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Let K denote the functor of complex K-theory, which associates to every compact Hausdorff

space X the Grothendieck group K(X) of isomorphism classes of complex vector bundles on X. The

functor X 7→ K(X) is an example of a cohomology theory: that is, one can define more generally

a sequence of abelian groups {Kn(X,Y )}n∈Z for every inclusion of topological spaces Y ⊆ X, in

such a way that the Eilenberg-Steenrod axioms are satisfied (see [49]). However, the functor K is

endowed with even more structure: for every topological space X, the abelian group K(X) has the

structure of a commutative ring (when X is compact, the multiplication on K(X) is induced by

the operation of tensor product of complex vector bundles). One would like that the ring structure

on K(X) is a reflection of the fact that K itself has a ring structure, in a suitable setting.

To analyze the problem in greater detail, we observe that the functor X 7→ K(X) is repre-

sentable. That is, there exists a topological space Z = Z×BU and a universal class η ∈ K(Z),

such that for every sufficiently nice topological space X, the pullback of η induces a bijection

[X,Z]→ K(X); here [X,Z] denotes the set of homotopy classes of maps from X into Z. According

to Yoneda’s lemma, this property determines the space Z up to homotopy equivalence. Moreover,

since the functor X 7→ K(X) takes values in the category of commutative rings, the topological

space Z is automatically a commutative ring object in the homotopy category H of topological

spaces. That is, there exist addition and multiplication maps Z × Z → Z, such that all of the

usual ring axioms are satisfied up to homotopy. Unfortunately, this observation is not very useful.

We would like to have a robust generalization of classical algebra which includes a good theory of

modules, constructions like localization and completion, and so forth. The homotopy category H

is too poorly behaved to support such a theory.

An alternate possibility is to work with commutative ring objects in the category of topological

spaces itself: that is, to require the ring axioms to hold “on the nose” and not just up to homotopy.

Although this does lead to a reasonable generalization of classical commutative algebra, it not

sufficiently general for many purposes. For example, if Z is a topological commutative ring, then

one can always extend the functor X 7→ [X,Z] to a cohomology theory. However, this cohomology

theory is not very interesting: in degree zero, it simply gives the following variant of classical

cohomology: ∏
n≥0

Hn(X;πnZ).

In particular, complex K-theory cannot be obtained in this way. In other words, the Z = Z×BU

for stable vector bundles cannot be equipped with the structure of a topological commutative ring.

This reflects the fact that complex vector bundles on a space X form a category, rather than just

a set. The direct sum and tensor product operation on complex vector bundles satisfy the ring

axioms, such as the distributive law

E⊗(F⊕F′) ' (E⊗F)⊕ (E⊗F′),

but only up to isomorphism. However, although Z×BU has less structure than a commutative ring,

it has more structure than simply a commutative ring object in the homotopy category H, because
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the isomorphism displayed above is actually canonical and satisfies certain coherence conditions

(see [92] for a discussion).

To describe the kind of structure which exists on the topological space Z×BU, it is convenient

to introduce the language of commutative ring spectra, or, as we will call them, E∞-rings. Roughly

speaking, an E∞-ring can be thought of as a space Z which is equipped with an addition and a

multiplication for which the axioms for a commutative ring hold not only up to homotopy, but

up to coherent homotopy. The E∞-rings play a role in stable homotopy theory analogous to the

role played by commutative rings in ordinary algebra. As such, they are the fundamental building

blocks of derived algebraic geometry.

One of our ultimate goals in this book is to give an exposition of the theory of E∞-rings.

Recall that ordinary commutative ring R can be viewed as a commutative algebra object in the

category of abelian groups, which we view as endowed with a symmetric monoidal structure given

by tensor product of abelian groups. To obtain the theory of E∞-rings we will use the same

definition, replacing abelian groups by spectra (certain algebro-topological objects which represent

cohomology theories). To carry this out in detail, we need to say exactly what a spectrum is.

There are many different definitions in the literature, having a variety of technical advantages and

disadvantages. Some modern approaches to stable homotopy theory have the feature that the

collection of spectra is realized as a symmetric monoidal category (and one can define an E∞-ring

to be a commutative algebra object of this category): see, for example, [74].

We will take a different approach, using the framework of ∞-categories developed in [98]. The

collection of all spectra can be organized into an ∞-category, which we will denote by Sp: it is

an ∞-categorical counterpart of the ordinary category of abelian groups. The tensor product of

abelian groups also has a counterpart: the smash product functor on spectra. In order to describe

the situation systematically, we introduce the notion of a symmetric monoidal ∞-category: that

is, an ∞-category C equipped with a tensor product functor ⊗ : C×C → C which is commutative

and associative up to coherent homotopy. For any symmetric monoidal ∞-category C, there is

an associated theory of commutative algebra objects, which are themselves organized into an ∞-

category CAlg(C). We can then define an E∞-ring to be a commutative algebra object of the

∞-category of spectra, endowed with the symmetric monoidal structure given by smash products.

We now briefly outline the contents of this book (more detailed outlines can be found at the

beginning of individual sections and chapters). Much of this book is devoted to developing an

adequate language to make sense of the preceding paragraph. We will begin in Chapter 1 by

introducing the notion of a stable ∞-category. Roughly speaking, the notion of stable ∞-category

is obtained by axiomatizing the essential feature of stable homotopy theory: fiber sequences are

the same as cofiber sequences. The∞-category Sp of spectra is an example of a stable∞-category.

In fact, it is universal among stable ∞-categories: we will show that Sp is freely generated (as a

stable∞-category which admits small colimits) by a single object (see Corollary 1.4.4.6). However,

there are a number of stable ∞-categories that are of interest in other contexts. For example,
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the derived category of an abelian category can be realized as the homotopy category of a stable

∞-category. We may therefore regard the theory of stable ∞-categories as a generalization of

homological algebra, which has many applications in pure algebra and algebraic geometry.

We can think of an∞-category C as comprised of a collection of objects X,Y, Z, . . . ∈ C, together

with a mapping space MapC(X,Y ) for every pair of objects X,Y ∈ C (which are equipped with

coherently associative composition laws). In Chapter 2, we will study a variation on the notion of

∞-category, which we call an ∞-operad. Roughly speaking, an ∞-operad O consists of a collection

of objects together with a space of operations MulO({Xi}1≤i≤n, Y )} for every finite collection of

objects X1, . . . , Xn, Y ∈ O (again equipped with coherently associative multiplication laws). As a

special case, we will obtain a theory of symmetric monoidal ∞-categories.

Given a pair of∞-operads O and C, the collection of maps from O to C is naturally organized into

an∞-category which we will denote by AlgO(C), and refer to as the∞-category of O-algebra objects

of C. An important special case is when O is the commutative ∞-operad and C is a symmetric

monoidal ∞-category: in this case, we will refer to AlgO(C) as the ∞-category of commutative

algebra objects of C and denote it by CAlg(C). We will make a thorough study of algebra objects

(commutative and otherwise) in Chapter 3.

In Chapter 4, we will specialize our general theory of algebras to the case where O is the

associative ∞-operad. In this case, we will denote AlgO(C) by Alg(C) and refer to it the∞-category

of associative algebra objects of C. The ∞-categorical theory of associative algebra objects is an

excellent formal parallel of the usual theory of associative algebras. For example, one can study

left modules, right modules, and bimodules over associative algebras. This theory of modules has

some nontrivial applications; for example, in §4.7 we will use it to prove an∞-categorical analogue

of the Barr-Beck theorem, which has many applications in higher category theory.

In ordinary algebra, there is a thin line dividing the theory of commutative rings from the theory

of associative rings: a commutative ring R is just an associative ring whose elements satisfy the

additional identity xy = yx. In the∞-categorical setting, the situation is rather different. Between

the theory of associative and commutative algebras is a whole hierarchy of intermediate notions

of commutativity, which are described by the “little cubes” operads of Boardman and Vogt. In

Chapter 5, we will introduce the notion of an Ek-algebra for each 0 ≤ k ≤ ∞. This definition reduces

to the notion of an associative algebra in the case k = 1, and to the notion of a commutative algebra

when k = ∞. The theory of Ek-algebras has many applications in intermediate cases 1 < k < ∞,

and is closely related to the topology of k-dimensional manifolds.

The theory of differential calculus provides techniques for analyizing a general (smooth) function

f : R→ R by studying linear functions which approximate f . A fundamental insight of Goodwillie

is that the same ideas can be fruitfully applied to problems in homotopy theory. More precisely,

we can sometimes reduce questions about general ∞-categories and general functors to questions

about stable ∞-categories and exact functors, which are more amenable to attack by algebraic

methods. In Chapter 6 we will develop Goodwillie’s calculus of functors in the ∞-categorical
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setting. Moreover, we will apply our theory of ∞-operads to formulate and prove a Koszul dual

version of the chain rule of Arone-Ching.

In Chapter 7, we will study Ek-algebra objects in the symmetric monoidal ∞-category of spec-

tra, which we refer to as Ek-rings. This can be regarded as a robust generalization of ordinary

noncommutative algebra (when k = 1) or commutative algebra (when k ≥ 2). In particular,

we will see that a great deal of classical commutative algebra can be extended to the setting of

E∞-rings.

We close the book with two appendices. Appendix A develops the theory of constructible

sheaves on stratified topological spaces. Aside from its intrinsic interest, this theory has a close

connection with some of the geometric ideas of Chapter 5 and should prove useful in facilitating

the application of those ideas. Appendix B is devoted to some rather technical existence results for

model category structures on (and Quillen functors between) certain categories of simplicial sets.

We recommend that the reader refer to this material only as necessary.

Prerequisites

The following definition will play a central role in this book:

Definition 0.0.0.1. An ∞-category is a simplicial set C which satisfies the following extension

condition:

(∗) Every map of simplicial sets f0 : Λni → C can be extended to an n-simplex f : ∆n → C,

provided that 0 < i < n.

Remark 0.0.0.2. The notion of ∞-category was introduced by Boardman and Vogt under the

name weak Kan complex in [19]. They have been studied extensively by Joyal, and are often

referred to as quasicategories in the literature.

If E is a category, then the nerve N(E) of E is an ∞-category. Consequently, we can think

of the theory of ∞-categories as a generalization of category theory. It turns out to be a robust

generalization: most of the important concepts from classical category theory (limits and colimits,

adjoint functors, sheaves and presheaves, etcetera) can be generalized to the setting of∞-categories.

For a detailed exposition, we refer the reader to our book [98].

Remark 0.0.0.3. For a different treatment of the theory of ∞-categories, we refer the reader to

Joyal’s notes [79]. Other references include [19], [83], [80], [81], [116], [39], [40], [122], and [64].

Apart from [98], the formal prerequisites for reading this book are few. We will assume that

the reader is familiar with the homotopy theory of simplicial sets (good references on this include

[106] and [58]) and with a bit of homological algebra (for which we recommend [162]). Familiarity

with other concepts from algebraic topology (spectra, cohomology theories, operads, etcetera) will

be helpful, but not strictly necessary: one of the main goals of this book is to give a self-contained

exposition of these topics from an ∞-categorical perspective.
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Notation and Terminology

We now call the reader’s attention to some of the terminology used in this book:

• We will make extensive use of definitions and notations from the book [98]. If the reader

encounters something confusing or unfamiliar, we recommend looking there first. We adopt

the convention that references to [98] will be indicated by use of the letter T. For example,

Theorem HTT.6.1.0.6 refers to Theorem 6.1.0.6 of [98].

• We say that a category (or ∞-category) C is presentable if C admits small colimits and

is generated under small colimits by a set of κ-compact objects, for some regular cardinal

number κ. This is departure from the standard category-theoretic terminology, in which such

categories are called locally presentable (see [1]).

• We let Set∆ denote the category of simplicial sets. If J is a linearly ordered set, we let ∆J

denote the simplicial set given by the nerve of J , so that the collection of n-simplices of

∆J can be identified with the collection of all nondecreasing maps {0, . . . , n} → J . We will

frequently apply this notation when J is a subset of {0, . . . , n}; in this case, we can identify

∆J with a subsimplex of the standard n-simplex ∆n (at least if J 6= ∅; if J = ∅, then ∆J is

empty).

• We will often use the term space to refer to a Kan complex (that is, a simplicial set satisfying

the Kan extension condition).

• Let n ≥ 0. We will say that a space X is n-connective if it is nonempty and the homotopy

sets πi(X,x) are trivial for i < n and every vertex x of X (spaces with this property are more

commonly referred to as (n − 1)-connected in the literature). We say that X is connected if

it is 1-connective. By convention, we say that every space X is (−1)-connective. We will say

that a map of spaces f : X → Y is n-connective if the homotopy fibers of f are n-connective.

• Let n ≥ −1. We say that a space X is n-truncated if the homotopy sets πi(X,x) are trivial

for every i > n and every vertex x ∈ X. We say that X is discrete if it is 0-truncated. By

convention, we say that X is (−2)-truncated if and only if X is contractible. We will say that

a map of spaces f : X → Y is n-truncated if the homotopy fibers of f are n-truncated.

• Throughout this book, we will use homological indexing conventions whenever we discuss

homological algebra. For example, chain complexes of abelian groups will be denoted by

· · · → A2 → A1 → A0 → A−1 → A−2 → · · · ,

with the differential lowering the degree by 1.
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• In Chapter 1, we will construct an ∞-category Sp, whose homotopy category hSp can be

identified with the classical stable homotopy category. In Chapter 7, we will construct a

symmetric monoidal structure on Sp, which gives (in particular) a tensor product functor

Sp×Sp → Sp. At the level of the homotopy category hSp, this functor is given by the

classical smash product of spectra, which is usually denoted by (X,Y ) 7→ X ∧ Y . We will

adopt a different convention, and denote the smash product functor by (X,Y ) 7→ X ⊗ Y .

• If A is a model category, we let Ao denote the full subcategory of A spanned by the fibrant-

cofibrant objects.

• Let C be an ∞-category. We let C' denote the largest Kan complex contained in C: that is,

the ∞-category obtained from C by discarding all noninvertible morphisms.

• Let C be an ∞-category containing objects X and Y . We let CX/ and C/Y denote the

undercategory and overcategory defined in §HTT.1.2.9 . We will generally abuse notation by

identifying objects of these ∞-categories with their images in C. If we are given a morphism

f : X → Y , we can identify X with an object of C/Y and Y with an object of CX/, so that

the ∞-categories

(CX/)/Y (C/Y )X/

are defined (and canonically isomorphic as simplicial sets). We will denote these∞-categories

by CX//Y (beware that this notation is slightly abusive: the definition of CX//Y depends not

only on C, X, and Y , but also on the morphism f).

• Let C and D be ∞-categories. We let LFun(C,D) denote the full subcategory of Fun(C,D)

spanned by those functors which admit right adjoints, and RFun(C,D) the full subcategory

of Fun(C,D) spanned by those functors which admit left adjoints. If C and D are presentable,

then these subcategories admit a simpler characterization: a functor F : C → D belongs to

LFun(C,D) if and only if it preserves small colimits, and belongs to RFun(C,D) if and only

if it preserves small limits and small κ-filtered colimits for a sufficiently large regular cardinal

κ (see Corollary HTT.5.5.2.9 ).

• We will say that a map of simplicial sets f : S → T is left cofinal if, for every right fibration

X → T , the induced map of simplicial sets FunT (T,X)→ FunT (S,X) is a homotopy equiva-

lence of Kan complexes (in [98], we referred to a map with this property as cofinal). We will

say that f is right cofinal if the induced map Sop → T op is left cofinal: that is, if f induces a

homotopy equivalence FunT (T,X)→ FunT (S,X) for every left fibration X → T . If S and T

are ∞-categories, then f is left cofinal if and only if for every object t ∈ T , the fiber product

S ×T Tt/ is weakly contractible (Theorem HTT.4.1.3.1 ).
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Chapter 1

Stable ∞-Categories

There is a very useful analogy between topological spaces and chain complexes with values in

an abelian category. For example, it is customary to speak of homotopies between chain maps,

contractible complexes, and so forth. The analogue of the homotopy category of topological spaces

is the derived category of an abelian category A, a triangulated category which provides a good

setting for many constructions in homological algebra. However, it has long been recognized that

for many purposes the derived category is too crude: it identifies homotopic morphisms of chain

complexes without remembering why they are homotopic. It is possible to correct this defect by

viewing the derived category as the homotopy category of an underlying ∞-category D(A). The

∞-categories which arise in this way have special features that reflect their “additive” origins: they

are stable.

We will begin in §1.1 by giving the definition of stability and exploring some of its conse-

quences. For example, we will show that if C is a stable ∞-category, then its homotopy category

hC is triangulated (Theorem 1.1.2.14), and that stable ∞-categories admit finite limits and col-

imits (Proposition 1.1.3.4). The appropriate notion of functor between stable ∞-categories is an

exact functor: that is, a functor which preserves finite colimits (or equivalently, finite limits: see

Proposition 1.1.4.1). The collection of stable ∞-categories and exact functors between them can

be organized into an ∞-category, which we will denote by CatEx
∞ . In §1.1.4, we will establish some

basic closure properties of the ∞-category CatEx
∞ ; in particular, we will show that it is closed under

the formation of limits and filtered colimits in Cat∞. The formation of limits in CatEx
∞ provides a

tool for addressing the classical problem of “gluing in the derived category”.

In §1.2, we recall the definition of a t-structure on a triangulated category. If C is a stable

∞-category, we define a t-structure on C to be a t-structure on its homotopy category hC. If C is

equipped with a t-structure, we show that every filtered object of C gives rise to a spectral sequence

taking values in the heart C♥ (Proposition 1.2.2.7). In particular, we show that every simplicial

object of C determines a spectral sequence, using an ∞-categorical analogue of the Dold-Kan

correspondence.

15
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We will return to the setting of homological algebra in §1.3. To any abelian category A with

enough projective objects, one can associate a stable ∞-category D−(A), whose objects are (right-

bounded) chain complexes of projective objects of A. This ∞-category provides useful tools for

organizing information in homological algebra. Our main result (Theorem 1.3.3.8) is a characteri-

zation of D−(A) by a universal mapping property.

In §1.4, we will focus our attention on a particular stable ∞-category: the ∞-category Sp of

spectra. The homotopy category of Sp can be identified with the classical stable homotopy category,

which is the natural setting for a large portion of modern algebraic topology. Roughly speaking, a

spectrum is a sequence of pointed spaces {X(n)}n∈Z equipped with homotopy equivalences X(n) '
ΩX(n + 1), where Ω denotes the functor given by passage to the loop space. More generally, one

can obtain a stable∞-category by considering sequences as above which take values in an arbitrary

∞-category C which admits finite limits; we denote this ∞-category by Sp(C) and refer to it as the

∞-category of spectrum objects of C.

1.1 Foundations

Our goal in this section is to introduce our main object of study for this chapter: the notion of

a stable ∞-category. The theory of stable ∞-categories can be regarded as an axiomatization of

the essential features of stable homotopy theory: most notably, that fiber sequences and cofiber

sequences are the same. We will begin in §1.1.1 by reviewing some of the relevant notions (pointed

∞-categories, zero objects, fiber and cofiber sequences) and using them to define the class of stable

∞-categories.

In §1.1.2, we will review Verdier’s definition of a triangulated category. We will show that if C

is a stable ∞-category, then its homotopy category hC has the structure of a triangulated category

(Theorem 1.1.2.14). The theory of triangulated categories can be regarded as an attempt to capture

those features of stable ∞-categories which are easily visible at the level of homotopy categories.

Triangulated categories which arise naturally in mathematics are usually given as the homotopy

categories of stable ∞-categories, though it is possible to construct triangulated categories which

are not of this form (see [114]).

Our next goal is to study the properties of stable ∞-categories in greater depth. In §1.1.3, we

will show that a stable∞-category C admits all finite limits and colimits, and that pullback squares

and pushout squares in C are the same (Proposition 1.1.3.4). We will also show that the class of

stable ∞-categories is closed under various natural operations. For example, we will show that if C

is a stable ∞-category, then the ∞-category of Ind-objects Ind(C) is stable (Proposition 1.1.3.6),

and that the ∞-category of diagrams Fun(K,C) is stable for any simplicial set K (Proposition

1.1.3.1).

In §1.1.4, we shift our focus somewhat. Rather than concerning ourselves with the properties

of an individual stable ∞-category C, we will study the collection of all stable ∞-categories. To
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this end, we introduce the notion of an exact functor between stable ∞-categories. We will show

that the collection of all (small) stable ∞-categories and exact functors between them can itself be

organized into an ∞-category CatEx
∞ , and study some of the properties of CatEx

∞ .

Remark 1.1.0.1. The theory of stable∞-categories is not really new: most of the results presented

here are well-known to experts. There exists a growing literature on the subject in the setting of

stable model categories: see, for example, [37], [127], [129], and [73]. For a brief account in the more

flexible setting of Segal categories, we refer the reader to [155].

Remark 1.1.0.2. Let k be a field. Recall that a differential graded category over k is a category

enriched over the category of chain complexes of k-vector spaces. The theory of differential graded

categories is closely related to the theory of stable ∞-categories. More precisely, one can show

that the data of a (pretriangulated) differential graded category over k is equivalent to the data

of a stable ∞-category C equipped with an enrichment over the monoidal ∞-category of k-module

spectra. The theory of differential graded categories provides a convenient language for working

with stable ∞-categories of algebraic origin (for example, those which arise from chain complexes

of coherent sheaves on algebraic varieties), but is inadequate for treating examples which arise in

stable homotopy theory. There is a voluminous literature on the subject; see, for example, [85],

[102], [142], [35], and [149].

1.1.1 Stability

In this section, we introduce the definition of a stable ∞-category. We begin by reviewing some

definitions from [98].

Definition 1.1.1.1. Let C be an ∞-category. A zero object of C is an object which is both initial

and final. We will say that C is pointed if it contains a zero object.

In other words, an object 0 ∈ C is zero if the spaces MapC(X, 0) and MapC(0, X) are both

contractible for every object X ∈ C. Note that if C contains a zero object, then that object

is determined up to equivalence. More precisely, the full subcategory of C spanned by the zero

objects is a contractible Kan complex (Proposition HTT.1.2.12.9 ).

Remark 1.1.1.2. Let C be an∞-category. Then C is pointed if and only if the following conditions

are satisfied:

(1) The ∞-category C has an initial object ∅.

(2) The ∞-category C has a final object 1.

(3) There exists a morphism f : 1→ ∅ in C.



18 CHAPTER 1. STABLE ∞-CATEGORIES

The “only if” direction is obvious. For the converse, let us suppose that (1), (2), and (3) are satisfied.

We invoke the assumption that ∅ is initial to deduce the existence of a morphism g : ∅ → 1. Because

∅ is initial, f ◦ g ' id∅, and because 1 is final, g ◦ f ' id1. Thus g is a homotopy inverse to f , so

that f is an equivalence. It follows that ∅ is also a final object of C, so that C is pointed.

Remark 1.1.1.3. Let C be an ∞-category with a zero object 0. For any X,Y ∈ C, the natural

map

MapC(X, 0)×MapC(0, Y )→ MapC(X,Y )

has contractible domain. We therefore obtain a well defined morphism X → Y in the homotopy

category hC, which we will refer to as the zero morphism and also denote by 0.

Definition 1.1.1.4. Let C be a pointed ∞-category. A triangle in C is a diagram ∆1 ×∆1 → C,

depicted as

X
f //

��

Y

g

��
0 // Z

where 0 is a zero object of C. We will say that a triangle in C is a fiber sequence if it is a pullback

square, and a cofiber sequence if it is a pushout square.

Remark 1.1.1.5. Let C be a pointed ∞-category. A triangle in C consists of the following data:

(1) A pair of morphisms f : X → Y and g : Y → Z in C.

(2) A 2-simplex in C corresponding to a diagram

Y
g

��
X

f
>>

h // Z

in C, which identifies h with the composition g ◦ f .

(3) A 2-simplex

0

��
X

??

h // Z

in C, which we may view as a nullhomotopy of h.

We will generally indicate a triangle by specifying only the pair of maps

X
f→ Y

g→ Z,

with the data of (2) and (3) being implicitly assumed.



1.1. FOUNDATIONS 19

Definition 1.1.1.6. Let C be a pointed ∞-category containing a morphism g : X → Y . A fiber of

g is a fiber sequence

W //

��

X

g

��
0 // Y.

Dually, a cofiber of g is a cofiber sequence

X
g //

��

Y

��
0 // Z.

We will generally abuse terminology by simply referring to W and Z as the fiber and cofiber of g.

We will also write W = fib(g) and Z = cofib(g).

Remark 1.1.1.7. Let C be a pointed ∞-category containing a morphism f : X → Y . A cofiber of

f , if it exists, is uniquely determined up to equivalence. More precisely, consider the full subcategory

E ⊆ Fun(∆1 × ∆1,C) spanned by the cofiber sequences. Let θ : E → Fun(∆1,C) be the forgetful

functor, which associates to a diagram

X
g //

��

Y

��
0 // Z

the morphism g : X → Y . Applying Proposition HTT.4.3.2.15 twice, we deduce that θ is a Kan

fibration, whose fibers are either empty or contractible (depending on whether or not a morphism

g : X → Y in C admits a cofiber). In particular, if every morphism in C admits a cofiber, then θ is

a trivial Kan fibration, and therefore admits a section cofib : Fun(∆1,C)→ Fun(∆1×∆1,C), which

is well defined up to a contractible space of choices. We will often abuse notation by also letting

cofib : Fun(∆1,C)→ C denote the composition

Fun(∆1,C)→ Fun(∆1 ×∆1,C)→ C,

where the second map is given by evaluation at the final object of ∆1 ×∆1.

Remark 1.1.1.8. The functor cofib : Fun(∆1,C) → C can be identified with a left adjoint to the

left Kan extension functor C ' Fun({1},C) → Fun(∆1,C), which associates to each object X ∈ C

a zero morphism 0 → X. It follows that cofib preserves all colimits which exist in Fun(∆1,C)

(Proposition HTT.5.2.3.5 ).

Definition 1.1.1.9. An ∞-category C is stable if it satisfies the following conditions:

(1) There exists a zero object 0 ∈ C.
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(2) Every morphism in C admits a fiber and a cofiber.

(3) A triangle in C is a fiber sequence if and only if it a cofiber sequence.

Remark 1.1.1.10. Condition (3) of Definition 1.1.1.9 is analogous to the axiom for abelian cate-

gories which requires that the image of a morphism be isomorphic to its coimage.

Example 1.1.1.11. Recall that a spectrum consists of an infinite sequence of pointed topological

spaces {Xi}i≥0, together with homeomorphisms Xi ' ΩXi+1, where Ω denotes the loop space

functor. The collection of spectra can be organized into a stable ∞-category Sp. Moreover, Sp

is in some sense the universal example of a stable ∞-category. This motivates the terminology of

Definition 1.1.1.9: an ∞-category C is stable if it resembles the ∞-category Sp, whose homotopy

category hSp can be identified with the classical stable homotopy category. We will return to the

theory of spectra (using a slightly different definition) in §1.4.3.

Example 1.1.1.12. Let A be an abelian category. Under mild hypotheses, we can construct

a stable ∞-category D(A) whose homotopy category hD(A) can be identified with the derived

category of A, in the sense of classical homological algebra. We will outline the construction of

D(A) in §1.3.2.

Remark 1.1.1.13. If C is a stable ∞-category, then the opposite ∞-category Cop is also stable.

Remark 1.1.1.14. One attractive feature of the theory of stable ∞-categories is that stability is

a property of ∞-categories, rather than additional data. The situation for additive categories is

similar. Although additive categories are often presented as categories equipped with additional

structure (an abelian group structure on all Hom-sets), this additional structure is in fact deter-

mined by the underlying category: see Definition 1.1.2.1. The situation for stable ∞-categories is

similar: we will see later that every stable ∞-category is canonically enriched over the ∞-category

of spectra.

1.1.2 The Homotopy Category of a Stable ∞-Category

Let M be a module over a commutative ring R. Then M admits a resolution

· · · → P2 → P1 → P0 →M → 0

by projective R-modules. In fact, there are generally many choices for such a resolution. Two

projective resolutions of M need not be isomorphic to one another. However, they are always

quasi-isomorphic: that is, if we are given two projective resolutions P• and P ′• of M , then there

is a map of chain complexes P• → P ′• which induces an isomorphism on homology groups. This

phenomenon is ubiquitous in homological algebra: many constructions produce chain complexes

which are not really well-defined up to isomorphism, but only up to quasi-isomorphism. In studying
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these constructions, it is often convenient to work in the derived category D(R) of the ring R: that

is, the category obtained from the category of chain complexes of R-modules by formally inverting

all quasi-isomorphisms.

The derived category D(R) of a commutative ring R is usually not an abelian category. For

example, a morphism f : X ′ → X in D(R) usually does not have a cokernel in D(R). Instead,

one can associate to f its cofiber (or mapping cone) X ′′, which is well-defined up to noncanonical

isomorphism. In [157], Verdier introduced the notion of a triangulated category in order to ax-

iomatize the structure on D(R) given by the formation of mapping cones. In this section, we will

review Verdier’s theory of triangulated categories (Definition 1.1.2.5) and show that the homotopy

category of a stable ∞-category C is triangulated (Theorem 1.1.2.14).

We begin with some basic definitions.

Definition 1.1.2.1. Let A be a category. We will say that A is additive if it satisfies the following

four conditions:

(1) The category A admits finite products and coproducts.

(2) The category A has a zero object, which we will denote by 0.

For any pair of objects X,Y ∈ A, a zero morphism from X to Y is a map f : X → Y which factors

as a composition X → 0 → Y . It follows from (2) that for every pair X,Y ∈ A, there is a unique

zero morphism from X to Y , which we will denote by 0.

(3) For every pair of objects X,Y , the map X
∐
Y → X × Y described by the matrix[

idX 0

0 idY

]
is an isomorphism; let φX,Y denote its inverse.

Assuming (3), we can define the sum of two morphisms f, g : X → Y to be the morphism f + g

given by the composition

X → X ×X f,g→ Y × Y
φY,Y→ Y

∐
Y → Y.

It is easy to see that this construction endows HomA(X,Y ) with the structure of a commutative

monoid, whose identity is the unique zero morphism from X to Y .

(4) For every pair of objects X,Y ∈ A, the addition defined above determines a group structure

on HomA(X,Y ). In other words, for every morphism f : X → Y , there exists another

morphism −f : X → Y such that f + (−f) is a zero morphism from X to Y .

Remark 1.1.2.2. An additive category A is said to be abelian if every morphism f : X → Y in A

admits a kernel and a cokernel, and the canonical map coker(ker(f) → X) → ker(Y → coker(f))

is an isomorphism.
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Remark 1.1.2.3. Let A be an additive category. Then the composition law on A is bilinear: for

pairs of morphisms f, f ′ ∈ HomA(X,Y ) and g, g′ ∈ HomA(Y,Z), we have

g ◦ (f + f ′) = (g ◦ f) + (g ◦ f ′) (g + g′) ◦ f = (g ◦ f) + (g′ ◦ f).

In other words, the composition law on A determines abelian group homomorphisms

HomA(X,Y )⊗HomA(Y, Z)→ HomA(X,Z).

We can summarize the situation by saying that the category A is enriched over the category of

abelian groups.

Remark 1.1.2.4. Let A be an additive category. It follows from condition (3) of Definition 1.1.2.1

that for every pair of objects X,Y ∈ A, the product X × Y is canonically isomorphic to the

coproduct X
∐
Y . It is customary to emphasize this identification by denoting both the product

and the coproduct by X ⊕ Y ; we will refer to X ⊕ Y as the direct sum of X and Y .

Definition 1.1.2.5 (Verdier). A triangulated category consists of the following data:

(1) An additive category D.

(2) A translation functor D → D which is an equivalence of categories. We denote this functor

by X 7→ X[1].

(3) A collection of distinguished triangles

X
f→ Y

g→ Z
h→ X[1].

These data are required to satisfy the following axioms:

(TR1) (a) Every morphism f : X → Y in D can be extended to a distinguished triangle in D.

(b) The collection of distinguished triangles is stable under isomorphism.

(c) Given an object X ∈ D, the diagram

X
idX→ X → 0→ X[1]

is a distinguished triangle.

(TR2) A diagram

X
f→ Y

g→ Z
h→ X[1]

is a distinguished triangle if and only if the rotated diagram

Y
g→ Z

h→ X[1]
−f [1]→ Y [1]

is a distinguished triangle.
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(TR3) Given a commutative diagram

X //

f
��

Y //

��

Z

��

// X[1]

f [1]
��

X ′ // Y ′ // Z ′ // X ′[1]

in which both horizontal rows are distinguished triangles, there exists a dotted arrow rendering

the entire diagram commutative.

(TR4) Suppose given three distinguished triangles

X
f→ Y

u→ Y/X
d→ X[1]

Y
g→ Z

v→ Z/Y
d′→ Y [1]

X
g◦f→ Z

w→ Z/X
d′′→ X[1]

in D. There exists a fourth distinguished triangle

Y/X
φ→ Z/X

ψ→ Z/Y
θ→ Y/X[1]

such that the diagram

X
g◦f //

f

��

Z

w

##

v // Z/Y

d′

""

θ // Y/X[1]

Y

u

!!

g

==

Z/X

ψ
;;

d′′

##

Y [1]

u[1]
::

Y/X

φ
;;

d // X[1]

f [1]
<<

commutes.

We now consider the problem of constructing a triangulated structure on the homotopy category

of an ∞-category C. Let us begin by assuming only that C is a pointed ∞-category. We let MΣ

denote the full subcategory of Fun(∆1 ×∆1,C) spanned by those diagrams

X //

��

0

��
0′ // Y

which are pushout squares, and such that 0 and 0′ are zero objects of C. If C admits cofibers,

then we can use Proposition HTT.4.3.2.15 (twice) to conclude that evaluation at the initial vertex
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induces a trivial fibration MΣ → C. Let s : C → MΣ be a section of this trivial fibration, and

let e : MΣ → C be the functor given by evaluation at the final vertex. The composition e ◦ s is a

functor from C to itself, which we will denote by Σ : C→ C and refer to as the suspension functor

on C. Dually, we define MΩ to be the full subcategory of Fun(∆1 × ∆1,C) spanned by diagrams

as above which are pullback squares with 0 and 0′ zero objects of C. If C admits fibers, then the

same argument shows that evaluation at the final vertex induces a trivial fibration MΩ → C. If

we let s′ denote a section to this trivial fibration, then the composition of s′ with evaluation at

the initial vertex induces a functor from C to itself, which we will refer to as the loop functor and

denote by Ω : C→ C. If C is stable, then MΩ = MΣ. It follows that Σ and Ω are mutually inverse

equivalences from C to itself.

Remark 1.1.2.6. If the∞-category C is not clear from context, then we will denote the suspension

and loop functors Σ,Ω : C→ C by ΣC and ΩC, respectively.

Notation 1.1.2.7. If C is a stable ∞-category and n ≥ 0, we let

X 7→ X[n]

denote the nth power of the suspension functor Σ : C→ C constructed above (this functor is well-

defined up to canonical equivalence). If n ≤ 0, we let X 7→ X[n] denote the (−n)th power of the

loop functor Ω. We will use the same notation to indicate the induced functors on the homotopy

category hC.

Remark 1.1.2.8. If the ∞-category C is pointed but not necessarily stable, the suspension and

loop space functors need not be homotopy inverses but are nevertheless adjoint to one another

(provided that both functors are defined).

If C is a pointed ∞-category containing a pair of objects X and Y , then the space MapC(X,Y )

has a natural base point, given by the zero map. Moreover, if C admits cofibers, then the suspension

functor ΣC : C→ C is essentially characterized by the existence of natural homotopy equivalences

MapC(Σ(X), Y )→ Ω MapC(X,Y ).

In particular, we conclude that π0 MapC(Σ(X), Y ) ' π1 MapC(X,Y ), so that π0 MapC(Σ(X), Y ) has

the structure of a group (here the fundamental group of MapC(X,Y ) is taken with base point given

by the zero map). Similarly, π0 MapC(Σ2(X), Y ) ' π2 MapC(X,Y ) has the structure of an abelian

group. If the suspension functor X 7→ Σ(X) is an equivalence of∞-categories, then for every Z ∈ C

we can choose X such that Σ2(X) ' Z to deduce the existence of an abelian group structure on

MapC(Z, Y ). It is easy to see that this group structure depends functorially on Z, Y ∈ hC. We are

therefore most of the way to proving the following result:

Lemma 1.1.2.9. Let C be a pointed ∞-category which admits cofibers, and suppose that the sus-

pension functor Σ : C→ C is an equivalence. Then hC is an additive category.
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Proof. The argument sketched above shows that hC is (canonically) enriched over the category

of abelian groups. It will therefore suffice to prove that hC admits finite coproducts. We will

prove a slightly stronger statement: the ∞-category C itself admits finite coproducts. Since C has

an initial object, it will suffice to treat the case of pairwise coproducts. Let X,Y ∈ C, and let

cofib : Fun(∆1,C) → C denote the functor which assign to each morphism its cofiber, so that we

have equivalences X ' cofib(X[−1]
u→ 0) and Y ' cofib(0

v→ Y ). Proposition HTT.5.1.2.2 implies

that u and v admit a coproduct in Fun(∆1,C) (namely, the zero map X[−1]
0→ Y ). Since the

functor cofib preserves coproducts (Remark 1.1.1.8), we conclude that X and Y admit a coproduct

(which can be constructed as the cofiber of the zero map from X[−1] to Y ).

Let C be a pointed ∞-category which admits cofibers. By construction, any diagram

X //

��

0

��
0′ // Y

which belongs to MΣ determines a canonical isomorphism X[1]→ Y in the homotopy category hC.

We will need the following observation:

Lemma 1.1.2.10. Let C be a pointed ∞-category which admits cofibers, and let

X
f //

f ′

��

0

��
0′ // Y

be a diagram in C, classifying a morphism θ ∈ HomhC(X[1], Y ). (Here 0 and 0′ are zero objects of

C.) Then the transposed diagram

X
f ′ //

f
��

0′

��
0 // Y

classifies the morphism −θ ∈ HomhC(X[1], Y ). Here −θ denotes the inverse of θ with respect to the

group structure on HomhC(X[1], Y ) ' π1 MapC(X,Y ).

Proof. Without loss of generality, we may suppose that 0 = 0′ and f = f ′. Let σ : Λ2
0 → C be the

diagram

0
f← X

f→ 0.

For every diagram p : K → C, let D(p) denote the Kan complex Cp/×C{Y }. Then HomhC(X[1], Y ) '
π0 D(σ). We note that

D(σ) ' D(f)×D(X) D(f).
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Since 0 is an initial object of C, D(f) is contractible. In particular, there exists a point q ∈ D(f).

Let

D′ = D(f)×Fun({0},D(X)) Fun(∆1,D(X))×Fun({1},D(X)) D(f)

D′′ = {q} ×Fun({0},D(X)) Fun(∆1,D(X))×Fun({1},D(X)) {q}

so that we have canonical inclusions

D′′ ↪→ D′ ←↩ D(σ).

The left map is a homotopy equivalence because D(f) is contractible, and the right map is a

homotopy equivalence because the projection D(f) → D(X) is a Kan fibration. We observe that

D′′ can be identified with the simplicial loop space of HomL
C(X,Y ) (taken with the base point

determined by q, which we can identify with the zero map from X to Y ). Each of the Kan complexes

D(σ), D′, D′′ is equipped with a canonical involution. On D(σ), this involution corresponds to the

transposition of diagrams as in the statement of the lemma. On D′′, this involution corresponds to

reversal of loops. The desired conclusion now follows from the observation that these involutions

are compatible with the inclusions D′′,D(σ) ⊆ D′.

Definition 1.1.2.11. Let C be a pointed ∞-category which admits cofibers. Suppose given a

diagram

X
f→ Y

g→ Z
h→ X[1]

in the homotopy category hC. We will say that this diagram is a distinguished triangle if there

exists a diagram ∆1 ×∆2 → C as shown

X
f̃ //

��

Y

g̃
��

// 0

��
0′ // Z

h̃ //W,

satisfying the following conditions:

(i) The objects 0, 0′ ∈ C are zero.

(ii) Both squares are pushout diagrams in C.

(iii) The morphisms f̃ and g̃ represent f and g, respectively.

(iv) The map h : Z → X[1] is the composition of (the homotopy class of) h̃ with the equivalence

W ' X[1] determined by the outer rectangle.

Remark 1.1.2.12. We will generally only use Definition 1.1.2.11 in the case where C is a stable

∞-category. However, it will be convenient to have the terminology available in the case where C

is not yet known to be stable.
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The following result is an immediate consequence of Lemma 1.1.2.10:

Lemma 1.1.2.13. Let C be a stable ∞-category. Suppose given a diagram ∆2 ×∆1 → C, depicted

as

X

f
��

// 0

��
Y

��

g // Z

h
��

0′ //W,

where both squares are pushouts and the objects 0, 0′ ∈ C are zero. Then the diagram

X
f→ Y

g→ Z
−h′→ X[1]

is a distinguished triangle in hC, where h′ denotes the composition of h with the isomorphism

W ' X[1] determined by the outer square, and −h′ denotes the composition of h′ with the map

− id ∈ HomhC(X[1], X[1]) ' π1 MapC(X,X[1]).

We can now state the main result of this section:

Theorem 1.1.2.14. Let C be a pointed ∞-category which admits cofibers, and suppose that the

suspension functor Σ is an equivalence. Then the translation functor of Notation 1.1.2.7 and the

class of distinguished triangles of Definition 1.1.2.11 endow hC with the structure of a triangulated

category.

Remark 1.1.2.15. The hypotheses of Theorem 1.1.2.14 hold whenever C is stable. In fact, the

hypotheses of Theorem 1.1.2.14 are equivalent to the stability of C: see Corollary 1.4.2.27.

Proof. We must verify that Verdier’s axioms (TR1) through (TR4) are satisfied.

(TR1) Let E ⊆ Fun(∆1 ×∆2,C) be the full subcategory spanned by those diagrams

X
f //

��

Y

��

// 0

��
0′ // Z //W

of the form considered in Definition 1.1.2.11, and let e : E → Fun(∆1,C) be the restriction

to the upper left horizontal arrow. Repeated use of Proposition HTT.4.3.2.15 implies e is a

trivial fibration. In particular, every morphism f : X → Y can be completed to a diagram

belonging to E. This proves (a). Part (b) is obvious, and (c) follows from the observation

that if f = idX , then the object Z in the above diagram is a zero object of C.
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(TR2) Suppose that

X
f→ Y

g→ Z
h→ X[1]

is a distinguished triangle in hC, corresponding to a diagram σ ∈ E as depicted above. Extend

σ to a diagram

X //

��

Y

��

// 0

��
0′ // Z //

��

W

u
��

0′′ // V

where the lower right square is a pushout and 0′′ is a zero object of C. We have a map between

the squares

X //

��

0

��

Y //

��

0

��
0′ //W 0′′ // V

which induces a commutative diagram in the homotopy category hC

W

u

��

// X[1]

f [1]

��
V // Y [1]

where the horizontal arrows are isomorphisms. Applying Lemma 1.1.2.13 to the rectangle on

the right of the large diagram, we conclude that

Y
g→ Z

h→ X[1]
−f [1]→ Y [1]

is a distinguished triangle in hC.

Conversely, suppose that

Y
g→ Z

h→ X[1]
−f [1]→ Y [1]

is a distinguished triangle in hC. Since the functor Σ : C→ C is an equivalence, we conclude

that the triangle

Y [−2]
g[−2]→ Z[−2]

h[−2]→ X[−1]
−f [−1]→ Y [−1]

is distinguished. Applying the preceding argument five times, we conclude that the triangle

X
f→ Y

g→ Z
h→ X[1]

is distinguished, as desired.
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(TR3) Suppose we are given distinguished triangles

X
f→ Y → Z → X[1]

X ′
f ′→ Y ′ → Z ′ → X ′[1]

in hC. Without loss of generality, we may suppose that these triangles are induced by diagrams

σ, σ′ ∈ E. Any commutative diagram

X
f //

��

Y

��
X ′

f ′ // Y ′

in the homotopy category hC can be lifted (nonuniquely) to a square in C, which we may

identify with a morphism φ : e(σ)→ e(σ′) in the ∞-category Fun(∆1,C). Since e is a trivial

fibration of simplicial sets, φ can be lifted to a morphism σ → σ′ in E, which determines a

natural transformation of distinguished triangles

X

��

// Y

��

// Z //

��

X[1]

��
X ′ // Y ′ // Z ′ // X ′[1].

(TR4) Let f : X → Y and g : Y → Z be morphisms in C. In view of the fact that e : E→ Fun(∆1,C)

is a trivial fibration, any distinguished triangle in hC beginning with f , g, or g ◦ f is uniquely

determined up to (nonunique) isomorphism. Consequently, it will suffice to prove that there

exist some triple of distinguished triangles which satisfies the conclusions of (TR4). To prove

this, we construct a diagram in C

X
f //

��

Y
g //

��

Z //

��

0

��
0 // Y/X

��

// Z/X

��

// X ′ //

��

0

��
0 // Z/Y // Y ′ // (Y/X)′

where 0 is a zero object of C, and each square in the diagram is a pushout (more precisely,

we apply Proposition HTT.4.3.2.15 repeatedly to construct a map from the nerve of the

appropriate partially ordered set into C). Restricting to appropriate rectangles contained in
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the diagram, we obtain isomorphisms X ′ ' X[1], Y ′ ' Y [1], (Y/X)′ ' Y/X[1], and four

distinguished triangles

X
f→ Y → Y/X → X[1]

Y
g→ Z → Z/Y → Y [1]

X
g◦f→ Z → Z/X → X[1]

Y/X → Z/X → Z/Y → Y/X[1].

The commutativity in the homotopy category hC required by (TR4) follows from the

(stronger) commutativity of the above diagram in C itself.

Remark 1.1.2.16. The definition of a stable ∞-category is quite a bit simpler than that of a

triangulated category. In particular, the octahedral axiom (TR4) is a consequence of∞-categorical

principles which are basic and easily motivated.

Notation 1.1.2.17. Let C be a stable ∞-category containing a pair of objects X and Y . We let

ExtnC(X,Y ) denote the abelian group HomhC(X[−n], Y ). If n is negative, this can be identified

with the homotopy group π−n MapC(X,Y ). More generally, ExtnC(X,Y ) can be identified with the

(−n)th homotopy group of an appropriate spectrum of maps from X to Y .

1.1.3 Closure Properties of Stable ∞-Categories

According to Definition 1.1.1.9, a pointed∞-category C is stable if it admits certain pushout squares

and certain pullback squares, which are required to coincide with one another. Our goal in this

section is to prove that a stable ∞-category C admits all finite limits and colimits, and that the

pushout squares in C coincide with the pullback squares in general (Proposition 1.1.3.4). To prove

this, we will need the following easy observation (which is quite useful in its own right):

Proposition 1.1.3.1. Let C be a stable ∞-category, and let K be a simplicial set. Then the

∞-category Fun(K,C) is stable.

Proof. This follows immediately from the fact that fibers and cofibers in Fun(K,C) can be computed

pointwise (Proposition HTT.5.1.2.2 ).

Definition 1.1.3.2. If C is stable∞-category, and C0 is a full subcategory containing a zero object

and stable under the formation of fibers and cofibers, then C0 is itself stable. In this case, we will

say that C0 is a stable subcategory of C.

Lemma 1.1.3.3. Let C be a stable ∞-category, and let C′ ⊆ C be a full subcategory which is stable

under cofibers and under translations. Then C′ is a stable subcategory of C.
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Proof. It will suffice to show that C′ is stable under fibers. Let f : X → Y be a morphism in C.

Theorem 1.1.2.14 shows that there is a canonical equivalence fib(f) ' cofib(f)[−1].

Proposition 1.1.3.4. Let C be a pointed ∞-category. Then C is stable if and only if the following

conditions are satisfied:

(1) The ∞-category C admits finite limits and colimits.

(2) A square

X //

��

Y

��
X ′ // Y ′

in C is a pushout if and only if it is a pullback.

Proof. Condition (1) implies the existence of fibers and cofibers in C, and condition (2) implies

that a triangle in C is a fiber sequence if and only if it is a cofiber sequence. This proves the “if”

direction.

Suppose now that C is stable. We begin by proving (1). It will suffice to show that C admits

finite colimits; the dual argument will show that C admits finite limits as well. According to

Proposition HTT.4.4.3.2 , it will suffice to show that C admits coequalizers and finite coproducts.

The existence of finite coproducts was established in Lemma 1.1.2.9. We now conclude by observing

that a coequalizer for a diagram

X
f //
f ′
// Y

can be identified with cofib(f − f ′).
We now show that every pushout square in C is a pullback; the converse will follow by a dual

argument. Let D ⊆ Fun(∆1 × ∆1,C) be the full subcategory spanned by the pullback squares.

Then D is stable under finite limits and under translations. It follows from Lemma 1.1.3.3 that D

is a stable subcategory of Fun(∆1 ×∆1,C).

Let i : Λ2
0 ↪→ ∆1 × ∆1 be the inclusion, and let i! : Fun(Λ2

0,C) → Fun(∆1 × ∆1,C) be a

functor of left Kan extension. Then i! preserves finite colimits, and is therefore exact (Proposition

1.1.4.1). Let D′ = i−1
! D. Then D′ is a stable subcategory of Fun(Λ2

0,C); we wish to show that

D′ = Fun(Λ2
0,C). To prove this, we observe that any diagram

X ′ ← X → X ′′

can be obtained as a (finite) colimit

e′X′
∐
e′X

eX
∐
e′′X

e′′X′′
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where eX ∈ Fun(Λ2
0,C) denotes the diagram X ← X → X, e′Z ∈ Fun(Λ2

0,C) denotes the diagram

Z ← 0→ 0, and e′′Z ∈ Fun(Λ2
0,C) denotes the diagram 0← 0→ Z. It will therefore suffice to prove

that a pushout of any of these five diagrams is also a pullback. This follows immediately from the

following more general observation: any pushout square

A //

f
��

A′

��
B // B′

in an (arbitrary) ∞-category C is also a pullback square, provided that f is an equivalence.

Remark 1.1.3.5. Let C be a stable ∞-category. Then C admits finite products and finite co-

products (Proposition 1.1.3.4). Moreover, for any pair of objects X,Y ∈ C, there is a canonical

equivalence

X q Y → X × Y,

given by the matrix [
idX 0

0 idY

]
.

Theorem 1.1.2.14 implies that this map is an equivalence. We will sometimes use the notation

X ⊕ Y to denote a product or coproduct of X and Y in C.

We conclude this section by establishing a few closure properties for the class of stable ∞-

categories.

Proposition 1.1.3.6. Let C be a (small) stable ∞-category and let κ be a regular cardinal. Then

the ∞-category Indκ(C) is stable.

Proof. The functor j preserves finite limits and colimits (Propositions HTT.5.1.3.2 and HTT.5.3.5.14 ).

It follows that j(0) is a zero object of Indκ(C), so that Indκ(C) is pointed.

We next show that every morphism f : X → Y in Indκ(C) admits a fiber and a cofiber.

According to Proposition HTT.5.3.5.15 , we may assume that f is a κ-filtered colimit of morphisms

fα : Xα → Yα which belong to the essential image C′ of j. Since j preserves fibers and cofibers,

each of the maps fα has a fiber and a cofiber in Indκ. It follows immediately that f has a cofiber

(which can be written as a colimit of the cofibers of the maps fα). The existence of fib(f) is slightly

more difficult. Choose a κ-filtered diagram p : I→ Fun(∆1×∆1,C′), where each p(α) is a pullback

square

Zα //

��

0

��
Xα

fα // Yα.
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Let σ be a colimit of the diagram p; we wish to show that σ is a pullback diagram in Indκ(C). Since

Indκ(C) is stable under κ-small limits in P(C), it will suffice to show that σ is a pullback square in

P(C). Since P(C) is an ∞-topos, filtered colimits in P(C) are left exact (Example HTT.7.3.4.7 ); it

will therefore suffice to show that each p(α) is a pullback diagram in P(C). This is obvious, since

the inclusion C′ ⊆ P(C) preserves all limits which exist in C′ (Proposition HTT.5.1.3.2 ).

To complete the proof, we must show that a triangle in Indκ(C) is a fiber sequence if and only

if it is a cofiber sequence. Suppose we are given a fiber sequence

Z //

��

0

��
X // Y

in Indκ(C). The above argument shows that we can write this triangle as a filtered colimit of fiber

sequences

Zα //

��

0

��
Xα

// Yα

in C′. Since C′ is stable, we conclude that these triangles are also cofiber sequences. The original

triangle is therefore a filtered colimit of cofiber sequences in C′, hence a cofiber sequence. The

converse follows by the same argument.

Corollary 1.1.3.7. Let C be a stable ∞-category. Then the idempotent completion of C is also

stable.

Proof. According to Lemma HTT.5.4.2.4 , we can identify the idempotent completion of C with a

full subcategory of Ind(C) which is closed under shifts and finite colimits.

1.1.4 Exact Functors

Let F : C→ C′ be a functor between stable ∞-categories. Suppose that F carries zero objects into

zero objects. It follows immediately that F carries triangles into triangles. If, in addition, F carries

fiber sequences to fiber sequences, then we will say that F is exact. The exactness of a functor F

admits the following alternative characterizations:

Proposition 1.1.4.1. Let F : C → C′ be a functor between stable ∞-categories. The following

conditions are equivalent:

(1) The functor F is left exact. That is, F commutes with finite limits.

(2) The functor F is right exact. That is, F commutes with finite colimits.
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(3) The functor F is exact.

Proof. We will prove that (2)⇔ (3); the equivalence (1)⇔ (3) will follow by a dual argument. The

implication (2) ⇒ (3) is obvious. Conversely, suppose that F is exact. The proof of Proposition

1.1.3.4 shows that F preserves coequalizers, and the proof of Lemma 1.1.2.9 shows that F pre-

serves finite coproducts. It follows that F preserves all finite colimits (see the proof of Proposition

HTT.4.4.3.2 ).

The identity functor from any stable ∞-category to itself is exact, and a composition of exact

functors is exact. Consequently, there exists a subcategory CatEx
∞ ⊆ Cat∞ in which the objects are

stable ∞-categories and the morphisms are the exact functors. Our next few results concern the

stability properties of this subcategory.

Proposition 1.1.4.2. Suppose given a homotopy Cartesian diagram of ∞-categories

C′
G′ //

F ′
��

C

F
��

D′
G // D .

Suppose further that C, D′, and D are stable, and that the functors F and G are exact. Then:

(1) The ∞-category C′ is stable.

(2) The functors F ′ and G′ are exact.

(3) If E is a stable ∞-category, then a functor H : E → C′ is exact if and only if the functors

F ′ ◦H and G′ ◦H are exact.

Proof. Combine Proposition 1.1.3.4 with Lemma HTT.5.4.5.5 .

Proposition 1.1.4.3. Let {Cα}α∈A be a collection of stable ∞-categories. Then the product

C =
∏
α∈A

Cα

is stable. Moreover, for any stable ∞-category D, a functor F : D→ C is exact if and only if each

of the compositions

D
F→ C→ Cα

is an exact functor.

Proof. This follows immediately from the fact that limits and colimits in C are computed pointwise.
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Theorem 1.1.4.4. The ∞-category CatEx
∞ admits small limits, and the inclusion

CatEx
∞ ⊆ Cat∞

preserves small limits.

Proof. Using Propositions 1.1.4.2 and 1.1.4.3, one can repeat the argument used to prove Proposi-

tion HTT.5.4.7.3 .

We have the following analogue of Theorem 1.1.4.4.

Proposition 1.1.4.5. Let p : X → S be an inner fibration of simplicial sets. Suppose that:

(i) For each vertex s of S, the fiber Xs = X ×S {s} is a stable ∞-category.

(ii) For every edge s → s′ in S, the restriction X ×S ∆1 → ∆1 is a coCartesian fibration,

associated to an exact functor Xs → Xs′.

Then:

(1) The ∞-category MapS(S,X) of sections of p is stable.

(2) If C is an arbitrary stable ∞-category, and f : C → MapS(S,X) induces an exact functor

C
f→ MapS(S,X)→ Xs for every vertex s of S, then f is exact.

(3) For every set E of edges of S, let Y (E) ⊆ MapS(S,X) be the full subcategory spanned by those

sections f : S → X of p with the following property:

(∗) For every e ∈ E, f carries e to a pe-coCartesian edge of the fiber product X×S∆1, where

pe : X ×S ∆1 → ∆1 denotes the projection.

Then each Y (E) is a stable subcategory of MapS(S,X).

Proof. Combine Proposition HTT.5.4.7.11 , Theorem 1.1.4.4, and Proposition 1.1.3.1.

Proposition 1.1.4.6. The ∞-category CatEx
∞ admits small filtered colimits, and the inclusion

CatEx
∞ ⊆ Cat∞ preserves small filtered colimits.

Proof. Let I be a filtered ∞-category, p : I→ CatEx
∞ a diagram, which we will indicate by {CI}I∈I,

and C a colimit of the induced diagram I→ Cat∞. We must prove:

(i) The ∞-category C is stable.

(ii) Each of the canonical functors θI : CI → C is exact.

(iii) Given an arbitrary stable ∞-category D, a functor f : C → D is exact if and only if each of

the composite functors CI
θI→ C→ D is exact.
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In view of Proposition 1.1.4.1, (ii) and (iii) follow immediately from Proposition HTT.5.5.7.11 .

The same result implies that C admits finite limits and colimits, and that each of the functors θI
preserves finite limits and colimits.

To prove that C has a zero object, we select an object I ∈ I. The functor CI → C preserves

initial and final objects. Since CI has a zero object, so does C.

We will complete the proof by showing that every fiber sequence in C is a cofiber sequence

(the converse follows by the same argument). Fix a morphism f : X → Y in C. Without loss of

generality, we may suppose that there exists I ∈ I and a morphism f̃ : X̃ → Ỹ in CI such that

f = θI(f̃) (Proposition HTT.5.4.1.2 ). Form a pullback diagram σ̃

W̃ //

��

X̃

��

0 // Ỹ

in CI . Since CI is stable, this diagram is also a pushout. It follows that θI(σ̃) is a triangle

W → X
f→ Y which is both a fiber sequence and a cofiber sequence in C.

1.2 Stable ∞-Categories and Homological Algebra

Let A be an abelian category with enough projective objects. In §1.3.2, we will explain how to

associate to A a stable ∞-category D−(A), whose objects are (right-bounded) chain complexes

of projective objects of A. The homotopy category D−(A) is a triangulated category, which is

usually called the derived category of A. We can recover A as a full subcategory of the triangulated

category hD−(A) (or even as a full subcategory of the∞-category D−(A)): namely, A is equivalent

to the full subcategory spanned by those chain complexes P∗ satisfying Hn(P∗) ' 0 for n 6= 0. This

subcategory can be described as the intersection

D−(A)≥0 ∩D−(A)≤0,

where D−(A)≤0 is defined to be the full subcategory spanned by those chain complexes P∗ with

Hn(P∗) ' 0 for n > 0, and D−(A)≥0 is spanned by those chain complexes with Hn(P∗) ' 0 for

n < 0.

In §1.2.1, we will axiomatize the essence of the situation by reviewing the notion of a t-structure

on a stable ∞-category C. A t-structure on C is a pair of full subcategories (C≥0,C≤0) satisfying

some axioms which reflect the idea that objects of C≥0 (C≤0) are “concentrated in nonnegative

(nonpositive) degrees” (see Definition 1.2.1.1). In this case, one can show that the intersection

C≥0 ∩C≤0 is equivalent to the nerve of an abelian category, which we call the heart of C and denote

by C♥. To any object X ∈ C, we can associate homotopy objects πnX ∈ C♥ (in the special case

C = D−(A), the functor πn associates to each chain complex P∗ its nth homology Hn(P∗)).
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If C is a stable ∞-category equipped with a t-structure, then it is often possible to relate ques-

tions about C to homological algebra in the abelian category C♥. In §1.2.2, we give an illustration

of this principle, by showing that every filtration on an object X ∈ C determines a spectral se-

quence {Ep,qr , dr}r≥1 in the abelian category C♥, which (in good cases) converges to the homotopy

objects πnX (Proposition 1.2.2.7). The first page of this spectral sequence has a reasonably explicit

description in terms of the homotopy objects of the successive quotients for the filtration of X. In

practice, it is often difficult to describe Ep,qr when r > 2. However, there is a convenient description

in the case r = 2, at least when X is given as the geometric realization of a simplicial object X• of C

(equipped with the corresponding skeletal filtration). In §1.2.4 we will show that this is essentially

no loss of generality: if C is a stable ∞-category, then every nonnegatively filtered object X of C

can be realized as the geometric realization of a simplicial object of C, equipped with the skeletal

filtration (Theorem 1.2.4.1). This assertion can be regarded as an ∞-categorical analogue of the

classical Dold-Kan correspondence between simplicial objects and chain complexes in an abelian

category, which we review in §1.2.3.

1.2.1 t-Structures on Stable ∞-Categories

Let C be an ∞-category. Recall that we say a full subcategory C′ ⊆ C is a localization of C if the

inclusion functor C′ ⊆ C has a left adjoint (§HTT.5.2.7 ). In this section, we will introduce a special

class of localizations, called t-localizations, in the case where C is stable. We will further show that

there is a bijective correspondence between t-localizations of C and t-structures on the triangulated

category hC. We begin with a review of the classical theory of t-structures; for a more thorough

introduction we refer the reader to [13].

Definition 1.2.1.1. Let D be a triangulated category. A t-structure on D is defined to be a pair of

full subcategories D≥0, D≤0 (always assumed to be stable under isomorphism) having the following

properties:

(1) For X ∈ D≥0 and Y ∈ D≤0, we have HomD(X,Y [−1]) = 0.

(2) We have inclusions D≥0[1] ⊆ D≥0, D≤0[−1] ⊆ D≤0.

(3) For any X ∈ D, there exists a fiber sequence X ′ → X → X ′′ where X ′ ∈ D≥0 and X ′′ ∈
D≤0[−1].

Notation 1.2.1.2. If D is a triangulated category equipped with a t-structure, we will write D≥n
for D≥0[n] and D≤n for D≤0[n]. Observe that we use a homological indexing convention.

Remark 1.2.1.3. In Definition 1.2.1.1, either of the full subcategories D≥0,D≤0 ⊆ D determines

the other. For example, an object X ∈ D belongs to D≤−1 if and only if HomD(Y,X) vanishes for

all Y ∈ D≥0.
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Definition 1.2.1.4. Let C be a stable ∞-category. A t-structure on C is a t-structure on the

homotopy category hC. If C is equipped with a t-structure, we let C≥n and C≤n denote the full

subcategories of C spanned by those objects which belong to (hC)≥n and (hC)≤n , respectively.

Proposition 1.2.1.5. Let C be a stable ∞-category equipped with a t-structure. For each n ∈ Z,

the full subcategory C≤n is a localization of C.

Proof. Without loss of generality, we may suppose n = −1. According to Proposition HTT.5.2.7.8 ,

it will suffice to prove that for each X ∈ C, there exists a map f : X → X ′′, where X ′′ ∈ C≤−1 and

for each Y ∈ C≤−1, the map

MapC(X ′′, Y )→ MapC(X,Y )

is a weak homotopy equivalence. Invoking part (3) of Definition 1.2.1.1, we can choose f to fit into

a fiber sequence

X ′ → X
f→ X ′′

where X ′ ∈ C≥0. According to Whitehead’s theorem, we need to show that for every k ≤ 0, the

map

ExtkC(X ′′, Y )→ ExtkC(X,Y )

is an isomorphism of abelian groups. Using the long exact sequence associated to the fiber sequence

above, we are reduced to proving that the groups ExtkC(X ′, Y ) vanish for k ≤ 0. We now use

condition (2) of Definition 1.2.1.1 to conclude that X ′[−k] ∈ C≥0. Condition (1) of Definition

1.2.1.1 now implies that

ExtkC(X ′, Y ) ' HomhC(X ′[−k], Y ) ' 0.

Corollary 1.2.1.6. Let C be a stable∞-category equipped with a t-structure. The full subcategories

C≤n ⊆ C are stable under all limits which exist in C. Dually, the full subcategories C≥n ⊆ C are

stable under all colimits which exist in C.

Notation 1.2.1.7. Let C be a stable ∞-category equipped with a t-structure. We will let τ≤n
denote a left adjoint to the inclusion C≤n ⊆ C, and τ≥n a right adjoint to the inclusion C≥n ⊆ C.

Remark 1.2.1.8. Fix n,m ∈ Z, and let C be a stable ∞-category equipped with a t-structure.

Then the truncation functors τ≤n, τ≥n map the full subcategory C≤m to itself. To prove this, we

first observe that τ≤n is equivalent to the identity on C≤m if m ≤ n, while if m ≥ n the essential

image of τ≤n is contained in C≤n ⊆ C≤m. To prove the analogous result for τ≥n, we observe that

the proof of Proposition 1.2.1.5 implies that for each X, we have a fiber sequence

τ≥nX → X
f→ τ≤n−1X.

If X ∈ C≤m, then τ≤n−1X also belongs to C≤m, so that τ≥nX ' fib(f) belongs to C≤m because

C≤m is stable under limits.
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Warning 1.2.1.9. In §HTT.5.5.6 , we introduced for every ∞-category C a full subcategory τ≤n C

of n-truncated objects of C. In that context, we used the symbol τ≤n to denote a left adjoint to

the inclusion τ≤n C ⊆ C. This is not compatible with Notation 1.2.1.7. In fact, if C is a stable

∞-category, then it has no nonzero truncated objects at all: if X ∈ C is nonzero, then the identity

map from X to itself determines a nontrivial homotopy class in πn MapC(X[−n], X), for all n ≥ 0.

Nevertheless, the two notations are consistent when restricted to C≥0, by virtue of the following

observation:

• Let C be a stable∞-category equipped with a t-structure. An object X ∈ C≥0 is k-truncated

(as an object of C≥0) if and only if X ∈ C≤k.

In fact, we have the following more general statement: for any X ∈ C and k ≥ −1, X belongs to

C≤k if and only if MapC(Y,X) is k-truncated for every Y ∈ C≥0. Because the latter condition is

equivalent to the vanishing of ExtnC(Y,X) for n < −k, we can use the shift functor to reduce to the

case where n = 0 and k = −1, which is addressed by Remark 1.2.1.3.

Let C be a stable ∞-category equipped with a t-structure, and let n,m ∈ Z. Remark 1.2.1.8

implies that we have a commutative diagram of simplicial sets

C≥n //

τ≤m

��

C

τ≤m

��
C≥n ∩C≤m // C≤m .

As explained in §HTT.7.3.1 , we get an induced transformation of functors

θ : τ≤m ◦ τ≥n → τ≥n ◦ τ≤m.

Proposition 1.2.1.10. Let C be a stable ∞-category equipped with a t-structure. Then the natural

transformation

θ : τ≤m ◦ τ≥n → τ≥n ◦ τ≤m

is an equivalence of functors C→ C≤m ∩C≥n.

Proof. This is a classical fact concerning triangulated categories; we include a proof for complete-

ness. Fix X ∈ C; we wish to show that

θ(X) : τ≤mτ≥nX → τ≥nτ≤mX

is an isomorphism in the homotopy category of C≤m ∩C≥n. If m < n, then both sides are zero and

there is nothing to prove; let us therefore assume that m ≥ n. Fix Y ∈ C≤m ∩C≥n; it will suffice

to show that composition with θ(X) induces an isomorphism

Ext0
C(τ≥nτ≤mX,Y )→ Ext0

C(τ≤mτ≥nX,Y ) ' Ext0
C(τ≥nX,Y ).
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We have a map of long exact sequences

Ext0
C(τ≤n−1τ≤mX,Y )

��

f0 // Ext0
C(τ≤n−1X,Y )

��
Ext0

C(τ≤mX,Y ) //

��

f1 //

��

Ext0
C(X,Y )

��
Ext0

C(τ≥nτ≤mX,Y )
f2 //

��

Ext0
C(τ≥nX,Y )

��
Ext1

C(τ≤n−1τ≤mX,Y )

��

f3 // Ext1
C(τ≤n−1X,Y )

��
Ext1

C(τ≤mX,Y )
f4 // Ext1

C(X,Y ).

Since m ≥ n, the natural transformation τ≤n−1 → τ≤n−1τ≤m is an equivalence of functors; this

proves that f0 and f3 are bijective. Since Y ∈ C≤m, f1 is bijective and f4 is injective. It follows

from the “five lemma” that f2 is bijective, as desired.

Definition 1.2.1.11. Let C be a stable ∞-category equipped with a t-structure. The heart C♥ of

C is the full subcategory C≥0 ∩C≤0 ⊆ C. For each n ∈ Z, we let π0 : C → C♥ denote the functor

τ≤0 ◦ τ≥0 ' τ≥0 ◦ τ≤0, and we let πn : C→ C♥ denote the composition of π0 with the shift functor

X 7→ X[−n].

Remark 1.2.1.12. Let C be a stable ∞-category equipped with a t-structure, and let X,Y ∈ C♥.

The homotopy group πn MapC(X,Y ) ' Ext−nC (X,Y ) vanishes for n > 0. It follows that C♥ is

equivalent to (the nerve of) its homotopy category hC♥. The category hC♥ is abelian ([13]). We

will often abuse terminology by identifying C♥ with the abelian category hC♥.

Warning 1.2.1.13. The definition of a t-structure on a triangulated category was introduced in

[13]. However, the notation of [13] is slightly different from the notation employed here. We use

homological rather than cohomological indexing conventions. Moreover, if C is a stable∞-category

equipped with a t-structure and X ∈ C, then we denote the corresponding objects τ≤0τ≥0X[−n] by

πnX, rather than Hn(X). This notation reflects our emphasis in this book: the stable∞-categories

of greatest interest to us are those which arise in stable homotopy theory (see §1.4), rather than

those which arise in homological algebra.

Let C be a stable ∞-category. In view of Remark 1.2.1.3, t-structures on C are determined by

the corresponding localizations C≤0 ⊆ C. However, not every localization of C arises in this way.

Recall (see §HTT.5.5.4 ) that every localization of C has the form S−1 C, where S is an appropriate
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collection of morphisms of C. Here S−1 C denotes the full subcategory of C spanned by S-local

objects, where an object X ∈ C is said to be S-local if and only if, for each f : Y ′ → Y in S,

composition with f induces a homotopy equivalence

MapC(Y,X)→ MapC(Y ′, X).

If C is stable, then we extend the morphism f to a fiber sequence

Y ′ → Y → Y ′′,

and we have an associated long exact sequence

. . .→ ExtiC(Y ′′, X)→ ExtiC(Y,X)
θi→ ExtiC(Y ′, X)→ Exti+1

C (Y ′′, X)→ . . .

The requirement that X be {f}-local amounts to the condition that θi be an isomorphism for

i ≤ 0. Using the long exact sequence, we see that if X is {f}-local, then ExtiC(Y ′′, X) = 0 for

i ≤ 0. Conversely, if ExtiC(Y ′′, X) = 0 for i ≤ 1, then X is {f}-local. Experience suggests that it is

usually more natural to require the vanishing of the groups ExtiC(Y ′′, X) than it is to require that

the maps θi to be isomorphisms. Of course, if Y ′ is a zero object of C, then the distinction between

these conditions disappears.

Definition 1.2.1.14. Let C be an∞-category which admits pushouts. We will say that a collection

S of morphisms of C is quasisaturated if it satisfies the following conditions:

(1) Every equivalence in C belongs to S.

(2) Given a 2-simplex ∆2 → C

X
h //

f

  

Z

Y,

g
??

if any two of f , g, and h belongs to S, then so does the third.

(3) Given a pushout diagram

X

f
��

// X ′

f ′

��
Y // Y ′,

if f ∈ S, then f ′ ∈ S.

Any intersection of quasisaturated collections of morphisms is quasisaturated. Consequently, for

any collection of morphisms S there is a smallest quasisaturated collection S containing S. We will

say that S is the quasisaturated collection of morphisms generated by S.
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Definition 1.2.1.15. Let C be a stable ∞-category. A full subcategory C′ ⊆ C is closed under

extensions if, for every fiber sequence triangle

X → Y → Z

such that X and Z belong to C′, the object Y also belongs to C′.

We observe that if C is as in Definition 1.2.1.14 and L : C → C is a localization functor, then

the collection of all morphisms f of C such that L(f) is an equivalence is quasisaturated.

Proposition 1.2.1.16. Let C be a stable ∞-category, let L : C → C be a localization functor,

and let S be the collection of morphisms f in C such that L(f) is an equivalence. The following

conditions are equivalent:

(1) There exists a collection of morphisms {f : 0 → X} which generates S (as a quasisaturated

collection of morphisms).

(2) The collection of morphisms {0→ X : L(X) ' 0} generates S (as a quasisaturated collection

of morphisms).

(3) The essential image of L is closed under extensions.

(4) For any A ∈ C, B ∈ LC, the natural map Ext1(LA,B)→ Ext1(A,B) is injective.

(5) The full subcategories C≥0 = {A : LA ' 0} and C≤−1 = {A : LA ' A} determine a t-structure

on C.

Proof. The implication (1)⇒ (2) is obvious. We next prove that (2)⇒ (3). Suppose given a fiber

sequence

X → Y → Z

where X and Z are both S-local. We wish to prove that Y is S-local. In view of assumption (2),

it will suffice to show that MapC(A, Y ) is contractible, provided that L(A) ' 0. In other words, we

must show that ExtiC(A, Y ) ' 0 for i ≤ 0. We now observe that there is an exact sequence

ExtiC(A,X)→ ExtiC(A, Y )→ ExtiC(A,Z)

where the outer groups vanish, since X and Z are S-local and the map 0→ A belongs to S.

We next show that (3) ⇒ (4). Let B ∈ LC, and let η ∈ Ext1
C(LA,B) classify a distinguished

triangle

B → C
g→ LA

η→ B[1].

Condition (3) implies that C ∈ LC. If the image of η in Ext1
C(A,B) is trivial, then the localization

map A→ LA factors as a composition

A
f→ C

g→ LA.
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Applying L to this diagram (and using the fact that C is local) we conclude that the map g admits

a section, so that η = 0.

We now claim that (4)⇒ (5). Assume (4), and define C≥0, C≤−1 as in (5). We will show that

the axioms of Definition 1.2.1.1 are satisfied:

• If X ∈ C≥0 and Y ∈ C≤−1, then Ext0
C(X,Y ) ' Ext0

C(LX, Y ) ' Ext0
C(0, Y ) ' 0.

• Since C≤−1 is a localization of C, it is stable under limits, so that C≤−1[−1] ⊆ C≤−1. Similarly,

since the functor L : C → C≤−1 preserves all colimits which exist in C, the subcategory C≥0

is stable under finite colimits, so that C≥0[1] ⊆ C≥0.

• Let X ∈ C, and form a fiber sequence

X ′ → X → LX.

We claim that X ′ ∈ C≥0; in other words, that LX ′ = 0. For this, it suffices to show that for

all Y ∈ LC, the morphism space

Ext0
C(LX ′, Y ) = 0.

Since Y is local, we have isomorphisms

Ext0
C(LX ′, Y ) ' Ext0

C(X ′, Y ) ' Ext1
C(X ′[1], Y ).

We now observe that there is a long exact sequence

Ext0
C(LX, Y )

f→ Ext0
C(X,Y )→ Ext1

C(X ′[1], Y )→ Ext1
C(LX, Y )

f ′→ Ext1
C(X,Y ).

Here f is bijective (since Y is local) and f ′ is injective (in virtue of assumption (4)).

We conclude by showing that (5) ⇒ (1). Let S′ be the smallest quasisaturated collection of

morphisms which contains the zero map 0→ A, for every A ∈ C≥0. We wish to prove that S = S′.

For this, we choose an arbitrary morphism u : X → Y belonging to S. Then Lu : LX → LY is an

equivalence, so we have a pushout diagram

X ′
u′ //

��

Y ′

��
X

u // Y,

where X ′ and Y ′ are fibers of the respective localization maps X → LX, Y → LY . Consequently,

it will suffice to prove that u′ ∈ S′. Since X ′, Y ′ ∈ C≥0, this follows from the two-out-of-three

property, applied to the diagram

X ′

u′

!!
0 //

??

Y ′.
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Let C be a stable ∞-category equipped with a t-structure. We let C+ =
⋃
C≤n ⊆ C, C− =⋃

C≥−n, and Cb = C+ ∩C−. It is easy to see that C−, C+, and Cb are stable subcategories of C. We

will say that C is left bounded if C = C+, right bounded if C = C−, and bounded if C = Cb.

At the other extreme, given a stable ∞-category C equipped with a t-structure, we define the

left completion Ĉ of C to be a homotopy limit of the tower

. . .→ C≤2
τ≤1→ C≤1

τ≤0→ C≤0
τ≤−1→ . . .

Using the results of §HTT.3.3.3 , we can obtain a very concrete description of this inverse limit: it

is the full subcategory of Fun(N(Z),C) spanned by those functors F : N(Z)→ C with the following

properties:

(1) For each n ∈ Z, F (n) ∈ C≤−n.

(2) For each m ≤ n ∈ Z, the associated map F (m)→ F (n) induces an equivalence τ≤−nF (m)→
F (n).

We will denote this inverse limit by Ĉ, and refer to it as the left completion of C.

Proposition 1.2.1.17. Let C be a stable ∞-category equipped with a t-structure. Then:

(1) The left completion Ĉ is also stable.

(2) Let Ĉ≤0 and Ĉ≥0 be the full subcategories of Ĉ spanned by those functors F : N(Z)→ C which

factor through C≤0 and C≥0, respectively. Then these subcategories determine a t-structure

on Ĉ.

(3) There is a canonical functor C → Ĉ. This functor is exact, and induces an equivalence

C≤0 → Ĉ≤0.

Proof. We observe that Ĉ can be identified with the homotopy inverse limit of the tower

. . .→ C≤0
τ≤0Σ
→ C≤0

τ≤0Σ
→ C≤0 .

In other words, Ĉ
op

is equivalent to the ∞-category of spectrum objects Sp(C≤0) (see Proposition

1.4.2.24 in §1.4.2), and assertion (1) is a special case of Corollary 1.4.2.17.

We next prove (2). We begin by observing that, if we identify Ĉ with a full subcategory of

Fun(N(Z),C), then the shift functors on Ĉ can be defined by the formula

(F [n])(m) = F (m+ n)[n].

This proves immediately that Ĉ≥0[1] ⊆ Ĉ≥0 and Ĉ≤0[−1] ⊆ Ĉ≤0. Moreover, if X ∈ Ĉ≥0 and

Y ∈ Ĉ≤−1 = Ĉ≤0[−1], then Map
Ĉ
(X,Y ) can be identified with a homotopy limit of a tower of

spaces

. . .→ MapC(X(n), Y (n))→ MapC(X(n− 1), Y (n− 1))→ . . .
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Since each of these spaces is contractible, we conclude that Map
Ĉ
(X,Y ) ' ∗; in particular,

Ext0
Ĉ
(X,Y ) = 0. Finally, we consider an arbitrary X ∈ Ĉ. Let X ′′ = τ≤−1 ◦ X : N(Z) → C,

and let u : X → X ′′ be the induced map. It is easy to check that X ′′ ∈ Ĉ≤−1 and that fib(u) ∈ Ĉ≥0.

This completes the proof of (2).

To prove (3), we let D denote the full subcategory of N(Z)×C spanned by pairs (n,C) such that

C ∈ C≤−n. Using Proposition HTT.5.2.7.8 , we deduce that the inclusion D ⊆ N(Z) × C admits a

left adjoint L. The composition

N(Z)× C
L→ D ⊆ N(Z)× C→ C

can be identified with a functor θ : C→ Fun(N(Z),C) which factors through Ĉ. To prove that θ is

exact, it suffices to show that θ is right exact (Proposition 1.1.4.1). Since the truncation functors

τ≤n : C≤n+1 → C≤n are right exact, finite colimits in Ĉ are computed pointwise. Consequently, it

suffices to prove that each of the compositions

C
θ→ Ĉ→ τ≤n C

is right exact. But this composition can be identified with the functor τ≤n.

Finally, we observe that Ĉ≤0 can be identified with a homotopy limit of the essentially constant

tower

. . .C≤0
id→ C≤0

id→ C≤0
τ≤−1→ C≤−1 → . . . ,

and that θ induces an identification of this homotopy limit with C≤0.

If C is a stable ∞-category equipped with a t-structure, then we will say that C is left complete

if the functor C→ Ĉ described in Proposition 1.2.1.17 is an equivalence.

Remark 1.2.1.18. Let C be as in Proposition 1.2.1.17. Then the inclusion C+ ⊆ C induces an

equivalence Ĉ+ → Ĉ, and the functor C → Ĉ induces an equivalence C+ → Ĉ
+

. Consequently, the

constructions

C 7→ Ĉ C 7→ C+

furnish an equivalence between the theory of left bounded stable ∞-categories and the theory of

left complete stable ∞-categories.

The following criterion is useful for establishing left completeness.

Proposition 1.2.1.19. Let C be a stable ∞-category equipped with a t-structure. Suppose that C

admits countable products, and that C≥0 is stable under countable products. The following conditions

are equivalent:

(1) The ∞-category C is left complete.

(2) The full subcategory C≥∞ =
⋂

C≥n ⊆ C consists only of zero objects of C.
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Proof. We first observe every tower of objects

. . .→ Xn → Xn−1 → . . .

in C admits a limit lim←−{Xn}: we can compute this limit as the fiber of an appropriate map∏
Xn →

∏
Xn.

Moreover, if each Xn belongs to C≥0, then lim←−{Xn} belongs to C≥−1.

The functor F : C→ Ĉ of Proposition 1.2.1.17 admits a right adjoint G, given by

f ∈ Ĉ ⊆ Fun(N(Z),C) 7→ lim←−(f).

Assertion (1) is equivalent to the statement that the unit and counit maps

u : F ◦G→ id
Ĉ

v : idC → G ◦ F

are equivalences. If v is an equivalence, then any object X ∈ C can be recovered as the limit of the

tower {τ≤nX}. In particular, this implies that X = 0 if X ∈ C≥∞, so that (1)⇒ (2).

Now assume (2); we will prove that u and v are both equivalences. To prove that u is an

equivalence, we must show that for every f ∈ Ĉ, the natural map

θ : lim←−(f)→ f(n)

induces an equivalence τ≤−n lim←−(f) → f(n). In other words, we must show that the fiber of θ

belongs to C≥−n+1. To prove this, we first observe that θ factors as a composition

lim←−(f)
θ′→ f(n− 1)

θ′′→ f(n).

The octahedral axiom ((TR4) of Definition 1.1.2.5) implies the existence of a fiber sequence

fib(θ′)→ fib(θ)→ fib(θ′′).

Since fib(θ′′) clearly belongs to C≥−n+1, it will suffice to show that fib(θ′) belongs to C≥−n+1. We

observe that fib(θ′) can be identified with the limit of a tower {fib(f(m) → f(n − 1))}m<n. It

therefore suffices to show that each fib(f(m)→ f(n− 1)) belongs to C≥−n+2, which is clear.

We now prove that v is an equivalence. Let X be an object of C, and vX : X → (G ◦F )(X) the

associated map. Since u is an equivalence of functors, we conclude that τ≤n(vX) is an equivalence

for all n ∈ Z. It follows that cofib(vX) ∈ C≥n+1 for all n ∈ Z. Invoking assumption (2), we conclude

that cofib(vX) ' 0, so that vX is an equivalence as desired.

Remark 1.2.1.20. The ideas introduced above can be dualized in an obvious way, so that we

can speak of right completions and right completeness for a stable ∞-category equipped with a

t-structure.
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1.2.2 Filtered Objects and Spectral Sequences

Suppose given a sequence of objects

. . .→ X(−1)
f0

→ X(0)
f1

→ X(1)→ . . . .

in a stable∞-category C. Suppose further that C is equipped with a t-structure, and that the heart

of C is equivalent to the nerve of an abelian category A. In this section, we will construct a spectral

sequence taking values in the abelian category A, with the E1-page described by the formula

Ep,q1 = πp+q cofib(fp) ∈ A .

Under appropriate hypotheses, we will show that this spectral sequence converges to the homotopy

groups of the colimit lim−→X(i).

Remark 1.2.2.1. The spectral sequence we construct in this section can be viewed as a gener-

alization of the spectral sequence associated to a filtered chain complex in ordinary homological

algebra. We refer the reader to [30] for a gentle account of this spectral sequence, and to [109] for

a general introduction to spectral sequences.

Our first step is to construct some auxiliary objects in C.

Definition 1.2.2.2. Let C be a pointed ∞-category, and let I be a linearly ordered set. We let I[1]

denote the partially ordered set of pairs of elements i ≤ j of I, where (i, j) ≤ (i′, j′) if i ≤ i′ and

j ≤ j′. An I-complex in C is a functor F : N(I[1])→ C with the following properties:

(1) For each i ∈ I, F (i, i) is a zero object of C.

(2) For every i ≤ j ≤ k, the associated diagram

F (i, j) //

��

F (i, k)

��
F (j, j) // F (j, k)

is a pushout square in C.

We let Gap(I,C) denote the full subcategory of Fun(N(I[1]),C) spanned by the I-complexes in

C.

Remark 1.2.2.3. Let F ∈ Gap(Z,C) be a Z-complex in a stable ∞-category C. For each n ∈ Z,

the functor F determines pushout square

F (n− 1, n) //

��

F (n− 1, n+ 1)

��
0 // F (n, n+ 1),
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hence a boundary map δ : F (n, n + 1) → F (n − 1, n)[1]. If we set Cn = F (n − 1, n)[−n], then we

obtain a sequence of maps

. . .→ C1
d1→ C0

d0→ C−1 → . . .

in the homotopy category hC. The commutative diagram

F (n, n+ 1)

δ

((

// F (n− 2, n)[1]

��

// F (n− 2, n− 2)[2]

��
F (n− 1, n)[1]

δ // F (n− 2, n− 1)[2]

proves that dn−1 ◦ dn ' 0 (since F (n − 2, n − 2) ' 0), so that (C∗, d∗) can be viewed as a chain

complex in the triangulated category hC. This motivates the terminology of Definition 1.2.2.2.

Lemma 1.2.2.4. Let C be a pointed ∞-category which admits pushouts. Let I = I0 ∪{−∞} be a

linearly ordered set containing a least element −∞. We regard I0 as a linearly ordered subset of

I[1] via the embedding

i 7→ (−∞, i).

Then the restriction map Gap(I,C)→ Fun(N(I0),C) is an equivalence of ∞-categories.

Proof. Set J = {(i, j) ∈ I× I0 : (i = −∞) ∨ (i = j)}. We now make the following observations:

(1) A functor F : N(I[1]) → C is a complex if and only if F is a left Kan extension of F |N(J),

and F (i, i) is a zero object of C for all i ∈ I0.

(2) Any functor F0 : N(J)→ C admits a left Kan extension to N(I[1]) (use Lemma HTT.4.3.2.13

and the fact that C admits finite colimits).

(3) A functor F0 : N(J) → C has the property that F0(i, i) is a zero object, for every i ∈ I0, if

and only if F0 is a right Kan extension of F0|N(I0).

(4) Any functor F0 : N(I0)→ C admits a right Kan extension to N(J) (use Lemma HTT.4.3.2.13

and the fact that C has a final object).

The desired conclusion now follows immediately from Proposition HTT.4.3.2.15 .

Remark 1.2.2.5. Let C be a pointed ∞-category which admits pushouts (for example, a stable

∞-category). The assignment

[n] 7→ Gap([n],C)'

determines a simplicial object in the category Kan of Kan complexes. We can then define the

Waldhausen K-theory of C to be a geometric realization of this bisimplicial set (for example, the

associated diagonal simplicial set). In the special case where A is an A∞-ring and C is the smallest

stable subcategory of ModA which contains A, this definition recovers the usual K-theory of A.

We refer the reader to [155] for a related construction.
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Construction 1.2.2.6. Let C be a stable ∞-category equipped with a t-structure, such that the

heart of C is equivalent to the nerve of an abelian category A. Let X ∈ Gap(Z,C). We observe

that for every triple of integers i ≤ j ≤ k, there is a long exact sequence

. . .→ πnX(i, j)→ πnX(i, k)→ πnX(j, k)
δ→ πn−1X(i, j)→ . . .

in the abelian category A. For every p, q ∈ Z and every r ≥ 1, we define the object Ep,qr ∈ A by

the formula

Ep,qr = im(πp+qX(p− r, p)→ πp+qX(p− 1, p+ r − 1)).

There is a differential dr : Ep,qr → Ep−r,q+r−1
r , uniquely determined by the requirement that the

diagram

πp+qX(p− r, p) //

δ

��

Ep,qr //

dr
��

πp+qX(p− 1, p+ r − 1)

δ

��
πp+q−1X(p− 2r, p− r) // Ep−r,q+r−1

r
// πp+q−1X(p− r − 1, p− 1)

be commutative.

Proposition 1.2.2.7. Let X ∈ Gap(Z,C) be as in Construction 1.2.2.6. Then:

(1) For each r ≥ 1, the composition dr ◦ dr is zero.

(2) There are canonical isomorphisms

Ep,qr+1 ' ker(dr : Ep,qr → Ep−r,q+r−1
r )/ im(dr : Ep+r,q−r+1

r → Ep,qr ).

Consequently, {Ep,qr , dr} is a spectral sequence (with values in the abelian category A ).

Remark 1.2.2.8. For fixed q ∈ Z, the complex (E∗,q1 , d1) in A can be obtained from the hC-valued

chain complex C∗ described in Remark 1.2.2.3 by applying the homological functor πq.

Proof. We have a commutative diagram

πp+qX(p− r − 1, p)

��
πp+q+1X(p, p+ r)

δ //

��

πp+qX(p− r, p)

��

δ // πp+q−1X(p− 2r, p− r)

��
Ep+r,q−r+1
r

dr //

��

Ep,qr

��

dr // Ep−r,q+r−1
r

��
πp+q+1X(p+ r − 1, p+ 2r − 1)

δ // πp+qX(p− 1, p+ r − 1)
δ //

��

πp+q−1X(p− r − 1, p− 1)

πp+qX(p− 1, p+ r).
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Since the upper left vertical map is an epimorphism, (1) will follow provided that we can show that

the composition

πp+q+1X(p, p+ r)
δ→ πp+qX(p− r, p) δ→ πp+q−1X(p− 2r, p− r)

is zero. This follows immediately from the commutativity of the diagram

X(p, p+ r)
δ // X(p− 2r, p)[1]

��

// X(p− r, p)[1]

δ
��

0
∼ // X(p− r, p− r)[1] // X(p− 2r, p− r)[2].

We next claim that the composite map

φ : πp+qX(p− r − 1, p)→ Ep,qr
dr→ Ep−r,q+r−1

r

is zero. Because Ep−r,q+r−1
r → πp+q−1X(p− r− 1, p− 1) is a monomorphism, this follows from the

commutativity of the diagram

πp+qX(p− r − 1, p)

��

// πp+q−1X(p− 2r, p− r − 1)

��
πp+qX(p− r, p)

��

// πp+q−1X(p− 2r, p− r)

��
Ep,qr

dr // Ep−r,q+r−1
r

��
πp+q−1X(p− r − 1, p− 1),

since the composition of the left vertical line factors through πp+q−1X(p− r− 1, p− r− 1) ' 0. A

dual argument shows that the composition

Ep+r,q+r−1
r

dr→ Ep,qr → πp+qX(p− 1, p+ r)

is zero as well.

Let Z = ker(dr : Ep,qr → Ep−r,q+r−1
r ) and B = im(dr : Ep+r,q−r+1

r → Ep,qr ). The above

arguments yield a sequence of morphisms

πp+qX(p− r − 1, p)
φ→ Z

φ′→ Z/B
ψ′→ Ep,qr /B

ψ→ πp+qX(p− 1, p+ r).

To complete the proof of (2), it will suffice to show that φ′ ◦ φ is an epimorphism and that ψ ◦ ψ′

is a monomorphism. By symmetry, it will suffice to prove the first assertion. Since φ′ is evidently

an epimorphism, we are reduced to showing that φ is an epimorphism.
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Let K denote the kernel of the composite map

πp+qX(p− r, p)→ Ep,qr
dr→ Ep−r,q+r−1

r → πp+q−1X(p− r − 1, p− 1),

so that the canonical map K → Z is an epimorphism. Choose a diagram

K̃
f //

g

��

K

��

// 0

��
πp+qX(p− r, p− 1) // πp+q−1X(p− r − 1, p− r) // πp+q−1X(p− r − 1, p− 1)

where the square on the left is a pullback. The exactness of the bottom row implies that f is an

epimorphism. Let f ′ denote the composition

K̃
g→ πp+qX(p− r, p− 1)→ πp+qX(p− r, p).

The composition

K̃
f ′→ πp+qX(p− r, p)→ πp+qX(p− 1, p+ r)

factors through πp+qX(p− 1, p− 1) ' 0. Since Ep,qr → πp+qX(p− 1, p+ r) is a monomorphism, we

conclude that the composition K̃
f ′→ πp+qX(p − r, p) → Ep,qr is the zero map. It follows that the

composition

K̃
f−f ′−→ πp+qX(p− r, p)→ Z

coincides with the composition K̃
f→ K → Z, and is therefore an epimorphism.

Form a diagram

K
f ′′ //

��

K̃

f−f ′
��

// 0

��
πp+qX(p− r − 1, p) // πp+qX(p− r, p) // πn−1X(p− r − 1, p− r)

where the left square is a pullback. Since the bottom line is exact, the map f ′′ is an epimorphism,

so that the composition

K
f ′′→ K̃

f−f ′−→ πp+qX(p− r, p)→ Z

is an epimorphism. This map coincides with the composition

K → πp+qX(p− r − 1, p)
φ→ Z,

so that φ is an epimorphism as well.
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Definition 1.2.2.9. Let C be a stable∞-category. A filtered object of C is a functor X : N(Z)→ C.

Suppose that C is equipped with a t-structure, and let X : N(Z) → C be a filtered object of

C. According to Lemma 1.2.2.4, we can extend X to a complex in Gap(Z∪{−∞},C). Let X

be the associated object of Gap(Z,C), and let {Ep,qr , dr}r≥1 be the spectral sequence described in

Construction 1.2.2.6 and Proposition 1.2.2.7. We will refer to {Ep,qr , dr}r≥1 as the spectral sequence

associated to the filtered object X.

Remark 1.2.2.10. In the situation of Definition 1.2.2.9, Lemma 1.2.2.4 implies that X is deter-

mined up to contractible ambiguity by X. It follows that the spectral sequence {Ep,qr , dr}r≥1 is

independent of the choice of X, up to canonical isomorphism.

Example 1.2.2.11. Let A be a sufficiently nice abelian category, and let C be the derived ∞-

category of A (see §1.3.2). Let Fun(N(Z),C) be the ∞-category of filtered objects of C. Then the

homotopy category hFun(N(Z),C) can be identified with the classical filtered derived category of

A, obtained from the category of filtered complexes of objects of A by inverting all filtered quasi-

isomorphisms. In this case, Definition 1.2.2.9 recovers the usual spectral sequence associated to a

filtered complex.

Our next goal is to study the convergence of the spectral sequence of Definition 1.2.2.9. We will

treat only the simplest case, which will be sufficient for our applications in this book.

Definition 1.2.2.12. Let C be an ∞-category. We will say that C admits sequential colimits if

every diagram N(Z≥0)→ C has a colimit in C.

If C is stable and admits sequential colimits, we will say that a t-structure on C is compatible

with sequential colimits if the full subcategory C≤0 is stable under the colimits of diagrams indexed

by N(Z≥0).

Remark 1.2.2.13. Let C be a stable ∞-category equipped with a t-structure, so that the heart

of C is equivalent to (the nerve of) an abelian category A. Suppose that C admits sequential

colimits. Then C≥0 admits sequential colimits, so that N(A), being a localization of C≥0, also

admits sequential colimits. If the t-structure on C is compatible with sequential colimits, then the

inclusion N(A) ⊆ C and the homological functors {πn : C→ N(A)}n∈Z preserve sequential colimits.

It follows that sequential colimits in the abelian category A are exact: in other words, the colimit

of a sequence of monomorphisms in A is again a monomorphism.

Proposition 1.2.2.14. Let C be a stable ∞-category equipped with a t-structure, and let X :

N(Z) → C be a filtered object of C. Assume that C admits sequential colimits, and that the t-

structure on C is compatible with sequential colimits. Suppose furthermore that X(n) ' 0 for

n� 0. Then the associated spectral sequence (Definition 1.2.2.9) converges

Ep,qr ⇒ πp+q lim−→(X).
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Proof. Let A be an abelian category such that the heart of C is equivalent to (the nerve of) A. The

convergence assertion of the Proposition has the following meaning:

(i) For fixed p and q, the differentials dr : Ep,qr → Ep−r,q+r−1
r vanish for r � 0.

Consequently, for sufficiently large r we obtain a sequence of epimorphisms

Ep,qr → Ep,qr+1 → Ep,qr+2 → . . .

Let Ep,q∞ denote the colimit of this sequence (in the abelian category A).

(ii) Let n ∈ Z, and let An = πn lim−→m
X(m). Then there exists a filtration

. . . ⊆ F−1An ⊆ F 0An ⊆ F 1An ⊆ . . .

of An, with FmAn ' 0 for m� 0, and lim−→m
FmAn ' An.

(iii) For every p, q ∈ Z, there exists an isomorphism Ep,q∞ ' F pAp+q/F
p−1Ap+q in the abelian

category A.

To prove (i), (ii), and (iii), we first extend X to an object X ∈ Gap(Z∪{−∞},C), so that for

each n ∈ Z we have X(n) = X(−∞, n). Without loss of generality, we may suppose that X(n) ' ∗
for n < 0. This implies that X(i, j) ' ∗ for i, j < 0. It follows that Ep−r,q+r−1

r , as a quotient

πp+qX(p− 2r, p− r), is zero for r > p. This proves (i).

To satisfy (ii), we set F pAn = im(πnX(p) → πn lim−→(X)). It is clear that F pAn ' ∗ for p < 0,

and the isomorphism lim−→F pAn ' An follows from the compatibility of the homological functor πn
with sequential colimits (Remark 1.2.2.13).

To prove (iii), we note that for r > p, the object Ep,qr can be identified with the image of the

map πp+qX(p) ' πp+qX(p−r, p)→ πp+qX(p−1, p+r). Let Y = lim−→r
X(p−1, p+r). It follows that

Ep,q∞ can be identified with the image of the map πp+qX(p)
f→ πp+qY . We have a fiber sequence

X(p− 1)→ lim−→(X)→ Y,

which induces an exact sequence

0→ F p−1Ap+q → Ap+q
f ′→ πp+qY.

We have a commutative triangle

Ap+q
f ′

$$
πp+qX(p)

g
99

f // πp+qY.

Since the image of g is F pAp+q, we obtain canonical isomorphisms

Ep,q∞ ' im(f) ' im(f ′|F pAp+q) ' F pAp+q/ ker(f ′) ' F pAp+q/F p−1Ap+q.

This completes the proof.
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1.2.3 The Dold-Kan Correspondence

Our goal in this section is to review some classical results in homological algebra: most importantly,

the Dold-Kan correspondence, which establishes an equivalence between the category of simplicial

objects of an abelian category A with the category of nonnegatively graded chain complexes over A

(Theorem 1.2.3.7). This material will be used in studying an∞-categorical version of the Dold-Kan

correspondence in §1.2.4, and in our construction of derived ∞-categories in §1.3.

We begin by reviewing some basic definitions from homological algebra.

Definition 1.2.3.1. Let A be an additive category. A chain complex with values in A is a com-

posable sequence of morphisms

· · · → A2
d(2)→ A1

d(1)→ A0
d(0)→ A−1 → · · ·

in A such that d(n−1)◦d(n) = 0 for every integer n. The collection of chain complexes with values

in A is itself an additive category, which we will denote by Ch(A).

For each integer n, we let Ch(A)≥n denote the full subcategory of Ch(A) spanned by those

chain complexes A∗ where Ak ' 0 for k < n. Similarly, we let Ch(A)≤n denote the full subcategory

of Ch(A) spanned by those complexes A∗ such that Ak ' 0 for k > n.

Remark 1.2.3.2. Throughout this book, we will always use homological indexing conventions for

our chain complexes. In particular, the differential on a chain complex always lowers degrees by 1.

Remark 1.2.3.3. Let

· · · → A2
d(2)→ A1

d(1)→ A0
d(0)→ A−1 → · · ·

be a chain complex with values in an additive category A. We will typically denote this chain

complex by (A∗, d), where A∗ is the underlying Z-graded object of A and d is the map of degree −1

from A∗ to itself given by d(n) in degree n (so that d2 = 0). Often we will further abuse notation

and simply denote this chain complex by A∗ or simply by A, implicitly assuming that a suitable

differential has also been supplied.

Remark 1.2.3.4. Let A be an abelian category. Then the inclusion Ch(A)≥0 ↪→ Ch(A) admits a

right adjoint, which carries a chain complex

· · · →M2
d(2)→ M1

d(1)→ M0
d(0)→ M−1 → · · ·

to the truncated chain complex

· · · →M2
d(2)→ M1

d(1)→ ker(d(0))→ 0→ · · ·

We will denote this functor by τ≥0 : Ch(A)→ Ch(A)≥0. Similarly, the inclusion Ch(A)≤0 ↪→ Ch(A)

admits a left adjoint, which we will denote by τ≤0 : Ch(A)→ Ch(A)≤0.
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Construction 1.2.3.5. Let A be an additive category and let A = (A∗, d) be a nonnegatively

graded chain complex with values in A. We define a simplicial object DK•(A) of A as follows:

(1) For each n ≥ 0, the object DKn(A) is given by the direct sum
⊕

α:[n]→[k]Ak; here the sum is

taken over all surjective maps [n]→ [k] in ∆.

(2) Let β : [n′]→ [n] be a morphism in ∆. The induced map

β∗ : DKn(A) '
⊕

α:[n]→[k]

Ak →
⊕

α′:[n′]→[k′]

Ak′ ' DKn′(A)

is given by the matrix of morphisms {fα,α′ : Ak → Ak′}, where the map fα,α′ is the identity

if k = k′ and the diagram

[n′]

α′

��

β // [n]

α

��
[k′]

id // [k]

commutes, the map fα,α′ is given by the differential d if k′ = k − 1 and the diagram

[n′]

α′

��

// [n]

α

��
[k′]

∼ // {1, . . . , k} // [k]

commutes, and fα,α′ is zero otherwise.

The construction A 7→ DK•(A) determines a functor from the category Ch(A)≥0 to the category

Fun(∆op,A) of simplicial objects of A. We will denote this functor by DK, and refer to it as the

Dold-Kan construction.

Example 1.2.3.6. For every simplicial set K•, let ZK• denote the free simplicial abelian group

generated by K• (so that (ZK)n is the free abelian group generated by the set Kn for each n ≥ 0).

Let Z[n]∗ denote the chain complex of abelian groups given by

Z[n]k =

{
Z if k = n

0 if k 6= n.

Then there is a canonical isomorphism of simplicial abelian groups

DK•(Z[n]) ' Z ∆n/Z ∂∆n.

Our main goal in this section is to prove the following:
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Theorem 1.2.3.7 (Dold-Kan Correspondence). Let A be an additive category. The functor

DK : Ch(A)≥0 → Fun(∆op,A)

is fully faithful. If A is idempotent complete, then DK is an equivalence of categories.

The proof of Theorem 1.2.3.7 will proceed by reducing to the case where A is the category of

abelian groups. In this case, we can explicitly describe an inverse to the functor DK: it is given by

assigning to each simplicial abelian group A• the associated normalized chain complex N∗(A).

Definition 1.2.3.8. Let A be an additive category and let A• be a semisimplicial object of A. Fix

n > 0. For each 0 ≤ i ≤ n, we let di : An → An−1 denote the associated face map (determined by

the unique injective map [n−1]→ [n] whose image does not contain i ∈ [n]). Let d(n) : An → An−1

denote the alternating sum
∑

0≤i≤n(−1)idi. An easy calculation shows that d(n− 1) ◦ d(n) ' 0 for

n > 0, so that

· · · → A2
d(2)→ A1

d(1)→ A0 → 0→ · · ·

is a chain complex with values in A. We will denote this chain complex by C∗(A), and refer to it

as the unnormalized chain complex associated to A•.

If A• is a simplicial object of A, we let C∗(A) denote the unnormalized chain complex of the

underlying semisimplicial object of A•.

Definition 1.2.3.9. Let A be an abelian category, and let A• be a simplicial object of A. For each

n ≥ 0, we let Nn(A) denote the subobject of An given by the intersection
⋂

1≤i≤n ker(di) (more

formally: Nn(A) is defined to be a kernel of the map An →
⊕

1≤i≤nAn−1 given by {di}1≤i≤n). If

n > 0, the map d0 carries Nn(A) into Nn−1(A); we therefore obtain a chain complex

· · · → N2(A)→ N1(A)→ N0(A)→ 0→ · · ·

which we will denote by N∗(A). We will refer to N∗(A) as the normalized chain complex of A•.

The construction A• 7→ N∗(A) determines a functor N : Fun(∆op,A) → Ch(A)≥0, which we will

refer to as the normalized chain complex functor.

Notation 1.2.3.10. If K• is a simplicial set, we define

N∗(K) = N∗(ZK) C∗(K) = C∗(ZK),

so that N∗(K) ⊆ C∗(K) are chain complexes of abelian groups. By definition, the homology of

K is given by the homology of the chain complex C∗(K) (which is the same as the homology of

N∗(K), by Proposition 1.2.3.17).
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Remark 1.2.3.11. Let A be an abelian category, let A = (A∗, d) be a nonnegatively graded chain

complex with values in A, and let DK•(A) be the associated simplicial object of A. If α : [n]→ [k]

is a surjective morphism in ∆ for k < n, then there exists 1 ≤ i ≤ n such that the composite map

[n− 1]
β→ [n]

α→ [k]

is also surjective; here β denotes the unique injective map whose image does not contain i ∈ [n].

It follows that the subobject Nn(DK(A)) ⊆ DKn(A) '
⊕

α:[n]→[k]Ak can be identified with the

summand An corresponding to the identity map α : [n]→ [n]. The isomorphisms Nn(DK(A)) ' An
are compatible with differentials, giving a canonical isomorphism of chain complexes

A ' N∗(DK(A)).

Lemma 1.2.3.12. Let A be an abelian category. The isomorphism of functors u : idCh≥0(A) '
N∗ ◦DK constructed in Remark 1.2.3.11 exhibits N∗ as a right adjoint to DK.

Proof. Let A = (A∗, d) be a nonnegatively graded chain complex with values in A, and let B• be

a simplicial object of A. We wish to show that the canonical map

θ : HomFun(∆op,A)(DK•(A), B•)→ HomCh(A)(N∗(DK(A)), N∗(B))
u→ HomCh(A)(A∗, N∗(B))

is bijective. To this end, suppose we are given a morphism φ : A∗ → N∗(B) in Ch(A), given by a

collection of maps φn : An → Nn(B) ⊆ Bn. We define a map Φn : DKn(A) '
⊕

α:[n]→[k]Ak → Bn

to be the sum of the maps fα : Ak
φk→ Bk

α∗→ Bn, where α∗ : Bk → Bn is the map associated to α by

the simplicial object B•. It is easy to see that the maps Φn together determine a map of simplicial

objects Φ : DK•(A)→ B•, and that Φ is the unique preimage of φ under θ.

Lemma 1.2.3.13. Let Ab denote the category of abelian groups. Then the functor DK :

Ch(Ab)≥0 → Fun(∆op,Ab) is an equivalence of categories.

Proof. Let N∗ : Fun(∆op,Ab) → Ch(Ab)≥0 be the normalized chain complex functor (Definition

1.2.3.9), so that N∗ is right adjoint to DK (Lemma 1.2.3.12) and the unit map u : id → N∗ ◦ DK

is an isomorphism of functors (Remark 1.2.3.11). It will therefore suffice to show that the counit

map v : DK ◦N∗ → id is an isomorphism of functors. In other words, we must show that for every

simplicial abelian group A•, the canonical map

θ : DK•(N∗(A))→ A•

is an isomorphism of simplicial abelian groups.

We begin by showing that θ is injective in each degree. Fix n ≥ 0, and let x ∈ DKn(N∗(A)), so

that x corresponds to a collection of elements xα ∈ Nk(A) indexed by surjective maps α : [n]→ [k]

in ∆. Assume that x 6= 0; we wish to prove that θ(x) 6= 0. Let S be the collection consisting of



58 CHAPTER 1. STABLE ∞-CATEGORIES

those surjective maps α : [n] → [k] such that xα 6= 0. Since x 6= 0, the set S is nonempty. Let

k be the smallest nonnegative integer such that there exists a map α : [n] → [k] in S. Given any

such map, we let mi
α be the least element of α−1{i} for 0 ≤ i ≤ k. Assume that α : [n] → [k] has

been chosen such that xα 6= 0 and the sum m0
α + · · ·+mk

α is as small as possible. The assignment

i 7→ mi
α determines a map β : [k] → [n], which is right inverse to α. We will prove that θ(x) 6= 0

by showing that β∗θ(x) = xα ∈ Ak. To prove this, it will suffice to show that for every surjective

map α′ : [n] → [k′] different from α, we have β∗α′∗xα′ = 0 in Ak. If α′ /∈ S, then xα′ = 0 and the

result is obvious. Assume therefore that α′ ∈ S, and let γ denote the composite map

[k]
β→ [n]

α′→ [k′].

Since α is surjective, we have m0
α = 0 so that γ(0) = 0. Since xα′ ∈ Nk′(A), we have γ∗xα′ = 0

unless the image of γ contains every nonzero element of k′. We may therefore assume that γ is

surjective. The minimality of k implies that k′ ≥ k, so that k = k′ and γ is the identity map. Thus

α′(mi
α) = i for 0 ≤ i ≤ k, so that mi

α ≥ mi
α′ . On the other hand, our minimality assumption on α

guarantees that m0
α + · · ·+mk

α ≤ m0
α′ + · · ·+mk

α′ . It follows that mi
α = mi

α′ for 0 ≤ i ≤ k, so that

α = α′ contrary to our assumption.

We now prove that θ induces a surjection θn : DKn(N∗(A)) → An using induction on n. For

0 ≤ i ≤ n, let di : An → An−1 denote the ith face map, and let A(i)n =
⋂
j>i ker(dj) ⊆ An. We will

prove by induction on i that the image of θn contains A(i)n. When i = 0, we have A(i)n = Nn(A)

and the result is obvious. Assume therefore that 0 < i ≤ n, and that the image of θn contains

A(i− 1)n. Let x ∈ A(i)n; we wish to prove that x belongs to the image of θn. Let α : [n]→ [n] be

given by the formula

α(j) =

{
j if j 6= i

i− 1 if j = i,

and let x′ = α∗(x) ∈ An. Since α factors through [n−1], x′ belongs to the image of a degeneracy map

An−1 → An and therefore to the image of θn (since θn−1 is surjective by the inductive hypothesis).

It will therefore suffice to show that x − x′ belongs to the image of θn. This follows from the

inductive hypothesis, since x− x′ ∈ A(i− 1)n.

Remark 1.2.3.14. Let A• be a simplicial abelian group. Then the underlying simplicial set of A•
is a Kan complex with a canonical base point (given by 0 ∈ A0), so that we can define homotopy

sets πnA for each n ≥ 0. The abelian group structure on A• determines an abelian group structure

on each πnA, which agrees with the usual group structure on πnA for n > 0. Unwinding the

definitions, we see that πnA can be identified with the nth homology group of the normalized chain

complex N∗(A).

Proof of Theorem 1.2.3.7. Enlarging the universe if necessary, we may assume that the additive

category A is small. Define j : A→ Fun(Aop,Ab) by the formula j(A)(B) = HomA(B,A). We first
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claim that j is fully faithful. To prove this, we let j′ : A→ Fun(Aop, Set) denote the usual Yoneda

embedding, so that j′ is given by composing j with the forgetful functor U : Ab → Set. Yoneda’s

lemma implies that for any pair of objects A,B ∈ A, the composite map

HomA(A,B)
θ→ HomFun(Aop,Ab)(j(A), j(B))

θ′→ HomFun(Aop,Set)(j
′(A), j′(B))

is bijective. This implies that θ′ is surjective. Since the functor U is faithful, the map θ′ is also

injective and therefore an isomorphism. By the two-out-of-three property, we conclude that θ is

bijective as desired.

Note that A′ = Fun(Aop,Ab) is itself an additive category (in fact, an abelian category) and

that the functor j preserves finite sums and products. It follows that the diagram

Ch(A)≥0
DK //

��

Fun(∆op,A)

��
Ch(A′)≥0

DK // Fun(∆op,A′)

commutes up to canonical isomorphism. Here the vertical maps are fully faithful embeddings,

and Lemma 1.2.3.13 implies that the bottom horizontal map is an equivalence of categories. It

follows that DK : Ch(A)≥0 → Fun(∆op,A) is a fully faithful embedding. Moreover, we obtain

the following characterization of its essential image: a simplicial object A• of A belongs to the

essential image of DK if and only if the chain complex N∗(j(A)) belongs to the essential image

of the fully faithful embedding Ch(A)≥0 → Ch(A′)≥0. This is equivalent to the requirement that

each Nn(j(A)) belongs to the essential image of j. Note that Nn(j(A)) is a direct summand of

DKn(N∗(j(A))) ' j(An). If A is idempotent complete, it follows automatically that Nn(j(A))

belongs to the essential image of j, so that DK : Ch(A)≥0 → Fun(∆op,A) is an equivalence of

categories.

Remark 1.2.3.15. Let A be an idempotent complete additive category. Theorem 1.2.3.7 guar-

antees that the functor DK : Ch(A)≥0 → Fun(∆op,A) is an equivalence of categories. We let

N∗ : Fun(∆op,A) → Ch(A)≥0 denote a homotopy inverse to this equivalence. We will refer to

N∗ as the normalized chain complex functor. It follows from Lemma 1.2.3.12 that this defini-

tion agrees with Definition 1.2.3.9 in the case where A is abelian. In fact, we can say more: for

each n ≥ 0 and every simplicial object A• in A, the object Nn(A) can be identified with a ker-

nel of the map An →
⊕

1≤i≤nAn−1 given by the face maps {di}1≤i≤n (note that since A is not

assumed to be abelian, the existence of this kernel is not immediately obvious). More precisely,

we claim that the canonical map un : Nn(A) → DKn(N∗(A)) ' An induces an injective map

HomA(X,Nn(A))→ HomA(X,An), whose image consists of those maps φ : X → An such that the

composite map X
φ→ An

di→ An−1 is zero for 1 ≤ i ≤ n. To prove this, we invoke Theorem 1.2.3.7 to

reduce to the case where A• = DK•(B) for some B∗ ∈ Ch(A)≥0, and note that for every surjective
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map α : [n]→ [k] which is not an isomorphism, there exists an injective map β : [n− 1]→ [n] with

β(0) = 0 such that α ◦ β is again surjective.

We observe that, as in Definition 1.2.3.9, the maps un : Nn(A) → An determine a monomor-

phism of chain complexes u : N∗(A)→ C∗(A).

Remark 1.2.3.16. Let A be an idempotent complete additive category. If A• is a simplicial object

of A and 0 ≤ i ≤ n − 1, we let si : An−1 → An denote the ith degeneracy map: that is, the map

obtained from the unique surjective morphism α : [n]→ [n− 1] in ∆ satisfying α(i) = α(i+ 1) = i.

The normalized chain complex N∗(A) described in Remark 1.2.3.15 admits a dual description: for

each n ≥ 0, the object Nn(A) can be identified with a cokernel of the map⊕
0≤i<n

An−1 → An

given by {si}0≤i<n (note that the existence of this cokernel is not immediately obvious when A

is not an abelian category). Indeed, Theorem 1.2.3.7 allows us to assume that A• = DK•(B) for

some chain complex B∗ ∈ Ch(A)≥0, in which case the result is obvious. The identifications above

give maps vn : An → Nn(A) for n ≥ 0, which determine an epimorphism of chain complexes

v : C∗(A)→ N∗(A).

In the situation of Remark 1.2.3.16, it is easy to see that the map v : C∗(A)→ N∗(A) is a left

inverse to the monomorphism u : N∗(A)→ C∗(A): that is, the composition

N∗(A)
u→ C∗(A)

v→ N∗(A)

is the identity. Though u and v are not inverse to one another, one has the following closely related

result:

Proposition 1.2.3.17. Let A be an abelian category and let A• be a simplicial object of A. Then

the canonical maps

u : N∗(A)→ C∗(A) v : C∗(A)→ N∗(A)

are quasi-isomorphisms of chain complexes.

Proof. Since u is right inverse to v, it will suffice to show that v is a quasi-isomorphism. This is

equivalent to the assertion that the chain complex ker(v) is acyclic (since v is an epimorphism).

Using Theorem 1.2.3.7, we may assume that A• = DK•(B) for some chain complex B∗ ∈ Ch(A)≥0.

For each n, we have a canonical isomorphism Cn(A) '
⊕

α:[n]→[k]Bk, where the sum is taken

over all surjective maps α : [n] → [k]. For every integer i, let C≤in (A) be the subobject of Cn(A)

generated by the summands Bk such that α(j) = α(j − 1) for some j satisfying n − i ≤ j ≤ n.

Then C≤i∗ (A) is a subcomplex of ker(v), which coincides with ker(v) in degrees ≤ i+ 1. It follows

that the inclusion C≤i∗ (A) → ker(v) induces an isomorphism on homology in degrees ≤ i (and an

epimorphism in degree i + 1). It will therefore suffice to show that each of the chain complexes
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C≤i∗ (A) is acyclic. For this, we proceed by induction on i. If i < 0, then C≤i∗ (A) ' 0 and the

result is obvious. We may therefore assume that i ≥ 0. We have a short exact sequence of chain

complexes

0→ C≤i−1
∗ (A)→ C≤i∗ (A)→ K∗ → 0

for some K∗ ∈ Ch(A)≥0. Using the associated long exact sequence together with the inductive

hypothesis, we are reduced to proving that the chain complex K∗ is acyclic. To prove this, consider

the maps {(−1)n−i−1sn−i−1 : An → An+1}. It is not difficult to see that these maps preserve the

subcomplexes C≤i−1
∗ (A), C≤i∗ (A) ⊆ C∗(A), and therefore determine a map h : K∗ → K∗+1. A

simple calculation shows that dh+ hd = idK , so that idK is chain homotopic to the zero map and

K∗ is acyclic as desired.

Remark 1.2.3.18. Let A be an idempotent complete additive category. The restriction functor

Fun(∆op,A)→ Fun(∆op
s ,A)

admits a left adjoint F , which carries each semisimplicial object A• of A to the simplicial object

F (A)• given by left Kan extension along the inclusion ∆op
s ↪→∆op. Unwinding the definitions, we

see that F (A)• is described by the formula

F (A)n =
⊕

α:[n]→[k]

Ak,

where α ranges over all surjective maps in ∆. We observe that for k < n, the corresponding

summand of F (A)n lies in the image of some degeneracy map An−1 → An. Let v : C∗(F (A)) →
N∗(F (A)) be as in Remark 1.2.3.16; we conclude that the composite map

θA : C∗(A)→ C∗(F (A))→ N∗(F (A))

is an isomorphism in Ch(A)≥0.

Suppose now that A• can be extended to a simplicial object of A, which we will denote also

by A•. We then obtain a map of simplicial objects F (A)• → A•, which induces a map of chain

complexes C∗(A)
θA→ N∗(F (A))→ N∗(A•) which agrees with the map v of Remark 1.2.3.16.

We now discuss the behavior of the Dold-Kan correspondence with respect to tensor products.

Definition 1.2.3.19. Suppose we are given additive categories A1,A2, . . . ,An, and B. We will

say that a functor F : A1× · · · × An → B is multi-additive if the functor F preserves direct sums

separately in each variable.

Remark 1.2.3.20. Let F : A1× · · ·×An → B be a multi-additive functor, and suppose we choose

objects Ai, A′i ∈ Ai for 1 ≤ i ≤ n. The induced map∏
1≤i≤n

HomAi(A
i, A′

i
)→ HomB(F ({Ai}), F ({A′i}))



62 CHAPTER 1. STABLE ∞-CATEGORIES

is additive in each variable: that is, it induces a map of abelian groups⊗
1≤i≤n

HomAi(A
i, A′

i
)→ HomB(F ({Ai}), F ({A′i})).

Remark 1.2.3.21. Let F : A1× · · · × An → B be a multi-additive functor. Then F induces a

multi-additive functor

Ch(F )≥0 : Ch(A1)≥0 × · · · × Ch(An)≥0 → Ch(B)≥0,

which is given on objects by the formula

Ch(F )≥0((A1, d1), . . . , (An, dn))p =
⊕

p=p1+···+pn

F (A1
p1
, . . . , Anpn),

where the differential d is given on the summand F (A1
p1
, . . . , Anpn) by the sum∑

1≤i≤n
(−1)p1+...+pi−1F (idA1

p1
, . . . , idAi−1

pi−1
, di, idAi+1

pi+1
, . . . , idAnpn ).

Note that the direct sum is essentially finite, since the summand corresponding to a decomposition

p = p1 + · · ·+ pn is zero unless p1, . . . , pn ≥ 0. If the additive category B admits countable coprod-

ucts, then the same formula defines a multi-additive functor Ch(F ) : Ch(A1) × · · · × Ch(An) →
Ch(B).

If F : A1× · · · ×An → B is a multi-additive functor, then F induces a functor

Fun(∆op,A1)× · · · × Fun(∆op,An)→ Fun(∆op,B),

given by pointwise composition with F . In what follows, we will abuse notation by denoting this

functor also by F .

Construction 1.2.3.22. Let F : A1× · · · ×An → B be a multi-additive functor between idempo-

tent complete additive categories. Suppose we are given simplicial objects Ai• of Ai for 1 ≤ i ≤ n.

For each p ≥ 0, let

AW p : F (A1
p, . . . , A

n
p )→ Ch(F )≥0(C∗(A

1), . . . , C∗(A
n))p

be the map given by the sum of the maps

F (α∗1, . . . , α
∗
n) : F (A1

p, . . . , A
n
p )→ F (A1

p1
, . . . , Anpn),

where αi denotes the map [pi] ' {p1 + . . .+ pi−1, p1 + . . .+ pi−1 + 1, . . . , p1 + . . .+ pi−1 + pi} ↪→ [p]

in ∆. Using Remark 1.2.3.16, we deduce the existence of a unique map AWp : NpF (A1, . . . , An)→
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Ch(F )≥0(N∗(A
1), . . . , N∗(A

n))p such that the diagram

F (A1
p, . . . , A

n
p )

AW p //

��

Ch(F )≥0(C∗(A
1), . . . , C∗(A

n))p

��
NpF (A1, . . . , An)

AWp // Ch(F )≥0(N∗(A
1), . . . , N∗(A

n))p.

commutes. Both of these maps commute with the differential and determine maps of chain com-

plexes

AW : C∗(F (A1, . . . , An))→ Ch(F )≥0(C∗(A
1), . . . , C∗(A

n))

AW : N∗(F (A1, . . . , An))→ Ch(F )≥0(N∗(A
1), . . . , N∗(A

n)).

We will refer to these maps as the Alexander-Whitney maps associated to F .

Remark 1.2.3.23. Let F : A1× · · · × An → B be a multi-additive functor between idempotent

complete additive categories. The Alexander-Whitney maps associated to F depend on the choice

of ordering of the categories A1, . . . ,An.

Remark 1.2.3.24. Let F : A1× · · ·×An → B be a multi-additive functor. The Alexander-Whitney

maps

AW : C∗(F (A1, . . . , An))→ Ch(F )≥0(C∗(A
1), . . . , C∗(A

n))

AW : N∗(F (A1, . . . , An))→ Ch(F )≥0(N∗(A
1), . . . , N∗(A

n))

depend functorially on the sequence of simplicial objects {Ai• ∈ Fun(∆op,Ai)}1≤i≤n, and can

therefore be viewed as natural transformations of functors.

Remark 1.2.3.25. Let α : {1, . . . , n} → {1, . . . ,m} be an order-preserving map, and suppose we

are given multi-additive functors

F :
∏

1≤i≤m
Bi → C Gi :

∏
α(j)=i

Aj → Bi

between idempotent complete additive categories, and let H denote the composite functor∏
1≤j≤n

Aj
∏
iG

i

−→
∏

1≤i≤m
Bi F→ C .

Then Ch(H)≥0 is equivalent to the composition

∏
1≤j≤n

Ch(Aj)≥0

∏
i Ch(Gi)≥0−→

∏
1≤i≤m

Ch(Bi)≥0
Ch(F )≥0−→ Ch(C)≥0.
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Let AWF , AWGi , and AWH be the Alexander-Whitney natural transformations associated to F ,

Gi, and H respectively. For any sequence of simplicial objects Ai• ∈ Fun(∆op,Ai), the map

AWH : N∗(H(A1, . . . , An))→ Ch(H)≥0(N∗(A
1), . . . , N∗(A

n))

is given by the composition

N∗(H(A1, . . . , An)) ' N∗F (G1({Aj}α(j)=1), . . . , Gm({Aj}α(j)=m))

AWF−→ Ch(F )≥0{N∗Gi{Aj}α(j)=i}
{AWGi}1≤i≤m−→ Ch(F )≥0{Ch(Gi)≥0{N∗(Aj)}α(j)=i)}

' Ch(H)≥0(N∗(A
1), . . . , N∗(A

n)).

The analogous assertion is also true at the level of unnormalized chain complexes: the

Alexander-Whitney maps AWH associated to H can be obtained by composing the Alexander-

Whitney maps AWF and AWGi associated to F and Gi, respectively.

Example 1.2.3.26. Let A be a monoidal category. Assume that A is additive, idempotent com-

plete, and that the tensor product ⊗ : A×A → A preserves finite products separately in each

variable. Then the category of chain complexes Ch(A)≥0 inherits a monoidal structure (from the

construction described in Remark 1.2.3.21). The Alexander-Whitney construction supplies maps

N∗(A• ⊗B•)→ N∗(A•)⊗N∗(B•)

C∗(A• ⊗B•)→ C∗(A•)⊗ C∗(B•).
It follows from Remark 1.2.3.25 that these maps are compatible with the associativity constraints

for the tensor product operations on Fun(∆op,A) and Ch(A)≥0. In other words, the functors

N∗, C∗ : Fun(∆op,A) → Ch(A)≥0 can be promoted to left-lax monoidal functors, as defined in

§HTT.A.1.3 . It follows that the Dold-Kan equivalence DK : Ch(A)≥0 → Fun(∆op,A) is right-lax

monoidal (Definition HTT.A.1.3.5 ).

Example 1.2.3.27. Let Lat denote the category of lattices: that is, the full subcategory of the

category of abelian groups spanned by those abelian groups which are isomorphic to Zn for some

n ≥ 0. For any additive category A, there is an essentially unique multi-additive functor ⊗ :

Lat×A → A, which is given on objects by Zn⊗A ' An. If A is idempotent complete, the

Alexander-Whitney construction determines a map

N∗(L⊗A)→ N∗(L)⊗N∗(A),

for any simplicial objects L• and A• in Lat and A, respectively. It follows from Remark 1.2.3.25

that if L′• is another simplicial object of Lat, then the diagram

N∗(L
′ ⊗ L⊗A) //

��

N∗(L
′)⊗N∗(L⊗A)

��
N∗(L

′ ⊗ L)⊗N∗(A) // N∗(L
′)⊗N∗(L)⊗N∗(A)
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is commutative.

Proposition 1.2.3.28. Let F : A1× . . .×An → B be a multi-additive functor between idempotent

complete additive categories, and assume that B is abelian. For every collection of simplicial objects

Ai• of Ai, the Alexander-Whitney maps

AW : N∗(F (A1, . . . , An))→ Ch(F )≥0(N∗(A
1), . . . , N∗(A

n))

are quasi-isomorphisms.

Proof. Assume that n > 0 (otherwise the result is obvious) and fix m ≥ 0; we will show that AW

induces an isomorphism on homology in degrees ≤ m. Using Theorem 1.2.3.7, we can assume that

Ai• = DK•(X
i), where Xi

∗ is a chain complex in Ai for 1 ≤ i ≤ n. For k ∈ Z, let X(k)1
∗ denote the

quotient chain complex of X1
j , given by

X(k)1
j =

{
X1
j if j ≤ k

0 otherwise.

We have commutative diagrams

N∗(F (DK(X1), . . . ,DK(Xn)))
AW //

��

Ch(F )≥0(X1, . . . , Xn)

��
N∗(F (DK(X(k)1),DK(X2), . . . ,DK(Xn))) // Ch(F )≥0(X(k)1, X2, . . . , Xn)

where the vertical maps are isomorphisms in degrees < k. It will therefore suffice to show that the

lower horizontal map is a quasi-isomorphism for some k > m. We prove that the bottom horizontal

map is a quasi-isomorphism for all k, using induction on k. If k < 0, then both sides vanish and

there is nothing to prove. If k ≥ 0, then the inductive hypothesis allows us to reduce to proving

Proposition 1.2.3.28 after replacing X1
∗ by X(k)1

∗/X(k − 1)1
∗. In other words, we may assume that

the chain complex X1
∗ = M1[p1] consists of a single object M1 ∈ A1, concentrated in degree p1 = k.

Using the same argument, we may assume that each Xi
∗ 'M i[pi] for some M i ∈ Ai, pi ≥ 0. Then

Ch(F )≥0(X1, . . . , Xn) ' F (M1, . . . ,Mn)[p], where p = p1 + . . .+ pn.

Let us view B as tensored over the category of lattices Lat, as in Example 1.2.3.27. A

mild variant of Example 1.2.3.6 shows that the simplicial objectF (DK(X1), . . . ,DK(Xn)) can

be identified with F ({(Z ∆pi/Z ∂∆pi) ⊗M i}) ' Z(
∏
i ∆pi)/Z(∂

∏
i ∆pi) ⊗ F (M1, . . . ,Mn). Let

K =
∏

1≤i≤n ∆pi and let ∂ K denote the simplicial subset of K consisting of those simplices σ such

that for some 1 ≤ i ≤ n, the composite map σ → K → ∆pi is not surjective. Unwinding the defini-

tions, we see that the Alexander-Whitney map AW is obtained by tensoring F (M1, . . . ,Mn) ∈ B

with a map

θ : N∗(K)/N∗(∂ K)→ Z[p]
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of chain complexes of abelian groups. It will therefore suffice to show that θ admits a chain

homotopy inverse. Since the domain and codomain of θ are finite chain complexes of free abelian

groups, it will suffice to show that θ is a quasi-isomorphism. In other words, we must show

that the relative homology Hq(K, ∂ K) vanishes for q 6= p, and that θ induces an isomorphism

Hp(K, ∂ K) ' Z. This follows from a straightforward calculation.

1.2.4 The ∞-Categorical Dold-Kan Correspondence

Let A be an abelian category. Then the classical Dold-Kan correspondence (see [162]) asserts

that the category Fun(∆op,A) of simplicial objects of A is equivalent to the category Ch≥0(A) of

(homologically) nonnegatively graded chain complexes

. . .
d→ A1

d→ A0 → 0.

In this section, we will prove an analogue of this result when the abelian category A is replaced by

a stable ∞-category.

We begin by observing that if X• is a simplicial object in a stable ∞-category C, then X•
determines a simplicial object of the homotopy category hC. The category hC is not abelian, but

it is additive and has the following additional property (which follows easily from the fact that hC

admits a triangulated structure):

(∗) If i : X → Y is a morphism in hC which admits a left inverse, then there is an isomorphism

Y ' X ⊕X ′ such that i is identified with the map (id, 0).

These conditions are sufficient to construct a Dold-Kan correspondence in hC. Consequently, every

simplicial object X• of C determines a chain complex

. . .→ C1 → C0 → 0

in the homotopy category hC. In §1.2.2, we saw another construction which gives rise to the same

type of data. Namely, Lemma 1.2.2.4 and Remark 1.2.2.3 show that every Z≥0-filtered object

Y (0)
f1→ Y (1)

f2→ . . .

determines a chain complex C∗ with values in hC, where Cn = cofib(fn)[−n]. Thus, every Z≥0-

filtered object of C determines a simplicial object of the homotopy category hC. Our goal in this

section is to prove the following more precise result, whose proof will be given at the end of this

section:

Theorem 1.2.4.1 (∞-Categorical Dold-Kan Correspondence). Let C be a stable∞-category. Then

the ∞-categories Fun(N(Z≥0),C) and Fun(N(∆)op,C) are (canonically) equivalent to one another.
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Remark 1.2.4.2. Let C be a stable ∞-category. We may informally describe the equivalence of

Theorem 1.2.4.1 as follows. To a simplicial object X• of C, we assign the filtered object

D(0)→ D(1)→ D(2)→ . . .

where D(k) is the colimit of the k-skeleton of X•. In particular, the colimit lim−→D(j) can be

identified with geometric realizations of the simplicial object X•.

Remark 1.2.4.3. Let C be a stable ∞-category, and let X be a simplicial object of C. Using the

Dold-Kan correspondence, we can associate to X a chain complex

. . .→ C2 → C1 → C0 → 0

in the triangulated category hC. More precisely, for each n ≥ 0, let Ln ∈ C denote the nth

latching object of X (see §HTT.A.2.9 ), so that X determines a canonical map α : Ln → Xn. Then

Cn ' cofib(α), where the cofiber can be formed either in the ∞-category C or in its homotopy

category hC (since Ln is actually a direct summand of Xn).

Using Theorem 1.2.4.1, we can also associate to X a filtered object

D(0)→ D(1)→ D(2)→ . . .

of C. Using Lemma 1.2.2.4 and Remark 1.2.2.3, we can associate to this filtered object another

chain complex

. . .→ C ′1 → C ′0 → 0

with values in hC. For each n ≥ 0, let X(n) denote the restriction of X to N(∆op
≤n), and let X ′(n)

be a left Kan extension of X(n− 1) to N(∆op
≤n). Then we have a canonical map β : X ′(n)→ X(n),

which induces an equivalence X ′(n)m → X(n)m for m < n, while X ′(n)n can be identified with

the latching object Ln. Let X ′′(n) = cofib(β). Then X ′′(n)m = 0 for m < n, while X ′′(n)n ' Cn.

Corollary 1.2.4.18 determines a canonical isomorphism lim−→X ′′(n) ' Cn[n] in the homotopy category

hC. The map D(n− 1)→ D(n) can be identified with the composition

D(n− 1) ' lim−→X(n− 1) ' lim−→X ′(n)→ lim−→X(n) ' D(n).

It follows that C ′n ' cofib(D(n − 1) → D(n))[−n] ' X ′′(n)n[−n] is canonically isomorphic to Cn.

It is not difficult to show that these isomorphisms are compatible with the differentials, so that we

obtain an isomorphism of chain complexes C∗ ' C ′∗ with values in the triangulated category hC.

Remark 1.2.4.4. Let C be a stable∞-category equipped with a t-structure, whose heart is equiv-

alent to (the nerve of) an abelian category A. Let X• be a simplicial object of C, and let

D(0)→ D(1)→ D(2)→ . . .
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be the associated filtered object (Theorem 1.2.4.1). Using Definition 1.2.2.9 (and Lemma 1.2.2.4),

we can associate to this filtered object a spectral sequence {Ep,qr , dr}r≥1 in the abelian category A.

In view of Remarks 1.2.2.8 and 1.2.4.3, for each q ∈ Z we can identify the complex (E∗,q1 , d1) with

the normalized chain complex associated to the simplicial object πqX• of A.

In the situation of Remark 1.2.4.4, suppose that the ∞-category C admits small colimits and

that the t-structure on C is compatible with filtered colimits, so that the geometric realization

|X•| ' lim−→D(n) ∈ C is defined. Proposition 1.2.2.14 implies that the spectral sequence converges

to a filtration on the homotopy groups πp+q lim−→(D(n)) ' πp+q|X•|. If we assume that X• is a

simplicial object of C≥0, then we get a much stronger notion of convergence (which requires weaker

assumptions on C):

Proposition 1.2.4.5. Let C be a stable ∞-category equipped with a t-structure whose heart is

equivalent to the nerve of an abelian category A. Let X• be a simplicial object of C≥0, let D(0)→
D(1) → D(2) → . . . be the associated filtered object of C (Theorem 1.2.4.1), and let {Ep,qr , dr}r≥1

be the associated spectral sequence in A. Then:

(1) The objects Ep,q1 ∈ A vanish unless p, q ≥ 0.

(2) For each r ≥ 1, the objects Ep,qr vanish unless p, q ≥ 0.

(3) Fix p, q ≥ 0. For r > p, q + 1, we have canonical isomorphisms

Ep,qr ' E
p,q
r+1 ' E

p,q
r+2 ' · · ·

in the abelian category A. We let Ep,q∞ ∈ A denote the colimit of this sequence of isomorphisms,

so that Ep,q∞ ' Ep,qr′ for all r′ ≥ r.

(4) For 0 ≤ m ≤ n, we have cofib(D(m)→ D(n)) ∈ C≥m+1.

(5) Fix an integer n. The map πnD(k) → πnD(k + 1) is an epimorphism for k = n and an

isomorphism for k > n. In particular, we have isomorphisms

πnD(n+ 1) ' πnD(n+ 2) ' · · ·

We let An denote the colimit of this sequence of isomorphisms, so that we have isomorphisms

An ' πnD(k) for k > n.

(6) For each integer n ≥ 0, the object An ∈ A admits a finite filtration

0 = F−1An ⊆ F 0An ⊆ · · · ⊆ FnAn = An,

where F pAn is the image of the map πnD(p) → πnD(n + 1) ' An. We have canonical

isomorphisms F pAp+q/F
p−1Ap+q ' Ep,q∞ .
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(7) Suppose either that C admits countable colimits, or that C is left complete. Then the sim-

plicial object X• of C has a geometric realization X ∈ C≥0. Moreover, we have canonical

isomorphisms πnX ' An in the abelian category A.

Before giving the proof, we need a brief digression.

Lemma 1.2.4.6. Let C be a stable ∞-category. The following conditions are equivalent:

(1) The ∞-category C is idempotent complete.

(2) The homotopy category hC is idempotent complete.

Proof. We first show that (2) ⇒ (1). Assume that hC is idempotent complete, and suppose that

we are given an idempotent ρ : Idem → C (where Idem denotes the ∞-category of Definition

HTT.4.4.5.2 ), which determines an object X ∈ C and a map e : X → X such that e2 is homotopic

to e. We wish to show that ρ has a colimit in C. Choosing a left cofinal map N(Z≥0)→ Idem (see

Proposition HTT.4.4.5.17 ), we are reduced to showing that the diagram σ :

X
e→ X

e→ · · ·

has a colimit in C. Since e is idempotent in the homotopy category, assumption (2) implies that we

can write X as a direct sum X ′ ⊕X ′′, where e is given by composing the projection map X → X ′

with the inclusion X ′ → X. In this case, we can write σ as a direct sum of diagrams

X ′
id→ X ′

id→ X ′ → · · ·

X ′′
0→ X ′′

0→ X ′′ → · · · ,

each of which has a colimit in C.

We now show that (1) ⇒ (2). Without loss of generality, we may assume that C is given as a

full stable subcategory of a stable ∞-category D which admits sequential colimits (for example, if

C is small, we can take D = Ind(C); see Proposition 1.1.3.6). Let e : X → X be a morphism in C

which is idempotent in the homotopy category hC (so that e2 is homotopic to e). Let X ′ denote

the colimit (formed in the ∞-category D) of the sequence

X
e→ X

e→ X
e→ · · · .

For any object Y ∈ D, composition with e induces an idempotent map from the abelian group

Ext∗D(X,Y ) to itself. We may therefore write Ext∗D(X,Y ) as a direct sum Ext∗D(X,Y )+ ⊕
Ext∗D(X,Y )−, where composition with e induces the identity map on Ext∗D(X,Y )+ and vanishes

on Ext∗D(X,Y )−. In particular, the tower of abelian groups

· · · → Ext∗D(X,Y )
◦e→ Ext∗D(X,Y )

◦e→ Ext∗D(X,Y )
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splits as a direct sum of towers

· · · → Ext∗D(X,Y )+
id→ Ext∗D(X,Y )+

id→ Ext∗D(X,Y )+

· · · → Ext∗D(X,Y )−
0→ Ext∗D(X,Y )−

0→ Ext∗D(X,Y )−,

so that we have isomorphisms

lim←−
0{Ext∗D(X,Y )} ' Ext∗D(X,Y )+ lim←−

1{Ext∗D(X,Y )} ' 0.

It follows that composition with the canonical map X → X ′ induces an isomorphism from

Ext∗D(X ′, Y ) to the subgroup Ext∗D(X,Y )+ ⊆ Ext∗D(X,Y ). A similar calculation gives Ext∗D(X ′′, Y ) '
Ext∗D(X,Y )−, where X ′′ denotes the colimit of the sequence

X
1−e→ X

1−e→ X
1−e→ · · · .

In particular, we see that for each object Y ∈ D, the natural map f : X → X ′ ⊕ X ′′ induces an

isomorphism

Ext∗D(X ′, Y )⊕ Ext∗D(X ′′, Y )→ Ext∗D(X,Y ),

so that f is an equivalence. In particular, X ′, X ′′ ∈ D are retracts of X. Since C is idempotent

complete, we may assume without loss of generality thatX ′ andX ′′ belong to C, so that e determines

a splitting X ' X ′ ⊕X ′′ in the homotopy category hC.

Remark 1.2.4.7. Let C be a stable ∞-category, let X• be a simplicial object of C, let

D(0)→ D(1)→ . . .

be the associated filtered object. Let C∨ denote the idempotent completion of C. It follows from

Lemma 1.2.4.6 that the homotopy category hC∨ is an idempotent complete additive category. We

may therefore apply Theorem 1.2.4.1 to conclude that each Xn can be written as a finite coproduct

of objects of the form Σ−m cofib(D(m − 1) → D(m)), where 0 ≤ m ≤ n (here D(−1) ' 0 by

convention).

Warning 1.2.4.8. The proof of Lemma 1.2.4.6 shows that if an ∞-category C is stable, then any

idempotent in the homotopy category hC can be lifted to an idempotent in the ∞-category C.

Beware that the analogous statement is not true for a general ∞-category: see Counterexample

HTT.4.4.5.19 .

Proof of Proposition 1.2.4.5. To prove (1), we to observe that Ep,q1 is the pth term of the normalized

chain complex associated to the simplicial object πqX• in A. This homotopy group vanishes for

p < 0 because the chain complex is nonnegatively graded and for q < 0 because we have assumed



1.2. STABLE ∞-CATEGORIES AND HOMOLOGICAL ALGEBRA 71

that each Xn belongs to C≥0. Assertion (2) follows immediately from (1) using induction on r,

since Ep,qr+1 can be identified with the homology of the complex

Ep+r,q−r+1
r

dr→ Ep,qr
dr→ Ep−r,q+r−1

r .

If r > p and r > q + 1, then assertion (2) implies that the outer terms vanish, so that we have

isomorphisms Ep,qr ' Ep,qr+1 which proves (3). Note that Remark 1.2.4.7 shows that cofib(D(m) →
D(m+ 1)) ∈ C≥m+1 for each m ≥ 0. This proves (4) in the case n = m+ 1; the general case follows

by induction on n −m. Assertion (5) follows immediately from (4). If we define F pAn to be the

image of the map πnD(p)→ πnD(n+ 1) ' An, then we clearly have inclusions

· · · ⊆ F−1An ⊆ F 0An ⊆ · · · ⊆ FnAn ⊆ Fn+1An ⊆ · · ·

Since D(p) ' 0 for p < 0, we deduce that F pAn = 0 for p < 0. Similarly, the surjectivity of the

map πnD(n) → πnD(n + 1) shows that FnAn = An. To complete the proof of (6), we note that

Ep,q∞ can be described as the image of the morphism

θ : πp+q cofib(D(p− r)→ D(p))→ πp+q cofib(D(p− 1)→ D(p+ r − 1))

for r � 0. If r > p+ q + 1, then D(p− r) ' 0 and D(p+ r − 1) ' Ap+q, and we can describe Ep,qr
as the image of πp+qD(p) in the quotient coker(πp+qD(p − 1) → Ap+q) ' Ap+q/F

p−1Ap+q, which

is isomorphic to the quotient F pAp+q/F
p−1Ap+q.

It remains to prove (7). Assume first that C admits countable colimits. Then the existence of

X ' |X•| ' lim−→D(n) is obvious. Moreover, for each m ≥ 0, we deduce that

cofib(D(m)→ X) ' lim−→
n

cofib(D(m)→ D(n)) ∈ C≥m+1

(using (4)), so that πkX ' πkD(m) ' Ak for k < m. If we assume instead that C is left complete,

then we must work a bit harder. We first show that the sequence

D(0)→ D(1)→ D(2)→ · · ·

has a colimit in C. Since C is a homotopy limit of the tower of ∞-categories

· · · → C≤2 → C≤1 → C≤0

under (colimit-preserving) truncation functors, it will suffice to show that for each n ≥ 0, the

sequence

τ≤nD(0)→ τ≤nD(1)→ · · · → τ≤nD(k)→ · · ·

has a colimit in C≤n. This is clear, since assertion (4) implies that this sequence is eventually

constant. This proves the existence of X ' lim−→D(n). Moreover, for every integer n, we have

πnX ' πn(τ≤nX) ' πn(τ≤nD(k)) ' πnD(k) for k � 0, which provides the desired isomorphisms

πnX ' An.
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Variant 1.2.4.9. Let C be a stable ∞-category equipped with a t-structure, and let X• :

N(∆s)
op → C be a semisimplicial object of C. Let Y• : N(∆)op → C be the simplicial object of

C obtained by the process of left Kan extension, and let {Ep,qr , dr}r≥1 be the spectral sequence

associated to Y• by the construction of Remark 1.2.4.4. Unwinding the definitions, we see that for

every integer q, {E∗,q1 } is the unnormalized chain complex associated to the semisimplicial object

πqX• of the heart of C. More precisely, we have canonical isomorphisms Ep,q1 ' πqXp, and the

differential d1 : Ep,q1 → Ep−1,q
1 is the alternating sum of the face maps πqXp → πqXp−1 induced by

the inclusions [p− 1] ↪→ [p].

Example 1.2.4.10. Let C be a stable ∞-category with a left complete t-structure, and let X•
be a semisimplicial object of the heart of C. Proposition 1.2.4.5 implies that X• admits a colimit

X ∈ C≥0, whose homotopy groups πqX are given by the homologies of the unnormalized chain

complex

· · · → π0X2 → π0X1 → π0X0.

Corollary 1.2.4.11. Let C be a stable ∞-category equipped with a left complete t-structure, whose

heart is equivalent to (the nerve of) an abelian category A. Let X• be a semisimplicial object of

C≥0, and assume that for every integer q the unnormalized chain complex

· · · → πqX2 → πqX1
θq→ πqX0

is an acyclic resolution of the object Aq = coker(θq) ∈ A. Then:

(1) There exists a geometric realization X = |X•| in C.

(2) The object X belongs to C≥0, and for q ≥ 0 the canonical map πqX0 → πqX induces an

isomorphism Aq ' πqX.

Proof. Combine Proposition 1.2.4.5 with Variant 1.2.4.9.

Corollary 1.2.4.12. Let C be a stable ∞-category equipped with a t-structure which is both right

and left complete whose heart is equivalent to (the nerve of) an abelian category A. Let X• be a

semisimplicial object of C, and assume that for every integer q ≥ 0 the unnormalized chain complex

· · · → πqX2 → πqX1
θq→ πqX0

is an acyclic resolution of the object Aq = coker(θq) ∈ A. Then:

(1) There exists a geometric realization X = |X•| in C.

(2) For every integer q, the canonical map πqX0 → πqX induces an isomorphism Aq ' πqX.
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Proof. Since C is right complete, we can write X• as the colimit of a sequence of semisimplicial

objects τ≥−nX•. Using Corollary 1.2.4.11, we deduce that each of the semisimplicial objects τ≥−nX•
admits a geometric realization X(−n) ∈ C≥−n, whose homotopy group objects are given by

πqX(−n) '

{
Aq if q ≥ −n
0 if q < −n.

The right completeness of C shows that the sequence

X(0)→ X(−1)→ X(−2)→ · · ·

has a colimit X ∈ C such that, for each n ≥ 0, the map X(−n) → X induces an equivalence

X(−n) ' τ≥−nX; in particular, we canonical isomorphisms πqX ' πqX(−n) ' Aq for any n ≥ −q.
It follows from Lemma HTT.5.5.2.3 that we can identify X with a geometric realization |X•|.

We now turn to the proof of Theorem 1.2.4.1. Recall that if C is a stable ∞-category, then a

diagram ∆1×∆1 → C is a pushout square if and only if it is a pullback square (Proposition 1.1.3.4).

The main step in the proof of Theorem 1.2.4.1 is the following generalization of Proposition 1.1.3.4

to cubical diagrams of higher dimension:

Proposition 1.2.4.13. Let C be a stable ∞-category, and let σ : (∆1)n → C be a diagram. Then

σ is a colimit diagram if and only if σ is a limit diagram.

The proof will require a few preliminaries.

Lemma 1.2.4.14. Let C be a stable ∞-category. A square

X ′ //

f ′

��

X

f
��

Y ′ // Y

in C is a pullback if and only if the induced map α : cofib(f ′)→ cofib(f) is an equivalence.

Proof. Form an expanded diagram

X ′ //

f ′

��

X //

f

��

0

��
Y ′ // Y // cofib(f)

where the right square is a pushout. Since C is stable, the right square is also a pullback. Lemma

HTT.4.4.2.1 implies that the left square is a pullback if and only if the outer square is a pullback,

which is in turn equivalent to the assertion that α is an equivalence.
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Lemma 1.2.4.15. Let C be a stable ∞-category, let K be a simplicial set, and suppose that C

admits K-indexed colimits. Let α : K. × ∆1 → C be a natural transformation between a pair of

diagrams p, q : K. → C. Then α is a colimit diagram if and only if cofib(α) : K. → C is a colimit

diagram.

Proof. Let p = p|K, q = q|K, and α = α|K ×∆1. Since C admits K-indexed colimits, there exist

colimit diagrams p′, q′ : K. → C extending p and q, respectively. We obtain a square

p′

��

// p

��
q′ // q

in the∞-category Fun(K.,C). Let∞ denote the cone point of K.. Using Corollary HTT.4.2.3.10 ,

we deduce that α is a colimit diagram if and only if the induced square

p′(∞) //

f ′

��

p(∞)

f

��
q′(∞) // q(∞)

is a pushout. According to Lemma 1.2.4.14, this is equivalent to the assertion that the induced

map β : cofib(f ′)→ cofib(f) is an equivalence. We conclude by observing that β can be identified

with the natural map

lim−→(cofib(α))→ cofib(α)(∞),

which is an equivalence if and only if cofib(α) is a colimit diagram.

Proof of Proposition 1.2.4.13. By symmetry, it will suffice to show that if σ is a colimit diagram,

then σ is also a limit diagram. We work by induction on n. If n = 0, then we must show that

every initial object of C is also final, which follows from the assumption that C has a zero object.

If n > 0, then we may identify σ with a natural transformation α : σ′ → σ′′ in the ∞-category

Fun((∆1)n−1,C). Assume that σ is a colimit diagram. Using Lemma 1.2.4.15, we deduce that

cofib(α) is a colimit diagram. Since cofib(α) ' fib(α)[1], we conclude that fib(α) is a colimit

diagram. Applying the inductive hypothesis, we deduce that fib(α) is a limit diagram. The dual

of Lemma 1.2.4.15 now implies that σ is a limit diagram, as desired.

We now turn to the proof of Theorem 1.2.4.1 itself.

Lemma 1.2.4.16. Fix n ≥ 0, and let S be a subset of the open interval (0, 1) of cardinality ≤ n.

Let Y be the set of all sequences of real numbers 0 ≤ y1 ≤ . . . ≤ yn ≤ 1 such that S ⊆ {y1, . . . , yn}.
Then Y is a contractible topological space.
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Proof. Let S have cardinality m ≤ n, and let Z denote the set of sequences of real numbers

0 ≤ z1 ≤ . . . ≤ zn−m ≤ 1. Then Z is homeomorphic to a topological (n −m)-simplex. Moreover,

there is a homeomorphism f : Z → Y , which carries a sequence {zi} to a suitable reordering of the

sequence {zi} ∪ S.

Lemma 1.2.4.17. Let n ≥ 0, let ∆≤n denote the full subcategory of ∆ spanned by the objects

{[m]}0≤m≤n, and let I denote the full subcategory of (∆≤n)/[n] spanned by the injective maps [m]→
[n]. Then the induced map

N(I)→ N(∆≤n)

is right cofinal.

Proof. Fix m ≤ n, and let J denote the category of diagrams

[m]← [k]
i→ [n]

where i is injective. According to Theorem HTT.4.1.3.1 , it will suffice to show that the simplicial

set N(J) is weakly contractible (for every m ≤ n).

Let X denote the simplicial subset of ∆m × ∆n spanned by those nondegenerate simplices

whose projection to ∆n is also nondegenerate. Then N(J) can be identified with the barycentric

subdivision of X. Consequently, it will suffice to show that the topological space |X| is contractible.

For this, we will show that the fibers of the map φ : |X| → |∆m| are contractible.

We will identify the topological m-simplex |∆m| with the set of all sequences of real numbers

0 ≤ x1 ≤ . . . ≤ xm ≤ 1. Similarly, we may identify points of |∆n| with sequences 0 ≤ y1 ≤ . . . ≤
yn ≤ 1. A pair of such sequences determines a point of X if and only if each xi belongs to the

set {0, y1, . . . , yn, 1}. Consequently, the fiber of φ over the point (0 ≤ x1 ≤ . . . ≤ xm ≤ 1) can be

identified with the set

Y = {0 ≤ y1 ≤ . . . ≤ yn ≤ 1 : {x1, . . . , xm} ⊆ {0, y1, . . . , yn, 1}} ⊆ |∆n|,

which is contractible (Lemma 1.2.4.16).

Corollary 1.2.4.18. Let C be a stable ∞-category, and let F : N(∆≤n)op → C be a functor such

that F ([m]) ' 0 for all m < n. Then there is a canonical isomorphism lim−→(F ) ' X[n] in the

homotopy category hC, where X = F ([n]).

Proof. Let I be as in Lemma 1.2.4.17, let G′′ denote the composition N(I)op → N(∆≤n)op
F→ C, and

let G denote the constant map N(I)op → C taking the value X. Let I0 denote the full subcategory

of I obtained by deleting the final object. There is a canonical map α : G → G′′, and G′ = fib(α)

is a left Kan extension of G′|N(I0)op. We obtain a fiber sequence

lim−→(G′)→ lim−→(G)→ lim−→(G′′)
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in the homotopy category hC. Lemma 1.2.4.17 yields an equivalence lim−→(F ) ' lim−→(G′′), and Lemma

HTT.4.3.2.7 implies the existence of an equivalence lim−→(G′) ' lim−→(G′|N(I0)op).

We now observe that the simplicial set N(I)op can be identified with the barycentric subdivision

of the standard n-simplex ∆n, and that N(I0)op can be identified with the barycentric subdivision

of its boundary ∂∆n. It follows (see §HTT.4.4.4 ) that we may identify the map lim−→(G′)→ lim−→(G)

with the map β : X ⊗ (∂∆n)→ X ⊗∆n. The cofiber of β is canonically isomorphic (in hC) to the

n-fold suspension X[n] of X.

Lemma 1.2.4.19. Let C be a stable ∞-category, let n ≥ 0, and let F : N(∆+,≤n)op → C be a

functor (here ∆+,≤n denotes the full subcategory of ∆+ spanned by the objects {[k]}−1≤k≤n ). The

following conditions are equivalent:

(i) The functor F is a left Kan extension of F |N(∆≤n)op.

(ii) The functor F is a right Kan extension of F |N(∆+,≤n−1)op.

Proof. Condition (ii) is equivalent to the assertion that the composition

F ′ : N(∆op
+,≤n−1)/[n]/ → N(∆op

+,≤n)
F→ C

is a limit diagram. Let J denote the full subcategory of N(∆op
+,≤n−1)[n]/ spanned by those maps

[i] → [n] which are injective. The inclusion J ↪→ N(∆op
+,≤n)[n]/ admits a right adjoint, and is

therefore right cofinal. Consequently, condition (ii) is equivalent to the requirement that the

restriction F ′| J/ is a limit diagram. Since J/ is isomorphic to (∆1)n+1, Proposition 1.2.4.13 asserts

that F ′| J/ is a limit diagram if and only if F ′| J/ is a colimit diagram. In view of Lemma 1.2.4.17,

F ′| J/ is a colimit diagram if and only if F is a colimit diagram, which is equivalent to (i).

Proof of Theorem 1.2.4.1. Our first step is to describe the desired equivalence in more precise

terms. Let I+ denote the full subcategory of N(Z≥0) × N(∆+)op spanned by those pairs (n, [m]),

where m ≤ n, and let I be the full subcategory of I+ spanned by those pairs (n, [m]) where

0 ≤ m ≤ n. We observe that there is a natural projection p : I → N(∆)op, and a natural

embedding i : N(Z≥0)→ I+, which carries n ≥ 0 to the object (n, [−1]).

Let Fun0(I,C) denote the full subcategory of Fun(I,C) spanned by those functors F : I→ C such

that, for every s ≤ m ≤ n, the image under F of the natural map (m, [s])→ (n, [s]) is an equivalence

in C. Let Fun0(I+,C) denote the full subcategory of Fun(I+,C) spanned by functors F+ : I+ → C

such that F = F+| I belongs to Fun0(I,C), and F+ is a left Kan extension of F . Composition with

p, composition with i, and restriction from I+ to I yields a diagram of ∞-categories

Fun(N(∆)op,C)
G→ Fun0(I,C)

G′← Fun0(I+,C)
G′′→ Fun(N(Z≥0),C).

We will prove that G, G′, and G′′ are equivalences of ∞-categories.
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To show that G is an equivalence of ∞-categories, we let I≤k denote the full subcategory of I

spanned by pairs (n, [m]) where m ≤ n ≤ k, and let Ik denote the full subcategory of I spanned

by those pairs (n, [m]) where m ≤ n = k. Then the projection p restricts to an equivalence

Ik → N(∆≤k)
op. Let Fun0(I≤k,C) denote the full subcategory of Fun(I≤k,C) spanned by those

functors F : I≤k → C such that, for every s ≤ m ≤ n ≤ k, the image under F of the natural map

(m, [s])→ (n, [s]) is an equivalence in C. We observe that this is equivalent to the condition that F

be a right Kan extension of F | Ik. Using Proposition HTT.4.3.2.15 , we deduce that the restriction

map r : Fun0(I≤k,C) → Fun(Ik,C) is an equivalence of ∞-categories. Composition with p induces

a functor Gk : Fun(N(∆≤k)
op,C) → Fun0(I≤k,C) which is a section of r. It follows that Gk is an

equivalence of ∞-categories. We can identify G with the homotopy inverse limit of the functors

lim←−(Gk), so that G is also an equivalence of ∞-categories.

The fact that G′ is an equivalence of ∞-categories follows immediately from Proposition

HTT.4.3.2.15 , since for each n ≥ 0 the simplicial set I/(n,[−1]) is finite and C admits finite colimits.

We now show that G′′ is an equivalence of ∞-categories. Let I
≤k
+ denote the full subcategory

of I+ spanned by pairs (n, [m]) where either m ≤ n ≤ k or m = −1. We let D(k) denote the

full subcategory of Fun(I≤k+ ,C) spanned by those functors F : I≤k+ → C with the following pair of

properties:

(i) For every 0 ≤ s ≤ m ≤ n ≤ k, the image under F of the natural map (m, [s])→ (n, [s]) is an

equivalence in C.

(ii) For every n ≤ k, F is a left Kan extension of F | I≤k at (n, [−1]).

Then Fun0(I+,C) is the inverse limit of the tower of restriction maps

. . .→ D(1)→ D(0)→ D(−1) = Fun(N(Z≥0),C).

To complete the proof, we will show that for each k ≥ 0, the restriction map D(k)→ D(k− 1) is a

trivial Kan fibration.

Let I
≤k
0 be the full subcategory of I≤k+ obtained by removing the object (k, [k]), and let D′(k)

be the full subcategory of Fun(I≤k0 ,C) spanned by those functors F which satisfy condition (i) and

satisfy (ii) for n < k. We have restriction maps

D(k)
θ→ D′(k)

θ′→ D(k − 1).

We observe that a functor F : I≤k0 → C belongs to D′(k) if and only if F | I≤k−1
+ belongs to D(k−1)

and F is a left Kan extension of F | I≤k−1
+ . Using Proposition HTT.4.3.2.15 , we conclude that θ′ is

a trivial Kan fibration.

We will prove that θ is a trivial Kan fibration by a similar argument. According to Proposition

HTT.4.3.2.15 , it will suffice to show that a functor F : I≤k+ → C belongs to D(k) if and only if

F | I≤k0 belongs to D′(k) and F is a right Kan extension of F | I≤k0 . This follows immediately from

Lemma 1.2.4.19 and the observation that the inclusion Ik ⊆ I≤k is left cofinal.
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1.3 Homological Algebra and Derived Categories

Homological algebra provides a rich supply of examples of stable ∞-categories. Suppose that A is

an abelian category with enough projective objects. In §1.3.2, we will explain how to associate to A

an ∞-category D−(A), which we call the derived ∞-category of A, whose objects can be identified

with (right-bounded) chain complexes with values in A. The ∞-category D−(A) is stable, and its

homotopy category hD−(A) can be identified (as a triangulated category) with the usual derived

category of A (as defined, for example, in [162]). Our construction of D−(A) uses a variant of the

homotopy coherent nerve which is defined for differential graded categories, which we describe in

§1.3.1.

As we mentioned in §1.2, the stable ∞-category D−(A) is equipped with a t-structure, and

there is a canonical equivalence of abelian categories A → D−(A)
♥

. In §1.3.3, we will show that

D−(A) is universal with respect to these properties. More precisely, if C is any stable ∞-category

equipped with a left-complete t-structure, then any right exact functor A → C♥ extends (in an

essentially unique way) to an exact functor D−(A) → C (Proposition 1.3.3.12). This observation

can be regarded as providing an abstract approach to the theory of derived functors (see Example

1.3.3.4).

By an entirely parallel discussion, if A is abelian category with enough injective objects, we

can associate to A a left-bounded derived ∞-category D+(A). This case is in some sense more

fundamental: a theorem of Grothendieck asserts that if A is a presentable abelian category in which

filtered colimits are exact, then A has enough injective objects (Corollary 1.3.5.7). In §1.3.5, we

will explain how to associate to such an abelian category an unbounded derived ∞-category D(A),

which contains D+(A) as a full subcategory (as well as D−(A), in case A has enough projective

objects). The ∞-category D(A) can be realized as the underlying ∞-category of a combinatorial

model category A (whose underlying category is the category of unbounded chain complexes in A).

Here some words of caution are in order: A is not a simplicial model category in an obvious way, so

that the results of [98] do not apply to A directly. We therefore devote §1.3.4 to a general discussion

of ∞-categories obtained from arbitrary model categories (or, more generally, categories equipped

with a distinguished class of weak equivalences or quasi-isomorphisms) which are not assumed to

be simplicial.

Remark 1.3.0.1. The derived category of an abelian category was introduced in Verdier’s thesis

([157]). A good introductory reference is [162].

1.3.1 Nerves of Differential Graded Categories

Let A be an additive category. Then the collection of chain complexes with values in A can be

organized into an ∞-category C, which may described informally as follows:
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• The objects of C are chain complexes

· · · →M1 →M0 →M−1 → · · ·

with values in C.

• Given objects M∗, N∗ ∈ C, morphisms from M∗ to N∗ are given by chain complex homomor-

phisms f : M∗ → N∗.

• Given a pair of morphisms f, g : M∗ → N∗ in C, 2-morphisms from f to g are given by chain

homotopies: that is, collections of maps hn : Mn → Nn+1 satisfying d ◦hn +hn−1 ◦ d = f − g.

• . . .

To make this description precise, we could proceed in several steps:

(1) Let Ch(A) denote the ordinary category introduced in Definition 1.2.3.1: the objects of Ch(A)

are chain complexes with values in A, and the morphisms in Ch(A) are morphisms of chain

complexes.

(2) To every pair of objects M∗, N∗ ∈ Ch(A), we can associate a chain complex of abelian groups

MapCh(A)(M∗, N∗), whose homology groups Hm(MapCh(A)(M∗, N∗)) are isomorphic to the

group of chain homotopy classes of maps from M∗ into the shifted chain complex N∗[m] (see

Definition 1.3.2.1). By means of this observation, we can regard Ch(A) as enriched over the

category Ch(Ab) of chain complexes of abelian groups.

(3) The truncation functor τ≥0 is a right-lax monoidal functor from the category Ch(Ab) to the

category Ch(Ab)≥0 of nonnegative graded chain complexes of abelian groups. Applying τ≥0

objectwise to the morphism objects in Ch(A), we can regard Ch(A) as enriched over the

category Ch(Ab)≥0 of nonnegatively graded chain complexes.

(4) The Dold-Kan correspondence supplies an equivalence of Ch(Ab)≥0 with the category of sim-

plicial abelian groups (Theorem 1.2.3.7). By means of the Alexander-Whitney construction,

we can regard DK as a right-lax monoidal functor. We may therefore regard the category

Ch(A) as enriched over the category of Fun(∆op,Ab) of simplicial abelian groups.

(5) Using the forgetful functor from simplicial abelian groups to simplicial sets, we can regard

Ch(A) as a simplicial category. Since every simplicial abelian group is automatically a Kan

complex (Corollary 1.3.2.12), Ch(A) is automatically fibrant when viewed as a simplicial

category.

(6) Applying the homotopy coherent nerve construction (Definition HTT.1.1.5.5 ) to the simplicial

category Ch(A), we obtain an ∞-category N(Ch(A)).
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However, this turns out to be unnecessarily complicated. In this section, we will explain how

to eliminate steps (3), (4), and (5). That is, we describe how to proceed directly from a category E

enriched over Ch(Ab) to an∞-category Ndg(E), which we call the differential graded nerve of E. Our

main result is that the result of this procedure is canonically equivalent (though not isomorphic)

to the homotopy coherent nerve of simplicial category obtained by applying steps (3), (4), and (5)

(Proposition 1.3.1.17).

We begin with some general definitions.

Definition 1.3.1.1. Let k be a commutative ring. A differential graded category C over k consists

of the following data:

• A collection {X,Y, . . .}, whose elements are called the objects of C.

• For every pair of objects X and Y , a chain complex of k-modules

· · · → MapC(X,Y )1 → MapC(X,Y )0 → MapC(X,Y )−1 → · · · ,

which we will denote by MapC(X,Y )∗.

• For every triple of objects X, Y , and Z, a composition map

MapC(Y,Z)∗ ⊗k MapC(X,Y )∗ → MapC(X,Z)∗,

which we can identify with a collection of k-bilinear maps

◦ : MapC(Y,Z)p ×MapC(X,Y )q → MapC(X,Z)p+q

satisfying the Leibniz rule d(g ◦ f) = dg ◦ f + (−1)pg ◦ df .

• For each object X ∈ C, an identity morphism idX ∈ MapC(X,X)0 such that

g ◦ idX = g idX ◦f = f

for all f ∈ MapC(Y,X)p, g ∈ MapC(X,Y )q.

The composition law is required to be associative in the following sense: for every triple f ∈
MapC(W,X)p, g ∈ MapC(X,Y )q, and h ∈ MapC(Y,Z)r, we have

(h ◦ g) ◦ f = h ◦ (g ◦ f).

In the special case where k = Z is the ring of integers, we will refer to a differential graded

category over k simply as a differential graded category.

Remark 1.3.1.2. Let C be a differential graded category. For every object X of C, the identity

morphism idX is a cycle: that is, d idX = 0. This follows from the Leibniz rule

d idX = d(idX ◦ idX) = (d idX) ◦ idX + idX ◦(d idX) = 2d idX .
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Remark 1.3.1.3. Let φ : k → k′ be a homomorphism of commutative rings. Then every differential

graded category over k′ can be regarded as a differential graded category over k by neglect of

structure. In particular, every differential graded category over a commutative ring k can be

regarded as a differential graded category over the ring of integers Z.

Remark 1.3.1.4. If k is a commutative ring, we can identify differential graded categories over k

with categories enriched over the category Ch(k) of chain complexes of k-modules. In particular,

every differential graded category C can be regarded as an ordinary category, with morphisms given

by HomC(X,Y ) = {f ∈ MapC(X,Y )0 : df = 0}.

Remark 1.3.1.5. Let C be a differential graded category. There is another category canonically

associated to C, called the homotopy category of C and denoted by hC. It may be defined precisely

as follows:

• The objects of hC are the objects of C.

• The morphisms in hC are given by the formula

HomhC(X,Y ) = H0(MapC(X,Y )∗) = coker(d : MapC(X,Y )1 → HomC(X,Y )).

That is, a morphism in hC is given by an equivalence class [f ] of 0-cycles f ∈ MapC(X,Y )0,

where two 0-cycles f, g ∈ MapC(X,Y )0 are regarded as equivalent if there exists an element

z ∈ MapC(X,Y )1 with dz = f − g.

• Composition of morphisms in hC is characterized by the formula [f ◦ g] = [f ] ◦ [g].

Construction 1.3.1.6. Let C be a differential graded category. We will associate to C a simplicial

set Ndg(C), which we call the differential graded nerve of C. For each n ≥ 0, we define Ndg(C)n '
HomSet∆

(∆n,Ndg(C)) to be the set of all ordered pairs ({Xi}0≤i≤n, {fI}), where:

(a) For 0 ≤ i ≤ n, Xi denotes an object of the differential graded category C.

(b) For every subset I = {i− < im < im−1 < · · · < i1 < i+} ⊆ [n] with m ≥ 0, fI is an element

of the abelian group MapC(Xi− , Xi+)m, satisfying the equation

dfI =
∑

1≤j≤m
(−1)j(fI−{ij} − f{ij<...<i1<i+} ◦ f{i−<im<...<ij}). (1.1)

If α : [m]→ [n] is a nondecreasing function, then the induced map Ndg(C)n → Ndg(C)m is given by

({Xi}0≤i≤n, {fI}) 7→ ({Xα(j)}0≤j≤m, {gJ}),

where gJ =


fα(J) if α|J is injective

idXi if J = {j, j′} with α(j) = α(j′) = i

0 otherwise.
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Remark 1.3.1.7. The theory of differential graded categories can be regarded as a special case of

the more general theory of A∞-categories (see [132] for an exposition). Construction 1.3.1.6 (and

many of the results proven below) can be generalized to the case of an A∞-category C: for this, one

needs to replace equation 1.1 by a more elaborate version, involving the higher-order multiplications

on C.

Example 1.3.1.8. Let C be a differential graded category. Then:

• A 0-simplex of Ndg(C) is simply an object of C.

• A 1-simplex of Ndg(C) is a morphism of C: that is, a pair of objects X,Y ∈ C together with

an element f ∈ MapC(X,Y )0 satisfying df = 0.

• A 2-simplex of Ndg(C) consists of a triple of objects X,Y, Z ∈ C, a triple of morphisms

f ∈ MapC(X,Y )0 g ∈ MapC(Y, Z)0 h ∈ MapC(X,Z)0

satisfying df = dg = dh = 0, together with an element z ∈ MapC(X,Z)1 with dz = (g◦f)−h.

Remark 1.3.1.9. Let C be a differential graded category and let C0 denote its underlying ordinary

category (see Remark 1.3.1.4). Then the simplicial set N(C0) is isomorphic to the simplicial subset of

the differential graded nerve Ndg(C) whose n-simplices are given by pairs ({Xi}0≤i≤n, {fI}), where

fI = 0 whenever the set I has more than two elements. In particular, the map N(C0)→ Ndg(C) is

bijective on n-simplices for n ≤ 1.

Proposition 1.3.1.10. Let C be a differential graded category. Then the simplicial set Ndg(C) is

an ∞-category.

Proof. Suppose we are given 0 < j < n and a map φ0 : Λnj → Ndg(C); we wish to show that φ0

can be extended to an n-simplex of Ndg(C). Unwinding the definitions, we see that φ0 can be

identified with the data of a pair ({Xi}0≤i≤n, {fI}), where {Xi}0≤i≤n is a collection of objects of C

and fI ∈ MapC(Xi0 , Xim)m−1 is defined for every subset I = {i− < im < . . . < i1 < i+} ⊆ [n] with

m ≥ 0 and I 6= [n], [n]−{j}, satisfying the equation 1.1 of Construction 1.3.1.6. This data extends

uniquely to an n-simplex ({Xi}, {fI}) of Ndg(C) satisfying f[n] = 0, if we set

f[n]−{j} =
∑

0<p<n

(−1)p−jf{p,p+1,...,n} ◦ f{0,...,p} −
∑

0<p<n,p 6=j
(−1)p−jf[n]−{p}

f[n] = 0.
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Remark 1.3.1.11. Let C be a differential graded category. Then the homotopy category hC of

Remark 1.3.1.5 is canonically isomorphic to the homotopy category hNdg(C) of the ∞-category

Ndg(C). To see this, let C0 be the underlying category of C. Remark 1.3.1.9 supplies a map

C0 ' hN(C0 )→ hNdg(C)

which is bijective on objects and surjective on morphisms. It therefore suffices to show that for

every pair of objects X,Y ∈ C, the induced equivalence relation on HomC0(X,Y ) agrees with the

relation of homology (that is, two cycles f, g ∈ MapC(X,Y )0 are homologous if and only if f−g = dz

for some z ∈ MapC(X,Y )1). This follows immediately from the description of the 2-simplices in

Ndg(C) supplied by Example 1.3.1.8.

Remark 1.3.1.12. Let D be an ∞-category. Recall that for X,Y ∈ D, the mapping space

HomR
C (X,Y ) is defined as the simplicial set whose n-simplices are maps ∆n+1 → D which carry

the simplicial subset ∆n ⊆ ∆n+1 to the vertex X and the opposite vertex {n + 1} ⊆ ∆n+1 to the

vertex Y . Let C be a differential graded category containing objects X and Y . Unwinding the

definitions, we see that an n-simplex of HomR
Ndg(C)(X,Y ) is determined by specifying, for every

subset I = {im < im−1 < . . . < i0 < n+ 1} ⊆ [n+ 1] with m ≥ 0, an element fI ∈ MapC(X,Y )m,

satisfying the equations

−dfI =
∑

0≤j≤m
(−1)jfI−{ij}.

After a change of signs, we can identify n-simplices of HomR
Ndg(C)(X,Y ) with chain complex homo-

morphisms N∗(Z ∆n) → MapC(X,Y )∗. This identification is functorial in ∆n, and (using Lemma

1.2.3.12) yields an isomorphism of simplicial sets

HomR
Ndg(C)(X,Y ) ' DK•(τ≥0 MapC(X,Y )),

where DK• denotes the functor given by the Dold-Kan correspondence (see Construction 1.2.3.5).

Our next goal is to compare the formation of differential graded nerves of differential graded

categories (Construction 1.3.1.6) with the formation of homotopy coherent nerves of simplicial

categories (§HTT.1.1.5 ).

Construction 1.3.1.13. Let Ab denote the category of abelian groups. Using the Alexander-

Whitney construction, we see that the composite functor

Ch(Ab)
τ≥0→ Ch(Ab)≥0

DK−→ Fun(∆op,Ab)→ Fun(∆op, Set) = Set∆

is right-lax monoidal (see Example 1.2.3.26). In particular, every differential graded category C

determines a simplicial category C∆, which may be described more concretely as follows:

• The objects of C∆ are the objects of C.
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• Given objects X,Y ∈ C, the mapping space MapC∆
(X,Y ) is the underlying simplicial set of

the simplicial abelian group DK•(τ≥0 MapC(X,Y )∗).

We will refer to C∆ as the underlying simplicial category of C.

Remark 1.3.1.14. For every differential graded category C, the underlying simplicial category C∆

is automatically fibrant (see Remark 1.2.3.14).

Notation 1.3.1.15. Let C be a simplicial category. Recall that the simplicial set N(C) is defined

by the formula

N(C)n = HomCat∆
(C[∆n],C),

where C[∆n] denotes the category with set of objects {0, 1, . . . , n} and

MapC[∆n](i, j) =

{
∅ if i > j

N(Pi,j) if i ≤ j,

where Pi,j is the partially ordered set consisting of those subsets S ⊆ [n] having least element i

and greatest element j. Composition in C[∆n] is induced by the maps Pi,j × Pj,k → Pi,k given by

(S, T ) 7→ S ∪ T .

Let I = {i− < im < . . . < i1 < i+} be a subset of [n] and let σ ∈ Σm be a permutation of the

set {1, . . . ,m}. We let τI,σ denote the m-simplex of MapC[∆n](i−, i+) given by the chain

{i−, i+} ⊂ {i−, iσ(1), i+} ⊂ {i−, iσ(1), iσ(2), i+} ⊂ · · · ⊂ {i−, iσ(1), . . . , iσ(m), i+}

in the partially ordered set Pi−,i+ .

Construction 1.3.1.16. Let C be a differential graded category. For every n-simplex τ ∈
MapC∆

(X,Y )n, we let [τ ] ∈ MapC(X,Y )n denote the corresponding n-chain. Let α : C[∆n] → C∆

be a functor of simplicial categories. For every subset I = {i− < im < . . . < i1 < i+} ⊆ [n], we set

fI =
∑
σ∈Σm

(−1)σ[α(τI,σ)] ∈ MapC(α(i−), α(i+))m

where τI,σ is defined as in Notation 1.3.1.15 and (−1)σ denotes the sign of the permutation σ. A

straightforward calculation shows that

dfI =
∑

1≤j≤m
(−1)j(f{ij<...<im<i+} ◦ f{i−<i1<...<ij} − fI−{ij}),

so that we can regard the pair ({α(i)}0≤i≤n, {fI}) as an n-simplex of Ndg(C). This construction

determines a map of sets N(C∆)n → Ndg(C)n which depends functorially on the linearly ordered

set [n], and therefore defines a functor of ∞-categories N(C∆)→ Ndg(C).
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If C is a differential graded category, then the map N(C∆) → Ndg(C) of Construction 1.3.1.16

is bijective when restricted to simplices of dimension ≤ 2. It is generally not an isomorphism.

However, we do have the following result:

Proposition 1.3.1.17. Let C be a differential graded category. Then the functor θ : N(C∆) →
Ndg(C) of Construction 1.3.1.16 is an equivalence of ∞-categories.

Proof. Since θ is bijective on vertices, it will suffice to show that θ is fully faithful. Choose objects

X,Y ∈ C; we claim that θ induces a homotopy equivalence of Kan complexes φ : HomR
N(C∆)(X,Y )→

HomR
Ndg(C)(X,Y ). Let Q• be the cosimplicial object of Set∆ defined in §HTT.2.2.2 , so that we have

a canonical isomorphism of simplicial sets

HomR
N(C∆)(X,Y ) ' SingQ• MapC∆

(X,Y ) ' SingQ• DK•(τ≥0 MapC(X,Y )∗)

(see Proposition HTT.2.2.2.13 ). Remark 1.3.1.12 yields an isomorphism of simplicial sets

HomR
Ndg(C)(X,Y ) ' DK•(τ≥0 MapC(X,Y )∗). Let ∆• denote the cosimplicial object of Set∆ given

by [n] 7→ ∆n, so that we have a map Q• → ∆• of cosimplicial objects of Set∆ (see Proposi-

tion HTT.2.2.2.7 ) which induces a map ψZ : Z → SingQ• Z for every simplicial set Z. When

Z = DK•(τ≥0 MapC(X,Y )∗), the composite map φ ◦ ψZ is an isomorphism of simplicial sets. It

will therefore suffice to show that ψZ is a homotopy equivalence. Since Z is a Kan complex, this

follows from Propositions HTT.2.2.2.9 and HTT.2.2.2.7 .

We now discuss the functoriality of the construction C 7→ Ndg(C).

Definition 1.3.1.18. Let C and D be differential graded categories over a field k. A differential

graded functor F from C to D consists of the following data:

• For every object X ∈ C, an object F (X) ∈ D.

• For every pair of objects X,Y ∈ C, a map of chain complexes

αX,Y : MapC(X,Y )∗ → MapD(F (X), F (Y ))∗.

This data is required to be compatible with composition in the following sense:

• For every X ∈ C, we have αX,X(idX) = idF (X).

• For every triple of objects X,Y, Z ∈ C and every f ∈ MapC(X,Y )p, g ∈ MapC(Y,Z)q, we

have αX,Z(g ◦ f) = αY,Z(g) ◦ αX,Y (f).

The collection of differential graded categories over k forms a category Catdg k, whose morphisms

are given by differential graded functors.
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Proposition 1.3.1.19. Let k be a commutative ring. There is a combinatorial model structure on

the category Catdg k of differential graded categories over k, which is characterized by the following

properties:

(W ) A differential graded functor F : C → D is a weak equivalence if and only if F induces

an equivalence of homotopy categories hC→ hD and, for every pair of objects X,Y ∈ C, the

induced map MapC(X,Y )∗ → MapD(F (X), F (Y ))∗ is a quasi-isomorphism of chain complexes

of k-modules.

(F ) A differential graded functor F : C→ D is a fibration if and only if F satisfies the following

pair of conditions:

– The underlying functor hC → hD is a quasi-fibration. That is, given an object X ∈ C

and an isomorphism β : F (X)→ Y in hD, β can be lifted to an isomorphism β : X → Y

in hC.

– For every pair of objects X,Y ∈ C, the map of chain complexes

MapC(X,Y )∗ → MapD(F (X), F (Y ))∗

is degreewise surjective.

For a proof, we refer the reader to [142] (in the case where k is a field, Proposition 1.3.1.19 can

be deduced from Proposition HTT.A.3.2.4 and Theorem HTT.A.3.2.24 ).

Proposition 1.3.1.20. Let k be a commutative ring. Then the formation of differential graded

nerves C 7→ Ndg(C) determines a right Quillen functor from the category Catdg k (endowed with the

model structure of Proposition 1.3.1.19) to the category of simplicial sets (endowed with the Joyal

model structure).

Proof. The functor Ndg preserves small limits and filtered colimits, and therefore admits admits a

left adjoint by virtue of the adjoint functor theorem (Corollary HTT.5.5.2.9 ). We next claim that

the functor Ndg preserves weak equivalences. Let F : C → D be a weak equivalence of differential

graded categories over k. Then F induces an equivalence of homotopy categories hC → hD.

Using Remark 1.3.1.11, we deduce that Ndg(F ) : Ndg(C) → Ndg(D) induces an equivalence of

homotopy categories. To prove that Ndg(F ) is an equivalence of ∞-categories, it suffices to show

that it is fully faithful. In other words, we must show that for every pair of objects X,Y ∈ C,

the induced map HomR
Ndg(C)(X,Y ) → HomR

Ndg(D)(F (X), F (Y )) is a homotopy equivalence of Kan

complexes. This follows immediately from Remark 1.3.1.12, since the map of chain complexes

MapC(X,Y )∗ → MapD(F (X), F (Y ))∗ is a quasi-isomorphism.

To complete the proof, it will suffice to show that the functor Ndg preserves fibrations. Let

F : C→ D be a fibration of differential graded categories over k. We wish to prove that F induces

a categorical fibration of simplicial sets Ndg(C)→ Ndg(D). The functor F induces a quasi-fibration
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of ordinary categories hC→ hD, and therefore also a quasi-fibration hNdg(C)→ hNdg(D) (Remark

1.3.1.11). It will therefore suffice to show that the map Ndg(F ) is an inner fibration of simplicial

sets (Corollary HTT.2.4.6.5 ). That is, we must show that for 0 < j < n, every lifting problem of

the form

Λnj

��

φ0 // Ndg(C)

��
∆n φ //

φ
;;

Ndg(D)

admits a solution. The map φ0 determines objects X0, X1, . . . , Xn ∈ C together with elements

fI ∈ MapC(Xi− , Xi+)m for every subset I = {i− < im < . . . < i1 < i+} ⊆ [n] with at least two

elements such that [n] 6= I 6= [n] − {j}, satisfying equation 1.1 of Construction 1.3.1.6. For every

I, let f I denote the image of fI in MapD(F (Xi−), F (Xi+))m. The extension φ determines a pair

of elements

f [n] ∈ MapD(F (X0), F (Xn))n−1f [n]−{j} ∈ MapD(F (X0), F (Xn))n−2

df [n] =
∑

1≤i≤n−1

(−1)n−i(f [n]−{i} − f{i,...,n} ◦ f{0,...,i}).

Since F is a fibration, we can lift f [n] to an element f[n] ∈ MapC(X0, Xn)n−1. This choice of lift

extends uniquely to an n-simplex of Ndg(C) lifting φ, by setting

f[n]−{j} = (−1)n−jdf[n] +
∑

1≤i≤n−1

(−1)i−jf{i,...,n} ◦ f{0,...,i} −
∑

1≤i≤n−1,i 6=j
(−1)i−jf[n]−{i}.

1.3.2 Derived ∞-Categories

Let A be an abelian category. To every pair of objects X,Y ∈ A and every integer n ≥ 0, one

can define a (Yoneda) Ext-group ExtnA(X,Y ). If A has enough projective objects, then X admits

a projective resolution

· · · → P2 → P1 → P0 → X,

and the Ext-groups ExtnA(X,Y ) are given by the cohomologies of the cochain complex HomA(P•, Y ).

The functors ExtnA are examples of derived functors: that is, they are functors which can be

computed by choosing a projective (or injective) resolution of one of their arguments. In working

with derived functors, it is often convenient to replace the abelian category A by its derived category:

that is, to work not with objects of A but with chain complexes of objects of A. In this section, we

will study a slightly more elaborate object: the derived ∞-category D−(A) of an abelian category

A. Roughly speaking, D−(A) is an ∞-category whose objects are (projective and right-bounded)
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chain complexes with values in A, whose morphisms are given by maps of chain complexes, 2-

morphisms are given by chain homotopies, and so forth. Our goal in this section is to define the

stable ∞-category D−(A) and establish some of its basic properties. In particular, we will show

that D−(A) is stable (Corollary 1.3.2.18) and admits a t-structure, whose heart can be identified

with the abelian category A (Proposition 1.3.2.19).

Definition 1.3.2.1. Let A be an additive category, and let M∗ and N∗ be chain complexes with

values in A (see Definition 1.2.3.1). For each integer p, we let MapCh(A)(M∗, N∗)p denote the

product
∏
n∈Z HomA(Mn, Nn+p). We will regard the collection

{MapCh(A)(M∗, N∗)p}p∈Z

as a chain complex of abelian groups, with differential given by the formula

(df)(x) = d(f(x))− (−1)pf(dx)

for f ∈ MapCh(A)(M∗, N∗)p.

Given a triple of chain complexes M∗, N∗, P∗ ∈ Ch(A), composition gives a bilinear map

MapCh(A)(N∗, P∗)p ×MapCh(A)(M∗, N∗)q → MapCh(A)(M∗, P∗)p+q

satisfying the Leibniz rule d(f ◦ g) = df ◦ g+ (−1)pf ◦ dg. Using this notion of composition, we can

regard Ch(A) as a differential graded category.

Remark 1.3.2.2. For every additive category A, we can apply Construction 1.3.1.6 to the dif-

ferential graded category Ch(A) to obtain an ∞-category Ndg(Ch(A)). Note that the objects of

Ndg(Ch(A)) are chain complexes M∗ with values in A and the morphisms in Ndg(Ch(A)) are mor-

phisms of chain complexes. Two morphisms f, g : M∗ → N∗ are homotopic in Ndg(Ch(A)) if and

only if there exists a chain homotopy from f to g: that is, if and only if there is a sequence of maps

hn : Mn → Nn+1 satisfying

d ◦ hn + hn−1 ◦ d = f − g.

Remark 1.3.2.3. Let A be an additive category, and let X∗, Y∗ ∈ Ch(A). The homotopy group

πn MapCh(A)(X∗, Y∗)

can be identified with the group of chain-homotopy classes of maps from X∗ to the shifted complex

Y∗+n.

Definition 1.3.2.4. Let A be an abelian category. An object P ∈ A is said to be projective if, for

every epimorphism M → N in A, the induced map HomA(P,M)→ HomA(P,N) is surjective. We

say that A has enough projective objects if, for every object M ∈ A, there exists an epimorphism

P →M , where P is a projective object of A.
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Remark 1.3.2.5. Let A be an abelian category. Then an object P ∈ A is projective in the sense

of Definition 1.3.2.4 if and only if it is projective in the sense of Definition HTT.5.5.8.18 , when

regarded as an object of the ∞-category N(A) (see Example HTT.5.5.8.21 ).

Notation 1.3.2.6. Let A be an additive category. We let Ch−(A) denote the full subcategory of

Ch(A) spanned by those chain complexes M∗ such that Mn ' 0 for n � 0, and Ch+(A) the full

subcategory of Ch(A) spanned by those chain complexes such that Mn ' 0 for n� 0.

Definition 1.3.2.7. Let A be an abelian category with enough projective objects. We let D−(A)

denote the ∞-category Ndg(Ch−(Aproj)). We will refer to D−(A) as the derived ∞-category of A.

Variant 1.3.2.8. If A is an abelian category with enough injective objects, we let D+(A) denote

the nerve Ndg(Ch+(Ainj)), where Ainj denotes the full subcategory of A spanned by the injective

objects. We have a canonical equivalence D+(A)op ' D−(Aop).

Remark 1.3.2.9. The homotopy category hD−(A) can be described as follows: objects are given by

(right bounded) chain complexes of projective objects of A, and morphisms are given by homotopy

classes of chain maps. Consequently, hD−(A) can be identified with the derived category of A

studied in classical homological algebra (with appropriate boundedness conditions imposed).

Our first goal in this section is to verify the stability of the derived category of an abelian

category. We begin by studying a more general situation.

Proposition 1.3.2.10. Let A be an additive category. Then the ∞-category Ndg(Ch(A)) is stable.

The proof of Proposition 1.3.2.10 will require some preliminary calculations. We will need the

following simple observation:

Proposition 1.3.2.11. Let f : A• → B• be a map of simplicial abelian groups. Then f is a Kan

fibration if and only if the associated map of chain complexes N∗(A)→ N∗(B) induces a surjection

Nn(A)→ Nn(B) for n > 0.

Proof. For every integer n, let E(n)∗ denote the acyclic chain complex given by

E(n)k =

{
Z if k ∈ {n, n− 1}
0 otherwise,

where the differential E(n)n → E(n)n−1 is an isomorphism. We note that E(n)∗ enjoys the following

universal property: if M∗ is any chain complex in the category Ab of abelian groups, then there is

a canonical isomorphism HomCh(Ab)(E(n)∗,M∗) ' Mn. In particular, there is a map θ : E(n)∗ →
N∗(∆

n) corresponding to a generator of the group Nn(∆n) ' Z. Assume that n > 0. For any

0 ≤ i ≤ n, the map θ determines an isomorphism N∗(Λ
n
i ) ⊕ E(n)∗ → N∗(∆

n). Consequently, the

map N∗(A)→ N∗(B) has the right lifting property with respect to the inclusion N∗(Λ
n
i ) ↪→ N∗(∆

n)
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if and only if it has the extension property with respect to E(n)∗. Invoking the universal property

of E(n)∗, we see that this lifting property is equivalent to the requirement that the map Nn(A)→
Nn(B) is surjective.

Corollary 1.3.2.12. Let A• be a simplicial abelian group. Then A• is a Kan complex.

Notation 1.3.2.13. Let A be an additive category. We let Ch(A)∆ underlying simplicial category

of the differential graded category Ch(A) (see Construction 1.3.1.13).

Suppose we are given a map f : M∗ → M ′∗ of chain complexes with values in an additive

category A, and let Q∗ ∈ Ch(A) be another chain complex. Composition with f induces a map of

chain complexes

θ : MapCh(A)(M
′
∗, Q∗)→ MapCh(A)(M∗, Q∗).

Suppose that, for every pair of integers p < q, f induces a surjection HomA(M ′p, Qq) →
HomA(Mp, Qq). It follows from Proposition 1.3.2.11 that f induces a Kan fibration of sim-

plicial sets MapCh(A)∆
(M ′∗, Q∗) → MapCh(A)∆

(M∗, Q∗). In particular, we have the following

result:

Corollary 1.3.2.14. Let A be an additive category. Suppose we are given a map of chain complexes

f : M∗ → M ′∗ in Ch(A) and another chain complex Q∗ in Ch(A). Assume that, for every pair of

integers p < q, composition with f induces a surjection HomA(M ′p, Qq)→ HomA(Mp, Qq). Then f

induces a Kan fibration of simplicial sets MapCh(A)∆
(M ′∗, Q∗)→ MapCh(A)∆

(M∗, Q∗).

Remark 1.3.2.15. The hypotheses of Corollary 1.3.2.14 are satisfied in either of the following

situations:

(a) The map f is degreewise split: that is, each of the maps Mp →M ′p admits a left inverse.

(b) The category A is abelian, each of the maps Mp →M ′p is a monomorphism, and each of the

objects Qq ∈ A is injective.

Corollary 1.3.2.16. Let A be an additive category, and suppose we are given a pushout diagram

σ :

M∗
f //

��

M ′∗

��
N∗ // N ′∗

in Ch(A). If f is degreewise split (as in Remark 1.3.2.15), then σ is a homotopy pushout diagram

in the simplicial category Ch(A)∆.
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Proof. We must show that for any Q∗ ∈ Ch(A), the diagram of Kan complexes

MapCh(A)∆
(N ′∗, Q∗) //

��

MapCh(A)∆
(N∗, Q∗)

��
MapCh(A)∆

(M ′∗, Q∗)
g //MapCh(A)∆

(M∗, Q∗)

is a homotopy pullback square. This diagram is evidently a pullback square. Since the Kan model

structure on Set∆ is right proper, it suffices to observe that the map g is a Kan fibration (by

Corollary 1.3.2.14).

Remark 1.3.2.17. Let A be an additive category, and suppose we are given any map f : M∗ →M ′∗
in Ch(A). We have a pushout diagram of chain complexes

M∗ //

��

E(1)∗ ⊗M∗

��
M ′∗ // C(f)∗,

where C(f)∗ is the mapping cone of f (so that C(f)n ' M ′n ⊕Mn−1). It follows from Corollary

1.3.2.16, Theorem HTT.4.2.4.1 , and Proposition 1.3.1.17 that C(f)∗ can be identified with a cofiber

of f in the ∞-category Ndg(Ch(A)).

Proof of Proposition 1.3.2.10. Let A be an additive category. We first claim that the ∞-category

Ndg(Ch(A)) admits pushouts. Using Proposition 1.3.1.17 and Theorem HTT.4.2.4.1 , we are re-

duced to proving that the simplicial category Ch(A)∆ admits homotopy pushouts. This follows from

Corollary 1.3.2.16, since any map of chain complexes f : M∗ → M ′∗ is chain homotopy-equivalent

to a map which is degreewise split (replace M ′∗ by the mapping cylinder of f).

It is obvious that Ndg(Ch(A)) has a zero object (since Ch(A) has a zero object). We can

describe the suspension functor explicitly as follows. Let E(1)∗ be the chain complex of abelian

groups described in Proposition 1.3.2.11. There is a pushout diagram of differential graded functors

from Ch(A) to itself, which carries each M∗ ∈ Ch(A) to the diagram

M∗ //

��

E(1)∗ ⊗M∗

��
0 //M∗−1.

The above arguments show that this diagram determines a pushout diagram in the ∞-category

of functors from Ndg(Ch(A)) to itself. Note that E(1)∗ ⊗M∗ is chain homotopy contractible and

therefore a zero object of Ndg(Ch(A)). It follows that the suspension functor Σ : Ndg(Ch(A)) →
Ndg(Ch(A)) is induced by the shift functor M∗ 7→ M∗−1. Since the shift functor is an equivalence

of differential graded categories, Σ is an equivalence of ∞-categories. Using Proposition 1.4.2.27,

we deduce that Ndg(Ch(A)) is stable, as desired.
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In the situation of Proposition 1.3.2.10, suppose that C is a full subcategory of Ch(A), which

is closed under the formation of shifts and under the formation of mapping cones. Then the

differential graded nerve Ndg(C) is a stable subcategory of Ndg(Ch(A)), and is therefore itself a

stable ∞-category. In particular, we obtain the following result:

Corollary 1.3.2.18. Let A be an abelian category with enough projective objects. Then the ∞-

category D−(A) is stable.

We next construct a t-structure on the stable ∞-category D−(A).

Proposition 1.3.2.19. Let A be an abelian category with enough projective objects. Let D−≥0(A)

denote the full subcategory of D−(A) spanned by those chain complexes A∗ such that the homology

objects Hn(A) ∈ A vanish for n < 0, and define D−≤0(A) similarly. Then the pair (D−≥0(A),D−≤0(A))

determines a t-structure on D−(A). Moreover, the heart of D−(A) is canonically equivalent to (the

nerve of) the abelian category A.

Lemma 1.3.2.20. Let A be an abelian category, and let P∗ ∈ Ch(A) be a complex of projective

objects of A such that Pn ' 0 for n � 0. Let Q∗ → Q′∗ be a quasi-isomorphism in Ch(A). Then

the induced map

MapCh(A)(P∗, Q∗)→ MapCh(A)(P∗, Q
′
∗)

is a quasi-isomorphism.

Proof. We observe that P∗ is a homotopy colimit of its naive truncations

. . .→ 0→ Pn → Pn−1 → . . . .

It therefore suffices to prove the result for each of these truncations, so we may assume that P∗ is

concentrated in finitely many degrees. Working by induction, we can reduce to the case where P∗
is concentrated in a single degree. Shifting, we can reduce to the case where P∗ consists of a single

projective object P concentrated in degree zero. Since P is projective, we have isomorphisms

Hi MapCh(A)(P∗, Q∗) ' HomA(P,Hi(Q∗)) ' HomA(P,Hi(Q
′
∗)) ' MapCh(A)(P∗, Q

′
∗).

Lemma 1.3.2.21. Let A be an abelian category. Suppose that P∗, Q∗ ∈ Ch(A) have the following

properties:

(1) Each Pn is projective, and Pn ' 0 for n < 0.

(2) The homologies Hn(Q∗) vanish for n > 0.

Then the space MapNdg(Ch(A))(P∗, Q∗) is discrete, and we have a canonical isomorphism of abelian

groups

Ext0(P∗, Q∗) ' HomA(H0(P∗),H0(Q∗)).
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Proof. Let Q′∗ be the complex

. . .→ 0→ coker(Q1 → Q0)→ Q−1 → . . . .

Condition (2) implies that the canonical map Q∗ → Q′∗ is a quasi-isomorphism. In view of (1) and

Lemma 1.3.2.20, it will suffice to prove the result after replacing Q∗ by Q′∗. In this case, we have

MapCh(A)(P∗, Q∗)m '

{
0 if m > 0

HomA(P0, Q0) if m = 0.

Unwinding the definitions, we see that H0(MapCh(A)(P∗, Q∗)) is the subgroup of HomA(P0, Q0)

given by HomA(coker(P1 → P0), ker(Q0 → Q−1)) ' HomA(H0(P ),H0(Q)). The desired result now

follows from Remark 1.3.1.12.

Proof of Proposition 1.3.2.19. We begin with the following observation:

(∗) For any object A∗ ∈ Ch(A), there exists a map f : P∗ → A∗ where each Pn is projective,

Pn ' 0 for n < 0, and the induced map Hk(P∗)→ Hk(A∗) is an isomorphism for k ≥ 0.

To prove (∗), we construct projective objects Pn ∈ A, differentials dn : Pn → Pn−1, and maps

fn : Pn → An which are compatible with the differentials, using induction on n. For n < 0 set

Pn = 0 (so that fn and dn are uniquely determined). Suppose that n ≥ 0 and that Pn−1, dn−1, and

fn−1 have already been defined. Since A has enough projective objects, we can choose a projective

object Pn equipped with an epimorphism

g : Pn → An ×ker(An−1→An−2) ker(Pn−1 → Pn−2).

We now define fn : Pn → An to be the composition of g with the projection onto the first factor,

and dn : Pn → Pn−1 to be the composition of g with the projection onto the second factor (followed

by the inclusion of ker(Pn−1 → Pn−2) into Pn−1). It is easy to see that this construction yields a

map of chain complexes f : P∗ → A∗ with the desired properties. Note also that if A∗ ∈ D−(A)

and the homologies Hn(A∗) vanish for n < 0, then f is a quasi-isomorphism between projective

complexes and therefore a chain homotopy equivalence.

It is clear that D−≤0(A)[−1] ⊆ D−≤0(A) and D−≥0(A)[1] ⊆ D−≥0(A). Suppose now that A∗ ∈
D−≥0(A) and B∗ ∈ D−≤−1(A); we wish to show that Ext0

D−(A)
(A∗, B∗) ' 0. Using (∗), we may

reduce to the case where An ' 0 for n < 0. The desired result now follows immediately from

Lemma 1.3.2.21. Finally, choose an arbitrary object A∗ ∈ D−(A), and let f : P∗ → A∗ be as in

(∗). Using the construction of cofibers given in the proof of Proposition 1.3.2.10, we deduce that

cofib(f)[1] ∈ D−≤0(A). This completes the proof that (D−≥0(A),D−≤0(A)) is a t-structure on D−(A).

It remains to describe the heart of the stable ∞-category D−(A). Note that the construction

A∗ 7→ H0(A) determines a functor θ : Ndg(Ch(A)) → N(A). Let C ⊆ Ndg(Ch(A)) be the full

subcategory spanned by complexes P∗ such that each Pn is projective, Pn ' 0 for n < 0, and



94 CHAPTER 1. STABLE ∞-CATEGORIES

Hn(P∗) ' 0 for n 6= 0. Assertion (∗) implies that the inclusion C ⊆ D−(A)♥ is an equivalence of

∞-categories. Lemma 1.3.2.21 implies that θ|C is fully faithful. Finally, we can apply (∗) in the

case where A∗ is concentrated in degree zero to deduce that θ|C is essentially surjective. It follows

that θ restricts to an equivalence D−(A)♥ → N(A).

If A is an abelian category with enough projective objects, then the full subcategory D−≥0(A) ⊆
D−(A) admits an alternative description by means of the Dold-Kan correspondence. Note first that

for any additive category B, the category of simplicial objects Fun(∆op,B) is naturally tensored

over the category of finite simplicial sets: the tensor product of a simplicial object P• with a

simplicial set K is given by [n] 7→ (ZKn)⊗Pn. We may therefore view Fun(∆op,B) as a simplicial

category, whose mapping spaces are characterized by the formula

HomSet∆
(K,MapFun(∆op,B)(P•, P

′
•)) ' HomFun(∆op,B)(ZK• ⊗ P•, P ′•)

for every finite simplicial set K. The following result will play an important role in §1.3.3:

Proposition 1.3.2.22. Let A be an abelian category with enough projective objects and let Aproj

denote the full subcategory of A spanned by the projective objects. Then D−≥0(A) is equivalent to

the underlying ∞-category of the simplicial category Fun(∆op,Aproj).

The proof of Proposition 1.3.2.22 will require some preliminary remarks. Suppose that A

is an idempotent complete additive category, so that the Dold-Kan correspondence supplies an

equivalence of categories DK : Ch(A)≥0 → Fun(∆op,A) (Theorem 1.2.3.7). For every pair of

chain complexes M∗,M
′
∗ ∈ Ch(A)≥0 and any finite simplicial set K, a morphism of simplicial sets

φ : K → MapCh(A)(M∗,M
′
∗) determines a composite map

ZK ⊗DK•M ' (DK• ◦N∗)(ZK ⊗DK•(M))
AW→ DK•(N∗(K)⊗N∗DK•(M))

' DK•(N∗K ⊗M∗)
φ→ DK•(M

′
∗);

here AW denotes the Alexander-Whitney map of Construction 1.2.3.22. This construction is natural

in K and therefore determines a map of simplicial sets

MapCh(A)(M∗,M
′
∗)→ MapFun(∆op,A)(DK•(M),DK•(M

′)).

Using the associativity properties of the Alexander-Whitney construction (Remark 1.2.3.25), we

see that these maps are compatible with composition and therefore endow DK : Ch(A)≥0 →
Fun(∆op,A) with the structure of a simplicial functor (where we view Ch(A)≥0 as a simplicial

category using Construction 1.3.1.13). Although DK is an equivalence of ordinary categories,

it is not an equivalence of simplicial categories, because the Alexander-Whitney maps are not

isomorphisms. Nevertheless, we have the following result:
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Proposition 1.3.2.23. Let A be an idempotent complete additive category. Then the functor

DK : Ch(A)≥0 → Fun(∆op,A)

is a weak equivalence of simplicial categories.

Proof. Since Theorem 1.2.3.7 implies that DK is essentially surjective, it will suffice to show that

for every pair of chain complexes P∗, Q∗ ∈ Ch(A)≥0, the map

θP : MapCh(A)∆
(P∗, Q∗)→ MapFun(∆op,A)(DK•(P∗),DK•(Q∗))

is a weak homotopy equivalence. In the argument which follows, we will regard Q∗ as fixed. For

each object A ∈ A, let A[n] ∈ Ch(A) denote the chain complex consisting of the single object A,

concentrated in degree n. Let us say that a chain complex M∗ is good if the map θM is a weak

homotopy equivalence. We now proceed as follows:

(1) Let A be an object of A. For any simplicial set K, the Alexander-Whitney map AW :

N∗(K ⊗ DK(A[0])) → N∗(K) ⊗ A[0] is an isomorphism of chain complexes. It follows that

A[0] is good: in fact, the map θA[0] is an isomorphism of simplicial sets. In particular, the

simplicial set X = MapFun(∆op,A)(DK•(A[0]),DK•(Q)) is a Kan complex.

(2) Let A be an object of A and n > 0. Then the map

MapFun(∆op,A)(Z ∆n ⊗DK•(A[0]),DK•(Q)) ' Fun(∆n, X)→ Fun(Λn0 , X)

' MapFun(∆op,A)(Z Λn0 ⊗DK•(A[0]),DK•(Q))

is a trivial Kan fibration. Let E(n)∗ be defined as in the proof of Proposition 1.3.2.11, so

that we have an isomorphism of simplicial abelian groups N∗(∆
n) ' N∗(Λ

n
0 ) ⊕ E(n)∗. We

conclude that the mapping space MapFun(∆op,A)(DK(E(n)⊗A[0]),DK(M ′)) is a contractible

Kan complex. Since the zero map from E(n)∗ ⊗ A[0] to itself is chain homotopic to the

identity, we conclude also that MapCh(A)(E(n)∗ ⊗ A[0],M ′∗) is a contractible Kan complex.

In particular, E(n)∗ ⊗A[0] is good.

(3) Let n ≥ 1, and regard Z[n−1] as a subcomplex of E(n)∗. A choice of isomorphism Nn(∆n) '
Z ' E(n)n extends uniquely to a map of chain complexes N∗(∆

n)→ E(n)∗ which fits into a

pushout diagram

N∗(∂∆n) //

��

N∗(∆
n)

��
Z[n− 1] // E(n)∗.

It follows that for any A ∈ A, the induced map

MapFun(∆op,A)(DK•(E(n)⊗A),DK•(Q))→ MapFun(∆op,A)(DK•(A[n− 1]),DK•(Q))

is a pullback of the map Fun(∆n, X)→ Fun(∂∆n, X), and therefore a Kan fibration.
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(4) Let P∗ ∈ Ch(A)≥0, and suppose we are given an object A ∈ A and a map A → Pn−1 for

n > 0. Form a pushout diagram of chain complexes

A[n− 1] //

��

E(n)∗ ⊗A[0]

��
P∗ // P ′∗.

We obtain diagrams of mapping spaces

MapCh(A)∆
(P ′∗, Q∗) //

��

MapCh(A)∆
(P∗, Q∗)

��
MapCh(A)∆

(E(n)∗ ⊗A[0], Q∗) //MapCh(A)∆
(A[n− 1], Q∗)

MapFun(∆op,A)(DK(P ′),DK(Q)) //

��

MapFun(∆op,A)(DK(P ),DK(Q))

��
MapFun(∆op,A)(DK(E(n)∗ ⊗A[0]),DK(Q)) //MapFun(∆op,A)(DK(A[n− 1]),DK(Q).

The first diagram is a homotopy pullback square by Corollary 1.3.2.16, and the second diagram

is a homotopy pullback square by (3). Since E(n)∗ ⊗A[0] is good by (2), we conclude that if

P∗ and A[n− 1] are good, then P ′∗ is also good.

(5) Taking P∗ = 0 in (4), we conclude that if A[n− 1] is good then A[n] is good. Combining this

with (1), we deduce that each A[n] is good using induction on n.

(6) Let P∗ be arbitrary. For each n ≥ 0, let P (n)∗ be the chain complex

. . .→ 0→ Pn → Pn−1 → · · · → P0 → 0→ · · ·

We have an evident pushout diagram

Pn[n− 1] //

��

E(n)∗ ⊗ Pn

��
P (n− 1)∗ // P (n)∗.

Using (4) and (5), we conclude that each P (n)∗ is good using induction on n. Then θP is

the homotopy limit of a tower of homotopy equivalences {θPn}. It follows that θP is itself a

homotopy equivalence: that is, P∗ is good.
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Remark 1.3.2.24. Let A be an arbitrary additive category. Then A admits a fully faithful

embedding into an idempotent complete additive category. It follows from Proposition 1.3.2.23

that the functor DK : Ch(A)≥0 → Fun(∆op,A) induces a fully faithful embedding of ∞-categories

N(Ch(A)≥0)→ N(Fun(∆op,A)).

Proof of Proposition 1.3.2.22. Let A be an abelian category with enough projective objects. If P∗ is

an object of D−≥0(A), then assertion (∗) appearing in the proof of Proposition 1.3.2.19 guarantees the

existence of a quasi-isomorphism P ′∗ → P∗, where P ′∗ ∈ Ch(Aproj)≥0. Such a map is automatically

a chain homotopy equivalence, and therefore an equivalence in the ∞-category D−≥0(A). It follows

that the inclusion Ndg(Ch(Aproj)≥0) ↪→ D−≥0(A) is an equivalence of ∞-categories. Combining this

observation with Propositions 1.3.2.23 and 1.3.1.17, we obtain equivalences

D−≥0(A)←↩ Ndg(Ch(Aproj)≥0)← N(Ch(Aproj)≥0)→ N(Fun(∆op,Aproj)).

1.3.3 The Universal Property of D−(A)

Let A be an abelian category with enough projective objects. In §1.3.2, we introduced the derived

∞-category D−(A), whose objects are right-bounded chain complexes of projective objects of A.

Our goal in this section is to characterize the ∞-category D−(A) by a universal mapping property.

To formulate this property, we need to introduce a bit of terminology.

Definition 1.3.3.1. Let C and C′ be stable ∞-categories equipped with t-structures. We will say

that a functor f : C → C′ is right t-exact if it is exact and carries C≥0 into C′≥0. We say that f is

left t-exact if it is exact and carries C≤0 into C′≤0.

Our main result can now be stated as follows:

Theorem 1.3.3.2. Let A be an abelian category with enough projective objects, let C be a stable∞-

category equipped with a left complete t-structure, and let E ⊆ Fun(D−(A),C) be the full subcategory

spanned by those right t-exact functors which carry projective objects of A into the heart of C. The

construction F 7→ τ≤0 ◦ (F |D−(A)♥) determines an equivalence from E to (the nerve of) the

ordinary category of right exact functors from A to the heart C♥ of C.

Remark 1.3.3.3. Let A be an abelian category with enough projective objects. We will prove

below that the ∞-category D−(A) is left complete (with respect to the t-structure of Proposition

1.3.2.19); see Proposition 1.3.3.16. It follows that D−(A) is determined (up to canonical equiva-

lence) by the universal property of Theorem 1.3.3.2.

If A and C are as in Theorem 1.3.3.2, then any right exact functor from A to C♥ can be extended

(in an essentially unique way) to a functor D−(A) → C. In particular, if the abelian category C♥

has enough projective objects, then we obtain an induced map D−(C♥)→ C.
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Example 1.3.3.4. Let A and B be abelian categories equipped with enough projective objects.

Then any right-exact functor f : A → B extends to a right t-exact functor F : D−(A) → D−(B).

One typically refers to F as the left derived functor of f .

Example 1.3.3.5. Let Sp be the stable ∞-category of spectra (see §1.4.3), with its natural t-

structure. Then the heart of Sp is equivalent to the category A of abelian groups. We therefore

obtain a functor D−(A) → Sp, which carries a complex of abelian groups to the corresponding

generalized Eilenberg-MacLane spectrum.

Remark 1.3.3.6. Let A be an abelian category with enough projective objects, let C be a stable

∞-category equipped with a left complete t-structure, and let F : D−(A) → C be a right t-exact

functor which carries projective objects of A into the heart of C. Then the following conditions are

equivalent:

(i) The functor F is left t-exact: that is, F carries D−(A)≤0 into C≤0.

(ii) The functor F carries N(A) ⊆ D−(A) into the heart of C.

(iii) The underlying right-exact functor f : A→ C♥ is exact.

The implication (i) ⇒ (ii) is obvious. To prove that (ii) ⇒ (i), we prove by induction on n that

for every object A ∈ D−(A)≤0 ∩D−(A)≥−n, we have F (A) ∈ C≤0. If n = 0, this follows from (ii).

More generally, we have a fiber sequence

A′ → A→ A′′

where A′ ∈ D−(A)≤0 ∩ D−(A)≥1−n and A′′[n] ∈ D−(A)♥ ' N(A). Then F (A′) ∈ C≤0 by the

inductive hypothesis, and F (A′′) = F (A′′[n])[−n] ∈ C≤−n ⊆ C≤0 by virtue of (i), so that F (A) ∈
C≤0.

To prove (ii)⇒ (iii), we note that every short exact sequence

0→ A′ → A→ A′′ → 0

in A gives rise to a fiber sequence

F (A′)→ F (A)→ F (A′′)

in C≥0, hence a short exact sequence

π1F (A′′)→ f(A′)
φ→ f(A)→ f(A′′)→ 0

in the abelian category hC♥. If (ii) is satisfied, then π1F (A′′) ' 0, so that the map φ is injective.

It remains to prove that (iii) implies (ii). Assume that (iii) is satisfied. Using induction on

n > 0, we prove that for each A ∈ A, the object πnF (A) ∈ C♥ vanishes. Since C is left-complete,
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this will guarantee that τ≥1F (A) vanishes, so that F (A) belongs to the heart of C. To carry out

the induction, we choose a short exact sequence

0→ A′
ψ→ P → A→ 0

in the abelian category A, where P is projective, so that we have an exact sequence

πnF (P )→ πnF (A)→ πn−1F (A′)→ πn−1F (P ).

If n > 1, then πnF (P ) ' πn−1F (P ) ' 0, so that πnF (A) ' πn−1F (A′) vanishes by the inductive

hypothesis. If n = 1, then πnF (P ) vanishes so that πnF (A) can be identified with the kernel of the

map f(ψ) : π0F (A′) → π0F (P ). If the functor f is exact, then f(ψ) is a monomorphism so that

πnF (A) ' 0.

We have the following recognition criterion for derived categories:

Proposition 1.3.3.7. Let C be a stable ∞-category equipped with a left complete t-structure. Sup-

pose that the abelian category A = hC♥ has enough projective objects. Then there exists an essen-

tially unique t-exact functor F : D−(A)→ C extending the inclusion f : N(A) ' C♥ ⊆ C. Moreover,

the following conditions are equivalent:

(i) The functor F is fully faithful.

(ii) For every pair of objects X,Y ∈ A, if X is projective, then the abelian groups ExtiC(X,Y )

vanish for i > 0.

(iii) For every pair of objects X,Y ∈ A, if X is projective, then there exists a monomorphism

Y → Z such that the abelian groups ExtiC(X,Z) vanish for i > 0.

Moreover, if these conditions are satisfied, then the essential image of F is the full subcategory⋃
n C≥−n of right-bounded objects of C.

Proof. The existence of F follows from Theorem 1.3.3.2 and Remark 1.3.3.6. The implications

(i) ⇒ (ii) ⇒ (iii) are obvious. We prove that (iii) ⇒ (ii) by induction on i > 0. Assume that

X,Y ∈ A where X is projective, and choose a monomorphism Y ↪→ Z satisfying (iii). Then we

have an exact sequence

Exti−1
C (X,Z)→ Exti−1

C (X,Z/Y )→ ExtiC(X,Y )→ ExtiC(X,Z).

If i ≥ 2, then we have Exti−1
C (X,Z) ' ExtiC(X,Z) ' 0, so that ExtiC(X,Y ) ' Exti−1

C (X,Z/Y )

vanishes by the inductive hypothesis. If i = 1, then ExtiC(X,Y ) can be identified with the cokernel

of the map

Ext0
C(X,Z) ' HomA(X,Z)→ HomA(X,Z/Y ) ' Ext0

C(X,Z/Y ).



100 CHAPTER 1. STABLE ∞-CATEGORIES

Since X is a projective object of A, this map is a surjection, so that ExtiC(X,Y ) vanishes as required.

We now prove that (ii) implies (i). Choose any pair of objects X,Y ∈ D−(A); we wish to prove

that F induces a homotopy equivalence

θX,Y : MapD−(A)(X,Y )→ MapC(FX,FY ).

Since D−(A) and C are both left-complete (see Proposition 1.3.3.16), both sides can be identified

with a homotopy limit of the tower of maps

MapD−(A)(τ≤nX, τ≤nY )→ MapC(Fτ≤nX,Fτ≤nY ).

It therefore suffices to show that each of these maps is a homotopy equivalence. We may therefore

replace Y by τ≤nY and thereby reduce to the case where Y belongs to the full subcategory Db(A) =⋃
nD
−(A)≤n spanned by the (homologically) bounded objects of D−(A).

Let D′ denote the full subcategory of Db(A) spanned by those objects Y for which the map θX,Y
is a homotopy equivalence, for every object X ∈ D−(A). We wish to prove that D′ = Db(A). Since

D′ is stable under translations and extensions in Db(A), it will suffice to show that D′ contains the

heart of Db(A). We may therefore reduce to the case where Y is in the heart of D−(A).

The object X can be represented by a chain complex of projective objects

· · · → P2 → P1 → P0 → P−1 → P−2 → · · ·

in the abelian category A. Let X ′ denote the truncated chain complex

· · · → 0→ P1 → P0 → P−1 → P−2 → · · · ,

so that we have a fiber sequence

X ′ → X → X ′′

in D−(A) with X ′′ ∈ C≥2. We have a commutative diagram

MapD−(A)(X,Y )

��

θX,Y //MapC(FX,FY )

��
MapD−(A)(X

′, Y )
θX′,Y //MapC(FX ′, FY )

where the vertical maps are homotopy equivalences. Consequently, to prove that θX,Y is a homotopy

equivalence, it suffices to show that θX′,Y is a homotopy equivalence. We may therefore replace

X by X ′ and thereby reduce to the case where X belongs to the full subcategory E ⊆ D−(A)

spanned by finite-length chain complexes of projective objects. Let E′ ⊆ E be the full subcategory

spanned by those objects X for which the functor F induces an isomorphism of abelian groups

Extn
D−(A)

(X,Y ) → ExtnC(FX,FY ) for every integer n. We wish to prove that E′ = E. Since E′ is
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stable under extensions and translations, it will suffice to show that E′ contains every projective

object of A. In other words, we must show that if X,Y ∈ A and X is projective, then F induces

an isomorphism

Extn
D−(A)

(X,Y )→ ExtnC(FX,FY ).

If n < 0, then both sides vanish; if n = 0, then both sides can be identified with HomA(X,Y ). If

n > 0, then the left side vanishes since X is projective, and the right side vanishes by virtue of

assumption (ii).

We now complete the proof by describing the essential image of F . Replacing C by
⋃
n C≥−n,

we may assume that C is right-bounded; we wish to prove that F is an equivalence. Since D−(A)

and C are both left-complete, we can identify F with a homotopy limit of a tower of fully faithful

functors {Fn : D−(A)≤n → C≤n}n≥0; it will therefore suffice to show that each Fn is an equivalence

of ∞-categories. Each of the functors Fn is a restriction of F , and therefore fully faithful. It

therefore suffices to show that each Fn is essentially surjective. Let C be an object of C≤n. Since C

is right-bounded, we may suppose that C ∈ C≥m, for some integer m. We will prove that C belongs

to the essential image of Fn using descending induction on m. If m > n, then C ' 0 and the result

is obvious. Otherwise, we choose a distinguished triangle

C ′ → C → C ′′[m]
α→ C ′[1]

where C ′ ∈ C≥m+1 and C ′′ ∈ C♥; note that C ′ and C ′′[m] both belong to C≤n. The inductive

hypothesis guarantees that C ′ ' F (X) for some object X ∈ D−(A)≤n, and we can identify C ′′

with an object A of the abelian category A. Since F is fully faithful, the map α is represented by

a morphism β : A[m]→ X[1] in D−(A). Let Y = fib(β), so that we have a fiber sequence

X → Y → A[m]

which proves that Y ∈ D−(A)≤n. Since F is exact, we deduce that FY ' fib(F (β)) ' C, so that

C belongs to the essential image of Fn as required.

We will deduce Theorem 1.3.3.2 from the following more precise characterization of the ∞-

category D−≥0(A):

Theorem 1.3.3.8. Let A be an abelian category with enough projective objects, Aproj ⊆ A the full

subcategory spanned by the projective objects, and C an arbitrary∞-category which admits geometric

realizations of simplicial objects. Let Fun′(D−≥0(A),C) denote the full subcategory of Fun(D−≥0(A),C)

spanned by those functors which preserve geometric realizations of simplicial objects. Then:

(1) The restriction functor Fun′(D−≥0(A),C) → Fun(N(Aproj),C) is an equivalence of ∞-

categories.

(2) A functor F ∈ Fun′(D−≥0(A),C) preserves preserves finite coproducts if and only if the restric-

tion F |N(Aproj) preserves finite coproducts.
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Let us assume Theorem 1.3.3.8 for the moment, and explain how to use it to deduce Theorem

1.3.3.2. The proof of Theorem 1.3.3.8 itself will be given at the end of this section.

Lemma 1.3.3.9. Let A be an abelian category with enough projective objects, and let B be an

arbitrary category which admits finite colimits. Let C be the category of right exact functors from A

to B, and let C′ be the category of functors from Aproj to B which preserve finite coproducts (here

Aproj denotes the full subcategory of A spanned by the projective objects). Then the restriction

functor θ : C→ C′ is an equivalence of categories.

Proof. We will give an explicit construction of an inverse functor. Let f : Aproj → B be a func-

tor which preserves finite coproducts. Let A ∈ A be an arbitrary object. Since A has enough

projectives, there exists a projective resolution

. . .→ P1
u→ P0 → A→ 0.

We now define F (A) to be the coequalizer of the map

f(P1)
f(0) //
f(u)

// f(P0) .

Of course, this definition appears to depend not only on A but on a choice of projective resolution.

However, because any two projective resolutions of A are chain homotopy equivalent to one another,

F (A) is well-defined up to canonical isomorphism. It is easy to see that F : A→ B is a right exact

functor which extends f , and that F is uniquely determined (up to unique isomorphism) by these

properties.

Lemma 1.3.3.10. (1) Let C be an ∞-category which admits finite coproducts and geometric

realizations of simplicial objects. Then C admits all finite colimits. Conversely, if C is an

n-category which admits finite colimits, then C admits geometric realizations of simplicial

objects.

(2) Let F : C→ D be a functor between ∞-categories which admit finite coproducts and geometric

realizations of simplicial objects. If F preserves finite coproducts and geometric realizations

of simplicial objects, then F is right exact. The converse holds if C and D are n-categories.

Proof. We will prove (1); the proof of (2) follows by the same argument. Now suppose that C

admits finite coproducts and geometric realizations of simplicial objects. We wish to show that

C admits all finite colimits. According to Proposition HTT.4.4.3.2 , it will suffice to show that C

admits coequalizers. Let ∆s,≤1 be the subcategory of ∆ spanned by the objects [0] and [1] and

injective maps between them, so that a coequalizer diagram in C can be identified with a functor

N(∆s,≤1)op → C. Let j : N(∆s,≤1)op → N(∆)op be the inclusion functor. We claim that every
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diagram f : N(∆s,≤1)op → C has a left Kan extension along j. To prove this, it suffices to show

that for each n ≥ 0, the associated diagram

N(∆s,≤1)op ×N(∆)op (N(∆[n]/)
op)→ C

has a colimit. We now observe that this last colimit is equivalent to a coproduct: more precisely, we

have (j!f)([n]) ' f([0])
∐
f([1])

∐
. . .

∐
f([1]), where there are precisely n summands equivalent

to f([1]). Since C admits finite coproducts, the desired Kan extension j!f exists. We now observe

that lim−→(f) can be identified with lim−→(j!f), and the latter exists in virtue of our assumption that C

admits geometric realizations for simplicial objects.

Now suppose that C is an n-category which admits finite colimits; we wish to show that C admits

geometric realizations. Passing to a larger universe if necessary, we may suppose that C is small. Let

D = Ind(C), and let C′ ⊆ D denote the essential image of the Yoneda embedding j : C→ D. Then

D admits small colimits (Theorem HTT.5.5.1.1 ) and j is fully faithful (Proposition HTT.5.1.3.1 );

it will therefore suffice to show that C′ is stable under geometric realization of simplicial objects in

D.

Fix a simplicial object U• : N(∆)op → C′ ⊆ D. Let V• : N(∆)op → D be a left Kan extension

of U•|N(∆≤n)op, and α• : V• → U• the induced map. The geometric realization of V• can be

identified with the colimit of U•|N(∆≤n)op, and therefore belongs to C′ since C′ is stable under

finite colimits in D (Proposition HTT.5.3.5.14 ). Consequently, it will suffice to prove that α•
induces an equivalence from the geometric realization of V• to the geometric realization of U•.

Let L : P(C)→ D be a left adjoint to the inclusion. Let |U•| and |V•| be colimits of U• and V•
in the∞-category P(C), and let |α•| : |V•| → |U•| be the induced map. We wish to show that L|α•|
is an equivalence in D. Since C is an n-category, we have inclusions Ind(C) ⊆ Fun(Cop, τ≤n−1 S) ⊆
P(C). It follows that L factors through the truncation functor τ≤n−1 : P(C)→ P(C). Consequently,

it will suffice to prove that τ≤n−1|α•| is an equivalence in P(C). For this, it will suffice to show that

the morphism |α•| is n-connective (in the sense of Definition HTT.6.5.1.10 ). This follows from

Lemma HTT.6.5.3.10 , since αk : Vk → Uk is an equivalence for k ≤ n.

Lemma 1.3.3.11. Let C and C′ be stable ∞-categories equipped with t-structures. Let θ :

Fun(C,C′)→ Fun(C≥0,C
′) be the restriction map. Then:

(1) If C is right-bounded, then θ induces an equivalence from the full subcategory of Fun(C,C′)

spanned by the right t-exact functors to the full subcategory of Fun(C≥0,C
′
≥0) spanned by the

right exact functors.

(2) Let C and C′ be left complete. Then the∞-categories C≥0 and C′≥0 admit geometric realizations

of simplicial objects. Furthermore, a functor F : C≥0 → C′≥0 is right exact if and only if it

preserves finite coproducts and geometric realizations of simplicial objects.
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Proof. We first prove (1). If C is right bounded, then Fun(C,C′) is the (homotopy) inverse limit of

the tower of ∞-categories

. . .→ Fun(C≥−1,C
′)→ Fun(C≥0,C

′),

where the functors are given by restriction. The full subcategory of right t-exact functors is then

given by the homotopy inverse limit

. . .→ Fun′(C≥−1,C
′
≥−1)

θ(0)→ Fun′(C≥0,C
′
≥0)

where Fun′(C,D) denotes the full subcategory of Fun(C,D) spanned by the right exact functors.

To complete the proof, it will suffice to show that this tower is essentially constant; in other words,

that each θ(n) is an equivalence of ∞-categories. Without loss of generality, we may suppose that

n = 0. Choose shift functors on the ∞-categories C and C′, and define

ψ : Fun′(C≥0,C
′
≥0)→ Fun′(C≥−1,C

′
≥−1)

by the formula ψ(F ) = Σ−1 ◦ F ◦ Σ. We claim that ψ is a homotopy inverse to θ(0). To prove

this, we observe that the right exactness of F ∈ Fun′(C≥0,C
′
≥0), G ∈ Fun′(C≥−1,C

′
≥−1) determines

canonical equivalences

(θ(0) ◦ ψ)(F ) ' F (ψ ◦ θ(0))(G) ' G.

We now prove (2). Since C is left complete, C≥0 is the (homotopy) inverse limit of the tower

of ∞-categories {(C≥0)≤n} with transition maps given by right exact truncation functors. Lemma

1.3.3.10 implies that each (C≥0)≤n admits geometric realizations of simplicial objects, and that each

of the truncation functors preserves geometric realizations of simplicial objects. It follows that C≥0

admits geometric realizations for simplicial objects. Similarly, C′≥0 admits geometric realizations

for simplicial objects.

If F preserves finite coproducts and geometric realizations of simplicial objects, then F is right

exact (Lemma 1.3.3.10). Conversely, suppose that F is right exact; we wish to prove that F

preserves geometric realizations of simplicial objects. It will suffice to show that each composition

C≥0
F→ C′≥0

τ≤n→ (C′≥0)≤n

preserves geometric realizations of simplicial objects. We observe that, in virtue of the right exact-

ness of F , this functor is equivalent to the composition

C≥0
τ≤n→ (C≥0)≤n

τ≤n◦F→ (C′≥0)≤n.

It will therefore suffice to prove that τ≤n ◦ F preserves geometric realizations of simplicial objects,

which follows from Lemma 1.3.3.10 since both the source and target are equivalent to n-categories.
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Proposition 1.3.3.12. Let A be an abelian category with enough projective objects, and let C be a

stable ∞-category equipped with a left complete t-structure. Then the restriction functor

Fun(D−(A),C)→ Fun(N(Aproj),C)

induces an equivalence from the full subcategory of Fun(D−(A),C) spanned by the right t-exact

functors to the full subcategory of Fun(N(Aproj),C≥0) spanned by functors which preserve finite

coproducts (here Aproj denotes the full subcategory of A spanned by the projective objects).

Proof. Let Fun′(D−(A),C) be the full subcategory of Fun(D−(A),C) spanned by the right t-exact

functors. Lemma 1.3.3.11 implies that Fun′(D−(A),C) is equivalent (via restriction) to the full

subcategory

Fun′(D−≥0(A),C≥0) ⊆ Fun(D−≥0(A),C≥0)

spanned by those functors which preserve finite coproducts and geometric realizations of simplicial

objects. Theorem 1.3.3.8 allows us to identify Fun′(D−≥0(A),C≥0) with the ∞-category of finite-

coproduct preserving functors from N(Aproj) into C≥0.

We now return to the proof of our main result.

Proof of Theorem 1.3.3.2. Proposition 1.3.3.12 implies that the restriction map E→ Fun(N(Aproj),C
♥)

is fully faithful, and that the essential image of θ consists of the collection of coproduct-preserving

functors from N(Aproj) to C♥. Lemma 1.3.3.9 allows us to identify the latter ∞-category with the

nerve of the category of right exact functors from A to the heart of C.

We now turn to the proof of Theorem 1.3.3.8. Passing to a larger universe if necessary, we

may assume without loss of generality that the abelian category A is small. We will analyze the

∞-category D−(A)≥0 by embedding it into a larger ∞-category which admits sifted colimits. To

this end, let Aproj ⊆ A denote the full subcategory of A spanned by the projective objects, and

let A denote the category of product-preserving functors from A
op
proj to the category of simplicial

sets, as in §HTT.5.5.9 . Let A∧ denote the category of product-preserving functors from A
op
proj to

sets, so that we can identify A with the category of simplicial objects of A∧. Our first goal is to

understand the category A∧.

Proposition 1.3.3.13. Let A be a small abelian category with enough projective objects. Then:

(1) The category A∧ can be identified with the category of Ind-objects of A.

(2) The category A∧ is abelian.

(3) The abelian category A∧ has enough projective objects.
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Proof. Assertion (1) follows immediately from Lemma 1.3.3.9 (taking B to be the opposite of the

category of sets). Assertion (2) follows formally from (1) and the assumption that A is an abelian

category (see, for example, [5]). We may identify A with a full subcategory of A∧ via the Yoneda

embedding. Moreover, if P is a projective object of A, then P is also projective when viewed as

an object of A∧. An arbitrary object of A∧ can be written as a filtered colimit A = lim−→{Aα},
where each Aα ∈ A. Using the assumption that A has enough projective objects, we can choose

epimorphisms Pα → Aα, where each Pα is projective. We then have an epimorphism ⊕Pα → A.

Since ⊕Pα is projective, we conclude that A∧ has enough projectives.

In what follows, we fix an abelian category A with enough projective objects, and let A denote

the category of product-preserving functors F : Aop
proj → Set∆. We will regard A as endowed with

the simplicial model structure described in Proposition HTT.5.5.9.1 . Note that A can be identified

with the category of simplicial objects of the abelian category A∧. Corollary 1.3.2.12 implies that

every object of A is fibrant. An object M• of A is cofibrant if and only if the chain complex

N∗(M•) consists of projective objects of A∧. Using Proposition 1.3.2.22, we obtain an equivalence

of ∞-categories

D−≥0(A∧) ' N(Ao).

Composing with the equivalence of Corollary HTT.5.5.9.3 , we obtain the following result:

Proposition 1.3.3.14. Let A be an abelian category with enough projective objects. Then there

exists an equivalence of ∞-categories

ψ : D−≥0(A∧)→ PΣ(N(Aproj))

whose composition with the inclusion N(Aproj) ' D−(A∧)♥ ⊆ D−≥0(A∧) is equivalent to the Yoneda

embedding N(Aproj)→ PΣ(N(Aproj)).

Remark 1.3.3.15. We can identify D−(A) with a full subcategory of D−(A∧). Moreover, an

object P• ∈ D−(A∧) belongs to the essential image of D−(A) if and only if the homologies Hn(P•)

belong to A, for all n ∈ Z.

Proposition 1.3.3.16. Let A be an abelian category with enough projective objects. Then the

t-structure on D−(A) is right bounded and left complete.

Proof. The right boundedness of D−(A) is obvious. To prove the left completeness, we must show

that D−(A) is a homotopy inverse limit of the tower of ∞-categories

. . .→ D−(A)≤1 → D−(A)≤0 → . . .

Invoking the right boundedness of D−(A), we may reduce to proving that for each n ∈ Z, D−(A)≥n
is a homotopy inverse limit of the tower

. . .→ D−(A)≤1,≥n → D−(A)≤0,≥n → . . .
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Shifting if necessary, we may suppose that n = 0. Using Remark 1.3.3.15, we can replace A by A∧.

For each k ≥ 0, we let P
≤k
Σ (N(Aproj)) denote the ∞-category of product-preserving functors from

N(Aproj)
op to τ≤k S; equivalently, we can define P

≤k
Σ (N(Aproj)) to be the∞-category of k-truncated

objects of PΣ(N(Aproj)). We observe that the equivalence ψ of Proposition 1.3.3.14 restricts to an

equivalence

ψ(k) : D−≥0(A∧) ∩D−≤k(A
∧) ' P

≤k
Σ (N(Aproj)).

Consequently, it will suffice to show that PΣ(N(Aproj)) is a homotopy inverse limit for the tower

. . .→ P
≤1
Σ (N(Aproj))→ P

≤0
Σ (N(Aproj)).

Since the truncation functors on S commute with finite products (Lemma HTT.6.5.1.2 ), this follows

from the observation that S is a homotopy inverse limit of the tower

. . .→ τ≤1 S→ τ≤0 S;

see Proposition HTT.7.2.1.10 .

Lemma 1.3.3.17. Let A be a small abelian category with enough projective objects, and let C ⊆
PΣ(N(Aproj)) be the essential image of D−≥0(A) ⊆ D−≥0(A∧) under the equivalence ψ : D−≥0(A∧)→
PΣ(N(Aproj)) of Proposition 1.3.3.14. Then C is the smallest full subcategory of P(N(Aproj)) which

is closed under geometric realizations and contains the essential image of the Yoneda embedding.

Proof. It is clear that C contains the essential image of the Yoneda embedding. Lemma 1.3.3.11

implies that D−≥0(A) admits geometric realizations and that the inclusion D−≥0(A) ⊆ D−≥0(A∧) pre-

serves geometric realizations. It follows that C is closed under geometric realizations in P(N(Aproj)).

To complete the proof, we will show that every object of X ∈ D−≥0(A) can be obtained as the

geometric realization, in D−≥0(A∧), of a simplicial object P• such that each Pn ∈ D−≥0(A∧) consists

of a projective object of A, concentrated in degree zero. In fact, we can take P• to be the simplicial

object of Aproj which corresponds to X ∈ Ch≥0(Aproj) under the Dold-Kan correspondence. It

follows from Theorem HTT.4.2.4.1 and Proposition HTT.5.5.9.14 that X can be identified with

the geometric realization of P•.

We are now ready to establish our characterization of D−≥0(A).

Proof of Theorem 1.3.3.8. Part (1) follows by combining Lemma 1.3.3.17, Remark HTT.5.3.5.9 ,

and Proposition HTT.4.3.2.15 . The “only if” direction of (2) is obvious. To prove the “if” di-

rection, let us suppose that F |N(A0) preserves finite coproducts. We may assume without loss

of generality that C admits filtered colimits (Lemma HTT.5.3.5.7 ), so that F extends to a func-

tor F ′ : D−≥0(A∧) → C which preserves filtered colimits and geometric realizations (Propositions

1.3.3.14 and HTT.5.5.8.15 ). It follows from Proposition HTT.5.5.8.15 that F ′ preserves finite

coproducts, so that F = F ′|D−≥0(A) also preserves finite coproducts.
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1.3.4 Inverting Quasi-Isomorphisms

Let A be an abelian category with enough projective objects, and let D denote its (right-bounded)

derived category. The category D admits multiple descriptions:

(a) We can define D explicitly as the category whose objects are chain complexes P∗ with each

Pn a projective object of A, and Pn ' 0 for n � 0; the morphisms in D are given by chain

homotopy equivalence classes of morphisms of chain complexes.

(b) The category D can be obtained by starting with the category Ch−(A) of all right bounded

chain complexes with values in A, and formally inverting quasi-isomorphisms.

In §1.3.2, we defined an ∞-category D−(A), whose homotopy category hD−(A) is canonically

equivalent to the derived category D. Our definition D−(A) can be regarded as an elaboration of

(a): objects of D−(A) are right-bounded chain complexes of projective objects of A, morphisms

are given by chain maps, 2-morphisms by chain homotopies, and so forth (see Definition 1.3.2.7).

In this section, we will obtain an alternative description of the ∞-category D−(A), which can be

regarded as a generalization of (b). To formulate this description, we will need a bit of notation.

Definition 1.3.4.1. Let C be an∞-category and let W be a collection of morphisms in C. We will

say that a morphism f : C→ D exhibits D as the ∞-category obtained from C by inverting the set

of morphisms W if, for every ∞-category E, composition with f induces a fully faithful embedding

Fun(D,E) → Fun(C,E), whose essential image is the collection of functors F : C → E which carry

each morphism in W to an equivalence in E. In this case, the∞-category D is determined uniquely

up to equivalence by C and W , and will be denoted by C[W−1].

If C is an ordinary category and W is a collection of morphisms in C, we let C[W−1] denote the

∞-category N(C)[W−1].

Remark 1.3.4.2. For any∞-category C and any collection W of morphisms of C, the ∞-category

C[W−1] is defined: that is, there exists a functor f : C → D which exhibits D as the ∞-category

obtained from C by inverting W . To prove this, we can assume without loss of generality that W

contains all degenerate edges of C, in which case C[W−1] can be identified with a fibrant replacement

for the pair (C,W ) in the category Set+
∆ of marked simplicial sets (see §HTT.3.1 ).

Example 1.3.4.3. Let C be an ∞-category, and let C0 ⊆ C be a localization of C: that is, C0

is a full subcategory of C, and the inclusion C0 ↪→ C admits a left adjoint L. Let W be the

collection of those morphisms α in C such that L(α) is an equivalence. Then the composite functor

C0 ↪→ C→ C[W−1] is an equivalence of∞-categories, so that we can identify C0 with the∞-category

C[W−1] (see Proposition HTT.5.2.7.12 ).

We now can formulate our main result as follows:
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Theorem 1.3.4.4. Let A be an abelian category with enough projective objects, let A = Ch−(A)

(regarded as an ordinary category), and let W be the collection of morphisms in A which are

quasi-isomorphisms of chain complexes (that is, the collection of all morphisms which induce iso-

morphisms on homology). Then there is a canonical equivalence of∞-categories A[W−1] ' D−(A).

The main ingredient in the proof of Theorem 1.3.4.4 is the following result, which we will prove

later in this section:

Proposition 1.3.4.5. Let A be an additive category, let Ch′(A) be a full subcategory of Ch(A), let

A denote the underlying discrete category of Ch′(A), and let W be the collection of chain homotopy

equivalences in A. Assume that for every object M∗ ∈ Ch′(A), the tensor product N∗(∆
1) ⊗M∗

(that is, the mapping cylinder of the identity map id : M∗ → M∗) also belongs to Ch′(A). Then

the inclusion θ : N(A) ↪→ Ndg(Ch′(A)) of Remark 1.3.1.9 induces an equivalence of ∞-categories

θ′ : A[W−1] ' Ndg(Ch′(A)) (see Notation 4.1.7.3).

We will also need the following observation:

Proposition 1.3.4.6. Let A be an abelian category with enough projective objects. Then:

(1) The inclusion of ∞-categories D−(A) ↪→ Ndg(Ch−(A)) admits a right adjoint G.

(2) Let α be a morphism in Ndg(Ch−(A)). Then G(α) is an equivalence in D−(A) if and only if

α is a quasi-isomorphism of chain complexes.

(3) Let W be the collection of all morphisms in Ndg(Ch−(A)) which are quasi-isomorphisms of

chain complexes. Then we have a canonical equivalence of ∞-categories

Ndg(Ch−(A))[W−1] ' D−(A).

Proof. We first note that if f : M∗ → N∗ is a quasi-isomorphism of chain complexes with values in

A, then Lemma 1.3.2.20 implies that f induces a quasi-isomorphism

MapCh(A)(P∗,M∗)→ MapCh(A)(P∗, N∗)

for of chain complexes of abelian groups, for every object P∗ ∈ D−(A). Assertion (∗) in the

proof of Proposition 1.3.2.19 shows that for every object N∗ ∈ Ch−(A), we can choose a quasi-

isomorphism f : M∗ → N∗, where M∗ ∈ D−(A). Assertion (1) now follows from Proposition

HTT.5.2.7.8 . Moreover, we immediately deduce the “if” direction of (2). For the converse, suppose

that f : M∗ → N∗ is a morphism in Ndg(Ch−(A)) and that G(f) is an equivalence; we wish to

prove that f is a quasi-isomorphism. We have a commutative diagram

G(M∗)
G(f) //

��

G(N∗)

��
M∗

f // N∗
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in the ∞-category Ndg(Ch−(A)). The vertical maps are quasi-isomorphisms by construction, and

the upper horizontal map is a chain homotopy equivalence. It follows that f is also a quasi-

isomorphism. This completes the proof of (2); assertion (3) now follows from Example 1.3.4.3.

Proof of Theorem 1.3.4.4. Let A denote the ordinary category underlying Ch−(A), let W be the

collection of quasi-isomorphisms in A, and let W0 ⊆ W be the collection of chain homotopy

equivalences in A. Propositions 1.3.4.5 and 1.3.4.6 supply equivalences of ∞-categories

Ndg(Ch−(A)) ' A[W−1
0 ] D−(A) ' Ndg(Ch−(A))[W−1],

from which we immediately obtain an equivalence of ∞-categories D−(A) ' A[W−1].

We now turn to the proof of Proposition 1.3.4.5. We have already seen that the differential

graded nerve Ndg(Ch′(A)) is equivalent to the nerve of the simplicial category underlying Ch′(A)

(Proposition 1.3.1.17). We therefore ask the following general question: given a simplicial category

C, under what circumstances can we recover the homotopy coherent nerve N(C) from the underlying

ordinary category of C, by inverting the class of homotopy equivalences? The following result

provides a useful criterion:

Proposition 1.3.4.7. Let C be a simplicial category and let W be a collection of morphisms in C.

Assume that the following conditions are satisfied:

(1) Every isomorphism in C belongs to W .

(2) Given a commutative diagram

Y
g

��
X

f
>>

h // Z

in C, if any two of the morphisms f , g, and h belong to W , then so does the third.

(3) For every object X ∈ C, there exists an interval object ∆1⊗X equipped with a map h : ∆1 →
MapC(X,∆1⊗X) having the following universal property: for every object Y ∈ C, composition

with h determines an isomorphism of simplicial sets

MapC(∆1 ⊗X,Y )→ MapSet∆
(∆1,MapC(X,Y )).

(4) For each X ∈ C, the canonical map ∆1 ⊗X → X belongs to W .

Let C0 denote the underlying ordinary category of C and let C′ be a fibrant replacement for C (in

the category Cat∆ of simplicial categories). Then the canonical map θ : (N(C0),W ) → (N(C′),W )

is a weak equivalence of marked simplicial sets.
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Example 1.3.4.8. If C is a fibrant simplicial category, then we can take C′ = C. Assume that

C admits interval objects (that is, C satisfies condition (3) of Proposition 1.3.4.7), and let W be

the collection of homotopy equivalences in C. Then Proposition 1.3.4.7 provides an equivalence of

∞-categories C0[W−1] ' N(C).

Warning 1.3.4.9. As stated, Proposition 1.3.4.7 does quite apply to the underlying simplicial

category of the differential graded category Ch′(A) appearing in Proposition 1.3.4.5. The problem

is with hypothesis (3): the construction (K,M∗) 7→ N∗(K)⊗M∗ does not exhibit Ch(A) as tensored

over the category of simplicial sets (see Warning 1.3.5.4). However, we obtain a proof of Proposition

1.3.4.5 by slightly modifying the proof of Proposition 1.3.4.7 given below.

The proof of Proposition 1.3.4.7 will require some preliminaries.

Lemma 1.3.4.10. Let J be a category and suppose we are given a diagram u : J → Cat∆, which

we will denote by α 7→ Cα, together with a map of simplicial categories θ : lim−→Cα → C. Suppose

furthermore that the following conditions are satisfied:

(1) For every index α, the simplicial functor fα : Cα → C is bijective on objects.

(2) For every pair of objects x, y ∈ C, the canonical map

lim−→
α

MapCα(f−1
α x, f−1

α y)→ MapC(x, y)

exhibits MapC(x, y) as a homotopy colimit of the diagram of simplicial sets {MapCα(f−1
α x, f−1

α y)}α∈J.

(3) The ∞-category N(J) is sifted.

Then θ exhibits C as a homotopy colimit of the diagram {Cα}.

Proof. Let S be the set of objects of C. Let A = SetS×S∆ be the category whose objects are collections

of simplicial sets {Xs,t}s,t∈S . The standard model structure on Set∆ determines a model structure

on the category A, where fibrations, cofibrations, and weak equivalences are given pointwise. Note

that A has the structure of a monoidal model category, where the tensor product is given by the

formula

(X ⊗ Y )s,t =
∐
u∈S

Xs,u × Yu,t.

Since every object of A is cofibrant, Proposition 4.1.8.3 implies that Alg(A) inherits the structure of

a combinatorial model category. The objects of Alg(A) can be identified simplicial categories whose

underlying set of objects is S. Consequently, we have a forgetful functor F : Alg(A) → (Cat∆)S/

(where we regard S as a simplicial category via the formula MapS(s, t) =

{
∆0 if s = t

∅ if s 6= t.
). Note

that C ' F (A) for some A ∈ Alg(A). Condition (1) implies that u is isomorphic to a functor given
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by the composition J
u′→ Alg(A)

F→ Cat∆, and that θ is obtained from a map θ′ : lim−→(u′) → A in

Alg(A). Since F is a left Quillen functor which preserves weak equivalences, it preserves homotopy

colimits; consequently, it will suffice to show that θ′ exhibits A as a homotopy colimit of u′ in the

model category Alg(A). Using condition (3) and Lemma 4.1.8.13, we are reduced to proving that

θ′ exhibits A as a homotopy colimit of u′ in the model category A, which is equivalent to condition

(2).

Notation 1.3.4.11. Let C be a simplicial category. We can regard C as a simplicial object in the

category Cat: that is, for each [n] ∈∆, let Cn denote the category whose objects are the objects of

C, with HomCn(x, y) = HomSet∆
(∆n,MapC(x, y)).

For [n] ∈∆, let t[n] : Set∆ → Set∆ be the translation functor described by the formula

HomSet∆
(X, t[n]Y ) ' HomSet∆

(∆n ? X, Y ).

Then t[n] preserves products and therefore induces a functor T[n] : Cat∆ → Cat∆. For any simplicial

category C, there is an evident pair of maps

Cn ← T[n] C→ C .

Allowing [n] to vary, we obtain a simplicial object T• C of Cat∆, equipped with a map of simplicial

objects T• C→ C• and a map of simplicial categories lim−→T• C→ C.

Lemma 1.3.4.12. Let X be a simplicial set. Then for each m ≥ 0, the canonical map

t[m]X → HomSet∆
(∆m, X)

is a homotopy equivalence.

Proof. Unwinding the definitions, we have an isomorphism t[m]X '
∐
σ:∆m→X Xσ/, where each

summand is weakly contractible.

Lemma 1.3.4.13. Let X be a simplicial set. Then the canonical map lim−→ t[n](X)→ X exhibits X

as a homotopy colimit of the diagram [n] 7→ t[n](X).

Proof. Since the collection of homotopy colimit diagrams is stable under filtered colimits, we may

assume without loss of generality that X is finite. We work by induction on the dimension n of X

and the number of nondegenerate n-simplices of X. If X is empty, the result is obvious; otherwise,

we have a homotopy pushout diagram

∂∆n //

��

∆n

��
X ′ // X.
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Using the inductive hypothesis, we deduce that X ′ and ∂∆n can be identified with the homotopy

colimit of the diagrams t•X
′ and t•(∂∆n). Consequently, to prove that X is the homotopy colimit

of t•X, it suffices to show that ∆n is a homotopy colimit of t•∆
n: in other words, we wish to

show that the homotopy colimit of t•∆
n is contractible. Using Lemma 1.3.4.12, we are reduced

to showing that the diagram [m] 7→ HomSet∆
(∆m,∆n) has a contractible homotopy colimit, which

follows from Corollary HTT.A.2.9.30 .

Proposition 1.3.4.14. Let C be a simplicial category. Then C can be identified with the geometric

realization of the simplicial object C• in Cat ⊆ Cat∆. More precisely, the map T• C → C• is a

weak equivalence of simplicial objects of Cat∆, and the map lim−→T• C→ C exhibits C as a homotopy

colimit of the simplicial object T• C.

Proof. We first claim that for n ≥ 0, the canonical map T[n] C → Cn is a weak equivalence of

simplicial categories. Since this map is bijective on objects, it suffices to show that for every pair

of objects x, y ∈ C, the map MapT[n] C
(x, y)→ HomCn(x, y) is a weak homotopy equivalence, which

follows from Lemma 1.3.4.12.

We next show that C can be identified with the homotopy colimit of the diagram T• C. Using

Lemma 1.3.4.10, we are reduced to proving that for every pair of objects x, y ∈ C, the MapC(x, y)

is a homotopy colimit of the diagram [n] 7→ t[n] MapC(x, y); this follows from Lemma 1.3.4.13.

Proof of Proposition 1.3.4.7. We let |C | denote the topological category obtained from the simpli-

cial category C by geometric realization (that is, |C | has the same objects as C, with morphism

spaces given by Map|C |(X,Y ) = |MapC(X,Y )| ). We may assume without loss of generality that C′

is the underlying simplicial category of |C |, so that the homotopy coherent nerve N(C′) is isomorphic

to the nerve of the topological category |C |.
Fix an object X ∈ C, and let h : ∆1 → MapC(X,∆1 ⊗X) be as in (3). Restricting to vertices,

we obtain a pair of morphisms h0, h1 : X → ∆1 ⊗ X. These maps are both right inverse to the

projection ∆1 ⊗X → X. Using (1), (2), and (4), we deduce that h0 and h1 belong to W . Suppose

that f : X → Y is a morphism in C which belongs to W , and that f ′ : X → Y is another morphism

which is connected to f by an edge of MapC(X,Y ). This edge determines a map F : ∆1 ⊗X → Y

such that f = F ◦ h0 and f ′ = F ◦ h1. Using (2) we deduce that F ∈ W and therefore f ′ ∈ W .

