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1. Introduction

The problem of constructing a nice smash product of spectra is an old
and well-known problem of algebraic topology. This problem has come to
mean the following: Find a model category, which is Quillen-equivalent
to the model category of spectra, and which has a symmetric monoidal
product corresponding to the smash product of spectra. Two solutions
were found recently, namely the smash product of S-modules of [EKMM],
and the smash product of symmetric spectra of [HSS]. Here we present
another solution, the smash product of SF, the category of simplicial
functors from finite pointed simplicial sets to pointed simplicial sets. Be-
fore we describe some interesting special properties of SF, we summarize
some other results contained in this paper: Although SF might not seem
a natural object to study, especially to a reader not very familiar with
simplicial techniques, it should in fact be thought of as the category of
functors from finite pointed CW-complexes to pointed topological spaces
which are pointed (take one-point spaces to one-point spaces) and homo-
topy functors (take weak equivalences to weak equivalences). It is clear
that this latter category has an interesting homotopy theory (it has a
natural class of weak equivalences), which cannot come from a model
structure (for the trivial reason that colimits and limits do not preserve
weak equivalences in general). However, this homotopy theory is equiv-
alent to another one that SF has (see section 8, especially for which
we construct a model structure Ordinary (Bousfield-Friedlander) spectra
can also be viewed as pointed simplicial functors into pointed simplicial
sets (only now they are not defined on all finite pointed simplicial sets,
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but only on spheres—see section 4). As a byproduct, we obtain simpler
and more descriptive constructions of the model structures on spectra.
As another byproduct, we obtain a model structure on simplicial functors
which should be thought of as a model structure on homotopy functors.
As a final byproduct, we obtain a model-category version of the part of
Goodwillie’s calculus of homotopy functors having to do with “the linear
approximation of a homotopy functor at ∗” [G1], without the restriction
on the relevant homotopy functors of being “stably excisive”.

We say a few words about some interesting properties that distinguish
simplicial functors from S-modules and symmetric spectra. First of all,
an advantage of simplicial functors is their simplicity. Also, the monoids
under the smash product of simplicial functors (these are what one would
call “algebras over the sphere spectrum”, after thinking of simplicial func-
tors as spectra by using the results of this paper) are well known: They
are the FSPs, which were introduced in 1985 by Bökstedt [B]. There
are interesting constructions with FSPs, e.g., topological cyclic homol-
ogy, which can be considerably simplified and conceptualized using the
smash product of simplicial functors [LS]. Note however that it is not
clear that an E∞-FSP has a commutative model, although the analogous
statement is true for S-modules and symmetric spectra. This has, e.g.,
the disadvantage, that it is not clear how to give a model category struc-
ture to (or even how to define) MU -algebras using simplicial functors
(although this can be done for modules over any any FSP, and algebras
over any commutative FSP, by similar methods as in [Sch]). Returning
to examining the special features of simplicial functors, in constrast to
S-modules and symmetric spectra, simplicial functors have not only an
interesting unstable theory (modeling certain homotopy functors, cf. re-
mark 4.6 and ), but interesting “metastable”, as well as a whole tower of
“higher stable” theories, which are related to the calculus of homotopy
functors [G1], [G2], [G3] (this will appear in a future paper). Finally,
simplicial functors can be not only smashed, but also composed, with
each other. There is a canonical map from the smash product to the
composition product, which is an isomorphism in an important special
case (proposition 5.13), a fact that provides a very concrete description of
the smash product. There is a close connection between simplicial func-
tors and Γ-spaces [L2]. In fact, Γ-spaces may be identified with a special
kind of simplicial functors (see convention 2.11 of [L2]) in such a way
that the smash product of Γ-spaces corresponds to the smash product of
simplicial functors under this identification.

We have tried to make this paper reasonably self-contained. We develop
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from scratch the part of the theories of simplicial categories, of model
categories, and of stable homotopy, that we need. In particular, no back-
ground is assumed from the reader, other than familiarity with simplicial
sets (and some basic algebraic topology).

This paper is organized as follows. In section 2, we establish some conven-
tions on notation and terminology, and we introduce homotopy cartesian
squares of simplicial sets. In section 3, we introduce simplicial categories.
In section 4, we introduce spectra and simplicial functors. In section 5,
we introduce the smash product of simplicial functors and we prove its
category-theoretic properties. In section 6, we introduce model cate-
gories. In section 7, we construct a certain model structure on simplicial
categories of a certain form, which includes the simplicial categories of
spectra and simplicial functors. The resulting model structures for spec-
tra and simplicial functors form stepping stones for the construction of
later, more interesting, model structures, as follows. In section 8, we con-
struct a model structure on simplicial functors, which should be thought
of as a model structure on certain homotopy functors. In section 9, we
construct the stable model structure on simplicial functors, which we
later show is Quillen-equivalent to the stable model structure on spectra.
The latter was introduced in [BF], but we give a self-contained account
of it in section 10, together with all the facts of stable homotopy theory
that we need. In section 11, we compare the stable model structures.
In section 12, we compare the smash products of spectra and simplicial
functors. Finally, in section 13, we give the connection to the calculus of
homotopy functors.

2. Preliminaries

We denote the category of pointed simplicial sets by S0. We write A+ for
the pointed simplicial set obtained from the simplicial set A by adding
a disjoint basepoint. We denote the basepoint of any pointed simplicial
set K by 0K , or simply by 0 when no confusion can arise. Let ∗ be the
pointed set {0}, let S0 be the pointed set {0, 1}, and let S1 be the pointed
simplicial set ∆1/∂∆1. We fix once and for all a countable category Sfin

0

equivalent to the full subcategory of S0 consisting of the finite pointed
simplicial sets, such that it contains ∗, S0, S1, and all (∆n)+. We choose
the smash product in S0 so that it preserves Sfin

0 , so that smashing (either
on the left or on the right) by S0 is the identity, and so that smashing
by ∗ always yields ∗. Given a simplicial set A and a pointed simplicial
set K, we write A⊗K for A+ ∧K, and K ⊗ A for K ∧A+.

We work within some fixed universe. A set is small if it is in the universe,
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and it is a class if it is a subset of the universe. From now on, unless
the contrary is explicitly stated, whenever we say “set” we really mean
“small set”. All our categories are assumed to have a class of objects and
a class of maps, and to have sets of maps between any two fixed objects.
When we say that a category has all limits and colimits, we really mean
only these indexed by small categories (those with a set of objects and
a set of maps). Finally, we need to explain how we use the word “map”:
For us, a map always preserves all the available structure. For example,
if K and L are pointed simplicial sets, then a map K → L is the same
thing as a pointed simplicial map K → L.

Let D be the pointed simplicial set obtained by choosing a basepoint
for ∆1. If A is a simplicial set, A′ denotes the singular complex of the
realization of A. If f : A → uK is a map of simplicial sets, where uK
denotes the underlying simplicial set of the pointed simplicial set K, the
homotopy fiber hf(f) of f is the pullback of A′ → uK ′ ← u hom(D, K ′),
where the last map is obtained by evaluating on the non-basepoint vertex
of D. The basic properties of the homotopy fiber are the following. There
is a natural map F → hf(f), where F is the fiber of f , which is a weak
equivalence if f is a fibration. Further, given a map K0 → K1 of pointed
simplicial sets and a commutative square

A0 → A1

f0 ↓ ↓ f1

uK0 → uK1

of simplicial sets with both horizontal maps weak equivalences, the in-
duced map of homotopy fibers hf(f0)→ hf(f1) is also a weak equivalence.

A commutative square of simplicial sets

A0 → A1

f0 ↓ ↓ f1

B0 → B1

is called homotopy cartesian if, for every choice of a basepoint of B0

(i.e., for every possibility of viewing the bottom horizontal map as a
map of pointed simplicial sets), the induced map hf(f0) → hf(f1) is a
weak equivalence. In case f0 and f1 are fibrations, this condition is
equivalent to the following: The canonical map from A0 to the pullback
of B0 → B1 ← A1 is a weak equivalence.

A commutative square of pointed simplicial sets is called homotopy carte-
sian if and only if so is the underlying square of simplicial sets. In this
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case, if the underlying square is as above, with Ai = uKi, Bi = uLi, and
K1 = ∗, then we call the sequence K0 → L0 → L1 a fibration sequence.

3. Simplicial categories

In this section we introduce the part of the theory of simplicial categories
that we need.

3.1. Definition: [L1, p. 74; see also the bottom of p. 75] Let C and D be
functors from a small category I to categories, with C small , i.e., taking
values in small categories. The maps from C to D are themselves objects
of a category hom(C,D). Given two objects X and Y of hom(C,D), the
maps from X to Y are those families fi, parameterized by the objects i
of I, satisfying the following two conditions. First, fi is a map Xi → Yi in
the category of functors from Ci to Di. Second, given a map α : i→ j in I
and an object K in Ci, the two maps from Xα∗K (which equals α∗XK)
to Y α∗K given by fj and α∗fi are equal.

3.2. Definition: A simplicial category is a functor from ∆op to cate-
gories. Given simplicial categories C and D with C small, the category
of simplicial functors from C to D is the category hom(C,D).

3.3. Convention: For the rest of this paper, unless the contrary is
explicitly stated, all simplicial categories C will have a discrete simplicial
class of objects. Thus the class of objects of Cn is independent of n, and
we refer to it as the class of objects of C.

If C is a simplicial category, we sometimes say “map in C” instead of
“map in C0”.

3.4. Definition: A simplicial category is called pointed , if there is an
object of C which is a zero object , i.e., both initial and final, in Cn for
all n. Thus we may view C(K, L) as a pointed simplicial set, for all
objects K and L of C. A simplicial functor between pointed simplicial
categories is called pointed , if it takes zero objects to zero objects.

3.5. Example: We define the pointed simplicial category S. Its objects
are the pointed simplicial sets. The maps from K to L in Sn are given
by the maps from ∆n ⊗ K to L in S0. The composition vu in Sn is
given by the composition v(∆n⊗u)(d⊗K) in S0, where d is the diagonal
∆n → ∆n × ∆n, and K is the source of u in Sn. Note that S has a
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small full pointed simplicial subcategory Sfin, whose value at [0] is the
category Sfin

0 which we have defined in the previous section.

3.6. Remark: According to our conventions, a pointed simplicial cate-
gory is essentially a category “enriched over S0”. Most of this section, and
section 5, could be generalized by using “category theory enriched over a
symmetric monoidal category” (see [D]). Our approach does not require
enriched category theory, and avoids “coherence conditions”. There is
also the equivalent approach of defining a simplicial category C to be
a class of objects, a family of simplicial sets C(K, L) defined for each
pair (K,L) of objects, and an assosiative and unital composition. In these
terms, a simplicial functor X from the simplicial category C to the simpli-
cial category D is a family of maps of the form C(K, L)→ D(XK,XL),
that preserve composition and units. This is the approach of [Q] (see
section II.1), but the definition given there is too restrictive for our pur-
poses. (There it is required that all simplicial categories have functors ?K

and ? ⊗ K, behaving like the functors with the same name in proposi-
tion 3.16. This rules out the simplicial category Sph, which is used in
the next section to represent spectra as simplicial functors.)

3.7. Definition: Let P : S × S → S be the pointed simplicial functor
given on objects by the smash-product (its definition on maps of Sn

involves the diagonal ∆n → ∆n×∆n). Given K in S, define K∗ : S→ S
by K∗L = P (L, K). Given a pointed simplicial functor X : C → S,
define X ∧K : C→ S to be the composition K∗ ◦X. Given a simplicial
set A, define X ⊗ A to be X ∧A+.

3.8. Example: Given a small pointed simplicial category C, the dual
pointed simplicial category C∗ is defined as follows. Let C∗

0 be the cat-
egory of pointed simplicial functors from C to S. Let the objects of C∗

be the objects of C∗
0. Finally, let the maps in C∗

n from X to Y be the
maps in C∗

0 from X ⊗∆n to Y .

3.9. Convention: Given X in C∗, we write X(n) for the functor
from Cn to Sn it determines. We denote by XK the value of X(n)
at K, which does not depend on n. We denote by XnK the pointed set
of n-simplices of XK.

3.10. Definition: Let E be the category of pointed sets. Given X in C∗

and [n] in ∆, we define a pointed functor Xn : Cn → E. The value of Xn

on objects has already been defined above. Given u : K → L in Cn and x
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in XnK, we define u∗x in XnL to be u∗(x, 1), where we wrote u∗ also for
the map XK ⊗∆n → XL, and 1 denotes the identity map in ∆n

n.

3.11. Proposition: Fix a collection of pointed functors Xn from Cn to
pointed sets, and fix, for all K in C, a choice of assembling the XnK to
a pointed simplicial set. Then this data determines a pointed simplicial
functor if and only if, given α : [m] → [n] in ∆, the induced maps
XnK → XmK assemble to a natural map Xn → Xmα∗. Further, given X
and Y in C∗, a collection of maps Xn → Yn determines a map X → Y
if and only if, for all K in C, the maps assemble to a map of pointed
simplicial sets XK → Y K.

Proof. The conclusion follows from the following two observations.

