

Here c (V) is the product of all non-zero elements in V*.
o

We now comment on 1.3. Adams and Wilkerson [Ad-W) have

proved that in the situation of 1.3, the extension

is normal and separable; hence every x E S(V*)W can be written

as u/v with u, v H*. H h H* C S(V*)Wowever, we ave t. in

general. A question is: what denominators are needed to express

all x E. S(VII)W as such quotients? Theorem 1.3 says only

one is needed, namely, co(V),

There are generalizations of Theorems 1.2 and 1.3 in which

the finitely generated assumption is replaced by some weaker

conditions. In Y6, we shall comment on the finitely generated

assumption, the generalizations and the methods we used here.

The content of this paper is based on the talk given by the

author at the Fourth Aarhus Topology Conference in August, 1982.
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We shall follow the convention of (Ad-W1 so that in all

graded objects, only homogeneous elements are considered unless

the contrary is mentioned. This means in particular that an ideal

of a graded algebra is a graded ideal. We say that an ideal of

an algebra over the Steenrod algebra is invariant if this ideal

is closed under the action of the Steenrod algebra on the given

algebra.

It is a great pleasure to thank my thesis supervisor,

Prof. Frank Adams for his constant encouragement, generous help

and inspiring guidance which made my years in Cambridge a

valuable experience.

We thank D. Rector for much correspondence and for letting us

know about his construction of the associated canonical category

and related ideas. We also thank the referee for comments.

Notations and abbreviations:

(1) EA is the abbreviated form for elementary abelian.

means H*(BV, Fp)/Nil* for an EA p-group V.

(3) A NF algebra means an algebra that is free of non-zero

nilpotent element.

(4) When V is an EA p-group, co(V) stands for the product of

all the non-zero elements of V*.

Preliminaries

A* is generated by operations
p

= 2). We consider a subalgebra

The Steenrod algebra

simply B*) of ; is

1algebra generated by P , ••• Throughout, the term Steenrod

1p, p ,

B* (or
p

is the sub-B* (p > 2)
p

andA*
2

1Sq , ••• if p(or

algebra stands for B*.
P
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We shall consider only graded commutative algebras over F
p'

An algebra is called an algebra over B* (or a B*-algebra) if it

is a graded module over B*, in which the Steenrod operations on

products satisfy the Cartan formula.

Let H* be a B*-algebra. An element x E Hi is said

to be unstable if

pkx {xp if 2k = i
=

0 if 2k > i

or
2

k
= {

x if k i
Sq x

0 if k > i

(p > 2)

(p = 2) •

We say that a B*-algebra is unstable if every element of it

is unstable.

In [Ad-WJ, the authors consider commutative algebras over F
p'

so that in the case when p > 2, the operation (3 acts on the

algebras trivially. We see that all the results in (Ad-W] remain

valid if we replace A* by B* and H*(BT, F ) by S(V*) wherep p p

V is the EA p-subgroup of the torus T consisting of all elements

of order p (Note that Nil* is an invariant ideal.) In future,

whenever we mention a result in [Ad-wl, we always mean the

modified version of that result.

We omit the proof of the following lemma; details can be

found in [L}

Lemma 2.1 Suppose H* lS a B*-algebra. Let Nil* be the

subset of H* consisting of all homogeneous nilpotent elements

of H*. Then Nil* is a 2-sided ideal of H* which is invariant

under the B*-action.

Moreover, the ring $Hn/Niln

element.

has no non-zero nilpotent

II
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Quillen's result (1.1) suggests that we are only interested

in the quotient H*(X, F )/Nil*
p

which is an algebra over B* by

2.1. For convenience, an algebra which is free of non-zero

nilpotent element is called a NF algebra. In particular, a

NF algebra H* is evenly graded if p > 2; thus H* is

commutative.

Let H* be an algebra. Suppose P is a minimal ideal of

EBHn• Let us write Ph = $p (l Hn. It is easy to show that Ph

is a prime ideal of eHn. Details can be found in [L] • Since P

is a minimal prime, Ph = P. It follows that P is homogeneous.

Therefore a minimal prime of @Hn cor-r-e s porids uniquely to a

(graded) prime of H* which is necessarily minimal.

One can easily see that if is the collection of all the

minimal (graded) primes of H*, then () P': = O.

Next, suppose H* is an unstable NF algebra over B*. Let

p* be a minimal prime of H*. We claim p* is invariant.

Let I(P*)* be the set consisting of all x E H* s.t.

pkx E P*, for all k O. It is easily verified that I(P*)* is

an ideal of H* contained in P*. Moreover, using the Cartan

formula for pk and the unstable condition on H*, we can

readily show that I(P*)* is indeed prime. Then the minimality

of p* forces I(P*)* = P*; consequently P* is invariant.

Details can be found in [L]. The following lemma follows

easily from the above discussion.

Lemma 2.2 Let Q* be an invariant ideal of H*, an unstable

NF algebra over B*. Suppose is the collection of all

invariant primes of H* that contain Q*. Then the kernel of

the homomorphism
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is the nilradical of H*/Q*. Here the homomorphism is the

product of the various projections.

In particular, if Q* = 0, then the kernel is 0. (H* has

no non-zero nilpotent element.)

§ 3. The Category 0 (H*)

II

We shall construct b(H*) when H* is finitely generated.

This construction is due to D. Rector [R).

By working with the quotient H*/Nil* if necessary, we may

assume H* is a NF algebra.

Let p* be an invariant prime of H*. Then H*/P* is an

integral domain with an unstable B*-action. Moreover, the trans-

cendence degree of H*/P* over F is finite. Then by [Ad-W, 1.1
P

and 1.7), we can find an algebraic extension

which is compatible with the B*-action, for some suitable

EA p-group Vp*. Then ob is taken to be the collection

of these Vp*' one for each invariant prime p* of H*.

By construction, there is an one-one correspondence between

and the collection of invariant primes of H*. If V

corresponds to P*, we shall write Vp*

p* whenever necessary.

for V and p*
V for

Suppose V, V' E ob 0(H*). Suppose C • Then

V) is taken to be the finite set consisting of all

group homomorphisms Cf: V' -+ V s . t. the following diagram commutes.
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H*/P* SeV")

.> 1 V 1<pi'
------'H*/P* , ) sev,lf)v I

If ct ,then Mort;eH*)eV', V) 1/). By [Ad-W, l.lOJ.

Mort:;eH*)eV', V) is non-empty if C because H*/p* is

finitely generated.

Since sev*) is a polynomial algebra, the algebra homomor-

phism in 3.1 is uniquely determined by its restriction

,*1 V*: V" V,{I. Suppose Ime<f'* IV*) VIll. Since If* is an

algebra homomorphism, is a polynomial algebra generated by

Ime\f*IV·). Hence is not integral over Imf*; i.e. it is

not integral over This gives a contradiction because

sev '* ) is integral over H* as H* is a finitely generated

algebra [Ad-W, 1.8]. It follows that is epi; thus f is

mono. This proves half of 1.2ei). Next we prove the other half

of l.2ei).

It remains to show that is finite, it is

equivalent to show that H* has finitely many invariant primes.

H* has finitely many minimal invariant primes. It suffices

to show that for each minimal einvariant) prime I* of H*, there

are only finitely many invariant primes of H* containing I*.

To do so, it is enough to assume I* = 0, i.e. H* is an integral

domain. Suppose p* is an invariant prime of H*. Then we can

find the following diagram in which the horizontal arrows are

algebraic extensions.

H* C-c • sev*)

1 i
*H*/P*'-c-- sevp*)

As in the construction of there is at least one
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'f: Vp*-- V s •t , the above diagram commutes. It follows that

p* = CKer n H*. It is clear that Ker is an invariant

prime of Since SCV*) has only finitely many invariant

primes [Se, Prop. 1], so has H*. This completes the proof of

1.2CiL

We have the following commutative diagram.

H* lim 'GCH*)

I -
1 1

if
XH*/P:' -----....) X SCVp* )

CIl

where P: run over all invariant primes of H*. The left hand

vertical arrow is mono by 2.2. The lower horizontal arrow is also

mono. Hence the upper horizontal arrow is mono. Then half of

1.2Cii) follows easily.

Let I* be an invariant ideal of H*. Then it is easily

seen that we can regard gCH*/I*) as a full subcategory of

We have also an induced homomorphism

lim CH*) lim (; CH* /I*)
- +-

which takes an element tzCV) E SCV*): V ob GCH*)}

to {zCV) E V ob GCH*/I*)} E lim 0CH*/I*).
+-

E lim-
Suppose G is a compact Lie group. Then Rector (R] has

shown that Fp)/Nil*) is equivalent to aGo A

different proof of this equivalence for finite G has been

obtained by the author in [L). We shall not give the details here.

§4. A Chinese Remainder Theorem

Proposition 4.1 Let H* be an algebra, PI, ... , be ideals of
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H*. Consider the homomorphisms

<f: H*--_) H*/Pt X ••• )(.

and x H*/P! X H*/P>'i + P>'i
i< j 1 ]

where If(a) = (a + Pt· ... • a + and

real + Pt· ... • at + = «a. - a. ) + P>'i + P>'i) . <. • .
1 ] 1 ] 1 ]

n
Then for any E: Ker 'f • there is s.t. zp EO 1m If

This result is proved by induction over t. We leave the

details to our readers.

Corollary 4.2 Let H* be an unstable NF algebra over B* •
Pt· ... • p* be invariant primes of H*. Suppose xl' .xt E: H*t

are s.t. x. - x. - 0 mod Q* for each invariant prime Q*
1 ]

containing P>'i + P>'i, 1 i c j s t.
1 ]

and n 0 s v t ,
n

x - xl? mod P!..i,

Then we can find x E H*

i = 1, 2 ••••• t.

Proof Consider the following commutative diagram.

Ker ol.

where Cf. 'f are as in 4.1,

ij: H*/P!+Pj X H*/Q*
Q* :> P>'i +N'

]. ]

Q* invariant
prime

is the product of the various projections. and OC sends
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(Xl + Pt, .•. ,Xt + to the element t(xi-x j ) + Q*:

over the invariant primes of H* containing
l J

Q* run

1<. · • c }=l<J=t •

Note that fi is an algebra homomorphism and t respects pth

powers. Since the B*-action on H* is unstable, Ker a ..rlJ
consists of nilpotent elements (this is an easy consequence of

2.2); hence Ker consists of nilpotent elements.

The assumption on the given X. 's
l

is such that

Commutativity of the above

II

s.t.M ? 0thus we can find

Ker rJ... •

diagram implies If E
M M
) = = O. By 4.1, we can find N 0 s.t.

M N
)p (;. t m c.p. The corollary then follows.

z =

§5. Proofs of Main Results

Lelllllla 5.1 Let V be an EA p-group. Let X E. S{VlI) be a non-zero

element s.t. x - 0 mod p* for each invariant prime p* of S(V...) •

Then there is some u S (V*) s.t.

c (V)u = xP
0

It is clear that each non-zero element of is prime,

hence divides x by hypothesis. It follows easily that the

product of all the non-zero elements of V* divides xp- l•

The result then follows. II

Proof of 1.2 assuming 1.3 Let H* be a finitely generated

unstable algebra over B*. By working with H*/Nil* if

necessary, we may assume H* is a NF algebra. In we have

proved 1.2(i) and and half of 1.2(ii); thus the induced

homomorphism H* lim t;( H*) is mono.
+-

Let = {z(V) S{V'lI): V E ob(?(H*)} e lim &(H*). Then the
+--
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subfamily = tz(V) E S(V*): V " ob-C;(H*/P*)} E li-m

where p* is any invariant prime of H*. (See the remark at the
M

end of We claim E H*/P* for some M? 0.

Recall from that we have algebraic extensions

H*/P* S(V;*), where Vp* E ob We shall prove the

claim by induction over rank Vp*

If rank Vp* = 0, the claim is trivially true. Suppose

rank Vp* > 0, and assume the claim is true for each invariant

prime P'* of H* with rank VP'i' < rank Vp*

m
EO: H*/P'*

Then we have

for each such P'*. Since there are only finitely many invariant

primes of H*, we can find a single m which works for all

m
Choose xp,* H*/P* s.t. xp,* = mod P'*/P*. These

(finitely many) xp,* satisfy the hypotheses of 4.2, thus we can

find x h H*/P* and n? ° s.t.

n
px _ X
P
,* _ mod P'*/P* .

Let 1* be invariant prime of 11 Thena non-zero S(Vp*).

1* " (H*/P*) is a non-zero invariant prime of H*/P*; it is of

the form pt*/p* for some invariant prime P'* of H*

containing P*. It is clear that

-= mod 1* .

It follows easily that

m+n
x =zP mod 1* •-p*

Then by 5.1, there is some s.t.
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x , and c are invariant undero

the action of the Galois group of the extension

so is u. Thus it follows from 1.3 that there is some k 0 s , t.

k
(c u)p H*/P* •

o

m+n+k+l
Now it is clear that E H*/P*. This completes the

induction.

M
Now, we have H*/P* for each invariant prime p* of

H*. Again, since H* has only finitely many invariant primes, we

can find one single M which works for all Choose
M

Yp* H* s v t , yp*: mod P*. These (finitely many) yp*

satisfy the hypotheses of 4.2, thus we can find y H* and

N 0 s.t.

for each invariant prime p*

andIt follows that

N
p

y - yp*

y

M+N
P

-

M+N
zp

mod p* .

:If )have the same image in S(Vp*
M+N

of H*. Hence y = ,and

1. 2(ii) follows.

Sketch proof of 1.3 First we recall that when V is an EA

p-group of rank

F [c , c l ' ••• ,p 0

p = 2) [D).

n, S(V*)GL(V) is a polynomial algebra

n i n icn_ l] with deg c i = 2 (p -p ) (or 2-2 if

Let be the given algebraic extension with

Galois group W. Consider the set

where I( ) means augmentation ideal.

Lemma 5.2

(i) p* is a non-zero ideal of it is contained in H*.

(ii> If x EO S(V') and xP E P*, then x t:: P*.



(iii) p*

387

is closed under the action of B* on S(V ).

(iv) p* contains a non-zero homogeneous polynomial

Proof For convenience, we write K* for

(i) That p* is an ideal contained in H* follows easily from

the definition. We omit the proof here.

Since K* is a finitely generated algebra, it follows from

[At-M, 5.2) that K* is a finitely generated module over H*.

Suppose zl' ..., zN generate K* as a module over H*.

Then as pointed out in (Ad-W, p.140], any element in K* can be

expressed as a quotient u/v of two elements in H*. So we can

find hi' h! E H* with h! "# 0, and deg h! > 0 s.t. z . = hi/hi'l l l l

i = 1, 2, ..., N The non-zero element x = hI ... hI has1 N

positive degree. Any z EO K* can be expressed as klz l + •.• + kNzN

for some k. EO H*. It is clear that xz f: H*. That is x f: p*.
l

(ii) We leave this as an exercise for our readers.

(iii) Let x E P*. We shall show by induction over k that

pkx E P*. We have pOx = X; this gives the basis for induction.

Assume pix E p* for i <. k. Take y E K*. The Cartan

formula gives

kP (xy ) = k
(P x)y + L (pix) (Pjy)

i+j=k
i<'k

kSince xy b H*, P (xy) E H*; by induction assumption,

(pix)(pjy) E H* for i < k , Hence (pkx)YE::H*, proving pk x E P*.

(iv) Let x be a non-zero element in P*. Clearly deg x > 0.

Consider the element
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n gx
g a GL(V)

g f- 1

We claim n f K*. The element is invariant under GL(V) ,

so it is invariant under W.

For w W, x71 = w(x1() = (wx ) (w1f) = x(w1f) • This implies

'11 = w TI' as S (V*) is an integral domain. Since x E: P*, 71 E. K*

and p* is an ideal of K*, x" c P*. Evidently xr, is a

non-zero polynomial in co' c
1
' •.. , c n_ l • II

We continue to sketch the proof of 1.3. Let Qr be the

Steenrod operation defined in [Ad-W, p.10Z), r 1. (Replace

by Sqi if p = 2.) These are derivations. Each of the n
p

elements of V' is a root of the equation [Q, 11.6)

n-l
+ C xp

n-l

By applying to this equation , we easily obtain the

following formula which is well-known to experts in this area:

{' for i f- r, r < n

(5.3) Qrc. = -c for i = r, r < n

c :. for r = n .o

(The following calculation is suggested by Frank Adams.) Let

f(co' ••• , c n_ l) be a non-zero homogeneous polynomial in P*. By

operating on f with suitably chosen operations Qr, we obtain

a non-zero homogeneous polynomial

g(co ' ••• ,

which also lies in p* and whose degree in each of , ••• , c
n_ l

this no greater than that of f, and which is a p power. Taking

the pth root of g, we get a non-zero homogeneous polynomial
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which also lies in p* and whose degree in each of c l' ••. ,

c n_ l is actually less than that of f (unless the corresponding

degree of f is zero). By repeating this process, we obtain a

non-zero homogeneous polynomial in p* which is in fact
o

with 0 A F. We now repeat the same process by taking
p

th np root if p divides m and applying the operation Q on

Acm otherwise so that we decrease m and eventually provingo

Co E P*. The above description is only a sketch, the reader may

find working out for himself the case n = p = 2 instructive.

We actually have to use some of the properties of p* listed in

5.2 and formula 5.3 in the calculations.

Since c E P*, c C H*
o 0

by definition of P*. II

Comments

Let X be a space with properties as given in We are

still unable to verify the finitely generated assumption for

H*(X, F). This is only known to be true for X = BG [Vel. It
p

is therefore natural to seek for generalizations of 1.2 and 1.3.

It turns out that in 1.2(ii), it is necessary and sufficient to

asSume the following conditions:

(A) H*/Nil* has finite transcendence degree over

(B) H* has finitely many minimal primes.

F .
p'

These follow when H* is a finitely generated algebra;

C. W. Wilkerson has an argument which shows that H*(X, F )
P

satisfies (A). In the generalized version of 1.2, the category

is more complicated, and the morphisms need not be

injective (group homomorphisms).
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The generalized version of 1.2(ii) follows from generalized

versions of 1.3 and [Ad-W, 1.10) in which we drop the finitely

generated assumption. They have been obtained by J. F. Adams

and the author. The spirit of the proof of the generalized

version of 1.3 is the same as that given in §S for the special

case; however we need to know more about the action of Steenrod

operations on c i' and the calculations are much longer and

harder. The full account is too long to be included here.

We give sketch proofs for the following two consequences of

the generalized version of 1.3; 6.1 is suggested by J.F. Adams.

Proposition 6.1 Let V be an EA p-group.

be an extension s. t.

(i) H* is closed under the B*-action;

( ii) H* c S(V:l')GL(V);

(iii) H* is closed under taking pthroots in S(V*).

Then there exists an EA p-subgroup V I of V s , t , the following

diagram is a pull-back.

Sketch proof Using 1.3(generalized version), we deduce easily

that in this situation, either

an algebraic extension.

H* = F
P

or is

Then 6.1 follows from 1.3(generalized version) and an

inductive argument over rank V. "
Proposition 6.2 (Going-up Theorem) Let V be an EA p-group.

Let be an extension which satisfies 6.1(i). Then

for any invariant prime p* of H*, there is an irvar:iant pr:ime
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Q* of sv t , H* r »,

This result generalizes [Ad-W, 1.10). This result also

f'o Ll,o INS from 1. 3(g eneral ized ver sian) a nd an induct ive argument

over rank V Slightly more precisely, we may assume the given

extension is algebraic and we use 1. 3 (generalized version) to

show that any non-zero invariant prime p* of H* contains

some H* n K* where

for some EA p-subgroup V' C V with rank V'

can apply induction assumption to

H*/H* " K* c..c__....» S (V ,¥) •

n-l. Then we

The result then follows easily. Details will appear elsewhere.
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A remark on the Kervaire invariant problem

Wen-Hsiung Lin*

Let A denote the mod 2 Steenrod algebra. Let 1jJ •• be
1,1

the secondary mod 2 cohomology operation based on the Adem

relation
i-I

L
j=O °

dimension n ([3J).

if 1jJ •• is non-zero
1, r- where H*( ) is the

Call a homotopy class

i+l
in H*(SO U

8
. e 2 -1)
1

Let Sn denote the sphere spectrum in stable

2 i +I_2
S

A ([2J).in

mod 2 cohomology functor. 8
i
exists if and only if in the

mod 2 Adams spectral sequence {Es,t} for the stable homotopy
r

i+l ? i+l
groups of spheres ([ IJ) the class E 2 (H*( SO) ,zz2 )=E2'2

It is classical ([4J) that

Mahowald and

8. exists for ° < i < 3
1

TIo(SO) = while hi,

2
a of the Hopf classes n,V and a respectively.

survives in the spectral sequence.

2hO detects 41 where 1 generates

2 2 2 2h2 and h 3 detect the squares n ,v and

Tangora ([8J) have shown that 84 also exists. The Kervaire

invariant problem can be stated as follows: Does 8. exist
1

for i > 5? For the geometric roots of the problem and for its

relation to manifold theory we refer to Browder [5].

From the homotopy point of view it is natural to study a

stronger version of the problem : Does there exist a e. with
1

28
i

= O? This stronger version of the problem was suggested

*Supported by Academia Sinica, Republic of China.
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by Barratt and Mahowald in [7J where they proposed an inductive

approach toward the problem. Some of their results announced

there which were obtained in an effort to settle the problem

are now proved in [6J.

In this note we introduce another approach*. In this

°approach we construct for each i > 5 a class in TI "+1 (S)
21 -2

which should be a e. of order 2 if such a class exists. It is
1

plausible that the constructed classes are the correct classes,

but this is still under investigation.

We fix an i > 5. Consider the following minimal Adams

resolution of SO

l:-lK
j3

) X
32

j2
!P3

l:-l K > X2
f 2 > K21

(1)
lp2

j1 f 1l:-lK > Xl > K1°
Ip1

f oSO Xo ) KO K

up to the 3r d stage in a range of dimensions which is described

as follows"

Let K denote the Eilenberg-MacLane spectrum KOZ2 ) and let

f O K be the non-trivial map. Write

3 2 i +1_1
K x l:K x l: K x ... x l: K and define

1 2 2 i 2 i+1
(Sq ,Sq ,'.' ,Sq ,Sq ). The set of the classes

" f d t th'T7 b {h.!J· < 1" + 1} f1n 1 correspon s 0 e ase J _ 0

ExtA1 , *+1 (H*CSO) for * < 2 i+1_1" L t B be a m1"n1"mal set fe 2 0

*The contents of this article is different from what was talked
at the Aarhus conference.
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generators of H*(X
2)

over the mod 2 Steenrod algebra A for

* < 2 i+2 _ 2. Then 8 2 is in one-to-one correspondence with a

of for * < 2 i+1 - 2. J.F. Adams

([2J) has shown that in this range of dimensions a for

the Ext groups is 0 2- < m < i + 1, 'f m - 1} . Let

£ 82 be the class corresponding to Consider the

subset B
2

= < i, m < i} of 8
2
, f 2 in (1) is defined

- -

to be the map which kills all the classes in B2 and

2 2 i+2 i-2-2 2i+1_2K
2

= K x [ K x .,. x [ K x E K is the corresponding
. 2 i +1_2

product of the spectra [J K where the last factor [ K

corresponds to W.. , Let 8
3

be a minimal set of generator of
1,1

H*(X
3)

over A for * < 2 i+1 - 2. Then 8 3 is one-to-one corres-

for * < 2i+1 - 2.

in [2J and by Wang in [9J show that

2
and is generated by hihO. Let

2
Wi,i,O £ 8 3 be the class corresponding to hihO; Wi,i,O is the

pondent with a of

The calculations by Adams

i+1
2 +1(H*(SO);o,2)::

"last" element in 83 ,

be

i+1
the inclusion and let j2 = j2 0 i

2
: [2 -2K X2· It is

2 i+1_2 j2 f 2clear that the composite [ K X2 K2 is trivial

2i+1_2and that there is a unique lifting 02 [ K of j2

as indicated in the following portion of diagram (1)
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2 i +1_2 2 i +1_2
Let hi +1 be the generator of H (L K) = Adams

theorem on the Hopf invariant ([2J) implies , 0) = h'+l
1,1, 1

2 i +1_2
since i > 5. Let T

3
: X

3
L K be the map which classi-

We may assume T
3

0 02 is the identity

°2
---7 X

3
to the factor X3 is

can choose it

a self-

So there is a decom-

so that the projection

fies .. 0'
1,1,

homotopy equivalence.

2 i +1_2
map. Thus L K is a retract of X3 .

2i+1_2posit ion X3 = X3V L K, and we

2 i +1_2
of L K

trivial and so that the other projection is the identity map.

i+1
Th 't' of th I ,I, H2 -2(X) te proJec 10n e c ass E 3 0

2 i +1_2 2 i +1_2
H (L K) = is the generator which we denote by

ijj
i,i,O'

Let

2 i +1_3
L K

where the cells not indicated

this is easily verified.

Let

Then

We may assume that

=be the generator
1

Sq hi;

be the inclusion and let j3 j3 0 i 3
2 i +1_3 2 i +1_3

of H (L K)

, 0) =1,1,

2 i +1_3
L K has a cell structure of the form

2 i +1_3
L K

begin with dimension 2 i +1 _1 . Let g

and let

2 i+1 _3 2 i+1_2 2 i+1_2
(resp. S U2 l e ----7 L K)

2 i +1_2
be its projection to the factor X3(resp. L K). Then we
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still have , 0)
1,1,

Let 1
2 i+1_2 2 i+1_2

S L K be the non-trivial map and

2 i+1_2 1 2 i+1_2 j2
let {h i+1} denote the composite S --;> L K x

2
.

The class {hi+1} has order 2. Our problem is to find a class

8 i of order 2 in 11 '+1 (SO) which is detected by h2
1
, (if it exists).

2 1 -2

This is equivalent to looking for a class 8, E 11 '+1 (X2 )
1 21_2

detected by such that 28
i

Lemma A: 8 i exists if and only if

is trivial.

Proof: Consider the diagram

.•• x

where p is the pinching map so that the lower sequence is a
2 i +1_3

cofibration and g is the inclusion map to the factor L K.

Then j3g = g = g1 + g2' Since P3 j3 = ° it follows that

P3g2 = -P3g1'

If g1 = ° then P3g2 = 0, But P3g 2 is just {h i+1 } P (this

follows from our construction of the decomposition for X3 ) ;
_ 21+1_2so {h i+1 }P = 0. Thus there is a 8
i

: S X2 to make

the right hand triangle commutative; i.e., 28 j = {h i +1 } ,
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Conversely, suppose such a 8i exists. Then P3 g 2 = = o.

Q2i+1- 3
U

2 i+1_2 2 i+1_3
Thus g2 can be lifted to a map g2: " 21 e - l: K

as indicated in the diagram. Since

is non-trivial on the

last factor it follows that g2 = g. Now 9'1 = 0 since

Q.E.D.

We now briefly describe the basic idea in our approach. We

"skip" the map gl(i.e. let gl = 0) to construct a spectrum X2 so

as to get a 8. £ TI 1.+1 (X2 ) as above and then try to compare
1 2 -2

X
2
with X

2.

To construct X2
2 i +1_2

K2 except l: K;

let Z denote the product of the factors in

i+1
so l:-l K = l;-l Z x 1;2 -3K. Let

elK. Define

2 i +1_3 2 i +1_2
j 318 U2 1e

. I -1 -1J 3 I; Z: I; Z x3 . Consider the subspectrum

-1 2 i +1_3 2 i +1_2
= I; Z x (8 U21e ) of

I;-ly X
3

by j3
1
1; - l Z = j3 and

X2 is def ined to be the cof i ber of j 3 so that there is a cof iber

sequence

(2)

The image of the generator

still denoted by {h
i
+1 } . The proof of Lemma A shows that there

2 i +1_2
is a class 8i 8 - X2 such that the composite

Z x
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28 i = {h i +1] where the last map p is the projection.

We can map the cofiber sequence (2) to the cofiber sequence

... x

to get a commutative diagram

(3 )

• .. x

defined to be the classLet 8. E:
1

o
1T • +1 (8) be
21 -2

8. P21 - Then 28 i o

Conjecture B. 8 i f 0 and is detected by

To see the plausibility of the truth of this conjecture we

note that f 1P2 = (LP)f2 = 0: this is clear. 80 P2 can be lifted

to a map f : X2 X2 as indicated in diagram (3). We have

H*(X2) =H*(X2) for * < 2 i +1_2. This isomorphism follows by

dimensional reason. If f* induces the isomorphism (in this range

of dimensions) then B is true. Extensive calculations reveal

that f* could be an isomorphism. Conclusive work (if possible),

however, remains to be done.
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Massey-Peterson Towers and Maps from Classifying Spaces

Haynes Miller*

The "Sullivan conj ecture" [10] asserts that, given a finite-dimensional

connected CW complex X and a finite group G, the space XBG of pointed maps

from the classifying space BG to X has the weak homotopy type of a point.

This conjecture was resolved in the affirmative in [9]. It is then natural and

important to ask about the mapping space XBG for infinite dimensional spaces

X. The situation then appears to be far more complex, even, for instance, when

we take X to be the classifying space of a connected topological group. In

this paper I shall stage a raid into this area. As proof of the riches to be

found there, I offer the following:

Theorem A. For any elementary Abelian 2-group E, the classifying space

functor B induces a weak homotopy equivalence

from the discrete space of group homomorphisms from E to SU2 to the

indicated pointed mapping space. In particular, Hom(E,SU2)'" [BE,BSU2] is

bijective.

*The techniques used actually depend only on H (X;12) , but operate only

under the assumption that X is simply connected. Notice that if X is a

simply connected CW complex whose mod 2 cohomology is polynomial on a single

4-dimensional generator, then nx is 2-locally equivalent to SU2• A natural

question arises: is X 2-locally equivalent to BSU2? The following result

shows that as far as maps from BE are concerned X and BSU2 are

indistinguishable.

*The author is an Alfred P. Sloan Fellow and was supported in part by N.S.F. Grant
MCS-8108814(A01) and MCS-8002780.
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Theorem B. Let X be a simply connected CW complex whose mod 2 cohomology

is a polynomial algebra on a single 4-dimensional class. Then [BI/2,X]

contains exactly two elements, one of which, call it f, induces a nontrivial

map in mod 2 cohomology. Moreover for any elementary Abelian 2-group E, the

map

[BE,BZI2] [BE,X]

induced by f is a bijection.

I will use the obstruction theory of Massey and Peterson ([8], [1J, [7]).

This theory applies to simply connected spaces whose mod p cohomology is "very

nice" [4]. An unstable algebra B over the mod p Steenrod algebra A is

very nice provided that it is of finite type and admits a simple system of

whose vector space span is closed under the action of A. This is

admittedly an awkward condition, but it does include the classical Lie groups

and the complex and quaternonic Stiefel varieties, and at 2, the real Stiefel

varieties as well. The Massey-Peterson theory should be regarded as a piece of

light artillery, with which one can move quickly and execute small ambushes

before wheeling in the heavy simplicial guns of Bousfield and Kan [5]. I note

that a very elementary application of this theory shows that the algebraic

theorem from [9], quoted below as (3.1), yields the Sullivan conjecture for

elementary Abelian p-groups and simply connected spaces whose mod p cohomology

is finite and very nice; see (3.2) below. This result is in part contained in:

Theorem C. Let E be an elementary Abelian p-group. Evaluation of mod p

cohomology induces a map

* *[BE,X] + Hom(H X,H BE)
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*to the indicated set of A-algebra maps. If X is simply connected and H X is

very nice, then this map is bijective.

Conjecture: This is still true if X is any simply connected space whose

mod p homology is of finite type.

The Massey-Peterson theory will be reviewed in Section 1, with some improve-

ments, due largely to J. R. Harper and A. Zabrodsky. A couple of technical

results are proved in Section 2, and a convergence theorem, due to A. K.

Bousfield, appears in Section 4. The theorems stated above are proved in

Section 3, by application of an algebraic result from [9].

I am very grateful to John Harper, who tutored me patiently on Massey-

Peterson theory, and to Alex Zabrodsky, who suggested a proof of the key Lemma

1.11 in conversation at Aarhus and later proposed the marvellous property (1.7)

of Massey-Peterson towers used here to prove (1.11). I am also indebted to Pete

Bousfield, Gunnar Carlsson, Mark Mahowald, and Jeff Smith, for their help.

Finally, I thank the Mathematics Departments of Northwestern University and the

University of Cambridge for their hospitality.

§1. Obstruction theory.

I shall begin by recalling briefly the theory of Massey and Peterson [8],

[1], with improvements due to Harper [7] and Zabrodsky. Unless otherwise

*specified, H (X) denotes the mod p cohomology of X, p an arbitrary prime.

Formation of the

of unstable leftu*
ftto the category

denote the full subcategory of those of finite type.

augmentation ideal gives a functor I

Mod p cohomology in its richest form is a functor from pointed spaces to

a.:*the category of augmented unstable algebras over the Steenrod algebra A.

a..*Let ft

A-modules of finite type, and this functor has a left adjoint U [8], [1]. It

a*is easy to verify that an object of ft is very nice in the sense of the

*introduction iff it is of the form U(M) for some ME Zlft'
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7J*tThe functor U helps to relate algebra to geometry. The category -r

has enough projective objects, and there is a contravariant association P

*K(P) of a mod p generalized Eilenberg-MacLane space to a projective in

equipped with compatible natural isomorphisms

( 1,1)

(1, 2)

There is a functor Q

(1,3)

*H (K(P)) - U(P),

* *+ ZLf t left adjoint to suspension E

Since E is exact, Q carries projectives to projectives, and the isomorphism

(1.2) is naturally compatible with Q:

(1,4) K(QP) nK(P).

*Now let X be a simply connected space such that H (X) = U(M) , and let

*M + P. be a projective resolution of M in U
f t

. There is a tower of

principal fibrations under X:

k
2

K(Q2p3)

(1,5) xx: k 1
I K(QP

2)

k
OX J O I K(P

O)
I K(P

1)

such that
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and

(1.7) ks is induced by a null-homotopy of d
sks_ 1•

That is, there exists a

commutative square

h
s

______ PK(ns - 1p )
s+ 1

I·

in which 'II is the path-space fibration, such that the induced map

of homotopy fibers is homotopic to k •
s

Here and below I write

d
s

for any map induced by d •
s

Property (1.7) was suggested by Zabrodsky. It appears to be a fundamental

feature of Massey-Peterson towers, and it may be possible to give a treatment

of the subject in which it occupies a central position. For the present,

however, I give a derivation of it from other known properties in the next

section, and treat it as an axiom in this section.

By applying '11* to (1.5) one obtains a spectral sequence with

Exts(M,S(t» => 'II (X).
t-s

*The Ext group here, and below, is computed in the category u.
f t

, or,

equivalently, in 1l*. The goal of the present paper is to show that under

certain circumstances, the Massey-Peterson machinery allows one to draw

conclusions about [Y,X] for Y not even a suspension, given the assumptions

one expects to demand by analogy with this spectral sequence.
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Theorem 1.8. Let Y be a connected CW complex such that H*(Y;Z) is of

finite type and p-torsion, and let X be a simply connected space such that

*H (X) is of finite type and isomorphic to U(M). Consider the map

* -*H [Y,X] + HomA(M,H (Y)).

Then H* is (a) monic if ExtE (M,ii* O:Sy))

if Ext s +1(M,ii*(LSy ) ) = 0 for all s > O.

o for all s > 0 and (b) epic

This theorem and the method of proof presented below are for the most part

due to Harper ([ 7] 2.2.1, for example). I have chosen a different set of

convergence conditions. Moreover, an improvement will be noticed in part (a),

*for Harper proves only that, under the stated assumptions, f * if f = O.

That proof is easier, requiring, aside from (1.6), only the elementary fact

is the inclusion of the fiber over

* This restricted form of Theorem 1.8(a) is in fact all that is needed to

prove the cases of the Sullivan conjecture considered here, Theorems 3.2 and

3.3. The full strength of (1.8) is required, however, to prove the theorems

stated in the introduction.

Before starting the proof of Theorem 1.8, it is convenient to record a

couple of consequences of Zabrodsky's observation (1.7). They both involve

principal actions, for which I need some notation. Given a map k: X + B, I

shall write <lk: S"lB x E
k

+ E
k,

or just <l, for the action of S"lB on the

homotopy fiber E
k

of k. Also, given f : Y + E
k

and h: Y + nB, I shall

write h * f for the composite

The following lemma is a restatement of "primitivity of the principal action"

[7] 1.2.6.



407

Lemma 1.9. The k-invariants are linear over the algebraic differential. That

is, the following diagram is homotopy commutative.

K(nsp ) x X a IX
s s S

d xk ks s s

K(nsp 1) x K(nsp 1) ¥ s
s+ s+ K(n Ps+1).

Proof. Use naturality of the principal actions resulting from (1.7), and

the fact that

Corollary 1.10. Let f

o

y X and h
s

k (h*f)
s d h * k f.s s o

Lemma 1.11. The following diagram is homotopy-commutative.

d xl
s

K(nsPs_1) x X;----+ K(nsPs) x Xs

l"
X
s

It is in order to prove Lemma 1.11 that property (1.7) was introduced

here. However, the proof of this lemma involves a technical result about

compatibility of various principal actions which, in order not to further delay

presentation of the proof of Theorem 1.8, I have placed ill the next section.

Proof of Theorem 1.8. I shall prove part (a), and leave the proof of part (b),

which is similar and somewhat easier, to you. So let Y be a connected CW
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complex such that R*(Y) is of finite type, let X and M be as in the

statement of the theorem, and suppose that f,g Y X induce the same map in

cohomology. Then the composites fO,gO: Y X K(P
O)

are homotopic. I will

now show that fs,gs: Y X X
s

are homotopic provided

are. By principality of X
s

X
s
_
1
' there is a map h

f s_ 1 and gs-1

Y K(Qsp) such
s

that gs " h * f s'
Thus by (1,10), Now f

s
and both

lift to X
s
+1 ' so ksf

s
and ksg

s
are both null-homotopic, and since

Thus

By assumption, it

d h " *s

is a cocycle.

it follows that*,is a group under[Y,K(QsP 1)]
s+

*ISS -* -* sh Q P E RomA(Q P ,R (Y)) = RomA(P ,R (E Y))
s s s

is therefore also a coboundary; that is, h factors through d
s_1

: K(Q
sP
s_1)

Lemma 1.11 then implies that h * f s
is homotopic to as

claimed.

Now the issue of whether the homotopies f
s

gs together yield a

homotopy f" g is a question of convergence, and will be dealt with in

Section 4. This finishes my treatment of Theorem 1.8. []

§2. Two proofs.

It is now time to prove (1.7). The proof is based on:

Lemma 2.1. The composite

l x j s

o K(Qsp) x X ----+ K(Qsp ) x X X
s s s s

induces a monomorphism in cohomology.

Proof. This follows from a comparison of the "fundamental sequences" [7]

associated to the vertical fibration sequences in the homotopy commutative

diagram
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K(flsP )xx - K(Qsp )xx X
S S S

.. .. ..
PK(flS -

lp )xx --->- PK(flS -
lp )xx

pr2
X-S S s-l s-l

.. .. ..
in

K(fls-1p )xK(fls- lp ) K(fls-1P
s),

K(fls-1 p )
S S S

by analogy with the proof of [7] 1.2.6. 0

Lemma 2.2. The k-invariant k
s

may be characterized as the unique map k

such that (a) the diagram

.. d xk
s

.. k

is homotopy commutative and (b) kjs x + K(flsP ) is null-homotopic.s+l

Proof. The k-invariant k satisfies
s

(a) by virtue of primitivity of the

principal action, [7], and (b) since js lifts to js+1' On the other hand,

(a) and (b) together allow one to compute that

*but C is monic by Lemma 2.1. o

Proof of (1.7). It follows easily from the compatability of the splitting of

thatthe fundamental sequence with the k-invariant k
s_1

null-homotopy h, and look at the commutative diagram

d k ,,*
s s-l

Pick a
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K(n
sP

S
+1)

+

PK(ns - l p )
s+l

+ 'If

Any such k satisfies (a) of Lemma 2.2, as noted in the proof of Lemma 1.9.

To complete the proof, it therefore suffices to alter h to another

null-homotopy h
s

such that the map k' induced on homotopy fibers satisfies

some t

Since js-1 is epic in cohomology, kjs factors as tjs_1 for

s
X
s_1

+ K(n P
s
+
1),

If X reverses paths and * juxtaposes them,

then h
s

= Xt * h has the desired property. tJ

Proof of Lemma 1.11. This is based on the following technical result about

principal actions.

Proposition 2.3. Let h be a null-homotopy of a composite gf, and construct

homotopy fibers to produce a commutative diagram

F
k nz+

+ +

H + X h PZ+

H H 1-'If

G + Y Z

Then the homotopy fibers of k and of t are identical, and if we call this

cornmon space E, then the following diagram is homotopy commutative.
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OCt xl
2 g

OCxEo zxOcxE-

1lXCt
t 1Ctt

o2ZXE

Ct
k-- E

To prove this proposition, draw pictures of the elements of the spaces

involved; you will see that the homotopy required is similar to the one showing

that a double loop space is homotopy commutative. It is convenient to remember

that when OZ is regarded as the homotopy fiber of IT, it maps to PZ by

sending a loop to the reverse of its second half.

By including * into OC, we find that factors as

where i: OZ C is the natural map. Since i 0 Og *, this implies:

Corollary 2.4. Let h be a null-homotopy of a composite gf, and construct

homotopy fibers to produce a commutative diagram

F OZ

'" '"
X .a, PZ

H "'IT

Y Z

Then

2o gXl
02yXE_ ,lzxE

is homotopy-commutative. 0
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Lemma 1.11 follows from an application of this Corollary to (1.7). [J

§3. Applications.

To apply Theorem 1.8 when Y is a suspension of the classifying space BE

of an elementary Abelian p-group, I recall from [9) a basic vanishing theorem.

Theorem 3.1. Let M be an unstable left A-module of finite type. Then

(a) for any s > n 0 and for s = n > 0; and

(b) for any s,n 0 if M is finite.

Theorem C follows immediately from this and Theorem 1.8. Notice, by the

way, that since

these theorems also imply:

1T (X
BE

, * )
n

[1:
n BE,X),

Theorem 3.2. If E is an elementary Abelian p-group and X a simply

connected space whose mod p cohomology is finite and very nice, then X
BE

is

weakly contractible.

Moreover:

Theorem 3.3. The Sullivan conjecture is valid for elementary Abelian p-groups

and spheres.

Proof. Since [1:n BG,Sl) = H1(1:n BG;I) = 0 for any n 0 and any finite

group G, the Sullivan conjecture for G arbitrary is trivial for X = Sl.

The case of X = Sm for m > 1 with m odd or p = 2 is covered by Theorem
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3.1. The remaining case is dealt with using the following trick, which lowe

denote the skeleton of the James construction on SZk for

= U(S(Zk». Let FZk be the homotopy fiber of the natural

*Then an easy computation shows that H (FZk) = U(M) where

M i 0>

with trivial A-action. Since Ext is additive, we find that

0, n,s 0,

and so, from Theorem 1.8, is weakly contractible. Since

too, from Theorem 3.Z, the result follows from the homotopy long exact sequence

of a fibration. Q

Many other spaces which are not U(M)'s may be handled by analogous

tricks.

To prove Theorem B, let

{xi: i k}, with Ixil = Zi

be the A-module generated over
Zi

and Sq xi = xi +1' Then U(MZ) is the

unique A-algebra which as an rz-algebra is polynomial on a single 4-dimensional

generator. Thus Theorem C shows that

With E = lIZ, the latter set clearly has order two, proving the first

*assertion. Note that H (BIIZ) U(MO), and that the nontrivial map BIIZ X

induces U(i) in cohomology, where i: MZ M
O

is the inclusion. Now the

rest of Theorem B follows from the commutative diagram
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in which the bottom arrow is iso by Theorem C. 0

Theorem 3.4. In the situation of Theorem B, the component of X
BE

which

contains the trivial map is weakly contractible.

Proof. There are short exact sequences

of A-modules, wi th finite. The long exact sequence induced in

* -* nExt (-,R (E BE», together with Theorem 3.1, shows that

U*,is an isomorphism. But M
O

is projective in the category so we

conclude that for all s > 0, n il: 0, and k <: 0,

s -* nExt (L BE» O.

It is easy to see that for n > 0, this group is also zero when s = 0; so,

putting k = Z, Theorem 1.8 gives

O. o

It would be interesting to get information on the homotopy type of the

other components of X
BE•

When X = BSU
Z'

one may argue as follows. Since

the center of SUZ is ZZ' there is a group homomorphism Zz x SUZ + SUZ'
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Z

x

from BE; the Abelian group

415

BSU
Z

BSU
Z'

Pass to spaces of pOinted maps

BZBE acts on BSUBE If h: E Zz is a
Z Z

homomorphism, then the action by Bh provides a homotopy equivalence from the

component of containing the trivial map to the component containing

hf, where f : BZZ BSUZ is induced by the inclusion. This completes the

proof of Theorem A.

§4. Convergence.

The final task is to prove a convergence theorem. While Massey and

Peterson [8) did important work on this issue, it seems better to appeal to the

now standard work of Bousfield and Kan [5); so move to the simplicial framework

by passing to singular simplicial sets. To relate a Massey-Peterson tower for

X to the p-adic completion (Z/p)ooX of [5), we have:

*Lemma 4.1. Let X be a simply-connected space such that H (X) is of finite

type and very nice. Let (1.5) be a Massey-Peterson tower for X. Then {Xi}

and {(Z/p)iX} are weakly equivalent prosystems.

Proof. By [5) III §5.5, p. 84 and induction, each Xi is Zip-nilpotent. By

(1.6), the first image prosystem {Im(H*(Xi) H*(Xi_1» } is the constant

system {H*(X)}. Thus {Xi} is a zip-tower for X, so the result follows

from [5) III §6.4, p. 88. 0

According to [5) VIII §3, homotopy classes of maps agree in the categories

of CW complexes and of simplicial sets; so the following theorem is

sufficient for our purpose.

Theorem 4. Z. Suppose that X is connected and nilpotent and that Y is

connected with H*(Y;I[i"D = O. Then the map X (Z/p)",X induces an

equivalence of pointed mapping spaces
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The statement of the theorem in this generality and the proof given here

are both due to A. K. Bousfield, and I am grateful to him for allowing me to

reproduce them.

Proof. Recall from [6] that there is, up to homotopy, a fiber square

x

...

where XA denotes the Bousfield H*(-;A)-localization of X [2]. Thus there

is, up to homotopy, an analogous fiber square of pointed function spaces with

source space Y. Now Proposition 12.2 of [2] easily implies that CB is

contractible whenever B is h*-acyclic and C is h*-local. Taking h*(-)

it follows that (ZA)Y * for any space Z, where A = or

A = Zit with t prime to p. Thus the fiber square implies that the map

is an equivalence, and the proposition follows since XZ/ p
- by §4 of

[2]. 0
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MULTIPLICATIVE STRUCTURE OF FINITE RING SPECTRA

AND STABLE HOMOTOPY OF SPHERES

Shichiro Oka

Throughout this paper, p will denote a prime with p 5.

In this paper, we develope ideas, in somewhat general situation,

with which we have proved [15] that the stable homotopy group of

spheres, has arbitrarily many p-primary generators in dimension

t for sufficiently large t. There is a 4-cell ring spectrum K withs
BP-homology BP*{Ks) = BP*/(p, vi) for s 1 [14J, and if s =0
mod pit has a property that K 1\ K splits into four copies of Kss s
[15J. We cal1ed K with such splitting a split ring spectrum. The

S s.
generators of * a.n our results in [15 J are constructed from stable

self-maps of split ring spectra K, i.e., K with s =0 mod p, ands s
they are detected in Ext2 of Adams-Novikov'·s E2 term.

In this paper, we analyse the structure of Ks*Ks inclUding the

case s 0 mod p, i.e., non-split case, with which the self-maps re-

quired are constructed. It makes our construction easier in the follow-

ing points. The construction here depends only on the structure of the

subring of Ks-module maps and on checking the coboundary 5' E Ks*Ks to

be a derivation as a cohomology operation, though the whole of K *Ks s
is discussed in [15]. This is due to a suggestion given by Professor

J. F. Adams on the occasion of the conference (see Remark 2.4, 6.7).
Secondly, including the case Kl V(l) of smallest dimension allows

us to reduce extremely our input of induction constructing elements. In

fact, Input I at the end of §2 is obtainable with information of

through dimension 2{p2_1), even though the dimension reaches at least

4P{P2_1) to get Input III, the input required in [15].

The expanded method given here is even stronger. It is applicable

to finite ring spectra and self-maps of them haVing similar property.

We will give in §4 an application giving the "fringe family" (in the

sense of [24]) for the so-called gamma family. One more application,

which is concerned with higher order elements in of BP-filtration

3, will appear elsewhere.

Our method for K is explained in §2, but the proof of Theorellls
2.5, which asserts that K is commutative and associative and 5' iss
a derivation for all s 1, is given later. Section 1 is the recollec-
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tion on the Adams-Novikov spectral sequence which is used to detect our
Shomotopy elements. A shorter proof of the aforementioned result on 1r'*

is given in §3. A V(2) analogue of a weak form of §§1-3 is given in

§4. In sections 5-6, we give a strong form of commutativity and associ-

ativity of K (Theorems 6.5, 6.6) including the proof of Theorem 2.5s
with an analogous discussion of [15JI4.

The author would like to thank Professor J.F. Adams for his valu-

able comments,. and Professor F. Hirzebruch and the Max-Planck Institut

fUr Mathematik for their hospitality during stay in Bonn. The author is

supported by SFB 40 "Theoretische Mathematik", Universitat Bonn.
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§l. The Adams-Novikov spectral sequence

Let BP denote the Brown-Peterson spectrum at p > 3 , [16J. It
defines a homology theory with coefficient ring

The BP homology of a spectrum X, BP.(X), is equipped with natural co-

module structure over the coalgebra (Hopf algebroid) BF.BP over BF.

[2]. For a BP.BP-comodule M, let us denote

JtlM :: BP(BP., M),
•

where the Ext is the extension in the category of BP.BP-comodules.

There is a spectral sequence due to Adams (1] and Novikov [9J, with E2
term H·BP.(X), converging, if X is connective, to r.(x)(p). The E2
term for X:: SO, H·BP., has been determined in (eohomological) dimensions
1 (9) and 2 (7].

