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In the invitation to speak at the seminar, S.-T. Yau stated the intent of the 
lectures and the accompanying publication to be that a graduate student, 
having heard the lecture and read the manuscript, should be able to start 
research of his or her own on the subject. He added that it was désirable if 
the manuscript contained some new original results as well. I do not know if 
this is possible to achieve in a single paper, but it is a noble goal. The présent 
blend between a traditional expository article and a detailed exposition of 
the subject is in any case my attempt at this goal.
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1 Introduction
The présent paper is an attempt to give an overview of topological cyclic 
homology and its relation to algebraic Æ-theory. In the ‘classicaT setting, al­
gebraic Æ-theory associâtes to a ring A a space K (A). The homotopy groups 
of K ÇA) are Quillen’s higher K-groups. They hâve proved very difficult to 
calculate, and are, for example, to this day not even known for the ring of 
rational integers.

The homology of (a component of) K (A) is the group homology of the 
group GLoo(A) of invertible matrices of the ring. This was early on used by 
Quillen and Borel to evaluate K-theory of finite fields and the torsion free part 
of Æ-theory of algebraic integers, respectively. Later Suslin evaluated the 
homotopy groups with finite coefficients of Æ-theory of algebraically closed 
fields, or what amounts to the same thing, the profinite completion K (F)*. 
In particular he showed that Æ(C)A is équivalent to the profinite completion 
of the space which classifies complex vector bundles. Bott periodicity then
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calculâtes niK(CY' to be a copy of the profinite integers when i is even and 
zéro for i odd.

This development inspired another calculâtional approach to the K- 
groups, namely via étale Æ-theory, introduced by Friedlander.

Given a Galois extension F G E with group G, K (F) ~ K(E)G. This 
is no big calculational help, but if one replaces the actual fixed sets by the 
socalled homotopy fixed sets, a construction introduced by Sullivan in the 
sixties in connection with his solution of the Adams conjecture, then cal­
culations become possible. The homotopy fixed set is the function space 
(spectrum)

K(E)hG = MapG(EG,K(E))

where EG is the contractible free G space, and where MapG dénotés the 
space of G-mappings. The filtration of EG by its skeleta induces a spectral 
sequence

H*(G,K,(E)) ^ Tr,K(E)hG

which in favorable situations can be determined. The étale Æ-theory of a 
field F is, very roughly speaking, the homotopy fixed set of K(F)hG where 
F is the closure of F. In the characteristic zéro situation K (F)* ~ K(C)* 
by Suslin, so the calculation of étale Æ-theory of fields is intimately tied to 
Galois cohomology. There has been a lot of efforts by many people to evaluate 
étale K-theory, and in particular by W. Dwyer, E. Friedlander, S. Mitchell 
and Bob Thomasson. But the basic question remains: how close is

K(F) K*\F}

to be a (profinite) homotopy équivalence? In one formulation, the 
Lichtenbaum-Quillen conjecture asserts this to be the case (above dimen­
sion 1) for number fields.

For small values of i, ^(fields) hâve been extensively calculated in work 
of Merkurjev and Suslin. The reader is referred to Suslin’s address at the 
ICM 1990.

In another direction, Waldhausen generalized Quillen’s Æ-theory of rings 
to include certain ‘rings up to homotopy’, such as Q^S00^?^). The re- 
sulting functor A(X) is intimately related to the space of automorphisms 
(homeomorphisms or diffeomorphisms) of X when it is a (high dimensional) 
manifold.

The approach to K-theory (of rings or spaces) in this paper is to study a 
certain trace type invariant

trc: K(A)4TC(A).

The target is a topological version of Connes’ cyclic homology; We call it 
topological cyclic homology but maybe trace homology was a better word.
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From a superficial viewpoint the cyclotomie trace records the traces of ail 
powers of matrices, so could also be called the characteristic polynomial in­
variant. It works equally well for Waldhausen’s A-theory of spaces, and was 
introduced in joint work with M. Bôkstedt and W.-C. Hsiang [BHM] in order 
to solve the A-theory analogue of Novikov’s conjecture about homotopy in­
variance of the higher signatures of manifolds. The construction was inspired 
by ideas of T. Goodwillie. Here however, I shall be mostly concerned with 
the situation for rings.

There is a map from TC (A) to another functor denoted THH(A), the 
topological Hochschild homology of R, and tre is a lifting of this topological 
Dennis trace.

Let me briefly sketch the construction of THH(A). Consider the simplicial 
abelian group

Z.(A\. ---A®A®A^A®A=lA

where the face operators sends ai 0û2 0û3 into ai02 ® 03, ai 0 02 03, 03 010 02 
etc. The homotopy groups of Z.(A), or what is the same thing, the homology 
groups of the associated chain complex, are the Hochschild homology groups 
HH*(A).

The basic idea, suggested by T. Goodwillie, is to replace A by the 
Eilenberg-MacLane spectrum it generates, and O by smash product of spec- 
tra. This was carried out by Bôkstedt, and leads to a simplicial space 
THH(A). The extra structure in Z9(A) which cornes from the cyclic ro­
tation of the tensor factors is also présent after the indicated substitutions, 
and via Connes’ theory of cyclic sets, it implies a circle action on THH(A).

Connes initially defined cyclic homology by replacing Z* (A) by the com­
plex C*(A) whose n’th term is Zn(A)/Cn+i, the quotient group by the cyclic 
rotation of factors. It is crude construction to divide out a non-free group 
action—usually one gets a better theory by instead taking the Borel quotient. 
This was done in papers of Loday-Quillen and Feigin-Tsygan who replaced 
the quotients A®n/Cn by W^ ®cn A^n where W^ is the standard free 
^[Cn] resolution of Z. In the topological situation of THH(A) it is better to 
take fixed sets THH(A)C for the various subgroups of the circle. Had the 
circle action on THH(A) been free, the fixed sets would hâve been the Borel 
orbits THH(A)/lc = THH(A) Ac EC+. This is not the case, and the fixed 
sets THH(A)C is a mixture of Borel quotients, one for each strata of the 
action. In our topological situation it turns out that there is a certain map

R: THH(A)Cn -à THH(A)C~

whenever m divides n, which one does not see in the linear setting. This map 
mixes the stata. We also hâve the inclusion of fixed sets

F: THH(A)C" 4 THH(A)C-.
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The topological cyclic homology TC (A) is defined to be the homotopy 
theoretical limit of THH (A)Cn over the maps R and F as Cn varies over ail 
cyclic subgroups. The basic theory of THH(A) and TC(A) is described in 
chap. 2 below, where we also recall the construction of

trc: Æ(A) ->TC(A). (1.1)

Actually, both K ÇA), TC (A) and THH(A) are spectra in the sense that there 
are sequences of spaces KÇA)^n etc. so that K (A) is équivalent to the n’th 
based loop space of K(A)^n etc., and trc préserves this structure. I write 
TH(A) for the spectrum {THH(A)Rn} but do not introduce spécial notation 
for the spectra K {A) and TC (A).

The following chap. 3 présents results of Dundas, Goodwillie and Mc­
Carthy. The following theorem is proved in sect. 3.4.

Theorem 1.2 (McCarthy). For a surjection of rings f : A -+ A with nilpo- 
tent kernel,

K(A) —^. TC(A)

TC(Â)

becomes a homotopy Cartesian diagram after profinite completion.

In particular, the relative homotopy groups with finite coefficients of the 
two vertical maps agréé. Earlier results of this nature hâve appeared in 
[G4], [G5], [BCCGHM]. The proof is based upon Goodwillie’s “calculus of 
functors”; it is very indirect, and does not in any way produce an explicit 
inverse from TC (A —> Â) to K ÇA -> Â).

The trace (1.1) cannot in general induce an isomorphism of (profinite) 
homotopy groups. Here is one reason: TC(A) is constructed out of Eilenberg- 
MacLane spectra H ÇA). Now H ÇA)* ~ HÇÂ) since H ÇA) is characterized 
by its homotopy groups. This persists to TC,

TC(A)A - TC(A 0 Z)

at least if A is finite over Z. However, it is well known that K-theory does 
not hâve this property. Thus (1.1) has little chance of inducing isomorphism 
on profinite homotopy unless one restricts attention to complété rings.

There is an extension due to B. Dundas of theorem 1.2 to the setting of 
Waldhausen’s functor AÇX), namely the following resuit which is outlined in 
sect. 3.5.
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Theorem 1.3. (Dundas). For any space X the diagram

A(X) —TC(X)

becomes homotopy Cartesian after profinite completion.

Let A; be a finite field of characteristic p 0 0, and let W(k) be its ring of 
Witt vectors. Chap. 4 outlines the proof of the following joint resuit with 
L. Hesselholt

Theorem 1.4 ([HM]) For finitely générâted W{k)-algebras,

trc: K(A)^ TC(A)^

is a homotopy équivalence (in positive dimensions).

Chapter 4 also gives a new (simpler) proof of one of the main results from 
[BHM], namely that the assembly map

#(z) a sr+ —► K(zr)

is a rational équivalence for a large class of big groups, e.g. for the groups T 
which hâve finitely generated Eilenberg-MacLane cohomology in each dimen­
sion. The simplification of the original proof is made possible by theorem 1.3. 
Chapter 4 further calculâtes TC(X)A in terms of more traditional functors 
in algebraic topology; these involve the free loop space of X.

The functor TC (A) is not very easy to calculate, but it does lent itself to 
analysis by classical methods of algebraic topology. The basic approach, so 
far, has been to use the following diagram of (co)fibrations (in the category 
of spectra)

TH(A)ÂCpn ------- )■ TH(X)cp" —► TH^p-1

TH(A)ACp. TH(>1)^" ------- > Ê^.THCA))

The lower cofibration is usually called the norm cofibration. In order to define 
it one uses that the spectrum TH (A) can be extended to an S^equivariant 
spectrum T (A). Roughly speaking this means that there are spaces T (A) y,
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one for each finite dimensional représentation V of S1 such that TH (A) ^s1 
Map(Sv, T(A) y). Here Sv dénotés the one-point compactification of V with 
its induced S^action. The construction of the norm cofibration is due to 
J. Greenlees and J. P. May.

The point of the diagram is firstly that there are spectral sequences which 
approximates the terms in the bottom sequence, e.g.

^(Cpn;7rtTH(A)) => ^È(CpnTH(A))

where H8 dénotés Tate cohomology. Secondly, it turns out that the maps T 
and T in many situations are homotopy équivalences in non-negative degrees. 
This is reminisant of the Segal conjecture (which corresponds to TH(Q00S00)) 
where T and T are actual homotopy équivalences. In particular one expects 
T, T to give équivalence (in positive degrees) for integers in local number 
fields with non-zero residue characteristic.

This has been verified in the unramified situation, A = W{^ps), where 
the calculation of TC has been carried through. In order to describe the 
resuit, let im Jp be the homotopy fiber in

im Jp -> (BU x Z)p^ BUp

where ^^ is the Adams operation for an integer k which generates the units 
in Z/p2Z, i.e. a topological generator of the units of the p-adic integers Zp. 
The bottom homotopy group of im Jp is a copy of Zp, and

„ * n = 0 (P - 1)
^2n-l(Wïl Jp) -< 

0 if not

while 7r2n(imJp) = 0 for n > 0. (vp(-) dénotés the p-adic valuation). Let 
B im Jp dénoté the delooping of im Jp with ni(B im Jp) = ttî-i (im Jp). Then 
one has:

Theorem 1.5. ([BHM2]). Let Fp- be the finite field with p8 éléments and 
As = W (Fp« ) its Witt-vectors. Then for p odd,

TC(AS)£ ~ im Jp x Bim Jp x SU* xU*x-xU* (s - 1 copies ofU) 

where SU is the spécial unitary group, and U the unitary group.

The proof of theorem 1.5 is a long and complex calculation which requires 
a thorough knowledge of homotopy theory. It was in fact the first calculation 
made of the TC functor applied to rings. The general calculational scheme 
developed in this case was later exploited in a number of less complicated
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situations. Theorem 1.5 in conjunction with the Dwyer-Mitchell calculation 
of Ket(As), [DM], vérifiés the conjecture of Lichtenbaum and Quillen for 
these rings.

The first three sections of chapter 5 give other examples of TC- 
calculations in situations where theorem 1.4 applies. Sect. 5.1 studies K- 
theory of group rings of finite groups. In terms of concrète calculations the 
main resuit is:

Theorem 1.6. Let k be a finite Geld of characteristic p > 0, and let C be a 
cyclic group of p-power order. Then the p-primary part of K~theory is given 
by

and K2n(k[C])(p) = 0 for n > 0.

The next two sections 5.2 and 5.3 outline joint work with L. Hesselholt. 
The main resuit is the following

Theorem 1.7. Let k be a perfect Geld of characteristic p > 0. Then

#2rn-l(W(*n))(p) = ^nm-l^/VnW^k)

and K2m(^]/(^n))(p) = 0 for n > 0.

Here W(k) dénotés the big Witt-vectors, that is, W(fc) = (1 + ^[M])x} 
the multiplicative group of power sériés beginning with 1, Wr(k) is the cor- 
responding truncated version

WAfc)Ml + Wx/(l + *r+W^

and V8 is the Verschiebung map which takes a power sériés f(t) to f(t8). 
Sect. 5.3 is just an example; it évaluâtes the groups Nil*(A) for the rings of 
theorem 1.7.

Finally it is in order to point out that TC (A) only contains information 
about K-theory at the residue characteristic. The Z-primary part of K ÇA) 
for l ^ p is however, for the rings under considération, already known by 
theorems of Gabber and Suslin et. al.: one may divide out the radical, cf. [Su], 
which also contains a thorough account on low dimensional calculations.

It is a pleasure to acknowledge the help I hâve had from M. Bôkstedt, 
B. Dundas and L. Hesselholt in preparing this paper.
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2 Topological cyclic homology
This chapter sets the notation to be used in the rest of the paper, reviews the 
définition of the functors to be discussed and gives the basic constructions.

2.1 Cyclic constructions.
Let G be a topological monoid and E a two sided G space. For technical 
reasons we assume that the unit 1 6 G is a “good” base point, i.e. {1} C G 
be a cofibration. The cyclic bar construction of G with coefficients in E is 
the simplicial space N£y [G] E) with r-simplices

N^y(G;E) = ExGr (2.1.1)

and simplicial structure maps

{(e^i,^,--- ,gr^ i = o
(e,#i,... ,gigi+1,... ,gr), G <i <r 
(gre,gi,--- ,gr-i), i = r

Si(e,g!,... ,gr) = (e,^i,... ,^_i,l,^,... ,gr), 0 < i < r.

Two spécial cases hâve particular interest for us, namely E = * and E = 
G (with its natural two sided G-structure). In these cases we shorten the 
notation to

N.G = N? (G; *), N?G = N?(G-, G).

The simplicial space N*yG has extra structure; it is a cyclic set in the sense 
of Connes: one has the cyclic permutation

tr: N$yG -> N$yG, tr(g0,... ,gr) = (gr,g<h--- ,gr-i)

with the following extra relations, as the reader can easily check,

ditr = tr-idi-h 1 < i <r
d^tp — dp

Sjtp = ^r+l$i—1? 1 ^î <T (2.1.2)
Sûtr = tr+iSr
C1 = i.

Let A be the usual simplicial category with objects [r] = {0,... , r} and order 
preserving maps, so that a simplicial space is a functor from Aop to {spaces}. 
It is contained in a category A with the same objects but with
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where Cr+i is the cyclic group of order r +1. A cyclic space is just a functor 
from Aop to {spaces}, see e.g. [J] for further information.

For a simplicial space X9 we let |X.| dénoté the usual topological real- 
ization,

oo
|Xe| = JJ Ar x Xr/ ~; (diu,x') ~ (u,d{x), (s*u,x) ~ (u,Six\ 

r=0

where dz : ZV^1 —> Ar, s* : Ar —> Ar-1 are the face and degeneracy operators 
of the standard simplex. The realization of the cyclic r-simplex A[r]e = 
A(W> H) can be calculated to be

Ar K/Z x Ar = S1 x ZV\ (2.1.3)

It is a cocyclic space, that is a functor from A into {spaces}. There are two 
good choices of the homeomorphism in (2.1.3). One can either choose it so 
that

(i) tr(6,uo,... ^Ur) = (0 — uo,ui,... ,ur,uo) or so that

(ii) tr(0,uQ,... ,ur) = (0 - l/(r + l),ui,... ,ur,uo).

In case (i), the cosimplicial maps d1, s1 are Id^i x d\ Id^i x s1 with d\sz 
being the usual cosimplicial maps on △*; in case (ii) d' and s* dépends on 
the circle coordinate. The realization of cyclic spaces cornes equipped with a 
natural action of S1. Indeed it is easy to see for a cyclic space Z. that

oo
|Z.|“I]ArxZr/« (2.1.4)

r=0

where the identifications « are

(<fu,z) « (u,diz), (s^z) « (u,Siz), (tru,z) « (u,trz).

The S1-action on the circle factor of Ar descents to the claimed S1-action on 
|Ze|. For further information on cyclic spaces we refer the reader to [C], [J], 
[DHK].

The homotopy theory of spaces X equipped with an action of a group G 
is governed by the homotopy theory of its fixed sets XH, H G G (H closed if 
G is Lie). In particular a G-map f: X -> Y is a weak homotopy équivalence 
if and only if its induced map on H-fixed set is for ail (closed) H G G. Thus
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it is important to be able to calculate fixed set \Z*\C for the realization of 
a cyclic set, where C is finite cyclic or C = S1. It is not hard to see from 
(2.1.4) that

l^|S1 = {^ 6 Zo | so* = Mo^}

but it is harder to use (2.1.4) to get information about \Z9\C when C C S1 
is finite.

There is however a simple devise, edgewise subdivision, which can be used 
to effectively calculate \Z9\C. Let X^ be any simplicial space, and C a cyclic 
group of order c. We consider X9 : Aop —> {spaces} and define

sdc : A —► △

sdc[r] = [r] Il • • • II [r], c = summands (2.1.5)
sdct = 011 • • • Il 0, 0 e A([r], [s]).

The composition X. o sdc : Aop -> {spaces} is the subdivided simplicial 
space, denoted sdcX*. Its space of r-simplices is equal to Xc(r+i)_i.

The diagonal inclusion of Ar into the c fold join Ar ♦ • • • * Ar induces a 
(non-simplicial) map D from the realization of sdcX* into the realization of 
X#. If X9 is a cyclic space then \sdcX9\ has a natural K/cZ action, which 
restricts to a simplicial Z/cZ action. Indeed ^îj.i acts simplicially on the 
r-simplices of sdcX*. From [BHM], sect. 1 we hâve:

Lemma 2.1.6. The map D: \sdcX9\ -> |X.| is a homeomorphism. More- 
over, if X9 is cyclic then D is S1-equivariant when ^/cZ is identiGed with 
the circle in the usual way. □

For a cyclic space Z9, the action of the (r + l)’st power t^+ij-i is 
a simplicial map of sdc Z. of order c, so induces a simplicial C-action on 
\sdcZ.\, and hence via D an action of C on |Z.|. For example it is not hard 
to see that

sdc^y(G) ^ N^y(E,Gc)

where E = Gc (c fold Cartesian product) with its componentwise left Gc- 
action, and right Gc-action given by

(Pi» • • • j9c)^1i ... ,ec) = (gcei,9ie2, • • • ^c-iec)-

The action of C on sdcNcy (G) corresponds under the above identification 
to the cyclic permutation action on E and Gc, so there is a homeomorphism

△c : N?(G) A sdcN?(G)c (2.1.7)

with Ac induced from the diagonal map G Gc.
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We now suppose that our topological monoid is group-like, that is, ttqG 
is a group. In this case

BG = \N.G\

and the canonical map G -> ŒG is a weak homotopy équivalence, in sign: 
(IBG ~ G. Moreover,

BcyG = |7V^G|

is équivalent to the free loop space KBG of BG. Indeed, the projection

N^(G‘G)^N^(G',^

induces a map from Bcy G to B G and the adjoint of the map

51 x BcyG ^ BcyG BG

defines the équivalence (cf. [G1],[BF])

q: BcyG^ABG. (2.1.8)

This is not a (weakly homotopy) équivalence of S^spaces since the 5x-fixed 
sets do not agréé. However, for each finite subgroup G C S1,

qc : (BcyG)c ^(ABG)C (2.1.9)

is an équivalence. This follows easily upon using (2.1.7) and the obvious 
homeomorphism

△c : ABG ^(ABG)C, A(A)(z) = X(zc).

Indeed, qc identifies with q under the identifications induced from Ac and 
Ac (cf. [BHM], proposition 2.6). Let me give the proof of (2.1.8) when G is 
a group, and refer to [BF], [Gl] for the group-like case. One starts with a 
rewriting of Ncy(G), namely via the bijection

/: Wecy(G) AAdG xG E.G,

where AdG dénotés G with conjugation action, and E.G is the left acyclic 
bar construction whose fc-simplices are ^i|‘"|^]; the maP is defined as

f^9^ --gh) = 9k- • ’PiPo[Pi| • • • |^-i]«

The topological realization of E.G is the free contractible G-space, and 
AdG xG EG ~ ABG. Indeed a loop A(t) G KBG is mapped into (^a,Â(1)) 
where Â(t) is a lift of A: [0,1] -4 BG and gx is the holonomy: px Â(0) = Â(l). 
When G is compact Lie one needs a connection in EG —> BG, and A will be 
a parallel curve in EG.



Ib Madsen 203

The above hâve generalizations to the nerve and cyclic nerve of a category 
C. The nerve N*C is the simplicial set with

^ = 1^ Acr-i—>••• Acq},

the set of r composable maps. Similarly N*y(C) has r-simplices

n^c = K Ac,-! -4-AcoAcj

and boundary maps similar to (2.1.1). For categories with only one object, 
monoids, this agréés with the above constructions. If we restrict the mor- 
phisms of C to be isomorphisms we obtain a subcategory iC, and (2.1.8) 
generalizes to

|^cy(iC)|-A|^(iC)|.

These more general concepts will be used in the next chapter.
We close this section with a rewriting of N*G, due to Waldhausen, [W2], 

in the spécial case where G is a semi-direct product. Let (V, +) be an abelian 
monoid equipped with a two-sided action of the monoid T. Dénoté by G = 
V x F the semi-direct product with multiplication

(«1>91)(«2,®) = («192 + 51 «2,5152).

Let N9V be the bar construction of (V, +). It inherits a simplicial two sided 
action of T, and we can form the bisimplicial set

[rU$] ^^y(r;WsV).

Its diagonal simplicial set with r-simplices N^y(F;NrV) is denoted 
ÔN.y(T\ N9V). Consider the simplicial map

u: 6N?(T,N.V) -> N.(V x T)

given on r-simplices by

u(vb... ,vr,7i,... ,7r) =

((71 ••-7^171,71), (72---7^27172,72),-- - , (7rVr71 •••7r,7r))-

The map u can be understood as the composition of two maps: one 
starts with a rewriting of the left hand side, similar to the above f, and then 
rearranges factors upon using the semi-direct product. When T is a group u 
is a bijection. In general one has from [W2], lemma 2.3.1:

Lemma 2.1.10. If T is a group-like monoid then u induces a weak homotopy 
équivalence of topological realizations. □
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The map u will be used in the next chapter for T = GU(I?), V = M*(V), 
where fi is a unital ring and V is an fi-bimodule. In this case the semi-direct 
product ring V x R has

GLfc(V x K) = M^V) x GU(Æ).

2.2 Simplicial spaces.
We hâve already in sect. 2.1 used simplicial sets and spaces. This will continue 
even more extensively in later sections, and it is in order to collect some of 
the relevant properties of simplicial sets and spaces.

Let us first point out that we use the word space to mean a based com- 
pactly generated Hausdorff space, and that ail constructions are to be taken 
in this category.

A map f : X —> Y is called fc-connected if it induces an isomorphism on 
homotopy groups in degrees less than k and an epimorphism in degree k, i.e. 
if the homotopy fiber is (& — l)-connected. The convention is that every space 
is (—2)-connected, non-empty spaces are (—l)-connected and path connected 
spaces are 0-connected. It is an équivalence if it is fc-connected for ail k, and 
in general two spaces X and Y are called équivalent (X ~ Y) if they can be 
connected by a string of équivalences. In almost ail cases to be considered, 
our spaces will hâve the homotopy type of CW complexes, and in this case 
X ~ K iff they are homotopy équivalent in the ordinary sense. The homotopy 
groups of a simplicial space (or set) X. will mean the homotopy groups of 
the topological realization ||X.|| below.

This is the bigger realization, sometimes called the fat realization, which 
only dépends on the face operators in X», i.e. on the functor

X* : A^ —> {spaces}

where Am C A is the subcategory of injective maps in A. Such a functor is 
called a A-space, [RS], and a presimplicial space in [DM2]. Its realization

oo
IIX.II = △^ X Xr/(^U,x) ~ (u,diX) (2.2.1)

r=0

has |Xe| as a quotient when X» is simplicial.
For simplicial sets,

11^.11 -> |X.|
is an équivalence, but this is not always true for simplicial spaces.

A simplicial space Xe: Aop -à {spaces} is called “good” (or “proper”), 
[Sel] (or [Mayl]) if the inclusion of its degenerate simplices

r—1
J Si(Xr_i) C xr

1=0
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is a cofibration (an NDR-pair). For such, the two realizations |X.| and ||X#|| 
are équivalent, cf. [Sel], appendix.

Any bisimplicial set (functor from Aop x Aop into sets) give rise to two 
“good” simplicial spaces

Their realizations are each homeomorphic to the realization of the diagonal 
simplicial set 6X9y9, and similarly for multisimplicial sets.

The homotopy fiber of a map f: X -^ Y of spaces with respect to * € Y 
is the space

hF(/) = {(a, A) € X x K' | f(x) = A(0),* = A(l)}

and there is a long exact sequence of homotopy groups

------YTViX^TViY^ 7^-1 (hF(/)) -> ^_1X -> • • •

so / is fc-connected precisely if hF(/) is (fc — l)-connected (for each choice of 
*)•

Given a map of simplicial spaces, f.: X* -> Y* and a base point *. G Y. 
there is a natural map

|[r]->hF(Xr->yr)|->hF(|X,|^|y.|). (2.2.2)

This is an équivalence if each Yr is 0-connected, provided X. and Y. both 
are “good”. In particular |/.| is an équivalence when each fr' Xr —> Yr is 
an équivalence. The associated fat realizations are équivalent without the 
goodness assumption.

The homotopy fiber and the dual notion of homotopy cofiber, 

cof(/) = (y X /) n X/{f(x) ~ (y, 1), * ~ {y, 0)) 

are spécial cases of the homotopy limit and the homotopy colimit functor 
from a small category into spaces, cf. [BK], [G4].

Let us next consider function spaces between pointed spaces X and Y. 
Dénoté by F(X,Y) the function space (in the compact open topology) of 
pointed maps from X to Y.

Suppose X is a pointed CW complex, e.g. the realization of a simplicial 
set, and that dimX < n. There is a natural map

<£: |[r]^F(X,yr)|->F(X,|y.|). (2.2.3)

If Y. is a “good” simplicial space and each Yr is (dimX — l)-connected, then 
0 is an équivalence. In particular, the loop space of a “good” simplicial space 
K. with each Yr 0-connected can be computed degreewise:

n|K| ~ |H nyr|
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cf. [Mayl], sect. 12.
Given based simplicial sets there is a simplicial version F.(X.,yt) of the 

mapping space which we shall occasionally use. Its r-simplices consists of the 
simplicial maps

i(A[r]. x X.) 4 Y.

which maps A[r]# x *e to the base point of Y*. Here A[r]t is the simplicial 
r-simplex with A[r]s = △([$], [r]). More generally, for each based K.,

Map(K.,FJJX.,Y.)) =Map(6(K.

where Map dénotés the set of based simplicial maps. In particular, we see 
for K. = sine Y, the singular complex of Y, that

sineF(|Xe|,y) ~ F.(X.,sine Y)

(take K* = A[r].). Since Y9 ~ sin. |K.| when K. is fibrant (Kan complex) 
we see in this case that

Let us finally remind the reader that a simplicial group, X. : Aop 4 {groups}, 
is always a Kan complex. For simplicial abelian groups A. and B., the 
function complex s.Ab(j4.,B.) has the property that

s.Ab(A„B#) ~ s.Ab(M. 0 Z(S^), JA. ® Z(S?)).