It follows that if g : X → Y is any morphism which belongs to the same connected component of

MapC(X,Y ) as f , then g ∈W .

For each n ≥ 0 let Wn be the collection of morphisms in Cn which correspond to maps

∆n → MapC(X,Y ) which carry each vertex to an element of W , and let W ′n be the collection

of morphisms in the simplicial category T[n] C whose image in Cn belongs to Wn. The map θ factors

as a composition

(N(C0),W )
θ′→ hocolim(N(|T• C |),W ′•)

θ′′→ (N(|C |),W ).

It will therefore suffice to prove that θ′ and θ′′ are weak equivalences. For the map θ′′, this is an

immediate consequence of Proposition 1.3.4.14.
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We now show that θ′ is a weak equivalence. Consider the composite map

(N(C0),W )
θ′→ hocolim(N(|T• C |),W ′•)

φ→ hocolim(N(C•),W•).

Each of the maps Tn C → Cn is a weak equivalence of simplicial categories, so that φ is a weak

equivalence of marked simplicial sets. It therefore suffices to show that the composite map φ ◦ θ′

is a weak equivalence. Since N(∆)op is weakly contractible, it will suffice to show that [n] 7→
(N(Cn),Wn) determines a constant diagram in the homotopy category hSet+

∆. Equivalently, we

must show that for each n ≥ 0, the map [n]→ [0] induces a weak equivalence of marked simplicial

sets F : (N(C0),W0) → (N(Cn),Wn). Let G : (N(Cn),Wn) → (N(C0),W0) be the map induced by

the inclusion [0] ↪→ [n]. Then G ◦ F = id. To complete the proof, it will suffice to show that F ◦G
is homotopic to the identity map. To this end, we define a functor U : Cn → Cn as follows:

• On objects, U is given by U(X) = ∆1 ⊗X.

• Let α : X → Y be a morphism in Cn corresponding to a map ∆n → MapC(X,Y ). Then U(α)

corresponds to the map ∆n → MapC(∆1 ⊗X,∆1 ⊗ Y ) given by

∆n ×∆1 r→ ∆n ×∆1 α→ MapC(X,Y )×∆1 → MapC(X,∆1 ⊗ Y ),

where r is given on vertices by the formula

r(i, j) =

{
(0, 0) if j = 0

(i, 1) ifj = 1.

The inclusions {0} ↪→ ∆1 ←↩ {1} determine natural transformations F ◦G→ U ← id. Conditions

(1), (2), and (4) guarantee that these transformations are given by morphisms in Wn, and therefore

determine a homotopy from F ◦G to the identity.

We now prove Proposition 1.3.4.5 using a similar strategy.

Proof of Proposition 1.3.4.5. For each [n] ∈ ∆, let Cn denote the category whose objects are the

objects of Ch′(A), with morphisms given by

HomCn(M∗,M
′
∗) ' HomCh(A)(N∗(∆

n)⊗M∗,M ′∗).

Then C• is a simplicial object of Cat arising from a simplicial category C, and Proposition 1.3.1.17

supplies an equivalence of ∞-categories N(C)→ Ndg(Ch′(A)). It will therefore suffice to show that

the inclusion N(C0) ↪→ N(C) induces an equivalence C0[W−1] → N(C). For each n ≥ 0, let Wn be

the collection of morphisms in the category Cn defined as in the proof of Proposition 1.3.4.7.
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Let T• C be the simplicial object of Cat∆ introduced in Notation 1.3.4.11, and let Wn be the

collection of morphisms in Tn C whose images in Cn belong to Wn. Proposition 1.3.4.14 yields weak

equivalences of simplicial categories

hocolimC• ← hocolimT•Ch′(A)→ Ch′(A).

Moreover, the map on the right carries each morphism in Wn to a homotopy equivalence in Ch′(A),

so we obtain categorical equivalences

hocolim N(C•)[W
−1
• ]← hocolim N(T•Ch′(A))[W

−1
• ]→ N(Ch′(A)).

The map θ factors naturally through N(T0 Ch′(A)) so that the composite map N(A) →
N(T0 Ch′(A)) → N(C0) is an isomorphism. Consequently, to prove that θ′ is an equivalence

of ∞-categories, it will suffice to show that the natural map N(C0)[W−1
0 ]→ hocolim N(C•)[W

−1
• ] is

a categorical equivalence. We will prove this by showing that the diagram N(C•)[W
−1
• ] is essentially

constant: that is, for each n ≥ 0, the map [n] → [0] in ∆ induces a weak equivalence of marked

simplicial sets

F : (N(C0),W−1
0 )→ (N(Cn),W−1

n ).

Let G : (N(Cn),Wn)→ (N(C0),W0) be the map induced by the inclusion [0] ↪→ [n]. Then G◦F = id.

To complete the proof, it will suffice to show that F ◦ G is homotopic to the identity map in the

model category Set+
∆. We will prove this by an explicit construction.

Given a sequence i0 < i1 < · · · < ik corresponding to a nondegenerate k-simplex of ∆m, we let

[i0, . . . , ik] denote the corresponding generator for the free abelian group N∗(∆
k). We define a map

of chain complexes χ : N∗(∆
n)⊗N∗(∆1)→ N∗(∆

1)⊗N∗(∆n) by the formula

χ([i0, . . . , ik]⊗ [0]) =

{
[0]⊗ [0] if k = 0

0 otherwise.

χ([i0, . . . , ik]⊗ [1]) = [1]⊗ [i0, . . . , ik]

χ([i0, . . . , ik]⊗ [0, 1]) =

{
(−1)k[0, 1]⊗ [i0, . . . , ik] if i0 = 0

(−1)k[0, 1]⊗ [i0, . . . , ik] + (−1)k[0]⊗ [0, i0, . . . , ik] if i0 > 0.

For objects M∗,M
′
∗ ∈ Ch′(A), every morphism φ ∈ HomCn(M∗,M

′
∗) determines a map

φ′ : N∗(∆
n)⊗N∗(∆1)⊗M∗

χ→ N∗(∆
1)⊗N∗(∆n)⊗M∗

φ→ N∗(∆
1)⊗M ′∗.

The construction φ 7→ φ′ determines a functor U from Cn to itself, given on objects by M∗ 7→
N∗(∆

1)⊗M∗. Moreover, the inclusions {0} ↪→ ∆1 ←↩ {1} determine natural transformations

F ◦G→ U ← id .

Since the underlying maps M∗ → N∗(∆
1) ⊗M∗ are chain homotopy equivalences, these natural

transformations show that id and F ◦G are both homotopic to U , and are therefore homotopic to

each other.
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We conclude this section by describing some other applications of Proposition 1.3.4.7. Recall

that we can associate an ∞-category to each simplicial model category A, via the construction

A 7→ N(Ao) (here Ao denotes the full subcategory of A spanned by the fibrant-cofibrant objects).

However, many model categories which naturally arise which are not simplicial (we will study some

examples in §1.3.5). In these cases, we cannot produce an ∞-category directly using the homo-

topy coherent nerve. However, we can still associate an underlying ∞-category via the following

procedure:

Definition 1.3.4.15. Let A be a model category. We let Ac denote the full subcategory of A

spanned by the cofibrant objects. Let C be an∞-category. We will say that a functor f : N(Ac)→ C

exhibits C as the underlying ∞-category of A if f induces an equivalence N(Ac)[W−1] ' C, where

W is the collection of weak equivalences in Ac.

Remark 1.3.4.16. In Definition 1.3.4.15, we restrict our attention to cofibrant objects of A in

order to facilitate applications to the study of monoidal model categories: if A is a monoidal model

category, then the tensor product on Ac preserves weak equivalences. Other variations on Definition

1.3.4.15 are possible. For example, we could define the underlying ∞-category of A to be the ∞-

category obtained from A, from the fibrant objects of A, or from the fibrant-cofibrant objects of

A, by formally inverting all weak equivalences. If we assume that the morphisms f : X → Y in A

admit factorizations

X
α→ U(f)

β→ Y X
α′→ V (f)

β′→ Y

(where α is a cofibration, α′ a trivial cofibration, β a trivial fibration, and β′ a fibration) which can

be chosen functorially in f , then all of these approaches are equivalent to Definition 1.3.4.15. The

functorial factorization condition is always satisfied in practice (and is sometimes taken as part of

the definition of a model category); it is automatic, for example, if A is a combinatorial model

category.

Our goal now is to show that if A is a simplicial model category, then the underlying∞-category

of A is given by the homotopy coherent nerve N(Ao) (Theorem 1.3.4.20). We begin by constructing

a functor from the ordinary category Ac to the ∞-category N(Ao).

Notation 1.3.4.17. In what follows, we will always regard Ac as a discrete category, even in cases

where A is equipped with the structure of a simplicial model category.

Construction 1.3.4.18. Let A be a simplicial model category. We define a simplicial category M

as follows:

(1) An object of M is a pair (i, A), where i ∈ {0, 1} and A is a cofibrant object of A, which is

fibrant when i = 1.
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(2) Given a pair of objects (i, A) and (j, B) in M, we have

MapM((i, A), (j, B)) =


MapA(A,B) if j = 1

HomA(A,B) if i = j = 0

∅ if j = 0 < 1 = i.

We note that the mapping spaces in M are fibrant, so that N(M) is an ∞-category. There is

an evident forgetful functor p : N(M) → ∆1, which exhibits N(M) as a correspondence from

N(M)0 ' N(Ac) to N(M)1 ' N(Ao).

Lemma 1.3.4.19. Let A be a simplicial model category, and let M be defined as in Construction

1.3.4.18. Then the projection map p : N(M) → ∆1 is a coCartesian fibration. Moreover, if

f : (i, A)→ (j, B) is a morphism in N(M) with i = 0 < 1 = j, then f is p-coCartesian if and only

if the induced map A→ B is a weak equivalence in A.

Proof. Choose an object (0, A) ∈ N(M)0, and choose a trivial cofibration A → B where B is a

fibrant object of A. We will show that the induced map (0, A)→ (1, B) in N(M) is p-coCartesian.

This will prove that p is a coCartesian fibration and the “if” direction of the final assertion;

the “only if” will then follow from the uniqueness of coCartesian morphisms up to equivalence.

Using Proposition HTT.2.4.4.3 , we are reduced to proving the following assertion: for every object

C ∈ Ao, composition with f induces a homotopy equivalence MapA(B,C) → MapA(A,C). This

follows from the fact that C is fibrant and f is a weak equivalence between cofibrant objects.

It follows from Lemma 1.3.4.19 that the correspondence N(M) → ∆1 determines a functor

θ : N(Ac)→ N(Ao), which is well-defined up to equivalence. We now have the following result:

Theorem 1.3.4.20. [Dwyer-Kan] Let A be a simplicial model category, let θ : N(Ac) → N(Ao)

be the functor constructed above, and let W be the collection of weak equivalences in Ac. Then θ

induces an equivalence Ac[W−1]→ N(Ao) (that is, θ exhibits N(Ao) as the underlying ∞-category

of A, in the sense of Definition 1.3.4.15).

Before giving the proof of Theorem 1.3.4.20, let us collect a few consequences concerning the

structure of the underlying ∞-category of an arbitrary combinatorial model category.

Lemma 1.3.4.21. Let F : A → B be a left Quillen equivalence between combinatorial model

categories. Let Ac and Bc denote the full subcategories of A and B spanned by the cofibrant

objects, and let WA and WB be the collection of weak equivalences in Ac and Bc, respectively.

Then F induces a weak equivalence of marked simplicial sets

f : (N(Ac),WA)→ (N(Bc),WB).

In other words, a left Quillen equivalence between combinatorial model categories induces an

equivalence between their underlying ∞-categories.
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Proof. Since A is combinatorial, there exists a cofibrant replacement functor P : A → A. That

is, P is a functor equipped with a natural transformation u : P → id such that, for every object

X ∈ A, the induced map uX : P (X)→ X is a weak equivalence and P (X) is cofibrant. Similarly,

we can choose a fibrant replacement functor Q : B → B. Let G be a right adjoint to F , and let

G′ : Bc → Ac be the functor given by the composition

Bc Q→ B
G→ A

P→ Ac.

Since P and Q preserve weak equivalences and G preserves weak equivalences between fibrant

objects, we conclude that G′ carries WB into WA, and therefore induces a map of marked simplicial

sets

g′ : (N(Bc),WB)→ (N(Ac),WA).

We claim that this map is homotopy inverse to f . We will argue that g′ ◦ f is homotopic to the

identity; the proof for f ◦ g′ is similar. We have a diagram of natural transformations

idAc ← P → P ◦ (G ◦ F )→ (P ◦G ◦Q) ◦ F ' G′ ◦ F.

It will therefore suffice to show that for every cofibrant object X ∈ Ac, the resulting maps

X
uX← P (X)

vX→ (G′ ◦ F )(X)

are weak equivalences. For the map uX , this is clear. The map vX fits into a commutative diagram

P (X)
vX //

��

(G′ ◦ F )(X)

��
X

v′X // (G ◦Q ◦ F )(X)

where the vertical maps are weak equivalences. It will therefore suffice to show that v′X is a weak

equivalence. Since X is cofibrant and (Q ◦ F )(X) is a fibrant object of B, our assumption that

F is a Quillen equivalence shows that v′X is a weak equivalence if and only if the adjoint map

F (X)→ (Q ◦ F )(X) is a weak equivalence, which is clear.

It follows from the main result of [36] that every combinatorial model category is Quillen

equivalent to a combinatorial simplicial model category. Combining this result, Lemma 1.3.4.21,

Theorem 1.3.4.20, and Proposition HTT.A.3.7.6 , we obtain the following:

Proposition 1.3.4.22. Let A be a combinatorial model category. Then the underlying ∞-category

of A is presentable.

Similarly, Theorem HTT.4.2.4.1 implies the following:
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Proposition 1.3.4.23. Let A be a combinatorial model category, let I be a small category, let

F : I → Ac be a functor, and let α : X → lim←−I∈I F (I) be a morphism in Ac. The following

conditions are equivalent:

(1) The map α exhibits X as a homotopy limit of the diagram F (in the model category A).

(2) The induced map

N(I)/ → N(Ac)→ N(Ac)[W−1]

is a limit diagram in the underlying ∞-category N(Ac)[W−1] of A.

Proposition 1.3.4.24. Let A be a combinatorial model category, let I be a small category, let

F : I → Ac be a functor, and let α : lim−→I∈I F (I) → X be a morphism in Ac. The following

conditions are equivalent:

(1) The map α exhibits X as a homotopy colimit of the diagram F (in the model category A).

(2) The induced map

N(I). → N(Ac)→ N(Ac)[W−1]

is a colimit diagram in the underlying ∞-category N(Ac)[W−1] of A.

Finally, by reducing to the simplicial case and invoking Proposition HTT.4.2.4.4 , we obtain:

Proposition 1.3.4.25. Let A be a combinatorial model category and let I be a small category. Let

AI be the category of functors from I to A (endowed with either the injective or projective model

structure), let (AI)c be the full subcategory of AI spanned by the cofibrant objects, and let W ′ be

the collection of weak equivalences in (AI)c. Then the evident map

N(I)×N((AI)c)→ N(Ac)

induces an equivalence of ∞-categories

N((AI)c)[W ′−1]→ Fun(N(I),N(A)[W−1]).

Corollary 1.3.4.26. Let F : A → B be a left Quillen functor between combinatorial model cate-

gories. Let Ac and Bc denote the full subcategories of A and B spanned by the cofibrant objects,

and let WA and WB be the collection of weak equivalences in Ac and Bc, respectively. Then the

induced functor f : N(Ac)[W−1
A ]→ N(Bc)[W−1

B ] preserves small colimits.

Proof. In view of Proposition HTT.4.4.2.7 , it will suffice to show that f preserves small colimits

indexed by N(I), where I is a small category. By virtue of Proposition 1.3.4.25, it suffices consider

colimits of diagrams which arise from functors I → Ac. This follows from Proposition 1.3.4.24,

since F preserves homotopy colimits.
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Remark 1.3.4.27. Let F : A → B be as in Corollary 1.3.4.26. Using Proposition 1.3.4.22 and

Corollary HTT.5.5.2.9 , we conclude that the induced map of ∞-categories f : N(Ac)[W−1
A ] →

N(Bc)[W−1
B ] admits a right adjoint g. It is not hard to construct g explicitly, by composing a right

adjoint to F with a fibrant replacement functor in B and a cofibrant replacement functor in A (as

in the proof of Lemma 1.3.4.21).

We conclude this section by giving the proof of Theorem 1.3.4.20.

Proof of Theorem 1.3.4.20. Let A be a simplicial model category and let θ : N(Ac) → N(Ao) be

the functor determined by Lemma 1.3.4.19. Let W be the collection of weak equivalences in Ac and

W o the collection of weak equivalences in Ao. We wish to show that θ induces a weak equivalence of

marked simplicial sets (N(Ac),W )→ (N(Ao),W o). Let C = Ac, regarded as a simplicial category,

and let φ denote the composite map

N(Ac)
θ→ N(Ao)→ N(|C |)

(here |C | denotes the topological category associated to C, as in the proof of Proposition 1.3.4.7).

There is an evident natural transformation φ′ → φ, where φ′ is the inclusion N(Ac) ⊆ N(|C |).
It follows from Lemma 1.3.4.19 that this natural transformation is given by morphisms belonging

to W , so that φ and φ′ induce the same morphism (N(Ac),W ) → (N(|C |),W ) in the homotopy

category of marked simplicial sets. Proposition 1.3.4.7 implies that φ′ determines a weak equivalence

of marked simplicial sets, so that φ is also a weak equivalence of marked simplicial sets. It will

therefore suffice to show that the composite map

(N(Ao),W o)
ψ′→ N(|Ao|,W o)

ψ→ (N(|C |),W )

is a weak equivalence of marked simplicial sets. It is clear that ψ′ is a weak equivalence (since Ao is

a fibrant simplicial category). The argument above shows that ψ ◦ψ′ (and therefore also ψ) admits

a right homotopy inverse. We will complete the proof by constructing a left homotopy inverse to

ψ.

We claim that the inclusion N(|Ao|) ⊆ N(|C |) admits a left adjoint. To prove this, it suffices

to show that for every cofibrant object X ∈ A, there exists a morphism f : X → Y where Y ∈ Ao

which induces a homotopy equivalence MapA(Y,Z) → MapA(X,Z) for each Z ∈ Ao. For this,

it suffices to take f to be any weak equivalence from X to a fibrant-cofibrant object of Y . Let

L : N(|C |) → N(|Ao|) be a left adjoint to the inclusion. The above argument shows that the unit

transformation u : id → L carries each cofibrant object X ∈ A to a weak equivalence f : X → Y

in A. It follows that L carries W into W o, and therefore induces a map of marked simplicial sets

ζ : (N(|C |),W )→ (N(Ao),W o) which is the desired left homotopy inverse to ψ.
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1.3.5 Grothendieck Abelian Categories

In §1.3.3, we studied the right-bounded derived ∞-category D−(A) of an abelian category A with

enough projective objects. If A instead has enough injective objects, then we can consider instead

its left-bounded derived ∞-category D+(A) ' D−(Aop)op (see Variant 1.3.2.8). For many applica-

tions, it is convenient to work with chain complexes which are unbounded in both directions. In

this section, we will study an unbounded version of the derived ∞-category introduced in §1.3.3,

following ideas introduced in [137]. We begin by singling out a convenient class of abelian categories

to work with.

Definition 1.3.5.1. Let A be an abelian category. We say that A is Grothendieck if it is presentable

and the collection of monomorphisms in A is closed under small filtered colimits.

Remark 1.3.5.2. The notion of a Grothendieck abelian category was introduced by Grothendieck

in the paper [65].

Proposition 1.3.5.3. Let A be a Grothendieck abelian category. Then Ch(A) admits a left proper

combinatorial model structure, which can be described as follows:

(C) A map of chain complexes f : M∗ → N∗ is a cofibration if, for every integer k, the induced

map Mk → Nk is a monomorphism in A.

(W ) A map of chain complexes f : M∗ → N∗ is a weak equivalence if it is a quasi-isomorphism:

that is, if it induces an isomorphism on homology.

(F ) A map of chain complexes f : M∗ → N∗ is a fibration if it has the right lifting property with

respect to every map which is both a cofibration and a weak equivalence.

Proof. Since A is presentable, there exists a small collection of objects Xi ∈ A which generate A

under small colimits. Let X =
⊕
Xi. Then each Xi is a retract of X, so that the object X generates

A under small colimits. In particular, for every object Y ∈ A the canonical map
∐
α:X→Y X → Y

is an epimorphism. Every subobject of Y is the image of a coproduct
∐
α∈S X for some subset

S ⊆ HomA(X,Y ); it follows that the category of subobjects of Y is essentially small.

For every monomorphism u : X0 ↪→ X and every integer n, let E(u, n)∗ denote the chain

complex given by

E(u, n)k =


X0 if k = n

X if k = n− 1

0 otherwise,

where the differential is given by the map u. Let C0 be the collection of all monomorphisms of

the form E(u, n)∗ → E(idX , n)∗. We first claim that the collection of cofibrations in Ch(A) is the

smallest collection of morphisms containing C0 which is weakly saturated, in the sense of Definition
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HTT.A.1.2.2 . It is clear that the collection of cofibrations contains C0 and is weakly saturated.

Conversely, suppose we are given a cofibration of chain complexes f : M∗ → N∗. We define a

compatible sequence of monomorphisms fα : M(α)∗ → N∗ by transfinite induction. Set f0 = f ,

and for α a nonzero limit ordinal let fα be the induced map lim−→β<α
M(β)∗ → N∗ (our assumption

that A is Grothendieck guarantees that this map is again a monomorphism).

Assume that fα has been defined. We can choose a map λ : X → Nn which does not factor

through M(α)n. Replacing λ by the composite map X
λ→ Nn

d→ Nn−1 if necessary, we may

assume in addition that the composite map d ◦ λ : X → Nn−1 does factor through M(α)n−1. Let

X0 = M(α)n ×Nn X and let u : X0 → X be the projection onto the second factor. Then we have

a commutative diagram

E(u, n)∗ //

��

E(idX , n)∗

��
M(α)∗

fα // N∗.

Taking M(α+1)∗ to be the pushout M(α)∗
∐
E(α,n)∗

E(idX , n)∗, we obtain a monomorphism fα+1 :

M(α + 1)∗ → N∗ compatible with α. Moreover, the map λ factors through fα+1, so that M(α)∗
and M(α+ 1)∗ are not isomorphic as subobjects of N∗.

Since the collection of subobjects of N∗ is bounded, this process must eventually terminate.

In other words, for α sufficiently large, the map fα is an equivalence. This implies that the map

f can be obtained as a transfinite composition of monomorphisms M(β)∗ → M(β + 1)∗, each of

which is a pushout of a morphism belonging to C0. It follows that f belongs to the smallest weakly

saturated class of morphisms containing C0, as desired.

To complete the proof, it will suffice to show that the class of cofibrations and weak equivalences

satisfy the hypotheses of Proposition HTT.A.2.6.15 :

(1) The class of weak equivalences is perfect. To prove this, we note that a morphism f : M∗ → N∗
is a weak equivalence if and only if its image under the homology functor H∗ : Ch(A) →∏
n∈Z A is an isomorphism. Since A is a Grothendieck abelian category, the functor H∗

commutes with filtered colimits and the result follows from Corollary HTT.A.2.6.14 .

(2) Suppose we are given a pushout diagram of chain complexes σ :

M ′∗
f //

g

��

M∗

g′

��
N ′∗

f ′ // N∗

where f is a cofibration and g is a weak equivalence; we must show that g′ is a weak equiva-
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lence. For every integer n, we have a map of exact sequences

Hn+1(M/M ′) //

θ0
��

Hn(M ′) //

θ1
��

Hn(M) //

θ2
��

Hn(M/M ′) //

θ3
��

Hn−1(M ′)

θ4
��

Hn+1(N/N ′) // Hn(N ′) // Hn(N) // Hn(N/N ′) // Hn−1(N ′).

Since g is a quasi-isomorphism, the maps θ1 and θ4 are isomorphisms. The maps θ0 and θ3

are induced by the map of chain complexes (M/M ′)∗ → (N/N ′)∗, which is an isomorphism

because σ is assumed to be a pushout diagram. It follows that θ2 is also an isomorphism, as

desired.

(3) Let f : M∗ → N∗ be a map of chain complexes which has the right lifting property with

respect to every cofibration. We must show that f is a quasi-isomorphism. Fix an integer

n and let Z denote the kernel of the differential d : Nn → Nn−1. Let Z[n] denote the

chain complex consisting of the object Z ∈ A, concentrated in degree n. Then the inclusion

0 ↪→ Z[n] is a cofibration, so that f has the right lifting property with respect to f . It follows

that the monomorphism Z[n] ↪→ Nn lifts to a map Z → Z ′, where Z ′ denotes the kernel of the

differential Mn →Mn−1. This guarantees that the map on homology θ : Hn(M)→ Hn(N) is

an epimorphism. We now show that θ is a monomorphism. To prove this, let Z ′′ denote the

fiber product Z ′ ×Nn Nn+1, and let u : 0→ Z ′′ be the zero map. Then f has the right lifting

property with respect to the cofibration E(u, n+ 1)∗ → E(idZ′′ , n+ 1)∗. It follows that there

exists a map µ : Z ′′ → Mn+1 such that Z ′′
µ→ Mn+1

f→ Nn+1 is given by the projection onto

the second factor, and the map Z ′′
µ→ Mn+1

d→ Mn is given by the projection onto the first

factor Z ′ (which we view as a subobject of Mn). We note that Z ′′ is given by the fiber product

Z ×Hn(M) ker(θ), so the map Z ′′ → ker(θ) is an epimorphism. However, the existence of the

map µ shows that the map Z ′′ → ker(θ) is zero, so that θ is a monomorphism as desired.

Warning 1.3.5.4. Let A be a Grothendieck abelian category. The category Ch(A) is endowed with

both a model structure and a simplicial enrichment (via Construction 1.3.1.13). However, it is not

a simplicial model category in the sense of Definition HTT.A.3.1.5 , because it is not tensored over

the category of simplicial sets. For every simplicial set K and any pair of objects M∗,M
′
∗ ∈ Ch(A),

we have a canonical bijection

HomCh(A)(N∗(K)⊗M∗,M ′∗) ' HomSet∆
(K,MapCh(A)∆

(M∗,M
′
∗)).

This bijection extends to a map of simplicial sets

MapCh(A)∆
(N∗(K)⊗M∗,M ′∗)→ MapSet∆

(K,MapCh(A)(M∗,M
′
∗)),

which is generally not an isomorphism (because the Alexander-Whitney map N∗(K × K ′) →
N∗(K)⊗N∗(K ′) generally fails to be an isomorphism).
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Remark 1.3.5.5. In the situation of Proposition 1.3.5.3, the collection of weak equivalences in

Ch(A) is closed under filtered colimits (since the formation of homology commutes with filtered

colimits).

If A is a Grothendieck abelian category, then every object of Ch(A) is cofibrant. Our next goal

is to say something about the fibrant objects.

Proposition 1.3.5.6. Let A be a Grothendieck abelian category and let M∗ ∈ Ch(A) be a chain

complex. If M∗ is fibrant (with respect to the model structure described in Proposition 1.3.5.3), then

each Mn is an injective object of A. Conversely, if each Mn is injective and Mn ' 0 for n � 0,

then M∗ is a fibrant object of Ch(A).

Corollary 1.3.5.7 (Grothendieck). Let A be a Grothendieck abelian category. Then A has enough

injective objects: that is, for every object M ∈ A, there exists a monomorphism M → Q, where

Q ∈ A is injective.

Proof. Let M [0] denote the chain complex consisting of object M ∈ A, concentrated in degree

zero. Choose a trivial cofibration M [0]→ Q∗, where Q∗ ∈ Ch(A) is fibrant. Then the induced map

M → Q0 is a monomorphism, and Q0 ∈ A is injective by Proposition 1.3.5.6.

Proof of Proposition 1.3.5.6. For every object X ∈ A, we let E(X,n)∗ denote the chain complex

given by E(X,n)k =

{
X if k ∈ {n, n− 1}
0 otherwise,

where the differential is given by the identity map

idX : X → X. If X → Y is a monomorphism in A, then the induced map i : E(X,n)∗ → E(Y, n)∗
is a trivial cofibration in Ch(A). If M∗ is fibrant, then M∗ has the extension property with respect

to i, so that every map X →Mn extends to a map Y →Mn; this proves that Mn is injective.

Conversely, suppose that each Mn is injective and that Mn ' 0 for n � 0. We wish to show

that M∗ is fibrant. Choose a trivial cofibration u : A∗ → A′∗ and suppose we are given a chain

map f : A∗ → M∗; we must show that f can be extended to a chain map f ′ : A′∗ → M∗. For each

n ∈ Z, we let Zn(A) denote the kernel of the differential An → An−1 and Bn(A) the image of the

differential An+1 → An, let A(n)∗ denote the chain complex

· · · → An+2 → An+1 → Bn(A)→ 0→ 0→ · · · ,

and let fn = f |A(n)∗. We define Bn(A′), Zn(A′), and A′(n)∗ similarly. For n � 0, the map fn is

zero and therefore extends to a map f ′n : A′(n)∗ →M∗. We will construct a compatible sequence of

maps {f ′i : A′(i)∗ →M∗}i≤n extending the map fn; passing to the limit, we will obtain the desired

chain map f ′ : A′∗ →M∗ extending f . Assume therefore that i ≤ n and that the map f ′i has already

been constructed. We show that it is possible to construct a chain map f ′i−1 : A′(i − 1)∗ → M∗
which extends both f ′i and fi−1. Our assumption that u is a quasi-isomorphism guarantees that
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the diagram

Bi(A) //

��

Zi(A)

��
Bi(A

′) // Zi(A
′)

is a pushout square in A, so that the maps f |Zi(A) and f ′i |Bn(A′) determine a unique map g :

Zi(A
′) → Mi. The map g carries Zi(A) into the kernel of the differential d : Mi → Mi−1 (since f

is a chain map) and Bi(A
′) into the image of the differential Mi+1 →Mi (since f ′i is a chain map).

Since Bi−1(A′) ' A′n/ZnA
′, we conclude that giving a chain map f ′i−1 : A′(i)∗ → M∗ compatible

with both f ′i and g is equivalent to choosing a map g : A′i → Mi extending g. To complete the

construction, we must show that it is possible to choose g so that the composite map

Ai
u→ A′i

g→Mi

is given by f . We note that f and g determine a map

g0 : Ai
∐
Zi(A)

Zi(A
′)→Mi.

Since Mi is an injective object of A, to prove the existence of g it will suffice to show that the map

θ : Ai
∐
Zi(A)

Zi(A
′)→ A′i

is a monomorphism. This map fits into a diagram of short exact sequences

0→ Zi(A
′) //

θ′

��

Ai
∐
Zi(A) Zi(A

′) //

θ
��

Bi−1(A)

θ′′

��

// 0

0→ Zi(A
′) // A′i

// Bi−1(A′) // 0

The map θ′ is an isomorphism and the map θ′′ is a monomorphism (since u is a cofibration), so

that θ is a monomorphism by the snake lemma.

Definition 1.3.5.8. Let A be a Grothendieck abelian category. We let Ch(A)o denote the full

subcategory of Ch(A) spanned by the fibrant objects (which are automatically cofibrant). We let

D(A) denote the differential graded nerve Ndg(Ch(A)o). We will refer to D(A) as the derived

∞-category of A.

Proposition 1.3.5.9. Let A be a Grothendieck abelian category. Then the ∞-category D(A) is

stable.
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Proof. The ∞-category Ndg(Ch(A)) is stable, by Proposition 1.3.2.10. It will therefore suffice to

show that D(A) is a stable subcategory of Ndg(Ch(A)). Since D(A) is evidently invariant under

translation, it will suffice to show that it is closed under taking cofibers. For this, it suffices to show

that if f : M∗ → N∗ is a map between fibrant objects of Ch(A), then the mapping cone C∗(f) of f

is also a fibrant object of Ch(A). Since M∗[1] is fibrant, it suffices to show that the epimorphism of

chain complexes C∗(f) → M∗[1] is a fibration. For this, we must show that every lifting problem

of the form

A∗ //

i

��

C∗(f)

��
B∗

<<

//M∗[1]

has a solution, provided that i is both a monomorphism and a quasi-isomorphism. To prove this,

it suffices to show that the chain complex N∗[1] has the right lifting property with respect to the

monomorphism j : C∗(i) ↪→ C∗(idB). This follows from our assumption that N∗ is fibrant, since j

is a trivial cofibration in Ch(A).

Remark 1.3.5.10. Let A be a Grothendieck abelian category. Then A has enough injectives

(Corollary 1.3.5.7), so that the ∞-category D+(A) is defined as in Variant 1.3.2.8. The character-

ization of the fibrant objects of Ch(A) supplied by Proposition 1.3.5.6 implies that D+(A) is a full

subcategory of D(A).

Lemma 1.3.5.11. Let A be a Grothendieck abelian category. If M∗ ∈ Ch(A) is acyclic and

Q∗ ∈ Ch(A) is fibrant, then the chain complex MapCh(A)(M∗, Q∗) is acyclic.

Proof. Let η be an n-cycle in MapCh(A)(M∗, Q∗), given by a map of chain complexes f0 : M∗[−n]→
Q∗. Let C∗ denote the cone on M∗[−n]. To prove that η is homologous to zero, it will suffice to

show that f0 extends to a map f : C∗ → Q∗. Since Q∗ is fibrant, we are reduced to proving that

the inclusion j : M∗[−n] ↪→ C∗ is a trivial cofibration. The map j is evidently a monomorphism;

it is a quasi-isomorphism by virtue of our assumption that M∗ is acyclic (which implies that the

complexes M∗[−n] and C∗ are also acyclic).

Lemma 1.3.5.12. Let A be a Grothendieck abelian category and let f : M ′∗ → M∗ be a trivial

cofibration in Ch(A). For every fibrant object Q∗ ∈ Ch(A), the induced map

θ : MapCh(A)(M∗, Q∗)→ MapCh(A)(M
′
∗, Q∗)

is a quasi-isomorphism of chain complexes.

Proof. Proposition 1.3.5.6 implies that eachQn is injective, so that each of the maps HomA(Mp, Qn)→
HomA(M ′p, Qn) is surjective. It follows that θ is a surjection of chain complexes. It will therefore

suffice to show that the chain complex ker(θ) ' MapCh(A)((M/M ′)∗, Q∗) is acyclic. This follows

from Lemma 1.3.5.11 (the complex (M/M ′)∗ is acyclic by virtue of our assumption that f is a

quasi-isomorphism).
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Proposition 1.3.5.13. Let A be a Grothendieck abelian category. Then D(A) is a localization of

the ∞-category Ndg(Ch(A)).

Proof. For every object M∗ ∈ Ch(A), we can choose a trivial cofibration f : M∗ → Q∗, where Q∗
is fibrant. Lemma 1.3.5.12 implies that f exhibits Q∗ as a D(A)-localization of M∗.

Proposition 1.3.5.14. Let A be a Grothendieck abelian category and let f : M∗ → M ′∗ be a

map of chain complexes. If f is a quasi-isomorphism and Q∗ ∈ Ch(A) is fibrant, then f induces

a quasi-isomorphism θ : MapCh(A)(M
′
∗, Q∗) → MapCh(A)(M∗, Q∗). In particular, if f is a quasi-

isomorphism between fibrant chain complexes, then f is a chain homotopy equivalence (and therefore

induces an equivalence in D(A)).

Proof. The map f admits a factorization

M∗
f ′→M ′′∗

f ′′→M ′∗

where f ′ is a trivial cofibration in Ch(A) and f ′′ is a trivial fibration in Ch(A). We may therefore

assume either that f is a trivial cofibration or a trivial fibration. If f is a trivial cofibration,

the result follows from Lemma 1.3.5.12. If f is a trivial fibration, then it admits a section s

(since M ′∗ is cofibrant). The map s is then a trivial cofibration, and therefore induces a quasi-

isomorphism MapCh(A)(M∗, Q∗)→ MapCh(A)(M
′
∗, Q∗) which is left inverse to θ, so that θ is also a

quasi-isomorphism.

Our next goal is to prove that the derived∞-category D(A) can be identified with the underlying

∞-category of the model category Ch(A), in the sense of Definition 1.3.4.15: that is, we can regard

D(A) as the∞-category obtained from the ordinary category of chain complexes over A by inverting

quasi-isomorphisms. This does not follow formally from Theorem 1.3.4.20, because Ch(A) is not a

simplicial model category (Warning 1.3.5.4). Nevertheless, we have the following result:

Proposition 1.3.5.15. Let A be a Grothendieck abelian category, and let A denote the category

of chain complexes Ch(A), regarded as a discrete category. Then the composite map N(A) →
Ndg(Ch(A))

L→ D(A) exhibits D(A) as the underlying ∞-category of the model category A; here

L : Ndg(Ch(A))→ D(A) denotes a left adjoint to the inclusion D(A) ↪→ Ndg(Ch(A)).

Proof. Let Ao be the full subcategory of A spanned by the fibrant chain complexes, and let W

be the collection of weak equivalences in Ao. It is easy to see that Ao is closed under tensor

product by the finite chain complex N∗(∆
1) (note that tensor product with N∗(∆

1) is a right

Quillen functor, since it is right adjoint to the left Quillen functor given by tensor product with the

dual chain complex N∗(∆
1)∨). Using Propositions 1.3.5.14 and 1.3.4.5, we deduce that the map

N(Ao)[W−1] → D(A) is an equivalence of ∞-categories. This is equivalent to the asserted result,

by virtue of Remark 1.3.4.16.
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Definition 1.3.5.16. Let A be a Grothendieck abelian category. For each integer n, we let

Ndg(Ch(A))≥n denote the full subcategory of Ndg(Ch(A)) spanned by those chain complexes M∗
such that Hk(M) ' 0 for k < n, and Ndg(Ch(A))≤n the full subcategory of Ndg(Ch(A)) spanned

by those chain complexes M∗ such that Hk(M) ' 0 for k > n. Set

D(A)≥n = Ndg(Ch(A))≥n ∩D(A) D(A)≤n = Ndg(Ch(A))≤n ∩D(A).

Remark 1.3.5.17. In the situation of Definition 1.3.5.16, suppose we are given an object M∗ ∈
D(A)≤n. Then there exists an equivalence M∗ ' M ′∗ in D(A)≤n, where M ′k ' 0 for k > n. To

prove this, we note that our assumption that Hk(M) ' 0 for k > n implies that the canonical map

M∗ → τ≤nM∗ is a quasi-isomorphism, where τ≤nM∗ denotes the truncated chain complex

· · · → 0→Mn/d(Mn+1)→Mn−1 →Mn−2 → · · ·

This complex may not be fibrant, but the fact that A has enough injectives (Corollary 1.3.5.7)

guarantees that we can construct a quasi-isomorphism τ≤nM∗ → M ′∗, where M ′k ' 0 for k > n

and each M ′k is injective (see the proof of Proposition 1.3.2.19). Then M ′∗ is fibrant by Proposition

1.3.5.6, and the composite map M∗ → τ≤nM∗ →M ′∗ is a quasi-isomorphism.

Proposition 1.3.5.18. Let A be a Grothendieck abelian category. Then the full subcategories

Ndg(Ch(A))≥0,Ndg(A)≤0 ⊆ Ndg(Ch(A))

determine a t-structure on the stable ∞-category Ndg(Ch(A)).

Proof. Fix any object M∗ ∈ Ch(A). Let X∗ be the truncated chain complex

· · · → 0→M−1/d(M0)→M−2 →M−3 → · · ·

and choose a quasi-isomorphism X∗ →M ′′∗ , where M ′′∗ is a chain complex of injective objects of A

and M ′′k ' 0 for k ≥ 0. Let f : M∗ → M ′′∗ be the composite map and let M ′∗ denote the shifted

mapping cone C(f)[−1]. We have a termwise split exact sequence of chain complexes

M ′′∗ [−1]→M ′∗ →M∗

which gives a fiber sequence

M ′∗ →M∗ →M ′′∗

in Ndg(Ch(A)), where M ′∗ ∈ Ndg(Ch(A))≥0 and M ′′∗ ∈ D(A)≤−1. To complete the proof, it

will suffice to show that if M∗ ∈ Ndg(Ch(A))≥0 and Q∗ ∈ D(A)≤−1, then the mapping space

MapCh(A)(M∗, Q∗) is contractible. In view of Remark 1.3.5.17, we may assume without loss of

generality that Qk ' 0 for k ≥ 0. Let Y∗ denote the chain complex

· · · →M2 →M1 → ker(d : M0 →M−1)→ 0→ · · ·
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Since M∗ ∈ Ndg(Ch(A))≥0, the monomorphism Y∗ ↪→ M∗ is a quasi-isomorphism. It follows from

Lemma 1.3.5.12 that the map

MapCh(A)(M∗, Q∗)→ MapCh(A)(Y∗, Q∗)

is a quasi-isomorphism, so that MapNdg(Ch(A))(M∗, Q∗) ' MapNdg(Ch(A))(Y∗, Q∗) is a contractible

Kan complex.

Remark 1.3.5.19. Let A be a Grothendieck abelian category and suppose that M∗ ∈
Ndg(Ch(A))≥0 and Q∗ ∈ D(A)≤0. Then the canonical map

MapNdg(Ch(A))(M∗, Q∗)→ HomA(H0(M),H0(Q))

is a homotopy equivalence. To see this, we use Remark 1.3.5.17 to reduce to the case where

Q∗ ∈ Ch(A)≤0, and Lemma 1.3.5.12 to reduce to the case where M∗ ∈ Ch(A)≥0, in which case

the result is obvious. It follows that the functor M 7→ H0(M) induces an equivalence of abelian

categories Ndg(Ch(A))♥ → A (the homotopy inverse functor can be described as assigning to each

object M ∈ A an injective resolution of M).

Definition 1.3.5.20. Let C be a stable ∞-category which admits small filtered colimits. We will

say that a t-structure (C≥0,C≤0) on C is compatible with filtered colimits if C≤0 is closed under small

filtered colimits in C.

Proposition 1.3.5.21. Let A be a Grothendieck abelian category. Then:

(1) The ∞-category D(A) is presentable.

(2) The pair of subcategories (D(A)≥0,D(A)≤0) determines a t-structure on D(A).

(3) The t-structure of (2) is accessible, right complete, and compatible with filtered colimits.

Proof. Assertion (1) follows from Propositions 1.3.5.15 and 1.3.4.22, and assertion (2) is an im-

mediate consequence of Proposition 1.3.5.18. To prove (3), we note an object of D(A) belongs

to D(A)≤0 if and only if its image under the homology functor
∏
n>0 Hn : D(A) → (

∏
n>0 N(A))

vanishes. Using Propositions 1.3.4.24, 1.3.4.25, and our assumption that filtered colimits in A are

left exact, we conclude that each of the functors Hn commutes with filtered colimits. It is now

obvious that D(A)≤0 is closed under filtered colimits, and Proposition HTT.5.4.6.6 guarantees

that D(A)≤0 is accessible. The right completeness of D(A) follows from the dual of Proposition

1.2.1.19.

Warning 1.3.5.22. The stable ∞-category D(A) is generally not left complete.
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Remark 1.3.5.23. Let C be a presentable stable ∞-category equipped with an accessible t-

structure (see Definition 1.4.4.12) which is compatible with filtered colimits. Then the heart C♥ is

a presentable abelian category, and the canonical map N(C♥) → C preserves filtered colimits. If

{fα : Aα → Bα} is a filtered diagram of monomorphisms in C♥, then we have a filtered diagram of

fiber sequences

Aα → Bα → Bα/Aα

in C. Passing to filtered colimits, we obtain an fiber sequence

A→ B → B/A

where A, B, and B/A belong to the heart of C, so that f = lim−→ fα is again a monomorphism. It

follows that C♥ is a Grothendieck abelian category.

Assume that
⋂
n≥0 C≤−n contains only zero objects of C. Using Proposition 1.2.1.19, we conclude

that C is right complete. It follows from Theorem 1.3.3.2 and Remark 1.3.3.6 that the inclusion

N(C♥) ⊆ C extends in an essentially unique way to a t-exact functor D+(C♥)→ C.

Suppose that A is a Grothendieck abelian category with enough projective objects (for example,

the category of R-modules for some ring R). Then, in addition to the derived ∞-category D(A),

we can consider the derived ∞-category D−(A) introduced in Definition 1.3.2.7. These two ∞-

categories are a priori quite different from one another: one is defined using complexes of injective

objects of A, the other using complexes of projective objects of A. Nevertheless we have the

following result:

Proposition 1.3.5.24. Let A be a Grothendieck abelian category with enough projective objects,

and let L : Ndg(Ch(A))→ D(A) be a left adjoint to the inclusion. Then the composite functor

F : D−(A) ↪→ Ndg(Ch(A))
L→ D(A)

is a fully faithful embedding, whose essential image is the subcategory
⋃
n≥0 D(A)≥−n ⊆ D(A).

Proof. Let M∗,M
′
∗ ∈ D−(A). We will show that the composite map

MapCh(A)(M∗,M
′
∗)

θ→ MapCh(A)(M∗, LM
′
∗)

θ′→ MapCh(A)(LM∗, LM
′
∗)

is a quasi-isomorphism of chain complexes of abelian groups. The map θ is a quasi-isomorphism

by Lemma 1.3.2.20, and the definition of L guarantees that θ′ is a quasi-isomorphism. This proves

that F is fully faithful. It is obvious that the essential image of F is contained in
⋃
n≥0 D(A)≥−n.

Conversely, suppose that M∗ ∈ D(A)≥−n. Since A has enough projective objects, we can choose

an object P∗ ∈ D−(A) and a quasi-isomorphism from P∗ to the subcomplex

· · · →M1−n → ker(d : M−n →M−1−n)→ 0→ · · ·

of M∗. Using Lemma 1.3.2.20, we conclude that M∗ ' LP∗ belongs to the essential image of L.
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1.4 Spectra and Stabilization

One very broad goal of homotopy theory is to classify continuous maps between topological spaces

up to homotopy. To formulate the problem more precisely, let X and Y be topological spaces

equipped with base points, let Map∗(X,Y ) denote the space of continuous pointed maps from X

to Y , and let [X,Y ] = π0 Map∗(X,Y ) be the set of homotopy classes of pointed maps from X

to Y ; one would like to describe the set [X,Y ]. This is difficult in part because the problem is

essentially nonlinear: in general, the set [X,Y ] does not have any algebraic structure. However,

the situation is better in some special cases. For example, if X is the suspension of another pointed

space X ′, then [X,Y ] ' π1 Map∗(X
′, Y ) admits a group structure. If X ′ is itself the suspension

of another space X ′′, then the group [X,Y ] ' π2 Map∗(X
′′, Y ) is abelian. One can attempt to use

these observations to study the mapping sets [X,Y ] in general: the construction X 7→ Σ(X) is

functorial in X, so we have natural maps

[X,Y ]→ [Σ(X),Σ(Y )]→ [Σ2(X),Σ2(Y )]→ · · ·

In particular, we can view each [Σn(X),Σn(Y )] as an approximation to [X,Y ]; these approximations

are often easier to study, since they admit group structures for n > 0 (and are abelian for n > 1).

If X and Y are finite pointed CW complexes, the direct limit lim−→n
[Σn(X),Σn(Y )] is an abelian

group, called the group of homotopy classes of stable maps from X to Y ; we will denote this group

by [X,Y ]s.

The abelian groups [X,Y ]s can be regarded as simplified (or linearized) versions of the homotopy

sets [X,Y ]. To study them systematically, it is useful to linearize the homotopy category H∗
of (pointed) spaces itself: that is, to work with a version of the homotopy category where the

morphisms are given by homotopy classes of stable maps, rather than homotopy classes of maps.

The relevant category is often called the stable homotopy category, or the homotopy category of

spectra. It can be described in several different ways:

(A) There is an obvious candidate for a category C0 which satisfies the requirement given above:

namely, we take the objects of C0 to be finite pointed CW complexes, and the morphisms to be

given by the formula HomC0(X,Y ) = [X,Y ]s. By construction, we have canonical bijections

[X,Y ]s ' [Σ(X),Σ(Y )]s: in other words, the suspension functor X 7→ Σ(X) determines a

fully faithful embedding from C0 to itself. For many purposes, it is convenient to work in

a slightly larger category C, on which the suspension functor X 7→ Σ(X) is an equivalence

of categories. One can achieve this end by formally introducing objects of the form Σn(X)

for all integers n. More precisely, we let C be the category whose objects are pairs (X,n),

where X is a pointed finite CW complex and n ∈ Z an integer, with morphisms given by the

formula

HomC((X,m), (Y, n)) = lim−→[Σm+k(X),Σn+k(Y )].
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The construction X 7→ (X, 0) determines a fully faithful embedding C0 ↪→ C, and the sus-

pension functor X 7→ Σ(X) on C0 extends (up to isomorphism) to an equivalence of C with

itself, given by the formula (X,n) 7→ (X,n+ 1).

We will refer to C as the homotopy category of finite spectra. Unlike the homotopy category

of spaces (or pointed spaces), it possesses a rich algebraic structure: for example, it is a

triangulated category. To prove this, it suffices (by Theorem 1.1.2.14) to realize C as the

homotopy category of a stable ∞-category. This ∞-category can be obtained by the same

formal procedure used to define C. Namely, we begin with the∞-category Sfin
∗ of finite pointed

spaces (Notation 1.4.2.5), and formally invert the suspension functor by passing to the colimit

of the sequence

Sfin
∗

Σ→ Sfin
∗

Σ→ · · ·

We will denote this colimit by Spfin, and refer to it as the ∞-category of finite spectra. We

denote the the Ind-completion of Spfin by Sp, and refer to it as the ∞-category of spectra. As

we will see, Sp is a stable ∞-category, whose homotopy category can be identified with the

classical stable homotopy category.

(B) The passage from the ∞-category Spfin to its Ind-completion Sp is important if we wish to

work with an ∞-category which admits arbitrary limits and colimits. This is clear, since the

∞-category Spfin has strong finiteness conditions built into its definition. We can attempt to

remove these conditions by beginning not with the ∞-category Sfin
∗ of finite pointed spaces,

but its Ind-completion Ind(Sfin
∗ ) ' S∗. A formal argument shows that the Ind-completion of

the direct limit

Sfin
∗

Σ→ Sfin
∗

Σ→ Sfin
∗

Σ→ · · ·

is equivalent to the homotopy inverse limit of the tower

Ind(Sfin
∗ )

Ω← Ind(Sfin
∗ )

Ω← · · · ,

where Ω denotes the loop space functor (the right adjoint of the suspension Σ). We can

therefore describe Sp as an ∞-category of infinite loop spaces: that is, infinite sequences of

pointed spaces {E(n)} equipped with homotopy equivalences E(n) ' ΩE(n+ 1).

(C) Another approach to the subject of stable homotopy theory is to study invariants of (pointed)

topological spaces which are invariant under suspension. For example, singular cohomology

has this property: for every pointed topological space X, there are canonical isomorphisms

H̃
n
(X) ' H̃

n+1
(Σ(X)), where H̃ denotes the functor of reduced (integral) cohomology. More

generally, one can consider generalized cohomology theories: that is, sequences of functors

{hn}n∈Z from the homotopy category of pointed spaces to the category of abelian groups,

together with natural isomorphisms γn : hnX ' hn+1Σ(X), satisfying a suitable collection

of axioms (see Definition 5.5.3.8). The celebrated Brown representability theorem (Theorem
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1.4.1.2) guarantees that each of the functors hn is representable by a pointed space E(n),

and the natural isomorphisms γn give homotopy equivalences E(n) ' ΩE(n + 1). In other

words, any cohomology theory {hn}n∈Z can be represented by a spectrum {E(n)}n∈Z: we

can therefore regard Sp as an ∞-category whose objects are cohomology theories. (This

perspective merits a word of caution: every morphism f : E → E′ in Sp induces a natural

transformation between the corresponding cohomology theories, but this latter map can be

zero even if f is not nullhomotopic. In other words, passage from a spectrum E to the

underlying cohomology theory is not faithful in general.)

(D) Let {E(n)}n∈Z be a spectrum. Then E(0) ' ΩE(1) is a loop space: in particular, it admits

a multiplication E(0) × E(0) → E(0) given by concatenation of loops, which is associative

up to coherent homotopy. However, much more is true: the identifications E(0) ' ΩnE(n)

show that E(0) has the structure of an n-fold loop space for each n ≥ 0. This structure

allows us to view E(0) as a commutative monoid object of the ∞-category S of spaces. In

fact, there is a converse to this observation: the construction {E(n)} 7→ E(0) determines an

equivalence between the full subcategory Spcn ⊆ Sp of connective spectra and the∞-category

Mongp
Comm(S) of grouplike commutative monoids in S (see §5.2.6 for further discussion). This

provides an algebraic way of thinking about the ∞-category of spectra: roughly speaking,

the ∞-category of spectra bears the same relationship to the ∞-category of spaces as the

ordinary category of abelian groups bears to the ordinary category of sets. Later in this

book, we will elaborate on this analogy by describing homotopy-theoretic analogues of the

theory of commutative and associative rings.

Our goal in this section is to provide a quick introduction to stable homotopy theory by elabo-

rating on perspectives (A) through (C) (we will return to (D) briefly later in the book, once we have

the technology to discuss algebraic structures in an ∞-categorical context; see Remark 5.2.6.26).

We will begin in §1.4.1 with a review of Brown’s representability theorem. More precisely, we will

show that if C is a pointed ∞-category satisfying some mild hypotheses, then it is possible to give

necessary and sufficient conditions for a functor F : hC→ Set to be representable by an object of C.

We can apply this to give a classification of cohomology theories on C in terms of infinite loop objects

of C: that is, sequences of objects {E(n) ∈ C}n∈Z equipped with equivalences E(n) ' ΩE(n + 1).

The collection of such infinite loop objects can be organized into an ∞-category Sp(C); we will

refer to Sp(C) as the∞-category of spectrum objects of C. We will define this∞-category in §1.4.2,

and show that it is a stable ∞-category. Of greatest interest to us is the case where C is the

∞-category S of spaces. In this case, we will denote the ∞-category Sp(C) by Sp, and refer to it

as the ∞-category of spectra. We will study this ∞-category in §1.4.3, and show that it can be

identified with the ∞-category Ind(Spfin) described in (A).

It should be emphasized that there are many definitions of the stable homotopy category hSp in

the literature, some of which look quite different from the definition given in this book. To facilitate
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the comparison of our approach with others, it is convenient to have not only a construction of the

∞-category Sp, but also an abstract characterization of it. We will provide such a characterization

by showing that Sp(C) is in some sense universal among stable ∞-categories equipped with a

forgetful functor Sp(C)→ C (Corollary 1.4.2.23).

There is another characterization of the ∞-category Sp which is worthy of mention: among

stable∞-categories, it is freely generated by one object (the sphere spectrum) under small colimits.

We will prove this result in §1.4.4 (see Corollary 1.4.4.6), after embarking on a general study of the

behavior of colimits in stable ∞-categories.

1.4.1 The Brown Representability Theorem

Let D be a category. A functor F : Dop → Set is said to be representable if there exists an object

X ∈ D and a point η ∈ F (X) which induces bijections HomD(Y,X) → F (Y ) for every object

Y ∈ D. If we assume that the category D is presentable, then the functor F is representable if

and only if it carries colimits in D to limits in Set (see Proposition HTT.5.5.2.2 ). Our goal in this

section is to study representability in a slightly different situation: namely, we will suppose that

D is given as the homotopy category of a presentable ∞-category C. In this case, the category D

need not admit colimits. Nevertheless, one can often characterize the representable functors on D

in terms of the behavior with respect to colimits in the underlying ∞-category C.

We begin by recalling a bit of terminology. Let D be a category which admits finite coproducts.

A cogroup object of D is an object X ∈ D equipped with a comultiplication X → X qX with the

following property: for every object Y ∈ D, the induced multiplication

HomD(X,Y )×HomD(X,Y ) ' HomD(X qX,Y )→ HomD(X,Y )

determines a group structure on the set HomD(X,Y ).

Example 1.4.1.1. Let C be an ∞-category which admits finite colimits, let ∅ denote the initial

object of C, and suppose we are given a map ε : X → ∅. Then the pushout Σ(X) = ∅ qX ∅ is a

cogroup object of the homotopy category hC. Namely, there is a “fold” map

Σ(X) = ∅ qX X qX ∅ → ∅ qX ∅ qX ∅ ' Σ(X)q Σ(X)

which, for every object Y ∈ C, induces the canonical group structure on the set HomhC(Σ(X), Y ) '
π1(MapC(X,Y ), f). Here f ∈ MapC(X,Y ) is the point given by the composition X

ε→ ∅ → Y .

The main result of this section is the following:

Theorem 1.4.1.2 (Brown Representability). Let C be a presentable ∞-category containing a set

of objects {Sα}α∈A with the following properties:

(i) Each object Sα is a cogroup object of the homotopy category hC.
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(ii) Each object Sα ∈ C is compact.

(iii) The ∞-category C is generated by the objects Sα under small colimits.

Then a functor F : hCop → Set is representable if and only if it satisfies the following conditions:

(a) For every collection of objects Cβ in C, the map F (
∐
β Cβ)→

∏
β F (Cβ) is a bijection.

(b) For every pushout square

C //

��

C ′

��
D // D′

in C, the induced map F (D′)→ F (C ′)×F (C) F (D) is surjective.

We will give the proof of Theorem 1.4.1.2 at the end of this section.

Example 1.4.1.3. Let C be a presentable stable ∞-category. Then the homotopy category of

C is additive (Lemma 1.1.2.9), so every object of C is a cogroup object of hC. If C is compactly

generated, then it satisfies the hypotheses of Theorem 1.4.1.2.

Example 1.4.1.4. Let S∗ denote the ∞-category of pointed spaces, and let S≥1
∗ denote the full

subcategory spanned by the connected spaces. We claim that S≥1
∗ satisfies the hypotheses of

Theorem 1.4.1.2: that is, S≥1
∗ is generated under colimits by connective cogroup objects. In fact,

S≥1
∗ is generated under colimits by the 1-sphere S1 (which corepresents the group-valued functor

X 7→ π1(X), and is therefore a cogroup object of the homotopy category hS≥1
∗ ). This is equivalent

to the assertion that a map of connected pointed spaces f : X → Y is a homotopy equivalence if

and only if the induced map MapS∗(S
1, X) → MapS∗(S

1, Y ) is a homotopy equivalence. This is

clear, since we have isomorphisms

πnX ' πn−1 MapS∗(S
1, X) πnY ' πn−1 MapS∗(S

1, Y )

for n > 0.

Remark 1.4.1.5. In the special case C = S≥0
∗ , the conclusion of Theorem 1.4.1.2 reproduces the

classical Brown representability theorem (see [27]).

We now discuss some of consequences of Theorem 1.4.1.2 for the classification of cohomology

theories.

Definition 1.4.1.6. Let C be a pointed∞-category which admits small colimits and let Σ : C→ C

be the suspension functor. A cohomology theory on C is a sequence of functors {Hn : hCop →
Set}n∈Z together with isomorphisms δn : Hn ' Hn+1◦Σ, satisfying the following pair of conditions:
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(1) For every collection of objects {Cα} in C, the canonical map Hn(
∐
Cα) →

∏
Hn(Cα) is a

bijection. In particular, if ∗ denotes a zero object of C, then Hn(∗) consists of a single point.

For any object C ∈ C, the canonical map C → ∗ induces a map Hn(∗) → Hn(C) which we

can identify with an element 0 ∈ Hn(C).

(2) Suppose we are given a cofiber sequence

C ′ → C → C ′′

in the ∞-category C. If η ∈ Hn(C) has image 0 ∈ Hn(C ′), then η lies in the image of the

map Hn(C ′′)→ Hn(C).

Remark 1.4.1.7. Let C be a pointed ∞-category which admits small colimits, and let C be an

object of C. The two-fold suspension Σ2(C) is a commutative cogroup object of the homotopy

category hC (we have canonical isomorphisms HomhC(Σ2(C), D) ' π2 MapC(C,D)). Let {Hn, δn}
be a cohomology theory on C. Since the functor Hn+2 carries coproducts in hC to products of

sets, it carries commutative cogroup objects of hC to abelian groups. In particular, for every object

C ∈ C, the set Hn(C) ' Hn+2(Σ2(C)) has the structure of an abelian group, depending functorially

on the object C: that is, we can regard each Hn as a functor from the homotopy category hC to

the category of abelian groups. In particular, for every object C ∈ C, the map Hn(∗) → Hn(C)

carries the unique element of Hn(∗) to the identity element 0 ∈ Hn(C).

Remark 1.4.1.8. Let C be a pointed ∞-category which admits small colimits, and suppose we

are given a cofiber sequence C ′
f→ C

g→ C ′′ in C. Such a triangle induces a map C ′′ → Σ(C ′),

well-defined up to homotopy. If we are given a cohomology theory {Hn, δn} on C, we obtain a

boundary map

∂ : Hn(C ′)
δn→ Hn+1(Σ(C ′))→ Hn+1(C ′′).

These boundary maps can be used to splice together a sequence of abelian groups

· · · → Hn−1(C ′)
∂→ Hn(C ′′)

g∗→ Hn(C)
f∗→ Hn(C ′)

∂→ Hn+1(C ′′)→ · · ·

We claim that this sequence is exact. Exactness at Hn(C) follows immediately from condition (2)

of Definition 1.4.1.6. Exactness at Hn(C ′′) follows by applying the same argument to the cofiber

sequence C → C ′′ → Σ(C ′) (which gives rise to the same abelian groups and the same group

homomorphisms up to sign, by virtue of Lemma 1.1.2.13), and exactness at Hn(C ′) follows by

applying the same argument to the cofiber sequence C ′′ → Σ(C ′)→ Σ(C).

Remark 1.4.1.9. Let C be a pointed ∞-category which admits small colimits, and let {Hn, δn}
be a cohomology theory on C. Then each of the functors Hn : hCop → Set satisfies conditions (a)
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and (b) of Theorem 1.4.1.2. Condition (a) is obvious. To prove (b), suppose we are given a pushout

square

C
f //

��

C ′

��
D

g // D′

Let E = cofib(f) ' cofib(g). Using Remark 1.4.1.8, we get a map of exact sequences

Hn(E) //

φ

��

Hn(D′) //

��

Hn(D) //

��

Hn+1(E)

ψ
��

Hn(E) // Hn(C ′) // Hn(C) // Hn+1(E).

Using the injectivity of ψ and the surjectivity of φ, we deduce that the map Hn(D′) →
Hn(C ′)×Hn(C) H

n(D) is surjective.

Combining Remark 1.4.1.9 with Theorem 1.4.1.2, we obtain the following result:

Corollary 1.4.1.10. Let C be a presentable pointed ∞-category. Assume that C is generated under

colimits by compact objects which are cogroup objects of the homotopy category hC, and let {Hn, δn}
be a cohomology theory on C. Then for every integer n, the functor Hn : hCop → Set is representable

by an object E(n) ∈ C.

Remark 1.4.1.11. In the situation of Corollary 1.4.1.10, the isomorphisms δn : Hn ' Hn+1 ◦ Σ

determine canonical isomorphisms E(n) ' ΩE(n + 1) in the homotopy category hC. Choosing

equivalences in C which represent these isomorphisms, we can promote the sequence {E(n)} to an

object E in the homotopy limit Sp(C) of the tower

· · · Ω→ C
Ω→ C

Ω→ C
Ω→ · · ·

The object E is well-defined up to (non-unique) isomorphism in the homotopy category hSp(C).

We will return to the study of the ∞-category Sp(C) in §1.4.2.

Proof of Theorem 1.4.1.2. The necessity of conditions (a) and (b) is obvious. We will prove that

these conditions are sufficient. Let ∅ denote an initial object of C. If S is an object of C equipped

with a map ε : S → ∅, we define the suspension Σ(S) to be the pushout ∅ qS ∅, so that Σ(S) has

the structure of a cogroup in hC (Example 1.4.1.1). Each of the objects Sα is equipped with a

counit map Sα → ∅ (by virtue of (i)), so that the suspension Σ(Sα) is well-defined. Enlarging the

collection {Sα} if necessary, we may assume that this collection is stable under the formation of

suspensions.

We first prove the following:
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(∗) Let f : C → C ′ be a morphism in C such that the induced map HomhC(Sα, C) →
HomhC(Sα, C

′) is an isomorphism, for every index α. Then f is an equivalence in C.

To prove (∗), it will suffice to show that for every object X ∈ C, the map f induces a homotopy

equivalence φX : MapC(X,C) → MapC(X,C ′). Let C′ denote the full subcategory of C spanned

by those objects X for which φX is an equivalence. The full subcategory C′ ⊆ C is stable under

colimits; we wish to prove that C′ = C. By virtue of assumption (iii), it suffices to show that each

of the objects Sα belongs to C′. Since Sα is a cogroup object of hC, φSα is a map between group

objects of the homotopy category H of spaces. It follows that φSα is a homotopy equivalence if and

only if it induces an isomorphism of groups πn MapC(X,C)→ πn MapC(X,C ′) for each n ≥ 0 (here

the homotopy groups are taken with respect to the base points given by the group structures).

Replacing Sα by Σn(Sα), we can reduce to the case n = 0: that is, to the bijectivity of the maps

HomhC(Sα, C)→ HomhC(Sα, C
′).

Now suppose that F is a functor satisfying conditions (a) and (b). We will prove the following:

(∗′) Let X ∈ C and let η ∈ F (X). Then there exists a map f : X → X ′ in C and an object

η′ ∈ F (X ′) lifting η with the following property: for every index α ∈ A, η′ induces a bijection

HomhC(Sα, X
′)→ F (Sα).

To prove (∗′), we begin by defining X0 to be the coproduct of X with
∐
α∈A,γ∈F (Sα) Sα. Using

(a), we deduce the existence of an element η0 ∈ F (X0) lifting η. By construction, η0 induces a

surjection HomhC(Sα, X0)→ F (Sα) for each index α.

We now define a sequence of morphisms X0 → X1 → X2 → · · · and a compatible family of

elements ηn ∈ F (Xn) using induction on n. Suppose that Xn and ηn have already been constructed.

For each index α ∈ A, let Kα be the kernel of the group homomorphism HomhC(Sα, Xn)→ F (Sα),

and define Xn+1 to fit into a pushout diagram∐
α∈A,γ∈Kα Sα

//

��

∅

��
Xn

// Xn+1

where the upper horizontal map is given by the counit on each Sα. The existence of a point

ηn+1 ∈ F (Xn+1) lifting ηn follows from assumption (a).

Let X ′ = lim−→n
Xn. We have a pushout diagram∐

nXn
//

��

∐
nX2n

��∐
nX2n+1

// X ′.

Using (a) and (b), we deduce the existence of a point η′ ∈ F (X ′) lifting the sequence {ηn ∈ F (Xn)}.
We claim that η′ satisfies the condition described in (∗). Fix an index α; we wish to prove that the
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map ψ : HomhC(Sα, X
′) → F (Sα) is bijective. It is clear that ψ is surjective (since the composite

map HomhC(Sα, X0)→ HomhC(Sα, X
′)→ F (Sα) is surjective by construction). To prove that ψ is

injective, it will suffice to show that the kernel of ψ is trivial (since ψ is a group homomorphism,

using the cogroup structure on Sα given by (i)). Fix an element γ ∈ ker(ψ), represented by a map

f : Sα → X ′. Assumption (ii) guarantees that Sα is compact, so that f factors through some map

f : Sα → Xn, which determines an element of the kernel K of the map HomhC(Sα, Xn) → F (Sα).

It follows from our construction that the composite map Sα → Xn → Xn+1 factors through the

counit of Sα, so that f is the unit element of ker(ψ). This completes the proof of (∗′).
Assertion (b) guarantees that F (∅) consists of a single element. Applying (∗′) in the case X = ∅,

we obtain an element η′ ∈ F (X ′) which induces isomorphisms HomhC(Sα, X
′) → F (Sα) for each

index α. We will complete the proof by showing that η′ exhibits F as the functor on hC represented

by the object X ′. In other words, we claim that for every object Y ∈ C, the element η′ induces a

bijection θ : HomhC(Y,X ′)→ F (Y ).

We begin by showing that θ is surjective. Fix an element η′′ ∈ F (Y ). Assumption (b) guarantees

that (η′, η′′) determines an element of F (Y
∐
X ′). Applying assertion (∗′) to this element, we deduce

the existence of a map X ′
∐
Y → Z and an element η ∈ F (Z) lifting the pair (η′, η′′) which induces

isomorphisms HomhC(Sα, Z)→ F (Sα) for each index α. We have a commutative diagram

MaphC(Sα, X
′) //

''

MaphC(Sα, Z)

ww
F (Sα)

for each index α, in which the vertical maps are bijective. It follows that the horizontal map is also

bijective. Invoking (∗), we deduce that X ′ → Z is an equivalence. The composite map Y → Z ' X ′

is then a preimage of η′′ in the set HomhC(Y,X ′).

We now complete the proof by showing that θ is injective. Fix a pair of maps f, g : Y → X ′

which determine the same element of F (Y ). Form a pushout diagram

Y
∐
Y

(f,g) //

��

X ′

��
Y // Z.

Using assumption (b), we deduce that η′ ∈ F (X ′) can be lifted to an element η ∈ F (Z). Applying

(∗′), we deduce the existence of a map Z → Z ′ and an element η′ ∈ F (Z ′) lifting η and inducing

bijections HomhC(Sα, Z
′)→ F (Sα) for each index α. We have commutative diagrams

MaphC(Sα, X
′) //

''

MaphC(Sα, Z
′)

ww
F (Sα)
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in which the vertical maps are bijective. It follows that the horizontal maps are also bijective, so

that (∗) guarantees that the map h : X ′ → Z ′ is an equivalence in C. Since the compositions h ◦ f
and h ◦ g are homotopic, we deduce that f and g are homotopic and therefore represent the same

element of HomhC(Y,X ′), as desired.

1.4.2 Spectrum Objects

In this section, we will describe a method for constructing stable∞-categories: for any∞-category

C which admits finite limits, one can consider an ∞-category Sp(C) of spectrum objects of C. In

the special case where C is the ∞-category of spaces, this construction will recover classical stable

homotopy theory; we will discuss this example in more detail in §1.4.3.

If the ∞-category C is pointed, then the ∞-category Sp(C) of spectrum objects of C can be

described as the homotopy inverse limit of the tower of ∞-categories

· · · → C
ΩC→ C

ΩC→ C .

As we saw in §1.4.1, the objects of this homotopy inverse limit are closely related to cohomology

theories defined on the ∞-category C. In this section, it will be more convenient to adopt a dual

perspective: we will identify spectrum objects of C with homology theories defined on pointed

spaces, taking values in C.

Before giving any formal definitions, let us consider the most classical example of a homology

theory: the singular homology of topological spaces. This theory associates to every topological

space X the singular homology groups Hn(X; Z). These groups are covariantly functorial in X,

and have the following additional property: for every pair of open sets U, V ⊆ X which cover X,

we have a long exact Mayer-Vietoris sequence

· · ·H1(U ; Z)⊕H1(V ; Z)→ H1(X; Z)→ H0(U ∩ V ; Z)→ H0(U ; Z)⊕H0(V ; Z)→ H0(X; Z)→ 0.

Note that the singular homology Hn(X; Z) can be defined as the homology of the (normalized or

unnormalized) chain complex associated to the simplicial abelian group Z Sing(X)• freely generated

by the simplicial set Sing(X)•. As such, they can be viewed as the homotopy groups of Z Sing(X)•,

regarded as a Kan complex. The above long exact sequence results from the observation that that

diagram

Z Sing(U ∩ V )• //

��

Z Sing(U)•

��
Z Sing(V )• // Z Sing(X)•

is a homotopy pullback square of Kan complexes. This is a consequence of the following more

general fact: the construction X 7→ Z Sing(X)• carries homotopy pushout diagrams (of topological

spaces) to homotopy pullback diagrams (of Kan complexes). We now proceed to axiomatize this

phenomenon:
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Definition 1.4.2.1. Let F : C→ D be a functor between ∞-categories.

(i) If C admits pushouts, then we will say that F is excisive if F carries pushout squares in C to

pullback squares in D.

(ii) If C admits a final object ∗, we will say that F is reduced if F (∗) is a final object of D.

If C admits pushouts, we let Exc(C,D) denote the full subcategory of Fun(C,D) spanned by the ex-

cisive functors. If C admits a final object, we let Fun∗(C,D) denote the full subcategory of Fun(C,D)

spanned by the reduced functors. If C admits pushouts and a final object, we let Exc∗(C,D) denote

the intersection Exc(C,D) ∩ Fun∗(C,D).

Remark 1.4.2.2. Let F : C → D be a functor between ∞-categories, and suppose that C is a

pointed ∞-category which admits finite colimits. If C is stable, then F is reduced and excisive

if and only if it is left exact (Proposition 1.1.3.4). If instead D is stable, then F is reduced and

excisive if and only if it is right exact. In particular, if both C and D are stable, then F is reduced

and excisive if and only if it is exact (Proposition 1.1.4.1).

Remark 1.4.2.3. Let K be a simplicial set, let C be an ∞-category which admits pushouts, and

let D be an ∞-category which admits K-indexed limits. Then Fun(C,D) admits K-indexed limits.

Moreover, the collection of excisive functors from C to D is closed under K-indexed limits. Similarly,

if C has a final object ∗, the the full subcategory Fun∗(C,D) ⊆ Fun(C,D) is closed under K-indexed

limits.

Remark 1.4.2.4. Suppose that C is a small pointed ∞-category which admits finite colimits, and

let D be a presentable ∞-category. Then Fun∗(C,D), Exc(C,D), and Exc∗(C,D) are accessible lo-

calizations of the∞-category Fun(C,D) (Lemmas HTT.5.5.4.18 and HTT.5.5.4.19 ). In particular,

each is a presentable ∞-category.

Notation 1.4.2.5. Let S∗ denote the ∞-category of pointed objects of S. That is, S∗ denotes the

full subcategory of Fun(∆1, S) spanned by those morphisms f : X → Y for which X is a final object

of S (Definition HTT.7.2.2.1 ). Let Sfin denote the smallest full subcategory of S which contains

the final object ∗ and is stable under finite colimits. We will refer to Sfin as the ∞-category of

finite spaces. We let Sfin
∗ ⊆ S∗ denote the ∞-category of pointed objects of Sfin. We observe that

the suspension functor Σ : S∗ → S∗ carries Sfin
∗ to itself. For each n ≥ 0, we let Sn ∈ S∗ denote a

representative for the (pointed) n-sphere.

Remark 1.4.2.6. It follows from Remark HTT.5.3.5.9 and Proposition HTT.4.3.2.15 that Sfin

is characterized by the following universal property: for every ∞-category D which admits fi-

nite colimits, evaluation at ∗ induces an equivalence of ∞-categories FunRex(Sfin,D) → D. Here

FunRex(Sfin,D) denotes the full subcategory of Fun(Sfin,D) spanned by the right exact functors.

More informally: the ∞-category Sfin is freely generated by a single object (the space ∗) under

finite colimits.
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Warning 1.4.2.7. The∞-category Sfin does not coincide with the∞-category of compact objects

Sc ⊆ S. Instead, there is an inclusion Sfin ⊆ Sc, which realizes Sc as an idempotent completion of

Sfin. An object of X ∈ Sc belongs to Sfin if and only if its Wall finiteness obstruction vanishes. We

refer the reader to [161] for further details.

Definition 1.4.2.8. Let C be an ∞-category which admits finite limits. A spectrum object of C is

a reduced, excisive functor X : Sfin
∗ → C. Let Sp(C) = Exc∗(S

fin
∗ ,C) denote the full subcategory of

Fun(Sfin
∗ ,C) spanned by the spectrum objects of C.

Remark 1.4.2.9. Let C be an∞-category which admits finite limits, and K an arbitrary simplicial

set. Then we have a canonical isomorphism Sp(Fun(K,C)) ' Fun(K,Sp(C)).

We next show that if C is an ∞-category which admits finite limits, then the ∞-category Sp(C)

is stable. We begin with the following observation:

Lemma 1.4.2.10. Let C be a pointed ∞-category which admits finite colimits, and let D be an ∞-

category which admits finite limits. Then the ∞-category Exc∗(C,D) is pointed and admits finite

limits.

Proof. The existence of finite limits in Exc∗(C,D) follows from Remark 1.4.2.3. Let ∗ denote a

final object of C and ∗′ a final object of D. Let X : C → D be the constant functor taking the

value ∗′. Then X is a final object of Fun(C,D), and in particular a final object of Exc∗(C,D).

We claim that X is also an initial object of Fun∗(C,D) (and in particular an initial object of

Exc∗(C,D)). To prove this, choose any other object Y ∈ Fun∗(C,D); we wish to show that the

mapping space MapFun(C,D)(X,Y ) is contractible. Since the functor Y is reduced, the mapping

space MapFun(C,D)(X(∗), Y (∗)) is contractible. It will therefore suffice to show that the restriction

map

MapFun(C,D)(X,Y )→ MapD(X(∗), Y (∗))

is a homotopy equivalence. This follows from the observation that X is a left Kan extension of its

restriction along the inclusion {∗} ↪→ C.

We will deduce the stability of Sp(C) using the following general criterion:

Proposition 1.4.2.11. Let C be a pointed ∞-category which admits finite limits and colimits.

Then:

(1) If the suspension functor ΣC is fully faithful, then every pushout square in C is a pullback

square.

(2) If the loop functor ΩC is fully faithful, then every pullback square in C is a pushout square.

(3) If the loop functor ΩC is an equivalence of ∞-categories, then C is stable.
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We will deduce Proposition 1.4.2.11 from a more general assertion regarding functors between

pointed ∞-categories. The formulation of this result will require a bit of terminology.

Notation 1.4.2.12. Let F : C→ D be a functor between∞-categories, and assume that D admits

finite limits. For every commutative square τ :

W //

��

X

��
Y // Z

in C, we obtain a commutative square F (τ):

F (W ) //

��

F (X)

��
F (Y ) // F (Z)

in D. This diagram determines a map ητ : F (W )→ F (X)×F (Z) F (Y ) in the∞-category D, which

is well-defined up to homotopy. If we suppose further that X and Y are zero objects of C, that

F (X) and F (Y ) are zero objects of D, and that τ is a pushout diagram, then we obtain a map

F (W )→ ΩDF (ΣCW ), which we will denote simply by ηW .

Proposition 1.4.2.13. Let C be a pointed∞-category which admits finite colimits, D a pointed∞-

category which admits finite limits, and let F : C→ D a reduced functor. The following conditions

are equivalent:

(1) The functor F is excisive (Definition 1.4.2.1): that is, F carries pushout squares in C to

pullback squares in D.

(2) For every object X ∈ C, the canonical map ηX : F (X)→ ΩDF (ΣCX) is an equivalence in D

(see Notation 1.4.2.12).

Assuming Proposition 1.4.2.13 for the moment, it is easy to verify Proposition 1.4.2.11:

Proof of Proposition 1.4.2.11. Assertion (1) follows by applying Proposition 1.4.2.13 to the identity

functor idC, and assertion (2) follows from (1) by passing to the opposite ∞-category. Assertion

(3) is an immediate consequence of (1) and (2) (note that if ΩC is an equivalence of ∞-categories,

then its left adjoint ΣC is also an equivalence of ∞-categories).

Restricting our attention to stable ∞-categories, Proposition 1.4.2.13 yields the following:

Corollary 1.4.2.14. Let F : C→ D be a functor between stable ∞-categories. Then F is exact if

and only if the following conditions are satisfied:
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(1) The functor F carries zero objects of C to zero objects of D.

(2) For every object X ∈ C, the canonical map ΣDF (X)→ F (ΣCX) is an equivalence in D.

The proof of Proposition 1.4.2.13 makes use of the following lemma:

Lemma 1.4.2.15. Let C be a pointed ∞-category which admits finite colimits, D a pointed ∞-

category which admits finite limits, and F : C → D a reduced functor. Suppose given a pushout

diagram τ :

W //

��

X

��
Y // Z

in C. Then there exists a map θτ : F (X)×F (Z) F (Y )→ ΩDF (ΣCW ) with the following properties:

(1) The composition θτ ◦ ητ is homotopic to ηW . Here ητ and ηW are defined as in Notation

1.4.2.12.

(2) Let ΣC(τ) denote the induced diagram

ΣCW //

��

ΣCX

��
ΣCY // ΣCZ.

Then there is a pullback square

ηΣC(τ) ◦ θτ //

��

ηX

��
ηY // ηZ

in the ∞-category Fun(∆1,D) of morphisms in D.

Proof. In the ∞-category C, we have the following commutative diagram (in which every square is

a pushout):

W //

��

X //

��

0

��
Y //

��

X qW Y

��

// 0qW Y //

��

0

��
0 // X qW 0 //

��

ΣCW //

��

ΣCY

��
0 // ΣCX // ΣC(X qW Y ).
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Applying the functor F , and replacing the upper left square by a pullback, we obtain a new diagram

F (X)×F (Z) F (Y ) //

��

F (X) //

��

0

��
F (Y )

��

// F (Z)

��

// F (0qW Y ) //

��

0

��
0 // F (X qW 0) //

��

F (ΣCW ) //

��

F (ΣCY )

��
0 // F (ΣCX) // F (ΣCZ).

Restricting attention to the large square in the upper left, we obtain the desired map θτ : F (X)×F (Z)

F (Y )→ ΩDF (ΣCW ). It is easy to verify that θτ has the desired properties.

Proof of Proposition 1.4.2.13. The implication (1) ⇒ (2) is obvious. Conversely, suppose that (2)

is satisfied. We must show that for every pushout square τ :

X //

��

Y

��
Z // Y qX Z

in the ∞-category C, the induced map ητ is an equivalence in D. Let θτ be as in the statement

of Lemma 1.4.2.15. Then θτ ◦ ητ is homotopic to ηX , and is therefore an equivalence (by virtue of

assumption (2)). It will therefore suffice to show that θτ is an equivalence. The preceding argument

shows that θτ has a right homotopy inverse. To show that θτ admits a left homotopy inverse, it will

suffice to show that ηΣCτ ◦ θτ is an equivalence. This follows from the second assertion of Lemma

1.4.2.15, since the maps ηY , ηZ , and ηYqXZ are equivalences (by assumption (2)).

Proposition 1.4.2.16. Let C be a pointed ∞-category which admits finite colimits and D an ∞-

category which admits finite limits. Then the ∞-category Exc∗(C,D) is stable.

Proof. We may assume without loss of generality that C is small. Suppose first that D is presentable.

Let S : Fun(C,D)→ Fun(C,D) be given by F 7→ F ◦ ΣC, where Σ : C→ C denotes the suspension

functor. Then S carries Exc∗(C,D) to itself. Using the definition of excisive functors, we conclude

that S is a homotopy inverse to the functor ΩExc∗(C,D). Since Exc∗(C,D) is pointed (Lemma 1.4.2.10)

and admits finite limits and colimits (Remark 1.4.2.4), we conclude from Proposition 1.4.2.11 that

it is stable.

To handle the general case, we may assume without loss of generality that D is small. Let D′ =

P(D) be the ∞-category of presheaves on D and let j : D → D′ be the Yoneda embedding. Since
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j is left exact, it induces a fully faithful embedding Exc∗(C,D)→ Exc∗(C,D
′). Then Exc∗(C,D) is

equivalent to a full subcategory of the stable ∞-category Exc∗(C,D
′), which is closed under finite

limits and suspensions. It follows from Lemma 1.1.3.3 that Exc∗(C,D) is stable.

Corollary 1.4.2.17. Let C be an ∞-category which admits finite limits. Then the ∞-category

Sp(C) of spectrum objects of C is stable.

Remark 1.4.2.18. Let C be an ∞-category which admits finite limits, and let C∗ denote the ∞-

category of pointed objects of C. Then the forgetful functor C∗ → C induces an equivalence of

∞-categories Sp(C∗) → Sp(C). To see this, we observe that there is a canonical isomorphism of

simplicial sets Sp(C∗) ' Sp(C)∗. We are therefore reduced to proving that the forgetful functor

Sp(C)∗ → Sp(C) is an equivalence of∞-categories, which follows from the fact that Sp(C) is pointed

(Corollary 1.4.2.17).

Our next goal is to characterize the ∞-category Sp(C) by means of a universal property.

Lemma 1.4.2.19. Let C be an ∞-category which admits finite colimits and a final object, let

f : C → C∗ be a left adjoint to the forgetful functor, and let D be a stable ∞-category. Let

Exc′(C,D) denote the full subcategory of Exc(C,D) spanned by those functors which carry the initial

object of C to a final object of D. Then composition with f induces an equivalence of ∞-categories

φ : Exc∗(C∗,D)→ Exc′(C,D).

Proof. Consider the composite functor

θ : Fun(C,D)× C∗ ⊆ Fun(C,D)× Fun(∆1,C)→ Fun(∆1,D)
cofib−→ D .

We can identify θ with a map Fun(C,D)→ Fun(C∗,D). Since the collection of pullback squares in

D is a stable subcategory of Fun(∆1 ×∆1,D), we conclude θ restricts to a map ψ : Exc′(C,D) →
Exc∗(C∗,D). It is not difficult to verify that ψ is a homotopy inverse to φ.

Notation 1.4.2.20. Let S0 denote the 0-sphere, regarded as an object of the ∞-category Sfin
∗ of

pointed finite spaces. If C is an ∞-category which admits finite limits, we let Ω∞ : Sp(C) → C

denote the functor given by evaluation at S0 ∈ Sfin
∗ . More generally, in n ∈ Z is an integer, we let

Ω∞−n : Sp(C) → C denote the functor given by composing Ω∞ : Sp(C) → C with the shift functor

X 7→ X[n] on Sp(C) (if n ≥ 0, then the functor Ω∞−n : Sp(C) → C is given by evaluation on the

n-sphere Sn).

Proposition 1.4.2.21. Let D be an ∞-category which admits finite limits. The following condi-

tions are equivalent:

(1) The ∞-category D is stable.

(2) The functor Ω∞ : Sp(D)→ D is an equivalence of ∞-categories.
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Proof. The implication (2) ⇒ (1) follows from Corollary 1.4.2.17. Conversely, suppose that (1) is

satisfied, and let f : Sfin → Sfin
∗ be a left adjoint to the forgetful functor (obtained by adding a

disjoint base point). Using Lemma 1.4.2.19, we are reduced to proving that evaluation at the object

∗ ∈ Sfin induces an equivalence of ∞-categories Exc′(Sfin,D). Note that a functor X : Sfin → D

belongs to Exc′(Sfin,D) if and only if it is right exact. The desired result now follows from Remark

1.4.2.6.

Proposition 1.4.2.22. Let C be a pointed ∞-category which admits finite colimits and D an ∞-

category which admits finite limits. Then composition with the functor Ω∞ : Sp(D) → D induces

an equivalence of ∞-categories

θ : Exc∗(C,Sp(D))→ Exc∗(C,D).

Proof. Under the canonical isomorphism Exc∗(C, Sp(D)) ' Sp(Exc∗(C,D)), the functor θ cor-

responds to evaluation map Ω∞ : Sp(Exc∗(C,D)) → Exc∗(C,D). Since Exc∗(C,D) is stable by

Proposition 1.4.2.16, Proposition 1.4.2.21 implies that θ is an equivalence of ∞-categories.

Corollary 1.4.2.23. Let C be a stable ∞-category, let D an ∞-category which admits finite limits,

and let

Fun′(C,D) ⊆ Fun(C,D) Fun′(C,Sp(D)) ⊆ Fun(C,Sp(D))

denote the full subcategories spanned by the left-exact functors. Then composition with the functor

Ω∞ : Sp(D)→ D induces an equivalence of ∞-categories

Fun′(C, Sp(D))→ Fun′(C,D).

Proposition 1.4.2.24. Let C be a pointed ∞-category which admits finite limits. Then the functor

Ω∞ : Sp(C) → C can be lifted to an equivalence of Sp(C) with the homotopy limit of the tower of

∞-categories

· · · → C
ΩC→ C

ΩC→ C .

Remark 1.4.2.25. Let C be an∞-category which admits finite limits. Combining Remark 1.4.2.18

with Proposition 1.4.2.24, we can identify the ∞-category Sp(C) of spectrum objects of C with the

homotopy limit of the tower

· · · → C∗
Ω→ C∗

Ω→ C∗ .

Lemma 1.4.2.26. Let C be a small pointed ∞-category, and let P∗(C) denote the full subcategory

of P(C) = Fun(Cop, S) spanned by those functors which carry zero objects of C to final objects of S.

Then:

(1) Let S denote the set consisting of a single morphism from an initial object of P(C) to a final

object of P(C). Then P∗(C) = S−1 P(C).
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(2) The∞-category P∗(C) is an accessible localization of P(C). In particular, P∗(C) is presentable.

(3) The Yoneda embedding C→ P(C) factors through P∗(C), and the induced embedding j : C→
P∗(C) preserves zero objects.

(4) Let D be an ∞-category which admits small colimits, and let FunL(P∗(C),D) denote the full

subcategory of Fun(P∗(C),D) spanned by those functors which preserve small colimits. Then

composition with j induces an equivalence of ∞-categories FunL(P∗(C),D) → Fun0(C,D),

where Fun0(C,D) denotes the full subcategory of Fun(C,D) spanned by those functors which

carry zero objects of C to initial objects of D.

(5) The ∞-category P∗(C) is pointed.

(6) The full subcategory P∗(C) ⊆ P(C) is closed under small limits and under small colimits

parametrized by weakly contractible simplicial sets. In particular, P∗(C) is stable under small

filtered colimits in P(C).

(7) The functor j : C→ P∗(C) preserves all small limits which exist in C.

(8) The ∞-category P∗(C) is compactly generated.

Proof. For every object X ∈ S, let FX ∈ P(C) denote the constant functor taking the value X.

Then FX is a left Kan extension of FX |{0}, where 0 denotes a zero object of C. It follows that for

any object G ∈ P(C), evaluation at 0 induces a homotopy equivalence

MapP(C)(FX , G)→ MapS(FX(0), G(0)) = MapS(X,G(0)).

We observe that the inclusion ∅ ⊆ ∆0 induces a map F∅ → F∆0 from an initial object of P(C) to a

final object of P(C). It follows that an object G of P(C) is S-local if and only if the induced map

G(0) ' MapS(∆0, G(0))→ MapS(∅, G(0)) ' ∆0

is a homotopy equivalence: that is, if and only if G ∈ P∗(C). This proves (1).

Assertion (2) follows immediately from (1), and assertion (3) is obvious. Assertion (4) follows

from (1), Theorem HTT.5.1.5.6 , and Proposition HTT.5.5.4.20 . To prove (5), we observe that

F∆0 is a final object of P(C), and therefore a final object of P∗(C). It therefore suffices to show

that F∆0 is an initial object of P∗(C). This follows from the observation that for every G ∈ P(C),

we have homotopy equivalences MapP(C)(F∆0 , G) ' MapS(∆0, G(0)) ' G(0) so that the mapping

space MapP(C)(F∆0 , G) is contractible if G ∈ P∗(C). Assertion (6) is obvious, and (7) follows

from (6) together with Proposition HTT.5.1.3.2 . We deduce (8) from (6) together with Corollary

HTT.5.5.7.3 .
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Proof of Proposition 1.4.2.24. Let C denote a homotopy limit of the tower

· · · → C
ΩC→ C

ΩC→ C .

We begin by showing that C is a stable ∞-category.

Assume first that C is presentable. Applying Theorem HTT.5.5.3.18 , we deduce that C is

presentable. In particular, C admits small limits and colimits. By construction, C is pointed and

the loop functor ΩC is an equivalence of ∞-categories. Applying Proposition 1.4.2.11, we deduce

that C is stable.

We now prove that C is stable in general. Without loss of generality, we may assume that C is

small. Let j : C → P∗(C) be as in Lemma 1.4.2.26, and let P∗(C) denote a homotopy limit of the

tower

· · · → P∗(C)
Ω→ P∗(C)

Ω→ P∗(C).

The functor j is fully faithful and left exact, and therefore induces a fully faithful left exact em-

bedding C→ P∗(C). Then C is closed under finite limits and shifts in the stable ∞-category P∗(C),

and is therefore stable by Lemma 1.1.3.3.

Let G : C→ C be the the canonical map. Then G is left exact. Applying Corollary 1.4.2.23, we

deduce that G factors as a composition

C
G′→ Sp(C)

Ω∞→ C .

We will complete the proof by showing that G′ is an equivalence of ∞-categories. To prove this, it

will suffice to show that for every stable∞-category D, composition with G′ induces an equivalence

Fun′(D,C)→ Fun′(D, Sp(C)),

where Fun′(D,X) denotes the full subcategory of Fun(D,X) spanned by the left exact functors. Us-

ing Corollary 1.4.2.23, we are reduced to proving that composition with G induces an equivalence

Fun′(D,C) → Fun′(D,C). For this, it suffices to show that the loop functor ΩC induces an equiv-

alence Fun′(D,C) → Fun′(D,C). A homotopy inverse to this functor is given by precomposition

with the suspension functor ΣD (as in the proof of Proposition 1.4.2.16).

Using Proposition 1.4.2.24, we can obtain a slight improvement on Proposition 1.4.2.11:

Corollary 1.4.2.27. Let C be a pointed ∞-category. The following conditions are equivalent:

(1) The ∞-category C is stable.

(2) The ∞-category C admits finite colimits and the suspension functor ΣC : C→ C is an equiva-

lence.

(3) The ∞-category C admits finite limits and the loop functor ΩC : C→ C is an equivalence.



150 CHAPTER 1. STABLE ∞-CATEGORIES

Proof. We will show that (1)⇔ (3); the dual argument will prove that (1)⇔ (2). The implication

(1) ⇒ (3) is clear. Conversely, suppose that C admits finite limits and that ΩC is an equivalence.

Proposition 1.4.2.24 implies that Sp(C) can be identified with the homotopy inverse limit of the

tower

. . .
ΩC→ C

ΩC→ C .

If (3) is satisfied, then the loop functor ΩC is an equivalence, so this tower is essentially constant.

It follows that Ω∞ : Sp(C)→ C is an equivalence of ∞-categories. Since Sp(C) is stable (Corollary

1.4.2.17), so is C.

1.4.3 The ∞-Category of Spectra

In this section, we will discuss what is perhaps the most important example of a stable∞-category:

the ∞-category of spectra. In classical homotopy theory, one defines a spectrum to be a sequence

of pointed spaces {Xn}n≥0, equipped with homotopy equivalences (or homeomorphisms, depending

on the author) Xn → Ω(Xn+1) for all n ≥ 0. By virtue of Remark 1.4.2.25, this admits the following

∞-categorical translation:

Definition 1.4.3.1. A spectrum is a spectrum object of the ∞-category S of spaces. We let

Sp = Sp(S∗) denote the ∞-category of spectra.

Remark 1.4.3.2. The homotopy category hSp of spectra can be identified with the classical stable

homotopy category. There are many different constructions of the stable homotopy category in the

literature. For a discussion of some other modern approaches, we refer the reader to [51] and [74].

Remark 1.4.3.3. According to Definition 1.4.3.1, a spectrum E is a reduced, excisive functor from

the ∞-category Sfin
∗ of pointed finite spaces to the ∞-category S of spaces. As suggested in §1.4.2,

we can think of such a functor as defining a homology theory A. More precisely, given a pair of finite

spaces X0 ⊆ X, we can define the relative homology group An(X,X0) to be πnE(X/X0), where

X/X0 denotes the pointed space obtained from X by collapsing X0 to a point (here the homotopy

group is taken with base point provided by the map ∗ ' E(∗)→ E(X/X0) ). The assumption that

E is excisive guarantees the existence of excision and Mayer-Vietoris sequences for A.

It follows from Corollary 1.4.2.17 that the ∞-category Sp of spectra is stable. To analyze this

∞-category further, we observe that there is a t-structure on Sp. This is a special case of the

following general observation:

Proposition 1.4.3.4. Let C be a presentable ∞-category, and let Sp(C)≤−1 be the full subcategory

of Sp(C) spanned by those objects X such that Ω∞(X) is a final object of C. Then Sp(C)≤−1

determines an accessible t-structure on Sp(C) (see Definition 1.4.4.12).

Proof. Note that the forgetful functor Ω∞ : Sp(C)→ C is accessible and preserves small limits, and

therefore admits a left adjoint Σ∞+ (Corollary HTT.5.5.2.9 ). Choose a small collection of objects
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{Cα} which generates C under colimits. We observe that an object X ∈ Sp(C) belongs to Sp(C)≤−1

if and only if each of the spaces

MapC(Cα,Ω
∞(X)) ' MapSp(C)(Σ

∞(Cα), X)

is contractible. Let Sp(C)≥0 be the smallest full subcategory of Sp(C) which is stable under col-

imits and extensions, and contains each Σ∞(Cα). Proposition 1.4.4.11 implies that Sp(C)≥0 is the

collection of nonnegative objects of the desired t-structure on Sp(C).

Remark 1.4.3.5. The proof of Proposition 1.4.3.4 gives another characterization of the t-structure

on Sp(C): the full subcategory Sp(C)≥0 is generated, under extensions and colimits, by the essential

image of the functor Σ∞+ : C→ Sp(C).

We now apply Proposition 1.4.3.4 to the study of the ∞-category Sp:

Proposition 1.4.3.6. (1) The ∞-category Sp is stable.

(2) Let (Sp)≤−1 denote the full subcategory of Sp spanned by those objects X such that the space

Ω∞(X) ∈ S is contractible. Then (Sp)≤−1 determines an accessible t-structure on Sp (see

Definition 1.4.4.12).

(3) The t-structure on Sp is both left complete and right complete, and the heart Sp♥ is canonically

equivalent to the (nerve of the) category of abelian groups.

Proof. Assertion (1) follows immediately from Corollary 1.4.2.17 and assertion (2) from Proposition

1.4.3.4. We will prove (3). Note that a spectrum X can be identified with a sequence of pointed

spaces {X(n)}, equipped with equivalences X(n) ' ΩX(n + 1) for all n ≥ 0. We observe that

X ∈ (Sp)≤m if and only if each X(n) is (n+m)-truncated. In general, the sequence {τ≤n+mX(n)}
itself determines a spectrum, which we can identify with the truncation τ≤mX. It follows that

X ∈ (Sp)≥m+1 if and only if each X(n) is (n + m + 1)-connective. In particular, X lies in the

heart of Sp if and only if each X(n) is an Eilenberg-MacLane object of S of degree n (see Definition

HTT.7.2.2.1 ). It follows that the heart of Sp can be identified with the homotopy inverse limit of

the tower of ∞-categories

. . .
Ω→ EM1(S)

Ω→ EM0(S),

where EMn(S) denotes the full subcategory of S∗ spanned by the Eilenberg-MacLane objects of

degree n. Proposition HTT.7.2.2.12 asserts that after the second term, this tower is equivalent to

the constant diagram taking the value N(Ab), where Ab is category of abelian groups.

It remains to prove that Sp is both right and left complete. We begin by observing that if

X ∈ Sp is such that πnX ' 0 for all n ∈ Z, then X is a zero object of Sp (since each X(n) ∈ S has

vanishing homotopy groups, and is therefore contractible by Whitehead’s theorem). Consequently,

both
⋂

(Sp)≤−n and
⋂

(Sp)≥n coincide with the collection of zero objects of Sp. It follows that

(Sp)≥0 = {X ∈ Sp : (∀n < 0)[πnX ' 0]}
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(Sp)≤0 = {X ∈ Sp : (∀n > 0)[πnX ' 0]}.

According to Proposition 1.2.1.19, to prove that Sp is left and right complete it will suffice to show

that the subcategories (Sp)≥0 and (Sp)≤0 are stable under products and coproducts. In view of the

above formulas, it will suffice to show that the homotopy group functors πn : Sp→ N(Ab) preserve

products and coproducts. Since πn obviously commutes with finite coproducts, it will suffice to

show that πn commutes with products and filtered colimits. Shifting if necessary, we may reduce

to the case n = 0. Since products and filtered colimits in the category of abelian groups can be

computed at the level of the underlying sets, we are reduced to proving that the composition

Sp
Ω∞→ S

π0→ N(Set)

preserves products and filtered colimits. This is clear, since each of the factors individually preserves

products and filtered colimits.

Our next goal is to show that the∞-category Sp is compactly generated. This is a consequence

of the following more general result:

Proposition 1.4.3.7. Let C be a compactly generated ∞-category. Then the ∞-category Sp(C) is

compactly generated.

Proof. Let D be the full subcategory of Sp(C) spanned by the compact objects. Since Sp(C)

is presentable, the ∞-category D is essentially small. It follows that the inclusion D ↪→ Sp(C)

extends to a fully faithful embedding θ : Ind(D) → Sp(C) (Proposition HTT.5.3.5.10 ). We wish

to show that θ is an equivalence of ∞-categories. Since θ preserves small colimits (Proposition

HTT.5.5.1.9 ), it admits a right adjoint G; it will therefore suffice to show that the functor G is

conservative. Let α : X → Y be a morphism in Sp(C) such that G(α) is an equivalence. We wish to

show that α is an equivalence. For this, it will suffice to show that for every integer n, the induced

map Ω∞−nX → Ω∞−nY is an equivalence in C. Since C is compactly generated, it will suffice to

show that α induces a homotopy equivalence

θ : MapC(C,Ω∞X)→ MapC(C,Ω∞Y )

for every compact object C ∈ C. To prove this, we note that filtered colimits in C are left exact,

so that the full subcategory Sp(C) ⊆ Fun(Sfin
∗ ,C) is closed under filtered colimits. It follows that

the functor Ω∞ : Sp(C) → C admits a left adjoint Σ∞+ : C → Sp(C) which carries compact ob-

jects of C to compact objects of Sp(C). We can identify θ with the map MapSp(C)(Σ
∞
+ (C), X) →

MapSp(C)(Σ
∞
+ (C), Y ) given by composition with α. Since Σ∞+ (C) is compact, our assumption that

G(α) is an equivalence guarantees that θ is a homotopy equivalence as desired.
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Remark 1.4.3.8. Let Ab denote the category of abelian groups. For each n ∈ Z, the construction

X 7→ πnX determines a functor Sp → N(Ab). Note that if n ≥ 2, then πn can be identified with

the composition

Sp
Ω∞∗→ S∗

πn→ N(Ab)

where the second map is the usual homotopy group functor. Since Sp is both left and right

complete, we conclude that a map f : X → Y of spectra is an equivalence if and only if it induces

isomorphisms πnX → πnY for all n ∈ Z.

We close this section with the following useful result, which relates colimits in the∞-categories

Sp and S:

Proposition 1.4.3.9. The functor Ω∞ : Sp≥0 → S preserves sifted colimits.

Proof. Since every sifted simplicial set is weakly contractible, the forgetful functor S∗ → S pre-

serves sifted colimits (Proposition HTT.4.4.2.9 ). It will therefore suffice to prove that the functor

Ω∞∗ | Sp≥0 → S∗ preserves sifted colimits.

For each n ≥ 0, let S≥n denote the full subcategory of S spanned by the n-connective objects,

and let S≥n∗ be the ∞-category of pointed objects of S≥n. We observe that Sp≥0 can be identified

with the homotopy inverse limit of the tower

. . .
Ω→ S≥1

∗
Ω→ S≥0

∗ .

It will therefore suffice to prove that for every n ≥ 0, the loop functor Ω : S≥n+1
∗ → S≥n∗ preserves

sifted colimits.

The ∞-category S≥n is the preimage (under τ≤n−1) of the full subcategory of τ≤n−1 S spanned

by the final objects. Since this full subcategory is stable under sifted colimits and since τ≤n−1

commutes with all colimits, we conclude that S≥n ⊆ S is stable under sifted colimits.

According to Lemmas HTT.7.2.2.11 and HTT.7.2.2.10 , there is an equivalence of S≥1
∗ with

the ∞-category of group objects Grp(S∗). This restricts to an equivalence of S≥n+1
∗ with Grp(S≥n∗ )

for all n ≥ 0. Moreover, under this equivalence, the loop functor Ω can be identified with the

composition

Grp(S≥n∗ ) ⊆ Fun(N(∆)op, S≥n∗ )→ S≥n∗ ,

where the second map is given by evaluation at the object [1] ∈ ∆. This evaluation map com-

mutes with sifted colimits ( Proposition HTT.5.1.2.2 ). Consequently, it will suffice to show that

Grp(S≥n∗ ) ⊆ Fun(N(∆)op, S≥n∗ ) is stable under sifted colimits.

Without loss of generality, we may suppose n = 0; now we are reduced to showing that

Grp(S∗) ⊆ Fun(N(∆)op, S∗) is stable under sifted colimits. In view of Lemma HTT.7.2.2.10 , it

will suffice to show that Grp(S) ⊆ Fun(N(∆)op, S) is stable under sifted colimits. Invoking Proposi-

tion HTT.7.2.2.4 , we are reduced to proving that the formation of sifted colimits S commutes with

finite products, which follows from Lemma HTT.5.5.8.11 .
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1.4.4 Presentable Stable ∞-Categories

In this section, we will study the class of presentable stable∞-categories: that is, stable∞-categories

which admit small colimits and are generated (under colimits) by a set of small objects. In the

stable setting, the condition of presentability can be formulated in a particularly simple way.

Proposition 1.4.4.1. (1) A stable ∞-category C admits small colimits if and only if C admits

small coproducts.

(2) Let F : C → D be an exact functor between stable ∞-categories which admit small colimits.

Then F preserves small colimits if and only if F preserves small coproducts.

(3) Let C be a stable ∞-category which admits small colimits, and let X be an object of C. Then

X is compact if and only if the following condition is satisfied:

(∗) For every map f : X →
∐
α∈A Yα in C, there exists a finite subset A0 ⊆ A such that f

factors (up to homotopy) through
∐
α∈A0

Yα.

Proof. The “only if” direction of (1) is obvious, and the converse follows from Proposition

HTT.4.4.3.2 . Assertion (2) can be proven in the same way.

The “only if” direction of (3) follows from the fact that an arbitrary coproduct
∐
α∈A Yα can be

obtained as a filtered colimit of finite coproducts
∐
α∈A0

Yα (see §HTT.4.2.3 ). Conversely, suppose

that an object X ∈ C satisfies (∗); we wish to show that X is compact. Let f : C→ Ŝ be the functor

corepresented by X (recall that Ŝ denotes the∞-category of spaces which are not necessarily small).

Proposition HTT.5.1.3.2 implies that f is left exact. According to Proposition 1.4.2.22, we can

assume that f = Ω∞ ◦F , where F : C→ Ŝp is an exact functor; here Ŝp denotes the ∞-category of

spectra which are not necessarily small. We wish to prove that f preserves filtered colimits. Since

Ω∞ preserves filtered colimits, it will suffice to show that F preserves all colimits. In view of (2),

it will suffice to show that F preserves coproducts. In virtue of Remark 1.4.3.8, we are reduced to

showing that each of the induced functors

C
F→ Ŝp

πn→ N(Ab)

preserves coproducts, where Ab denotes the category of (not necessarily small) abelian groups.

Shifting if necessary, we may suppose n = 0. In other words, we must show that for any collection

of objects {Yα}α∈A, the natural map

θ :
⊕

Ext0
C(X,Yα)→ Ext0

C(X,
∐

Yα)

is an isomorphism of abelian groups. The surjectivity of θ amounts to the assumption (∗), while

the injectivity follows from the observations that each Yα is a retract of the coproduct
∐
Yα and

that the natural map
⊕

Ext0
C(X,Yα)→

∏
Ext0

C(X,Yα) is injective.
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If C is a stable ∞-category, then we will say that an object X ∈ C generates C if the condition

π0 MapC(X,Y ) ' ∗ implies that Y is a zero object of C.

Corollary 1.4.4.2. Let C be a stable ∞-category. Then C is presentable if and only if the following

conditions are satisfied:

(1) The ∞-category C admits small coproducts.

(2) The homotopy category hC is locally small.

(3) There exists a regular cardinal κ and a κ-compact generator X ∈ C.

Proof. Suppose first that C is presentable. Conditions (1) and (2) are obvious. To establish (3),

we may assume without loss of generality that C is an accessible localization of P(D), for some

small ∞-category D. Let F : P(D) → C be the localization functor and G its right adjoint. Let

j : D → P(D) be the Yoneda embedding, and let X be a coproduct of all suspensions (see §1.1.2)

of objects of the form F (j(D)), where D ∈ D. Since C is presentable, X is κ-compact provided

that κ is sufficiently large. We claim that X generates C. To prove this, we consider an arbitrary

Y ∈ C such that π0 MapC(X,Y ) ' ∗. It follows that the space

MapC(F (j(D)), Y ) ' MapP(D)(j(D), G(Y )) ' G(Y )(D)

is contractible for all D ∈ D, so that G(Y ) is a final object of P(D). Since G is fully faithful, we

conclude that Y is a final object of C, as desired.

Conversely, suppose that (1), (2), and (3) are satisfied. We first claim that C is itself locally

small. It will suffice to show that for every morphism f : X → Y in C and every n ≥ 0, the

homotopy group πn(HomR
C (X,Y ), f) is small. We note that HomR

C (X,Y ) is equivalent to the loop

space of HomR
C (X,Y [1]); the question is therefore independent of base point, so we may assume

that f is the zero map. We conclude that the relevant homotopy group can be identified with

HomhC(X[n], Y ), which is small by virtue of assumption (2).

Fix a regular cardinal κ and a κ-compact object X which generates C. We now define a

transfinite sequence of full subcategories

C(0) ⊆ C(1) ⊆ . . .

as follows. Let C(0) be the full subcategory of C spanned by the objects {X[n]}n∈Z. If λ is a limit

ordinal, let C(λ) =
⋃
β<λ C(β). Finally, let C(α + 1) be the full subcategory of C spanned by all

objects which can be obtained as the colimit of κ-small diagrams in C(α). Since C is locally small,

it follows that each C(α) is essentially small. It follows by induction that each C(α) consists of κ-

compact objects of C and is stable under translation. Finally, we observe that C(κ) is stable under

κ-small colimits. It follows from Lemma 1.1.3.3 that C(κ) is a stable subcategory of C. Choose a
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small ∞-category D and an equivalence f : D → C(κ). According to Proposition HTT.5.3.5.11 ,

we may suppose that f factors as a composition

D
j→ Indκ(D)

F→ C

where j is the Yoneda embedding and F is a κ-continuous, fully faithful functor. We will complete

the proof by showing that F is an equivalence.

Proposition HTT.5.5.1.9 implies that F preserves small colimits. It follows that F admits a

right adjoint G : C → Indκ(D) (Remark HTT.5.5.2.10 ). We wish to show that the counit map

u : F ◦ G → idC is an equivalence of functors. Choose an object Z ∈ C, and let Y be a cofiber

for the induced map uZ : (F ◦ G)(Z) → Z. Since F is fully faithful, G(uZ) is an equivalence.

Because G is an exact functor, we deduce that G(Y ) = 0. It follows that MapC(F (D), Y ) '
MapIndκ(D)(D,G(Y )) ' ∗ for all D ∈ Indκ(D). In particular, we conclude that π0 MapC(X,Y ) ' ∗.
Since X generates C, we deduce that Y ' 0. Thus uZ is an equivalence as desired.

Remark 1.4.4.3. In view of Proposition 1.4.4.1 and Corollary 1.4.4.2, the hypothesis that a stable

∞-category C be compactly generated can be formulated entirely in terms of the homotopy category

hC. Consequently, one can study this condition entirely in the setting of triangulated categories,

without making reference to (or assuming the existence of) an underlying stable ∞-category. We

refer the reader to [115] for further discussion.

Our next result provides a large class of examples of presentable stable ∞-categories.

Proposition 1.4.4.4. Let C and D be presentable ∞-categories, and suppose that D is stable.

(1) The ∞-category Sp(C) is presentable.

(2) The functor Ω∞ : Sp(C)→ C admits a left adjoint Σ∞+ : C→ Sp(C).

(3) An exact functor G : D→ Sp(C) admits a left adjoint if and only if Ω∞ ◦G : D→ C admits

a left adjoint.

Proof. We first prove (1). Assume that C is presentable, and let 1 be a final object of C. Then

C∗ is equivalent to C1/, and therefore presentable (Proposition HTT.5.5.3.11 ). The loop functor

Ω : C∗ → C∗ admits a left adjoint Σ : C∗ → C∗. Consequently, we may view the tower

. . .
Ω→ C∗

Ω→ C∗

as a diagram in the ∞-category PrR. Invoking Theorem HTT.5.5.3.18 and Remark 1.4.2.25, we

deduce (1) and the following modified versions of (2) and (3):

(2′) The functor Ω∞∗ : Sp(C)→ C∗ admits a left adjoint Σ∞ : C∗ → Sp(C).
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(3′) An exact functor G : D→ Sp(C) admits a left adjoint if and only if Ω∞∗ ◦G : D→ C∗ admits

a left adjoint.

To complete the proof, it will suffice to verify the following:

(2′′) The forgetful functor C∗ → C admits a left adjoint C→ C∗.

(3′′) A functor G : D → C∗ admits a left adjoint if and only if the composition D
G→ C∗ → C

admits a left adjoint.

To prove (2′′) and (3′′), we recall that a functor G between presentable ∞-categories admits a

left adjoint if and only if G preserves small limits and small, κ-filtered colimits, for some regular

cardinal κ (Corollary HTT.5.5.2.9 ). The desired results now follow from Propositions HTT.4.4.2.9

and HTT.1.2.13.8 .

In what follows, if C and D are presentable ∞-categories, we let LFun(C,D) denote the full

subcategory of Fun(C,D) spanned by those functors which admit right adjoints, and RFun(C,D)

the full subcategory spanned by those functors which admit left adjoints.

Corollary 1.4.4.5. Let C and D be presentable ∞-categories, and suppose that D is stable. Then

composition with Σ∞+ : C→ Sp(C) induces an equivalence

LFun(Sp(C),D)→ LFun(C,D).

Proof. This is equivalent to the assertion that composition with Ω∞ induces an equivalence

RFun(D,Sp(C))→ RFun(D,C),

which follows from Propositions 1.4.2.22 and 1.4.4.4.

Using Corollary 1.4.4.5, we obtain another characterization of the ∞-category of spectra. Let

S ∈ Sp denote the image under Σ∞ : S → Sp of the final object ∗ ∈ S. We will refer to S as the

sphere spectrum.

Corollary 1.4.4.6. Let D be a presentable stable ∞-category. Then evaluation on the sphere

spectrum induces an equivalence of ∞-categories

θ : LFun(Sp,D)→ D .

In other words, we may regard the ∞-category Sp as the stable ∞-category which is freely

generated, under colimits, by a single object.
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Proof. We can factor the evaluation map θ as a composition

LFun(Sp(S),D)
θ′→ LFun(S,D)

θ′′→ D

where θ′ is given by composition with Σ∞+ and θ′′ by evaluation at the final object of S. We

now observe that θ′ and θ′′ are both equivalences of ∞-categories (Corollary 1.4.4.5 and Theorem

HTT.5.1.5.6 ).

We conclude this section with yet another characterization of the class of presentable stable

∞-categories.

Lemma 1.4.4.7. Let C be a stable ∞-category, and let C′ ⊆ C be a localization of C. Let L : C→ C′

be a left adjoint to the inclusion. Then L is left exact if and only if C′ is stable.

Proof. The “if” direction follows from Proposition 1.1.4.1, since L is right exact. Conversely,

suppose that L is left exact. Since C′ is a localization of C, it is closed under finite limits. In

particular, it is closed under the formation of fibers and contains a zero object of C. To complete

the proof, it will suffice to show that C′ is stable under the formation of pushouts in C. Choose a

pushout diagram σ : ∆1 ×∆1 → C

X //

��

X ′

��
Y // Y ′

in C, where X,X ′, Y ∈ C′. Proposition 1.1.3.4 implies that σ is also a pullback square. Let

L : C → C′ be a left adjoint to the inclusion. Since L is left exact, we obtain a pullback square

L(σ):

LX //

��

LX ′

��
LY // LY ′.

Applying Proposition 1.1.3.4 again, we deduce that L(σ) is a pushout square in C. The natu-

ral transformation σ → L(σ) is an equivalence when restricted to Λ2
0, and therefore induces an

equivalence Y ′ → LY ′. It follows that Y ′ belongs to the essential image of C′, as desired.

Lemma 1.4.4.8. Let C be a stable ∞-category, D an ∞-category which admits finite limits, and

G : C → Sp(D) an exact functor. Suppose that g = Ω∞ ◦ G : C → D is fully faithful. Then G is

fully faithful.

Proof. It will suffice to show that each of the composite maps

gn : C→ Sp(D)
Ω∞−n∗−→ D∗
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is fully faithful. Since gn can be identified with gn+1 ◦Ω, where Ω : C→ C denotes the loop functor,

we can reduce to the case n = 0. Fix objects C,C ′ ∈ C; we will show that the map MapC(C,C ′)→
MapD∗(g0(C), g0(C ′)) is a homotopy equivalence. We have a homotopy fiber sequence

MapD∗(g0(C), g0(C ′))
θ→ MapD(g(C), g(C ′))→ MapD(∗, g(C ′)).

Here ∗ denotes a final object of D. Since g is fully faithful, it will suffice to prove that θ is a

homotopy equivalence. For this, it suffices to show that MapD(∗, g(C ′)) is contractible. Since g

is left exact, this space can be identified with MapD(g(∗), g(C ′)), where ∗ is the final object of

C. Invoking once again our assumption that g is fully faithful, we are reduced to proving that

MapC(∗, C ′) is contractible. This follows from the assumption that C is pointed (since ∗ is also an

initial object of C).

Proposition 1.4.4.9. Let C be an ∞-category. The following conditions are equivalent:

(1) The ∞-category C is presentable and stable.

(2) There exists a presentable, stable ∞-category D and an accessible left-exact localization L :

D→ C.

(3) There exists a small ∞-category E such that C is equivalent to an accessible left-exact local-

ization of Fun(E, Sp).

Proof. The ∞-category Sp is stable and presentable. It follows that for every small ∞-category E,

the functor∞-category Fun(E,Sp) is also stable (Proposition 1.1.3.1) and presentable (Proposition

HTT.5.5.3.6 ). This proves (3)⇒ (2). The implication (2)⇒ (1) follows from Lemma 1.4.4.7. We

will complete the proof by showing that (1)⇒ (3).

Since C is presentable, there exists a small ∞-category E and a fully faithful embedding g :

C→ P(E), which admits a left adjoint (Theorem HTT.5.5.1.1 ). Propositions 1.4.2.22 and 1.4.4.4

implies that g is equivalent to a composition

C
G→ Sp(P(E))

Ω∞→ P(E),

where the functor G admits a left adjoint. Lemma 1.4.4.8 implies that G is fully faithful. It follows

that C is an (accessible) left exact localization of Sp(P(E)). We now invoke Remark 1.4.2.9 to

identify Sp(P(E)) with Fun(Eop,Sp).

Remark 1.4.4.10. Proposition 1.4.4.9 can be regarded as an analogue of Giraud’s characterization

of topoi as left exact localizations of presheaf categories ([56]). Other variations on this theme

include the ∞-categorical version of Giraud’s theorem (Theorem HTT.6.1.0.6 ) and the Gabriel-

Popesco theorem for abelian categories (see [112]).
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If C is a presentable stable ∞-category, then it is reasonably easy to construct t-structures on

C: for any small collection of objects {Xα} of C, there exists a t-structure generated by the objects

Xα. More precisely, we have the following result:

Proposition 1.4.4.11. Let C be a presentable stable ∞-category.

(1) If C′ ⊆ C is a full subcategory which is presentable, closed under small colimits, and closed

under extensions, then there exists a t-structure on C such that C′ = C≥0.

(2) Let {Xα} be a small collection of objects of C, and let C′ be the smallest full subcategory of

C which contains each Xα and is closed under extensions and small colimits. Then C′ is

presentable.

Proof. We will give the proof of (1) and defer the (somewhat technical) proof of (2) until the end

of this section. Fix X ∈ C, and let C′/X denote the fiber product C/X ×C C
′. Using Proposition

HTT.5.5.3.12 , we deduce that C′/X is presentable, so that it admits a final object f : Y → X. It

follows that composition with f induces a homotopy equivalence

MapC(Z, Y )→ MapC(Z,X)

for each Z ∈ C′. Proposition HTT.5.2.7.8 implies that C′ is a colocalization of C. Since C′ is stable

under extensions, Proposition 1.2.1.16 implies the existence of a (uniquely determined) t-structure

such that C′ = C≥0.

Definition 1.4.4.12. Let C be a presentable stable ∞-category. We will say that a t-structure on

C is accessible if the subcategory C≥0 ⊆ C is presentable.

Proposition 1.4.4.11 can be summarized as follows: any small collection of objects {Xα} of a

presentable stable∞-category C determines an accessible t-structure on C, which is minimal among

t-structures such that each Xα belongs to C≥0.

Definition 1.4.4.12 has a number of reformulations:

Proposition 1.4.4.13. Let C be a presentable stable ∞-category equipped with a t-structure. The

following conditions are equivalent:

(1) The ∞-category C≥0 is presentable (equivalently: the t-structure on C is accessible).

(2) The ∞-category C≥0 is accessible.

(3) The ∞-category C≤0 is presentable.

(4) The ∞-category C≤0 is accessible.

(5) The truncation functor τ≤0 : C→ C is accessible.
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(6) The truncation functor τ≥0 : C→ C is accessible.

Proof. We observe that C≥0 is stable under all colimits which exist in C, and that C≤0 is a local-

ization of C. It follows that C≥0 and C≤0 admit small colimits, so that (1) ⇔ (2) and (3) ⇔ (4).

We have a fiber sequence of functors

τ≥0
α→ idC

β→ τ≤−1.

The collection of accessible functors from C to itself is stable under shifts and under small colimits.

Since τ≤0 ' cofib(α)[1] and τ≥0 ' cofib(β)[−1], we conclude that (5) ⇔ (6). The equivalence

(1) ⇔ (5) follows from Proposition HTT.5.5.1.2 . We will complete the proof by showing that

(1)⇔ (3).

Suppose first that (1) is satisfied. Then C≥1 = C≥0[1] is generated under colimits by a set of

objects {Xα}. Let S be the collection of all morphisms f in C such that τ≤0(f) is an equivalence.

Using Proposition 1.2.1.16, we conclude that S is generated by {0→ Xα} as a quasisaturated class of

morphisms, and therefore also as a strongly saturated class of morphisms (Definition HTT.5.5.4.5 ).

We now apply Proposition HTT.5.5.4.15 to conclude that C≤0 = S−1 C is presentable; this proves

(3).

We now complete the proof by showing that (3) ⇒ (1). If C≤−1 = C≤0[−1] is presentable,

then Proposition HTT.5.5.4.16 implies that S is of small generation (as a strongly saturated class

of morphisms). Proposition 1.2.1.16 implies that S is generated (as a strongly saturated class)

by the morphisms {0 → Xα}α∈A, where Xα ranges over the collection of all objects of C≥0. It

follows that there is a small subcollection A0 ⊆ A such that S is generated by the morphisms

{0→ Xα}α∈A0 . Let D be the smallest full subcategory of C which contains the objects {Xα}α∈A0

and is closed under colimits and extensions. Since C≥0 is closed under colimits and extensions, we

have D ⊆ C≥0. Consequently, C≤−1 can be characterized as full subcategory of C spanned by those

objects Y ∈ C such that ExtkC(X,Y ) for all k ≤ 0 and X ∈ D. Propositions 1.4.4.11 implies that

D is the collection of nonnegative objects for some accessible t-structure on C. Since the negative

objects of this new t-structure coincide with the negative objects of the original t-structure, we

conclude that D = C≥0, which proves (1).

We conclude this section by completing the proof of Proposition 1.4.4.11.

Proof of part (2) of Proposition 1.4.4.11. Choose a regular cardinal κ such that every object of Xα

is κ-compact, and let Cκ denote the full subcategory of C spanned by the κ-compact objects. Let

C′κ = C′ ∩Cκ, and let C′′ be the smallest full subcategory of C′ which contains C′κ and is closed

under small colimits. The ∞-category C′′ is κ-accessible, and therefore presentable. To complete

the proof, we will show that C′ ⊆ C′′. For this, it will suffice to show that C′′ is stable under

extensions.

Let D be the full subcategory of Fun(∆1,C) spanned by those morphisms f : X → Y where

Y ∈ C′′, X ∈ C′′[−1]. We wish to prove that the cofiber functor cofib : D→ C factors through C′′.
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Let Dκ be the full subcategory of D spanned by those morphisms f : X → Y where both X and

Y are κ-compact objects of C. By construction, cofib |Dκ factors through C′′. Since cofib : D→ C

preserves small colimits, it will suffice to show that D is generated (under small colimits) by Dκ.

Fix an object f : X → Y in D. To complete the proof, it will suffice to show that the

canonical map (Dκ
/f ). → D is a colimit diagram. Since D is stable under colimits in Fun(∆1,C)

and colimits in Fun(∆1,C) are computed pointwise (Proposition HTT.5.1.2.2 ), it will suffice to show

that composition with the evaluation maps give colimit diagrams (Dκ
/f ). → C. Lemma HTT.5.3.5.8

implies that the maps (C′κ[−1])./X → C, (C′κ)./Y → C are colimit diagrams. It will therefore suffice

to show that the evaluation maps

(C′κ[−1])/X
θ← (Dκ

/f )
θ′→ (C′κ)/Y

are left cofinal.

We first show that θ is left cofinal. According to Theorem HTT.4.1.3.1 , it will suffice to show

that for every morphism α : X ′ → X in C′[−1], where X ′ is κ-compact, the ∞-category

Eθ : Dκ
/f ×C′κ[−1]/X

(C′κ[−1]/X)X′/

is weakly contractible. For this, it is sufficient to show that Eθ is filtered (Lemma HTT.5.3.1.20 ).

We will show that Eθ is κ-filtered. Let K be a κ-small simplicial set, and p : K → Eθ a diagram;

we will extend p to a diagram p : K. → Eθ. We can identify p with two pieces of data:

(i) A map p′ : K/ → C′κ[−1]/X .

(ii) A map p′′ : (K?{∞})×∆1 → C, with the properties that p′′|(K?{∞})×{0} can be identified

with p′, p′′|{∞} ×∆1 can be identified with f , and p′′|K × {1} factors through C′
κ
.

Let p′ : (K/). → C′κ[−1]/X be a colimit of p′. To complete the proof that Eθ is κ-filtered, it

will suffice to show that we can find a compatible extension p′′ : (K. ? {∞}) × ∆1 → C with the

appropriate properties. Let L denote the full simplicial subset of (K. ? {∞}) × ∆1 spanned by

every vertex except (v, 1), where v denotes the cone point of K.. We first choose a map q : L→ C

compatible with p′′ and p′. This is equivalent to solving the lifting problem

C/f

��
K. //

==

C/X ,

which is possible since the vertical arrow is a trivial fibration. Let L′ = L ∩ (K. × ∆1). Then q

determines a map q0 : L′ → C/Y . Finding the desired extension p′′ is equivalent to finding a map

q0 : L′. → C/Y , which carries the cone point into C′κ.
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Let g : Z → Y be a colimit of q0 (in the ∞-category C/Y ). We observe that Z is a κ-small

colimit of κ-compact objects of C, and therefore κ-compact. Since Y ∈ C′′, Y can be written as the

colimit of a κ-filtered diagram {Yα}, taking values in C′κ. Since Z is κ-compact, the map g factors

through some Yα; it follows that there exists an extension q0 as above, which carries the cone point

to Yα. This completes the proof that Eθ is κ-filtered, and also the proof that θ is left cofinal.

The proof that θ′ is left cofinal is similar but slightly easier: it suffices to show that for every

map Y ′ → Y in C′, where Y ′ is κ-compact, the fiber product

Eθ′ = Dκ
/f ×C′κ/Y

(C′κ/Y )Y ′/

is filtered. For this, we can either argue as above, or simply observe that Eθ′ admits κ-small

colimits.



Chapter 2

∞-Operads

Recall that a commutative monoid is a set M equipped with a multiplication M ×M →M and a

unit object 1 ∈M satisfying the identities

1x = x xy = yx x(yz) = (xy)z

for all x, y, z ∈ M . Roughly speaking, a symmetric monoidal category is a category C equipped

with the same type of structure: a unit object 1 ∈ C and a functor ⊗ : C×C→ C. However, in the

categorical setting, it is unnatural to require the identities displayed above to hold as equalities.

For example, we do not expect X ⊗ (Y ⊗ Z) to be equal to (X ⊗ Y )⊗ Z. Instead, these identities

should be formulated by requiring the existence of isomorphisms

αX : 1⊗X ' X βX,Y : X ⊗ Y ' Y ⊗X

γX,Y,Z : (X ⊗ Y )⊗ Z ' X ⊗ (Y ⊗ Z).

Moreover, these isomorphisms should be regarded as additional data, and are required to satisfy

further conditions (such as naturality in the objects X, Y , and Z). If we try to generalize this def-

inition to higher categories, then the equations satisfied by the isomorphisms αX , βX,Y , and γX,Y,Z
should themselves hold only up to isomorphism. It quickly becomes prohibitively complicated to ex-

plicitly specify all of the coherence conditions that these isomorphisms must satisfy. Consequently,

to develop an ∞-categorical analogue of the theory of symmetric monoidal categories, it will be

more convenient for us to proceed in another way.

We begin by considering an example of a symmetric monoidal category. Let C be the category

of complex vector spaces, with monoidal structure given by tensor products of vector spaces. Given

a pair of vector spaces U and V , the tensor product U ⊗ V is characterized by the requirement

that HomC(U ⊗ V,W ) can be identified with the set of bilinear maps U × V → W . In fact, this

property really only determines U ⊗ V up to canonical isomorphism: in order to build an actual

tensor product functor, we need to choose some particular construction of U ⊗ V . Because this
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requires making certain decisions in an ad-hoc manner, it is unrealistic to expect an equality of

vector spaces U ⊗ (V ⊗W ) = (U ⊗ V ) ⊗W . However, the existence of a canonical isomorphism

between U ⊗ (V ⊗W ) and (U ⊗ V )⊗W is easily explained: linear maps from either into a fourth

vector space X can be identified with trilinear maps U × V ×W → X.

The above example suggests that we might reformulate the definition of a symmetric monoidal

category as follows. Rather than give a bifunctor ⊗ : C×C→ C, we instead specify, for each n-tuple

(C1, . . . , Cn) of objects of C and each D ∈ C, the collection of morphisms C1 ⊗ . . . ⊗ Cn → D. Of

course, we also need to specify how such morphisms are to be composed. The relevant data can be

encoded in a new category, which we will denote by C⊗.

Construction 2.0.0.1. Let (C,⊗) be a symmetric monoidal category. We define a new category

C⊗ as follows:

(i) An object of C⊗ is a finite (possibly empty) sequence of objects of C, which we will denote

by [C1, . . . , Cn].

(ii) A morphism from [C1, . . . , Cn] to [C ′1, . . . , C
′
m] in C⊗ consists of a subset S ⊆ {1, . . . , n}, a

map of finite sets α : S → {1, . . . ,m}, and a collection of morphisms {fj :
⊗

α(i)=j Ci →
C ′j}1≤j≤m in the category C. (Here the tensor product

⊗
α(i)=j Ci is well-defined up to

canonical isomorphism, since C is a symmetric monoidal category.)

(iii) Suppose we are given morphisms f : [C1, . . . , Cn] → [C ′1, . . . , C
′
m] and g : [C ′1, . . . , C

′
m] →

[C ′′1 , . . . , C
′′
l ] in C⊗, determining subsets S ⊆ {1, . . . , n} and T ⊆ {1, . . . ,m} together with

maps α : S → {1, . . . ,m} and β : T → {1, . . . , l}. The composition g◦f is given by the subset

U = α−1T ⊆ {1, . . . , n}, the composite map β ◦ α : U → {1, . . . , l}, and the maps⊗
(β◦α)(i)=k

Ci '
⊗
β(j)=k

⊗
α(i)=j

Ci →
⊗
β(j)=k

C ′j → C ′′k

for 1 ≤ k ≤ l.

To analyze this construction, we begin by recalling the definition of Segal’s category Fin∗ of

pointed finite sets:

Notation 2.0.0.2. For any finite set I, let I∗ denote the set I q {∗} obtained from I by adjoining

a new element ∗. For each n ≥ 0, we let 〈n〉◦ denote the set {1, 2, . . . , n − 1, n} and 〈n〉 = 〈n〉◦∗ =

{∗, 1, . . . , n} the pointed set obtained by adjoining a disjoint base point ∗ to 〈n〉◦. We define a

category Fin∗ as follows:

(1) The objects of Fin∗ are the sets 〈n〉, where n ≥ 0.

(2) Given a pair of objects 〈m〉, 〈n〉 ∈ Fin∗, a morphism from 〈m〉 to 〈n〉 in Fin∗ is a map

α : 〈m〉 → 〈n〉 such that α(∗) = ∗.
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For every pair of integers 1 ≤ i ≤ n, we let ρi : 〈n〉 → 〈1〉 denote the morphism given by the

formula

ρi(j) =

{
1 if i = j

∗ otherwise.

Remark 2.0.0.3. The category Fin∗ is equivalent to the category of all finite sets equipped with

a distinguished point ∗. We will often invoke this equivalence implicitly, using the following device.

Let I be a finite linearly ordered set. Then there is a canonical bijection α : I∗ ' 〈n〉, where n is

the cardinality of I; the bijection α is determined uniquely by the requirement that the restriction

of α determines an order-preserving bijection of I with 〈n〉◦. We will generally identify I∗ with the

object 〈n〉 ∈ Fin∗ via this isomorphism.

Remark 2.0.0.4. If α : 〈n〉 → 〈m〉 is a morphism in Fin∗, it is convenient to think of α as a partially

defined map from 〈n〉◦ to 〈m〉◦: namely, α is given by specifying a subset S = α−1〈m〉◦ ⊆ 〈n〉◦

together with a map S → 〈m〉◦.

For every symmetric monoidal category C, the category C⊗ of Construction 2.0.0.1 comes

equipped with a forgetful functor C⊗ → Fin∗, which carries an object [C1, . . . , Cn] to the pointed

finite set 〈n〉.

Remark 2.0.0.5. Let C0 be the category [0], containing a unique object and a unique morphism.

Then C0 admits a unique symmetric monoidal structure. Moreover, the forgetful functor C⊗0 → Fin∗
described above is an isomorphism of categories. In other words, we may view Fin∗ as obtained

by applying Construction 2.0.0.1 in the simplest possible example. Moreover, for any symmetric

monoidal category C, the forgetful functor C⊗ → Fin∗ can be viewed as obtained from the (unique)

symmetric monoidal functor C→ C0 by means of the functoriality implicit in Construction 2.0.0.1.

For any symmetric monoidal category C, the forgetful functor C⊗ → Fin∗ enjoys two special

features:

(M1) The functor p is an op-fibration of categories. In other words, for every object C =

[C1, . . . , Cn] ∈ C⊗ and every morphism f : 〈n〉 → 〈m〉 in Fin∗, there exists a morphism

f : C → C ′ = [C ′1, . . . , C
′
m] which covers f , and is universal in the sense that composition

with f induces a bijection

HomC⊗(C ′, [C ′′1 , . . . , C
′′
` ])

��
HomC⊗(C, [C ′′1 , . . . , C

′′
` ])×HomFin∗ (〈n〉,〈l〉) HomFin∗(〈m〉, 〈`〉)

for every object [C ′′1 , . . . , C
′′
` ] ∈ C⊗. To achieve this, it suffices to choose a morphism f which

determines isomorphisms C ′j '
⊗

f(i)=j Ci for 1 ≤ j ≤ m.
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Remark 2.0.0.6. It follows from Condition (M1) that every morphism α : 〈m〉 → 〈n〉 in Fin∗
induces a functor between the fibers C⊗〈m〉 → C⊗〈n〉, which is well-defined up to canonical isomorphism.

(M2) Let C⊗〈n〉 denote the fiber of p over the object 〈n〉 ∈ Fin∗. Then C⊗〈1〉 is equivalent to C. More

generally, C⊗〈n〉 is equivalent to an n-fold product of copies of C. This equivalence is induced

by the functors associated to the maps {ρi : 〈n〉 → 〈1〉}1≤i≤n in Fin∗.

We now observe that the symmetric monoidal structure on a category C is determined, up to

symmetric monoidal equivalence, by the category C⊗ together with its forgetful functor C⊗ → Fin∗.

More precisely, suppose we are given a functor p : D→ Fin∗ satisfying conditions (M1) and (M2),

and let C denote the fiber D〈1〉. Then:

(a) Condition (M2) implies that D〈0〉 has a single object, up to equivalence. The unique morphism

〈0〉 → 〈1〉 in Fin∗ determines a functor D〈0〉 → D〈1〉 = C, which we can identify with an object

1 ∈ C.

(b) Let α : 〈2〉 → 〈1〉 be the morphism given by

α(1) = α(2) = 1 α(∗) = ∗.

By virtue of (M1), the functors α, ρ1, and ρ2 determine functors

C×C = D〈1〉×D〈1〉
ρ1×ρ2

←− D〈2〉
α→ D〈1〉 = C .

Condition (M2) guarantees that the map on the left is an equivalence of categories, so that

we obtain a functor C×C → C (well-defined up to canonical isomorphism), which we will

denote by ⊗.

(c) Let σ : 〈2〉 → 〈2〉 denote the automorphism which exchanges the elements 1, 2 ∈ 〈2〉. Then

α ◦ σ = α, while ρi ◦ σ = ρσ(i). It follows that there is a canonical isomorphism between the

functors (X,Y ) 7→ X ⊗ Y and (X,Y ) 7→ Y ⊗X.

(d) For 1 ≤ i < n, let τni : 〈n〉 → 〈n− 1〉 denote the map given by the formula

τni (j) =


j if 1 ≤ j ≤ i
j − 1 if i < j ≤ n
∗ if j = ∗.

The commutative diagram

〈3〉
τ3
1 //

τ3
2
��

〈2〉

τ2
1
��

〈2〉
τ2
1 // 〈1〉
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in Fin∗ determines a diagram of categories and functors (which commutes up to canonical

isomorphism):

D〈3〉 //

��

D〈2〉

��
D〈2〉 // D〈1〉 .

Combining this with the equivalences D〈n〉 ' Cn, we obtain a functorial isomorphism

γA,B,C : (A⊗B)⊗ C ' A⊗ (B ⊗ C).

A similar argument can be used to construct canonical isomorphisms

1⊗X ' X ' X ⊗ 1.

It is not difficult to see that (a), (b), (c), and (d) endow C with the structure of a monoidal

category. For example, MacLane’s pentagon axiom asserts that the diagram

((A⊗B)⊗ C)⊗D

ηA,B,C⊗idDtt

ηA⊗B,C,D

**
(A⊗ (B ⊗ C))⊗D

ηA,B⊗C,D
��

(A⊗B)⊗ (C ⊗D)

ηA,B,C⊗D
��

A⊗ ((B ⊗ C)⊗D)
idA⊗ηB,C,D // A⊗ (B ⊗ (C ⊗D))

is commutative. This follows from the fact that all five expressions can be canonically identified

with the image of (A,B,C,D) under the composite functor C4 ' D〈4〉 → D〈1〉 ' C, where the

middle map is induced by a map α : 〈4〉 → 〈1〉 in Fin∗, characterized by the requirement that

α−1{1} = 〈4〉◦. In the case where D = C⊗ is given by Construction 2.0.0.1, it is easy to see that

the data provided by (a) through (d) recovers the original symmetric monoidal structure on C (up

to canonical isomorphism). Conversely, an arbitrary functor D→ Fin∗ satisfying (M1) and (M2)

determines a symmetric monoidal structure on C = D〈1〉 and an equivalence D ' C⊗. In other

words, giving a symmetric monoidal category is equivalent to giving a functor C⊗ → Fin∗ satisfying

(M1) and (M2). However, the second definition enjoys several advantages:

• As we saw above in the case of vector spaces, it is sometimes easier to specify the category

C⊗ than to specify the bifunctor ⊗, in the sense that it requires fewer arbitrary choices.

• Axioms (M1) and (M2) concerning the functor C⊗ → Fin∗ are a bit simpler than the usual

definition of a (symmetric) monoidal category. Complicated assertions, such as the commu-

tativity of MacLane’s pentagon, are consequences of (M1) and (M2).
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The significance of the latter point becomes more apparent in the ∞-categorical setting, where

we expect the MacLane pentagon to be only the first step in a hierarchy of coherence conditions

of ever-increasing complexity. Fortunately, the above discussion suggests an approach which does

not require us to formulate these conditions explicitly:

Definition 2.0.0.7. A symmetric monoidal ∞-category is a coCartesian fibration of simplicial sets

p : C⊗ → N(Fin∗) with the following property:

(∗) For each n ≥ 0, the maps {ρi : 〈n〉 → 〈1〉}1≤i≤n induce functors ρi! : C⊗〈n〉 → C⊗〈1〉 which

determine an equivalence C⊗〈n〉 ' (C⊗〈1〉)
n.

One of our main goals in this book is to show that Definition 2.0.0.7 is reasonable: that is, it

provides a robust generalization of the classical theory of symmetric monoidal categories. Moreover,

by relaxing the assumption that p is a coCartesian fibration in Definition 2.0.0.7, one obtains a

more general theory of ∞-operads (see Definition 2.1.1.10), which generalizes the classical theory

of colored operads (or multicategories, as some authors refer to them).

Our objective in this chapter is to lay down the foundations for the study of ∞-operads. We

begin in §2.1 by introducing the basic definitions. Roughly speaking, we can think of an ∞-operad

O⊗ as consisting of an underlying ∞-category O, together with mapping spaces MulO({Xi}i∈I , Y )

(for any finite set of objects {Xi ∈ O}i∈I and any object Y ∈ O) equipped with a coherently

associative composition law (see Remark 2.1.1.17), which reduce to the usual mapping spaces in O

when I has a single element. An ∞-operad can be regarded as a kind of generalized ∞-category:

we recover the usual theory of∞-categories if we require that MulO({Xi}i∈I , Y ) be empty when I is

of cardinality 6= 1 (see Proposition 2.1.4.11). Many ∞-categorical constructions can be generalized

to the setting of ∞-operads: we will study a number of examples in §2.2.

In practice, it is quite common to encounter a family of symmetric monoidal ∞-categories

which depend on some parameter. For example, to every commutative ring A we can associate

the symmetric monoidal category of A-modules, which depends functorially on A. In §2.3 we will

axiomatize this phenomenon by introducing the definition of a generalized ∞-operad. This notion

will be useful when we discuss ∞-categories of modules in §3.3 and when we consider variants on

the little cubes operads of Boardman-Vogt in §5.4.

One can obtain a rich source of examples of symmetric monoidal ∞-categories by purely cate-

gorical considerations: if C is an∞-category which admits finite products (coproducts), then C can

be promoted to a symmetric monoidal ∞-category C× ( Cq) in which the tensor product operation

is given by the Cartesian product (coproduct). We will close this chapter with a detailed discussion

of these examples (§2.4).

Remark 2.0.0.8. An alternate approach to the theory of∞-operads has been proposed by Cisinski

and Moerdijk, based on the formalism of dendroidal sets (see [31] and [32]). It seems overwhelmingly

likely that their theory is equivalent to the one presented in this chapter. More precisely, there
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should be a Quillen equivalence between the category of dendroidal sets and the category POp∞
of ∞-preoperads which we describe in §2.4.

Nevertheless, the two perspectives differ somewhat at the level of technical detail. Our approach

has the advantage of being phrased entirely in the language of simplicial sets, which allows us

to draw heavily upon the preexisting theory of ∞-categories (as described in [98]) and to avoid

direct contact with the combinatorics of trees (which play an essential role in the definition of a

dendroidal set). However, the advantage comes at a cost: though our ∞-operads can be described

using the relatively pedestrian language of simplicial sets, the actual simplicial sets which we need

are somewhat unwieldy and tend to encode information in a inefficient way. Consequently, some of

the proofs presented here are perhaps more difficult than they need to be: for example, we suspect

that Theorems 3.1.2.3 and 3.4.4.3 admit much shorter proofs in the dendroidal setting.

2.1 Foundations

Our goal in this section is to introduce an ∞-categorical version of the classical theory of operads.

We begin in §2.1.1 by reviewing the classical definition of a colored operad. The structure of an

arbitrary colored operad O is completely encoded by a category which we will denote by O⊗ (defined

by a generalization of Construction 2.0.0.1), together with a forgetful functor from O⊗ to Segal’s

category Fin∗. Motivated by this observation, we will define an ∞-operad to be an ∞-category O⊗

equipped with a map O⊗ → N(Fin∗), satisfying an appropriate set of axioms (Definition 2.1.1.10).

To any ∞-operad O⊗, one can associate a theory of O-monoidal ∞-categories: namely, one

considers coCartesian fibrations C⊗ → O⊗ satisfying an appropriate analogue of condition (∗)
appearing in Definition 2.0.0.7. The relevant definitions will be given in §2.1.2. An important

special case is obtained when we take O⊗ to be the commutative∞-operad: in this case, we recover

the notion of symmetric monoidal ∞-category given in Definition 2.0.0.7. If C⊗ is a symmetric

monoidal ∞-category, then there is an associated theory of commutative algebra objects of C⊗:

these can be defined as sections of the fibration C⊗ → N(Fin∗) which satisfy a mild additional

condition. More generally, to any fibration of ∞-operads C⊗ → O⊗, we can associate an ∞-

category Alg/O(C) of O-algebras in C. We will give some basic definitions in §2.1.3, and undertake

a much more comprehensive study in §3.

The collection of all∞-operads can be organized into an∞-category, where we take morphisms

from an ∞-operad O⊗ to another ∞-operad O′⊗ to be given by O-algebra objects of O′. We will

denote this ∞-category by Op∞ and refer to it as the ∞-category of ∞-operads. In §2.1.4 we will

illuminate the structure of Op∞ by showing that it can be realized as the underlying∞-category of

a combinatorial simplicial model category. The construction of this model category uses a general

existence result which we discuss in §B.4.
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2.1.1 From Colored Operads to ∞-Operads

Our goal in this section is to introduce the definition of an ∞-operad (Definition 2.1.1.10), which

will play a fundamental role throughout this book. We begin with a review of the classical theory

of colored operads.

Definition 2.1.1.1. A colored operad O consists of the following data:

(1) A collection {X,Y, Z, . . .} which we will refer to as the collection of objects or colors of O. We

will indicate that X is an object of O by writing X ∈ O.

(2) For every finite set I, every I-indexed collection of objects {Xi}i∈I in O, and every object

Y ∈ O, a set MulO({Xi}i∈I , Y ), which we call the set of morphisms from {Xi}i∈I to Y .

(3) For every map of finite sets I → J having fibers {Ij}j∈J , every finite collection of objects

{Xi}i∈I , every finite collection of objects {Yj}j∈J , and every object Z ∈ O, a composition

map ∏
j∈J

MulO({Xi}i∈Ij , Yj)×MulO({Yj}j∈J , Z)→ MulO({Xi}i∈I , Z).

(4) A collection of morphisms {idX ∈ MulO({X}, X)}X∈O which are both left and right units for

the composition on O in the following sense: for every finite collection of objects {Xi}i∈I and

every objects Y ∈ O, the compositions

MulO({Xi}i∈I , Y ) ' MulO({Xi}i∈I , Y )× {idY }
⊆ MulO({Xi}i∈I , Y )×MulO({Y }, Y )

→ MulO({Xi}i∈I , Y )

MulO({Xi}i∈I , Y ) ' (
∏
i∈I
{idXi})×MulO({Xi}i∈I , Y )

⊆ (
∏
i∈I

MulO({Xi}, Xi))×MulO({Xi}i∈I , Y )

→ MulO({Xi}i∈I , Y )

both coincide with the identity map from MulO({Xi}i∈I , Y ) to itself.

(5) Composition is required to be associative in the following sense: for every sequence of maps

I → J → K of finite sets together with collections of objects {Wi}i∈I , {Xj}j∈J , {Yk}k∈K ,
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and every object Z ∈ O, the diagram∏
j∈J MulO({Wi}i∈Ij , Xj)×

∏
k∈K MulO({Xj}j∈Jk , Yk)×MulO({Yk}k∈K , Z)

uu ))∏
k∈K MulO({Wi}i∈Ik , Yk)×MulO({Yk}k∈K , Z)

))

∏
j∈J MulO({Wi}i∈Ij , Xj)×MulO({Xj}j∈J , Z)

uu
MulO({Wi}i∈I , Z)

is commutative.

Remark 2.1.1.2. Every colored operad O has an underlying category (which we will also denote by

O) whose objects are the colors of O and whose morphisms are defined by the formula HomO(X,Y ) =

MulO({X}, Y ). Consequently, we can view a colored operad as a category with some additional

structure: namely, the collections of “multilinear” maps MulO({Xi}i∈I , Y ). Some authors choose

to emphasize this analogy by using the term multicategory for what we refer to here as a colored

operad.

Variant 2.1.1.3. We obtain a notion of a simplicial colored operad by replacing the morphism sets

MulO({Xi}i∈I , Y )

by simplicial sets in Definition 2.1.1.1.

Remark 2.1.1.4. Remark 2.1.1.2 describes a forgetful functor from the category COp of (small)

colored operads to the category Cat of (small) categories. This functor has a left adjoint: every

category C can be regarded as a colored operad by defining

MulC({Xi}1≤i≤n, Y ) =

{
Hom(X1, Y ) if n = 1

∅ otherwise.

This construction exhibits Cat as a full subcategory of COp: namely, the full subcategory spanned

by those colored operads O for which the sets MulO({Xi}i∈I , Y ) are empty unless I has exactly one

element.

Example 2.1.1.5. Let C be a symmetric monoidal category: that is, a category equipped with

a tensor product functor ⊗ : C×C → C which is commutative and associative up to coherent

isomorphism (see [100] for a careful definition). Then we can regard C as a colored operad by

setting

MulC({Xi}i∈I , Y ) = HomC(⊗i∈IXi, Y ).

We can recover the symmetric monoidal structure on C (up to canonical isomorphism) via Yoneda’s

lemma. For example, for every pair of objects X,Y ∈ C, the tensor product X ⊗Y is characterized
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up to canonical isomorphism by the fact that it corepresents the functor Z 7→ MulC({X,Y }, Z).

It follows from this analysis that we can regard the notion of a symmetric monoidal category as a

special case of the notion of a colored operad.

Example 2.1.1.6. An operad is a colored operad O having only a single color 1. For every

nonnegative integer n we let On = Mul({1}1≤i≤n,1). We sometimes refer to On as the set of n-ary

operations of O. The structure of O as a colored operad is determined by the sets {On}n≥0 together

with the actions of the symmetric groups Σn on On and the “substitution maps”

Om×(
∏

1≤i≤m
Oni)→ On1+···+nm .

Definition 2.1.1.1 is phrased in a somewhat complicated way because the notion of morphism

in a colored operad O is asymmetrical: the domain of a morphism consists of a finite collection

of object, while the codomain consists of only a single object. We can correct this asymetry by

packaging the data of a colored operad in a different way.

Construction 2.1.1.7. Let O be a colored operad. We define a category O⊗ as follows:

(1) The objects of O⊗ are finite sequences of colors X1, . . . , Xn ∈ O.

(2) Given two sequences of objects

X1, . . . , Xm ∈ O Y1, . . . , Yn ∈ O,

a morphism from {Xi}1≤i≤m to {Yj}1≤j≤n is given by a map α : 〈m〉 → 〈n〉 in Fin∗ together

with a collection of morphisms

{φj ∈ MulO({Xi}i∈α−1{j}, Yj)}1≤j≤n

in O.

(3) Composition of morphisms in O⊗ is determined by the composition laws on Fin∗ and on the

colored operad O.

Let O be a colored operad. By construction, the category O⊗ comes equipped with a forgetful

functor π : O⊗ → Fin∗. Using the functor π, we can reconstruct the colored operad O up to

canonical equivalence. For example, the underlying category of O can be identified with the fiber

O⊗〈1〉 = π−1{〈1〉}. More generally, suppose that n ≥ 0. For 1 ≤ i ≤ n, let ρi : 〈n〉 → 〈1〉 be as

in Notation 2.0.0.2, so that ρi induces a functor ρi! : O⊗〈n〉 → O⊗〈1〉 ' O and these functors together

determine an equivalence of categories O⊗〈n〉 ' On. Given a finite sequence of colors X1, . . . , Xn ∈ O,

let ~X denote the corresponding object of O⊗〈n〉 (which is well-defined up to equivalence). For every

color Y ∈ O, the set MulO({Xi}1≤i≤n, Y ) can be identified with the set of morphisms f : ~X → Y
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in O⊗ such that π(f) : 〈n〉 → 〈1〉 satisfies π(f)−1{∗} = {∗}. This shows that π : O⊗ → Fin∗
determines the morphism sets MulO({Xi}1≤i≤n, Y ) in the colored operad O; a more elaborate

argument shows that the composition law for morphisms in the colored operad O can be recovered

from the composition law for morphisms in the category O⊗.

The above construction suggests that it is possible to give an alternate version of Definition

2.1.1.1: rather than thinking of a colored operad as a category-like structure O equipped with an

elaborate notion of morphism, we can think of a colored operad as an ordinary category O⊗ equipped

with a forgetful functor π : O⊗ → Fin∗. Of course, we do not want to consider an arbitrary functor

π: we only want to consider those functors which induce equivalences O⊗〈n〉 ' (O⊗〈1〉)
n, so that the

category O = O⊗〈1〉 inherits the structure described in Definition 2.1.1.1. This is one drawback of

the second approach: it requires us to formulate a somewhat complicated-looking assumption on

the functor π. The virtue of the second approach is that it can be phrased entirely in the language

of category theory. This allows us to generalize the theory of colored operads to the ∞-categorical

setting. First, we need to introduce a bit of terminology.

Definition 2.1.1.8. We will say that a morphism f : 〈m〉 → 〈n〉 in Fin∗ is inert if, for each element

i ∈ 〈n〉◦, the inverse image f−1{i} has exactly one element.

Remark 2.1.1.9. Every inert morphism f : 〈m〉 → 〈n〉 in Fin∗ induces an injective map of sets

α : 〈n〉◦ → 〈m〉◦, characterized by the formula f−1{i} = {α(i)}.

Definition 2.1.1.10. An ∞-operad is a functor p : O⊗ → N(Fin∗) between ∞-categories which

satisfies the following conditions:

(1) For every inert morphism f : 〈m〉 → 〈n〉 in N(Fin∗) and every object C ∈ O⊗〈m〉, there exists

a p-coCartesian morphism f : C → C ′ in O⊗ lifting f . In particular, f induces a functor

f! : O⊗〈m〉 → O⊗〈n〉.

(2) Let C ∈ O⊗〈m〉 and C ′ ∈ O⊗〈n〉 be objects, let f : 〈m〉 → 〈n〉 be a morphism in Fin∗, and

let Mapf
O⊗

(C,C ′) be the union of those connected components of MapO⊗(C,C ′) which lie

over f ∈ HomFin∗(〈m〉, 〈n〉). Choose p-coCartesian morphisms C ′ → C ′i lying over the inert

morphisms ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n. Then the induced map

Mapf
O⊗

(C,C ′)→
∏

1≤i≤n
Mapρ

i◦f
O⊗

(C,C ′i)

is a homotopy equivalence.

(3) For every finite collection of objects C1, . . . , Cn ∈ O⊗〈1〉, there exists an object C ∈ O⊗〈n〉 and a

collection of p-coCartesian morphisms C → Ci covering ρi : 〈n〉 → 〈1〉.
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Remark 2.1.1.11. Definition 2.1.1.10 is really an ∞-categorical generalization of the notion of a

colored operad, rather than that of an operad. Our choice of terminology is motivated by a desire

to avoid awkward language. To obtain an ∞-categorical analogue of the notion of an operad, we

should consider instead ∞-operads O⊗ → N(Fin∗) equipped with an essentially surjective functor

∆0 → O⊗〈1〉.

Remark 2.1.1.12. Let p : O⊗ → N(Fin∗) be an ∞-operad. We will often abuse terminology by

referring to O⊗ as an ∞-operad (in this case, it is implicitly assumed that we are supplied with

a map p satisfying the conditions listed in Definition 2.1.1.10). We will usually denote the fiber

O⊗〈1〉 ' p
−1{〈1〉} by O. We will sometimes refer to O as the underlying ∞-category of O⊗.

Remark 2.1.1.13. Let p : O⊗ → N(Fin∗) be an ∞-operad. Then p is a categorical fibration. To

prove this, we first observe that p is an inner fibration (this follows from Proposition HTT.2.3.1.5

since O⊗ is an ∞-category and N(Fin∗) is the nerve of an ordinary category). In view of Corollary

HTT.2.4.6.5 , it will suffice to show that if C ∈ O⊗〈m〉 and α : 〈m〉 → 〈n〉 is an isomorphism in Fin∗,

then we can lift α to an equivalence α : C → C ′ in O⊗. Since α is inert, we can choose α to be

p-coCartesian; it then follows from Proposition HTT.2.4.1.5 that α is an equivalence.

Remark 2.1.1.14. Let p : O⊗ → N(Fin∗) be a functor between ∞-categories which satisfies

conditions (1) and (2) of Definition 2.1.1.10. Then (3) is equivalent to the following apparently

stronger condition:

(3′) For each n ≥ 0, the functors {ρi! : O⊗〈n〉 → O}1≤i≤n determine an equivalence of ∞-categories

φ : O⊗〈n〉 → On .

It follows easily from (2) that φ is fully faithful, and condition (3) guarantees that φ is essentially

surjective.

Remark 2.1.1.15. Let p : O⊗ → N(Fin∗) be an ∞-operad and O = O⊗〈1〉 the underlying ∞-

category. It follows from Remark 2.1.1.14 that we have a canonical equivalence O⊗〈n〉 ' On. Using

this equivalence, we can identify objects of O⊗〈n〉 with finite sequences (X1, X2, . . . , Xn) of objects of

O. We will sometimes denote the corresponding object of O⊗ by X1⊕X2⊕ · · · ⊕Xn (this object is

well-defined up to equivalence). More generally, given objectsX ∈ O⊗〈m〉 and Y ∈ O⊗〈n〉 corresponding

to sequences (X1, . . . , Xm) and (Y1, . . . , Yn), we let X⊕Y denote an object of O⊗〈m+n〉 corresponding

to the sequence (X1, . . . , Xm, Y1, . . . , Yn). We will discuss the operation ⊕ more systematically in

§2.2.4.

Notation 2.1.1.16. Let O⊗ be an∞-operad, and suppose we are given a finite sequence of objects

{Xi}1≤i≤n of O and another object Y ∈ O. We let MulO({Xi}1≤i≤n, Y ) denote the union of those

components of MapO⊗(X1 ⊕ . . . ⊕Xn, Y ) which lie over the unique morphism β : 〈n〉 → 〈1〉 such

that β−1{∗} = {∗}. We regard MulO({Xi}1≤i≤n, Y ) as an object in the homotopy category H of

spaces, which is well-defined up to canonical isomorphism.
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Remark 2.1.1.17. Let O⊗ be an ∞-operad. Then we should imagine that O⊗ consists of an

ordinary∞-category O which comes equipped with a more elaborate notion of morphism supplied by

the spaces MulO(•, •) of Notation 2.1.1.16. These morphism spaces are equipped with a composition

law satisfying the axiomatics of Definition 2.1.1.1 up to coherent homotopy. A precise formulation

of this idea is cumbersome, and Definition 2.1.1.10 provides an efficient substitute.

Example 2.1.1.18. The identity map exhibits Comm⊗ = N(Fin∗) as an ∞-operad, whose under-

lying ∞-category Comm is isomorphic to ∆0. We will refer to this ∞-operad as the commutative

∞-operad. When we wish to emphasize its role as an ∞-operad, we will sometimes denote it by

Comm⊗.

Example 2.1.1.19. Let Fininj
∗ denote the subcategory of Fin∗ spanned by all objects together with

those morphisms f : 〈m〉 → 〈n〉 such that f−1{i} has at most one element for 1 ≤ i ≤ n. The nerve

N(Fininj
∗ ) is an ∞-operad, which we will denote by E⊗0 .

Example 2.1.1.20. Let Triv be the subcategory of Fin∗ whose objects are the objects of Fin∗,

and whose morphisms are the inert morphisms in Fin∗. Let Triv⊗ = N(Triv). Then the inclusion

Triv ⊆ Fin∗ induces a functor Triv⊗ → N(Fin∗) which exhibits Triv⊗ as an ∞-operad; we will

refer to Triv⊗ as the trivial ∞-operad.

Example 2.1.1.21. Let O be a colored operad in the sense of Definition 2.1.1.1, and let O⊗ be the

ordinary category given by Construction 2.1.1.7. Then the forgetful functor N(O⊗)→ N(Fin∗) is an

∞-operad. Examples 2.1.1.18, 2.1.1.19, and 2.1.1.20 all arise as special cases of this construction.

Notation 2.1.1.22. Example 2.1.1.21 admits a generalization to simplicial colored operads. If O

is a simplicial colored operad (see Variation 2.1.1.3 on Definition 2.1.1.1), we let O⊗ denote the

simplicial category given by Construction 2.1.1.7:

(i) The objects of O⊗ are pairs (〈n〉, (C1, . . . , Cn)), where 〈n〉 ∈ Fin∗ and C1, . . . , Cn are colors

of O.

(ii) Given a pair of objects C = (〈m〉, (C1, . . . , Cm)) to C ′ = (〈n〉, (C ′1, . . . , C ′n)) in O⊗, the

simplicial set MapO⊗(C,C ′) is defined to be∐
α:〈m〉→〈n〉

∏
1≤j≤n

MulO({Ci}α(i)=j , C
′
j).

(iii) Composition in O⊗ is defined in the obvious way.

Definition 2.1.1.23. Let O be a simplicial colored operad. We will denote the simplicial nerve of

the category O⊗ by N⊗(O); we will refer to N⊗(O) as the operadic nerve of O.
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Remark 2.1.1.24. Let O be a simplicial colored operad. Then there is an evident forgetful functor

from O⊗ to the ordinary category Fin∗ (regarded as a simplicial category). This forgetful functor

induces a canonical map N⊗(O) → N(Fin∗). We may therefore regard N⊗ as a functor from the

category MCat∆ of simplicial colored operads to the category (Set∆)/N(Fin∗).

Remark 2.1.1.25. Let O be a simplicial colored operad. The fiber product N⊗(O)×N(Fin∗) {〈1〉}
is canonically isomorphic to the nerve of the simplicial category underlying O; we will denote this

simplicial set by N(O).

Definition 2.1.1.26. We will say that a simplicial colored operad O is fibrant if each of the

simplicial sets MulO({Xi}i∈I , Y ) is fibrant.

Proposition 2.1.1.27. Let O be a fibrant simplicial colored operad. Then the operadic nerve N⊗(O)

is an ∞-operad.

Proof. If O is a fibrant simplicial colored operad, then O⊗ is a fibrant simplicial category so

that N⊗(O) is an ∞-category. Let C = (〈m〉, (C1, . . . , Cm)) be an object of N⊗(C) and let

α : 〈m〉 → 〈n〉 be an inert morphism in Fin∗. Then we have a canonical map C → C ′ =

(〈n〉, (Cα−1(1), . . . , Cα−1(n))) in O⊗, which we can identify with an edge α of N⊗(O) lying over α.

Using Proposition HTT.2.4.1.10 , we deduce that α is p-coCartesian, where p : N⊗(O)→ N(Fin∗).

As a special case, we observe that there are p-coCartesian morphisms αi,〈m〉
◦

: C → (〈1〉, Ci)
covering ρi : C → Ci for 1 ≤ i ≤ m. To prove that N⊗(O) is an∞-operad, we must show that these

maps determine a p-limit diagram 〈m〉◦/ → N⊗(O). Unwinding the definitions, we must show that

for every object D = (〈n〉, (D1, . . . , Dn)) and every morphism β : 〈n〉 → 〈m〉, the canonical map

Mapβ
O⊗

(D,C)→
∏

1≤i≤m
Mapρ

i◦β
O⊗

(D, (〈1〉, Ci))

is a homotopy equivalence; here Mapβ
O⊗

(D,C) denotes the inverse image of {β} in MapO⊗(D,C)

and Mapρ
i◦β

O⊗
(D, (〈1〉, Ci)) the inverse image of {ρi ◦ β} in MapO⊗(D, (〈1〉, Ci)). We now observe

that this map is an isomorphism of simplicial sets.

To complete the proof that N⊗(O) is an ∞-operad, it suffices to show that for each m ≥ 0 the

functors ρi! associated to p induces an essentially surjective map

N⊗(O)×N(Fin∗) {〈m〉} →
∏

1≤i≤m
N(O).

In fact, N⊗(O)×N(Fin∗){〈m〉} is canonically isomorphic with N(O)m and this isomorphism identifies

the above map with the identity.
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2.1.2 Maps of ∞-Operads

In order to make effective use of the theory of ∞-operads, we must understand them not only in

isolation but also in relation to one another. To this end, we will introduce the notion of ∞-operad

fibration (Definition 2.1.2.10). We begin with the more general notion of an ∞-operad map, which

we will study in more detail in §2.1.3.

We begin with a brief digression on the structure of morphisms in an ∞-operad. According

to Definition 2.1.1.8, a morphism γ : 〈m〉 → 〈n〉 in Fin∗ is inert if exhibits 〈n〉 as the quotient of

〈m〉 obtained by identifying a subset of 〈m〉◦ with the base point ∗. In this case, γ−1 determines

an injective map from 〈n〉◦ to 〈m〉◦. By design, for any ∞-operad O⊗, the morphism γ induces

a functor γ! : O⊗〈m〉 → O⊗〈n〉. This functor can be identified with the projection map Om → On

determined by γ−1. Our choice of terminology is intended to emphasize the role of γ! as a forgetful

functor, which is not really encoding the essential structure of O⊗. We now introduce a class of

morphisms which lies at the other extreme:

Definition 2.1.2.1. A morphism f : 〈m〉 → 〈n〉 in Fin∗ is active if f−1{∗} = {∗}.

Remark 2.1.2.2. Every morphism f in Fin∗ admits a factorization f = f ′ ◦ f ′′, where f ′′ is inert

and f ′ is active; moreover, this factorization is unique up to (unique) isomorphism. In other words,

the collections of inert and active morphisms determine a factorization system on Fin∗.

The classes of active and inert morphisms determine a factorization system on the category

Fin∗ which induces an analogous factorization system on any ∞-operad O⊗.

Definition 2.1.2.3. Let p : O⊗ → N(Fin∗) be an ∞-operad. We will say that a morphism f in

O⊗ is inert if p(f) is inert and f is p-coCartesian. We will say that a morphism f in O⊗ is active

if p(f) is active.

Proposition 2.1.2.4. Let O⊗ be an ∞-operad. Then the collections of active and inert morphisms

determine a factorization system on O⊗.

Proposition 2.1.2.4 is an immediate consequence of Remark 2.1.2.2 together with the following

general assertion:

Proposition 2.1.2.5. Let p : C→ D be an inner fibration of ∞-categories. Suppose that D admits

a factorization system (SL, SR) satisfying the following condition:

(∗) For every object C ∈ C and every morphism α : p(C) → D in D which belongs to SL, there

exists a p-coCartesian morphism α : C → D lifting α.

Let SL denote the collection of all p-coCartesian morphisms α in C such that p(α) ∈ SL, and let

SR = p−1SR. Then (SL, SR) is a factorization system on C.

Proof. We will prove that (SL, SR) satisfies conditions (1) through (3) of Definition HTT.5.2.8.8 :
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(1) The collections SL and SR are stable under retracts. This follows from the stability of SL
and SR under retracts, together with the observation that the collection of p-coCartesian

morphisms is stable under retracts.

(2) Every morphism in SL is left orthogonal to every morphism in SR. To prove this, let α :

A → B belong to SL and β : X → Y belong to SR. Let α : A → B and β : X →
Y denote the images of α and β under the functor p. We wish to prove that the space

MapCA//Y
(B,X) is contractible. Using the fact that α is p-coCartesian, we deduce that the

map MapCA//Y
(B,X)→ MapDA//Y

(B,X) is a trivial Kan fibration. The desired result now

follows from the fact that α ∈ SL is left orthogonal to β ∈ SR.

(3) Every morphism α : X → Z admits a factorization α = β ◦ γ, where γ ∈ SL and β ∈ SR. To

prove this, let α : X → Z denote the image of α under p. Using the fact that (SL, SR) is a

factorization system on D, we deduce that α fits into a commutative diagram

Y
β

��
X

γ
>>

α // Z

where γ ∈ SL and β ∈ SR. Using assumption (∗), we can lift γ to a p-coCartesian morphism

γ ∈ SR. Using the fact that γ is p-coCartesian, we can lift the above diagram to a commutative

triangle

Y
β

��
X

γ
??

α // Z

in C having the desired properties.

Remark 2.1.2.6. Let p : O⊗ → N(Fin∗) be an ∞-operad, and suppose we are given a collection

of inert morphisms {fi : X → Xi}1≤i≤m in O⊗ covering maps 〈n〉 → 〈ni〉 in Fin∗ which induce a

bijection
∐

1≤i≤m 〈ni〉
◦ → 〈n〉◦. These morphisms determine a p-limit diagram q : (〈m〉◦)/ → O⊗.

To prove this, choose inert morphisms gi,j : Xi → Xi,j covering the maps ρj : 〈ni〉 → 〈1〉 for 1 ≤
j ≤ ni. Using the fact that O⊗ is an∞-category, we obtain a diagram q : (

∐
1≤i≤m(〈ni〉◦)/)/ → O⊗.

Since the inclusion 〈m〉◦ ⊆
∐

1≤i≤m 〈ni〉
◦. is left cofinal, it will suffice to show that q is a p-limit

diagram. Using the assumption that O⊗ is an ∞-operad, we deduce that q|(
∐

1≤i≤m(〈ni〉◦)/) is

a p-right Kan extension of q|〈n〉◦. According to Lemma HTT.4.3.2.7 , it will suffice to show that

q|〈n〉◦/ is a p-limit diagram, which again follows from the assumption that O⊗ is an ∞-operad.

We are now ready to discuss a notion of map between ∞-operads.
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Definition 2.1.2.7. Let O⊗ and O′⊗ be ∞-operads. An ∞-operad map from O⊗ to O′⊗ is a map

of simplicial sets f : O⊗ → O′⊗ satisfying the following conditions:

(1) The diagram

O⊗
f //

$$

O′⊗

zz
N(Fin∗)

commutes.

(2) The functor f carries inert morphisms in O⊗ to inert morphisms in O′⊗.

We let AlgO(O′) denote the full subcategory of FunN(Fin∗)(O
⊗,O′⊗) spanned by the∞-operad maps.

Warning 2.1.2.8. The notation AlgO(O′) is somewhat abusive, since it depends on the∞-operads

O⊗ and O′⊗ (and their maps to N(Fin∗)) and not only on the underlying ∞-categories O and O′.

Remark 2.1.2.9. Let O⊗ and O′⊗ be ∞-operads, and let F : O⊗ → O′⊗ be a functor satisfying

condition (1) of Definition 2.1.2.7. Then F preserves all inert morphisms if and only if it preserves

inert morphisms in O⊗ lying over the maps ρi : 〈n〉 → 〈1〉. For suppose that X → Y is an inert

morphism in O⊗ lying over β : 〈m〉 → 〈n〉; we wish to prove that the induced map β!F (X)→ F (Y )

is an equivalence. Since O′⊗ is an ∞-operad, it suffices to show that the induced map ρi!β!F (X)→
ρi!F (Y ) is an equivalence in O′ for 1 ≤ i ≤ n. Our hypothesis allows us to identify this with the

morphism F (ρi!β!X)→ F (ρi!Y ), which is an equivalence since Y ' β!X.

Definition 2.1.2.10. We will say that a map of∞-operads q : C⊗ → O⊗ is a fibration of∞-operads

if q is a categorical fibration.

Remark 2.1.2.11. Let p : C⊗ → O⊗ be a fibration of ∞-operads, and suppose we are given

a collection of inert morphisms {fi : X → Xi}1≤i≤m in C⊗ covering maps 〈n〉 → 〈ni〉 in Fin∗
which induce a bijection

∐
1≤i≤m 〈ni〉

◦ → 〈n〉◦. Then these morphisms determine a p-limit diagram

q : 〈m〉◦/ → C⊗. This follows from Remark 2.1.2.6 and Proposition HTT.4.3.1.5 .

The following result describes an important special class of ∞-operad fibrations:

Proposition 2.1.2.12. Let O⊗ be an ∞-operad, and let p : C⊗ → O⊗ be a coCartesian fibration.

The following conditions are equivalent:

(a) The composite map q : C⊗ → O⊗ → N(Fin∗) exhibits C⊗ as an ∞-operad.

(b) For every object T ' T1⊕· · ·⊕Tn ∈ O⊗〈n〉, the inert morphisms T → Ti induce an equivalence

of ∞-categories C⊗T →
∏

1≤i≤n C
⊗
Ti

.
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Proof. Suppose that (a) is satisfied. We first claim that p preserves inert morphisms. To prove this,

choose an inert morphism f : C → C ′ in C⊗. Let g : p(C)→ X be an inert morphism in O⊗ lifting

q(f), and let g : C → X be a p-coCartesian lift of g. It follows from Proposition HTT.2.4.1.3 that

g is a q-coCartesian lift of q(f) and therefore equivalent to f . We conclude that p(f) is equivalent

to p(g) = g and is therefore inert.

The above argument guarantees that for each n ≥ 0, the maps {ρi}1≤i≤n determine a homotopy

commutative diagram

C⊗〈n〉
//

��

O⊗〈n〉

��
Cn // On

and the assumption that C⊗ and O⊗ are∞-operads guarantees that the vertical maps are categorical

equivalences. Let T be an object of O⊗〈n〉. Passing to the homotopy fibers over the vertices T and

(Ti)1≤i≤n (which are equivalent to the actual fibers by virtue of Corollary HTT.3.3.1.4 ), we deduce

that the canonical map C⊗T →
∏

1≤i≤n C
⊗
Ti

is an equivalence, which proves (b).

Now suppose that (b) is satisfied. We will prove that the functor q : C⊗ → N(Fin∗) satisfies the

conditions of Definition 2.1.1.10. To prove (1), consider an object C ∈ C⊗ and an inert morphism

α : q(C) → 〈n〉 in Fin∗. Since O⊗ → N(Fin∗) is an ∞-operad, there exists an inert morphism

α̃ : p(C) → X in O⊗ lying over α. Since p is a coCartesian fibration, we can lift α̃ to a p-

coCartesian morphism α : C → X in C⊗. Proposition HTT.2.4.1.3 implies that α is p-coCartesian,

which proves (1).

Now let C ∈ C⊗〈m〉, C
′ ∈ C⊗〈n〉, and f : 〈m〉 → 〈n〉 be as in condition (2) of Definition 2.1.1.10.

Set T = p(C), set T ′ = p(C ′), choose inert morphisms gi : T ′ → T ′i lying over ρi for 1 ≤ i ≤ n,

and choose p-coCartesian morphisms gi : C ′ → C ′i lying over gi for 1 ≤ i ≤ n. Let fi = ρi ◦ f for

1 ≤ i ≤ n. We have a homotopy coherent diagram

Mapf
C⊗

(C,C ′) //

��

∏
1≤i≤n Mapfi

C⊗
(C,C ′i)

��

Mapf
O⊗

(T, T ′) //
∏

1≤i≤n Mapfi
O⊗

(T, T ′i ).

Since O⊗ is an ∞-operad, the bottom horizontal map is a homotopy equivalence. Consequently, to

prove that the top map is a homotopy equivalence, it will suffice to show that it induces a homotopy

equivalence after passing to the homotopy fiber over any h : T → T ′ lying over f . Let D = h!C

and let Di = (gi)!D for 1 ≤ i ≤ n. Using the assumption that p is a coCartesian fibration and

Proposition HTT.2.4.4.2 , we see that the map of homotopy fibers can be identified with

MapC⊗
T ′

(D,C)→
∏

1≤i≤n
MapC⊗Ti

(Di, Ci),
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which is a homotopy equivalence by virtue of assumption (b).

We now prove (3). Fix a sequence of objects {Ci ∈ C⊗〈1〉}1≤i≤n, and set Ti = p(Ci). Since O⊗

is an ∞-operad, we can choose an object T ∈ O⊗ equipped with inert morphisms fi : T → Ti
lifting ρi for 1 ≤ i ≤ n. Invoking (b), we conclude that there exists an object C together with

p-coCartesian morphisms f i : C → Ci lifting fi. It follows from Proposition HTT.2.4.1.3 that each

f i is q-coCartesian, so that condition (3) is satisfied and the proof is complete.

Definition 2.1.2.13. Let O⊗ be an ∞-operad. We will say that a map p : C⊗ → O⊗ is a

coCartesian fibration of ∞-operads if it satisfies the hypotheses of Proposition 2.1.2.12. In this

case, we also say that p exhibits C⊗ as a O-monoidal ∞-category.

Remark 2.1.2.14. Let O⊗ be an ∞-operad and let p : C⊗ → O⊗ be a coCartesian fibration

of ∞-operads. Then p is a map of ∞-operads: this follows from the first step of the proof of

Proposition 2.1.2.12. Combining this observation with Proposition HTT.3.3.1.7 , we conclude that

p is a fibration of ∞-operads in the sense of Definition 2.1.2.10.

Remark 2.1.2.15. In the situation of Definition 2.1.2.13, we will generally denote the fiber product

C⊗×O⊗ O by C, and abuse terminology by saying that C is an O-monoidal ∞-category.

Remark 2.1.2.16. Let O⊗ be an ∞-operad and let p : C⊗ → O⊗ be a coCartesian fibration of

∞-operads. For every object X ∈ O⊗, we let C⊗X denote the inverse image of T under p. If X ∈ O,

we will also denote this ∞-category by CX . Note that if X ∈ O⊗〈n〉 corresponds to a sequence of

objects {Xi}1≤i≤n in O, then we have a canonical equivalence C⊗X '
∏

1≤i≤n CXi .

Given a morphism f ∈ MulO({Xi}1≤i≤n, Y ) in O, the coCartesian fibration p determines a

functor ∏
1≤i≤n

CXi ' C⊗X → CY

which is well-defined up to equivalence; we will sometimes denote this functor by ⊗f .

Remark 2.1.2.17. Let O⊗ be an∞-operad, and let C⊗ → O⊗ be a O-monoidal∞-category. Then

the underlying map C → O is a coCartesian fibration of ∞-categories, which is classified by a

functor χ : O → Cat∞. In other words, we can think of a O-monoidal ∞-category as assigning

to each color X ∈ O an ∞-category χ(X) of X-colored objects. We will later see that χ can be

extended to a map of∞-operads, and that this map of∞-operads determines C⊗ up to equivalence

(Example 2.4.2.4 and Proposition 2.4.2.5).

Example 2.1.2.18. A symmetric monoidal ∞-category is an ∞-category C⊗ equipped with a

coCartesian fibration of ∞-operads p : C⊗ → N(Fin∗) (Definition 2.0.0.7).

Remark 2.1.2.19. In other words, a symmetric monoidal ∞-category is a coCartesian fibration

p : C⊗ → N(Fin∗) which induces equivalences of ∞-categories C⊗〈n〉 ' Cn for each n ≥ 0, where C

denotes the ∞-category C⊗〈1〉.
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Remark 2.1.2.20. Let C⊗ → N(Fin∗) be a symmetric monoidal ∞-category. We will refer to the

fiber C⊗〈1〉 as the underlying ∞-category of C⊗; it will often be denoted by C. We will sometimes

abuse terminology by referring to C as a symmetric monoidal∞-category, or say that C⊗ determines

a symmetric monoidal structure on C.

Using the constructions of Remark 2.1.2.16, we see that the active morphisms α : 〈0〉 → 〈1〉
and β : 〈2〉 → 〈1〉 determine functors

∆0 → C C×C→ C,

which are well-defined up to a contractible space of choice. The first of these functors determines

an object of C which we will denote by 1 (or sometimes 1C if we wish to emphasize the dependence

on C) and refer to as the unit object of C.

It is not difficult to verify that the unit object 1 ∈ C and the tensor product ⊗ on C satisfy

all of the usual axioms for a symmetric monoidal category up to homotopy. In particular, these

operations endow the homotopy category hC with a symmetric monoidal structure.

Example 2.1.2.21. Let C be a symmetric monoidal category (see [100]), so that we can regard C

as a colored operad as in Example 2.1.1.5. The∞-operad N(C⊗) of Example 2.1.1.21 is a symmetric

monoidal ∞-category (whose underlying ∞-category is the nerve N(C)).

We conclude this section with a useful criterion for detecting ∞-operad fibrations:

Proposition 2.1.2.22. Let q : C⊗ → O⊗ be a map of ∞-operads which is an inner fibration. The

following conditions are equivalent:

(1) The map q is a fibration of ∞-operads.

(2) For every object C ∈ C⊗ and every inert morphism f : q(C)→ X in O⊗, there exists an inert

morphism f : C → X in C⊗ such that f = q(f).

Moreover, if these conditions are satisfied, then the inert morphisms of C⊗ are precisely the q-

coCartesian morphisms in C⊗ whose image in O⊗ is inert.

Proof. According to Corollary HTT.2.4.6.5 , condition (1) is satisfied if and only if condition (2)

is satisfied whenever f is an equivalence; this proves that (2) ⇒ (1). For the reverse implication,

suppose that q is a categorical fibration and let f : q(C) → X be as in (2). Let f0 : 〈m〉 → 〈n〉
denote the image of f in N(Fin∗), and let f

′
: C → X

′
be an inert morphism in C⊗ lifting f0. Since

f and q(f
′
) are both inert lifts of the morphism f0, we can find a 2-simplex

X ′

g

  
q(C)

q(f
′
)

<<

f // X
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in O⊗ where g is an equivalence. Since q is a categorical fibration, Corollary HTT.2.4.6.5 guarantees

that we can choose an equivalence g : X
′ → X in C⊗ lifting g. Using the fact that q is an inner

fibration, we can lift the above diagram to a 2-simplex

X
′

g

��
C

f
′

??

f // X

in C⊗. Since f is the composition of an inert morphism with an equivalence, it is an inert morphism

which lifts f , as desired. This completes the proof of the implication (1)⇒ (2); the final assertion

follows immediately from Proposition HTT.2.4.1.3 (and the assumption that q preserves inert

morphisms).

2.1.3 Algebra Objects

In this section, we will undertake a more systematic study of maps between ∞-operads. We begin

by introducing a variation on Definition 2.1.2.7.

Definition 2.1.3.1. Let p : C⊗ → O⊗ be a fibration of ∞-operads, and suppose we are given ∞-

operads α : O′⊗ → O⊗. We let AlgO′ /O(C) denote the full subcategory of FunO⊗(O′⊗,C⊗) spanned

by the maps of ∞-operads. Equivalently, AlgO′ /O(C) can be described as the fiber over the vertex

α of the categorical fibration AlgO′(C) → AlgO′(O) given by composition with p. In the special

case where O′⊗ = O⊗ and α is the identity map, we will denote the ∞-category AlgO′ /O(C) by

Alg/O(C).

In the special case where O′⊗ = O⊗ = N(Fin∗), we will denote the ∞-category AlgO′ /O(C) =

Alg/O(C) = AlgO(C) by CAlg(C). We will refer to CAlg(C) as the ∞-category of commutative

algebra objects of C.

Remark 2.1.3.2. In the situation of Definition 2.1.3.1, we will sometimes abuse terminology by

referring to AlgO′ /O(C) as the ∞-category of O′-algebra objects of C. Note that this ∞-category

is generally not equivalent to the ∞-category AlgO′(C) of Definition 2.1.2.7 (except in the special

case O⊗ = N(Fin∗)).

Example 2.1.3.3. Let C be a symmetric monoidal category, and let us regard N(C) as a symmetric

monoidal ∞-category via the construction described in Example 2.1.2.21. Then CAlg(N(C)) can

be identified with the nerve of the category of commutative algebra objects of C: that is, objects

A ∈ C equipped with a unit map 1C → A and a multiplication A⊗ A→ A which is commutative,

unital, and associative.

Remark 2.1.3.4. Let O⊗ be an ∞-operad, let C⊗ → O⊗ be a coCartesian fibration of ∞-operads,

and let K be an arbitrary simplicial set. Then the induced map

Fun(K,C⊗)×Fun(K,O⊗) O
⊗ → O⊗
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is again a coCartesian fibration of ∞-operads. For every object X ∈ O, we have a canonical

isomorphism DX ' Fun(K,CX), and the operations ⊗f of Remark 2.1.2.16 are computed pointwise.

We have a canonical isomorphism

Alg/O(D) ' Fun(K,Alg/O(C)).

Example 2.1.3.5. Let q : O⊗ → N(Fin∗) be an ∞-operad such that the image of q is contained

in Triv⊗ ⊆ N(Fin∗), and let p : C⊗ → O⊗ be a O-monoidal ∞-category. We observe that a section

A : O⊗ → C⊗ of p is a O-algebra if and only if A is a p-right Kan extension of its restriction to O ⊆
O⊗. Using Proposition HTT.4.3.2.15 , we deduce that the restriction map Alg/O(C)→ FunO(O,C)

is a trivial Kan fibration. In particular, taking O⊗ to be the trivial ∞-operad Triv⊗, we obtain a

trivial Kan fibration AlgTriv(C)→ C.

Remark 2.1.3.6. Let O⊗ be an ∞-operad. Since Triv⊗ can be identified with a simplicial subset

of N(Fin∗), an ∞-operad map p : O⊗ → Triv⊗ is unique if it exists. If this condition is satisfied,

then p is automatically a coCartesian fibration.

Now let O⊗ be a general ∞-operad. The ∞-category AlgTriv(O) can be identified with the

collection of Triv-algebras in ∞-category O⊗×N(Fin∗) Triv⊗. By virtue of Example 2.1.3.5, we

deduce that evaluation at 〈1〉 induces a trivial Kan fibration AlgTriv(O)→ O .

Suppose that p : C⊗ → N(Fin∗) and q : D⊗ → N(Fin∗) are symmetric monoidal ∞-categories.

An ∞-operad map F ∈ AlgC(D) can be thought of as a functor F : C → D which is compatible

with the symmetric monoidal structures in the lax sense that we are given maps

F (C)⊗ F (C ′)→ F (C ⊗ C ′) 1→ F (1)

which are compatible with the commutativity and associativity properties of the tensor products

on C and D. Our next definition singles out a special class of ∞-category maps for which the

morphisms above are required to be equivalences.

Definition 2.1.3.7. Let O⊗ be an∞-operad, and let p : C⊗ → O⊗ and q : D⊗ → O⊗ be coCartesian

fibrations of ∞-operads. We will say that an ∞-operad map f ∈ AlgC(D) is a O-monoidal functor

if it carries p-coCartesian morphisms to q-coCartesian morphisms. We let Fun⊗O (C,D) denote the

full subcategories FunO⊗(C⊗,D⊗) spanned by the O-monoidal functors.

In the special case where O⊗ = N(Fin∗), we will denote Fun⊗O (C,D) by Fun⊗(C,D); we will

refer to objects of Fun⊗(C,D) as symmetric monoidal functors from C⊗ to D⊗.

Remark 2.1.3.8. Let F : C⊗ → D⊗ be a O-monoidal functor between O-monoidal ∞-categories,

where O⊗ is an ∞-operad. Using Corollary HTT.2.4.4.4 , we deduce that the following conditions

are equivalent:

(1) The functor F is an equivalence.
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(2) The underlying map of ∞-categories C→ D is an equivalence.

(3) For every object X ∈ O, the induced map of fibers CX → DX is an equivalence.

The analogous statement fails if we assume only that F ∈ AlgC /O(D).

We conclude this section by considering a variant on Example 2.1.3.5, which can be used to

describe algebras over the ∞-operad E⊗0 of Example 2.1.1.19.

Proposition 2.1.3.9. Let p : O⊗ → E⊗0 be a fibration of ∞-operads, and consider the map ∆1 →
E⊗0 corresponding to the unique morphism α : 〈0〉 → 〈1〉 of Fininj

∗ ⊆ Fin∗. Then the restriction

functor

θ : Alg/E0
(O)→ FunE⊗0

(∆1,O⊗)

is a trivial Kan fibration.

Remark 2.1.3.10. Suppose that C⊗ is a symmetric monoidal ∞-category with unit object 1.

Proposition 2.1.3.9 implies that we can identify Alg/E0
(C) with the ∞-category C1/ consisting of

maps 1 → A in C. In other words, an E0-algebra object of C is an object A ∈ C equipped with a

unit map 1→ A, but no other additional structures.

Proof. Since p is a categorical fibration, the map θ is also a categorical fibration. The morphism

α determines a functor s : [1] → Fininj
∗ . Let J denote the categorical mapping cylinder of s. More

precisely, we define the category J as follows:

• An object of J is either an object 〈n〉 ∈ Fininj
∗ or an object i ∈ [1].

• Morphisms in J are described by the formulas

HomJ(〈m〉, 〈n〉) = Hom
Fininj
∗

(〈m〉, 〈n〉) HomJ(〈m〉, i) = Hom
Fininj
∗

(〈m〉, s(i))

HomJ(i, j) = Hom[1](i, j) HomJ(i, 〈m〉) = ∅.

Note that there is a canonical retraction r of N(J) onto the simplicial subset E⊗0 = N(Fininj
∗ ). We

let C denote the full subcategory of FunE⊗0
(N(J),O⊗) spanned by those functors F satisfying the

following conditions:

(a) For i ∈ [1], the morphism F (s(i))→ F (i) is an equivalence in O⊗.

(b) The restriction F |E0 belongs to Alg/E0
(C).

We observe that a functor F satisfies condition (∗) if and only if it is a left Kan extension of F |E0.

Using Proposition HTT.4.3.2.15 , we deduce that the restriction map φ : C→ AlgE0
(C) is a trivial
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Kan fibration. Let θ′ : C → FunE⊗0
(∆1,O⊗) be the map given by restriction to ∆1 ' N([1]). The

map θ can be written as a composition

Alg/E0
(O)→ C

θ′→ FunE⊗0
(∆1,O⊗),

where the first map is the section of φ given by composition with r (and therefore a categorical

equivalence). By a two-out-of-three argument, we are reduced to proving that θ′ is a categorical

equivalence.

We will show that θ′ is a trivial Kan fibration. By virtue of Proposition HTT.4.3.2.15 , it will

suffice to prove the following:

(i) A functor FunE⊗0
(N(J),O⊗) belongs to C if and only if F is a p-right Kan extension of F |∆1.

(ii) Every functor F0 ∈ FunE⊗0
(∆1,O⊗) admits a p-right Kan extension F ∈ FunE⊗0

(N(J),O⊗).

To see this, fix an object F ∈ FunE⊗0
(N(J),O⊗) and consider an object 〈n〉 ∈ Fininj

∗ . Let

I = J〈n〉/×J[1], let I0 denote the full subcategory of I obtained by omitting the map 〈n〉 → 1

corresponding to the nonsurjective map 〈n〉 → 〈1〉 in Fininj
∗ , and let I1 denote the full subcategory

of I0 obtained by omitting the unique map 〈n〉 → 0. We observe that the inclusion N(I0) ⊆ N(I) is

right cofinal and that the restriction F |N(I0) is a p-right Kan extension of F |N(I1). Using Lemma

HTT.4.3.2.7 , we deduce that F is a p-right Kan extension of F |∆1 at 〈n〉 if and only if the induced

map

N(I1)/ → N(J)
F→ O⊗

is a p-limit diagram. Combining this with the observation that I1 is a discrete category (whose

objects can be identified with the elements of 〈n〉◦), we obtain the following version of (i):

(i′) A functor F ∈ FunE⊗0
(N(J),O⊗) is a p-right Kan extension of F |∆1 if and only if, for every

nonnegative integer n, the maps F (ρi) : F (〈n〉)→ F (1) exhibit F (〈n〉) as a p-product of the

objects {F (1)}1≤i≤n.

Since O⊗ is an ∞-operad, condition (i′) is equivalent to the requirement that each of the maps

F (ρi) : F (〈n〉)→ F (1) is inert.

We now prove (i). Suppose first that F is a p-right Kan extension of F |∆1. We will show that

F ∈ C. We first show that the map F (s(i)) → F (i) is an equivalence in O⊗ for i ∈ [1]. If i = 0

this is clear (the ∞-category O⊗〈0〉 is a contractible Kan complex, so every morphism in O⊗〈0〉 is an

equivalence). If i = 1, we apply condition (i′) in the case n = 1. Using this observation, we see

that the condition of (i′) is equivalent to the requirement that the maps ρi : 〈n〉 → 〈1〉 induce inert

morphisms F (〈n〉) → F (〈1〉) for 1 ≤ i ≤ n, so that F |E⊗0 ∈ AlgE0
(O). This proves that F ∈ C as

desired.
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Conversely, suppose that F ∈ C. If 1 ≤ i ≤ n, then the map F (ρi) : F (〈n〉)→ F (1) factors as a

composition

F (〈n〉)→ F (〈1〉)→ F (1).

The first map is inert by virtue of our assumption that F |E⊗0 ∈ Alg/E0
(O), and the second map is

an equivalence since F satisfies condition (a). It follows that F satisfies the hypothesis of (i′) and

is therefore a p-right Kan extension of F |∆1. This completes the proof of (i).

The proof of (ii) is similar: using Lemma HTT.4.3.2.7 , we can reduce to showing that for each

n ≥ 0 the composite map

N(I1)→ {1} ⊆ ∆1 F0→ O⊗

can be extended to a p-limit diagram (lying over the canonical map N(I1)/ → N(J) → E⊗0 ). The

existence of such a diagram follows immediately from Proposition 2.1.2.12.

2.1.4 ∞-Preoperads

The collection of all ∞-operads can be organized into a simplicial category Op∆
∞, which we define

as follows:

• The objects of Op∆
∞ are (small) ∞-operads O⊗ → N(Fin∗).

• For every pair of ∞-operads O⊗,O′⊗ ∈ Op∆
∞, we define MapOp∆

∞
(O⊗,O′⊗) to be the Kan

complex AlgO(O′)' of ∞-operad maps from O⊗ to O′⊗.

Definition 2.1.4.1. We define Op∞ to be the nerve of the simplicial category Op∆
∞. We will refer

to Op∞ as the ∞-category of ∞-operads.

Because the mapping spaces in Op∆
∞ are Kan complexes, the simplicial set Op∞ is an∞-category

(Proposition HTT.1.1.5.10 ). Our goal in this section is to study the ∞-category Op∞. We will

show that Op∞ is a presentable ∞-category: in particular, it admits small limits and colimits. To

prove this, we will exhibit Op∞ as the underlying ∞-category of a combinatorial simplicial model

category POp∞, which we call the category of ∞-preoperads.

Recall that a marked simplicial set is a pair (X,M), where X is a simplicial set and M is a

collection of edges of X, which contains all degenerate edges (see §HTT.3.1 ). If X is a simplicial

set, we let X] denote the marked simplicial set (X,M) where M consists of all edges of X, and X[

the marked simplicial set (X,M) where M consists of all the degenerate edges of X. The category

of marked simplicial sets will be denoted by Set+
∆.

Definition 2.1.4.2. An ∞-preoperad is a marked simplicial set (X,M) equipped with a map of

simplicial sets f : X → N(Fin∗) with the following property: for each edge e of X which belongs

to M , the image f(e) is an inert morphism in Fin∗.
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A morphism from an ∞-preoperad (X,M) to an ∞-preoperad (Y,N) is a map of marked

simplicial sets (X,M)→ (Y,N) such that the diagram

X //

##

Y

{{
N(Fin∗)

commutes. The collection of∞-preoperads (and∞-preoperad morphisms) forms a category, which

we will denote by POp∞.

Remark 2.1.4.3. The category POp∞ can be identified with the overcategory Set+
/(N(Fin∗),M),

where M is the collection of all inert morphisms in N(Fin∗).

Remark 2.1.4.4. The category POp∞ of ∞-preoperads is naturally tensored over simplicial sets:

if X is an ∞-preoperad and K is a simplicial set, we let X ⊗ K = X × K]. This construction

endows POp∞ with the structure of a simplicial category.

Notation 2.1.4.5. Let O⊗ be an ∞-operad. We let O⊗,\ denote the ∞-preoperad (O⊗,M), where

M is the collection of all inert morphisms in O⊗.

Proposition 2.1.4.6. There exists a left proper combinatorial simplicial model structure on POp∞
which may be characterized as follows:

(C) A morphism f : X → Y in POp∞ is a cofibration if and only if it induces a monomorphism

between the underlying simplicial sets of X and Y .

(W ) A morphism f : X → Y in POp∞ is a weak equivalence if and only if, for every ∞-operad

O⊗, the induced map

MapPOp∞(Y ,O⊗,\)→ MapPOp∞(X,O⊗,\)

is a weak homotopy equivalence of simplicial sets.

This model structure is compatible with the simplicial structure of Remark 2.1.4.4. Moreover, if

O⊗ is an ∞-operad, then a map α : X → O⊗,\ in POp∞ is a fibration if and only if there exists a

fibration of ∞-operads C⊗ → O⊗ (see Definition 2.1.2.10) such that α is induced by an equivalence

X ' C⊗,\. In particular (taking O⊗ = N(Fin∗)), we deduce that an object X ∈ POp∞ is fibrant if

and only if it has the form C⊗,\, for some ∞-operad C⊗.

Proposition 2.1.4.6 can be deduced from much more general results which we will prove in §B.4.

In what follows, we will freely use the terminology developed in the appendix.
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Proof of Proposition 2.1.4.6. Let P = (M,T, {pα : Λ2
0 → N(Fin∗)}α∈A) be the categorical pattern

on N(Fin∗) where M consists of all inert morphisms, T the collection of all 2-simplices, and A

ranges over all diagrams

〈p〉 ← 〈n〉 → 〈q〉

where the maps are inert and determine a bijection 〈p〉◦
∐
〈q〉◦ → 〈n〉◦. The main result now

follows from Theorem B.0.20, and the characterization of fibrations between fibrant objects follows

from Proposition B.2.7.

Remark 2.1.4.7. We will refer to the model structure of Proposition 2.1.4.6 as the ∞-operadic

model structure on POp∞.

Example 2.1.4.8. The inclusion {〈1〉}[ ⊆ Triv⊗,\ is a weak equivalence of ∞-preoperads. This

is an immediate consequence of Example 2.1.3.5. In other words, we can view Triv⊗,\ as a fibrant

replacement for the object {〈1〉}[ ∈ POp∞.

Example 2.1.4.9. Using Proposition 2.1.3.9, we deduce that the morphism 〈0〉 → 〈1〉 in Fin∗
induces a weak equivalence of ∞-preoperads (∆1)[ ⊆ E⊗,\0 , so that E⊗,\0 can be viewed as a fibrant

replacement for the ∞-preoperad (∆1)[.

Remark 2.1.4.10. The ∞-operadic model structure on POp∞ induces a model structure on the

category (POp∞)/{〈1〉}[ ' Set+
∆. Unwinding the definitions, we see that a morphism of marked

simplicial sets α : (X,M)→ (X ′,M ′) is a cofibration (with respect to this model structure) if and

only if the underlying map of simplicial sets X → X ′ is a monomorphism, and is a weak equivalence

if and only if it induces a homotopy equivalence MapSet+
∆

((X ′,M ′), Y ) → MapSet+
∆

((X,M), Y )

whenever Y is a marked simplicial set of the form O⊗,\×N(Fin∗)\{〈1〉}
[, for some ∞-operad O⊗.

This is true if and only if Y has the form (C,M), where C is an∞-category and M is the collection

of all equivalences in C (the “only if” assertion is obvious, and the converse implication follows

by taking O⊗ to be the ∞-operad C× of Proposition 2.4.1.5). It follows that the induced model

structure on Set+
∆ coincides with the marked model structure of §HTT.3.1 , so that we can identify

the underlying ∞-category N((Set+
∆)o) with Cat∞.

Composing with the inclusion {〈1〉}[ ↪→ N(Fin∗)
\, we obtain a left Quillen functor

F : Set+
∆ ' (POp∞)/{〈1〉}[ → POp∞ .

This functor has a right adjoint G : POp∞ → Set+
∆, which assigns to an ∞-preoperad X the fiber

product X ×N(Fin∗)\ {〈1〉}
[. Passing to the underlying ∞-categories, we see that G induces the

functor g : Op∞ → Cat∞ which assigns to each ∞-operad O⊗ its underlying ∞-category O. The

left Quillen functor F induces a left adjoint f : Cat∞ → Op∞.

Proposition 2.1.4.11. The functor f : Cat∞ → Op∞ is fully faithful. An ∞-operad q : O⊗ →
N(Fin∗) belongs to the essential image of f if and only if the functor q factors through the subcategory

Triv⊗ ⊂ N(Fin∗).



2.1. FOUNDATIONS 191

Proof. Let Op′∞ ⊆ Op∞ be the full subcategory spanned by those ∞-operads q : O⊗ → N(Fin∗)

such that q factors through Triv⊗. It is easy to see that the inclusion f ′ : Op′∞ ⊆ Op∞ admits

a right adjoint g′, given by O⊗ 7→ O⊗×N(Fin∗) Triv⊗. The evaluation functor g : Op∞ → Cat∞
factors as a composition

Op∞
g′→ Op′∞

g′′→ Cat∞,

where g′′ = g|Op′∞. It follows that f ' f ′ ◦ f ′′, where f ′′ is a left adjoint to g′′. Note that if

q : O⊗ → N(Fin∗) belongs to Op′∞, then q is a coCartesian fibration; moreover, every morphism in

Op′∞ corresponds to a commutative diagram

O⊗

q

##

T // O′⊗

q′{{
Triv⊗

where T carries q-coCartesian morphisms to q′-coCartesian morphisms. Using Theorem

HTT.3.2.0.1 , we deduce that Op′∞ is equivalent to a full subcategory Fun′(Triv⊗,Cat∞) →
Fun(Triv⊗,Cat∞): namely, the full subcategory consisting of those functors χ : Triv⊗ → Cat∞
which are right Kan extensions of χ|{〈1〉}. Using Proposition HTT.4.3.2.15 , we deduce that

evaluation at {〈1〉} induces an equivalence of ∞-categories Fun′(Triv⊗,Cat∞) → Cat∞. It follows

that g′′ is an equivalence of ∞-categories, so that f ′′ ' (g′′)−1 is an equivalence and f ' f ′ ◦ f ′′ is

fully faithful.

Remark 2.1.4.12. Proposition 2.1.4.11 is equivalent to the assertion that the weak equivalence

{〈1〉}[ ⊆ Triv⊗,\ of Example 2.1.4.8 induces a left Quillen equivalence of model categories

(POp∞)/{〈1〉}[ → (POp∞)/ Triv⊗,\ .

This statement is not completely formal: the model category POp∞ is not right proper, and the

object {〈1〉}[ ∈ POp∞ is not fibrant.

Variant 2.1.4.13. We define a subcategory Cat⊗∞ ⊂ Op∞ as follows:

• An object C⊗ of Op∞ belongs to Cat⊗∞ if and only if it is a symmetric monoidal ∞-category.

• A morphism C⊗ → D⊗ in Op∞ belongs to Cat⊗∞ if and only if it is a symmetric monoidal

functor.

We will refer to Cat⊗∞ as the ∞-category of symmetric monoidal ∞-categories. Using Theorem

B.0.20, we deduce that Cat⊗∞ can be realized as the underlying ∞-category of the combinatorial

simplicial model category (Set+∆)/P, where P denotes the categorical pattern (M ′, T, {pα : Λ2
0 →

N(Fin∗)}α∈A) on the simplicial set N(Fin∗), where T and {pα : Λ2
0 → N(Fin∗)}α∈A are defined as

in the proof of Proposition 2.1.4.6, while M ′ consists of all edges of P.
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2.2 Constructions of ∞-Operads

In this section, we will describe how various categorical constructions can be generalized to the

setting of symmetric monoidal ∞-categories (or the more general setting of ∞-operads). Suppose

that C is an ∞-category equipped with a symmetric monoidal structure, and that D is another

∞-category which is obtained from C via some natural procedure; under what conditions does D

inherit a symmetric monoidal structure?

We will begin in §2.2.1 by considering the construction of full subcategories. If C is a symmetric

monoidal∞-category and S is a collection of objects of C, then we can consider the full subcategory

C0 ⊆ C spanned by the objects of S (see §HTT.1.2.11 ). If the collection of objects S is stable under

tensor products, then C0 inherits a symmetric monoidal structure (Proposition 2.2.1.1). However,

there are other situations where the same phenomenon occurs: for example, if C0 is a localization

of C, then a symmetric monoidal structure on C sometimes yields a symmetric monoidal structure

on C0 by passage to the quotient (Proposition 2.2.1.9).

If C is a symmetric monoidal ∞-category and X ∈ C is an object, then the ∞-categories CX/

and C/X generally do not inherit symmetric monoidal structures. However, if X is a commutative

algebra object of C, then the situation is somewhat better. In §2.2.2, we will show that the

overcategory C/X inherits a symmetric monoidal structure when X is a commutative algebra object

of C. In this situation, the undercategory CX/ generally does not inherit a symmetric monoidal

structure, but it can nevertheless be regarded as an ∞-operad (see Theorem 2.2.2.4). Some other

categorical constructions are better behaved at the level of ∞-operads. For example, suppose we

are given a pair of ∞-operad O⊗ and O′
⊗

, having underlying ∞-categories O and O′. In §2.2.3,

we will show that the disjoint union OqO′ is equivalent to the underlying ∞-category of an ∞-

operad which we will denote by O⊗�O′⊗. Moreover, the ∞-operad O⊗�O′⊗ plays the role of the

coproduct in the setting of ∞-operads (Theorem 2.2.3.6).

In §2.2.4, we will study the interplay between the theories of symmetric monoidal ∞-categories

and ∞-operads. By definition, every symmetric monoidal ∞-category C⊗ → N(Fin∗) can be

regarded as an ∞-operad. The resulting forgetful functor from symmetric monoidal ∞-categories

to ∞-operads has a left adjoint: that is, to every ∞-operad O⊗, one can associate a symmetric

monoidal ∞-category Env(O)⊗, so that Fun⊗(Env(O,C)) ' AlgO(C) for any symmetric monoidal

∞-category C⊗ (see Proposition 2.2.4.9).

Some categorical constructions admit more than one generalization to the ∞-operadic setting.

For example, the formation of Cartesian products of ∞-categories admits two natural generaliza-

tions: in addition to the Cartesian product, the ∞-category Op∞ admits a symmetric monoidal

structure ⊗ which can be described informally as follows: for every pair of∞-operads O⊗ and O′
⊗

,

the tensor product O⊗⊗O′⊗ = O′′
⊗

is characterized by the requirement that for every symmetric

monoidal ∞-category C⊗, we have an equivalence of ∞-categories

AlgO′′(C) ' AlgO(AlgO′(C));
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here we view AlgO′(C) as a symmetric monoidal ∞-category via pointwise tensor product. We will

give a careful definition of this tensor product (and prove that it endows Op∞ with a symmetric

monoidal structure) in §2.2.5, essentially by formalizing the universal property stated above.

Remark 2.2.0.1. Our tensor product of ∞-operads O⊗⊗O′⊗ is a version of the Boardman-Vogt

tensor product. For more details, we refer the reader to [19], [20], and [41].

Let C and D be symmetric monoidal ∞-categories. Assume that C is small, that D admits

small colimits, and that the tensor product ⊗ : D×D → D preserves small colimits separately in

each variable. Given a pair of functors F0, F1 : C → D, the Day convolution F0 ~ F1 is another

functor from C to D, given informally by the formula

(F0 ~ F1)(C) = lim−→
C0⊗C1→C

F0(C0)⊗ F1(C1).

In §2.2.6, we will show that the construction (F0, F1) 7→ F0 ~ F1 underlies a symmetric monoidal

structure on the ∞-category Fun(C,D), which is characterized by the following universal prop-

erty: for any ∞-operad O⊗, there is a canonical equivalence of ∞-categories AlgO(Fun(C,D)) '
AlgC×O(D).

2.2.1 Subcategories of O-Monoidal ∞-Categories

Let C⊗ be an ∞-operad, and let D ⊆ C be a full subcategory of the underlying ∞-category of

C⊗ which is stable under equivalence. In this case, we let D⊗ denote the full subcategory of C⊗

spanned by those objects D ∈ C⊗ having the form D1 ⊕ · · · ⊕ Dn, where each object Di belongs

to D. It follows immediately from the definitions that D⊗ is again an ∞-operad, and that the

inclusion D⊗ ⊆ C⊗ is a map of ∞-operads. In this section, we will consider some refinements

of the preceding statement: namely, we will suppose that there exists a coCartesian fibration of

∞-operads p : C⊗ → O⊗, and obtain criteria which guarantee that p|D⊗ is again a coCartesian

fibration of ∞-operads. The most obvious case to consider is that in which D is stable under the

relevant tensor product operations on C.

Proposition 2.2.1.1. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, let D ⊆ C be a

full subcategory which is stable under equivalence, and let D⊗ ⊆ C⊗ be defined as above. Suppose

that, for every operation f ∈ MulO({Xi}, Y ), the functor ⊗f :
∏

1≤i≤n CXi → CY defined in Remark

2.1.2.16 carries
∏

1≤i≤nDXi into DY . Then:

(1) The restricted map D⊗ → O⊗ is a coCartesian fibration of ∞-operads.

(2) The inclusion D⊗ ⊆ C⊗ is a O-monoidal functor.



194 CHAPTER 2. ∞-OPERADS

(3) Suppose that, for every object X ∈ O, the inclusion DX ⊆ CX admits a right adjoint LX (so

that DX is a colocalization of CX). Then there exists a commutative diagram

C⊗

p

!!

L⊗ // D⊗

}}
O⊗

and a natural transformation of functors α : L⊗ → idC⊗ which exhibits L⊗ as a colocalization

functor (see Proposition HTT.5.2.7.4 ) and such that, for every object C ∈ C⊗, the image

p(α(C)) is a degenerate edge of O⊗.

(4) Under the hypothesis of (3), the functor L⊗ is a map of ∞-operads.

Remark 2.2.1.2. Assume that O⊗ is the commutative∞-operad, and let C⊗ → O⊗ be a symmetric

monoidal∞-category. A full subcategory D ⊆ C (stable under equivalence) satisfies the hypotheses

of Proposition 2.2.1.1 if and only if D contains the unit object of C and is closed under the tensor

product functor ⊗ : C×C→ C.

Example 2.2.1.3. Let O⊗ be an ∞-operad, and suppose we are given a coCartesian fibration of

∞-operads p : C⊗ → O⊗. Assume that for each X ∈ O, the ∞-category CX is stable, and that for

every operation φ ∈ MulO({Xi}i∈I , Y ) the associated functor ⊗φ :
∏
i∈I CXi → CY is exact in each

variable. We will say that a family of t-structures ((CX)≥0, (CX)≤0) is compatible with p if, for each

φ ∈ MulO({Xi}i∈I , Y ), the functor ⊗φ carries
∏
i∈I(CXi)≥0 into (CY )≥0. Let C⊗≥0 ⊆ C⊗ be the full

subcategory spanned by the objects C ∈ C⊗ such that, for every inert morphism C → C ′, where

C ′ ∈ CX for some X ∈ O, the object C ′ belongs to (CX)≥0. Proposition 2.2.1.1 implies that the

induced map C⊗≥0 → O⊗ is again a coCartesian fibration of ∞-operads.

Remark 2.2.1.4. Let Assoc⊗ be the associative ∞-operad (see Definition 4.1.1.3) and let C⊗ →
Assoc⊗ be a coCartesian fibration of ∞-operads satisfying the hypotheses of Example 2.2.1.3.

Then, for every pair of integers m,n ∈ Z, the tensor product functor ⊗ carries C≥m×C≥n into

C≥n+m. This follows immediately from the exactness of the tensor product in each variable, and

the assumption that the desired result holds in the case m = n = 0.

Proof of Proposition 2.2.1.1. Assertions (1) and (2) follow immediately from the definitions. Now

suppose that the hypotheses of (3) are satisfied. Let us say that a morphism f : D → C in C⊗ is

colocalizing if D ∈ D⊗, and the projection map

ψ : D⊗×C⊗ C
⊗
/f → D⊗×C⊗ C

⊗
/C

is a trivial Kan fibration. Since ψ is automatically a right fibration (Proposition HTT.2.1.2.1 ), the

map f is colocalizing if and only if the fibers of ψ are contractible (Lemma HTT.2.1.3.4 ). For this,

it suffices to show that for each D′ ∈ D⊗, the induced map of fibers

ψD′ : {D′} ×C⊗ C⊗/f → {D
′} ×C⊗ C⊗/C
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has contractible fibers. Since ψD′ is a right fibration between Kan complexes, it is a Kan fibration

(Lemma HTT.2.1.3.3 ). Consequently, ψD′ has contractible fibers if and only if it is a homotopy

equivalence. In other words, f is colocalizing if and only if composition with f induces a homotopy

equivalence MapC⊗(D′, D)→ MapC⊗(D′, C) for all D′ ∈ D⊗.

Suppose now that f : D → C is a morphism belonging to a particular fiber C⊗X of p. Then, for

every object D′ ∈ C⊗Y , we have canonical maps

MapC⊗(D′, D)→ MapO⊗(Y,X)← MapC⊗(D′, C)

whose homotopy fibers over a morphisms g : Y → X in O⊗ can be identified with MapC⊗X
(g!D

′, D)

and MapC⊗X
(g!D

′, C) (Proposition HTT.2.4.4.2 ). Our hypothesis that D is stable under the tensor

operations on C implies that g!D
′ ∈ D⊗X . It follows that f is colocalizing in C⊗ if and only if it is

colocalizing in C⊗X .

To prove (3), we need to construct a commutative diagram

C⊗×∆1 α //

$$

C⊗

p}}
O⊗

with α|C⊗×{1} equal to the identity, and having the property that, for every object C ∈ C⊗, the

restriction α|{C} ×∆1 is colocalizing. For this, we construct α one simplex at a time. To define α

on a vertex C ∈ C⊗X where X ∈ O⊗〈n〉 corresponds to a sequence of objects {Xi}1≤i≤n in O, we use

the equivalence C⊗X '
∏

1≤i≤X CXi and the assumption that each DXi ⊆ CXi is a colocalization.

For simplices of higher dimension, we need to solve extensions problems of the form

(∂∆n ×∆1)
∐
∂∆n×{1}(∆

n × {1}) α0 //
� _

��

C⊗

p

��
∆n ×∆1 //

55

O⊗,

where n > 0 and α0 carries each of the edges {i} ×∆1 to a colocalizing morphism in C⊗. We now

observe that ∆n ×∆1 admits a filtration

X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ Xn+1 = ∆n ×∆1,

where X0 = (∂∆n ×∆1)
∐
∂∆n×{1}(∆

n × {1}) and there exist pushout diagrams

Λn+1
i+1
� � //

��

∆n+1

��
Xi

// Xi+1.
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We now argue, by induction on i, that the map α0 admits an extension to Xi (compatible with the

projection p). For i ≤ n, this follows from the fact that p is an inner fibration. For i = n + 1, it

follows from the definition of a colocalizing morphism. This completes the proof of (3). Assertion

(4) follows from the construction.

Remark 2.2.1.5. Let D⊗ ⊆ C⊗ be as in the statement of Proposition 2.2.1.1, and suppose that

each inclusion DX ⊆ CX admits a right adjoint LX . The inclusion i : D⊗ ⊆ C⊗ is a O-monoidal

functor, and therefore induces a fully faithful embedding Alg/O(D) ⊆ Alg/O(C). Let L⊗ be the

functor constructed in Proposition 2.2.1.1. Since L⊗ is a map of ∞-operads, it also induces a

functor f : Alg/O(C) → Alg/O(D). It is not difficult to see that f is right adjoint to the inclusion

Alg/O(D) ⊆ Alg/O(C). Moreover, if θ : Alg/O(C) → CX denotes the evaluation functor associated

to an object X ∈ O, then for each A ∈ Alg/O(C) the map θ(f(A)) → θ(A) induced by the

colocalization map f(A)→ A determines an equivalence θ(f(A)) ' LXθ(A).

Proposition 2.2.1.1 has an obvious converse: if i : D⊗ → C⊗ is a fully faithful O-monoidal

functor between O-monoidal ∞-categories, then then the essential image of D in C is stable under

the tensor operations of Remark 2.1.2.16. However, it is possible for this converse to fail if we

assume only that i is lax monoidal. We now discuss a general class of examples where D is not

stable under tensor products, yet D nonetheless inherits a O-monoidal structure from that of C.

Definition 2.2.1.6. Let C⊗ → O⊗ be a coCartesian fibration of ∞-operads and suppose we are

given a family of localization functors LX : CX → CX for X ∈ O. We will say that the family

{LX}X∈O is compatible with the O-monoidal structure on C if the following condition is satisfied:

(∗) Let f ∈ MulO({Xi}1≤i≤n, Y ) be an operation in O, and suppose we are given morphisms gi
in CXi for 1 ≤ i ≤ n. If each gi is a LXi-equivalence, then the morphism ⊗f{gi}1≤i≤n in CY

is an LY -equivalence.

Example 2.2.1.7. In the situation where O⊗ is the commutative ∞-operad, the condition of

Definition 2.2.1.6 can be simplified: a localization functor L : C→ C is compatible with a symmetric

monoidal structure on C if and only if, for every L-equivalence X → Y in C and every object Z ∈ C,

the induced map X ⊗ Z → Y ⊗ Z is again an L-equivalence.

Proposition 2.2.1.8. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads. Assume that

for each X ∈ O, the ∞-category CX is stable, and that for every operation φ ∈ MulO({Xi}i∈I , Y )

the associated functor ⊗φ :
∏
i∈I CXi → CY is exact in each variable. Suppose we are given a

collection of t-structures on the ∞-categories CX which are compatible with p (in the sense of

Example 2.2.1.3), so that we have an induced coCartesian fibration C⊗≥0 → O⊗. Then the collection

of localization functors τ≤n : (CX)≥0 → (CX)≥0 is compatible with the O-monoidal structure on C≥0

(in the sense of Definition 2.2.1.6).
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Proof. Suppose we are given an operation φ ∈ MulO({Xi}i∈I , Y ), so that φ induces a tensor product

functor ⊗φ :
∏
i∈I CXi → CY . We must show that if we are given a collection of morphisms

αi : Ci → C ′i in (CXi)≥0 which induce equivalences τ≤kCi → τ≤kC
′
i, then the induced map

τ≤k ⊗φ ({Ci})→ τ≤k ⊗φ ({C ′i})

is an equivalence in CY . Without loss of generality, we may assume that there exists an element

j ∈ I such that αi is an equivalence for i 6= j, and that C ′j = τ≤kCj . We have a fiber sequence

C ′′j [k + 1]→ Cj → C ′j

for some C ′′j ∈ (CXj )≥0. Let C ′′i = Ci for i 6= j. Since ⊗φ is exact in each variable, we conclude

that there is a fiber sequence

⊗φ({C ′′i })[k + 1]→ ⊗φ({Ci})
β→ ⊗φ({C ′i}).

Since our t-structures are assumed to be compatible with p, the object ⊗φ({C ′′i }) belongs to (CY )≥0,

from which it follows that τ≤k(β) is an equivalence.

Proposition 2.2.1.9. Let p : C⊗ → O⊗ be a be a coCartesian fibration of ∞-operads and suppose

we are given a family of localization functors {LX : CX → CX}X∈O which are compatible with the

O-monoidal structure on C. Let D denote the collection of all objects of C which lie in the image

of some LX , and let D⊗ be defined as above. Then:

(1) There exists a commutative diagram

C⊗
L⊗ //

p

!!

D⊗

}}
O⊗

and a natural transformation α : idC⊗ → L⊗ which exhibits L⊗ as a left adjoint to the

inclusion D⊗ ⊆ C⊗ and such that p(α) is the identity natural transformation from p to itself.

(2) The restriction p|D⊗ : D⊗ → N(Fin∗) is a coCartesian fibration of ∞-operads.

(3) The inclusion functor D⊗ ⊆ C⊗ is a map of ∞-operads and L⊗ : C⊗ → D⊗ is a O-monoidal

functor.

Example 2.2.1.10. Let C be a stable ∞-category equipped with a t-structure and a compatible

symmetric monoidal structure, in the sense of Example 2.2.1.3. Applying Proposition 2.2.1.8, we

deduce that the truncation functors τ≤n : C≥0 → (C≥0)≤n are compatible with the symmetric

monoidal structure on C≥0. Consequently, Proposition 2.2.1.9 implies that (C≥0)≤n inherits the

structure of a symmetric monoidal ∞-category. Taking n = 0, we deduce that the heart of C

inherits the structure of a symmetric monoidal category (in the sense of classical category theory).



198 CHAPTER 2. ∞-OPERADS

The proof of Proposition 2.2.1.9 relies on the following observation:

Lemma 2.2.1.11. Let p : C → D be a coCartesian fibration of ∞-categories. Let L : C → C and

L′ : D → D be localization functors, with essential images LC and L′D. Suppose that L and L′

are compatible in the following sense:

(i) The functor p restricts to a functor p′ : LC→ L′D.

(ii) If f is a morphism in C such that Lf is an equivalence, then L′p(f) is an equivalence in D.

Then:

(1) The functor L carries p-coCartesian morphisms of C to p′-coCartesian morphisms of LC.

(2) The functor p′ is a coCartesian fibration.

Proof. Let f : X → Y be a p-coCartesian morphism of C. We wish to prove that Lf is p′-

coCartesian. According to Proposition HTT.2.4.4.3 , it will suffice to show that for every Z ′ ∈ LC,

the diagram of Kan complexes

CLf/×C{Z ′} //

��

CLX/×C{Z ′}

��
Dp(Lf)/×D{p(Z ′)} // Dp(LX)/×D{p(Z ′)}

is homotopy Cartesian. Let Z ′ = LZ. Since L2 ' L, we can assume without loss of generality that

Z ∈ LC.

Since f is p-coCartesian, Proposition HTT.2.4.4.3 implies that the diagram

Cf/×C{Z} //

��

CX/×C{Z}

��
Dp(f)/×D{p(Z)} // Dp(X)/×D{p(Z)}

is homotopy Cartesian. Choose a natural transformation α : idC → L which exhibits L as a

localization functor. Then α induces a natural transformation between the above diagrams. It will

therefore suffice to show that each of the induced maps

Cf/×C{Z} → CLf/×C{LZ} CX/×C{Z} → CLX/×C{LZ}

Dp(f)/×D{p(Z)} → Dp(Lf)/×D{p(LZ)} Dp(LX)/×D{p(Z)} → Dp(LX)/×D{p(LZ)}

is a homotopy equivalence. For the first pair of maps, this follows from the fact that Z ∈ LC. For

the second pair, we observe that (i) and (ii) imply that for every C ∈ C, the map p(α(C)) : p(C)→
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p(LC) is equivalent to the L′-localization p(C) → L′p(C), and p(Z) ∈ L′D. This completes the

proof of (1).

To prove (2), choose any object C ∈ LC and a morphism f : p(C) → D in L′D. Choose a

p-coCartesian morphism f : C → D in C. According to (1), the morphism L(f) : LC → LD is

p′-coCartesian. We now use the fact that p′ is a categorical fibration to lift the equivalence p(α(f))

to an equivalence L(f) ' f ′, where f
′
: C → D

′
is a p′-coCartesian morphism lifting f .

Proof of Proposition 2.2.1.9. We first prove (1). Let us say that a map f : C → D in C⊗ is localizing

if it induces a trivial Kan fibration

D⊗×C⊗ C
⊗
f/ → D⊗×C⊗ C

⊗
D/ .

Arguing as in the proof of Proposition 2.2.1.1, we see that f is localizing if and only if, for every ob-

ject D′ ∈ D⊗, composition with f induces a homotopy equivalence MapC⊗(D,D′)→ MapC⊗(C,D′).

Suppose that f lies in a fiber C⊗X of p, and let D′ ∈ C⊗Y of p. We have canonical maps

MapC⊗(D,D′)→ MapO⊗(X,Y )← MapC⊗(C,D′)

and Proposition HTT.2.4.4.2 allows us to identify the homotopy fibers of these maps over a mor-

phism g : X → Y in O⊗ with MapC⊗Y
(g!D,D

′) and MapC⊗Y
(g!C,D

′). It follows that f is localizing

in C⊗ if and only if g!(f) is localizing in C⊗Y for every map g : X → Y in O⊗. Let X ∈ O⊗〈n〉 and

Y ∈ O⊗〈m〉 correspond to sequences of objects {Xi}1≤i≤n and {Yj}1≤j≤m in O. Using the equivalence

C⊗Y '
∏

1≤j≤m CYi we see that it suffices to check this in the case m = 1. Invoking the assumption

that the localization functors Invoking the assumption that the localization functors {LZ}Z∈O are

compatible with the O-monoidal structure on C⊗, we see that f is localizing if and only if it induces

a LXi-localizing morphism in CXi for 1 ≤ i ≤ n.

We now argue as in the proof of Proposition 2.2.1.1. To prove (1), we need to construct a

commutative diagram

C⊗×∆1 α //

%%

C⊗

p{{
N(Fin∗)

with α|C⊗×{0} equal to the identity, and having the property that, for every object C ∈ C⊗, the

restriction α|{C}×∆1 is localizing. For this, we construct α one simplex at a time. To define α on

a vertex C ∈ C⊗X for X ∈ O⊗〈n〉, we choose a morphism f : C → C ′ corresponding to the localization

morphisms Ci → LXiCi under the equivalence C⊗X '
∏

1≤i≤n CXi and apply the argument above.

For simplices of higher dimension, we need to solve extensions problems of the form

(∂∆n ×∆1)
∐
∂∆n×{0}(∆

n × {0}) α0 //
� _

��

C⊗

p

��
∆n ×∆1 //

55

O⊗,
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where n > 0 and α0 carries each of the edges {i} × ∆1 to a localizing morphism in C⊗. We now

observe that ∆n ×∆1 admits a filtration

X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ Xn+1 = ∆n ×∆1,

where X0 = (∂∆n ×∆1)
∐
∂∆n×{0}(∆

n × {0}) and there exist pushout diagrams

Λn+1
n−i
� � //

��

∆n+1

��
Xi

// Xi+1.

We now argue, by induction on i, that the map α0 admits an extension to Xi (compatible with the

projection p). For i ≤ n, this follows from the fact that p is an inner fibration. For i = n + 1, it

follows from the definition of a localizing morphism. This completes the proof of (1).

Lemma 2.2.1.11 implies that p′ = p|D⊗ is a coCartesian fibration. It follows immediately from

the definition that for every object X ∈ O⊗〈m〉 corresponding to {Xi ∈ O}1≤i≤m, the equivalence

C⊗X '
∏

1≤i≤m CXi restricts to an equivalence D⊗X '
∏

1≤i≤mDXi . This proves that p′ : D⊗ → O⊗

is a coCartesian fibration of ∞-operads and that the inclusion D⊗ ⊆ C⊗ is a map of ∞-operads.

Lemma 2.2.1.11 implies that L⊗ carries p-coCartesian edges to p′-coCartesian edges and is therefore

a O-monoidal functor.

2.2.2 Slicing ∞-Operads

Let C be a symmetric monoidal category and let A be a commutative algebra object of C. Then

the overcategory C/A inherits the structure of a symmetric monoidal category: the tensor product

of a map X → A with a map Y → A is given by the composition

X ⊗ Y → A⊗A m→ A,

where m denotes the multiplication on A. Our goal in this section is to establish an ∞-categorical

analogue of this observation (and a weaker result concerning undercategories). Before we can state

our result, we need to introduce a bit of notation.

Definition 2.2.2.1. Let q : X → S be a map of simplicial sets, and suppose we are given a

commutative diagram

X

q

��
S ×K

p
;;

// S.
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We define a simplicial set XpS/ equipped with a map q′ : XpS/ → S so that the following universal

property is satisfied: for every map of simplicial sets Y → S, there is a canonical bijection of

FunS(Y,XpS/) with the collection of commutative diagrams

Y ×K //

��

Y ×K.

��

// Y

��
S ×K p // X // S.

Similarly, we define a map of simplicial sets X/pS → S so that FunS(Y,X/pS ) is in bijection with

the set of diagrams

Y ×K //

��

Y ×K/

��

// Y

��
S ×K p // X // S.

Remark 2.2.2.2. If S consists of a single point, then XpS/ and X/pS coincide with the usual

overcategory and undercategory constructions Xp/ and X/p. In general, the fiber of the morphism

XpS/ → S over a vertex s ∈ S can be identified with (Xs)ps/, where Xs = X×S{s} and ps : K → Xs

is the induced map; similarly, we can identify X/pS ×S {s} with (Xs)/ps .

Notation 2.2.2.3. Let q : C⊗ → O⊗ be a fibration of ∞-operads, and let p : K → Alg/O(C) be

a diagram. We let C⊗pO/ and C⊗/pO denote the simplicial sets (C⊗)p
O⊗/

and (C⊗)/p
O⊗

described in

Definition 2.2.2.1.

In the special case where K = ∆0, the diagram p is simply given by a O-algebra object A ∈
Alg/O(C); in this case, we will denote C⊗pO/ and C⊗/pO by C⊗AO/

and C⊗/AO
, respectively.

We can now state the main result of this section.

Theorem 2.2.2.4. Let q : C⊗ → O⊗ be a fibration of ∞-operads, and let p : K → Alg/O(C) be a

diagram. Then:

(1) The maps C⊗pO/
q′→ O⊗

q′′← C⊗/pO are fibrations of ∞-operads.

(2) A morphism in C⊗pO/ is inert if and only if its image in C⊗ is inert; similarly, a morphism in

C⊗/pO is inert if and only if its image in C⊗ is inert.

(3) If q is a coCartesian fibration of ∞-operads, then q′′ is a coCartesian fibration of ∞-operads.

If, in addition, p(k) : O⊗ → C⊗ is a O-monoidal functor for each vertex k ∈ K, then q′ is

also a coCartesian fibration of ∞-operads.

Remark 2.2.2.5. In the special case where O⊗ is the commutative ∞-operad and K = ∆0, we

can state Theorem 2.2.2.4 more informally as follows: let C⊗ be an ∞-operad equipped with a
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commutative algebra object A ∈ CAlg(C). Then the ∞-categories CA/ and C/A can be regarded as

the underlying ∞-categories of ∞-operads C⊗AO/
and C⊗/AO

. Moreover, if C is a symmetric monoidal

∞-cateogry, then C/A is a symmetric monoidal ∞-category; the same result holds for CA/ if we

assume that A is a trivial algebra in the sense of Definition 3.2.1.7.

The remainder of this section is devoted to the proof of Theorem 2.2.2.4. We will need a few

lemmas.

Lemma 2.2.2.6. Suppose we are given a diagram of simplicial sets

X

q

��
S ×K

p
;;

// S

where q is an inner fibration, and let q′ : XpS/ → S be the induced map. Then q′ is a inner fibration.

Similarly, if q is a categorical fibration, then q′ is a categorical fibration.

Proof. We will prove the assertion regarding inner fibrations; the case of categorical fibrations is

handled similarly. We wish to show that every lifting problem of the form

A //

j

��

XpS/

q′

��
B //

==

S

admits a solution, provided that j is inner anodyne. Unwinding the definitions, we arrive at an

equivalent lifting problem

(A×K.)
∐
A×K(B ×K) //

j′

��

X

q

��
B ×K. // S,

which admits a solution by virtue of the fact that q is an inner fibration and j′ is inner anodyne

(Corollary HTT.2.3.2.4 ).

Lemma 2.2.2.7. Let q : X → S be an innert fibration of simplicial sets and let K and Y be

simplicial sets. Suppose that h : K×Y . → X is a map such that, for each k ∈ K, the induced map

{k} × Y . → X is a q-colimit diagram. Let h = h|K × Y . Then the map

Xh/ → Xh/ ×Sqh/ Sqh/

is a trivial Kan fibration.
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Proof. We will prove more generally that if K0 ⊆ K is a simplicial subset and h0 = h|(K ×
Y )

∐
K0×Y (K × Y .), then the induced map θ : Xh/ → Xh0/

×Sqh0/
Sqh/ is a trivial Kan fibration.

Working simplex-by-simplex, we can reduce to the case where K = ∂∆n and K ′ = ∂∆n. Let

us identify Y ? ∆n with the full simplicial subset of Y . × ∆n spanned by ∆n and Y . × {0}. Let

g = h|Y ?∆n, and let g = g|Y ? ∂∆n. Then θ is a pullback of the map

θ′ : Xg/ → Xg/ ×Sqg/ Sqg/.

It will now suffice to show that θ′ has the right lifting property with respect to every inclusion

∂∆m ⊆ ∆m. Unwinding the definition, this is equivalent to solving a lifting problem of the form

Y ? ∂∆n+m+1 //

��

X

q

��
Y ?∆n+m+1 //

88

S.

This lifting problem admits a solution by virtue of our assumption that h|{0} × Y . is a q-colimit

diagram.

Lemma 2.2.2.8. Let

X

q

��
S ×K

p
;;

// S

be a diagram of simplicial sets, where q is an inner fibration, let q′ : XpS/ → S be the induced map,

and suppose we are given a commutative diagram

Y
f //

��

XpS/

q′

��
Y . g //

f
<<

S

satisfying the following conditions:

(i) For each vertex k ∈ K, the diagram

Y . g→ S ' S × {k} ↪→ S ×K p→ X

is a q-colimit diagram.

(ii) The composite map Y
f→ XpS/ → X can be extended to a q-colimit diagram Y . → X lying

over g.

Then:
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(1) Let f : Y . → XpS/ be a map rendering the diagram commutative. Then f is a q′-colimit

diagram if and only if the composite map Y . f→ XpS/ → X is a q-colimit diagram.

(2) There exists a map f satisfying the equivalent conditions of (1).

Proof. Let Z be the full simplicial subset of K. × Y . obtained by removing the final object,

so we have a canonical isomorphism Z. ' K. × Y .. The maps f and g determine a diagram

h : Z → X. We claim that h can be extended to a q-colimit diagram h : Z. → X lying over the

map Z. → Y . g→ S. To prove this, let h0 = h|K. × Y , h1 = h|K × Y ., and h2 = h|K × Y . Using

(i) we deduce that the map θ : Xh1/ → Xh2/×Sqh2/
Sqh1/ is a trivial Kan fibration (Lemma 2.2.2.7).

The map Xh/ → Xh0/ ×Sqh0/
Sqh/ is a pullback of θ, and therefore also a trivial Kan fibration.

Consequently, to show that h admits a q-colimit diagram compatible with g, it suffices to show

that h0 admits a q-colimit diagram compatible with g. Since the inclusion Y ↪→ K. × Y is left

cofinal, this follows immediately from (ii). This proves the existence of h: moreover, it shows that

an arbitrary extension h of h (compatible with g) is a p-colimit diagram if and only if it restricts

to a p-colimit diagram Y . → Z.

The map h determines an extension f : Y . → XpS/ of f . We will show that f is a q′-colimit

diagram. This will prove the “if” direction of (1) and (2); the “only if” direction of (1) will then

follow from the uniqueness properties of q′-colimit diagrams.

We wish to show that every lifting problem of the form

Y ? ∂∆n F //

��

XpS/

q′

��
Y ?∆n

99

// S

admits a solution, provided that n > 0 and F |Y ? {0} coincides with f . This is equivalent to a

lifting problem of the form

((Y ? ∂∆n)×K.)
∐

(Y ?∂∆n)×K((Y ?∆n)×K) //

j

��

X

q

��
(Y ?∆n)×K. //

44

S

It now suffices to observe that the map j is a pushout of the inclusion Z ? ∂∆n ↪→ Z ?∆n, so the

desired lifting problem can be solved by virtue of our assumption that h is a q-colimit diagram.

The following result is formally similar to Lemma 2.2.2.8 but requires a slightly different proof:

Lemma 2.2.2.9. Let

X

q

��
S ×K

p
;;

// S
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be a diagram of simplicial sets, where q is an inner fibration, let q′ : XpS/ → S be the induced map,

and suppose we are given a commutative diagram

Y
f //

��

XpS/

q′

��
Y / g //

f
<<

S

satisfying the following condition:

(∗) The composite map Y
f→ XpS/ → X can be extended to a q-limit diagram g′ : Y / → X lying

over g.

Then:

(1) Let f : Y / → XpS/ be a map rendering the diagram commutative. Then f is a q′-limit

diagram if and only if the composite map Y / f→ XpS/ → X is a q-limit diagram.

(2) There exists a map f satisfying the equivalent conditions of (1).

Proof. Let v be the cone point of K. and v′ the cone point of Y /. Let Z be the full subcategory

of K. × Y / obtained by removing the vertex (v, v′). The maps f and g determine a map h : Z →
X. Choose any map g′ as in (i), and let g′0 = g′|Y . We claim that there exists an extension

h : K. × Y / → X of h which is compatible with g, such that h|{v} × Y / = g′. Unwinding the

definitions, we see that providing such a map h is equivalent to solving a lifting problem of the

form

∅ //

��

X/g′

��
K // Xg′0

×S/qg′0 S/g,

which is possible since the left vertical map is a trivial Kan fibration (since g′ is a q-limit diagram).

The map h determines a diagram f : Y / → XpS/. We will prove that f is a q′-limit diagram.

This will prove the “if” direction of (1) and (2); the “only if” direction of (1) will then follow from

the uniqueness properties of q-limit diagrams.

To show that f is a q-limit diagram, we must show that every lifting problem of the form

∂∆n ? Y
F //

��

XpS/

q′

��
∆n ? Y

99

// S
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admits a solution, provided that n > 0 and F |{n} ? Y = f . Unwinding the definitions, we obtain

an equivalent lifting problem

(∂∆n ? Y )×K.)
∐

(∂∆n?Y )×K((∆n ? Y )×K) //

j

��

X

q

��
(∆n ? Y )×K. //

44

S.

It now suffices to observe that j is a pushout of the inclusion K ? ∂∆n ? Y ↪→ K ?∆n ? Y , so that

the desired extension exists because h|{v} × Y / = g′ is a q-limit diagram.

Proof of Theorem 2.2.2.4. We will prove (1), (2), and (3) for the simplicial set C⊗pO/; the analogous

assertions for C⊗/pO will follow by the same reasoning. We first observe that q′ is a categorical

fibration (Lemma 2.2.2.6). Let X ∈ C⊗pO/, and suppose we are given an inert morphism α : q(X)→
Y in O⊗; we wish to show that there exists a q′-coCartesian morphism X → Y in C⊗pO/ lifting α.

This follows immediately from Lemma 2.2.2.8.

Suppose next that we are given an object X ∈ O⊗ lying over 〈n〉 ∈ Fin∗, and a collection of

inert morphisms αi : X → Xi lying over ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n. We wish to prove that the

maps αi induce an equivalence

θ : (C⊗pO/)X '
∏

1≤i≤n
(C⊗pO/)Xi .

Let pX : K → C⊗X be the map induced by p, and define maps pXi : K → CXi similarly. We observe

that pXi can be identified with the composition of pX with αi! : C⊗X → CXi . Since q is a fibration of

∞-operads, we have an equivalence of ∞-categories

C⊗X →
∏

1≤i≤n
CXi .

Passing to the ∞-categories of objects under p, we deduce that θ is also an equivalence.

Now suppose that X is as above, that X ∈ C⊗pO/ is a preimage of X, and that we are given

q′-coCartesian morphisms X → Xi lying over the maps αi. We wish to show that the induced map

δ : 〈n〉◦/ C⊗pO/ is a q′-limit diagram. This follows from Lemma 2.2.2.9, since the image of δ in C⊗ is a

q-limit diagram. This completes the proof of (1). Moreover, our characterization of q′-coCartesian

morphisms immediately implies (2). Assertion (3) follows immediately from Lemma 2.2.2.8.

2.2.3 Coproducts of ∞-Operads

Let Op∞ denote the ∞-category of ∞-operads (Definition 2.1.4.1). Because Op∞ can be realized

as underlying ∞-category of the combinatorial simplicial model category POp∞ of ∞-preoperads,

it admits all small limits and colimits (Corollary HTT.4.2.4.8 ). The limit of a diagram σ in Op∞
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can usually be described fairly explicitly: namely, choose an injectively fibrant diagram σ in POp∞
representing σ, and then take the limit of σ in the ordinary category of ∞-preoperads. The case

of colimits is more difficult: we can apply the same procedure to construct an ∞-preoperad which

represents lim−→(σ), but this representative will generally not be fibrant and the process of “fibrant

replacement” is fairly inexplicit. Our goal in this section is to give a more direct construction of

colimits in a special case: namely, the case of coproducts. We can summarize our main results

as follows: for every pair of ∞-operads C⊗ and D⊗, we can explicitly construct a new ∞-operad

C⊗�D⊗. This ∞-category comes equipped with fully faithful embeddings

C⊗ ↪→ C⊗�D⊗ ←↩ D⊗

(well-defined up to homotopy) which exhibit C⊗�D⊗ as a coproduct of C⊗ and D⊗ in the ∞-

category Op∞ (Theorem 2.2.3.6), and exhibit the underlying∞-category of C⊗�D⊗ as a coproduct

of C and D in Cat∞.

Before describing the construction of C⊗�D⊗, we need to establish some notation.

Notation 2.2.3.1. Given an object 〈n〉 ∈ Fin∗ and a subset S ⊆ 〈n〉 which contains the base point,

there is a unique integer k and bijection 〈k〉 ' S whose restriction to 〈k〉◦ is order-preserving; we

will denote the corresponding object of Fin∗ by [S].

Definition 2.2.3.2. We define a category Sub as follows:

(1) The objects of Sub are triples (〈n〉, S, T ) where 〈n〉 ∈ Fin∗, S and T are subsets of 〈n〉 such

that S ∪ T = 〈n〉 and S ∩ T = {∗}.

(2) A morphism from (〈n〉, S, T ) to (〈n′〉, S′, T ′) in Sub is a morphism f : 〈n〉 → 〈n′〉 in Fin∗ such

that f(S) ⊆ S′ and f(T ) ⊆ T ′.

There is an evident triple of functors π, π−, π+ : Sub→ Fin∗, given by the formulas

π−(〈n〉, S, T ) = [S] π(〈n〉, S, T ) = 〈n〉 π+(〈n〉, S, T ) = [T ].

Construction 2.2.3.3. For any pair of simplicial sets C⊗ and D⊗ equipped with maps C⊗ →
N(Fin∗)← D⊗, we define a new simplicial set C⊗�D⊗ so that we have a pullback diagram

C⊗�D⊗ //

��

C⊗×D⊗

��
N(Sub)

π−×π+// N(Fin∗)×N(Fin∗).

We regard C⊗�D⊗ as equipped with a map to N(Fin∗), given by the composition

C⊗�D⊗ → N(Sub)
π→ N(Fin∗).
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Remark 2.2.3.4. The product functor (π− × π+) : Sub → Fin∗×Fin∗ is an equivalence of cate-

gories. Consequently, C⊗�D⊗ is equivalent (as an∞-category) to the product C⊗×D⊗. However,

it is slightly better behaved in the following sense: the composite map

C⊗�D⊗ → N(Sub)→ N(Fin∗)

is a categorical fibration, since it is the composition of a pullback of the categorical fibration

C⊗×D⊗ → N(Fin∗)×N(Fin∗) with the categorical fibration N(Sub)→ N(Fin∗).

The main results of this section can now be stated as follows:

Proposition 2.2.3.5. Let C⊗ and D⊗ be ∞-operads. Then C⊗�D⊗ is an ∞-operad.

Theorem 2.2.3.6. Let C⊗ and D⊗ be ∞-operads. We let (C⊗�D⊗)− denote the full subcategory

of C⊗�D⊗ spanned by those objects whose image in Sub has the form (〈n〉, 〈n〉, {∗}), and let

(C⊗�D⊗)+ denote the full subcategory spanned by those objects whose image in Sub has the form

(〈n〉, {∗}, 〈n〉). Then:

(1) The projection maps (C⊗�D⊗)− → C⊗ and (C⊗�D⊗)+ → D⊗ are trivial Kan fibrations.

(2) The map C⊗�D⊗ → N(Fin∗) exhibits both (C⊗�D⊗)− and (C⊗�D⊗)+ as ∞-operads.

(3) For any ∞-operad E⊗, the inclusions

(C⊗�D⊗)−
i
↪→ C⊗�D⊗

j
←↩ (C⊗�D⊗)+

induce an equivalence of ∞-categories

Funlax(C⊗�D⊗,E⊗)→ Funlax((C⊗�D⊗)−,E
⊗)× Funlax((C⊗�D⊗)+,E

⊗);

here we let Funlax(O⊗,O′
⊗

) denote the ∞-category AlgO(O′) of ∞-operad maps from O⊗ to

O′
⊗

, for any pair of∞-operads O⊗, O′
⊗

. In particular, i and j exhibit C⊗�D⊗ as a coproduct

of (C⊗�D⊗)− ' C⊗ and (C⊗�D⊗)+ ' D⊗ in the ∞-category Op∞.

Remark 2.2.3.7. The operation � of Construction 2.2.3.3 is commutative and associative up to co-

herent isomorphism, and determines a symmetric monoidal structure on the category (Set∆)/N(Fin∗)

of simplicial sets X endowed with a map X → N(Fin∗). This restricts to a symmetric monoidal

structure on the (ordinary) category of ∞-operads and maps of ∞-operads.

Remark 2.2.3.8. We can informally summarize Theorem 2.2.3.6 as follows: for every triple of

∞-operads O⊗−, O⊗+, and C⊗, we have a canonical equivalence of ∞-categories

AlgO(C)→ AlgO−(C)×AlgO+
(C),

where O⊗ = O⊗−�O⊗+ .
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Proof of Proposition 2.2.3.5. LetX be an object of (C⊗�D⊗)〈n〉, given by a quintuple (〈n〉, S, T, C,D)

where (〈n〉, S, T ) ∈ Sub, C ∈ C⊗[S], and D ∈ D⊗[T ]. Suppose we are given an inert map α : 〈n〉 → 〈n′〉
in Fin∗. Let S′ = α(S) and T ′ = α(T ). Then α induces inert morphisms α− : [S] → [S′]

and α+ : [T ] → [T ′]. Choose an inert morphism f− : C → C ′ in C⊗ lifting α− and an in-

ert morphism f+ : D → D′ in D⊗ lifting α+. These maps together determine a morphism

f : (〈n〉, S, T, C,D) → (〈n′〉, S′, T ′, C ′, D′). Since (f−, f+) is coCartesian with respect to the

projection C⊗×D⊗ → N(Fin∗) × N(Fin∗), the map f is p-coCartesian, where p denotes the map

C⊗�D⊗ → N(Sub). Let π : N(Sub) → N(Fin∗) be as in Definition 2.2.3.2. It is easy to see that

p(f) is π-coCartesian, so that f is (π ◦ p)-coCartesian by virtue of Proposition HTT.2.4.1.3 .

Choose (π ◦ p)-coCartesian morphisms X → Xi covering the inert morphisms ρi : 〈n〉 → 〈1〉 for

1 ≤ i ≤ n. We claim that these maps exhibit X as a (π ◦ p)-product of the objects Xi. Using our

assumption that C⊗ and D⊗ are ∞-operads, we deduce that these maps exhibit X as a p-product

of the objects {Xi}. It therefore suffices to show that they exhibit p(X) as a π-product of the

objects p(Xi) in the ∞-category N(Sub), which follows immediately from the definitions.

It remains only to show that for each n ≥ 0, the canonical functor φ : (C⊗�D⊗)〈n〉 →
(C⊗�D⊗)n〈1〉 is essentially surjective. We can identify the latter with (C

∐
D)n. Given a col-

lection of objects X1, . . . , Xn of C
∐

D, we let S = {∗} ∪ {i : Xi ∈ C} and T = {∗} ∪ {i : Xi ∈ D}.
Let C =

⊕
Xi∈CXi ∈ C⊗[S] and let D =

⊕
Xi∈DXi ∈ D⊗[T ]. Then X = (〈n〉, S, T, C,D) is an object

of (C⊗�D⊗)〈n〉 such that φ(X) ' (X1, . . . , Xn).

Proof of Theorem 2.2.3.6. Assertion (1) follows from the evident isomorphisms

(C⊗�D⊗)− ' C⊗×D⊗〈0〉 (C⊗�D⊗)+ ' C⊗〈0〉×D⊗,

together with the observation that C⊗〈0〉 and D⊗〈0〉 are contractible Kan complexes. Assertion (2)

follows immediately from (1). To prove (3), let X = (C⊗�D⊗)− ∩ (C⊗�D⊗)+ ' C⊗〈0〉×D⊗〈0〉 and

let Y = (C⊗�D⊗)−∪ (C⊗�D⊗)+. Let A denote the full subcategory of FunN(Fin∗)(Y,E
⊗) spanned

by those functors whose restriction to both (C⊗�D⊗)− and (C⊗�D⊗)+ are ∞-operad maps. We

have homotopy pullback diagram

A //

��

Funlax((C⊗�D⊗)−,E
⊗)

��
Funlax((C⊗�D⊗)+,E

⊗) // FunN(Fin∗)(X,E
⊗).

Since E⊗〈0〉 is a contractible Kan complex, the simplicial set FunN(Fin∗)(X,E
⊗) is also a contractible

Kan complex, so the map

A→ Funlax((C⊗�D⊗)−,E
⊗)× Funlax((C⊗�D⊗)+,E

⊗)

is a categorical equivalence. We will complete the proof by showing that the map Funlax(C⊗�D⊗,E⊗)→
A is a trivial Kan fibration.
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Let q : E⊗ → N(Fin∗) denote the projection map. In view of Proposition HTT.4.3.2.15 , it will

suffice to show the following:

(a) An arbitrary map A ∈ FunN(Fin∗)(C
⊗�D⊗,E⊗) is an ∞-operad map if and only if it satisfies

the following conditions:

(i) The restriction A0 = A|Y belongs to A.

(ii) The map A is a q-right Kan extension of A0.

(b) For every object A0 ∈ A, there exists an extension A ∈ FunN(Fin∗)(C
⊗�D⊗,E⊗) of A0 which

satisfies the equivalent conditions of (a).

To prove (a), consider an objectA ∈ FunN(Fin∗)(C
⊗�D⊗,E⊗) and an objectX = (〈n〉, S, T, C,D) ∈

C⊗�D⊗. Choose morphisms α : C → C0 and β : D → D0, where C0 ∈ C⊗〈0〉 and D0 ∈ D⊗〈0〉. Set

X− = ([S], [S], {∗}, C,D0) X0 = (〈0〉, {∗}, {∗}, C0, D0) X+ = ([T ], {∗}, [T ], C0, D).

Then α and β determine a commutative diagram

X //

��

X−

��
X+

// X0.

Using Theorem HTT.4.1.3.1 , we deduce that this diagram determines a map

φ : Λ2
2 → Y×C⊗ �D⊗(C⊗�D⊗)X/

such that φ is right cofinal. It follows that A is a q-right Kan extension of A0 at X if and only if

the diagram

A(X) //

��

A(X−)

��
A(X+) // A(X0)

is a q-pullback diagram. Since q : E⊗ → N(Fin∗) is an ∞-operad, this is equivalent to the require-

ment that the maps A(X−) ← A(X) → A(X+) are inert. In other words, we obtain the following

version of (a):

(a′) A map A ∈ FunN(Fin∗)(C
⊗�D⊗,E⊗) is a q-right Kan extension of A0 = A|Y if and only if,

for every object X ∈ C⊗�D⊗ as above, the maps A(X−)← A(X)→ A(X+) are inert.
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We now prove (a) Suppose first that A is an ∞-operad map; we wish to prove that A satisfies

conditions (i) and (ii). Condition (i) follows immediately from the description of the inert mor-

phisms in C⊗�D⊗ provided by the proof of Proposition 2.2.3.5, and condition (ii) follows from

(a′). Conversely, suppose that (i) and (ii) are satisfied. We wish to prove that A preserves inert

morphisms. In view of Remark 2.1.2.9, it will suffice to show that A(X)→ A(Y ) is inert whenever

X → Y is an inert morphism such that Y ∈ (C⊗�D⊗)〈1〉. It follows that Y ∈ Y; we may therefore

assume without loss of generality that Y ∈ (C⊗�D⊗)−. The map X → Y then factors as a com-

position of inert morphisms X → X− → Y , where X− is defined as above. Then A(X) → A(X−)

is inert by virtue of (ii) and (a′), while A(X−)→ A(Y ) is inert by virtue of assumption (i).