For x E BP. and ideals I, J in

tion by x induces a BP.-homomorphism

xy mod J, which is also denoted by x.
comodule and

BF. with I C J, the multiplica-

BP.!I --+ BF.!J, Y mod I

By [5], BF.!(p, vI) is a BP.BP-

HOBP.!(p, VI) :: HomBP BP(BP., BF.!(p, VI)) :: zr!p[v2J ••
pn ° pnThis implies v2 EH BP.!(p, VI ) [24], and hence,

to! s lI(t)V2 EH BP. (p, VI) if s s P ,

where lI(t) is the highest exponent II such that pll I t. We define

(jt!s:: t!1;, 1,

where 0 and Os are, respectively, the coboundaries of the long exact

sequences of Ext associated to the following short exact sequences:

(1.3) E: 0 --t BF. P s) BP. ) BF.!(p) --t 0,
v
lEs : 0 -.. BP.!(p) ) BP.!(p) l - O.

The internal. dimension of (jt/s is (t(p+l) - s)q, q = arr-ri, so
different betas may ocoure in the same dimension.

1.1. elements {:Jt/s of P. They
are linearly independent 2Z!p.

This is proved by Zahler [24], Theorem 1,(a).Miller, Ravenel and
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Wilson [7J. C8] proved that more elements are needed to describe the sab

group of H2BP* consisting of elements of order P. Moreover they proved

s'p

1.2. [7 J p divides fJ1/ s 1! and only II v(t) 2,
.!!1!:!. 1;;; s' pv(t)-2 + pv(t)--, -1 (s' ::: 1 it v(t)::: 2).

s =

1 ;;; k (n;ll. where

Let ¢ = as

fibration

Observing the dimension of f3 t / s ' we see that the prank of H2, t BP*

becomes arbitrarily large; for example, if t = pnq H2• tBP* has at

least (and exactly, by [71) r n2+
1 ) generators Rl 1-' n+l2k/ n+12k·

p

§2. Constructing homotopy elements

We shall try to realise geometrically each step in constructing

fJt / s with further restriction of s. say 1;;; s N(t), where N(t)

00 as t 00, to keep elements in in the same dimension as many

as we want.

Let M be the mod p Moore spectrum o 1 The cofibrationS Upe •

C SO p
) sO i

'M
j ) S1,

with last map j omitted, clearly realises the exact sequence E in

(1.3) as its BP homology. By [17J, vI : BP*/(p) -l BP*/(p) is

realised by the AdamsToda map

q=2(pl),

2;SqM t M and Ks be the cofibre of ¢. Then the co

Cs
i' j'

with j' omitted, realises the second exact sequence Es'
Now, realising the element of (1.1) is equivalent to construct

ing a stable map

(2.1) f t• s stq' Ks such that (ft,s)* =
where ql = 2(p2_l) = (p+l)q. If we were done it, the construction of

homotopy element which corresponds with f3 t / s is immediate. that is.
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Lemma 2.1. If ft,s exists for t, s, then is perma

nent cycle which is represented atE", .£z the element bt/s :::0 jj' f t, s

E Moreover bt/s
is nontrivial, of order p, and scalor multiple

Qf indecomposable; if it is divisible.£z p then v(t) 2 and
s = SIp with s' puTt)2+pV(t)3_1 (s' = 1 if v(t) = 2).

Proof. By Lemma 2.10, Theorem 8.18 in [7] and Lemma 1.2. o

As we proved in [14]Example 5.7,
Ks 1\ Ks --t Ks wi th unit i O = it i :

Ks' set

Ks has a multiplication u :

SO +Ks' For a map f: Sm?

f. Since i O
1* is the

is well known
i' ) 2:sQK

s'

l' :::0 Jl (r r; l K) • 2:mK ) K 1\ K + K •. s s s s

Then h o = JL(l AiO)f = r, i.e., l' is an extension of

induces the canonical projection BP* BP*!(p,

mUltiplication by the same element in BP* as of f*. As
(e g [10) Lemma 1 5) the composite 2: lK j' ) 2:sQM• • • , s

induces the cofibration

C' ---....) K
S
+S l

p

which realises the short exact sequence
vf

Construction I (Decreasing s). If f exists, then f t It,s ,s
exists for lli s' s.

Construction II (Increasing t). If f exists, then ft,s nt,s
exists for all n 1.
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Proof of I, II, III. We may put f t s' = Pf t for I and r t
n "s n ,s= (It ) i O for II, where p: K K, is the map in Ct. For III,

,s s S

the commutativity with $' defines a self-map g of the cofibre K2t 2s s
of 6', which induces, by E', v2

P + y with = 0 mod (p, vI ),i.e.
s (2s) - -po 0y =vlx mod P, vI for some x. Put gtp,2s = giO' f 2 = g

be tp ,2s
The extra term in III may possibleAnon-trivial if t

large. In order to include such a gt 2' we modify the property
t ' P, s

Consider a map gt : S q --> K wi th the property,s s
( t r

(2.1)' gt,s)* = v2 + vlX for some r with rp s and some x BP*.

Then we can immediately get the following analogue for g with

Constructions I',II',III'. If gt,s exists, then

I' : gt,s' for ill s' s,

II' : gnt,s' f for ill n 1,ntp,s

If moreover (g )PS' =8'(gt )p, thent,s ,s

III': gtp,2s'

g , f El II', exist.
ntp,2s ntp2,2S

To complete the induction, we shall try to remove the extra condi-

tion (g )PS' = G'(g )p in III'. As usual, we putt,s t,s

K*K :[K,I*K], K*=1r (K).s s s s s -* s

Defin! tion 2.2. Mod = If EKs*Ks J IJ. (f /11K) = fill,

Der ={ fEKs*Kg I lJ.(fAlK) + J.l(lKA f) = fll},
that 1£, Mod consists Q! right Ks-module maps (not necessarily associ-

and Der consists of elements behave derivation

cohomology defined £l Ks•

2.3.(a) Assume multiplication IJ. of Ks is commutative.

Mod is!! comllIUtative subring of Ks·Ks and tr, g] EMod, fPg =
gfP for r E Mod, g EDer; particular fP S' = S'rP .!Qr t E Mod if

8' Der , Here ill mUltiplication Q! Ks*Ks !§, usual, given

EL composition 2f mags, rr, g J denotes the (graded) commutator
tg - (_l)mngf, m = If I, n = Igi.

(b) Assume the mUltiplication of

Kg*Kg - Kg* induces!!.!! isomorphism

Ks !§ associative.

Mod:l: K *, and
s --
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K *K =Mod' Ker(lo)*.s s

P_roof. (a) A right K -module map is a left K map. The commu-s s
taUntyof Mod then follows from (f/\ 1)(1 1\g) = j;(l/\g)(fAl).

[Mod, Der] c Mod is immediate from the definition. Then [f, [f, g J J = 0

for feMod t gEDer. This implies rPg = gfP since Ks*Ks is a: :;zIp
module, cf. Proof of Theorem 1.5 in [15].

(b) As mentioned above, (iO)* is split epi with sPlitting s

given by s(f) =1 = fJ,(f" 1). Then Ks*Ks = Im s 'Ker(:la)* and

Mod C 1m s. The associativ:ity implies the converse Im s C Mod. 0

Remark 2.4. Put Co =i'ijj'. Then we see Der C Ker(iO)*' (Mod)cO
CKer(iO)* and Der" (Mod)80 = O. A stronger version of associativity

implies that Der and (MOd)oO generate Ker(iO)*' and hence, Ks*Ks
=Mod' Der • (Mod)SO (see Remark 6.7 in I would like to thank

J. F•. Adams for pointing out this stronger decomposition in case s = 1.

We will claim all the assumptions in Lemma 2.3 are fUllfil1ed. The

proof of the following theorem will be given in

Theorem 2.5. Ks commutative and associative multiplication

ill S' E Der.

Corollary 2.6. any

fliO = fiot (f')* = f* and

fEKs*Ks' is fl EKs*Ks such
(f' )PS' = 8' (f')P.

Def'ine fl to be tire component of f in Mod.

As a consequence, we have been successiful in removing the extra

assumption in III'.

o

Construction III". II gt,s exists. gntp,2s'
ill n 1.

At the last place, we shall assemble results on existence of

as our inputs of the construction.

Input I. [17J f l 1 exists.,
Input II. [lOJ, (24), [18J For 1 s p-l, f exists.p,s

Input III. [llJ t 2, ftp,p exists.

f t,s
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§3. p-Rank of the stable homotopy of spheres

We begin with Input I. By Construction III", we are able to con-

struct g with gl.l = fl• l and then f m+l 2m by II' for
npm,2m " np ,

all n 1, m O. Then Construction I leads to the existence of

f m+l sUbject to 1 s 2m• By Lemmas 2.1 and 1.1, we conclude
np ,s

the foll.owing

Theorem 3.1. element Pt/s in (1.2) subject !£

(3.1) 1 s s 2 V ( t ) - \ t 1 with v(t)!i;; 1,

is permanent cycle !n the Adams-Novikov spectral sequence SO

which converges to indecomposable to scalar multiple) element

btl t ) 2 of order p. Moreover btl'S are linearly in-s + -s q- - --- s - -- - -
dependent If s • 0 mod p, bt / s is generator of

direct summand of

Let B(k) be the subgroup of generated by the elements b t / s
with dim b t / s = (tp+t-s)q-2 = and let B'(k) be the subgroup of

B(k) generated by b t / s such that s 0 mod p. B(k) and B'(k) are

frequently trivial, in non-trivial case, though, the same argument as in

[15J, §7, Theorem II leads to an important property of them.

Corollary 3.2. has direct summand B' (k) is gene-

rated indecomposable elements whose becomes arbitrarilY

large 12£ sUfficiently large k.

If we begin by Input II, the resultant elements are subject to

1 s t!i;; 1 with v(t)!i;; 1,

which is shaper than (3.1). With an attention similar to [15] §7, Remark

after Proof of Theorem I, this recovers (lO]Theorem A'. The Input III

produces (15] Theorem I except for p-divisibility of the resultant ele-

ments. However it is easy to see from (15) Lemma 4.5, Theorem 4.2 that
the element S in [15] (2.5) is a derivation, thus the p-divisibility

given in [15J Theorem I may also be obtained from our construction here.

There is one more interesting derivation: Toda's element a"EKl*Kl
(Kl = Vel) in traditional notation), [20] Lemma 3.1, is easily checked to

be a derivation. This implies the p-divisibility of the elements
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as mentioned in (10] Corollary 7.6 and (13J Theorem 5.5. In case s =0

mod P, we have obtained in [15) Theorem 5.5 more about the decomposition

in Lemma 2.3 (a) and Remark 2.4; Mod coincides with .1f* in [15] and

Der coincides with the middle two factors in the decomposition in [15).

Although our method here is essentially the same as in [15] in many

parts, it has interesting applications more than [15) including the case

s 1 0 mod p, the other element in Der mentioned above, and analogous

elements for V(2) as we will do in the next section.

§4. A third order periodicity family

Following traditional notation (7), [17J, (191, (20], M = V(O),
Kl =Vel), and V(2) is the cofibre of the periodicity element

2(p2_1)
fJ = II I = sUI 1) : Vel) --t vrn,, ,

If P 7, there is the third periodicity element

'Y : ) V(2),

which induces v3, and its <:ofibre V(3) realises BP*/(p, v2, v3)
[19]. The iterated composite 'Y t defines the elemeBt 'Y t E 7r*, which

is known to be non-trivial for all t 1 [7J. The 'Y t is so called

third order periodic element because of its detection at H3BP*.
In [7J Corollary 7.8, more gammas in H3BP* are constructed in a

similar manner as of (1.1), (1.2); for the element

vi' 1 s p"(i), t 1.,

defines

'Y tis ( = 'Y tis,1 in [7 J) E H
3BP*'

which is non-trivial, of or-de r p and linearly independent to each
other unless 1 < s = t = p"(t). The internal dimension of 'Yt/s is

3 2 -2(p-1)
2t(p -1) - 2s(p It is hoped that this again leads Corollary 3.2.

Unfortunately we do .not have a substitute for Theorem 2.5 with s arbi t-

rary. Here we merely check it for small s by low dimensional computa-
tioD- of homo t opy ,

By Toda [20),

7r*(V(l)) = 'll,/p[fJ, fJlJ Ii A, up to df.mensf.on. 2p q-3,

where q = 2(p-I), dim. fJ = (p+l)q, dim 13 1

module generated oy' 6 elements of dimensions

pq-2 anrl A is a :E /s-
0, q-l, pq-l, (P+2)q-2,
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s

v:(l.) and S be the coboundary

up to dimension.. p2q_3,
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be the cofibre of fls : z:s(P+l)qV(l)
L --+z:s(P+l)q+lV(I) __z:s(P+l)q+1L •
s s

(4.1) 1r (L ) 2Z Ip[fI]/(fls) & & A.* S I-'

The foU.owing lelllllla. in Case s = I (Ll. = V{2» is obtained by: Yosimura

(22) (3.4)" (23) (1.3) (A2 ) 2.

Lemma 4 •.1. !:.tl P 7 allIl s s [P;2 ]. Then Ls has commutativ.e

and multiplication such that 8 is derivation in Ls*Ls•

.. Let X and Y be the cofibres of the inclusions Vel) /\ Vel)

L f\L and V(l)/\ V(l)f\ Vel) - L f\L /\L • Checking non-trivials s s s s
dimensions in. (4.1) leads us that 1r. (L ) = 0, i = dillL e, for every cell

e :in. z: -IX•. Therefore [r..-lX, Ls J = ;imilarlY we have (x, L
s
1= 0,

L ) := 0. The composite Vel) 1\ Vel) Vel) ---+ L has then an
s s

extensd.ore p.: L 1\ L L b.y·[2:-1.x, L ) = 0, wh:ich :is unique bys s s· s
ex, L ) =0. The ;;. is a multiplication of L for which the :inclusions r: S

Vel) L
8

is a map of ring spectrum. It is commutative by the unique-

ness. The associativity of JJ may be extended to L /\ L by-- [Y, L ]
( +1) +1- 8 S /:l- S

= 0. It is not hard to compute [L, P q L J allIl the last statements c: s·
is now clear. o

POI 2We mention that if + xv2EH BP* (p,; VI' v.
2),

x must be trivial

by dimensional In the same fashon as before, the following theo-

rem is now immEdiate.

4.2. Let p 7. 3

(1) There is a maP f: I: 2P(P -l)L L
2

_which induces
---- 2

(ii) is .a 16-ceU complex X with BP*(X) =

(iU) The element 'Ytp/2 e H3BP* :is permanent cycle in Adams-

Novikov spectral seguence 12£ SO.

(Lv) The corresponding element ill 1r
S 3 2 '
ztp(p -1)-4(P -1)-Z(p-1)-3

call 'Ytp/z is of p and the Tad£{

bracket {'Ytp/z' P, al' P, fll} contains 'Y t p•

For p bigger, Lemma 4.1 produces little more elemen.ts 'Y tIs' but

we shall. make no attempt to describe them.
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§5. Some consequences of the theorem of Haynes MillBr

In this section, we shall discuss about the structure of the ring

of stable self-maps of K, [M, M1* :: M-*M, in connection with a restU.t

of Miller [6] which.. assures that elements in 'lr*(M)" not in the image

nor counter image of Im_J are annihilated by. some power of

a : l:qM _ K. We shall first extend it to [M, M)*. Then exact se·

qnences used to compute (K , K ]*:: K:'"*K from (M, M:]* become shorts s s s
exact in lower dimensions. We shall secondly make computation of [K ,K ]*s s
wi thin. our necessity in proving Theorem. 2.5.

As in [15] we shall use the notat.Lon. tx, Y]* for Y-* (X) so that

the grading fits into the grading or homotopy groups •. The multiplication

of the ring [X, XJ* is understood to be giv.en by composition of maps

unless otherwise stated.

Let 6 =irE tM, M.t l and A* be the suhring of (M, M)* gene-

ra ted by S and the Adams- Toda elel!lBnt a. There is a reJ.ation

which is, therefore, in the centre of [M, M)*, cr. [l5] Lemma 2.5.

The structure of A* is determined by Yamamoto[2IJ:

where E denotes an exterior algebra over and the

a( Sa - = (3a - al)a a:s mentioned in (5.1) is understood to complete

the ring structure. We put

N(s) :: s(p2 - 3p +1) + pq - 2.

Proposition 5.1. If k < N(s),

as[M, MJ
k

:: [M, M]kas

Proof. The mUltiplication

ring in usual way : ab :: b),

map : 1) :: = A*i

aSAk = Aka
s

• Ak+s q•

of M makes 'lr*(M) a commutative

a, bE 'lr* (M). Since a is an M.,..module

is a subring of 'lr*(M) and

is a. ring homomorphism. Si.nce g i o and (Ja _ aSh

A*i :: ZZ /» [ai J &: E(ial)

as a ring, by (5.2). Let E:,t be the Adams spectral sequence based on

(1] which converges to 'lr*(M). Haynes Miller (6] proved that
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(5.3) Eoo :: /P[ql] &: E(hl,O)

where deg ql:: (1, q+l), deg

represented by' ai and ia1- Hence

2t-s (p -p-1.)( s+l),

:: (1, ct), and ql. and

A*i --+ ?l /s [ql] &: E(h1,0)

are

is

isomorphic.

For any e'l ene n t e[M, M]k' k > 0, let XEE:"b be the cLaaa of

11"* (M),. where b-a.:: k. and we may assume a 1. If k N( s), k+sq

s (p2_p_ l)(s+a+1) and hence /P(ql] &: E(hl O) by (5.3). This

means A*i, so E: A*$ CA*. ..

Let d: [M, M]" --+(M, MJ". 1 be the HOffman-Toda derivaU-on [4J,.
J J+ .

(20J, (12). Then is uniquely. expressed as + HI vdtlL

[M, MJ k ., :: o. S:ince d(S):: -1, d(a) :: 0, A* is :invariant un-
+1 J.

der d d(A*) C A*. Cf. [4J, (12]. Then = and

() s S l' ()5.4 a :I: a hoe: A*, k N s .
We first cons:i!der the case d(O:: 0, i.e •. O. By (5.4) and

the cO!Dlllllta'tivity of Ker d (4),> = A* for k N(s). In gene-

ral case, this implies for k+l N(s), hence

for k < N( s), by (5.4). as E A* foll..ows frollL the decomposition of [J

Remark... 5.2. The proposition is also true for p = 3. Consult the

modified Koffman decomposition for [M, M]* [12] i3.

Remark 5.3. It is likely that generalising it to the mod pn Moore

spectrum:is not hard. Kowever the substitute for A* is more complicate.

Let be arrelement in eM, M]* which is non-zero in [M, M]*/A*.

By (5.2) and Proposition 5.1, there exist un:iLque non-zero elements

such that

(5.5) = 0, 0, == == mod A*.

Since as commutes with elements Ln

if dilll -1 mod q. Let L* (z-e sp•.

(M, M)* generated by indecomposables

= 0 (resp •. = 0) for some s.

A* of dim: -1 mod q, =
R*) be the two-sided ideal of

other than a, 8 such that

Then

Since

(M, M]* =
R* = L*

[M, MJ* =

Im . .r = for

R* A* = L* A* as additive group,

in dillL -1 mod q,.

R* = L* in. dillL 0, -lor -2 mod q ,

dim.. < pq-2 when. localised at Po. we have also
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Remark 5.4. It is not hard to interpret (5.5) as the relations in

Let as = jaSi and r be an arbitrary element of BP-filtratiorr

a t least 2.Then- (5.5) impli:.es that if k N( s)

OC f = 0, I p , ocs' f J= 0 mod indeterminacy,s

and if moreov:er pf = 0 and k < N( 8),

I()(s, P, r I _. 0,. I P" (l(s' P" f I !! 0 mod indeterminacy.

Here I denotes the Toda bracket. These are almost equivalent to (5.5).

The of abOV:B may bE too large to deduce (5.5), which

claims that the elements in the above Toda brackets which are defined in

terms of the extension of "'s are trivial.

Now, let Ks be the cofibre of ¢ = OCS as before. ¢ satisfies

(5.8) (l(s"lM: = S¢ - ¢>S:; 8",s-1($", -"'S).

Let :t' • M: --;,. Ks be the inclusion and put = k •./"'sA",. Every ele-

ment in = (i')",A", except, in case s 0 mod P, for i'S is

in the image of (1')"': [Ke, Ks1", [M, Ks)"'. Its counter image in

[Ks" Kg]'" is given as follows. K
s

is an associative M-module spectrum::

wi.th module multiplication m: M" Ks Ks• Then an element iii: I:K s
M I\Ks :ts uniquely associated to m; in such a way that (j 1\ lK)iii

: lK" min = O. They define a derivation d of [K, K]", and an
g s

tor X: [M, M]", (Ks' KsJ"'+l : d(!) = m(lM"f)iii, =
cr. [20], (12). We put

IX =).(cd) :; m:(<<iAIK) E[Ks' (8 2),

",t=)..($()(S):CXIAIKE[K,K] I's s q-

By (20)Theorem 2.4, = X( S«) = (jOCAlK)iii and ii j =).. (cx j 8 ) . Therefore

o;s = m(c{»il\lK) = 0 by (14),\4•. Also they satisfy

o('i' i'es« - cxS), j'()(' = (ceb - So<)j',

and (oc,)2 = 0, ococ' = oc';.

E[K,K] 1 (ex'=O ifs s q-

There exist elements cell E[Ks' Ks]q_2'
s = 1) with properties

lX"i' j '<x" :; bCXbJ', d(oc") = -oc',
(i'i' = i'0(8, j' (iX' soc') = -«SS', = -DC.

If s= 0 mod P.,> there exists SE(K, KeL1 withs

(5.1I) Si l = i'J,., j'S = -JJ', da) = -lK
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[L5], (2.5), and we see easily that

(5.12)

Define a subgroup A* of [K , K I, to he
s s

7l1p[0( V(pes) & f1, ot", oc', ex'} for s 'I 0 mod p,

& f.f, 1, "$'«S, 1'0'} for s 0 mod 1>.

By (5.2), (5.9)-(5.12), we conclude that

(i ')*

are isomorphisms, where

IS t 0 mod P.
We put

)

AU =

(

:if

(i' ) * . A:t (C [M, K]*)

s 0 mod p, and A:t = if.

I', = image of

A* ()r* = 0 andClearly,

(1') (j')* : [M K)* , *+sq+l

A* Ql r-, e[K ,. K J*. Sets s

( =C(s)' ¢ = tpl1\ lr

[K, K J*.s s

BY-(5.8) and (5.9), we then have

- -s-l .J.¢ = soc 0(', ¢i' = i' S,#" j' 95 = - j' •

The folLowing lemmas are now immediately obtained by assembling

above results, in particular Proposition 5.1, (5.5), (5.6), (5.7),. (5.14).

Lemma 5.5.

n.* = 0 [K, K]k [K , M]k for k < pq-3 with k -i -sq-2,." s S' +sq

= 0 [M, K ]k [K, K Jk for k < sq+pq-2 with k p -1,s s +sq

= 0, ¢*A* =0,

for k < N(s)-sq-L with, k. -sq-2.

We mention that if s == 0 mod p,. 11 1\1
K

= 0,

the lemma holds with no restriction. of k.

Lemma 5.6. (1) For k < aq + pq - 3,

= 0 [15], and hence

R ED A' - L 19 A' rk+sq+l k+sq+l - k+sq+l k+sq+l. k.

is isomorphic.

(ii) If k < pq - 3, [Ks" Ks]k = 1!.k Ql r k' and if moreover k

¢*[Ks' KsJk = ¢*[Ks' = o.



s in. ep = OC
S
E [M, M]Sq will be

s in. K = Ks' the co f1bre of ¢.
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Remark 5.7. In case s "I: 0 mod p, we need the restriction k I -sq

-2 in (:ii). In fact, [K, K J 2 = zip is generated by $0 = i'Sj "s s -sq-
and 'iro = = siXs- l oc"8 ' -10 0' =Pj:').

§ 6:.. Commutativity and associativi ty

In this section, the exponent

fixed and we wi:ll omit the index

Recall the cofiorations

SO i ) M .j ) s1, M i' ) K j' " l;Sq+1M,

and the elements 9'1 1> = rP1 A l K e[K, !\lsq_l in (5.13).

Traditional name of 9'1 is OI's.' If. S -= 0 mod P,. Cf; is trivial(5),

which lead.s to if> 1\ IE:' = 0 and the existence of the e1.ement SK in [1.5]

V(2 ..5). The first fact then makes KI\K a wedge giving one more

"derivation'" d' in [K, KJ*, and the second fact induces a decomposition

of [K, K]* given in [15J, Corollary 2.7. Although such strong evidences

may not be expected in case s t 0 mod P, Lemmas 5.5, 5.6 allow us to

develop analogue of [l5J§4 wi:thout s =0 mod p ..

Let m: MAK K be an associative M-module multiplication (see

[l4]Lemma 3.11) and iiI:: l;K --7 MAK the associated element wi:th

(j A1K)m = lK' min = 0 [12], [l5]. They give a factorisation of 1M1\K:

(6.1) (i J\lK)m + ii{j AIK) = lMJ\K'

or equivalently a homotopy equivalence MAK = KVl;K. Bytl41Examples4.5,

5.7, the obstruction coset for K to be a ring spectrum is zero

modulo J2sq+1 the 2sq+l dimensional part of two-sided ideal gene-

rated by By (5.6), 0 and hence ..

= 0 ( for any m) by [l4JDefinition 4 •.1. Since Ad = 0 ([20]Theorem. 2.4('v..»

and a =-d(&a) , Sa - as' = d($aS)" we have also = 0 and

(j = = O. Therefore, by (6.1)"

(6.2) rP A I K = iDiPlI4

By Lemma 5.6 (1i),

(rPAlK)* [M KJk [M.II K, K]k+Sq is trivial. for

k < pQ-4 with k. -I -sq-3.

We denote oy: L the cofi.bre of rP
l•

Let
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be the cofibration induced by q,l. Since the cofibres of q, 1\ and 4J
a:re K I\K and L t\K, (6•.2) gives rise to a homotopy equivalence

K t\K = K V (LL "K) V L

more precisely, there ex:i.st

Il: K /\ K K, IlZ : K AK --7' L L f\ x,

": --? leAK, "z : !.LI\K---;. KI\K

such that

(A) (jll\lK),,=m,

(B) 1l2(i'/\ lK) = (i"l\lK)(jl\lK)" (j'l\lK)"2 = (ii\lK)(j"A lK)'

(C) (j"/\ lK)IlZ = Ilt(j:II\ 1K)' = (i'l\ lK)m:,

(D) Il"Z = 0" u v = 0,. 1l2" = 0, IlZ"2 = l L t\ K·

If. we put

i.o = iIi.: SO K,

(A) and (B) imply

(A) I Il(la AIK) = lK'

(B)I IlZ(iO"lK) =0"

which, together with (D) and

Uo A1K) " =

(jo 1\1K)"Z = 0,

the obvious relation

with. properties (A)-(D).

for which Theorem is

fix Dl (and hence jiL) to be

protide a: factorisation of lK 1\K :

(6.4) (i.Oi\lK)1l + "z1l2 + ,,(jO"lK) = lKi\ K'

(see [13] Proposition 2.5 i.n case s = 2).

There can be choices of (Il, Il Z' II, "2)

Among them" we wi.!]. find a choice giving Il

satisfied. Throughout the di.scussion we will

aasocLa tive e.

6.1. Let (it, #lz, »; pz) be another choice_ of

(Il,. 1l2, II, "Z). Then. there unique elements aiE [K, K]sq+i (i =1,

2) ami fJi elK, (i = 0, 1) such that

]j. - Il = (a1m- + aZU AIK» (j I 1\ 1K) "-

11z - IlZ = (itlAlx)(fJOIIL+ fJIUl\lyJ)(jl.,. 1K)'

v - ,,= -(i I 1\ + (i" lK)aZ) II>

Vz - "Z = -(i.:'"t\ lK)(iiifJo + lK).
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By (A) and (6 ..1),_ 'il - fJ. is expressed as required. The uni

queness of £\:i frollL (6 ..3). By Lemma. 5.6 (ii) and C6.l), ($*  0

: (M K] [M-t\K, K] l' hence (i"l\l)*:[M:I\K, K] 1.
sq  

[M/\ K, L t\K]_1 is monic. Therefore ]1.Z  fJ.Z is uniquely' expressed as

above. Similarly, by: (A),_ (B), (G)" we have tlie expression of p - II,

"Z  "z with certain unique "coefficients of ii. and 1.AlK", which are

given_ as abovs , by (D).. 0

Recall_ the coboundaries

S = ij E [M', M'J_l'

They satisfy [ZO))

i'j'E[K, K] '''." So = i'ij:j'E[K,K] q Z.·SqL s 

d(S') = 0, 8' .

Lle[LI\K, K]sql

6.2. There elements

XE[K, Lt\KJ_l'

such that

(i) (J1lf\lK)X= S', A(ill/\lK) = S';

(ii) Lii' = jIll = SJ'(jlll\lK);

(iii) (lLl\jl)'X = (i"A 3.(lLl\i') = il$(jlll\lM);

(Lv) 3'X= Z$O;

(v) d(Li) = i" 1\ lK' d(Li) = i" 1\ lK'

where. the Mmodule structure of L 1\K glvlng d of abov.e is the

composite M1\L" K ----? L AM" K 1 Am) L 1\K.

Put X= fJ.z<lK" i O) ' A = OK A jO)"Z' They are independent

of the choice of fJ. Z' ": and satisfy (i), (ii) by (B) and (C). Estimate

the chof.c e of Li with. (i), (ii) and compute the dimages of (i) and

(ii), then one can get Li with (i), (ii) and (v). The computation

of d then leads to (iii) and (iv:). Q

The smash product KI\K has the Mmodule structures given from:

each factor:

MI\KI\K m..I\1 > K/\ K,

MI\ K" x. TAl > KI\ MI\ K 11\ IlL ) KJ\ Ie..

As in [15JLemma for anMmodule spectrum

ture def:E1res the derivation of (K'I\K, X]* (and of

X, struc

[X, K" KJ*), which
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we denote by- d
i

accnrding to the i-th factor ( i = Z). We also write

---"i[KAK, X}* = Ker di (i = 1, Z), X]* = ---"ll1---"Z.

The dl" dZ' ---"1' ---"Z, ---"1 Z can be defined for [M t\K, X]*, lM AM, X]*,
eX, K" K]* etc, in the same way. By (6.3), we have the short exact

sequence:

(6.5)k 0 --7 [M;\KK] 0'1\1)* ) [KI\K K] (i'''l)*) [MAK,K]k 0,. k+sq+l ,. k.

for k < pq-5 with k I -sq-4, -sq-3 and for s =0 mod pall k

(15J .. We shal.l deduce exact sequences of ---"i f'r-om; (6.5)k'" which, in

case s 0 mod p,: hold for all k and played an. fmportant role in

computation. in [15].

6 •.3. (d ) For k < pq-6 with exception k -sq-5, -sq-Z and

i. 2, the following sequences exact:

(ii) For k < pq-7 with exception -sq-6 &. k -sq-Z and for i =

1, 2, (l,Z), the follQwing sequences short exact:

Proof. We notice that

d1dl = 0, dZdZ = 0, dldZ + = 0

[15]Lemma 1.6,(ii) and

(6 ..6)

UZJ ,bL4J • Consider in general a commutative diagram

a l 1'1!

A: Al AZ
Z ) A

3
)

1f l b
l

If z b
2 1f 3

B: B
l '> B

Z :> B
3

t c1
19z

Cz
1

c: C ) C
z

) C
31

I II III.

It is easy to see that if a2 is epic" B is exact, c1 is moni.c., I

and lIT are exac.t, and II is a chain: complex (i.e., g2f2 = 0), then.

II is exact. One can apIJ.ly this with A = (6.5)k_l' B = (6.5)k' C =
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(6.5)k+1

ness of

and vertical arrows dl to get exact sequencE

DZ follows from. the commutative diagram

D
1•

The exac t-

where T: KA K KI\K is the map switching factors.

Next consider the case A = (6.5)k' B = (6.5)k+l' C = (6.5)k+Z

nth d1 v.ertical arrows in the above. The exac.t sequence 0 Ker f 1
Ker f 2 -;. Ker f

3
--7 0 we want comes from checking that A is

short exact, bl and c l are monic, I is exact and that II is a chain

complex. To discuss M2 in this way, we only naed a substitute for (6 •.6):

(6.6) I IreI' d2 = Im dZ in [M AK, K]* in appropriate dimensions.

I f we replace M1\K by M" M, (6.6) I ho Lds with no re stric tion 0 f dimen-

sion. (f12]§7.,. [14) ;3). There is an. exact sequence

which beCOmEs short exact in appropriate dimensions by Lemma 5.5. In a

similar argument as above, one may verify (6.6)' in. dimension. < sq+pq-5

with exceptions 0, -1,. -3, -4. Proving M"Z.

Now the decomposition [M" I\K, K)* = Im. dl @ (Im dl) (E A lK) given.

in. (12] [14] §3 is compatible with d
Z'

that is,

Ker d2 = Im dl" Ker dZ @ (Im dIn Ker d2) te A lK)

in. [M"AK, K]*. Then.

The exactness of :is now clear. o

Remark. The elements

con-

K]
-sq-5'

-s-l (.) -s-l.(.) (Xl = oc: JOAIK, Xz =Ol olliS' lKAJO E KAK,

Yl = lK I\jO' YZ = jo" lK G [K A K, K]_Sq_Z

satisfy di (Xi) = 0, di (Yi) = 0 but, if s 'i 0 mod p,. 1m dp ,

Yi Im di• So the above few e xcep t.i.on of k. is necessary for Di to

he exact. Similar exampl.es may be found for Mi. Another immediate

sequences of (6.7) are the exact sequenc:es



437

in appropriate dimensions for [KAK, KJ*.

We shall turn. back Lemma 6.1. Let T: Kt\ K K 1\ K be the map

swixching factors.

6.4. There is choice of (J.I., J.l. 2 , '" "2) which satisfy (A),

(B), (C), (D) and

(E) J.l.T(i I A l
K
) = (jlAI

K)T,,=iii:;

(F) J.l.
2T(i 'A

l
K
) - (i"" l K) (j 1\ l K) .3114

(j' A lK) T"2 = -(i/\ l
K
) ( j " " l

K
) +

(G) di (J.I.) = 0,.. d
i
(,,) = 0, i = 1" 2

(If) d1(J.l.2) = - (ill A l K) J.I. , d 2(J.l.2) = 0,

d1 ( " 2 ) =-,,(j"AIK), d2 ( " 2 ) = o.

Proof. By Lemma 6.3, there is a choice of J.I. with J.I. e.At1 , 2 '
since mE.L

1,2[Mf\K,
KJO ([15], Lemma 1.6). From.Lemma 6.3, we have a

short exact sequence

a (j'A1)* ).Ati[Kt\K,LI\K]_l (i'A1)*)

.Ati K, L 1\KJ_1 0,,

i = 1, 2, (1,2). Then there is a J.l.2 with d 2(J.l.2) = O. By Lemma 6.2 and

(B), d1(J.l.2 1) = O. Then we may choose a JJ.2 with

"i (J.l.2 - LlJ.l.) = 0 (i.e., d1 (J.l.2 ) = -(i"/\ 1K» keeping d2 (JJ. 2) = 0 in. a

similar way as in getting exact sequence of .At l,2 in Lemma 6.3. The

relations (A) (D) provide that if J.I., J.l.
2

satisfy (G), (D) then so do

the '" "2 associated to J.I., J.l. 2 • Therefore there is a (J.I., JJ.2' '" "2)

which satisfies (G) and (H). The choice of such (J.I., J.l.
2
, '" "2) is given

by

in Lemma 6.1 •.

Next we hav_e

J.l.T(i'A 1) KJO = {m} G) D,

J.l.2T(i
1t\ l)E[Mt\K, LAKJ_

1
= i(i",\1)(jA1), am) @ D',
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where

D = i'[M M] j'm Ql i 'lM", sq+l

D' = (iliA l)i'[M M] j'm Ql
" sq

We mention the relation

M]Sq+zjl(jAl),

(iliA l)i'[M, M]Sq+ljl(JA1).

(j' A lK)T(:i l 1\ lK) = (i A lK) 8 ' m + m8' (j A lK) + m.80m,

cf.[l3], Lemma l.ll,(i). With this in computation, it is not hard to find

a IL (r-e sp , IL
Z)

such that the component of ILT(i I /\ lK) (r-e sp , ILZT(i 'AIK))
in Dn11,Z (resp. D'n 1 1,z) is trivial. They satisfy (G) and (H).

A similar discussion for II .. liZ completes the proof. 0

The choice of (IL, ILZ' II, liZ)

(6.8) with restriction a l = i 'aj',

and e 1U.f, M] 1 (1 stands forsq+

satisfying (A)-(H) then becomes

= i with uniqueaE1CM,M]Sq+Z

the kernel of d).

Theorem 6.5. There is choice of (IL, IL Z' v, VZ) such that

ILT = IL,

Proof. We define an involution T on the set S of all possible

(IL, JI. Z, II, liZ) wi.th the properties (A)- (H) as follows:

T(JI., Jl.Z' II, liZ) = (T(IL), T(Jl.Z)' T(II), 7(IIZ))',..,
T(JI.) =Jl.T, T(Jl.Z) = -Jl.zT

T(II) = Til, 7(II
Z)

= -TII
Z

+

As mentioned above,

@ 1[M, M1s q+z' and

elements. Since T

there is a bijection between Sand 1[M, M)Sq+l

hence, S 1s finite and consists of odd number of

is an involution,. there is a fixed point, for which

the theorem. is satisfied.

Theorem 6.6. Any JI. in 6.5 is associative.

o

Proof. Notice that (JI., Jl. Z' )I, )lZ) in Theorem.6.5 also satisfies

(G) and (H) in Lemma 6.4. One may develop an analogous discussion as in

[15J, Lemmas 4.6,4.8 to estimate the element

in [KI\KI\K, LI\LI\K]_z'. which is just the (i" 1\ i" 1\ IK)*-image of

ii
Z
,2 + Jl.Z,Z in [15], Lemma 4.6 in case s:: 0 mod p, with. expression
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in terms of elements in (K, LALAK]* (TX,Y : XI\Y YAX is the

twisting map); then compute d
ld2

of the estimate to get

(*)1 (i"" i"" lK)(#1( #1" lK) - #10K" #1» = l' IM)( j' A j I A j')

for some l' E t MAMAM, L" L AK]3sq+3' where #1M is the mul,tiplicatioD

of M. In case s to 0 mod P, (*)1 is the same as the image of the first

equa.t:ion in. [15J, Lemma 4 •.8.

Let P: XI\XAX --..,. X"XI\X be the c.yclic permutation: P(x1,x2,.x3 )

= Since #1M is commutative and associative, #1M(#1l{'AIM)
is inv:ariant under P: #1M(#1M"lM)P =#10#1MAIM)' hence,

(*)2 #1M(#1MAlM)(l + P + p
2) =

By the commutativity of #1, we have #1(#11\ lK) :: #1 T(lK"'#1)P = #1(lK" #1)P

and (#1(#1l\lK) - #1(lKA#1))(l + P + pZ) = (#1(#1"IK) - #1(lK"I1))(p3 - 1)

= O. By (*)1 and (*)2' the right side, and hence the left side, of (*)L

is trivial. (Notice that we always assume p 5). One may use Lemma 5.6
repeatedly to show that

is monic •. o

Remark 6.7. More detailed discussion leads to the following "associa-

tiVity":

#1Z(lKA #1) = (IL1\ #1) (#12 A lK)'

(IL 1\ #1)( TK,L " lK) (lK" #12) = - (lL1\ #1)(#12/\ lK) + 11 i#1 1\ lK)'

(lL" #1 2) (TK"L A lK) (lK/\ #12) = - (TL, L " lK) (lL 1\ #12) (#12 "lK)'

cf.(13], Lemma 2.8, in_case s = 2. They give stronger about the decom-

position of K*K. (6.4) and (A) I, (B)', (D) define a decomposition

'lr*(KI\K) = 'lr*(K) Gl 'lr*_l(LAK) @ 'lr*_sq_2(K),

which is shown to be a 'lr*(K)-r1ght module isomorphism. The elements

v:i.a : SSQ+2 KI\K, jo#1: KI\K ssq+2 give the duality K*K

'lrs q+2_*(KAK), which is an isomorphism of 'lr*(K)-bimodule, and via which

the above decomposition of 'lr*(KI\ K) becomes

K*K = (MOd)oO @ Der Gl Mod,

see Remar-k 2 •.4.

Proof of Theorem 2.5. Immediate from Theorems 6.5, 6.6, in par-

ticular'J &' E Der follows from #1 2 + 112T =All ami Lemma 6.2. o
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Homotopy Invariance of A and E
oo

Ring Spaces

R. Schwanzl and R.M. Vogt

O. Introduction

In [2] May introduced the notion of an E ring space. This is

a space on which a multiplicative E
oo
operad G and an additive

E
oo

operad C act. These two actions are not independent, they are

connected by distributiVity relations. Although it is intuitively

fairly clear how these relations should look like, a detailed

description is quite elaborate. The additive structure of such

a ring space gives rise to a spectrum which inherits the multi

plicative structure. This in turn can be exploited for calcu

lations.

Waldhausen's algebraic Ktheorey of topological space ([8],[9] ),

which has applications to the investigation of pseudo isotopy

spaces, needed the weaker version of an A
oo
ring space which was

sUbsequently defined by May in [4]. Here the multiplication is

encoded in an A
oo
operad rather than an E

oo
operad. An E

oo
ring

space corresponds to an A
oo
ring space like a commutative ring

to a noncommutative one.

The purpose of this paper is to solve the problem of homotopy

invariance of A
oo

and E
oo
ring spaces posed by May in [3]. It

seems to us that May's definitions, in particular his distributivity

relations, are too rigid to allow spaces of the homotopy type of

an A
oo
or E

oo
ring space to carry an A

oo
or E

oo
ring space structure.

So we modify his definition in the spirit of [1] and bring it

closer to the notion of a theory as known from universal algebra.

Our definition has the advantage to be transparent and easy to

memorize. In particular, we need not list any particular relation

such as distributivity. Our results will show that we stay close

enough to May's theory: Any A
oo
or E

oo
ring space in his sense

is one in ours, and any A
oo
or E

oc
ring space in our sense is

homotopy equivalent to one in his, and the homotopy equivalence

preserves this structure up to coherent homotopies. Sc we do not
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have to worry about the machine associates to each such

space an A
oo
or E

oo
ring spectrum: We just can take May's machine.

The central technical device from which all follows is a ring

theoretic lifting theorem similar to the lifting theorem 3.17

of [1]. Its proof is far more complicated than the one of [1]

because ring theories are considerably more complicated than

theories associated with monoids.

In section 1 we introduce A
oo

and E
oo
ring theories and indicate

the reasons why it took such a long time to find a reasonable

definition. Section 2 is devoted to the proof of the lifting

theorem just mentioned. In section 3 we deal with homotopy

homomorphisms between ring spaces while the main results on

homotopy invariance are listed and proved in section 4. As pointed

out they are an almost immediate consequence of the lifting theorem.

Their proofs are essentially the same as those of [1]. A final

section deals with A
oo

and E
oo
ring spaces. We apply the results

of section 4 and investigate the connection of our notion with

the one of May.

Needless to say that we have to work in a suitable category

Top of topological spaces, e.g. compactly generated spaces in

the sense of [7], to avoid point set topological inaccuracies.

We also should mention that we found the key ingredients for

the lifting theorem while we were studying Steiner's paper on

loop structures on the algebraic K-theory of spaces [6].
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1. Ring theories

Let us recall the definition of a theory. It is the category

of all operations that can be written down in the particular

theory in question. Each theory contains a distinguished collection

of operations, the set operations. Let S be the category of

finite sets n = {l,2, ... ,n} and all maps. For each a E

we have a set operation

( 1.1)

1.2 Definition: A theory is a category 8 with objects 0,1,2, .... ,

topologized morphism sets 8(m,n), and products, together

with a faithful functor Sop - 8 preserving objects and products.

Composition is continuous and the canonical map 8(m,n)-8(m,1)n

is a homeomorphism.

A 8-space is a continuous product preserving functor X:8-Top

such that the composite Sop - 8 - Top gives the set operations

(1.1) on X(l). The space X(l) is called the underlying space

of X. A homomorphism of 8-spaces is a natural transformation

of such functors.

A theory functor 8 1 - 8 2 is a continuous functor of theories

such that

commutes.

In abuse of notation we often denote the underlying space of

a 8-space X by the same symbol X (instead of X(l)), and say

"X admits a 8-structure".
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Examples of theories are the theories of monoids, groups, rings

etc. One should think of 0(n,1) as the space of all n-ary operations

in the particular theory. Sop is the trivial theory. Each topological

space evidently admits an SOP-structure.

In any theory the set operations have the useful property that

they can be pushed from left to right:

(1.3) For oES

we have

(a1, ... ,a) E 0(k,1)n and b.E0(k.,1), i=l, ... ,n,
n 1 1

0* 0 (a 1 ' ••• , an)

0* o(b 1 x... xb
n)

where

(ao1'··· ,aom)

(b o1 x... xbon) 0 0 (k 1,··· ,kn) *

n
lLk.
i=l 01

n
II k ,
i=l 1

maps the i-th summand kOi identically onto the o(i)-th

summand kOi of these ordered disjoint unions.

We are interested in a reasonable definition of a ring theory

up to homotopy. In [1] Boardman and Vogt associated a canonical

homotopical theory W0 with each given theory 0. Loosely speaking,

W0 is the free theory over 0 with the relations in 0 put back up

to coherent homotopies. Making these relations up to homotopy

into strict ones again one obtains a theory functor

E W0 - 0,

which is a homotopy equivalence (on morphism spaces). More

generally a 0-space up to homotopy is a where

is a theory admitting a theory functor - 0 which is a homotopy

equivalence.

A result of Boardman and Vogt [1; Thm. 4.58] shows that under

mild restrictions any such is a deformation retract o£

a 0-space. Hence this definition is too restrictive for our

purposes: We think of an infinite loop space as a homotopy commutative
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and homotopy associative monoid such that the homotopies satisfy

"all" coherence conditions. Hence an infinite loop space theory

should be the theory of a commutative monoid up to homotopy. The

results of Boardman and Vogt show that the homotopical theory

WGcm associated with the theory Gcm of commutative monoids

characterizes all spaces which are homotopy equivalent to a weak

product of Eilenberg-MacLane spaces. So not every infinite loop

space is a WGcm-space.

The correct version of theory characterizing infinite loop

spaces is obtained as follows: Let S C Gcm be the subcategory

generated under composition and x by permutation set operations

and the operations

(1. 4)

Ao * I--- 0

(This category is isomorphic to S defined above). An E
oo

theory

is a theory equipped with a theory functor

F - Gcm

such that

p-l (S)-- s

is a homotopy equivalence. Such E
oo
theories describe infinite

loop spaces. The difference between an E
oo

theory and a Gcm
theory up to coherent homotopies is explained in [li section 6.4].

Here we only mention that set operations from epimorphisms - they

operate as all sorts of diagonal incluEions - are responsible for

this fundamental differer.ce.

The problem with ring theories is to find the correct notion

of a corresponding E
oo
theory. As essential operations we here have

the additive operations An' n 0, of (1.4) and the multiplicative

operations



(1. 5) !In

llO :

(Xl' ••• ,xn)

*

447

X 1·X2 • • • • 'xn'

I-- 1

n > 0

To write down the relations we need permutation set operations for

the commutatively relations, diagonal maps for the distributive

law and - since we work with semirings rather than rings - projections

to write down the relation Since diagonal maps are set

operations from epimorphisms and projections from monomorphisms we

cannot discard any set operation as one does for Em theories, where

one restricts ones attention to permutations.

This led May to consider the multiplicative and additive structures

separately and connect them by a number of distributive formulas.

We adopt a different approach: Let Or and Ocr be the theories of

semirings and commutative semirings respectively.

Let R respectively CR be the union of the two subcategories of

Or and Ocr the first of which is generated under composition and x

by the operations !In' n 0, and the second of which is generated

under composition and x by the operations Il
n

and A
k
with n > 0

and k O. We stress that Rand CR are unions of subcategories,

but they are not subcategories themselves. Both contain all set

operations from monomorphisms. Set operations from epimorphisms

occur in connection with the distributive law. For n 2 the opera-

tion X r n·x is not contained in R or CR. In particular, each

operation in R or CR is simple in the sense of Steiner [6;Def.l.2].

The subsets Rand CR of operations in

had for infinite loop spaces.

o
r and Ocr take the part S

1.6 Definition: A theory over e is a theory e equipped with a
-- r

surjective theory functor Fe: eo. Moreover, ob ° c more- r
is supposed to be a closed cofibration.
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A functor 8 -- 8 r is a functor H such that

oH""F8•

In the commutative case substitute the suffix r by cr.

1.7 Definition: An Am or Em ring theory is a theory 8 over

8r respectively 8
c r

such that

(resp. CR) is a homotopy equivalence.

This special type of homotopy equivalence will play a central

role in our theory, so we introduce an extra name for it.

1.8 Definition: A theory functor H: 8 --- over 8 (or 8 ) is
r cr

called a ring equivalence, if

H

is a homotopy equivalence on the morphism spaces. It is

called an equivariant ring equivalence if

H
-1 -1

F
8

(R) (p,1) -F'j! (R) (p,1)

is a L -equivariant homotopy equivalence for all where
p

Lp is the symmetric group of p symbols acting by composition

with permutation set operations.

From the point of view of homotopy invariance a homomorphism

f:X -- Y of 8-spaces is not the appropriate notion of a morphism

because any other map in the homotopy class of f is most likely

not a homomorphism. To deal with this, we also have to consider

the categories

8xII.>_8 xL
I1

where II.> is the category with two objects and an isomorphism

0'-----""'1
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between them and L
n
is the linear category

0-1 - 2 (n-1) - n.

The notions of a and a{0 xL
n)-space

are the

obvious extensions of the definition of a 0-space. In particular,

a determines and is determined by an isomorphism of

e-spaces X X1, while a (0 x L )-space determines and is determinedo n
by a sequence of 0-spaces and homomorphisms

Hence the homotopical categories and W{0xL
n)

clearly

codify isomorphisms and homomorphisms up to coherent homotopies.

In particular, an isomorphism up to coherent homotopies is a

homotopy equivalence where the maps and homotopies involved

preserve the algebraic structures we up to coherent homotopies.

Also note, that there are two canonical inclusions of L1 into

which we shall use without explicit mentioning.
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2. The lifting theorem

In [1] the crucial tool in the analysis of homotopy invariant

algebraic structures associated with the theory Gem of

commutative monoids is the lifting theorem [1;Thm. 3.17]. We

try to prove a similar result in our situation.

Let us first recall the definition of the theory WG mentioned

above.