In particular, Mt 0 Z(S, ) is a deloop of A#. Here Z(S, ) is the free abelian 
group of the simplicial n-sphere modulo the relations A*. = 0 and 0 • æ = 0. 
The reader is referred to [Ql] and [May2] for further details on simplicial 
sets.

Many constructions later in the paper are functors of fixed sets of the 
topological realizations of cyclic sets and spaces. Examples hâve already ap- 
peared in sect. 2.1. A map of cyclic sets (spaces) f9: X9 -> Y. induces 
an S^equivariant map. It is an S1-equivariant homotopy équivalence if 
f* : X9 —> Y? induces an équivalence for ail closed subgroups of S1. This 
includes S1 itself. But for some purposes of the paper, the S1 fixed set is 
exceptional, and only the C-fixed sets for finite C matters. We therefore 
introduce the notions X ~cx Y resp. X ~cpoo Y to mean that X and Y 
can be connected with a sequence of B^maps which induce équivalences on 
ail Cn fixed sets, resp. Cp* fixed sets.

In the rest of the paper we shall tacitly assume that our simplicial spaces 
are “good”. This will sometimes hâve to be verified, but we shall not go into 
such details below.
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2.3 Topological Hochschild homology.
Given a unital ring A and an A-bimodule V we can form its cyclic construc 
tion Z,(A; V). It is a simplicial abelian group with r-simplices

Zr(A; V) = V® A®r (2.3.1)

and face and degeneracy operators

va\ 0 a2 0 • • • 0 ar, 

di(y 0 ai 0 • • • 0 ar) = < v 0 • • • 0 aiai+i 0 • • • 0 ar, 

arv 0 ai 0 • • • 0 ar_i,

z = 0
0 < î < r
2 = r

SiÇv 0 ai 0 • • • 0 ar) = v 0 • • • 0 üi-i 0 1 0 • • • 0 ar, 0 < 2 < r

cf. (2.1.1). When V = A this becomes a cyclic set upon defining

tpÇdQ 0) • • • 0 a^») — dp 0 ao 0) • • • 0) dp—i»

The topological realization of Z.(A; V) is denoted HH(A; V) or when V = A 
just HH(A). Its homotopy groups are the Hochschild homology groups,

HHi(A;V)=7riHH(A;V).

Indeed for any simplicial abelian group Z. the homotopy groups of |Z#| can 
be calculated as the homology of the associated chain complex Z* with

d: Zi -> Z^ dz = ^(-l)^^)
v=0

and Z^A\V) is the standard Hochschild complex. The space HH(A) is the 
topological realization of a cyclic set, so cornes equipped with a natural action 
of S1, which keeps the base point invariant. Hence it gives a map

A: S^ A HH(A) HH(A)

which is the identity on the subspace HH (A). Exterior product with the 
generator [S1] € ttiS1 induces a map from HHr(A) to HHr+i(A). This is 
Connes’ B-operator, cf. [Hl].

T. Goodwillie suggested a decade ago to define the topological Hochschild 
homology analogously by replacing A with the Eilenberg-MacLane spectrum 
it generates, and the tensor product by smash product of spectra. Some 
care is needed in order to make these substitutions because smash products 
of spectra are not easily made strictly associative. M. Bôkstedt in [Bl] got 
around this difficulty in a way we now describe; see also [Br], appendix.
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Let Top* dénoté the category of based spaces and continuons maps, and 
let L: Top* 4 Top* be a continuons functor such that L(*) = *, that is, the 
function

F(X, Y) A F(L(X), LÇY))

is continuons and maps the constant map to the constant map. Given X,Y e 
Top*, we hâve maps

L(Y) L(X N Y)

for each x e X, induced from the corresponding inclusion of Y in X N Y, so 
altogether a function

ox,y- X ^L{Y} -^ L{X ^Y}

and the assumptions on L implies that this is continuous; a is called the 
assembly map.

Définition 2.3.2. (Bôkstedt). A functor with smash product (FSP) is a 
functor L with an assembly map together with natural transformations

lx:X^L(X)

p,xy : L(X) A L(Y) -^ L(X A Y}

such that

(i) P>x,Y ° (1% A id£(y)) = ax,Y
Px,y ° (id£(x) A ly) = L(ir) o aY,x ° ^

(Ü) ^xay,z ° fax,y a idL(Z)) = px.YNZ ° (idi(x) A hyz) 
where tt switches factors.

The FSP is called 0-connected if it maps n-connected spaces into n- 
connected spaces and if

ax : S1 A L(X) M^1) A L(X) 4 LÇS1 A X)

is 2n — c connected whenever X is n-connected (c independent of n).
Any unital ring A induces a 0-connected FSP which we dénoté A. It takes 

a based space X into the Dold-Thom construction: the configuration space 
of particles in X with labels in A:

Â(X) = {LaiXi \ Xi e X,ai e A}/{a • * = 0,0 • x = *). (2.3.3)

It is a 0-connected FSP and À(Sn) is the Eilenberg-MacLane space of type 
(A, n) as

^Â{X)=Hi(X)A).
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A topological monoid G induces a 0-connected FSP G, namely

G(X) =X^G+ (2.3.4)

with the obvions 1% and nx,Y-

Définition 2.3.5. A functor with smash product is called commutative if

Px>y o TT = L^) o hy,x

where 7r switches factors.

The FSP’s Â and G above are commutative when A and G are commuta­
tive. Let I dénoté the category of finite sets and injective maps. Its objects 
are the sets n = {1,... ,n} with 0 = 0. A morphism f € /(n, m) can be 
written as aoj where a G Sm and i is the standard inclusion. The Cartesian 
Products F^1 form a cyclic category in that there are structure maps

di: r^1 -> r, s^.r -^ r+\ tr-.r^ r

given by

di(x0).
(æo,... ,Xi II «i+i,... ,xr) 0 <i < n
ÇXfi II XqXh • . • ^ Xf') i — 71

Si(*^0, • • • , ær) — (^0j • • • , Œi—1 j ^j ^i, • • • » ^r^

ti(xo,... ,Xr) = (xr,X0,... ,Xr-i).

For x e I we let Sx be the one point compactification of IR®. For a based 
space X, consider the functor

Gr(L): F*1 -> {spaces}

given by

Gf^x^... ,xr) = F(SX° A • • • A SXr,L(Sx°) A • • • A L(SX^ A X),

where F dénotés the pointed function space. Using the properties of L we 
find maps

di*. Gt(L,xq, ... ,xr) Gr_i(L)di(xo,... ,xr))
Si: G^^L^Xq,... ,xr-l) “4 GrÇL'SiÇxo,... ,^-1)) 

ti’. G^(L,XOl ... ,Xr) -^ Gr(L,ti(xQ, . . . ,Xr))
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similar to the maps of sect. 2.1, and we can define a cyclic space THHf(L) 
by setting

THH^(L) = holimG^(L). (2.3.6)

The realization of THHf(L) is denoted THHX(L); if X = S° we just write 
THH(L).

Lemma 2.3.7. ([Bl]) For a 0-connected FSP L and given integer i,

7TiTHH^(L)=7riG^(Lix0,... ,xr)

provided xq,. .. ,xr are sufficiently large.

Proof. Here is Bôkstedt’s argument. The category I of finite sets and injec- 
tive maps has the following structure:

an associative product p : I x I -> I (1) 
natural transformations between p and the two projections (2) 
a decreasing filtration Fil with p(FiI,FjI} C Fi+jl (3)

Indeed, p(n,m) = n + m and FJ = {n \ n > i}. Such a category is called a 
good limit category. These are preserved under Cartesian product, so r"*1 
is also a good index category.

For x = (xo,... ,xr), write Gr(x) instead of G^{L^). To each A > 0 
there exists an i so that Gr(x) —> Gr(y) is A connected for each x y 
in Fi = FiV^1. Now it suffices to prove that the following two maps are 
A-connected:

holimGr(x) 4 holim Gr(x) (a) 
*eFi x€lr+1

Gr(y)-*hdimGr(x), y € F, (b)

The map in (a) is an équivalence; an inverse is induced from p(y, —) : I^1 —> 
Fi for some fixed y e Fi. This uses property (2) above. To show that (b) 
is a A-equivalence, one first argues that the space BFi (=realization of the 
nerve) is contractible. Indeed, p induces a product on BFi, and by (2) it has 
a homotopy unit. Condition (2) also yields that ^BFi = 0. But a connected 
#-space has a homotopy antipode:

-Id: BFi BFi,
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with
B Fi -^ B Fi x B Fi ’^Id B Fi x B F -A B Fi 

homotopy to a constant. Since by (2),

~ pr2 : B Fi x B Fi -> B Fi

we conclude that BFi is contractible. Finally the projection

p: holimGr(x) -4 BFi 
x^Fi

is a A-quasifibration in the sense that Gr(y) = p-1(y) is A-equivalent to the 
homotopy fiber. This follows from the last lemma in sect. 1 of [Q2] upon 
passing to the A-coskeleton of Gr(x). □

An FSP L induces a ring (pre)spectrum Ls whose n’th term is L(Sn). 
We note that THHX(L) only dépends on Ls in the sense that if Li -> L2 is 
a map of FSP’s so that L^ -> Lf is a homotopy équivalence of (pre)spectra 
then THHx(Li) - THHX(L2).

A O-connected FSP L gives rise to a ring ttqL by linearization, namely

voL = Iim7rn(L(Sn)) 
n

(ttqÂ = A), and the map

Gr(L,xo,... ,xr) iroGr(L,xo,... ,xr)

induces a map THH(L) -4 HH(ttoL) since

^oH—i-xrGr(L; xo,... , xr) = HXo-\—\-xr{L{SXQK) • • • A L(SXr))
= itq(L) ® • • • ® 7r0(L).

As THHX (L) is a cyclic space, the realization THHX (L) inherits a continuons 
action of S1, sect. 2.1, which will be of fundamental importance later in the 
paper.

There are a number of variations of the construction. First, we may define 
THH(L, M) when M is an L-bimodule. This is a functor from pointed spaces 
to itself with an assembly map

ox^Y : X A M(Y) -4 M(X A K)

and structure maps

lx,Y : L(X) A M(Y) -4 M(X A F)
rx,Y : M(X) A L(Y) -4 M(X A F),
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satisfying the obvious compatibility relations which we leave for the reader 
to explicate. One defines

THH* (L; M) = holim F (S*0 A • • • A S’”, M(SX° ) A LCS11 ) A • • • A L{SX" ) A X)

and gets a simplicial space with realization THHX (L; M) and a linearization 
map

THH(L; M) HH(tt0L, tt0M). (2.3.8)

This is a rational équivalence when L = A, M = V.
Second, we may vary the concept of FSP to the simplicial setting and 

consider simplicial endo-functors of based simplicial sets

L9 : s#sets* —> s#sets*

with properties analogous to the ones given in définition 2.3.2. In this setting 
the FSP À associated to a ring A is simply

Â(X.) = A[X.]/A • *. = 0

where A[X.] dénotés the simplicial abelian group whose fc-simplices is the 
free A-module with basis Xk- One defines THH.(L.) by using the simpli­
cial function space, assuming L9(S.) be fibrant, or one can follow L. by 
realization, and use the above construction.

Third, there is a variation of THH(L) which defines THH(C) of an additive 
category, cf. [DM2]. The définition is as follows. Consider the functor

C9: s^sets* -> (seAb)c°PxC

which to a simplicial set X9 associâtes the functor from Cop x C to s» Ab

Ce(Xe)(ci,c2) = Homc(ci,c2) 0Z(X.)

Write x = (xq, ... ,xr),

V.(C,x)= y C.(s:°)(co,cr) A-AÔ.fS^A-i), 
(c0....,cr)eC’-+1

and
Gr(C,x) = F#(s;° A • • • A S*r, V.(C,x)).

Here S*° is, say the xo-fold smash product of the simplicial circle S} = 
A#[1]/9A#[1], and F. is the simplicial mapping space. Then, as before,

THH.(C) = hohmGe(C;x) (2.3.9)
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with realization THH(C).
If C is the category of free A-modules of a given rank n, then THH(C) 

is obviously equal to THH(Mn(A)). By Morita invariance, cf. proposition 
2.6.5 below, this is équivalent to THH(A). If C = 3^, the category of free 
A-modules, then the fc-simplices of THH(C) consists of matrices of varying 
sizes. By adding zéros in a suitable way to get them to hâve equal size, one 
does not change anything up to homotopy, so THH(C) ~ THH(A) also in 
this case. (The reader can easily supply the argument by constructing the 
required homotopies, step by step). More generally, if C = Ta is the category 
of finitely generated projective modules, then by adding compléments to 
modules and zéro homomorphisms, one gets (as pointed out in [DM2]):

Lemma 2.3.10. For the category of finitely generated projective modules 
THH(Ta) ~ THH(A). □

The construction THH#(C) is clearly a cyclic set, so THH(C) has an S1- 
action. The équivalence in the above lemma is actually a Coq équivalence. 
This can be seen upon using subdivisions and lemmas 3.10-12 of [BHM].

In general one may associate to C the simplicial FSP:

Lc(X) = Il V <?.W(C1,C2).
C!ec c2ec

Then THH(C) ~ THH(LC) cf. [DM], lemma 1.6.22, so (2.3.9) is not really a 
generalization. It is however a very convenient formulation, as we shall see 
in the next chapter, and Lc(X) is not functorial in C.

Remark 2.3.11. The ring (pre)spectrum Ls associated to an FSP is very 
spécial: it has a strictly associative multiplication, and for commutative L 
it is strictly commutative. Most of the (pre)spectra which otherwise appear 
in algebraic topology do not hâve such a “strict” structure—they are merely 
“homotopy everything associative” (Aqo-spectra) or “homotopy everything 
commutative” (Eoo-spectra). Recently Elmendorf, Kriz, Mandell and May 
hâve recast the category of Aqq and Eoo-spectra into what they call £-rings 
and commutative £-rings, [EKMM]. Such an animal E has an associative 
product p&: E A& E -+ E. There is no (strict) unit for pc, but one may 
still define THH(E) by imitating the algebraic construction Z.(A) of (2.3.1), 
forgetting the degeneracy operators, cf. (2.2.1). ([EKMM] also introduces 
S-rings and product ps - E /\s E -> E with a unit, and show that the two 
categories are équivalent, so for S-rings one has THH.(E) with degeneracies). 
More importantly for this paper, Jeff Smith has pointed out that each £-ring
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E gives rise to an FSP. Thus FSP’s are rich in supply also from the point of 
view of Ao© and Eoo-spectra.

In the rest of the paper ail FSP’s will be assumed to be O-connected.

2.4 Cyclotomie spectra.
This section constructs from THH(L) an equivariant S^-spectrum with extra 
structure, a socalled cyclotomie spectrum.

Let G be a compact Lie group. For any finite dimensional G- 
representation space V we write Sv for its one point compactification, and 
if X is a G-space, OYX for the (based) mapping space F(SV,X) with its 
conjugate G-action.

Roughly speaking a G-spectrum T is a G-space T with a spécifie delooping 
T(V) for each G-representation, so that T and üvT(V) are G-equivalent (or 
even G-homeomorphic). However, due to the many G-automorphisms of V, 
some real care is needed to make consistent définitions. (For example, the 
signs which show up for spectra when G = 1 blow up to become éléments in 
the Burnside ring of G).

We shall here follow the approach to G-spectra given in [LMS], and we 
give a brief account before introducing the concept of cyclotomie spectra. Let 
G be a compact Lie group and U a “complété G-universe”, i.e. an infinité 
dimensional G-vector space with a G-invariant inner product which contains 
each finite dimensional représentation of G.

A G-prespectrum indexed on U is a collection of G-spaces t(V), one for 
each finite dimensional G-space V CU together with a transitive System of 
G-maps

ct: t(V) Qw-vt(W)

Here W — V dénotés the orthogonal complément of V in W. It is a G- 
spectrum if the structure maps a are ail homeomorphisms. A map f:t->t' 
of G-prespectra consists of G-màps f(V): t(V) -> t'ÇV) which commute 
strictly with the structure maps. The category of G-prespectra indexed on 
U is denoted GPU and GSU dénotés the full subcategory of G-spectra. The 
forgetful functor l : GSU -> GPU has a left adjoint L. It is given by the 
colimit over the structure maps

U(V) a lim iïw~vt(W), 
wcu

provided that each a is an inclusion, i.e. induces a homeomorphism onto its 
image. (This can always be arranged by thickening up t, to such a prespec- 
trum tT, cf. [HM], appendix A).
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Suppose C is a closed subgroup in G with quotient J and T e G SU. There 
are two possible notions of an associated fixed point spectrum in JSUC, in 
[A], [LMS] denoted Tc and $CT respectively. Their V’th spaces are

TC(V) = T(V)C, $CT(V) = lira QwC~vT(W)c, V = VC (2.4.1)
wcu

and the structure maps are the évident ones. Since T(y) = Çlw~vT(W) 
when V G W the replacement of a C-equivariant map from Sw~v to T(W) 
with its induced map on C-fixed sets induces a map sc : Tc -4 $CT. If 
T = Lt, then $CT(V) = limfi^^^)0, see e.g. [HM], lemma 1.1.

In the case G = 1, the concept of prespectra differ from the usual one 
in that it is indexed on finite dimensional vector spaces, rather than on just 
the positive integers n (or Rn). But the two categories are équivalent; the 
relationship is similar to the relation between a category and its skeleton 
category. The category of spectra is similar to what used to be called Q- 
spectra, where one just demanded that a be a homotopy équivalence. The 
functor T H LT* brings us from fl-spectra to spectra.

We need a few further results. It can ail be found in [LMS], chap. 1-2, 
but the reader which is not accustomed with spectra should first consult [A] 
to get oriented in the subject.

Let G C H be a, closed subgroup. There is a pair of adjoint functors 

i* : G SU -+ GSUh, i. : GSUH -> G SU

with i* the obvious restriction, and

i.(T)(W) = lim Qv~w(T(Vh) A Sv~vH).

Here V runs over the finite dimensional G subspaces which contain W. Given 
a based G-space X, E°°(X) G GSUG dénotés its suspension spectrum, i.e. 
the spectrum associated with the prespectrum V »-4 Sv A X for V C UG. 
Then i*(E°°X) = S^X is the corresponding equivariant spectrum in G SU.

Maybe the most important construction in the category of spectra is the 
transfer. Given T G GSU and a free G-space E, the transfer is a map

r: j*TNGE+ -> f^Ad^T^E+)G.

Here j : UG -4 U, Ad(G) the adjoint représentation and S~AT is the func­
tion spectrum F(SA,T) or the equivalently internai delooping (E”AT)(V) = 
TÇA^V). It follows from [LMS], theorem IL7.1 that r is a homotopy équiv­
alence. Indeed, II.7.1 proves the resuit when T = j*T0, Tq G GSUG. The 
general case follows because the natural G-map

j.j*T AE+-^T AE+
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is a non-equivariant homotopy équivalence, hence as E is G-free a G- 
equivariant one.

The second resuit we need is that “induction” and “coinduction” agréé, 
cf. [LMS], theorem IL6.2. Let T e GSUH. and let L = T{h}{G/H) be 
the tangent space at the base point {H}, with its //-action. There is a 
G-equivalence

w : F(G+, XLT)H G/H+ A T.

See also [HM], sect. 7. In our applications G = S1 or is finite, and H C G is 
finite. In this case we get the équivalences

r: ^AfT KG E+ ^j*(T N E+)G, 4
ur. ^aF{GIH^,T)^G/H+AT l >

with A = R if G = S1, and A = 0 if G is finite.
The smash products above are to be taken in the category of spectra: if 

X is a G-space and t a G-prespectrum then t A X± is the prespectrum whose 
V’th term is t(V) A X±. If T is a G-spectrum then T A X+ := L(X+ A IT). 
It is worth pointing out that

SC(TAX+) -g ^CT N XG.

This follows from the équivalence ^CT ~g $ct, mentioned above.
We will now fix G to be the circle group S1. Write C(n) for the one- 

dimensional représentation where z e S1 acts as multiplication with zn, and 
take

w= ® C(n)a.
n£Z,a€N

If C C S1 is cyclic of order c then Uc C W is precisely the summands with 
n € cZ.

Next we consider the homotopy fiber of sc- Tc -> $CT when C is a 
cyclic p-group. Let j i UG -> Uc be the inclusion of the G-trivial universe 
and let £> be a J-spectrum. We call j*T with its J-action forgotten for the 
underlying non-equivariant spectrum D. The following is proved in [HM], 
sect. 1 or in [BHM]:

Proposition 2.4.3. Suppose C is a cyclic p-group. For any S1-spectrum T 
there is a cofibration sequence of non-equivariant spectra

^icp
ThC^Tc (^T)G/G”.

Here The = EC+ Ne j*T is the homotopy orbit spectrum. □
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The cofibration sequence of proposition 2.4.3 is the C fixed point of T A 
(EC+ -> S° -> EC). One identifies the terms by use of (2.4.2) and the easy 
fact that (T A EC)Cp —^ $cpT, cf. lemma 4.1.2 below.

The circle G = S1 has the nice property that any S^C-space X can be 
viewed as an S^space by identifying 51 with S1 /C via the |C|’th root map 
pc : S1 —> S1/C. We call this S'1-space p^X}. We can also use pc to view 
51/C-spectra as S^spectra. Indeed, given an S^C-spectrum D indexed on 
Uc we hâve the S1-spectrum p^D indexed on PqUc, with

p^D(V)=p*cD((pë1)*(V)).

In our case
Pc^C = ® On/c)=U 

aEN,n€cZ

so p^D becomes an S1-spectrum, again indexed on U.

Définition 2.4.4. A cyclotomie spectrum is an S^-spectrum indexed on U 
together with an S^equivalence

rc: p^cT-^T

for every finite C C S1, such that for any pair of finite subgroups the diagram

Pcr$Cr Pc.$C‘T — Pc„.®Cr‘T

pg^T -^4 T 

commutes.

The cyclotomie condition is analogous to the property of free loop spaces: 
(AX)C = AX, and indeed the Sx-suspension spectrum E^^AX) is easily 
seen to be cyclotomie.

More generally, THHX (L) induces a cyclotomie spectrum for every FSP. 
We proceed to explain this. Let us write THH(L;V) instead of THHS (L). 
It is the realization of a cyclic space, so gets an S^action from this structure. 
On the other hand, being a functor in V (or Sv) it has a second S^action, 
and altogether an S1 x ^-action. We write t(L)(y) = THH(L; V) equipped 
with the diagonal S^action. This defines an S^prespectrum and we let T(L) 
be the associated equivariant spectrum, T(L) = Lt(L).

Actually, it is not very hard to see that the adjoint of the natural map

Sv A THH(L; W) THH(L; VeW)
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is a (7-equivalence for each finite subgroup of the circle, so that T(V) ~c 
THH(L; V), cf. [HM], proposition 1.4.

In order to describe the cyclotomie structure maps rc we use the sub­
division operator sdc introduced in sect. 2.1. For a cyclic space Z9, sdcZ9 
has a simplicial C-action, and its realization \sdcZ9\ an R/cZ action which 
extends the C = Z /cZ action. The homeomorphism

D: \sdcZ.\ 4 \Z.\

becomes an S1-map when R/cZ is identified with R/Z = S1 by division with 
c.

We now define a simplicial map

r'c : sdcTHH.(L; V)c -+ THH.(Z; Ve)

for each cyclic subgroup C C S1. Let c = |C|. With the notation of sect. 2.3, 
the r-simplices of sdcTHH(L; V) is the homotopy colimit

sdcTHHr(L;V) = holim G^1)c_1(X;x)
xeK-H).

where

G* (L-, x) = F(SX° N---\SX‘, L(SX°) A • • • A L(SX‘) A Sv).

The c-fold diagonal Ac : /r+1 -4 f(r+1*c gives a C-equivariant inclusion

hohmG^+jj.iCL) o A(7 -4 hdjmG^).^!) 
jr+l I(r+l)c

which induces a homeomorphism of C-fixed sets, and for x € /r+1,

Gcv(r+1)_i(L)(Ac(x))

= F((SX°)M A • • • A (S1')1'*, L(SXOŸC} A • • • A HS1")^ A Sv)

where Y^ is the c-fold smash power, and the action of C is by cyclic per­
mutation of factors; then (yW)c is the diagonal copy of Y.

The above formula is quite similar to the identification of sdcN*y (G) = 
N^ÇE; Gc) explained in sect. 2.1, but this time there is no diagonal homeo­
morphism

△c: ^?{G) ^(sdcN?(G))c.

Even in the linear case of Z9(R) we do not hâve such a map since A(r) = 
r® • • - ®r is not linear. However there is a map in the other direction. Indeed, 
given any two pointed C-spaces Fi and I2 one has the obvious map

r^FCn.yjj^Fcy^if)
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which restricts a C-equivariant map to the induced map on the C-fixed points. 
This gives a map

Te'- G(Vr+1)c_1(L,Ac(x)) 4 G^L,*), x € F+1 

and induces a simplicial map

r'c : sdcTHH.(L; V)e -4 THH,(L; Ve).

Taking realization and composing with the inverse of the homeomorphism D 
we hâve obtained

rc : THH(L; V)c -> THH(L; Ve).

This is S1-equivariant, when one identifies the S^C-action in the domain 
with the S1-action via pc, so induces an S1-map from

p^ct{L)(W) = lim fi^-^THH^; V)c
veu

into
T(L){W) = lim n^-^THH^; Ve).

veu
Since $CT(L) = $ct(L), we do get a map

rc-.p**cT(L)^T(L)

of S1-spectra. This is an S1-équivalence by [HM], proposition 1.5, so we hâve

Theorem 2.4.5. For every FSP the S1-spectrum T(L), induced from the 
prespectrum THH(L; V), is cyclotomie. □

The essential point in this and the next chapter is the spectrum T(L), 
but only considered as a spectrum in the usual sense equipped with an action 
of S1. To separate out this, let me introduce the notation TH(L) for this 
weakened form,

TH(L) = T(L) | Us' = j*T(L), j : Us^ 4 U.

The reason for introducing the extra notation is to underline the fact that 
TH(I)AE+ and j*(T(L)/\E+), j : Uc 4 U are quite different. If for example 
E is S^free then (TH(L)AÊ+)C ~ 0 whereas (T(L)^E+)e ~ TH(L) Ac E+ 
by (2.4.2).

We shall continuously use the following spécial case of proposition 2.4.3; 
we call it the fundamental cofibration sequence

TH(L)hCr„ -4 TH(L)c’n -^ TH^)0»-1. (2.4.6)
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2.5 Cyclic homology of cyclotomie spectra.
Given any FSP we saw in the last section that the S^spectrum T(L) associ- 
ated to the prespectrum THH(L; Sv) cornes equipped with an S1-équivalence

rc:p^cT(L)^T(L).

We now use this structure to define a new functor TC(L), the topological 
cyclic homology of L, initially defined in [BHM].

Let I be the category where objects are the natural numbers, obi = 
{1,2,3,...}, and with two morphisms R^Fr - n -> m, whenever n = rm, 
subject to the relations

Ri = Fi = idn
RrR8 = Rrsi FrFa = Fr8 (2.5.1)
RrF8 = FsRr.

For a prime p, we let Ip be the full subcategory with oHp = {l,p,p2,...}. 
A cyclotomie spectrum T defines a functor from I to the category of non- 
equivariant spectra. Indeed when n = Im we hâve two commuting maps

Ri,Fi: TCn -> TCm.

Here TCn and TCm are considered as ordinary (non-equivariant) spectra. 
The map F^ called the Frobenius map, is simply the inclusion of fixed points 
(Cm C Cn). The map Ri, called the restriction map, is the composite

Ri : T0' = (p*Tc)Cm ^{p%$cT)Cm

where C = Ci and sc- Tc -> $CT is the map from (2.4.10), and where rc 
is the cyclotomie structure map.

Définition 2.5.2. If T is a cyclotomie spectrum, then

TC(T; p) = holim Tc*a, TC(T) = holim TCn.

For a functor with smash product L, we write TC(L) = TC(T(L)) and 
similarly for TC(L;p).

The homotopy limit which defines TC(T;p) may be formed in two steps. 
First we can take the homotopy limit over Fp (resp. Rp). Since Rp and Fp 
commute, Rp (resp. Fp) induces a self-map of this homotopy limit, and we 
may take the homotopy fixed points. More precisely, let

TR(T; p) = holim Tc”‘, TF(T; p) = holim Tc”‘. (2.5.3)
Rp Fp
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Then Fp induces an endomorphism of TR(T;p) and Rp an endomorphism of 
TF(T;p), and

TC(T;p) ~ TRCTjp)^^* ~ TF^jp)11^*.