First, given α : [m] → [n], u : K → L in Cn, X in C∗, and x in XmK,
the equality u∗(x, α) = (α∗u)∗(x, 1) holds. For, since X is simplicial,
α∗(u∗) = (α∗u)∗. But α∗(u∗)(x, 1) = u∗(x, α).

Second, a map f : X → Y in C∗
0 is a family of maps XK ⊗∆n → Y K,

satisfying a condition stated in definition 3.1. This condition implies
that this family is determined by a family of maps XK → Y K, by
precomposing with the projections XK ⊗ ∆n → XK. Equivalently,
given α : [m]→ [n] and x in XmK, we have f(x, α) = f(x, 1).

3.12. Proposition: All colimits and limits exist in C∗
0, and are com-

puted degreewise.

Proof. This follows from proposition 3.11.

3.13. Definition: (Representable simplicial functors) Given an ob-
ject K of the small pointed simplicial category C, we define, using propo-
sition 3.11, an object K∗ of C∗. Given L in C, the pointed simplicial
set K∗L is defined to be C(K, L). The pointed functor K∗

n : Cn → E
is defined to be the one represented by K. Then these data assemble to
a pointed simplicial functor, and the assignment K 7→ K∗ extends to a
pointed simplicial functor Cop → C∗.

Given X in C∗, define XK in C∗ to be the composition K∗ ◦X.

3.14. Proposition: Given X in C∗ and K, L in C, the pointed
sets S0(L, XK) and C∗

0(K
∗ ∧L, X) are isomorphic.

Proof. By the Yoneda lemma, the maps from K∗
n ∧Ln to Xn are in bi-
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jective correspondence with the maps from Ln to XnK. The conclusion
follows from the description in proposition 3.11 of the maps in C∗.

3.15. Corollary: Given X in C∗ and K in C, XK ∼= C∗(K∗, X).

3.16. Proposition: Given K, L in S and X, Y in C∗, there are
isomorphisms

S(L, Y K) ∼= S(L∧K, Y ), and

C(X, Y K) ∼= C∗(X ∧K, Y ) ∼= S(K,C∗(X, Y ))

natural in all the variables involved.

3.17. Proposition: Given X and Y in C∗, the pointed set C∗
0(X, Y )

is isomorphic, via the obvious map, to the limit of the diagram∏
K

S0(XK,Y K) −→−→
∏
u

S0(XK ⊗∆n, Y L),

where the first product is indexed by all objects K of C, and the second by
all u in the sum over n, K,L of Cn(K, L). The two maps in the diagram
are defined as follows. Given a family of maps fM : X(M)→ Y (M) and
a map u : K → L in Cn, we have to define two maps XK ⊗∆n → Y L.
The first is u∗(fK ⊗∆n) and the second is fLu∗.

Proof. By definition, a map of simplicial functors f : X → Y is a family
of maps XK ⊗∆n → Y K, satisfying two conditions. First, for fixed n,
this family should give a map of functors Cn → Sn. The second condition
is found in the proof of proposition 3.11. These conditions are equivalent
to the following single condition. Given u : K → L in Cn, the equality
u∗(fK ⊗ ∆n) = fLu∗ holds. The conclusion follows immediately from
this.

3.18. Corollary: Given X, Y in C∗, the pointed simplicial set C∗(X, Y )
is isomorphic, via the obvious map, to the limit of the diagram∏

K

S(XK,Y K) −→−→
∏
u

S(XK ⊗∆n, Y L).

3.19. Definition: The canonical map K∗ ∧XK → X, given X in C∗

and K in C, is the map corresponding to the identity of XK under the
isomorphism of proposition 3.14.
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3.20. Corollary: Given X in C∗, the canonical maps K∗ ∧XK → X
induce an isomorphism between X and the colimit of the diagram∨

u

L∗ ∧XK ⊗∆n −→
−→

∨
K

K∗ ∧XK,

where the first map is induced from u∗ : XK⊗∆n → XL, and the second
map is induced from u∗ : L∗ ⊗∆n → K∗.

Proof. Let Z be the colimit. Propositions 3.17, 3.14, and 3.16, imply
that the functors C∗

0(X, ?) and C∗
0(Z, ?) are isomorphic.

3.21. Definition: Let Q : C → D be a pointed simplicial functor be-
tween small pointed simplicial categories. The pointed simplicial functor
Q∗ : C∗ → D∗ takes X to the colimit of the diagram∨

u∈
∨

n,K,L Cn(K,L)

(QL)∗ ∧XK ⊗∆n −→
−→

∨
K

(QK)∗ ∧XK,

where the maps are similar to the ones in the previous corollary.

3.22. Definition: Given pointed simplicial functors L : C → D and
R : D → C, the pair (L, R) is called an adjoint pair, provided that the
pointed simplicial functors Cop × D → S, taking (X, Y ) to C(X, RY )
and D(LX, Y ), are isomorphic.

3.23. Proposition: In the situation of definition 3.21, let the pointed
simplicial functor Q∗ : D∗ → C∗ be given by precomposing with Q.
Then (Q∗, Q

∗) is an adjoint pair.

Proof. By corollaries 3.18, 3.15, and proposition 3.16, the pointed sim-
plicial functors C∗(X, Q∗Y ) and D∗(Q∗X, Y ) are isomorphic.

3.24. Proposition: In the situation of proposition 3.23, the pointed
simplicial functors Q∗K

∗ and (QK)∗ are isomorphic, for all K in C.

Proof. By proposition 3.23 and corollary 3.15, the pointed simplicial
functors D(Q∗K∗, ?) and D((QK)∗, ?) are isomorphic.

4. Spectra and simplicial functors
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In this section we consider two simplicial categories of the form C∗. One
of them turns out to be one of the standard models for the simplicial
category of spectra (e.g., the spectra of [BF]). The other one, denoted
by SF, is closely related to homotopy functors (see remark 4.6).

4.1. Definition: Given K in S, let ΣK = S1 ∧K, and ΩK = S(S1, K).
Given a small pointed simplicial category C and X in C∗, let ΩX = XS1

.
A spectrum E consists of a sequence of pointed simplicial sets En and
a sequence of maps E(n) : ΣEn → En+1, for n = 0, 1, . . .. A map
f : E → E ′ of spectra is a sequence of maps fn : En → E ′

n such that
fn+1 ◦E(n) = E ′(n) ◦Σfn. Given a spectrum E and a pointed simplicial
set K, the pointwise definition of E ∧K does give a spectrum, thus spectra
form a pointed simplicial category Sp.

4.2. Definition: If n is a positive integer and K is in S, define an
equivalence relation ∼ on the n-fold cartesian product K×n by x ∼ x′ if
and only if either x = x′ or xi = 0 and x′j = 0 for some i and j. Let
K∧n = K×n/ ∼. We denote the class of the sequence (x1, x2, . . . , xn)
in K∧n by x1 · x2 · · ·xn. Define K∧0 = S0. We have an isomorphism
∧(K, m, n) : K∧m ∧K∧n → K∧(m+n), denoted by x∧y 7→ x ·y, induced by
concatenation of sequences. Thus, for any non-negative integers m1, m2,
and m3, and any x1, x2, and x3, with xi in K∧mi , the elements (x1 ·x2)·x3

and x1 · (x2 · x3) of K∧(m1+m2+m3) are equal.

We now define a pointed simplicial subcategory K∧ of S, whose unique
zero-object is ∗ and whose non-zero objects are given by the K∧n, as
follows. The pointed simplicial sets of maps from K∧n to K∧(m+n) are
trivial if m is negative, else they are isomorphic to K∧m, and they are
given by the image of K∧m in S(K∧n, K∧(m+n)) under the adjoint to the
map K∧m ∧K∧n → K∧(m+n) described in the previous paragraph.

Finally, define the standard n-sphere Sn recursively, as S1 ∧Sn−1 (note
that Sfin contains all Sn). There is an isomorphism in : Sn → (S1)∧n,
defined by in = ∧(S1, 1, n − 1) ◦ (1S1 ∧ in−1). There is a unique pointed
simplicial subcategory Sph of S with objects all Sn, such that the maps in
assemble to an isomorphism Sph→ (S1)∧.

4.3. Proposition: There is an isomorphism (not just an equivalence)
of pointed simplicial categories from Sph∗ to Sp, taking the pointed sim-
plicial functor X to the spectrum E with En = XSn, and with the
map S1 → S(En, En+1) given by the composition of the isomorphism
S1 → Sph(Sn, Sn+1) with the map Sph(Sn, Sn+1) → S(XSn, XSn+1)
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induced by the pointed simplicial functor X.

From now on, we identify Sp and Sph∗, using the previous proposition.

4.4. Definition: Let SF be the dual of Sfin, and, more generally,
let SF(n) be the dual of the n-fold cartesian product of Sfin with itself.
An object X of SF can be evaluated on an arbitrary K in S, by defin-
ing XK as the colimit, over all L → K with L in Sfin, of XL. We
obtain a simplicial functor S→ S commuting with filtered colimits and,
conversely, any such simplicial functor can be canonically identified with
one coming from SF, in fact, coming from its restriction to SF. A map
X → Y in SF is called a a weak equivalence of associated homotopy func-
tors provided that, for all fibrant K in S, the map XK → Y K is a weak
equivalence (this terminology is explained in remark 4.6). We denote the
class of these maps by SFhw.

4.5. Convention: For the remainder of this paper, unless the contrary
is explicitly stated, the term “simplicial functor” means “object of SF”.

4.6. Remark: A functor between two categories, both of which have
some fixed class of weak equivalences, is called a homotopy functor , pro-
vided that it preserves the weak equivalences. Thus the category of ho-
motopy functors from finite pointed simplicial sets to pointed simplicial
sets is an interesting category, and so is its full subcategory of pointed
homotopy functors (these are the functors preserving zero objects). Note
that the category of homotopy functors (between any categories with
weak equivalences) has itself a natural class of weak equivalences. It is,
however, not clear how to define limits and colimits of homotopy func-
tors, let alone how to put a model structure on them. We already know
that SF has all limits and colimits, and we shall see in section 8 that
there is a model structure on SF whose class of weak equivalences is
given by SFhw. The connection between SF and homotopy functors is
explained below.

For the remainder of this remark the term “homotopy functor” means
“pointed homotopy functor from Sfin

0 to S0”. Any simplicial functor X
has an associated homotopy functor , defined by K 7→ XRK, where R
denotes the simplicial functor “singular complex of the realization”. Thus
a map of simplicial functors is in SFhw if and only if it induces a weak
equivalence of associated homotopy functors. Further, the construction
F 7→ F̌ of [W, p. 402] shows that every homotopy functor comes from a
simplicial functor, up to weak equivalence. This suggests that the right
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way to view homotopy functors (at least for purposes of putting a model
structure on them) is as simplicial functors.

4.7. Definition: The assignment K 7→ K∗ of definition 3.7 gives a
pointed simplicial functor Sfin → SF (this involves using the natural
isomorphism between K ∧L and L∧K in the special case L = (∆n)+).
The pointed simplicial functor Hom : SFop × SF → SF is defined by
Hom(X, Y )(K) = SF(X, Y ◦K∗).

4.8. Proposition: The pointed simplicial functors from Sfin × SF
to SF, taking (K, X) to Hom(K∗, X), resp. to X ◦K∗, are isomorphic.

Proof. This follows immediately from corollary 3.15.

5. The smash product of simplicial functors

In this section we construct a symmetric monoidal pointed simplicial
functor SF × SF → SF, written (X, Y ) 7→ X ∧Y and called the smash
product of simplicial functors , satisfying the expected adjoint functor
properties.

5.1. Definition: The external smash product SF × SF → SF(2) is
defined by

X ∧̃Y = P ◦ (X × Y ),

where P is as in definition 3.7, and X × Y : Sfin × Sfin → S × S.
Note that P induces a pointed simplicial functor Sfin × Sfin → Sfin,
denoted again by P . The smash product SF × SF → SF is defined by
X ∧Y = P∗(X ∧̃Y ), with P∗ as in definition 3.21.

5.2. Proposition: There is an isomorphism

SF(X, Hom(Y, Z)) ∼= SF(X ∧Y, Z),

natural for X, Y , and Z in SF.

Proof. By proposition 3.23, it suffices to show that the left-hand side
is naturally isomorphic to SF(2)(X ∧̃Y, P ∗Z). Let [1]′ be the category
with two objects 0 and 1 and two non-identity maps, both from 0 to 1.
By corollary 3.18, the left-hand side is the limit of a diagram D defined
on [1]′× [1]′, with Dij defined as follows. Let Sij =

∐
m,n NiS

fin
m ×NjS

fin
n ,

where “N” stands for “nerve”, i.e., “N0” stands for “objects” and “N1”
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stands for “maps”. Every element of Sij determines m and n, as well as
maps u and v in Sfin, with u : K0 ⊗∆m → K1, and v : L0 ⊗∆n → L1,
such that if i = 0 then m = 0 and u is the identity, and similarly for
j = 0. Then Dij is the product over all elements of Sij of

S(XK0 ∧Y L0 ⊗∆m ⊗∆n, Z(K1 ∧L1)).