(2.1) The theory TG: Let G be any theory. We consider each

operation aEG(n,1) as an electrical box with n inputs and one

output. Composite operations are obtained by wiring boxes

together. E.g. let aEGcm(2,1) be the addition and bEGcm(3,1)
be the addition of three elements; then

(2.2)

(x+y)+z

y
x y z y'x

x+y+z x+(y+z)

In Gem' these three circuits all represent the same operation,

because of associativity. The shape of these circuits suggests

to call them trees with the inputs on the top and the output at

the bottom. In the associated homotopical theory the three trees

in (2.2) do not coincide but are homotopic. To account for this we

give each connection between boxes a length between 0 and 1 and

allow edges of length 0 be shrunk away by combining the boxes at

the ends (see below).

Given a particular shape A of trees we now have the following

data: Each box with n inputs is labelled by an element aEG(n,1);

and each connection has a length tEl, I being the unit intervall.

Hence the set of all trees of shape A can be topologized as a

product of spaces G(n,1) and a cube I r.

There is one additional datum to a tree: There is a map from the
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inputs of the tree to some set n. We give each input a digit,

namely its image under this map.

Let T0(n,1) be the space of all pairs (8,T), where 8 is any

tree and T:k - n is the function from the k inputs of 8

(identified with {1,2, ... ,k} from left to right) to n. Define

T0(n,m) = (T0(n,1)m. We allow the trivial tree

in T0(1,1) and the stumps

Ta ,aE0 (0, 1)

in T0(0,1).

For (8,T)ET0(n,1) and ,a.)ET0(m,1), 1SiSn, we define the
l l

composition

(8 ,T) o( ,a 1 ) , · · · ,

in T0 by wiring onto each input with digit iEn. The

new connections obtain the lengths 1, the digits of the

define the map of the inputs of the new tree into m.

The product of two trees (8
i,a i)

E T0(n
i,1)

is

( 81 ' a 1) x (8 2 ' a 2) = (( 81 ' j 1 co 1 ) , (8 2 ' j 2 a a 2) )

identified with n
1+n2

in order preserving blocks.

From this it is clear that

( 8 , T) = ( 8 , id) a T *

We have obtained a new theory T0.

(2.3) The theory W0: To relate T0 to the given theory 0 we

impose relations on T0.
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(2.4) (a) Any connection of length 0 can be shrunk away by

composing its ends:

c=b 0 (id x ax i.d ) in 0

(b) Any box with label id E 0(1,1) can be removed

a

b

with t 1*t2 = max(t1,t2).
(For inputs and output we

assume the lengths 1, by convention).

(c) Any box boa* can be replaced by b by changing the

tree above it

A •••••••

for aES •

fAI
a t.:Qll/

\\/
I
b

We define W0 to be the quotient theory of T0 modulo these relations.

Define the augmentation

E: = E:0 : W0 - 0
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by mapping each tree to its composition operation in 8, i.e.

£(8,,) = £(8,id)o ,*, where £(8,id) is the composite operation

represented by 8 if we neglect the lengths of the connections.

2.5 Proposition: The functor £:W8 -8 is a homotopy equivalence

of theories. (The homotopy inverse is not a functor!)

For a proof see [1;3.6].

Since we need the lifting theorem not only for theories 8 but

also for the "generalized" case 8 x1.6 and 8xLn, we have to consider

a minor generalization. Let C=1.6 or L • Then W(8 xC) is obtained
n

from 8xC in the same manner as W8 from 8. Since there is at most

one morphism between any two objects of C, we can alternate the

description of a tree in T(8 xC) as follows: Let aE8(n,1) and fEC(k,l).

Instead of labeling a box in a tree 8 by (a,f)E(8 xC) «n,k), (1,1))

we label it by aE8(n,1) and give its inputs besides lengths an

additional label k and its output an additional label 1.

f:k-l

We call a subtree of 8 to be of level k if its edges all have

the label k.

The lifting theorem is going to be applied in the following

situation. We are given a diagram of theory functors

W8 F
'I'---------

(2.6) !£ !G
8 F

1\

where G is a homotopy equivalence of some kind, and a '!'-space

X:'!'-- Top. We would like to lift X to a W8-space XoF. This ought

to be possible because the subcategory W 8 of W8 represented by
o

all trees whose connections all have the lengths 1 is the free

theory over 8. Hence F:W
o8

-'I' exists making the square (2.6)



commute up to homotopy. Now filter WG by subcategories WnG

and extend FIW G inductively over the filtration.
o

This procedure only has a chance to work if the following

crucial condition is satisfied: A composite operation aob:n-1

has (at least) the filtration of the maximum of the filtrations

of its factors. Otherwise we simply do not have any chance to

extend F as a functor.

In the case of theories related to G one can restrict onescm
attention to the parts over S C G

cm
where one only has permu-

tations as set operations. Here the obvious skeleton filtration

of we makes everything work. The distributive law causes trouble

in the case of ring theories.

2.7 Example: Consider the trees

6 =
1

2 3

\Y

They do not have anything to do with each other. But if we

compose 62 with the operation from the epimorphism

0=(
\

2
2

3
1

then 61 and 62 00* are connected for t=u=v=O via the distributive

law.

There are two possibilities to get around this difficulty. Instead

of lifting the functor F to a theory functor F we could try to pull



back X : - Top to a We-space X which is X on objects but

which not necessarily factors through For this we have to

assume that the underlying space X and the morphism spaces

S(n,l) are locally equiconnected in a strong sense. The precise

assumptions are those of [1; Thrn. 4.58].

We, for our purposes, favour a different approach. We prove

the lifting theorem for a special kind of theory over Sr or Scr'

namely for those theories whose morphisms can be decomposed

almost uniquely into an additive and a multiplicative morphism.

The following definition is motivated by results of Steiner [6].

2.8 Notation: Let Rand R denote the subcategories of Sr
a m

generated under composition and x by all An and all per-

mutations respectively by all un' We use the same notation

in the commutative case with the difference that permutations

also appear in R
m
•

2.9 Definition: A theory F:S-S (or S ) is called factorial
r cr

if it contains subcategories Sa of "additive" operations

and sm of "multiplicative" operations such that

1. Sa is a PROP in the sense of [1;2.44]

2. sm is a PROP in the commutative and a PRO in the sense

of [1;2.42] in the non-commutative case

3. Sa(k,l) and Sm(kj1) are closed subspaces of S(k,l). They

are disjoint for k.l and Sa(l,l)n em(l,l)={id}. The

inclusion of id into ea { l , l ) and Sm(l,l) is a cofibration.

4. The functor F maps ea and em surjectively onto Ra and Rm

5. Each operation c E O(n,1) admits a factorization

with aESa(k,l), m ESm(j ,1) for r=l, ... ,k, and a* a
r r

set operation, uniquely up to the relation
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(a ° T* ) ° [ (m, ° 11r) x . . . x (mk ° 11k) ]° a *

with TEL, 11 EL. In the non-commutative case,
k r J r

each 11 =id.
r

Examples of factorial theories are the theory 8r or 8c r itself

and, by a result of Steiner [6; Lemma '.10], each theory arising

from an operad pair in the sense of May [2; chapt. VI].

Given a factorial theory, we call a decomposition 2.9.5 of

a morphism c a standard factorization of c.

For later use we state an elementary result.

2.'0 Lemma: Let ao(m,x ... xml)oa* be a standard factorization

of c=mo(a,x ... xak) with mE8m(k,1) and arEea(jr,,), r=', ... ,k.

Then l=j1· ..• · jk and mrEem(k,,), r=1, ... ,k. Hence

aES(k·ji·····jk ' j,+···+jk)

Proof: F (c) = uk ° (A. x ... xA. ) = AI ° ()J. x ... xu . ) ° a *J, Jk l, II

with lJ i = F(mr). By the distributive law,
r

with P=j,j2 ... j k and some suitable set operation B*. The

uniqueness of the standard decomposition of F(c) up to per-

mutations implies, that p=l, ir=k, and a and B differ by a

permutation.

For factorial theories 8 we can construct a filtration of

W(8 xC), C=L
n
or which serves our purposes. It is bound

to be fairly complicated. A guide line should be that the

tree 82 of (2.7) has to have lower filtration than the tree

8" because the composite 82°0* has something to do with 8,.
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Observe that we never is factorial, which makes Definition 2.9

look artificial. Indeed, (2.9) is a technical condition, but

we shall see that in the case of A
oo

and E
oo
ring theories it

suffices to consider factorial theories.

For the rest of this section we restrict our attention to the

commutative case. The development of the non-commutative case

is completely analoguous, one simply omits the permutations in

8
m•

Let T' be the subcategory of T(8 xC) of those trees having

box labels in 8
a or em only. So, given a box label C01*, the set

operation 1* comes from a permutation. Any other set operation

only occurs as digiting function of the inputs. The morphism

spaces of T' (8xC) are closed subspaces of those of T(exC).

Any representing tree in T(8 xC) can in a canonical way (up to

permutations) be brought into a tree in T' (exC) by introducing

redundant connections of lengths o. If a box is labelled c

with c ea u em we choose a standard factorization

and substitute

by

Starting at the output and working upwards we can change each

representing tree inside its equivalence class to one of the

required form. Hence W(8 xC) is the quotient of T' (exC) by the

following modified relations:

(2.11) Call a box with label in 8
a or em an a-box respectively an

m-box.

(a) Any connection of length 0 between two a-boxes or two m-boxes

may be shrunk by using relation (2.4a)
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(b) (2.4b), but note that the incoming and outgoing edges

must have the same labels

(c)=(2.4c) but for permutations only

(d) Given mE0m(k,1) and aE0a(1,1), and a standard factorization

mo(id xaxid ) = a'o(m1x ... xm )oa*
p q r

then the following subtree

(I) IAp+ 11·····.A1 • .... "IApl

can be substituted by

(II) IAu1l ··· Aukl .
'----'---.0----'-'

o

and vice versa.

We call the process (2.11d) "pushing up an m-box". It is the

relation (2.4a) for connections between m- and a-boxes in the

spaces T' (0 xC) of representatives.
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Observe, that the different choices of standard factorizations

made in relating a tree in T(GxC) "canonically" to a tree in

T' (GxC) are taken care of by (2 .. 11c).

(2.11c) A filtration of W(GxC): As mentioned above we have to

take care of the distributivity relation, which complicates the

filtration. The shape A of a tree G in T' (GxC) is defined to be

the underlying circuit of G together with a specification of edge

labels (in ob C) and a partition of the boxes into a-boxes and

m-boxes. With 8 we associate a sequence of integers: Define the

height of an m-box in 8 to be the number of a-boxes between it

and the output of 8. Let Pk be the number of m-boxes of height k.

Starting with the m-boxes of maximal height we push up all m-boxes

through all a-boxes different from a nullary operation using

relation (2.11d). We end up with a shape h (8) where all m-boxes

have maximal height. Let 1 denote the number of connections of

this shape. Thus, we can associate with each tree 8 of shape A

the same sequence of integers

We order these sequences lexicographically. This ordering is

not as infinite as it looks, because p.=O for i>l and each
1 1

We obtain an induced filtration of W(GxC) : For v =(1;P1,P2"')

define Fv to be the subcategory of W(GxC) generated under

composition and the product x by all set operations and all

elements represented by trees 8 with s(8) v.

It should be observed that id, which is an additive as well as

a multiplicative operation, behaves like an additive one as far

as this filtration is concerned.

The next result shows that our filtration satisfies the funda-

mental requirement mentioned above.

2.13 Proposition: If c=c1oc 2 is in F v ' so are c 1 and c 2.
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Proof: Let (e,a) be a representing tree of c 1 with lowest possible

see). Since (e,a) = (e,id)oa*, it suffices to consider the case

that c 1 is represented by (e,id). If c 2 is not a set operation,

c is represented by a cnmposite tree of e and other trees Pi'

so that see) and Here observe that pushing up

m-boxes does not decrease the number of connections, so that

has at least as many connections as heel 0 (h(P 1 ) x ••• xh(P r » .

If C2=T* and T is a permutation then (e,T) is not related to a

tree with s(e)because permutations do not change h(e)

or any Pk' If T is a monomorphism the relation, that any element

of 0
Q
(0 , 1 ) behaves like a strict multiplicative 0, can influence

(e,T). But the related tree has more m-boxes and hence is of higher

filtration than e. If T is an epimorphism, relation (2.11d) can

possibly be applied: A subtree of type (II) can be replaced by a

tree of type (I). But (I) has an m-box of height ° which (II) does

not have. Hence this representative is of higher filtration than

e.

We now can preceed almost in complete analogy to [1; section III.3J.

Given a tree shape A, the space M'A of all trees of this shape is

a product

M'
A

( n
i,j

(2.14) An element represents an element of filtration

less than sea) iff one of the following conditions holds

(a) some connection between two a-boxes or two m-boxes has

length °
(b) some box with the same input and output labels is labelled

by id E 0(1,1)

(c) some connection from an a-box down to an m-box has length °
(d) sufficiently many connections have length 1 to decompose e in

T' (0xC) •
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Explanation: (a) reduces e by relation (2.11a). The resulting

tree. has less a-boxes or Hence, in particular, h(.)<Ne).

(b) reduces by relation (2.11b). Again, h(.)< h (6) for the resulting

tree •. In case (c) relation (2.11d) applies. Here we distinguish

two cases: The a-box is labelled by a nullary operation e. Since

any nullary operation in a factorial theory is multiplicatively

a strict zero the adjacent m-box disappears, and again h(.) <hIe)

for the resulting tree •. In the second case the a-box is not a

nullary operation. Then the m-box can be pushed up to lower the

filtration. (2. 13d) is clear.

Trees which are related by (2.11c) have the same tuple and

represent elements of the same filtration. We have to account

for this: Let A be the set of all tree shapes obtained from A

by applying relation (2.11c). Let L C S(2,2) be the subgroup
p

of permutations, and

There is a group G' acting canonically on the space

and

and

the coordinates of I r, subgroups Lk.
1

me (ki,nvia composition with set operations on

A sUbgroup Lr permutes

LI. operate
]

ea (I . , 1 ) , a subgroup L operates from the right on the factor
] p

Lp' and an additional subgroup permutes the factors of the

product

II em (k . , 1) " eQ
(I . ,1 )

1 ]

Let G be the subgroup of G', generated by all g E G', which map

M
A
into itself and for which the trees e and g(e) are related by

a single application of (2.11c). We call G the symmetry group of

the shape A.
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For a given filtration F
v
of W(GxC) let DFv be the subcategory

of F generated by elements represented by trees (6,a) with
v

S(6)< v. Let NA C MA be the subspace of all trees to which (2.14)

applies. Clearly, N
A
is a G-NDR of MA(G-equivariant neighbourhood

deformation retract), and the map

DF
v

factors through NA/G.

To obtain F v from DFv we have to attach a quotient of one

for each shape orbit A. Note that L operates from the left on
p

r : (6, a) (6,0)0 ,* (6, ,0 a)

and on the right of S{p,g) by

a·, ao,

The attaching map of NA/G

Lp-action, and we have to

is equivariant with respect to the

attach MA/GxL S(p,g) relative to
p

S{p,g). We, in fact, attach MA/G and extend "equivariantly"NA/GXL
P

using the set operations. To avoid considering the G-action and

the Lp-action on MA independently we combine the two. Let

c MA be the subspace with L -coordinate An element gEG
p -1

maps to some space PA,n . The correspondence on

defines a homomorphism

G-L
P

We define a G-action on PA:=PA,id by

-1 -1The first map is g. (6,id) = (6 -g , ¢(g )), the second maps

(6,0) to (6,id). The characteristic map

P -FA v
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sending each tree to its corresponding operation then is G-equi-

variant, where the G-action on W(8 xC)«p,c), (l,d)) is given by

g'c co¢(g)*

If we try to construct a theory functor W(8 xC) --- 0/ inductively

by extending a data-preserving functor DF
v

- 0/ over F
v
it hence

suffices to find G-equivariant maps PA - 0/ extending the given

maps on

one for each shape orbit, where S(A) v.

Now almost all is set for the proof of the lifting theorem.

Since we need a relative version let us introduce the notion of

an admissible subcategory of W(GxC). Let V cW(GxC) be a sub-

category and let VA c PA be the subspace of those trees (e,id)

representing an element of V.

2.15 Definition: V c W(OxC) is called admissible if the following

holds:

(i) If c
1oc2

is in V then c l and c
2
are in V

(ii) If c l
xc

2
is in V then c

1
and c 2 are in V

(iii) (P A,VA U QA) is a G-NDR and, if F 8xe o E ° lJA(PA) {CR,a G-SDR

(strong deformation retract)

The empty category is admissible because (PA,QA) is a G-NDR. If

PA does not sit over CR it contains an a-box with an input on which

a tree is sitting having no inputs but only stumps with labels in
mG . Then PA has "free" lower faces and there exists an equivariant

deformation retraction PA-QA'

2.16 Lifting Theorem: Given a diagram

V

W(OxC)

OxC II

of theories GxC,II,o/ over 8c r
xC and data preserving functors
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satisfying the following conditions

(a) 0 is factorial

(b) V is admissible

(c) K' (t), tEl, is a homotopy through data preserving functors

from FO(EIV) to GoH'

(d) One of the following conditions hold

(I) G is an equivariant ring equivalence

(II) G is a ring equivalence, and 0a(p,l) and 0m(p,l) are

numerable principal L -spaces for all
p

Then: (A) There exist extensions H:W(0xC) --- and

K(t) :W(0 xC) A of H' and K' (t) to theory functors

over 0c r
xC, such that K(t) GoH.

(B) Given a data preserving homotopy H' (u): of H', extensions

Ho' of H' (0) and H' (1) to theory functors over

0c r
xC, homotopies K(i,t) :W(0xC)- A,i=O,l, of theory functors

from FOE to GoHi and a data preserving homotopy of homotopies

L' (u,t) : V --- A from K(O,t) IV to K(l,t) IV such that L'(u,O)=Fo(EIV)

and L I (u,l) = GoH' (u ) , Then there exist extensions H(u) :W(0xC) -

ana L(u,t):W(0 xC)--- A of H' and L ' to homotopies of

theory functors over 0c r
xC, such that L(u,O) = FOE, L(u,l)= H(u),

H(O) = Ho' and H(l) = H1.

Part (A) proves the existence of a lift up to homotopy and Part (B)

shows that it is unique up to homotopy.

Proof: We construct H by induction on the filtration, starting with

v=(O,l,O, ... ). Then the elements of F are represented by a tree
v

with a single box. Let (e,id) be a representing tree of CEFv •

If cEV define H(c) = H' (c). Otherwise, put H(c) GOFOE(C) where

G is any homotopy inverse of G. The homotopy Id GoG induces

K(t) (c). We extend to all of F
v

by composing with set operations
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from the right.

In the inductive step we need G-equivariant maps

and G-equivariant homotopies

kArt): PI. -A«p,c), (l,d))

which are already given on QAUVA and which satisfy k A(0) = FOEoUA
and k A(1) = GohA, where u

A
is the characteristic map of PI..

If PI. maps to CRxC under F8 xCo E ° u
A

we apply [l;Thm. 3.5, p.241]

to prove (dI). Otherwise we use the strong deformation retraction

PI. - VAx QA given by assumption. In the case (dII) we show that

PI. is a numerable principal G-space in exactly the same manner

as in [1;p.85] and proceeds in the same way.

The proof of part (B) is exactly the same if one substitutes the

G-NDR pair (PA,QA U VA) by the G-NDR pair (PA,QA U VA)x(I,aI).

This completes the proof of the lifting theorem.

Using the same induction and the G-equivariant homotopy extension

property of the pair (PA,QAUVA) we obtain the following extension

result.

2.17 Extension Theorem: Let 8 be factorial, V c W(8 xC) admissible,

H:W(8xC) - 'l' a theory functor over 8c r"C and K(t):V - 'l' a

data preserving homotopy of functors such that K(0) = HIV. Then there is

an extension H(t) :W(8xC)- 'l' of K(t) to a homotopy of theory functors

over 8
cr

xC such that H(O)=H.

Remark: We can prove the lifting and the extension theorem for

a weaker type of factorial theory.We do not need the uniqueness

part of 2.9.5. It suffices to have a "decomposition function"

which maps each operation c to a "standard factorization". A slight

refinement of the filtration makes the same proofs work in this

case.
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3. Homotopy homomorphisms

Let [n) be the ordered set (O,l, ... ,nJ. The correspondence

:= K 0n

defines a semisimplicial class K0. Note that an order

preserving map a:[mJ [n) defines a functor Lm - Ln and

hence a functor [a) W(0 xL
m) - W(0 xL

n ) . Composition with

[a) the structure maps of K0. Let

di:K 0 K 0n n-1

i :K 0 KM10s n

be the standard face and degeneracy maps.

3.1 Definition: Let X,Y:W0 - Top be W0-spaces. A homotopy

homomorphism (h-morphism) is a W(0 x L1)-space p such that

dOp Y and d 1p=X.

The map f:X(l)--- Y{l) given by p(e,id) (x) fix) with

e = id

is called the underlying map of p(here 0 and 1 are edge-labels).

It is clear how to define the composite of an h-morphism and

a homomorphism of W0-spaces, but it is far from clear, how

to define the composite of two h-morphisms. For this we need

a property of K0.

3.2 Let 0 be factorial. Given a horn of (n-1)-simplices

Po,P1,···,Pr-1' Pr+l"",Pn in K0 with the 1st or (n_1)st

simplex P missing. Then there exists an n-simplex aEK 0r . n
such that dla = p. for

1
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In [1;Thm. 49] this is proved for r:1. By treating nand n-1

the same way as 0 and 1 in this proof, one obtains the result

for r=n-1. The proof is exactly the same in our case, if we

use the lifting theorem 2.16. We should remark that one can

obtain the more general result that Ke satisfies the restricted

Kan extension condition with some more effort. For our purposes

Lemma 3.2 suffices.

3.3 Definition: Given h-morphisms a:X--Y and 6:Y --- Z of

We-spaces. Call an h-morphism y:X--Z a composite of

a and 6 if there is a oEK2e such that dOo=6, d 1o=y,

d 2o=a.

By (3.2) a composite of a and 6 always exists if 0 is factorial.

It need not be unique, but it is unique up to homotopy.

3.4 Definition: Two h-morphisms a,6:X--Y are called homotopic

if there is a oEK2e such that dOo=a,d 1o=6, d 2o=soX.

In view of (3.2) the proof of the following results is standard

(e.g. see [1; p.104 ff]).

3.5 Lemma: If e is factorial the following hold:

(a) The notion of homotopy is an equivalence relation

(b) Composition is unique up to homotopy

(c) The homotopy class of a composite of a and 6 depends

on the homotopy classes of a and 6 only.

3.6 Proposition: If e is factorial the We-spaces and homotopy

classes of h-morphisms form a category CO'

When dealing with h-morphisms from We-spaces to e-spaces we

prefer a variant of the above notion. For this we have to

modify the W-construction.

Let Wr(exL n) be the quotient of W(oxLn} obtained by adding the

following relation to (2.4).
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(3.7) Any tree e is related to the tree obtained from e
by changing the lengths of all connections with label n to O.

Each tree in T(0 xL
n ) is related to a tree having no connection

of label n. We call such a tree a reduced tree. Hence, the

full subcategory of objects (k,n), k=O,1, ... , in Wr(0
xL

n ) is

canonically isomorphic to 0, the isomorphism being introduced

by c:Wr(0
xL

n) - 0 xL n. The spaces Wr(0
xL

1) will be used in

section 4 to prove that a W0-space is isomorphic in C0 to a

0-space.

Note that any reduced tree with output label n decomposes

canonically:

(3.8)

o

For the reduced version we also have a lifting result. We only

state it in the generality we are going to use.

3.9 Proposition: Given a diagram of theory functors over

o xL
cr n

where 0 is factorial, V is generated by some of the faces
id Wr(0

xL
n ) and K' (t) is a homotopy through theory functors
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from E!V to G 0 H'. Let V' and be the full subcategories

of V and of all objects (k,n), kEIN
o'

Assume

(a) G is an equivariant ring equivalence and on an isormorphism

(b ) H I I V I =G- , 0 ( E I V ' ) •

Then there exists a theory functor extension H:Wr(exL n)--
of H' and a homotopy K(t):W (exL )-- 0/ of theory functors fromr n
E to GoH.

The proof is exactly the same as the proof of the lifting theorem

with one modification. H is already defined on the subcategory

of all objects (k,n), kElN
o'

When considering trees with output

label n we only consider reduced trees of the form

GJ

t
m

id

n

The extension to all trees with output label n is given

by (3.8).

We apply this result to a special type of h-morphism from a

W0-space to a e-space.

3.'0 Definition: Let X and Y be We-spaces and Z a e-space.

A reduced h-morphism Y--Z is a W (e x L1)-space u with0' rd u=Z and d u=Y.

Two reduced h-morphisms uo,u,:Y-Z are called homotopic,

if there is a Wr(0
x LZ)-space 0 with dOo=uo,d'o=u" and

d 2o=so y .

A reduced h-morphism y:X --- Z is called a composite of

the h-morphism S:x --- Y with the reduced h-morphism

u:Y --- Z if there is a Wr(0
x L
2)-space

p with dOp=u,
, , d ,2a p=y, an a P=S.

The proof of (3.5) carries over to reduced h-morphisms:
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3.11 Proposition: Let e be factorial. Then the following hold:

(a) Homotopy between reduced h-morphisms is an equivalence

relation

(b) If 8:X-Y is an h-morphism of We-spaces and a:Y-Z

a reduced h-morphism from Y to a e-space Z, then

there is a composite ao8. It is unique up to homotopy

of reduced h-morphisms. Its homotopy class depends

on the homotopy classes of a and S only.

(c) Composition of two h-morphisms and a reduced h-morphism

is associative up to homotopy.

A e-space Z is canonically a We-space by pulling back via E.

Hence we have the notion of an h-morphism Y-Z, where Y is a

We-space. From the reduced version of (3.2) we obtain

3.12 Proposition: Let e be factorial, Y a We-space and Z a

e-space. Then there is a reduced h-morphism in each homo-

topy class of h-morphisms Y-Z. It is unique up to homotopy

of reduced h-morphisms.

Proof: Let a:Y-Z be an h-morphism. Obviously id
z
is a reduced

h-morphism. By (3.11) there is a reduced h-morphism S:Y-Z

which is the composite of id z and a. By construction, S is

homotopic to a. Since any reduced h-morphism Y-Z homotopic to

a can be interpreted as composite of a with idz' S is unique

up to homotopy of reduced h-morphisms.

We finally mention a result for later use.

3.l3 Proposition: Let e be factorial. Then two h-morphisms

a,S:X-Y of We-spaces are homotopic iff there is a homotopy

F(t):W(exL j ) - Top of W(8 xL j)-spaces such that F(O)= a and

F (1) = 8.

The proof is the same as the one of [1;4.13].
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4. Homotopy invariance

Let X and Y be We-spaces. In this section we try to impose

h-morphism structures on given maps f:X-Y. Therefore it is

useful to add the underlying map to the notation of an h-morphism,

i.e. in this section an h-morphism is a pair

(f,a):X -Y

where a is the W(exLJ)-space and f its underlying map.

4.1 Proposition: Suppose e is factorial and (f,a) :X--Y an

h-morphism. If g:X--Y is homotopic to f, it can be given

the structure of an h-morphism (g,S) :X--Y such that

(f,a)""(g,S).

The proof is exactly the same as in [1i Prop. 4.14] using our

extension theorem 2.17.

As in [1iP.110], we have the following consequence

4.2 Corollary: Let e be factorial and (f,a) :X--Y, (g,S) :Y--Z

h-morphisms of We-spaces. Then there is a composite (H,y) :X--Z

of (f,a) and (g,S) such that h=gof.

We now follow closely the development of [1iP.110 ff]. Lemma

4.i6 of [1] reads in our terminology.

4.3 Lemma: Let Sop be the trivial theory and let p:X--Y be a

homotopy equivalence of spaces. Then p extends to a

i.e. there is a a such that

Note that a a gives rise to two h-morphisms in

the obvious way, and these two are homotopy inverse to each other

in the sense of homotopy of h-morphisms. Hence the following two

results provide the main theorems of homotopy invariance.
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4.4 Theorem: Let e be factorial and c e a subtheory such

that is an admissible subcategory of W8. Let X be a

Y a W8-space and p:X-Y a homotopy equivalence.

Suppose p admits a structure p extending

the X and Then there is an extension

- Top of P and Y. In particular, the

on X can be extended to a We-structure, and p defines an

isomorphism between X and Y in Ce.

The subcategory of generated by and dO(W8)

is admissible. Hence the proof of this result is exactly the

same as the one of [1;4.18J if we use our lifting theorem.

The next result is far more difficult to prove. It most certainly

holds under considerably weaker assumptions on the subtheory

than those we are going to introduce now. But our result suffices

for the applications we have in mind.

4.5 Definition: A subtheory of a factorial theory e is called

factorially admissible if

(i) for each n,(ea(n,1), n ea(n,1)) is a Ln-NDR

unless n ea(n,1) ¢, and the same with ea

substituted by 8m

(ii) If a 0 (m
1
x ••• xmJ 00* is a standard factorization in

e of an operation in then a,m1, ... ,mk are in

4.6 Theorem: Let e be factorial and be a factorially admissible

subtheory of e. Let (p,a) :X-Y be an h-morphism of We-spaces

with p a homotopy equivalence, such that the restriction of

a to has an extension Then there

exists an extension of 8' and a.

Before we say anything about the proof, let us draw a number of

conclusions.
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4.7 Proposition: Let e be factorial and ¢ c e be factorially

admissible. Let X be a W¢-space and Y a We-space such

that X and YIW¢ are homotopy equivalent as W¢-spaces (i.e.

they are isomorphic in C¢). Then the W¢-structure on X can

be extended to a We-structure and the homotopy equivalence

X--YIW¢ to a homotopy equivalence of We-spaces.

Proof: By assumption, there is an h-morphism (p,a) :X-YIW¢ of

W¢-spaces with p a homotopy equivalence. By (4.3), P extends

to a compatibly with a. Now apply (4.6) with

e=¢ and = Sop to extend a to a a Now use

{4.4) to extend a and Y to a which provides the

required homotopy equivalence of We-spaces.

4.8 Proposition: Let e be factorial and ¢ c e factorially

admissible. Let (p,a) :X-Y be an h-morphism of We-spaces

and p a homotopy equivalence. Let (q,B) :YIW¢-XIW¢ be an

h-morphism of W¢-spaces which is homotopy inverse to

(p,a) IW(¢xL1) in the category of W¢-spaces. Then (q,S)

can be extended to an h-morphism of We-spaces Y--X homotopy

inverse to (p,a).

Proof: By (4.3), P extends to a compatible

with a. This action extends by 4.6 to a p

compatible with a. In particular, p provides a homotopy inverse

(q',B'): Y--X of (p,a). Its restriction to has to be

homotopic to (q,S). By (3.13), there is a homotopy (qt,B t) through

h-morphisms of W¢-spaces from the restriction of (q',B') to (q,B).

We extend this homotopy and the constant homotopy on X and Y using

(2.17) to obtain the required homotopy inverse.

Proof of (4.6): We cannot take the proof of [1;Thrn.4.19] because

the filtration of the morphism spaces given there is messed up by

the distributive law.
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Let be the subtheory generated by W(8 xL
1)

and

where L1 is included into as 0- 1. The functors

a and 8' define a A-space. Since A is an admissible subcategory,

it suffices to show that EIA:A- is an equivariant ring

equivalence, so that the lifting theorem can be applied.

To distinguish lengths and labels we call an edge labelled 0

an X-edge and an edge labelled 1 a Y-edge. As in [1] it suffices

to show that E is an equivariant ring equivalence for spaces

/\((n,l), (1,1)) ((n,l), (1,1))

To prove this we use a variant of the theory T' and its

filtration of section 2. Call the boxes

1 and

a p-box respectively a q-box. The idea of the proof is the

following: The subspace of A((n,l), (1,')) of all operations

represented by trees with no p-box is homeomorphic to W8(n,'),

so that the restriction of E to this subspace is an eguivariant

homotopy equivalence by (2.5). If a representing tree has a

p-box it also has a q-box. We push up this p-box in A((n,l), (1,1))

to be next to the q-box so that they cancel out. Thus we deform

/\( (n,l), (1,1)) by induction on the number of p- and q-boxes into

the subspace W8(n,l).

4.9 Example:

y
ql !q q 19
t u t u

P P P P
v-a 0-1

1 1

ay (since poq=id)
t-O
u-O
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It is a little complicated to make this simple idea compatible

with all relations (2.11). For this we need a tricky filtration.

We introduce a subtheory T"=T"(0 x ] 6 ) of T' (0 xI6). Its trees

have only boxes of the following types: p-boxes, q-boxes,

further a-boxes and m-boxes whose inputs have the same label

as their output. Call these a- and m-boxes also e-boxes. On T"

we impose the relations (2.11) with the exception that a

connection of length 0 between an e-box and a p- or q-box cannot

be shrunk. Instead, we have the notion of pushing up a p- or

q-box "through" an e-box similar to relation (2.11d), (compare

also Example 4.9):

(4.10) The subtree

(Il }::X
(I) can be substituted by (II) and vice versa

[5]-------
X

(II) P

o
y

e-box

Similarly for q-boxes connected with e-boxes.

Clearly, in view of relation (2.4a), W(0 x16 ) is the quotient

of T" modulo the relations (2.11) with the just mentioned

modification (4.10) of relation (2.11a) for connections between

e-boxes and p- or q-boxes.

The set of e-boxes divides into two classes: Those with labels

in 0-' , and those with labels in ,. The trees in T" representing

elements of A are those that satisfy the separation condition:

In any directed edge-path between a q-box and a box in 0-' there

is a connection of length 1.

We now filter Ttl, thus inducing a filtration of W(GxI6): Given

a tree 0 of shape A in T", we have the sequence (Po'Pl' .... ), where

Pk is the number of m-boxes of height k. Then there is a sequence

(qo,Ql"")' where qi is the number of p- and q-boxes having exactly
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ie-boxes between them and the tree output. Finally we associate

with e (or better A) a new shape k(e) as follows: First push up

all p- and q-boxes through all e-boxes as described in (4.10),

then push up all m-boxes through all a-boxes different to a nullary

operation as described in (2.12). The resulting shape is denoted

by k(e). Let I be the number of connections of k(e). We order

lexigraphically. Since (Po+P1+ ... ) + (qo+q1+ ... )S 1, this

ordering is countable. For v= (l;po,P1, ... ,qo,ql' ... ) we have

an induced filtration Fv of the spaces /I«n,1), (1,1)), consisting

of all elements which can be represented by trees e with t(e;sv.

Let DF
v

C F v be the subspace of all elements of lower filtration

than v ,

(4.11) A tree e with t(e)=v represents an element of DFv iff

one of the following conditions holds:

(a) one of the conditions (2.11a,b,c) holds

(b) some connection from an e-box down to a q- or p-box has

length 0 (because then (4.10) applies)

(c) some connection between a p-box and a q-box has length 0

(because then they cancel out)

The proof now proceeds as in [1ip.118 ff]

Finally we mention that each We-space is homotopy equivalent to

a e-space. The proof is exactly the same as the one of [1;Thm.4.49].

Here we use the models Wr(exLJ) introduced in section 3. More

precisely, the proof of [1; Thm 4.49] applied to our situation

leads to the following result:

4.12 Theorem: Let e be any theory over e
c r

(or e
r).

Then for

any We-space X there exists a e-space MX and a reduced

h-morphism (i,a):X -MX such that
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(a) i:X-MX embeds X as a strong deformation retract

(b) any reduced h-morphism (f,S) :X-Y is the canonical composite

of (i,a) and a unique homomorphism hS:MX-Y of e-spaces

(c) If e is factorial and (g,y) is homotopic to (f,S) in the

sense of (3.10) then there is a homotopy through homo-

morphism from h
S
to hy'

From this it is easy to deduce

4.13 Proposition: If e is factorial, the construction M defines

a functor from the category Ce to the category He of

e-spaces and homotopy classes of homomorphisms. It is left

adjoint to the canonical inclusion He C Ce.
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5. Aoo and Eoo ring spaces

In this section we show that the results of section 3 and section 4

apply to Aoo and Eoo ring spaces, and we investigate the relation

ship of our notion to the one of May ([2],[4]).

Let (C,G) be an A
oo
or Eoo operad pair in the sense of [2;chapt.VI].

Then we have a theory 0rC,G) or (C,G)spaces. Its morphisms

from m to n are all natural transformations from ym to yn, where

y is a (C,GJspace (for a definition see [2; p.145]). As mentioned

before, each such theory is factorial: One takes 0(C,G)Q (n,l)=C(n)

and 0(C,G)m(n,1) = G(n).

Now let (Hoo,L) be Steiner's canonical operad pair [5]. In the

Aoo theory we take L without permutations, in the Eoo theory with

permutations. By Steiner's analysis of Hoo(p), it is a contractible

numerable principal L space. It is wellknown that the same
p

holds for L(p). Hence we obtain from the lifting theorem part II

5.1 Theorem: Any Aoo or Eoo ring space is a W0(H
oo,L)space,

and

the homotopyinvariance results can be applied.

Here, of course, we have to distinguish between L with or without

permutations.

5.2 Corollary: Any Aoo or Eoo ring space X is homotopy equivalent

to an (Hoo,L)-space Y in the sense of [2;p.145]

Proof: By (5.1), X can be given a W0(H oo,L)structure. Hence

Y=MX has a 0(Hoo,L)structure. By definition of 0(H oo,L) the space

Y is nothing but a (Hoo,L)-space.

From this and from [6; Lemma 1.7] we obtain

5.3 Proposition: Any Aoo or Eoo space in the sense of [2] is an

Aoo or Eoo space in the sense of (1.7). Conversely, any Aoo or Eoo
space in the sense of (1.7) is homotopy equivalent to an

Aoo or Eoo space in the sense of [2] •
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Our homotopy invariance results have a number of consequences.

We prove just one, which is of some importance for the algebraic

K-theory of A
oo
ring spaces.

5.4 Proposition: For any W8(H
oo,L)-space

X there exists a

W8(H
oo,L)-space

Y and a homotopy equivalence (f,a): X-Y

of W8(H
oo,L)-spaces

such that the multiplication on Y is a

strict monoid structure. (L without permutations)

Proof: Let 8
m

be the theory of monoids (written multiplicatively) ,

and Ac 8m be the subcategory generated under composition and x by

all The unique maps L(n)-- A(n,1) = induce a theory

functor H: 8(L)-8 , which is a homotopy equivalence. Applying
m

the lifting theorem [1;3.17] we obtain a homotopy commutative

diagram

By the uniqueness part of the same theorem, we have

FoWH "" Id

through functors, because both functors make the diagram

we (L)

,{
o (L)

commute up to homotopy.

H

we (L)

lHO"
e
m
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By restriction, X is a W8(L)-space, and hence XoF a W8
m-space.

By [1; Thm. 4.49] there is a homotopy equivalence (f,B) :XoF-Y

of W8
m-spaces

from XoF to a strict monoid Y(i.e. Y is a 8
m-space

and B an h-morphism from XoF to YO(
1
) . Pulling back via WH,

we obtain a homotopy equivalence of W8(L)-spaces

(f,B*): XoFoWH ---- YOE,O WH

By [1;6.23], there is an h-morphism of W8(L)-spaces

(id,r):X ---- XoFoWH

since Id FoWH. Composing these two, we have a homotopy equi-

valence of W8(L)-spaces

(f,o):X ----- YOE,oWH

Since 6(L) c 8(H
w,L)

is factorially admissible, the results

(4.4) and (4.6) can be applied to give an extension of (f,o)

to a homotopy equivalence of W8(H
w,L)-spaces.

In particular,

Y admits the structure of a W8(H
w,L)-space

with a monoid

multiplication.

5.5 Corollary: Any Am ring space is homotopy equivalent to

an Aw ring space with a monoid multiplication.

5.6 Remark: Using the methods of sections 3 and 4 we could improve

(5.4) to a functorial version. Let C be the category of

W8(Hw,L)- spaces and homotopy classes of h-morphisms. Let V

be the category of W8(H
w,L)-spaces

Y with monoid multiplication,

i.e. the restriction of Y to W8(L) factors through 8m. As

morphisms of V we take homotopy classes of h-morphisms of

W0(H
w,L)

-spaces, which are homomorphisms when restricted

to W8(L), and hence homomorphisms of the multiplication monoids.

There is an obvious functor J:V-C. Our construction in the proof

of (5.4) induces a functor M:C-V and a natural isomorphism

Id---- JoM.



481

References

1. J.M. Boardman and R.M. Vogt. Homotopy invariant algebraic

structures on topological spaces. Springer Lecture

Notes in Math. 347 (1973).

2. J.P. May (with contributions by N. Ray, F. Quinn, and J.

Tornehave). E
oo
ring spaces and E

oo
ring spectra.

springer Lecture Notes in Math. 577 (1977).

3. J.P. May. Infinite loop space theory. Bull Amer. Math. Soc. 83

(1977), 456-494.

4. J.P. May. A
oo
ring spaces and algebraic Springer

Lecture Notes in Math. 658 (1978), 240-315.

5. R.J. Steiner. A canonical operad pair. Math. Proc. Carob.

Phil. Soc. 86 (1979) I 443-449.

6. R.J. Steiner. Infinite loop structures on the algebraic

K-theory of spaces. Math. Proc. Carob. Phil. Soc. 90

( 1981), 85-111.

7. R.M. Vogt. Convenient categories of topological spaces for

homotopy theory. Arch. Math. 22 (1971), 545-555.

8. F. Waldhausen. Algebraic K-theory of topological spaces I.

Proc. Syrnp. Pure Math. 32 (1978), 35-60.

9. F. Waldhausen. Algebraic K-theory of topological spaces II. Springer

Lecture Notes in Math. 763 (1979), 356-394).

Fachbereich Mathematik
Universitat Osnabrtick
Postfach 4469
4500 Osnabrtick



PREREQUISITES (ON EQUIVARIANT STABLE HOMOTOPY)

FOR CARLSSONS I S LECTURE.

J.F. Adams

DPMMS, 16 Mill Lane

Cambridge CB2 lSB

ENGLAND

§l. Introduction. Three things might be done to help those who wish

to understand Carlsson's work on Seqal's Burnside Ring Conjecture [8J.

First, one might attempt a general exposition about Seqal's Burnside

Ring Conjecture, both in its non-equivariant and in its equivariant

forms. Secondly, one might explain the results which Gunawardena, Miller

and myself have obtained by calculation for the case G = (Zp)n (This

is relevant because Carlsson uses these results.) Thirdly, one might

attempt a general introduction to equivariant stable homotopy.

In the lecture I gave in Aarhus, I tried to say something on all

three topics, but for lack of time I was forced to omit an important

part of what I had prepared. In this published text I shall omit the

first and second topics, and try to do better justice to the third.

In fact, when I first saw [8J - apart from rejoicing - I thought,

"oh dear; now I shall have to work to understand the fundamentals of

this subject". Since I more or less do understand them now (at least,
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so far as they seem to be needed for Carlsson's work) it may save other

topologists trouble if I try to pass on my understanding.

I should stress that I do not claim any originality for what follows;

everything I shall explain is or should be known to those who reckon to

know about such things. (There is a possible exception in Theorems 5.4

and 8.5, which are recent, and where my statements differ slightly from

those in my incoming mail - which I shall acknowledge in due course.)

My survey is arranged as follows. In §2 I shall review unstable

equivariant homotopy theory. In §3 I discuss the G-suspension theorem.

In §4 I discuss the G-Spanier-Whitehead category. In §5 I discuss certain

theorems for reducing problems involving a group G to problems involv-

ing a smaller group. In §6 I discuss theories graded over the represent-

ation ring RO(G). In §7 I say very little about G-spectra. In §8 I

discuss G-Spanier-Whitehead duality.

I shall use the words "ordinary" and "classical" to refer to the

non-equivariant case, G = 1 .

I am very grateful to many correspondents, including G. Carlsson,

T. torn Dieck, C. Kosniowski, L.G. Lewis, J.P. May, A. Ranicki and

G. Seqal. I am particularly grateful to L.G. Lewis for tutorials on

G-spectra and to J.P. May for many letters.

§2. Unstable equivariant homotopy. This section must recall how the

most elementary part of unstable homotopy theory carries over to the

equivariant case.

Let G be a finite group. (Ideally it is desirable to arrange

the foundations of equivariant topology so as to cater for compact Lie

groups, but for present purposes I will not bother.) A "G-space" is

a space on which G acts; for definiteness we agree that groups norm-

ally act on the left of spaces. Let X and Y be G-spaces; then a map
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f: X Y is a G-map if

f(gx) g (fx)

for all gEG, XEX .

Two G-maps are "G-homotopic" if they are homotopic through G-maps.

Alternatively, we can define G-homotopy in terms of G-maps of cylinders;

for this purpose, if X is a G-space, we make G act on I x X by

g(t,x) (t,gx)

for all gEG, tEl, XEX .

With these definitions one can carryover a good deal of ordinary

homotopy theory. Ordinary homotopy-theory often needs a base-point;

at the corresponding places in G-homotopy theory, we suppose given a

base-point fixed under G. We then define [X,yJG in terms of G-maps

and G-homotopies which preserve the base-point.

There are a few simple cases in which problems over G can be

reduced to problems over a subgroup H of G. Naturally, we leech

onto them to use them in inductive proofs. The technical statement is

that if H is a subgroup of G, then the "forgetful functor" from

G-spaces to H-spaces has a left adjoint. More precisely, if i: H G

is the inclusion and Y is a G-space, we write i*Y for the H-space

in which H acts on the same space Y via i Then we have the fol-

lowing natural

(2.1 )

(1-1) correspondence.

H-Map (X, i*Y) G-Map (GxHX, Y).

Here X is supposed to be an H-space, and GXHX is the quotient

of GxX in which (g,hx) is identified with (gh,x) In (2.1) we

have no base-points; if we wish to have base-points, then the natural

(1-1) correspondence is as follows.
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Ptd-H-map (X, i*Y) Ptd-G-Map ((Gup) I\HX, y)

Here Gw P is the disjoint union of G and a base-point P fixed

under G , and is defined as was before. If we can take x

in the form i*Z where Z is a G-space, then we have the following

natural G-homeomorphism.

(2.3)

It is given by

(g,z) (g,gz)

-1
(g,g z) (g,z).

The distinctive features of the equivariant theory begin with the

study of fixed-point sets. Let X be a G-space, and let H be a sub-

group of G; then the fixed-point set xH is defined by

xH {x E X I hx = x, V h E H}

The action of g E G gives a homeomorphism from

particular, xH admits operations from N(H)/H where

-1
xgHg in

N(H) is the

Hnormaliser of H in G Any G-map f: X ---7 Y must carry X into

yH and preserve the action of N(H)/H; we usually write fH: xH yH

for the map induced by f on the fixed-point set. If H c K , then

xH :;) xK

Many proofs in equivariant homotopy theory are done by induction

up the fixed-point sets, beginning with the smallest, xG , and finish-

ing with the largest, Xl = x. A convenient class of G-spaces in which

to do such proofs is the class of G-CW-complexes. We will corne to these

soon, but first we must mention cells and spheres.

By a "representation of G", we shall mean a finite-dimensional

real inner-product space V on which G acts (linearly, and preserv-

ing the inner product). Such a representation V has a unit sphere
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S (V) and a unit cell E (V) defined by II v II =1 and II v II s i respect-

ively. The usual homeomorphism between E(V) x E(W) and E(V9W) is

equivariant and gives no more nuisance than usual. If we want to use

base-points, we normally define SV to be the one-point compactificat-

ion of V and put the base-point at infinity. In representation-theory

we often write

trivially on

"n" to indicate the representation in which G acts

nR ; so the new meaning of Sn is S that is, the old

sn with G acting trivially on it.

The first theorem in ordinary homotopy theory is the theorem that

n
TIr(S ) = 0 for r < n

Proposition 2.4. If dim vH < dim WH for all H , then

[SV, SWJG = 0

The proof will become clear as soon as I have introduced the rele-

vant ideas.

In general, suppose that in the classical case we have some invar-

iant like "dim", which assigns to each suitable space X a value dim (X)

which may be an integer or Then the analogue in the equiv-

ariant case is to consider "dim X" as a function which assigns to each

subgroup H c G the value dim (XH) (taking equal values on conjugate

subgroups H). So the assumption of (2.4) should be thought of as

(with the obvious interpretation of inequality between functions of H).

Similarly for the "Hurewicz dimension of X, Hur X" (defined to be the

greatest n such that TIr(X) = 0 for r < n). For spheres we have

The following result generalises (2.4).
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If dim (XH) $ Hur (yH) - 1 for all H, then

[X,yJG = 0 .

Here it will be prudent to assume that X is a generalised CW-

complex of some sort.

On the usual definitions, G-CW-complexes are constructed just like

CW-complexes; but instead of using cells of the form En, sn-1 one

uses G-cells of the form

(G!H) x En, (G!H) x sn-1 .

The usual reference for G-CW-complexes is the work of Matumoto [20J.

The G-complexes of Bredon [3,5J served the same purpose earlier (for

G finite). There is also a thesis by Illman [16J, although theses are

not usually easily available.

I thank J.P. May for pointing out two possible objections to the

usual approach to G-CW-complexes. The first is that the definition of

"G-cell" is not wide enough to accommodate the "cells" introduced above.

Certainly it would seem worthwhile to make our machinery accept "G-

cells" of the form

where V is a representation of H This doesn't affect the class

of G-spaces considered, because any G-cell of the more general form

can be subdivided into G-cells of the special form.

The second objection may be seen from the following example. If

H is a subgroup of G, we would like to say that a G-CW-complex "is"

an H-CW-complex. Unfortunately, we can't display the G-cell G as a

union of H-cells H without choosing coset representatives. This nuis-

ance recurs with products; if X and Yare G-CW-complexes, then

X x Y (with the CW-topology) is likely to come as a complex over the

group G x G , and we want it as a complex over the diagonal subgroup
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For present purposes we seem to have a workable way out (though

it only serves when G is discrete). We stipulate that the given struc-

ture of CW-complex X includes characteristic maps

X : En(a) X .
a

If X comes as a G-space, we ask for a commutative diagram of the fol-

lowing form for each

f(a,g)

g E G and

-----..:;.> X

-----.-> X

Clearly S will be unique (so that G will implicitly act on the set

of indices a); f(a,g) will also be unique, and we ask that it be

linear and preserve the inner product. (The last clause is actually

redundant.) Then we can choose to organise our characteristic maps

into G-orbits

but no such choice is part of the given 9tructure. If we want to insist

on G-cells of the form G/H x En , we can impose an axiom that S = a

implies f(a,g) = 1. If so, we get back to Bredon's G-complexes.