To prove (b), it will suffice (by virtue of Lemma HTT.4.3.2.13 ) to show that for each X ∈
C⊗�D⊗, the induced diagram

YX/ → Y
A0→ E⊗

admits a q-limit. Since φ is right cofinal, it suffices to show that there exists a q-limit of the diagram

A0(X−)→ A0(X0)← A0(X+).

The existence of this q-limit follows immediately from the assumption that E⊗ is an∞-operad.

2.2.4 Monoidal Envelopes

Every symmetric monoidal ∞-category C⊗ → N(Fin∗) can be regarded as an ∞-operad, and every

symmetric monoidal functor determines a map between the underlying∞-operads. This observation

provides a forgetful functor from the ∞-category Cat⊗∞ ' CAlg(Cat∞) of symmetric monoidal ∞-

categories to the ∞-category Op∞ of ∞-operads. Our goal in this section is to construct a left

adjoint to this forgetful functor. More generally, we will give a construction which converts an

arbitrary fibration of ∞-operads C⊗ → O⊗ into a coCartesian fibration of ∞-operads EnvO(C)⊗ →
O⊗.

Construction 2.2.4.1. Let O⊗ be an ∞-operad. We let Act(O⊗) denote the full subcategory

of Fun(∆1,O⊗) spanned by the active morphisms. Suppose that p : C⊗ → O⊗ is a fibration of

∞-operads. We let EnvO(C)⊗ denote the fiber product

C⊗×Fun({0},O⊗) Act(O⊗).

We will refer to EnvO(C)⊗ as the O-monoidal envelope of C⊗. In the special case where O⊗ is the

commutative ∞-operad, we will denote EnvO(C)⊗ simply by Env(C)⊗.

Remark 2.2.4.2. More informally, we can identify EnvO(C)⊗ with the∞-category of pairs (C,α),

where C ∈ C⊗ and α : p(C)→ X is an active morphism in O⊗.
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Remark 2.2.4.3. Let C⊗ be an ∞-operad. Evaluation at {1} ⊆ ∆1 induces a map Env(C)⊗ →
N(Fin∗). We let Env(C) denote the fiber Env(C)⊗〈1〉. Unwinding the definitions, we deduce that

Env(C) can be identified with the subcategory C⊗act ⊆ C⊗ spanned by all objects and active mor-

phisms between them.

We will defer the proof of the following basic result until the end of this section:

Proposition 2.2.4.4. Let p : C⊗ → O⊗ be a fibration of ∞-operads. Then evaluation at the vertex

{1} ⊆ ∆1 induces a coCartesian fibration of ∞-operads q : EnvO(C)⊗ → O⊗.

Taking O⊗ to be the commutative ∞-operad, we deduce the following:

Corollary 2.2.4.5. Let C⊗ be an ∞-operad. Then there is a canonical symmetric monoidal struc-

ture on the ∞-category C⊗act of active morphisms.

Remark 2.2.4.6. If C⊗ is an∞-operad, we let ⊕ : C⊗act×C⊗act → C⊗act denote the functor induced by

the symmetric monoidal structure described in Corollary 2.2.4.5. This operation can be described

informally as follows: if X ∈ C⊗〈m〉 classifies a sequence of objects {Xi ∈ C}1≤i≤m and Y ∈ C⊗〈n〉
classifies a sequence {Yj ∈ C}1≤j≤n, then X ⊕ Y ∈ C⊗〈m+n〉 corresponds to the sequence of objects

{Xi ∈ C}1≤i≤m ∪ {Yj ∈ C}1≤j≤n obtained by concatenation.

Remark 2.2.4.7. The symmetric monoidal structure on C⊗act described in Corollary 2.2.4.5 can

actually be extended to a symmetric monoidal structure on C⊗ itself, but we will not need this.

Remark 2.2.4.8. Let O⊗ be an ∞-operad, and let q : C⊗ → O⊗ be a O-monoidal ∞-category.

Then the collection of active q-coCartesian morphisms in C⊗ is stable under the operation ⊕ :

C⊗act×C⊗act → C⊗act. To see this, let α : C → C ′ and β : D → D′ be active q-coCartesian morphisms

in C⊗. Let γ : C ⊕D → E be a q-coCartesian morphism lifting q(α⊕ β). We have a commutative

diagram in O⊗

p(C)

��

p(C ⊕D) //oo

��

p(D)

��
p(C ′) p(C ′ ⊕D′)oo // p(D′)

We can lift this to a diagram of q-coCartesian morphisms

C

��

C ⊕D //oo

��

D

��
C ′ Eoo // D′.

Let δ : E → C ′ ⊕D′ be the canonical map in C⊗p(C′⊕D′); the above diagram shows that the image

of δ is an equivalence in both C⊗p(C′) and C⊗p(D′). Since C⊗p(C′⊕D′) ' C⊗p(C′)×C⊗p(D′), it follows that δ

is an equivalence, so that α⊕ β is q-coCartesian as desired.
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For any ∞-operad O⊗, the diagonal embedding O⊗ → Fun(∆1,O⊗) factors through Act(O⊗).

Pullback along this embedding induces an inclusion C⊗ ⊆ EnvO(C)⊗ for any fibration of∞-operads

C⊗ → O⊗. It follows from Proposition 2.2.4.4 and Lemma 2.2.4.16 (below) that this inclusion is a

map of ∞-operads. The terminology “O-monoidal envelope” is justified by the following result:

Proposition 2.2.4.9. Let p : C⊗ → O⊗ be a fibration of ∞-operads and p′ : EnvO(C)⊗ → O⊗ the

induced coCartesian fibration of ∞-operads, and let q : D⊗ → O⊗ be another coCartesian fibration

of ∞-operads. The inclusion i : C⊗ ⊆ EnvO(C)⊗ induces an equivalence of ∞-categories

Fun⊗O (EnvO(C),D)→ AlgC(D).

Here Fun⊗O (UO(C),D) denotes the full subcategory of FunO⊗(EnvO(C)⊗,D⊗) spanned by those func-

tors which carry p′-coCartesian morphisms to q-coCartesian morphisms, and AlgC(D) the full sub-

category of FunO⊗(C⊗,D⊗) spanned by the maps of ∞-operads.

Remark 2.2.4.10. Since every diagonal embedding O⊗ → Act(O⊗) is fully faithful, we conclude

that for every fibration of ∞-operads C⊗ → O⊗ the inclusion C⊗ ↪→ EnvO(C)⊗ is fully faithful.

In particular, we deduce that for every ∞-operad C⊗ there exists a fully faithful ∞-operad map

C⊗ → D⊗, where D⊗ is a symmetric monoidal ∞-category.

We now turn to the proofs of Propositions 2.2.4.4 and 2.2.4.9. We will need several preliminary

results.

Lemma 2.2.4.11. Let p : C → D be a coCartesian fibration of ∞-categories. Let C′ be a full

subcategory of C satisfying the following conditions:

(i) For each D ∈ D, the inclusion C′D ⊆ CD admits a left adjoint LD.

(ii) For every morphism f : D → D′ in D, the associated functor f! : CD → CD′ carries LD-

equivalences to LD′-equivalences.

Then:

(1) The restriction p′ = p|C′ is a coCartesian fibration.

(2) Let f : C → C ′ be a morphism in C′ lying over g : D → D′ in D, and let g! : CD → CD′ be

the functor induced by the coCartesian fibration p. Then f is p′-coCartesian if and only if

the induced map α : g!C → C ′ is an LD′-equivalence.

Proof. We first prove the “if” direction of (2). According to Proposition HTT.2.4.4.3 , it will suffice

to show that for every object C ′′ ∈ C′ lying over D′′ ∈ D, the outer square in the homotopy coherent

diagram

MapC(C ′, C ′′)
θ //

��

MapC(g!C,C
′′) //

��

MapC(C,C ′′)

��
MapD(D′, D′′) //MapD(D′, D′′) //MapD(D,D′′)
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is a homotopy pullback square. Since the right square is a homotopy pullback (Proposition

HTT.2.4.4.3 ), it will suffice to show that θ induces a homotopy equivalence after passing the

homotopy fiber over any map h : D′ → D′′. Using Proposition HTT.2.4.4.2 , we see that this is

equivalent to the assertion that the map h!(α) is an LD′′-equivalence. This follows from (ii), since

α is an LD′-equivalence.

To prove (1), it will suffice to show that for every C ∈ C′ and every g : p(C)→ D′ in D, there

exists a morphism f : C → C ′ lying over g satisfying the criterion of (2). We can construct f as a

composition C
f ′→ C ′′

f ′′→ C ′, where f ′ is a p-coCartesian lift of g in C, and f ′′ : C ′′ → C ′ exhibits

C ′ as an C′D′-localization of C ′′.

We conclude by proving the “only if” direction of (2). Let f : C → C ′ be a p′-coCartesian

morphism in C′ lying over g : D → D′. Choose a factorization of f as a composition C
f ′→ C ′′

f ′′→ C ′,

where f ′ is p-coCartesian and f ′′ is a morphism in CD′ . The map f ′′ admits a factorization as

a composition C ′′
h→ C ′′′

h′→ C ′, where h exhibits C ′′′ as a C′D′-localization of C ′′. The first part

of the proof shows that the composition h ◦ f ′ is a p′-coCartesian lift of g. Since f is also a p′-

coCartesian lift of g, we deduce that h′ is an equivalence. It follows that f ′′ = h′ ◦ h exhibits C ′ as

a C′D′-localization of C ′′ ' g!C, so that f satisfies the criterion of (2).

Remark 2.2.4.12. Let C′ ⊆ C and p : C → D be as in Lemma 2.2.4.11. Hypotheses (i) and (ii)

are equivalent to the following:

(i′) The inclusion C′ ⊆ C admits a left adjoint L.

(ii′) The functor p carries each L-equivalence in C to an equivalence in D.

Suppose first that (i) and (ii) are satisfied. To prove (i′) and (ii′), it will suffice (by virtue of

Proposition HTT.5.2.7.8 ) to show that for each object C ∈ CD, if f : C → C ′ exhibits C ′ as a

C′D-localization of C, then f exhibits C ′ as a C′-localization of C. In other words, we must show

that for each C ′′ ∈ C′ lying over D′′ ∈ D, composition with f induces a homotopy equivalence

MapC(C ′, C ′′)→ MapC(C,C ′′). Using Proposition HTT.2.4.4.2 , we can reduce to showing that for

every morphism g : D → D′′ in D, the induced map MapCD′′
(g!C

′, C ′′) → MapCD′′
(g!C,C

′′) is a

homotopy equivalence. For this, it suffices to show that g!(f) is an LD′′-equivalence, which follows

immediately from (ii).

Conversely, suppose that (i′) and (ii′) are satisfied. We first prove (i). Fix D ∈ D. To prove

that the inclusion C′D ⊆ CD admits a left adjoint, it will suffice to show that for each object C ∈ CD

there exists a C′D-localization of C (Proposition HTT.5.2.7.8 ). Fix a map f : C → C ′ in C which

exhibits C ′ as a C′-localization of C. Assumption (ii′) guarantees that p(f) is an equivalence in

D. Replacing f by an equivalent morphism if necessary, we may suppose that p(f) = idD so

that f is a morphism in CD. We claim that f exhibits C ′ as a C′D-localization of C. To prove

this, it suffices to show that for each C ′′ ∈ C′D, composition with f induces a homotopy equivalence

MapCD
(C ′, C ′′)→ MapCD

(C,C ′′). Using Proposition HTT.2.4.4.2 , we can reduce to showing that f
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induces a homotopy equivalence MapC(C ′, C ′′)→ MapC(C,C ′′), which follows from the assumption

that f exhibits C ′ as a C′-localization of C.

We now prove (ii). Let f : C → C ′ be an LD-equivalence in CD, and let g : D → D′′ be a

morphism in D. We wish to show that g!(f) is an LD′′-equivalence in CD′′ . In other words, we wish

to show that for each object C ′′ ∈ C′D′′ , the map MapCD′′
(g!C

′, C ′′)→ MapCD′′
(g!C,C

′′) is a homo-

topy equivalence. This follows from Proposition HTT.2.4.4.2 and the fact that MapC(C ′, C ′′) →
MapC(C,C ′′) is a homotopy equivalence.

Lemma 2.2.4.13. Let p : C → D be an inner fibration of ∞-categories. Let D′ ⊆ D be a full

subcategory and set C′ = D′×D C. Assume that:

(i) The inclusion D′ ⊆ D admits a left adjoint.

(ii) Let C ∈ C be an object and let g : p(C) → D be a morphism which exhibits D as a D′-

localization of p(C). Then g can be lifted to a p-coCartesian morphism C → C ′.

Then:

(1) A morphism f : C → C ′ exhibits C ′ as a C′-localization of C if and only if p(f) exhibits p(C ′)

as a D′-localization of p(C) and f is p-coCartesian.

(2) The inclusion C′ ⊆ C admits a left adjoint.

Proof. We first prove the “if” direction of (1). Fix an object C ′′ ∈ C′; we wish to prove that f

induces a homotopy equivalence MapC(C ′, C ′′) → MapC(C,C ′′). Using Proposition HTT.2.4.4.3 ,

we deduce that the homotopy coherent diagram

MapC(C ′, C ′′) //

��

MapC(C,C ′′)

��
MapD(p(C ′), p(C ′′)) //MapD(p(C), p(C ′′))

is a homotopy pullback square. It therefore suffices to show that the bottom horizontal map is

a homotopy equivalence, which follows from the assumptions that p(C ′′) ∈ D′ and p(f) exhibits

p(C ′) as a D′-localization of p(C).

Assertion (2) now follows from (ii) together with Proposition HTT.5.2.7.8 . To complete the

proof, we verify the “only if” direction of (1). Let f : C → C ′ be a map which exhibits C ′ as a

C′-localization of C, and let g : D → D′ be the image of f in D. Then f factors as a composition

C
f ′→ g!C

f ′′→ C ′;

we wish to prove that f ′′ is an equivalence. This follows from the first part of the proof, which

shows that f ′ exhibits g!C as a C′-localization of C.
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Lemma 2.2.4.14. Let p : C⊗ → O⊗ be a fibration of∞-operads, and let D = C⊗×Fun({0},O⊗) Fun(∆1,O⊗).

Then the inclusion EnvO(C)⊗ ⊆ D admits a left adjoint. Moreover, a morphism α : D → D′ in D

exhibits D′ as an EnvO(C)⊗-localization of D if and only if D′ is active, the image of α in C⊗ is

inert, and the image of α in O⊗ is an equivalence.

Proof. According to Proposition 2.1.2.4, the active and inert morphisms determine a factorization

system on O⊗. It follows from Lemma HTT.5.2.8.19 that the inclusion Act(O⊗) ⊆ Fun(∆1,O⊗) ad-

mits a left adjoint, and that a morphism α : g → g′ in Fun(∆1,O⊗) corresponding to a commutative

diagram

X
f //

g

��

X ′

g′

��
Y

f ′ // Y ′

in O⊗ exhibits g′ as an Act(O⊗)-localization of g if and only if g′ is active, f is inert, and f ′ is an

equivalence. The desired result now follows from Lemma 2.2.4.13.

Lemma 2.2.4.15. Let p : C⊗ → O⊗ be a fibration of∞-operads, and let D = C⊗×Fun({0},O⊗) Fun(∆1,O⊗).

Then:

(1) Evaluation at {1} induces a coCartesian fibration q′ : D→ O⊗.

(2) A morphism in D is q′-coCartesian if and only if its image in C⊗ is an equivalence.

(3) The map q′ restricts to a coCartesian fibration q : EnvO(C)⊗ → O⊗.

(4) A morphism f in EnvO(C)⊗ is q-coCartesian if and only if its image in C⊗ is inert.

Proof. Assertions (1) and (2) follow from Corollary HTT.2.4.7.12 . Assertions (3) and (4) follow

by combining Lemma 2.2.4.14, Remark 2.2.4.12, and Lemma 2.2.4.11.

Lemma 2.2.4.16. Let C denote the full subcategory of Fun(∆1,N(Fin∗)) spanned by the active

morphisms, and let p : C → N(Fin∗) be given by evaluation on the vertex 1. Let X ∈ C be an

object with p(X) = 〈n〉, and choose p-coCartesian morphisms fi : X → Xi covering the maps

ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n. These morphisms determine a p-limit diagram 〈n〉◦/ → C.

Proof. Let X be given by an active morphism β : 〈m〉 → 〈n〉. Each of the maps fi can be identified

with a commutative diagram

〈m〉 γi //

β
��

〈mi〉

βi
��

〈n〉 ρi // 〈1〉

where βi is active and γi is inert. Unwinding the definitions, we must show the following:



2.2. CONSTRUCTIONS OF ∞-OPERADS 217

(∗) Given an active morphism β′ : 〈m′〉 → 〈n′〉 in Fin∗, a map δ : 〈n′〉 → 〈n〉, and a collection of

commutative diagrams

〈m′〉 εi //

��

〈mi〉

βi
��

〈n′〉 ρi◦δ // 〈1〉,

there is a unique morphism ε : 〈m′〉 → 〈m〉 such that εi = γi ◦ ε.

For each j ∈ 〈m′〉, let j′ = (δ ◦ β′)(j) ∈ 〈n〉. Then ε is given by the formula

ε(j) =

{
∗ if j′ = ∗
γ′−1
j (εi(j)) if j′ 6= ∗.

Proof of Proposition 2.2.4.4. Lemma 2.2.4.15 implies that q is a coCartesian fibration. It will

therefore suffice to show that EnvO(C)⊗ is an ∞-operad. Let r denote the composition

EnvO(C)⊗
q→ O⊗ → N(Fin∗).

Let X ∈ EnvO(C)⊗〈n〉, and choose r-coCartesian morphisms X → Xi covering ρi : 〈n〉 → 〈1〉 for

1 ≤ i ≤ n. We wish to prove that these morphisms determine an r-limit diagram α : 〈n〉◦/ →
EnvO(C)⊗.

Let D = C⊗×Fun({0},O⊗) Fun(∆1,O⊗). Then r extends to a map r′ : D → N(Fin∗). To show

that α is an r-limit diagram, it will suffice to show that α is an r′-limit diagram. Write r′ as a

composition

D
r′0→ Fun(∆1,O⊗)

r′1→ Fun(∆1,N(Fin∗))
r′2→ N(Fin∗).

In view of Proposition HTT.4.3.1.5 , it will suffice to show that α is an r′0-limit diagram, that r′0 ◦α
is an r′1-limit diagram, and that r′1 ◦ r′0 ◦ α is an r′2-limit diagram. The second of these assertions

follows from Remark 2.1.2.6 and Lemma 3.2.2.9, and the last from Lemma 2.2.4.16. To prove that

α is an r′0-limit diagram, we consider the pullback diagram

D //

��

Fun(∆1,O⊗)

��
C⊗ // O⊗ .

Using Proposition HTT.4.3.1.5 , we are reduced to the problem of showing that the induced map

〈n〉◦/ → C⊗ is a p-limit diagram; this follows from Remark 2.1.2.11.
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To complete the proof, it will suffice to show for any finite collection of objects Xi ∈ EnvO(C)⊗〈1〉
(parametrized by 1 ≤ i ≤ n), there exists an object X ∈ EnvO(C)⊗〈n〉 and a collection of r-

coCartesian morphisms X → Xi covering the maps ρi : 〈n〉 → 〈1〉. Each Xi can be identified

with an object Ci ∈ C⊗ and an active morphism βi : p(Ci)→ Yi in O⊗, where Yi ∈ O. The objects

Yi determine a diagram g : 〈n〉◦ → O⊗. Using the assumption that O⊗ is an ∞-operad, we deduce

the existence of an object Y ∈ O⊗〈n〉 and a collection of inert morphisms Y → Yi covering the maps

ρi : 〈n〉 → 〈1〉. We regard these morphisms as providing an object Y ∈ O⊗/g lifting Y . Let Ci ∈ C⊗

lie over 〈mi〉 in Fin∗. Since C⊗ is an ∞-operad, there exists an object C ∈ C⊗〈m〉 and a collection of

inert morphisms C → Ci, where m = m1 + · · · + mn. Composing these maps with the βi, we can

lift p(C) to an object Z ∈ O⊗/g. To construct the object X and the maps X → Xi, it suffices to

select a morphism Z → Y in O⊗/g. The existence of such a morphism follows from the observation

that Y is a final object of O⊗/g.

Proof of Proposition 2.2.4.9. Let E⊗ denote the essential image of i : C⊗ → EnvO(C)⊗. We can

identify E⊗ with the full subcategory of EnvO(C)⊗ spanned by those objects (X,α : p(X) → Y )

for which X ∈ C⊗ and α is an equivalence in O⊗. We observe that i induces an equivalence of

∞-operads C⊗ → E⊗. It will therefore suffice to prove that the restriction functor

Fun⊗O (EnvO(C),D)→ AlgE /O(D)

is an equivalence of ∞-categories. In view of Proposition HTT.4.3.2.15 , it will suffice to show the

following:

(a) Every ∞-operad map θ0 : E⊗ → D⊗ admits a q-left Kan extension θ : EnvO(C)⊗ → D⊗.

(b) An arbitrary map θ : EnvO(C)⊗ → D⊗ in (Set∆)/O⊗ is a O-monoidal functor if and only if it

is a q-left Kan extension of θ0 = θ|E⊗ and θ0 is an ∞-operad map.

To prove (a), we will use criterion of Lemma HTT.4.3.2.13 : it suffices to show that for every object

X = (X,α : p(X)→ Y ) in EnvO(C)⊗, the induced diagram E⊗×EnvO(C)⊗ EnvO(C)⊗
/X
→ D⊗admits

a q-colimit covering the natural map (E⊗×EnvO(C)⊗ EndO(C)⊗
/X

). → D⊗ . To see this, we observe

that the ∞-category E⊗×EnvO(C)⊗ EnvO(C)⊗
/X

has a final object, given by the pair (X, idp(X)). It

therefore suffices to show that there exists a q-coCartesian morphism θ0(X, idp(X)) → C lifting

α : p(X)→ Y , which follows from the assumption that q is a coCartesian fibration. This completes

the proof of (a) and yields the following version of (b):

(b′) Let θ : EnvO(C)⊗ → D⊗ be a morphism in (Set∆)/O⊗ such that the restriction θ0 = θ|E⊗

is an ∞-operad map. Then θ is a q-left Kan extension of θ0 if and only if, for every object

(X,α : p(X)→ Y ) ∈ Env(O)⊗, the canonical map θ(X, idp(X))→ θ(X,α) is q-coCartesian.
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We now prove (b). Let θ : EnvO(C)⊗ → D⊗ be such that the restriction θ0 = θ|E⊗ is an

∞-operad map. In view of (b′), it will suffice to show that θ is a O-monoidal functor if and only

if θ(X, idp(X) → θ(X,α) is q-coCartesian, for each (X,α) ∈ EnvO(C)⊗. The “only if” direction

is clear, since Lemma 2.2.4.16 implies that the morphism (X, idp(X) → (X,α) in EnvO(C)⊗ is p′-

coCartesian, where p′ : EnvO(C)⊗ → O⊗ denotes the projection. For the converse, suppose that we

are given a p′-coCartesian morphism f : (X,α) → (Y, α′) in EnvO(C)⊗. Let β : p(X) → p(Y ) be

the induced map in O⊗, and choose a factorization β ' β′′ ◦ β′ where β′ is inert and β′′ is active.

Choose a p-coCartesian morphism β
′
: X → X ′′ lifting β′. We then have a commutative diagram

(X, idp(X))
f ′ //

g

��

(X ′′, idp(X′′))

g′

��
(X,α)

f // (X ′, α′).

The description of p′-coCartesian morphisms supplied by Lemma 2.2.4.16 shows that the map

X ′′ → X ′ is an equivalence in O⊗. If θ satisfies the hypotheses of (b′), then θ(g) and θ(g′) are

q-coCartesian. The assumption that θ0 is an∞-operad map guarantees that θ(f ′) is q-coCartesian.

It follows from Proposition HTT.2.4.1.7 that θ(f) is q-coCartesian. By allowing f to range over

all morphisms in EnvO(C)⊗ we deduce that θ is a O-monoidal functor, as desired.

2.2.5 Tensor Products of ∞-Operads

Let O⊗ and O′
⊗

be a pair of ∞-operads. Our goal in this section is to introduce a new ∞-operad

O′′
⊗

, which we call the tensor product of O⊗ and O′
⊗

. This tensor product is characterized (up

to equivalence) by the existence of a map O⊗×O′⊗ → O′′
⊗

with a certain universal property:

see Definition 2.2.5.3. This universal property guarantees the existence of an equivalence of ∞-

categories AlgO′′(C)→ AlgO(AlgO′(C)), for every symmetric monoidal∞-category C: here AlgO′(C)

is endowed with a symmetric monoidal structure determined by the tensor product in C.

Notation 2.2.5.1. We define a functor ∧ : Fin∗×Fin∗ → Fin∗ as follows:

(i) On objects, ∧ is given by the formula 〈m〉 ∧ 〈n〉 = 〈mn〉.

(ii) If f : 〈m〉 → 〈m′〉 and g : 〈n〉 → 〈n′〉 are morphisms in Fin∗, then f ∧g is given by the formula

(f ∧ g)(an+ b− n) =

{
∗ if f(a) = ∗ or g(b) = ∗
f(a)n′ + g(b)− n′ otherwise.

In other words, ∧ is given by the formula 〈m〉 ∧ 〈n〉 = (〈m〉◦ × 〈n〉◦)∗, where we identify

〈m〉◦ × 〈n〉◦ with 〈mn〉◦ via the lexicographical ordering.
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Remark 2.2.5.2. The operation ∧ of Notation 2.2.5.1 is associative, and endows Fin∗ with the

structure of a strict monoidal category (that is, we have equalities (〈l〉∧〈m〉)∧〈n〉 = 〈l〉∧(〈m〉∧〈n〉),
rather than just isomorphisms). In particular, the nerve N(Fin∗) has the structure of a simplicial

monoid.

Definition 2.2.5.3. Let O⊗, O′
⊗

, and O′′
⊗

be ∞-operads. A bifunctor of ∞-operads is a map

f : O⊗×O′⊗ → O′′
⊗

with the following properties:

(i) The diagram

O⊗×O′⊗ //

��

O′′
⊗

��
N(Fin∗)×N(Fin∗)

∧ // N(Fin∗)

commutes.

(ii) For every inert morphism α in O⊗ and every inert morphism β in O′
⊗

, the image f(α, β) is

an inert morphism in O′′
⊗

.

We let BiFunc(O⊗,O′
⊗

;O′′
⊗

) denote the full subcategory of FunN(Fin∗)(O
⊗×O′⊗ → O′′

⊗
)

spanned by those maps which satisfy (ii); we will refer to BiFunc(O⊗,O′
⊗

;O′′
⊗

) as the ∞-category

of ∞-operad bifunctors from O⊗ × O′
⊗

into O′′
⊗

.

Given an∞-operad bifunctor f : O⊗×O′⊗ → O′′
⊗

and another∞-operad C⊗, composition with

f determines a functor θ : AlgO′′(C)→ BiFunc(O⊗,O′
⊗

;C⊗). We will say that f exhibits O′′
⊗

as a

tensor product of O⊗ and O′
⊗

if the functor θ is an equivalence for every ∞-operad C⊗.

Remark 2.2.5.4. For every triple of∞-operads O⊗, O′
⊗

, and O′′
⊗

, we let Mul∧Op∆
∞

({O⊗,O′⊗},O′′⊗)

denote the largest Kan complex contained in the ∞-category BiFunc(O⊗,O′
⊗

;O′′
⊗

). We claim

that a bifunctor of ∞-operads f : O⊗×O′⊗ → O′′
⊗

exhibits O′′
⊗

as an tensor product of

O⊗ with O′
⊗

if and only if, for every ∞-operad C⊗, composition with f induces a homotopy

equivalence θC⊗ : AlgO′′(C)' → Mul∧Op∆
∞

({O⊗,O′⊗},O′′⊗). The “only if” direction is clear. For

the converse, we observe that to show that the functor AlgO′′(C) → BiFunc(O⊗,O′
⊗

;C⊗) is

an equivalence of ∞-categories, it suffices to show that for every simplicial set K the induced

functor Fun(K,AlgO′′(C)) → Fun(K,BiFunc(O⊗,O′
⊗

;C⊗)) induces a homotopy equivalence from

Fun(K,AlgO′′(C))' to Fun(K,BiFunc(O⊗,O′
⊗

;C⊗))'. Unwinding the definitions, we see that this

map is given by θD⊗ , where D⊗ denotes the ∞-operad Fun(K,C⊗)×Fun(K,N(Fin∗)) N(Fin∗).

It is immediate from the definition that if a pair of ∞-operads O⊗ and O′
⊗

admits a tensor

product O′′
⊗

, then O′′
⊗

is determined uniquely up to equivalence. To prove the existence of the

tensor product it is convenient to work in the more general setting of ∞-preoperads:
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Notation 2.2.5.5. Let X = (X,M) and Y = (Y,M ′) be ∞-preoperads: that is, X and Y are

simplicial sets equipped with maps X → N(Fin∗) ← Y , and M and M ′ are collections of edges of

X and Y . We let X � Y denote the ∞-preoperad (X × Y,M ×M ′), where we regard X × Y as an

object of (Set∆)/N(Fin∗) via the map X × Y → N(Fin∗)×N(Fin∗)
∧→ N(Fin∗).

Unwinding the definitions (and using Remark 2.2.5.4), we see that a bifunctor of ∞-operads

f : O⊗×O′⊗ → O′′
⊗

exhibits O′′
⊗

as a tensor product of O⊗ and O′
⊗

if and only if the induced map O⊗,\�O′⊗,\ → O′
′⊗,\

is a weak equivalence of ∞-preoperads. In other words, a tensor product of a pair of ∞-operads

O⊗ and O′
⊗

can be identified with a fibrant replacement for the object O⊗,\�O′⊗,\ in the category

POp∞. This proves:

Proposition 2.2.5.6. Let O⊗ and O′
⊗

be ∞-operads. Then there exists a bifunctor of ∞-operads

O⊗ × O′
⊗ → O′′

⊗
which exhibits O′′

⊗
as a tensor product of O⊗ and O′

⊗
.

We now show that the operation � is compatible with the ∞-operadic model structure on

POp∞.

Proposition 2.2.5.7. The functor � endows POp∞ with the structure of a monoidal model cate-

gory.

Remark 2.2.5.8. In the approach to ∞-operads based on dendroidal sets, one can do better: the

tensor product of∞-operads is modelled by an operation which is commutative up to isomorphism.

We refer to [31] for a discussion.

Proof of Proposition 2.2.5.7. Since every object of POp∞ is cofibrant, it will suffice to show that

the functor

� : POp∞×POp∞ → POp∞

is a left Quillen bifunctor. Let P be as in the proof of Proposition 2.1.4.6. Using Remark B.2.5,

we deduce that the Cartesian product functor POp∞×POp∞ → (Set+∆)/P×P is a left Quillen

bifunctor. The desired result now follows by applying Proposition B.2.9 to the product functor

N(Fin∗)×N(Fin∗)→ N(Fin∗).

Our next goal is to discuss the symmetry properties of the tensor product construction on ∞-

operads. Here we encounter a subtlety: the functor ∧ : Fin∗×Fin∗ → Fin∗ endows Fin∗ with the

structure of a symmetric monoidal category. However, this symmetric monoidal structure is not

strict: the natural symmetry isomorphism 〈mn〉 ' 〈m〉∧〈n〉 ' 〈n〉∧〈m〉 ' 〈mn〉 is not the identity,

because the two different lexicographical orderings of 〈m〉◦× 〈n〉◦ do not coincide. We can address

this problem by replacing the specific functor ∧ : Fin∗×Fin∗ → Fin∗ of Notation 2.2.5.1 by the

collection of all functors which are isomorphic to ∧.
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Notation 2.2.5.9. Let F : Fin∗× · · · × Fin∗ → Fin∗ be a functor. We will say that F is a smash

product functor if it has the following properties:

(1) There exists an isomorphism (automatically unique) F (〈1〉, . . . , 〈1〉) ' 〈1〉.

(2) The functor F preserves coproducts separately in each variable.

Example 2.2.5.10. The functor F : Fin∗× · · · × Fin∗ → Fin∗ given by F (〈n1〉, . . . , 〈nk〉) =

〈n1〉 ∧ · · · ∧ 〈nk〉 = 〈n1 · · ·nk〉 is a smash product functor.

Notation 2.2.5.11. For every finite set I, the collection of smash product functors F : Fin∗
I →

Fin∗ forms a category, which we will denote by S(I). For every pair of objects F,G ∈ S(I), there

is a unique morphism from F to G (which is an isomorphism). Consequently, S(I) is equivalent to

the discrete category [0], consisting of the smash product functor described in Example 2.2.5.10.

Construction 2.2.5.12. Given a collection of ∞-operads {O⊗i }i∈I , another ∞-operad O′
⊗

, we

define a simplicial set MulOp∆
∞

({O⊗i },O
′⊗) equipped with a map MulOp∆

∞
({O⊗i },O

′⊗) → N(S(I))

so that the following universal property is satisfied: for every simplicial set K equipped with a

map K → N(S(I)), there is a natural bijection of FunN(S(I))(K,MulOp∆
∞

({O⊗i },O
′⊗) with the set

of commutative diagrams

K ×
∏
i∈I O

⊗
i

f //

��

O′⊗

��
N(S(I))×N(Fin∗)

I // N(Fin∗)

having the following property: given any collection of inert morphisms {αi ∈ Fun(∆1,O⊗i }i∈I and

any edge β ∈ K, the image f(β, {αi}) is an inert morphism in O′⊗.

It is not difficult to see that the map MulOp∆
∞

({O⊗i },O
′⊗)→ N(S(I)) is a Kan fibration, whose

fiber over the object ∧ ∈ S(I) (see Example 2.2.5.10) can be identified with the Kan complex of

multilinear maps of ∞-operads ∏
i∈I

O⊗i → O′⊗

(in other words, the space of maps from
⊙

i∈I O
⊗,\
i to O′⊗,\ in the simplicial category POp∞). With

the evident composition maps, these mapping spaces determine a simplicial colored operad Op∆
∞,

whose objects are small ∞-operads.

Let Op(∞)⊗ denote the operadic nerve N⊗(Op∆
∞) (see Definition 2.1.1.23). Since the simplicial

colored operad Op∆
∞ is fibrant (Definition 2.1.1.26), we conclude that Op(∞)⊗ is an ∞-operad

(Proposition 2.1.1.27).

Proposition 2.2.5.13. (a) The ∞-operad Op(∞)⊗ → N(Fin∗) of Construction 2.2.5.12 is a

symmetric monoidal ∞-category.
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(b) There is a canonical equivalence of ∞-categories Op∞ → Op(∞).

(c) The bifunctor

Op∞×Op∞ ' Op(∞)×Op(∞)
⊗→ Op(∞) ' Op∞

is given by the tensor product construction of Definition 2.2.5.3.

(d) The unit object of Op(∞) can be identified with a fibrant replacement for the ∞-preoperad

{〈1〉}[

Proof. For the proof, we will borrow some results from Chapter 4. By virtue of Proposition 4.1.1.14,

assertion (a) is equivalent to the statement that Op(∞)⊗×N(Fin∗) Assoc⊗ is a monoidal∞-category.

This follows immediately from Example 4.1.7.18 and Variant 4.1.7.17. Assertion (b) is immediate

from Example 4.1.7.18. Assertion (c) and (d) follow from Example 4.1.7.18 and the proof of

Proposition 4.1.7.10.

Remark 2.2.5.14. It follows from Example 2.1.4.8 that the Triv⊗,\ can be identified with a fibrant

replacement for the∞-preoperad {〈1〉}[. It follows that the trivial∞-operad Triv⊗ is a unit object

of Op(∞).

We now describe the relationship between tensor products of∞-operads and ordinary products

of∞-categories. Let Set+
∆ denote the category of marked simplicial sets, equipped with the marked

model structure described in §HTT.3.1.3 . The subcategory (Set+
∆)o of fibrant-cofibrant objects is

endowed with a symmetric monoidal structure, given by the Cartesian product. We will denote

the associated symmetric monoidal ∞-category N⊗((Set+
∆)o) by Cat×∞: its underlying ∞-category

is the ∞-category Cat∞ of small ∞-categories, and the symmetric monoidal structure is given by

the formation of Cartesian products of ∞-categories. The construction O⊗ 7→ O determines a map

of simplicial colored operads Op∆
∞ → (Set+

∆)o. Passing to the operadic nerve, we get a map of

∞-operads θ : Op(∞)⊗ → Cat×∞.

Proposition 2.2.5.15. Let Op(∞)′ denote the full subcategory of Op(∞) ' Op∞ spanned by

those ∞-operads p : O⊗ → N(Fin∗) for which p factors through Triv⊗ ⊆ N(Fin∗) (see Proposition

2.1.4.11). Then:

(a) The subcategory Op(∞)′ contains the unit object of Op(∞) and is stable under tensor prod-

ucts. Consequently, Op(∞)′ inherits a symmetric monoidal structure Op(∞)′
⊗

(Proposition

2.2.1.1).

(b) The functor θ restricts to a symmetric monoidal equivalence Op(∞)′
⊗ → Cat×∞.

In other words, when restricted to those ∞-operads which belong to the image of the fully

faithful embedding Cat∞ → Op∞ of Proposition 2.1.4.11, the operation of tensor product recovers

the usual Cartesian product of ∞-categories.
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Proof. As in the proof of Proposition 2.2.5.13, it will be convenient to borrow some ideas from

Chapter 4. According to Remark 2.2.5.14, the unit object of Op(∞) can be identified with Triv⊗,

which obviously belongs to Op(∞)′. If O⊗ and O′
⊗

are ∞-operads belonging to Op(∞)′ having

tensor product O′′
⊗

, then O′′
⊗

admits a map to the tensor product of Triv⊗ with itself. Since Triv⊗

is a unit object of Op(∞)′, this tensor product can be identified with Triv⊗, so that O′′
⊗

belongs

to Op(∞)′. This proves (a).

To prove (b), we note that θ induces an equivalence between the underlying ∞-categories

Op(∞)′ → Cat∞ by Proposition 2.1.4.11. In view of Remark 2.1.3.8, to prove that θ|Op(∞)′
⊗

is an equivalence of ∞-categories, it will suffice to show that θ is a symmetric monoidal functor.

Let q : Op(∞)′
⊗ → N(Fin∗) and r : Cat×∞ → N(Fin∗) be the projection maps; we wish to show that

θ carries q-coCartesian morphisms to r-coCartesian morphisms. Let q′ : N⊗Assoc(POp∞
o)→ Assoc⊗

be the ∞-category of Example 4.1.7.18. Every q-coCartesian morphism in Op(∞)′
⊗

is the image

of a q′-coCartesian morphism in N⊗Assoc(POp∞
o) (see Example 4.1.7.18). It will therefore suffice to

show that the induced map

N⊗Assoc(POp∞
o)×Op(∞)⊗ Op(∞)′

⊗ ⊆ N⊗Assoc(POp∞
o)→ Cat×∞

carries q′-coCartesian morphisms to r-coCartesian morphisms. Using the proof of Proposition

4.1.7.10, we are reduced to the following assertion:

(∗) Let O⊗1 ,O
⊗
2 , . . . ,O

⊗
n be a sequence of ∞-operads belonging to Op(∞)′, and let f : O⊗1 × · · · ×

O⊗n → O′
⊗

be a map which exhibits O′
⊗

as a tensor product of the ∞-operads {O⊗i }1≤i≤n.

Then f induces an equivalence of ∞-categories O1× · · · × On → O′.

For each index i, we let O
\
i denote the marked simplicial set (Oi,Mi), where Mi is the collection

of equivalences in Oi. We claim that the inclusion φ : O
\
i ↪→ O

⊗,\
i is a weak equivalence of ∞-

preoperads. To prove this, it suffices to show that for any ∞-operad C⊗, composition with φ

induces a homotopy equivalence

MapPOp∞(O⊗,\i ,C⊗)→ MapPOp∞(O\i,C
⊗).

Without loss of generality, we may replace C⊗ by C⊗×N(Fin∗) Triv⊗ (this does not change either of

the relevant mapping spaces), and thereby reduce to Proposition 2.1.4.11.

The hypothesis that f exhibits O′
⊗

as a tensor product of the ∞-operads O⊗i is equivalent to

the requirement that f induces a weak equivalence of ∞-preoperads

O
⊗,\
1 � · · · � O⊗,\n → O′⊗,\.

It follows that the induced map α :
∏
i O

\
i → O′⊗,\ is a weak equivalence of∞-preoperads. According

to Proposition 2.1.4.11, there exists a map of ∞-operads C⊗ → Triv⊗ and an equivalence of
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∞-categories
∏
i Oi → C. The above argument shows that α induces a weak equivalence of ∞-

preoperads β :
∏
i O

\
i → C⊗,\. In particular, the map α can be factored as a composition∏

i

O
\
i

β→ C⊗,\
γ→ O′⊗,\.

Since α and β are weak equivalences, we conclude that γ is a weak equivalence between fibrant

objects of POp∞: that is, γ induces an equivalence of ∞-operads C⊗ → O′
⊗

. In particular, the

underlying map of ∞-categories C→ O′ is a categorical equivalence. It follows that the composite

functor
∏
i Oi → C→ O′ is also an equivalence, as desired.

2.2.6 Day Convolution

Let C and D be symmetric monoidal categories, with underlying tensor product functors

⊗C : C×C→ C ⊗D : D×D→ D .

Assume that C is small and that D admits small colimits. For every pair of functors F0, F1 : C→ D,

we define the Day convolution F0 ~ F1 ∈ Fun(C,D) to be a left Kan extension of ⊗D ◦ (F0 × F1)

along the tensor product functor ⊗C. More informally, the Day convolution F0 ~ F1 is a functor

from C to D, given on objects by the formula

(F0 ~ F1)(C) = lim−→
C0⊗C1→C

F0(C0)⊗ F1(C1)

where the colimit is taken over the category whose objects are triples (C0, C1, u) where C0 and C1

are objects of C and u : C0 ⊗ C1 → C is a morphism in C. The operation (F0, F1) 7→ F0 ~ F1

determines a functor

~ : Fun(C,D)× Fun(C,D)→ Fun(C,D)

with the following features:

(a) Assume that the tensor product functor ⊗D : D×D → D preserves small colimits sep-

arately in each variable. Then there is a symmetric monoidal structure on the functor

category Fun(C,D) whose underlying tensor product is given the Day convolution functor

~ : Fun(C,D)×Fun(C,D)→ Fun(C,D). In other words, the construction (F0, F1) 7→ F0~F1

is commutative and associative (up to canonical isomorphism).

(b) In the situation of (a), the category CAlg(Fun(C,D)) of commutative algebra objects of

Fun(C,D) is equivalent to the category of lax symmetric monoidal functors from C to D.

In [57], Glasman considers a version of the Day convolution product in the setting of symmetric

monoidal ∞-categories, and discusses ∞-categorical analogues of assertions (a) and (b). In this

section, we study a more general situation where C and D are O-monoidal ∞-categories, for some

∞-operad O. We begin with some general remarks.
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Definition 2.2.6.1. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads. Suppose we are

given fibrations of ∞-operads

C̃
⊗
→ C⊗ Õ

⊗
→ O⊗ .

We will say that a morphism of ∞-operads α : Õ
⊗
×O⊗ C⊗ → C̃

⊗
exhibits Õ

⊗
as a norm of C̃

⊗

along p if the diagram

Õ
⊗
×O⊗ C⊗

α //

$$

C̃
⊗

��
C⊗

commutes, and the following universal property is satisfied: for any map of ∞-operads O′⊗ → O⊗,

composition with α induces an equivalence of ∞-categories

AlgO′ /O(Õ)→ AlgO′×O C /C(C̃).

Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, and let C̃
⊗
→ C⊗ be a fibration of

∞-operads. It follows immediately from the definition that, if there exists a fibration of∞-operads

Õ
⊗
→ O⊗ and a morphism α : Õ

⊗
×O⊗ C⊗ → C̃

⊗
which exhibits Õ

⊗
as a norm of C̃

⊗
along p, then

the ∞-operad Õ
⊗

(and the morphism α) are determined uniquely up to equivalence (in fact, up to

a contractible space of choices). For existence, we have the following:

Theorem 2.2.6.2. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads and let C̃
⊗
→ C⊗

be a fibration of ∞-operads. Then there exists a fibration of ∞-operads NmC /O(C̃)⊗ → O⊗ and a

map

α : NmC /O(C̃)⊗ ×O⊗ C⊗ → C̃
⊗

which exhibits NmC /O(C̃)⊗ as a norm of C̃
⊗

along p.

We will prove Theorem 2.2.6.2 later in this section by providing an explicit construction of

the ∞-operad NmC /O(C̃)⊗. However, we can access many of the basic properties of the norm

NmC /O(C̃)⊗ directly from its defining properties.

Example 2.2.6.3 (Algebras in the Norm). Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-

operads, let C̃
⊗
→ C⊗ be a fibration of ∞-operads, and let Õ

⊗
be a norm of C̃

⊗
along p. Applying

the universal property of Definition 2.2.6.1 in the case O′⊗ = O⊗, we obtain an equivalence of

∞-categories Alg/O(Õ) ' Alg/C(C̃).

Proposition 2.2.6.4. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, let C̃
⊗
→ C⊗

and Õ
⊗
→ O⊗ be fibrations of ∞-operads, and let α : Õ

⊗
×O⊗ C⊗ → C̃

⊗
exhibit Õ

⊗
as a norm

of C̃
⊗

along p. Then, for every object X ∈ O, the induced map αX : ÕX × CX → C̃X induces an

equivalence of ∞-categories θ : ÕX → FunCX (CX , C̃X).
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Proof. Let Triv⊗ denote the trivial ∞-operad. Using Example 2.1.3.5, we see that there is an

essentially unique map of ∞-operads f : Triv⊗ → O⊗ carrying the object 〈1〉 ∈ Triv to X. Set

E⊗ = Triv⊗×O⊗ C
⊗, so that the underlying∞-category of E can be identified with CX . The functor

θ fits into a commutative diagram of ∞-categories

AlgTriv /O(Õ) //

��

AlgE /C(C̃)

��

ÕX
θ // FunCX (CX , C̃X).

Our assumption on α guarantees that the upper horizontal map is an equivalence of ∞-categories,

and Proposition 2.2.5.15 guarantees that the vertical maps are equivalences of ∞-categories. It

follows that θ is also an equivalence of ∞-categories, as desired.

Warning 2.2.6.5. In the situation of Proposition 2.2.6.4, let X be an arbitrary object of O⊗. In

this case, we can still consider the fibers

C⊗X = C⊗×O⊗{X} C̃
⊗
X = C̃

⊗
×O⊗ {X},

and the map α induces a functor of ∞-categories

θ : Õ
⊗
X → FunC⊗X

(C⊗X , C̃
⊗
X).

However, this map is generally not an equivalence of ∞-categories. Writing X = X1 ⊕ · · · ⊕ Xn

for Xi ∈ O (see Remark 2.1.1.15), we see that the functor θ fits into a commutative diagram of

∞-categories ∏
ÕXi

��

//
∏

FunCXi
(CXi , C̃Xi)

��

Õ
⊗
X

θ // FunC⊗X
(C⊗X , C̃

⊗
X)

where the left vertical and upper horizontal maps are equivalences (Proposition 2.2.6.4). However,

the right vertical map is usually not an equivalence for n > 1.

We can use Proposition 2.2.6.4 to understand the classification of objects in an ∞-operad of

the form NmC /O(C̃)⊗. To analyze morphisms in NmC /O(C̃)⊗, we will need the following more

technical statement:

Proposition 2.2.6.6. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, let C̃
⊗
→ C⊗ and

Õ
⊗
→ O⊗ be fibrations of ∞-operads, and let α : Õ

⊗
×O⊗ C⊗ → C̃

⊗
exhibit Õ

⊗
as a norm of C̃

⊗

along p. Let f : X → Y be a morphism in the ∞-category O⊗ given by a map of simplicial sets
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∆1 → O⊗. Assume that f is active and that Y belongs to O. Then composition with α induces a

(homotopy) pullback square of ∞-categories

FunO⊗(∆1, Õ
⊗

) //

��

Õ
⊗
X

��

FunC⊗(∆1 ×O⊗ C⊗, C̃
⊗

) // FunC⊗X
(C⊗X , C̃

⊗
X).

The proof of Proposition 2.2.6.6 will require some details of the proof of Theorem 2.2.6.2, and

is therefore deferred until the end of this section.

We now specialize Definition 2.2.6.1 to a more concrete situation.

Construction 2.2.6.7. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads and let D⊗ →
O⊗ be any fibration of ∞-operads. We let FunO(C,D)⊗ denote a norm of C⊗×O⊗ D

⊗ along p

(such a norm exists by virtue of Theorem 2.2.6.2 and is uniquely determined up to equivalence;

we will provide an explicit model in Construction 2.2.6.18 below). In the special case where the

∞-category O is a contractible Kan complex (for example, if O⊗ is the associative∞-operad or the

commutative ∞-operad), we will omit O from the notion, and simply write Fun(C,D)⊗ in place of

FunO(C,D)⊗.

Remark 2.2.6.8. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, and let D⊗ → O⊗

be any fibration of ∞-operads. By definition, FunO(C,D)⊗ is universal among ∞-operads over O⊗

which are equipped with a map of ∞-operads

α : FunO(C,D)⊗ ×O⊗ C⊗ → D⊗

which is compatible with the projection to O⊗. Using Example 2.2.6.3 and Proposition 2.2.6.4, we

obtain the following:

• Composition with α induces an equivalence of∞-categories Alg/O(FunO(C,D)) ' AlgC /O(D).

• For each object X ∈ O, the map α induces an equivalence of ∞-categories

FunO(C,D)X → Fun(CX ,DX).

Example 2.2.6.9 (The Commutative Case). Let C⊗ be a symmetric monoidal∞-category and let

D⊗ be an arbitrary ∞-operad. Applying Construction 2.2.6.7 in the case where O⊗ = Comm⊗ is

the commutative ∞-operad, we obtain an ∞-operad Fun(C,D)⊗ with the following features:

• The underlying ∞-category of Fun(C,D)⊗ is (canonically equivalent to) the ∞-category

Fun(C,D) of functors from C to D.
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• The ∞-category CAlg(Fun(C,D)) of commutative algebra objects of Fun(C,D) is equivalent

to the ∞-category AlgC(D) of lax symmetric monoidal functors from C to D.

Example 2.2.6.10 (The Associative Case). Let C⊗ be a monoidal∞-category (Definition 4.1.1.10)

and let D⊗ be an ∞-operad equipped with a fibration D⊗ → Assoc⊗, where Assoc⊗ is the associa-

tive ∞-operad of Definition 4.1.1.6. Applying Construction 2.2.6.7 in the case where O⊗ is the as-

sociative∞-operad of Definition 4.1.1.3, we obtain a fibration of∞-operads Fun(C,D)⊗ → Assoc⊗

with the following features:

• The underlying ∞-category of Fun(C,D)⊗ is (canonically equivalent to) the ∞-category

Fun(C,D) of functors from C to D.

• The ∞-category Alg(Fun(C,D)) of associative algebra objects of Fun(C,D) is equivalent to

the ∞-category AlgC /Assoc(D) of lax monoidal functors from C to D.

In the situation of Construction 2.2.6.7, we can use Proposition 2.2.6.6 to describe morphism

spaces in the∞-operad FunO(C,D)⊗. Suppose we are given a finite collection of objects {Xi}i∈I of

O, another object Y ∈ O, and a point φ ∈ MulO({Xi}i∈I , Y ), which we identify with a morphism

from X =
⊕

i∈I Xi to Y in the ∞-category O⊗. If p : C⊗ → O⊗ is a coCartesian fibration of

∞-operads, then φ determines a tensor product functor
⊗

φ :
∏
i∈I CXi → CY , which is well-defined

up to equivalence. This functor is characterized by the requirement that it fits into a commutative

diagram

{0} ×
∏
i∈I CXi

//

∼
��

∆1 ×
∏
i∈I CXi

M
��

{1} ×
∏
i∈I CXi

oo

⊗
φ

��
C⊗X

// C⊗ CY ,oo

where the left vertical map is the tautological equivalence and M fits into a commutative diagram

∆1 ×
∏
i∈I CXi

M //

��

C⊗

p

��
∆1 φ // O⊗

and carries ∆1×{C} to a p-coCartesian morphism of C⊗, for each object C ∈
∏
i∈I CXi . It follows

from Proposition HTT.3.2.2.7 that M induces a categorical equivalence of simplicial sets

(∆1 ×
∏
i∈I

CXi)q{1}×∏i∈I CXi
CY → ∆1 ×O⊗ C⊗ .
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Combining this observation with Proposition 2.2.6.6, we obtain a pullback diagram of∞-categories

σ :

FunO⊗(∆1,FunO(C,D)⊗) //

��

FunO⊗(∆1 ×
∏
i∈I CXi ,D

⊗)

��
Fun(CY ,DY )

◦
⊗
φ // Fun(

∏
i∈I CXi ,DY ).

Suppose now that we are given a collection of functors Fi : CXi → DXi and another functor

G : CY → DY , which we regard as objects of FunO(C,D)Xi and FunO(C,D)Y , respectively. We can

then ask to describe the mapping space

Mulφ
FunO(C,D)

({Fi}i∈I , G) = MulFunO(C,D)({Fi}i∈I , G)×MulG({Xi}i∈I ,Y ) {φ}.

Let us identify the tuple {Fi}i∈I with a single object F ∈ FunO(C,D)⊗X , so that Mulφ
FunO(C,D)

({Fi}i∈I , G)

can be identified with the iterated fiber product

{F} ×Fun
O⊗ ({0},FunO(C,D)⊗) FunO⊗(∆1,FunO(C,D)⊗)×Fun

O⊗ ({1},FunO(C,D)⊗) {G}.

Combining this observation with the fact that σ is a pullback square, we obtain the following result:

Proposition 2.2.6.11. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads and let q :

D⊗ → O⊗ be any fibration of ∞-operads. Suppose we are given a collection of objects {Xi}i∈I in

O, another object Y ∈ O, and a morphism φ ∈ MulO({Xi}i∈I , Y ), which we regard as a morphism

from X =
⊕
Xi to Y in the ∞-category O⊗. Let Fi : CXi → DXi and G : CY → DY be functors,

and let ~F denote the composite functor∏
i∈I

CXi

∏
Fi−−−→

∏
i∈I

DXi ' D⊗X .

Then the preceding construction yields a homotopy equivalence

Mulφ
FunO(C,D)

({Fi}i∈I , G) ' MapFun(
∏

CXi ,∆
1×

O⊗D
⊗(~F ,G ◦

⊗
φ

).

In the special case where q : D⊗ → O⊗ is also a coCartesian fibration of ∞-operads, we can

make Proposition 2.2.6.11 more explicit. In this case, the projection map ∆1×O⊗ D
⊗ → ∆1 is also

a coCartesian fibration, classifying a functor
⊗

φ :
∏
i∈I DXi ' D⊗X → DY . We therefore obtain

the following:

Corollary 2.2.6.12. Let p : C⊗ → O⊗ and q : D⊗ → O⊗ be coCartesian fibrations of ∞-operads.

Let {Xi}i∈I , {Fi}i∈I , Y , G, and ~F be as in the statement of Proposition 2.2.6.11. Then we have a

canonical homotopy equivalence

Mulφ
FunO(C,D)

({Fi}i∈I , G) ' MapFun(
∏

CXi ,DY )(
⊗
φ

◦~F ,G ◦
⊗
φ

).
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Example 2.2.6.13. Let C⊗ and D⊗ be symmetric monoidal ∞-categories with underlying tensor

product functors

⊗C : C×C→ C ⊗D : D×D→ D .

Then we can regard Fun(C,D) as the underlying ∞-category of the ∞-operad Fun(C,D)⊗ of Ex-

ample 2.2.6.9. Suppose we are given a triple of functors F0, F1, G : C → D. Applying Corollary

2.2.6.12, we obtain a homotopy equivalence

MulFun(C,D)({F0, F1}, G) ' MapFun(C×C,D)(⊗D ◦ (F0 × F1), G ◦ ⊗C).

More informally, specifying a binary operation from F0 and F1 to G in the ∞-operad Fun(C,D)⊗

is equivalent to specifying a collection of maps

F0(C0)⊗D F1(C1)→ G(C0 ⊗C C1)

in the ∞-category D, depending functorially on the pair C0, C1 ∈ C.

We now apply Corollary 2.2.6.12 to describe some situations in which FunO(C,D)⊗ is a O-

monoidal ∞-category.

Corollary 2.2.6.14. Let p : C⊗ → O⊗ and q : D⊗ → O⊗ be coCartesian fibrations of ∞-operads.

Let κ be an uncountable regular cardinal with the following properties:

(a) For each object X ∈ O, the ∞-category CX is essentially κ-small.

(b) For each object Y ∈ O, the ∞-category DY admits κ-small colimits.

Then the canonical map θ : FunO(C,D)⊗ → O⊗ is a locally coCartesian fibration of ∞-operads.

Proof. Fix a morphism φ : X → Y in the ∞-category O⊗, which we can identify with a map of

simplicial sets ∆1 → O⊗. We wish to show that the projection map θφ : ∆1×O⊗ FunO(C,D)⊗ → ∆1

is a coCartesian fibration of simplicial sets. Using the fact that θ is a fibration of ∞-operads, we

can reduce to the situation where Y ∈ O and φ is active, so that we can write X =
⊕

i∈I Xi for

some finite set I. Let us identify φ with a point of MulO({Xi}i∈I , Y ), and let⊗
φ

:
∏
i∈I

CXi → CY
⊗
φ

:
∏
i∈I

DXi → DY

denote the associated tensor product functors.

Suppose we are given an object of the fiber FunO(C,D)⊗X , which we will identify with a collection

of functors {Fi : CXi → DXi}i∈I . Using Corollary 2.2.6.12, we see that extending {Fi} to a section

of the map θφ is equivalent to supplying a functor G : CY → DY and a natural transformation

α :
⊗

φ ◦(
∏
Fi)→ G◦

⊗
φ. Moreover, the resulting section will be θφ-coCartesian if and only if the
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pair (G,α) is universal in the following sense: for any other functor G′ : CY → DY , composition

with α induces a homotopy equivalence

MapFun(CY ,DY )(G,G
′)→ MapFun(

∏
CXi ,DY )(

⊗
φ

◦(
∏

Fi), G
′ ◦

⊗
φ

).

This universal property is satisfied whenever α exhibits G as a left Kan extension of the functor

∏
CXi

∏
Fi−−−→

∏
DXi

⊗
φ−−→ DY

along the tensor product functor
⊗

φ :
∏

CXi → CY (see Proposition HTT.4.3.3.7 ). It will therefore

suffice to show that such a left Kan extension exists, which follows immediately from assumptions

(a) and (b) (together with Lemma HTT.4.3.2.13 ).

Remark 2.2.6.15. In the situation of Corollary 2.2.6.14, every operation φ ∈ MulO({Xi}i∈I , Y )

induces a functor∏
i∈I

Fun(CXi ,DXi) '
∏

FunO(C,D)Xi → FunO(C,D)Y ' Fun(CY ,DY ).

The proof of Corollary 2.2.6.14 gives a concrete description of this functor: it carries a collection

of functors {Fi : CXi → DYi} to a functor G : CY → DY , given informally by the formula

G(C) = lim−→⊗
φ Ci→C

⊗
φ

Fi(Ci),

where the colimit is taken over the∞-category (
∏

CXi)×CY (CY )/C parametrizing tuples {Ci ∈ CXi}
which are equipped with a map

⊗
φ{Ci} → C in the ∞-category CY .

To guarantee that the locally coCartesian fibration θ : FunO(C,D)⊗ → O⊗ of Corollary 2.2.6.14

is actually a coCartesian fibration, we need some additional hypotheses.

Proposition 2.2.6.16. Let p : C⊗ → O⊗ and q : D⊗ → O⊗ be coCartesian fibrations of∞-operads.

Let κ be an uncountable regular cardinal with the following properties:

(a) For each object X ∈ O, the ∞-category CX is essentially κ-small.

(b) For each object Y ∈ O, the ∞-category DY admits κ-small colimits.

(c) For each operation φ ∈ MulO({Xi}i∈I , Y ), the associated tensor product functor
⊗

φ :∏
i∈I DXi → DY preserves κ-small colimits separately in each variable.

Then the canonical map θ : FunO(C,D)⊗ → O⊗ is a coCartesian fibration of ∞-operads.
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Proof. It follows from Corollary 2.2.6.14 that θ is a locally coCartesian fibration. To show that

it is a coCartesian fibration, it will suffice to show that the collection of locally θ-coCartesian

morphisms in FunO(C,D)⊗ is closed under composition. Using Remark 2.2.6.15, we can reduce this

to the following concrete assertion:

(∗) Let f : I → J be a map of finite sets. Suppose we are given objects {Xi}i∈I , {Yj}j∈J ,

and Z in the ∞-category O, together with operations {φj ∈ MulO({Xi}f(i)=j , Yj)}j∈J and

ψ ∈ MulO({Yj}j∈J , Z). Let {Fi : CXi → DXi}i∈I , {Gj : CYj → DYj}, and H : CZ → DZ be

functors equipped with natural transformations

αj :
⊗
φj

◦
∏
f(i)=j

Fi → Gj ◦
⊗
φj

β :
⊗
ψ

◦
∏
j∈J

Gj → H ◦
⊗
ψ

.

Assume that each αj exhibits Gj as a left Kan extension of
⊗

φj
◦
∏
f(i)=j Fi along

⊗
φj

, and

that β exhibits H as a left Kan extension of
⊗

ψ ◦
∏
j∈J Gj along

⊗
ψ. Then the composite

map ⊗
ψ ◦(

∏
j∈J

⊗
φj

) ◦ (
∏
i∈I Fi)∏

αj

��⊗
ψ ◦

∏
j∈J Gj ◦

∏
j∈J

⊗
φj

β

��
H ◦

⊗
ψ ◦

∏
j∈J

⊗
φj

exhibits H as a left Kan extension of
⊗

ψ ◦(
∏
j∈J

⊗
φj

) ◦ (
∏
i∈I Fi) along the composite map

∏
i∈I

CXi

∏⊗
φj−−−−→

∏
j∈J

CYj

⊗
ψ−−→ CZ .

This follows easily from assumption (c).

Example 2.2.6.17 (Day Convolution). Let C⊗ and D⊗ be (symmetric) monoidal ∞-categories

with underlying tensor product functors

⊗C : C×C→ C ⊗D : D×D→ D .

Suppose that there exists an uncountable regular cardinal κ such that C is essentially κ-small, D

admits κ-small colimits, and the tensor product functor ⊗D preserves κ-small colimits separately

in each variable. Applying Proposition 2.2.6.16, we deduce that the ∞-operad Fun(C,D)⊗ is a
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(symmetric) monoidal ∞-category. Moreover, Remark 2.2.6.15 shows that the underlying tensor

product functor

~ : Fun(C,D)× Fun(C,D)→ Fun(C,D)

is given by Day convolution: that is, for every pair of functors F0, F1 : C → D, the functor

F0 ~ F1 ∈ Fun(C,D) can be described as a left Kan extension of ⊗D ◦ (F0 × F1) along the tensor

product functor ⊗C, given concretely by the formula

(F0 ~ F1)(C) = lim−→
C0⊗CC1→C

F0(C0)⊗D F1(C1).

We now turn to the proof of Theorem 2.2.6.2.

Construction 2.2.6.18. For any ∞-operad O⊗, we let Funin(∆1,O⊗) denote the full subcategory

of Fun(∆1,O⊗) spanned by the inert morphisms of O⊗. Suppose we are given fibrations of ∞-

operads C̃
⊗
→ C⊗

p−→ O⊗, where p is a coCartesian fibration. We define a simplicial set NmC /O(C̃)⊗

equipped with a map NmC /O(C̃)⊗ → O⊗ so that the following universal property is satisfied: for

every simplicial set K equipped with a map K → O⊗, we have a bijection

Hom(Set∆)/O⊗
(K,NmC /O(C̃)⊗) ' Hom(Set∆)/C⊗

(K ×Fun({0},O⊗) Funin(∆1,O⊗)×Fun({1},O⊗) C
⊗, C̃

⊗
).

In particular, if X is an object of O⊗, then we can identify vertices of the fiber

NmC /O(C̃)⊗ ×O⊗ {X}

with functors

F : {X} ×Fun({0},O⊗) Funin(∆1,O⊗)×Fun({1},O⊗) C
⊗ → C

⊗

which fit into a commutative diagram

{X} ×Fun({0},O⊗) Funin(∆1,O⊗)×Fun({1},O⊗) C
⊗

F

tt **
C̃
⊗

C⊗ .

We let NmC /O(C̃)⊗ denote the full simplicial subset of NmC /O(C̃)⊗ whose vertices satisfy the

following additional condition: for every morphism u in {X}×Fun({0},O⊗) Funin(∆1,O⊗)×Fun({1},O⊗)

C⊗ whose image in C⊗ is inert, the image F (u) is an inert morphism of C
⊗

.

By construction, the simplicial set NmC /O(C̃)⊗ comes equipped with a tautological map

U : NmC /O(C̃)⊗ ×Fun({0},O⊗) Funin(∆1,O⊗)×Fun({1},O⊗) C
⊗ → C̃

⊗
.
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Composing U with the pullback of the diagonal embedding O⊗ ↪→ Funin(∆1,O⊗), we obtain a map

U0 : NmC /O(C̃)⊗ ×O⊗ C⊗ → C
⊗

, which fits into a commutative diagram

NmC /O(C̃)⊗ ×O⊗ C⊗
U0 //

''

C̃
⊗

~~
C⊗ .

Remark 2.2.6.19. Let O⊗ be an ∞-operad and let Funin(∆1,O⊗) be as in Construction 2.2.6.18.

Then the evaluation map e : Funin(∆1,O⊗) → Fun({0},O⊗) ' O⊗ is a Cartesian fibration of

∞-categories. Moreover, if we are given a commutative diagram

X //

��

Y

��
X ′ // Y ′

in O⊗ where the vertical maps are inert, then it is e-Cartesian (when regarded as a morphism in

the ∞-category Funin(∆1,O⊗)) if and only if the underlying map X ′ → Y ′ is active. This follows

formally from the fact that the active and inert morphisms determine a factorization system on the

∞-category O⊗ (see Proposition 2.1.2.4).

Proposition 2.2.6.20. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads and let C̃
⊗
→ C⊗

be a fibration of ∞-operads. Then:

(a) The map of simplicial sets NmC /O(C̃)⊗ → O⊗ given in Construction 2.2.6.18 is a fibration

of ∞-operads (in particular, NmC /O(C̃)⊗ is an ∞-operad).

(b) Let f be a morphism in the ∞-operad NmC /O(C̃)⊗ lying over a morphism f0 in O⊗, given by

a functor

F : ∆1 ×Fun({0},O⊗) Funin(∆1,O⊗)×Fun({1},O⊗) C
⊗ → C

⊗
.

Then f is inert if and only if f0 is inert and F satisfies the following condition:

(∗) If u is a morphism in the fiber product ∆1 ×Fun({0},O⊗) Funin(∆1,C⊗) whose image in

Fun({0},C⊗) is inert, then F (u) is an inert morphism in C̃
⊗

.

(c) The map U0 : NmC /O(C̃)⊗ ×O⊗ C⊗ → C
⊗

appearing in Construction 2.2.6.18 is a morphism

of ∞-operads.

Proof. We will prove (a) and (b); assertion (c) then follows as an immediate consequence. In what

follows, we assume that the reader is familiar with formalism of marked simplicial sets developed
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in §HTT.3.1 , and with the formalism of categorical patterns developed in §B.4. For every ∞-

operad A⊗, we define a categorical pattern P(A⊗) = (MA⊗ , TA⊗ , {vα : Λ2
0 → A⊗}α∈D) on the

underlying simplicial set A⊗ by taking MA⊗ to be the collection of all inert morphisms in A⊗, TA⊗

to be the collection of all 2-simplices of A⊗, and {vα : Λ2
0 :→ A⊗}α∈D to range over all diagrams

A0 ← A → A1 in A⊗ which induce an equivalence A ' A0 ⊕ A1 (with notation as in Remark

2.1.1.15). Note that a map of simplicial sets Z → A⊗ is P(A⊗)-fibered (in the sense of Remark

B.0.23) if and only if it is a fibration of ∞-operads. In this case, we let Z\ denote the marked

simplicial set (Z, IZ) is the collection of inert morphisms in Z.

Let K denote the fiber product Funin(∆1,O⊗) ×Fun({1},O⊗) C
⊗. We let K\ denote the marked

simplicial set (K,M), where M is the collection of those morphisms in K having inert images in

both O⊗ ' Fun({0},O⊗) and C⊗. The construction

(Z ∈ (Set+∆)/O⊗) 7→ (Z ×O⊗\ K
\ ∈ (Set+∆)/C⊗)

determines a functor F : (Set+∆)/O⊗ → (Set+∆)/C⊗ . This functor admits a right adjoint G. Un-

winding the definitions, we see that G carries C̃
⊗\

to the marked simplicial set (NmC /O(C̃)⊗,M ′),

where M ′ is the collection of all edges in NmC /O(C̃)⊗ which satisfy condition (∗). Consequently, to

prove (a) and (b), it will suffice to show that G(C̃
⊗\

) is a fibrant object of (Set+∆)/O⊗ (with respect

to the model structure of Theorem B.0.20, determined by the categorical pattern P(O⊗)). For

this, it suffices to show that F is a left Quillen functor. We will prove this by verifying that K\

satisfies conditions (1) through (8) of Theorem B.4.2. Conditions (2) and (3) are immediate from

the definitions; we verify the remaining conditions in turn:

(1) The projection map K→ Fun({1},O⊗) ' O⊗ is a flat categorical fibration. To prove this, we

note that this map factors as a composition

K→ Funin(∆1,O⊗)→ Fun({0},O⊗) ' O⊗

where the first map is coCartesian fibration (since it is a pullback of p), and the second map is

a Cartesian fibration (Remark 2.2.6.19). The desired result now follows from Remark B.3.12

and Example B.3.11.

(4) For each inert morphism e : X → Y of O⊗, the projection map ρ0 : ∆1×Fun({0},O⊗)K→ ∆1 is

a Cartesian fibration. Fix an object Y ∈ K lying over Y . We will show that e can be lifted to

a ρ-Cartesian morphism e : X → Y in K (which is therefore also ρ0-Cartesian, when regarded

as a morphism in the fiber product ∆1 ×Fun({0},O⊗) K). Let us factor ρ as a composition

K
ρ′−→ Funin(∆1,O⊗)

ρ′′−→ Fun({0},O⊗) ' O⊗ .

Using Remark 2.2.6.19, we deduce that e can be lifted to a ρ′′-Cartesian morphism ẽ : X̃ →
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ρ′(Y ). Let us identify ẽ with a commutative diagram

X
e //

��

Y

��
X ′

e′ // Y ′

in O×, where the vertical maps are inert. The condition that ẽ is ρ′′-Cartesian then guarantees

that e′ is active. On the other hand, the assumption that e is inert guarantees that e′ is also

inert. It follows that e′ is an equivalence. Let Y 1 denote the image of Y in C⊗, so that

p(Y 1) = Y ′. Since the map ρ′ is a categorical fibration (in fact, even a coCartesian fibration),

we can lift e′ to an equivalence e′ : X1 → Y 1 in the ∞-category C⊗. The pair (e′, ẽ) can then

be regarded as a map e : X → Y . The map e is ρ′-Cartesian (since e′ is an equivalence),

and ρ′(e) = ẽ is ρ′′-Cartesian. Applying Proposition HTT.2.4.1.3 , we conclude that e is

ρ-Cartesian.

(5) For each of the diagrams vα : Λ2
0 → O⊗ appearing in the definition of the categorical pattern

P(O⊗), the projection map

ρα : Λ2
0 ×Fun({0},O⊗) K→ Λ2

0

is a coCartesian fibration. To prove this, suppose we are given an edge of Λ2
0 having image

e : X → Y in the ∞-category O⊗ (so that e is inert), and let X be an object of K lying over

X. We will show that e can be lifted to a ρ-coCartesian morphism e : X → Y , where ρ is

as in (4). Let us identify ρ′(X) with an inert morphism f : X → X ′ in the ∞-category O⊗.

Without loss of generality, we may assume that the diagram of inert morphisms X ′
f←− X e−→ Y

has the form

X0 ⊕X1
X←−0 ⊕X1 ⊕X2

X−→0 ⊕X2

for some triple of objects X0, X1, X2 ∈ O⊗ (with notation as in Remark 2.1.1.15). It is now

easy to verify that the diagram

X0 ⊕X1 ⊕X2
e //

f
��

X0 ⊕X2

��
X0 ⊕X1

// X0

can be viewed as a ρ′′-coCartesian morphism ẽ : ρ′(X) → Ỹ satisfying ρ′′(ẽ) = e. The map

ρ′ is a pullback of p, and therefore a coCartesian fibration. It follows that we can choose a

ρ′-coCartesian morphism e : X → Y satisfying ρ′(e) = ẽ. It now follows from Proposition

HTT.2.4.1.3 that e is ρ-coCartesian, as desired.

(6) In the situation of (5), suppose we are given a coCartesian section of ρα, classified by a map

vα : Λ2
0 → K. Without loss of generality, we may assume that vα corresponds to the diagram
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of inert morphisms X0 ← X0 ⊕X1 → X1 for some pair of objects X0, X1 ∈ O⊗. Then ρ′(vα)

can be identified with a commutative diagram

X0

��

X0 ⊕X1
oo //

��

X1

��
Y0 Y

foo g // Y1

in the ∞-category O⊗, where the vertical maps are inert. The proof of (5) shows that each

square in the above diagram is a pushout in O⊗, so that f and g are inert and induce an

equivalence Y ' Y0 ⊕ Y1. The image of vα in C⊗ can be identified with a diagram

Y 0
f←− Y g−→ Y 1

in the∞-category C⊗, where p(f) = f and p(g) = g. The proof of (5) shows that f and g are

p-coCartesian, and are therefore inert morphisms of C
⊗

. It follows that f and g determine

an equivalence Y ' Y 0⊕ Y 1, so that the diagram Y 0
f←− Y g−→ Y 1 appears in the definition of

the categorical pattern P(C⊗).

(7) Suppose we are given a commutative diagram σ′:

Y
g

��
X

f
??

h // Z

in the ∞-category K, where ρ(g) is an inert morphism of O⊗, the morphism g is locally

ρ-Cartesian (and therefore ρ-Cartesian, by the proof of (4)), and ρ(f) is an equivalence. We

wish to show that f belongs to M if and only if h belongs to M . Let us identify ρ′(σ) with a

commutative diagram

X

f
����

Y
g //

��

Z

��
X ′

f ′ // Y ′
g′ // Z ′

in the∞-category O⊗. Then f = ρ(f) is an equivalence and g = ρ(g) is inert, so that h = g◦f
is also inert. Let σ′:

Y
′

g′

��
X
′

f
′

??

h
′

// Z
′

denote the image of σ in the ∞-category C⊗; we wish to show that f
′

is inert if and only if h
′

is inert. For this, it suffices to observe that g′ is an equivalence, which follows from the proof

of (4) (and our assumption that g is ρ-Cartesian).
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(8) Suppose we are given a commutative diagram σ:

Y
g

��
X

f
??

h // Z

in K, where ρ(σ) factors through one of the maps vα : Λ2
0 → O⊗ appearing in the definition

of the categorical pattern P(O⊗), where f is ρ-Cartesian and ρ(g) is an equivalence. We wish

to show that g belongs to M if and only if h belongs to M . Let σ′:

Y
′

g′

��
X
′

f
′

??

h
′

// Z
′

denote the image of σ in the∞-category C⊗. Note that our factorization condition guarantees

that g = ρ(g) and h = ρ(h) are inert. It will therefore suffice to show that g′ is inert if and

only if h
′
is inert. The proof of (5) shows that f

′
is ρ′-coCartesian, so that g′ is ρ′-coCartesian

if and only if h
′
is ρ-coCartesian. It will therefore suffice to show that g′ is an inert morphism

in O⊗ if and only if h′ = g′ ◦ f ′ is an inert morphism in O⊗, where the diagram

X

f
��

// Y
g //

��

Z

��
X ′

f ′ // Y ′
g′ // Z ′

is as in the proof of (7). For this, it suffices to show that f ′ is inert, which follows by inspecting

the left square of the above diagram (since f and the vertical maps are both assumed to be

inert).

Remark 2.2.6.21 (Functoriality). Let C̃
⊗
→ C⊗ → O⊗ be as in Construction 2.2.6.18, and

suppose we are given a morphism of ∞-operads O′⊗ → O⊗. Set C′⊗ = O′⊗×O⊗ C
⊗ and C̃

′⊗
=

O′⊗×O⊗ C̃
⊗

. Let K = Funin(∆1,O⊗)×Fun({1},O⊗)C
⊗ and define K′ = Funin(∆1,O′⊗)×Fun({1},O′⊗)C

′⊗

similarly. Let us regard K and K′ as underlying marked simplicial sets K\ and K′\, as in the proof

of Proposition 2.2.6.20. Then the constructions

(Z ∈ (Set+∆)/O⊗) 7→ (Z ×O′⊗\ K
\ ∈ (Set+∆)/C⊗)

(Z
′ ∈ (Set+∆)/O′⊗) 7→ (Z

′ ×O′⊗\ K
′\ ∈ (Set+∆)/C′⊗)
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determine left Quillen functors

F : (Set+∆)/O⊗ → (Set+∆)/C⊗ F ′ : (Set+∆)/O′⊗ → (Set+∆)/C′⊗ .

Let P : (Set+∆)/O′⊗ → (Set+∆)/O⊗ and Q : (Set+∆)/C′⊗ → (Set+∆)/C⊗ denote the forgetful functors.

The evident map of simplicial sets w : K′ → O′⊗×O⊗ K determines a natural transformation of

left Quillen functors β : Q ◦ F ′ → F ◦ P . It is not hard to see that the map w is a trivial Kan

fibration (this is a special case of Proposition HTT.4.3.2.15 ), from which it follows that β is a weak

equivalence of left Quillen functors: that is, the diagram of left derived functors

h(Set+
∆)/O′⊗

LF ′ //

LP
��

h(Set+
∆)/C′⊗

LQ

��
h(Set+

∆)/O⊗
LF // h(Set+

∆)/C⊗

commutes up to an isomorphism LQ ◦ LF ′ ∼−→ LF ◦ LP . Passing to right adjoints and evaluating

on the fibrant object C̃
⊗\
∈ (Set+∆)/C⊗ , we see that composition with w induces an equivalence of

∞-operads

O′⊗×O⊗NmC /O(C̃)⊗ → NmC′ /O′(C̃
′
)⊗.

Theorem 2.2.6.2 is now an immediate consequence of the following more precise result:

Theorem 2.2.6.22. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads and let q : C̃
⊗
→ C⊗

be a fibration of∞-operads. Then the map U0 : NmC /O(C̃)⊗×O⊗C
⊗ → C

⊗
of Construction 2.2.6.18

exhibits NmC /O(C̃)⊗ as a norm of C̃
⊗

along p.

Proof. Suppose we are given a map of ∞-operads s : O′⊗ → O⊗; we wish to show that composition

with U0 induces an equivalence of ∞-categories

T : AlgO′ /O(NmC /O(C̃))→ AlgO′×O C /C(C̃).

Using Remark 2.2.6.21, we can reduce to the case O′⊗ = O⊗. Set K = Funin(∆1,O⊗)×Fun({1},O⊗)C
⊗.

Note that the diagonal embedding δ : O⊗ → Funin(∆1,O⊗) induces a map δ : C⊗ → K, which is a

section of the projection map K→ C⊗.

Let M be the collection of those morphisms in K whose images in both Fun({0},O⊗) and C⊗ are

inert. Using Proposition 2.2.6.20, we can identify AlgO′ /O(NmC /O(C̃)) with the full subcategory

FunM
C⊗

(K, C̃
⊗

) ⊆ FunC⊗(K, C̃
⊗

)

spanned by those functors F : K→ C̃
⊗

which carry each morphism of M to an inert morphism in

C̃
⊗

. Under this identification, the functor T is given by precomposition with the map δ : C⊗ → K.
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We now observe that T has an explicit right inverse T ?, given by precomposition with the projection

map ψ : K→ C⊗. To complete the proof, it will suffice to show that this right inverse is also a left

inverse up to homotopy. Note that the functor ψ is left adjoint to the diagonal map δ, so we have

a natural transformation of functors id
FunM

C⊗ (K,C̃
⊗

)
→ T ? ◦ T . To complete the proof, it suffices to

observe that for every functor F ∈ FunM
C⊗

(K, C̃
⊗

) and every object X ∈ K, the canonical map

F (X)→ (T ? ◦ T )(F )(X) = F ((δ ◦ ψ)(X)

is an equivalence. This map is given by F (β), where β : X → (δ ◦ ψ)(X) is obtained from the unit

for the adjunction between ψ and δ. Note that the image of β in C⊗ is an equivalence; consequently,

to prove that F (β) is an equivalence, it will suffice to show that F (β) is inert. This follows from

our assumption that F belongs to FunM
C⊗

(K, C̃
⊗

) (since the morphism β belongs to M).

We now return to Proposition 2.2.6.6.

Proof of Proposition 2.2.6.6. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, let q :

C̃
⊗
→ C⊗ and Õ

⊗
→ O⊗ be fibrations of ∞-operads, and let α : Õ

⊗
×O⊗ C⊗ → C̃

⊗
exhibit Õ

⊗
as a

norm of C̃
⊗

along p. Let f : X → Y be an active morphism in O⊗ with Y ∈ O, and let us identify

f with a map of simplicial sets ∆1 → O⊗. We wish to show that the diagram of ∞-categories σ :

FunO⊗(∆1, Õ
⊗

) //

��

Õ
⊗
X

��

FunC⊗(∆1 ×O⊗ C⊗, C̃
⊗

) // FunC⊗X
(C⊗X , C̃

⊗
X)

is a homotopy pullback square.

In what follows, we adopt the following notational convention: if E is an ∞-category equipped

with a map E→ C⊗ and M is a collection of morphisms in E, we let FunM
C⊗

(E, C̃
⊗

) denote the full

subcategory of FunC⊗(E, C̃
⊗

) spanned by those functors which carry each morphism of M to an

inert morphism in the ∞-operad C̃
⊗

.

By virtue of Theorem 2.2.6.22, we may assume without loss of generality that Õ
⊗

is the ∞-

operad NmC /O(C̃)⊗ of Construction 2.2.6.18. and let Kf denote the fiber product

∆1 ×Fun({0},O⊗ Funin(∆1,O⊗)×Fun({1},O⊗) C
⊗ .

For i ∈ {0, 1}, let Ki denote the fiber product Kf ×∆1{i}, and let Mi be the collection of all

morphisms in Ki whose image in C⊗ is inert. Note that every morphism belonging to M1 is either

an equivalence, or has codomain lying over the fiber C⊗〈0〉 (this follows from our assumption that

Y ∈ O). Consequently, any functor F ∈ FunC⊗(Kf , C̃
⊗

) automatically carries each morphism of
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M1 to an inert morphism in C̃
⊗

. Unwinding the definitions, we see that FunO⊗(∆1, Õ
⊗

) can be

identified with the full subcategory

FunM0

C⊗
(Kf , C̃

⊗
) ⊆ FunC⊗(Kf , C̃

⊗
).

Let Fun'(∆1,O⊗) denote the full subcategory of Funin(∆1,O⊗) spanned by those morphisms

in O⊗ which are equivalences, and let K◦f denote the fiber product

∆1 ×Fun({0},O⊗ Fun'(∆1,O⊗)×Fun({1},O⊗) C
⊗ .

We regard K◦f as a full subcategory of Kf . Let M◦1 denote the collection of all morphisms in

M1 which belong to K◦f . Using our assumption that f is active, we deduce that the union

K◦f ∪K0 is a full subcategory of Kf . Moreover, our assumption that Y ∈ O guarantees that

every object of Kf which does not belong to K◦f ∪K0 lies over the fiber C⊗〈0〉 ⊆ C⊗. It fol-

lows that any functor F ∈ FunC⊗(Kf , C̃
⊗

) is automatically a q-left Kan extension of its re-

striction to K◦f ∪K0 (and any functor F0 ∈ FunC⊗(K◦f ∪K0, C̃
⊗

) admits a q-left Kan extension

F ∈ FunC⊗(Kf , C̃
⊗

)). Applying Proposition HTT.4.3.2.15 , we deduce that the restriction functor

FunC⊗(Kf , C̃
⊗

)→ FunC⊗(K◦f ∪K0, C̃
⊗

) is a trivial Kan fibration, and therefore restricts to a trivial

Kan fibration

FunM0

C⊗
(Kf , C̃

⊗
)→ FunM0

C⊗
(K◦f ∪K0, C̃

⊗
).

It follows that the upper square in the diagram

FunM0

C⊗
(Kf , C̃

⊗
) //

��

FunM0

C⊗
(K0, C̃

⊗
)

��

FunC⊗(K◦f , C̃
⊗

) //

��

Fun(K◦f ∩K0, C̃
⊗

)

��

FunC⊗(∆1 ×O⊗ C⊗, C̃
⊗

) // FunC⊗({X} ×O⊗ C⊗, C̃
⊗
X)

is a homotopy pullback diagram of ∞-categories, while the outer rectangle can be identified with

σ. To complete the proof, it will suffice to show that the bottom horizontal maps are equivalences

of ∞-categories. We will show that the bottom left vertical map is a categorical equivalence; the

proof for the bottom right vertical map is similar. This map is given by precomposition with the

diagonal map

∆1 ×O⊗ C⊗ = ∆1 ×O⊗ O⊗×O⊗ C
⊗ δ−→ ∆1 ×O⊗ Fun'(∆1,O⊗)×O⊗ C⊗

which is the pullback of δ : ∆1 → ∆1×O⊗Fun≡(∆1,O⊗) by the coCartesian fibration p. By virtue of

Proposition HTT.3.3.1.3 , it will suffice to show that δ is a categorical equivalence. We now observe

that this map has a left inverse ∆1 ×O⊗ Fun≡(∆1,O⊗) → ∆1 which is a trivial Kan fibration (by

virtue of Proposition HTT.4.3.2.15 ).
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2.3 Disintegration and Assembly

Let A be an associative ring. Recall that an involution on A is a map σ : A → A satisfying the

conditions

(a+ b)σ = aσ + bσ (ab)σ = bσaσ (aσ)σ = a;

here aσ denotes the image of a under the map σ. Let Ring denote the category of associative

rings, and let Ringσ denote the category of associative rings equipped with an involution (whose

morphisms are ring homomorphisms that commute with the specified involutions). To understand

the relationship between these two categories, we observe that the construction A 7→ Aop defines

an action of the symmetric group Σ2 on the category Ring. The category Ringσ can be described

as the category of (homotopy) fixed points for the action of Σ2 on Ring. In particular, we can

reconstruct the category Ringσ by understanding the category Ring together with its action of Σ2.

The category Ring can be described as the category of algebras over the associative operad O

in the (symmetric monoidal) category of abelian groups. Similarly, we can describe Ringσ as the

category of O′-algebra objects in the category of abelian groups, where O′ is a suitably defined

enlargment of the associative operad. The relationship between Ring and Ringσ reflects a more

basic relationship between the operads O and O′: namely, the operad O carries an action of the

group Σ2, and the operad O′ can be recovered as a kind of semidirect product OoΣ2. This assertion

is useful because O is, in many respects, simpler than O′. For example, the operad O has only a

single unary operation (the identity) while O′ has a pair of unary operations (the identity and the

involution).

In this section, we will describe a generalization of this phenomenon. We begin in §2.3.1 by

introducing the notion of a unital ∞-operad. Roughly speaking, an ∞-operad O⊗ is unital if it

has a unique nullary operation (more precisely, if it has a unique nullary operation for each object

of the ∞-category O; see Definition 2.3.1.1). Many of ∞-operads which arise naturally are unital,

and nonunital ∞-operads can be replaced by unital ∞-operads via the process of unitalization

(Definition 2.3.1.10). We say that a unital ∞-operad O⊗ is reduced if the ∞-category O is a con-

tractible Kan complex. In §2.3.4, we will show that if O⊗ is any unital∞-operad whose underlying

∞-category O is a Kan complex, then O⊗ can be “assembled” from a family of reduced ∞-operads

parametrized by O (Theorem 2.3.4.4). A precise formulation of this assertion requires the notion

of a generalized ∞-operad, which we discuss in §2.3.2. The proof will require a somewhat technical

criterion for detecting weak equivalences of ∞-preoperads, which we discuss in §2.3.3.

Remark 2.3.0.1. The assembly process described in §2.3.4 can be regarded as a generalization of

the semidirect product construction mentioned above, and will play an important role in §5.4.2.

2.3.1 Unital ∞-Operads

Let O⊗ be an∞-operad. Then for every n-tuple of objects {Xi}1≤i≤n in O and every object Y ∈ O,

we can consider the mapping space MulO({Xi}, Y ) defined in Notation 2.1.1.16. We can think of
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this as the space of n-ary operations (taking inputs of type {Xi}1≤i≤n and producing an output of

type Y ) in O⊗. In general, these operation spaces are related to one another via very complicated

composition laws. When n = 1 the situation is dramatically simpler: the 1-ary operation spaces

MulO({X}, Y ) are simply the mapping spaces MapO(X,Y ) in the underlying ∞-category O. In

this section, we will consider what is in some sense an even more basic invariant of O⊗: namely,

the structure of the nullary operation spaces MulO(∅, Y ). More precisely, we will be interested in

the situation where this invariant is trivial:

Definition 2.3.1.1. We will say that an ∞-operad O⊗ is unital if, for every object X ∈ O, the

space MulO(∅, X) is contractible.

Warning 2.3.1.2. In the literature, the term unital operad is used with two very different meanings:

(i) To describe an operad {On}n≥0 which has a distinguished unary operation id ∈ O1, which is

a left and right unit with respect to composition.

(ii) To describe an operad {On}n≥0 which has a unique nullary operation e ∈ O0.

Definition 2.3.1.1 should be regarded as an ∞-categorical generalization of (ii); the analogue of

condition (i) is built-in to our definition of an ∞-operad.

Example 2.3.1.3. The ∞-operads Comm⊗ and E⊗0 of Examples 2.1.1.18 and 2.1.1.19 are unital.

The trivial ∞-operad of Example 2.1.1.20 is not unital.

Here is a purely categorical description of the class of unital ∞-operads:

Proposition 2.3.1.4. Let O⊗ be an ∞-operad. The following conditions are equivalent:

(1) The ∞-category O⊗ is pointed (that is, there exists an object of O⊗ which is both initial and

final).

(2) The ∞-operad O⊗ is unital.

The proof depends on the following observation:

Lemma 2.3.1.5. Let p : O⊗ → N(Fin∗) be an ∞-operad. Then an object X of the ∞-category O⊗

is final if and only if p(X) = 〈0〉. Moreover, there exists an object of O⊗ satisfying this condition.

Proof. Since O⊗ is an ∞-operad, we have an equivalence O⊗〈0〉 ' O0 ' ∆0; this proves the existence

of an object X ∈ O⊗ such that p(X) = 〈0〉. Since O⊗ is an∞-operad, the object X ∈ O⊗ is p-final.

Since p(X) = 〈0〉 is a final object of N(Fin∗), it follows that X is a final object of O⊗.

To prove the converse, suppose that X ′ is any final object of O⊗. Then X ′ ' X so that

p(X ′) ' 〈0〉. It follows that p(X ′) = 〈0〉, as desired.
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Proof of Proposition 2.3.1.4. According to Lemma 2.3.1.5, the∞-category O⊗ admits a final object

Y . Assertion (1) is equivalent to the requirement that Y is also initial: that is, that the space

MapO⊗(Y,X) is contractible for every X ∈ O⊗. Let 〈n〉 denote the image of X in N(Fin∗), and

choose inert morphisms X → Xi covering ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n. Since X is a p-limit of the

diagram {Xi}1≤i≤n → O⊗, we conclude that MapO⊗(Y,X) '
∏

1≤i≤n MapO⊗(Y,Xi). Assertion (1)

is therefore equivalent to the requirement that MapO⊗(Y,X) is contractible for X ∈ O, which is a

rewording of condition (2).

The class of unital∞-operads also has a natural characterization in terms of the tensor product

of ∞-operads (see §2.2.5). Let ∧ : N(Fin∗) × N(Fin∗) → N(Fin∗) be the functor described in

Notation 2.2.5.1. If α : 〈m〉 → 〈m′〉 and β : 〈n〉 → 〈n′〉 are morphisms in N(Fin∗) and γ = α ∧ β :

〈mn〉 → 〈m′n′〉 is the induced map, then γ−1(an+ b−n) ' α−1{a}×β−1{b}. In particular, if each

of the fibers α−1{a} and β−1{b} has cardinality ≤ 1, then each fiber of γ has cardinality ≤ 1. It

follows that ∧ induces a map f : E⊗0 × E
⊗
0 → E⊗0 , where E⊗0 ⊆ N(Fin∗) is the ∞-operad defined in

Example 2.1.1.19.

Proposition 2.3.1.6. The map f : E⊗0 ×E
⊗
0 → E⊗0 is a bifunctor of ∞-operads, which exhibits E⊗0

as a tensor product of E⊗0 with itself.

Proof. Consider the map g : ∆1 → E0 determined by the morphism 〈0〉 → 〈1〉 in Fin∗. Example

2.1.4.9 asserts that g induces a weak equivalence of ∞-preoperads (∆1)[ → E⊗,\0 . We can factor

the weak equivalence g as a composition

(∆1)[
δ→ (∆1)[ � (∆1)[

g�g−→ E⊗,\0 � E⊗,\0
f→ E⊗,\0 ,

where δ is the diagonal map. The map g� g is a weak equivalence of ∞-operads. By a two-out-of-

three argument, we are reduced to proving that the diagonal δ : (∆1)[ → (∆1)[ � (∆1)[ is a weak

equivalence of ∞-preoperads.

Unwinding the definitions, it suffices to show the following: for every ∞-operad p : O⊗ →
N(Fin∗), composition with δ induces a trivial Kan fibration

FunN(Fin∗)(∆
1 ×∆1,O⊗)→ FunN(Fin∗)(∆

1,O⊗).

This follows from Proposition HTT.4.3.2.15 , since every functor F ∈ FunN(Fin∗)(∆
1 ×∆1,O⊗) is a

p-left Kan extension of F ◦ δ (because every morphism in O⊗〈0〉 is an equivalence).

Corollary 2.3.1.7. Let i : {〈0〉}[ → E⊗,\0 denote the inclusion. Then composition with i induces

weak equivalences of ∞-preoperads

E⊗,\0 ' E⊗,\0 � {〈0〉}[ → E⊗,\0 � E⊗,\0

E\0 ' {〈0〉}
[ � E\0 → E⊗,\0 � E⊗,\0 .
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Corollary 2.3.1.8. Let Op∞ denote the ∞-category of (small) ∞-operads, which we identify with

the underlying ∞-category N(POp∞
o) of the simplicial monoidal model category POp∞. Let U :

Op∞ → Op∞ be induced by the left Quillen functor X 7→ X �E\0. Then U is a localization functor

from Op∞ to itself.

Proof. Combine Corollary 2.3.1.7 with Proposition HTT.5.2.7.4 .

Proposition 2.3.1.9. Let O⊗ be an ∞-operad. The following conditions are equivalent:

(1) The ∞-operad O⊗ is unital.

(2) The ∞-operad O⊗ belongs to the essential image of the localization functor U : Op∞ → Op∞
of Corollary 2.3.1.8.

Proof. We first show that (1) implies (2). Let α : O⊗ → U O⊗ be a morphism in Op∞ which

exhibits U O⊗ as a U -localization of O⊗ (so that U O⊗ is a tensor product of O⊗ with E⊗0 ). We will

prove that there exists a morphism β : U O⊗ → O⊗ such that β ◦α is equivalent to idO⊗ . We claim

that β is a homotopy inverse to α: to prove this, it suffices to show that α ◦ β is homotopic to the

identity idU O⊗ . Since U O⊗ is U -local and α is a U -equivalence, it suffices to show that α ◦ β ◦ α
is homotopic to α, which is clear.

To construct the map β, we observe that U O⊗ can be identified with a fibrant replacement

for the object O⊗,\�(∆1)[ ∈ POp∞ (here we regard (∆1)[ as an ∞-preoperad as in the proof of

Proposition 2.3.1.6). It will therefore suffice to construct a map h : O⊗×∆1 → O⊗ such that

h|(O⊗×{1}) = idO⊗ and h|(O⊗×{0}) factors through O⊗〈0〉. The existence of h follows immediately

the fact that O⊗ is a pointed ∞-category (Proposition 2.3.1.4).

To show that (2) ⇒ (1), we reverse the above reasoning: if O⊗ is U -local, then there exists a

morphism β : U O⊗ → O⊗ which is right inverse to α, which is equivalent to the existence of a map

h : O⊗×∆1 → O⊗ as above. We may assume without loss of generality that h|(O⊗×{0}) is the

constant map taking some value X ∈ O⊗〈0〉. Then h can be regarded as a section of the left fibration

(O⊗)X/ → O⊗. This proves that X is an initial object of O⊗. Since X is also a final object of O⊗,

we deduce that O⊗ is pointed as an ∞-category and therefore unital as an ∞-operad (Proposition

2.3.1.4).

It follows from Proposition 2.3.1.9 that the full subcategory of Op∞ spanned by the unital

∞-operads is a localization of Op∞. Our next goal is to show that this subcategory is also a

colocalization of Op∞.

Definition 2.3.1.10. Let f : O′⊗ → O⊗ be a map of ∞-operads. We will say that f exhibits O′⊗

as a unitalization of O⊗ if the following conditions are satisfied:

(1) The ∞-operad O′⊗ is unital.
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(2) For every unital ∞-operad C⊗, composition with f induces an equivalence of ∞-categories

AlgC(O′)→ AlgC(O).

It is clear that if an ∞-operad O⊗ admits a unitalization O′⊗, then O′⊗ is determined uniquely

up to equivalence. We now prove the existence of O′⊗ by means of a simple explicit construction.

Proposition 2.3.1.11. Let O⊗ be an ∞-operad, and let O⊗∗ be the ∞-category of pointed objects

of O⊗. Then:

(1) The forgetful map p : O⊗∗ → O⊗ is a fibration of ∞-operads (in particular, O⊗∗ is an ∞-

operad).

(2) The ∞-operad O⊗∗ is unital.

(3) For every unital ∞-operad C⊗, composition with p induces a trivial Kan fibration θ :

AlgC(O∗) → AlgC(O) (here AlgC(O∗) denotes the ∞-category of C-algebra objects in the

∞-operad O⊗∗ ).

(4) The map p exhibits O⊗∗ as a unitalization of the ∞-operad O⊗.

Lemma 2.3.1.12. Let C be a pointed ∞-category, and let D be an ∞-category with a final object.

Let Fun′(C,D) be the full subcategory of Fun(C,D) spanned by those functors which preserve final

objects, and let Fun′(C,D∗) be defined similarly. Then the forgetful functor

Fun′(C,D∗)→ Fun′(C,D)

is a trivial Kan fibration.

Proof. Let E ⊆ C×∆1 be the full subcategory spanned by objects (C, i), where either C is a zero

object of C or i = 1. Let Fun′(E,D) be the full subcategory of Fun(E,D) spanned by those functors

F such that F (C, i) is a final object of D, whenever C ∈ C is a zero object. We observe that a

functor F ∈ Fun(E,D) belongs to Fun′(E,D) if and only if F0 = F |C×{1} belongs to Fun′(C,D),

and F is a right Kan extension of F0. We can identify Fun′(C,D∗) with the full subcategory of

Fun(C×∆1,D) spanned by those functors G such that G0 = G|E ∈ Fun′(E,D) and G is a left Kan

extension of G0. It follows from Proposition HTT.4.3.2.15 that the restriction maps

Fun′(C,D∗)→ Fun′(E,D)→ Fun′(C,D)

are trivial Kan fibrations, so that their composition is a trivial Kan fibration as desired.

Proof of Proposition 2.3.1.11. We first prove (1). Fix an object X∗ ∈ O⊗∗ lying over X ∈ O⊗, and

let α : X → Y be an inert morphism in O⊗. Since the map q : O⊗∗ → O⊗ is a left fibration, we

can lift α to a morphism X∗ → Y∗, which is automatically q-coCartesian. Let 〈n〉 denote the image

of X in Fin∗, and choose inert morphisms αi : X → Xi covering the maps ρi : 〈n〉 → 〈1〉 for
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1 ≤ i ≤ n. We claim that the induced functors αi! induce an equivalence (O⊗∗ )X →
∏

1≤i≤n(O⊗∗ )Xi .

Fix a final object 1 in O⊗, so that O⊗∗ is equivalent to O⊗1/. The desired assertion is not equivalent

to the assertion that the maps αi induce a homotopy equivalence

MapO⊗(1, X)→
∏

1≤i≤n
MapO⊗(1, Xi),

which follows immediately from our assumptions that O⊗ is an∞-operad and that each αi is inert.

To complete the proof that p is an ∞-operad fibration, let X∗ be as above, let 〈n〉 be its image

in Fin∗, and suppose we have chosen morphisms X∗ → Xi
∗ in O⊗∗ whose images in O⊗ are inert and

which cover the inert morphisms ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n; we wish to show that the induced

diagram δ : 〈n〉◦/ → O⊗∗ is a p-limit diagram. Let δ = δ|〈n〉◦; we wish to prove that the map

(O⊗∗ )/δ → (O⊗∗ )/δ ×O⊗
/pδ

O⊗
/pδ

is a trivial Kan fibration. Since O⊗∗ is equivalent to O⊗1/, this is equivalent to the requirement that

every extension problem of the form

∂∆m ? 〈n〉◦ f //

��

O⊗

∆m ? 〈n〉◦

99

admits a solution, provided that m ≥ 2, f carries the initial vertex of ∆m to 1 ∈ O⊗, and f |{m} ?
〈n〉◦ = p ◦ δ. Let π : O⊗ → N(Fin∗). The map π ◦ f admits a unique extension to ∆m ? 〈n〉◦: this

is obvious if m > 2, and for m = 2 it follows from the observation that π(1) = 〈0〉 is an initial

object of N(Fin∗). The solubility of the relevant lifting problem now follows from the observation

that p ◦ δ is a π-limit diagram.

Assertion (2) is clear (since O⊗∗ has a zero object), assertion (3) follows from the observation

that θ is a pullback of the morphism Fun′(C⊗,O⊗∗ ) → Fun′(C⊗,O⊗) described in Lemma 2.3.1.12,

and assertion (4) follows immediately from (2) and (3).

We conclude this section with two results concerning the behavior of unitalization in families.

Proposition 2.3.1.13. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, where O⊗ is

unital. The following conditions are equivalent:

(1) The ∞-operad C⊗ is unital.

(2) For every object X ∈ C, the unit object of CX (see §3.2.1) is initial in CX .
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Proof. Choose an object 1 ∈ C⊗〈0〉. Assertion (1) is equivalent to the requirement that 1 be an

initial object of C⊗. Since p(1) is an initial object of O⊗, this is equivalent to the requirement that

∅ is p-initial (Proposition HTT.4.3.1.5 ). Since p is a coCartesian fibration, (1) is equivalent to the

requirement that for every morphism β : p(1) → X in O, the object β!(1) is an initial object of

C⊗X (Proposition HTT.4.3.1.10 ). Write X =
⊕
Xi, where each Xi ∈ O. Using the equivalence

C⊗X '
∏
i CXi , we see that it suffices to check this criterion when X ∈ O, in which case we are

reduced to assertion (2).

Proposition 2.3.1.14. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, where O⊗ is

unital. Then:

(1) Let q : C′⊗ → C⊗ be a categorical fibration which exhibits C′⊗ as a unitalization of C⊗. Then

the map p ◦ q : C′⊗ → O⊗ is a coCartesian fibration of ∞-operads.

(2) For every map of unital ∞-operads O′⊗ → O⊗, the map q induces an equivalence of ∞-

categories θ : AlgO′ /O(C′)→ AlgO′ /O(C).

Proof. By virtue of Proposition 2.3.1.11, we may assume without loss of generality that C′⊗ = C⊗∗ .

In this case, the map p ◦ q factors as a composition C⊗∗ → O⊗∗ → O⊗ . The functor C⊗∗ → O⊗∗ is

equivalent to C⊗1/ → O⊗p(1)/, where 1 ∈ C⊗〈0〉 is a final object of C⊗, and therefore a coCartesian

fibration (Proposition HTT.2.4.3.1 ), and the map O⊗∗ → O⊗ is a trivial Kan fibration by virtue of

our assumption that O⊗ is unital. This proves (1). To prove (2), it suffices to observe that θ is

a pullback of the map AlgO′ /O(C∗) → AlgO′ /O(C), which is a trivial Kan fibration by Proposition

2.3.1.11 (here C∗ denotes the underlying ∞-category of the ∞-operad C⊗∗ , which is generally not

the ∞-category of pointed objects of C).

2.3.2 Generalized ∞-Operads

Let O⊗ be an ∞-operad. Then, for each n ≥ 0, we have a canonical equivalence of ∞-categories

O⊗〈n〉 ' On. In particular, the ∞-category O⊗〈0〉 is a contractible Kan complex. In this section,

we will introduce the notion of a generalized ∞-operad (Definition 2.3.2.1), where we relax the

assumption that O⊗〈0〉 is contractible, and replace the absolute nth power On with the nth fiber

power over the ∞-category O⊗〈0〉. We will also introduce the closely related notion of a C-family of

∞-operads, where C is an ∞-category (Definition 2.3.2.10). We will see that giving a generalized

∞-operad O⊗ is equivalent to giving an ∞-category C (which can be identified with O⊗〈0〉) and a

C-family of ∞-operads.

Definition 2.3.2.1. A generalized ∞-operad is an ∞-category O⊗ equipped with a map q : O⊗ →
N(Fin∗) satisfying the following conditions:

(1) For every object X ∈ O⊗ and every inert morphism α : p(X) → 〈n〉, there exists a q-

coCartesian morphism α : X → Y with q(α) = α.
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(2) Suppose we are given a commutative diagram σ:

〈m〉 //

��

〈n〉

��
〈m′〉 // 〈n′〉

in Fin∗ which consists of inert morphisms and induces a bijection of finite sets 〈m′〉◦
∐
〈n′〉◦ 〈n〉

◦ →
〈m〉◦. Then the induced diagram

O⊗〈m〉
//

��

O⊗〈n〉

��
O⊗〈m′〉

// O⊗〈n′〉

is a pullback square of ∞-categories.

(3) Let σ be as in (2), and suppose that σ can be lifted to a diagram σ

X //

��

Y

��
X ′ // Y ′

consisting of q-coCartesian morphisms in O⊗. The σ is a q-limit diagram.

Definition 2.3.2.2. Let q : O⊗ → N(Fin∗) be a generalized ∞-operad. We will say that a

morphism α in O⊗ is inert if q(α) is an inert morphism in Fin∗ and α is q-coCartesian. We let O⊗,\

denote the marked simplicial set (O⊗,M), where M is the collection of all inert morphisms in O⊗.

If O⊗ and O′⊗ are generalized ∞-operads, then we will say that a morphism of simplicial sets

f : O⊗ → O′⊗ is a map of generalized ∞-operads if the following conditions are satisfied:

(a) The diagram

O⊗

$$

// O′⊗

zz
N(Fin∗)

commutes.

(b) The map f carries inert morphisms in O⊗ to inert morphisms in O′⊗.

We let AlgO(O′) denote the full subcategory of FunN(Fin∗)(O
⊗,O′⊗) spanned by the maps of gener-

alized ∞-operads.
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Variant 2.3.2.3. Given a categorical fibration of generalized ∞-operads C⊗ → O⊗ and a map

α : O′⊗ → O⊗, we let AlgO′ /O(C) denote the fiber of the induced map AlgO′(C) → AlgO′(O) over

the vertex α. If O′⊗ = O⊗ and α is the identity map, we let Alg/O(C) denote the ∞-category

AlgO′ /O(C).

Remark 2.3.2.4. Let POp∞ be the category of ∞-preoperads (Definition 2.1.4.2). There exists

a left proper combinatorial simplicial model structure on the category POp∞ with the following

properties:

(1) A morphism α : X → Y in POp∞ is a cofibration if and only if the underlying map of

simplicial sets X → Y is a monomorphism.

(2) An object X in POp∞ is fibrant if and only if it has the form O⊗,\, for some generalized

∞-operad O⊗.

We will refer to this model structure on POp∞ as the generalized ∞-operadic model structure.

To verify the existence (and uniqueness) of this model structure, we apply Theorem B.0.20

to the categorical pattern P = (M,T, {σα : ∆1 × ∆1 → O⊗}α∈A) on N(Fin∗), where M is the

collection of inert morphisms in N(Fin∗), T is the collection of all 2-simplices of N(Fin∗), and A is

the collection of all diagrams

〈m〉 //

��

〈n〉

��
〈m′〉 // 〈n′〉

consisting of inert morphisms which induce a bijection 〈m′〉◦
∐
〈n′〉◦ 〈n〉

◦ → 〈m〉◦. Moreover, Propo-

sition B.2.7 implies the following additional property:

(3) Let O⊗ be a generalized ∞-operad. Then a map of ∞-preoperads X → O⊗,\ is a fibration

(with respect to the generalized ∞-operadic model structure) if and only if X has the form

O′⊗,\, where O′⊗ is a generalized∞-operad and the underlying map O′⊗ → O⊗ is a categorical

fibration which carries inert morphisms in O′⊗ to an inert morphism in O⊗.

The following result shows that the theory of generalized ∞-operads really is a generalization

of the theory of ∞-operads:

Proposition 2.3.2.5. Let p : O⊗ → N(Fin∗) be a map of simplicial sets. The following conditions

are equivalent:

(1) The map p exhibits O⊗ as a generalized ∞-operad, and the fiber O⊗〈0〉 is a contractible Kan

complex.

(2) The map p exhibits O⊗ as an ∞-operad.
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Proposition 2.3.2.5 is a consequence of a more general result (Proposition 2.3.2.11) which we

will prove at the end of this section.

Corollary 2.3.2.6. Let A = B = POp∞, where we regard A as endowed with with the general-

ized ∞-operadic model structure of Remark 2.3.2.4 and B as endowed with the ∞-operadic model

structure of Proposition 2.1.4.6. Then the identify functor F : A → B is a left Quillen functor:

that is, we can regard ∞-operadic model structure as a localization of the generalized ∞-operadic

model structure (see §HTT.A.3.7 ).

Proof. Since A and B have the same class of cofibrations, it will suffice to show that the functor

F preserves weak equivalences. Let α : X → Y be a map of ∞-preoperads. Then α is a weak

equivalence in A if and only if, for every generalized ∞-operad O⊗, composition with α induces

a homotopy equivalence MapPOp∞(Y ,O⊗,\) → MapPOp∞(X,O⊗,\). Since every ∞-operad is a

generalized ∞-operad (Proposition 2.3.2.5), this condition implies that α is a weak equivalence in

B as well.

Notation 2.3.2.7. We let Opgn
∞ denote the underlying ∞-category N(POp∞

o) of the simplicial

model category POp∞, with respect to the generalized ∞-operadic model structure of Remark

2.3.2.4. We will refer to Opgn
∞ as the ∞-category of generalized ∞-operads. It contains the ∞-

category Op∞ of ∞-operads as a full subcategory.

Remark 2.3.2.8. The terminology introduced in Definition 2.3.2.2 for discussing generalized ∞-

operads is compatible with the corresponding terminology for∞-operads. For example, if O⊗ is an

∞-operad, then a morphism in O⊗ is inert in the sense of Definition 2.3.2.2 if and only if it is inert

in the sense of Definition 2.1.2.3. If O⊗ and O′⊗ are ∞-operads, then a functor f : O⊗ → O′⊗ is a

map of ∞-operads if and only if it is a map of generalized ∞-operads, and the notation AlgO(O′)

is unambiguous. Similarly, the notation of Variant 2.3.2.3 is compatible with the notation for

∞-operads introduced in Definition 2.1.3.1.

According to Proposition 2.3.2.5, the discrepancy between Op∞ and Opgn
∞ is controlled by the

forgetful functor F : Opgn
∞ → Cat∞, given by the formula F (O⊗) = O⊗〈0〉.

Proposition 2.3.2.9. (1) For every ∞-category C, the product C×N(Fin∗) is a generalized ∞-

operad.

(2) The construction C 7→ C×N(Fin∗) determines a functor G : Cat∞ → Opgn
∞.

(3) The functor G is a fully faithful right adjoint to the forgetful functor F : Opgn
∞ → Cat∞

described above.

Proof. Assertions (1) and (2) are obvious. We have a canonical equivalence v : F ◦ G → id of

functors from Cat∞ to itself. To complete the proof of (3), it will suffice to show that v is the

counit of an adjunction between F and G. In other words, we must show that for every generalized
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∞-operad O⊗ and every ∞-category C, the restriction functor θ : AlgO(C) → Fun(O⊗〈0〉,C) induces

a homotopy equivalence from AlgO(C)' to the Kan complex Fun(O⊗〈0〉,C)' (here we identify C with

the underlying ∞-category of the generalized ∞-operad C×N(Fin∗)). In fact, we will show that θ

is a trivial Kan fibration.

We observe that AlgO(C) can be identified with the full subcategory of Fun(O⊗,C) spanned by

those functors which carry each inert morphism of O⊗ to an equivalence in C. In view of Proposition

HTT.4.3.2.15 , it will suffice to prove the following:

(a) A functor F : O⊗ → C is a right Kan extension of F |O⊗〈0〉 if and only if F carries each inert

morphism in O⊗ to an equivalence in C.

(b) Every functor F0 : O⊗〈0〉 → C can be extended to a functor F : O⊗ → C satisfying the equivalent

conditions of (a).

To prove (a), we note that for each object X ∈ O⊗, the ∞-category O⊗X/×O⊗ O
⊗
〈0〉 contains an

initial object: namely, any inert morphism X → X0 where X0 ∈ O⊗〈0〉. Consequently, a functor

F : O⊗ → C is a right Kan extension of F |O⊗〈0〉 if and only if F (α) is an equivalence for every

morphism α : X → X0 such that X0 ∈ O⊗〈0〉. This proves the “if” direction of (a). The “only if”

direction follows from the two-out-of-three property, since every inert morphism X → Y in O⊗ fits

into a commutative diagram of inert morphisms

X //

  

Y

��
Z

where Z ∈ O⊗〈0〉. Assertion (b) follows immediately from Lemma HTT.4.3.2.13 .

Our next goal is to describe the fiber of the forgetful functor F : Opgn
∞ → Cat∞ over a general

∞-category C.

Definition 2.3.2.10. Let C be an ∞-category. A C-family of ∞-operads is a categorical fibration

p : O⊗ → C×N(Fin∗) with the following properties:

(a) Let C ∈ C be an object, let X ∈ O⊗C have image 〈m〉 ∈ Fin∗, and let α : 〈m〉 → 〈n〉 be an

inert morphism. Then there exists a p-coCartesian morphism α : X → Y in O⊗C .

We will say that a morphism α of O⊗ is inert if α is p-coCartesian, the image of α in N(Fin∗) is

inert, and the image of α in C is an equivalence.

(b) Let X ∈ O⊗ have images C ∈ C and 〈n〉 ∈ N(Fin∗). For 1 ≤ i ≤ n, let fi : X → Xi be an inert

morphism in O⊗C which covers ρi : 〈n〉 → 〈1〉. Then the collection of morphisms {fi}1≤i≤n
determines a p-limit diagram 〈n〉◦/ → O⊗.
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(c) For each object C ∈ C, the induced map O⊗C → N(Fin∗) is an ∞-operad.

The main result of this section is the following:

Proposition 2.3.2.11. Let C be an ∞-category and let p : O⊗ → C×N(Fin∗) be a categorical

fibration of simplicial sets. The following conditions are equivalent:

(1) The map p is a fibration of generalized ∞-operads, and the underlying map O⊗〈0〉 → C is a

trivial Kan fibration.

(2) The map p exhibits O⊗ as a C-family of ∞-operads.

Remark 2.3.2.12. In the special case C = ∆0, the definition of a C-operad family reduces to the

usual definition of an∞-operad. Consequently, Proposition 2.3.2.11 implies Proposition 2.3.2.5 (by

taking C = ∆0).

Corollary 2.3.2.13. Let C be an ∞-category. Then the fiber product Opgn
∞ ×Cat∞{C} can be identi-

fied with the full subcategory of (Opgn
∞)/C×N(Fin∗) spanned by those maps O⊗ → C×N(Fin∗) which

exhibit O⊗ as a C-family of ∞-operads.

In other words, we can think of a generalized ∞-operad as consisting of a pair (C,O⊗), where

C is an ∞-category and O⊗ is a C-family of ∞-operads.

Proof of Corollary 2.3.2.13. We can identify the fiber product Opgn
∞ ×Cat∞{C} with the full subcat-

egory of Opgn
∞ ×Cat∞(Cat∞)/C spanned by those pairs (O⊗, α : O⊗〈0〉 → C) where O⊗ is a generalized

∞-operad and α is an equivalence of ∞-categories. Using Proposition 2.3.2.9, we can identify this

fiber product with the full subcategory of (Opgn
∞)/C×N(Fin∗) spanned by those maps of generalized

∞-operads O⊗ → C×N(Fin∗) which induce a categorical equivalence O⊗〈0〉 → C. This subcategory

evidently contains all C-families of ∞-operads. Conversely, if f : O⊗ → C×N(Fin∗) is an arbitrary

map of generalized∞-operads which induces a categorical equivalence O⊗〈0〉 → C, then we can factor

f as a composition

O⊗
f ′→ O′⊗

f ′′→ C×N(Fin∗),

where f ′ is an equivalence of generalized ∞-operads and f ′′ is a categorical fibration. It follows

that f ′′ induces a trivial Kan fibration O′⊗〈0〉 → C and therefore exhibits O′⊗ as a C-family of ∞-

operads.

We conclude this section by proving Proposition 2.3.2.11.

Proof of Proposition 2.3.2.11. We first prove that (1) ⇒ (2). Assume that p : O⊗ → C×N(Fin∗)

is a fibration of generalized ∞-operads. Then O⊗ is a generalized ∞-operad and p is a categorical

fibration which carries inert morphisms in O⊗ to equivalences in C. We will show that p satisfies

conditions (a), (b), and (c) of Definition 2.3.2.10. To prove (a), suppose that X ∈ O⊗ lies over
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(C, 〈m〉) ∈ C×N(Fin∗) and that we are given an inert morphism α : 〈m〉 → 〈n〉 in N(Fin∗).

Since O⊗ is a generalized ∞-operad, we can lift α to an inert α : X → X ′ in O⊗, lying over a

map (C, 〈m〉) → (C ′, 〈n〉). Because p preserves inert morphisms, the underlying map C → C ′

is an equivalence. Choosing a homotopy inverse, we get an equivalence (C ′, 〈n〉) → (C, 〈n〉) in

C×N(Fin∗) which (since p is a categorical fibratino) can be lifted to an equivalence β : X ′ → X ′′

in O⊗. Since p has the right lifting property with respect to the horn inclusion Λ2
1 ⊆ ∆2, we can

choose a composition γ ' β ◦ α lying over the morphism (idC , α) : (C, 〈m〉) → (C, 〈n〉). We claim

that γ is p-coCartesian. Since γ is equivalent to α, it suffices to show that α is p-coCartesian. This

follows from Proposition HTT.2.4.1.3 , since α is inert and p(α) is coCartesian with respect to the

projection π : C×N(Fin∗)→ N(Fin∗).

We now prove (b). Suppose we are given an object X ∈ O⊗(C,〈n〉) together with inert morphisms

X → Xi in O⊗C covering the maps ρi : 〈n〉 → 〈1〉. We wish to show that the induced map

q : 〈n〉◦/ → O⊗ is a p-limit diagram. The proof proceeds by induction on n.

If n = 0, then we must show that every object X ∈ O⊗C,〈0〉 is p-final. In other words, we must

show that for every object Y ∈ O⊗D,〈m〉, the homotopy fiber of the map

MapO⊗(Y,X)→ MapC×N(Fin∗)((D, 〈m〉), (C, 〈0〉))

is contractible: that is, MapO⊗(Y,X)→ MapC(D,C) is a homotopy equivalence. To prove this, we

choose an inert morphism α : Y → Y ′ covering the unique map 〈m〉 → 〈0〉 in Fin∗. Since the image

of α in C is an equivalence, we are free to replace Y by Y ′ and to thereby assume that m = 0. In

this case, the desired assertion follows from the assumption that O⊗〈0〉 → C is a trivial Kan fibration.

If n = 1, there is nothing to prove. Assume that n > 1. Let β : 〈n〉 → 〈n− 1〉 be defined by

the formula

β(i) =

{
i if 1 ≤ i ≤ n− 1

∗ otherwise,

and choose a p-coCartesian morphism g : X → X ′ lying over (idC , β). Using the assumption that

g is p-coCartesian, we obtain factorizations of fi as a composition

X
g→ X ′

f ′i→ Xi

for 1 ≤ i ≤ n. These factorizations determine a diagram

q′ : (〈n− 1〉◦/
∐
{n})/ → O⊗C

extending q. Fix an object X0 ∈ O⊗C,〈0〉. We have seen that X0 is a p-final object of C⊗. Since 〈0〉 is

also a final object of N(Fin∗), we deduce that X0 is a final object of O⊗C We may therefore extend

q′ to a diagram

q′′ : {x} ? (〈n− 1〉◦/
∐
{n}) ? {x0} → O⊗C
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carrying x to X and x0 to X0.

In view of Lemma HTT.4.3.2.7 , to prove that q is a p-limit diagram it will suffice to show the

following:

(i) The restriction q′′|(〈n− 1〉◦/
∐
{n}) ? {x0} is a p-right Kan extension of q′′|〈n〉◦.

(ii) The diagram q′′ is a p-limit.

Using Proposition HTT.4.3.2.8 , we can break the proof of (a) into two parts:

(i′) The restriction q′′|(〈n− 1〉◦/
∐
{n}) ? {x0} is a p-right Kan extension of q′′|(〈n− 1〉◦/

∐
{n}).

(i′′) The restriction q′′|(〈n− 1〉◦/
∐
{n}) is a p-right Kan extension of q′′|〈n〉◦.

Assertion (i′) follows from the observation that X0 is a p-final object of C⊗, and (i′′) follows from

the inductive hypothesis.

To prove (ii), we observe that the inclusion (∅/
∐
{n}) ? {x0} ⊆ (〈n− 1〉◦/

∐
{n}) ? {x0} is

left cofinal (for example, using Theorem HTT.4.1.3.1 ). Consequently, it suffices to show that the

restriction of q′′′ = q|({x} ? (∅/
∐
{n}) ? {x0}) is a p-limit diagram. Since p ◦ q′′′ is π-coCartesian

(the projection of p ◦ q′′′ to C is constant, and therefore a pullback square in C), it will suffice to

show that q′′′ is a π ◦p-limit diagram (Proposition HTT.2.4.1.3 ). This follows from our assumption

that O⊗ is a generalized ∞-operad, since q′′′ is a p-coCartesian lift of the inert diagram

〈n〉 ρi //

β

��

〈1〉

��
〈n− 1〉 // 〈0〉.

We next verify (c): that is, for n ≥ 0 and every object C ∈ C, the maps

ρi! : O⊗(C,〈n〉) → O⊗(C,〈1〉)

induce an equivalence of ∞-categories θn : O⊗(C,〈n〉) → (O⊗(C,〈1〉))
n. The proof again proceeds by

induction on n. When n = 0, this follows from our assumption that O⊗〈0〉 → C is a trivial Kan

fibration (and therefore has contractible fibers). When n = 1 there is nothing to prove. Assume

therefore that n ≥ 2 and observe that θn is equivalent to the composition

O⊗(C,〈n〉)
β!×α!−→ O⊗(C,〈n−1〉)×O⊗(C,〈1〉)

θn−1×id−→ (O⊗(C,〈1〉))
n,

where β : 〈n〉 → 〈n− 1〉 is defined as above and α = ρn. By virtue of the inductive hypothesis,

it suffices to show that the map β! × α! is an equivalence of ∞-categories. We have a homotopy
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coherent diagram of ∞-categories

O⊗(C,〈n〉)
β! //

α!

��

O⊗(C,〈n−1〉)

��
O⊗(C,〈1〉)

// O⊗(C,〈0〉) .

Because O⊗C ' O⊗×C×N(Fin∗)({C}×N(Fin∗) is a generalized ∞-operad, this square is a homotopy

pullback. Since O⊗(C,〈0〉) is a contractible Kan complex, we conclude that β! × α! is a categorical

equivalence as desired. This completes the proof that (1)⇒ (2).

We now prove that (2)⇒ (1). Assume that p exhibits O⊗ as a C-family of∞-operads. We wish

to show that O⊗ is a generalized∞-operad and that p carries inert morphisms in O⊗ to equivalences

in C. Suppose first that we are given an object X ∈ O⊗C lying over 〈m〉 ∈ N(Fin∗) and an inert

morphism α : 〈m〉 → 〈n〉 in Fin∗. We wish to prove that α can be lifted to a (π ◦ p)-coCartesian

morphism α in O⊗ such that p(α) induces an equivalence in C. In view of Proposition HTT.2.4.1.3 ,

it will suffice to show that the morphism (idC , α) in C×N(Fin∗) can be lifted to a p-coCartesian

morphism in O⊗, which follows from assumption (a) of Definition 2.3.2.10.

To complete the proof that O⊗ is a generalized ∞-operad, we fix a diagram σ : ∆1 × ∆1 →
N(Fin∗) of inert morphisms

〈n〉 α //

β
��

γ

""

〈m〉

��
〈m′〉 // 〈k〉

which induces a bijection 〈m〉◦
∐
〈k〉◦ 〈m′〉

◦. We wish to prove the following:

(iii) Every map σ : ∆1 ×∆1 → O⊗ lifting σ which carries every morphism in ∆1 ×∆1 to an inert

morphism in O⊗ is a (π ◦ p)-limit diagram (since p carries inert morphisms to equivalences in

C and the simplicial set ∆1×∆1 is weakly contractible, we know automatically that p(σ̃) is a

π-limit diagram; by virtue of Proposition HTT.2.4.1.3 , it suffices to show that σ is a p-limit

diagram).

(iv) Let σ0 denote the restriction of σ to the full subcategory K of ∆1×∆1 obtained by omitting

the initial object. If σ0 : K → O⊗ is a map lifting σ0 which carries every edge of K to an

inert morphism in O⊗, then σ0 can be extended to a map σ : ∆1 ×∆1 → O⊗ satisfying the

hypothesis of (i).

To prove these claims, consider the ∞-category Ã = (∆1 × ∆1) ? 〈n〉◦, and let A denote the

subcategory obtained by removing those morphisms of the form (1, 1) → i where i ∈ γ−1{∗},
(0, 1)→ i where i ∈ β−1{∗}, and (1, 0)→ i where i ∈ α−1{∗}. We observe that σ can be extended

uniquely to a diagram τ : A→ N(Fin∗) such that τ(i) = 〈1〉 for i ∈ 〈n〉◦, and τ carries the morphism
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(0, 0) → i to the map ρi : 〈n〉 → 〈1〉. The assumption that 〈n〉◦ ' 〈m〉◦
∐
〈k〉◦ 〈m′〉

◦. guarantees

that for each i ∈ 〈n〉◦, the ∞-category (∆1×∆1)×A A/i contains a final object corresponding to a

morphism (j, j′)→ i in A, where (j, j′) 6= (0, 0). Note that the image of this morphism in N(Fin∗)

is inert.

Let σ : ∆1 × ∆1 be as (iii). We may assume without loss of generality that the composition

∆1 × ∆1 → O⊗
p→ C×N(Fin∗) → C is the constant functor taking some value C ∈ C. Using

Lemma HTT.4.3.2.13 , we can choose a p-left Kan extension τ : A→ O⊗C of σ such that p ◦ τ = τ .

Let A0 denote the full subcategory of A obtained by removing the object (0, 0). We observe that

the inclusion K ⊆ A0 is right cofinal (Theorem HTT.4.1.3.1 ). Consequently, to prove that σ is a

p-limit diagram, it suffices to show that τ is a p-limit diagram. Since O⊗ is a C-family of∞-operads,

the restriction of τ to {(0, 0)} ? 〈n〉◦ is a p-limit diagram. To complete the proof, it will suffice (by

virtue of Lemma HTT.4.3.2.7 ) to show that τ |A0 is a p-right Kan extension of τ |〈n〉◦. This again

follows immediately from our assumption that O⊗ is a C-family of ∞-operads.

We now prove (iv). Let σ0 : K → O⊗ be as in (iv); we may again assume without loss of

generality that this diagram factors through O⊗C for some C ∈ C. Using Lemma HTT.4.3.2.13 , we

can choose a p-left Kan extension τ0 : A0 → O⊗C of σ0 covering the map τ0 = τ |A0. Using the

assumption that O⊗C is an ∞-operads, we deduce that τ0 is a p-right Kan extension of τ0|〈n〉◦, and

that τ0|〈n〉◦ can be extended to a p-limit diagram τ̃0 : {(0, 0)}? 〈n〉◦ → O⊗C lifting τ |({(0, 0)}? 〈n〉◦);
moreover, any such diagram carries each edge of {(0, 0)}?〈n〉◦ to an inert morphism in O⊗C . Invoking

Lemma HTT.4.3.2.7 , we can amalgamate τ̃0 and τ0 to obtain a diagram τ : A → O⊗C covering τ .

We claim that σ = τ |∆1 ×∆1 is the desired extension of σ0. To prove this, it suffices to show that

τ carries each morphism of ∆1 ×∆1 to an inert morphism of O⊗. Since the composition of inert

morphisms in O⊗ is inert, it will suffice to show that the maps

τ(0, 1)
β← τ(0, 0)

α→ τ(1, 0)

are inert, where α and β are the morphisms lying over α and β determined by τ . We will prove

that α is inert; the case of β follows by the same argument. We can factor α as a composition

τ(0, 0)
α′→ α!τ(0, 0)

α′′→ τ(1, 0).

We wish to prove that α′′ is an equivalence in the∞-category O⊗(C,〈m〉). Since O⊗C is an∞-operad, it

will suffice to show that for 1 ≤ j ≤ m, the functor ρj! : O⊗(C,〈m〉) → OC carries α′′ to an equivalence

in OC . Unwinding the definitions, this is equivalent to the requirement that the map τ(0, 0)→ τ(i)

is inert, where i = α−1(j) ∈ 〈n〉◦, which follows immediately from our construction.

2.3.3 Approximations to ∞-Operads

In §2.3.2, we introduced the notion of a generalized ∞-operad. We can regard the ∞-category

Op∞ of ∞-operads as a full subcategory of the ∞-category Opgn
∞ of generalized ∞-operads. We

now observe that the inclusion Op∞ ↪→ Opgn
∞ admits a left adjoint.
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Definition 2.3.3.1. Let O⊗ be a generalized ∞-operad and O′⊗ an ∞-operad. We will say that

a map γ : O⊗ → O′⊗ of generalized ∞-operads assembles O⊗ to O′⊗ if, for every ∞-operad O′
′⊗

,

composition with γ induces an equivalence of ∞-categories AlgO′(O
′′)→ AlgO(O′′). In this case we

will also say that O′⊗ is an assembly of O⊗, or that γ exhibits O′⊗ as an assembly of O⊗.

Remark 2.3.3.2. A map of generalized ∞-operads γ : O⊗ → O′⊗ assembles O⊗ to O′⊗ if and

only if it exhibits O′⊗ as an Op∞-localization of O⊗ ∈ Opgn
∞ . In other words, γ assembles O⊗

to O′⊗ if and only if O′⊗ is an ∞-operad, and for every ∞-operad O′
′⊗

, composition with γ in-

duces a homotopy equivalence θ(O′
′⊗

) : MapOpgn
∞ (O′⊗,O′

′⊗
) → MapOpgn

∞ (O⊗,O′
′⊗

). The “only if”

direction is clear, since the mapping spaces MapOpgn
∞ (O′⊗,O′

′⊗
) and MapOpgn

∞ (O⊗,O′
′⊗

) can be

identified with the Kan complexes AlgO′(O
′′)' and AlgO(O′′)'. Conversely, suppose that θ(O′

′⊗
)

is a homotopy equivalence for every ∞-operad O′
′⊗

; we wish to show that each of the maps

AlgO′(O
′′) → AlgO(O′′) is a categorical equivalence. It suffices to show that for every simplicial

set K, the map Fun(K,AlgO′(O
′′)) → Fun(K,AlgO(O′′)) induces a homotopy equivalence on the

underlying Kan complexes; this map can be identified with θ(C⊗), where C⊗ is the ∞-operad

Fun(K,O′
′⊗

)×Fun(K,N(Fin∗)) N(Fin∗).

Remark 2.3.3.3. Since the ∞-category Op∞ is a localization of the ∞-category Opgn
∞ (Corollary

2.3.2.6), we conclude that for every generalized ∞-operad O⊗ there exists an assembly map γ :

O⊗ → O′⊗, which is uniquely determined up to equivalence. The process of assembly determines

a functor Assem : Opgn
∞ → Op∞, which is left adjoint to the inclusion Op∞ ⊆ Opgn

∞ . This functor

can be described concretely as follows: for every every generalized ∞-operad O⊗, we can identify

Assem(O⊗) with an ∞-operad O′⊗, where O′⊗,\ as a fibrant replacement for the ∞-preoperad O⊗,\

with respect to the ∞-operadic model structure on POp∞.

Remark 2.3.3.4. In the situation of Definition 2.3.3.1, suppose that O⊗ → C×N(Fin∗) is a

C-family of ∞-operads. We can think of an object of AlgO(O′′) as a family of ∞-operad maps

O⊗C → O′
′⊗

parametrized by the objects C ∈ C. The map γ assembles O⊗ if this is equivalent to

the data of a single ∞-operad map O′⊗ → O′
′⊗

. In this case, we can view O′⊗ as a sort of colimit

of the family of ∞-operads {O⊗C}C∈C. This description is literally correct in the case where C is a

Kan complex.

Our goal in §2.3.4 is to analyze the relationship between a generalized ∞-operad O⊗ and its

assembly Assem(O⊗) (under some mild hypotheses in O). To carry out this analysis, we need a

criterion for detecting weak equivalences in the model category POp∞ of ∞-preoperads. Our goal

in this section is to establish such a criterion, whose formulation involves the notion of a (weak)

approximation to an ∞-operad, which will have many other applications in later chapters of this

book.

Warning 2.3.3.5. The remaining material in this section is of a rather technical nature. We

recommend that the casual reader skip it for the time being, referring back to it as necessary.
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Definition 2.3.3.6. Let p : O⊗ → N(Fin∗) be an ∞-operad. We will say that a categorical

fibration f : C→ O⊗ is an approximation to O⊗ if it satisfies the following conditions:

(1) Let p′ = p ◦ f , let C ∈ C be an object, and let 〈n〉 = p′(C). For 1 ≤ i ≤ n, there exists a

locally p′-coCartesian morphism αi : C → Ci in C covering the map ρi : 〈n〉 → 〈1〉. Moreover,

f(αi) is an inert morphism in O⊗.

(2) Let C ∈ C and let α : X → f(C) be an active morphism in O⊗. Then there exists an

f -Cartesian morphism α : X → C lifting α.

We will say that a categorical fibration f : C→ O⊗ is a weak approximation to O⊗ if it satisfies

condition (1) together with the following:

(2′) Let C ∈ C and let α : X → f(C) be an arbitrary morphism in O⊗. Let E ⊆
C/C ×O⊗

/f(C)
O⊗X//f(C) be the full subcategory spanned by those objects corresponding to

pairs (β : C ′ → C, γ : X → f(C ′)) such that γ is inert. Then the ∞-category E is weakly

contractible.

If f : C→ O⊗ is an arbitrary map of∞-categories, we will say that f is a (weak) approximation

if it factors as a composition C
f ′→ C′

f ′′→ O⊗, where f ′ is a categorical equivalence and f ′′ is a

categorical fibration which is a (weak) approximation to O⊗.

Remark 2.3.3.7. In the situation of Definition 2.3.3.6, the condition that f : C→ O⊗ is a (weak)

approximation does not depend on the choice of factorization C
f ′→ C′

f ′′→ O⊗, provided that f ′ is a

categorical equivalence and f ′′ is a categorical fibration.

Remark 2.3.3.8. Let O⊗ be an ∞-operad and let f : C→ O⊗ be a categorical fibration which is

an approximation to O⊗. We will say that a morphism α in C is f -active if α is f -Cartesian and

f(α) is an active morphism in O⊗. We will say that α is f -inert if f(α) is an inert morphism in

O⊗. It follows from Proposition 2.1.2.5 that C admits a factorization system (SL, SR), where SL is

the collection of f -inert morphisms in C and SR is the collection of f -active morphisms in C.

Remark 2.3.3.9. Let O⊗ be an ∞-operad and let f : C → O⊗ be an approximation to O⊗.

If u : O′⊗ → O⊗ is a fibration of ∞-operads, then the induced map C×O⊗O
′⊗ → O′⊗ is an

approximation to O′⊗. Indeed, the assumption that u is a fibration of ∞-operads guarantees that

the fiber product C×O⊗O
′⊗ is also a homotopy fiber product. We may therefore replace C by an

equivalent ∞-category and thereby reduce to the case where f is a categorical fibration, in which

case the result follows readily from Definition 2.3.3.6.

Lemma 2.3.3.10. Let O⊗ be an ∞-operad and let f : C→ O⊗ be an approximation to O⊗. Then

f is a weak approximation to O⊗.
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Proof. Fix an object C ∈ C and a morphism α : X → f(C), and let C′ ⊆ C/C ×O⊗
/f(C)

O⊗X//f(C) be

as in Definition 2.3.3.6. The map α fits into a commutative diagram σ :

X ′

α′′

""
X

α′
>>

α // f(C),

where α′ is inert and α′′ is active. Since f is an approximation to O⊗, we can lift α′′ to an f -

Cartesian morphism α′′ : C ′ → C. The pair (α′′, σ) is a final object of C′, so that C′ is weakly

contractible.

We will be primarily interested in the case where f : C⊗ → O⊗ is a map of generalized ∞-

operads. In this case, the condition that f be a weak approximation is much easier to formulate:

Proposition 2.3.3.11. Let p : O⊗ → N(Fin∗) be an ∞-operad, and let f : C→ O⊗ be a categorical

fibration. Assume that C satisfies the following condition:

(∗) For every object C ∈ C and every inert morphism β : (p ◦ f)(C) → 〈n〉 in N(Fin∗), there

exists a (p ◦ f)-coCartesian morphism β : C → C ′ in C lifting β, and the image f(β) is an

inert morphism in O⊗.

Then f is a weak approximation if and only if the following condition is satisfied:

(∗′) For every object C ∈ C and every active morphism α : X → f(C) in O⊗, the ∞-category

C/C ×O⊗
/f(C)
{X}

is weakly contractible.

Remark 2.3.3.12. Condition (∗) of Proposition 2.3.3.11 is automatically satisfied if f is a fibration

of generalized ∞-operads.

Proof. It is obvious that condition (1) of Definition 2.3.3.6 satisfies (∗). It will therefore suffice

to show that if (∗) is satisfied, then condition (2′) of Definition 2.3.3.6 is equivalent to (∗′). We

first show that (2′) ⇒ (∗′). Consider an arbitrary morphism α : X → f(C) in O⊗ and let E be

defined as in (2′). Let E0 be the full subcategory of E spanned by those objects which correspond

to factorizations

X
β→ f(D)

f(γ)→ f(C)

of α, where β is an inert morphism in O⊗ and f(γ) is an active morphism in O⊗. Using (∗),
we conclude that the inclusion E0 ⊆ E admits a left adjoint and is therefore a weak homotopy

equivalence. Let X be the full subcategory of O⊗X//f(C) spanned by those diagrams

X
α′→ X ′

α′′→ f(C)
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such that α” is inert and α′′ is active, so that X is a contractible Kan complex. Then E0 can

be identified with the fiber product C⊗/C ×O⊗
/f(C)

X, and is therefore categorically equivalent to the

fiber C⊗/C ×O⊗
/f(C)
{X ′} for any object X ′ ∈ E. If (∗′) is satisfied, then this fiber product is weakly

contractible and (2′) follows. Conversely, assume that (2′) is satisfied. If α : X → f(C) is active,

then we take X ′ = X to conclude that C⊗/C ×O⊗
/f(C)
{X} ' E0 is weakly contractible, which proves

(∗′).

To state our next result, we need a bit of notation. For each integer n ≥ 0, we let Tupn denote

the subcategory of N(Fin∗)/〈n〉 whose objects are active morphisms 〈m〉 → 〈n〉 in N(Fin∗), and

whose morphisms are commutative diagrams

〈m〉

!!

α // 〈m〉

}}
〈n〉

where α is a bijection of pointed finite sets. The ∞-category Tupn is equivalent to the nerve of the

groupoid of n-tuples of finite sets.

Lemma 2.3.3.13. Let X be a Kan complex and let θ : Y→ X be a categorical fibration. Then, for

every vertex X ∈ X, the pullback diagram

YX //

��

Y

θ
��

{X} // X

is a homotopy pullback diagram (with respect to the usual model structure on Set∆).

Proof. Choose a factorization of the inclusion i : {X} ↪→ X as a composition

{X} i′
↪→ X

i′′→ X,

where i′′ is a Kan fibration and X is a contractible Kan complex, so we have a commutative diagram

YX
j′ //

��

Y×XX //

��

Y

θ

��
{X} i′ // X

i′′ // X .

Since i′′ is a Kan fibration, the right square is a homotopy pullback diagram with respect to the

usual model structure (since the usual model structure is right-proper). To prove that the outer
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square is a homotopy pullback diagram, it will suffice to show that i′ and j′ are weak homotopy

equivalences. We will complete the proof by showing that j′ is a categorical equivalence. Since θ is

a categorical fibration and the simplicial sets {X}, X, and X are ∞-categories, the left square is a

homotopy pullback diagram with respect to the Joyal model structure. It will therefore suffice to

show that i′ is a categorical equivalence, which is obvious.

Proposition 2.3.3.14. Let p : O⊗ → N(Fin∗) be an ∞-operad and let f : C → O⊗ be a functor.

Assume that f satisfies condition (∗) of Proposition 2.3.3.11 and that the ∞-category O is a Kan

complex. Then f is a weak approximation to O⊗ if and only if the following condition is satisfied:

(∗′′) Let C ∈ C and let 〈n〉 = (p ◦ f)(C) ∈ N(Fin∗). Then f induces a weak homotopy equivalence

θ : C/C ×N(Fin∗)/〈n〉 Tupn → O⊗/f(C)×N(Fin∗)/〈n〉 Tupn .

Remark 2.3.3.15. In the situation of Corollary 2.3.3.14, the assumption that O is a Kan complex

guarantees that the ∞-category O⊗/f(C)×N(Fin∗)/〈n〉 Tupn is a Kan complex. However, in many

applications, the ∞-category C/C ×N(Fin∗)/〈n〉 Tupn will not be a Kan complex.

Proof. We may assume without loss of generality that f is a categorical fibration, so that θ is also

a categorical fibration. The map θ is a homotopy equivalence if and only if each of its homotopy

fibers is weakly contractible. Since O⊗/f(C)×N(Fin∗)/〈n〉 Tupn is a Kan complex (Remark 2.3.3.15),

we see that θ is a homotopy equivalence if and only if each fiber of θ is weakly contractible (Lemma

2.3.3.13). According to Proposition 2.3.3.11, this is equivalent to the requirement that f be a weak

approximation to O⊗.

Corollary 2.3.3.16. Let O⊗ be an ∞-operad and let f : C⊗ → O⊗ be a map of generalized ∞-

operads. Assume that the ∞-category O is a Kan complex. Then f is a weak approximation if and

only if, for every object C ∈ C⊗〈n〉 and every active morphism α : 〈m〉 → 〈n〉 in Fin∗, the induced

map

θC,α : C⊗/C ×N(Fin∗)/〈n〉{〈m〉} → O⊗/f(C) ×N(Fin∗)/〈n〉 {〈m〉}

is a weak homotopy equivalence of simplicial sets.

Proof. For each C ∈ C⊗〈n〉, we have a commutative diagram of simplicial sets

C⊗/C ×N(Fin∗)/〈n〉 Tupn
θC //

((

O⊗/f(C)×N(Fin∗)/〈n〉 Tupn

vv
Tupn .

According to Proposition 2.3.3.14, the map f is an approximation to O⊗ if and only if each of the

maps θC is a weak homotopy equivalence. This is equivalent to the requirement that θC induces a
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weak homotopy equivalence after taking the homotopy fibers over any vertex of Tupn, corresponding

to an active morphism α : 〈m〉 → 〈n〉. Using Lemma 2.3.3.13, we can identify the relevant map of

homotopy fibers with θC,α.

For our next statement, we use the following notational convention: if O⊗ is an ∞-operad, we

let O⊗act denote the subcategory of O⊗ spanned by the active morphisms.

Corollary 2.3.3.17. Let f : C⊗ → O⊗ be a map of ∞-operads. Assume that C and O are Kan

complexes. The following conditions are equivalent:

(a) The map f is an approximation.

(b) The map f is a weak approximation.

(c) The map fact : C⊗act → O⊗act is the composition of a categorical equivalence with a right

fibration.

Proof. We may assume without loss of generality that f is a fibration of∞-operads. The implication

(a) ⇒ (b) follows from Lemma 2.3.3.10. We now show that (b) ⇒ (c). Assume that f is a weak

approximation and choose an active morphism α : Y → Z in C⊗; we wish to show that α is

fact-Cartesian. Unwinding the definitions, it will suffice to show that for every active morphism

β : X → Z in C⊗, the induced map

θ : MapC⊗
/Z

(X,Y )→ MapO⊗
/fZ

(fX, fY )

is a homotopy equivalence. Let α0 : 〈m〉 → 〈n〉 and β0 : 〈k〉 → 〈n〉 be the images of α and β in the

∞-category N(Fin∗). Then θ is given by a disjoint union of maps

θγ : Mapγ
C⊗
/Z

(X,Y )→ Mapγ
O⊗
/fZ

(fX, fY ),

where γ ranges over those maps 〈k〉 → 〈m〉 in N(Fin∗) such that β = α ◦ γ and the superscripts

indicate the relevant summand of the mapping spaces. The map θγ is given by taking vertical

homotopy fibers of the diagram

C⊗/Y ×N(Fin∗)/〈m〉{〈k〉} //

��

O⊗/Y ×N(Fin∗)/〈m〉{〈k〉}

��
C⊗/Z ×N(Fin∗)/〈n〉{〈k〉} // C⊗/Z ×N(Fin∗)/〈m〉{〈k〉}

(the hypothesis that O and C are Kan complexes guarantee that the entries in this diagram are

Kan complexes). It therefore suffices to show that the horizontal maps in the above diagram

are homotopy equivalences, which follows from our assumption that f is a weak approximation

(Corollary 2.3.3.16).
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We now complete the proof by showing that (c) ⇒ (a). For any object Z ∈ C and any active

morphism α0 : Y0 → Z, there is an essentially unique morphism α : Y → Z in C⊗ lifting α0.

We wish to show that α is f -Cartesian. Unwinding the definitions, we must show that for any

morphism β : X → Z in C⊗, the map f induces a homotopy MapC⊗
/Z

(X,Y ) → MapO⊗
/fZ

(fX, fY ).

The map β factors as a composition

X
β′→ X ′

β′′→ Z

where β′ is inert and β′′ is active. Since f is a map of∞-operads, f(β′) is inert and f(β′′) is active;

we may therefore replace β by β′′ and thereby reduce to the case where β is active. The desired

result now follows immediately from assumption (c).

Corollary 2.3.3.18. Suppose we are given maps of ∞-operads O⊗
f→ O′⊗

g→ O′
′⊗

, where O, O′,

and O′′ are Kan complexes and g is an approximation. Then f is an approximation if and only if

g ◦ f is an approximation.

Remark 2.3.3.19. Let O⊗ be an ∞-operad and let f : C⊗ → O⊗ be a map of generalized ∞-

operads. Assume that C⊗〈0〉 is a Kan complex. Then f is an approximation if and only if, for each

object C ∈ C⊗〈0〉, the induced map of ∞-operads C⊗/C → O⊗ is an approximation.

Definition 2.3.3.20. Let p : O⊗ → N(Fin∗) and q : O′⊗ → N(Fin∗) be ∞-operads, and let

f : C→ O⊗ be a weak approximation to O⊗. Let p′ = p◦f . We will say that a functor A : C→ O′⊗

is a C-algebra object of O′⊗ if it satisfies the following conditions:

(a) The diagram of simplicial sets

C
A //

f
��

O′⊗

q

��
O⊗

p // N(Fin∗)

is commutative.

(b) Let C ∈ C be such that p′(C) = 〈n〉, and for 1 ≤ i ≤ n choose a locally p′-coCartesian

morphism αi : C → Ci in C covering the map ρi : 〈n〉 → 〈1〉. Then A(αi) is an inert

morphism in O′⊗.

We will say that a C-algebra object A of O′⊗ is locally constant if it satisfies the following further

condition:

(c) For every morphism α in C such that p′(α) = id〈1〉, the image A(α) is an equivalence in O′.

We let AlgC(O′) denote the full subcategory of FunN(Fin∗)(C,O
′⊗) spanned by the C-algebra objects

of O′⊗, and Algloc
C (O′) the full subcategory of AlgC(O′) spanned by the locally constant C-algebra

objects of O′⊗.
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If f : C→ O⊗ is an essential weak approximation, so that f factors as a composition C
f ′→ C′

f ′′→
O′⊗ where f ′ is a categorical equivalence and f ′′ is a weak approximation, then we let AlgC(O′)

denote the full subcategory of FunN(∆)op(C,O
′⊗) given by the essential image of AlgC′(O

′) under

the equivalence of∞-categories FunN(∆)op(C
′,O′⊗)→ FunN(∆)op(C,O

′⊗) given by f ′, and Algloc
C (O′)

the essential image of Alg′ loc
C (O′).

Example 2.3.3.21. If O⊗ is an ∞-operad and f : C→ O⊗ is an essential weak approximation to

O⊗, then f is a C-algebra object of O⊗.

Example 2.3.3.22. Let O⊗ be an ∞-operad, and suppose we are given a map of generalized ∞-

operads f : C⊗ → O⊗. Assume that f is an essential weak approximation to O⊗. For any other

∞-operad O′⊗, a map A : C⊗ → O′⊗ is a C⊗-algebra object of O′⊗ (in the sense of Definition

2.3.3.20) if and only if it is a map of generalized ∞-operads (Definition 2.3.2.2); this follows from

the argument of Remark 2.1.2.9.

Our first main result in this section is the following:

Theorem 2.3.3.23. Let p : O⊗ → N(Fin∗) and q : O′⊗ → N(Fin∗) be ∞-operads, and let f : C→
O⊗ be a weak approximation to O⊗. Let θ : AlgO(O′)→ AlgC(O′) be the map given by composition

with f , and let C〈1〉 denote the fiber C×N(Fin∗){〈1〉}.
Then:

(1) If f induces an equivalence of∞-categories C〈1〉 → O, then θ is an equivalence of∞-categories.

(2) If O is a Kan complex and f induces a weak homotopy equivalence C〈1〉 → O, then θ induces

an equivalence of ∞-categories AlgO(O′)→ Algloc
C (O′).

Proof. Replacing C by an equivalent∞-category if necessary, we may assume that f is a categorical

approximation. Choose a Cartesian fibration u : M → ∆1 associated to the functor f , so that we

have isomorphisms O⊗ ' M×∆1{0}, C ' M×∆1{1}, and choose a retraction r from M onto O⊗

such that r|C = f . Let X denote the full subcategory of FunN(Fin∗)(M,O′⊗) spanned by those

functors F : M→ O′⊗ satisfying the following conditions:

(i) The restriction F |O⊗ belongs to AlgO(O′).

(ii) For every u-Cartesian morphism α in M, the image F (α) is an equivalence in O′⊗.

Condition (ii) is equivalent to the requirement that F be a q-left Kan extension of F |O⊗. Using

Proposition HTT.4.3.2.15 , we conclude that the restriction functor X→ AlgO(O′) is a trivial Kan

fibration. Composition with r determines a section s of this trivial Kan fibration. Let ψ : X →
FunN(Fin∗)(C,O

′⊗) be the other restriction functor. Then θ is given by the composition ψ ◦s. It will

therefore suffice to show that ψ determines an equivalence from X onto AlgC(O′) (in case (1) ) or

Algloc
C (O′) (in case (2)). In view of Proposition HTT.4.3.2.15 , it will suffice to verify the following:
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(a) Let F0 ∈ AlgC(O′), and assume that F0 is locally constant if we are in case (2). Then there

exists a functor F ∈ FunN(Fin∗)(M,O′⊗) which is a q-right Kan extension of F0.

(b) A functor F ∈ FunN(Fin∗)(M,O′⊗) belongs to X if and only if F is a q-right Kan extension of

F0 = F |C, and F0 ∈ AlgC(O′) (in case (1)) or F0 ∈ Algloc
C (O′) (in case (2)).

We begin by proving (a). Fix an object X ∈ O⊗, let CX/ denote the fiber product MX/×M C,

and let FX = F0|CX/. According to Lemma HTT.4.3.2.13 , it will suffice to show that the functor

FX can be extended to a q-limit diagram C/X/ → O′⊗ (covering the map C/X/ → M⊗ → N(Fin∗)).

Let C′X/ denote the full subcategory of CX/ spanned by those morphisms X → C in M which

correspond to inert morphisms X → f(C) in O⊗. Since f is a weak approximation to O⊗, Theorem

HTT.4.1.3.1 implies that the inclusion C′X/ ↪→ CX/ is right cofinal. It will therefore suffice to show

that the restriction F ′X = FX |C′X/ can be extended to a q-limit diagram C′/X/ → O′⊗.

Let 〈n〉 = p(X), and let C′′X/ denote the full subcategory of C′X/ corresponding to inert morphisms

X → f(C) for which (p◦f)(C) = 〈1〉. We claim that F ′X is a q-right Kan extension of F ′′X = F |C′′X/.
To prove this, let us choose an arbitrary object of C′X/, given by a map α : X → C in M. The

fiber product C′′X/×C′X/
(C′X/)α/ can be identified with the full subcategory of Mα/ spanned by those

diagrams X
α→ C

β→ C ′ such that (p ◦ f)(β) has the form ρi : 〈n〉 → 〈1〉, for some 1 ≤ i ≤ n. In

particular, this ∞-category is a disjoint union of full subcategories {D(i)}1≤i≤n, where each D(i)

is equivalent to the full subcategory of CC/ spanned by morphisms C → C ′ covering the map ρi.

Our assumption that f is a weak approximation to O⊗ guarantees that each of these ∞-categories

has a final object, given by a locally (p ◦ f)-coCartesian morphism C → Ci in C. It will therefore

suffice to show that F0(C) is a q-product of the objects {F0(Ci)}1≤i≤n. Since O′⊗ is an ∞-operad,

we are reduced to proving that each of the maps F0(C) → F0(Ci) is inert, which follows from our

assumption that F0 ∈ AlgC(O′).

Using Lemma HTT.4.3.2.7 , we are reduced to proving that the diagram F ′′X can be extended to

a q-limit diagram C′′
/
X/ → O′⊗ (covering the natural map C′′

/
X/ → M → N(Fin∗)). For 1 ≤ i ≤ n,

let C(i)′′X/ denote the full subcategory of C′′X/ spanned by those objects for which the underlying

morphism X → C covers ρi : p(X) ' 〈n〉 → 〈1〉. Then C′′X/ is the disjoint union of the full

subcategories {C(i)′′X/}. Let O(i) denote the full subcategory of O⊗X/×N(Fin∗)〈n〉/{ρ
i}, so that we

have a left fibration of simplicial sets O(i)→ O and a categorical equivalence C(i)′′X/ ' O(i)×OC〈1〉.

Choose inert morphisms X → Xi in O⊗ for 1 ≤ i ≤ n, so that each Xi determines an initial

object of O(i). If f induces a categorical equivalence C〈1〉 → O, then we can write Xi ' f(Ci)

for some Ci ∈ C〈1〉, and that the induced map X → Ci can be identified with a final object of

C(i)′′X/. Consequently, we are reduced to proving the existence of a q-product for the set of objects

{F0(Ci)}1≤i≤n, which follows from our assumption that O′⊗ is an ∞-operad. This completes the

proof of (a) in case (1).

In case (2), we must work a bit harder. Assume that O is a Kan complex and that C〈1〉 → O is

a weak homotopy equivalence. We again have Xi ' f(Ci) for some Ci ∈ C〈1〉. The map O(i)→ O
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is a left fibration and therefore a Kan fibration. Using the right-properness of the usual model

structure on Set∆, we conclude that the diagram

C(i)′′X/
//

��

C〈1〉

��
O(i) // O

is a homotopy pullback diagram, so that C(i)′′X/ → O(i) is a weak homotopy equivalence and

therefore C(i)′′X/ is weakly contractible. Since F0 is locally constant, Corollary HTT.4.4.4.10 and

Proposition HTT.4.3.1.5 imply that F ′′X |C(i)′′X/ admits a q-limit, given by the object F0(Ci). We are

therefore again reduced to proving the existence of a q-product for the set of objects {F0(Ci)}1≤i≤n,

which follows from our assumption that O′⊗ is an ∞-operad. This completes the proof of (a) in

case (2).

The arguments above (in either case) yield the following version of (b):

(b′) Let F ∈ FunN(Fin∗)(M,O′⊗) be such that F0 = F |C ∈ AlgC(O′) (in case (1)) or F0 = F |C ∈
Algloc

C (O′) (in case (2)). Then F is a q-right Kan extension of F0 if and only if, for every object

X ∈ O⊗〈n〉, if we choose Ci ∈ C〈1〉 and maps αi : X → Ci in M having image ρi : 〈n〉 → 〈1〉 in

Fin∗ for 1 ≤ i ≤ n, then F (αi) is an inert morphism in O′⊗ for 1 ≤ i ≤ n.

We now prove (b). Assume first that F ∈ X. Then F0 = F |C is equivalent to the functor

(F |O⊗) ◦ f . It follows immediately that F0 ∈ AlgC(O′). In case (2), the assumption that O is a

Kan complex immediately implies that F0 is locally constant. Criterion (b′) immediately implies

that F is a q-right Kan extension of F0. This proves the “only if” direction.

For the converse, assume that F0 ∈ AlgC(O′), that F0 is locally constant if we are in case (2),

and that F is a q-right Kan extension of F0. We wish to prove that F ∈ X. We first verify that F

satisfies (ii). Pick an object C ∈ C and choose locally (p◦f)-coCartesian morphisms αi : C → Ci for

1 ≤ i ≤ n. Let X = f(C); we wish to show that the induced map F (X)→ F (C) is an equivalence

in O′⊗. Since O′⊗ is an∞-operad, and the maps F0(C)→ C0(Ci) are inert for 1 ≤ i ≤ n (by virtue

of our assumption that F ∈ AlgC(O′)), it will suffice to show that each of the maps F (X)→ F0(Ci)

is inert, which follows from (b′).

To complete the proof, we must show that F |O⊗ is a map of ∞-operads. In view of Remark

2.1.2.9, it will suffice to show that if X ∈ O⊗〈n〉 and α : X → Xi is an inert morphism of O⊗

covering the map ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n, then the induced map F (X) → F (Xi) is an inert

morphism in O′⊗. Arguing as above, we can assume that Xi = f(Ci). Condition (ii) implies that

F (Xi) → F (Ci) is an equivalence in O′; it will therefore suffice to show that the composite map

F (X)→ F (Xi)→ F (Ci) is inert, which follows from criterion (b′).
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Corollary 2.3.3.24. Let f : C⊗ → O⊗ be a map of ∞-operads. Assume that f is a weak approxi-

mation to O⊗ and that f induces an equivalence of ∞-categories C→ O. Then f is an equivalence

of ∞-operads.

Proof. Theorem 2.3.3.23 implies that for every ∞-operad O′⊗, composition with f induces an

equivalence of ∞-categories AlgO(O′)→ AlgC(O′).

We now show that, under somewhat stronger hypotheses, it is possible to prove a categorified

version of Theorem 2.3.3.23 (which controls the structure of∞-operad fibrations O′⊗ → O⊗, rather

than merely the structure of of the ∞-categories Alg/O(O′)). First, we need to introduce a bit of

notation.

Definition 2.3.3.25. Let p : O⊗ → N(Fin∗) be an ∞-operad and let f : C → O⊗ be an approxi-

mation to O⊗. We will say that a morphism α in C is inert if f(α) is an inert morphism in O⊗. We

let C\ denote the marked simplicial set (C,M), where M is the collection of inert morphisms in C.

We will regard (C,M) as an ∞-preoperad via the composite map p ◦ f .

Theorem 2.3.3.26. Let O⊗ be an ∞-operad and let f : E → O⊗ be an approximation to O⊗.

Assume that f induces an equivalence of ∞-categories E×N(Fin∗){〈1〉} → O. Then composition

with f induces a left Quillen equivalence

(POp∞)/E\ → (POp∞)/O⊗,\ .

Here POp∞ denotes the category of ∞-preoperads, endowed with the ∞-operadic model structure

of Proposition 2.1.4.6.

The proof of Theorem 2.3.3.26 will hinge on having a good characterization of the fibrant objects

of POp∞/E\ .

Remark 2.3.3.27. Theorem 2.3.3.26 implies that if f : E → O⊗ is an approximation, then the

induced map E\ → O⊗,\ is a weak equivalence of∞-preoperads. However, Theorem 2.3.3.26 cannot

be deduced formally from this statement, because the model category POp∞ is not right proper.

Definition 2.3.3.28. Let f : E → O⊗ be an approximation to an ∞-operad p : O⊗ → N(Fin∗),

and let q : E→ E be a map of simplicial sets. We will say that q is fibrous if the following conditions

are satisfied:

(1) The map q is an inner fibration.

(2) For every object E ∈ E and every inert morphism α : q(E)→ E′, there exists a q-coCartesian

morphism α : E → E
′

lifting α.

(3) Let E ∈ E, let E = q(E), and let 〈n〉 = (p ◦ f)(E). For 1 ≤ i ≤ n, choose an inert morphism

αi : E → Ei in E covering ρi : 〈n〉 → 〈1〉, and a q-coCartesian morphism αi : E → Ei in E

covering αi. Then the morphisms αi exhibit E as a q-product of the objects {Ei}1≤i≤n.
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(4) Let E ∈ E, let 〈n〉 = (p ◦ f)(E), and choose inert morphisms αi : E → Ei in E covering

the maps ρi : 〈n〉 → 〈1〉. Then the morphisms αi induce an equivalence of ∞-categories

EE →
∏

1≤i≤n EEi .

Remark 2.3.3.29. In the situation of Definition 2.3.3.28, conditions (1) and (2) imply that q is a

categorical fibration (Corollary HTT.2.4.6.5 ).

The key ingredient in the proof of Theorem 2.3.3.26 is the following result:

Proposition 2.3.3.30. Let f : E → O⊗ be an approximation to an ∞-operad p : O⊗ → N(Fin∗),

and let q : E→ E be a map of simplicial sets. The following conditions are equivalent:

(a) There exists a fibration of ∞-operads O
⊗ → O⊗ and a categorical equivalence E→ E×O⊗O

⊗

(compatible with q).

(b) There exists a collection of edges M of E such that q induces a fibration of ∞-preoperads

(E,M)→ E\.

(c) The map q is fibrous.

We will prove Proposition 2.3.3.30 at the end of this section.

Proof of Theorem 2.3.3.26. Let f : E→ O⊗ be an approximation to an∞-operad O⊗ which induces

an equivalence E×N(Fin∗){〈1〉} → O. Let F : (POp∞)/E\ → (POp∞)/O⊗,\ be the functor given by

composition with f , and let G be its right adjoint (given by X 7→ E\×O⊗,\X). We wish to show that

the Quillen adjunction (F,G) is a Quillen equivalence. The implication (b) ⇒ (a) of Proposition

2.3.3.30 shows that the right derived functor RG is essentially surjective. It will therefore suffice to

show that RG is right homotopy inverse to the left derived functor LF . Unwinding the definitions,

we must show that if X is a fibrant object of (POp∞)/O⊗,\ , then the induced map E\×O⊗,\X → X

is a weak equivalence of ∞-preoperads. Since X is fibrant, it has the form O
⊗,\

, where O
⊗ → O⊗

is a fibration of ∞-operads. Using Theorem 2.3.3.23, we are reduced to proving that the map

E×O⊗O
⊗ → O

⊗
is an approximation to O

⊗
, which follows from Remark 2.3.3.9.

We now turn to the proof of Proposition 2.3.3.30. We will need a mild generalization of the

construction of monoidal envelopes described in §2.2.4.

Construction 2.3.3.31. Let f : E → O⊗ be an approximation to an ∞-operad O⊗ and suppose

we are given a fibrous map of simplicial sets q : E→ E. We let EnvE(E) denote the full subcategory

of E ×Fun({0},E) Fun(∆1,E) spanned by those pairs (E,α : q(E) → E′) such that f(α) is an active

morphism of O⊗. Evaluation at {1} ⊆ ∆1 determines a forgetful functor EnvE(E)→ E.

In the special case where E is itself an∞-operad, Construction 2.3.3.31 reduces to Construction

2.2.4.1. We now generalize a few of the properties established in §2.2.4 to the present context.
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Lemma 2.3.3.32. Let f : E → O⊗ be an approximation to an ∞-operad O⊗ and let q : E → E

be fibrous. Then the forgetful functor q′ : EnvE(E) → E is a coCartesian fibration. Moreover, a

morphism α in EnvE(E) is q′-coCartesian if and only if its image α0 in E is q-coCartesian and

q(α0) is f -inert.

Proof. Note that evaluation at {1} ⊆ ∆1 induces a coCartesian fibration E×Fun({0},E) Fun(∆1,E)→
E (Corollary HTT.2.4.7.12 ). In view of Lemma 2.2.4.11 and Remark 2.2.4.12, it will suffice to show

the following:

(∗) The inclusion EnvE(E) ↪→ E×Fun({0},E)Fun(∆1,E) admits a left adjoint. Moreover, a morphism

α : X → Y in E×Fun({0},E) Fun(∆1,E) exhibits Y as an EnvE(E)-localization of X if and only

if Y ∈ EnvE(E), the image of α in E is f -inert, and the image of α in E is an equivalence.

According to Proposition 2.1.2.4, the f -active and f -inert morphisms determine a factorization

system on E. Let A be the full subcategory of Fun(∆1,E) spanned by the f -active morphisms.

Lemma HTT.5.2.8.19 that the inclusion A ⊆ Fun(∆1,E) admits a left adjoint, and that a morphism

α : g → g′ in Fun(∆1,E) corresponding to a commutative diagram

X
u //

v
��

X ′

u′

��
Y

v′ // Y ′

in O⊗ exhibits g′ as an A-localization of v if and only if v′ is f -active, u is f -inert, and u′ is an

equivalence. The desired result now follows from Lemma 2.2.4.13.

Lemma 2.3.3.33. Let f : E → O⊗ be an approximation to an ∞-operad p : O⊗ → N(Fin∗) and

let q : E → E be fibrous. Suppose we are given an object E ∈ E and a finite collection of f -inert

morphisms {αa : E → Ea}a∈A with the following property: the maps αa lie over inert morphisms

〈n〉 → 〈na〉 in Fin∗ which determine a bijection
∐
a 〈na〉

◦ → 〈n〉◦. Then:

(a) For any collection of objects Ea ∈ E lying over Ea, there exists an object E ∈ E and a

collection of morphisms αa : E → Ea which exhibit E as a q-product of the objects Ea.

(b) For any object E ∈ E lifting E and any collection of morphisms αa : E → Ea lifting αa,

the morphisms αa exhibit E as a q-product of the objects Ea if and only if each αa is q-

coCartesian.

Proof. We first prove (a). For a ∈ A and 1 ≤ i ≤ na, choose a locally (p◦f)-coCartesian morphism

βa,i : Ea → Ea,i in E covering the map ρi : 〈na〉 → 〈1〉 in N(Fin∗). These maps determine a map

ua : K/
a → E, where Ka denotes the discrete simplicial set {1, . . . , na}. Each βa,i can be lifted to

a q-coCartesian morphism Ea → Ea,i in E, and these liftings determine a diagram ua : K/
a → E.

Since q is fibrous, each of the diagrams ua is a q-limit diagram.
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Let L =
∐
a∈AK

/
a , let L0 be the full subcategory of L spanned by the cone points of each K/

a ,

and let L1 be the full subcategory of L given by
∐
a∈AKa. Let u : L→ E be the coproduct of the

maps ua and let u : L→ E be defined similarly; we note that u is a q-right Kan extension of u|L1 .

The maps αa determine a diagram v : L/0 → E. Since L0 is left cofinal in L, we can amalgamate

u and v to obtain a map w : L/ → E. Using the assumption that q is fibrous, we can lift w to a

diagram w : L/ → E which is a q-right Kan extension of u|L1 . Since u is already a q-right Kan

extension of u|L1 , we may assume without loss of generality that w|L = u. Then w is a q-limit

diagram. Since L0 is right cofinal in L, it follows that w|L/0 is a q-limit diagram, which proves (a).

The above argument shows that an arbitrary diagram v : L/0 → E lifting v (corresponding to a

collection of morphisms αa : E → Ea) is a q-limit diagram if and only if, for every index a ∈ A and

1 ≤ i ≤ na, the composite map βa,i ◦ αa : E → Ea,i is q-coCartesian, where βa,i is a q-coCartesian

morphism Ea → Ea,i lifting βa,i. To prove (b), we wish to show that each of the maps αa is q-

coCartesian if and only if each of the compositions βa,i◦αa is q-coCartesian. The “only if” direction

is obvious. To prove the converse, let us suppose that each βa,i ◦ αa is q-coCartesian. For each

a ∈ A, we can factor αa as a composition

E
α′a→ E

′
a
α′′a→ Ea

where α′a is a q-coCartesian morphism lifting αa and α′′a is a morphism lifting the identity idEa .

Since α′a and βa,i◦αa are q-coCartesian, we conclude that each composition βa,i◦α′′a is q-coCartesian.

In other words, the functor EEa → EEa,i determined by βa,i carries α′′a to an equivalence, for each

1 ≤ i ≤ na. Since q is fibrous, we have EEa '
∏

1≤i≤na EEa,i ; it follows that α′′a is an equivalence,

so that αa is q-coCartesian as desired.

Lemma 2.3.3.34. Let f : E → O⊗ be an approximation to an ∞-operad p : O⊗ → N(Fin∗) and

let q : E → E be fibrous. Then the coCartesian fibration q′ : EnvE(E) → E of Lemma 2.3.3.32 is

classified by a functor χ : E→ Cat∞ which belongs to MonE(Cat∞).

Proof. Fix an object E ∈ E lying over 〈n〉 ∈ N(Fin∗), and choose locally (p ◦ f)-coCartesian

morphisms αi : E → Ei covering the maps ρi : 〈n〉 → 〈i〉 for 1 ≤ i ≤ n. Let K = {1, . . . , n},
regarded as a discrete simplicial set, so that the maps αi determine a diagram u : K/ → E carrying

the cone point to the object E. Let X(E) be the full subcategory of Fun(K/,EnvE(E))×Fun(K/,E){u}
spanned by those functors K/ → EnvE(E) lifting u which carry each edge {i}/ of K/ to a q′-

coCartesian morphism in EnvE(E). Proposition HTT.4.3.2.15 implies that the restriction map

θ : X(E)→ EnvE(E)E is a trivial Kan fibration.

We wish to show that the coCartesian fibration q′ induces an equivalence of ∞-categories

EnvE(E)E →
∏

1≤i≤n EnvE(E)Ei . Unwinding the definitions, this map is given by composing a

section of θ with the restriction map φ : X(E)→ X0(E), where

X0(E) = Fun(K,EnvE(E))×Fun(K,E) {(E1, . . . , En)} ' EnvE(E)E1 × · · ·EnvE(E)En .
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It will therefore suffice to show that φ is a trivial Kan fibration.

We begin by treating the case where E = E. We may assume without loss of generality that f :

E→ O⊗ is a categorical fibration. In this case, Proposition HTT.4.3.2.15 implies that composition

with f induces a trivial Kan fibration EnvE(E)→ E×O⊗ EnvO(O)⊗, and the desired result follows

immediately from Proposition 2.2.4.4.

We now treat the general case. Note that φ factors as a composition

X(E)
φ′→ X(E)×X0(E) X0(E)

φ′′→ X0(E).

The special case treated above shows that φ′′ is a trivial Kan fibration. It will therefore suffice

to show that φ′ is a trivial Kan fibration. This follows from Lemma 2.3.3.33 and Proposition

HTT.4.3.2.15 .

Proof of Proposition 2.3.3.30. We first show that (a) ⇒ (b). Suppose there exists a fibration of

∞-operads φ : O
⊗ → O⊗ and a categorical equivalence u : E→ E×O⊗O

⊗
. We wish to show that the

map q : (E,M)→ E\ is a fibration of ∞-preoperads. Choose a trivial cofibration of ∞-preoperads

i : (X,MX)→ (Y,MY ). We wish to show that every lifting problem

(X,MX)
v //

��

(E,M)

q

��
(Y,MY ) //

99

E\

admits a solution. Since O
⊗,\ → O⊗,\ is a fibration of∞-preoperads, the composite map u◦v can be

extended to a map φ : Y → E×O⊗O
⊗

which carries every morphism in MY to an inert morphism in

O
⊗

. Applying Proposition HTT.A.2.3.1 (in the category (Set∆)/E, equipped with the Joyal model

structure) we can extend v to a map v : Y → E such that u ◦ v is homotopic to φ. It follows that v

carries each morphism in MY to a q-coCartesian morphism in E and therefore provides the desired

solution.

We now prove that (b)⇒ (c). Let PE denote the categorical pattern on E given by (M,T, {pα :

〈n〉◦/ → E}α∈A) where M is the collection of all f -inert morphisms in E, T is the collection of all

2-simplices in E, and A is the collection of all diagrams pα : 〈n〉◦/ → E which carry the cone point of

〈n〉◦/ to an object E ∈ E lying over 〈n〉 ∈ N(Fin∗) and carry each edge {i}/ to an f -inert morphism

E → Ei in E lying over the map ρi : 〈n〉 → 〈1〉. It now suffices to observe that q is fibrous if and

only if it is PE-fibered, and that every P-anodyne map (see Definition B.1.1) determines a weak

equivalence of ∞-preoperads.

We complete the proof by showing that (c) ⇒ (a). Assume that q : E → E is fibrous. Let

q′ : EnvE(E) → E be the map given by Construction 2.3.3.31. Then q′ is a coCartesian fibration

(Lemma 2.3.3.32) and is classified by a map χ : E→ Cat∞ which belongs to MonE(Cat∞) (Lemma
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2.3.3.34). Using Proposition 2.4.2.11, we may assume that χ factors as a composition

E
f→ O⊗

χ′→ Cat∞,

where χ′ ∈ MonO(Cat∞). The map χ′ classifies a coCartesian fibration of∞-operads C⊗ → O⊗ and

there is a categorical equivalence θ : EnvE(E)→ E×O⊗ C
⊗. Let Env0

E(E) denote the full subcategory

of UE(E) spanned by those pairs (E,α : q(E)→ E′) where α is an equivalence, and let C0 ⊆ C denote

the essential image of Env0
E(E) ×N(Fin∗) {〈1〉} under the equivalence EnvE(E) ×N(Fin∗) {〈1〉} ' C.

Let C⊗0 denote the full subcategory of C⊗ determined by C0 ⊆ C (see the introduction to §2.2.1),

so that we have a fibration of ∞-operads C⊗0 → O⊗. The functor θ restricts to an an equivalence

of ∞-categories Env0
E(E) → E×O⊗ C

⊗
0 . Composing with a section of the trivial Kan fibration

Env0
E(E)→ E, we obtain the desired categorical equivalence E→ E×O⊗ C

⊗
0 .

Remark 2.3.3.35. Suppose that q : E → E satisfies the equivalent conditions of Proposition

2.3.3.30. It follows from the proof that there is a unique collection morphisms M for which the

map (E,M)→ E\ is a fibration: namely, the collection of morphisms α such that α is q-coCartesian

and q(α) is f -inert.

2.3.4 Disintegration of ∞-Operads

In §2.3.1, we introduced the definition of a unital ∞-operad. Roughly speaking, an ∞-operad O⊗

is unital if there is no information contained in its spaces of nullary operations (more precisely, if

these spaces are contractible). We now introduce a stronger condition, which guarantees also that

the unary operation spaces of O⊗ are trivial:

Definition 2.3.4.1. Let O⊗ be an ∞-operad. We will say that O⊗ is reduced if O⊗ is unital and

the underlying ∞-category O is a contractible Kan complex.

Our main goal in this section is to show that if O⊗ is an arbitrary unital ∞-operad whose

underlying ∞-category O is a Kan complex, then O⊗ can be obtained by assembling a O-family

of reduced ∞-operads (Theorem 2.3.4.4). A precise formulation will make use of the following

generalization of Definition 2.3.4.1:

Definition 2.3.4.2. We will say that an ∞-operad family O⊗ is reduced if O⊗〈0〉 is a Kan complex

and, for each object X ∈ O⊗〈0〉, the ∞-operad O⊗/X is reduced.

Remark 2.3.4.3. Let C be a Kan complex, and let q : O⊗ → C×N(Fin∗) be a C-family of

∞-operads. Every object X ∈ O⊗〈0〉 is q-final, so that we have a trivial Kan fibration O⊗/X →
C/C ×N(Fin∗), where C denotes the image of X in C. Since C is a Kan complex, the ∞-category

C/C is a contractible Kan complex, so that O⊗/X is equivalent to the ∞-operad O⊗C = O⊗×C{C}.
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It follows that O⊗ is reduced (in the sense of Definition 2.3.4.2 if and only if C is reduced and

each fiber O⊗C is a reduced∞-operad (in the sense of Definition 2.3.4.1). In particular, an∞-operad

is reduced if and only if it is reduced when regarded as a generalized ∞-operad.

We are now ready to state the main result of this section.

Theorem 2.3.4.4. Let Opgn,rd
∞ denote the full subcategory of Opgn

∞ spanned by the reduced gen-

eralized ∞-operads. Then the assembly functor Assem : Opgn
∞ → Op∞ induces an equivalence

from Opgn,rd
∞ to the full subcategory of Op∞ spanned by those unital ∞-operads O⊗ such that the

underlying Kan complex of O is a Kan complex.

In other words, if O⊗ is a unital ∞-operad such that O is a Kan complex, then O⊗ can be

obtained (in an essentially unique way) as the assembly of a family of reduced ∞-operads. The

proof of Theorem 2.3.4.4 is based on the following assertion, which we will prove at the end of this

section:

Proposition 2.3.4.5. Let O′⊗ be an ∞-operad and let f : O⊗ → O′⊗ be a map of generalized

∞-operads. Assume that O⊗〈0〉, O, and O′ are Kan complexes. Then:

(1) If f is a weak approximation to O′⊗ which induces a homotopy equivalence O → O′, then f

exhibits O′⊗ as an assembly of O⊗.

(2) Assume that for each object X ∈ O⊗〈0〉, the ∞-operad O⊗/X is unital. If f exhibits O′⊗ as an

assembly of O⊗, then f is an approximation to O′⊗ and the underlying map O → O′ is a

homotopy equivalence of Kan complexes. Moreover, the ∞-operad O′⊗ is also unital.

The proofs of Theorem 2.3.4.4 and Proposition 2.3.4.5 will use some ideas from later in this

book.

Proof of Theorem 2.3.4.4. It follows from Proposition 2.3.4.5 that the assembly functor Assem

carries Opgn,rd
∞ into the full subcategory X ⊆ Op∞ spanned by those those unital ∞-operads O⊗

such that O is a Kan complex. We next show that Assem : Opgn,rd
∞ → X is essentially surjective.

Let O⊗ be such a unital ∞-operad whose underlying ∞-category is a Kan complex, and choose

a homotopy equivalence u0 : O → S for some Kan complex S (for example, we can take S = O

and u0 to be the identity map). Let Sq be the ∞-operad defined in §2.4.3. Using Proposition

2.4.3.9, we can extend u0 to an ∞-operad map u : O⊗ → Sq. Replacing O⊗ by an equivalent

∞-operad if necessary, we may suppose that u is a fibration of ∞-operads. Let O′⊗ be the fiber

product O⊗×Sq(S × N(Fin∗)). Then O′⊗ is an S-family of ∞-operads equipped with a map

f : O′⊗ → O⊗ which induces an isomorphism O′ → O. The map f is a pullback of the approximation

S × N(Fin∗)→ Sq of Remark 2.4.3.6, and is therefore an approximation to O⊗ (Remark 2.3.3.9).

Invoking Proposition 2.3.4.5, we deduce that f exhibits O⊗ as an assembly of O′⊗, so that we

have an equivalence Assem(O′⊗) ' O⊗. To deduce the desired essential surjectivity, it suffices
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to show that O′⊗ is reduced. In other words, we must show that for each s ∈ S, the ∞-operad

O′⊗s ' O⊗×Sq N(Fin∗) is reduced. This is clear: the underlying ∞-category Os is given by the

fiber of a trivial Kan fibration f : O→ S, and O′⊗s is unital because it is a homotopy fiber product

of unital ∞-operads.

We now show that Assem : Opgn,rd
∞ → Op∞ is fully faithful. Let C⊗ and D⊗ be reduced

generalized ∞-operads, and choose assembly maps C⊗ → C′⊗ and D⊗ → O⊗. We will show

that the canonical map AlgC(D) → AlgC(O) ' AlgC′(O) is an equivalence of ∞-categories. As

above, we choose a Kan complex S ' O and a fibration of ∞-operads O⊗ → Sq, and define O′⊗

to be the fiber product (S × N(Fin∗)) ×Sq O⊗. Using the equivalences AlgC(Sq) ' Fun(C, S)

and AlgC(S × N(Fin∗)) ' Fun(C⊗〈0〉, S) provided by Propositions 2.4.3.16 and 2.3.2.9, we obtain a

homotopy pullback diagram of ∞-categories

AlgC(O′) //

��

AlgC(O)

��
Fun(C⊗〈0〉, S) // Fun(C, S).

Here the lower horizontal map is obtained by composing with the functor C = C⊗〈1〉 → C⊗〈0〉 induced

by the map 〈1〉 → 〈0〉 in Fin∗. Since C is reduced, this map is an equivalence of ∞-categories,

so the natural map AlgC(O′) → AlgC(O) is an equivalence. Similarly, we have an equivalence

AlgD(O′)→ AlgD(O). We may therefore assume that the assembly map D⊗ → O⊗ factors through

a map of generalized ∞-operads γ : D⊗ → O′⊗. To complete the proof, it will suffice to show that

γ is an equivalence of generalized∞-operads (and therefore induces an equivalence of∞-categories

AlgC(D)→ AlgC(O′) ' AlgC(O)).

Replacing D⊗ by an equivalent generalized∞-operad if necessary, we can assume that γ : D⊗ →
O′⊗ is a categorical fibration, so that the composite map D⊗ → O′⊗ → S × N(Fin∗) exhibits D as

an S-family of ∞-operads. It will therefore suffice to show that for each s ∈ S, the induced map of

fibers γs : D⊗s → O′⊗s is an equivalence of ∞-operads. For each D ∈ D⊗s having an image X ∈ O⊗,

we have a commutative diagram

(D⊗s )act
/D

//

��

(D⊗)act
/D

��

// (O⊗)act
/X

��
(O′⊗s )act

/γ(D)
// (O′⊗)act

/γ(D)
// (O⊗)act

/X ,

where the superscript indicates that we consider the subcategory spanned by active morphisms. The

horizontal maps in this diagram are categorical equivalences (by Proposition 2.3.4.5 and Corollary

2.3.3.17). It follows that the vertical maps are also categorical equivalences, so that γs is an approx-

imation between reduced ∞-operads. It follows from Corollary 2.3.3.24 that γs is an equivalence

of ∞-operads as desired.
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We now turn to the proof of Proposition 2.3.4.5. We will need several preliminary results.

Lemma 2.3.4.6. Let f : X → Y be a map of simplicial sets. If f is a weak homotopy equivalence

and Y is a Kan complex, then f is left cofinal.

Proof. The map f factors as a composition X
f ′→ X ′

f ′′→ Y , where f ′ is a categorical equivalence and

f ′′ is a categorical fibration. Replacing f by f ′′, we can reduced to the case where f is a categorical

fibration so that X is an ∞-category. According to Theorem HTT.4.1.3.1 , it suffices to show that

for every vertex y ∈ Y , the fiber product X ×Y Yy/ is weakly contractible. Consider the pullback

diagram

X ×Y Yy/
f ′ //

��

Yy/

g

��
X

f // Y.

The map g is a left fibration over a Kan complex, and therefore a Kan fibration (Lemma

HTT.2.1.3.3 ). Since the usual model structure on simplicial sets is right proper, our diagram is

a homotopy pullback square. Because f is a weak homotopy equivalence, we deduce that f ′ is a

weak homotopy equivalence. Since Yy/ is weakly contractible, we deduce that X ×Y Yy/ is weakly

contractible, as desired.

Lemma 2.3.4.7. Let f : X → Y be a weak homotopy equivalence of simplicial sets, let C be an

∞-category, and let p : Y . → C be a colimit diagram. Suppose that p carries every edge of Y to an

equivalence in C. Then the composite map X. → Y . → C is a colimit diagram.

Proof. Let C ∈ C be the image under p of the cone point of Y .. Let C' be the largest Kan complex

contained in C, so that p induces a map p : Y → C'. Factor the map p as a composition

Y
p′→ Z

p′′→ C',

where p′ is anodyne and p′′ is a Kan fibration (so that Z is a Kan complex). Lemma 2.3.4.6

guarantees that the inclusion Y → Z is left cofinal and therefore right anodyne (Proposition

HTT.4.1.1.3 ). Applying this observation to the lifting problem

Y

��

// C/C

��
Z

p′′ //

>>

C,

we deduce that p factors as a composition

Y . → Z.
q→ C .
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Since p′ is left cofinal, the map q is a colimit diagram. Lemma 2.3.4.6 also guarantees that the

composition f ◦ p′ : X → Z is left cofinal, so that

X. → Z.
q→ C

is also a colimit diagram.

For the next statements, we will assume that the reader is familiar with the theory of free

algebras that we discuss in §3.1.3.

Proposition 2.3.4.8. Let f : O⊗ → O′⊗ be a map between small ∞-operads, and let C⊗ be

a symmetric monoidal ∞-category. Assume that C admits small colimits, and that the tensor

product on C preserves small colimits in each variable, and let F : Fun(O,C) → AlgO(C) and F ′ :

Fun(O′,C)→ AlgO′(C) be left adjoints to the forgetful functors (Example 3.1.3.6). The commutative

diagram of forgetful functors

AlgO′(C)
θ //

��

AlgO(C)

��
Fun(O′,C)

θ′ // Fun(O,C)

induces a natural transformation α : F ◦ θ′ → θ ◦ F ′ from Fun(O′,C) to AlgO(C). Assume that O′

is a Kan complex.

(1) If f is a weak approximation to O′⊗ then the natural transformation α is an equivalence.

(2) Conversely, suppose that α is an equivalence in the special case where C = S (equipped with

the Cartesian monoidal structure) and when evaluated on the constant functor O′ → C taking

the value ∆0. Then f is an approximation to O′⊗.

Proof. Fix a map A0 ∈ Fun(O′,C) and let X ∈ O. Let X be the subcategory of O⊗/X whose objects

are active maps Y → X in O⊗ and whose morphisms are maps which induce equivalences in N(Fin∗),

and let X′ ⊆ O′⊗/γ(X) be defined similarly. Then A0 determines diagrams χ : X→ C and χ′ : X′ → C

(here χ is given by composing χ′ with the map X→ X′ induced by γ). Using the characterization

of free algebras given in §3.1.3, we deduce that α(A0)(X) : (F ◦ θ′)(A0)(X) → (θ ◦ F ′)(A0)(X)

is given by the evident map colimX χ → colimX′ χ
′. Since O′ is a Kan complex, A0 carries every

morphism in O′ to an equivalence in C, then χ′ carries every morphism in X′ to an equivalence in

C. If f is an approximation to O′⊗, then the evident map X→ X′ is a weak homotopy equivalence

(Corollary 2.3.3.16) that α is an equivalence by Lemma 2.3.4.7: this proves (1).

Conversely, suppose that the hypotheses of (2) are satisfied. Taking A0 to be the constant

functor taking the value ∆0 ∈ S, we deduce from Corollary HTT.3.3.4.6 that the map X → X′ is

a weak homotopy equivalence for each X ∈ O. From this it follows that f satisfies the criterion of

Corollary 2.3.3.16 and is therefore an approximation to O′⊗.
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Proposition 2.3.4.9. Let S be a Kan complex, let O⊗ → S × N(Fin∗) be an S-family of ∞-

operads, and let C⊗ be a symmetric monoidal ∞-category. Suppose that, for each s ∈ S, the

restriction functor AlgOs(C)→ Fun(Os,C) admits a left adjoint Fs. Then:

(1) The restriction functor θ : AlgO(C)→ Fun(O,C) admits a left adjoint F .

(2) Let A ∈ AlgO(C), let B ∈ Fun(O,C), and let α : B → θ(A) be a morphism in Fun(O,C). Then

the adjoint map F (B) → A is an equivalence in AlgO(C) if and only if, for each s ∈ S, the

underlying map Fs(B|Os)→ A|O⊗s is an equivalence in AlgOs(C).

Proof. Fix B ∈ Fun(O,C). For every map of simplicial sets ψ : T → S, let OT = O×ST , BT =

B|OT , and X(T ) denote the full subcategory of AlgOT (C) ×Fun(OT ,C) Fun(OT ,C)BT / spanned by

those objects (AT ∈ AlgOT (C), φ : BT → AT |OT ) such that, for each vertex t ∈ T , the induced

map Fψ(t)(BT |Oψ(t))→ AT |O⊗ψ(t) is an equivalence. We claim that every inclusion of simplicial sets

i : T ′ ↪→ T in (Set∆)/S , the restriction map X(T )→ X(T ′) is a trivial Kan fibration. The collection

of maps i for which the conclusion holds is clearly weakly saturated; it therefore suffices to prove the

claim in the case where i is an inclusion of the form ∂∆n ⊂ ∆n. The proof proceeds by induction

on n. The inductive hypothesis implies that the restriction map X(∂∆n)→ X(∅) ' ∆0 is a trivial

Kan fibration, so that X(∂∆n) is a contractible Kan complex. The map X(∆n) → X(∂∆n) is

evidently a categorical fibration; it therefore suffices to show that it is a categorical equivalence. In

other words, it suffices to show that X(∆n) is also a contractible Kan complex. Let s ∈ S denote

the image of the vertex {0} ∈ ∆n in S. Since the inclusion O⊗s ↪→ O⊗∆n is a categorical equivalence,

it induces a categorical equivalence X(∆n) → X({s}). We are therefore reduced to proving that

X({s}) is a contractible Kan complex, which is obvious.

The above argument shows that X(S) is a contractible Kan complex; in particular, X(S) is

nonempty. Consequently, there exists a map φ : B → θ(A) satisfying the condition described in (2).

We will prove (1) together with the “if” direction of (2) by showing that that φ induces a homotopy

equivalence ρ : MapAlgO(C)(A,C) → MapFun(O,C)(B, θ(C)) for each C ∈ AlgO(C). The “only if”

direction of (2) will then follow by the usual uniqueness argument. We proceed as before: for every

map of simplicial sets T → S, let Y (T ) denote the ∞-category AlgOT (C)(A|O⊗T )/ ×Fun(OT ,C)(AT |OT )/

Fun(OT ,C)φT / and Y ′(T ) = Fun(OT ,C)(B|OT )/. The map ρ can be regarded as a pullback of the

restriction map Y (S)→ Y ′(S). To complete the proof, it will suffice to show that Y (S)→ Y ′(S) is

a trivial Kan fibration. We will prove the following stronger assertion: for every inclusion T ′ ↪→ T in

(Set∆)/S , the restriction map π : Y (T )→ Y (T ′)×Y ′(T ′) Y ′(T ) is a trivial Kan fibration. As before,

the collection of inclusions which satisfy this condition is weakly saturated, so we may reduce to

the case where T = ∆n, T ′ = ∂∆n, and the result holds for inclusions of simplicial sets having

dimension < n. Moreover, since π is easily seen to be a categorical fibration, it suffices to show

that π is a categorical equivalence. Using the inductive hypothesis, we deduce that Y (T ′)→ Y ′(T ′)

is a trivial Kan fibration, so that the pullback map Y (T ′) ×Y ′(T ′) Y ′(T ) → Y ′(T ) is a categorical

equivalence. By a two-out-of-three argument, we are reduced to proving that the restriction map



280 CHAPTER 2. ∞-OPERADS

Y (T ) → Y ′(T ) is a categorical equivalence. If we define s to be the image of {0} ⊆ ∆n ' T in S,

then we have a commutative diagram

Y (T ) //

��

Y ′(T )

��
Y ({s}) // Y ′({s})

in which the vertical maps are categorical equivalences. We are therefore reduced to showing that

Y ({s})→ Y ′({s}) is a categorical equivalence, which is equivalent to the requirement that the map

Fs(B|Os)→ A|O⊗s be an equivalence in AlgOs(C).

We conclude this section with the proof of Proposition 2.3.4.5.

Proof of Proposition 2.3.4.5. Assertion (1) is an immediate consequence of Theorem 2.3.3.23. We

will prove (2). Assume that f : O⊗ → O′⊗ exhibits O′⊗ as an assembly of O⊗ and that the∞-operad

O⊗/X is reduced for each X ∈ O⊗〈0〉. We wish to prove:

(a) The ∞-operad O′⊗ is unital.

(c) The map f is an approximation to O′⊗.

(b) The map f induces a homotopy equivalence of Kan complexes O→ O′.

It follows from Proposition 2.3.1.11 that for each s ∈ S, the induced map AlgOs(O
′
∗)→ AlgOs(O)

is a trivial Kan fibration. Arguing as in Proposition 2.3.4.9, we deduce that AlgO(O′∗)→ AlgO(O′)

is a trivial Kan fibration. Since f exhibits O′⊗ as an assembly of O⊗, we deduce that the map

AlgO′(O
′
∗) → AlgO′(O

′) is an equivalence of ∞-categories, and therefore (since it is a categorical

fibration) a trivial Kan fibration. In particular, the projection map O′⊗∗ → O′⊗ admits a section,

so the final object of O′⊗ is initial and O′⊗ is also unital. This proves (a).

Let C be an arbitrary ∞-category, which we regard as the underlying ∞-category of the ∞-

operad Cq. We have a commutative diagram

AlgO′(C) //

��

AlgO(C)

��
Fun(O′,C) // Fun(O,C)

where the upper horizontal map is an equivalence and the vertical maps are equivalences by virtue

of Proposition 2.4.3.16. It follows that the lower horizontal map is an equivalence. Allowing C to

vary, we deduce that f induces an equivalence of ∞-categories O → O′. This completes the proof

of (b).
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It remains to show f is an approximation to O′⊗. According to Remark 2.3.3.19, it will suffice

to show that for each X ∈ O⊗〈0〉, the induced map fX : O⊗/X → O′⊗ is an approximation to O′⊗.

Using Corollary 2.3.3.17, we are reduced to showing that fX is a weak approximation to O′⊗. We

will show that the criterion of Proposition 2.3.4.8 is satisfied. Let C⊗ be a symmetric monoidal

∞-category such that C admits small colimits and the tensor product C×C → C preserves small

colimits separately in each variable, and consider the commutative diagram of forgetful functors σ :

AlgO′(C)
θ //

��

AlgO/X (C)

��
Fun(O′,C)

θ′ // Fun(O/X ,C),

where the vertical maps have left adjoints FX : Fun(O/X ,C) → AlgO/X (C) and F ′ : Fun(O′,C) →
AlgO′(C). We wish to show that the natural transformation α : FX ◦ θ′ → θ ◦ F ′ is an equivalence.

Since f exhibits O′⊗ as an assembly of O⊗, the forgetful functor AlgO′(C) → AlgO(C) is an equiv-

alence. Similarly, (b) implies that Fun(O′,C) → Fun(O,C) is an equivalence. We may therefore

replace the diagram σ by the equivalent diagram

AlgO(C)
ψ //

��

AlgO/X (C)

��
Fun(O,C)

ψ′ // Fun(O/X ,C),

where the left vertical map has a left adjoint F : Fun(O,C) → AlgO(C). We are therefore reduced

to proving that the natural transformation FX ◦ ψ′ → ψ ◦ F is an equivalence, which is a special

case of Proposition 2.3.4.9.

2.4 Products and Coproducts

Let C be a category which admits finite products. Then the product operation (X,Y ) 7→ X × Y is

commutative and associative (up to canonical isomorphism), and has a unit given by the final object

of C. It follows that the formation of Cartesian products endows C with a symmetric monoidal

structure, which we will call the Cartesian symmetric monoidal structure on C. Similarly, if C

admits finite coproducts, then the construction (X,Y ) 7→ X
∐
Y endows C with another symmetric

monoidal structure, which we call the coCartesian symmetric monoidal structure.

Our goal in this section is to study the ∞-categorical analogues of Cartesian and coCartesian

symmetric monoidal structures. To this end, we introduce the following definition:

Definition 2.4.0.1. Let C be an ∞-category. We will say that a symmetric monoidal structure

on C is Cartesian if the following conditions are satisfied:
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(1) The unit object 1C ∈ C is final.

(2) For every pair of objects C,D ∈ C, the canonical maps

C ' C ⊗ 1C ← C ⊗D → 1C ⊗D ' D

exhibit C ⊗D as a product of C and D in the ∞-category C.

Dually, we will say that a symmetric monoidal structure on C is coCartesian if it satisfies the

following pair of analogous conditions:

(1′) The unit object 1C ∈ C is initial.

(2′) For every pair of objects C,D ∈ C, the canonical maps

C ' C ⊗ 1C → C ⊗D ← 1C ⊗D ' D

exhibit C ⊗D as a coproduct of C and D in the ∞-category C.

It is natural to expect that if C is an∞-category which admits finite products, then the formation

of finite products is commutative and associative up to coherent equivalence: that is, C should

admit a Cartesian symmetric monoidal structure. We will prove this result in §2.4.1 by means

of an explicit construction (in fact, this Cartesian symmetric monoidal structure is unique in a

strong sense: see Corollary 2.4.1.8). We can then apply to C all of the ideas introduced in §2.1; in

particular, for any ∞-operad O⊗, we can consider the ∞-category AlgO(C) of O-algebra objects of

C. Since the Cartesian symmetric monoidal structure on C is entirely determined by the structure

of the underlying ∞-category C, it is natural to expect that AlgO(C) admits a direct description

which makes no reference to the theory of ∞-operads. In §2.4.2 we will provide such a description

by introducing the notion of a O-monoid. Using this notion, we will characterize the Cartesian

symmetric monoidal structure on an ∞-category C by means of a universal mapping property

(Proposition 2.4.2.5).

The theory of coCartesian symmetric monoidal structures should be regarded as dual to the

theory of Cartesian symmetric monoidal structures: that is, we expect that giving a coCartesian

symmetric monoidal structure on an ∞-category C is equivalent to giving a Cartesian symmetric

monoidal structure on the ∞-category Cop. However, this identification is somewhat subtle: our

definition of symmetric monoidal ∞-category is not manifestly self-dual, so it is not immediately

obvious that a symmetric monoidal structure on Cop determines a symmetric monoidal structure on

C (this is nonetheless true; see Remark 2.4.2.7). Definition 2.0.0.7 encodes a symmetric monoidal

structure on an ∞-category C by specifying maps of the form X1 ⊗ · · · ⊗ Xn → Y ; maps of the

form X → Y1 ⊗ · · · ⊗ Yn are more difficult to access. For this reason, we devote §2.4.3 to giving

an explicit construction of a coCartesian symmetric monoidal structure on an ∞-category C which

admits finite coproducts. Roughly speaking, the idea is to specify a symmetric monoidal structure
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in which giving morphism X1 ⊗ · · · ⊗ Xn → Y is equivalent to giving a collection of morphisms

{Xi → Y }1≤i≤n. This construction has the advantage of working in great generality: it yields an

∞-operad Cq even in cases where the∞-category C does not admit finite coproducts. We will apply

these ideas in §2.4.4 to analyze the tensor product operation on ∞-operads described in §2.2.5.

As in the Cartesian case, it is natural to expect that if an ∞-category C is equipped with a

coCartesian symmetric monoidal structure, then the theory of algebras in C can be formulated

without reference to the theory of∞-operads. This turns out to be true for a somewhat trivial rea-

son: every object C ∈ C admits a unique commutative algebra structure, with multiplication given

by the “fold” map C
∐
C → C (Corollary 2.4.3.10). In fact, this can be taken as a characterization

of the coCartesian symmetric monoidal structure: we will show that the coCartesian symmetric

monoidal structure on C is universal among symmetric monoidal ∞-categories D for which there

exists a functor C→ CAlg(D) (Theorem 2.4.3.18).

2.4.1 Cartesian Symmetric Monoidal Structures

Let C be an ∞-category which admits finite products. Our main goal in this section is to prove

that C admits an essentially unique symmetric monoidal structure which is Cartesian in the sense

of Definition 2.4.0.1. We begin by describing a useful mechanism for recognizing that a symmetric

monoidal structure is Cartesian.

Definition 2.4.1.1. Let p : C⊗ → N(Fin∗) be an ∞-operad. A lax Cartesian structure on C⊗ is a

functor π : C⊗ → D satisfying the following condition:

(∗) Let C be an object of C⊗〈n〉, and write C ' C1 ⊕ · · · ⊕ Cn, where each Ci ∈ C. Then the

canonical maps π(C)→ π(Ci) exhibit π(C) as a product
∏

1≤j≤n π(Cj) in the∞-category D.

We will say that π is a weak Cartesian structure if it is a lax Cartesian structure, C⊗ is a

symmetric monoidal ∞-category, and the following additional condition is satisfied:

(∗′) Let f : C → C ′ be a p-coCartesian morphism covering an active morphism α : 〈n〉 → 〈1〉 in

Fin∗. Then π(f) is an equivalence in D.

We will say that a weak Cartesian structure π is a Cartesian structure if π restricts to an equivalence

C→ D.

It follows immediately from the definitions that if C is a symmetric monoidal ∞-category and

there exists a Cartesian structure C⊗ → D, then the symmetric monoidal structure on C is Carte-

sian. Consequently, to prove that an ∞-category C admits a Cartesian symmetric monoidal struc-

ture, it will suffice to construct a symmetric monoidal ∞-category C× → N(Fin∗) together with a

Cartesian structure π : C× → C. This will require a few preliminaries.

Notation 2.4.1.2. We define a category Γ× as follows:
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(1) An object of Γ× consists of an ordered pair (〈n〉, S), where 〈n〉 is an object of Fin∗ and S is

a subset of 〈n〉◦.

(2) A morphism from (〈n〉, S) to (〈n′〉, S′) in Γ× consists of a map α : 〈n〉 → 〈n′〉 in Fin∗ with

the property that α−1S′ ⊆ S.

We observe that the forgetful functor Γ× → Fin∗ is a Grothendieck fibration, so that the induced

map of ∞-categories N(Γ×)→ N(Fin∗) is a Cartesian fibration (Remark HTT.2.4.2.2 ).

Remark 2.4.1.3. The forgetful functor Γ× → Fin∗ has a canonical section s, given by s(〈n〉) =

(〈n〉, 〈n〉◦).

Construction 2.4.1.4. Let C be an∞-category. We define a simplicial set C̃
×

equipped with a map

C̃
×
→ N(Fin∗) by the following universal property: for every map of simplicial sets K → N(Fin∗),

we have a bijection

HomN(Fin∗)(K, C̃
×

) ' HomSet∆
(K ×N(Fin∗) N(Γ×),C).

Fix 〈n〉 ∈ Fin∗. We observe that the fiber C̃
×
〈n〉 can be identified with the∞-category of functors

f : N(P )op → C, where P is the partially ordered set of subsets of 〈n〉◦. We let C× be the full

simplicial subset of C̃
×

spanned by those vertices which correspond to those functors f with the

property that for every S ⊆ 〈n〉◦, the maps f(S)→ f({j}) exhibit f(S) as a product of the objects

{f({j})}j∈S in the ∞-category C.

The fundamental properties of Construction 2.4.1.4 are summarized in the following result:

Proposition 2.4.1.5. Let C be an ∞-category.

(1) The projection p : C̃
×
→ N(Fin∗) is a coCartesian fibration.

(2) Let α : f → f ′ be a morphism of C̃
×

whose image in N(Fin∗) corresponds to a map α :

〈n〉 → 〈n′〉. Then α is p-coCartesian if and only if, for every S ⊆ 〈n′〉◦, the induced map

f(α−1S)→ f ′(S) is an equivalence in C.

(3) The projection p restricts to a coCartesian fibration C× → N(Fin∗) (with the same class of

coCartesian morphisms).

(4) The projection C× → N(Fin∗) is a symmetric monoidal ∞-category if and only if C admits

finite products.

(5) Suppose that C admits finite products. Let π : C× → C be the map given by composition with

the section s : N(Fin∗)→ N(Γ×) defined in Remark 2.4.1.3. Then π is a Cartesian structure

on C×.
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Proof. Assertions (1) and (2) follow immediately from Corollary HTT.3.2.2.13 , and (3) follows

from (2) (since C× is stable under the pushforward functors associated to the coCartesian fibration

p). We now prove (4). If C has no final object, then C×〈0〉 is empty; consequently, we may assume

without loss of generality that C has a final object. Then C×〈1〉 is isomorphic to the ∞-category

of diagrams X → Y in C, where Y is final. It follows that π induces an equivalence C×〈1〉 ' C.

Consequently, C× is a symmetric monoidal ∞-category if and only if, for each n ≥ 0, the functors

ρj! determine an equivalence φ : C×〈n〉 → Cn. Let P denote the partially ordered set of subsets of 〈n〉◦,
and let P0 ⊆ P be the partially ordered set consisting of subsets which consist of a single element.

Then C×〈n〉 can be identified with the set of functors f : N(P )op → C which are right Kan extensions

of f |N(P0)op, and φ can be identified with the restriction map determined by the inclusion P0 ⊆ P .

According to Proposition HTT.4.3.2.15 , φ is fully faithful, and is essentially surjective if and only if

every functor f0 : N(P0)op → C admits a right Kan extension to N(P )op. Unwinding the definitions,

we see that this is equivalent to the assertion that every finite collection of objects of C admits a

product in C. This completes the proof of (4). Assertion (5) follows immediately from (2) and the

construction of C×.

It follows from Proposition 2.4.1.5 that if C is an∞-category which admits finite products, then

C admits a Cartesian symmetric monoidal structure. Our next goal is to show that this Cartesian

symmetric monoidal structure is unique up to equivalence. In other words, we claim that if C⊗ is

any Cartesian symmetric monoidal∞-category, then there exists a symmetric monoidal equivalence

C⊗ ' C× (extending the identity functor on C). The proof will proceed in two steps:

(i) We will show that C⊗ admits a Cartesian structure π′ : C⊗ → C.

(ii) We will show that any Cartesian structure π′ : C⊗ → C is homotopic to a composition

C⊗
F→ C×

π→ C, where π is the Cartesian structure appearing in Proposition 2.4.1.5 and F is

a symmetric monoidal functor (automatically an equivalence).

More precisely, we have the following pair of results, whose proofs will be given at the end of

this section:

Proposition 2.4.1.6. Let p : C⊗ → N(Fin∗) be a Cartesian symmetric monoidal ∞-category

and let D be another ∞-category which admits finite products. Let Fun×(C⊗,D) denote the full

subcategory of Fun(C⊗,D) spanned by the weak Cartesian structures, and let Fun×(C,D) be the full

subcategory of Fun(C,D) spanned by those functors which preserve finite products. The restriction

map Fun×(C⊗,D)→ Fun×(C,D) is an equivalence of ∞-categories.

Proposition 2.4.1.7. Let O⊗ be an ∞-operad, D an ∞-category which admits finite products, and

π : D× → D the Cartesian structure of Proposition 2.4.1.5. Then composition with π induces a

trivial Kan fibration

θ : AlgO(D)→ Funlax(O⊗,D)
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where Funlax(O⊗,D) denotes the full subcategory of Fun(O⊗,D) spanned by the lax Cartesian struc-

tures. If O⊗ is a symmetric monoidal ∞-category, then composition with π induces a trivial Kan

fibration

θ0 : Fun⊗(O⊗,D×)→ Fun×(O⊗,D)

where Fun×(O⊗,D) denotes the full subcategory of Fun(O⊗,D) spanned by the weak Cartesian

structures.

Combining these results, we obtain the following:

Corollary 2.4.1.8. Let C⊗ be a Cartesian symmetric monoidal ∞-category whose underlying ∞-

category C admits finite products, and let D be an ∞-category which admits finite products. Then:

(1) The restriction functor θ : Fun⊗(C⊗,D×)→ Fun(C,D) is fully faithful.

(2) The essential image of θ is the full subcategory Fun×(C,D) spanned by those functors which

preserve finite products.

(3) There exists a symmetric monoidal equivalence C⊗ ' C× whose restriction to the underlying

∞-category C is homotopic to the identity.

Proof. To prove assertions (1) and (2), we note that θ factors as a composition

Fun⊗(C⊗,D×)
θ′→ Fun×(C⊗,D)

θ′′→ Fun×(C,D),

where θ′ is the trivial Kan fibration of Proposition 2.4.1.7 and θ′′ is the equivalence of∞-categories

of Proposition 2.4.1.6. Taking C = D, we deduce the existence of a symmetric monoidal functor

F : C⊗ → C× which is homotopic to the identity on C. It follows from Remark 2.1.3.8 that F is an

equivalence of symmetric monoidal ∞-categories.

Using Corollary 2.4.1.8, we can formulate an even stronger uniqueness claim for Cartesian

symmetric monoidal structures. Let Cat⊗∞ be the ∞-category of symmetric monoidal ∞-categories

(see Variation 2.1.4.13), and let Cat⊗,×∞ ⊆ Cat⊗∞ be the full subcategory spanned by the Cartesian

symmetric monoidal ∞-categories. Let CatCart
∞ ⊆ Cat∞ denote the subcategory spanned by those

∞-categories C which admit finite products, and those functors which preserve finite products.

Then:

Corollary 2.4.1.9. The forgetful functor θ : Cat⊗,×∞ → CatCart
∞ is an equivalence of ∞-categories.

Proof. It follows from Proposition 2.4.1.5 that the functor θ is essentially surjective. To prove

that θ is fully faithful, let us suppose that we are given a pair of Cartesian symmetric monoidal

∞-categories C⊗ and D⊗; we wish to show that the map

MapCat⊗∞
(C⊗,D⊗)→ MapCatCart

∞
(C,D)

is a homotopy equivalence of Kan complexes. This follows immediately from Corollary 2.4.1.8.
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Example 2.4.1.10. Let A be a simplicial model category. Suppose that the Cartesian monoidal

structure on A is compatible with the model structure (in other words, that the final object of

A is cofibrant, and that for any pair of cofibrations i : A → A′, j : B → B′, the induced map

i ∧ j : (A × B′)
∐
A×B(A′ × B) → A′ × B′ is a cofibration, trivial if either i or j is trivial). Since

the collection of fibrant-cofibrant objects of A is stable under finite products, the construction

{Ai}1≤i≤n 7→
∏
iAi determines a functor π : N(Ao)⊗ → N(Ao), where N(Ao)⊗ is the ∞-operad of

Proposition 4.1.7.10. It is not difficult to see that π is a Cartesian structure on N(Ao)⊗: that is,

the symmetric monoidal structure on A determines a Cartesian symmetric monoidal structure on

N(Ao) (which coincides with the symmetric monoidal structure given by Proposition 4.1.7.10).

We conclude this section by giving proofs of Propositions 2.4.1.6 and 2.4.1.7.

Proof of Proposition 2.4.1.6. We define a subcategory I ⊆ Fin∗×[1] as follows:

(a) Every object of Fin∗×[1] belongs to I.

(b) A morphism (〈n〉, i) → (〈n′〉, i′) in Fin∗×[1] belongs to I if and only if either i′ = 1 or the

induced map α : 〈n〉 → 〈n′〉 satisfies α−1{∗} = ∗.

Let C′ denote the fiber product C⊗×N(Fin∗) N(I), which we regard as a subcategory of C⊗×∆1,

and let p′ : C′ → N(I) denote the projection. Let C′0 and C′1 denote the intersections of C′ with

C⊗×{0} and C⊗×{1}, respectively. We note that there is a canonical isomorphism C′1 ' C⊗.

Let E denote the full subcategory of Fun(C′,D) spanned by those functors F which satisfy the

following conditions:

(i) For every object C ∈ C⊗, the induced map F (C, 0)→ F (C, 1) is an equivalence in D.

(ii) The restriction F |C′1 is a weak Cartesian structure on C⊗.

It is clear that if (i) and (ii) are satisfied, then the restriction F0 = F |C′0 satisfies the following

additional conditions:

(iii) The restriction F0|C⊗〈1〉×{0} is a functor from C to D which preserves finite products.

(iv) For every p′-coCartesian morphism α in C′0, the induced map F0(α) is an equivalence in D.

Moreover, (i) is equivalent to the assertion that F is a right Kan extension of F |C′1. Proposition

HTT.4.3.2.15 implies that the restriction map r : E→ Fun×(C⊗,D) induces a trivial Kan fibration

onto its essential image. The map r has a section s, given by composition with the projection map

C′ → C⊗. The restriction map Fun×(C⊗,D)→ Fun×(C,D) factors as a composition

Fun×(C⊗,D)
s→ E

e→ Fun×(C,D),
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where e is induced by composition with the inclusion C ⊆ C′0 ⊆ C′. Consequently, it will suffice to

prove that e is an equivalence of ∞-categories.

Let E0 ⊆ Fun(C′0,D) be the full subcategory spanned by those functors which satisfy conditions

(iii) and (iv). The map e factors as a composition

E
e′→ E0

e′′→ Fun×(C,D).

Consequently, it will suffice to show that e′ and e′′ are trivial Kan fibrations.

Let f : C′0 → D be an arbitrary functor, and let C ∈ C⊗〈n〉 ⊆ C′0. There exists a unique map

α : (〈n〉, 0) → (〈1〉, 0) in I; choose a p′-coCartesian morphism α : C → C ′ lifting α. We observe

that C ′ is an initial object of C×(C′0)/C′ ×C′0
C. Consequently, f is a right Kan extension of f |C

at C if and only if f(α) is an equivalence. It follows that f satisfies (iv) if and only if f is a right

Kan extension of f |C. The same argument (and Lemma HTT.4.3.2.7 ) shows that every functor

f0 : C → D admits a right Kan extension to C′0. Applying Proposition HTT.4.3.2.15 , we deduce

that e′′ is a trivial Kan fibration.

It remains to show that e′ is a trivial Kan fibration. In view of Proposition HTT.4.3.2.15 , it

will suffice to prove the following pair of assertions, for every functor f ∈ E0:

(1) There exist a functor F : C′ → D which is a left Kan extension of f = F |C′0.

(2) An arbitrary functor F : C′ → D which extends f is a left Kan extension of f if and only if

F belongs to E.

For every finite linearly ordered set J , let J+ denote the disjoint union J
∐
{∞}, where ∞ is a

new element larger than every element of J . Let (C, 1) ∈ C⊗J∗ ×{1} ⊆ C′. Since there exists a final

object 1C ∈ C, the ∞-category C′0×C′ C
′
/C also has a final object, given by the map α : (C ′, 0) →

(C, 1), where C ′ ∈ C⊗
J+
∗

corresponds, under the equivalence

C⊗
J+
∗
' C×C⊗J∗ ,

to the pair (1C, C). We now apply Lemma HTT.4.3.2.13 to deduce (1), together with the following

analogue of (2):

(2′) An arbitrary functor F : C′ → D which extends f is a left Kan extension of f if and only if,

for every morphism α : (C ′, 0)→ (C, 1) as above, the induced map F (C ′, 0)→ F (C, 1) is an

equivalence in D.

To complete the proof, it will suffice to show that F satisfies the conditions stated in (2′) if and

only if F ∈ E. We first prove the “if” direction. Let α : (C ′, 0) → (C, 1) be as above; we wish to

prove that F (α) : F (C ′, 0)→ F (C, 1) is an equivalence in D. The map α factors as a composition

(C ′, 0)
α′→ (C ′, 1)

α′′→ (C, 1).
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Condition (i) guarantees that F (α′) is an equivalence. Condition (ii) guarantees that F (C ′, 1) is

equivalent to a product F (1C, 1) × F (C, 1), and that F (α′′) can be identified with the projection

onto the second factor. Moreover, since 1C is a final object of C, condition (ii) also guarantees

that F (1C, 1) is a final object of D. It follows that F (α′′) is an equivalence, so that F (α) is an

equivalence as desired.

Now let us suppose that F satisfies the condition stated in (2′). We wish to prove that F ∈ E.

Here we must invoke our assumption that the monoidal structure on C is Cartesian. We begin by

verifying condition (i). Let C ∈ C⊗J∗ for some finite linearly ordered set J , and let α : (C ′, 0)→ (C, 1)

be defined as above. Let β : (J∗, 0)→ (J+
∗ , 0) be the morphism in I induced by the inclusion J ⊆ J+.

Choose a p′-coCartesian morphism β : (C, 0) → (C ′′, 0) lifting β. Since the final object 1C ∈ C is

also the unit object of C, we can identify C ′′ with C ′. The composition (C, 0)
β→ (C ′, 1)

α→ (C, 1) is

homotopic to the canonical map γ : (C, 0) → (C, 1) appearing in the statement of (i). Condition

(iv) guarantees that F (β) is an equivalence, and (2′) guarantees that F (α) is an equivalence. Using

the two-out-of-three property, we deduce that F (γ) is an equivalence, so that F satisfies (i).

To prove that F satisfies (ii), we must verify two conditions:

(ii0) If β : (C, 1) → (D, 1) is a p′-coCartesian morphism in C′, and the underlying morphism

β : 〈m〉 → 〈n〉 satisfies β−1{∗} = {∗}, then F (β) is an equivalence.

(ii1) Let C ∈ C⊗〈n〉, and choose p-coCartesian morphisms γi : C → Cj covering the maps ρj : 〈n〉 →
〈1〉. Then the maps γi exhibit F (C, 1) as a product

∏
1≤j≤n F (Cj , 1) in the ∞-category D.

Condition (ii0) follows immediately from (i) and (iv). To prove (ii1), we consider the maps

α : (C ′, 0) → (C, 1) and αj : (C ′j , 0) → (Cj , 1) which appear in the statement of (2′). For each

1 ≤ j ≤ n, we have a commutative diagram

(C ′, 0)
α //

γ′j
��

(C, 1)

γj

��
(C ′j , 0)

αj // (Cj , 1).

Condition (2′) guarantees that the maps F (α) and F (αi) are equivalences in D. Consequently,

it will suffice to show that the maps f(γ′i) exhibit f(C ′, 0) as a product
∏
j∈J f(C ′j , 0) in D. Let

f0 = f |C. Using condition (iv), we obtain canonical equivalences

f(C ′, 0) ' f0(1C ⊗
⊗
j∈J

Cj) f(C ′j , 0) ' f0(1C ⊗ Cj)

Since condition (iii) guarantees that f0 preserves products, it will suffice to show that the canonical

map

1C ⊗ (
⊗

1≤j≤n
Cj)→

⊗
1≤j≤n

(1C ⊗ Cj)
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is an equivalence in the∞-category C. This follows easily from our assumption that the symmetric

monoidal structure on C is Cartesian, using induction on n.

Proof of Proposition 2.4.1.7. Unwinding the definitions, we can identify AlgO(D) with the full sub-

category of Fun(O⊗×N(Fin∗) N(Γ×),D) spanned by those functors F which satisfy the following

conditions:

(1) For every object C ∈ O⊗〈n〉 and every subset S ⊆ 〈n〉◦, the functor F induces an equivalence

F (C, S)→
∏
j∈S

F (C, {j})

in the ∞-category D.

(2) For every inert morphism C → C ′ in O⊗ which covers 〈n〉 → 〈n′〉 and every subset S ⊆ 〈n′〉◦,
the induced map F (C,α−1S)→ F (C ′, S) is an equivalence in D.

The functor F ′ = π ◦ F can be described by the formula F ′(C) = F (C, 〈n〉◦), for each C ∈
O⊗〈n〉. In other words, F ′ can be identified with the restriction of F to the full subcategory C ⊆
O⊗×N(Fin∗) N(Γ×) spanned by objects of the form (C, 〈n〉◦).

Let X = (C, S) be an object of the fiber product O⊗×N(Fin∗) N(Γ×). Here C ∈ O⊗〈n〉 and

S ⊆ 〈n〉◦. We claim that the ∞-category CX/ has an initial object. More precisely, if we choose a

p-coCartesian morphism α : C → C ′ covering the map α : 〈n〉 → S∗ given by the formula

α(j) =

{
j if j ∈ S
∗ otherwise,

then the induced map α̃ : (C, S)→ (C ′, S) is an initial object of CX/. It follows that every functor

F ′ : C → D admits a right Kan extension to O⊗×N(Fin∗) N(Γ×), and that an arbitrary functor

F : O⊗×N(Fin∗) N(Γ×)→ D is a right Kan extension of F |C if and only if F (α̃) is an equivalence,

for every α̃ defined as above.

Let E be the full subcategory of Fun(O⊗×N(Fin∗) N(Γ×),D) spanned by those functors F which

satisfy the following conditions:

(1′) The restriction F ′ = F |C is a lax Cartesian structure on O⊗ ' C.

(2′) The functor F is a right Kan extension of F ′.

Using Proposition HTT.4.3.2.15 , we conclude that the restriction map E → Funlax(O⊗,D) is a

trivial fibration of simplicial sets. To prove that θ is a trivial Kan fibration, it will suffice to show

that conditions (1) and (2) are equivalent to conditions (1′) and (2′).



2.4. PRODUCTS AND COPRODUCTS 291

Suppose first that (1′) and (2′) are satisfied by a functor F . Condition then (1) follows easily;

we will prove (2). Choose a map C → C ′ covering a inert morphism 〈n〉 → 〈n′〉 in Fin∗, and let

S ⊆ 〈n′〉◦. Define another inert morphism α : 〈n′〉 → S∗ by the formula

α(j) =

{
j if j ∈ S
∗ otherwise,

and choose a p-coCartesian morphism C ′ → C ′′ lifting α. Condition (2′) implies that the maps

F (C,α−1S) → F (C ′′, S) and F (C ′, S) → F (C ′′, S) are equivalences in D. Using the two-out-of-

three property, we deduce that the map F (C,α−1S) → F (C ′, S) is likewise an equivalence in D.

This proves (2).

Now suppose that (1) and (2) are satisfied by F . The implication (2)⇒ (2′) is obvious; it will

therefore suffice to verify (1′). Let C be an object of O⊗〈n〉, and choose p-coCartesian morphisms

gj : C → Cj covering the inert morphisms ρj : 〈n〉 → 〈1〉 for 1 ≤ j ≤ n. We wish to show that the

induced map F (C, 〈n〉◦) →
∏

1≤j≤n F (Cj , 〈1〉◦) is an equivalence in D, which follows immediately

from (1) and (2′). This completes the proof that θ is a trivial Kan fibration.

Now suppose that O⊗ is a symmetric monoidal ∞-category. To prove that θ0 is a trivial Kan

fibration, it will suffice to show that θ0 is a pullback of θ. In other words, it will suffice to show

that if F : O⊗×N(Fin∗) N(Γ×) → D is a functor satisfying conditions (1) and (2), then F |C is a

weak Cartesian structure on O⊗ ' C if and only if F determines a symmetric monoidal functor

from O⊗ into D×. Let q : D× → N(Fin∗) denote the projection. Using the description of the class

of q-coCartesian morphisms provided by Proposition 2.4.1.5, we see that the latter condition is

equivalent to

(a) For every p-coCartesian morphism α : C → C ′ in O⊗ covering a map α : 〈n〉 → 〈n′〉 in Fin∗,

and every S ⊆ 〈n′〉◦, the induced map F (C,α−1(S))→ F (C, S) is an equivalence in D.

Moreover, F |C is a weak Cartesian structure if and only if F satisfies the following:

(b) For each n ≥ 0 and every p-coCartesian morphism β : C → C ′ in O⊗ lifting the map

β : 〈n〉 → 〈1〉 such that β−1{∗} = {∗}, the induced map F (C, 〈n〉◦) → F (C ′, 〈1〉◦) is an

equivalence in D.

It is clear that (a) implies (b). Conversely, suppose that (b) is satisfied, and let α and S ⊆ 〈n〉◦

be as in the statement of (a). Choose p-coCartesian morphisms γ : C → C0, γ′ : C ′ → C ′0,

β : C ′0 → C ′′0 covering the maps γ : 〈n〉 → (α−1S)∗, γ
′ : 〈n′〉 → S∗, β : 〈n′〉 → 〈1〉 described by the

formulas

β(j) =

{
1 if j ∈ S
∗ if j = ∗
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γ(j) =

{
j if j ∈ α−1S

∗ otherwise

γ′(j) =

{
1 if j ∈ S
∗ otherwise.

We have a commutative diagram

F (C,α−1S) //

��

F (C ′, S)

��
F (C0, α

−1S)
g // F (C ′0, S)

g′ // F (C ′′0 , {0})

Condition (b) implies that g′ and g′ ◦ g are equivalences, so that g is an equivalence by the two-

out-of-three property. Condition (2′) implies that the vertical maps are equivalences, so that the

upper horizontal map is also an equivalence, as desired.

2.4.2 Monoid Objects

At the beginning of this chapter, we reviewed the notion of a commutative monoid: that is, a set

M equipped with a multiplication M ×M → M which is commutative, associative and unital. If

C is a category which admits finite products, one can consider commutative monoids in C: that is,

objects M ∈ C equipped with unit and multiplication maps

∗ →M M ×M →M

satisfying the usual axioms, where ∗ denotes a final object of C. In this section, we would like to

generalize still further: if C is an ∞-category which admits finite products, then we should be able

to define a new ∞-category MonComm(C) of commutative monoid objects of C. Our definition will

have the following features:

(a) If C = Cat∞ is the∞-category of (small)∞-categories, then a commutative monoid object of

C is essentially the same thing as a symmetric monoidal∞-category (in the sense of Definition

2.0.0.7).

(b) If we regard C as endowed with the Cartesian symmetric monoidal structure of §2.4.1, we

have a canonical equivalence MonComm(C) ' AlgComm(C).

In fact, (b) suggests that for any ∞-operad O⊗, we can define an ∞-category MonO(C) by the

formula MonO(C) = AlgO(C), where C is endowed with the Cartesian symmetric monoidal structure.

However, for many purposes it is convenient to have a more direct description of MonO(C) which

does not make use of the theory of ∞-operads. We instead take our cue from (a). According
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to Definition 2.0.0.7, a symmetric monoidal ∞-category is a coCartesian fibration C⊗ → Comm⊗

satisfying certain conditions. Such a fibration is classified by a map χ : Comm⊗ → Cat∞. This

suggests the following definition:

Definition 2.4.2.1. Let C be an ∞-category and let O⊗ be an ∞-operad. A O-monoid in C is

a functor M : O⊗ → C with the following property: for every object X ∈ O⊗〈n〉 corresponding

to a sequence of objects {Xi ∈ O}1≤i≤n, the canonical maps M(X) → M(Xi) exhibit M(X) as

a product
∏

1≤i≤nM(Xi) in the ∞-category C. We let MonO(C) denote the full subcategory of

Fun(O⊗,C) spanned by the O-monoids in C.

Remark 2.4.2.2. In the special case where O⊗ is the commutative ∞-operad, we will refer to

O-monoids in an ∞-category C as commutative monoid objects of C. These objects might also be

referred to as Γ-objects of C; in the special case where C is the ∞-category of spaces, the theory of

Γ objects is essentially equivalent to Segal’s theory of Γ-spaces.

Remark 2.4.2.3. Let C be an ∞-category and let F : Comm⊗ ' N(Fin∗)→ C be a commutative

monoid object of C. It follows from Definition 2.4.2.1 that for each n ≥ 0, the object F (〈n〉) ∈ C

can be identified with the n-fold product of M = F (〈1〉) with itself. The unique active morphism

〈n〉 → 〈1〉 then corresponds to a map Mn →M . In particular, taking n = 2, we get a multiplication

map m : M ×M ' F (〈2〉) → F (〈1〉) ' M in C. It is not difficult to see that the multiplication

m is commutative and associative up to homotopy: in fact, the existence of the functor F is an

expression of the idea that m is commutative, associative, and unital, up to coherent homotopy.

The construction F 7→ M = F (〈1〉) determines a forgetful functor MonComm(C) → C. We will

often abuse notation by identifying M with F .

Example 2.4.2.4. Let O⊗ be an ∞-operad. A functor M : O⊗ → Cat∞ is a O-monoid in Cat∞ if

and only if the coCartesian fibration C⊗ → O⊗ classified by M is a O-monoidal ∞-category.

We now compare the theory of O-monoids with the theory of O-algebras:

Proposition 2.4.2.5. Let C⊗ be a symmetric monoidal ∞-category, π : C⊗ → D a Cartesian

structure, and O⊗ an ∞-operad. Then composition with π induces an equivalence of ∞-categories

AlgO(C)→ MonO(D).

Proof. As in the proof of Corollary 2.4.1.9, we may assume without loss of generality that C⊗ = D×.

We now apply Proposition 2.4.1.7 again to deduce that the map

AlgO(C)→ Funlax(O⊗,D) = MonO(D)

is a trivial Kan fibration.
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Remark 2.4.2.6. Let O⊗ be an ∞-operad. Combining Proposition 2.4.2.5 with Example 2.4.2.4,

we see that O-monoidal ∞-categories can be identified with O-algebra objects of Cat∞ (where

we endow the latter with the Cartesian monoidal structure). More precisely, we have a canon-

ical equivalence of ∞-categories AlgO(Cat∞) ' CatO∞, where CatO∞ denotes the subcategory of

(Op∞)/O⊗ spanned by the O-monoidal ∞-categories and O-monoidal functors between them. This

observation will play a vital role in Chapter 4.

Remark 2.4.2.7. Let Cat∆
∞ denote the simplicial category whose objects are small ∞-categories,

where MapCat∆
∞

(C,D) is the Kan complex Fun(C,D)'. Let |Cat∆
∞ | denote the geometric realiza-

tion of Cat∆
∞: that is, the topological category with the same objects, but with morphisms given

by Map|Cat∆
∞ |

(C,D) = |MapCat∆
∞

(C,D)|. Let Cat′∞ denote the nerve of the topological category

|Cat∆
∞ |, so we have an equivalence of∞-categories Cat∞ = N(Cat∆

∞)→ N(|Cat∆
∞ |) = Cat′∞. Using

the existence of the canonical homeomorphism |K| ' |Kop| for every simplicial set K, we deduce

the existence of an involution R on the ∞-category Cat′∞, which carries each ∞-category C to its

opposite ∞-category Cop.

The definition of a symmetric monoidal ∞-category is not manifestly self-dual. However, it is

neverthless true that any symmetric monoidal structure on an∞-category C determines a symmetric

monoidal structure on Cop, which is unique up to contractible ambiguity. Roughly speaking, we

can use Example 2.4.2.4 to identify symmetric monoidal∞-categories C with commutative monoids

N(Fin∗) → Cat∞ ' Cat′∞. We can then obtain a new commutative monoid object by composing

with the self-equivalence R : Cat′∞ → Cat′∞, which carries each ∞-category to its opposite. More

informally: composition with the self-equivalence R allows us to pass between symmetric monoidal

structures on an ∞-category C and symmetric monoidal structures on the opposite ∞-category

R(C) = Cop. We will discuss this phenomenon in more detail in §5.2.2 (see Example 5.2.2.23).

We close this section by recording a variant of Theorem 2.3.3.23 which applies to O-monoid

objects of ∞-categories, rather than O-algebra objects. To state it, we need a definition:

Definition 2.4.2.8. Let p : O⊗ → N(Fin∗) be an ∞-operad, let f : E → O⊗ be a weak approxi-

mation to O⊗ (see Definition 2.3.3.6). Choose a factorization of f as a composition

E
f ′→ E′

f ′′→ O⊗

where f ′ is a categorical equivalence and f ′′ is a categorical fibration. Let C be an arbitrary ∞-

category. We will say that a functor M : E→ C is a E-monoid object of C if it satisfies the following

condition:

(∗) Let E ∈ E be an object with (p ◦ f)(E) = 〈n〉, and choose maps αi : E → Ei covering the

maps ρi : 〈n〉 → 〈1〉 such that such that f ′(αi) is locally (p ◦ f ′′)-coCartesian for 1 ≤ i ≤ n.

Then the maps M(αi) exhibit M(E) as a product
∏

1≤i≤nM(Ei) in the ∞-category C.

We let MonE(C) denote the full subcategory of Fun(E,C) spanned by the E-monoid objects.
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Remark 2.4.2.9. In the situation of Definition 2.4.2.8, the condition that a functor M : E → C

be a E-monoid depends only on the underlying map p′ : E → N(Fin∗), and not on the particular

presentation of E as an approximation to an ∞-operad O⊗ or on the factorization f ' f ′′ ◦ f ′.

Remark 2.4.2.10. In the situation of Definition 2.4.2.8, assume that E = O′⊗ is an ∞-operad. It

follows from Remark 2.1.2.9 that MonE(C) and MonO′(C) coincide (as subsets of Fun(E,C)).

Proposition 2.4.2.11. Let p : O⊗ → N(Fin∗) be an ∞-operad and let f : E → O⊗ be a weak

approximation to O⊗. Assume that the induced map E×N(Fin∗){〈1〉} → O is an equivalence of ∞-

categories. Then, for any ∞-category C which admits finite products, composition with f induces

an equivalence of ∞-categories MonO(C)→ MonE(C).

Proof. We employ the same strategy as in the proof of Theorem 2.3.3.23, but the details are

slightly easier. We may assume without of generality that the weak approximation f : E → O⊗ is

a categorical fibration. Choose a Cartesian fibration u : M → ∆1 associated to the functor f , so

that we have isomorphisms of simplicial sets O⊗ 'M×∆1{0}, C 'M×∆1{1}. Choose a retraction

r from M onto O⊗ such that r|C = f . Let X denote the full subcategory of Fun(M,C) spanned by

those functors F : M→ C satisfying the following conditions:

(i) The restriction F |O⊗ belongs to MonO(C).

(ii) For every u-Cartesian morphism α in M, the image F (α) is an equivalence in C.

Condition (ii) is equivalent to the requirement that F be a left Kan extension of F |O⊗ . Using

Proposition HTT.4.3.2.15 , we conclude that the restriction functor X→ MonO(C) is a trivial Kan

fibration. Composition with r determines a section s of this trivial Kan fibration. Let ψ : X →
Fun(E,C) be the other restriction functor. Then the forgetful functor MonO(C) → Fun(E,C) is

given by the composition ψ ◦ s. It will therefore suffice to show that ψ determines an equivalence

from X onto MonE(C). By virtue of Proposition HTT.4.3.2.15 , it will suffice to verify the following:

(a) Let F0 ∈ MonE(C). Then there exists a functor F ∈ Fun(M,C) which is a right Kan extension

of F0.

(b) A functor F ∈ Fun(M,C) belongs to X if and only if F is a right Kan extension of F0 = F |E,

and F0 ∈ MonE(C).

We begin by proving (a). Fix an object X ∈ O⊗, let EX/ denote the fiber product MX/×M E,

and let FX = F0|EX/ . According to Lemma HTT.4.3.2.13 , it will suffice to show that the functor FX
can be extended to a limit diagram E/X/ → C. Let E′X/ denote the full subcategory of EX/ spanned

by those morphisms X → C in M which correspond to inert morphisms X → f(C) in O⊗. Since

f is a weak approximation to O⊗, Theorem HTT.4.1.3.1 implies that the inclusion E′X/ ↪→ EX/ is

right cofinal. It will therefore suffice to show that the restriction F ′X = FX |E′X/ can be extended to

a limit diagram E′/X/ → C.
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Let 〈n〉 = p(X), and let E′′X/ denote the full subcategory of E′X/ corresponding to inert morphisms

X → f(C) for which (p ◦ f)(C) = 〈1〉. We claim that F ′X is a right Kan extension of F ′′X = F |E′′X/ .
To prove this, let us choose an arbitrary object of E′X/, given by a map α : X → C in M. The

fiber product E′′X/×E′X/
(E′X/)α/ can be identified with the full subcategory of Mα/ spanned by those

diagrams X
α→ C

β→ C ′ such that (p ◦ f)(β) has the form ρi : 〈n〉 → 〈1〉, for some 1 ≤ i ≤ n. In

particular, this ∞-category is a disjoint union of full subcategories {D(i)}1≤i≤n, where each D(i)

is equivalent to the full subcategory of EC/ spanned by morphisms C → C ′ covering the map ρi.

Our assumption that f is a weak approximation to O⊗ guarantees that each of these ∞-categories

has a final object, given by a locally (p ◦ f)-coCartesian morphism C → Ci in C. It will therefore

suffice to show that F0(C) is a product of the objects {F0(Ci)}1≤i≤n. Since C is an ∞-operad,

we are reduced to proving that each of the maps F0(C) → F0(Ci) is inert, which follows from our

assumption that F0 ∈ MonE(C).

Using Lemma HTT.4.3.2.7 , we are reduced to proving that the diagram F ′′X can be extended

to a limit diagram E′′
/
X/ → C. For 1 ≤ i ≤ n, let E(i)′′X/ denote the full subcategory of E′′X/ spanned

by those objects for which the underlying morphism X → C covers ρi : p(X) ' 〈n〉 → 〈1〉. Then

E′′X/ is the disjoint union of the full subcategories {E(i)′′X/}. Let O(i) denote the full subcategory of

O⊗X/×N(Fin∗)〈n〉/{ρ
i}, so that we have a left fibration of simplicial sets O(i) → O and a categorical

equivalence E(i)′′X/ ' O(i)×O⊗E. Choose inert morphisms X → Xi in O⊗ for 1 ≤ i ≤ n, so that each

Xi determines an initial object of O(i). If f induces a categorical equivalence E×N(Fin∗){〈1〉} → O,

then we can write Xi ' f(Ci) for some Ci ∈ E, and that the induced map X → Ci can be identified

with a final object of E(i)′′X/. Consequently, we are reduced to proving the existence of a product for

the set of objects {F0(Ci)}1≤i≤n, which follows from our assumption that C admits finite products.

This completes the proof of (a). Moreover, it yields the following version of (b):

(b′) Let F ∈ Fun(M,C) be such that F0 = F |E ∈ MonE(C). Then F is a right Kan extension of

F0 if and only if, for every object X ∈ O⊗〈n〉, if we choose Ci ∈ E and maps αi : X → Ci in

M corresponding to inert morphisms X → f(Ci) in O⊗ covering ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n,

then the induced map F (X)→
∏

1≤i≤n F0(Ci) is an equivalence in C.

We now prove (b). Assume first that F ∈ X. Then F0 = F |E is equivalent to the functor

(F |O⊗) ◦ f . It follows immediately that F0 ∈ MonE(C). Criterion (b′) immediately implies that F

is a right Kan extension of F0. This proves the “only if” direction.

For the converse, assume that F0 ∈ MonE(C) and that F is a right Kan extension of F0. We

wish to prove that F ∈ X. We first verify that F satisfies (ii). Pick an object C ∈ E and choose

locally (p ◦ f)-coCartesian morphisms αi : C → Ci for 1 ≤ i ≤ n. Let X = f(C); we wish to show

that the induced map F (X)→ F (C) is an equivalence in C. Since F0 ∈ MonE(C), we can identify

F (C) with the product
∏

1≤i≤n F (Ci), so that the desired assertion follows immediately from (b′).

To complete the proof, we must show that F |O⊗ belongs to MonO(C). Let X ∈ O⊗〈n〉 and

choose inert morphisms αi : X → Xi covering ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n; we wish to show
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that the induced map F (X) →
∏

1≤i≤n F (Ci) is an equivalence. We may assume without loss of

generality that Xi = f(Ci) for some objects {Ci ∈ E}1≤i≤n. Condition (ii) implies that F induces

an equivalence F (Xi) → F (Ci) for 1 ≤ i ≤ n. We are therefore reduced to showing that the map

F (X)→
∏

1≤i≤n F (Ci) is an equivalence in C, which follows from criterion (b′).

2.4.3 CoCartesian Symmetric Monoidal Structures

Let C be an∞-category which admits finite coproducts. Then the opposite∞-category Cop admits

finite products, and can therefore be endowed with a Cartesian symmetric monoidal structure, which

is unique up to equivalence (see §2.4.1). Using Remark 2.4.2.7, we deduce that the ∞-category C

inherits a symmetric monoidal structure, which is determined uniquely up to equivalence by the

requirement that it be coCartesian (in the sense of Definition 2.4.0.1). Our goal in this section is

to give an explicit construction of this symmetric monoidal structure on C. More generally, we will

show that any ∞-category C can be regarded as the underlying ∞-category of an ∞-operad Cq,

where the morphism spaces are described informally by the formula

MulCq(C1 ⊕ · · · ⊕ Cn, D) '
∏

1≤i≤n
MapC(Ci, D).

We now define the ∞-operad Cq more precisely.

Construction 2.4.3.1. We define a category Γ∗ as follows:

(1) The objects of Γ∗ are pairs (〈n〉, i) where i ∈ 〈n〉◦.

(2) A morphism in Γ∗ from (〈m〉, i) to (〈n〉, j) is a map of pointed sets α : 〈m〉 → 〈n〉 such that

α(i) = j.

Let C be any simplicial set. We define a new simplicial set Cq equipped with a map Cq → N(Fin∗)

so that the following universal property is satisfied: for every map of simplicial sets K → N(Fin∗),

we have a canonical bijection

HomN(Fin∗)(K,C
q) ' HomSet∆

(K ×N(Fin∗) N(Γ∗),C).

Remark 2.4.3.2. If C is a simplicial set, then each fiber Cq〈n〉 = Cq×N(Fin∗){〈n〉} can be identified

with Cn; we will henceforth invoke these identifications implicitly.

Proposition 2.4.3.3. Let C be an ∞-category. Then the map p : Cq → N(Fin∗) of Construction

2.4.3.1 is an ∞-operad.
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Proof. We first show that p is an inner fibration of simplicial sets. Suppose we are given a lifting

problem

Λni
f0 //

��

Cq

��
∆n //

f

;;

N(Fin∗)

where 0 < i < n. The lower horizontal map determines a sequence of maps 〈k0〉 → . . . → 〈kn〉 in

Fin∗. Unwinding the definitions, we see that finding the desired extension f of f0 is equivalent to

the problem of solving a series of extension problems

Λni
fj0 //

��

C

∆n

fj
>>

indexed by those elements j ∈ 〈k0〉◦ whose image in 〈kn〉 belongs to 〈kn〉◦. These extensions exist

by virtue of the assumption that C is an ∞-category. If i = 0 and the map 〈k0〉 → 〈k1〉 is inert,

then the same argument applies: we conclude that the desired extension of f exists provided that

n ≥ 2 and f j0 carries ∆{0,1} to an equivalence in C.

Unwinding the definitions, we see that an object of Cq consists of an object 〈n〉 ∈ Fin∗ together

with a sequence of objects (C1, . . . , Cn) in C. A morphism f from (C1, . . . , Cm) to (C ′1, . . . , C
′
n)

in Cq consists of a map of pointed sets α : 〈m〉 → 〈n〉 together with a sequence of morphisms

{fi : Ci → C ′α(i)}i∈α−1〈n〉◦ . The above argument shows that f is p-coCartesian if α is inert and

each of the maps fi is an equivalence in C. In particular (taking each fi to be the identity map),

we deduce that for every object C ∈ Cq〈m〉 and every inert morphism α : 〈m〉 → 〈n〉 in Fin∗, there

exists a p-coCartesian morphism C → C ′ in Cq lifting σ.

Let C = (C1, . . . , Cn) be an object of Cq〈n〉 and choose p-coCartesian morphisms C → C ′i covering

ρi for 1 ≤ i ≤ n, corresponding to equivalences gi : Ci ' C ′i in C. These morphisms determine a

diagram q : 〈n〉◦/ → Cq; we must show that q is a p-limit diagram. To prove this, we must show

that it is possible to solve lifting problems of the form

∂∆m ? 〈n〉◦ f0 //

��

Cq

��
∆m ? 〈n〉◦ //

f

88

N(Fin∗)

provided that f0|({m}?〈n〉◦) is given by q. Unwinding the definitions, we see that this is equivalent
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to solving a collection of extension problems of the form

Λm+1
m+1

f ′0 //

��

C

∆m+1,

f ′
==

where f ′0 carries the final edge of ∆m+1 to one of the morphisms gi. This is possible by virtue of

our assumption that each gi is an equivalence.

To complete the proof that Cq is an ∞-operad, it suffices to show that for each n ≥ 0, the

functors ρi! : Cq〈n〉 → Cq〈1〉 induce an equivalence θ : Cq〈n〉 →
∏

1≤i≤n C
q
〈1〉. In fact, we have canonical

isomorphisms of simplicial sets Cq〈n〉 ' Cn which allow us to identify θ with idCn .

Remark 2.4.3.4. Unwinding the definitions, we deduce that a map (C1, . . . , Cm)→ (C ′1, . . . , C
′
n)

in Cq covering a map α : 〈m〉 → 〈n〉 is p-coCartesian if and only if for each j ∈ 〈n〉◦, the underlying

maps {fi : Ci → C ′j}α(i)=j exhibit C ′j as a coproduct of {Ci}α(i)=j in the ∞-category C. It follows

that Cq is a symmetric monoidal ∞-category if and only if C admits finite coproducts. If this

condition is satisfied, then Cq determines a coCartesian symmetric monoidal structure on C and is

therefore determined by C up to essentially unique equivalence. We will see that the situation is

similar even if C does not admit finite coproducts.

Example 2.4.3.5. The projection map N(Γ∗)→ N(Fin∗) induces a canonical map C×N(Fin∗)→
Cq. If C = ∆0, this map is an isomorphism (so that Cq is the commutative ∞-operad N(Fin∗)).

For any ∞-operad O⊗, we obtain a map C×O⊗ → Cq×N(Fin∗) O
⊗ which determines a functor

C→ AlgO(A), where A⊗ is the ∞-operad Cq×N(Fin∗) O
⊗.

Remark 2.4.3.6. Let C be an ∞-category, and let γ : C×N(Fin∗) → Cq be the canonical map,

where Cq. Then γ is an approximation to the ∞-operad Cq. Unwinding the definitions, this is

equivalent to the observation that for every object C ∈ C and each n ≥ 0, the ∞-category Cn/C has

a final object (given by (C,C, . . . , C)).

Definition 2.4.3.7. We will say that an ∞-operad O⊗ is coCartesian if it is equivalent to Cq, for

some ∞-category C.

The following result shows that a coCartesian ∞-operad C⊗ is determined, in a very strong

sense, by the underlying ∞-category C:

Proposition 2.4.3.8. Let C⊗ and D⊗ be coCartesian ∞-operads. Then the restriction functor

AlgC(D)→ Fun(C,D) is an equivalence of ∞-categories.

We observe that for every∞-category C, the∞-operad Cq is unital. Consequently, Proposition

2.4.3.8 is a consequence of the following more general assertion:
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Proposition 2.4.3.9. Let O⊗ be a unital ∞-operad and let C⊗ be a coCartesian ∞-operad. Then

the restriction functor AlgO(C)→ Fun(O,C) is an equivalence of ∞-categories.

Corollary 2.4.3.10. Let C be an ∞-category, which we regard as the underlying ∞-category of the

∞-operad Cq. Then the construction of Example 2.4.3.5 induces an equivalence of ∞-categories

C→ CAlg(C).

Corollary 2.4.3.11. Let Opq∞ denote the full subcategory of Op∞ spanned by the coCartesian

∞-operads, and let θ : Opq∞ → Cat∞ denote the forgetful functor (given on objects by O⊗ 7→ O).

Then θ is an equivalence of ∞-categories.

Proof. It follows from Proposition 2.4.3.16 that θ is fully faithful. Construction 2.4.3.1 shows that

θ is essentially surjective.

Variant 2.4.3.12. Let Cat⊗∞ denote the ∞-category of symmetric monoidal ∞-categories and let

Cat⊗,q∞ ⊆ Cat⊗∞ denote the full subcategory spanned by the coCartesian symmetric monoidal ∞-

categories. Let CatcoCart
∞ denote the subcategory of Cat∞ spanned by those ∞-categories which

admit finite coproducts and those functors which preserve finite coproducts. Then the restriction

functor Cat⊗,q∞ → CatcoCart
∞ is an equivalence of ∞-categories. This can be deduced either from the

equivalence of Corollary 2.4.3.11 (by identifying Cat⊗,q∞ and CatcoCart
∞ with subcategories of Opq∞

and Cat∞) or from the equivalence of Corollary 2.4.1.9 (by passing to opposite ∞-categories; see

Remark 2.4.2.7).

For later use, we formulate an even more general version of Proposition 2.4.3.8.

Definition 2.4.3.13. Let C be an∞-category. We will say that a C-family of∞-operads q : O⊗ →
C×N(Fin∗) is unital if every object of O⊗〈0〉 = O⊗×N(Fin∗){〈0〉} is q-initial.

Remark 2.4.3.14. In the special case where C = ∆0, the notion of a unital C-family of∞-operads

coincides with the notion of unital ∞-operad introduced in Definition 2.3.1.1. More generally, if

O⊗ → C×N(Fin∗) is a unital C-family of ∞-operads, then for each C ∈ C the fiber O⊗C is a unital

∞-operad. If C is a Kan complex, then the converse is true as well: a C-family of ∞-operads is

unital if and only if each fiber is unital.

Remark 2.4.3.15. Let O⊗ be a generalized ∞-operad. Then O⊗ is categorically equivalent to

a C-family of ∞-operads O′⊗ → C×N(Fin∗), where C = O⊗〈0〉 (see Corollary 2.3.2.13), which is

uniquely determined up to equivalence. We will say that O⊗ is unital if O′⊗ is a unital C-family of

∞-operads, in the sense of Definition 2.4.3.13.

Proposition 2.4.3.9 is an immediate consequence of the following:

Proposition 2.4.3.16. Let O⊗ be a unital generalized ∞-operad and let C⊗ be a coCartesian

∞-operad. Then the restriction functor AlgO(C)→ Fun(O,C) is an equivalence of ∞-categories.
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Proof. We may assume without loss of generality that C⊗ = Cq for some ∞-category C. Let D

denote the fiber product

O⊗×N(Fin∗) N(Γ∗).

By definition, a map O⊗ → Cq in (Set∆)/N(Fin∗) can be identified with a functor A : D → C.

Such a functor determines a map of generalized ∞-operads if and only if the following condition is

satisfied:

(∗) Let α be a morphism in D whose image in O⊗ is inert. Then A(α) is an equivalence in C.

We can identify AlgO(C) with the full subcategory of Fun(D,C) spanned by those functors which

satisfy (∗).
We observe that the inverse image in D of 〈1〉 ∈ N(Fin∗) is canonically isomorphic to O. Via

this isomorphism, we will regard O as a full subcategory of D. In view of Proposition HTT.4.3.2.15 ,

it will suffice to prove the following:

(a) A functor A : D→ C is a left Kan extension of A|O if and only if it satisfies condition (∗).