Note that the limit of a functor F from I to (pointed simplicial) sets
injects, via the canonical map, in Fi, provided that i is an object of I
that maps to any other object. We use this to identify such a limit with
the corresponding subobject of Fi. We want to identify the limit of D as
the limit of a functor D′ defined on [1]′, with D′

i defined as follows. Let
Si =

∐
m Ni(S

fin
m × Sfin

m ). Every element of Si determines m, as well as
maps u and v of finite pointed simplicial sets, with u : K0 ⊗∆m → K1,
and v : L0 ⊗ ∆m → L1, such that if i = 0 then m = 0 and u, v
are identity maps. Then D′

i is the product over all elements of Si of
S(XK0 ∧Y L0⊗∆m, Z(K1 ∧L1)). Thus the first limit is a subobject of the
second, and we want to show that this injection is also a surjection. Fix f
in

∏
(K,L) S(XK ∧Y L, Z(K ∧L)), and suppose that f is an element of the

second limit. Fix u : K0⊗∆m → K1 and v : L0⊗∆n → L1. Since f is in
the second limit, it satisfies the corresponding naturality statement with
respect to (u, 1L0), as well as with respect to (1K1 , v) (here 1L0 denotes
the identity map of L0 in Sfin

m , and 1K1 denotes the identity map of K1

in Sfin
n ). Thus f ⊗ ∆n satisfies the corresponding naturality statement

with respect to (u, 1L0). Half of the argument that f is in the first limit
involves considering the corresponding square, and the square expressing
the naturality of f with respect to (1K1 , v), as well as the composition
of these two squares. The other half involves using the pairs (1K0 , v),
and (u, 1L1).

5.3. Corollary: There exists a natural isomorphism

Hom (X ∧Y, Z) ∼= Hom (X, Hom (Y, Z)).

Proof. The simplicial functors Hom (Y, Z) ◦K∗ and Hom (Y, Z ◦K∗) are
naturally isomorphic. The conclusion follows from proposition 5.2.

We show below that, just like the smash product of pointed sets, this
smash product is what we call “strongly symmetric monoidal”. This is
a property stronger than being symmetric monoidal, and also easier to
define (the definition does not involve coherence conditions).
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5.4. Definition: Fix a functor F : C × C → C, which is associative,
commutative, and unital, up to isomorphism. We say that F is is strongly
symmetric monoidal provided that, for any non-negative integer n, the
n-th iterate F (n) : Cn → C has trivial automorphism group. Here F (n)

is defined as follows: It equals the constant functor with value some
fixed unit if n = 0, it equals the identity if n = 1, and, for n > 1,
F (n) = F (1C × F (n−1)).

5.5. Definition: Let S be the object of SF given by the inclusion of Sfin

in S.

5.6. Proposition: There exists a canonical isomorphism (S0)∗ → S.

5.7. Lemma: The simplicial functors (K ∧L)∗ and K∗ ∧L∗ are isomor-
phic, for any K and L in Sfin.

Proof. This is a special case of proposition 3.24.

5.8. Remark: Recall from [L2] the smash product of Γ-spaces, and
that Γ-spaces may be identified with a special kind of simplicial functors
(namely, these simplicial functors which can be evaluated degreewise,
cf. convention 2.11 of [L2]) in such a way that representable Γ-spaces
correspond naturally to representable simplicial functors (in fact, the
Γ-space Γn of [L2] corresponds to the simplicial functor K∗, with K a
pointed set of cardinality n + 1). The smash product of Γ-spaces corre-
sponds to the smash product of simplicial functors under this identifica-
tion. This is so for representable objects by the above lemma, and every
object is a colimit of representables, cf. the proof of proposition 2.16
in [L2].

5.9. Theorem: The smash product of simplicial functors is strongly
symmetric monoidal, with unit S.

5.10. Lemma: The smash product of simplicial functors is associative
and commutative, up to natural isomorphism, and S acts as a unit, up
to natural isomorphism.

Proof of theorem 5.9. Given lemma 5.10, it remains to show that, given a
non-negative integer n and simplicial functors X1, . . . , Xn, every natural
automorphism of X1 ∧ · · · ∧Xn equals the identity. The case n = 2 should
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suffice to explain the proof, so we assume n = 2 below, and we write
X and Y instead of X1 and X2.

Let φ = φ(X,Y ) be an automorphism of X ∧Y , natural in the simplicial
functors X and Y . Consider the special case X = K∗and Y = L∗ for
some K, L. By lemma 5.7 and corollary 3.15, SF(K∗ ∧L∗, K∗ ∧L∗) ∼=
S(K ∧L, K ∧L). Let φ = f ∗ for some f : K ∧L → K ∧L in Sfin. We
show that all k ∧ l in K0 ∧L0 are fixed under f . Note that this is trivially
true if K = L = S0, since φ is an automorphism. Let k̂ : S0 → K and
l̂ : S0 → L correspond to k and l. It suffices to show that f ◦(k̂ ∧ l̂) = k̂ ∧ l̂.
But

f ◦ (k̂ ∧ l̂) = (f ◦ (k̂ ∧ l̂))∗1K ∧L

= (k̂ ∧ l̂)∗f ∗1K ∧L

= (k̂ ∧ l̂)∗φ1K ∧L

= (k̂∗ ∧ l̂∗)φ1K ∧L

= φ(k̂∗ ∧ l̂∗)1K ∧L

= φ(k̂ ∧ l̂)

= k̂ ∧ l̂,

where the fourth equality follows from identifying (K ∧L)∗ with K∗ ∧L∗

using lemma 5.7, the fifth equality follows from naturality, and the last
equality follows since φ(S0,S0) = 1.

By definition of X ∧Y , there is a map onto X ∧Y from the sum, over
all (K, L), of (K ∧L)∗ ∧XK ∧Y L. The map

(K ∧L)∗0M ∧X0K ∧Y0L→ (X ∧Y )0M

can be described as follows, after identifying (K ∧L)∗ and K∗ ∧L∗. It
takes f ∧a∧b to (â∧ b̂)f , where a ∈ X0K and â is the corresponding map
K∗ → X, and similarly for b, and f ∈ (K ∧L)∗0M . Thus every vertex
of (X ∧Y )M is in the image of a map K∗ ∧L∗ → X ∧Y . It follows that φ
is the identity on vertices.

Given Z in SF, there is a natural map Z(LK) → (ZL)K , where LK =
S(K, L). The adjoint map Z(LK)∧K → ZL is itself adjoint to the
composition of K → S(LK , L) → S(Z(LK), ZL), where the first map
is adjoint to the evaluation map (the evaluation map is adjoint to the
identity of LK), and the second map is the one induced by the simplicial
functor Z. This map is an isomorphism if Z is representable. Since φ is
the identity on vertices, it follows that φ(∆n)+ is the identity on vertices
for X and Y representable, i..e, that φ is the identity on n-simplices for X
and Y representable. It follows that φ is the identity on n-simplices for X
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and Y of the form (representable)⊗∆n, because a simplex of ∆n×∆n is
determined by its vertices.

Finally, for any X and Y , the canonical map (K ∧L)∗ ∧XK ∧Y L→ X ∧Y
is isomorphic to the smash product of K∗ ∧XK → X and L∗ ∧Y L→ Y .
Thus every simplex of X ∧Y is in the image of a map X ′ ∧Y ′ → X ∧Y ,
with the primed simplicial functors of the form (representable)⊗∆n.

Proof of lemma 5.10. We claim that X ∧S ∼= X. This follows from
proposition 5.2, proposition 5.6, and the fact that, by proposition 4.8,
Hom ((S0)∗, Z) is isomorphic to Z.

To check that X ∧Y ∼= Y ∧X, we check that SF(X ∧Y, Z) ∼= SF(Y ∧X,Z)
for all Z in SF. This follows from the isomorphisms SF(2)(X ∧̃Y, P ∗Z) ∼=
SF(2)(Y ∧̃X, P ∗Z ◦ T ) and P ∗Z ∼= P ∗Z ◦ T , where T is the obvious
involution of Sfin × Sfin.

Finally, we compare both (X ∧Y )∧Z and X ∧ (Y ∧Z) to a more symmet-
ric simplicial functor X ∧Y ∧Z. We will give only one comparison (the

other is similar). Here X ∧Y ∧Z is defined as P
(3)
∗ (X ∧̃Y ∧̃Z), where P (3)

is as in definition 5.4 (i.e., it takes (K, L, M) to K ∧L∧M) and the ex-
ternal smash product X ∧̃Y ∧̃Z is defined in the obvious way (to simplify
the exposition, we write as if the smash product in S was associative,
instead of associative up to unique natural isomorphism). The isomor-
phism SF((X ∧Y )∧Z,W ) ∼= SF(X ∧Y ∧Z,W ) is obtained by observing
that

SF((X ∧Y )∧Z,W ) ∼= SF(X ∧Y, Hom (Z,W ))
∼= SF(2)(X ∧̃Y, P ∗Hom (Z,W ))
∼= SF(3)(X ∧̃Y ∧̃Y, (P (3))∗W ),

where the last isomorphism is similar to the one in the proof of proposi-
tion 5.2.

5.11. Definition: We define a natural map X ∧Y → X ◦ Y , which we
call the assembly map. This map is an isomorphism when Y is repre-
sentable (proposition 5.13).

We first define a natural map X(K)∧L → X(K ∧L). This is the map
that most resembles other assembly maps in the literature, and it is the
special case Y = S∧L. Its adjoint L → S(X(K), X(K ∧L) is defined as
the composition L → S(K, K ∧L) → S(XK,X(K ∧L)), where the first
map is adjoint to the identity, and the second map is the one defined by
the simplicial functor X. There is a similar map K ∧X(L)→ X(K ∧L).
We use the name special assembly map to refer to any of these two maps.
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To handle the general case, by definition of the smash product, it is
enough to specify a natural map XK ∧Y L → XY (K ∧L)). This is de-
fined as the composition

XK ∧Y L→ X(K ∧Y L)→ XY (K ∧L),

where the first map is a special assembly map, and the second is given
by applying X to a special assembly map.

5.12. Remark: We are now able to identify the monoids in this smash
product. Surprisingly enough, these turn out to be well-known (although
this is no surprise to the reader familiar with the smash product of Γ-
spaces, cf. remark 2.13 of [L2]).

Let us say that a simplicial functor X is a monoid, if there are maps
µ : X ∧X → X and η : S→ X satisfying the usual associativity and unit
conditions. Then µ corresponds to µ̃ : X ∧̃X → P ∗X, i.e., to a natural
map µ̃ : XK ∧XL → X(K ∧L). In fact, X is a monoid if and only if
it is an FSP, as defined by Bökstedt in [B], under µ̃, η, and the special
assembly map of definition 5.11.

5.13. Proposition: The assembly map X ∧Y → X ◦ Y is an isomor-
phism, whenever Y is representable.

Proof. Fix a representable Y . The case X is representable follows from
lemma 5.7. The functor X ◦ Y preserves all limits and colimits (recall
that Y is fixed). The functor X ∧Y preserves all colimits, since it is a
left adjoint. Similarly, both functors commute with smashing by pointed
simplicial sets. The conclusion now follows from corollary 3.20.

5.14. Remark: The composition product (X, Y ) 7→ X◦Y is associative
and unital (with unit S), up to natural isomorphism (it is not strictly
associative, because X is originally defined only on Sfin), and the as-
sembly map is compatible with associativity and unit isomorphisms. In
the language of monoidal categories, the assembly map makes the iden-
tity functor of SF a lax monoidal functor from the monoidal category
(SF, ◦, S) to the monoidal category (SF, ∧ , S).

5.15. Remark: If the restriction of the smash product functor P
to Sph × Sph would lift to Sph (which it does not) then the meth-
ods of this section would give a symmetric monoidal product of spectra
(such a product seems not to exist).
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A symmetric monoidal product on the pointed simplicial category of
symmetric spectra is constructed in [HSS]. Let SphΣ be the smallest
pointed simplicial subcategory of S containing both Sph and, for all n,
the obvious copy of Σn inside S(Sn, Sn). Then the restriction of P
to SphΣ×SphΣ does lift to SphΣ, and the methods of this section give
a symmetric monoidal product in (SphΣ)∗. In fact, the pointed simpli-
cial category (SphΣ)∗ is isomorphic to the pointed simplicial category
of symmetric spectra, and the symmetric monoidal products correspond
under this isomorphism.

A symmetric monoidal product on the pointed simplicial category of Γ-
spaces is constructed in [L2]. Let Sdfin be the full pointed simplicial
subcategory of Sfin with objects the discrete objects of Sfin. Then the
restriction of P to Sdfin × Sdfin does lift to Sdfin, and the methods of
this section give a symmetric monoidal product in (Sdfin)∗. In fact, the
pointed simplicial category (Sdfin)∗ is equivalent to the pointed simplicial
category of Γ-spaces, and the symmetric monoidal products correspond
under this equivalence.

6. Model categories

Model categories were introduced by Quillen in [Q]. In this section, we
give an exposition of the parts of the general theory that are needed in
this paper.