In order to carryover the standard arguments about CW-complexes,

one needs to be able to manipulate G-maps of G-cells. Let Y be a

G-space; from (2.1) we get the following natural (1-1) correspondence.

(2.6)

If on the

n n HG-Map ((G/H)xE .v) (E,Y).

left we wish to prescribe the values of the G-map on

(G/H)XSn-1, that corresponds on the right to prescribing the values of

the map on Sn-l So the standard arguments for CW-complexes carry
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over to G-CW-complexes, using induction over the G-cells plus ordinary

homotopy theory in fixed-point subspaces yH

Since our object is to reduce to ordinary homotopy theory, we gen-

erally carry out these arguments with G-cells (G/H)xEn rather than

GXHE(V) , reducing to that case by subdivision if necessary.

We will forgo a long discussion of those results on CW-complexes

which carryover with little change. (For example, the inclusion of a

G-subcomplex in a G-CW-complex has the G-homotopy-extension property.)

The first result we do need to mention is the "theorem of J.H.C.

Whitehead". Recall that in the ordinary case, a map f: X --7 Y between

path-connected spaces is called an n-equivalence if

is iso for r < nand epi for r = n . (If the spaces are not path-

connected we modify this definition in an obvious way; see [24 p404J.)

In the equivariant case, suppose given a function n which assigns to

each subgroup H eGa value n(H) which may be an integer or

subject to the condition n(gHg- 1) = n(H) . Then a G-map f: X Y

is an n-equivalence if fH: xH ---+ yH is an ordinary n(H)-equivalence

for each H.

Proposition 2.7. Let W be a G-CW-complex and let f: X Y

be a G-map which is an n-equivalence. Then the induced map

is onto if

dim wH n(H) for all H

it is a (1-1) correspondence if

dim WH n(H) -1 for all H.
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As with (2.4), one should think of the assumptions as "dim W :> n"

and "dim W s; n-1", where dim Wand n are functions of H

Results of this sort go back to Bredon [5 Chap. II §5J; see also

Matumoto [20 §5J, Illman [16 Chapter I §3J and Nawboodiri [29 Corollary

2.2 J.

§3. The G-suspension theorem. This section must recall how the most

elementary result of suspension theory carries over to the equivariant

case.

When we suspend in equivariant homotopy theory, we have available

a variety of actions of G on the suspension coordinates we introduce.

For an unreduced suspension, of G-spaces without base-point, it is reas-

onable to take the join S(V)*X For a reduced suspension, of G-spaces

with base-point, it is natural to take the smash product sV X. Here

the action of G on a smash product X Y is defined by

g(x,y) (gx,gy)

and similarly for the join.

The relationship between smash and join is much as in the classical

case.

map

In fact, classical comparison maps, such as the ordinary quotient

are commonly natural, and therefore equivariant. They can be proved

to be G-equivalences by (2.7), provided the following conditions are

satisfied.

(a) The restriction of the comparison map to a fixed-point-set

is another instance of the same comparison map, for example,

(b) The comparison map is classically a weak equivalence.
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(c) The G-spaces involved are G-CW-complexes.

For this section we will use SVAX By taking the smash product

with the identity map of , we get a function

We wish to show that SV is a (1-1) correspondence under suitable

conditions. We can follow the classical approach by introducing a fun-

ction-space. Let be the space of pointed maps w: SV Z ;

we make G act on this function space by

-1(gw) (s) = g (w(g s) )

As in the classical case, it is sufficient to study the canonical map

and prove that it is an n-equivalence for some suitable n. We choose

our function n = ntH) so that it has the following properties.

(3.1) For each subgroup H c G such that > 0 we have

ntH) $ 2 Hur(yH) - 1 .

(3.2)

have

For each pair of subgroups K c H c G such that we

ntH) $ Hur(yK) - 1 .

Theorem 3.3. Under these conditions, the map

is an n-equivalence. It follows that the function
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is onto if X is a G-CW-complex and dim $ n(H) for each H

it is a (1-1) correspondence if X is a G-CW-complex and

dim $ n(H) - 1 for each H

The second sentence follows from the first by using (2.7), as in

the ordinary case.

For G = Z2 the result is due to Bredon [4 J. If I may count

[4,6J as one paper, then this is the first paper in equivariant stable

homotopy theory, and I think it may deserve more credit than it has

received. To promote understanding of this subject, I recommend study

of the special case G = Z2 •

It would have been good if the G-suspension theorem could have

come next after [4,6J. The proof does contain ingredients which are

additional to those well-known in the ordinary case, including, of

course, the use of condition (3.2). The standard reference is Hauschild

[14J; see also Namboodiri [29, Theorem 2.3J.

One use of the suspension theorem is to show that certain limits

are attained. For this purpose we must decide what class of represent-

ations to use when we suspend. For the moment we keep our options open;

we suppose given some class of "allowable representations" of G, so

that our class is closed under passage to sums and summands, and also

under passage from any representation to an isomorphic one. We order

the allowable representations, writing W V if W = for some

U. Let X be a finite-dimensional G-CW-complex, and Y a G-space.
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There exists an allowable Wo = Wo(X) such that

for any allowable W " Wo and any allowable V the map

is a (1-1) correspondence. Indeed, the map

is a (1-1) correspondence for any subcomplex X' of SWAX or of any

subdivision of SWAX.

The final sentence about X is intended to help with [8 p45J.

The result will follow from Theorem 3.3, provided we can satisfy

the following inequalities on the dimensions.

(i) If for some H there is an allowable V with > a ,

then

dim wH + dim xH $ 2 dim WH - 2 .

It is clear that if there is any allowable V with > a , then

by putting sufficiently many copies of it into W we can increase

dim wH till this inequality is satisfied; it then holds for all larger

W.

(ii) If for some K c H there is any allowable V with

o > , then

It is clear that if there is any allowable V with 0 > VH ,

then by putting sufficiently many copies of it into W we can increase

dim wK - dim WH till this inequality is satisfied; it then holds for

all larger W.

Of course, we have to satisfy inequalities of type (i) for a finite

number of subgroups H , and inequalities of type (ii) for a finite number

of pairs K c H , but we can satisfy all these conditions if W is
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sufficiently large. This proves Theorem 3.4.

§4. The G-analogue of the Spanier-Whitehead category. This section

must review how the original approach to stable homotopy theory carries

over to the equivariant case.

We wish to pass to a limit and consider stable classes of maps.

To take a "limit" of groups we must supply a system of groups and homo-

morphisms, or equivalently, a ftmctor defined on some suitable category.

We take the objects

of our category C to be all "allowable" representations V of G

(see §3); we take the morphisms f: V W in C to be the R-linear

G-maps which preserve inner products.

mono. )

(Such maps f are necessarily

Suppose given two G-spaces X, Y with base-points. To each object

V of C we associate the set

For any morphism i: V -----7 W :Ln C, we first use i to identify

W with where U is the orthogonal complement of the image

i(V) under the inner product. We now associate to i the following

composite function.

(Notice that we can identify sO"SV with and so with SW.)

We get a functor from C to s ets ,

Next we must check that this functor is such that we can take its

limit. First we need to see that if U and V are objects in C,

then there is an object in C 'Nhich receives morphisms from both.

This is immediate: it is enough to take Secondly we need to see
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that if f,g: U are two IDorphisIDs in C, then there is a further

morphism h:V W such that our functor assigns equal values to

hf,hg. It is easy to reduce to the case in which f is an automorph-

ism of V and g = 1

sufficient to take h

One can see by counter-examples that it is not

1 ; that is, the composite

f- 1 /\1
___ SV"X

f"l
___ SV"y

need not be G-homotopic to ¢. However, we take h to be the inject-

ion of V as the second factor in V@V. Clearly we have

hf = (Uf) h But l@f is homotopic through G-isomorphisms to f@l ,

for example by

[

Cos t

Sint

-Sintl

costJ [::] lc os t SintJ

-Sint Cost

For f@l we see that (f@l)h and h induce the same function

This completes the checks.

We may therefore pass to the limit, and define

{x,y}G = Lim [SV"X, SV"YJ G .
-.,)0

VEe

This definition is due to Seqal [23J. Some of my correspondents

would prefer to see the category C replaced by an equivalent small

category before the limit is taken. In the applications X is finite-

dimensional, and the limit is equivalent to taking the common value of

[SV " X, SV "YJG for all sufficiently large V - which is perfectly

safe, however many V there are.

To continue, composition of G-maps X Y Z is compatible

with suspension, so it is clear how to define composition of stable maps
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and make the sets {x,y}G into the hom-sets of a category.

The analogues of (2.4), (2.5) are as follows.

Proposition 4.1.

Proposition 4.2.

If dim < dim wH for all H , then

{SV, SW}G '" 0 .

If dim (XH) Hur (yH) - 1 for all H,

then {x,y}G '" 0 .

If X is a finite-dimensional G-CW-complex,

is attained by [SWAX, SWAy]G for all suffici-

In fact, in each case one has to take a limit of sets which are

all trivial, by (2.4) or (2.5) as the case may be.

The definition of {x,y}G given above clearly follows that of

Spanier and Whitehead for the classical case. Therefore one can only

expect it to be useful when X is finite-dimensional. In this case

we expect the following result.

Proposition 4.3.

then the limit {x,y}G

ently large W

This follows immediately from Theorem 3.4.

For later use, we also need to assure ourselves that our category

is really "stable",by verifying that a suitable "external" suspension

is a (1-1) correspondence. For this purpose, suppose given two

G-spaces X, Y and an allowable representation U. For each object

V of C we have a function

carrying f to f A lu. This function commutes with the maps of

our direct system, and defines a function
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II
[SVAX, SVAy]G Lim

VEC

II

Lemma 4.4. If X is a finite-dimensional G-CW-complex then this

function

is a (1-1) correspondence.

In fact, the functions SusPv whose limit is taken are (1-1) cor-

respondences for all sufficiently large V, by Theorem 3.4.

So far we have not said that our sets are groups. To

introduce addition one needs a suspension coordinate on which G acts

trivially. From now on we assume that trivial representations are

allowable; in this case the sets {x,y}G become additive groups, and

in fact the hom-sets of a preadditive category.

In the applications it is important to have suitable finiteness

theorems.

Theorem 4.5. Suppose X is a finite G-CW-complex and Y is a

G-space for which each fixed-point-set yH is an (ordinary) CW-complex

with finitely many cells of each dimension. Then {X,y}G is a finitely-

generated abelian group.

The crucial point is that this limit is attained by

for some W, according to (4.3). It is fairly clear how to prove that

this group is finitely-generated, by combining the methods indicated

in §2 with standard finiteness theorems in the classical case.
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In the unstable case, it is useful

to have results such as (2.2) which allow one to reduce suitable problems

involving G to problems involving a smaller group. In the stable

case, there are more such theorems which are useful; in this section we

will consider them.

First suppose given a homomorphism e:Gl ---7 G2. For any G2-

space X, 8*X will mean the same space considered as a Gl-space,

with Gl acting via e. In particular, if V is a representation

of G2 ' then e*v is a representation of Gl We assume that if V

is an "allowable" representation of G2 ' then e*v is an "allowable"

representation of Gl. The operation 8*V commutes with suspension,

in the sense that

e*(sV /I X) S8*V /I 8*X .

Therefore 8* gives a functor from the G2-Spanier-Whitehead category

to the Gl-Spanier-whitehead category. Here the objects of the "G-

Spanier-Whitehead category" are the finite G-CW-complexes; the hom-sets

are the sets {X,y}G introduced in §4.

Until further notice, all representations are allowable.

I will state four results about e* before pausing to discuss

them. To analyse e*, it is reasonable to factor e through an epi-

morphism and a monomorphism, and tackle the factors separately. So

first, let i:H --T G be the inclusion of a subgroup H in the group

G i let X run over the H-Spanier-Whitehead category and let Y run

over the G-Spanier-Whitehead category.

Theorem 5.1. There is a natural (1-1) correspondence

Theorem 5.2. There is a natural (1-1) correspondence
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G(GuP) i\H X} .

Secondly, let j:G G be the projection of G on a quotient

group G, and let N Ker j (The case most useful for the applicat-

ions is that in which N = G and G = 1 ; but there seems to be no

harm in looking for a natural level of generality.) We let X run

over finite in which the subgroup NeG acts freely

away from the base-point; more precisely, we let X run over the full

subcategory of the G-Spanier-Whitehead category determined by these

N-free objects. We let Y run over the G-Spanier-Whitehead category.

Theorem 5.3. There is a natural (1-1) correspondence

Theorem 5.4. There is a natural (1-1) correspondence

Here X/N is of course the usual orbit space.

I will discuss these four results before I proceed to necessary

technical details. Theorem 5.1 is a simple analogue of (2.2), and is

widely known. Given (5.1), (5.2) says that the forgetful functor from

the G-stable world to the H-stable world has a right adjoint which

coincides with its known left adjoint. I first heard this principle

from L.G. Lewis; of course his "stable worlds" were worlds of spectra,

which makes for a better theorem. In that form, the result is to

"appear in [18]. That work uses the name "Wirthmuller isomorphism",

"thus giving credit to Wirthmuller for the result from which the authors

started; it was only slightly less general than theirs, but I accept

that it is more illuminating to state the result in the form I have

quoted from Lewis.
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I turn to motivation for (5.3). In the Atiyah-Seqal theorem [2J

one wishes to know that the ordinary K-theory of the classifying space

BG coincides with the equivariant K-theory of the corresponding total

space EG In studying Segal's Burnside Ring Conjecture, one wishes

similarly to know that the ordinary cohomotopy of BG coincides with

the equivariant cohomotopy of EG. In suitable notation this reads

EGwP
{EGw P, SO}G { , SO}I.

G

This is an instance of (5.3) (with N = G , G I) except that (5.3)

only gives the result for finite approximations to EG, BG; the

result for EG requires the analogue of (5.3) for spectra, unless you

pass to limits from the result for finite approximations. Such results

are probably widely known to those who have started work on Segal's

conjecture; after (5.I), I regard (5.3) as the second easiest of the

four.

Theorem 5.4 is necessary to maintain symmetry, as well as being

needed for applications later. I am grateful to L.G. Lewis and

J.P. May for letters, to which lowe the case N = G, G = 1 (for

the world of spectra).

Theorems 5.3 and 5.4 are not as satisfactory as (5.1) and (5.2) i

(5.1) and (5.2) each give an honest pair of adjoint functors, but (5.3)

and (5.4) do not. (In (5.3) and (5.4) X is restricted to be N-free,

but j*Y cannot be N-free except in trivial cases.) One might like

to see the statements of (5.3) and (5.4) improved in some way; I am

open to suggestions.

In the rest of this section I will begin by giving some necessary

technical details to complete the statements of (5.1) - (5.4), and

continue with the proofs. The reader should consider skipping to §6.

The main technical detail concerns the sense in which (Gu P) "H X

is functorial for stable H-maps of X rather than for unstable maps,
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and similarly for X/N. The careful reader should not take this for

granted.

First suppose given a stable H-map ¢: Xl X2. Since repre-

sentations of the form i*V are cofinal among representations of H ,

we may suppose given a representative H-map

We now define the stable G-map

to be the class of the following composite.

-1
E:

SV 1\ «GwP) I\H Xl) (Gu P) I\H (Si*V 1\ Xl)

E:

SV 1\ « Gw P) I\H X2)

Here the G-homeomorphism

E:

(GwP) I\H (Si*V 1\ X) 1\ «GuP) I\H X)

is given by

E: (g, (s, x)) (gs, (g, x))

Of course we have to check that the result depends only on ¢, and

that (G w P) I\H X becomes a functor as stated.

We now wish to copy this procedure for X/N; the difficulty is

that representations of the form j*W are not cofinal among represent-

ations of G. We need the following crucial result.

Proposition 5.5. If X is N-free away from the base-point, then

{X, y}G , as defined allowing suspensions of the form sj*W only,

agrees with {X, y}G as defined using all suspensions SV.
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Let me begin by fine-tuning some results I explained

earlier. In the "theorem of J.H.C. Whitehead", Proposition 2.7, we do

not really need the assumption that all the cells of WH are of

aimension s n(H)-l ; it is sufficient if all G-cells of W of the form

(G/H) x Em have m s n(H)-l. The same applies to any deduction from

(2.7), including the G-suspension theorem, Theorem 3.3. These remarks

are due to U. Narnboodiri [28,29J.

Our object is now to show that the map

SV
[sj*W A X, sj*W A yJG [SV A sj*W A X, SV A sj*W A yJG

is iso for all V if the representation W of G is sufficiently

large (depending on X). Here sj*W A X is also N-free away from the

base-point. Therefore it can have cells (G/H) x Ern only if

N l'1 H = 1 So it will be sufficient to impose a suitable bound on the

dimension of (sj*W A X)H just for those subgroups H which satisfy

N n H = 1

dimensions.

We now wish to satisfy the following inequalities on the

(i) If H is a subgroup with N n H 1 then

dim (j*W)H + dim XH s 2 dim (j*Wl H - 2 .

We can satisfy this condition by putting sufficiently many copies

of the trivial representation into W

(ii) If K c H is a pair of subgroups such that N n H 1

and > for some representation V , then

dim (j*W)H + dim J!I s dim (j*W)K - 2

If > for some V then we must have K < H If

N f1 H 1 then the images of K, H in G satisfy K < H Therefore

there is a representation U of G for which r1 > uH (for example,

the permutation representation on the cosets of K) . We can satisfy

the condition by putting sufficiently many copies of U into W
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Of course, we have to satisfy inequalities of type (i) for a finite

number of subgroups H, and inequalities of type (ii) for a finite

number of pairs K c H , but we can satisfy all these conditions if

W is sufficiently large. This proves (5.5).

We can now return to the task of making X/N functorial for stable

G-maps of X. According to (5.5), any stable G-map ¢: Xl X2

has a representative of the form

We now define the stable C-map ¢: X1 /N X2/N to be the class of

the following composite.

SW /I X
1/N

sj*W /I Xl

N

SW /I X
2/N

sj*W /I X
2

N

(Here the C-homeomorphisms of spaces are the obvious ones.) We have

to check that the result depends only on ¢, and that x/N becomes

a functor as stated, but these points are trivial.

This completes the technical details needed to explain (5.1)-(5.4).

In what follows we will omit the symbols . * .*, J which show

which groups are supposed to be acting on a given space; it is always

easy to work out which groups are supposed to be acting, and these

boIs only complicate the notation.

Proof of Theorem 5.1. The (1-1) correspondence is induced by

the same two maps that serve in the unstable category. These are the

H-map
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Cl

X ----+ (Gu P) I\H X

given by C/. (x ) (l,x) , and the G-map

y
(G wP) I\H Y ----}. Y

given by y (g,y) = gy These maps make the following diagrams commute.

SV
SVa

SV 1\1\ X ((G l.I P) I\H X)

-. IE
(Gw P) I\H (Sv 1\ x)

SV 1\

sVy
) SV 1\(G .... P) I\H Y) Y

E! /
(Gu P) I\H (Sv 1\ Y)

It follows that a is natural, not only for unstable H-maps of X,

but also for stable H-maps of X; similarly, y is not only

for unstable G-maps of Y, but also for stable G-maps of Y. There-

fore these maps induce natural transformations in the usual way.

These two natural transformations are inverse because the composites

are already identity maps unstably.

Proof of Theorem 5.2. I have given the proof of (5.1) in the form

above so that I can transcribe it by using arrow-reversing duality.

First we shall need a stable H-map
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Cl

(G uP) "H X X .

This comes as an unstable map; we set

Cl (h, x) hx

Cl (g, x) if g I H ,

where Xo is the base-point. We shall also need a stable G-map

y
y (GuP) "H Y ,

and this we now construct.

First choose an embedding G/H W of G/H in a representat-

ion W of G. For definiteness, we may take W to be a permutation

representation, with the elements of G/H as an orthonormal base. Next

choose an open equivariant tubular neighbourhood N of G/H in W;

for definiteness, we may take the discs of radius 1/2 around the points

of G/H. Consider the quotient map of SW Wu oo in which we identify

to a point the complement of N ; we obtain a G-map

This map 6 is fixed once for all and does not depend on Y

Given 6, we define y to be the following composite.

SW " Y
6"1 W

(G/H u P) " Y"

l'A1'
SW " ((G L.lP) "H Y)

Here the G-homeomorphism

n
(G L.I P) "H Y (G/H L.I P) " Y

is defined by
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n (g, y)
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(g, gy)

The properties of the maps a and yare as follows.

Lemma 5.6 (i) The following diagram is commutative.

(ii) The following diagram is commutative.

SW f\ SV f\ Y
SVy

) SW f\ SV f\ (GuP) f\H Y

1I" (.

f\ «G I-l P)
V

f\ Y))f\H (S

(iii) The composite

y a

is the identity as a stable H-map.

(iv) The composite

is the identity as a stable G-map.

In part (ii), the G-map SVy is obtained by suspending

according to the inclusion W W ffi V

Assuming Lemma 5.6, we can complete the proof of Theorem 5.2 as
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follows. The map a is clearly natural for unstable H-maps of X;

using (5.6) (i), we see that a is natural for stable H-maps of X,

just as in the proof of (5.1). Similarly, the map y is natural for

unstable G-maps of Y ; using (5.6) (ii), and taking a little more care

that we are really following the definitions laid down in §4, we see

that y is natural for stable G-maps of Y. Now we follow the stand-

ard routine for adjoint functors. The transformation

carries a stable H-map

{Y, (GuP) " x}G
H

to the composite

f

y
Y ----+ (G u P) "H Y

The transformation

carries a stable G-map

f
Y -----7 (G 1-1 P) "H X

to the composite

f a
Y -----7 (G 1-1 P) "H X ----,)0 X

These transformations are inverse by (5.6) (iii), (iv).

Proof of Lemma 5.6. It is straightforward to verify parts (i)

and (ii) from the definitions.

To prove part (iii), we introduce the map
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which carries g to the base-point if g I H , to the non-base-point

if g E H. We check that the composite

S
SV ----7 SV A «G/H) I-J p) SV

is H-homotopic to the identity, and that the diagram

«G/H) w P) A Y Y

?1
//:

(Gw P) A
H Y

is strictly commutative. The result follows by combining these facts.

To prove part (iv), we first note an associative law. Suppose

H acts on the right of A A B by acting on the right of B. Then

the identity map of A A B A C passes to the quotient to give an

identification

(A A B) A
H

C A A (B A
H

C) •

Up to this identification, the map

l"'A"'"
SW A (G wP) A

H
X

which occurs in (iv) may be written as 1 A 6 A lx ' where

s
(G/H LI P) A (G LI P) ----7 (G LI P)

carries to if g2H , 1:0 the base-point otherwise.
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It is now sufficient to check that the composite

SW II (Gu p)

1»- ,
SW II (G/H LI P) II (G l-IP)

.:
SW II (G 4P)

is equivariantly homotopic to the identity, where the word "equivariant"

means that we preserve both the actions of G on the left of these

spaces and the action of H on the right.

In this composite, the map Sill may be regarded as the map of

(SW x G)/(oo x G) which collapses to a point the complement of a tubular

neighbourhood of G/H x G. To apply 1 II 0 we replace the relevant

parts of this map by parts which map to the base-point; we thus obtain

the map which collapses to a point the complement of a tubular neigh-

bourhood of G, embedded via g (gH, g) . Clearly this embedd-

ing is homotopic to the zero cross-section by a linear homotopy

g (tgH, g) (0 t 1) . In this way we obtain a homotopy with

the required equivariance property. This completes the proof of

Lemma 5.6, and so finishes the proof of Theorem 5.2.

Proof of Theorem 5.3. In (5.3) and (5.4) we do not have an honest

adjunction, and we can only expect to construct a natural transformat-

ion in one direction. In (5.3), the transformation is induced by an

unstable G-map, namely the quotient map

q

For spaces it is trivial that the induced map
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is a (1-1) correspondence, because every G-map of SW A X into a space

fixed by N must factor through SW A X/N . (Here W is of course a

representation of G.) Passing to limits, we see that

q*

is a (1-1) correspondence. The left-hand side is {X/N, y}G , and

the right-hand side is {X, y}G by Proposition 5.5. This proves Theorem

5.3.

Proof of Theorem 5.4. We shall construct for each finite G-CW-

complex X on which N acts freely away from the base-point a stable

G-map

with suitable properties. We shall then use this map to induce a natural

transformation

The map trx is a "transfer" corresponding to the "covering"

X ----? x/N (I write "covering" because it fails to be an honest cover-

ing at the base-point.)

To construct trx ' we first replace X by an equivalent G-CW-

complex if that is thought to ease the next step. We choose a G-embed-

ding
(e,q)

X ) V x X/N

X/N
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of the quotient map q: X X/N in the projection TI of a trivial

vector-bundle, whose fibre V is of course a representation of G.

We also choose a G-invariant function E: X R which is continuous,

zero at the base-point and positive elsewhere, so that as x runs over

X the points (v, qx) V x X/N with II v - e(x) II E (x) make up

a "tubular neighbourhood" N(X) of X, which is just like an ordinary

tubular neighbourhood except that its radius tends to zero as x appro-

aches the base-point. For example, one may choose

E (x)
1
3" V..in II e (n x)

nEN

e (x) II

We now perform the usual "Pontryagin-Thom" construction, and collapse

the complement of the open tubular neighbourhood N(X) to the base-

point. We obtain a G-map

trx SV /I (XjN) -----,> SV /I X .

Here we get SV /I X rather than (SV x X)/(ro x X) precisely because

the radius of the tubular neighbourhood goes to zero at the base-point.

Lemma S.7. The class tr
x

E {XjN, x}G is independent of the

choices made in its construction, and natural for unstable G-maps of

X.

Proof. It is more or less clear that the choice of E affects

the result only up to a G-homotopy, so it remains to discuss the depen-

dence on V and on the embedding. We handle this together with the

proof that trx is natural for (unstable) G-maps.

Suppose then that we are given a G-map f: Xl -----,> X2 and embed-

dings
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yie lding G-maps

Then we can embed both embeddings in an embedding

in which X3 is the mapping-cylinder of f and the injections

Xl X3 ' X2 are the usual ones. For example, we can take

Performing the same construction on this embedding, we get the follow-
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ing diagram. V
V3

S 3f V3S II Xl > S II X
2

\v /
S 3

rSV./V,t SV3 /V"t-,r.

V3S

",IN \ V

V3
/

S II XIIN V
, S 3

II X2IN
S 3f

This proves Lemma 5.7.

We now wish to show that trx has suitable properties for suspen-

sion, and of course our discussion is modelled on (5.6) (ii). Suppose

given an embedding

re. q.,)

leading to the G-map

Suppose given also a representation W of G

the map tr2 for the space X2 = SW /\ Xl .

GIN. We wish to obtain

Lemma 5.8. There is a choice of tr2 which makes the following

diagram G-homotopy-commutative.
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W
SV II SW

II Xl/N
S trl ) SV II SW II Xl

I tr
2

SV II

SW II Xl
N

As in (5.6) (ii), the G-map is obtained by suspending

tr l according to the inclusion V ---7 V@W

Proof. Let us decompose SW into the hemisphere E(W)o given

by II w II "l and the hemisphere E(W)oo given by II w II 1 .

Let us choose a real-valued function n(w) on SW which is continuous,

G-invariant, o at and positive elsewhere, and 1 on E(W)o;

for example, we may take

n (w)
1

II w II
on E(W)oo'

Then we can construct an embedding

SW II X, by taking

e 2 (w, x) n(w) el(x) .

The map tr2 is given by the corresponding collapsing map, and may be

described as follows. For each point w E E(W)o we get a copy of
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Over E{W)oo we get some map

but these spaces are G-contractible and so it does not matter what the

map is; our map tr2 is G-homotopic to This proves Lemma 5.8.

Corollary 5.9. trx is natural for G-stable maps of x.

Given (5.5), this follows formally from (5.7) and (5.8). The

argument is the same as that for y in the proof of (5.2).

We now wish to know how trx behaves when X is an N-free G-

sphere (G/HL.j P) A Sn. The condition for this G-sphere to be N-free

is N n H = 1 ; that is, H maps isomorphically to a subgroup H of

G. With X = (G/HL.jP) A s" we have X/N = (G/HL,JP) A s" .

We first consider the case n = a We choose an embedding

X G/HuP V x (G/HwP)

\/
G/H..., P

from which to construct trx . Since X is discrete, the tubular

neighbourhood will consist of a set of discs centred at the points of

G/H .

Lemma 5.10. If and are as in the proof of (5.2) then

the diagram
trx

(G/H '-l P) > SV 1\ (G/H L..I p)

/SV
Jot, / S'c/..:z.

SV
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is H-homotopy commutative.

Recall that is only an H-map and is only an H-map.

Proof. trx is given by the usual collapsing map. To apply

vS u 2 ' we must change our map to the base-point on all discs except

that centred on the coset H/H. The result maps SV x g if to the

base-point unless g H is the coset H; then we get a map of SV

which is H-homotopic to the identity. After this homotopy we reach

VS u 1

corollary 5.11. If X (G/H w p) /\ s" then the diagram

trx
(G/HuP) /\ Sn ) SV /\ (G/HuP) /\ s"

is H-homotopy-commutative.

Proof. Apply the trivial suspension sn to (5.10).

Corollary 5.12. The natural transformation

induced by trx is iso when X (G/Hu P) /\ s" .
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Proof. Consider the following diagram.

{Y, (G/H IJ P) /I Sn}G ) {Y, (G/H u p) /I sn}G

1,.211 1(n)
{Y, Sn}H < ) {Y, sn}H

Here the vertical arrows come from Theorem 5.2, and the lower horizontal

isomorphism comes because H is isomorphic to H. Corollary 5.11

shows that the diagram is commutative, and the result follows.

Corollary 5.13. The natural transformation

induced by trx is iso whenever X can be built up by the successive

attachment of cones on G-spheres (G/HuP) /I s" with Nn H =1.

This follows from (5.12) by an obvious induction over the number

of cones, using the five lemma.

Unfortunately, not every finite G-CW-complex can be built up by

the successive attachment of cones on G-spheres (think of a finite

approximation to EGup); this is one of the well-known snags of the

subject. However, a single trivial suspension sl is sufficient to

turn any finite G-CW-complex into one which can be constructed in this

way. ThUS tne natural tranforrnation
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1 X II SlGIl G
{y II S, N } ----'>'::0 {y II S , X II S }

is iso. However, the whole result commutes with 81, so this proves

(5.4) •

§6. Groups graded over the representation ring RO (G) . In this section

we will consider the question of theories graded over RO(G)

Lately I've noticed authors writing sentences of the following

general form. "Write aERO(G) in the form a=V-W; then we define

If you catch anyone writing a sentence like that, make a note that you

do not trust his critical faculties. The sentence in quotes is not

sufficient. It implies that it is possible to verify that the result

obtained depends only on a and does not depend on the choice of V

and W; but it is not possible to verify this. In fact, suppose that

a is the class of a representation, and that at one point the author

wishes to use a representation V, and suppose (as is likely) that

at another point he wishes to use a different but isomorphic represent-

ation V Then he must choose an isomorphism V = V to use in

identifying {sv II X, y}G {sV II X, y}G ; and he must say

which, for if he chooses a different one it will change his identificat-

ion by an invertible element of the coefficient ring {So, sO}G .

If he doesn't say which, then he doesn't know what he is doing and

nor do we.
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I will list three options suggested for overcoming this difficulty.

(i) Retreat to a notation which displays V and W explicitly.

(ii) Follow the classical precedent. A graded group such as

1fn (X) is not defined by allowing the use of any old vector space of

dimension n; it is defined by using the specific space Rn which

is under our control. This suggestion, then, involves an initial choice

of preferred representatives. Presumably one begins by choosing one

specific irreducible representation in each isomorphism class of irre-

ducible representations.

(iii) "It may appear that is intended to be a function

which assigns to each a E RO(G) a group Indeed, for purposes

of planning strategy I like to think of it that way, and I hope you will

do the

G{X,Y}*

same.

is a

But for purposes of rigourous proof, I suggest that

functor, which assigns a group to each object of some

godawful category, and assigns to each morphism in that category a dif-

ferent way of identifying the groups in question".

The merit of (i) is that it is manifestly honest. The drawback

is that it does not succeed in justifying notation such as

which might be convenient.

The drawback of (ii) is that it may involve unattractive technical-

ities. Nevertheless, this is probably the best way if anyone seriously

needs notation graded over RO(G) •

Mathematically, (iii) is indistinguishable from (i). Linguistic-

ally, notation with very strong associations, which are totally differ-

ent from its declared logical meaning, is misleading notation. I suggest

we should use misleading notation only when we wish to mislead, for

example, on April 1st. Since mathematicians do not normally intend to

deceive, misleading notation is especially dangerous to authors capable

of self-deception.

Now I will turn to the published record. Bredon's work [4,6J



521

involves homotopy groups which clearly need to be indexed over RO(G)

for G = Zz , and it is rigourous by option (ii) because it starts from

the two actions of Z on the reals. Notation graded over RO(G) ,
2

and the difficulty above, goes back to [23 p60 J. Those who read German

already possessed the means of implementing option (ii), because the

work of torn Dieck [9,10J explicitly says that you choose actual repre-

sentations, not isomorphism classes. When those who read German started

to want to use notation graded over RO(G) , they remembered this

[25 p373J; but they forgot it as soon as they could.

Next I point out that questions may arise which need checking from

the definitions. I thank J.P. May for drawing my attention to the

point which follows.

Authors who write about generalised cohomology theories commonly

assume that for each a E RO(G) and each X there is given a group

lia(x) (So, whatever else they are doing, they are not following option

(iii).) Such a cohomology theory should come provided with suspension

isomorphisms

v
o :

where [vJ is the class of V in RO(G) Clearly, a+[VJ+[WJ is

logically the same element of RO(G) as a+[WJ+[vJ , and apart from an

axiom saying aVoW = oV@W , we need an axiom about a diagram of the

following form.

lia+[VJ+[WJ(SWASVAX)

1(TAl)*

lia+[WJ+[VJ(SVASWAX)

T
Here SWASV SVASW is of course the switch map. In the ordinary
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case this diagram only commutes up to a sign (-l)pq; in the equivar-

iant case, it has to commute up to an invertible element of the coeff-

icient ring {so, SO}G , and we must be told which. For example, if

v = W , then the composite w V
a a is logically the same as VWa a and

the required element is the class of T. Now T can be replaced by

the map

(+1) $ (-1): V $ V V $ V •

Let us write s(V) E {so, SO}G for the element represented by

(-1): Vu (00) vu(oo)

then the answer in this case must be s(V) . It can be shown by example

that this element may be different both from +1 and from -1 (take

G = Z2 and take V to be the non-trivial action on the reals).

If any author on this subject had wished to inspire confidence,

he should have faced this problem and not tried to skirt it. The answer

I would like to see is

II s(p) <p,V> <p,w>;

p

here the product runs over irreducibles p, and <p,V>, <p,W> are the

multiplicities of p in V,W respectively.

Of course, the correctness of such an answer, for some well-defined

function Ha of a E RO(G) , can only be proved by checking from the

definition. However, the inconsistency of certain other answers can be

proved without.

I now invite the reader to try to audit works such as [ and

], and try to determine whether their statements are checked from

definitions. In my opinion, uncritical use of RO(G)-gradings is likely

to lead to treatments which cannot be accepted as satisfactory.

The relevance of all this is as follows. Carlsson's preprint [8]

uses groups graeed over RO(G) It is suggested by Caruso and May that
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it might be profitable to rewrite more of Carlsson's proof as an exercise

in RO(G)-graded generalised homology and cohomology. Of course, Caruso

and May provide a rigourous foundation for the small use of RO(G)-

grading they propose. However, we must also consider RO(G)-gradings

elsewhere in the subject.

At this point I should perhaps point out one other thing well

known to the experts, as follows. This is going to be a splendid sub-

ject, but we need to cure it of a certain tendency to minor sloppiness.

Question 6.1. Hey! Wouldn't it be better to deal with that in

private?

Answer. I did try, but things seem to have gone too far. Only

the other day one of my graduate students brought me his work, and when

I checked the main reference, I found it was open to the objections I

have explained; and this was from a source I had not previously regarded

as suspect. (I wouldn't mind if the only results affected were either

(a) so easy that anyone can prove them correctly, or (b) so dull that

nobody would ever quote them. But as a defence of mathematical work,

"de minimis non curat lex" is less popular than it might be.)

Now, I earnestly desire that if there are going to be theorems in

this subject, then this subject should fall in with the rest of topology,

and get itself written so that innocent graduate students can tell,

without extravagantly much work, what is rigourously proved and what

is not. It was so in 1972, why not now?

Question 6.2. But surely anyone can make a mistake?

Answer. Yes, of course, anyone can make a mistake. And anyone

can put it right, by publishing some correction or addition to his

work. But you want to do it before twenty other people have followed

you into the same pitfall. After seven years, the way things move now,

your paper is up for the judgement of history.
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Question 6.3. But isn't it dangerous to make such sweeping gener

alizations? You will have all manner of upright citizens pressing you

to publish the statement that you intended no slur on their care,

rigour or professional standards.

Answer. (a) Everyone knows I don't mean [13J or [18J. The pro

portion of papers in this subject which are wholly satisfactory is well

above the proportion of righteous men for which the Lord would have

spared Sodom [30J. (b) I've tried lectures which don't name names and

I've tried drafts which do name names, and nothing will please everyone.

I have consulted older and wiser men, and I am moved to preach a

sermon to this subject. So, if such of my friends as have favourite

pieces of minor sloppiness will please put them down and walk quietly

away from them, I will begin.

I earnestly desire that people should not copy out of previous

papers without pausing to think whether the passages to be copied make

sense. And when we write a sentence which implies that one checks A

and B, then we shall take scrap paper and check A and B  from the

definitions. And for those of us who have the care of graduate students,

I recommend that we give them critical faculties first and their Ph.D. 's

afterwards. Here ends my sermon.

§7. Gspectra. In the classical case, the advantage of doing stable

homotopy theory in a category of spectra are by now well understood.

In this section we will consider very briefly the corresponding equiv

ariant theory.

Gspectra were introduced by tom Dieck in [9,10J; the published

account, [12J, is less explicit. However, tom Dieck introduced Gspectra

merely in order to obtain the associated generalised cohomology theories;

he did not treat them as a category in which to do equivariant stable

homotopy theory.

A good category of Gspectra exists [18,19 J. "Just as the non
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equivariant stable category is "Boardman I s category", and is still

Boardman's category no matter whose construction one actually quotes,

so the equivariant stable category is that of Lewis and May". One can

have confidence that the work of these authors will be careful, accurate

and reliable, and we may hope that it will appear soon.

I need to draw attention to only one snag, and to explain it I

must make some preliminary remarks.

For G-spaces X we have fixed-point subspaces and we know

what they do under suspension; we have

Therefore, passage to fixed-point subspaces defines a functor, say T,

from the G-Spanier-Whitehead category of §4 to the N(H)/H-Spanier-

Whitehead category, where N(H) is the normaliser of H in G

Any good category of G-spectra must contain the G-Spanier-

Whitehead category embedded in it as a full subcategory. In particular,

the category of Lewis and May does so. Similarly, the category of

N(H)/H-spectra must contain the N(H)/H-Spanier-Whitehead category.

We can now consider the following conditions on a hypothetical

functor U from G-spectra (whatever they are) to N(H)/H-spectra

(whatever they are).

(7.1). U extends the functor T defined above.

(7.2). U permits one to carry over to spectra the result (2.6)

for spaces, say in the form of a (1-1) correspondence

{ (G/H w P)

(whatever 'TIn is).

The snag is that these two conditions are inconsistent; you cannot

have both and so you must choose.
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Lewis and May attach great importance to (7.2). "Since the reduct-

ion of equivariant problems to non-equivariant ones by passage to fixed-

point spaces is probably the most basic tool in equivariant homotopy

theory, it is clearly desirable" to carry over that tool from spaces to

spectra. I freely concede the great mathematical interest of the objects

U(Y) which Lewis and May construct and call fixed-point spectra. Lewis

and May argue further that, to avoid confusion, it would be highly

undesirable for anyone to try to attach the name "fixed-points" to a

functor U satisfying (7.1).

The relevance of this is as follows. Carlsson, in his preprint

[8J p9, says that he will work in a category of G-spectra, and specific-

ally in the category of [18J. If so, then by [8J p44 he wants a functor

U with the property (7.1) and he has little or no interest in (7.2).

Now, this seems to me a most reasonable request; I see no reason on

earth why Carlsson should not have a functor with the property (7.1),

and in the first draft of this section I constructed him one.

The reason I have cut this section since the first draft is that

it now appears that most of Carlsson's proof can be done without G-

spectra.

§8. Equivariant S-duality. In this section we will study the equiv-

ariant analogue of ordinary Spanier-Whitehead duality.

In the classical case, there are two standard approaches. In the

first, which was historically prior, you suppose given a finite complex

X. You choose a good embedding of X in the sphere sn+l, and the

complement gives the S-dual of X, up to a shift of n dimensions.

In the second, one works not with embeddings, but with structure maps



527

X* A X Sn. The standard reference is to Spanier's exercises

[24 pp 462-463J. Both approaches carry over to the equivariant case.

Of course, in the first, you embed in a sphere with G-action, and in the

second, you map to a sphere with G-action. Both approaches have all

the good properties a reasonable man would expect.

"The standard reference is to Wirthmuller [26J, who implements the

second approach. [26J was a paper worth writing properly. It is written

in RO(G)-graded notation; and at the time it was written, there was no

adequate rigourization of RO(G)-graded notation in print so far as I

"know. Wirthmuller might have written one; alternatively, he might have

used different notation. If he had done either, [26J could have been a

splendid paper. As it is, I report that it can clearly be rewritten

so as to become completely satisfactory.

For the embedding method, I thank J.P. May for recommending a

reference to Section 3 of [27J.

I will begin by summarising some basic material on G-S-duality.

Question 8.1. We need to begin with the duals of cells and spheres.

What is the G-S-dual of (G/H) ... P ?

Answer. It is (G/H)uP again. For example, you can embed

P in the sphere corresponding to the permutation representation

of G on the elements of G/H; then the complement is (up to G-equiv-

alence) a wedge, indexed by G/H, of copies of the reduced permutation

representation.

If you wish to avoid the embedding method, I suggest that you rely

on (5.1) and (5.2) for the following natural correspondences.

{(G/H L.J P) A X, y}G

{X, y}H

{X, (GjHw P) A y}G .
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One has to remember that this answer needs modification when G

is a compact Lie group. See [26 p 428J.

Question 8.2. Should we expect G-S-duality to have good behaviour

on cofiberings?

Answer. Yes. Of course, both query and answer beg the question

of what we mean by "good behaviour", but we mean, "the same behaviour

as for G = 1 "

With the method of embedding in spheres, it is almost clear that

the dual of a Mayer-Vietoris diagram

X n u Y

is another Mayer-Vietoris diagram

X* u n Y* •

Now take Y (and therefore Y*) stably G-contractible; we see that the

dual of a cofibre diagram

f

is another cofibre diagram

i
X ----;. X 11 f CA B

f* i*
X* ui * X* .-- B* •

With the Spanier approach, it's one of the lemmas which have to be

proved before the method works. See [26 p 429J.

I thank J.P. May for pointing out that if you want a cofibering
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to include all three relevant maps, then on a suitably precise definit

ion, the statement "the Sdual of a cofibering is a cofibering" is act

ually false if you worry about signs  there is a sign which won't go

away. But this is just the same as in the classical case.

Question 8.3. Should we expect to have good behaviour

under the forgetful functor i* ,under j * and under passage to fixed

point sets?

Answer. Yes. Suppose given a homomorphism e: G1 --7 G , and

suppose you can embed Gspaces X, X* in a Gsphere S Then you can

apply e*

G1sphere

xH , (X*)H

and regard them as G1spaces e*x, e*x* embedded in the

e*s Similarly, you can pass to fixedpoint sets and obtain

embedded in SH.

With the Spanier approach, you start from a structure map

X* A X S and you can again apply e* or pass to fixedpoint sets.

See [26 P 427, P 431J.

We turn to more interesting results. First suppose that X is a

finite GCWcornplex which is free (away from the basepoint) over a

normal subgroup NeG.

Theorem 8.4. Then X admits a GSdual DGX with the following

properties.

(i) DGX is also Nfree (away from the basepoint).

(ii) The duality is with respect to a "dimension" which is a

representation of GIN.

Proof. We first avoid the standard snag mentioned at the end of

§S by the same device used there; by passing to X A Sl if necessary,

we can assume that X is constructed by the successive attachment of

cones on Gspheres (G/H w P) A Sn with N n H = 1 .

We now apply (8.2). By (8.1) the dual of (G/HuP) A s" with
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respect to dimension n is (G/H uP) . By (5.5), all the stable attach-

ing maps required to build up DGX can be realised by maps of spaces

at the price of suspension sj*W.

Let X and DGX be as in (8.4), that is, N-free and G-S-dual

with respect to a dimension j*W.

Theorem 8.5. Then X/N and (DGX)/N are G/N-dual with respect

to dimension W.

It seems that this was in doubt until recently. lowe the case

N G , G/N = 1 to letters from L.G. Lewis and J.P. May.

Proof. Let G = GIN and let Y run over the G-Spanier-Whitehead

category. Then we have the following (1-1) correspondences natural

in Y.

(5.3)

(G-S-duali ty)

(5.4)

This characterises

sion W.

DGX as the G-S-dual of xjN with respect to dimen-

N""

I next recall that A. Ranicki [21] has given an "unconventional"

treatment of G-S-duality, in which the group G need not be finite,

but the G-cornplexes must be G-free (away from the base-point).

Theorem 8.6. If G is finite then the Ranicki dual of a G-free

space X agrees with the conventional one.
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Proof. Let Y run over the G-Spanier-Whitehead category; Y need

not be G-free. Let X* be a Ranicki n-dual of X. In view of (5.5),

the Ranicki n-dual X* is characterised by the first of the following

two (I-I) correspondences which are natural in Y •

X 1\ Y G/G
{Sn, __}

G
(Ranicki duality)

(5.4) .

But this characterises X* and X as conventional n-duals.

One of my correspondents suggests that the results presented above

make it unnecessary for me (or Carlsson) to mention Ranicki duality.

I take this point.
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ON THE RATIONAL HOMOTOPY OF CIRCLE ACTIONS

C. ALLDAY AND V, PUPPE

At the conference the second-named author gave a talk

in which he advertised methods from deformation theory of

algebraic structures (associative algebras, chain complexes,

Lie algebras) to study problems in cohomology and rational

homotopy of transformation groups. In this context some

results concerning cohomology can be found in [10], [11].

They rely on Borel's approach to P.A. Smith theory based

on the localization theorem for equivariant cohomology.

Using Sullivan's theory of minimal models the first-

named author gave analogous localization results for ra-

tional homotopy of torus actions (s. [1], [2]) which can

also be interpreted in deformation theoretical terms to

give further insight into certain problems in this area

(s. [11]). In this note we pursue some questions mentioned

in the talk at the conference by combining methods and

results from [1], [2] and [10], [11].

Let X be a simply connected, finite SI_CW complex

such that dimm(TI*(X) @ m) is finite, and let FcX be a

simply connected TI-full (i.e. dimm(TI*(X)@m) = dimm(TI*(F)@m)

s. [2]) component of the fixed point set of X. For a

(simply connected) space Y let L*(Y) := L- 1 (TI*(Y) @ m) de-

note the (connected) graded Lie algebra over m given by the

"desuspension" of the rational homotopy of Y where the Lie

product corresponds to Whitehead product. Then one has

PROPOSlTION: £*(F) as Lie algebra is deformation

(s. [5], [8]) of the graded Lie algebra L*(Xj. More precise-
- ---.----- 1--

ly: There exists graded Lie algebra (X) (isomorphic

to L*(X) @ m[t) as a graded m[t]-module, It I = -2, but with

:twisted" Lie the graded polynomial ring

lI.e. the
with the
L * (X) .

1
Lie bracket of eX) does not coincide in general
canonical t[t]-bilinear extension of the Lie bracket of
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w[t] (It I = -2) such that

£W =
for £ = 0

for £ * 0

where the W[t]-module structure on W£ W (as W-vector
----- E -
space) is given by p : W[t] W; t £, £ E W.

This result follows from [2] and is stated in [11]

for the dual situation, i.e. for the "pseudo-dual rational

homotopy" of X and F as co-Lie algebras over W.

The situation in rational homotopy described by the

above proposition is analogous to the "totally non-

homologous to zero" case in cohomology (s , [2], [10]). our

aim is to establish a result on the minimal number of gen-

erators and relations for L*(F) in comparison with those

for L.(X) which is analogous to the results in cohomology

(s , [4], [6], [ 9 ], [ 10]). In the following lemma we collect

some facts on presentations of (graded) Lie algebras which

are more or less well known(s. [7]). Let L(V) denote the

free Lie algebra over the space V.

1: a) If L(W) L(V) L 0 is a presentation of

connected (Lo=O) graded Lie algebra over W such that V is

finite dimensional W-vector space then:

(i) L
dimWV dimW I[L,L] = minimal number of Lie algebra

generators of L

(ii) dimWW-dimWV cid(L), where cid(L) := min. number of

relations of L - min. number of generators of L

b) For every finitely generated, connected graded Lie alge-

bra L there exists a minimal presentation, i.e. pres-

entation L(W) L(V) L 0 such that

cid L .

Remark 1: Lemma 1 is a reformulation of some of the results

given in [7], chap. 1 for Lie algebras and grading

preserving presentations. For grading preserving morphisrns

a,S the sequence L(W) L(V) L 0 is a presentation

of the connected graded Lie algebra L if and only if
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aOS = 0 and the induced linear maps [a]: V...L/[L,L] and

[S]: W --+ ker a/[ker a,L(V)] are surjective (s. [7]). For

morphisms a,S which only preserve the given

by the odd and even part of the of L these last

conditions may no longer guarantee that a,S give a presen-

tation of L, but if the connected graded Lie algebra L has

finite total dimension as a vector space over m (and hence

is nilpotent), one can see (by similar arguments as in the

grading preserving case) that they suffice to obtain the

inequalities in part a) of Lemma 1 (the nilpotency of L

together with the surjectivety of [a] implies that a is

surjective).

Let L(W) L(V) L --+ 0 be a grading preserving

presentation (with dimmv < of a connected graded Lie

algebra Lover W which has finite total dimension as a W-

vector space. Let L be a "one-parameter family of deforma-

tions of L" Le. L L @ m[t] (It I = -2) as a graded W[t]-

module but with a twisted Lie bracket such that L is a

graded Lie algebra over W[t] and L @ WO = L (s. [5],[8]).
Oat]

LEMMA 2: The morphisms a,S can be lifted

graded Lie algebras WEt]) a: L(V)

S: L(W) := L(W) @ WEt] ... L(V) such that:

(i) a @ idwo = a, B @ idwo = S
WEt] WEt]

morphisms of

L(V) @ OJ[t]--+ L,

(ii) a is surjective, in particular the induced W[t]-

linear map [a]: V@w[t] --+ L/[L,L] surjective.