The homotopy inverse limit of a string of maps • • • 4 Xn -4 Xn-i 4 • • • is a 
homotopy équivalent to the categorical limit provided each map is a fibration. 
Here {Fp) is the free monoid on Fp and Xh^F^ dénotés the (Fp)-homotopy 
fixed points of X, or in other words, the homotopy fiber of id - Fp. This was 
the définition used for TC(T;p) in [BHM].

There is a similar description of TC(L). Let

TR(T) = holim TCn, TF(T) = holim TCn, (2.5.4)
R F

then
TC(T) = TR(T)àF = TFCT)**,

where hF dénotés the homotopy fixed set of the multiplicative monoid of 
natural numbers acting of TR(T) through the maps F81 s >1. The inclusions 
{1} C Hp C I induce maps

TC(T) -4 TC(T,p) -4 T.

The following theorem, basically due to Goodwillie, cf. [HM], sect. 3, tells us 
that TC(L) is not really a stronger functor than the collection TC(L,p) for 
ail primes p.

Theorem 2.5.5. The projections TC(T) -4 TC(T;p) induce an équivalence 
ofTC(T) with the fiber product of the TC(T;p)’s over T. Moreover, the 
functors agréé after p-adic completion, TC(T)p ~ TC(T;p)£. □

Remark 2.5.6. T. Goodwillie has introduced the following alternative défi­
nition of TC(L) which has the advantage of allowing an integra! description 
of Waldhausen’s reduced A-theory, cf. [G5].

The fixed set TH(L)Cn has the natural Sx/Cn-action so each ^TH(L)Cn 
is a spectrum with an S1-action (an S1-spectrum indexed on Usl). If n = rm 
then

Fr: p%TK(L)c” p*TH(L)c~

satisfies
Fr(0rx) = 0Fr(x), 0 e S1.

Let M be the semi-direct product

M = {(r,0) | r e N, OeS1, 0r = rOr}.
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It acts on
TR(L) = holimp^nTH(L)c».

R

Goodwillie defines:

TC(L) = TR(L)hM = (TRCL)^1)^,

and shows that its p-adic completion is équivalent to TC(L,p)£.

In later chapters we shall be concerned with the calculation of TC(L) 
primarily for the FSP Â associated to a ring, cf. (2.3.3). In this case we write 
T {A) and TC (A) etc. instead of T(Â) and TC(Â).

Since T(L) and its fixed points are (—l)-connected spectra, TC(L) is 
always (—2)-connected. In [HM], sect. 2 we calculated the component groups 
iroT(A)Cpn, and in particular:

Theorem 2.5.7. For a commutative ring A, there is a natural isomorphism

I: W(A,p) 4 7r0TR(A,p)

where W(A, p) dénotés thep-typical Witt vectors. Moreover, the self map F 
on TR(A,p) corresponds to the Frobenius map of Witt-vectors.

It follows that we hâve the exact sequence

TC0(A,p) -4 W(A,p) ^ W(A,p) —> TC_i(A,p) —>0

for the two lowest dimensional homotopy groups of TC(A,p). The left hand 
arrow is often injective, but not always.

Addendum 2.5.8. For finite subgroups H C K oî the circle, there is a 
map S^1(S1/1C+) -> Y.^ÇS1 /H+), namely the Thom collapse map of an 
equivariant embedding G/H C G/K x V. It induces a map of spectra

F^fr^lH^nA)) -4 F^\SX IK^T{A}}S\

that is a map
V: T(A)H T(A)K,

well-defined up to homotopy. In particular we get

V: 7roT(A)c’n 4 ^^(A)^"*1
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Theorem 2.5.7 extends to the statement that there is an isomorphism

/: TToïW’”* A^(À,p)

into the p-typical Witt vectors of length n + 1 with ttqF, ttqR and ttqV corre- 
sponding to Frobenius, Restriction and Verschiebung, cf. [HM], theorem 2.3.

We close with two remarks of homotopy theoretic nature.

Remark 2.5.9. Given an £ or S-ring E (cf. 2.3.11), the direct construction 
THH(E) from [EKMM] is not cyclotomie. The price one pays for making 
the spectrum multiplication y: E /\s E -> E associative is that there are no 
“diagonal fixed points” under the cyclic group action on the S-smash powers, 
and this prevents the cyclotomie property. Passing to Jeff Smith’s associated 
FSP È is one way around this. There might be other ways.

Remark 2.5.10. For a commutative FSP L, one can iterate the construction 
TC(L) to obtain TC(n)(i) for each n > 1, cf. [HM], sect. 3.6. In view of the 
calculational results of sect. 4 below it is an interesting challenge in homotopy 
theory to study TC(n)(Fp) and TC(n)(Zp).

2.6 The cyclotomie trace.
We begin by defining the K-theory of an FSP. Given L we can consider the 
associated infinité loop space

QL= limfî^S^).

The components
itqQL = lim 7txL{Sx)

is a ring, and we dénoté by GLi (L) C QL the subspace of invertible compo­
nents. This is by définition a group-like monoid.

We let Mn(L) be the FSP of n x n matrices over L defined as

Mn(L)(X) = F(n+,n+ A L(X)\ n = {1,... ,n}

and set GLn(L) = GLi(Mn(L)), again a group-like monoid. Direct sum of 
matrices give maps

GLn(L) x GLm(L) -4 GLn+m(L)
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which induces a monoid structure on the disjoint union of the BGLn(L). Its 
group-completion is K(L), that is:

c»
K(L) = Qb(U BGLn(L)j ~ BGLM(I)+ x Z, (2.6.1) 

n=0

where the superscript + is Quillen’s plus construction.
If A is a unital ring, and A the associated FSP, cf. (2.3.3), then ttoQ(Â) = 

A, and the natural map QA —> A is an équivalence. It follows that

BGLn(Â) 4 BGLn(A)

is an équivalence, and in turn that

K(Â) 4 BGL(A)+ x Z = KÇA)

is an équivalence. Thus KÇÂ) is just another model for Quillen’s Æ(A)-space 
(the version where Ko (A) = Z, rather than the projective class group).

If L is the FSP G ot (2.3.4) associated to a topological group-like monoid 
G, then K (G) is a model for Waldhausen’s A(BG), again the version with 
7r0A(BG) = Z.

The space K(L) is an infinité loop space, that is, it is the zero’th space 
of a connective spectrum which again will be denoted K(L). The deloopings 
are not as concrète as the deloopings of TH(L) and TC(L) above. One has to 
use the abstract machinery of Segal’s F-spaces or the équivalent machinery 
May’s operads, or the original approach of Boardman-Vogt.

The cyclotomie trace from [BHM] is a spectrum map

tre: K(L) -> TC(L).

It is highly technical to construct, so I shall here only give a rough outline of 
the ideas involved to the extend it throws light on the définition of TC(L). 
The interested reader can consult the original source, and [HM], sect. 1.6 for 
the équivalence of the abstract F-space delooping of TC(L) and the concrète 
one above.

I begin by recalling K. Dennis’ trace map in the linear situation,

Tr: K(A) ^HH(A) (2.6.2)

Remember here that HH (A) dénotés the topological realization of the stan­
dard cyclic abelian group Z.(A). We proceed simplicially, and consider

AT.GLnU) -S ^(GLn(^)) A Z.(Mn(A)) (2.6.3)
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with 

1(91, - ,9r) = (go,9l,- - ,9r), 90 = (91... gr)-1 

S(g0,... ,9^ = go®---®gn-

We hâve the simplicial map

Iï<n> : Z.(Mn(A)) 4 Z.(A), 

^(Xo ®-" 0^) = yXo(io,ii) ® • • • ®Xr(î,.,io).
(2.6.4)

It induces a homotopy équivalence 

Tr(n) : HH(Mn(A)) -^> HH(A). (Morita invariance)

Indeed, if z: A —> Mn(A) is the inclusion which maps a € A into the matrix 
with a on the (1,1) entry and zéro elsewhere, then the simplicial map

^.(i): ^.(A) ^ ^.(Mn(A))

induces a map from HH(A) to HH(Mn(A)) which is an inverse to Tr^n\ 
Consider the composition of (2.6.3) and (2.6.4):

TY.: W.(GLn(A)) ->Z.(A) 
Trr = Tr<"> o Sr o Ir- s^Xn)

where so is the degeneracy operator in Z,(A). It is easy to check that 

W.(GLn(A)) --------------------► AT.(GLn+1(A))

Z,(A}

is commutative, so the topological realization of Tr. induces the map in 
(2.6.2).

The above linear trace map can be generalized to give

tr: K(L) -> THH(L)

for each FSP, but two issues hâve to be addressed: GLn(L) has no strict 
inverses and (2.6.3) does note make sense a priori in THH#(L).

There is a standard way to get around the lack of strict inverses by group 
completing the monoid, see below. For now we simply use (2.1.8):

|ryBGLn(L)| ~ ABân(L)
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and replace |/.| by the inclusion of BGLn(L) into the free loop space as the 
constant loops. The second map

S.: ^yGLn(L) -> THH.(L)

maps a string (^o, • • • ,9r) into the smash product #o A • • • A pr 6 THHr(L) 
upon thinking of each p, as a limit of maps SXi -> Mn(L)(SIi). Finally we 
hâve Morita invariance:

Recall our convention that two S^-spaces are called Coo-equivariant if they 
are connected by a string of S1-maps which induce équivalences of C-fixed 
sets for every finite subgroup of S1.

Proposition 2.6.5. For every FSP there is a C^-equivalence

THHx(Mn(L)) - THHX(L)

which defines a C^-équivalence of the associated equivariant spectra 
T(Mn(L)) andT(L).

Proof. I briefly sketch a proof, modelled upon the linear case treated above. 
This approach is different from the one of [BHM]. Details can be found in a 
forthcoming paper by C. Schlichtkrull, [Sch]. See also [DM2]. We can rewrite

Mn(L)(X) = nVW

and hâve the subfunctor

Wn(L)(X) = VVL(X).

It is an “FSP without unit”. We can restrict the simplicial space

THH.(L; V) : Aop -4 spaces (THH.(L; V) = THHf (L))

to the subcategory of injective maps in Aop, i.e. we forget degeneracy opera- 
tors and consider THH.(L; V) only as a A-space (presimplicial space) in the 
sense if [RS]. Then THHe(Wn(L); V) is defined, and the inclusion of A-sets

THH.(Wn(L);V) ^THHe(Mn(L);V)

induces an équivalence upon applying the realization functor || • || of A-sets. 
On the other hand, the projection

||THH#(Mn(L);V)|| |THH.(Mn(L); V)|
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is a C-equivalence.
Second, suitable évaluation defines a map from Wn(L) to L, analogous to 

the linear situation

ev: HomÂ(A®n,A) 0 A®n -> A,

and we can imitate the map of (2.6.4) to get

tr(n) : THH.(Wn(£); V) -+ THH.(L; V),

This induces the required équivalence. □

The resulting trace map, valid for any FSP, tr: K(L) -> THH(L), is 
Bôkstedt’s topological version of Dennis’ trace map. It is far from obvious, 
however, that tr is a map of spectra. See the final paragraph of this section.

It is time to explain how to lift the topological Dennis trace into the 
fixed sets TH(L)C of the finite subgroups C C S1. Suppose first that G is a 
(topological) group.

The simplicial map (cf. 2.1.7)

5c : N,(G) -S N^(G) ^ sdcN?(G)c

has topological realization homotopic to

5C:BG^+ ABG ^(KBG)C, Ac(A(0)) = A(0C)

where c = |C| and I is the inclusion into the constant loops.
For a subgroup Go C C, the composition of ôc with the inclusion of 

(ABG)C into (ABG)C° is equal to ôCo since Ac leaves constant loops in­
variant. On the simplicial level it is therefore not surprising that there is a 
natural homotopy between 6c0 and the composition

|]V.(G)| ^ isdcA^G)!0 ^4 |sdc^(G)|Co -^ |sdCoW.cy(G)|Co

where D is the subdivision homeomorphism of lemma 2.1.6. Thus if we write

Fc/Co : \sdcN^(G)\c -4 |sdCo^(G)|Co

Rc/Co : |S<fcC(G)|c A |sdc0^y(G)|c% Rc/c0 = A^ 

we hâve
Fc/Co °ôc ~ 5c0, Rc/Co ° &c = 6c0 (2.6.6)
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with a specified homotopy in the first relation. There results a diagram 

lim |sdc^y(G)|c

lim ^dcN^ÇG^0

which is homotopy commutative via a specified homotopy équivalence and 
thus a map

<5: |7V.(G)| 4 lim |sdc^y(G)|c (2.6.7)

into the homotopy fiber of F - id.
We want to apply (2.6.7) to G = GU(L), so must generalize to group-like 

topological monoids where I. a priori does not exist.
The standard way to overcome the lack of strict inverses is to group 

complété the topological monoid: there are functors G G^ and G H G\ 
and natural transformations G 4- Gy G* which induces équivalences of 
the constructions N9( ) and N*y( ) when G is group-like. Here G^ is a free 
monoid and G* is a topological group, cf. [BF, p. 331] or [G2], sect. 1.1.8. 
Consider the homotopy pull-back

B'G holim \sdcN^(G^)\c

l».(ff')l -t holim |sdc^cy(GA)|c

where 6h is the composition of ô with the inclusion of lim into holim,

When G = Gù(L), the simplicial map

S. : N?(GLk(L)) -> THHe(M*(L))

is cyclic in the sense of Connes, and the induced maps on C-fixed sets com­
mute with the F and Æ-maps. One gets a map

holim |sdc^y(GU(L))cpF —► holim |sdcTHH.(M*(L))c|hF .

The target is TC(M*(L)). It is by (2.6.5) and (2.4.6) équivalent to TC(L) 
Thus we hâve for each k a string of maps

trc: BGL* ^ B'GU(L) -4 TC(M*(£)) ^4 TC(L)
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which in turn induces a map from K(L) to TC(L), the cyclotomie trace.
In order to see that tre is in fact a map of spectra, one uses e.g. Segal’s 

T-structure on IIBGU(L) and a corresponding structure on UTHH(Mjt(L)), 
cf. [BHM], sect. 4. Finally, the associated abstract delooping of TC(L) and 
the concrète one from sect. 2.5 agréé by [HM], sect. 1.6. I return to a different 
solution to this in the next chapter, but it is in order to mention that the 
r-space approach is based upon the following

Proposition 2.6.8 ([BHM]). For a product of FSP’s there is a C^- 
equivalence

TH(Li x L2) - TH(Li) x TH(L2). □

3 The relative theorems
The end resuit of this chapter is a proof of the following conjecture from [G5]: 
Let /: Li -► L2 be a map of FSP’s such that ttoLi —> itqLq is a surjection of 
rings with nilpotent kernel. Then

KÇL.) ------ > TC(Li)

K(L2) ------ > TC(L2)

becomes homotopy Cartesian after profinite completion.
The proof proceeds in three steps, due to Dundas-McCarthy [DM1], Mc­

Carthy [Mc] and Dundas [D], respectively, and uses Goodwillie’s black magic: 
calculus of functors, [G3], [G4]. The exposition is based on these papers and 
on [DM2]. I hâve had invaluable help from B. Dundas with some of the 
details below.

3.1 Calculus of functors.
Calculus of functors is a general procedure, devised by Goodwillie, for proving 
relative theorems as above. The reader is referred to [G3], [G4] for more 
details.

We shall consider certain functors

F: s*sets -4 {prespectra}

from the category of simplicial sets (or spaces) to the category of prespectra. 
I here use prespectra indexed only on Rn, not the coordinate free ones of 
May.
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The functors we consider are supposed to satisfy the following two axioms:

(i) A homotopy ft: X± -> X2 induces a natural homotopy 
F(ft):F(X1)^F(X2).

(ii) For each X 6 s#sets and each prime p, the modp homotopy groups 
satisfy

^(FPOjFp) = limiriF(X(a);Fp) 

where X^ runs over the finite subcomplexes of X.

Condition (i) implies that F is a homotopy functor; (ii) is called the p-limit 
axiom.

Given such an F and a fixed (X, x) € s*sets* there is a new functor on 
s#sets*, namely

$ (K) = fib(F(X VF) 4 F(X)).

Consider the commutative diagram

$(K) ------ > $(C+y)

1 1
$(C_F) -------> S^AK)

where C±Y are the two cônes in the reduced suspension S1 AK. The standard 
retractions of the cônes induce retractions of the two off diagonal terms, and 
in turn a map

^(y)-»^^1 AK). (3.1.1)

The homotopy colimit of these maps is called the differential of F at 
(X,x). More importantly for our purpose we hâve

Définition 3.1.2. The dérivative of F at (X^x) is the prespectrum whose 
n’th term is 

9xF(X)(F) = ^Sn)

and with structure maps

S'AVW) -> ^F(X)(Kn+1)

being the adjoints of (3.1.1).
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For example the dérivative of the functor

F(X) = S°°(X£)

of the suspension spectrum of the n-fold Cartesian power of X is

dUTO = VSOCW-1)

We next define Goodwillie’s concept of analytic functors. The simplest 
ones are the linear functors. They are the homotopy functors which map a 
homotopy coCartesian square

y* --------> y{2}

YW ---------- * y{1.2}

into a homotopy Cartesian square

L(Y9) -------> Z(r{2})

M^n)-------> L(y{112}),

and has F(*) ~ *.
Here homotopy Cartesian and homotopy coCartesian means that the 

canonical maps

y0 ^hoiim(y{1} 4 y{1>2} <- y{2})

y{1,2} 4- hoiim(y{1} 4ï0 4 y{2})

are équivalences.
To define the concept of analytic functors, one needs to consider n- 

dimensional cubes of spaces and spectra, i.e. functors

X: f(S) —> C, C = s.sets, {spectra}

from the category of posets of the finite set S. If S .= n, then X is called an 
n-cube. Generalizing the above, X is called k-Cartesian or fc-coCartesian if

X(0) A holim X, ?0 = ^S) - {0}
?o(S)

X(S) À holim X, ?i = ?(S) - {S}
Ti (S)
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are fc-equivalences.
Given U CT C S the face d^X is the T — U cube given by 

d£x(y)x(y u u).

We shall consider strongly coCartesian cubes, that is, cubes X where each 
2-dimensional face d^X is fc-coCartesian for ail k. This implies in particular 
that the total cube is homotopy coCartesian.

Définition 3.1.3. A functor F: sesets —> {spectra} is called stably n-excisive 
if the following statement En(c, k) is true for some numbers c and k:

En(c,K): Given any strongly coCartesian (n 4 l)-cube X with X(0) 4 X({s}) 
ks-connected and ks > k, then the (n -F l)-cube F(X) is (-c 4- Eks)~ 
Cartesian.

Définition 3.1.4. A homotopy functor F is called p-analytic if for some q, 
independent of n, F satisfies En(np - q,p+V) for ail n.

Let (A, P) be a pair of a unitary ring and an A bimodule P. For each 
based simplicial set Y. € s#sets* we hâve the simplicial ring

(A x P^Y.) = A® P(Y.\ P(Y.} = P[Y.]/P[*.]

with multiplication

(a1,pi)(a2,p2) = (aia2,aiP2 + Pia2).

We shall see in sect. 3.3 below that the realization of the simplicial functors

H 4 hF(Æ(A © P(K)) -4 Æ(A))
[r ] hF(TC(A e P(Yr)) TC(A))

both satisfies En(—2 — n,0) for ail n; thus they are (—l)-analytic; hF = 
homotopy fiber.

The main theorem of Goodwillie’s about analytic functors is the following

Theorem 3.1.6. Suppose 6 : F -+ G is a natural transformation between 
p-analytic functors such that dx0(X) : dxF(X) -4 dxG(X) is an équivalence 
of prespectra. Then for every (p 4- l)-connected map Y -> K in s.Sets*, the 
diagram

F(Y) -------► G(y)

F(K) ------ > G(K)
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is homotopy Cartesian.

The cyclotomie trace of sect. 2.6 defines a natural transformation between 
the two functors in (3.1.5), which turns out to satisfy the conditions of the 
above theorem after profinite completion, cf. sect. 3.2 and sect. 3.3 below, so 
theorem 3.1.6 implies that

K(A^P{Y.)^ ------- ► TC(AeA(y))A

1 1 (3-1.7)

Æ(A)A ------- ► TC(A)A

is homotopy Cartesian, where the upper horizontal line is calculated degree- 
wise. Indeed, the homotopy fibers of the vertical arrows are the relative 
théories of (3.1.5), and they vanish for Y9 = *., so agréé by the theorem.

3.2 K- and THH of additive split exact categories.
In this section C is an additive split exact category, e.g. the category of 
projective modules Ta over a ring, or its subcategory S'a of free modules.

Recall that Waldhausen in [W3] associated to C a simplicial set (in fact 
a simplicial category) S.C- The r-simplices of objects in SrC is the set of 
diagrams

Ci ~ C2 ~ C3 ~ Cr

C12 >—► C13 Clr

C23 C2r (3.2.1)

cr_1>r 
with

0 “^ Cij “^ &ik ~> Cjk “> 0

a (split) exact sequence. Thus SrC = 0 for r = 0, S\C = C, and in general 
SrC is the category of flags involving r objects with choice of quotients.

The objects of S.C form a simplicial set where do forgets the first row 
(divides out Ci) and where di contracts the flag by forgetting Ci and the row 
Ci^. The degeneracy operator Si inserts an extra Ci, so for example «o and 
«i from SiC = C to S2C sends C to 0 >—► C and C ^ C, respectively.
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The nerve of the isomorphism category iS9(C) of flags defines a bisimpli- 
cial space

[s],[r]^Ns(iSrC).

The loop space of its realization is Waldhausen’s définition of K(C),

K(C) = ü\N.(iS.C)\ (3.2.2)

(of course, Waldhausen’s définition applies to much more general situations). 
In order to relate this to the previous définition of K-theory, recall from 
sect. 2.2 that we can realize the double complex in two steps. Let us first 
realize the r-direction. There is an obvious map

A1 x N^iS^C)) |N,(iS.C)|

(the inclusion of the 1-skeleton), and since SoC = {0}, it factors over

<r: S1 A Nt(iSiC) -> |2V,(iS.C)|.

Realizing the s-direction and adjoining cr we get a map

|JV.(C)|a^)n|]V.(iS.C)| (3.2.3)

which turns out to be a group complétions cf. [W3], sect. 1.6. When C = S^ 
then oo

ijv.wi=n bgl"(a)
n=0

so the above définition of K-theory agréés with the earlier one from sect. 2.6 
in this case.

The iterated degeneracy operator in the s-direction defines a map

s: N0(iS.C) Ns(iS.C)

with a one-sided inverse d^ and gives a map

s: |K0(iSeC)| ^> |^(iS.C)|. (3.2.4)

Corollary 1.4.1 of [W3] States that (3.2.4) is an équivalence. Thus one can 
recast (3.2.2) as

K(C) S Q|obS.C| = n|[r] —> SrC\. (3.2.5)

When C = “Pa, the projective modules, then (3.2.4), and (3.2.6) below, implies 
that

K0(?x) = ^JobS.^I ^ ff^obSA) = KoW,

the projective class group of the ring A.
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The S. construction can be iterated, and defines a (—l)-connected spec­
trum whose (n — l)’st term is f)|ob5^C|. The natural maps

| ob S?-1^! 4 fi| ob sin)C| (3.2.6)

are équivalences for n > 1, cf. [W3], proposition 1.5.3, so the S#-construction 
deloops K(C) beyond the first step

^(C)±nn|obS?)C|, n>l.

We now turn to THH(C), following [DM2]. We hâve already presented 
the définition in (2.3.9), and can try to imitate the two key results above, 
(3.2.3) and (3.2.4), for 2V.(—) replaced by THHe(—). In fact, since THH(—) 
is already a spectrum, one expects that (3.2.3) be an équivalence, and this 
indeed happens. Here are some details.

We can think of (3.2.2) as

K(C)=fi|[r]4|JV.(iSrC)||

and can similarly consider the simplicial space

[r ] -4 THH(SrC) = |THH.(SrC)|

which we dénoté for short THH(S.C). There are maps

a: S1 ^ THH(C) 4 THH(S.C)
s: THHo(SrC) 4 THH.(SrC) 

defined as above.

Theorem 3.2.7. ([DM2]) The maps a and s define équivalences

(i) THH(C) ^4 n|THH(S.C)|
(ii) lim nn|THH0(S?)C)| A lim Qn|THH(S?)C)|

Proof of (i) (sketch). The proof is modelled upon [W3], proposition 1.53. 
Consider the functor SnC -> Cn which to the flag (3.2.1) associâtes the n- 
tuple (Ci, C12,... , Cn-i,n)« It induces an équivalence

THH(SnC)-^THH(C)n.

This is an application of Morita invariance and (2.6.8): the trace of a trian- 
gular matrix only dépends on the diagonal entries.

Now recall for any simplicial space X. the simplicial path space con­
struction P9X9. It has n-simplices PnX9 = Xn^i and face and degeneracy
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operators are shifted up by 1. The extra degeneracy sq: Xn -> Xn^i not 
used in P9X9 gives an équivalence |P#X#| ~ Xq? so |P#X.| is contractible 
when Xo consists of a single point. Moreover we hâve a sequence

of simplicial sets upon considering Xi the constant simplicial space. We now 
hâve for each r the diagram

THH(C) -------► THH(PrS.C) -------- > THH(SrC)

THH(C) -------► THH(C)r+1 -------- > THH(C)r

so the sequence

THH(C) —> THH(PeSeC) —> THH(S.C)

is a degreewise homotopy fibration, and hence becomes a homotopy fibration 
after realization, since THH(—) is équivalent to an abelian group complex, 
see (3.2.8) below. Finally |THH(P.S.C)| ~ *. □

The proof of (ii) is more délicate and requires some rewritings of THH(C) 
which we now présent. We hâve for each number x the simplicial abelian 
group

C^OhCi) = Homc(co,ci) 0Z(SJ) = C(x0,xi) ® Z(S®)

and associated simplicial sets, one for each r,

K,.(C,x)= \/ ^(co^jA^fcb^A-A^^.c,.!))
Co,.«« fCrEC

where 6 dénotés the diagonal in the stated multisimplicial set. There are 
simplicial maps

Vr,.(C,x) Avç-uc.dix)

and we let

THHr,.(C) = holim s,C(6S?> A • • • A SJ'.^.^x)).

Here s.C is the simplicial mapping space. This gives a bisimplicial set 
THHr>s(C) whose realization is the THH(C) defined in sect. 2.3.
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We now vary the définition by replacing V^.(C,x) by

V®.(C,x)

= © Cx°(c0,cr)®^CX1(c1,c0)M--*Cx'(cr,^^
co, -- ,cr€C

= ® Cx°(co,cr)®Z(Cxi(c1,coïï®---®Z(Cc^^

and write THH®#(C) for the corresponding bisimplicial abelian group. The 
inclusion of VM(C,x) in K%(C>x) induces a simplicial map

0. : THH.(C) 4 THH®(C) (3.2.9)

which is an équivalence. This follows from lemma 2.3.7, the well-known 
isomorphisms

^M(K) ~ Hi(Y] M) ^ ^X{Y A M{SX)\ i < x,

and because the inclusion of the wedge in the product (direct sum) is 2^^ — 1 
connected.