6.1. Definition: Fix a category C and a commutative diagram

A → C
↓ ↓
B → D

in C. If the diagram is a pushout, then we say that the map C → D
is a cobase change of the map A → B (along the map A → C). If the
diagram is a pullback, then we say that the map A→ B is a base change
of the map C → D (along the map B → D). If there exists a map
B → C such that both resulting triangles commute, then we say that the
map A→ B has the left lifting property with respect to the map C → D,
and we say also that the map C → D has the right lifting property with
respect to the map A → B. Given a class S of maps in C, Sl denotes
the class of maps in C that have the left lifting property with respect to
all the maps in S, and Sr denotes the class of maps in C that have the
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right lifting property with respect to all the maps in S. If S = {f}, we
abbreviate Sl and Sr by f l and f r.

Given a commutative diagram

A → C → A
↓ ↓ ↓
B → D → B

in C, such that both the composite A→ A and the composite B → B are
identities, we say that the map A→ B is a retract of the map C → D.

A limit E∞ of a diagram E = E1 ← E2 ← · · · in C is called a sequential
limit, and a colimit E∗

∞ of a diagram E∗ = E∗
1 → E∗

2 → · · · in C is

called a sequential colimit. The canonical map between E
(∗)
1 and E

(∗)
∞

will be called the composition of the diagram E(∗). Let pn be the map
En+1 → En, and in be the map E∗

n → E∗
n+1. We denote the composition

of E by p1p2 · · ·, and the composition of E∗ by · · · i2i1. A class S of maps
in C is called closed under sequential (co)limits if, for all diagrams E(∗)

as above, it contains any composition of E(∗) whenever it contains all the
maps of E(∗).

A class S of maps in C is called closed under retracts if, for all maps f
and g in C with f a retract of g and g in S, the map f is also in S.
Finally, S is called closed under (co)base change if, for all maps f and g
in C with f a (co)base change of g and g in S, the map f is also in S.

6.2. Proposition: Let S be any class of maps in a category C. Then Sl

is closed under sums, cobase change, sequential colimits, and retracts.
Also Sr is closed under products, base change, sequential limits, and re-
tracts.

6.3. Proposition: Let f, p, i be maps in a category C with f = pi.
Then f ∈ pl implies that f is a retract of i. Also f ∈ ir implies that f is
a retract of p.

6.4. Definition: An object X of a category C is called small if, for
every diagram E in C of the form E1 → E2 → · · · , the canonical map
colimC(X, E)→ C(X, colim E) is an isomorphism.

Given a class S of maps of a category C with small domains, the class S ′

of cofibrations generated by S is defined to be the class of all retracts of
all compositions X0 → X1 → · · · in C satisfying the following property.
For all n ≥ 0, there exists a set I, a family {si : Ai → Bi | i ∈ I} of
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maps in S indexed by I, a map f :
∐

i Ai → Xn, and a pushout square
expressing Xn → Xn+1 as the cobase change of

∐
i si along f .

6.5. Proposition: (The small object argument) Let C be a category
having all colimits and f : X → Y be a map in C. Given a set S of
maps in C with small domains, there exists a factorization f = pi in C,
such that p is in Sr and i is in the class of cofibrations generated by S.

Proof. Given s ∈ S, say As is the domain of s and Bs is the codomain of s.
Given a map q : Z → Y in C, let C(s, q) be the set of all pairs g = (g1, g2)
in C(As, Z) × C(Bs, Y ) such that qg1 = g2s. Consider the following
pushout ∐

s

∐
g∈C(s,q) Ag → Z

↓ ↓∐
s

∐
g∈C(s,q) Bg → W (q)

where, for g ∈ C(s, q), Ag = As and Bg = Bs. The map Ag → Z
is g1, and the map Ag → Bg is s. Denote by i′(q) the map Z → W (q),
and by h(g) the map Bg → W (q). Note that h(g)s = i′(q)g1. By the
definition of C(s, q), we have a map p′(q) : W (q)→ Y with q = p′(q)i′(q)
and g2 = p′(q)h(g).

Let X0 = X and p0 = f . For n ≥ 1, let Xn = W (pn−1), pn = p′(pn−1),
and in−1 = i′(pn−1). Let i : X0 → X∞ be the composition · · · i1i0. Let
jn : Xn → X∞ be the canonical map, so that jn+1in = jn and i = j0.
Since pnin−1 = pn−1, there exists p : X∞ → Y by pjn = pn. In particular,
f = pi.

To show that p ∈ Sr, let G ∈ C(s, p). Since As is small, there exists n
with jng1 = G1. Thus, setting g2 = G2, we obtain g ∈ C(s, pn). We
claim that jn+1h(g) is the required lifting. For pjn+1h(g) = pn+1h(g) =
g2 = G2, and jn+1h(g)s = jn+1ing1 = jng1 = G1.

6.6. Proposition: In the situation of proposition 6.5, suppose also
that S is countable, that the codomain of every map in S is small, that f
is a map between small objects, and that the set of maps between any
two small objects in C is finite. Then the map i can be factored as a
composition X0 → X1 → · · · of maps in S ′, and each X0 → Xn can
be factored as a composition X0 = X(n,0) → X(n,1) → · · · of maps in S ′

between small objects.

Proof. Recall from the proof of proposition 6.5 that i is the composition
of maps in S ′ of the form X = X0 → X1 → · · ·, with f factoring as a
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composition X → Xn → Y . Recall also that there is a construction fac-
toring any q : Z → Y as Z → W (q)→ Y , such that Xn+1 = W (Xn → Y )
and such that the map Xn → Xn+1 is part of the resulting factorization
of Xn → Y . Thus it suffices to prove that, given maps in S ′ of the
form Z0 → Z1 → · · · of small objects with colimit Z, and given a map
q : Z → Y , then the composition Z0 → Z → W (q) can be factored as a
composition Z ′

0 → Z ′
1 → · · · of maps in S ′ between small objects. But, if

{s1, s2, . . .} is an enumeration of S, then Z ′
n can be taken to be the value

of W (Zn → Y ) obtained by taking S = {s1, . . . , sn}.

6.7. Definition: Let C be a category having all finite limits and col-
imits. Given an ordered triple M = (Mw,Mf ,Mc) of classes of maps
of C, we define two more classes of maps by Maf = Mw ∩Mf and
Mac = Mw ∩Mc. We call the maps in these classes, respectively, weak
equivalences, fibrations, cofibrations, acyclic fibrations, and acyclic cofi-
brations in M. If the map from an initial object (an initial object exists
in C, since the empty diagram has a colimit) to an object X of C is
a cofibration, then we say that X is cofibrant (in M). If the map to a
terminal object from an object X of C is a fibration, then we say that X
is fibrant (in M).

Given such C and M, we say that M is a closed model structure on C,
if it satisfies the following conditions.

1. For any maps f and g in C with gf defined, if two of the three maps f ,
g, and gf are in Mw, so is the third.

2. The classes Mw, Mf , and Mc are closed under retracts.

3. The inclusions Mc ⊂ (Maf )
l and Mac ⊂ (Mf )

l hold.

4. For all f ∈ C there exist p ∈ Maf , i ∈ Mc, q ∈ Mf , and j ∈ Mac,
with f = pi = qj.

A closed model category is a category C with some fixed closed model
structure. For a closed model category C, the distinguished classes of
maps will be denoted simply by Cw, Cf , and so on.

6.8. Proposition: For any closed model category C, the equalities
Cl

af = Cc, Cl
f = Cac, Cr

c = Caf , and Cr
ac = Cf hold.

Proof. By definition, Cl
af ⊃ Cc. Conversely, a map f in Cl

af is a retract
of a map i in Cc, by proposition 6.3 and condition 4 of definition 6.7.
Finally, f is in Cc by condition 2 of definition 6.7. The proofs of the
remaining equalities are similar (note that T ⊂ Sl ⇔ S ⊂ T r).
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6.9. Definition: Let C be a pointed simplicial category such that C0

has all limits and colimits. We say that C has all limits and colimits,
provided that we have fixed maps C × S → C, (X, K) 7→ X ∧K, and
Sop ×C → C, (K, X) 7→ XK , and natural isomorphisms C(X0, X

K
1 ) ∼=

C(X0 ∧K, X1) ∼= S(K,C(X0, X1).

6.10. Definition: Let C be a pointed simplicial category having all
limits and colimits. Given maps p : X → Y and i : W → Z in C, and a
map j : K → L in S, let pj be the canonical map from XL to XK×Y K Y L.
Let pi be the canonical map from C(Z,X) to C(W, X)×C(W,Y ) C(Z, Y ).
Let i∧j be the canonical map from W ∧L ∪W ∧K Z ∧K to Z ∧L.

6.11. Definition: Let C be a pointed simplicial category having all
limits and colimits. A model structure on C consists of a closed model
structure on C0, satisfying the following condition. Given a cofibration i
and a fibration p in C, the map pi is a fibration in S (see example 6.13),
which is a weak equivalence if so is i or p.

6.12. Remark: We compare definition 6.11 with the definitions of [Q].
There is a forgetful functor from pointed simplicial categories to non-
pointed simplicial categories. There are also obvious versions of defini-
tions 6.9, 6.10 (in the non-pointed case, we write X⊗A instead of X ∧K,
and A is now a (non-pointed) simplicial set) and 6.11, which apply to non-
pointed simplicial categories. The forgetful functor from pointed simpli-
cial categories to non-pointed simplicial categories takes model structures
to model structures. In the situation of the non-pointed version of def-
inition 6.11, C becomes a closed simplicial model category, in the sense
of section II.2 of [Q]. Conversely, any closed simplicial model category
whose underlying category has all limits and colimits (i.e., not just the
finite ones) and for which the objects X⊗A and XA are defined for all A
(i.e., not just for the finite ones) and depend functorially in X and A, is
a special case of the non-pointed version of definition 6.11. Any closed
simplicial model category is in particular a closed model category, which
in turn is in particular a model category, but we will not need any of
these weaker structures. All model structures found in this paper are
special cases of (the pointed version of) definition 6.11.

6.13. Example: There is the standard model structure on S, for which
all special classes of maps are defined by checking on underlying simplicial
sets (in particular, the cofibrations are the injective maps). This follows
immediately from the corresponding result for (non-pointed) simplicial
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sets [Q, section II.3]. Since we do not need any other model structure
on S, we write simply Sw, Sf , etc., for the corresponding classes of maps
in S. We need to know [Q, section II.3] that the fibrations can already be
defined as (Sfin

ac )r, where Sfin
ac = Sac ∩Sfin

0 , and, similarly, Saf = (Sfin
c )r.

6.14. Proposition: Let C be a pointed simplicial category having all
limits and colimits, and let M be a closed model structure on C0. Con-
sider the following conditions.

1. Given a fibration p in C and a cofibration j in S, the map pj is a
fibration in C, which is a weak equivalence if so is p or j.

2. Given a cofibration i in C and a cofibration j in S, the map i∧j is a
cofibration in C, which is a weak equivalence if so is i or j.

Each of these conditions is equivalent to M being a model structure on C.

Proof. The adjoint functor properties of ?∧K and ?K imply that the
statements j ∈ (pi)l, i ∈ (pj)l, and i∧j ∈ pl, are equivalent. The conclu-
sion follows from proposition 6.8 and example 6.13.

7. The pointwise model structure

In this section we construct a model structure on pointed simplicial cat-
egories of the form C∗, called the pointwise model structure. The “strict
model category structure on spectra” of [BF] is a special case of this
construction.

7.1. Definition: Let C be a small pointed simplicial category. A map
X → Y in C∗ is called a pointwise weak equivalence, resp. a pointwise
fibration, provided that, for all K in C, the map XK → Y K is a weak
equivalence, resp. a fibration, in S. We denote the classes of these maps
by C∗

pw, resp. C∗
pf . Let C∗

paf = C∗
pw ∩C∗

pf and C∗
pc = (C∗

paf )
l.

We define two more classes of maps of C∗, namely (C∗
pc)

g and (C∗
pac)

g

(the notation (C∗
(a)c)

g intends to suggest “generating pointwise (acyclic)

cofibrations in C∗”; see proposition 7.2 below). Define (C∗
p(a)c)

g to be
the class of all maps of the form X ∧f with X a representable simplicial
functor in C∗ and f a(n acyclic) cofibration of pointed finite simplicial
sets.

7.2. Proposition: (i) The classes C∗
pw, C∗

pf , and C∗
pc are part of a

model structure C∗
p for C∗.
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(ii) The class of cofibrations generated by (C∗
pc)

g equals C∗
pc. The class

of cofibrations generated by (C∗
pac)

g equals C∗
pac.

7.3. Definition: In case C = Sfin, we write SFp instead of C∗
p. We

refer to SFp as the pointwise model structure on simplicial functors. In
case C = Sph, we write Spp instead of C∗

p. We refer to Spp as the
pointwise model structure on spectra.

The pointwise model structure on spectra is also constructed in [BF]
(proposition 2.2), where it is called “the strict model structure”, and
similarly the pointwise weak equivalences are called “strict weak equiva-
lences”, and so on.

Proof of proposition 7.2. The results of section 3 show that C∗ has all
limits and colimits, and condition 1 of proposition 6.14 is true in our
case. By proposition 6.14, if the four conditions of definition 6.7 are
satisfied, then the proof of part (i) is complete. Condition 1 is true. By
proposition 6.2, C∗

pc is closed under retracts. Thus condition 2 is also
true.