(iii) croB = 0 and S induces surjective W[t]-linear map

[S]: W @ WEt] --+ ker a/[ker a, L(V)]'

Proof: Since po: L --+ L = L @ WO is surjective one can
WEt]

choose a (degree preserving) W-linear map a: v ... L such

that pOoa = a. This W-linear map has a unique extension

(again denoted by a) to a morphism of graded Lie algebras

(over w[t]) a: L(V) -+ L. By construction a @ idwo = a
W[t]

and the composition

L(V) L --+ L = L @ WO

w[t]
L/t.L is surjective.
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By a simpl£ induction argument one gets that the composi-
a

tion L(V) L Lj is surjective for each q E
tqL

Since L is a positively graded Lie algebra of finite total

dimension over m and L = L @ m[t] as a graded m[t]- module

(It I = -2) for every fixed dimension n there exists a q(n)

such that (tq(n)L)n = O. Hence a is surjective in every

dimension which proves (ii). Since L is a free m[t]-module

there is a splitting of a as a morphism of W[t]-modules. It

follows that ker a is mapped surjectively onto ker a under

the map po: L(V) L(V) = L(V) @ mO.
m[t]

Therefore one can choose a (degree preserving) m-linear map

S: W ker a which extends uniquely to a morphism of graded

Lie algebras (over m[t]) S: L(W) L(V). By construction

aOS = 0 and S @ WO = S. It remains to show that
m[t]

[S]: w@ m[t] ker aj[ker a,L(V)] is surjective.

Again by construction (and right exactness of the tensor

product) the composition

ker al.
[ker a,L(V)]

ker a

@

w[t]

is surjective (since [S]: W ker a j [ker a,L(V)] is sur-

jective) •

Since L has finite total dimension as am-vector

space the morphism a: L(V) L = L @ W[t] is trivial in

sufficiently high dimensions (I t I = -2 ( !), i. e. (ker a) m
L(V) for large enough m. On the other hand [L(V) ,L(V)]m m
L(V)m for large enough m because dimWV < 00. It follows

that (ker ) 0 for large enough m.[ker a,L(V)] m =

By an argument similar to that above one gets

W@W[t] [S! R Rj t R is surjective where

ker a/R := [ker a,L(V)] and therefore by induction

W@W[t] [S! R R j is surjective for all q E which
tqR
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implies the surjectivity of [8] since (tqR)
n

q = q(n) is large enough.

Oif

THEOREM: Under the hypothesis of the proposition above one

has:

(i) <
dimOl L* (F) /[L* (F) ,L* (F)] = dimW L* (X) /[L* (X) ,L* (X)]

i.e. the minimal number of Lie algebra generators of

L*(F) is smaller or equal to the minimal number of

Lie algebra of L* (X) .

(ii) cid(L*(F)) cid(L*(X)). In particular:

the minimal number of relations of L*(F) is smaller or

equal to the number of relations of L*(X).

Proof: Choose a minimal presentation of L := L*(X)

L(W) L(V) L -+ a (in particular dimOlV = dimOl L/[L,L]

= min. number of generators of L*(X), dimWW-dimOlV =
cid(L*(X) , dimWW = min. number of relations of L*(X».

By the above proposition and Lemma 2 there exists a

sequence of Lie algebra morphisms

(*) L(W) L
[(i]: vsct t ]

[8]: W®w[t]

1

L(V) L = L; (X) a with a 08

L/[L,L] and

ker a/[ker a,L(V)] surjective.

a

@

(IJ[t l

Tensoring the

gets a sequence of

®
Ol[t]

sequence (*) with WE over W[t] one

2/22-graded Lie algebras and morphisms

® OlE a, L
w[t]

By the right exactness of the tensor product one has:

a
E
surjective, in particular raE]: V L*(F) /[L*(F) ,L*(F)]

surjective and [8
E]

[8]E: W ker aE/[ker aE,L(V) ® OlE]

Ol[t]

surjective (ker(aE) = (ker a) @ WE, because a splits
Ol[t]

as a Ol[t]-linear map).

Hence the theorem follows by applying Remark 1.
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Remark 2: By induction on the dimension of the torus one

immediately gets similar results for torus actions.

Remark 3: The analogous result for the "totally non

homologous to zero" case in cohomology mentioned above

including the result on the "complete intersection defect"

(cid) (s . [11], Cor (1 . 2)) can be obtained by analogous

arguments for commutative associative graded algebras.

Remark 4: In the absence of the rrfullness assumption on F one

can use deformation theoretical methods with respect to

the differential of the minimal model to derive results

on the rational homotopy and cohomology of 8 1 (resp. torus)

actions (s. [11] for a sketch of some simple proofs of cer

tain known results, which have been proved before by dif

ferent methods [1],[12]). Recent work of G. Carlsson

(s. [3]) allows one to use similar methods for the cohomology

of (resp. finite pgroup)actions (p prime).
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SEMIFREE TOPOLOGICAL ACTIONS OF FINITE
GROUPS ON SPHERES

by

Douglas R. Anderson
and

Erik Kjaer Pedersen

Let Sn+k be the unit sphere in Rn+k+ 1 and Sk = Sn+k nRk+ l

where Rk+ l is the linear subspace of Rn+ k+ l spanned by the last

(k+l)-coordinates. Let G be a finite group. It is the object

of this paper to study the existence and desuspension problems

for semifree topological actions of G on sn+k with fixed point

(Henceforth, we shall denote the fixed point set by

Fix(G).) Before we state in a precise form the problems we con-

sider, we fix an identification of sn+k - sk with sn-l x Rk+ l and

record an easy lemma.

L f ' f 1 n+ k i t.h '() sk hemma: L G ree y on S r ix G = , t el}

i) G has periodic cohomology of period d and n=rd for some

r 1 and;

ii) If then x=sn+k_sk/G is a polarized complex.

We refer the reader to Madsen, Thomas, Wall (9) or (16) for

the definition of a polarized complex.

Proof: Part i) follows immediately from Cartan and Eilenberg [3]

since Sn+k - sk = Sn-l XRn+ l. For ii) it is clear that there is an

identification of TTl (X) with G and a preferred homotopy equivalence

of the universal cover 5{ of X with sn-l. Furthermore, X is

finitely dominated by a result of Edmonds [5).

The significance of part i) is that it limits the groups G

that can occur in this problem. In the case when k = -1 (Le.

Fix(G) =¢), Milnor's theorem [10] imposes the further limitation

that every subgroup of G of order 2p (p a prime) must be cyclic
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and in this case the following theorem holds:

Theorem (Madsen, Thomas, Wall)' Let G be a group with periodic

cohomology of per iod d and such that every subgroup of G of

order 2p is cyclic. Then G acts freely on S2d-l.

In most, but not all, cases it is also known that G acts

f 1 Sd - l . . h" .ree y on , t e dimension." It is hoped that the

results presented here will help to resolve this "period dimension"

problem in some of these outstanding cases. For example. we expect

that some of these groups cannot act even semifreely in the period

d · . th t' th . f 1 sd+k. h . () Skamens aon-o- a a s , ey cannot act s erru. ree y on wi t, G = •

If k O. then Milnor' s theorem can no longer be applied.

(This was pointed out to us by Julius Shaneson.) In particular,

it is not known at this writing whether G must satisfy the 2p-

condition described above and the question of whether this is so

becomes an interesting problem.

Henceforth in this paper we shall assume that n 4. We note

that since n = rd, where d is the cohomological period of G, and

d must be even [3J, this is a restriction only when d = 2 and is

a mild one at that. In fact, if d = 2, then G is cyclic and

linear actions provide a complete solution for the existence problem

that we consider. In this case, then, only the desuspension problem

is of interest.

The significance of part ii) of the above lemma is that it

introduces a new parameter into the existence problem. In particular,

in [16J it is shown that there is a bijection between polarized

complexes with universal cover homotopy equivalent to Sn-l and

generators of Hn{G:Z) = ZIG 1 given by taking the first k-invariant.

Thus, if '( EHn (G: Z) , we shall let X (1() be the corresponding

polarized complex. We remark that is a finitely dominated
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Poincare complex of formal dimension n-l whose Spivak normal fibre

space admits at TOP reduction and we fix one such reduction

The problems considered in this paper may now be stated

precisely as follows:

Existence Problem: For which quadruples does there

exist a semifree topological action of G on Sn+k with Fix(G) =Sk

and Sn+k - sk/G homotopy equivalent to X (':)?

Desuspension Problem: Suppose G acts semifreely on Sn+k

with Fix(G) = Sk. Is the given action the suspension of a semifree

action of G on Sn+k-l with Fix (G) = Sk-l?

Our solutions to these problems are the following theorems:

Theorem A: Consider the followinq statements:

i) There exists an element x E [X (Y() iG/TOP) whose surqery obstruc-

-ktion e (x) = 0 in L
n
_
l
(G).

ii) There is a semifree topological action of G .Qn Sn+k with

k n+k +k j .Fix (G) = S and S - S G homotopy equJ.valent to X (1() •

If 4. 0, and n + k 5. then i) implies ii). .If 5, then

ii) implies i). Thus i) and ii) are equivalent for 5 •

Remarks: a) In this theorem. 1( E H
n (G; Z) for some n = rd and r 1 •

-kb) The functors L
n
_
l
( ) used in this theorem are defined

inductively by setting LO i ' ) =Ii' l(G). the Wall group based onn- n-

projective modules, and then setting

L- (k+l) (G)
n-l ok ( L - k l (G) ... L-k

l
(G x Z)}c er 0*: n- n-

where c: G'" G x Z is the obvious inclusion. These groups have been

investigated by Ranicki (14). In particular. he shows that they

fit into a Rothenberg type exact sequence
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Thus, although the surgery obstruction e(x) of this theorem originally

lies in L;_l(G), it is its image in that is of interest here.

c) It seems quite likely that the condition that n 5 in

the second half of this theorem can be replaced by 4. Thus,

it is likely that i) and ii) are equivalent for n.2: 4.

Theorem B. Let G act semifreely on Sn+k with Fix {G} = Sk. Let

Suppose that either or that and that an

In particular, the given action is isotopic

C E K': k (G) vanishes. Then there is a G-invar iant sub-

Sn+k meeting sk in Sk-l and an ambient

n+k-lsuch that h O= 1, h l (M) = S , and

space M of

h : sn+k ... sn+k (0 < t < 1)
t - -

kh t IS = 1 for all t.

obstruction

to the suspension of an action of G on Sn+k-l with Fix (G) = Sk-l.

Remarks: a) In this theoremK':k(G) is KO(G) if k=O and K_l(G)

if k = 1 •

b) If k = 0, the obstruction C' is a S iebenmann end invar iant

[15] and has been investigated by Edmonds [5]. If k = 1 , is the

Quinn invariant ([12] and [13]) of a certain parametrized end which

is described later in this paper.

c) We could state this theorem more generally in terms of an

obstruction 0EK_k(G) for any k.2:l. If however, Carter

[4] has shown that K_k (G) = 0 for any finite group; thus this

obstruction vanishes.

d) In this theorem sn+k-l = Sn+k it Rn+k, where Rn+'< '- Rn+k- 1

is spanned by the first (n+k)-coordinates. and sk-l = sn+k-l r, sk .

As an immediate corollary of Theorem B, we have

n+k . hCorollary C. Suppose that the finite group G acts on 5

Fix(G) =Sk. If then G acts on Sn+l with Fix(G) =Sl.
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This paper contains sketches of the proofs of these results.

The authors expect to publish full details of these proofs elsewhere.

The first named author would like to acknowledge with thanks

support for this research received from the Danish Natural Science

Research Council and the National Science Foundation. He would also

like to thank the Mathematics Institute of Odense University for

its kind hospitality during the period in which this research was done.

1. The Proof of Theorem A: i) implies ii).

In this section we begin the sketches of the proofs of

Theorems A and B by sketching the proof that i) implies ii) in

Theorem A when and We begin this sketch by

observing that, by using the cobordism interpretation of the LP

group given in [11], taking the cartesian product with Sl yields

a commutative diagram

0 -> LP(G) -) LP(G x Z) -) L-ll(G) -) 0n n n-
J,x Sl J: sl I

I Xl

Lh(GXZ) Lh(GXZXZ)
-.l-

0 -) -) LP(G x Z) -) 0n n n

and induces a homomorphism Xl which is a natural transformation

of functors. We may then proceed by induction to construct homo-

morphisms

-kwhich define a natural transformation from the functor L
n_ l(

to L-k+ 1( x Z) Furthermore, it can easily be shown thatn •

-k - (k+l)
Xk+lPk = Pk+lXk, where Pk : Ln_ l (G)'" Ln_ l (G) is the homomorphism

in the Rothenberg sequence, and that Xk is a monomorphism. We

shall use this latter fact in Section 4.

with this information in hand, it can be shown that the

following diagram commutes
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[X(K) :G/TOP)

In*
[X(K) )( Tk+l:G/TOP]

_8_>

8'-->

where ,..* is induced by the projection ": X V() XTk+ l .... X (K)

1
X = (x S )Xl··· Xk, and 8' is the surgery obstruction map. It

follows that if x E [X PO ,G/TOP) is such that 8 (x) = 0, then there

is a homotopy structure f: Mn+k .... X(1\) x Tk+ l.

Let M and M be the covering spaces of M with fundamental

group trivial and zk+l respectively. Let q: M.... Mbe a covering

map and notice that M and M both support free actions of G

relative to which q is equivariant.

Lemma:
..... n-l k+l

There exists a homeomorphism d : M'" S ]I. T . The action

f Sn- l k+l. d d b h i h h·· d th2- G £!l x T uce y t omeomorp uces e

identity on fundamental groups.

Proof: Lift f to

cover of X(K), and

f : M'" X(1{) X Tk+ l, where x<K) is the universal

. --- k+l n-l k+lcompose wi.t.h h xl: X(K) XT .... S XT ,where

h is the preferred homotopy equivalence coming from the polariza-

tion ofX(K). Since n is even, the results of [7: Section 10) can

be applied to the homotopy structure (h x 1) f to prove the lemma.

If we now lift a to universal covers, we obtain a homeo-

morphism d such that the following diagram commutes

...-
sn-l XRk+ l

M _d_>

lq !l x e

M _d_> sn-l XTk+ l

where e is the exponential map. In particular, there is an

induced action of G on Sn-l XRk+ l relative to which 1 X e is

equivariant. It follows that since each g E G acts trivially on

"1 (Sn-l x Tk+1) , the action of g on Sn-l XR
k+ l is bounded in
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the R
k+ l

direction (cf. [8] or [1]). Thus we have a homomorphism

n-l k+l
p': G ... Homeob (S x R ), the group of bounded homeomorphisms of

Sn-l x Rk+ l. Since the compactification arguments of [1] or [2],

yield a homomorphism Y: HOmeob(Sn-l x Rk+ l) "'Homeo(Sn+k,Sk), the

group of homeomorphisms of Sn+k that are the identity of Sk,

setting p = )P I completes the proof that i) implies ii) in Theorem A.

2. Some Ends of an Action.

In this section we describe several ends associated with a

semifree action of G on Sn+k with Fix (G) = sk. It is the analysis

of these ends that leads to the proofs of Theorem B and of the fact

tha t ii) implies L) in Theorem A when n 5 •

We first define a map c
l

: sn+k ... Dk+ l by fixing identifications

of Sn+k with Sn-l * Sk and Dk+ l with v * Sk and letting c
l
correspond

to c * 1 where c : Sn-l ... v is a collapse map. We let rDK+l be the

n+kdisk of radius r about the origin and set Ml = S -

c l l (Int 1/3 Dk+ l USK). Finally we lete
l:

M
l
... Sk be the composite

k+l / k+l -L Kcll : M
l
... D - Int (1 3 D ) >S where p is a radial retraction.

It is easy to see that there is a commutative diagram

Ml

e l > Sk

hl II
Sn-l x SK x (0,1]

P2
> Sk

where h is a homeomorphism and P2 is proj ection on the second

factor. Thus, if e
l

is regarded as an end in the sense of [12],

it is o-LC and tame (cf. [12] for definitions). Furthermore, e l

admits the nicest sort of completion, namely one corresponding to

the projection P2 :sn-lxsK x [O,l] .... sk.

n+k k+l -1Now define c
2

: S ... D by c
2
(x) = IG I L: c

l
(gx) where the

. n+k -1 / k+l ksummation runs over g EG. we set M2=S -c2 (IntI 3D US)
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and let e 2 : M
2

-+ Sk be the composite c
2
1 : M

2
-+Dk+ l_ Int 1/3 Dk+ l Sk.

An elementary argument based on comparing e
l

and e
2,

using the

product structure on e
l

(Le. the fact that e
l
is essentially

a projection), and little point set topology shows that the end

e 2 is l-Le and tame. We call e
2

the eguivariant end of sn+k

near Sk.

n+kFinally, we note that M2 is a G-invariant subspace of S

and that e 2 : M
2

-+ Sk is G-equivariant if Sk is given the trivial

action. Thus, e 2 induces a map e 3 : M
3

-+ Sk where M
3
=M2/ G . Since

e
2
is a regular cover of e

3
, it is easy to see that the end e

3

is a-Le, has constant fundamental group G, and is tame. (The last

condition follows from [12; Proposition 1. 7J.) We call e 3 the

end of the orbit space Sn+k/G near the singular set Sk.

The ends that are actually used in this paper are obtained

isp

we have just described by restriction.

k k k k .
p : R -+ D and a : D -+ S be g ven by

a(x) = «1_lxI 2)1/2,x) respectively. Then

is an embedding whose image

-1 k -1 -1 k
Let Ni =e i (IntD+) and f i = p a ei: Ni-+R

We call f i the part of e i over Rk (i=1,2,3).(i=1,2,3).

from the ends that

we denote by Dk
+

Specifically, let

1
p (x ) = 1+ Ix I x and

a homeomorphism onto Int Dk and a

Since f i is obtained from e i by restriction to an open

subset, f i is J,-Le (1,=0 or 1) whenever e i is, is tame, and has

constant fundamental group. We observe that there is a commutative

diagram

Nl

f l , , R
k

i- II
\1

sn-l x Rk X (0,1]
P2

> Rk

where h is a homeomorphism and P2 is projection on the second

factor. We also observe that f 2 and f
3

are related by a commuta-

tive diagram
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in which q is a principal G-bundle and hence a covering map.

k - - kProposition 2.1. i) The end f
3

: N
3
->R has a completion f

3
: N

3
->R

if and only if an obstruction 0 E (G) vanishes.

ii) If n+k_>6, the end N XS1...£...)N ->Rk has a completion
-- 3 3 -

where p is projection on the first factor.

-Remarks. a) In the lemma, K':k(G) =K_k(G) if and KO(G) =KO(G).

b) We recall that a completion of an end e : M-> X cons ists of

a manifold M with MeM and M- Me oM and a proper map e: M->X

extending e.

Proof: If then K_k(G) = 0 by a result of Carter [4].

Proof of 2.1: It follows from [13] that f
3

has a completion if

and only if a sequence of obstructions O. E H.e f (RK; K' . (G» vanish.
J J -J

These homology groups, however, vanish except when j = k in which

case the group is just Part i) follows.

Part ii) follows from the product formula of Proposi-

tion 1.8].

Lemma 2.3. - - kIf the end f 3 has a completion f 3 : N3 ->R , then there

is a principal G-bundle q : N2 .... N3 such that £2 = £3q is a completion

of f 2 and such that qIN2=q.

This lemma is obvious.
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3. The Proof of Theorem B

In this section we sketch the proof of Theorem B. We begin

by defining the notion of a "tapered embedding" that underlies the

geometric construction on which this proof is based.

A tapering t: R
k ... (0,1] is a continuous function such that

lim t(x) = 0"

Let f : N -+ Rk be a completion of the end f: N ... Rk, set

00N=N-N, and fix a collar c: CION x [0,1] -+N such that c(x,O) =x.

Let t : R
k

-+ (O,lJ be a tapering. The embedding T : CION x (O,lJ -+ N

given by T(x,s)= c(x,(tf(x))s) is called the tapered embedding

associated with t.

associated with t.

Notice that if Ti is a tapered embedding

k
(i = 1,2) and t 2 (x) < t

l
(x) for all x E R ,

then the function h: CION x [O,lJ ->ImT
l-

IntlmT2=V given by

h {x j s ) =c(x, (1-s)t
2f(x)

+ stlf(x» is a homeomorphism. We call h

the canonical product structure on V"

The geometric construction underlying the proof of Theorem B

begins with the assumption that the end f
3

: N3 -> R
k

has a completion.

(In particular, this holds if either k 2 or k 1 and the obstruc-

tion of 2.1 vanishes.) We now fix completions f i: Ni "'R
k

(i = 1,2,3) such that there is a commutative diagram

where h is a homeomorphism and P2 is projection on the second

factor and such that there is a principal G-bundle q : N2 -+ N3 with

£2 = f
3
q as in 2.3. We also fix collars c i : DONi x I'" Ni with

ci(x,O) =x (i=1,2,3) and such that hC l = (hIClON1) X 1, where h is

the homeomorphism above, and c
3
(q x 1) = qc2" Then corresponding to

any tapered embedding T
3

: Cl
ON3

x (O,lJ ... Ny there is a unique tapered

embedding T
2:

00N
2
x (0,1] -+N

2
satisfying T3 (qxl) =qT2• We say T2
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is associated with T 3 •

We let k
i

(i=1,2,3) be the inclusion of N
i

in sn+k (if

i=l,2) or in sn+k/G (if i=3).

The main result needed to prove Theorem B is the following

proposition whose proof is temporarily deferred:

Proposition 3.1. There exist tapered embeddings T i 00N
i

x (0,1] -tNi

(i=1,3) such that

i) Imk
2T 2 C Int ImklT l where T2: "ON

2
x (0,1] -+N2 is the tapered

embedding associated with T
3.

ii) There a homeomorphism of pairs

Remark: a) In ii) we have identified sk-l with its image in the

join (Sn-l x I) * Sk-l. We are also considering WUSk-l as a sub-

space of Sn+k and topologizing it as such.

b) The following figure may be of help to the reader. The

region inside of the indicated Sk should be thought of as Sn+k _ Sk.

FIGURE 1
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The image of kiT i (i = 1,2) lies to the right of the curve labelled

T
i

(i = 1,2) and W is the shaded region.

Proof of Theorem B assuming 3.1. Set M=k
2T2(ooN2

xl) :_:sk-l (Le.

the right hand boundary of W above union Sk-l). Then M is

G-invariant since k 2T2(ooN2 x 1) covers k
3T 3(ooN3

x 1) and M meets

Sk in Sk-l. The ambient isotopy is obtained by using the product

structure on W coming from 3.1 together with canonical product

structures extending slightly to the left (respectively, right) of

the left (respectively, right) hand boundary of W to push M

- k-l
across W onto klTl(oON l x 1) US It is then easy to ambient

isotope klT
l
(oON

l
x 1) Usk-l onto sn+k-l. This completes the proof

of Theorem B assuming 3.1.

The key ingredient in the proof of 3.1 is the following lemma:

Lemma 3.2: Let 6> 0 be given. Then there exist tapered

T
i
(i=1,2,3) satisfying part i) of 3.1 such that fl:W'-+Rk is a

-1
(6,h)-cobordism where W' =k

l
(W) CNl and is (6,l)-connected.

The reader should see [127 Section 2] for the definitions

of a (6,h)-cobordism and (6,1)-connectedness.

Sketch of proof: The idea of the proof is to construct tapered

embeddings T .. : 0oN. x (0,1] "'N. (i,j = 1,2,3) such that T
2

. is
J.,) J. J. ,)

associated with T3,j7 Imk2T2,jCkl(Nl), and the images of Tl,j

and T
2

. are nested as indicated in the following figure:
, )
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)

FIGURE 2

In this figure

and j in N
l

and indicated N
l

by

we have actually sketched the images of T
l

.
, J

(i.e. we used the fact that Imk2T2,jCkl Nl)

the dotted lines. In addition, the curves

We will suppress the

are actually only the images ofhave labelled as T. .
1.,J

-1underklT .. (i=1,2; j=1,2,3).
1.,J

the sequel to simplify notation. The full image of T. .
1.,J

should be thought of as lying to the right of these curves. Finally,

the reader should notice that when Figure 2 is embedded in Sn+k

. k b h" fk dhV1.a k l, R ecomes t e arrte r i.o r 0 D+ an t e curves T. ,
1.,J

"converge" to Sk-l = oDk as in Figure 1-
+

that we

Let W' be the closed region between Tl,2 and T2,2 (i.e.

the shaded region in Figure 2). By using the canonical product

structures on the regions between T .. and T .. 1 (i,j = 1,2) it1., J 1.,]+

is easy to construct deformation retractions Ri: W' -+T i,2(oONi xl)

(i=I,2). Thus, W' is an h-cobordism. By making sure that the

tapering occurs fast enough (i.e. that the images of these embeddings

k. n+kare close enough to Int D+ r n S ), we can bound the diameters

of these deformation retractions in R
k

(Le. under f l) by e , Thus

f 1 : W' -+ Rk is a (t, h) -cobordism. If we now set T. =T. 2 (i=I,2,3),1. 1.,
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then W= k
l
(W') and the first part of the lemma is established.

To see that f
l:

W' "'R
k
is (o,l)-connected, let (R,S) be a

relative 2-complex and suppose given maps rand s such that the

following diagram commutes:

S .z.., w.

n lf l
R -L...> Rk

We must find g : R"'W ' with glS = s and such that Iflg(x)-r(x) J < 0

for all x E R. Using the canonical product structure h I on the

kregion V' between Tl,2 and Tl,3 and the fact that f l: Nl"'R

is topologically equivalent to the projection on the second factor

P2 : sn-l x Rk x (0,1] ... Rk (c f , section 2), we obtain the commutative

diagram

s _s_> W'

n 1f l
R -L...> Rk

C
h'-->

_1_>

Using this diagram and the fact that n 4, it is now easy to find

a map g' : R .... V' such that g' IS = s and fIg' = r ,

On the other hand the canonical product structure on the

region R' between and T2,3 allows us to construct a

deformation retraction c ' : R' .... oLR' where 0LR' is the left hand

boundary of R'. Thus, we can also construct a deformation retrac-

tion p : U' .... W' where U' is the region between T
l

2 and T2 3 by, ,
setting P = 1 on W' and p' on R'. Let g be the composite

CU' -p_)W'. Clearly glS=s and notice that the differ-

ence between fIg and fIg' arises entirely from the behavior of

flP on R'; i.e. from flP'. This map, however, is one of the key

maps that is used in showing that W' is a (o,h)-cobordism. In

particular, the tapering of T .. (i,j = 1,2,3) was chosen to gain



554

control over this map (among others). The fact that Iflg(x)-r(x) 1< 6

for all x now follows from this control. Hence f 1 : W' .... R
k
is

(6,1)-connected and 3.2 follows.

Sketch proof of 3.1: Let £ > ° be given. A slight strengthening

of the Thin h-cobordism Theorem [12; Theorem 2.7] allows us to

conclude that there is a 6 > ° such that the (6,h)-cobordism of

3.2 has an £-product structure. Thus there is a homeomorphism

h l: 0LW' X I .... W' with hlloLW' x 0= 1 (where 0LW' is the left hand

boundary of W') such that the paths flh l (x x I) (x E 0LW') all have

diameter < e , Since the tapering provides a homeomorphism

" "W d" b'd . f' d . h n-l k b t a i"'ONl .... 0L ' an 00Nl can e errt a a e wi t; S x R , we 0 t.a i.n

a homeomorphism of pairs h
2

: sn-l x Rk x (1,0) .... (W' ,oLW') such that

the paths f
2h2(zx

I) have diameter -c s for all zESn-1XRk.

We now notice that there is a quotient map

n-l k n-l k-l
q: S x D x I .... (S x I) * S and that the composite

sn-l x Rk x I 1 x : Xl> sn-l x nk x I (Sn-l x I) * sk-l defines an

n-l k-l k-l
embedding onto (S x I) * S - S • We call this embedding e

and define h : (Sn-l x I) * Sk-l .... k
l
(W' ) U sk-l =W,' sk-l by setting

-1 k-l
hi Ime = k

lh2e
and hiS = 1. Then h is the desired homeomorphism

and the proof of 3.1 is completed.

The reader will notice that this proof is a variation on

the compactification arguments of [1) and [2).

4. The Proof of Theorem A: ii) implies i).

This section sketches the proof that ii) implies i) in

Theorem A when n > 5 It is based on the following observations.

Lemma 4.1. Let n 5. Suppose there exists a semifree action of

Sn+ l . h F' (G) sl Set sn+l_sl/G=X(v).G 2!2 t :LX = • '\

hSh(X(K) x T2 ) .;. ¢ .
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By 2.1. the

F: V .... Rk•
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f 3 : N
3'"

R
k
be the end of the orbit space near Rk•

1 f 1 k
composite N

3
x 5 .....12.....> N

3
--) R has a completion

Let 00V = ev - °(N
3
x 51) and include 00V in N

3
x 51 via

as the "inner end"

the "inner end" of a collar on 00V in V. The composite k given

by ?:OV:::. N
3
x 51::: X(}n x 51 is then a homotopy equivalence.

Now =OV is a manifold with two tame 5iebenmann ends. Hence

coy x 51 has a 5iebenmann completion W with two compact boundary

- 1.
components cOW and 0lW. Include cOW in coy x 5

. 1 k x 1 1 1
of a collar. Then the compos i t e <:lOwe 00V x 5 -=..:....:..:...-=-) X (}:) x S x 5

defines a homotopy structure on X (1() x T2•

Lemma 4.2. Let n 5. If hSh (X (1() x T
2
) f ¢, then there exists

an element x E hSh (X (1() x T2) whose normal invariant lies in

Im(TT* : [X(Y();G/TOP} ... [X(Y() x T
2;G/TOP]}

where TT: X (70 x T
2
"'X(Y() is

projection on the first factor.

Proof: Let h : V'" X (1() x T2 be a homotopy structure. Then the map

h :V"'X(1() XS1XRl of infinite cyclic covers is a homotopy equi-

valence. Since V has two tame ends, crossing with 51, completing,

and embedding a boundary component as in 4.1 yields a new homotopy

2
structure W... X (Y.) xT. The normal invariant of this structure

lies in Im(TTl : [X(1() x SliG/TOP] .. [X(Y() x T
2
;G/ TOP] } where

TTl : X(Y() x 51 x Sl"' X(1() x 51 is projection on the first two factors.

Repeat this procedure with W and the cover corresponding to

X (Y() x Rl x 51 to obtain x ,

Proof of Theorem A ii) implies i): Let If k=-l (Le.

Fix G =¢) the result is standard; while if k = 0, it follows from

the arguments of [6] and [11]. Thus suppose k 1. By Corollary C,

there exists an action of G on Sn+l with Fix G = 51 and

5n+ 1 _ S l/G = X (1() • Hence by 4.1 and 4.2 there is a homotopy struc-

n+1 2ture f : M .... X (J() x T with normal invar iant in
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Im{ n* : (X (?() ;G/TOP] .... (X('() X T2 ;G/TOP] J. Then f xl: Mn+ l X Tk- l..,

(. ) Tk+l. hX r: X a s a omotopy structure y whose normal invariant

Ti(y) ="1 (x) for some x E [X ('C) ;G/TOP] where "1 : X('() x Tk+l..,X('C)

is projection. The result now follows by chasing the diagram

[X('()

1
[X(1() x .z.,

1
where X = (xS )X1

is monomorphic.

Xk (cf. section 2) and using the fact that X
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EXTENSIONS LIBRES DES ACTIONS DE GROUPES FINIS DANS

LES VARIETES SIMPLEMENT CONNEXES

par

Amir H. ASSADI*)

Introduction.

Soit (Wn,aWn) une variete compacte et so it (Mk,aMk) c (Wn,aWn)

une sous-rvar i e t e . Supposons que Mk soit munie d' une action \j): G xM -+ M

(differentiable, PL, ou topologique). On dit qu'une action 1/1: G xW-+ W

etend \j) , si </JIG xM = \j) • Une extension </J de \j) est dite "Libre"; si

l'action de G dans W-M est libre. Dans cec article on etudiera Ie probleme

de 1a construction des extensions libres d'une action donnee,. pour certains cas

particuliers.

L. Jones a deja etudie Ie cas particulier de l'action semi-libre d'un

groupe cye 1 i que 7l/q 7Z ou k
\j): 7l/q71 .. M est l'action triviale et

wn = D
n

[J]. Au moyen de differentes methodes, W. Browder et moi-meme avons

etudie les problemes de l'existence et de la classification des extensions

libres d'une action donnee pour un groupe fini G ou Wn = Dn (ou Sn) .

Dans les chapitres 1 et 2, on donnera les motivations et un resume de

resultats de [A-B) qu'on utilisera par 1a suite. Le chapitre 3

contient les enonces et les resumes des demonstrations des theoremes qui

generalisent quelques resultats [A-B) , dans Ie cas ou Wn est une variete

compacte connexe a bord avec (Wn)
= (aWn) = I • P. Vogel et moi-meme

avons obtenu la caracterisation des extensions libres dans Ie cas des actions

". 1 " 'wWn
s 1mp es , ou "1. et sont isomorphes. L'enonce de ce resultat se trouve

au chapitre 4. Les demonstration et les applications de ces resultats va paralt

dan [A-B] et [A-V].

Adresse permanente Dept. of Math. Univ. of Virginia, Charlottesville VA. U.S.A.
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§ I. Soit Dn Le disque de dimension n, et soit l:n c: Dn une sous-variete

de codimension zero, C .. Dn-interieur(Un)

Supposons que G x Un ->- Un soit une action

topologique dans U telle que la restriction x d+U soit libre. On

veut etudier l'extension de a une action topologique

;p : G x D
n

->- D
n

; c' est-a-dire trouver tel que ;PIG x .. Ce qui est

equivalent a trouver une action ljJ : Gx C->- C telle que

D'abord, on remarquera que pour qu'un tel ljJ existe, il faut qu'il

existe une action homotopique qui etende x d+C • C'est-a-dire, chaque

application d+C ->- d+C s'etend a une application : C ->- C qui

est une equivalence d'homotopie, et telle que - • . Ainsi

nous obtenons la premiere condition necessaire qui est une condition homoto-

pique et que l'on prendra comme point de depart.

La deuxieme condition est homologique-algebrique et elle suit des resultats

generaux de [AI] (voir aussi [OP] et [A2]). II existe un groupe abelien fini

rl(F,F-{I}) qui s'identifie avec un sous-groupe de K(71G) - oilo F est la

famille des sous-groupesd'isotropie, ou egalement des stabilisateurs qui

ont la propriete suivante : a chaque G-GW complexe U on associe un element

o(U) E n(F,F-{I}) qui s'annule si et seulement s'il existe un G-CW complexe

fini contractile X, avec U comme sous-complexe invariant et tel que X-U

ait une G-action libre. Dans Ie cas particulier qui nous interesse, i.e.

.. 0 , q" IGI , on Ie calcule comme suit. Soit R la categorie
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des G-modules cohomologiquement triviaux , et soit Ie groupe de

Grothendick de R. On dHinit une application 1jJ: R ... Ko (ZZG) par

IjJ(A) = [Po]-[P
1
] OU la suite 0'" PI ... Po ... A ... 0 est exacte, A E R ,

et Pi sont Pour tout A E Rune telle suite existe apres

un r esul tat de D. S. Rim [ R] . '¥ donne un h. -momorph i sme '¥' de
o

dans qui est bien dHini grace au Lei.me de Schanuel [ S] . En fait,

If' est un isomorphisme.

Alors, H. (U) a une structure de G-module induite par <P, et qui

est cohomologiquement triviale (pour tout i 0) comme un G-module, car

H*(U;ZZ/q71) = 0 , q = IGI . Ainsi, on calcule que

o(U) L (-I)i'¥(H.(U»
i>O

(voir [AI], page 49) • On peut donc prouver directement que l'element

L (_I)i'¥(H. (U» E K (ZZG)
i>O 0

s'annule, s'il existe une action cellulaire libre IjJ G xc ... C telle que

II faut seulement observer que Ie complexe des chaines C*(C) est

et alors

0= L(-I)i'l'(C. (C» = L(-I)i'l'(H. (C»
i>O 1.

E (-I)i'l'(H. (U»
i>O

La deuxieme condition necessaire est que

o (U)

s'annule.
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Plus tard, on trouvera que c(U) sera ca l cu le comme I 'obstruction de

finitude de Wall pour realiser topologiquement l'action homotopique de G

dans C (ou dans X qui est homotopiquement equivalenta C comme ci-dessus)

par un complexe G-libre fini.

§2. Soit X un espace topologique, et H(X) Ie monoide des equivalences

d'homotopie de X. Une action homotopique dans X est un homomorphisme de

groupes G no(H(X» = E(X) . On dit que deux actions homotopiques

et sont equivalentes, s'il existe une equivalence d'homo-

topie f: Xl X2 telle que Le diagramme c ivdes sous commute :

G

oil f est l'application evidente induite par f.

Evidemment chaque action topologique incluit une action homotopique, et

l' action homotopique est dite munied 'une realisation topologique

si est equivalent a une action homotopique induite par une action

. *)topoIog1que •

Soient f;: G > E (X) et f;' : G E(Y) deux actions homotopiques.

Notons par a(g) et 8(g) des representants de (g) et [,'(g) respec-

tivement. On dit qu'une application f: X Y est homotopie-equivariante

(ou h-equivariante) si S(g) 0 f f 0 ex (g)

Le p r oh l eme de formuler une theocie d'obstruction focmelle pour c(oali6('r
des ae t ions homotop i que s par des ad i ons t opo log i que s a etr- (0t ud i ,; pa r
G. Cooke, mai s 1I01l1l lie l'utiJiHl'roll" pas ,
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On generalise les notions ci-dessus aux cas relatifs des actions homoto-

piques dans une paire ou un diagramme des espaces comme suit.

Dans les situations qui nous interessent, on peut realiser topologiquement

une action homotopique dans une paire (X,Y) ou la restriction de

sur Y est deja une action topologique donnee. On dJfinit les notions rela-

tives comme suit.

Soient H(X,Y) le mono ide des equivalences d'homotopie de la paire

(X,Y) et E(X,Y) = n (H(X,Y» • Une action homotopique relative est donnee
o

par un homomorphisme G E(X,Y) • Egalement, pour un diagramme obtenu

par l'inclusion (X,Xo) c (Y'Yo)

X I X
o

(t» 1
Y
o

1
----+1 Y

pour chaque g E G

X2 c X\ et les a1(g) sent

On definit la notion d'une action homotopique par un homomorphisme G E(t»

ou H(t» est le monoide des equivalences d'homotopie de 6 ,et

E(t» = no(H(t») . On a les restrictions E(t» E(Xo'Yo) et E(X,Y) E(Y)

Done, une action homotopique dans t> donne une action homotopique dans

(Xo'Yo) etc. telle que les applications d'inclusion soient h-cquivariantes.

Definition. Soient E(X
i)

i = 1,2 deux actions homotopiques.

Soit ai(g) : Xi Xi une representation de

On dit que est une "extension" de si

des extensions de a
2(g)

. On dit que est une "extension exterieure"

si on peut choisir une extension a\(g) de a 2(g) telle que

Pour deux paires (Y
2,X2) c; (Y\,x\) ou dcux diagrammes equivalents, on

definit les notions "d'extension" et "d'extension exterieure" de la meme

que ci-dessus.
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Definition. Soient (j): Gx X ... X et ljJ : G x Y -+ Y des actions topologiques

et Xc Y . On dit que ljJ est une "extension Jibre" de (j),

et si I 'action 1)1 sur Y-X est libre.

si

Les theoremes suivants nous permettent de construire des realisations

topologiques et des actions homotopiques relatives.

2.1. Theo r eme. Soi t f;;: G -+ E(X) une action homot op i que , et (j): GxY -+ Y

une action topologique libre. Supposons que X et Y soient simplement

connexes, et qu'il existe une application h-equivariante f Y ... X qui induise

un isomorphisme en homologie coefficient dans (ou q IGI) . Alors,

i L existe une action topologique libre ljJ: G x X' ... X' une equivalence

d'homotopie h-equivariante h: X' -+ X et une application G-equivariante

£' :Y-+X' telleque etque

Resume de la demonstration. On trouvera par recurrence les invariants de

Postnikov d'un espace X tel que X contienne l'espace quotient Y/G

(que l'on designera par Y) et tel que l'homomorphisme induit par inclusion

Y-+ X so it un isomorphisme

De plus, il faut que Ie revetement universel de X muni de l'action naturelle

de ll\(X) , soit X' qui aurait les prop'r i.et ee s enoncees au theoreme 2.\.

n-eme etape de la decomposition de Postnikovsoit laSupposons que X
n

de X et tel que Ie diagramme ci-dessous soit cODDllut:atif a homotopie pres,

ou les applications sont induites de evidente ou bien construites par

recurrence. Prenons
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BG = K(G, I)

comme la premiere etape de la decomposition de Postnikov de Y et X, au Y= Y/G •

1p r 1p

y n , X
n n

1 1
BG ' BG

II est plus commode de supposer que Yn c Xn ' et d'identifier

par ahus de notation. Posons les notations suivantes

k(X) key) etc. sont les invariants de Pos i.n i kov , comme

x'
n

et X
n

et etc. En general, la

cohomologie est a coefficient dans un systeme local et les invariants de

Postnikov sont tordus.

M2 --Nous trouverons k E H (Xn;TIn+ 1(X» tel que j*(k(Y» et

p*(k) = k(X), pour construire la (n+l)-eme etape de Postnikov et obtenir un

diagramme comme ci-dessus qui terminera (l' tape) la recurrence. On utilisera

les diagrammes ci dessous.
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(Diagrannne I).

--
--

Hn+2 (Y )
n

1
-+ Hn+2 (Y )

n

-+ ••.

-+ ..•

ou la cohomologie est a coefficients dans les systemes locaux induits par

{TIn+ 1 (Y)} • Pour le diagrannne parallele avec cohomologie a coefficients dans

les systemes induits par le systeme {TIn+1(X)} , on obtient la factorisation

par les elements invariants et par l'action de G:

ou t : H*(XI Y )G -+ H*(X Y)
n' n n' n est l'application transferts; c'est

un isomorphisme d'apres lasuite spectrale de Cartan-Leray, grace a l'hypothese

que 1I*(f) 0 = 0 • On obtient aussi des homomorphismes entre les

deux diagrammes induits par j : TI
n
+1(Y) 1I

n
+
1
(X) . L'observation importante

est que les invariants de Postnikov k(X) sont invariants par l'action de

G TIl (Xn) . (Voir Baues [B] ou McClendon [Mc]). On exclura le diagramme

obtenu a partir des diagrammes ci-dessus et les homomorphismes entre eux.

On en deduira qu'un tel element k existe. D

2.11. Theoreme. Supposons que G E(X) est une action homotopique,

: G -+ Homeo (Y) est une action topologique libre, et f: X y

est une application h-equivariante telle que
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soit un isomorphisme, (ou q = IGI) et TIl (X) = TII(Y) = TI2 (f ) = 0 • Alors,

il existe une action topologique dans un espace X' et une application

equivariante £' : X' + Y , et une equivalence d'homotopie h: X' + X

homotopiquement equivariante telle que f 0 h - f' .

La methode de cette demonstration ressemble a celIe du 2.1.

On remarquera qu'il est plus commode de trouver d'abord les invariants de

Postnikov localises en q, puis hors de q, et ensuite les invariants

rationnels. En utilisant Ie diagramme Cartesien :

7L [.!.]
q

7L(q) - 01

On trouvera les invariants desires.

2. III. Proposition. Dans la situation du Th60reme II, supposons que A c X

possede deja une action topologique telle que l'action induite par G sur

H*(A) soit triviale, et telle que l'inclusiol' A + X so it h-equivariante.

Si flA est equivariante, alors, on peut con::truire X' qui contient A

comme sous-espace invariant tels que £' IA e t £ IA soient G-homotopes.

Resume de la demonstration: Soit F Ie fibre homotopique de f' : X' + Y

Alors, dans Ie diagramme suivant, on a la section 0 et on cherchera une

section a
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Car n*(F) 0 = 0 , q IGI , on montrera que les obstructions

successives w(a) E Hn+I(A!G;rr (F) s'annulent
n

lorsque l'on peut prendre

successivement a telle qu'elle soit compati.ble avec 0 sur Ie n-skelette

de Ale et de A

3.1. Theoreme. Soit Un c Wn une sous-variete de codimension zero, et posons

(a) Ill: G xU .... U soit une applicat ion topologique telle que

illiG x 3+U est libre, et 1 'action induite par G dans H*(3(a+U» est triviale.

lei.

Alors, les conditions suivantes sont necessaires et suffisantes pour qu'il

existe une variete compacte equivalente a (W,3W) a homotopie

tangentielle pres et munie d'une action topologique .>/1: GxWo .... Wo telle

que Wo contienne comme e-invariante, et soit une

extension libre de III ; (on ales meme resultats pour les categories differen-

tiables et PL)

(I) II existe une action homotopique

extension exterieure de Ill.

G .... E(W,3W) qui est une

(2) L'invariant I: (-I) i'l' (H. (W, U» E K
o1. 1.

s'annule.

Demonstration. Onmontrera que les conditions (I) et (2) sont suffisantes.

par excision, et l'inclusion 3 U .... C
+

est

une equivalence d'homologie modulo q , on peut utiliser Ie Theoreme 2.1 pour

realiser topologiquement l'action homotopique : G .... E(e) (induite par

restriction de s dans C). Done, il existe un espace C' muni d'une acti.on

topologique libre, tel que 3+U est un sous-complexe G-invariant, et tel qu'il

existe une equivalence d'homotopie h-equivariante f: C .... C' . D'autre part,

on remplacera C par c' (a homotopie pres) et done "l'inclusion" 3+C .... C'

est une equivalence d'homologie modulo q car
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d'apres Ie theoreme de dualite de Poincare-Lefschetz. Done, l'action homoto-

pique (induite par de G dans "+C est aussi topologiquement realisable

en utilisant Ie Theoreme 2.11. Alors, il existe un espace topologique (d+C)'

muni d'une action topologique libre et des applications h-equivariantes

g' (d+C)' C' et f' : d+C (d+C) , ou f' est une equivalence d'homopie

et "l'inclusion" d+C C' et g' 0 f' sont homotopiques. D'apres la Propo-

sition 2.111, on peut supposer que d(d+C) est un G-sous-complexe de

Done (C', (d+C)' U d+U) est une paire de complexes de Poincare equiva-

lente a (C,d+C) a homotopie pres, et elle possede une action topologique libre

qui realise topologiquement

Soit (X,Y) l'espace quotient (C'/G'«d+C)' U d+U)/G) .11 suit d'un

t heo r eme de Bieri-Eckmann (voir aussi Voge1 [V] et Browder [Br]) que Y et

X sont domines par des complexes finis. On calcule que dans les deux cas,

l'obstruction de finitude de Wall s'annule puisqu'elle est egale a

U» = (W,U» = 0
. 1 + . 1
1 1

par l'hypothese (2). Alors on peut supposer que (X,Y) est une paire de

complexes finis, et qui donne une paire de Poincare finie dans Ie sens de

Wall [W].

On a la fibration spherique de Spivak y sur (X,Y) qui se restreint

au fibre normal sphe r i quo (s rah l e ) de ;I+U/C:. Done, i I r es t e 11 t r ouve r un

relevl!ment dl' y

suivant.

BO

"
/ [rr./

/

f/

X Y , BF

, disoos f dans Le d j Ilgramm.'
y
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ou BF est l'espace classifiant de Stasheff pour les fibrations spheriques

stables, et BO = BO(n) • D'apres Ie theoreme de Boardman-Vogt, FlO
n

(Ie fibre de n) est un espace et donne une theorie de cohomologie genera.

Alors, l'obstruction de relevement de it est un element

., E h*(X) ,ou h*(X) est de type fini.Ccmnel'inclusion o+U C est une

equivalence de cohomologie modulo q, il vient

h*(o/G) Q} "O./qZlet. h*(X) @ "O./q"O. •

Alors west un element de torsion d'ordre r, ou (r,q) mI. Le

transfert t: h*(X) nrcz: h*(C') "O./r"O. est un monomorphisme, et

t(w) = 0 puisque c' est equivalent a C a homotopie pres, et C est une

variete differentiable. Done, w = 0 et il existe un relevement de f t

dans BO, qui donne une application normale de degre 1

Mais

done l'obstruction de chirurgie de 8 s'annule. On en deduit qu'il existe

une variete n n
(V1,av

j
) equivalentea (X,Y) a homotopie pres, telle que

Maintenant Ie revetement universel (V1,dV1) possede une action libre de G

qui etend l'action donnee de G dans d+U, On montre aisement que la variete

Wo m U VI possede les proprietes requises. Les cas PL et topologiques

ressemblent au cas precedent. Les conditions (1) et (2) sont aussi necessaires

ce que l'on verifie facilement. 0

D'apres la t heo r i e de la chirurgie,il est possible de choisir Wo(PL)

homeomorphe ou diff.Gomorphe a W . Au lieu de poursuivre dans cette

direction, nous remarquerons que Ie theoreme suivant est un corollaire du
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Theoreme 3.1. Selon ce theoreme, les conditions necessaires et suffisantes

pour l'existence d'une extension libre d'une action donnee dans une sous-

variete M de W sont: d'abord l'existence d'une extension lineaire de

dans un voisinage tubulaire de M dans W (qui est une condition en K -
G

theorie), et l'existence d'une extension homotopique de a W (condition

verifiable par la theorie de l'obstruction) et: enfin la nullite d'une obstruc-

tion projective dans Ko (iZG)

3.11. Theoreme. Soit (Wn,JWn) une variete differentiable compacte telle

que

111(aW) 111 (W) o et H. (W) = 0
1

1
• n

n > 6 .

Supposons que k(M ,aM) c (W,aw) soit une sous-variete de codimension

n-k > 2 avec Le fibre normal v. Supposons que qJ: G xM -+ M soit une

action differentiable, telle que l'action de G dans H*(aW) soit triviale,

o ,ou q = Icl . Alors, il existe une action differen-

tiable : G x W -+ W qui est une extension libre de IIJ, s i et seulement s i

(I) II existe une action homotopique (

est une extension exterieure de

G -+ t(W,aW) telle que (

(2) vest muni d'une structure de G-fibre vectorielle ,

tel Ie que l'action induite sur Ie fibre spherique S(v) soit libre et

(3) L'invariant L(-I/f(H. (W,M) E: K (7ZG)
. 1 0
1

s'annule.