(b) Every functor A0 : O→ C admits an extension A : D→ C satisfying the equivalent conditions

of (a).

We can identify objects of D with pairs (X, i), where X ∈ O⊗〈n〉 and 1 ≤ i ≤ n. For every

such pair, choose an inert morphism X → Xi lying over the map ρi : 〈n〉 → 〈1〉. We then have a

morphism f : (X, i) → (Xi, 1) in D. Using the assumption that O⊗ is unital, we deduce that the

map

MapD(Y, (X, i))→ MapD(Y, (Xi, 1)) ' MapO(Y,Xi)

is a homotopy equivalence for each Y ∈ O ⊆ D. In particular, we conclude that f admits a right

homotopy inverse g : (Xi, 1) → (X, i). It follows that composition with g induces a homotopy

equivalence

MapD(Y, (Xi, 1))→ MapD(Y, (X, i))

for each Y ∈ O. This implies that the inclusion O ⊆ D admits a right adjoint G, given by

(X, i) 7→ (Xi, 1). This immediately implies (b) (we can take A = A0 ◦ G) together with the

following version of (a):

(a′) A functor A : D→ C is a left Kan extension of A|O if and only if, for every object (X, i) ∈ D,

the map A(g) is an equivalence in C, where g : (Xi, 1)→ (X, i) is defined as above.

Since g is a right homotopy inverse to the inert morphism f : (X, i) → (Xi, 1), assertion (a′) can

be reformulated as follows: a functor A : D → C is a left Kan extension of A|O if and only if the

following condition is satisfied:
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(∗′) Let (X, i) ∈ D be an object, and let f : (X, i) → (Xi, 1) be defined as above. Then A(f) is

an equivalence in C.

To complete the proof, it will suffice to show that conditions (∗) and (∗′) are equivalent. The

implication (∗)⇒ (∗′) is obvious. For the converse, suppose that h : (Y, j)→ (X, i) is an arbitrary

morphism in D whose image in O⊗ is inert. We then have a commutative diagram

(Y, j)
f ′

$$

f // (X, i)

f ′′zz
(Xi, 1)

Condition (∗′) guarantees that A(f ′) and A(f ′′) are equivalences, so that A(f) is an equivalence by

the two-out-of-three property.

Remark 2.4.3.17. Let C⊗ be a symmetric monoidal ∞-category. Then C⊗ is coCartesian as a

symmetric monoidal ∞-category (in the sense of Definition 2.4.0.1) if and only if it is coCartesian

as an∞-operad (in the sense of Definition 2.4.3.7). This follows from the uniqueness of coCartesian

symmetric monoidal structures (combine Remark 2.4.2.7 with Corollary 2.4.1.8), since Cq satisfies

the requirements of Definition A.5.12.

Let C be a category which admits finite coproducts. The construction (X,Y ) 7→ X
∐
Y endows

C with the structure of a symmetric monoidal category. For every object C ∈ C, the codiagonal

C
∐
C → C exhibits C as a commutative algebra object of C. Corollary 2.4.3.10 can be regarded as

an∞-categorical analogue of this assertion: it guarantees that the forgetful functor CAlg(C)→ C is

an equivalence of∞-categories for any coCartesian∞-operad C⊗, and therefore admits a homotopy

inverse C→ CAlg(C). Our goal in this section is to prove a converse: namely, we will show that if

D⊗ is an arbitrary ∞-operad, then every functor C→ CAlg(D) is induced by a map of ∞-operads

Cq → D⊗. This is a consequence of the following more general assertion:

Theorem 2.4.3.18. Let C be an ∞-category, let O⊗ and D⊗ be ∞-operads, and let O′⊗ denote

the fiber product Cq×N(Fin∗) O
⊗. Then the construction of Example 2.4.3.5 induces a trivial Kan

fibration

θ : AlgO′(D)→ Fun(C,AlgO(D)).

In particular (taking O⊗ to be the commutative ∞-operad), we have a trivial Kan fibration

AlgC(D)→ Fun(C,CAlg(D)).

Proof. Note that the map f : C×O⊗ → Cq×N(Fin∗) O
⊗ induces an isomorphism after passing to

the fiber over the object 1 ∈ N(Fin∗). According to Theorem 2.3.3.23, it will suffice to show that

f is an approximation to Cq×N(Fin∗) O
⊗. This follows from Remarks 2.3.3.19 and 2.4.3.6.
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We conclude this section with a simple criterion which is useful for establishing that a symmetric

monoidal structure on an ∞-category is coCartesian:

Proposition 2.4.3.19. Let C be a symmetric monoidal ∞-category. The following conditions are

equivalent:

(1) The symmetric monoidal structure on C is coCartesian.

(2) The induced symmetric monoidal structure on the homotopy category hC is coCartesian.

(3) The unit object 1C is initial, and for each object C ∈ C there exists a codiagonal map δC :

C ⊗ C → C satisfying the following conditions:

(i) Let C be an object of C and let u : 1C → C be a map (automatically unique up to

homotopy). Then the composition

C ' C ⊗ 1C
id⊗u−→ C ⊗ C δC−→ C

is homotopic to the identity.

(ii) For every morphism f : C → D in C, the diagram

C ⊗ C f⊗f //

δC
��

D ⊗D
δD
��

C
f // D

commutes up to homotopy.

(iii) Let C and D be objects of C. Then the diagram

(C ⊗ C)⊗ (D ⊗D)
∼ //

δC⊗δD ((

(C ⊗D)⊗ (C ⊗D)

δC⊗Dvv
C ⊗D

commutes up to homotopy.

Proof. The implications (1)⇒ (2)⇒ (3) are obvious. Let us suppose that (3) is satisfied. We wish

to show that, for every pair of objects C,D ∈ C, the maps

C ' C ⊗ 1C → C ⊗D ← 1C ⊗D ' D

exhibit C⊗D as a coproduct of C and D in C. In other words, we must show that for every object

A ∈ C, the induced map

φ : MapC(C ⊗D,A)→ MapC(C,A)×MapC(D,A)



304 CHAPTER 2. ∞-OPERADS

is a homotopy equivalence. Let ψ denote the composition

MapC(C,A)⊗MapC(D,A)
⊗→ MapC(C ⊗D,A⊗A)

δA→ MapC(C ⊗D,A).

We claim that ψ is a homotopy inverse to φ. The existence of a homotopy ψ ◦ φ ' id follows

from (i). We will show that ψ ◦ φ is homotopic to the identity. In view of condition (ii), ψ ◦ φ is

homotopic to the map defined by composition with

C ⊗D ' (C ⊗ 1C)⊗ (1C ⊗D)→ (C ⊗D)⊗ (C ⊗D)
δC⊗D−→ C ⊗D.

It follows from (iii) and (i) that this map is homotopic to the identity.

2.4.4 Wreath Products

In §2.2.5, we saw that every pair of ∞-operads O⊗ and O′⊗ admit a tensor product O′
′⊗

, which

is well-defined up to equivalence. However, it can be very difficult to describe this tensor product

directly. By definition, it is given by a fibrant replacement for the product O⊗,\�O′⊗,\ in the

category POp∞ of ∞-preoperads. This product is almost never itself fibrant, and the process of

fibrant replacement is fairly inexplicit. Our goal in this section is to partially address this problem

by introducing another construction: the wreath product O⊗ oO′⊗ of a pair of ∞-operads O⊗ and

O′⊗. This wreath product is an ∞-category which admits a forgetful functor O⊗ oO′⊗ → N(Fin∗),

together with a distinguished class M of inert morphisms, so that (O⊗ oO′⊗,M) can be regarded as

an ∞-preoperad. Our main result, Theorem 2.4.4.3, asserts that there is a weak equivalence of ∞-

preoperads O⊗,\×O′⊗,\ → (O⊗ oO′⊗,M). This is not really a complete answer, since the codomain

(O⊗ oO′⊗,M) is still generally not fibrant. However, it is in many ways more convenient than the

product O⊗,\�O′⊗,\, and will play a vital role in our analysis of tensor products of little cubes

∞-operads in §5.1.2.

Construction 2.4.4.1. If C is an ∞-category, we let Cq be defined as in Construction 2.4.3.1.

Note that if C is the nerve of a category J, then Cq can be identified with the nerve of the category

Jq defined as follows:

(i) The objects of Jq are finite sequences (J1, . . . , Jn) of objects in J.

(ii) A morphism from (I1, . . . , Im) to (J1, . . . , Jn) in Jq consists of a map α : 〈m〉 → 〈n〉 in Fin∗
together with a collection of maps {Ii → Jj}α(i)=j .

There is an evident functor Fin∗
q → Fin∗, given on objects by the formula

(〈k1〉, . . . , 〈kn〉) 7→ 〈k1 + · · ·+ kn〉.

This functor induces a map Φ : N(Fin∗)
q → N(Fin∗).
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Let C⊗ and D⊗ be ∞-operads. We let C⊗ oD⊗ denote the simplicial set

C⊗×N(Fin∗)(D
⊗)q.

We define a map of simplicial sets π : C⊗ oD⊗ → N(Fin∗) by considering the composition

C⊗ oD⊗ = C⊗×N(Fin∗)(D
⊗)q

→ (D⊗)q

→ N(Fin∗)
q

Φ→ N(Fin∗).

We can identify a morphism f in C⊗ oD⊗ with a map g : (D1, . . . , Dm) → (D′1, . . . , D
′
n) in

(D⊗)q lying over α : 〈m〉 → 〈n〉 in N(Fin∗), together with a map h : C → C ′ in C⊗ lying over

α. We will say that f is inert if h is an inert morphism in D⊗ and g determines a set of inert

morphisms {Di → D′j}α(i)=j in D⊗. Note that the map π carries inert morphisms of C⊗ oD⊗ to

inert morphisms in N(Fin∗).

Remark 2.4.4.2. Let C⊗ and D⊗ be ∞-operads. The map D⊗×N(Fin∗) → (D⊗)q of Example

2.4.3.5 induces a monomorphism of simplicial sets C⊗×D⊗ → C⊗ oD⊗.

The remainder of this section is devoted to proving the following technical result:

Theorem 2.4.4.3. Let C⊗ and D⊗ be ∞-operads, and let M be the collection of inert morphisms

in C⊗ oD⊗. Then the inclusion C⊗×D⊗ → C⊗ oD⊗ of Remark 2.4.4.2 induces a weak equivalence

of ∞-preoperads

C⊗,\�D⊗,\ → (C⊗ oD⊗,M).

Lemma 2.4.4.4. Let S be a finite set (regarded as a discrete simplicial set), let v denote the cone

point of S/, and suppose we are given coCartesian fibrations p : X → S/ and q : Y → S/ which

induce categorical equivalences

Xv '
∏
s∈S

Xs Yv '
∏
s∈S

Ys.

Let Fun′S/(X,Y ) denote the full subcategory of FunS/(X,Y ) spanned by those maps which carry

p-coCartesian morphisms to q-coCartesian morphisms. Then the restriction functor

Fun′S/(X,Y )→ FunS(X ×S/ S, Y ×S/ S)

is a trivial Kan fibration.

Proof. In view of Proposition HTT.4.3.2.15 , it will suffice to prove the following:
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(1) A functor F ∈ FunS/(X,Y ) belongs to Fun′S/(X,Y ) if and only if F is a q-right Kan extension

of F |X.

(2) Every map F0 ∈ FunS(X ×S/ S, Y ×S/ S) can be extended to a map F ∈ FunS/(X,Y )

satisfying the equivalent conditions of (1).

To prove (1), consider an arbitrary object x of Xv, and choose p-coCartesian morphisms fs :

x → xs to objects xs ∈ Xs for s ∈ S. We note that the inclusion {fs}s∈S ↪→ (X ×S/ S)x/ is right

cofinal. It follows that a functor F as in (1) is a q-right Kan extension of F0 at x if and only if the

maps F (fs) exhibit F (x) as a q-product of the objects F0(xs). This is equivalent to the requirement

that each F (fs) is q-coCartesian. This proves the “if” direction of (1); the converse follows from

same argument together with the observation that every p-coCartesian morphism f : x→ xs in X

can be completed to a collection of p-coCartesian morphisms {fs′ : x→ xs′}s′∈S .

To prove (2), it suffices (by Lemma HTT.4.3.2.13 ) to show that for every x ∈ Xv, the diagram

(X ×S/ S)x/ → Y induced by F0 can be extended to a q-limit diagram covering the projection

map (X ×S/ S)/x/ → S/. Let {fs : x → xs}s∈S be as above. We must show that there exists an

object y ∈ Yv equipped with morphisms y → F0(xs) for s ∈ S, which exhibit y as a q-product

of {F0(xs)}s∈S . It suffices to choose y to be any preimage of {F0(xs)}s∈S under the equivalence

Yv '
∏
s∈S Ys.

Lemma 2.4.4.5. Let S be a finite set (regarded as a discrete simplicial set), let n > 0, and suppose

we are given inner fibrations p : X → ∆n ? S and q : Y → ∆n ? S. For every simplicial subset

K ⊆ ∆n, let XK denote the fiber product X ×∆n?S (K ? S), and define YK similarly. Assume that

the maps X{n} → S/ and Y{n} → S/ satisfy the hypotheses of Lemma 2.4.4.4, and for {n} ⊆ K

define Fun′K?S(XK , YK) to be the fiber product

FunK?S(XK , YK)×Fun{n}?S(X{n},Y{n}) Fun′{n}?S(X{n}, Y{n}).

Then the map

θ : Fun′∆n?S(X,Y )→ Fun′∂∆n?S(X∂∆n , Y∂∆n)

is a trivial Kan fibration.

Proof. The proof proceeds by induction on n. We observe that θ is evidently a categorical fibration;

to prove that it is a trivial Kan fibration, it will suffice to show that θ is a categorical equivalence.

Let θ′′ denote the composition

Fun′∆n?S(X,Y )
θ→ Fun′∂∆n?S(X∂∆n , Y∂∆n)

θ′→ Fun∆n−1?S(X∆n−1 , Y∆n−1).

By a two-out-of-three argument, it will suffice to show that θ′ and θ′′ are trivial Kan fibrations.

The map θ′ is a pullback of the composition

Fun′K?S(XK , YK)
φ→ Fun′{n}?S(X{n}, Y{n})

φ′→ FunS(X∅, Y∅),
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where K = ∆n−1
∐
{n} ⊆ ∆n. It follows from iterated application of the inductive hypothesis that

φ is a trivial Kan fibration, and it follows from Lemma 2.4.4.4 that φ′ is a trivial Kan fibration.

Consequently, to complete the proof, it will suffice to show that θ′′ is a trivial Kan fibration. In

view of Proposition HTT.4.3.2.15 , it will suffice to prove the following:

(1) A map F ∈ Fun∆n?S(X,Y ) is a q-right Kan extension of F0 = F |X∆n−1 if and only if it

belongs to Fun′∆n?S(X,Y ).

(2) Every map F0 ∈ Fun∆n−1?S(X∆n−1 , Y∆n−1) admits an extension F ∈ Fun∆n?S(X,Y ) satisfy-

ing the equivalent conditions of (1).

These assertions follow exactly as in the proof of Lemma 2.4.4.4.

Lemma 2.4.4.6. Let p : C → ∆n be a map of ∞-categories, let 0 < i < n, and assume that for

every object X ∈ Ci−1 there exists a p-coCartesian morphism f : X → Y , where Y ∈ Ci. Then the

inclusion p−1Λni ⊆ C is a categorical equivalence.

Proof. We first treat the special case i = 1. The proof proceeds by induction on n. Let S be the

collection of all nondegenerate simplices in ∆n which contain the vertices 0, 1, and at least one

other vertex. For each σ ∈ S, let σ′ be the simplex obtained from σ by removing the vertex 1.

Choose an ordering S = {σ1, . . . , σm} of S where the dimensions of the simplices σj are nonstrictly

decreasing as a function of i (so that σ1 = ∆n). For 0 ≤ j ≤ m, let Kj denote the simplicial subset

of ∆n obtained by removing the simplices σk and σ′k for k ≤ j. If we let nj denote the dimension

of σj , then we have a pushout diagram

Λ
nj
1

//

��

Kj

��
∆nj // Kj−1

Applying the inductive hypothesis (and the left properness of the Joyal model structure), we deduce

that the inclusion Kj ×∆n C→ Kj−1 ×∆n C is a categorical equivalence for 1 < j ≤ m. Combining

these facts, we deduce that the map Km ×∆n C ⊆ K1 ×∆n C ' p−1Λn1 is a categorical equivalence.

By a two-out-of-three argument, we are reduced to proving that the inclusion Km ×∆n C→ C is a

categorical equivalence. Let q : ∆n → ∆2 be the map given on vertices by the formula

q(k) =


0 if k = 0

1 if k = 1

2 otherwise

and observe that Km = q−1Λ2
1. We may therefore replace p by q ◦ p and thereby reduce to the case

n = 2.
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Choose a map h : ∆1 × C0 → C which is a natural transformation from the identity map idC0

to a functor F : C0 → C1, such that h carries ∆1 × {X} to a p-coCartesian morphism in C for each

X ∈ C0. Let D = p−1∆{1, 2}. The natural transformation h induces maps

(∆1 × C0)
∐
{1}×C0

C1 → p−1∆{0,1}

(∆1 × C0)
∐
{1}×C0

D→ C

and it follows from Proposition HTT.3.2.2.7 that these maps are categorical equivalences. Consider

the diagram

(∆1 × C0)
∐
{1}×C0

D

vv ''
p−1Λ2

1
// C .

It follows from the above arguments (and the left properness of the Joyal model structure) that the

diagonal maps are categorical equivalences, so that the horizontal map is a categorical equivalence

by the two-out-of-three property. This completes the proof in the case i = 1.

We now treat the case i > 1. The proof again proceeds by induction on n. Let q : ∆n → ∆3 be

the map defined by the formula

q(k) =


0 if k < i− 1

1 if k = i− 1

2 if k = i

3 otherwise.

Let S denote the collection of all nondegenerate simplices σ of ∆n such that the restriction q|σ is

surjective. For each σ ∈ S, let σ′ denote the simplex obtained from σ by deleting the vertex i.

Choosing an ordering S = {σ1, . . . , σm} of S where the dimension of the simplex σj is a nonde-

creasing function of j (so that σ1 = ∆n), and for 0 ≤ j ≤ m let Kj be the simplicial subset of ∆n

obtained by deleting σk and σ′k for k ≤ j. If we let nj denote the dimension of σj , then we have

pushout diagrams

Λ
nj
p

//

��

Kj

��
∆nj // Kj−1

where 1 < p < nj . Applying the inductive hypothesis and the left properness of the Joyal model

structure, we deduce that Kj ×∆n C → Kj−1 ×∆n C is a categorical equivalence for 1 < j ≤ m. It

follows that the map

Km ×∆n C→ K1 ×∆n C = p−1Λni
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is a categorical equivalence. To complete the proof, it will suffice to show that the inclusion

Km ×∆n C → C is a categorical equivalence. We observe that Km = q−1Λ3
2. We may therefore

replace p by q ◦ p and reduce to the case where n = 3 and i = 2.

Applying Lemma 3.1.2.4, we can factor the map p−1Λ3
2 → ∆3 as a composition

p−1Λ3
2

i→ C′
p′→ ∆3,

where C′ is an∞-category and i is a categorical equivalence which induces an isomorphism p−1Λ3
2 '

p′−1Λ3
2. In particular, i is a trivial cofibration with respect to the Joyal model structure, so there

exists a solution to the following lifting property:

p−1Λ3
2

i
��

j // C

��
C′ //

g

;;

∆3.

Since the map g induces an isomorphism Λ3
2 ×∆3 C′ → Λ3

2 ×∆3 C, it is a categorical equivalence (it

is bijective on vertices and induces isomorphisms HomR
C′(x, y) → HomR

C (g(x), g(y)) for every pair

of vertices x, y ∈ C′, since Λ3
2 contains every edge of ∆3). It follows that j = g ◦ i is a categorical

equivalence as well, which completes the proof.

Proof of Theorem 2.4.4.3. Let E⊗ be an∞-operad and let X the full subcategory of FunN(Fin∗)(C
⊗ oD⊗,E⊗)

spanned functors F which carry inert morphisms in C⊗ oD⊗ to inert morphisms in E⊗, and define

Y ⊆ FunN(Fin∗)(C
⊗×D⊗,E⊗) similarly. We will show that the restriction functor X→ Y is a trivial

Kan fibration.

We now introduce a bit of terminology. Let σ be an n-simplex of (D⊗)q given by a sequence of

morphisms

σ(0)
α(1)−→ σ(1) −→ · · · α(n)−→ σ(n)

and let

〈k0〉
α(1)−→ 〈k1〉 −→ · · ·

α(n)−→ 〈kn〉

be the underlying n-simplex of N(Fin∗). We will say that σ is quasidegenerate at α(i) if the following

condition holds: whenever we are given i− < i ≤ i+ and a sequence of integers {aj ∈ 〈kj〉◦}i−≤j≤i+
satisfying αj(aj−1) = aj , the corresponding map ∆{i−,i−+1,...,i+} → D⊗ factors through the quotient

map ∆{i−,i−+1,...,i+} → ∆i+−1−i− which identifies the vertices i and i− 1. If n = 1, we will simply

say that σ is quasidegenerate if it is quasi-degenerate at α(1). We will say that σ is closed if kn = 1,

and open otherwise. If σ is closed, we define the tail length of σ to be the largest integer m such

that the maps α(k) are isomorphisms for n −m < k ≤ n. We will denote the tail length of σ by

t(σ). We define the break point of a closed simplex σ to be smallest nonnegative integer m such

that σ is quasi-degenerate at α(k) and α(k) is active for m < k ≤ n − t(σ). We will denote the
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break point of σ by b(σ). Let S =
∐

0≤i≤n 〈ki〉
◦. We will say that an element j ∈ 〈ki〉◦ ⊆ S is a leaf

if i = 0 or if j does not lie in the image of the map α(i), and we will say that j is a root if i = n or

if α(i+ 1)(j) = ∗. We define the complexity c(σ) of σ to be 2l − r, where l is the number of leaves

of σ and r is the number of roots of σ. We will say that σ is flat if it belongs to the image of the

embedding N(Fin∗)×D⊗ → (D⊗)q. Note that if σ is closed and b(σ) = 0, then σ is flat.

We now partition the nondegenerate, nonflat simplices of (D⊗)q into six groups:

(A) An n-dimensional nonflat nondegenerate simplex σ of (D⊗)q belongs to A if σ is closed and

the map α(b(σ)) is not inert.

(A′) An n-dimensional nonflat nondegenerate simplex σ of (D⊗)q belongs to A′ if σ is closed,

b(σ) < n− t(σ), and the map α(b(σ)) is inert.

(B) An n-dimensional nonflat nondegenerate simplex σ of (D⊗)q belongs to B if σ is closed,

b(σ) = n− t(σ), the map α(b(σ)) is inert, and σ is not quasidegenerate at α(b(σ)).

(B′) An n-dimensional nonflat nondegenerate simplex σ of (D⊗)q belongs to B if σ is closed,

b(σ) = n− t(σ) < n, the map α(b(σ)) is inert, and σ is quasidegenerate at α(b(σ)).

(C) An n-dimensional nonflat nondegenerate simplex σ of (D⊗)q belongs to C if it is open.

(C ′) An n-dimensional nonflat nondegenerate simplex σ of (D⊗)q belongs to C ′ is it is closed,

b(σ) = n− t(σ) = n, the map α(b(σ)) is inert, and σ is quasidegenerate at α(b(σ)).

If σ belongs to A′, B′, or C ′, then we define the associate a(σ) of σ to be the face of σ opposite

the b(σ)th vertex. Note that a(σ) belongs to A if σ ∈ A′, B if σ ∈ B′, and C if σ ∈ C ′. In this

case, we will say that σ is an associate of a(σ). We note that every simplex belonging to A or B

has a unique associate, while a simplex σ of C has precisely k associates, where 〈k〉 is the image of

the final vertex of σ in N(Fin∗). Moreover, the associate of a simplex σ has the same complexity

as σ.

For each n ≥ 0, let K(n) ⊆ (D⊗)q be the simplicial subset generated by those nondegenerate

simplices which are either flat, have dimension ≤ n, or have dimension n+ 1 and belong to either

A′, B′, or C ′. We observe that K(0) is generated by D⊗×N(Fin∗) together with the collection of 1-

simplices belonging to C ′. Let X(n) denote the full subcategory of MapN(Fin∗)(C
⊗×N(Fin∗)K(n),E⊗)

spanned by those maps F with the following properties:

(i) The restriction of F to C⊗×D⊗ belongs to Y.

(ii) Let f be an edge of C⊗×N(Fin∗)K(0) whose image in C⊗ is inert and whose image in K(0)

belongs to C ′. Then F (f) is an inert morphism in E⊗.
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To complete the proof, it will suffice to show that the restriction maps

X
θ′→ X(0)

θ′′→ Y

are trivial Kan fibrations. For the map θ′′, this follows from repeated application of Lemma 2.4.4.4.

To prove that θ′ is a trivial Kan fibration, we define

X(n) ⊆ MapN(Fin∗)(C
⊗×N(Fin∗)K(n),E⊗)

to be the full subcategory spanned by those functors F whose restriction to C⊗×N(Fin∗)K(0) belongs

to X(0). We will prove the following:

(a) A functor F ∈ FunN(Fin∗)(C
⊗ oD⊗,E⊗) carries inert morphisms to inert morphisms if and

only if F satisfies conditions (i) and (ii). Consequently, the ∞-category X can be identified

with the inverse limit of the tower

· · · → X(2)→ X(1)→ X(0).

(b) For n > 0, the restriction map X(n)→ X(n− 1) is a trivial Kan fibration.

We first prove (a). The “only if” direction is obvious. For the converse, suppose that an

object F of FunN(Fin∗)(C
⊗ oD⊗,E⊗) satisfies conditions (i) and (ii) above. We wish to prove that

F preserves inert morphisms. Let f : X → X ′ be an inert morphism in C⊗ oD⊗ covering the

map f0 : (〈k1〉, . . . , 〈km〉) → (〈k′1〉, . . . , 〈k′m′〉) in N(Fin∗)
q; we wish to prove that F (f) is an inert

morphism in E⊗. If m′ = k′1 = 1, then f0 factors as a composition of inert morphisms

(〈k1〉, . . . , 〈km〉)
f ′0→ (〈ki〉)

f ′′0→ (〈1〉)

for some i ∈ 〈m〉◦, which we can lift to a factorization f ' f ′′ ◦ f ′ of f where f ′ is quasidegenerate.

Condition (ii) guarantees that F (f ′) is inert, and condition (i) guarantees that F (f ′′) is inert.

In the general case, we consider for each j ∈ 〈k′i〉
◦ an inert morphism gi,j : X ′ → X ′′ lifting the

composite map

(〈k′1〉, . . . , 〈k′m′〉)→ (〈k′i〉)→ (〈1〉).

The above argument shows that F (gi,j) and F (gi,j ◦ f) are inert morphisms in E⊗. The argument

of Remark 2.1.2.9 shows that F (f) is inert, as desired.

We now prove (b). For each integer c ≥ 0, let K(n, c) denote the simplicial subset K(n) spanned

by those simplices which either belong to K(n− 1) or have complexity ≤ c. Let X(n, c) denote the

full subcategory of FunN(Fin∗)(C
⊗×N(Fin∗)K(n, c),E⊗) spanned by those maps F whose restriction

to K(0) satisfies conditions (i) and (ii). We have a tower of simplicial sets

· · · → X(n, 2)→ X(n, 1)→ X(n, 0) ' X(n− 1)
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with whose inverse limit can be identified with X(n). It will therefore suffice to show that for each

c > 0, the restriction map X(n, c)→ X(n, c− 1) is a trivial Kan fibration.

We now further refine our filtration as follows. Let K(n, c)A denote the simplicial subset of

K(n, c) spanned by K(n, c − 1) together with those simplices of K(n, c) which belong to A or

A′ and let K(n, c)B denote the simplicial subset of K(n, c) spanned by K(n, c − 1) together with

those simplices which belong to A, A′, B, or B′. Let X(n, c)A denote the full subcategory of

FunN(Fin∗)(C
⊗×N(Fin∗)K(n, c)A,E

⊗) spanned by those maps F satisfying (i) and (ii), and define

X(n, c)B similarly. To complete the proof, it will suffice to prove the following:

(A) The restriction map X(n, c)A → X(n, c−1) is a trivial Kan fibration. To prove this, it suffices

to show that the inclusion C⊗×N(Fin∗)K(n, c − 1) → C⊗×N(Fin∗)K(n, c)A is a categorical

equivalence. Let An,c denote the collection of all n-simplices belonging to A having complexity

c. Choose a well-ordering of An,c with the following properties:

– If σ, σ′ ∈ An,c and t(σ) < t(σ′), then σ < σ′.

– If σ, σ′ ∈ An,c, t(σ) = t(σ′), and b(σ) < b(σ′), then σ < σ′.

For each σ ∈ An,c, let K(n, c)≤σ denote the simplicial subset of K(n, c) generated by K(n, c−
1), all simplices τ ≤ σ in An,c, and all of the simplices in A′ which are associated to simplices

of the form τ ≤ σ. Define K(n, c)<σ similarly. Using transfinite induction on An,c, we are

reduced to proving that for each σ ∈ An,c, the inclusion

i : C⊗×N(Fin∗)K(n, c)<σ → C⊗×N(Fin∗)K(n, c)≤σ

is a categorical equivalence. Let σ′ : ∆n+1 → (D⊗)q be the unique (n + 1)-simplex of A′

associated to σ. We observe that σ′ determines a pushout diagram

Λn+1
b(σ′)

//

��

K(n, c)<σ

��
∆n+1 // K(n, c)≤σ.

Consequently, the map i is a pushout of an inclusion

i′ : C⊗×N(Fin∗)Λ
n+1
b(σ′) → C⊗×N(Fin∗)∆

n+1
b(σ) .

Since the Joyal model structure is left proper, it suffices to show that i′ is a categorical

equivalence, which follows from Lemma 2.4.4.6.

(B) The map X(n, c)B → X(n, c)A is a trivial Kan fibration. To prove this, it suffices to show

that the inclusion C⊗×N(Fin∗)K(n, c)A ⊆ C⊗×N(Fin∗)K(n, c)B is a categorical equivalence

of simplicial sets. Let Bn,c denote the collection of all n-simplices belonging to B having
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complexity c. Choose a well-ordering of Bn,c such that the function σ 7→ t(σ) is nonstrictly

decreasing. For each σ ∈ Bn,c, we let K(n, c)≤σ be the simplicial subset of K(n, c) generated

by K(n, c)A, those simplices τ of Bn,c such that τ ≤ σ, and those simplices of B′ which are

associated to τ ≤ σ ∈ Bn,c. Let K(n, c)<σ be defined similarly. Using a induction on Bn,c,

we can reduce to the problem of showing that each of the inclusions

C⊗×N(Fin∗)K(n, c)<σ → C⊗×N(Fin∗)K(n, c)≤σ

is a categorical equivalence. Let σ′ : ∆n+1 → (D⊗)q be the unique (n + 1)-simplex of B′

associated to σ. We observe that σ′ determines a pushout diagram

Λn+1
b(σ′)

//

��

K(n, c)<σ

��
∆n+1 // K(n, c)≤σ.

Consequently, the map i is a pushout of an inclusion

i′ : C⊗×N(Fin∗)Λ
n+1
b(σ′) → C⊗×N(Fin∗)∆

n+1
b(σ) .

Since the Joyal model structure is left proper, it suffices to show that i′ is a categorical

equivalence, which follows from Lemma 2.4.4.6.

(C) The map X(n, c) → X(n, c)B is a trivial Kan fibration. To prove this, let Cn,c denote the

subset of C consisting of n-dimensional simplices of complexity c, and choose a well-ordering

of Cn,c. For each σ ∈ Cn,c, let K(n, c)≤σ denote the simplicial subset of K(n, c) gener-

ated by K(n, c)B, those simplices τ ∈ Cn,c such that τ ≤ σ, and those simplices of C ′

which are associated to τ ∈ Cn,c with τ ≤ σ. Let X(n, c)≤σ be the full subcategory of

FunN(Fin∗)(C
⊗×N(Fin∗)K(n, c)≤σ,E

⊗) spanned by those maps F satisfying (i) and (ii). We

define K(n, c)<σ and X(n, c)<σ similarly. Using transfinite induction on Cn,c, we are reduced

to the problem of showing that for each σ ∈ Cn,c, the map ψ : X(n, c)≤σ → X(n, c)<σ is a

trivial Kan fibration.

Let 〈k〉 denote the image of the final vertex of σ in Fin∗. For 1 ≤ i ≤ k, let σi ∈ C ′ denote

the unique (n+ 1)-simplex associated to σ such that σi carries ∆{n,n+1} to the morphism ρi

in Fin∗. The simplices {σi}1≤i≤k determine a map of simplicial sets ∆n ? 〈k〉◦ → K(n, c)≤σ.

We have a pushout diagram of simplicial sets

(∂∆n) ? 〈k〉◦ //

��

K(n, c)<σ

��
∆n ? 〈k〉◦ // K(n, c)≤σ.
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The map ψ fits into a pullback diagram

E(n, c)≤σ //

ψ

��

Fun′∆n?〈k〉◦(C
⊗×N(Fin∗)(∆

n ? 〈k〉◦),E⊗×N(Fin∗)(∆
n ? 〈k〉◦))

ψ′

��
E(n, c)<σ // Fun′∂∆n?〈k〉◦(C

⊗×N(Fin∗)(∂∆n ? 〈k〉◦),E⊗×N(Fin∗)(∂∆n ? 〈k〉◦))

where ψ′ denotes the trivial Kan fibration of Lemma 2.4.4.5.



Chapter 3

Algebras and Modules over

∞-Operads

Let O⊗ be an∞-operad and let C⊗ be a symmetric monoidal∞-category. In §2.1, we introduced the

definition of a O-algebra object of C (that is, a map of∞-operads from O⊗ to C⊗). The collection of

O-algebra objects of C is naturally organized into an∞-category AlgO(C). Our goal in this chapter

is to study the ∞-category AlgO(C) in more detail.

Our starting point is the observation that for every object X ∈ O, evaluation at X determines

a forgetful functor e : AlgO(C) → C. In §3.1, we will show that (under some mild hypotheses) the

forgetful functor e admits a left adjoint Free : C → AlgO(C). This left adjoint carries an object

C ∈ C to the free algebra Free(C) generated by C, which admits a relatively concrete description in

terms of the tensor product on C and the structure of O⊗. The adjoint functors

C
Free //AlgO(C)
e

oo

allow us to reduce many questions about AlgO(C) to questions in the underlying ∞-category C.

In §3.2, we will use this device to show that the ∞-category AlgO(C) is closed under a variety of

categorical constructions (such as limits and colimits), assuming that C is sufficiently well-behaved.

The second half of this chapter is devoted to the theory of modules over algebra objects of

a symmetric monoidal ∞-category C. Suppose we are given a commutative algebra object A ∈
CAlg(C). We will define a new ∞-category ModA(C), whose objects we refer to as A-module

objects of C. Under some mild hypotheses, one can show that the ∞-category ModA(C) inherits

a symmetric monoidal structure. More generally, we can attempt to associate to every algebra

object A ∈ AlgO(C) a fibration of ∞-operads ModO
A(C)⊗ → O⊗. We will explain the construction

of ModO
A(C)⊗ in §3.3. This construction will require an assumption on O⊗: namely, that it be

a coherent ∞-operad (Definition 3.3.1.9). The collection of coherent ∞-operads includes most of

the examples which are of interest to us in this book: for example, the commutative ∞-operad

315
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Comm⊗ of Example 2.1.1.18, the associative ∞-operad Assoc⊗ we will study in Chapter 4, and

the little cubes ∞-operads of Chapter 5 are all coherent. In §3.4, we will study the ∞-operads

ModO
A(C)⊗ in greater depth. For example, we give criteria which guarantee that ModO

A(C)⊗ is a

O-monoidal ∞-category (in other words, that the tensor product on A-modules is well-defined),

and study limits and colimits in the underlying ∞-category of ModO
A(C)⊗.

3.1 Free Algebras

Let C be a symmetric monoidal category. We let CAlg(C) denote the category of commutative

algebra objects of C: that is, objects A ∈ C equipped with a multiplication m : A⊗ A→ A which

is commutative, associative, and unital. There is an evident forgetful functor θ : CAlg(C) → C,

which assigns to each commutative algebra its underlying object of C. Assume that C admits small

colimits, and that the tensor product operation ⊗ : C×C→ C preserves colimits separately in each

variable. Then the forgetful functor θ admits a left adjoint. Moreover, this left adjoint admits an

explicit description: it carries each object C ∈ C to the symmetric algebra

Sym∗C =
∐
n

C⊗n/Σn.

Here Σn denotes the symmetric group on n letters, which acts on the nth tensor power C⊗n.

In this section, we will describe an analogous theory of free algebras in the∞-categorical context.

Our discussion will be more general in several respects:

• We will replace the symmetric monoidal category C by a symmetric monoidal∞-category C⊗

(see Definition 2.0.0.7).

• The forgetful functor θ : CAlg(C) → C can be identified with the restriction functor

AlgComm(C) → AlgTriv(C) induced by the inclusion of ∞-operads Triv⊗ ⊆ Comm⊗, where

Triv⊗ is the trivial ∞-operad (Example 2.1.1.20) and Comm⊗ = N(Fin∗) is the commuta-

tive ∞-operad (Example 2.1.1.18). More generally, we can consider the restriction functor

θ : AlgO(C)→ AlgO′(C) induced by any map of ∞-operads O′⊗ → O⊗.

• If C⊗ → O⊗ is a O-monoidal ∞-category, we can replace the ∞-categories AlgO(C) and

AlgO′(C) with Alg/O(C) and AlgO′ /O(C), respectively.

We can now describe our main goal. Suppose that we are given a map of ∞-operads f : O′⊗ →
O⊗ and a O-monoidal ∞-category C⊗ → O⊗. Composition with f induces a forgetful functor

θ : Alg/O(C)→ AlgO′ /O(C). We will show that, under some mild hypotheses, the functor θ admits

a left adjoint F . Moreover, if we assume that the ∞-operad O′⊗ is sufficiently simple (for example,

if it is the trivial ∞-operad Triv⊗ of Example 2.1.1.20), then F admits a very explicit description

(see Proposition 3.1.3.13).
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The construction of the functor F uses a theory of operadic left Kan extensions, which we

develop in §3.1.2. As in the non-operadic case, the theory of operadic left Kan extensions rests on

a more basic theory of operadic colimit diagrams, which we discuss in §3.1.1. We will apply these

ideas to the construction of free algebras in §3.1.3. Finally, in §3.1.4 we will establish a transitivity

property of operadic left Kan extensions, which will play an important role in our discussion of

tensor products of algebras in §5.3.3.

3.1.1 Operadic Colimit Diagrams

Let C be a symmetric monoidal category, and suppose we are given a sequence of maps

A0 → A1 → A2 → · · ·

in the category CAlg(C) of commutative algebra objects of C. If C admits sequential colimits, then

we can define the colimit A = lim−→i
Ai as an object of C. In many cases, the object A ∈ C can also

be regarded as a commutative algebra object of C. There are evident maps

A⊗A ' (lim−→
i

Ai)⊗ (lim−→
j

Aj)
θ← lim−→

i,j

(Ai ⊗Aj) ' lim−→
i

(Ai ⊗Ai)→ lim−→
i

Ai ' A.

If θ is an isomorphism, then we obtain a natural map A⊗ A→ A. We can guarantee that θ is an

isomorphism by making an assumption like the following:

(∗) The category C admits small colimits. Moreover, for every object C ∈ C, the functor • 7→ C⊗•
preserves small colimits.

Condition (∗) is satisfied in many cases. However, for many purposes it is unnecessarily re-

strictive. For example, it may be that C does not admit colimits in general, but that a particular

sequence of commutative algebras A0 → A1 → A2 → · · · admits a colimit A ∈ C. In this case, it is

convenient to replace (∗) by the following local condition:

(∗′) For every object C ∈ C, the induced maps Ai ⊗C → A⊗C exhibit A⊗C as a colimit of the

sequence

A0 ⊗ C → A1 ⊗ C → A2 ⊗ C → · · · .

Condition (∗′) follows immediately from condition (∗). Moreover, it is easy to see that condition

(∗′) guarantees that the map θ is an isomorphism, which allows us to endow the colimit A ' lim−→Ai
with the structure of a commutative algebra object of C. We will say that a compatible collection

of maps Ai → A exhibits A as an operadic colimit of the sequence Ai if condition (∗) is satisfied.

This implies in particular that A is a colimit lim−→i
Ai (take C to be the unit object of C in (∗)).

Our goal in this section is to study an analogue of condition (∗′). Our setting will be more

general in several respects:
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(a) Rather than working with symmetric monoidal categories, we work with colored operads.

Note that condition (∗′) has an immediate generalization to the setting of colored operads:

rather than requiring that A⊗C ' lim−→Ai⊗C, we require that for every collection of objects

{Cj ∈ C}j∈J and every object D ∈ C, the natural map

MulC({A} ∪ {Cj}j∈J , D)→ lim←−
i

MulC({Ai} ∪ {Cj}j∈J , D)

is a bijection.

(b) We will work in the more general setting of∞-operads, rather than ordinary colored operads.

(c) We will consider operadic colimits not just for sequences of objects in C, but for more general

diagrams in the ∞-category C⊗.

(d) We will work not just with operadic colimit diagrams in a fixed ∞-operad C⊗, but also with

operadic colimits relative to a fibration of ∞-operads C⊗ → O⊗ (for a discussion of relative

colimits in the non-operadic setting, we refer the reader to §HTT.4.3.1 ).

We can now describe the contents of this section. Let q : C⊗ → O⊗ be a fibration of∞-operads.

We will introduce below the definition of an operadic q-colimit diagram K. → C⊗ (Definition

3.1.1.2). The remainder of this section is devoted to proving the basic facts about operadic q-

colimit diagrams. In particular, we will prove an existence result for operadic q-colimit diagrams

assuming that an appropriate analogue of condition (∗) is satisfied (Corollary 3.1.1.21).

Notation 3.1.1.1. Let O⊗ be a generalized ∞-operad. We let O⊗act denote the subcategory of O⊗

spanned by those morphisms whose images in N(Fin∗) are active.

Definition 3.1.1.2. Let O⊗ be an∞-operad and let p : K → O⊗ be a diagram. We let Op/ denote

the ∞-category O×O⊗ O
⊗
p/. If p factors through O⊗act, we let Oact

p/ ⊆ Op/ denote the ∞-category

O×O⊗act
(O⊗act)p/.

Let q : C⊗ → O⊗ be a fibration of ∞-operads, let p : K. → C⊗act be a diagram, and let p = p|K.

We will say that p is a weak operadic q-colimit diagram if the evident map

ψ : Cact
p/ → Cact

p/ ×Oact
qp/

Oact
qp/

is a trivial Kan fibration.

We say that an active diagram p : K → C⊗ is an operadic q-colimit diagram if the composite

functor

K
p→ C⊗act

•⊕C−→ C⊗act

is a weak operadic q-colimit diagram, for every object C ∈ C⊗ (here the functor ⊕ is defined as in

Remark 2.2.4.6).
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Warning 3.1.1.3. Let q : C⊗ → O⊗ be a fibration of ∞-operads. A q-colimit diagram K. → C⊗

need not be an operadic q-colimit diagram, and an operadic q-colimit diagram need not be a q-

colimit diagram. However, these notions can be related in special cases: see Propositions 3.1.1.10

and 3.1.1.16 below.

Remark 3.1.1.4. Let q : C⊗ → O⊗ be as in Definition 3.1.1.2, let p : K. → C⊗act be a weak operadic

q-colimit diagram, and let L → K be a left cofinal map of simplicial sets. Then the induced map

L. → C⊗act is a weak operadic q-colimit diagram.

Remark 3.1.1.5. The map ψ appearing in Definition 3.1.1.2 is always a left fibration (Proposition

HTT.2.1.2.1 ); consequently, it is a trivial Kan fibration if and only if it is a categorical equivalence

(Corollary HTT.2.4.4.6 ).

Example 3.1.1.6. Let q : C⊗ → O⊗ be as in Definition 3.1.1.2, let K = ∆0, and suppose that

p : K. ' ∆1 → C⊗act corresponds to an equivalence in C⊗. Then p is an operadic q-colimit diagram.

The remainder of this section is devoted to a series of results which are useful for working with

operadic colimit diagrams.

Proposition 3.1.1.7. Let q : C⊗ → O⊗ be a fibration of ∞-operads let p : K. → C⊗act be a diagram.

The following conditions are equivalent:

(1) The map p is a weak operadic q-colimit diagram.

(2) For every n > 0 and every diagram

K ? ∂∆n f0 //

��

C⊗act

��
K ?∆n

f
::

f // O⊗act

such that the restriction of f0 to K ? {0} coincides with p and f0(n) ∈ C, there exists a dotted

arrow f as indicated above.

Proof. The implication (2)⇒ (1) follows immediately from the definition. For the converse, suppose

that (1) is satisfied. Let r : ∆n ×∆1 → ∆n be the map which is given on vertices by the formula

r(i, j) =

{
i if j = 0

n if j = 1.

Set

X = ∂∆n
∐

Λnn×{0}

(Λnn ×∆1)
∐

Λnn×{1}

∆n,
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and regard X as a simplicial subset of ∆n×∆1; we observe that r carries X into ∂∆n. Composing

f0 and f with r, we obtain a diagram

X
g0 //

��

(C⊗act)f0|K/

q′

��
∆n ×∆1) //

g
88

(O⊗act)f |K/.

To complete the proof, it will suffice to show that we can supply the dotted arrow in this diagram

(we can then obtain f by restricting g to ∆n×{0}). To prove this, we define a sequence of simplicial

subsets

X = X(0) ⊂ X(1) ⊂ X(2) ⊂ · · · ⊂ X(2n+ 1) = ∆n ×∆1

and extend g0 to a sequence of maps gi : X(i)→ (C⊗act)f0|K/ compatible with the projection q′. The

analysis proceeds as follows:

(i) For 1 ≤ i ≤ n, we let X(i) be the simplicial subset of ∆n×∆1 generated by X(i− 1) and the

n-simplex σ : ∆n → ∆n ×∆1 given on vertices by the formula

σ(j) =

{
(j, 0) if j ≤ n− i
(j − 1, 1) if j > n− i.

We have a pushout diagram of simplicial sets

Λnn−i
//

��

X(i− 1)

��
∆n // X(i).

If 1 ≤ i < n, then the extension gi of gi−1 exists because q′ is an inner fibration. If i = n,

then the desired extension exists by virtue of assumption (1).

(ii) If i = n+ i′ for 0 < i′ ≤ n+ 1, we let X(i) be the simplicial subset of ∆n ×∆1 generated by

X(i− 1) and the (n+ 1)-simplex σ : ∆n+1 → ∆n ×∆1 given on vertices by the formula

σ(j) =

{
(j, 0) if j < i′

(j − 1, 1) if j ≥ i′.

We have a pushout diagram of simplicial sets

Λn+1
i′

//

��

X(i− 1)

��
∆n+1 // X(i).
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If 1 ≤ i′ ≤ n, then the extension gi of gi−1 exists because q′ is an inner fibration. If i = n+ 1,

then the desired extension exists because gi−1 carries ∆{n,n+1} to an equivalence in (C⊗act)f0|K/.

Proposition 3.1.1.8. Let q : C⊗ → O⊗ be a fibration of ∞-operads, and suppose we are given a

finite collection {pi : K.
i → C⊗act}i∈I of operadic q-colimit diagrams. Let K =

∏
i∈I Ki, and let p

denote the composition

K. →
∏
i∈I

K.
i →

∏
i∈I

C⊗act
⊕I→ C⊗act .

Then p is an operadic q-colimit diagram.

The proof of Proposition 3.1.1.8 depends on the following lemma:

Lemma 3.1.1.9. Let q : C× → O⊗ be a fibration of ∞-operads, let p′ : K0 ×K.
1 → C⊗act be a map,

and let p = p′|K0 ×K1. Suppose that, for each vertex v of K0, the induced map p′v : K.
1 → C⊗act is

a weak operadic q-colimit diagram. Then the map

θ : Cact
p′/ → Cact

p/ ×Oact
qp/

Oact
qp′/

is a trivial Kan fibration.

Proof. For each simplicial subset A ⊆ K0, let LA denote the pushout (K0×K1)
∐

(A×K1)(A×K.
1 ),

and let pA = p′|LA. For A′ ⊆ A, let θAA′ denote the map

Cact
pA/
→ Cact

pA′/
×Oact

qpA′/
Oact
qpA/

.

We will prove that each of the maps θAA′ is a trivial Kan fibration. Taking A = K0 and A′ = ∅, this

will imply the desired result.

Working simplex-by-simplex on A, we may assume without loss of generality that A is obtained

from A′ by adjoining a single nondegenerate n-simplex whose boundary already belongs to A′.

Replacing K0 by A, we may assume that K0 = A = ∆n and A′ = ∂∆n. Working by induction

on n, we may assume that the map θA
′

∅ is a trivial Kan fibration. Since the map θAA′ is a left

fibration (Proposition HTT.2.1.2.1 ), it is a trivial Kan fibration if and only if it is a categorical

fibration (Corollary HTT.2.4.4.6 ). Since θA∅ = θA
′

∅ ◦θ
A
A′ , we can use the two-out-of-three property to

reduce to the problem of showing that θA∅ is a categorical equivalence. Since A = ∆n, the inclusion

{n} ⊆ A is left cofinal so that θA{n} is a trivial Kan fibration. It therefore suffices to show that

θ
{n}
∅ is a trivial Kan fibration, which follows from our assumption that each p′v is a weak operadic

q-colimit diagram.
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Proof of Proposition 3.1.1.8. If I is empty, the desired result follows from Example 3.1.1.6. If I is a

singleton, the result is obvious. To handle the general case, we can use induction on the cardinality

of I to reduce to the case where I consists of two elements. Let us therefore suppose that we are

given operadic q-colimit diagrams p0 : K.
0 → C⊗ and p1 : K.

1 → C⊗; we wish to prove that the

induced map p : (K0 ×K1). → C⊗ is an operadic q-colimit diagram. Let X ∈ C⊗; we must show

that the composition

(K0 ×K1). −→ C⊗
⊕X−→ C⊗

is a weak operadic q-colimit diagram. Replacing p0 by the composition

K.
0 −→ C⊗

⊕X−→ C⊗,

we can reduce to the case where X is trivial; it will therefore suffice to prove that p is a weak

operadic q-colimit diagram.

Let L denote the simplicial set K0 ×K.
1 . We have a commutative diagram of simplicial sets

K //

��

L

��

K0 × {v}oo

��
K. // L. K.

0 × {v}oo

where v denotes the cone point of K.
1 . Let p′ denote the composition

L. → K.
0 ×K.

1 → C⊗act×C⊗act
⊕→ C⊗act .

Since p0 is an operadic q-colimit diagram, we deduce that p′|(K.
0×{v}) is a weak operadic q-colimit

diagram. Since the inclusion K0 × {v} ⊆ L is left cofinal, we deduce that p′ is a weak operadic

q-colimit diagram (Remark 3.1.1.4). The inclusion K. ⊆ L. is left cofinal (since the cone point is

left cofinal in both). Consequently, to prove that p is a weak operadic q-colimit diagram, it will

suffice to show that the map

Cact
p′/ → Cact

p/ ×Oact
qp/

Oact
qp′/

is a trivial Kan fibration, where p = p|K. Since p′ is a weak operadic q-colimit diagram, we are

reduced to proving that

Cact
p′/×Oact

qp′/
Oact
qp′/ → Cact

p/ ×Oact
qp/

Oact
qp′/

is a trivial Kan fibration, where p′ = p′|L. This map is a pullback of Cact
p′/ → Cact

p/ ×Oact
qp/

Oact
qp′/, which

is a trivial Kan fibration by Lemma 3.1.1.9 (since p1 is an operadic q-colimit diagram).

Proposition 3.1.1.10. Let q : C⊗ → O⊗ be a fibration of∞-operads. Suppose we are given a finite

collection of operadic q-colimit diagrams {pi : K.
i → C⊗act}i∈I , where each pi carries the cone point

of K.
i into C ⊆ C⊗. Let K =

∏
i∈I Ki, and let p : K. → C⊗ be defined as in Proposition 3.1.1.8. If

each of the simplicial sets Ki is weakly contractible, then p is a q-colimit diagram.
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We will need a few preliminaries:

Lemma 3.1.1.11. Let q : C⊗ → O⊗ be a fibration of ∞-operads, let X ∈ C⊗ be an object lying over

〈n〉 ∈ Fin∗, and choose inert morphisms fi : X → Xi in C⊗ covering ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n.

Then the maps {fi : X → Xi}1≤i≤n determine a q-limit diagram χ : 〈n〉◦/ → C⊗.

Proof. Let p : O⊗ → N(Fin∗) be the map which exhibits O⊗ as an ∞-operad. Since each q(fi) is

an inert morphism in O⊗, we can invoke the definition of an ∞-operad to deduce that q ◦ χ is a

p-limit diagram in O⊗. Similarly, we conclude that χ is a p ◦ q-limit diagram in C⊗. The desired

result now follows from Proposition HTT.4.3.1.5 .

Lemma 3.1.1.12. Let q : C⊗ → O⊗ be a fibration of∞-operads, let p : K. → C⊗ be a diagram, and

let p = p|K. Then p is a q-colimit diagram if and only if the induced map φ0 : Cp/ → Cp/×Oqp/ Oqp/

is a trivial Kan fibration.

Proof. The “only if” direction is obvious. To prove the converse, suppose that φ0 is a trivial Kan

fibration, and consider the map φ : C⊗p/ → C⊗p/×O⊗
qp/

O⊗qp/ . We wish to prove that φ is a trivial

Kan fibration. Since φ is a left fibration (Proposition HTT.2.1.2.1 ), it suffices to show that the

fibers of φ are contractible (Lemma HTT.2.1.3.4 ). Let X be an object in the codomain of φ having

image X ∈ C⊗ and image 〈n〉 ∈ Fin∗. For 1 ≤ i ≤ n, choose an inert morphism X → Xi in C⊗

lying over ρi : 〈n〉 → 〈1〉. Since the projection C⊗p/×O⊗
qp/

O⊗qp/ → C⊗ is a left fibration (Proposition

HTT.2.1.2.1 ), we can lift each of these inert morphisms in an essentially unique way to a map

X → Xi. Using Lemma 3.1.1.11, we deduce that the fiber φ−1(X) is homotopy equivalent to the

product
∏

1≤i≤n φ
−1(Xi), and therefore contractible (since φ−1(Xi) = φ−1

0 (Xi) is a fiber of the

trivial Kan fibration φ0 for 1 ≤ i ≤ n), as desired.

Proof of Proposition 3.1.1.10. In view of Lemma 3.1.1.12, it will suffice to show that the map

φ0 : Cp/ → Cp/×Oqp/ Oqp/ is a trivial Kan fibration. Since φ0 is a left fibration (Proposition

HTT.2.1.2.1 ), it will suffice to show that φ−1
0 {X} is contractible for each vertex X ∈ Cp/×Oqp/ Oqp/

(Lemma HTT.2.1.3.4 ). Such a vertex determines a map α : I∗ → 〈1〉; let I0 = α−1{1} ⊆ I. Let

K ′ =
∏
i∈I0 Ki, let p′ denote the composite map

K ′. →
∏
i∈I0

K.
i →

∏
i∈I0

C⊗
⊕→ C⊗,

and let p′′ denote the composition K. → K ′.
p′→ C⊗.

There is a canonical map P : ∆1 ×K. → C⊗ which is an inert natural transformation from p
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to p′′. Let p′′ = p′′|K and P = P |∆1 ×K, so we have a commutative diagram

Cp/
φ0 // Cp/×Oqp/ Oqp/

CP/
//

OO

��

CP/×OqP/ OqP/

OO

��
Cp′′/ // Cp′′/×Oqp′′/

Oqp′′/

which determines a homotopy equivalence φ−1
0 X with a fiber of the map ψ : Cact

p′′/ → Cact
p′′/×Oact

qp′′/
Oact
qp′′/ .

It will therefore suffice to show that the fibers of ψ are contractible. Since ψ is a left fibration

(Proposition HTT.2.1.2.1 ), this is equivalent to the assertion that ψ is a categorical equivalence

(Corollary HTT.2.4.4.6 ).

Because the simplicial sets {Ki}i∈I−I0 are weakly contractible, the projection map K → K ′ is

left cofinal. Consequently, we have a commutative diagram

Cact
p′/

ψ′ //

��

Cact
p′/×Oact

qp′/
Oact
qp′/

��
Cact
p′′/

ψ // Cact
p′′/×Oact

qp′′/
Oact
qp′′/

where the vertical maps are categorical equivalences. Using a two-out-of-three argument, we are

reduced to proving that ψ′ is a categorical equivalence. We conclude by observing that Proposition

3.1.1.8 guarantees that p′ is an operadic q-colimit diagram, so that ψ′ is a trivial Kan fibration.

Proposition 3.1.1.13. Let q : C⊗ → O⊗ be a fibration of ∞-operads and let K = ∆0. The

following conditions are equivalent:

(1) The map q is a coCartesian fibration of ∞-operads.

(2) For every map p : K → C⊗act and every extension p0 : K. → O⊗act of q ◦ p carrying the cone

point of K. into O, there exists an operadic q-colimit diagram p : K. → C⊗act which extends p

and lifts p0.

Lemma 3.1.1.14. Let O⊗ be an ∞-operad and let q : C⊗ → O⊗ be a O-monoidal ∞-category. Let

p : ∆1 → C⊗act classify an active q-coCartesian morphism X → Y in C⊗. Then p is an operadic

q-colimit diagram.

Proof. Let Z ∈ C⊗. Replacing p by its composition with the functor C⊗
⊕Z→ C⊗ (and using Remark

2.2.4.8), we can reduce to showing that p is a weak operadic q-colimit diagram, which is clear.
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Proof of Proposition 3.1.1.13. To prove that (1) implies (2), we observe that we can take p to be

a q-coCartesian lift of p0 (by virtue of Lemma 3.1.1.14). Conversely, suppose that (2) is satisfied.

Choose an object X ∈ C⊗, let X = q(X), and suppose we are given a morphism α : X → Z in O⊗;

we wish to prove that we can lift α to a q-coCartesian morphism X → Z in C⊗. Using Proposition

2.1.2.4, we can factor α as a composition X
α′→ Y

α′′→ Z where α′ is inert and α′′ is active. Let α′0
denote the image of α′ in Fin∗, and choose an inert morphism α′ : X → Y in C⊗ lifting α′0. Then

q(α′) is an inert lift of α′0, so we may assume without loss of generality that α′ lifts α′. Proposition

HTT.2.4.1.3 guarantees that α′ is q-coCartesian. Since the collection of q-coCartesian morphisms

in C⊗ is stable under composition (Proposition HTT.2.4.1.7 ), we may replace X by Y and thereby

reduce to the case where the map α is active.

Let 〈n〉 denote the image of Z in Fin∗. Since C⊗ and C⊗ are ∞-operads, we can identify X

with a concatenation ⊕1≤i≤nXi and α with ⊕1≤i≤nαi, where each αi : Xi = q(Xi) → Zi is an

active morphism in O⊗ where Zi lies over 〈1〉 ∈ Fin∗. Assumption (2) guarantees that each αi
can be lifted to an operadic q-colimit diagram αi : Xi → Zi in C⊗. It follows from Proposition

3.1.1.10 that the concatenation α = ⊕1≤i≤nαi is q-coCartesian. The map q(α) is equivalent to

⊕1≤i≤nq(αi) ' α. Since q is a categorical fibration, we can replace α by an equivalent morphism if

necessary to guarantee that q(α) = α, which completes the proof of (1).

Our next two results, which are counterparts of Propositions HTT.4.3.1.9 and HTT.4.3.1.10 ,

are useful for detecting the existence of operadic colimit diagrams:

Proposition 3.1.1.15. Let q : C⊗ → O⊗ be a fibration of ∞-operads, let K be a simplicial set,

and let h : ∆1×K. → C⊗act be a natural transformation from h0 = h|{0}×K. to h1 = h|{1}×K..

Suppose that

(a) For every vertex x of K., the restriction h|∆1 × {x} is a q-coCartesian edge of C⊗.

(b) The composition ∆1 ×{v} ⊆ ∆1 ×K. h→ C⊗
q→ O⊗ is an equivalence in O⊗, where v denotes

the cone point of K..

Then:

(1) The map h0 is a weak operadic q-colimit diagram if and only if h1 is a weak operadic q-colimit

diagram.

(2) Assume that q is a coCartesian fibration. Then h0 is an operadic q-colimit diagram if and

only if h1 is an operadic q-colimit diagram.

Proof. Assertion (2) follows from (1) and Remark 2.2.4.8 (after composing with the functor C⊗
⊕X→

C⊗ determined by an arbitrary object X ∈ C⊗). It will therefore suffice to prove (1). Let h =
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h|∆1 ×K, h0 = h|{0} ×K, and h1 = h|{1} ×K. We have a commutative diagram

Cact
h0/

��

Cact
h/

φoo //

��

Cact
h1/

��
Cact
h0/
×Oact

qh0/
Oact
qh0/

Cact
h/ ×Oact

qh/
Oact
qh/

//ψoo Cact
h1/
×Oact

qh1/
Oact
qh1/

.

According to Remark 3.1.1.5, it suffices to show that the left vertical map is a categorical equivalence

if and only if the right vertical map is a categorical equivalence. Because the inclusions {1}×K ⊆
∆1 ×K and {1} ×K. ⊆ ∆1 ×K. are right anodyne, the horizontal maps on the right are trivial

fibrations. Using a diagram chase, we are reduced to proving that the maps φ and ψ are categorical

equivalences.

Let f : x→ y denote the morphism C⊗ obtained by restricting h to the cone point of K.. The

map φ fits into a commutative diagram

Cact
h/

φ //

��

Cact
h0/

��
Cact
f/

// Cact
x/ .

Since the inclusion of the cone point into K. is right anodyne, the vertical arrows are trivial

fibrations. Moreover, hypotheses (1) and (2) guarantee that f is an equivalence in C⊗, so that the

map Cact
f/ → Cact

x/ is a trivial fibration. This proves that φ is a categorical equivalence.

The map ψ factors as a composition

Cact
h/ ×Oact

qh/
Oact
qh/

ψ′→ Cact
h0/
×Oact

qh0/
Oact
qh/

ψ′′→ Oact
h0
×Oact

qh0/
Oact
qh0/

.

To complete the proof, it will suffice to show that ψ′ and ψ′′ are trivial fibrations of simplicial sets.

We first observe that ψ′ is a pullback of the map Cact
h/ → Cact

h0/
×Oact

qh0/
Oact
qh/, which is a trivial Kan

fibration (Proposition HTT.3.1.1.11 ). The map ψ′′ is a pullback of the left fibration ψ′′0 : Oact
qh/
→

Oact
qh0/

. It therefore suffices to show that ψ′′0 is a categorical equivalence. To prove this, we consider

the diagram

Oact
qh/

ψ′′0 //

��

Oact
qh0/

��
Oact
q(f)/

ψ′′1 // Oact
q(x)/ .

As above, we observe that the vertical arrows are trivial fibrations and that ψ′′1 is a trivial fibration

(because the morphism q(f) is an equivalence in O⊗). It follows that ψ′′0 is a categorical equivalence,

as desired.
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In the case where q : C⊗ → O⊗ is a coCartesian fibration, Proposition 3.1.1.15 allows us to

reduce the problem of testing whether a diagram p : K. → C⊗act is an operadic q-colimit to the

special case where p factors through C⊗X , for some X ∈ O⊗. In this case, we can apply the following

criterion:

Proposition 3.1.1.16. Let q : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, let X ∈ O⊗ be

an object, and let p : K. → C⊗X be a diagram. The following conditions are equivalent:

(1) The map p is an operadic q-colimit diagram.

(2) For every object Y ∈ C⊗ with image Y ∈ O⊗, every object Z ∈ O, and every active morphism

m : X ⊕ Y → Z in O, the compositon

K. −→ C⊗X
⊕Y−→ C⊗X⊕Y

m!−→ CZ

is a colimit diagram in the ∞-category CZ .

Example 3.1.1.17. Let q : C⊗ → N(Fin∗) exhibit C as a symmetric monoidal ∞-category. Then

a diagram p : K. → C is an operadic q-colimit diagram if and only if, for every object C ∈ C,

the induced map K. p→ C
⊗C→ C is a colimit diagram in C. More informally: an operadic colimit

diagram in C is a colimit diagram which remains a colimit diagram after tensoring with any object

of C.

Proof of Proposition 3.1.1.16. Replacing p by its image under the functor C⊗
⊕Y→ C⊗, we are reduced

to proving the equivalence of the following pair of assertions:

(1′) The map p is a weak operadic q-colimit diagram.

(2′) For every object Z ∈ O and every active morphism m : X → Z in O⊗, the functor m! : C⊗X →
CZ carries p to a colimit diagram in CZ .

Assertion (1′) is equivalent to the statement that the map θ : Cact
p/ → Cact

p/ ×Oact
qp/

Oact
qp/ is a trivial

fibration of simplicial sets. Since θ is a left fibration (Proposition HTT.2.1.2.1 ), it will suffice to

show that the fibers of θ are contractible. Consider an arbitrary vertex of Oact
qp/ corresponding to

a diagram t : K ? ∆1 → O⊗act. Since K ? ∆1 is categorically equivalent to (K ? {0})
∐
{0}∆1 and

t|K ? {0} is constant, we may assume without loss of generality that t factors as a composition

K ?∆1 → ∆1 m→ O⊗act .

Here m : X → Z can be identified with an active morphism in O⊗. It will therefore suffice to show

that the following assertions are equivalent, where m : X → Z is fixed:

(1′′) The map Cact
p/ ×Oact

qp/
{t} → Cact

p/ ×Oact
qp/
{t0} is a homotopy equivalence, where t ∈ O⊗qp/ is deter-

mined by m as above and t0 is the image of t in Oact
qp/.
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(2′′) The map m! : C⊗X → CZ carries p to a colimit diagram in CZ .

This equivalence results from the observation that the fibers of the maps Cact
p/ → Oact

qp/ and

Cact
p/ → Oact

qp/ are equivalent to the fibers of the maps Cact
m!p/

→ Oact
qm!p/

and Cact
m!p/

→ Oact
qm!p/

.

We now establish a general criterion for the existence of operadic colimit diagrams.

Definition 3.1.1.18. Let q : C⊗ → O⊗ be a coCartesian fibration of ∞-operads and let K be a

simplicial set. We will say that q is compatible with K-indexed colimits if the following conditions

are satisfied:

(1) For every object X ∈ O, the ∞-category CX admits K-indexed colimits.

(2) For every operation f ∈ MulO({Xi}1≤i≤n, Y ), the functor ⊗t :
∏

1≤i≤n CXi → CY of Remark

2.1.2.16 preserves K-indexed colimits separately in each variable.

Variant 3.1.1.19. If K is some collection of simplicial sets, we will say that a coCartesian fibration

of ∞-operads q : C⊗ → O⊗ is compatible with K-indexed colimits if it compatible with K-indexed

colimits, for every K ∈ K. For example, we may speak of q being compatible with filtered colimits,

sifted colimits, coproducts, or κ-small colimits where κ is some regular cardinal.

Proposition 3.1.1.20. Let K be a simplicial set, let q : C⊗ → O⊗ be a coCartesian fibration of

∞-operads which is compatible with K-indexed colimits, let p : K → C⊗act be a diagram, and let

p0 : K. → O⊗act be an extension of qp which carries the cone point of K. to an object X ∈ O. Then

there exists an operadic q-colimit diagram p : K. → C⊗ which extends p and lifts p0.

Proof. Let p0 = qp. The map p0 determines a natural transformation α : p0 → X of diagrams

K → O⊗, where X denotes the constant diagram taking the value X. Choose a q-coCartesian

natural transformation α : p → p′ lifting α. Since CX admits K-indexed colimits, we can extend

p′ to a colimit diagram p′ : K. → CX . The compatibility of q with K-indexed colimits and

Proposition 3.1.1.16 imply that p′ is an operadic q-colimit diagram. Let C ∈ CX be the image

under p′ of the cone point of K., so we can regard p′ as a diagram K → C⊗/C which lifts p′. Using

the assumption that C⊗/C → C⊗×O⊗ O
⊗
/X is a right fibration, we can choose a transformation p→ p′

lifting α : p→ p′. It follows from Proposition 3.1.1.15 that p is an extension of p with the desired

properties.

Corollary 3.1.1.21. Let q : C⊗ → O⊗ be a fibration of ∞-operads and let κ be a regular cardinal.

The following conditions are equivalent:

(1) The map q is a coCartesian fibration of ∞-operads which is compatible with κ-small colimits.
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(2) For every κ-small simplicial set K and every diagram

K
p //

��

C⊗act

��
K.

p
==

p0 // O⊗

such that p0 carries the cone point of K. into O, there exists an extension p of p as indicated

in the diagram, which is an operadic q-colimit diagram.

Proof. The implication (1) ⇒ (2) is immediate from Proposition 3.1.1.20. Assume that (2) is

satisfied. Taking K = ∆0 and applying Proposition 3.1.1.13, we deduce that q is a coCartesian

fibration of ∞-operads. Applying (2) in the case where the map p0 takes some constant value

X ∈ O, we deduce that every κ-small diagram K → C⊗X can be extended to an operadic q-colimit

diagram. This operadic q-colimit diagram is in particular a colimit diagram, so that C⊗X admits

κ-small colimits. Moreover, the uniqueness properties of colimits show that every κ-small colimit

diagram p : K. → C⊗X is a q-operadic colimit diagram. Combining this with the criterion of

Proposition 3.1.1.16, we conclude that the q is compatible with κ-small colimits.

3.1.2 Operadic Left Kan Extensions

In §3.1.1, we introduced the theory of operadic colimit diagrams: this is an analogue of the usual

theory of colimits to the setting of ∞-operads. The theory of colimits can be regarded as a special

case of the theory of left Kan extensions: if K and C are ∞-categories, then a map p : K. → C

is a colimit diagram if and only p is a left Kan extension of p = p|K. The theory of left Kan

extensions also has a counterpart in the setting of ∞-operads, which we will call operadic left Kan

extensions. Our goal in this section is to introduce this counterpart (Definition 3.1.2.2) and to

prove a basic existence result (Theorem 3.1.2.3). The results of this section will play a crucial role

in our discussion of free algebras in §3.1.3.

Definition 3.1.2.1. A correspondence of ∞-operads is a ∆1-family of ∞-operads p : M⊗ →
N(Fin∗) × ∆1. In this case, we will say that M⊗ is a correspondence from the ∞-operad A⊗ =

M⊗×∆1{0} to the ∞-operad B⊗ = M⊗×∆1{1}.

Definition 3.1.2.2. Let M⊗ → N(Fin∗) × ∆1 be a correspondence from an ∞-operad A⊗ to

another ∞-operad B⊗, let q : C⊗ → O⊗ be a fibration of ∞-operads, and let F : M⊗ → C⊗ be a

map of generalized∞-operads. We will say that F is an operadic q-left Kan extension of F = F |A⊗

if the following condition is satisfied, for every object B ∈ B⊗:

(∗) Let K = (M⊗act)/B ×M⊗ A⊗. Then the composite map

K. → (M⊗)./B →M⊗
F→ C⊗

is an operadic q-colimit diagram.
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In the situation of Definition 3.1.2.2, the value of F on any object B ∈ B is determined up to

equivalence by requirement (∗). Consequently, it is natural to expect that we can reconstruct F

from its restriction F = F |A⊗ together with the composite map qF : M⊗ → O⊗. More precisely,

we have the following result concerning the existence and uniqueness of F :

Theorem 3.1.2.3. Let n ≥ 1, let p : M⊗ → N(Fin∗) × ∆n be a ∆n-family of ∞-operads, and

let q : C⊗ → O⊗ be a fibration of ∞-operads. Suppose we are given a commutative diagram of

∞-operad family maps

M⊗×∆nΛn0

��

f0 // C⊗

q
��

M⊗

f

99

g // O⊗ .

Then

(A) Suppose that n = 1. The following conditions are equivalent:

(a) There exists a dotted arrow f as indicated in the diagram which is an operadic q-left

Kan extension of f0 (in particular, such that f is a map of ∞-operad families).

(b) For every object B ∈M×∆n{1}, the diagram

(M⊗act)/B ×∆n {0} →M⊗×∆n{0} f0→ C⊗

can be extended to an operadic q-colimit diagram lifting the map

((M⊗act)/B ×∆n {0}). →M⊗
g→ O⊗ .

(B) Suppose that n > 1, and that the restriction of f0 to M⊗×∆n∆{0,1} is an operadic q-left Kan

extension of f0|(M⊗×∆n{0}). Then there exists a dotted arrow f as indicated in the diagram

(automatically a map of generalized ∞-operads).

The remainder of this section is devoted to the proof of Theorem 3.1.2.3. Though the proof is

somewhat complicated, the details of our argument will not be needed for subsequent applications;

consequently, readers are invited to skip the remainder of this section and proceed directly to the

applications which are presented in §3.1.3.

The proof of Theorem 3.1.2.3 will require the following Lemma.

Lemma 3.1.2.4. Suppose we are given an inner fibration of simplicial sets p : C → Λ3
2 satisfying

the following condition: for every object X ∈ C1, there exists a p-coCartesian morphism f : X → Y

where Y ∈ C2. Then there exists a pullback diagram

C //

p
��

C′

p′

��
Λ3

2
// ∆3
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where C′ is an ∞-category and the map C ↪→ C′ is a categorical equivalence.

Proof. We will construct a sequence of categorical equivalences

C = C(0) ⊆ C(1) ⊆ · · ·

in (Set∆)/∆3 with the following properties:

(i) If 0 < i < n and Λni → C(m) is a map, then the induced map Λni → C(m+1) can be extended

to an n-simplex of C(m+ 1).

(ii) For each m ≥ 0, the inclusion C ⊆ C(m)×∆3 Λ3
2 is an isomorphism of simplicial sets.

Our construction proceeds by induction on m. Assume that C(m) has been constructed, and let A

denote the collection of all maps α : Λni → C(m) for 0 < i < n. We will prove that, for each α ∈ A,

there exists a categorical equivalence C(m) ⊆ C(m,α) in (Set∆)/∆3 with the following properties:

(i′) The composite map Λni
α→ C(m) ⊆ C(m,α) can be extended to an n-simplex of C(m,α).

(ii′) The map C→ C(m,α)×∆3 Λ3
2 is an isomorphism of simplicial sets.

Assuming that we can satisfy these conditions, we can complete the proof by defining C(m+ 1) to

be the amalgamation
∐
α∈A C(m,α) in the category (Set∆)C(m)/ /∆3 .

Suppose now that α : Λni → C(m) is given. If the composite map α0 : Λni
α→ C(m) → ∆3

factors through Λ3
2, then we can use the assumption that p is an inner fibration to extend α to an

n-simplex of C. In this case, we can satisfy requirements (i′) and (ii′) by setting C(m,α) = C(m).

We may therefore assume without loss of generality that the image of α0 contains ∆{0,1,3} ⊆ ∆3.

In particular, we see that α0(0) and α0(n) = 3.

We observe that α0 extends uniquely to a map α0 : ∆n → ∆3. The pushout C(m)
∐

Λni
∆n

evidently satisfies condition (i′). It satisfies condition (ii′) unless α0 carries ∆{0,...,i−1,i+1,...,n} into

Λ3
2. If condition (ii′) is satisfied, we can set C(m,α) = C(m)

∐
Λni

∆n; otherwise, we have α−1
0 {1} =

{i}.
Let A = α−1

0 {0} ⊆ ∆n, B = α−1
0 {2} ⊆ ∆n, and C = α−1

0 {3} ⊆ ∆n, so we have a canonical

isomorphism ∆n ' A ? {x} ? B ? C where x corresponds to the ith vertex of ∆n. Let β denote the

restriction of α to A ? {x} ? B and γ the restriction of α to {x} ? B ? C. Let X ∈ C1 denote the

image of x in C1, and choose a p-coCartesian morphism f : X → Y in C where Y ∈ C2. Since f is

p-coCartesian, we can choose a map γ : {x} ? {y} ? B ? C → C which is compatible with f and γ.

Let γ0 = γ|{x} ? {y} ? B, and choose a map β : A ? {x} ? {y} ? B → C compatible with γ0 and β.

The restrictions of β and γ determine a map δ : (A ? {y} ? B)
∐
{y}?B({y} ? B ? C)→ C. Using the

fact that p is an inner fibration, we can extend δ to a map δ : A ? {y} ? B ? C → C.

We define simplicial subsets

K0 ⊆ K1 ⊆ K2 ⊆ A ? {x} ? {y} ? B ? C

as follows:
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(a) The simplicial subset K0 ⊆ A ? {x} ? {y} ? B ? C is generated by A ? {x} ? {y} ? B and

{x} ? {y} ? B ? C.

(b) The simplicial subsetK1 ⊆ A?{x}?{y}?B?C is generated byK0 together with Λni ⊆ ∆n ' A?
{x}?B?C. Since the inclusions Λni ⊆ ∆n and (A?{x}?B)

∐
{x}?B({x}?B?C) ⊆ A?{x}?B?C

are inner anodyne, the inclusion

i : (A ? {x} ? B)
∐
{x}?B

({x} ? B ? C) ⊆ Λni

is a categorical equivalence. The inclusion K0 ⊆ K1 is a pushout of i, and therefore also a

categorical equivalence.

(c) The simplicial subset K2 ⊆ A?{x}?{y}?B?C is generated by K1 together with A?{y}?B?C.

The inclusion K1 ⊆ K2 is a pushout of the inclusion (A ? {y} ? B)
∐
{y}?B({y} ? B ? C) ⊆

A ? {y} ? B ? C, and therefore a categorical equivalence.

The inclusion K0 ⊆ A ? {x} ? {y} ? B ? C is evidently a categorical equivalence. It follows from

a two-out-of-three argument that the inclusion K2 ⊆ A ? {x} ? {y} ? B ? C is also a categorical

equivalence. The maps δ, β, β
′
, and α determine a map K2 → C(m). We now define C(m,α) to

be the pushout C(m)
∐
K2

(A ? {x} ? {y} ? B ? C). It is not difficult to verify that C(m,α) has the

desired properties.

Lemma 3.1.2.5. Let C be an ∞-category containing a full subcategory C0, and let σ : ∆n → C be

a nondegenerate simplex which does not intersect C0. Let K ⊆ C be the simplicial subset spanned

by those vertices τ : ∆m → C with the following property:

(∗) There exists a map ∆m → ∆1 such that τ0 = τ |(∆m ×∆1 {0}) factors through C0 and τ1 =

τ |(∆m ×∆1 {1}) factors through σ.

Let K0 be the simplicial subset of K spanned by those simplices τ for which there exists a decom-

position as in (∗), where τ1 factors through ∂ σ : ∂∆n → C. Let C0
/σ = C0×C C/σ. Then the evident

map

i : K0

∐
C0
/σ ? ∂∆n

(C0
/σ ?∆

n)→ K

is a trivial cofibration (with respect to the Joyal model structure).

Proof. Let S be the collection of all simplices σ′ : ∆n′ → C which factor as a composition ∆n′ →
∆n σ→ C, where the map ∆n′ → ∆n is surjective. Choose an well-ordering of S such that σ′ < σ′′ if

the dimension of σ′ is smaller than the dimension of σ′′ (so that σ is the least element of S). Let

α denote the order type of S, and for β < α let σ′β denote the corresponding element of S. For

β ≤ α, let Kβ be the simplicial subset of C spanned by the nondegenerate simplices τ : ∆m → C for
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which there exists a map ∆m → ∆1 such that τ0 factors through C0 and τ1 either factors through

∂ σ or is isomorphic to σ′γ for some γ < β (here τ0 and τ1 are defined as in (∗)). Then Kα = K and

K1 = K0
∐

C0
/σ ? ∂∆n(C0

/σ ?∆
n). It will therefore suffice to show that the inclusion K1 ↪→ Kβ is a

categorical equivalence for 1 ≤ β ≤ α. We proceed by induction on β. The case β = 1 is trivial, and

if β is a nonzero limit ordinal then the assertion follows immediately from the inductive hypothesis

since Kβ ' lim−→γ<β
Kγ . It will therefore suffice to show that each of the inclusions Kβ ↪→ Kβ+1 is a

categorical equivalence. Let σ′ = σ′β, so that we can identify σ′ with a surjective map ε : ∆n′ → ∆n.

Let J be the category whose objects are factorizations

∆n′ ε
′
→ ∆n′′ ε

′′
→ ∆n

of ε such that ε′ is surjective. For each object J = (ε′, ε′′) ∈ J we let σJ denote the composite

map ∆n′′ ε′′→ ∆n σ→ C. Let J0 denote the full subcategory of J spanned by those objects where

n′′ < n′. There is an evident injective map C0
/σJ
→ C0

/σ′ for each J ∈ J0; let us denote the union of

their images by X ⊆ C0
/σ′ . Unwinding the definitions, we note that the inclusion Kβ ↪→ Kβ+1 is a

pushout of the inclusion map

j : (X ?∆n′)
∐

X?∂∆n′

(C0
/σ′ ? ∂∆n′) ↪→ C0

/σ ?∆
n′ .

It will therefore suffice to show that j is categorical equivalence: that is, that the diagram

X ? ∂∆n //

��

X ?∆n

��
C0
/σ′ ? ∂∆n // C0

/σ′ ?∆
n

is a homotopy pushout diagram (with respect to the Joyal model structure). In fact, we claim

that the vertical maps are both categorical equivalences. To prove this, it suffices to show that the

inclusion X ↪→ C0
/σ′ is a categorical equivalence. Note that X is a colimit of the cofibrant diagram

{C0
/σJ
}J∈Jop0 . It will therefore suffice to show that C0

/σ′ is a homotopy colimit of the diagram

{C0
/σJ
}J∈Jop0 . This diagram is essentially constant: for each J ∈ J0, the canonical map C0

/σJ
→ C0

/σ′

is a categorical equivalence, since for C = σJ(0) = σ′(0) ∈ C we have a commutative diagram

C0
/σJ

//

!!

C0
/σ′

~~
C0
/C

where the vertical maps are trivial Kan fibrations. Consequently, it will suffice to observe that the

simplicial set N(J0) is weakly contractible. This is clear, since J0 has a final object (given by the

factorization ε = id∆n ◦ε).
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Proof of Theorem 3.1.2.3. The implication (a) ⇒ (b) in the case (A) is obvious. Let us therefore

assume either that (b) is satisfied (if n = 1) or that f0|(M⊗×∆n∆{0,1}) is an operadic q-left Kan

extension of f0|(M⊗×∆n{0}) (if n > 1). To complete the proof, we need to construct a functor

f : M⊗ → C⊗ satisfying some natural conditions. The construction is somewhat elaborate, and

will require us to introduce some terminology.

Let α be a morphism in N(Fin∗)×∆{1,...,n}, having image α0 : 〈m〉 → 〈n〉 in N(Fin∗). We will

say that α is active if the morphism α0 is active. We will say that α is strongly inert if the morphism

α0 is inert, the image of α in ∆{1,...,n} is degenerate, and the injective map α−1
0 : 〈n〉◦ → 〈m〉◦ is

order preserving. We will say that α is neutral if it is neither active nor strongly inert. Note that

the collections of active and strongly inert morphisms are closed under composition. Moreover,

every morphism α can be written uniquely as a composition α′′ ◦ α′, where α′ is strongly inert and

α′′ is active.

Let σ be an m-simplex of N(Fin∗)×∆{1,...,n}, corresponding to a chain of morphisms

(〈k0〉, e0)
ασ(1)−→ (〈k1〉, e1)

ασ(2)−→ · · · ασ(m)−→ (〈km〉, em).

We will say that σ is closed if km = 1; otherwise we will say that σ is open. We will say that σ is

new if the projection map σ → ∆{1,...,n} is surjective.

We now partition the collection of nondegenerate new simplices σ of N(Fin∗) × ∆{1,...,n} into

five groups:

(G′(1)) A nondegenerate new simplex σ of N(Fin∗)×∆{1,...,n} belongs to G(1) if it is closed and each

of the maps ασ(i) is active.

(G(2) A nondegenerate new m-simplex σ of N(Fin∗)×∆{1,...,n} belongs to G(3) if there exist integers

0 < j < k ≤ m such that ασ(i) is strongly inert for i = j, active for j < i ≤ k, and strongly

inert for k < i ≤ m.

(G′(2) A nondegenerate new m-simplex σ of N(Fin∗)×∆{1,...,n} belongs to G′(3) if there exist integers

0 < j ≤ k ≤ m such that ασ(i) is neutral for i = j, active for j < i ≤ k, and strongly inert

for k < i ≤ m.

(G(3) A nondegenerate new m-simplex σ of N(Fin∗) × ∆{1,...,n} belongs to G(2) if it is closed and

there exists 0 ≤ j < m such that ασ(i) is active for i ≤ j and strongly inert for i > j.

(G′(3) A nondegenerate new m-simplex σ of N(Fin∗) × ∆{1,...,n} belongs to G′(2) if it is open and

there exists 0 ≤ j ≤ m such that ασ(i) is active for i ≤ j and strongly inert for i > j.

If σ : ∆m → N(Fin∗)×∆{1,...,m} is a simplex belonging to G(2), we define the associate σ′ ∈ G′(2)

of σ to be the (m − 1)-simplex obtained by restricting σ to ∆{0,...,m−1}. If σ belongs to G(3), we

define its associate σ′ ∈ G′(3) to be the (m−1)-simplex given by the restriction σ|∆{0,...,j−1,j+1,...,m},
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where j is defined as above (note that j is uniquely determined). In either of these cases, we will

also say that σ is an associate of σ′. Note that every simplex of G′(2) is the associate of a unique

simplex belonging to G(2), and that a simplex σ of G′(3) with final vertex (〈k〉, e) is associated to

exactly k simplices of G(3), obtained by concatenating σ with all possible strongly inert morphisms

(〈k〉, e)→ (〈1〉, e).
For each integer m ≥ 0, let F (m) denote simplicial subset of N(Fin∗)×∆{1,...,n} spanned by the

nondegenerate simplices which either belong to N(Fin∗)× ∂∆{1,...,n}, have dimension less than m,

or have dimension m and belong to G(2) or G(3). Let F (m) be the simplicial subset of N(Fin∗)×∆n

spanned by those simplices whose intersection with N(Fin∗) × ∆{1,...,n} belongs to F (m), and let

M⊗(m) denote the inverse image of F (m) in M⊗. We observe that M⊗(0) = M⊗×∆nΛn0 . To complete

the proof, it will suffice to show that f0 : M⊗(0) → C⊗ can be extended to a sequence of maps

fm : M⊗(m) → C⊗ which fit into commutative diagrams

M⊗(m−1)

��

fm−1 // C⊗

q

��
M⊗(m)

fm

<<

// O⊗

and such that f1 has the following special properties in the case n = 1:

(i) For each object B ∈M×∆n{1}, the map

((M⊗act)/B ×∆n {0}). →M⊗(1)

f1→ C⊗

is an operadic q-colimit diagram.

(ii) For every inert morphism e : M ′ →M in M⊗×∆n{1} such that M ∈M = M⊗〈1〉, the functor

f1 carries e to an inert morphism in C⊗.

Fix m > 0, and suppose that fm−1 has already been constructed. Our construction proceeds in

several steps.

(1) Let F ′(m) ⊆ F (m) denote the simplicial subset of F (m) spanned by those nondegenerate

simplices belonging to either F (m − 1) or G′(1). Let F ′(m) denote the simplicial subset of

N(Fin∗)×∆n spanned by those simplices whose intersection with N(Fin∗)×∆{1,...,n} belongs

to F (m)′, and let M′⊗(m) denote the inverse image of F ′(m) in M⊗. We first prove the existence

of a solution to the lifting problem

M⊗(m−1)

��

fm−1 // C⊗

q

��
M′⊗(m)

f ′m

<<

// O⊗
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such that, when m = n = 1, the map f ′m satisfies condition (i).

Let {σa}a∈A be the collection of all nondegenerate simplices of M⊗×∆n∆{1,...,n} whose im-

age in N(Fin∗) × ∆{1,...,n} has dimension (m − 1) and belongs to the class G′(1). Choose a

well-ordering of the set A such that the dimensions of the simplices σa form a (nonstrictly)

increasing function of a. For each a ∈ A, let M⊗≤a denote the simplicial subset of M⊗ spanned

by M⊗(m−1) together with those simplices whose intersection with M⊗×∆n∆{1,...,n} factors

through σa′ for some a′ ≤ a, and define M⊗<a similarly. We construct a compatible family

of maps f≤a : M⊗≤a → C⊗ extending fm−1, using transfinite induction on a. Assume that

f≤a
′

has been constructed for a′ < a; these maps can be amalgamated to obtain a map

f<a : M⊗<a → C⊗. Let X = {0} ×∆n M⊗/σa . Lemma 3.1.2.5 implies that we have a homotopy

pushout diagram of simplicial sets

X ? ∂ σa //

��

M⊗<a

��
X ? σa //M⊗≤a .

It will therefore suffice to extend the composition

g0 : X ? ∂ σa −→M⊗<a
f<a−→ C⊗

to a map g : X ? σa → C⊗ which is compatible with the projection to O⊗.

We first treat the special case where the simplex σa is zero-dimensional (in which case we must

have m = n = 1). We can identify σa with an object B ∈M⊗. Let X0 = (M⊗act)/B×∆n {0} ⊆
X. Using assumption (b), we can choose a map g1 : X.

0 → C⊗ compatible with the projection

to O⊗ which is an operadic q-colimit diagram. We note that X0 is a localization of X so that

the inclusion X0 ⊆ X is left cofinal; it follows that g1 can be extended to a map X. → C⊗

with the desired properties. Note that our particular construction of g guarantees that the

map fm will satisfy condition (i).

Now suppose that σa is a simplex of positive dimension. We again let X0 denote the sim-

plicial subset of X spanned by those vertices of X which correspond to diagrams σ/a → C⊗

which project to a sequence of active morphisms in N(Fin∗). The inclusion X0 ⊆ X ad-

mits a left adjoint and is therefore left cofinal; it follows that the induced map C⊗(f0|X)/ →
C⊗(f0|X0)/×O⊗

(qf0|X0)/
O⊗(qf0|X)/ is a trivial Kan fibration. It therefore suffices to show that the

restriction g′0 = g0|(X0 ? ∂ σa) can be extended to a map g′ : X0 ? σa → C⊗ compatible with

the projection to O⊗. In view of Proposition 3.1.1.7, it will suffice to show that the restriction

g′0|(X0 ? {B}) is a operadic q-colimit diagram. Since the inclusion {B} ⊆ σa is left anodyne,

the projection map X0 → {0}×∆n (M⊗act)/B is a trivial Kan fibration. It will therefore suffice

to show that fm−1 induces an operadic q-colimit diagram δ : {0} ×∆n (M⊗act)
.
/B → C⊗.
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Let 〈p〉 be the image of B in N(Fin∗). The desired result follows immediately from (i) if p = 1,

so assume that p 6= 1. Then the image of σa in N(Fin∗) has dimension ≥ 1, so that m ≥ 2

and therefore fm−1 is defined on M⊗(1). For 1 ≤ i ≤ p, choose an inert morphism B → Bi in

B⊗ covering the map ρi : 〈p〉 → 〈1〉, and let δi : {0} × (M⊗act)
.
/Bi
→ C⊗ be the map induced

by fm−1. Condition (i) guarantees that each δi is an operadic q-colimit diagram. Using the

fact that M⊗ is a ∆n-family of ∞-operads, we deduce that the maps B → Bi induce an

equivalence

{0} ×∆n (M⊗act)/B '
∏

1≤i≤p
({0} ×∆n M⊗act)/Bi .

Using the fact that fm−1 satisfies (ii), we see that under this equivalence we can identify δ

with the diagram

(
∏

1≤i≤p
({0} ×∆n M⊗act)

.
/Bi
→

∏
1≤i≤p

(M⊗act)
.
/Bi

⊕δi→ C⊗

Proposition 3.1.1.8 now implies that δ is an operadic q-colimit diagram, as desired.

(2) Let F ′′(m) denote the simplicial subset of N(Fin∗)×∆{1,...,n} spanned by F ′(m) together with

those (m− 1)-simplices σ belonging to G′(3) which have no associates (so that the final vertex

of σ is equal to (〈0〉, n)). Let F ′′(m) denote the collection of those simplices of N(Fin∗)×∆n

whose intersection with N(Fin∗)×∆{1,...,n} belongs to F ′′(m), and let M′′⊗(m) denote the inverse

image of F ′′(m) in M⊗. We next show that f ′m can be extended to a map f ′′m : M′′⊗(m) → C⊗

(compatible with the projection to O⊗).

We proceed as in the first step. Let {σa}a∈A be the collection of all nondegenerate simplices

of M⊗×∆n∆{1,...,n} whose image in N(Fin∗) × ∆{1,...,n} has dimension (m − 1) and belongs

to the class G′(3) and has no associates. Choose a well-ordering of the set A such that the

dimensions of the simplices σa form a (nonstrictly) increasing function of a. For each a ∈ A,

let M⊗≤a denote the simplicial subset of M⊗ spanned by M′⊗(m) together with those simplices

whose intersection with M⊗×∆n∆{1,...,n} factors through σa′ for some a′ ≤ a, and define M⊗<a
similarly. We construct a compatible family of maps f≤a : M⊗≤a → C⊗ extending f ′m, using

transfinite induction on a. Assume that f≤a
′

has been constructed for a′ < a; these maps can

be amalgamated to obtain a map f<a : M⊗<a → C⊗. Let X = {0} ×∆n M⊗/σa . Lemma 3.1.2.5

implies that we have a homotopy pushout diagram of simplicial sets

X ? ∂ σa //

��

M⊗<a

��
X ? σa //M⊗≤a .
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It will therefore suffice to extend the composition

g0 : X ? ∂ σa −→M⊗<a
f<a−→ C⊗

to a map g : X ? σa → C⊗ which is compatible with the projection to O⊗. In other words, it

suffices to solve a lifting problem of the form

∂ σa //

��

C⊗X/

��
σa

==

// O⊗X/ .

The existence of the desired lifting follows from the fact that the upper vertical map carries

the final vertex of σa to a q-final vertex of C⊗.

(3) We now complete the induction by showing that f ′′m can be extended to a map fm : M⊗(m) → C⊗

(satisfying condition (ii) in the case m = n = 1). The construction of this extension will

require a somewhat intricate induction. Let {σ′a}a∈A be the collection of all (m−1)-simplices

of N(Fin∗) ×∆{1,...,n} which belong to either G′(2) or G′(3) and admit at least one associate.

Let a ∈ A, and let σ denote an associate of the simplex σ′a, given by a sequence of morphisms

(〈k0〉, e0)
ασ(1)−→ (〈k1〉, e1)

ασ(2)−→ · · · ασ(m)−→ (〈km〉, em).

We define nonnegative integers u(a), v(a), and w(a) as follows:

– u(a) is the number of integers 1 ≤ i ≤ m such that ασ(i) is neutral.

– v(a) is the number of integers 1 ≤ i ≤ m such that ασ(i) is active.

– w(a) is the number of pairs of integers 1 ≤ i < j ≤ m such that ασ(i) is active and ασ(j)

is strictly inert.

Note that these integers are independent of the choice of σ (in the case where σ′a ∈ G′(3), so

that σ′a has more than one associate). Choose a well-ordering on the set A with the following

properties:

– If a, b ∈ A satisfy u(a) < u(b), then a < b.

– If a, b ∈ A satisfy u(a) = u(b) and v(a) < v(b), then a < b.

– Let a, b ∈ A, and let σ and τ denote associates of σ′a and σ′b, respectively. If u(a) = u(b),

v(a) = v(b), σ is closed, and τ is open, then a < b.

– Let a, b ∈ A, and let σ and τ denote associates of σ′a and σ′b, respectively. If u(a) = u(b),

v(a) = v(b), σ and τ are either both open or both closed, and w(a) < w(b), then a < b.
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For each a ∈ A, let F≤a denote the simplicial subset of F (m) given by the union of F ′′(m), all

of the simplices σ′b for b ≤ a, and all of the associates of the simplices σ′b for b ≤ a. We let F≤a
denote the simplicial subset of N(Fin∗) ×∆n spanned by those simplices whose intersection

with N(Fin∗) ×∆{1,...,n} belongs to F≤a, and M⊗≤a the inverse image of F≤a in M⊗. Define

F<a, F<a, and M⊗<a similarly. We will construct fm as the amalgamation of a compatible

family of maps f≤a : M⊗≤a → C⊗ extending fm−1. The construction proceeds by transfinite

recursion. Assume that f≤b has been constructed for b < a, so that the maps {f≤b}b<a
determine a map f<a : M⊗<a → C⊗. We wish to extend f<a to a map f≤a (compatible with

the projection to O⊗). There are several cases to consider.

Suppose first that σ′a belongs to G′(2). In this case, we will prove the existence of the desired

extension by showing that the inclusion M⊗<a ↪→M⊗≤a is a categorical equivalence of simplicial

sets, so that the existence of the map f≤a follows from the fact that q is a categorical fibration

of simplicial sets. The simplex σ′a has a unique associate, which we will denote by σa. Note

that σ′a is a face of σa, and all of the other faces of σa belong to F<a. Let Λ ⊆ σa denote the

inner horn opposite to the face σ′a. Let Y = {0} ×∆n (N(Fin∗) ×∆n)/σa , so that we have a

pushout diagram of simplicial sets

Y ? Λ //

��

F<a

��
Y ? σa // F≤a.

It will therefore suffice to show that the inclusion

(Y ? Λ)×N(Fin∗)×∆n M⊗ ↪→ (Y ? σa)×N(Fin∗)×∆n M⊗

is a categorical equivalence. In fact, we will prove the following more general claim: for every

map of simplicial sets Y ′ → Y , the map

ηY ′ : (Y ′ ? Λ)×N(Fin∗)×∆n M⊗ ↪→ (Y ′ ? σa)×N(Fin∗)×∆n M⊗

is a categorical equivalence. Since the construction Y ′ 7→ ηY ′ commutes with filtered colimits,

we may assume that Y ′ has finitely many nondegenerate simplices. We proceed by induction

on the dimension of Y ′, and on the number of nondegenerate simplices of Y ′. If Y ′ is empty,

then the desired result follows immediately from Lemma 2.4.4.6. If Y ′ is nonempty, we have

a pushout diagram of simplicial sets

∂∆p //

��

Y ′0

��
∆p // Y ′.
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In this case, ηY ′ factors as a composition

(Y ′ ? Λ)×N(Fin∗)×∆n M⊗
η′→ ((Y ′ ? Λ)qY ′0?Λ (Y ′0 ? σa))×N(Fin∗)×∆n M⊗

η′′→ (Y ′ ? σa)×N(Fin∗)×∆n M⊗

The map η′ is a pushout of ηY ′0 , and therefore a categorical equivalence by the inductive

hypothesis. The map η′′ is a pushout of the inclusion

(∆p ? Λ)q∂∆p?Λ (∂∆p ? σa)×N(Fin∗)×∆n M⊗ ↪→ (∆p ? σa)×N(Fin∗)×∆n M⊗,

which is categorical equivalence by virtue of Lemma 2.4.4.6.

We now treat the case where σ′a ∈ G′(3). Let {τb}b∈B be the collection of all nondegenerate

simplices τ of M⊗ with the property that τ ×∆n ∆{1,...,n} maps surjectively to the simplex

σ′a of N(Fin∗) × ∆n. Choose a well-ordering of B such that the dimension of the simplex

τb is a (nonstrictly) increasing function of b. For each b ∈ B, let N≤b ⊆ M⊗ denote the

simplicial subset generated by M⊗<a together with those simplices τ : ∆p → M⊗ such that

for some p′ < p, the restriction τ |∆{0,...,p′} factors through a simplex τb′ for b′ ≤ b, the map

τ(p′) → τ(p′ + 1) is an inert morphism in D⊗, and τ |∆{p′+1,...,p} factors through D. Define

N<b similarly. We will construction f≤a as the amalgamation of a compatible family of maps

g≤b : N≤b → C⊗. The construction proceeds by transfinite induction on b. Assume that

g≤b′ has been constructed for b′ < b, so that the set of maps {g≤b′}b′<b determines a map

g<b : N<b → C⊗. We wish to show that there is a solution to the lifting problem

N<b
g<b //

��

C⊗

q

��
N≤b //

g≤b

==

O⊗ .

The final vertex of τb is given by (〈k〉, n) for some k ≥ 2. For 1 ≤ i ≤ k, we have a

strongly inert morphism (〈k〉, n) → (〈1〉, n). Taken together, these morphisms determine a

map τb ? {1, . . . , k} → N(Fin∗)×∆n. Let X = M⊗×N(Fin∗)(τb ? {1, . . . , k}). Note that τb lifts

to a simplex τ b in X. For 1 ≤ i ≤ k let Xi denote the fiber of X over the vertex i ∈ {1, . . . , k},
let X0 =

⋃
1≤i≤k Xi, and set X0

τb/
= X0×XXτb/. Using Lemma 3.1.2.5, we obtain a homotopy

pushout diagram

∂ τ b ? X
0
τb/

//

��

N<b

��
τ b ? X

0
τb/

// N≤b .
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According to Proposition HTT.A.2.3.1 , it will suffice to solve the associated lifting problem

∂ τb ? X
0
τb/

g′0 //

��

C⊗

q

��
τb ? X

0
τb/

//

g′
::

O⊗ .

Note that the ∞-category X0
τb/

decomposes naturally as a disjoint union
∐

1≤i≤kXi, where

Xi = Xi×XXτb/. Each of the ∞-categories Xi has an initial object Bi, given by any map

τb ? {Di} → C⊗ which induces an inert morphism Db → Di covering ρi : 〈k〉 → 〈1〉. Let

h : X0
τb/
→ C⊗ be the map induced by g′0, and let h′ be the restriction of h to the discrete

simplicial set X ′ = {Bi}1≤i≤k. Since inclusion X ′ → X0
τb/

is left anodyne, we have a trivial

Kan fibration C⊗/h → C⊗/h′ ×O⊗
/qh′

O⊗/qh. We are therefore reduced to the problem of solving the

a lifting problem of the form

∂ τ b ? X
′ g
′′
0 //

��

C⊗

q

��
τ b ? X

′ g′′ //

g′′
::

O⊗ .

If the dimension of τ b is positive, then it suffices to check that g′′0 carries {Db} ? X ′ to a q-

limit diagram in C⊗. Let q′ denote the canonical map O⊗ → N(Fin∗). In view of Proposition

HTT.4.3.1.5 , it suffices to show that g′′0 carries {Db} ?X ′ to a (q′ ◦ q)-limit diagram and that

q ◦ g′′0 carries {Db} ? X ′ to a q′-limit diagram. The first of these assertions follows from (ii)

and from the fact that C⊗ is an ∞-operad, and the second follows by the same argument

(since q is a map of ∞-operads).

It remains to treat the case where τ b is zero dimensional (in which case we must have m =

n = 1). Since C⊗ is an ∞-operad, we can solve the lifting problem depicted in the diagram

∂ τ b ? X
′ g′′0 //

��

C⊗

q′◦q
��

τ b ? X
′ //

j

88

N(Fin∗)

in such a way that j carries edges of τ b ?X
′ to inert morphisms in C⊗. Since q is an∞-operad

map, it follows that q ◦ j has the same property. Since O⊗ is an ∞-operad, we conclude that

q ◦ j and g′′ are both q′-limit diagrams in O⊗ extending q ◦ g′′0 , and therefore homotopic via a

homotopy which is fixed on X ′ and compatible with the projection to N(Fin∗). Since q is a

categorical fibration, we can lift this equivalence to a homotopy j ' g′′, where g′′ : τ b?X
′ → C⊗

is the desired extension of g′′0 . We note that this construction ensures that condition (ii) is

satisfied.



342 CHAPTER 3. ALGEBRAS AND MODULES OVER ∞-OPERADS

3.1.3 Construction of Free Algebras

Let q : C⊗ → O⊗ be a fibration of ∞-operads, and suppose we are given ∞-operad maps A⊗
i→

B⊗
j→ O⊗ . Composition with i induces a forgetful functor θ : AlgB /O(C)→ AlgA /O(C). Our goal

in this section is to show that, under suitable conditions, the functor θ admits a left adjoint. This

left adjoint can be described informally as carrying an algebra F ∈ AlgA /O(C) to the free B-algebra

generated by F .

Our first step is to describe the structure of free algebras more explicitly. Suppose we are given

an algebra object F ′ ∈ AlgB /O(C) and a map of A-algebras F → θ(F ′). What can we say about

the object F ′(B) ∈ C, where B ∈ B is some object? For every A ∈ A⊗ and every active morphism

i(A)→ B in A⊗, we obtain a composite map

F (A)→ θ(F ′)(A) = F ′(i(A))→ F ′(B)

in the ∞-operad C⊗. We will say that F ′ is freely generated by F if each F ′(B) ∈ C is universal

with respect to the existence of these maps (for each B ∈ B). More precisely, we have the following

definition:

Definition 3.1.3.1. Let q : C⊗ → O⊗ and A⊗
i→ B⊗

j→ O⊗ be as above, let A ∈ AlgA /O(C) and

F ∈ AlgB /O(C), and let f : F → θ(F ′) be a morphism of A-algebra objects in C.

For every object B ∈ B, we let (A⊗act)/B denote the fiber product A⊗×B⊗(B⊗act)/B. The

maps F and F ′ induce maps α, α′ : (A⊗act)/B → C⊗act, f determines a natural transformation

g : α → α′. We note that α′ lifts to a map α′ : (A⊗act)/B → (C⊗act)/F ′(B); since the projection

(C⊗act)/F ′(B) → C⊗act×O⊗act
(O⊗act)/qF ′(B) is a right fibration, we can lift g (in an essentially unique

fashion) to a natural transformation g : α→ α′ which is compatible with the projection to O⊗.

We will say that f exhibits F ′ as a q-free B-algebra generated by F if the following condition is

satisfied, for every object B ∈ B:

(∗) The map α above determines an operadic q-colimit diagram (A⊗act)
.
/B → C⊗.

The following result guarantees that free algebras have the expected universal property (and

are therefore unique up to equivalence, whenever they exist):

Proposition 3.1.3.2. Let q : C⊗ → O⊗ be a fibration of∞-operads, and suppose we are given maps

of ∞-operads A⊗ → B⊗ → O⊗. Let θ : AlgB /O(C) → AlgA /O(C) denote the forgetful functor, let

F ∈ AlgA /O(C), let F ′ ∈ AlgB /O(C), and let f : F → θ(F ′) be a map which exhibits F ′ as a q-free

B-algebra generated by F . For every F ′′ ∈ AlgB /O(C), composition with f induces a homotopy

equivalence

γ : MapAlgB /O(C)(F
′, F ′′)→ MapAlgA /O(C)(F, θ(F

′′)).
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We also have the following general existence result for free algebras:

Proposition 3.1.3.3. Let q : C⊗ → O⊗ be a fibration of ∞-operads, and suppose we are given

maps of ∞-operads A⊗ → B⊗ → O⊗. Let θ : AlgB /O(C)→ AlgA /O(C) denote the forgetful functor

and let F ∈ AlgA /O(C). The following conditions are equivalent:

(1) There exists F ′ ∈ AlgB /O(C) and a map F → θ(F ′) which exhibits F ′ as a q-free B-algebra

generated by F .

(2) For every object B ∈ B, the induced map

(A⊗act)/B → A⊗act
F→ C⊗act

can be extended to an operadic q-colimit diagram lying over the composition

(A⊗act)
.
/B → B⊗act → O⊗act .

Let us postpone the proofs of Proposition 3.1.3.2 and 3.1.3.3 for the moment, and study some

applications.

Corollary 3.1.3.4. Let q : C⊗ → O⊗ be a fibration of ∞-operads, and suppose we are given maps

of ∞-operads A⊗ → B⊗ → O⊗. Assume that the following condition is satisfied:

(∗) For every object B ∈ B and every F ∈ AlgA /O(C), the diagram

(A⊗act)/B → A⊗act
F→ C⊗act

can be extended to an operadic q-colimit diagram lifting the composition

(A⊗act)
.
/B → (B⊗act)

.
/B → B⊗act → O⊗act .

Then the forgetful functor θ : AlgB /O(C) → AlgA /O(C) admits a left adjoint, which carries each

F ∈ AlgA /O(C) to a q-free B-algebra generated by F .

Proof. Combine Propositions 3.1.3.3, 3.1.3.2, and HTT.5.2.2.12 .

Corollary 3.1.3.5. Let κ be an uncountable regular cardinal, let O⊗ be an ∞-operad, and let

C⊗ → O⊗ be coCartesian fibration of ∞-operads which is compatible with κ-small colimits (see

Variant 3.1.1.19). Suppose we are given maps of ∞-operads A⊗ → B⊗ → O⊗, where A⊗ and B⊗

are essentially κ-small. Then the forgetful functor AlgB /O(C) → AlgA /O(C) admits a left adjoint,

which carries each O′-algebra F in C to a q-free O-algebra generated by F .

Proof. Combine Proposition 3.1.1.20 with Corollary 3.1.3.4.
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Example 3.1.3.6. Let O⊗ be a κ-small ∞-operad, let p : C⊗ → O⊗ be a coCartesian fibration of

∞-operads which is compatible with κ-small colimits. Applying Corollary 3.1.3.5 in the case where

B⊗ = O⊗ and A⊗ = O⊗×N(Fin∗) Triv⊗ (and using Example 2.1.3.5), we deduce that the forgetful

functor Alg/O(C)→ FunO(O,C) admits a left adjoint.

Corollary 3.1.3.7. Let q : C⊗ → O⊗ be a coCartesian fibration of ∞-operads and let O⊗0 denote

the ∞-operad given by the fiber product O⊗×CommE⊗0 (see Example 2.1.1.19). Assume that O⊗ is

unital and that there exists an uncountable regular cardinal κ with the following properties:

(1) The ∞-operad O⊗ is essentially κ-small.

(2) For each object X ∈ O, the ∞-category CX admits K-indexed colimits for every weakly con-

tractible κ-small simplicial set K.

(3) For every collection of objects X1, . . . , Xn, Y ∈ O and every operation α ∈ MulO({Xi}, Y ),

the associated functor ∏
1≤i≤n

CXi → CY

preserves K-indexed colimits separately in each variable for every weakly contractible κ-small

simplicial set K.

Then the forgetful functor θ : Alg/O(C) → AlgO0 /O(C) admits a left adjoint which carries each

F ∈ AlgO0 /O(C) to a q-free O-algebra generated by F .

Proof. Let F ∈ AlgO0 /O(C); we wish to prove the existence of a q-free O-algebra generated by F .

For this, it will suffice to verify condition (∗) of Corollary 3.1.3.4. Fix an object X ∈ O; we wish to

show that the map

O⊗0 ×O⊗(O⊗act)/X → O⊗act
F→ C⊗act

can be extended to an operadic q-colimit diagram lifting the composition

(O⊗0 ×O⊗(O⊗act)/X). → (O⊗act)
.
/X → O⊗act .

Assumption (1) implies that the ∞-category O⊗0 ×O⊗(O⊗act)/X is essentially κ-small, and the as-

sumption that O⊗ is unital guarantees that it is weakly contractible (in fact, it has an initial

object). Using assumption (3) together with Propositions 3.1.1.15 and 3.1.1.16, we are reduced to

proving the existence of the colimit of a diagram

O⊗0 ×O⊗(O⊗act)/X → CX ,

which follows from assumption (2).
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Remark 3.1.3.8. In the situation of Corollary 3.1.3.7, suppose we are given a O-monoidal functor

T : C⊗ → D⊗, where r : D⊗ → O⊗ is a coCartesian fibration of ∞-operads which also satisfies

hypotheses (2) and (3). Suppose further that for each object X ∈ O, the induced map CX → DX

preserves colimits indexed by κ-small weakly contractible simplicial sets. If we are given algebra

objects A ∈ AlgO0 /O(C) and B ∈ Alg/O(C) and a morphism A→ B|O⊗0 which exhibits B as a q-free

O-algebra generated by A, then the induced map T (A) → T (B)|O⊗0 exhibits T (B) as the r-free

O-algebra generated by T (A) ∈ AlgO0 /O(C). This follows immediately from the proof of Corollary

3.1.3.7.

To apply Corollary 3.1.3.5 in practice, it it convenient to have a more explicit description of

free algebras. To obtain such a description, we will specialize to the case where the ∞-operad A⊗

is trivial.

Construction 3.1.3.9. Let O⊗ be an ∞-operad, let X,Y ∈ O be objects, and let f : Triv⊗ → O⊗

be a map of ∞-operads such that f(〈1〉) = X (such a map exists and is unique up to equivalence,

by Remark 2.1.3.6).

Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads and let C ∈ CX be an object.

Using Example 2.1.3.5, we conclude that C determines an essentially unique Triv-algebra C ∈
AlgTriv /O(C) such that C(〈1〉) = C.

For each n ≥ 0, let P(n) denote the full subcategory of Triv⊗×O⊗ O
⊗
/Y spanned by the active

morphisms f(〈n〉)→ Y ; we observe that P(n) is a Kan complex and that the fibers of the canonical

map q : P(n) → N(Σn) can be identified with the space of n-ary operations MulO({X}1≤i≤n, Y ).

By construction, we have a canonical map h : P(n) × ∆1 → O⊗ which we regard as a natural

transformation from h0 = f ◦ q to the constant map h1 : P(n) → {Y }. Since p is a coCartesian

fibration, we can choose a p-coCartesian natural transformation h : C ◦ q → h1, for some map

h1 : P(n)→ CY . We let Symn
O,Y (C) denote a colimit of the diagram h1, if such a colimit exists. We

observe that Symn
O,Y (C) ∈ CY is well-defined up to equivalence (in fact, up to a contractible space

of choices).

Notation 3.1.3.10. In the special case X = Y , we will simply write Symn
O(C) for Symn

O,Y (C).

When O⊗ is the commutative ∞-operad N(Fin∗) (so that X = Y = 〈1〉) we will denote Symn
O(C)

by Symn(C).

Remark 3.1.3.11. In the situation of Construction 3.1.3.9, suppose that A ∈ Alg/O(C) is a O-

algebra and that we are equipped with a map C → A◦f of Triv-algebras (in view of Example 2.1.3.5,

this is equivalent to giving a map C → A(X) in CX). This map induces a natural transformation

from h1 to the constant map P(n)→ {A(Y )} ⊆ C, which we can identify with a map Symn
O,Y (C)→

A(Y ) (provided that the left side is well-defined).

Definition 3.1.3.12. Let q : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, let X ∈ O,

let A ∈ Alg/O(C), and suppose we are given a morphism f : C → A(X) in CX . Using Remark
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2.1.3.6 and Example 2.1.3.5, we can extend (in an essentially unique way) X to an ∞-operad map

Triv→ O, C to an object C ∈ AlgTriv /O(C), and f to a map of Triv-algebras f : C → A|Triv. We

will say that f exhibits A as a free O-algebra generated by C if f exhibits A as a q-free O-algebra

generated by C.

Proposition 3.1.3.13. Let κ be an uncountable regular cardinal, O⊗ a κ-small ∞-operad, and

q : C⊗ → O⊗ a coCartesian fibration of ∞-operads which is compatible with κ-small colimits. Let

X ∈ O and let C ∈ CX . Then:

(i) There exists an algebra A ∈ Alg/O(C) and a map C → A(X) which exhibits A as a free

O-algebra generated by X.

(ii) An arbitrary map f : C → A(X) as in (i) exhibits A as a free O-algebra generated by X if

and only if, for every object Y ∈ O, the maps Symn
O,Y (C)→ A(Y ) of Remark 3.1.3.11 exhibit

A(Y ) as a coproduct
∐
n≥0 Symn

O,Y (C).

Proof. Assertion (i) is a special case of Corollary 3.1.3.5. Assertion (ii) follows by combining the

criterion of Corollary 3.1.3.5 with Propositions 3.1.1.15 and 3.1.1.16.

Example 3.1.3.14. Let C⊗ be a symmetric monoidal ∞-category. Assume that the underlying

∞-category C admits countable colimits, and that for each X ∈ C the functor Y 7→ X⊗Y preserves

countable colimits. Then the forgetful functor CAlg(C) → C admits a left adjoint, which is given

informally by the formula

C 7→
∐
n≥0

Symn(C).

The following observation allows us to reformulate Propositions 3.1.3.2 and 3.1.3.3 in terms of

the theory of operadic left Kan extensions developed in §3.1.2:

Remark 3.1.3.15. Let q : C⊗ → O⊗, A⊗
i→ B⊗

j→ O⊗, θ : AlgB /O(C) → AlgA /O(C), and

f : F → θ(F ′) be as in Definition 3.1.3.1. The maps f , F , and F ′ determine a map

h : (A⊗×∆1)
∐

A⊗×{1}

B⊗ → C⊗×∆1.

Choose a factorization of h as a composition

(A⊗×∆1)
∐

A⊗×{1}

B⊗
h′→M⊗

h′′→ C⊗×∆1

where h′ is a categorical equivalence and M⊗ is an ∞-category; we note that the composite map

M⊗ → N(Fin∗)×∆1 is exhibits M⊗ as a correspondence of ∞-operads. Unwinding the definitions,

we see that f exhibits F ′ as a q-free B-algebra generated by F if and only if the map h′′ is an

operadic q-left Kan extension.
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We will also need the following general observation concerning operadic left Kan extensions:

Lemma 3.1.3.16. Let M⊗ → N(Fin∗)×∆1 be a correspondence between ∞-operads A⊗ and B⊗,

and let q : C⊗ → O⊗ be a fibration of ∞-operads. Suppose that n > 0 and we are given a diagram

(A⊗×∆n)
∐

A⊗× ∂∆n(M⊗× ∂∆n)
f0 //

��

C⊗

��
M⊗×∆n //

f

55

O⊗

where f is a map of generalized ∞-operads, the restriction of f0 to A⊗×∆n is a map of generalized

∞-operads, the restriction of f0 to M⊗×σ is a map of generalized ∞-operads for every simplex

σ ⊆ ∂∆n, and the restriction of f0 to M⊗×{0} is an operadic q-left Kan extension. Then there

exists a functor f as indicated in the diagram, which is a map of generalized ∞-operads.

Proof. Let K(0) = (∆n×{0})
∐
∂∆n×{0}(∂∆n×∆1), which we identify with a simplicial subset of

∆n ×∆1. We define a sequence of simplicial subsets

K(0) ⊆ K(1) ⊆ . . . ⊆ K(n+ 1) = ∆n ×∆1

so that each K(i + 1) is obtained from K(i) by adjoining the image of the simplex σi : ∆n+1 →
∆n ×∆1 which is given on vertices by the formula

σi(j) =

{
(j, 0) if j ≤ n− i
(j − 1, 1) otherwise.

We construct a compatible family of maps fi : K(i)×∆1 M⊗ → C⊗ extending f0 using induction on

i. Assuming fi has been constructed, to build fi+1 it suffices to solve the lifting problem presented

in the following diagram:

Λn+1
n−i ×∆1 M⊗

j //

��

C⊗

��
∆n+1 ×∆1 M⊗ //

88

O⊗ .

If i < n, then Lemma 2.4.4.6 guarantees that j is a categorical equivalence, so the dotted arrow

exists by virtue of the fact that q is a categorical fibration. If i = n, then the lifting problem admits

a solution by Theorem 3.1.2.3.

Notation 3.1.3.17. Let q : C⊗ → O⊗ be a fibration of ∞-operads, let M⊗ → N(Fin∗) × ∆1 be

a correspondence between ∞-operads, and suppose we are given a map of generalized ∞-operads

M⊗ → O⊗. We let AlgM /O(C) denote the full subcategory of FunO⊗(M⊗,C⊗) spanned by the maps

of generalized ∞-operads.
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We are now ready to give the proofs of Proposition 3.1.3.2 and 3.1.3.3.

Proof of Proposition 3.1.3.2. The triple (F, F ′, f) determines a map h : (A⊗×∆1)
∐

A⊗×{1}B
⊗ →

C⊗×∆1. Choose a factorization of h as a composition

(A⊗×∆1)
∐

A⊗×{1}

B⊗
h′→M⊗

h′′→ C⊗×∆1

where h′ is a categorical equivalence and M⊗ is a correspondence of ∞-operads from A⊗ to B⊗.

Let Alg′M /O(C) denote the full subcategory of AlgM /O(C) spanned by the functors M⊗ → C⊗ which

are operadic q-left Kan extensions, and let Alg′′M /O(C) denote the full subcategory of AlgM /O(C)

spanned by those functors which are q-right Kan extensions of their restrictions to B⊗. Proposi-

tion HTT.4.3.2.15 guarantees that the restriction map Alg′′M /O(C) → AlgB /O(C) is a trivial Kan

fibration; let s : AlgB /O(C)→ Alg′′M /O(C) be a section. We observe that the functor θ is equivalent

to the composition of s with the restriction map AlgM /O(C) → AlgA /O(C). Let F ∈ AlgM /O(C)

be the object determined by h′′ so that we have a homotopy commutative diagram

MapAlgM /O(C)(F , s(F
′′))

β

**β′tt
MapAlgB /O(C)(F

′, F ′′) //MapAlgA /O(C)(F, s(F
′′)|A⊗);

where γ can be identified with the bottom horizontal map. By the two-out-of-three property, it

will suffice to show that β and β′ are trivial Kan fibrations. For the map β, this follows from the

observation that s(F ′′) is a q-right Kan extension of F ′′. For the map β′, we apply Lemma 3.1.3.16

(together with the observation that F is an operadic q-left Kan extension, by virtue of Remark

3.1.3.15).

Proof of Proposition 3.1.3.3. The implication (1) ⇒ (2) is obvious. For the converse, we use the

small object argument to choose a factorization of the map h : (A⊗×∆1)
∐

A⊗×{1}B
⊗ → O⊗×∆1

as a composition

(A⊗×∆1)
∐

A⊗×{1}

B⊗
h′→M⊗

h′′→ O⊗×∆1

where h′ is inner anodyne and M⊗ is a correspondence of ∞-operads from A⊗ to B⊗. Using

assumption (2) and Theorem 3.1.2.3, we can solve the lifting problem depicted in the diagram

A⊗

��

// C⊗

��
M⊗ //

G

==

O⊗

.
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in such a way that G is an operadic q-left Kan extension. Composing G with h′, we obtain an object

F ′ ∈ AlgB /O(C) and a natural transformation f : F → θ(F ′). It follows from Remark 3.1.3.15 that

f exhibits F ′ as a q-free B-algebra generated by F .

3.1.4 Transitivity of Operadic Left Kan Extensions

Our goal in this section is to prove the following transitivity formula for operadic left Kan extensions:

Theorem 3.1.4.1. Let M⊗ → ∆2×N(Fin∗) be a ∆2-family of∞-operads (Definition 2.3.2.10). Let

q : C⊗ → D⊗ be a fibration of ∞-operads, and let A : M⊗ → C⊗ be a map of generalized ∞-operads.

Assume that A|(M⊗×∆2∆{0,1}) and A|(M⊗×∆2∆{1,2}) are operadic q-left Kan extensions, and that

the map M⊗ → ∆2 is a flat categorical fibration (see Definition B.3.8). Then A|(M⊗×∆2∆{0,2})

is an operadic q-left Kan extension.

Theorem 3.1.4.1 has the following consequence:

Corollary 3.1.4.2. Let M⊗ → ∆2 × N(Fin∗) be a ∆2-family of ∞-operads, q : C⊗ → N(Fin∗) a

symmetric monoidal ∞-category, and κ an uncountable regular cardinal. Assume that:

(i) The ∞-category M⊗ is essentially κ-small.

(ii) The ∞-category C admits κ-small colimits, and the tensor product on C preserves κ-small

colimits separately in each variable.

(iii) The projection map M⊗ → ∆2 is a flat categorical fibration.

For i ∈ {0, 1, 2}, let M⊗i denote the fiber M⊗×∆2{i}. Let f0,1 : AlgM0
(C) → AlgM1

(C), f1,2 :

AlgM1
(C) → AlgM2

(C), and f0,2 : AlgM0
(C) → AlgM2

(C) be the functors given by operadic q-left

Kan extension (see below). Then there is a canonical equivalence of functors f0,2 ' f1,2 ◦ f0,1.

Proof. For 0 ≤ i ≤ j ≤ 2, let Algi,j(C) denote the full subcategory of FunN(Fin∗)(M
⊗×∆2∆{i,j},C⊗)

spanned by those∞-operad family maps which are operadic q-left Kan extensions, where q : C⊗ →
N(Fin∗) denotes the projection. Using Lemma 3.1.3.16, Theorem 3.1.2.3, and Proposition 3.1.1.20,

we see that conditions (i) and (ii) guarantee that the restriction map r : Algi,j(C) → AlgMi
(C) is

a trivial Kan fibration. The map fi,j is defined to be the composition

AlgMi
(C)

s→ Algi,j(C)→ AlgMj
(C),

where s is a section of r. Consequently, the composition f1,2 ◦ f0,1 can be defined as a composition

AlgM0
(C)

s′→ Alg0,1(C)×AlgM1
(C) Alg1,2(C)→ AlgM2

(C),

where s′ is a section of the trivial Kan fibration Alg0,1(C)×AlgM1
(C) Alg1,2(C)→ AlgM0

(C).
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Let Alg0,1,2(C) denote the full subcategory of FunN(Fin∗)(M
⊗,C⊗) spanned by the ∞-operad

family maps whose restrictions to M⊗×∆2∆{0,1} and M⊗×∆2∆{1,2} are operadic q-left Kan exten-

sions. Condition (iii) guarantees that the inclusion M⊗×∆2Λ2
1 ⊆M⊗ is a categorical equivalence,

so that the restriction maps

FunN(Fin∗)(M
⊗,C⊗)→ FunN(Fin∗)(M

⊗×∆2Λ2
1,C
⊗)

Alg0,1,2(C)→ Alg0,1(C)×AlgM1
(C) Alg1,2(C)

are trivial Kan fibrations. It follows that the restriction map r′′ : Alg0,1,2(C)→ AlgM0
(C) is a trivial

Kan fibration admitting a section s′′, and that f1,2 ◦ f0,1 can be identified with the composition

AlgM0
(C)

s′′→ Alg0,1,2(C)→ AlgM2
(C).

Using Theorem 3.1.4.1, we deduce that the restriction map Alg0,1,2(C) → AlgM2
(C) factors as

a composition

Alg0,1,2(C)
θ→ Alg0,2(C)

θ′→ AlgM2
(C).

The composition θ ◦ s′′ is a section of the trivial Kan fibration Alg0,2(C)→ AlgM0
(C), so that f0,2

can be identified with the composition θ′ ◦ (θ ◦ s′′) ' f1,2 ◦ f0,1 as desired.

The proof of Theorem 3.1.4.1 rests on a more basic transitivity property of operadic colimit

diagrams. To state this property, we need to introduce a bit of terminology. Let q : C⊗ → D⊗

be a fibration of ∞-operads, and let p : K � ∆0 → C⊗ be a map of simplicial sets which carries

each edge of K � ∆0 to an active morphism in C⊗. Since the map K � ∆0 → K. is a categorical

equivalence (Proposition HTT.4.2.1.2 ), there exists a map p′ : K. → C⊗ such that p is homotopic

to the composition K �∆0 → K. p′→ C⊗. Moreover, the map p′ is unique up to homotopy. We will

say that p is a (weak) operadic q-colimit diagram if p′ is a (weak) operadic q-colimit diagram, in

the sense of Definition 3.1.1.2.

Lemma 3.1.4.3. Let X → S be a coCartesian fibration of simplicial sets, and let q : C⊗ → D⊗ be

a fibration of ∞-operads. Let

θ : (X �S S) = (X ×∆1)
∐

X×{1}

S → C⊗

be a map satisfying the following conditions:

(i) The map θ carries every edge in X �S S to an active morphism in C⊗.

(ii) For every vertex s ∈ S, the induced map θs : Xs � ∆0 → C⊗ is a weak operadic q-colimit

diagram.
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Let θ0 = θ|X. Let Cact
θ/ denote the full subcategory of C⊗θ/×C⊗ C spanned by those objects which

correspond to maps θ : (X �S S). → C⊗ which carry every edge of (X �S S). to an inert morphism

of C⊗, and define Cact
θ0/

, Dact
qθ/, and Dact

qθ0/
similarly. Then:

(1) The map Cact
θ/ → Cact

θ0/
×Dact

qθ0/
Dact
qθ/ is a trivial Kan fibration.

(2) Let θ : (X �S S). → C⊗ be an extension of θ which carries each edge of (X �S S). to an active

morphism in C⊗. Then θ is a weak operadic q-colimit diagram if and only if θ0 = θ|X. is a

weak operadic q-colimit diagram.

(3) Assume that each θs is an operadic q-colimit diagram, and let θ be as in (2). Then θ is an

operadic q-colimit diagram if and only if θ0 is an operadic q-colimit diagram.

Proof. Assertion (2) follows immediately from (1), and assertion (3) follows from (2) after replacing

θ by the composite functor

X �S S
θ−→ C⊗

⊕Y−→ C⊗,

where Y denotes an arbitrary object of C⊗. It will therefore suffice to prove (1). For every map of

simplicial sets K → S, let θK denote the induced map X �SK → C⊗. We will prove more generally

that for K ′ ⊆ K, the induced map

ψK′,K : Cact
θK/
→ Cact

θK′/
×Dact

qθK′/
Dact
qθK/

is a trivial Kan fibration. We proceed by induction on the (possibly infinite) dimension n of K.

If K is empty, the result is obvious. Otherwise, working simplex-by-simplex, we can assume that

K is obtained from K ′ by adjoining a single nondegenerate m-simplex σ whose boundary already

belongs to K ′. Replacing K by σ, we may assume that K = ∆m and K ′ = ∂∆m. If m = 0, then

the desired result follows from assumption (ii). Assume therefore that m > 0.

Because θK′,K is clearly a categorical fibration (even a left fibration), to prove that θK′,K is a

trivial Kan fibration it suffices to show that θK′,K is a categorical equivalence. Since m ≤ n, K ′

has dimension < n, so the inductive hypothesis guarantees that ψ{m},K′ is a trivial Kan fibration.

The map ψ{m},K is a composition of ψK′,K with a pullback of ψ{m},K′ . Using a two-out-of-three

argument, we are reduced to proving that ψ{m},K is a categorical equivalence. For this, it suffices

to show that the inclusion f : X �S {m} → X �S ∆m is left cofinal.

Let X ′ = X ×S ∆m. The map f is a pushout of the inclusion

f ′ : X ′
∐
X′m

(X ′m � {m}) ↪→ X ′ �∆m ∆m.
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It will therefore suffice to show that f ′ is left cofinal. We have a commutative diagram

{m} f ′′ //

g

��

∆m

g′′

��

X ′m � {m}

g′

��
X ′

∐
X′m

(X ′m � {m})
f ′ // X ′ �∆m ∆m.

The map g′′ is a pushout of the inclusion X ′ × {1} ⊆ X ′ ×∆1, and therefore left cofinal; the same

argument shows that g is left cofinal. The map f ′′ is obviously left cofinal. The map g′ is a pushout

of the inclusion X ′m ⊆ X ′, which is left cofinal because {m} is a final object of ∆m and the map

X ′ → ∆m is a coCartesian fibration. It now follows from Proposition HTT.4.1.1.3 that f ′ is left

cofinal, as required.

Proof of Theorem 3.1.4.1. Fix an object Z ∈ M⊗2 , and let Z denote the full subcategory of M⊗/Z
whose objects are active morphisms X → Z where X ∈M⊗0 . We wish to prove that the composite

map

φ : Z. → (M⊗/Z). →M⊗
A→ C⊗

is an operadic q-colimit diagram. Let Z denote the subcategory of Fun(∆1,M⊗/Z) whose objects are

diagrams of active morphisms

Y

��
X

>>

// Z

in M⊗ such that X ∈M⊗0 and Y ∈M⊗1 . Evaluation at {0} induces a Cartesian fibration ψ : Z→ Z.

Let Z ′ be an object of Z, corresponding to an active morphism X → Z in M⊗. Then the fiber

ψ−1{Z ′} is a localization of the∞-category (M⊗/Z)X/, which is equivalent to (M⊗)X//Z and therefore

weakly contractible (since M⊗ → ∆2 is flat). Note that the map ψ′ : Z ×Z ZZ′/ → ZZ′/ is a

Cartesian fibration (Proposition HTT.2.4.3.2 ). Since ZZ′/ has an initial object idZ′ , the weakly

contractible simplicial set ψ−1{Z ′} ' ψ′−1{idZ′} is weakly homotopy equivalent to Z ×Z ZZ′/.

Applying Theorem HTT.4.1.3.1 , we deduce that ψ is left cofinal. Consequently, it will suffice to

show that φ ◦ ψ : Z
. → C⊗ is an operadic q-colimit diagram.

Let Y denote the full subcategory of M⊗/Z spanned by active morphisms Y → Z where Y ∈M⊗1 .

Evaluation at {1} induces a coCartesian fibration ρ : Z→ Y. We observe that there is a canonical

map Z �Y Y→M⊗/Z , which determines a map

θ : (Z �Y Y). → C⊗
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extending φ ◦ ψ. Fix an object Y ′ ∈ Y, corresponding to an active morphism Y → Z in M⊗. Then

θ induces a map θY ′ : ρ−1{Y ′} � ∆0 → C⊗. We claim that θY ′ is an operadic q-colimit diagram.

To prove this, let X(Y ) denote the full subcategory of (M⊗)/Y spanned by the active morphisms

X → Y , and define X′(Y ) ⊆ (M⊗)/Y similarly. The map θY ′ factors through a map

θ′Y ′ : X(Y ) �∆0 → C⊗ .

Since M⊗/Z →M⊗ is a left fibration, the map ρ−1{Y ′} → X(Y ) is a trivial Kan fibration; it therefore

suffices to show that θ′Y ′ is an operadic q-colimit diagram. Since the evident map X′(Y ) → X(Y )

is a categorical equivalence (Proposition HTT.4.2.1.5 ), it suffices to show that the induced map

X′(Y ) �∆0 → C⊗ is an operadic q-colimit diagram, which is equivalent to the requirement that the

composite map

X′(Y ). → (M⊗/Y ). →M⊗ → C⊗

is an operadic q-colimit diagram. This follows from our assumption that A|(M⊗×∆2∆{0,1}) is an

operadic q-left Kan extension.

Since A|(M⊗×∆2∆{0,1}), the restriction of θ to Y. is an operadic q-colimit diagram. The

inclusion Y→ Z �Y Y is a pushout of the inclusion Z× {1} ⊆ Z×∆1, and therefore left cofinal. It

follows that θ itself is an operadic q-colimit diagram. Invoking Lemma 3.1.4.3, we conclude that

φ ◦ ψ is an operadic q-colimit diagram, as desired.

3.2 Limits and Colimits of Algebras

Let C⊗ be a symmetric monoidal ∞-category and O⊗ an arbitrary ∞-operad. In §2.1.3, we intro-

duced the ∞-category AlgO(C) of O-algebra objects of C. Our goal in this section is to study these

∞-categories in more detail. In particular, we will study conditions which guarantee the existence

(and allow for the computation of) limits and colimits in AlgO(C). We begin in §3.2.2 with the

study of limits in AlgO(C). This is fairly straightforward: the basic result is that limits in AlgO(C)

can usually be computed in the underlying ∞-category C (Proposition 3.2.2.1).

The study of colimits is much more involved. First of all, we do not expect colimits in AlgO(C)

to be computed in the underlying ∞-category C in general. This is often true for colimits of a

special type (for example, colimits of diagrams indexed by sifted simplicial sets), provided that the

tensor product functor ⊗ : C×C → C behaves well with respect to colimits. The case of general

colimits is more difficult. For example, if A and B are objects of AlgO(C), then it is in general

difficult to describe the coproduct A
∐
B explicitly. We will sidestep this issue using the theory of

free algebras developed in §3.1. Though it is difficult to construct colimits of algebras in general, it

is often much easier to construct colimits of free algebras, since the free algebra functor preserves

colimits (being a left adjoint). In §3.2.3 we will exploit this observation to construct general colimits

in AlgO(C): the basic idea is to resolve arbitrary algebras with free algebras. Although this strategy

leads to a fairly general existence result (Corollary 3.2.3.3), it is somewhat unsatisfying because it
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does not usually give a direct description of the colimit of a diagram K → AlgO(C). However, we

can often say more for specific choices of the∞-operad O⊗. For example, if O⊗ is the commutative

∞-operad Comm⊗ = N(Fin∗), then it is easy to construct finite coproducts in the ∞-category

AlgO(C) = CAlg(C): these are simply given by tensor products in the underlying ∞-category

C. We will prove this in §3.2.4 (Proposition 3.2.4.7), after giving a general discussion of tensor

products of algebras. For coproducts of empty collections, we can be more general: there is an easy

construction for initial objects of AlgO(C) whenever the ∞-operad O⊗ is unital. We will describe

this construction in §3.2.1.

3.2.1 Unit Objects and Trivial Algebras

Let O⊗ be a unital ∞-operad, and let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads. For

each object X ∈ O, there is an essentially unique morphism 0 → X (where 0 denotes the zero

object of O⊗), which determines a functor C⊗0 → CX . Since C⊗0 is a contractible Kan complex, we

can identify this functor with an object of 1X ∈ CX . We will refer to the object 1X as a unit object

of CX . Our goal in this section is to study the basic features of these unit objects. We begin by

formulating a slightly more general definition, which makes sense even if we do not assume that p

is a coCartesian fibration.

Definition 3.2.1.1. Let p : C⊗ → O⊗ be a fibration of∞-operads, let X ∈ O⊗, and let f : C0 → 1X
be a morphism in C⊗, where 1X ∈ CX . We will say that f exhibits 1X as an X-unit object if the

following conditions are satisfied:

(1) The object C0 belongs to C⊗〈0〉.

(2) The morphism f is given by an operadic p-colimit diagram ∆1 ' (∆0). → C⊗.

More generally, we will say that an arbitrary morphism C0 → C in C⊗ exhibits C as a unit object

if, for every inert morphism C → C ′ with C ′ ∈ C, the composite map C0 → C ′ exhibits C ′ as a

p(C ′)-unit object.

Suppose that O⊗ is a unital ∞-operad. We will say that a fibration of ∞-operads C⊗ → O⊗

has unit objects if, for every object X ∈ O⊗, there exists a morphism f : C0 → 1X in C⊗ which

exhibits 1X as an X-unit object.

Remark 3.2.1.2. The terminology of Definition 3.2.1.1 is slightly abusive: the condition that a

morphism f : C0 → C exhibits C as a unit object of C⊗ depends not only on the ∞-operad C⊗,

but also on the ∞-operad fibration C⊗ → O⊗.

Remark 3.2.1.3. Let p : C⊗ → O⊗ be a fibration of ∞-operads. If X ∈ O and f : C0 → C is a

morphism in C⊗ which exhibits C as a unit object, then f is p-coCartesian: this follows immediately

from Proposition 3.1.1.10.
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Remark 3.2.1.4. Let p : C⊗ → O⊗ be a fibration of ∞-operads, and assume that O⊗ is unital.

Let X denote the full subcategory of Fun(∆1,C⊗) spanned by those morphisms f : C0 → C which

exhibit C as a unit object. Then the composite map

φ : X ⊆ Fun(∆1,C⊗)→ Fun({1},C⊗)
p→ O⊗

induces a trivial Kan fibration onto a full subcategory of O⊗. To see this, we let X′ denote the full

subcategory of Fun(∆1,C⊗) spanned by those morphisms f : C0 → C which are p-coCartesian and

satisfy C0 ∈ C⊗〈0〉. Proposition HTT.4.3.2.15 implies that the map

X′ → C⊗〈0〉×Fun({0},O⊗) Fun(∆1,O⊗)

is a trivial Kan fibration onto a full subcategory of the fiber product X′′ = C⊗〈0〉×Fun({0},O⊗) Fun(∆1,O⊗).

Since C⊗〈0〉 → O⊗〈0〉 is a categorical fibration between contractible Kan complexes, it is a trivial Kan

fibration; it follows that the induced map X′′ → O⊗〈0〉×Fun({0},O⊗) Fun(∆1,O⊗) is also a trivial Kan

fibration. The target of this map can be identified with the ∞-category O⊗∗ of pointed objects of

O⊗, and the forgetful functor O⊗∗ → O⊗ is a trivial Kan fibration because O⊗ is unital. The desired

result now follows by observing that φ is given by the composition

X ⊆ X′ → X′′ → O⊗∗ → O⊗ .

We can summarize our discussion as follows: if f : C0 → C is a morphism in C⊗ which exhibits

C as a unit object, then f is determined (up to canonical equivalence) by the object p(C) ∈ O⊗. We

observe that C⊗ → O⊗ has unit objects if and only if the functor φ above is essentially surjective.

In this case the inclusion X → X′ must also be essentially surjective: in other words, a morphism

f : C0 → C exhibits C as a unit object if and only if f is p-coCartesian and C0 ∈ C⊗〈0〉.

Remark 3.2.1.5. It is easy to see that the essential image of the functor φ of Remark 3.2.1.4 is

stable under the concatenation functor ⊕ of Remark 2.2.4.6. Consequently, to show that a fibration

of ∞-operads C⊗ → O⊗ has unit objects, it suffices to show that for every object X ∈ O there

exists a map f : C0 → 1X which exhibits 1X as an X-unit object of C.

Example 3.2.1.6. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, where O⊗ is unital.

Then p has unit objects. This follows immediately from Proposition 3.1.1.20 and Remark 3.2.1.5.

Definition 3.2.1.7. Let p : C⊗ → O⊗ be a fibration of ∞-operads, and assume that O⊗ is unital.

We will say that an algebra object A ∈ Alg/O(C) is trivial if, for every object X ∈ O⊗, the induced

map A(0)→ A(X) exhibits A(X) as a unit object; here 0 denotes the zero object of O⊗.

When trivial algebra objects exist, they are precisely the initial objects of Alg/O(C):

Proposition 3.2.1.8. Let p : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is unital. Assume

that p has unit objects. The following conditions on a O-algebra object A ∈ Alg/O(C) are equivalent:
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(1) The object A is an initial object of Alg/O(C).

(2) The functor A is a p-left Kan extension of A|O⊗〈0〉.

(3) The algebra object A is trivial.

Corollary 3.2.1.9. Let C⊗ be a symmetric monoidal ∞-category. Then the ∞-category CAlg(C)

has an initial object. Moreover, a commutative algebra object A of C is an initial object of CAlg(C)

if and only if the unit map 1→ A is an equivalence in C.

The proof of Proposition 3.2.1.8 depends on the following:

Lemma 3.2.1.10. Let p : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is unital. The following

conditions are equivalent:

(1) The fibration p has unit objects.

(2) There exists a trivial O-algebra object A ∈ Alg/O(C).

Proof. The implication (2) ⇒ (1) follows immediately from Remark 3.2.1.5. Conversely, suppose

that (1) is satisfied. Choose an arbitrary section s of the trivial Kan fibration C⊗〈0〉 → O⊗〈0〉. Since p

has units, Lemma HTT.4.3.2.13 (and Remark 3.2.1.3) imply that s admits a p-left Kan extension

A : O⊗ → C⊗. For every morphism f : X → Y in O⊗, we have a commutative diagram

X
f

  
0

g
??

h // Y

in O⊗. Since A(g) and A(h) are p-coCartesian morphisms of C⊗, Proposition HTT.2.4.1.7 implies

that A(f) is p-coCartesian. It follows in particular that A preserves inert morphisms, so that

A ∈ Alg/O(C). Using Remark 3.2.1.4, we conclude that A is trivial.

Proof of Proposition 3.2.1.8. The implication (2)⇒ (3) follows from the proof of Lemma 3.2.1.10,

and (3) ⇒ (2) follows immediately from Remark 3.2.1.3. The implication (2) ⇒ (1) follows from

Proposition HTT.4.3.2.17 (since the∞-category of sections of the trivial Kan fibration C⊗〈0〉 → O⊗〈0〉
is a contractible Kan complex). The reverse implication (1) ⇒ (2) follows from the uniqueness

of initial objects up to equivalence, since Lemma 3.2.1.10 guarantees the existence of an object

A ∈ Alg/O(C) satisfying (3) (and therefore (2) and (1) as well).

3.2.2 Limits of Algebras

Let C be a symmetric monoidal category, and let A and B be commutative algebra objects of C.

Assume that the objects A,B ∈ C admit a product A×B ∈ C. The diagram

B ← B ⊗B ← (A×B)⊗ (A×B)→ A⊗A→ A
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determines a multiplication map (A × B) ⊗ (A × B) → A × B. This multiplication determines a

commutative algebra structure on A × B. In fact, A × B can be identified with the product of

A and B both in the underlying category C and in the category CAlg(C) of commutative algebra

objects of C.

In this section, we will generalize the above observation in several ways:

(a) We work in the setting of ∞-categories, rather than ordinary categories.

(b) In place of commutative algebra objects, we will study O-algebra objects for an arbitrary

∞-operad O⊗.

(c) We work with limits indexed by arbitrary diagrams, rather than merely Cartesian products.

(d) Rather than considering limits in a fixed symmetric monoidal ∞-category C, we consider

relative limits with respect to a fibration of ∞-operads C⊗ → D⊗.

We can state our main result as follows:

Proposition 3.2.2.1. Let O⊗ be an ∞-operad, let p : C⊗ → D⊗ be a fibration of ∞-operads, and

suppose we are given a commutative diagram

K
f //

��

AlgO(C)

q

��
K/ g // AlgO(D).

Assume that for every object X ∈ O, the induced diagram

K
fX //

��

C

��
K/ //

fX

==

D

admits an extension as indicated, where fX is a p-limit diagram. Then:

(1) There exists an extension f : K/ → AlgO(C) of f which is compatible with g, such that f is

a q-limit diagram.

(2) Let f : K/ → AlgO(C) be an arbitrary extension of f which is compatible with g. Then f is

a q-limit diagram if and only if for every object X ∈ O, the induced map fX : K/ → C is a

p-limit diagram.

Warning 3.2.2.2. Let f : K/ → AlgO(C) be as in part (2) of Proposition 3.2.2.1, and let X ∈ O.

Although the map fX takes values in C ⊆ C⊗, the condition that fX be a p-limit diagram is

generally stronger than the condition that fX be a p0-limit diagram, where p0 : C→ D denotes the

restriction of p.
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In spite of Warning 3.2.2.2, the criterion of Proposition 3.2.2.1 can be simplified if we are willing

to restrict our attention to the setting of ∞-operads admitting a coCartesian fibration to O⊗.

Corollary 3.2.2.3. Suppose we are given a commutative diagram

C⊗
p //

!!

D⊗

}}
O⊗

where p is a fibration of ∞-operads and the vertical maps are coCartesian fibrations of ∞-operads.

Suppose given a commutative diagram

K
f //

��

Alg/O(C)

q

��
K/ g // Alg/O(D)

such that, for every object X ∈ O, the induced diagram

K
fX //

��

CX

pX
��

K/ //

fX
==

DX

admits an extension as indicated, where fX is a pX-limit diagram. Then:

(1) There exists an extension f : K/ → Alg/O(C) of f which is compatible with g, such that f is

a q-limit diagram.

(2) Let f : K/ → Alg/O(C) be an arbitrary extension of f which is compatible with g. Then f is a

q-limit diagram if and only if for every object X ∈ O, the induced map K/ → C is a pX-limit

diagram.

Proof. Combine Proposition 3.2.2.1 with Corollary HTT.4.3.1.15 .

Passing to the case D⊗ = O⊗, we obtain the following result:

Corollary 3.2.2.4. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, and let q : K →
Alg/O(C) be a diagram. Suppose that, for every object X ∈ O, the induced diagram qX : K → CX

admits a limit. Then:

(1) The diagram q : K → Alg/O(C) admits a limit.
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(2) An extension q : K/ → Alg/O(C) of q is a limit diagram if and only if the induced map

qX : K/ → CX is a limit diagram for each X ∈ O.

Corollary 3.2.2.5. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads and let K be a

simplicial set. Suppose that, for every object X ∈ O⊗, the fiber CX admits K-indexed limits. Then:

(1) The ∞-category Alg/O(C) admits K-indexed limits.

(2) An arbitrary diagram K/ → Alg/O(C) is a limit diagram if and only the composite diagram

K/ → Alg/O(C)→ CX

is a limit, for each X ∈ O.

In particular, for each X ∈ O the evaluation functor Alg/O(C)→ CX preserves K-indexed limits.

We now turn to the proof of Proposition 3.2.2.1. We need some preliminaries.

Lemma 3.2.2.6. Let p : C⊗ → O⊗ be a fibration of ∞-operads, and let γ : A→ A′ be a morphism

in Alg/O(C). The following conditions are equivalent:

(1) The morphism γ is an equivalence in Alg/O(C).

(2) For every object X ∈ O, the morphism γ(X) : A(X)→ A′(X) is an equivalence in C.

Proof. The implication (1)⇒ (2) is obvious. Conversely, suppose that (2) is satisfied. Let X ∈ O⊗〈n〉;

we wish to prove that γ(X) is an equivalence in C⊗〈n〉. Since C⊗ is a symmetric monoidal∞-category,

it suffices to show that for every 1 ≤ j ≤ n, the image of γ(X) under the functor ρj! : C⊗〈n〉 → C

is an equivalence. Since A and A′ are maps of ∞-operads, this morphism can be identified with

γ(Xj) where Xj is the image of X under the corresponding functor O⊗〈n〉 → O. The desired result

now follows immediately from (2).

Lemma 3.2.2.7. Let p : D→ C be a right fibration of∞-categories, let C0 ⊆ C be a full subcategory,

and let D0 = C0×CD. Let q : X → S be a categorical fibration of simplicial sets, and let F : C→ X

be a map which is a q-left Kan extension of F |C0. Then F ◦p is a q-left Kan extension of F ◦p|D0.

Proof. Let D be an object of D, C = p(D), and define

C0
/C = C0×C C/C D0

/D = D0×DD/D .

We wish to show that the composition

(D0
/D). → (C0

/C). → C
F→ X

is a q-colimit diagram. Since F is a q-left Kan extension of F |C0, it will suffice to show that the map

φ0 : D0
/D → C0

/C is a trivial Kan fibration. The map φ0 is a pullback of the map φ : D/D → C/C ,

which is a trivial Kan fibration by Proposition HTT.2.1.2.5 .
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Lemma 3.2.2.8. Let p : X → S and q : Y → Z be maps of simplicial sets. Assume that q is a

categorical fibration, and that p is a flat categorical fibration.

Define new simplicial sets Y ′ and Z ′ equipped with maps Y ′ → S, Z ′ → S via the formulas

HomS(K,Y ′) ' Hom(X ×S K,Y )

HomS(K,Z ′) ' Hom(X ×S K,Z).

Let C′ be an ∞-category equipped with a functor f : C′ → Y ′, and let C be a full subcategory of C′.

Then:

(1) Composition with q determines a categorical fibration q′ : Y ′ → Z ′.

(2) Let F : X ×S C′ → Y be the map classified by f , and suppose that F is a q-left Kan extension

of F |X ×S C. Then f is a q′-left Kan extension of f |C.

Proof. We first prove (1). We wish to show that q′ has the right lifting property with respect

to every inclusion i : A → B of simplicial sets which is a categorical equivalence. For this, it

suffices to show that q has the right lifting property with respect to every inclusion of the form

i′ : X ×S A→ X ×S B. Since q is a categorical fibration, it suffices to prove that i′ is a categorical

equivalence, which follows from Corollary B.3.15.

We now prove (2). Let C be an object of C′, and let C/C denote the fiber product C×C′ C
′
/C .

We wish to show that the composition

C./C → C′
f→ Y ′

is a q′-colimit diagram. Replacing C ⊆ C′ by the inclusion C/C ⊆ C./C (and applying Lemma

3.2.2.7), we can reduce to the case C′ = C..

Let n > 0, and suppose we are given a diagram

C ? ∂∆n f ′ //� _

��

Y ′

q′

��
C ?∆n g //

::

Z ′,

where f ′|C ?{0} coincides with f . We wish to show that there exists a dotted arrow, as indicated

in the diagram. Composing g with the map Z ′ → S, we obtain a map C ?∆n → S. Let D denote

the fiber product X ×S (C ?∆n), and let D0 = X ×S (C ? ∂∆n). Unwinding the definitions, we are

reduced to solving a lifting problem depicted in the diagram

D0
� _

��

F0 // Y

q

��
D

G //

>>

Z.
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Let D′ denote the inverse image of ∆n in D, and let D′∂ = D′×∆n ∂∆n. Let A be the collection

of all (possibly degenerate) simplices of D′ which do not belong to D′∂ . For every nondegenerate

simplex σ : ∆m → D which does not belong to D0, let i be the smallest integer such that σ(i) ∈ D′

and set r(σ) = σ|∆{i,i+1,...,m}. Note that r(σ) is an element of A (though r(σ) may be degenerate).

Choose a well ordering of A with the following property: if σ, τ ∈ A are simplices such that

the dimension of σ is smaller than the dimension of τ , then σ < τ . Let α be the order type of

the well-ordering of A, so we have an order-preserving bijection {β < α} ' A given by β 7→ σβ.

For 0 ≤ β ≤ α, let Dβ denote the simplicial subset of D spanned by D0 together with those

nondegenerate simplices σ such that r(σ) = σγ for some γ < β. Note that when β = 0, this agrees

with our previous definition of D0. We will construct a compatible family of maps Fβ : Dβ → Y

which extend F0 and satisfy q ◦ Fβ = G|Dβ. Taking F = Fα, we obtain a proof of the desired

result.

It remains to construct the maps Fβ. We proceed by induction on β. If β is a limit ordinal, we

take Fβ =
⋃
γ<β Fγ . It therefore suffices to treat the case of successor ordinals. Assume therefore

that Fβ has been defined; we wish to construct the map Fβ+1. Let σ = σβ : ∆m → D′ be the

corresponding simplex. Note that the induced map ∆m → ∆n is surjective, so we automatically

have m > 0. We first treat the case where the simplex σ is nondegenerate. Let E denote the fiber

product D/σ ×C ?∆n C, so that we have a pushout diagram of simplicial sets

E ? ∂ σ //� _

��

Dβ

��
E ?σ // Dβ+1 .

We are therefore reduced to solving the lifting problem depicted in the diagram

E ? ∂ σ� _

��

h // Y

q

��
E ?σ //

;;

Z.

Let h′ denote the restriction of h to E ?{v}, where v is the initial vertex of σ. Our assumption on

F0 guarantees that h′ is a q-colimit diagram, so that the above lifting problem admits a solution.

We now treat the case where the simplex σ is degenerate. In this case, we will prove the

existence of Fβ+1 by showing that the inclusion i : Dβ → Dβ+1 is a categorical equivalence. Let J

be the category whose objects are diagrams

∆m′

σ′

!!
∆m

u

<<

σ // D′
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where u is surjective and m′ < m. Let H : Jop → Set∆ be the functor which carries the above

diagram to the simplicial set D/σ′ ×C ?∆n C. We note that i is a pushout of the inclusion

(lim−→(H) ? σ)
∐

lim−→(H)?∂ σ

(E ? ∂ σ)→ E ?σ.

Consequently, to prove that i is a categorical equivalence, it suffices to show that the diagram

lim−→(H) ? ∂ σ // E ? ∂ σ

��
lim−→(H) ? σ // E ?σ.

We claim that the horizontal arrows in this diagram are categorical equivalences. To prove this,

it suffices to verify that the canonical map j : lim−→(H) → E is a categorical equivalence. Since

H is a projectively cofibrant diagram, it suffices to show that j exhibits E as a homotopy colimit

of H (with respect to the Joyal model structure). Note that the category J has a final object,

corresponding to a diagram in which the map σ′ : ∆m′ → D′ is a nondegenerate simplex of D′.

Consequently, it will suffice to H is weakly equivalent to the constant diagram taking the value E.

In other words, we are reduced to proving that for every diagram

∆m′

σ′

!!
∆m

u

<<

σ // D′

belonging to C, the induced map

D/σ′ ×C ?∆n C→ D/σ ×C ?∆n C

is a categorical equivalence. This is clear, since both sides are equivalent to D/v ×C ?∆n C, where v

is the initial vertex of σ.

Lemma 3.2.2.9. Let p : C→ D be a categorical fibration of∞-categories, let E and K be simplicial

sets, and suppose given a diagram

K × E� _

��

f // C

p

��
K/ × E

f

::

// D .

Suppose further that for each vertex E of E, there exists an extension fE : K/ → C of fE which is

compatible with the above diagram and is a p-limit. Then:
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(1) There exists a map f : K/ × E → C rendering the above diagram commutative, with the

property that for each vertex E of E, the induced map fE : K/ → C is a p-limit diagram.

(2) Let f : K/×E→ C be an arbitrary map which renders the above diagram commutative. Then

f satisfies the condition of (1) if and only if the adjoint map K/ → Fun(E,C) is a pE-limit

diagram, where pE : Fun(E,C)→ Fun(E,D) is given by composition with p.

Proof. Without loss of generality, we may suppose that E and K are ∞-categories. Let ∞ denote

the cone point of K/. For each object E ∈ E, the inclusion K ×{idE} ⊆ K × EE/ ' (K × E)(∞,E)/

is left anodyne. Consequently, f satisfies (1) if and only if f is a p-right Kan extension of f ′. The

existence of f follows from Lemma HTT.4.3.2.13 .

The “only if” direction of (2) follows immediately from Lemma 3.2.2.8. The converse follows

from the uniqueness of limits (up to equivalence).

Proof of Proposition 3.2.2.1. We first establish the following:

(∗) Let h : K/ → C⊗〈n〉 be a diagram, and for 1 ≤ i ≤ n let hi denote the image of h under the

functor ρi! : C⊗〈n〉 → C. If each hi is a p-limit diagram, then h is a p-limit diagram.

To prove (∗), we observe that there are natural transformations h→ hi which together determine

a map H : K/ × 〈n〉◦/ → C⊗. Since the restriction of H to K/ × {i} is a p-limit diagram for

1 ≤ i ≤ n and the restriction of H to {v} × 〈n〉◦/ is a p-limit diagram for all vertices v in K/

(Remark 2.1.2.11), we deduce from Lemma HTT.5.5.2.3 that h is a p-limit diagram as desired.

We now prove the “if” direction of (2). Suppose that f : K/ → AlgO(C) induces a p-limit

diagram fX : K/ → C⊗ for each X ∈ O. We claim that the same assertion holds for each

X ∈ O⊗. To prove this, let 〈n〉 denote the image of X in N(Fin∗), and choose inert morphisms

X → Xi in O⊗ lifting ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n. The image of fX under ρi! can be identified

with fXi , and is therefore a p-limit diagram; the desired result now follows from (∗). Applying

Lemma 3.2.2.9, we deduce that the diagram f is a q′-limit diagram, where q′ denotes the projection

FunN(Fin∗)(O
⊗,C⊗)→ FunN(Fin∗)(O

⊗,D⊗). Passing to the full subcategories

AlgO(C) ⊆ FunN(Fin∗)(O
⊗,C⊗) AlgO(D) ⊆ FunN(Fin∗)(O

⊗,D⊗)

we deduce that f is also a q-limit diagram, as desired.

We now prove (1). Choose a categorical equivalence i : K → K ′, where K ′ is an ∞-category

and i is a monomorphism. Since AlgO(D) is an ∞-category and q is a categorical fibration, we

can assume that f and g factor through compatible maps f ′ : K ′ → AlgO(C) and K ′/ → AlgO(D).

Using Proposition HTT.A.2.3.1 , we deduce that the extension f exists if and only if there is an

analogous extension of f ′. We are therefore free to replace K by K ′ and reduce to the case where

K is an ∞-category. The map f classifies a functor F : K × O⊗ → C⊗ and the map g classifies a

functor G : K/ × O⊗ → C⊗. We first claim:
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(∗′) There exists an extension F : K/ ×O⊗ → C⊗ of F lying over G such that F is a p-right Kan

extension of F .

Let v denote the cone point of K/. According to Lemma HTT.4.3.2.13 , it suffices to show that for

each object X ∈ O⊗, the induced diagram (K × O⊗)(v,X)/ ' K × O⊗X/ → C⊗ can be extended to a

p-limit diagram compatible with G. Since the inclusion K × {idX} ↪→ K × O⊗X/ is right cofinal, it

suffices to show that we can complete the diagram

K
fX //

��

C⊗

��
K/ gX //

fX

==

D⊗

so that fX is a p-limit diagram. Let 〈n〉 denote the image of X in N(Fin∗). Since C⊗ and D⊗ are

∞-operads, we have a homotopy commutative diagram

C⊗〈n〉
//

��

Cn

��
D⊗〈n〉

// Dn

where the horizontal morphisms are categorical equivalences. Using Proposition HTT.A.2.3.1 and

our assumption on f , we deduce that fX admits an extension fX (compatible with gX) whose

images under the functors ρi! are p-limit diagrams in C. It follows from (∗) that fX is a p-limit

diagram, which completes the verification of (∗′). Moreover, the proof shows that an extension F

of F (compatible with G) is a p-right Kan extension if and only if, for each X ∈ O⊗〈n〉, the functor

ρi! : C⊗〈n〉 → C carries F |(K/ × {X}) to a p-limit diagram in C⊗.

Let s : O⊗ → C⊗ be the functor obtained by restricting F to the cone point of K/. Then s

preserves inert morphisms lying over the maps ρi : 〈n〉 → 〈1〉 and is therefore a map of ∞-operads

(Remark 2.1.2.9). It follows that F determines an extension f : K/ → AlgO(C) of f lifting g. The

first part of the proof shows that f is a q-limit diagram, which completes the proof of (1).

We conclude by proving the “only if” direction of (2). Let f be a q-left Kan extension of f

lying over g. The proof of (1) shows that we can choose another q-left Kan extension f
′

of f lying

over g such that f
′
X : K/ → C⊗ is a p-limit diagram for each X ∈ O. It follows that f and f

′
are

equivalent, so that each fX is also a p-limit diagram.

3.2.3 Colimits of Algebras

Let p : C⊗ → O⊗ be a fibration of ∞-operads. Our goal in this section is to construct colimits in

the ∞-category Alg/O(C), given suitable hypotheses on p. Our strategy is as follows: we begin by

constructing sifted colimits in Alg/O(C) (Proposition 3.2.3.1), which are given by forming colimits
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of the underlying objects in C. We will then combine this construction with existence results for

free algebras (see §3.1.3) to deduce the existence of general colimits (Corollary 3.2.3.3).

Our first main result can be stated as follows:

Proposition 3.2.3.1. Let K be a sifted simplicial set and let p : C⊗ → O⊗ be a coCartesian

fibration of ∞-operads which is compatible with K-indexed colimits. Then:

(1) The ∞-category FunO⊗(O⊗,C⊗) of sections of p admits K-indexed colimits.

(2) A map f : K. → FunO⊗(O⊗,C⊗) is a colimit diagram if and only if, for each X ∈ O⊗, the

induced diagram fX : K. → C⊗X is a colimit diagram.

(3) The full subcategories

Fun⊗O (O,C) ⊆ Alg/O(C) ⊆ FunO⊗(O⊗,C⊗)

are stable under K-indexed colimits.

(4) A map f : K. → Alg/O(C) is a colimit diagram if and only if, for each X ∈ O, the induced

diagram fX : K. → CX is a colimit diagram.

We will give the proof of Proposition 3.2.3.1 at the end of this section.

Corollary 3.2.3.2. Let C be a symmetric monoidal ∞-category, and let K be a sifted simplicial

set such that the symmetric monoidal structure on C is compatible with K-indexed colimits. Then:

(1) The ∞-category CAlg(C) admits K-indexed colimits.

(2) The forgetful functor θ : CAlg(C) → C detects K-indexed colimits. More precisely, a map

q : K. → CAlg(C) is a colimit diagram if and only if θ ◦ q is a colimit diagram.

Proof. Apply Proposition 3.2.3.1 in the case where O⊗ is the commutative ∞-operad.

We now treat the case of more general colimits.

Corollary 3.2.3.3. Let κ be an uncountable regular cardinal and let O⊗ be an essentially κ-small

∞-operad. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads which is compatible with

κ-small colimits. Then Alg/O(C) admits κ-small colimits.

Proof. Without loss of generality we may assume that O⊗ is κ-small. In view of Corollary

HTT.4.2.3.11 and Lemma 1.3.3.10, arbitrary κ-small colimits in Alg/O(C) can be built from

κ-small filtered colimits, geometric realizations of simplicial objects, and finite coproducts. Since

Alg/O(C) admits κ-small sifted colimits (Corollary 3.2.3.2), it will suffice to prove that Alg/O(C)

admits finite coproducts.
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According to Example 3.1.3.6, the forgetful functor G : Alg/O(C) → FunO(O,C) admits a left

adjoint which we will denote by F . Let us say that an object of Alg/O(C) is free if it belongs to the

essential image of F . Since FunO(O,C) admits κ-small colimits and F preserves κ-small colimits

(Proposition HTT.5.2.3.5 ), a finite collection of objects {Ai} of Alg/O(C) admits a coproduct

whenever each Ai is free.

We now claim the following:

(∗) For every object A ∈ Alg/O(C), there exists a simplicial object A• of Alg/O(C) such that A

is equivalent to the geometric realization |A•| and each An is free.

This follows from Proposition 4.7.3.14, since the forgetful functor G is conservative (Lemma

3.2.2.6) and commutes with geometric realizations (Corollary 3.2.3.2).

Now let {Ai} be an arbitrary finite collection of objects of Alg/O(C); we wish to prove that

Ai admits a coproduct in Alg/O(C). According to (∗), each Ai can be obtained as the geometric

realization of a simplicial object Ai• of Alg/O(C), where each Ain is free. It follows that the diagrams

Ai• admit a coproduct A• : N(∆op) → Alg/O(C). Using Lemma HTT.5.5.2.3 , we conclude that

a geometric realization of A• (which exists by virtue of Corollary 3.2.3.2) is a coproduct for the

collection Ai.

We next give a criterion for establishing that an∞-category of algebras Alg/O(C) is presentable.

Lemma 3.2.3.4. Let O⊗ be an essentially small ∞-operad, and let p : C⊗ → O⊗ be a coCartesian

fibration of ∞-operads. The following conditions are equivalent:

(1) For each X ∈ O, the fiber CX is accessible, and p is compatible with κ-filtered colimits for κ

sufficiently large.

(2) Each fiber of p is accessible, and for every morphism f : X → Y in O⊗, the associated functor

f! : C⊗X → C⊗Y is accessible.

Proof. The implication (2) ⇒ (1) is obvious. Conversely, suppose that (1) is satisfied. For each

X ∈ O⊗〈m〉, choose inert morphisms X → Xi lying over ρi : 〈m〉 → 〈1〉 for 1 ≤ i ≤ m. Proposition

2.1.2.12 implies that C⊗X is equivalent to the product
∏

1≤i≤m CXi , which is accessible by virtue of

(1) and Lemma HTT.5.4.7.2 . Now suppose that f : X → Y is a morphism in O⊗; we wish to prove

that the functor f! : C⊗X → C⊗Y is accessible. This follows from (1) and Lemma 3.2.3.7.

Corollary 3.2.3.5. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, where O⊗ is

essentially small. Assume that for each X ∈ O, the fiber CX is accessible.

(1) If p is compatible with κ-filtered colimits for κ sufficiently large, Alg/O(C) is an accessible

∞-category.
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(2) Suppose that each fiber CX is presentable and that p is compatible with small colimits. Then

Alg/O(C) is a presentable ∞-category.

In particular, if C is a presentable ∞-category equipped with a symmetric monoidal structure,

and the tensor product ⊗ : C×C→ C preserves colimits separately in each variable, then CAlg(C)

is again presentable.

Proof. Assertion (1) follows from Lemma 3.2.3.4 and Proposition HTT.5.4.7.11 . To prove (2), we

combine (1) with Corollary 3.2.3.3.

We now turn to the proof of Proposition 3.2.3.1. We will need the following generalization of

Proposition HTT.5.5.8.6 :

Lemma 3.2.3.6. Let K be a sifted simplicial set, let {Ci}1≤i≤n be a finite collection of∞-categories

which admit K-indexed colimits, let D be another∞-category which admits K-indexed colimits, and

let F :
∏

1≤i≤n Ci → D be a functor. Suppose that F preserves K-indexed colimits separately in

each variable: that is, if we are given 1 ≤ i ≤ n and objects {Cj ∈ Cj}j 6=i, then the restriction of F

to {C1} × · · · × {Ci−1} × Ci×{Ci+1} × · · · × {Cn} preserves K-indexed colimits. Then F preserves

K-indexed colimits.

Proof. Choose S ⊆ {1, . . . , n}, and consider the following assertion:

(∗S) Fix objects {Ci ∈ Ci}i/∈S . Then the restriction of F to
∏
i∈S Ci×

∏
i/∈S{Ci} preserves K-

indexed colimits.

We will prove (∗S) using induction on the cardinality of S. Taking S = {1, . . . , n}, we can deduce

that F preserves K-indexed colimits and complete the proof.

If S is empty, then (∗S) follows from Corollary HTT.4.4.4.10 , since K is weakly contractible

(Proposition HTT.5.5.8.7 ). If S contains a single element, then (∗S) follows from the assumption

that F preserves K-indexed colimits separately in each variable. We may therefore assume that

S has at least two elements, so we can write S = S′ ∪ S′′ where S′ and S′′ are disjoint nonempty

subsets of S. We now observe that (∗S) follows from (∗S′), (∗S′′), and Proposition HTT.5.5.8.6 .

Lemma 3.2.3.7. Let K be a sifted simplicial set, let O⊗ be an ∞-operad, and let p : C⊗ → O⊗

be a coCartesian fibration of ∞-operads which is compatible with K-indexed colimits (Definition

3.1.1.18). For each morphism f : X → Y in O⊗, the associated functor f! : C⊗X → C⊗Y preserves

K-indexed colimits.

Proof. Factor f as a composition X
f ′→ Z

f ′′→ Y , where f ′ is inert and f ′′ is active. Using Proposition

2.1.2.12, we deduce that C⊗X is equivalent to a product C⊗Z ×C⊗Z′ and that f ′! can be identified with

the projection onto the first factor. Since C⊗Z and C⊗Z′ both admit K-indexed colimits, this projection

preserves K-indexed colimits. We may therefore replace X by Z and thereby reduce to the case

where f is active.
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Let 〈n〉 denote the image of Y in N(Fin∗), and choose inert morphisms gi : Y → Yi lying over

ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n. Applying Proposition 2.1.2.12 again, we deduce that the functors (gi)!

exhibit C⊗Y as equivalent to the product
∏

1≤i≤n C
⊗
Yi

. It will therefore suffice to show that each of

the functors (gi ◦ f)! preserve K-indexed colimits. Replacing Y by Yi, we can reduce to the case

n = 1.

Let 〈m〉 denote the image of X in N(Fin∗) and choose inert morphisms hj : X → Xj lying

over ρj : 〈m〉 → 〈1〉 for 1 ≤ j ≤ m. Invoking Proposition 2.1.2.12 again, we obtain an equivalence

C⊗X '
∏

1≤j≤m C⊗Xi . It will therefore suffice to show that the composite map

φ :
∏

1≤j≤m
C⊗Xi ' C⊗X

f!→ C⊗Y

preserves K-indexed colimits. Since p is compatible with K-indexed colimits, we conclude that φ

preserves K-indexed colimits separately in each variable. Since K is sifted, the desired result now

follows from Lemma 3.2.3.6.

Proof of Proposition 3.2.3.1. Assertions (1), (2), and (3) follow immediately from Lemmas 3.2.3.7

and 3.2.2.9. The “only if” direction of (4) follows immediately from (2). To prove the converse,

suppose that f : K/ → Alg/O(C) has the property that fX is a colimit diagram in CX for each

X ∈ O. We wish to prove that the analogous assertion holds for any X ∈ O⊗〈n〉. Choose inert

morphisms g(i) : X → Xi lying over ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n. According to Proposition

2.1.2.12, the functors g(i)! induce an equivalence C⊗X '
∏

1≤i≤n CXi . It will therefore suffice to

prove that each composition g(i)! ◦ fX is a colimit diagram K. → CXi . This follows from the

observation that g(i)! ◦ fX ' fXi .

For later use, we also record a variant of Proposition 3.2.3.1:

Proposition 3.2.3.8. Let K be a weakly contractible simplicial set and let p : C⊗ → O⊗ be a

coCartesian fibration of ∞-categories. Assume that the forgetful functor O⊗ → Comm⊗ factors

through the subcategory E⊗0 ⊆ Comm⊗ of Example 2.1.1.19, that the ∞-category CX admits K-

indexed colimits for each X ∈ O, and that each morphism α : X → Y in O induces a functor

α! : CX → CY which preserves K-indexed colimits. Then:

(1) The ∞-category FunO⊗(O⊗,C⊗) of sections of p admits K-indexed colimits.

(2) A map f : K. → FunO⊗(O⊗,C⊗) is a colimit diagram if and only if, for each X ∈ O⊗, the

induced diagram fX : K. → C⊗X is a colimit diagram.

(3) The full subcategories

Fun⊗O (O,C) ⊆ Alg/O(C) ⊆ FunO⊗(O⊗,C⊗)

are stable under K-indexed colimits.
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(4) A map f : K. → Alg/O(C) is a colimit diagram if and only if, for each X ∈ O, the induced

diagram fX : K. → CX is a colimit diagram.

Proof. Let α : X → Y be a morphism in O⊗. Since the forgetful functor O⊗ → Comm⊗ factors

through E⊗0 ⊆ Comm⊗, the induced map

α! : C⊗X → C⊗Y

is equivalent to a product of maps CXi → CYi induced by morphisms Xi → Yi in O and constant

maps ∆0 → C⊗Yj . By assumption, each of these maps preserves K-indexed colimits (see Proposition

HTT.4.4.2.9 ) so that α! preserves K-indexed colimits as well. Assertions (1), (2), and (3) now

follow from Lemma 3.2.2.9, and assertion (4) follow as in the proof of Proposition 3.2.3.1.

3.2.4 Tensor Products of Commutative Algebras

The proof of the existence for colimits in Alg/O(C) given in Corollary 3.2.3.3 is rather indirect. In

general, this seems to be necessary: there is no simple formula which describes the coproduct of a

pair of associative algebras, for example. However, for commutative algebras we can be much more

explicit: coproducts can be computed by forming the tensor product of the underlying algebras (see

Proposition 3.2.4.7 below). To formulate this statement precisely, we first need to discuss tensor

products of algebras over an ∞-operad.

Construction 3.2.4.1. Let f : O⊗×O′⊗ → O′
′⊗

be a bifunctor of∞-operads, and let q : C⊗ → O′
′⊗

be a fibration of∞-operads. We define a map of simplicial sets AlgO′ /O′′(C)⊗ → O⊗ by the following

universal property: for every map of simplicial sets K → O⊗, there is a canonical bijection between

Hom(Set∆)/O⊗
(K,AlgO′ /O′′(C)⊗) and the set of commutative diagrams

K × O′⊗

��

F // C⊗

��

O⊗×O′⊗ // O′
′⊗

such that F has the following property: for every vertex v ∈ K and every inert morphism α in O′⊗,

F (idv, α) is an inert morphism in C⊗.

Remark 3.2.4.2. Let f : O⊗×O′⊗ → O′
′⊗

and q : C⊗ → O′
′⊗

be as in Construction 3.2.4.1. For

every object X ∈ O, the restriction of f to {X}×O′⊗ determines a map of ∞-operads O′⊗ → O′
′⊗

,

and we have a canonical isomorphism of the fiber AlgO′ /O′′(C)⊗X ' AlgO′ /O′′(C)⊗ ×O⊗ {X} with

the ∞-category AlgO′ /O′′(C) ⊆ Fun
O′′⊗(O′⊗,C⊗).

The crucial properties of Construction 3.2.4.1 can be summarized as follows:
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Proposition 3.2.4.3. Suppose we are given a bifunctor of ∞-operads O⊗×O′⊗ → O′
′⊗

and a

fibration of ∞-operads q : C⊗ → O′
′⊗

. Then:

(1) The map p : AlgO′ /O′′(C)⊗ → O⊗ is a fibration of ∞-operads.

(2) A morphism α in AlgO′ /O′′(C)⊗ is inert if and only if p(α) is an inert morphism in O′ and,

for every object X ∈ O′, the image α(X) is an inert morphism in C⊗.

(3) Suppose that q is a coCartesian fibration of ∞-operads. Then p is a coCartesian fibration of

∞-operads.

(4) Assume that q is a coCartesian fibration of ∞-operads. Then a morphism α ∈ AlgO′ /O′′(C)⊗

is p-coCartesian if and only if, for every X ∈ O′, the image α(X) is a q-coCartesian morphism

in C⊗.

We will give the proof of Proposition 3.2.4.3 at the end of this section.

Example 3.2.4.4. Let O⊗ be an arbitrary ∞-operad. Note that there is a unique bifunctor of

∞-operads Comm⊗×O⊗ → Comm⊗. In particular, for every ∞-operad C⊗, Construction 3.2.4.1

produces a fibration of ∞-operads AlgO /Comm(C)⊗ → Comm⊗. This is equivalent to specifying

the underlying ∞-operad AlgO /Comm(C)⊗, which we will denote by AlgO(C)⊗. The underlying ∞-

category of this ∞-operad is the ∞-category AlgO(C) of O-algebra objects of C (Remark 3.2.4.2).

Note that for every object X ∈ O, we have an evaluation functor eX : AlgO(C)⊗ → C⊗.

The description of inert morphisms in AlgO(C)⊗ provided by Proposition 3.2.4.3 shows that eX
is a map of ∞-operads. If C⊗ is a symmetric monoidal ∞-category, then Proposition 3.2.4.3

implies that AlgO(C)⊗ is also a symmetric monoidal ∞-category, and that the evaluation functors

eX : AlgO(C)⊗ → C⊗ are symmetric monoidal functors. We can summarize the situation informally

as follows: if C⊗ is a symmetric monoidal∞-category and O⊗ is any∞-operad, then the∞-category

AlgO(C) inherits a symmetric monoidal structure, given by pointwise tensor product.

Example 3.2.4.5. The functor ∧ : N(Fin∗) × N(Fin∗) → N(Fin∗) is a bifunctor of ∞-operads.

Moreover, ∧ induces a weak equivalence of ∞-preoperads N(Fin∗)
\ � N(Fin∗)

\ → N(Fin∗)
\. To

prove this, it suffices to show that for any ∞-operad C, the functor ∧ induces an equivalence of

∞-categories CAlg(C)→ CAlg(CAlg(C)). This follows from Corollary 2.4.3.10, since the∞-operad

CAlg(C)⊗ is coCartesian (Proposition 3.2.4.10).

Let Op∞ denote the ∞-category of ∞-operads, and let V : Op∞ → Op∞ be induced by

the left Quillen functor • � Comm⊗
⊗,\

from POp∞ to itself. It follows from Example 3.2.4.5 and

Proposition HTT.5.2.7.4 that V is a localization functor on Op∞. The following result characterizes

the essential image of V :

Proposition 3.2.4.6. Let C⊗ be an ∞-operad. The following conditions are equivalent:
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(1) The ∞-operad C⊗ lies in the essential image of the localization functor V defined above: in

other words, there exists another ∞-operad D⊗ and a bifunctor of ∞-operads θ : N(Fin∗) ×
D⊗ → C⊗ which induces a weak equivalence of ∞-preoperads.

(2) The ∞-operad C⊗ is coCartesian.

Proof. Suppose first that (1) is satisfied. We will prove that C⊗ is equivalent to D
∐

. Let θ0 :

N(Fin∗)×D→ C⊗ be the restriction of θ. In view of Theorem 2.4.3.18, it will suffice to show that

for every ∞-operad E⊗, composition with θ0 induces an equivalence of ∞-categories AlgC(E) →
Fun(D,CAlg(E)). This map factors as a composition

AlgC(E)
φ→ AlgD(CAlg(E))

φ′→ Fun(D,CAlg(E)).

Our assumption that θ induces a weak equivalence of ∞-preoperads guarantees that φ is an equiv-

alence of ∞-categories. To prove that φ′ is a weak equivalence, it suffices to show that CAlg(E)⊗

is a coCartesian ∞-operad (Proposition 2.4.3.9), which follows from Proposition 3.2.4.10.

Conversely, suppose that C⊗ is coCartesian. We will prove that the canonical map C⊗×{〈1〉} →
C⊗×N(Fin∗) induces a weak equivalence of ∞-preoperads C⊗,\ ' C⊗,\�N(Fin∗)

\. Unwinding the

definitions, it suffices to show that for every ∞-operad D⊗, the canonical map

AlgC(CAlg(D))→ AlgC(D)

is an equivalence of ∞-categories. Invoking Theorem 2.4.3.18, we can reduce to proving that the

forgetful functor ψ : Fun(C,CAlg(CAlg(D))→ Fun(C,CAlg(D)) is an equivalence of ∞-categories.

This is clear, since ψ is a left inverse to the functor induced by the equivalence CAlg(D) →
CAlg(CAlg(D)) of Example 3.2.4.5.

We are now ready to construct coproducts in an ∞-category CAlg(C), where C⊗ is any sym-

metric monoidal ∞-category.

Proposition 3.2.4.7. Let C be a symmetric monoidal ∞-category. Then the symmetric monoidal

structure on CAlg(C) provided by Example 3.2.4.4 is coCartesian.

Corollary 3.2.4.8. Let C be a symmetric monoidal ∞-category. Then the ∞-category CAlg(C)

admits finite coproducts.

Proof of Proposition 3.2.4.7. We will show that the symmetric monoidal structure on CAlg(C)

satisfies criterion (3) of Proposition 2.4.3.19. We first show that the unit object of CAlg(C) is

initial. It follows from Example 3.2.4.4 that the forgetful functor θ : CAlg(C)→ C can be promoted

to a symmetric monoidal functor. According to Corollary 3.2.1.9, the ∞-category CAlg(C) has

an initial object A0, which is characterized by the requirement that the unit map 1 → A0 is an

equivalence. Composing A0 with the bifunctor of ∞-operads ∧ : N(Fin∗) × N(Fin∗) → N(Fin∗)
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of Notation 2.2.5.1, we obtain trivial algebra A′0 ∈ CAlg(CAlg(C)). In particular, the unit map

1CAlg(C) → A0 for A′0 is an equivalence, which proves that the unit of CAlg(C) is an initial object

of CAlg(C).

It remains to show that we can produce a collection of codiagonal map {δA : A ⊗ A →
A}A∈CAlg(C), satisfying the axioms (i), (ii), and (iii) of Proposition 2.4.3.19. For this, we ob-

serve that composition with the bifunctor ∧ of Notation 2.2.5.1 induces a functor l : CAlg(C) →
CAlg(CAlg(C)). In particular, for every object A ∈ CAlg(C), the multiplication on l(A) induces a

map δA : A⊗A→ A in the ∞-category CAlg(C). It is readily verified that these maps possess the

desired properties.

Remark 3.2.4.9. Let C be an ∞-category which admits finite coproducts, and let D⊗ be a sym-

metric monoidal ∞-category. According to Theorem 2.4.3.18, an ∞-operad map F : Cq → D⊗ is

classified up to equivalence by the induced functor f : C → CAlg(D). We note that F is a sym-

metric monoidal functor if and only if for every finite collection of objects Ci ∈ C, the induced map

θ : ⊗f(Ci)→ f(
∐
Ci) is an equivalence in CAlg(D). According to Proposition 3.2.4.7, we can iden-

tify the domain of θ with the coproduct of the commutative algebra obejcts f(Ci). Consequently,

we conclude that F is symmetric monoidal if and only if f preserves finite coproducts.

The following generalization of Proposition 3.2.4.7 is valid for an arbitrary ∞-operad C⊗.

Proposition 3.2.4.10. Let C⊗ be an ∞-operad. Then the ∞-operad CAlg(C)⊗ of Example 3.2.4.4

is coCartesian.

Proof. Consider the functor CAlg(C) → CAlg(CAlg(C)) appearing in the proof of Proposition

3.2.4.7. According to Theorem 2.4.3.18, this map determines an ∞-operad map θ : CAlg(C)q →
CAlg(C)⊗ which is well-defined up to homotopy. We wish to prove that θ is an equivalence. We

first observe that θ induces an equivalence between the underlying ∞-categories, and is therefore

essentially surjective. To prove that θ is fully faithful, choose a fully faithful map of ∞-operads

C⊗ → D⊗ where D⊗ is a symmetric monoidal∞-category (Remark 2.2.4.10). We have a homotopy

commutative diagram

CAlg(C)q
θ //

��

CAlg(C)⊗

��
CAlg(D)q

θ′ // CAlg(D)⊗

where the vertical maps are fully faithful. Consequently, it will suffice to show that θ′ is an

equivalence of symmetric monoidal ∞-categories. In view of Remark 2.1.3.8, it will suffice to show

that θ′ is a symmetric monoidal functor. This is equivalent to the assertion that the composite

functor CAlg(D)q → CAlg(D)⊗ → D⊗ is symmetric monoidal (Proposition 3.2.4.3), which follows

from Remark 3.2.4.9 because the underlying functor CAlg(D) → CAlg(D) is equivalent to the

identity (and therefore preserves finite coproducts).
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We conclude this section with the proof of Proposition 3.2.4.3.

Proof of Proposition 3.2.4.3. We use the terminology of Appendix B.4. For every∞-operad O⊗, let

PO denote the categorical pattern (M,T, {pα : Λ2
0 → O⊗}α∈A) on O⊗, where M is the collection of

inert morphisms in O⊗, T is the collection of all 2-simplices in O⊗, and A parametrizes all diagrams

of inert morphisms X0 ← X → X1 which lie over diagrams 〈p〉 ← 〈n〉 → 〈q〉 in Fin∗ which induce

a bijection 〈p〉◦
∐
〈q〉◦ → 〈n〉◦.

If f : O⊗×O′⊗ → O′
′⊗

is a bifunctor of ∞-operads, then the construction X 7→ X × O′⊗,\

determines functor F : (Set+∆)/PO
→ (Set+∆)/PO′′

, which admits a right adjoint G : (Set+∆)/PO′′
→

(Set+∆)/PO
. Unwinding the definitions, we see that (1) and (2) are equivalent to the following

assertion:

(∗) The functor G carries fibrant objects of (Set+∆)/PO′′
to fibrant objects of (Set+∆)/PO′′

.

To prove (∗), it suffices to show that G is a right Quillen functor or equivalently that F is a left

Quillen functor. We will prove a stronger assertion: the product map (Set+∆)/PO
× (Set+∆)/PO′

→
(Set+∆)/PO′′

is a left Quillen bifunctor. This is a special case of Remark B.2.5.

The proofs of (3) and (4) are similar, after replacing the categorical pattern PO with P′O =

(M ′, T, {pα : Λ2
0 → O⊗}α∈A) where M ′ is the collection of all edges in O⊗ (and similarly replacing

PO′′ by P′
O′′).

3.3 Modules over ∞-Operads

Let C be a symmetric monoidal category, and suppose that A is an algebra object of C: that is, an

object of C equipped with an associative (and unital) multiplication m : A⊗A→ A. It then makes

sense to consider left A-modules in C: that is, objects M ∈ C equipped with a map a : A⊗M →M

such that the following diagrams commute

A⊗A⊗Mm⊗idM//

idA⊗a
��

A⊗M
a
��

1⊗M //

##

A⊗M

a
zz

A⊗M a //M M.

There is also a corresponding theory of right A-modules in C. If the multiplication on A is com-

mutative, then we can identify left modules with right modules and speak simply of A-modules in

C. Moreover, a new phenomenon occurs: in many cases, the category ModA(C) of A-modules in C

inherits the structure of a symmetric monoidal category with respect to the relative tensor product

over A: namely, we can define M ⊗A N to be the coequalizer of the diagram

M ⊗A⊗N ////M ⊗N
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determined by the actions of A on M and N (this construction is not always sensible: we must

assume that the relevant coequalizers exist, and that they behave well with respect to the symmetric

monoidal structure on C).

If we do not assume that A is commutative, then we can often still make sense of the relative

tensor product M ⊗AN provided that M is a right A-module and N is a left A-module. However,

this tensor product is merely an object of C: it does not inherit any action of the algebra A. We

can remedy this situation by assuming that M and N are bimodules for the algebra A: in this

case, we can use the right module structure on M and the left module structure on N to define

the tensor product M ⊗AN , and this tensor product inherits the structure of a bimodule using the

left module structure on M and the right module structure on N . In good cases, this definition

endows the category of A-bimodules in C with the structure of a monoidal category (which is not

symmetric in general).

We can summarize the above discussion as follows: if A is an object of C equipped with some

algebraic structure (in this case, the structure of either a commutative or an associative algebra),

then we can construct a new category of A-modules (in the associative case, we consider bimodules

rather than left or right modules). This category is equipped with the same sort of algebraic

structure as the original algebra A (if A is a commutative algebra, the category of A-modules

inherits a tensor product which is commutative and associative up to isomorphism; in the case where

A is associative, the tensor product of bimodules ⊗A is merely associative up to isomorphism).

Our goal here is to describe an analogous picture for algebras of a more general nature: namely,

O-algebra objects of C for an arbitrary fibration of ∞-operads C⊗ → O⊗. We have seen that the

collection of such algebras can itself be organized into an∞-category Alg/O(C). If O is unital, then

we can associate to every object A ∈ Alg/O(C) a new ∞-category ModO
A(C), whose objects we will

refer to as A-module objects of C. We will lay out the general definitions in this section, and study

important special cases (notably, the cases where O⊗ is the commutative or associative ∞-operad)

in §3.4.

There is very little we can say about the ∞-categories ModO
A(C) of module objects in the case

where O⊗ is a general unital ∞-operad. We have therefore adopted to work instead in the more

restrictive setting of coherent ∞-operads. We will give the definition of coherence in §3.3.1 and

give an alternate (more technical) characterization in §3.3.2. In §3.3.3, we will use show that if

O is coherent, then every O-algebra object A ∈ Alg/O(C) determines a fibration of ∞-operads

p : ModO
A(C)⊗ → O⊗.

Remark 3.3.0.1. In good cases (which we will discuss in §3.4, one can show that p is a coCartesian

fibration of ∞-operads: in other words, the theory of A-modules inherits a tensor structure with

exactly the same commutativity and associativity properties as the multiplication on A itself (both

are governed by the structure of the ∞-operad O⊗). This picture was suggested by John Francis.
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3.3.1 Coherent ∞-Operads

In this section, we introduce the notion of a coherent ∞-operad. Roughly speaking, the coherence

of an ∞-operad O⊗ is a condition which guarantees the existence of a reasonable theory of tensor

products for modules over O-algebras. Our goal here is to introduce the definition of coherence,

provide a few key examples (see Examples 3.3.1.12, 3.3.1.13), and prove a somewhat technical

result (Theorem 3.3.2.2) which will play an important role when we develop the theory of modules

in §3.3.3.

We begin by sketching the basic idea. Let O⊗ be a unital∞-operad, and fix an active morphism

f : X → Y in O⊗. An extension of f consists of an object X0 ∈ O together with an active morphism

f+ : X ⊕ X0 → Y such that f+|X ' f ; here the hypothesis that O⊗ is unital guarantees that

there is an essentially unique section to the projection X ⊕X0 → X, so that the restriction f+|X
is well-defined. The collection of extensions of f can be organized into an ∞-category, which we

will denote by Ext(f) (see Definition 3.3.1.4 below for a precise definition).

If g : Y → Z is another active morphism, then there are canonical maps Ext(f)→ Ext(g ◦f)←
Ext(g), well-defined up to homotopy. In particular, we have canonical maps Ext(f)← Ext(idY )→
Ext(g) which fit into a (homotopy coherent) diagram

Ext(idY )

xx &&
Ext(f)

&&

Ext(g)

xx
Ext(g ◦ f).

If we assume that O is a Kan complex, then the ∞-categories appearing in this diagram are all

Kan complexes. We will say that O⊗ is coherent if this diagram is a homotopy pushout square, for

every pair of active morphisms f and g in O⊗.

We now make these ideas more precise. The first step is to give a careful definition of the

∞-category Ext(f).

Definition 3.3.1.1. We will say that a morphism α : 〈m〉 → 〈n〉 in N(Fin∗) is semi-inert if α−1{i}
has at most one element, for each i ∈ 〈n〉◦. We will say that α is null if α carries 〈m〉 to the base

point of 〈n〉.
Let p : O⊗ → N(Fin∗) be an ∞-operad, and let f : X → Y be a morphism in O⊗. We will say

that f is semi-inert if the following conditions are satisfied:

(1) The image p(f) is a semi-inert morphism in N(Fin∗).

(2) For every inert morphism g : Y → Z in O⊗, if p(g ◦ f) is an inert morphism in N(Fin∗), then

g ◦ f is an inert morphism in O⊗.
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We will say that f is null if its image in N(Fin∗) is null.

Remark 3.3.1.2. Let O⊗ be an∞-operad. We can think of O⊗ as an∞-category whose objects are

finite sequences of objects (X1, . . . , Xm) of O. Let f : (X1, . . . , Xm)→ (Y1, . . . , Yn) be a morphism

in O⊗, corresponding to a map α : 〈m〉 → 〈n〉 and a collection of maps

φj ∈ MulO({Xi}α(i)=j , Yj).

Then f is semi-inert if and only for every j ∈ 〈n〉◦, exactly one of the following conditions holds:

(a) The set α−1{j} is empty.

(b) The set α−1{j} contains exactly one element i, and the map φi is an equivalence between Xi

and Yj in the ∞-category O.

The morphism f is inert if (b) holds for each j ∈ 〈n〉◦, and null if (a) holds for each j ∈ 〈n〉◦. It

follows that every null morphism in O⊗ is semi-inert.

Note that if O⊗ is a unital ∞-operad, then the maps φj are unique up to homotopy (in fact,

up to a contractible space of choices) when α−1{j} is empty.

Remark 3.3.1.3. Let O⊗ be an ∞-operad, and suppose we are given a commutative diagram

Y
g

��
X

f
>>

h // Z

in O⊗, where f is inert. Then g is semi-inert if and only if h is semi-inert; this follows immediately

from Remark 3.3.1.2.

Definition 3.3.1.4. Let q : O⊗ → N(Fin∗) be a unital ∞-operad, and let σ : ∆n → O⊗act be an

n-simplex of O⊗ corresponding to a composable chain X0
f1→ . . .

fn→ Xn of active morphisms in O⊗.

If S ⊆ [n] is a downward-closed subset, we let Ext(σ, S) denote the full subcategory of

Fun(∆n,O⊗)σ/ spanned by those diagrams

X0
f1 //

g0

��

· · · fn // Xn

gn
��

X ′0
f ′1 // · · ·

f ′n // X ′n

with the following properties:

(a) If i /∈ S, the map gi is an equivalence.
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(b) If i ∈ S, the map gi is semi-inert and q(gi) is an inclusion 〈ni〉 → 〈ni + 1〉 which omits a

single value ai ∈ 〈ni + 1〉.

(c) If 0 < i ∈ S, then the map q(f ′i) carries ai−1 ∈ q(X ′i−1) to ai ∈ q(X ′i).

(d) Each of the maps f ′i is active.

If f : ∆1 → O⊗act is an active morphism in O⊗, we will denote Ext(f, {0}) by Ext(f).

Remark 3.3.1.5. Let Ext(σ, S) be as in Definition 3.3.1.4. If O is a Kan complex, then it is easy

to see that every morphism in Ext(σ, S) is an equivalence, so that Ext(σ, S) is also a Kan complex.

Remark 3.3.1.6. Let σ : ∆n → O⊗act correspond to a sequence of active morphisms

X0
f1→ X1

f2→ · · · fn→ Xn

and let S ⊆ [n]. For every morphism j : ∆m → ∆n, composition with j induces a restriction map

Ext(σ, S)→ Ext(σ ◦ j, j−1(S)).

In particular, if S has a largest element i < n, then we obtain a canonical map Ext(σ, S) →
Ext(fi+1). If O is a Kan complex, then this map is a trivial Kan fibration.

Remark 3.3.1.7. Let q : O⊗ → N(Fin∗) be an ∞-operad, let σ : ∆n → O⊗act correspond to a

sequence of active morphisms

X0
f1→ X1

f2→ · · · fn→ Xn,

let 〈m〉 = q(Xn), and let S be a downward-closed subset of [n]. Then Ext(σ, S) decomposes

naturally as a disjoint union
∐

1≤i≤m Ext(σ, S)i, where Ext(σ, S)i denotes the full subcategory of

Ext(σ, S) spanned by those diagrams

X0
f1 //

g0

��

· · · // Xn

gn
��

X ′0
f ′1 // · · · // X ′n

where q(f ′n · · · f ′1) carries the unique element of q(X ′0) − q(X0) to i ∈ 〈m〉 ' q(X ′n). In this case,

the diagram σ is equivalent to an amalgamation
⊕

1≤i≤m σi, and we have canonical equivalences

Ext(σ, S)i ' Ext(σi, S).

Remark 3.3.1.8. Let f : O⊗ → O′⊗ be a map of unital ∞-operads, where O and O′ are Kan

complexes. Let σ be an n-simplex of O⊗act and let S be a downward-closed subset of [n]. If

f is an approximation to O′⊗ (see Definition 2.3.3.6), then it induces a homotopy equivalence

Ext(σ, S)→ Ext(f(σ), S). This follows from Remark 3.3.1.6 and Corollary 2.3.3.17.
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We are now ready to give the definition of a coherent ∞-operad.

Definition 3.3.1.9. Let O⊗ be an ∞-operad. We will say that O is coherent if the following

conditions are satisfied:

(1) The ∞-operad O⊗ is unital.

(2) The ∞-category O is a Kan complex.

(3) Suppose we are given a degenerate 3-simplex σ :

Y
idY

  

g // Z

X

f
>>

f // Y

g
??

in O⊗, where f and g are active. Then the diagram

Ext(σ, {0, 1}) //

��

Ext(σ|∆{0,1,3}, {0, 1})

��
Ext(σ|∆{0,2,3}, {0}) // Ext(σ|∆{0,3}, {0})

is a homotopy pushout square.

Remark 3.3.1.10. Requirement (3) of Definition 3.3.1.9 can be stated more informally as follows:

for every pair of active morphisms f : X → Y and g : Y → Z, the (homotopy coherent) diagram

of Kan complexes

Ext(idY ) //

��

Ext(g)

��
Ext(f) // Ext(gf)

is a homotopy pushout square.

Remark 3.3.1.11. In Definition 3.3.1.9, it is sufficient to require that condition (3) hold in cases

where the object Z belongs to O: this is an immediate consequence of Remark 3.3.1.7.

Example 3.3.1.12. The commutative ∞-operad Comm⊗ = N(Fin∗) is coherent. Unwinding the

definitions, we note that for every active morphism f : 〈m〉 → 〈n〉 in N(Fin∗), the Kan complex

Ext(f) is canonically homotopy equivalent to 〈n〉◦ = {1, . . . , n}, regarded as a discrete simplicial

set. Since Comm⊗ is unital and the underlying ∞-category Comm ' ∆0 is a Kan complex, we are
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reduced to proving that for every pair of active morphisms f : 〈l〉 → 〈m〉 and g : 〈m〉 → 〈n〉, the

diagram

〈m〉◦ //

��

〈n〉◦

��
〈m〉◦ // 〈n〉◦

is a homotopy pushout square, which is obvious.

Example 3.3.1.13. The ∞-operad E⊗0 is coherent. It is clear that E⊗0 is unital and that the

underlying ∞-category E0 ' ∆0 is a Kan complex. It therefore suffices to prove that for every pair

of active morphisms f : 〈l〉 → 〈m〉 and g : 〈m〉 → 〈n〉 in E⊗0 , the induced diagram

Ext(idY ) //

��

Ext(g)

��
Ext(f) // Ext(gf).

is a homotopy pushout square. This follows from the observation that the above diagram can be

identified with the commutative square of finite sets

∅ //

��

〈n〉 − g(〈m〉)

��
〈m〉 − f(〈l〉) // 〈n〉 − gf(〈l〉).

Remark 3.3.1.14. We will later show that the little cubes operads E⊗k are coherent for every

integer k (Theorem 5.1.1.1). This observation recovers Example 3.3.1.13 in the case k = 0 and

Example 3.3.1.12 in the limiting case k → ∞. We will give a more direct treatment of the case

k = 1 when we discuss associative algebras in §4.1 (see Proposition 4.1.1.20).

Proposition 3.3.1.15. Let f : O⊗ → O′⊗ be a map between unital ∞-operads. Assume that both

O and O′ are Kan complexes and that f is an approximation to O′⊗ (see Definition 2.3.3.6). If

O′⊗ is coherent, then O⊗ is coherent. The converse holds if the underlying map π0 O → π0 O
′ is

surjective.

Remark 3.3.1.16. Let O⊗ be a unital ∞-operad such that O is a Kan complex. According to

Theorem 2.3.4.4, the ∞-operad O⊗ can be obtained as the assembly of a O-family of reduced

unital ∞-operads O′⊗ → O×N(Fin∗). Proposition 3.3.1.15 (and Proposition 2.3.4.5) imply that

O⊗ is coherent if and only if, for each X ∈ O, the ∞-operad O′⊗X is coherent. In §3.3.3, we will

see that there is a good theory of modules associated to O-algebras and to O′X -algebras, for each

X ∈ O. One can show that these module theories are closely related to one another. To describe

the relationship, suppose that C is another ∞-operad and A ∈ AlgO(C) is a O-algebra object of C,
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corresponding to a family of O′⊗X -algebra objects {AX ∈ AlgO′X (C)}X∈O. Then giving an A-module

object M ∈ ModO
A(C) is equivalent to giving a family {MX ∈ Mod

O′X
AX

(C)}X∈O′ . We leave the precise

formulation to the reader.

Proof of Proposition 3.3.1.15. We may assume without loss of generality that f is a categorical

fibration. The first assertion follows immediately Remark 3.3.1.8. To prove the second, it will

suffice (by virtue of Remark 3.3.1.8) to show that every 3-simplex σ : ∆3 → O′⊗act can be lifted to a

3-simplex of O⊗fl . Let Z = σ(3) ∈ O′. Since f is a categorical fibration, the induced map O → O′

is a Kan fibration. Since this Kan fibration induces a surjection on connected components, it is

surjective on vertices and we may write Z = f(Z) for some Z ∈ O. Corollary 2.3.3.17 guarantees

that the induced map f ′ : (O⊗
/Z

)act → (O′⊗/Z)act is a categorical equivalence. Since f is a categorical

fibration, f ′ is also a categorical fibration and therefore a trivial Kan fibration. We can interpret the

3-simplex σ as a 2-simplex τ : ∆2 → (O′⊗/Z)act, which can be lifted to a 2-simplex τ : ∆2 → (O⊗
/Z

)act.

This map determines a 3-simplex of O⊗act lifting σ, as desired.

3.3.2 A Coherence Criterion

In §3.3.1, we introduced the notion of a coherent ∞-operad. In this section, we will characterize

coherent ∞-operads as those ∞-operads which satisfy a certain technical condition (see Theorem

3.3.2.2). This condition will play an important role in the construction of ∞-categories of modules

which we carry out in §3.3.3.

Notation 3.3.2.1. Let O⊗ be a unital ∞-operad. We let KO denote the full subcategory of

Fun(∆1,O⊗) spanned by the semi-inert morphisms of O⊗. For i ∈ {0, 1} we let ei : KO → O⊗ be

the map given by evaluation on i. We will say that a morphism in KO is inert if its images under

e0 and e1 are inert morphisms in O⊗.

We can now state our main result:

Theorem 3.3.2.2. Let O⊗ be a unital ∞-operad such that O is a Kan complex. The following

conditions are equivalent:

(1) The ∞-operad O⊗ is coherent.

(2) The evaluation map e0 : KO → O⊗ is a flat categorical fibration (see Definition B.3.8).

The remainder of this section is devoted to the proof of Theorem 3.3.2.2. Our first step is to

introduce an apparently weaker version of condition (2).

Definition 3.3.2.3. Let q : O⊗ → N(Fin∗) be a unital∞-operad, and let m ≥ 0 be an integer. We

will say that a morphism f : X → X ′ in O⊗ is m-semi-inert if f is semi-inert and the underlying

map q(f) : 〈n〉 → 〈n′〉 is such that the cardinality of the set 〈n′〉 − f(〈n〉) is less than or equal to

m.
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By definition, an ∞-operad O⊗ satisfies condition (2) of Theorem 3.3.2.2 if, for every map

∆2 → O⊗ corresponding to a diagram X → Y → Z and every morphism X → Z in KO lifting the

underlying map X → Z, the∞-category (KO)X//Z ×O⊗
X//Z

{Y } is weakly contractible. We will say

that O⊗ is m-coherent if this condition holds whenever X is an m-semi-inert morphism in O⊗. We

note that KO
e0→ O⊗ is a flat categorical fibration if and only if O⊗ is m-coherent for all m ≥ 0.

Lemma 3.3.2.4. Let O⊗ be a unital ∞-operad. The following conditions are equivalent:

(1) The ∞-operad O⊗ is m-coherent.

(2) Consider a diagram σ :

X

f
��

// Y

X ′

in O⊗, where f is m-semi-inert. Let A[σ] denote the full subcategory of O⊗σ/ spanned by those

commutative diagrams

X

f
��

// Y

g
��

X ′ // Y ′

where g is semi-inert. Then the inclusion A[σ] ⊆ O⊗σ/ is right cofinal.

(3) Let σ be as in (2), and let Z ′ be an object of O⊗σ/, and let A[σ]/Z′ denote the full subcategory

of O⊗σ/ /Z′ spanned by those diagrams

X

f
��

// Y

g
��   

X ′ // Y ′ // Z ′

such that g is semi-inert. Then A[σ]/Z′ is a weakly contractible simplicial set.

Proof. The equivalence of (2) and (3) follows immediately from Theorem HTT.4.1.3.1 . We next

prove that (1)⇒ (3). We can extend σ and Z to a commutative diagram

X //

f
��

Y // Z

h
��

X ′ // Z ′

where h is semi-inert (for example, we can take Z = Z ′ and h = idZ′ . The upper line of this

diagram determines a diagram ∆2 → O⊗. Let K denote the fiber product KO×O⊗∆2.The maps f
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and h determine objects of K×∆2{0} and K×∆2{2}, which we will denote by X and Z. Since O⊗

is m-coherent, the ∞-category KX//Z ×∆2{1} is weakly contractible. We now observe that there

is a trivial Kan fibration ψ : KX//Z → A[σ]/Z′ , so that A[σ]/Z′ is likewise weakly contractible.

Now suppose that (3) is satisfied. We wish to prove that O⊗ is m-coherent. Fix a map ∆2 →
O⊗, and let K be the fiber product KO×O⊗∆2. Suppose we are given objects X ∈ K×∆2{0}
and Z ∈ K×∆2{2}; we wish to prove that if X is m-semi-inert, then KX//{Z}×∆2{1} is weakly

contractible. The above data determines a commutative diagram

X //

f
��

Y // Z

h
��

X ′ // Z ′

in O⊗. If we let σ denote the left part of this diagram, then we can define a simplicial set A[σ]/Z′ ⊆
(O⊗σ/)/Z′ as in (3), which is weakly contractible by assumption. Once again, we have a trivial Kan

fibration ψ : KX//Z → A[σ]/Z′ , so that KX//Z is weakly contractible as desired.

Remark 3.3.2.5. Let O⊗, σ, and Z ′ be as in the part (3) of Lemma 3.3.2.4. Let A[σ]′/Z denote

the full subcategory of A[σ]/Z spanned by those diagrams

X

f
��

// Y

g
��   

X ′ // Y ′
j // Z ′

for which the map j is active. The inclusion A[σ]′/Z ⊆ A[σ]/Z admits a left adjoint, and is therefore

a weak homotopy equivalence. Consequently, condition (3) of Lemma 3.3.2.4 is equivalent to the

requirement that A[σ]′/Z is weakly contractible.

Remark 3.3.2.6. In the situation of Lemma 3.3.2.4, let Z ′ ∈ O⊗ and let B denote the full

subcategory of O⊗/Z′ spanned by the active morphisms W → Z ′. The inclusion B ⊆ O⊗/Z′ admits a

left adjoint L. For any diagram σ :

X //

��

Y

X ′

in O⊗/Z , L induces a functor A[σ]/Z′ → A[Lσ]/Z′ , which restricts to an equivalence A[σ]′/Z′ →
A[Lσ]′/Z′ , where A[σ]′/Z′ and A[Lσ]′/Z′ are defined as in Remark 3.3.2.5. Consequently, to verify

condition (3) of Lemma 3.3.2.4, we are free to replace σ by Lσ and thereby reduce to the case

where the maps X → Z ′, Y → Z ′, and X ′ → Z ′ are active.

Remark 3.3.2.7. Let Z ′ ∈ O⊗ be as in Lemma 3.3.2.4, and choose an equivalence Z ′ '
⊕
Z ′i,

where Z ′i ∈ O. Let B ⊆ O⊗/Z′ be defined as in Remark 3.3.2.6, and let Bi ⊆ O⊗
/Z′i

be defined similarly.
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Every diagram σ : Λ2
0 → B can be identified with an amalgamation

⊕
i σi of diagrams σi : Λ2

0 → Bi.

We observe that A[σ]′/Z′ is equivalent to the product of the ∞-categories A[σi]
′
/Z′i

. Consequently,

to verify that A[σi]
′
/Z′ is weakly contractible, we may replace Z ′ by Z ′i and thereby reduce to the

case where Z ′ ∈ O.

Lemma 3.3.2.8. Let q : X → S be an inner fibration of ∞-categories. Suppose that the following

conditions are satisfied:

(a) The inner fibration q is flat.

(b) Each fiber Xs of q is weakly contractible.

(c) For every vertex x ∈ X, the induced map Xx/ → Sq(x)/ has weakly contractible fibers.

Then for every map of simplicial sets S′ → S, the pullback map X ×S S′ → S′ is weak homotopy

equivalence. In particular, q is a weak homotopy equivalence.

Proof. We will show more generally that for every map of simplicial sets S′ → S, the induced

map qS′ : X ×S S′ → S′ is a weak homotopy equivalence. Since the collection of weak homotopy

equivalences is stable under filtered colimits, we may suppose that S′ is finite. We now work by

induction on the dimension n of S′ and the number of simplices of S′ of maximal dimension. If S′

is empty the result is obvious; otherwise we have a homotopy pushout diagram

∂∆n //

��

∆n

��
S′0

// S′.

By the inductive hypothesis, the maps qS′0 and q∂∆n are weak homotopy equivalences. Since qS′ is

a homotopy pushout of the morphisms qS′0 with q∆n over q∂∆n , we can reduce to proving that q∆n

is a weak homotopy equivalence. Note that assumption (a) guarantees that q∆n is a flat categorical

fibration. If n > 1, then we have a commutative diagram

X ×S Λn1

qΛn1
��

// X ×S ∆n

q∆n

��
Λn1

// ∆n

where the upper horizontal map is a categorical equivalence (Corollary B.3.15) and therefore a

weak homotopy equivalence; the lower horizontal map is obviously a weak homotopy equivalence.

Since qΛn1
is a weak homotopy equivalence by the inductive hypothesis, we conclude that q∆n is a

weak homotopy equivalence.

It remains to treat the cases where n ≤ 1. If n = 0, the desired result follows from (b). Suppose

finally that n = 1. Let X ′ = X ×S ∆1; we wish to prove that X ′ is weakly contractible. Let X ′0
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and X ′1 denote the fibers of the map q∆1 , and let Y = Fun∆1(∆1, X ′). According to Proposition

B.3.17, the natural map

X ′0
∐

Y×{0}

(Y ×∆1)
∐

Y×{1}

X ′1 → X ′

is a categorical equivalence. Since X ′0 and X ′1 are weakly contractible, we are reduced to showing

that Y is weakly contractible. Let p : Y → X ′0 be the map given by evaluation at {0}. Let

x′ ∈ X ′0, and let x denote its image in x; the fiber p−1{x′} is isomorphic to (X ′)x
′/ ×∆1 {1} and

therefore categorically equivalent to X ′x′/ ×∆1 {1} ' Xx/ ×Sq(x)/
{f}, where f denotes the edge

∆1 → S under consideration. Assumption (c) guarantees that p−1{x′} is weakly contractible.

Since p is a Cartesian fibration, Lemma HTT.4.1.3.2 guarantees that p is left cofinal and therefore

a weak homotopy equivalence. Since X ′0 is weakly contractible by (b), we deduce that Y is weakly

contractible as desired.

Example 3.3.2.9. Let q : X → S be a flat inner fibration of simplicial sets, and let f : x → y

be an edge of X. Then the induced map Xx/ /y → Sq(x)/ /q(y) satisfies the hypotheses of Lemma

3.3.2.8 (see Proposition B.3.13), and is therefore a weak homotopy equivalence.

Proposition 3.3.2.10. Let q : O⊗ → N(Fin∗) be a unital ∞-operad. The following conditions are

equivalent:

(1) The evaluation map e0 : KO → O⊗ is a flat categorical fibration.

(2) Let Z ∈ O, and suppose we are given a diagram σ :

X //

f
��

Y

X ′

in O⊗/Z where f is semi-inert and the maps X → Z, Y → Z, and X ′ → Z are active. Let

B[σ, Z] denote the full subcategory of O⊗σ/ /Z spanned by those diagrams

X //

f
��

Y

g
��

X ′ // Y ′

in O⊗ where the map Y ′ → Z is active, the map g is semi-inert, and the map q(X ′)
∐
q(X) q(Y )→

q(Y ′) is a surjective map of pointed finite sets. Then B[σ, Z] is weakly contractible.

(3) Condition (2) holds in the special case where f is required to be 1-semi-inert.
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Proof. In the situation of (2), let A[σ]′/Z be defined as in Remark 3.3.2.5. There is a canonical

inclusion B[σ, Z] ⊆ A[σ]′/Z . Our assumption that O⊗ is unital implies that this inclusion admits a

right adjoint, and is therefore a weak homotopy equivalence. The equivalence (1)⇔ (2) now follows

by combining Lemma 3.3.2.4 with Remarks 3.3.2.5, 3.3.2.6, and 3.3.2.7. The same argument shows

that (3) is equivalent to the condition that O⊗ is 1-coherent. The implication (2)⇒ (3) is obvious;

we will complete the proof by showing that (3)⇒ (2).

Let (σ, Z) be as in (2); we wish to show that B[σ, Z] is weakly contractible. The image q(f) is

a semi-inert morphism 〈n〉 → 〈n+m〉 in N(Fin∗), for some m ≥ 0. If m = 0, then B[σ, Z] has an

initial object and there is nothing to prove. We assume therefore that m > 0, so that (since O⊗ is

unital) f admits a factorization

X
f ′→ X0

f ′′→ X ′

such that q(f ′) is an inclusion 〈n〉 ↪→ 〈n+m− 1〉 and q(f ′′) is an inclusion 〈n+m− 1〉 ↪→ 〈n+m〉.
Let τ : ∆1

∐
{0}∆2 → O⊗/Z be the diagram given by Y ← X → X0 → X ′, and let τ0 be the restriction

of τ to ∆1
∐
{0}∆1. Let C denote the ∞-category

Fun(∆1,O⊗τ0/ /Z)×O⊗
τ0/ /Z

O⊗τ/ /Z

whose objects are commutative diagrams

X //

f ′

��

Y

g′

��
X0

f ′′

��

// Y0

g′′

��
X ′ // Y ′ // Z

in O⊗. Let C0 denote the full subcategory of C spanned by those diagrams where the maps g′ and g′′

are semi-inert, the maps Y0 → Z and Y ′ → Z are active, and the maps q(Y )
∐
q(X) q(X0)→ q(Y0)

and q(Y0)
∐
q(X0) q(X

′) → q(Y ′) are surjective. There are evident forgetful functors B[σ], Z]
φ←

C0
ψ→ B[τ0, Z]. The map φ admits a right adjoint and is therefore a weak homotopy equivalence.

The simplicial set B[τ0, Z], and therefore weakly contractible by the inductive hypothesis. To

complete the proof, it will suffice to show that ψ is a weak homotopy equivalence. For this, we will

show that ψ satisfies the hypotheses of Lemma 3.3.2.8:

(a) The map ψ is a flat inner fibration. Fix a diagram

B

  
A

j //

??

C



386 CHAPTER 3. ALGEBRAS AND MODULES OVER ∞-OPERADS

in A[τ0]′/Z and a morphism j : A→ C in C0 lifting j; we wish to show that the ∞-category

Z = (C0)A//C ×(B[τ0,Z])A//C {B}

is weakly contractible. We have a commutative diagram

X //

��

Y

��
X0

//

��

YA

��

// YB // YC

��
X ′ // Y ′A

// Y ′C
// Z

in O⊗. Restricting our attention to the rectangle in the lower right, we obtain a commutative

diagram

YB

!!
YA

j0 //

==

YC

in O⊗ and a morphism j0 : Y A → Y C in KO lifting j. Let Z0 = (KO)Y A/ /Y C ×O⊗
YA/ /YC

{YB}
be the ∞-category whose objects are diagrams

YA //

α
��

YB //

��

YC

��
Y ′A

// Y ′B
// Y ′C

in O⊗. Let Z1 be the full subcategory of Z0 spanned by those diagrams for which the map

Y ′B → Y ′C is active, and let Z2 be the full subcategory of Z1 spanned by those maps for which

q(YB)
∐
q(YA) q(Y

′
A) → q(Y ′B) is surjective. Since the map q(YA)

∐
q(X0) q(X

′) → q(Y ′A) is

surjective and f ′′ is 1-semi-inert, we deduce that α is 1-semi-inert. Condition (3) guarantees

that O⊗ is 1-coherent, so the ∞-category Z0 is weakly contractible. The inclusion Z1 ⊆ Z0

admits a left adjoint, and the inclusion Z2 ⊆ Z1 admits a right adjoint. It follows that both

of these inclusions are weak homotopy equivalences, so that Z2 is weakly contractible. There

is an evident restriction map Z→ Z2, which is easily shown to be a trivial Kan fibration. It

follows that Z is weakly contractible as desired.

(b) The fibers of ψ are weakly contractible. To prove this, we observe an object b ∈ B[τ0, Z]
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determines a commutative diagram

X //

��

Y

��
X0

//

��

Y0

X ′

in O⊗/Z . If we let σ′ denote the lower part of this diagram, then we have a trivial Kan fibration

ψ−1(b)→ B[σ′, Z], which is weakly contractible by virtue of (3).

(c) For every object c ∈ C0 and every morphism β : ψ(c)→ b in B[τ0, Z], the ∞-category

Y = (C0)c/ ×B[τ0,Z]ψ(c)/
{β}

is weakly contractible. The pair (c, β) determines a diagram

X //

��

Y

��
X0

//

��

Y0
//

g′′

��

Y1

X ′ // Y ′

in O⊗/Z . Let σ′′ denote the lower right corner of this diagram. Then we have a trivial Kan

fibration Y → B[σ′′, Z]. Since the map q(Y0)
∐
q(X0) q(X

′) → q(Y ′) is surjective, we deduce

that g′′ is 1-semi-inert, so that B[σ′′, Z] is weakly contractible by virtue of (3).

Proof of Theorem 3.3.2.2. In view of Proposition 3.3.2.10, we can rephrase Theorem 3.3.2.2 as

follows: if O⊗ is a unital ∞-operad and O is a Kan complex, then O⊗ is coherent if and only if it

is 1-coherent.

Fix a pair of active morphisms f : X → Y and g : Y → Z in O⊗, where Z ∈ O. Let σ : ∆3 → O⊗

be as in the formulation of condition (3), and consider the diagram

Ext(σ, {0, 1}) //

��

Ext(σ|∆{0,1,3}, {0, 1})

��
Ext(σ|∆{0,2,3}, {0}) // Ext(σ|∆{0,3}, {0}).
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Each of the maps in this diagram is a Kan fibration between Kan complexes. Consequently, O⊗ is

1-coherent if and only if, for each vertex v of Ext(σ|∆{0,3}, {0}), the induced diagram of fibers

Ext(σ|∆{0,1,3}, {0, 1})v ← Ext(σ, {0, 1})v → Ext(σ|∆{0,2,3}, {0})v

has a contractible homotopy pushout. Without loss of generality, we may assume that v determines

a diagram

X //

��

Y // Z

idZ
��

X ′ // Z

in O⊗, where the left vertical map is 1-semi-inert. Let τ denote the induced diagram X ′ ← X → Y

in O⊗/Z , and let B[τ, Z] be the ∞-category defined in Proposition 3.3.2.10. Let B[τ, Z]1 denote the

full subcategory of B[τ, Z] spanned by those objects which correspond to diagrams

X //

��

Y

��
X ′ // Y ′

where the right vertical map is an equivalence. Then there is a unique map p : B[τ, Z]→ ∆1 such

that p−1{1} ' B[τ, Z]1. Let B[τ, Z]0 = p−1{0}, and let Z = Fun∆1(∆1,B[τ, Z]) be the ∞-category

of sections of p. We have a commutative diagram

Ext(σ|∆{0,1,3}, {0, 1})v

��

Ext(σ, {0, 1})voo //

��

Ext(σ|∆{0,2,3}, {0})v

��
B[τ, Z]0 Zoo // B[τ, Z]1.

in which the vertical maps are trivial Kan fibrations. Consequently, condition O⊗ is 1-coherent if

and only if each homotopy pushout

B[τ, Z]0
∐

Z×{0}

(Z×∆1)
∐

Z×{1}

B[τ, Z]1

is weakly contractible. According to Proposition B.3.17, this homotopy pushout is categorically

equivalent to B[τ, Z], so that the 1-coherence of O⊗ is equivalent to the coherence of O⊗.

3.3.3 Module Objects

Let O⊗ be a coherent ∞-operad and suppose we are given a fibration of ∞-operads C⊗ → O⊗. In

this section, we will explain how to associate to each algebra object A ∈ Alg/O(C) a new∞-operad

ModO
A(C)⊗ of A-modules in C. The construction of ModO

A(C)⊗ (as a simplicial set with a map to

N(Fin∗)) is fairly straightforward; the bulk of our work will be in proving that ModO
A(C)⊗ is actually

an ∞-operad (Theorem 3.3.3.9).
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Construction 3.3.3.1. Let O⊗ be a unital ∞-operad and let C⊗ → O⊗ be a map of generalized

∞-operads. We let KO ⊆ Fun(∆1,O⊗) denote the full subcategory spanned by the semi-inert

morphisms in O⊗ (Notation 3.3.2.1), and ei : KO → O⊗ the evaluation functor for i ∈ {0, 1}. We

define a simplicial set M̃od
O

(C)⊗ equipped with a map q : M̃od
O

(C)⊗ → O⊗ so that the following

universal property is satisfied: for every map of simplicial sets X → O⊗, there is a canonical

bijection

FunO⊗(X, M̃od
O

(C)⊗) ' FunFun({1},O⊗)(X ×Fun({0},O⊗) KO,C
⊗).

We let Mod
O

(C)⊗ denote the full simplicial subset of M̃od
O

(C)⊗ spanned by those vertices v with

the following property: if we let v = q(v) ∈ O⊗, then v determines a functor

{v} ×O⊗ KO → C⊗

which carries inert morphisms to inert morphisms (recall that a morphism α in KO is inert if its

images e0(α) and e1(α) are inert).

Notation 3.3.3.2. Let O⊗ be an∞-operad. We let K0
O denote the full subcategory of KO spanned

by the null morphisms f : X → Y in O⊗. For i = 0, 1, we let e0
i denote the restriction to K0

O of the

evaluation map ei : KO → O⊗.

Lemma 3.3.3.3. Let O⊗ be a unital ∞-operad. Then the maps e0
0 and e0

1 determine a trivial Kan

fibration θ : K0
O → O⊗×O⊗.

Proof. Since θ is evidently a categorical fibration, it will suffice to show that θ is a categorical

equivalence. Corollary HTT.2.4.7.12 implies that evaluation at {0} induces a Cartesian fibration

p : Fun(∆1,O⊗)→ O⊗. If f is a null morphism in O⊗, then so is f ◦ g for every morphism g in O⊗;

it follows that if α : f → f ′ is a p-Cartesian morphism in Fun(∆1,O⊗) and f ′ ∈ K0
O, then f ∈ K0

O.

Consequently, p restricts to a Cartesian fibration e0
0 : K0

O → O⊗. Moreover, a morphism α in K0
O is

e0
0-Cartesian if and only if e0

1(α) is an equivalence. Consequently, θ fits into a commutative diagram

K0
O

θ //

e00   

O⊗×O⊗

π
zz

O⊗

and carries e0
0-Cartesian morphisms to π-Cartesian morphisms. According to Corollary HTT.2.4.4.4 ,

it will suffice to show that for every object X ∈ O⊗, the map θ induces a categorical equivalence

θX : (O⊗)
X/
0 → O⊗, where (O⊗)

X/
0 is the full subcategory of (O⊗)X/ spanned by the null morphisms

X → Y .

The map θX is obtained by restricting the left fibration q : (O⊗)X/ → O⊗. We observe that

if f is a null morphism in O⊗, then so is every composition of the form g ◦ f . It follows that if
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α : f → f ′ is a morphism in (O⊗)X/ such that f ∈ (O⊗)
X/
0 , then f ′ ∈ (O⊗)

X/
0 , so the map q restricts

to a left fibration θX : (O⊗)
X/
0 → O⊗. Since the fibers of θX are contractible (Lemma 3.3.3.11),

Lemma HTT.2.1.3.4 implies that θX is a trivial Kan fibration.

Corollary 3.3.3.4. Let O⊗ be a unital ∞-operad. The projection map e0
0 : K0

O → O⊗ is a flat

categorical fibration.

Notation 3.3.3.5. Let O⊗ be an ∞-operad and let C⊗ → O⊗ be a O-operad family. We define

a simplicial set Ãlg/O(C) equipped with a map Ãlg/O(C) → O⊗ so that the following universal

property is satisfied: for every simplicial set X with a map X → O⊗, we have a canonical bijection

FunO⊗(X, Ãlg/O(C)) ' FunFun({1},O⊗)(X ×Fun({0},O⊗) K
0
O,C

⊗).

We observe that for every object Y ∈ O⊗, a vertex of the fiber Ãlg/O(C)×O⊗{Y } can be identified

with a functor F : {Y } ×Fun({0},O⊗) K
0
O → C⊗. We let pAlg/O(C) denote the full simplicial subset

of Ãlg/O(C) spanned by those vertices for which the functor F preserves inert morphisms.

Remark 3.3.3.6. Let O⊗ be a unital ∞-operad and C⊗ → O⊗ a O-operad family. The map θ :

K0
O → O⊗×O⊗ of Lemma 3.3.3.3 induces a map φ : O⊗×FunO⊗(O⊗,C⊗)→ Ãlg/O(C). Unwinding

the definitions, we see that φ−1 pAlg/O(C) can be identified with the product O⊗×Alg/O(C).

Remark 3.3.3.7. Let O⊗ be a unital ∞-operad. Since the map e0
1 : K0

O → O⊗ is a trivial

Kan fibration (Lemma 3.3.3.3), we conclude that φ : O⊗×FunO⊗(O⊗,C⊗) → Ãlg/O(C) induces a

categorical equivalence O⊗×Alg/O(C)→ pAlg/O(C).

Definition 3.3.3.8. Let O⊗ be a unital ∞-operad and C⊗ → O⊗ a fibration of generalized ∞-

operads. We let ModO(C)⊗ denote the fiber product

Mod
O

(C)⊗ ×pAlg/O(C) (O⊗×Alg/O(C)).

For every algebra object A ∈ Alg/O(C), we let ModO
A(C)⊗ denote the fiber product

Mod
O

(C)⊗ ×pAlg/O(C) {A} ' ModO(C)⊗ ×Alg/O(C) {A}.

We will refer to ModO
A(C)⊗ as the ∞-operad of O-module objects over A.

We can now state the main result of this section as follows:

Theorem 3.3.3.9. Let p : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is coherent, and let

A ∈ Alg/O(C). Then the induced map ModO
A(C)⊗ → O⊗ is a fibration of ∞-operads.

The main ingredient in the proof of Theorem 3.3.3.9 is the following result, which we will prove

at the end of this section.
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Proposition 3.3.3.10. Let O⊗ be a coherent ∞-operad, and C⊗ → O⊗ be a map of generalized

∞-operads. Then the induced map q : Mod
O

(C)⊗ → O⊗ is again a map of generalized ∞-operads.

Moreover, a morphism f in Mod
O

(C)⊗ is inert if and only if it satisfies the following conditions:

(1) The morphism f0 = q(f) : X → Y is inert in O⊗.

(2) Let F : KO×Fun({0},O⊗)∆
1 → C⊗ be the functor classified by f . For every e0-Cartesian

morphism f̃ of KO lifting f0 (in other words, for every lift f̃ of f0 such that e1(f̃) is an

equivalence: see part (4) of the proof of Proposition 3.3.3.18), the morphism F (f̃) of C⊗ is

inert.

We will obtain Theorem 3.3.3.9 by combining Proposition 3.3.3.10 with a few elementary ob-

servations.

Lemma 3.3.3.11. Let p : O⊗ be a unital ∞-operad. Let X and Y be objects of O⊗ lying over

objects 〈m〉, 〈n〉 ∈ Fin∗, and let Map0
O⊗

(X,Y ) denote the summand of MapO⊗(X,Y ) corresponding

to those maps which cover the null morphism 〈m〉 → {∗} → 〈n〉 in Fin∗. Then Map0
O⊗

(X,Y ) is

contractible.

Proof. Choose an inert morphism f : X → Z covering the map 〈m〉 → {∗} in Fin∗. We observe

that composition with f induces a homotopy equivalence MapO⊗(Z, Y )→ Map0
O⊗

(X,Y ). Since O⊗

is unital, the space MapO⊗(Z, Y ) is contractible.

Lemma 3.3.3.12. Let O⊗ be a unital ∞-operad and let C⊗ → O⊗ be a O-operad family. Then the

map Ãlg/O(C)→ O⊗0 is a categorical fibration. In particular, Ãlg/O(C) is an ∞-category.

Proof. The simplicial set Ãlg/O(C) can be described as (e0
0)∗(K

0
O×Fun({1},O⊗) C

⊗). The desired

result now follows from Proposition B.4.5 and Corollary 3.3.3.4.

Remark 3.3.3.13. In the situation of Lemma 3.3.3.12, the simplicial set pAlg/O(C) is a full simpli-

cial subset of an∞-category, and therefore also an∞-category. Since pAlg/O(C) is evidently stable

under equivalence in Ãlg/O(C), we conclude that the map pAlg/O(C) → O⊗ is also a categorical

fibration.

Lemma 3.3.3.14. Let O⊗ be a coherent ∞-operad, and let C⊗ → O⊗ be a O-operad family. Then

the inclusion K0
O → KO induces a categorical fibration Mod

O
(C)⊗ → pAlg/O(C).

Proof. Since Mod
O

(C)⊗ and pAlg/O(C) are full subcategories stable under equivalence in M̃od
O

(C)⊗

and Ãlg/O(C), it suffices to show that the map M̃od
O

(C)⊗ → Ãlg/O(C) has the right lifting property

with respect to every trivial cofibration A → B with respect to the Joyal model structure on
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(Set∆)/O⊗ . Unwinding the definitions, we are required to provide solutions to lifting problems of

the form

(A×Fun({0},O⊗) KO)
∐
A×Fun({0},O⊗)K

0
O

(B ×Fun({0},O⊗) K
0
O)

i

��

// C⊗

q

��
B ×Fun({0},O⊗) KO

//

33

Fun({1},O⊗).

Since q is a categorical fibration, it suffices to prove that the monomorphism i is a categorical

equivalence of simplicial sets. In other words, we need to show that the diagram

A×Fun({0},O⊗) K
0
O

//

��

A×Fun({0},O⊗) KO

��
B ×Fun({0},O⊗) K

0
O

// B ×Fun({0},O⊗) KO

is a homotopy pushout square (with respect to the Joyal model structure). To prove this, it

suffices to show that the vertical maps are categorical equivalences. Since A → B is a categorical

equivalence, this follows from Corollary B.3.15, since the restriction maps e0
0 : K0

O → O⊗ and

e0 : KO → O⊗0 are flat categorical fibrations (Corollary 3.3.3.4).

Remark 3.3.3.15. Let C⊗ → O⊗ be as in Lemma 3.3.3.14. Since every morphism f : X → Y in

O⊗ with X ∈ O⊗〈0〉 is automatically null, the categorical fibration Mod
O

(C)⊗ → pAlg/O(C) induces

an isomorphism Mod
O

(C)⊗〈0〉 →
pAlg/O(C)〈0〉.

Remark 3.3.3.16. In the situation of Definition 3.3.3.8, consider the pullback diagram

ModO(C)⊗
j //

θ′

��

Mod
O

(C)⊗

θ

��
O⊗×Alg/O(C)

j′ // pAlg/O(C).

Since θ is a categorical fibration and O⊗×Alg/O(C) is an ∞-category, this diagram is a homotopy

pullback square (with respect to the Joyal model structure). Remark 3.3.3.7 implies that j′ is a

categorical equivalence, so j is also a categorical equivalence. Using Proposition 3.3.3.10, we deduce

that ModO(C)⊗ → O⊗×Alg/O(C) is a fibration of generalized ∞-operads.

Proof of Theorem 3.3.3.9. It follows from Remark 3.3.3.16 that the map ModO
A(C)⊗ → O⊗ is a

fibration of generalized ∞-operads. To complete the proof, it will suffice to show that ModO
A(C)⊗

is itself an ∞-operad. According to Proposition 2.3.2.5, this is equivalent to the assertion that

ModO
A(C)⊗〈0〉 is a contractible Kan complex. This is clear, since Remark 3.3.3.15 implies that θ′

induces an isomorphism ModO(C)⊗〈0〉 → Alg/O(C).
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We now turn to the proof of Proposition 3.3.3.10.

Lemma 3.3.3.17. Let O⊗ be an ∞-operad, let X : X → X ′ be an object of Fun(∆1,O⊗), and let

e0 : Fun(∆1,O⊗)→ O⊗ be given by evaluation at 0.

(1) For every inert morphism f0 : X → Y in O⊗, there exists an e0-coCartesian morphism

f : X → Y in Fun(∆1,O⊗) lifting f0.

(2) An arbitrary morphism f : X → Y in Fun(∆1,O⊗) lifting f0 is e0-coCartesian if and only if

the following conditions are satisfied:

(i) The image of f in Fun({1},O⊗) is inert.

(ii) Let α : 〈m〉 → 〈m′〉 be the morphism in Fin∗ determined by X, and let β : 〈n〉 → 〈n′〉 be

the morphism in Fin∗ determined by Y . Then f induces a diagram

〈m〉 δ //

α

��

〈n〉

β
��

〈m′〉 γ // 〈n′〉

with the property that γ−1{∗} = α(δ−1{∗}).

(3) If X ∈ KO and f is e0-coCarteian, then Y ∈ KO (the map f is then automatically coCartesian

with respect to the restriction e0|KO).

Proof. We note that the “only if” direction of (2) follows from the “if” direction together with (1),

since a coCartesian lift f of f0 is determined uniquely up to homotopy. We first treat the case

where O⊗ = N(Fin∗). Then we can identify X with α with β, and f0 with an inert morphism

δ : 〈m〉 → 〈n〉. Choose a map γ : 〈m′〉 → 〈n′〉 which identifies 〈n′〉 with the finite pointed set

obtained from 〈m′〉 by collapsing α(δ−1{∗}) to a point, so that we have a commutative diagram

〈m〉 δ //

α

��

〈n〉

β
��

〈m′〉 γ // 〈n′〉

as in the statement of (ii). By construction, the map γ is inert. The above diagram is evidently a

pushout square in Fin∗ and so therefore corresponds to a morphism morphism f in Fun(∆1,N(Fin∗))

which is coCartesian with respect to the projection Fun(∆1,N(Fin∗)), and therefore with respect

to the projection e0 : KN(Fin∗) → N(Fin∗). This completes the proof of (1) and the “if” direction

of (2); assertion (3) follows from the observation that β is semi-inert whenever α is semi-inert.



394 CHAPTER 3. ALGEBRAS AND MODULES OVER ∞-OPERADS

We now prove the “if” direction of (2) in the general case. Since f0 is inert, we conclude

(Proposition HTT.2.4.1.3 ) that f is e0-coCartesian if and only if it is coCartesian with respect to

the composition

Fun(∆1,O⊗)
e0→ O⊗ → N(Fin∗).

This map admits another factorization

Fun(∆1,O⊗)
p→ Fun(∆1,N(Fin∗))

q→ N(Fin∗).

The first part of the proof shows that p(f) is q-coCartesian. Since f0 is inert, condition (i) and

Lemma 3.2.2.9 guarantee that f is p-coCartesian. Applying Proposition HTT.2.4.1.3 , we deduce

that f is (q ◦ p)-coCartesian as desired.

To prove (1), we first choose a diagram

〈m〉 δ //

α

��

〈n〉

β
��

〈m′〉 γ // 〈n′〉

satisfying the hypotheses of (2). We can identify this diagram with a morphism f in Fun(∆1,N(Fin∗)).

We will show that it is possible to choose a map f : X → Y satisfying (i) and (ii), which lifts

both f0 and f . Using the assumption that O⊗ is an ∞-operad, we can choose an inert morphism

f1 : X ′ → Y ′ lifting γ. Using the fact that the projection O⊗ → N(Fin∗) is an inner fibration, we

obtain a commutative diagram

X

X
��

f0 //

!!

Y

��
X ′

f1 // Y ′

in O⊗. To complete the proof, it suffices to show that we can complete the diagram by filling an

appropriate horn Λ2
0 ⊆ ∆2 to supply the dotted arrow. The existence of this arrow follows from

the fact that f0 is inert, and therefore coCartesian with respect to the projection O⊗ → N(Fin∗).

We now prove (3). Let f : X → Y be a morphism corresponding to a diagram as above,

where X is semi-inert; we wish to show that Y is semi-inert. The first part of the proof shows

that the image of Y in N(Fin∗) is semi-inert. It will therefore suffice to show that for any inert

morphism g : Y ′ → Z, if the image of g ◦ Y in N(Fin∗) is inert, then g ◦ Y is inert. We note that

g ◦Y ◦ f0 ' g ◦ f1 ◦X has inert image in N(Fin∗); since X is semi-inert we deduce that g ◦Y ◦ f0 is

inert. Since f0 is inert, we deduce from Proposition HTT.2.4.1.7 that g ◦ Y is inert as desired.

For the remainder of this section, we will assume that the reader is familiar with the language of

categorical patterns developed in Appendix B.4. Let P denote the categorical pattern (M,T, {σα :

∆1×∆1 → O⊗}α∈A) on O⊗ where M is the collection of inert morphisms in O⊗, T is the collection
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of all 2-simplices in O⊗, and A is the collection of all diagrams of inert morphisms in O⊗ which

cover a diagram

〈m〉 //

��

〈n〉

��
〈m′〉 // 〈n′〉

in Fin∗ which induces a bijection 〈m′〉◦
∐
〈n′〉◦ 〈n〉

◦ → 〈m〉◦. We will regard (Set+∆)/P = (Set+
∆)/O⊗

as endowed with the model structure of Theorem B.0.20. Let M ′ denote the collection of inert

morphisms in KO, so that the construction X 7→ X ×Fun({0},O⊗)\ KO,M
′) determines a functor

F : (Set+∆)/P → (Set+∆)/P. The functor F admits a right adjoint G. By construction, if C⊗ → O⊗

is a fibration of generalized∞-operads, then G(C⊗,\) can be identified with the pair (Mod
O

(C),M ′′),

where M ′′ is the collection of edges in Mod
O

(C) satisfying condition (2) of Proposition 3.3.3.10.

Unwinding the definitions, we see that an object X ∈ (Set+
∆)/O⊗ is fibrant if and only if the

underlying map X → O⊗ is a map of generalized ∞-operads and the collection of marked edges of

X coincides with the collection of inert morphisms in X. We can therefore reformulate Proposition

3.3.3.10 as follows:

(∗) The functor G : (Set+∆)/P → (Set+∆)/P carries fibrant objects to fibrant objects.

This is an immediate consequence of the following stronger assertion:

Proposition 3.3.3.18. Let O⊗ be a coherent ∞-operad, let M0 denote the collection of all in-

ert morphisms in O⊗, and let M denote the collection of all inert morphisms in KO. Then the

construction

X 7→ X ×O⊗,\ (KO,M
′)

determines a left Quillen functor from (Set+∆)/P to itself.

Proof. It will suffice to show that the map KO → O⊗×O⊗ satisfies the hypotheses of Theorem

B.4.2:

(1) The evaluation map e0 : KO → O⊗ is a flat categorical fibration. This follows from our

assumption that O⊗ is coherent.

(2) The collections of inert morphisms in O⊗ and KO contain all equivalences and are closed

under composition. This assertion is clear from the definitions.

(3) For every 2-simplex σ of KO, if e0(σ) is thin, then e1(σ) thin. Moreover, a 2-simplex ∆2 → KO

is thin if its restriction to ∆{0,1} is thin. These assertions are clear, since the categorical

pattern Pfam
O⊗

designates every 2-simplex as thin.
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(4) For every inert edge ∆1 → Fun({0},O⊗), the induced map KO×Fun({0},O⊗)∆
1 → ∆1 is a

Cartesian fibration. To prove this, it suffices to show that ifX is an object of KO corresponding

to a semi-inert morphism X → X ′ in O⊗, and f : Y → X is an inert morphism in O⊗, then

we can lift f to an e0-Cartesian morphism f : Y → X. According to Corollary HTT.2.4.7.12 ,

we can lift f to a morphism f : Y → X in Fun(∆1,O⊗) which is e′0-coCartesian, where

e′0 : Fun(∆1,O⊗)→ O⊗0 is given by evaluation at 0. To complete the proof, it suffices to show

that Y belongs to KO. We can identify f with a commutative diagram

Y
f //

Y
��

X

X
��

Y ′
f ′ // X ′

in O⊗; we wish to prove that the morphism Y is semi-inert. Since f is e′0-Cartesian, Corollary

HTT.2.4.7.12 implies that f ′ is an equivalence. We can therefore identify Y with f ′◦Y ' X◦f ,

which is inert by virtue of Remark 3.3.1.3. This completes the verification of condition (4)

and establishes the following criterion: if f is a morphism in KO such that f = e0(f) is inert,

the following conditions are equivalent:

(i) The map f is locally e0-Cartesian.

(ii) The map f is e0-Cartesian.

(iii) The morphism e1(f) is an equivalence in O⊗1 .

(5) Let p : ∆1 × ∆1 → Fun({0},O⊗) be one of the diagrams specified in the definition of the

categorical pattern P. Then the restriction of e0 determines a coCartesian fibration (∆1 ×
∆1)×Fun({0},O⊗) KO → ∆1 ×∆1. This follows immediately from Lemma 3.3.3.17.

(6) Let p : ∆1×∆1 → Fun({0},O⊗) be one of the diagrams specified in the definition of the cate-

gorical pattern Pfam and let s be a coCartesian section of the projection (∆1×∆1)×Fun({0},O⊗)

KO → ∆1 ×∆1. Then the composite map

q : ∆1 ×∆1 s→ (∆1 ×∆1)×Fun({0},O⊗) KO → KO
e1→ Fun({1},O⊗)

is one of the diagrams specified in the definition of the categorical patterm Pfam
Fun({1},O⊗)

. It

follows from Lemma 3.3.3.17 that q carries each morphism in ∆1 ×∆1 to an inert morphism

in Fun({1},O⊗). Unwinding the definitions (and using the criterion provided by Lemma

3.3.3.17), we are reduced to verifying the following simple combinatorial fact: given a semi-

inert morphism 〈m〉 → 〈k〉 in Fin∗ and a commutative diagram of inert morphisms

〈m〉 //

��

〈n〉

��
〈m′〉 // 〈n′〉
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which induces a bijection 〈n〉◦
∐
〈n′〉◦ 〈m′〉

◦ → 〈m〉◦, the induced diagram

〈k〉 //

��

〈n〉
∐
〈m〉 〈k〉

��
〈m′〉

∐
〈m〉 〈k〉 // 〈n′〉

∐
〈m〉 〈k〉

has the same property.

(7) Suppose we are given a commutative diagram

Y
g

��
X

f
>>

h // Z

in KO, where g is locally e0-Cartesian, e0(g) is inert, and e0(f) is an equivalence. We must

show that f is inert if and only if h is inert. Consider the underlying diagram in O⊗

X0
f0 //

��

Y0
g0 //

��

Z0

��
X1

f1 // Y1
g1 // Z1.

Since f0 is an equivalence and g0 is inert, h0 = g0 ◦ f0 is inert. It will therefore suffice to

prove that f1 is inert if and only if h1 = g1 ◦ f1 is inert. For this, it sufficess to show that g1

is an equivalence in O⊗. This follows from the proof of (4), since g is assumed to be locally

e0-Cartesian.

(8) Suppose we are given a commutative diagram

Y
g

��
X

f
>>

h // Z

in KO where f is e0-coCartesian, e0(f) is inert, and e0(g) is an equivalence. We must show

that g is inert if and only if h is inert. Consider the underlying diagram in O⊗

X0
f0 //

��

Y0
g0 //

��

Z0

��
X1

f1 // Y1
g1 // Z1.

Since f0 and f1 are inert (Lemma 3.3.3.17), Propositions HTT.5.2.8.6 and 2.1.2.4 guarantee

that g0 is inert if and only if h0 is inert, and that g1 is inert if and only if h1 is inert. Combining

these facts, we conclude that g is inert if and only if h is inert.



398 CHAPTER 3. ALGEBRAS AND MODULES OVER ∞-OPERADS

We close this section by describing the structure of the module ∞-categories ModO
A(C) in the

simplest case, where O⊗ is the ∞-operad E⊗0 of Example 2.1.1.19. Recall that E⊗0 is coherent

(Example 3.3.1.13).

Proposition 3.3.3.19. Let q : C⊗ → E⊗0 be a fibration of ∞-operads. Then the canonical map

Mod
E0

(C)→ pAlg/E0
(C)× C = Alg/E0

(C)× C

is a trivial Kan fibration. In particular, for every E0-algebra object A of C, the forgetful functor

ModE0
A (C)→ C

is an equivalence of ∞-categories.

Proof. There is a canonical isomorphism of simplicial sets KE0 ×O⊗{〈1〉} ' E
⊗
0 × ∆1. Let A be

the full subcategory of E⊗0 × ∆1 spanned by (〈0〉, 0) together with the objects (〈n〉, 1) for n ≥ 0.

Unwinding the definitions, we can identify FunE⊗0
(E0×∆1,C⊗) spanned by those functors F which

satisfy the following conditions:

(i) The restriction F |E⊗0 × {1} is an E0-algebra object C⊗.

(ii) The functor F is a q-right Kan extension of F |A.

Using Proposition HTT.4.3.2.15 , we deduce that the restriction functor

Mod
E0

(C)→ FunE0(A,C⊗)×FunE⊗0
(E⊗0 ×{1},C) Alg/E0

(C)

is a trivial Kan fibration. It therefore suffices to show that the map

FunE⊗0
(A,C⊗)→ FunE⊗0

(E⊗0 × {1},C)× C

is a trivial Kan fibration. Since E⊗0 contains 〈0〉 as an initial object and A is isomorphic to the cone

(E⊗0 )/, the inclusion

A0 = ({〈0〉} ×∆1)
∐

{(〈0〉,1)}

(E⊗0 × {1}) ⊆ A

is a categorical equivalence. Since q is a categorical fibration, the restriction map

FunE⊗0
(A,C⊗)→ FunE⊗0

(A0,C
⊗)

is a trivial Kan fibration. We are therefore reduced to proving that the restriction map

φ : FunE⊗0
(A0,C

⊗)→ FunE⊗0
(E⊗0 × {1},C

⊗)× C

is a trivial Kan fibration. The map φ is a pullback of the evaluation map

FunE⊗0
(∆1,C⊗)→ FunE⊗0

({0},C⊗) = C,

which is a trivial Kan fibration by virtue of Proposition HTT.4.3.2.15 (since every object of C⊗〈0〉 is

q-final).
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3.4 General Features of Module ∞-Categories

Let A be a commutative ring. Then the relative tensor product functor (M,N) 7→ M ⊗A N

endows the category ModA of A-modules with the structure of a symmetric monoidal category.

This symmetric monoidal structure has the following features:

(1) The category CAlg(ModA) of commutative algebra objects of ModA is equivalent to the

category of A-algebras: that is, the category whose objects are commutative rings B equipped

with a ring homomorphism A→ B.

(2) Let Ab denote the category of abelian groups. There is an evident forgetful functor θ :

ModA → Ab. When A is the ring of integers Z, the functor θ is an equivalence of categories.

(3) The category ModA admits small limits and colimits. Moreover, the forgetful functor θ :

ModA → Ab preserves all small limits and colimits.

Our goal in this section is to prove analogues of assertions (1), (2) and (3) in the ∞-categorical

context. We will replace the symmetric monoidal category of abelian groups by an arbitrary

fibration of ∞-operads q : C⊗ → O⊗ with O⊗ coherent, the commutative ring A by an algebra

object A ∈ Alg/O(C), and the symmetric monoidal category ModA of A-modules by the ∞-operad

fibration q′ : ModO
A(C)⊗ → O⊗ defined in §3.3.3. We will prove the following:

(1′) There is an equivalence of ∞-categories Alg/O(ModO
A(C))→ Alg/O(C)A/ (Corollary 3.4.1.7).

(2′) There is a forgetful functor θ : ModO
A(C)⊗ → C⊗. If A is a trivial O-algebra (Definition

3.2.1.7), then θ is an equivalence of ∞-operads (Proposition 3.4.2.1).

(3′) Let X ∈ O be an object such that the fiber CX admits K-indexed limits, for some simplicial

set K. Then the ∞-category ModO
A(C)X admits K-indexed limits. Moreover, θ restricts to a

functor ModO
A(C)X → CX which preserves K-indexed limits (Corollary 3.4.3.6).

We will prove assertions (1′) and (2′) in §3.4.1 and §3.4.2, respectively. Assertion (3′) will

be deduced from a more general assertion concerning limits relative to the forgetful functor q′ :

ModO(C) → O⊗×Alg/O(C) (Theorem 3.4.3.1) which we prove in §3.4.3. There is an analogous

statement for relative colimits (Theorem 3.4.4.3), which we will prove in §3.4.4. However, both

the statement and the proof are considerably more involved: we must assume not only that the

relevant colimits exist in the underlying ∞-category C, but that they are operadic colimits in the

sense of §3.1.1. Nevertheless, we will be able to use Theorem 3.4.4.3 to establish an analogue of (3′)

for colimit diagrams, under some mild assumptions on the fibration q : C⊗ → O⊗ (see, for example,

Theorem 3.4.4.2).
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3.4.1 Algebra Objects of ∞-Categories of Modules

Let C be a symmetric monoidal category, let A be a commutative algebra object of C, and let

D = ModA(C) be the category of A-modules in C. Under some mild hypotheses, the category D

inherits the structure of a symmetric monoidal category. Moreover, one can show the following:

(1) The forgetful functor θ : D → C induces an equivalence of categories from the category of

commutative algebra objects CAlg(D) to the category CAlg(C)A/ of commutative algebra

objects A′ ∈ CAlg(D) equipped with a map A→ A′.

(2) Given a commutative algebra object B ∈ CAlg(D), the category of B-modules in D is equiv-

alent to the category of θ(B)-modules in C.

Our goal in this section is to obtain∞-categorical analogues of the above statements for algebras

over an arbitrary coherent ∞-operad (Corollaries 3.4.1.7 and 3.4.1.9). Before we can state our

results, we need to introduce a bit of terminology.