Let the ordered pair of symbols (d, e) be either (c, af) or (ac, f). Fix
a map f in C∗ and apply proposition 6.5 with S = (C∗

pd)
g. We obtain

a factorization f = pi with p ∈ ((C∗
pd)

g)r and i ∈ ((C∗
pd)

g)′. By corol-
lary 3.15 and proposition 3.16, the map in S obtained by evaluating p on
any K is in (Sfin

d )r, which equals Se by example 6.13. Thus, by defini-
tion, p is in C∗

pe. By corollary 3.15, proposition 3.16, and example 6.13,
(C∗

pc)
g ⊂ C∗

pc. Further, (C∗
pac)

g ⊂ C∗
pw, and (C∗

ac)
g ⊂ C∗

pc, thus (C∗
pac)

g ⊂
C∗

pac. By proposition 6.2, ((C∗
pc)

g)′ ⊂ C∗
pc, thus ((C∗

pac)
g)′ ⊂ C∗

pc. Since
((C∗

pac)
g)′ ⊂ C∗

pw, we have ((C∗
pac)

g)′ ⊂ C∗
pac, and the verification of

condition 4 is complete.

Before we verify condition 3, we prove that ((C∗
pd)

g)′ ⊃ C∗
pd, completing

the proof of part (ii). Let f in C∗
pd, and factor f = pi with i ∈ ((C∗

pd)
g)′

and p ∈ C∗
pe. In case d = c, f ∈ C∗

pc = (C∗
paf )

l, also p ∈ C∗
paf , and

proposition 6.3 implies that f is a retract of i, thus f ∈ ((C∗
pc)

g)′. In
case d = ac, p is in C∗

pw, since so are i and f . Thus p ∈ C∗
paf . But

f ∈ C∗
pac ⊂ C∗

pc = (C∗
paf )

l, and proposition 6.3 implies that f is a retract
of i, thus f ∈ ((C∗

pac)
g)′.

Finally, we verify condition 3. We have to check that C∗
pac ⊂ (C∗

pf )
l,

and we know that C∗
pac = ((C∗

pac)
g)′. The conclusion follows from propo-

sition 6.2, and the fact that, by corollary 3.15, proposition 3.16, and
example 6.13, (C∗

pac)
g ⊂ (C∗

pf )
l.
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8. The homotopy-functor model structure

In this section we construct a model structure on SF, the homotopy-
functor model structure of simplicial functors , for which the weak equiv-
alences are the maps of simplicial functors inducing weak equivalences of
associated homotopy functors. This model structure should be thought
of as a model structure on pointed homotopy functors from Sfin to S
(cf. remark 4.6).

8.1. Definition: Given a map f : X → Y in a pointed simplicial
model category C, the mapping cylinder Zf of f is defined to be the
colimit of X ⊗∆1 ← X → Y , where the first map is the composition of
X ∼= X ⊗∆0 and X ⊗ ∂1 and the second map is f . Consider the colimit
of X ⊗ ∆1 ← X ⊗ ∂∆1 → X ∨ Y , where the first map is X ⊗ (∂∆1 ⊂
∆1), and the second map is defined as follows. It is the composition of
X ⊗ ∂∆1 ∼= X ∨X and 1X ∨ f , where the inverse isomorphism X ∨X ∼=
X ⊗ ∂∆1 takes the first copy of X to the image of X ⊗ ∂0. Then these
two colimits are naturally isomorphic. Thus there is a canonical map
X ∨ Y → Zf , which is a cofibration if X is cofibrant, since it is a cobase
change of X ⊗ (∂∆1 ⊂ ∆1), which is a cofibration by proposition 6.14.
On the other hand, the canonical map X → X ∨ Y is a cofibration if Y
is cofibrant. There is also a canonical map Zf → Y , induced from the
composition of the projection X⊗∆1 → X with f , together with 1Y . This
map is a homotopy equivalence, i.e., it has a homotopy inverse (which is
a section, and is given by the canonical map, and the homotopy in the
other direction is given by using the homotopy between 1∆1 and the
map ∆1 → ∆1 that projects on the image on ∂1). Thus, if X and Y
are cofibrant, we have a factorization of f as X → Zf → Y , with the
first map a cofibration, and the second a homotopy equivalence. If C
is given by the pointwise structure on SF, and if X = L∗, Y = K∗,
and f is induced from a map g : K → L, we denote the canonical
cofibration X → Zf by cg. We define the class SFextra

hac to consist of
all cg ∧h, with g ∈ Sfin

w and h ∈ Sfin
c .

8.2. Definition: Let SFhc = SFpc, SFg
hac = SFg

pac ∪ SFextra
hac , and

SFhf = (SFg
hac)

r.

8.3. Theorem: (i) The classes SFhw, SFhf , and SFhc form a model
structure SFh for SF.

(ii) The class of cofibrations generated by SFg
hac equals SFhac.
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8.4. Definition: We refer to SFh as the homotopy-functor model struc-
ture of simplicial functors (cf. remark 4.6).

8.5. Lemma: The classes of acyclic fibrations for SFh and SFp coin-
cide.

Proof of theorem 8.3. Condition 2 of proposition 6.14 is true in our
case, by proposition 7.2 and 6.14, since SFhc = SFpc (the part where i
is an acyclic cofibration follows since i∧j is in SFhw if so is i). By
proposition 6.14, if the four conditions of definition 6.7 are satisfied, then
the proof of part (i) is complete. Condition 1 is true. We already know
that SFhc is closed under retracts, and proposition 6.2 implies that so is
SFhf . Thus condition 2 is also true.

Fix a map f in SF. Proposition 7.2 and lemma 8.5 give the factorization
by a cofibration and an acyclic fibration. Apply proposition 6.5 with
S = SFg

hac. We obtain a factorization f = pi with p ∈ (SFg
hac)

r = SFhf

and i ∈ (SFg
hac)

′. The inequalities SFg
hac ⊂ SFhw, and SFg

hac ⊂ SFhc

hold. By proposition 6.2, (SFg
hac)

′ ⊂ SFhc. Since (SFg
hac)

′ ⊂ SFhw, we
have (SFg

hac)
′ ⊂ SFhac.

Before we verify condition 3, we prove that (SFg
hac)

′ ⊃ SFhac, completing
the proof of part (ii). Let f in SFhac, and factor f = pi with i ∈ (SFg

hac)
′

and p ∈ SFhf . Then p is in SFhw, since so are i and f . Thus p ∈ SFpaf ,
by lemma 8.5. But f ∈ SFhac ⊂ SFpc = SFl

paf , and proposition 6.3
implies that f is a retract of i, thus f ∈ (SFg

hac)
′.

Finally, we verify condition 3. We have to check that SFhac ⊂ SFl
hf , and

we know that SFhac = (SFg
hac)

′. The conclusion follows from proposi-
tion 6.2, since, by definition, SFg

hac ⊂ SFl
hf .

8.6. Definition: Let R be the object of SF taking K ∈ Sfin to the
singular complex of the realization of K.

8.7. Proposition: The class SFhf consists of these maps X → Y
in SFpf for which the square

XK → XRK
↓ ↓

Y K → Y RK

is homotopy cartesian for each K in S.

Proof of lemma 8.5. This follows immediately from proposition 8.7.
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8.8. Proposition: The class SFhf consists of these maps f : X → Y
in SFpf for which the square

XK → XL
↓ ↓

Y K → Y L

is homotopy cartesian for each weak equivalence K → L in Sfin.

Proof of proposition 8.7. Fix a map X → Y is in SFhf . Given K in Sfin,
let K∞ be the target of the map i in the factorization of K → ∗ given
by proposition 6.5 with S = Sfin

ac . We first reduce to proving the version
of the conclusion obtained by replacing RK by K∞: Since i is an acyclic
cofibration and RK is fibrant, the map j : K → RK factors as ki with
k : K∞ → RK. Further, k is a homotopy equivalence, since K∞ is
also fibrant. Thus both X(k) and Y (k) are weak equivalences, and the
reduction follows.

Proposition 6.6 gives that K∞ is the filtered colimit of certain Kn with
K0 = K, and each Kn is the filtered colimit of certain finite K(n,m), with
K(n,0) = K, and all the maps involved are weak equivalences. We have to
show that the map from XK to Y K ×Y K∞ XK∞ is a weak equivalence.
Since Sw and Sf are closed under filtered colimits, and since pullbacks
in S commute with filtered colimits, we may assume that K∞ equals
some K(n,m). The conclusion now follows from proposition 8.8. The
general case, where K is not necessarily finite, follows since K is the
filtered colimit of its finite subobjects, and since K 7→ RK commutes
with filtered colimits by the definition of R.

Conversely, assume that f gives such a homotopy cartesian square for
every K, and fix K → L in Sfin

w . Suppose first that K → L is in Sfin
ac .

Factor the map K → RK through the acyclic cofibration which is the
composition of K → L and L → RL. The resulting map RL → RK is
a homotopy equivalence. As above, we get that its associated square is
homotopy cartesian. Since, in a composed square, the “source” square
is homotopy cartesian if so are the “target” and the composed square,
it follows that the square associated to K → L is homotopy cartesian.
In the general case of a map K → L in Sfin

w , similar arguments (using
mapping cyclinders to reduce to the case of an acyclic cofibration, and
recalling that the map from the mapping cylinder to L is a homotopy
equivalence) show that the square associated to K → L is homotopy
cartesian. Thus f ∈ SFhf , by proposition 8.8.
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Proof of proposition 8.8. Fix f : X → Y in SFpf and g : K → L in Sfin
w .

Recall that cg is a cofibration from L∗ to Z, where Z is the mapping
cylinder of g∗. There is a map from the square in the statement of the
proposition to

F(Z,X) → XL
↓ ↓

F(Z, Y ) → Y L

which is the identity on the right column, and on the left column it
is induced from the homotopy equivalence Z → K∗. Thus the map is a
weak equivalence on all four corners, therefore the square in the statement
of the proposition is homotopy cartesian if and only if the square above
is, i.e., if and only if the fibration f cg is acyclic. But, by the proof of
proposition 6.14, this happens if and only if f ∈ (cg ∧h)r for all maps h
in Sfin

c .

9. The stable model structure of simplicial functors

In this section we construct a model structure on SF, the stable model
structure of simplicial functors , which we show in section 11 is equivalent
to the “standard” model structure of spectra (i.e., to the stable model
structure of spectra introduced in [BF]).

9.1. Definition: Given K in Sfin, the canonical map K → ΩΣK
is a vertex in S(K, ΩΣK), which is canonically isomorphic to ΩK∗ΣK.
Let s′K denote the map from (ΣK)∗ ∧S1 to K∗ corresponding to the
above vertex in ΩK∗ΣK under the isomorphisms of corollary 3.15 and
proposition 3.16. Let sK denote the canonical map from (ΣK)∗ ∧S1 to
the mapping cylinder of s′K . We define the set SFextra

sac to consist of the
maps sK with K in Sfin.

Given X in SF, define TX in SF by K 7→ ΩXΣK, so that there is
a canonical map X → TX. Define T∞X as the colimit of the se-
quence X → TX → T (TX) → · · · , and define the stabilization Xs

of X as T∞RXR. A map f : X → Y in SF is called a a stable weak
equivalence of simplicial functors provided that the map f s is a point-
wise weak equivalence of simplicial functors. We denote the class of
these maps by SFsw. We set SFsc = SFpc, SFg

sac = SFg
hac ∪SFextra

sac , and
SFsf = (SFg

sac)
r.

9.2. Theorem: (i) The classes SFsw, SFsf , and SFsc form a model
structure SFs for SF.
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(ii) The class of cofibrations generated by SFg
sac equals SFsac.

9.3. Definition: We refer to SFs as the stable model structure of sim-
plicial functors.

9.4. Lemma: The classes of acyclic fibrations for SFs and SFp coin-
cide.

9.5. Definition: Given non-negative integers n and l, we say that a
simplicial functor X in SF(n) is o(l) if there exists an integer c such
that, for all integers k and all k-connected K1, . . . , Kn in S, the pointed
simplicial set X(K1, . . . , Kn) is (lk − c)-connected. we say that a map f
in SF(n) is o(l) if so is its pointwise homotopy fiber. In case n = 1, we
say that f is õ(l) if fR is o(l).

9.6. Proposition: Every map in SFg
sac is õ(2).

Proof. This is non-trivial only for maps of the form sK , and it is sufficient
to consider the maps s′K . In case K = ∆n/∂∆n, the conclusion follows
by estimating the connectivity of the canonical map ΣΩΩnRL→ ΩnRL.
The general case follows by induction on the skeleta of K.

9.7. Proposition: If f is õ(2), then f is a stable weak equivalence.

Proof. In fact, there exists an integer c such that, for all n, the map
obtained by evaluating T nRfR on any pointed simplicial set K is (n−c)-
connected.

Proof of theorem 9.2. The proof of theorem 8.3 applies almost word for
word, except that two points need an extra argument. First, the claim
that i∧j is in SFsw if i : X → Y is in SFsac and j : K → L is in Sc.
Second, the claim that (SFg

sac)
′ ⊂ SFsw. To prove the second claim,

note that the class of stable weak equivalences is closed under retracts
and sequential colimits, that every map in SFg

sac is õ(2), and that the
class of maps which are both õ(2) and cofibrations are closed under cobase
change and finite sums.