4. Soit A un groupe abelien fini tel que (IAI, IGI) = 1 • On peut considerer

A comme G-module avec l'action triviale. Alors,

defini comme toujours (voir §I). On verifie

ij!(A) E: 'i( (7ZG) est bien
o

o/(A) ne depend pour sa

valeur que de l'ordre de A comme unite dans Ie groupe multiplicatif

(JG(r) = o/(71/r7Z) • Par abus de notation, on notera (JG(A) au lieu de O/(A)
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pour specifier une telle situation particuliere. 0G s'appelle l'homomorphisme

de Swan (voir [5]) 0G est trivial pour les groupes cycliques, mais en

general, il n'est pas nul ; par exempl e , r"'(Oe) "" 7l/271. pour Ie groupe

de quaternionsd'ordre J.

Par la suite, on considere que la localisation de X est la localisation

au-desssus de TIl (X) ,c'est-ii-dire, on localise Ie revetement universel de

equivariante par rapport a l'action de TIl (X) . C'est possible, si on

utilise une methode de localisation assez fonetorielle, par exemple , la

localisation de Bousfield-Kan [B-S].

Definition. Soit 4J: e x x -+ X une action topologique; \P est dite action

"simple" si EGx G X B
G

x X, ou Er, -+ BG est Ie fibre principal universel

pour G, et EG x
G
X -+ BG est Ie fibre associe a la fibre X. On dit que

4J est (q)-simple s i «EG x G X) (q) BG x X(q) •

Exemple. Toute action

modulo q

G x X -+ X est (q)-simple si X est acyclique

4.1. Theoreme. Soit (Wn,aWn) une variete differentiable compacte connexe

soient nilpotents, 6. Soit (Fk , 3Fk ) c (W,3W) une

sous-variere a fibre normale v , de codimension rr-k > 2 • Alors, il existe

une action differentiable semi-libre (q) -simple 4J: G .x W'-+ W' telle que

W,G = F et W' Wsi et seulement si

(I) o , q

(2) L(_I)i 0e(R)..(W,F» E K (71.G)
i 0

s'annule.

(3) \i possede une structure de G-fibre vectoriel avec une

G-representation libre dans Ie fibre.

La demonstration de ce theoreme se trouve dans [A-V].
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Die Picard-Gruppe des Burnside-Ringes

Tammo tom Dieck

Die geometrische Bedeutung der Picard-Gruppe Pic A(G) des Burnside-

Ringes A(G) einer endlichen Gruppe G wurde in den Arbeiten tom Dieck -

Petrie [1978], (1982] dargelegt. Es sei kurz daran erinnert: Fur zwei

G-CW-Komplexe X und Y, deren samtliche Fixpunktmengen xH und yH n(H)-

dimensionale, zur Sphare sn(H) homotopie-aquivalente Komplexe sind, ist

die aquivariante stabile Homotopiemenge w (X,Y) ein projektiver Modul

'lorn Rang eins uber A(G), reprasentiert also ein Element in der Picard-

Gruppe Pic A(G) solcher projektiven Moduln mit dem Tensorprodukt als

Verknupfung. Der Modul w (X,Y) ist vollstandig durch die Angabe einer

stabilen Abbildung f X Y mit zur Gruppenordnung IGI teilerfrem-

den Abbildungsgraden d(H) von fH xH yH bestimmt. Jede Funktion

d : ¢ (G) -----7 ?Z von der Menge ¢ (G) der Konjugationsklassen (H) von Un-

tergruppen H in die ganzen Zahlen mit zu IGI teilerfremden Werten laBt

sich durch die Grade einer geeigneten Abbildung f : X Y realisie-

:ren (tom Dieck - Petrie (1982], Theorem 6.5). Die Picard-Gruppe Pic A(G)

ist die algebraische Losung des Problems, wann zwei solche Funktionen

d 1,d2 : ¢ (G) ----t ?Z in demselben Modul w (X, Y) vorkommen , Eine expl i.r-

:zite Berechnung der Picard-Gruppe liefert demnach Abbildungsgradinvarian-

ten fur Abbildungen f : X ----t Y, die nur vom stabilen Homotopietyp von

X und Y abhangig sind.

In dieser Arbeit beschreibe ich eine Berechnungsmethode fur Pic A(G). Es

stellt sich heraus, daB dieses durch gewisse multiplikative Kongruenzen

fur aus dem Burnside-Ring abgeleitete Einheitengruppen geschehen kann.

Grundlage fur die Gewinnung dieser Kongruenzen ist die Arbeit tom Dieck
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[1978], wo der Zusammenhang zur Picard-Gruppe des rationalen Darstel-

lungsringes hergestellt wurde.

Urn nicht in das Problem der Einheiten des Burnside-Ringes verwickelt

zu werden, betrachte ich eine orientierbare Version von Pic A(G), die

Gruppe Inv A(G) der invertierbaren A(G)-Moduln. Es gibt eine exakte

Sequenz (tom Dieck - Petrie [1978], (33»

(0.1 ) * '*1 A(G) ---) C(G) Inv A(G) Pic A(G) -----> 1.

Darin bezeichnet generell S* die Einheiten gruppe eines Ringes S und

C(G) = 2Z) ist der Ring der Funktionen 2Z.

Qualitativ erhalt man als Ergebnis:

(0.2) Die Gruppe Inv A(G) ist in bestimmter Weise isomorph zum Produkt.

(0.3) IT
(H) E (G)

( 2Z / I WH I 2Z)* •

Wie Ublich ist WH NH/H und NH der Normalisator von H in G.

Was man unter "in bestimmter Weise" zu verstehen hat, ist nicht so

kurz mitzuteilen, aber gerade das Ziel der Arbeit. FUr abelsche G wurde

Inv A(G) in tom Dieck [1978] berechnet.

1m nachsten Abschnitt reduzieren wir das Problem. Danach geben wir die

Kongruenzen fUr p-Gruppen p 2 an. Der dritte Abschnitt behandelt die

2-Gruppen.
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1. Die Ordnung von 1nv A(G).

Wir zeigen zunachst, daB 1nv A(G) dieselbe Ordnung wie die in (0.3) an-

gegebene Gruppe hat. Danach konnen wir erlautern, worum es bei der Ge-

winnung von Kongruenzen fUr 1nv A(G) geht.

Sei generell C ein endliches direktes Produkt von Ringen und A c C

ein Unterring , der als abelsche Gruppe maximalen Rang in Chat. Der

Quotient CiA ist dann endlich und werde etwa durch c 0 annuliert. Es

sei 1nv A die Gruppe der invertierbaren A-Untermoduln von C: Das Pro-

dukt MN zweier solcher Moduln werde wie Ublich von allen ron, m E M,

n E N erzeugt und M heiBt invertierbar, wenn es ein N mit MN = A gibt.

Das kanonische Diagrarnrn

(1.1 )

A

1
A/c C

-------..0;) C

1
---------7) C/c C

ist ein Pullback und man erhalt eine exakte Sequenz (torn Dieck (1979J,

10.3.11)

(1 .2) *"1 (A/cC) (C/cC) ----7 1nv A 1.

Der Burnside-Ring A = A(G) ist in C = C(G) enthalten: Jedem x E A(G)

wird die Funktion (H) H
[x I zugeordnet (torn Dieck (1979], 1.2.2).

1st F c eine Menge, die mit jedem (H) auch alle (K), H c K, ent-

halt, so betrachten wir den Quotienten A(G) ---7 A(G;F), das Bild von

A(G) in C(F, bei der Restriktion ---7 von Funktio-

nen. Seien F c F ' (H)-benachbart, d. h. F " F bestehe aus einer Konju-

gationsklasse (H). Man hat dann die Projektion p : A(G,F') A(G,F).
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Genauer gilt: Es gibt ein Pullback von Ringen

(1.3)

A(G,F' ) --------7) A(G,F)
p

-------.,) ?l / IWH I
r

Beweis. Es ist r die Reduktion modulo IWH!. Es ist dH die Abbildung

x I ) IxH,. Eine Funktion d E C(G) liegt genau dann in A(G), wenn

gewisse Kongruenzen

d(H) _ - L K n(H,K) d(K) mod IWHI

erftillt sind (tom Dieck (1979], 1.3.5). Man nehme als s die Abbildung

dl---7 I n(H,K)d(K) mod /WHI.

Ein Pullback wie (1.3) ftihrt zu einer exakten Folge von Inv-Gruppen,

die im wesentlichen die Mayer - Vietoris - Folge ftir die Picard-Gruppe

(Bass (1968], IX. 5.3) ist. Wir erhalten deshalb als Folgerung:

(1.4) Das Diagramm (1.3) ftihrt zu einer exakten Sequenz

*"1 ?l/IWHI -7 Inv A(G,F') ----1 Inv A(G,F) 1.

Durch Induktion tiber die Mengen F erhalt man also

(1.5) Lemma. Inv A(G) hat die Ordnung von

Tr 7l//WHI '*
(H) E \2l(G)

Sei WpH die p-Sylow-Gruppe von WHo Wir verwenden die folgende Sprech-
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weise.

(1.6) Definition. Ein System von (primaren) Kongruenzen fur Inv A(G)

ist ein System von surjektiven Homomorphismen

m(H,p)
If

Z::/IW HIp

dieA(G)/IGI C*imKernenthalten «H) Eq}(G), p Teiler von jWHI.)

Wegen (1.2) und (1.5) liefert ein System m(H,p) von Kongruenzen einen

Isomorphismus

Inv(G) =<11' Z::/IW HI *' ,p

das Produkt uber aIle (H) E q}(G) und aIle p gebildet. Es kommt also

fur die Prazisierung von (0.2) darauf an, ein geeignetes System von

m(H,p) zu finden.

Ein m(H,p) hat Standard-Form, wenn es sich als ein Produkt der Evaluatio-

nen bei K, d K : C Z::, fur K H schreiben laBt. Wir werden sehen,

daB fur ungerade p immer Standard-Form moglich ist, wahrend fur p = 2

gewisse Ausnahmegruppen auftreten.
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2. Kongruenzen fur ungerade Primzahlen.

Sei also G eine p-Gruppe und p ungerade. Wir verwenden eine p-adische

Beschreibung von Inv A(G). Die Sequenz (1.2) gilt fur jedes Vielfache

c von G, falls A = A(G) und C = C(G) ist. Verwenden wir c = lGl
n

und

gehen zum Limes n 00 uber, so erhalten wir eine exakte Folge

(2.1)
l(

1 A
P

*C Inv A -----} 1 ,
P

in welcher der Index p die p-adische Komplettierung bedeutet. Die Eva-

luation bei H,

11-
d H : Cp t

: C/cc Ii '!.l/c"'" liefert eine Evaluation

in die p-adischen Einheiten.

Sei R(G,Q) der rationale Darstellungsring von G. Indem wir jeder end-

lichen G-Menge die zugehorige Permuationsdarstellung zuordnen, erhalten

wir einen Homomorphismus A(G) R(G,Q) und induzierte Abbildungen

Mit der Augmentation a : R(G,Q) '!.l, x dim x erhalten wir

eine induzierte Abbildung a'" : R(G,Q) * '!.l"', deren Kern die Gruppep p p

1 + I(G,Q)p ist, mit der Komplettierung I(G,Q)p des Augmentationsideals

I (G,Q) = Kern a. Der Charakter '" (x) hat an der Stelle g den Wert

d<g> (x), mit der von g erzeugten Untergruppe <s > . Multiplikative

Kongruenzen fur die Charakterwerte ,,(x) (g) liefern deshalb entsprechen-

de Relationen fur die d<g> (x).

Da p ungerade ist, haben wir nach Atiyah - Tall (1969J einen Isomor-

phismus

(2.2) I(G,Q) 1 + I(G,Q) •
P P



579

Mittels Charakteren laBt sich 'j k so schreiben:

(2.3) S'k (x)

(Bemerkung zu dieser Schreibweise: Fur x E I(G,Q) ist dim x
g

0

mod(p-1). Die

adisch stetig

Funktion (p-1)?l 1 + p?l
P

und liefert deshalb?l 1 +
P

c ?l , x r------'> k x
P

k

P

ist p-

Diese

Funktion wird in (2.3) verwendet.)

Wegen des Isomorphismus (2.2) suchen wir zunachst nach geeigneten addi-

tiven Konguenzen fur Charaktere. Es gilt

(2.4) Lemma. Sei G eine nicht-zyklische p-Gruppe. Es gibt ganze Zahlen

U(C), C c G zyklisch, mit den folgenden Eigenschaften:

i) u(1) f 0 mod p.

ii) Fur aIle x E R(G,Q)p gilt

u(C) dim xC
C

C c G zyklisch

G
G/ /p dim x

Beweis. Wir beginnen mit der Orthogonalitatsrelation

IGI dim x
G

Z g E G x (g)

fur Charaktere. Diese laBt sich umschreiben in

(2.5) IGI dim
G

x L
C

2:
DeC

fl( IC/D/) I DI dim x
D),

mit der M6bius- Funktion der elementaren Zahlentheorie. Der Koeffi-

zfent von dim x ist 1 - s (G), worin s (G) die Anzahl der Untergruppenp p
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der Ordnung p von Gist. Fur die in Rede stehenden Gruppen G gilt aber

(2.6) s (G)_ 1 + P
P

(Huppert (1967], p.:':-1tt-). Es ist deshalb 1 - sp(G) = P u(1),

u(1) t 0 mod p. Die Koeffizienten von dim x
D,

D t 1, sind wegen des

Faktors IDI aIle durch p teilbar. Also konnen wir in (2.5) durch p

dividieren und erhalten eine Relation der gewtinschten Art.

Mit den Bezeichnungen aus (2.4) gilt

x-(2.7) Lemma. Sei G eine nicht-zyklische p-Gruppe. Fur x E A
p

gilt

71d (x)u(C)
C C

IGI/
- d

G
(x ) P mod IG I .

Tr (x) E 1 + I(G,Q) • Nach (2.2) gilt
P

**Beweis. Sei zunachst x aus dem Kern von d 1 : A , so daB also
p p

71 (x) = S (y) und deshalb fur

C = <s>

und folglich

-Ir(x) (g) 5 (y) (g)
C

k dim y

'IT d (x ) u to)
C C

Nach (2.4) ist t= 0 mod IGI/p und nach der (2.3) folgenden Bemerkung

ist t 0 mod (p-1), so daB also kt = 1 in ist. Dasselbe gilt

fur dG (x ) •

*Ein beliebiges x E Ap konnen wir in der Form zx
1
schreiben, wobei

-l\'
z . 1 cAp ist und auf x 1 die voranstehenden Uberlegungen zutref-
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fen. Nun ist aber dH(z) = z fUr alle H c G und es gilt deshalb statt

der Kongruenz in (2.7) sogar die Gleichheit fUr z statt x. Damit ist

das Lemma bewiesen.

(2.8) Lemma. Sei G eine p-Gruppe, p ungerade. Es gibt ganze Zahlen

u(H), H c G, derart, daB der Homomorphismus

m C; ----7 7I:/IG( x 1-1--7) 'ii dH(X)U(H)
H

surjektiv ist und A; im Kern enthalt.

Beweis. Falls G nicht zyklisch ist, so verwenden wir als u(C) fUr

zyklische C die Zahlen aus (2.4) , setzen u(G) = -IG\/p und u(H) = o fUr

alle anderen Wegen (2.7) liegt * im Es ist 71:/1 GIH. dann Ap Kern von m.

zyklisch von der Ordnung (p-l ) I GI /p. DaClber u(1 ) ;;.- 0 mod p und

u(G) 0 mod p-l ist, so ist m surjektiv.

Falls G zyklisch ist, setzen wir m(x)
-1

d 1 (x) dc (x) , wobei IC I p.

Bemerkung. Homomorphismen vom Typ m in (2.8) sind natUrlich nicht ein-

deutig bestimmt. FUr abelsche G habe ich andere in tom Dieck C1978] an-

gegeben. Sie haben die Form

wobei f die Mobius-Funktion des Untergruppenverbandes ist. Dieser Typ

von Produkten ist leider nicht fUr jede p-Gruppe geeignet. Die Homomor-

phismen aus (2.8) sind die besten mir bekannten, die einen

Sinn haben. Interessanterweise sind sie grundverschieden von den Homo-

morphismen (tom Dieck - Petrie C1982J. Proposition (11.3», die fUr die

Endlichkeitshindernisse relevant sind. Darauf komme ich bei anderer Ge-



582

legenheit zuruck.

3. Kongruenzen fur 2-Gruppen.

Hier treten die ublichen Ausnahmegruppen auf: Dieder-, Quaternionen-,

Semidiedergruppen. Wir behandeln diese zunachst.

(3.1) Diedergruppen. Es handelt sich um die Gruppen der Ordnung 2
n,

n / 3,

G
-1

A

Sei C i C <A) die Untergruppe der Ordnung 2
i , i = 0, ... ,n-1. Als

Konjugationsklassen von Untergruppen hat man die C i und die Unter-

gruppen <Ci,B> <C. ,AB> = K.. Fur i < n-1 ist der Normalisator
1 1

von Hi gleich Hi +1 und derjenige von Ki gleich Ki +1• Man hat unter

anderem deshalb die folgenden Kongruenzen fur den Bunrside-Ring

(tom Dieck [1979J, 1.3.5)

n-1

1 )z(Ci) + 2n-2 Z(H o)
+ 2n-2 z(Ko)_

0 (2 n)

i=o

n-1

L /2)z(C
i)

+ 2n-3Z(H
1)

+ 2n- 3(K
1)

- 0 (2 n-
1).

i=1

Darin ist die Eulersche Funktion. Multipliziert man die zweite

Kongruenz mit 2 und subtrahiert sie von der ersten, so erhalt man

Nun setzen wir voraus, daB die Werte z(H) ungerade sind, also
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+ 2a(H). Dann wird aus der letzten Kongruenz

n-1 n
+ 2a(C1) + 2 (a(Ho) + a(H1) + a(Ko) + a(K1 » mod 2 •

Ferner stellt man fest, daB die rechte Seite kongruent zu

ist. Sei r : 3!:/IGI.,lf----} 3!:/IGI* der Homomorphismus

1 + 2k 1----1 1 + (\ G I /2)- k , Dann erhalten wir also die Kongruenz

(3.2) z (1 )

fUr Elemente z E A(G) c C(G) mit ungeraden Werten. Aus (3.2) ergibt

. h ff b . . k . h i c* ll-ltd A*'·0 en ar surJe Homomorp u: 2-,}' 4 er 2

seinem Kern hat.

(3.3) Quaternionengruppen. Es handelt sich urn die Gruppen der Ordnung

2
n
, n 3,

G
n-2<A,B I A

2 -1 .>A •

Verwenden wir analoge Bezeichnungen C
i
' Hi' Ki fUr Untergruppen wie

in (3.1), so stellt man fest, daB immer noch die Kongruenz (3.2) gilt.

(3.4) Semi-Diedergruppe. Es handelt sich urn die Gruppe der Ordnung 2
n,

n "> 4,

G
n-1<A,B I A2 B2, BAB-1

_1+2n- 2
A >.

Auch hier gilt wieder die Kongruenz (3.2), bei analogen Bezeichnungen

und mit analogem Beweis.
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(3.5) Zyklische Gruppen. Ist G zyklisch und C c G die Untergruppe der

Ordnung 2, so haben wir wiederum den Homomorphismus

C;----77l.; : imKernenthalt.

Im folgenden nehmen wir nun an, daB G nicht von bisher betrachteten Art

ist. Sei Ro(G,Q) c R(G;Q) der Unterring, der von den Darstellungen mit

orientierungserhaltender Operation erzeugt wird. Sei Ao(G) c A(G) der

Unterring, der von den G-Mengen erzeugt wird, auf denen jedes g E G

durch gerade Permutationen wirkt. Nach Atiyah - Tall (1969] hat man wie-

derum einen Isomorphismus

(3.6) I O(G;Q)2

worin I o das Augmentatbnsideal von Ro bezeichnet. Mittels Charakteren

laBt sich )' durch

(3.7) 5 (x ) (g)

berechnen. Fur x E R(G;Q)2 gilt nun wiederum eine Relation der Form

(3.8) IGI/2 dim G
x L C u(c) dim

C
X I

C c G zyklisch mit ungerademu(1). Der Beweis erfolgt wie fur

wenn man berucksichtigt, daB fur die in Rede stehenden Gruppen

s2 (G) =: 3 (tt) ist.

Falls also x E Ao(G)2 ein Bild in 1 + I o(G;Q)2 hat, so gilt

7/ (x) = '3 (y) fur ein y E I o (G;Q) 2 und deshalb

JI d (x)u(C)
C C

1 d i g
.r-.- U (C) '2 am x
II 3
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3 1GI/ 4 dim x
G

- 1 mod IGI.

1st x

und a

*"E A(G)Z

*E 7l Z

beliebig, so schreiben wir zunachst x

. FUr a gilt

1 ,

(3.10) 'lrCdC(a)U(C) a u(C) a lGVZ

letzteres nach (3.8). 1st Xo nicht in enthalten, so liefert die

Vorzeichendarstellung von X
o
einen Homomorphismus s (x

o):
G 7l*

(siehe tom Dieck (1979)}Seite 78) mit Kern H und (G/H) - 1 = e ist
7(-

eine Einheit von A(G). Es ist xoe E Ao(G)Z und d 1 (xoe) = 1, so daB

fUr xoe statt x die Kongruenz (3.9) gilt. Flir e gilt diese Kongruenz

aber auch. Deshalb haben wir mittels (3.9) und (3.10) insgesamt

(3.11) Lemma. 1st G keine Ausnahmegruppe wie in (3.1) - (3.5), wird

durch z 'T/ C z (C) u (C) ein surjektiver Homomorphismus

.* * '*Cz ----7 7l/IGI gegeben, der AZ im Kern errt.haLt.,

Die Surjektivitat folgt daraus, daB u(1) ungerade ist. 1nsgesamt haben

wir somit ein System von Z-primaren Kongruenzen gefunden.
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Even aimensional s-Smith equivalent representations

by Karl Heinz Dovermann*
Department of Mathematics

Puraue University
West Lafayette, IN 47907

1. Introauction

Let G be a finite group ana V ana W representations of G.

We say that V ana Ware s-Smith equivalent if G acts semilinearly

ana smoothly on a homotopy sphere E such that EG P II q, TpE = V

ana TqE = W • (By aefinition G acts semilinearly on E if ana only

if EK is a homotopy sphere for all subgroups K of G, see [RI].)

This notion of s-Smith equivalence was introaucea by Petrie in [PI,

P2], ana [P2] aiscusses the history of work on the classification of

representations up to s-Smith equivalence; in particular the work of

Atiyah-Bott, Milnor, Breaon, Sanchez, Cappell-Shaneson ana Siegel is

aiscussea in this paper.

From now on we restrict ourselves to cyclic groups. We use the

following notation. Let G = Zn be the cyclic group with n

elements, ana a primitive nth root of I, fixea once ana forever.

The representation tj has C, the complex numbers, as unaerlying

space ana the generator g of G acts on z in C by

(g,z) ---) •

Our main result on s-Smith equivalent representations is

Theorem B: Let G = ZS.s where s is an oaa number, s) 1 The

representations

V 2a t 4s + 2b(t i + t i +4 s +S) + 2c t 2 ana

W 2a t 4s + 2b(t i +S + t i +4s) + 2c t 2

*Partially supportea by NSF Grant MCS Sl00751.
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are s-Smith equivalent if (i) a > 2, (ii) c > a or c = 0,

(iii) b > 6a + 3, (iv) 2b > 4(a+c)

i < 4s, V and Ware not isomorphic.

and (i,8s) = (i+8,8s) 1. If

E.g. choose a = 2, b = 15, c = 0, i = 1 to obtain the

non-isomorphic s-Smith equivalent representations of G Z40

V

Let us see that we can find many examples of appropriate

combinations of sand i. Here are a few.

If s J 0(3) choose i 1

If s J 0(5), s f 0(13), 4s > 5 choose i 5

If s i 0(11)1 S t 0(19), 4s > 11 choose i 11.

If s i 0(23)1 S i 0(31), 4s > 23 choose i 23.

By these examples all groups, cyclic of order 8-s of order

( 2760 and those where s 1 0(3) are covered. To construct more

examples look for pairs of primes PI' P2 such that PI + 8 = P2 '

then we can construct examples for all s such that 4s > PI 1

s 1 O(Pl)' s J 0(P2) by choosing i = Pl. Altogether this yields

infinitely many examples of infinitely many groups of nonisomorphic

s-Smith equivalent representations.

A counting argument that even dimensional examples exist is given

by Petrie in [P2 1 3.12J. It is the strength of Theorem A (see later in

the introduction and section 2) which allows us to explicitly construct

them. If c = 0 we will have these isotropy groups for the

representations, Iso(V) = Iso(W) = {Z8-s 1 Z4-s , I}, if c, 0 we

have Iso(V) = Iso(W) = {Z8s 1 Z4s , Z2 1 I}. Examples with more

isotropy groups can be constructed rather easily.
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We need two main references for our study, [DR2] and [P2]. In

[P2] Petrie approaches the study of s-Smith equivalent representations

in a general way. He gives a number of strong necessary conditions for

two representations to be s-Smith equivalent. Then he constructs

nonisomorphic s-Smith equivalent representations. This is done in two

steps. The first step is to construct a manifold X such that

XG = P JL q and TpX Y, TqX = W (see also section 3). The second

step is to convert X (by surgery) into a semi linear homotopy sphere

I: such that I:G = P JL q and TpI: = Y, TqI: = W. It is this second

step where we apply the results of [DR2] to obtain improved results

over those of [P2] in the case where dim yK = dim WK = 0(4) for all

KeG.

Remarks

1.) The work of Cappel 1 and Shaneson [CS] also yields a classification

for s-Smith equivalent in some of the odd-dimensional cases they study.

At the present time our techniques are not sufficiently developed to

allow a comparable classification for our even dimensional cases.

2.) The representations Y and W in Theorem B are topologically

equivalent but not linearly so. This fact can be derived directly from

the Cappell-Shaneson work on nonlinear similarity. On the other hand,

one can also give an alternate argument based upon Theorem Band

standard equivariant engulfing techniques.

The main technical result, proved as a consequence of [DR2], is

Theorem A (see section 2). Suppose dim yK = dim WK = 0(4) for all

KeG. In Theorem A we give sufficient conditions when Y and W

are s-Smith equivalent. More generally this theorem gives a criterion

for when a given normal map can be converted into a G homotopy

equivalence. The obstruction is expressed in terms of easy a priori

invariants of the domain and range of the normal map. These invariants

are equivariant signatures and Whitehead torsion invariants. The
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vanishing of the invariant computed from Whitehead torsion is expressed

by using the equivariant J homomorphism (over a point). This last

fact follows from [DR2] where the torsion part of the surgery

obstruction, the torsion of the Poincare duality map (between surgery

kernels and cokernels) and algebraic data of the underlying spaces are

related.

Theorem A is actually more general than is needed for the

applications of this paper. It would allow us to study this problem.

Let M be any G homotopy type. Describe {TxNlxE NG} =RO{G) for

any smooth G manifold N in M This problem has been raised in

[P3]. The special case where M is a G homotopy type of a semilinear

homotopy sphere with two fixed points is the case we shall deal with in

detail; however we note that Theorem A is relevant to the general

problem.

Here are some problems concerning s-Smith equivalent

representations. Are there examples where a non 2 group is an isotropy

group (except the group of index 2 in G and assuming an effective

action)? Are there examples where the group of index 2 is not an

isotropy group?

Are there examples with the following set of isotropy groups:

{I, Z2k, Zd' G} ,where k) I and 2d G ?

I want to thank T. Petrie for helpful discussions at all stages of

this project.

2. Normal maps and Surgery obstructions.

The normal maps considered here are ht normal maps in the sense

of [DP] and (Diff,ht) normal maps in the sense of [DRI]. We are

going to make a few additional assumptions which simplify the notation.

Let us give the basic definition and then explain the concepts

involved.
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(X,f,b,c) consists of the following

(i) f: X ---> Y is a map between smooth G manifolds.

(ii) For all KeG, yK and XK are oriented and either connected

or zero dimensional.

(iii) For all K G, dim XK dim yK, and deg(fK: XK ---> yK) is

one (if dim XK > 1) or fK is a bijection

(if dim xK = 0) •

(iv) Y satisfies the Gap hypothesis (if yK # yL and yK c yL

(v)

(vi)

then 2 dim yK + 1 c dim yL) and dim yK = 0,1, or > 5 .
yK is I-connected if dim yK > 2 .
We are given a virtual G vector bundle ex over Y and a

stable G vector bundle isomorphism b: TX ---> f*(ex) .
(vii) We are given a IT = IT(y) vector bundle over Y and a

IT bundle isomorphism c: v(X) ---) such that

s(c) = IT(b). «b,c) is called bundle data.)

A IT(Y) bundle over Y consists of a collection of bundles

I E IT(y)} and IT(Y) JL1tO(yH), H c G . There are relations

between these bundles, see e.g. [op, section 3J. These are the obvious

ones as they appear in v(Y) = (v(yH,y) IH c G} where v(yH,y} is the

NH/H normal bundle of yH in Y. Similiarly there are relations

between the bundle isomorphisms, expressed in s(c) = IT(b) This

means stably c is IT(b) , the collection of isomorphisms obtained

from b. We shall not need any technical statements about these

bundles but we should point out some facts:

(i) Bundle data allow us to do equivariant surgery, and if we do

surgery then the resulting normal map has again bundle data [OP,

section 4J.

(ii) If we construct f via equivariant transversality, then we

obtain bundle data [OP, section 8 and P2, 1.13J.
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We state our main result (Theorem A) on the obstruction for

converting a normal map W by surgery into a G homotopy equivalence

(i.e. the underlying function is a G homotopy equivalence). After

this we discuss some material which is needed for the proof, and

finally we prove the theorem. The representations V and Ware JG

equivalent (JG(V-W) = 0) if S{V) and S(W) are stably G homotopy

equivalent via a map which is of degree 1 on the H fixed set for all

H c G. So JG will denote this J homomorphism.

Theorem A: Suppose G is cyclic and W = (X,f,b,c) is a G normal

map, f: X ---) Y. Suppose dim XK = 0(4) for all KeG and

TpX = Tf (p)Y (as

q , (Then q is a

Gp representations), except for at most one point

fixed point.) Suppose

(i) Sign(G,XK) = Sign(G,yK) for all K S G

(ii) TqX - Tf(q)Y = 2u for some u E Ker JG

There exists a manifold E G homotopic to Y, such that

LG XG, under a canonical bijection, and TpE = TpX for all p

in EG• For condition (ii) see a footnote at the end of the paper.)

Let S(G) be the set of subgroups of G, it is a G set via

conjugation. A subset H c S(G) is closed if H is G invariant and

K E Hand L 3 K implies that L is in H. The notion of

generalized Whitehead torsion has been introduced in [I,R2], we refer

the reader to [DRI, section Sa] for a simple description. Briefly:

Suppose f: X ---) Y is a G homotopy equivalence of finite G CW

complexes. Then f defines a G based acyclic complex C*(Mf'X)' Mf

denotes the mapping cylinder of f, whose class is is the

generalized Whitehead group, Wh(G) There is a direct sum

decomposition Wh(G) = $ Wh(NGK/K) where the sum ranges over subgroups

of G, one in each conjugacy class of subgroups. Say that E

corresponds to where E Wh(NGK/K). Then
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denotes the singular points of the K

fixed point set.

If W = (X,f,b,c) is a normal map and H a closed subset of

S(G) then we say that W is H good if for all K E H the map fK

is an NGK/K homotopy equivalence and 't (fK) EWh(NGK/K) vanishes.

Suppose W is H good, and K is minimal in S(G)-H

(K (L iff K .::'L) Set dim XK d. With these assumptions and if

d .. 5 we have: (If LS ---> Lh is not injective some care is required

and part b.) has to be stated in a more subtle way.)

Theorem 2.2 a.) [See DR2, Theorem 4.3J There exists an obstruction

C1K(f) in C1K{f) vanishes if and only if

W can be converted by surgery of type K into a G normal map

W' = (X',f',b',c') which is H good and fK is a NGK/K homotopy

equivalence. b.) Let a: ---) Hd{Z2,Wh{NK/K))

be the map in the Rothenberg sequence. If a(C1K{f)) = 0 , then f

s s sdefines an element C1K{f) in Ld(Z[NK/KJ,W) such that C1K{f) vanishes

if and only if W can be converted by surgery of type K into a G

normal map W' which is H G·K good.

Proof: The first part is explicit in [DP2, 7.3J. For the second part

suppose We have to choose a class in

which maps to C1K(f). In fact we just have to choose basis to do so.

If d is even we choose a basis for the surgery kernel in the middle

dimension such that the intersection form expressed in this basis has a

matrix whose torsion vanishes. If d = 2m + I is odd the basis for

the sub Lagrangians in the formation (Km{BU),Km+I(U,BU), Km+I(XO,BU))

is such that in the based sequence
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the duality map composed with the isomorphism from the universal

coefficient theorem Km+l(XO'oU) ---) Km(XO) is an isomorphism with

vanishing torsion. The notation is as in [W, section 6] or [DR2,

section 7]. Picking such a basis in either case (this is possible by

the assumption that a(oK(f)) = 0) provides us with O:(f). It is

obvious that cr:(f) has the properties we stated.

Our next step is to describe a(oK(f)) in geometric terms. This

was done in [DR2] and we recall the essential points. Without loss of

generality we suppose K = l. For this discussion we make the

assumptions which we put down before Theorem 2.2, and as in Theorem A

we assume that TqX Tf(q)Y for at most one point q in X.

It follows from s-duality (see [DR1, 5c]) that there is a G

homotopy equivalence S(TqX U) ---) S(Tf(q)T ® U) for some large

complex representation U, is induced by the bundle data. (If G

is abelian we can choose U 0 see [R2, 4.10]). The torsion

E Wh(G) is determined by TqX and Tf(q)Y alone if G is a

product of a abelian 2 group with an odd order group [DR2]. This is

seen as follows. Any two G homotopy equivalences between

S(Tq(X)) and S(Tf(q)(X)) will differ by a self G homotopy

of S(Tq(X)) • As = + it suffices to

o It is a fairly easy computation that (stably)

is homotopic to a G diffeomorphism [DRl,2], and thus it has

vanishing torsion. There we also showed (use that is its own

Spanier-Whitehead dual) that

Wh(G), see [DR2, 6.1]: and

= , - is the conjugation on

is a collection of signs, one for each

summand Wh(NGK/K) of Wh(G) , see [DRl, 5.c.6]. This implies that

represents a class in H*(Z2,Wh(G)) , more precisely

HdK(Z2,Wh(NGK/K)) , dK denotes the dimension of the K fixed

point set. For cyclic groups the action of Z2

[B, Prop. 7.3, page 623], so above symmetry for

on Wh(L) is trivial

would follow
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also algebraically. Some care is required in defining the conjugation

on Wh{L). One has to assume a conjugation on the group ring Z[LJ.

The standard conjugation will depend on the orientation homomorphism

W:L ---) Z2. In the first case use W given by the group action, in

the second case W is assumed to be trivial.

Theorem 2.3 with above assumptions and notation

The proof is in [DR2, section 10J, is the component of in

Wh(G) = Wh(NGl/l) The assumption of Th.A on TpX and Tf(p)(X) is

essential.

Theorem 2.4 Suppose that G is cyclic and W - V = 2u for some

u in Ker JG. Then there exists a G homotopy equivalence

S(W) ---) S{V) whose torsion E depends on Wand V.

This element defines an element in H*{Z2' Wh(G)) and

this element vanishes.

Proof: Set u = A - B , then We 2B = V ® 2A. By assumption we have

a G homotopy equivalence S(2B) ---) S{2A) where

S{B) ---) S(A)

denotes the join.

is a G homotopy equivalence. The symbol

By [R2, 4.10J we can destabilize

*

Id:S(W $ 2B) ---) S(W e 2B) and find a G homotopy equivalence

S{W) ---) S{V) the torsion of $ is independent of the particular

choice of $ by [DRl, S.c.llJ which is based on the understanding of

the units in Q(G). Thus = ° as maps a

representation sphere to itself. We say that a representation C is

orientable if g in NH/H acts trivially on H*(S(CH)). Suppose

first that V (and hence also W is orientable. We can also choose

A and B to be orientable. Let be the group which is

defined in [R2J and in which the generalized Reidemeister torsion
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lives. As G is cyclic the Reidemeister torsion A is additive for

orientable representations (see proof of 4.4 in [R2J). If

a:S(U) ---) S(U') is a G homotopy equivalence of representation

spheres we set A(a)

that =

A(S(U)) - A(S(U'))

because of the additivity of A The

direct sum decomposition of Wh(G) and , see [R2, 1.18 and

1.24J together with [M, 8.1J (conclude that y: Wh(G) ---)

is injective) implies that the generalized Whitehead torsion is also

additive i.e. = - From the symmetry property

discussed before 2.3 it follows that represents a class in

H*(Z2,Wh(G)) which vanishes by definition as •

If V is not orientable we reduce the computation to the above

computation. Let R± be the G representation whose underlying space

is R and the generator of G acts by multiplication with ± 1 . Let

= @ R+) ---) S(V @ R+) We show that = - . To.
see this note first that S(W R+J = D(W) U S(W)D(W) . Let

--) D{V) be the radial extension of . Then

For a map we abbreviate C*{Ma,A) by C*(a). There is a

based short exact sequence of G based acyclic chain complexes

From this it follows that + = • As = 0 the

above claim follows. We refer to such an argument as Mayer Vietoris

argument. Hence it suffices to show that o E H*(Z2,Wh(G»

So we can assume that V and W have a summand R+. If V is not

orientable, then V R_ is orientable. So let

We compute the torsion As

S(W R_) = S(W)xS(R+ R_)/S(W)vS(R+ R_) we have a based short

exact sequence of G based acyclic chain complexes
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Here Id+,_ is the identity map on S(R+xR_) , similarly Id_. Thus

+ = As = + ,

= 0 , and = =

To compute the right hand side of this equation we take the

decomposition S(W)xS(R+ R_) = S(W)x[D(R_) US(R_)D(R_)]. From a

Mayer Vietoris argument and as = we find:

Let H C G be of index 2. Obviously = Thus

IndG means that we induce an action up

to a G action, ResH means that we restrict an action to an H

action. Thus

and

As = , and as ResHV and ResHW are orientable we

find by the first part of our argument that represents

zero in H*(Z2,Wh(G». As we assumed that W R_ and V $ R_ were

orientable it also follows that represents zero in H*(Z2,Wh(G»

Hence also does.

Proof of Theorem A. The proof proceeds by induction over the linear

ordering of S(G) , the set of subgroups of G. We will convert W

by surgery into a simple G homotopy equivalence. this will be done

in such a fashion that xG is unchanged. This implies that the

assumptions of the theorem are maintained at each step of the proof and
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thus the second part of our claim follows immediately.

Suppose H is a closed subset of S(G) and W is H good. Let

K be minimal in S(G)-H. We want to make W HUK good. By

Theorem 2.2 OK(f) is defined. Because of assumption (ii) in Theorem

A it follows from 2.3 and 2.4 that

the image of LS = in

a (OK(f)) = 0 •

hL-o(Z[G/K],w) •

Hence OK(f) is in

By [Ba] elements

in LS are detected by the equivariant signature. We assumed that the

equivariant signature vanished, Sign (G,XK) = Sign (G,yK). Then W

defines an element O:(f) E LS which vanishes. Apply 2.2 to make

W HUG·K good.

3. Construction of normal maps

This section is a summary of results from [P2]. Let G be the

cyclic group Z2d and H the subgroup of order d. Let G2 and H2

be their respective 2-Sylow subgroups. We make the following

assumptions on Y:

3.1.a.) Y satisfies the Gaphypothesis (i.e. if yK c yL and

yK F yL , then 2 dim yK + 1 ( dim yL ; K, LeG

Y is saturated (i.e. if K is a maximal isotropy group of

y - yH , then ResKY contains a regular representation of K,

see [P2, 1.7]).

y. ) y is stable (i. e. for each K E Iso(y) and for each

nontrivial representation X of K either the multiplicity

mX(Y) of X in y is zero or dXmX(Y) ;. ml(y) = dimRyK .
Here dX is dimRDx where DX is the algebra of real K

endomorphisms of X.)

5.) yG2 = 0 and yH = yH2 and H E Iso(y) (see [P2, 1.1]).

E.) K E Iso(y_yH) implies that K c G2 (see [P2, 5.13]).

Let Y be a real G representation, then we set

'f= y @ C + tdy @ c. We say that the representation r (y (r and
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V are real or complex) if and only if for the underlying real

representations r is a summand of noV for some n. R(G,V) is the

summand of R(G) generated by representation r ( V. KG(X,V) is the

summand of KG(X) generated by those G vector bundles (XxV i.e.

for each point x EX, ( ResGxV _ JV is the equivariant J

homomorphism in the K-theory KG(X,V) ; over a point x we have a

(stable) Gx homotopy equivalence in the fibre. Real equivalents

RO(G,V), KO(X,V), and JOV can also be considered. For each L C H2

we define ideals I(L) and I'(L) in R(G) by

I(L) = Ker(R(G) -------------> R(H) x R(G/L»

I' (L) = I(L) n Ker(ResG2) •

By [P2, 5.10J I(L) is the free abelian group generated by

{ti_ti+dl ILl does not divide L} and I'(L) contains a subgroup

generated by {ti+ti+d+m_ti+m_ti+d[ ILl does not divide i} • Here m

is the order of G2-

(x) denotes the smallest integer

which is greater or equal to x) For v(V) see [P2, 4.4J, we will

only use n(V) explicitly. To I I (L) or I' (L) and a

representation V of G satisfying 3.1.& we attach integers

1v (V) if I I (L)
a(I,V)

n(V) if I I' (L)

1 if GIL - 0(8)

b(I) 2 if 2 < [GILl and IG/L I ., 0(8)

otherwise

0 if dim V is odd
c(V)

1 if dim V is even
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dim VH + 1 if dim VH is even
d(V)

dim VH if dim VH is odd

a(I,V) + b(I) + c(V) + d(V) .

Let p: R(G,V) ---> R(G) be the inclusion. Ted Petrie shows

[P2, 5.19J:

Theorem 3.2 Let I be I(L) or I'(L) and let V be a G

representation which satisfies 2.1 0 and E if I = I'(L). Set

= a(I,V) + b(I) + c(V). Then if z E I, Y = S(V e Rand

i: yG ---> Y the inclusion, = for some E KG(Y)

with a and in addition = a if dim V is even. If

in addition V is saturated and z E I n R(G,V) then

with = for some with

= O. If dim V is even we can again suppose that O.

Theorem 3.3 (Compare [P2, 2.6 and 3.4J) Suppose V satisfies the

conditions in 3.1, dim VH > 5 , and u = W - V = where

z E I n R(G,V). Then there exists a normal map W = (X,f,b,c),

f: X ---) Y = S(V e R) such that XG = pll q and TpX = V,

TqX = Wand TxX = Tf(x)Y if x is not a fixed point. If G acts

orientation preservingly on V

Sign(G,XK) Sign(G,yK) a for all K G •

(Note that u = 2w with J(w)

A holds.)

0, hence assumption (ii) in Theorem

Proof: The assumptions of this theorem imply those of Theorem 3.2. We

use the conclusion there and apply G transversality theory (this is

where we need that V is stable) to find W, compare [P2, 2.6J. The

signature computation is carried out in [P2, 3.4J. ResH = 0, see

3.2, TxX = Tf(x)Y if x is not a fixed point.
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4. Construction of examples

Let G = Z2d be as in the previous section, there we also defined

V for a real representation Y If V is complex set Y = r(V)

where r denotes realification. Let m be the order of G2.

Lemma 4.1 Suppose u = t i + t i+d+m • Then

The proof is obvious.

Proof of Theorem B:

We verify the assumptions 3.1 for V. For this we study the

isotropy groups of V. In general Iso(tj) = {G, Zk} where

k = (IGI ,j). This observation together with the fact that

Iso(A $ B) = {KA n KB IKA E Iso(A) and KB E Iso(B)} allows us to

compute Iso(V). As we assumed that (i,8s) = (i+8,8s) = 1, it

follows that Iso(V)

in G) and Iso(V)

Iso(W)

Iso(W)

{l,H,G} if c = 0 (H is of index 2

are trivial checks. To check saturation observe that K = Z2

(c#O) or K = 1 (c=O) in the notation of 3.1. The assumptions are

then obviously satisfied. 3.1.y is also straightforward to check. By

construction V-W = 2bz where z E I'(L) and L = Z2. Then

t.(I,V) .. (1/2 dimR yH-l) + 2 + 1 + dimR (VH) + 1

6a + 3 •

Hence V-W = 2bz where z E I'(L) and by the previous lemma

z E R(G,V). Apply Theorem 3.3 to produce a normal map. The

assumptions of Theorem A are satisfied by this normal map. Hence the

representations V and Ware s-Smith equivalent. It is an easy

check to see that V and Ware not isomorphic if i < 4s •

Footnote: This condition assumes that the torsion invariant in 2.3

vanishes, as it is proved in 2.4. A related torsion invariant has been

discussed before in Lemma 3 of [CS]. In fact the vanishing of
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a(Ol(f)) in 2.3 is also a necessary assumption. This was used in the

more specialized setting of [CSJ to obtain the necessary and sufficient

assumptions 1 and 2 of Theorem 1 in [CSJ.
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FIXED POINTS AND GROUP ACTIONS

Czes Kosniowski

University of Newcastle upon Tyne

The theme of this paper is illustrated by the following:

If M is a G-manifold satisfying certain conditions then M is a G-boundary.

Several examples will be given to elucidate the statement. Throughout, all

manifolds are compact and smooth.

1. Onoriented manif'olds.

The first example is well known:

If Mis a Z/2-manifold with no fixed points then Mis a Z/2-boundary.

Indeed the mapping cylinder from Mto the quotient M/(Z/2) is a Z/2-manifold whose

boundary is M.

Equally well known is the following result:

If M is a Z/2-manifold in which the fixed point set has codimension 1 then. M is a

Zl2-boundary•

Once again, the mapping cylinder provides the requirea Z/2-manifola with boundary

M.

For the next result let dim F denote the maximal dimension of all the fixed point

set components.

If Mis a Z/2-manifold for which dim M ) (5/2) dim F then Mis a Z/2-boundary.

This result is usually referred to as "Boardman's five-halves theorem".

J.M. Boardman proved a slightly weaker result in [3]. The full equivariant version

was proved in [11] by C. Kosniowski and R.E. Stong. That paper also contains a

number of related results. For example:

If Mis a Z/2-manifold such that the fixed. point set has constant dimension and dim

M) 2dim F then ..M is a Z/2-boundary.

The next result concerns larger groups. Let G be a finite abelian group or a torus
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group and let G2 be the subgroup of G generated by the elements of order 2.

If Mis a G-manifold for which G2 acts with no fixed points then M is a G-boundary.

This result generalises the first result mentioned in this section. R.E. Stong

proved the result when G = G2 in [14] although a slightly weaker version was proved

by P.E. Conner and E.E. Floyd in [4]. S.s. Khare obtained the more general result in

[7]. A proof, together with further generalisations, is given in [8].

2. ivo fixed points.

In this section we assume that all manifolds are oriented and that all group

actions are orientation preserving. Tne group in question will be either Zip with p

an odd prime number, or S1 the circle group. In most cases there are analogous

results for the group Z/pn.

Back in 1968, M.F. Atiyah and R. Bott published a result in [1] that has become a

basic result in transformation groups:

If Zip acts on a homology sphere with two isolated fixed points then the representa-

tions of Zip on the tangent space at each f'Lxed point are the same.

Since the representations are the same (together with a change in orientation) the

manifold is Zip-bordant to one with no fixed points, that is, to a free ZIp-mani-

fold. A free Zip-manifold is Z/p-bordant to p copies of some manifold with Zip

action being the obvious permutation. In such a situation we shall say that the Zip-

manifold is a Zip-boundary mod p,

A reformulation of the Atiyah-Bott result is given below:

If Zip acts on a homology sphere with two isolated fixed :points then M is a Zip-

boundary mod p.

In fact we don't need a homology sphere but simply any Zip manifold for which the

G-signature vanishes, see [5].

It is rather surprising that the same result holds for any smooth manifold,

provided that the dimension is not too small.

Let M be a 2n-dimensional Zip-manifold with two isolated fixed. points. If n > p - 3
then M is a Zip-boundary .mod p.

This result was proved by J. Ewing and C. Kosniowski in [6].

The results above have interpretations in terms of lens spaces. A mod-p lens space
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is the orbit of a free linear action of Zip on an odd dimensional sphere. An

immediate corollary of the Atiyah-Bott result is that two lens spaces which are

h-cobordant (compatible with the preferred generators and orientations) are in fact

isomorphic; see [12]. Similarly, the result of Ewing-Kosniowski implies that two

lens spaces of dimension 2n - 1 > 2p - 6 which are cobordant in O.(BZlp) are in fact

isomorphic.

For the circle group we have the following -result.

Let M be an S1-manifold with two fixed points; then there is an integer r such that

2r copies of M bound as an S1_manifold.

This result is not a corollary of the corresponding result for the group Zip.

A proof of this result is given as an appendix to this paper.

3- Isolated t'bed points.

In this section M will be a 2n-dimensional oriented manifold having a Zip action

with isolated fixed points.

We know from the previous section that if the number of fixed points is two and

n > p - 3 then M is a Zip-boundary. More generally we have the following result:

Let M be an oriented Zip manifold with.isolated .fixed points. If the number of

isolated fixed points F satisfies

2{n/2}
F < 1 + --------

(p-1 )(10gpn}-2

where {x} denotes the least integer greater than or equal to x, then M is a

Zip-boundary mod p,

A proof of this result appears in [6]. We conjecture that the result holds if F

satisfies F < nf(n,p) for some approximately linear function f(n,p) of n and p. Note

that if P = 3 then this is indeed so with f(n,3) = [n/2).

Notice that if M has a pair of fixed points where the representations of Zip on

the tangent space at each fixed point are isomorphic by an orientation reversing

isomorphism then M is Z/p-bordant to a Zip-manifold with two less fixed points. The

bordism is achieved by removing a disk about each of the fixed points and attaching

a handle equivariantly. Thus, in the theorem above, we may ignore such pairs of

fixed points in the number F of fixed points.
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4. Bigber dillleDsiooal fixed point sets.

Once again we asssume that Mis an oriented Zip-manifold. There are not many

general results of the type in which are interested in if the dimension of the fixed

point set is positive. We shall mention one proved by J. Ewing in [5].