Recall that S2C is the category of (split) exact sequences in C. The 
morphisms are commutative diagrams

0 ------ > Co --------> Ci --------> C2 --------^ 0
h h

0 ------ > C^ --------> C[ --------> c^ --------> 0

We use the notation (/o»/i»/2) for this morphism. The simplicial functors

do,di,d2» S2C —> C — S±C

induce simplicial maps

do,di,d2-. THH®(S2C) -> THH®(C)

and we hâve (in préparation for the proof of theorem 3.2.7 (ii))

Lemma 3.2.10. For each r, there are naturel transformations

T^ : THH® (C) -> THH®(S2C), 1/ = 1,2

such that

doT^ = id, d2T™ = 0 = d^T^, diT™ = diT^, d2T^ = sJ o dj.
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Proof. Given objects c = (co,... , cr) € Cr+1 and morphisms ao € C(co, cr), 
a* 6 C{ck,Ck-i) for k = 1,... ,r we define objects A^ = A^(c,a) of S2C

A^1’ : 0 —>Cr Cr ® Ck ^Ck —► 0

A<2) : 0 —> Cr (-^4 Cr ® Ck ^^ Ck —> 0

where ^k = ai+i • ■ • ar for 0 < k < r and ^r = 1-
With these notions we define t^

t?h sX(Sï,Vr®(C,x)) -4s.C(SJ)V®(S2Cix))

t<2h s.C(S*,V®.(C;x)) -> s.C(S*, V®. (S2C;y))

where y = (io H------ 1- ir,ii H------ F xr,... ,xr) and S* = S*° A • • • A S^. If 
(xo,... , ir) = (0,... , 0) the formulas are:

^(ao®--®^)
= (1, (a°0 0 ) ,ao) ® (1, (k® ) ® • • • ® (1, (à a°J ,«r)

4^(ao^> • • • ® «r)

= («.-^(li),")»Wi.').«i)»"®(i,«i).«-).

For general x, one needs to replace Cx(c, d) by the équivalent seC(c, d®Z(Sx\) 
and one must use suitable suspension maps

s.C(c, d) A s.C(c 0 Z(Sy), d 0 t(Sy^

in order to define both A^(c,a) and t^. Details are left for the reader to 
carry out, who can also consult [DM2]. We set

T^ = holim^ : THH®(C) 4 THH®(S2C).

These are the required maps, and the required relations are obvious to check.
□

We assumed C to be an additive split exact category, so S2C is équiva­
lent to C x C: there are functors both ways whose composites are naturally 
isomorphic to the identity. Indeed,

S2C (‘^ CxC, CxC ’^’ S2C

are the two functors. One composite is the identity; the other sends each 
object to an isomorphic object, and one may easily construct the required 
naturel isomorphism.
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Functors such as THH®(C) does not map équivalent categories into ho­
motopy équivalent spaces (check e.g. r = 0). However the composite functor 
THH®(S#C) does hâve this property.

Lemma 3.2.11. Let go,gi : C -+ V be naturally isomorphic functors between 
exact categories. Then there is a simplicial functor

G: △[!]• XS.C-+S.V

which restricts to S. fa and S.fi at the two ends. Here △[!]• is the simplicial 
1-simplex considered as a discrète category. □

The lemma is proved in [W3], although only stated on objects. Since 
simplicial homotopies are preserved by functors, the induced maps

THH®(S.C) =4 THH®(S.P)

are homotopic. In particular

THH®(S.S2C) ~ THH®(S.C x S,C).

Consider a functor X from additive exact categories to simplicial or topo- 
logical groups with X(0) = 0 and X(C x P) AX(C) x X(V). Let Y(C) = 
K(S.C), a bisimplicial abelian group. Then

di ~ do + d2 = K(S2C) —> K(C) (3.2.12)

where di = Y Çdi). This follows from the homotopy commutative diagram

Y(S2C) Y(C x C) ^^ Y(S2C)

Y(C) x Y(C)

The right hand triangle homotopy commutes because it does so after com- 
posing with the équivalence do x d2, d2$o = 0 = doSi. The left hand triangle 
commutes because pfr xpf2 is a homotopy inverse to ii +i2. Finally the hori­
zontal composite is homotopic to the identity by lemma 3.2.11, and di (so+si) 
is equal to addition.

The functor THH®(C) does not preserve product, but the functor

Xr(C) = lim n‘THH®(S?’C) (3.2.13)
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does. This is formai and true for any functor Z with Z(0) = 0 as the map of 
multisimplicial sets

Z(S^k)C x S^k)C) -> Z{SÏk}C) x Z(S(.k)C)

is an isomorphism when the sum of the 2k simplicial degrees is less than 2k 
(because SoC = 0). In particular the map is 2fc-connected.

Proof of theorem 3.2.7 (ii). With the notation from (3.2.13) hâve from 
(3.2.12)

di ~ do + d2 : Xr(S.S2C) -4 Xr(S.C).

Lemma 3.2.10 can be applied to Xr as well as to THH®, and shows that the 
composition

Xr(C)^Xo(C)-$Xr(C)

is homotopic to the identity. Indeed

id = doTr(1) + ^Tï*1’ = diTr(2) ~ ^jTr<2> + d2Tr(2) = ^sj.

The other composition is obviously the identity.
Thus X.(C) is a simplicial space in which the simplicial structure maps 

are ail homotopy équivalences; for such X0(Q ~ 1^(01 □

Theorem 3.2.7 allows a slick définition of the topological Dennis trace

tr: K(C) -4 THH(C),

namely as the composite

O|S.C| 4 Q|THH0(S.C)| -4 n|THH(S.C)| - THH(C) (3.2.14)

where the first map is induced from sending an object C € SrC into idc € 
Homs.c(C,C).

We can introduce the spectrum TH(C) either by iterating the S9- 
construction or by introducing a dummy variable similar to what we did 
in the case of THH(L). The corresponding deloops (spectra) are équivalent 
by the standard argument which makes use of both deloops:

THH^C) ~ nnTHHsn(Sin)C) ~ THHS"(C)

(cf. [BM] sect. 1).
If we use the itération of the S.-construction to define the spectrum, then 

it is obvious that the map in (3.2.14) is a map of spectra.
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Later in the chapter we shall consider THHe(C; M) where M: C° x C -> 
Ab. It is defined by replacing Vr®(C,x) by

^(CîM.xJx^^^a)®^'^.^®-®^^,^-!). (3.2.15) 

If C is the catetegory of projective or free modules and M is an A-bimodule 
then

Mx°(co,Cr) = HomA(co,cr ®a M)
extends to a functor on S.C, and the proof of theorem 3.2.7 extends word for 
word to give

THH®(4,M) ~ limnp(|THH^(S?)J’A,M)|).
P

Moreover, in this linear situation, one can omit the homotopy colimit over 
xo in the définition of THH®. Indeed, for any number x

Hom4(û, b) —^> 8*7 a (a 0 Z(S®), b 0 Z(S® )) 

A s.Sets* (s:, s.yA(û, b ® Z(s:)))

where S. = &[x]9/d is the simplicial x-sphere, and Hom^^jô) is considered 
the constant simplicial group, cf. [Ql]. We hâve proved

Corollary 3.2.16. For an A-bimodule M,

THH(A, M) ~ lira Qp 0 Hom(c, c ® M)
P cES^Ta

Remark 3.2.17. If we let x = 0 in (3.2.15) we obtain a bisimplicial abelian 
group Vr® (C, M, 0) which is constant in the «-direction. Following [DM1] we 
write

Fr(C,M) = Vr,0(C>^0)^ ® MCco.cJ. 
cr—►•••—tcoENrC

The homotopy groups of \F9(C,M)\, or equivalently the homology groups 
of the associated chain complex F*(C,M), is usually denoted H*(C-,M) and 
is called the (non-additive) homology of C with coefficients in M. Dundas 
and McCarthy proves theorem 3.2.7 for this functor by an argument almost 
identical to the above. The diagram

n^lF.CS^’TA;^)! ------- » fi^lTHH®^!00’^; Af)|

î~ b

n^lFoCS^iM)! —^-> n^lTHK^S^’^iM)!
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then shows that 7rJHH(A;M) S H*{Ta,M). This is a spécial case of a 
theorem due to Pirashvili and Waldhausen, [PW].

3.3 Stable K- and TC-theory.
Let A be a ring, V an A-bimodule and A x V the semiproduct ring. We 
may replace V by the (n - l)-connected simplicial A-bimodule V(S”) and 
consider the simplicial ring A k V(SJ). This can be thought of as a small 
deformation of A. We want to measure the différence between K ÇA) and 
K(A ik V(S?)).

Recall from [Wl] that K-theory of a simplicial ring R* is defined as

K{R.) = ns ( JJ BGLn(B.) ] = Z x BGLOO(H.)+ (3.3.1) 
\ n /

where GLn(Bt) C Mn(B.) is the group like simplicial monoid of ma­
trices which map to invertible matrices in Mn(7ToBe), and BGLn(B#) = 
|]Ve(GLn(Be))|. Alternatively we can use (2.6.1) for the FSP

Ê.(X) = |[p]->W|

Indeed K(R9) ~ K (R*). There is another, more straightforward possibility, 
namely to consider the simplicial monoid GL(B.) with p-simplices GL(Bp). 
This leads to degreewise Æ-theory, |[p] -> Æ(ÆP)|, which however is not a 
homotopy invariant of R9, and does not agréé with (3.3.1) in general.

For a map of (simplicial) rings R9 -> S9 we write

K (R. -> S.) = hF^^.) -à K{S9)\

Lemma 3.3.2 ([G2]). Let R* be a simplicial ring and I9 G R9 a {degreewise) 
square zéro idéal. Then

K (R. -4 R./I.) ~ |[p] -4 K(RP -> Vp)|'

(There is a little gap in the argument from [G2], lemma 1.2.2 where it was 
used without proof that the diagram

BGL(B.) -------> BGL(K.)

BGL(B.)+ -------► BGL(B.)+ (Quillen’s plus)
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is homotopy Cartesian. This was repaired in [FOV]).

Définition 3.3.3 ([W2]). The stable JC-theory K8ÇA;V) is the functor

K8(A;V) = lim Qn^K{A x V(S^) -4 A) 
n

The limit System in the définition, i.e. the maps from K (A®V(S.) -4 A) 
to ilKÇA^VÇS^1) -4 A), are the ones given in (3.1.1). KSÇA\V} is a 
spectrum whose k’th space may be given by replacing the (n + l)’st loop 
space in the définition by the (n + 1 - fc)’th loop space.

The lemma above shows that we might as well hâve defined the stable 
JC-theory degreewise as

K8ÇA,V) = limn^Kr] —> KÇAk VÇS^ -4 A)| (3.3.4)
n

which is the point of view to be used below.
The reader can note the resemblance of K8 with the algebraic “tangent 

space” of JC-theory:

TKÇA,V} = KÇA^V A).

In KSÇA,V) one has further made V “small” by passing to the simplicial 
setting, where one can make V “close to the 0-module” upon replacing it 
with 7(5”), which “approaches 0” in the homotopy sense asn 4 oo. Further 
details on stable JC-theory can be found in [K].

The above can be generalized to the setting of FSP’s. Indeed, let L be 
an FSP and M a module over L as in sect. 2.3. One defines

ÇL x M[n])ÇX) = LÇX) V (Sn A M(X))

(one could also use L(X) V M(Sn A JC) as the two définitions give stably 
équivalent FSP’s).

K8(L; M) = lim Qn+1Æ(L x M[n] 4 L)
, x (3-3.5)

TC’(L;M) = lim nn+1TC(L x M[n] -> L).

The topological Dennis trace

tr: K(L,M)->TH(L,M)

factors over K8(L,M) and long ago, Waldhausen conjectured that the re- 
sulting map

KS(L; M) TH(L; M) (3.3.6)
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is an équivalence.
The rest of the section is a présentation of the Dundas-McCarthy proof 

of (3.3.6) in the linear situation, corresponding to L = À, M = V, the FSP’s 
associated with a ring and a bimodule, and of Hesselholt’s corresponding 
resuit for TC.

Consider the category !P(A, V) of pairs (P, a) of a projective A-module 
P and an A-linear homomorphism a : P -ï P ^a V. The morphisms from 
(P, a) to (P',a') are maps f: P -> P' such that

P®aV

^ P'®AV 

are commutative.
The Æ-theory of T(A,V) will be denoted Kcy(A;V); in the simplicial 

setting we make the following

Définition 3.3.7. For a simplicial A-bimodule V9, 

^(^V.) = |[r] ^ W;Vr))|.

Clearly, K'^jI^) = K(A) and we set ^(AjV.) = hF(Æ(A;V.) -4 
K (A)). Lemma 3.3.8. There are homotopy équivalences

(i) K (A * V. -» A) ~ KQy{A^V.{S^

(ii) ÆS(A;V) ^olimn^Æ^A,!^^

Proof. The second statement follows from the first since N.V(X.) = V(SJ A 
X.), so we hâve left to prove (i).

Since we are considering the relative groups, we may replace ?(A, V) by 
^(A, V) in the définitions. But

oo

N.^v) ~ JJ N.fim&v) 
k=l

(3.3.9)

where m^v is the full subcategories of pairs (A*,a), a € M*(V) and where 
i indicates that we are only considering isomorphisms. An r-simplex of
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N.(imk^{A^ V)) is determined by a string (aoî A, • • • ? fk) with fi € GU(A) 
and qq € M*(V). Thus

N.{imk3'(A,V)) ^ ^(GU^jM^V)) (3.3.10)

upon sending (a0; /i, • • • , /*) into ((/i ■■■fk) 1,fi,... , fk), cf. (2.1.1). From 
(2.1.10) we hâve

^(GU^TV.MjtO = W.(GL*(A * V)) (3.3.11)

so, extending (degreewise) to simplicial modules V», and taking group com­
plétions, the resuit follows.

Theorem 3.3.12 ([DM1]). For any A-bimodule M, the trace defines an 
équivalence

K8(A, M) THH(A, M).

Proof. We use the model THH® for THH. Indeed corollary 3.2.16 gives

THH(A,M) - lim Qp Homs(P) (C, C 04 M)

By définition

Kcy(A,M) = np|/<(S?)3’G4,M))| = fi”

with ? = ?4. We shall compare these définitions when M is replaced by 
the simplicial bimodule W9 = M(S*), M applied to the simplicial n-sphere. 
Both functors are defined degreewise

THH(A, W.) = |[r] 4 THH(A;Wr)|
Kcy(A,W.) = |[r] -> Æcy(A; Wr)|.

Actually, we are interested in the relative functor Kcy(A)W9). Consider the 
coCartesian diagram

|Uc€S?)? Homs(P) (C, C 04 W*)|

|-/|sl”f|

ces^’æ Homs(P) (C, C ®x IV.

-------> IS?*?!

|-/|S‘”?|

-------► ♦
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Each of the spaces are at least (p — l)-connected, since the Se-construction 
applied to any category adds one to the connectivity. It follows the vertical 
homotopy fiber is (2p — 2)-equivalent to the space [S^PI which was divided 
out, and hence that the vertical homotopy fibers agréé in the same range. 
Since p » 2n, it follows that

kcy(A-w.) ~2n w Homs(P)(C,C0^.) 
C€S[P)?

It is clear from the définition of trace given in (3.2.11) that it (under the 
équivalences above) corresponds to the natural inclusion

y Homs(p) (C, C 0 a W.) -> Q Homs(P) (C, C 0a W9).
ces!p)æ ces^œ

This map is (p + 2n)-connected. Indeed, the inclusion of a wedge of n- 
connected spaces into the product is 2n-connected, so the corresponding map 
indexed over SrP^T is (2n + l)-connected. Thus the homotopy fiber of the 
map in question is a bisimplicial set F#)# with |Fr>e| (2n 4- l)-connected for 
r >p and |Xr,.| contractible for r < p (since |S?'| is (p — l)-connected. The 
standard spectral sequence

Hr(H8(F.,.)) => H^ÔF.^

is zéro for r < p and s < 2n + 1, so gives the connectivity conclusion. The 
theorem now follows from the équivalences

KS(A;M) = ho^nn+1Æcy(A;M(S?+^

TH(A;M) = holim Q^THGtîMtS;*1)). □

We remark that the above proof also contains a proof of

Addendum 3.3.13. For a simplicial A bimodule V.,

(i) ^(^V.) = limn” \/ Homs(P)(C,C®AK) 
p ceslp)?

(ii) Æcy(A;V(Xe)) = lim Q* 
p

Homs(,)(C,C®4V.)~(X.) . 
ces^’æ
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Theorem 3.3.14 ([Hl]). For any FSP L and L-bimodule M, the profinite 
complétions ofTC8(L;M) and TH(L;M) are équivalent.

Proof (sketch). Recall from (3.3.5) that

TC^L; M) = lira Qn+1TC (L x M[n] 4 L)

where L x M[n] is the FSP

(L x M[n])(X) = L(X) V (Sn A M(X)).

We may décomposé

(L(SX°) V M[n](Sx°)) A • • • A {L{SX^ V M[n](Sx'))

into a wedge, and collect the factors which contain a given number of copies 
of M[n](Sx). This gives a décomposition of cyclic spaces

oo
TH(L k M[n]) = \/ Ta(L-,M[n])

a=0

with To(L;M[n]) = TH(L). Moreover Ti(L;M[n]) is a simplicial spectrum 
whose k-simplices has exactly one copy of M[n], but sitting at any of the 
(k 4-1) positions available, i.e.

T^L; M[n])k = Cw + A TH(L; M[n]).

The realization of this cyclic space is S|aTH(L; M[n]) with its natural action 
of S1 (in the first factor), so

T^L; M[n]) = S} A TH(L; M[n]).

The cyclotomie structure map Rp maps

Rp-. Ta(L-,M[n]f'r ^Ta/p(L-,M[n]}c^-'

if p|û and trivially otherwise. By (2.4.6) this map is (na — l)-connected. 
Hence if (k,p) = 1

Tp.k(L-,M[n])c^ -kp^ Tk(L-,M[n])c^-,

and again by (2.4.6), Tk(L-, M[n])cr,,'~* — Tk(L; M[n])kCpT-,, which is (kn — 
l)-connected (as Tk contains k copies of the (n — l)-connected M[n]).

We are only interested in the range < 2n, so Tkp.(L;M[n])crr can be 
disregarded when k>l. Thus by theorem 2.5.5,

/ / oo \Cr' \A

TC (L x M[n] -4 L)^ ~2n-i I holim ( \] Tp. (L; M[n]) I I .
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TC (L k M[n] -^L)^ l holimTi(L; M[n])cp'

Moreover,

R^ : Tp. (L; M[n])c"r ~2„_i Tx (L; M[n]f>~’ for r > s

and Tp.(L; M[n])c>,r ~2n-i 0 if r < s. Hence

/ \ C r

( V Tp. {L-, M[n|) ] -2"-! V 7i (L-, M[n])c>' = ]] Ti (L; M[n])c^
\s=0 / t=0 t=0

(as we work with spectra, there is no différence between finite wedges and
finite products). The Bp-map corresponds to projection on the first r factors, 
so

(
oo \ Cpr oo

\/ Tp. (L-, M[n]) = JJ îi(i; Mln])^
r s=0 / t=0

and by (2.5.4) one concludes that

A

P

The action of S1 (and hence Cpt ) on

T^L; M[n]) = S^ A TH(L; M[n])

is free, and in this case the action can be divided out, so

holimT^L; M\n\f^ ~ hofim (S1/^ A TH(L; M[n]))

where the limit on the right is via transfers (in the suspension spectrum 
S°°(S/Cpt+)). If we identify S1/Cpt = S1 then we obtain a (co)fibration of 
limit Systems:

TH(L;M[n]) -------> S^ A TH(L; M[n]) -------- > S1 A TH(L; M[n])

TH(L; M[n]) -------► S^ A TH(L; M[n]) -------- ► S1 A TH(I; M[n])

This implies a cofibration in the limit. Since

holim(TH(Z,; M[n]),p)^ ~ 0

we are finished. □
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3.4 McCarthy’s theorem.
The présentation in this section is my writeup of lectures given by McCarthy 
in Aarhus, July 1994.

Theorem 3.4.1 (McCarthy). Let R -> S be a surjection of rings with 
nilpotent kernel. Then the diagram

K(R)* ------- ► TC(Æ)A

Æ(S)A ------- ► TC(S)A

of profinitely completed spectra is homotopy Cartesian. In particular

K(R^ S)* ~TC(R-+S)\

The obvions induction shows that it suffices to prove the theorem when 
the kernel is a square zéro idéal; this will be assumed in the rest of the section.

Associated to a simplicial ring R. we hâve the FSP

Ê.(X) = |[s]4^(X)|.

We write TC (K.) instead of TC(Be). If R* -> K, is a simplicial équivalence 
(i.e. |Æ#| 4 |ffj a homotopy équivalence) then the induced map of FSP’s 
R* —> #i is a stable équivalence in the sense that

lim Qn(Æ.(Sn)) -> lim Qn(ÆL(Sn)) 
n n

is an équivalence, and in this case

tc(æ.)^tc(æ;)
cf. sect. 2.6, so TC(Bt) only dépends on the homotopy type of R*. On the 
other hand, we hâve the possibility of calculating TC degreewise. In contrast 
to K-theory where the two définitions do not agréé in general we hâve

Proposition 3.4.2. TC(fi.) ~ |[s] —> TC(-RS)|.

Proof. Since

nno+-+nfc |[s] ^^n,) A ... A ^(S”* )| ~

|[s] -> On»+-+n‘(Ê8(Sno) A • • • A Ê,(Sn‘))|
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we see that the topological Hochschild spectrum TH(Be) can be calculated 
degreewise:

TH(Â.) ~ |[s] ->TH(Â,)|.

The fundamental cofibration sequence of proposition 2.4.3 then shows that 
the same assertion is true for fixed sets

TH(Â.)c> ~ |[s] TH(Ês)c’n |

and upon taking inverse limit

TF(Æ.,p) ~ |[s]^ TF(Â„p)|

cf. (2.5.3) for notation. There is a salient point here: realization does not 
in general commute with homotopy inverse limits; however in the above sit­
uation it does as TH(ÆS) ~ QTHH(ÆS; S1), so TH(BS) is équivalent to a 
Kan simplicial set. For such, realization do commute with homotopy inverse 
limits.

Finally the homotopy fibrations

TC(Æ., p) —> TF(Ê., p) ^ TF(Æ., p)

TC(Æs,p) —> TF(Æ„p) ^TF^.p)

show that TC(Æt,p) can be calculated degreewise. Now apply theorem 2.5.5 
to obtain the resuit for TC(Æt). □

Lemma 3.4.3 ([G2]). If the theorem is true in the spécial case where R is a 
semi-direct product ring R = Ax M and S = A then it is true in general.

Proof. Goodwillie associâtes to S a simplicial ring $t(5) with a simplicial 
map $.(S) -> S (when S is regarded as the constant simplicial ring) such 
that

(i) $r(5) is free associative for each r

(ii) | #•(£)! -^ S is an équivalence.

Indeed, $.(5) is the simplicial ring with $r(S) = {FGY^1 {S) where G is 
the forgetful functor from rings to sets and F its left adjoint free functor: 
$.(S) is the “bar-construction”, cf. [G2], sect. 1.1.6. Write A. = $•(£) and 
consider the (degreewise) pull-back

B. ------- > A.

P I*

R ------- > S
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Then M = ker(B. -> â.) is the constant idéal M = ker(B -4 S). Since <^, 
and hence ^, is an équivalence

K(R -4 S) ~ K(B. -4 A.),

The latter can be calculated degreewise by lemma 3.3.2,

K(B. -4 A.) - |[r] 4 K(Br -4 Ar)|.

Now Ar is free, so Br 4 Ar is a split surjection, and hence Br = Mr x Ar. 
With the assumption,

K(Br -> 4)A ~ TC(Br -4 4)A

so in conclusion

K(B -4 A)A - |[r] -4 TC(Br -4 4)A| - TC(B -4 A)A

by the previous proposition. □

The idea behind the proof of theorem 3.4.1 is to use calculus of functors 
on the cyclotomie trace

tre: K (A k M(X.) 4^ 4TC(àk M(X.) -> a)

cf. sect. 3.1. First we need:

Proposition 3.4.4. For any ring A and bimodule M,

(i) X. -4 K{A k M(X.))
(ii) X. -4 TC(A x M(X.))

are (-l)-analytic as functors from based simplicial sets to spectra.

Proof. For Æ-theory we can use the équivalence of lemma 3.3.8(i),

K (A x M(X.) ->a")~ Kcy(A, M(X. A Sj))

and the general fact that a functor

F: s.sets* -4 {spectra}

is p-analytic if (and only if) F((—) AS^) is (p— l)-analytic. The latter follows 
directly from the définition of analyticity. Indeed if F is say O-analytic, and X 
is a strictly coCartesian (n+l)-cube with X(0) -4 X(s) k,-connected (k, > 0)
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then the suspended cube has æ(0) A S1 ^ X(s) A S1 {k8 + l)-connected, so 
by assumption

a: F(X(0) AS1) -» hofim F(X(S) AS1) 
s^

is (q + ^(ks + l))-connected. Hence if F satisfies the condition En(—q,l) 
then F((-) A S1) satisfies En(—n — q — 1,0), so is (—l)-analytic.

To see that Kcy (A, MÇX^) is 0-analytic we use the description of adden­
dum 3.3.13:

Â"cy(A, M(X.)) ~ holim Qp | \j Homs(P) (C, C ®A M)~(X.} | .
Vcgs^t /

Given a strongly coCartesian (n + l)-cube X. For given C € S9P\ the cube

Homs(p)(C,C®4 M)~(X)

is homotopy Cartesian for each p: this is true for M(X) for any abelian M.
It follows from the dual Blaker-Massey theorem, [G4], theorem 2.6 that 

the above strongly Cartesian cube is also n + Sk8 coCartesian. Taking wedge 
over C € S^ we obtain an (n +p + Efcs)-coCartesian cube. (The extra p 
appears because S^ is (p — l)-connected, cf. the last part of the proof for 
theorem 3.3.12). By [G4], theorem 2.5, the cube

V Homs(P)(C,C0AM.)~(X) 
ces?^

is (p + Sk,)-Cartesian, and looping down p times there results a (SkJ- 
Cartesian cube. This proves (i).

The FSP associated to the simplicial ring A k M(X9) is équivalent to the 
FSP which sends Y. to Â(Kt)VM(XeAK#). Thus we hâve the décomposition 
of spectra

oo
TH (a x M(X,)^ ~ V T" Ça;M(x.)^

n=0

also used in the proof of theorem 3.3.14.
One now first shows that the functor M^(X9) = M(X9) A • • • A M(X9) 

is (—l)-analytic. This is a non-trivial task. The functor Tn Ça,M(X9)^ 
involves n smash copies of M(X.) in each degree, and is thus (—l)-analytic as 
well. Hence TH (à x M(X9)^ is (—l)-analytic. The cofibrations of spectra 

(2.4.6)

TH(A x M(X.))hCpn -> TH(A x M(X9))C^ -> TH(A x ^(X.))^"1



Ib Madsen 253

then give (inductively) that each of the fixed sets is (—l)-analytic. Taking 
inverse limit we see that

X. H TF(A x M(X.),p)

is (—l)-analytic, and then that TC(A x M(X9),p) has the same property. 
Appiy theorem 2.5.5 to complété the proof. □

Lemma 3.4.5. The functors

X. -4 K(A x M(X.Y)
X. -4 TC(A k M(X.))

satisfies the p-limit axiom (ii) of sect. 3.1 for each prime p. □

This is well-known for K-theory. The proof for TC follows the scheme 
of the previous lemma: first do TH and then induct over the fundamental 
cofibrations, (2.4.6).

We next evaluate the differential dxF of the two functors in question, cf. 
définition 3.1.2.

Lemma 3.4.6. The functors K{A^ M(X.)) and TC(A x M(X9))p hâve as 
differentials the spectrum |[p] 4 TH(A x M{XP)]M)\ and its p-completion, 
respectively.

Proof. This is really a conséquence of results in the previous section, namely 
theorems 3.3.12 and 3.3.14.

9XK(A x M(X.)) = Hmfln+1K (a x M(X. V S?) -> A x M(X,)^ .

But M(X. V S”) = M(X.) © M(S?) and thus

A x M(X. V S?) = (A x M(X.)) x M(S^

where on the right hand side the action is through the projection A x 
M(X9) -4 A. Write B9 = A x M^X*). The analogue of lemma 3.3.2 for 
bisimplicial rings shows that

K (B, x M(S”) -> B.) ~ |[p] -+ K (bp x M(S?) -> Bp) |

and by 3.3.8(i) and 3.3.12

lim fln+1K (bp x M(S^) -4 Bp^ ~

lim nn+1Kcy(Bp, M(S^)) ~ TH(BP; M).
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Similarly,

nmnn+1TC(Bp k M{S^ ~ TH(BP;M)£

by theorem 3.3.14, and proposition 3.4.2 supplies the conclusion.