To prove the first claim, note that, even without it, we have a closed
model structure. Further, by the proof of proposition 6.5, the class SFsac

consists precisely of the retracts of the filtered colimits of maps which
are both õ(2) and cofibrations, and these are closed under smashing with
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pointed simplicial sets. Thus the map X ∧K → Y ∧K and the map
X ∧L → Y ∧L are in SFsw. Since SFsac is closed under cobase change,
the map X ∧L→ X ∧L ∪X ∧K Y ∧K is also in SFsw, thus so is i∧j.

9.8. Proposition: The class SFsf consists of these maps f : X → Y
in SFhf for which the square

XK → ΩXΣK
↓ ↓

Y K → ΩY ΣK

is homotopy cartesian for each K in Sfin.

Proof. The proof is similar to the proof of proposition 8.8.

Proof of lemma 9.4. Fix a map f : X → Y in SFhaf = SFpaf . The
diagram in the statement of proposition 9.8 is homotopy cartesian, since
the vertical maps are acyclic fibrations. Thus f is in SFsf (and therefore
in SFsaf ), by proposition 9.8.

Conversely, fix f : X → Y in SFsaf . The diagram

XK → Y K
↓ ↓

ΩXΣK → ΩY ΣK
↓ ↓

ΩXRΣK → ΩY RΣK
↓ ↓

ΩRXRΣK → ΩRY RΣK
↓ ↓

XStK → Y StK

consists of four squares, which we label, starting from the top, as a,
b, c, and d. Square c is homotopy cartesian, since f is in SFpf , since
the functors X 7→ ΩX and X 7→ RX preserve pointwise fibrations,
since the functor X 7→ ΩX preserves pullbacks, and, finally, since the
map X → RX is in SFpw. Square b is homotopy cartesian, since f is
in SFhf , and since the functor X 7→ ΩX preserves pointwise fibrations
and pullbacks. Square a is homotopy cartesian, since f is in SFsf , by
proposition 9.8. Consider the composed square abc. This square, i.e.,
the one determined, in the obvious way, from the maps X → TRXR,
Y → TRY R, and f , is homotopy cartesian. The previous sentence
remains true, if we substitute a finite iterate T n instead of T , by similar
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arguments. Since fibrations of simplicial sets are closed under sequential
colimits, and since pullbacks of simplicial sets commute with sequential
colimits, the composed square abcd is homotopy cartesian. Since f is
in SFsw, the bottom horizontal map is in Sw, thus so is the top horizontal
map. Thus f is in SFpw, i.e., f is in SFpaf .

10. The stable model structure of spectra

In this section we give an exposition of the part of stable homotopy theory
that we need.

10.1. Convention: All representable simplicial functors in this section
are spectra (i.e., the value of (Sn)∗ on Sm equals Sph(Sn, Sm)).

10.2. Definition: Let n be a non-negative integer. The canonical map
S0 → ΩΣS0 is a vertex in ΩSph(Sn, Sn+1) = Ω(Sn)∗Sn+1. Let s′n denote
the map from (Sn+1)∗ ∧S1 to (Sn)∗ corresponding to the above vertex
in Ω(Sn)∗Sn+1 under the isomorphisms of corollary 3.15 and proposi-
tion 3.16. Let sn denote the canonical map from (Sn+1)∗ ∧S1 to the map-
ping cylinder of s′n. We define the set Spextra

sac to consist of the maps sn

with n a non-negative integer.

A spectrum E can also be viewed as a diagram E0 → E1 → · · · in S, such
that En is given by applying Ωn to a pointed simplicial set En (which
is part of the data), and the map En → En+1 is given by applying Ωn to
a map En → ΩEn+1. In this description, a map E → E ′ is a map of as-
sociated diagrams, such that the map En → E ′

n is given by applying Ωn

to a map En → E ′
n. This description shows that, given a spectrum E,

there exists a spectrum TE, whose associated diagram is given by for-
getting E0. There is a natural map E → TE, given for each n by the
canonical map En → ΩEn+1. Define the spectrum T∞E as the colimit
of the diagram E → TE → T (TE) → · · · . A map f : E → E ′ in Sp
is called a a stable weak equivalence provided that the map T∞Rf is a
pointwise weak equivalence. We denote the class of these maps by Spsw.
We set Spsc = Sppc, Spg

sac = Spg
pac ∪ Spextra

sac , and Spsf = (Spg
sac)

r.

10.3. Remark: Given a spectrum E, let E[1] denote the canonical
spectrum with (E[1])n = En+1. Then it is not true that TE equals ΩE[1].
In fact, if E ′ = ΩE, then the canonical map E ′

0 → ΩE ′
1 is not given

by applying Ω to the canonical map Ê(0) : E0 → ΩE1 (it is given by
postcomposing ΩÊ(0) with the obvious involution; to see this, write down
explicitly the definition of EK , and specialize to K = S1).
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10.4. Theorem: (i) The classes Spsw, Spsf , and Spsc form a model
structure Sps for Sp.

(ii) The class of cofibrations generated by Spg
sac equals Spsac.

10.5. Definition: We refer to Sps as the stable model structure of
spectra.

10.6. Lemma: The classes of acyclic fibrations for Sps and Spp coin-
cide.

10.7. Definition: We say that a map f in Sp is eventually a pointwise
weak equivalence if there exists a non-negative integer N such that, for
all integers n ≥ N , the map fn is a weak equivalence.

10.8. Proposition: Every map in Spg
sac is eventually a pointwise weak

equivalence.

Proof. This is non-trivial only for maps of the form sn, and it is suffi-
cient to consider the maps s′n. But these are eventually isomorphisms,
since (Sn+1)∗ ∧S1 and (Sn)∗ differ, up to isomorphism, only on the value
at Sn.

10.9. Proposition: If a map of spectra is eventually a pointwise weak
equivalence, then it is a stable weak equivalence.

Proof of theorem 10.4. The proof of theorem 9.2 applies word for word,
after making the obvious changes (this is literally true; here are the
changes: replace “õ(2)” by “eventually pointwise weak equivalence”, and
replace SF by Sp).

10.10. Proposition: The class Spsf consists of these maps f : E → E ′

in Sppf for which the square

En → ΩEn+1

↓ ↓
E ′

n → ΩE ′
n+1

is homotopy cartesian for each non-negative integer n.

Proof. The proof is similar to the proof of proposition 8.8.
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Proof of lemma 10.6. The proof is similar to the proof of lemma 9.4 (in
fact, it is easier than the proof of lemma 9.4, because for spectra we do
not have to worry about evaluating on fibrant objects).

We now prove some standard facts about spectra, which we need in the
rest of the paper.

10.11. Definition: An Ω-spectrum is a spectrum which is fibrant
in Sps.

10.12. Proposition: For any spectrum E, the spectrum T∞RE is an
Ω-spectrum.

10.13. Definition: Let n be a non-negative integer. The n-skeleton E(n)

of the spectrum E is defined to be the spectrum obtained from E by let-
ting the map E(n)(m) be equal to either E(m) if m − n < 0, or the
identity map of Σm−n+1En if m− n ≥ 0.

10.14. Proposition: For any spectrum E and any non-negative inte-
ger n, the following hold.

(i) There is a canonical diagram E(0) → E(1) → · · · → E, which ex-
presses E as the sequential colimit of its skeleta.

(ii) There is a canonical map (Sn)∗ ∧En → E(n), which is eventually an
isomorphism.

10.15. Definition: Let n be an integer. The n-th homotopy group πnE
of the spectrum E is the abelian group given by the colimit over m
of πn+m|Em|.

10.16. Proposition: The following hold.

(i) There are natural isomorphisms between the n-th homotopy group
of the spectrum E and the (n + m)-th homotopy group of the pointed
topological space |(T∞RE)m|, provided that n + m is positive.

(ii) A map of spectra is a stable weak equivalence if and only if it induces
an isomorphism on all homotopy groups.

(iii) There are natural isomorphisms between the n-th homotopy group
of the Ω-spectrum E and the (n + m)-th homotopy group of the pointed
topological space |Em|, provided that n + m is positive.

(iv) A map of Ω-spectra is a stable weak equivalence if and only if it is a
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pointwise weak equivalence.

10.17. Proposition: Given E0 → E1 an injective map of spectra,
with E2 its cofiber, there is a natural exact sequence

· · · → πn+1E
2 → πnE

0 → πnE
1 → πnE

2 → πn−1E
0 → · · · ,

where the maps πnE
i → πnE

i+1 are the canonical maps.

Proof. Since sequential colimits of abelian groups preserve exact se-
quences, and since the functor E 7→ E(n) preserves injections and cofibers,
it suffices to show that the required exact sequence exists on all n-skeleta.
By proposition 10.14, we may assume that all Ei are given by (Sn)∗ ∧Ki

for some Ki in S, and the maps between the Ei are induced by maps
between the Ki. The conclusion follows from the Blakers-Massey the-
orem (the version given in Spanier’s book [S] as theorem 9.3.5 is suffi-
cient), which provides a constant c such that, for m ≥ k + c, the fol-
lowing two statements are true. First, there are natural isomorphisms
between πk−nE

i and πk+mSm ∧Ki. Second, there is a natural exact se-
quence

· · · → πk+m+1(S
m ∧K2)→ πk+m(Sm ∧K0)→ πk+m(Sm ∧K1)

→ πk+m(Sm ∧K2)→ πk+m−1(S
m ∧K0)→ · · · ,

where the maps πk+m(Sm ∧Ki) → πk+m(Sm ∧Ki+1) are the canonical
maps.

10.18. Corollary: Let f i : Ei
0 → Ei

1 and gi : E0
i → E1

i be maps of
spectra, for i = 0, 1, such that g1f

0 = f 1g0, and the gi are injective.
Then, if any two of f 0, f 1/f0, and f1 are stable weak equivalences, so is
the third.

10.19. Definition: Let τ be the natural isomorphism that interchanges
the second and third factors in the smash product K ∧L∧M ∧N in S.

10.20. Definition: The smash product of the spectra E and E ′ is
the spectrum E ∧E ′ defined as follows. Let (E ∧E ′)2n = En ∧E ′

n, and
(E ∧E ′)2n+1 = S1 ∧ (E ∧E ′)2n. Finally, let the map (E ∧E ′)(2n) be the
identity, and the map (E ∧E ′)(2n + 1) equal (E(n)∧E ′(n)) ◦ t.

10.21. Proposition: Smashing with a spectrum preserves stable weak
equivalences.
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Proof. Smashing with a pointed simplicial set preserves stable weak
equivalences: It preserves acyclic cofibrations since Sps is a simplicial
model category, and it preserves acyclic fibrations, since these are point-
wise weak equivalences. But, as the isomorphisms

πk(E ∧E ′) ∼= colimm πk+2m|Em ∧E ′
m| ∼= colimm,n πk+m+n|Em ∧E ′

n|

show, for fixed k and E, the group πk(E ∧E ′) depends functorially on a
diagram involving only the groups πk(Em ∧E ′).

11. Comparison of the stable model structures

In this section we compare the stable model structures for spectra and
simplicial functors.

11.1. Definition: Let C and D be simplicial categories, each with a
model structure, and let (L, R) be an adjoint pair of simplicial functors,
with L : C → D. The pair (L, R) is a Quillen equivalence, provided
that L preserves cofibrations,that R preserves fibrations, and that the
following condition is satisfied. For every cofibrant X in C and fibrant Y
in D, a map X → RY is a weak equivalence if and only if so is its adjoint.

Quillen equivalences induce adjoint equivalences of homotopy categories,
but we will not need this here. One should think of the equivalence
relation generated by “being Quillen equivalent to” as “the right way” to
partition model structures on simplicial categories, so that each partition
consists of model categories that are “really the same”.

11.2. Definition: Let i be the inclusion of Sph in S, and let (i∗, i
∗) be

the adjoint pair of proposition 3.23.

11.3. Theorem: The pair (i∗, i
∗) is a Quillen equivalence between the

stable model structure of simplicial functors and the stable model struc-
ture of spectra.

11.4. Convention: By definition, the model structures SFp, SFh,
and SFs share a common class of cofibrations. We refer to a map in this
common class simply as a “cofibration of simplicial functors”. We agree
to a similar convention for the term “cofibrant simplicial functor”, and
to similar conventions for cofibrations of spectra.

11.5. Proposition: The canonical map E → i∗((i∗E)R) is a stable
weak equivalence, for every cofibrant spectrum E.
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11.6. Proposition: A map X → Y of simplicial functors is a stable
weak equivalence if and only if the induced map i∗(XR) → i∗(Y R) of
spectra is a stable weak equivalence.

Proof of theorem 11.3. By propositions 10.10 and 9.8, i∗ maps SFsf

to Spsf , and, by lemmas 10.6 and 9.4, it maps SFsaf , to Spsaf . Proposi-
tion 6.8 implies that its left adjoint i∗ maps SFsac, to Spsac, and that it
maps SFsc, to Spsc. It remains to prove that, given a fibrant X in SFs

and a cofibrant E in Sps, a map E → i∗X is a stable weak equivalence
if and only if so is the map i∗E → X.