Suppose that Mis a Zip-manifold for which the G-signature is zero and for which the

fixed point set isa rational homology sphere of dimension 2k. If k #. 1, or if 2 has

even order in the multiplicative group (Z/p)- then M is a Zip-boundary mod p.

This theorem applies, for instance, to homology spheres with Zip-actions. Notice

that the condition 2 has even order in (Z/p)- is always true if p = 3 or 5 mod 8,
and never true if p = 7 mod 8. R. Schultz (and others) constructed infinitely many

examples of non-bounding ZI7-manifolds with G-signature zero and with fixea point

set a sphere of dimension 2.

5. Unitary manifolds.

Our final examples concern S1-actions on unitary (stably almost complex)

manifolds. The results we mention were proved by C. Kosniowski in [10].

Let M be a unitary S1_manifold of dimension not equal to 2 or 6. If the fixed point

set is a homology sphere then M is an S1_bounctary•

This result applies, for instance, to the case when Mis a homology sphere, and in

particular to the case when M is a standard sphere. Note that up to bordism (in

fact up to h-bordism) the unitary structures on the standard sphere S4k+2 are in a

one-to-one correspondence with the integers Z, the boundary corresponding to zero.
The result shows that apart from dimension 2 and 6, the unitary spheres S4k+2 which

admit an S1-action correspond to zero. This is related to the the fact that among
the spheres only S2 and S6 have almost complex structures.

Another result proved in [10] is the following one.

Let M be a Wlitary S1-manifold of dimension not equal to 6. If the fixed point set

has the integral homology of a product of two odd dimensional spheres then M is an

S1-manifold.

This result applies in the case when Mitself has the integral homology of a

product of two odd dimensional spheres.
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6• .AppeDdiL

The purpose of this section is to give a proof of the following result which was

mentioned in section 2.

Let M be an S1-manifold with two fixed points; then there is an integer r such that

2r copies of M bound as an S1-manifold.

Let x, y be the two fixed points of an S1-action on a 2n-dimensional oriented

manifold. The representation of S1 on TMx' the tangent space of M at x, is equiva-

lent to

for some positive integers x(i), where Vx(i) is the standard irreaucible one

dimensional complex representation of S1 with an element t acting on Vx(i) by

multiplication by tx(i). The number o(x) is either 1 or -1 depending on whether the

standard orientation of Vx(1)Vx(2)'''Vx(n) agrees or disagrees with the orientation

of TMx'

We call the numbers x(1), x(2), •.. , x(n) the rotation numbers of the fixed point

x, and we call o(x) the orientation number of x. At the point y we also have n

rotation numbers y(1). y(2), •••, y(n) and an orientation number o(y).

To prove that Mis an S1-boundary it is sufficient to show that the rotation

numbers of x and y coincide (up to order) and that the orientation numbers satisfy

otx) = -oty), Because then M is equivariantly bordant to an S1-manifold with no

fixed points, and a result of E. Ossa in [13] provides the final step.

To soow that the rotation numbers coincide and that otx) = -o(y) we apply some

well known formulae of M.F. Atiyah and LM. Singer [2, section 8]; see also [9].

These tell us that if f is a symmetric polynomial in n variables of degree 2d then

f(x( 1) ,x(2) , ••.•xtn)
o(x) +ITx(i)

as long as 0 <= 2d < n.

o(y)
f(y( 1) ,y(2), ... ,y(n»

--------------------- =ITy(i)
o

When f is the constant polynomial (degree =0) we deduce that

otx) ITy(i) = -o(y) IT x(i)

Since the x(i) and y(i) are positive integers we deduce that otx) = -oty), Further-

more we see that
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f(x(') ,x(2) , ••• ,x(n)) = f(y(' ),y(2), ... ,y(n))

for all symmetric polynomials in n variables of degree 2d < n.

Let m be the maximum value of the rotation numbers x(n, x(2), ... , x(n), yen,

y(2), ... , yen). There is an induced action of Z/m on M. The fixed point set MZ/ m

contains x and y. We claim that x and y are in the same component of MZ/ m• To see

this suppose that Fx is a component of MUm which contains x, The S'-action on M

induces an S'-action on Fx since S' I(Um) is isomorphic to S'. If y is not in Fx
then the fixed point set of Fx under the induced S'-action is precisely x. This is

impossible, thus y must also belong to Fx'

Looking at the Z/m-equivariant normal bundle N of F in M it follows that the

number of times that m occurs in x(n, x(2), ... , xtn) is the same as the number in

yen, y(2), , yen). This is because the number of times that m occurs in each of

x(n, x(2), , xf n) and yen, y(2), ... , yen) is the (complex) dimension of the

bundle N at x and y respectively. Furthermore, it follows that the rotation numbers

at x are the same, up to sign, modulo m, as the rotation numbers at y. we may

therefore rewrite the rotation numbers as

m, ro,

m, m,

... ,
... ,

m, a(1), a(2),

m, bel), b(2),

...,

...,
a(k)

b(k)

where 0 < a(i) < m, 0 < b(i) < m and a(i)2 = b(i)2 mod m.

We now apply the Atiyah-Singer formulae using the polynomials z,2d + zld + ... +

zn2d. The following relations are obtained:

if 0 <= 2d < n

or more simply

for 0 <= 2d < n

We want to show that the at L) and b(i) coincide. Suppose therefore that

al i ) b(i) for all i (otherwise we delete them from consideration). Since

a(i)2 = b(i)2 mod m, 0 < a(i) < m and 0 < b(i) < m we deduce that b(i) = m - at L),
Thus

for 0 <= 2d < n

Expanding the right hand side we obtain, inductively, the following

= !:(m_a(i))2d-' for 0 < 2d < n
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We therefore have the following relations

for 0 <= s < n

But, since the number of a(i) is k and k < n, it follows immediately that the a(i)

and m-af i.) coincide, up to order. This completes the proof of the result.
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BORSUK-ULAM THEOREMS AND K-THEORY DEGREES OF MAPS

Arunas Liulevicius *

1. STATEMENT OF RESULTS. Let G be a compact Lie group, E and F
unitary finite dimensional representations of G. We denote the
unit sphere in E by S(E).

THEOREM 1. Let E and F be unicary representations of the nontrivial

compact Lie group G such that G operates freely on S(E) and S(F).

If there exists a G-map fIS(E) S(F) then dim E dim F.

This is a generalization of the theorem of Borsuk and Ulam (1]

which asserts that if fl Sn is a map with f(-x) = -f(x)

for all x then m n The generalization here is to linear spheri-

cal space forms and illustrates the use of K-theory degrees of maps.

The theorem is true for topological spherical space forms - an easy
proof is presented in [6J .

Given a G-map fIS(E) -- S(F) we use radial extensions to
obtain a proper G-map fl E F. If V is a unitary representa-

tion of G, we obtain a proper G-map f xli E x V F x V •

If G acts freely on S(E) and S(F), then f x 1 has degree 1 on the
fixed point set. This is part of the motivation for the following
definition.

DEFINITION. The limit over all unitary representations U of G

1 {E,F} G lim 1 [E G:l U, F U] G
U

is called the set of stable classes of proper maps of degree
on fixed point sets.

one

We shall give results about proper maps of degree one on fixed

point sets for the groups G = Sl and

birth certificate representation of Sl
of Z/(n) (the inclusion Z/(n) Sl

w = ).

Z/(n). We let B be the
(the identity map of Sl) and

which maps T=l to

THEOREM 2. If n is a natural number and G
convention that G = Sl if n=O ), then

1 [Ba,Bb}G I %
if and only if :£ E: c::: Z/ (n ) .

Z/(n) (with the

* Research partially supported by NSF grant MCS 8002730.
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It is fitting to ask about the image of the degree function

deg •

THEOREM J. If G Z/(n), b = ka mod (n), (a,n) = 1 , then the
image of deg. 1 {Ba ,Bka}G Z is the coset k + (n).

C
• D

The main tool in this paper is equivariant K-theory which allows

us to attach to a G-map f. E V F $ V its K-degree
K(f) t R(G) . This enables us to prove results by examining class

functions on G. For example, Theorem 2 for n lOis a consequence

of the following algebraic result. Let X. Z/ (n ) --- C be the
character of the birth certificate representation B of Z/(n),

and let w = exp = X(T), where T = 1 is the standard
generator of Z/(n).

THEOREM 4. If I Q in Z/(n), then the function

1 - xb
1 - Xa

(where D = Z/(n) I ka I Q}) has image in Z[w) (the sub-
ring generated by w in the complex numbers C ) if and only if

Q (,- ( ) c: Z/(n ) •

The paper is organized as follows. 2. introduces the K-theory
techniques «(11, [10),(7] ,[8] ) used in the proofs and does the easy

case of G = Sl as an example; J. proves Theorem 1 and introduces

the algebraic techniques for studying G = Z/(n) for n I 0 ; 4. proves
Theorem 4 and shows how this implies Theorems 2 and J.

The author wishes to thank Ted Petrie for willing to share his

insights freely and generously. Thanks also go to R.G.Swan and
D.Ramakrishnan for conversations about units in Z(w) and cyclotomic
polynomials in Fp (x1 . The reader is referred to [41,[5],(8),[9)
for a deeper study of degrees of equivariant maps between spheres.
For a complete discussion of which groups can act linearly and freely
on spheres, see (11].

2. K-THEORY DEGREE. Suppose
the unitary representations E

Segal [10J shows that KG(E)
generator AE . Thus the map

tely described if we know the

f. E __ F is a proper G-map of
and F. The work of Atiyah [2] and
is a free R(G)-module on a canonical

fl • KG(F) KG(E) is comple-
element K(f) E R(G) defined by
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f!AF = K(f) AE . The K-theory degree K(f) can be considered as a

class function K(f) I G C. The work of Petrie [8J shows
how to calculate the value K(f)(g) at an element g of G. Let
C =<g > be the closure of the cyclic group generated by g in G,
and split E = EC G:l EC , F = FC <±> FC as C representations, where

MC is the trivial component of a C-representation M. Let
'A_ 1 (M) = LI- (_1)i 'AiM Then we have ( see [81 or(4) p.284)

(EC)(g) I 0 , and

K(f) (g)

where fC I

sets of C

dim FC ).

A_1 (FC)(g) C
. l' ,

'>--1 (EC)(g)

EC FC is the restriction of l' to the fixed point
(with the convention that deg fC 0 if dim EC I
In the case of G = Sl this gives

K(f)
A_1(FG)

'>--1 (EG)
as an element of R(G).

K(f)

2 and } for G = Sl as an example of the
o and fl Ba <Ii U Bb ® U is a

1. This means (B
a

(±l U)G = B
a

$1 UG '

1?d
TI
e \ a

II
d l b

Let us prove Theorems
use of K(f). Suppose a I
proper G-map with deg fG =
(ll

b
<:& U)G = B

b
c:E> UG ' and

').-1 (B
b
)).-1 (UG)

A_1 (B
a)._l

(UG)

where <Pn E. R(G) = Z [X,x- 1J is the n-th cyclotomic polynomial in X.
Now R(G) in this case is a unique factorization domain and the cyclo-

tomic polynomials 4?e are all irreducible, so this means that each
divisor e of a occurs among the divisors of b - but this is pre-
cisely the condition that b E. ( a ) C. Z ,proving Theorem 2 for

G = Sl. Now suppose that b = ka, then

1 - Xka
xa + + x(k-1)aK(f) = 1 + ... ,

1 - Xa

and the value of this at 1 GSl is k deg l' , proving Theorem J

for G = Sl.

Theorems 2 and J for G Sl should be ascribed to Meyerhoff
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and Petrie [7] , who have these arguments, although they were inter
ested in a different question.

]. PROOF OF THEOREM 1. Suppose G acts freely on the unit spheres
in the representations E and F, and suppose fIS(E) S(F) is a

Gmap. Since G is nontrivial, there exists a cyclic subgroup C of
order p a prime. Now fl SeE) S(F) is a Cmap and C operates
freely on the two spheres. In particular, this means that as repre
sentations of C,

dim E
E Q Bai

i=l

where all ai' b j
We let w =

dim F b
F 0 B j

j=l
are relatively prime to p.

= X(T), T a generator of C. We then
have

K(f) (T)

Since K(f) R(C), we must have K(f)(T) £ Z[w]

LEMMA 5. If (a,p) = 1, then 1  wa = (1  w).y for a unit
y = 1 + w + •.• + wa 1 in Z[w].

1  w = 1 _ wab

Hence 1w (lw)yz,

K(f)(T) = (1

is a unit in z[w1.

The proof
(lwa).z with

so 1 = yz.

We now go
1  wbj = (1 

is not

 w)x i '

, so

We will show that

is easYI ab = 1 mod (p), so
z = 1 + wa + ..• + wa(b1).

back to K(f)(T). We have 1  wa i =(1

w)Yj for suitable units xi'Yj in Z(w)
dimF  dim E

 w) •u ,

uwhere

in z(wl , that is 1  w is not a unit in

COROLLARY 6. (1  = px where x is a unit in Z[w].

To prove this, let's examine the cyclotomic polynomial

Pp 1 + x + + xp1

"IT (x  wa)
(a,p)=l
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We have just proved that 1 _ wa

so
( 1 w).y, y a unit in Z[wJ,

p

for a unit u in Z[wJ.

This of coUrse completes the argument I 1 - w is not a unit

in Z(w) , since (1 - w)P-1 = 0 in Fp[W] = Fp Z[wJ.

4. PROOF OF THEOREM 4. We will start by proving a slight generaliza-
tion of Lemma 5 and Corollary 6.

LEMMA 7.
1 - wa

Let w be a primitive n-th root of 1,
(1 - w).y for a unit y in Z[w].

(a,n)=1, then

The proof is immediate - just substitute n for p in the proof
of Lemma 5.

p.u

COROLLARY 8. Let v be an n-th root of unity in
of v is pr, p a prime, then

r-1 ( )
(1 - v)p p-1

z[w1. If the order

for some unit u Z(w) . If the order of v is a composite then
1 - v is a unit in Z[w).

The proof consists in noticing that

n-11+x+ •.. +X TT CPd'
d\n
dl 1

if d is a composite, 1'd(1) = p if d = pr, p a

be the order of v, ep(m) the order of Um, the group
ring Z/(m). We then have I there exists a unit in

m(1) = (1 - v )et'(m) • u ,

and the corollary follows if we remember that <p(pr) = pr-1(p_1).

Now we launch ourselves into the proof of Theorem 4. First,

so <Pd (1) = 1

prime. Let m

of units in the

Z(w] such that

if b = ka + ron , then

1 + Xa + .•• + xa (k- 1 ) ,

so the function does take values in Z (w] .
The converse will take longer to prove. We now suppose that

Z[w]
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for all k such that wka I 1 , where

to show that 12. G ( .§:. ) c:. Z/(n).
three easy steps.

w = exp (2 i/n) . We wish

The proof will be divided into

STEP 1. We can assume that a is a divisor of n

Let 0( order.§:. in Z/(n). Then n = <>( c and.£ has
order <>( , so we have that .§:. and.£ generate the same cyclic sub

group of order 0<.. Since the quotient map Z/( 0( c) " Z/( 0<. )

induces a quotient map Uo<.c ) of the groups of units
(this is a consequence of the Chinese Remainder Theorem and the
special case n=pr), there exists a k t Z with (k,n) = 1 such

that .§:. k.£ so

1 + XC + ... + x(kl)c

1  XC

is a unit in z[x1 Z[x) /(xn_ 1). We also have (.§:.) = ( .£ )
(since k. I Z/(n) Z/(n) is a ring automorphism). This

means that Theorem 4 for (1  Xb )/ ( l  Xa ) is equivalent to that

for (1  Xb)/(l  Xo) , where c divides n

n , but is not equal to
a = pra, , b = pSb',

are prime to p.

Let

n =

We now suppose that a divides
p be a prime dividing n/a. Write

t r+tap c' = p a'c', where a' ,b' ,c'

n

STEP 2. Under our hypotheses

(1 - wbc ' ) (1 _ wac' )ptl(P_l)_l Eo (p) C Z[w1 .

Contemplate

1 - X
b

(Tc')

1  Xa

bc'
1 - w

ac'
1 - w

EO- Z[w) ,

p.u

and remember that n = ac'pt. This means that the order of wac'

is precisely pt, where t70 by choice. Corollary 8 now says that

tl ( )(1 _ wac')p pl

for some unit u in Z[w1 , so we have
bc' b ' ac' )ptl(P_l)_l

1 - w (1 - w c )(1 - w EO: Z[w)

as claimed.
p.u

STEP J. (1

implies that

wbc ' ) (1

b E (a)

tl ( )wac')p pll o in F[w]= z[wJ/(p)
p
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q?m under the quotient map
Fp[X]/(fn) Thus what we

be the image of

We have Pp[w]

We let f
m

Z[x1 -- FpLX) .
want to prove iSI

(1 - xbc')(l _ xac' )pt-l(P_l)_l
E.

implies
b = pSb'

b E.(a), or what is equivalent to thisl in a = pra"
we have r s, b' ( a' ).

LEMMA 9. If (m,p) = 1 f m Fp[X] is a product of distinct
irreducible polynomials of the same degree k, where k is the order

of E in Um ' the group of units in Z/(m). Each irreducible poly-
nomial in Fp[X] divides precisely only one fm with (m,p) 1.

The proof is easYI the derivative test gives us that xm - 1

is separable in Fp[xJ Let K be a splitting field of xm - 1
over Fp , that is m

xm _ 1 1\ (x _'),i)
i=l

since the roots form a cyclic group of order m. Indeed we have

f
m

IT (x _ ),i) •

i eum
We look at the orbits of the roots of fm in K under the Frobenius

automorphism 'P IK -- K given by 'f(y) = yP Since E Eo Um has
order k , this means that the orbits of ep are just the cosets of

the cyclic group c E '> in U ,that is each orbit has precisely
m

k elements. Given an element y in K, if its orbit under is

Yl' •.. 'Yr' then the minimal polynomial of y over Fp is

(x - Yl)"'(x - Yr) .

This proves our claim that fm splits into <p(m)/k distinct irredu-
cible polynomials of degree k in F [x). Each irreducible polyno-

p

mial q of degree d in Fp[x] occurs as a factor of a unique fm with
(m,p) = 1. Indeed, q is a factor of xPd_1 - 1 , hence a factor
of an f m with m dividing pd_ 1 (and not dividing pd-l_1 ) . Suppose

q divides fm and fm, with (mm',p)=l, then q2 divides xmm'_ 1 which

is ridiculous.

What can we say about f m for a general m ?

LEMMA 10. If (m' ,p) = 1, then
r-l ( )

= (fm,)P p-l.

Let K be the splitting field of
splitting field of xm - 1 (xm'_

xm _ 1 is cyclic of order m' . The

xm'_ 1. Then K is also a
r

l)P. The group of roots of
Chinese Remainder Theorem gives
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us Um r,:::. Upr x Um' • so if '). is a primitive m' -th root of 1

"TI .
i c u ,(x -

m

times in

K [x]

<p(pr) = pr-l(p_l)

i ep(pr)
).,)

occursand each (x _ ). i )

as claimed.

This means that we should concentrate on the f with (m,p) = 1.m

LEMMA 11. Suppose that (m,p) = 1, then xb - 1 (fm) if and
only if b (m) ,

If be (m) , then certainly

IT f
d

dlb

Conversely, if xb_l t (f) and L is a splitting field
m

with AE.L a primitive m-th root of 1, then 'Ab = 1, so
since the order of 'A is m

We are now ready to complete Step 3. We want to show that

b'c' ps xa'C')pr+t-l(p_l)_pr(1 - x ) (1 - f: ( f n )

implies (pra,). Since n = aptc' = pr+ta,c', Lemma 10

gives that

so (using Lemma 9 ) our condition becomes.

(1
b'c' pS

Eo
pr

- x ) (fa,c' ) ,
and using Lemma 11 we get b'c' E::. (a'c') (so b' E:o( a' ) ) and
pS ;::. pr . That is, b b (a) • as was to be shown.

The reader will understand the argument best if he does the special
r r+t. hcase a = p ,n = p ere

pr+t-l(p_l)
= (x - 1) .

K( f) I D

It remains to show how Theorem 4 implies Theorems 2 and 3.
Suppose fl Ba (j) U Bb@Uisofdegreelonthefixed

point set - in particular we can assume that I 0 (for if = 0,
then Q=O-why?). We have seen in 2. that K(f) R(Z/(n)) is

given by
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on D Z/(n) I ka I o}, so in particular it takes values in
Z\w] Theorem 4 is now applicable, and so we conclude that

12. Eo ( ) c zi (n) .

by

Conversely, if
fez) = zk is a

b = ka + mn, the map fl Ba _ Bka defined

Z/(n) - map, hence the proof of Theorem 2 is
completed.

If b = ka mod (n), the map
is a proper Z/(n)-map of degree

hi Ba ---+- Bka given by h(z)=zk+sn

k+sn. This shows that the image of

deg I l{B
a
,B
ka} Z/(n) ----» Z

contains k + (n). For the converse inclusion we remember the
additional hypothesis that (a,n)=l, so Z/(n) acts freely on S(Ba).

Thus given f,f' l{B a,Bka}Z/(n) we have K(f)(g) = K(f' leg) for
all g I e in G = Z/(n). This means that K(f) differs from K(f')
by some multiple s of the regular representation R of Z/(n). Then
deg f = K(f)(e) = K(f' lee) +sR(e) = deg f' + sn, and deg f = deg f'
mod (n), completing the proof of Theorem J.
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The completion conjecture in equivariant cohomology

by J. P. May

Consider an RO(G)-graded cohomology theory *ka· We shall not insist on a

detailed definition; suffice it to say that there is a suspension isomorphism for

each real representation of G. The first examples were real and complex

equivariant K-theory and The next example was equivariant stable

*cohomtopy theory llG• There are RO(G )-graded ordinary cohomology theories with

coefficients in Mackey functors.

The study of these theories is still in its infancy. They can all be

defined for arbitrary compact Lie groups, but we shall restrict our attention to

finite groups. When we localize away from the order of G, there are very

*powerful algebraic devices for the reduction of the calculation of kG to

nonequivariant calculations. If we localize at a prime dividing the order of

G, there are techniques for reducing calculations to consideration of p-groups

contained in G. There are no known general procedures for the calculation of

*kG at p for p-groups G. Largely for this reason, the reservoir of known

calculations is almst empty.

Let A(G) be the Burnside ring of finite G-sets. *Then ka takes values in

the category of A(G)-modules. For some purposes, this is the na i.n reason for

interest in the RO(G)-grading. The assertion is false for Z-graded equivariant

cohomology theories which fail to extend to RO(G)-graded theories. Let EG be a

free contractible G-CW complex and let E: EG + * = {pt} be the trivial llRp.

We have an induced homomorphism of A(G)-modules

(We use unreduced theories until otherwise specified.) The completion conjecture

for asserts that, on integer gradings, E * becones an isomorphism upon

of the augmentation

is a p-group and the

*the p-adic completion of kG is computable

completion with respect to the topology given by the powers

ideal of A(G). As we shall shortly make precise, when G

*completion conjecture holds for kG'

in nonequivariant terms.

The first theorem in this direction was due to Atiyah [4J; see also Atiyah

and Segal [51. Their results are stated in terms of representation rings but,

since G is finite, the Burnside ring gives the same topology.

Theorem 1. The completion conjecture holds for real and complex equivariant K-

theory.
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However, the completion conjecture certainly fails to hold in general.

the ordinary

The completion conjecture fails for ordinary cohomology

On integer

Counterexample 2.

* with coefficients in the constant coefficient system

gr adi ngs , H*(*oZ) - HO(*oZ) - Z Whereas H*(EGoZ) H*(BG,oZ),G '- - G '- - , G ,-
integral cohonoLogy of the classifying space roo

The Segal conjecture is the completion conjecture for equivariant cohomotopy

The central step in its proof has been supplied in a beautiful piece of

work by Gunnar Carlsson [6].

Theorem 3. The completion conjecture holds for equivariant stable cohomot.opy

t.heory ,

There is an equivalent nonequivariant reformulation and an interesting

implied generalization that I will discuss at the end.

When I first heard about the Segal conjecture, my instinct was that it was

unlikely to be true in general. I also felt that it was a much less important

problem than the general one of explaining for which theories the completion

conjecture would or would not hold. However, Carlsson's work not only completed

the proof of Theorem 3, it also led to sUbstantial progress on the general

problem. This development is joint work of Jeff Caruso and myself [9] and

follows up our simplification of Carlsson's work [81, which was undertaken in

hopes of just such a generalization. My understanding of these matters also owes

a great deal to joint work and conversations with Jeremy Gunawardena, Gaunce

Lewis, Stewart Priddy, and Stefan Waner.

My purpose here is to explain Carlsson's work, our generalization of it, and

related matters in conceptual terms, without getting bogged down in details of

proofs. None of the steps presents any great difficulty any more, all of the

work lying very close to the foundations, but there are quite a few steps. We

shall stick to the main line of development, and this means that a great deal of

earlier work on the Segal conjecture will go unmentioned. Adams [1] summarized

what was known late in 1980.

We shall first explain the force of the completion conjecture and its

reduction to a question about p-groups, following May and McClure [191.

*For each subgroup H of G, there is an RO(H)-graded t.heory kH
*associated to ka (depending not just on H as an abstract group but on the

inclusion H CG). In particular, with H = e, there is an associated nonequiv-

ariant cohomology theory k*. Modulo interpretation in terms of restriction
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RO(G) -4> RO(H),

* *Theprojection GxY+Y inducesaIJl'3.p 1I:k
G(Y)+k(Y)

ofZ-graded

cohomology theories on spaces Y. We say that is split if there is a IJl'3.p

* *1;: k (y) + kG(Y) of c ohomoLogy theories such that 111; is the identity. We have

*a notion of an RO(G)-graded ring-valued cohomology theory. If kG is a ring

* *theory, so is each kH• We say that ke is a split ring theory if I; is a IJl'3.p

*of ring-valued cohomology theories, and each kH is then also a split ring

theory •

We say that is of finite type if each ki(*), q e: Z and ReG, is a

finitely generated Abelian group. This ensures that is finitely

generated for all a E RO(G) and all finite G-CW complexes X. The most

interesting are split ring theories of finite type.

The connection between equivariant and nonequivariant cohomology is

established by the foll<Ming observation [19, Lemna 121.

Lemma 4.

gradings ,

is split and Y is a free

is naturally t sono rphtc to

G-CW complex, then, on integer

k*(Y/G) •

Thus the completion conjecture relates to

the compLet.Lon conjecture to the general calculation of

following result [19, Prop. 15l.

The relevance of

is given by the

Proposition 5. Assume that is a split ring theory of finite type and that

lillllk* (EHn) = 0 for each H C G (.mere BHn denotes the n-skeleton of BH).

*If the c ompLe t Lon conjecture holds for kH for each H, then the project ion

EG x X + X induces an isomorphism

for all a E RO(G) and all finite G-CW complexes X, wner e the left side is
a

the c onp Let i.on of ke(X) with respect to the Burnside ring topology.

q
Of course, by the lemma, kG(EG x X) :: kq(EG xG X) for q E Z.

For clarity of exposition, we shall henceforward restrict attention to

integer gradings.

'!he completed Burnside ring Green functor satisfies induction with respect

to the subgroups of G of prime power order. Don't worry if you don't

understand the previoos sentence. As a matter of pure algebra, it leads to a
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proof that the burnside ring rapidly disappears from the picture. See [19, Thm

13 and Prop 141 and also Laitinen [14,151.

Theorem 6. The conpletion conjecture holds for *if it holds for kH for all

subgroups H of prime power order.

i sono rph i sm upon passage

is split, then the completion
* * *if and only if £ : kG(*) .. kG(EG) induces an

to p-adic conp Le t t on,

is a p-group and

*kG
GProposition 7. If

conjecture holds for

Hence ro r-eard (until otherwise specified near the end), G is to be a p-

gr cup; k and cognate symbols will indicate completion at p. To avoid constant

*repetition of hypotheses, we assume once and for all that all theories ka,
given or constructed, are split and of finite type.

We are at the starting point of Carlsson's work, and SOIIE preliminary

philosophical comments are in orde r. The stable part of algebraic topology has

three na i n branches: hono Logy and c oh ono Logy theory on spaces, nonot.opy theory

on spectra, and infinite loop space theory. Carlsson's preprint [6] was written

frolJ. the second point of view. Specifically, Carlsson worked in the stable

cat ego ry of G-spectra constructed by Lewis and II\'fself [171. This was done with

II\'f e ncou ragene nt., and I mi s t apologise to Carlsson for giving him very bad

advice. As Caruso and I discovered, the r.athematics simplifies considerably when

the first point of view is taken, and the changed point of view is crucial to our

generalization of Carlsson's work that is the theme of this paper.

Carlsson's theorem asserts that the Segal conjecture holds for all p-groups

if it holds for all elerentary Abelian p-gr oups , that is, for all p-gr-oups of the

form (zp)n. The Segal conjecture was proven by Lin [18] for Z2' by

Gunava.rdena [131 for Zp' and by Adams, Gunavarderia , and lIiller 13J for (Zp)n

with n > 2. These authors actually prove the equivalent nonequivariant

reformulation of the conjecture to be discussed later. lIy work with Caruso led

is bounded below, in the sense

(This hypothesis serves only to

sequences.) While we shall be

to e Lene rrt ary Abelian groups

to work with Pridqy that gives a geodesic proof of the Segal conjecture for

(Z)n within Carlsson's context ([20J plus later corrections).p
We shall see that a version of the reduction

*goes through for all theories kG such that k*

that k (*) = 0 for all sufficiently small q.
4.

ensure the convergence of certain Adams spectral

able to s ned SOlie light on the elementary Abelian case, the general pic.ture is

still obscure. We shall describe a satisfactory necessary and sufficient

c on di, tion for the c oup Le t Lon conjecture to hold when 4 is cohorm.Logf caLly
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boonded above, in the sense that Hq(k) = 0 for all sufficiently large q, but

without this unpleasant hypothesis it seems that "calculation is the way to the

truth". Here k denotes the spectrum which represents the nonequivariant

*theory k.

We need s one definitions to give content to the discussion. Let U be a

countably infinite dimensional real G-inner product space which contains

infinitely JJBl'\Y copies of each irreducible representation of G. We take

U = Roo G;l U', where U' contains no copies of the trivial representat ion and so

fix RS C U, s O. By an indexing G-space, we understand a finite dimensional

G-inner product subspace of U. We assume given a G-prespectrum namely a

collection of based G-spaces keY for indexing G-spaces V and based G-IIBPS

0: -kGW for V C W; here W-V denotes the orthogonal c ompl.ermrrt of

V in W. As usual, EVX = X" SV, where SV is the l-point compactification

of V; similarJy, g,VX is the G-space of based JJBpS SV_ X• We require

technical conditions on the spaces keV and I1BPS 0, ba t these result in no

loss of generality and need not concern us here. For based G-CW complexes X

and Y and for an Lntege r q, write q = r-s, where r > 0, S 0, and r = 0

or s = 0 (to avoid separate cases) and define

G V_R
s

k (X;Y) = lErX, co lim g, (Y"kGV)]G.
q V::>Rs

This is the Z-graded bitheory associated to It specializes to

and

These are reduced theories, to which we switch henceforward. To define stable

honot.opy and c ohonot.opy , we take ke to be the sphere G-prespectrum; its

space is SV, and 0: EW-VSV _ SW is the evident identification.

Carlsson's first step was joint work with Cusick. [7] and involved reduction

from a problem in cohomotopy to a more tractable problem in homotopy.

Independently and c oncu r rerrt Iy , Caruso and Waner arrived at an extremely elegant

way of carrying out essentially the same reduction. They had observed earlier

[lOJ that a model for :m cruld be obtained by taking the union over V of

certain smooth compact G-IIBnifolds with boundary M(V) anbedded with codimension

zero in V. The essential property of M(V) is that M(V)/3M(V) is equivalent

to SV/TV, where TV denotes the singular set of SV (namely the set of points

with non-trivial isotropy subgr orp} , Using this model and an easy Spanier-
'* 0 '* +Whitehead duality ar-gumerrt , one finds that E: kG(S ) _kG(EG) can be

identified with a certain natural I1Bp of inverse limits
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A simple cofibration argument then gives the following conclusion.

Proposition 8. The completion conjecture holds for if and only if

For Carlsson's second step. it is convenient to introduce the notation

Here Y is a G-CW complex. W is a representation of G, and the inverse

limi t is taken over the homomorphisms

AG (" l)W (III e)* AG jW W W
k(SJ+ .y) 'k(S "S·Y"S)
q' q'

where e: sO + SW is the evident inclusion. The case Y = SO is particularly

important. By clever use of interchange of limits applied to bi-indexed limits

involving sroas n products. Carlsson uses the criterion of the previous proposition

to obtain the following conclusion.

Proposition 9. If the completion conjecture holds for for all subgroups

H of G. then ° for all W F 0. Conversely. if the completion

conjecture holds for for all proper subgroups H of G and =° for

anyone W F ° such that wG = {O}. then the completion conjecture holds for

*ka·

Carlsson fixes a good choice of W with wG = 0. which we shall call Z.

Let G be the elementary Abelianization Gil G.G1 0 Zp of G and take Z to be

the pullback to G of the reduced regular representation of G. The restriction

of Z to any proper subgroup H contains a copy of the trivial representation.

and a theorem of Serre [291 (or its consequence due to Quillen and Venkov [26])

implies that the Euler class a(Z) is nilpotent if G is not elementary

Abelian. Proposition 9 has the following consequence.

*CorollarY 10. Assume that the completion conjecture holds for kH for all

*proper subgroups H of G. Then the completion conjecture holds for kG if and

only if 0.

At this point. Carlsson introduces the key simplification. Let En be the

unreduced suspension of EG with one of its cone points as basepoint.

Equivalently. EG is the cofibre of the evident map EG+ + SO. and one obtains
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the fundamental long exact sequence

Carlsson assumes inductively that the Segal conjecture holds for all proper
'G 'G +

subquotients of G and proves that both =° and =°
'G

if G is not elementary Abelian. This implies that =° and thus that

the Segal conjecture holds for G. Carlsson observes that his vanishing theorems

fail when G is elementary Abelian and suggests the possibility of a direct

proof that the connecting homomorphism is an isomorphism in this case.

Priddy and I provide such a proof.

The generalization to * Jdke requires us to introduce a bitheory

associated to any subquotient J of G. Here J = NIH, .mere H is nonnal

in N. For J-CW complexes X and Y and q = r-s (as above), we define

k;(X). Everything said so far

It is vital to recognize that, inJd.replaced by

Hand N and not just on J. In particular, we

for the nonequivariant bitheory obtained by taking H = N (and thuswrite

works equally well with

general, Jd depends on

J( ) [r . 0_Rs
( ( )H]k X;Y = E X,col rm n Y" kGV J

q V:> RS

and specialize as before to obtain and

J = e) in the above definition; we write k* and for the nonequivariant

bitheories so obtained from H = e and H = G, respectively. An example may

clarify the definition.

Example 11. For a G-space X, let SGX be the G-prespectrum with space

EVX and with 0: EW-VEVX _ EWX the evident identification. The theory

represented by SGX is split if there exists a map X + XG whose composite

with the inclusion XG.... X is homotopic to the identity. Since every

representation of J occurs in VH for some indexing G-space V, we conclude

by cofinality that is just a copy of the bitheory (SJXH)*. Note the

particular case X = SO.

Now Carlsson's vanishing theorems generalize as follows.

is not elementary Abelian and the comPletion conjecture holds
'G

J of G, then k* (EG = 0.

Theorem 12. If G

*for kJ for all proper subquotients

Theorem 13. If G is not elementary Abelian and k* is bounded below, then

0.
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We have stated these differently since the proof of the second is direct

rather than inductive. The same results are valid if we start with some as

ambient theory, and we deduce the following generalization of Carlsson's theorem

by induction. Remember that all theories in sight are assumed to be split and of

finite type.

Theorem 14. If G is not e Lene ntary Abelian, all h* are bounded below , and
* subquotientsthe completion conjecture holds for kJ for all elenentary Abelian

* *of G, then the c onp Le t Lon conjecture holds for and all other kJ •

Before discussing the proofs of Theorems 12 and 13, we describe what happens
A n(n-l)/2

in the e Lerre nt ary case. Let Mn denote the free Zp-module on p

generators, where Zp denotes the p-adic integers; we take tensor products,.
over Zp below. In the case of stable nomrt opy , the following theorem is more

or less implicit in Carlsson's work. The general case is due to Caruso and

IIlf self.

Theorem 15. If G = (Z )n
p

proper sUbquotients J of

and the completion conjecture holds for

G, then

for all

The following theorem is due to Priddy and Il\Yself, although most of the work

is in an Ext calculation due to others and discussed below.

Theorem 16. If G

above, then

(Zp)n and k* is bounded below and cohomologically bounded

In the absence of the bounded above hypothesis, there is an inverse limit of

Adams spectral sequences such that

and converges to

that

Here the Euler class a(Z) e H2(pn- l)(ffi) has an obvious explicit

description.

At this point, the virtues of naturality IJRnifest themselves. Suppose
G G G

k* is a split ring theory with unit e*: 11* --+ k*. We have the following



628

commutative square.

To deduce the Segal conjecture for G = (Zp)n,

for the completion conjecture holds and

*it suffices to find a theory k
A ° A ° G) + kO(S) is non-trivial

mod p. Indeed, a on the top is a morphism of nO(S )-modules whose domain and
A *

target are each freely generated by a copy of the free Zp-module Given kG'

Corollary 10, a bit of calculation along the lines of 'lheorem 15, and a chase of

the diagram show that a restricts to an isomorphism between the respective copies

of M"and is therefore an isomorphism. In [201, we thought that equivariant

*K-theory would do for kG' but Costenoble has since proven the astonishing fact

that in this case (SO) = 0. A choice which does work is specified by

* *kG(X) = HG(EG x The completion conjecture holds trivially for theories so

constructed by crossing with EG.

With a split ring theory, the exact sequence (*) is one of k*(SO)-

modules and the isomorphisms of 'lheorems 15 and 16 are isomorphisms of k*(SO)-

modules. 'lhe general case of the diagram and the now established truth of the

Segal conjecture lead to the second part of the following result, the first part

being evident.

is bounded below and cohomologically bounded

*kJ for all proper subquotients

Theorem 17. If G = (Z)n kp , *
above, and the completion conjecture holds for

are isomorphic

*ka·

of G, then the follwing conclusions hold.

(i) If k*(SO) and are not isomorphic as then the

*completion conjecture fails for ka.
(ii) If is a split ring theory and and

as then the completion conjecture holds for

J

By Example 11 and part (i), we conclude that the completion conjecture

generally fails for the theories (SGX)* when X is a finite G-CW complex

with non-trivial action by G. We shall later p:>int out an imp:>rtant class of

infinite G-CW complexes for which the completion conjecture holds. In these

examples, k*(SO) and are not isomorphic, so we cannot expect the

Lsorro rp hf.sm of Theorem 16 to hold without the bounded above hypothesis.

theory for which all of the associated nonequivariant theories

there is an associated connective G-cohomology

*hare

We have another rather startling example of the failure of the isomorphism

*of Theorem 16. For any ka,
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.... z)
q -

o for

q < l-n.

q < O.
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When G and is connective,

Counterexample 18. The c onp Le t Lon conjecture fails for real and c ompLex

* *connective equivariant K-theory keG and kUG when G = Z2' Here the domain

of a is zero in nega t ive degrees, but Davis and Mahowald [11] have calculated

its target groups and shown that they are periodic.

The cOlli'letion conjecture for equivariant cobordism theories is under

invest igation.

We turn to the proofs of the four calculational theorems above. The

starting point for Theorems 12 and 15 is Carlsson's observation that elementary

obstruction theory implies a natural isorrorphism

where

space.

of the

(**)

X is a finite G-CW complex, TX is its singular set, and Y is any G-

Thus kG(EG" Z) is the inverse limit over j of the p-adic completions
q -

c oLiral ts over V) Ir of the gro..rps

The hard V/Ork in Carlsson's preprint is hi s analysi s of TX. Following up

Gunawardena's insistence that Quillen's work on posets ought to be relevant,

Caruso and I found an almost trivial way of carrying out essentially the same

anaIy s Ls ,

Let a be the poset of non-trivial elementary Abelian subgroops of G. As

observed by Quillen [251, Ba is contractible. In fact, a is a G-category via

conjugation of subgro..rps and Ba is G-contractible. We construct a topological

G-category a [xl by parametrizing a by fixed poLrrt s of X; the objects of

a[xj are pairs (A,x), where A is an elementary Abelian subgroop of G and

x e XA• There is an evident projection flmctor from alx] to TX (regarded as

a trivial topological G-category), and the induced map Ba[X] + TX is a G-

hanotopy equivalence by a simple application of Quillen's theorem A {24] to fixed

point categories. It is convenient to factor out the contractible G-space Ba[*j

since it maps triVially to TX. Thus set AX = Ba[X] /:sal*]. We have a natural

G-hOlJ))tOpy equivalence 'AX + TX. Now AX cornes with an evident natural finite

filtration. If we set BmX = FmAX/Fm_lAX, then we find by immediate inspection

of definitions that

B X
m

Here lw] runs throogh the G-orbits of strictJ,y ascending chains w
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is theand

is a normal

J;?CEG" Z) above. We may
q -
and then pass to colimits,(**)

G, A(oo) =
(of Vlhich A(oo)

inAby the functorT

isotropy group of 00 under the action of G

subgrwp) •

We plug this analysis into the description of

of non-trivial elementary Abelian subgrwps of

replace the functor

c omp.Let.Lon, and inverse limits. 'lhe filt ration of A gives a finite sequence of

long exact sequences in Vlhich the third terms come by substitution of Bm for

T in (**). Inspect ion of definitions s hov s that the [00 Ith wedge summand of

the functor Bm contributes a copy of vner-e J(oo) N(oo)/A(oo).q+m - ,
If J(oo) t- e, then these groups are zero by Pr-opos t.t Lon 9 and the Lnduct Lon

hypothesis. If

ZA(oo) contains

O A(oo)
e: S + SZ

J(oo) e and A(oo) t- G, then these grwps are zero since

a copy of the trivial representation, so that the maps

which give the inverse limit system are nonequivariantly null

homotopic. Theorem 12 follows immediately. For 'lheorem 15, we are still left

with those 00 such that A(w) G = (Zp)n. Since ZG = {O}, a check of

definitions shows that the wedge summand contributes Here we

view our finite sequence of long exact sequences as an exact couple and obtain a

spectral sequence converging to Its El-term is the direct sum of a

(r-e rnde xe d) copy of for each 00 with A(oo) = G. Recall that the Tits

building Tits(G) is the classifying space of the po se t of non-trivial proper

subgrwps of G. We regard 00 as a chain of Ti ts( G) by forgetting A(oo) = G

and obtain an isomorphism

vner-e ct denotes the augmented simplicial chains of Tits(G). 'lhe Ls omor-phI sm

carries dl to d 0 1 and Theorem 15 nOW' follows from standard facts abwt

Tits buildings [25,321.

The proofs of Theorems 13 and 16 are based on the existence of certain

(nonequivariant) spectra with good properties.

Theorem 19. 'lhere exist spectra ro-V and maps f: BG-W + BG-V for V, W

Vlhich satisfy the following properties.

(1) is Lsono rphfc to

(2) The following diagram commutes.

111 111
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(3) H*(BG-V) is a free H*(BG)-module on one generator l V of degree -dim V.

(4) f*: H*(BG-V) + H*(BG-W) is the morphism of H*(BG)-modules determined by

f*(l V) = a(W-V)l ' where a(W-V) is the Euler class of W-V.
W

Carlsson constructed such spectra by a kind of double dualization argument

based on certain assumed facts about equivariant Spanier-Whitehead duality,

proofs of which are given by Adams [2] and by Lewis and myself \11] in different

stable contexts. A more conceptual, but also more technically difficult,

construction is due to Lewis, Steinberger, and myself. Some years ago, we used

our stable category of G-spectra to construct a spectrum level generalization of

the familiar twisted half-smash product construction on spaces. The desired

spectra may be specified by

The required properties are then immediate consequences of spectrum level

generalizations of familiar space level properties of twisted half smash

products. By use of equivariant Thom spectra, Lewis and I have shown that

BG-V can also be described as the Thom spectrum of the virtual bundle -V

over EG. With this description, the cohomological properties in Theorem 19 are

consequences of the Thom isomorphism.

Properties (1) and (2) of Theorem 19 give that

Properties (3) and (4) give that

It is true quite generally that passage to inverse limits from an inverse

sequence of convergent Adams spectral sequences gives a convergent spectral

sequence [20]. In particular, passage to inverse limits from the Adams spectral

sequences of the spectra EG-jZAk, where k represents k*, gives a spectral

sequence converging from

AG +
to k*(EG"!). For Theorem 13, the localization is zero by the nilpctency of

AG +
a(Z), hence E2 = 0 and thus k*(EG 1\ !) = O. The first statement of Theorem

16 follows by convergence and an easy comparison of spectral sequences argument

from the following homological calculation of Adams, Gunawardena, and Miller.
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Theorem 20. If G = (Z )n and K is an A-module which is bounded above (and not
p

in general otherwise), then

where Nn
degree -n

ExtA(H*(OO) [L-l] 0 K,Zp) _ ExtA(Nn 0 K,Zp)

n(n-l)/2
is a free on p generators Which is concentrated in

and has trivial A-{l,ction.

The general case f'o Ll.oc s from the case K = Zp and the fact that ExtA(Q,zp) = °
implies ExtA (\.t 0 K,Zp) = ° vne n K is bounded above. We sketch very briefly the

k ey steps in the proof for K = Zp' Singer (and Li) [30,31] introduced a basic

construction R+ on For an M, there is an augrentation

E: R+N N. Adams, Gunawardena, and Miller [3,13\ proved that ExtA(E ,1)

is always an isomorphism. It follows induct ively that there is an Ext isomorphism

(E-1R )n(Z ) + E-nZ. Singer and Li [30,31\ proved that there is an isomorphism of
+ p P

A-modules

Here the general linear group GL(n,Zp) acts on the localization, and Bn denotes

the Borel subgrrup of upper triangular matrices. To obtain Theorem 20, one climbs

up from the invariants to the entire localization to obtain an Ext isomorphism

H*(OO) [L- l] + Nn • This last step is carried out bY direct inductive calculation up

a chain of parabolic subgroups by Adams, Gunavar-deria , and Miller [3\. A conceptual,

but less e Lerre rrt ary , a rgame rrt which highlights the role played bY the Steinberg

module is given by Priddy and Wilkerson [23]. (I have oversimplified slightly; .men

p > 2, both [31 and [23] replace R+ by Gunawardena's enlarged analog [13\ which is

* *related to H (BZp) as R+ is to H (BEp)')
To close, we return to the Segal conjecture and describe its nonequivariant

equivalent and an implied generalization, following Lewis, May, and McClure [16\.

1T
G* (SO)We return to general finite groups G. The coefficient groups have been

computed by several people [28,12]. The answer is

E ll*(BWH+).
(H)

Here the sum ranges over conjugacy classes (H) of subgroups Hand WH = NH/H,

wner-e NH is the normalizer of H in G. It is natural to ask for an interpreta-

tion of the Segal conjecture in terms of this isomorphism. The connection is best

explained in terms of spectra and G-spectra [17\. The groups are the homo-

topy groups of the fixed point spectrum (SG)G of the sphere G-spectrum SG' The
* +grcups 1T
G
(00 ) are the homotopy groups of the fixed point spectrum of the dual

G-spectrum DG(OO+). Of course, DG(SO) = SG' and E+: 00+ + SO induces a map of

spectra
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(B)

(e)

where the equivalence comes from Lemma 4. The Segal conjecture may be viewed as

a statement about this map. In particular, when G is a p-group , this map

induces an equivalence upon p-adic completion. The isomorphism

(A) comes from an equivalence

co + G
V E (BWH ) (SG) •
(H)

Tom Dieck's proof of (A) in [12] leads to an explicit description of

*in terms of whic h E 0 can be evaluated; see [16, Thms 1 and 8] •

Observe that WH is the group of automorphisms of the G-set G/H, so

that G x WH acts on G/H.

Theorem 21. The component of the composite

E* V E"'(BWH+) --D(BG+)
(H)

is the adjoint of the element T(l) E nO((BG x BWH)+) , where

associated to the natural cover

T is the trans fer

*If G is a p-group, then E 0 induces an equiValence upon completion at p.

In view of Theorem 6 and Proposition 1, the last statement is in fact

equiValent to the Segal conjecture, and it is this formulation that _s studied

in special cases in the papers [18, 13, 21, 3, 21], among others.

Thus the Segal conjecture gives a description of the function spectrum

It is natural to ask more generally if there is an analogous description of the

function spectrum

for finite groups G and IT. The question was raised by Adams and Miller and

answered when G and IT are elementary Abelian by Adams, Gunawardena, and

Miller [3]. Lewis, McClure, and I [16] proved that the Segal conjecture implies

an answer for arbitrary G and IT.

Let B(G,IT) be the classifying G-space for principal (G,IT)-bundles. We
+have the G-prespectrum SGB(G,IT) of Example 11. Its cohomology theory is
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always split and is a split ring theory if IT is Abelian. The following is the

main result of [16].

Theorem 22. The Segal conjecture implies the completion conjecture for the G
+ *cohomology theories (SGB(G,IT)) for all finite groups G and IT.

Of course, the Segal conjecture itself is the case IT = e.

Again, the coefficient groups have been computed by tom Dieck [121; indeed,

he computes in nonequivariant terms for any Gspace X. When

X =B(G,IT), his result leads to the following description; see [16, Thm 1 and

Prop 5].

Here the sums run over conjugacy classes

orbits [(p)] of ITconjugacy classes

l:
[ (p) 1

(H) of subgroups

(p) of homomorphisms

H of G and WH-

o : H .. II; the

groups are

Wp = where = {(h,p(h) )\h E H} C G x IT.

Let denote the suspension Gspectrum functor; is the Gspectrum

associated to the Gprespectrum SGX, and Theorem 22 may be viewed as a

statement about the map of fixed point spectra

(B' )

where the equivalence again comes from Lemma 4. The isomorphism (A') comes

from an equivalence

1;:(e' ) 00 + 00 +G
V V l: (BWp ) ... [l:GB(G,IT) ] •
(H) [(p)]

Theorem 21 generalizes as follows. See [16, Thms 1 and B].

Theorem 23. The component of the composite

E* 0 1;: V V l:""(BWp+) __ F(BG+ ,l:""BIT+)
(H) [(p)]

is the adjoint of the following composite.

"" +
l:""(BG X BWp)+ !""""'l:""(Bp+)

Here Bp = Ep/IT, where Ep = [(G x XGxWp(EG x EWp), 11 is the classifying

map of the ITbundle Ep" Bp, and T is the transfer associated to the cover
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*Bp + BG x BWp. If G is a p-group, then £ 0 s induces an equivalence upon

completion at p.