Finally, one must check that the p-completion of 3xtrc induces the équiv­
alence. This follows from the following homotopy commutative diagram of 
spectra, where M. = M(S™) for an B-bimodule M:

TC(B © M.)* ^" holim S^C^ A TH(B, MJp

K(B © M^ ----- - ----- . TH(B © M.)^ ^=— ÿi A TH(B, M.)^

~2m+2

TH^M.GSX ^T S1 ATH(B,M);

The two upper vertical maps are the natural ones which map a homotopy 
inverse limit into its initial term. The right-hand vertical composition is an 
équivalence (cf. the proof of theorem 3.3.14), and the notation is

K(B ® M.) = K (B ® M. -+ B)

etc. This complétés McCarthy’s proof of theorem 3.4.1, as I hâve understood 
his Aarhus lectures.

Addendum 3.4.7. (McCarthy) Suppose f* : R* -+ S. is a map of simplicial 
rings and that tto(|/#|) is surjective and has nilpotent kernel. Then

K(R.)

K(S.\

TC(B#)A

1
+ TC(S.)A

is homotopy Cartesian.

The proof is the same with the exception of lemma 3.4.3 where one has 
to add an extra step, passing from nilpotency on the 7To-level to nilpotency 
on the simplicial ring level, cf. [G2], lemma 1.3.3.
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3.5 Dundas’ theorem.
This section gives a brief outline of the proof from [D] of Goodwillie’s con­
jecture:

Theorem 3.5.1. (Dundas). Let f:L1->L2 be a map of FSP’s with 7To(/) 
surjective and ker7r0(/) nilpotent. Then the diagram

K^L^ ------- > TC(Li)A

1 1
K(L2^ ------- ► TC(L2)A

is homotopy Cartesian.

The general idea is to approximate the FSP’s Li by FSP’s coming from 
simplicial rings, and then use McCarthy’s theorem 3.4.7 to dérivé the con­
clusion. This is similar in spirit to the cosimplicial resolution of a space 
(simplicial set) by Eilenberg-MacLane spaces.

Let X be a (k — l)-connected space (simplicial set) with k > 1. By 
the Hurewicz theorem, T^kX HkX and TTk+iX —> H^iX is surjective. 
In other words, the linearization map X —> ZX is (k 4- l)-connected. The 
relative version of this is as follows. Suppose f: X —> Y is a (fc+l)-connected 
map and X is (k - l)-connected. Then the 2-cube

(3.5.2)

zx —^ zr

is (fc 4- 2)-Cartesian in the sense of sect. 3.1.
Indeed, let C be the (homotopy) cofiber of f, and let F be the homotopy 

fiber. Then F is fc-connected and C is (fc + l)-connected, and the left hand 
vertical map is the diagram

is (k 4- 2)-connected. (This follows for example from the Serre spectral sé­
quence of the involved homotopy fibrations). On the other hand, Z(-) sends 
a cofibration into a fibration, so hF(Z/) ~ MC: apply Z the the right
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hand coCartesian square above. Since C is (k + l)-connected, (IC -> fiZC 
is (k + 2)-connected. Thus F 4 hF(Z/) is (k + 2)-connected; its homotopy 
fiber is equal to the homotopy fiber of

a: X^holim (zX^ZY<—Y

so (3.5.2) is (k + 2)-Cartesian. Roughly the same argument proves

Lemma 3.5.3. ([D]). Let X be an (n + k)-Cartesian n-cube, k> 1 sucb that 
each sub m-cube is (m 4- k)-Cartesian. Then the (n 4- l)-cube X -> ZX is
(n + 1 + k)-Cartesian. □

Starting now with a (k - l)-connected space, one can inductively define 
n-cubes 3n(X) as follows:

^-> zx

31(ï) = {x4m), 32(X)= |Ax hix

.zx Zhx > zzx

and in general
3n(X) = {3n-lW -> Z(3n-lW)} •

The lemma tells us that 3n(X) is (n 4- fc)-Cartesian. For an FSP L, each 
vertex 3n(L(X))$ defines a new FSP 3nWs with L = 3n(L)$, and with

aL(X): L(X) -4 holim3n(L)sW

(n 4- fc)-connected when X (hence L(X)) is (k — l)-connected.
One could similarly start with the functor Z9 = Z o • • • o Z instead of Z. 

It is still true that X -4 ^qX is (k 4- l)-connected for a (fc — l)-connected X, 
and one obtains corresponding cubes 3nW with ^(X) (n + ^)-connected.

Proposition 3.5.4. The map ül induces a map

TC(L)p 4 holimTC(3„(£)<
s^

which is {n — l)-connected.

Proof. Here is Dundas’ argument. It is enough to show that

TH(L) 4 holimTH(3n(Z)s)
s^
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is n-connected, since inductive use of the fundamental cofibration then gives 
the same conclusion for ail Cpn-fixed sets, hence for TF(L,p), and finally for 
TC(L,p) with n replaced by n — 1.

Now TH(L) is the prespectrum {|THHe(L; Sm)|}m, and it suffices to 
argue that

THHr(L;Sm) -> holimTHHr(Jn(L)s; Sm) 
s^

is (n + m)-connected for ail r. This is lemma 3.5.2 when r = 0. In general, 

THHr (3n(^)s; Sm) ~ S'*1 (THHr(L; Sm))s . (2)

The map is induced from the natural map

a: ZqL(Sx°) A • • • A Z“L(SX') -> Z’(r+1) (L(SX°) A • • • A L(SX')).

In turn, a is constructed from iterated use of the assembly map X A ZY —> 
Z(X A y). For example, ZX A ZF A Z(X A ZK) -^Z [z(X A Y)}. The 

équivalence statement (2) amounts to the easy fact that X A Z(Sn) —> Z{X A 
Sn) is (2n — l)-connected. To finish the proof one applies (3.5.3) with ül 
replaced by ûJ. □

The next resuit is of similar complexity but I refrain from giving the proof, 
and refer the reader to [D].

Proposition 3.5.5. The map

K(L) -> holim K(3n(L)s) 
S^

is (n 4- l)-connected. □

For S / 0, 3nWs is équivalent to an FSP associated to a simplicial ring, 
namely to a simplicial version of limQ*3n(L)s(S*) and 7To3(L)s = ?roL, so

k 
theorem 3.4.7 applies to show that

K (3n(Ll)s -4 3n(I2)s) A ~ TC (3„(L1)S -4 3n(^2)s)A

when S / 0. The two previous propositions combine to give the same for 
S = 0. This complétés my outline of theorem 3.5.1.

Let G be a topological (or simplicial) monoid homotopy équivalent to 
M, and G the corresponding FSP, so that K (G) is Waldhausen’s AÇX).
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The theorem applies to G -» ttqG = 7TiX, and to ttiX —> Z^iX]^, so gives 
a homotopy Cartesian diagram

>WA
1 ^zMr

* TC(X)A

à TC(Z[ttiX])a

(3.5.6)

The terms on the right-hand side is examined in the next two chapters, and 
a lot is known. Thus theorem 3.5.1 to some extend reduces the calculation 
of A(X) to linear K-theory.

4 The absolute theorems
This chapter outlines the proof of the theorem from [HM] that K (A) and 
TC (A) agréés after p-adic completion for a large class of p-complete rings, 
namely for the rings which are finitely generated modules over Witt vectors of 
perfect fields k of positive characteristic p. It also calculâtes TC for the FSP’s 
associated with a group like monoid, and gives the relation to Waldhausen’s 
A-functor.

4.1 General approach to TC calculations.
Since TC(L) is build out of the fixed sets TH(L)C the basic calculational 
problem is to get a hold of tt*TH(L)c for the cyclic subgroups of the circle. 
It suffices by theorem 2.5.5 to let C run over the cyclic p-groups, where we 
hâve the fundamental cofibration of sect. 2.4

^(L)^, —>TH(L)C-" ÂTH(L)cp-

to ease calculations.
Recall that TH(L) is the restriction of an S1-invariant spectrum T(L). 

In the notation of sect. 2.4, TH(L) = j*T(L) where j : Usl —> U. Moreover, 
the “géométrie fix point” spectrum $CpT(L) of (2.4.1) is équivalent to T{L) 
by theorem 2.4.5,

p%*c'T(L) ~S1 T(L).

The general approach to the calculation of ir*T(L)c is to replace T{L) by 
the function spectrum F(ES]_,T(L)), and to use spectral sequences for cal- 
culating the Gpn-fixed points of the function spectrum. This leaves us then 
for each FSP L with the problem of how close the natural map

^T(L)Cpn ^^F(ES\/T(L)}Cpn
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is to be an isomorphism. Here ES1 is the free contractible S^space

oo oo
ES1 = IJ S(C+1) = [J S2n+1 

n=0 n=0

with its standard S^-action (orbit space CP°°), and F(ES^.,T(L)) is the 
equivariant S1-spectrum whose V’th term is F(ES|,T(L)(V)), the space of 
based maps from ES\ = ES1 U {+} into the V’th space of T(L), with S1 
acting by conjugation.

Following [GM] we define for each finite p-group Cpn,

H(Cpn,T(L)) = ^F(ES^,T(L)) A ÉS1^0”" (4.1.1)

and call it the Cpn-Tate spectrum of T(L). It is an Sx/Cpn-equivariant 
spectrum indexed on UCpn. The space

oo oo
ËS1 = IJ S(C ® B) = J S2n, 

n=0 n=0

with S1-action induced from complex multiplication in Cn, is contractible 
but not equivariantly: (ES1)0 = S(R) = S° for each CCS1.

Lemma 4.1.2. For any two based Cpn-spaces X and Y, the restriction to 
Cp-hxed sets induces a weak Cpn /Cp-homotopy équivalence

F(X, Y N ES1}^ F(XCp ,YCp\

Proof. We may assume X and Y are Cpn-equivariant CW complexes, e.g. by 
replacing them with the realization of their singular complexes. The singular 
set of the Cpn space X is XCp, so X — XCp has a free Cpn -action,

X = XCpUd (UCpn+ADki).

Given </>: XCp -> YCp = (Y A ES1)^, one can extend ^ cell by cell to a 
Cpn -equivariant map from X to Y A ES1. Indeed the obstructions to extend 
lie in

^F(Cpn ^ A Ski, Y A ES1)0^ = ^F{Ski, y A ES1) = 0.

This proves that the map is surjective on 7To, and hence on 7rn by replacing 
X by X A Sn. Injectivity is similar. □
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(4.1.5)

Recall that the smash product of T(L) € S1SU and a based S^-space X 
is the spectrification of the obvious prespectrum, or concretely

(T(L) A X)(V) = lim Qw~v (T(L)(W) A X). (4.1.3)
WDV

It follows from lemma 4.1.2 that

^T(L)^Cpn [t^aÈS1')0"

and in particular that

H(C>,T(£)) ~ ^C”F (ES[,T(L))Cp"/Cp (4.1.4)

Let C Ç S1 be any subgroup. We bave the pair of adjoint functors j* and j* 
of sect. 2.4 where j : Uc 4M is the inclusion, and the maps from (2.4.2),

rc : j*T Ac ES\ -+(TA ES^)0, C finite 
rsi : Xj*T Asi ES]. -+(T A ES].)3', C = S1.

The maps fit together with the non-equivariant transfer maps 

trfg : j*T AD ES]. -> j*T Ac ES]., DdC 
trf^ : £j*T AS> ES]. -4 j*T Ac ES^ 

in homotopy commutative diagrams, namely

rc otrf^ ~ Forp, rc otrfe ^FotSi

where F dénotés inclusion of fixed sets as usual, cf. [A], [LMS].
Since ES1 = ES1 * S°, the unreduced suspension of ES1, there is an 

S1-equivariant cofibration sequence

ES\ -4 S° -4 ES1 -> S(ES^) 4 •

which induces a cofibration of equivariant spectra upon smashing it with the 
S1-equivariant function spectrum F (ES!j.,T(L)). We take Cpn-fixed sets 
and apply (4.1.4) and (4.1.5) to get the norm cofibration of [GM]:

TH(L) ACpn ES\ -4 F(ES|,TH(L))^n 4 0(0^, T(L)). (4.1.7)

By définition it appears that È(Cpn,T(L)) dépends on the full equivariant 
structure of T(L), and not only on TH(L), but this is not really the case. 
The adjunction j*TH(L) 4 T(L) induces a map

H(Cpnj;TH(L)) -4 H(Cpn,T(L))

(4.1.6)
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which also fits into the cofibration sequence above; it must be an équivalence 
by a 5-lemma argument. Thus we shall often write è(Cpn,TH(L)) instead 
of ^{Cpn^T^L)). We shall also use the costumary abbreviations

THCZ)^ = TH(L) Ac„n ES^ 
THCL)^” = F(ESl,TH(L))c^.

With these notions we hâve

Proposition 4.1.8. There is a homotopy commutative diagram of cofibra­
tions (of non-equivariant spectra)

TH(L)hcp„ —^—► TH(L)C> -^-4 TH^p"-1

TH(L)hCp„ -^ TH(L)hC^ —^ H(CP.,TH(Z))

Remark 4.1.9. The S^fixed set of TH(L) is contained in THH0(L), cf. 
sect. 2.1, and is of no relevance. In particular the upper horizontal sequence 
in (4.1.7) has no analogue for S1 fixed sets. But the lower sequence does 
hâve an S1-version, namely

ETH(L)àSi 4 TH^)*^1 -> Ê^THCL))

with the right-hand term defined by (4.1.1) upon replacing the Cp* fixed set 
by the S1 fixed set, cf. [GM].

Example 4.1.10. In the spécial case of the identity FSP, L(X) = X, T(L) 
is the equivariant sphere spectrum,

T{L)(W) ~Coo lim ^-WSW. V CUc
v

cf. lemma 4.4.4 below. In this case the diagram of proposition 4.1.7 is com- 
pletely known. Listing only the O’th terms of the spectra we hâve

TH(Id)°»n ~ n°°Soo(BCpn+) x • • • x iï™Soo(BCP+) x (Î^S00^)

TH(Id)^n ~ n~S~(BCpn+)

where Q^S^A^) = limQ*(S* A X+). The map R is the projection onto 
the last n factors. Moreover, the affirmed Segal conjecture tells us that the 
profinite complétions of Fn and rn are équivalences for ail n.
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One may get information about the homotopy groups of the terms in the 
norm cofibration by spectral sequences. Let M be a coefficient group (usually 
M = Zp or M = Fp). To ensure convergence of the spectral sequences I will 
assume that ^(T^L); M) is a finitely generated Zp-module in each degree.

The spectral sequences were set up in [BM], sect. 2 and in [GM], sect. 10; 
in [BM] by using a topological version (due to Greenlees) of the complété 
resolution in usual Tate cohomology of groups and in [GM] by the dual 
viewpoint where one uses the equivariant Postnikov tower of the spectrum. 
In our case, the spectral sequences takes the form

(i) <t (T(L)hCp„ -,M)=Ha (C^ ; *t(T(Ly,M)) => vs+t (T(L)hCp„ ; M) 
(ii) E2_s>t (T(L)hC^n -,M)=HS (C^ ; *t(T(Ly M)) =► 7rt_s (T(L)hC>n ; M) 

(iii) E\t^{Cpn,T(L)y,M)

= Hs (Cpn ; *t(T(Ly M)) => 7rt_, [Ê(CP. ; T{L)y Al)

The spectral sequences are concentrated in the upper half plane, the differ- 
entials take E^t to EJ_r f+r_x, and for commutative L the last two spectral 
sequences hâve ring structure (with the differentials being dérivations) when 
M is a p-adic ring with p odd. Since the Cpn -action cornes from an S1-action 
tt^(T(L); M) has trivial Cpn-action. Thus for p odd:

E2 (T(L)hC^ ;Fp) = E{un} ® S{t} ® tt*(T(L); Fp) (4.1.11)

E2 (Ê(Cpn,T(L));Fp) = E{un} ® S^.f1} ®7r.(T(L);Fp)

with deg(un) = (-1,0), deg(t) = (—2,0) and 7rt(T(L);Fp) sitting in degree 
(<M). a

In the above Hs, H8 and H8 dénotés group homology, group cohomology 
and group Tate cohomology. They are related by the formulas:

{
H~8 (G-, A), s<0
Hs-i(G,A), s>-l
ker (Norm: H0(G\ A) H°{G-, A)), s = -1
coker (Norm : H0(G-, A) -4 H°(G; A)), s = 0

When G = Cp* and pA = 0 then Norm = 0, so we see that

It is important for calculation of ?r*(TC(L);Fp) to identify the R-map, or 
in the setting of the norm cofibration to identify ^♦(R^). This is connected
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with the differentials in the spectral sequence for Ê(Cpn,T(L)) which cross 
over the line —s = 1/2 in Er_at. Indeed, the maps in

T(L)hC^ È(C>, T(L)) XT(L)hCpn

induce homomorphisms of spectral sequences

E^R»): ELs,t (T(L)hC’*;M) -> EL^ (ù{Cpn ,T(L)), m) 
V ' (4.1.12)

Er(9): Er_s<t (É(Cpn,T(L));M) -> ELg_1>t (T(L)hCp„-, M)

with Er(Rh) surjective for s > 0, and Er(d) injective for s < 0. In a situation 
where one can calculate the spectral sequences one will also know E°°(Rh) 
and E°°(d), and hence since the spectral sequences converge,

E°irtRh: E°v, (T(L)hC”n-, M) -> E°^ (^(Cpn,T(L))-,M^ 

E°(n,d): E°n, ^(Çp^T(L)y,m) -> E^.-x (T(L)hCp„;M)

In general this is of course not sufficient to give, say ir*Rh-, there might 
be filtration shifts. The following lemma goes a long way to overcome this 
difficulty.

Lemma 4.1.13. If a e E°7r8+t (T(L)hCpn ] M) is in the kernel of E°(7r*Rh) 
then there exists an element (3 6 7rs+t (T(L)hcpn ; M) with E?ir*(Nh)(j3) = a.

Proof. This is a spécial case of [BM], theorem 2.15. The argument can be 
outlined as follows. By assumption E°°(Rh)(a) = 0. The reason must be 
that there exists an r > s such that a belongs to the image of

<T: ^_.,t_r+i (h(Cp.,T(L));M) -» E^ ^Cp^,T(L))-,m)

say a = (T(7). Now 7 = Er(d)(0) and 0 will be an infinité cycle in 
Er (T(L)hcpn',M). Thus 0 représenta an element of E™ (T(L)hCp~\M}, 
and one can pick a suitable représentative. More details can be found in 
[BM], sect. 2. □

The ^-differential in the spectral sequences is connected to the action

A : S\ A TH(L) -> TH(L)
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as follows. The stable homotopy 7r{(S^) S tt4(S3(S|)) -^^(S4) ® ^(S3) 
is Z® Z/2, generated by the a = id and the Hopf map T). Thus we get 
operators

[S1],T7: ^(THtl^Ji+^SlATH^^^THfL)

where the first map is exterior product with a and 77, respectively. There are 
induced operations

H8 (Cpn;7rt(TH(L);M)) -> H8 (Cpn;7rw(TH(L);M))

which we can compose with the periodicity isomorphism

H* (Cpn ; i(+1 (TH(L); M)) A H‘+2 (Cp~ ; 7rf+1 (TH(L); M))

to get maps [S1]#, ^#.

Proposition 4.1.14. In the spectral sequence EJ, ^H(Cp»,TH(L));JI/j, 

the cP-différentiel

d2 : H8 (Cpn ; 7rf (TH(L); M)) 4 H8^2 (Cpn ; 7rt(TH(L); M))

is equal to [S1]#, provided q acts trivially on tt*(TH(L); M). □

This is proved in [H2] when Cpn is replaced by S1, and the above can be 
deduced from this case. The assumption that r}# be zéro is satisfied for the 
linear FSP’s L = À associated with a ring because TH(A) ~ TH®(A) is a 
product of Eilenberg-MacLane spectra.

We hâve left to consider the homotopy limit problem, i.e. the homotopical 
behavior of

rn: TH^)^-1 4 Ê(Cpn,TH(L)).
In the spécial case of L = Id it is a homotopy équivalence, but this is too 
much to expect in general. The domain is a (—l)-connected spectrum, but 
this is often false for the right hand side, e.g. when L = Fp as we shall see in 
sect. 4.2 below. The best one could hope for would be that %i(rn), and hence 
also 7Ti(rn), be isomorphisms for i > 0. This unfortunately is also not true. 
For the FSP Â associated with truncated polynomial algebras A = k[t]/(tn), 
the two sides hâve different homotopy groups in ail even dimensions; this is 
an easy conséquence of sect. 5.2. The only completely general theorem is the 
following resuit of S. Tsalidis:

Theorem 4.1.15. ([T]) Suppose

^(rj: îi(TH(L);Fp) -4 ^ (â(Cp,TH(L));Fp)
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is an isomorphism for i > io. Then the same is true for ^i(Tn) for alln> 1.
□

Tsalidis’ proof is similar to the induction step from Cp to Cp* in the proof 
of the affirmed Sega! conjecture.

Calculations from [H2] show that if 7ri(Fi;Fp) is an isomorphism in non- 
negative degrees for a ring A then the same is the case for the polynomial 
algebra A[f] and more generally for any smooth A-algebra. In [BMI] and 
in sect. 5.4 below the assumption of theorem 4.1.15 is established for A = 
W(Fpt ), with z0 = 0- Optimistically one would hope for

Conjecture 4.1.16. For a regular ring A,

^(f^Fp): TTi(TH(A);FP) -> tr (Ê^JH^));^]

is an isomorphism when i > 0.

Note that the statement is équivalent to the assertion that

rn: TH(A)c”n -> H(Cpn+i,TH(A)) [0,oo)

becomes a homotopy équivalence after p-adic completion, with [0, oo) indi- 
cating (—l)-connected cover.

4.2 The spectrum TC(FP).
This section illustrâtes sect. 4.1 by completely determining the spectra 
TH(Fp)cpn and TC(FP). The calculation was originally carried out in [M], 
but [HM], sect. 4.1-3 is a better place to look for additional details.

For any ring, THH(A) is the realization of a simplicial abelian group, cf. 
sect. 3.2, so its homotopy type is determined by its homotopy groups:

oo oo
TH(A) ~ V SnH(înTH(A)) ~ [J SnK(7rnTH(A)) (4.2.1) 

n=0 n=0

where H(-) is the Eilenberg-MacLane spectrum with i^H^B) = B and 
7TiH(B) = 0 for i / 0, and En is the suspension functor.

One may filter TH(A) by skeletons, since it is the realization of a simplicial 
construction. This leads to a spectral sequence,

£2(A) = HH*^) => ^(TH(A);Fp) (4.2.2)
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with A a = ff*(ff(A);Fp). This spectral sequence was used by Bôkstedt to 
calculate TH(FP). I refer the reader to [Bl] or [HM], sect. 4.2 for details. 
Different calculational methods can be found in [Br] or [FLS].

The 0-skeleton of TH(A) is the Eilenberg-MacLane spectrum H (A), and 
one may use the S1-action to get the map

a: Si A ffA -> Si A TH(A) 4 TH(A). (4.2.3)

For A = Fp we hâve To € 7ri(ÆFp;Fp) and can consider a* ([S1] A ro) € 
tt2(TH(Fp);Fp), where [S1] € ^rf (Si) was defined in the previous section.

Theorem 4.2.4. ([Bl], [Br]). The réduction

redp: tt2TH(Fp) -> tt2(TH(Fp);Fp)

is an isomorpbism, and

^TH(Fp) = SFp{a},

the polynomial algebra on a of degree 2 with redp(a) = ^([S1] A to). □

Combined with (4.1.11) we can explicate the E2-terms of the spectral 
sequence Êr(Cpn ; M) = Er ^Ê(Cpn, T(FP)); M^ for M = Fp, Zp to be

^(CpnjFp) = E^p{un} O Sfp{M~1} O Efp{ci} 0 SfpM

Æ2 (Cpn ; Zp) = E^p {un} 0 Sfp {t,t 1} 0 Sfp {<t}

except if p = 2 and n = 1 where the first two terms are replaced by 
SfuijUf1}. The modp Bockstein operator maps e±al to a1 for l > 0. For 
p odd, èr(Cpn;Fp) is a spectral sequence of algebras. If p = 2 there is the 
usual trouble with products in tt*(T;F2) but in ail cases, Êr(Cpn;Fp) is an 
algebra over Êr(Cpn ; Zp).

Lemma 4.2.5. The non-zero differentials in Êr(Cpn ; Fp) are generated from 
d?ei = ta in the module structure over Êr(Cpn ; Zp). In particular

7T* (jK(Cpn,TH(Fp));Fp) = EFp{un} 0 SFp{t, r1}, poddorn>l

tt. (m(C2,TH(F2));F2) SS^bbUf1}

with deg(t) = —2, degun = — 1.
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Proof. Since ei = ^(ro), tq e 7ri(ffFp;Fp) and redp(a) = ^([S1] A ro) we 
hâve in the notation of proposition 4.1.14,

[S1]#^)^, [51]#(l)=0,

and hence [•S'1]#(eicr*) = t?^1. The ^-differential then follow from (4.1.14), 
and a routine cohomology calculation gives

Ê3(Cpn ; Fp) = E^p {un} O S^p {t,t 1}

(with uj = t if p = 2 and n = 1). For degree reasons there can be no 
further differentials. For p odd (and p = 2, n = 1) this is a free commutative 
algebra in the graded sense, and the stated value of the modp homotopy is 
immédiate. If p — 2 and n > 1 one uses that the modp Bockstein on un is 
trivial. □

For n = 1, the modp Bockstein relation 0(ui) = t gives that

7r.â(Cp,TH(Fp)) = Sf/M’1}

(with t = u3 if p = 2). We next check the assumption of theorem 4.1.15.

Lemma 4.2.6. The bomomorphism

îi(ri;Fp): 7r<(TH(Fp);Fp) -t TTi (Ê(Cp,TH(Fp));Fp)

is an isomorphism when i > 0.

Proof. Since Ti: TH(FP) -> H(CP,TH(FP)) is multiplicative, it suffices to 
see that ^(f^Fp) is an isomorphism.

Continuing the cofibration diagram of (4.1.8), n = 1, to the right, gives a 
homotopy commutative square of S1-spectra

TH(Fp) —2—► Sp* (TH(Fp)hC,) Ep*TH(Fp)c>

h I* h

p*H(Cp,TH(Fp)) -^ Ep* (TH(Fp)hcP) Ep* TH(Fp)hC-

Here as usual p#? indicates that the S^Cp-spectra are to be considered as 
S1-spectra under the p’th root isomorphism S1 -> S1 /Cp,

Now a = [S'1]#(îo), so we are done if we can show that eo = ^(^îFpXro) 
is non-zero in tt0 (T^FpJ^jFp), and [S1]#(e0) / 0.
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The spectral sequence Er (TH(FP);ZP) gives 7t0TH(Fp) = Z/p, and by 
(2.5.8) 7roTH(Fp)cp = Z/p2. The fondamental cofibration thus induces the 
exact non-split sequence

0 —► îoTHfFp)^ A 7r0TH(Fp)c” A 7t0TH(Fp) —> 0

so 7ro(7V;Fp) = 0, and 7Ti(ô; Fp) must be surjective. Finally, the inclusion

rft) Ao„ Si 4 T(FP) ACp ESI

coming from S1 C ES1 induces a monomorphism on %»(—;FP) for i = 0,1. 
The homeomorphism

p* (TH(FP) A^ S^ -> TH(FP) A S^, (x,0) H ^z, 0)

map the diagonal S1-structure in the domain to the extended S1-structure 
in the range. Hence

[S1]#:7r0(p^TH(Fp)AC)(S;;Fp) (p* TH(FP) ACp $i;Fp)

must be injective. □

The spectrum TH(FP) is p-complete, and inductive use of the fondamental 
cofibration (2.4.6) implies the same for TH(Fp)c*n for each n. Thus

7r*TH(Fp)c”n = 7r* (TH(Fp)c*n;Zp).

Proposition 4.2.7. For n > 1,

7T*T(Fp)^p = Sz/pn+i^CTn]

with degan = 2. Moreover, F(an) = an_i and R(crn) = Xnpan-i with 
Xn € Z/pn a unit.

Proof. Theorem 4.1.15 shows that

f : 7r*TH(Fp)c’“ -> 7r.Ê(Cpn,TH(Fp))

is an isomorphism in non-negative degrees. For the target, the intégral spec­
tral sequence Êr(Cpn;Zp) has

Ê2 = Etp {“"} ® %{*’ *-1} ® % M-
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The éléments t and a are infinité cycles. Indeed the inclusion of 51 fixed sets 
into Cpn fixed sets gives a map

È(Sx,TH(Fp)) 4Ê(Cp»,TH(Fp))

cf. (4.1.9), and an induced map of spectral sequence. The ^-term of the 
range is

E2 (È(S1,TH(Fp));Zp]=SFp{t,t-1}®5FF{(7},

so is concentrated in even total degrees. Thus E2 = E°°. On the other hand 
it injects into the E2 above. Thus tkal are ail infinité cycles.