In case E → i∗X is a stable weak equivalence, by proposition 11.6, we
have to show that i∗((i∗E)R) → i∗(XR) is a stable weak equivalence.
By proposition 11.5, it suffices to show that the map E → i∗(XR) is
a stable weak equivalence. But the map X → XR is a pointwise weak
equivalence, (X is fibrant in SF, and therefore also in H) thus the map
i∗X → i∗(XR) is a pointwise weak equivalence.

In case i∗E → X is a stable weak equivalence, so is i∗((i∗E)R)→ i∗(XR)
(by proposition 11.6), and so is the map E → i∗(XR) (by proposi-
tion 11.5). But, as we have seen above, the map i∗X → i∗(XR) is a
pointwise weak equivalence.

Proof of proposition 11.5. We treat first the special case E = (Sn)∗ ∧K.
We claim that the map E → i∗((i∗E)R) is o(2), where we say that a
map f of spectra is o(2) if, for some c, the map fn is (2n− c)-connected.
Since smashing with K preserves connectivity, we may assume that K =
S0. By proposition 3.24, the associated map Ek+n → (i∗((i∗E)R))k+n

is isomorphic to the canonical map Sk → S(Sn, RSk+n), and the claim
follows. Since the class of o(2) maps is included in Spsw, the special case
follows.

In the general case, apply proposition 6.5 to the map f : ∗ → E with
S = Spc, and let E ′ be the target of the resulting i. Thus E ′ is a
cofibrant spectrum, and the map E ′ → E is a pointwise weak equiv-
alence. Recall from the proof of proposition 6.5 that E ′ is built by
a combination of cobase changes of finite sums and filtered colimits,
and observe that E 7→ i∗((i∗E)R) commutes with colimits. Recall also
that all the cobase changes of finite sums involved are obtained from
maps between spectra of the form (Sn)∗ ∧K. By a Mayer-Vietoris argu-
ment and induction, the map E ′ → i∗((i∗E

′)R) is a filtered colimit of
o(2) maps, in particular a weak equivalence of spectra. But i∗ preserves
pointwise acyclic cofibrations, thus also pointwise weak equivalences be-
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tween cofibrant objects, by a mapping cylinder argument. Thus the
map i∗E

′ → i∗E is a pointwise weak equivalence, and therefore so is the
map i∗((i∗E)R)→ i∗((i∗E

′)R). The conclusion follows immediately from
this.

11.7. Proposition: Given K in Sfin and X in SF, the canonical map
i∗K∗XR→ i∗XRK∗ is a stable weak equivalence.

11.8. Proposition: Given K in Sfin and X in SF, the following hold.

(i) The map i∗XRK∗ → i∗T (RXRK∗) is a stable weak equivalence.

(ii) The spectrum i∗XsK∗ is an Ω-spectrum.

Proof of proposition 11.6. We first remark that the “only if” part would
be trivial, if the functors T for spectra and simplicial functors would cor-
respond under i∗. This is, however, not true (in fact, the spectrum i∗TX
is canonically isomorphic to Ω(i∗X)[1], cf. remark 10.3).

Suppose first that X → Y is a stable weak equivalence. By proposi-
tion 11.8(i), the maps i∗XR → i∗Xs and i∗Y R → i∗Y s are stable weak
equivalences of spectra. It follows that i∗XR → i∗Y R is a stable weak
equivalence, since i∗Xs → i∗Y s is even a pointwise weak equivalence.

Suppose now that i∗XR → i∗Y R is a stable weak equivalence of spec-
tra. Since smashing by K preserves stable weak equivalences of spectra
(for a simple proof of this last fact, see the proof of proposition 10.21),
proposition 11.7 implies that i∗XRK∗ → i∗Y RK∗ is a stable weak equiv-
alence, for each K in Sfin. Thus, by proposition 11.8(i), so is the map
i∗T∞(RXRK∗)→ i∗T∞(RY RK∗). In fact, by proposition 10.16(iv) and
proposition 11.8(ii) (and since XsK∗ = (T∞RXR)K∗ is canonically iso-
morphic to T∞(RXRK∗)), this map is a pointwise weak equivalence.
Thus the map XsK → Y sK is a weak equivalence.

11.9. Lemma: The map of proposition 11.7 is o(2), if X = L∗ for
some L in Sfin.

Proof of proposition 11.7. Call the map f . The proof will be divided in
five cases, each more special than the next.

Case 1. X is a finite sum of simplicial functors of the form K∗ ∧L for
some K and L in Sfin. Then lemma 11.9 implies that f is o(2).

Case 2. X is any sum of simplicial functors of the form K∗ ∧L for some K
and L in Sfin. Then f is a filtered colimit of maps which are weak
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equivalences, by case 1.

Case 3. X is a colimit of a sequence X0 → X1 → · · ·, such that X0 = ∗
and each map is given by a cobase change of a map having the follow-
ing form: It is a sum of maps of the form K∗ ∧g for some K in Sfin

and some cofibration g in Sfin. Since stable equivalences are closed un-
der filtered colimits, we may assume that the sequence is in fact finite.
The conclusion follows by induction on the length of the sequence, using
corollary 10.18 and case 2.

Case 4. X is any cofibrant simplicial functor. By definition, this means
that there exists a sequence X0 → X1 → · · · satisfying all the conditions
of the similar sequence in case 3, except possibly the condition that X0 is
trivial, and with the map ∗ → X a retract of the composition X0 → X∞.
But then X is a retract of X∞/X0, and the map Xn/X0 → Xn+1/X0 is
still a cobase change of the same map as Xn → Xn+1. The conclusion
follows from case 3.

Case 5. General case (X is any simplicial functor). Factor the map
∗ → X as pj, with j a cofibration and p an acyclic fibration (the model
structure is irrelevant, cf. convention 11.4). In particular, p is a pointwise
weak equivalence, thus i∗pR is a pointwise weak equivalence of spectra,
and the conclusion follows from case 4.

Before we prove proposition 11.8, we need the following technical lemma.
The lemma allows us to view any simplicial functor as a filtered colimit
of simplicial functors which are finite in a strong sense.

11.10. Lemma: Let A be the partially ordered set given by the finite
sets of objects of Sfin. Every X in H determines Xc : A→ H satisfying
the following two conditions. First, for every A in A, the object Xc

A is
the diagonal of a simplicial object in H, whose value at [q] is∨

K∗
q ∧S(Kq−1, Kq)∧ · · · ∧S(K0, K1)∧X(K0)

where the sum is over (K0, . . . , Kq) in Aq+1. Second, if Xc
∞ denotes the

colimit of Xc, then there exists a pointwise weak equivalence Xc
∞ → X.

Finally, the construction X 7→ Xc is functorial, and the map Xc
∞ → X

is natural.

Proof of proposition 11.8. By lemma 11.10, we may assume that X is of
the form Xc

A, with the notation as in the lemma. Thus X satisfies the fol-
lowing two conditions. First, the simplicial functor XR is o(1). Second,
the canonical map ΣXR → XRΣ is o(2). (The proof of these two facts
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uses that sums, smashing by pointed simplicial sets, and diagonalization,
preserve connectivity of pointed simplicial sets. The proof of the second
fact uses lemma 11.9. It is essential that the set of K∗ involved is finite,
so that we may assume that the constants c, involved in the definition
of the relevant o(k), are all equal.) Since XRK∗ is still o(1), the map
XRK∗ → ΩRΣXRK∗ is o(2). Thus, since the map ΣXRK∗ → XRK∗Σ
is still o(2), so is the map XRK∗ → TRXRK∗.

Proof of lemma 11.9. Call the map f . We first prove the following
reduction: Given injective maps L0 → L1 in Sfin, if the lemma is true
for L0 and L1/L0, then it is true for L1. We need the following definition:
In case X, Y , and Z are o(j) simplicial functors in SF(n) and X → Y → Z
is a sequence with trivial composition, then we say it is an o(l)-fibration
sequence if the map from X to the pointwise homotopy fiber of Y → Z
is o(l), and we say it is an o(l)-cofibration sequence if the map from the
pointwise homotopy cofiber of X → Y to Z is o(l). In case l = 2j, the
Blakers-Massey theorem (again, [S, theorem 9.3.5] is sufficient) implies
that the sequence is an o(l)-fibration sequence if and only if it is an o(l)-
cofibration sequence. (In verifying the above, note that, by definition
of o(l), in order to check that a map F in SF(n) is o(l) it suffices to
consider only m-connected K1, . . . , Kn, for any constant m. If further
both the source and the target of F are o(j), then, by taking m large
enough, we can arrange that the values of the source and the target of F
are highly connected.) Since the sequence (L1/L0)

∗R → L∗1R → L∗0R
is a fibration sequence, smashing it with K yields an o(2) cofibration
sequence in SF. There is a map, given by f , from this sequence to the
sequence (L1/L0)

∗R(?∧K) → L∗1R(?∧K) → L∗0R(?∧K) in SF. Since
each L∗ is o(1), the target sequence is an o(2) cofibration sequence (since
it is a fibration sequence), and the reduction follows.

The lemma holds for L = Sn, since f factors as the composition

K ∧ΩnR?→ ΩnR(K ∧ΣnΩnR?)→ ΩnR(K ∧R?),

and both maps are o(2). Thus the lemma is true for ∆n/∂∆n. The
conclusion follows by induction on the simplices of L, using the above
reduction.

Proof of lemma 11.10. Let I be a small category and F a functor from I
to sets. Given i in I, let C(i) be the following category. Its objects
are the pairs (f, x) such that f : i0 → i and x ∈ F (i0). There is one
morphism from (f, x) to (g, y) for each h in I such that gh = f and
h∗(x) = y. Define F ′(i) as the nerve of C(i). There is a map F ′(i)→ F (i)
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taking (f, x) to f∗(x), and is the disjoint union of projections of nerves
of categories to their terminal objects, in particular a weak equivalence.
Note that

F ′
q
∼=

∐
(i0,...,iq)

i∗q × I(iq−1, iq)× · · · × I(i0, i1)× F (i0).

Suppose now that I is a pointed category and that F is a pointed functor
from I to pointed sets. Let

F ′′
q =

∨
(i0,...,iq)

i∗q ∧I(iq−1, iq)∧ · · · ∧I(i0, i1)∧F (i0)

so that we have a canonical map F ′ → F ′′. Then it is still true that there
is a map F ′′ → F , and that, for fixed i, there is a section F (i)→ F ′′(i),
as well as a map F ′′(i)⊗∆1 → F ′′(i) which is a homotopy between the
identity and the composition F ′′(i) → F (i) → F ′′(i). All these maps
are compatible with the canonical map F ′ → F ′′, and exist essentially
because I is a pointed category and F is a pointed functor.

Fix X in H and apply the above construction with I = Sfin
p and F = Xp

(the functor Xp from Sfin
p to E is defined in 3.10). The resulting X ′′

p ,
evaluated at L, has q-simplices∨

K∗
q L∧Sp(Kq−1, Kq)∧ · · · ∧Sp(K0, K1)∧Xp(K0)

where the sum is over all (K0, . . . , Kq), and K∗
q denotes the functor

from Sfin
p to E represented by Kq. The conclusion follows immediately

from this.

12. Comparison of the smash products

In this section we compare the smash products of spectra and simplicial
functors, cf. theorem 12.5. We also prove that the smash product of
simplicial functors is compatible with all three model structures on sim-
plicial functors considered in previous sections, cf. theorems 12.3, 12.4,
and 12.6.

12.1. Definition: Given maps f : X → Y and g : Z → W in SF,
let f ∧g be the canonical map from X ∧W ∪X ∧Z Y ∧W to Z ∧W .

12.2. Proposition: Let f , g, and h be maps in SF. If g is a retract
of f , then g ∧h is a retract of f ∧h. If f is the composition · · · f1f0,

40



then f ∧h is the composition · · · (f1 ∧h)(f0 ∧h). If the map of arrows
f → g corresponds to a cocartesian square (expressing g as a cobase
change of f), then the map of arrows f ∧h→ g ∧h also corresponds to a
cocartesian square. Finally, if f is the sum of fs, where {fs} is a family
of maps indexed by s in some indexing set S, then f ∧h is the the sum
of fs ∧h.

12.3. Theorem: Let f and h be maps in SF with f a cofibration. Then
the map f ∧h is injective, if so is h, and it is a cofibration, if so is h.

Fix i0 and j0 cofibrations. We want to show that i0sj0 is a cofibration.
Fix an acyclic fibration p and a lifting problem i0sj0 to p. We want to
solve this lifting problem. By adjointness considerations, similar to the
ones we saw in remark ?, this lifting problem is equivalent to a lifting
problem of the form i0 to (j0,p). It therefore suffices to show that (j0,p)
is an acyclic fibration. Thus we reduced the problem to the special case
of solving lifting problems i1 to (j0,p), i.e., i1sj0 to p, where now i1 is
a generating cofibration. By essentially the same argument (only inter-
changing the roles of i and j), we reduce the problem to solving lifting
problems i1sj1 to p, with both i1 and j1 generating cofibrations. To
solve these, observe that i1sj1 is again a generating cofibration: Using
lemma-identify-smash-of-representables, we see that (K0*sg0)s(K1*sg1)
is isomorphic to (K0sK1)*s(g0sg1).