Notation 3.4.1.1. Let p : O⊗ → N(Fin∗) be an ∞-operad, and let KO ⊆ Fun(∆1,O⊗) be defined

as in Notation 3.3.2.1. We let O⊗∗ denote the ∞-category of pointed objects of O⊗: that is, the

full subcategory of Fun(∆1,O⊗) spanned by those morphisms X → Y such that X is a final object

of O⊗ (which is equivalent to the requirement that p(X) = 〈0〉). If O⊗ is unital, then a diagram

∆1 → O⊗ belongs to O⊗∗ ⊆ Fun(∆1,O⊗) is and only if it is a left Kan extension of its restriction to

{1}. In this case, Proposition HTT.4.3.2.15 implies that evaluation at {1} induces a trivial Kan

fibration e : O⊗∗ → O⊗. We let s : O⊗ → O⊗∗ denote a section of e, and regard s as a functor from

O⊗ to Fun(∆1,O⊗). We observe that there is a canonical natural transformation s→ δ, where δ is

the diagonal embedding O⊗ → Fun(∆1,O⊗). We regard this natural transformation as defining a

map

γO⊗ : O⊗×∆1 → KO .

Remark 3.4.1.2. More informally, the map γO⊗ can be described as follows. If X ∈ O⊗, then

γO⊗(X, i) =

{
idX ∈ KO if i = 1

(f : 0→ X) ∈ KO if i = 0.

Here 0 denotes a zero object of O⊗.

Let O⊗ be a coherent ∞-operad and let C⊗ → O⊗ be a fibration of generalized ∞-operads.

Unwinding the definitions, we see that giving an O-algebra in Mod
O

(C)⊗ is equivalent to giving a

commutative diagram of simplicial sets

KO

e1

!!

f // C⊗

}}
O⊗ .
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such that f preserves inert morphisms. Composing with the map γO of Notation 3.4.1.1, we obtain

a map

Alg/O(Mod
O

(C))→ FunO⊗(O⊗×∆1,C⊗).

Our main results can be stated as follows:

Proposition 3.4.1.3. Let O⊗ be a coherent ∞-operad, and let q : C⊗ → O⊗ be a fibration of

∞-operads. Then the construction above determines a categorical equivalence

Alg/O(Mod
O

(C))→ Fun(∆1,Alg/O(C)).

Proposition 3.4.1.4. Let O⊗ be a coherent∞-operad, let p : C⊗ → O⊗ be a fibration of∞-operads,

and let A ∈ Alg/O(C). Then the forgetful functor ModO
A(C)⊗ → C⊗ induces a homotopy pullback

diagram of ∞-categories

ModO(ModO
A(C))⊗ //

��

ModO(C)⊗

��
Alg/O(ModO

A(C))× O⊗ // Alg/O(C)× O⊗ .

We defer the proofs of Proposition 3.4.1.3 and 3.4.1.4 until the end of this section.

Corollary 3.4.1.5. Let O⊗ be a coherent ∞-operad and let C⊗ → O⊗ be a fibration of ∞-operads.

The composition

θ : Alg/O(ModO(C))→ Alg/O(Mod
O

(C))→ Fun(∆1,Alg/O(C))

is an equivalence of ∞-categories.

Proof. Combine Proposition 3.4.1.3 with Remark 3.3.3.16.

Remark 3.4.1.6. Let θ : Alg/O(ModO(C))→ Fun(∆1,Alg/O(C)) be the categorical equivalence of

Corollary 3.4.1.5. Composing with the map Fun(∆1,Alg/O(C))→ Alg/O(C) given by evaluation at

{0}, we obtain a map θ0 : Alg/O(ModO(C))→ Alg/O(C). Unwinding the definitions, we see that θ0

factors as a composition

Alg/O(ModO(C))
θ′0→ Alg/O(Alg/O(C)× O)

θ′′0→ Alg/O(C),

where θ′′0 is induced by composition with the diagonal embedding O⊗ → O⊗×O⊗. In particular, if

A is a O-algebra object of C, then the the restriction of θ0 to Alg/O(ModO
A(C)) is a constant map

taking the value A ∈ Alg/O(C).
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Corollary 3.4.1.7. Let O⊗ be a coherent ∞-operad, let C⊗ → O⊗ be a fibration of ∞-operads, and

let A ∈ Alg/O(C) be a O-algebra object of C. Then the categorical equivalence θ of Corollary 3.4.1.5

restricts to a categorical equivalence

θA : Alg/O(ModO
A(C))→ Alg/O(C)A/.

Proof. Remark 3.4.1.6 guarantees that the restriction of θ carries Alg/O(ModO
A(C)) into

Alg/O(C)A/ ⊆ Fun(∆1,Alg/O(C)A/).

Consider the diagram

Alg/O(ModO
A(C)) //

��

Alg/O(ModO(C))
θ //

��

Fun(∆1,Alg/O(C))

��
∆0 // Alg/O(Alg/O(C)× O)

θ′ // Fun({0},Alg/O(C)).

The left square is a homotopy pullback, since it is a pullback square between fibrant objects in

which the vertical maps are categorical fibrations. The right square is a homotopy pullback since

both of the horizontal arrows are categorical equivalences (θ is a categorical equivalence by virtue

of Corollary 3.4.1.5, and θ′ is a categorical equivalence since it is left inverse to a categorical

equivalence). It follows that the outer square is also a homotopy pullback, which is equivalent to

the assertion that θA is a categorical equivalence (Proposition HTT.3.3.1.3 ).

Corollary 3.4.1.8. Let O⊗ be a coherent ∞-operad, p : C⊗ → O⊗ a fibration of ∞-operads, and

A ∈ Alg/O(C) an algebra object. Then there is a canonical equivalence of ∞-categories

ModO(ModO
A(C))⊗ → ModO(C)⊗ ×Alg/O(C) Alg/O(C)A/.

Proof. Combine Proposition 3.4.1.4 with Corollary 3.4.1.7.

Corollary 3.4.1.9. Let O⊗ be a coherent ∞-operad, p : C⊗ → O⊗ a fibration of ∞-operads. Let

A ∈ Alg/O(C), let B ∈ Alg/O(ModO
A(C)), and let B ∈ Alg/O(C) be the algebra object determined by

B. Then there is a canonical equivalence of ∞-operads

ModO
B

(ModO
A(C))⊗ → ModO

B(C)⊗.

We now turn to the proof of Propositions 3.4.1.3 and 3.4.1.4. We will need a few preliminary

results.

Lemma 3.4.1.10. Suppose we are given a commutative diagram of ∞-categories

C
F //

p

��

D

q
��

E
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where p and q are Cartesian fibrations and the map F carries p-Cartesian morphisms to q-Cartesian

morphisms. Let D ∈ D be an object, let E = q(D), and let CD/ = C×DDD/. Then:

(1) The induced map p′ : CD/ → EE/ is a Cartesian fibration.

(2) A morphism f in CD/ is p′-Cartesian if and only if its image in C is p-Cartesian.

Proof. Let us say that a morphism in CD/ is special if its image in C is p-Cartesian. We first prove

the “if” direction of (2) by showing that every special morphism of CD/ is p-Cartesian; we will

simultaneously show that p′ is an inner fibration. For this, we must show that every lifting problem

of the form

Λni

��

g0 // CD/

��
∆n //

g
==

EE/

admits a solution, provided that n ≥ 2 and either 0 < i < n or i = n and g0 carries ∆{n−1,n} to a

special morphism e in CD/. To prove this, we first use the fact that p is an inner fibration (together

with the observation that the image e0 of e in C is p-Cartesian when i = n) to solve the associated

lifting problem

Λni

��

g′0 // C

��
∆n //

g′
>>

E .

To extend this to solution of our original lifting problem, we are required to solve another lifting

problem of the form

Λn+1
i+1

g′′0 //

��

D

q

��
∆n+1

g′′
==

// E .

If i < n, the desired solution exists by virtue of our assumption that q is an inner fibration. If

i = n, then it suffices to observe that g′′0(∆{n,n+1}) = F (e0) is a q-Cartesian morphism in D.

To prove (1), it will suffice to show that for every object C ∈ CD/ and every morphism f0 :

E
′ → p′(C) in EE/, there exists a special morphism f in CD/ with p′(f) = f0. We can identify C

with an object C ∈ C together with a morphism α : D → F (C) in D, and we can identify f0 with

a 2-simplex

E′

f0

""
E

??

q(α) // p(C)
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in E. Since p is a Cartesian fibration, we can choose a p-Cartesian morphism f : C ′ → C with

p(f) = f0. In order to lift f to a special morphism f : C
′ → C, it suffices to complete the diagram

F (C ′)
F (f0)

$$$$
D

<<

α // F (C)

to a 2-simplex of D. This is possibly by virtue of our assumption that F (f0) is q-Cartesian.

To complete the proof of (2), it will suffice to show that every p′-Cartesian morphism f
′
: C
′′ →

C of CD/ is special. The proof of (1) shows that there exists a special morphism f : C
′ → C with

p′(f) = p′(f
′
). Since f is also p′-Cartesian, it is equivalent to f

′
, so that f

′
is also special.

Lemma 3.4.1.11. Suppose given a commutative diagram of ∞-categories

C
F //

p

��

D

q
��

E

where p and q are Cartesian fibrations, and the map F carries p-Cartesian morphisms to q-

Cartesian morphisms. Suppose furthermore that for every object E ∈ E, the induced functor

FE : CE → DE is left cofinal. Then F is left cofinal.

Proof. In view of Theorem HTT.4.1.3.1 , it suffices to show that for each object D ∈ D, the

simplicial set CD/ = C×DDD/ is weakly contractible. Let E denote the image of D in E; we

observe that CD/ comes equipped with a map p′ : CD/ → EE/. Moreover, the fiber of p′ over the

initial object idE ∈ EE/ can be identified with CE ×DE (DE)D/, which is weakly contractible by

virtue of our assumption that FE is left cofinal (Theorem HTT.4.1.3.1 ). To prove that CD/ is

contractible, it will suffice to show that the inclusion i : p′−1{idE} ↪→ CD/ is a weak homotopy

equivalence. We will prove something slightly stronger: the inclusion i is right cofinal. Since the

inclusion {idE} → EE/ is evidently right cofinal, it will suffice to show that p′ is a Cartesian fibration

(Proposition HTT.4.1.2.15 ). This follows from Lemma 3.4.1.10.

Lemma 3.4.1.12. Let q : C⊗ → O⊗ be a fibration of ∞-operads, and let α : 〈n〉 → 〈m〉 be an inert

morphism in Fin∗. Let σ denote the diagram

〈n〉 α //

id
��

〈m〉

id
��

〈n〉 α // 〈m〉
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in N(Fin∗), let K ' Λ2
2 be the full subcategory of ∆1×∆1 obtained by omitting the initial vertex, and

let σ0 = σ|K. Suppose that σ0 : K → C⊗ is a diagram lifting σ0, corresponding to a commutative

diagram

X

��
Y ′

α′ // X ′

where α′ is inert. Then:

(1) Let σ : ∆1×∆1 → C⊗ be an extension of σ0 lifting σ, corresponding to a commutative diagram

Y
α //

β
��

X

��
Y ′

α′ // X ′

in C⊗. Then σ is a q-limit diagram if and only if it satisfies the following conditions:

(i) The map α is inert.

(ii) Let γ : 〈n〉 → 〈k〉 be an inert morphism in N(Fin∗) such that α−1〈m〉◦ ⊆ γ−1{∗}, and

let γ : Y ′ → Z be an inert morphism in C⊗ lifting γ. Then γ ◦ β : Y → Z is an inert

morphism in C⊗.

(2) There exists an extension σ of σ0 lying over σ which satisfies conditions (i) and (ii) of (1).

Proof. This is a special case of Lemma 3.4.3.15.

Proof of Proposition 3.4.1.3. We define a simplicial set M equipped with a map p : M → ∆1 so

that the following universal property is satisfied: for every map of simplicial sets K → ∆1, the set

Hom(Set∆)/∆1
(K,M) can be identified with the collection of all commutative diagrams

K ×∆1 {1} //

��

O⊗×∆1

γO

��
K // KO .

The map p is a Cartesian fibration, associated to the functor γO from M1 ' O⊗×∆1 to M0 ' KO.

We observe that M is equipped with a functor M → O⊗, whose restriction to M1 ' O⊗×∆1 is

given by projection onto the first factor and whose restriction to M0 ' KO is given by evaluation

at {1}.
We let X denote the full subcategory of FunO⊗(M,C⊗) spanned by those functors F satisfying

the following pair of conditions:
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(i) The functor F is a q-left Kan extension of F |M0.

(ii) The restriction F |M0 ∈ FunO⊗(KO,C
⊗) belongs to Alg/O(Mod

O
(C)).

Since p is a Cartesian fibration, condition (i) can be reformulated as follows:

(i′) For every p-Cartesian morphism f in M, the image F (f) is a q-coCartesian morphism in C⊗.

Since the image of f in O⊗ is an equivalence, this is equivalent to the requirement that F (f)

is an equivalence in C⊗.

Using Proposition HTT.4.3.2.15 , we deduce that the restriction map X → Alg/O(Mod
O

(C)) is a

trivial Kan fibration. This restriction map has a section s, given by composition with the natural

retraction r : M→M0. It follows that s is a categorical equivalence, and that every object F ∈ X

is equivalent (F |M0) ◦ r. We deduce that restriction to M1 ⊆ M induces a functor θ′ : X →
Fun(∆1,Alg/O(C)). We have a commutative diagram

X

θ′

''
Alg/O(Mod

O
(C))

s

88

θ // Fun(∆1,Alg/O(C)).

To complete the proof, it will suffice to show that θ′ is a categorical equivalence. We will show

that θ′ is a trivial Kan fibration. In view of Proposition HTT.4.3.2.15 , it will suffice to prove the

following:

(a) A functor F ∈ FunO⊗(M,C⊗) belongs to X if and only if F1 = F |M1 ∈ Fun(∆1,Alg/O(C))

and F is a q-right Kan extension of F1.

(b) Every object F1 ∈ FunO⊗(M1,C
⊗) belonging to Fun(∆1,Alg/O(C)) admits a q-right Kan

extension of F ∈ FunO⊗(M,C⊗).

To prove these claims, we will need a criterion for detecting whether a functor F ∈
FunO⊗(M,C⊗) is a q-right Kan extension of F1 = F |M1 ∈ Fun(∆1,Alg/O(C)) at an object

X ∈ M0. Let X correspond to a semi-inert morphism α : X ′ → X in O⊗, covering a morphism

α : 〈m〉 → 〈n〉 in N(Fin∗). Let D denote the∞-category (O⊗×∆1)×MMX/, so that D is equipped

with a projection D → ∆1; we let D0 and D1 denote the fibers of this map. Form a pushout

diagram

〈m〉 α //

��

〈n〉

β

��
〈0〉 // 〈k〉
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in Fin∗, and choose an inert morphism β : X ′ → Y in O⊗ lying over β. Let Y denote the image

of Y under our chosen section s : O⊗ → O⊗∗ , so we can identify Y with a morphism 0 → Y in

O⊗, where 0 is a zero object of O⊗. We can therefore lift β to a morphism β̃ : X → Y in KO,

corresponding to a commutative diagram

X ′
α //

��

X

β
��

0 // Y.

The pair (Y, β̃) can be identified with an object of N0, which we will denote by Ỹ . We claim that

Ỹ is an initial object of N0. Unwinding the definitions, this is equivalent to the following assertion:

for every object A ∈ O⊗, composition with β̃ induces a homotopy equivalence

φ : MapO⊗(Y,A)→ MapKO
(X, s(A)).

To prove this, we observe that φ factors as a composition

MapO⊗(Y,A)
φ′→ MapKO

(Y , s(A))
φ′′→ MapKO

(X, s(A)).

The map φ′ is a homotopy equivalence because s is a categorical equivalence, and the map φ′′ is a

homotopy equivalence because β is coCartesian with respect to the projection KO → KN(Fin∗).

We have an evident natural transformation γ̃ : X → idX in KO. The pair (X, γ̃) determines

an object Z̃ ∈ N1. We claim that Z̃ is an initial object of N1. Unwinding the definitions, we see

that this is equivalent to the assertion that for every object A ∈ O⊗, composition with γ̃ induces a

homotopy equivalence

ψ : MapO⊗(X,A)→ MapKO
(X, δ(A)),

where δ : O⊗ → KO is the diagonal embedding. To prove this, we factor ψ as a composition

MapO⊗(X,A)
ψ′→ MapKO

(δ(X), δ(A))
ψ′′→ MapKO

(X, δ(A)).

The map ψ′ is a homotopy equivalence since δ is fully faithful, and the map ψ′′ is a homotopy

equivalence by virtue of Corollary HTT.5.2.8.18 (applied to the trivial factorization system on

O⊗).

Since N→ O⊗×∆1 is a left fibration, we can lift the map (Y, 0)→ (Y, 1) to a map e : Ỹ → Ỹ ′

in N. Since Z̃ is an initial object of N1, we can choose a map e′ : Z̃ → Ỹ in N1. Let C ' Λ2
2 denote

the full subcategory of ∆1 × ∆1 obtained by omitting the final vertex, so that e and e′ together

determine a map of simplicial sets C → N. Applying the dual of Lemma 3.4.1.11 to the diagram

C //

  

N

~~
∆1,

we deduce that C → N is right cofinal. We therefore arrive at the following:
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(∗) A functor F ∈ FunO⊗(M,C⊗) is a q-right Kan extension of F1 = F |M1 ∈ Fun(∆1,Alg/O(C))

at an object X ∈ KO if and only if the induced diagram

F (X) //

��

F1(X, 1)

��
F1(Y, 0) // F1(Y, 1)

is a q-limit diagram.

Moreover, Lemma HTT.4.3.2.13 yields the following:

(∗′) A functor F1 ∈ Fun(∆1,Alg/O(C)) admits a q-right Kan extension F ∈ FunO⊗(M,C⊗) if and

only if, for every object X ∈ KO, the diagram

F1(X, 1)

��
F1(Y, 0) // F1(Y, 1)

can be extended to a q-limit diagram lying over the diagram

X
id //

��

X

��
Y

id // Y.

Assertion (b) follows immediately from (∗′) together with Lemma 3.4.1.12. Combining assertion

(∗) with Lemma 3.4.1.12, we deduce that a functor F ∈ FunO⊗(M,C⊗) is a q-right Kan extension

of F1 = F |M1 ∈ Fun(∆1,Alg/O(C)) if and only if the following conditions are satisfied:

(i′) The restriction F1 belongs to Fun(∆1,Alg/O(C)). That is, F carries every inert morphism in

O⊗×{j} ⊆M1 to an inert morphism in C⊗, for j ∈ {0, 1}.

(ii′) Let X be as above. Then the induced morphism F (X)→ F (Y, 0) is inert.

(iii′) Let X be as above, and suppose that we are given an inert morphism α′ : 〈n〉 → 〈l〉 such

that the composite map α′ ◦ α : 〈m〉 → 〈n′〉 is surjective together with an inert morphism

α′ : X → X ′′ lifting α′. Then the composite map F (X) → F (X, 1) → F (X ′′, 1) is an inert

morphism in C⊗.

To complete the proof, it will suffice to show that a functor F ∈ FunO⊗(M,C⊗) satisfies conditions

(i) and (ii) if and only if it satisfies conditions (i′), (ii′), and (iii′).
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Suppose first that F satisfies (i) and (ii). We have already seen that F must also satisfy (i′).

To prove (ii′), we observe that the map F (X)→ F (Y, 0) factors as a composition

F (X)→ F (Y )→ F (Y, 0).

The first map is inert because F satisfies (ii) and β̃ : X → Y is an inert morphism in KO. The

second morphism is inert by virtue of assumption (i). Now suppose that we are given an inert

morphism X → X ′′ as in (iii′). We have a commutative diagram

X //

��

X ′

��
X ′′

id // X ′′

corresponding to an inert morphism X → δ(X ′′) in KO, and the map F (X)→ F (X ′′, 1) factors as

a composition

F (X)→ F (δ(X ′′))→ F (X ′′, 1).

The first of these maps is inert by virtue of assumption (ii), and the second by virtue of assumption

(i).

Now suppose that F satisfies (i′), (ii′), and (iii′); we wish to show that F satisfies (i) and (ii).

To prove (i), we must show that for every object X ∈ O⊗, the morphisms F (s(X))→ F (X, 0) and

F (δ(X)) → F (X, 1) are inert in C. The first of these assertions is a special case of (ii′), and the

second is a special case of (iii′). To prove (ii), consider an arbitrary inert morphism β : X → Y in

O⊗, corresponding to a commutative diagram σ:

X ′

β′

��

// X

β
��

Y ′ // Y

in the ∞-category O⊗. We wish to show that F (β) is an inert morphism in C⊗. Let β0 : 〈n〉 → 〈k〉
be the image of β in N(Fin∗), and let (β0)! : C⊗〈n〉 → C⊗〈k〉 denote the induced functor. Then F (β)

factors as a composition F (X)
ε→ (β0)!F (X)

ε′→ F (Y ), where ε is inert; we wish to prove that ε′ is

an equivalence in C⊗〈k〉. Since C⊗ is an ∞-operad, it will suffice to show that ρj! ε
′ is an equivalence

in C⊗〈1〉 for 1 ≤ j ≤ k. Let

〈n〉 //

��

〈m〉

β0

��
〈k′〉 // 〈k〉
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denote the image of σ in N(Fin∗). This diagram admits a unique extension

〈n〉 //

��

〈m〉

β0

��
〈k′〉

��

χ // 〈k〉

ρj

��
〈t〉 χ′ // 〈1〉

where the vertical morphisms are inert, the integer t is equal to 1 and χ′ is an isomorphism if j lies

in the image of 〈n〉 → 〈k〉, and t = 0 otherwise. We can lift this diagram to a commutative triangle

X
β //

β
′

��

Y

β
′′

��
Z

of inert morphisms in KO. If F (β
′′
) is inert, then we can identify F (β

′
) with the composition

F (X) −→ (ρj ◦ β0)!F (X)
ρj! ε
′

−→ F (Z),

so that ρj! ε
′ is an equivalence in C⊗〈1〉 if and only if F (β

′
) is inert. We are therefore reduced to

proving that F (β
′
) and F (β

′′
) are inert. Replacing β by β

′
or β

′′
, we may reduce to the where

either χ is an isomorphism or k′ = 0.

If k′ = 0, then we can identify Y with s(Y ) and condition (i) guarantees that F (Y )→ F (Y, 0)

is an equivalence. It therefore suffices to show that the composite map F (X) → F (Y, 0) is inert.

Since the collection of inert morphisms in C⊗ is stable under composition, this follows from (i′)

and (ii′). If χ is an isomorphism, then we can identify Y with s(Y ), and condition (i) guarantees

that F (Y ) → F (Y, 1) is an equivalence. It therefore suffices to show that the composite map

F (X) → F (Y, 1) is inert. This follows from (i′) and (iii′), again because the collection of inert

morphisms in C⊗ is stable under composition. This completes the verification of condition (ii) and

the proof of Proposition 3.4.1.3.

Proof of Proposition 3.4.1.4. Let K ⊆ Fun(Λ2
1,O

⊗) be the full subcategory spanned by those di-

agrams X
α→ Y

β→ Z in O⊗ where α and β are semi-inert, and let ei : K → O⊗ be the map

given by evaluation at the vertex {i} for 0 ≤ i ≤ 2. We will say that a morphism in K is in-

ert if its image under each ei is an inert morphism in O⊗. If S is a full subcategory of K, we

X(S) denote the simplicial set (e0|S)∗(e2|S)∗ C⊗: that is, X(S) is a simplicial set equipped with a

map X(S) → O⊗ characterized by the following universal property: for any map of simplicial sets

K → O⊗ ' Fun({0},O⊗), we have a canonical bijection

HomFun({0},O⊗)(K,X(S)) = HomFun({2},O⊗)(K ×Fun({0},O⊗) S,C
⊗).
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We let X(S) denote the full simplicial subset of X(S) spanned by those vertices which classify

functors carrying inert morphisms in S to inert morphisms in C⊗.

Let K1 denote the full subcategory of K spanned by those diagrams X
α→ Y

β→ Z where β is

an equivalence, and let K01 denote the full subcategory of K1 spanned by those diagrams where

α is null. We have a canonical embedding j : KO → K1 which carries α : X → Y to the diagram

X
α→ Y

idY→ Y . Note that this embedding restricts to an embedding j0 : K0
O ↪→ K01. Composition

with these embeddings gives rise to a commutative diagram

ModO(C)⊗

��

//Mod
O

(C)⊗ //

��

X(K1)

��
Alg/O(C)× O⊗ // pAlg/O(C) // X(K01).

The left horizontal maps are categorical equivalences (Remark 3.3.3.7). The right horizontal maps

are categorical equivalences because j and j0 admit simplicial homotopy inverses (given by restric-

tion along the inclusion ∆{0,1} ⊆ Λ2
1). Consequently, we are reduced to proving that the diagram

ModO(ModO
A(C))⊗ //

��

X(K1)

��
Alg/O(ModO

A(C))× O⊗ // X(K01)

is a homotopy pullback square.

Let K0 denote the full subcategory of K spanned by those diagrams X
α→ Y

β→ Z for which α

is null, and consider the diagram

ModO(ModO
A(C))⊗ //

��

X(K)

��

// X(K1)

��
Alg/O(ModO

A(C))× O⊗ // X(K0) // X(K01).

To complete the proof, it will suffice to show that both of the squares appearing in this diagram

are homotopy pullback squares.

We first treat the square on the left. Consider the diagram

ModO(ModO
A(C)) //

��

Mod
O

(ModO
A(C)) //

��

X(K)

��
Alg/O(ModO

A(C))× O⊗ // pAlg/O(ModO
A(C)) // X(K0).
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Since the left horizontal maps are categorical equivalences (Remark 3.3.3.7), it suffices to show that

the right square is homotopy Cartesian. Let K2 be the full subcategory of K spanned by those

diagrams X
α→ Y

β→ Z for which β is null, and let K02 denote the full subcategory of K spanned

by those diagrams where α and β are both null. The algebra A ∈ Alg/O(C) determines a vertex v

of X(K2) (and therefore, by restriction, a vertex v′ of X(K02)). We have a commutative diagram

Mod
O

(ModO
A(C)) //

��

X(K)
θ //

��

X(K2)

φ

��
pAlg/O(ModO

A(C) // X(K0)
θ′ // X(K02)

where the horizontal maps are fiber sequences (where the fibers are taken over the vertices v and

v′, respectively). To show that the left square is a homotopy pullback, it suffices to prove the

following:

(i) The maps θ and θ′ are categorical fibrations of ∞-categories.

(ii) The map φ is a categorical equivalence.

To prove (i), we first show that the simplicial sets X(K), X(K0), X(K2), and X(K02) are ∞-

categories. In view of Proposition B.4.5, it will suffice to show that the maps

e0 : K→ O⊗ e0
0 : K0 → O⊗

e2
0 : K2 → O⊗ e02

0 : K02 → O⊗

are flat categorical fibrations. The map e0 can be written as a

K
e′0→ KO

e′′0→ O⊗

where e′0 is given by restriction along the inclusion ∆{0,1} ⊆ Λ2
1 and e′′0 is given by evaluation at

{0}. The map e′′0 is a flat categorical fibration by virtue of our assumption that O⊗ is coherent.

The map e′0 is a pullback of e′′0, and therefore also flat. Applying Corollary B.3.16, we deduce that

e0 is flat. The proofs in the other cases three are similar: the only additional ingredient that is

required is the observation that evaluation at 0 induces a flat categorical fibration K0
O → O⊗, which

follows from Lemma 3.3.3.3.

To complete the proof of (i), we will show that θ and θ′ are categorical fibrations. We will

give the proof for the map θ; the case of θ′ is handled similarly. We wish to show that θ has the

right lifting property with respect to every trivial cofibration A→ B in (Set∆)/O⊗ . Unwinding the

definitions, we are required to provide solutions to lifting problems of the form

(A×O⊗ K)
∐
A×

O⊗K2
(B ×O⊗ K2)

i

��

// C⊗

p

��
B ×O⊗ K // O⊗ .
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Since p is a categorical fibration, it suffices to prove that the monomorphism i is a categorical

equivalence of simplicial sets. In other words, we need to show that the diagram

A×O⊗ K2
//

��

A×O⊗ K

��
B ×O⊗ K2

// B ×O⊗ K

is a homotopy pushout square (with respect to the Joyal model structure). To prove this, it suffices

to show that the vertical maps are categorical equivalences. Since A → B is a categorical equiva-

lence, this follows from Corollary B.3.15 (since the maps e0 and e2
0 are flat categorical fibrations).

We now prove (ii). Let K3 denote the full subcategory of K spanned by those diagrams X
α→

Y
α→ Z in O⊗ where Y ∈ O⊗〈0〉. We have a commutative diagram

X(K0)

$$

θ // X(K02)

yy
X(K3).

Consequently, to show that θ is a categorical equivalence, it suffices to show that the diagonal maps

in this diagram are categorical equivalences. We will show that X(K0) → X(K3) is a categorical

equivalence; the proof for X(K02)→ X(K3) is similar. Let X
α→ Y

β→ Z be an object K ∈ K0, and

choose a morphism γ : Y → Y0 where Y0 ∈ O⊗. Since β is null, it factors through γ, and we obtain

a commutative diagram

X
α //

id
��

Y

γ

��

β // Z

id
��

X
γ◦α // Y0

// Z.

We can interpret this diagram as a morphism γ : K → K0 in K0. It is not difficult to see that

this γ exhibits K0 as a K3-localization of K. Consequently, the construction K 7→ K0 can be

made into a functor L : K0 → K3, equipped with a natural transformation t : id → L. Without

loss of generality, we can assume that L and t commute with the evaluation maps e0 and e2.

Composition with L determines a map X(K3) → X(K0), and the transformation t exhibits this

map as a homotopy inverse to the restriction map X(K0) → X(K3). This completes the proof of

(ii).

It remains to show that the diagram

X(K)

��

// X(K1)

ψ
��

X(K0) // X(K01)
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is a homotopy pullback square. We first claim that ψ is a categorical equivalence of ∞-categories.

The proof is similar to the proof of (i): the only nontrivial point is to verify that the restriction

maps

e1
0 : K1 → O⊗ e01

0 : K01 → O⊗

are flat categorical fibrations. We will give the proof for e1
0; the proof for e01

0 is similar. We can

write e1
0 as a composition K1 → KO → O⊗, where the second map is a flat categorical fibration

by virtue of our assumption that O⊗ is coherent. The first map is a pullback of the restriction

map Fun0(∆1,O⊗) Fun({0},O⊗), where Fun0(∆1,O⊗) denotes the full subcategory of Fun(∆1,O⊗)

spanned by the equivalences in O⊗, and therefore a trivial Kan fibration (and, in particular, a flat

categorical fibration). Applying Corollary B.3.16, we conclude that e1
0 is a flat categorical fibration,

as desired.

Since ψ is a categorical fibration of ∞-categories and X(K0) is an ∞-category, we have a

homotopy pullback diagram

X(K0)×X(K01) X(K1) //

��

X(K1)

��
X(K0) // X(K01).

To complete the proof, it will suffice to show that the restriction map τ : X(K) → X(K0) ×X(K01)

X(K1) is a categorical equivalence. We will show that τ is a trivial Kan fibration. Note that the

evaluation map e0 : K → O⊗ is a Cartesian fibration; moreover, if K → K ′ is an e0-Cartesian

moprhism in K and K ′ ∈ K0
∐

K01
K1, then K ∈ K0

∐
K01

K1. It follows that e0 restricts to a

Cartesian fibration K0
∐

K01
K1 → O⊗. In view of Lemma 3.4.2.2, the map τ will be a trivial Kan

fibration provided that the following pair of assertions holds:

(a) Let F ∈ X(K) be an object lying over X ∈ O⊗ which we will identify with a functor {X}×O⊗

K→ C⊗. Let F0 = F |({X} ×O⊗ (K0
∐

K01
K1)), and assume that F0 ∈ X(K0)×X(K01) X(K1).

Then F ∈ X(K) if and only if F is a p-right Kan extension of F0.

(b) Let F0 ∈ X(K0) ×X(K01) X(K1). Then there exists an extension F of F0 which satisfies the

equivalent conditions of (a).

To prove these assertions, let us consider an object X ∈ O⊗ and an object F0 ∈ X(K0)×X(K01)

X(K1) lying over X. Let D = {X} ×O⊗ K denote the ∞-category of diagrams X
α→ Y

β→ Z in O⊗,

and define full subcategories D0, D1, and D01 similarly. Let K be an object of D, corresponding

to a decomposition X ' X0 ⊕X1 ⊕X2 and a diagram

X0 ⊕X1 ⊕X2 → X0 ⊕X1 ⊕ Y0 ⊕ Y1 → X0 ⊕ Y0 ⊕ Z
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of semi-inert morphisms in O⊗. We have a commutative diagram

K //

��

K1

��
K0

// K01

in D, where K0 ∈ D0 represents the diagram X0⊕X1⊕X2 → Y0⊕Y1 → Y0⊕Z, K1 ∈ D1 represents

the diagram X0 ⊕X1 ⊕X2 → X0 ⊕ Y0 ⊕ Z ' X0 ⊕ Y0 ⊕ Z, and K01 ∈ D01 represents the diagram

X0 ⊕X1 ⊕X2 → Y0 ⊕ Z → Y0 ⊕ Z. This diagram exhibits K0, K1, and K01 as initial objects of

(D0)K/, (D1)K/, and (D01)K/, respectively. Applying Theorem HTT.4.1.3.1 , we conclude that the

induced map Λ2
2 → (D0

∐
D01

D1)K/ is right cofinal, so that an extension F of F0 is a p-right Kan

extension of F0 at K if and only if the diagram

F (K) //

��

F0(K1)

��
F0(K0) // F0(K01)

is a p-limit diagram in C⊗. Choose equivalences F0(K0) = y0 ⊕ z, F0(K1) = x′0 ⊕ y′0 ⊕ z′, and

F0(K01) = y′′0⊕z′′. If we let K ′ ∈ D denote the object corresponding to the diagram X0⊕X1⊕X2 →
Y0 ' Y0 and apply our assumption that F0|D0 ∈ X(K0) to the commutative diagram

K0
//

!!

K01

}}
K ′,

then we deduce that F0(K0)→ F0(K01) induces an equivalence y0 ' y′′0 . Similarly, the assumption

that F0|D1 ∈ X(K1) guarantees that F0(K1) → F0(K01) is inert, so that y′0 ' y′′0 and z′ ' z′′.

It follows from Lemma 3.4.3.15 that the diagram F0(K1) → F0(K01) ← F0(K0) admits a p-limit

(covering the evident map ∆1 × ∆1 → O⊗), so that F0|(D0
∐

D01
D1)K/ also admits a p-limit

(covering the map (D0
∐

D01
D1)/K/ → O⊗)); assertion (b) now follows from Lemma HTT.4.3.2.13 .

Moreover, the criterion of Lemma 3.4.3.15 gives the following version of (a):

(a′) An extension F ∈ X(K) of F0 is a p-right Kan extension of F0 at K if and only if, for

every object K ∈ D as above, the maps F (K) → F0(K0) and F (K) → F0(K1) induce an

equivalence F (K) ' x′0 ⊕ y0 ⊕ z in C⊗.

To complete the proof, it will suffice to show that the criterion of (a′) holds if and only if

F ∈ X(K). We first prove the “if” direction. Fix K ∈ D, so that we have an equivalence F (K) '
x0 ⊕ y0 ⊕ z. Since K → K0 is inert, the assumption that F ∈ X(K) implies that F (K) → F (K0)
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is inert, so that y0 ' y0 and z ' z. Let K ′′ ∈ D be the diagram X0 ⊕X1 ⊕X2 → Y0 ' Y0, so that

we have a commutative diagram

K //

  

K1

}}
K ′′

in which the diagonal maps are inert. It follows that the morphisms F (K)→ F (K ′′)← F (K1) are

inert, so that the map F (K)→ F (K1) induces an equivalence y0 ' y′0.

We now prove the “only if” direction. Assume that F ∈ X(K) is an extension of F0 which

satisfies the criterion given in (a′); we will show that F carries inert morphisms in D ⊆ K to inert

morphisms in C⊗. Let K → L be an inert morphism in D, where K is as above and L corresponds

to a diagram X → Y ′ → Z ′; we wish to prove that the induced map F (K)→ F (L) is inert. Let 〈n〉
denote the image of Z ′ in N(Fin∗), and choose inert morphisms Z ′ → Z ′i lying over ρi : 〈n〉 → 〈1〉
for 1 ≤ i ≤ n. Each of the induced maps Y ′ → Zi factors as a composition Y ′ → Y ′i → Zi, where

the first map is inert and the second is active. Let Li ∈ D denote the diagram X → Y ′i → Z ′i. To

show that F (K)→ F (L) is inert, it will suffice to show that the maps F (K)→ F (Li)← F (L) are

inert for 1 ≤ i ≤ n. Replacing L by Li (and possibly replacing K by L), we may reduce to the case

where n = 1 and the map Y ′ → Z ′ is active. There are two cases to consider:

• The map Y ′ → Z ′ is an equivalence. In this case, the map K → L factors as a composition

K → K1 → L. Since F0|D1 ∈ X(K1), the map F (K1) → F (L) is inert. Consequently, the

assertion that F (K)→ F (L) is inert follows our assumption that F (K)→ F (K1) induces an

equivalence y0 → y′0.

• The map Y ′ → Z ′ is null (so that Y ′ ∈ O⊗〈0〉). In this case, the map K → L factors as a

composition K → K0 → L. Assumption (a′) guarantees that F (K) → F (K0) is inert, and

the assumption that F0|K0 ∈ X(K0) guarantees that F (K0)→ F (L) is inert.

3.4.2 Modules over Trivial Algebras

Let C be a symmetric monoidal category. Let 1 denote the unit object of C, so that for every object

C ∈ C we have a canonical isomorphism uC : 1 ⊗ C → C. In particular, u1 gives a multiplication

1⊗1→ 1 which exhibits 1 as a commutative algebra object of C. Moreover, for every object C ∈ C,

uC exhibits C as a module over the commutative algebra 1. In fact, this construction determines

a functor C → Mod1(C), which is homotopy inverse to the forgetful functor θ : Mod1(C) → C. It

follows that θ is an equivalence of categories: that is, every object of C ∈ C admits a unique action

of the commutative algebra 1.

Our goal in this section is to prove the following result, which can be regarded as an ∞-

categorical generalization of the above discussion:
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Proposition 3.4.2.1. Let p : C⊗ → O⊗ be a fibration of ∞-operads and assume that O⊗ is

coherent. Let A be a trivial O-algebra object of C. Then the forgetful functor θ : ModO
A(C)⊗ → C⊗

is an equivalence of ∞-operads.

The of Proposition 3.4.2.1 will require a few preliminary results.

Lemma 3.4.2.2. Let p : X → S be an inner fibration of simplicial sets. Let X0 be a full simplicial

subset of X, and assume that the restriction map p0 = p|X0 is a coCartesian fibration. Let q :

Y → Z be a categorical fibration of simplicial sets. Define a simplicial sets A and B equipped with

a maps A,B → S so that the following universal property is satisfied: for every map of simplicial

sets K → S, we have bijections

Hom(Set∆)/S (K,A) ' Fun(X ×S K,Y )

Hom(Set∆)/S (K,B) ' Fun(X0 ×S K,Y )×Fun(X0×SK,Z) Fun(X ×S K,Z).

Let φ : A → B be the restriction map. Let A′ denote the full simplicial subset of A spanned by

those vertices corresponding to maps f : Xs → Y such that f is a q-left Kan extension of f |X0
s ,

and let B′ denote the full simplicial subset of B spanned by those vertices of the form φ(f) where

f ∈ A′. Then φ induces a trivial Kan fibration φ′ : A′ → B′.

Proof. For every map of simplicial sets T → S, let F (T ) = MapS(T,A′) and let G(T ) =

MapS(T,B′). If T0 ⊆ T is a simplicial subset, we have a restriction map θT0,T : F (T ) →
G(T ) ×G(T0) F (T0). To prove that φ′ is a trivial Kan fibration, it will suffice to show that θT0,T

is surjective on vertices whenever T = ∆n and T0 = ∂∆n.We will complete the proof by showing

that θT0,T is a trivial Kan fibration whenever T has only finitely many simplices.

The proof proceeds by induction on the dimension of T (if T is empty, the result is trivial).

Assume first that T = ∆n. If T0 = T there is nothing to prove. Otherwise, we may assume that

T0 has dimension smaller than n. Using the fact that q is a categorical fibration, we deduce that

θT0,T is a categorical fibration. It therefore suffices to show that θT0,T is a categorical equivalence.

We have a commutative diagram

F (T )

ψ ##

// G(T )×G(T0) F (T0)

ψ′ww
G(T ).

The inductive hypothesis (applied to the inclusion ∅ ⊆ T0) guarantees that ψ′ is a trivial Kan

fibration. It will therefore suffice to show that ψ is a trivial Kan fibration. In view of Proposition

HTT.4.3.2.15 , it will suffice to prove the following assertions:

(a) Let F : ∆n ×S X → Y be a functor. Then F is a q-left Kan extension of F |(∆n ×S X0) if

and only if F |({i} ×S X) is a q-left Kan extension of F |({i} ×S X0) for 0 ≤ i ≤ n.
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(b) Suppose we are given a commutative diagram

∆n ×S X0 f //

��

Y

q

��
∆n ×S X

g //

F

::

Z

such that for 0 ≤ i ≤ n, there exists a q-left Kan extension Fi : {i}×S X → Y of f |{i}×S X0

which is compatible with g. Then there exists a dotted arrow F as indicated satisfying the

condition described in (a).

Assertion (a) follows from the observation that for x ∈ {i} ×S X, the assumption that p0 is a

coCartesian fibration guarantees that X0 ×X ({i} ×S X)/x is left cofinal in X0 ×X (∆n ×S X)/x.

Assertion (b) follows from the same observation together with Lemma HTT.4.3.2.13 .

We now complete the proof by considering the case where T is not a simplex. We use induction

on the number k of simplices of T ′ which do not belong to T . If k = 0, then T ′ = T and there is

nothing to prove. If k = 1, then there is a pushout diagram

∂∆n //

��

T0

��
∆n // T.

It follows that θT0,T is a pullback of the map θ∂∆n,∆n , and we are reduced to the case where T

is a simplex. If k > 1, then we have nontrivial inclusions T0 ⊂ T1 ⊂ T . Using the inductive

hypothesis, we conclude that θT1,T and θT0,T1 are trivial Kan fibrations. The desired result follows

from the observation that θT0,T can be obtained by composing θT1,T with a pullback of the morphism

θT0,T1 .

Lemma 3.4.2.3. Let p : C⊗ → O⊗ be a fibration of ∞-operads. Assume that O⊗ is unital and that

p has unit objects. Let C ∈ C⊗ and let α : p(C)→ Y be a semi-inert morphism in O⊗. Then α can

be lifted to a p-coCartesian morphism α : C → Y in C⊗.

Proof. The map α can be factored as the composition of an inert morphism and an active morphism.

We may therefore reduce to the case where α is either active or inert. If α is inert, we can choose

α to be an inert morphism lifting α. Assume therefore that α is active. Write C ' C1 ⊕ . . .⊕ Cm
(using the notation of Remark 2.2.4.6), and write Y = p(C1)⊕ . . .⊕Cm ⊕ Y1 ⊕ . . .⊕ Yn. Since O⊗

is unital, we may assume that α has the form idp(C1)⊕ . . . ⊕ idp(Cm)⊕α1 ⊕ . . . ⊕ αn, where each

αi : 0 → Yi is a morphism with 0 ∈ O⊗〈0〉. Since p has units, we can lift each αi to a morphism

αi : 0i → Y i which exhibits Y i as a p-unit. Let α = idC1 ⊕ . . . ⊕ idCm ⊕α1 ⊕ . . . ⊕ αn. It follows

from Proposition 3.1.1.10 that α is p-coCartesian.
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Proof of Proposition 3.4.2.1. We may assume that p has unit objects (otherwise the assertion is

vacuous). Let φ : O⊗×Alg/O(C) → pAlg/O(C) be the equivalence of Remark 3.3.3.7, and let

X ⊆ pAlg/O(C) denote the essential image of the full subcategory spanned by those pairs (X,A)

whereA is trivial. Let X′ denote the fiber product X×pAlg/O(C) Mod
O

(C)⊗. Since Proposition 3.2.1.8

implies that trivial O-algebras form a contractible Kan complex, the inclusion ModO
A(C)⊗ ⊆ X′ is

a categorical equivalence. It will therefore suffice to show that composition with the diagonal map

δ : O⊗ → KO induces a categorical equivalence X′ → C⊗.

Let K1
O denote the essential image of δ, and define a simplicial set Y equipped with a map

Y → O⊗ so that the following universal property is satisfied: for every map of simplicial sets

K → O⊗, we have a canonical bijection

Hom(Set∆)/O⊗
(K,Y) ' Hom(Set∆)/O⊗

(K ×Fun({0},O⊗) K
1
O,C

⊗).

Since δ is fully faithful, it induces a categorical equivalence O⊗ → K1
O. It follows that the canonical

map Y→ C⊗ is a categorical equivalence.

We have a commutative diagram

X′
θ′ //

!!

Y

~~
C⊗ .

Consequently, it will suffice to show that θ′ is a categorical equivalence. We will prove that θ′ is a

trivial Kan fibration.

Define a simplicial set D equipped with a map D→ O⊗ so that the following universal property

is satisfied: for every map of simplicial sets K → O⊗, we have a canonical bijection

Hom(Set∆)/O⊗
(K,D) ' Hom(Set∆)/O⊗

(K ×Fun({0},O⊗) KO,C
⊗).

For each X ∈ O⊗, let EX denote the full subcategory of (O⊗)X/ spanned by the semi-inert mor-

phisms X → Y in O⊗, and let E1
X denote the full subcategory of (O⊗)X/ spanned by the equiv-

alences X → Y in O⊗. An object of D can be identified with a pair (X,F ), where X ∈ O⊗ and

F : AX → C⊗ is a functor. We will prove the following:

(a) The full subcategory X′ ⊆ D is spanned by those pairs (X,F ) where F : EX → C⊗ is a q-left

Kan extension of F |E1
X .

(b) For every X ∈ O⊗ and every functor f ∈ FunO⊗(E1
X ,C

⊗), there exists a q-left Kan extension

F ∈ FunO⊗(EX ,C
⊗) of f .

Assuming that (a) and (b) are satisfied, the fact that the restriction functor X′ → Y is a trivial Kan

fibration will follow immediately from Lemma 3.4.2.2.
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Note that for X ∈ O⊗, we can identify E1
X with the full subcategory of EX spanned by the initial

objects. Consequently, a functor f ∈ FunO⊗(E1
X ,C

⊗) as in (b) is determined up to equivalence by

f(idX) ∈ C⊗X . Using Lemma HTT.4.3.2.13 , we deduce that f admits a q-left Kan extension

F ∈ FunO⊗(EX ,C
⊗) if and only if every semi-inert morphism X → Y in O⊗ can be lifted to a

q-coCartesian morphism f(idX)→ Y in C⊗. Assertion (b) now follows from Lemma 3.4.2.3.

We now prove (a). Suppose first that F is a q-left Kan extension of F |E1
X . The proof of (b)

shows that F (u) is q-coCartesian for every morphism u : Y → Z in EX such that Y is an initial

object of EX . Since every morphism u in EX fits into a commutative diagram

Y
u

��
idX

==

// Z,

Proposition HTT.2.4.1.7 guarantees that F carries every morphism in EX to a q-coCartesian mor-

phism in C⊗. In particular, F carries inert morphisms in EX to inert morphisms in C⊗, and therefore

belongs to Mod
O

(C)⊗ ×O⊗ {X}. Let E0
X denote the full subcategory of EX spanned by the null

morphisms X → Y in O⊗, and let s : O⊗ → E0
X denote a section to the trivial Kan fibration

E0
X → O⊗. To prove that F ∈ X′, it suffices to show that the composition

O⊗
s→ E0

X ⊆ EX
F→ C⊗

is a trivial O-algebra. Since this composition carries every morphism in O⊗ to a q-coCartesian

morphism in C⊗, it is an O-algebra: the triviality now follows from Remark 3.2.1.4.

To complete the proof of (a), let us suppose that F ∈ X′; we wish to show that F is a q-

left Kan extension of f = F |E1
X . Using (b), we deduce that f admits a q-left Kan extension

F ′ ∈ FunO⊗(EX ,C
⊗). Let α : F ′ → F be a natural transformation which is the identity on f ;

we wish to prove that α is an equivalence. Fix an object Y ∈ EX , corresponding to a semi-inert

morphism X → Y in O⊗. Let 〈n〉 ∈ N(Fin∗) denote the image of Y , and choose inert morphisms

Y → Yi lifting the maps ρi : 〈n〉 → 〈1〉. Let Y i denote the composition of Y with the map Y → Yi
for 1 ≤ i ≤ n. Since F and F ′ both preserve inert morphisms and C⊗ is an ∞-operad, it suffices to

prove that αY i : F ′(Y i) → F (Y i) is an equivalence for 1 ≤ i ≤ n. We may therefore replace Y by

Yi and reduce to the case where Y ∈ O. In this case, the semi-inert morphism Y is either null or

inert.

If the map Y : X → Y is null, then Y ∈ E0
X . Since F ◦ s and F ′ ◦ s both determine trivial

O-algebra objects, the induced natural transformation F ′ ◦s→ F ◦s is an equivalence (Proposition

3.2.1.8). It follows that the natural transformation F ′|E0
X → F |E0

X is an equivalence, so that

F ′(Y ) ' F (Y ).

If the map Y : X → Y is inert, then we have an inert morphism u : idX → Y in EX . Since F

and F ′ both preserve inert morphisms, it suffices to show that the map F ′(idX) → F (idX) is an

equivalence. This is clear, since idX ∈ E1
X .
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3.4.3 Limits of Modules

Let C be a symmetric monoidal category and let A be a commutative algebra object of C. Suppose

we are given a diagram {Mα} in the category of A-modules, and let M = lim←−Mα be the limit of

this diagram in the category C. The collection of maps

A⊗M → A⊗Mα →Mα

determines a map A ⊗M → M , which endows M with the structure of an A-module. Moreover,

we can regard M also as a limit of the diagram {Mα} in the category of A-modules.

Our goal in this section is to prove an analogous result in the∞-categorical setting, for algebras

over an arbitrary coherent ∞-operad. We can state our main result as follows:

Theorem 3.4.3.1. Let q : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is coherent. Suppose

we are given a commutative diagram

K
p //

��

ModO(C)⊗

ψ

��
K/ p0 //

p
88

Alg/O(C)× O⊗

such that the underlying map K/ → O⊗ takes some constant value X ∈ O, and the lifting problem

K

��

p′ // C⊗

q
��

K/ //

p′
==

O⊗

admits a solution, where p is a q-limit diagram. Then:

(1) There exists a map p making the original diagram commute, such that δ ◦ p is a q-limit

diagram in C⊗ (here δ : ModO(C)⊗ → C⊗ denotes the map given by composition with the

diagonal embedding O⊗ → KO ⊆ Fun(∆1,O⊗).

(2) Let p be an arbitrary map making the above diagram commute. Then p is a ψ-limit diagram

if and only if δ ◦ p is a q-limit diagram.

Theorem 3.4.3.1 has a number of consequences. First, it allows us to describe limits in an

∞-category of modules:

Corollary 3.4.3.2. Let q : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is coherent, and let

A ∈ Alg/O(C) and X ∈ O. Suppose we are given a diagram p : K → ModO
A(C)⊗X such that the

induced map p′ : K → C⊗X can be extended to a q-limit diagram p′ : K/ → C⊗X . Then:
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(1) There exists an extension p : K/ → ModO
A(C)⊗X of p such that the induced map K/ → C⊗ is

a q-limit diagram.

(2) Let p : K/ → ModO
A(C)⊗X be an arbitrary extension of p. Then p is a limit diagram if and

only if it induces a q-limit diagram K/ → C⊗.

We can also use Theorem 3.4.3.1 to describe the relationships between the ∞-categories

ModO
A(C) as the algebra A varies.

Corollary 3.4.3.3. Let q : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is coherent. Then

for each X ∈ O, the functor φ : ModO(C)⊗X → Alg/O(C) is a Cartesian fibration. Moreover, a

morphism f in ModO(C)X is φ-Cartesian if and only if its image in C⊗X is an equivalence.

More informally: if we are given a morphism A → B in Alg/O(C), then there is an evident

forgetful functor from B-modules to A-modules, which does not change the underlying object of C.

Proof. Apply Corollary 3.4.3.2 in the case K = ∆0.

Corollary 3.4.3.4. Let q : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is coherent. Then:

(1) The functor φ : ModO(C)⊗ → Alg/O(C) is a Cartesian fibration.

(2) A morphism f ∈ ModO(C)⊗ is φ-Cartesian if and only if its image in C⊗ is an equivalence.

Proof. Let M ∈ ModO
A(C)⊗ and let 〈n〉 denote its image in N(Fin∗). Suppose we are given a

morphism f0 : A′ → A in Alg/O(C); we will to construct a φ-Cartesian morphism f : M ′ → M

lifting f0.

Choose inert morphisms gi : M → Mi in ModO(C)⊗ lying over ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n.

These maps determine a diagram F : 〈n〉◦/ → ModO
A(C)⊗. Let Xi denote the image of Mi in

O, and let φi : ModO(C)Xi → Alg/O(C) be the restriction of φ. Using Corollary 3.4.3.3, we can

choose φi-Cartesian morphisms fi : M ′i → Mi in ModO(C)Xi lying over f0, whose images in CXi
are equivalences. Since q : ModO(C)⊗ → Alg/O(C) × O⊗ is a Alg/O(C)-family of ∞-operads,

we can choose a q-limit diagram F ′ : 〈n〉◦/ → ModO
A′(C)⊗ with F ′(i) = M ′i for 1 ≤ i ≤ n,

where F ′ carries the cone point of 〈n〉◦/ to M ′ ∈ ModO
A′(C)⊗X . Using the fact that F is a q-limit

diagram, we get a natural transformation of functors F ′ → F , which we may view as a diagram

H : 〈n〉◦/ ×∆1 → ModO(C)⊗.

Let v denote the cone point of 〈n〉◦/, and let f = H|{v} ×∆1. Since each composition

{i} ×∆1 H→ ModO(C)⊗ → C⊗

is an equivalence for 1 ≤ i ≤ n, the assumption that C⊗ is an ∞-operad guarantees also that the

image of f in C⊗ is an equivalence. We will prove that f is a φ-coCartesian lift of f0. In fact, we will

prove the slightly stronger assertion that f is q-Cartesian. Since the inclusion {v} ⊆ 〈n〉◦/ is right
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cofinal, it will suffice to show that H|(〈n〉◦/×{1})/ is a q-limit diagram. Since H|(〈n〉◦/×{1}) is a

q-right Kan extension of H|(〈n〉◦×{1}), it will suffice to show that the restriction H|(〈n〉◦×{1})/

is a q-limit diagram (Lemma HTT.4.3.2.7 ). Note that H|(〈n〉◦ ×∆1) is a q-right Kan extension of

H|(〈n〉◦×{1}) (this follows from the construction, since the maps fi are φi-Cartesian and therefore

also q-Cartesian, by virtue of Theorem 3.4.3.1). Using Lemma HTT.4.3.2.7 again, we are reduced

to showing that H|(〈n〉◦ ×∆1)/ is a q-limit diagram. Since the inclusion 〈n〉◦ × {0} ⊆ 〈n〉◦ ×∆1 is

right cofinal, it suffices to show that F ′ = H|(〈n〉◦/ × {0}) is a q-limit diagram, which follows from

our assumption.

The above argument shows that for every M ∈ ModO
A(C)⊗ and every morphism f0 : A′ → A

in Alg/O(C), there exists a φ-Cartesian morphism f : M ′ → M lifting f0 whose image in C⊗ is

an equivalence. This immediately implies (1), and the “only if” direction of (2) follows from the

uniqueness properties of Cartesian morphisms. To prove the “if” direction of (2), suppose that

g : M ′′ →M is a lift of f0 whose image in C⊗ is an equivalence, and let f : M ′ →M be as above.

Since f is φ-Cartesian, we have a commutative diagram

M ′

f

!!
M ′′

h

==

g //M ;

to prove that g is φ-Cartesian it will suffice to show that h is an equivalence. Since ModO
A′(C)⊗ is

an ∞-operad, it suffices to show that each of the maps hi = ρi!(h) is an equivalence in ModO
A′(C),

for 1 ≤ i ≤ n. This follows from Corollary 3.4.3.3, since each hi maps to an equivalence in C.

Corollary 3.4.3.5. Let O⊗ be a coherent ∞-operad, and let q : C⊗ → O⊗ be a O-monoidal ∞-

category. Let X ∈ O, and suppose we are given a commutative diagram

K
p //

��

ModO(C)⊗X

ψX
��

K/ p0 //

p
::

Alg/O(C)

such that the induced diagram K → C⊗X admits a limit. Then there extension p of p (as indicated

in the diagram) which is a ψX-limit diagram. Moreover, an arbitrary extension p of p (as in the

diagram) is a ψX-limit if and only if it induces a limit diagram K/ → C⊗X .

Proof. Combine Corollary 3.4.3.2 with Corollary HTT.4.3.1.15 .

Corollary 3.4.3.6. Let O⊗ be a coherent ∞-operad, let q : C⊗ → O⊗ be a coCartesian fibration

of ∞-operads, and let X ∈ O. Assume that the ∞-category C⊗X admits K-indexed limits, for some

simplicial set K. Then:



424 CHAPTER 3. ALGEBRAS AND MODULES OVER ∞-OPERADS

(1) For every algebra object A ∈ Alg/O(C), the ∞-category ModO
A(C)⊗X admits K-indexed limits.

(2) A functor p : K/ → ModO
A(C)⊗X is a limit diagram if and only if it induces a limit diagram

K/ → C⊗X .

We now turn to the proof of Theorem 3.4.3.1. First, choose an inner anodyne map K → K ′,

where K ′ is an∞-category. Since Alg/O(C)×O⊗ is an∞-category and ψ is a categorical fibration,

we can extend our commutative diagram as indicated:

K //

��

K ′ //

��

ModO(C)⊗

ψ

��
K/ // K ′/ // Alg/O(C)× O⊗ .

Using Proposition HTT.A.2.3.1 , we see that it suffices to prove Theorem 3.4.3.1 after replacing K

by K ′. We may therefore assume that K is an ∞-category. In this case, the desired result is a

consequence of the following:

Proposition 3.4.3.7. Let q : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is coherent. Let K

be an ∞-category. Suppose we are given a commutative diagram

K
p //

��

Mod
O

(C)⊗

ψ

��
K/ p0 //

p
::

pAlg/O(C),

where the induced diagram K/ → O⊗ is the constant map taking some value C ∈ O. Assume that:

(∗) The induced lifting problem

K

��

p′ // C⊗

q
��

K/ //

p′
==

O⊗

admits a solution, where p is a q-limit diagram.

Then:

(1) There exists a map p making the original diagram commute, such that δ ◦ p is a q-limit

diagram in C⊗ (here δ : Mod
O

(C)⊗ → C⊗ denotes the map given by composition with the

diagonal embedding O⊗ → KO ⊆ Fun(∆1,O⊗).

(2) Let p be an arbitrary map making the above diagram commute. Then p is a ψ-limit diagram

if and only if δ ◦ p is a q-limit diagram.



3.4. GENERAL FEATURES OF MODULE ∞-CATEGORIES 425

The proof of Proposition 3.4.3.7 will require some preliminaries. We first need the following

somewhat more elaborate version of Proposition B.4.12:

Proposition 3.4.3.8. Suppose we are given a diagram of ∞-categories X
φ→ Y

π→ Z where π is

a flat categorical fibration and φ is a categorical fibration. Let Y ′ ⊆ Y be a full subcategory, let

X ′ = X×Y Y ′, let π′ = π|Y ′, and let ψ : π∗X → π′∗X
′ be the canonical map. (See Notation B.4.4.)

Let K be an ∞-category and p0 : K/ → π′∗X
′ a diagram. Assume that the following conditions are

satisfied:

(i) The full subcategory Y ′ ×Z K/ ⊆ Y ×Z K/ is a cosieve on Y .

(ii) For every object y ∈ Y ′ and every morphism f : z → π(y) in Z, there exists a π-Cartesian

morphism f : z → y in Y ′ such that π(f) = f .

(iii) Let π′′ denote the projection map K/ ×Z Y → K/. Then π′′ is a coCartesian fibration.

(iv) Let v denote the cone point of K/, let C = π′′−1{v}, and let C′ = C×Y Y ′. Then C′ is a

localization of C.

Condition (iii) implies that there is a map δ′ : K/ × C → K/ ×Z Y which is the identity on

{v} × C and carries carries e × {C} to a π′′-coCartesian edge of K/ ×Z Y , for each edge e of K/

and each object C of C. Condition (iv) implies that there is a map δ′′ : C×∆1 → C such that

δ′′|C×{0} = idC and δ′′|{C} ×∆1 exhibits δ′′(C, 1) as a C′-localization of C, for each C ∈ C. Let

δ denote the composition

K/ × C×∆1 δ′′→ K/ × C
δ′→ K/ ×Z Y.

Then:

(1) Let p : K/ → π∗X be a map lifting p0, corresponding to a functor F : K/×Z Y → X. Suppose

that for each C ∈ C, the induced map

K/ × {C} ×∆1 ↪→ K/ × C
δ→ K/ ×Z Y

F→ X

is a φ-limit diagram. Then p is a ψ-limit diagram.

(2) Suppose that p : K/ → π∗X is a map lifting p0 = p0|K, corresponding to a functor F :

(K/ ×Z Y ′)
∐
K×ZY ′(K ×Z Y ) → X. Assume furthermore that for each C ∈ C, the induced

map

(K/ × {C} × {1})
∐

K×{C}×{1}

(K × {C} ×∆1) → (K/ × C×{1})
∐

K×C×{1}

(K × C×∆1)

δ→ (K/ ×Z Y ′)
∐

K×ZY ′
(K ×Z Y )

F→ X
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can be extended to a ψ-limit diagram lifting the map

K/ × {C} ×∆1 ↪→ K/ × C×∆1 δ→ K/ ×Z Y
π′′→ Y.

Then there exists an extension p : K/ → π∗X of p lifting p0 which satisfies condition (1).

Proof. Let W = K/×Y Z and let W0 denote the coproduct (K/×Z Y ′)
∐
K×ZY ′(K×Z Y ); condition

(i) allows us to identify W0 with a full subcategory of W . Let p : K/ → π∗X satisfy the condition

described in (1), corresponding to a functor F : W → X. In view of assumptions (i), (ii), and

Proposition B.4.9, it will suffice to show that F is a φ-right Kan extension of F = F |W0. Pick an

object C ∈ C; we wish to show that F is a φ-right Kan extension of F at C. In other words, we

wish to show that the map

(W0 ×W WC/)
/ →W

F→ X

is a φ-limit diagram. Restricting δ, we obtain a map K/ × {C} ×∆1 →W , which we can identify

with a map

s : (K/ × {C} × {1})
∐

K×{C}×{1}

(K × {C} ×∆1)→W ′ ×W WC/.

Since p satisfies (1), it will suffice to show that s is right cofinal. We have a commutative diagram

(K/ × {C} × {1})
∐
K×{C}×{1}(K × {C} ×∆1)

θ

++

s //W ′ ×W WC/

θ′yy
K/

The map θ is evidently a coCartesian fibration, and θ′ is a coCartesian fibration by virtue of

assumptions (i) and (iii). Moreover, the map s carries θ-coCartesian edges to θ′-coCartesian edges.

Invoking Lemma 7.1.2.6, we are reduced to showing that for each vertex k of K/, the map of fibers

sk is right cofinal. If k = v is the cone point of K/, then we are required to show that s carries

{v} × {C} × {1} to an initial object of C′C/: this follows from the definition of δ′. If k 6= v, then

we are required to show that s carries K/ × {C} × {0} to an initial object of WC/ ×K/ {k}, which

follows from our assumption that δ carries {v}/ × {C} × {0} to a π′′-coCartesian edge of W . This

completes the proof of (1).

We now prove (2). The diagram p gives rise to a map F : W0 → X fitting into a commutative

diagram

W0
F //

��

X

φ
��

W //

F

==

Y.

The above argument shows that a dotted arrow F as indicated will correspond to a map p : K/ →
π∗X satisfying (1) if and only if F is a φ-right Kan extension of F . In view of Lemma HTT.4.3.2.13 ,
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the existence of such an extension is equivalent to the requirement that for each C ∈ C, the diagram

W0 ×W WC/ →W0
F→ X

can be extended to a φ-limit diagram lifting the map

(W0 ×W WC/)
/ →W → Y.

This follows from the hypothesis of part (2) together with the right cofinality of the map s considered

in the proof of (1).

Definition 3.4.3.9. Let 〈n〉 be an object of Fin∗. A splitting of 〈n〉 is a pair of inert morphisms

α : 〈n〉 → 〈n0〉, β : 〈n〉 → 〈n1〉 with the property that the map (α−1
∐
β−1) : 〈n0〉◦

∐
〈n1〉◦ → 〈n〉◦

is a bijection.

More generally, let K be a simplicial set. A splitting of a diagram p : K → N(Fin∗) is a pair of

natural transformations α : p → p0, β : p → p1 with the following property: for every vertex k of

K, the morphisms αk : p(k)→ p0(k) and βk : p(k)→ p1(k) determine a splitting of p(k).

We will say that a natural transformation α : p→ p0 of diagrams p, p0 : K → N(Fin∗) splits if

there exists another natural transformation β : p→ p1 which gives a splitting of p.

Remark 3.4.3.10. Let α : p→ p0 be a natural transformation of diagrams p, p0 : K → N(Fin∗). If

α splits, then the natural transformation β : p→ p1 which provides the splitting of p is well-defined

up to (unique) equivalence. Moreover, a bit of elementary combinatorics shows that α splits if and

only if it satisfies the following conditions:

(1) The natural transformation α is inert: that is, for each vertex k ∈ K, the map αk : p(k) →
p0(k) is an inert morphism in Fin∗.

(2) For every edge e : x→ x′ in K, consider the diagram

〈n〉

p(e)

��

αx // 〈n0〉

p0(e)

����
〈m〉

αx′ // 〈m0〉

in Fin∗ obtained by applying α to e. Then p(e) carries (α−1
x 〈n0〉◦)∗ ⊆ 〈n〉 into (α′−1

x 〈m0〉◦)∗ ⊆
〈m〉.

Definition 3.4.3.11. Let q : O⊗ → N(Fin∗) be an ∞-operad. We will say that a natural transfor-

mation α : p→ p0 of diagrams p, p0 : K → O⊗ is inert if the induced map αk : p(k)→ p0(k) is an

inert morphism in O⊗ for every vertex k ∈ K.

A splitting of p : K → O⊗ is a pair of inert natural transformations α : p→ p0, β : p→ p1 such

that the induced transformations q◦p0 ← q◦p→ q◦p1 determine a splitting of q◦p : K → N(Fin∗),

in the sense of Definition 3.4.3.9.
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We will say that an inert natural transformation α : p→ p0 is split if there exists another inert

natural transformation β : p→ p1 such that α and β are a splitting of p. In this case, we will say

that β is a complement to α.

Lemma 3.4.3.12. Let q : O⊗ → N(Fin∗) and let α : p→ p0 be an inert natural transformation of

diagrams p, p0 : K → O⊗. The following conditions are equivalent:

(1) The natural transformation α is split: that is, there exists a complement β : p→ p1 to α.

(2) The natural transformation α induces a split natural transformation α : q ◦ p→ q ◦ p0.

Moreover, if these conditions are satisfied, then β is determined uniquely up to equivalence.

Proof. The implication (1) ⇒ (2) is clear: if β : p → p1 is a complement to α, then the induced

transformations q ◦ p0 ← q ◦ p→ q ◦ p1 form a splitting of q ◦ p : K → N(Fin∗). Conversely, suppose

that q ◦ p is split, and choose a complement β : q ◦ p→ p1 to α. Then β is inert, so we can choose

a q-coCartesian lift β : p→ p1 of β which is a complement to α. The uniqueness of β follows from

the observation that β and its q-coCartesian lift are both well-defined up to equivalence.

Lemma 3.4.3.13. Let q : C⊗ → O⊗ be a fibration of ∞-operads. Let α : X → X0 and β : X → X1

be morphisms in O⊗ which determine a splitting of X, and suppose that X0 and X1 are objects of

C⊗ lying over X0 and X1, respectively. Then:

(1) Let α : X → X0 and β : X → X1 be morphisms in C⊗ lying over α and β. Then α and β

determine a splitting of X if and only if they exhibit X as a q-product of X0 and X1.

(2) There exist morphisms α : X → X0 and β : X → X1 satisfying the equivalent conditions of

(1).

Proof. We will prove (2) and the “if” direction of (1); the “only if” direction follows from (2)

together with the uniqueness properties of q-limit diagrams. We begin with (1). Choose a diagram

σ : ∆1 ×∆1→ C⊗

X
α //

β
��

X0

��
X1

// 0,

where 0 is a final object of C⊗ (in other words, 0 lies in C⊗〈0〉). Let K ' Λ2
0 denote the full subcategory

of ∆1 × ∆1 obtained by removing the final object. Since 0 is final in C⊗ and q(0) is final in O⊗,

we deduce that 0 is a a q-final object of C⊗ (Proposition HTT.4.3.1.5 ), so that σ is a q-right Kan

extension of σ|K. It follows from Proposition 2.3.2.5 that the σ is a q-limit diagram. Applying

Lemma HTT.4.3.2.7 , we deduce that σ|K is a q-limit, so that σ exhibits X as a q-product of X0

and X1.
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We now prove (2). Let 0 be an object of C⊗〈0〉. Since 0 is a final object of C⊗, we can find

morphisms (automatically inert) γ : X0 → 0 and δ : X1 → 0 in C⊗. Since q(0) is a final object of

O⊗, we can find a commutative square

X
α //

β

��

X0

q(γ)
��

X1
q(δ) // q(0)

in O⊗. Using Proposition 2.3.2.5, deduce the existence of a q-limit diagram σ :

X
α //

β
��

X0

γ

��
X1

δ // 0

in C⊗, where α and β are inert and therefore determine a splitting of X.

Corollary 3.4.3.14. Let q : C⊗ → O⊗ be a fibration of ∞-operads, let X be the full subcategory of

Fun(Λ2
0,C
⊗) be the full subcategory spanned by those diagrams X0 ← X → X1 which determine a

splitting of X, and let Y ⊆ Fun(Λ2
0,O

⊗) be defined similarly. Then the canonical map

X→ Y×Fun({1},O⊗)×Fun({2},O⊗)(Fun({1},C⊗)× Fun({2},C⊗))

is a trivial Kan fibration.

Proof. Combine Lemma 3.4.3.13 with Proposition HTT.4.3.2.15 .

Lemma 3.4.3.15. Let q : C⊗ → O⊗ be a fibration of ∞-operads. Suppose we are given a split

natural transformation α : p → p0 of diagrams p, p0 : K/ → O⊗. Let p0 : K/ → C⊗ be a diagram

lifting p0, let p′ : K → C⊗ be a diagram lifting p′ = p|K, and let α′ : p′ → p0|K be a natural

transformation lifting α′ = α|(∆1 ×K). Suppose that the following condition is satisfied:

(∗) Let β : p → p1 be a complement to α, let β′ = β|(∆1 × K), and let β
′

: p′ → p′1 be a q-

coCartesian natural transformation lifting β′ (so that β
′

is a complement to α′). Then p′1 can

be extended to a q-limit diagram p1 : K/ → C⊗ such that q ◦ p1 = p1.

Then:

(1) Let α : p→ p0 be a natural transformation of diagrams p, p0 : K/ → C⊗ which extends α′ and

lies over α. The following conditions are equivalent:

(i) The map of simplicial sets α : ∆1 ×K/ → C⊗ is a q-limit diagram.
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(ii) The natural transformation α is inert (and therefore split), and if β : p → p1 is a

complement to α, then p1 is a q-limit diagram.

(2) There exists a natural transformation α : p→ p0 satisfying the equivalent conditions of (1).

Proof. We first prove the implication (ii)⇒ (i) of assertion (1). Choose a complement β : p→ p1

to α, so that α and β together determine a map F : Λ2
0 × K/ → C⊗ with F |∆{0,1} × K/ = α

and F |∆{0,2} ×K/ = β. Using the small object argument, we can choose an inner anodyne map

K → K ′ which is bijective on vertices, where K ′ is an ∞-category. Since C⊗ is an ∞-category, the

map F factors as a composition K/ × Λ2
0 → K ′/ × Λ2

0 → C⊗. We may therefore replace K by K ′

and thereby reduce to the case where K is an ∞-category.

The inclusion i : K × {0} ⊆ K × ∆{0,2} is left anodyne, so that i is right cofinal. It will

therefore suffice to show that the restriction F 0 of F to (K/ × ∆{0,1})
∐
K×{0}(K × ∆{0,2}) is a

q-limit diagram. Since p1 is a q-limit diagram, F is a q-right Kan extension of F 0; according to

Lemma HTT.4.3.2.7 it will suffice to prove that F is a q-limit diagram.

Let v denote the cone point of K/. Let D be the full subcategory of K/ × Λ2
0 spanned by

K/×{1}, K/×{2}, and (v, 0). Using Lemma 3.4.3.13, we deduce that F is a q-right Kan extension

of F |D. Using Lemma HTT.4.3.2.7 again, we are reduced to proving that F |D is a q-limit diagram.

Since the inclusion

{(v, 1)}
∐
{(v, 2)} ⊆ (K/ × {1})

∐
(K/ × {2})

is right cofinal, it suffices to show that F |{v}×Λ2
0 is a q-limit diagram, which follows from Lemma

3.4.3.13. This completes the verification of condition (i).

We now prove (2). Choose a complement β : p → p1 to the split natural transformation α, let

β′ = β|∆1×K, and choose an q-coCartesian natural transformation β
′
: p′ → p′1 lifting β′. Invoking

assumption (∗), we can extend p′1 to a q-limit diagram p1 : K/ → C⊗ such that q ◦ p1 = p1. The

maps p0, p1, α′ and β
′

can be amalgamated to give a map

F : (Λ2
0 ×K)

∐
({1,2})×K

({1, 2} ×K/)→ C⊗ .

Using Corollary 3.4.3.14, we can extend F to a map F : Λ2
0 ×K/ → C⊗ corresponding to a pair of

morphisms α : p→ p0 and β : p→ p1 having the desired properties.

The implication (i)⇒ (ii) of (1) now follows from (2), together with the uniqueness properties

of q-limit diagrams.

Proof of Proposition 3.4.3.7. We first treat the case where K is an ∞-category. Let Y = KO and

Y ′ = K0
O ⊆ Y . Let π : Y → O⊗ be the map given by evaluation at {0}, and let π′ = π|Y ′.

Our assumption that O⊗ is coherent guarantees that π is a flat categorical fibration. Let X =

Y ×Fun({1},O⊗) C
⊗, and let X ′ = X ×Y Y ′. The map ψ : Mod

O
(C)⊗ → pAlg/O(C) can be identified
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with a restriction of the map π∗X → π′∗X
′. We are given a diagram

K
p //

��

π∗X

��
K/ p0 //

p
<<

π′∗X
′.

We claim that this situation satisfies the hypotheses of Proposition 3.4.3.8:

(i) The full subcategory Y ′ ×O⊗ K
/ is a cosieve on Y ×O⊗ K

/. Since the map K/ → O⊗ is

constant taking some value C ∈ O, it will suffice to show that the Y ′ ×O⊗ {C} is a cosieve

on Y ×O⊗ {C}. Unwinding the definitions, this amounts to the following assertion: given a

commutative diagram

C //

id
��

D

��
C // D′

in O⊗, if the upper horizontal map is null then the lower horizontal map is null. This is

clear, since the collection of null morphisms in O⊗ is closed under composition with other

morphisms.

(ii) For every object y ∈ Y ′ and every morphism f : z → π(y) in O, there exists a π-Cartesian

morphism f : z → y in Y ′ such that π(f) = f . We can identify y with a semi-inert morphism

y0 → y1 in O⊗, and f with a morphism z → y0 in O⊗. Using Corollary HTT.2.4.7.12 , we see

that the morphism f can be taken to correspond to the commutative diagram

z //

��

y1

id

��
y0

// y1

in O⊗: our assumption that y0 → y1 is null guarantees that the composite map z → y is also

null.

(iii) Let π′′ denote the projection map K/×O⊗ Y → K/. Then π′′ is a coCartesian fibration. This

is clear, since π′′ is a pullback of the coCartesian fibration (KO×O⊗{C})→ ∆0.

(iv) Let v denote the cone point of K/ and let D = π′′−1{v}. Then D′ = D×Y Y ′ is a localization

of D. We can identify an object of D with a semi-inert morphism f : C → C ′ in O⊗. We

wish to prove that for any such object f , there exists a morphism f → g in D which exhibits

g as a D′-localization of f . Let f0 : 〈1〉 → 〈k〉 denote the underlying morphism in Fin∗. If f0

is null, then f ∈ D′ and there is nothing to prove. Otherwise, f0(1) = i for some 1 ≤ i ≤ k.
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Choose an inert map h0 : 〈k〉 → 〈k − 1〉 such that h0(i) = ∗, and choose an inert morphism

h : C ′ → D in O⊗ lifting h0. We then have a commutative diagram

C
f //

id
��

C ′

h
��

C
g // D

in O⊗, corresponding to a map α : f → g in D; by construction, g is null so that g ∈ D′. We

claim that α exhibits g as a D′-localization of C. To prove this, choose any object g′ : C → D′

in D′; we wish to show that composition with α induces a homotopy equivalence

MapD(g, g′) ' Map(O⊗)C/(g, g
′)→ Map(O⊗)C/(f, g

′) ' MapD(f, g).

Since the projection map

(O⊗)C/ → O⊗

is a left fibration, it will suffice to show that the map MapO⊗(D,D′) → Map0
O⊗

(C ′, D′),

where the superscript indicates that we consider only morphisms C ′ → D′ such that the

underlying map 〈k〉 → 〈k′〉 carries i to the base point ∗ ∈ 〈k′〉. Since h is inert, this follows

from the observation that composition with h0 induces an injection HomFin∗(〈k − 1〉, 〈k′〉)→
HomFin∗(〈k〉, 〈k′〉) whose image consists of those maps which carry i to the base point.

Fix an object of D corresponding to a semi-inert morphism f : C → C ′ in O⊗, and let α : f → g

be a map in D which exhibits g as a D′-localization of f (as in the proof of (iv)). Using the maps

p and p0, we get commutative diagram

(K ×∆1)
∐
K×{1}(K

/ × {1}) //

��

C⊗

q

��
K/ ×∆1 //

θ

55

O⊗ .

To apply Proposition 3.4.3.8, we must know that every such diagram admits an extension as

indicated, where θ is a q-limit. This follows from Lemma 3.4.3.15 and assumption (∗). Moreover,

we obtain the following criterion for testing whether θ is a q-limit diagram:

(∗′) Let θ : K/×∆1 → C⊗ be as above, and view θ as a natural transformation d→ d0 of diagrams

d, d0 : K/ → C⊗. Then θ is a q-limit diagram if and only if it is an inert (and therefore split)

natural transformation, and admits a complement d → d1 where d1 : K/ → C⊗ is a q-limit

diagram.

Applying Proposition 3.4.3.8, we obtain the following:
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(a) There exists a solution to the lifting problem

K
p //

��

M̃od
O

(C)⊗

ψ
��

K/ p0 //

p
;;

Ãlg/O(C),

where p is an ψ-limit diagram.

(b) An arbitrary extension p as above is an ψ-limit diagram if and only if the following condition

is satisfied:

(∗′′) For every object f : C → C ′ in D and every morphism α : f → g in D which exhibits

g as a D′-localization of f , if θ : K/ × ∆1 → C⊗ is defined as above, then θ is a split

natural transformation of diagrams d, d0 : K/ → C⊗ and admits a complement d → d1

where d1 : K/ → C⊗ is a q-limit diagram.

To complete the proof, we must show that condition (∗′′) is equivalent to the following pair of

assertions:

(I) The map p carries K/ into the full subcategory Mod
O

(C)⊗ ⊆ M̃od
O

(C)⊗. (Since we know

already that p has this property, it suffices to check that p carries the cone point v of K/ into

M̃od
O

(C)⊗).

(II) The composite map

p : K/ → M̃od
O

(C)⊗ → C⊗

is a q-limit diagram. Here the second map is induced by composition with the diagonal

embedding O⊗ ↪→ KO.

Assume first that condition (∗′′) is satisfied by p : K/ → M̃od
O

(C)⊗; we will prove that p also

satisfies (I) and (II). We can identify p with a map P : K/×D→ C⊗. We first prove (II). Fix an

object f ∈ D corresponding to an equivalence C → C ′ in O⊗; we will show that P f = P |K/ × {f}
is a q-limit diagram. Choose a morphism f → g which exhibits g as a D′-localization of f , and let

θ : P f → P g be the induced natural transformation as in (∗′′). Let θ′ : P f → d1 be a complement

to θ. Since C ' C ′, P g takes values in C⊗〈0〉, so θ′ is an equivalence of diagrams. Condition (∗′′)
implies that d1 is a q-limit diagram, so that P f is a q-limit diagram.

To prove (I), we must show that for every morphism α : f → f ′ in D whose image in KO is

inert, the induced map P (v, f)→ P (v, f ′) is inert in C⊗. There are several cases to consider:

(I1) The map f belongs to D′. Then f ′ ∈ D′ and the desired result follows from our assumption

that p0 factors through pAlg/O(C).
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(I2) The map f does not belong to D′, but f ′ does. Then α factors as a composition

f
α′→ g

α′′→ f ′,

where α′ exhibits g as a D′-localization of f . Since the composition of inert morphisms in C⊗

is inert and g ∈ D′, we can apply (I1) to reduce to the case where α = α′. In this case, the

desired result follows immediately from (∗′′).

(I3) The map f ′ is an equivalence in O⊗. Let α : P f → P f ′ be the natural transformation induced

by α; it will suffice to show that this natural transformation in inert. Let β : f → g be a map

in D which exhibits g as a D′-localization of f . Then β induces a natural transformation

θ : P f → P g. Using (∗′′), we can choose a complement θ′ : P f → d1 to θ. Since θ′ is a

q-coCartesian transformation of diagrams, we obtain a factorization of α as a composition

P f
θ′→ d1

γ→ P f ′ .

We wish to prove that γ is an equivalence. Since d1 is a q-limit diagram (by virtue of (∗′′)) and

P f ′ is a q-limit diagram (by virtue of (I)), it will suffice to show that γ induces an equivalence

d1|K → P f ′ |K. This follows from the fact that p factors through Mod
O

(C)⊗.

(I4) The map f ′ does not belong to D′. Let us identify f ′ with a semi-inert morphism C → C ′

in O⊗, lying over an injective map j : 〈1〉 ↪→ 〈k〉 in Fin∗. Choose a splitting C ′0 ← C ′ → C ′1
of C ′ corresponding to the decomposition 〈k〉◦ ' 〈1〉◦

∐
〈k − 1〉◦ induced by j. This splitting

can be lifted to a pair of morphisms f ′ → f ′0 and f ′ → f ′1 in D. Using (I2) and (I3), we

deduce that the maps P (v, f ′) → P (v, f ′0) and P (v, f ′) → P (v, f ′1) are inert. Since C⊗ is an

∞-operad, to prove that the map P (v, f)→ P (v, f ′) is inert, it will suffices to show that the

composite maps P (v, f)→ P (v, f ′0) and P (v, f)→ P (v, f ′1) are inert. In other words, we may

replace f ′ by f ′0 or f ′1 and thereby reduce to the cases (I2) and (I3).

Now suppose that conditions (I) and (II) are satisfied; we will prove (∗′′). Fix an object f

in D, let α : f → g be a map which exhibits g as a D′-localization of f , let θ : P f → P g be the

induced natural transformation. Our construction of α together with assumption (I) guarantees

that θ is split; let θ′ : P f → d1 be a complement to θ. We wish to prove that d1 is a q-limit

diagram. If f ∈ D′, then d1 takes values in C⊗〈0〉 and the result is obvious. We may therefore assume

that f : C → C ′ induces an injective map 〈1〉 → 〈k〉 in Fin∗; choose a splitting C ′0 ← C ′ → C ′1
corresponding the decomposition 〈k〉◦ ' 〈1〉◦

∐
〈k − 1〉◦. This splitting lifts to a pair of maps

β0 : f → f0, β1 : f → f1 in D, and we can identify β1 with α : f → g. Using assumption (I),

we see that β0 induces a transformation P f → P f0 which is a complement to θ. We are therefore

reduced to showing that P f0 is a q-limit diagram. This follows from (II), since f0 : C → C ′0 is an

equivalence in C and therefore equivalent (in D) to the identity map idC .
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3.4.4 Colimits of Modules

Let C be a symmetric monoidal category, let A be a commutative algebra object of C, let {Mα}
be a diagram in the category of A-modules, and let M = lim−→Mα be a colimit of this diagram in

the underling category C. For each index α, we have a canonical map A⊗Mα →Mα →M. These

maps together determine a morphism lim−→(A ⊗Mα) → M . If the tensor product with A preserves

colimits, then we can identify the domain of this map with A⊗M , and the object M ∈ C inherits

the structure of an A-module (which is then a colimit for the diagram {Mα} in the category of

A-modules).

Our goal in this section is to obtain an ∞-categorical generalization of the above discussion.

We first formalize the idea that “tensor products commute with colimits”.

Definition 3.4.4.1. Let O⊗ be an ∞-operad. We will say that a fibration of ∞-operads q : C⊗ →
O⊗ is a presentable O-monoidal ∞-category if the following conditions are satisfied:

(1) The functor q is a coCartesian fibration of ∞-operads.

(2) The coCartesian fibration q is compatible with small colimits (Definition 3.1.1.18).

(3) For each X ∈ O, the fiber C⊗X is a presentable ∞-category.

Theorem 3.4.4.2. Let O⊗ be a small coherent ∞-operad, and let q : C⊗ → O⊗ be a presentable

O-monoidal ∞-category. Let A ∈ Alg/O(C) be a O-algebra object of C. Then the induced map

ψ : ModO
A(C)⊗ → O⊗ exhibits ModO

A(C)⊗ as a presentable O-monoidal ∞-category.

We will deduce Theorem 3.4.4.2 from the a more general result, which can be used to construct

colimits in ∞-categories of module objects in a wider variety of situations. The statement is

somewhat complicated, since the idea that “tensor product with A preserves colimits” needs to be

formulated using the theory of operadic colimit diagrams described in §3.1.3.

Theorem 3.4.4.3. Let q : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is coherent. Let

K be an ∞-category and let A ∈ Alg/O(C) be a O-algebra object of C. Suppose we are given a

commutative diagram

K
p //

��

ModO
A(C)⊗

ψ
��

K. //

p
99

O⊗ .

Let D = K. ×O⊗ KO and let D = K ×O⊗ KO ⊆ D, so that p classifies a diagram F : D → C⊗.

Assume the following:

(i) The induced map K. → O⊗ factors through O⊗act, and carries the cone point of K. to an

object X ∈ O.
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(ii) Let D = (v, idX) ∈ D. Let Dact
/D denote the full subcategory of D×DD/D spanned by those

morphisms D′ → D in D which induce diagrams

X ′ //

��

Y ′

f
��

X
id // X

in O⊗, where f is active. Then the diagram

Dact
/D → D

F→ C⊗

can be extended to a q-operadic colimit diagram (Dact
/D). → C⊗ lying over the composite map

(Dact
/D). → D

.
/D → D→ K. → O⊗ .

Then:

(1) Let p be an extension of p as indicated in the above diagram, corresponding to a map F :

D → C⊗. Then p is an operadic ψ-colimit diagram if and only if the following condition is

satisfied:

(∗) For every object (v, idX) as in (ii), the map

(Dact
/D). → D

.
/D → D

F→ C⊗

is an operadic q-colimit diagram.

(2) There exists an extension p of p satisfying condition (∗).

The proof of Theorem 3.4.4.3 is rather technical, and will be given at the end of this section.

Corollary 3.4.4.4. Let p : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is coherent. Let A ∈
Alg/O(C). Let f : M0 → M be a morphism in ModO

A(C)⊗ be a morphism where M0 ∈ ModO
A(C)⊗〈0〉

and M ∈ ModO
A(C). The following conditions are equivalent:

(1) The morphism f is classified by an operadic q-colimit diagram

∆1 → ModO
A(C)⊗,

where q : ModO
A(C)⊗ → O⊗ denotes the projection.

(2) Let F : KO×O⊗∆1 → C⊗ be the map corresponding to f . Then F induces an equivalence

F (q(f))→ F (idq(M)).
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Moreover, for every X ∈ O⊗, there exists a morphism f : M0 →M satisfying the above conditions,

with q(M) = X.

Proof. Apply Theorem 3.4.4.3 together with the observation that the ∞-category Dact
/D has a final

object.

Example 3.4.4.5. Corollary 3.4.4.4 implies that if p : C⊗ → O⊗ is a fibration of ∞-operads and

O⊗ is coherent, then ModO(C)⊗ → O⊗ has units.

Corollary 3.4.4.6. Let κ be an uncountable regular cardinal. Let O⊗ be a κ-small coherent ∞-

operad, and let q : C⊗ → O⊗ be a O-monoidal ∞-category which is compatible with κ-small colimits.

Let A ∈ Alg/O(C) be a O-algebra object of C. Then:

(1) The map ψ : ModO
A(C)⊗ → O⊗ is a coCartesian fibration of ∞-operads which is compatible

with κ-small colimits.

(2) For each object X ∈ O, consider the induced functor φ : ModO
A(C)⊗X → C⊗X . Let K be a

κ-small simplicial set and let p : K. → ModO
A(C)⊗X be a map. Then p is a colimit diagram if

and only if φ ◦ p is a colimit diagram.

Proof. Assertion (1) follows immediately from Theorem 3.4.4.3 and Corollary 3.1.1.21. We will

prove (2). Without loss of generality, we may assume that K is an ∞-category. Let D =

KO×O⊗{X} denote the full subcategory of (O⊗)X/ spanned by the semi-inert morphisms X → Y

in O⊗, so that we can identify p with a functor F : D×K. → C⊗. Let p = p|K. It follows from (1)

(and Corollary 3.1.1.21) that p can be extended to an operadic ψ-colimit diagram in ModO
A(C)⊗X ,

and any such diagram is automatically a colimit diagram. From the uniqueness properties of colimit

diagrams, we deduce that p is a colimit diagram if and only if it is an operadic ψ-colimit diagram.

In view of Theorem 3.4.4.3, this is true if and only if F satisfies the following condition:

(∗) Let D = idX ∈ D. Then the diagram

D/D ×K. → D×K. F→ C⊗

is an operadic q-colimit diagram.

Since the inclusion {idD} ↪→ D/D is left cofinal, condition (∗) is equivalent to the requirement

that φ ◦ p = F |{D} × K. is an operadic q-colimit diagram. Since φ ◦ p can be extended to an

operadic q-colimit diagram in C⊗X (Corollary 3.1.1.21) and any such diagram is automatically a

colimit diagram in C⊗X , the uniqueness properties of colimit diagrams show that (∗) is equivalent

to the requirement that φ ◦ p is a colimit diagram in C⊗X .

Example 3.4.4.7. Let q : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is coherent. Let

A ∈ Alg/O(C) be a O-algebra object of C. Then the composition KO
e1→ O⊗

A→ C⊗ determines
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an object in Alg/O(ModO
A(C)), which we will denote by A (it is a preimage of the identity map

idA under the equivalence Alg/O(ModO
A(C)) ' Alg/O(C)A/ of Corollary 3.4.1.7). We can informally

summarize the situation by saying that any algebra object A ∈ Alg/O(C) can be viewed as a module

over itself.

Let 0 ∈ O⊗〈0〉 be a zero object of O⊗ and let X ∈ O be any object. Then A(0) is a zero object of

ModO
A(C)⊗, and A(X) is an object of ModO

A(C)⊗X . Any choice of map 0→ X in O⊗ induces a map

ηX : A(0)→ A(X), which is given by an edge p : ∆1 → ModO
A(C)⊗. We claim that p is an operadic

ψ-colimit diagram, where ψ : ModO
A(C)⊗ → O⊗ denotes the projection. In view of Theorem 3.4.4.3,

it suffices to prove that p induces an operadic q-colimit diagram

θ : ((O⊗)0/ ×D D/D). → C⊗,

where D = KO×O⊗∆1 and D is the object of D determined by the pair (idX , 1). We observe that

the fiber product (O⊗)0/ ×D D/D contains a final object C, corresponding to the diagram

0 //

��

X

id
��

X
id // X

in O⊗. It therefore suffices to show that the restriction θ0 = θ|{C}. → C⊗ is an operadic q-

colimit diagram (Remark 3.1.1.4). This is clear, since θ0 corresponds to the identity morphism

id : A(X)→ A(X) in C⊗.

We can summarize the situation informally as follows: for every X ∈ O, the map ηX exhibits

A(X) ∈ ModO
A(C)⊗X as a “unit object” with respect to the O-operad structure on ModO

A(C).

We can deduce Theorem 3.4.4.2 from Theorem 3.4.4.3:

Proof of Theorem 3.4.4.2. In view of Corollary 3.4.4.6, it will suffice to show that for each X ∈ O,

the fiber ModO
A(C)⊗X is an accessible ∞-category. Let D denote the full subcategory of (O⊗)X/

spanned by the semi-inert morphisms f : X → Y , let D0 ⊆ D be the full subcategory spanned by

those objects for which f is an equivalence, and let A′ : D0 → C⊗. We will say that a morphism in

D is inert if its image in O⊗ is inert. We observe that ModO
A(C)⊗X can be identified with a fiber of

the restriction functor

φ : Fun0
O⊗

(D,C⊗)→ Fun0
O⊗

(D0,C
⊗),

where the superscript 0 indicates that we consider only those functors which carry inert morphisms

in D (or D0) to inert morphisms in C⊗. It follows from Corollary HTT.5.4.7.17 that the domain and

codomain of φ are accessible∞-categories and that φ is an accessible functor. Invoking Proposition

HTT.5.4.6.6 , we deduce that ModO
A(C)⊗X is accessible as desired.

We now turn to the proof of Theorem 3.4.4.3. We will treat assertions (1) and (2) separately.

In both cases, our basic strategy is similar to that of Theorem 3.1.2.3.
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Proof of Part (2) of Theorem 3.4.4.3. Let D
0

denote the inverse image of K0
O in D, and let D0 =

D
0∩D. Let D′ denote the full subcategory of D spanned by D together with D

0
. Note that there is a

unique map z : D′ → ∆2 such that z−1∆{0,1} ' D and z−1∆{1,2} = D
0
. The map z is a coCartesian

fibration, and therefore flat. The algebra A and the map F determine a map Λ2
1 ×∆2 D′ → C⊗.

Using the fact that q is a categorical fibration and that the inclusion Λ2
1×∆2 D′ ⊆ D′ is a categorical

equivalence (Proposition B.3.2), we can find a map F0 ∈ FunO⊗(D′,C⊗) compatible with F and

A. To complete the proof, we wish to prove that F0 can be extended to a map F ∈ FunO⊗(D,C⊗)

satisfying (∗) together with the following condition (which guarantees that F encodes a diagram

p : K. → ModO
A(C)⊗):

(?) Let α : D → D′ be a morphism in D lying over the cone point of K/ whose image in KO is

inert. Then F
′
(α) is an inert morphism of C⊗.

Note that, because C⊗ is an ∞-operad, it suffices to verify condition (?) when the object D′ ∈ D

lies over 〈1〉 ∈ N(Fin∗).

Let S denote the full subcategory of D spanned by those objects which lie over the cone point

of K., and let S0 = S ×KO
K0

O. Let J denote the category (Fin∗)〈1〉/ of pointed objects of Fin∗.

There is an evident forgetful functor S → N(J), given by the map

S ⊆ {X} ×O⊗ KO ⊆ (O⊗)X/ → N(Fin∗)
〈1〉/ ' N(J).

We will say that a morphism α in J is active or inert if its image in Fin∗ is active or inert,

respectively; otherwise, we will say that α is neutral. Let σ be an m-simplex of N(J), corresponding

to a chain of morphisms

〈1〉 α(0)−→ (〈k0〉)
α(1)−→ (〈k1〉)

α(2)−→ · · · α(m)−→ (〈km〉).

in the category Fin∗. We will say that σ is new if it is nondegenerate and the map α(0) is not

null. We let Jσ denote the collection of integers j ∈ {1, . . . ,m} for which the map α(j) is not an

isomorphism. We will denote the cardinality of Jσ by l(σ) and refer to it as the length of σ (note

that this length is generally smaller than m). For 1 ≤ d ≤ l(σ), we let jσd denote the dth element

of Jσ and set ασd = α(jσd ). We will say that σ is closed if km = 1; otherwise we will say that σ is

open. We now partition the collection of new simplices σ of E into eleven groups, as in the proof

of Theorem 3.1.2.3:

(G′(1)) A new simplex σ of N(J) belongs to G′(1) if it is a closed and the maps ασi are active for

1 ≤ i ≤ l(σ).

(G(2)) A new simplex σ of N(J) belongs to G(2) if σ is closed and there exists 1 ≤ k < l(σ) such that

ασk is inert, while ασj is active for k < j ≤ l(σ).

(G′(2)) A new simplex σ of N(J) belongs to G′(2) if σ is closed and there exists 1 ≤ k ≤ l(σ) such that

ασk is neutral while the maps ασj are active for k < j ≤ l(σ).
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(G(3)) A new simplex σ of N(J) belongs to G(3) if σ is closed and there exists 1 ≤ k < l(σ)− 1 such

that ασk is inert, the maps ασj are active for k < j < l(σ), and ασl(σ) is inert.

(G′(3)) A new simplex σ of N(J) belongs to G′(3) if σ is closed and there exists 1 ≤ k < l(σ) such that

the map ασk is neutral, the maps ασj are active for k < j < l(σ), and ασl(σ) is inert.

(G(4)) A new simplex σ of N(J) belongs toG(4) if it is a closed, the maps ασi are active for 1 ≤ i < l(σ),

and the map ασl(σ) is inert.

(G′(4)) A new simplex σ of N(J) belongs to G′(4) if it is an open and the maps ασi are active for

1 ≤ i ≤ l(σ).

(G(5)) A new simplex σ of N(J) belongs to G(5) if σ is an open and there exists 1 ≤ k < l(σ) such

that ασk is inert and ασj is active for k < j ≤ l(σ).

(G′(5)) A new simplex σ of N(J) belongs to G′(5) if σ is an open and there exists 1 ≤ k ≤ l(σ) such

that ασk is neutral and the maps ασj are active for k < j ≤ l(σ).

(G(6)) A new simplex σ of N(J) belongs to G(6) if it is closed, has length ≥ 2, and the maps ασl(σ)−1

and ασl(σ) are both inert.

(G′(6)) A new simplex σ of N(J) belongs to G′(6) if it is open, has length at least 1, and the map ασl(σ)

is inert.

For each integer m ≥ 0, we let N(J)m denote the simplicial subset spanned by those simplices

which are either not new, have length ≤ m, or have length m and belong to one of the groups G(i)

for 2 ≤ i ≤ 6. Let S(m) denote the inverse image S×N(J) N(J)m and let D(m) denote the simplicial

subset of D spanned by those simplices whose intersection with S belongs to S(m). Then D(0) = D′

is the domain of the map F0. We will complete the proof by extending F0 to a compatible sequence

of maps Fm ∈ FunO⊗(E(m),C⊗), where F1 satisfies conditions (∗) and (?).

Let us now fix m > 0 and assume that Fm−1 has already been constructed. We define a filtration

N(J)m−1 = K(0) ⊆ K(1) ⊆ K(2) ⊆ K(3) ⊆ K(4) ⊆ K(5) ⊆ K(6) = N(J)m

as follows:

• We let K(1) denote the simplicial subset of N(J) spanned by those simplices which either

belong to K(0) or have length (m− 1) and belong to G′(1).

• For 2 ≤ i ≤ 6, we let K(i) be the simplicial subset of N(J) spanned by those simplices which

either belong to K(i− 1), have length m and belong to G(i), or have length m− 1 and belong

to G′(i).
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For 0 ≤ i ≤ 6, we let K(i) denote the simplicial subset of E spanned by those simplices whose

intersection with E belongs to the inverse image of K(i). We will define maps f i : K(i)→ C⊗ with

f0 = Fm−1. The construction now proceeds in six steps:

(1) Assume that f0 = Fm−1 has been constructed; we wish to define f1. Let {σa}a∈A be the

collection of all simplices of S whose image in N(J) have length (m− 1) and belong to G′(1).

Choose a well-ordering of the set A such that the dimensions of the simplices σa form a

(nonstrictly) increasing function of a. For each a ∈ A, let D≤a denote the simplicial subset

of D spanned by those simplices which either belong to K(0) or whose intersection with E is

contained in σa′ for some a′ ≤ a, and define D<a similarly. We construct a compatible family

of maps f≤a ∈ FunO⊗(D≤a,C
⊗) extending f0, using transfinite induction on a. Assume that

f≤a
′

has been constructed for a′ < a; these maps can be amalgamated to obtain a map

f<a ∈ FunO⊗(D<a,C
⊗). Let Z = D×DD/σa . Lemma 3.1.2.5 implies that the diagram

Z ? ∂ σa //

��

D<a

��
Z ? σa // D≤a.

is a homotopy pushout square. Since q is a categorical fibration, it will suffice to extend the

composition

g0 : Z ? ∂ σa → D<a
f<a→ C⊗

to a map g ∈ FunO⊗(Z ? σa,C
⊗). We first treat the special case where the simplex σa is

zero-dimensional (in which case we must have m = 1). We can identify σa with an object

D ∈ D. Since σa is new and closed, D is equivalent to (v, idX). Let Z0 = D×DD
act
/D. It follows

from assumption (ii) that g0|Z0 can be can be extended to an operadic q-colimit diagram

(compatible with the projection to O⊗). Since Z0 is a localizatin of Z, the inclusion Z0 ⊆ Z

is left cofinal; we can therefore extend g0 to a map g ∈ FunO⊗(Z ? σa,C
⊗). whose restriction

to Z.0 is an operadic q-colimit diagram. Moreover, this construction guarantees that f1 will

satisfy condition (∗) for the object D.

Now suppose that σa is a simplex of positive dimension. We again let Z0 denote the sim-

plicial subset of Z spanned by those vertices which correspond to diagrams σ/a → C⊗ which

project to a sequence of active morphisms in N(Fin∗). The inclusion Z0 ⊆ Z admits a

left adjoint and is therefore left cofinal; it follows that the induced map C⊗(Fm−1|Z)/ →
C⊗(Fm−1|Z0)/×O⊗

(qFm−1|Z0)/
O⊗(qFm−1|Z)/ is a trivial Kan fibration. It therefore suffices to show

that the restriction g′0 = g0|(Z0 ? ∂ σa) can be extended to a map g′ ∈ FunO⊗(Z0 ? σa,C
⊗) .

Let D denote the initial vertex of σ. In view of Proposition 3.1.1.7, it will suffice to show that

the restriction g′0|(Z0 ? {D}) is an operadic q-colimit diagram. Since the inclusion {D} ⊆ σa
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is left anodyne, the projection map Z0 → Dact
/D = D×DD

act
/D is a trivial Kan fibration. It will

therefore suffice to show that Fm−1 induces an operadic q-colimit diagram δ : (Dact
/D). → C⊗.

The object D ∈ D determines a semi-inert morphism γ : X → Y in O⊗. Since σa is new, this

morphism is not null and therefore determines an equivalence Y ' Y0⊕X. Let X denote the

full subcategory of Dact
/D spanned by those objects corresponding to diagrams

X ′ //

��

Y ′

φ
��

X // Y0 ⊕X

where the active morphism φ exhibits Y ′ as a sum Y ′0 ⊕ Y ′1 , where Y ′0 ' Y0 and Y ′1 → X

is an active morphism. The inclusion X ⊆ Dact
/D admits a left adjoint, and is therefore left

cofinal. Let D0 = (v, idX) ∈ D, so that the operation • 7→ Y0 ⊕ • determines an equivalence

Dact
/D0
→ X. It therefore suffices to show that the composite map

(Eact
/D0

).
Y0⊕−→ X. ⊆ (Dact

/D).
δ−→ C⊗

is an operadic q-colimit diagram. Using condition (?), we can identify this map with the

composition

(Dact
/D0

). −→ C⊗
A(Y0)⊕−→ C⊗,

which is an operadic q-colimit diagram by virtue of (∗).

(2) We now assume that f1 has been constructed. Since q is a categorical fibration, to produce

the desired extension f2 of f1 it is sufficient to show that the inclusion K(1) ⊆ K(2) is

a categorical equivalence. For each simplex σ of N(J) of length m belonging to G(2), let

k(σ) < m be the integer such that ασk(σ) is inert while ασj is active for k(σ) < j ≤ m. We will

say that σ is good if ασk(σ) induces a map 〈p〉 → 〈p′〉 in Fin∗ whose restriction to (ασk)−1〈p′〉◦

is order preserving. Let J = K. ×Fun({0},N(Fin∗) Fun(∆1,N(Fin∗)), so that we can identify

N(J) with the simplicial subset J×K. {v}. Let {σa}a∈A be the collection of all nondegenerate

simplices of J such that the intersection σ′a = σa ∩ N(J) is nonempty and good. For each

a ∈ A, let ka = k(σ′a) and ja = j
σ′a
k . Choose a well-ordering of A with the following properties:

– The map a 7→ ka is a (nonstrictly) increasing function of a ∈ A.

– For each integer k, the dimension of the simplex σa is a nonstrictly increasing function

of a ∈ Ak = {a ∈ A : ka = k}.

– Fix integers k, d ≥ 0, and let Ak,d be the collection of elements a ∈ Ak such that σa has

dimension d. The map a 7→ ja is a nonstrictly increasing function on Ak,d.
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Let J<0 be the collection of those simplices of J whose intersection with N(J) belongs to

K(1). For each a ∈ A, let J≤a denote the simplicial subset of J generated by J0 together with

the simplices the simplices {σa′}a′≤a, and define J<a similarly. The inclusion K(1) ⊆ K(2)

can be obtained as a transfinite composition of inclusions

ia : D×J J<a → D×J J≤a.

Each ia is a pushout of an inclusion i′a : D ×J σ0
aD ×J σa, where σ0

a ⊆ σa denotes the inner

horn obtained by removing the interior of σa together with the face opposite the jath vertex

of σ′a, and therefore a categorical equivalence by Lemma 2.4.4.6.

(3) To find the desired extension f3 of f2, it suffices to show that the inclusion K(2) ⊆ K(3) is

a categorical equivalence. This follows from the argument given in step (2).

(4) Let {σa}a∈A denote the collection of all nondegenerate simplices σ of D with the property

that σ∩S is nonempty and projects to a simplex of N(J) of length m−1 which belongs to G′4.

Choose a well-ordering of A having the property that the dimensions of the simplices σa form

a (nonstrictly) increasing function of a. For each a ∈ A let Da ∈ D denote the final vertex of

σa and let Za denote the full subcategory of S ×D Dσa/ spanned by those objects for which

the underlying map Da → D induces an inert morphism 〈m〉 → 〈1〉 in N(Fin∗). We have a

canonical map ta : σa ? Za → D. For each a ∈ A, let E≤a ⊆ D denote the simplicial subset

generated by K(3) together with the image of ta′ for all a′ ≤ a, and define D<a similarly.

Then K(4) =
⋃
a∈A E≤a and that for each a ∈ A Lemma 3.1.2.5 implies that we have a

homotopy pushout diagram of simplicial sets

∂ σa ? Za //

��

D<a

��
σa ? Za // D≤a.

To construct f4, we are reduced to the problem of solving a sequence of extension problems

of the form

∂ σa ? Za
g0 //

��

C⊗

q
��

σa ? Za //

g

::

O⊗ .

Note that Za decomposes a disjoint union of ∞-categories
∐

1≤i≤m Za,i (where 〈m〉 denotes

the image of Da in N(Fin∗)). Each of the ∞-categories Za,i has an initial object Bi, given by

any map σa ? {Di} → C⊗ which induces an inert morphism Da → Di covering ρi : 〈m〉 → 〈1〉.
Let h : Za → C⊗ be the map induced by g0, and let h′ be the restriction of h to the discrete

simplicial set Z ′a = {Bi}1≤i≤m. Since the inclusion Z ′a → Za is left anodyne, we have a trivial
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Kan fibration C⊗/h → C⊗/h′ ×O⊗
/qh′

O⊗/qh. Unwinding the definitions, we are reduced to the lifting

probelm depicted in the diagram

∂ σa ? Z
′
a

g′0 //

��

C⊗

q

��
σa ? Z

′
a

g′ //

g′
::

O⊗ .

If the dimension of σa is positive, then it suffices to show that g′0 carries {Da}?Z ′a to a q-limit

diagram in C⊗. Let q′ denote the canonical map O⊗ → N(Fin∗). In view of Proposition

HTT.4.3.1.5 , it suffices to show that g′0 carries {Da} ? Z ′a to a (q′ ◦ q)-limit diagram and that

q◦g′0 carries {Da}?Z ′a to a q′-limit diagram. The first of these assertions follows from (?) and

from the fact that C⊗ is an ∞-operad, and the second follows by the same argument (since q

is a map of ∞-operads).

It remains to treat the case where σa is zero dimensional (in which case we have m = 1).

Since C⊗ is an ∞-operad, we can solve the lifting problem depicted in the diagram

∂ σa ? Z
′
a

g′0 //

��

C⊗

q′◦q
��

σa ? Z
′
a

//

g′′
88

N(Fin∗)

in such a way that g′′ carries edges of σa?Z
′
a to inert morphisms in C⊗. Since q is an∞-operad

map, it follows that q ◦ g′′ has the same property. Since O⊗ is an ∞-operad, we conclude

that q ◦ g′′ and g′ are both q′-limit diagrams in O⊗ extending q ◦ g′0, and therefore equivalent

to one another via an equivalence which is fixed on Z ′a and compatible with the projection

to N(Fin∗). Since q is a categorical fibration, we can lift this equivalence to an equivalence

g′′ ' g′, where g′ : σa ?Z
′
a → C⊗ is the desired extension of g′0. We note that this construction

ensures that condition (?) is satisfied.

(5) To find the desired extension f5 of f4, it suffices to show that the inclusion K(4) ⊆ K(5) is

a categorical equivalence. This again follows from the argument given in step (2).

(6) The verification that f5 can be extended to a map f6 : K(6) → C⊗ proceeds as in step (4),

but is slightly easier (since G′(6) contains no 0-simplices).

Proof of Part (1) of Theorem 3.4.4.3. We wish to show that a diagram p : K. → ModO
A(C)⊗ satis-

fies condition (∗) if and only if it is an operadic ψ-colimit diagram. We will prove the “only if” direc-

tion; the converse will follow from assertion (2) together with the uniqueness properties of operadic
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colimit diagrams. Fix an object Y ∈ ModO
A(C)⊗ lying over Y ∈ O⊗ and let pY : K. → ModO

A(C)⊗;

given by the composition

K. p−→ ModO
A(C)⊗

⊕Y−→ ModO
A(C)⊗;

we must show that pY is a weak ψ-operadic colimit diagram. Unwinding the definitions, we must

show that for n > 0, every lifting problem of the form

K ? ∂∆n

��

p′ //ModO
A(C)⊗act

��
K ?∆n

p′0 //

88

O⊗act

admits a solution, provided that p′|K ? {0} = pY and p′0 carries ∆{1,...,n} into O ⊆ O⊗act.

Let T denote the fiber product (K ? ∆n) ×O⊗ KO, let T
0

= (K ? ∆n) ×O⊗ KO. Let T
1

denote

the full subcategory of T = (K ? {0}) ×O⊗ KO spanned by T = K ×O⊗ KO together with those

vertices of {0} ×O⊗ KO which correspond to semi-inert morphisms X ⊕ Y → Y ′ in O⊗ such that

the underlying map in Fin∗ is not injective. Let T′ denote the full subcategory of T spanned by

T
1

together with T
0
. Note that there is a unique map z : T′ → ∆2 such that z−1∆{0,1} = T

1
and

z−1∆{1,2} = T
0
. The map z is a coCartesian fibration and therefore flat. The algebra A and the

map p determine a map Λ2
1 ×∆2 T′ → C⊗. Using the fact that q is a categorical fibration and that

the inclusion Λ2
1 ×∆2 T′ ⊆ T′ is a categorical equivalence (Proposition B.3.2), we can find a map

F ′ ∈ FunO⊗(T′,C⊗) compatible with F and A. Amalgamating F0 with the map determined by p′,

we obtain a map F ′′ ∈ FunO⊗(T′′,C⊗) where

T′′ = ((K ? ∂∆n)×O⊗ KO)
∐
T

T′ ⊆ T

To complete the proof, we wish to prove that F ′′ can be extended to a map F ∈ FunO⊗(T,C⊗).

Let T denote the fiber product T×K?∆n ∆n and let let T 0 = T ×KO
K0

O. The diagram K?∆n →
O⊗ determines a map ∆n → N(Fin∗), corresponding to a composable sequence of active morphisms

〈j + 1〉 → 〈1〉 ' 〈1〉 ' · · · ' 〈1〉.

Here 〈j〉 corresponds to the image of Y in N(Fin∗). Let J denote the fiber product category

[n] ×Fun({0},Fin∗) Fun([1],Fin∗). There is an evident forgetful functor T → N(J), whose second

projection is given by the composition

T ⊆ ∆n ×O⊗ KO → Fun(∆1,O⊗)→ N(Fun([1], J)).

We will say that a morphism α in J is active or inert if its image in Fin∗ is active or inert,

respectively; otherwise, we will say that α is neutral. Let σ be an m-simplex of N(J). We will say
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that σ is new if σ is nondegenerate, the map σ → ∆n is surjective, and the semi-inert morphism

〈j + 1〉 → 〈k0〉 given by the first vertex of σ is injective. Every such simplex determines a chain of

morphisms

〈k0〉
α(1)−→ 〈k1〉

α(2)−→ · · · α(m)−→ 〈km〉.

in the category Fin∗. We let Jσ denote the collection of integers j ∈ {1, . . . ,m} for which the map

α(j) is not an isomorphism. We will denote the cardinality of Jσ by l(σ) and refer to it as the

length of σ (note that this length is generally smaller than m). For 1 ≤ d ≤ l(σ), we let jσd denote

the dth element of Jσ and set ασd = α(jσd ). We will say that σ is closed if km = 1; otherwise we will

say that σ is open. As in the proof of assertion (2) (and the proof of Theorem 3.1.2.3), we partition

the new simplices of N(J) into eleven groups {G(i)}2≤i≤6, {G′(i)}1≤i≤6.

For each integer m ≥ 0, we let N(J)m denote the simplicial subset spanned by those simplices

which are either not new, have length ≤ m, or have length m and belong to one of the groups

G(i) for 2 ≤ i ≤ 6. Let T (m) denote the inverse image T ×N(J) N(J)m and let T(m) denote the

simplicial subset of T spanned by those simplices whose intersection with E belongs to E(m). Then

T(0) = T′′ is the domain of the map F ′′ = F ′′0 . We will complete the proof by extending F ′′0 to a

compatible sequence of maps F ′′m ∈ FunO⊗(T(m),C⊗).

Fix m > 0 and assume that F ′′m−1 has already been constructed. We define a filtration

N(J)m−1 = K(0) ⊆ K(1) ⊆ K(2) ⊆ K(3) ⊆ K(4) ⊆ K(5) ⊆ K(6) = N(J)m

as follows:

• We let K(1) denote the simplicial subset of N(J) spanned by those simplices which either

belong to K(0) or have length (m− 1) and belong to G′(1).

• For 2 ≤ i ≤ 6, we let K(i) be the simplicial subset of N(J) spanned by those simplices which

either belong to K(i− 1), have length m and belong to G(i), or have length m− 1 and belong

to G′(i).

For 0 ≤ i ≤ 6, we let K(i) denote the simplicial subset of E spanned by those simplices whose

intersection with E belongs to the inverse image of K(i). We will define maps f i : K(i)→ C⊗ with

f0 = F ′′m−1. We will explain how to construct f1 from f0; the remaining steps can be handled as

in our proof of part (2).

Assume that f0 = F ′′m−1 has been constructed; we wish to define f1. Let {σa}a∈A be the

collection of all simplices of E whose image in N(J) have length (m−1) and belong to G′(1). Choose

a well-ordering of the set A such that the dimensions of the simplices σa form a (nonstrictly)

increasing function of a. For each a ∈ A, let T≤a denote the simplicial subset of T spanned by those

simplices which either belong to K(0) or whose intersection with E is contained in σa′ for some

a′ ≤ a, and define T<a similarly. We construct a compatible family of maps f≤a ∈ FunO⊗(T≤a,C
⊗)

extending f0, using transfinite induction on a. Assume that f≤a
′

has been constructed for a′ < a;
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these maps can be amalgamated to obtain a map f<a ∈ FunO⊗(T<a,C
⊗). Let T = T×K?∆nK, and

let Z = T×TT/σa . Lemma 3.1.2.5 implies that we have a homotopy pushout diagram of simplicial

sets

Z ? ∂ σa //

��

T<a

��
Z ? σa // T≤a,

where the vertical maps are cofibrations. It will therefore suffice to extend the composition

g0 : Z ? ∂ σa → T<a
f<a→ C⊗

to a map g ∈ FunO⊗(Z ? σa,C
⊗).

Note that σa necessarily has positive dimension (since the map σa → ∆n is surjective). Let Z0

denote the simplicial subset of Z spanned by those vertices which correspond to diagrams σ/a → C⊗

which project to a sequence of active morphisms in N(Fin∗). The inclusion Z0 ⊆ Z admits a left

adjoint and is therefore left cofinal; it follows that the induced map

C⊗(Fm−1|Z)/ → C⊗(Fm−1|Z0)/×O⊗
(qFm−1|Z0)/

O⊗(qFm−1|Z)/

is a trivial Kan fibration. It therefore suffices to show that the restriction g′0 = g0|(Z0 ? ∂ σa) can

be extended to a map g′ ∈ FunO⊗(Z0 ? σa,C
⊗) . Let D denote the initial vertex of σ. In view of

Proposition 3.1.1.7, it will suffice to show that the restriction g′0|(Z0 ?{D}) is an operadic q-colimit

diagram. Since the inclusion {D} ⊆ σa is left anodyne, the projection map Z0 → Tact
/D = T×TT

act
/D

is a trivial Kan fibration. It will therefore suffice to show that Fm−1 induces an operadic q-colimit

diagram δ : (Tact
/D). → C⊗.

The object D ∈ T determines a semi-inert morphism γ : X⊕Y → Y ′ in O⊗. Since σa is new, the

underlying morphism in N(Fin∗) is injective, so that γ induces an equivalence Y ′ ' X⊕Y ⊕Y ′′, for

some Y ′′ ∈ O⊗. Let X denote the full subcategory of Tact
/D spanned by those objects corresponding

to diagrams

X0 ⊕ Y //

��

Y0

φ
��

X ⊕ Y // X ⊕ Y ⊕ Y ′′

where the active morphism φ exhibits Y0 as a sum Y ′0 ⊕ Y ′′0 , where Y ′0 → X is an active morphism

and Y ′′0 ' Y ⊕ Y ′′. The inclusion X ⊆ Tact
/D admits a left adjoint, and is therefore left cofinal.

Let D0 ∈ D = (K ? {0}) ×O⊗ KO be the object corresponding to idX . The operation • 7→
•⊕Y ⊕Y ′′ determines an equivalence of∞-categories Dact

/D0
→ X. It therefore suffices to show that

the composite map

(Dact
/D0

). → X. ⊆ (Tact
/D).

δ→ C⊗
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is an operadic q-colimit diagram. This composition can be identified with the map

(Dact
/D0

). −→ C⊗
A(Y⊕Y ′′)−→ C⊗,

which is an operadic q-colimit diagram by virtue of our assumption that p satisfies condition (∗).



Chapter 4

Associative Algebras and Their

Modules

Let C be a symmetric monoidal ∞-category. For any ∞-operad O⊗, we can consider the ∞-

category AlgO(C) of O-algebra objects of C (Definition 2.1.2.7), which we studied in Chapter 3.

In this chapter, we will specialize the general theory to obtain a notion of associative algebra in

C, which we study in depth. We begin in §4.1 by introducing the associative ∞-operad, which we

denote by Assoc⊗. By definition, an associative algebra object of a symmetric monoidal∞-category

C is a map of ∞-operads Assoc⊗ → C⊗.

Many basic facts about associative algebras can be deduced from the general formalism de-

veloped in Chapters 2 and 3. However, there are some facets of the theory which are special to

the associative case. For example, if A is an associative algebra object of a symmetric monoidal

∞-category C, then there is an associated theory of left modules over A (and a formally dual theory

of right modules over A). The collection of all left A-modules is naturally organized into an ∞-

category, which we denote by LModA(C). We will undertake a detailed study of this ∞-category

in §4.2.

If A is an associative algebra object of an ∞-category C, we can use the general formalism of

§3.3 to obtain a different notion of A-module: namely, an Assoc-module over A (see Definition

3.3.3.8). The collection of Assoc-modules over A form an ∞-category ModAssoc
A (C). There is a

forgetful functor ModAssoc
A (C) → LModA(C), which is usually not an equivalence of ∞-categories:

every object M ∈ ModAssoc
A (C) is equipped not only with a left action of the algebra A, but also

with a (commuting) right action of A. In §4.3, we will describe the situation formally by introducing

the notion of a bimodule object of C. For every pair of associative algebra objects A and B, we will

define an ∞-category ABModB(C), which is equipped with forgetful functors

LModA(C)← ABModB(C)→ RModB(C).

We will show that there is a canonical equivalence of ∞-categories θ : ModAssoc
A (C) ' ABModA(C)

449
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(Theorem 4.4.1.28). In fact, we will prove something a little stronger: under some mild hypotheses,

the functor θ is an equivalence of monoidal categories. Here the tensor product on ModAssoc
A (C) is

determined by the general formalism of Chapter 3, and the tensor product on ABModA(C) is given

as a special case of a more general relative tensor product

ABModB(C)× BBModC(C)→ ABModC(C)

which we will study in §4.4. In §4.6, we will use relative tensor products to develop a theory of

duality for bimodule objects of C.

Suppose now that A is a commutative algebra object of C. In this case, the general formalism

of Chapter 3 determines an ∞-category ModA(C) = ModComm
A (C) of Comm-modules over A. The

map of ∞-operads Assoc⊗ → Comm⊗ determines a forgetful functor ModA(C) → ModAssoc
A (C),

which fits into a commutative diagram

ModA(C)

  ��

��
ModAssoc

A (C)

∼
��

LModA(C) ABModA(C)oo // RModA(C).

In §4.5, we will show that the diagonal arrows in this diagram are categorical equivalences (Propo-

sition 4.5.1.4). In other words, if A is a commutative algebra object of C, then the ∞-categories

of left, right, and Comm modules over A are canonically equivalent. Under some mild hypotheses,

each of these ∞-categories admits a symmetric monoidal structure, given by the relative tensor

product over A (Theorem 4.5.2.1).

Let C be a monoidal category containing an object X. We say that X is right dualizable if there

exists another object X∨ (called the right dual of X) and a pair of maps

c : 1→ X ⊗X∨ e : X∨ ⊗X → 1

(where 1 denotes the unit object of C) for which the composite maps

X
c⊗id−→ X ⊗X∨ ⊗X id⊗e−→ X

X∨
id⊗c−→ X∨ ⊗X ⊗X∨ e⊗id−→ X∨

are the identity on X and X∨, respectively. If C is a monoidal ∞-category, then we say that

an object X ∈ C is right dualizable if it is right dualizable when regarded as an object of the

homotopy category hC. In §4.6, we will make a detailed study of duality in the setting of monoidal

∞-categories (and, more generally, duality for bimodule objects of monoidal ∞-categories).
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For any∞-category C, the∞-category of functors Fun(C,C) admits a monoidal structure (given

by composition of functors). For every algebra object T ∈ Alg(Fun(C,C)), one can consider an ∞-

category LModT (C) of left T -modules in C. This ∞-category is related to C by a pair of adjoint

functors

C
F //LModT (C).
G
oo

We will say that an adjunction is monadic if it is of this form. In §4.7, we will prove an∞-categorical

version of the Barr-Beck monadicity theorem, which gives necessary and sufficient conditions for

an arbitrary adjunction

C
F //D
G
oo

to be monadic.

Let C be a monoidal∞-category, which we will regard as an associative algebra object of Cat∞.

For every associative algebra object A ∈ Alg(C), the ∞-category RModA(C) of right A-modules

can be regarded as a left C-module in Cat∞. In §4.8, we make a detailed study of the construction

Alg(C)→ LModC(Cat∞)

A 7→ RModA(C),

which will play an important role in our analysis of the little cubes ∞-operads E⊗k of Chapter 5.

4.1 Associative Algebras

Recall that an H-space is a pointed topological space (X, e) equipped with a multiplication map

m : X ×X → X for which the composite maps

X ' X × {e} ↪→ X ×X m−→ X

X ' {e} ×X ↪→ X ×X m−→ X

are both homotopic to the identity. We say that the H-space (X, e) is homotopy associative if the

diagram of topological spaces

X ×X ×X m×id //

id×m
��

X ×X
m
��

X ×X m // X

commutes up to homotopy. In other words, a homotopy H-space X is a monoid in the homotopy

category hS of spaces.

Example 4.1.0.1. Let X be a topological monoid with identity element e ∈ X. Then the multi-

plication map m : X ×X → X exhibits (X, e) as a homotopy associative H-space (in this case, the

associativity and unit laws hold on the nose, rather than merely up to homotopy).
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Example 4.1.0.2. Let (Y, y) be a pointed topological space, and let

X = ΩY = {p ∈ HomTop([0, 1], Y ) : p(0) = y = p(1)}

be the based loop space of Y . Then X can be regarded as an H-space, with base point given by

the constant loop e : [0, 1]→ {y} ↪→ Y and multiplication m : X ×X → X given by concatenation

of loops, described by the formula

m(p, q)(t) =

{
p(2t) if 0 ≤ t ≤ 1

2

q(2t− 1) if 1
2 ≤ t ≤ 1.

We now ask to what extent Examples 4.1.0.1 and 4.1.0.2 are representative of H-spaces in

general:

Question 4.1.0.3. Let X be a homotopy associative H-space. Under what circumstances does

there exist a (weak) homotopy equivalence of H-spaces X ' X ′, where X ′ is a topological monoid?

In other words, when can a monoid in the homotopy category hS be promoted to a monoid in the

category of topological spaces?

Question 4.1.0.4. Let X be a homotopy associative H-space. Under what circumstances does

there exist a (weak) homotopy equivalence of H-spaces X ' ΩY , for some (pointed) topological

space Y ? In other words, when does X admit a delooping?

Remark 4.1.0.5. Questions 4.1.0.3 and 4.1.0.4 are essentially the same. If (Y, y) is a pointed

topological space, then the base loop space ΩY is homotopy equivalent to the space of Moore loops

Ω′Y = {(p, t) : t ∈ R≥0, p ∈ HomTop([0, t], Y ), p(0) = y = p(t)},

which admits a strictly associative multiplication. Conversely, if X is a topological monoid for

which the set of path components π0X forms a group, then X is weakly homotopy equivalent to

the loop space ΩBX, where BX is the classifying space of X (see Theorem 5.2.6.10). In particular,

Questions 4.1.0.3 and 4.1.0.4 have the same answer when X is assumed to be path-connected.

Question 4.1.0.4 was addressed by Stasheff in [140], at least for path-connected spaces. To

describe his answer, it is convenient to introduce a bit of notation. Let X be an H-space with

multiplication m2 : X × X → X. Then X is homotopy-associative if and only if there exists a

continuous map m3 : [0, 1]×X3 → X satisfying the identities

m3(0, x, y, z) = m2(m2(x, y), z) m3(1, x, y, z) = m2(x,m2(y, z)).

Stasheff proved that a path-connected H-space X admits a delooping if and only if m2 can be

extended to an infinite hierarchy of continuous maps mn : Kn ×Xn → X for which the restriction

of each mn to ∂ Kn × Xn satisfies an analogue of the preceding identities, where Kn is a certain
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(n − 2)-dimensional polytope known as the Stasheff associahedron (though these polytopes were

actually introduced earlier by Tamari in [143]), which is abstractly homeomorphic to a closed disk

Dn−2. In this case, we refer to the datum (X, {mn}n≥2) as an A∞-space.

In this section, we will reformulate some of Stasheff’s ideas using the language of ∞-operads,

and explain how they can be used to address some variants of Question 4.1.0.3. Recall that if C is

a monoidal category, then an associative algebra objects of C is an object A ∈ C equipped with a

unit map e : 1→ A and a multiplication map m : A×A→ A such that the diagrams

1⊗A

""

e⊗id // A⊗A

m
{{

A⊗ 1
id⊗e ////

""

A⊗A

m
{{

A A

A⊗A⊗A m⊗id //

id⊗m
��

A⊗A
m
��

A⊗A m // A

commute. In §4.1.1, we apply the formalism of ∞-operads to introduce the notion of a monoidal

∞-category (Definition 4.1.1.10), and associate to each monoidal∞-category C another∞-category

Alg(C) of associative algebra objects of C (Definition 4.1.1.6) and an∞-category Algnu(C) of nonuni-

tal associative algebra objects of C (Variant 4.1.1.9).

We can then ask the following:

Question 4.1.0.6. Let C be a monoidal∞-category and let A be a (nonunital) associative algebra

object of the homotopy category hC. Under what circumstances can A be lifted to a (nonunital)

associative algebra object of C?

The bulk of this section is devoted to answering Question 4.1.0.6 in the nonunital case. We begin

in §4.1.2 by introducing an ∞-category Algnu
A∞(C) of nonunital A∞-algebra object of C (Definition

4.1.3.20) and constructing an equivalence of ∞-categories Algnu(C) → Algnu
A∞(C). In §4.1.4, we

show that the ∞-category Algnu
A∞(C) of nonunital A∞-algebras can be realized as the inverse limit

of a tower

· · · → Algnu
A4

(C)→ Algnu
A3

(C)→ Algnu
A2

(C)→ Algnu
A1

(C) = C,

where Algnu
An(C) is the ∞-category of nonunital An-algebras of C (Definition 4.1.4.2). In §4.1.5 and

§4.1.6, we show that the problem of lifting a nonunital An−1-algebra object A ∈ C to a nonunital

An-algebra object of C is equivalent to solving a lifting problem

∂ Kn

''��
Kn

//MapC(A⊗n, A),
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where Kn is a certain simplicial incarnation of the Stasheff associahedron (see Corollary 4.1.6.9).

Remark 4.1.0.7. In this section, we will consider only the nonunital version of Question 4.1.0.6.

However, we will later see that the unital case follows from this: if A is an associative algebra of

the homotopy category hC, then the problem of lifting A to an associative algebra object of C is

equivalent to the problem of lifting A to a nonunital associative algebra object of C (see Corollary

5.4.3.6).

Note that Question 4.1.0.6 is not really a generalization of Question 4.1.0.3: the latter is con-

cerned with the problem of lifting associative algebras in the homotopy category hS to the category

of topological spaces, while the former only addresses the problem of lifting associative algebras

from the homotopy category hS to the ∞-category S. To bridge the gap, we need to know when

associative algebras in the ∞-category S can be lifted to associative algebras in the ordinary cate-

gory Top of topological spaces (that is, topological monoids). In §4.1.7, we will place this problem

in a slightly larger context by showing that if A is a monoidal model category and C = A[W−1]

is its underlying ∞-category (obtained by formally inverting the weak equivalences in A), then C

inherits the structure of a monoidal ∞-category (Example 4.1.7.6). We can then ask the following:

Question 4.1.0.8. Let A be a monoidal model category and let C = A[W−1] be its underlying

∞-category. Under what conditions can associative algebras in the ∞-category C be lifted to

associative algebra objects of A?

Question 4.1.0.8 is a prototypical example of a rectification problem: an associative algebra

object of A[W−1] can be viewed as an object A ∈ A equipped with a multiplication which is

associative “up to coherent homotopy,” and we wish to know if we can replace A by a weakly

equivalent object A′ ∈ A equipped with a multiplication which is associative “on the nose.” In

§4.1.8 we will address Question 4.1.0.8 by showing that, under some mild assumptions, the category

of associative algebras Alg(A) inherits a model structure (Proposition 4.1.8.3) whose underlying

∞-category can be identified with Alg(C) (Theorem 4.1.8.4).

Warning 4.1.0.9. The results of §4.1.8 cannot be applied directly to Question 4.1.0.3, because

our rectification theorem (Theorem 4.1.8.4) requires some hypotheses which are not satisfied by

the category of topological spaces. However, the hypotheses of Theorem 4.1.8.4 are satisfied by

the category Set∆ of simplicial sets. Consequently, one can apply Theorem 4.1.8.4 to show that

every associative algebra object of the∞-category S arises from an associative algebra object of the

ordinary category Set∆: that is, from a simplicial monoid M•. Passing to the geometric realization

|M•|, we can then obtain a monoid in the category of (compactly generated) topological spaces.

4.1.1 The Associative ∞-Operad

As a first step towards building an ∞-categorical theory of associative algebras, let us recast the

classical theory of associative algebras in the language of operads.
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Definition 4.1.1.1. We define a colored operad Assoc (see Definition 2.1.1.1) as follows:

• The colored operad Assoc has a single object, which we will denote by a.

• For every finite set I, the set of operations MulAssoc({a}i∈I , a) is the set of linear orderings

on I.

• Suppose we are given a map of finite sets α : I → J together with operations �j∈
MulAssoc({a}α(i)=j , a) and ψ ∈ MulAssoc({a}j∈J , a). We will identify each φj with a linear

ordering �j on the set α−1{j} and ψ with a linear ordering �′ on the set J . The composition

of ψ with {φj} corresponds to the linear ordering � on the set I which is defined as follows:

i ≤ i′ if either α(i) ≺′ α(i′) or α(i) = j = α(i′) and i �j i′.

We will refer to Assoc as the associative operad.

Remark 4.1.1.2. Let C be a symmetric monoidal category, and let F : Assoc → C be a map

of colored operads. Then F (a) is an object A ∈ C. Given any linear ordering of a finite set I,

the corresponding element of MulAssoc({a}i∈I , a) determines a map A⊗I → A in C. In particular,

taking I to be empty, we obtain a map u : 1 → A (where 1 denotes the unit object of C), and

taking I = {1, 2} (with its usual ordering) we obtain a map m : A ⊗ A → A. It is not difficult to

see that these maps exhibit A as an associative algebra in C. Conversely, if A is any associative

algebra in C, then we can associate to every finite linearly ordered set I a map A⊗I → A; this

construction determines a map of colored operads Assoc → C. We can informally summarize the

above discussion by saying that the theory of associative algebras is controlled by the colored operad

Assoc.

Definition 4.1.1.3. We let Assoc⊗ denote the category obtained by applying Construction 2.1.1.7

to the colored operad Assoc, and Assoc⊗ denote the∞-operad N(Assoc⊗) (see Example 2.1.1.21).

We will refer to Assoc⊗ as the associative ∞-operad.

Remark 4.1.1.4. Unwinding the definitions, we can describe the category Assoc⊗ as follows:

• The objects of Assoc⊗ are the objects of Fin∗.

• Given a pair of objects 〈m〉, 〈n〉 ∈ Fin∗, a morphism from 〈m〉 to 〈n〉 in Assoc⊗ consists of

a pair (α, {�i}1≤i≤n), where α : 〈m〉 → 〈n〉 is a map of pointed finite sets and �i is a linear

ordering on the inverse image f−1{i} ⊆ 〈m〉 for 1 ≤ i ≤ n.

• The composition of a pair of morphisms

(f, {�i}1≤i≤n) : 〈m〉 → 〈n〉 (g, {�′j}1≤j≤p) : 〈n〉 → 〈p〉

is the pair (g ◦ f, {�′′j }1≤j≤p), where each ≤′′j is the lexicographical ordering characterized by

the property that for a, b ∈ 〈m〉◦ such that (g ◦ f)(a) = (g ◦ f)(b) = j, we have a �′′j b if and

only if f(a) �′j f(b) and a �i b if f(a) = f(b) = i.
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Remark 4.1.1.5. Following the conventions of Chapter 2, we let Assoc denote the fiber product

Assoc⊗×N(Fin∗){〈1〉}.

As a simplicial set, Assoc is isomorphic to the 0-simplex ∆0. However, the notation Assoc empha-

sizes the role of this simplicial set as the underlying ∞-category for the ∞-operad Assoc⊗.

Definition 4.1.1.6. Let C⊗ be an ∞-operad equipped with a fibration q : C⊗ → Assoc⊗. We let

Alg(C) denote the ∞-category Alg/Assoc(C) of ∞-operad sections of q. We will refer to Alg(C) as

the ∞-category of associative algebra objects of C.

Remark 4.1.1.7. The colored operad Assoc is equipped with a canonical involution σ, which

carries the unique object a ∈ Assoc to itself and carries an operation φ ∈ MulAssoc({a}i∈I , a)

corresponding to a linear order � on I to the operation φσ which corresponds to the opposite

ordering �. This involution σ induces an involution on the ∞-operad Assoc⊗.

If C⊗ → Assoc⊗ is a fibration of ∞-operads, then the composite map C⊗ → Assoc⊗
σ→ Assoc⊗

is another fibration ∞-operads. We will denote this composite fibration by C⊗rev → Assoc⊗, and

refer to C⊗rev as the reverse of C⊗. Note that C⊗rev is canonically isomorphic to C⊗ as an ∞-operad,

but is equipped with a different structural morphism to Assoc⊗. Note that precomposition with σ

induces an isomorphism Alg(C) ' Alg(Crev). If A ∈ Alg(C), we will denote to the image of A under

this isomorphism by Arev, and refer to it as the opposite algebra of A.

If D⊗ is an ∞-operad and we define C⊗ to be the fiber product D⊗×Comm⊗ Assoc⊗, then there

is a canonical isomorphism C⊗rev ' C⊗. It follows that passage to the opposite algebra can be

regarded as a functor from the ∞-category Alg/Assoc(C) = AlgAssoc(D) to itself.

Notation 4.1.1.8. Let C⊗ be a generalized ∞-operad. We let Alg(C) denote the ∞-category

AlgAssoc(C) of Assoc-algebra objects of C. If C⊗ is an∞-operad, then Alg(C) can be identified with

Alg(D), where D⊗ ' C⊗×N(Fin∗) Assoc⊗.

Beware that this notation is potentially confusing: if C⊗ is already equipped with a fibration of

∞-operads q : C⊗ → Assoc⊗, then the notation Alg(C) has two different meanings, depending on

whether we regard C⊗ as an∞-operad over Assoc⊗ (as in Definition 4.1.1.6), or ignore q and regard

C⊗ as an abstract∞-operad. However, the ambiguity is slight: the∞-category AlgAssoc(Assoc) has

only two objects, corresponding to the identity map Assoc⊗ → Assoc⊗ and the reversal involution

of Remark 4.1.1.7. Consequently, if C⊗ → Assoc⊗ is a fibration of ∞-operads, then we have a

canonical isomorphism

AlgAssoc(C) ' Alg/Assoc(C)qAlg/Assoc(Crev).

Variant 4.1.1.9 (Nonunital Associative Algebras). Let Comm⊗nu denote the nonunital commutative

∞-operad: that is, the subcategory of N(Fin∗) whose morphisms are given by surjective maps

〈m〉 → 〈n〉 of pointed finite sets (see Definition 5.4.4.1). We let Assoc⊗nu denote the fiber product
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Comm⊗nu×Comm⊗ Assoc⊗; we will refer to Assoc⊗nu as the nonunital associative ∞-operad. Given a

fibration of ∞-operads C⊗ → Assoc⊗, we let Algnu(C) denote the ∞-category AlgAssocnu /Assoc(C);

we will refer to Algnu(C) as the ∞-category of nonunital associative algebra objects of C.

Definition 4.1.1.10. A monoidal ∞-category is a coCartesian fibration of ∞-operads C⊗ →
Assoc⊗.

Remark 4.1.1.11. In the situation of Definition 4.1.1.10, we will often abuse terminology by

referring to C⊗ or the fiber C = C⊗×Assoc⊗{〈1〉} as a monoidal ∞-category.

Remark 4.1.1.12. Let C⊗ → Assoc⊗ be a monoidal ∞-category. For each n ≥ 0, the fiber

C⊗〈n〉 ' C⊗×Assoc⊗{〈n〉} is canonically equivalent to Cn. For every choice of linear ordering on the

set {1, . . . , n}, the corresponding map 〈n〉 → 〈1〉 in Assoc⊗ induces a functor Cn → C. In particular,

taking n = 0 we obtain an object 1 ∈ C, which we call the unit object, and taking n = 2 (and

the ordering on {1, 2} to be the standard ordering) we obtain a functor ⊗ : C×C → C. It is not

difficult to see that the tensor product ⊗ is associative (with unit 1) up to homotopy; in particular,

the homotopy category hC inherits a monoidal structure (in the usual sense).

Remark 4.1.1.13. Let C be a monoidal ∞-category. Evaluation on the object a ∈ Assoc⊗ deter-

mines a forgetful functor θ : Alg(C) → C. We will often abuse notation by identifying an algebra

object A ∈ Alg(C) with its image θ(A) ∈ C. For each n ≥ 0, every choice of ordering on the set

{1, . . . , n} determines an active morphism {a}1≤i≤n → a in Assoc⊗, which induces a morphism

θ(A)⊗n → θ(A) in C. In particular, taking n = 2 and the standard ordering of the set {1, 2}, we

obtain a multiplication m : θ(A) ⊗ θ(A) → θ(A). It is not difficult to see that this multiplication

map is associative and unital up to homotopy; in particular, it endows θ(A) with the structure of

an associative algebra object of the monoidal category hC.

Proposition 4.1.1.14. Let p : C⊗ → N(Fin∗) be an ∞-operad. Then C⊗ is a symmetric monoidal

∞-category if and only if the induced map p′ : Assoc⊗×N(Fin∗) C
⊗ → Assoc⊗ is a monoidal ∞-

category.

Proof. The “only if” direction is obvious. For the converse, suppose that p′ is a coCartesian

fibration; we wish to prove that p is a coCartesian fibration. According to Corollary HTT.2.4.2.10 ,

it will suffice to show that for every 2-simplex σ : ∆2 → N(Fin∗), the pullback map ∆2×N(Fin∗)C
⊗ →

∆2 is a coCartesian fibration. Since p′ is a coCartesian fibration, it will suffice to show that σ factors

through Assoc⊗. This is clear: if σ corresponds to a pair of maps 〈l〉 α→ 〈m〉 β→ 〈n〉, then a lifting

of σ is determined by a choice of linear ordering on each of the fibers α−1{i} and each of the fibers

β−1{j}.

Definition 4.1.1.15. Let C be a monoidal∞-category. We will say that C is left closed if, for each

C ∈ C, the functor D 7→ C ⊗D admits a right adjoint. Similarly, we will say that C is right closed

if, for each C ∈ C, the functor D 7→ D⊗C admits a right adjoint. We will say that C is closed if it

is both left closed and right closed.
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Remark 4.1.1.16. In view of Proposition HTT.5.2.2.12 , the condition that a monoidal∞-category

C be closed can be checked at the level of the (H-enriched) homotopy category of C, with its induced

monoidal structure. More precisely, C is right closed if and only if, for every pair of objects C,D ∈ C,

there exists another object DC and a map DC ⊗C → D with the following universal property: for

every E ∈ C, the induced map MapC(E,DC) → MapC(E ⊗ C,D) is a homotopy equivalence. In

this case, the construction D 7→ DC determines a right adjoint to the functor E 7→ E ⊗ C.

Remark 4.1.1.17. Let C monoidal ∞-category. We say that an object C ∈ C is invertible if it

is an invertible object of the homotopy category hC: that is, if there exists an object D ∈ C and

equivalences

C ⊗D ' 1C ' D ⊗ C.

Let C0 ⊆ C denote the full subcategory spanned by the invertible objects. It is easy to see that

the hypotheses of Proposition 2.2.1.1 are satisfied, so that C0 inherits the structure of a monoidal

∞-category.

Recall that if V is a vector space over a field k, then the free associative k-algebra generated by

V can be identified with the tensor algebra
⊕

n≥0 V
⊗n. Using the results of §3.1, we can obtain an

analogous description of free associative algebras in a general monoidal ∞-category C. Note that

the ∞-category Assoc has a unique object a, and that the spaces P(n) appearing in Construction

3.1.3.9 are contractible. It follows that for each C ∈ C, the objects Symn
Assoc(C) are automatically

well-defined and given by the tensor power C⊗n. Applying Proposition 3.1.3.13 to this situation,

we obtain:

Proposition 4.1.1.18. Let C be a monoidal ∞-category. Assume that C admits countable colimits

and that the tensor product C×C → C preserves countable colimits separately in each variable.

Then:

(1) The forgetful functor θ : Alg(C)→ C admits a left adjoint Fr.

(2) Given an object A ∈ Alg(C) and a morphism u : C → θ(A) in the ∞-category C, the following

conditions are equivalent:

– The map u determines an equivalence Fr(C)→ A in the ∞-category Alg(C).

– The maps

C⊗n
u⊗n−−→ θ(A)⊗n → θ(A)

exhibit θ(A) as a coproduct of the collection of tensor powers {C⊗}n≥0 in the∞-category

C.

Remark 4.1.1.19. In the statement of Proposition 4.1.1.18, it is sufficient to assume that C

admits countable coproducts (and that the tensor product functor C×C → C preserves countable

coproducts separately in each variable), rather than arbitrary countable colimits.
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We close this section with the following technical observation:

Proposition 4.1.1.20. The ∞-operad Assoc⊗ is coherent (in the sense of Definition 3.3.1.9).

It follows from Proposition 4.1.1.20 that to every associative algebra object A of a monoidal

∞-category C, we can associate an ∞-category of modules ModAssoc
A (C). In §4.4, we will show that

the objects of ModAssoc
A (C) can be understood as A-A bimodule objects of C (Theorem 4.4.1.28).

Proof of Proposition 4.1.1.20. It is easy to see that the final object 〈0〉 of Assoc⊗ is also initial,

since the empty set admits a unique linear ordering. Consequently, the∞-operad Assoc⊗ is unital.

The underlying ∞-category Assoc ' ∆0 is obviously a Kan complex. To complete the proof, we

must show that Assoc⊗ satisfies condition (3) of Definition 3.3.1.9. To prove this, we need to

introduce a bit of notation. For every linearly ordered set, let C(S) denote the set of all pairs

(S−, S+), where where S− and S+ are subsets of S having the property that S = S−∪S+ and s < t

whenever s ∈ S−, t ∈ S+. Let f : 〈m〉 → 〈n〉 be an active morphism in Assoc⊗, corresponding to a

map of sets f : 〈m〉◦ → 〈n〉◦ and a linear ordering on each fiber f−1{i}, 1 ≤ i ≤ n. Unwinding the

definitions, we deduce that the space of extensions Ext(f) (defined in §3.3.1) is homotopy equivalent

to the disjoint union
∐

1≤i≤nC(f−1{i}) (regarded as a discrete simplicial set).

To complete the proof that the ∞-operad Assoc⊗ is coherent, it will suffice to show that for

every pair of active morphisms f : 〈m〉 → 〈n〉 and g : 〈n〉 → 〈1〉 in Assoc⊗, the diagram

Ext(idY ) //

��

Ext(g)

��
Ext(f) // Ext(gf)

is a homotopy pushout square (see Remark 3.3.1.11). The map g determines a linear ordering

on 〈n〉◦ and the composition gf determines a linear ordering on 〈m〉◦. Applying a permutation

if necessary, we may assume that the linear ordering on 〈n〉◦ = {1, 2, . . . , n} is the usual one.

Unwinding the definitions, we must show that the diagram

∐
1≤j≤nC({j}) β //

��

C(〈n〉◦)

α

��∐
1≤j≤nC(f−1{j}) γ // C(〈m〉◦)

is a homotopy pushout square (of Kan complexes).

Fix an element of C(〈m〉◦), corresponding to a decomposition 〈m〉◦ = S−∪S+; we wish to show

that the homotopy pushout of the diagram of sets

α−1{(S−, S+)} ← β−1α−1{(S−, S+)} → γ−1{(S−, S+)}
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is weakly contractible. If f(S−) ∩ f(S+) is nonempty, then the sets α−1{(S−, S+)} and

β−1α−1{(S−, S+)} are empty and γ−1{(S−, S+)} has a single element, so the desired result

is obvious. Let us therefore assume that f(S−) ∩ f(S+) = ∅. Let

T = {t ∈ 〈n〉◦ : (∀s ∈ S−)[f(s) < t] ∧ (∀s ∈ S+)[t < f(s)]},

Then f−1{t} = ∅ for all t ∈ T ; unwinding the definitions, we wish to show that the the homotopy

pushout of the diagram

C(T )←
∐
t∈T

C({t})→ T

is weakly contractible, which follows by inspection.

4.1.2 Monoid Objects of ∞-Categories

Let C be a category which admits finite products. A monoid object of C is an object M ∈ C, which

is equipped with maps

e : ∗ →M m : M ×M →M

for which the diagrams

∗ ×M

##

e×id //M ×M

m
zz

M × ∗ id×e ////

##

M ×M

m
zz

M M

M ×M ×M m×id //

id⊗m
��

M ×M
m
��

M ⊗M m //M

commute.

Remark 4.1.2.1. Using Yoneda’s lemma, one can identify monoid objects of C with contravariant

functors from C to the category of monoids, having the property that the underlying functor

Cop → Set is representable by an object M ∈ C.

Example 4.1.2.2. Let C = Set be the category of sets. Then a monoid object of C is simply a

monoid: that is, a set M equipped with an identity element e ∈M and a multiplication map

M ×M →M (x, y) 7→ xy

satisfying the identities xe = x = xe and (xy)z = x(yz) for all x, y, z ∈ M . Note that the element

e is then uniquely determined.
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Remark 4.1.2.3. Let M be a monoid. Then we can associate to M a category DM having a single

object E, with HomDM (E,E) = M and composition of morphisms given by the multiplication law

on M . This construction determines an equivalence of categories

{Monoids} ' {Categories with a single (specified) object}.

Construction 4.1.2.4 (The Milnor Construction). Let M be a monoid and let DM be the category

described in Remark 4.1.2.3. We let BM denote the nerve N(DM ) of the category DM . We will

refer to BM as the classifying space of M (beware, however, that it is only a Kan complex when

M is a group). Concretely, the set of n-simplices of BM can be identified with an n-fold product

of M with itself, and the face and degeneracy maps on BM encode the multiplication and unit

operations on M . The functor M 7→ BM determines a fully faithful embedding from the category

of monoids to the category of simplicial sets. Moreover, a simplicial set X (viewed as a functor

∆op → Set) is isomorphic to the classifying space of a monoid if and only if, for each n ≥ 0, the

“Segal map”

X([n])→ X({0, 1})× . . .×X({n− 1, n}) = X([1])n

is a bijection. In this case, the underlying monoid is given by X([1]), with unit element given

by the image of the degeneracy map X([0]) → X([1]) and multiplication given by the face map

X([1])×X([1]) ' X([2])
d1→ X([1]).

Now suppose that C is an arbitrary category which admits finite products. Using Remark 4.1.2.1

and Construction 4.1.2.4, we can identify monoid objects of C with certain simplicial objects of C.

This suggests one way of extending the theory of monoids to the ∞-categorical setting:

Definition 4.1.2.5. Let C be an ∞-category. A monoid object of C is a simplicial object X :

N(∆op)→ C with the property that, for each n ≥ 0, the collection of face maps

{X([n])→ X({i− 1, i})}1≤i≤n

exhibits X([n]) as a product X({0, 1}) × . . . × X({n − 1, n}). We let Mon(C) denote the full

subcategory of Fun(N(∆op),C) spanned by the monoid objects of C.

Remark 4.1.2.6. Let X be a monoid object of an ∞-category C. We will sometimes abuse

terminology and refer to X([1]) ∈ C as a monoid object of C; note that X([1]) “controls” the

values X on any object of the simplex category ∆op by virtue of the fact that there are canonical

equivalences X([n]) ' X([1])n (note however that the object X([1]) does not determine the value

of the functor X on morphisms of ∆op: these values encode a “multiplication law” on the object

X([1])).

Example 4.1.2.7. Let C be an ∞-category. Every group object of C (in the sense of Definition

HTT.7.2.2.1 ) is a monoid object of C.
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Recall that in §2.4.2 we introduced the notion of a O-monoid object of an ∞-category C, where

O⊗ is an arbitrary ∞-operad (Definition 2.4.2.1). Specializing to the case where O⊗ = Assoc⊗ is

the associative∞-operad of Definition 4.1.1.3, this yields another candidate for a higher-categorical

theory of monoids, which is a priori different from the theory supplied by Definition 4.1.2.5. Our

goal in this section is to show that these definitions are essentially equivalent. More precisely, we will

show that for any ∞-category C, there is a canonical equivalence of ∞-categories MonAssoc(C) →
Mon(C) (Proposition 4.1.2.10).

Warning 4.1.2.8. The comparison map MonAssoc(C) → Mon(C) of Proposition 4.1.2.10 is an

equivalence of ∞-categories but is generally not an isomorphism of simplicial sets. Consequently,

there are reasons one might prefer one of these ∞-categories to the other:

• At a heuristic level, objects of the ∞-categories MonAssoc(C) and Mon(C) encode the same

information: namely, an object M ∈ C equipped with a multiplication map M ×M → M

which is unital and associative up to coherent homotopy. However, the ∞-category Mon(C)

encodes this information in a more efficient way, since the category ∆ is somewhat “smaller”

than the category Assoc⊗ of Definition 4.1.1.3.

• The ∞-category MonAssoc(C) appears as a special case of a construction which makes sense

for any ∞-operad, and is therefore useful if we wish to compare the theory of monoids with

some of its variants (like the theory of commutative monoids).

To relate the ∞-categories Mon(C) and MonAssoc(C), we need to relate the simplex category

∆ to the category Assoc⊗ of Definition 4.1.1.3. Here it is useful to think of the simplex category

∆ in its “dual” incarnation, as the opposite of the category whose objects are the linearly ordered

sets {−∞ < 1 < 2 < · · · < n < ∞} and and whose morphisms are nondecreasing functions which

preserve the endpoints ±∞. We can then extract a finite pointed set by identifying the endpoints.

More formally, we have the following:

Construction 4.1.2.9. Let ∆ denote the category of combinatorial simplices. Given an object

[n] ∈ ∆, we define a cut in [n] to be an equivalence relation on [n] with at most two equivalence

classes, each of which is a convex subset of [n]. The collection of all cuts in [n] forms a set Cut([n]).

There is a canonical bijection 〈n〉 ' Cut([n]), which carries the base point ∗ ∈ 〈n〉 to the trivial

equivalence relation on [n] (that is, the equivalence relation with only one equivalence class) and

an element i ∈ 〈n〉◦ to the equivalence relation given by the partition [n] = {0, . . . , i− 1} ∪ {i, i+

1, . . . , n}.
We can regard the construction [n] 7→ Cut([n]) as a functor Cut : ∆op → Assoc⊗, where

Assoc⊗ is the functor defined in Definition 4.1.1.3. Namely, if we are given a map α : [m] → [n]

in ∆, then there is an induced map α′ : Cut([n]) → Cut([m]), which obviously preserves base

points. Moreover, if x ∈ Cut([m]) is an equivalence relation with two equivalence classes, then

every element of α′−1(x) corresponds to a decomposition [n] = S ∪ T of [n] into nonempty subsets
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S, T ⊆ [n] such that s < t for s ∈ S, t ∈ T . We therefore obtain a linear ordering on α′−1(x), with

(S, T ) ≤ (S′, T ′) if S ⊆ S′.
In more explicit terms, the functor Cut : ∆op → Assoc⊗ can be described as follows:

(1) For each n ≥ 0, we have Cut([n]) = 〈n〉.

(2) Given a morphism α : [n]→ [m] in ∆, the associated morphism Cut(α) : 〈m〉 → 〈n〉 is given

by the formula

Cut(α)(i) =

{
j if (∃j)[α(j − 1) < i ≤ α(j)]

∗ otherwise.

where we endow each Cut(α)−1{j} with the linear ordering induced by its inclusion into 〈n〉◦.

The functor Cut induces a map of simplicial sets N(∆)op → N(Assoc⊗) = Assoc⊗, which we will

also denote by Cut.

We can now formulate the relationship between Definition 4.1.2.5 and Definition 2.4.2.1 more

precisely:

Proposition 4.1.2.10. For every ∞-category C which admits finite products, composition with the

functor Cut : N(∆)op → Assoc⊗ of Construction 4.1.2.9 induces an equivalence of ∞-categories

θ : MonAssoc(C)→ Mon(C).

We will deduce Proposition 4.1.2.10 from the following assertion:

Proposition 4.1.2.11. The functor Cut : N(∆op)→ Assoc⊗ is an approximation to the ∞-operad

Assoc⊗ (see Definition 2.3.3.6).

Proof. We define a category ∆
op

as follows: the objects of ∆
op

are triples ([n], 〈m〉, α) where

[n] ∈ ∆op, 〈m〉 ∈ Assoc⊗, and α : Cut([n]) ' 〈m〉 is an isomorphism in Assoc⊗ (the existence of

which implies that m = n). The construction [n] 7→ ([n],Cut([n]), id) determines an equivalence of

categories ∆op →∆
op

, and the construction ([n], 〈m〉, α) 7→ 〈m〉 determines a categorical fibration

θ : N(∆)op → Assoc⊗. We will show that θ is approximation to Assoc⊗.

Let θ0 denote the composite map N(∆)op θ→ Assoc⊗ → N(Fin∗). Note that the fiber θ−1
0 {〈1〉} is

isomorphic to ∆0; in particular, it contains a single vertex ([1], 〈1〉, id). For every object ([n], 〈m〉, α)

in N(∆)op, the map

Hom∆([1], [n]) ' Hom∆
op(([n], 〈m〉, α), ([1], 〈1〉, id))→ HomFin∗(〈m〉, 〈1〉)

is injective. It follows that every morphism ([n], 〈m〉, α) → ([1], 〈1〉, id) in N(∆)op is locally θ0-

coCartesian. Moreover, for each 1 ≤ i ≤ m, there is a unique morphism ([n], 〈m〉, α)→ ([1], 〈1〉, id)

covering the map ρi : 〈m〉 → 〈1〉, which induces the map of linearly ordered sets [1] ' {α−1(i) −
1, α−1(i)} ⊆ [n]. It follows that condition (1) of Definition 2.3.3.6 is satisfied.
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To verify condition (2) of Definition 2.3.3.6, let us suppose we are given an object ([m], 〈m〉, α)

of the ∞-category N(∆)op together with an active morphism β : 〈m′〉 → 〈m〉 in Assoc⊗; we wish

to show that β can be lifted to a θ-Cartesian morphism β in N(∆)op. Permuting the elements

of 〈m〉◦ if necessary, we may suppose that α = id. For 1 ≤ i ≤ m, let ki be the cardinality

of β−1{i}. Permuting the elements of 〈m′〉◦ if necessary, we may assume that β−1{i} = {k1 +

· · · + ki−1 + 1, k1 + · · · + ki−1 + 2, . . . , k1 + · · · + ki−1 + ki} equipped with its usual ordering. In

this case, the map of linearly ordered sets [m] → [m′] given by i 7→ k1 + · · · + ki determines a

map β : ([m′], 〈m′〉, id) → ([m], 〈m〉, id) lifting the map β. A simple calculation shows that β is

θ-Cartesian.

Proof of Proposition 4.1.2.10. Let Cut : N(∆op)→ Assoc⊗ be the functor of Construction 4.1.2.9.

The proof of Proposition 4.1.2.11 shows that the morphisms αi : E → Ei appearing in condition

(∗) of Definition 2.4.2.8 are precisely those morphisms of N(∆op) which correspond to inclusions

[1] ' {i, i + 1} ↪→ [n] in the category ∆. It follows that for any ∞-category C, the ∞-categories

Mon(C) and MonN(∆op)(C) coincide (as full subcategories of Fun(N(∆op),C), where MonN(∆op)(C)

is as in Definition 2.4.2.8. It will therefore suffice to show that composition with the functor Cut

induces an equivalence of ∞-categories

MonAssoc(C)→ MonN(∆op)(C),

which follows immediately from Propositions 4.1.2.11 and 2.4.2.11.

We close this section by establishing a nonunital companion to Proposition 4.1.2.10.

Definition 4.1.2.12. Let ∆s denote the subcategory of subcategory of ∆ whose morphisms are

injective maps [m] ↪→ [n]. For any ∞-category C, we define a semisimplicial object of C to be a

functorX : N(∆op
s )→ C. A nonunital monoid object of C is a semisimplicial objectX : N(∆op

s )→ C

which satisfies the following condition: for each n ≥, the collection of face maps

{X([n])→ X({i− 1, i})}1≤i≤n

exhibits X([n]) as a product X({0, 1}) × . . . × X({n − 1, n}). We let Monnu(C) denote the full

subcategory of Fun(N(∆s)
op,C) spanned by the nonunital monoid objects of C.

Remark 4.1.2.13. Let C be an ∞-category and let X be a simplicial object of C. Then X is a

monoid object of C if and only if the restriction X|N(∆op
s ) is a nonunital monoid object of C.

Proposition 4.1.2.14. The functor Cut : N(∆)op → Assoc⊗ of Construction 4.1.2.9 determines

an approximation N(∆op
s )→ Assoc⊗nu to the nonunital associative ∞-operad Assoc⊗nu.

Proof. Combine Proposition 4.1.2.11 with Remark 2.3.3.9.
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Corollary 4.1.2.15. Let C be an ∞-category which admits finite products. Then precomposition

with the functor

Cut |N(∆op
s ) : N(∆op

s )→ Assoc⊗nu

induces an equivalence of ∞-categories

MonAssocnu(C)→ Monnu(C).

Proof. Combine Propositions 4.1.2.14 and 2.4.2.11 (as in the proof of Proposition 4.1.2.10).

4.1.3 Planar ∞-Operads and A∞-Algebras

Let C be a monoidal ∞-category. If the monoidal structure on C is Cartesian, then we can identify

associative algebra objects of C with Assoc-monoid objects of C (Proposition 2.4.2.5), so that

Proposition 4.1.2.10 supplies an equivalence of ∞-categories

AlgAssoc(C)→ Mon(C) ⊆ Fun(N(∆op),C).

In this section, we will combine Proposition 4.1.2.11 with the results of §2.3.3 to obtain more general

results, which apply to monoidal structures which do not arise from the Cartesian product. First,

we need to introduce some terminology.

Definition 4.1.3.1. We will say that a morphism α : [m] → [n] in ∆ is inert if the induced map

Cut([n]) → Cut([m]) is an inert morphism in Assoc⊗. More concretely, we say that α : [m] → [n]

is inert if it induces an isomorphism from [m] onto a convex subset {i, i+ 1, . . . , j − 1, j} ⊆ [n].

Definition 4.1.3.2. A planar ∞-operad is an ∞-category O� equipped with a functor q : O� →
N(∆op) which satisfies the following conditions:

(a) For every object C ∈ O� and every inert morphism α : [m]→ q(C) in the category ∆, there

exists a q-coCartesian morphism α : C → D satisfying q(α) = α.

(b) Let C ∈ O� be an object satisfying q(C) = [n], and choose q-coCartesian morphisms {αi :

C → Ci}1≤i≤n having the property that each q(αi) corresponds to the inclusion

[1] ' {i− 1, i} ⊆ [n]

in the category ∆. Then the morphisms αi exhibit C as a q-product of the objects {Ci}1≤i≤n.

(c) For each n ≥ 0, the construction C 7→ {Ci}1≤i≤n described in (2) induces an equivalence of

∞-categories

O�×N(∆op){[n]} → (O�×N(∆op){[1]})n.

Warning 4.1.3.3. The terminology of Definition 4.1.3.2 is potentially misleading: a planar ∞-

operad O� → N(∆op) is generally not an ∞-operad in the sense of Definition 2.1.1.10.
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Remark 4.1.3.4. If q : O� → N(∆op) is a planar∞-operad, then we will often abuse terminology

and simply refer to O� as a planar ∞-operad (in this case, we assume that the map q has been

specified).

Notation 4.1.3.5. Let q : O� → N(∆)op be a planar∞-operad. For each n ≥ 0, we let O�
[n] denote

the fiber O�×N(∆)op{[n]}. In the special case n = 1, we will denote O�
[1] simply by O and refer to

it as the underlying ∞-category of O�. Note that each O�
[n] is equivalent to an n-fold product of O

with itself (by virtue of condition (c) of Definition 4.1.3.2).

Definition 4.1.3.6. An A∞-monoidal ∞-category is a planar ∞-operad q : C� → N(∆op) which

is also a coCartesian fibration.

Remark 4.1.3.7. In the situation of Definition 4.1.1.10, we will often abuse terminology by refer-

ring to C� or the fiber C = C�
[1] as an A∞-monoidal ∞-category.

Example 4.1.3.8. The inclusion functor N(∆op
s ) ↪→ N(∆op) is a planar ∞-operad which is not

an A∞-monoidal ∞-category.

Definition 4.1.3.9. Let q : O� → N(∆)op be a planar ∞-operad. We will say that a morphism

α in O� is inert if α is q-coCartesian and q(α) is an inert morphism in N(∆op) (in the sense of

Definition 4.1.3.1).

Given a pair of planar∞-operads O� q−→ N(∆op)
q′←− O′�, we will say that a map f : O� → O′�

is a morphism of planar ∞-operads if the diagram

O� f //

q ##

O′�

q′zz
N(∆op)

commutes and f carries inert morphisms of O� to inert morphisms of O′�.

The collection of all planar∞-operads can be organized into an∞-category Oppl
∞, defined using

a variant of Definition 2.1.4.1. Let POp∞ denote the category of∞-preoperads (Definition 2.1.4.2),

equipped with the simplicial model structure of Proposition 2.1.4.6. Using the functor

N(∆op)
Cut−−→ Assoc⊗ → N(Fin∗)

of Construction 4.1.2.2, we can regard the pair (N(∆op),M) as an ∞-preoperad, where M is the

collection of all inert morphisms in N(∆op).

Proposition 4.1.3.10. Let q : (X,M) → (N(∆op),M) be a morphism of ∞-preoperads. Then q

is a fibration (in the simplicial model category POp∞) if and only if the following conditions are

satisfied:
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• The underlying map of simplicial sets X → N(∆op) is a planar ∞-operad (in the sense of

Definition 4.1.3.2). In particular, X is an ∞-category.

• The set M is the collection of inert morphisms in X (Definition 4.1.3.9).

Proof. Combine Proposition 2.3.3.30, Remark 2.3.3.35, and Proposition 4.1.2.11.

Remark 4.1.3.11. Let q : O⊗ → Assoc⊗ be a fibration of ∞-operads. We let O� denote the fiber

product O⊗×Assoc⊗ N(∆op). It follows from Proposition 4.1.3.10 (or directly from the definitions)

that the projection map O� → N(∆op) is a planar ∞-operad, and that a morphism in O� is inert

if and only if its image in O⊗ is inert. Moreover, the map q is a coCartesian fibration if and only

if the projection map O� → N(∆op) is a coCartesian fibration (that is, if and only if O� is an

A∞-monoidal ∞-category).

Motivated by Proposition 4.1.3.10, we adopt the following:

Definition 4.1.3.12. We let Oppl
∞ denote the underlying∞-category N((POp∞)o

/(N(∆op),M)) of the

simplicial model category (POp∞)o
/(N(∆op),M). We will refer to Oppl

∞ as the ∞-category of planar

∞-operads.

Remark 4.1.3.13. By virtue of Proposition 4.1.3.10, we can identify the objects of the∞-category

Oppl
∞ with (small) planar ∞-operads O� → N(∆op). Note also that the morphisms in Oppl

∞ are

given by morphisms of planar ∞-operads, in the sense of Definition 4.1.3.9.

Note that the map of ∞-preoperads (N(∆op),M)→ Assoc⊗,\ determines a Quillen adjunction

of model categories

(POp∞)o
/(N(∆op),M)

F //(POp∞)/Assoc⊗,\ .
G
oo

It follows from Theorem 2.3.3.26 and Proposition 4.1.2.10 that this Quillen adjunction is a Quillen

equivalence. Passing to underlying ∞-categories, we obtain the following:

Theorem 4.1.3.14. The construction

(O⊗ → Assoc⊗)→ (O⊗×Assoc⊗ N(∆op)→ N(∆op))

described in Remark 4.1.3.11 induces an equivalence of ∞-categories

(Op∞)/Assoc⊗ ' Oppl
∞ .

In particular, every planar ∞-operad O� → N(∆op) is equivalent to a planar ∞-operad of the form

O⊗×Assoc⊗ N(∆op), for some fibration of ∞-operads O⊗ → Assoc⊗.

Example 4.1.3.15. The equivalence of Theorem 4.1.3.14 carries the nonunital associative ∞-

operad Assoc⊗nu of Variant 4.1.1.9 to the planar ∞-operad N(∆op
s ) ↪→ N(∆op) of Example 4.1.3.8.
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We now reformulate the theory of associative algebra objects using the language of planar

∞-operads.

Definition 4.1.3.16. Let q : O� → N(∆op) be a planar∞-operad. An A∞-algebra object of O is a

map of planar∞-operads A : N(∆op)→ O� (that is, a section of q which carries inert morphisms to

inert morphisms). We let AlgA∞(O) denote the full subcategory of FunN(∆op)(N(∆op),O�) spanned

by the A∞-algebra objects of O. We will refer to AlgA∞(O) as the ∞-category of A∞-algebra objects

of O.

Warning 4.1.3.17. The∞-category AlgA∞(O) depends not only on the∞-category O, but on the

entire planar ∞-operad O� → N(∆op).

Variant 4.1.3.18. Let q : O⊗ → Assoc⊗ be a fibration of ∞-operads, and let O� =

O⊗×Assoc⊗ N(∆op) be the planar ∞-operad of Remark 4.1.3.11. We let AlgA∞(O) denote the

∞-category of A∞-algebra objects associated to the planar ∞-operad O� by Definition 4.1.3.16.

Unwinding the definition, we see that AlgA∞(O) can be identified with the full subcategory of

FunAssoc⊗(N(∆op),O⊗) spanned by those functors A : N(∆op)→ O⊗ which carry inert morphisms

to inert morphisms.

Proposition 4.1.3.19. Let q : O⊗ → Assoc⊗ be a fibration of ∞-operads. Then precomposition

with the functor Cut : N(∆op) → Assoc⊗ of Construction 4.1.2.9 induces an equivalence of ∞-

categories

Alg(O) = AlgAssoc(O)→ AlgA∞(O).

Proof. Combine Proposition 4.1.2.11 with Theorem 2.3.3.23.

Proposition 4.1.3.19 has a variant for nonunital associative algebras.

Definition 4.1.3.20. Let O� → N(∆op) be a planar ∞-operad. A nonunital A∞-algebra object of

O is a map of planar ∞-operads A : N(∆op
s )→ O� (here we regard N(∆op

s ) as a planar ∞-operad

as in Example 4.1.3.8). We let Algnu
A∞(O) denote the full subcategory of FunN(∆op)(N(∆op

s ),O�)

spanned by the nonunital E∞-algebra objects of O.

Proposition 4.1.3.21. Let O⊗ → Assoc⊗ be a fibration of ∞-operads. Then precomposition with

the functor

Cut |N(∆op
s ) : N(∆op

s )→ Assoc⊗nu

induces an equivalence of ∞-categories Algnu(C)→ Algnu
A∞(C).

Proof. Combine Proposition 4.1.2.14 with Theorem 2.3.3.23.
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4.1.4 Nonunital An-Algebras and Nonunital An-Monoids

Let C be a monoidal ∞-category. Roughly speaking, one can think of an associative algebra in

C as an object A ∈ C equipped with a multiplication map m : A ⊗ A → A which is unital and

associative up to coherent homotopy. One of the main virtues of Propositions 4.1.3.19 is that it

allows us to articulate this heuristic in a reasonably explicit way, by analyzing the filtration of the

simplex category ∆ by full subcategories

∆≤0 ⊆∆≤1 ⊆∆≤2 ⊆∆≤3 ⊆ · · · ,

where ∆≤n is spanned by the objects [m] for m ≤ n. To simplify the exposition, we will consider

only the “nonunital” version of this filtration. In this case, there is no harm in also omitting the

object [0] ∈∆ (see the proof of Proposition 4.1.4.9 below).

Notation 4.1.4.1. For 0 ≤ n ≤ ∞, we let Tn denote the full subcategory of N(∆s) spanned by

the objects [m] for 1 ≤ m ≤ n.

Definition 4.1.4.2. Let q : C� → N(∆op) be a planar ∞-operad and let n ≥ 0 be an integer. A

nonunital An-algebra object of C is a functor A : Top
n → C� with the following properties:

(i) The diagram

C�

q

��
Top
n

A

::

ι // N(∆op)

commutes, where ι denotes the inclusion map.

(ii) For every inert morphism α : [m′] → [m] in ∆ satisfying 1 ≤ m′ ≤ m ≤ n, the induced map

A(α) : A([m])→ A([m′]) is a q-coCartesian morphism of C�.

We let Algnu
An(C) denote the full subcategory of

FunN(∆op)(T
op
n ,C

�) = Fun(Top
n ,C

�)×Fun(∆op
s,≤n,∆

op) {ι}

spanned by the nonunital An-algebra objects of C. We will refer to Algnu
An(C) as the ∞-category of

nonunital An-algebra objects of C.

Remark 4.1.4.3. In the situation of Definition 4.1.4.2, it suffices to check condition (ii) in the

special case m′ = 1 (so that α : [m′] → [m] is the inclusion [1] ' {i − 1, i} ↪→ [m] for some

1 ≤ i ≤ m).

Example 4.1.4.4 (Nonunital A0-Algebras). When n = 0, the ∞-category Tn of Notation 4.1.4.1

is empty. It follows that for every planar ∞-operad C�, the ∞-category Algnu
A0

(C) is isomorphic to

the 0-simplex ∆0.
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Notation 4.1.4.5. Let C� be a planar ∞-operad with underlying ∞-category C = C�
[1]. For each

n ≥ 1, evaluation on the object [1] ∈ Tn determines a map Algnu
An(C) → C, which we will refer to

as the forgetful functor. In what follows, we will generally abuse notation by not distinguishing

between a nonunital An-algebra A ∈ Algnu
An(C) and the object A([1]) ∈ C.

Example 4.1.4.6 (Nonunital A1-Algebras). When n = 1, the ∞-category Tn of Notation 4.1.4.1

is isomorphic to the 0-simplex ∆0 (it contains a single object [1], with no morphisms other than

the identity). It follows that the forgetful functor Algnu
A1

(C)→ C is an isomorphism.

Variant 4.1.4.7. Let q : C⊗ → Assoc⊗ be a fibration of∞-operads. For each n ≥ 0, we let Algnu
An(C)

denote the∞-category of nonunital An-algebra objects of the associated nonunital planar∞-operad

C� = C⊗×Assoc⊗ N(∆op). In other words, Algnu
An(C) is the full subcategory of FunAssoc⊗(Top

n ,C
⊗)

spanned by those functors which satisfy condition (ii) of Definition 4.1.4.2.

Remark 4.1.4.8. For each n ≥ 0, there exists a fibration of ∞-operads O(n)⊗ → Assoc⊗ and a

nonunital An-algebra Auniv ∈ Algnu
An(O(n)) with the following universal property: for every fibration

of ∞-operads C⊗ → Assoc⊗, evaluation on Auniv induces an equivalence of ∞-categories

AlgO /Assoc(C)→ Algnu
An(C).

To see this, we choose the ∞-operad O(n)⊗ to have the property that O(n)⊗,\ is a fibrant replace-

ment for the∞-preoperad (Top
n ,M), where M is the collection of inert morphisms in Top

n . It follows

that Variant 4.1.4.7 can be formulated more directly in the language of §2.1.3. However, the ∞-

operad O(n)⊗ is much more complicated than Top
n (note that Top

n is a finite simplicial set which

arises as the nerve of a category, but O(n)⊗ does not arise as the nerve of a category for n ≥ 3)..

Note that we have natural inclusion maps

∅ = T
op
0 ↪→ T

op
1 ↪→ T

op
2 ↪→ · · · ↪→ N(∆op

s ).

If C� is a planar ∞-operad, then precomposition with these inclusion maps determines forgetful

functors

Algnu
A0

(C)← Algnu
A1

(C)← Algnu
A2

(C)← · · · ← Algnu
A∞(C).

Proposition 4.1.4.9. Let q : C� → N(∆op) be a planar ∞-operad. Then the maps described above

induce an equivalence of ∞-categories

Algnu
A∞(C)→ lim←−

n

Algnu
An(C).

Proof. Let T∞ =
⋃
Tn denote the full subcategory of N(∆s) spanned by the objects [m] for m > 0.

The transition maps in the tower

Algnu
A0

(C)← Algnu
A1

(C)← Algnu
A2

(C)← · · ·
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are categorical fibrations, so the inverse limit lim←−n Algnu
An(C) in the ∞-category Cat∞ can be identi-

fied with its inverse limit in the ordinary category of simplicial sets. Unwinding the definitions, we

see that the latter inverse limit is given by the full subcategory E ⊆ FunN(∆)op(Top
∞ ,C

�) spanned by

those functors which satisfy condition (ii) of Definition 4.1.4.2 for each n ≥ 0. Moreover, Algnu
A∞(C)

can be identified with the inverse image of E under the restriction map

θ : FunN(∆op)(N(∆op
s ),C�)→ FunN(∆op)(T

op
∞ ,C

�).

To complete the proof, it will suffice to show that θ is a trivial Kan fibration. By virtue of

Proposition HTT.4.3.2.15 , this is a consequence of the following pair of assertions:

(a) For every object A0 ∈ FunN(∆op)(T
op
∞ ,C

�), there exists a q-left Kan extension A ∈
FunN(∆op)(N(∆op

s ),C�).

(b) Every object A ∈ FunN(∆op)(N(∆op
s ),C�) is a q-left Kan extension of A0 = A|Top

∞ .

Let A0 be as in (a). To show that A0 admits a q-left Kan extension A : N(∆op
s ) → C�), it will

suffice to show that it admits a q-left Kan extension at the object [0] ∈ N(∆op
s ) (since [0] is the

unique object of N(∆op
s ) which does not belong to Top

∞). Set D = N(∆s)[0]/ ×N(∆s) T∞. We wish

to show that the composite map

p : Dop → Top
∞

A0−−→ C�

can be extended to a q-colimit diagram p : (Dop). → C� which is compatible with the obvious map

p0 : D. → N(∆op
s ). Using Proposition HTT.4.3.1.9 (and the fact that every morphism [0]→ [n] in

∆s is inert), we can reduce to the problem of showing that an associated diagram p′ : Dop → C�
[0]

can be extended to a q-colimit diagram in C�
[0]. We will prove this by showing that p′ admits a

colimit in C�
[0] which is preserved by the functor q. Since the ∞-category C�

[0] is a contractible

Kan complex, the functor p′ automatically carries each morphism in Dop to an equivalence in C�
[0].

It will therefore suffice to show that the ∞-category Dop is weakly contractible (see Corollary

HTT.4.4.4.10 ).

Unwinding the definitions, we see that D is isomorphic to the nerve of a category which can be

described as follows:

• The objects of D are pairs ([n], i), where n > 0 and 0 ≤ i ≤ n.

• A morphism from ([n], i) to ([n′], i′) in D is given by a strictly increasing map α : [n] → [n′]

satisfying α(i) = i′.

Let F : D→ D be the constant functor taking the value ([1], 0), and let G : D→ D be the functor

given by the formula G([n], i) = ([n + 1], i). The assertion that D is weakly contractible follows

from the observation that there exist natural transformations

idD
u−→ G

v←− F,
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where u and v are given on an object ([n], i) ∈ D by the nondecreasing maps

[n] ↪→ [n+ 1]←↩ {i, n+ 1} ' [1].

This completes the proof of (a). Moreover, the preceding argument shows that every extension

p : (Dop). → C� which is compatible with p0 is automatically a q-colimit diagram, which proves

(b) as well.

We close this section by establishing an analogue of Proposition 2.4.2.5 for the theory of nonuni-

tal An-algebras.

Definition 4.1.4.10. Let C be an∞-category and let n ≥ 0 be an integer. A nonunital An-monoid

object of C is a functor M : Top
n → C with the following property, for each 1 ≤ m ≤ n:

(∗m) For 1 ≤ i ≤ m, let αi : [1]→ [m] be the morphism in ∆ given by αi(0) = i− 1 and αi(1) = i.

Then the maps M(αi) : M([m])→M([1]) exhibit M([m]) as a product of m copies of M([1])

in the ∞-category C.

We let Monnu
An(C) denote the full subcategory of Fun(Top

n ,C) spanned by the nonunital An-monoid

objects of C.

Let C be an ∞-category which admits finite products. Then C admits a symmetric monoidal

structure, where the tensor product on C is given by the Cartesian product. This symmetric

monoidal structure is encoded by the coCartesian fibration q : C× → N(Fin∗) given in Construction

2.4.1.4. We regard C× as equipped with the Cartesian structure π : C× → C of Proposition 2.4.1.5.

Proposition 4.1.4.11. Let C be an ∞-category which admits finite products, and regard C as

equipped with the Cartesian symmetric monoidal structure. Then, for each n ≥ 0, composition with

the functor π : C× → C induces an equivalence of ∞-categories Algnu
An(C)→ Monnu

An(C).

Proof. Let Γ× be as in Notation ?? and set Tn = Tn×N(Fin∗)op N(Γ×)op. Unwinding the definitions,

we see that Tn can be identified with the nerve of a category Cn which can be described as follows:

• The objects of Cn are pairs ([m], S), where 1 ≤ m ≤ n and S is a subset of {1, . . . ,m}.

• A morphism from ([m], S) to ([m′], S′) in Cn is a nondecreasing map α : [m] → [m′] having

the following property: if 1 ≤ i ≤ m and 1 ≤ i′ ≤ m′ have the property that α(i − 1) < i′,

α(i) ≥ i′, and i ∈ S, then i′ ∈ S′.

Unwinding the definitions, we can identify Algnu
An(C) with the full subcategory of Fun(T

op
n ,C)

spanned by those functors X : T
op
n → C with the following properties:

(i) For each object ([m], S) in Cn, the functor X exhibits X([m], S) as a product of the objects

{X([m], {s})}s∈S .
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(ii) For 1 ≤ i ≤ m, the canonical map [1] ' {i−1, i} ⊆ [m] induces an equivalence X([m], {i})→
X([1], {1}) (see Remark 4.1.4.3).

Let us abuse notation by identifying Tn with the full subcategory of Tn spanned by those objects

of the form ([m], S) where S = {1, . . . ,m}, so that the forgetful functor Algnu
An(C) → Monnu

An(C) is

given by the restriction X 7→ X|Top
n

. By virtue of Proposition HTT.4.3.2.15 , it will suffice to prove

the following:

(a) For each X0 ∈ MonAnu
n

(C) ⊆ Fun(Top
n ,C), there exists a functor X : T

op
n → C which is a right

Kan extension of X0.

(b) Let X ∈ Fun(T
op
n ,C) be a functor for which X0 = X|Top

n
belongs to Monnu

An(C). Then X

belongs to Algnu
An(C) if and only if it is a right Kan extension of X0.

We first prove (a). Fix an object X0 ∈ MonAnu
n

(C) ⊆ Fun(Top
n ,C) and an object ([m], S) ∈ Tn; we

wish to show that the diagram

Top
n ×T

op
n

(T
op
n )([m],S)/ → Top

n
X−→ C

admits a limit. Let S(1), S(2), . . . , S(k) ⊆ S be the maximal convex subsets of S. For 1 ≤ i ≤ k, let

D(i) denote the full subcategory of Tn×Tn
(Tn)/([m],S) spanned by those maps ([m′], {1, . . . ,m′})→

([m], S) which factor through ([m], S(i)). Then each D(i) has a final object ([mi], {1 . . . ,mi}),
where mi = |S(i)|. Moreover, we can identify Tn×Tn

(Tn)/([m],S) with the disjoint union of the

D(i). It follows that we can identify limits of the above diagram with products of the objects

{X0([mi], {1, . . . ,mi})}1≤i≤k, which exist by virtue of our assumption that C admits finite products.

This completes the proof of (a), and establishes the following version of (b):

(b′) Let X ∈ Fun(T
op
n ,C) be a functor. Then X is a right Kan extension of X0 = X|Top

n

if and only if, for every object ([m], S) ∈ Tn as above, the induced map X([m], S) →∏
1≤i≤kX([mi], {1, . . . ,mi}) is an equivalence in C.

We now prove (b). Let X ∈ Fun(T
op
n ,C) be a functor for which X0 = X|Top

n
belongs to Monnu

An(C).

Suppose first that X is a right Kan extension of X0; we will show that X satisfies conditions (i) and

(ii). Condition (ii) is a special case of (b′). To prove (i), consider an arbitrary object ([m], S) ∈ Tn;

we wish to show that the canonical map θ : X([m], S)→
∏
s∈S X([m], {s}) is an equivalence in C.

Using (i), we can identify θ with the map X([m], S) →
∏
s∈S X([1], {1}) determined by the maps

[1] ' {s−1, s} ⊆ [m] for s ∈ S. Using (b′), we can reduce to proving that this map is an equivalence

in the case S = {1, . . . ,m}, which follows from our assumption that X0 belongs to Monnu
An(C).

We now prove the converse. Assume that X is a nonunital An-algebra object of C; we wish to

show that X is a right Kan extension of X0. Fix an object ([m], S) ∈ Tn; we wish to show that the

map X([m], S) →
∏

1≤i≤kX([mi], {1, . . . ,mi}) appearing in (b′) is an equivalence. This map fits
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into a commutative diagram

X([m], S) //

��

∏
1≤i≤kX([mi], {1, . . . ,mi})

��∏
s∈S X([m], {s}) //

∏
1≤i≤k

∏
1≤j≤mi X([mi], {j})

where the vertical maps are equivalences by virtue of (i). It will therefore suffice to show that the

bottom horizontal map is an equivalence, which follows immediately from condition (ii) together

with the two-out-of-three property.

4.1.5 From An-Algebras to An+1-Algebras

Our next goal is to study the relationship between nonunital An algebras and nonunital An+1-

algebras, where n is a nonnegative integer. We will accomplish this by analyzing the inclusion of

simplicial sets Tn ↪→ Tn+1 (see Notation 4.1.4.1).

Notation 4.1.5.1. For every finite set S, let P (S) denote the power set of S: that is, the collection

of all subsets of S. We regard P (S) as a partially ordered set with respect to inclusions. For n ≥ 0,

we let 2n denote the nerve N(P ({1, 2, . . . , n})). We will refer to 2n as the simplicial cube of

dimension n. As a simplicial set, it is canonically isomorphic to the n-fold product of the interval

∆1 with itself.

We let ∂2n denote the simplicial subset of 2n consisting of those simplices which do not contain

both the initial vertex of 2n (given by the empty set ∅ ∈ P ({1, . . . , n}) and the final vertex of 2n

(given by the set {1, . . . n} ∈ P ({1, . . . , n}).

Construction 4.1.5.2. We define a functor F : P ({1, . . . , n})→∆ as follows:

• If J ∈ P ({1, . . . , n}) is a set of cardinality |J |, then F (J) = [|J |+ 1].

• The functor F carries an inclusion I = {i1 < i2 < · · · < ia−1} ⊆ {j1 < j2 < · · · < jb−1} = J

to the map F (I ⊆ J) : [a]→ [b] given by the formula

F (I ⊆ J)(m) =


0 if m = 0

m′ if 0 < m < a and im = jm′

b if m = a.

Note that the map N(F ) : N(P ({1, . . . , n}))→ N(∆) factors through the simplicial subset Tn+1 ⊆
N(∆) of Notation 4.1.4.1. We therefore obtain a map of simplicial sets γ : 2n → Tn+1, which we

will refer to as the fundamental n-cube.
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Roughly speaking, the theory of nonunital An+1-algebras can be obtained from the theory of

An-algebras by “attaching the cube 2n to Tn along its boundary.” To make this precise, we first

address the fact that the map γ : 2n → Tn+1 does not quite carry the boundary ∂2n ⊆ 2n into

the simplicial subset Tn ⊆ Tn+1.

Construction 4.1.5.3. Let n be a positive integer and let e : [1] → [n] denote the map given by

e(0) = 0 and e(1) = n. Let us regard e as an edge of the simplicial set Tn ⊆ N(∆). We let T◦n
denote the largest simplicial subset of Tn which does not contain e (so that a simplex of Tn belongs

to T◦n if it does not contain e as a facet).

Remark 4.1.5.4. Let n be a positive integer. Then the simplicial subset T◦n ⊆ Tn of Construction

4.1.5.3 contains Tn−1.

Warning 4.1.5.5. The simplicial sets Tn appearing in Notation 4.1.4.1 can be described as the

nerves of subcategories En ⊆ ∆. In particular, each Tn is an ∞-category. However, the simplicial

subset T◦n ⊆ Tn is usually not an ∞-category.

Remark 4.1.5.6. Let n be a nonnegative integer. Then the boundary ∂2n ⊆ 2n can be described

as the inverse image of T◦n+1 under the map γ : 2n → Tn+1 In particular, we have a pullback diagram

of simplicial sets

∂2n //

∂ γ
��

2n

��
T◦n+1

// Tn+1 .

Proposition 4.1.5.7. Let n be a nonnegative integer. Then the pullback diagram of simplicial sets

∂2n //

∂ γ
��

2n

��
T◦n+1

// Tn+1

of Remark 4.1.5.6 is also a pushout square.

Proof. Let σ be a k-simplex of Tn+1 which does not belong to T◦n+1, which we can identify with a

diagram

[m0]
f1−→ [m1]→ · · · fk−→ [mk]

in the category ∆ where each map is injective and 1 ≤ m0 ≤ m1 ≤ · · · ≤ mk = n+ 1. We wish to

show that σ can be lifted uniquely to a k-simplex of 2n, given by a sequence of subsets

J0 ⊆ J1 ⊆ · · · ⊆ Jk

of {1, 2, . . . , n}. Unwinding the definitions, we see that the unique lifting is given by Ji = im(fk ◦
· · · ◦ fi+1)− {0, n+ 1}.



476 CHAPTER 4. ASSOCIATIVE ALGEBRAS AND THEIR MODULES

We now show that the enlargement Tn ↪→ T◦n+1 is “inessential.”

Proposition 4.1.5.8. Let q : C� → N(∆op) be a planar ∞-operad, let n be a positive integer,

and let Algpre
An (C) denote the full subcategory of FunN(∆op)((T

◦
n)op,C�) spanned by those maps A :

(T◦n)op → C� which satisfy condition (ii) of Definition 4.1.4.2. Then composition with the inclusion

Tn−1 ↪→ T◦n induces a trivial Kan fibration Algpre
An (C)→ Algnu

An−1
(C).

Proof. In the case n = 1, we have T◦n = Tn−1 = ∅ and there is nothing to prove. Let us therefore

assume that n ≥ 2. For each simplicial set K equipped with a map K → T◦n, we let EK denote the

full subcategory of FunN(∆)op(Kop,C�) spanned by those maps A : Kop → C� with the following

property: if e is an edge of K whose image in T◦n has the form [1] ' {i − 1, i} ⊆ [m] for some

1 ≤ i ≤ m ≤ n, then A(e) is a q-coCartesian morphism of C�. In the above situation, we will

say that a simplicial subset K ′ ⊆ K is good if the evident restriction map EK → EK′ is a trivial

Kan fibration. We wish to show that the inclusion Tn−1 ↪→ T◦n is good. We will establish this by

analyzing a carefully chosen filtration of T◦n.

First, we need to introduce a bit of terminology. Let σ be a nondegenerate k-simplex of T◦n,

given by a sequence of strictly increasing maps

[m0]
f1−→ [m1]

f2−→ [m2]→ · · · fk−→ [mk].

Let us assume that σ is not contained in Tn−1, so that [mk] = [n]. For 0 ≤ i ≤ k, we let

Si(σ) denote the image of the map (fk ◦ · · · ◦ fi+1) : [mi] → [n]. Note that the construction

σ 7→ ~S(σ) = {Si(σ)}1≤i≤k induces a bijection from the set of nondegenerate k-simplices of T◦n
which do not belong to Tn−1 to the collection of all chains S0(σ) ( S1(σ) ( · · · ( Sk(σ) = [n],

where S0(σ) has at least two elements and S0(σ) 6= {0, n}. We will say that a subset S ⊆ [n] is

convex if it has the form {i, i+ 1, · · · , j} for some 0 ≤ i ≤ j ≤ n. For any nonempty subset S ⊆ [n],

there exists a smallest convex subset of [n] containing S, which we will refer to as the convex hull

of S and denote by Sh.

Let σ be a k-simplex of T◦n.We will say that σ is decomposable if it is nondegenerate, not

contained in Tn−1, and satisfies one of the following (mutually exclusive) conditions:

(a) The set S0(σ) has more than two elements.

(b) The set S0(σ) has two elements and there exists an integer 1 ≤ d ≤ k such that S0(σ)h =

S1(σ)h = ◦ = Sd−1(σ)h 6= Sd(σ)h and Sd−1(σ) ( Sd−1(σ)h ∩ Sd(σ). In this case, we will refer

to d as the index of σ.

Let σ be a decomposable k-simplex of T◦n which does not belong to Tn−1, and let τ be a (k + 1)-

simplex of T◦n. We will say that τ is a satellite of σ if one of the following (mutually exclusive)

conditions holds:

(a′) The set S0(σ) = {a0 < a1 < · · · < am} has more than two elements, the set S0(τ) is equal to

{aj−1, aj} for some 1 ≤ j ≤ m, and Sj(τ) = Si−1(σ) for i > 0.
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(b′) The set S0(σ) has two elements, the simplex σ has index d, and

Si(τ) =


Si(σ) if i < d

Si−1(σ)h ∩ Si(σ) if i = d

Si−1(σ) if i > d.

Note that every nondegenerate simplex τ of T◦n either belongs to Tn−1, is decomposable, or is a

satellite of a decomposable simplex σ of T◦n; moreover, in the third case, the simplex σ is uniquely

determined.

Let σ and σ′ be decomposable k-simplices of T◦n. We will say that σ and σ′ have the same width

if Si(σ)h = Si(σ
′)h for 0 ≤ i ≤ k. We will say that σ is narrower than σ′ if they do not have

the same width and Si(σ)h ⊆ Si(σ
′)h for 0 ≤ i ≤ k. Choose an enumeration σ1, σ2, . . . , σ` of the

collection of decomposable simplices of T◦n with the following features:

(1) If the simplex σa has smaller dimension than σb, then a < b.

(2) If the simplices σa and σb have the same dimension but σa is narrower than σb, then a < b.

(3) If σa and σb have the same dimension k, the same width, and Si(σa) ⊇ Si(σb) for 0 ≤ i ≤ k,

then a ≤ b.

For 0 ≤ j ≤ `, let K(j) denote the smallest simplicial subset of T◦n which contains Tn−1 together

with the decomposable simplices {σ1, σ2, · · · , σj−1} together with all of their satellites. We then

have a chain of inclusions Tn−1 = K(0) ↪→ K(1) ↪→ · · · ↪→ K(`) = T◦n. To complete the proof of

Proposition 4.1.5.8, it will suffice to show that the inclusion K(j−1) ↪→ K(j) is good for 1 ≤ j ≤ `.
We consider several cases:

• Suppose first that the decomposable simplex σj is zero-dimensional. Then σj corresponds

to the object [n] ∈ ∆ (since every other object of Tn is already contained in Tn−1), and

j = 1 (this follows from (1)). Unwinding the definitions, we see that the satellites of σj
are precisely the edges of T◦n which correspond to morphisms αi : [1] → [n] in ∆ satisfying

im(αi) = {i− 1, i} ⊆ [n]. Let us regard {1, . . . , n} as a discrete simplicial set, so that we have

a pushout diagram

{1, . . . , n} //

��

K(j − 1)

��
{1, . . . , n}. // K(j),

where the bottom vertical map carries {i}. ⊆ {1, . . . , n}. to αi (regarded as an edge of K(j)).
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We therefore obtain a pullback diagram of ∞-categories

EK(j)
//

��

E{1,...,n}.

��
EK(j−1)

// E{1,...,n} .

It will therefore suffice to prove that the map θ is a trivial Kan fibration. This is a translation

of the fact that the map q : C� → N(∆op) determines an equivalence of C�
[n] with the product

of n copies of C = C�
[1] (via the functors determined by the morphisms αi : [1]→ [n] in ∆).

• Suppose that σj is a decomposable simplex of dimension k > 0 and that S0(σj) = {a0 <

a1 < · · · < am} has more than two elements. In this case, σj has exactly m satellites, which

we will denote by τ1, τ2, · · · , τm. The simplices τ1, . . . , τm determine a map of simplicial sets

~τ : {1, . . . ,m} ? ∆k → T◦n (whose restriction to ∆k coincides with σ). Fixing 1 ≤ d ≤ m, we

observe:

– The 0th face of τd is equal to σj .

– The 1st face of τd is either a satellite of the 0th face of σj (in the case where {ad−1, ad}h∩
S1(σj) = {ad−1, ad}), or is a decomposable k-simplex of T◦n which is narrower than σj ;

in either case, the face belongs to K(j − 1) (by virtue of assumptions (1) and (2)).

– For 2 ≤ i ≤ n, the ith face of τd is a satellite of the (i − 1)st face of σj , and therefore

belongs to K(j − 1) (by virtue of assumption (1)).

– The (n+ 1)st face of τd belongs to Tn−1 ⊆ K(j − 1).

It follows that the map ~τ fits into a pushout diagram of simplicial sets

{1, . . . ,m} ? ∂∆k //

ι
��

K(j − 1)

��
{1, . . . ,m} ?∆k ~τ // K(j)

and therefore determines a pullback diagram of ∞-categories

EK(j)
//

��

// E{1,...,m}?∆k

θ

��
EK(j−1)

// E{1,...,m}?∂∆k .

Consequently, to show that the inclusion K(j−1) ↪→ K(j) is good, it will suffice to show that θ

is a trivial Kan fibration; this follows from the observation that every object A ∈ E{1,...,m}?∂∆k

determines a q-limit diagram

({1, . . . ,m} ? {k})op ↪→ ({1, . . . ,m} ? ∂∆k)op A−→ C� .
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• Suppose that σj is a decomposable simplex of dimension k > 0 and that S0(σj) has exactly

two elements. Let d be the index of σj , and let τ be the unique satellite of σj . Then:

– The 0th face of τ is a decomposable k-simplex σ′ of the same width as σj , satisfying

Sm(σj) ( Sm(σ′) for m < d and Sm(σj) ( Sm(σ′) for m ≥ d. It follows from (3) that σ′

is contained in K(j − 1).

– For 0 < i < d, the ith face of τ is a satellite of the ith face of σ, and is therefore contained

in K(j − 1) (by virtue of (1)).

– The dth face of τ is σ.

– The (d + 1)st face of τ either belongs to Tn−1 (if d = k), is a satellite of the dth

face of σ, or is a decomposable k-simplex σ′ having the same width as σj , satisfying

Sm(σ′) = Sm(σj) for m 6= d and Sd(σ
′) ) Sd(σj). In any of these cases, the (d + 1)st

face belongs to K(j − 1).

– For d+ 1 < i ≤ k, the ith face of τ is a satellite of the (i− 1)st face of σ, and therefore

belongs to K(j − 1).

– The (k + 1)st face of τ belongs to Tn−1 (and therefore also to K(j − 1)).

It follows that we have a pushout diagram of simplicial sets

Λk+1
d

//

��

K(j − 1)

��
∆k+1 τ // K(j)

and therefore a pullback diagram of ∞-categories

EK(j)
//

��

// EΛk+1
d

θ

��
EK(j−1)

// E∆k+1 .

Consequently, to show that the inclusion K(j − 1) ↪→ K(j) is good, it will suffice to show

that the map θ is a trivial Kan fibration. This follows immediately from the fact that the

inclusion of simplicial sets Λk+1
d ↪→ ∆k+1 is inner anodyne.

4.1.6 The Associahedron

Our next goal is to extract some concrete consequences from Propositions 4.1.5.7 and 4.1.5.8. To

simplify the discussion, we will confine our attention to the study of nonunital An-algebra objects
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of a monoidal ∞-category C (though our results apply just as well to nounital An-algebra objects

of arbitrary planar ∞-operads, with some minor changes in notation). First, we need to introduce

a certain combinatorial incarnation of the Stasheff associahedron.

Definition 4.1.6.1 (The nth Associahedron). Let Set∆ denote the category of simplicial sets, let

Cat∆ denote the category of simplicially enriched categories, and let C : Set∆ → Cat∆ denote a

left adjoint to the homotopy coherent nerve functor (see §HTT.1.1.5 for details). For each integer

n ≥ 2, we regard C[2n−1] as a simplicially enriched category, whose objects can be identified with

subsets of the finite set {1, 2, . . . , n − 1}. The nth associahedron is the simplicial set Kn given by

the formula Kn = MapC[2n−1](∅, {1, 2, . . . , n− 1}).

Remark 4.1.6.2 (The Structure of the Associahedron). Let n ≥ 2, set S = {1, . . . , n − 1}, and

let P (S) denote the power set of S (that is, the collection of all subsets of S). Using Example

HTT.1.1.5.9 , we obtain a canonical isomorphism of simplicial sets

Kn ' MapC[N(P (S))](∅, S) ' N(Σ),

where Σ denotes the collection of all linearly ordered subsets {∅ = I0 ⊂ I1 ⊂ · · · ⊂ Im = S} ⊆ P (S)

which contains ∅ and S; here we regard Σ as a partially ordered set with respect to inclusions of

chains. Note that we can write Σ as a disjoint union {σ0} q Σ′, where σ0 = {∅ ⊆ S} is the least

element of Σ, and the complement Σ′ can be identified with the collection of all nonempty linearly

ordered subsets of P (S)−{∅, S}. Identifying S with collection of vertices of the simplicial set ∆n−2,

we can identify P (S)− {∅, S} with the set of nondegenerate simplices of ∂∆n−2, so that Σ′ is the

partially ordered set of nondegenerate simplices of the subdivision sd(∂∆n−2). We therefore obtain

an isomorphism of simplicial sets

Kn ' N(Σ) ' N(Σ′)/ ' sd2(∂∆n−2)/;

here sd2(∂∆n−2) denotes the double subdivision of ∂∆n−2. It follows that the geometric realization

|Kn| is homeomorphic to a disk of dimension n− 2.

Remark 4.1.6.3. For n ≥ 2, the monomorphism of simplicial sets ∂2n−1 ↪→ 2n−1 induces a

cofibration of simplicial categories C[∂2n−1] ↪→ C[2n−1]. In particular, for every pair of vertices x

and y in 2n−1, we obtain a map of simplicial sets

ρx,y : MapC[∂ 2n−1](x, y)→ MapC[2n−1](x, y).

Unwinding the definitions, we see that this map can be described as follows:

(i) If x is the initial vertex of 2n−1 and y is the final vertex of 2n−1, then the map

ρx,y : MapC[∂ 2n−1](x, y)→ MapC[2n−1](x, y) = Kn

is a monomorphism whose image is a simplicial subset ∂ Kn ⊆ Kn.
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(ii) If x is not the initial vertex of 2n−1 or y is not the final vertex of 2n−1, then the map

ρx,y : MapC[∂ 2n−1](x, y)→ MapC[2n−1](x, y) is an isomorphism.

Definition 4.1.6.4. Let n ≥ 2 and let Kn be the nth associahedron (Definition 4.1.6.1). We let

∂ Kn denote the simplicial subset of Kn described in Remark 4.1.6.3. We will refer to ∂ Kn as the

boundary of Kn.

Remark 4.1.6.5. Let n ≥ 2 be an integer. Under the isomorphism Kn ' sd2(∂∆n−2)/ of Remark

4.1.6.2, we can identify ∂ Kn with the simplicial subset sd2(∂∆n−2) ⊆ sd2(∂∆n−2)/. It follows that

the geometric realization | ∂ Kn| is homeomorphic to a sphere of dimension (n− 3) (in particular,

it is empty in the case n = 2).

Remark 4.1.6.6. For every simplicial set X, let EX denote the simplicially enriched category

containing two objects x and y, with morphisms given by

MapEX
(x, x) = {idx} MapEX

(y, y) = {idy}

MapEX
(y, x) = ∅ MapEX

(x, y) = X.

Let n ≥ 2 and let us denote the initial and final vertices of 2n−1 by x0 and y0, respectively.

Then the identity map Kn → MapC[2n−1](x0, y0) determines a simplicially enriched functor β :

EKn → C[2n−1]. It follows from the analysis of Remark 4.1.6.3 that β fits into a pushout diagram

of simplicially enriched categories

E∂ Kn

��

// C[∂2n−1]

��
EKn

β // C[2n−1].

Since the left vertical map is a cofibration (with respect to the Bergner model structure on Cat∆),

this diagram is a homotopy pushout square.

Construction 4.1.6.7. Let C be a monoidal ∞-category with associated planar ∞-operad C� →
N(∆op), let n ≥ 2, and let A be a nonunital An−1-algebra object of C. Then A can be promoted

to an object A : Algpre
An (C) in an essentially unique way (Proposition 4.1.5.8). The composite map

∂ Kn = MapC[∂ 2n−1](∅, {1, . . . , n− 1})
→ MapC[T◦n]([n], [1])

A−→ MapC[C�](A([n]), A([1]))

= MapC�(A([n]), A([1]))

factors through the summand

MapC�(A([n]), A([1]))×Hom∆([1],[n]) {e} ⊆ MapC�(A([n]), A([1])),
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where e : [1]→ [n] is given by e(0) = 0 and e(1) = n. Identifying this summand with MapC(A⊗n, A),

we obtain a canonical map βA : ∂ Kn → MapC(A⊗n, A), depending functorially on A. Note that if

A can be promoted to a nonunital An-algebra of C, then βA can be extended to a map βA : Kn →
MapC(A⊗n, A) (in other words, the map βA is nullhomotopic).

Combining Proposition 4.1.5.7, Proposition 4.1.5.8, and Remark 4.1.6.6, we obtain the following

result:

Theorem 4.1.6.8. Let C be a monoidal ∞-category, let A be an object of C, and let n ≥ 2. Then

the maps β and β of Construction 4.1.6.7 determine a pullback diagram of ∞-categories

Algnu
An(C)×C {A}

β //

��

MapC(A⊗n, A)Kn

��
Algnu

An−1
(C)×C {A}

β //MapC(A⊗n, A)∂ Kn .

Corollary 4.1.6.9. Let C be a monoidal ∞-category and let A be a nonunital An−1-algebra object

of C for some n ≥ 2. Then A can be promoted to a nonunital An-algebra object of C if and only if

the map βA : ∂ Kn → MapC(A⊗n, A) of Construction 4.1.6.7 is nullhomotopic.

Example 4.1.6.10 (Nonunital A2-Algebras). Let C be a monoidal ∞-category and let A be an

object of C, which we can identify with a nonunital A1-algebra object of C (Example 4.1.4.6). Since

the associahedron K2 is a 0-simplex (and ∂ K2 = ∅), Theorem 4.1.6.8 asserts that equipping A with

the structure of a nonunital A2-algebra object of C is equivalent to supplying a multiplication map

m : A⊗A→ A.

Example 4.1.6.11 (Nonunital A3-Algebras). Let C be a monoidal∞-category and suppose we are

given a nonunital A2-algebra object of C, which we identify with an object A ∈ C together with a

multiplication m : A⊗ A→ A (Example 4.1.6.10). Unwinding the definitions, we see that ∂ K3 is

a discrete simplicial set with exactly two vertices, and that the map βA : ∂ K3 → MapC(A⊗3, A) of

Construction 4.1.6.7 can be identified with the pair of maps

A⊗A⊗A m⊗idA−−−−→ A⊗A m−→ A

A⊗A⊗A idA⊗m−−−−−→ A⊗A m−→ A.

It follows from Theorem 4.1.6.8 that promoting A to a nonunital A3-algebra object of C is equivalent

to supplying a homotopy between the maps

m ◦ (m⊗ idA),m ◦ (idA⊗m) : A⊗A⊗A→ A.

In particular, the nonunital A2-algebra A can be promoted to a nonunital A3-algebra if and only if

the multiplication m is associative up to homotopy.
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*** segue

Construction 4.1.6.12. For n ≥ 2, let Kn denote the associahedron of Definition 4.1.6.1 and let

∂ Kn denote its boundary (Definition 4.1.6.4). We let Σ ∂ Kn denote the pushout Kn q∂ Kn Kn

(so that the geometric realization |Σ ∂ Kn| is homeomorphic to a sphere of dimension (n − 2); see

Remark 4.1.6.5).

Let C be a monoidal∞-category and suppose we are given nonunital An-algebra objects A,B ∈
Algnu

An(C). Let us abuse notation by identifying A and B with their images under the forgetful

functor Algnu
An(C) → Algnu

An−1
(C), and also under the forgetful functor Algnu

An(C) → C. Suppose we

are given a morphism f : A→ B in the ∞-category Algnu
An−1

(C). The functoriality of Construction

4.1.6.7 yields a commutative diagram

Kn

βA

&&

∂ Kn
oo //

βAuu

βB

))

Kn

βBxx
MapC(A⊗n, A)

((

MapC(B⊗n, B)

vv
MapC(A⊗n, B),

which determines a map of spaces βf : Σ(∂ Kn) → MapC(A⊗n, B). We will refer to βf as the

universal Massey product of the morphism f .

Theorem 4.1.6.13. Let C be a monoidal ∞-category, let n ≥ 2, and suppose we are given a pair of

nonunital An-algebra objects A,B ∈ Algnu
An(C) together with a morphism f : A→ B in Algnu

An−1
(C).

Then there is a canonical homotopy fiber sequence

MapAlgnu
An (C)(A,B)×MapAlgnu

An−1
(C)(A,B) {f} → MapC(A⊗n, B)→ MapC(A⊗n, B)Σ ∂ Kn ,

where the fiber is taken over the base point βf described in Construction 4.1.6.12.

Proof. Apply Theorem 4.1.6.8 to the monoidal∞-categories Fun(∆1,C) and Fun(∂∆1,C) ' C×C.

Corollary 4.1.6.14. Let C be a monoidal∞-category, let n ≥ 2, and suppose we are given a pair of

nonunital An-algebra objects A,B ∈ Algnu
An(C) together with a morphism f : A→ B in Algnu

An−1
(C).

Then f can be promoted to a morphism of nonunital An-algebras if and only if the universal Massey

product βf : Σ(∂ Kn)→ MapC(A⊗n, B) of Construction 4.1.6.12 is nullhomotopic.

Example 4.1.6.15. Let C be a monoidal ∞-category containing nonunital A2-algebras A and B,

equipped with multiplications mA : A ⊗ A → A and mB : B ⊗ B → B. Note that Σ ∂ K2 is a

discrete simplicial set with two vertices. If f : A→ B is any morphism in the ∞-category C, then
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the universal Massey product βf of Construction 4.1.6.12 can be identified with the pair of maps

f ◦mA,mB ◦ (f ⊗ f) : A⊗A→ B. It follows from Corollary 4.1.6.14 that f can be promoted to a

morphism of nonunital A2-algebra objects of C if and only if f ◦mA and mB ◦(f⊗f) are homotopic:

that is, if and only if f is compatible with the multiplications on A and B, up to homotopy.

Corollary 4.1.6.16. Let C be a monoidal ∞-category. Suppose that C is equivalent to an m-

category for some m ≥ 1 (that is, each of the mapping spaces MapC(C,D) is (m − 1)-truncated).

Then:

(1) For n ≥ m+ 2, the forgetful functor Algnu
An(C)→ Algnu

An−1
(C) is fully faithful.

(2) For n ≥ m+3, the forgetful functor Algnu
An(C)→ Algnu

An−1
(C) is an equivalence of∞-categories.

Proof. We first prove (1). Suppose that n ≥ m + 2 and that we are given nonunital An-algebras

A,B ∈ Algnu
An(C); we wish to show that the natural map θ : MapAlgnu

An
(A,B) → MapAlgnu

An−1
(A,B)

is a homotopy equivalence. By virtue of Theorem 4.1.6.13, it will suffice to show that the diagonal

map MapC(A⊗n, B)→ MapC(A⊗n, B)Σ(∂ Kn) is a homotopy equivalence. This follows from the fact

that the simplicial set Σ(∂ Kn) is m-connective (its geometric realization is a sphere of dimension

n− 2 ≥ m) and the mapping space MapC(A⊗n, B) is (m− 1)-truncated (since C is equivalent to an

m-category).

We now prove (2). Assume that n ≥ m + 3; we wish to show that the forgetful functor

Algnu
An(C) → Algnu

An−1
(C) is essentially surjective. Let A be a nonunital An−1-algebra object of C

and let βA : ∂ Kn → MapC(A⊗n, A) be as in Construction 4.1.6.7. Then βA is nullhomotopic, since

∂ Kn is m-connective (the geometric realization of ∂ Kn is homeomorphic to a sphere of dimension

n − 3 ≥ m), and the mapping space MapC(A⊗n, A) is (m − 1)-truncated (since C is equivalent to

an m-category).

Corollary 4.1.6.17. Let C be a monoidal ∞-category. Assume that C is equivalent to an m-

category for m ≥ 1. Then:

(1) The forgetful functor Algnu
A∞(C)→ Algnu

An(C) is an equivalence of ∞-categories for n ≥ m+ 2.

(2) The forgetful functor Algnu(C) → Algnu
Am+1

(C) is a fully faithful embedding, whose essential

image consists of those nonunital Am+1-algebra objects A for which the map βA : ∂ Km+2 →
MapC(A⊗(m+2), A) of Construction 4.1.6.7 is nullhomotopic.

Proof. Assertion (1) follows from Corollary 4.1.6.16, Proposition 4.1.4.9, and Proposition 4.1.3.19.

Assertion (2) follows from (1), Corollary 4.1.6.16, and Corollay 4.1.6.9.

Example 4.1.6.18. Let C be a monoidal category (which we view as a monoidal ∞-category

having discrete morphism spaces). Corollary 4.1.6.17 guarantees that the following categories are

equivalent:
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• The category of nonunital associative algebra objects of C.

• The category of nonunital An-algebra objects of C, for any n ≥ 3.

• The full subcategory of Algnu
A2

(C) spanned by those nonunital A2-algebras A for which the

multiplication m : A⊗A→ A is associative: that is, the diagram

A⊗A⊗A m⊗id //

id⊗m
��

A⊗A
m
��

A⊗A m // A

commutes.

4.1.7 Monoidal Model Categories

Let A be a monoidal category which is equipped with a model structure. Recall that A is said to

be a monoidal model category if the unit object 1 ∈ A is cofibrant, the monoidal structure on A

is closed, and the tensor product functor ⊗ : A ×A → A is a left Quillen bifunctor (for a more

leisurely introduction to the theory of monoidal model categories, we refer the reader to [73] or to

the appendix of [98]). Our goal in this section is to extract from A a monoidal ∞-category C⊗.

In the case where A is simplicial, the ∞-category C can be described as the homotopy coherent

nerve N(Ao), where Ao is the collection of fibrant-cofibrant objects of A. However, the assumption

that A is simplicial is inconvenient for many applications (for example, in the case where A is

the category of chain complexes of vector spaces over some field k). In the general case, we can

describe C instead as the the ∞-category obtained from A by formally inverting the collection of

weak equivalences. We begin with a few general remarks about this procedure.

Construction 4.1.7.1. Let C be an ∞-category. We define a system on C to be a collection of

morphisms W ⊆ HomSet∆
(∆1,C) which is stable under homotopy, composition, and contains all

equivalences. In other words, a system on C is a subcategory of the homotopy category hC, which

contains all objects and isomorphisms in hC. The collection of systems on C forms a partially

ordered set Sys(C). We regard the construction C 7→ N(Sys(C)) as a functor Catop
∞ → Cat∞, which

classifies a Cartesian fibration q : WCat∞ → Cat∞. Unwinding the definitions, we can identify the

objects of WCat∞ with pairs (C,W ), where C is an∞-category and W is a system on C. Unwinding

the definitions, we see that for objects (C,W ), (C′,W ′) ∈WCat∞, the mapping space

MapWCat∞((C,W ), (C′,W ′))

can be described as the summand of MapCat∞(C,C′) spanned by those functors f : C → C′ such

that f(W ) ⊆W ′.
The Cartesian fibration q admits a section G, given by the formula G(C) = (C,W ) where W is

the collection of all equivalences in C.
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Proposition 4.1.7.2. Let G : Cat∞ → WCat∞ be the functor described in Construction 4.1.7.1.

Then G admits a left adjoint. Moreover, this left adjoint commutes with finite products.

Notation 4.1.7.3. In the situation of Proposition 4.1.7.2, we will denote the left adjoint to G by

(C,W ) 7→ C[W−1].

Proof. Let (C,W ) be an object of WCat∞, and regard (C,W ) as an object of the category Set+
∆

of marked simplicial sets. Choose a marked equivalence i : (C,W ) → (C′,W ′), where (C′,W ′)

is a fibrant object of Set+
∆. Then (C′,W ′) = G(C′). It follows immediately from the definitions

that for any∞-category D, composition with i induces a homotopy equivalence MapCat∞(C′,D)→
MapWCat∞((C,W ), G(D)). The assertion regarding products follows from Proposition HTT.3.1.4.2 .

In what follows, let us regard WCat∞ and Cat∞ as endowed with the Cartesian symmetric

monoidal structures. For any ∞-operad O, composition with the functor G induces a fully faith-

ful embedding AlgO(Cat∞) ' MonO(Cat∞) → MonO(WCat∞) ' AlgO(WCat∞). It follows from

Propositions 4.1.7.2 and 2.2.1.9 that this fully faithful embedding admits a left adjoint. Combining

this observation with Example 2.4.2.4, we obtain the following result:

Proposition 4.1.7.4. Let C⊗ be a (symmetric) monoidal ∞-category, and let W be a collection of

morphisms in C. Assume that for every object C ∈ C and every morphism f : D → D′ in W , the

induced maps

C ⊗D → C ⊗D′ D ⊗ C → D′ ⊗ C

also belong to W , so that (C,W ) can be regarded as a (commutative) monoid object of WCat∞.

(1) There exists a (symmetric) monoidal functor F : C⊗ → C′⊗ with the following universal

property: for every (symmetric) monoidal ∞-category D⊗, composition with F induces a

fully faithful embedding from the ∞-category of (symmetric) monoidal functors from C′⊗ to

D⊗ to the ∞-category of (symmetric) monoidal functors from C⊗ to D⊗. Moreover, the

essential image of this embedding consists of those symmetric monoidal functors C⊗ → D⊗

which carry each morphism in W to an equivalence in D.

(2) The underlying ∞-category of C′⊗ can be identified with the ∞-category C[W−1] of Notation

4.1.7.3.

Remark 4.1.7.5. In the situation of Proposition 4.1.7.4, the (symmetric) monoidal functor F :

C⊗ → C′⊗ is characterized up to equivalence by property (2). Indeed, suppose we are given another

symmetric monoidal functor G : C⊗ → C′′
⊗

satisfying (2). Using (1), we conclude that G is

equivalent to a composition

C⊗
F→ C′

⊗ G′→ C′′
⊗
.

ThenG′ induces an equivalence C′ ' C′′ (both are equivalent to C[W−1]), so thatG′ is an equivalence

of (symmetric) monoidal ∞-categories by Remark 2.1.3.8.
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Example 4.1.7.6. Let A be a (symmetric) monoidal model category. Then the full subcategory

Ac ⊆ A inherits a (symmetric) monoidal structure. Moreover, the collection W of weak equiva-

lences in Ac is stable under (left and right) tensor product by objects of Ac. It follows that the

underlying ∞-category N(Ac)[W−1] of A inherits a (symmetric) monoidal structure. We will re-

fer to the (symmetric) monoidal ∞-category N(Ac)[W−1] as the underlying (symmetric) monoidal

∞-category of A.

Our final goal in this section is to give an explicit description of the monoidal structure on the

underlying ∞-category of a monoidal model category A, in the special case where A is equipped

with a simplicial structure.

Definition 4.1.7.7. Let C be simplicial category. We will say that a monoidal structure on C is

weakly compatible with the simplicial structure on C provided that the operation ⊗ : C×C → C

is endowed with the structure of a simplicial functor, which is compatible with associativity and

unit constraints of C. We will say that a symmetric monoidal structure on C is weakly compatible

with the simplicial structure on C if the underlying monoidal category is weakly compatible with

the simplicial structure on C and, in addition, the symmetry constraint ηX,Y : X ⊗ Y → Y ⊗X is

a natural transformation of simplicial functors.

Suppose furthermore that the monoidal structure on C is closed: that is, for every pair objects

X,Y ∈ C, there exist an exponential objects XY , YX ∈ C and evaluation map

e : XY ⊗ Y → X e′ : Y ⊗ YX → X

which induce bijections

HomC(Z,XY )→ HomC(Z ⊗ Y → X) HomC(Z, YX)→ HomC(Y ⊗ Z,X)

for every object Z ∈ C. We will say that a (symmetric) monoidal structure on C is compatible with

a simplicial structure on C if it is weakly compatible, and the maps e and e′ induce isomorphisms

of simplicial sets

MapC(Z,XY )→ MapC(Z ⊗ Y,X) MapC(Z, YX)→ MapC(Y ⊗ Z,X)

for every Z ∈ C.

Definition 4.1.7.8. A simplicial (symmetric) monoidal model category is a (symmetric) monoidal

model category which is also equipped with the structure of a simplicial model category, where

the simplicial structure and the (symmetric) monoidal structure are compatible in the sense of

Definition 4.1.7.7.

Remark 4.1.7.9. In the symmetric case, one can reformulate Definition 4.1.7.8 as follows. Let

A be a symmetric monoidal model category. Then a compatible simplicial structure on A can be
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identified with symmetric monoidal left Quillen functor ψ : Set∆ → A. Given such a functor, A

inherits the structure of a simplicial category, where the mapping spaces are characterized by the

existence of a natural bijection

HomSet∆
(K,MapA(A,B)) ' HomA(ψ(K)⊗A,B).

Proposition 4.1.7.10. Let A be a simplicial symmetric monoidal model category, and let Ao

denote the full subcategory spanned by the fibrant-cofibrant objects. We regard Ao as a simplicial

colored operad via the formula

MulAo({Xi}, Y ) = MapA(
⊗
i

Xi, Y ).

Then the operadic nerve N⊗(Ao) is a symmetric monoidal ∞-category.

Remark 4.1.7.11. In the situation of Proposition 4.1.7.10, the simplicial colored operad Ao is

fibrant: that is, each of the mapping spaces MulAo({Xi}, Y ) = MapA(
⊗

iXi, Y ) is a Kan complex.

This follows from the fact that Y is fibrant and
⊗

iXi is cofibrant (being a tensor product of

cofibrant objects of A). Invoking Proposition 2.1.1.27, we deduce that p : N⊗(Ao) → N(Fin∗) is

an ∞-operad.

Before giving the proof of Proposition 4.1.7.10, it will be convenient to formulate a stronger

assertion which implies not only that N⊗(Ao) is symmetric monoidal, but that it can be identified

with the underlying symmetric monoidal ∞-category of A (in the sense of Example 4.1.7.6). To

state this result, we need to introduce an elaboration on Construction 1.3.4.18.

Construction 4.1.7.12. Let A be a simplicial symmetric monoidal model category. We define a

simplicial category M⊗ as follows:

(1) An object of M⊗ is a sequence (i, A1, . . . , An), where (A1, . . . , An) is a finite sequence of

cofibrant objects of A and i ∈ {0, 1}. We further assume that if i = 1, then each Aj is a

fibrant object of A.

(2) Suppose we are given objects ~A = (i, A1, . . . , An) and ~A′ = (i′, A′1, . . . , A
′
n′) in M⊗. Then

MapM( ~A, ~A′) =


∐
α

∏
1≤j′≤n′ MapA(

⊗
α(j)=j′ Aj , Aj′) if i′ = 1∐

α

∏
1≤j′≤n′ HomA(

⊗
α(j)=j′ Aj , Aj′) if i = i′ = 0

∅ if i′ < i.

Here the disjoint unions are taken over all morphisms α : 〈n〉 → 〈n′〉 in the category N(Fin∗).

Remark 4.1.7.13. In the situation of Construction 4.1.7.12, the fiber M⊗×N(Fin∗){〈1〉} can be

identified with the simplicial category M introduced in Construction 1.3.4.18.
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Remark 4.1.7.14. Let A be a simplicial symmetric monoidal model category, and let M⊗ be as

in Construction 4.1.7.12. The construction (i, A1, . . . , An) 7→ (i, 〈n〉) determines a forgetful functor

N(M)→ ∆1 ×N(Fin∗). We have canonical isomorphisms

N(M)×∆1 {0} ' N⊗(Ac) N(M)×∆1 {1} ' N⊗(Ao).

Proposition 4.1.7.15. Let A be a simplicial symmetric monoidal model category, and let M⊗

be defined as in Construction 4.1.7.12. Then the induced map p : N(M⊗) → ∆1 × N(Fin∗) is a

coCartesian fibration.

Proposition 4.1.7.15 immediately implies Proposition 4.1.7.10 (by passing to the fiber over

{1} ∈ ∆1 and invoking Remark 4.1.7.14). Moreover, it shows that N(M⊗) is the correspondence

associated to a symmetric monoidal functor N⊗(Ac)→ N⊗(Ao). Combining this observation with

Remark 4.1.7.5 and Theorem 1.3.4.20, we obtain the following:

Corollary 4.1.7.16. Let A be a simplicial symmetric monoidal model category. Then the sym-

metric monoidal functor N⊗(Ac)→ N⊗(Ao) constructed above exhibits N⊗(Ao) as the underlying

symmetric monoidal ∞-category of A, in the sense of Example 4.1.7.6.

Proof of Proposition 4.1.7.15. Let (i, C1, . . . , Cn) be an object of M⊗, and let α : (i, 〈n〉)→ (i′, 〈n′〉)
be a morphism in ∆1 × N(Fin∗). Fix j′ ∈ 〈n′〉◦. If i = i′ = 0, let ηj′ be the identity map from

Dj′ =
⊗

α(j)=j′ Cj to itself. Otherwise, choose a trivial cofibration

ηj′ :
⊗

α(j)=j′

Cj → Dj′ ,

where Dj′ ∈ A is fibrant. Together these determine a morphism α : (i, C1, . . . , Cn) →
(i′, D1, . . . , Dn′) in the simplicial category M⊗ lying over α. We claim that α is p-coCartesian. To

prove this, we must show that for every morphism β : 〈n′〉 → 〈n′′〉 in Assoc⊗, every i′ ≤ i′′ ≤ 1,

and every object (i′′, E1, . . . , En′′) ∈M⊗, the induced map

MapM⊗((i′, D1, . . . , Dn′), (i
′′, E1, . . . , En′′))×HomFin∗ (〈n′〉,〈n′′〉) {β}

��
MapM⊗((i, C1, . . . , Cn), (i′′, E1, . . . , En′′))

determines a homotopy equivalence onto the summand of MapM⊗((i, C1, . . . , Cn), (i′′, E1, . . . , En′′))

spanned by those morphisms which cover the map β ◦ α : 〈n〉 → 〈n′′〉 in Fin∗. If i = i′ = 0, this

follows immediately from the definitions. Otherwise, we have i′ = i′′ = 1; it will therefore suffice

to prove that for j′′ ∈ 〈n′′〉◦, the induced map

MapA(
⊗

β(j′)=j′′

Dj′ , Ej′′)→ MapA(
⊗

(β◦α)(j)=j′′

Cj , Ej′′)
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is a homotopy equivalence of Kan complexes. Since each Ej′′ is a fibrant object of A, it will suffice

to show that the map

η :
⊗

(β◦α)(j)=j′′

Ci →
⊗

β(j′)=j′′

D′j

is a weak equivalence of cofibrant in A. This follows from the observation that η can be identified

with the tensor product of the maps ηj′ , each of which is a weak equivalence between cofibrant

objects of A.

Variant 4.1.7.17. Suppose that A is a simplicial monoidal model category. Let Ao denote the full

subcategory of A spanned by the fibrant-cofibrant objects. We regard Ao as a simplicial colored

operad as follows: given a finite set I of cardinality n, we set

MulAssoc
Ao ({Xi}i∈I , Y ) =

∐
α

MapA(⊗1≤j≤nXα(j), Y ),

where the coproduct is taken over all bijective maps α : {1, . . . , n} → I (equivalently, over all linear

orderings of I). We let N⊗Assoc(A
o) denote the operadic nerve of this simplicial colored operad. The

proof of Proposition 4.1.7.15 yields the following:

(1) The map N⊗Assoc(A
o)→ Assoc⊗ exhibits N⊗Assoc(A

o) as a monoidal ∞-category.

(2) Let N⊗Assoc(A
c) denote the monoidal∞-category associated to the discrete monoidal category

Ac. Then there exists a monoidal functor θ : N⊗Assoc(A
c) → N⊗Assoc(A

o) which induces

an equivalence of ∞-categories N(Ac)[W−1] ' N(Ao), where W is the collection of weak

equivalences in Ac (in other words, the monoidal functor θ exhibits N(Ao) as the underlying

∞-category of A).

We now describe an application of Variant 4.1.7.17:

Example 4.1.7.18. Let POp∞ denote the category of ∞-preoperads, endowed with the monoidal

model structure of Proposition 2.2.5.7. It is easy to see that this monoidal structure is compatible

with the simplicial structure on POp∞ (in the sense of Definition 4.1.7.8), so that POp∞ is a

simplicial monoidal model category. Applying Variant 4.1.7.17, we obtain a coCartesian fibration

of ∞-operads N⊗Assoc(POp∞
o) → Assoc⊗. There is an obvious map from the simplicial colored

operad POp∞
o of Construction 2.2.5.12 to the simplicial colored operad Op∆

∞ of Construction

2.2.5.12, which determines a commutative diagram

N⊗Assoc(POpo
∞) //

��

Assoc⊗

��
Op(∞)⊗ // N(Fin∗).
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In fact, this is a homotopy pullback diagram: that is, it induces an equivalence of ∞-operads

N⊗Assoc(POp∞
o)→ Assoc⊗×N(Fin∗) Op(∞)⊗. To see this, it suffices to observe that for any sequence

of ∞-operads {O⊗i }1≤i≤n and any other ∞-operad O′⊗, the canonical map

MulFOp∆
∞

({O⊗i },O
′⊗)→ MulOp∆

∞
({O⊗i },O

′⊗)

is a homotopy equivalence. In fact, this map is the inclusion of a fiber of the Kan fibration

MulOp∆
∞

({Oi},O′⊗)→ N(S({1, . . . , n})),

and the base N(S({1, . . . , n})) is a contractible Kan complex.

Remark 4.1.7.19. The underlying ∞-category of the ∞-operad N⊗Assoc(POp∞
o) can be identified

with N(POp∞
o) ' Op∞.

4.1.8 Rectification of Associative Algebras

Let A be a monoidal model category. In §4.1.7, we saw that the underlying ∞-category

N(Ac)[W−1] of A admits a monoidal structure, so it makes sense to consider algebra objects

A ∈ Alg(N(Ac)[W−1]). In this case, we can think of A as an object of A equipped with a

multiplication m : A⊗A→ A which is unital and associative up to coherent homotopy.

Our goal in this section is to prove a rectification result which asserts (under some mild hy-

potheses on A) that A is equivalent to a strictly unital and associative algebra in the ordinary

category A. More precisely, we will show that Alg(N(Ac)[W−1]) is equivalent to the underlying

∞-category of a simplicial model category Alg(A) whose objects are associative algebras in A.

Our first step is to describe a model structure on the ordinary category Alg(A). Here we adopt

the convention that if C is any monoidal category, then Alg(C) denotes the category of associative

algebra objects of C. Note that there is a canonical equivalence N(Alg(C)) ' Alg(N(C)).

In the arguments which follow, we will need to invoke the following hypothesis (formulated

originally by Schwede and Shipley; see [128]):

Definition 4.1.8.1 (Monoid Axiom). Let A be a combinatorial symmetric monoidal model cate-

gory. Let U be the collection of all morphisms of A having the form

X ⊗ Y idX ⊗f−→ X ⊗ Y ′,

where f is a trivial cofibration, and let U denote the weakly saturated class of morphisms generated

by U (Definition HTT.A.1.2.2 ). We will say that A satsifies the monoid axiom if every morphism

of U is a weak equivalence in A.

Remark 4.1.8.2. Let A be a combinatorial symmetric monoidal model category in which every

object is cofibrant, and let U and U be as in Definition 4.1.8.1. Then every morphism belonging to

U is a trivial cofibration. Since the collection of trivial cofibrations in A is weakly saturated, we

conclude that A satisfies the monoid axiom.



492 CHAPTER 4. ASSOCIATIVE ALGEBRAS AND THEIR MODULES

We will need the following result of [128]:

Proposition 4.1.8.3. [Schwede-Shipley] Let A be a combinatorial monoidal model category. As-

sume that either every object of A is cofibrant, or that A is a symmetric monoidal model category

which satisfies the monoid axiom. Then:

(1) The category Alg(A) admits a combinatorial model structure, where:

(W ) A morphism f : A → B of algebra objects of A is a weak equivalence if it is a weak

equivalence when regarded as a morphism in A.

(F ) A morphism f : A → B of algebra objects of A is a fibration if it is a fibration when

regarded as a morphism in A.

(2) The forgetful functor θ : Alg(A)→ A is a right Quillen functor.

(3) If A is equipped with a compatible simplicial structure, then Alg(A) inherits the structure of

a simplicial model category.

(4) Suppose that every object of A is cofibrant and that the collection of weak equivalences in A

is stable under filtered colimits. Then Alg(A) is left proper.

Assuming Proposition 4.1.8.3 for the moment, we can now state our main result:

Theorem 4.1.8.4. Let A be a combinatorial monoidal model category. Assume either:

(A) Every object of A is cofibrant.

(B) The model category A is left proper, the class of cofibrations in A is generated by cofibrations

between cofibrant objects, the monoidal structure on A is symmetric, and A satisfies the

monoid axiom.

Let W be the collection of weak equivalences in Ac, and W ′ the collection of weak equivalences in

Alg(A)c. Then the canonical map

N(Alg(A)c)[W ′−1]→ Alg(N(Ac)[W−1])

is an equivalence of ∞-categories.

Remark 4.1.8.5. In the situation of Proposition 4.1.8.3, assume that A is a simplicial monoidal

model category (in the sense of Definition 4.1.7.8). Then Alg(A) inherits the structure of a simplicial

model category. The simplicial structure on Alg(A) can be described as follows: for any pair of

algebras A,B ∈ Alg(A), the mapping space MapAlg(A)(A,B) is the simplicial subset of MapA(A,B)
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characterized by the following property: a map of simplicial sets K → MapA(A,B) factors through

MapAlg(A)(A,B) if and only if the diagrams

∆0 ×K

��

//MapA(1, A)×MapC(A,B)

��
∆0 //MapA(1, B)

K //

##

K ×K //MapA(A,B)×MapA(A,B) //MapA(A⊗A,B ⊗B)

��
∆0 ×K //MapA(A⊗A,A)×MapA(A,B) //MapA(A⊗A,B)

commute.

Example 4.1.8.6. Let A be the category of symmetric spectra, as defined in [74]. Then A admits

several model structures which satisfy assumption (B) of Theorem 4.1.8.4. It follows that N(Ao) is

equivalent, as a monoidal ∞-category, to the ∞-category Sp of spectra (endowed with the smash

product monoidal structure; see §4.8.2). Using Theorem 4.1.8.4, we deduce that the ∞-category

Alg(Sp) of associative algebra objects of Sp is equivalent to the underlying ∞-category of Alg(A).

Example 4.1.8.7. [∞-Categorical MacLane Coherence Theorem] Let A be the category of marked

simplicial sets (see §HTT.3.1 ). Then A is a simplicial model category, which satisfies the hypotheses

of Example 2.4.1.10. Using Theorem 1.3.4.20, we can identify the underlying∞-category of A with

N(Ao) ' Cat∞, the ∞-category of ∞-categories. Proposition 2.4.2.5 implies that composition

with the evident Cartesian structure N⊗(Ao) → N(Ao) induces an equivalence of ∞-categories

Alg(N(Ao)) → MonAssoc(Cat∞). Combining this observation with Theorem 4.1.8.4, we conclude

that the ∞-category of monoid objects of Cat∞ is equivalent to the ∞-category underlying the

category of strictly associative monoids in A. In other words, every monoidal ∞-category C is

equivalent (as a monoidal ∞-category) to an ∞-category C′ equipped with a strictly associative

multiplication C′×C′ → C′ (so that we can regard C′ as a simplicial monoid). We regard this

assertion as an ∞-categorical analogue of MacLane’s coherence theorem, which asserts that every

monoidal category is equivalent to a strict monoidal category (that is, a monoidal category in which

the tensor product operation ⊗ is associative up to equality, and the associativity isomorphisms

are simply the identity maps).

We now turn to the proof of Proposition 4.1.8.3.

Lemma 4.1.8.8. Let A be a combinatorial monoidal model category, and let N(Ac)[W−1] be its

underlying ∞-category. Then the induced tensor product on N(Ac)[W−1] preserves small colimits

separately in each variable.
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Proof. For each object A ∈ A, the operation of tensor product with A (either on the left or on

the right) determines a left Quillen functor from A to itself. The desired result now follows from

Corollary 1.3.4.26.

Remark 4.1.8.9. Lemma 4.1.8.8 admits a converse. Suppose that C is a presentable ∞-category

endowed with a monoidal structure, and that the associated bifunctor ⊗ : C×C → C preserves

small colimits separately in each variable. Then C is equivalent (as a monoidal ∞-category) to the

underlying∞-category of a combinatorial simplicial monoidal model category A. Since we will not

need this fact, we will only give a sketch of proof.

First, we apply Example 4.1.8.7 to reduce to the case where C is a strict monoidal ∞-category;

that is, C is a simplicial monoid. Now choose a regular cardinal κ such that C is κ-accessible.

Enlarging κ if necessary, we may suppose that the full subcateogry Cκ ⊆ C spanned by the κ-

compact objects contains the unit object of C and is stable under tensor products.

The ∞-category Cκ is essentially small. We define a sequence of simplicial subsets

D(0) ⊆ D(1) ⊆ . . . ⊆ Cκ

as follows. Let D(0) = ∅, and for i ≥ 0 let D(i + 1) be a small simplicial subset of Cκ which is

categorically equivalent to Cκ and contains the submonoid of Cκ generated by D(i). Let D =
⋃

D(i),

so that D is a small simplicial submonoid of Cκ such that the inclusion D ⊆ Cκ is a categorical

equivalence.

The proof of Theorem HTT.5.5.1.1 shows that C can be identified with an accessible localization

of P(D). According to Proposition HTT.5.1.1.1 , we can identify P(D) with N(Ao), where A

denotes the category (Set∆)/D endowed with the contravariant model structure (see §HTT.2.1.4 ).

Let L : P(D)→ C be a localization functor, and let B be the category (Set∆)/D endowed with the

following localized model structure:

(C) A morphism α : X → Y in (Set∆)/D is a cofibration in B if and only if α is a monomorphism

of simplicial sets.

(W ) A morphism α : X → Y in (Set∆)/D is a weak equivalence in B if and only if the L(β) is an

isomorphism in the homotopy category hC, where β denotes the corresponding morphism in

hP(D) ' hA.

(F ) A morphism α : X → Y in (Set∆)/D is a fibration in B if and only if it has the right lifting

property with respect to every morphism which is simultaneously a cofibration and a weak

equivalence in B.

Proposition HTT.A.3.7.3 implies that B is a (combinatorial) simplicial model category, and that

the underlying ∞-category N(Bo) is equivalent to C.

The category (Set∆)/D is endowed with a monoidal structure, which may be described as follows:

given a finite collection of objects X1, . . . , Xn ∈ S/D, we let X1 ⊗ . . . ⊗ Xn denote the product
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X1× . . .×Xn of the underlying simplicial sets, mapping to D via the composition X1× . . .×Xn →
Dn → D, where the second map is given by the monoid structure on D. It is not difficult to

verify that this monoidal structure is compatible with the model structure on B. Applying Variant

4.1.7.17, we deduce that N(Bo,⊗) determines a monoidal structure on N(Bo) ' C. One can show

that this monoidal structure coincides (up to equivalence) with the structure determined by the

associative multiplication on C.

We now turn to the proof of Proposition 4.1.8.3.

Notation 4.1.8.10. Let f : X → X ′ and g : Y → Y ′ be morphisms in a monoidal category A

which admits pushouts. We define the pushout product of i and j to be the induced map

f ∧ g : (X ⊗ Y ′)
∐
X⊗Y

(X ′ ⊗ Y )→ X ′ ⊗ Y ′.

The operation ∧ endows the category Fun([1],A) with a monoidal structure, which is symmetric if

the monoidal structure on A is symmetric.

Lemma 4.1.8.11. Let A be a combinatorial symmetric monoidal model category which satisfies

the monoid axiom, and let U be as in Definition 4.1.8.1. Then:

(1) If f : X → X ′ belongs to U and Y is an object of A, then f ⊗ idY : X ⊗ Y → X ′⊗ Y belongs

to U .

(2) If f, g ∈ U , then f ∧ g ∈ U .

Proof. To prove (1), let S denote the collection of all morphisms f in A such that f ⊗ idY belongs

to U . It is easy to see that S is weakly saturated. It will therefore suffice to show that U ⊆ S,

which is obvious.

To prove (2), we use the same argument. Fix g, and let S′ be the set of all morphisms f ∈ A such

that f∧g belongs to U . We wish to prove that U ⊆ S′. Since S′ is weakly saturated, it will suffice to

show that U ⊆ S′. In other words, we may assume that f is of the form f0⊗idA, where f0 is a trivial

cofibration in A. Similarly, we may assume that g = g0 ⊗ idB. Then f ∧ g = (f0 ∧ g0)⊗ (idA⊗B),

which belongs to U since f0 ∧ g0 is a trivial cofibration in A.

Lemma 4.1.8.12. Let A be a monoidal model category. Suppose given commutative diagrams

A //

��

B

��

X //

��

Y

��
A′ // B′ X ′ // Y ′



496 CHAPTER 4. ASSOCIATIVE ALGEBRAS AND THEIR MODULES

where every object is cofibrant, the horizontal arrows are cofibrations, and the vertical arrows are

weak equivalences. Then in the induced diagram

(A⊗ Y )
∐
A⊗X(B ⊗X) //

��

B ⊗ Y

��
(A′ ⊗ Y ′)

∐
A′⊗X′(B

′ ⊗X ′) // B′ ⊗ Y ′

has the same properties.

Proof. The assertion that the horizontal arrows are cofibrations follows immediately from the defi-

nition of a monoidal model category. Since every object appearing in either of the original diagrams,

we deduce that each of the morphisms

A⊗X → A′ ⊗X ′ A⊗ Y → A′ ⊗ Y ′

B ⊗X → B′ ⊗X ′ B ⊗ Y → B′ ⊗ Y ′

is a weak equivalence between cofibrant objects. We obtain a weak equivalence of cofibrant diagrams

A⊗ Y

��

A⊗Xoo //

��

B ⊗X

��
A′ ⊗ Y ′ A′ ⊗X ′oo // B′ ⊗X ′,

from which we obtain (by passing to the colimit) a weak equivalence of cofibrant objects (A ⊗
Y )

∐
A⊗X(B ⊗X)→ (A′ ⊗ Y ′)

∐
A′⊗X′(B

′ ⊗X ′) as desired.

Proof of Proposition 4.1.8.3. We first observe that the category Alg(A) is presentable (this follows,

for example, from Corollary3.2.3.5). Recall that a collection S of morphisms in a presentable

category C is weakly saturated if it is stable under pushouts, retracts, and transfinite composition

(see Definition HTT.A.1.2.2 ); we will say that S is generated by a subset S0 ⊂ S if S is the smallest

weakly saturated collection of morphisms containing S0.

Since C is combinatorial, there exists a (small) collection of morphisms I = {iα : C → C ′} which

generates the class of cofibrations in A, and a (small) collection of morphisms J = {jα : D → D′}
which generates the class of trivial cofibrations in A.

Let F : A → Alg(A) be a left adjoint to the forgetful functor. Let F (I) be the weakly

saturated class of morphisms in Alg(A) generated by {F (i) : i ∈ I}, and let F (J) be defined

similarly. Unwinding the definitions, we see that a morphism in Alg(A) is a trivial fibration if and

only if it has the right lifting property with respect to F (i), for every i ∈ I. Invoking the small

object argument, we deduce that every morphism f : A → C in Alg(A) admits a factorization

A
f ′→ B

f ′′→ C where f ′ ∈ F (I) and f ′′ is a trivial fibration. Similarly, we can find an analogous

factorization where f ′ ∈ F (J) and f ′′ is a fibration.
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Using a standard argument, we may reduce the proof of (1) to the problem of showing that

every morphism belonging to F (J) is a weak equivalence in Alg(A). If A is symmetric and satisfies

the monoid axiom, then let U be as in Definition 4.1.8.1; otherwise let U be the collection of all

trivial cofibrations in A. Let S be the collection of all morphisms in Alg(A) such that the induced

map in A belongs to U . Then S is weakly saturated, and every element of S is a weak equivalence.

To complete the proof, it will suffice to show that F (J) ⊆ S. In other words, we must prove:

(∗) Let

F (C)
F (i) //

��

F (C ′)

��
A

f // A′

be a pushout diagram in Alg(A). If i is a trivial cofibration in A, then f ∈ S.

Let ∅ be an initial object of A, and let j : ∅ → A be the unique morphism. We now observe

that A′ can be obtained as the direct limit of a sequence

A = A(0) f1→ A(1) f2→ . . .

of objects of A, where each fn is a pushout of j ∧ i ∧ j ∧ . . . ∧ i ∧ j; here the factor i appears n

times. If every object of A is cofibrant, then we conclude that fn is a trivial cofibration using the

definition of a monoidal model category. If the monoidal structure on A is symmetric and satisfies

the monoid axiom, then repeated application of Lemma 4.1.8.11 shows that fn ∈ U . Since U is

weakly saturated, it follows that f ∈ S as desired. This completes the proof of (1).

Assertion (2) is obvious. To prove (3), we observe both A and Alg(A) are cotensored over

simplicial sets, and that we have canonical isomorphisms θ(AK) ' θ(A)K for A ∈ Alg(A), K ∈
Set∆. To prove that Alg(A) is a simplicial model category, it will suffice to show that Alg(A) is

tensored over simplicial sets, and that given a fibration i : A → A′ in Alg(A) and a cofibration

j : K → K ′ in Set∆, the induced map AK
′ → AK ×A′K A′K

′
is a fibration, trivial if either i or j is

a fibration. The second claim follows from the fact that θ detects fibrations and trivial fibrations.

For the first, it suffices to prove that for K ∈ Set∆, the functor A 7→ AK has a left adjoint; this

follows from the adjoint functor theorem.

We now prove (4). Let T be the collection of all morphisms α : X → Y in Alg(A) with the

following property: for every pushout diagram

X
α //

��

Y

��
A //

β
��

A′

β′

��
B // B′,
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if β is a weak equivalence, then β′ is a weak equivalence. To prove that A is left proper, it will

suffice to show that every cofibration belongs to T . Using the assumption that the collection of

weak equivalences in A is stable under filtered colimits, we deduce that T is a weakly saturated

class of morphisms. It will therefore suffice to show that T contains every generating cofibration

of the form F (i) : F (x)→ F (y), where i : x→ y is a cofibration in A. The algebra objects A′ and

B′ can be defined as the direct limit of sequences

A = A(0) f1→ A(1) f2→ . . .

B = B(0) g1→ B(1) g2→ . . .

as in the proof of (∗). Since the collection of weak equivalences in A is stable under filtered colimits,

it will suffice to show that each of the maps βk : A(k) → B(k) is a weak equivalence. For k = 0

there is nothing to prove; in the general case we work by induction on k. We have a map between

the homotopy pushout diagrams

K
f ′k //

��

A⊗ y ⊗ . . .⊗ y ⊗A

��

L
g′k //

��

B ⊗ y ⊗ . . .⊗ y ⊗B

��
A(k−1) fk // A(k) B(k−1) gk // B(k).

Consequently, to prove that βk is a weak equivalence, it will suffice to show that βk−1 is a weak

equivalence (which follows from the inductive hypothesis) and that the maps

K → L A⊗ y ⊗ . . .⊗ y ⊗A→ B ⊗ y ⊗ . . .⊗ y ⊗B

are weak equivalences, which follows from Lemma 4.1.8.12.

We now turn to the proof of Theorem 4.1.8.4. The main point is to establish the following:

Lemma 4.1.8.13. Let A be a combinatorial monoidal model category and let C be a small category

such that N(C) is sifted (Definition HTT.5.5.8.1 ). Assume either that every object of A is cofibrant,

or that A satisfies the following pair of conditions:

(A) The monoidal structure on A is symmetric, and A satisfies the monoid axiom.

(B) The model category A is left proper and the class of cofibrations in A is generated by cofibra-

tions between cofibrant objects (this is automatic if every object of A is cofibrant).

Let W be the collection of weak equivalences in Ac and W ′ the collection of weak equivalences

in Alg(A)c. Then the forgetful functor N(Alg(A)c)[W ′−1] → N(Ac)[W−1] preserves N(C)-indexed

colimits.
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Proof. In view of Propositions 1.3.4.24 and 1.3.4.25, it will suffice to show that the forgetful functor

θ : Alg(A) → A preserves homotopy colimits indexed by C. Let us regard Alg(A)C and AC as

endowed with the projective model structure (see §HTT.A.3.3 ). Let F : AC → A and FAlg :

Alg(A)C → Alg(A) be colimit functors, and let θC : Alg(A)C → AC be given by composition

with θ. Since N(C) is sifted, there is a canonical isomorphism of functors α : F ◦ θC ' θ ◦ FAlg.

We wish to prove that this isomorphism persists after deriving all of the relevant functors. Since

θ and θC preserve weak equivalences, they can be identified with their right derived functors.

Let LF and LFAlg be the left derived functors of F and FAlg, respectively. Then α induces a

natural transformation α : LF ◦ θC → θ ◦ LFAlg; we wish to show that α is an isomorphism. Let

A : C→ Alg(A) be a projectively cofibrant object of Alg(A)C; we must show that the natural map

LF (θC(A))→ θ(LFAlg(A)) ' θ(FAlg(A)) ' F (θC(A))

is a weak equivalence in A.

Let us say that an object X ∈ AC is good if each of the objects X(C) ∈ A is cofibrant, the

object F (X) ∈ A is cofibrant, and the natural map LF (X) → F (X) is a weak equivalence in A:

in other words, if the colimit of X is also a homotopy colimit of X. To complete the proof, it will

suffice to show that θC(A) is good, whenever A is a projectively cofibrant object of Alg(A)C. This is

not obvious, since θC is a right Quillen functor and does not preserve projectively cofibrant objects

in general (note that we have not yet used the full strength of our assumption that N(C) is sifted).

To continue the proof, we will need a relative version of the preceding condition. We will say that

a morphism f : X → Y in AC is good if the following conditions are satisfied:

(i) The objects X,Y ∈ AC are good.

(ii) For each C ∈ C, the induced map X(C)→ Y (C) is a cofibration in A.

(iii) The map F (X)→ F (Y ) is a cofibration in A.

We now make the following observations:

(1) The collection of good morphisms is stable under transfinite composition. More precisely,

suppose given an ordinal α and a direct system of objects {Xβ}β<α of AC. Suppose further

that for every 0 < β < α, the map lim−→{X
γ}γ<β → Xβ is good. Then the induced map X0 →

lim−→{X
β}β<α is good. The only nontrivial point is to verify that the object X = lim−→{X

β}β<α
is good. For this, we observe X is a homotopy colimit of the system {Xβ} (in virtue of (ii)),

while F (X) is a homotopy colimit of the system {F (Xβ)} (in virtue of (iii)), and that the

collection of homotopy colimit diagrams is stable under homotopy colimits.