We daim that un survives to Ê2^1 ÇCpn; Zp) and that dPn+1(un) = 
ÿi+ian indeed, the first non-trivial differential on un must be of the form

d2^1^) = r+v

for some r. Given this it is easy to solve the spectral sequence. In particular

E°7r0H(Cpn;TH^

generated by 1, ta,... , (ta)r-1, (d?^1 (unt~ly) = (ta)r). Since
7roÊ(Cpn,TH(Fp)) = 7ToTH(Fp)cpn“1 is Z/pn by (2.5.8), we conclude that 
r = n. Moreover,

E07r2jfcÊ (Cpn, TH^

generated by ak,ak+rt,... ,ak^ntn, and 7r2fc+iH(Cpn,TH(Fp)) = 0. Since 
in addition ^k (^(Cpn, TH(FP)); Fp) is a single copy of Fp we must hâve

7r2JkH(Cpn;TH(Fp)) = Z/pn

for ail fc > 0. One more application of theorem 4.1.15 gives the stated 
homotopy groups. The inclusion F corresponds under T to the inclusion

El (Cpn+1, TH(Fp)) ^ H (Cpn, TH(Fp))

so ^(F*1) must be surjective, and we can pick the generator to satisfy 
F(an) = crn-i.

Finally the exact sequence

7T2T(Fp)c»" A7T2T(Fp)cp"-* -^7r1T(Fp)hCp» A^T(FP)C’",

with 7riT(Fp)c>>n = 0 and riTfF,,)^,. = Z/p, yields the stated value of R.

Corollary 4.2.8. TC(FP) ~ HZpW-'HZp
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0 for fc > 0
Zp for k = 0

Proof. We use the cofibration sequence of sect. 2.5,

TC(Fp,p)->TR(Fp,p)^TR(Fp,p).

The previous proposition yields

7rtTR(Fp,p) = lim7rfcTH(Fp)Cp
R 

so that
ttoTC(Fp,p) = Zp, 7r_iTC(Fp,p) = Zp

and 7r*TC(Fp,p) = 0 otherwise. Finally, TC(FP) is p-complete and by theo­
rem 2.5.5 equal to TC(Fp,p). □

4.3 The absolute theorem: linear case.
This section sketches the proof of theorem 1.3 of the introduction. It is joint 
work with L. Hesselholt, and further details can be found in [HM], sect. 4.5, 
5.1, 5.2 and [HM], appendix B.

We fix a perfect field k of positive characteristic p, and consider algebras 
A over the (p-typical) Witt vectors W(k) which are finitely generated as 
modules; for short: finite W(k)-algebras. If k is finite the assumption is that 
A be a finite Zp-algebra. We use the notation

TCi(A;Zp) = 7ri(TC(A);)

and want to prove

Theorem 4.3.1. For Gnite W (k)-algebras, tbe cyclotomie trace

tre: Ki(A;Zp) TCi(A;Zp)

is an isomorphism, for i > 0.

The ring of Witt vectors W(k) is a P.I.D and is p-adically complété. Since 
A is finite over W(k\

A = lim A/pnA, 

and we can introduce the continuous version of the functors:

Ktop(A) = holim K(A/pnA), TCtop(A) = holim TC (A/pnA).
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There are exact sequences

0 —> limwKi+1(A/pnA-,Zp) -> Fttop(X;Zp) ^ \uaKi(A/pnA-,Zp) -+ 0

0 -> lim(1)TCi+i(A/pnA;Zp) 4 TC.op(A;Zp) -> lim TCi(A/pnA;Zp) -4 0

cf. [BK], p. 249 and p. 299.
The proof of theorem 4.3.1 is broken down into three statements to be 

considered separately below:

(i) 

(ü) 

(“9

Ki(A/PA‘ Zp) A TC^A/M; Zp), 

TC^A; Zp) A TC‘op(A; Zp), 

Ki{A-,Zp) A-Æ‘op(A;Zp),

i > 0

i >0

i > 0

Indeed, given (i), McCarthy’s theorem 3.4.12 show that

trc: Ki(A/pnA;Zp) -> TCi(A/pnA; Zp)

is an isomorphism for ail z > 0, and hence by the short exact sequences above 
that

trc : A^op 04; Zp) A TC^op (A; Zp), i> 0.

Use of (ii) and (iii) complétés the proof.
I begin with (i). For A = JT(fc), Afp A = k. lî k is finite then K(k)p ~ 

HZP by [Q3]. For general perfect fields the same holds by [Kr]. We must 
therefore first extend Corollary 4.2.8 to general perfect fields. The resuit we 
need is

Theorem 4.3.2. For a perfect Seld of characteristic p> 0, there is a homo­
topy équivalence TR(k,p) ~ HW(k)

Given this, we can calculate TC(k,p) from the cofibration

TC(fc,p) —>TR(fc,p) ATR(fc,p),

since by theorem 2.5.7 we know that

7t0F: 7r0(TR(k,p);Fp) -> 7r0(TR(fc,p); Zp)

induces the Frobenius homomorphism of Witt vectors. Moreover

ker (F - id: W(k) -4 W(k)) = W(kF)
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and kF = Fp so W(kF) = Zp. Thus theorem 4.3.2 gives

0,
TCi(fc;Zp) = < Zp,

cok (F - id: W(k) -> W(k)),

i > 0
i = 0
i = -1

(4.3.3)

and hence Ki(k; Zp) S TCi(À;;Zp) for i > 0.

Proof of 4.3.2. For a perfect field of positive characteristic the usual 
Hochschild homology groups HH»(t) vanish in higher degrees, and HHo(k) = 
k. It then follows from the spectral sequence (4.2.2) that

ir,(TH(i)) =i®r,TH(Fp).

The cofibration sequence

THfk)^. ATH(k)c’" -^THtfc)^"-1

was derived from taking Cpn fixed points, so TH(fc)cpn acts on it. In particu- 
lar, the homotopy groups are ttoTH^)0*"-modules, and by (2.5.8) Wn+i(fc)- 
modules. The inclusion Fp Ck induces iyn+i(k)-homomorphisms:

(i) Wn+1 (k) 0 7riTH(Fp )hCpn -> ttJHW^
(ii) Wn^ (k) 0 7riTH(Fp )c»n -> ^TH(k)^n

(iii) Wn^(k) 0 ^THfFp)^-1 4 7riTH(fc)°^-1

Now 7riTH(Fp)cpn"1 = Z/pn and Wn+i(fc) O %/pn = WnÇk), so the domain 
of (iii) is Wn(k) 0 7riTH(Fp)cpn_1. We may inductively assume the third 
arrow to be an isomorphism. Thus we are done by the 5-lemma, if we can 
show that (i) is an isomorphism. This follows from the spectral sequence

H* (Cpn ; ^TH(k)) => ^TH^Cpn •

Indeed, it is a spectral sequence of Wn+i(fc)-modules when the ITn+iW- 
structure on the E2-term is via Fn : W^+^k) -> Wi(fc) = k and

Wn+iW ® (Fn)*7TiTH(Fp) “ (Fn)*7T.(THW).

We conclude that the homomorphisms in (i), (ii) and (iii) are isomorphisms. 
Now (4.2.8) gives

tt.TH^p” =SWn+1(fc){an} (4.3.4)

with R(an) = Xnpan-i with An € Wn(Fp) = Z/pn a unit. In conclusion,

,. fo for ♦ > 0
lim Tr.TH^pp =<„„., . .<— ^(k) for * = 0

lim(1)7r,TH(fc)c»" =0
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as the limit System is obviously Mittag-Leffler, cf. [BK], p. 256. □

Theorem 4.3.5. If A is a semi-simple k-algebra then Ki(A;Zp) = 
TCi(A;Zp) fori > 0.

Proof. Both functors preserve products so it suffices to do the case of a 
simple algebra. If A = Mn(k) then we are done by Morita invariance:

^(MnW) = Ki{k), TCi(Mn(fc)) = TCi(fc)

and theorem 4.3.2. In general, we only know that

A®* k'^Mn^')

for a Galois extension k! with |k' : k| prime to p. (The existence of such a k' 
is a conséquence of the lack of p-torsion in the Brauer group Br(k)). Finally, 
the horizontal compositions in the diagram

^i(A;Zp)

TCi^Zp)

K^A^k1^) Ki{A^p)

^-> TCiG^îZp) -^4 TCi(A;Zp)

are isomorphisms since |fcz : fc| is a unit of Zp, and the middle arrow is an 
isomorphism. (Here i* is the composition of the functors applied to A®kk' ~> 
Endx(A 0k k'} and Morita invariance). □

Corollary 4.3.6. If A satisfies the assumption of theorem 4.3.1, then 
trc: ^op(A;Zp) -4 TC*op(A;Zp) is an isomorphism for i > 0.

Proof. We are reduced to check that

trc: Ki(A/pA;Zp) -4 TCi(A/pA;Zp)

is an isomorphism. But A/pA is artenian, so its radical J is nilpotent. Thus 
by theorem 3.4.1 it is enough that the cyclotomie trace induce isomorphism 
for the algebra {A/pA)IJ, which is semi-simple. Apply theorem 4.3.5. □

Theorem 4.3.7. In the situation of theorem 4.3.1, the natural map

TCi(A;Zp) -> TC‘op(A;Zp)

is an isomorphism.
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Proof. It is enough to prove the statement with Fp coefficients: a map of 
p-complete spaces is a homotopy équivalence if the induced homomorphism 
on modp homotopy groups is an isomorphism.

The functor which to A associâtes the Eilenberg-MacLane spectrum HA 
is continuons, niHA = lim^ffA/pM when A = limA/pnA. The same is 
true for the r fold smash product, HA^ = HA A • • • A HA,

tt^HAW^-^tt* ( holimH{A/pnA^^p 
\ n

This is an easy calculation based on the isomorphism

7r*(HA(r\ Fp) S H^HA^-^ik) ® H^HA^-^^k)

cf. [HM], lemma 5.1. It implies that the fc-simplices

THH*(A)* ~ holim THH,^.

The simplicial group model THH® for THH., cf. sect. 2.4, is a Kan complex, 
and for such homotopy inverse limits commutes with realizations, so we get

THH(A)p ~ holim THH(A/pnA)£.

The same relation the holds for the spectra TH(A) and TH(A/pnA).
Finally inductive use of the fundamental cofibration sequence shows that 

the fixed sets (TH(A)cp” )p are continuous, and since TC(A)p is a homotopy 
inverse limit construction, TC(A)p must be continuous. □

Theorem 4.3.8. For the rings in theorem 4.3.1,

^(AjZp) AÆ*op(A;Zp)

Proof. Let F be the field of fractions of JT(k), and let E = A ®w(fc) F with 
radical J{E). Then J = AC\ J(E) is a nilpotent idéal of A and it suffices, 
again the theorem 3.4.1, to show the theorem for A/J. But

A/J ®w(k) E = E/J(E)

is semi-simple, and for such algebras results of Gabber, Suslin and Suslin-
Yufryakov give the resuit, cf. [HM], appendix B for more details. □

Theorem 4.3.1 is probably the optimal resuit for K-theory calculations by 
traces. One would hâve liked to hâve a similar isomorphism for other rings, 
and in particular for the ring of rational integers. But

TCi(A; Zp) A TCi(lim A/pnA; Zp)
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at least when A is finite over Z. Indeed, this holds for the functor A H (HA)? 
and hence adapting the argument of theorem 4.3.7 also for TC(A)p. But K- 
theory does not hâve this property. One would also like to drop the finiteness 
assumption on A, and could wonder what would happen for A = k[[X]]. For 
such a ring the arguments proving theorem 4.3.7 and theorem 4.3.8 break 
down. In the first case for the simple reason that the r fold tensor power of 
A is not &[[Xi,... ,Xr]] - one needs completed tensor products.

4.4 The absolute theorem: group-like case.
This section examines TC(L) for a certain class of FSP’s which include the 
G of (2.3.4). The results are mostly a reformulation of parts of [BHM].

Définition 4.4.1. An FSP L is called group-like if the associated cyclotomie 
spectrum T(L) satisfies the following condition:
For each finite cyclic group C there is an equivariant map of spectra

ac: $CT(L) T(L)C,

natural with respect to inclusions Ci C C2, such that ac splits the natural 
map sc : T(L)C -> $CT(L\ sc wc = id.

For group-like L, the fundamental cofibration

TH^)^. -4TH(L)C’" ÂTHtL)^"-1

is split by the map

Sn-1 : TH(L)CP’-' 4 TH(L)C’"

coming from the identification of p# $CpT(L) with T(L), and

ESn_1=id, FS^-Sn-tF (n>2). (4.4.2)

We recall from (4.1.5) that the fiber of R was identified as TH(L)kc,n by the 
transfer map

rCpn : TH(L)kCp. = TH(L) ACp. ES]. -^4 (T(L) A ES^f’” .

Naturality of transfers shows that

TH(L)kCp. T(L)Cp"

TH^c^ ^4- T(L)Cp^
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is homotopy commutative with rn being a suitable transfer map.

Proposition 4.4.3. For a group-like FSP tbere is a homotopy Cartesian 
diagram

A 
holirnTH^)^ ) 

Tn ' p

1 lproj
TH(L)£ TH(L)£

Proof. The splittings of (4.4.2) give équivalences 

h
V TH(L)kCpj ATH(L)cf" 
i=0

such that on the left hand side R corresponds to projection. Hence

oo
TR^p)^™^. 

i=0

Under this équivalence F(xo>$i>- -) = (Fxi + FSxq,Fx2, • • •), and the 
diagram

TH(L) ------- > nSoTHWhC, ------- > nSiTHW^
jfSo-id jf-id jf-id

th(l) —> n~oTH(L)^ —> nr=iW)^ 

gives the cofibration

hF(FS0 - id); -> TC(L,p)£ -)• holim (tHCL)^^

upon taking vertical homotopy fibers. Apply theorem 2.5.5. □

Lemma 4.4.4. For the identity FSP, T(Id) ~Ooo S^^), where the right- 
hand side is the equivariant sphere spectrum.

Proof. Recall from sect. 2.1 the subdivision S^homeomorphism 

|sdcTHH.(L; V)| A |THH.(L; V)|,
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where G is a finite cyclic group of order c.
The space of O-simplices in sdcTHH.(Id;V) is equal to THHc_i(Id;V) 

and there is a natural C-map

ic : lim nmRC(SroRC A Sv) 4 |sdcTHH.(Id; V)|

which is a C-homotopy équivalence onto the space of O-simplices. The sim­
plicial structure maps are C-homotopy équivalences, so the topological re­
alization is C-homotopy équivalent to the space of O-simplices, cf. sect. 2.2. 
Hence ic is a C-homotopy équivalence. The diagram

|sdcTHHe(L;V)| ------- -------- > |THH.(L;V)|

is commutative. It follows that the S1-map

S£(Sv)->T(Id)(V)

induced by i is a C-homotopy équivalence for each finite C. □

For any FSP L and monoid G we may define a new FSP by

L[G](X) = L(X) A G+. (4.4.5)

If L = Id this is precisely G of (2.3.4). If L = Â for a commutative ring A, 
the map Â[G] -> A[G] is a stable équivalence, so there are équivalences

Æ(Â[G]) - Æ(A[G]), TC(Â[G]) ~ TC(A[G])

for every discrète group. When G is a group-like topological monoid, the 
cyclic classifying space BcyG = |My(G)| was identified in sect. 2.1 to be the 
free loop space ABG of the ordinary classifying space BG. Moreover, if ôc 
is the composite homeomorphism

âc = |W.cy(G)| ^ |sdcW.cy(G)|C A12V*y(C7)|

then there is a commutative diagram ([BHM], proposition 2.5)

BcyG Sc > (BcyG)c

| | (4-4.6)

ABG (ABG)°, A.WW = >(/)
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Given any cyclotomie spectrum T and any space X, the spectrum smash 
product T A AX+ is again cyclotomie. Indeed, there is a canonical map from 
right to left:

$C(T A AX+) ~ $CT A (AX)^

which is an S1/C-equivalence, and

rc A â;1 : p$$CT A p%AX° T A AX+

defines the required équivalence, cf. sect. 2.4.

Lemma 4.4.7. There is an S1-équivalence of cyclotomie spectra, 
T(L[G]) ~s* T(L) A ABG+, provided G is group-like.

Proof. Consider the bi-simplicial space X«,.(G; V) with

Xkti(G-, V) = holim F (Sx° A - ASX‘,F(Sx°) A • • • A F(SX“) AGl+A Sv). 
xe/h+1

Cyclic permutation of factors make it a bi-cyclic space. The map

^(l^jAG^Xt^GiV) (1)

becomes highly connected as an equivariant map as V runs through the S1- 
universe U (one needs dimVc 4 oo for ail C Ç 51).

The diagonal complex JXM(G;V) is precisely THHe(L[G];V) with re­
alization THH(L[G];V). On the other hand, if we instead first realize the 
/-direction and then the fc-direction and use (1), then we get a highly con­
nected S1-map

THH(L; V) A ABG+ -4 THH(L[G]; V).

Use of subdivision and (4.4.6) shows that the corresponding map on C-fixed 
sets become highly connected when V runs over 1Â, so the two prespectra are 
équivalent. Moreover, the corresponding cyclotomie structure maps agréé. 
Apply spectrification. □

Corollary 4.4.8. The FSP G is group-like if G is.

Proof. The previous resuit tells us that T (G) ^c^ T^(ABG+). But the 
suspension spectrum satisfies the requirement of (4.4.1). This is a consé­
quence of the tom Dieck-Segal splitting, valid for any based S1-space X:

^AXf s-/c V ^/cEs'/c(C/H)+Ac/hXh
HCC

*C(^X))~^/C(XC)
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Here Eg(F) is the G-equivariant model of EF. The map sc is the projection 
onto the factor C = H and ac is the obvions inclusion, cf. [tD], [LMS]. □

The next theorem is similar to lemma 5.15 of [BHM], but avoids the 
assumption that T has finite p-type. It contradicts the “counter-example” 
presented in [BHM], p. 498-499, which is wrong. The mistake occurs in 
the identification of (^-1)r on p. 499. The mistake was pointed out by 
T. Goodwillie, and the proof below is due to him.

Lemma 4.4.9. For any equivariant S1-spectrum T, the S1-transfer induces 
an isomorphism

^♦(^hsi;^) -> 7r»(holimThc^n ; Fp).

Proof. The skeletons of ES1 are the spheres S2k 1 G C* with the standard 
action of S1. There is the cofibration diagram

S1 A (S^"1 Asi T)

S?-1 Ac.

S1 A (5|H1 Asi T) — S1 A (S2^1/^"1 Asi T)
|irf brf

-► S|‘+1 ACp„ T ----------► S2k+1/S2k-1 Ac^ T

(1)

Now s2k+l/S2k~1 ~5i S]. A S2k\ the S'-action on the right hand side is the 
diagonal action with S2k = S(S2*-1). However for any S1-space or spectrum

S} A X “s> S| A |X|, (z, x) H (z, z'1!)

where the bars indicate X with no S'-action. In particular,

S*. A S2* A T ~Si Si A |S21 AT|

and the upper right hand term in (1) may be identified as

S1 A s2fc+i/S2*-i Aji T 51 A |S2* A T|.

Moreover, the right-hand vertical map in (1) can be identified as the smash 
product of the transfer

r: S1 A E^CSi/S1) -► E°°(S\/Cr) (2)

with |S2* A T|. The transfers

rn: E°°(S;/Cp..-i) -» E“(S*/Cp.)
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of the Cp-covering S1/Cpn-i 4 S1/Cpn are known as follows. If we identify 
S^Cp™ with S1 (via pcpn\ and use the splitting

SOO(S}) = SOO(S1)VEOO(S°)

induced by the projections, then rn becomes the matrix

/id 0\ 
p/

with T) G 7ri(S°°(50)) = Z/2 the non-trivial element. This can be seen for
example by using tu of (2.4.2). Since the transfers in the limit System

trfn: S2H1 / S2*-1 Ac^ T -> S^/S2^1 ACpn T

can be identified with rn A |S2* A T|,

holim S2^1^"1 Ac^-, T ~ holim S00^) A \S2k AT|, 
trfn rn

and we obtain from (3) a cofibration

S1 AS2* A T 4 holim S°°(S;) A |S2‘ A T|4 holim S2k A T. 
Tn P

We can calculate the modp homotopy groups of the right hand term by the 
exact sequence

0 -> lim^-iGS2* AT;Fp) 4 ^(hohmCS2* A T);FP) 4 lmnri(S2‘AT;FP) 4 0.

The outer terms vanish, so in conclusion

TtitS1 A S2k A T;FP) “ ^(holimS^/S2*-1 ACp„ T;FP), 
trfn

and comparing with (2) it follows that the right-hand vertical maps in (1) 
induces an isomorphism

7r<(E(S2fc+1/S2*-1 Asi T);FP) ^Tr/holimS^+VS2*-1 ACp. T;FP).

We can finally make the obvious induction over k. □

Remark 4.4.10. The lemma can be restated as a homotopy équivalence of 
p-completed spaces,

(S1 AThSi); ~ (holim 7\Cpn);.
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Corollary 4.4.11. For a group-like FSP, there is a homotopy Cartesian 
diagram of (non-equivariant) spectra

TC(L)p --------► (ETH(L)as1)*

1 ltrfsl
TH(L)p TH(L)£

Moreover, if L = G for a group-like monoid, then TH(L) = S°°(ABG+) and 
FS0 = S°°(Ap+) where Ap(A)(z) = A(^).

Proof. Only the last point need any explanation. It cornes from the Segal- 
tom Dieck splitting used in the proof of corollary 4.4.8:

E^(ABG+)c" ~ S°°(ABGACp+) V S°°(ABG+’) 

S S“(ABGàCp+) V S“(ABG+)

where the last homeomorphism is id V S^Ap1). The map F becomes the 
sum of the transfer

^(ABGhCp) -> E°°(ABG+)

and the inclusion
S°°(ABG+P) 4 E°°(ABG+) 

and
So : S°°(ABG+) 4 S~(ABGACp) V S°°(ABG+P)

is the inclusion in the second factor via S~(AP) □

Recall for an FSP L that we write itqL for the associated ring iroL = 
lun7rnL(Sn).

Theorem 4.4.12. Suppose L is an FSP so that ttqL is a finite W(k)-algebra 
for some perfect field k of characteristic p. Then

trc : K(L)p —> TC(L)p

is a homotopy équivalence.

Proof. Dundas’ theorem 3.5.1 gives the homotopy Cartesian square 

K(L)$ --------► TC(L)£

KM$ -------► TCGroL);

and the bottom arrow is a homotopy équivalence by theorem 4.3.1. □
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4.5 The /f-theory assembly map.
For a discrète group G and a commutative ring R, GLn(R[G]) contains 
GLn(B) x G as a subgroup, namely as the tensor product of (n x n)-matrices 
over R and éléments g € G considered as (1 x l)-matrices over Æ[G]. Taking 
classifying spaces gives a map

BGLn(B) xBG-+ BGLn(R[G]).

This induces a map of spectra

aK : K (R) A BG+ -> Æ(fi[G])

usually called the assembly map. Indeed, one may either use Segal’s F-space 
définition, May’s operad version or Waldhausen’s définition of K (A) to do 
the details, or one can use the device of ring suspensions as in the original 
source, [Ll].

The study of ük has long been promoted by W. C. Hsiang, who e.g. in 
[Hs], conjectured that ük is a rational injection, provided R is regular and 
BG is a finite complex. The conjecture is often called the Æ-theory Novikov 
conjecture. The reason is that there is a similar assembly map in L-theory, 
initially constructed by F. Quinn,

aL: L(R) h BG+L(R[G])

and (rational) injectivity of ûl (for R = Z and B G a manifold) translates 
via the surgery exact sequence to Novikov’s original conjecture about the 
homotopy invariance of the higher signatures.

The définition of a^ extends to the case of FSP’s to give a map of spectra

aK : K(L) A BG+ -> K(L[G]).

(Here G could be any group-like monoid, and thus BG any space. For L = Id 
the above becomes Waldhausen’s assembly map A(*) A X^ -> AÇX)). The 
study of the assembly map when L = Id was the main motivation behind 
[BHM]. We can now présent a somewhat easier proof of the main resuit from 
[BHM], thanks to Dundas’ relative theorem 3.5.1.

There is an obvious assembly map

THH(L; V) A ABG+ -> THH(L[G]; V)

(cf. lemma 4.4.7) and hence via the inclusion

BG -> ABG
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an assembly map

THH(L; V) A BG+ -> THH(L[G]; V).

This passes to an assembly map of cyclotomie spectra and induces

ûtc : TC(L) A BG+ TC(L[G])

so that the diagram

K(L)ABG+ —^ K(L[G]~)
|trcAid |trc

TC(L)ABG+ -^+ TC(Z[G])

(4.5.1)

is commutative.
For each FSP L, we can from its p-adic completion Lp, LP(S) = L(S)p. 

(It should be remembered that X£ A Y^ is not p-complete; but this causes 
no problems because we are always completing the functors on the outside, 
so there are no unpleasant surprises in THH(Lp)p etc.)

Theorem 4.5.2. For a discrète group G, the assembly map 

aK : K(Idp) A BG^ -> K(Idp[G]) 

becomes split injective after p-adic completion.

Proof. We compose with the cyclotomie trace and consider

1 1 «

(TC(Id„)ABG+); TC(Idp[G]);

Now corollary 4.4.11 gives the homotopy Cartesian diagram

TC(Id,[G]>; ------- ► (SIE^IABG.lfc.);

E°°(ABG+); £^±> E“(ABG+)^

upon using the obvious équivalence between TH(Idp)p and TH(Id)p together 
with lemma 4.4.4 and lemma 4.4.7.

The component group tto(ABG) is the set of free homotopy classes of 
maps from the circle into BG, and hence equal to the conjugary classes of
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éléments in G. Let A^BG be the component of the identity element. There 
are S^-equivariant maps

ABG+ ^ Ap] BG+1^ BG+. (3)

The inclusion is a homotopy équivalence, but not an equivariant one. Any- 
way, the weak statement is enough to ensure that

ES1 xsl BG^ES1 xsi A^BG

is a homotopy équivalence, and since

S^(ABG+)hSi = ^(ES1 xSi KBG+)

diagram (1) projects to the homotopy Cartesian diagram

(TC(Idp) A BG+)p -------> S(S“BS;aBG+)^

S“(BG+); ------- > S“(BG+)pA

Moreover,

(TC(Idp) A BG+% ^ TC(Idp[G])£ ^ (TC(Idp) A BG+%

is the identity, and thus ûtc is split injective after p-adic completion. Now 
apply theorem 4.4.12 and diagram (1) to conclude the proof. □

Soulé proved in [Sou] that

7T4n+lWZ);a) ^n+l^W^) (4.5.3)

is an isomorphism provided the p-adic L-function Lp(l + 2n, cu-2n) 0 0 (both 
groups are equal to Q>). This is certainly the case for regular primes and 
maybe always. Soulé proved (4.5.3) by using the étale cohomology invariant. 
It was reproved in [BHM] by cyclotomie trace considérations. One can use 
(4.5.3) to translate theorem 4.5.2 into a rational statement, namely

Theorem 4.5.4. ([BHM]). If G is a discrète group for which each Hi(BG\ Z) 
is finitely generated, then the K-theory assembly map

aK : K(Z) A BG+ —> K(ZG)

induce an injection on rational homotopy groups.
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Proof. The linearization maps

K(Id) 4 K(Z), K(Id[G]) -> K(ZG)

are rational équivalences, essentially because the homotopy groups of S°°(S0) 
are finite in positive degrees, cf. [Wl]. Thus it suffices to show the statement 
for

aK : K(Id) A BG+ -4 Æ(Id[G]).