If (say) i is acyclic, a similar argument reduces the problem to showing
isj is acyclic whenever i and j are generating. Since i is generating, it
is not just a stable weak equivalence but also tilde o(2) (lemma ?). We
show that isj is also tilde o(2). Write the map i as X to Y, and the map
j as K*s(M to N), so that isj is isomorphic to (X circle K* to Y circle
K*)sg (lemma ? again). Given cofibrations f and g of simply-connected
simplicial sets, fsg is as connected as f is (use homology and the fact that
the cofiber of fsg is isomorphic to the cofiber of f smash the cofiber of
g), thus it suffices to show that (X circle K* to Y circle K*) is tilde o(2).
This follows from the fact that K* is o(1)—in fact K* takes n-connected
spaces to (n-d)-connected spaces, with d the dimension of K).

Proof. Suppose first that h is injective. Consider first the case where f
is in the set SFg

pc of generating cofibrations, i.e., for some K in Sfin and
some cofibration g in Sfin, we have f = K∗ ∧g. Using proposition 5.13
to write (X ∧K∗)L as X(K∗L), and the fact that injective maps in S are
closed under cobase change, we conclude that f ∧h is injective.

If f is any cofibration, the conclusion follows from proposition 12.2, using
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the fact that injective maps in S are closed under retracts, infinite com-
position, cobase change, and sums, as well as the definition of the class
of cofibrations in SF (this last class is defined as the class of cofibrations
generated by SFg

pc; see also definition 6.4).

Suppose now that h is a cofibration. Consider first the case where both f
and h are in the set SFg

pc of generating cofibrations, i.e., for some K and L
in Sfin and some cofibrations g and g′ in Sfin, we have f = K∗ ∧g and
h = L∗ ∧g′. By lemma 5.7, (K∗ ∧L∗) is isomorphic to (K ∧L)∗. Thus f ∧h
is isomorphic to (K ∧L)∗ ∧ (g ∧g′), which is again a generating cofibration.

If f and h are any cofibrations, the conclusion follows from proposi-
tion 12.2, using the fact that cofibrations are closed under retracts, in-
finite composition, cobase change, and sums, as well as the definition of
the class of cofibrations in SF.

12.4. Theorem: Let f be a map in SF and X a cofibrant simplicial
functor. Then X ∧f is a pointwise weak equivalence, if so is f , and it is
a weak equivalence of homotopy functors, if so is f .

Proof. If X = K∗ for some K in Sfin, the conclusion follows from
proposition 5.13, together with the fact that K∗L is fibrant if so is L.
The special case X =

∨
s K∗

s ∧Ls follows immediately.

If X is any cofibrant simplicial functor, by proceeding as in the proof
of proposition 11.7, we can write X as a retract of the colimit X∞ of
a sequence ∗ = X0 → X1 → · · ·, with the map Xn → Xn+1 a cobase
change of a map gn =

∨
s K∗

s ∧hs with hs a cofibration in Sfin. We
may assume that X = X∞, since weak equivalences in S are closed
under retracts. We may assume that X equals some Xn, since weak
equivalences in S are closed under sequential colimits. The conlusion
now follows by induction on n, the gluing lemma, and the special case
treated in the previous paragraph. (In order to apply the gluing lemma,
we need to know that g ∧Y is injective for any simplicial functor Y , and
any cofibration g of simplicial functors. This follows from theorem 12.3,
by considering the injective map ∗ → Y .)

12.5. Theorem: There is a map of spectra i∗XR∧ i∗Y R→ i∗(X ∧Y )R,
natural in the simplicial functors X and Y , which is a stable weak equiv-
alence if one of the factors is cofibrant.

12.6. Theorem: Smashing with a cofibrant simplicial functor preserves
stable weak equivalences.
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Proof. This follows from theorem 12.5, proposition 11.6, and proposi-
tion 10.21.

12.7. Definition: An S2-spectrum E consists of a sequence of pointed
simplicial sets E2n and a sequence of maps E(2n) : S2 ∧E2n → E2n+2,
for n = 0, 1, . . . . We define maps and stable weak equivalences of such
objects, so that forgetting the odd terms of a spectrum gives a func-
tor E 7→ E∗ that preserves stable weak equivalences.

Let X be a simplicial functor. The S2-spectrum XSτ is defined as follows.
Let (XSτ )2n = XS2n. Let (XSτ )(2n) be the composition

S1 ∧S1 ∧X(Sn ∧Sn)→ X(S1 ∧S1 ∧Sn ∧Sn)→ X(S1 ∧Sn ∧S1 ∧Sn),

where the first map is the special assembly map, and the second map is
induced by τ (for the definition of τ , see 10.19).

12.8. Proposition: The S2-spectra (i∗X)∗ and XSτ are naturally iso-
morphic.

Proof. Let the sphere spectrum S equal i∗S, and the S2-spectrum Sτ

equal S(Sτ ). The conclusion of the proposition is true in the special
case X = S, i.e., S∗ and Sτ are isomorphic. The general case follows
because there is a functor which associates the S2-spectrum XE to a
simplicial functor X and an S2-spectrum E, such that (i∗X)∗, resp. XSτ ,
equals XE with E = S∗, resp. E = Sτ .

The only reason we consider XSτ (in fact, the only reason we consider S2-
spectra) is to be able to write the map in the statement of theorem 12.5
as a composition of simpler maps. One of these simpler maps is given
by the proposition above, and another one is given by the proposition
below.

12.9. Proposition: Given simplicial functors X and Y , there is a
non-trivial natural map (i∗XR∧ i∗Y R)∗ → (X ∧Y )RSτ .

Proof. By definition of X ∧Y , there is a canonical map from XM ∧Y N
to (X ∧Y )(M ∧N). The map we want is obtained from this map by
letting M and N be RSn (this uses the map RR→ R, coming from the
adjunction between singular complex and realization).

12.10. Proposition: If X and Y are simplicial functors and X is cofi-
brant, then the map (i∗XR∧ i∗Y R)∗ → (X ∧Y )RSτ is a weak equivalence.
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Proof of theorem 12.5. Note that the forgetful functor E 7→ E∗ from
spectra to S2-spectra has a left adjoint L, such that (LE)2n = E2n,
(LE)2n+1 = S1 ∧E2n, (LE)(2n) = 1, and (LE)(2n + 1) = E(2n). The
conclusion now follows from proposition 12.8, proposition 12.10, and the
fact that, for any spectra E and E ′, the equality E ∧E ′ = L(E ∧E ′)∗

holds.

12.11. Lemma: The canonical map XRM ∧Y RN → (X ∧Y )R(M ∧N)
is o(3), if X = K∗ and Y = L∗ for some K and L in Sfin.

Proof of proposition 12.10. We say that a map of S2-spectra is o(3), if
there exists an integer c such that, for all non-negative integers n the
map of (2n)-terms is (3n− c)-connected. It follows immediately that an
o(3)-map is a stable weak equivalence. Call the map f . The proof will
be divided in five cases, each more special than the next.

Case 1. X and Y are a finite sum of simplicial functors of the form K∗ ∧L
for some K and L in Sfin. Then lemma 12.11 implies that f is o(3).

Case 2. X and Y are any sum of simplicial functors of the form K∗ ∧L
for some K and L in Sfin. Then f is a filtered colimit of maps which are
weak equivalences, by case 1.

Case 3. X and Y are given by colimits of sequences Z0 → Z1 → · · ·,
such that Z0 = ∗ and each map is given by a cobase change of a map
having the following form: It is a sum of maps of the form K∗ ∧g for
some K in Sfin and some cofibration g in Sfin. Since stable equivalences
are closed under filtered colimits, we may assume that both compositions
are in fact finite. The conclusion follows by a double induction on the
length of the compositions, using corollary 10.18 and case 2 (theorem 12.3
guarantees that the injectivity hypothesis in corollary 10.18 is satisfied).

Case 4. X and Y are any cofibrant simplicial functors. The conclusion
follows by proceeding as in the proof of proposition 11.7, to write X
and Y as retracts of simplicial functors corresponding to the case 3.

Case 5. General case (X and Y are any simplicial functors, and X is
cofibrant). Factor the map ∗ → Y as pj, with j a cofibration and p an
acyclic fibration (the model structure is irrelevant, cf. convention 11.4).
In particular, p is a pointwise weak equivalence, thus i∗p is a stable weak
equivalence of spectra (even a pointwise one). The conclusion follows
from theorem 12.4, proposition 10.21, and case 4.

Proof of lemma 12.11. Call the map f . We first prove the following
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reduction: Given injective maps K0 → K1 in Sfin, if the lemma is true
for (K0, L) and (K1/K0, L), then it is true for (K1, L). Since the sequence
(K1/K0)

∗ → K∗
1 → K∗

0 is a fibration sequence, external-smashing it
with L∗ yields an o(3) cofibration sequence in SF(2) (cf. the proof of
lemma 11.9). There is a map, given by f , from this sequence to the
sequence

(K1/K0 ∧L)∗R(M ∧N)→ (K1 ∧L)∗R(M ∧N)→ (K0 ∧L)∗R(M ∧N)

in SF(2). Since each (K1 ∧L)∗R(M ∧N) is o(2), the target sequence is an
o(4) cofibration sequence (since it is a fibration sequence; cf. the proof of
lemma 11.9 again), and the reduction follows.

The lemma holds for (K, L) = (Sm, Sn), since f factors as the composi-
tion

ΩmRM ∧ΩnRN → Ωm+nR(SmΩmRM ∧SnΩnRN)→ Ωm+nR(M ∧N),

and both maps are o(4). Thus the lemma is true for (∆m/∂∆m, ∆n/∂∆n).
The conclusion follows by induction on the simplices of K and L, using
the above reduction.

13. Linear functors

We end this paper by relating the stable model structure of simplicial
functors to the calculus of homotopy functors, cf. [G1], [G2], and [G3].
For our purposes, the second section of [G1] is sufficient. In fact, here
we are only interested in the part of this calculus having to do with the
linear approximation at ∗. We show in proposition 13.4 that, by using
simplicial functors instead of homotopy functors (this is “no restriction,
up to weak equivalence”, cf. remark 4.6), a rigid universal property of
this linear approximation is possible. The corresponding results in [G1]
are stated for “stably excisive” functors only, a restriction that turns out
to be unnecessary.

13.1. Definition: A simplicial functor is linear, provided that it is a
homotopy functor and that it takes any sequence K0 → K1 → K2, such
that K0 → K1 is injective with cofiber K1 → K2, to a fibration sequence.

13.2. Proposition: A simplicial functor is fibrant in the stable model
structure if and only if it is linear and pointwise fibrant.
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Proof. Suppose X is linear and pointwise fibrant. Let D be the pointed
simplicial set obtained by choosing a basepoint for ∆1. It suffices to
exhibit a weak equivalence from the sequence XK → X(D ∧K)→ XΣK
to the sequence XK → (XΣK)D → XΣK. For, since the source is a
fibration sequence, so is the target. But, since (XΣK)D → XΣK is a
fibration with fiber ΩXΣK, and the resulting map from XK to the fiber
is the canonical one, the conclusion follows from proposition 9.8. We
exhibit a map which is the identity on the fiber and the base. Choose
the contraction of ∆1 yielding a map D ∧D → D (the choice depends on
the choice of the basepoint of D), and postcompose with the canonical
map D → S1 to obtain a map D ∧D → S1. The required map is the
adjoint of the composition D ∧X(D ∧K)→ X(D ∧D ∧K)→ XΣK.

Suppose X is fibrant in the stable model structure, and fix a sequence
K0 → K1 → K2 in Sfin, such that K0 → K1 is injective with cofiber
K1 → K2. Note that X is fibrant in SFh thus, by proposition 8.7,
the map X → XR is a pointwise weak equivalence. Proposition 11.7
now implies that the canonical map from i∗X ∧K = i∗K∗X to i∗XK∗
is a stable weak equivalence. The proof of proposition 10.17 actually
shows that (T∞(i∗X ∧K0))n → (T∞(i∗X ∧K1))n → (T∞(i∗X ∧K2))n is
a fibration sequence for any n. By propositions 10.16 (iv), and 10.12,
and since by proposition 9.8 the spectrum i∗(XK∗) is an Ω-spectrum,
this sequence for n = 0 is related by a chain of weak equivalences to the
sequence XK0 → XK1 → XK2, therefore this last sequence is also a
fibration sequence.

13.3. Definition: Given a closed model category D, for which there
exists a set S of maps in D with small domains such that the class of
acyclic cofibrations equals the class of cofibrations generated by S, and
given an object X of D, the canonical fibrant replacement X → Xf is the
acyclic cofibration provided by the small object argument applied to the
map X → ∗. Thus Xf is a fibrant object depending functorially on X,
and the map X → Xf is both natural and an acyclic cofibration.

13.4. Proposition: Given a simplicial functor X, let X → PX be the
canonical fibrant replacement in the stable model structure. Then PX
is linear, and X → PX is a natural stable weak equivalence. Further,
if Y is any linear simplicial functor which is pointwise fibrant, any map
X → Y factors through X → PX, and any two factorizations PX → Y
can be connected by a homotopy PX ⊗∆1 → Y relative to X.
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Proof. This follows immediately from proposition 13.2 and standard
properties of simplicial model categories.
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