(2) Suppose given a pushout diagram

X
f //

��

Y

��
X ′

f ′ // Y ′
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in AC. If f is good and X ′ is good, then f ′ is good. Once again, the only nontrivial point is to

show that Y ′ is good. To see this, we observe that our hypotheses imply that Y ′ is homotopy

pushout of Y with X ′ over X. Similarly, F (Y ′) is a homotopy pushout of F (Y ) with F (X ′)

over F (X). We now invoke once again the fact that the class of homotopy colimit diagrams

is stable under homotopy colimits.

(3) Let F : C → A be a constant functor whose value is a cofibrant object of A. Then F is

good. This follows from the fact that N(C) is weakly contractible (use Propositions 1.3.4.24

and HTT.5.5.8.7 ).

(4) Every projectively cofibrant object of AC is good. Every projective cofibration between

projectively cofibrant objects of AC is good.

(5) If X and Y are good objects of AC, then X ⊗ Y is good. To prove this, we first observe

that the collection of cofibrant objects of A is stable under tensor products. Because N(C) is

sifted, Proposition 1.3.4.24 supplies a chain of isomorphisms in hA:

LF (X ⊗ Y ) ' LF (X)⊗ LF (Y ) ' F (X)⊗ F (Y ) ' F (X ⊗ Y ).

(6) Let f : X → X ′ be a good morphism in AC, and let Y be a good object of AC. Then the

morphism f ⊗ idY is good. Condition (i) follows from (5), condition (ii) follows from the fact

that tensoring with each Y (C) preserves cofibrations (since Y (C) is cofibrant), and condition

(iii) follows by applying the same argument to F (Y ) (and invoking the fact that F commutes

with tensor products).

(7) Let f : X → X ′ and g : Y → Y ′ be good morphisms in AC. Then

f ∧ g : (X ⊗ Y ′)
∐
X⊗Y

(X ′ ⊗ Y )→ X ′ ⊗ Y ′

is good. Condition (ii) follows immediately from the fact that A is a monoidal model cate-

gory. Condition (iii) follows from the same argument, together with the observation that F

commutes with pushouts and tensor products. Condition (i) follows by combining (5), (6),

and (2).

We observe that our assumption (B) implies an analogous result for AC:

(B′) The collection of all projective cofibrations in AC is generated by projective cofibrations

between projectively cofibrant objects.

Let T : AC → Alg(A)C be a left adjoint to θC. Using the small object argument and (B′), we

conclude that for every projectively cofibrant object A ∈ Alg(A)C there exists a transfinite sequence

{Aβ}β≤α in Alg(A)C with the following properties:
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(a) The object A0 is initial in Alg(A)C.

(b) The object A is a retract of Aα.

(c) If λ ≤ α is a limit ordinal, then Aλ ' colim{Aβ}β<λ.

(d) For each β < α, there is a pushout diagram

T (X ′)
T (f) //

��

T (X)

��
Aβ // Aβ+1

where f is a projective cofibration between projectively cofibrant objects of AC.

We wish to prove that θC(A) is good. In view of (b), it will suffice to show that θC(Aα) is

good. We will prove a more general assertion: for every γ ≤ β ≤ α, the induced morphism

uγ,β : θC(Aγ)→ θC(Aβ) is good. The proof is by induction on β. If β = 0, then we are reduced to

proving that θC(A0) is good. This follows from (a) and (3). If β is a nonzero limit ordinal, then

the desired result follows from (c) and (1). It therefore suffices to treat the case where β = β′ + 1

is a successor ordinal. Moreover, we may suppose that γ = β′: if γ < β′, then we observe that

uγ,β = uβ′,β ◦ uγ,β′ and invoke (1), while if γ > β′, then γ = β and we are reduced to proving that

θC(Aβ) is good, which follows from the assertion that uβ′,β is good. We are now reduced to proving

the following:

(∗) Let

T (X ′)
T (f) //

��

T (X)

��
B′

v // B

be a pushout diagram in Alg(A)C, where f : X ′ → X is a projective cofibration between

projectively cofibrant objects of AC. If θC(B′) is good, then θC(v) is good.

To prove (∗), we set Y = θC(B) ∈ AC, Y ′ = θC(B′) ∈ AC. Let g : ∅ → Y ′ the unique morphism,

where ∅ denotes an initial object of AC. As in the proof of Proposition 4.1.8.3, Y can be identified

with the colimit of a sequence

Y (0) w1→ Y (1) w2→ . . .

where Y (0) = Y ′, and wk is a pushout of the morphism f (k) = g ∧ f ∧ g ∧ . . . ∧ f ∧ g, where the

factor f appears k times. In view of (1) and (2), it will suffice to prove that each f (k) is a good

morphism. Since Y ′ is good, we conclude immediately that g is good. It follows from (4) that f

is good. Repeated application of (7) allows us to deduce that f (k) is good, and to conclude the

proof.
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We are now ready to prove our main result.

Proof of Theorem 4.1.8.4. Consider the diagram

N(Alg(A)c)[W ′−1] //

G ))

Alg(N(A)[W−1])

G′vv
N(A)[W−1].

It will suffice to show that this diagram satisfies the hypotheses of Corollary 4.7.3.16:

(a) The ∞-categories N(Alg(A)c)[W ′−1] and Alg(N(Ac)[W−1]) admit geometric realizations of

simplicial objects. In fact, both of these∞-categories are presentable. For N(Alg(A)c)[W ′−1],

this follows from Proposition 1.3.4.22. For Alg(N(A)o), we first observe that N(Ac)[W−1] is

presentable (Proposition 1.3.4.22) and that the tensor product preserves colimits separately

in each variable (Lemma 4.1.8.8), and apply Corollary 3.2.3.5.

(b) The functors G and G′ admit left adjoints F and F ′. The existence of a left adjoint to G is

clear, and the existence of a left adjoint to G′ follows from Corollary 3.1.3.5.

(c) The functor G′ is conservative and preserves geometric realizations of simplicial objects. This

follows from Proposition 3.2.3.1 and Lemma 3.2.2.6.

(d) The functor G is conservative and preserves geometric realizations of simplicial objects. The

first assertion is immediate from the definition of the weak equivalences in Alg(A), and the

second follows from Lemma 4.1.8.13.

(e) The canonical map G′ ◦ F ′ → G ◦ F is an equivalence of functors. This follows from the

observation that both sides induce, on the level of homotopy categories, the free algebra

functor C 7→
∐
n≥0C

⊗n (Proposition 4.1.1.18).

Corollary 4.1.8.14. Let A be combinatorial model category. Assume that:

(i) The Cartesian product functor endows A with the structure of a monoidal model category.

(ii) The model category A is left proper and the class of cofibrations is generated by cofibrations

between cofibrant objects.

(iii) The Cartesian product functor on A satisfies the monoid axiom.

Let G : Alg(A)→ A∆op
be the functor which assigns to each algebra object of A the corresponding

monoid object. Then:
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(1) The functor G admits a left adjoint F .

(2) The functors F and G determine a Quillen adjunction between Alg(A) and A∆op
, where the

latter category is endowed with the projective model structure.

(3) The right derived functor RG is fully faithful, and its essential image in the homotopy category

of A∆op
consists of those simplicial objects A• of A which determine monoid objects of the

homotopy category hA.

Remark 4.1.8.15. Conditions (ii) and (iii) in the statement of Corollary 4.1.8.14 are automatic

if we assume that every object of A is cofibrant.

Proof. Assertion (1) follows from the adjoint functor theorem, since G is an accessible functor

which commutes with small limits. Assertion (2) is clear, since G preserves weak equivalences

and fibrations. To prove (3), it will suffice to show that the induced map of ∞-categories F ′ :

N((A∆op
)c)[W−1] → N(Alg(A)c)[W ′−1] admits a fully faithful right adjoint G′, whose essential

image is the collection of diagrams ∆op → A which determine monoid objects in the homotopy

category hA. Here W and W ′ denote the collections of weak equivalences between cofibrant objects

in A∆op
and Alg(A), respectively.

We have a homotopy commutative diagram

N(Alg(A)c)[W ′]−1]

p

��

// N((A∆op
)c)[W−1]

q

��
Alg(N(Ac)[V −1])

G′′// Fun(N(∆op),N(Ac)[V −1]),

where V is the collection of weak equivalences in Ac, the map p is the categorical equivalence

of Theorem 4.1.8.4, and q is the categorical equivalence supplied by Proposition 1.3.4.25. It will

therefore suffice to show that G′′ is fully faithful, and that its essential image is the class of monoid

objects of N(Ac)[W−1]. This follows immediately Propositions 4.1.2.10 and 2.4.2.5.

4.2 Left and Right Modules

Let C be a monoidal category with unit object 1 and let A be an associative algebra object of C.

A left A-module in C is an object M ∈ C equipped with an action map a : A⊗M → M such that

the following diagrams commute

A⊗A⊗M m⊗id //

id⊗a
��

A⊗M
a

��

1⊗M u⊗id //

##

A⊗M

a
{{

A⊗M a //M M,
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where m : A ⊗ A → A and u : 1 → A denote the multiplication and unit of A, respectively. The

collection of all left A-modules can be organized into a category LModA(C).

Our goal in this section is to generalize the theory of left modules to the ∞-categorical setting.

Recall that if C⊗ is a symmetric monoidal ∞-category (with underlying ∞-category C), then an

associative algebra object of C is defined to be a map of ∞-operads Assoc⊗ → C⊗ (Definition

4.1.1.10). In §4.2.1, we will introduce a larger ∞-operad LM⊗, which contains Assoc⊗ as a full

subcategory. If A : Assoc⊗ → C⊗ is an associative algebra object of C, then we can define a left

A-module to be a map of ∞-operads M : LM⊗ → C⊗ such that M |Assoc⊗ = A.

If A is an associative algebra of a symmetric monoidal∞-category C⊗, then the collection of all

left A-module objects of C can be organized into an∞-category, which we will denote by LModA(C).

In practice, it is often useful to know that A-module structures survive as we perform various

categorical constructions in C. In §4.2.3, we will describe several instances of this phenomenon, by

showing that (under some mild hypotheses) the ∞-category LModA(C) admits limits and colimits

which are preserved by the forgetful functor LModA(C) → C. To prove assertions of this type,

it will be useful to adopt an alternative definition of left module (Definition 4.2.2.10) which we

describe in §4.2.2, building on the ideas of §4.1.2.

The theory of left modules developed in this section can be regarded as a generalization of the

classical theory of left modules in the following sense: if C is a symmetric monoidal category and

A is an associative algebra object of C, then we have an equivalence of ∞-categories

θ : N(LModA(C))→ LModA(N(C)).

where the∞-category N(C) inherits a symmetric monoidal structure from C (see Example 2.1.2.21)

and we identify A with the corresponding associative algebra object of N(C). More generally, if

C is a fibrant simplicial category, then we can define a functor θ as indicated above (where N(C)

now denotes the homotopy coherent nerve of C), but it need not be an equivalence: objects of

LModA(N(C)) can be thought of as objects M ∈ C together with a coherently associative left

action of A on M , which cannot always be rectified to a strictly associative action of A on M . In

§4.3.3, we will see that this rectification can often be achieved when C is the underlying∞-category

of a monoidal model category; in these cases, θ is an equivalence when restricted to the subcategory

of cofibrant objects of LModA(C) (see Theorem 4.3.3.17 for a precise statement). The key to the

proof is a structure theorem for free modules (Proposition 4.2.4.2) which we will prove in §4.2.4,

using the general machinery developed in Chapter 3.

4.2.1 The ∞-Operad LM⊗

Our goal in this section is to lay the foundations for an ∞-categorical theory of left modules over

associative algebras. As a first step, we recast the classical theory of left modules using the language

of colored operads.

Definition 4.2.1.1. We define a colored operad LM as follows:
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(i) The set of objects of LM has two elements, which we will denote by a and m.

(ii) Let {Xi}i∈I be a finite collection of objects of LM and let Y be another object of LM. If

Y = a, then MulLM({Xi}, Y ) is the collection of all linear orderings of I provided that each

Xi = a, and is empty otherwise. If Y = m, then MulLM({Xi}, Y ) is the collection of all

linear orderings {i1 < · · · < in} on the set I such that Xin = m and Xij = a for j < n (by

convention, we agree that this set is empty if I is empty).

(iii) The composition law on LM is determined by the composition of linear orderings, as described

in Definition 4.1.1.1.

Remark 4.2.1.2. Restricting our attention to the object a ∈ LM, we obtain a sub-colored operad

of LM, which is isomorphic to the colored operad Assoc of Definition 4.1.1.1. We will often abuse

notation by identifying Assoc with this sub-colored operad of LM.

Remark 4.2.1.3. If C is a symmetric monoidal category and F : LM → C is a map of colored

operads, then F |Assoc is a map of colored operads Assoc → C, which we can identify with an

associative algebra object F (a) = A ∈ C (see Remark 4.1.1.2). Let M = F (m) ∈ C. The unique

operation φ ∈ MulLM({a,m},m) determines a map F (φ) : A ⊗M → M . It is not difficult to see

that F (φ) exhibit M as a left A-module.

Conversely, suppose we are given a map of colored operads F0 : Assoc → C corresponding to

an associative algebra object A of C, and a : A ⊗M → M be a map which exhibits M as a left

A-module. To every finite linearly ordered set I, we can associate a map

A⊗I ⊗M → A⊗M a→M,

where the first map is given by the associative algebra structure on A. This construction determines

a map of colored operads F : LM→ C extending F0, such that F (m) = M .

We can summarize the above discussion as follows: if F0 : Assoc → C classifies an associative

algebra object A ∈ C, then giving a left A-module is equivalent to giving a map of colored operads

F : LM→ C which extends F0.

Remark 4.2.1.4. Our notation for the objects of LM is motivated by Remark 4.2.1.3: a map of

colored operads from LM to a symmetric monoidal category C carries a to an associative algebra

in C, and m to a left module over that algebra.

Remark 4.2.1.5. Every operation φ ∈ MulLM({Xi}i∈I , Y ) determines a linear ordering on the

set I. Passage from φ to this linear ordering determines a map of colored operads LM→ Assoc.

This map can be understood as follows: for every symmetric monoidal category C and every map

of colored operads F : Assoc→ C, the composite map LM→ Assoc→ C corresponds to the pair

(A,M), where A is the associative algebra object of C determined by F and M = A, regarded as

a left module over itself.
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Notation 4.2.1.6. We let LM⊗ denote the category obtained by applying Construction 2.1.1.7

to the colored operad LM. We can describe this category more concretely as follows (see Remark

4.1.1.4):

(1) The objects of LM⊗ are pairs (〈n〉, S), where 〈n〉 is an object of Fin∗ and S is a subset of

〈n〉◦.

(2) A morphism from (〈n〉, S) to (〈n′〉, S′) in LM⊗ consists of a morphism α : 〈n〉 → 〈n′〉 in

Assoc⊗ satisfying the following conditions:

(i) The map α carries S ∪ {∗} into S′ ∪ {∗}.

(ii) If s′ ∈ S′, then α−1{s′} contains exactly one element of S, and that element is maximal

with respect to the linear ordering of α−1{s′}.

In terms of this description, the object a ∈ LM corresponds to the object (〈1〉, ∅) ∈ LM⊗, while

the object m ∈ LM corresponds to (〈1〉, 〈1〉◦).

We now introduce the ∞-categorical analogue of Definition 4.2.1.1.

Definition 4.2.1.7. We let LM⊗ denote the nerve of the category LM⊗. We regard LM⊗ as an

∞-operad via the forgetful functor LM⊗ → N(Fin∗) (see Example 2.1.1.21).

Remark 4.2.1.8. The underlying∞-category LM of LM⊗ is isomorphic to the discrete simplicial

set ∆0
∐

∆0 with two vertices, corresponding to the objects a,m ∈ LM.

Remark 4.2.1.9. The assertion that the forgetful functor LM⊗ → N(Fin∗) exhibits LM⊗ as an

∞-operad admits the following refinement: the map of colored operads LM → Assoc appearing

in Remark 4.2.1.5 induces a fibration of ∞-operads LM⊗ → Assoc⊗.

Remark 4.2.1.10. The inclusion of colored operads Assoc ↪→ LM of Remark 4.2.1.2 determines

a map Assoc⊗ ↪→ LM⊗, which is an isomorphism from Assoc⊗ onto the full subcategory of LM⊗

spanned by objects of the form (〈n〉, ∅). We will generally abuse notation and identify Assoc⊗ with

its image in LM⊗.

Notation 4.2.1.11. Let C⊗ → LM⊗ be a fibration of ∞-operads. We let C⊗a denote the fiber

product C⊗×LM⊗ Assoc⊗. We will denote the underlying ∞-category of C⊗a by Ca = C⊗×LM⊗{a}.
We let Cm denote the fiber product C⊗×LM⊗{m}.

Definition 4.2.1.12. Let C⊗ → Assoc⊗ be a fibration of ∞-operads and let M be an ∞-category.

A weak enrichment of M over C⊗ is a fibration of ∞-operads q : O⊗ → LM⊗ together with

isomorphisms O⊗a ' C⊗ and O⊗m ' M. In this situation, we will say that q exhibits M as weakly

enriched over C⊗.
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Definition 4.2.1.13. Let C⊗ → Assoc⊗ be a fibration of∞-operads, let M be an∞-category, and

let q : O⊗ → LM⊗ exhibit M as weakly enriched over C⊗. We let LMod(M) denote the∞-category

Alg/LM(O). We will refer to LMod(M) as the ∞-category of left module objects of M. Composition

with the inclusion Assoc⊗ ↪→ LM⊗ determines a categorical fibration

LMod(M) = Alg/LM(O)→ Alg/Assoc⊗(C) = Alg(C).

If A is an algebra object of C, we let LModA(M) denote the fiber LMod(M) ×Alg(C) {A}; we will

refer to LModA(M) as the ∞-category of left A-module objects of M.

Remark 4.2.1.14. The notation of Definition 4.2.1.13 is somewhat abusive: the ∞-category

LMod(M) depends not only on the ∞-category M, but also on the fibration of ∞-operads M⊗ →
LM⊗.

Remark 4.2.1.15. Let O⊗ → Assoc⊗ be a fibration of ∞-operads and let M be an ∞-category

which is weakly enriched over O⊗. We can think of the objects of LMod(M) as given by pairs

(A,M), where A is an associative algebra object of C and M is a left A-module in M.

Example 4.2.1.16. Let C⊗ → Assoc⊗ be a fibration of ∞-operads. Form the fiber product

O⊗ = C⊗×Assoc⊗ LM
⊗ using the fibration of ∞-operads LM⊗ → Assoc⊗ of Remark 4.2.1.9. Then

O⊗ exhibits the ∞-category C as weakly enriched over C⊗. We can therefore consider the ∞-

category LMod(C) = AlgLM /Assoc(C).

Example 4.2.1.17. Let C⊗ → Assoc⊗ be a fibration of∞-operads. Composition with the forgetful

functor LM⊗ → Assoc⊗ of Remark 4.2.1.9 determines a map s : Alg(C) → LMod(C), which is a

section of the projection map LMod(C) → Alg(C). This section can be interpreted as follows: for

every algebra object A ∈ Alg(C), the object s(A) ∈ LModA(C) can be identified with A, regarded

as a left module over itself. For this reason, we will often not distinguish in notation between A

and s(A).

Example 4.2.1.18. Let C⊗ → Assoc⊗ be a monoidal ∞-category. The objects of LMod(C) =

AlgLM /Assoc(C) are given by functors F : LM⊗ → C⊗. Then F |Assoc⊗ is an algebra object

of C, which we will identify with its underlying object F (a) = A ∈ C. We also have an object

F (m) = M ∈ C. As in Remark 4.2.1.3, we see that the unique operation φ ∈ MulLM({a,m},m)

determines a map a : A⊗M →M in C, which is well-defined up to homotopy. The requirement that

F be defined on the entirety of the∞-operad LM⊗ guarantees that the action map a is compatible

with the associative multiplication on A, up to coherent homotopy. In particular, if m : A⊗A→ A

and u : 1→ A denote the multiplication and unit map on A, then the diagrams

A⊗A⊗M m⊗id //

id⊗a
��

A⊗M
a

��

1⊗M u⊗id //

##

A⊗M

a
{{

A⊗M a //M M,
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commute up to homotopy.

Definition 4.2.1.19. Let q : C⊗ → LM⊗ be a fibration of ∞-operads. We will say that q exhibits

Cm as left-tensored over Ca if q is a coCartesian fibration of ∞-operads.

Remark 4.2.1.20. Let C⊗ → LM⊗ be a coCartesian fibration of ∞-operads. Then the induced

map C⊗a → Assoc⊗ is also a coCartesian fibration of ∞-operads, so that C⊗a is a monoidal ∞-

category.

Remark 4.2.1.21. Let q : C⊗ → LM⊗ be a coCartesian fibration of ∞-operads. Then q is

classified by a map χ : LM⊗ → Cat∞ which is an LM-monoid object of Cat∞ (Example 2.4.2.4).

We can identify χ with an object of MonLM(Cat∞) ' AlgLM(Cat∞) = LMod(Cat∞) (Proposition

2.4.2.5). More informally: q can be thought of as giving an associative algebra Ca in Cat∞, together

with a left module Cm over Ca. In particular, q determines an action map

⊗ : Ca×Cm → Cm

which is well-defined up to homotopy (and compatible with the monoidal structure on Ca up to

homotopy).

Notation 4.2.1.22. Let q : C⊗ → LM⊗ be a fibration of ∞-operads, so that q exhibits Cm as

weakly enriched over C⊗a . Given an ordered sequence of objects C1, . . . , Cn ∈ Ca and a pair of

objects M,N ∈ Cm, we let MapCm
({C1, . . . , Cn} ⊗ M,N) denote the summand of the mapping

space MulC({C1, . . . , Cn,M}, {N}) corresponding to the linear ordering {1 < 2 < · · · < n} of the

set 〈n〉.

Remark 4.2.1.23. In the special case n = 0, the mapping space MapCm
({C1, . . . , Cn} ×M,N)

can be identified with the usual mapping space MapCm
(M,N) in the ∞-category Cm.

Example 4.2.1.24. Suppose that q : C⊗ → LM⊗ is a coCartesian fibration of ∞-operads, so that

q determines tensor product functors

⊗ : Ca×Ca → Ca ⊗ : Ca×Cm → Cm .

Unwinding the definitions, we obtain a homotopy equivalence

MapCm
({C1, . . . , Cn} ⊗M,N) ' MapCm

(C1 ⊗ · · · ⊗ Cn ⊗M,N),

generalizing the homotopy equivalence of Remark 4.2.1.23 to the case n > 0.

Our next goal is to give a criterion for testing if a fibration of ∞-operads C⊗ → LM⊗ is a

coCartesian fibration.

Definition 4.2.1.25. Let q : C⊗ → LM⊗ be a fibration of ∞-operads. We will say that Cm is

pseudo-enriched over C⊗a if the following conditions are satisfied:
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(1) The fibration of ∞-operads C⊗a → Assoc⊗ is a coCartesian fibration (which we view as a

monoidal structure on the ∞-category Ca).

(2) For every sequence of objects C1, . . . , Cn ∈ Ca and every pair of objects M,N ∈ Cm, the

canonical map

MapCm
({C1 ⊗ · · · ⊗ Cn} ⊗M,N)→ MapCm

({C1, . . . , Cn} ⊗M,N)

is a homotopy equivalence.

Proposition 4.2.1.26. Let q : C⊗ → LM⊗ be a fibration of ∞-operads. Then q is a coCartesian

fibration if and only if the following conditions are satisfied:

(1) The map q exhibits Cm as pseudo-enriched over C⊗a .

(2) For every object M ∈ Cm and every object C ∈ Ca, there exists a morphism φ ∈ MapCm
({C}⊗

M,M ′) with the following universal property: for every pair of objects C ′ ∈ Ca, N ∈ Cm,

composition with φ induces a homotopy equivalence

MapCm
({C ′} ⊗M ′, N)→ MapCm

({C ′, C} ⊗M,N).

Remark 4.2.1.27. If the hypotheses of Proposition 4.2.1.26 are satisfied, then the object M ′

appearing in hypothesis (2) can be identified with C ⊗M , where ⊗ : Ca×Cm → Cm is the tensor

product functor of Remark 4.2.1.21.

Proof. The necessity of conditions (1) and (2) is obvious. We will prove the sufficiency. Assume

that conditions (1) and (2) are satisfied. Fix an object X ∈ C⊗ lying over an object (〈n〉, S) in

LM⊗, and let α : (〈n〉, S) → (〈n′′〉, S′′) be a morphism in LM⊗; we wish to show that α can be

lifted to a q-coCartesian morphism X → X ′′ in C⊗. We may assume without loss of generality that

α is active. We observe that α admits a canonical factorization

(〈n〉, S)
α′→ (〈n′〉, S′) α

′′
→ (〈n′′〉, S′′)

with the following properties:

(i) The map α′ induces a bijection S ' S′.

(ii) For each i ∈ 〈n′′〉◦, the inverse image α′′−1{i} contains exactly only element of 〈n′〉◦ − S′.

According to Proposition HTT.2.4.1.7 , it will suffice to show that α′ can be lifted to a q-coCartesian

morphism α′ : X → X ′ and that α′′ can be lifted to a q-coCartesian morphism α′′ : X ′ → X ′′. We

first use assumption (1) to choose a locally q-coCartesian morphism α′ : X → X ′. We claim that
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α′ is q-coCartesian. Using Proposition HTT.2.4.4.3 , we are reduced to proving that a product of

maps of the form

MapCm
({C1⊗· · ·⊗Ck1 , Ck1+1⊗· · ·⊗Ck2 , . . . , Ckn−1+1⊗· · ·⊗Ckn}⊗M,N)→ MapCm

({C1, . . . , Ckn}⊗M,N)

is a homotopy equivalence. This follows from (1), which implies that both sides are homotopy

equivalent to MapCm
({C1 ⊗ · · · ⊗ Ckn} ⊗M,N).

We next use (2) to deduce the existence of a locally q-coCartesian morphism α′′ lifting α′′. Once

again, we prove that α′′ is q-coCartesian using the criterion of Proposition HTT.2.4.4.3 . Unwinding

the definitions, we must show that if φ ∈ MapCm
({C}⊗M,M ′) is as in (3) and we are given a finite

sequence of objects C1, . . . , Cn ∈ Ca, then for each N ∈ Cm the induced map

ψ : MapCm
({C1, . . . , Cn} ⊗M ′, N)→ MapCm

({C1, . . . , Cn, C} ⊗M,N)

is a homotopy equivalence. This follows from our assumption on M ′, since condition (1) allows us

to identify ψ with the homotopy equivalence

MapCm
({C ′} ⊗M ′, N)→ MapCm

({C ′, C} ⊗M,N) ' MapCm
({C ′ ⊗ C} ⊗M,N),

where C ′ = C1 ⊗ · · · ⊗ Cn.

Motivated by the second hypothesis of Proposition 4.2.1.26, we introduce two variants of Defi-

nition 4.2.1.19.

Definition 4.2.1.28. Let q : C⊗ → LM⊗ be a fibration of ∞-operads which exhibits Cm as

pseudo-enriched over C⊗a .

Let M and N be objects of M = Cm. A morphism object for M and N is an object

MorM(M,N) ∈ Ca equipped with a map α ∈ MapCm
({MorM(M,N)} ⊗M,N) with the following

universal property: for every object C ∈ Ca, composition with α induces a homotopy equivalence

MapCa
(C,MorM(M,N))→ MapCm

({C} ⊗M,N).

Let N be an object of Cm and C an object of Ca. An exponential object is an object CN ∈
M together with a map β ∈ MapCm

({C} ⊗C N,N) with the following universal property: for

every pair of objects C ′ ∈ Ca and M ∈ Cm, composition with β induces a homotopy equivalence

MapCm
({C ′} ⊗M,CN)→ MapCm

({C,C ′} ⊗M,N).

We will say that q exhibits Cm as enriched over C⊗a if, for every pair of objects M,N ∈ Cm, there

exists a morphism object MorM(M,N) ∈ Ca. We will say that q exhibits Cm as cotensored over C⊗a
if, for every pair of objects C ∈ Ca, N ∈ Cm, there exists an exponential object CN ∈ Cm.

Remark 4.2.1.29. In the situation of Definition 4.2.1.28, a morphism object MorM(M,N) ∈ Ca is

determined up to canonical equivalence (provided that it exists). Similarly, an exponential object
CN is determined up to equivalence.
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Remark 4.2.1.30. Suppose that q : C⊗ → LM⊗ is a coCartesian fibration of ∞-operads. Then a

map β ∈ MapCm
({C} ⊗ CN,N) ' MapCm

(C ⊗ CN,N) exhibits CN as an exponential of N by C if

and only if, for every object M ∈ Cm, composition with β induces a homotopy equivalence

MapCm
(M,CN)→ MapCm

(C ⊗M,N).

Remark 4.2.1.31. Let q : C⊗ → LM⊗ be a fibration of ∞-operads which exhibits M = Cm as

enriched over C⊗a . Then the morphism objects MorM(M,N) ∈ Ca depend functorially on M,N ∈
Cm. To see this, we observe that we have a trifunctor (Ca×Cm)op × Cm → S, given informally

by the formula (C,M,N) 7→ MapCm
({C} ⊗M,N). We may identify this map with a bifunctor

e : Copm ×Cm → Fun(Copa , S). Since Cm is enriched over Ca, then the image of e is contained in the full

subcategory Fun′(Copa , S) ⊆ Fun(Copa , S) spanned by the essential image of the Yoneda embedding

j : Ca → Fun(Copa , S). Composing e with a homotopy inverse to j, we obtain the desired functor

Mor : Copm ×Cm → Ca .

Similarly, if Cm is cotensored over Ca, then formation of exponential objects (C,N) 7→CN can

be regarded as a functor Copa ×Cm → Cm .

Example 4.2.1.32. Let C be a monoidal ∞-category, and regard C as left-tensored over itself

(Example 4.2.1.16). Then C is enriched over itself if and only if it is right closed, and cotensored

over itself if and only if it is left closed (Definition 4.1.1.15).

The following result provides a large supply of examples of enriched and cotensored ∞-

categories:

Proposition 4.2.1.33. Let q : C⊗ → LM⊗ be a coCartesian fibration of ∞-operads. Assume that

Cm and Ca are presentable ∞-categories.

(1) If, for every C ∈ Ca, the functor C ⊗ • : Cm → Cm preserves small colimits, then Cm is

cotensored over Ca.

(2) If, for every M ∈ Cm, the functor • ⊗M : Ca → Cm preserves small colimits, then Cm is

enriched over Ca.

Proof. This follows immediately from the representability criterion of Proposition HTT.5.5.2.2

(together with Remark 4.2.1.30, in the case of assertion (1)).

Remark 4.2.1.34. A much larger class of examples of enriched ∞-categories can be obtained by

combining Proposition 4.2.1.33 with the following observation: if Cm is an ∞-category which is

enriched over a monoidal ∞-category C⊗a , then every full subcategory of Cm is also enriched over

C⊗a .

Remark 4.2.1.35. Let C⊗a be a monoidal ∞-category. The theory of Ca-enriched ∞-categories

is important for many applications of higher category theory. For example, it can be used as the
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basis for an inductive definition of the notion of (∞, n)-category for all integers n ≥ 0: an (∞, n)-

category is an ∞-category which is enriched over Cat(∞,n−1), where Cat(∞,n−1) is the ∞-category

of (∞, n− 1)-categories (endowed with the Cartesian symmetric monoidal structure).

Variant 4.2.1.36. By slightly modifying the definitions presented in this section, one can develop

an entirely parallel theory of right modules in the ∞-categorical setting. We define a category

RM⊗ as follows (compare with Notation 4.2.1.6):

(1) The objects of RM⊗ are pairs (〈n〉, S), where 〈n〉 is an object of Fin∗ and S is a subset of

〈n〉◦.

(2) A morphism from (〈n〉, S) to (〈n′〉, S′) in RM consists of a morphism α : 〈n〉 → 〈n′〉 in

Assoc⊗ satisfying the following conditions:

(i) The map α carries S ∪ {∗} into S′ ∪ {∗}.

(ii) If m′ ∈ S′, then α−1{s′} contains exactly one element of S, and that element is minimal

with respect to the linear ordering of α−1{s′}.

We let RM⊗ denote the ∞-operad N(RM⊗). We let RM denote the underlying ∞-category of

RM⊗, which is isomorphic to the discrete simplicial set {a,m}. Given a fibration of∞-operads C⊗ →
RM⊗, we let RMod(Cm) denote the ∞-category Alg/RM(C); we will refer to RMod(Cm) as the ∞-

category of right module objects of Cm. There is an evident forgetful functor RMod(Cm)→ Alg(Ca).

For every algebra object A ∈ Ca, we let RModA(Cm) denote the fiber RMod(Cm) ×Alg(Ca) {A};
we refer to RModA(Cm) as the ∞-category of right A-module objects of Cm. All of our discussion

concerning left modules can be adapted to the case of right modules without any essential changes.

Remark 4.2.1.37. If O⊗ → Assoc⊗ is a fibration of∞-operads, then the theory of left modules in

O⊗ is equivalent to the theory of right O⊗rev modules, where O⊗rev is the reverse of O⊗; see Remark

4.1.1.7.

4.2.2 Simplicial Models for Algebras and Modules

The∞-operad LM⊗ of Definition 4.2.1.7 gives rise to a good theory of left modules over associative

algebras in the ∞-categorical setting. However, for many purposes it is inconvenient to work with

the entire simplicial set LM⊗. Our goal in this section is to describe an alternative approach to

the theory of left modules, which based on the ideas introduced in §4.1.2. In §4.2.3, we will apply

these ideas to the study of limits and colimits in ∞-categories of left modules.

We begin by studying left modules in the category of sets. Let M be a monoid with multipli-

cation map m : M ×M → M and unit element 1, and let X be a set equipped with a left action
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of M : that is, there is a map of sets M ×X → X such that the diagrams

M ×M ×X m⊗id //

id⊗a
��

M ⊗X

a

��

{1} ×X u⊗id //

##

M ⊗X

a
{{

M ⊗X a // X X

commute. As explained in Construction 4.1.2.4, we can associate to the monoid M a category DM

with a single object E, such that HomDM (E,E) = M and composition of morphisms in DM is given

by the multiplication m. Unwinding the definitions, we see that giving a left action of M on a set X

is equivalent to giving a functor F : DM → Set such that F (E) = X; the action of M on X is then

encoded by the induced map M = HomDM (E,E) → HomSet(X,X). Applying the Grothendieck

construction to the functor F (see §HTT.2.1.1 ), we can obtain a new category DM , whose objects

are pairs (e, x) where e is an object of DM (so that e = E, since DM has a unique object) and x

is an element of F (e) = F (E) = X. Finally, we can take the nerve of the category DM to obtain a

simplicial set, which we will denote by BXM . The forgetful functor DM → DM induces a map of

simplicial sets BXM → BM , where BM is the simplicial set described in Construction 4.1.2.4.

Remark 4.2.2.1. Unwinding the definitions, we can describe the simplicial set BXM concretely

as follows. The collection of n-simplices HomSet∆
(∆n, BXM) is isomorphic to Mn × X. Under

these isomorphisms, the face and degeneracy maps are given by the formulae

di(m1, . . . ,mn, x) =


(m2, . . . ,mn, x) if i = 0

(m1, . . . ,mimi+1,mi+2, . . . ,mn, x) if 0 < i < n

(m1, . . . ,mn−1,mnx) if i = n.

si(m1, . . . ,mn, x) = (m1, . . . ,mi, 1,mi+1, . . . ,mn, x).

Each step in the construction of BXM is reversible: the category DM can be recovered as the

homotopy category of BXM ' N(DM ), the functor F : DM → Set can be recovered from the

forgetful functor DM → DM , and F encodes the left action of M on X. We can summarize the

situation as follows: the construction X 7→ BXM determines a fully faithful embedding from the

category of left M -modules to the category of simplicial sets mapping to BM . Moreover, it is easy

to describe the essential image of this functor: given a map of simplicial sets K → BM , there

exists a left action of M on a set X and an isomorphism K ' BXM if and only if, for every integer

n ≥ 0, the inclusion {n} ↪→ [n] induces a bijection

HomSet∆
(∆n,K)→ HomSet∆

(∆n, BM)×HomSet∆
(∆0,K);

in this case, X can be recovered as the set of vertices of K.

Motivated by the above discussion, we introduce the definition of a left action of a monoid in

an arbitrary ∞-category.
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Definition 4.2.2.2. Let C be an ∞-category. A left action object of C is a natural transformation

α : M ′ →M in Fun(N(∆)op,C) with the following properties:

(i) The simplicial object M ∈ Fun(N(∆)op,C) is a monoid object of C, in the sense of Definition

4.1.2.5.

(ii) For each integer n ≥ 0, the mapM ′([n])→M([n]) and the mapM ′([n])→M ′({n}) 'M ′([0])

exhibit M ′([n]) as a product of M ′([0]) with M([n]) in C.

We let LMon(C) denote the full subcategory of Fun(N(∆)op × ∆1,C) spanned by the left action

objects of C.

Remark 4.2.2.3. Let α : M ′ → M be a left action object of an ∞-category C. Following the

abuse of Remark 4.1.2.6, we will sometimes say that M([1]) ∈ C is the underlying monoid object

of α and that M ′([0]) ∈ C is equipped with a left action of M([1]). This left action is encoded by

the map

M([1])×M ′([0]) = M([1])×M ′({1}) ∼←M ′([1])→M ′({0}) = M ′([0]).

Example 4.2.2.4. Let T : N(∆)op → N(∆)op be the translation functor given by [n] 7→ [n] ? [0] '
[n+1]. The inclusion maps [n]→ [n]? [0] determine a natural transformation T → id. This natural

transformation gives a map Fun(N(∆)op,C) → Fun(N(∆)op × ∆1,C), which carries Mon(C) into

LMon(C). We can summarize the situation informally as follows: if M is any monoid object of C,

then there is a natural left action of M on itself.

Notation 4.2.2.5. Let C be an ∞-category. By construction, there is a forgetful functor

LMon(C) → Mon(C), which carries a natural transformation α : M ′ → M to the simplicial

object M ∈ Fun(N(∆)op,C). If M ∈ Mon(C) is an object, then we will denote the fiber product

LMon(C)×Mon(C) {M} by LMonM (C).

Our first goal in this section is to prove an analogue of Proposition 4.1.2.10, which compares

left action objects of C with LM⊗-monoid objects of C (Proposition 4.2.2.9 below). To formulate

this result, we need a slightly more elaborate version of Construction 4.1.2.9.

Construction 4.2.2.6. For every finite linearly ordered set [n], let LCut0([n]) denote the collection

of all downward-closed subsets S ⊆ [n]. There is a canonical bijection 〈n+ 1〉 ' LCut0([n]), which

carries the base point ∗ ∈ 〈n+ 1〉 to the empty subset ∅ ⊂ [n] and an integer i ∈ 〈n+ 1〉◦ to

the subset {j ∈ [n] : j < i}. In what follows, we will identify LCut0([n]) with 〈n+ 1〉 under this

bijection.

The construction [n] 7→ (LCut0([n]), {[n]}) ' (〈n+ 1〉, {n + 1}) determines a functor LCut :

∆op → LM⊗. Namely, if we are given a map α : [m] → [n] in ∆, there is an induced map

α′ : LCut0([n]) → LCut0([m]), given by the formula α′(S) = α−1S. The map α′ preserves base

points (since the inverse image of an empty set is empty). Moreover, for each ∅ 6= S ∈ LCut0([m]),
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the inverse image α′−1{S} ⊆ LCut0([n]) is linearly ordered by inclusion (under the bijection

LCut0([n]) ' 〈n+ 1〉, this linear ordering is induced by the usual ordering of 〈n+ 1〉◦ = {1 <

· · · < n+ 1}).
More explicitly, the functor LCut can be described as follows:

(1) For each n ≥ 0, we have Cut([n]) = (〈n+ 1〉, {n+ 1}).

(2) Given a morphism α : [n]→ [m] in ∆, the associated morphism Cut(α) : 〈m+ 1〉 → 〈n+ 1〉
is given by the formula

Cut(α)(i) =


j if (∃j)[1 ≤ j ≤ n ∧ α(j − 1) < i ≤ α(j)]

n+ 1 if α(n) < i

∗ otherwise.

for i ∈ 〈m+ 1〉◦, where we endow each Cut(α)−1{j} with the linear ordering induced by its

inclusion into 〈n〉◦.

Passing to nerves, the functor LCut determines a map of simplicial sets N(∆)op → LM⊗, which

we will also denote by LCut.

Remark 4.2.2.7. The functor LCut0 of Construction 4.2.2.6 is almost identical to the functor Cut

of Construction 4.1.2.9. Both constructions assign to an object [n] ∈ ∆ a set which parametrizes

decompositions [n] ' S
∐
T , where S is a downward closed subset of [n] and T its complement.

The only difference is that the decompositions [n] ' [n]
∐
∅ and [n] ' ∅

∐
[n] are considered to

represent the same element of Cut([n]) ' 〈n〉 (namely, the base point of 〈n〉), but different elements

of LCut0([n]) ' 〈n+ 1〉 (the decomposition [n] ' [n]
∐
∅ corresponds to the element n+1 ∈ 〈n+ 1〉,

while [n] ' ∅
∐

[n] corresponds to the base point ∗ ∈ 〈n+ 1〉).

Remark 4.2.2.8. Let us identify Assoc⊗ with the full subcategory of LM⊗ spanned by objects of

the form (〈n〉, T ) where T is empty, as in Remark 4.2.1.10. We can therefore think of the functor

Cut of Construction 4.1.2.9 as a map from N(∆)op into LM⊗. For each [n] ∈∆, there is an evident

map of sets θ : LCut0([n])→ LCut([n]), which carries a subset S ⊆ [n] to the equivalence relation

∼, where i ∼ j if either i, j ∈ S or i, j /∈ S. More concretely, θ : 〈n+ 1〉 → 〈n〉 is given by the

formula

θ(k) =

{
∗ if k = n+ 1

k otherwise.

This construction determines a morphism γ : LCut→ Cut in the ∞-category Fun(N(∆)op,LM⊗).

When convenient, we will identify γ with a map N(∆)op × ∆1 → LM⊗. It is not difficult to see

that this map is an approximation to the ∞-operad LM⊗ (see the proof of Proposition 4.1.2.11).

Combining Remark 4.2.2.8 with Proposition 2.4.2.11, we obtain the following result:
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Proposition 4.2.2.9. Let C be an ∞-category finite admits finite products. Composition with the

functor γ : N(∆)op ×∆1 → LM⊗ induces an equivalence of ∞-categories

MonLM(C)→ LMon(C).

Combining Proposition 4.2.2.9 with Proposition 2.4.2.5, we obtain an efficient description of

left module objects in an arbitrary ∞-category C which is equipped with a Cartesian symmetric

monoidal structure. Our goal for the remainder of this section is to obtain a generalization of this

description which applies to a general fibration of generalized ∞-operads O⊗ → LM⊗. First, we

need to introduce the analogue of Definition 4.2.2.2.

Definition 4.2.2.10. Let q : O⊗ → LM⊗ be a fibration of ∞-operads, so that q exhibits the

∞-category M = Om as weakly enriched over O⊗a . Let γ : N(∆)op ×∆1 → LM⊗ be as in Remark

4.2.2.8. We let LModA∞(M) denote the full subcategory of FunLM⊗(N(∆)op×∆1,O⊗) spanned by

those maps f : N(∆)op ×∆1 → O⊗ which satisfy the following conditions:

(1) The restriction f |(N(∆)op × {1}) belongs to AlgA∞(C) ⊆ FunAssoc⊗(N(∆)op,C⊗) (see Defini-

tion 4.1.3.16).

(2) If α : [m] → [n] is an inert morphism in ∆ such that α(m) = n, then the induced map

f([n], 0)→ f([m], 0) is an inert morphism in O⊗.

(3) For each [n] ∈∆, the induced map f([n], 0)→ f([n], 1) is an inert morphism in O⊗.

We will refer to LModA∞(M) as the ∞-category of A∞-module objects of M.

Note that restriction along the inclusion N(∆)op × {1} ↪→ N(∆)op ×∆1 determines a forgetful

functor LModA∞(M) → AlgA∞(Oa). If A is an A∞-algebra object of O⊗a , we let LModA∞A (M)

denote the fiber product

LModA∞(M)×AlgA∞ (Oa) {A}.

We will refer to LModA∞A (M) as the ∞-category of left A∞-modules over A in M.

Variant 4.2.2.11. Let γ : N(∆)op × ∆1 → LM⊗ be the approximation to the ∞-operad LM⊗

described in Remark 4.2.2.8. The map γ satisfies the hypotheses of Theorem 2.3.3.26, so that

composition with γ induces a left Quillen equivalence

(POp∞)/(N(∆)op×∆1)\ → (POp∞)/LM⊗,\ .

Given a fibrous map p : M� → N(∆)op × ∆1, then O� = M�×∆1{1} is a planar ∞-operad.

We will denote the fiber M�×N(∆)op×∆1{([0], 0)} by M, and say that p exhibits the ∞-category

M as weakly enriched over the planar ∞-operad O�. If p is a coCartesian fibration, then O� is

a A∞-monoidal ∞-category; in this case, we will say that p exhibits M as left-tensored over the
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A∞-monoidal ∞-category O�. Note that this terminology is consistent with that of Definitions

4.2.1.12 and 4.2.1.19.

Suppose that M� → N(∆)op × ∆1 exhibits M = M�
[0],0 as weakly enriched over the

planar ∞-operad C� = M�×∆1{1}. We let LModA∞(M) denote the full subcategory of

FunN(∆)op×∆1(N(∆)op×∆1,M�) spanned by those functors which preserve inert morphisms. There

is an evident forgetful functor LModA∞(M) → AlgA∞(C). For each object A ∈ ∆Alg(C), we will

denote the fiber product LModA∞(M)×AlgA∞ (C){A} by LModA∞A (M). We note that these notations

are consistent with those of Definition 4.2.2.10, in the case where M� = O⊗×LM⊗(N(∆)op ×∆1)

for some fibration of ∞-operads O⊗ → LM⊗.

Combining Remark 4.2.2.8 with Theorem 2.3.3.23, we obtain the following counterpart of Propo-

sition 4.2.2.9:

Proposition 4.2.2.12. Let p : O⊗ → LM⊗ be a fibration of ∞-operads and let M = Om. Then

composition with the functor γ : N(∆)op ×∆1 → LM⊗ of Remark 4.2.2.8 induces an equivalence

of ∞-categories Alg/LM(O)→ LModA∞(M).

Let M be as in Remark 4.2.2.26, so that the functor γ of Remark 4.2.2.8 defines a map of

∞-preoperads γ : (N(∆)op ×∆1,M)→ LM⊗,\. Note that Proposition 4.2.2.12 is equivalent to the

statement that γ is weak equivalence with respect to the∞-operadic model structure of Proposition

2.1.4.6. For later use, we establish a stronger version of Proposition 4.2.2.12:

Proposition 4.2.2.13. Let (N(∆)op × ∆1,M) be the marked simplicial set described in Remark

4.2.2.26. Then the map γ : (N(∆)op ×∆1,M) → LM⊗,\ is a weak equivalence with respect to the

generalized ∞-operadic model structure described in Remark 2.3.2.4.

The proof is a mild variation on the proof of Theorem 2.3.3.23, and will be given at the end of

this section.

Remark 4.2.2.14. Let p : O⊗ → LM⊗ be a fibration of ∞-operads, which exhibits the ∞-

category M = Om as weakly enriched over O⊗a . We will generally abuse terminology by referring to

LModA∞(M) as the ∞-category of left module objects of M. Though this terminology is in conflict

with that of Definition 4.2.1.13, our abuse is justified by Proposition 4.2.2.12.

Notation 4.2.2.15. Let C⊗ → Assoc⊗ be a fibration of∞-operads and M be an∞-category which

is weakly enriched over C⊗. By construction, the inclusion N(∆)op×{1} ↪→ N(∆)op×∆1 induces a

forgetful functor LModA∞(M)→ AlgA∞(C). If A ∈ AlgA∞(C), we let LModA∞A (M) denote the fiber

LModA∞(M)×AlgA∞ (C) {A}. Following the abuse of Remark 4.2.2.14, we will refer to LModA∞A (M)

as the ∞-category of left A-module objects of M.
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Let C⊗ → Assoc⊗ be a fibration of∞-operads and M be an∞-category which is weakly enriched

over C⊗. The functor LMod(M)→ LModA∞(M) fits into a commutative diagram

LMod(M) //

��

LModA∞(M)

��
Alg(C) // AlgA∞(C).

Combining Propositions 4.2.2.12 and 4.1.3.19, we obtain:

Corollary 4.2.2.16. Let C⊗ → Assoc⊗ be a fibration of ∞-operads and let M be an ∞-category

which is weakly enriched over C⊗. Let A ∈ Alg(C) be an algebra object of C and let A′ be its

image in AlgA∞(C). Then the functor γ of Remark 4.2.2.8 induces an equivalence of ∞-categories

LModA∞A (M)→ LModA(M).

The remainder of this section is devoted to introducing some notation which will facilitate the

application of Proposition 4.2.2.12.

Notation 4.2.2.17. Let q : O⊗ → LM⊗ be a fibration of ∞-operads, so that q exhibits the ∞-

category M = Om as weakly enriched over O⊗a . We let Cut : N(∆)op → Assoc⊗ be the functor of

Construction 4.1.2.9, and C� denote the fiber product C⊗×Assoc⊗ N(∆)op.

We define a simplicial set M
�

together with a map M
� → N(∆)op so that the following

universal property is satisfied: for every simplicial set K equipped with a map K → N(∆)op, there

is a canonical bijection

Hom(Set∆)/N(∆)op
(K,M

�
) ' Hom(Set∆)/LM⊗

(K ×∆1,O⊗).

Here we regard K ×∆1 as an object of (Set∆)/LM⊗ via the map

K ×∆1 → N(∆)op ×∆1 γ→ LM⊗,

where γ is the functor described in Remark 4.2.2.8.

Unwinding the definitions, we see that a vertex of M
�

lying over an object [n] ∈∆op corresponds

to a morphism α in O⊗ such that q(α) is the map θ : (〈n+ 1〉, {n + 1}) → (〈n〉, ∅) in LM⊗ which

appears in Remark 4.2.2.8. We let M� denote the full simplicial subset of M
�

spanned by those

vertices for which α is inert.

Remark 4.2.2.18. Let q : O⊗ → LM⊗ be a fibration of ∞-operads, so that q exhibits the

∞-category M = Om as weakly enriched over C⊗ = O⊗a . Using Proposition HTT.4.3.2.15 , we

deduce that composition with the inclusion {0} ↪→ ∆1 induces a trivial Kan fibration M� →
O⊗×LM⊗ N(∆)op, where N(∆)op maps to LM⊗ via the functor LCut of Construction 4.2.2.6. In

particular, the fiber of M� over an object [n] ∈∆op is canonically equivalent to M×Cn.
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Remark 4.2.2.19. Let C⊗ → Assoc⊗ be a fibration of ∞-operads and let M be an ∞-category

which is weakly enriched over C⊗. We have categorical fibrations

M� q→ C� p→ N(∆)op;

in particular, both M� and C� are ∞-categories.

Let us identify AlgA∞(C) with a full subcategory of the ∞-category FunN(∆)op(N(∆)op,C�) of

sections of p, and LModA∞(M) with a full subcategory of the ∞-category FunN(∆)op(N(∆)op,M�)

of sections of p◦q. If A ∈ AlgA∞(C), then A determines a functor N(∆)op×C�, and we can identify

LModA(M) with a full subcategory of the ∞-category FunN(∆)op(N(∆)op,M�×C� N(∆)op)).

Note that an object F ∈ FunN(∆)op(N(∆)op,M�) belongs to LModA∞(M) if and only if the

following conditions are satisfied:

(1′) The image of F ∈ FunN(∆)op(N(∆)op,C�) belongs to AlgA∞(C).

(2′) If α : [m] → [n] is an inert morphism in ∆ such that α(m) = n, then the induced map

f([n])→ f([m]) is a (p ◦ q)-coCartesian morphism in M�.

We now record a few simple properties of the forgetful map M� → C� which will be useful

later.

Lemma 4.2.2.20. Suppose we are given a coCartesian fibration of ∞-operads O⊗ → LM⊗, which

exhibits M = Om as left-tensored over the monoidal ∞-category C⊗ = O⊗a . Then the associated

functor M� → C� is a locally coCartesian fibration.

Proof. For each n ≥ 0, the map p[n] : M�
[n] → C�

[n] is equivalent to the projection C�
[n]×M → C�

[n]

(see Remark 4.2.2.18). The desired result now follows from Proposition HTT.2.4.2.11 .

Remark 4.2.2.21. In the situation of Lemma 4.2.2.20, suppose we are given a morphism α :

C → D in C�, covering a map α : [m] → [n] in ∆. We can identify C with an n-tuple of objects

(C1, . . . , Cn) ∈ Cn, D with an m-tuple (D1, . . . , Dm) ∈ Cm, and α with a collection of morphisms

Cα(i−1)+1 ⊗ . . . ⊗ Cα(i) → Di. The fibers of the map p : M� → C� over the objects C and D are

both canonically equivalent to M, and the induced functor α! : M→M is given (up to equivalence)

by the formula M 7→ Cα(m)+1 ⊗ . . .⊗ Cn ⊗M.

Remark 4.2.2.22. Let p : M� → C� be as in Lemma 4.2.2.20, and suppose given a commutative

triangle

M ′

g

""
M

f
==

h //M ′′
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in M�, covering a triangle

[m]

α
~~

[n] [k]γ
oo

β

``

in the category ∆. Suppose furthermore that f and g are locally p-coCartesian, and that α induces

a bijection

{i ∈ [m] : β(k) < i} ' {j ∈ [n] : γ(k) < j ≤ α(m)}

(so that, in particular, β(k) < i ≤ m implies γ(k) < α(i)). Then the description given in Remark

4.2.2.21 implies that h is also locally p-coCartesian.

Remark 4.2.2.23. Let p : M� → C� be as in Lemma 4.2.2.20, and let α be a morphism in M�

which covers a map α : [m]→ [n] in ∆. Then:

(1) Suppose that α(m) = n and α is locally p-Cartesian. Then α is p-Cartesian.

(2) Suppose that m ≤ n, that α : [m] → [n] is the canonical inclusion, and that α is locally

p-coCartesian. Then α is p-coCartesian.

Assertion (1) follows from Remark 4.2.2.22 and Lemma HTT.5.2.2.3 , while (2) follows from Remark

4.2.2.22 and Lemma HTT.2.4.2.7 .

Proposition 4.2.2.24. Suppose we are given a coCartesian fibration of ∞-operads O⊗ → LM⊗,

which exhibits M = Om as left-tensored over the monoidal ∞-category C⊗ = O⊗a . Let α be a

morphism in M� which covers a map α : [m]→ [n] in ∆. Then:

(1) Suppose that α(m) = n and α is locally p-Cartesian. Then α is p-Cartesian.

(2) Suppose that m ≤ n, that α : [m] → [n] is the canonical inclusion, and that α is locally

p-coCartesian. Then α is p-coCartesian.

Proof. Assertion (1) follows from Remark 4.2.2.22 and Lemma HTT.5.2.2.3 , while (2) follows from

Remark 4.2.2.22 and Lemma HTT.2.4.2.7 .

Remark 4.2.2.25. Let q : O⊗ → LM⊗ be a coCartesian fibration of ∞-operads. Then q is

classified by a functor LM⊗ → Cat∞ which is an LM-monoid object of Cat∞ (Example 2.4.2.4).

According to Proposition 4.2.2.9, this LM-monoid object is determined up to equivalence by the

induced map N(∆)op×∆1 → Cat∞, which we can view as a morphism in Fun(N(∆)op,Cat∞). This

morphism classifies the map M� → C� of Notation 4.2.2.17. In other words, the data contained in

the coCartesian fibration of ∞-operads q : O⊗ → LM⊗ is equivalent to the data contained in the

diagram

M� → C� → N(∆)op;

either can be reconstructed from the other, up to equivalence.
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We now turn to the proof of Proposition 4.2.2.13.

Remark 4.2.2.26. Let γ : N(∆)op ×∆1 → LM⊗ be as in Remark 4.2.2.8, and let M denote the

collection of all morphisms f in N(∆)op×∆1 such that γ(f) is an inert morphism in LM⊗. We note

that if q : C⊗ → LM⊗ is a fibration of ∞-operads, then a functor F ∈ FunLM⊗(N(∆)op ×∆1,C⊗)

belongs to LModA∞(Cm) if and only if F carries each morphism in M to an inert morphism in

C⊗. The “if” direction is obvious. For the converse, we note that F ∈ LModA∞(Cm) and let

α : ([m], i) → ([n], j) be a morphism in N(∆)op ×∆1 be such that γ(α) is inert. If i = j, then it

follows immediately from the definition that F (α) is inert. If i 6= j, then α factors as a composition

([m], 0)
α′→ ([n], 0)

α′′→ ([n], 1),

where F (α′) and F (α′′) are inert, so that F (α) is also inert.

Proof of Proposition 4.2.2.13. Let q : O⊗ → N(Fin∗) be a generalized ∞-operad and let

Fun′N(Fin∗)
(N(∆)op ×∆1,O⊗) be the full subcategory of FunN(Fin∗)(N(∆)op ×∆1,O⊗) spanned by

those functors which carry every morphism in M to an inert morphism in O⊗. We wish to prove

that composition with the map γ : N(∆)op ×∆1 → LM⊗ induces an equivalence of ∞-categories

θ : AlgLM(O) → Fun′N(Fin∗)
(N(∆)op × ∆1,O⊗). Using Propositions 2.3.2.9 and 2.3.2.11, we may

assume that q factors as a composition

O⊗
q′→ C×N(Fin∗)→ N(Fin∗),

where q′ exhibits O⊗ as a C-family of ∞-operads. Let q′0 : O⊗ → C be the composition of q′ with

the projection to C.

Let I denote the categorical mapping cylinder of the functor ∆op×[1] → LM⊗ determined by

the map γ appearing in Remark 4.2.2.8. More precisely, we can describe I as follows:

(1) An object of I is either an object of ∆op×[1] or an object of LM.

(2) Morphisms in I are give by the formulas

HomI(([m], i), ([n], j)) = Hom∆op×[1](([m], i), ([n], j))

HomI((〈m〉, S), (〈n〉, T )) = HomLM⊗((〈m〉, S), (〈n〉, T ))

HomI((〈m〉, S), ([n], 0)) = HomLM((〈m〉, S),LCut([n]))

HomI((〈m〉, S), ([n], 1)) = HomLM((〈m〉, S),Cut([n]))

HomI(([n], i), (〈m〉, T )) = ∅.

There is a canonical retraction r from I onto LM⊗, given on objects of ∆op×[1] by the formula

r([n], 0) = LCut([n]), r([n], 1) = Cut([n]).

We let X denote the full subcategory of FunN(Fin∗)(N(I),O⊗) spanned by those functors f :

N(I)→ O⊗ which satisfy the following codnitions:
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(i) For every object ([n], i) ∈∆op×[1], the functor f carries the canonical map r([n], i)→ ([n], i)

in I to an equivalence in O⊗.

(ii) The restriction f |LM⊗ is carries inert morphisms in LM⊗ to inert morphisms in O⊗.

Note that conditions (i) and (ii) immediately imply the following:

(iii) The restriction f |(N(∆)op ×∆1) belongs to Fun′N(Fin∗)
(N(∆)op ×∆1,O⊗).

Condition (i) is equivalent to the requirement that f is a q-left Kan extension of f |LM⊗. Since

every functor f0 ∈ FunN(Fin∗)(LM
⊗,O⊗) admits a q-left Kan extension f ∈ FunN(Fin∗)(N(I),O⊗)

(given, for example, by f0 ◦ r), Proposition HTT.4.3.2.15 implies that the restriction map p :

X → AlgLM(O) is a trivial Kan fibration. The map θ is the composition of a section to p (given

by composition with r) with the restriction map p′ : X → Fun′N(Fin∗)
(N(∆)op × ∆1,O⊗). It will

therefore suffice to show that p′ is a trivialKan fibration. In view of Proposition HTT.4.3.2.15 , this

will follow from the following pair of assertions:

(a) Every f0 ∈ Fun′N(Fin∗)
(N(∆)op×∆1,O⊗) admits a q-right Kan extension f ∈ FunN(Fin∗)(N(I),O⊗).

(b) Given f ∈ FunN(Fin∗)(N(I),O⊗) satisfying (iii), the functor f is a q-right Kan extension of

f0 = f |(N(∆)op ×∆1) if and only if it also satisfies conditions (i) and (ii).

We first prove (a). Fix f0 ∈ Fun′N(Fin∗)
(N(∆)op×∆1,O⊗). Then q′0 ◦ f0 carries every morphism

of M to an equivalence in C. Using the two-out-of-three property, we deduce that q′0 ◦ f0 carries

every morphism in N(∆)op×∆1 to an equivalence in C. Since N(∆)op×∆1 is a weakly contractible

simplicial set, we may assume without loss of generality that q′0 ◦ f0 factors as a composition

N(∆)op ×∆1 → {C} ↪→ C

for some object C ∈ C; that is, we may regard f0 as a functor N(∆)op × ∆1 → O⊗C , where O⊗C
denotes the ∞-operad O⊗×C{C}. Let qC : O⊗C → N(Fin∗) denote the restriction of q to O⊗C .

Fix an object (〈n〉, S) ∈ LM⊗. Let J denote the category (∆op×[1]) ×I I(〈n〉,S)/, and let g

denote the composition N(J) → N(∆)op ×∆1 f0→ O⊗ . According to Lemma HTT.4.3.2.13 , it will

suffice to show that g admits a q-limit in O⊗ (compatible with the evident map N(J)/ → N(Fin∗)).

The objects of J can be identified with morphisms α : (〈n〉, S) → r([m], i) in LM⊗. Let J0 ⊆ J

denote the full subcategory spanned by those objects for which α is inert. The inclusion J0 ⊆ J

has a right adjoint and therefore induces a right cofinal map N(J0) → N(J). Consequently, it

will suffice to show that g0 = g|N(J0) admits a q-limit in O⊗ (compatible with the evident map

N(J0)/ → N(Fin∗)).

Let J1 denote the full subcategory of J0 spanned by the morphism which are either of the

form ρj : (〈n〉, S) → r([0], 0) where j ∈ S, ρj : (〈n〉, S) → r([1], 1) when j /∈ S, or (〈n〉, S) →
r([0], 1) ' (〈0〉, ∅). Let g1 = g0|N(J1). We note that N(J1) is weakly contractible. Since f0 ∈
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Fun′N(Fin∗)
(N(∆)op × ∆1,O⊗), g1 carries every morphism in N(J1) to an inert morphism in O⊗.

We first show that g1 can be extended to a qC-limit diagram in O⊗C (compatible with the map

N(J1)/ → N(Fin∗)).

Let J2 be the full subcategory of J1 obtained by removing objects of the form (〈n〉, S)→ r([0], 1).

Note that J2 is isomorphic to the discrete category with object set {1, 2, . . . , n}. Since O⊗C is an

∞-operad, the functor g2 = g1|N(J2) can be extended to a qC-limit diagram g2 (lying over the

evident map N(J2)/ → N(Fin∗)). Since q′ exhibits O⊗ as a C-family of ∞-operads, g2 is also a

q′-limit diagram. Note that g1 is a qC-right Kan extension of g2, so (by Lemma HTT.4.3.2.7 ), we

can extend g2 to a qC-limit diagram g2 : N(J2)/ → O⊗C . Since g1 is also a q′-right Kan extension of

g2, g2 is also a q′-limit diagram. We claim that g2 is also a q-limit diagram. In view of Proposition

HTT.4.3.1.5 , it will suffice to show that q′ ◦ g2 is a q′′-limit diagram in C×N(Fin∗). Equivalently,

we must show that the constant functor q′0 ◦ g2 is a limit diagram in C, which follows from the fact

that the simplicial set N(J1) is weakly contractible (Corollary HTT.4.4.4.10 ). This completes the

proof of (a). Moreover, the proof shows that an extension f : N(I)→ O⊗ is a q-right Kan extension

of f0 if and only if it satisfies the following condition:

(i′) For every object (〈n〉, S) ∈ LM⊗ as above and every morphism α : (〈n〉, S) → ([m], i) in I

belonging to J1, the morphism f(α) is inert in O⊗.

To prove (b), it will suffice to show that if f ∈ FunN(Fin∗)(N(I),O⊗) satisfies condition (iii),

then it satisfies conditions (i) and (ii) if and only if it satisfies condition (i′). We first prove the

“only if” direction. Assume that f ∈ X, and let α : (〈n〉, S)→ ([m], i) be as in (i′). Then α factors

as a composition

(〈n〉, S)
α′→ r([m], i)

α′′→ ([m], i),

where α′ is inert (so that f(α′) is inert by (ii)) and f(α′′) is an equivalence by virtue of (i).

Suppose now that f satisfies (i′) and (iii). We first show that f satisfies (i). Fix an object

([n], i) in N(∆)op × ∆1; we wish to show that f carries the canonical map α : r([n], i) → ([n], i)

to an equivalence in O⊗. For 1 ≤ j ≤ n, let βj : ([n], i) → ([1], 1) denote the be the map carrying

[1] to the interval {j − 1, j} ⊆ [n], and if i = 0 let β0 : ([n], i) → ([0], 0) be the map induced by

the inclusion [0] ' {n} ↪→ [n]. Condition (iii) guarantees that the maps {f(βj)}i≤j≤n determine a

q′-product diagram in O⊗, and condition (i′) guarantees that the composite maps {f(βj ◦α)}i≤j≤n
also determine a q′-product diagram in O⊗. It follows from the uniqueness of relative limits that

f(α) is an equivalence in O⊗, as desired.

It remains to show that f satisfies (ii). For every object (〈n〉, S) ∈ LM⊗, we have a commutative

diagram

(〈n〉, S)

α
yy

α′′

%%
(〈0〉, ∅) α′ // ([0], 1).
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Condition (i′) implies that (q′0◦f)(α′′) and (q′◦f)(α′) are equivalences in C, so that (q′0◦f)(α) is an

equivalence in C. It follows that q′0 ◦ f carries every morphism in LM⊗ to an equivalence in C. The

simplicial set LM⊗ is weakly contractible (it has a final object, given by (〈0〉, ∅)); we may therefore

assume without loss of generality that f |LM⊗ is the constant map LM⊗ → {C} ↪→ C, for some

C ∈ C. We wish to show that f |LM⊗ defines a map of∞-operads LM⊗ → O⊗C . By virtue of Remark

2.1.2.9, it will suffice to show that f(α) is inert whenever α is an inert morphism of LM⊗ of the form

(〈n〉, S)→ (〈1〉, T ). Write (〈1〉, T ) = r([i], i) for i ∈ {0, 1}. Since the map f(〈1〉, T )→ f([i], i) is an

equivalence by (i), it will suffice to show that the composite map f(〈n〉, S)→ f(〈1〉, T )→ f([i], i)

is inert, which follows immediately from (i′).

4.2.3 Limits and Colimits of Modules

Let A be a ring and suppose we are given a collection of A-modules {Mi}i∈I . Then the abelian

groups ∏
i∈I

Mi

⊕
i∈I

Mi

inherit A-module structures. Moreover, the resulting A-modules can be identified with the prod-

uct and coproduct of the family {Mi}i∈I in the category of A-modules. We can summarize the

situation as follows: the category of A-modules admits products and coproducts, and the forgetful

functor U from the category of A-modules to the category of abelian groups preserves products

and coproducts. In fact, U preserves all limits and colimits.

Our goal in this section is to show that this is a general phenomenon. Let A be an algebra

object of an arbitrary monoidal ∞-category C, and let M be an ∞-category which is left-tensored

over C. We can summarize our results as follows:

(1) Let K be a simplicial set such that M admits K-indexed limits. Then LModA(M) admits

K-indexed limits, and the forgetful functor LModA(M) → M preserves K-indexed limits

(Corollary 4.2.3.3).

(2) Let K be a simplicial set such that M admits K-indexed colimits and the tensor product

functor M 7→ A ⊗ M preserves K-indexed colimits. Then LModA(M) admits K-indexed

colimits, and the forgetful functor LModA(M)→M preserves K-indexed colimits (Corollary

4.2.3.5).

We begin with the study of limits in LModA(M). In fact, we will work a little bit more generally,

and consider relative limits with respect to the forgetful functor LMod(M)→ Alg(C) (we refer the

reader to §HTT.4.3 for a discussion of relative limits in general). We have the following general

result:

Proposition 4.2.3.1. Let C be a monoidal ∞-category and let M be an ∞-category which is

left-tensored over C. Let K be a simplicial set such that M admits K-indexed limits, and let

θ : LMod(M)→ Alg(C) be the forgetful functor. Then:
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(1) For every diagram

K� _

��

// LMod(M)

θ
��

K/ //

::

Alg(C)

there exists a dotted arrow as indicated, which is a θ-limit diagram.

(2) An arbitrary map g : K/ → LMod(M) is a θ-limit diagram if and only if the induced map

K/ →M is a limit diagram.

Proof. Let θ′ : LModA∞(M) → AlgA∞(C) be the forgetful functor. By virtue of Propositions

4.1.3.19 and 4.2.2.12, it will suffice to prove the following analogues of (1) and (2):

(1′) For every diagram

K� _

��

// LModA∞(M)

θ′

��
K/ //

99

AlgA∞(C)

there exists a dotted arrow as indicated, which is a θ′-limit diagram.

(2′) An arbitrary map g : K/ → LModA∞(M) is a θ′-limit diagram if and only if the induced map

K/ →M is a limit diagram.

Let M� q→ C� p→ N(∆)op be as in Notation 4.2.2.17. For each n ≥ 0, the equivalence M�
[n] '

C�
[n]×M implies the following:

(1′n) For every diagram

K� _

��

//M�
[n]

q[n]

��
K/ //

>>

C�
[n]

there exists a dotted arrow as indicated, which is a q[n]-limit diagram.

(2′n) An arbitrary diagram K/ → M�
[n] is a q[n]-limit diagram if and only the composite map

K/ →M⊗[n] →M is a limit diagram.

Combining this observation with Corollary HTT.4.3.1.15 , we deduce:
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(1′′n) For every diagram

K� _

��

//M�
[n]

q[n]

��
K/ //

>>

C�
[n]

there exists a dotted arrow as indicated, which is a q-limit diagram.

(2′′n) An arbitrary diagram K/ →M�
[n] is a q-limit diagram if and only the composition

K/ →M�
[n] →M

is a limit diagram.

Let ∆LMod(M) be the full subcategory of MapN(∆)op(N(∆)op,M�) spanned by those objects

whose image in FunN(∆)op(N(∆)op,C�) belongs to AlgA∞(C). Combining (1′′n), (2′′n), and Lemma

3.2.2.9, we deduce:

(1′′) For every diagram

K� _

��

// ∆LMod(M)

θ′′

��
K/ //

99

AlgA∞(C)

there exists a dotted arrow as indicated, which is a θ′′-limit diagram.

(2′′) An arbitrary map p : K/ → ∆LMod(M) is a θ′-limit diagram if and only if, for every n ≥ 0,

the composite map K/ →M⊗[n] →M is a limit diagram.

To deduce (1′) from these assertions, it will suffice to show that if if g : K. → ∆LMod(M)

satisfies the hypothesis of (2′′) and g = g|K factors through LModA∞(M), then g factors through
∆LMod

A∞(M). Let f : [m]→ [n] be an inert morphism in ∆ such that f(m) = n. Then f induces

a natural transformation g[n] → g[m] of functors K/ → M�. We wish to show that this natural

transformation is (p ◦ q)-coCartesian. Since f(m) = n, we have a homotopy commutative diagram

M⊗[n]
//

α

!!

M⊗[m]

β}}
M,

and it suffices to show that the associated transformation t : α ◦ g[n] → β ◦ g[m] is an equivalence.

Our hypothesis implies that t restricts to an equivalence t : α◦g[n] → β ◦g[m]. Since g satisfies (2′′),
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the maps α ◦ g[n] and β ◦ g[m] are both limit diagrams in M. It follows that t is an equivalence as

well, as desired.

We now complete the proof by observing that if g : K/ → ∆LMod(M) factors through

LModA∞(M), then the criteria of (2′) and (2′′) are equivalent.

Corollary 4.2.3.2. Let C be a monoidal ∞-category, M an ∞-category which is left-tensored over

C, and θ : LMod(M)→ Alg(C) the forgetful functor. Then θ is a Cartesian fibration. Moreover, a

morphism f in LMod(M) is θ-Cartesian if and only if the image of f in M is an equivalence.

Proof. Apply Proposition 4.2.3.1 in the case K = ∆0.

Corollary 4.2.3.3. Let C be a monoidal ∞-category, M an ∞-category which is left-tensored over

C, and θ : LMod(M) → Alg(C) the forgetful functor. Let A be an algebra object of C. Let K be a

simplicial set such that M admits K-indexed limits. Then:

(1) The ∞-category LModA(M) admits K-indexed limits.

(2) A map p : K/ → LModA(M) is a limit diagram if and only if the induced map K/ →M is a

limit diagram.

(3) Given a morphism φ : B → A of algebra objects of A, the induced functor LModA(M) →
LModB(M) preserves K-indexed limits.

We now turn to the problem of constructing colimits in ∞-categories of modules. We begin

with the following very general principle:

Proposition 4.2.3.4. Let A ⊆ Ĉat∞ be a subcategory of the ∞-category of (not necessarily small)

∞-categories. Assume that A has the following properties:

(a) The ∞-category A admits small limits, and the inclusion A ⊆ Ĉat∞ preserves small limits.

(b) If X belongs to A, then Fun(∆1, X) belongs to A.

(c) If X and Y belong to C, then a functor X → Fun(∆1, Y ) is a morphism in A if and only if,

for every vertex v of ∆1, the composite functor X → Fun(∆1, Y ) → Fun({v}, Y ) ' Y is a

morphism of A.

Let C be a monoidal ∞-category, A an algebra object of C, M an ∞-category which is left-tensored

over C. Suppose M is an object of A, and that the functor A ⊗ • : M → M is a morphism of A.

Then:

(1) The ∞-category ModA(M) is an object of A.

(2) For every ∞-category N belonging to A, a functor N→ ModA(M) is a morphism in A if and

only if the composite functor N→ ModA(M)→M is a morphism in A.
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In particular, the forgetful functor ModA(M)→M is a morphism in A.

Proof. Let p : M⊗ → C⊗ exhibit M as left-tensored over C. Form a pullback diagram

X

p′

��

//M⊗

p
��

N(∆)op
A // C⊗ .

We observe that p′ is a locally coCartesian fibration (Lemma 4.2.2.20), each fiber of p′ is equivalent

to M, and each of the associated functors can be identified with an iterate of the functor A ⊗ • :

M→M. It follows from Proposition HTT.5.4.7.11 that LModA∞A (M) ∈ A, so that LModA(M) ∈ A

by Corollary 4.2.2.16.

Now suppose that f : N → ModA(M) is as in (2). Using Proposition HTT.5.4.7.11 and

Corollary 4.2.2.16, we conclude that f is a morphism of A if and only if, for every n ≥ 0, the

composite map N → ModA(M) → X[n] belongs to A. We complete the proof by observing that

each of the functors ModA(M)→ X[n] is equivalent to the forgetful functor ModA(M)→M.

Corollary 4.2.3.5. Let M be an ∞-category which is left-tensored over a monoidal ∞-category

C, let A be an algebra object of C, and let θ : LModA(M) → M denote the forgetful functor. Let

p : K → LModA(M) be a diagram and let p0 = θ◦p. Suppose that p0 can be extended to an operadic

colimit diagram p0 : K/ →M (in other words, p0 has the property that for every object C ∈ C, the

composite map

K. p0→M
C⊗→ M

is also a colimit diagram in M). Then:

(1) The diagram p extends to a colimit diagram p : K/ → LModA(M).

(2) Let p : K/ → LModA(M) be an arbitrary extension of p. Then p is a colimit diagram if and

only if θ ◦ p is a colimit diagram.

Proof. Let q : M� → C� be the locally coCartesian fibration defined in Notation 4.2.2.17. The

algebra object A determines a map N(∆)op → C�. Let X denote the fiber product N(∆)op ×C�

M� and let LModA(M) → LModA∞A (M) ⊆ FunN(∆)op(N(∆)op,X) be the equivalence of Corollary

4.2.2.16. It follows from Lemma 3.2.2.9 that the composite map K → LModA(M)→ LModA∞A (M)

can be extended to a colimit diagram in FunN(∆)op(N(∆)op,X), that this diagram factors through

LModA∞A (M), and that its image in M is a colimit diagram. This proves (1) and the “only if”

direction of (2). To prove the “if” direction of (2), let us suppose we are given an arbitrary

extension p : K/ → LModA(M), carrying the cone point to a left A-module M . Then p determines

a map α : lim−→(p)→M . If the image of p in M is a colimit diagram, then the image of α in M is a

colimit diagram. Since the forgetful functor LModA(M) → M is conservative (Corollary 4.2.3.2),

we deduce that α is an equivalence. It follows that p is a colimit diagram as desired.
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Remark 4.2.3.6. In the situation of Corollary 4.2.3.5, any colimit diagram f : K. → LModA(M)

is also a q-colimit diagram, where q denotes the projection LMod(M) → Alg(C). This follows

immediately from Corollary HTT.4.3.1.16 , since q is a Cartesian fibration (Corollay 4.2.3.2).

Corollary 4.2.3.7. Let C be an ∞-category equipped with a monoidal structure and let M be an

∞-category which is left-tensored over C. Suppose that M is presentable and that, for each C ∈ C,

the functor C ⊗ • : M→M preserves small colimits. Then:

(1) For every A ∈ Alg(C), the ∞-category LModA(M) is presentable.

(2) For every morphism A → B of algebra objects of C, the associated functor LModB(M) →
LModA(M) preserves small limits and colimits.

(3) The forgetful functor θ : LMod(M) → Alg(C) is a presentable fibration (Definition

HTT.5.5.3.2 ).

Proof. Assertion (1) follows from Proposition 4.2.3.4 as in the proof of Corollary 4.2.3.5. To prove

(2), we observe that Corollary 4.2.3.2 implies that the diagram

LModB(M)

%%

// LModA(M)

yy
M

commutes up to homotopy. Assertion (2) then follows immediately from Corollaries 4.2.3.3 and

4.2.3.5. Assertion (3) follows from (1) and (2), by virtue of Proposition HTT.5.5.3.3 .

Remark 4.2.3.8. Under the hypotheses of Corollary 4.2.3.7, if A → B is a morphism of algebra

objects of C. then the forgetful functor ψ : LModB(M) → LModA(M) admits both left and right

adjoints (Corollary HTT.5.5.2.9 ). In §4.4.3 we will prove the existence of a left adjoint to ψ under

much weaker assumptions (Proposition 4.6.2.17).

4.2.4 Free Modules

Let A be an associative ring and M0 an abelian group. The tensor product M = A⊗M0 has the

structure of a left A-module, given by the map

A⊗M ' A⊗ (A⊗M0) ' (A⊗A)⊗M0 → A⊗M0 'M.

Moreover, M is characterized up to isomorphism by the condition that it is the free left A-module

generated by M0. More precisely, there exists a map of abelian groups φ : M0 → M with the

following universal property: for every left A-module M , composition with φ induces a bijection

HomA(M,N) → Hom(M0, N), where HomA(M,N) denotes the set of A-module homomorphisms

from M to N and Hom(M0, N) the set of abelian group homomorphisms from M0 to N .
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Our first goal in this section is to generalize the above discussion to the ∞-categorical setting.

We begin with a point of notation: if C⊗ → Assoc⊗ is a fibration of ∞-operads and M is an

∞-category weakly enriched over C⊗, then evaluation on the object m ∈ LM determines a forgetful

functor θ : LModA(M) → M, for each A ∈ Alg(C). We will generally abuse notation by not

distinguishing between an object M ∈ LModA(M) and its image θ(M) ∈M.

Definition 4.2.4.1. Let C⊗ be a monoidal ∞-category and let M be an ∞-category left-tensored

over C⊗. Suppose we are given an algebra object A ∈ Alg(C), a left A-module M ∈ LModA(M),

and a morphism λ : M0 →M in M. We will say that λ exhibits M as a free left A-module generated

by M0 if the induced map

A⊗M0
id⊗λ−→ A⊗M →M

is an equivalence in M.

The main result of this section can be stated as follows:

Proposition 4.2.4.2. Let C⊗ be a monoidal ∞-category and M an ∞-category which is left-

tensored over C⊗. Suppose further that we are given objects A ∈ Alg(C), M0 ∈M. Then:

(1) There exists an object M ∈ LModA(M) and a morphism λ : M0 → M in M which exhibits

M as a free left A-module generated by M0.

(2) Let M ∈ LModA(M) and let λ : M0 → M be a morphism which exhibits M as a free left A-

module generated by M0. For every pair of objects B ∈ Alg(C), N ∈ LModB(M), composition

with λ induces a homotopy equivalence

MapLMod(M)((A,M), (B,N))→ MapAlg(C)(A,B)×MapM(M0, N).

Proof. The action of C⊗ on M is encoded by a coCartesian fibration of∞-operads O⊗ → LM⊗ such

that O⊗a ' C⊗ and Om 'M. Let LM⊗0 be the subcategory of LM⊗ spanned by all objects, together

with those morphisms α : (〈n〉, S) → (〈n′〉, S′) such that α−1(S ∪ {∗}) = S′ ∪ {∗}. The inclusion

Assoc⊗ ↪→ LM⊗ of Remark 4.2.1.10 extends to an isomorphism Assoc⊗�Triv⊗ ' LM⊗0 , which

carries the unique object of Triv to m. Using Theorem 2.2.3.6 and Example 2.1.3.5, we deduce that

the forgetful functor AlgLM0 /LM(O)→ Alg(C)×M is an equivalence of ∞-categories.

The ∞-category LM⊗0,act×LM⊗act
(LM⊗act)/a contains id : a → a as a final object, and the ∞-

category LM⊗0,act×LM⊗act
(LM⊗act)/m contains the unique active map (〈2〉, {1})→ m as a final object.

Note that if X ∈ AlgLM0 /LM(O) corresponds to a pair (A,M0) ∈ Alg(C)×M and X ′ ∈ Alg/LM(O)

to a pair (A′,M), then a natural transformation γ : X → X ′|LM⊗0 exhibits X ′ as the free LM-

algebra object generated by X (in the sense of Definition 3.1.3.1) if and only if γ induces an

equivalence A ' A′ in Alg(C) and a map M0 → M in M which exhibits M as the free left A′-

module generated by M0 (in the sense of Definition 4.2.4.1). Assertion (1) now follows immediately

from Proposition 3.1.3.3 and assertion (2) from Proposition 3.1.3.2.
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From Proposition 4.2.4.2, we can immediately deduce the following uniqueness result for free

modules:

Corollary 4.2.4.3. Let C⊗ be a monoidal ∞-category containing an algebra object A, and let M

be an ∞-category left-tensored over C⊗ containing an object M0. Suppose we are given objects

M,M ′ ∈ LModA(M), together with morphisms λ : M0 → M , λ′ : M0 → M ′ in M which exhibit

M and M ′ as free left A-modules generated by M0. Then there exists a morphism φ : M →M ′ in

LModA(M) which extends to a commutative diagram

M0

λ

}}

λ′

!!
M

φ //M ′

in M. The morphism φ is uniquely determined up to homotopy and is an equivalence in LModA(M).

Corollary 4.2.4.4. Let C⊗ be a monoidal ∞-category and M an ∞-category which is left-tensored

over C⊗. Then the forgetful functor G : LMod(M) → Alg(C) ×M admits a left adjoint F , given

informally by F (A,M0) = (A,M) ∈ LMod(M), where M is a free left A-module generated by M0.

Remark 4.2.4.5. Corollary 4.2.4.4 shows that that a free left A-module generated by M0 ∈ M

depends functorially on the pair (A,M0).

If we regard the algebra A ∈ Alg(C) as fixed, the above results take a slightly simpler form:

Corollary 4.2.4.6. Let C⊗ be a monoidal ∞-category and M an ∞-category which is left-tensored

over C⊗. Let A ∈ Alg(C), M ∈ LModA(M), and suppose there exists a map λ : M0 → M in M

which exhibits M as the free A-module generated by M0. Then for any N ∈ LModA(M), composition

with λ induces a homotopy equivalence MapLModA(M)(M,N)→ MapM(M0, N).

Corollary 4.2.4.7. Let C⊗ be a monoidal ∞-category containing an algebra object A ∈ Alg(C).

Regard C as left-tensored over itself and A as a left module over itself (as in Example 4.2.1.17).

Let 1C be the unit object of C and M an object of LModA(C). Then composition with the unit map

of A induces a homotopy equivalence MapLModA(C)(A,M)→ MapC(1C,M).

Proof. Apply Corollary 4.2.4.6 to the unit map 1→ A.

Corollary 4.2.4.8. Let C be a monoidal ∞-category and let M be an ∞-category which is left-

tensored over C. Let A ∈ Alg(C). Then the forgetful functor G : LModA(M) → M admits a left

adjoint F , which carries each M0 ∈ M to a free left A-module generated by M0. The composition

G ◦ F : M→M is the functor given by tensor product with A.

Corollary 4.2.4.8 guarantees that the theory of modules over a trivial algebra is very simple.
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Proposition 4.2.4.9. Let C⊗ be a monoidal ∞-category and M an ∞-category which is left-

tensored over C. Let A be an algebra object of Alg(C) such that the unit map 1C → A is an

equivalence in C. Then the forgetful functor G : LModA(M)→M is an equivalence of∞-categories.

Proof. Let F be the left adjoint to G supplied by Corollary 4.2.4.8, and let

u : idM → G ◦ F, v : F ◦G→ idM

be a compatible unit and counit for the adjunction. We wish to prove that u and v are equivalences

of functors.

We first consider the functor u. Corollary 4.2.4.8 implies that the composition G ◦ F can be

identified with the functor M 7→ A ⊗M . The unit map u is given by tensor product with the

unit map u0 : 1C → A of the algebra A. By hypothesis, u0 is an equivalence in C, so that u is an

equivalence in Fun(M,M).

Note that a morphism (A0,M0) → (A1,M1) in LMod(M) is an equivalence if and only if the

induced map A0 → A1 is an equivalence in C and the induced map M0 → M1 is an equivalence

in M. It follows that the functor G is conservative (see Corollary 4.2.3.2 for a stronger version of

this statement). Consequently, to show that v is an equivalence it suffices to show that the induced

transformation α : G ◦ F ◦G→ G is an equivalence of functors. We now observe that u provides a

right inverse to this α. Since u is an equivalence, we conclude also that α is an equivalence.

Let C be a monoidal ∞-category. Assume that C admits countable coproducts and that the

tensor product ⊗ : C×C → C preserves countable coproducts separately in each variable, so that

the forgetful functor Alg(C)→ C admits a left adjoint Fr : C→ Alg(C) given by

Fr(C) = qn≥0C
⊗n

(see Proposition 4.1.1.18). Suppose we are given a map ε0 : C → 1, where 1 denotes the unit

object of C. Then ε0 induces a morphism of algebra objects ε : Fr(C)→ 1. Using this map, we can

regard 1 as a left Fr(C)-module and ε as a morphism of left Fr(C)-modules. Let Fr(C)⊗C denote

the free left Fr(C)-module generated by the object C ∈ C. The tautological map C → Fr(C)

extends to a map of left Fr(C)-modules m : Fr(C) ⊗ C → Fr(C). There is another morphism

ε0 : Fr(C)⊗C → Fr(C) obtained by tensoring the map ε0 : C → 1 with the identity map on Fr(C).

Note that the composite maps

Fr(C)⊗ C ε0→ Fr(C)
ε→ 1

Fr(C)⊗ C m→ Fr(C)
ε→ 1

are canonically homotopic to one another (as maps of left Fr(C)-modules), since they both corre-

spond to the morphism ε0 under the homotopy equivalence

MapLModFr(C)(C)(Fr(C)⊗ C,1) ' MapC(C,1).
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We therefore obtain a commutative diagram

Fr(C)⊗ C
m //
ε0

// Fr(C)
ε // 1

in the ∞-category LModFr(C)(C).

Proposition 4.2.4.10. Let C be a monoidal ∞-category which admits countable coproducts for

which the tensor product ⊗ : C×C→ C preserves countable coproducts separately in each variable.

Suppose we are given an object C ∈ C together with a morphism ε0 : C → 1. Then the above

construction determines a colimit diagram

Fr(C)⊗ C
m //
ε0

// Fr(C)
ε // 1

in the ∞-category LModFr(C)(C). In other words, we can identify 1 with the coequalizer of the pair

of morphisms m, ε0 : Fr(C)⊗ C → Fr(C).

Proof. By virtue of Corollary 4.2.3.5, it will suffice to show that for every object D ∈ C, the induced

diagram

D ⊗ Fr(C)⊗ C
idD ⊗m//
idD ⊗ε0

// D ⊗ Fr(C)
ε // D

is a coequalizer diagram in C. For this, it will suffice to prove the following:

(a) The pair of morphisms

(idD ⊗m), (idD ⊗ε0) : D ⊗ Fr(C)⊗ C → D ⊗ Fr(C)

admit a coequalizer E in C.

(b) The composite map

D ' D ⊗ 1→ D ⊗ Fr(C)→ E

is an equivalence in C.

Let I denote the category whose objects are nonnegative integers and whose morphisms are as

indicated in the diagram

· · · ← 5→ 4← 3→ 2← 1→ 0.

Let J denote the category containing two objects x and y, with morphism sets given by

HomJ(x, x) = {idx} HomJ(y, y) = {idy}

HomJ(x, y) = {f, g} HomJ(y, x) = ∅.
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We define a functor π : I→ J, given on objects by the formula

π(n) =

{
x if n is odd

y if n is even,

which carries morphisms of the form (2k+ 1)→ 2k to f and morphisms of the form (2k− 1)→ 2k

to g. There is a functor q : N(I)→ C given by the diagram

· · · → D ⊗ C ⊗ C id← D ⊗ C ⊗ C id⊗ε0→ D ⊗ C id← D ⊗ C id⊗ε0→ D.

Using the assumption that C admits countable coproducts, we see that q admits a left Kan extension

q′ along the functor π : N(I)→ N(J). Unwinding the definitions, we see that the map q′ : N(J)→ C

classifies the diagram

(idD ⊗m), (idD ⊗ε0) : D ⊗ Fr(C)⊗ C → D ⊗ Fr(C).

We are therefore reduced to proving the following versions of (a) and (b):

(a′) The diagram q : N(I)→ C admits a colimit in C.

(b′) The canonical map D = q(0)→ lim−→(q) is an equivalence in C.

For each n ≥ 0, let I(n) denote the full subcategory of I consisting of nonnegative integers ≤ n.

It follows immediately from the definitions that q|I(n) is a left Kan extension of q|I(n−1) when n

is even, and that the inclusions N(I(n − 1)) ↪→ N(I(n)) are left cofinal when n is odd. It follows

by induction on n that each of the diagrams q|I(n) admits a colimit in C and that the maps in the

diagram

lim−→ q|I(0) → lim−→ q|I(1) → lim−→ q|I(2) → · · ·

are equivalences. In particular, the colimit lim−→n
(lim−→ q|I(n)) exists in C and is equivalent to lim−→ q|I(0) '

q(0) = D, which proves (a′) and (b′).

4.3 Bimodules

Let C be a monoidal category. Given a pair of associative algebra objects A,B ∈ Alg(C), one can

define a category ABModB(C) of A-B bimodule objects of C. By definition, an A-B bimodule is an

object M ∈ C equipped with multiplication maps m : A⊗M →M and m′ : M ⊗B →M with the

following properties:

(i) The multiplication m determines a left action of A on M . That is, if mA : A ⊗ A → A and

e : 1→ A denote the multiplication and unit maps of A, then the

A⊗A⊗M mA⊗id//

��

A⊗M
m
��

1⊗M e //

##

A⊗M

m
{{

A⊗M m //M M
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commute.

(ii) The multiplication m′ determines a right action of B on M . That is, if mB : B⊗B → B and

e′ : 1→ B denote the multiplication and unit maps of B, then the diagrams

M ⊗B ⊗B id⊗mB//

��

M ⊗B

m′

��

M ⊗ 1
e′ //

##

M ⊗B

m′{{
M ⊗B m′ //M M

commute.

(iii) The left action of A on M commutes with the right action of B on M : that is, the diagram

A⊗M ⊗B m⊗id //

id⊗m′
��

M ⊗B

m′

��
A⊗M m //M

is commutative.

Our goal in this section is to develop an analogous theory of bimodules in the ∞-categorical

setting. We will follow the basic pattern of our approach to left modules in §4.2. We begin in §4.3.1

by introducing an ∞-operad BM⊗ equipped with a pair of inclusions Assoc⊗ ↪→ BM⊗ ←↩ Assoc⊗.

If C⊗ is a symmetric monoidal∞-category and A,B ∈ Alg(C), then we will denote the fiber product

{A} ×Alg(C) AlgBM(C)×Alg(C) {B} by ABModB(C); we will refer to ABModB(C) as the ∞-category

of A-B-bimodule objects of C.

As in the classical case, it is possible to view an A-B-bimodule object of a symmetric monoidal

∞-category C as an object of C which is equipped with a left action of A and a right action of

B which commute up to coherent homotopy. In §4.3.2, we will make this precise by showing that

the ∞-category of right B-module objects of C is canonically left-tensored over C, and there is

an equivalence of ∞-categories ABModB(C) ' LModA(RModB(C)). In §4.3.3, we will use this

equivalence to show that many of the results proven in §4.2 for left modules (such as the existence

of limits and colimits and the structure of free modules) admit straightforward generalizations to

the setting of bimodules.

4.3.1 The ∞-Operad BM⊗

Our goal in this section is to lay the foundations for an ∞-categorical theory of bimodules. We

begin by formulating the classical theory of bimodules in terms of colored operads.

Definition 4.3.1.1. We define a colored operad BM as follows:

(i) The set of objects of BM has three elements, which we will denote by a−, a+, and m.
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(ii) Let {Xi}i∈I be a finite collection of objects of BM and let Y be another object of BM. If

Y = a−, then MulBM({Xi}, Y ) is the collection of all linear orderings of I provided that each

Xi = a−, and is empty otherwise. If Y = a+, then MulBM({Xi}, Y ) is the collection of all

linear orderings of I provided that each Xi = a+, and is empty otherwise. If Y = m, then

MulBM({Xi}, Y ) is the collection of all linear orderings on {i1 < · · · < in} on the set I with

the following property: there is exactly one index ik ∈ I such that Xik = m, and Xij = a−
for j < k and Xij = a+ for j > k.

(iii) The composition law on BM is determined by the composition of linear orderings, as described

in Definition 4.1.1.1.

Remark 4.3.1.2. Restricting our attention to the pair of objects a−,m ∈ BM, we obtain a colored

suboperad isomorphic to the colored operad LM of Definition 4.2.1.1. Similarly, the pair of objects

a+,m ∈ BM determine a colored suboperad RM ⊆ BM, which underlies the ∞-operad RM⊗ of

Variant 4.2.1.36.

Remark 4.3.1.3. If C is a symmetric monoidal category and F : BM → C is a map of colored

operads, then F |LM determines an associative algebra A− = F (a−) in C and a left A-module

M = F (m) ∈ C (see Remark 4.2.1.3). Similarly, the restriction F |RM determines an associative

algebra A+ = F (a+) such that M has the structure of a right module over A+. The left action of

A− commutes with the right action of A+, in the sense that that the diagram σ :

A− ⊗M ⊗A+
//

��

A− ⊗M

��
M ⊗A+

//M

is commutative. To see this, it suffices to observe that both of the composite maps A−⊗M⊗A+ →
M are given by the unique operation φ ∈ MulBM({a−,m, a+},m). We conclude that M has the

structure of an A−-A+-bimodule object of C.

Conversely, suppose we are given an object M ∈ C equipped with a left action of an associative

algebra A− and a right action of another associative algebra A+. According to Remark 4.2.1.3,

the pair (A−,M) determines a map of colored operads F− : LM→ C. Similarly, the pair (A+,M)

determines a map of colored operads F+ : RM→ C. If the diagram σ commutes, then F− and F+

admit a unique amalgamation to a map of colored operads F : BM → C, which assigns to each

operation

ψ ∈ MulBM({a−, . . . , a−,m, a+, . . . , a+},m)

the map

A− ⊗ · · · ⊗A− ⊗M ⊗A+ ⊗ · · · ⊗A+
m→ A− ⊗M ⊗A+

a→M,

where m is given by the multiplication in the algebras A− and A+ and a is the map appearing in

the diagram σ.
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We can summarize the above discussion as follows: giving a map of colored operads BM→ C is

equivalent to giving a pair of associative algebras A−, A+ in C, together with an A−-A+-bimodule

M ∈ C.

Remark 4.3.1.4. Every operation φ ∈ MulBM({Xi}i∈I , Y ) determines a linear ordering on the

set I. Passage from φ to this linear ordering determines a map of colored operads BM→ Assoc.

This map can be understood as follows: for every symmetric monoidal category C and every map

of colored operads F : Assoc → C corresponding to an associative algebra A ∈ C, the composite

map BM→ Assoc→ C corresponds to A, regarded as a bimodule over itself.

Notation 4.3.1.5. We let BM⊗ denote the category obtained by applying Construction 2.1.1.7

to the colored operad BM. We can describe this category concretely as follows:

(1) The objects of BM⊗ are pairs (〈n〉, c−, c+), where 〈n〉 is an object of Fin∗ and c−, c+ : 〈n〉◦ →
[1] are maps satsifying c−(i) ≤ c+(i) for 1 ≤ i ≤ n.

(2) A morphism from (〈n〉, c−, c+) to (〈n′〉, c′−, c′+) in BM⊗ consists of a morphism α : 〈n〉 → 〈n′〉
in Assoc⊗ satisfying the following inequality, for each j ∈ 〈n′〉◦ with α−1{j} = {i1 ≺ · · · ≺
im}:

c′−(j) = c−(i1) ≤ c+(i1) = c−(i2) ≤ c+(i2) = c−(i3) ≤ · · · ≤ c+(im−1) = c−(im) ≤ c+(im) = c′+(j).

In terms of this description, the object a− ∈ BM⊗ to the triple (〈1〉, c−, c+) where c−(1) =

c+(1) = 0. The object a+ corresponds to the triple (〈1〉, c−, c+) with c−(1) = c+(1) = 1, and the

object m corresponds to the triple (〈1〉, c−, c+) with c−(1) = 0 and c+(1) = 1.

We now introduce the ∞-categorical analogue of Definition 4.3.1.1.

Definition 4.3.1.6. We let BM⊗ denote the nerve of the category BM⊗. We regard BM⊗ as an

∞-operad via the forgetful functor BM⊗ → N(Fin∗) (see Example 2.1.1.21).

Remark 4.3.1.7. The underlying∞-category BM of BM⊗ is isomorphic to the discrete simplicial

set ∆0
∐

∆0
∐

∆0 with three vertices, corresponding to the objects a−,m, a+ ∈ BM.

Remark 4.3.1.8. The map of colored operads BM→ Assoc appearing in Remark 4.3.1.4 induces

a fibration of ∞-operads BM⊗ → Assoc⊗.

Remark 4.3.1.9. The inclusions of colored operads LM ↪→ BM ←↩ RM of Remark 4.3.1.2

determine isomorphisms of LM⊗ and RM⊗ onto full subcategories of BM⊗. We will generally

abuse notation and identify LM⊗ and RM⊗ with their images in BM⊗.

Remark 4.3.1.10. The inclusions LM⊗,RM⊗ ↪→ BM⊗ determine two different embeddings of

Assoc⊗ into BM⊗. We will denote the images of these embeddings by Assoc⊗− and Assoc⊗+, re-

spectively. Note that the inclusions Assoc⊗−,Assoc⊗− ⊆ BM⊗ extend to an isomorphism from

Assoc⊗�Assoc⊗ to the full subcategory of BM⊗ spanned by objects of the form (〈n〉, c−, c+)

where c− = c+.
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Notation 4.3.1.11. Let C⊗ → BM⊗ be a fibration of ∞-operads. We let C⊗− denote the fiber

product C⊗×BM⊗ Assoc⊗−. We will denote the underlying∞-category of C⊗− by C− = C⊗×BM⊗{a−}.
Similarly, we define C⊗+ = C⊗×BM⊗ Assoc⊗+, C+ = C⊗×BM⊗{a+}, and Cm = C⊗×BM⊗{m}. Note

that Cm is an ∞-category which is weakly enriched over the fibration of ∞-operads C⊗− → Assoc⊗

(in the sense of Definition 4.2.1.12). Similarly, Cm is weakly enriched over the reverse of the fibration

C⊗+ → Assoc⊗ (see Remark 4.1.1.7).

Definition 4.3.1.12. Let q : C⊗ → BM⊗ be a fibration of ∞-operads and let M denote the

fiber Cm. We let BMod(M) denote the ∞-category Alg/BM(C). We will refer to BMod(M) as the

∞-category of bimodule objects of M.

Composition with the inclusions Assoc⊗−,Assoc⊗+ ⊆ BM⊗ determines a categorical fibration

BMod(M) → Alg(C−) × Alg(C+). Given algebra objects A ∈ Alg(C−) and B ∈ Alg(C+), we let

ABModB(M) denote the fiber product

{A} ×Alg(C−) BMod(M)×Alg(C+) {B}.

We will refer to ABModB(M) as the ∞-category of A-B-bimodule objects of M.

Remark 4.3.1.13. The notation of Definition 4.3.1.12 is somewhat abusive: the ∞-category

BMod(M) depends not only on the ∞-category M, but also on the fibration of ∞-operads C⊗ →
BM⊗ having M as a fiber.

Remark 4.3.1.14. Let q : C⊗ → BM⊗ be a fibration of ∞-operads and M = Cm. We can think of

the objects of BMod(M) as given by triples (A,B,M), where A ∈ Alg(C−), B ∈ Alg(C+), and M

is an an A-B-bimodule object of M.

Example 4.3.1.15. Let C⊗ → Assoc⊗ be a fibration of ∞-operads. Form the fiber product

O⊗ = C⊗×Assoc⊗ BM⊗ using the fibration of ∞-operads BM⊗ → Assoc⊗ of Remark 4.3.1.8. The

fiber Om is isomorphic to C, and the∞-operads O⊗− and O⊗+ are isomorphic to C⊗. We can therefore

consider the ∞-category BMod(C) ' AlgBM /Assoc(C) of bimodule objects of C.

Example 4.3.1.16. Let C⊗ → Assoc⊗ be a fibration of∞-operads. Composition with the forgetful

functor BM⊗ → Assoc⊗ of Remark 4.3.1.8 determines a map s : Alg(C) → BMod(C). This map

carries each A ∈ Alg(C) to an object s(A) ∈ ABModA(C). We will can think of s(A) as A, regarded

as a bimodule over itself. For this reason, we will often not distinguish in notation between A and

s(A).

Definition 4.3.1.17. Let q : C⊗ → BM⊗ be a fibration of ∞-operads. We will say that q exhibits

Cm as bitensored over C− and C+ if the map q is a coCartesian fibration.

Remark 4.3.1.18. Let C⊗ → BM⊗ be a coCartesian fibration of ∞-operads. Then C⊗− and C⊗+
are monoidal ∞-categories. The ∞-category Cm is left-tensored over C⊗− (in the sense of Definition
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4.2.1.19). Similarly, we can regard Cm as right-tensored over C⊗+ (see Variant 4.2.1.36). Moreover,

the left and right actions of C− and C+ on Cm commute up to coherent homotopy; in particular,

the diagram of ∞-categories

C−×Cm×C+
//

��

C−×Cm

��
Cm×C+

// Cm

commutes up to canonical equivalence.

Remark 4.3.1.19. Suppose that q : C⊗ → BM⊗ is a coCartesian fibration of∞-operads, so that q

exhibits M = Cm as bitensored over the monoidal ∞-categories C⊗− and C⊗+. Let us use the symbol

⊗ to indicate all of the induced functors

C−×C− → C− C+×C+ → C+

C−×M→M M×C+ →M .

Let F : BM⊗ → C⊗ be a bimodule object of M. Then A− = F (a−) and A+ ∈ F (a+) are algebra

objects of the monoidal ∞-categories C⊗− and C⊗+, respectively. The object M = F (m) ∈ M is

equipped with left and right actions

A− ⊗M
a→M

a′←M ⊗A+

which exhibit M as an A−-A+-bimodule object of the homotopy category hM. In other words, the

following diagrams commute up to homotopy:

A− ⊗A− ⊗M
idA− ⊗a
��

m⊗idM// A− ⊗M

a

��

M ⊗A+ ⊗A+
idM ⊗m//

a′⊗idA+

��

M ⊗A+

a′

��
A− ⊗M a //M M ⊗A+

a′ //M

A− ⊗M ⊗A+

a⊗idA+

��

idA− ⊗a
′
//M ⊗A− ⊗M

a

��
M ⊗A+

a′ //M.

4.3.2 Bimodules, Left Modules, and Right Modules

Let C be a monoidal category containing an object M . If A and B are algebra objects of C, then

an A-B-bimodule structure on M is determined by the data of a left action of A on M and a right
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action of B on M . These data are merely required to satisfy a condition: the commutativity of the

diagram σ :

A⊗M ⊗B //

��

A⊗M

��
M ⊗B //M.

In the∞-categorical setting, the situation is more subtle. The diagram σ is required to commute

up to homotopy, and that homotopy is taken as part of the data defining a bimodule structure on

M . Consequently, to describe an A-B-bimodule structure on M , it is not sufficient to specify the

action of A on M and the right action of B on M individually. However, we can recover the

bimodule structure on M if we view M as a right B-module in the ∞-category of left A-modules,

rather than the ∞-category C itself. Our goal in this section is to give a precise formulation and

proof of this assertion.

We begin by considering a more general situation. Let q : C⊗ → BM⊗ be a coCartesian fibration

of ∞-operads, so that q exhibits the ∞-category Cm as bitensored over the monoidal ∞-categories

C⊗− and C⊗+. In particular, Cm is left-tensored over C⊗−, so that we can consider the ∞-category

LMod(Cm) whose objects are pairs (A,M), where B is an associative algebra object of C⊗− and M

is a left A-module. Our first goal is to show that LMod(Cm) is right-tensored over C⊗+. The right

action of C⊗+ can be described informally by the formula (A,M)⊗B = (A,M ⊗B): in other words,

we claim that if M has the structure of a left A-module, then the tensor product M ⊗ B inherits

a left action of A.

Our first step is to construct a functor LM⊗×RM⊗ → BM⊗. In what follows, we adopt the

following notational convention: if we are given a subset K ⊆ 〈m〉◦ × 〈n〉◦, then we implicitly

choose an order-preserving isomorphism 〈k〉◦ → K (where the ordering on K is inherited from

the lexicographical ordering on 〈m〉◦ × 〈n〉◦). This gives an isomorphism of finite pointed sets

K∗ = K ∪{∗} ' 〈k〉; we will abuse notation and identify K∗ with the corresponding object of Fin∗.

Construction 4.3.2.1. We define a functor Pr : LM⊗×RM⊗ → BM⊗ is defined as follows:

(1) Let (〈m〉, S) be an object of LM⊗ and (〈n〉, T ) an object of RM⊗. We let Pr((〈m〉, S), (〈n〉, T )) =

(X∗, c−, c+), where X is the finite set

(〈m〉◦ × T )
∐
S×T

(S × 〈n〉◦) ⊆ 〈m〉◦ × 〈n〉◦ ' 〈mn〉◦

and the functions c−, c+ : X → [1] are given by the formulas

c−(i, j) =

{
0 if j ∈ T
1 if j /∈ T

c+(i, j) =

{
0 if i /∈ S
1 if i ∈ S.

(2) Let α : (〈m〉, S) → (〈m′〉, S′) be a morphism in LM⊗ and β : (〈n〉, T ) → (〈n′〉, T ′)
a morphism in RM⊗. Let (X∗, c−, c+) = Pr((〈m〉, S), (〈n〉, T )) and (X ′∗, c

′
−, c
′
+) =



4.3. BIMODULES 541

Pr((〈m′〉, S′), (〈n′〉, T ′)) be defined as above. Then Pr(α, β) : (X∗, c−, c+) → (X ′∗, c
′
−, c
′
+) is

the unique morphism in BM⊗ lying over the map γ : X∗ → X ′∗ which is described as follows:

(i) If (i, j) ∈ X ⊆ 〈m〉◦ × 〈n〉◦, then

γ(i, j) =

{
(α(i), β(j)) if α(i) ∈ 〈m′〉◦, β(j) ∈ 〈n′〉◦

∗ otherwise.

(ii) Let i′ ∈ 〈m′〉◦ − S and j′ ∈ T ′, so that j′ = β(j) for a unique element j ∈ T . Then the

linear ordering on γ−1{(i′, j′)} = α−1{i′}× {j} is determined by the map α in Assoc⊗.

(iii) Let i′ ∈ S and j′ ∈ 〈n′〉◦ − T ′, so that i′ = α(i) for a unique element i ∈ S. Then the

linear ordering on γ−1{(i′, j′)} = {i} × β−1{j′} is determined by the map β in Assoc⊗.

(iv) Let i′ ∈ S′ and j′ ∈ T ′, so that i′ = α(i) and j′ = β(j) for unique elements i ∈ S, j ∈ T .

Then γ−1{(i′, j′)} = (α−1{i′}×{j})
∐
{(i,j)}({i}×β−1{j′}). We endow γ−1{(i′, j′)} with

the unique linear ordering which is compatible with the linear orders on α−1{i′} and

β−1{j′} determined by α and β (so that x ≤ y for x ∈ α−1{i′}×{j} and y ∈ {i}×β−1{j′},
with equality if and only if x = y = (i, j)).

We will also use Pr to denote the induced map of ∞-categories LM⊗×RM⊗ → BM⊗.

Construction 4.3.2.2. Let q : C⊗ → BM⊗ be a fibration of ∞-operads. We define a map of

simplicial sets LMod(Cm)⊗ → RM⊗ so that the following universal property is satisfied: for every

map of simplicial sets K → RM⊗, there is a canonical bijection

Hom(Set∆)/RM⊗
(K,LMod(Cm)⊗) ' Hom(Set∆)/BM⊗

(LM⊗×K,C⊗).

Let LMod(Cm)⊗ denote the full simplicial subset of LMod(Cm)⊗ spanned by those vertices which

correspond to a vertex X ∈ RM⊗ together with a functor F : LM⊗×{X} → C⊗ which carries

inert morphisms in LM⊗ to inert morphisms in C⊗.

Remark 4.3.2.3. As usual, our notation is somewhat abusive: the ∞-category LMod(Cm)⊗ de-

pends on the fibration of ∞-operads q : C⊗ → BM⊗, and not just the fiber Cm.

Remark 4.3.2.4. The composite map

LM⊗×{m} ↪→ LM⊗×RM⊗
Pr→ BM⊗

coincides with the inclusion LM⊗ ↪→ BM⊗ of Remark 4.3.1.9. If C⊗ → BM⊗ is a fibration of

∞-operads, we obtain a canonical isomorphism of simplicial sets

LMod(Cm)⊗ ×RM⊗ {m} ' LMod(Cm),

where LMod(Cm) denotes the ∞-category of left modules associated to the fibration of ∞-operads

C⊗×BM⊗ LM
⊗ → LM⊗ .
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We can now state our first main result:

Proposition 4.3.2.5. Let q : C⊗ → BM⊗ be a fibration of ∞-operads. Then:

(1) The induced map map p : LMod(Cm)⊗ → RM⊗ is also a fibration of ∞-operads.

(2) A morphism α in LMod(Cm)⊗ is inert if and only if p(α) is an inert morphism in RM⊗ and,

for every object X ∈ LM, the image α(X) is an inert morphism in C⊗.

(3) Suppose that q is a coCartesian fibration of ∞-operads. Then p is a coCartesian fibration of

∞-operads.

(4) Assume that q is a coCartesian fibration of ∞-operads. Then a morphism α ∈ LMod(Cm)⊗ is

p-coCartesian if and only if, for every X ∈ LM, the image α(X) is a q-coCartesian morphism

in C⊗.

Proof. We will prove (1) and (2); the proofs of (3) and (4) are similar. The proof is essentially

the same as that of Proposition 3.2.4.3, despite the fact that Pr : LM⊗×RM⊗ → BM⊗ is not a

bifunctor of ∞-operads. We note that the condition on a morphism α : M → M ′ ∈ LMod(Cm)⊗

appearing in (2) is equivalent to the following apparently stronger condition:

(∗) For every inert morphism β : X → Y in LM⊗, the induced map M(X)→M ′(Y ) is an inert

morphism in C⊗.

For every∞-operad O⊗, let PO be the categorical pattern appearing in the proof of Proposition

3.2.4.3. Using the functor Pr, we see that the construction X 7→ LM⊗,\×X determines a functor

F : (Set+∆)/PRM
→ (Set+∆)/PBM

. Let G denote a right adjoint to F . Assertions (1) and (2) are

equivalent to the requirement that G preserves fibrant objects. We will complete the proof by

showing that F is a left Quillen functor. Since LM⊗,\ ∈ (Set+∆)/PLM
is cofibrant, it will suffice to

show that the product functor

(Set+∆)/PLM
× (Set+∆)/PRM

→ (Set+∆)/PBM

determined by Pr is a left Quillen bifunctor. This follows immediately from Remark B.2.5 and

Proposition B.2.9.

Let q : C⊗ → BM⊗ be a fibration of ∞-operads. We note that the inclusion {m} ↪→ LM⊗

determines a forgetful functor θ : LMod(Cm)⊗ → C⊗×BM⊗ RM
⊗. Using Proposition 4.3.2.5, we see

that θ is a fibration of ∞-operads. Moreover, if q is a coCartesian fibration of ∞-operads, then θ

is an RM-monoidal functor.

Proposition 4.3.2.6. Let q : C⊗ → BM⊗ be a fibration of ∞-operads. Then the forgetful functor

LMod(Cm)⊗ → C⊗×BM⊗ RM
⊗
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induces a trivial Kan fibration of ∞-operads

LMod(Cm)⊗a → C⊗+ .

Proof. Let X denote the full subcategory of Fun(LM⊗,BM⊗) spanned by those functors of the form

X 7→ Pr(X,Y ), where Y ∈ Assoc⊗+ ⊆ RM⊗. Let X′ denote the full subcategory of Fun(LM⊗,C⊗)

spanned by those functors F : LM⊗ → C⊗ such that q ◦ F ∈ X and F carries inert morphisms in

LM⊗ to inert morphisms in C⊗. There is an evident pullback diagram

LMod(Cm)⊗a

��

// X′

θ
��

C⊗+
// X×Fun({m},BM⊗) Fun({m},C⊗).

It will therefore suffice to show that the map θ is a trivial Kan fibration.

Let LM⊗0 denote the full subcategory of LM⊗ spanned by those objects of the form (〈n〉, S),

where S = 〈n〉◦. Then LM⊗0 is isomorphic to the trivial ∞-operad Triv⊗ of Example 2.1.1.20.

Let Z′ denote the full subcategory of Fun(LM⊗0 ,C
⊗) spanned by those functors which carry each

morphism in LM⊗0 to an inert morphism in C⊗. The map θ factors as a composition

X′
θ′→ X×Fun(LM⊗0 ,BM⊗) Z

′ θ′′→ X×Fun({m},BM⊗) Fun({m},C⊗).

We will complete the proof by showing that θ′ and θ′′ are trivial Kan fibrations.

We first show that θ′ is a trivial Kan fibration. In view of Proposition HTT.4.3.2.15 , it will

suffice to show the following:

(a) Let Y ∈ Assoc⊗+ and let f : LM⊗ → BM⊗ be given by the formula f(X) = Pr(X,Y ).

Suppose that f |LM⊗0 lifts to an object f ∈ Z′. Then there exists a dotted arrow as indicated

in the diagram

LM⊗0
f //

��

C⊗

q

��
LM⊗

f //

F

;;

BM⊗,

such that F is a q-left Kan extension of f .

(b) Given a commutative diagram as above, F is a q-left Kan extension of f if and only if F

carries inert morphisms in LM⊗ to inert morphisms in C⊗.

Note that the inclusion LM⊗0 ↪→ LM⊗ admits a right adjoint r, which carries an object (〈n〉, S) ∈
LM⊗ to the pair (S∗, S) (where we abuse notation by identify the finite pointed set S∗ = S ∪ {∗}
with an object of Fin∗). For each object X ∈ LM⊗, our assumption that Y ∈ Assoc⊗+ guarantees

that the functor f carries the counit map vX : r(X) → X to degenerate edge of BM⊗. To prove

(a), we take F = f ◦ r. Moreover, we obtain the following version of (b):
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(b′) Given a commutative diagram as in (a), the functor F is a q-left Kan extension of f if and

only if, for each X ∈ LM⊗, the induced map F (r(X))→ F (X) is an equivalence in C⊗.

We now prove (b). Assume we are given a commutative diagram as in (a). Suppose first that

F carries inert morphisms in LM⊗ to inert morphisms in C⊗. Let X ∈ LM⊗, and note that there

exists a commutative diagram

X
β

""
r(X)

vX

<<

id // r(X).

Then F (β) is an inert morphism in the fiber C⊗f(X) and therefore an equivalence. Since F (vX) is a

right inverse to F (β), we conclude that F (vX) is an equivalence. Using (b′), we conclude that F

is a q-left Kan extension of f . Conversely, suppose that F is a q-left Kan extension of f ,and let

α : X → Y be an inert morphism in LM⊗. We have a commutative diagram

r(X)

r(α)

��

vX // X

α

��
r(Y )

vY // Y

in LM⊗. Using (b′), we see that F (vX) and F (vY ) are equivalences in C⊗. Our assumption that

f ∈ Z′ guarantees that F (r(α)) is inert, so that F (α) is inert as desired. This completes the proof

that θ′ is a trivial Kan fibration.

Let Z denote the full subcategory of Fun(LM⊗0 ,BM⊗) spanned by those functors of the form

X 7→ Pr(X,Y ) for some Y ∈ Assoc⊗+. We observe that θ′′ is a pullback of the forgetful functor

ψ : Z′ → Z×Fun({m},BM⊗) Fun({m},RM⊗).

It will therefore suffice to show that ψ is a trivial Kan fibration. We proceed as in Example 2.1.3.5.

Using Proposition HTT.4.3.2.15 , we are reduced to proving the following:

(c) Let Y ∈ Assoc⊗+ and let g : LM⊗0 → BM⊗ be given by the formula g(X) = Pr(X,Y ). Let Y

be an object of the fiber C⊗Y . Then there exists a dotted arrow as indicated in the diagram

{m} Y //

��

C⊗

q

��
LM⊗0

g //

G

;;

BM⊗,

such that G is a q-right Kan extension of G|{m}.
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(d) Given a commutative diagram as above, G is a q-right Kan extension of G|{m} if and only if

carries inert morphisms in LM⊗0 to inert morphisms in C⊗.

Assertion (c) follows immediately from Remark 2.1.2.11, since q is a fibration of ∞-operads.

The characterization of assertion (d) follows from Remark 2.1.2.9 (applied to G, regarded as a

section of the ∞-operad fibration C⊗×BM⊗ LM
⊗
0 ).

The main result of this section can be stated as follows:

Theorem 4.3.2.7. Let q : C⊗ → BM⊗ be a fibration of ∞-operads. Then composition with the

functor Pr : LM⊗×RM⊗ → BM⊗ induces an equivalence of ∞-categories

θ : BMod(Cm)→ RMod(LMod(Cm)).

Proof. Let X denote the fiber product C⊗×BM⊗ LM
⊗×RM⊗ . The canonical map

X→ LM⊗×RM⊗ → N(Fin∗)× RM⊗

exhibits X as a RM⊗-family of ∞-operads. Let γ : N(∆)op ×∆1 → LM⊗ be as in Remark 4.2.2.8

and let M be the collection of morphisms f in N(∆op) ×∆1 such that γ(f) is an inert morphism

in LM⊗. Let Y⊗ denote the full subcategory of

FunLM⊗(N(∆)op ×∆1,X)×Fun(N(∆)op×∆1,RM⊗) RM
⊗

spanned by those pairs (F, Y ), where Y ∈ RM⊗ and F : N(∆)op × ∆1 → XY is a functor which

carries every morphism in M to an inert morphism in the∞-operad XY . It follows from Proposition

4.2.2.13 that composition with γ induces an equivalence of ∞-categories LMod(Cm)⊗ → Y. In

particular, the categorical fibration p : Y⊗ → RM⊗ is a fibration of ∞-operads. Note also that a

morphism in Y⊗ is inert if and only if its image in RM⊗ is inert and the corresponding functor

N(∆)op ×∆1 ×∆1 → X carries every morphism in

M ×HomSet∆
(∆1,∆1) ⊆ HomSet∆

(∆1,N(∆)op ×∆1 ×∆1)

to an inert morphism in X.

Reversing the order of linearly ordered sets determines isomorphisms

rev : N(∆)op → N(∆)op rev : LM⊗ → RM⊗ .

Let γ′ : N(∆)op ×∆1 → RM⊗ be defined so that the diagram

N(∆)op ×∆1 γ //

rev× id
��

LM⊗

rev

��
N(∆)op ×∆1 γ′ // RM⊗
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commutes, and let M ′ be the collection of all morphisms f in N(∆)op ×∆1 such that γ′(f) is an

inert morphism in RM⊗. Let Z be the full subcategory of FunRM⊗(N(∆)op × ∆1,Y⊗) spanned

by those functors which carry every morphism in M ′ to an inert morphism in Y. The analogue

of Proposition 4.2.2.13 for right modules implies that γ′ induces an equivalence of ∞-categories

θ′′ : RMod(Ym)→ Z .

Let φ : BMod(Cm)→ Z be the composite functor

BMod(Cm)
θ→ RMod(LMod(C))

θ′→ RMod(Ym)
θ′′→ Z .

The above argument shows that θ′ is an equivalence of ∞-categories, and the analogue of Proposi-

tion 4.2.2.12 for right modules implies that θ′′ is an equivalence of ∞-categories. To complete the

proof, it will suffice to show that φ is an equivalence of ∞-categories.

Let I1 denote the category ∆op×∆op×[1]× [1]. Let ψ : I1 → BM⊗ be the composite functor

I1
γ×γ′−→ LM⊗×RM⊗ Pr−→ BM⊗ .

Unwinding the definitions, we see that Z can be identified with the full subcategory of

FunBM⊗(N(I1),C⊗) spanned by those functors which carry every morphism belonging to M ×M ′

to an inert morphism in C⊗.

Let I denote the categorical mapping cylinder of the functor ψ : I1 → BM⊗. More precisely,

we define I as follows:

(1) An object of I is either an object of BM⊗ or an object of I1.

(2) Morphisms in I are given by the formulas

HomI(X,Y ) =


HomBM⊗(X,Y ) if X,Y ∈ BM⊗

HomI1(X,Y ) if X,Y ∈ I1

HomBM⊗(X,ψ(Y )) if X ∈ BM⊗, Y ∈ I1

∅ if X ∈ I1, Y ∈ BM⊗ .

The functor ψ extends to a retraction of I onto the subcategory BM⊗ ⊆ I. We let Z′ denote the

full subcategory of FunBM⊗(N(I),C⊗) spanned by those functors f : N(I) → C⊗ which satisfy the

following codnitions:

(i) For every object X ∈ I0, the canonical map f(ψ(X))→ f(X) is an equivalence in C⊗.

(ii) The restriction f |BM⊗ is carries inert morphisms in BM⊗ to inert morphisms in C⊗.

Note that conditions (i) and (ii) immediately imply the following:

(iii) The restriction f |N(I1) carries morphisms in M ×M ′ to inert morphisms in C⊗.
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Condition (i) is equivalent to the requirement that f is a q-left Kan extension of f |BM⊗.

Since every functor f0 ∈ FunBM⊗(BM⊗,C⊗) admits a q-left Kan extension f ∈ FunBM⊗(N(I),C⊗)

(given, for example, by f0 ◦ r), Proposition HTT.4.3.2.15 implies that the restriction map p : Z′ →
BMod(Cm) is a trivial Kan fibration. The map φ is the composition of a section to p (given by

composition with r) with the restriction map p′ : Z′ → Z given by f 7→ f | I1. It will therefore

suffice to show that p′ is a trivial Kan fibration. In view of Proposition HTT.4.3.2.15 , this can be

deduced from the following pair of assertions:

(a) Every f0 ∈ Z ⊆ FunBM⊗(N(I1),C⊗) admits a q-right Kan extension f ∈ FunBM⊗(N(I),C⊗).

(b) Given f ∈ FunN(Fin∗)(N(I),C⊗) satisfying (iii), the functor f is a q-right Kan extension of

f |N(I1) if and only if it satisfies conditions (i) and (ii).

We first prove (a). Fix f0 ∈ Z and let (〈n〉, c−, c+) be an object of BM⊗. Let J denote the

category I1×I(I)(〈n〉,c−,c+)/, and let g denote the composition N(J) → N(I1)
f0→ O⊗, so that q ◦ g

extends canonically to a map G : N(J)/ → N(I) → r→ BM⊗. According to Lemma HTT.4.3.2.13 ,

it will suffice to show that g can be extended to a q-limit diagram in C⊗ lying over G.

The objects of J can be identified with morphisms α : (〈n〉, c−, c+) → ψ(X) in BM⊗, where

X ∈ I1. Let J0 ⊆ J denote the full subcategory spanned by those objects for which α is inert. The

inclusion J0 ⊆ J has a right adjoint, so that N(J0) → N(J) is right cofinal. Consequently, it will

suffice to show that g0 = g|N(J0) admits a q-limit in C⊗ (compatible with G).

Let J1 denote the full subcategory of J0 spanned by the morphism which are either of the

form ρj : (〈n〉, c−, c+) → r([0], [0], 0, 0) ' m where c−(j) = 0 < 1 = c+(j), ρj : (〈n〉, c−, c+) →
r([1], [n], 0, 1) = a− where c−(j) = c+(j) = 0, or ρj : (〈n〉, c−, c+) → r([m], [1], 1, 0) = a+ where

c−(j) = c+(j) = 1. Note that J1 decomposes as a disjoint union of full subcategories J1 '∐
1≤j≤n J1(j).

Let g1 = g0|N(J1). We claim that g0 is a q-right Kan extension of g1. To prove this, consider

an object of X ∈ J1, corresponding an morphism α : (〈n〉, c−, c+) → ψ(X) in BM⊗. Let S =

{j ∈ 〈n〉◦ : α(j) 6= ∗}, so that (J1)X/ decomposes as a disjoint union
∐
j∈S(J1(j))X/, where J1(j)X/

denotes the subcategory J1(j)×J1
(J1)X/ ⊆ (J1)X/. Each of the subcategories J1(j)X/ has an initial

object, given by a morphism βj : X → Xj in I1. If X = ([m], [n], i, i′), then

Xj =


([0], [0], 0, 0) if c−(j) = 0 < 1 = c+(j)

([1], [n], 0, 1) if c−(j) = c+(j) = 0

([m], [1], 1, 0) if c−(j) = c+(j) = 1.

In each of these cases, the morphism βj belongs to M ×M ′, so that f0(βj) is inert (since f0 ∈ Z).

Since q is a fibration of∞-operads, we conclude that f0 exhibits f0(X) is a q-product of the objects

f0(Xj), and therefore a q-limit of f0|(J1)X/.
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Since g0 is a q-right Kan extension of g0, it will suffice to show that g1 can be extended to

a q-limit diagram in C⊗ which is compatible with G (Lemma HTT.4.3.2.7 ). Each of the ∞-

categories J1(j) is isomorphic either to ∆0 to N(∆)op, and is in particular weakly contractible.

That each restriction g1|N(J1(j)) takes values in the ∞-category C− (if c−(j) = c+(j) = 0), Cm (if

c−(j) = 0 < 1 = c+(j)), or C+ (if c−(j) = c+(j) = 1). The assumption f0 ∈ Z guarantees that

g1|N(J1(j)) carries each morphism in J1(j) to an equivalence. Since N(J1(j)) is weakly contractible,

we conclude that g1|N(J1(j)) is equivalent to a constant diagram and admits a q-limit Yi ∈ C

(Corollary HTT.4.4.4.10 ). Since q is a fibration of ∞-operads, the objects Yi ∈ C admit a q-

product in C⊗(〈n〉,c−,c+) which is a q-limit of g1 compatible with G. This completes the proof of (a).

Moreover, the proof shows that a functor f : N(I) → C⊗ is a q-right Kan extension of f0 if and

only if it satisfies the following condition:

(i′) For every object (〈n〉, c−, c+) ∈ BM⊗ as above and every object α : (〈n〉, S) → X belonging

to the category J1 defined above, the image f(α) is an inert morphism in C⊗.

To prove (b), it will suffice to show that if f ∈ FunBM⊗(N(I),O⊗) satisfies condition (iii), then

it satisfies conditions (i) and (ii) if and only if it satisfies condition (i′). We first prove the “only

if” direction. Assume that f ∈ Z′, and let α : (〈n〉, c−, c+)→ X be as in (i′). Then α factors as a

composition

(〈n〉, c−, c+)
α′→ ψ(X)

α′′→ X,

where α′ is inert (so that f(α′) is inert by (ii)) and f(α′′) is an equivalence by virtue of (i).

Suppose now that f satisfies (i′) and (iii). We first show that f satisfies (i). Fix an object

X = ([m], [n], i, j) in I; we wish to show that f carries the canonical map α : ψ(X) → X to

an equivalence in C⊗. Let ψ(X) = (〈n〉, c−, c+), and let J1 be the category defined above, so

that (J1)X/ '
∐

1≤j≤n J1(j)X/ where each J1(j) contains an initial object given by a morphism

βj : X → Xj in I1. Assumption (i′) shows that each f(βj ◦ α) is inert, and assumption (iii)

guarantees that each f(βj) is inert (since βj ∈ M ×M ′). It follows that the image of f(α) under

the functor u : C⊗ψ(X) →
∏

1≤j≤n C
⊗
ψ(Xj)

is an equivalence. Since q is a fibration of ∞-operads, the

functor u is an equivalence so that f(α) is an equivalence in the ∞-category C⊗ψ(X).

It remains to show that f satisfies (ii). For this, it will suffice to show that f(α) is inert

whenever α is an inert morphism of LM⊗ of the form α : (〈n〉, c−, c+)→ (〈1〉, c′−, c′+). We observe

that in this case we can write (〈1〉, c′−, c′+) ' ψ(X) so that α determines an object of the category

J1 defined above. Let β : ψ(X)→ X be the evident morphism in I. Condition (i′) guarantees that

f(β ◦ α) is inert, and condition (i) guarantees that f(β) is an equivalence. It follows that f(α) is

inert, as desired.

Corollary 4.3.2.8. Let M be an ∞-category which is bitensored over a pair of monoidal ∞-

categories C⊗− and C⊗+. Let B ∈ Alg(C+), and assume that the unit map 1 → B is an equivalence
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in C+. Then the forgetful functor

BMod(M)×Alg(C+) {B} → LMod(M)

is an equivalence of ∞-categories. In particular, if A ∈ Alg(C−), then the forgetful functor

ABModB(M)→ LModA(M)

is an equivalence of ∞-categories.

Proof. Combine Theorem 4.3.2.7, Proposition 4.3.2.6, and Proposition 4.2.4.9.

4.3.3 Limits, Colimits, and Free Bimodules

Let C⊗ be a monoidal∞-category and suppose we are given a pair of algebra objects A,B ∈ Alg(C).

In this section, we study the relationship between the ∞-category ABModB(C) of A-B-bimodule

objects of C and the underlying ∞-category C. We can summarize our main results as follows:

(a) Let K be a simplicial set such that C admits K-indexed limits. Then ABModB(C) admits

K-indexed limits, and the forgetful functor LModA(M) → M preserves K-indexed limits

(Corollary 4.3.3.3).

(b) Let K be a simplicial set such that C admits K-indexed colimits and the tensor product

functors M 7→ A ⊗M and M 7→ M ⊗ B preserve K-indexed colimits. Then ABModB(C)

admits K-indexed colimits, and the forgetful functor ABModB(C) → C preserves K-indexed

colimits (Proposition 4.3.3.9).

(c) The forgetful functor ABModB(C) → C admits a left adjoint, given on objects by M 7→
A⊗M ⊗B (Corollary 4.3.3.14).

At the end of this section, we describe an application of (c), which gives a simple description of

bimodule objects in the underlying ∞-category of a monoidal model category (Theorem 4.3.3.17).

The analogues of assertions (a), (b), and (c) for left modules were proven in §4.2. It is possible

to obtain the results of this section by generalizing the methods of §4.2. We will adopt a differ-

ent approach, which uses Theorem 4.3.2.7 to reduce questions about bimodule objects to simpler

questions about left and right modules. For example, Theorem 4.3.2.7, Proposition 4.2.3.1, and

Proposition HTT.4.3.1.5 immediately imply the following:

Proposition 4.3.3.1. Let M be an ∞-category which is bitensored over a pair of monoidal ∞-

categories C⊗− and C⊗+. Let K be a simplicial set such that M admits K-indexed limits, and let

θ : BMod(M)→ Alg(C−)×Alg(C+) be the forgetful functor. Then:
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(1) For every diagram

K� _

��

// BMod(M)

θ
��

K/ //

77

Alg(C−)×Alg(C+)

there exists a dotted arrow as indicated, which is a θ-limit diagram.

(2) An arbitrary map g : K/ → BMod(M) is a θ-limit diagram if and only if the induced map

K/ →M is a limit diagram.

Corollary 4.3.3.2. Let M be an ∞-category which is bitensored over a pair of monoidal ∞-

categories C⊗− and C⊗+. Then the forgetful functor θ : BMod(M)→ Alg(C−)×Alg(C+) is a Cartesian

fibration. A morphism f in BMod(M) is θ-Cartesian if and only if the image of f in M is an

equivalence.

Proof. Apply Proposition 4.3.3.1 in the case K = ∆0.

Corollary 4.3.3.3. Let M be an ∞-category which is bitensored over a pair of monoidal ∞-

categories C⊗− and C⊗+. Let A ∈ Alg(C−) and B ∈ Alg(C+) be algebra objects, and let K be a

simplicial set such that M admits K-indexed limits. Then:

(1) The ∞-category ABModB(M) admits K-indexed limits.

(2) A map p : K/ → ABModB(M) is a limit diagram if and only if the induced map K/ →M is

a limit diagram.

(3) Given maps of algebra objects A → A′, B → B′, the induced functor A′BModB′(M) →
ABModB(M) preserves K-indexed limits.

We would next like to discuss an analogue of Proposition 4.3.3.1 for colimits of bimodules. This

will require a bit of additional notation.

Notation 4.3.3.4. Let τ : RM⊗ → Triv⊗ be the map of∞-operads given by the formula (〈n〉, S) 7→
S∗; here we abuse notation by identifying the pointed set S∗ = S ∪{∗} with an object of Fin∗. The

functor ∧ : Fin∗×Fin∗ → Fin∗ of Notation 2.2.5.1 refines to a bifunctor of ∞-operads

∧′ : Assoc⊗×Triv⊗ → Assoc⊗ ' Assoc⊗− ⊆ BM⊗ .

Given a fibration of ∞-operads p : C⊗ → BM, we let Alg(C−)⊗ denote the fiber product

RM⊗×Triv⊗ Alg/Assoc(C)⊗,

where Alg/Assoc(C)⊗ → Triv⊗ is the fibration of ∞-operads obtained by applying Construction

3.2.4.1 to the map ∧′. Note that the composition

Assoc⊗×RM⊗
id×τ−→ Assoc⊗×Triv⊗

∧′−→ BM⊗
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coincides with the restriction Pr |(Assoc⊗×RM⊗). Consequently, composition with the inclu-

sion functor Assoc⊗×RM⊗ ↪→ LM⊗×RM⊗ induces a fibration of ∞-operads LMod(Cm)⊗ →
Alg(C−)⊗.

Remark 4.3.3.5. Let C⊗ → BM⊗ be as in Notation 4.3.3.4. Then Alg(C−)⊗m ' Alg(C−), and the

forgetful functor Alg(C−)⊗a → Assoc⊗ is a trivial Kan fibration. Example 2.1.3.5 guarantees that

evaluation at m induces an equivalence of ∞-categories RMod(Alg(C−)) ' Alg(C−).

Notation 4.3.3.6. Let C⊗ → BM⊗ be a fibration of ∞-operads and let A ∈ Alg(C−). The

composite functor

Assoc⊗×RM⊗
id×τ−→ Assoc⊗×Triv⊗ → Assoc⊗

A−→ C⊗−

can be identified with a map A′ : RM⊗ → Alg(C−)⊗, which is a preimage of A under the trivial

Kan fibration RMod(Alg(C−))→ Alg(C−) of Remark 4.3.3.5. We let LModA(Cm)⊗ denote the fiber

product

LMod(Cm)⊗ ×Alg(C−)⊗ RM⊗ .

Remark 4.3.3.7. Let p : C⊗ → BM⊗ be a fibration of ∞-operads and let A ∈ Alg(C−).

Then the map LModA(Cm)⊗ → RM⊗ is a fibration of ∞-operads, which exhibits the ∞-category

LModA(Cm)m ' LModA(Cm) as weakly enriched over the reverse of LModA(Cm)⊗a ' LMod(Cm)⊗a
(which is equivalent to C⊗+; see Proposition 4.3.2.6). If p is a coCartesian fibration of ∞-operads,

then this weak enrichment exhibits LModA(Cm) as right-tensored over the monoidal ∞-category

C+. It follows from Remark 4.3.3.5 that RMod(LModA(Cm)) can be identified with the homotopy

fiber of the map

RMod(LMod(Cm))→ LMod(Cm)→ Alg(C−)

over the object A ∈ Alg(C−).

Remark 4.3.3.8. Let q : C⊗ → BM⊗ be a fibration of ∞-operads and let A ∈ Alg(C−), B ∈
Alg(C+). We let RModB(LModA(Cm) denote the fiber

RMod(LModA(Cm)×Alg(C+) {B},

where the map RMod(LModA(Cm)) → Alg(C+) is the categorical fibration given by composition

with the inclusion

{m} ×Assoc⊗ ↪→ LM⊗×RM⊗ .

Since Alg(C−)⊗a → Assoc⊗ is a trivial Kan fibration, Proposition 4.3.2.6 guarantees that the cate-

gorical fibration θ : Alg(LModA(Cm)a)→ Alg(C+) is an equivalence of ∞-categories, and therefore

a trivial Kan fibration. We may therefore assume that B = θ(B) for some B ∈ Alg(LModA(Cm)a),

and the inclusion

RModB(LModA(Cm)→ RModB(LModA(Cm)
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is a categorical equivalence. Combining Remark 4.3.3.7 with Theorem 4.3.2.7, we obtain an equiv-

alence of ∞-categories

ABModB(Cm)→ RModB(LModA(Cm)).

We are now ready to discuss colimits in ∞-categories of bimodules.

Proposition 4.3.3.9. Let M be an ∞-category which is bitensored over a pair of monoidal ∞-

categories C⊗− and C⊗+. Let A ∈ Alg(C−) and B ∈ Alg(C+) be algebra objects. Let K be a simplicial

set such that M admits K-indexed colimits, and assume that the functors

M ' {A} ×M ↪→ C−×M→M

M 'M×{B} ↪→M×C+ →M

preserve K-indexed colimits. Then:

(1) Every diagram f : K → ABModB(M) has a colimit.

(2) An arbitrary diagram f : K. → ABModB(M) is a colimit diagram if and only if it induces a

colimit diagram K. →M.

Proof. Applying Corollary 4.2.3.5, we deduce that the ∞-category LModA(M) admits K-indexed

colimits; moreover, a map K. → LModA(M) is a colimit diagram if and only if the induced map

K. → M is a colimit diagram. Let B ∈ Alg(LModA(M)a) be a preimage of B under the trivial

Kan fibration Alg(LModA(Cm)a) → Alg(C+) of Remark 4.3.3.8. Since the right action of B on M

preserves K-indexed colimits, the action of B on LModA(M) also preserves K-indexed colimits.

Applying Corollary 4.2.3.5 again, we deduce that RModB(LModA(M)) admits K-indexed colimits;

moreover, a map f : K. → RModB(LModA(M)) is a colimit diagram if and only if the composite

map K. → LModA(M) is a colimit diagram (which is equivalent to the requirement that the

underlying map K. → M is a colimit diagram). Assertions (1) and (2) now follow immediately

from the equivalences

ABModB(M)→ RModB(LModA(M))← RModB(LModA(M))

of Remark 4.3.3.8.

Corollary 4.3.3.10. Let M be an ∞-category which is bitensored over a pair of monoidal ∞-

categories C⊗− and C⊗+. Assume that M is presentable and that for every pair of objects X ∈ C⊗−,

Y ∈ C⊗+, the functors

M ' {X} ×M ↪→ C−×M→M

M 'M×{Y } ↪→M×C+ →M

preserve small colimits. Then:
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(1) For every A ∈ Alg(C−), B ∈ Alg(C+), the ∞-category ABModB(M) is presentable.

(2) For every f : A → A′ in Alg(C−) and every g : B → B′ in Alg(C+), the associated functor

A′BModB′(M)→ ABModB(M) preserves small limits and colimits.

(3) The forgetful functor θ : BMod(M)→ Alg(C−)×Alg(C)+ is a presentable fibration (Definition

HTT.5.5.3.2 ).

Proof. Let B be as in Remark 4.3.3.8. Assertion (1) follows from iterated application of Corollary

4.2.3.7, using the equivalences

ABModB(M)→ RModB(LModA(M))← RModB(LModA(M)).

Assertion (2) follows from Proposition 4.3.3.9 and Corollary 4.3.3.3. Assertion (3) follows from (1)

and (2), by virtue of Proposition HTT.5.5.3.3 .

We next use Theorem 4.3.2.7 and the results of §4.2.4 to develop a good theory of free bimodules.

Definition 4.3.3.11. Let M be an ∞-category which is bitensored over a pair of monoidal ∞-

categories C⊗− and C⊗+. Let A ∈ Alg(C−), let B ∈ Alg(C+), and let M ∈ ABModB(M) be an

A-B-bimodule. We will abuse notation by identifying M with its image in M. We will say that a

morphism M0 → M in M exhibits M as the free A-B-bimodule generated by M0 if the composite

map

A⊗M0 ⊗B → A⊗M ⊗B →M

is an equivalence in M.

Using Remark 4.3.3.8 and Proposition 4.2.4.2, we immediately deduce the following:

Proposition 4.3.3.12. Let M be an ∞-category which is bitensored over a pair of monoidal ∞-

categories C⊗− and C⊗+. Suppose that we are given objects A ∈ Alg(C−), B ∈ Alg(C+), and M0 ∈M.

Then:

(1) There exists an object M ∈ ABModB(M) and a morphism λ : M0 → M in M which exhibits

M as a free A-B-bimodule generated by M0.

(2) Let M ∈ ABModB(M) and let λ : M0 → M be a morphism which exhibits M as a free

left A-module generated by M0. For every N ∈ ABModB(M), composition with λ induces a

homotopy equivalence

Map
ABModB(M)(M,N)→ MapM(M0, N).

Corollary 4.3.3.13. Let M be an ∞-category which is bitensored over a pair of monoidal ∞-

categories C⊗− and C⊗+, and let A ∈ Alg(C−) and B ∈ Alg(C+). Then the forgetful functor

ABModB(M) → M admits a left adjoint, which carries an object M0 ∈ M to a free A-B-bimodule

generated by M0.
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Corollary 4.3.3.14. Let M be an ∞-category which is bitensored over a pair of monoidal ∞-

categories C⊗− and C⊗+. Then the forgetful functor BMod(M) → Alg(C−) ×M×Alg(C+) admits a

left adjoint, which carries each triple (A,M0, B) to a free A-B-bimodule A⊗M0⊗B ∈ ABModB(M).

Proof. Combine Proposition 4.3.3.12 with Corollary 4.3.3.2.

We conclude this section with a rectification result for bimodule objects in a monoidal model

category. Let A be a simplicial monoidal model category, and C = N(Ao) its underlying ∞-

category. In §4.1.8, we saw that there is often a close relationship between associative algebra

objects A ∈ Alg(C) and (strictly) associative algebra objects of A itself (Theorem 4.1.8.4). We

will conclude this section by proving an analogous result for bimodules (Theorem 4.3.3.17). The

key point is that we have a similar understanding of free bimodules in both A and C, thanks to

Proposition 4.3.3.12.

Let A be a monoidal model category and let A and B be algebra objects of A. We let

ABModB(A) denote the ordinary category of A-B-bimodule objects in A.

Proposition 4.3.3.15. Let A be a combinatorial monoidal model category and suppose that A and

B are associative algebra objects of A which are cofibrant as objects of A. Then ABModB(A) has

the structure of a combinatorial model category, where:

(W ) A morphism f : M → N is a weak equivalence in ABModB(A) if and only if it is a weak

equivalence in A.

(F ) A morphism f : M → N is a fibration in ABModB(A) if and only if it is a fibration in A.

The forgetful functor ABModB(A) → A is both a left Quillen functor and a right Quillen func-

tor. Moreover, if A is equipped with a compatible simplicial structure, then the induced simplicial

structure on ABModB(A) endows ABModB(A) with the structure of a simplicial model category.

Proof. The proof is similar to that of Proposition 4.1.8.3. We first observe that ABModB(A) is

presentable (Corollary 4.3.3.10). Let T : ABModB(A) → A be the forgetful functor. Then T

admits a left adjoint given by the formula F (X) = A ⊗ X ⊗ B, and a right adjoint given by the

formula G(X) =A XB. Since A is combinatorial, there exists a (small) collection of morphisms

I = {iα : C → C ′} which generates the class of cofibrations in A, and a (small) collection of

morphisms J = {jα : D → D′} which generates the class of trivial cofibrations in A. Let F (I) be

the weakly saturated class of morphisms in ABModB(A) generated by {F (i) : i ∈ I}, and let F (J)

be defined similarly. Unwinding the definitions, we see that a morphism in ABModB(A) is a trivial

fibration if and only if it has the right lifting property with respect to F (i), for every i ∈ I. Invoking

the small object argument, we deduce that every morphism f : M → N in ABModB(A) admits a

factorization M
f ′→ N ′

f ′′→ N where f ′ ∈ F (I) and f ′′ is a trivial fibration. Similarly, we can find an

analogous factorization where f ′ ∈ F (J) and f ′′ is a fibration. Using standard arguments, we are
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reduced to the problem of showing that each morphism belonging to F (J) is a weak equivalence

in ABModB(A). Let S be the collection of all morphisms f : M → N in ABModB(A) such that

T (f) is a trivial cofibration in A. We wish to prove that F (J) ⊆ S. Since T preserves colimits, we

conclude that S is weakly saturated; it will therefore suffice to show that for each j ∈ J , F (j) ∈ S.

In other words, we must show that if j : X → Y is a trivial cofibration in A, then the induced

map A ⊗X ⊗ B → A ⊗ Y ⊗ B is again a trivial cofibration in A. This follows immediately from

the definition of a monoidal model category, in view of our assumption that A and B are cofibrant

objects of A. This completes the proof that LModA(A) is a model category.

The forgetful functor T : ABModB(A) → A is a right Quillen functor by construction. To see

that T is also a left Quillen functor, it suffices to show that the right adjoint G : A→ ABModB(A)

preserves fibrations and trivial fibrations. In view of the definition of fibrations and trivial fibrations

in ABModB(A), this is equivalent to the assertion that the composition T ◦G : A → A preserves

fibrations and trivial fibrations. This follows immediately from the definition of a monoidal model

category, since A and B are assumed to be cofibrant in A.

Now suppose that A is equipped with a compatible simplicial structure. We claim that

ABModB(A) inherits the structure of a simplicial model category. For this, we suppose that

f : M → N is a fibration in ABModB(A) and that g : X → Y is a cofibration of simplicial sets.

We wish to show that the induced map MY → MX ×NX NY is a fibration in LModA(A), which

is trivial if either f or g is trivial. This follows immediately from the analogous statement in the

simplicial model category A.

Remark 4.3.3.16. Proposition 4.3.3.15 admits the following generalization: suppose that A is a

combinatorial model category, and that F : A→ A is a left Quillen functor which is equipped with

the structure of a monad (that is, an associative algebra in the monoidal category Fun(A,A) of

endofunctors of A). Then the category of algebras over F inherits a model structure, where the

fibrations and weak equivalences are defined at the level of the underlying objects of A.

In the situation of Proposition 4.3.3.15, let Ac ⊆ A and (ABModB(A))c ⊆ ABModB(A) denote

the full subcategories of A and ABModB(A)c spanned by the cofibrant objects. Let W be the

collection of weak equivalences in Ac and W ′ the collection of weak equivalences in ABModB(A)c.

The monoidal functor N(Ac)→ N(Ac)[W−1] determines a map

θ : N(ABModB(A)c)[W ′−1]→ ABModB(N(Ac)[W−1])

(where we abuse notation by identifying A and B with their images in Alg(N(Ac)[W−1])).

Theorem 4.3.3.17. Let A be a combinatorial monoidal model category and let A,B ∈
Alg(A) be associative algebras in A which are cofibrant as objects of A. Then the functor

θ : N(ABModB(A)c)[W ′−1] → ABModB(N(Ac)[W−1]) described above is an equivalence of

∞-categories.
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Proof. Consider the diagram

N(ABModB(A)c)[W ′−1]
θ //

G ))

ABModB(N(Ac)[W−1])

G′uu
N(Ac)[W−1].

We will show that this diagram satisfies the hypotheses of Corollary 4.7.3.16:

(a) The ∞-categories N(ABModB(A)c)[W ′−1] and ABModB(N(Ac)[W−1]) admit geometric

realizations of simplicial objects. In fact, both of these ∞-categories are presentable.

For N(ABModB(A)c)[W ′−1], this follows from Propositions 1.3.4.22 and 4.3.3.15. For

ABModB(N(Ac)[W−1]), we first observe that N(Ac)[W−1] is presentable (Proposition

1.3.4.22) and that left tensor product by A and right tensor product by B preserve small

colimits (Corollary 4.1.8.8), and then apply Corollary 4.3.3.10.

(b) The functors G and G′ admit left adjoints F and F ′. The existence of a left adjoint to G

follows from the fact that G is determined by a right Quillen functor. The existence of a left

adjoint to G′ follows from Corollary 4.3.3.14.

(c) The functor G′ is conservative and preserves geometric realizations of simplicial objects. This

follows from Corollaries 4.3.3.2 and 4.3.3.9.

(d) The functor G is conservative and preserves geometric realizations of simplicial objects. The

first assertion is immediate from the definition of the weak equivalences in ABModB(A), and

the second follows from the fact that G is also a left Quillen functor.

(e) The natural map G′◦F ′ → G◦F is an equivalence. Unwinding the definitions, we are reduced

to proving that if N is a cofibrant object of A, then the natural map N → A⊗N ⊗B induces

an equivalence F ′(N) ' A⊗N ⊗B. This follows from the explicit description of F ′ given in

Corollary 4.3.3.13.

4.4 The Relative Tensor Product

Let A, B, and C be associative rings. Suppose that M is an A-B-bimodule, N is a B-C-bimodule,

and X is an A-C-bimodule. A bilinear pairing f : M ×N → X is a map f satisfying the equations

f(m+m′, n) = f(m,n) + f(m′, n) f(m,n+ n′) = f(m,n) + f(m,n′)

f(am, n) = af(m,n) f(mb, n) = f(m, bn) f(m,nc) = f(m,n)c.
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We can reformulate this definition categorically as follows: a bilinear map is a map F : M⊗N → X

such that the diagrams

A⊗M ⊗N F //

mA,M⊗id
��

A⊗X
mA,X
��

M ⊗B ⊗N
mB,M //

id⊗mB,N
��

M ⊗N

F
��

M ⊗N ⊗ C
mC,N //

F
��

M ⊗N

F
��

A⊗X
mA,X // X M ⊗N F // X X ⊗ C

mC,X // X

commute; here mA,M : A⊗M →M denotes the left action of A on M , and the maps mA,X , mB,M ,

mB,N , mC,N , and mC,X are defined similarly. The advantage of this reformulation is that it makes

sense more generally: if C is an arbitrary monoidal category containing algebra objects A, B, and

C and bimodules M ∈ ABModB(C), N ∈ BBModC(C), and X ∈ ABModC(C), then we can define

a bilinear map from M ⊗ N to X to be a map F : M ⊗ N → X such that the above diagrams

commute.

In §4.4.1, we will generalize the notion of a bilinear pairing to the setting of an arbitrary monoidal

∞-category C. Under some mild hypotheses, one can show this notion determines a corepresentable

functor: that is, we can associate to every pair of bimodulesM ∈ ABModB(C) andN ∈ BBModC(C)

a new bimodule M ⊗B N ∈ ABModC(C), which is universal among bimodule objects which receive

a B-bilinear map from the pair (M,N). We will study the relative tensor product functor in §4.4.2.

Note that the construction of M ⊗B N is somewhat more complicated than in the classical case:

it is generally not given by the coequalizer of the diagram M ⊗B ⊗N ////M ⊗N. Instead it is

computed by the classical two-sided bar construction: that is, as the geometric realization of the

simplicial bimodule BarB(M,N)• given informally by the formula

BarB(M,N)n = M ⊗B⊗n ⊗N.

In§4.4.3, we will use this description to show that (under reasonable hypotheses) the relative tensor

product is unital and associative, up to coherent homotopy.

4.4.1 Multilinear Maps

Let C be a monoidal ∞-category and suppose we are given algebra objects A,B,C ∈ Alg(C),

together with bimodule objects

M ∈ ABModB(C) N ∈ BBModC(C) X ∈ ABModC(C).

Our goal in this section is to introduce the notion of a bilinear map from M and N into X. We will

phrase our definition using the language of∞-operads. Namely, we will introduce a correspondence

of ∞-operads Tens⊗� → N(Fin∗)×∆1 with the following properties:
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(a) There is a homotopy pushout diagram of ∞-operads

Assoc⊗
i //

j
��

BM⊗

��
BM⊗ // Tens⊗� ×∆1{0},

where i is the inclusion Assoc⊗ ' Assoc⊗− ↪→ BM⊗ and j the inclusion Assoc⊗ ' Assoc⊗+ ↪→
BM⊗. In other words, giving a M0-algebra object of C is equivalent to giving a pair of

bimodule objects M ∈ ABModB(C), N ∈ B′BModC(C) such that B′ = B.

(b) The fiber Tens⊗� ×∆1{1} is isomorphic to BM⊗, so a M1-algebra object of C is an object

X ∈ A′BModC′(X).

(c) Suppose we are given algebra objects γ0 : Tens⊗� ×∆1{0} → C⊗ and γ1 : Tens⊗� ×∆1{1} → C⊗,

corresponding to a triple M ∈ ABModB(C), N ∈ BBModC(C), and X ∈ A′BModC′(C).

Then extending γ0 and γ1 to a map of generalized ∞-operads Tens⊗� → C⊗ is equivalent (by

definition) to giving a pair of associative algebra maps A→ A′, C → C ′, together with a map

M ⊗N → X which is bilinear in the sense described above.

For later applications, it will be convenient to develop a more general theory of multilinear

maps. If C is a symmetric monoidal ∞-category and we are given a sequence of bimodules M0,1 ∈
A0BModA1(C), M1,2 ∈ A1BModA2(C), . . . ,Mn−1,n ∈ An−1BModAn(C), X ∈ A0BModAn(C), then

we can define the notion of a multilinear map from {Mi−1,i}1≤i≤n to X: namely, a map F :

M0,1 ⊗ · · · ⊗Mn−1,n → X which is compatible with the left action of A0, the right action of An,

and which coequalizes the right action of Ai on Mi−1,i and the left action of Ai on Mi,i+1 for

0 < i < n, all up to coherent homotopy. Moreover, we should be able to compose multilinear maps

in a natural way. To encode all of this structure, we introduce a N(∆)op family of∞-operads Tens⊗

such Tens⊗� ' Tens⊗×N(∆)op∆
1, where ∆1 maps to N(∆)op via the morphism [1] ' {0, 2} ↪→ [2] in

∆.

Definition 4.4.1.1. Let Assoc⊗ be the category of Definition 4.1.1.3. We define a new category

Tens⊗ as follows:

(1) An object of Tens⊗ consists of an object 〈n〉 ∈ Assoc⊗, an object [k] ∈ ∆op, and a pair of

maps c−, c+ : 〈n〉◦ → [k] satisfying c−(i) ≤ c+(i) ≤ c−(i) + 1 for i ∈ 〈n〉◦.

(2) Let (〈n〉, [k], c−, c+) and (〈n′〉, [k′], c′−, c′+) be objects of Tens⊗. A morphism from

(〈n〉, [k], c−, c+) to (〈n′〉, [k′], c′−, c′+) consists of a morphism α : 〈n〉 → 〈n′〉 in Assoc⊗

together with a morphism λ : [k′] → [k] in ∆ such that, for every j ∈ 〈n′〉◦ with

α−1{j} = {{i0 ≺ i1 ≺ · · · ≺ im}, we have λ(c′−(j)) = c−(i0), λ(c′+(j)) = c+(im), and

c−(i0) ≤ c+(i0) = c−(i1) ≤ c+(i1) = c−(i2) ≤ · · · ≤ c+(im−1) = c−(im) ≤ c+(im).
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We let Tens⊗ denote the nerve of the category Tens⊗.

By construction, the∞-category Tens⊗ is equipped with forgetful functors N(∆)op ← Tens⊗ →
Assoc⊗. The following statement follows easily from the definitions:

Proposition 4.4.1.2. The forgetful functor Tens⊗ → N(∆)op × N(Fin∗) exhibits Tens⊗ as a

N(∆)op-family of ∞-operads (in the sense of Definition 2.3.2.10). In particular, Tens⊗ is a gener-

alized ∞-operad.

Remark 4.4.1.3. In fact, something slightly stronger is true: the forgetful functor Tens⊗ →
N(∆)op ×Assoc⊗ is a fibration of generalized ∞-operads.

Remark 4.4.1.4. A morphism α : (〈n〉, [k], c−, c+) → (〈n′〉, [k′], c′−, c′+) in Tens⊗ is inert if and

only if it induces an inert morphism 〈n〉 → 〈n′〉 in Assoc⊗ and an isomorphism [k′]→ [k] in ∆.

Notation 4.4.1.5. If [n] is an object of ∆op, we let Tens⊗[k] denote the fiber product Tens⊗×N(∆)op{[k]}.
Each Tens⊗[k] is equipped with a fibration of ∞-operads Tens⊗[k] → Assoc⊗.

Example 4.4.1.6. The map Tens⊗ → Assoc⊗ restricts to an isomorphism Tens⊗[0] ' Assoc⊗.

Example 4.4.1.7. The ∞-operad Tens⊗[1] is isomorphic to the ∞-operad BM⊗ of §4.3.1; see No-

tation 4.3.1.5.

Remark 4.4.1.8. Fix integer 0 ≤ i ≤ k. Let O(i)⊗ denote the full subcategory of Tens⊗[k] spanned

by objects of the form (〈n〉, [k], c−, c+) where c−(m) = c+(m) = i for 1 ≤ m ≤ n. Then the

composite map O(i)⊗ ⊆ Tens⊗[k] → Assoc⊗ is an isomorphism. Choosing a section, we obtain a map

of ∞-operads εi : Assoc⊗ → Tens⊗[k].

Notation 4.4.1.9. For 0 ≤ i ≤ k, we let ai ∈ Tens[k] denote the image of 〈1〉 ∈ Assoc under the

embedding εi : Assoc⊗ → Tens⊗[k] of Remark 4.4.1.8. If 0 ≤ i, j ≤ k with j = i + 1, we let mi,j

denote the object of Tens[k] given by (〈1〉, [k], c−, c+) where c−(1) = i and c+(1) = j. Note that

every object of Tens[k] has the form ai (for 0 ≤ i ≤ k) or mi,j (for 0 ≤ i, j ≤ k with j = i+ 1).

Let θ : Tens⊗[k] → C⊗ be a map of ∞-operads. For 0 ≤ i ≤ k, Ai = θ(ai) ∈ C has the structure

of an associative algebra object of C. The intuition behind Definition 4.4.1.1 is the following: the

functor θ is determined by the sequence of associative algebras (A0, . . . , Ak), together with an Ai-

Aj-bimodule Mi,j = θ(mi,j) when j = i + 1. Our first main result of this section (Proposition

4.4.1.11) makes this idea more precise. To state it, we will need a bit of terminology.

Notation 4.4.1.10. Every morphism α : [k]→ [k′] in ∆ determines an edge ∆1 → N(∆)op. We let

Tens⊗α denote the fiber product Tens⊗×N(∆)op∆
1, so that Tens⊗α is a correspondence of ∞-operads

from Tens⊗α ×∆1{0} ' Tens⊗[k′] to Tens⊗α ×∆1{1} ' Tens⊗[k]. If the image of α is convex (that is,

α(i+ 1) ≤ α(i) + 1 for 0 ≤ i < k), then this correspondence is associated with a map of ∞-operads

vα : Tens⊗[k] → Tens⊗[k′], given by composition with α.
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Given a nonempty linearly ordered set I, we let Tens⊗I denote the ∞-operad Tens⊗[m] where

m ≥ 0 is chosen so that there exists an isomorphism of linearly ordered sets I ' [m]. We will apply

this notation in particular when I is a convex subset of [k] for some k ≥ 0. In this case, the inclusion

I → [k] induces a map of∞-operads Tens⊗I → Tens⊗[k], which defines an isomorphism of Tens⊗I onto

the full subcategory of Tens⊗[k] spanned by those objects (〈n〉, [k], c−, c+) where c−, c+ : 〈n〉◦ → [k]

take values in I.

Proposition 4.4.1.11 (Segal Condition). Fix k ≥ 0. Then Tens⊗[k] can be identified with the colimit

(in the ∞-category Op∞ of ∞-operads) of the diagram

Tens⊗{0,1} · · · Tens⊗{k−1,k}

Tens⊗{0}

::

Tens⊗{1}

<<
dd

Tens⊗{k−1}

cc
88

Tens⊗{k} .

ff

For the purpose of proving Proposition 4.4.1.11 it will be useful to package the structure of the

generalized ∞-operad Tens⊗ in a more compact form.

Definition 4.4.1.12. Let Step denote the full subcategory of Fun([1],∆)op spanned by those

morphisms f : [n]→ [k] in ∆ with the following property: for 1 ≤ i ≤ n, we have f(i) ≤ f(i−1)+1.

Let φ : ∆op → Assoc⊗ be the functor of Construction 4.1.2.9. We define a functor Φ : Step→
Tens⊗ such that the diagram

Step
Φ //

��

Tens⊗

��
∆op×∆op φ×id// Assoc⊗×∆op .

• Let f : [n] → [k] be a morphism in ∆, viewed as an object of Step. Then Φ(f) =

(φ([n]), [k], c−, c+), where c−, c+ : 〈n〉◦ → [k] are given by

c−(i) = f(i− 1) c+(i) = f(i).

• Let α be a morphism in Step, corresponding to a commutative diagram

[n]
f //

α0

��

[k]

α1

��
[n′]

f ′ // [k′].

Then Φ(α) is the morphism (φ(α0), α1) of Tens⊗.
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Definition 4.4.1.13. We will say that a morphism α in N(Step) is inert if Φ(α) is an inert

morphism in the generalized ∞-operad Tens⊗.

Remark 4.4.1.14. We can identify a morphism α in N(Step) with a commutative diagram

[n]
f //

α0

��

[k]

α1

��
[n′]

f ′ // [k′].

in ∆; using Remark 4.4.1.4, we conclude that α is inert if and only if α1 is an isomorphism and α0

satisfies α0(i) = α0(i− 1) + 1 for 1 ≤ i ≤ n.

Notation 4.4.1.15. Let S be an ∞-category equipped with a map S → N(∆)op. We let Tens⊗S
denote the S-family of∞-operads Tens⊗×N(∆)opS, and N(Step)S the fiber product N(Step)×N(∆)op

S. We will say that a morphism in N(Step)S is inert if its image in S is an equivalence and its

image in N(Step) is inert.

Suppose we are given a categorical fibration C⊗ → Tens⊗S which exhibits C⊗ as an S-family

of ∞-operads. We let AlgS(C) denote the full subcategory of FunTens⊗S
(N(Step)S ,C

⊗) spanned by

those functors F : N(StepS) → C⊗ which carry every inert morphism in N(Step)S to an inert

morphism in C⊗.

Variant 4.4.1.16. Suppose we are given a fibration of ∞-operads C⊗ → Assoc⊗. For every ∞-

category S equipped with a map S → N(∆)op, let C⊗S denote the fiber product

S ×N(∆)op Tens⊗×Assoc⊗ C
⊗ .

Then the induced map C⊗S → Tens⊗S exhibits C⊗ as an S-family of ∞-operads, so that the

∞-category AlgS(CS) is defined as in Notation 4.4.1.15. We will abuse notation and denote

this ∞-category simply by AlgS(C); note that it can be identified with a full subcategory of

FunAssoc⊗(N(Step)S ,C
⊗).

We can now formulate a precise sense in which the ∞-category N(Step) is a “model” for the

generalized ∞-operad Tens⊗.

Proposition 4.4.1.17. Let S be an ∞-category equipped with a map S → N(∆)op, and suppose

we are given a categorical fibration q : C⊗ → Tens⊗S which exhibits C⊗ as an S-family of ∞-

operads. Then composition with the functor Φ : N(Step) → Tens⊗ of Definition 4.4.1.12 induces

an equivalence of ∞-categories

Alg/TensS (C)→ AlgS(C).

We defer the proof of Propositions 4.4.1.11 and 4.4.1.17 until the end of this section.
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Remark 4.4.1.18. Proposition 4.1.3.19 is the special case of Proposition 4.4.1.17 where we assume

that S = {[0]}.

Let C⊗ → Assoc⊗ be a fibration of∞-operads. Since the∞-operad Assoc⊗ is coherent (Proposi-

tion 4.1.1.20), we can associate to each associative algebra A ∈ Alg(C) a new fibration of∞-operads

ModAssoc
A (C)⊗ → Assoc⊗ (see §3.3.3). Our next goal is to show that the underlying ∞-category

ModAssoc
A (C) is equivalent to the∞-category ABModA(C) of A-A-bimodule objects of C. Moreover,

we show that under this equivalence, the ∞-operad structure on ModAssoc
A (C) can be described in

terms of the theory of multilinear maps developed in this section (see Theorem 4.4.1.28 for a precise

statement). We begin by introducing some notation.

Definition 4.4.1.19. Let p : C⊗ → Assoc⊗ be a fibration of ∞-operads. We define simplicial

sets Bim(C) and Bim′(C) equipped with maps Bim(C)→ N(∆)op ← Bim′(C) so that the following

universal properties are satisfied: for every simplicial set K, we have isomorphisms

FunN(∆)op(K,Bim(C)) ' FunAssoc⊗(K ×N(∆)op Tens⊗,C⊗)

FunN(∆)op(K,Bim′(C)) ' FunAssoc⊗(K ×N(∆)op N(Step),C⊗).

Let Bim(C) be the full simplicial subset of Bim(C) spanned by those vertices which determine

∞-operad maps Tens⊗[n] → C⊗ (for some n ≥ 0), and let Bim′(C) be the full simplicial subset of

Bim′(C) spanned by those vertices which correspond to maps N(Step)[n] → C⊗ which preserve inert

morphisms (for some n ≥ 0).

Proposition 4.4.1.20. Let C⊗ → Assoc⊗ be a fibration of ∞-operads. Then:

(1) The maps Bim(C) → N(∆)op ← Bim′(C) are categorical fibrations of simplicial sets. In

particular, both Bim(C) and Bim′(C) are ∞-categories.

(2) The maps Bim(C) → N(∆)op ← Bim′(C) are categorical fibrations of simplicial sets. In

particular, both Bim(C) and Bim′(C) are ∞-categories.

(3) Composition with the functor Φ : N(Step)→ Tens⊗ of Definition 4.4.1.12 induces an equiva-

lence of ∞-categories Bim(C)→ Bim′(C).

Proof. Since ∆ is a category in which the only morphisms are identity maps, assertion (1) is equiva-

lent to the statement that the maps Bim(C)→ N(∆)op ← Bim′(C) are inner fibrations. This follows

from Proposition B.3.14, since Tens⊗ and N(Step) are flat over N(∆)op (Propositions 4.4.3.21 and

4.4.3.1). Assertion (2) is an immediate consequence of (1), since the inclusions Bim(C) ⊆ Bim(C)

and Bim′(C) ⊆ Bim′(C) are categorical fibrations. To prove (3), it suffices to show that for every

simplicial set S equipped with a map S → N(∆)op, the induced map

FunN(∆)op(S,Bim(C))→ FunN(∆)op(S,Bim′(C))

is an equivalence of ∞-categories, which is a special case of Proposition 4.4.1.17.
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Notation 4.4.1.21. Let C⊗ → Assoc⊗ be a fibration of∞-operads. For n ≥ 0, we let Bim(C)[n] and

Bim′(C)[n] denote the fiber products Bim(C)×N(∆)op {[n]} and Bim′(C)×N(∆)op {[n]}. Unwinding

the definitions, we see that Bim(C)[n] can be identified with the ∞-category AlgTens[n] /Assoc(C). In

particular, we have canonical isomorphisms

Bim(C)[0] ' Alg(C) Bim(C)[1] ' BMod(C).

Similarly, we have a canonical isomorphism Bim′(C)[0] ' AlgA∞(C).

Notation 4.4.1.22. Let Step0 denote the full subcategory of Step spanned by those objects which

correspond to constant maps [n]→ [k] in ∆.

Remark 4.4.1.23. The forgetful functor Step→∆op induces a Cartesian fibration p : N(Step0)→
N(∆)op. In particular, p is a flat categorical fibration (Example B.3.11). The fiber of p over an

object [k] ∈∆op is isomorphic to a disjoint union of k + 1 copies of N(∆)op.

Construction 4.4.1.24. Let C⊗ → Assoc⊗ be a fibration of ∞-operads. We define a simplicial

set Bim′0(C) equipped with a map Bim′0(C) → N(∆)op so that the following universal property

is satisfied: for every simplicial set K equipped with a map K → N(∆)op, there is a canonical

isomorphism

FunN(∆)op(K,Bim′0(C)) ' FunAssoc⊗(K ×N(∆)op N(Step0),C⊗).

We say that a morphism in Step0 is inert if its image in Step is inert; let Bim′0(C) be the full

simplicial subset of Bim′(C) spanned by those vertices which correspond to maps N(Step0)[k] → C⊗

which carry inert morphisms to inert morphisms (for some k ≥ 0).

Remark 4.4.1.25. Let C⊗ → Assoc⊗ be a fibration of ∞-operads. It follows from Theorem B.4.2

that the forgetful functor Bim′0(C)→ N(∆)op is a coCartesian fibration. Moreover, for each k ≥ 0

the fiber Bim′0(C)[k] is canonically isomorphic to the product Alg(C)k+1.

An object of Bim′(C)[k] can be thought of as a sequence of algebra objects (A0, A1, . . . , Ak)

of C, together with a sequence {Mi}1≤i≤n where each Mi is an Ai−1-Ai-bimodule. The inclusion

Step0 ↪→ Step induces a forgetful functor q : Bim′(C) → Bim′0(C). Informally, this functor forgets

the data of the bimodules Mi.

Remark 4.4.1.26. Let C⊗ → Assoc⊗ be a fibration of ∞-operads. There is an evident functor

Step0 → ∆op×∆op, given by the formula (f : [n] → [k]) 7→ ([n], [k]). Composition with this

functor determines a diagonal map δ : N(∆)op × AlgA∞(C) → Bim′0(C). For each k ≥ 0, the

induced map of fibers δ[k] → {[k]} × AlgA∞(C) → Bim′0(C)[k] can be identified with the diagonal

map AlgA∞(C)→ AlgA∞(C)k+1.

Construction 4.4.1.27. Let C⊗ → Assoc⊗ be a fibration of ∞-operads, and let φ : ∆op →
Assoc⊗ be the functor described in Construction 4.1.2.9. Composition with φ induces a map
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N(Fun([1],∆))op → Fun(∆1,Assoc⊗), which carries N(Step) into KAssoc (see Notation 3.3.2.1).

Composition with this functor induces a map ModAssoc(C)⊗×Assoc⊗N(∆)op → Bim′(C). Unwinding

the definitions, we see that the composition of this functor with the restriction map Bim′(C) →
Bim′0(C) can be identified with the composition

ModAssoc(C)⊗×Assoc⊗N(∆)op → (Alg(C)×Assoc⊗)×Assoc⊗N(∆)op → AlgA∞(C)×N(∆)op
δ→ Bim′0(C).

Theorem 4.4.1.28. Let p : C⊗ → Assoc⊗ be a fibration of ∞-operads. Then the resulting diagram

ModAssoc(C)⊗ ×Assoc⊗ N(∆)op //

��

Bim′(C)

��
Alg(C)×N(∆)op // Bim′0(C)

is a homotopy pullback square of ∞-categories.

Proof. Let pAlg/Assoc(C) and Mod
Assoc

(C)⊗ be defined as in §3.3.3. We have a commutative dia-

gram

ModAssoc(C)×Assoc⊗ N(∆)op //

��

Mod
Assoc

(C)⊗ ×Assoc⊗ N(∆)op //

��

Bim′(C)

��
Alg(C)×N(∆)op // pAlg/Assoc(C)×Assoc⊗ N(∆)op // Bim′0(C).

In view of Remark 3.3.3.16, the horizontal maps on the left are categorical equivalences; it will

therefore suffice to show that the square on the right is a homotopy pullback diagram. Fix an

∞-category S equipped with a map S → N(∆)op; we will show that the induced diagram

FunAssoc⊗(S,Mod
Assoc

(C)) //

��

FunN(∆)op(S,Bim′(C))

��
FunAssoc⊗(S, pAlg/Assoc(C)) // FunN(∆)op(S,Bim′0(C))

is a homotopy pullback square of ∞-categories.

We observe that the∞-category KAssoc×Assoc⊗ N(∆)op is isomorphic to the nerve of a category

D: an object of D is given by a triple (〈n〉, [k], α) where [k] ∈∆op, 〈n〉 ∈ Assoc⊗, and α : φ([k])→
〈n〉 is a semi-inert morphism (where φ : ∆op → Assoc⊗ is the functor described in Construction

4.1.2.9). Let ψ : Step → D be the functor described in Construction 4.4.1.27, given on objects by

ψ(f : [n] → [k]) = ([k], φ([n]), φ(f)). Let E denote the categorical mapping cylinder of ψ, which

may be described more explicitly as follows:

• An object of E is either an object of D or an object of Step.
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• Morphisms in E are given by the formula

HomE(X,Y ) =


HomD(X,Y ) if X,Y ∈ D

HomStep(X,Y ) if X,Y ∈ Step

HomD(X,ψY ) if X ∈ D, Y ∈ Step

∅ otherwise.

Let N(E)0 denote the full subcategory of N(E) spanned by those objects which belong either

to Step0 or to K0
Assoc ⊆ KAssoc Let N(E)S denote the fiber product N(D) ×N(∆)op S, and define

N(E)0
S . Let Fun′Assoc⊗(N(E)S ,C

⊗) be the full subcategory of FunAssoc⊗(N(E)S ,C
⊗) spanned by those

functors F with the following properties:

(i) The functor F is a p-left Kan extension of F0 = F |(KAssoc×Assoc⊗S).

(ii) The functor F0 determines a map S →Mod
Assoc

(C).

Similarly, we let Fun′Assoc⊗(N(E)0
S ,C

⊗) be the full subcategory of FunAssoc⊗(N(E)0
S ,C

⊗) spanned by

those functors F which satisfy the following conditions:

(i′) The functor F is a p-left Kan extension of F0 = F |(K0
Assoc×Assoc⊗S).

(ii′) The functor F0 determines a map S → pAlg/Assoc(C).

Note that the inclusion N(Step)×N(∆)op S determines restriction maps

Fun′Assoc⊗(N(E)S ,C
⊗)→ FunN(∆)op(S,Bim′(C)) Fun′Assoc⊗(N(E0

S ,C
⊗)→ FunN(∆)op(S,Bim′0(C)).

We have a commutative diagram

FunAssoc⊗(S,Mod
Assoc

(C)) //

��

Fun′Assoc⊗(N(E)S ,C
⊗) //

��

FunN(∆)op(S,Bim′(C))

��
FunAssoc⊗(S, pAlg/Assoc(C)) // Fun′Assoc⊗(N(E)0

S ,C
⊗) // FunN(∆)op(S,Bim′0(C))

where the horizontal maps on the left are induced by the evident retraction map r : E→ D. Note

that these left horizontal maps are sections of the restriction maps

Fun′Assoc⊗(N(E)S ,C
⊗)→ FunAssoc⊗(S,Mod

Assoc
(C)) Fun′Assoc⊗(N(E)0

S ,C
⊗)→ FunAssoc⊗(S, pAlg/Assoc(C)),

which are trivial Kan fibrations (Proposition HTT.4.3.2.15 ). To complete the proof, it will therefore

suffice to show that the square appearing on the right of the above diagram is a homotopy pullback.

In fact, we will show that the map

Fun′Assoc⊗(N(E)S ,C
⊗)→ Fun′Assoc⊗(N(E)0

S ,C
⊗)×FunN(∆)op (S,Bim′0(C)) FunN(∆)op(S,Bim′(C))
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is a trivial Kan fibration.

Let N(E)1
S be the full subcategory of N(E)S spanned by the objects of N(E)0

S together

with the objects of N(Step) ×N(∆)op S. Let Fun′Assoc⊗(N(E)1
S ,C

⊗) be the full subcategory of

FunAssoc⊗(N(E)1
S ,C

⊗) spanned by those functors F such that F |N(E)0
S ∈ Fun′Assoc⊗(N(E)0

S ,C
⊗)

and F |(N(Step)×N(∆)op S) determines a map S → Bim′(C). In view of Proposition HTT.4.3.2.15 ,

it will suffice to prove the following:

(a) Every functor F0 ∈ Fun′Assoc⊗(N(E)1
S ,C

⊗) admits a p-right Kan extension F ∈ FunAssoc⊗(N(E)S ,C
⊗).

(b) Let F ∈ FunAssoc⊗(N(E)S ,C
⊗) be an arbitrary functor such that F0 = F |N(E)1

S belongs to

the ∞-category Fun′Assoc⊗(N(E)1
S ,C

⊗). Then F is a p-right Kan extension of F0 if and only

if F belongs to Fun′Assoc⊗(N(E)S ,C
⊗).

We first prove (a). Fix F0 ∈ Fun′Assoc⊗(N(E)1
S ,C

⊗). According to Lemma HTT.4.3.2.13 , it will

suffice to show that for every object X ∈ N(E)S , if we set X = N(E)1
S ×N(E)S (N(E)S)X/, then the

map

θ : X→ N(E)1
S
F0→ C⊗

can be extended to a p-limit diagram covering the evident map

γ : X. → N(E)S → N(∆)op → Assoc⊗ .

Without loss of generality, we may assume that X /∈ N(E)1
S . Let s ∈ S denote the image of X and

let [k] ∈∆op be the image of s, so that we can identify X with a semi-inert morphism φ([k])→ 〈n〉
in Assoc⊗. Let E[k] denote the fiber of the map E→∆op over the object [k], and let X ′ denote the

image of X in E[k]. Let X0 be the full subcategory of (E[k])X/ spanned by morphisms of the form

α : X → Y which satisfy one of the following two conditions:

(1) The object Y belongs to D[k] and corresponds to a null morphism φ([k]) → 〈m〉, and α

induces an inert map 〈n〉 → 〈m〉.

(2) The object Y belongs to Step[k] and corresponds to a map f : [m]→ [k]. Moreover, the map

α induces an inert map 〈n〉 → φ([m]).

It is not difficult to show that the inclusion X0 ↪→ X admits a right adjoint and is therefore right

cofinal. Consequently, it will suffice to show that the restriction θ0 = θ|X0 can be extended to a

p-limit diagram compatible with γ.

Let X1 ⊆ X0 be the full subcategory spanned by those objects which satisfy conditions (1) or

(2) above, with m = 1. Using our assumption that p is a fibration of ∞-operads, we deduce that

θ0 is a p-right Kan extension of θ1 = θ|X1. Using Lemma HTT.4.3.2.7 , we are reduced to proving

that θ1 can be extended to a p-limit diagram (compatible with γ).

Let X2 ⊆ X1 be the full subcategory spanned by those objects which either satisfy condition

(1) with m = 1, or satisfy the following stronger version of condition (2):
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(2′) The object Y belongs to Step[k] and corresponds to the f : [1] ' {i − 1, i} ↪→ [k] for some

1 ≤ i ≤ k. Moreover, the map α induces an inert map 〈n〉 → φ([m]).

It is not hard to see that the inclusion X2 ⊆ X1 admits a right adjoint and is therefore right

cofinal. We are therefore reduced to proving that θ2 = θ1|X2 can be extended to a p-limit diagram

(compatible with γ). We note that X2 is equivalent to a discrete simplicial set, whose objects are

morphisms αi : X → Xi for 1 ≤ i ≤ n. The existence of a p-limit of θ2 now follows from our

assumption that p is a fibration of ∞-operads. This proves (a). Moreover, the proof gives the

following version of (b):

(b′) Let F ∈ FunAssoc⊗(N(E)S ,C
⊗) be an arbitrary functor such that F0 = F |N(E)1

S belongs to

the ∞-category Fun′Assoc⊗(N(E)1
S ,C

⊗). Then F is a p-right Kan extension of F0 if and only

if, for every object X ∈ N(E)S as above, each of the maps F (αi) is an inert morphism in C⊗.

To complete the proof, it will suffice show that if F ∈ FunAssoc⊗(N(E)S ,C
⊗), then F satisfies

conditions (i) and (ii) if and only if it satisfies the criterion of (b′). Assume first that F satisfies

(i) and (ii), and let X ∈ N(E)S be as above. Fix 1 ≤ i ≤ n; we wish to show that F (αi) is an inert

morphism in C⊗. If i does not lie in the image of the semi-inert morphism β : φ([k]) → 〈n〉, then

αi is an inert morphism in KAssoc×Assoc⊗{s} and the desired result follows from (ii). If i = β(j)

for 1 ≤ j ≤ k, then αi factors as a composition

X
α′i→ (s, ρi : 〈n〉 → 〈1〉)

α′′i→ X ′i,

where F (α′i) is inert by virtue of (ii) and F (α′′i ) is an equivalence by (i), from which it follows that

F (αi) is inert.

Now suppose that F satisfies the criterion described in (b′); we wish to show that conditions (i)

and (ii) are satisfied. We first prove (i). Fix an object Y ∈ N(Step)×N(∆)op S, corresponding to a

vertex s ∈ S lying over [k] ∈∆op and a map f : [n]→ [k] in ∆. Let X ∈ N(E)S be the image of Y

under the retraction r. We wish to prove that F carries the natural map X → Y to an equivalence

in C⊗. For 1 ≤ i ≤ n, let εi : Y → Yi be the morphism in N(Step) ×N(∆)op {s} corresponding to

the map [1] ' {i− 1, i} ↪→ [n]. Since F0 ∈ Fun′Assoc⊗(N(E)1
S ,C

⊗), we conclude that each F (εi) is an

inert morphism in C⊗. Since C⊗ is an ∞-operad, it will suffice to show that each of the composite

maps F (X) → F (Y ) → F (Yi) is inert. If i lies in the image of the map φ([k]) → φ([n]), then this

composition can be identified with F (αi) and the desired result follows from the criterion of (b′).

If i does not belong to the image of φ([k]), then the composite map factors as a composition

F (X)
F (αi)−→ F (Xi)→ F (Yi)

where F (αi) is inert and the second map is an equivalence, since F0 satisfies condition (i′).

We now complete the proof by showing that F satisfies (ii). In view of Remark 2.1.2.9, it

will suffice to show that for every object X ∈ N(E)S corresponding to an object s ∈ S lying over
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[k] ∈ ∆op and a semi-inert morphism β : φ([k]) → 〈n〉 as above, if we choose inert morphisms

α′i : X → X ′i = (s, φ([k]) → 〈1〉) lying over ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n, then each F (α′i) is an

inert morphism in C⊗. If i does not lie in the image of β, then αi ' α′i and the desired result is an

immediate consequence of the criterion of (b′). If i does lie in the image of β, then αi factors as a

composition

X
α′i→ X ′i

α′′i→ Xi.

Since F (α′′i ) is an equivalence (by assumption (i′)) and F (αi) is inert (by the criterion of (b′)), we

conclude that F (α′i) is inert as desired.

We now turn to the proofs of Propositions 4.4.1.17 and 4.4.1.11.

Proof of Proposition 4.4.1.17. We use the same idea as in the proof of Theorem 2.3.3.23, though

the details are slightly more complicated. First, let J denote the categorical mapping cylinder of

the functor Φ. That is, an object of J consists either of an object of Step or an object of Tens⊗,

with morphisms in J defined by the formula

HomJ(x, y) =


HomStep(x, y) if x, y ∈ Step

HomTens⊗(x, y) if x, y ∈ Tens⊗

HomTens⊗(x,Φ(y)) if x ∈ Tens⊗, y ∈ Step

∅ if x ∈ Step, y ∈ Tens⊗ .

We regard Tens⊗ and Step as full subcategories of J. Note that there is a retraction of J onto

Tens⊗, whose restriction to Step coincides with the functor Φ. In particular, we can use the

composite map J→ Tens⊗ → ∆op to define an ∞-category N(J)S = N(J)×N(∆)op S. There is an

evident functor N(J)S → ∆1, whose fibers are given by

N(J)S ×∆1 {0} ' Tens⊗S N(J)S ×∆1 {1} ' N(Step)S .

We will use these isomorphisms to identify N(Step)S and Tens⊗S with full subcategories of N(J)S .

Moreover, the retraction of J onto Tens⊗ determines a retraction r : N(J)S → Tens⊗S , whose

restriction to N(Step)S is the functor ΦS : N(Step)S → Tens⊗S induced by Φ.

Let A be the full subcategory of FunTens⊗S
(N(J)S ,C

⊗) spanned by those functors F : N(J)S → C⊗

with the following properties:

(i) Let x ∈ N(Step)S be an object and α : ΦS(x) → x the evident map. Then F (α) is an

equivalence in C⊗.

(ii) The restriction F |Tens⊗S belongs to Alg/TensS (C).

Conditions (i) and (ii) together imply that F |N(Step)S is equivalent to the composition

(F |Tens⊗S ) ◦ ΦS , and therefore F also satisfies:
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(iii) The restriction F |N(Step)S belongs to AlgS(C).

Note that the functor Alg/TensS (C)→ AlgS(C) factors as a composition

Alg/TensS (C)→ A→ AlgS(C)

where the first map is given by composition with r. We note that r has a left inverse, given by

the restriction map A → Alg/TensS (C). Note that a functor F satisfies condition (i) if and only

if F is a q-left Kan extension of F |Tens⊗S . Using Proposition HTT.4.3.2.15 , we deduce that the

A→ Alg/TensS (C) is a trivial Kan fibration, and therefore r is an equivalence of ∞-categories. To

complete the proof, it will suffice to show that the restriction map A → AlgS(C) is also a trivial

Kan fibration. In view of Proposition HTT.4.3.2.15 , it will suffice to prove the following:

(a) Every F0 ∈ AlgS(C) admits a q-right Kan extension F ∈ FunTens⊗S
(N(J)S ,C

⊗).

(b) A functor F ∈ FunTens⊗S
(N(J)S ,C

⊗) belongs to A if and only if F |N(Step)S ∈ AlgS(C) and F

is a q-right Kan extension of F |N(Step)S .

We first prove (b). Choose a functor F0 ∈ N(Step)S ; we wish to prove that F0 admits a q-right

Kan extension F ∈ FunTens⊗S
(N(J)S ,C

⊗). Fix an object of s ∈ Tens⊗S , corresponding to an object

s ∈ S and an object (〈n〉, [k], c−, c+) having the same image in ∆op. Let J denote the ∞-category

N(Step)S ×A As/. According to Lemma HTT.4.3.2.13 , it will suffice to show that the functor

f : J→ As/ → A
F→ C⊗

can be extended to a q-limit diagram lying over the map

g : J/ → A/
s/ → A

r→ Tens⊗S .

Let J0 be the full subcategory of J spanned by those morphisms α : s → ΦS(t), where t is an

object of N(Step)S lying over t ∈ S and α induces an equivalence s→ t in the ∞-category S. We

note that the inclusion J0 ⊆ J admits a right adjoint and is therefore right cofinal. Consequently,

we are reduced to proving that f | J0 can be extended to a q-limit diagram lying over g| J/0.

Let As denote the fiber product A×S{s}, let N(Step)s be defined similarly, and let J1 denote the

fiber product N(Step)S ×As (As)s/. Note that the canonical map J1 → J restricts to an equivalence

J1 ' J0. It therefore suffices to prove that f | J1 can be extended to a q-limit diagram lying over

g| J/1.

Unwinding the definitions, we can identify objects of J1 with pairs consisting of a map α : [m]→
[k] in ∆ and a map β : 〈n〉 → φ([m]) in Assoc⊗ which satisfy the following condition:

• For 1 ≤ j ≤ m, if β−1{j} is the linearly ordered set {i0 ≺ · · · ≺ ik}, then we have

α(j − 1) = c−(i0) ≤ c+(i0) = c−(i1) ≤ c+(i1) = · · · = c−(ik) ≤ c+(ik) = α(j) ≤ α(j − 1) + 1.
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Let J2 denote the full subcategory of J1 spanned by those pairs (α, β) such that β is inert. We note

that the inclusion J2 ⊆ J1 admits a right adjoint and is therefore right cofinal. We are therefore

reduced to proving that f | J2 can be extended to a q-limit diagram lying over g| J/2.

Let J3 be the full subcategory of J2 spanned by those pairs (α : [m] → [k], β : 〈n〉 → φ([m]))

where m = 1. Using our assumption that F0 ∈ AlgS(C), we deduce that f | J2 is a q-right Kan

extension of f | J3. Using Lemma HTT.4.3.2.7 , we are reduced to proving that f | J3 admits a q-

limit diagram lying over g| J/3. We note that J3 is a discrete category whose objects correspond

bijectively to the elements of 〈n〉◦. The existence of the desired extension now follows immediately

from our assumption that C⊗ → Tens⊗S is a fibration of S-families of ∞-operads. This proves (a).

Let A′ be the full subcategory of F ∈ FunTens⊗S
(N(J)S ,C

⊗) spanned by those functors such that

F |N(Step)S ∈ AlgS(C) and F is a q-right Kan extension of F |N(Step)S . We obtain the following

version of (b):

(b′) Let F ∈ FunTens⊗S
(N(J)S ,C

⊗) be a functor such that F |N(Step)S belongs to AlgS(C). Then

F ∈ A′ if and only if, for every object s ∈ Tens⊗S as above, the maps {ρi : 〈n〉 → φ([1])}1≤i≤n
exhibit F (s) as a q-product of the objects F (s, [1]

c−(i),c+(i)−→ [k]) in C⊗.

To prove (b), we wish to show that A = A′. If F ∈ A, then we may assume without loss of

generality that F factors as a composition

A
r→ Tens⊗S

F ′→ C⊗

where F ′ ∈ Alg/TensS (C). In this case, the criterion of (b′) is satisfied so that F ∈ A′. Conversely,

suppose that F ∈ A′; we must show that F satisfies conditions (i) and (ii). To verify (i), choose

an object x = (s, γ : [n]→ [k]) ∈ N(Step)S and let α : ΦS(x)→ x be the canonical map in A. Let

f : J3 → C⊗ be defined as above with s = ΦS(x). Criterion (b′) insures that F exhibits F (ΦS(x))

as a q-limit of f and the assumption that F |N(Step)S belongs to AlgS(C) implies that F exhibits

F (x) as a q-limit of f ; the essential uniqueness of q-limit diagrams guarantees that F (α) is an

equivalence.

We now verify condition (ii). According to Remark 2.1.2.9, it will suffice to verify that for

every object s ∈ Tens⊗S as above, if we let αi : s → si in Tens⊗{s} be inert morphisms covering

ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n (in the ∞-operad Tens⊗{s}), then each F (αi) is an inert morphism in

C⊗. Note that si = ΦS(ti) for some object ti = (s, [1]→ [k]) ∈ N(Step)S . In view of condition (i),

it suffices to show that each of the composite maps

βi : s
αi→ si → ti

is inert, which follows immediately from criterion (b′).

Proof of Proposition 4.4.1.11. For every finite nonempty linearly ordered set I, let N(Step)I denote

the fiber product N(Step) ×N(∆)op {[m]} where I ' [m]. Let N(Step)I = (N(Step)I ,MI), where
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MI is the collection of inert morphisms in N(Step)I ; we regard N(Step)I as an ∞-preoperad. The

functor Φ of Definition 4.4.1.12 defines a map of ∞-preoperads N(Step)I → Tens⊗,\I (see Notation

2.1.4.5), and Proposition 4.4.1.17 implies that this map is a weak equivalence of ∞-preoperads. In

view of Theorem HTT.4.2.4.1 , it will suffice to show that N(Step)[k] is a homotopy colimit of the

diagram

N(Step){0,1} · · · N(Step){k−1,k}

N(Step){0}

;;

N(Step){1}

BBcc

N(Step){k−1}

^^ 99

N(Step){k}

dd

in POp∞. We observe that this diagram is cofibrant, and its colimit is isomorphic to the pair

(X,M), where X is the full subcategory of N(Step)[k] spanned by those objects f : [n]→ [k] whose

image in [k] has cardinality ≤ 2 and M is the collection of inert morphisms in X. It will therefore

suffice to show that the inclusion (X,M) ⊆ N(Step)[k] is a weak equivalence of ∞-preoperads.

Unwinding the definitions, we must prove the following:

(∗) Let p : C⊗ → N(Fin∗) be an∞-operad. Then the restriction functor FunN(Fin∗)(N(Step)[k],C
⊗)→

FunN(Fin∗)(X,C
⊗) induces a trivial Kan fibration Fun0

N(Fin∗)
(N(Step)[k],C

⊗)→ Fun0
N(Fin∗)

(X,C⊗),

where Fun0
N(Fin∗)

(N(Step)[k],C
⊗) is the full subcategory of FunN(Fin∗)(N(Step)[k],C

⊗) spanned

by those functors which carry inert morphisms in N(Step)[k] to inert morphisms in C⊗, and

Fun0
N(Fin∗)

(X,C⊗) is defined similarly.

In view of Proposition HTT.4.3.2.15 , (∗) will follow from the following pair of assertions:

(a) Let F0 ∈ FunN(Fin∗)(X,C
⊗) be a functor which carries every inert morphism in X to an inert

morphism in C⊗. Then F0 admits a p-right Kan extension F ∈ FunN(Fin∗)(N(Step)[k],C
⊗).

(b) Let F ∈ FunN(Fin∗)(N(Step)[k],C
⊗) be a functor such that F0 = F |X carries inert morphisms

in X to inert morphisms in C⊗. Then F is a p-right Kan extension of F0 if and only if F

carries inert morphisms in N(Step)[k] to inert morphisms in C⊗.

We begin by proving (a). Fix a functor F0 ∈ FunN(Fin∗)(X,C
⊗) which carries inert morphisms

in X to inert morphisms in C⊗. Let X be an object of N(Step)[k], corresponding to a map of

linearly ordered sets f : [n] → [k]. Let XX/ = X×N(Step)[k]
(N(Step)[k])X/; the objects of X/X can

be identified with maps of linearly ordered sets g : [m]→ [n] such that f ◦ g carries [m] to a convex

subset of [k] having cardinality at most 2. According to Lemma HTT.4.3.2.13 , it will suffice to

show that the map F0|XX/ can be extended to a p-limit diagram covering the evident map

λ : X.X/ ↪→ (N(Step)[k])
.
X/ → N(Step)[k] → N(Fin∗).
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Let X0
X/ be the full subcategory of XX/ spanned by those objects for which g : [m] → [n] is

an injective map whose image is a convex subset of [n]. The inclusion X0
X/ ⊆ XX/ admits a right

adjoint and so is right cofinal. It will therefore suffice to show that F0|X0
X/ can be extended to a

p-limit diagram covering λ|(X0
X/)

..

Let X1
X/ be the full subcategory of X0

X/ spanned by those objects g : [m]→ [n] such that m = 1.

Since F0 preserves inert morphisms and C⊗ is an ∞-operad, we conclude that F0|X0
X/ is a p-right

Kan extension of F0|X1
X/. Using Lemma HTT.4.3.2.7 , we are reduced to proving that F0|X1

X/

can be extended to a p-limit diagram covering the map λ|(X1
X/)

.. We now observe that X1
X/ is

isomorphic to a discrete simplicial set, whose objects correspond to the maps

αi : [1] ' {i− 1, i} ⊆ [n]

for 1 ≤ i ≤ n, each of which determines determines an object Xi ∈ X. We are therefore reduced to

proving that there exists an object in C⊗〈n〉 which is a p-product of the objects {F0(Xi) ∈ C}1≤i≤n,

which follows from our assumption that C⊗ is an ∞-operad. This proves (a). Moreover, the proof

yields the following version of (b):

(b′) Let F ∈ FunN(Fin∗)(N(Step)[k],C
⊗) be a functor such that F0 = F |X carries inert morphisms

in X to inert morphisms in C⊗. Then F is a p-right Kan extension of F0 if and only if, for

every object X = (f : [n]→ [k]) ∈ N(Step)[k] as above, the induced maps F (X)→ F (Xi) are

inert for 1 ≤ i ≤ n.

Assertion (b′) immediately implies the “if” direction of (b). For the converse, suppose that

F ∈ FunN(Fin∗)(N(Step)[k],C
⊗) is a functor which satisfies the conditions described in (b′); we wish

to prove that F preserves inert morphisms. Let β : X → X ′ be an inert morphism in N(Step)[k],

corresponding to a commutative diagram

[n′]
h //

f ′

  

[n]

f��
[k]

such that h carries [n′] isomorphically to a convex subset of [n]. We wish to prove that F (β) is an

inert morphism in C⊗. Since C⊗ is an∞-operad, it will suffice to show that for every inert morphism

γ : F (X ′) → C in C⊗ such that C ∈ C, the composite map γ ◦ F (β) is inert. Since F satisfies

the criterion of (b′), we may assume without loss of generality that γ is the map F (X ′)→ F (X ′′)

induced by the inclusion [1] ' {i− 1, i} ↪→ [n′] for some 1 ≤ i ≤ n′. We may therefore replace [n′]

by [1], and thereby reduce to the case described in (b′).
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4.4.2 Tensor Products and the Bar Construction

Let A, B, and C be associative rings, let M be an A-B-bimodule, N a B-C-bimodule, and X an

A-C-bimodule. In this situation, we can consider bilinear pairings from M and N into X. Such

a pairing can be described either as a map of sets λ : M × N → X satisfying suitable axioms

(made explicit in the introduction to §4.4). However, there is another approach which is often more

convenient. Namely, one can define the relative tensor product M ⊗B N to be the coequalizer of

the diagram

M ⊗B ⊗N
f //
g
//M ⊗N,

where f is given by the right action of B on M and g by the left action of B on N . This coequalizer

inherits a left action of A and a right action of C, and may therefore be viewed as an A-C-bimodule.

Moreover, it is not difficult to see that giving a bilinear pairing M ×N → X is equivalent to giving

a map of A-C-bimodules M ⊗B N → X.

Our goal in this section is to generalize the theory of relative tensor products to the ∞-

categorical setting. Let C be a monoidal ∞-category, and suppose we are given algebra objects

A,B,C ∈ Alg(C) and bimodules M ∈ ABModB(C) and N ∈ BBModC(C). Our goal in this section

is to define the relative tensor product M⊗BN as an object of ABModC(C). Our definition is based

on the theory of operadic left Kan extensions developed in §3.1.2, applied to the correspondence

of ∞-operads Tens⊗� introduced in §4.4.1. When the relevant operadic left Kan extension exists, it

gives rise to a bimodule object M ⊗B N ∈ ABModC(C) with the following universal property: for

any bimodule object X ∈ ABModC(C), the space of maps from M ⊗BN into X is homotopy equiv-

alent to the space of bilinear pairings of M and N into X (this follows formally from the universal

property characterizing operadic left Kan extensions; see Theorem 3.1.2.3). The main result of this

section (Theorem 4.4.2.8) gives a criterion which guarantees the existence of this operadic left Kan

extension, together with a reasonably concrete description of it. In contrast with the classical case,

the relative tensor product M ⊗B N can not be described as the coequalizer of the diagram

M ⊗B ⊗N
f //
g
//M ⊗N.

Instead, we must replace this diagram by the more elaborate two-sided bar construction of Con-

struction 4.4.2.7.

Notation 4.4.2.1. The morphism [1] ' {0, 2} ↪→ [2] in ∆ determines a map of simplicial sets

∆1 → N(∆)op. We let Tens⊗� denote the fiber product

Tens⊗×N(∆)op∆
1.

Remark 4.4.2.2. The map Tens⊗� → ∆1 is a correspondence of ∞-operads from Tens⊗[2] '
Tens⊗� ×∆1{0} to Tens⊗[1] ' Tens⊗� ×∆1{1} ' BM⊗.
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Let C⊗ be an ∞-operad. Proposition 4.4.1.11 guarantees that the canonical map

AlgTens⊗
[2]

(C)→ BMod(C)×Alg(C) BMod(C)

is an equivalence of ∞-categories. In other words, we can identify objects of AlgTens⊗
[2]

(C) with

pairs M,N ∈ BMod(C) having the same image in Alg(C) (that is, M ∈ ABModB(C) and N ∈
BBModC(C) for some A,B,C ∈ Alg(C)). Similarly, we can identify objects of AlgTens⊗

[1]
(C) with

objects X ∈ BMod(C).

Definition 4.4.2.3. Let q : C⊗ → O⊗ be a fibration of∞-operads and suppose we are given a map

of generalized ∞-operads F : Tens⊗� → C⊗, such that F |Tens⊗[2] determines a pair of bimodules

object M,N ∈ BMod(C) and F |Tens⊗[1] is a bimodule object X ∈ BMod(C). We will say that F

exhibits X as a relative tensor product of M and N if F is an operadic q-colimit diagram.

Our main goal in this section is to give a criterion for the existence of relative tensor products.

Notation 4.4.2.4. Let Step ⊆ Fun([1],∆)op be the category of appearing in Definition 4.4.1.12.

We let u : ∆op → Step be the functor given by the formula

[n] 7→ ([0] ? [n] ? [0] ' [n+ 2]
f→ [2]),

where f is given by the formula

f(i) =


0 if i = 0

1 if 0 < i < n+ 2

2 if i = n+ 2.

We can extend u to a functor u+ : ∆op
+ → Step, where u+ carries the object [−1] ∈ ∆op

+ to the

object (id : [1]→ [1]) ∈ Step. On morphisms, the extension u+ is defined by assigning to each map

[n]→ [−1] in ∆op the morphism in Step corresponding to the commutative diagram

[1]
∼//

id
��

{0, n+ 2} // [n+ 2]

f

��
[1]

∼ // {0, 2} // [2].

in ∆.

Composing u and u+ with the functor Φ : Step → Tens⊗ (and passing to nerves), we obtain

functors U : N(∆)op → Tens⊗[2] and U+ : N(∆+)op → Tens⊗� .
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Proposition 4.4.2.5. Suppose we are given a commutative diagram of generalized ∞-operads

Tens⊗[2]

��

F0 // C⊗

q

��
Tens⊗�

f //

F

<<

O⊗,

where q is a fibration of ∞-operads and F0 corresponds to a pair of bimodule objects M ∈
ABModB(C), N ∈ BBModC(C). Then there exists a dotted arrow F as indicated in the diagram,

which exhibits X = F |Tens⊗[1] as a relative tensor product of M and N , if and only if the following

conditions are satisfied:

(i) Let a0, a2 ∈ Tens[2] and a−, a+ ∈ Tens[1] ' BM be as in Notation 4.4.1.9 and Definition

4.3.1.1. Then the evident maps f(a0) → f(a−) and f(a2) → f(a+) in O can be lifted to

morphisms A→ A′, C → C ′ in C, which are given by operadic q-colimit diagrams ∆1 → C⊗.

(ii) Let U and U+ be as in Notation 4.4.2.4. Then the composition f ◦ U+ can be lifted to an

operadic q-colimit diagram extending the functor F0 ◦ U : N(∆)op → C⊗.

Moreover, if F : Tens⊗� → C⊗ is any map making the above diagram commute and X = F |Tens⊗[1] ∈
A′BModC′(C), then F is an operadic q-left Kan extension of F0 if and only if the following conditions

are satisfied:

(i′) The functor F induces maps A → A′ and C → C ′ which are given by operadic q-colimit

diagrams ∆1 → C⊗.

(ii′) The composition F ◦ U+ : N(∆+)op → C⊗ is an operadic q-colimit diagram.

Proof. The∞-category Tens[1] ' BM has three objects, given by a−, m, and a+. Let D(a−) denote

the ∞-category (Tens⊗�,act)/a− ×∆1 {0}, and define D(m) and D(a+) similarly. Assertions (i′) and

(ii′) are immediate consequences of the following:

(i′′) The inclusions {a0} ↪→ D(a−) and {a2} ↪→ D(a+) are left cofinal.

(ii′′) The functor U+ induces a left cofinal map θ : N(∆)op → D(m).

Furthermore, conditions (i) and (ii) follow from (i′′) and (ii′′) together with Theorem 3.1.2.3.

Assertion (i′′) is obvious (the ∞-categories D(a−) and D(a+) contain a0 and a2 as final objects).

To prove (ii′′), we observe that θ admits a left adjoint.

Remark 4.4.2.6. In the situation of Proposition 4.4.2.5, suppose that the maps

f(a0)→ f(a−) f(a2)→ f(a+)

are equivalences in O. Then condition (i) is automatically satisfied, and condition (i′) is equivalent

to the requirement that the functor F induces equivalences A→ A′ and C → C ′.
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Our next goal is to make the construction of relative tensor products more explicit.

Construction 4.4.2.7. [Bar Construction] Let U : N(∆)op → Tens⊗[2] be as in Notation 4.4.2.4.

The extension U+ : N(∆+)op → Tens⊗� determines a morphism β : U → U ′ in Fun(N(∆)op,Tens⊗� ,

where U ′ : N(∆)op → Tens⊗[1] ⊆ Tens⊗� is the constant functor taking the value m ∈ Tens[1] ' BM.

Suppose we are given a commutative diagram of generalized ∞-operads

Tens⊗[2]

F0 //

��

C⊗

q

��
Tens⊗�

f // O⊗

where q is a coCartesian fibration of∞-operads. The functor F0 corresponds to a pair of bimodules

M ∈ ABModB(C), N ∈ BBModC(C). Let Cm denote the fiber product C⊗×O⊗{m}, where

{m} ⊆ Tens⊗[1] ⊂ Tens⊗�

maps to O⊗ via f .

Since q is a coCartesian fibration, the natural transformation f ◦ U → f ◦ U ′ determined by β

can be lifted to a q-coCartesian natural transformation F0 ◦ U → X• in Fun(N(∆)op,C⊗). Here

X• is a simplicial object of the ∞-category Cm, which is well-defined up to a contractible space of

choices. We will denote this simplicial object by BarB(M,N)• and refer to it as the (two-sided) bar

construction on M and N .

Theorem 4.4.2.8. Let q : C⊗ → O⊗ be a coCartesian fibration of ∞-operads which is compatible

with N(∆)op-indexed colimits, in the sense of Definition 3.1.1.18.

Suppose we are given a commutative diagram of generalized ∞-operads

Tens⊗[2]

��

F0 // C⊗

q

��
Tens⊗�

f //

F

<<

O⊗,

where F0 corresponds to a pair of bimodule objects M ∈ ABModB(C), N ∈ BBModC(C). Then

there exists an extension F of F0 as indicated in the diagram, which exhibits X = F |Tens⊗[1] as a

relative tensor product of M and N . Moreover, if F is an arbitrary extension of F0 making the

above diagram commute, then F exhibits X ∈ A′BModB′(C) as a relative tensor product of M and

N if and only if the following conditions are satisfied:

(i) The functor F induces q-coCartesian morphisms A→ A′, B → B′.
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(ii) The functor F induces an equivalence

|BarB(M,N)•| → F (m).

Proof. Since N(∆)op is weakly contractible, the projection map N(∆)op → ∆0 is left cofinal; it

follows that q is also compatible with ∆0-indexed colimits. The desired result now follows from

Propositions 3.1.1.15, 3.1.1.16, and 4.4.2.5.

Remark 4.4.2.9. In the situation of Construction 4.4.2.7, suppose that B is a trivial algebra object

of the monoidal∞-category C⊗a1
(see §3.2.1). Then the simplicial object BarB(M,N)•) is essentially

constant, so that |BarB(M,N)•| is equivalent to BarB(M,N)0. It follows that the canonical map

M ⊗N →M ⊗B N is an equivalence.

Definition 4.4.2.10. Let q : C⊗ → O⊗ be a coCartesian fibration of∞-operads which is compatible

with N(∆)op-indexed colimits. Suppose we are given a map of generalized∞-operads Tens⊗� → O⊗.

The formation of operadic q-left Kan extensions induces a functor

T : AlgTens[2] /O
(C)→ AlgTens[1] /O

(C).

We will refer to this functor as the relative tensor product functor. Given an object of AlgTens[2] /O
(C)

corresponding to a pair of bimodules M ∈ ABModB(C), N ∈ BBModC(C), we will denote the image

of of pair (M,N) under the functor T by M ⊗B N .

Example 4.4.2.11. Let q : C⊗ → Assoc⊗ be a monoidal ∞-category. Assume that C admits

geometric realizations of simplicial objects and that the tensor product functors ⊗ : C×C → C

preserves geometric realizations of simplicial objects separately in each variable (this is equivalent to

the assumption that ⊗ preserves geometric realizations of simplicial objects, since the simplicial set

N(∆)op is sifted). Consider the map of generalized ∞-operads given by the composition Tens⊗� ↪→
Tens⊗ → Assoc⊗.

The relative tensor product determines a functor

T : BMod(C)×Alg(C) BMod(C) ' AlgTens[2] /Assoc(C)→ BMod(C).

Criterion (i) of Theorem 4.4.2.8 guarantees that the diagram

BMod(C)×Alg(C) BMod(C)
T //

**

BMod(C)

θ

vv
Alg(C)×Alg(C)

commutes up to canonical homotopy; we may therefore assume without loss of generality that this

diagram is commutative (since the map θ is a categorical fibration). It follows that for every triple

of algebra objects A,B,C ∈ Alg(C), the functor T restricts to a map

ABModB(C)× BBModC(C)→ ABModC(C),
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which we will also refer to as the relative tensor product functor and denote by (M,N) 7→M⊗BN ∈
ABModC(C).

Example 4.4.2.12. There is a retraction r of Tens⊗� onto the full subcategory Tens⊗[1] ⊆ Tens⊗� ,

which is given on Tens⊗[2] by composition with the map u : [2]→ [1] in ∆ defined by u(0) = u(1) =

0 < 1 = u(2).

Let q : C⊗ → BM⊗ be a coCartesian fibration of ∞-operads, corresponding to an ∞-category

N = Cm which is bitensored over a pair of monoidal ∞-categories C⊗− and C⊗+. We note that

AlgTens[2] /BM(C) can be identified with the fiber product

BMod(C−)×Alg(C−) BMod(N),

whose objects are pairs (M,N) where M ∈ ABModB(C−), N ∈ BBModC(N) for some A,B ∈
Alg(C−), C ∈ Alg(C+).

Assume that q is compatible with N(∆)op-indexed colimits: that is, the ∞-categories C−, N,

and C+ admit geometric realizations of simplicial objects, and the tensor product functors

C−×C− → C− C+×C+ → C+

C−×N→ N N⊗C+ → N

preserve geometric realizations separately in each variable. Then Theorem 4.4.2.8 defines a relative

tensor product functor

BMod(C−)×Alg(C−) BMod(N) ' AlgTens[2] /BM(C)→ BMod(N).

As in Example 4.4.2.11, we also obtain for every triple A,B ∈ Alg(C−) C ∈ Alg(C+) an induced

functor

ABModB(C−)× BBModC(N)→ ABModC(N).

Remark 4.4.2.13. In the situation of Example 4.4.2.12, we obtain another retraction of Tens⊗�
onto Tens⊗[1] using the map u′ : [2]→ [1] given by u(0) = 0 < 1 = u(1) = u(2). This gives a relative

tensor product functor

ABModB(N)× BBModC(C+)→ ABModC(N)

defined for algebra objects A ∈ Alg(C−) and B,C ∈ Alg(C+).

We conclude this section by studying the behavior of the relative tensor product with respect

to colimits. First, we need to recall a bit of notation. For i ∈ {0, 1, 2}, we let Tens⊗{i} denote the full

subcategory of Tens⊗[2] defined in Notation 4.4.1.10 (so that Tens⊗{i} is isomorphic to Assoc⊗). We

let Assoc⊗− and Assoc⊗+ be the full subcategories of BM⊗ ' Tens⊗[1] defined in Remark 4.3.1.10. We

regard Assoc⊗{i}, Assoc⊗−, and Assoc⊗+ as full subcategories of Tens⊗� . Similarly, we let m0,1 and m1,2

denote the objects of Tens⊗[2] ⊆ Tens⊗� defined in Notation 4.4.1.9, and m ∈ BM⊗ ' Tens⊗[1] ⊆ Tens⊗�
the object defined in Remark 4.3.1.3.
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Proposition 4.4.2.14. Let K be a simplicial set and let q : C⊗ → O⊗ be a coCartesian fibration

of ∞-operads which is compatible with N(∆)op-indexed colimits and with K-indexed colimits.

Suppose we are given a map of generalized ∞-operads Tens⊗� → O⊗ and algebra objects A ∈
AlgAssoc0 /O(C), B ∈ AlgAssoc1 /O(C), and C ∈ AlgAssoc2 /O(C). Using Theorem 3.1.2.3, we can

choose q-coCartesian natural transformations A → A′ and C → C ′, where A′ ∈ AlgAssoc− /O(C)

and C ′ ∈ AlgAssoc+ /O(C). Then the relative tensor product defines a functor

T : ABModB(Cm0,1)× BBModC(Cm1,2)→ A′BModB′(Cm)

which preserves K-indexed colimits separately in each variable.

Corollary 4.4.2.15. Let C⊗ be a monoidal ∞-category and K a simplicial set. Assume that the

tensor product functor ⊗ : C×C → C preserves N(∆)op-indexed colimits and K-indexed colimits

separately in each variable, and let A,B,C ∈ Alg(C). Then the relative tensor product functor

ABModB(C)× BBModC(C)→ ABModC(C)

preserves K-indexed colimits separately in each variable.

Corollary 4.4.2.16. Let N be an ∞-category which is bitensored over a pair of monoidal ∞-

categories C⊗− and C⊗+. Let K be a simplicial set. Assume that the tensor product functors

C−×C− → C− C+×C+ → C+

C−×N→ N N⊗C+ → N

preserve N(∆)op-indexed colimits and K-indexed colimits separately in each variable. Given a triple

of algebra objects A,B ∈ Alg(C−), C ∈ Alg(C+), the relative tensor product functor

ABModB(C−)× BBModC(N)→ ABModC(N)

of Example 4.4.2.12 preserves K-indexed colimits separately in each variable.

Proof of Proposition 4.4.2.14. In view of Proposition 4.3.3.9, it will suffice to show that the com-

posite functor

ABModB(Cm0,1)× BBModC(Cm1,2)
T→ A′BModB′(Cm)→ Cm

preserves K-indexed colimits separately in each variable. Theorem 4.4.2.8 shows that this composite

functor is given by (M,N) 7→ |BarB(M,N)•|. In view of Lemma HTT.5.5.2.3 , it will suffice to

show that for each k ≥ 0, the functor

θ : ABModB(Cm0,1)× BBModC(Cm1,2)→ Cm
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given by (M,N) → BarB(M,N)k preserves K-indexed colimits separately in each variable. We

note that θ factors as a composition

ABModB(Cm0,1)× BBModC(Cm1,2)
φ×ψ→ Cm0,1 ×Cm1,2

θ′→ Cm .

Here the functors φ and ψ preserve K-indexed colimits by Proposition 4.3.3.9, and the functor θ′

preserves K-indexed colimits separately in each variable by virtue of our assumption that q : C⊗ →
O⊗ is compatible with K-indexed colimits.

4.4.3 Associativity of the Tensor Product

Let Ab denote the category of abelian groups. If A and B are rings, we let ABModB(Ab) denote

the category of A-B-bimodules. Suppose we are given associative rings A, B, C, and D, together

with bimodules M ∈ ABModB(Ab), N ∈ BBModC(Ab), and P ∈ CBModD(Ab). Then there is a

canonical isomorphism of A-D-bimodules

M ⊗B (N ⊗C P ) ' (M ⊗B N)⊗C P.

To see this, it suffices to show that M ⊗B (N ⊗C P ) and (M ⊗B N) ⊗C P corepresent the same

functor on the category ABModD(). In fact, for any A-D-bimodule X, both Hom
ABModD()((M ⊗B

N) ⊗C P,X) and Hom
ABModD()(M ⊗B (N ⊗C P ), X) can be identified with the set of maps f :

M ×N × P → X satisfying the conditions

f(m+m′, n, p) = f(m,n, p) + f(m′, n, p) f(m,n+ n′, p) = f(m,n, p) + f(m,n′, p)

f(m,n, p+ p′) = f(m,n, p) + f(m,n, p′)

f(am, n, p) = af(m,n, p) f(mb, n, p) = f(m, bn, p)

f(m,nc, p) = f(m,n, cp) f(m,n, pd) = f(m,n, p)d.

Our goal in this section is to prove an analogous associativity property for the tensor product

of bimodule objects in an arbitrary monoidal ∞-category. The crucial ingredient is the following

technical result, whose proof will be given at the end of this section:

Theorem 4.4.3.1. The forgetful functor Tens⊗ → N(∆)op is a flat categorical fibration (see Defi-

nition B.3.8).

Corollary 4.4.3.2. Let S be a simplicial set equipped with a map S → N(∆)op, and let Tens⊗S
be the S-family of ∞-operads defined in Notation 4.4.1.15. For every simplex σ : ∆n → S, we let

Tens⊗σ denote the fiber product Tens⊗S ×S∆n.

Suppose we are given a fibration of∞-operads q : C⊗ → O⊗ and a map of generalized∞-operads

Tens⊗S → O⊗. Suppose further that the following condition is satisfied:
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(∗) For every edge α : s → s′ in S and every F0 ∈ AlgTenss /O(C), there exists an operadic q-left

Kan extension F ∈ AlgTensα /O(C) of F0.

Define a map of simplicial sets p : X → S so that the following universal property is satis-

fied: for every map of simplicial sets K → S, there is a canonical bijection Hom(Set∆)/S (K,X) '
AlgTensK /O(C). Then the projection map p : X → S is a coCartesian fibration. Moreover, if α is

an edge of X with p(α) = α : s → s′, then α is p-coCartesian if and only if it corresponds to an

object F ∈ AlgTensα /O(C) which is an operadic q-left Kan extension of F0 = F |Tens⊗s .

Proof. It follows from Theorem 4.4.3.1 that p is an inner fibration. Let us call an edge α of X

special if p(α) = α : s→ s′ and α corresponds to an object F ∈ AlgTensα /O(C) which is an operadic

q-left Kan extension of F0 = F |Tens⊗s . Theorem 3.1.2.3 implies that every special edge of X is

p-coCartesian. It follows from (∗) that p is a locally coCartesian fibration. Using Theorem 4.4.3.1

and Theorem 3.1.4.1, we conclude that the class of special edges is closed under composition, so

that p is a coCartesian fibration (Proposition HTT.2.4.2.8 ).

To apply Corollary 4.4.3.2 in practice, we need to describe the functors induced by operadic left

Kan extension along correspondences of the form Tens⊗α = Tens⊗×N(∆)op∆
1, where ∆1 → N(∆)op

is induced by a morphism α : [n]→ [m] in ∆.

Notation 4.4.3.3. Let α : [n] → [m] be a morphism in ∆, which we identify with a map ∆1 →
N(∆)op. We let Tens⊗α denote the fiber product Tens⊗×N(∆)op∆

1. We observe that Tens⊗α can

be identified with a correspondence of ∞-operads from Tens⊗[m] to Tens⊗[n]. For 0 ≤ i ≤ m, we

let ai ∈ Tens[m] ⊆ Tensα be defined as in Notation 4.4.1.9, and for 0 ≤ i < m we let mi,i+1 ∈
Tens[m] ⊆ Tensα defined similarly. To avoid confusion, we will denote the corresponding objects of

Tens[n] ⊆ Tensα by {bj}0≤j≤n and {nj,j+1}0≤j<n.

We would like to analyze the behavior of operadic left Kan extension along a correspondence

of the form Tens⊗α . We begin by considering an easy special case.

Remark 4.4.3.4. Let α : [n] → [m] be a map of linearly ordered sets. Assume that the image of

α is convex (that is, we have α(i+ 1) ≤ α(i) + 1 for 0 ≤ i < n). We let vα : Tens⊗[n] → Tens⊗[m] be

the map given by composition with α (Notation 4.4.1.10).

The projection map Tens⊗α → ∆1 is the Cartesian fibration associated to the induced

functor Tens⊗[n] → Tens⊗[m]. It follows that for every object X ∈ Tens[n], the ∞-category

Tens⊗[m]×Tens⊗α
(Tens⊗α )act

/X contains vα(X) as a final object.

Combining Remark 4.4.3.4 and Theorem 3.1.2.3, we deduce:
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Lemma 4.4.3.5. Let α : [n] → [m] be a morphism in ∆ with convex image and let q : C⊗ → O⊗

be a fibration of ∞-operads. Suppose we are given a diagram of generalized ∞-operads

Tens⊗[m]

F0 //

��

C⊗

q

��
Tens⊗α

f //

F

<<

O⊗

Then:

(1) There exists a functor F as indicated in the diagram, which is an operadic q-left Kan extension

of F0, if and only if for every object X ∈ Tens[n], there exists a map F0(vαX)→ C in C lying

over the map f(vαX)→ f(X), given by an operadic q-colimit diagram ∆1 → C⊗.

(2) Let F : Tens⊗α → C⊗ be any map of generalized∞-operads making the above diagram commute.

Then F is an operadic q-left Kan extension of F0 if and only if, for each X ∈ Tens[n], the

induced map F (vαX)→ F (X) is given by an operadic q-colimit diagram ∆1 → C⊗.

Example 4.4.3.6. In the situation of Lemma 4.4.3.5, suppose that f can be written as a compo-

sition

Tens⊗α
vα→ Tens⊗[m] → O⊗ .

Then the condition stated in (1) is always satisfied. Moreover, we can construct an operadic q-left

Kan extension of F0 by setting F = F0 ◦ vα.

We now discuss the process of operadic left Kan extension along a correspondence Tens⊗α , where

α is a face map in ∆.

Notation 4.4.3.7. For 0 ≤ i ≤ m, we let αi : [m− 1]→ [m] be the ith face map (given by α(j) ={
j if j < i

j + 1 if j > i
, so that α is an isomorphism from [m− 1] onto {0, . . . , i− 1, i+ 1, . . . ,m} ⊆ [m].

If 0 < i < m, then the commutative diagram

[1]
∼ //

��

{i− 1, i} //

��

[m− 1]

αi
��

[2]
∼// {i− 1, i, i+ 1} // [m]

determines a map of generalized ∞-operads ξ : Tens⊗� → Tens⊗αi .

Lemma 4.4.3.8. Let 0 ≤ i ≤ m and let αi : [m − 1] → [m] be as in Notation 4.4.3.7. Let

q : C⊗ → O⊗ be a fibration of ∞-operads, and suppose we are given a commutative diagram of
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generalized ∞-operads

Tens⊗[m]

F0 //

��

C⊗

q

��
Tens⊗α

f //

F

;;

O⊗ .

There exists a map F as indicated in the diagram, which is an operadic q-left Kan extension of F0,

if and only if the following conditions are satisfied:

(a) For j ∈ [m − 1], there exists a morphism F0(aα(j)) → B in C lying over the morphism

f(aα(j))→ f(bj) in O, given by an operadic q-colimit diagram ∆1 → C⊗.

(b) For 0 < j < i, there exists a morphism F0(mj−1,j) → N in C lying over the morphism

f(mj−1,j)→ f(nj−1,j) in O, given by an operadic q-colimit diagram ∆1 → C⊗.

(c) For i < j < m, there exists a morphism F0(mj,j+1) → N in C lying over the the morphism

f(mj,j+1)→ f(nj,j+1), given by an operadic q-colimit diagram ∆1 → C⊗.

(d) If 0 < i < m and ξ : Tens⊗� → Tens⊗αi is defined as in Notation 4.4.3.7, then the diagram

Tens⊗[2]

F0◦ξ //

��

C⊗

q

��
Tens⊗�

f◦ξ //

<<

O⊗

admits an extension as indicated, which is an operadic q-left Kan extension of F0 ◦ ξ.

Moreover, a map of generalized ∞-operads F : Tens⊗αi making the above diagrams commute is

an operadic q-left Kan extension if and only if the following conditions are satisfied:

(a′) For j ∈ [m − 1], the map F (aα(j)) → F (bj) in C is given by an operadic q-colimit diagram

∆1 → C⊗.

(b′) For 0 < j < i, the map F (mj−1,j) → F (nj−1,j) is given by an operadic q-colimit diagram

∆1 → C⊗.

(c′) For i < j < m, the map F (mj,j+1) → F (nj−1,j) is given by an operadic q-colimit diagram

∆1 → C⊗.

(d′) If 0 < i < m, then F ◦ ξ is an operadic q-left Kan extension of F ◦ ξ|Tens⊗[2].

Proof. For every object X ∈ Tens[m−1], we let D(X) denote the fiber product

Tens⊗[m]×Tens⊗αi
(Tens⊗αi)

act
/X .

The objects of Tens[m−1] have the form {bj}0≤j<m and {nj−1,j}0<j<m. The desired result follows

from Theorem 3.1.2.3 together with the following observations:
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(a′′) If X = bj , then D(X) contains aα(j) as a final object.

(b′′) If X = nj−1,j for 0 < j < i, then D(X) contains mj−1,j as a final object.

(c′′) If X = nj−1,j for i < j < m, then D(X) contains mj,j+1 as a final object.

(d′′) If 0 < i < m, then ξ induces an isomorphism from Tens⊗[2]×Tens⊗�
(Tens⊗� )act

/m to D(mi−1,i)

Lemma 4.4.3.9. Let q : C⊗ → Assoc⊗ be a monoidal ∞-category. Assume that C⊗ admits

geometric realizations of simplicial objects and that the tensor product functor ⊗ : C×C → C

preserves geometric realizations of simplicial objects separately in each variable. Let p : X →
N(∆)op be defined as in Corollary 4.4.3.2 (applied to identity map N(∆)op → N(∆)op). Then:

(1) The map p is a coCartesian fibration.

(2) If α : [n]→ [m] is a morphism in ∆ with convex image, then the associated functor

α! : AlgTens[m] /Assoc(C)→ AlgTens[n] /Assoc(C)

is given by composition with the map vα of Remark 4.4.3.4.

(3) If αi : [m− 1]→ [m] is the morphism in ∆ described in Notation 4.4.3.7 for 0 < i < m, then

the associated functor (αi)! : X[m] → X[m−1] is given by the composition

X[m] ' AlgTens[m] /Assoc(C)

' BMod(C)×Alg(C) · · · ×Alg(C) BMod(C)

T→ BMod(C)×Alg(C) · · · ×Alg(C) BMod(C)

' AlgTens[m−1] /Assoc(C)

' X[m−1].

Here the functor T is given by applying the relative tensor product functor

BMod(C)×Alg(C) BMod(C)→ BMod(C)

to the ith and (i+ 1)st factors.

Proof. To prove (1), it will suffice to show that for every map α : [n] → [m] in ∆ and every

F0 ∈ AlgTens[m] /Assoc(C), there exists an operadic q-left Kan extension F ∈ AlgTensα /Assoc(C) of F

(Corollary 4.4.3.2). We can factor α as a composition

[n]
β→ [k]→ [k + 1]→ · · · → [m− 1]→ [m],
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where β has convex image and remaining maps are of the form αi : [p− 1]→ [p], where 0 < i < p.

Using Theorems 4.4.3.1 and 3.1.4.1, we can assume either that α = β or that α has the form αi :

[p−1]→ [p] for 0 < i < p. In these cases, the desired result (and the more explicit description of the

associated functor supplied by (2) and (3)) follow from Lemmas 4.4.3.5 and 4.4.3.8, respectively.

Definition 4.4.3.10. If C⊗ → Assoc⊗ is as in Lemma 4.4.3.9, we will denote the simplicial set X

by BMod(C)�.

Remark 4.4.3.11. Let C⊗ → Assoc⊗ be as in Lemma 4.4.3.9, and let p : BMod(C)� → N(∆)op

be the associated coCartesian fibration. We have canonical isomorphisms

BMod(C)�
[0] ' Alg(C) BMod(C)�

[1] ' BMod(C).

Using Proposition 4.4.1.11, we see that for each n ≥ 0, the inclusions [1] ' {i− 1, i} ↪→ [n] induce

an equivalence of ∞-categories

BMod(C)�
[n] → BMod(C)⊗[1] ×BMod(C)�

[0]
· · · ×BMod(C)�

[0]
BMod(C)�

[1]

' BMod(C)×Alg(C) · · · ×Alg(C) BMod(C).

One can regard the coCartesian fibration p as encoding the structure of an (∞, 2)-category in which

the objects are associative algebra objects of C and the morphisms from A ∈ Alg(C) to B ∈ Alg(C)

are given by the (∞, 1)-category ABModB(C).

We now describe some applications of Lemma 4.4.3.9.

Proposition 4.4.3.12. Let C be a monoidal ∞-category and let A be an associative algebra object

of C. Assume that C admits geometric realizations of simplicial objects and that the tensor product

on C preserves geometric realizations of simplicial objects separately in each variable. Then the ∞-

operad fibration ModAssoc
A (C)⊗ → Assoc⊗ is coCartesian: that is, it determines a monoidal structure

on the ∞-category ModAssoc
A (C). Moreover, the tensor product on ModAssoc

A (C) corresponds (under

the equivalence ModAssoc
A (C) ' ABModA(C) provided by Theorem 4.4.1.28) to the relative tensor

product functor ⊗A : ABModA(C)× ABModA(C)→ ABModA(C) described in §4.4.2.

Remark 4.4.3.13. In the situation of Proposition 4.4.3.12, the tensor product on ModAssoc
A (C)

again preserves geometric realizations of simplicial objects separately in each variable (Corollary

4.4.2.15).

Proof. We wish to show that the forgetful functor ModAssoc
A (C)⊗ → Assoc⊗ is a coCartesian fibra-

tion. According to Corollary HTT.2.4.2.10 , it will suffice to show that for every map σ : ∆n →
Assoc⊗, the induced map ModAssoc

A (C)⊗ ×Assoc⊗ ∆n → ∆n is a coCartesian fibration (in fact, we

may assume that n ≤ 2. Let Cut : N(∆)op → Assoc⊗ be the functor of Construction 4.1.2.9. We

observe that σ factors as a composition ∆n → N(∆)op → Assoc⊗. It will therefore suffice to show

that the pullback ModAssoc
A (C)⊗×Assoc⊗ N(∆)op → N(∆)op is a coCartesian fibration. This follows

from Theorem 4.4.1.28 and Lemma 4.4.3.9.
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Proposition 4.4.3.14 (Associativity of the Tensor Product). Let q : C⊗ → Assoc⊗ be a monoidal

∞-category. Assume that C⊗ admits geometric realizations of simplicial objects and that the tensor

product functor ⊗ : C×C → C preserves geometric realizations of simplicial objects separately in

each variable. Let

T : BMod(C)×Alg(C) BMod(C)→ BMod(C)

be the relative tensor product functor. Then the diagram

BMod(C)×Alg(C) BMod(C)×Alg(C) BMod(C)

id×T

++

T×id

ss
BMod(C)×Alg(C) BMod(C)

T

++

BMod(C)×Alg(C) BMod(C)

T

ss
BMod(C)

commutes up to canonical homotopy.

Proof. Using Lemma 4.4.3.9, we see that both functors are induced by operadic q-left Kan extension

along the correspondence Tens⊗β , where β is the morphism [1] ' {0, 3} ↪→ [3] in ∆.

Remark 4.4.3.15. In the situation of Proposition 4.4.3.14, suppose we are given a quintuple

of algebra objects A,B,C,D,E ∈ Alg(C) and bimodules M ∈ ABModB(C), N ∈ BBModC(C),

P ∈ CBModD(C), and Q ∈ DBModE(C). Proposition 4.4.3.14 supplies a diagram of equivalences

(M ⊗B N)⊗C (P ⊗D Q)

ss ++
M ⊗B (N ⊗C (P ⊗D Q))

��

((M ⊗B N)⊗C P )⊗D Q

��
M ⊗B ((N ⊗C P )⊗D Q) // (M ⊗B (N ⊗C P ))⊗D Q

in the∞-category ABModE(C). This diagram commutes up to (canonical) homotopy: indeed, each

of its terms can be canonically identified with the image of (M,N,P,Q) ∈ AlgTens[4] /Assoc(C) under

the functor AlgTens[4] /Assoc(C) → AlgTens[1] /Assoc(C) ' BMod(C) given by operadic q-left Kan

extension along Tens⊗β , where β is the morphism [1] ' {0, 4} ↪→ [4] in ∆. In fact, the coCartesian

fibration q : X → N(∆s)
op can be regarded as witnessing the fact that the relative tensor product

operation on bimodules is associative up to coherent homotopy.

Proposition 4.4.3.16 (Unitality of the Tensor Product). Let q : C⊗ → Assoc⊗ be a monoidal

∞-category. Assume that C⊗ admits geometric realizations of simplicial objects and that the tensor

product functor ⊗ : C×C → C preserves geometric realizations of simplicial objects separately
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in each variable. Let u : Alg(C) → BMod(C) be given by composition with the forgetful functor

BM⊗ → Assoc⊗ (so that u carries an algebra object A ∈ Alg(C) to the underlying object of C,

regarded as an A-A-bimodule), and let T : BMod(C)×Alg(C) BMod(C) → BMod(C) be the relative

tensor product functor. Then the composite functors

BMod(C) ' Alg(C)×Alg(C) BMod(C)
u×id−→ BMod(C)×Alg(C) BMod(C)

T→ BMod(C)

BMod(C) ' BMod(C)×Alg(C) Alg(C)
id×u−→ BMod(C)×Alg(C) BMod(C)

T→ BMod(C)

are canonically homotopic to the identity.

We can state Proposition 4.4.3.16 more informally as follows: if M is an A-B-bimodule object

of C, then we have canonical equivalences

A⊗AM 'M 'M ⊗B B.

Proof. Apply Lemma 4.4.3.9 to the commutative diagrams

[2]
β

��
[1]

α
??

id // [1]

in ∆, where α is the inclusion [1] ' {0, 2} ↪→ [2] and β is a left inverse to α.

Remark 4.4.3.17. In the situation of Proposition 4.4.3.16, if we are given a pair of bimodule

objects M ∈ ABModB(C) and N ∈ BBModC(C), then the diagrams

A⊗A (M ⊗B N) //

((

(A⊗AM)⊗B C

vv
M ⊗B N

(M ⊗B N)⊗C C //

((

M ⊗B (N ⊗C C)

vv
M ⊗B N

(M ⊗B B)⊗B N

((

//M ⊗B (B ⊗B N)

vv
M ⊗B N

in the ∞-category ABModC(C) commute up to canonical homotopy.
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Remark 4.4.3.18. In the situation of Proposition 4.4.3.16, let A be an associative algebra object

of C, and regard A as a bimodule over itself. For any M ∈ ABModA(C), Proposition 4.4.3.16

supplies equivalences

φ : A⊗AM 'M ψ : M ⊗A A 'M.

When M = A, the maps φ and ψ are canonically homotopic. Indeed, both are determined the

object of AlgTens� /Assoc(C) given by the composition

Tens⊗� → Assoc⊗
A→ C⊗ .

We conclude this section by giving the proof of Theorem 4.4.3.1. First, we need some prelimi-

naries.

Lemma 4.4.3.19. Let S and T be finite linearly ordered sets, where T is nonempty. Let C be the

category whose objects are linearly ordered sets S̃ equipped with monotone maps

S
α← S̃

β→ T

such that α is surjective. Then N(C) is weakly contractible.

Proof. We work by induction on the number of elements of S. If S is empty, then the result

is obvious. Otherwise, S has a smallest element s. Let D be the category whose objects are

nonempty linearly ordered sets T̃ equipped with a map T̃ → T , and let f : C → D be the functor

given by S̃ 7→ α−1{s}. We observe that f induces a Cartesian fibration N(C) → N(D). Moreover,

if γ : T̃ → T is an object of D and t0 ∈ T is the largest element in γ(T̃ ), then the fiber of f over γ

can be identified with the category C′ whose objects are diagrams

S − {s} α′← S̃′
β′→ {t ∈ T : t ≥ t0}

such that α′ is surjective. The inductive hypothesis guarantees that C′ has a weakly contractible

nerve, so that Lemma HTT.4.1.3.2 guarantees that the map N(C) → N(D) is left cofinal (and

therefore a weak homotopy equivalence). It will therefore suffice to show that N(D) is weakly

contractible. This is clear, since D has a final object (given by the identity map T → T ).

Lemma 4.4.3.20. Fix maps of finite linearly ordered sets µ : S → T , ν : S → S′, where µ is

injective. Let Cµ,ν be the category whose objects are commutative diagrams of finite linearly ordered

sets

S
µ //

ν

��

T

��
S′

µ′ // T ′,

where µ′ is injective. Then the nerve N(Cµ,ν) is weakly contractible.
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Proof. Let C0
µ,ν be the full subcategory of Cµ,ν spanned by those diagrams which induce a surjection

T
∐
S′ → T ′. It is easy to see that the inclusion C0

µ,ν ⊆ Cµ,ν admits a right adjoint. It will therefore

suffice to show that the simplicial set N(C0
µ,ν) is weakly contractible.

We work by induction on the number of elements of the set T − µ(S). If T = µ(S), then C0
µ,ν

has an initial object (characterized by the requirement that µ′ be a bijection) and the result is

obvious. If T − µ(S) is nonempty, then we can factor µ as a composition of injective maps

S
µ0→ U

µ1→ T.

where U −µ0(S) consists of a single element u, and µ1 is a monomorphism. Let D be the category

whose objects are commutative diagrams

S
µ0 //

ν
��

U

��

µ1 // T

��
S′

µ′0 // U ′
µ′1 // T ′

where µ′0 and µ′1 are injective and the maps U
∐
S′ → U ′ and T

∐
U ′ → T ′ are surjective. There

is an evident forgetful functor D → C0
µ,ν . This functor has a right adjoint and therefore induces

a weak homotopy equivalence N(D) → N(C0
µ,ν); it will therefore suffice to show that D is weakly

contractible. We have another forgetful functor D → C0
µ0,ν , which induces a Cartesian fibration

φ : N(D)op → N(C0
µ0,ν)op. Each fiber of φ is equivalent to an ∞-category of the form N(C0

µ1,ν′)
op

for some map ν ′ : U → U ′, and is therefore weakly contractible by the inductive hypothesis.

Lemma HTT.4.1.3.2 implies that φ is left cofinal and therefore a weak homotopy equivalence. We

are therefore reduced to proving that the simplicial set N(C0
µ0,ν) is weakly contractible. We may

therefore replace µ by µ0 and thereby reduce to the case where T−µ(S) consists of a single element,

which we will again denote by u.

Let S− = {s ∈ S : µ(s) < u} and S+ = {s ∈ S : µ(s) > u}. We will assume for simplicity that

S− and S+ are nonempty (the cases where either S− or S+ require slight modifications). Then S−
has a largest element s−, and S+ has a largest element s+. Let S′0 = {s′ ∈ S′ : ν(s−) ≤ s′ ≤ ν(s+)}.
As an ordered set, we can write S′0 = {νs− = s′0 < s′1 < · · · < s′n = ν(s+)}. For 0 ≤ i ≤ n, let Xi

denote the object of C0
µ,ν corresponding to the diagram

S
µ //

ν
��

T

ν′
��

S′
µ′ // S′

where ν ′(u) = i. For 1 ≤ i ≤ n, let Yi denote the object of C0
µ,ν corresponding to the diagram

S
µ //

ν
��

T

ν′

��
S′

µ′// S′ ∪ {u′},
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where ν ′(u) = u′ and the ordering on S′ ∪ {u′} is such that u ≤ s′ if and only if s′i ≤ s′. It is easy

to see that every object of C0
µ,ν is uniquely isomorphic either to Xi (for some 0 ≤ i ≤ n) or Yi (for

some 1 ≤ i ≤ n); moreover, C0
µ,ν is equivalent to the category depicted by the diagram

X0 ← Y1 → X1 ← Y2 → · · · ← Yn → Xn.

It follows that the geometric realization |N(C0
µ,ν)| is homeomorphic to a closed interval and is

therefore contractible, as desired.

Proposition 4.4.3.21. The forgetful functor N(Step)→ N(∆)op is a flat categorical fibration (see

Definition B.3.8).

Proof. We will prove that the map N(Step)op → N(∆) is flat. Fix a 2-simplex σ of N(∆), corre-

sponding to a composable pair of morphisms [k]
α→ [k′]

β→ [k′′] in ∆. Let C = N(Step)op×N(Fin∗) ∆2;

for i ∈ {0, 1, 2} we let Ci denote the fiber product C×∆2{i}. Fix a morphism f : X → Z in C, where

X ∈ C0 and Z ∈ C2, and let D = C1×C CX//Z ; we wish to show that D is weakly contractible. We

can identify X with a morphism γ : [n]→ [k] and Z with a morphism γ′′ : [n′′]→ [k′′], so that an

object of D corresponds to a commutative diagram

[n]

γ

��

α // [n′]

γ′

��

β //

��

[n′′]

γ′′

��
[k]

α // [k′]
β // [k′′]

in ∆, where γ′([n′]) is a convex subset of [k′].

Let S ⊆ [k′] be the smallest convex subset of [k′] which contains (β ◦ γ)([n]), and let S =

S − S ∩ β([n]). Let D′ be the full subcategory of D spanned by diagrams with the following

property that [n′] = α([n]) ∪ γ′−1S. It is not difficult to see that the inclusion D′ ⊆ D admits a

right adjoint, and is therefore a weak homotopy equivalence. It will therefore suffice to show that

D′ is weakly contractible.

Let T = β(S) ⊆ [k′′], and let T̃ = γ′′−1T ⊆ [n′′]. Note that T is contained in the smallest

convex subset of [k′′] which contains the image of the map [n]→ [k]→ [k′]→ [k′′]. Since the image

of γ′′ is convex, we conclude that γ′′ induces a surjection T̃ → T . Unwinding the definitions, we see

that the construction [n′] 7→ γ′−1S determines an equivalence from D′ to the nerve of the category

whose objects are linearly ordered sets S̃ which fit into a commutative diagram

S̃ //

δ
��

T̃

��
S // T,
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where δ is surjective. We now conclude by observing that this category is equivalent to a product,

over the elements of T , of categories of the type described in Lemma 4.4.3.19 (and therefore has a

weakly contractible nerve).

Remark 4.4.3.22. Suppose we are given a morphism (〈n′〉, [k′], c′−, c′+) → (〈n〉, [k], c−, c+) in

Tens⊗, corresponding to a nondecreasing map of linearly ordered sets λ : [k]→ [k′] and a morphism

α : 〈n′〉 → 〈n〉 in Assoc⊗. For 1 ≤ i ≤ n, let Li = {j1 ≺ j2 ≺
... ≺ jp} denote the inverse image

α−1{i}, regarded as a linearly ordered set. For λc−(i) < m ≤ λc+(i), there is a unique element

µi(m) ∈ Li such that c′−(µi(m)) = m − 1 and c′+(µi(m)) = m. The function µi determines an

injective map of linearly ordered sets {λc−(i) + 1, . . . , λc+(i)} → Li.

Conversely, suppose we are given an object (〈n〉, [k], c−, c+) ∈ Tens⊗ and a morphism λ : [k]→
[k′] in ∆. Given any collection of injective maps of finite linearly ordered sets

µi : {λc−(i) + 1, . . . , λc+(i)} → Li

for 1 ≤ i ≤ n, we can reconstruct a morphism (〈n′〉, [k′], c′−, c′+) → (〈n〉, [k], c−, c+) covering λ,

which is unique up to canonical isomorphism.

Proof of Theorem 4.4.3.1. Fix a 2-simplex σ of N(∆)op corresponding to a composable pair of

morphisms [k]
λ→ [k′]

λ′→ [k′′] in ∆. Let C = Tens⊗×N(∆)op∆
2, and let Ci = C×∆2{i} for i ∈

{0, 1, 2}. Fix a map f : X → Z in C where X = (〈n′′〉, [k′′], c′′−, c′′+) ∈ C0 and Z = (〈n〉, [k], c−, c+) ∈
C2. We wish to prove that the simplicial set D = CX//Z ×∆2{1} is weakly contractible. According

to Remark 4.4.3.22, we can identify f with a collection of finite linearly ordered sets Li equipped

with injective monotone maps µi : {λ′λc−(i) + 1, · · · , λ′λc+(i)} → Li for 1 ≤ i ≤ n. Similarly, we

can identify an object of D with a collection of commutative diagrams of finite linearly ordered sets

{λ′λc−(i) + 1, . . . , λ′λc+(i)}µi //

νi
��

Li

��
{λc−(i) + 1, · · · , λc+(i)}

µ′i // L′i

defined for 1 ≤ i ≤ n, where µ′i is injective and the map νi is characterized by the inequalities

λ′(νi(m)− 1) ≤ m− 1 < m ≤ λ′(νi(m)).

It follows that D equivalent to a finite product of (the nerves) of categories of the type described

in Lemma 4.4.3.20, and is therefore weakly contractible.

4.5 Modules over Commutative Algebras

This section is devoted to the study of algebras and modules over the commutative ∞-operad

Comm⊗ = N(Fin∗) of Example 2.1.1.18. Our principal results can be summarized as follows:
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(1) Let C be a symmetric monoidal ∞-category and let CAlg(C) be the ∞-category of commu-

tative algebra objects of C. Since Comm⊗ is a coherent ∞-operad (Example 3.3.1.12), we

can associate to each commutative algebra object A ∈ CAlg(C) an ∞-operad ModComm
A (C)⊗.

In §4.5.1, we will show that the underlying ∞-category ModComm
A (C) is equivalent to the ∞-

category LModA(C) of left A-module objects of C studied in §4.2 (Proposition 4.5.1.4); here

we abuse notation by identifying A with the underlying associative algebra object of C (that

is, the image of A under the forgetful functor CAlg(C)→ Alg(C)).

(2) If A ∈ CAlg(C), Proposition 4.5.1.4 also yields an equivalence ModComm
A (C) ' RModA(C).

In other words, any object M ∈ ModComm
A (C) can be viewed as both a left A-module and

a right A-module. In fact, these structures are compatible: M can be viewed as an A-A-

bimodule. This construction determines a forgetful functor θ : ModComm
A (C)→ ABModA(C).

In §4.5.2, we will see that θ can often be promoted to a monoidal functor. That is, under some

mild hypotheses, we will show that the ∞-operad ModComm
A (C)⊗ is a symmetric monoidal

∞-category, and that the tensor product on ModComm
A (C)⊗ can be identified with the relative

tensor product over A studied in §4.4.2 (Theorem 4.5.2.1).

(3) Suppose we are given a map f : A→ B in CAlg(C). In §3.4.3, we saw that f determines a map

of ∞-operads G : ModComm
B (C) → ModComm

A (C). Under some mild hypotheses, Proposition

4.6.2.17 implies that G admits a left adjoint, given by the relative tensor product M 7→
B ⊗A M . In §4.5.3, we will show that this left adjoint can be promoted to a symmetric

monoidal functor from ModComm
A (C)⊗ to ModComm

B (C)⊗ (Theorem 4.5.3.1).

(4) Suppose that C is given as the underlying ∞-category of a model category A, and that the

symmetric monoidal structure on C is determined by a symmetric monoidal structure on A

(see Example 4.1.7.6). There is often a close relationship between commutative algebra objects

of C and (strictly) commutative algebra objects of A. In §4.5.4, we will formulate conditions on

A which guarantee an equivalence of CAlg(C) with the underlying ∞-category for a suitable

model structure on the category CAlg(A) of commutative algebras in A (Theorem 4.5.4.7).

4.5.1 Left and Right Modules over Commutative Algebras

Let R be an associative ring. We can associate to R a category LModR of left R-modules and a

category RModR of right R-modules. If R is commutative, then these categories are equivalent to

one another: every left action of R on an abelian group M can also be viewed as a right action of

R on M . In this section, we will describe an ∞-categorical analogue of this phenomenon. Suppose

that A is a commutative algebra object of a symmetric monoidal ∞-category C, and let us abuse

notation by identifying A with its image in Alg(C). We will show that there there is canonical

equivalence LModA(C) ' RModA(C). In fact, both of these ∞-categories are equivalent to the

(symmetrically defined) ∞-category ModComm
A (C) introduced in §3.3.3.
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In what follows, it will be convenient to introduce a slight simplification in notation:

Definition 4.5.1.1. Let C⊗ → N(Fin∗) be a generalized ∞-operad. We let Mod(C)⊗ denote the

generalized∞-operad ModComm(C)⊗ of Definition 3.3.3.8. If A ∈ CAlg(C), we let ModA(C)⊗ denote

the ∞-operad Mod(C)⊗ ×CAlg(C) {A}, and ModA(C) its underlying ∞-category.

Remark 4.5.1.2. Let f : O′⊗ → O⊗ be a map of coherent ∞-operads, and let C⊗ → O⊗ be a

fibration of generalized ∞-operads. We let ModO′(C)⊗ denote the ∞-category ModO′(C′)⊗, where

C′⊗ = C⊗×O⊗O
′⊗.

The map f induces a map F : KO′ → KO×O⊗O
′⊗. Composition with F determines a functor

ModO(C)⊗ ×O⊗ O′⊗ → ModO′(C)⊗.

In particular, for any generalized ∞-operad C⊗ and any coherent ∞-operad O, we have a

canonical map

Mod(C)⊗ ×N(Fin∗) O
⊗ → ModO(C)⊗.

Construction 4.5.1.3. Let C⊗ be an ∞-operad. Applying Remark 4.5.1.2 to the ∞-operad

Assoc⊗, we obtain a forgetful functor θ : Mod(C) → ModAssoc(C). Let Bim′(C) be defined as in

Construction 4.4.1.24 (applied to the fiber product C⊗×N(Fin∗) Assoc⊗) and let Bim′(C)[1] denote

the fiber Bim′(C) ×N(∆) {[1]}, so that Theorem 4.4.1.28 supplies an equivalence ModAssoc(C) →
Alg(C) ×AlgA∞ (C)×AlgA∞ (C) Bim′(C)[1]. Let LModA∞(C) be as in Definition 4.2.2.10 (where we

view the ∞-category C as weakly enriched over itself), so there is an evident forgetful functor

Bim′(C)[1] → LModA∞(C). Composing these functors, we obtain a map Θ : Mod(C)→ LModA∞(C).

We observe that Θ fits into a commutative diagram

Mod(C)

��

// LModA∞(C)

��
CAlg(C) // AlgA∞(C).

The main result of this section can now be stated as follows:

Proposition 4.5.1.4. Let p : C⊗ → N(Fin∗) be an ∞-operad. Then Construction 4.5.1.3 deter-

mines a homotopy pullback diagram of ∞-categories

Mod(C) //

��

LModA∞(C)

��
CAlg(C) // AlgA∞(C).

Corollary 4.5.1.5. Let C⊗ be an∞-operad, let A ∈ CAlg(C), and let us abuse notation by identify-

ing A with its image under the forgetful functor CAlg(C)→ Alg(C)→ AlgA∞(C). Then the functor

Θ of Construction 4.5.1.3 induces an equivalence of ∞-categories ModA(C)→ LModA∞A (C).
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Corollary 4.5.1.6. Let C⊗ be an∞-operad. Then Mod(C) can be identified with the homotopy fiber

product of ∞-categories LMod(C)×Alg(C) CAlg(C). If A ∈ CAlg(C), there is a canonical equivalence

of ∞-categories ModA(C) ' LModA(C) (here we abuse notation by identifying A with its image in

Alg(C)).