We hâve
Æ(Id[G]) -> TC(Id[G]) -4 (TC(Id) A BGP)$ 

and must show

trc A idBG : K(Id) A BG^ -4 (TC(Id) A BG+)^

is rational injective. This is the case because

K(id); -+ #(idp); ~ tc(mp)^

is rationally the same as JC (Z )£ -4 K(Zp)p, and because we can choose p to 
be a regular prime and apply (4.5.3). □

Remark 4.5.5. It would be nice if the above argument could be extended 
to L-theory, and thus proving the original Novikov conjecture for the groups 
with finitely generated Eilenberg-MacLane homology. There is a variant of 
TC (R), namely the topological Dihedral homology TD(R), which imitâtes 
the linear construction of [L2]. It is the fixed set of a suitable involution on 
TC(R), TD(B) = TC(R)Z/2, and there is a map from Hermitian Æ-theory 
into TD(R), at least when 1/2 € R. The basic problem with this approach 
however, is that TD(B)£ 4 TD(B 0 Zp)p is again an équivalence (under 
suitable finiteness conditions on R). But in contrast to (4.5.3), L(Z) -4 L(ZP) 
is rationally trivial for ail primes, so one cannot extend the K-theory proof 
directly.

There might be a chance of proceding indirectly as follows. Let E be the 
maximal abelian extension of Q,, and let A be the integers of E. ff one could 
produce a signature type rationally injective map from L{Z[g\) to K (A [G]), 
or maybe into some completion >l(G) of -A[G], like the G*-algebra associated 
with C[G], then one could study the Æ-theory assembly map on A[G] (or 
4(G)) using the techniques above.

In this connection one should remember the theorems of Suslin that 
K(Ê)p ~ K(C)p for the algebraic closure of E and that K(Qp ~ BUp. 
The latter équivalence cornes from the roots of unity: the map BS1 -4 
BGLi(C) -4 K(C) extends to O00#00(BS1) —> K(Q, and gives via the
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splitting Çî^S^BS1) ~ BY x X the required map from BU to K(C), I 
believe.

The same procedure gives a map from BU^ -4 K (A)* because ^{A) = 
Q/Z and B(Q/Z); ~ (BS1)*.

This remark represents years of discussions with W. C. Hsiang.

The main interest in the assembly map ük lies in its relationship to 
automorphism groups of manifolds. For a group-like monoid, such as G = 
QX, Æ(Id[G]) is Waldhausen’s A(X) and in particular K’(Id) = A(*), so that 
the assembly map takes the form

aA: A(*)AX+-^A(X).

Waldhausen defined the spectrum Whtop(X) to be the cofiber of aA.
For a manifold M, the space of topological pseudo isotopies ?top(M) is 

defined as the space of homeomorphisms of Mn x I which is the identity on 
Mn x 0 U dM x I. A celebrated resuit of Waldhausen [W4] States that

Q2Whtop(M) ~ holim?top(M x Dk). (4.5.6)
k

Moreover, the stability theorem of K. Igsa, [I] asserts that the map

?top(M) 4 holim?top(M x Dk)

is (dim M - 7)/3-connected, at least if M is smoothable
Farell and Jones has in [FJ] shown that for a negatively curved manifold 

M, Whtop(S1) détermines Whtop(M). Thus it would be of considérable inter­
est to détermine Whtop(S1). Theorem 3.5.1, proposition 4.4.3 and corollary 
4.4.11 reduces this to the problem of studying the linearization map

LWrTCWCS'.p^-fTC^^ZfM-1],^

where TC^(—) is the cofiber of ûtc- Indeed, the K-theory assembly 
map S+ A K(Z) -> K(Z[t,t-1]) is an équivalence, so the fiber of I*1* is 
Whtop(S1)*. See also remark 5.4.8 below. See [M] for more details.

5 Calculations in Æ-theory
This chapter évaluâtes the higher Æ-groups Ki(R;Zp) with p-adic coeffi­
cients in a number of cases where the Æ-groups were not previously known. 
The rings we consider are ail of the type where the absolute theorem of the 
previous chapter applies, and the functor we actually calculate is TC(Æ)£.
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5.1 On the K-theory of group rings.
Let A be a finite algebra over WÇk), the Witt vectors of a finite field k of 
characteristic p. For a finite group G, the group ring A[G] is again finite, so

Ki(A[G];Zp) TCi(A[G];Zp).

By general induction theory, cf. [01]

K(A[G]^ ~ hohmK(A[r])^

where T runs over the hyper-elementary subgroups of G, that is, the sub- 
groups of the form T = Cn * P where P a p-group and (N,p) = 1. It 
follows that A[F] décomposés into a product of twisted group rings B1 [P] for 
unramified extensions B/A.

We here study the case of an untwisted group-ring A[P]. In terms of 
explicit values our main resuit is

Theorem 5.1.1. For a perfect 6eld k of characteristic p > 0, 
K2n-i(k[CpN]^p) = K^klCpNYZp)^ and K2n(k[CpN];Zp) = 0 when 
n> 0.

The Æi-group on the left is thep-part of the units k[CpN]x which is easily 
calculated, cf. theorem 5.1.16 below. Note also that k[CpN]/rad = k, so that 
Ki^Cp^jZ/) = Ki(k;Zi) for (l,p) = 1.

Our starting point is lemma 4.4.7,

T(A[P]) -Si T(A) A ABP+.

Let X(P) dénoté the conjugacy classes of éléments in P. Then 7^ (AB P) = 
X(P), and the p’th power map A: X(P) -> X(P) has ANX(P) = 1 when 
P has exponent pN. Define a filtration of X(P),

{1} = X0(P) C X1(P) C • • • C XN(P) = X(P), Xk(P) = {g^ = 1} 

and a corresponding filtration of A = AB P

Ao C Ai C • • • G Ajv = A (5.1.2)

where A* = U7€xfc(P) ^BP is the set of components corresponding to the 
listed conjugacy classes. We note (from [BHM], sect. 7) that

A^BP - BCpfr)

the classifying space of the centralizer of 7.
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We are interested in the Cp*-action on T(A[P]). The p’th power map 
△ : A AGp C A maps A* homeomorphically into Afc^, so in (5.1.2), An — 
An-i is the free stratum, and

A: A* - Afc_i —> (Afc_i - Ak-2)Cp

is a homeomorphism for 1 < fc < AT. Let TC^\A[G],p) dénoté the cofiber 
of the assembly map from sect. 4.5,

TC(A,p) A BP+^TC(A[P],p)->TCw(A[P],p), (5.1.3)

and write T x X = T h X±.

Proposition 5.1.4. One bas

TC^^F],?) ~ holim(T(A) k (Ai - A0))Cp" ,
F 

where the limit runs over inclusions of fixed sets.

Proof. In the proof we write B = BP. The inclusion i : B -+ A of B into 
the constant loops induces a cofibration sequence of cyclotomie spectra

T(A) xB^ T(A) x A-> T(A) A A/B

This gives a cofibration sequence of fixed sets, and hence the cofibration 
sequence

hoHm(T(A) k B)c^ -> TC(A[G],p) -* holim(T(A) A X/B)c’n.
F,R F,R

Now △ = id on B, and since B has trivial S^action,

holim(T(A) x B)c?n = (hofim T(A)c'n) xB = TC(A,p) x B.
F,R F,R

It follows that

TC<1>(A[G],p) = holim(T(A) A A/B)c*n. (1)
F,R

We examine the right-hand side in two steps. First we evaluate the homotopy 
limit over R and then we use the cofibration

holim(T(A)AA/B)c’n —» holim(T(A)XK/B)0^ ^ holimCr(A)AA/B)C’>".
F,R R R

(2)
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We use the décomposition

A/B = Ao/B V (Ai - Ao)+ V • • • V (Ajv - Aat—1)4-

and the corresponding décomposition
N

(T(A) N X/B)c^ = (T(A) A X0/B)c’”' V \] (T(A) x (A* - An))^".

There are the following easy conséquences of the cyclotomie structure on 
T(A) x A, cf. lemma 4.4.7:

(3)

(i) X^/B â Ai/B = Ao/B V (Ai - Ao)+

(ii) B: (T(A) A A0/B)c”" ^(T(A) A Ao/B)0--1 V (T(L) X (Ai - Ao))^—1

(iii) B: (T(A) X (Xk - At_i))cp" -h (T(L) X (A*+i - A*))cp»-*, l<k<N
(iv) B: (T(A) x (An - An-i))0”” -► 0

The fundamental cofibration applied to T = T ÇA) A Ao/B shows that 
(3,ii) is a homotopy équivalence. Indeed (T (A) A Ao/B)hCpn ~ 0 since the 
inclusion of B in Ao is a non-equivariant homotopy équivalence. If we write

n
Xn = V (T(A) x (A* - A*-!))0'"

k=2

Yn = (T(A) A X0/B)c’n V (T(A) x (Ai - Ao))0’"

and consider the cofibration sequence of limit Systems

(Xn,B) -> ((T(A)AX/B)C^,R) -> (Yn,R)

it follows from (3,iii-iv) that RN~r : Xn -> Xn_N+i is null-homotopic. Hence 
holimAn ~ 0, and

holim(T(A) A A/B)c”n ~ holim Vn.

Inductive use of (3,ü) yields

Yn ~ \/ (T(A) x (Ai - Ao))c^ 
1=0

and that R : Yn —^ Yn-i corresponds to the obvious projection. Therefore
oo

holim yn ~ J] (T(A) x (Ai - Ao))0'' 
R i=0
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Now it is easy to see that
oo oo

F: {J CW * (Ai - Ao))^ -> JJ (T(A) x (Ax - Ao))^ 
t=0 t=0

sends (to^iv) to (Fti,Ft2,... ) where on the right-hand side

F-. (T(A) x (Ax - Ao))c«-* -à (T(A) x (Ax - Ao))^'1

is just inclusion of fixed sets. Thus by (2),

holim(T(A) A A/Bf?" ~ holim (T{A) x (Ai - A0))c”n □
F,R F

If P has exponent p then Ai — Ao is a free Cp^ space, so

CW x (Ai - A0))c’n ~ T(A) xc,n (Ai - Ao) ~ CW x (Ai - A0))fcCp„ 

and lemma 4.4.9 gives

TC<1> (A[P]); ~ (S(TH(A) x (Al - Ao))^ )£ - (5.1.5)

For more general P, there is a spectral sequence

E1̂  = 7rfc+/-i ((TH(A) x (Afc - Ak_i))AS1;Zp) => tt. (TC<1>(A[G];ZP))

which might be of use in some situations. In this connection, I note from [J], 
theorem B that the homology of the homotopy S1 orbit is closely related to 
cyclic homology, namely

HCn(C*(G)) = H^

where C*(G) dénotés the singular chain complex; for discrète G this is équiv­
alent to the group ring. Thus the E^term above is a twisted version of 
certain subgroups of cyclic homology groups associated with the filtration 
(5.1.2). If one takes a Postnikov décomposition of TH(A) one obtains a sec­
ond spectral sequence which converges to the E^term and starts out with 
cyclic homology.

For A = Zp with p odd one can in a range instead use theorem 4.4.11 
with L = Idp[P]. Indeed,

TH(Idp[P]) -à TH(Zp[P])

is (2p — 3)-connected. The same is then the case when one replaces TH(—) 
by TR(—), and it follows that

TC(Idp[P]) 4 TC(Zp[P])
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is (2p — 4)-connected. One the other hand for a p-group

△p: ABP/BP -^ ABP/BP

is nilpotent, so theorem 4.4.11 yields the homotopy Cartesian square

TC(Idp[P]) -------► S°°(S+(ABPfcsi))

S°°(BP+) ------ -------► E°°(BP+)

This gives the exact sequence

^(ZpP; Zp)/Bn(P; Zp) -» TCn-itZpP) -> Hn(P; Zp) -> • • • (5.1.6)

exact for n < 2p — 4, cf. conjecture 0.1 from [02]. I leave for the reader to 
wonder about p = 2.

I now specialize to P = Cpn , the cyclic group of order N, where one can 
be more explicit.

The components of A = ABCpn are indexed by Cpn, and are denoted 
Ag> 9 € CpN. Two éléments pi, p2 of the same order hâve 51-homeomorphic 
components since there is an automorphism </> € Aut(Cpw) with 0(^) = P2 
which induces 0: AP1 -4AP2. Moreover, for each component corresponding 
to a non-generator, one has the S1-homeomorphism

p*xp-n^iAP=9} t517)

induced by the p’th power map A : A h —> A^.

Lemma 5.1.8. For any cyclotomie spectrum T and k>l there is a cofibra­
tion sequence of spectra

p-i/-i
{p*plTc^ X A9)c,‘-' 4(Tk A^* -> V V ^ k ^Crh~,+i •

Proof. The l’th iterate A : As -4 AgPi embeds Ap into one component of
AC”,' 
9P

and A^Ap) is (non-equivariantly) équivalent to the ambient space AgPi.
The cofibration of the lemma is induced from

△'(A9)+->A9p(+->A9pI/A'(As)
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upon applying the functor p# k(T h (—))Cpk- Since A^Ap) is fixed under

p* , {T K A'(AS))^' ~s. p*rTc^ K Ka.

We use (2.4.3) to calculate the cofiber. Indeed, (t A AgPi /^l(Ag)j ^ ~ 0 

so that

(rAA^/A^A,))^ -pZ*0' (ta Aÿpl/A‘(As))Cpfc

~ (Tfip*'^,-')/^^ V V (TkA^-.^.,)^’

J=1

Each of the p — 1 wedge terms are équivalent to (T k A^i-i^p*'1 , and we 
can iterate. □

The point of the lemma is that the component AgPi has been replaced by 
the simpler components Ag,... ,AgPi-i, simpler w.r.t. the Cpk-action. For 
example, the action of Cpk on Ap is free when p is a generator of Cpn . For 
every equivariant S1-spectrum T,

(i) (ETftS1)£~(h£limTfcCpn);

(ii) (ThS' )P ~ (holim T^" )^ (5.1.9)

(iii) H(S*, T)* ~ holim Ê(CP», T)^

The first équivalence is lemma 4.4.9, the second is an easy conséquence of the 
définitions, and is just an equivariant version of the relation holimBCpn ~ 
(CP°°)p. The third équivalence follows by comparing the norm fibration for 
Cpn and S1, cf. remark 4.1.9. We consider the convergent sequences with

^(T^1; Zp) = SZp{t} ® ^(T; Zp) 

^(H^JJjZp) = SZp{t>t-1}®7r,(T;Zp)

cf. [HM1], [GM] for convergence.

Proposition 5.1.10. If g e Cpn is a generator, then the Tate spectrum 

^(S^p^TÇk)^ X As); ~ *

Proof. We use Zp coefficients and hâve

<* = SzjM’1} ® Sffl+1(l){a} ® ff.(As;Z/p'+1)
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with t G Êl20, a G É0,2 and HJ^Z/p1*1) C Ê^ cf. (4.3.4).
The spectrum T(k)cpl is a product of Eilenberg MacLane spectra, since 

it is a module over TR(fc) ~ HW(k), and the d^-differential is this given by

[S1]#: ^(A^Z/p'*1) -à ^+1(Aff;Z/p,+1)

induced from the action
S1 x A5 -> Ap

cf. proposition 4.1.14. The évaluation of loops at 1 gives a non-equivariant 
homotopy équivalence As —> BCpn , so

H^h^Z/p1*1) = E^ipi^yx} 0 rZ/p/+i{x2}

with deg(î/i) = 1, degi2 = 2 and with F^} being the divided polynomial 
algebra. We show in lemma 5.1.12 below that [S1]# multiplies by 2/1. Hence

d2 (^7n(^)ffr) = ^+17nte)2/i^r, S e Z, n > 0,

and £3=0. □

Proposition 5.1.11. For a generator g € Cpn,

TT. fa*rJ(kf>‘ * Ag)hS\zp) = Sw

Proof. The spectral sequence for the homotopy S1 fixed set has E2-term

S*2,* = MO ® MM*) ® ^(Aff;Z/p'+1)

with differentials as above. This time, however t-1 is not présent, so there is 
no differential to kill the classes yn{x2)yi(rr- Thus

E^* = Svy/+i(fc){a} 0^iFz/p/4a{x2h

ail concentrated on one vertical line, and E** = E^*. □

Lemma 5.1.12. If g e Cpn is a generator, then the action S1 x Ap —> Ap 
induces multiplication byyi € Hi(Ag;Zp) on H^A^Z/pf*1).

Proof. Let g: S1 -+ BCpn represent the homotopy class corresponding to 
9tCpn . Consider p as an element of ABCpn . Since Cpn is abelian, BCpn is 
an abelian topological group. The map f: BCpn —> ABCpn with f(b)(z) = 
bg(z) lands in Ap since we may connect b with a path to 1 G BCpn . Moreover,
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/ is a homotopy équivalence, since its composition with the évaluation map 
is homotopic to the identity. The lemma now follows from the homotopy 
commutative diagram

« lx/ „ action . _
S1 x B -------► S1 x \B --------- ► AB

p x 1 ev

□

We return to the calculation of the p-adic homotopy groups of 
TC^^Wpw). They are by proposition 5.1.4 équivalent to

p-i
((TWxA^^jZp),

where g generates Cpn, The idea is to use the cofibration sequence of 
lemma 5.1.8 inductively for Z = 1,... , AT — 1. One has

holimCTW x A/’" ~ hpUm(T(*) x Ag)hC ~ (T(k) x A/5'

after p-completion. This follows from (5.1.9,i) and proposition 5.1.10. Propo­
sition 5.1.11 shows inductively that ail p-adic homotopy is concentrated in 
odd degrees. In particular we get, for each Z, short exact sequences

of homotopy groups with Zp coefficients. These sequences are also split exact. 
Indeed the left hand term consists of a sum of groups JVî+i^) = WÇk)/pl+1, 
so it suffices to check that

holimT(k) k AgPi (5.1.13)
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This on the other hand is a conséquence of induction theory, upon using a 
resuit of C. Schlichtkrull, [Sch], which I now describe.

Let L be an FSP and consider the functor

TF(£[G],p) = holim T(£[G])C’".
F

For T C G of finite index we hâve the map

Ind£: TF(Z[G],p) -> TF(Z[T],p)

given as the composition of the functor applied to L[G] -> EndL[r](L[G]) 
with Morita équivalence. Now

TF(Z[G],p) ~ holim (T(L) k kBG)c”n
F

décomposés into components,

TF(Z[G],p) ~ \/ holim (T(L) k A^BG)0”"
[s]ex(G) F

with X^BG = BsiCgÏJÏ), the classifying space of the centralizer with some 
action of S1. It follows that Ind^ décomposés into components,

Wg(M. M): holim (T(L) k A[9]BG)Cp" -> holim (T(L) x Ah]Br)Cp" . 
F F

Theorem 5.1.14. ([Sch]) (i) Ind^#], [7]) = 0 if y $ [g], (ii) IfyE [g] then

Ind^ is induced from the S1-equivariant covering A7BF -4 KgBG. □

(The theorem vérifiés in particular conjecture 7.14 of [BHM]; it undoubtly 
generalizes to simplicial groups, and should be of help in the study of transfers 
in Waldhausen’s A-theory).

Corollary 5.1.15. In the limit over k, the cofibration sequences of lemma 
5.1.8 become split, for T = T(k).

Proof. The terms in the limit sequence are modules over K(k)? = HW(k) 
via the cyclotomie trace, so it suffices to check that the homotopy exact 
sequence is split. This was above reduced to the statement (5.1.13). We use 
theorem 5.1.14(i) with G = Cp^, T = Cpn-i-i to conclude that

oIndÿ''” : TF(*[C>],p) -> TF(fc[CPHp)
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is trivial on holim \ T(k) k AgP\ ^ P . On the other hand the composition 

induces multiplication by the index pi+1 on homotopy. □

Theorem 5.1.16. For a perfect held of characteristic p > 0,

^-xTCW^C^]) = TT! (tc*1*(*[<>]))®n,

j2nTCw(fc[C^]) = 0, n > 0

Moreover,

itiTC^kCpN) = (W(k)/pN)®^ i} ® @ {W{k)/pN~i)®{p 1)(p’ pl 
j=i

Proof. This follows from corollary 5.1.15 and proposition 5.1.11 upon col-
lecting terms.

We hâve left to détermine the exact homotopy sequence of

TC(i) x BCpN -> TC(fc[C>]) -> TC^O^C»). (5.1.17)

From (4.3.3) we hâve

TC(fc) - HZP V ^H^p). (5.1.18)

when k is finite. Thus

«i (TC(k) x BCpn} = Hi(BCpN;Zp) ® Hi+i(B^ 

with one copy of Z /pN in each degree.

Lemma 5.1.19. The homotopy exact sequence of (5.1.17) reduces to the 
exact sequence

0 —* Hi^ (BCpN ; Zp) -4 TC2n_i (fc[CPd)

—> TC^-x(*[<>]) ^ tt2n-i (BCpN ; Zp) —► 0.

Proof. We must argue that d* is surjective. This is true for n = 1 be- 
cause TC^klCpN]) = 0 and because the Æ-theory assembly map is clearly 
injective in dimension zéro.
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For n > 1 we use that (5.1.17) is a module over TR(i) x BCpn , and hence 
over TR(FP ) x BCpn . Thus

d: TC*1^!^]) —► STC(fc) x BCpn -> HZP x BCpN 

commutes with the resulting actions

TC^ (k[CpN]) ^> H^BCpN-, Z/pN) -> TT* (TC*1* (*[€>]); Z/p")

H,(BCpN; Zp) 0 Ht(BCpN;Z/p”) -> Ht(BCpN; Z/pN)

The second map has the property

Hx (BCpN ; Zp) • H2n(BCpN ; Z/pN) = H2n+1 (BCpN ; Z/pN),

and since H2n+i(BCpN -,ZP) = H2n+i(BCpN;Z/pN), surjectivity of d* in 
dimension 1 gives surjectivity in general. □

Since TCi(k[Cp]v]) = ^(^CpivJîZp) has exponent pN, lemma 5.1.19 
yields the abstract isomorphism

TC2n-i(*[<>]) S TC^-^I^]).

This proves theorem 5.1.1.

It seems clear that one should be able to calculate ^(^[P]) for more 
complicated p-groups. It is also natural to attack ^(^[P]) for other base 
rings, and in particular for A = ZP cf. sect. 5.4 below.

I conclude with some remarks about the twisted group ring case, inspired 
by [01], ch. 12. Let E be any finite extension of Q> and A C E the ring 
of integers. Given a p-group P and any homomorphism t: P -> Gal(E/Q)) 
we hâve the twisted group ring A*[P]. It contains the untwisted group ring 
A[Po], Po = Ker(t). Theorem 12.3 of [01] States that the inclusion induces 
an isomorphism

^(AIPoDp/Fo A/G^P]), (5.1.20)

where the left hand side dénotés the coinvariants of the action induced from 
P/Po —> Aut(A) x Out(Po). Olivers argument is based upon the integra! 
p-adic logarithm, close in spirit to TTi(trc); one may wonder if (5.1.20) gener- 
alizes to the statement

TC(A‘[P]) ~ TC(A[Po])hP/Po ?
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5.2 JC-theory of k[x]/(xn).
This section outlines joint work with Lars Hesselholt. The main resuit is 
Theorem 5.2.8 below. A detailed account can be found in [HM], sect. 6-8, 
when n = 2 and will appear in [HM2] when n > 2.

Let nn = {0,1,®,... jX”"1}, considered as a pointed monoid with 0 as 
base point and with ? = 0 for i > n. We form the cyclic construction 
7V,y(nn). Its set of k-simplices is the (k + l)-fold smash power of Hn, so 
consists of H 1 tuples (xt0,... ,xZk) with (xî0,... ,xtk) = 0 if some iv > n; 
7Vey(nn) becomes a cyclic set when we give it the structure maps of sect. 2.1.

The argument of lemma 4.4.7 gives for any ring A (or even FSP) the 
équivalence of equivariant spectra

T (A[x]/(Xn)) ~S1 T{A) A |2V.cy(nn)|, (5.2.1)

There is an analogue of the component décomposition of N*y (G) = ABG, 
namely

oo
A^y(nn) = V ^(n„;s) 

s=0

where ^y(Hn;s) consists of simplices (x10,... ,xîfc) with Ei^ = s, and 
0 € ^y(Hn;s) for ail s. The simplex (jW) = ($,...,$) € AT^y1(Hn;s) 
is represented by a cyclic map

i8t. : A[s - l]e 4 JV.(Hn; s)

of the standard cyclic (s — l)-simplex. Its realization becomes a map

cf. (2.1.3). Since (xn,x,... ,x) € ff,-n(Hn;s) is the base point, the com­
posite of iSi9 with the iterated face operator d8_n+i o ••• o d8, maps the 
corresponding face S1 x A8~n to zéro. Moreover, as (x^) is invariant under 
cyclic permutations, i8 maps the orbit S1 x Cs • A*"1 = C8 • (S1 x A*-1) to 
zéro. Ail in ail we obtain a map

i,: S1 xCa ^/S1 xCa C8 • ^s~n -> |JV*y(nn;s)|

and it is not hard to prove:

Lemma 5.2.2. The map i8 is an S1-equivariant homeomorpbism. □

For n = 2, the domain of i8 is S1 xca ^^/d^S1 xca A4”1). We consider 
A*”1 C RC, to be the simplex spanned by the group éléments g1 E RC,.
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It projects homeomorphically to the reduced regular représentation RCS — IR 
with IR C RCS the invariant line through £^o g1. Hence we hâve:

S1 xCa ^/d^S1 xCa A*”1)
S1 xCa D(RC8 - R)/^1 xCa D(RCS - IR)) 

= si AC. sRC-~R.

If s is odd then RCS — IR is a complex représentation and

Si Ac. SRC-~R SS1 S\/Ca A SRC‘~R

with diagonal S1-action on the right hand side. If s is even then BCS — IR = 
R— ® with V8 complex, and

Si Ac. SRC--R S cof (si/C,/2 A S^/Cs) A Sv‘

with A the natural projection.
The above description of |JVjy(Il2îs)| has the following generalization 

when n > 2. We use C(n) to dénoté the complex S1-représentation where 
the action of z € S1 is multiplication with zn. Suppose dn < s < (d+ l)n, 
and write

v3 = c(i) ® c(2) œ - • • œ c(d). (5.2.3)

It is an S^module and hence by restriction to C8 C 51 also a Cs-module.

Theorem 5.2.4. ([HM2]). Suppose n>2 and dn < s < (d+ l)n. Then

S^/CshS^ s<(d+l)n
cofib (S\/Cd+i -► S^/Cs) ^SV^ s = (d + l)n

Proof. (Outline). The proof is based upon the concept of regular cyclic 
polytopes of D. Gale, [G]. Let 7rj(p) = (6)(îv ,€«), 6 = e27rt/s. The 
image P8id = ^(A8"1) C V, is a regular cyclic polytope. Its structure of 
facets (=codim 1 faces) is completely described in [G]. Using this we prove 
in [HM2] that

^^ic» • △'-") ~ Pa,d/Qa,d ~ Sv-

for dn < s < (d+l)n where Qa<d = ird(Ca'Aa~n). Next, the socalled Buenos 
Aires formula, [BAG], gives explicit generators of the homology

H. (Ar7(n„);Z) = HH. (Z[i]/(in);Z)

in terms of the simplices of AÆy(Hn;s). This is used to show that

s; Ac. A’"1^ Ac. ca • ~ S^ Ac. sv-

S1xc.^‘~1/S1xc.Ca ^a-n ~S1
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when dn < s < (d+l)n. The case s = (d+l)n is somewhat more complicated, 
and will not be outlined here. □

We also need to know the cyclotomie structure of T (A[x]/(xn)), similar 
to lemma 4.4.7, and must calculate the géométrie fixed points:

p*p^T(A[x]/(xn)) -c," p$p*c<T(A)Ap*p\N?(nn)\c’

Comparing with (2.1.7), the isomorphism

△c, : ^(nn, s) A sdCp^(n„; sp)c-

gives an S1-map

A"1 : p^psdcpN^(nn-Sp)c” A ^(nn; s)

which when composed with the above gives the required Cp^ -équivalence 

p*p^T(Alx]/(xn)) ~Cp« T(A[x]/(xn)).

It is clear from the définition of V8 that PcpV8p =51 V8i and we also hâve 
S1/C8 =51 p^c (S1 /Cp8). This yields a Cpoo -équivalence

rCp(Sy. p^c» (T(A) A S\/Cps A Sv”) 4 T(A) A S^/C, A Sv‘.