On the nO-level, Theorems 22 and 23 lead to a complete description of the

group of stable maps [LooBG+,LooBrr+j in terms of purely algebraic Burnside ring

level information. Let A(G,rr) be the Grothendieck group of rr-free finite

(G x rr)-sets. It is free Abelian on the set of transitive (G x rr)-sets

S = G x p: H + rr, appearing in the previous theorem, and we associate to

S the stable map

If 1 : BG + BG x BWp is obtained by choosing a basepoint in BWp, then

cds) 00 + 00 +
AlG,rr)= L ].I o T o L 1 by an easy verification. Observe that is an

A(G)-module and let A(G,rr) be its completion with respect to the topology given

by the augmentation ideal of A(G).

Corollary 24. There is a natural isomorphism

..... 00+00+
a: A(G,rr) __ [L BG ,L sn J.

When G is a p-group, we may use completion at p provided we also

complete the right-hand side. As observed by Nishida [221, this has the

following striking (and easy) consequence.

Corollary 25. If G and rr are finite groups such that EG and Brr are

stably p-equivalent, then G and rr have isomorphic p-Sylow subgroups.
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EQUIVARIANT LOCALIZATION AND LIMITS OF TROM SPECTRA

E. OSSA

1. Introduction

In a talk at this conference, J. Jones presented applications of the Segal

conjecture to "Limits of Stable Homotopy and Cohomotopy Groups" (6) obtained in col-

laboration with S. Wegmann. As a first step to their results, Jones and Wegmann in-

vestigate an interesting direct system of spectra:

Denoting by D2 (Y) = (SOO)+A'll/2 (YAY) the quadratic construction on Y, they define

natural stable maps S-kD2(Sky) + S-k-1 D2(Sk+1 y ) • They show that these make sense

even for negative integers k and proceed to take an inverse limit as k + - 00

Among other things, they prove then that applying 2-adically completed homotopy groups

Our aim is to offer a natural explanation of these and related phenomena

through an equivariant localization theorem. To explain this let us first recall the

classical equivariant localization theorem (originally due to Atiyah and Segal) for a

*multiplicative equivariant cohomology theory h G (see e.g. [9,4)) . The most simple

version states that for a finite G-CW-complex X the inclusion of the fixed point

set in X induces an isomorphism of localized groups

where E is the set of Euler-classes of fixed point free representations of G In

§ 2 we describe a modified version of this localization theorem which is suited to our

applications. The essential difference is that we concentrate on properties of the

functor -1 *E hG . The proof, however, follows closely the classical arguments.

In § 3 we consider, for a finite G-CW-complex X, a directed system

of Thom spectra Si(X) corresponding to a sequence of

(virtual) fixed point free representations of G. In the case G = 'll/2 and X = YAY

this is precisely the directed system (S-kD2(Sky ) ) of Jones and Wegmann mentioned



above. We then go on to show that certain limits L(X) associated to the system

(Si(X» fulfil the requirements of the localization theorem, thus yielding isomor

phisms L(X) L(XG) which generalize (and explain) the results of Jones and Wegmann.

Our main result is stated as proposition (3.2). We do not treat here further

consequences and corollaries. A point which could be worth further study might be the

relation to the work of W. Singer (see [10] and [6). Another puzzling question is

how much information on the homotopy type of the inverse limit of Thom spectra over

BG can be derived from the formal properties stated in (3.2); for G cyclic some

information on this homotopy type is given in [8], for G = it is a completed

sphere by the results of [7] and [5].

This work was done while I spent a free term at the IHES. I would like to

take this opportunity to thank Prof. N.H. Kuiper and the staff of the IHES for their

kind and generous hospitality.

2. The localization theorem.

Let G be a compact Lie group.

We denote by Co(G) the category of finite GCWcomplexes . Let 0 be

either the category of CWspectra or the category of graded abelian groups. Then in

D we have a notion of cofibration sequences, where in the nase of graded abelian

groups a cofibration sequence (A.) + (B.) + (C.)
111

is a long exact sequence

•• + Ai + Bi + Ci + Ai1 +.. (to achieve full generality we should probably postu

late that D is a triangulated category).

Consider functors T: eo(G) + D . It does not matter which variance T has,

but let us assume that T is covariant. We call T homological if it has the follo

wing two properties :

(H) T is a homotopy functor, that is if f,g

T(f) T(g).

x + Yare Ghomotopic, then

(CF) T preserves cofibrations, that is if X + Y + Z is a Gcofibration
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in Co(G) , then T(X) T(Y) T(Z) is a cofibration in D.

Now let V be a set of representations of G For example \il might be the

set F(G) of all fixed point free representations of G (here V is called fixed

point free if VG o ) • For a representation V we denote by V+ the one point

compactification of V as a G-space.

We say that the functor T

following property :

Co(G) 0 is V-localizing if it has the

(LO) For any Xe:Co(G) and any V W the inclusion

X XII SO XAV+ induces an isomorphism T(X) T(X II V+) •

Note that in the classical situation, where T is a cohomology functor, this

condition is enforced by making the Euler-class of V invertible.

Now we can state the localization theorem for a homological W-Iocalizing

functor. A G-space Z will be called W-adapted if for some representation W, which

is sum of representations in W , there exists an equivariant map f : Z W- {OJ •

(2.1) Localization Theorem: Let T: Co(G) 0 be homological and W-Iocalizing. Let

(X,Y) be a pair in Co(G) such that X - Y is V-adapted. Then the inclusion Y X

induces an isomorphism T(Y) + T(X) .

It is well known that in the case W =F(G) the pair (X,y) = (X,XG) satisfies the

requirements of the theorem. Thus if T is homological and F(G)-localizing, then the

inclusion XG X induced an isomorphism T(XG) T(X)

The proof of (2.1) proceeds in two steps.

First assume that Z is a finite G-CW-complex which is W-adapted. Let

f : Z W- {oJ be G-equivariant where W is sum of representations in W Then the

inclusion Z+= Z+A SO Z+AW+ is homotopic to zero by the homotopy ft(z) = zllt'f(z),

o < t < 00 • By (H) the induced map T(Z+) T(Z+A W+) is zero. On the other hand

(LO) guarantees that this induced map is an isomorphism. Hence the claim of the theo-

rem is true for the pair (X,y) = (Z+,*) .
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As the second step we treat the general pair (X,Y) . Observe that there are

finite subcomplexes A,B c X with the following properties : (a) X es A u B , (b)

BcX-Y, (c) the inclusion Y A is a G-homotopy equivalence. Put C '" X/B+ . Then

we have cofibrations B+ X C and (A n B)+ A C which, by the result of the

first step, induce isomorphisms T(X) =T(C) and T(A) =T(C) . Since T(Y) = T(A) ,

the claim follows.

3. Limits of Thorn spectra.

Let EG be a universal principal G-bundle. For any finite G-CW-complex X

put BG(X) '" EG xG X in particular BG(*) '" BG is the classifying space of G. If

V is a representation of G we can construct the vectorbundle BG(XjV) EG xG(XXV)

over BG(X) , and if a '" V-W is a virtual representation we obtain the virtual vec-

torbundle BG(XjV) - BG(XjW) • Finally let MG(Xja) be the Thorn spectrum of BG(Xja),

and if X is a based G-CW-complex with base point *, let MG(X;a) be the cofibre

of MG(*,a) MG(Xja)

This construction is natural in a: if U is another representation of G

the inclusion a e U of virtual representations induces maps of spectra

This construction has also good naturality properties in the variable

X : if X Y Z is a cofibration sequence in Co(G) , then MG(Xja) MG(Yja)

MG(Zja) is a cofibration sequence of spectra.

Now suppose that we are given a sequence W '" (Vi) of representations of G

which is directed in the sense that the following condition is fulfilled :

k f i ) .

0.1)

In particular the inclusions VicVi+ 1
lead to a directed system of spectra

M (X·-V. ) M (X·-V.) M (X·-V. ) ....
G ' 1.+1 G' 1. G' 1.-1

We can now state the main result of this note
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(3.2) Proposition: Assume that V = (Vi) is directed (D) . Let (X,Y) be a pair in

Co(G) such that X-Y is W-adapted. Then the inclusion Y + X induces isomorphisms

as follows :

(a) lim Map(MG(Y;-Vi),Z)
7"I.

for any spectrum Z, where Map(F,Z) denotes the function spectrum of maps from F

to Z [2] , defined by [-, Map(F,Z)] :=[-11 F,Z]

(b) h0.'1:-im (MG(Y;-Vi) II Z)
I.

:; h0.'1:-im (MG(X;-Vi ) II Z)
1.

for any connected spectrum Z of finite type, where A stands for profinite comple-

tion.

of spec-

[3] • Thus the homotopy groups of

Of course we then have corresponding isomorphisms of homotopy groups. Perhaps
fi

+ Ei + Ei +1 +

d
hol i.m E. + IT E. + IT E. whereT 1. i I. i I.
holim E. fit into the Milnor-...... I.

i

tra can be defined through the cofibration sequence

we should remark that the homotopy limit of a sequence

d = IT id - IT fI.'
Ei

sequence for the TI*(Ei ) (see [3] or [1]).

It is perhaps worthwhile to point out a special case of (3.2). Let

F(G) = (Vi) be a family of representations such that any fixed point free represen-

tation of G is contained in some V.
I.

Let

finite G-CW-complex we have a homotopy equivalence

(3.3) Corollary :

ho l im MG(X;-V.)...... I.
i

Note in particular, that for a cyclic group G of prime order p, we may

identify LG by Lin's theorem [7,5] with the p-adic completion of the (-I)-sphere.

We turn now to the proof of (3.2).

Let L be any functor defined on sequences of spectra of finite type

+ E_i_1 + E_i + E- i +1 + ••• (indexed by the negative integers) with the
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following two properties

(i) if E_i + F_i + G_i are cofibrations, then also L(E) + L(F) + L(G)

is a cofibration.

(Li.) if f : is a strictly increasing function and F .

then the obvious maps F • + E • induce an isomorphism L(F) L(E) .

Examples for such functors are clearly the functors which enter in (3.2) :

lim Map(E_i,Z) and holim (E .A Z) • Hence, to prove (3.2), it suffices to refer to
i i
(2.1) and to prove the following:

(3.4) Proposition: Let L satisfy conditions (i), (ii) above, and let W = (Vi) be

a directed sequence of representations of G

and define lv(X) = L( •• + S_i_1(X) + S_i(X) + •• )

Then the functor X + lv(X) is homological and V-localizing.

But the fact that LV(X) is homological is obvious from condition (ii) and the

fact that the functor MG( •• ;-V i) preserves cofibrations. The fact that LV(X) is

V-localizing is routine, using (ii) : let V be in V and define = (Wi) by

W. Vi + V • Then we have inclusions vicwicVf(i) with f ::N strictly increa-

sing; these induce (already using condition (ii)) natural transformations

which, again by (ii), must be isomorphisms. This proves (3.4).

Finally we point out the connection with [6]. Let G = 'll/2 and X = Y/I Y with

the obvious G-action. Let V be the non-trivial one-dimensional representation of G

Then the quadratic construction D2(Sky) coincides with MG(X;k(VeR)) = ,

and the maps constructed in [6] are induced by inclusions of representations.
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UPPER BOUNDS FOR THE TORAL SYMMETRY
OF CERTAIN HOMOTOPY SPHERES

Reinhard Schultz

Given a smooth manifold Mn, its degree of (compact) symmetry N(Mn) is the
maximum dimension of the compact Lie groups which act smoothly and effectively on M.
A classical theorem of differential geometry states that n(n+l)/2 with equa

lity if and only if Mn = Sn or Rpn (compare [6,7]). One can define an analogous

toral degree of symmetry NT(Mn) by considering the rank of the largest torus that
acts smoothly and effectively on M. A fairly elementary argument shows that NT n
with equality if and only if Mn = Tn. Using cohomological methods one can show

that

NT(Sn) =

("[ ]" denotes the greatest integer function),

the upper limit being realized by the maximal torus in SOn+l (see [11] for stronger
resul ts) .

Suppose now that Mn is an integral cohomology nsphere and Tn acts smoothly

and effectively with r = [(n+l)/2]. In this case it is known that Mn bounds a

contractible manifold (e.g., combine [8] with weight considerations from [4]; see
also [5]). In particular, if M is a homotopy sphere and n 5, then M is dif
feomorphic to Sn.

Motivated by results on the degree of symmetry of exotic spheres (compare [l'B)'

one suspects that NT(Mn) is always significantly less than NT(Sn) if Mn is a
homotopy sphere. In fact, a conjecture of L. Mann [13] states that NT(t1

n) should

be at most [(n+3)/4]. It is known that the Kervaire sphere of dimension 4k+l ad
mits such an action by virtue of its presentation as a Brieskorn variety. Although

some general statements can be made about NT(Mn), at present they are much weaker

than Mann's conjecture. In this paper we study NT(In) for a specific class of
examples; namely, for each odd prime p we consider the first exotic sphere that
has order p in the KervaireMilnor group Gn but does not bound a parallelizable

manifold. From [6] and [14] one expects that the bound in Mann's conjecture is far
from being optimal. Our main result confirms this:

THEOREM. Let p be an odd prime, and In be homotopy (2p2_2p2)sphere

whose PontrjaginThom invariant In(p) order p (i.e., i! nontrivial
multi ple of Toda' s ill)' Then

Partially supported by NSF Grant MCS 8104852
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It seems likely that this estimate is not best possible. However, it should be

added that NT.::- 1 for the "basic" examp1 es In(p) which have order p in en
[15] .

Note. If p = 3 mod 4, then 2p2 - 2p - 2 = 2 mod 8. In this case we may take the
connected sum of I(p) with some I' not bounding a spin manifold. By results of

Lawson and Yau [10] we know N(IHI') = NT(IHI'); from this one can show that

N(IHI') .::.1dTiiil:"/2. In this case we also know N(IHI').::- 1.
The idea behind the proof is fairly transparent. Given a smooth lip action

on a homotopy sphere one can define a knot invariant as in [16,17]; this invariant

will lie in a quotient of the homotopy group where k is the dimen-
sion of the fixed point set and FZl p is to the limit of the spaces of equivariant
self-maps of the unit spheres sty) in free orthogonal representations V of Zip.
By [3] this homotopy group is the stable homotopy of (B(l/p)v So). For all actions
on Hp) as above, the knot invariant is known to be nontrivial (compare (3.2) below).

If the Zip action extends to (say) an action of the torus Tr, this knot invariant

turns out to lie in the image of some stable homotopy "transfer map"

(0.1 )

where X(Tr) is some complex whose precise definition depends on some detailed data
that need not concern us yet (see Section 1). One uses the Atiyah-Hirzebruch spectral

I
sequence to study f' (see Section 2). This is possible in part because the stable

stems are,most1 y zero for j.::. 2p2 - 2p - 2; a second important factor is
that the S-map f' factors as an r-fo1d composite

(0.2)

and all factors except the last one have an unusual property:
Hirzebruch filtration of an element to decrease by at least 1.

They cause the Atiyah-
Since there are only

I
finitely many filtrations that are possibly nonzero, this says that (f")* is zero
if r is a moderately large number depending on k (exactly how large must be de-
termined). If r is so large that (f!)* is zero regardless of k, then the knot
invariant for any lip action on I that extends to Tr must be zero. Since the

knot invariant of the ZIp action must be nonzero, there a contradiction which im-
plies no Tr action exists. Little additional work is needed to determine the pos-

sible values for r associated to each k (see Section 3). Specifically, these
conclusions exclude Tr actions for r.::- p. In order to halve this estimate to

r > (p+3)/2 we must use more specific conclusions that follow from this argument to-
gether with an analysis of the possible local representations of the induced (Z/p)r
action at one of its fixed points. This is done in the final Section 4.

The principal new tool is a concept of knot invariant for torus actions that
justifies the assertion
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(Knot invariant of Zip-action which extends to Tr) E
I

Image (f·)*.

(f! defined as in (0.1)).

The previous methods to define knot invariants relied on the fact that certain sub-
spaces of a G-manifold had free G-actions. In Section 1 we indicate how one can
avoid this problem to some extend by using the product of a subspace with the univer-
sal free G-space (or some finite approximation to it); in some sense this was in-
spired by the notion of "completed bundle data" in work of T. Petrie and others.
The "completed knot invariants" vie define al so prove to be useful in other connect-
ions, so we have merely summarized what is needed here.

One other innovation deserves an acknowledgment. The argument involving (0.2)
and filtration-lowering properties was suggested by previous arguments of Kh. Knapp
[9], S. Stolz [22J and others along parallel lines.

Further results on NT(I) based on the ideas presented here, in [19], and in
[20] will appear in subsequent papers.

1. Knot invariants arising from toral actions

Suppose that G is a compact Lie group acting smoothly on a homotopy sphere
In, and assume that Fk is the fixed point set of the (closed) normal subgroup H.
Assume also that the fixed point set of G is nonempty and connected. Suppose that
F is an R-homology sphere, where R is a suitably chosen subring of the rationals.
If V denotes the normal representation of G at a fixed point and S(V) is its
unit sphere, then the composite

(1.0) S(V) '=. S( vF) '=. I - F

(vF denotes the equivariant normal bundle of F)

is an R-local homotopy equivalence if dim V > 2 and an R-homotopy retract other-
wise. Furthermore, the composite (1.0) is obviously equivariant. The knot invariant
construction from [16,17] depends on the fact that the R-localization of (1.0) has
an R-homotopy inverse (if dim V2 2, a canonical one-sided inverse).

In the cases considered it was fairly routine to construct the inverses, one key
point being that G always acted freely on I- F. However, once one looks beyond a
special (but important) class of groups, such freeness assumptions become increasingly
restrictive; in fact, it is never possible for a torus of rank> 1 to act freely on
I- F (this follows from the Borel formulas [4]). Suppose however that we cross
(1.0) with a highly connected free G-space E. Then S(V) x E + (I-F) x E will
again be an R-homotopy equivalence or retraction, and an obstruction-theoretic argu-
ment as in [16,17J will imply that the composite
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S(V) x E S(V) S(V)R

(A = equivariant localization in, say, the sense of [12])

has canonical eguivariant extension to p: 0: - F) x E-+ S(V)R (unique, in fact, up to
homotopy). Therefore, we define the "homotopy class" of the pair

to be the
to the ring R.

(VF'P I S{VF) x E)

completed knot invariant of the pair (I, F IH) with respect
In other words, the knot invariant data consists of

(i) A G-vector bundle s over F.

(ii) An equivariant map which is a equivariant fiber homotopy trivialization

for the R-localization of S(O, where denotes the "completed bundle"
S x E over F x E.

(The term "completed bundle" is taken from Petrie's terminology, which in turn alludes

to the Atiyah-Segal completion theorem [1]).
The correct choi ce of E poses some problems. It woul d be nice to say E is

contractible, but this would force E to be infinite dimensional, and some of the
necessary homotopy-theoretic constructions become at best questionable with this
condition. For our purposes it will be best to make the following assumption: E is

chosen In advance very connected closed the connectivity
far exceeding of of the fixed objects of primary For example, if

we are looking at a homotopy sphere In, the connectivity of E will exceed n by
a great deal. However, if we tal k about stabil izing by "adding a trivial

bundle", we shall allow the dimension of the trivial bundle to exceed the connecti-
vityof E; the stable bundle being added is not a "fixed object" in this contest.

It is time to give a more formal definition:

DEFINITION. Let E be a highly connected free G-manifold (G compact Lie) such that
E/G is stably parallelisable, let £ be a set of primes, let V be a G-module, and

let X be an invariantly based GCW-complex (i.e., X has a basepoint xo which is
fixed under G). The set

(l .1 )

consists of equivalence classes of triples where s is a G-vector bundle

over X, a G-isomorphism V -+ s (fiber), and a G-mapxo

(here "S( )" denotes unit sphere bundles and "z" denotes
equivariant localization Q2]).
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such that 0 [j x where A is the composite E x S(V) + S(V) + S(V)2.
Isomorphisms of such triples are defined in the standard fashion, and two triples

are said to be equivalent (concordant) if there is a triple over X x I whose re
strictions to X x {O} and X x {l} are isomorphic to the original triples.

With this definition and the previous construction we can define a knot invariant

wE(I,G,H) as an element of the set

If r is a group between Hand G, then by construction the knot invariant

wE(I, ,H) is just the image of wE(I,G,H) under the forgetful map from Gobjects
to robjects.

It is immediate that (1.1) gives a contravariant Ghomotopy functor that is re

presentable. Furthermore, it also follows that one has well defined and natural
direct sum pairings

(1.2) (E,F)/OG,V,1 x (E,F)/OG,W,2 + (E,F)/OG,V$W,2

with familiar homotopy associativity and commutativity properties (we shall not need

any higher order properties of these sorts, however).
One can also pass to a limit under stabilization by representations within some

fixed family r that may be more or less arbitrary at this stage. The resulting

functor (E,F)/OG,1 will be abelian monoid valued.
In order to work with (E,F)/OG,1 effectively, we must trap it between two re

presentable functors that we can work with more easily. Fortunately, there is a
complete analogy with the standard homotopy exact sequence F + F/O + BO.

PROPOSITION 1.2. Let VectG,V(Y,B) be given Ql bundles over Y with

trivializations = B x V (for V Gsubcomplex of the GCW complex V). Let

(E,F)G,V,1(X,xO) be the set of Ghomotopy classes Qf Gmaps

f: Y x S(V) x E + S(V)
2

such that f!{x o} x S(V) x E = A Then the following sequence of repre

sentable Ghomotopy functors exact:

A similar statement holds for functors stabilized over some of represen

tations.

Notation. The map a is obtained by setting trivial bundle with fiber V,

j = standard inclusion, and f. The map S is formed by taking the product of

and E.
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The proof of 1.2 is a direct generalization of the arguments used for

F FlO BO in the nonequivariant case and for other, previously studied, equivar
iant analogs [17J.

The functors VectG, V can be handled by more or less standard vector bundl e
theory, and the functors (E,F)G are essentially just equivariant function spaces
(very similar to the space of Gmaps from E to F). If X = SW for W a G
module, then the methods of [3J (see also [17J) can be modified to give partial but
adequate information on (E,F)G (X,x). The maps E x X x S(V) S(V), correspond to,9, 0 x

exmaps (E xG X) x SO E x X x S(V) x S(V)9,IG, which in turn map by fiberwise

suspension to the stable cohomotopy of the Thorn space of

(1.4)

The map from (e,F)G to this cohomotopy group need not be injective or surjective

in general. Despite this, we can still proceed to take Sduals. Since (ElG) is
a TImanifold, the Sdualization simplifies and we find that the construction of
[3 J maps (E,F)G(SW,oo) into

(1.5) TIS. (E/G)ad+dim WW)
dim W 9,

and via the universal map E/G BG into

(1. 6) S (BGad+dim WW)
TIdimW 9,'

The latter group already arose in the discussion of knot invariants for ultrasemifree
Wactions. Let A denote the induced homomorphism from (E,F)G(S ,00) to the group

considered in (1.6).

The following is a routine verification that follows by checking the definitions,
and using the Gequivalence Y = Y x E(oo) (which holds if Y is free and E(oo) is
free and contractible), and observing that the connectivity of E is much greater
than dim W+ dim G.

(1. 7) Let V be a free Gmodule. If

F ( W) 5 (BGad+dim WW)
A: G,V,9, 5 TIdim W

defined [3, §3J and

TI*: FG V (E,G)G V, ,£. , ,£.

defined Qy crossing with E, then A= ATI*. A similar statement holds for sta
oil i zed functors .•

In order to use these results on equivariant stable homotopy, we must be able to
compare the functors in (1.2) for SW and LH, where G acts on L as in the be
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ginning of this section. As usual, this is done by the equivariant degree 1 map

f: IH sW which collapses everything outside a linear neighborhood of a fixed point.

Now assume G is a torus, I is a closed smooth lip homology sphere, and H is
a p-subgroup or subtorus; the possibility p = 0 with H a subtorus is allowed, and

in this case there is no localization of homotopy groups or spaces (in other words,
all "(p)'''s should be deleted in this case). By Smith theory we know that IH is

also a lip homology sphere. It is therefore immediate that f idE is an equi-
variant p-Iocal homology equivalence, and because of this one can prove the following
result by an obstruction theoretic argument.

PROPOSITION 1.8. The maps

f*:

f*:

are isomorphisms.•

Here is where we now stand: We know that the stabilized knot invariant

s*wE(I,G,H) lies in (E,F)/OG ()(I
H) and that the latter is trapped between the

H ' P H W
groups KOG(E x I ' E x {xo}) and (E,F)G,(p)(I) = (E,F)G,(p)(S). We would like
to show that the image of s*w

E
comes from a class in the latter group; actually,

for our purposes it is enough to show this is true after a suitable localization at
p (in fact, the conclusion might be false without such a localization). We proceed
as follows: Each of the functors in the exact sequence

a S
(1.9) (E,F)G,(p) (E,F)/OG,(p) KOG(Ex ...

has a natural abelian monoid structure induced by direct sum; in addition natural

transformations a and S are homomorphisms with respect to these binary operations.
Therefore by [12] the GCW complexes representing these functors are equivariant

Hopf spaces l with good equivariant localizations. The localization of KOG(···) at

p is merely the algebraic localization KOG(···)(p)' (compare [17, (4.2), p. 269])
and therefore the assertion

LoC(P)s*wE(I,H,G) E Image a(p)

reduces to the proof of the following result:

THEOREM 1.10.
is zero.

PROOF. In fact, we claim the image of s*wE(p) in KOG(Eoo x I
H, Ex {xo}) (p)

IH, Eoox {Xo})(p) is zero (since we are localizing away from 2, complexification
is split monic). Since f is a mod p homology equivalence and W is the sum of a

\lhen dealing with group actions it seems preferable to avoid talking about "equi-
variant H-spaces".
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complex G-module with a trivial G-module, Ive know that KG(E", x (IH,{xo}))(p) is

a if dim W is odd, and if dim W is even it is isomorphic to

KG(BGW,{",})(p) - R(G)A(p)'

SUBLEMMA. If T torus acting smoothly closed mod p homology sphere Q2q

with 1oca1 representati on U, then the image of the tangent bundl e TQ ill

KT(Qx E",,{qo}x EJ(p) ;; R(T)A(p)

is zero.

PROOF OF SUBLEMMA. Since R(T)A(p) is detected by restrictions to all circle sub-

groups, it suffices to consider the case where T = Sl. But if Q' denotes the

fixed point set of Sl in Q, then the diagram below commutes:

KT(Qx E",,{q}x E",)(p) ) KT(Q' x E",,{q}x EJ(p)

t J
R(T)A(p) 'X R(T)\p)

Here X E R(T)A() is the product of terms of the form t d - 1 (specifically,

X = n(tdj-l) where the normal representation to Q' is l:t dj). Since R(T)A(p)

is an integral domain, it suffices to check that TQIQI maps to zero. But

TQIQI = TQ' ® v(Q',Q)' where TQ' goes to zero because Q' is a mod p homology

sphere [21], and v(Q',Q) is detected by the rational Chern classes of the complex

eigenbundles into which v(Q',Q) splits. But it is well-known that these classes

are all zero (compare [18, Thm. 6.1]; one can also obtain this directly from [2,§6-7]1I

PROOF OF (1.10) CONCLUDED. The bundle s may be expressed as

T(D Il:H - T(l:H).

The sublemma implies that both of the latter terms vanish (observe that G/H is a

torus acting smoothly on l:H) .•

Let us summarize what we have established:

1.11. Let G be torus acti ng smoothly on mod p homology sphere l:, and

let H be p-subgroup or subtorus. Then there knot invariant

H
wE(l:,G,H) E (E,F)/OG,V,(p)(l: )

that natural with restriction to r between H and G. Furthermore,

there class w' E (E,F)G,(p)(Svl)(p) such that the images of wE and wunder

the composites into (E,F)/OG,(p)(IH)(p) are egual
HIfweassume now that H acts freely on l:-l: (for example, let H haveorder

p), then we have an important addition to the statement above.

THEOREM 1.12. Suppose H acts freely l: - l:H. Let w(LH) denote the stabil ized

localized knot invariant of the H-action ill the sense of [16J or [17], with value ill
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Umkehr ,

W
F/OH,free(S )(p)'

wO:,H) the image of w' under the composite
W

(E,F)G(S )(p)

1A(p)

S (BGad H dim W-W)
1TdimW (p)

Then

(1.13)

PROOF. By (1.8) and naturality of knot invariants under restriction, we know that

w(I,H) is the image of w' under the composite below:

forgetful
map

(l .14)

Therefore the result reduces to a more general statement of independent interest:

PROPOSITION 1.15. following diagram commutes for arbi
----"-

Her c G:

(E,F)G(SW)(p)

1 A(p)

S. (BGad G+ dim w-w) Umkehr S (Brad r + dim w-W).
"dtm W > "dim W

This result generalizes [3, (5.16), p. llJ and [17, §3J; the proof given in [3J
goes through with minimal changes.

2. Images of Umkehr mappings

The results at the end of Section 1 may be extended as follows:

THEOREM 2.1. _th_a_t G _to_r_u_s of _ra_n_k rand H
subgroup. Let G on I (1.14). Then the knot ..:..;.:.:..::::..:-'-=-'-'-"-

the image composite below:

circle

w(LH) 1ies



S (BTr(r+ dim W-W)}
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Umkehr S (BTr-l (r-l + dim W-W)}
> "dim W (p)

S (BT1(1+dimW-W}) S (BH(dimH+dimW-W)
••• -+ "dtm 101 (p) --+ "dim W (p)

This follows from (1.12) and the factorization of the Umkehr homomorphism for
the chain of inclusions He Sl c ...c Tr- l c r".- - - -

The following result may be viewed as an elementary analog of Kh. Knapp's result
on the Adams-Novikov filtration of Umkehr maps [9]:

PROPOSITION 2.2. Let a be a virtual representation of Tk, and let T' c Tk be

corank 1 subgroup. Let

g: BTk(k+a} --+ BT,(k-l+a}

be the corresponding Umkehr S-li!@£.. Then for every element 0 f x E w;(BTk(k+a}},

the filtration of g*(x} lhe Atiyah-Hirzebruch spectral sequence
S S

H*(Y;w*} => w*(Y}

J2 STRICTLY LESS than that of x.

PROOF. The homology of BTk(k+a} is concentrated in dimensions congruent to
k + dim a mod 2, while the homology of BT,(k-l+a} is concentrated in dimensions

congruent to k + dim a - 1. Hence the induced map g* in ordinary homology must
be zero; therefore the induced map on E

oo
is also zero, a fact which implies that

9* must decrease the filtrations of nonzero elements .•
The goal of this section is to give some technical conditions an rand

q = dim for which (2.2) implies that the composite

(2.3) (BTr(r+ dim W-W)} --+ (BH(dim H+ dim W-W)}
wq (p) wq (p)

is zero. Since w*(p} is sparse in low degrees, there are very few nonzero fil-
trations in E

oo
for q relatively small, and accordingly (2.3) must be trivial for

r greater than the number of possibly nonzero filtrations. It is only necessary to

be explicit about the numbers of possibilities for appropriate values of q. The
following restriction on q may look very unreasonable, but we shall justify it in
Section 3.

HYPOTHESIS 2.4. p J2 odd prime, and qj = 2p - 2 + 2jp for 0 < j < p - 3.
The values of q are precisely the positive integers (2;2 - 2p - 2) - q

is a positive multiple of 2p.

PROPOSITION 2.5. The wt(p} are nonzero for exactly (j+2) values of t
satisfying 0 < t < q ..- - - - J

PROOF. For t 2p2 - 2p - 2, the group Wt(p} is nonzero if and only if t = 0
or t = 2k(p-l} - 1 for some k > 1 (i.e., t = 0 or t = 2kp - (2k + l), see [23]}.
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Thus the only values with Tft(p) t- 0 for t < qj wil l be 0, 2p- 3, 4p- 5,···,
2(j+l)p - (2j+3) provided 2(j+2)p - (2j+5) > 2(j+l)p - 2. This inequality reduces

to j 2 P- 2, so there is no probl em .•

COROLLARY 2.6. The Umkehr map

9' (BTr(r+dima)) --+ (BH(dimH+dima))
*. Tfqj (p) Tfqj (p)

J2. zero for:. r.::.- j + 3.

PROOF. There are at most (j+2) nontrivial filtrations in the Atiyah-Hirzebruch
spectral sequence by (2.5), but by (2.2) lie know that there are at least (j+2) drops

in the filtration of a nonzero element under the map 9*. Thus for all x the class

of 9*X in E
oo

must lie below all filtrations containing nonzero elements. There-

fore g*x must be zero .•
The following is now a consequence of the results in the first two Sections:

2.7. Let r" act smoothly on homotopy sphere I, H= lip be sub-

of r", and assume dim IH = qj' Then w(l:,H) = 0 li r.::.- j + 3.•

This result does not look particularly interesting, but it does summarize an

important part of the proof of the main result.

3. Preliminary upper estimates

As noted before, the nonzero groups in the sequence Tft(p) are sparse for
21ow

values of p. The first value of t for which Tft(p) t- Image J(p) is t = 2p - 2p- 2,
and n 2 is generated by a class Sl of order p (compare [23]). Standard

2p -2p-2(p)
results on homotopy spheres imply that Sl is represented as a framed bordism class

by an exotic sphere I(Sl) that does not bound a parallelizable manifold. The follow-
ing result is a consequence of [16, (4.18)J.

(3.1) Ii Zip acts smoothly and effectively on homotopy (2p2_2p-2)-sphere I(Sl)

with Pontrjagin-Thom invariant Sl' then the dimension of the fixed point set

J2. qj (defined (2.7)) for some j with O2 j 2 P - 3_
In fact, I(Sl) admits Zip actions with fixed point sets of all such

dimensions. We do not need this here, but we do need one important feature of any

such action on I(Sl):

PROPOSITION 3.2. Ii ZIp acts smoothly and effectively on I(Sl)' then knot
invariant of the action J2. stably nonzero element of

F/Oz/p;free(sq)(p) = Tfq(FZ/p/CZ/p)(p)'

PROOF. Suppose the knot invariant is stably zero. Let V be the local normal re-
presentation at the fixed point set, and let W be u 2-dimensional free Zip module;
denote the corresponding lens spaces by L(V<I>W) and L(V). Then L(V<I>W)/L(V) '" Sk
v Sk+l where q + k = 2p2 - 2p - 2, and by [16, Thm. 3.2] and [16, (2.6)] the image

of Sl under the composite
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inclusion
)

[Sq(L(VEtJ W)/L(V)) ,F/OJ(p)
EtJ

would have to be zero. By the coexactness of the sequence

L(V) ->- L(VE±)W) ->- skv Sk+l,

this means that j(Sl) would lie in the image of the map

(3.3) [sq+1L(V),F/OJ(p) ->- rr 2 (F/O)(p)'
2p -2p-2

which is induced by the covering map Sk-l ->- L(V).

It therefore suffices to show that is trivial. To see this, consider the

spl itting of F/O(p) as BSO(p) x Cok J(p)' The class Sl in fact 1ies in
rr*(Cok J(p))' so that we need only consider the induced map

[Sq+1L(V),Cok JJ( ) ->- rr 2 (Cok J)( ).
P 2p -2p-p P

The space Cok J(p) is (2p2_ 2p- 3)-connected, so the collapsing map

sq+\(V) ->- sq+l (Sk-l = L(V)/(k-2 )-skel.)

induces an isomorphism on the functor [" Cok JJ(p)' Hence the image of is the
image of ** where * is the (q+l )-fold suspension of the map

Sk-l ->- L(V) ->- L(V)/(k-2)-skel " Sk-l.

The latter map has degree p, so Image = Image ** = prr 2 (Cok J)( ) = O.•
2p -2p-2 P

If we combine these results with the results of Section 2, we obtain the follow-
ing conclusions:

THEOREM 3.4. Let Tr act smoothly and effectively on I(Sl)' and assume the fixed

point set of some 7f./p subgroup qj-dimensional. Then r j + 2.

THEOREM 3.5. li Tr acts effectively on I(Sl)' then r p - 1.

PROOF. We first deduce (3.5) from (3.4). By (3.1), a Zip subgroup of Tr has
fixed point set of some dimension q., 0 < j < P - 3. By (3.4), we know r j + 2,

J --
since j p - 3, this implies r p - 1.

We now prove (3.4). If r" acts on I(Sl) with qrdimensional fixed point
set for subgroup H Zip, then the knot invariant of the H-action must be non-

trivial by (3.2). But by (2.7) this implies r j + 2.•
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4. Weight systems and the improved estimate

Given the low estimates for the toral symmetry in (3.5), the next question is to
determine the best possible upper estimates. It is known that Sl acts smoothly on

I(Sl) [15J, but this is about the 1imit to the positive information we have. In
this section we shall show that the bound in (3.5) can be roughly cut in half.

THEOREM 4.1. If Tr acts smoothly and effectively on I(Sl)' then r (p+3)/2.

PROOF. The key to doing this is the Borel dimension formula applied to the induced
actions of (Z/p)k for < k < r [4J. We state this in a form that is particularly
useful here:

(4.2) Let G be finite elementary abelian (p odd) acting on closed
(l/p)-homology sphere I. Then

codim Fix(G) = I(dim Fix(H) - dim Fix(G)),
H

the sum running over sUbgroups H of index p.•

Consider the case G = Z/p2. Then dim Fix(H) = q. for some j. This, (4.2),
J

and some elementary but tedious arithmetic lead to the following conclusion:

(4.3) Ii Zip x Zip acts smoothly and effectively I(Sl)' then the codimension
of fi xed point set of Zip x Zip one of the fo11 owi ng numbers:

2(p+l), 4p, 4p+2, 4p+4, 6p, 6p+2, 6p+4, 6p+6,•.. ,

2jp, 2jp+2, ... 2jp+2j, ...

(2 j p - 2).

Furthermore, if the codimension at least 2jp, then some cyclic ZIp

has fixed point set of dimension qp-2-j' Conversely, li the codimen-
sion less than 2jp, then lip-subgroups have fixed point sets of

dimension greater than q 2 ".- -- P--J

This is much less concise than the list of possibilities for dim Fix(Z/p). It

turns out that no new possibilities for dim Fix(G) occur in higher ranks.

(4.4) If G = (Z/p)r, r 3, acts smoothly and effectively on I(Sl)' then
dim Fix(G) = dim Fix(K) for some subgroup K of order p2.

PROOF. We shall show that if
that dim Fix(G) = dim Fix(H).

r > 3 then G has a subgroup H of index p such
(4.4) will follow from this statement and induction

on r.
If the statement in the preceding paragraph is false, then by (4.2) we have

codim Fix(G) 2(# subgroups of index pl.

But this number of subgroups is well-known to be 1 + P +... + pr-l, so we obtain

2p2 _ 2p - 2 codim Fix(G) 2(1 +... + pr-l).

This is patently false for r - 1 2.•
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In contrast to (4.4), we clearly have dim Fix(G) < dim Fix(H) for some H of

index p because the right hand side of (4.2) is positive. This yields the follow
ing conclusion: If (Z/p)r acts and qk is the minimum dimension of a fixed point
set, then

(4.5) 2p(p  2  k) + 2(r  2) > dim Fix(Zlp)r

.': 2p(p  2 k) + 2(p  2 k) .

In order for the left side of this inequality to Je greater than the right side, the

numbers rand k must satisfy r 2 p  k. On the other hand, since some (Z/p)
subgroup of (Z/p)r has a qkdimensional fixed point set, by (3.4) we know

r < k + 2. If r.': (p+ 5)/2 were true, then
p+5 p32 2 r 2 p  k would imply k 22.

On the other hand,

. 1 p+lr < k + 2 would then lmp y r 2 2'

which contradicts r.': (p+ 5)/2. Therefore r must be at most (p+ 3)/2.•
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ON STEENROD I S PROBLEM FOR NON ABELIAN FINITE GROUPS

Pierre Vogel

Let Mbe a module over a group G illld let k be a posItIve integer.A G-space

X is called a G-Moore space of type (M,k) if X is a pointed topological space

endowed with a based G-action and satisfying the following conditions:

X is k-1-connected

Hk (X) = M as G-module

Hi (X) = 0 for any i f k

If such a G-space exists, the G-module Mwill be called (G,k)-realizable.

In 1960 N. Steenrod posed the following problem: Given a module over a

finite group G, is it (G,k)-realizable by a finite G-convlex? In 1969 R. Swan

(10) found a counterexample to this problem. He proved that Z47 endowed with

some Z23-action is not realizable by a finite complex. Nevertheless this module

is (Z23,k)-realizable for some k (by an infinite complex). In 1977 J. Arnold (2)

solved the problem for any cyclic p-group and proved that any finitely genera-

ted module over a cyclic p-group G is (G,k)-realizable for some k.Actually

Arnold's theorem and the obstruction theory of G. Cooke (6) imply that any fini-

tely generated G-module is (G,k)-realizable for some k if G is cyclic. In 1980

G. Carlsson (4) found for the group Z xZ the first counterexample to the gene-p p
ral Steenrod's problem (without finiteness condition). More recently P. Kahn

(7) and J. Smith (9) found other counterexamples for many groups.

Now it is interesting to consider the following problem: Let G be a group.

Under what condition is any G-module (G,k)-realizable for some k ?

In this paper we give a partial answer to this problem. We prove the

following:

Theorem. Let G be a fini te group whose order has no square fac tor, then any

G-module is (G,k)-realizable for any k> 2.

This theorem is a first step in view of the following conjecture proposed

by A. Assadi:

Conjecture. Let G be a finite group. Then any G-module is (G,k)-realizable for

some k if and only if Ghas periodic cohomology.

§1 Steenrod's problem and cohomology equivalence.

Let G be a finite group. Let f: M--M' be a G-linear map between two G-

modules. We will said that f is a G-equivalence if f induces an isomorphism

from J1l1(S,M) to J1"'(S,M') for any Sylow-subgroup S of G.
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Propos i tion 1. 1

Let f: M--+M' be a G- equivalence and let k>2 be an integer. Suppose

that M is (G,k)-realizable, then M' is (G,k)-realizable too.

Moreover if M is Z-free, this holds also for k = 1.

Proof:

Let L_M' be an epimorphism from a free G-modulc L onto M'. We get an

epimorphism f': M III L_M' which is a G-equivalence. Then the kernel of f" is

cohomologically trivial and there exists an exact sequence (5):

O L" __L'__M III L_M'__O

otherwise
{

M'

iii (Y) =

where L' and L" are projective G-modules and L" is trivial if M is Z-free. If

L is choose to be big enough we may as well suppose that L' and L" are free.

Let X be a G-Moore space of type (M,k). By adding trivial free G-cells

we get a G-Moore space X' of type (M $ L,k), and by attaching free G-cells to

X' along a basis of L' we get a G-space Y with the following homology groups:

if i = k

if i = k + 1

If k = 1 L" is trivial and Y is a G-Moore space of type (M' ,k). If k;;o 2

Y is simply connected and the Hurewicz homomorphism is onto in dimension k + 1.

So we can kill Hk+1(Y) by attaching free G-cells to Y along a basis of L" and

we get a G-Moore space of type (M',k) .

Proposition 1.2

Let f: M-M' be a G-monomorphismwith Q-local cokernel and let k." 2 be

an integer. Suppose that M' is (G,k)-realizable, then M is (G,k)-realizable too.

Proof:

Let us consider the following diagram:

M • M'

! J
M Q--M'III Q

By assumption this diagram is cartesian and cocartesian.

Let X' be a G-Moore space of type (M' ,k). Up to homotopy type we may

suppose that X' has only free G-cells outside of the base point.

On the other hand the trivial maps 0-M lJ Q and 0 - M' Q are G-equiva-

lences, and by proposition 1.1 Ulere exist G-Moore spaces Y and Y' of type

(M lJ Q,k) and (M'll Q,k) and Y has only free G-cells outside of the base point.

Since M'll Q is Q-local, Y' is a Q-local space and the homotopy groups of

Y' are Q-local. Then there is no obstruction to construct G-maps from Y and

X' to Y' inducing the maps M II Q and M'----+M'8 Q on homology.

Let X be the homotopy pull-back of Y and X' over Y':
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X---X'

! !
y-y'

Since the map X'--.Y' is a Q-homology equivalence,the homotopy fiber F of

X-Y and X'--+Y' is Q-acyclic. But Y and Y' are Q-local spaces. Hence the

spectral sequences of the fibrations X-Y and X'.-Y' collapse to long exact

sequences:

H. (F) f-i. (X)---+ H. (Y) ---+11. 1 (F) .-
1 1 1 1-

-H. (F)---+H. (X')-+fl. (Y' )-+H. 1(F)-
1 1 1 l-

and we have:

H. (Y, X) <f. fi._ 1(F) '" H. (Y' ,X' )

TIlis implies that X is a G-Moore space of type (M,k).

§2 Steenrod's problem for Zp[G] -modul.es ,

Let p be a prime dividing the order of a finite group G,and suppose that

the p-Sylow subgroup S of G is cyclic of order p ( i.e. the order of G is not

divisible by p2) . Let N be the normalizer of S in G and let Wbe the quotient

N/S. We will denote by I the ring of p-adic integers.
p

Let Mbe a G-module. Then H (S,M) has a canonical Fp[W)-module structure.

Lemma 2.1

Let Mbe a 1 [G)-module and let A be a finitely generated F [W]-module.
PoP

Let f be a map from A to fl (S,M) , and let k .. 1 be an integer.

Then there exist a I [G] -module and a morphism g from B to M such that:
" p

i) B is Zp-free and (G,k)-realizable

ii) A1 (S ,B) = 0

iii) BO(S,B) = A and f is induced by g

Proof:

Let C be a free i -module such that C "F is isomorphic to A. Choosep p
such an isomorphism. So we get an epimorphism from Aut(C) to Aut(A) and the

kernel of this morphism is a profini te p-grcup. Hence the group homomorphism

from W to Aut(A) given by the W-module structure of A lift through Aut(C)

and C becomrnes a lp[W]-module such that C II Fp is isomorphic to A as Fp[W]-

module. Moreover C is projective.

Let r-fc; Mbe the group HO(S,M). The group r-f is a Z [W]-module and the

map r-f--.Ao(S,M) is W-linear. Since C is projective the map:

C-C 8 F _A-4Ao (s ,M)
P

lift through r-f and we get a Z [N]-linear map h from C to M.
P

It is not difficult to prove the following:
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i) C is 2 -freep

ii) A1 (S,C) = 0

iii) AO(S,C) = A and f is induced by h

On the other hand C is a Z [W)-module and the map O__C is a W-equiva-
p

lence. By proposition 1.1 there exists a W-Moore space Y of type (C,k), and

Y can be considered as a N-Moore space.

Let G+ be the set G with an extra base point, and let Xbe the G-space

Y 1{G+ . It is easy to see that X is a G-Moore space of type (C e 1 [G] , k) .
N

Let B be the i [Gj-mcdule C (I 1 [G] and let g: B__Mbe the G-linear map
p N

induced by h. One can see that B/C is lp [Sl-free and that implies the follo-

wing:

i) B is Zp-free and (G,k)-realizable

ii) Al (S,B) = A1 (S,C) = 0

iii) AO(S,B) =AO(S,C) =A and f is induced by g

Corollary 2.2

Let Mbe a 1 [G}-module and let k 1 be an integer. Then there exist a
" p
l p [G)-modul e M' and a map f: M'--M with the following properties:

i) M' is Zp-free and (G,k)-realizable

ii) A1 (S,M') = 0

iii)

Proof:

Since Fp[W)is semi-simple AO(S,M) is a direct sum of simple modules Ai'

By lemma 2. 1 there exis t Z [G ]-modules B. and maps f.: B.--M such that B, is
P 1 1 1 1 1

Ip-free and (G,k)-realizable, H(S,B.) vanishes and fIo(S,B.) is isomorphic
1 1

to A. via f .. Then the module M' = • B. and the map f '" • f. satisfy the desi-
1 1 1 :c

red conditions.

Lemma 2.3

Let Mbe a 1 [G)-module and let 2 be
" [ pl p G)-module M' and a map g: M"-+M with the

an integer. Then there exist a

following properties:

i) M" is Z -free and (G,k)-realizable
p

ii) AO (S,M") = 0

iii)

Proof:

Let I be the injective hull of M. We have an exact sequence:

O-M--.I-J--.O

and H·(S,I) vanishes. By corollary 2.2 there exist

map f : J'-J such that:

a 2 [G]-module J' and ap
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i) J' is 2p- f r ee and (G,k-1)-realizable

ii) A1(S,J') = a

iii) f'jo(S,J f ) -"4 Ao(S,J)

Consider the module J'8 t[G] equipped with the diagonal action. Since

J' is 2 -free J'8 Z [G] is I [G}-free. Let M" be the kernel of the augmentation
p p

map J'8 We can construct a commutative diagram:

O__M"_J'1jI l[G]__J'_ a

O_M --+ I __ J _ a

Clearly we have the following:

AO(S,M") = !'J-1 (S,J') = fj1 (S,J') a
"1 "1g. : H (S,M') ...Q4 H (S,M)

and M" is 2 -free ,
p

Let Y be a space of type (J' ,k-1). TI1en YI\G+ endowed with the

diagonal action is a space of type (J'8 Z[G],k-1). TI1e G-map

YAG+_ YAS o
= Y induces the augmentation from J'8 l[G] to J' on homology

and its mapping cone is a G-M:JOre space of type (M",k). So M' is (G,k)-reali-

zable.

Corollary 2.4

Any 2p[G]-modul e is (G,k)-realizable for any k> 2.

Proof:

Let Mbe a 1 [G]-module and k;> 2 be an integer. By lemmas 2.2 and 2.3
P A

we can cons truct a Z [G}-module M''' and a G-equivalence from M" to M, M'''
P

being (G,k)-realizable. By proposition 1.1 Mis (G,k)-realizable.

§3 TI1e main theorem

TI1eorem

Let G be a finite group whose order has no square factor. TI1en ,for any

G-module M and any 2 there exists a G-Moore space of type (M,k).

Proof:

Let q be the order of G. Denote by 2 = nz the ring of q-adic integers
" n" oqf z.plq pand by 1 = Z the profinite completion

pP
Let Mbe a G-module and let 2 be an integer. By corollary 2.4 Mill Z

" Pis (G,k)-realizable for any plq and M III Z is (G,k)-realizable. But the map
A A q A

Mill lq--.M III Z is a G-equivalence, so by proposition 1.1 Mill Z is (G,k)-

realizable.

On the other hand the completion map M- M III Z is a monomorphism wi th

Q-local cokernel. TI1en by proposition 1.2 M is (G,k)-realizable.
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