Proof. Combine Propositions 4.5.1.4 and Proposition 4.2.2.12.

Proof of Proposition 4.5.1.4. Consider the functor Φ : ∆op×[1]→ (Fin∗)〈1〉/ described as follows:

• For n ≥ 0, we have Φ([n], 0) = (α : 〈1〉 → ψ([n] ? [0])), where ψ denotes the composition of

the functor φ : ∆op → Assoc⊗ with the forgetful functor Assoc⊗ → Fin∗ and α : 〈1〉 →
ψ([n] ? [0]) carries 1 ∈ 〈1〉 to the point [n] ∈ ψ([n] ? [0]).

• For n ≥ 0, we have Φ([n], 1) = (α : 〈1〉 → ψ([n])), where α is the null morphism given by the

composition 〈1〉 → 〈0〉 → ψ([n]) ' 〈n〉.

Let I0 denote the full subcategory of (Fin∗)〈1〉/ spanned by the semi-inert morphisms 〈1〉 → 〈n〉.
We observe that Φ defines a functor ∆op×[1]→ I0. Let I denote the categorical mapping cylinder

of the functor Φ. More precisely, the category I is defined as follows:

• An object of I is either an object α : 〈1〉 → 〈n〉 of I0 or an object ([n], i) of ∆op×[1].

• Morphisms in I are defined as follows:

HomI(α, α
′) = HomI0(α, α′) HomI(([n], i), ([n′], i′)) = Hom∆op×[1](([n], i), ([n′], i′))

HomI(α, ([n], i)) = HomI0(α,Φ([n], i)) HomI(([n], i), α) = ∅.

The full subcategory of KComm×Comm⊗〈1〉 spanned by the null morphisms 〈1〉 → 〈n〉 is ac-

tually isomorphic (rather than merely equivalent) to Comm⊗. Consequently, we have an isomor-

phism ModComm(C) ' Mod
Comm

(C), where the latter can be identified with a full subcategory of

FunComm⊗(N(I0),C⊗). We regard N(I) as equipped with a forgetful functor to Comm⊗, given by

composing the retraction r : I→ I0 with the forgetful functor N(I0)→ Comm⊗. Let D denote the

full subcategory of FunComm⊗(N(I),C⊗) spanned by those functors F which satisfy the following

conditions:

(i) The restriction of F to N(I0) belongs to ModComm(C).

(ii) For every object ([n], i) ∈ ∆op×[1], the canonical map F (Φ([n], i)) → F ([n], i) is an equiva-

lence in C⊗ (equivalently: F is a p-left Kan extension of F |N(I0)).

Let I′ denote the full subcategory of I spanned by those objects corresponding to null morphisms

〈1〉 → 〈n〉 in Fin∗ or having the form α : 〈1〉 → 〈n〉 where α is null, or pairs ([n], i) ∈ ∆op×[1]

where i = 1. Let D′ denote the full subcategory of FunComm⊗(N(I′),C⊗) spanned by those functors

F satisfying the following conditions:
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(i′) The restriction of F to N(I0 ∩ I′) belongs to CAlg(C).

(ii′) For n ≥ 0, the canonical map F (Φ([n], 1))→ F ([n], 1) is an equivalence in C⊗ (equivalently:

F is a p-left Kan extension of F |N(I0 ∩ I′)).

Using Proposition HTT.4.3.2.15 , we deduce that inclusion I0 ↪→ I induces a trivial Kan fibra-

tions

D→ ModComm(C) D0 → CAlg(C).

We have a commutative diagram

ModComm(C) //

��

D

��

// LModA∞(C)

��
CAlg(C) // D′ // AlgA∞(C)

where the horizontal maps on the left are given by composition with the retraction r (since these are

sections of the trivial Kan fibrations above, they are categorical equivalences) and the horizontal

maps on the right are given by composition with the inclusion ∆op×[1] ↪→ I. Consequently, it will

suffice to prove that the square on the right is a homotopy pullback diagram. Since the vertical

maps in this square are categorical fibrations between ∞-categories, it will suffice to show that the

map D → LModA∞(C) ×AlgA∞ (C) D
′ is a trivial Kan fibration. Let I′′ denote the full subcategory

of I spanned by the objects of I′ and ∆op×[1]. We observe that LModA∞(C)×AlgA∞ (C) D
′ can be

identified with the full subcategory of D′′ ⊆ FunComm⊗(N(I′′),C⊗) spanned by those functors F

which satisfy conditions (i′), (ii′), and the following additional condition:

(iii′) The restriction of F to N(∆)op ×∆1 belongs to LModA∞(C).

We wish to prove that D→ D′′ is a trivial Kan fibration. In view of Proposition HTT.4.3.2.15 ,

it will suffice to prove the following:

(a) Every functor F0 ∈ D′′ admits a p-right Kan extension F ∈ FunComm⊗(N(I),C⊗).

(b) Let F ∈ FunComm⊗(N(I),C⊗) be a functor such that F0 = F |N(I′′) ∈ D′′. Then F ∈ D if and

only if F is a p-right Kan extension of F0.

We first prove (a). Let F0 ∈ D′′, and consider an object α : 〈1〉 → 〈n〉 of I which does not

belong to I′′, and let i = α(1) ∈ 〈n〉◦. Let J = I′′×I Iα/. We wish to prove that the diagram

N(J)→ C⊗ determined by F0 can be extended to a p-limit diagram covering the map

N(J)/ → N(Iα/)
/ → N(I)→ N(Fin∗).

Let J0 denote the full subcategory of J spanned by the objects of I′×I Iα/ together with those

maps α → ([m], 0) in I for which the underlying map u : 〈n〉 → ψ([m] ? [0]) satisfies the following
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condition: if u(j) = u(i) for j ∈ 〈n〉◦, then i = j. It is not difficult to see that the inclusion J0 ⊆ J

admits a right adjoint, so that N(J0) ⊆ N(J) is right cofinal. Consequently, it will suffice to show

that the induced map G : N(J0)→ C⊗ can be extended to a p-limit diagram (compatible with the

underlying map N(J0)/ → N(Fin∗)).

Let J1 denote the full subcategory of J0 spanned by the objects of I′×I Iα/ together with the

morphism s : α → ([0], 0) in I given by the map ρi : 〈n〉 → ψ([0] ? [0]) ' 〈1〉. We claim that G

is a p-right Kan extension of G|N(J1). To prove this, consider an arbitrary object J ∈ J0 which

does not belong to J1, which we identify with a map t : α→ ([m], 0) in I. We have a commutative

diagram

(t : α→ ([m], 0)) //

��

(s : α→ ([0], 0))

��
(t′ : α→ ([m], 1)) // (s′ : α→ ([0], 1))

in J0, which we can identify with a diagram s → s′ ← t′ in (J0)J/ ×J0
J1. Using Theorem

HTT.4.1.3.1 , we deduce that this diagram determines a left cofinal map Λ2
0 → N((J0)J/ ×J0

J1)op.

Consequently, to prove that G is a p-right Kan extension of G|N(J1), it suffices to verify that the

diagram

F0([m], 0) //

��

F0([0], 0)

��
F0([m], 1) // F0([m], 1)

is a p-limit diagram, which follows from (iii′). Using Lemma HTT.4.3.2.7 , we are are reduced

to proving that G1 = G|N(J1) can be extended to a p-limit diagram lifting the evident map

N(J1)/ → N(Fin∗).

Let β : 〈n〉 → 〈n− 1〉 be an inert morphism such that β(i) = ∗, and let α′ : 〈1〉 → 〈n− 1〉
be given by the composition β ◦ α. Let J2 denote the full subcategory of J1 spanned by the map

s : α → ([0], 0), the induced map s′ : α → ([0], 1), and the natural transformation α → α′ induced

by β. Using Theorem HTT.4.1.3.1 , we deduce that the inclusion N(J2) ⊆ N(J1) is right cofinal.

Consequently, we are reduced to proving that G2 = G|N(J2) can be extended to a p-limit diagram

lifting the evident map N(J2)/ → N(Fin∗). In other words, we must find a p-limit diagram

F (α) //

��

F0([0], 0)

��
F0(α′) // F0([0], 1)
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covering the diagram

〈n〉

β

��

ρi // 〈1〉

��
〈n− 1〉 // 〈0〉

in Fin∗. The existence of such a diagram follows immediately from our assumption that p : C⊗ →
N(Fin∗) is an ∞-operad (see Proposition 2.3.2.5). This completes the proof of (a). Moreover, the

proof also gives the following analogue of (b):

(b′) Let F ∈ FunComm⊗(N(I),C⊗) be a functor such that F0 = F |N(I′′) ∈ D′′. Then F is a p-right

Kan extension of F0 if and only if it satisfies the following condition:

(∗) For every object α : 〈1〉 → 〈n〉 of I which does not belong to I′′, the induced diagram

F (α)
u //

v

��

F0([0], 0)

��
F0(α′) // F0([0], 1)

is a p-limit diagram.

We observe that (∗) can be reformulated as follows:

(∗′) For every object α : 〈1〉 → 〈n〉 of I which does not belong to I′′, the induced morphisms

u : F (α)→ F0([0], 0) and v : F (α)→ F0(α′) are inert.

To complete the proof, it will suffice to show that if F ∈ FunComm⊗(N(I),C⊗) satisfies (i′), (ii′),

and (iii′), then F satisfies condition (∗′) if and only if it satisfies conditions (i) and (ii). We first

prove the “if” direction. The assertion that v is inert follows immediately from (i). To see that u is

inert, choose a map u0 : α→ ([n−1], 0) in I corresponding to an isomorphism 〈n〉 ' ψ([n−1]? [0]),

so that u factors as a composition

F (α)
F (u0)−→ F ([n− 1], 0)

F (u1)−→ F ([0], 0).

The map F (u0) is inert by virtue of (ii), and the map F (u1) is inert by virtue of (iii′).

We now prove the “only if” direction. Suppose that F satisfies (i′), (ii′), (iii′), and (∗′). We

first claim that F satisfies (i). Let f : α→ β be a morphism in I0 whose image in Fin∗ is inert; we

wish to prove that F (f) is an inert morphism in C⊗. If α ∈ I′, then this follows from assumption

(i′). If β ∈ I′ and α /∈ I′, then we can factor f as a composition

α
f ′→ α′

f ′′→ β
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where α′ ∈ I′ is defined as above. Then F (f ′′) is inert by virtue of (i′), while F (f ′) is inert by (∗′),
so that F (f) is inert as desired. Finally, suppose that β : 〈1〉 → 〈m〉 does not belong to I′, so that

β(1) = i ∈ 〈m〉◦. To prove that F (f) is inert, it will suffice to show that for each j ∈ 〈m〉◦, there

exists an inert morphism γj : F (β) → Cj′ in C⊗ covering ρj : 〈m〉 → 〈1〉 such that γj ◦ F (f) is

inert. If j 6= i, we can take γj = F (g), where βj = ρj ◦ β and g : β → βj is the induced map; then

βj ∈ I′ so that F (g) and F (g ◦ f) are both inert by the arguments presented above. If i = j, we

take γj = F (g) where g is the map β → ([0], 0) in I determined by ρi. Then F (g) and F (g ◦ f) are

both inert by virtue of (∗′). This completes the proof of (i).

We now prove (ii). Let ([n], i) ∈ N(∆)op ×∆1, let α = Ψ([n], i) ∈ I0, and let f : α → ([n], i)

be the canonical morphism in I. We wish to prove that F (f) is an equivalence in C⊗. If i = 1,

this follows from (ii′). Assume therefore that i = 0. Observe that α can be identified with the

morphism 〈1〉 → 〈n+ 1〉 carrying 1 ∈ 〈1〉 to n+ 1 ∈ 〈n+ 1〉. To prove that F (f) is an equivalence,

it will suffice to show that for each j ∈ 〈n+ 1〉◦, there exists an inert morphism γj : F ([n], 0)→ Ci
in C⊗ covering ρj : 〈n+ 1〉 → 〈1〉 such that γj ◦F (f) is also inert. If j 6= n+ 1, we take γj = F (g),

where g : ([n], 0) → ([1], 1) is a morphism in ∆op×[1] covering the map ρi. Then γj is inert by

virtue of (iii′), while γj ◦ F (f) ' F (g ◦ f) can be written as a composition

F (α)
F (h′)−→ F (α′)

F (h′′)−→ F (r([1], 1))
F (h′′′)−→ F ([1], 1).

Assumption (∗) guarantees that F (h′) is inert, assumption (i′) guarantees that F (h′′) is inert, and

assumption (ii′) guarantees that F (h′′′) is inert. It follows that F (h′′′ ◦ h′′ ◦ h′) ' F (g ◦ f) is inert

as desired. In the case j = n + 1, we instead take γj = F (g) where g : ([n], 0) → ([0], 0) is the

morphism in I determined by the map [0]→ [n] in ∆ carrying 0 ∈ [0] to n ∈ [n]. Then γj = F (g)

is inert by virtue of (iii′), while γj ◦ F (f) ' F (g ◦ f) is inert by virtue of (∗′).

4.5.2 Tensor Products over Commutative Algebras

Let R be a commutative ring. Then the category of R-modules is endowed with a symmetric

monoidal structure, whose tensor product operation is given by (M,N) 7→ M ⊗R N . Our goal

in this section is to establish a generalization of this statement, where we replace the category

of abelian groups by an arbitrary symmetric monoidal ∞-category C. Let A be a commutative

algebra object of C, and let us abuse notation by identifying A with the underlying associative

algebra object of C. We have seen that the ∞-category ModAssoc
A (C) can be identified with the

∞-category of A-A-bimodules (Theorem 4.4.1.28). Moreover, under some mild hypotheses, the

relative tensor product functor ⊗A endows ModAssoc⊗
A (C) with the structure of a monoidal ∞-

category (Proposition 4.4.3.12). Our main result can be stated as follows:

Theorem 4.5.2.1. Let C be a symmetric monoidal ∞-category. Assume that C admits geometric

realizations of simplicial objects, and that the tensor product ⊗ : C×C → C preserves geometric

realizations of simplicial objects separately in each variable. Let A be a commutative algebra object

of C. Then:
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(1) The ∞-operad ModA(C)⊗ is a symmetric monoidal ∞-category.

(2) The forgetful functor ψ : ModA(C)⊗ ×N(Fin∗) Assoc⊗ → ModAssoc
A (C)⊗ of Remark 4.5.1.2 is

monoidal. In particular, we can identify the tensor product operation on ModA(C) with the

composition

ModA(C)×ModA(C)→ ABModA(C)×ABModA(C)
⊗A→ ABModA(C)→ LModA(C) ' ModA(C)

(see Proposition 4.4.3.12).

The proof of Theorem 4.5.2.1 will make use of the following criterion for detecting symmetric

monoidal structures.

Proposition 4.5.2.2. Let q : C⊗ → N(Fin∗) be an ∞-operad. Then q is a coCartesian fibration if

and only if the following conditions are satisfied:

(1) The fibration q has units (in the sense of Definition 3.2.1.1).

(2) Let α : 〈2〉 → 〈1〉 be an active morphism in N(Fin∗), and let X ∈ C⊗〈2〉. Then there exists a

map α : X → X ′ with q(α) = α, which determines an operadic q-colimit diagram ∆1 → C⊗.

Proof. If q is a coCartesian fibration, then conditions (1) and (2) follow immediately from Propo-

sition 3.1.1.13. Conversely, suppose that (1) and (2) are satisfied; we wish to prove that q is a

coCartesian fibration. In view of Proposition 3.1.1.13, it will suffice to prove that the following

stronger version of (2) is satisfied:

(2′) Let α : 〈n〉 → 〈1〉 be an active morphism in N(Fin∗), and let X ∈ C⊗〈n〉. Then there a map

α : X → X ′ lifting α which is given by an operadic q-colimit diagram.

We verify (2′) using induction on n. If n = 0, the desired result follows from (1). If n = 1, then

α is the identity and we can choose α to be a degenerate edge. Assume that n ≥ 2. Choose any

partition of this set into nonempty disjoint subsets 〈n〉◦− and 〈n〉◦+. This decomposition determines

a factorization of α as a composition

〈n〉 α
′
→ 〈2〉 α

′′
→ 〈1〉.

Let n− and n+ be the cardinalities of 〈n〉◦− and 〈n〉◦+, respectively, so that our decomposition

induces inert morphisms 〈n〉 → 〈n+〉 and 〈n〉 → 〈n−〉. Since q is a fibration of ∞-operads, we can

lift these maps to inert morphisms X → X− and X → X+ in C⊗. Using the inductive hypothesis,

we can choose morphisms X− → X ′− and X+ → X ′− lying over the maps 〈n−〉 → 〈1〉 ← 〈n+〉 in

Assoc, which are classified by operadic q-colimit diagrams ∆1 → C⊗. Let α′ denote the induced

morphism X ' X− ⊕X+ → X ′− ⊕X ′+. Using (2), we can choose a morphism α′′ : X ′− ⊕X ′+ → X ′

lifting α′′, which is classified by an operadic q-colimit diagram. To complete the proof, it will suffice



600 CHAPTER 4. ASSOCIATIVE ALGEBRAS AND THEIR MODULES

to show that α′′ ◦ α′ is classified by an operadic q-colimit diagram. Choose an object Y ∈ C⊗; we

must show that the composite map

X ⊕ Y ' X− ⊕X+ ⊕ Y
β→ X ′− ⊕X ′+ ⊕ Y

γ→ X ′ ⊕ Y

is classified by a weak operadic q-colimit diagram. To prove this, it suffices to show that γ ◦ β is q-

coCartesian. In view of Proposition HTT.2.4.1.7 , it suffices to show that γ and β are q-coCartesian,

which follows from Proposition 3.1.1.10.

Proof of Theorem 4.5.2.1. We will prove (1) using Proposition 4.5.2.2. Note that ModA(C)⊗ →
N(Fin∗) automatically has units (Example 3.4.4.5). It will therefore suffice to prove the following:

(∗) For every object X ∈ ModA(C)⊗〈2〉, there exists a morphism f : X → Y in ModA(C)⊗ covering

the active morphism 〈2〉 → 〈1〉 in Fin∗ and classified by an operadic p-colimit diagram, where

p : ModA(C)⊗ → N(Fin∗) denotes the projection.

Let D denote the subcategory of N(Fin∗)〈2〉/ whose objects are injective maps 〈2〉 → 〈n〉 and

whose morphisms are diagrams

〈m〉
u

!!
〈2〉

==

// 〈n〉

where u is active, so that D. maps to N(Fin∗) by a map carrying the cone point of D. to 〈1〉. The

category D has an evident forgetful functor D → KComm×Comm⊗{〈2〉}, so that X determines a

functor F0 ∈ FunN(Fin∗)(D,C
⊗). In view of Theorem 3.4.4.3, to prove (∗) it will suffice to show that

F0 can be extended to an operadic p-colimit diagram F ∈ FunN(Fin∗)(D
.,C⊗).

In view of our assumption on C⊗ and Proposition 3.1.1.20, the existence of F will follow provided

that we can exhibit a left cofinal map φ : N(∆)op → D. We define φ by a variation of Construction

4.1.2.9. Let J denote the category whose objects are finite sets S containing a pair of distinct

elements x, y ∈ S, so we have a canonical equivalence D ' N(J). We will obtain φ as the nerve

of a functor φ0 : ∆op → J, where φ0([n]) is the set of all downward-closed subsets of [n] (with

distinguished points given by ∅, [n] ⊆ [n]). To prove that φ is left cofinal, it will suffice to show

that for each S = (S, x, y) ∈ J, the category I = ∆op×J JS/ has weakly contractible nerve. Writing

S = S0
∐
{x, y}, we can identify Iop with the category of simplices of the simplicial set (∆1)S0 .

Since (∆1)S0 is weakly contractible, it follows that N(I) is weakly contractible. This proves (1).

We now prove (2). Since the forgetful functor ψ clearly preserves units (Corollary 3.4.4.4), it

will suffice to verify the following:

(∗′) Let X ∈ ModA(C)⊗〈2〉, let α : 〈2〉 → 〈1〉 be an active morphism in Assoc⊗, let α0 be its image in

Comm⊗, and let α0 : X → Y be a q-coCartesian morphism in ModA(C)⊗ lifting α0. Then the

induced morphism α in ModAssoc
A (C)⊗ is p′-coCartesian (where p′ : ModAssoc

A (C)⊗ → Assoc⊗

denotes the projection).
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Using Proposition 3.1.1.15, we deduce that α0 is classified by an operadic q-colimit diagram ∆1 →
ModA(C)⊗. Applying Theorem 3.4.4.3, we deduce that the underlying diagram D. → C⊗ is an

operadic p-colimit diagram. By the cofinality argument above, we conclude that α0 induces an

operadic p-colimit diagram N(∆op). → C⊗. The desired result now follows from the description

of the tensor product on ModAssoc
A (C) supplied by Proposition 4.4.3.12 (together with Theorem

4.4.2.8).

4.5.3 Change of Algebra

Let f : A → B be a commutative ring. Via the map f , every B-module can be regarded as an

A-module. This construction determines a forgetful functor from the (ordinary) category ModB
of B-modules to the (ordinary) category ModA of A-modules. This forgetful functor has a left

adjoint, given by the construction M 7→ B⊗AM . This left adjoint is symmetric monoidal: that is,

for every pair of A-modules M and N , there is a canonical isomorphism

B ⊗A (M ⊗A N) ' (B ⊗AM)⊗B (B ⊗A N).

Our goal in this section is to prove an analogous result, where the commutative rings A and B

are replaced by commutative algebra objects in an arbitrary symmetric monoidal∞-category. Our

main result can be stated as follows:

Theorem 4.5.3.1. Let C⊗ be a symmetric monoidal∞-category. Assume that the C admits geomet-

ric realizations of simplicial objects, and that the tensor product ⊗ : C×C→ C preserves geometric

realizations separately in each variable. Then the map p : Mod(C)⊗ → CAlg(C) × N(Fin∗) is a

coCartesian fibration.

Remark 4.5.3.2. Let C⊗ be as in Theorem 4.5.3.1. The coCartesian fibration Mod(C)⊗ →
CAlg(C) × N(Fin∗) is classified by functor CAlg(C) × N(Fin∗) → Cat∞, which we can interpret

as a functor CAlg(C)→ MonComm(Cat∞). In particular, every morphism f : A→ B of commuta-

tive algebra objects of C determines a morphism in MonComm(Cat∞) ⊆ Fun(N(Fin∗),Cat∞), which

classifies a symmetric monoidal functor ModA(C)⊗ → ModB(C)⊗.

Remark 4.5.3.3. Theorem 4.5.3.1 singles out a special property enjoyed by the commutative

∞-operad. If f : A→ B is a map of associative algebra objects of C, then the forgetful functor

BBModB(C) ' ModAssoc
B (C)→ ModAssoc

A (C) ' ABModA(C)

also has a left adjoint, given by the construction M 7→ B ⊗AM ⊗A B. However, this left adjoint

is not a monoidal functor: if M and N are objects of ABModA(C), then there is an induced map

B ⊗AM ⊗A N ⊗A B → B ⊗AM ⊗A B ⊗A N ⊗A N ' (B ⊗AM ⊗A B)⊗B (B ⊗A N ⊗A B)

which is in general not an equivalence.
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The proof of Theorem 4.5.3.1 will require some preliminaries.

Lemma 4.5.3.4. Let S be an ∞-category and let p : C⊗ → S × N(Fin∗) be an S-family of ∞-

operads. Assume that:

(a) The composite map p′ : C⊗ → S is a Cartesian fibration; moreover, the image in N(Fin∗) of

any p′-Cartesian morphism of C⊗ is an equivalence.

(b) For each s ∈ S, the induced map ps : C⊗s → N(Fin∗) is a coCartesian fibration.

(c) The underlying map p0 : C→ S is a coCartesian fibration.

Then:

(1) The map p is a locally coCartesian fibration.

(2) A morphism f in C⊗ is locally p-coCartesian if and only if it factors as a composition f ′′ ◦f ′,
where f ′ is a ps-coCartesian morphism in C⊗s for some s ∈ S (here ps : C⊗s → N(Fin∗) denotes

the restriction of p) and f ′′ : Y → Z is a morphism in C⊗〈n〉 with the following property: for

1 ≤ i ≤ n, there exists a commutative diagram

Y
f ′′ //

��

Z

��
Yi

f ′′i // Zi

where the vertical maps are inert morphisms of C⊗ lying over ρi : 〈n〉 → 〈1〉 and the map f ′′i
is a locally p0-coCartesian morphism in C.

Proof. Let f ' f ′ ◦ f ′′ be as in (2), and let y, z ∈ S denote the images of Y, Z ∈ C⊗. Using the

equivalences

C⊗×S×N(Fin∗)(y, 〈n〉) ' Cny C⊗×S×N(Fin∗)(z, 〈n〉) ' Cnz ,

we deduce that if f ′′ satisfies the stated condition, then f ′′ is locally p-coCartesian. If f ′ is a

ps-coCartesian morphism in C⊗s , then condition (a) and Corollary HTT.4.3.1.15 guarantee that

f ′ is p-coCartesian. Replacing p by the induced fibration C⊗×S×N(Fin∗)∆
2 → ∆2 and applying

Proposition HTT.2.4.1.7 , we deduce that f is locally p-coCartesian. This proves the “if” direction

of (2).

To prove (1), consider an object X ∈ C⊗ lying over (s, 〈n〉) ∈ S×N(Fin∗), and let f0 : (s, 〈n〉)→
(s′, 〈n′〉) be a morphism in S ×N(Fin∗). Then f0 factors canonically as a composition

(s, 〈n〉)
f ′0→ (s, 〈n′〉)

f ′′0→ (s′, 〈n′〉).

Using assumption (b), we can lift f ′0 to a ps-coCartesian morphism f ′ : X → Y in C⊗s , and using

(c) we can lift f ′′0 to a morphism f ′′ : Y → Z in C⊗〈n〉 satisfying the condition given in (2). It follows
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from the above argument that f = f ′′ ◦ f ′ is a locally p-coCartesian morphism of C⊗ lifting f0.

This proves (1).

The “only if” direction of (2) now follows from the above arguments together with the uniqueness

properties of locally p-coCartesian morphisms.

For the statement of the next lemma, we need to introduce a bit of terminology. Let p : C⊗ →
S × N(Fin∗) be as in Lemma 4.5.3.4, and let f : X → Y be a locally p-coCartesian morphism in

C⊗〈n〉 for some n ≥ 0. If α : 〈n〉 → 〈n′〉 is a morphism in Fin∗, we will say that f is α-good if the

following condition is satsified:

(∗) Let x, y ∈ S denote the images of X,Y ∈ C⊗, and choose morphisms αx : X → X ′ in C⊗x and

αy : Y → Y ′ in C⊗y which are px and py-coCartesian lifts of α, respectively, so that we have a

commutative diagram

X
f //

αx
��

Y

αy
��

X ′
f ′ // Y ′.

Then f ′ is locally p-coCartesian.

Lemma 4.5.3.5. Let p : C⊗ → S ×N(Fin∗) be as in Lemma 4.5.3.4. The following conditions are

equivalent:

(1) The map p is a coCartesian fibration.

(2) For every morphism f : X → Y in C⊗〈n〉 and every morphism α : 〈n〉 → 〈n′〉, the morphism f

is α-good.

(3) For every morphism f : X → Y in C⊗〈n〉 where n ∈ {0, 2} and every active morphism α :

〈n〉 → 〈1〉, the morphism f is α-good.

Proof. The implication (1)⇒ (2) follows from Proposition HTT.2.4.1.7 and the implication (2)⇒
(3) is obvious. We next prove that (2) ⇒ (1). Since p is a locally coCartesian fibration (Lemma

4.5.3.4), it will suffice to show that if f : X → Y and g : Y → Z are locally p-coCartesian morphsims

in C⊗, then g ◦ f is locally p-coCartesian (Proposition HTT.2.4.2.8 ). Using Lemma 4.5.3.4, we can

assume that f = f ′′ ◦ f ′, where f ′ is p-coCartesian and f ′′ is a locally p-coCartesian morphism in

C⊗〈n〉 for some n ≥ 0. To prove that g ◦ f ' (g ◦ f ′′) ◦ f ′ is locally p-coCartesian, it will suffice to

show that g ◦ f ′′ is locally p-coCartesian. We may therefore replace f by f ′′ and thereby assume

that f has degenerate image in N(Fin∗). Applying Lemma 4.5.3.4 again, we can write g = g′′ ◦ g′

where g′ : Y → Y ′ is a p-coCartesian morphism in C⊗y covering some map α : 〈n〉 → 〈n′〉, and g′′ is

a locally p-coCartesian morphism in C⊗〈n′′〉. Let x denote the image of X in S, and let k : X → X ′
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be a p-coCartesian morphism in C⊗x lying over α. We have a commutative diagram

X
k //

��

Y

g′

��

g

  
X ′

h // Y ′
g′′ // Z.

Since f is α-good (by virtue of assumption (2)), we deduce that h is locally p-coCartesian. To

prove that g ◦ f ' (g′′ ◦ h) ◦ k is locally p-coCartesian, it will suffice (by virtue of Lemma 4.5.3.4)

to show that g′′ ◦ h is locally p-coCartesian. We claim more generally that the collection of locally

p-coCartesian edges in C⊗〈n〉 is closed under composition. This follows from the observation that

C⊗〈n〉 → S is a coCartesian fibration (being equivalent to a fiber power of the coCartesian fibration

p0 : C→ S). This completes the proof that (2)⇒ (3).

We now prove that (3) ⇒ (2). Let us say that a morphism α : 〈n〉 → 〈m〉 is perfect if every

locally p-coCartesian morphism f in C⊗〈n〉 is α-good. Assumption (3) guarantees that the active

morphisms 〈2〉 → 〈1〉 and 〈0〉 → 〈1〉 are perfect; we wish to prove that every morphism in Fin∗ is

perfect. This follows immediately from the following three claims:

(i) If α : 〈n〉 → 〈m〉 is perfect, then for each k ≥ 0 the induced map 〈n+ k〉 → 〈m+ k〉 is perfect.

(ii) The unique (inert) morphism 〈1〉 → 〈0〉 is perfect.

(iii) The collection of perfect morphisms in Fin∗ is closed under composition.

Assertions (i) and (ii) are obvious. To prove (iii), suppose that we are given perfect morphisms

α : 〈n〉 → 〈m〉 and β : 〈m〉 → 〈k〉. Let f : X → Y be a locally p-coCartesian morphism in C⊗〈n〉,

and form a commutative diagram

X
f //

��

Y

��
X ′

f ′ //

��

Y ′

��
X ′′

f ′′ // Y ′′

where the upper vertical maps are p-coCartesian lifts of α and the lower vertical maps are p-

coCartesian lifts of β. Since α is perfect, the map f ′ is locally p-coCartesian. Since β is perfect,

the map f ′′ is locally p-coCartesian, from which it follows that f is β ◦ α-good as desired.

Lemma 4.5.3.6. Let C⊗ be a monoidal∞-category. Assume that C admits geometric realizations of

simplicial objects and that the tensor product functor ⊗ : C×C→ C preserves geometric realizations

separately in each variable. Then the forgetful functor θ : LMod(C) → Alg(C) is a coCartesian

fibration.
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Proof. Corollary 4.2.3.2 guarantees that θ is a Cartesian fibration. In view of Proposition

HTT.5.2.2.5 , it will suffice to show that for each morphism f : A → B in Alg(C), the forgetful

functor LModB(C)→ LModA(C) has a left adjoint. This follows from Proposition 4.6.2.17.

Proof of Theorem 4.5.3.1. We first show that p is a locally coCartesian fibration by verifying the

hypotheses of Lemma 4.5.3.4:

(a) The map p′ : Mod(C)⊗ → CAlg(C) is a Cartesian fibration by virtue of Corollary 3.4.3.4;

moreover, a morphism f in Mod(C)⊗ is p′-Cartesian if and only if its image in C⊗ is an

equivalence (which implies that its image in N(Fin∗) is an equivalence).

(b) For each A ∈ CAlg(C), the fiber ModA(C)⊗ is a symmetric monoidal ∞-category (Theorem

4.5.2.1).

(c) The map p0 : Mod(C) → CAlg(C) is a coCartesian fibration. This follows from Corollary

4.5.1.6, because the forgetful functor LMod(C) → Alg(C) is a coCartesian fibration (Lemma

4.5.3.6).

To complete the proof, it will suffice to show that p satisfies condition (3) of Lemma 4.5.3.5.

Fix a map f0 : A → B in CAlg(C) and a locally p-coCartesian morphism f : MA → MB in

Mod(C)⊗〈n〉 covering f ; we wish to prove that f is α-good, where α : 〈n〉 → 〈1〉 is the unique

active morphism (here n = 0 or n = 2). Let D⊗ = ModA(C)⊗. Theorem 4.5.2.1 implies that

D⊗ is a symmetric monoidal ∞-category, Corollaries 4.5.1.6 and 4.2.3.5 imply that D admits

geometric realizations of simplicial objects, and Corollary 4.4.2.15 implies that the tensor product

on D preserves geometric realizations separately in each variable. Corollary 3.4.1.8 implies that

the forgetful functor Mod(D)⊗ → Mod(C)⊗ ×CAlg(C) CAlg(C)A/ is an equivalence of ∞-categories.

Replacing C⊗ by D⊗, we may assume without loss of generality that A is a unit algebra in C⊗.

Suppose first that n = 0. Unwinding the definitions, we are required to show that if MA →M ′A
and MB →M ′B are morphisms Mod(C)⊗ which exhibit M ′A ∈ ModA(C) as a pA-unit (see Definition

3.2.1.1; here pA : ModA(C)⊗ → N(Fin∗) denotes the restriction of p) and M ′B ∈ ModB(C) as a pB-

unit (where pB is defined similarly), then the induced map f ′ : M ′A →M ′B is locally p-coCartesian.

Using Corollary 3.4.3.4, it suffices to show that φ(f ′) is an equivalence, where φ : Mod(C) → C

is the forgetful functor. Using Corollary 3.4.4.4 and Proposition 4.5.1.4, this translates into the

following assertion: the map A → B exhibits B as the free left B-module generated by A. This

follows from Corollary 4.2.4.8.

We now treat the case n = 2. Since A is a unit algebra, Proposition 3.4.2.1 allows us to identify

MA with a pair of objects P,Q ∈ C. We can identify MB with a pair of objects PB, QB ∈ ModB(C).

Let us abuse notation by identifying PB and QB with their images in ModAssoc
B (C) ' BBModB(C).

Unwinding the definitions (and using Theorem 4.5.2.1), it suffices to show that the canonical map

f ′ : P ⊗Q→ (PB ⊗B QB) exhibits the relative tensor product PB ⊗B QB as the free left B-module
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generated by P ⊗Q. This follows from the calculation

B ⊗ (P ⊗Q) ' (B ⊗ P )⊗Q ' (B ⊗ P )⊗1 Q ' (B ⊗ P )⊗B (B ⊗Q).

(see Remark 4.4.2.9).

4.5.4 Rectification of Commutative Algebras

Let A be a symmetric monoidal model category (Definition 4.1.7.8). In §4.1.7, we saw that the un-

derlying∞-category N(Ac)[W−1] of A inherits the structure of a symmetric monoidal∞-category,

for which the natural map N(Ac)→ N(Ac)[W−1] can be promoted to a symmetric monoidal func-

tor. In particular, every associative algebra object of A (which is cofibrant as an object of A)

determines an associative algebra object of the underlying ∞-category N(Ac)[W−1]. Under some

mild hypotheses, Proposition 4.1.8.3 guarantees that the category of associative algebra objects

Alg(A) is equipped with a model structure, and Theorem 4.1.8.4 implies that the underlying ∞-

category of Alg(A) is equivalent to Alg(N(Ac)[W−1]). Our goal in this section is to prove analogous

results concerning the relationship between commutative algebra objects of A and N(Ac)[W−1].

These results will require some rather strong assumptions relating the model structure on A and

the symmetric monoidal structure on A, which we now formulate.

Notation 4.5.4.1. Let A be a symmetric monoidal category which admits colimits. Given a pair

of morphisms f : A→ A′, g : B → B′, we let f ∧ g denote the induced map

(A⊗B′)
∐
A⊗B

(A′ ⊗B)→ A′ ⊗B′.

We observe that the operation ∧ determines a symmetric monoidal structure on the category of

morphisms in A. In particular, for every morphism f : X → Y , we iterate the above construction

to obtain a map

∧n(f) : �n(f)→ Y ⊗n.

Here the source and target of ∧n(f) carry actions of the symmetric group Σn, and ∧n(f) is a

Σn-equivariant map. Passing to Σn-coinvariants, we obtain a new map, which we will denote by

σn(f) : Symn(Y ;X)→ Symn(Y ).

Before giving the next definition, we need to review a bit of terminology. Recall that a collec-

tion S of morphisms in a presentable category A is weakly saturated if it is stable under pushouts,

retracts, and transfinite composition (see Definition HTT.A.1.2.2 ). For every collection S of mor-

phisms in A, there is a smallest weakly saturated collection of morphisms S containing S. In this

case, we will say that S is generated by S.

Definition 4.5.4.2. Let A be a combinatorial symmetric monoidal model category. We will say

that a morphism f : X → Y is a power cofibration if the following condition is satisfied:
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(?) For every n ≥ 0, the induced map ∧n(f) : �n(f) → Y ⊗n is a cofibration in AΣn . Here AΣn

denotes the category of objects of A equipped with an action of the symmetric group Σn,

endowed with the projective model structure (see §HTT.A.3.3 ).

We will say that an object X ∈ A is power cofibrant if the map ∅ → X is a power cofibration,

where ∅ is an initial object of A.

Let V be a collection of morphisms in a combinatorial symmetric monoidal model category A.

We will say that A is freely powered if the following conditions are satisfied:

(F1) The model category A satisfies the monoid axiom of [129] (see Definition 4.1.8.1): if U denotes

the weakly saturated class generated by morphisms of the form idX ⊗f , where f is a trivial

cofibration in A, then every morphism in U is a weak equivalence in A.

(F2) The model category A is left proper, and the collection of cofibrations in AV is generated (as

a weakly saturated class) by cofibrations between cofibrant objects.

(F3) Every cofibration in A is a power cofibration.

Remark 4.5.4.3. If f : X → Y is a cofibration in A, then the definition of a monoidal model

category guarantees that ∧n(f) is a cofibration in A, which is trivial if f is trivial. Condition (?)

is much stronger: roughly speaking, it guarantees that the symmetric group Σn acts freely on the

object Y ⊗n (see Lemma 4.5.4.11 below).

Remark 4.5.4.4. In the situation of Definition 4.5.4.2, if every object of A is cofibrant, then

conditions (F1) and (F2) are automatic.

Remark 4.5.4.5. Let A be a combinatorial symmetric monoidal model category. Then every

power cofibration in A is a cofibration (take n = 1).

We now turn to the study of commutative algebras in a symmetric monoidal model category A.

Let CAlg(A) denote the category whose objects are commutative algebras in A. The main results

of this section can be stated as follows:

Proposition 4.5.4.6. Let A be a combinatorial symmetric monoidal model category which is freely

powered. Then:

(1) The category CAlg(A) admits a combinatorial model structure, where:

(W ) A morphism f : A → B of commutative algebra objects of A is a weak equivalence if it

is a weak equivalence when regarded as a morphism in A.

(F ) A morphism f : A → B of commutative algebra objects of A is a fibration if it is a

fibration when regarded as a morphism in A.
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(2) The forgetful functor θ : CAlg(A)→ A is a right Quillen functor.

Theorem 4.5.4.7. Let A be a combinatorial symmetric monoidal model category which is freely

powered. Assume that the forgetful functor θ : CAlg(A) → A preserves fibrant-cofibrant objects.

Let Ac and CAlg(A)c denote the full subcategories of A and CAlg(A) spanned by the cofibrant

objects, let W be the collection of weak equivalences in Ac, and let W ′ be the collection of weak

equivalences in CAlg(A)c. Then the canonical map

N(CAlg(A)c)[W ′−1]→ CAlg(N(Ac)[W−1])

is an equivalence of ∞-categories.

We will prove Proposition 4.5.4.6 and Theorem 4.5.4.7 at the end of this section.

Remark 4.5.4.8. Suppose that A is a combinatorial simplicial symmetric monoidal model cate-

gory, in the sense of Definition 4.1.7.8. The category CAlg(A) inherits the structure of a simplicial

category from A: namely, we regard CAlg(A) as cotensored over simplicial sets using the observa-

tion that any commutative algebra structure on an object A ∈ A induces a commutative algebra

structure on AK for every simplicial set K. It is not difficult to see that the model structure of

Proposition 4.5.4.6 is compatible with this simplicial structure on CAlg(A).

Remark 4.5.4.9. Let C be a symmetric monoidal ∞-category. In order for C to arise from the

situation described in Proposition 4.1.7.10, it is necessary for C to be presentable and for the tensor

product ⊗ : C×C → C to preserve small colimits separately in each variable. We do not know if

these conditions are also sufficient.

We now turn to the proof of Proposition 4.5.4.6. First, we need a few preliminaries.

Lemma 4.5.4.10. Let A be a combinatorial symmetric monoidal model category. For every cate-

gory C, let AC denote the associated diagram category, endowed with the projective model structure

(see §HTT.A.3.3 ). Let f be a cofibration in AC, and g a cofibration in AC′. Then the smash prod-

uct f ∧ g (see Notation 4.5.4.1) is a cofibration in AC×C′. In particular, if X ∈ AC and Y ∈ AC′

are cofibrant, then X ⊗ Y is a cofibrant object of AC×C′.

Proof. Let S denote the collection of all morphisms f in AC for which the conclusion of the Lemma

holds. It is not difficult to see that S is weakly saturated, in the sense of Definition HTT.A.1.2.2 .

Consequently, it will suffice to prove that S contains a set of generating cofibrations for AC. Let

iC : {∗} → C be the inclusion of an object C ∈ C, and let iC! : A → AC be the corresponding left

Kan extension functor (a left adjoint to the evaluation at C). Then the collection of cofibrations in

AC is generated by morphisms of the form iC! (f0), where f0 is a cofibration in A. We may therefore

assume that f = iC! (f0). Using the same argument, we may assume that g = iC
′

! (g0), where C ′ ∈ C

and g0 is a cofibration in A. We now observe that f ∧ g is isomorphic to i
(C,C′)
! (f0 ∧ g0). Since

i
(C,C′)
! : A→ AC×C′ is a left Quillen functor, it will suffice to show that f0 ∧ g0 is a cofibration in

A, which follows from our assumption that A is a (symmetric) monoidal model category.
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Lemma 4.5.4.11. Let A be a combinatorial symmetric monoidal model category. Then:

(1) Let f : X → Y be a power cofibration in A. Then the induced map

σn(f) : Symn(Y ;X)→ Symn(Y )

is a cofibration, which is weak equivalence if f is a weak equivalence (see Notation 4.5.4.1)

and n > 0.

(2) Let Y be a power cofibrant object of A. Then Symn(Y ) is a homotopy colimit for the action

of Σn on Y ⊗n.

(3) Let f : X → Y be a power cofibration between power-cofibrant objects of A. Then the object

�n(f) ∈ AΣn is cofibrant (with respect to the projective model structure).

Proof. Let F : AΣn → A be a left adjoint to the diagonal functor, so that F carries an object

X ∈ AΣn to the object of coinvariants XΣn . We observe that F is a left Quillen functor, and

that σn(f) = F (∧n(f)) for every morphism in A. Assertion (1) now follows immediately from

the definitions (and the observation that ∧n(f) is a weak equivalence if n > 0 and f is a trivial

cofibration). Assertion (2) follows immediately from the definition of a homotopy colimit.

We now prove (3). Let f : X → Y be a power cofibration between power cofibrant objects of

A. We observe that Y ⊗n admits a Σn-equivariant filtration

X⊗n = Z0
γ1−→ Z1

γ2−→ . . .
γn−1−→ Zn−1 = �n(f) −→ Zn = Y ⊗n.

It will therefore suffice to prove that each of the maps {γi}1≤i≤n−1 is a cofibration in AΣn . For

this, we observe that there is a pushout diagram

π!(�i(f)×X⊗(n−i))
π!(∧i(f)⊗id) //

��

π!(Y
⊗i ⊗X⊗n−i)

��
Zi−1

γi // Zi,

where π! denotes the left adjoint to the forgetful functor AΣn → AΣi×Σn−i . Since π! is a left Quillen

functor, it suffices to show that each ∧i(f)⊗ id is a cofibration in AΣi×Σn−i . This follows from our

assumption that X is power cofibrant, our assumption that f is a power cofibration, and Lemma

4.5.4.10.

Proof of Proposition 4.5.4.6. We first observe that the category CAlg(A) is presentable (this is

a special case of Corollary 3.2.3.5). Since A is combinatorial, there exists a (small) collection

of morphisms I = {iα : C → C ′} which generates the class of cofibrations in A, and a (small)

collection of morphisms J = {jα : D → D′} which generates the class of trivial cofibrations in A.
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Let F : A → CAlg(A) be a left adjoint to the forgetful functor. Let F (I) be the weakly

saturated class of morphisms in CAlg(A) generated by {F (i) : i ∈ I}, and let F (J) be defined

similarly. Unwinding the definitions, we see that a morphism in CAlg(A) is a trivial fibration if

and only if it has the right lifting property with respect to F (i), for every i ∈ I. Invoking the small

object argument, we deduce that every morphism f : A → C in CAlg(A) admits a factorization

A
f ′→ B

f ′′→ C where f ′ ∈ F (I) and f ′′ is a trivial fibration. Similarly, we can find an analogous

factorization where f ′ ∈ F (J) and f ′′ is a fibration.

Using a standard argument, we may reduce the proof of (1) to the problem of showing that

every morphism belonging to F (J) is a weak equivalence in CAlg(A). Let U be as in Definition

4.5.4.2, and let S be the collection of morphisms in CAlg(A) such that the underlying morphism

in A belongs to U . Since A satisfies condition (F1), S consists of weak equivalences in A. It will

therefore suffice to show that F (J) ⊆ S. Because S is weakly saturated, it will suffice to show that

F (J) ⊆ S. Unwinding the definitions, we are reduced to proving the following:

(∗) Let

F (C)
F (i) //

��

F (C ′)

��
A

f // A′

be a pushout diagram in CAlg(A). If i is a trivial cofibration in A, then f ∈ S.

To prove (∗), we observe that F (C ′) admits a filtration by F (C)-modules

F (C) ' B0 → B1 → B2 → . . . ,

where F (C ′) ' colim{Bi} and for each n > 0 there is a pushout diagram

F (C)⊗ Symn(C ′;C)
idF (C)⊗σn(i)

//

��

F (C)⊗ Symn(C ′)

��
Bn−1

// Bn.

(See Notation 4.5.4.1.) It follows that A′ admits a filtration by A-modules

A ' B′0 → B′1 → B′2 → . . . ,

where A′ ' colim{B′i} and for each n > 0 there is a pushout diagram

A⊗ Symn(C ′;C)
idA⊗σn(i) //

��

A⊗ Symn(C ′)

��
B′n−1

// B′n.
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Since i is a trivial power cofibration, Lemma 4.5.4.11 implies that σn(i) is a trivial cofibration in

A. It follows that idA⊗σn(i) belongs to U . Since U is stable under transfinite composition, we

conclude that f belongs to S. This completes the proof of (1). Assertion (2) is obvious.

The proof of Theorem 4.5.4.7 rests on the following analogue of Lemma 4.1.8.13:

Lemma 4.5.4.12. Let A be as in Theorem 4.5.4.7, and let C be a small category such that N(C)

is sifted (Definition HTT.5.5.8.1 ). Then the forgetful functor N(CAlg(A))c[W ′−1]→ N(Ac)[W−1]

preserves N(C)-indexed colimits.

Proof. In view of Propositions 1.3.4.24 and 1.3.4.25, it will suffice to prove that the forgetful functor

θ : CAlg(A) → A preserves homotopy colimits indexed by C. Let us regard CAlg(A)C, AC, and

AC as endowed with the projective model structure (see §HTT.A.3.3 ). Let F : AC → A and

FCAlg : CAlg(A)C → CAlg(A) be colimit functors, and let θC : CAlg(A)C → AC be given by

composition with θ. Since N(C) is sifted, there is a canonical isomorphism of functors α : F ◦ θC '
θ◦FCAlg. We wish to prove that this isomorphism persists after deriving all of the relevant functors.

Since θ and θC preserve weak equivalences, they can be identified with their right derived functors.

Let LF and LFCAlg be the left derived functors of F and FCAlg, respectively. Then α induces a

natural transformation α : LF ◦ θC → θ ◦ LFCAlg; we wish to show that α is an isomorphism. Let

A : C → CAlg(A) be a projectively cofibrant object of CAlg(A)C; we must show that the natural

map

LF (θC(A))→ θ(LFCAlg(A)) ' θ(FCAlg(A)) ' F (θC(A))

is a weak equivalence in A.

Let us say that an object X ∈ AC is good if each X(C) ∈ A is cofibrant, the colimit F (X) ∈ A

is cofibrant, and the canonical map the natural map LF (X) → F (X) is an isomorphism in the

homotopy category hA (in other words, the colimit of X is also a homotopy colimit of X). To

complete the proof, it will suffice to show that θC(A) is good, whenever A is a projectively cofibrant

object of CAlg(A)C. This is not obvious, since θC is a right Quillen functor and does not preserve

projectively cofibrant objects in general (note that we have not yet used the full strength of our

assumption that N(C) is sifted). To continue the proof, we will need a relative version of the

preceding condition. We will say that a morphism f : X → Y in AC is good if the following

conditions are satisfied:

(i) The objects X,Y ∈ AC are good.

(ii) For each C ∈ C, the induced map X(C)→ Y (C) is a cofibration in A.

(iii) The map F (X)→ F (Y ) is a cofibration in A.

As in the proof of Lemma 4.1.8.13, we have the following:

(1) The collection of good morphisms is stable under transfinite composition.
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(2) Suppose given a pushout diagram

X
f //

��

Y

��
X ′

f ′ // Y ′

in AC. If f is good and X ′ is good, then f ′ is good.

(3) Let F : C→ A be a constant functor whose value is a cofibrant object of A. Then F is good.

(4) Every projectively cofibrant object of AC is good. Every strong cofibration between projec-

tively cofibrant objects of AC is good.

(5) If X and Y are good objects of AC, then X ⊗ Y is good.

(6) Let f : X → X ′ be a good morphism in AC, and let Y be a good object of AC. Then the

morphism f ⊗ idY is good.

(7) Let f : X → X ′ and g : Y → Y ′ be good morphisms in AC. Then

f ∧ g : (X ⊗ Y ′)
∐
X⊗Y

(X ′ ⊗ Y )→ X ′ ⊗ Y ′

is good.

Moreover, our assumption that A is freely powered ensures that the class of good morphisms

has the following additional property:

(8) Let f : X → Y be a good morphism in AC. Then the induced map σn(f) : Symn(Y ;X) →
Symn(Y ) (see Notation 4.5.4.1) is good. Condition (ii) follows immediately from Lemma

4.5.4.11, and condition (iii) follows from Lemma 4.5.4.11 and the observation that F (σn(f)) =

σn(F (f)) (since the functor F commutes with colimits and tensor products). It will therefore

suffice to show that the objects Symn(Y ;X) and Symn(Y ) are good. Let D : AΣn → A be

the coinvariants functor, and consider the following diagram of left Quillen functors (which

commutes up to canonical isomorphism):

AC×Σn DC
//

F
��

AC

F
��

AΣn D // A.

Let us regard ∧n(f) as an object in the category of arrows of hAC×Σn . We wish to show that

the canonical map LF (σn(f))→ F (σn(f)) is an isomorphism (in the category of morphisms

in hA). We now observe that σn(f) = DC(∧n(f)). Lemma 4.5.4.11 implies that the canonical
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map LDC ∧n (f)→ DC ∧n (f) is a weak equivalence. It will therefore suffice to show that the

transformation

α : L(F ◦DC)(∧n(f))→ (F ◦DC)(∧n(f))

is an isomorphism (in the category of morphisms of hA). Using the commutativity of the

above diagram, we can identify α with the map

(LD ◦ LF ) ∧n (f)→ (D ◦ F )(∧n(f)) = D ∧n (F (f)).

Using Lemma 4.5.4.11 again, we can identify the right hand side with LD ∧n (F (f)). It will

therefore suffice to show that the map LF ∧n (f)→ F ∧n (f) is an isomorphism in the category

of morphisms of hAΣn . Since the forgetful functor AΣn → A preserves homotopy colimits (it

is also a left Quillen functor) and detects equivalences, we are reduced to proving that the

morphism ∧n(f) is good. This follows from (7) using induction on n.

We observe that axiom (F2) of Definition 4.5.4.2 has the following consequence:

(F2′) The collection of all projective cofibrations in AC is generated by projective cofibrations

between projectively cofibrant objects.

Let T : AC → CAlg(A)C be a left adjoint to θC. Using the small object argument and (B′),

we conclude that for every projectively cofibrant object A ∈ CAlg(A)C there exists a transfinite

sequence {Aβ}β≤α in CAlg(A)C with the following properties:

(a) The object A0 is initial in CAlg(A)C.

(b) The object A is a retract of Aα.

(c) If λ ≤ α is a limit ordinal, then Aλ ' colim{Aβ}β<λ.

(d) For each β < α, there is a pushout diagram

T (X ′)
T (f) //

��

T (X)

��
Aβ // Aβ+1

where f is a projective cofibration between projectively cofibrant objects of AC.

We wish to prove that θC(A) is good. In view of (b), it will suffice to show that θC(Aα) is

good. We will prove a more general assertion: for every γ ≤ β ≤ α, the induced morphism

uγ,β : θC(Aγ)→ θC(Aβ) is good. The proof is by induction on β. If β = 0, then we are reduced to

proving that θC(A0) is good. This follows from (a) and (3). If β is a nonzero limit ordinal, then

the desired result follows from (c) and (1). It therefore suffices to treat the case where β = β′ + 1
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is a successor ordinal. Moreover, we may suppose that γ = β′: if γ < β′, then we observe that

uγ,β = uβ′,β ◦ uγ,β′ and invoke (1), while if γ > β′, then γ = β and we are reduced to proving that

θC(Aβ) is good, which follows from the assertion that uβ′,β is good. We are now reduced to proving

the following:

(∗) Let

T (X ′)
T (f) //

��

T (X)

��
B′

v // B

be a pushout diagram in CAlg(A)C, where f : X ′ → X is a projective cofibration between

projectively cofibrant objects of AC. If θC(B′) is good, then θC(v) is good.

To prove (∗), we set Y = θC(B) ∈ AC, Y ′ = θC(B′) ∈ AC. Let g : ∅ → Y ′ the unique morphism,

where ∅ denotes an initial object of AC. As in the proof of Proposition 4.5.4.6, Y can be identified

with the colimit of a sequence

Y ′ = Y (0) w1→ Y (1) w2→ . . .

where Y (0) = Y ′, and wk is a pushout of the morphism f (k) = B′ ⊗ σk(f). The desired result now

follows immediately from (4), (6) and (8).

We are now ready to prove our main result:

Proof of Theorem 4.5.4.7. Consider the diagram

N(CAlg(A)c)[W ′−1] //

G

))

CAlg(N(Ac)[W−1])

G′uu
N(Ac)[W−1].

It will suffice to show that this diagram satisfies the hypotheses of Corollary 4.7.3.16:

(a) The ∞-categories N(CAlg(A)c)[W ′−1] and CAlg(N(Ac)[W−1]) admit geometric realiza-

tions of simplicial objects. In fact, both of these ∞-categories are presentable. For

N(CAlg(A)c)[W ′−1], this follows from Propositions 1.3.4.22 and 4.5.4.6. For CAlg(N(Ac)[W−1]),

we first observe that N(Ac)[W−1] is presentable (Proposition 1.3.4.22) and that the tensor

product preserves colimits separately in each variable (Corollary 4.1.8.8), and then apply

Corollary 3.2.3.5.

(b) The functors G and G′ admit left adjoints F and F ′. The existence of a left adjoint to G′

follows from Corollary 3.1.3.5, and a left adjoint to G is induced by the left Quillen functor

A→ CAlg(A).
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(c) The functor G′ is conservative and preserves geometric realizations of simplicial objects. This

follows from Corollary 3.2.3.2 and Lemma 3.2.2.6.

(d) The functor G is conservative and preserves geometric realizations of simplicial objects. The

first assertion is immediate from the definition of the weak equivalences in CAlg(A), and the

second follows from Lemma 4.5.4.12.

(e) The canonical map G′ ◦F ′ → G ◦F is an equivalence of functors. Unwinding the definitions,

we must show that for every cofibrant object C ∈ A, the free strictly commutative algebra∐
n Symn(C) ∈ CAlg(A) is a free algebra generated by C, in the sense of Definition 3.1.3.1. In

view of Proposition 3.1.3.13, it suffices to show that the colimit defining the total symmetric

power
∐
n Symn(C) in A is also a homotopy colimit. This follows immediately from part (3)

of Lemma 4.5.4.11.

4.6 Duality

Let k be a field, and let V be a vector space over k. The dual space V ∨ is defined to be the set

Homk(V, k) of k-linear maps from V into k. It can be characterized by the following universal

property: for every k-vector space W , giving a k-linear map W → V ∨ is equivalent to giving a

k-linear map W ⊗k V → k (or, equivalently, a bilinear map W ×V → k). In particular, the identity

id : V ∨ → V ∨ classifies a linear map e : V ∨ ⊗k V → k, which corresponds to the bilinear map

(λ, v) 7→ λ(v).

If V is a finite-dimensional vector space over k, then the dual V ∨ admits a second description:

for every k-vector space W , the tensor product W ⊗kV ∨ can be identified with the set Homk(V,W )

of k-linear maps from V into W . In particular, V ⊗k V ∨ can be identified with the set of k-linear

endomorphisms of V , and there is a canonical map c : k → V ⊗k V ∨ which carries the element

1 ∈ k to the identity endomorphism of V . It is not difficult to verify that the composite maps

V ' k ⊗k V
c⊗id−→ V ⊗k V ∨ ⊗k V

id⊗e−→ V ⊗k k ' V

V ∨ ' V ∨ ⊗k k
id⊗c−→ V ∨ ⊗k V ⊗k V ∨

e⊗id−→ k ⊗k V ∨ ' V ∨

correspond to the identity on V and V ∨, respectively.

In §4.6.1, we will generalize the duality theory of finite-dimensional vector spaces to the setting

of an arbitrary monoidal ∞-category C. For each object X ∈ C, we introduce the notion of a right

dual X∨ and a left dual ∨X, and show that they are characterized uniquely (up to a contractible

space of choices) when they exist (Lemma 4.6.1.10).

Suppose now that the monoidal∞-category C admits geometric realizations of simplicial objects,

which are preserved by the tensor product ⊗ : C×C → C. In this case, we can use the relative
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tensor product of §4.4.2 to introduce a relative theory of duality. In §4.6.2, we will generalize the

notion of right and left dualizability to the setting of bimodule objects M ∈ ABModB(C). Here the

conditions of left and right dualizability are generally very different from one another: the left dual

of M can be viewed as an A-linear dual of M (classifying A-linear maps from M into A), while the

right dual of M can be viewed as a B-linear dual of M (classifying B-linear maps from M into B).

In §4.6.4 we will study conditions on A and B which allow us to relate these relative dualizability

conditions to the dualizability of M as an object of the ambient ∞-category C. Assume that C is

symmetric monoidal. We say that an algebra object R ∈ Alg(C) is proper if it is dualizable when

regarded as an object of C (an important special case occurs when R is self-dual as an object of C,

which we will consider in §4.6.5). If A is proper, then every left dualizable object of ABModB(C) is

dualizable as an object of C, and if B is proper then every right dualizable object of ABModB(C)

is dualizable as an object of C (Proposition 4.6.4.4). We also introduce the formally dual notion

of a smooth algebra object of C, which allows us to prove converses to the above assertions. The

definition of smoothness requires some elementary facts about the relationship between left and

right modules, which we establish in §4.6.3.

4.6.1 Duality in Monoidal ∞-Categories

In this section, we will study the theory of duality in the setting of monoidal ∞-categories. We

begin by reviewing some classical category theory.

Definition 4.6.1.1. Let C be a monoidal category. A duality datum in C consists of the following

data:

(i) A pair of objects X,X∨ ∈ C.

(ii) A pair of morphisms

c : 1→ X ⊗X∨ e : X∨ ⊗X → 1,

where 1 denotes the unit object of C.

These morphisms are required to satisfy the following conditions:

(iii) The composite maps

X
c⊗id−→ X ⊗X∨ ⊗X id⊗e−→ X

X∨
id⊗c−→ X∨ ⊗X ⊗X∨ e⊗id−→ X∨

are the identity on X and X∨, respectively.

In this case, we will say that e and c exhibit X∨ as a right dual of X, or X as a left dual of X∨.
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Let C be a monoidal∞-category, and let M be an∞-category right-tensored over C. If M,N ∈
M and C ∈ C, we will say that a morphism q : N ⊗ C → M in C exhibits N as an exponential of

M by C if, for every object N ′ ∈M, the composite map

MapM(N ′, N)→ MapM(N ′ ⊗ C,N ⊗ C)
q◦→ MapM(N ′ ⊗ C,M)

is a homotopy equivalence.

Remark 4.6.1.2. If C and M are presentable ∞-categories and the tensor product M×C →
M preserves colimits separately in each variable, then for every object (M,C) ∈ M×Cop, the

construction N 7→ MapC(N ⊗ C,M) determines a limit-preserving functor Mop → S, which is

representable by an object MC ∈ M (Proposition HTT.5.5.2.2 ). By definition, this object is

equipped with a canonical map MC ⊗ C →M which exhibits MC as an exponential of M by C.

Remark 4.6.1.3. Let C be a monoidal ∞-category and M an ∞-category right-tensored over C.

The construction (M,C) 7→ MapC(• ⊗ C,M) determines a functor χ : M×Cop → Fun(Mop, S).

Suppose that, for every object (M,C) ∈ M×Cop, there exists an exponential MC ∈ M. Then χ

factors through the essential image of the Yoneda embedding j : M→ Fun(Mop, S). Since j is fully

faithful, we can write χ ' j ◦ χ0 for some functor χ0 : M×Cop → M. We will denote this functor

by (M,C) 7→MC .

Remark 4.6.1.4. Let C be as in Remark 4.6.1.3 and let C ∈ C. Then the functor M 7→ MC

preserves all limits which exist in C.

Lemma 4.6.1.5. Let C be a monoidal ∞-category and let M be an ∞-category right-tensored over

C. Suppose that we are given a duality datum (X,X∨, e, c) in the homotopy category hC. Then, for

every object M ∈M, the map

(M ⊗X∨)⊗X 'M ⊗ (X∨ ⊗X)
e→M ⊗ 1 'M

exhibits M ⊗X∨ as an exponential of M by X.

Proof. Fix an object N ∈M. We wish to show that the composite map

φ : MapM(N,M ⊗X∨)→ MapM(N ⊗X,M ⊗X∨ ⊗X)
e→ MapM(N ⊗X,M)

is a homotopy equivalence. Let ψ denote the composition

MapM(N ⊗X,M)→ MapM(N ⊗X ⊗X∨,M ⊗X∨)
c→ MapM(N,M ⊗X∨).

Using the compatibility of e and c, we deduce that φ and ψ are homotopy inverse to one another.

Lemma 4.6.1.6. Let C be a monoidal ∞-category and let e : B⊗C → 1 be a morphism in C. The

following conditions are equivalent:
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(1) The triple (B,C, e) can be extended to a duality datum in the homotopy category hC. That

is, there exists a map c : 1→ C ⊗B such that the compositions

C → C ⊗B ⊗ C → C C → C ⊗B ⊗ C → C

are homotopic to the identity.

(2) For every object A ∈ C, the map

A⊗B ⊗ C id⊗e−→ A

exhibits A⊗B as an exponential of A by C. In other words, for every object D ∈ C, e induces

a homotopy equivalence

MapC(D,A⊗B)→ MapC(D ⊗ C,A).

Proof. The implication (1) ⇒ (2) follows from Lemma 4.6.1.5 (applied to the right action of C on

itself). Conversely, suppose that (2) is satisfied. Then the map

θ : MapC(1, C ⊗B)
⊗C−→ MapC(C,C ⊗B ⊗ C)

e−→ MapC(C,C)

is a homotopy equivalence. In particular, there exists a map c : 1 → C ⊗ B whose image under θ

is an equivalence. It follows that the composition

φ : C
c⊗id−→ C ⊗B ⊗ C id⊗e−→ C

is homotopic to the identity. To complete the proof, it suffices to show that the composition

ψ : B
id⊗c−→ B ⊗ C ⊗B e⊗id−→ B

is homotopic to the identity. Assumption (2) (applied in the case A = 1) guarantees that e exhibits

B as an exponential 1C , so that ψ′ is classified by up to homotopy by some map e′ : B ⊗ C → 1;

we wish to prove that e = e′. Unwinding the definitions, we see that e′ is given by the composition

B ⊗ C id⊗c⊗id−→ B ⊗ C ⊗B ⊗ C (4.1)
e⊗e−→ 1⊗ 1 (4.2)

' 1. (4.3)

This map can be written as the composition

B ⊗ C id⊗φ→ B ⊗ C e−→ 1,

which is homotopic to e since φ is homotopic to idY .
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Definition 4.6.1.7. Let C be a monoidal ∞-category. We say that an object C ∈ C is right

dualizable (left dualizable) if there exists an object B ∈ C and a map e : B⊗C → 1 (e : C⊗B → 1)

satisfying the equivalent conditions of Lemma 4.6.1.6. In this case, we will say that e exhibits B as

a right (left) dual of C.

Notation 4.6.1.8. Let C be a monoidal ∞-category. We let DDat(C) denote the full subcategory

of

(C×C)×Fun({0},C) Fun(∆1,C)×Fun({1},C) {1}

spanned by those triples (B,C, e : B ⊗ C → 1) which satisfy the equivalent conditions of Lemma

4.6.1.6. We will refer to DDat(C) as the ∞-groupoid of duality data in C.

The construction (B,C, e) 7→ B defines a forgetful functor π : DDat(C)→ C.

Remark 4.6.1.9. We observe that the image of π is contained in the subcategory Crd ⊆ C whose

objects are right dualizable objects of C and whose morphisms are equivalences in C. The condition

on objects follows from Lemma 4.6.1.6. The condition on morphisms follows from the following

observation: if α : (B,C, e) → (B′, C ′, e′) is a morphism in DDat(C), then dual of the underlying

map C → C ′ is a homotopy inverse to the underlying map B → B′.

Lemma 4.6.1.10. Let C be a monoidal ∞-category and let Crd be defined as in Remark 4.6.1.9.

Then the map π : DDat(C)→ Crd is a trivial Kan fibration.

Proof. The map π is obviously an essentially surjective categorical fibration. To show that it

is an equivalence, it suffices to prove that π is fully faithful. In other words, we must show

that for every pair of objects (B,C, e), (B′, C ′, e′) ∈ D, the map π induces a homotopy equiva-

lence MapDDat(C)((B,C, e), (B
′, C ′, e′)) → IsoC(B,B′); here IsoC(B,B′) denotes the summand of

the mapping space MapC(X,X ′) consisting of those connected components which correspond to

equivalences from B to B′.

Unwinding the definitions, we see that MapDDat(C)((B,C, e), (B
′, C ′, e′)) can be identified with

the homotopy fiber of a map φ : IsoC(B,B′) × IsoC(C,C ′) → MapC(B ⊗ C,1) over the point e.

The pairings e and e′ determine homotopy equivalences IsoC(C,C ′) ' IsoC(B′, B) and MapC(B ⊗
C,1) ' MapC(B,B). Under these identifications, φ corresponds to the obvious composition map

IsoC(B,B′)× IsoC(B′, B)→ MapC(B,B), and MapDDat(C)((B,B
′, e), (B′, C ′, e′)) corresponds to the

homotopy fiber lying over the identity. Note that φ factors through the summand IsoC(B,B′). We

have a homotopy pullback diagram

MapDDat(C)((B,C, e), (B
′, C ′, e′))

��

// IsoC(B,B′)× IsoC(B′, B)

ψ

��
IsoC(B,B′) // IsoC(B,B′)× IsoC(B,B),

where ψ is given by the formula (f, g) 7→ (f, gf). It therefore suffices to show that ψ is a homotopy

equivalence, which is clear.
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Proposition 4.6.1.11. Let {Cα} be a diagram of monoidal ∞-categories having a limit C. Then

an object of C is right dualizable if and only if its image in each Cα is right dualizable.

Proof. The “only if” direction is obvious. For the converse, we observe that DDat(C) '
lim←−DDat(Cα) and apply Lemma 4.6.1.10.

Remark 4.6.1.12. If C is a symmetric monoidal∞-category, then an object C ∈ C is left dualizable

if and only if it is right dualizable; in this case, we will simply say that C is dualizable.

4.6.2 Duality of Bimodules

Let C be a monoidal ∞-category. In §4.6.1, we introduced the notion of the right dual of an object

X ∈ C: that is, an object X∨ ∈ C equipped with evaluation and coevaluation maps

e : X∨ ⊗X → 1 c : X ⊗X∨ → 1

for which the composite maps

X
c⊗id−→ X ⊗X∨ ⊗X id⊗e−→ X

X∨
id⊗c−→ X∨ ⊗X ⊗X∨ e⊗id−→ X∨

are the identity on X and X∨, respectively. In this section, we will discuss a generalization where

we suppose that X is equipped with the structure of an A-B-bimodule, for some algebra objects

A,B ∈ Alg(C).

We begin by proving a counterpart to Lemma 4.6.1.6.

Proposition 4.6.2.1. Let C be a monoidal ∞-category. Assume that C admits geometric re-

alizations of simplicial objects and that the tensor product ⊗ : C×C → C preserves geometric

realizations of simplicial objects. Let A,B ∈ Alg(C) and suppose we are given bimodule objects

X ∈ ABModB(C), Y ∈ BBModA(C), and a morphism c : B → Y ⊗A X in BBModB(C). The

following conditions are equivalent:

(1) There exists a morphism e : X ⊗B Y → A in ABModA(C) such that the composite maps

X ' X ⊗B B
id⊗c→ X ⊗B Y ⊗A X

e⊗id→ A⊗A X ' X

Y ' B ⊗B Y
c⊗id→ Y ⊗A X ⊗B Y

id⊗e→ Y ⊗A A ' Y

are homotopic to idX and idY , respectively.

(2) Let M be an ∞-category left-tensored over C for that M admits geometric realizations and the

action map C×M→M preserves geometric realizations. Let F : LModB(M)→ LModA(M)

be the functor given by M 7→ X ⊗B M , and let G : LModA(M)→ LModB(M) be the functor

given by M 7→ Y ⊗A M . Then the map c induces a natural transformation u : id → G ◦ F
which exhibits F as left adjoint to G.
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(3) Let N be an ∞-category right-tensored over C such that N admits geometric realizations

and the action map N×C → C preserves geometric realizations. Let G : RModA(N) →
RModB(N) be the functor given by N 7→ N ⊗A X, and let F : RModB(N) → RModA(N)

be the functor given by N 7→ N ⊗B Y . Then the map c induces a natural transformation

id→ G ◦ F which exhibits F as left adjoint to G.

Proof. We will prove the equivalence (1)⇔ (2); the equivalence (1)⇔ (3) will follow by symmetry.

The implication (1) ⇒ (2) is obvious: if there exists a map e as in (1), then e induces a natural

transformation v : F ◦ G → id which is a unit map compatible with the counit v. Conversely,

suppose that condition (2) is satisfied. Let M = RModA(C), which we regard as an ∞-category

left-tensored over C via the construction of §4.8.3. Regard A as an object of LModA(M), let

u : id → G ◦ F be as in (2), and choose a counit map v : F ◦ G → id compatible with u. Then v

induces a map v(A) : X⊗B Y → A. The compatibility between u and v implies that the composite

map G → (G ◦ F ) ◦ G = G ◦ (F ◦ G) → G is homotopic to the identity. Evaluating on the object

A ∈ LModA(M), we conclude that the composite map

α : Y
c⊗id−→ Y ⊗A X ⊗B Y

id⊗v(A)−→ Y

is homotopic to idY . To complete the proof, it will suffice to show that the map

β : X
id⊗c−→ X ⊗B Y ⊗A X

v(A)⊗id−→ X

is homotopic to idX . Let M′ = RModB(C), and let

F ′ : LModB(M′)→ LModA(M′) G′ : LModA(M′)→ LModB(M′)

denote the functors given by tensor product with X and Y , respectively. Let u′ : idLModA(M′) →
G′ ◦F ′ be the map described in (2). We regard B as an object of LModB(M′), so that Y ' F ′(B).

Since u′ is the unit of an adjunction, to show that β is homotopic to idX it will suffice to show that

the composite map

B
e→ (G′ ◦ F ′)(B) ' G′(X)

G′(β)−→ G′(X) ' Y ⊗A X

is homotopic to c. Unwinding the definitions, we see that this composition is given by

B ' B ⊗B B
c⊗c−→ Y ⊗A X ⊗B Y ⊗A X

id⊗v(A)⊗id−→ Y ⊗A X.

This map is homotopic to the composition

B
c−→ Y ⊗A X

id⊗α−→ Y ⊗A X

and therefore also to c, since α is homotopic to idY .
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Remark 4.6.2.2. In the setting of Proposition 4.6.2.1, it suffices to verify condition (2) in the

special case where M has the form RModR(C) for some R ∈ Alg(C): in fact, the proof requires only

the special cases R = A and R = B.

Definition 4.6.2.3. Let C be a monoidal ∞-category which admits geometric realizations and for

which the tensor product ⊗ : C×C → C preserves geometric realizations. Let A,B ∈ Alg(C), let

X ∈ ABModB(C), Y ∈ BBModA(C), and let c : B → Y ⊗A X be a map. We will say that c

exhibits X as the right dual of Y , or c exhibits Y as the left dual of X, if the equivalent conditions

of Proposition 4.6.2.1 are satisfied.

Given X ∈ ABModB(C), we will say that X is left dualizable if there exists an object Y ∈
BBModA(C) and a morphism c : B → Y ⊗A X BBModB(C) which exhibits Y as a left dual of

X. Similarly, we say that an object Y ∈ BBModA(C) right dualizable if there exists an object

X ∈ ABModB(C) and a morphism c : B → Y ⊗A X in ABModA(C) which exhibits X as a right

dual of Y .

Example 4.6.2.4. Let C be a monoidal∞-category and let 1 denote the unit object of C, regarded

as a trivial algebra so that the forgetful functor 1BMod1(C)→ C is an equivalence of (monoidal)∞-

categories. An object X ∈ 1BMod1(C) is left dualizable (right dualizable) in the sense of Definition

4.6.2.3 if and only if its image in C is left dualizable (right dualizable) in the sense of Definition

4.6.1.7.

Example 4.6.2.5. Let C be a monoidal∞-category with unit object 1 (which we regard as a trivial

algebra object of C) and let A ∈ Alg(C) be an algebra object of C. Suppose that c : 1 → X ⊗X∨

is a morphism in C which exhibits X∨ as a left dual of X. Let us regard X ⊗ A as an object of

RModA(C) ' 1BModA(C) and A⊗X∨ as an object of LModA(C) ' ABMod1(C). Then the map

c′ : 1→ X ⊗X∨ ' X ⊗ 1⊗X∨ → X ⊗A⊗X∨ ' (X ⊗A)⊗A (A⊗X∨)

in ABModA(C) exhibits A⊗X∨ as a left dual of X ⊗ A. To see this, we choose a evaluation map

e : X∨ ⊗X → 1 compatible with c, and note that the map

e′ : (A⊗X∨)⊗ (X ⊗A) ' A⊗ (X∨ ⊗X)⊗A id⊗e⊗id−→ A⊗ 1⊗A ' A⊗A→ A

satisfies condition (1) of Proposition 4.6.2.1.

Remark 4.6.2.6. In the situation of Definition 4.6.2.3, suppose that we are given algebra objects

A,B,C ∈ Alg(C) and bimodules M ∈ ABModB(C), N ∈ BBModC(C). If M and N are left

dualizable (right dualizable), then the relative tensor product M ⊗B N is left dualizable (right

dualizable). Moreover, the left dual (right dual) of M ⊗B N is given by N?⊗BM?, where M? and

N? denote the left duals (right duals) of M and N , respectively.
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Definition 4.6.2.7. Let p : M⊗ → LM⊗ and q : N⊗ → LM⊗ be coCartesian fibrations of ∞-

operads, which exhibit M = M⊗m and N = N⊗m as left-tensored over the same monoidal ∞-category

M⊗×LM⊗ Assoc⊗
α' C⊗

β
' N⊗×LM⊗ Assoc⊗ .

A C-linear functor from M to N is an LM-monoidal functor from M⊗ to N⊗ which is the identity

on C⊗. In other words, a C-linear functor from M to N is a functor F : M⊗ → N⊗ satisfying the

following conditions:

(i) The diagram

M⊗

p ##

F // N⊗

q{{
LM⊗

is commutative.

(ii) The functor F carries p-coCartesian morphisms of M⊗ to q-coCartesian morphisms of N⊗.

(iii) The restriction F |(M⊗×LM⊗ Assoc⊗) is given by β ◦ α.

We let LinFunC(M,N) denote the full subcategory of FunLM⊗(M⊗,N⊗) ×FunAssoc⊗ (C⊗,C⊗) {id}
spanned by the C-linear functors from M to N.

Remark 4.6.2.8. In the situation of Definition 4.6.2.7, evaluation at m ∈ LM determines a

forgetful functor θ : LinFunC(M,N)→ Fun(M,N). We will often abuse terminology by identifying

F with the underlying functor θ(F ) : M→ N.

Suppose that K is a collection of simplicial sets such that both M and N admit K-indexed

colimits. We let LinFunK
C (M,N) denote the full subcategory of LinFunC(M,N) spanned by those

functors F such that θ(F ) : M→ N preserves K-indexed colimits.

Remark 4.6.2.9. Let C⊗ be a monoidal ∞-category, and let F : M⊗ → N⊗ be a C-linear functor

from between ∞-categories left-tensored over C⊗. Then composition with F determines a commu-

tative diagram

LMod(M) //

&&

LMod(N)

xx
Alg(C).

In particular, for every algebra object A ∈ Alg(C), we have an induced functor LModA(M) →
LModA(N). This construction depends functorially on F in an obvious sense, so we get a functor

LinFunC(M,N)→ Fun(LModA(M),LModA(N)).
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The following result gives a useful criterion for left dualizability:

Proposition 4.6.2.10. Let C be a monoidal∞-category which admits geometric realizations and for

which the tensor product functor ⊗ : C×C→ C preserves geometric realizations. Let A,B ∈ Alg(C)

and let X ∈ ABModB(C). Then X is left dualizable if and only if the following conditions are

satisfied:

(1) Let M be an ∞-category right-tensored over M. Assume that M admits geometric realizations

and that the action M×C → M preserves geometric realizations. Then the functor GM :

RModA(M)→ RModB(M), given by M 7→M ⊗A X, admits a left adjoint.

(2) Let U : M → M′ be a C-linear functor between ∞-categories M and M′ which are right-

tensored over C (see Definition 4.6.2.7). Assume that M and M′ satisfy the hypotheses of

(1) and that U preserves geometric realizations of simplicial objects. Then the diagram of

∞-categories

RModA(M)
GM //

��

RModB(M)

��
RModA(M′)

GM′ // RModB(M′)

is left adjointable (Definition 4.7.4.13).

Proof. Assume first that X admits a left dual Y ∈ BBModA(C), and let M be as in (1). Then

GM admits a left adjoint FM , given informally by M 7→ M ⊗B Y (Proposition 4.6.2.1). This

immediately implies (1), and assertion (2) follows from the formula for FM. Conversely, suppose

that (1) and (2) are satisfied. Set M = LModB(C) and let FM be the left adjoint to GM whose

existence is guaranteed by (1). We regard B as an object of RModB(M) and let Y = FM(B).

Let uM : id → GM ◦ FM be a unit for the adjunction between FM and GM, so that uM(A) can

be regarded as a morphism c : B → Y ⊗A X in RModB(M) ' BBModB(C). We will show

that c exhibits Y as the left dual of X by verifying the analogue of condition (3) of Proposition

4.6.2.1. Let M′ be an ∞-category which is right-tensored over C, such that M′ admits geometric

realizations and the action M′×C→M′ preserves geometric realizations of simplicial objects. Let

T : RModB(M′) → RModA(M′) be the functor given by M 7→ M ⊗B Y , so that c determines a

natural transformation u : idRModB(M′) → GM′ ◦ T . Condition (1) guarantees that GM′ admits a

right adjoint FM′ , so that u determines a natural transformation α : FM′ → T . We wish to show

that α is an equivalence. To this end, choose an object M ∈ RModB(M′); we wish to show that

α(M) : FM′(M) → M ⊗B Y is an equivalence. The construction N 7→ M ⊗B N determines a

C-linear functor U : M = LModB(C) → M′ which carries B ∈ RModB(M) to M ∈ RModB(M′)

and commutes with geometric realizations (see Theorem 4.8.4.1 for a more detailed construction).

The assertion that α(M) is an equivalence now follows immediately from the left adjointability of
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the diagram

RModA(M)
GM //

��

RModB(M)

��
RModA(M′)

GM′ // RModB(M).

Remark 4.6.2.11. Let C be as in Proposition 4.6.2.10 and suppose that X ∈ ABModB(C) satisfies

conditions (1) and (2). Let G : ABModB(C) → BBModB(C) be given by M 7→ M ⊗A X, and let

F be a left adjoint to G. Suppose we are given a bimodule Y ∈ BBModA(C) and a morphism

c : B → Y ⊗A X in BBModB(C). Then c exhibits Y as a left dual of X if and only if it is adjoint

to an equivalence F (B) → Y in BBModA(C). In particular, the left dual Y and the map c are

determined (up to a contractible space of choices) provided that they exist.

Remark 4.6.2.12. Let C be a monoidal ∞-category which admits geometric realizations and for

which the tensor product ⊗ : C×C → C preserves geometric realizations. Suppose that X ∈
ABModB(C), Y ∈ BBModA(C), and e : X ⊗B Y → A is a map which exhibits Y as a left dual of

X. Let B′ → B be a morphism in Alg(C), let X ′ denote the image of X in ABModB′(C), and let

Y ′ ∈ B′BModA(C) be defined similarly. Then the composite map

e′ : X ′ ⊗B′ Y ′ → X ⊗B Y
e→ A

exhibits Y ′ as a left dual of X ′. To see this, choose a map c : B → Y ⊗A X as in Proposition

4.6.2.1. Note that Y ′⊗AX ′ can be identified with the image of Y ⊗AX under the forgetful functor

BBModB(C) → B′BModB′(C), so that c determines a morphism c′ : B′ → B → Y ′ ⊗A X ′ in

B′BModB′(C). It is easy to see that c′ satisfies the requirements of condition (1) of Proposition

4.6.2.1.

Using Proposition 4.6.2.10, we can prove a converse to Remark 4.6.2.12:

Proposition 4.6.2.13. Let C be a monoidal∞-category which admits geometric realizations and for

which the tensor product functor ⊗ : C×C→ C preserves geometric realizations. Let A,B ∈ Alg(C)

and let X ∈ ABModB(C). The following conditions are equivalent:

(a) The object X is left dualizable.

(b) For every map B′ → B in Alg(C), the image of X in ABModB′(C) is left dualizable.

(c) There exists a map B′ → B in Alg(C) such that the image of X in ABModB′(C) is left

dualizable.

(d) Let 1 denote the unit object of C, regarded as an initial object of Alg(C). Then the image of

X in LModA(C) ' ABMod1(C) is left dualizable.



626 CHAPTER 4. ASSOCIATIVE ALGEBRAS AND THEIR MODULES

Proof. The implication (b) ⇒ (c) is obvious, and the implications (a) ⇒ (b) and (c) ⇒ (d) follow

from Remark 4.6.2.12. We will show that (d) implies (a). Assume that the image of X in LModA(C)

is left dualizable; we will show that X satisfies conditions (1) and (2) of Proposition 4.6.2.10.

We begin by verifying condition (1). Let M be an∞-category right-tensored over C, and assume

that the action M×C→M preserves geometric realizations. Let GM : RModA(M)→ RModB(M)

be the functor given by tensor product with X; we wish to show that GM admits a left adjoint. Let

X ⊆ RModB(M) be the full subcategory spanned by those objects M for which the functor N 7→
MapRModB(M)(M,GM(N)) is corepresentable by an object of RModA(M); we wish to show that

X = RModB(M). Since RModA(M) admits geometric realizations of simplicial objects (Corollary

4.2.3.5), the ∞-category X is closed under the formation of geometric realizations. It will therefore

suffice to show that X contains every free right module M0⊗B (Corollary 4.7.3.14). In this case, the

relevant functor is given by MapM(M0, G(N)), where G : RModA(M)→M is the forgetful functor.

The desired result now follows from the observation that G admits a left adjoint (by virtue of (d)

and Proposition 4.6.2.10).

The verification of condition (2) is similar. Suppose we are given a C-linear functor U : M→M′

between ∞-categories right-tensored over C, which preserves geometric realizations. Let GM and

GM′ be defined as above; we wish to show that the diagram

RModA(M)
GM //

��

RModB(M)

��
RModA(M′)

GM′ // RModB(M′)

is left adjointable. Let FM and FM′ be the left adjoints to GM and GM′ , respectively, and let X be

the full subcategory of RModB(M) spanned by those objects M for which the map FM′(UM) →
UFM(M) is an equivalence. We wish to show that X = RModB(M). It is easy to see that X is

closed under the formation of geometric realizations of simplicial objects; it will therefore suffice

to show that X contains every free right module of the form M0 ⊗ B. This follows from the left

adjointability of the outer square and rightmost square in the diagram

RModA(M)
GM //

��

RModB(M)

��

//M

��
RModA(M′)

GM′ // RModB(M′) //M′,

which follow from (d) and Proposition 4.6.2.10.

Remark 4.6.2.14. In the situation of Proposition 4.6.2.13, suppose we are given a map e : X ⊗B
Y → A. Suppose we are given a morphism B′ ∈ Alg(C), and let X ′ and Y ′ denote the images of

X and Y in ABModB′(C) and B′BModA(C), respectively. Then e exhibits X as a right dual of Y
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if and only if the composite map

e′ : X ′ ⊗B′ Y ′ → X ⊗B Y
e→ A

exhibits X ′ as a right dual of Y ′. The “only if” direction follows from Remark 4.6.2.12. Conversely,

suppose that e′ exhibits X ′ as a right dual of Y ′. In particular, X ′ is left-dualizable, so that

X is also left dualizable by Proposition 4.6.2.13. It follows that e is classified by a morphism

θ : Y →∨ X in BBModA(C). Our assumption that e′ is a duality datum guarantees that the image

of θ in B′BModA(C) is an equivalence. It follows that θ is an equivalence, so that e is also a duality

datum.

Example 4.6.2.15. Let C be as in Proposition 4.6.2.13. It follows from Proposition 4.6.2.13 and

Example 4.6.2.5 that for any algebra object A ∈ Alg(C), A is (left and right) dualizable when

viewed as a bimodule over itself.

Notation 4.6.2.16. Let C be a monoidal ∞-category which admits geometric realizations and

for which the tensor product functor ⊗ : C×C → C preserves geometric realizations. If A is an

associative algebra object of C, we let AAA denote its image under the map Alg(C) → BMod(C)

given by composition with the forgetful functor BM⊗ → Assoc⊗. Then AAA is both left and right

dual to itself, via the homotopy inverse equivalences

AAA → AAA ⊗A AAA AAA ⊗A AAA → AAA.

Given maps of algebra objects f : B → A, f ′ : C → A, we let BAC denote the image of AAA
under the forgetful functor ABModA(C) → BBModC(C) determined by f and f ′ (see Corollary

4.3.3.2) The bimodule object BAC is determined up to canonical equivalence by f and f ′. It

follows from Remark 4.6.2.12 that the canonical map

e : AAB ⊗B BAA → AAA ⊗A AAA ' A

exhibits AAB as a right dual of BAA. Combining this observation with Proposition 4.6.2.1, we

obtain the following:

Proposition 4.6.2.17. Let C be a monoidal ∞-category and let M be an ∞-category left-tensored

over C. Assume that C and M admit geometric realizations of simplicial objects and that the tensor

product functors

C×C→ C C×M→M

preserve geometric realizations of simplicial objects. Then, for every map f : B → A in Alg(C),

the forgetful functor LModA(M) → LModB(M) admits a left adjoint, given by the relative tensor

product construction M 7→ ABA ⊗B M .
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Let C be a monoidal ∞-category which admits geometric realizations and for which the tensor

product functor ⊗ : C×C→ C preserves geometric realizations, and let X ∈ ABModB(C). Accord-

ing to Proposition 4.6.2.13, X is left dualizable if and only if its image in ABMod1(C) ' LModA(C)

is left dualizable. There is therefore no loss of generality in restricting our attention to case where

B = 1. In this case, we can simplify the criterion of Proposition 4.6.2.1:

Proposition 4.6.2.18. Let C be a monoidal ∞-category. Assume that C admits geometric realiza-

tions of simplicial objects and that the tensor product ⊗ : C×C→ C preserves geometric realizations

of simplicial objects. Let A ∈ Alg(C), let X ∈ LModA(C) and let Y ∈ RModA(C). A morphism

c : 1→ Y ⊗A X exhibits Y as a left dual of X if and only if the following condition is satisfied:

(∗) For each C ∈ C and each M ∈ RModA(C), the composite map

MapRModA(C)(C ⊗ Y,M)→ MapC(C ⊗ Y ⊗A X,M ⊗A X)
◦c→ MapC(C,M ⊗A X)

is a homotopy equivalence.

Proof. Let M be an ∞-category right-tensored over C such that M admits geometric realizations

and the action map M×C → M preserves geometric realizations. Let F : M → RModA(M) be

given by M 7→ N ⊗ Y . and let G : RModA(M) → M be given by tensor product with X. Then c

induces a natural transformation u : id→ G ◦F . According to Proposition 4.6.2.1, it will suffice to

show that u is the unit of an adjunction between F and G. In view of Remark 4.6.2.2, it suffices to

prove this in the special cases M = C and M = LModA(C). When M = C, this is a reformulation

of (∗). When M = LModA(C), it is equivalent to the following variant of(∗):

(∗′) For each C ∈ LModA(C) and each M ∈ ABModA(C), the composite map

θC : Map
ABModA(C)(C⊗Y,M)→ MapLModA(C)(C⊗Y⊗AX,M⊗AX)

◦c→ MapLModA(C)(C,M⊗AX)

is a homotopy equivalence.

We complete the proof by showing that (∗) ⇒ (∗′). Fix the bimodule M ∈ ABModA(C), and let

X ⊆ LModA(C) be the full subcategory of LModA(C) spanned by those objects C for which θC is a

homotopy equivalence. We wish to prove that X = LModA(C). Since X is closed under geometric

realizations in LModA(C), it suffices to show that X contains every free left module C = A ⊗ C0.

In this case, we have a commutative diagram

Map
ABModA(C)(C ⊗ Y,M)

θC //

��

MapLModA(C)(C,M ⊗A X)

��
MapRModA(C)(C0 ⊗ Y,M)

θ′ //MapC(C0,M ⊗A X),

where the vertical maps are homotopy equivalences and θ′ is a homotopy equivalence by (∗).
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We close this section with a few remarks about duality for modules over commutative algebras.

Proposition 4.6.2.19. Let C be a symmetric monoidal ∞-category which admits geometric re-

alizations of simplicial objects, and assume that the tensor product functor ⊗ : C×C → C pre-

serves geometric realizations of simplicial objects. Let A ∈ CAlg(C) be a commutative algebra

object of C, so that ModA(C) inherits the structure of a symmetric monoidal ∞-category (see

§4.5.2). Let M be an object of ModA(C), and let M denote the image of M under the equiva-

lence ModA(C)→ LModA(C) ' ABMod1(C) of Corollary 4.5.1.6. Then:

(a) Suppose that M is dualizable as an object of the symmetric monoidal ∞-category ModA(C),

so that there exists a duality datum e : M ⊗A N → A in ModA(C). Let N denote the image

of N in RModA(C). Then the induced morphism

M ⊗N →M ⊗A N
e→ A

in ABModA(C) is a duality datum: that is, we can identify N with the left dual of M , in the

sense of Definition 4.6.2.3).

(b) Suppose that M is a left dualizable object of LModA(C) ' ABMod1(C). Then M is a dualizable

object of ModA(C).

Remark 4.6.2.20. In the situation of Proposition 4.6.2.19, suppose that M is left dualizable,

so that there exists a map e : M ⊗ N → A in ABModA(C) which exhibits N as a left dual of

M . It follows from the second assertion of Proposition 4.6.2.19 that M is a dualizable object of

ModA(C). Choose a duality datum e : M ⊗∨A M → A in ModA(C). Let ∨M denote the image of
∨M in RModA(C), so that e induces a map e′ : M ⊗∨M → A in ABModA(C). Then e′ classifies a

morphism θ :∨ M → N in RModA(C). The first assertion of Proposition 4.6.2.19 implies that θ is

an equivalence. It follows that we can identify N with ∨M so that, under this identification, e is

given by the composition

M ⊗N 'M ⊗∨M e′→ A.

We may summarize the situation more informally by saying that any duality datum e : M⊗N → A

in ABModA(C) can be lifted to a duality datum M ⊗A N → A in C.

Proof of Proposition 4.6.2.19. We first prove (a). Let ψ : ModA(C)→ ABModA(C) be the monoidal

functor of Theorem 4.5.2.1. If e : M⊗AN → A is a duality datum in ModA(C), then ψ(e) : ψ(M)⊗A
ψ(N)→ A is a duality datum in the monoidal ∞-category ABModA(C), so that e : M ⊗N → A is

also a duality datum by Remark 4.6.2.12.

We now prove (b). Suppose that M admits a left dual N ∈ RModA(C), as witnessed by a

coevaluation map c : 1 → N ⊗A M. We can identify N ⊗AM with the image of N ⊗AM under

the forgetful functor ModA(C), so that c is adjoint to a map of A-modules c : A → N ⊗AM . We
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claim that c exhibits N as a dual of M in ModA(C). To prove this, it will suffice to show that for

every pair of objects X,Y ∈ ModA(C), the composite map

θX,Y : MapModA(C)(M⊗AX,Y )→ MapModA(C)(N⊗AM⊗AX,N⊗AY )
c→ MapModA(C)(X,N⊗AY )

is a homotopy equivalence. Let us regard Y as fixed. The collection of those objects X for which

θX,Y is a homotopy equivalence is closed under geometric realizations of simplicial objects. Writing

X = A⊗AX ' |BarA(A,X)•|, we are reduced to proving that each of the maps θBarA(A,X)m,Y is a

homotopy equivalence. Replacing X by BarA(A,X)m, we may reduce to the case where X is the

A-module freely generated by some object X0 ∈ C. Let Y denote the image of Y in LModA(C).

We have a commutative diagram

MapModA(C)(M ⊗A X,Y ) //

φ′

��

MapModA(C)(N ⊗AM ⊗A X,N ⊗A Y )
c //

φ
��

MapModA(C)(X,N ⊗A Y )

φ′′

��
MapLModA(C)(M ⊗X0, Y ) //MapC(N ⊗AM ⊗X0, N ⊗A Y )

c //MapC(X0, N ⊗A Y ).

The maps φ′ and φ′′ are homotopy equivalences. We are therefore reduced to proving that the

horizontal composition on the bottom of the diagram is a homotopy equivalence, which follows

from our assumption that c is a duality datum.

4.6.3 Exchanging Right and Left Actions

Let C be a symmetric monoidal ∞-category. For every algebra object A ∈ Alg(C), we let Arev

denote the opposite algebra introduced in Remark 4.1.1.7. For every object M ∈ C, giving a left

action of A on M is equivalent to giving a right action of Arev on M . Our goal in this section is to

give two different constructions of this equivalence, and to prove that they coincide (Proposition

4.6.3.15).

Construction 4.6.3.1. Let BM be the colored operad introduced in Definition 4.3.1.1. We let

rev : BM→ BM denote the map of operads which is given on objects by the formula

rev(a−) = a+ rev(m) = m rev(a+) = a−,

and which is given on morphisms by replacing every linear ordering by its opposite. Then rev

induces an involution on the∞-operad BM⊗, which we will also denote by rev. We will refer to this

involution as the reversal involution. For every symmetric monoidal∞-category C, precomposition

with the reversal involution induces an involution on BMod(C), which we will denote by M 7→M rev.

Note that for M ∈ ABModB(C), we have M rev ∈ BrevBModArev(C).

Remark 4.6.3.2. The reversal involution of BM⊗ carries the full subcategory LM⊗ ⊆ BM⊗

into RM⊗ ⊆ BM⊗, and vice-versa. Consequently, if C is a symmetric monoidal ∞-category,

composition with rev determines an isomorphism of simplicial sets LMod(C) ' RMod(C), which

carries LModA(C) into RModArev(C).
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Let C be a symmetric monoidal ∞-category, and let M ∈ ABModC(C). Construction 4.6.3.1

allows us to trade the left action of A on M for a right action of Arev on M , provided that we

simultaneously trade the right action of C on M for a left action of Crev on M . However, for our

applications in §4.6.4, we will need a variant which allows us to trade our left action of A on M for

a right action of Arev, while retaining our given right action of C. More generally, for any triple of

algebra objects A,B,C ∈ Alg(C), there is a canonical equivalence of ∞-categories

σA,B,C : A⊗BBModC(C) ' BBModArev⊗C(C).

For convenience, we will make the following auxiliary assumption on C:

(?) The∞-category C admits geometric realizations of simplicial objects, and the tensor product

functor ⊗ : C×C→ C preserves geometric realizations of simplicial objects.

As we saw in §4.4.2, assumption (?) guarantees the existence of a well-behaved relative tensor

product of bimodules, which we will use to construct the equivalence σA,B,C . However, assumption

(?) is not really essential: we can always pass to a situation where (?) is satisfied by enlarging the

symmetric monoidal ∞-category C (for example, we can replace C by the ∞-category of presheaf

P(C): see Corollary 4.8.1.12).

Notation 4.6.3.3. Using Construction 3.2.4.1, we can regard the∞-category BMod(C) of bimod-

ule objects of C as a symmetric monoidal∞-category. To avoid confusion, we will denote the tensor

product on BMod(C) using the symbol �, and refer to it as the external tensor product. Given a

pair of bimodule objects

M ∈ ABModB(C) M ′ ∈ A′BModB′(C),

we regard M �M ′ as an object of A⊗A′BModB⊗B′(C).

Remark 4.6.3.4. The symmetric monoidal structure on C induces a symmetric monoidal structure

on the ∞-category AlgTens�(C), which is compatible with the tensor product � on BMod(C) intro-

duced in Notation 4.6.3.3. Using Theorem 4.4.2.8 (and our assumption that the tensor product on C

is compatible with geometric realizations of simplicial objects) we deduce that if X,Y ∈ AlgTens�(C)

are operadic left Kan extensions of their restrictions to Tens⊗� ×∆1{0}, then the tensor product

X ⊗ Y has the same property. It follows that the external tensor product � of Notation 4.6.3.3 is

compatible with the relative tensor product of bimodules introduced in §4.4.2. That is, for every

quadruple of bimodules

M ∈ ABModB(C) N ∈ BBModC(C)

M ′ ∈ A′BModB′(C) N ′ ∈ B′BModC′(C),

we have a canonical equivalence

(M ⊗B N)� (M ′ ⊗B′ N ′) ' (M �M ′)⊗B⊗B′ (N �N ′)

in the ∞-category A⊗A′BModC⊗C′(C).
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Remark 4.6.3.5. Let C be a symmetric monoidal ∞-category satisfying condition (?). Using

Remark 4.6.3.4, we deduce that if M ∈ ABModB(C) and M ′ ∈ A′BModB′(C) are left dualizable

(right dualizable), then the external tensor product M�M ′ is also left dualizable (right dualizable).

Moreover, a left dual (right dual) for M �M ′ is given by M?�M ′?, where M? ∈ BBModA(C) and

M ′? ∈ B′BModA′(C) are left duals (right duals) for M and N , respectively.

Remark 4.6.3.6. Let C be a symmetric monoidal ∞-category. Then the reversal involution

rev : BMod(C)→ BMod(C)

of Construction 4.6.3.1 is a symmetric monoidal functor. In particular, for every pair of objects

M ∈ ABModB(C) M ′ ∈ A′BModB′(C)

we have a canonical equivalence

(M �M ′)rev 'M rev �M ′ rev ∈ Brev⊗B′ revBModArev⊗A′ rev(C).

Let A be an algebra object of a symmetric monoidal ∞-category C. Then we can regard A as

equipped with commuting left and right actions of itself. Consequently, we should be able to view

A as either a left or right module over the tensor product Arev ⊗ A. We now describe an explicit

construction of the relevant left and right module objects of C.

Construction 4.6.3.7. We define a “fold map” f : LM⊗ → Assoc⊗ as follows:

• Let (〈n〉, S) be an object of LM⊗. Then f(〈n〉, S) = 〈n+ k〉, where k = n− |S|.

• Let α : (〈n〉, S) → (〈n′〉, S′) be a morphism in LM⊗, given by a map of finite pointed sets

〈n〉 → 〈n′〉 together with a linear ordering on α−1{i} for 1 ≤ i ≤ n′. Write 〈n〉◦ − S = {i1 <
i2 < . . . < ik} and 〈n′〉◦ − S′ = {i′1 < i′2 < · · · < i′k′}. As a map of finite pointed sets,

f(α) : 〈n+ k〉 → 〈n′ + k′〉 is given by

p 7→


α(p) if p ≤ n
α(i) if p = n+ i, α(i) ∈ S′ ∪ {∗}
n′ + i′j′ if p = n+ i, α(i) = i′j′ .

To complete the definition of f(α), we must supply a linear ordering �f(α) on f(α)−1{j}, for

1 ≤ j ≤ n′ + k′. Let j0 =

{
j if j ≤ n
j − n if j > n

, so that α determines a linear ordering �α on

α−1{j0}. We now define �f(α) so that so that i �f(α) i
′ if either i, i′ ≤ n and i ≤α i′, i ≤ n

and i′ > n, or i, i′ > n and i′ − n ≤α i− n.
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Then f induces a map of ∞-categories LM⊗ → Assoc⊗, which we will also denote by f . Let

p : LM⊗ → N(Fin∗) and p′ : Assoc⊗ → N(Fin∗) be the forgetful functors. There is a natural

transformation ι : p′ ◦ f → p, which carries each object (〈n〉, S) to the map of finite pointed sets

ι(〈n〉,S) : 〈n+ k〉 → 〈n〉 given by

ι(〈n〉,S)(j) =

{
j if 1 ≤ j ≤ n
ij−n if j > n, 〈n〉◦ − S = {i1 < · · · < ik}.

Let q : C⊗ → N(Fin∗) be a symmetric monoidal ∞-category. For every algebra object A ∈
Alg(C), we can lift ι to a q-coCartesian natural transformation A ◦ f → Ae in the ∞-category

Fun(LM⊗,C⊗). Then Ae is an object of AlgLM(C) = LM(C), whose image under the forgetful

functor LM(C) → Alg(C) is the tensor product A ⊗ Arev, and whose image under the forgetful

functor LMod(C)→ C is given by A. We will refer to Ae as the evaluation module of A.

We let Ac denote the image of Ae under the reversal isomorphism LMod(C) ' RMod(C), so

that Ac is a right module over Arev ⊗A, whose image in C can be identified with A. We will refer

to Ac as the coevaluation module of A.

Remark 4.6.3.8. Let A be an algebra object of a symmetric monoidal ∞-category C. The con-

struction of the evaluation and coevaluation modules Ae and Ac is symmetric with respect to the

interchange of A with its opposite algebra Arev. That is, we can identify (Arev)e with the image

of Ae under the equivalence LModA⊗Arev C ' LModArev⊗A(C), and (Arev)c with the image of Ac

under the equivalence RModArev⊗A(C) ' RModA⊗Arev(C).

If A is an algebra object of a symmetric monoidal∞-category C, then we can use the evaluation

and coevaluation modules Ae and Ac to “mediate” between left action actions of A and right actions

of Arev.

Construction 4.6.3.9. Let C be a symmetric monoidal ∞-category which satisfies condition (?).

Let A, B, and C be algebra object of C, and let let Ae and Ac denote the evaluation and coevaluation

modules associated to A. Let 1 denote the unit object of C, regarded as an initial object of

Alg(C). Using Corollary 4.3.2.8, we can identify Ae and Ac with objects of A⊗ArevBMod1(C) and

1BModArev⊗A(C), respectively, so that we obtain bimodules

Ac �B ∈ BBModArev⊗A⊗B(C) Ae � C ∈ A⊗Arev⊗CBModC(.)

We define functors

σA,B,C : A⊗BBModC(C)→ BBModArev⊗C(C) τA,B,C : BBModArev⊗C(C)→ A⊗BBModC(C)

by the formulas

σA,B,C(M) = (Ac �B)⊗Arev⊗A⊗B (Arev �M)

τA,B,C(N) = (A�N)⊗A⊗Arev⊗C (Ae � C).
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Remark 4.6.3.10. Let A,B, and C be as in Construction 4.6.3.9, and let M ∈ A⊗BBModC(C).

Note that the image ofArev�M under the forgetful functor Arev⊗A⊗BBModArev(C)→ Arev⊗A⊗BBModC(C)

is given by

(Ae �B)⊗Arev⊗A⊗B (Arev �M) ' (A�B)⊗A⊗B M 'M.

In other words, the diagram

A⊗BBModC(C)
σA,B,C //

((

BBModArev⊗C(C)

uu
BBModC(C)

commutes up to canonical homotopy.

Proposition 4.6.3.11. Let C be a symmetric monoidal ∞-category satisfying condition (?), and

let A,B,C ∈ Alg(C). Then the functors

σA,B,C : A⊗BBModC(C)→ BBModArev⊗C(C) τA,B,C : BBModArev⊗C(C)→ A⊗BBModC(C)

introduced in Construction 4.6.3.9 are mutually inverse equivalences of ∞-categories.

In the situation of Proposition 4.6.3.11, choose an object M ∈ A⊗BBModC(C). Repeatedly using

Remark 4.6.3.4 and the associativity and unitality of the relative tensor product of bimodules, we

obtain functorial equivalences

τA,B,CσA,B,C(M) = τA,B,C((Ac �B)⊗Arev⊗A⊗B (Arev �M))

= (A� ((Ac �B)⊗Arev⊗A⊗B (Arev �M))⊗A⊗Arev⊗C (Ae � C)

' (A�Ac �B)⊗A⊗Arev⊗A⊗B (A�Arev �M)⊗A⊗Arev⊗C (Ae � C)

' (A�Ac �B)⊗A⊗Arev⊗A⊗B (Ae �M)

' (A�Ac �B)⊗A⊗Arev⊗A⊗B (Ae �A�B)⊗A⊗B M
' (((A�Ac)⊗A⊗Arev⊗A (Ae �A))�B)⊗A⊗B M.

For N ∈ BBModArev⊗C(C), a similar calculation gives

σA,B,CτA,B,C(N) ' N ⊗Arev⊗C (((Ac �Arev)⊗Arev⊗A⊗Arev (Arev �Ae))� C).

Consequently, Proposition 4.6.3.11 can be reduced to the following special case:

Proposition 4.6.3.12. Let C be a symmetric monoidal ∞-category satisfying condition (?), and

let A be an algebra object of C. Then we have equivalences

(A�Ac)⊗A⊗Arev⊗A (Ae �A) ' A

(Ac �Arev)⊗Arev⊗A⊗Arev (Arev �Ae) ' Arev

in the ∞-categories ABModA(C) and ArevBModArev(C), respectively. Moreover, these equivalences

can be chosen to depend functorially on A.
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The proof of Proposition 4.6.3.12 is rather notationally intensive; we will defer it until the end

of this section.

Remark 4.6.3.13. The equivalences σA,B,C and τA,B,C of Construction 4.6.3.9 depend functorially

on the triple A, B, and C. More precisely, suppose that we are given maps of algebra objects

A→ A′, B → B′, and C → C ′, so that we have associated forgetful functors

φ : A′⊗B′BModC′(C)→ A⊗BBModC(C) ψ : B′BModA′ rev⊗C′(C)→ BBModArev⊗C(C).

We have evident maps of bimodule objects Ac → A′c, Ae → A′e, which determine natural transfor-

mations

α : σA,B,C ◦ φ→ ψ ◦ σA′,B′,C′ β : τA,B,C ◦ ψ → φ ◦ τA′,B′,C′ .

We claim that α and β are equivalences. To prove this, we note that the functoriality assertion of

Proposition 4.6.3.12 guarantees that the composite transformation

τA,B,C ◦ σA,B,C ◦ φ
id×α−→ τA,B,C ◦ ψ ◦ σA′,B′,C′

β×id−→ φ ◦ τA′,B′,C′ ◦ σA′,B′,C′

is homotopic to an equivalence. This guarantees that α admits a left homotopy inverse and that

β admits a right homotopy inverse. A similar argument shows that α admits a right homotopy

inverse and β a left homotopy inverse.

Remark 4.6.3.14. Let A and A′ be algebra objects of C. Then the evaluation and coevaluation

modules for the tensor product A⊗A′ are given by

(A⊗A′)e ' Ae �A′e (A⊗A′)c ' Ac �A′c.

From this, we deduce that for any pair of algebra objects B,C ∈ Alg(C), the functor

σA⊗A′,B,C : A⊗A′⊗BBModC(C)→ BBModArev⊗A′ rev⊗C(C)

is equivalent to the composition

A⊗A′⊗BBModC(C)
σA,A′⊗BC→ A′⊗BBModArev⊗C(C)

σA′,B,Arev⊗C→ BBModA′ rev⊗Arev⊗C(C)

' BBModArev⊗A′ rev⊗C(C).

The mutually inverse equivalences given by Construction 4.6.3.9 are closely related to the re-

versal involution on BMod(C) introduced in Construction 4.6.3.1. More precisely, we have the

following result:
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Proposition 4.6.3.15. Let C be a symmetric monoidal ∞-category satisfying condition (?), and

let A and B be algebra objects of C. Then the diagram

A⊗BBMod1(C)
∼ //

σA,B,1

��

B⊗ABMod1(C)

σB,A,1

����
BBModArev(C)

rev //
ABModBrev(C)

commutes up canonical homotopy (which may be chosen to depend functorially on A and B).

Remark 4.6.3.16. Let C be a symmetric monoidal∞-category satisfying condition (?). The rever-

sal involution of Construction 4.6.3.1 extends naturally to an involution of the generalized∞-operad

Tens⊗� of Notation 4.4.2.1. It follows that for every pair of bimodules M ∈ ABModB(C) N ∈
BBModC(C), we have a canonical equivalence

(M ⊗B N)rev ' N rev ⊗Brev M rev.

Remark 4.6.3.17. Let A, B, and C be algebra objects of C. Combining Remarks 4.6.3.6 and

4.6.3.16, we deduce that the diagram

A⊗BBModC(C)
σA,B,C //

rev

��

BBModArev⊗C(C)

rev

��
CrevBModArev⊗Brev(C)

τA,Crev,Brev
//
A⊗CrevBModBrev(C)

commutes up to canonical homotopy.

Let A,B ∈ Alg(C). Using Remark 4.6.3.17, we see that the commutativity of the diagram

appearing in Proposition 4.6.3.15 is equivalent to the commutativity of the diagram

A⊗BBMod1(C)
∼ //

rev

��

B⊗ABMod1(C)

σB,A,1

��
1BModArev⊗Brev(C)

τA,1,Brev
//
ABModBrev(C).

Using Proposition 4.6.3.11, we see that Proposition 4.6.3.15 is equivalent to the assertion that the

equivalence rev : A⊗BBMod1(C)→ 1BModArev⊗Brev(C) is homotopic to the composition

A⊗BBMod1(C) ' B⊗ABMod1(C)
σB,A,1−→ ABModBrev(C)

σA,1,Brev

−→ 1BModArev⊗Brev(C)

(via a homotopy which can be chosen to depend functorially on A and B). Using Remark 4.6.3.14,

we can identify this composition with the functor σA⊗B,1,1. Consequently, Proposition 4.6.3.15 is

equivalent to the following apparently weaker statement:
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Proposition 4.6.3.18. Let A be an algebra object of C, and let M be a left A-module object of C.

Then there is an equivalence σA,1,1(M) ' M rev in 1BModArev(C), which can be chosen to depend

functorially on A and M .

Proof. We will prove Proposition 4.6.3.18 by constructing a map

θ : Ac ⊗Arev⊗A (Arev �M)→M rev,

and then proving that this map is an equivalence. Our construction will be manifestly functorial in

the pair (A,M) (alternatively, one can deduce the functoriality by replacing C by Fun(K,C), where

K = LMod(C)).

In what follows, it will be convenient to replace Fin∗ by the larger (but equivalent) category

consisting of all finite pointed sets, and to make corresponding enlargements of the ∞-categories

Tens⊗� and LM⊗. We will therefore identify objects of Tens⊗� with pairs (S∗, [k], c−, c+), where S∗
is a finite pointed set, k ∈ {1, 2}, and c−, c+ : S → [k] are maps satisfying c−(i) ≤ c+(i) ≤ c−(i)+1,

and objects of LM⊗ with pairs (J∗, J0), where J∗ is a finite pointed set and J0 is a subset of J .

We now define a functor f : Tens⊗� → LM⊗ via the following explicit (but unfortunately rather

complicated) procedure:

(a) Let X be an object of Tens⊗� ×∆1{1}, corresponding to a finite pointed set T∗ equipped with

a pair of maps c−, c+ : T → [1]. Write T as a disjoint union of subsets

T0 = {t ∈ T : c−(t) = c+(t) = 0} T1 = {t ∈ T : c−(t) = c+(t) = 1}

T01 = {t ∈ T : c−(t) = 0 < 1 = c+(t)}.

We then define f(X) to be the pair (J∗, T01 × {1}), where

J = (T1 × {0}) ∪ (T01 × {1}) ⊆ T × [1].

(b) Let α : (T∗, c−, c+) → (T ′∗, c
′
−, c
′
+) be a morphism in Tens⊗� ×∆1{1}, given by a map of finite

pointed sets T∗ → T ′∗ (which we will also denote by α) together with a linear ordering �α,t of

each inverse image α−1{t′}. For ξ ∈ {0, 01, 1}, define Tξ and J as in (a), and define T ′ξ and

J ′ similarly. We define a map of pointed sets f(α) : J∗ → J ′∗ by the following formula:

f(α)(t, 0) =


(α(t), 0) if α(t) ∈ T ′1
(α(t), 1) if α(t) ∈ T ′01

∗ if α(t) = ∗

f(α)(t, 1) =

{
(α(t), 1) if α(t) ∈ T ′1
∗ if α(t) = ∗.

For each (t′, j) ∈ J ′, we define a linear ordering �f(α),(t′,j) on f(α)−1{j′} so that

(t0, i0) �f(α),(t′,j) (t1, i1) if and only if either i0 < i1, or i0 = i1 and t1 �α,t′ t0.
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(c) Let X be an object of Tens⊗� ×∆1{0}, given by a finite pointed set S∗ equipped with a pair

of maps c−, c+ : S → [2]. Write S as a disjoint union of subsets

S0 = {s ∈ S : c−(s) = c+(s) = 0} S1 = {s ∈ S : c−(s) = c+(s) = 1}

S2 = {s ∈ S : c−(s) = c+(s) = 2}

S01 = {s ∈ S : c−(s) = 0, c+(s) = 1} S12 = {s ∈ S : c−(s) = 1, c+(s) = 2}

We then define f(X) = (I∗, S12 × {5}), where

I = (S2 × {0}) ∪ (S12 × {1}) ∪ (S1 × {2}) ∪ (S01 × {3}) ∪ (S1 × {4}) ∪ (S12 × {5}) ⊆ S × [5]

(d) Let α : (S∗, c−, c+)→ (S′∗, c
′
−, c
′
+) be a morphism in Tens⊗� ×∆1{0}, given by a map of finite

pointed sets S∗ → S′∗ and a linear ordering �α,s′ on each inverse image α−1{s′} for s′ ∈ S′.
For ξ ∈ {0, 1, 2, 01, 12}, we define Sξ and I as in (a), and define S′ξ and I ′ similarly. As a map

of pointed finite sets, f(α) : I∗ → I ′∗ is given as follows:

f(α)(s, 0) =


(α(s), 0) if α(s) ∈ S′2
(α(s), 1) if α(s) ∈ S′01

∗ if α(s) = ∗

f(α)(s, 1) =

{
(α(s), 1) if α(s) ∈ S′12

∗ if α(s) = ∗

f(α)(s, 2) =


(α(s), 1) if α(s) ∈ S′12

(α(s), 2) if α(s) ∈ S′1
(α(s), 3) if α(s) ∈ S′01

∗ if α(s) = ∗

f(α)(s, 3) =

{
(α(s), 3) if α(s) ∈ S′01

∗ if α(s) = ∗

f(α)(s, 4) =


(α(s), 3) if α(s) ∈ S′01

(α(s), 4) if α(s) ∈ S1

(α(s), 5) if α(s) ∈ S12

∗ if α(s) = ∗

f(α(s, 5) =

{
(α(s), 5) if α(s) ∈ S′12

∗ if α(s) = ∗.
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For each (s′, j) ∈ I ′, we define a linear ordering �f(α),(s′,j) on f(α)−1{(s′, j)}, so that

(s0, i0) �f(α),(s′,j) (s1, i1) if and only if either i0 < i1 or one of the following conditions

holds:

– We have i0 = i1 ∈ {1, 3, 5} (in which case we automatically have s0 = s1).

– We have i0 = i1 ∈ {0, 2} and s1 �α,s′ s0.

– We have i0 = i1 = 4 and s0 �α,s′ s1.

(e) Let α : X → Y be a morphism in Tens⊗� from an object X ∈ Tens⊗� ×∆1{0} to Y ∈
Tens⊗� ×∆1{1}. Define I and Sξ as in (c), and define J and Tξ as in (a). We define a

map of finite pointed sets f(α) : I∗ → J∗ as follows:

f(α)(s, i) =


(α(s), 0) if α(s) ∈ T1

(α(s), 1) if α(s) ∈ T01

∗ if α(s) = ∗.

For (t, i) ∈ J , we define a linear ordering �f(α),(t,i) on the inverse image f(α)−1{(t, i)} exactly

as in step (d).

Let p : Tens⊗� → N(Fin∗) and p′ : LM⊗ → N(Fin∗) denote the forgetful functors. There is an

evident natural transformation ι : p′ ◦ f → p, given on objects of (S∗, c−, c+) ∈ Tens⊗� ×∆1{0} by

the composition

I∗ ↪→ (S × [5])∗ → S∗

(where I is defined as in (c)), and on objects (T∗, c−, c+) ∈ Tens⊗� ×∆1{1} by the composition

J∗ ↪→ (T × [1])∗ → T∗

(where J is defined as in (a)).

Let q : C⊗ → N(Fin∗) exhibit C⊗ as a symmetric monoidal ∞-category. The pair (A,M)

determines a map of ∞-operads φ : LM⊗ → C⊗. We can lift ι to a q-coCartesian natural transfor-

mation φ ◦ f → N between functors from Tens⊗� → C⊗. Unwinding the definitions, we see that the

restriction of N to Tens⊗� ×∆1{0} encodes the pair of bimodules

Ac ∈ 1BModArev⊗A(C) Arev �M ∈ Arev⊗ABModArev(C),

and that the restriction of N to Tens⊗� ×∆1{1} can be identified with M rev ∈ 1BModArev(C).

Consequently, N determines a map of bimodules

σA,1,1(M) = Ac ⊗Arev⊗A (Arev �M)→M rev.

We will complete the proof by showing that this map is an equivalence: that is, that N is an

operadic q-left Kan extension of the restriction N |(Tens⊗� ×∆1{0}). Let U+ : N(∆+)op → Tens⊗�
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be defined as in Notation 4.4.2.4. According to Proposition 4.4.2.5, it will suffice to verify that the

composition N ◦ U+ : N(∆+)op → C⊗ is an operadic q-colimit diagram.

Let u : N(∆+)op → N(Fin∗) denote the constant map taking the value 〈1〉 ∈ N(Fin∗). There

is unique natural transformation γ : q ◦ N ◦ U+ → u which carries each object of N(∆+)op to an

active morphism in N(Fin∗). Choose a q-coCartesian natural transformation N ◦ U+ → B lifting

γ, so that B is an augmented simplicial object of the ∞-category C. Using Propositions 3.1.1.15

and 3.1.1.16, we are reduced to proving that B is a colimit diagram in C.

Let I denote the subcategory of ∆ whose objects have the form [n] for n > 0 and whose

morphisms are order-preserving maps α : [m] → [n] satisfying f(0) = 0 and f−1{m} = {n}. Let

Cut : N(∆)op → Assoc⊗ be as in Construction 4.1.2.9, given on objects by Cut([n]) = 〈n〉, and let

Cut0 = Cut |N(I)op. We observe that Cut0 lifts to a map Cut0 : N(J)op → LM⊗, given on objects

by Cut0([n]) = (〈n〉, {n}). The functor C̃ut0 carries each morphism in I to an active morphism

in LM⊗. Consequently, there is a natural transformation δ from p′ ◦ C̃ut0 to the constant functor

N(I)op → N(Fin∗) taking the value 〈1〉, uniquely determined by the requirement that δ carries each

object of N(I)op to an active morphism in N(Fin∗). Choose a q-coCartesian natural transformation

φ ◦ C̃ut0 → B′ of functors from N(I)op to C⊗, so that we can regard B′ as a functor from N(I)op

into C, given on objects by the formula B′([n]) = A⊗n−1 ⊗M .

Unwinding the definitions, we see that the functor B is equivalent to the composition

N(∆+)op
ε→ N(I)op

B′→ C,

where ε is induced by the functor ∆+ → I given by I 7→ [0] ? Iop ? I ? [0]. We are therefore reduced

to proving that B′ ◦ ε is a colimit diagram. This is clear, since ε is a split augmented simplicial

object of N(I)op.

We conclude this section with a proof of Proposition 4.6.3.12. We use the same basic strategy

as in our proof of Proposition 4.6.3.18, though the details are somewhat more tedious.

Proof of Proposition 4.6.3.12. We will construct an equivalence

(A�Ac ⊗A⊗Arev⊗A (Ae �A) ' A;

the existence of the other equivalence will then follow by symmetry. Our construction will depend

functorially on A (though we can also deduce the functoriality by replacing C by the functor category

Fun(K,C), where K = Alg(C), and taking A to be the “universal” algebra object of Fun(K,C)).

As in the proof of Proposition 4.6.3.18, we abuse notation by identifying Fin∗ with the larger

(but equivalent) category of all pointed finite sets, and make corresponding enlargements of the

∞-categories Tens⊗� and Assoc⊗. We now define a functor f : Tens⊗� → Assoc⊗ as follows:

(a) When restricted to Tens⊗� ×∆1{1} ' BM⊗, f agrees with the forgetful functor BM⊗ →
Assoc⊗ of Remark 4.3.1.8.
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(b) Let X be an object of Tens⊗� ×∆1{0}, given by a finite pointed set S∗ equipped with a pair

of maps c−, c+ : S → [2]. Write S as a disjoint union of subsets

S0 = {s ∈ S : c−(s) = c+(s) = 0} S1 = {s ∈ S : c−(s) = c+(s) = 1}

S2 = {s ∈ S : c−(s) = c+(s) = 2}

S01 = {s ∈ S : 0 = c−(s) < c+(s) = 1} S12 = {s ∈ S : 1 = c−(s) < c+(s) = 2}

f(X) = I∗, where I denotes the subset of S × [8] given by the union of the subsets S0 × {0},
S01 × {1}, S1 × {2}, S12 × {3}, S1 × {4}, S01 × {5} S1 × {6}, S12 × {7}, and S2 × {8}.

(c) Let α : (S∗, c−, c+)→ (S′∗, c
′
−, c
′
+) be a morphism in Tens⊗� ×∆1{0}, given by a map of finite

pointed sets S∗ → S′∗ (which we will also denote by α) together with a linear ordering �α,s′
on each inverse image α−1{s′}. Let I and Sξ (for ξ ∈ {0, 1, 2, 01, 12}) be defined as in (b), and

define I ′ and S′ξ similarly. We define a map of pointed finite sets f(α) : I∗ → I ′∗ as follows:

f(α)(s, 0) =


(α(s), 0) if α(s) ∈ S′0
(α(s), 1) if α(s) ∈ S′01

∗ if α(s) = ∗

f(α)(s, 1) =

{
(α(s), 1) if α(s) ∈ S′01

∗ if α(s) = ∗

f(α)(s, 2) =


(α(s), 1) if α(s) ∈ S′01

(α(s), 2) if α(s) ∈ S′1
(α(s), 3) if α(s) ∈ S′12

∗ if α(s) = ∗

f(α)(s, 3) =

{
(α(s), 3) if α(s) ∈ S′12

∗ if α(s) = ∗

f(α)(s, 4) =


(α(s), 3) if α(s) ∈ S′12

(α(s), 4) if α(s) ∈ S′1
(α(s), 5) if α(s) ∈ S′01

∗ if α(s) = ∗

f(α)(s, 5) =

{
(α(s), 5) if α(s) ∈ S′01

∗ if α(s) = ∗
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f(α)(s, 6) =


(α(s), 5) if α(s) ∈ S′01

(α(s), 6) if α(s) ∈ S′1
(α(s), 7) if α(s) ∈ S′12

∗ if α(s) = ∗

f(α)(s, 7) =

{
(α(s), 7) if α(s) ∈ S′12

∗ if α(s) = ∗

f(α)(s, 8) =


(α(s), 7) if α(s) ∈ S′12

(α(s), 8) if α(s) ∈ S′2
∗ if α(s) = ∗.

For each (s′, j) ∈ I ′, we define a linear ordering �f(α),(s′,j) on the inverse image f(α)−1{(s′, j)}
as follows: we have (s0, i0) �f(α),(s′,j) (s1, i1) if and only if either i0 < i1, or one of the following

conditions holds:

– We have i0 = i1 ∈ {1, 3, 5, 7} (in which case we automatically have s0 = s1).

– We have i0 = i1 ∈ {0, 2, 6, 8} and s0 �α,s′ s1.

– We have i0 = i1 = 4 and s1 �α,s′ s0.

(d) Let α be a morphism in Tens⊗� from an object (S∗, c−, c+) ∈ Tens⊗� ×∆1{0} to an object

(S′∗, c
′
−, c
′
+) ∈ Tens⊗� ×∆1{1}, given by a map of finite pointed sets S∗ → S′∗ (which we will

also denote by α) together with a linear ordering �α,s′ of α−1{s′} for each s′ ∈ S′. Let I be

defined as in (b). As a map of pointed finite sets, f(α) is given by the composite map

I∗ ↪→ (S × [8])∗ → S∗
α→ S′∗.

For each s′ ∈ S′, we define a linear ordering �f(α),s′ on f(α)−1{s′} as in (c).

Let p : Tens⊗� → N(Fin∗) and p′ : Assoc⊗ → N(Fin∗) denote the forgetful functors. We define

a natural transformation ι : p′ ◦ f → p between functors Tens⊗� → N(Fin∗) as follows:

• On objects (S∗, c−, c+) ∈ Tens⊗� ×∆1{1}, ι is given by the identity map from S∗ to itself.

• On objects (S∗, c−, c+) ∈ Tens⊗� ×∆1{0}, ι is given by the composite map

I∗ ↪→ (S × [8])∗ → S∗,

where I is defined as in (b).
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Let q : C⊗ → N(Fin∗) exhibit C⊗ as a symmetric monoidal ∞-category, and let A be an

algebra object of C. Then we can lift ι to a q-coCartesian natural transformation A ◦ f → A′

between functors from Tens⊗� → C⊗. Unwinding the definitions, we see that the restriction of A′

to Tens⊗� ×∆1{0} encodes the pair of bimodules

A�Ac ∈ ABModA⊗Arev⊗A(C) Ae �A ∈ A⊗Arev⊗ABModA(C),

and that the restriction of A′ to Tens⊗� ×∆1{1} gives the bimodule object of C determined by A

(regarded as a bimodule over itself). Consequently, A′ determines a map of bimodules

(A�Ac)⊗A⊗Arev⊗A (Ae �A)→ A.

We will complete the proof by showing that this map is an equivalence: that is, the map A′ is

operadic q-left Kan extension of its restriction A′|(Tens⊗� ×∆1{0}). Let U+ : N(∆+)op → Tens⊗� be

defined as in Notation 4.4.2.4. According to Proposition 4.4.2.5, it will suffice to verify that the

composition A′ ◦ U+ : N(∆+)op → C⊗ is an operadic q-colimit diagram.

Let u : N(∆+)op → N(Fin∗) denote the constant map taking the value 〈1〉 ∈ N(Fin∗). There

is unique natural transformation γ : q ◦ A′ ◦ U+ → u which carries each object of N(∆+)op to an

active morphism in N(Fin∗). Choose a q-coCartesian natural transformation A′ ◦ U+ → B lifting

γ, so that B is an augmented simplicial object of the ∞-category C. Using Propositions 3.1.1.15

and 3.1.1.16, we are reduced to proving that B is a colimit diagram in C.

Let J denote the subcategory of ∆ containing all objects, whose morphisms are order-preserving

maps α : [m] → [n] satisfying f(0) = 0 and f(m) = n. Let Cut : N(∆)op → Assoc⊗ be as in

Construction 4.1.2.9, and let Cut0 = Cut |N(J)op. Then Cut0 carries each morphism in J to an

active morphism in Assoc⊗. Consequently, there is a natural transformation δ from p′ ◦Cut0 to the

constant functor N(J)op → N(Fin∗) taking the value 〈1〉, uniquely determined by the requirement

that δ carries each object of N(J)op to an active morphism in N(Fin∗). Choose a q-coCartesian

natural transformation A ◦ Cut0 → B′ of functors from N(J)op to C⊗, so that we can regard B′ as

a functor from N(J)op into C. Informally, B′ is given by the formula B′([n]) = A⊗n.

Unwinding the definitions, we see that the functor B is equivalent to the composition

N(∆+)op
ε→ N(J)op

B′→ C,

where ε is induced by the functor ∆+ → J given by I 7→ [0] ? I ? Iop ? I ? [0]. We are therefore

reduced to proving that B′ ◦ ε is a colimit diagram.

Let ε′ : N(∆+)op×N(∆+)op → N(J)op be the functor induced by the formula (I, J) 7→ [0]?I?Iop?

J ? [0], so that ε is given by composing ε′ with the diagonal map N(∆+)op → N(∆+)op×N(∆+)op.

Let X denote the full subcategory of N(∆+)op × N(∆+)op spanned by those pairs ([i], [j]) where

either i, j ≥ 0, or i = j = [−1]. Then X ' (N(∆×∆)op)/. Since N(∆)op is sifted, B′ ◦ ε is a colimit

diagram if and only if B′ ◦ (ε′|X) is a colimit diagram.



644 CHAPTER 4. ASSOCIATIVE ALGEBRAS AND THEIR MODULES

Note that for each i ≥ 0, the restriction of ε′ to {[i]} × N(∆+)op extends to a split augmented

simplicial object of N(J)op, so that B′ ◦ (ε′|{[i]} × N(∆+)op) is a colimit diagram in C. It follows

that B′ ◦ (ε′|N(∆)op × N(∆+)op) is a left Kan extension of B′ ◦ (ε′|N(∆)op × N(∆)op). Using

Lemma HTT.4.3.2.7 , we are reduced to proving that the restriction B′ ◦ ε′|(N(∆)op × N(∆+)op)/

is a colimit diagram. Since the inclusion N(∆)op × {[−1]} ↪→ N(∆)op ×N(∆+)op is left cofinal, we

are reduced to proving that the restriction B′ ◦ (ε′|N(∆+)op × {[−1]}) is a colimit diagram in C.

We now observe that this diagram is given by

I 7→ B′(([0] ? I) ? ([0] ? I)op),

and is therefore a split augmented simplicial object of C.

4.6.4 Smooth and Proper Algebras

Throughout this section, we fix a symmetric monoidal ∞-category C satisfying the following con-

dition:

(?) The∞-category C admits geometric realizations of simplicial objects, and the tensor product

functor ⊗ : C×C→ C preserves geometric realizations of simplicial objects.

Let A be an algebra object of C, and let M be a left A-module. Then we can identify M with

an object of ABMod1(C), where 1 denotes a unit algebra object of C (Corollary 4.3.2.8). In §4.6.2,

we introduced two natural finiteness conditions on M :

(a) The condition that M be a right dualizable object of ABMod1(C). According to Proposition

4.6.2.13, this condition is independent of the action of A on M : it is equivalent to the

requirement that M be dualizable when viewed as an object of the symmetric monoidal

∞-category C (see §4.6.1).

(b) The condition that M be a left dualizable object of ABMod1(C): that is, that M admit an

A-linear dual.

In general, these conditions are not related to one another. For example, the object A ∈
LModA(C) is always left dualizable (Example 4.6.2.5), but is right dualizable if and only if A is

dualizable as an object of C. In this section, we will introduce conditions on A which guarantee

that (a) implies (b) and vice-versa.

Remark 4.6.4.1. The finiteness conditions we introduce in this section are have been well-studied

in the setting of differential graded algebras over a commutative ring. We refer the reader to [150]

for an introduction.

Definition 4.6.4.2. Let A be an algebra object of C. We will say that A is proper if it is dualizable

when regarded as an object of C.
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Remark 4.6.4.3. Let A be an algebra object of C. The condition that A is proper depends only

on the image of A under the forgetful functor Alg(C)→ C. In particular, A is proper if and only if

the opposite algebra Arev is proper.

The condition that an algebra object A ∈ Alg(C) be proper admits many characterizations:

Proposition 4.6.4.4. Let A be an algebra object of C. The following conditions are equivalent:

(1) The algebra object A is proper.

(2) The coevaluation module Ac ∈ 1BModArev⊗A(C) is left dualizable.

(3) The evaluation module Ae ∈ A⊗ArevBMod1(C) is right dualizable.

(4) Let B and C be algebra objects of C, and let M ∈ A⊗BBModC(C) be left dualizable. Then

σA,B,C(M) ∈ BBModArev⊗C(C) is also left dualizable, where σA,B,C is defined as in Construc-

tion 4.6.3.9.

(5) Let B and C be algebra objects of C, and let N ∈ BBModArev⊗C(C) be right dualizable. Then

τA,B,C(N) ∈ A⊗BBModC(C) is right dualizable, where τA,B,C is defined as in Construction

4.6.3.9.

(6) Let B be an algebra object of C, and let M ∈ LModA⊗B(C). If M is left dualizable (that is, M

is left dualizable as an object of A⊗BBMod1(C)) then its image in LModB(C) ' BBMod1(C)

is left dualizable.

(7) Let C be an algebra object of C, and let N ∈ RModArev⊗C(C). If N is right dualizable (that

is, if N is right dualizable as an object of 1BModArev⊗C(C)) then its image in RModC(C) '
1BModC(C) is right dualizable.

(8) The forgetful functor LModA(C)→ C carries (left) dualizable objects of LModA(C) to dualiz-

able objects of C.

(9) The forgetful functor RModArev(C) → C carries (right) dualizable objects of RModArev(C) ot

dualizable objects of C.

Proof. We will show that (1) ⇒ (2) ⇒ (4) ⇒ (6) ⇒ (8) ⇒ (1); the implications (1) ⇒ (3) ⇒
(5)⇒ (7)⇒ (9) follow by the same argument. The implication (1)⇒ (2) follows from Proposition

4.6.2.13, the implication (4) ⇒ (6) follows from Proposition 4.6.2.13 and Remark 4.6.3.10, the

implication (6)⇒ (8) is obvious, and the implication (8)⇒ (1) follows from the observation that A

is left dualizable when viewed as an object of LModA(C) (see Example 4.6.2.5). We will complete

the proof by showing that (2) ⇒ (4). Suppose that the coevaluation module Ac is left dualizable,

and let M ∈ A⊗BBModC(C) be left dualizable. Using Remark 4.6.3.5 and Example 4.6.2.15, we
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deduce that Ac � B ∈ BBModArev⊗A⊗B(C) and Arev � M ∈ Arev⊗A⊗BBModArev⊗C(C) are left

dualizable, so that

σA,B,C(M) = (Ac �B)⊗Arev⊗A⊗B (Arev �M) ∈ BBModArev⊗C(C)

is left dualizable by Remark 4.6.2.6.

Suppose that A ∈ Alg(C) is a proper algebra object. Let A∨ denote the dual of A, as an object

of C. Using Proposition 4.6.2.13, we see that the left action of A on itself determines a right action

of A on A∨. Similarly, the right action of A on itself determines a left action of A on A∨. We will

see in a second that these actions are compatible with one another: that is, A∨ has the structure

of an A-bimodule object of C.

Definition 4.6.4.5. Let A be a proper algebra object of C, so that the coevaluation module

Ac ∈ 1BModArev⊗A(C)

is left dualizable. We may then identify the left dual of Ac with an object of Arev⊗ABMod1(C). We

let SA denote the image of this object under the equivalence of ∞-categories

σArev,A,1 : Arev⊗ABMod1(C)→ ABModA(C)

of Construction 4.6.3.9. We will refer to SA as the Serre bimodule of A.

More explicitly, the Serre bimodule of a proper algebra A is given by the tensor product

(Ac �A)⊗A⊗Arev⊗A (A�Ac?),

where Ac? denotes the left dual of Ac.

Remark 4.6.4.6. Let A be a proper algebra object of C, so that the opposite algebra Arev is also

proper (Remark 4.6.4.3). Using Remark 4.6.3.8 and Proposition 4.6.3.15, we obtain a canonical

equivalence SArev ' (SA)rev in ArevBModArev(C). That is, the formation of Serre bimodules is

compatible with reversal.

Remark 4.6.4.7. Let A be a proper algebra object of C. Then the left dual of the coevaluation

bimodule Ac is given by the relative tensor product

(SA �A
rev)⊗A⊗Arev Ae ∈ A⊗ArevBMod1(C) ' Arev⊗ABMod1(C).

Remark 4.6.4.8. Let A be a proper algebra object of C. Then the evaluation module Ae ∈
A⊗ArevBMod1(C) is right dualizable. Let S′A denote the image of the right dual of Ae under the

equivalence of ∞-categories

1BModA⊗Arev(C) ' 1BModArev⊗A(1)C
τA,1,A→ ABModA(C).

Note that the right dual of Ae = (Ac)rev can be identified with M rev, where M is the left dual of

Ac. Using Remarks 4.6.3.17 and 4.6.4.6 we obtain equivalences S′A ' (SArev)rev ' SA.
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Remark 4.6.4.9. Let A be a proper algebra object of C, and let SA ∈ ABModA(C) be its Serre

bimodule. Using Remark 4.6.3.10 we see that the image of SA in LModA(C) can be identified with

the left dual of A, regarded as right module over itself. Using the alternative characterization of

SA supplied by Remark 4.6.4.8, we can use the same reasoning to identify the image of SA under

the forgetful functor ABModA(C)→ RModA(C) with the right dual of A, regarded as a left module

over itself. More informally: we identify the Serre bimodule SA with the dual of A (regarded as an

object of C), with a left action of A induced by the right action of A on itself, and a right action of

A induced by the left action of A on itself.

Remark 4.6.4.10. Suppose we are given algebra objects A,B,C ∈ Alg(C), where A is proper,

and let M ∈ A⊗BBModC(C) be left dualizable. According to Proposition 4.6.4.4, σA,B,C(M) ∈
BBModArev⊗C(C) is also left dualizable. Let M?, Ac?, and σA,B,C(M)? denote the left duals of M

and σA,B,C(M), respectively. Using the definition

σA,B,C(M) = (Ac �B)⊗Arev⊗A⊗B (Arev �M)

and invoking Remark 4.6.2.6, we obtain an equivalence

σA,B,C(M)? ' (Arev �M?)⊗Arev⊗A⊗B (Ac? �B)

' (Arev �M?)⊗Arev⊗A⊗B (Arev � SA �B)⊗Arev⊗A⊗B ((Arev)e �B)

' (Arev � (M? ⊗A⊗B (SA �B)))⊗Arev⊗A⊗B ((Arev)e �B)

' τArev,C,B(M? ⊗A⊗B (SA �B).

Example 4.6.4.11. Let A be a proper algebra object of C, and let M ∈ LModA(C) ' ABMod1(C).

Note that Proposition 4.6.3.18 supplies an equivalence M rev ' σA,1,1(M). If M is left dualizable,

then M rev is also left dualizable. Let us denote their left duals by ∨M and ∨M rev. In this case, M is

also right dualizable, with right dual given by (∨M rev)rev. Remark 4.6.4.10 supplies an equivalence
∨M rev ' (M?⊗A SA)rev, so that the right dual of M can be identified with ∨M ⊗A SA as an object

of RModA(C).

We next consider a finiteness condition on algebra objects which is in some sense dual to

Definition 4.6.4.2.

Proposition 4.6.4.12. Let A be an algebra object of C. The following conditions are equivalent:

(1) The coevaluation module Ac ∈ 1BModArev⊗A(C) is right dualizable.

(2) The evaluation module Ae ∈ A⊗ArevBMod1(C) is left dualizable.

(3) Let B and C be algebra objects of C, and let M ∈ A⊗BBModC(C) be right dualizable. Then

σA,B,C(M) ∈ BBModArev⊗C(C) is also right dualizable, where σA,B,C is defined as in Con-

struction 4.6.3.9.
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(4) Let B and C be algebra objects of C, and let N ∈ BBModArev⊗C(C) be left dualizable. Then

τA,B,C(N) ∈ A⊗BBModC(C) is left dualizable, where τA,B,C is defined as in Construction

4.6.3.9.

(5) Let C be an algebra object of C, and let N ∈ RModArev⊗C(C). If the image of N in RModC(C)

is right dualizable, then N is right dualizable.

(6) Let B be an algebra object of C, and let M ∈ LModA⊗B(C). If the image of M in LModB(C)

is left dualizable, then M is left dualizable.

Proof. The equivalence of (1) and (2) is clear (since Ac = (Ae)rev by definition). We will show that

(1)⇒ (3)⇒ (5)⇒ (1); the same argument will show that (2)⇒ (4)→ (6)⇒ (2).

Suppose first that (1) is satisfied, so that Ac is right dualizable. Let M ∈ A⊗BBModC(C)

be right dualizable. Using Remark 4.6.3.5 and Example 4.6.2.15, we deduce that Ac � B ∈
BBModArev⊗A⊗B(C) and Arev �M ∈ Arev⊗A⊗BBModArev⊗C(C) are right dualizable, so that

σA,B,C(M) = (Ac �B)⊗Arev⊗A⊗B (Arev �M) ∈ BBModArev⊗C(C)

is right dualizable by Remark 4.6.2.6. This proves (3).

The implication (3)⇒ (5) follows from Proposition 4.6.2.13 and Remark 4.6.3.10 (take B = 1).

Now suppose that (5) is satisfied; we wish to show that the coevaluation module Ac is a right

dualizable object of 1BModArev⊗A(()C). Using (5), we are reduced to showing that the image of

Ac in 1BModA(C) is right dualizable: that is, that A is dualizable when viewed as a right module

over itself. This follows from Example 4.6.2.5.

Definition 4.6.4.13. Let A be an algebra object of C. We will say that A is smooth if the equivalent

conditions of Proposition 4.6.4.12 are satisfied.

Remark 4.6.4.14. The terminology introduced in Definitions 4.6.4.2 and 4.6.4.13 is motivated by

algebraic geometry. Let κ be a field. The collection of chain complexes of vector spaces over κ can

be organized into an ∞-category (see §1.3.1) which we will denote by dVectκ. Tensor product over

κ endows dVectκ with a symmetric monoidal structure (Proposition 7.1.2.11). Let X be a quasi-

projective variety defined over a field κ. Then the collection of complexes of quasi-coherent sheaves

on X can be organized into a stable∞-category, which we will denote by QCoh(X). One can show

that the ∞-category QCoh(X) always has the form LModA(dVectκ), where A is an associative

algebra object of dVectκ (for example, if X is an affine variety, we can take A to be the ring of

functions on X). One can show that A is proper (in the sense of Definition 4.6.4.2) if and only if

the variety X is proper, and that A is smooth (in the sense of Definition 4.6.4.13) if and only if X

is smooth.

Remark 4.6.4.15. Let A be an algebra object of C. Then A is smooth if and only if the opposite

algebra Arev is smooth (this follows immediately from Remark 4.6.3.8.
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Definition 4.6.4.16. Let A be a smooth algebra object of C, so that the coevaluation module

Ac ∈ 1BModArev⊗A(C)

is right dualizable. We may then identify the right dual of Ac with an object of Arev⊗ABMod1(C).

We let TA denote the image of this object under the equivalence of ∞-categories

σArev,A,1 : Arev⊗ABMod1(C)→ ABModA(C)

of Construction 4.6.3.9. We will refer to TA as the dual Serre bimodule of A.

Remark 4.6.4.17. Let A be a smooth algebra object of C, so that the opposite algebra Arev is

also smooth. Using Remark 4.6.3.8 and Proposition 4.6.3.15, we obtain a canonical equivalence

TArev ' (TA)rev in ArevBModArev(C). That is, the formation of dual Serre bimodules is compatible

with reversal.

Remark 4.6.4.18. Suppose we are given algebra objects A,B,C ∈ Alg(C), where A is smooth, and

let M ∈ A⊗BBModC(C) be right dualizable. Then the bimodule σA,B,C(M) ∈ BBModArev⊗C(C)

is also right dualizable. Let M? and σA,B,C(M)? denote the right duals of M and σA,B,C(M),

respectively. Arguing as in Remark 4.6.4.10, we obtain a canonical equivalence

σA,B,C(M)? ' τArev,C,B(M? ⊗A⊗B (SA �B).

Example 4.6.4.19. Let A be a smooth algebra object of C, and let M ∈ LModA(C) be a left

A-module which is dualizable when regarded as an object of C. According to Proposition 4.6.2.13,

M is right dualizable when regarded as an object of ABMod1(C). Let us denote its right dual by

M∨ ∈ 1BModA(C). Since A is smooth, M is also left dualizable. Moreover, the left dual of M

is given by N rev, where N is a right dual of M rev = σA,1,1(M). Using Remark 4.6.4.18, we see

that the left dual of M can be identified with M∨ ⊗A TA, where TA is the dual Serre bimodule of

Definition 4.6.4.16.

If A ∈ Alg(C) is both smooth and proper, then the bimodules SA and TA are closely related:

Proposition 4.6.4.20. Let A be an algebra object of C which is both smooth and proper. Then the

bimodules SA, TA ∈ ABModA(C) are inverse to one another (as objects of the monoidal ∞-category

ABModA(C)). That is, we have equivalences

SA ⊗A TA ' A ' TA ⊗A SA

in the ∞-category ABModA(C). In particular, SA and TA are invertible objects of ABModA(C).

Proof. Since A is smooth and proper, the evaluation and coevaluation modules Ae and Ac are both

right dualizable. Let us denote their right duals by Ae? and Ac?, respectively. Using Proposition
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4.6.3.12 and Remark 4.6.2.6, we deduce that the tensor product (Ae? �A)⊗A⊗Arev⊗A (A�Ac?) is

equivalent to A. Invoking the definitions (and Remark 4.6.4.8), we obtain equivalences

Ac? ' (Arev � TA)⊗Arev⊗A (Arev)e Ae? ' (Arev)c ⊗A⊗Arev (SA �A
rev).

We therefore obtain equivalences

A ' (Ae? �A)⊗A⊗Arev⊗A (A�Ac?)

' ((Arev)c �A)⊗A⊗Arev⊗A (SA �A
rev �A)⊗A⊗Arev⊗A (A�Arev � TA)⊗A⊗Arev⊗A (A� (Arev)e

' TA ⊗A ((Arev)c �A)⊗A⊗Arev⊗A (A� (Arev)e)⊗A SA
' SA ⊗A TA

in the ∞-category ABModA(C). The proof that TA ⊗A SA ' A is similar.

Remark 4.6.4.21. If C is a symmetric monoidal ∞-category satisfying condition (?), then we can

organize the collection of algebra objects of C into a symmetric monoidal (∞, 2)-category, in which

morphisms are given by bimodule objects of C. The ideas of this section can be generalized: it makes

sense to consider smooth and proper objects of an arbitrary symmetric monoidal (∞, 2)-category.

For a brief account, we refer the reader to [99].

4.6.5 Frobenius Algebras

Throughout this section, we let C denote a monoidal ∞-category with unit object 1 ∈ C, satisfying

the following condition:

(?) The∞-category C admits geometric realizations of simplicial objects, and the tensor product

functor ⊗ : C×C→ C preserves geometric realizations of simplicial objects.

Assume for the moment that C is symmetric monoidal. In §4.6.4, we introduced the theory of

smooth and proper algebra objects of C. If A ∈ Alg(C), then a left A-module M ∈ LModA(C) '
ABMod1(C) is left dualizable if and only if it is right dualizable. In this case, left and right duality

generally gives two different objects ∨M,M∨ ∈ RModA(C). In this section, we will study additional

structures on A, which allow us to identify ∨M with M∨ as objects of C.

Definition 4.6.5.1. Let A ∈ Alg(C) be an algebra object of C, and let m : A ⊗ A → A be the

multiplication on A. We will say that a morphism λ : A → 1 is nondegenerate if the composite

map

A⊗A m→ A
λ→ 1

is a duality datum in C.

A Frobenius algebra object of C is a pair (A, λ), where A is an algebra object of C and λ : A→ 1

is a nondegenerate map.
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We will sometimes abuse terminology by using the term Frobenius algebra object to refer to

an algebra object A ∈ C which admits a nondegenerate map λ : A → 1. Our first result gives a

characterization of such algebras:

Proposition 4.6.5.2. Let A be an algebra object of C. The following conditions are equivalent:

(1) The algebra object A can be promoted to a Frobenius algebra object of C. That is, there exists

a nondegenerate map λ : A→ 1.

(2) As an object of RModA(C) ' 1BModA(C), A is left dualizable. Moreover, its left dual

∨A ∈ ABMod1(C) ' LModA

is equivalent to A, regarded as a left module over itself.

(3) As an object of LModA(C) ' ABMod1(C), A is right dualizable. Moreover, its right dual

A∨ ∈ 1BModA(C) ' RModA is equivalent to A, regarded a right module over itself.

Proof. We will show that (1) ⇔ (2); the proof that (1) ⇔ (3) is similar. Suppose first that (1) is

satisfied. Let M ∈ 1BModA(C) and N ∈ ABMod1(C) denote the object A, regarded as a right or

left module over itself, respectively. Then we can regard λ as a map from M ⊗A N to 1. Since λ

is nondegenerate, A is left dualizable when regarded as an object of C. It follows from Proposition

4.6.2.13 that M admits a left dual ∨M , so that λ classifies a map of left A-modules θ : N →∨ M .

The nondegeneracy of λ guarantees that the image of θ in the ∞-category C is an equivalence. It

follows that θ is an equivalence of left A-modules, so that λ exhibits N as a left dual of M . This

proves (2).

Conversely, suppose that condition (2) is satisfied. Then N is a left dual of M , so there exists

a morphism λ : M ⊗A N ' A→ 1. It follows from Remark 4.6.2.12 that λ is nondegenerate.

Remark 4.6.5.3. Suppose that C is a symmetric monoidal ∞-category, and let A be a proper

algebra object of C, with Serre bimodule SA ∈ ABModA(C) (see Definition 4.6.4.5). Using the

proof of Proposition 4.6.5.2 and Remark 4.6.4.9, we obtain an equivalence between the following

three types of data:

(a) Nondegenerate maps λ : A→ 1.

(b) Equivalences SA ' A in the ∞-category of left A-modules.

(c) Equivalences SA ' A in the ∞-category of right A-modules.

Remark 4.6.5.4. Suppose that C is a symmetric monoidal ∞-category, and let A be a proper

algebra object of C with Serre bimodule SA. Let λ : A → 1 be a morphism of C, which is

dual to a morphism λ∨ : 1 → SA. Then λ is nondegenerate if and only if it exhibits SA as
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a free right A-module generated by 1. In this case, we can identify SA with an object of the

fiber product ABModA(C) ×RModA(C) {A}. Using Corollary 4.8.5.6, we deduce the existence of a

morphism σλ : A→ A in Alg(C) with the following property: the Serre bimodule SA is equivalent

in ABModA(C) to A, where the right action of A on itself is the evident one, and the left action

of A is via the morphism σλ. Since the morphism λ∨ also exhibits SA as the free left A-module

generated by 1, we conclude that σλ : A→ A is an equivalence of left A-modules, and therefore an

equivalence of algebra objects of C. In this case, we will refer to σλ as the Serre automorphism of

A.

Warning 4.6.5.5. The terminology of Remark 4.6.5.4 is somewhat abusive: if (A, λ) is a Frobenius

algebra object of a symmetric monoidal ∞-category C, then the Serre automorphism σλ depends

not only on A, but also on λ. However, the conjugacy class of σλ (in the automorphism group

π0 MapAlg(C)'(A,A)) is independent of λ.

Remark 4.6.5.6. Assume that C is symmetric monoidal, let (A, λ) be a Frobenius algebra object

of C, and let σλ : A → A be the Serre automorphism of Remark 4.6.5.4. Let m0 : A ⊗ A → A

denote the multiplication on A, and let m1 : A⊗A→ A denote the multiplication on the opposite

algebra Arev. Unwinding the definitions, we deduce that the diagram

A⊗A
m1

��

id⊗σλ // A⊗A
m0

��
A

λ

##

A
λ

{{
1

commutes up to homotopy (in the ∞-category C). Moreover, the commutativity of this diagram

characterizes σλ up to homotopy as a morphism in the underlying∞-category C. We can summarize

the situation more informally by writing the equation λ(ab) = λ(bσλ(a)).

Remark 4.6.5.7. Let C be a symmetric monoidal∞-category, and let (A, λ) be a Frobenius algebra

object of A. Then the Serre bimodule SA is equivalent to A when viewed either as a left A-module

or as a right A-module. However, SA need not be equivalent to A as an A-bimodule unless the

Serre automorphism σλ is homotopic to the identity (or, more generally, if σλ is homotopic to an

inner automorphism of A: see §5.3.2).

Giving an identification of SA with A as an object of ABModA(C) is equivalent to identifying

the evaluation module Ae ∈ LModA⊗Arev(C) of Construction 4.6.3.7 with the left dual of the

coevaluation module Ac ∈ RModA⊗Arev(C). Such an identification is determined by a duality

pairing

λ : Ac ⊗A⊗Arev Ae → 1
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having the property that the composite map

A ' Ac ⊗A Ae → Ac ⊗A⊗Arev Ae
λ→ 1

is nondegenerate. In this case, we we will refer to the pair (A, λ) as a symmetric Frobenius algebra

object of A. Equivalently, we can define a symmetric Frobenius algebra object of A to be a Frobenius

algebra object (A, λ) in C, together with a homotopy from idA to the Serre automorphism σλ (in

the ∞-category Alg(C)).

Warning 4.6.5.8. Assume that C is symmetric monoidal, and let (A, λ) be a Frobenius algebra

object of C. If (A, λ) can be promoted to a symmetric Frobenius algebra object of C, then the

duality pairing

β : A⊗A m→ A
λ→ 1

is symmetric (up to homotopy). The converse generally fails: by virtue of Remark 4.6.5.6, the

symmetry of the pairing β is equivalent to the requirement that the Serre automorphism σλ is

homotopic to idA in the ∞-category C, which is generally weaker than the requirement that σλ is

homotopic to idA in the ∞-category Alg(C). However, the converse does hold in situations where

the forgetful map MapAlg(C)(A,A) → MapC(A,A) is fully faithful: for example, if C is equivalent

to the nerve of an ordinary category.

Remark 4.6.5.9. Assume that C is symmetric monoidal. The passage from A to Ac ⊗A⊗Arev Ae

determines a functor from Alg(C) to C, which we refer to as the cyclic bar construction. In §5.5.3,

we will see that this functor is given by the formation of topological chiral homology

A 7→
∫
S1

A

over the circle (Theorem 5.5.3.11). It follows that the cyclic bar construction Ac⊗A⊗Arev Ae admits

an action of the circle group S1. In this situation, one can obtain a variant of the notion of

symmetric Frobenius algebra by imposing the further demand that a map

λ : Ac ⊗A⊗Arev Ae → 1

be S1-equivariant. This equivariance condition plays an important role in the classification of

two-dimensional topological quantum field theories; see [99] for an informal discussion.

Remark 4.6.5.10. Assume that C is symmetric monoidal, and let A be a commutative algebra

object of C. Then the canonical map A → Ac ⊗A⊗Arev Ae admits a left homotopy inverse. It

follows that every map λ : A → 1 factors (up to homotopy) through the cyclic bar construction,

so that every Frobenius algebra structure on A can be promoted to a symmetric Frobenius algebra

structure. In particular, for every nondegenerate map λ : A → 1, the Serre automorphism σλ of

Remark 4.6.5.6 is homotopic to the identity.
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Assume that C is symmetric monoidal, and let A be a proper algebra object of C. Then every

left dualizable object M ∈ LModA(C) ' ABMod1(C) is also right dualizable. According to Example

4.6.4.11, the left and right duals of M are related by the formula M∨ =∨ M ⊗A SA. If there exists

a nondegenerate map λ : A → 1, then SA is equivalent to A as a left A-module, so that we can

identify M∨ with ∨M as objects of C. In fact, this identification does not require the tensor product

on C to be commutative:

Proposition 4.6.5.11. Let (A, λ) be a Frobenius algebra object of C, and suppose we are given

A-modules M ∈ LModA(C) ' ABMod1(C) and N ∈ RModA(C) ' 1BModA(C), having images

M,N ∈ C. Let e : M ⊗N → A be a morphism in ABModA(C) which exhibits M as a right dual of

N . Then the composite map

M ⊗N e→ A
λ→ 1

exhibits M as a right dual of N in the ∞-category C.

The proof of Proposition 4.6.5.11 is based on the following observation:

Lemma 4.6.5.12. Let A be an algebra object of C and let λ : A → 1 be a morphism in C. The

following conditions are equivalent:

(a) The map λ is nondegenerate.

(b) For every object X ∈ LModA(C) and every object Y ∈ C, the composite map

MapLModA(C)(M,A⊗N)→ MapC(M,A⊗N)
λ→ MapC(M,N)

is a homotopy equivalence.

Proof. Let X ∈ RModA(C) and Y ∈ LModA(C) denote the algebra A, regarded respectively as a

right and left module over itself. We can then identify λ with a map X ⊗A Y → A. According

to Proposition 4.6.2.18, condition (b) is equivalent to the requirement that λ exhibits X as a right

dual of Y , while condition (a) is equivalent to the assertion that the composite map

A⊗A = X ⊗ Y → X ⊗A Y
λ→ 1

exhibits A as a left dual of itself as an object of the monoidal ∞-category C. The equivalence of

these conditions now follows from Remark 4.6.2.14.

Proof of Proposition 4.6.5.11. Fix objects X,Y ∈ C. We wish to show that the right vertical
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composition in the diagram

MapC(X,N ⊗A (A⊗ Y )) //

��

MapC(X,N ⊗ Y )

��
MapLModA(C)(M ⊗X,M ⊗N ⊗A (A⊗ Y )) //

��

MapC(M ⊗X,M ⊗N ⊗ Y )

��
MapLModA(C)(M ⊗X,A⊗ Y )

θ

,,

//MapC(M ⊗X,A⊗ Y )

λ
��

MapC(M ⊗X,Y ).

is a homotopy equivalence. The upper horizontal map is evidently a homotopy equivalence, and

θ is a homotopy equivalence by Lemma 4.6.5.12. We are therefore reduced to showing that the

left vertical composition is a homotopy equivalence, which follows from our assumption that e is a

duality datum.

Remark 4.6.5.13. Assume that C is a symmetric monoidal ∞-category, let (A, λ) be a Frobenius

algebra object of C. Assume that further that the algebra object A is smooth (Definition 4.6.4.13),

and let M ∈ LModA(C) be a left A-module whose image M in C admits a dual N . Since A is

smooth, the dualizability of M guarantees that M is left dualizable (Proposition 4.6.4.12). Choose

a morphism e : M ⊗∨ M → A in ABModA(C) which exhibits ∨M as a left dual of M . Then the

composite map

M ⊗∨M → A
λ→ 1

is classified by a map ∨M → N in C, which is an equivalence by Proposition 4.6.5.11. We may

therefore identify ∨M with a preimage of N under the forgetful functor RModA(C).

We can summarize the situation as follows: if (A, λ) is a smooth Frobenius algebra object of C

and there exists a duality datum e : M ⊗N → 1 in the ∞-category C, then there exists a preimage

N of N under the forgetful functor RModA(C) → C, and a duality datum e : M ⊗ N → A in

ABModA(C) such that e is given by the composition

M ⊗N 'M ⊗N e→ A
λ→ 1.

Corollary 4.6.5.14. Let C be a symmetric monoidal ∞-category, let A ∈ CAlg(C), and let λ :

A → 1 be a nondegenerate map. Let M,N ∈ ModA(C), and let e : M ⊗A N → A be a duality

datum in the symmetric monoidal ∞-category ModA(C). Then the composite map

M ⊗N →M ⊗A N
e→ A

λ→ 1

is a duality datum in C.
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Proof. Combine Proposition 4.6.2.19 with Proposition 4.6.5.11.

Remark 4.6.5.15. In the situation of Corollary 4.6.4.9, suppose that A is smooth, and that

M ∈ ModA(C) is dualizable as an object of C. Using Propositions 4.6.2.19 and 4.6.4.12, we deduce

that M is also dualizable as an object of ModA(C). It then follows from Corollary 4.6.5.14 that

there exists a duality datum e : M ⊗A N → A in ModA(C) for which the composite map

M ⊗N →M ⊗A N
e→ A

λ→ 1

is a duality datum in C. We can informally summarize the situation by saying that if A is a smooth

commutative Frobenius object of C, then the forgetful functor ModA(C) → C is compatible with

duality.

4.7 Monads and the Barr-Beck Theorem

Suppose we are given a pair of adjoint functors C
F //D
G
oo between ordinary categories. Then:

(A) The composition T = G ◦ F has the structure of a monad on C; that is, an algebra object of

the monoidal category Fun(C,C) of endofunctors of C. Here the unit map idC → T given by

the unit of the adjunction between F and G, and the product is given by the composition

T ◦ T = G ◦ (F ◦G) ◦ F → G ◦ idD ◦F = T

where the second map is given by a compatible counit v for the adjunction between F and

G.

(B) For every object D ∈ D, the object G(D) has the structure of a module over the monad T ,

given by the map TG(D) = ((G ◦F ) ◦G)(D) = (G ◦ (F ◦G))(D)
v→ G(D). This construction

determines a functor θ from D to the category of T -modules in C.

(C) In many cases, the functor θ is an equivalence of categories. The Barr-Beck theorem provides

necessary and sufficient conditions on the functor G to guarantee that this is the case. We

refer the reader to [100] for a detailed statement (or to Theorem 4.7.3.5 for our∞-categorical

version, which subsumes the classical statement).

Our goal in this section is to obtain∞-categorical generalizations of assertions (A) through (C).

We begin by observing that for any ∞-category C, composition and evaluation determines maps

Fun(C,C)× Fun(C,C)→ Fun(C,C) Fun(C,C)× C→ C

which endow Fun(C,C) with the structure of a simplicial monoid with a left action on the simplicial

set C. In particular, we can regard Fun(C,C) as monoidal∞-category and C as an∞-category which

is left-tensored over Fun(C,C). We will refer to the resulting monoidal structure on Fun(C,C) as

the composition monoidal structure.
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Definition 4.7.0.1. Let C be an ∞-category. A monad on C is an algebra object of Fun(C,C)

(with respect to the composition monoidal structure). If T is a monad on C, we let LModT (C)

denote the associated ∞-category of (left) T -modules in C.

Remark 4.7.0.2. More informally, a monad on an ∞-category C consists of an endofunctor T :

C → C equipped with maps id → T and T ◦ T → T which satisfy the usual unit and associativity

conditions up to coherent homotopy. A T -module is then an object C ∈ C equipped with a

structure map T (C)→ C which is compatible with the algebra structure on T , again up to coherent

homotopy.

We can now state a preliminary version of the ∞-categorical Barr-Beck theorem.

Theorem 4.7.0.3. Suppose we are given a pair of adjoint functors

C
F //D
G
oo

between ∞-categories. Assume further that G is conservative, the ∞-category D admits geometric

realizations of simplicial objects, and G preserves geometric realizations of simplicial objects. Then

there exists a monad T on C and an equivalence G′ : D ' LModT (C) such that G is homotopic to

the composition of G′ with the forgetful functor LModT (C)→ C.

Remark 4.7.0.4. In the situation of Theorem 4.7.0.3, Proposition 4.2.4.2 implies that the image

of T in Fun(C,C) can be identified with the composition G◦F , and is therefore uniquely determined

by G. In fact, we will see in §4.7.3 that T is uniquely determined as an object of Alg(Fun(C,C)).

The proof of Theorem 4.7.0.3 breaks naturally into two parts:

(a) Constructing the monad T and a factorization of G as a composition D
G′→ LModT (C)→ C.

(b) Proving that the functor G′ is an equivalence of ∞-categories.

In the classical setting, (a) is more or less immediate (the monad T is given by the composition

G ◦ F , and the multiplication on T is induced by a counit for the adjunction between G and F ).

However, in the ∞-categorical setting we must work harder: to produce an algebra structure on

the composition T = G◦F ∈ Fun(C,C), it is not enough to produce a single natural transformation

T ◦ T → T : we must also supply an infinite hierarchy of coherence data, which is not so easy to

explicitly describe.

We will therefore adopt a different strategy: rather than trying to construct the multiplication

on T = G ◦ F explicitly, we will instead characterize it by a universal property. Note that the

monoidal ∞-category Fun(C,C) has a canonical left action on the ∞-category Fun(D,C). We will

show that T ∈ Fun(C,C) can be identified with an endomorphism object of G ∈ Fun(D,C): that is, it

is universal among those functors U ∈ Fun(C,C) which are equipped with a natural transformation
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U ◦ G → G. In §4.7.1, we will formally deduce (in much greater generality) that T inherits the

structure of an algebra object of Fun(C,C) and that G inherits the structure of a left module over

T (which supplies the desired factorization G′).

Once the monad T and the functor G′ : D→ LModT (C) have been constructed, we need to show

that (under the hypotheses of Theorem 4.7.0.3) the functor G′ is an equivalence of ∞-categories.

In §4.7.3 we will prove a slightly stronger result: it is not necessary to assume that the functor G

preserves geometric realizations of all simplicial objects in C. It is sufficient (and also necessary)

that G preserves geometric realizations for the special class of G-split simplicial objects, which we

study in §4.7.2.

The Barr-Beck theorem is an extremely useful result in higher category theory. For example,

one can often show that a functor U : C → C′ is an equivalence by exhibiting a forgetful functor

G : C′ → D and showing that G and G ◦ U exhibit both C and C′ as representations of the same

monad on D (see Corollary 4.7.3.16 for a formalization of this strategy, which was already used

to prove rectification theorems for commutative and associative algebras in Chapter 4). In §4.7.5

we will describe another typical application, to the higher-categorical theory of descent. This

discussion will require some general observations concerning the functoriality of the formation of

adjoint functors, which is the topic of §4.7.4.

4.7.1 Endomorphism ∞-Categories

Let M be an abelian group, and let End(M) denote the set of group homomorphisms from M

to itself. Then End(M) is endowed with the structure of an associative ring, where addition is

given pointwise and multiplication is given by composition of homomorphisms. Moreover, we can

characterize End(M) by the following universal property: for any associative ring R, giving a ring

homomorphism φ : R→ End(M) is equivalent to endowing M with the structure of an R-module.

In this section, we will generalize the above ideas by replacing the ordinary category of abelian

groups (with its tensor product) by an arbitrary monoidal ∞-category C. If M ∈ C is an object,

then an endomorphism object for M is an object E ∈ C equipped with a map a : E⊗M →M which

enjoys the following universal property: for every other object C ∈ C, composition with a induces

a homotopy equivalence MapC(C,E)→ MapC(C ⊗M,M). We will show that if an endomorphism

object E exists, then E has the structure of an associative algebra object of C. Moreover, it is

universal among associative algebras which act on M in the following sense: for every associative

algebra object A ∈ Alg(C), there is a homotopy equivalence

MapAlg(C)(A,E) ' {A} ×Alg(C) LMod(C)×C {M}.

With an eye toward later applications, we will treat a slightly more general problem. Suppose

that C is a monoidal ∞-category, that M is an ∞-category which is left-tensored over C, and that

M is an object of M. Let us say that an object C ∈ C acts on M if we are given a map C⊗M →M .

We would like to extract an object End(M) ∈ C which is universal among objects which act on
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M , and show that End(M) is an algebra object of C (and further, that M can be promoted to an

object of LModEnd(M)(M)).

Our first goal is to give a careful formulation of the universal property desired of End(M).

We would like to have, for every algebra object A ∈ Alg(C), a homotopy equivalence of

MapAlg(C)(A,End(M)) with a suitable classifying space for actions of A on M . The natural

candidate for this latter space is the fiber product {A} ×Alg(C) Mod(M) ×M {M}, which can

be viewed as a fiber of the projection map θ : LMod(M) ×M {M} → Alg(C). We will see

below that θ is a right fibration (Corollary 4.7.1.42). Our problem is therefore to find an object

End(M) ∈ Alg(C) which represents the right fibration θ, in the sense that we have a an equivalence

LMod(M)×M {M} ' Alg(C)/End(M) of right fibrations over Alg(C) (see §HTT.4.4.4 ).

The next step is to realize the∞-category LMod(M)×M{M} as (equivalent to) the∞-category

of algebra objects in a suitable monoidal ∞-category C[M ]. Roughly speaking, we will think of

objects of C[M ] as pairs (C, η), where C ∈ C and η : C⊗M →M is a morphism in M. The monoidal

structure on C[M ] may be described informally by the formula (C, η)⊗(C ′, η′) = (C⊗C ′, η′′), where

η′′ denotes the composition

C ⊗ C ′ ⊗M id⊗η′−→ C ⊗M η→M.

The desired object End(M) can be viewed as a final object of C[M ]. Provided that this final

object exists, it automatically has the structure of an algebra object of C[M ] (Corollary 3.2.2.4).

The image of End(M) under the (monoidal) forgetful functor C[M ] → C will therefore inherit the

structure of an algebra object of C.

We are now ready to begin with a detailed definition of the monoidal ∞-category C[M ]. For

technical reasons, it will be convenient to work in the setting of A∞-monoidal ∞-categories (see

§4.1.3).

Definition 4.7.1.1. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. An enriched morphism of M is a diagram

M
α← X

β→ N

in M� satisfying the following conditions:

• The image p(α) is the morphism (0, [1])→ (0, [0]) in ∆1×N(∆)op determined by the embed-

ding [0] ' {0} ↪→ [1] in ∆.

• The map β is inert, and p(β) is the morphism (0, [1]) → (0, [0]) in ∆1 × N(∆)op determined

by the embedding [0] ' {1} ↪→ [1] in ∆.

We let StrMen
[1] denote the full subcategory of Fun∆1×N(∆)op(Λ

2
0,M

�) spanned by the enriched

morphisms of M.

There is an evident pair of evaluation functors StrMen
[1] → M. Given an object M ∈ M, we let

C[M ] denote the fiber product {M}×MStrMen
[1]×M{M}. We will refer to C[M ] as the endomorphism

∞-category of M .
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Remark 4.7.1.2. The notation of Definition 1.3.2.11 is abusive: the ∞-categories StrMen
[1] and

C[M ] depend not only on M and M , but also on the weak enrichment p : M� → ∆1 ×N(∆)op.

Remark 4.7.1.3. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}, and let M ∈M be an object. By definition,

a object of C[M ] consists of the following data:

• An object X ∈M�
0,[1], which we can think of as consisting of a pair of objects C ∈ C, M ′ ∈M.

• An inert morphism β : X → M covering the map (0, [1]) → (0, [0]) given by [0] ' {1} ↪→ [1]

in ∆. We can think of β as giving an equivalence M ′ 'M .

• A morphism α : X → M covering the map (0, [1]) → (0, [0]) given by [0] ' {0} ↪→ [1] in ∆.

If p is a coCartesian fibration (so that M is left-tensored over the A∞-monoidal ∞-category

C�), then we can think of α as given by a map C ⊗M ′ →M .

It follows that if p is a coCartesian fibration, then we can think of objects of C[M ] as pairs (C, η),

where C ∈ C and η : C ⊗M →M is a morphism in M.

Our next goal is to show that in the situation of Definition 4.7.1.1, the ∞-category C[M ] is the

underlying∞-category of planar∞-operad C[M ]�. We can think of the fiber C[M ]�[n] as a sequence

of object C1, C2, . . . , Cn ∈ C equipped with maps ηi : Ci ⊗M →M (at least in the case where p is

a coCartesian fibration). We begin by describing this ∞-category in a way which is more evidently

functorial in the linearly ordered set [n]. Before proceeding, we need a simple observation:

Remark 4.7.1.4. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. Then the inclusion C� ↪→M� admits a left

adjoint L. For every object M ∈ C�
0,[n], the localization map M → LM is an inert morphism in

M� covering the map (0, [n])→ (1, [n]) in ∆1 ×N(∆)op.

Notation 4.7.1.5. Let n ≥ 0 be an integer. We let Po[n] denote the set {(i, j) ∈ [n]× [n] : i ≤ j}.
We will regard Po[n] as partially ordered, where (i, j) ≤ (i′, j′) if i′ ≤ i ≤ j ≤ j′. In other words,

we have (i, j) ≤ (i′, j′) if {i, i+ 1, . . . , j} ⊆ {i′, i′ + 1, . . . , j′}.
We define a functor Φ[n] : Po[n] →∆ by the formula Φ[n](i, j) = [j − i] ' {i, i+ 1, . . . , j}.

Definition 4.7.1.6. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. An enriched n-string in M is a map σ :

N(Po[n])
op →M� with the following properties:

(1) The composition p ◦ σ is given by the composition

N(Po[n])
op Φ[n]→ N(∆)op ' {0} ×N(∆)op ↪→ ∆1 ×N(∆)op

where Φ[n] is defined as in Notation 4.7.1.5 and LCut as in Construction 4.2.2.6.
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(2) For i ≤ i′ ≤ j, the map σ(i′, j)→ σ(i, j) is an inert morphism in M�.

(3) Let L : M� → C� be a left adjoint to the inclusion (see Remark 4.7.1.4). For i ≤ i′ ≤ j′ ≤ j,
the map Lσ(i′, j′)→ Lσ(i, j) is an inert morphism in C�.

We let StrMen
[n] denote the full subcategory of Fun∆1×N(∆)op(N(Po[n])

op,M�) spanned by the

enriched n-strings in M. We will refer to StrMen
[n] as the ∞-category of enriched n-strings in M.

Warning 4.7.1.7. As with Definition 1.3.2.11, our notation is abusive: the ∞-category StrMen
[n]

depends not only on the ∞-category M, but also on the weak enrichment M� → ∆1 ×N(∆)op.

Example 4.7.1.8. When n = 1, condition (3) of Definition 4.7.1.6 is automatic. Consequently, an

enriched n-string in M is just an enriched morphism in M, in the sense of Definition 1.3.2.11. In

particular, the notations of Definitions 1.3.2.11 and 4.7.1.6 are compatible with one another.

Remark 4.7.1.9. In the situation of Definition 4.7.1.6, let us say that an n-string in M is a

sequence of objects M0,M1, . . . ,Mn ∈ M. Every enriched n-string σ ∈ StrMen
[n] determined an

n-string {Mi}0≤i≤n by the formula Mi = σ(i, i). This construction determines a forgetful functor

StrMen
[n] →M[n].

Example 4.7.1.10. If n = 0 in Definition 4.7.1.6, then Po[n] = {(0, 0)} and the forgetful functor

StrMen
[n] →M[0] 'M is an isomorphism. In other words, an enriched 0-string in M is just an object

of M.

Remark 4.7.1.11. Let f : [m] → [n] be a morphism in ∆. Then f induces a map of partially

ordered sets Pof : Po[m] → Po[n], given by (i, j) 7→ (f(i), f(j)). Suppose further that f is an

inert morphism in ∆: that is, f induces a bijection from [m] to {i, i + 1, . . . , j} ⊆ [n] for some

0 ≤ i ≤ j ≤ n. Then the diagram

Po[m]
Φ[m]

""

Pof // Po[n]

}}
∆

is commutative. It follows that for any p : M� → ∆1×N(∆)op as in Definition 4.7.1.6, composition

with Pof induces a forgetful functor StrMen
[n] → StrMen[m].

Notation 4.7.1.12. Let p : M� → ∆1×N(∆)op be as in Definition 4.7.1.6, and let S be a convex

subset of [n] for some n ≥ 0. Then S is the image of a unique injective map f : [m]→ [n] in ∆. We

let StrMen
S denote the ∞-category StrMen

[m], so that Remark 4.7.1.11 produces a forgetful functor

StrMen
[n] → StrMen

S .

The following result expresses the idea that an enriched n-string can be obtained by “composing”

a chain of enriched morphisms (of length n):
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Proposition 4.7.1.13 (Segal Condition). Let p : M� → ∆1 × N(∆)op be a map which exhibits

M = M�
0,[0] as weakly enriched over the planar ∞-operad C� = M�×∆1{1}. For each n ≥ 0, the

∞-category StrMen
[n] is a homotopy limit of the diagram of ∞-categories

StrMen
{0,1}

&&xx

· · ·

{{ $$

StrMen
{m−1,m}

ww ''
StrMen

{0} StrMen
{1} StrMen

{n−1} StrMen
{n}.

Proof. Let Po0
[n] denote the subset of Po[n] consisting of those pairs (i, j) where i ≤ j ≤ i+ 1, and

let X be the full subcategory of Fun∆1×N(∆)op(N(Po0
[n])

op,M�) spanned by those functors whose

restriction to N(Po[1])
op belongs to StrMen

[1], for every map [1] ' {i, i + 1} ↪→ [n]. Then X is a

model for the homotopy limit in question; it will therefore suffice to show that the forgetful functor

θ : StrMen
[n] → X is an equivalence of ∞-categories.

Let StrMen,+
[n] be the full subcategory of Fun∆1×N(∆)op(∆

1 ×N(Po[n])
op,M�) spanned by those

functors F+ satisfying the following pair of conditions:

(i) The restriction F = F+|({0} ×N(Po[n])
op) belongs to StrMen

[n].

(ii) For every object (i, j) ∈ Po[n], the map F+(0, i, j) → F+(1, i, j) is p-coCartesian. In other

words, F+ is a p-left Kan extension of F .

We define the full subcategory X+ ⊆ Fun∆1×N(∆)op(∆
1 ×N(Po0

[n])
op,M�) similarly. We have a

commutative diagram of restriction maps

StrMen,+
[n]

θ+
//

��

X+

��
StrMen

[n]
// X .

Proposition HTT.4.3.2.15 implies that the vertical maps in this diagram are trivial Kan fibra-

tions. It will therefore suffice to show that θ+ is a trivial Kan fibration. According to Proposition

HTT.4.3.2.15 , this is a consequence of the following pair of assertions:

(a) For every functor F+
0 ∈ X+, there exists a functor F+ ∈ Fun∆1×N(∆)op(∆

1×N(Po[n])
op,M�)

such that F+ is a p-right Kan extension of F+
0 .

(b) An arbitrary functor F+ ∈ Fun∆1×N(∆)op(∆
1 × N(Po[n])

op,M�) belongs to StrMen,+
[n] if and

only if F+
0 = F+|(∆1 ×N(Po0

[n])
op) belongs to X+, and F+ is a p-right Kan extension of F+

0 .

We begin by proving (a). Fix an object (a, i, j) ∈ ∆1 ×N(Po[n])
op, and let

J = (∆1 ×N(Po0
[n])

op)×∆1×N(Po[n])
op (∆1 ×N(Po[n])

op)(a,i,j)/.
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According to Lemma HTT.4.3.2.13 , it will suffice to show that f = F+
0 | J can be extended to a

p-limit diagram f : J/ →M� lifting the evident map J/ → ∆1 ×N(Po[n])
op → ∆1 ×N(∆)op.

We first treat the case where a = 1. Let S be the full subcategory of J spanned by those triples

of the form (1, i′, i′ + 1) where i ≤ i′ < j. The inclusion S → J is right cofinal. It therefore suffices

to show that the collection of objects {f(1, i′, i′+ 1)}i≤i′<j admit a p-product in M�, which follows

from our assumption that M�×∆1{1} is a planar ∞-operad.

Assume now that a = 0. For i ≤ k ≤ j, we let J(k) denote the full subcategory of J spanned by

those triples (b, i′, j′) where such that either b = 1 or k ≤ i′ ≤ j′ ≤ j. We will prove that f | J(k) can

be extended to a p-limit diagram fk : J(k)/ →M� (compatible with the map J/ → ∆1 ×N(∆)op)

using descending induction on k. When k = j, let S denote the discrete simplicial set with

vertices {(0, j, j)} ∪ {(1, i′, i′ + 1)}i≤i′<j . We note that the inclusion S → J is right cofinal; it will

therefore suffice to show that there exists a p-product for the collection of objects {f(0, j, j)} ∪
{f(1, i′, i′ + 1)}i≤i′<j , which follows from the assumption that the map M� → ∆1 × N(∆)op is

fibrous (see Proposition 2.3.3.30). Let us therefore assume that k < j and that the extension fk+1

has been constructed. Let J(k)′ denote the full subcategory of J(k) obtained by removing the object

(0, k, k). Since F ∈ X+, the functor f | J(k)′ is a p-right Kan extension of f | J(k + 1). It follows

from Lemma HTT.4.3.2.7 that fk+1 extends (in an essentially unique fashion) to a p-limit diagram

f
′
k : J(k)′op → M�. The inclusion J(k)′ ↪→ J(k) is right cofinal, so that we can further extend f

′
k

(again in an essentially unique way) to a p-limit diagram fk : J/ →M�. This completes the proof

of (a). Moreover, the proof yields the following version of (b):

(b′) Let F+ ∈ Fun∆1×N(∆)op(∆
1 × N(Po[n])

op,M�) be such that F+
0 = F+|(∆1 × N(Po0

[n])
op)

belongs to X+. Then F+ is a p-right Kan extension of F+
0 if and only if, for each 0 ≤ i ≤ j ≤ n,

the maps

F+(0, i, j)→ F+(0, j, j) F (0, i, j)→ F (1, i′, i′ + 1) F (1, i, j)→ F (1, i′, i′ + 1)

are inert, where i ≤ i′ < j.

We now prove (b). Assume first that F+ ∈ StrMen,+
[n] . It is clear that F+

0 = F+|(∆1×N(Po0
[n])

op)

belongs to X+; we wish to prove that F+ is a p-right Kan extension of F+
0 . We will show that

F+ satisfies the criteria of (b′). Fix 0 ≤ i ≤ j ≤ n. Since F = F+|({0} × N(Po[n])
op) belongs to

StrMen
[n], the map F+(0, i, j)→ F+(0, j, j) is inert. For i ≤ i′ < j, consider the composition

F+(0, i, j)
α→ F+(1, i, j)

β→ F+(1, i′, i′ + 1).

We wish to show that β and β ◦α are inert. Since α is inert by (ii), it will suffice to show that β is

inert. Let L : M� → C� be a left adjoint to the inclusion. Condition (ii) implies that β ' L(β′),

where β′ is the map F+(0, i, j)→ F+(0, i′, i′+ 1). The condition that F ∈ StrMen
[n] guarantees that

L(β′) is inert as desired.
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We now prove the converse direction of (b). Let F+ ∈ Fun∆1×N(∆)op(∆
1 × N(Po[n])

op,M�).

Assume that F+
0 = F+|(∆1×N(Po0

[n])
op) belongs to X+ and that F+ is a p-right Kan extension of

F+
0 ; we wish to prove that F+ satisfies conditions (i) and (ii). We begin by verifying (ii). Choose

0 ≤ i ≤ j ≤ n; we wish to show that the map α : F+(0, i, j) → F+(1, i, j) is inert. Condition (b)

implies that for i ≤ k < j, the map βj : F+(1, i, j)→ F+(1, k, k+1) is inert; it will therefore suffice

to show that each composition βj ◦ α is inert, which follows from (b′).

We now complete the proof by showing that F = F+|({0} × N(Po[n])
op) belongs to StrMen

[n].

Fix 0 ≤ i ≤ i′ ≤ j; we claim that the map α : F+(0, i, j) → F+(0, i′, j) is an inert morphism

in M�. Condition (b′) guarantees that we have inert maps β : F+(0, i′, j) → F+(0, j, j) and

γk : F+(0, i′, j) → F+(0, k, k + 1) for i′ ≤ k < j. It will therefore suffice to show that the

compositions γk ◦ α and β ◦ α are inert, which also follows from (b′). To complete the proof that

F is an enriched n-string, it suffices to show that LF carries each morphism in Po[n] to an inert

morphism in C�. Fix 0 ≤ i ≤ i′ ≤ j′ ≤ j ≤ n; we wish to show that the map δ : LF (i, j)→ LF (i′, j′)

is inert. Using (ii), we can identify δ with the map F+(1, i, j)→ F+(1, i′, j′). Condition (b′) implies

that the maps F+(1, i′, j′) → F+(1, k, k + 1) are inert for i′ ≤ k < j′. It will therefore suffice to

show that each of the composite maps F+(1, i, j)→ F+(1, k, k+1) is inert, which also follows from

(b′).

We now study the relationship between the ∞-categories StrMen
[n] as [n] varies. As we will see,

they can be identified with the fibers of a certain categorical fibration StrMen → N(∆)op.

Notation 4.7.1.14. We define a category Po as follows:

• The objects of Po are triples ([n], i, j) where [n] ∈∆ and 0 ≤ i ≤ j ≤ n.

• Given a pair of objects ([n], i, j), ([n′], i′, j′) ∈ Po, a morphism from ([n], i, j) to ([n′], i′, j′) is

a map of linearly ordered sets α : [n] → [n′] such that i′ ≤ α(i) ≤ α(j) ≤ j′ (equivalently,

α{i, i+ 1, . . . , j} ⊆ {i′, i′ + 1, . . . , j′}).

• Composition of morphisms in Po is defined in the obvious way.

We let Po′ denote the full subcategory of Po spanned by those objects of the form ([n], i, i).

Remark 4.7.1.15. There is an evident forgetful functor θ : Po→∆. The fiber of θ over an object

[n] is the category associated to the partially ordered set Po[n] of Notation 4.7.1.5.

The functor θ exhibits Po as cofibered in categories of ∆: in other words, the induced map

N(Po)→ N(∆) is a coCartesian fibration of simplicial sets. A morphism α : ([n], i, j)→ ([n′], i′, j′)

is θ-coCartesian if and only if i′ = α(i) and j′ = α(j).

Remark 4.7.1.16. The functors Φ[n] : Po[n] →∆ introduced in Notation 4.7.1.5 are given by the

restriction of a single functor Φ : Po → ∆, which is given on objects by the formula Φ([n], i, j) =

[j − i] ' {i, i+ 1, . . . , j}.
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Construction 4.7.1.17. We regard the ∞-category N(Po)op as equipped with forgetful functors

N(Po)op → N(∆)op (given by the forgetful functor ([n], i, j) 7→ [n]) and N(Po)op → ∆1 × N(∆)op,

given by the composition

N(Po)op
Φ→ N(∆)op ' {0} ×N(∆)op ↪→ ∆1 ×N(∆)op.

Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly enriched over the

planar∞-operad C� = M�×∆1{1}. We define maps of simplicial sets StrM
en → StrM→ N(∆)op

so that the following universal properties are satisfied: for every map of simplicial sets K → N(∆)op,

there are canonical bijections

FunN(∆)op(K,StrM
en

) ' Fun∆1×N(∆)op(K ×N(∆)op N(Po)op,M�)

FunN(∆)op(K,StrM) ' Fun∆1×N(∆)op(K ×N(∆)op N(Po′)op,M�).

Unwinding the definitions, we see that the fiber of StrM
en

over an object [n] ∈ ∆op can be

identified with Fun∆1×N(∆)op(N(Po[n])
op,M�). We let StrMen denote the full simplicial subset of

StrM
en

spanned by those vertices which are enriched n-strings in M (see Definition 4.7.1.6).

Remark 4.7.1.18. Let p : M� → ∆1 × N(∆)op be as in Construction 4.7.1.17. For each n ≥ 0,

there are canonical isomorphisms

StrMen ×N(∆)op {[n]} ' StrMen
[n] StrM×N(∆)op {[n]} 'M[n] .

Remark 4.7.1.19. The ∞-category StrM depends only on the ∞-category M, and not on the

weak enrichment M� → ∆1 ×N(∆)op.

Since the map N(Po′)op → N(∆)op is a right fibration of simplicial sets, Corollary HTT.3.2.2.12

immediately implies the following:

Proposition 4.7.1.20. Let M be an ∞-category. Then the map q0 : StrM → N(∆)op is a

coCartesian fibration. Moreover, a morphism α in StrM is q0-coCartesian if and only if, for every

morphism β in N(Po0)op lying over q0(α), the image of β (under α) is an equivalence in M.

Remark 4.7.1.21. In the situation of Proposition 4.7.1.20, every map f : [n] → [m] of linearly

ordered sets determines a functor StrM[m] → StrM[n], which can be identified with the functor

M[m] →M[n] given by composition with f .

The analogous result for ∞-categories of enriched strings is a bit more difficult to state.

Lemma 4.7.1.22. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. Then:

(1) The projection map q : StrM
en → N(∆)op is a categorical fibration.
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(2) For every object X ∈ StrM
en

and every inert morphism α : q(X) → [n] in N(∆)op, there

exists a q-coCartesian morphism α : X → Y in StrM
en

with q(α) = α.

(3) Let α : X → Y be a morphism in StrM
en

such that α = q(α) is an inert morphism [m]→ [n]

in N(∆)op. Then α is q-coCartesian if and only if, for every pair of integers 0 ≤ i ≤ j ≤ n,

the induced map X(α(i), α(j))→ Y (i, j) is an equivalence in M�.

(4) Let α : X → Y satisfy the condition of (3). If X ∈ StrMen, then Y ∈ StrMen.

(5) Assume that p is a coCartesian fibration. Then the map q is a coCartesian fibration. More-

over, a morphism α : X → Y in N(∆)op is q-coCartesian if and only if, for every pair of

integers 0 ≤ i ≤ j ≤ n, the induced map X(α(i), α(j)) → Y (i, j) is an inert morphism in

M�, where α = q(α).

(6) Assume that p is a coCartesian fibration, and let α : X → Y be a morphism in StrM
en

satisfying the condition of (5). If X ∈ StrMen, then Y ∈ StrMen.

Proof. The map N(Po)op → N(∆)op is a Cartesian fibration and therefore a flat categorical fibration

(Example B.3.11). Assertion (1) now follows from Proposition B.4.5. Suppose that we are given

an object X ∈ StrM
en
[m] and an inert morphism α : [m]→ [n] in N(∆)op. Let Y0 ∈ StrM

en
[n] be the

composition of X with the map N(Po[n])
op → N(Po[m])

op determined by α. There is an evident

map α0 : X → Y0 covering α, which is q-coCartesian by Lemma B.4.8. This proves (2). Note

that the map α0 satisfies the criterion of (3). If α : X → Y ′ is any morphism covering α, then the

induced map Y0 → Y is an equivalence if and only if X(α(i), α(j))→ Y (i, j) is an equivalence for all

0 ≤ i ≤ j ≤ n, which proves (3). For assertion (4), we may assume without loss of generality that

Y = Y0 in which case the result is obvious. Assertion (5) is a special case of Corollary HTT.3.2.2.12 .

It remains to prove (6). Assume that p is a coCartesian fibration and let α : X → Y be a

q-coCartesian morphism which covers a map α : [m]→ [n] in N(∆)op. Assume further that X is an

enriched m-string; we wish to show that Y is an enriched n-string. Let 0 ≤ i ≤ i′ ≤ j ≤ n; we wish

to show that u : Y (i, j)→ Y (i′, j) is an inert morphism in M�. We have a commutative diagram

X(α(i), α(j))
v //

u′

��

Y (i, j)

u

��
X(α(i′), α(j))

v′ // Y (i′, j).

Since v is q-coCartesian (by (5)), it will suffice to show that u ◦ v ' v′ ◦ u′ is q-coCartesian. This

follows from the fact that u′ and v′ are q-coCartesian (for v′ this follows from (5), for u′ it follows

from our assumption that X is an enriched m-string).

Let L : M� → C� be a left adjoint to the inclusion. To complete the proof, we must show that

for 0 ≤ i ≤ i′ ≤ j′ ≤ j ≤ n, the map f : LY (i, j) → LY (i′, j′) is an inert morphism in C�. The
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argument proceeds as above. Consider the diagram

LX(α(i), α(j))
g //

f ′

��

LY (i, j)

f
��

LX(α(i′), α(j′))
g′ // LY (i′, j′).

Since L carries q-coCartesian morphisms in M� to q-coCartesian morphisms in C�, the morphisms

g and g′ are q-coCartesian. Consequently, to prove that f is inert, it will suffice to show that

f ◦g ' g′ ◦f ′ is q-coCartesian. We are therefore reduced to showing that f ′ is q-coCartesian, which

follows from our assumption that X is an enriched m-string.

From Lemma 4.7.1.22 we immediately deduce the following:

Proposition 4.7.1.23. Let p : M� → ∆1 ×N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. Then:

(1) The projection map q : StrMen → N(∆)op is a categorical fibration.

(2) For every object X ∈ StrMen and every inert morphism α : q(X) → [n] in N(∆)op, there

exists a q-coCartesian morphism α : X → Y in StrM
en

with q(α) = α.

(3) Let α : X → Y be a morphism in StrMen such that α = q(α) is an inert morphism [m]→ [n]

in N(∆)op. Then α is q-coCartesian if and only if, for every pair of integers 0 ≤ i ≤ j ≤ n,

the induced map X(α(i), α(j))→ Y (i, j) is an equivalence in M�.

(4) Assume that p is a coCartesian fibration. Then the map q is a coCartesian fibration. More-

over, a morphism α : X → Y in N(∆)op is q-coCartesian if and only if, for every pair of

integers 0 ≤ i ≤ j ≤ n, the induced map X(α(i), α(j)) → Y (i, j) is an inert morphism in

M�, where α = q(α).

Lemma 4.7.1.24. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}, and let q : StrMen → N(∆)op be the induced

map. Let n ≥ 0, let Po0
[n] ⊆ Po[n] be defined as in the proof of Proposition 4.7.1.13, and let

Po1
[n] = Po0

[n] ∪{(0, n)} ⊆ Po[n]. Suppose we are given a diagram

N(Po1
[n])

op X //

��

StrMen

q

��
N(Po[n])

op // N(∆)op

where X carries each morphism in Po1
[n] to a q-coCartesian morphism in StrM. Then X is a

q-limit diagram.
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Proof. Let J denote the fiber product N(Po)op ×N(∆)op N(Po1
[n])

op, so that the objects of J can be

identified with sequences 0 ≤ i ≤ i′ ≤ j′ ≤ j ≤ n such that (i, j) ∈ Po1
[n], and let J0 be the full

subcategory spanned by those objects where (i, j) ∈ Po0
[n]. The diagram X determines a functor

F : J → M�. According to Proposition B.4.9, it will suffice to show that F is a p-right Kan

extension of F0 = F | J0. Fix an object σ ∈ J which does not belong to J0, necessarily of the form

0 ≤ i ≤ i′ ≤ j′ ≤ j ≤ n, where i = 0 and j = n; we wish to prove that F is a p-right Kan

extension of F0 at σ. Replacing [n] by the interval {i′, i′ + 1, . . . , j′}, we can reduce to the case

where i′ = 0 and j′ = n. Then σ is an initial object of J, and we wish to prove that F exhibits F (σ)

as a p-limit of the diagram F0. Let J1 be the full subcategory of J0 spanned by those sequences

0 ≤ i ≤ i′ ≤ j′ ≤ j ≤ 0 where i = i′ and j = j′. The inclusion J1 ⊆ J0 admits a right adjoint, so

that J1 → J0 is right cofinal. It will therefore suffice to show that F exhibits F (σ) as a p-limit of

the diagram F1 = F | J1.

Let L : M� → C� be a left adjoint to the inclusion and consider the natural transformation

F → LF , which we identify with a functor F+ : ∆1 × J → M�. It now suffices to show that F+

exhibits F+(0, σ) as a p-limit of the diagram F+|∆1 × J1. This follows from assertion (b) in the

proof of Proposition 4.7.1.13.

Lemma 4.7.1.25. Let M be an ∞-category and let q0 : StrM→ N(∆)op be the induced map. Let

n ≥ 0, Po0
[n], and Po1

[n] be as in the statement of Lemma 4.7.1.24, and suppose we are given a

diagram

N(Po1
[n])

op X //

��

StrM

q0

��
N(Po[n])

op // N(∆)op

where X carries each morphism in Po1
[n] to a q0-coCartesian morphism in StrM. Then X is a

q0-limit diagram.

Proof. Let J denote the fiber product N(Po′)op ×N(∆)op N(Po1
[n])

op, so that the objects of J can

be identified with sequences 0 ≤ i ≤ k ≤ j ≤ n such that (i, j) ∈ Po1
[n], and let J0 be the full

subcategory spanned by those objects where (i, j) ∈ Po0
[n]. The diagram X determines a functor

F : J→M. According to Proposition B.4.9, it will suffice to show that F is a right Kan extension

of F0 = F | J0. Fix an object σ ∈ J given by 0 ≤ i ≤ k ≤ j ≤ n and let J′ = J0×J Jσ/. We wish to

show that F exhibits F (σ) as a limit of the diagram F | J′. Since F carries every morphism in J to

an equivalence in M, it will suffice to show that J′ is weakly contractible. This is clear, since J′ has

a final object.

Remark 4.7.1.26. In the situation of Lemma 4.7.1.25, we will say that a morphism α in StrM is

inert if q0(α) is inert and α is q0-Cartesian.
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Lemma 4.7.1.27. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. Consider the diagram

StrMen f //

q &&

StrM

q0yy
N(∆)op.

Then:

(1) The map f : StrMen → StrM is a categorical fibration.

(2) Let X ∈ StrMen and suppose we are given an inert morphism α : f(X)→ Y in StrM. Then

there exists an f -coCartesian morphism α : X → Y lifting α.

(3) Let α : f(X) → Y be as in (2), and let α0 = q0(α) : [m] → [n] be the induced morphism

in N(∆)op. An arbitrary morphism α : X → Y lifting α is f -coCartesian if and only if α

induces an equivalence X(α0(i), α0(j))→ Y (i, j) for 0 ≤ i ≤ j ≤ n.

(4) Assume that p is a coCartesian fibration, let X ∈ StrMen, and suppose we are given a q0-

coCartesian morphism α : f(X)→ Y in StrM. Then there exists an f -coCartesian morphism

α : X → Y lifting α.

(5) Let α : f(X) → Y be as in (4), and let α0 = q0(α) : [m] → [n] be the induced morphism

in N(∆)op. An arbitrary morphism α : X → Y lifting α is f -coCartesian if and only if α

induces a p-coCartesian map X(α0(i), α0(j))→ Y (i, j) for 0 ≤ i ≤ j ≤ n.

(6) Let n ≥ 0, Po0
[n], and Po1

[n] be as in the statement of Lemma 4.7.1.24, and suppose we are

given a diagram

N(Po1
[n])

op X //

��

StrMen

q

��
N(Po[n])

op // N(∆)op.

If X carries every morphism in N(Po1
[n])

op to a q-coCartesian morphism in StrMen, then X

is an f -limit diagram.

Proof. To prove (1), it suffices to show that the map f : StrM
en → StrM is a categorical fibration:

that is, that f has the right lifting property with respect to every cofibration of simplicial sets

i : A → B which is also a categorical equivalence. This is equivalent to the requirement that, for

every map B → N(∆)op, the morphism p has the right lifting property with respect to the induced

map

j : (A×N(∆)op N(Po)op)
∐

A×N(∆)opN(Po′)op

(B ×N(∆)op N(Po′)op)→ B ×N(∆)op N(Po)op.
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Since p is a categorical fibration and j is a cofibration, it suffices to show that j is a categorical

equivalence. Because the Joyal model structure is left proper, we are reduced to showing that the

inclusions

A×N(∆)op N(Po)op → B ×N(∆)op N(Po)op

A×N(∆)op N(Po′)op → B ×N(∆)op N(Po′)op

are categorical equivalences. This follows from Proposition HTT.3.3.1.3 , since the forgetful functors

N(Po)op → N(∆)op N(Po′)op → N(∆)op

are Cartesian fibrations.

Assertions (2), (3), (4), and (5) follow by combining Propositions 4.7.1.20, 4.7.1.23, and

HTT.2.4.1.3 . Similarly, assertion (6) follows from Lemma 4.7.1.24 and Proposition HTT.2.4.1.3 .

Definition 4.7.1.28. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. For every object M ∈ M, we let C[M ]�

denote the fiber product N(∆)op ×StrM StrMen, where the map N(∆)op → StrM corresponds to

the constant functor N(Po′)op →M taking the value M ∈M.

Remark 4.7.1.29. In the situation of Definition 4.7.1.28, consider the projection map θ : C[M ]� →
N(∆)op. The inverse image θ−1{[1]} is isomorphic to the ∞-category C[M ] of Definition 4.7.1.1.

Proposition 4.7.1.30. Let p : M� → ∆1 ×N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. For every object M ∈M, the projection map

θ : C[M ]� → N(∆)op exhibits C[M ]� as a planar ∞-operad. If p is a coCartesian fibration, then θ

exhibits C[M ]� as a A∞-monoidal ∞-category.

Proof. We verify that the functor θ satisfies the requirements of Definition 2.3.3.28. Conditions

(1) and (2) follow immediately from Lemma 4.7.1.27 (which also implies that θ is a coCartesian

fibration if p is a coCartesian fibration), and condition (4) follows from Proposition 4.7.1.13. To

verify condition (3), consider an object X ∈ C[M ]�[n] and a collection of θ-coCartesian morphisms

αi : X → Xi covering the maps [n] → [1] in N(∆)op given by the inclusions [1] ' {i − 1, i} ↪→ [n]

in ∆ for 1 ≤ i ≤ n. We wish to prove that the maps αi exhibit X as a θ-product of the objects

Xi. Assume for notational simplicity that n 6= 1 (otherwise the result is obvious). Let Po1
[n] be

as in the statement of Lemma 4.7.1.24 and let Po2
[n] ⊆ Po1

[n] be the subset consisting of pairs

(i, j) where either (i, j) = (0, n) or j = i + 1. The morphisms {αi}1≤i≤n determine a diagram

X0 : N(Po2
[n])

op → StrMen which fits into a commutative diagram

N(Po2
[n])

op X0 //

��

StrMen

f

��
N(Po1

[n])
op //

X

99

StrM.
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We wish to prove that X0 determines a θ-limit diagram in C[M ]�. Using Lemma HTT.4.3.2.13 ,

we can choose an f -left Kan extension X of X0 as indicated in the diagram. Lemma 4.7.1.27

implies that X is an f -limit diagram, so that X determines a θ-limit diagram X ′ in C[M ]�. To

complete the proof, it will suffice to show that X ′|N(Po2
[n])

op is a θ-limit diagram. In view of

Lemma HTT.4.3.2.7 , it will suffice to show that X ′ is a θ-right Kan extension of X ′|N(Po2
[n])

op.

Unwinding the definitions, it will suffice to show that every object Y ∈ C[M ]�[0] is θ-final. To this

end, choose any object Z ∈ C[M ]�[n] and any morphism α : [n] → [0] in N(∆)op; we wish to show

that mapping space

MapαC[M ]�(Z, ∗) = MapC[M ]�(Z, Y )×Hom∆([0],[n]) {α}

is weakly contractible. Since α is inert, we can choose a θ-coCartesian morphism Z → Z0 in

C[M ]� lying over α. It will therefore suffice to show that the mapping space MapC[M ]�
[0]

(Z0, Y ) is

contractible. This is clear, since C[M ]�[0] is isomorphic to ∆0.

Remark 4.7.1.31. In the situation of Definition 4.7.1.1, the ∞-category C[M ] ×C {1C} can be

identified with the Kan complex M/M ×M{M} ' MapM(M,M). The monoidal structure on C[M ]

induces a coherently associative multiplication on MapM(M,M), which simply encodes the com-

position in the ∞-category M. In particular, if 1̃C is an object of C[M ]×C {1C} which classifies an

equivalence from M to itself, then 1̃C is an invertible object of C[M ] (see Remark 4.1.1.17).

In what follows, it will be convenient to work with a slight variant of the ∞-category C[M ]�.

Definition 4.7.1.32. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as

weakly enriched over the planar ∞-operad C� = M�×∆1{1}. We define maps of simplicial sets

StrM
en,+ → N(∆)op so that the following universal property is satisfied: for every map of simplicial

sets K → N(∆)op, there are canonical bijections

FunN(∆)op(K,StrM
en,+

) ' Fun∆1×N(∆)op(∆
1 ×K ×N(∆)op N(Po)op,M�)

Unwinding the definitions, we see that the fiber of StrM
en,+

over an object [n] ∈ ∆op can be

identified with Fun∆1×N(∆)op(∆
1 × N(Po[n])

op,M�). We let StrMen,+ denote the full simplicial

subset of StrM
en,+

spanned by those vertices which correspond to functors F : ∆1 ×N(Po[n])
op →

M� such that F0 = F |({0}×N(Po[n])
op is an enriched n-string and F is a p-left Kan extension of F0.

The inclusion {0}×N(Po)op ↪→ ∆1×N(Po)op induces a trivial Kan fibration u : StrMen,+ → StrM.

If M ∈ M is an object, we let C+[M ]� denote the fiber product C[M ]� ×StrMen StrMen,+, so that

u induces a trivial Kan fibration C+[M ]� → C[M ]�.

Remark 4.7.1.33. Consider the functor i : N(∆)op → ∆1×N(Po)op, given by [n] 7→ (1, ([n], 0, n)).

In the situation of Definition 4.7.1.32, let q+ denote the projection map C+[M ]� → N(∆)op. It
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follows from Proposition 4.7.1.30 that q+ exhibits C+[M ]� as a planar ∞-operad. Composition

with i induces a categorical fibration θ : C+[M ]� → C�, and Lemma 4.7.1.27 implies that θ is a

map of planar ∞-operads (that is, θ carries inert morphisms in C+[M ]� to inert morhisms in C�).

If p : M� → ∆1 × N(∆)op is a coCartesian fibration, then q+ is a coCartesian fibration and θ

carries q+-coCartesian morphisms to p-coCartesian morphisms (that is, θ is a map of A∞-monoidal

∞-categories).

We now come to the main result of this section, which describes the ∞-category of algebra

objects of C[M ]�.

Theorem 4.7.1.34. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. Let s : N(∆)op → N(Po)op be the functor

given on objects by [n] 7→ ([n], 0, n). Then, for each object M ∈ M, composition with s induces a

categorical equivalence

θ : AlgA∞(C+[M ])→ LModA∞(M)×M {M}.

Remark 4.7.1.35. In the situation of Theorem 4.7.1.34, we obtain an equivalence of∞-categories

AlgA∞(C[M ])→ LModA∞(M)×M {M}

(well-defined up to a contractible space of choices) by composing a section of the trivial Kan

fibration AlgA∞(C+[M ])→ AlgA∞(C[M ]) with the categorical equivalence

θ : AlgA∞(C+[M ])→ LModA∞(M)×M {M}.

Proof. Let X ⊆ Fun∆1×N(∆)op(∆
1×N(Po)op,M�) be the full subcategory spanned by those functors

F satisfying the following conditions:

(a) If 0 ≤ i ≤ i′ ≤ j ≤ n, then the map F (0, [n], i, j)→ F (0, [n], i′, j) is inert.

(b) If 0 ≤ i ≤ i′ ≤ j′ ≤ n, then the map F (1, [n], i, j)→ F (1, [n], i′, j′) is inert.

(c) For 0 ≤ i ≤ j ≤ n, the map F (0, [n], i, j)→ F (1, [n], i, j) is inert.

(d) If α : [m] → [n] is an inert morphism in ∆, then F (0, [n], α(i), α(j)) → F (0, [m], i, j) is an

equivalence in M�.

Note that conditions (a) and (d) imply the following:

(a′) For every inert morphism α : [m] → [n] in ∆ satisfying α(m) = n, the induced map

F (0, [n], 0, n)→ F (0, [m], 0,m) is inert.

Similarly, (b) and (d) imply:
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(b′) For every inert morphism α : [m]→ [n] in ∆, the induced map F (1, [n], 0, n)→ F (1, [m], 0,m)

is inert.

Finally, (c) and (d) imply:

(d′) If α : [m] → [n] is an inert morphism in ∆, then F (1, [n], α(i), α(j)) → F (1, [m], i, j) is an

equivalence in M�.

It follows that composition with s induces a forgetful functor θ′ : X→ LModA∞(M). Let X0 ⊆
Fun(N(Po′)op,M) be the full subcategory spanned by those functors which carry each morphism in

N(Po′)op to an equivalence in M. Let M ∈ X0 be the constant functor taking the value M ∈ M.

Unwinding the definitions, we have a canonical isomorphism AlgA∞(C+[M ]) ' X×X0M . In other

words, we can identify θ′ with the map between vertical fibers determined by the diagram

X
φ//

��

LModA∞(M)

��
X0

φ0 //M .

It will therefore suffice to show that the functors φ and φ0 are categorical equivalences. The map

φ0 is an equivalence since N(Po′)op is weakly contractible (it has a final object, given by ([0], 0, 0)).

It will therefore suffice to show that φ is a categorical equivalence. Let X′ be the full subcategory

of Fun∆1×N(∆)op({0}×N(Po)op,M�) spanned by those functors F which satisfy (a′), (b′), (d), (d′),

and the following weaker version of (c):

(c′) For n ≥ 0, the map F (0, [n], 0, n)→ F (1, [n], 0, n) is inert.

A functor F ∈ Fun∆1×N(∆)op({0}×N(Po)op,M�) belongs to X′ if and only if F0 = F |(∆1×N(∆)op)

determines an object of LModA∞(M) and F is a p-right Kan extension of F0. Then X′ is a full

subcategory of X and Proposition HTT.4.3.2.15 guarantees that the restriction map φ|X′ is a trivial

Kan fibration. We will complete the proof by showing that X = X′. In other words, we will show that

a functor F ∈ X′ also satisfies conditions (a), (b), and (c). To prove (a), consider 0 ≤ i ≤ i′ ≤ j ≤ n.

Condition (d) guarantees that the induced map F (0, [n], i, j) → F (0, [n], i′, j) is equivalent to the

map F ([j−i], 0, j−i)→ F ([j−i′], 0, j−i′) and is therefore inert by (a′). To prove (b), we assume that

0 ≤ i ≤ i′ ≤ j′ ≤ j ≤ n and note that (d′) implies that F (0, [n], i, j)→ F (0, [n], i′, j′) is equivalent to

the map LF ([j−i], 0, j−i)→ LF ([j′−i′], 0, j′−i′) which is inert by (b′). It remains to verify (c). Fix

0 ≤ i ≤ j ≤ n; we wish to show that the map u : F (0, [n], i, j)→ F (1, [n], i, j) is inert. Using (b), we

are reduced to proving that the composite map F (0, [n], i, j)→ F (1, [n], i, j) ' F (1, [j − i], 0, j − i)
is inert. This map factors as a composition

F (0, [n], i, j)
u′→ F (0, [j − i], 0, j − i) u′′→ F (1, [j − i], 0, j − i)

where u′ is an equivalence by (a) and u′′ is inert by virtue of (c′).



674 CHAPTER 4. ASSOCIATIVE ALGEBRAS AND THEIR MODULES

Our next goal is to analyze the relationship between the planar ∞-operads C[M ]� and C�. In

the situation of Definition 4.7.1.32, we let C+[M ] denote the fiber product C+[M ]� ×N(∆)op {[1]}.
Our starting point is the following observation:

Lemma 4.7.1.36. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. For every object M ∈ M, the categorical

fibration θ : C+[M ]� → C� of Remark 4.7.1.33 induces a right fibration of ∞-categories θ[1] :

C+[M ]→ C.

Proof. Let J be the full subcategory of the product ∆1×N(Po[1])
op obtained by removing the vertex

(1, [1], 0, 0) and let J0 ⊂ J be the full subcategory obtained by removing the vertex (0, [1], 0, 0). Let

X0 be the full subcategory of Fun∆1×N(∆)op(J0,M
�)×M {M} spanned by the p-limit diagrams and

let X = Fun∆1×N(∆)op(J,M
�) ×Fun∆1×N(∆)op (J0,M

�) X0. The map θ[1] factors as a composition of

restriction functors

C+[M ]
φ→ X×M{M}

θ′→ X0
ψ→ C .

where φ and ψ are trivial Kan fibrations by Proposition HTT.4.3.2.15 . It will therefore suffice to

show that θ′ is a right fibration. But θ′ is a pullback of the right fibration (M�)/M →M�.

Let M� and M be as above. For each n ≥ 0 we can identify the map θ[n] : C+[M ]�[n] → C�
[n] with

the nth power of the right fibration θ[1] of Lemma 4.7.1.36. The forgetful functor C+[M ]� → C� is

not a right fibration, but we have the following closely related result:

Lemma 4.7.1.37. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. Let M ∈ M be an object and let θ :

C+[M ]� → C� be as in Remark 4.7.1.33. For each n ≥ 0, every morphism f in C+[M ]�[m] is

θ-Cartesian.

Proof. We begin with an auxiliary construction. Define a map of simplicial sets C
� → N(∆)op so

that the following universal property is satisfied: for every map of simplicial sets K → N(∆)op,

there is a canonical bijection

Hom(Set∆)/N(∆)op
(K,C

�
)→ Hom(Set∆)/N(∆)op

(N(Po)op ×N(∆)op K,C
�).

For each n ≥ 0, the fiber C
�
[n] can be identified with FunN(∆)op(N(Po[n])

op,C�); we let C̃
�

denote the

full subcategory of C
�

spanned by those objects which correspond to functors F : N(Po[n])
op → C�

which are p-left Kan extensions of F |{([n], 0, n)}. Composition with the functor s : N(∆)op →
N(Po)op given by [n] 7→ ([n], 0, n) induces a restriction functor r : C

� → C�.

We claim that r induces a trivial Kan fibration C̃
�
→ C�. To prove this, we associate to every

map of simplicial sets K → N(∆)op the fiber product N(Po)opK = K×N(∆)opN(Po)op. Let MK be the

collection of all morphisms in N(Po)opK whose image in K is degenerate. Then s determines a map of
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marked simplicial sets uK : K[ → (N(Po)opK ,MK). When K is a simplex, Proposition HTT.4.3.2.15

implies that uK is a weak equivalence of marked simplicial sets. It follows by standard devissage

argument that uK is a weak equivalence of marked simplicial sets for every K; in particular, every

map ∆n → N(∆)op induces a trivial cofibration

∆n,[
∐

(∂∆n)[

(N(Po)op∂∆n ,M∂∆n) ↪→ (N(Po)op∂∆n ,M∂∆n)

from which it follows immediately that the map C̃
�
→ C� has the right lifting property with respect

to ∂∆n ↪→ ∆n.

The map θ is a pullback of the restriction functor θ : StrMen,+ → StrM ×N(∆)op C
�. It will

therefore suffice to show that f is θ-Cartesian. Let φ : StrM ×N(∆)op C
� → C�, so that φ is a

pullback of the map φ0 : StrM→ N(∆)op. The image of f in StrM is an equivalence and therefore

φ0-Cartesian. It follows that θ(f) is φ-Cartesian. Consequently, to prove that f is θ-Cartesian, it

will suffice to show that f is (φ ◦ θ)-Cartesian (Proposition HTT.2.4.1.3 ). The map φ ◦ θ factors

as a composition

StrMen,+ ψ→ C̃
�
→ C�,

where the second map is a trivial Kan fibration. It will therefore suffice to show that f is ψ-

Cartesian.

Let f : X → Y be a morphism in StrMen,+
[n] . Set J = ∆1 × N(Po[n])

op and let J0 = {1} ×
N(Po[n])

op ⊆ J. We can identify X and Y with functors J → M� and f with a functor F :

∆1 × J → M�. According to Proposition B.4.9, it will suffice to show that F is a p-right Kan

extension of F0 = F | I, where I = (∆1 × J0)
∐
{1}×J0

({1} × J). Fix an object of E of ∆1 × J not

belonging to I having image ([n], i, j) in ∆; we will prove that F is a p-right Kan extension of F0

at E. That is, we show that F exhibits F (E) as a p-limit of the diagram F0|(IX/). Unwinding the

definitions, we must show that the diagram

X(0, [n], i, j) //

��

Y (0, [n], i, j)

��
X(1, [n], i, j) // Y (1, [n], i, j)

is a p-limit square. Since Y ∈ StrMen,+
[n] , it exhibits Y (0, [n], i, j) as a p-product of Y (1, [n], i, j)

with Y (0, [n], j, j). It will therefore suffice to show that F exhibits X(0, [n], i, j) as a p-product

of X(1, [n], i, j) with Y (0, [n], j, j) ' M ' X(0, [n], j, j), which follows from our assumption that

X ∈ StrMen,+
[n] .

Remark 4.7.1.38. In the situation of Lemma 4.7.1.36, the functor θ[1] : C+[M ]→ C is conservative.

It follows that for each n ≥ 0, the functor θ[n] : C+[M ]�[n] → C�
[n] is conservative, so that θ is itself

conservative. In particular, we note that a morphism α in C+[M ]� is inert if and only if θ(α) is an

inert morphism in C�.
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Proposition 4.7.1.39. Let p : M� → ∆1 ×N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar∞-operad C� = M�×∆1{1}. For each object M ∈M, the forgetful functor

θ : C+[M ]� → C� induces a right fibration AlgA∞(C+[M ])→ AlgA∞(C).

Proof. Combine Remark 4.7.1.38 with Lemmas 4.7.1.36 and 4.7.1.37.

Corollary 4.7.1.40. Let p : M� → ∆1 × N(∆)op be a coCartesian fibration which exhibits M =

M�
0,[0] as left-tensored over the A∞-monoidal ∞-category C� = M�×∆1{1}. Assume that the ∞-

category C[M ] has a final object A. Then:

(1) The object A can be promoted to an object of AlgA∞(C+[M ]) in an essentially unique way.

We will abuse notation by denoting this object also by A.

Let θ : AlgA∞(C+[M ])→ AlgA∞(C) be the forgetful functor. Then:

(2) There is a canonical equivalence of ∞-categories AlgA∞(C)/θ(A) ' LModA∞(M)×M {M}.

Proof. Proposition 4.7.1.30 implies that the forgetful functor C[M ]� → N(∆)op exhibits C[M ]�

as a A∞-monoidal ∞-category, so that C[M ]� ' O⊗×Assoc⊗ N(∆)op for some coCartesian fibra-

tion of ∞-operads O⊗ → Assoc⊗. Combining Corollary 3.2.2.5 with Proposition 4.1.3.19, we

conclude that A can be promoted to an object of AlgA∞(C[M ]), which is automatically a final

object of AlgA∞(C[M ]) (and therefore unique up to equivalence). Since the map AlgA∞(C+[M ])→
AlgA∞(C[M ]) is a trivial Kan fibration; we may lift A to a final object of AlgA∞(C+[M ]), which we

will also denote by A. This proves (1). We have a diagram of maps

AlgA∞(C)/θ(A) ← AlgA∞(C+[M ])/A → AlgA∞(C+[M ])→ LModA∞(M)×M {M}

which are equivalences of∞-categories by virtue of Proposition 4.7.1.39 and Theorem 4.7.1.34.

Corollary 4.7.1.41. Let p : M� → ∆1 × N(∆)op be a coCartesian fibration which exhibits M =

M�
0,[0] as left-tensored over the A∞-monoidal ∞-category C� = M�×∆1{1}. Let M ∈ LModA∞(M)

be a left module object having images M ∈ M and A ∈ AlgA∞(C). Suppose that the multiplication

map A⊗M →M exhibits A as a classifying object for endomorphisms of M . Then, for every algebra

object B ∈ AlgA∞(C), we have a canonical isomorphism MapAlgA∞ (C)(B,A) ' LModA∞B (M)×M{M}
in the homotopy category H of spaces.

Corollary 4.7.1.42. Let C be a A∞-monoidal ∞-category, M an ∞-category which is left-tensored

over C, and M ∈M an object. Then the forgetful functor

LModA∞(M)×M {M} → AlgA∞(C)

is a right fibration.

Proof. Combine Proposition 4.7.1.39 with Theorem 4.7.1.34.
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4.7.2 Split Simplicial Objects

Suppose we are given a chain complex of abelian groups

· · · → A2
d2→ A1

d1→ A0.

An augmentation on A∗ is a map of abelian groups d0 : A0 → A−1 such that d0 ◦ d1 = 0. We

say that A∗ is a split exact resolution of A−1 if there exists a contracting chain homotopy for the

extended chain complex

· · · → A2
d2→ A1

d1→ A0
d0→ A−1.

That is, A∗ is a split exact resolution of A−1 if there exist maps {hn : An−1 → An}n≥0 such that

d0h0 = idA−1 and dn+1hn+1 + hndn = idAn for n ≥ 0. In this case, if we let Zn ⊆ An be the kernel

of the differential dn, then we have canonical isomorphisms An ' Zn ⊕Zn−1 for each n ≥ 0, where

the inclusion Zn−1 ↪→ An is given by hn|Zn−1. This implies that the chain complex A∗ is exact. In

fact, a much stronger assertion is true: for any additive functor F , the induced chain complex

· · · → F (A2)→ F (A1)→ F (A0)→ F (A−1)

is exact, even if F is not an exact functor.

In the situation above, we can use the Dold-Kan correspondence (Theorem 1.2.3.7) to identify

A∗ with the normalized chain complex of a simplicial abelian group C•. It is possible to formulate

the condition that A∗ is a split exact resolution of an abelian group A−1 in terms of the simplicial

abelian group C•. Moreover, this formulation makes sense not only for simplicial objects of the

category of abelian groups, but for simplicial objects of an arbitrary ∞-category.

Notation 4.7.2.1. The category ∆−∞ is defined as follows: the objects of ∆−∞ are integers

n ≥ −1, and Hom∆−∞([m], [n]) is the set of nondecreasing maps maps α : [m]∪{−∞} → [n]∪{−∞}
such that α(−∞) = −∞ (which we regard as a least element of both [m]∪{−∞} and [n]∪{−∞}).
We have inclusions of subcategories ∆ ⊆ ∆+ ⊆ ∆−∞, where the latter identifies ∆+ with the

subcategory of ∆−∞ having the same objects, and a map α : [m] ∪ {−∞} → [n] ∪ {−∞} belongs

to ∆+ if and only if α−1(−∞) = {−∞}.

Definition 4.7.2.2. Let C be an ∞-category. We will say that an augmented simplicial object

U : N(∆+)op → C is split if U extends to a functor N(∆−∞)op → C. We will say that a simplicial

object U : N(∆)op → C is split if it extends to a split augmented simplicial object. Given a functor

G : D → C, we will say that an (augmented) simplicial object U of D is G-split if G ◦ U is split,

when regarded as an (augmented) simplicial object of C.

Remark 4.7.2.3. According to Lemma HTT.6.1.3.16 , every split augmented simplicial object is a

colimit diagram. (In [98], we used a slightly different notation, employing a category ∆∞ in place

of the category ∆−∞ defined above. However, these two categories are equivalent to one another,

via the functor which reverses order.)
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Remark 4.7.2.4. Let F : C→ D be a functor between∞-categories, and let V be a split simplicial

object of C. Then F ◦ V is a split simplicial object of D. It follows from Lemma HTT.6.1.3.16

implies that V admits a colimit in C, and that F preserves that colimit.

Example 4.7.2.5. Let M be an ∞-category which is left tensored over a monoidal ∞-category

C⊗, let A ∈ Alg(C), and G : LModA(M)→M denote the forgetful functor. Let M• be a simplicial

object of LModA(M) which is G-split. Then G(M•) admits a colimit in M which is preserved by

the functor C ⊗ • : M→M for each object C ∈ C. Applying Corollary 4.2.3.5, we deduce that M•
admits a colimit in LModA(M) which is preserved by the functor G.

Variant 4.7.2.6. Let M be an ∞-category which is bitensored over the a pair of monoidal ∞-

categories C⊗ and D⊗, and suppose we are given algebra objects A ∈ Alg(C) and B ∈ Alg(D).

Let θ : RModB(M) → M denote the forgetful functor, and regard RModB(M) as an ∞-category

left-tensored over C (see §4.3.2). Let µ : ABModB(M) ' LModA(RModB(M)) → RModB(M) be

the forgetful functor, and let M• be a simplicial object of ABModB(M). Assume that M• is θ ◦ µ-

split. Then µ(M•) is a θ-split simplicial object of RModB(M). It follows from Example 4.7.2.5 that

µ(M•) admits a geometric realization in RModB(M). For every object C ∈ C, the diagram

RModB(M)
C⊗ //

θ
��

RModB(M)

θ
��

M
C⊗ //M

commutes up to homotopy. It follows that the formation of the geometric realization of µ(M•) is

preserved by operation of tensor product with C. Applying Corollary 4.2.3.5, we deduce that M•
admits a geometric realization in ABModB(M), which is preserved by the forgetful functor µ. This

proves the following:

(∗) Let M• be ν-split simplicial object of ABModB(M), where ν = θ ◦ µ : ABModB(M) → M

is the forgetful functor. Then M• admits a geometric realization in ABModB(M), which is

preserved by the functor ν.

Example 4.7.2.7. We define a functor φ : N(∆−∞)op → N(∆)op by the formula φ({−∞}∪ [n]) '
{−∞} ? [n] ? [0] ' [n + 1], and let Φ : N(∆−∞)op → LM⊗ be the composition of φ with the

functor LCut : N(∆)op → LM⊗ of Construction 4.2.2.6. Note that Φ({−∞}) = m. Since {−∞}
is an initial object of ∆−∞, there is a canonical natural transformation α : Φ → Φ0, where

Φ0 : N(∆−∞)op → LM⊗ is the constant functor taking the value m.

Let q : M⊗ → LM⊗ be a coCartesian fibration of ∞-operads, corresponding to an ∞-category

M left-tensored over a monoidal ∞-category C⊗ = M⊗a . Let X : LM⊗ → M⊗ be an object of

LMod(M). We can identify X with a pair (A,M), where A is an algebra object of C and M ∈M has

the structure of a left module over A. The composition X◦Φ is a functor N(∆−∞)op →M⊗. Since q
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is a coCartesian fibration, we can lift α to a q-coCartesian natural transformation α : (X ◦Φ)→ X ′

for some functor X ′ : N(∆−∞)op → M. Unwinding the definitions, we see that X ′|N(∆)op is

the bar construction BarA(A,M)• of Construction 4.4.2.7. It follows that BarA(A,M)• is a split

simplicial object of M. Moreover, Remark 4.7.2.3 implies that X ′|N(∆+)op is a colimit diagram,

which produces another proof that |BarA(A,M)•| ' X ′({−∞}) = M .

The construction [n] 7→ [0] ? [n] ' [n+ 1] determines a functor ρ from ∆+ to itself. There is an

evident natural transformation α : id∆+ → ρ. Let j denote the inclusion ∆+ ↪→ ∆−∞. There is

another natural transformation of functors β : j ◦ ρ → j, which carries an object [n] ∈ ∆+ to the

map f : [n + 1] ∪ {−∞} → [n] ∪ {−∞} such that f(0) = ∞ and f(k) = k − 1 for 0 < k ≤ n + 1.

The composition of j(α) and β is the identity natural transformation from the functor j to itself.

We can view j(α) and β as determining a map of simplicial sets N(∆+)×∆2 → N(∆∞).

Proposition 4.7.2.8. The diagram

N(∆+)× Λ2
0

//

��

N(∆+)

��
N(∆+)×∆2 // N(∆−∞)

is a homotopy pushout square of simplicial sets (with respect to the Joyal model structure).

Proof. Let f : [m] ∪ {−∞} → [n] ∪ {−∞} be a morphism in ∆−∞. We define the complexity c(f)

to be the cardinality of the set {i ∈ [m] : f(i) =∞}. If σ is an k-simplex of N(∆−∞) corresponding

to a sequence of maps

[n0] ∪ {−∞} f1→ · · · fk→ [nk] ∪ {−∞},

then we define the complexity c(σ) to be the sum c(f1) + · · ·+ c(fk). For every nonnegative integer

m, let X(m) denote the simplicial subset of N(∆−∞) spanned by those simplices σ such that

c(σ) ≤ m. We note that X(0) can be identified with N(∆+), and that N(∆−∞) =
⋃
mX(m).

Proposition 4.7.2.8 follows immediately from the following pair of assertions:

(a) The diagram

N(∆+)× Λ2
0

//

��

N(∆+)

��
N(∆+)×∆2 // X(1)

is a homotopy pushout square of simplicial sets (with respect to the Joyal model structure).

(b) For n ≥ 2, the inclusion X(n− 1) ↪→ X(n) is a categorical equivalence.

The proofs of both (a) and (b) will require some auxiliary constructions. Let F1, . . . , Fk be a

sequence of functors from ∆+ to itself (in practice, each of these functors will be either ρ or the

identity). We define a category C[F1, . . . , Fk] as follows:
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(i) An object of C[F1, . . . , Fk] is a pair ([n], i), where [n] ∈∆+ and 0 ≤ i ≤ k.

(ii) If i ≤ j, a morphism from ([m], i)→ ([n], j) in C[F1, . . . , Fk] is a map [m]→ Fi+1 · · ·Fj [n] in

∆+. If i > j, there are no morphisms from ([m], i) to ([n], j) in C[F1, . . . , Fk].

We now prove (a). The natural transformation β : jρ→ j determines a map N(C[ρ])→ N(∆∞),

which factors through the simplicial subset X(1). This map fits into a commutative diagram

N(∆+)× Λ2
0

//

��

N(C[id]) //

��

N(∆+)

��
N(∆+)×∆2 // N(C[ρ]) // X(1)

where the right hand square is a pushout square and therefore (since the vertical maps are all

cofibrations) a homotopy pushout square. It will therefore suffice to show that the left square is a

homotopy pushout diagram. This square fits into a larger diagram

N(∆+)×∆{0,1}
θ //

��

N(∆+)

��
N(∆+)× Λ2

0
//

��

N(C[id])

��
N(∆+)×∆2 // N(C[ρ])

where the upper square is a pushout diagram and therefore (since the vertical maps are again

cofibrations) a homotopy pushout square; here the map θ classifies the natural transformation

α : id→ ρ. It therefore suffices to show that the outer square is a homotopy pushout. This square

fits into a larger diagram

N(∆+)× {1} //

��

N(∆+)×∆{0,1}
θ //

��

N(∆+)

��
N(∆+)×∆{1,2} // N(∆+)×∆2 // N(C[ρ]).

The left square is obviously a homotopy pushout diagram, and the outer rectangle is a homotopy

pushout diagram by Proposition HTT.3.2.2.7 . It follows that the right square is a homotopy

pushout diagram, as desired.

We now prove (b). Fix n ≥ 2. For every subset S ⊆ {1, . . . , n}, let CS = C[F1, . . . , Fn] where

Fi =

{
ρ if i ∈ S
id∆+ if i /∈ S.
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The natural transformation α : id∆+ → ρ determines inclusion functors CS → CS′ for S ⊆ S′. Let

Y = N(C{1,...,n}) and let YS = N(CS) for S ⊆ {1, . . . , n}, so that we can identify each YS with

a simplicial subset of Y . Let P be the collection of all subsets S ⊆ {1, . . . , n} and P0 ⊂ P the

collection of all proper subsets S ⊂ {1, . . . , n}. Let Y ′ =
⋃
S∈P0

YS ⊆ Y . The diagram S 7→ YS
is projectively cofibrant, so we can identify Y ′ with a homotopy colimit of the diagram {YS}S∈P0 .

There is an evident pushout diagram of simplicial sets

Y ′ //

��

Y

��
X(n− 1) // X(n).

Consequently, to prove that the inclusion X(n − 1) ↪→ X(n) is a categorical equivalence, it will

suffice to show that the inclusion Y ′ ↪→ Y is a categorical equivalence. In other words, we are

reduced to proving that the diagram {YS}S∈P is a homotopy colimit (with respect to the Joyal

model structure).

There is an obvious forgetful functor Y → ∆n. For every simplicial subset K ⊆ ∆n, let

ZK : P → Set∆ be the functor given by the formula ZK(S) = YS ×∆n K. We wish to prove

that Z∆n is a homotopy colimit diagram. Let K0 = ∆{0,1}
∐
{1}∆{1,2}

∐
{2} · · ·

∐
{n−1}∆{n−1,n},

so that the inclusion K0 ↪→ ∆n is a categorical equivalence. Since each of the projection maps

YS → ∆n is a Cartesian fibration, we deduce that the inclusion ZK0 → Z∆n is a weak equivalence

of diagrams (Proposition HTT.3.3.1.3 ). It will therefore suffice to show that ZK0 is a homotopy

colimit diagram. Since the collection of homotopy colimit diagrams in Set∆ is stable under the

formation of homotopy pushout squares, we can reduce further to proving that ZK is a homotopy

colimit diagram when K = {i} ⊆ ∆n for 0 ≤ i ≤ n or K = ∆{i−1,i} ⊆ ∆n for 0 < i ≤ n. In

the first case, this is obvious: the diagram Z{i} is isomorphic to the constant diagram taking the

value N(∆+), which is a homotopy colimit diagram because the simplicial set N(P0) is weakly

contractible (since P0 has a least element ∅ ⊂ {1, . . . , n}). To handle the second, let us suppose

that K = ∆{i−1,i}, so that ZK is given by the formula

ZK(S) =

{
N(C[ρ]) if i ∈ S
N(C[id]) otherwise.

Let P1 be the subset of P0 consisting of the subsets ∅, {i} ⊂ {1, . . . , n}. We observe that ZK |P0 is

a homotopy left Kan extension of ZK |P1. Consequently, to prove that ZK is a homotopy colimit

diagram, it suffices to show that ZK exhibits ZK({1, . . . , n}) as a homotopy colimit of the restriction

ZK |P1. Since P1 has a final object {i}, this follows from the observation that the map ZK({i})→
ZK({1, . . . , n}) is a categorical equivalence (in fact, an isomorphism) of simplicial sets.

For any ∞-category C, composition with the functor ρ : ∆+ → ∆+ determines a functor from

the ∞-category of augmented simplicial objects of C to itself. We will denote this functor by T .
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The natural transformation id → ρ determines a natural map TX• → X•, for every augmented

simplicial object X• of C. Proposition 4.7.2.8 immediately implies the following:

Corollary 4.7.2.9. Let C be an ∞-category, and let X• be an augmented simplicial object of C.

The following conditions are equivalent:

(1) The augmented simplicial object X• is split.

(2) The canonical map TX• → X• admits a right homotopy inverse.

Remark 4.7.2.10. More precisely, we see that if X• is an augmented simplicial object of an

∞-category C, then extending X• to a functor N(∆−∞)op → C is equivalent to giving a natural

transformation X• → TX• together with a homotopy of the composite map

X• → TX• → X•

with the identity on X•.

Corollary 4.7.2.11. Let f : C→ C be a right fibration of ∞-categories and let C• be a simplicial

object of C. If f(C•) is a split simplicial object of C, then C• is a split simplicial object of C•.

Example 4.7.2.12. Let C be an abelian category. Then Dold-Kan correspondence establishes

an equivalence of categories between the category Fun(∆op,C) of simplicial objects of C and the

category Ch≥0(C) of nonnegatively graded chain complexes in C (see, for example, [162]). Let X•
be a simplicial object of C, and let

· · · → C2
d2→ C1

d1→ C0

be the corresponding (normalized) chain complex. Then extending X• to an augmented simplicial

object X• : ∆op
+ → C is equivalent to providing an augmentation on the chain complex C∗: that

is, providing a map d0 : C0 → C−1 such that d0 ◦ d1 = 0. In this case, the augmented simplicial

object TX• corresponds to the cone

· · · → C3 ⊕ C2 → C2 ⊕ C1 → C1 ⊕ C0 → C0.

Giving a section of the canonical map TX• → X• is equivalent to giving a collection of maps

hn : Cn−1 → Cn satisfying d0h0 = idC−1 and dn+1hn+1 + hndn = idCn for n ≥ 0. In other words,

extending X• to a split simplicial object of C is equivalent to giving a contracting homotopy which

exhibits C∗ as a split exact resolution of some object C−1 ∈ C.

For later use, we record some other consequences of Proposition 4.7.2.8.

Corollary 4.7.2.13. Let C be an∞-category, and let X denote the full subcategory of Fun(N(∆op
+ ),C)

spanned by the split augmented simplicial objects of C (that is, X is the essential image of the

restriction functor Fun(N(∆op
−∞),C) → Fun(N(∆op

+ ),C)). Then X is stable under retracts in

Fun(N(∆op
+ ),C).
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Proof. Suppose we have a commutative diagram

X•
β

  
Y•

α
>>

id // Y•

of augmented simplicial objects of C, where X• is split. We wish to prove that Y• is split. According

to Corollary 4.7.2.9, there exists a map of augmented simplicial objects γ : X• → TX• such that

the composition X•
γ→ TX• → X• is homotopic to the identity. Let γ′ denote the composition

Y•
α−→ X•

γ−→ TX•
Tβ−→ TY•.

A simple diagram chase shows that the composition Y•
γ′→ TY• → Y• is homotopic to the identity,

so that Y• splits as required.

Remark 4.7.2.14. The functor ρ carries ∆+ into the subcategory ∆ ⊆ ∆+. Consequently, the

translation functor T factors through a functor Fun(N(∆op),C)→ Fun(N(∆op
+ ),C). We will abuse

notation and denote this functor also by T .

Corollary 4.7.2.15. Let C be an ∞-category, and let X• be an augmented simplicial object of C.

The following conditions are equivalent:

(1) The augmented simplicial object X• is split.

(2) There exists a simplicial object U• of C such that X• is a retract of TU• (in the ∞-category

of augmented simplicial objects of C).

Proof. The implication (1) ⇒ (2) follows from Corollary 4.7.2.9. We will prove that (2) ⇒ (1).

Using Corollary 4.7.2.13, we may assume that X• = TU•. The desired result in this case follows

from the observation that the shift functor ρ : ∆+ →∆ extends naturally to a functor ∆−∞ →∆,

determined by the natural identification of linearly ordered sets [n+1] = [0]? [n] ' [n]∪{−∞}.

4.7.3 The Barr-Beck Theorem

Let G : D → C be a functor between ∞-categories which admits a left adjoint F . Our goal in

this section is to show that the composition G ◦ F ∈ Fun(C,C) can be promoted to a monad

T ∈ Alg(End(C)) on C (Definition 4.7.0.1), that G factors through a functor G′ : D → LModT (C)

of (left) T -module objects of C, and to give necessary and sufficient conditions for the functor G′

to be an equivalence of ∞-categories (Theorem 4.7.3.5).

We begin by noting that for any pair of∞-categories C and D, the∞-category Fun(D,C) carries

a left action of the simplicial monoid Fun(C,C). We regard the ∞-category as left-tensored over

the monoidal ∞-category End(C)⊗. The essential observation is the following:
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Lemma 4.7.3.1. Let G : D → C be a functor between ∞-categories. Let F : C → D be a functor

and let v : F ◦G→ idD be the counit of an adjunction between F and G. Then v induces a map

(G ◦ F ) ◦G = G ◦ (F ◦G)
v→ G ◦ idD = G

which exhibits G ◦ F ∈ Fun(C,C) as a classifying object for endomorphisms of G ∈ Fun(D,C).

Proof. We wish to show that for every functor U : C→ C, composition with v induces a homotopy

equivalence α : MapFun(C,C)(U,G ◦F )→ MapFun(D,C)(U ◦G,G). Let u : idC → G ◦F be the unit for

an adjunction which is compatible with v. Then u determines a map β : MapFun(D,C)(U ◦G,G)→
MapFun(C,C)(U,G ◦ F ) given by the composition

MapFun(D,C)(U ◦G,G)→ MapFun(C,C)(U ◦G ◦ F,G ◦ F )
◦u→ MapFun(C,C)(U,G ◦ F ).

From the compatibility between u and v, it follows readily that β is a homotopy inverse to α.

Definition 4.7.3.2. Let G : D→ C be a functor between ∞-categories. A endomorphism monad

consists of a monad T ∈ Alg(End(C)) together with a left T -module G ∈ LModT (Fun(D,C)) whose

image in Fun(D,C) coincides with G, such that the composition map T ◦ G → G exhibits T as a

classifying object for endomorphisms of G.

In the situation of Definition 4.7.3.2, we will say that G exhibits T as an endomorphism monad

of G. Combining Lemma 4.7.3.1, Theorem 4.7.1.34, and Corollary 3.2.2.5, we obtain the following

result:

Proposition 4.7.3.3. Let G : D→ C be a functor between ∞-categories. Assume that there exists

a functor F : C → D and a natural transformation u : idC → G ◦ F which is the unit for an

adjunction between G and F . Then:

(1) There exists an endomorphism monad for G.

(2) Let T be a monad on C and let G ∈ LModT (Fun(D,C)) be a lifting of G. Then G exhibits T

as an endomorphism monad of G if and only if the composite map

T
idT ×u−→ T ◦G ◦ F a×idF−→ G ◦ F

is an equivalence in Fun(C,C), where a : T ◦G→ G denotes the action of T on G.

Suppose that G : D→ C is a functor between∞-categories which is a left module over a monad

T ∈ Alg(End(C)). The left action of T on G determines a functor G′ : D → LModT (C) such that

G is obtained by composing G′ with the forgetful functor LModT (C)→ C.

Definition 4.7.3.4. Let G : D→ C be a functor between ∞-categories. Assume that G has a left

adjoint F , so that G admits an endomorphism monad T (Proposition 4.7.3.3). We will say that D

is monadic over C if the induced functor G′ : D→ LModT (C) is an equivalence of ∞-categories.
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If G : D→ C exhibits the ∞-category D as monadic over the ∞-category C, then we can think

of G as a forgetful functor: an object D ∈ D can be identified with its image G(D) ∈ C, together

with the data of an action of the endomorphism monad T of the functor G.

We are now ready to state the main result of this section (which can be regarded as a more

precise version of Theorem 4.7.0.3):

Theorem 4.7.3.5 (∞-Categorical Barr-Beck Theorem). Let G : D → C be a functor between

∞-categories which admits a left adjoint F : C→ D. The following are equivalent:

(a) The functor G exhibits D as monadic over C.

(b) There exists a monoidal∞-category E⊗, a left action of E⊗ on C, an algebra object A ∈ Alg(E)

and an equivalence G′ : D ' LModA(C) such that G is equivalent to the composition of G′

with the forgetful functor LModA(C)→ C.

(c) The functor G satisfies the following conditions:

(1) The functor G : D → C is conservative; that is, a morphism f : D → D′ in D is an

equivalence if and only if G(f) is an equivalence in C.

(2) Let V be a simplicial object of D which is G-split. Then V admits a colimit in D, and

that colimit is preserved by G.

Remark 4.7.3.6. For a proof of Theorem 4.7.3.5 in the setting of classical category theory, we

refer the reader to [9].

Remark 4.7.3.7. Hypotheses (1) and (2) of Theorem 4.7.3.5 can be rephrased as the following

single condition:

(∗) Let V : N(∆)op → D be a simplicial object of D which is G-split. Then V has a colimit in D.

Moreover, an arbitrary extension V : N(∆)op → D is a colimit diagram if and only if G ◦ V
is a colimit diagram.

It is clear that (1) and (2) imply (∗), and that (∗) implies (2). To prove that (∗) implies (1), let us

consider an arbitrary morphism f : D′ → D in D. The map f determines an augmented simplicial

object V of D, with

V ([n]) =

{
D′ if n ≥ 0

D if n = −1.

The underlying simplicial object V = V |N(∆)op is constant, and therefore G-split. Since N(∆) is

contractible, V is a colimit diagram if and only if f is an equivalence, and G◦V is a colimit diagram

if and only if G(f) is an equivalence. If (∗) is satisfied, then these conditions are equivalent, so that

G is conservative as desired.
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Remark 4.7.3.8. Let C be an ∞-category, and regard C as left-tensored over the monoidal ∞-

category End(C). We have a commutative diagram

LMod(C)
θ //

p
''

C×Alg(End(C))

p′uu
Alg(End(C)),

where θ is determined by the p and the forgetful functor LMod(C)→ C. The functor p′ is obviously a

Cartesian fibration, and Corollary 4.2.3.2 implies that p is a Cartesian fibration as well. Proposition

4.2.3.1 implies that θ carries p-Cartesian edges to p′-Cartesian edges. Consequently, θ classifies a

natural transformation of functors F → F ′, where F : Alg(End(C))op → Cat∞ is the functor

classified by p (so that F (A) ' LModT (C) for every monad T ∈ Alg(End(C))) and F ′ is the

constant functor taking the value C ∈ Cat∞. We may identify this transformation with a functor

α : Alg(End(C))op → Cat/C∞ . We can interpret Theorem 4.7.3.5 as describing the essential image of

the functor α: namely, a functor G : D → C belongs to the essential image of α if and only if G

admits a left adjoint and satisfies conditions (1) and (2) of Theorem 4.7.3.5. With more effort, one

can show that the functor α is fully faithful. In other words, we may identify monads on C with

(certain) ∞-categories lying over C.

Example 4.7.3.9. Let M be an ∞-category which is bitensored over the a pair of monoidal ∞-

categories C⊗ and D⊗, and suppose we are given algebra objects A ∈ Alg(C) and B ∈ Alg(D).

Let G : ABModB(M) → M be the forgetful functor. Corollary 4.3.3.13 implies that G admits

a left adjoint, Corollary 4.3.3.2 implies that G is conservative, and Variant 4.7.2.6 implies that

every G-split simplicial object of ABModB(M) admits a colimit which is preserved by G. Using

Theorem 4.7.3.5, we deduce that G exhibits ABModB(M) as monadic over M. The underlying

monad T : M→M is given by M 7→ A⊗M ⊗B.

Example 4.7.3.10. LetG : D→ C be a functor between∞-categories which exhibits D as monadic

over C. Assume that D and C admit finite limits. The functor G is left exact, and therefore induces

a functor g : Sp(D) → Sp(C). Suppose that g admits a left adjoint. Then g exhibits Sp(D) as

monadic over Sp(C). To prove this, we show that g satisfies the hypotheses of Theorem 4.7.3.5:

(1) The functor g is conservative.

(2) If U• is a simplicial object of Sp(D) which is g-split, then U• admits a colimit in Sp(D), and

that colimit is preserved by g.

Assertion (1) follows immediately from our assumption that G is conservative. We now prove (2).

Let U• be a g-split simplicial object of Sp(D). For each K ∈ Sfin
∗ , U•(K) is a G-split simplicial

object of D. It follows from Theorem 4.7.3.5 that U•(K) admits a colimit V (K) ∈ D, which is

preserved by the functor G. The construction K 7→ V (K) determines a functor V : Sfin
∗ → D, where
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G ◦ V ' |g(U•)| is reduced and excisive. Since G is left exact and conservative, we deduce that V

is left exact and excisive. It follows that V ∈ Sp(D). Since V is a colimit of the diagram U• in

Fun(Sfin
∗ ,D), it is a colimit of the diagram U• in Sp(D). By construction, this colimit is preserved

by the functor g.

Example 4.7.3.11. Let q : C⊗ → O⊗ be a coCartesian fibration of ∞-operads and let O′
⊗ → O⊗

be a map of ∞-operads which is essentially surjective. Assume that:

(a) For each object X ∈ O, the∞-category CX admits geometric realizations of simplicial objects.

(b) For each operation α ∈ MulO({Xi}, Y ), the induced functor
∏

CXi → CY preserves geometric

realizations of simplicial objects.

(c) The forgetful functor p : Alg/O(C)→ AlgO′ /O(C) admits a left adjoint.

Then p exhibits Alg/O(C) as monadic over AlgO′ /O(C). This follows immediately from Theorem

4.7.0.3 and Proposition 3.2.3.1.

We now turn to the proof of Theorem 4.7.3.5. The implication (a) ⇒ (b) is obvious (take

E = End(C) and A to be an endomorphism monad of G). The implication (b) ⇒ (c) follows

immediately from Corollary 4.2.3.2 together with the following:

Lemma 4.7.3.12. Let C be a monoidal ∞-category, M an ∞-category which is left-tensored over

C, A an algebra object, and θ : LModA(M)→M the forgetful functor. Then:

(1) Every θ-split simplicial object of LModA(M) admits a colimit in M.

(2) The functor θ preserves colimits of θ-split simplicial objects.

Proof. Let M� → C� be defined as in Notation 4.2.2.17. In view of Proposition 4.2.2.12, it will

suffice to prove the analogues of (1) and (2) for the forgetful functor LModA∞A (M) → M. Note

that a simplicial object of LModA∞A (M) can be viewed as a bisimplicial object of M�. In order to

avoid confusion, we let K denote the simplicial set N(∆)op when we wish to emphasize the role of

N(∆)op as indexing simplicial objects.

Form a pullback diagram

N

p

��

//M�

��
N(∆)op

A◦Cut// C�,

so that p is a locally coCartesian fibration (Lemma 4.2.2.20). Let u : K → LModA∞A (M) be a θ′-split

simplicial object, corresponding to a map V : K × N(∆)op → N. We observe that every fiber of p

is equivalent to M, and each of the induced maps V[n] : K×{[n]} → N[n] can be identified with the

composition of V with the forgetful functor θ′. It follows that each of the simplicial objects V[n]
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is split. Using Lemma HTT.6.1.3.16 , we deduce that each V[n] admits a colimit V [n] : K. → N[n],

and that these colimits are preserved by each of the associated functors N[n] → N[m] (Remark

4.7.2.4). Applying Proposition HTT.4.3.1.10 , we conclude that each V [n] is a p-colimit diagram.

We now invoke Lemma 3.2.2.9 to deduce the existence of a map V : K. × N(∆)op → N which

induces a p-colimit diagram on each fiber K. × {[n]}. Moreover, Lemma 3.2.2.9 implies that V

defines a colimit diagram v : K. → MapN(∆)op(N(∆)op,N). Since v = v|K factors through the

full subcategory LModA∞A (M) ⊆ MapN(∆)op(N(∆)op,N), it is easy to see that v factors through

LModA∞A (M). It follows that v is a colimit of v in LModA∞A (M). This proves (1), and (2) follows

from the observation that θ′ ◦ v = V |K. × {[0]} is a colimit diagram in M by construction.

The difficult part of Theorem 4.7.3.5 is the proof that (c) implies (a). Assume that G : D→ C

is a functor which admits a left adjoint and therefore an endomorphism monad T , and let G′ :

D → LModT (C) be the induced functor. Note that G′ is an equivalence of ∞-categories if and

only if it is conservative and admits a fully faithful left adjoint. The first condition is immediate

if G is conservative (since G is the composition of G′ with the forgetful functor LModT (C) → C).

Consequently, to complete the proof of Theorem 4.7.3.5 it will suffice to verify the following:

Lemma 4.7.3.13. Let G : D → C be a functor between ∞-categories which admits a left adjoint

F and let T be an endomorphism monad for G. Assume that:

(∗) Every G-split simplicial object of D admits a colimit in D, and this colimit is preserved by G.

Then the canonical map G′ : D→ LModT (C) admits a fully faithful left adjoint.