The proof of theorem 5.2.4 contains the following

Addendum 5.2.5. The cyclotomie structure of T(A[x]/(xn)) is given by
VZorcM □

Since we are working in the category of equivariant spectra, TÇA)^SVa is 
equal to the Vs’th deloop T{A)(V8) of T (A). With this interprétation rcp(s) 
induces

R: T(A)(Vps)c'm TÇAyV'fr"-1

and we can form the homotopy inverse limit over these maps
Dénoté by TC(A[x]/(xn)) the reduced space, i.e. the homotopy fiber of 

TC(A[^/(^)) -> TC(A). Then

TC (^[i]/(in)) ~ TC(A) x TC (A[i]/(in)).

For any S1-equivariant spectrum T € S1 SU and any finite dimensional S1- 
module W in the Universe we hâve the map

Vn: T(W)C”T ^T(W)c^r
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constructed from equivariant transfers, cf. (2.5.8). If n = pVp(n)nr with 
(p, n') = 1 we write

V^ : T(W)c»r -> T{W)C^Vv{n}

instead of VpVp(n). Then we hâve the following analogue of [HM], adden­
dum 7.2:

Theorem 5.2.6. The spectrum TC(A[x]/(xn))p is équivalent to the product 
of the p-adic complétions of

H j E holim T^)^.,)^ | (l,p) = 1, n'\l »

and

Il < cof [ SholirnT^)^,)^-””*"’ ^> E holim T^)^,)^ j | (l,p) = 1, n | Z ►, 
\ R R J

where in the second factor T(A)(Vpn)Cp' Vp(n) = 0 if i < vp(n).

Proof. We use the description

TC(-)pA —> TF(-)£ 54 TF(-),

so shall first détermine TF(A[x]/(æn),p), the homotopy inverse limit of 
f(A[x]/(xn))cpn under the inclusion of fixed sets. For fixed m,

00 00
V (TÇA)(Va) A S^/C^ -> n (^(V.) A S^/Ca)C^ (1) 
S=1 S=1

is an équivalence of spectra. Indeed, since we are only interested in p- 
completions

T(A)(Vt) A S^/C, ~ T(A)(Va) A S^/C^

and

(tÇA^^SX/C^.^ ~ (pêp,T(A)(Va)c^ A s^”^

with r = min(vp(s),m). The action of Cp^-r on S| is free, so can be 
divided out, and when we use the S^-action on pçprT(A)(ys)cpr to untwist 
the action, we get

(T(A)(V.) A S\!Cs}Cfm ~ T(A)(Va)c^ A S‘/Ç (2)
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with r — m when vp(s) > m. The cofibration sequence of proposition 4.1.8 
takes the form

T(A)(V,)^ ^t(A)(vs)c^ ^T(Ayys/p)c^-'

and inductive use show that the connectivity of T(A)(ys)Cpr tends to infinity 
with s. This proves (1). Next for fixed s,

h^m (T(A)(VS) A Sl+/Cs)Cpm ~ SïWV,)^*’ (3)
F

after p-completion. This follows from (2) with r = vp(s) < m, since the 
F-map corresponds to the transfers

E^/C^-h-^.,) -> ^(S'/C^-^)

which fit into a cofibration diagram

E^/C^-H-,) -------► E^/Cp-n-H-) ------------- ► S°°(S0)

~ p

^°°(Sl/Cpm-r) --------- ► S^/Cp".-) -------------- ► S°°(S°)

Here E^pf) is the suspension spectrum of X+. Now smash with 
T(A)(ys)cpr to obtain (3), cf. proof of lemma 4.4.9. The above together 
with theorem 5.2.4 yields

TF (4[x]/(xn),p) ~ J] ST(A)(V8)C^w 
n^s

x IIcof (eT^XV,)0^'’-’14”’ ^ET(^^^ 
n'|s x

after p-completion. The homotopy fiber of F — id corresponds to taking
homotopy inverse limit over R. □

So far we hâve not specified the ground ring A, but to obtain explicit 
calculation we now restrict A to be a perfect field k of positive characteristic 
p, where we hâve the following resuit from [HM], sect. 8.1.

Proposition 5.2.7. Let V C U be a complex S1-module. The non-zero 
homotopy groups ofT(k)(V)cpm is concentrated in even degrees greater that 
or equal to dim VCp. They are explicitly given as

^2iT(k)(V)c^ = Ws(k) if dimVcp—+1 <2i< dim V^”*—
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for s = 1,.. .m, and

*2iT(k)(V)c'm =Wm+1(k) if 2i>dimV.

Proof. The argument is similar to the proof of proposition 4.2.7 and (4.3.4). 
One first treats the case k = Fp.

We remember that TÇk^ÇV) ~ T(k) A Sv. It follows that the inclusion 
VCp C V induces an équivalence

H (Cpm,T(k)(VCp)) H (C>, T(k)(V)).

Indeed, the cofiber is Ê(Cpm,T(fc) A Sv~yCp) and Sv~vCp is a free Cp^- 
space, build up from free Cpm-cells, and the obvious induction over cells 
reduces us to show that

H (Cpm, T(k) A (Cpm+ A S*)) = 0.

This follows e.g. from the spectral sequence of sect. 4.1, since Tate cohomol- 
ogy groups vanish on free modules.

We next use the following analogue of proposition 4.1.8:

T(k)(V)hCpm ---- ——> Tik^V)0”"' R > T(k)(Vc’)crm-1

id rm,y rm,v (1)

TÇ^fV^c^ Nh > T(k)(V)hC’m -^ H(Cpm,T(k)(V))

For m = 1,

r1)V: T(À;)(VC*) ^H(CP,T^

induces an équivalence on tt, for i > dimVCp. This is simply lemma 4.2.6 
suspended dimVCp times. Theorem 4.1.15 implies that Fmy and rmy in­
duce isomorphisms on homotopy groups in the same range. The spectral 
sequence

H* (Cpm,^T(Fp)(V)) => 7rJ(Cpm,T(Fp)(V))

is isomorphic to the spectral sequence for V = 0 reindexed by shifting bide- 
grees up by (0,dimV). Hence the argument of proposition 4.2.7 gives

7r*È(Cpn.,r(Fp)(V)) = Sz/p-k.^MdimV] (2)

and it follows from (1) that iriT(Fp)(V)ci,m = Z/pm+1 if t is even and i > 
dim Ve”. Moreover, the upper horizontal sequence in (1) yields that

R: T(Fp)(V)c'm 4 T(Fp)(Vc”)cf”-‘
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is (dimV — l)-connected, so induction on m gives the claimed homotopy 
groups for k = Fp.

Finally, the argument going from Fp to the perfect field k is similar to 
the one presented in sect. 4.3. □

Let W(k) dénoté the big Witt vectors of k, i.e. W(k) = (14- Xk[[X]])x, 
the multiplicative group of power sériés which begins with 1. Write Wm(k) 
for the truncated Witt-vectors

Wm(*) = (1 + Xfc[[X]])x/(l + Xm+1fc[[X]])\

Let Vn: W(fc) —> W(k) be the Verschiebung: it sends a polynomium p(X) 
to p(Xn), and induces an injection

V„. W^k^Wn^^

Theorem 5.2.8. ([HM2]). For a perfect Geld k of characteristic p > 0, 

^m-r (k[x]/(xn)^

and K2mÇk[x]/(xn); Zp) = 0 for m > 0.

Proof. We are in a situation where ^(-jZp) and TC*(—;ZP) agréé, and 
shall calculate the latter. I shall only treat the case (p, n) / 1; the other case 
is less complicated.

Suppose first n1 11 and choose m in the range

dimc Vpr-n <m < dimc Vpri (1)

with notation as in theorem 5.2.6. By définition,

] [V] if r C vp(n)
dimc Vp.-u = <

l [^J ” 1 if r ~ Vp^

so the above condition is équivalent to

pT-1! — n< mn < prl — n if r > vp(n)
pr~1l < mn <prl — n if r = vp(n) (2)
p1"-1! < mn < prl if r < vp(n)
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Now

^m-i (Eho^TWVp^ I S^^holimT^)^)  ̂
\ R J R

S Wr(k)

by theorem 5.2.7, and similarly

"2m-i (Eh^TWtVp^-^ = Wr_Vp(n)(k). 

\ R /

Thus the second factor in theorem 5.2.6 (where nr | l) contributes

^ cok (W^r(m,z)—vp(n) (^) —> W^r(m,i)W)
G,p)=l, n'\l

to TC2m-i(tW/(^n);2p), when r = r(m,l) dénotés the unique number
which satisfies (2). In other words, the contribution is

®wp(n) W I G,p) = 1, n' I Z, Z < pmn'}®

®{^r(m,oW I G,p) = 1, n' I Z, Z > pmn'}.

Similar considérations show that the first factor in theorem 4.2.6 contributes

®WW)«l(P.0 = l,n'tO1 (4)

where this time r = r(m,l) is the unique number with pr 1l < mn < prl. 
Finally, it is easy to see that the direct sum of (3) and (4) is isomorphic to 
W^-xW/V^W^^ □

Remark 5.2.9. The above argument shows that

^m-1 n hohmTW^)^ Lw^-iW 

\(I,p)=l R J

and more generally that

^2m-i n h^rw^)^-') =p^^^ 
\O.P)=1 r J

The différence between the two cases (p,n) = 1 and (p,n) / 1 in theorem
5.2.8 is just that Vn in the first case gives an isomorphism on the subproduct
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with n | Z; in the second case there is a cokernel whose size dépends on the 
p-adic valuation of n.

I should point out that the low dimensional groups Ki(k[x]/(xn); Zp), 
i < 3, were determined previously, and that Thomas Geisser asked us to 
use the présent techniques to work out the groups for general i; he even 
conjectured the correct answer.

5.3 Nil calculations.
McCarthy’s relative theorem makes it possible to calculate the socalled Nil- 
groups of rings A which contain a nilpotent idéal I for which A// is a regular 
ring. In this situation, we hâve the cofibration sequence

NK(A)A -> TC (A[t] 4 A/I[t]f -4 TC (A -> A/I)a (5.3.1)

with ÜNK(A)A ~ Nil(A)A. I illustrate the situation with an explicit calcu- 
lation for the rings An = k[x]/{xn) of the previous section. Further details 
and examples are to appear in [HM2].

Lemma 5.2.2 and (5.2.1) shows that

oo 
rt^M) ~c„ T(A) A ^(Doo) T(A) N \/ S^/C, 

s=0

and we can apply theorem 5.2.6 for the ring

An[t] = k[t,x]/(xn).

This expresses TC(An[t]) in terms of EholimT(fc[^])(V^q)cpi with (p,l) = 1. 

Write T(k[t]) = T(k[t] —> fc), and let ~p dénoté équivalence after p-adic 
complétions. Then

/ oo \ Cp*

T(k[t])(Vpil)c^ ~ T(k)(Vpil)cS A V S[/Cs 
\ s=l /

~P V
(p,p)=l j=0

since S1 /Cp3y ~p S1 /Cpi when (v,p) = 1, and one has as in sect. 5.2:

(rW^jAsX)^ ~ T(fc)(vpq)c>i"<-) Asyc^.i)

~ ST(fc)(vpi0c’,mln(i ’) vrckjf^i)^"""'*'’’.
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For fixed k,

^h^T^t])^^ = ^ST^i])^)^ 

R

if i is sufficiently large; the précisé value of i is given in the proof of theo­
rem 5.2.8. It follows from remark 5.2.9 and the above that

7r2m-i n Sh^HnWJWû^
(p,0=i R

/ V”’
-^mi n ^wBf^) i

\W)=1 R J

(
r oo

^^Wn.n-iWe^W™.!^)
i=1

where pr is the exponent of Wmn-i(fc). This can also be written as

© W^iM/W^^].
(^,p)=i

We divide out the image of the Verschiebung Vn: Wm-i(&) 4 Wmn_i(fc) 
to get

Theorem 5.3.1. The groups NK2m(&[x]/(Æn)) and NK2m-i(^M/(^n)) are 
isomorphic and are given as an infinité sum of An[2/]/An[py] with An = 
Wmn-l(k)/VnWm_^^ □

There are more canonical ways to présent the resuit, e.g. by using the 
deRham-Witt complex of Deligne and Illusie. I refer the reader to [HM2].

5.4 On the K-theory of local class fields.
It is natural to attempt to generalize the calculations of the previous sections 
to rings of integers in local class fields, A = int(E) with E/Qp abelian (or 
even to local number fields). Such fields appear as centers in group rings 
Q,[G], and their integers are centers in the corresponding maximal orders 
MP(G),

ZPG C MP(G) C QPG.

If E/Qp is unramified, then A = W(FP-) is a factor in Zp[Cf], (p^f) = 1, 
and one can use lemma 4.4.7,

TWf])i ~ (7(Zp) A ABCf^ ~ (T(ZP) A C/+)*
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to get the cofibration sequence

TC(W(FP‘ )); -4 TF(ZP)£ ^ TF(ZP);,

cf. [BM2]. Thus the unramified case is of the same complexity as A = 
Zp, where one has the calculational methods of sect. 4.1. In outline the 
calculation of TC(ZP) is similar to the calculation of TC(FP), but the details 
are of a different magnitude of difficulties.

The first problem is to verify Conjecture 4.1.16 for the rings in question, 
i.e. to show that

T: TH(A)£ 4 H(CP,TH(A)) (5.4.1)

induces isomorphisms on homotopy groups in non-negative degrees. This was 
done in [BMI], sect. 5 for A = Zp, p odd, and in [R] for p = 2. I will go 
through the p odd case below; it was not so well presented in [BMI]. First 
recall from [B2]:

Theorem 5.4.2. The modp homotopy groups of TH(ZP) are

^(TH(Zp)îFp) ~ E^p-!} 0 S{f2p}

where the subscripts indicate degrees. Moreoverf the Bockstein operator on 
f2p is C2p-i, and the réduction map from TH(ZP) to TH(FP) maps f2p non- 
trivially. □

The reader with no access to [B2] may consult [HM] for an outline. Recall 
from lemma 4.4.4 the S1-map

S^S0# -4 TH(Idp)

which induces équivalence on ail Cpn fixed sets. The inclusion

S“i(5°)S1 -> E”(S°)

is split, and the splitting induces a map

/: E°°(S0) -> S^S0)51 -* S^S0)*5* -> TH(Idp)ftS'.

The homotopy ring ît,(E“(S°); Zp) is of course unknown, but it contains the 
direct summand

B{a2p_3} ® S{62p-2} C î.(S“(S°); Fp), p odd. (5.4.3)

The first element outside the direct summand lies in degree 2p2 — 2p — 2. 
There is a similar statement for p = 2. We compose f with the map

g-, TH(Idp)w‘ -^TH(Zp)hS1 —> F(S^,TH(Zp))sl
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where L cornes from linearization Idp —> Zp, and the second map is restriction 
to the skeleton S| C ES^. The cofibration sequence S| -> S| S3/S1 
and the S1-équivalence S3/S1 ~ S\ f\ S2 yield the fibration sequence

Q2TH(Zp)-Sf(S|,TH(Zp))s1 —>TH(Zp).

The composition go f maps the homotopy fiber of S°°(S0) 4 HZP into the 
fiber n2TH(Zp),

l: hF(E°°(S°) -4 HZP) 4 n2TH(Zp), iol = gof.

On homotopy groups one has

Ma2p-s) = fi2e2p-i, ^*(^2p—2) = iï2 f2p- (5.4.4)

This is a conséquence of the statement that the composition

$4 A HZP -^4 TH(ZP) ^ Z^HZ/p,

with l the inclusion of the cyclic 0-skeleton, represents the suspension of 
the first Steenrod operation P1, cf. [BMI], lemma 5.3 for details. We next 
consider the diagram of spectral sequences

Er_p,q (TH(Idp)hS';Fp) -------► Er_p,q (TH(Zp)hS1;Fp)

(5.4.5)

Er_p<q (TH(Idp)^;Fp) ------ ► Er_p<q (TH(Zp)h^;Fp)

In fiber degree q < 2p2 — 2p — 2, the B2-terms are:

F2 (THCIdp)^^) =E{U1}®S{t}0E{a2p-3}®SN-2}
E2 (TH(Z/c’;Fp) = E{m} ® S{t} ® E{e2p_i) ® S{/2p}

E2 (TH(Idp)',sl;Fpj = S{t} ® E{a2p_3} ® S{&2P-2}

E2 (TH(Zp)hsl;Fp) = S{t} ® E{e2p-i} ® S{/2p}.

The vertical maps in (5.4.5) are the inclusions. It is well-known to homotopy 
theorists (see e.g. [BMI], sect. 3) that

E2(TH(Idp);Fp) S E2<”-2)(TH(Idp);Fp)

and that

d2*-2(t) = tPa2p-3, d2p-2(ui) = 0, <f2',-1(u1)=t%_2' (5.4.6)
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The horizontal maps in (5.4.5) are zéro (at least in fiber degrees < 2p2—2p—2) 
but this is due to the filtration shift indicated by (5.4.4).

Proposition 5.4.7. Let p be an odd prime. In the spectral sequence 
^(^(ZpJ^îFp), the éléments te2P-i and tf2P are infinité cycles. More- 
over E2 = E2p and

d2p(t) = t^^p-i, d2p(U1) = 0, and d2**1^ = tp+1f.

Proof. Let T = TH(ZP) or T = TH(Idp). Consider the Postnikov tower

T[0,0]<-T[0,1]^------<-T[0,g]<-------

with inverse limit T. Here T[0, g] has homotopy groups precisely in degree t 
for 0 < t < q, and in this range they are equal to the homotopy groups of T. 
The Postnikov tower can be taken to be functorial (e.g. by using J. Moore’s 
simplicial construction of it), so each term has an S1-action.

The homotopy groups of the Postnikov tower defines an exact couple, 
which gives the spectral sequence we are looking at. It has

S-M = ^-pF(ECp+,T[q,q]^ S ^q_pF(BCp+,T{q,q]) S H^BC^T)

and the differentials d^1 are induced from the additive relations

ng_pF(ECP+Wq,q])^--- ng_pF(ECP+;T[q,q+r-l])cP ^^^

Here d* is the connecting homomorphism in the homotopy exact sequence of 
the fibration

T[q, q + r -1] 4- T[q, q + r] <- T[q 4- r, q 4- r].

We shall now compare the situation for TH(Idp) and TH(ZP). To shorten 
notation, write

F[M] = F(ÊCp+,TH(Idp)[s,t])c’ 
Fz[s, t] = FCECVh TH(Zp)[s, t])c’

and let *♦(—) = 7r*(—;ZP). Then (5.4.4) translates as follows: the additive 
relations

îr2p-3^[2p-3,2p-3]«“jr2P_3F[2p-3,2p-l]—>ir2p-3^z[2p“3,2p-l]^ ir2p-3^z[2p-l,2p-l]

JT2p-2F[2p-2,2p-2]^ 7T2p-2F[2p-2,2p]—">îT2p-2Fz[2p-2,2p]<-<7r2p-2Fz[2p,2p] (1)
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give well-defined maps (from left to right) which take û2p-3 and b2P-2 into 
the generators te2p-i and tf2P of

^-3fz[2p- l,2p- 1] = Jf2(BCp;7r2p_iTH(Zp)) 
K2P-2Fz[2p,2P] = H2(BCp-,ir2pTH(Z.p))

For example, the first additive relation is well-defined because l* annihilâtes 
the generator 111^-2 € ff1(BCp;7r2p-2TH(Idp)): it maps to an element of 
filtration degree 3, according to (5.4.4).

The éléments û2p-3 and b2P-2 are infinité cycles in the spectral sequence 
for TH(Idp)àCp, being in the image of f*. This means that they lift to 
éléments of 7T2p-3F[2p — 3,00] and 7T2p—2 F[2p — 2,00]. It follows that te2p-i 
and tf2P lift to 7T2p-3Fz[2p — 1,00] and 7T2p-2Fz[2p, oo]» so are infinité cycles.

Let us prove that cPp(ui) = 0 and (P^Çui) = tp^1f2P and leave the 
easier differential (Pp(t) = tp+1e2P-i to the reader. The additive relation 
defining ^(111) is

7T.1F[0,0] A Jr-1F[0,2p-4] « î-iF[0, 2p-3] -S î-2F[2p-2,2p-2]. (2)

Indeed ui lies in the subgroup tt_iF[0, 2p—3] because cPp~2{ui) = 0 (and not 
equal to tp”1uia2p-3). Because of the filtration shift represented by (5.4.4), 
it is better to consider the additive relations

A: 7r_iF[0,0] <---------- 7r_iF[0,2p — 4] —* 7r_2F[2p - 3,2p]

h. U h. (3)

AZ : 7r_iFz[0,0] «-------- 7r_iFz[0,2p — 4] —^—► 7r_2Fz[2p — 3,2p]

where 5' is the connecting homomorphism in the homotopy exact sequence 
of

F[0,2p — 4] 4- F[0,2p] <- F[2p - 3,2p].

Theorem 5.4.2 and (5.4.3) gives

7r_2F[2p — 3,2p] S 7T_2F[2p — 3,2p — 2]
7r_2F[2p - 3,2p] S 7r_2F[2p — 1,2p]

and hence exact sequences

0 —► 7r-2F[2p — 2,2p] —-—► 7r-2F[2p — 3,2p] —-—► 7r_2F[2p — 3,2p — 3] —► 0

0 -> *-2F[2p, 2p] —2—4 n-2Fz[2p - 3,2p] ^-> *-2F[2p - 3,2p - 1] -► 0
(4)
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One has the following values of the groups involved:

n_2F[2p - 2,2p] a H2p(BCp-, 7r2p_2TH(Idp)) = Fp (t^^) 
*_2F[2p - 3,2p - 3] S H^-^BCp, 7r2p_3TH(Idp)) = Fp(tI>-1u1a2p_3)

ir_2F[2p, 2p] S H2p+2(BCP-, î2pTH(Zp)) = Fp (t^1 f2p) 
7r_2F[2p - 3,2p - 1] S H2p+\BCp-, 7t2p_1TH(Zp)) = F^uie^-O

I claim that jz o Z* o i = 0, giving the left hand vertical arrow in (4). Indeed 
the generator of 7r_2F[2p—2,2p] is fp62p-2, hence in the image of the product 
map

7T-2pF[0, 0] 0 7T2p-2^[2p — 2, 2p — 1] -> 7T-2F[2p — 2,2p — 1].

The homomorphism

7r2p—2 ^[2p - 2,2p - 1] ^ 7r2p_2Fz[2p - 2,2p - 1]

is zéro by (5.4.4), and the claim follows by using the product

7r-2pFz[0) 0] 0 7T2p-2Fz[2p — 3,2p — 1] —> ?r_2Fz[2p — 3,2p — 1].

On the other hand

d2”-2^!) =jo A(ui), d^M = jz o Az(ui) (5)

and by (3), jz^z(wi) = jz^A(ui). Since d?p~2(ui) = 0, one concludes that 
dz(ui) = 0. Finally the differential d2p~1(ui) = tpb shows that M(wi) / 0 
and that it belongs to the image of i in diagram (4). But the left hand 
vertical arrow in (4) is an isomorphism; use of products as above and (5.4.4) 
complétés the proof. □

Corollary 5.4.8. For p odd,

7T. (h(Cp,TH(Zp));Fp) =£{e2p_i}®S{tM-”}.

Moreover,
r*: tt.(TH(Zp);Fp) -+ tt, (h(C'p,T(Zp));Fp)

is an isomorphism in non-negative degrees.

Proof. The non-zero differentials in Er ÇÈ(Cp, TH(Zp));Fp) are by (5.4.7):

d^Çf) = iê+^p-i, d2p+1(ui) = tp^f, (i e Z)
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and a routine calculation gives E^2 ^ E{ui} 0 S{tp,t~p}. For degree 
reasons E2^2 = E%°*. This proves the first statement. The commutative 
diagram

T(ZP) ---------------- ► T(FP)

È(Cp,T(Zp)) -------► È(Cp,T(Fp))

together with lemma 4.2.4 and theorem 5.4.2 tells us that r*(/2p) = t~2p 
and r*(e2p-i) = e2p-i. □

The corollary implies that

TH(ZP) -À H(CP, TH(ZP))[O, oo)

is a p-adic équivalence, and theorem 4.1.15 then gives
A

~ (T(z/S1);.

p

TF(Zp,p); ~ holimT(Zp)/,c'”•

The homotopy groups Tr^^Zp)^;^) and 7r* ^]ft(S1;T(Zp));Fp^ were cal- 

culated in [BM2] by solving the involved spectral sequences, and

B*: 7F* (TF(Zp,p); Fp) —> 7r*(TF(Zp,p); Fp)

was determined. This was enough to give the values of TC*(VF(Fp-);FP). 
The groups turn out to be vi-periodic, i.e.

vx : TC* (W?-);Fp) -ATC*+2p_2 (W(Fp-);Fp)

(vi = 62p_2), and this together with other tricks leads to the proof of theo­
rem 1.5 of the introduction. I refer to [BM2] for the details.

For odd primes p, theorem 1.5 States that

TC(Zp)*[0,oo) ~ im Jp x Bim Jp x SU*. (5.4.9)

This is true as (—l)-connected spectra when one use the deloopings arising 
from Bott periodicity on the right hand side. For p = 2 there are added 
complications. For example, mod2 homotopy groups of a ring spectrum 
does not in general form a ring. At the time of writing TC* (Z2) has not been 
completely determined, but preliminary calculations of J. Rognes suggests 
that

7T* (TC(Z2),F2) = 7r*(im J2 x BimJ2 x SZZf; F2).
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One expects that a twisted version of (5.4.9) is true for p = 2, cf. [BM2], 
sect. 6. I stress that im J2 is the complex J space at 2, i.e. the homotopy 
fiber of ~ 1 : (BU x Z)^ -> BU^.

For géométrie reasons it is important to study the relative Æ-theory 
Æ(Id —> Z), by theorem 3.5.1 equal to TC(Id 4 Z). Indeed, a celebrated 
theorem due to F. Waldhausen States that

Æ(Id) ~ n00^00 x WhDiff(*)

where n2WhDiff(*) ~ honmDiff(Dn,Or1) with D2'1 C 9Dn the lower 
hemisphere, and where îl00^00 is the zero’th term in the sphere spectrum.

Conjecture 5.4.10. For each odd p we hâve to split fibration

cokJp -> (Q^S00)* ^ im Jp. (1)

There is a similar split fibration

Xp -4 il^S^ÇS1 N CP00)* ^± SUp- (2)

Here the map from S1 A CP°° -4 SU is adjoint to the map which classifies 
the reduced canonical line bundle, and e’ is its ‘universal’ extension. The 
S1-transfer

r: Q^S^CS1 ACP°°) 4 ^S00

induces a map rp: Xp -4 cok Jp and a map from SUp to im Jp with fiber 
SUp. Let im Jp be the O-connected cover of im Jp. I conjecture that

TC(Id 4 Z)p ~ cokJp x BcokJp x B imJp x hF(rp). (3)

The difficult part is to prove that the restriction of TC(Idp) -4 TC(ZP) to 
the SUp factor of (2) is the deloop of ^^ — 1: BUp -4 BU*- this gives the 
factor BimJp in (3).

The outstanding problem which remains is to détermine TC(A)p in ram- 
ified situations. There are at least two approaches. One can attempt to 
use that A appears as the center in a maximal order MP(G) C QP[G], and 
use the ideas of sect. 5.1 to calculate TC(Zp[G])p. But this leaves one with 
following problem, interesting in its own right:

Problem 5.4.11. Give a calculable trace description of K(ZP[G] -4 MP(G)).
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One knows by the localization theorem in Æ-theory a categorical descrip­
tion of K (ZP[G\ -4 QP[G]), and hence of K (ZP[G\ -4 MP(G)), namely as 
the K-theory of cohomological trivial modules. But despite a lot of efforts 
by Bôkstedt and the author, (5.4.11) remains unsolved (even for G = Cp).

A second approach is to follow sect. 4.1, starting with a calculation of 
TH(A). Recently, A. Lindenstrass has determined TH(A) for quadratic ram- 
ified extensions of Z2. In general one should hâve

Conjecture 5.4.12. Let A be totally ramified and let ir e A be the prime 
element (A/ttA = Fp/ Then

7r#TH(A, A/tt) = ^fp{ûi} 0 £^{^2}

withdegai=i. □

Conjecture 5.1.12 yields 7r*(TH(A); Fp) as well, but I do not know if (5.4.1) 
is an équivalence in this case.

Finally of course there is the deep problem of determining the relative 
Æ-theory K (Z(p) 4 Zp) but this is a different story altogether.
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