Proof. Let X ⊆ LModT (C) be the full subcategory spanned by those left T -modules M ∈ LModT (C)

such that the functor

D 7→ MapLModT (C)(M,G′(D)) ∈ S

is corepresentable by an object F ′(M) ∈ D. In this case, F ′(M) is well-defined up to canonical

equivalence and the construction M 7→ F ′(M) determines a functor F ′ : X → D, which we can

regard as a partially-defined left adjoint to G′. Let G′′ : LModT (C) → C be the forgetful functor,

and let F ′′ : C→ LModT (C) be a left adjoint to G′′, given informally by C 7→ T (C). Let X0 denote

the full subcategory of X spanned by those objects M such that the unit map uM : G′′(M) →
(G′′G′F ′)(M) ' GF ′(M) is an equivalence in C. For every object C ∈ C, the object F ′′(C) belongs

to X and we have a canonical equivalence F (C) ' F ′(F ′′(C)). Moreover, uF ′′(C) can be identified

with the canonical map

T (C) ' G′′F ′′(C)→ G′′G′F ′F ′′(C) ' GF (C)

which is an equivalence by virtue of our assumption that T is an endomorphism monad for G. It

follows that X0 contains the essential image of F ′′. Let M be an arbitrary object of LModT (C), and

let M• denote the simplicial object of LModT (C) given by the bar construction BarT (T,M)•. Then
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M ' |M•|, and M• is a G′′-split by Example 4.7.2.7. Each Mn belongs to the essential image of

F ′′ and therefore to X0, so that G(F ′(M•)) ' G′′(M•) is a split simplicial object of C and therefore

F ′(M•) is a G-split simplicial object of D. It follows from assumption (2) that F ′(M•) admits a

colimit D ∈ D, so that M ∈ X and F ′(M) ' D. The map uM is given by the composition

G′′(M) ' |G′′(M•)| ' |G(F ′(M•))| → G|F ′(M•)| ' GF ′(M)

and is therefore an equivalence, since G preserves colimits of G-split simplicial objects. It follows

that X0 = LModT (C). In other words, the functor G′ : D → LModT (C) admits a left adjoint F ′,

and the unit map id→ G′ ◦ F ′ induces an equivalence of functors u : G′′ → G′′ ◦G′ ◦ F ′. Since the

functor G′′ is conservative (Corollary 4.2.3.2), we conclude that G′ ◦ F ′ ' idLModT (C), so that F ′ is

fully faithful.

For later use, we record another consequence of the proof of Lemma 4.7.3.13:

Proposition 4.7.3.14. Let C
F //D
G
oo be a pair of adjoint functors between ∞-categories which

satisfies conditions (1) and (2) of Theorem 4.7.3.5. For every object D ∈ D, there exists a G-split

simplicial object D• : N(∆)op → D having colimit D, such that each Dn lies in the essential image

of F .

Remark 4.7.3.15. In the situation of Proposition 4.7.3.14, the simplicial object D• can be chosen

to depend functorially on D, and for each n we can choose an object C ∈ C and an identification

Dn ' F (C) which depends functorially on D. This follows either from the proof of Lemma 4.7.3.13,

or from applying Proposition 4.7.3.14 to the induced adjunction

Fun(D,C)
F ′ //Fun(D,D).
G′
oo

We now describe a few applications of Proposition 4.7.3.14 (and Remark 4.7.3.15):

Corollary 4.7.3.16. Suppose we are given a commutative diagram of ∞-categories

C
U //

G ��

C′

G′��
D

Assume that:

(1) The functors G and G′ admit left adjoints F and F ′.

(2) Every G-split simplicial object of C admits a colimit in C, which is preserved by G.

(3) Every G′-split simplicial object of C′ admits a colimit in C′, which is preserved by G′.
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(4) The functor G′ is conservative.

(5) For each object D ∈ D, the unit map unit map D → GF (D) ' G′(UF (D)) induces an

equivalence αD : F ′(D)→ UF (D) in C′.

Then U admits a fully faithful left adjoint. Moreover, U is an equivalence of ∞-categories if and

only if G is conservative.

Remark 4.7.3.17. In the situation of Corollary 4.7.3.16, we can replace (5) by the following

apparently weaker condition: for each D ∈ D, the morphism G′(αD) : G′F ′(D) → GF (D) is an

equivalence in D (since the functor G′ is conservative).

Proof. We begin by constructing a left adjoint T to the functor U . Let j′ : C′op → Fun(C′, S)

be the Yoneda embedding, and let T0 denote the composition C′
j→ Fun(C′, S)

◦U→ Fun(C, S). Let

Fun0(C, S) denote the full subcategory of Fun(C, S) spanned by the corepresentable functors (that

is, the essential image of the Yoneda embedding j : Cop → Fun(C, S). To prove the existence of T ,

it will suffice to show that the essential image of T0 is contained in Fun0(C, S); we can then write

T as the composition j−1 ◦ T0, where j−1 is a homotopy inverse to j : Cop ' Fun0(C, S).

Fix an object C ′ ∈ C′; we wish to show that T0(C ′) ∈ Fun0(C, S). Using Proposition 4.7.3.14,

we can write C ′ as the geometric realization of a G′-split simplicial object C ′•, such that each

C ′n ' F ′(Dn) for some Dn ∈ D. It follows that T0(C ′) ∈ Fun(C, S) is the limit of of the cosimplicial

object T0(C ′•). Each of the functors T0(C ′n) is corepresentable by the object F (D′n), and therefore

belongs to Fun0(C, S). It follows that we can write T0(C ′•) = j(C•) for some simplicial object C• in

C. By construction, there is an evident map α : C ′• → U(C•). Condition (∗) implies that G′(α) is

an equivalence G′(C ′•)→ (G′ ◦ U)(C•) ' G(C•), so that C• is G-split. It follows that C• admits a

colimit C ∈ C, so that

T0(C ′) ' lim←−T0(C ′•) ' lim←− j(C•) ' j(C)

is representable by C. This completes the proof of the existence of T .

We now prove that T is fully faithful. This is equivalent to showing that the unit map

u : idC′ → U ◦ T

induces an equivalence C ′ → (U ◦ T )(C ′) for each object C ′ ∈ C. Let C ′• and C• be as above. We

wish to prove that the canonical equivalence C ′• ' U(C•) induces an equivalence

C ′ ' lim−→C ′• ' lim−→U(C•)→ U(lim−→C•).

In other words, we wish to prove that U preserves the colimit of the simplicial object C•. Since G′

is conservative, it will suffice to show that G = G′ ◦U preserves the colimit of the simplicial object

C•. This follows from our hypothesis on G, since C• is G-split.

We conclude by observing that if U is an equivalence, then G ' G′ ◦U is conservative by virtue

of (4). Conversely, if G is conservative, then U is conservative and therefore (since it admits a fully

faithful left adjoint) is an equivalence of ∞-categories.
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Our next result makes use of the notation and terminology of §HTT.5.5.8 .

Corollary 4.7.3.18. Suppose given a pair of adjoint functors between ∞-categories C
F //D
G
oo .

Assume that:

(i) The ∞-category D admits filtered colimits and geometric realizations, and G preserves filtered

colimits and geometric realizations.

(ii) The ∞-category C is projectively generated (Definition HTT.5.5.8.23 ).

(iii) The functor G is conservative.

Then:

(1) The ∞-category D is projectively generated.

(2) An object D ∈ D is compact and projective if and only if there exists a compact projective

object C ∈ C such that D is a retract of F (C).

(3) The functor G preserves all sifted colimits.

Proof. Let C0 denote the full subcategory of C spanned by the compact projective objects. Let D0

denote the essential image of F |C0. Using assumption (i), we deduce that D0 consists of compact

projective objects of D. Without loss of generality, we may assume that the ∞-category D is

minimal, so that D0 is small. Moreover, since C0 is stable under finite coproducts in C, and F

preserves finite coproducts, we conclude that D0 admits finite coproducts (which are also finite

coproducts in D).

Let D′ = PΣ(D0) (see Definition HTT.5.5.8.8 ). Using Proposition HTT.5.5.8.15 , we deduce

that the inclusion D0 ⊆ D is homotopic to a composition

D0 j→ D′
f→ D,

where the functor f preserves filtered colimits and geometric realizations. Combining Proposition

HTT.5.5.8.22 with Proposition 4.7.3.14 and assumption (ii), we conclude that f is an equivalence

of ∞-categories. This proves (1). Moreover, the proof shows that D0 is spanned by a set of

compact projective generators for D (Definition HTT.5.5.8.23 ), so that assertion (2) follows from

Proposition HTT.5.5.8.25 . Assertion (3) now follows from Proposition HTT.5.5.8.15 .

We also have the following variant of Corollary 3.2.3.3:

Corollary 4.7.3.19. Let q : C⊗ → O⊗ be a coCartesian fibration of ∞-operads. Assume that O⊗

is unital and that there exists an uncountable regular cardinal κ with the following properties:

(1) The ∞-operad O⊗ is essentially κ-small.
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(2) For each object X ∈ O, the ∞-category CX admits K-indexed colimits for every weakly con-

tractible κ-small simplicial set K.

(3) For every collection of objects X1, . . . , Xn, Y ∈ O and every operation α ∈ MulO({Xi}, Y ),

the associated functor ∏
1≤i≤n

CXi → CY

preserves K-indexed colimits separately in each variable for every weakly contractible κ-small

simplicial set K.

Then for every κ-small weakly contractible simplicial set K, the ∞-category Alg/O(C) admits K-

indexed colimits.

Proof. Let K be a κ-small weakly contractible simplicial set and suppose we are given a diagram

{Aα}α∈K in the ∞-category Alg/O(C); we wish to prove that this diagram admits a colimit in

Alg/O(C). Let O⊗0 = O⊗×Comm⊗E⊗0 be as in Corollary 3.1.3.7, so that the forgetful functor

G : Alg/O(C)→ AlgO0 /O(C)

admits a left adjoint F (Corollary 3.1.3.7). It follows from Example 4.7.3.11 that G exhibits

Alg/O(C) as monadic over AlgO0 /O(C). Using Proposition 4.7.3.14 and Remark 4.7.3.15, we can

assume that each Aα is given as the geometric realization of a simplicial object Aα• (depending

functorially on α) and that for each n we have an identification Aαn ' F (Bαn) (also depending

functorially on α). Since Alg/O(C) admits geometric realizations of simplicial objects (Proposition

3.2.3.1), it will suffice to show that each of the diagrams {Aαn}α∈K admits a colimit in Alg/O(C).

The functor F preserves colimits (since it is a left adjoint), so we are reduced to proving that the

diagram {Bαn}α∈K admits a colimit in AlgO0 /O(C). This follows from Proposition 3.2.3.8.

Example 4.7.3.20. Let C⊗ be a monoidal ∞-category. Assume that for every countable weakly

contractible simplicial set K, the ∞-category C admits K-indexed colimits and the tensor product

⊗ : C×C→ C

preserves K-indexed colimits separately in each variable. Then for every countable weakly con-

tractible simplicial set K, the ∞-category Alg(C) admits K-indexed colimits.

Remark 4.7.3.21. In the situation of Corollary 4.7.3.19, suppose that we are given a a O-monoidal

functor T : C⊗ → D⊗, where r : D⊗ → O⊗ is a coCartesian fibration of ∞-operads which also

satisfies hypotheses (2) and (3). Suppose further that for each object X ∈ O, the induced map

CX → DX preserves colimits indexed by κ-small weakly contractible simplicial sets. Then the

induced map Alg/O(C) → Alg/O(D) preserves colimits indexed by κ-small weakly contractible

simplicial sets. This follows from the proof of Corollary 4.7.3.19 (together with Remark 3.1.3.8).
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For later use, we record the following the following consequence of the Barr-Beck theorem:

Proposition 4.7.3.22. Suppose given a commutative diagram of ∞-categories

D

G′′

  
E

G′
??

G // C .

Suppose that G exhibits E as monadic over C, that G′′ is conservative, and that G′ admits a left

adjoint. Then G′ exhibits E as monadic over D.

Warning 4.7.3.23. Monadicity is not transitive: in the situation of Proposition 4.7.3.22, if G′′

exhibits D as monadic over C and G′ exhibits E as monadic over D, then G need not exhibit E as

monadic over C.

Proof. We will show that the functor G′ satisfies the hypotheses of Theorem 4.7.3.5:

(1) The functor G′ is conservative. For suppose that α : E → E′ is a morphism in E such that

G′(α) is an equivalence. Then G(α) is an equivalence. Since G is conservative (by Theorem

4.7.3.5), we deduce that α is an equivalence.

(2) Let E• be a simplicial object of E, and suppose that G′E• is a split simplicial object of D.

Then GE• = G′′G′E• is a split simplicial object of C. Since G exhibits E as monadic over

C, Theorem 4.7.3.5 implies that E• admits a colimit |E•| in E, and that the canonical map

α : |GE•| → G|E•| is an equivalence in C. We wish to show that β : |G′E•| → G′|E•| is an

equivalence in D. Since G′′ is conservative, it will suffice to show that G′′(β) is an equivalence

in C. Using the commutative diagram

G′′|G′E•|
G′′(β)

%%
|GE•|

γ
99

α // G|E•|,

we are reduced to proving that γ is an equivalence. In other words, we must show that G′′

preserves the colimit of the split simplicial object G′E•, which follows from Remark 4.7.2.4.

4.7.4 BiCartesian Fibrations

Recall that a pair of functors

C
F //D
G
oo
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are adjoint if there exists a correspondence q : M → ∆1 with q−1{0} ' C and q−1{1} ' D, such

that q is both a coCartesian fibration associated to the functor F : C→ D and a Cartesian fibration

associated to G : D → C (see §HTT.5.2.2 ). In this case, F is determined up to equivalence by G

and vice-versa. The formation of adjoint functors is compatible with composition up to homotopy:

that is, we are are given a pair of functors F : C→ D and F ′ : D→ E having right adjoints G and

G′, respectively, then G ◦G′ is right adjoint to F ′ ◦F (Proposition HTT.5.2.2.6 ). In some cases, it

is necessary to be more precise: for example, we would like to know that an adjunction between F

and G and an adjunction between F ′ and G′ determines an adjunction between G ◦G′ and F ′ ◦ F
up to a contractible space of choices, and that the resulting “composition law” for adjunctions is

associative up to coherent homotopy. To formulate this idea more precisely, it is convenient to

adopt the following definition:

Definition 4.7.4.1. We will say that a map of simplicial sets q : X → S is a biCartesian fibration

if it is both a Cartesian fibration and a coCartesian fibration.

Fix a simplicial set S. We let (Set+∆)/S denote the category of marked simplicial sets over S

(see §HTT.3.1 ). An object of (Set+∆)/S is given by a pair (f : X → S,M), where f is a map

of simplicial sets and M is a collection of edges in X which contains all degenerate edges. The

category (Set+∆)/S can be endowed with the Cartesian model structure of Proposition HTT.3.1.3.7 ,

whose fibrant objects are those pairs (f : X → S,M) where f is a Cartesian fibration and M is

the collection of f -Cartesian edges of X. Similarly, (Set+∆)/S can be endowed with the coCartesian

model structure of Remark HTT.3.1.3.9 , whose fibrant objects are pairs (f : X → S,M) where f

is a coCartesian fibration and M is the collection of f -coCartesian edges of X. We now introduce

a variant on these model structures, which is adapted to a discussion of biCartesian fibrations.

Definition 4.7.4.2. Let S be a simplicial set. We define a category (Set++
∆ )/S as follows:

(a) The objects of (Set++
∆ )/S are triples (X,E,E′) where X is a simplicial set equipped with a

map X → S and E,E′ ⊆ HomSet∆
(∆1, X) are sets of edges which contain all degenerate

edges of X.

(b) Given a pair of objects (X,E,E′), (Y, F, F ′) ∈ (Set++
∆ )/S , a morphism from (X,E,E′) to

(Y, F, F ′) is a map of simplicial sets f : X → Y such that f(E) ⊆ F , f(E′) ⊆ F ′, and the

diagram

X

��

f // Y

��
S

is commutative.

We will say that an object (X,E,E′) ∈ (Set++
∆ )/S is S-bifibered if the map p : X → S is a

biCartesian fibration, E is the collection of p-Cartesian edges of X, and E′ is the collection of

p-coCartesian edges of X.



4.7. MONADS AND THE BARR-BECK THEOREM 695

Remark 4.7.4.3. Fix a simplicial set S. For every object (X,E,E′) ∈ (Set++
∆ )/S and every

simplicial set K, we define a new object K ⊗ (X,E,E′) ∈ (Set++
∆ )/S by the formula

K ⊗ (X,E,E′) = (K ×X,φ−1(E), φ−1(E′)),

where φ : K × X → X denotes the projection onto the second factor. Via this construction, we

can regard (Set++
∆ )/S as enriched, tensored, and cotensored over the category of simplicial sets. In

particular, for every pair of objects X = (X,E,E′), Y = (Y, F, F ′) ∈ (Set++
∆ )/S , we have a mapping

space Map(Set++
∆ )/S

(X,Y ) ⊆ FunS(X,Y ).

Remark 4.7.4.4. Fix a simplicial set S. Suppose we are given a morphism α : X = (X,E,E′)→
(Y, F, F ′) = Y in (Set++

∆ )/S , and that Z = (Z,G,G′) ∈ (Set++
∆ )/S is S-bifibered. Then α in-

duces a categorical fibration of ∞-categories FunS(Y, Z) → FunS(X,Z). The simplicial sets

Map(Set++
∆ )/S

(X,Z) can be described as the subcategory of FunS(X,Z) whose objects are maps

f : X → Y such that f(E) ⊆ G and f(E′) ⊆ G′, and whose morphisms are equivalences. The

simplicial set Map(Set++
∆ )/S

(Y , Z) has an analogous description as a subcategory of FunS(Y, Z). It

follows that composition with α induces a Kan fibration of Kan complexes

Map(Set++
∆ )/S

(Y , Z)→ Map(Set++
∆ )/S

(X,Z).

Definition 4.7.4.5. Let S be a simplicial set and let f : X → Y be a morphism in (Set++
∆ )/S .

We will say that f is a biCartesian equivalence if, for every S-bifibered object Z ∈ (Set++
∆ )/S ,

composition with f induces a homotopy equivalence of Kan complexes

Map(Set++
∆ )/S

(Y , Z)→ Map(Set++
∆ )/S

(X,Z).

Example 4.7.4.6. Let f : (X,E,E′) → (Y, F ′, F ′) be a morphism between S-bifibered objects

of (Set++
∆ )/S . Then f is a biCartesian equivalence if and only if it admits a homotopy inverse in

the simplicial category (Set++
∆ )/S . Using Proposition HTT.3.1.3.5 , we see that this is equivalent

to the requirement that for each vertex s ∈ S, the induced map fs : Xs → Ys is an equivalence of

∞-categories.

Remark 4.7.4.7. Fix a simplicial set S, and let (Set+∆)/S denote the category of marked simplicial

sets over S. There are evident forgetful functors (Set+∆)/S
π← (Set++

∆ )/S
π′→ (Set+∆)/S , given by the

formulas

π(X,E,E′) = (X,E) π′(X,E,E′) = (X,E′).

Note that X = (X,E,E′) is S-bifibered if and only if π(X) is fibrant with respect to the Cartesian

model structure on (Set+∆)/S and π′(X) is fibrant with respect to the coCartesian model structure

on (Set+∆)/S .
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The functors π and π′ admit left adjoints π∗, π′∗ : (Set+∆)/S → (Set++
∆ )/S , given by the formulas

π∗(X,E) = (X,E,E0) π′∗(X,E) = (X,E0, E)

where E0 denotes the collection of all degenerate edges in X. It follows immediately from the defi-

nitions that π∗ carries Cartesian equivalences in (Set+∆)/S to biCartesian equivalences in (Set++
∆ )/S ,

and that π′∗ carries coCartesian equivalences in (Set+∆)/S to biCartesian equivalences in (Set++
∆ )/S .

Note that an an object X ∈ (Set++
∆ )/S is S-bifibered if and only if, for every marked anodyne

morphism α : Y → Z in (Set+∆)/S , X has the extension property with respect to π∗(α) and π′∗(αop).

Arguing as in the proof of Proposition HTT.3.1.3.7 , we deduce the following:

Lemma 4.7.4.8. Let S be a simplicial set. There exists a functor T : (Set++
∆ )/S → (Set++

∆ )/S and

a natural transformation u : id→ T with the following properties:

(1) For every object X ∈ (Set++
∆ )/S, the object TX is S-bifibered.

(2) For every object X ∈ (Set++
∆ )/S, the natural transformation u induces a biCartesian equiva-

lence X → TX.

(3) The functor T commutes with filtered colimits.

If T is the functor of Lemma 4.7.4.8, then a map α : X → Y is a biCartesian equivalence if and

only if the induced map T (α) : TX → TY is a biCartesian equivalence. By Example 4.7.4.6, this

is equivalent to the requirement that T (α) induces a categorical equivalence after passing to the

fiber over each vertex s ∈ S. Since the collection of categorical equivalences in Set∆ is perfect (in

the sense of Definition HTT.A.2.6.12 ), Corollary HTT.A.2.6.14 guarantees the following:

Lemma 4.7.4.9. Let S be a simplicial set. The collection of biCartesian equivalences in (Set+∆)/S
is perfect (in particular, it is stable under filtered colimits).

Theorem 4.7.4.10. Let S be a simplicial set. There exists a combinatorial left proper model

structure on the category (Set++
∆ )/S, which can be characterized as follows:

(C) A morphism α : (X,E,E′) → (Y, F, F ′) in (Set++
∆ )/S is a cofibration if and only if the

underlying map of simplicial sets X → Y is a monomorphism.

(W ) A morphism α : (X,E,E′) → (Y, F, F ′) in (Set++
∆ )/S is a weak equivalence if and only if it

is a biCartesian equivalence.

(F ) A morphism α : (X,E,E′) → (Y, F, F ′) in (Set++
∆ )/S is a fibration if and only it has the

right lifting property with respect to every morphism β which is both a cofibration and a weak

equivalence.
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We will refer to the model structure of Theorem 4.7.4.10 as the biCartesian model structure on

(Set++
∆ )/S .

Proof. It will suffice to show that the hypotheses of Proposition HTT.A.2.6.15 are satisfied:

(1) The collection of biCartesian equivalences is perfect (Lemma 4.7.4.9).

(2) The collection of biCartesian equivalences is closed under pushouts by cofibrations. This

follows from Remark 4.7.4.4, together with the right properness of the usual model structure

on the category of simplicial sets.

(3) Let α : (X,E,E′) → (Y, F, F ′) be a morphism which has the right lifting property with

respect to every cofibration. Then the underlying map X → Y is a trivial Kan fibration of

simplicial sets, and we have E = α−1F and E′ = α−1F ′. It follows that α admits a section

β, and the composition β ◦ α is (fiberwise) homotopic to the identity map form (X,E,E′) to

itself; in particular, α is a biCartesian equivalence.

Remark 4.7.4.11. For every simplicial set S, the biCartesian model structure on (Set++
∆ )/S is

compatible with the simplicial structure of Remark 4.7.4.3.

Remark 4.7.4.12. Let S be a simplicial set. Let us regard (Set+∆)/S as endowed with the Carte-

sian model structure of §HTT.3.1.3 , and let (Set+∆)/S′ denote the same category (Set+∆)/S endowed

with the coCartesian model structure. The functors (Set+∆)/S
π← (Set++

∆ )/S
π′→ (Set+∆)′/S of Re-

mark 4.7.4.7 are simplicial right Quillen functors, and induce limit-preserving functors between the

underlying ∞-categories

N((Set+∆)o
/S)← N((Set++

∆ )o
/S)→ N((Set+∆)o

/S′).

These functors allow us to identify N((Set++
∆ )o

/S) with a subcategory of either N((Set+∆)o
/S) or

N((Set+∆)o
/S′).

Our next goal is to identify the image of N(((Set++
∆ )/S)o) under these equivalences. We begin

by recalling a few definitions.

Definition 4.7.4.13. Suppose we are given a diagram of ∞-categories σ :

C
G //

U
��

D

V
��

C′
G′ // D′
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which commutes up to a specified equivalence α : V ◦ G ' G′ ◦ U . We say that this diagram σ

is left adjointable if the functors G and G′ admit left adjoints F and F ′, respectively, and if the

composite transformation

F ′ ◦ V → F ′ ◦ V ◦G ◦ F α' F ′ ◦G′ ◦ U ◦ F → U ◦ F

is an equivalence. We say that σ is right adjointable if the functors G and G′ admit right adjoints

H and H ′, and the composite transformation

U ◦H → H ′ ◦G′ ◦ U ◦H α−1

−→ H ′ ◦ V ◦G ◦H → H ′ ◦ V

is an equivalence.

Remark 4.7.4.14. Suppose we are given a commutative diagram of ∞-categories σ :

C
G //

U
��

D

V
��

C′
G′ // D′

where the functors G and G′ admit left adjoints, and the functors U and V admit right adjoints.

Then σ is left adjointable if and only if the transposed diagram

C
U //

G
��

C′

G′
��

D
V // D′

is right adjointable.

Remark 4.7.4.15. In classical category theory, the adjointability of a commutative square of

categories is sometimes referred to as the Beck-Chevalley condition.

Definition 4.7.4.16. Let S be a simplicial set. We define subcategories

FunLAd(S,Cat∞),FunRAd(S,Cat∞) ⊆ Fun(S,Cat∞)

as follows:

(1) Let F ∈ Fun(S,Cat∞). Then F belongs to FunLAd(S,Cat∞) ( FunRAd(S,Cat∞)) if and only

if, for every edge s → s′ in S, the induced functor F (s) → F (s′) admits a left adjoint (right

adjoint).
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(2) Let α : F → F ′ be a morphism in Fun(S,Cat∞), where F and F ′ belong to FunLAd(S,Cat∞)

( FunRAd(S,Cat∞)). Then α is a morphism in FunLAd(S,Cat∞) ( FunRAd(S,Cat∞)) if and

only if, for every edge s→ s′ in S, the diagram

F (s) //

��

F (s′)

��
F ′(s) // F ′(s′)

is left adjointable (right adjointable).

The following result is essentially an unwinding of definitions (see Remark HTT.7.3.1.3 ):

Proposition 4.7.4.17. Let S be a simplicial set.

(1) Let φ : N((Set++
∆ )o

/S) ↪→ N((Set+∆)o
/S) be the monomorphism by the right Quillen functor π of

Remark 4.7.4.12, and let ψ : N((Set+∆)o
/S) ' Fun(Sop,Cat∞) be the equivalence furnished by

Theorem HTT.3.2.0.1 and Proposition HTT.4.2.4.4 . Then the composition ψ ◦φ induces an

equivalence from N((Set++
∆ )o

/S) onto the subcategory FunLAd(Sop,Cat∞) ⊆ Fun(Sop,Cat∞).

(2) Let φ′ : N((Set++
∆ )o

/S) ↪→ N((Set+∆)o
/S′) be the monomorphism by the right Quillen functor π′

of Remark 4.7.4.12, and let ψ′ : N((Set+∆)o
/S′) ' Fun(S,Cat∞) be the equivalence furnished by

Theorem HTT.3.2.0.1 and Proposition HTT.4.2.4.4 . Then the composition ψ′ ◦ φ′ induces

an equivalence from N((Set++
∆ )o

/S) onto the subcategory FunRAd(S,Cat∞) ⊆ Fun(S,Cat∞).

Corollary 4.7.4.18. Let S be a simplicial set. Then:

(1) The ∞-categories FunLAd(S,Cat∞) and FunRAd(S,Cat∞) are presentable. In particular, they

admit small limits.

(2) The inclusions FunLAd(S,Cat∞) ⊆ Fun(S,Cat∞) and FunRAd(S,Cat∞) ⊆ Fun(S,Cat∞) ad-

mit left adjoints; in particular, they preserve small limits.

(3) There is a canonical equivalence of ∞-categories

FunLAd(Sop,Cat∞) ' FunRAd(S,Cat∞).

We conclude this section by sketching an application of the above ideas. Recall that PrL

denotes the subcategory of Ĉat∞ whose objects are presentable∞-categories and whose morphisms

are functors which preserve small colimits, and PrR ⊆ Ĉat∞ the subcategory whose objects are

presentable∞-categories and whose morphisms are accessible functors which preserve small limits.

The following result gives a useful criterion for commuting limits and colimits in PrL (or PrR).
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Proposition 4.7.4.19. Let S and T be simplicial sets, and suppose we are given a diagram χ :

S × T → PrL with the following properties:

(∗) For every edge s→ s′ in S and every edge t→ t′ in T , the diagram of ∞-categories

χ(s, t) //

��

χ(s′, t)

��
χ(s, t′) // χ(s′, t′)

is right adjointable.

Then there exists a diagram χ : S. × T / → PrL with the following properties:

(a) For each t ∈ T /, the map χt : S. × {t} → PrL is a colimit diagram.

(b) For each s ∈ S., the map χs : {s} × T / → PrL is a limit diagram.

(c) For every edge s→ s′ in S. and every edge t→ t′ in T /, the diagram of ∞-categories

χ(s, t) //

��

χ(s′, t)

��
χ(s, t′) // χ(s′, t′)

is right adjointable.

More informally: the hypothesis (∗) of Proposition 4.7.4.19 guarantee that the canonical map

lim−→
s∈S

lim←−
t∈T

χ(s, t)→ lim←−
t∈T

lim−→
s∈S

χ(s, t)

is an equivalence in the ∞-category PrL.

Proof. Let FunRAd(S, Ĉat∞) be as in Definition 4.7.4.16, but in the setting of ∞-categories

which are not necessarily small. Using assumption (∗), we can identify χ with a map

χ : T → FunRAd(S, Ĉat∞). Let χ′ : T → FunLAd(Sop, Ĉat∞) be the composition of χ with

the equivalence of Corollary 4.7.4.18, and identify χ′ with a functor Sop × T → Ĉat∞.

Let s0 denote the cone point of S/, and let χ̃′ : (S/)op × T → Ĉat∞ be a right Kan extension of

χ′. We claim that, for every vertex s ∈ S and every edge t→ t′ in T , the diagram of ∞-categories

χ̃′(s0, t) //

��

χ̃′(s, t)

��
χ̃′(s0, t

′) // χ̃′(s, t′)



4.7. MONADS AND THE BARR-BECK THEOREM 701

is left adjointable. Using Corollary HTT.5.5.3.4 and Theorem HTT.5.5.3.18 , we conclude that the

horizontal functors are morphisms of PrR and therefore admit left adjoints. It will therefore suffice

to show that the diagram σ :

χ̃′(s0, t) //

��

χ̃′(s0, t
′)

��
χ̃′(s, t) // χ̃′(s, t′)

is right adjointable (Remark 4.7.4.14). This follows from Corollary 4.7.4.18, since for every edge

s→ s′ in S the diagram

χ′(s′, t) //

��

χ′(s′, t′)

��
χ′(s, t) // χ′(s, t′)

is right adjointable (by Remark 4.7.4.14).

Let χ′ : (S.)op × T / → Ĉat∞ be a right Kan extension of χ̃′. It follows from Corollary 4.7.4.18

that, for every edge s→ s′ in S. and every edge t→ t′ in T /, the diagram

χ′(s′, t) //

��

χ′(s, t)

��
χ′(s′, t′) // χ′(s, t′)

is left adjointable. Consequently, we may identify χ′ with a map T / → FunLAd((S.)op, Ĉat∞). Let

χ : T / → FunRAd(S., Ĉat∞) be the composition of χ′ with the equivalence of Corollary 4.7.4.18.

We will identify χ with a functor S. × T / → Ĉat∞. The restriction χ|(S × T ) is equivalent to χ;

replacing χ by an equivalent diagram if necessary, we may assume that χ is an extension of χ. By

construction, the functor χ satisfies (c).

We next claim that the diagram χ takes values in PrL ⊆ Ĉat∞. To prove this, we first show that

for every vertex (s, t) ∈ S. × T /, the ∞-category χ(s, t) ' χ′(s, t) is presentable. If (s, t) ∈ S × T ,

then the result is obvious. If s = s0 and t ∈ T , then χ′(s, t) ' lim←−χ
′
t is presentable by Theorem

HTT.5.5.3.18 . If s ∈ S and t is the cone point of T ., then χ′(s, t) ' lim←−χ
′
s is presentable by

Proposition HTT.5.5.3.13 . The same argument will apply when s = s0, provided that we can show

that the diagram χ̃′|({s0} × T ) takes values in PrL. In other words, we must show that for every

edge t→ t′ in T , the induced functor χ̃′(s0, t)→ χ̃′(s0, t
′) preserves small colimits. This is obvious

if S = ∅ (in that case, both ∞-categories are contractible). Otherwise, we can choose a vertex

s ∈ S and the desired result follows from the left adjointability of the diagram σ considered above.

We next show that for every edge α : (s, t) → (s′, t′) in S × T , the induced functor χ(α) :

χ(s, t)→ χ(s′, t′) preserves small colimits. We can factor χ(α) as a composition

χ(s, t)
U→ χ(s, t′)

V→ χ(s′, t′).
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The functor V admits a right adjoint, since χ satisfies (c). It therefore suffices to show that U

preserves small colimits. This was established above when t → t′ is an edge of T . If t is the cone

point of T ., the desired result follows from Proposition HTT.5.5.3.13 .

It remains to verify that χ satisfies (a) and (b). Assertion (b) follows immediately from Propo-

sition HTT.5.5.3.13 . To prove (a), it will suffice (by Corollary HTT.5.5.3.4 ) to show that χ′t is a

limit diagram in PrR. According to Theorem HTT.5.5.3.18 , this is equivalent to the condition that

χ′t is a limit diagram in Ĉat∞. This is true by construction for t ∈ T , and follows in general using

Lemma HTT.5.5.2.3 .

4.7.5 Descent and the Beck-Chevalley Condition

Let f : A→ B be a homomorphism of commutative rings, and let M0 be a B-module. The classical

theory of descent is an attempt to answer the following question: under what circumstances can

one find an A-module M and an isomorphism η : M ⊗AB 'M0? A choice of such an isomorphism

η determines an isomorphism of B ⊗A B-modules

τ : B ⊗AM0 'M0 ⊗A B

(since both sides are canonically isomorphic to M ⊗A (B ⊗A B)). Moreover, the map τ satisfies a

“cocycle condition”: namely, it renders the diagram

B ⊗AM0 ⊗A B
τ⊗id

))
B ⊗A B ⊗AM0

id⊗τ
55

τ ′ //M0 ⊗A B ⊗A B

commutative, where τ ′ is given by τ on the outer factors and the identity idB on the middle factor.

A descent datum is a pair (M0, τ), where M0 is a B-module and τ : B ⊗AM0 → M0 ⊗A B is an

isomorphism of B ⊗A B-modules making the above diagram commute. The collection of descent

data can be organized into a category Desc(f), and the construction M 7→ M ⊗A B determines

a functor F from the category of A-modules into Desc(f). A classical theorem of Grothendieck

asserts that this functor is an equivalence of categories when f : A→ B is a faithfully flat morphism

of commutative rings.

In this section, we will explain how to use the Barr-Beck theorem (Theorem 4.7.3.5) to set up

an ∞-categorical version of the machinery of descent theory. We begin by recasting the problem.

Let f : A→ B be a map of commutative rings. Taking the Čech nerve of f (in the opposite of the

category of commutative rings), we obtain a cosimplicial commutative ring B•, where Bn denotes

the nth tensor power of B over A. The category Desc(f) can be identified with the category of

cosimplicial modules M• over B• satisfying the requirement that for every map [m] → [n] in ∆,

the induced map Mm ⊗Bm Bn → Mn is an isomorphism. Put another way, Desc(f)op can be

identified with the homotopy limit of a cosimplicial category C•, where each Cn is given by the



4.7. MONADS AND THE BARR-BECK THEOREM 703

opposite of the category of modules over the commutative ring Bn. In good cases (for example if

f is faithfully flat), one can show that this homotopy limit is equivalent to the (opposite of the)

category of A-modules. Our goal is to develop some general tools for proving results of this kind.

Very broadly, we can state our main problem as follows: given a cosimplicial∞-category C•, we

would like to understand the totalization lim←−C•. There is an evident forgetful functor lim←−C• → C0.

By analogy with the situation considered above, it is natural to expect that an object of lim←−C• can

be identified with an object of C0 together with some sort of “descent data.” One way to articulate

this idea precisely is to show that the forgetful functor lim←−C• → C0 is monadic: that is, it exhibits

lim←−C• as the ∞-category LModT (C0) for some monad T on C0. This is true under very general

assumptions (Proposition 4.7.5.1). Moreover, if we are willing to make some mild assumptions

on C•, then we can obtain an explicit description of the monad T (Theorem 4.7.5.2). Using this

description, we can give a simple criterion for a functor C−1 → lim←−C• (encoded by an augmented

cosimplicial ∞-category extending C•) to be an equivalence (Corollary 4.7.5.3).

We begin with a very general result about the limit of a diagram of ∞-categories.

Proposition 4.7.5.1. Let J be a small ∞-category and let q : J → Cat∞ be a diagram having a

limit C ∈ Cat∞. Let 0 ∈ J be an object and let C0 = q(0). Suppose that the following conditions are

satisfied:

(1) The functor G : C→ C0 admits a left adjoint F .

(2) For every object J ∈ J, there exists a morphism 0→ J in J.

Then the adjoint functors C0 F //C
G
oo satisfy the hypotheses of Theorem 4.7.3.5, so that C is equivalent

to the ∞-category of modules LModT (C0) for the induced monad T ' G ◦ F on C0.

Proof. We first show that G is conservative. Let α : C → C ′ be a morphism in C such that G(α)

is an equivalence. Using condition (2), we deduce that the image of α in q(J) is an equivalence for

each J ∈ J, so that α is an equivalence.

Now suppose that X• is a G-split simplicial object of C; we wish to prove that X• admits a

colimit in C which is preserved by G. The diagram q classifies a coCartesian fibration p : J → J.

According to Proposition HTT.3.3.3.1 , we can identify C with the full subcategory of FunJ(J, J)

spanned by those sections of p which carry every morphism in J to a p-coCartesian morphism in J.

In particular, we can identify X• with a functor X : J×N(∆)op → J. We next prove:

(∗) There exists a functor X ∈ FunJ(J×N(∆+)op, J) which is a p-left Kan extension of X.

In view of Lemma HTT.4.3.2.13 , it will suffice to show that for each object J ∈ J, the diagram

J/J ×N(∆)op //

��

J

p

��
(JJ/×N(∆)op).

99

// J
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admits an extension as indicated which is a p-colimit diagram. Because the inclusion {J} ×
N(∆)op ↪→ JJ/×N(∆)op is left cofinal, it suffices to construct a p-colimit diagram X

J
: N(∆+)op →

JJ which extends to the composite map XJ
• : N(∆)op

X•→ C→ q(J) ' JJ . According to Proposition

HTT.4.3.1.10 , it suffices to show that the simplicial object XJ
• admits a colimit in q(J) = JJ ,

and that this colimit is preserved by the functor q(J) → q(J ′) associated to each morphism in

α : J → J ′ in J. For this, it is sufficient to show that XJ
• extends to a split simplicial object

of q(J). Using assumption (2), we can reduce to the case J = 0. We conclude by invoking the

assumption that X• is G-split.

Let X be as in (∗), so we can identify X with an augmented simplicial object of FunJ(J, J).

It follows from Lemma 3.2.2.9 that this augmented simplicial object is a colimit diagram, which

is obviously preserved by G. To complete the proof, it will suffice to show that this augmented

simplicial object belongs to the full subcategory C ⊆ FunJ(J, J). In other words, we must show that

for every morphism α : J → J ′ in J, the induced map X(J, [−1]) → X(J ′, [−1]) is p-coCartesian.

This is a translation of the condition that the functor q(α) : q(J)→ q(J ′) preserves the colimit of

the simplicial object XJ
• (since XJ

• is split).

In order to apply Proposition 4.7.5.1 in practice, we would like to understand the monad G ◦F
on the ∞-category C0. For this, we specialize to the case where J = N(∆) (so that q : J → Cat∞
can be identified with a cosimplicial ∞-category C•). For each n ≥ 0, we let d0 denote the coface

map Cn → Cn+1 associated to the inclusion [n] ↪→ [0] ? [n] ' [n+ 1].

The main result of this section can be stated as follows:

Theorem 4.7.5.2. Let C• : N(∆)→ Cat∞ be a cosimplicial ∞-category which satisfies the follow-

ing property:

(∗) For every map α : [m]→ [n] in ∆, the induced diagram

Cm
d0
//

��

Cm+1

��
Cn

d0
// Cn+1

is left adjointable. In particular, each coface map d0 : Cn → Cn+1 admits a left adjoint

F (n) : Cn+1 → Cn.

Let C = lim←−C• be a totalization of C•. Then:

(1) The forgetful functor G : C→ C0 admits a left adjoint F .

(2) The diagram

C
G //

G
��

C0

d1

��
C0 d0

// C1
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is left adjointable. That is, the canonical map F (0)◦d1 → G◦F is an equivalence of functors

from C0 to itself.

(3) The adjoint functors C0 F //C
G
oo satisfy the conditions of Theorem 4.7.3.5, so that C is equiv-

alent to the ∞-category LModT (C0) of algebras over the monad T ' G ◦ F ' F (0) ◦ d1.

Before giving the proof of Theorem 4.7.5.2, we describe our main application.

Corollary 4.7.5.3. Let C• : N(∆+) → Cat∞ be an augmented cosimplicial ∞-category, and set

C = C−1. Let G : C→ C0 be the evident functor. Assume that:

(1) The ∞-category C−1 admits geometric realizations of G-split simplicial objects, and those

geometric realizations are preserved by G.

(2) For every morphism α : [m]→ [n] in ∆+, the diagram

Cm
d0
//

��

Cm+1

��
Cn

d0
//// Cn+1

is left adjointable.

Then the canonical map θ : C→ lim←−n∈∆
Cn admits a fully faithful left adjoint. If G is conservative,

then θ is an equivalence.

Proof. Let D• : N(∆+) → Cat∞ be a limit of the diagram C• |N(∆), so that we have a map of

cosimplicial ∞-categories α : C• → D• which induces the identity map from Cn = Dn to itself for

n ≥ 0. Using (2) and Theorem 4.7.5.2, we conclude that the canonical map G′ : D−1 → D0 = C0

admits a left adjoint F ′ which satisfies the hypotheses of Theorem 4.7.3.5. Applying Corollary

4.7.3.16 (and Remark 4.7.3.17) to the diagram

C−1

G !!

U // D−1

G′}}
C0,

we are reduced to showing that the canonical map G′F ′ → GF is an equivalence of functors from

C0 to itself. This is clear: assumption (2) and Theorem 4.7.5.2 allow us to identify both functors

with the composition

C0 d1

→ C1 T→ C0,

where T is a left adjoint to the face map d0 : C0 → C1.
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Proof of Theorem 4.7.5.2. Let C
•

: N(∆+)→ Cat∞ be a limit of the diagram C•. Let T : N(∆+)×
∆1 → N(∆+) be the functor given by the formula

T ([n], i) =

{
[n] if i = 0

[0] ? [n] ' [n+ 1] if i = 1.

Let us regard the composite functor

N(∆+)×∆1 T→ N(∆+)
C
•

→ Cat∞

as an augmented cosimplicial object X
•

of the ∞-category Fun(∆1,Cat∞). We claim that X
•

is

a limit diagram in Fun(∆1,Cat∞). This is equivalent to the requirement that for i ∈ {0, 1}, the

restriction (C
• ◦ T )|(N(∆+)×{i}) is a limit diagram. For i = 0, this follows from our construction

of C
•
, and for i = 1 it follows from the observation that the augmented cosimplicial ∞-category

(C
• ◦ T )|(N(∆+)× {1}) is split.

Let X• = X
•

be the underlying cosimplicial object of Fun(∆1,Cat∞). Condition (∗) is equiv-

alent to the requirement that X• is a cosimplicial object of FunLAd(∆1,Cat∞). It follows from

Corollary 4.7.4.18 that X
•

is an augmented cosimplicial object of FunLAd(∆1,Cat∞). Since X
−1

is an object of FunLAd(∆1,Cat∞), we deduce that the forgetful functor G : C ' C
−1 → C0 ad-

mits a left adjoint. This proves (1). Assertion (2) is equivalent to the requirement that the map

X−1 → X0 is a morphism of FunLAd(∆1,Cat∞), and assertion (3) follows immediately from Propo-

sition 4.7.5.1.

4.8 Tensor Products of ∞-Categories

Our goal in this section is to study some specific examples of symmetric monoidal ∞-categories

which play an important role in higher category theory. We begin in §4.8.1 by showing that the

∞-category PrL of presentable ∞-categories admits a symmetric monoidal structure: if C and D

are presentable ∞-categories, then the tensor product C⊗D is universal among presentable ∞-

categories which receive a functor C×D→ C⊗D which preserves small colimits separately in each

variable.

Let Sp denote the ∞-category of spectra introduced in §1.4.3. Then Sp is a presentable stable

∞-category, which we can regard as an object of PrL. In §4.8.2, we will show that Sp admits the

structure of a commutative algebra object of PrL (in an essentially unique way). In other words,

the ∞-category of spectra admits a symmetric monoidal structure, where the tensor product

⊗ : Sp×Sp→ Sp

preserves small colimits separately in each variable. We will refer to this structure as the smash

product symmetric monoidal structure. The theory of commutative and associative algebras in Sp

will be the subject of Chapter 7.
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The symmetric monoidal structure on PrL has a number of other applications. Suppose that C

is an associative algebra object of PrL: that is, C is a presentable monoidal ∞-category for which

the tensor product ⊗ : C×C → C preserves small colimits separately in each variable. Let A be

an associative algebra object of C. In §4.3.2, we saw that the ∞-category RModA(C) is naturally

left-tensored over the monoidal ∞-category C. In §4.8.3, we will show that the construction A 7→
RModA(C) can be regarded as a functor Alg(C) → LModC(PrL). We will make a detailed study

of this functor in §4.8.5. Our analysis relies on the fact that RModA(C) can be characterized (as

an ∞-category left-tensored over C) by two different universal properties, which we will verify in

§4.8.4.

In the special case where C is a symmetric monoidal∞-category, both Alg(C) and LModC(PrL)

inherit symmetric monoidal structures, and the construction A 7→ RModA(C) is a symmetric

monoidal functor. This observation will play an important role in the study of algebras over

the little cubes ∞-operads E⊗k which we will undertake in Chapter 5.

4.8.1 Tensor Products of ∞-Categories

In §2.4.1, we saw that any∞-category C which admits finite products can be regarded as a symmet-

ric monoidal ∞-category, where the symmetric monoidal structure on C is given by the Cartesian

product functor C×C→ C. In particular, the∞-category Cat∞ of (small)∞-categories is endowed

with a symmetric monoidal structure. The commutative algebra objects of Cat∞ can be thought of

as symmetric monoidal ∞-categories (Remark 2.4.2.6). In practice, it is often convenient to work

not with an arbitrary symmetric monoidal ∞-category D⊗, but to introduce some restrictions:

for example, we might want to require that D admits colimits indexed by certain diagrams, and

that the tensor product on D is compatible with such colimits. In this case, D⊗ can be identified

with a commutative algebra object of a suitable subcategory of Cat∞, which inherits a symmetric

monoidal structure from the Cartesian symmetric monoidal structure on Cat∞.

Definition 4.8.1.1. Let K be collection of simplicial sets. We let Cat∞(K) denote the subcategory

of Cat∞ spanned by those ∞-categories C which admit K-indexed colimits for each K ∈ K, and

those functors f : C→ D which preserve K-indexed colimits for each K ∈ K.

Our first goal in this section is to show that for every small collection of simplicial sets K,

the ∞-category Cat∞(K) inherits a symmetric monoidal structure from Cat∞. To describe this

symmetric monoidal structure, we need to introduce a bit of notation.

Notation 4.8.1.2. Let A be the category of marked simplicial sets, as defined in §HTT.3.1 . Then

A has the structure of a simplicial symmetric monoidal model category, where the symmetric

monoidal structure is given by Cartesian product. We let Cat⊗∞ denote the ∞-category N(A⊗,o)

appearing in the statement of Proposition 4.1.7.10. More concretely:

(i) The objects of Cat⊗∞ are finite sequences [X1, . . . , Xn], where each Xi is an ∞-category.



708 CHAPTER 4. ASSOCIATIVE ALGEBRAS AND THEIR MODULES

(ii) Given a pair of objects [X1, . . . , Xn], [Y1, . . . , Ym] ∈ Cat⊗∞, a morphism from [X1, . . . , Xn] to

[Y1, . . . , Ym] consists of a map α : 〈n〉 → 〈m〉 and a collection of functors ηj :
∏
α(i)=j Xi → Yj .

Let P denote the collection of all sets of simplicial sets, partially ordered by inclusion. We

define a subcategory M of Cat⊗∞×N(P ) as follows:

(iii) An object ([X1, . . . , Xn],K) of Cat⊗∞×N(P ) belongs to M if and only if each of the ∞-

categories Xi admits K-indexed colimits.

(iv) Let f : ([X1, . . . , Xn],K)→ ([Y1, . . . , Ym],K′) be a morphism in Cat⊗∞×N(P ), covering a map

α : 〈n〉 → 〈m〉 in Fin∗. Then f belongs to M if and only if each of the associated functors∏
α(i)=j

Xi → Yj

preserves K-indexed colimits separately in each variable.

If K is a set of simplicial sets, we let Cat∞(K)⊗ denote the fiber product M×N(P ){K}.

We will need the following technical result.

Proposition 4.8.1.3. Let M be defined as in Notation 4.8.1.2. Then the forgetful functor p : M→
N(Fin∗)×N(P ) is a coCartesian fibration.

Corollary 4.8.1.4. Let K be a set of simplicial sets. Then the subcategory Cat∞(K)⊗ is a sym-

metric monoidal ∞-category, and the inclusion Cat∞(K)⊗ ↪→ Cat⊗∞ is a lax symmetric monoidal

functor.

Proof. It follows from Proposition 4.8.1.3 that the forgetful functor p : Cat∞(K)⊗ → N(Fin∗) is a

coCartesian fibration. Moreover, there is a canonical isomorphism of simplicial sets Cat∞(K)⊗〈n〉 '
Cat∞(K)n, which is induced by the functor p.

Remark 4.8.1.5. Suppose K is a collection of sifted simplicial sets. Then, for each K ∈ K, a

functor

C1× · · · × Cn → D

preserves K-indexed colimits if and only if it preserves K-indexed colimits separately in each

variable. It follows that the symmetric monoidal structure on Cat∞(K) described in Corollary

4.8.1.4 is Cartesian.

Remark 4.8.1.6. Let K be a set of simplicial sets. Then the symmetric monoidal ∞-category

Cat∞(K) of Corollary 4.8.1.4 is closed (see Definition 4.1.1.15): for every pair of objects C,D ∈
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Cat∞(K), if we let E denote the full subcategory of Fun(C,D) spanned by those functors which

preserve K-indexed colimits, then the evaluation map

C×E ↪→ C×Fun(C,D)→ D

preserves K-indexed colimits separately in each variable and induces, for each object T ∈ Cat∞(K),

a homotopy equivalence

MapCat∞(K)(T,E)→ MapCat∞(K)(C⊗T,D).

The proof of Proposition 4.8.1.3 will require a bit of notation.

Notation 4.8.1.7. Let C1 and C2 be ∞-categories. Given a pair of collections of diagrams R1 =

{pα : K.
α → C1} and R2 = {qα : K.

β → C2}, we let R1�R2 denote the collection of all diagrams

r : K. → C1×C2 satisfying one of the following conditions:

(1) There exists an index α and an object C2 ∈ C2 such that K = Kα and r is given by the

composition

K. ' K.
α × {C2}

pα→ C1×C2 .

(2) There exists an index β and an object C1 ∈ C1 such that K = Kβ and r is given by the

composition

K. ' {C1} ×K.
β

qβ→ C1×C2 .

The operation � is coherently associative (and commutative). In other words, if for each

1 ≤ i ≤ n we are given an ∞-category Ci and a collection Ri of diagrams in Ci, then we have

a well-defined collection R1� . . . � Rn of diagrams in the product C1× . . . × Cn. so there is no

ambiguity in writing expressions such as R1� . . . � Rn. In the case n = 0, we agree that this

product coincides with the empty set of diagrams in the final ∞-category ∆0.

Proof of Proposition 4.8.1.3. We first show that p is a locally coCartesian fibration. Suppose given

an object ([C1, . . . ,Cn],K) in M, and a morphism α : (〈n〉,K)→ (〈m〉,K′) in N(Fin∗)×N(P ). We

wish to show that α can be lifted to a locally p-coCartesian morphism in M. Supplying a lift of α

is tantamount to choosing a collection of functors

fj :
∏

α(i)=j

Ci → Dj

for 1 ≤ j ≤ m, such that Dj admits K′-indexed colimits, and fj preserves K-indexed colimits

separately in each variable. For 1 ≤ i ≤ n, let Ri denote the collection of all colimit diagrams

in Ci, indexed by simplicial sets belonging to K. We now set Dj = PK′

R (
∏
α(i)=j Ci), where R

denotes the �-product of {Ri}α(i)=j (we refer the reader to §HTT.5.3.6 for an explanation of this
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notation). It follows from Proposition HTT.5.3.6.2 that the functors {fj}1≤j≤m assemble to a

locally p-coCartesian morphism in M.

To complete the proof that p is a coCartesian fibration, it will suffice to show that the locally

p-coCartesian morphisms are closed under composition (Proposition HTT.2.4.2.8 ). In view of

the construction of locally p-coCartesian morphisms given above, this follows immediately from

Proposition HTT.5.3.6.11 .

Remark 4.8.1.8. The coCartesian fibration p of Proposition 4.8.1.3 classifies a functor N(Fin∗)×
N(P )→ Ĉat∞, which we may identify with a functor from N(P ) to the∞-category of commutative

monoid objects of Ĉat∞. Consequently, we obtain a functor from P to the∞-category of symmetric

monoidal ∞-categories. In other words, if K ⊆ K′ are collections of simplicial sets, then we obtain

a symmetric monoidal functor from Ĉat∞(K) to Ĉat∞(K′). It follows from the proof of Proposition

4.8.1.3 that this functor is given on objects by the formula C 7→ PK′

K (C).

Remark 4.8.1.9. Let O⊗ be an ∞-operad, so that AlgO(Cat∞) can be identified with the ∞-

category of O-monoidal ∞-categories (Example 2.4.2.4 and Proposition 2.4.2.5). Unwinding the

definitions, we see that AlgO(Cat∞(K)) can be identified with the subcategory of AlgO(Cat∞)

spanned by the O-monoidal∞-categories which are compatible with K-indexed colimits, and those

O-monoidal functors which preserve K-indexed colimits.

Given an inclusion K ⊆ K′ of sets of simplicial sets, the induced inclusion

AlgO(Cat∞(K′)) ⊆ AlgO(Cat∞(K))

admits a left adjoint, given by composition with the symmetric monoidal functor PK′

K . Contem-

plating the unit of this adjunction, we arrive at the following result:

Proposition 4.8.1.10. Let K ⊆ K′ be collections of simplicial sets and q : C⊗ → O⊗ a coCartesian

fibration of ∞-operads. Assume that the O-monoidal structure on C is compatible with K-indexed

colimits. Then there exists a O-monoidal functor C⊗ → D⊗ with the following properties:

(1) The O-monoidal structure on D⊗ is compatible with K′-indexed colimits.

(2) For each X ∈ O, the underlying functor fX : CX → DX preserves K-indexed colimits.

(3) For every ∞-category E which admits K′-indexed colimits and every object X ∈ O, com-

position with fX induces an equivalence of ∞-categories FunK′(DX ,E) → FunK(CX ,E). In

particular, f induces an identification DX ' PK′

K (CX), and is therefore fully faithful (Propo-

sition HTT.5.3.6.2 ).

(4) If E⊗ → O⊗ is a coCartesian fibration of ∞-operads which is compatible with K′-indexed

colimits, then the induced map AlgD(E) → AlgC(E) induces an equivalence of ∞-categories

from the full subcategory of AlgD(E) spanned by those algebra objects A such that each AX :
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DX → EX preserves K′-indexed colimits to the full subcategory of AlgC(E) spanned by those

algebra objects B such that each BX : CX → EX preserves K-indexed colimits.

Variant 4.8.1.11. In Notation 4.8.1.2, we can replace Cat∞ by the (very large) ∞-category Ĉat∞
of ∞-categories which are not necessarily small, and P by the collection P̂ of not necessarily small

collections of simplicial sets. We then obtain a coCartesian fibration

M̂ → N(Fin∗)×N(P̂ ).

We denote the fiber of this map over an object K ∈ P̂ by Ĉat∞(K)⊗.

Corollary 4.8.1.12. Let C be a small symmetric monoidal ∞-category. Then there exists a sym-

metric monoidal structure on the ∞-category P(C) of presheaves on C. It is characterized up to

(symmetric monoidal) equivalence by the following properties:

(1) The Yoneda embedding j : C→ P(C) can be extended to a symmetric monoidal functor.

(2) The tensor product ⊗ : P(C) × P(C) → P(C) preserves small colimits separately in each

variable.

Proof. The existence of the desired symmetric monoidal structures on P(C) and j follows from

Proposition 4.8.1.10. The uniqueness follows from the universal property given in assertion (3) of

Proposition 4.8.1.10).

Remark 4.8.1.13 (Day Convolution). Let C be a small symmetric monoidal∞-category. Then the

opposite ∞-category Cop inherits a symmetric monoidal structure (see Remark 2.4.2.7). Invoking

Example 2.2.6.17, we deduce that the presheaf ∞-category P(C) = Fun(Cop, S) can be equipped

with a symmetric monoidal structure given by Day convolution, whose underlying tensor product

~ : P(C)× P(C)→ P(C) is given by the construction

(F~G)(C) = lim−→
C→C0⊗C1

F(C0)× G(C1).

One can show that this agrees with the symmetric monoidal structure of Corollary 4.8.1.12.

Applying Proposition 4.8.1.10 in the case where K is empty and K′ is the class of all small

filtered simplicial sets, we deduce the following:

Corollary 4.8.1.14. Let C be a small symmetric monoidal ∞-category. Then there exists a sym-

metric monoidal structure on the ∞-category Ind(C) of Ind-objects on C. It is characterized up to

(symmetric monoidal) equivalence by the following properties:

(1) The Yoneda embedding j : C→ Ind(C) can be extended to a symmetric monoidal functor.
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(2) The tensor product ⊗ : Ind(C) × Ind(C) → Ind(C) preserves small filtered colimits separately

in each variable.

Moreover, if C admits finite colimits, and the tensor product ⊗ : C×C→ C preserves finite colimits

separately in each variable, then assertion (2) can be strengthened as follows:

(2′) The tensor product functor ⊗ : Ind(C)× Ind(C)→ Ind(C) preserves small colimits separately

in each variable.

Moreover, if D⊗ is any symmetric monoidal ∞-category such that D admits small filtered colimits

and the tensor product D×D → D preserves small filtered colimits, then the restriction functor

Fun⊗(Ind(C),D)→ Fun(C,D) is an equivalence of ∞-categories.

Proof. Only assertion (2′) requires proof. For each D ∈ Ind(C), let eD denote the functor C 7→ C⊗
D. Let D denote the full subcategory spanned by those objects D ∈ Ind(C) such that the functor eD
preserves small colimits separately in each variable. We wish to prove that D = Ind(C). Assertion

(2) implies that the correspondence D 7→ eD is given by a functor Ind(C) → Fun(Ind(C), Ind(C))

which preserves filtered colimits. Consequently, D is stable under filtered colimits in Ind(C). It will

therefore suffice to show that D contains the essential image of j.

Let C ∈ C. Since the Yoneda embedding j is a symmetric monoidal functor, we have a homotopy

commutative diagram

C
eC //

j
��

C

j
��

Ind(C)
ej(C) // Ind(C).

The desired result now follows from Proposition HTT.5.5.1.9 , since ej(C) preserves filtered colimits

and j ◦ eC preserves finite colimits.

Let K be the collection of all small simplicial sets. Let us now consider the symmetric monoidal

∞-category Ĉat∞(K), whose objects are ∞-categories which admit small colimits and whose mor-

phisms are functors which preserve small colimits. We let PrL denote the full subcategory of

Ĉat∞(K) spanned by the presentable ∞-categories.

Proposition 4.8.1.15. Let K denote the collection of all small simplicial sets. The ∞-category

PrL of presentable ∞-categories is closed under tensor products in Ĉat∞(K), and therefore inherits

a symmetric monoidal structure (see Proposition 2.2.1.1).

Proof. Corollary 4.8.1.12 implies that the unit object of Ĉat∞(K) is given by P(∆0) ' S, which

is a presentable ∞-category. It will therefore suffice to show that if C and C′ are two presentable

∞-categories, then their tensor product C⊗C′ in Ĉat∞(K) is also presentable. If C = P(C0) and

C′ = P(C′0) for a pair of small∞-categories C0 and C′0, then Corollary 4.8.1.12 yields an equivalence

C⊗C′ ' P(C0×C′0), so that C⊗C′ is presentable as desired. In view of Theorem HTT.5.5.1.1 ,
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every presentable ∞-category is a localization of an ∞-category of presheaves. It will therefore

suffice to prove the following:

(∗) Let C and C′ be presentable ∞-categories, and assume that the tensor product C⊗C′ is

presentable. Let S be a (small) set of morphisms in C. Then the tensor product S−1 C⊗C′

is presentable.

To prove (∗), we choose a (small) set of objects M = {C ′α} which generates C′ under colimits.

Let f : C×C′ → C⊗C′ be the canonical map, and let T be the collection of all morphisms in C⊗C′

having the form f(s× idC′), where s ∈ S and C ′ ∈M . Consider now the composition

g : S−1 C×C′ ⊆ C×C′
f→ C⊗C′

L→ T−1(C⊗C′),

where L is a left adjoint to the inclusion T−1(C⊗C′) ⊆ C⊗C′. We claim that g exhibits T−1(C⊗C′)

as a tensor product of S−1 C with C′. In other words, we claim that if D is an arbitrary∞-category

which admits small colimits, then composition with g induces an equivalence

FunK(T−1(C⊗C′),D)→ FunK�K(S−1 C×C′,D).

The left hand side can be identified with the full subcategory of FunK(C⊗C′,D) spanned by those

functors which carry each morphism in T to an equivalence. Under the equivalence

FunK(C⊗C′,D) ' FunK�K(C×C′,D) ' FunK(C,FunK(C′,D)),

this corresponds to the full subcategory spanned by those functors F : C→ FunK(C′,D) which carry

each morphism in S to an equivalence. This∞-category is equivalent to FunK(S−1 C,FunK(C′,D)) '
FunK�K(S−1 C×C′,D), as desired.

In §4.8.2, we will need a more explicit description of the tensor product on PrL.

Lemma 4.8.1.16. Let C and D be presentable ∞-categories. Then RFun(Cop,D) is a presentable

∞-category.

Proof. Using Theorem HTT.5.5.1.1 and the results of §HTT.5.5.4 , we can choose a small ∞-

category C′, a small collection S of morphisms in P(C′), and an equivalence C ' S−1 P(C′). Then

RFun(P(C′)op,D) ' LFun(P(C′),Dop)op ' Fun(C′,Dop)op ' Fun(C′op,D)

is presentable by Proposition HTT.5.5.3.6 , where the second equivalence is given by composition

with the Yoneda embedding (Theorem HTT.5.1.5.6 ). For each morphism α ∈ S, let E(α) denote

the full subcategory of RFun(P(C′)op,D) spanned by those functors which carry α to an equiva-

lence in D. Then RFun(Cop,D) is equivalent to the intersection
⋂
α∈S E(α). In view of Lemma
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HTT.5.5.4.18 , it will suffice to show that each E(α) is a localization of RFun(P(C′)op,D). We now

observe that E(α) is given by a pullback diagram

E(α) //

��

RFun(P(C′)op,D)

��
E
� � // Fun(∆1,D),

where E denotes the full subcategory of Fun(∆1,D) spanned by the equivalences. According to

Lemma HTT.5.5.4.17 , it will suffice to show that E is an accessible localization of Fun(∆1,D),

which is clear.

Proposition 4.8.1.17. Let C and D be presentable ∞-categories. Then there is a canonical equiv-

alence

C⊗D ' RFun(Cop,D).

Proof. Let E be an arbitrary presentable∞-category, and let Fun′(C×D,E) be the full subcategory

of Fun(C×D,E) spanned by those functors which preserve small colimits separately in each vari-

able. Then we have a canonical isomorphism Fun′(C×D,E) ' LFun(C,LFun(D,E)). Here the ∞-

category LFun(D,E) is presentable (Proposition HTT.5.5.3.8 ). Using Corollary HTT.5.5.2.9 and

Proposition HTT.5.2.6.3 , we can identify LFun(D,E) with the full subcategory of RFun(E,D)op

spanned by those functors which are accessible. Consequently, we get a fully faithful embedding

Fun′(C×D,E) → LFun(C,RFun(E,D)op)

' LFun(C,LFun(Eop,Dop))

' LFun(Eop,LFun(C,Dop))

' RFun(E,RFun(Cop,D))op

whose essential image consists of the collection of accessible functors from E to RFun(Cop,D).

We now apply Lemma 4.8.1.16 to conclude that RFun(Cop,C) is presentable, so that (using

Corollary HTT.5.5.2.9 and Proposition HTT.5.2.6.3 again) Fun′(C×D,E) can be identified with

LFun(RFun(Cop,D),E). It follows that RFun(Cop,D) and C⊗D corepresent the same functor on

PrL and are therefore canonically equivalent.

Remark 4.8.1.18. The symmetric monoidal structure on PrL described in Proposition 4.8.1.15

is closed (see Definition 4.1.1.15): for every pair of presentable ∞-categories C and D, the ∞-

category LFun(C,D) of colimit-preserving functors from C to D (which is presentable by Proposi-

tion HTT.5.5.3.8 ) is equipped with a map C⊗LFun(C,D) → D which exhibits LFun(C,D) as an

exponential of D by C.
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Example 4.8.1.19. Let X and Y be ∞-topoi. Then X⊗Y is an ∞-topos, and can be identified

with the (Cartesian) product of X and Y in the ∞-category of ∞-topoi. For a proof of a slightly

weaker assertion, we refer the reader to Theorem HTT.7.3.3.9 . The general statement can be

proven using a similar argument.

Example 4.8.1.20. Remark 4.8.1.8 implies that the ∞-category S = P(∆0) is a unit object of

PrL. In particular, for every presentable ∞-category C we have canonical equivalences C ' C⊗ S '
RFun(Cop, S). The essential surjectivity of the composition is a restatement of the representability

criterion of Proposition HTT.5.5.2.2 .

Example 4.8.1.21. Recall that, for every ∞-category C, the ∞-category C∗ of pointed objects of

C is defined to be the full subcategory of Fun(∆1,C) spanned by those functors F : ∆1 → C for

which F (0) is a final object of C. The canonical isomorphism of simplicial sets RFun(Cop,D∗) '
RFun(Cop,D)∗ induces an equivalence C⊗D∗ ' (C⊗D)∗ for every pair of presentable∞-categories

C,D ∈ LPr. In particular, we have a canonical equivalence C⊗ S∗ ' C∗.

Example 4.8.1.22. Let n ≥ −2 be an integer, and let τ≤n S denote the full subcategory

of S spanned by the n-truncated spaces. For any presentable ∞-category C, we can identify

C⊗τ≤n S with the ∞-category RFun(Cop, τ≤n S) ⊆ RFun(Cop, S). Under the Yoneda equivalence

RFun(Cop, S) ' C, RFun(Cop, τ≤n S) corresponds to the full subcategory of C spanned by those

objects C such that MapC(C ′, C) is n-truncated, for each C ′ ∈ C. In other words, we have a

canonical equivalence C⊗τ≤n S ' τ≤n C.

Example 4.8.1.23. Let Sp denote the ∞-category of spectra. Then Sp can be identified with a

homotopy limit of the tower

. . .
Ω→ S∗

Ω→ S∗ .

Consequently, for every presentable ∞-category C, we have equivalences

C⊗Sp ' RFun(Cop,Sp) ' holim{RFun(Cop, S∗)} ' holim{C∗} ' Sp(C),

where Sp(C) is defined as in §1.4.2.

Remark 4.8.1.24. Combining Proposition 4.8.1.17 with Theorem HTT.5.5.3.18 , we conclude that

the bifunctor ⊗ : PrL×PrL → PrL preserves small colimits separately in each variable (remem-

ber that colimits in PrL can also be computed as limits in PrR, which are computed by forming

limits in Cat∞ by Theorem HTT.5.5.3.18 ). Alternatively, one can observe that PrL is actually

a closed monoidal category, with internal mapping objects given by LFun(C,D) (see Proposition

HTT.5.5.3.8 ).
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4.8.2 Smash Products of Spectra

Let Sp denote the ∞-category of spectra (as defined in §1.4.3). The homotopy category hSp can

be identified with the classical stable homotopy category. Given a pair of spectra X,Y ∈ hSp, one

can define a new spectrum called the smash product of X and Y . The smash product operation

determines a monoidal structure on hSp. In this section, we will show that this monoidal structure

is determined by a monoidal structure which exists on the ∞-category Sp itself. There are at least

three ways to see this.

(S1) Choose a simplicial model category A equipped with a compatible monoidal structure, whose

underlying∞-category is equivalent to Sp. For example, we can take A to be the category of

symmetric spectra (see [74]). According to Proposition 4.1.7.10, the underlying ∞-category

N(Ao) ' Sp is endowed with a symmetric monoidal structure. The advantage of this per-

spective is that it permits us to easily compare the algebras and modules considered in this

paper with more classical approaches to the theory of structured ring spectra. For example,

Theorem 4.1.8.4 implies that Alg(Sp) is (equivalent to) the∞-category underlying the model

category of algebras in symmetric spectra (that is, strictly associative monoids in A); see

Example 4.1.8.6.

The main disadvantage of this approach is that it seems to require auxiliary data (namely, a

strictly associative model for the smash product functor), which could be supplied in many

different ways. From a conceptual point of view, the existence of such a model ought to be

irrelevant: the purpose of higher category theory is to provide a formalism which allows us

to avoid assumptions like strict associativity.

(S2) Let LFun(Sp,Sp) denote the full subcategory of Fun(Sp,Sp) spanned by those functors from

Sp to Sp which preserve small colimits. Corollary 1.4.4.6 asserts that evaluation on the sphere

spectrum yields an equivalence of∞-categories LFun(Sp, Sp)→ Sp. On the other hand, since

LFun(Sp, Sp) is stable under composition in Fun(Sp,Sp), the composition monoidal structure

on Fun(Sp, Sp) induces a monoidal structure on LFun(Sp,Sp). This definition has the virtue of

being very concrete (the smash product operation is simply given by composition of functors),

and it allows us to identify the algebra objects of LFun(Sp, Sp): they are precisely the colimit-

preserving monads on the ∞-category Sp (for an application of this last observation, see

Theorem 7.1.2.1). The disadvantage of this definition is that it is very “associative” in nature,

and therefore does not generalize easily to show that Sp is a symmetric monoidal∞-category,

as we will show below.

(S3) Let PrL be the∞-category whose objects are presentable∞-categories and whose morphisms

are colimit-preserving functors (see §HTT.5.5.3 ), and let PrSt be the full subcategory of PrL

spanned by those presentable∞-categories which are stable. In §4.8.1, we showed that there is

a symmetric monoidal structure on PrL. We will show that the full subcategory PrSt inherits
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a symmetric monoidal structure from that of PrL. The commutative algebra objects of PrSt

can be identified with symmetric monoidal ∞-categories C which are stable, presentable, and

have the property that the bifunctor ⊗ : C×C→ C preserves small colimits separately in each

variable. We will see that Sp is the unit object of PrSt (with respect to its tensor structure). It

follows from Proposition 3.2.1.8 that Sp can be endowed with the structure of a commutative

algebra object of PrSt, and in fact is initial among such algebra objects. This establishes not

only the existence of a symmetric monoidal structure on Sp, but also a universal property

which can be used to prove its uniqueness (Corollary 4.8.2.19).

We will adopt approach (S3). We begin with some general remarks concerning idempotent

objects of monoidal ∞-categories.

Definition 4.8.2.1. Let C be a monoidal ∞-category with unit object 1. We will say that a map

e : 1→ E is an idempotent object of C if the induced maps

E ' E ⊗ 1
id⊗e−→ E ⊗ E E ' 1⊗ E e⊗id−→ E ⊗ E

are equivalences in C.

Remark 4.8.2.2. In the situation of Definition 4.8.2.1, we will often abuse terminology and simply

say that E is an idempotent object of C, or that e : 1→ E exhibits E as an idempotent object of C.

Example 4.8.2.3. Let C be an∞-category. Then the∞-category Fun(C,C) is a strict monoidal∞-

category via composition (that is, composition endows Fun(C,C) with the structure of a simplicial

monoid: see Example 4.1.8.7). An idempotent object of Fun(C,C) is a functor L : C→ C equipped

with a natural transformation e : idC → L such that the induced maps

L = L ◦ idC → L ◦ L L = idC ◦L→ L ◦ L

are equivalences in Fun(C,C). This is equivalent to the assertion that L is a localization functor

from C to itself (see Proposition HTT.5.2.7.4 ).

Proposition 4.8.2.4. Let C be a monoidal ∞-category and let e : 1 → E be a morphism in C.

The following conditions are equivalent:

(1) The map e exhibits E as an idempotent object of C.

(2) For every ∞-category M, let lE : M → M be the functor given by tensor product with E ∈
C, so that e induces a natural transformation αM : idM → lE. Then each of the natural

transformations αM exhibits lE as a localization functor on M.

(3) Let lE : C → C be the functor given by left tensor product with E. Then e induces a functor

α : idC → lE which exhibits lE as a localization functor on C.
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Proof. The implication (1)⇒ (2) follows from Proposition HTT.5.2.7.4 and the implication (2)⇒
(3) is obvious. Assume that (3) is satisfied. Then Proposition HTT.5.2.7.4 implies that the

transformation α : idC → lE induces equivalences of functors lE → l2E . Evaluating these functors

at the unit object of C, we deduce that the two natural maps E → E ⊗ E are equivalences.

Remark 4.8.2.5. Let e : 1 → E be an idempotent object of a monoidal ∞-category C and let

L : C→ C be the localization functor given by tensor product with E. Suppose that e admits a left

inverse. Then 1 is a retract of E. Since E is L-local, we conclude that 1 is L-local. Thus e is an

L-equivalence between L-local objects, and therefore an equivalence.

In this section, we will be primarily interested in idempotent objects of symmetric monoidal

∞-categories.

Remark 4.8.2.6. Let C be a symmetric monoidal ∞-category. Then a morphism e : 1→ E in C

exhibits E as an idempotent object of C if and only if the induced map idE ⊗e : E → E ⊗ E is an

equivalence; the symmetry of C guarantees that e⊗ idE is homotopic to idE ⊗e.

Proposition 4.8.2.7. Let C be a symmetric monoidal ∞-category and let e : 1 → E be an idem-

potent object of C. Let L : C→ C be the localization functor given by C 7→ E ⊗ C (see Proposition

4.8.2.4). Then L is compatible with the symmetric monoidal structure on C, so that LC inherits a

symmetric monoidal structure (see Proposition 2.2.1.9).

Proof. Let f : C → C ′ be an L-equivalence and let D ∈ C; we wish to show that the induced map

C⊗D → C ′⊗D is an L-equivalence. In other words, we wish to show that f induces an equivalence

E ⊗ C ⊗D → E ⊗ C ′ ⊗D. This is clear, since f induces an equivalence E ⊗ C → E ⊗ C ′.

In the situation of Proposition 4.8.2.7, the inclusion (LC)⊗ ↪→ C⊗ is a fully faithful embedding of

∞-operads, which induces a fully faithful embedding CAlg(LC) ↪→ CAlg(C) whose essential image

is the collection of commutative algebra objects A ∈ CAlg(C) such that e induces an equivalence

A → E ⊗ E. Note that the unit object of LC is given by L1 ' E. It follows that E has the

structure of a commutative algebra object of LC, and therefore a commutative algebra object of

C. To describe the situation more precisely, it is convenient to introduce a bit of terminology:

Definition 4.8.2.8. Let C be a symmetric monoidal ∞-category. We will say that a commutative

algebra object A ∈ CAlg(C) is idempotent if the multiplication map A⊗A→ A is an equivalence.

Let CAlgidem(C) denote the full subcategory of CAlg(C) spanned by the idempotent commutative

algebra objects.

Note that if A is a commutative algebra object of C with unit map e : 1 → A, then the map

idA⊗e : A → A ⊗ A is a right inverse to the multiplication map A ⊗ A → A. It follows that A is

an idempotent commutative algebra object of C if and only if e exhibits A as an idempotent object

of C. In fact, we can be more precise:
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Proposition 4.8.2.9. Let C be a symmetric monoidal ∞-category with unit object 1, which we

regard as a trivial algebra object of C. Then the functor

θ : CAlgidem(C) ⊆ CAlg(C) ' CAlg(C)1/ → C1/

is fully faithful, and its essential image is the collection of maps e : 1 → E which exhibit E as an

idempotent object of C.

Proof. The arguments sketched above show that θ is essentially surjective. We prove that θ is fully

faithful. Let A,A′ ∈ CAlg(C) be idempotent algebras with units e : 1 → A and e′ : 1 → A′. It

will suffice to show that if MapC1/
(A,A′) is nonempty, then MapC1/

(A,A′) and MapCAlg(C)(A,A
′)

are both contractible. Assume therefore that MapC1/
(A,A′) is nonempty, so that e′ factors as a

composition 1
e→ A

f→ A′ for some morphism f in C. Note that A and A′ are idempotent objects

of C; let L and L′ denote the associated localization functors. Then L′(e) exhibits L′A as an

idempotent object of L′ C, and L′(e) has a left inverse. It follows that L′(e) is an equivalence. Since

A′ is L′-local, we immediately deduce that MapC1/
(A,A′) ' MapCL′1/

(L′A,L′A′) is contractible.

Note that A can be identified with an initial object of the full subcategory CAlg(LC) ⊆ CAlg(C).

To show that MapCAlg(C)(A,A
′) is contractible, it suffices to show that A′ ∈ LC. We have a

commutative diagram

A⊗A′
f⊗idA′

%%
A′

e⊗idA′
;;

e′⊗idA′ // A′ ⊗A′

Since the horizontal map is an equivalence, this diagram exhibits A′ as a retract of A⊗ A′. Since

A⊗A′ is L-local, we conclude that A′ is L-local.

Proposition 4.8.2.10. Let C be a symmetric monoidal ∞-category and let A be an idempotent

object of CAlg(C). Let L : C→ C be the associated localization functor (given by tensor product with

A), so that LC inherits the structure of a symmetric monoidal ∞-category (Proposition 4.8.2.7).

Then the forgetful functor G : ModA(C)⊗ → C⊗ determines an equivalence of symmetric monoidal

∞-categories ModA(C)⊗ → (LC)⊗.

Proof. The forgetful functor G admits a symmetric monoidal left adjoint F : C⊗ → ModA(C)⊗,

given by tensor product with F . Let M ∈ ModA(C); we will abuse notation by identifying M with

its image in C. The composition

M ' 1⊗M → A⊗M →M

is homotopic to the identity, so that M is a retract of A ⊗M in C and therefore belongs to LC.

It follows that the counit map F ◦G→ id is an equivalence of functors for ModA(C)⊗ to itself, so

that G determines an equivalence onto the full subcategory of C⊗ spanned by those objects X such
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that the unit map X → (G ◦ F )(X) is an equivalence. Unwinding the definitions, we see that this

is subcategory coincides with (LC)⊗.

We now specialize to the case where C is the ∞-category PrL of presentable ∞-categories,

endowed with the symmetric monoidal structure described in §4.8.1. The unit object of PrL is the

∞-category of spaces. If C is presentable∞-category with a distinguished object C ∈ C, we will say

that (C, C) is idempotent if there is a colimit-preserving functor F : S → C with F (∗) = C which

exhibits C as an idempotent object of PrL. Note that in this case, the functor F is well-defined up

to a contractible space of choices (Theorem HTT.5.1.5.6 ). It then follows from Proposition 4.8.2.9

that C has the structure of a commutative algebra object of PrL, and that F : S → C is the unit

map for this algebra structure. In other words, there is a canonical symmetric monoidal structure

on C for which C ∈ C is the unit object.

We now give some examples of idempotent objects of PrL.

Proposition 4.8.2.11. Let S∗ denote the ∞-category of pointed spaces, and let S0 denote the

0-sphere (that is, a pointed space consisting of exactly two points). Then (S∗, S
0) is idempotent.

Moreover, the forgetful functor ModS∗(PrL) → PrL determines a fully faithful embedding, whose

essential image is the full subcategory PrPt ⊆ PrL spanned by the pointed presentable ∞-categories.

Lemma 4.8.2.12. Let C and D be ∞-categories, and assume that C has an initial object. Let

Fun′(C,D) denote the full subcategory of Fun(C,D) spanned by those functors which carry initial

objects of C to final objects of D, and define Fun′(C,D∗) similarly. Then the forgetful functor

θ : Fun′(C,D∗)→ Fun′(C,D) is a trivial fibration of simplicial sets.

Remark 4.8.2.13. If the∞-category D does not have a final object, then the conclusion of Lemma

4.8.2.12 is true but vacuous: both of the relevant ∞-categories of functors are empty.

Proof. We first observe that objects of Fun′(C,D∗) can be identified with maps F : C×∆1 → D

with the following properties:

(a) For every initial object C ∈ C, F (C, 1) is a final object of D.

(b) For every object C ∈ C, F (C, 0) is a final object of D.

Assume for the moment that (a) is satisfied, and let C′ ⊆ C×∆1 be the full subcategory spanned

by those objects (C, i) for which either i = 1, or C is an initial object of C. We observe that (b) is

equivalent to the following pair of conditions:

(b′) The functor F |C′ is a right Kan extension of F |C×{1}.

(b′′) The functor F is a left Kan extension of F |C′.
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Let E be the full subcategory of Fun(C×∆1,D) spanned by those functors which satisfy condi-

tions (b′) and (b′′). Using Proposition HTT.4.3.2.15 , we deduce that the projection θ : E →
Fun(C×{1},D) is a trivial Kan fibration. Since θ is a pullback of θ, we conclude that θ is a trivial

Kan fibration.

Proof of Proposition 4.8.2.11. The object S0 ∈ S∗ corresponds to the colimit-preserving functor

F : S → S∗ which assigns to each space X ∈ S the pointed space X+ = X
∐
{∗} obtained by

adjoining to X a disjoint base point. According to Propositions 4.8.2.4 and 4.8.2.10, it will suffice

to show the following:

(∗) For every presentable ∞-category C, the functor F induces a map FC : C ' C⊗ S → C⊗ S∗
which exhibits C⊗ S∗ as a PrPt-localization of C.

In view of Example 4.8.1.21, it will suffice to show that if C and D are presentable ∞-categories

such that D is pointed, then the canonical map RFun′(D,C∗) → RFun′(D,C) is an equivalence

of ∞-categories (here RFun′(D,C) denotes the full subcategory of Fun(D,C) spanned by those

accessible functors which preserve small limits, and RFun′(D,C∗) is defined similarly). This follows

from Lemma 4.8.2.12, Proposition HTT.1.2.13.8 , and Proposition HTT.4.4.2.9 .

Remark 4.8.2.14. It follows from Proposition 4.8.2.11 that the ∞-category S∗ of pointed spaces

inherits a symmetric monoidal structure. This symmetric monoidal structure is uniquely deter-

mined by the requirements that the tensor product ⊗ : S∗× S∗ → S∗ preserve colimits separately

in each variable and that the unit object is given by S0 ∈ S∗ (Proposition 4.8.2.9). It follows that

this tensor product is given by the classical smash product of pointed spaces: that is, it assigns to a

pair of pointed spaces X and Y the space X ∧ Y obtained from X × Y by collapsing the subspaces

X and Y to the base point.

Proposition 4.8.2.15. Let n ≥ −2 be an integer, and let τ≤n S denote the full subcategory of

S spanned by the n-truncated spaces. Then the pair (τ≤n S, ∗) is idempotent (here ∗ ∈ S denotes

the space consisting of a single point, which is automatically n-truncated). Moreover, the forgetful

functor ModS∗(PrL)→ PrL determines a fully faithful embedding, whose essential image is the full

subcategory of X ⊆ PrL spanned by the presentable ∞-categories which are equivalent to (n + 1)-

categories (see Definition HTT.2.3.4.1 ).

Proof. The object ∗ ∈ τ≤n S corresponds to the colimit-preserving functor τ≤n : S → τ≤n S which

assigns to each space X ∈ S its n-truncation. According to Propositions 4.8.2.4 and 4.8.2.10, it will

suffice to show the following:

(∗) For every presentable∞-category C, the functor τ≤n induces a map θ : C ' C⊗ S→ C⊗τ≤n S
which exhibits C⊗τ≤n S as a X-localization of C.
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Using Example 4.8.1.22, we are reduced to the following statement: if C and D are presentable

∞-categories such that D is equivalent to an (n + 1)-category, then every F ∈ LFun(C,D) has a

right adjoint G : D→ C which factors through τ≤n C. This is immediate, since G is left exact and

therefore carries objects of D (which are automatically n-truncated by virtue of our assumption on

D) to n-truncated objects of C.

Remark 4.8.2.16. Proposition 4.8.2.15 implies that each τ≤n S is equipped with a symmetric

monoidal structure, which is uniquely determined by the requirement that the tensor product

τ≤n S×τ≤n S → τ≤n S preserve colimits separately in each variable, and that the object ∗ ∈ τ≤n S
be the unit object. It follows that this symmetric monoidal structure coincides with the Cartesian

symmetric monoidal structure introduced in §2.4.1.

Remark 4.8.2.17. The proof of Proposition 4.8.2.15 shows that for any presentable ∞-category

C and any n ≥ 0, the tensor product C⊗τ≤n S can be identified with the full subcategory τ≤n C ⊆ C

spanned by the n-truncated objects of C.

We now turn to the main case of interest.

Proposition 4.8.2.18. Let Sp denote the ∞-category of spectra, and let S ∈ Sp be the sphere spec-

trum. Then (Sp, S) is idempotent. Moreover, the forgetful functor ModSp(PrL)→ PrL determines

a fully faithful embedding whose essential image is the full subcategory PrSt ⊆ PrL spanned by the

stable presentable ∞-categories.

Proof. The object S ∈ Sp corresponds to the colimit-preserving functor Σ∞ : S → Sp. According

to Propositions 4.8.2.4 and 4.8.2.10, it will suffice to show the following:

(∗) For every presentable ∞-category C, the functor Σ∞ induces a map F : C ' C⊗ S→ C⊗Sp

which exhibits C⊗Sp as a PrSt-localization of C.

This follows immediately from Example 4.8.1.23 and Corollary 1.4.4.5.

Corollary 4.8.2.19. There exists a symmetric monoidal structure on the ∞-category Sp such

that S ∈ Sp is the unit object and the tensor product ⊗ : Sp×Sp → Sp preserves small colimits

separately in each variable. Moreover, if C⊗ is an arbitrary symmetric monoidal ∞-category such

that C is stable and presentable and the tensor product ⊗ : C×C→ C preserves colimits separately

in each variable, then there exists a symmetric monoidal functor Sp⊗ → C⊗ such that the underlying

functor Sp→ C preserves small colimits. Moreover, the collection of such functors is parametrized

by a contractible Kan complex.

In other words, the ∞-category Sp admits a symmetric monoidal structure, which is uniquely

characterized by the following properties:

(a) The bifunctor ⊗ : Sp×Sp→ Sp preserves small colimits separately in each variable.
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(b) The unit object of Sp is the sphere spectrum S.

We will refer to this monoidal structure on Sp as the smash product symmetric monoidal struc-

ture.

Remark 4.8.2.20. It follows from Proposition 4.8.2.18 that every stable presentable ∞-category

C is canonically tensored over the symmetric monoidal ∞-category Sp.

Warning 4.8.2.21. Given a pair of objects X,Y ∈ hSp, the smash product of X and Y is usually

denoted by X ∧ Y . We will depart from this convention by writing instead X ⊗ Y for the smash

product.

Remark 4.8.2.22. For any ∞-operad O⊗, the symmetric monoidal structure on Sp restricts to a

O-monoidal structure on spectra. If O⊗ is unital, then the proof of Corollary 4.8.2.19 shows that

this O-monoidal structure is uniquely determined by the requirement that for each X ∈ O, the

corresponding unit object of Sp is identified with the sphere spectrum.

Let LFun(Sp,Sp) denote the full subcategory of Fun(Sp,Sp) spanned by those functors which

preserve small colimits. According to Corollary 1.4.4.6, evaluation at the sphere spectrum S ∈ Sp

induces an equivalence of ∞-categories Fun(Sp, Sp) → Sp, so that the smash product monoidal

structure on Sp determines a monoidal structure on Fun(Sp, Sp). It follows from the above argument

that this monoidal structure can be identified with the monoidal structure given by pointwise

composition.

In Chapter 7, we will make an extensive study of the associative and commutative algebra

objects of the ∞-category Sp.

4.8.3 Algebras and their Module Categories

Let C be a monoidal ∞-category and let A ∈ Alg(C) be an algebra object of C. In §4.3.2, we saw

that the∞-category RModA(C) of right A-module objects of C is left-tensored over the∞-category

C. In other words, we can identify RModA(C) with a left module over C in the ∞-category Cat∞
(endowed with the Cartesian monoidal structure). Our goal in this section is to make a systematic

study of this construction. We will proceed in several steps:

(i) We will begin by introducing an∞-category CatAlg
∞ whose objects are pairs (C⊗, A), where C⊗

is a monoidal ∞-category and A is an algebra object of C⊗. Roughly speaking, a morphism

from (C⊗, A) to (D⊗, B) in CatAlg
∞ consists of a monoidal functor F : C⊗ → D⊗ together with

a map of algebras F (A)→ B. For a more precise discussion, see Definition 4.8.3.7 below.

(ii) We will define another ∞-category CatMod
∞ , whose objects can be viewed as pairs (C⊗,M)

where C⊗ is a monoidal ∞-category and M is an ∞-category left-tensored over C⊗.
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(iii) We will construct a functor Θ from a subcategory of CatAlg
∞ to CatMod

∞ . Informally, the functor

Θ associates to every pair (C⊗, A) the ∞-category RModA(C) of right A-module objects of

C⊗.

The relevant constructions are straightforward but somewhat tedious. The reader who does not

wish to become burdened by technicalities is invited to proceed directly to §4.8.4 and §4.8.5, where

we will undertake a deeper study of the functor Θ.

We begin by recalling some terminology.

Definition 4.8.3.1. Let S be a simplicial set and let O⊗ be an∞-operad. A coCartesian S-family

of O-monoidal ∞-categories is a coCartesian fibration q : C⊗ → O⊗×S with the following property:

for every vertex s ∈ S, the induced map of fibers C⊗s = C⊗×S{s} → O⊗ is a coCartesian fibration

of∞-operads. In this case, we will say that q exhibits C⊗ as a coCartesian S-family of O-monoidal

∞-categories. In the special case O⊗ = Assoc⊗, we will say that q is a coCartesian S-family of

monoidal ∞-categories, or that q exhibits C⊗ as a coCartesian S-family of monoidal ∞-categories.

Notation 4.8.3.2. If q : C⊗ → Assoc⊗×S is a coCartesian S-family of monoidal∞-categories, we

let C denote the fiber product C⊗×N(∆)op{〈1〉}, so that q induces a coCartesian fibration C→ S.

Example 4.8.3.3. Let MonAssoc(Cat∞) denote the ∞-category of associative monoid objects of

Cat∞. There is a canonical map Assoc⊗×MonAssoc(Cat∞)→ Cat∞, which classifies a coCartesian

fibration q : M̃onAssoc(Cat∞) → Assoc⊗×MonAssoc(Cat∞). The coCartesian fibration q exhibits

M̃onAssoc(Cat∞) as a coCartesian MonAssoc(Cat∞)-family of monoidal∞-categories. Moreover, this

family of monoidal ∞-categories is universal in the following sense: for every simplicial set S, the

construction (φ : S → MonAssoc(Cat∞)) 7→ S×MonAssoc(Cat∞) M̃onAssoc(Cat∞) establishes a bijection

between the collection of equivalence classes of diagrams S → MonAssoc(Cat∞) and the collection

of equivalence classes of coCartesian S-families of monoidal ∞-categories C⊗ → Assoc⊗×S (with

essentially small fibers).

Definition 4.8.3.4. Let K and S be simplicial sets. We will say that a coCartesian S-family of

∞-categories q : C⊗ → MonAssoc(Cat∞) × S is compatible with K-indexed colimits if the following

conditions are satisfied:

(i) For each vertex s ∈ S, the fiber Cs admits K-indexed colimits.

(ii) For each vertex s ∈ S, the tensor product functor Cs×Cs → Cs preserves K-indexed colimits

separately in each variable.

(iii) For every edge s→ t in S, the induced functor Cs → Ct preserves K-indexed colimits.

If K is a collection of simplicial sets, we will say that q is compatible with K-indexed colimits if it

is compatible with K-indexed colimits for each K ∈ K.
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Notation 4.8.3.5. Let K be a collection of simplicial sets. Let MonK
Assoc(Cat∞) denote the sub-

category of MonAssoc(Cat∞) whose objects are monoidal ∞-categories C⊗ which are compatible

with K-indexed colimits and whose morphisms are monoidal functors F : C⊗ → D⊗ such that

the underlying functor C→ D preserves K-indexed colimits. Let M̃on
K

Assoc(Cat∞) denote the fiber

product M̃onAssoc(Cat∞)×MonAssoc(Cat∞) MonK
Assoc(Cat∞). The evident map q : M̃on

K

Assoc(Cat∞)→
Assoc⊗×MonK

Assoc(Cat∞) exhibits M̃on
K

Assoc(Cat∞) as a coCartesian MonK
Assoc(Cat∞)-family of

monoidal ∞-categories which is compatible with K-indexed colimits. Moreover, it is universal

with respect to this property: for every simplicial set S, pullback along q induces a bijection

from equivalence classes of diagrams S → MonK
Assoc(Cat∞) and equivalence classes of coCartesian

S-families of monoidal ∞-categories which are compatible with K-indexed colimits.

Remark 4.8.3.6. Let Cat∞(K) be defined as in Definition 4.8.1.1, and endowed with the symmetric

monoidal structure described in Corollary 4.8.1.4. For every set K of∞-categories, the equivalence

MonAssoc(Cat∞) ' Alg(Cat∞)

restricts to an equivalence MonK
Assoc(Cat∞) ' Alg(Cat∞(K)).

Definition 4.8.3.7. We let CatAlg
∞ denote the full subcategory of the fiber product

MonAssoc(Cat∞)×FunAssoc⊗ (Assoc⊗,Assoc⊗×MonAssoc(Cat∞)) FunAssoc⊗(Assoc⊗, M̃onAssoc(Cat∞))

spanned by those pairs (C⊗, A), where C⊗ ∈ MonAssoc(Cat∞) is a monoidal∞-category and A is an

algebra object of the monoidal∞-category M̃onAssoc(Cat∞)×MonAssoc(Cat∞){C⊗} ' C⊗. If K is a col-

lection of simplicial sets, we let CatAlg
∞ (K) denote the fiber product CatAlg

∞ ×MonAssoc(Cat∞) MonK
Assoc(Cat∞).

Remark 4.8.3.8. The ∞-category CatAlg
∞ (K) is characterized up to equivalence by the following

universal property: for any simplicial set S, there is a bijection between equivalence classes of

diagrams S → CatAlg
∞ (K) and equivalence classes of diagrams

C⊗

q

��
Assoc⊗×S

A

77

id // Assoc⊗×S,

where q exhibits C⊗ as a coCartesian S-family of monoidal∞-categories whose fibers are essentially

small, q is compatible with K-indexed colimits, and A is an S-family of associative algebra objects

of C⊗.

Definition 4.8.3.9. If q : C⊗ → Assoc⊗×S is a coCartesian S-family of monoidal ∞-categories,

then we will say that a map p : M⊗ → LM⊗×S exhibits M⊗ as a coCartesian S-family of ∞-

categories left-tensored over C⊗ if p is a coCartesian S-family of LM-operads (in the sense of

Definition 5.3.1.19) and we are given an isomorphism C⊗ 'M⊗×LM⊗ Assoc⊗.
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Notation 4.8.3.10. If M⊗ → LM⊗×S is as in Definition 4.8.3.9, we let M denote the fiber

product M⊗×LM⊗{m}.

Notation 4.8.3.11. Let C⊗ → Assoc⊗×S be a coCartesian S-family of monoidal ∞-categories.

We define a simplicial set Ãlg(C) equipped with a forgetful map Ãlg(C)→ S so that the following

universal property is satisfied: for every map of simplicial sets K → S, there is a canonical bijection

HomS(K, Ãlg(C)) ' HomAssoc⊗×S(Assoc⊗×K,C⊗).

We let Alg(C) denote the full simplicial subset of Ãlg(C) spanned by those vertices which correspond

to algebra objects in the monoidal ∞-category C⊗s , for some vertex s ∈ S.

Suppose we are given a coCartesian S-family M⊗ → LM⊗×S of ∞-categories left-tensored

over C⊗. We let L̃Mod(M) denote a simplicial set with a map L̃Mod(M)→ S hacing the following

universal property: for every map of simplicial sets K → S, there is a canonical bijection

HomS(K, L̃Mod(M)) ' HomLM⊗×S(LM⊗×K,M⊗).

We let LMod(M) denote the full simplicial subset of L̃Mod(M) whose vertices are left module

objects of M⊗s , for some vertex s ∈ S.

Remark 4.8.3.12. In the special case where S = ∆0, the terminology of Notation 4.8.3.11 agrees

with that of Definitions 4.1.1.6 and 4.2.1.13.

The following result is an easy consequence of Proposition HTT.3.1.2.1 :

Lemma 4.8.3.13. Let q : C⊗ → Assoc⊗×S be a coCartesian S-family of monoidal ∞-categories,

let p : M⊗ → LM⊗×S be a coCartesian S-family of ∞-categories left-tensored over C⊗. Then:

(1) The map q′ : Alg(C)→ S is a coCartesian fibration of simplicial sets.

(2) A morphism A→ A′ in Alg(C) is q′-coCartesian if and only if the underlying map A(〈1〉)→
A′(〈1〉) is a q-coCartesian morphism in C ⊆ C⊗.

(3) The map r : LMod(M)→ S is a coCartesian fibration of simplicial sets.

(4) A morphism M →M ′ in LMod(M) is r-coCartesian if and only if its image in Alg(C) is q′-

coCartesian, and the induced map M(m)→M ′(m) is a p-coCartesian morphism in M ⊆M⊗.

Definition 4.8.3.14. Let K be a collection of simplicial sets, and let C⊗ → Assoc⊗
op×S be a

coCartesian S-family of monoidal ∞-categories which is compatible with K-indexed colimits, and

let M⊗ → LM⊗×S be a coCartesian S-family of ∞-categories left-tensored over C⊗. We will say

that M⊗ is compatible with K-indexed colimits if the following conditions are satisfied:

(i) For every vertex s ∈ S and each K ∈ K, the ∞-category Ms admits K-indexed colimits.
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(ii) For every vertex s ∈ S and each K ∈ K, the action map Cs×Ms →Ms preserves K-indexed

colimits separately in each variable.

(iii) For every edge s→ t in S and each K ∈ K, the induced functor Ms →Mt preserves K-indexed

colimits.

Lemma 4.8.3.15. Let p : C⊗ → Assoc⊗×S be a coCartesian S-family of monoidal ∞-categories

and let q : M⊗ → LM⊗×S be a coCartesian S-family of ∞-categories left-tensored over C⊗.

Assume that both p and q are compatible with N(∆)op-indexed colimits. Then:

(1) The forgetful functor r : LMod(M)→ Alg(C) is a coCartesian fibration of simplicial sets.

(2) Let f : M → N be an edge of LMod(M), lying over an edge f0 : A → B in Alg(C), which

in turn lies over an edge α : s → t in S. Then f is r-coCartesian if and only if it induces

an equivalence B ⊗α!AM → N in the ∞-category LMod(M)t, where α! : Alg(C)s → Alg(C)t
denotes the functor induced by α.

Proof. Choose a vertex M ∈ LMod(M) lying over A ∈ Alg(C), and let f0 : A → B be an edge

of Alg(C) lying over an edge α : s → t in S. To prove (1), we will show that f0 can be lifted to

an r-coCartesian morphism of LMod(M); assertion (2) will be a consequence of our construction.

Let r′ : Alg(C) → S denote the canonical projection. Using Lemma 4.8.3.13, we can lift α to an

(r′ ◦ r)-coCartesian morphism f ′ : M → M ′ in LMod(M); let f ′0 : A → A′ denote the image of f ′

in Alg(C). Lemma 4.8.3.13 guarantees that f ′0 is r′-coCartesian, so we can identify A′ with α!A;

moreover, there exists a 2-simplex σ of Alg(C) corresponding to a diagram

A′

f ′′0

  
A

f0 //

f ′0
>>

B.

We will prove that f ′′0 can be lifted to an r-coCartesian morphism f ′′ of LMod(M). Using the fact

that r is an inner fibration, it will follow that there is a composition f = f ′′ ◦ f ′ lifting f0, which is

also r-coCartesian by virtue of Proposition HTT.2.4.1.7 . We may therefore replace f0 by f ′′0 and

thereby reduce to the case where s = t and the edge α is degenerate.

Proposition 4.6.2.17 shows that f0 can be lifted to a locally r-coCartesian morphism f : M →
B ⊗A M in LMod(M)s. Since the projection rs : LMod(M)s → Alg(M)s is a Cartesian fibration

(Corollary 4.2.3.2), we deduce that f is rs-coCartesian (Corollary HTT.5.2.2.4 ). To prove that

f is r-coCartesian, it will suffice to show that for every edge β : s → t in S, the image β!(f) is

an rt-coCartesian morphism of the fiber LMod(M)t. Using the characterization of rt-coCartesian

morphisms supplied by Proposition 4.6.2.17, we see that this is equivalent to the requirement that

the canonical map α!(B)⊗α!A α!M → α!(B ⊗AM) is an equivalence in LMod(M)t. This is clear,

since the functor α! preserves tensor products and geometric realizations of simplicial objects.
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Definition 4.8.3.16. Let p : C⊗ → Assoc⊗×S be a coCartesian S-family of monoidal ∞-

categories. An S-family of algebra objects of C⊗ is a section of the projection map Alg(C)→ S.

If q : M⊗ → LM⊗×S is a coCartesian S-family of∞-categories left-tensored over C⊗ and A is an

S-family of algebra objects of C⊗, then we let LModA(M) denote the fiber product LMod(M)×Alg(C)

S.

Remark 4.8.3.17. In the situation of Definition 4.8.3.16, if p and q are compatible with N(∆)op-

indexed colimits, then Lemma 4.8.3.15 implies that the projection map LMod(M) → S is a co-

Cartesian fibration of simplicial sets.

Variant 4.8.3.18. Let p : C⊗ → Assoc⊗×S be a coCartesian S-family of monoidal ∞-categories.

We will say that an inner fibration q : M⊗ → LM⊗×S is a locally coCartesian S-family of ∞-

categories left-tensored over C⊗ if we are given an isomorphism C⊗ ' M⊗×LM⊗ Assoc⊗ and, for

every edge ∆1 → S, the induced map q∆1 : M⊗×S∆1 → LM⊗×∆1 is a coCartesian ∆1-family of

∞-categories left-tensored over C⊗×S∆1. If K is a simplicial set, we will say that q is compatible

with K-indexed colimits if each q∆1 is compatible with K-indexed colimits. If p and q are compat-

ible with N(∆)op-indexed colimits and A is an S-family of algebra objects of C⊗, then we define

LMod(M) as in Notation 4.8.3.11 and LModA(M) as in Definition 4.8.3.16. It follows from Remark

4.8.3.17 that the map LModA(M)→ S is a locally coCartesian fibration of simplicial sets.

Variant 4.8.3.19. In the situation of Definition 4.8.3.9, there is an evident dual notion of a locally

coCartesian S-family of ∞-categories M⊗ → RM⊗×S right-tensored over C⊗. Given an S-family

of algebra objects A of C⊗, we can then define a locally coCartesian fibration RModA(M) → S

(provided that C⊗ and M⊗ are compatible with N(∆)op-indexed colimits), whose fiber over a vertex

s ∈ S is the ∞-category of right A-module objects of the fiber Ms.

We let CatMod
∞ = MonLM(Cat∞) denote the ∞-category of LM-monoid objects of Cat∞. We

will informally describe the objects of CatMod
∞ as pairs (C,M), where C is an ∞-category equipped

with a monoidal structure and M is an ∞-category equipped with a left action of C. If K is a

collection of simplicial sets, we let CatMod
∞ (K) denote the subcategory of CatMod

∞ whose objects are

diagrams where C and M admit K-indexed colimits and the tensor product functors

C×C→ C C×M→M

preserve K-indexed colimits separately in each variable, and whose morphisms are maps (C,M)→
(C′,M′) such that the underlying functors C→ C′, M→M′ preserve K-indexed colimits.

Remark 4.8.3.20. The∞-category CatMod
∞ (K) is characterized by the following universal property:

for every simplicial set S, there is a canonical bijection between equivalence classes of maps S →
CatMod
∞ (K) and equivalence classes of diagrams M⊗ → LM⊗×S which exhibit M⊗ as a coCartesian

S-family of ∞-categories left-tensored over some coCartesian S-family of monoidal ∞-categoires

C⊗ = M⊗×LM⊗ Assoc⊗ such that C⊗ and M⊗ are compatible with K-indexed colimits.
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We now sketch the construction of the functor Θ.

Construction 4.8.3.21. Let Pr : LM⊗×RM⊗ → BM⊗ be defined as in Construction 4.3.2.1,

and let Pr0 denote the composition of Pr with the forgetful functor BM⊗ → Assoc⊗. If C⊗ →
Assoc⊗×S is a coCartesian S-family of monoidal ∞-categories, we let C

⊗
denote the pullback

C
⊗×Assoc⊗ (LM⊗×RM⊗), which we regard as a coCartesian (LM⊗×S)-family of RM⊗-monoidal

∞-categories; let C
⊗
a = C

⊗ ×RM⊗ Assoc⊗ be the underlying (LM⊗×S)-family of monoidal ∞-

categories.

Suppose that A : S → Alg(C) is an S-family of algebra objects of C⊗. Then A determines

a (LM⊗×S)-family of algebra objects of C
⊗
a , which we will denote by A. We let RModA(C)⊗

denote the simplicial set RModA(C) of Variant 4.8.3.19. If C⊗ → Assoc⊗×S is compatible with

N(∆)op-indexed colimits, then Lemma 4.8.3.15 implies that the map RModA(C)⊗ → LM⊗×S is

a coCartesian S-family of LM⊗-monoidal ∞-categories. Let C′⊗ = RModA(C)⊗ ×LM⊗ Assoc⊗ be

the underlying S-family of monoidal ∞-categories. Using Propositions 4.3.2.6 and HTT.3.3.1.5 ,

we deduce that the inclusion {m} ↪→ RM⊗ induces a categorical equivalence C′⊗ → C⊗.

In the situation of Construction 4.8.3.21, if the original family C⊗ → Assoc⊗×S is compat-

ible with K-indexed colimits for some collection of simplicial sets K containing N(∆)op, then

RModA(C)→ LM⊗×S is also compatible with K-indexed colimits. We can summarize the situa-

tion as follows:

Proposition 4.8.3.22. Let K be a collection of simplicial sets which includes N(∆)op, let q :

C⊗ → Assoc⊗×S be a coCartesian S-family of monoidal ∞-categories which is compatible with

K-indexed colimits, and let A be an S-family of algebra objects of C⊗. Then the forgetful functor

p : RModA(C)⊗ → LM⊗×S exhibits the coCartesian fibration RModA(C)→ S of Variant 4.8.3.19

as left-tensored over a coCartesian S-family of monoidal ∞-categories C′⊗ which is equivalent to

C⊗. Moreover, p is also compatible with K-indexed colimits.

Remark 4.8.3.23. In the special case S = ∆0, Proposition 4.8.3.22 amounts to the fact that

there is a natural action of the monoidal ∞-category C on RModA(C), for each A ∈ Alg(C). This

statement was established in §4.3.2 (and does not require any assumptions on C).

Construction 4.8.3.24. Fix a collection of simplicial sets K which includes N(∆)op. Let C⊗

denote the fiber product CatAlg
∞ (K)×MonAssoc(Cat∞) M̃onAssoc(Cat∞), so that we have a coCartesian

CatAlg
∞ (K)-family of monoidal ∞-categories C⊗ → Assoc⊗×CatAlg

∞ (K). By construction, there is a

canonical CatAlg
∞ (K)-family of algebra objects of C⊗, which we will denote by A. Let RModA(C)⊗ →

LM⊗×CatAlg
∞ (K) be defined as in Construction 4.8.3.21, so that RModA(C)⊗ is a coCartesian

CatAlg
∞ (K)-family of LM⊗-monoidal ∞-categories which is compatible with K-indexed colimits.

Remark 4.8.3.20 implies that this family is classified by a functor Θ : CatAlg
∞ (K)→ CatMod

∞ (K). Note

that the composite functor CatAlg
∞ (K) → CatMod

∞ (K) → MonK
Assoc(Cat∞) classifies the coCartesian

CatAlg
∞ (K)-family of monoidal ∞-categories C⊗, and is therefore equivalent to the evident forgetful
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functor CatAlg
∞ (K) → MonK

Assoc(Cat∞). Replacing Θ by an equivalent functor if necessary, we will

henceforth assume that the diagram

CatAlg
∞ (K)

Θ //

((

CatMod
∞ (K)

vv
MonK

Assoc(Cat∞)

is commutative.

Remark 4.8.3.25. More informally, we can describe the functor Θ : CatAlg
∞ (K) → CatMod

∞ (K) as

follows: to every object (C⊗, A) of CatAlg
∞ (K) (given by a monoidal ∞-category C⊗ and an algebra

object A ∈ Alg(C)), it associates the∞-category RModA(C) of right A-module objects of C, viewed

as an ∞-category left-tensored over C.

4.8.4 Properties of RModA(C)

Let C be a monoidal ∞-category and let A be an algebra object of C. The ∞-category RModA(C)

of right A-module objects of C admits a left action of the ∞-category C: informally speaking, if M

is a right A-module and C ∈ C, then C ⊗M admits a right A-module structure given by the map

(C ⊗M)⊗A ' C ⊗ (M ⊗A)→ C ⊗M.

(for the formal construction, we refer the reader to §4.3.2). In this section, we will prove that

(under some mild hypotheses) the ∞-category RModA(C) enjoys two important features (which

will be formulated more precisely below):

(A) If N is an ∞-category left-tensored over C, then the ∞-category of C-linear functors from

RModA(C) to N is equivalent to the ∞-category LModA(N) of left A-module objects of N

(Theorem 4.8.4.1).

(B) If M is an ∞-category right-tensored over C, then the tensor product M⊗C RModA(C) is

equivalent to the ∞-category RModA(M) of right A-module objects of M (Theorem 4.8.4.6).

We begin with a precise formulation of assertion (A):

Theorem 4.8.4.1. Let K be a collection of simplicial sets which includes N(∆)op, let C⊗ be a

monoidal ∞-category, and M an ∞-category left-tensored over C. Assume that C and M admit

K-indexed colimits, and that the tensor product functors

C×C→ C C×M→M
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preserve K-indexed colimits separately in each variable. Let A be an algebra object of C, and let θ

denote the composition

LinFunK
C (RModA(C),M) ⊆ LinFunC(RModA(C),M)

θ′→ Fun(LModA(RModA(C)),LModA(M))

θ′′→ LModA(M),

where θ′ is the map described in Remark 4.6.2.9 and θ′′ is given by evaluation at the A-bimodule

given by A. Then θ is an equivalence of ∞-categories.

A precise formulation of (B) requires more effort. In order to make sense of the relative tensor

product M⊗C RModA(C), we need to interpret each factor as an object of a relevant ∞-category.

To this end, let us recall a bit of notation. Fix a collection of simplicial sets K. We let Cat∞(K)

be the subcategory of Cat∞ whose objects are ∞-categories which admit K-indexed colimits and

whose morphisms are functors which preserve K-indexed colimits, and regard Cat∞(K) as endowed

with the (symmetric) monoidal structure described in §4.8.1 Some basic features of Cat∞(K) are

summarized in the following result:

Lemma 4.8.4.2. Let K be a small collection of simplicial sets. Then the ∞-category Cat∞(K) is

presentable, and the tensor product ⊗ : Cat∞(K) × Cat∞(K) → Cat∞(K) preserves small colimits

separately in each variable.

Proof. We first show that Cat∞(K) admits small colimits. Let J be an∞-category, and let χ : J→
Cat∞(K) be a diagram. Let χ′ denote the composition

J
χ→ Cat∞(K) ⊆ Cat∞,

and let C be a colimit of the diagram χ′ in Cat∞. Let R denote the collection of all diagrams in C

given by a composition

K. p→ χ(J)→ C,

where K ∈ K and p is a colimit diagram. It follows from Proposition HTT.5.3.6.2 that there exists

a functor F : C→ D with the following properties:

(i) For every diagram q : K. → C belonging to R, the composition F ◦ q is a colimit diagram.

(ii) The ∞-category D admits K-indexed colimits.

(iii) For every ∞-category E which admits K-indexed colimits, composition with F induces an

equivalence from the full subcategory of Fun(D,E) spanned by those functors which preserve

K-indexed colimits to the full subcategory of Fun(C,E) spanned by those functors such that

the composition χ(J)→ C→ E preserves K-indexed colimits for each J ∈ J.
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The map F allows us to promote D to an object of D = (Cat∞)χ′/. Using (i) and (ii), we deduce

that D lies in the subcategory Cat∞(K)χ/ ⊆ (Cat∞)χ′/, and (iii) that this lifting exhibits D as a

colimit of the diagram χ.

We next show that the tensor product ⊗ : Cat∞(K) × Cat∞(K) → Cat∞(K) preserves small

colimits separately in each variable. It will suffice to show that for every object C ∈ Cat∞(K),

the operation D 7→ C⊗D admits a right adjoint. This right adjoint is given by the formula

E 7→ FunK(C,E), where FunK(C,E) denotes the full subcategory of Fun(C,E) spanned by those

functors which preserve K-indexed colimits.

We now complete the proof by showing that Cat∞(K) is presentable. Fix an uncountable regular

cardinal κ so that K is κ-small and every simplicial set K ∈ K is κ-small. Choose another regular

cardinal τ such that κ < τ and κ� τ : that is, τκ0
0 < τ whenever τ0 < τ and κ0 < κ. Let Catτ∞(K)

denote the full subcategory of Catτ∞(K) spanned by those ∞-categories C which are τ -small and

admit K-indexed colimits. Then Catτ∞(K) is an essentially small∞-category; it will therefore suffice

to prove that every object C ∈ Cat∞(K) is the colimit (in Cat∞(K)) of a diagram taking values in

Catτ∞(K).

Let A be the collection of all simplicial subsets C0 ⊆ C with the following properties:

(a) The simplicial set C0 is an ∞-category.

(b) The ∞-category C0 admits K-indexed colimits.

(c) The inclusion C0 ↪→ C preserves K-indexed colimits.

(d) The simplicial set C0 is τ -small.

Our proof rests on the following claim:

(∗) For every τ -small simplicial subset C0 ⊆ C, there exists a τ -small simplicial subset C′0 ⊆ C

which contains C0 and belongs to A.

Let us regard the set A as partially ordered with respect to inclusions, and we have an evident

functor ρ : A→ Set∆. From assertion (∗), it follows that A is filtered (in fact, τ -filtered) and that

C is the colimit of the diagram ρ (in the ordinary category Set∆). Since the collection of categorical

equivalences in Set∆ is stable under filtered colimits, we deduce that C is the homotopy colimit of

the diagram ρ (with respect to the Joyal model structure), so that C is the colimit of the induced

diagram N(ρ) : N(A) → Cat∞ (Theorem HTT.4.2.4.1 ). Requirement (c) guarantees that every

inclusion C0 ⊆ C1 between elements of A is a functor which preserves K-indexed colimits, so that

N(ρ) factors through Cat∞(K). We claim that C is a colimit of the diagram N(ρ) in the∞-category

Cat∞(K). Unwinding the definitions, this amounts to the following assertion: for every∞-category

E which admits K-indexed colimits, a functor F : C → E preserves K-indexed colimits if and only

if F |C0 preserves K-indexed colimits for each C0 ∈ A. The “only if” direction is obvious. To prove

the converse, choose K ∈ K and a colimit diagram p : K. → C. The image of p is τ -small, so
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that (∗) guarantees that p factors through C0 for some C0 ∈ A. Requirement (c) guarantees that

p is also a colimit diagram in C0, so that F ◦ p is a colimit diagram provided that F |C0 preserves

K-indexed colimits.

It remains only to prove assertion (∗). Fix a τ -small subset C0 ⊆ C. We define a transfinite

sequence of τ -small simplicial subsets {Cα ⊆ C}α<κ. If α is a nonzero limit ordinal, we take

Cα =
⋃
β<α Cβ. If α = β + 1, we define Cα to be any τ -small simplicial subset of C with the

following properties:

• Every map Λni → Cβ for 0 < i < n extends to an n-simplex of Cα.

• For each K ∈ K and each map q : K → Cβ, there exists an extension q : K. → Cα which is a

colimit diagram in C.

• Given n > 0 and a map f : K ? ∂∆n → Cβ such that the restriction f |K ? {0} is a colimit

diagram in C, there exists a map f : K ?∆n → Cα extending f .

Our assumption that κ� τ guarantees that we can satisfy these conditions by adjoining a τ -small

set of simplices to Cβ. Let C′0 =
⋃
α<κ Cα. Then C′0 contains C0, and belongs to A as desired.

Now suppose that C⊗ is a monoidal ∞-category, that M is an ∞-category right-tensored over

C, and that N is an ∞-category left-tensored over C. Fixing a collection of simplicial sets K, we

further assume that C, M, and N admit K-indexed colimits, and that the tensor product functors

M×C→M C×C→ C C×N→ N

preserve K-indexed colimits separately in each variable. We can identify C⊗ with an associative

algebra object of Cat∞(K), and the∞-categories M and N with right and left modules over this as-

sociative algebra, respectively (Remark 2.4.2.6). Consequently, the relative tensor product M⊗CN

can be defined using the constructions of §4.4.2. This tensor product is given as the geomet-

ric realization (in Cat∞(K)) of the simplicial object BarC(M,N)• of Construction 4.4.2.7. The bar

construction BarC(M,N)• is given informally by the formula [n] 7→M⊗C(⊗n)⊗N, where the tensor

product is formed in the ∞-category Cat∞(K). Consequently, this bar construction is dependent

on the choice of the collection K. To emphasize this dependence, we will denote BarC(M,N)•
by BarKC (M,N)•. If K′ ⊆ K, then we have a forgetful functor Cat∞(K) → Cat∞(K′) which is

lax symmetric monoidal, and induces a natural transformation BarK
′

C (M,N)• → BarKC (M,N). In

particular, we have a map θ : Bar∅C(M,N)• → BarKC (M,N). The map θ is characterized by the

following universal property:

(∗) For each n ≥ 0 and every ∞-category E which admits K-indexed colimits, composition with

θ induces an equivalence from the full subcategory of Fun(BarKC (M,N)n,E) spanned by those

functors which preserve K-indexed colimits to the full subcategory of Fun(Bar∅C(M,N)n,E) '
Fun(M×Cn×N,E) spanned by those functors which preserve K-indexed colimits separately

in each variable.
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We can identify Bar∅C(M,N)• with a simplicial object χ : N(∆)op → Cat∞. Let C�, and N� be

defined as in Notation 4.2.2.17 and define M� similarly. Unwinding the definitions, we see that χ

classifies the coCartesian fibration q : M�×C� N� → N(∆)op. Proposition HTT.3.3.4.2 allows us

to identify the geometric realization |Bar∅C(M,N)•| with the∞-category obtained from M�×C� N�

obtained by inverting all of the q-coCartesian morphisms. Combining this observation with (∗), we

obtain the following concrete description of the relative tensor product in Cat∞(K):

Lemma 4.8.4.3. Let K be a small collection of simplicial sets and let M� → C� ← N� be

as above. For every ∞-category E which admits K-indexed colimits, the natural transformation

Bar∅C(M,N)• → BarKC (M,N)• induces an equivalence of ∞-categories from the full subcategory of

Fun(M⊗CN,E) spanned by those functors which preserve K-indexed colimits to the full subcategory

of Fun(M�×C� N�,E) spanned by those functors F with the following properties:

(i) The functor F carries q-coCartesian morphisms to equivalences in E, where q : M�×C� N� →
N(∆)op denotes the canonical projection.

(ii) For each n ≥ 0, the functor

M×Cn×N ' q−1{[n]} → E

preserves K-indexed colimits separately in each variable.

Our next goal is to apply Lemma 4.8.4.3 to construct a canonical map M⊗C RModA(C) →
RModA(M).

Construction 4.8.4.4. Let Cut : N(∆)op → Assoc⊗ ⊆ RM⊗ be as in Construction 4.1.2.9, and

let RCut : N(∆)op → RM⊗ be the functor given by the the composition

N(∆)op
r→ N(∆)op

LCut→ LM⊗
r′→ RM⊗,

where r and r′ are the isomorphisms given by order-reversal and LCut is the functor described in

Construction 4.2.2.6.

We have a commutative diagram σ:

F−

��

F

��

oo // F+

��
F ′− F ′oo // F ′+

in the ∞-category Fun(N(∆)op ×N(∆)op,RM⊗), where

F−([m], [n]) = RCut([m]) F ([m], [n]) = RCut([m] ? [n]) F+([m], [n]) = RCut([n])

F ′−([m], [n]) = Cut([m]) F ′([m], [n]) = Cut([m] ? [n]) F ′+([m], [n]) = Cut([n]).
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The vertical maps in this diagram are induced by the natural transformation RCut→ Cut described

in Remark 4.2.2.8, and the horizontal maps by the inclusions [m] ↪→ [m] ? [n]←↩ [n].

Let p : C⊗ → Assoc⊗ be a monoidal ∞-category, and let q : M⊗ → RM⊗ be an ∞-category

right-tensored over C⊗. We let C′ denote the full subcategory of Fun(N(∆)op,C) spanned by those

functors which carry each morphism in N(∆)op to an equivalence, and let M′ ⊆ Fun(N(∆)op,M)

be defined similarly (since N(∆)op is weakly contractible, the diagonal embeddings C → C′ and

M → M′ are categorical equivalences). We regard C′ as a monoidal ∞-category and M′ as an

∞-category right-tensored over C′ (see Remark 2.1.3.4). Let C′� = C′⊗×Assoc⊗ N(∆)op, let M′� be

defined as in Notation 4.2.2.17 (suitably modified for purposes of discussing right actions, rather

than left actions).

Fix an algebra object A ∈ Alg(C) and regard RModA(C) as an ∞-category left-tensored over

C′ as in §4.3.2. Let RModA(C)� → C′� be defined as in Notation 4.2.2.17, and let X = M′� ×C′�

RModA(C)�. We will lift σ to a commutative diagram

F−

��

F

��

oo // F+

��

F
′
− F

′oo // F
′
+

of functors from X×N(∆)op to M⊗ as follows:

(a) Let F
′
− be the composition

X×N(∆)op → C′� ×N(∆)op → C⊗ ⊆M⊗ .

(b) Let α′ denote the composition M′� → C′� → C′⊗ ⊆ M′⊗. By construction, M� is equipped

with another functor α : M′� → M′⊗ and a natural transformation α → α′. Composing α

with the forgetful functor X×N(∆)op → M′� × N(∆)op and the evaluation functor M′⊗ ×
N(∆)op →M⊗ we obtain a functor F− equipped with a natural transformation F− → F

′
−.

(c) The functor F
′

is given by the composition

X×N(∆)op −→ RModA(C)⊗ ×N(∆)op

−→ Fun(RM⊗,C⊗)×N(∆)op

RCut−→ Fun(N(∆)op,C⊗)×N(∆)op

−→ C⊗

⊆ M⊗ .

Note that the inert natural transformation RCut→ Cut induces a map of functors F
′ → F

′
−.
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(d) Using the assumption that q is a fibration of∞-operads, we can choose a functor F compatible

with F , so that the diagram

F−

��

F

��

oo

F
′
− F

′oo

is a q-limit square (when evaluated at any object of X×N(∆)op).

(e) Let F
′
+ be the functor given by

X×N(∆)op → N(∆)op
Cut→ Assoc⊗

A→ C⊗ ⊆M⊗ .

The construction of RModA(M)� guarantees a natural transformation of functors F
′ → F

′
+.

(f) Since q is a coCartesian fibration, we can choose a q-coCartesian natural transformation

β : F → F+ covering the natural transformation F → F+. Since β is q-coCartesian, there is

an essentially unique extension to a commutative diagram

F

��

// F+

��

F
′ // F

′
+

compatible with σ.

We can identify γ with a functor Ψ : X×N(∆) × ∆1 → M⊗. It is not difficult to see that this

functor determines a map X→ RModA∞A (M).

Remark 4.8.4.5. In the situation of Construction 4.8.4.4, we can think of an object of X lying

over [n] ∈ N(∆)op as a finite sequence (M,C1, . . . , Cn, N), where M ∈M, each Ci ∈ C, and N is a

right A-module object of C. The functor Ψ is given informally by the formula (M,C1, . . . , Cn, N) 7→
M ⊗C1 ⊗ . . .⊗Cn ⊗N . From this description, we see that Ψ satisfies the requirements of Lemma

4.8.4.3. Let K is a collection of simplicial sets such that C and M admit K-indexed colimits, and

that the tensor product functors

C×C→ C M×C→M

preserve K-indexed colimits separately in each variable. Then Ψ determines a functor Φ :

M⊗C RModA(C)→ RModA(M), which is well-defined up to equivalence.

We can now formulate (B) as follows:
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Theorem 4.8.4.6. Let K be a small collection of simplicial sets which includes N(∆)op, let C⊗ be

a monoidal ∞-category, let M⊗ → C⊗ be an ∞-category right-tensored over C, and let A ∈ Alg(C)

be an algebra object of C. Suppose that the ∞-categories C and M admit K-indexed colimits, and

the tensor product functors

C×C→ C M×C→M

preserve K-indexed colimits separately in each variable. Then the above construction yields an

equivalence of ∞-categories M⊗C RModA(C) → RModA(M), where the tensor product is taken in

Cat∞(K).

Remark 4.8.4.7. In the formulation of Theorems 4.8.4.6 and 4.8.4.1, the∞-categories RModA(M)

and LModA(M) do not depend on the class of simplicial sets K. It follows that the ∞-categories

M⊗C RModA(C) and LinFunK
C (RModA(C),M) do not depend on K, provided that K contains

N(∆)op.

Remark 4.8.4.8. Let K be a collection of simplicial sets which includes N(∆)op and regard

Cat∞(K) be the symmetric monoidal ∞-category as in Corollary 4.8.1.4. Let C be a monoidal

∞-category which admits K-indexed colimits, such that the tensor product ⊗ : C×C → C pre-

serves K-indexed colimits separately in each variable. Then we can regard C as an algebra object

of Cat∞(K). If A ∈ Alg(C), then we regard LModA(C) and RModA(C) as right and left modules

over C (in Cat∞(K)), respectively. Using Theorem 4.8.4.6, we can identify the tensor product

LModA(C) ⊗C RModA(C) with the ∞-category RModA(LModA(C)) ' ABModA(C). Regarding A

as a bimodule over itself, we obtain an object AAA ∈ ABModA(C), which classifies a functor

S(K)
c→ LModA(C)⊗C RModA(C).

Here S(K) denotes the unit object of Cat∞(K) (see Notation 4.8.5.2). We claim that c exhibits

LModA(C) ∈ RModC(Cat∞(K)) as the left dual of RModA(C) ∈ LModC(Cat∞(K)). To prove this,

it suffices to verify condition (∗) of Proposition 4.6.2.18: that is, we must show that if D ∈ Cat∞(K)

and M ∈ RModC(Cat∞(K)), then c induces a homotopy equivalence

MapRModC(Cat∞(K))(D⊗LModA(C),M)→ MapCat∞(K)(D,M⊗C RModA(C)).

This follows from Theorems 4.8.4.1 and 4.8.4.6, which allow us to identify both sides with the the

subcategory of Fun(D,RModA(M)) spanned by those functors which preserve K-indexed colimits

and equivalences between them.

Remark 4.8.4.9. Let K be a small collection of simplicial sets which includes N(∆)op. Let C be

a monoidal ∞-category which admits colimits indexed by simplicial sets belonging to K, and such

that the tensor product ⊗ : C×C → C preserves colimits indexed by simplicial sets belonging to

K separately in each variable. We will identify C with a algebra object of the symmetric monoidal

∞-category Cat∞(K) of Corollary 4.8.1.4.
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For every algebra object A ∈ Alg(C), the ∞-category RModA(C) is left-tensored over C, and

can therefore be identified with a left C-module object of Cat∞(K) (see §4.3.2). We let Morita(C)

denote the full subcategory of LModC(Cat∞(K)) spanned by objects of the form RModA(C), where

A ∈ Alg(C). We will refer to Morita(C) as the Morita ∞-category of C.

Let A and B be algebra objects of C. Using Theorems 4.8.4.1 and 4.3.2.7, we obtain an

equivalence of ∞-categories

LinFunC(RModA(C),RModB(C)) ' LModA(RModB(C)) ' ABModB(C).

That is, every C-linear functor from RModA(C) to RModB(C) which preserves K-indexed colimits

is given by the formula M 7→M ⊗AK, for some bimodule object K ∈ ABModB(C) (it follows from

this description that Morita(C) is independent of the choice of K, so long as K includes N(∆)op).

The Morita ∞-category of C can be described informally as follows:

• The objects of Morita(C) are algebra objects A ∈ Alg(C).

• Given a pair of objects A,B ∈ Alg(C), the mapping space MapMorita(C)(A,B) can be identified

with the Kan complex ABModB(C)'.

• Given a triple of objects A,B,C ∈ Alg(C), the composition law

ABModB(C)' × BBModC(C)' ' MapMorita(C)(A,B)×MapMorita(C)(B,C)

→ MapMorita(C)(A,C)

' ABModB(C)'

is given by (M,N) 7→M ⊗B N .

The proofs of Theorem 4.8.4.6 and 4.8.4.1 are very similar, and rest on an analysis of the forgetful

functor RModA(C)→ C. We observe that this functor is C-linear. More precisely, evaluation at the

object m ∈ RM induces a C-linear functor RModA(C) → C. We have the following fundamental

observation:

Lemma 4.8.4.10. Let C⊗ be a monoidal∞-category containing an algebra object A, and let N = C,

regarded as an ∞-category left-tensored over C. Consider the commutative diagram

N�

q   

RModA∞A (C)�

p′yy

G⊗oo

C�,

where G is determined by the C-linear forgetful functor RModA(C)→ C. Then there exists a functor

F : N� → RModA(C)� and a natural transformation u : idN� → G ◦ F which exhibits F as a left

adjoint to G relative to C� (see Definition 7.3.2.2 and Remark 7.3.2.3). Moreover, F determines

a C-linear functor from C to RModA(C).
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Remark 4.8.4.11. More informally, Lemma 4.8.4.10 asserts that the forgetful functor RModA(C)→
C and its left adjoint C 7→ C ⊗A commute with the action of C by left multiplication.

Proof. We observe that p and p′ are locally coCartesian fibrations (Lemma 4.2.2.20). Moreover, for

each object C ∈ C⊗, the induced map on fibers RModA(C)⊗C → N⊗C is equivalent to the forgetful

functor θ : RModA(C)→ C, and therefore admits a left adjoint (Corollary 4.2.4.8). We complete the

proof by observing that the functor G satisfies hypothesis (2) of Proposition 7.3.2.11. Unwinding

the definitions, this results from the observation that the canonical maps (C⊗D)⊗A→ C⊗(D⊗A)

expressing the coherent associativity of the tensor product on C are equivalences in C.

The following result provides a reformulation of Definition 4.6.2.7:

Lemma 4.8.4.12. Let C be a monoidal ∞-category, let M and N be ∞-categories left-tensored

over C, and let q : M� → C� and q′ : N� → C� be as in Notation 4.2.2.17. Then the evident

functor θ : LinFunC(M,N) → FunC�(M�,N�) is fully faithful, and its essential image consists of

those functors M� → N� which carry locally q-coCartesian morphisms to locally q′-coCartesian

morphisms.

Proof. Let X be the full subcategory of FunC�(M�,N�) spanned by those functors which carry

locally q-coCartesian morphisms to locally q′-coCartesian morphisms. We wish to show that θ

induces an equivalence LinFunC(M,N) → X. Equivalently, we wish to show that for every sim-

plicial set K, the induced map Fun(K,LinFunC(M,N)) → Fun(K,X) induces a bijection between

equivalence classes of objects. Replacing N by Fun(K,N), we can reduce to the case K = ∆0. We

will show that θ induces a homotopy equivalence between the Kan complexes LinFunC(M,N)' and

X'.

Let C : N(∆)op → Cat∞ classify the coCartesian fibration C� → N(∆)op. The coCartesian

fibration M⊗×LM⊗(∆1 × N(∆)op) → ∆1 × N(∆)op is classified by a functor ∆1 × N(∆)op →
Cat∞, which we can identify with a natural transformation α : M → C in Fun(N(∆)op,Cat∞).

Similarly, the coCartesian fibration N⊗×LM⊗(∆1 × N(∆)op) → ∆1 × N(∆)op is classified by a

natural transformation β : N → C in Fun(N(∆)op,Cat∞). Using Propositions 4.1.2.10 and 4.2.2.9,

we conclude that LinFunC(M,N)' can be identified with the homotopy fiber of the forgetful functor

MapFun(∆1×N(∆)op,Cat∞)(α, β)→ MapFun(N(∆)op,Cat∞)(C,C)

over the point corresponding to idC . This can in turn be identified with the homotopy fiber product

MapFun(N(∆)op,Cat∞)(M,N)×MapFun(N(∆)op,Cat∞)(M,C) {α}.

This homotopy fiber is given by X′', where X′ ⊆ FunC⊗(M�,N�) is the full subcategory spanned

by those functors F which carry (p ◦ q)-coCartesian morphisms of M� to (p ◦ q′)-coCartesian

morphisms of N�. Using the functor θ, we see that X′ ⊆ X; we will complete the proof by showing

that X ⊆ X′. Note that a morphism f in M� is (p◦q)-coCartesian if and only if q(f) is p-coCartesian
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and f is locally q-coCartesian. It follows that if F ∈ X, then F (f) is locally q′-coCartesian; since

q′(F (f)) ' q(f) is p-coCartesian we conclude that F (f) is (p ◦ q)-coCartesian. This proves that

X ⊆ X′ as desired.

Lemma 4.8.4.13. Let C be a monoidal ∞-category and let M and N be ∞-categories left-tensored

over C. Let K be a simplicial set such that N admits K-indexed colimits, and such that for each

C ∈ C, the tensor product functor {C} ×N ⊆ C×N→ N preserves K-indexed colimits. Then:

(1) The ∞-category LinFunC(M,N) admits K-indexed colimits.

(2) A map f : K. → LinFunC(M,N) is a colimit diagram if and only if, for each M ∈ M, the

induced map K. → N is a colimit diagram.

Remark 4.8.4.14. In the situation of Lemma 4.8.4.13, suppose that K is a class of simplicial sets

such that C, M, and N admit K-indexed colimits, and the tensor product functors

C×C→ C C×M→M C×N→ N

preserve K-indexed colimits separately in each variable. Then the full subcategory LinFunK
C (M,N) ⊆

LinFunC(M,N) is stable under K-indexed colimits: this follows from the characterization of K-

indexed colimits supplied by Lemma 4.8.4.13 together with Lemma HTT.5.5.2.3 .

Proof. Assertion (1) follows from Lemma 4.8.4.12 and Proposition HTT.5.4.7.11 . Proposition

HTT.5.4.7.11 also implies that a diagram f : K. → LinFunC(M,N) is a colimit if and only if, for

every object M ∈ M� having image C ∈ C� and [n] ∈ N(∆)op, the induced map fM : K. → N�
C

is a colimit diagram. The necessity of condition (2) is now obvious. For the sufficiency, let p :

C� → N(∆)op, q : M� → C�, and q′ : N� → C� be as in Notation 4.2.2.17. Choose a p-coCartesian

morphism α : C → C0 in C� covering the inclusion [0] ' {n} ⊆ [n] in ∆ and a locally q-coCartesian

morphism α : M →M0 lifting α, then we have a homotopy commutative diagram

K.

pM

}}

pM0

!!
N�
C

α! // N�
C0

where α! is an equivalence of ∞-categories, so that fM is a colimit if and only if fM0 is a colimit

diagram.

We now turn to the proofs of Theorems 4.8.4.1 and 4.8.4.6.

Proof of Theorem 4.8.4.1. Let N = C, and regard N as an ∞-category left-tensored over C. Let

G : RModA(C)⊗ → N⊗ and F : N⊗ → RMod(C)⊗ be as in Lemma 4.8.4.10. Then F and G induce

adjoint functors

LinFunK
C (N,M)

f //LinFunK
C (RModA(C),M)

g
oo
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We first claim that evaluation at the unit object 1 ∈ N ' C induces an equivalence of ∞-

categories φ : LinFunK
C (N,M) → M. It will suffice to show that for every simplicial set K, the

induced map Fun(K,LinFunK
C (N,M)) → Fun(K,M) induces a bijection on equivalence classes of

objects. Replacing M by Fun(K,M), we are reduced to proving that φ induces a bijection on

equivalence classes of objects. On the left hand side, the set of equivalence classes can be iden-

tified with π0 MapLModC(Cat∞(K)(C,M). Using Corollary 4.2.4.8, we can identify this with the set

π0 MapCat∞(K)(S(K),M) ' π0 MapCat∞(∆0,M), which is the set of equivalence classes of objects of

M as required.

Let T : LinFunK
C (RModA(C),M)→M denote the composition of the functor g with the equiv-

alence φ. We have a homotopy commutative diagram of ∞-categories

LinFunK
C (RModA(C),M)

θ //

T
((

LModA(M)

T ′yy
M,

where T is the evident forgetful functor. We will prove that θ is an equivalence showing that this

diagram satisfies the hypotheses of Corollary 4.7.3.16:

(a) The ∞-categories LinFunK
C (RModA(C),M) and LModA(M) admit geometric realizations of

simplicial objects. In the first case, this follows from Lemma 4.8.4.13 and Remark 4.8.4.14.

In the second, it follows from Corollary 4.2.3.5.

(b) The functors T and T ′ admit left adjoints, which we will denote by U and U ′. The left adjoint

U is given by composing f with a homotopy inverse to the equivalence φ, and the left adjoint

U ′ is supplied by Corollary 4.2.4.8.

(c) The functor T ′ is conservative and preserves geometric realizations of simplicial objects. The

first assertion follows from Corollary 4.2.3.2 and the second from Corollary 4.2.3.5.

(d) The functor T is conservative and preserves geometric realizations of simplicial objects. The

second assertion follows from Lemma 4.8.4.13. To prove the first, suppose that α : S → S′ is a

natural transformation of C-linear functors from RModA(C) to M, each of which preserves K-

indexed colimits, and that T (α) is an equivalence. We wish to show that α is an equivalence.

Let us abuse notation by identifying S and S′ with the underlying maps RModA(C) → M,

and let X be the full subcategory of RModA(C) spanned by those objects X for which α

induces an equivalence S(X)→ S′(X) in M. We wish to show that X = RModA(C).

Since φ is an equivalence of ∞-categories, we conclude that g(α) is an equivalence in

LinFunK
C (N,M). In other words, the ∞-category X contains the essential image of the free

module functor C ' N→ RModA(C). Since S and S′ preserve K-indexed colimits, X is stable

under geometric realizations of simplicial objects. The equality X = RModA(C) now follows

from Proposition 4.7.3.14.
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(e) The natural transformation T ′ ◦ U ′ → T ◦ U is an equivalence of functors from M to itself.

Unwinding the definitions, we see that both of these functors are given by tensoring with the

object A ∈ C.

Proof of Theorem 4.8.4.6. The forgetful functor RModA(C) → C can be viewed as a map be-

tween left C-module objects in Cat∞(K), and therefore induces a functor G : M⊗C RModA(C) →
M⊗C C 'M. Let G′ : RModA(M)→M be the evident forgetful functor. We have a diagram

M⊗C RModA(C)

G ''

Φ // RModA(M)

G′yy
M,

which commutes up to canonical homotopy, where Φ is the functor defined in Remark 4.8.4.5. To

prove that Φ is an equivalence of ∞-categories, it will suffice to show that this diagram satisfies

the hypotheses of Corollary 4.7.3.16:

(a) The∞-categories M⊗C RModA(C) and RModA(M) admit geometric realizations of simplicial

objects. In the first case, this follows from our assumption that N(∆)op ∈ K; in the second

case, it follows from Corollary 4.2.3.5 (since C admits geometric realizations and tensor prod-

uct with A preserves geometric realizations).

(b) The functors G and G′ admit left adjoints, which we will denote by F and F ′. The existence of

F ′ follows from Corollary 4.2.4.8 (which also shows that F ′ is given informally by the formula

M 7→ M ⊗ A). Similar reasoning shows that the forgetful functor RMod(C) → C admits a

left adjoint F0. This left adjoint can be promoted to a map of∞-categories left-tensored over

C, so that it induces a functor id⊗F0 : M⊗C C→M⊗C RMod(C) which is left adjoint to G.

(c) The functor G′ is conservative and preserves geometric realizations of simplicial objects. The

first assertion follows from Corollary 4.2.3.2 and the second from Corollary 4.2.3.5 (since

N(∆)op ∈ K).

(d) The functor G is conservative and preserves geometric realizations of simplicial objects. The

second assertion is obvious (since G is a morphism in Cat∞(K) by construction). The proof

that G is conservative is a bit more involved. Let c : N(∆)op×N(∆+)op×N(∆)op → N(∆)op

be the concatenation functor, given by the formula ([l], [m], [n]) 7→ [l]?[m]?[n] ' [l+m+n+2],

and let c0 : N(∆)op×N(∆+)op×N(∆)op → N(∆)op be given by ([l], [m], [n]) 7→ [l] ? [n]. The

canonical inclusions [l] ? [n] ↪→ [l] ? [m] ? [n] induce a natural transformation of functors α :

c→ c0. Let p : C� → N(∆)op be the canonical map, let π : C�×N(∆)op(N(∆)op×N(∆+)op×
N(∆)op)) → C� denote the projection, and choose a p-coCartesian natural transformation
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α : π → π′ covering α. Adjusting π′ by a homotopy if necessary, we can assume that π′

induces a functor T• : N(∆+)op × RModA(C)� → RModA(C)�. We will view the functor T•
as an augmented simplicial object in the category of left C-module functors from RModA(C)

to itself, given informally by the formula Tn(N) = N ⊗ A⊗(n+1); in particular, the functor

T−1 is equivalent to the identity functor. For each object N ∈ RModA(C), the canonical map

ε : |T•N | → T−1N ' N is an equivalence: to prove this, it suffices to show that the image

of ε under the forgetful functor θ : RModA(C) → C is an equivalence (Corollary 4.2.3.2): we

note that θ|T•N | can be identified with the relative tensor product N ⊗A A and that θ(ε) is

the canonical equivalence N ⊗A A ' N).

Using Lemma 4.8.4.3, we see that T• determines an augmented simplicial object U• :

N(∆+)op → Fun(M⊗C ModRA(C),M⊗C RModA(C)). Note that each Un preserves K-indexed

colimits. Let X be the full subcategory of M⊗C RModA(C) spanned by those objects for which

the canonical map |U•X| → U−1X ' X is an equivalence. Since each Un preserves K-indexed

colimits, the full subcategory X is stable under K-indexed colimits in M⊗C RMod(C)).

Because M⊗C RModA(C)) is generated under K-indexed colimits by the essential image of

the tensor product functor ⊗ : M×RModA(C)→M⊗C RModA(C) (which obviously belongs

to X), we conclude that X = M⊗C RModA(C).

Now suppose that f : X → Y is a morphism in M⊗C RModA(C)) such that G(f) is an equiv-

alence. We wish to prove that f is an equivalence. Note that f is equivalent to the geometric

realization |U•f | (in the ∞-category Fun(∆1,M⊗C RModA(C))); it therefore suffices to show

that Un(f) is an equivalence for n ≥ 0. We complete the argument by observing that Un
factors through G (since Tn factors through the forgetful functor RModA(C)→ C).

(e) The canonical natural transformation G′ ◦ F ′ → G ◦ F is an equivalence of functors from M

to itself. This follows easily from the descriptions of F and F ′ given above: both functors are

given by tensor product with A.

4.8.5 Behavior of the Functor Θ

In §4.3.2, we saw that if C⊗ → Assoc⊗ is a monoidal ∞-category and A is an algebra object of C,

then the ∞-category RModA(C) of right A-module objects of C is left-tensored over C. Moreover,

in §4.8.3 we showed that the construction (C⊗, A) 7→ (C⊗,RModA(C)) determines a functor

Θ : CatAlg
∞ (K)→ CatMod

∞ (K)

for any collection of simplicial sets K which contains N(∆)op (see Construction 4.8.3.24). In this

section, we will apply the main results of §4.8.4 (Theorems 4.8.4.6 and 4.8.4.1) to establish some

basic formal properties of Θ. We can describe our goals more specifically as follows:
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(1) If A is an associative ring, we can almost recover A from the category RModA of right

A-modules. More precisely, if we let M denote the ring A itself, regarded as a right A-

module, then left multiplication by elements of A determines a canonical isomorphism A →
HomA(M,M). In other words, the data of the associative ring A is equivalent to the data

of the category RModA of right A-modules together with its distinguished object M . An

analogous result holds if we replace the category of abelian groups by a more general monoidal

∞-category C: the functor Θ induces a fully faithful embedding Θ∗ from the ∞-category

CatAlg
∞ (K) to the ∞-category of triples (C⊗,M,M), where C⊗ is a monoidal ∞-category, M

is an ∞-category left-tensored over C, and M ∈ M is a distinguished object. We refer the

reader to Theorem 4.8.5.5 for a precise statement.

(2) If we work in the setting of presentable ∞-categories, then the functor Θ∗ admits a right

adjoint, which carries a triple (C⊗,M,M) to the pair (C⊗, A), where A ∈ Alg(C) is the

algebra of endomorphisms of M (Theorem 4.8.5.11).

(3) The ∞-categories CatAlg
∞ (K) and CatMod

∞ (K) admit symmetric monoidal structures, and Θ

can be promoted to a symmetric monoidal functor (Theorem 4.8.5.16).

We begin by addressing a small technical point regarding the behavior of the functor Θ with

respect to base change:

Proposition 4.8.5.1. Let K be a small collection of simplicial sets which includes N(∆)op, and

consider the commutative diagram

CatAlg
∞ (K)

Θ //

φ

((

CatMod
∞ (K)

ψ

vv
MonK

Assoc(Cat∞).

The functors φ and ψ are coCartesian fibrations, and the functor Θ carries φ-coCartesian mor-

phisms to ψ-coCartesian morphisms.

Proof. We first show that φ is a coCartesian fibration. Let M̃onAssocK(Cat∞) be as defined in

Notation 4.8.3.5, and set

X = Fun(Assoc⊗, M̃on
K

Assoc(Cat∞))×Fun(Assoc⊗,Assoc⊗×MonK
Assoc(Cat∞)) MonK

Assoc(Cat∞)

Let us denote an object of X by a pair (C⊗, A), where C⊗ is a monoidal∞-category (compatible with

K-indexed colimits) and A ∈ FunAssoc⊗(Assoc⊗,C⊗). It follows from Proposition HTT.3.1.2.1 that

the projection map φ′ : X → MonK
Assoc(Cat∞) is a coCartesian fibration; moreover, a morphism

(C⊗, A) → (D⊗, B) in X is φ′-coCartesian if and only if the underlying map F (A) → B is an

equivalence, where F : C⊗ → D⊗ denotes the underlying monoidal functor. In this case, if A is
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an algebra object of C⊗, then B ' F (A) is an algebra object of D⊗. Note that CatAlg
∞ (K) can be

identified with the full subcategory of X spanned by those pairs (C⊗, A) where A is an algebra object

of C⊗. It follows that if f : X → Y is a φ′-coCartesian morphism of X such that X ∈ CatAlg
∞ (K),

then Y ∈ CatAlg
∞ (K). We conclude that φ = φ′|CatAlg

∞ (K) is again a coCartesian fibration, and that

a morphism in CatAlg
∞ (K) is φ-coCartesian if and only if it is φ′-coCartesian.

We next prove that ψ is a coCartesian fibration. Note that CatMod
∞ (K) ' LMod(Cat∞(K)) and

the functor ψ can be identified with the forgetful functor LMod(Cat∞(K)) → Alg(Cat∞(K)), and

is therefore a Cartesian fibration (Corollary 4.2.3.2). Consequently, to prove that ψ is a coCarte-

sian fibration, it will suffice to show that for every morphism F : C⊗ → D⊗ in the ∞-category

Alg(Cat∞(K)) ' MonK
Assoc(Cat∞), the forgetful functor LModD⊗(Cat∞(K))→ LModC⊗(Cat∞(K))

admits a left adjoint. This follows immediately from Lemma 4.8.4.2 and Proposition 4.6.2.17.

It remains only to prove that Θ carries φ-coCartesian morphisms to ψ-coCartesian morphisms.

Unwinding the definitions, we must show that if F : C⊗ → D⊗ is a morphism in Alg(Cat∞(K))

and A is an algebra object of C⊗, then the canonical map ρ : D⊗C RModA(C) → RModFA(D)

is an equivalence of ∞-categories (each of which is left-tensored over D). Note that RModFA(D)

can be identified with the ∞-category RModA(D), where we regard D as right-tensored over the

∞-category C via the monoidal functor F . Under this identification, the functor ρ is given by the

equivalence of Theorem 4.8.4.6.

Let us now study the image of the initial object of CatAlg
∞ (K) under the functor Θ.

Notation 4.8.5.2. Fix a small collection of simplicial sets K. We let S(K) denote the unit object of

the monoidal∞-category Cat∞(K): it can be described concretely as the smallest full subcategory of

S which contains the final object ∆0 and is closed under K-filtered colimits (Remark HTT.5.3.5.9 ).

Since the formation of Cartesian products in S preserves small colimits in each variable, the full

subcategory S(K) ⊆ S is stable under finite products. We may therefore regard S(K) as equipped

with the Cartesian monoidal structure, which endows it with the structure of an algebra object of

Cat∞(K). We let M denote the object of CatMod
∞ (K) given by the left action of S(K) on itself.

Using Proposition 4.2.4.9, we can identify M with Θ(S(K)×,1), where 1 denotes the unit object

∆0 ∈ S(K), regarded as an algebra object of S(K).

Lemma 4.8.5.3. Let K be a small collection of simplicial sets. Then the pair (S(K)×,1) is an

initial object of CatAlg
∞ (K).

Proof. Let φ : CatAlg
∞ (K) → MonK

Assoc(Cat∞) denote the forgetful functor. Then φ(S(K)×,1) is an

initial object of MonK
Assoc(Cat∞) ' Alg(Cat∞(K)) (Proposition 3.2.1.8). It will therefore suffice

to show that (S(K)×,1) is a φ-initial object of CatAlg
∞ (K) (Proposition HTT.4.3.1.5 ). Since φ is

a coCartesian fibration (Proposition 4.8.5.1), this is equivalent to the requirement that for every

φ-coCartesian morphism α : (S(K)×,1) → (C⊗, A), the object A is initial in the fiber φ−1{C⊗} '
Alg(C) (Proposition HTT.4.3.1.10 ). This follows immediately from Proposition 3.2.1.8.
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It follows from Lemma 4.8.5.3 that the forgetful functor θ : CatAlg
∞ (K)(S(K)×,1)/ → CatAlg

∞ (K) is

a trivial Kan fibration. We let Θ∗ denote the composition

CatAlg
∞ (K) ' CatAlg

∞ (K)(S(K)×,1)
Θ→ CatMod

∞ (K)M/,

where the first map is given by a section of θ.

Remark 4.8.5.4. An object of the∞-category CatMod
∞ (K)M/ is given by a morphism (S(K)×, S(K))→

(C⊗,M) in CatMod
∞ (K), given by a monoidal functor S(K)× → C⊗ which preserves K-indexed col-

imits (which is unique up to a contractible space of choices by Proposition 3.2.1.8) together with a

functor f : S(K) → M which preserves K-indexed colimits. In view of Remark HTT.5.3.5.9 , such

a functor is determined uniquely up to equivalence by the object f(∆0) ∈ M. Consequently, we

can informally regard CatMod
∞ (K)M/ as an ∞-category whose objects are triples (C⊗,M,M), where

(C⊗,M) ∈ CatMod
∞ and M ∈M is an object.

Theorem 4.8.5.5. Let K be a small collection of simplicial sets which contains N(∆)op. Then the

functor Θ∗ : CatAlg
∞ (K)→ CatMod

∞ (K)M/ is fully faithful.

Corollary 4.8.5.6. For every pair of algebra objects A,B ∈ C, let θ : MapC(A,B)→ ABModB(C)

carry a map φ : A→ B to the image of B under the forgetful functor BBModB(C)→ ABModB(C)

determined by φ. Then θ induces a homotopy equivalence

MapC(A,B)→ ABModB(C)×RModB(C) {B}.

Proof. Enlarging C if necessary, we may suppose that C admits geometric realizations of simplicial

objects and that the tensor product ⊗ : C×C → C preserves geometric realizations of simplicial

objects. Set K = {N(∆)op}, and regard C as an algebra object of the ∞-category X = Cat∞(K).

According to Theorem 4.8.5.5, the construction R 7→ LModR(C) determines a full faithful embed-

ding Alg(C)→ (LModC(X))C /, so that the canonical map

MapAlg(C)(A,B)→ MapLModC(X)(RModA(C),RModB(C))×RModB(C) {B}

is a homotopy equivalence. We now invoke Theorems 4.8.4.1 and 4.3.2.7 to idenitfy the underlying

Kan complex of ABModB(C) with the mapping space MapLModC(X)(RModA(C),RModB(C)).

Lemma 4.8.5.7. Let K be a small collection of simplicial sets which contains N(∆)op, let

(C⊗,M,M) be an object of CatMod
∞ (K)M/, and suppose that there exists an algebra object E ∈ Alg(C)

such that M can be promoted to an object M ∈ LModE(M) where the action E ⊗M →M exhibits

E as a morphism object MorM(M,M) (see Definition 4.2.1.28). Then E represents the right

fibration

CatAlg
∞ (K)×CatMod

∞ (K)M/
(CatMod

∞ (K)M/)/(C⊗,M,M).
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Proof. Theorem 4.8.4.1 implies the existence of a functor φ : RModE(C)⊗ → M⊗ of ∞-categories

left-tensored over C⊗ together with an identification α : M ' φ(E) of left E-modules. The pair

(φ, α) determines an object η ∈ CatAlg
∞ (K)×CatMod

∞ (K)M/
(CatMod

∞ (K)M/)/(C⊗,M,M) lying over E. We

claim that this object is final. To prove this, consider an arbitrary object (D⊗, A) ∈ CatAlg
∞ (K); we

wish to show that the map

Map
CatAlg
∞ (K)

((D⊗, A), (C⊗, E))→ MapCatMod
∞ (K)M/

(Θ∗(D
⊗, A), (C⊗,M,M))

is a homotopy equivalence. It will suffice to prove the result after passing to the homotopy fiber over

a point of MapMonK
Assoc(Cat∞)(D

⊗,C⊗), corresponding to a monoidal functor F . Using Propositions

4.8.5.1 and HTT.2.4.4.2 and replacing D⊗ by C⊗ (and A by FA ∈ Alg(C)), we are reduced to

proving that the diagram

MapAlg(C)(A,E) //

��

MapLModC(Cat∞(K))(RModA(C),M)

��
{M} //M

is a pullback square. Theorem 4.8.4.1 allows us to identify the upper right corner of this diagram

with the ∞-category LModA(M), and the desired result follows from Corollary 4.7.1.41.

Proof of Theorem 4.8.5.5. Fix objects (C⊗, A), (D⊗, B) ∈ CatAlg
∞ (K). We wish to show that the

canonical map θ : Map
CatAlg
∞ (K)

((C⊗, A), (D⊗, B)) → MapCatMod
∞ (K)M/

(Θ∗(C
⊗, A),Θ∗(D

⊗, B)) is a

homotopy equivalence. Let M ∈ RModB(D) denote the right B-module given by the action of B

on itself. In view of Lemma 4.8.5.7, it will suffice to show that the canonical map m : B⊗M →M

exhibits B as a morphism object MorRModB(D)(M,M). In other words, we must show that for

every object D ∈ D, the multiplication map m induces a homotopy equivalence MapD(D,B) →
MapRModB(D)(D ⊗M,M). This follows from Proposition 4.2.4.2.

It is not difficult to describe the essential image of the fully faithful embedding Θ∗ : CatAlg
∞ (K)→

CatMod
∞ (K)M/ of Theorem 4.8.5.5:

Proposition 4.8.5.8. Let C be a monoidal ∞-category. Assume that C admits geometric realiza-

tions of simplicial objects and that the tensor product C×C → C preserves geometric realizations.

Let M be an ∞-category left-tensored over C and let M ∈M be an object. There exists an algebra

object A ∈ Alg(C) and an equivalence RModA(C) ' M of ∞-categories left-tensored over C which

carries A to M if and only if the following conditions are satisfied:

(1) The ∞-category M admits geometric realizations of simplicial objects.

(2) The action map C×M→M preserves geometric realizations of simplicial objects.

(3) The functor F : C→M given by F (C) = C ⊗M admits a right adjoint G.
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(4) The functor G preserves geometric realizations of simplicial objects.

(5) The functor G is conservative.

(6) For every object N ∈M and every object C ∈ C, the evident map

F (C ⊗G(N)) ' C ⊗G(N)⊗M ' C ⊗ FG(N)→ C ⊗N

is adjoint to an equivalence C ⊗G(N)→ G(C ⊗N).

Proof. We first prove the “only if” direction. Without loss of generality, we may assume that M =

RModA(C) and M = A. Assertion (3) is clear: the functor G can be identified with the forgetful

functor RModA(C) → C (see Corollary 4.2.4.8). Assertions (1), (2), and (4) follow from Corollary

4.2.3.5, and assertion (5) from Corollary 4.2.3.2. Assertion (6) follows from the observation that

the forgetful functor RModA(C)→ C is conservative and commutes with the left action of C.

Now suppose that conditions (1) through (6) are satisfied. Fix A = G(M) ∈ C. We have

a counit map v : A ⊗M → M with the following universal property: for every object C ∈ C,

composition with v induces a homotopy equivalence

MapC(C,A)→ MapM(C ⊗M,A⊗M)→ MapM(C ⊗M,M).

In other words, we can identify A with a morphism object MorM(M,M). It is therefore a final

object of the monoidal ∞-category C+[M ]; it follows that A can be regarded as an algebra object

of C and that M has the structure of a left module over A. Using Theorem 4.8.4.6, we deduce the

existence of a C-linear functor U : RModA(C) → M carrying A to M . To complete the proof, it

will suffice to show that U is an equivalence of ∞-categories.

Let G′ : RModA(C) → C be the forgetful functor and F ′ a left adjoint to G′. Proposition

4.2.4.2 allows us to identify F ′ with the free module functor C 7→ C ⊗ A, so that F ' U ◦ F ′.
This equivalence is adjoint to a natural transformation γ : G′ → G ◦ U . We claim that γ is an

equivalence of functors. Using condition (4), we see that G′, G, and U commute with geometric

realizations of simplicial objects. Since every right A-module N can be written as a geometric

realization of free right A-modules (Proposition 4.7.3.14), we see that it suffices to prove that γ

induces an equivalence

C ⊗A→ (G ◦ U)(C ⊗A) ' G(C ⊗M)

for C ∈ C, which is a special case of (6).

We now deduce that U is an equivalence of ∞-categories by applying Corollary 4.7.3.16 to the

(homotopy commutative) diagram

RModA(C)
U //

G′ %%

M

G~~
C .
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Remark 4.8.5.9. Fix a monoidal ∞-category C which admits geometric realizations of simplicial

objects, and assume that the tensor product functor C×C → C preserves geometric realizations

of simplicial objects. Theorem 4.8.5.5 implies that Θ∗ determines a fully faithful embedding from

Alg(C) to the ∞-category LModC(Cat∞(K))C / of pointed C-module objects of Cat∞(K), where

K = {N(∆)op}. In fact, something slightly stronger is true: LModC(Cat∞(K))C / can be identified

with the underlying ∞-category of an (∞, 2)-category, and Θ∗ is fully faithful at the level of

(∞, 2)-categories. More concretely: given algebra objects A,B ∈ Alg(C) and C-linear functors

f, g : RModA(C) → RModB(C) satisfying f(A) = g(A) = B, any C-linear natural transformation

α : f → g which induces an equivalence αA : B ' f(A) → g(A) ' B is itself an equivalence.

To prove this, let X ⊆ RModA(C) be the full subcategory spanned by those objects M for which

αM : f(M) → g(M) is an equivalence. We wish to prove that X = RModA(C). Since f and g

preserve geometric realizations, X is stable under the formation of geometric realizations. Since

every right A-module is a geometric realization of free right A-modules (Proposition 4.7.3.14), it

suffices to show that every free module C ⊗ A ∈ RModA(C) belongs to X. Since α is C-linear, X

is stable under the left action of C; we are therefore reduced to showing that the right module A

belongs to X, which is true by assumption.

Lemma 4.8.5.7 can also be used to show that the fully faithful embedding Θ∗ admits a right

adjoint, provided that we can guarantee the existence of endomorphism objects MorM(M,M). For

this, it is convenient to work a setting where we require all ∞-categories to be presentable. For

this, we need to introduce a bit of terminology.

Notation 4.8.5.10. Let Ĉat∞ denote the ∞-category of (not necessarily small) ∞-categories,

which contains Cat∞ as a full subcategory. Similarly, we define ∞-categories Ĉat
Alg

∞ ⊃ CatAlg
∞

and Ĉat
Mod

∞ ⊃ CatMod
∞ by allowing monoidal ∞-categories and left-tensored ∞-categories which

are not small. Let K denote the collection of all small simplicial sets, and let Ĉat
Alg

∞ (K) and

Ĉat
Mod

∞ (K) be defined as in §4.8.3. Construction 4.8.3.24 generalizes immediately to give a functor

Θ̂ : Ĉat
Alg

∞ (K) → Ĉat
Mod

∞ (K). We let PrAlg denote the full subcategory of Ĉat
Alg

∞ (K) spanned

by those pairs (C⊗, A) where the ∞-category C is presentable, and PrMod the full subcategory of

Ĉat
Mod

∞ (K) spanned by those pairs (C⊗,M) where C and M are both presentable. It follows from

Corollary 4.2.3.7 that the functor Θ̂ : Ĉat
Alg

∞ (K)→ Ĉat
Mod

∞ (K) restricts to a functor PrAlg → PrMod,

which we will also denote by Θ̂. Similarly, if we let M denote the object Θ(S×,∆0) ' (S×, S) ∈
PrMod, then we have a functor Θ̂∗ : PrAlg → PrMod

M/ .

Theorem 4.8.5.11. The functor Θ̂∗ : PrAlg → PrMod
M/ is fully faithful and admits a right adjoint.

Proof. The first assertion follows by applying Theorem 4.8.5.5 in a larger universe. For the sec-

ond, it will suffice to show that for every object X = (C⊗,M,M) ∈ PrMod
M/ , the right fibration

PrAlg×PrMod
M/

(PrMod
M/ )/X is representable (Proposition HTT.5.2.4.2 ). In view of Lemma 4.8.5.3, it
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will suffice to show that there exists an algebra object E ∈ Alg(C) such that M can be promoted

to a module M ∈ LModE(C) such that the action E ⊗M → M exhibits E as a morphism object

MorM(M,M). This is equivalent to requiring the existence of an algebra object E ∈ AlgA∞(C+[M ])

such that the underlying object in C+[M ] is final. According to Corollary 3.2.2.4, it will suffice to

show that C+[M ] has a final object (which then admits an essentially unique algebra structure):

that is, it will suffice to show that there exists a morphism object MorM(M,M). This follows from

Proposition 4.2.1.33.

Remark 4.8.5.12. More informally, the right adjoint to Θ̂∗ carries an object (C⊗,M,M) ∈ PrMod
M/

to the pair (C⊗, E) ∈ PrAlg, where E ∈ Alg(C) is the algebra of endomorphisms of the object

M ∈M.

Let C⊗ be a presentable monoidal ∞-category for which the tensor product ⊗ : C×C → C

preserves small colimits separately in each variable. Then the functor Θ̂∗ of Theorem 4.8.5.11

restricts to a map

Alg(C)→ LModC(PrL)C /

A 7→ RModA(C).

The proof of Theorem 4.8.5.11 shows that this functor admits a right adjoint. In particular, it

preserves small colimits. Combining this observation with Proposition HTT.4.4.2.9 , we obtain the

following:

Corollary 4.8.5.13. Let C⊗ be a presentable monoidal ∞-category for which the tensor product

⊗ : C×C→ C preserves small colimits separately in each variable. Then the functor

Alg(C)→ LModC(PrL)

A 7→ RModA(C)

preserves K-indexed colimits for every small weakly contractible simplicial set K.

We next investigate the behavior of the functor Θ with respect to tensor products of ∞-

categories.

Notation 4.8.5.14. The ∞-category MonAssoc(Cat∞) of monoidal ∞-categories admits finite

products, and can therefore be regarded as endowed with Cartesian symmetric monoidal struc-

ture. Let K be a small collection of simplicial sets. We define a subcategory MonK
Assoc(Cat∞)⊗ ⊆

MonAssoc(Cat∞)× as follows:

(1) Let C be an object of MonAssoc(Cat∞)×, given by a sequence of monoidal ∞-categories

(C⊗1 , . . . ,C
⊗
n ). Then C ∈ MonK

Assoc(Cat∞)⊗ if and only if each of the underlying ∞-categories

Ci admits K-indexed colimits, and the tensor product functors Ci×Ci → Ci preserve K-

indexed colimits separately in each variable.
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(2) Let F : (C⊗1 , . . . ,C
⊗
m) → (D⊗1 , . . . ,D

⊗
n ) be a morphism in MonAssoc(Cat∞)× covering a

map α : 〈m〉 → 〈n〉 in Fin∗, where the objects (C⊗1 , . . . ,C
⊗
m) and (D⊗1 , . . . ,D

⊗
n ) belong to

MonK
Assoc(Cat∞)⊗. Then F belongs to MonK

Assoc(Cat∞)⊗ if and only if the induced functor∏
α(i)=j Ci → Dj preserves K-indexed colimits separately in each variable, for 1 ≤ j ≤ n.

We let CatMod
∞ (K)⊗ denote the subcategory of CatMod

∞
×

described as follows:

(1′) Let C be an object of CatMod
∞

×
, corresponding to a finite sequence ((C⊗1 ,M1), . . . , (C⊗n ,Mn)).

Then C ∈ CatMod
∞ (K)⊗ if and only if each Ci and each Mi admit K-indexed colimits, and the

tensor product functors

Ci×Ci → Ci Ci×Mi →Mi

preserves K-indexed colimits separately in each variable.

(2′) Let F : ((C⊗1 ,M1), . . . , (C⊗m,Mm)) → ((D⊗1 ,N1), . . . , (D⊗n ,Nn)) be a morphism in CatMon,×
∞

covering a map α : 〈m〉 → 〈n〉 in Fin∗, where the objects ((C⊗1 ,M1), . . . , (C⊗m,Mm)) and

((D⊗1 ,N1), . . . , (D⊗n ,Nn)) belong to CatMod
∞ (K)⊗. Then F belongs to CatMod

∞ (K)⊗ if and only

if the induced functors ∏
α(i)=j

Ci → Dj

∏
α(i)=j

Mi → Nj

preserves K-indexed colimits separately in each variable, for 1 ≤ j ≤ n.

We let CatAlg
∞ (K)⊗ denote the fiber product (CatAlg

∞ )× ×MonAssoc(Cat∞)× MonK
Assoc(Cat∞)⊗.

Remark 4.8.5.15. Assume that K consists entirely of sifted simplicial sets (this is satisfied, for

example, if K = {N(∆)op}). Then we can identify CatAlg
∞ (K)⊗, CatMod

∞ (K)⊗, and MonK
Assoc(Cat∞)⊗

with CatAlg
∞ (K)×, CatMod

∞ (K)×, and MonK
Assoc(Cat∞)×, respectively.

Theorem 4.8.5.16. Let K be a small collection of simplicial sets. Then:

(1) The map MonK
Assoc(Cat∞)⊗ → N(Fin∗) determines a symmetric monoidal structure on

MonK
Assoc(Cat∞), and the maps CatAlg

∞ (K)⊗ → MonK
Assoc(Cat∞)⊗ ← CatMod

∞ (K)⊗ are co-

Cartesian fibrations of symmetric monoidal ∞-categories.

(2) The functor Θ : CatAlg
∞ ({N(∆)op}) → CatMod

∞ ({N(∆)op}) preserves products, and therefore

induces a symmetric monoidal functor Θ× : CatAlg
∞ ({N(∆)op})× → CatMod

∞ ({N(∆)op})×.

(3) Assume that N(∆)op ∈ K. Then the functor Θ× of (2) restricts to a functor Θ⊗ :

CatAlg
∞ (K)⊗ → CatMod

∞ (K)⊗ (see Remark 4.8.5.15).

(4) The functor Θ⊗ is symmetric monoidal.
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Remark 4.8.5.17. Let C be a symmetric monoidal∞-category which admits geometric realizations

of simplicial objects, and assume that the tensor product functor ⊗ : C×C→ C preserves geometric

realizations of simplicial objects. Let Morita(C) be the Morita ∞-category of C (see Remark

4.8.4.9). Let K = {N(∆)op}, and regard ModC(Cat∞(K)) as a symmetric monoidal ∞-category.

It follows from Theorem 4.8.5.16, that the construction A 7→ RModA(C) determines a symmetric

monoidal functor from Alg(C) to ModC(Cat∞(K)). It follows that the essential image Morita(C) ⊆
ModC(Cat∞(K)) of this functor contains the unit object and is closed under tensor products, and

therefore inherits the structure of a symmetric monoidal∞-category. In particular, the construction

A 7→ RModA(C) determines a symmetric monoidal functor from Alg(C) to Morita(C).

Remark 4.8.5.18. Let C be as in Remark 4.8.5.17. Then every algebra object A ∈ Alg(C) is

dualizable when viewed as an object of Morita(C). The dual of A can be identified with the opposite

algebra Arev, with a duality datum given by the evaluation module Ae ∈ A⊗ArevBMod1(C), regarded

as a morphism from A⊗Arev to 1 in Morita(C) (this follows from Proposition 4.6.3.12). This is a

special case of Remark 4.8.4.8.

Proof of Theorem 4.8.5.16. We first prove (1). Recall that MonAssoc(Cat∞) can be identified with

the ∞-category Alg(Cat∞) of associative algebra objects of Cat∞ (Proposition 2.4.2.5). Here

we regard Cat∞ as endowed with the Cartesian symmetric monoidal structure. The ∞-category

Alg(Cat∞) inherits a symmetric monoidal structure from that of Cat∞ (see Example 3.2.4.4), which

is also Cartesian; we therefore obtain an identification Alg(Cat∞)⊗ ' MonAssoc(Cat∞)×. Under this

equivalence, the subcategory MonK
Assoc(Cat∞)⊗ corresponds to the subcategory Alg(Cat∞(K))⊗,

which is again a symmetric monoidal ∞-category. A similar argument shows that CatMod
∞ (K)⊗ →

Alg(Cat∞(K))⊗ is a coCartesian fibration of symmetric monoidal∞-categories. Finally, we observe

that the functor CatAlg
∞ (K)⊗ → MonK

Assoc(Cat∞)⊗ is a pullback of (CatAlg
∞ )× → MonAssoc(Cat∞)×,

which is easily seen to be a coCartesian fibration of ∞-operads. This proves (1).

Assertion (2) is obvious, and assertion (3) follows from Corollary 4.2.3.5. We will prove (4).

It is easy to see that Θ⊗ is a map of ∞-operads, and it follows from Proposition 4.2.4.9 that

Θ⊗ preserves unit objects. Consequently, it will suffice to show that for every pair of objects

(C⊗, A), (D⊗, B) ∈ CatAlg
∞ (K), the induced map

Θ(C⊗, A)⊗Θ(D⊗, B)→ Θ((C⊗, A)⊗ (D⊗, B))

is an equivalence in CatMod
∞ (K). In other words, we wish to show that Θ induces an equivalence of

∞-categories

θ : RModA(C)⊗ RModB(D)→ RModA⊗B(C⊗D)

(here the tensor products are taken in Cat∞(K)). We have a homotopy commutative diagram of
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∞-categories

RModA(C)⊗ RModB(D)
θ //

G

))

RModA⊗B(C⊗D)

vv
C⊗D .

To prove that θ is a categorical equivalence, it will suffice to show that this diagram satisfies the

hypotheses of Corollary 4.7.3.16:

(a) The ∞-categories RModA(C) ⊗ RModB(D) and RModA⊗B(C⊗D) admit geometric realiza-

tions of simplicial objects. This follows from our assumption that N(∆)op ∈ K.

(b) The functors G and G′ admit left adjoints, which we will denote by F and F ′. The existence

of F ′ is guaranteed by Proposition 4.2.4.2, and is given informally by the formula X 7→ X ⊗
(A⊗B). Similarly, Proposition 4.2.4.2 guarantees that the forgetful functors RModA(C)→ C

and RModB(D) → D admit left adjoints, given by tensoring on the right with A and B,

respectively. The tensor product of these left adjoints is a left adjoint to G.

(c) The functor G′ is conservative and preserves geometric realizations of simplicial objects. The

first assertion follows from Corollary 4.2.3.2 and the second from Corollary 4.2.3.5.

(d) The functor G is conservative and preserves geometric realizations of simplicial objects. The

second assertion is obvious: G is a tensor product of the forgetful functors RModA(C) → C

and RModB(D) → D, each of which preserves geometric realizations (and can therefore be

interpreted as a morphism in Cat∞(K)) by Corollary 4.2.3.5. To prove that G is conservative,

we factor G as a composition

RModA(C)⊗ RModB(D)
G0→ C⊗RModB(D)

G1→ C⊗D .

We can identify G1 with the forgetful functor

(C⊗D)⊗D RModB(D)→ (C⊗D)⊗D D ' C⊗D .

Theorem 4.8.4.6 allows us to identify the left hand side with the∞-category RModB(C⊗D).

Under this identification, G1 corresponds to the forgetful functor RModB(C⊗D) → C⊗D,

which is conservative by Corollary 4.2.3.2. A similar arguments shows that G0 is conservative,

so that G ' G1 ◦G0 is conservative as required.

(e) The canonical natural transformation G′◦F ′ → G◦F is an equivalence of functors from C⊗D

to itself. This is clear from the descriptions of F and F ′ given above: both compositions are

given by right multiplication by the object A⊗B ∈ C⊗D.
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Remark 4.8.5.19. Fix a small collection of simplicial sets K which contains N(∆)op. Let C⊗ be

a symmetric monoidal ∞-category. Assume that C admits K-indexed colimits and that the tensor

product C×C → C preserves K-indexed colimits separately in each variable. Then we C⊗ as a

commutative algebra object in the (symmetric monoidal) ∞-category MonK
Assoc(Cat∞). The fiber

products

N(Fin∗)×MonK
Assoc(Cat∞) CatAlg

∞ (C)⊗ N(Fin∗)×MonK
Assoc(Cat∞)⊗ CatMod

∞ (C)⊗

can be identified with the symmetric monoidal ∞-categories Alg(C)⊗ and LModC(Cat∞(K))⊗, re-

spectively. It follows from Theorem 4.8.5.16 and Proposition 4.8.5.1 that Θ determines a symmetric

monoidal functor Θ⊗C : Alg(C)⊗ → LModC(Cat∞(K))⊗.

Corollary 4.8.5.20. Let K and C⊗ be as in Remark 4.8.5.19, and let O⊗ be a unital ∞-operad.

Then the functor Θ⊗C induces a fully faithful functor

θ : AlgO(Alg(C))→ AlgO(LModC(Cat∞(K))).

Proof. Let Alg(C)⊗∗ and LModC(Cat∞(K))⊗∗ be unitalizations of Alg(C)⊗ and LModC(Cat∞(K))⊗,

respectively (see §2.3.1; note that Alg(C)⊗ is already a unital ∞-operad, so that Alg(C)⊗∗ '
Alg(C)⊗). The functor Θ⊗C induces a symmetric monoidal functor Alg(C)⊗∗ → LModC(Cat∞(K))⊗∗ ,

and Theorem 4.8.5.5 guarantees that this functor is fully faithful. We have a commutative diagram

AlgO(Alg(C)∗)
θ∗ //

��

AlgO(LModC(Cat∞(K))∗)

��
AlgO(Alg(C))

θ // AlgO(LModC(Cat∞(K)))

where θ∗ is fully faithful. Since O⊗ is unital, the vertical maps are categorical equivalences, so that

θ is fully faithful as well.

Corollary 4.8.5.21. Let K be a class of simplicial sets which includes N(∆)op. Let C⊗ be a

symmetric monoidal ∞-category which admits K-indexed colimits, for which the tensor product

⊗ : C×C → C preserves K-indexed colimits separately in each variable. Then the construction

A 7→ ModA(C)⊗ determines a fully faithful embedding

θ : CAlg(C)→ CAlg(Cat∞(K))C⊗ /.

Moreover, a symmetric monoidal functor F : C⊗ → D⊗ belongs to the essential image of θ if and

only if the following conditions are satisfied:

(a) The ∞-category D admits K-indexed colimits, the tensor product ⊗ : D×D → D preserves

K-indexed colimits separately in each variable.
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(b) The functor F admits a right adjoint G (this condition guarantees that F preserves K-indexed

colimits).

(c) The functor G preserves geometric realizations of simplicial objects.

(d) The functor G is conservative.

(e) For every object C ∈ C and D ∈ D, the canonical map

C ⊗G(D)→ G(F (C)⊗D)

is an equivalence.

Proof. Since Assoc⊗ is a unital ∞-operad, Propositions 3.2.4.10 and 2.4.3.9 imply that the

unique bifunctor of ∞-operads Assoc⊗×Comm⊗ → Comm⊗ exhibits Comm⊗ as a ten-

sor product of Assoc⊗ and Comm⊗. Corollary 4.8.5.20 yields a fully faithful embedding

CAlg(C) → CAlg(LModC(Cat∞(K))). The functor θ is obtained by composing this embedding

with the equivalence

CAlg(LModC(Cat∞(K))) ' CAlg(Cat∞(K))C /

furnished by Proposition 3.4.1.3. The description of the essential image of θ follows from Proposition

4.8.5.8.

Corollary 4.8.5.22. Let K and C⊗ be as in Remark 4.8.5.19. Then the functor Θ⊗C induces a fully

faithful functor CAlg(C)→ CAlg(ModC(Cat∞(K))).



Chapter 5

Little Cubes and Factorizable Sheaves

Let X be a topological space equipped with a base point ∗. We let ΩX denote the loop space of X,

which we will identify with the space of continuous map p : [−1, 1]→ X such that f(−1) = ∗ = f(1).

Given a pair of loops p, q ∈ ΩX, we can define a composite loop p ◦ q by concatenating p with q:

that is, we define p ◦ q : [−1, 1]→ X by the formula

(p ◦ q)(t) =

{
q(2t+ 1) if − 1 ≤ t ≤ 0

p(2t− 1) if 0 ≤ t ≤ 1.

This composition operation is associative up to homotopy, and endows the set of path compo-

nents π0ΩX with the structure of a group: namely, the fundamental group π1(X, ∗). However,

composition of paths is not strictly associative: given a triple of paths p, q, r ∈ ΩX, we have

(p ◦ (q ◦ r))(t) =


r(4t+ 3) if − 1 ≤ t ≤ −1

2

q(4t+ 1) if −1
2 ≤ t ≤ 0

p(2t− 1) if 0 ≤ t ≤ 1.

((p ◦ q) ◦ r)(t) =


r(2t+ 1) if − 1 ≤ t ≤ 0

q(4t− 1) if 0 ≤ t ≤ 1
2

p(4t− 3) if 1
2 ≤ t ≤ 1.

The paths p ◦ (q ◦ r) and (p ◦ q) ◦ r follow the same trajectories but are parametrized differently;

they are homotopic but not identical.

One way to compensate for the failure of strict associativity is to consider not one composition

operation but several. For every finite set S, let Rect((−1, 1)× S, (−1, 1)) denote the collection of

finite sequences of maps {fS : (−1, 1)→ (−1, 1)}s∈S with the following properties:

(a) For s 6= t, the maps fs and ft have disjoint images.

(b) For each s ∈ S, the map fs is given by a formula fs(t) = at+ b where a > 0.

If X is any pointed topological space, then there is an evident map

θ : (ΩX)S × Rect((−1, 1)× S, (−1, 1))→ ΩX,
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given by the formula

θ({ps}s∈S , {fs}s∈S)(t) =

{
ps(t

′) if t = fs(t
′)

∗ otherwise.

Each of the spaces Rect((−1, 1)× S, (−1, 1)) is equipped with a natural topology (with respect to

which the map θ is continuous), and the collection of spaces {Rect((−1, 1) × S, (−1, 1))}I can be

organized into a topological operad, which we will denote by tE1. We can summarize the situation

as follows:

(∗) For every pointed topological space X, the loop space ΩX carries an action of the topological

operad tE1.

Every point of Rect((−1, 1)× S, (−1, 1)) determines a linear ordering of the finite set S. Con-

versely, if we fix a linear ordering of S, then the corresponding subspace of Rect((−1, 1)×S, (−1, 1))

is contractible. In other words, there is a canonical homotopy equivalence of Rect((−1, 1) ×
S, (−1, 1)) with the (discrete) set of linear orderings of S. Together, these homotopy equivalences

determine a weak equivalence of the topological operad tE1 with the associative operad (Definition

4.1.1.1). Consequently, an action of the operad tE1 can be regarded as a homotopy-theoretic sub-

stitute for an associative algebra structure. In other words, assertion (∗) articulates the idea that

the loop space ΩX is equipped with a multiplication which associative up to coherent homotopy.

If X is a pointed space, then we can consider also the k-fold loop space ΩkX, which we will

identify with the space of all maps f : [−1, 1]k → X which carry the boundary of the cube [−1, 1]k

to the base point of X. If k > 0, then we can identify ΩkX with Ω(Ωk−1X), so that ΩkX is

equipped with a coherently associative multiplication given by concatenation of loops. However, if

k > 1, then the structure of ΩkX is much richer. To investigate this structure, it is convenient to

introduce a higher-dimensional version of the topological tE1, the little k-cubes operad introduced

by Boardman and Vogt ([19]). In §5.1, we will review the definition of this topological operad and

study the properties of its operadic nerve, which we denote by E⊗k and refer to as the ∞-operad of

little k-cubes.

If the pointed space X is k-connective, then one can show that passage from X to ΩkX involves

no loss of information provided we regard ΩkX as an algebra over the∞-operad E⊗k . More precisely,

we can recover X (up to weak homotopy equivalence) by applying an iterated bar construction to

ΩkX. We will prove this in §5.2 (see Theorems 5.2.6.10 and 5.2.6.15) after making a detailed study

of the bar construction and its iterates.

Though the ∞-operads E⊗k were originally introduced for the study of iterated loop spaces,

they arise naturally in many other contexts. When k = 1, the ∞-operad E⊗k is equivalent to the

associative ∞-operad Assoc⊗ (Example 5.1.0.7), which we have studied extensively in Chapter

4. Associative algebras are ubiquitous throughout mathematics, due largely to the fact that for

any object V of any symmetric monoidal category (or ∞-category) C, the endomorphism object

End(V ) ∈ C (if it exists) has the structure of an associative algebra (see §4.7.1). In §5.3, we will
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study a higher categorical analogue of the same phenomenon: under mild hypotheses on C, one can

associate to each Ek-algebra A ∈ AlgEk(C) a center ZEk(A), which is an Ek+1-algebra object of C.

As an application, we include a proof of Deligne’s conjecture that the Hochschild cochain complex

of any associative algebra carries an action of the little 2-cubes ∞-operad E⊗2 .

The structure of the ∞-operad E⊗k is closely related to topology of manifolds. If M is a k-

dimensional topological manifold, then we can associate to M an∞-operad E⊗M , which is equivalent

to E⊗k in the special case where M ' Rk is a Euclidean space. If C is a symmetric monoidal ∞-

category, then the (nonunital) EM -algebra objects of C can be identified with factorizable cosheaves

on M with values in C (Theorem 5.5.4.10). In §5.5, we will discuss the notion of factorizable cosheaf

together with the closely related theory of topological chiral homology. Our discussion makes use

of a general construction which produces variants of the ∞-operad E⊗k , which we discuss in §5.4.

5.1 Definitions and Basic Properties

Our goal in this section is to study the∞-categorical avatar of the little k-cubes operads introduced

by Boardman and Vogt. We begin with some definitions.

Definition 5.1.0.1. Fix an integer k ≥ 0. We let 2k = (−1, 1)k denote an open cube of dimension

k. We will say that a map f : 2k → 2k is a rectilinear embedding if it is given by the formula

f(x1, . . . , xk) = (a1x1 + b1, . . . , akxk + bk)

for some real constants ai and bi, with ai > 0. More generally, if S is a finite set, then we will say

that a map 2k × S → 2k is a rectilinear embedding if it is an open embedding whose restriction to

each connected component of 2k × S is rectilinear. Let Rect(2k × S,2k) denote the collection of

all rectitlinear embeddings from 2k × S into 2k. We will regard Rect(2k × S,2k) as a topological

space (it can be identified with an open subset of (R2k)S).

The spaces Rect(2k × {1, . . . , n},2k) constitute the n-ary operations of a topological operad,

which we will denote by tEk and refer to as the little k-cubes operad.

Definition 5.1.0.2. We define a topological category tE⊗k as follows:

(1) The objects of tE⊗k are the objects 〈n〉 ∈ Fin∗.

(2) Given a pair of objects 〈m〉, 〈n〉 ∈ tE⊗k , a morphism from 〈m〉 to 〈n〉 in tE⊗k consists of the

following data:

– A morphism α : 〈m〉 → 〈n〉 in Fin∗.

– For each j ∈ 〈n〉◦ a rectilinear embedding 2k × α−1{j} → 2k.
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(3) For every pair of objects 〈m〉, 〈n〉 ∈t E⊗k , we regard HomtE⊗k
(〈m〉, 〈n〉) as endowed with the

topology induced by the presentation

HomtE⊗k
(〈m〉, 〈n〉) =

∐
f :〈m〉→〈n〉

∏
1≤j≤n

Rect(2k × f−1{j},2k).

(4) Composition of morphisms in tE⊗k is defined in the obvious way.

We let E⊗k denote the nerve of the topological category tE⊗k .

Corollary HTT.1.1.5.12 implies that E⊗k is an∞-category. There is an evident forgetful functor

from tE⊗k to the (discrete) category Fin∗, which induces a functor E⊗k → N(Fin∗).

Proposition 5.1.0.3. The functor E⊗k → N(Fin∗) exhibits E⊗k as an ∞-operad.

Proof. We have a canonical isomorphism E⊗k ' N⊗(O), where O denotes the simplicial colored

operad having a single object 2k with MulO({2k}i∈I ,2k) = Sing Rect(2k × I,2k). Since O is a

fibrant simplicial colored operad, E⊗k is an ∞-operad by virtue of Proposition 2.1.1.27.

Definition 5.1.0.4. We will refer to the ∞-operad E⊗k as the ∞-operad of little k-cubes.

Remark 5.1.0.5. Let Env(Ek)⊗ be the symmetric monoidal envelope of E⊗k , as defined in §2.2.4.

We can describe the underlying ∞-category Env(Ek) informally as follows: its objects are topolog-

ical spaces of the form
∐
i∈I 2

k, and its morphisms are given by embeddings which are rectilinear

on each component. The symmetric monoidal structure on Env(Ek) is given by disjoint union.

Example 5.1.0.6. Suppose that k = 0. Then 2k consists of a single point, and the only rectilinear

embedding from 2k to itself is the identity map. A finite collection {fi : 2k → 2k}i∈I of rectlinear

embeddings have disjoint images if and only if the index set I has at most one element. It follows

that tEk is isomorphic (as a topological category) to the subcategory of Fin∗ spanned by the

injective morphisms in Fin∗. We conclude that E⊗k is isomorphic to the ∞-operad E⊗0 ⊆ N(Fin∗)

introduced in Example 2.1.1.19.

Example 5.1.0.7. Suppose that k = 1, so that we can identify the cube 2k with the interval

(−1, 1). Every rectangular embedding (−1, 1)× I → (−1, 1) determines a linear ordering of the set

I, where i < j if and only if f(t, i) < f(t′, j) for all t, t′ ∈ (−1, 1). This construction determines a

decomposition of the space Rect((−1, 1)× I, (−1, 1)) into components Rect<((−1, 1)× I, (−1, 1)),

where < ranges over all linear orderings on I. Each of the spaces Rect<((−1, 1) × I, (−1, 1)) can

be realized as a nonempty convex subset of (R2)I and is therefore contractible. It follows that

Rect((−1, 1)× I, (−1, 1)) is homotopy equivalent to the discrete set of all linear orderings on I.

Using these homotopy equivalences, we obtain a weak equivalence of topological categories
tE⊗1 → Assoc⊗, where Assoc⊗ is the category of Definition 4.1.1.3. Passing to the homotopy

coherent nerves, we obtain an equivalence of ∞-operads E⊗1 ' Assoc⊗.
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Example 5.1.0.7 implies that, when k = 1, the theory of Ek-algebras reduces to the theory of

associative algebras studied in Chapter 4. The ∞-operads E⊗k have a related interpretation when

k > 1: namely, giving an Ek-algebra object of a symmetric monoidal ∞-category C is equivalent

to giving an object A ∈ C which is equipped with k different associative multiplications, which are

compatible with one another in a suitable sense. This is a consequence of Theorem 5.1.2.2, which

asserts that for k, k′ ≥ 0 we can identify E⊗k+k′ with the tensor product of the ∞-operads E⊗k and

E⊗k′ . We will prove this result in §5.1.2.

If X is a pointed topological space, then the k-fold loop space ΩkX carries an action of the topo-

logical operad tEk. This observation admits the following converse, which highlights the importance

of the operads tEk in algebraic topology:

Theorem 5.1.0.8 (May). Let Y be a topological space equipped with an action of the little cubes

operad tEk. If k > 0, assume that π0Y is a group under the induced monoid structure (see Definition

5.2.6.6). Then Y is weakly homotopy equivalent to ΩkX, for some pointed topological space X.

In §5.2.6, we will prove a variant of this result, which describes Ek-algebra objects of the

∞-category S of spaces (see Theorem 5.2.6.15). Theorem 5.1.0.8 can be interpreted as saying

that, in some sense, the topological operad tEk encodes precisely the structure that a k-fold loop

space should be expected to possess. In the case k = 1, we recover a familiar notion: namely,

a (coherently) associative multiplication. This makes sense in a variety of contexts outside of

algebraic topology. For example, one can consider associative algebra objects in the category of

abelian groups (that is, associative rings), or more generally associative algebras in any monoidal

∞-category (as in Chapter 4). A similar phenomenon occurs for larger values of k: that is, it is

interesting to study algebras over the topological operads tEk in categories other than the category

of topological spaces. For example, the theory of structured ring spectra (which is the subject of

Chapter 7) is obtained by considering Ek-algebras in the setting of spectra.

For algebraic applications, it is important to consider not only Ek-algebras but also modules

over them. Here the essential observation is that the ∞-operads E⊗k are coherent, so that the

general theory of Chapter 3 gives a robust theory of modules. We will prove this coherence result

in §5.1.1, using some general observations relating the spaces of operations in E⊗k to configuration

spaces of points on manifolds. It follows that for every Ek-algebra object A of a sufficiently nice

symmetric monoidal∞-category C, we can define an∞-category ModEkA (C) which is equipped with

an Ek-monoidal structure. In §5.1.3, we will show that the tensor product in ModEkA (C) can be

described in terms of the relative tensor product over A which was studied in §4.4. In §5.1.4, we

will show that (if k > 0) the∞-category RModA(C) inherits the structure of an Ek−1-monoidal∞-

category, and that there is an Ek−1-monoidal forgetful functor ModEkA (C)→ RModA(C) (Theorem

5.1.4.10).
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5.1.1 Little Cubes and Configuration Spaces

Our main goal in this section is to prove the following result:

Let k be a nonnegative integer and let E⊗k be the ∞-operad of little k-cubes introduced in

Definition 5.1.0.2. If k = 1, then E⊗k is equivalent to the associative ∞-operad Assoc⊗ (Example

5.1.0.7), which is coherent by Proposition 4.1.1.20. Our ultimate goal in this section is to prove

that this is general phenomenon:

Theorem 5.1.1.1. Let k ≥ 0 be a nonnegative integer. Then the little cubes ∞-operad E⊗k is

coherent.

In order to prove Theorem 5.1.1.1, we will need a good understanding of the spaces of operations

in the ∞-operad E⊗k . By construction, these can be realized as spaces of rectilinear embeddings

between cubes. However, for many purposes it is convenient to replace these embedding spaces by

configuration spaces.

Definition 5.1.1.2. Let I be a finite set and let M be a topological manifold. We let Conf(I;M)

denote the space of all injective maps from I into M , which we identify with a subspace of M I .

We refer to Conf(I;M) as the configuration space of maps I →M .

Lemma 5.1.1.3. Let I and J be finite sets, and suppose we are given an injective map p : J →
2k. Let U ⊆ Rect(2k × (I

∐
J),2k) be the open subset consisting of those rectilinear embeddings

f : 2k × (I
∐
J)→ 2k such that, for every j ∈ J , we have p(j) ∈ f(2k × {j}). Then evaluation at

the origin 0 ∈ 2k determines a homotopy equivalence U → Conf(I,2k − p(J)).

Proof. Let U denote the collection of all maps 2k× (I
∐
J)→ 2k which which either belong to U ,

or factor as a composition

2k × (I
∐

J)→ I
∐

J
p
↪→ 2k

where p is an injection with p|J = p. Then θ factors as a composition

U
θ′→ U

θ′′→ Conf(I;2k − p(J))

where θ′ is the open inclusion and θ′′ is given by evaluation at the origin 0 ∈ 2k. We claim that

both θ′ and θ′′ are homotopy equivalences:

(i) For every map f ∈ U , let ε(f) denote the infimum over a, b ∈ I
∐
J of the distance from

f(2k × {a}) to f(2k × {a}) and the distance from f(2k × {a}) to the boundary of 2k. We

then define a family of maps {ft}t∈[0,1] by the formula

ft(x1, . . . , xk, i) = f(x1, . . . , xk, i) +
tε(f)

2k
(x1, . . . , xk).

This construction determines a map H : U × [0, 1]→ U such that H|(U ×{0}) is the identity

map and H carries (U × (0, 1]) into U . It follows that H|(U × {1}) is a homotopy inverse to

θ′.
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(ii) There is an evident homeomorphism Conf(I;2k − p(J)) ' U − U , which determines a map

j : Conf(I,2k − p(J)) → U . We claim that j is a homotopy equivalence. Indeed, there is a

deformation retraction of U onto U − U , which carries a map f : 2k × (I
∐
J) → 2k to the

family of maps {ft : 2k × (I
∐
J)→ 2k}t∈[0,1] given by the formula

ft(x1, . . . , xk, a) =

{
f(tx1, . . . , txk, a) if a ∈ I
tf(x1, . . . , xk, b) + (1− t)p(b) if b ∈ J.

Since θ′′ is a left inverse to j, it follows that θ′′ is a homotopy equivalence.

We can use the relationship between rectilinear embedding spaces and configuration spaces to

establish some basic connectivity properties of the ∞-operads E⊗k :

Proposition 5.1.1.4. Let k ≥ 0. For every pair of integers m,n ≥ 0, the map of topological spaces

MaptE⊗k
(〈m〉, 〈n〉)→ HomFin∗(〈m〉, 〈n〉) is (k − 1)-connective.

Proof. Unwinding the definitions, this is equivalent to the requirement that for every finite set I,

the space of rectinilinear embeddings Rect(2k×I,2k) is (k−1)-connective. This space is homotopy

equivalent (via evaluation at the origin) to the configuration space Conf(I;2k) of injective maps

I ↪→ 2k (Lemma 5.1.1.3). We will prove more generally that Conf(J,2k−F ) is (k−1)-connective,

where J is any finite set and F is any finite subset of 2k. The proof proceeds by induction on the

number of elements of J . If J = ∅, then Conf(J,2k − F ) consists of a single point and there is

nothing to prove. Otherwise, choose an element j ∈ J . Evaluation at j determines a Serre fibration

Conf(J,2k −F )→ 2k −F , whose fiber over a point x is the space Conf(J −{j},2k − (F ∪ {x})).
The inductive hypothesis guarantees that these fibers are (k−1)-connective. Consequently, to show

that Conf(J,2k − F ) is (k − 1)-connective, it suffices to show that 2k − F is (k − 1)-connective.

In other words, we must show that for m < k, every map g0 : Sm−1 → 2k − F can be extended to

a map g : Dm → 2k − F , where Dm denotes the unit disk of dimension m and Sm−1 its boundary

sphere. Without loss of generality, we may assume that g0 is smooth. Since 2k is contractible, we

can extend g0 to a map g : Dm → 2k, which we may also assume to be smooth and transverse to

the submanifold F ⊆ 2k. Since F has codimension k in 2k, g−1F has codimension k in Dm, so

that g−1F = ∅ (since m < k) and g factors through 2k − F , as desired.

For each k ≥ 0, there is a stabilization functor tEk →t Ek+1 which is the identity on objects

and is given on morphisms by taking the product with the interval (−1, 1). This functor induces a

map of ∞-operads E⊗k → E⊗k+1. Proposition 5.1.1.4 immediately implies the following:

Corollary 5.1.1.5. The colimit of the sequence of ∞-operads

E⊗0 → E⊗1 → E⊗2 → . . .

is equivalent to the commutative ∞-operad Comm⊗ = N(Fin∗).
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Notation 5.1.1.6. Motivated by Corollary 5.1.1.5, we adopt the following convention: when k =

∞, we let E⊗k denote the commutative ∞-operad Comm⊗ (so that E⊗∞ ' lim−→j≥0
E⊗j ).

Consequently, if C⊗ is a symmetric monoidal ∞-category, then the ∞-category CAlg(C) of

commutative algebra objects of C can be identified with the homotopy limit of the tower of ∞-

categories {AlgEk(C)}k≥0. In many situations, this tower actually stabilizes at some finite stage:

Corollary 5.1.1.7. Let C⊗ be a symmetric monoidal ∞-category. Let n ≥ 1, and assume that the

underlying∞-category C is equivalent to an n-category (that is, the mapping spaces MapC(X,Y ) are

(n−1)-truncated for every pair of objects X,Y ∈ C; see §HTT.2.3.4 ). Then the map E⊗k → N(Fin∗)

induces an equivalence of ∞-categories CAlg(C)→ AlgEk(C) for k > n.

Proof. Let C and D be objects of C⊗, corresponding to finite sequences of objects (X1, . . . , Xm)

and (Y1, . . . , Ym′) of objects of C. Then MapC⊗(C,D) can be identified with the space∐
α:〈m〉→〈n〉

∏
1≤j≤m′

MapC(⊗α(i)=jXi, Yj),

and is therefore also (n − 1)-truncated. Consequently, C⊗ is equivalent to an n-category.

Proposition 5.1.1.4 implies that the forgetful functor E⊗k → N(Fin∗) induces an equiva-

lence of the underlying homotopy n-categories, and therefore induces an equivalence θ :

FunN(Fin∗)(N(Fin∗),C
⊗) → FunN(Fin∗)(E

⊗
k ,C

⊗). The desired result now follows from the ob-

servation that a map A ∈ FunN(Fin∗)(N(Fin∗),C
⊗) is a commutative algebra object of C if and only

if θ(A) is an Ek-algebra object of C.

We now turn to the proof of Theorem 5.1.1.1. We first formulate a general coherence criterion

for ∞-operads that are obtained as the operadic nerves of simplicial colored operads (Proposition

5.1.1.11). We will then use our analysis of configuration spaces to show that this criterion applies

in the case of the ∞-operad E⊗k .

Notation 5.1.1.8. Let O be a simplicial operad (that is, a simplicial colored operad having a

single distinguished object), and let O⊗ be the simplicial category described in Notation 2.1.1.22:

the objects of O⊗ are objects 〈n〉 ∈ Fin∗, and the morphisms spaces O⊗ are given by the formula

MapO⊗(〈m〉, 〈n〉) =
∐

α:〈m〉→〈n〉

∏
1≤i≤n

MulO(α−1{i}, {i})

where α ranges over all maps 〈m〉 → 〈n〉 in Fin∗. We will say that a morphism in O⊗ is active if

its image in Fin∗ is active, and we let Mapact
O⊗

(〈m〉, 〈n〉) denote the summand of MapO⊗(〈m〉, 〈n〉)
spanned by the active morphisms.

We will say that O is unital if MulO(∅, {0}) is isomorphic to ∆0; in this case, every semi-inert

morphism α : 〈m〉 → 〈n〉 in Fin∗ can be lifted uniquely to a morphism α in O⊗. In particular, the
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canonical inclusion i : 〈m〉 → 〈m+ 1〉 admits a unique lift i : 〈m〉 → 〈m+ 1〉 in O⊗. Composition

with i induces a map of simplicial sets

θ : Mapact
O⊗

(〈m+ 1〉, 〈n〉)→ Mapact
O⊗

(〈m〉, 〈n〉).

For every active morphism f : 〈m〉 → 〈n〉 in O⊗, we will denote the simplicial set θ−1{f} by

Ext∆(f); we will refer to Ext∆(f) as the space of strict extensions of f .

Construction 5.1.1.9. Let O be a fibrant simplicial operad, and let N⊗(O) be the underlying

∞-operad (Definition 2.1.1.23). Suppose we are given a sequence of active morphisms

〈m0〉
f1→ 〈m1〉

f2→ . . .
fn→ 〈mn〉

in the simplicial category O⊗. This sequence determines an n-simplex σ of N(O)⊗. Let S ⊆ [n]

be a proper nonempty subset having maximal element j − 1. We define a map of simplicial sets

θ : Ext∆(fj)→ Ext(σ, S) as follows: for every k-simplex τ : ∆k → Ext∆(fj), θ(τ) is a k-simplex of

Ext(σ, S) corresponding to a map of simplicial categories ψ : C[∆n ×∆k+1] → O⊗, which may be

described as follows:

(i) On objects, the functor ψ is given by the formula

ψ(n′, k′) =

{
〈mn′〉 if k′ = 0 or n′ /∈ S
〈mn′ + 1〉 otherwise.

(ii) Fix a pair of vertices (n′, k′), (n′′, k′′) ∈ ∆n ×∆k+1. Then ψ induces a map of simplicial sets

φ : MapC[∆n×∆k+1]((n
′, k′), (n′′, k′′)) → MapO⊗(ψ(n′, k′), ψ(n′′, k′′)). The left hand side can

be identified with the nerve of the partially ordered set P of chains

(n′, k′) = (n0, k0) ≤ (n1, k1) ≤ . . . ≤ (np, kp) = (n′′, k′′)

in [n]× [k+ 1]. If ψ(n′, k′) = 〈mn′〉 or ψ(n′′, k′′) = 〈mn′′ + 1〉, then φ is given by the constant

map determined by fn′′ ◦ · · · ◦ fn′+1. Otherwise, φ is given by composing the morphisms

fj−1 ◦ · · · ◦ fn′+1 and fn′′ ◦ · · · ◦ fj+1 with the map

N(P )
φ0→ ∆k τ→ Ext∆(fj)→ MapO⊗(〈mj−1 + 1〉, 〈mj〉),

where φ0 is induced by the map of partially ordered sets P → [k] which carries a chain

(n′, k′) = (n0, k0) ≤ (n1, k1) ≤ . . . ≤ (np, kp) = (n′′, k′′) to the supremum of the set {ki − 1 :

ni ∈ S} ⊆ [k].

Remark 5.1.1.10. In the situation of Construction 5.1.1.9, the simplicial set Ext(σ, S) can be

identified with the homotopy fiber of the map

β : Mapact
O⊗

(〈mj−1 + 1〉, 〈mj〉)→ Mapact
O⊗

(〈mj−1〉, 〈mj〉),

while Ext∆(fj) can be identified with the actual fiber of β. The map θ of Construction 5.1.1.9 can

be identified with the canonical map from the actual fiber to the homotopy fiber.
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Proposition 5.1.1.11. Let O be a fibrant simplicial operad, and assume that every morphism in

the underlying simplicial category O = O⊗〈1〉 admits a homotopy inverse. Suppose that, for every pair

active morphisms f0 : 〈m〉 → 〈n〉 and g0 : 〈n〉 → 〈1〉 in O⊗, there exist morphisms f : 〈m〉 → 〈n〉,
h : 〈n〉 → 〈n〉, and g : 〈n〉 → 〈1〉 satisfying the following conditions:

(i) The map f is homotopic to f0, the map g is homotopic to g0, and the map h is homotopic to

id〈n〉.

(ii) Each of the sequences

Ext∆(h)→ Mapact
O⊗

(〈n+ 1〉, 〈n〉)→ Mapact
O⊗

(〈n〉, 〈n〉)

Ext∆(g ◦ h)→ Mapact
O⊗

(〈n+ 1〉, 〈1〉)→ Mapact
O⊗

(〈n〉, 〈1〉)

Ext∆(h ◦ f)→ Mapact
O⊗

(〈m+ 1〉, 〈n〉)→ Mapact
O⊗

(〈m〉, 〈n〉)

Ext∆(g ◦ h ◦ f)→ Mapact
O⊗

(〈m+ 1〉, 〈1〉)→ Mapact
O⊗

(〈m〉, 〈1〉)

is a homotopy fiber sequence.

(iii) The diagram

Ext∆(h) //

��

Ext∆(g ◦ h)

��
Ext∆(h ◦ f) // Ext∆(g ◦ h ◦ f)

is a homotopy pushout square of simplicial sets.

Then the ∞-operad N⊗(O) is coherent.

Proof. It is clear that N⊗(O) satisfies conditions (1) and (2) of Definition 3.3.1.9. We will show

that condition (3) is also satisfied. Suppose we are given a degenerate 3-simplex σ :

〈n〉
id

  

g0 // 〈1〉

〈m〉

f0

==

f0 // 〈n〉

g0

>>

in N(O)⊗, where f and g are active. We wish to show that the diagram

Ext(σ, {0, 1}) //

��

Ext(σ|∆{0,1,3}, {0, 1})

��
Ext(σ|∆{0,2,3}, {0}) // Ext(σ|∆{0,3}, {0})
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is a homotopy pushout square of Kan complexes. In proving this, we are free to replace σ by any

equivalent diagram σ′ : ∆3 → N⊗(O). We may therefore assume that σ′ is determined by a triple

of morphisms f : 〈m〉 → 〈n〉, h : 〈n〉 → 〈n〉, and g : 〈n〉 → 〈1〉 satisfying conditions (ii) and

(iii) above. Using Remark 5.1.1.10, we see that Construction 5.1.1.9 determines a weak homotopy

equivalence between the diagrams

Ext∆(h) //

��

Ext∆(g ◦ h)

��

Ext(σ, {0, 1}) //

��

Ext(σ|∆{0,1,3}, {0, 1})

��
Ext∆(h ◦ f) // Ext∆(g ◦ h ◦ f) Ext(σ|∆{0,2,3}, {0}) // Ext(σ|∆{0,3}, {0}).

Since the diagram on the left is a homotopy pushout square by virtue of (iii), the diagram on the

right is also a homotopy pushout square.

Proof of Theorem 5.1.1.1. Let O = Singt Ek denote the simplicial operad associated to the topo-

logical operad tEk. We will say that a rectilinear embedding f ∈ Rect(2k × 〈n〉◦,2k) is generic if

f can be extended to an embedding f : 2k × 〈n〉◦ → 2k, where 2k = [−1, 1]k is a closed cube of

dimension k. We will say that an active morphism f : 〈n〉 → 〈m〉 in O⊗ is generic if it corresponds

to a sequence of m rectlinear embeddings which are generic.

We observe the following:

(a) If f is generic, then the difference 2k − f(2k ×〈n〉◦) is homotopy equivalent to 2k − f({0}×
〈n〉◦). It follows that the sequence Ext∆(f) → MapO⊗(〈n+ 1〉, 〈1〉) → MapO⊗(〈n〉, 〈1〉) is

homotopy equivalent to the fiber sequence of configuration spaces (see Lemma 5.1.1.3)

2k − f({0} × 〈n〉◦)→ Conf(〈n+ 1〉◦,2k)→ Conf(〈n〉◦,2k),

hence also a homotopy fiber sequence. More generally, if f : 〈n〉 → 〈m〉 is generic, then

Ext∆(f)→ Mapact
O⊗

(〈n+ 1〉, 〈m〉)→ Mapact
O⊗

(〈n〉, 〈m〉),

is a fiber sequence.

(b) Every rectlinear embedding f0 ∈ Rect(2k × 〈n〉◦,2k) is homotopic to a generic rectilinear

embedding f (for example, we can take f to be the composition of f0 with the “contracting”

map 2k × 〈n〉◦ ' (−1
2 ,

1
2)k × 〈n〉◦ ↪→ 2k × 〈n〉◦). Similarly, every active morphism in O⊗ is

homotopic to a generic morphism.

(c) The collection of generic morphisms in O⊗ is stable under composition.

To prove that E⊗k is coherent, it will suffice to show that the simplicial operad O satisfies the

criteria of Proposition 5.1.1.11. It is clear that every map in O admits a homotopy inverse (in fact,
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every rectilinear embedding from 2k to itself is homotopic to the identity). In view of (a), (b), and

(c) above, it will suffice to show that the diagram

Ext∆(h) //

��

Ext∆(g ◦ h)

��
Ext∆(h ◦ f) // Ext∆(g ◦ h ◦ f)

is a homotopy pushout square for every triple of active morphisms

〈m〉 f→ 〈n〉 h→ 〈n〉 g→ 〈1〉

in O⊗, provided that each of the underlying rectilinear embeddings is generic.

Let U0 ⊆ U1 ⊆ U2 be the images of g ◦h◦f , g ◦h, and g, respectively. Let U i denote the closure

of Ui. We now set

V = 2k − U1 W = U2 − U0.

Note that V ∪W = 2k − U0 and V ∩W = U2 − U1. The argument of Lemma 5.1.1.3 shows that

evaluation at the origin of 2k determines weak homotopy equivalences

Ext∆(h)→ Sing(V ∩W ) Ext∆(g ◦ h)→ Sing(V )

Ext∆(h ◦ f)→ Sing(W ) Ext∆(g ◦ h ◦ f)→ Sing(W ∪ V ).

It will therefore suffice to show that the diagram

Sing(V ∩W ) //

��

Sing(V )

��
Sing(W ) // Sing(W ∪ V )

is a homotopy pushout square of Kan complexes, which follows from Theorem A.3.1.

5.1.2 The Additivity Theorem

If K is a pointed topological space, then the k-fold loop space Ωk(K) carries an action of the

(topological) little cubes operad tEk. Passing to singular complexes, we deduce that if X ∈ S∗,

then the k-fold loop space Ωk(X) can be promoted to an E⊗k -algebra object of the ∞-category S

of spaces. The work of May provides a converse to this observation: if Z is a grouplike Ek-algebra

object of S (see Definition 5.2.6.6), then Z is equivalent to Ωk(Y ) for some pointed space Y ∈ S∗
(see Theorem 5.2.6.15 for a precise statement). The delooping process Z 7→ Y is compatible with

products in Z. Consequently, if Z is equipped with a second action of the ∞-operad E⊗k′ , which is

suitable compatible with the E⊗k -action on Z, then we should expect that the space Y again carries
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an action of E⊗k′ , and is therefore itself homotopy equivalent to Ωk′(X) for some pointed space

X ∈ S∗. Then Z ' Ωk+k′(X) carries an action of the ∞-operad E⊗k+k′ . Our goal in this section

is to show that this phenomenon is quite general, and applies to algebra objects of an arbitrary

symmetric monoidal ∞-category C⊗: namely, giving an Ek+k′-algebra object of C is equivalent

to giving an object A ∈ C which is equipped with commuting actions of the ∞-operads E⊗k and

E⊗k′ . More precisely, we have a canonical equivalence AlgEk+k′
(C) ' AlgEk(AlgEk′ (C)) (Theorem

5.1.2.2). Equivalently, we can identify E⊗k+k′ with the tensor product of the ∞-operads E⊗k and E⊗k′
(see Definition 2.2.5.3). We first describe the bifunctor E⊗k × E

⊗
k′ → E⊗k+k′ which gives rise to this

identification.

Construction 5.1.2.1. Choose nonnegative integers k, k′. We define a topological functor ρ :t

E⊗k ×
t E⊗k′ →

t E⊗k+k′ as follows:

(1) The diagram of functors
tE⊗k ×

t E⊗k′
ρ //

��

tE⊗k+k′

��
N(Fin∗)×N(Fin∗)

∧ // N(Fin∗)

commutes, where ∧ denotes the smash product functor on pointed finite sets (Notation

2.2.5.1). In particular, the functor × is given on objects by the formula 〈m〉 ∧ 〈n〉 = 〈mn〉.

(2) Suppose we are given a pair of morphisms α : 〈m〉 → 〈n〉 in tE⊗k and β : 〈m′〉 → 〈n′〉 in tE⊗k′ .
Write α = (α, {fj : 2k × α−1{j},2k}j∈〈n〉◦) and β = (β, {f ′j : 2k × β−1{j},2k}j′∈〈n′〉◦). We

then define ρ(α, β) : 〈mm′〉 → 〈nn′〉 to be given by the pair

(α ∧ β, {fj × fj′ : 2k+k′ × α−1{j} × β−1{j′},2k+k′}j∈〈n〉◦,j′∈〈n′〉◦).

Passing to homotopy coherent nerves, we obtain a bifunctor of∞-operads (see Definition 2.2.5.3)

E⊗k × E
⊗
k′ → E⊗k+k′ .

A version of the following fundamental result was proven by Dunn (see [41]):

Theorem 5.1.2.2 (Dunn Additivity Theorem). Let k, k′ ≥ 0 be nonnegative integers. Then the

bifunctor E⊗k ×E
⊗
k′ → E⊗k+k′ of Construction 5.1.2.1 exhibits the∞-operad E⊗k+k′ as a tensor product

of the ∞-operads E⊗k and E⊗k′ (see Definition 2.2.5.3).

Example 5.1.2.3 (Baez-Dolan Stabilization Hypothesis). Theorem 5.1.2.2 implies that supplying

an Ek-monoidal structure on an ∞-category C is equivalent to supplying k compatible monoidal

structures on C. Fix an integer n ≥ 1, and let Cat≤n∞ denote the full subcategory of Cat∞ spanned

by those ∞-categories which are equivalent to n-categories. For C,D ∈ Cat≤n∞ , the mapping space

MapCat∞(C,D) is the underlying Kan complex of Fun(C,D), which is equivalent to an n-category
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(Corollary HTT.2.3.4.8 ). It follows that Cat≤n∞ is equivalent to an (n + 1)-category. Let us re-

gard Cat≤n∞ as endowed with the Cartesian monoidal structure. Corollary 5.1.1.7 implies that

CAlg(Cat≤n∞ ) ' AlgEk(Cat≤n∞ ) for k ≥ n+ 2. It follows that if C is an n-category, then supplying an

Ek-monoidal structure on C is equivalent to supplying a symmetric monoidal structure on C (when

k ≥ n+ 2). This can be regarded as a version of the “stabilization hypothesis” proposed in [6] (the

formulation above applies to n-categories where all m-morphisms are invertible for m > 1, but the

same argument can be applied more generally.)

Example 5.1.2.4 (Braided Monoidal Categories). Let C be an ordinary category. According to

Example 5.1.2.3, supplying an Ek-monoidal structure on N(C) is equivalent to supplying a symmet-

ric monoidal structure on C if k ≥ 3. If k = 1, then supplying an Ek-monoidal structure on N(C)

is equivalent to supplying a monoidal structure on C (combine Example 2.4.2.4 and Proposition

2.4.2.5) Let us therefore focus our attention on the case k = 2. Giving an E2-monoidal structure on

N(C) is equivalent to exhibiting N(C) as an E2-algebra object of Cat∞. Theorem 5.1.2.2 provides an

equivalence AlgE2
(Cat∞) ' AlgE1

(AlgE1
(Cat∞)). Combining this with Example 2.4.2.4 and Propo-

sition 2.4.2.5, we can view N(C) as an (associative) monoid object in the ∞-category Mon(Cat∞)

of monoidal ∞-categories. This structure allows us to view C as a monoidal category with respect

to some tensor product ⊗, together with a second multiplication given by a monoidal functor

� : (C,⊗)× (C,⊗)→ (C,⊗).

This second multiplication also has a unit, which is a functor from the one-object category [0] into

C. Since this functor is required to be monoidal, it carries the unique object of [0] to the unit object

1 ∈ C, up to canonical isomorphism. It follows that 1 can be regarded as a unit with respect to

both tensor product operations ⊗ and �.

We can now exploit the classical Eckmann-Hilton argument to show that the tensor product

functors ⊗,� : C×C → C are isomorphic. Namely, our assumption that � is a monoidal functor

gives a chain of isomorphisms

X � Y ' (X ⊗ 1)� (1⊗ Y ) (5.1)

' (X � 1)⊗ (1� Y ) (5.2)

' X ⊗ Y (5.3)

depending naturally on X and Y . Consequently, � is determined by ⊗ as a functor from C×C

into C. However, it gives rise to additional data when viewed as a monoidal functor: a monoidal

structure on the tensor product functor ⊗ : C×C→ C supplies a canonical isomorphism

(W ⊗X)⊗ (Y ⊗ Z) ' (W ⊗ Y )⊗ (X ⊗ Z).

Taking W and Z to be the unit object, we get a canonical isomorphism σX,Y : X ⊗ Y → Y ⊗X.

Conversely, if we are given a collection of isomorphisms σX,Y : X ⊗ Y → Y ⊗ X, we can try to



770 CHAPTER 5. LITTLE CUBES AND FACTORIZABLE SHEAVES

endow ⊗ : C×C→ C with the structure of a monoidal functor by supplying the isomorphisms

(W ⊗X)⊗ (Y ⊗ Z) 'W ⊗ (X ⊗ Y )⊗ Z
σX,Y' W ⊗ (Y ⊗X)⊗ Z ' (W ⊗ Y )⊗ (X ⊗ Z)

together with the evident isomorphism 1⊗1 ' 1. One can show that construction supplies ⊗ with

the structure of a monoidal functor if and only if the following conditions are satisfied:

(1) For every triple of objects X,Y, Z ∈ C, the isomorphism σX,Y⊗Z is given by the composition

X⊗(Y ⊗Z) ' (X⊗Y )⊗Z
σX,Y' (Y ⊗X)⊗Z ' Y ⊗(X⊗Z)

σX,Z' Y ⊗(Z⊗X) ' (Y ⊗Z)⊗X.

(2) For every triple of objects X,Y, Z ∈ C, the isomorphism σX⊗Y,Z is given by the composition

(X⊗Y )⊗Z ' X⊗ (Y ⊗Z)
σY,Z' X⊗ (Z⊗Y ) ' (X⊗Z)⊗Y

σX,Z' (Z⊗X)⊗Y ' Z⊗ (X⊗Y ).

(Equivalently, the inverse maps σ−1
X,Y : Y ⊗X ' X ⊗ Y satisfy condition (1).)

A natural isomorphism σX,Y : X⊗Y ' Y⊗X is called a braiding on the monoidal category (C,⊗)

if it satisfies conditions (1) and (2). A braided monoidal category is a monoidal category equipped

with a braiding. We can summarize our discussion as follows: if C is an ordinary category, then

endowing C with the structure of a braided monoidal category is equivalent to endowing the nerve

N(C) with the structure of an E2-monoidal ∞-category.

Remark 5.1.2.5. It follows from Example 5.1.2.4 that if C is a braided monoidal category contain-

ing a sequence of objects X1, . . . , Xn, then the tensor product X1 ⊗ · · · ⊗Xn is the fiber of a local

system of objects of C over the space Rect(22×{1, . . . , n},22). In other words, the tensor product

X1⊗· · ·⊗Xn is endowed with an action of the fundamental group π1 Conf({1, . . . , n},R2) of configu-

rations of n distinct points in the plane R2 (see Lemma 5.1.1.3). The group π1 Conf({1, . . . , n},R2)

is the Artin pure braid group on n strands. The action of π1 Conf({1, . . . , n},R2) on X1⊗· · ·⊗Xn

can be constructed by purely combinatorial means, by matching the standard generators of the

Artin braid group with the isomorphisms σXi,Xj . However, Theorem 5.1.2.2 provides a more illu-

minating geometric explanation of this phenomenon.

Corollary 5.1.2.6. Let K be some collection of simplicial sets which includes N(∆)op. Suppose

that C is a symmetric monoidal ∞-category which admits colimits indexed by the simplicial sets

belonging to K and for which the tensor product ⊗ : C×C→ C preserves such colimits separately in

each variable. Then for k ≥ 1, the construction A 7→ RModA(C) determines a fully faithful functor

AlgEk(C)→ AlgEk−1
(LModC(Cat∞(K))).

Proof. Combine Corollary 4.8.5.20 and Theorem 5.1.2.2.
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Remark 5.1.2.7. Corollary 5.1.2.6 furnishes a convenient way of understanding the notion of an

Ek-algebra: giving an Ek-algebra object A ∈ AlgEk(C) is equivalent to giving the underlying asso-

ciative algebra object A0 ∈ Alg(C), together with an Ek−1-structure on the∞-category RModA0(C)

of right A0-modules (with unit object given by the module A0 itself).

Variant 5.1.2.8. Corollary 5.1.2.6 remains valid (with essentially the same proof) if we assume

only that C is an Ek-monoidal ∞-category; in this case, the ∞-category LModC(CatK∞) inherits an

Ek−1-monoidal structure (see Remark 5.1.2.7).

Let k, k′ ≥ 0 be integers and let C be an Ek+k′-monoidal ∞-category. Using the bifunctor of

∞-operads E⊗k ×E
⊗
k′ → E⊗k+k′ , we see that AlgE⊗

k′/E
⊗
k+k′

(C) inherits the structure of an Ek-monoidal

∞-category. The tensor product on AlgE⊗
k′/E

⊗
k+k′

(C) does not preserve small colimits in general, but

it does in the following special case:

Proposition 5.1.2.9. Let k, k′ ≥ 0 be integers and let C be an Ek+k′-monoidal ∞-category. Let

κ be an uncountable regular cardinal. Assume that C admits colimits indexed by κ-small weakly

contractible simplicial sets and that (if k + k′ > 0) the tensor product on C preserves colimits

indexed by κ-small weakly contractible simplicial sets separately in each variable. Then:

(1) The ∞-category AlgEk′/Ek+k′
(C) admits colimits indexed by κ-small weakly contractible sim-

plicial sets.

(2) If k > 0, then the tensor product

⊗ : AlgEk′/Ek+k′
(C)×AlgEk′/Ek+k′

(C)→ AlgEk′/Ek+k′
(C)

preserves colimits indexed by κ-small weakly contractible simplicial sets separately in each

variable.

Proof. We will assume that k′ > 0 (the case k′ = 0 is an immediate consequence of Proposition

HTT.4.4.2.9 ). We proceed by induction on k′. Using Theorem 5.1.2.2, we can reduce to the case

k′ = 1. In this case, assertion (1) follows immediately from Corollary 4.7.3.19. To prove (2), we may

assume without loss of generality that k = 1 and that C is small. Using the constructions described

in §4.8.1, we can choose a fully faithful E2-monoidal functor f : C → C which preserves colimits

indexed by κ-small weakly contractible simplicial sets, having the property that C is presentable

and the tensor product on C preserves small colimits separately in each variable. Using Remark

4.7.3.21, we can replace C by C and thereby reduce to the case where C itself is presentable and

the tensor product on C preserves small colimits separately in each variable. In this case, the

construction

A 7→ RModA(C)

determines a fully faithful embedding θ : AlgE1/E2
(C) → LModC(PrL) which preserves colimits

indexed by weakly contractible simplicial sets (Corollary 4.8.5.13). Moreover, the functor θ is
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monoidal (see Theorem 4.8.5.16). It will therefore suffice to show that the tensor product on

LModC(PrL) preserves small colimits separately in each variable. This tensor product factors as a

composition

LModC(PrL)× LModC(PrL)
�→ LModC⊗C(PrL)

F→ LModC(PrL),

where F is left adjoint to the forgetful functor LModC(PrL) → LModC⊗C(PrL). We conclude by

observing that � fits into a commutative diagram

LModC(PrL)× LModC(PrL)
� //

��

LModC⊗C(PrL)

��
PrL×PrL ⊗ // PrL

where the vertical maps are conservative and preserve small colimits (Corollary 4.2.3.5).

The proof of Theorem 5.1.2.2 will occupy our attention for the remainder of this section. We

will need a few auxiliary constructions.

Construction 5.1.2.10. Fix integers k, k′ ≥ 0. We define a topological category W as follows:

(a) The objects of W are finite sequences (〈m1〉, . . . , 〈mb〉) of objects of Fin∗.

(b) Given a pair of objects of W = (〈m1〉, . . . , 〈mb〉),W ′ = (〈m′1〉, . . . , 〈m′b′〉) of W, the mapping

space MapW(W,W ′) is given by∐
β:〈b〉→〈b′〉

Mapβ
tE⊗k

(〈b〉, 〈b′〉)×
∏

β(i)=j

MaptE⊗
k′

(〈mi〉, 〈m′j〉).

Here the coproduct is taken over all maps of pointed finite sets β : 〈b〉 → 〈b′〉, and

Mapβ
tE⊗k

(〈b〉, 〈b′〉) denotes the inverse image of β under the map MaptE⊗k
(〈b〉, 〈b′〉) →

HomFin∗(〈b〉, 〈b′〉).

We observe that there is a canonical isomorphism of N(W) with the wreath product E⊗k oE
⊗
k′ , defined

in §2.4.4.

There are evident topological functors

tE⊗k ×
t E⊗k →W→t E⊗k+k′ ,

given on objects by the formulas

(〈b〉, 〈m〉) 7→ (〈m〉, 〈m〉, . . . , 〈m〉) (〈m1〉, . . . , 〈mb〉) 7→ 〈m1 + · · ·+mb〉,

respectively. Passing to the homotopy coherent nerve, we obtain functors

E⊗k × E
⊗
k′

θ′→ E⊗k o E
⊗
k′ ' N(W)

θ→ E⊗k+k′ .

Here θ′ is the functor described in Remark 2.4.4.2. We will reduce the proof of Theorem 5.1.2.2 to

the following:



5.1. DEFINITIONS AND BASIC PROPERTIES 773

Proposition 5.1.2.11. Let k ≥ 0 be a nonnegative integer. Then the map θ : E⊗1 o E
⊗
k → E⊗k+1 is

a weak approximation to the ∞-operad E⊗k+1.

Let us assume Proposition 5.1.2.11 for the moment.

Corollary 5.1.2.12. Let k ≥ 0 be a nonnegative integer. Then the map θ : E⊗1 o E
⊗
k → E⊗k+1

described above induces a weak equivalence of ∞-preoperads (E⊗1 oE
⊗
k ,M)→ E⊗,\k+1. Here M denotes

the collection of all inert morphisms in E⊗1 o E
⊗
k (see Construction 2.4.4.1).

Proof. Let θ0 denote the composition of θ with the forgetful functor E⊗k+1. We observe that for

every object X ∈ E⊗1 o E
⊗
k and every inert morphism α : θ0(X) → 〈n〉 in N(Fin∗), there exists a

θ0-coCartesian morphism α : X → Y lying over α: if X = (〈m1〉, . . . , 〈mb〉) then we can take α to

be the map

(〈m1〉, . . . , 〈mb〉)→ (〈m′1〉, . . . , 〈m′b〉)

determined by a collection of inert morphisms βi : 〈mi〉 → 〈m′i〉) with β−1
i 〈m′i〉

◦ = α−1〈n〉◦∩〈mi〉◦.
Note that the∞-category E = (E⊗1 oE

⊗
k )×N(Fin∗) {〈1〉} has a final object (〈1〉), so that θ induces

a weak homotopy equivalence E→ Ek+1 (since Ek+1 is a contractible Kan complex). Let θ0 denote

the composition of θ with the forgetful functor E⊗k+1. Let M0 be the collection of all θ0-coCartesian

morphisms in E⊗1 oE
⊗
k which lie over an inert morphism 〈m〉 → 〈1〉 in N(Fin∗). Let C⊗ be an arbitrary

∞-operad. Combining Proposition 5.1.2.11 with Theorem 2.3.3.23, we learn that composition with

θ induces an equivalence from AlgEk+1
(C) to the full subcategory X ⊆ FunN(Fin∗)(E

⊗
1 o E

⊗
k ,C

⊗)

spanned by those functors which carry every morphism in M0 to an inert morphism in C⊗ and

every morphism in E to an equivalence in C. To complete the proof, it will suffice to show that a

functor F ∈ FunN(Fin∗)(E
⊗
1 o E

⊗
k ,C

⊗) belongs to X if and only if F carries every inert morphism of

E⊗1 o E
⊗
k to an inert morphism of C⊗.

Suppose first that F carries inert morphisms to inert morphisms. Since M0 consists of inert

morphisms in E⊗1 o E
⊗
k , it will suffice to show that F carries every morphism in E → E′ in E to an

equivalence in C. We have a commutative diagram

E
φ

!!

// E′

φ′}}
(〈1〉)

in E⊗1 o E
⊗
k . By the two-out-of-three property, it will suffice to show that F (φ) and F (φ′) are

equivalences in C, which follows from our assumption since φ and φ′ are inert.

Conversely, suppose that F ∈ X; we wish to show that for every inert morphism α : X → X ′ in

E⊗1 oE
⊗
k , the image F (α) is an inert morphism in C⊗. Arguing as in Remark 2.1.2.9, we can reduce

to the case where X ′ ∈ E. Then α can be written as a composition α′ ◦ α′′, where α′′ ∈M0 and α′

is a morphism in E. Our assumption that F ∈ X guarantees that F (α′) is an equivalence and that

F (α′′) is inert, so that F (α) is inert as desired.
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Proof of Theorem 5.1.2.2. We proceed by induction on k. If k = 0, the desired result follows from

Proposition 2.3.1.4, since the ∞-operad E⊗k is unital. If k = 1, we consider the factorization

E⊗,\1 � E′⊗,\k → (E⊗1 o E
⊗
k′ ,M)→ E′⊗,\1+k

and apply Corollary 5.1.2.12 together with Theorem 2.4.4.3. If k > 1, we have a commutative

diagram

E⊗,\1 � E⊗,\k−1 � E
′⊗,\
k

//

��

E⊗,\k � E′⊗,\k

��

E⊗,\1 � E⊗,\k+k′−1
// E′⊗,\k+k.

The inductive hypothesis guarantees that the horizontal maps and the left vertical map are weak

equivalences of ∞-preoperads, so that the right vertical map is a weak equivalence as well.

To prove Proposition 5.1.2.11, we first observe that the forgetful functor θ0 : E⊗1 oE
⊗
k → N(Fin∗)

satisfies condition (∗) of Proposition 2.3.3.11: that is, inert morphisms in N(Fin∗) can be lifted to

θ0-coCartesian morphisms in E⊗1 o E
⊗
k . For every integer n ≥ 0, we let Tupn ⊆ N(Fin∗)/〈n〉 be the

subcategory whose objects are active maps 〈m〉 → 〈n〉 and whose morphisms are equivalences. Fix

an object X ∈ E⊗1 o E
⊗
k , write X = (〈n1〉, 〈n2〉, . . . , 〈nb〉), and let n = n1 + · · · + nb. According to

Proposition 2.3.3.14, it will suffice to show that the map

(E⊗1 o E
⊗
k )/X ×N(Fin∗)/〈n〉 Tupn → (E⊗k+1)/〈n〉 ×N(Fin∗)/〈n〉 Tupn

is a weak homotopy equivalence. We define subcategories

(E⊗1 o E
⊗
k )1

/X ⊆ (E⊗1 o E
⊗
k )0

/X ⊆ (E⊗1 o E
⊗
k )/X

as follows:

• The objects of (E⊗1 o E
⊗
k )0

/X are morphisms α : (〈m1〉, 〈m2〉, . . . , 〈ma〉) → (〈n1〉, . . . , 〈nb〉)
such that the underlying maps 〈a〉 → 〈b〉 and 〈m1 + · · ·+ma〉 → 〈n1 + · · ·+ nb〉 are active

morphisms in Fin∗. Such an object belongs to (E⊗1 o E
⊗
k )1

/X if and only if each of the integers

mi is positive.

• The morphisms in (E⊗1 o E
⊗
k )0

/X are given by commutative diagrams

(〈m1〉, . . . , 〈ma〉)
α

))

β // (〈m′1〉, . . . , 〈m′a′〉)
α′

uu
(〈n1〉, . . . , 〈nb〉)

where α and α′ belong to (E⊗1 o E
⊗
k )0

/X and β induces an active map 〈a〉 → 〈a′〉 in Fin∗ and

a bijection 〈m1 + · · ·+ma〉 → 〈m′1 + · · ·+m′a′〉. Such a morphism belongs to (E⊗1 o E
⊗
k )1

/X if

and only if α and α′ are objects of (E⊗1 o E
⊗
k )1

/X .
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It is not difficult to see that the inclusions

(E⊗1 o E
⊗
k )1

/X ⊆ (E⊗1 o E
⊗
k )/X ×N(Fin∗)/〈n〉 Tupn

(E⊗1 o E
⊗
k )1

/X ⊆ (E⊗1 o E
⊗
k )0

/X

both admit right adjoints, and are therefore weak homotopy equivalences. By the two-out-of-three

property, we conclude that the inclusion

(E⊗1 o E
⊗
k )0

/X ↪→ (E⊗1 o E
⊗
k )/X ×N(Fin∗)/〈n〉 Tupn

is a weak homotopy equivalence. It will therefore suffice to show that the map

φX : (E⊗1 o E
⊗
k )0

/X → (E⊗k+1)/X ×N(Fin∗)/〈n〉 Tupn

is a weak homotopy equivalence. We note that φX is equivalent to a product of maps {φ(〈ni〉)}1≤i≤b,
which allows us to reduce to the case b = 1. In other words, we can reformulate Proposition 5.1.2.11

as follows:

Proposition 5.1.2.13. For each n ≥ 0, the functor θ : E⊗1 o E
⊗
k → E⊗k+1 induces a weak homotopy

equivalence of simplicial sets

φ : (E⊗1 o E
⊗
k )0

/(〈n〉) → (E⊗k+1)/〈n〉 ×N(Fin∗)/〈n〉 Tupn .

The remainder of this section is devoted to the proof of Proposition 5.1.2.13.

Notation 5.1.2.14. For every topological category C, we let Sing(C) denote the underlying sim-

plicial category: that is, Sing(C) is the simplicial category having the same objects as C, with

morphism spaces given by

MapSing(C)(X,Y ) = Sing MapC(X,Y ).

If F : C → Top is a topological functor, we let Sing(F ) : Sing(C) → Set∆ denote the associated

simplicial functor, given by Sing(F )(C) = Sing(F (C)). For every integer p and every pair of objects

X,Y ∈t E⊗p , we let Mapact
tE⊗p

(X,Y ) denote the summand of the topological space MaptE⊗p (X,Y )

spanned by those morphisms whose image in Fin∗ is active.

Let W be the topological category of Construction 5.1.2.10 (so that N(W) ' E⊗1 o E
⊗
k ). We

let W0 denote the topological subcategory of W whose morphisms are maps (〈m1〉, . . . , 〈mb〉) →
(〈m′1〉, . . . , 〈m′b′〉) which induce an active map 〈b〉 → 〈b′〉 in Fin∗ and a bijection 〈m1 + · · ·+mb〉 →
〈m′1 + · · ·+m′b′〉 in Fin∗. We define a topological functor T : W

op
0 → Top as follows: for every

object W = (〈m1〉, . . . , 〈mb〉) ∈ W0, we let T (W ) be the summand of MapW(W, (〈n〉)) corre-

sponding to those maps (〈m1〉, . . . , 〈mb〉) → (〈n〉) which induce active morphisms 〈b〉 → 〈1〉 and

〈m1 + · · ·+mb〉 → 〈n〉 in Fin∗. Let v : C[N(W0)] → Sing(W0) be the counit map. Unwinding
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the definitions, we obtain a canonical isomorphism of simplicial sets (E⊗1 oE
⊗
k )0

/(〈n〉) ' Unv Sing(T ),

where Unv denotes the unstraightening functor of §HTT.2.2.1 .

Let E denote the topological subcategory of tE⊗k+1 spanned by those morphisms which in-

duce equivalences in N(Fin∗). We define a functor U : Eop → Top by the formula U(E) =

Mapact
tE⊗k+1

(X, 〈n〉). Let v′ : C[N(E)] → Sing(E) be the counit map. Unwinding the definitions,

we have a canonical isomorphism of simplicial sets (E⊗k+1)/〈n〉 ×N(Fin∗)/〈n〉 Tupn ' Unv′ Sing(U).

The topological functor ξ : W →t E⊗k+1 introduced above restricts to a topological functor

ξ0 : W0 → E. We note that the map φ appearing in Proposition 5.1.2.12 can be identified with

the map Unv Sing(T )→ Unv′ Sing(U) induced by a natural transformation of topological functors

T → U ◦ ξ0 (which is also determined by ξ). We will prove that φ is a weak homotopy equivalence

by assembling T and U from simpler constituents.

Construction 5.1.2.15. We define a partially ordered set P as follows:

(a) The objects of P are pairs (I,∼), where I ⊆ (−1, 1) is a finite union of open intervals and

∼ is an equivalence relation on the set π0I. For every point x ∈ I we let [x] denote the

corresponding connected component of I. We assume that ∼ is convex in the following sense:

if x < y < z in I and [x] ∼ [z], then [x] ∼ [y] ∼ [z].

(b) We have (I,∼) ≤ (I ′,∼′) if and only if I ⊆ I ′ and, for every pair of elements x, y ∈ I such

that [x] ∼′ [y], we have [x] ∼ [y].

For every element (I,∼) ∈ P , we define subfunctors

TI,∼ ⊆ T UI,∼ ⊆ U

as follows:

• Let W = (〈m1〉, . . . , 〈mb〉) be an object of W0, so that T (W ) is the topological space

Mapact
tE⊗1

(〈b〉, 〈1〉)×
∏

1≤a≤b
Mapact

tE⊗k
(〈ma〉, 〈n〉)).

We can identify a point of T (W ) with a sequence (f, g1, . . . , gb), where f : 〈b〉◦ × 21 → 21

and ga : 〈ma〉◦ × 2k → 〈n〉◦ × 2k are rectilinear embeddings. We let TI,∼(W ) be the subset

of T (W ) consisting of those sequences which satisfy the following pair of conditions:

– The image of f is contained in I. It follows that f induces a map λ : 〈b〉◦ → π0I.

– If a, a′ ∈ 〈b〉◦ satisfy λ(a) ∼ λ(a′), then either a = a′ or the maps ga and ga′ have disjoint

images.
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• Let E = 〈m〉 be an object of E, so that U(E) is the topological space Mapact
tE⊗k+1

(〈m〉, 〈n〉) =

Rect(〈m〉◦ × 2k+1, 〈n〉◦ × 2k+1). Let us identify 〈n〉◦ × 2k+1 with the product 〈n〉◦ × 2k ×
(−1, 1), so that we have projection maps

〈n〉◦ ×2k
p0← 〈n〉◦ ×2k+1 p1→ (−1, 1).

We let UI,∼(E) denote the subspace of U(E) consisting of those rectilinear embeddings f :

〈m〉◦ ×2k+1 → 〈n〉◦ ×2k+1 satisfying the following conditions:

– The image of p1 ◦ f is contained in I ⊆ (−1, 1). Consequently, f induces a map λ :

〈n〉◦ → π0I.

– If i, j ∈ 〈n〉◦ satisfy λ(i) ∼ λ(j), then either i = j or the sets {i}×2k+1 and {j}×2k+1

have disjoint images in 〈m〉◦ ×2k (under the map p0 ◦ f).

It is easy to see that the functors TI,∼ : Wop
0 → Top and UI,∼ : Eop → Top depend functorially on

the pair (I,∼) ∈ P . Moreover, the natural transformation T → U ◦ ξ0 determined by ξ restricts to

natural transformations TI,∼ → UI,∼ ◦ξ0. According to Theorem HTT.2.2.1.2 , the unstraightening

functor Unv is a right Quillen equivalence from (Set∆)Sing(W0)op (endowed with the projective model

structure) to (Set∆)/N(W0) (endowed with the contravariant model structure); it follows that Unv
carries homotopy colimit diagrams between fibrant objects of (Set∆)Sing(W0)op to homotopy colimit

diagrams in Set∆ (with respect to the usual model structure). Similarly, Unv′ carries homotopy

colimit diagrams between fibrant objects of (Set∆)Sing(E)op to homotopy colimit diagrams in Set∆.

Consequently, to prove Proposition 5.1.2.13 it will suffice to show the following:

Proposition 5.1.2.16. The functor Sing(T ) is a homotopy colimit of the diagram of functors

{Sing(TI,∼) : Sing(W0)op → Set∆}(I,∼)∈P .

Proposition 5.1.2.17. The functor Sing(U) is a homotopy colimit of the diagram of functors

{Sing(UI,∼) : Sing(E)op → Set∆}(I,∼)∈P .

Proposition 5.1.2.18. For every element (I,∼) ∈ P , the topological functor ξ induces a weak

homotopy equivalence of simplicial sets Unv Sing(TI,∼)→ Unv′ Sing(UI,∼).

Proof of Proposition 5.1.2.16. Fix an object W = (〈m1〉, . . . , 〈mb〉) ∈ W0; we wish to show that

Sing T (W ) is a homotopy colimit of the diagram {Sing TI,∼(W )}(I,∼)∈P . Let T ′(W ) denote the

configuration space

Conf(〈b〉◦, (−1, 1))×
∏

1≤a≤b
Conf(〈ma〉◦, 〈n〉◦ ×2k).

We can identify T ′(W ) with the set of tuples (f, g1, . . . , gb), where f : 〈b〉◦ → (−1, 1) and and

ga : 〈ma〉◦ → 〈n〉◦ × 2k are injective maps. Given (I,∼) ∈ P , let T ′I,∼(W ) be the open subset of

T ′(W ) consisting of those tuples (f, g1, . . . , gb) satisfying the following conditions:
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• The image of the map f is contained in I ⊆ (−1, 1), so that f induces a map λ : 〈b〉◦ → π0I.

• If a, a′ ∈ 〈b〉◦ satisfy λ(a) ∼ λ(a′), then either a = a′ or the maps ga and ga′ have disjoint

images.

Evaluation at the origins of 21 and 2k determines a map T (W )→ T ′(W ) which restricts to maps

TI,∼(W )→ T ′I,∼(W ) for each (I,∼) ∈ P . It follows from Lemma 5.1.1.3 that each of these maps is

a homotopy equivalence. It will therefore suffice to show that Sing T ′(W ) is a homotopy colimit of

the diagram of simplicial sets {Sing T ′I,∼(W )}(I,∼)∈P . According to Theorem A.3.1, it will suffice

to prove the following:

(∗) Let x = (f, g1, . . . , gb) be a point of T ′(W ), and let Px = {(I,∼) ∈ P : x ∈ T ′I,∼(W )}. Then

the simplicial set N(Px) is weakly contractible.

Let x be as in (∗), and let P ′x denote the subset of Px consisting of those triples where f induces

a surjection λ : 〈b〉◦ → π0I. The inclusion N(P ′x) ↪→ N(Px) admits a right adjoint and is therefore

a weak homotopy equivalence. It will therefore suffice to show that N(P ′x) is weakly contractible.

Let Q be the collection of all equivalence relations ∼ on the set 〈b〉◦ which have the following

properties:

(i) If f(a) ≤ f(a′) ≤ f(a′′) and a ∼ a′′, then a ∼ a′ ∼ a′′.

(ii) If a ∼ a′ and the image of ga intersects the image of ga′ , then a = a′.

We regard Q as a partially ordered set with respect to refinement. Pullback of equivalence relations

along λ determines a forgetful functor µ : N(P ′x)→ N(Q)op. It is easy to see that µ is a Cartesian

fibration. The simplicial set N(Q) is weakly contractible, since Q has a smallest element (given by

the equivalence relation where a ∼ a′ if and only if a = a′). We will complete the proof of (∗) by

showing that the fibers of µ are weakly contractible, so that µ is left cofinal (Lemma HTT.4.1.3.2 )

and therefore a weak homotopy equivalence.

Fix an equivalence relation ∼∈ Q. Unwinding the definitions, we see that µ−1{∼} can be

identified with the nerve of the partially ordered set R consisting of those subsets I ⊆ (−1, 1)

satisfying the following conditions:

(a) The set I is a finite union of open intervals.

(b) The set I contains the image of f .

(c) If f(a) and f(a′) belong to the same connected component of I, then a ∼ a′.

To see that N(R) is contractible, it suffices to observe that the partially ordered set Rop is filtered:

this follows from the fact that R is nonempty (it contains
⋃
a∈〈b〉◦(f(a)− ε, f(a) + ε) for sufficiently

small ε > 0) and is closed under pairwise intersections.
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Proof of Proposition 5.1.2.17. The proof is essentially the same as that of Proposition 5.1.2.16,

with some minor modifications. Fix an object E = 〈m〉 ∈ E. We wish to show that SingU(E)

is a homotopy colimit of the diagram {SingUI,∼(E)}(I,∼)∈P . Write 〈n〉◦ × 2k+1 as a product

〈n〉◦ ×2k × (−1, 1), and consider the projection maps

〈n〉◦ ×2k
p0← 〈n〉◦ ×2k+1 p1→ (−1, 1).

Let U ′(E) = Conf(〈m〉◦, 〈n〉◦ × 2k+1) be the collection of injective maps f = (f0, f1) : 〈m〉◦ →
(〈n〉◦ × 2k) × (−1, 1). For every pair (I,∼) ∈ P , we let U ′I,χ(E) denote the open subset of U ′(E)

consisting of those functions f = (f0, f1) which satisfy the following conditions:

• The image of f1 is contained in I ⊆ (−1, 1), so that f1 induces a map λ : 〈m〉◦ → π0I.

• If i, j ∈ 〈m〉◦ satisfy λ(i) ∼ λ(j), then either i = j or f0(i) 6= f0(j).

Evaluation at the origin of 2k+1 determines a map U(E) → U ′(E) which restricts to maps

Ui,∼(E) → U ′I,∼(E) for each E ∈ E. It follows from Lemma 5.1.1.3 that each of these maps is a

homotopy equivalence. It will therefore suffice to show that SingU ′(E) is a homotopy colimit of

the diagram of simplicial sets {SingU ′I,∼(E)}(I,∼)∈P . According to Theorem A.3.1, it will suffice

to prove the following:

(∗) Let f = (f0, f1) be a point of U ′(E), and let Px = {(I,∼) ∈ P : x ∈ U ′I,∼(E)}. Then the

simplicial set N(Px) is weakly contractible.

Let f be as in (∗), and let P ′x denote the subset of Px consisting of those triples where f1 induces

a surjection λ : 〈m〉◦ → π0I. The inclusion N(P ′x) ↪→ N(Px) admits a right adjoint and is therefore

a weak homotopy equivalence. It will therefore suffice to show that N(P ′x) is weakly contractible.

Let Q be the collection of all equivalence relations ∼ on the set 〈m〉◦ which have the following

properties:

(i) If f1(i) ≤ f1(i′) ≤ f1(i′′) and i ∼ i′′, then i ∼ i′ ∼ i′′.

(ii) If i ∼ i′ and f0(i) = f0(i′), then i = i′.

We regard Q as a partially ordered set with respect to refinement. Pullback of equivalence relations

along λ determines a Cartesian fibration functor µ : N(P ′x) → N(Q)op. The simplicial set N(Q) is

weakly contractible, since Q has a smallest element (given by the equivalence relation where i ∼ j
if and only if f1(i) = f1(j)). We will complete the proof of (∗) by showing that the fibers of µ are

weakly contractible, so that µ is left cofinal (Lemma HTT.4.1.3.2 ) and therefore a weak homotopy

equivalence.

Fix an equivalence relation ∼∈ Q. Unwinding the definitions, we see that µ−1{∼} can be

identified with the nerve of the partially ordered set R consisting of those subsets I ⊆ (−1, 1)

satisfying the following conditions:
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(a) The set I is a finite union of open intervals.

(b) The set I contains the image of f1.

(c) If f0(i) and f1(j) belong to the same connected component of I, then i ∼ j.

To see that N(R) is contractible, it suffices to observe that the partially ordered set Rop is filtered:

this follows from the fact that R is nonempty (it contains
⋃
i∈〈n〉◦(f1(i)− ε, f1(i)+ ε) for sufficiently

small ε > 0) and closed under pairwise intersections.

Proof of Proposition 5.1.2.18. We define a functor T 0
I,∼ : Wop

0 → Top by the formula T 0
I,∼(〈m1〉, . . . , 〈mb〉) =

Rect(〈b〉◦ × (−1, 1), I). There is an evident natural transformation TI,∼ → T 0
I,∼, which induces a

(projective) fibration of simplicial functors Sing(TI,∼)→ Sing(T 0
I,∼) and therefore a right fibration

of simplicial sets χ : Unv Sing(TI,∼)→ Unv Sing(T 0
I,∼). Unwinding the definitions, we can identify

an object of Unv Sing(T 0
I,∼) with an object W = (〈m1〉, . . . , 〈mb〉) ∈W0 and a rectilinear embedding

f : 〈b〉◦ × (−1, 1) → I. Let X ⊆ Unv Sing(T 0
I,∼) be the full subcategory of Unv Sing(T 0

I,∼) spanned

by those pairs (W, f) for which f induces a bijection 〈b〉◦ → π0I. It is not difficult to see that the

inclusion X ⊆ Unv Sing(T 0
I,∼) admits a left adjoint and is therefore left cofinal. Since χ is a right

fibration, we deduce that the inclusion

X×Unv Sing(T 0
I,∼) Unv Sing(TI,∼)→ Unv Sing(TI,∼)

is also left cofinal (Lemma HTT.4.1.3.2 ), and therefore a weak homotopy equivalence.

Define a functor U0
I,∼ : E → Top by the formula U0

I,∼(〈m〉) = HomSet(〈m〉◦, π0I). We have a

commutative diagram

X×Unv Sing(T 0
I,∼)(Unv Sing(T 0

I,∼))
F //

��

Unv′ Sing(UI,∼)

��
X

F0 // Unv′ Sing(U0
I,∼).

We will complete the proof by showing that the upper horizontal map is an equivalence of ∞-

categories. Unwinding the definitions, we deduce easily that F0 is an equivalence of ∞-categories:

both the domain and codomain of F0 are equivalent to the Kan complex Tupπ0I . The vertical maps

are right fibrations; it will therefore suffice to show that F induces a homotopy equivalence between

the fibers of the vertical maps. This amounts to the following assertion:

(∗) For every object W = (〈m1〉, . . . , 〈mb〉) ∈W0 having image E = 〈m1 + · · ·+mb〉 = 〈m〉 in E,

if η ∈ T 0
I,∼(W ) determines an isomorphism 〈b〉◦ ' π0I having image η′ ∈ U0

I,∼(E), then the

induced map

γ : Sing(TI,∼(W )×T 0
I,∼(W ) {η})→ Sing(UI,∼(E)×U0

I,∼(E) {η′})

is a homotopy equivalence.
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In fact, γ is the product of an identity map with the inclusion of a point into the product∏
1≤i≤m

Rect((−1, 1), Ii),

where Ii denotes the connected component of I which is the image of i ∈ 〈m〉◦ under the map

η′ : 〈m〉◦ → π0I. The desired result now follows from the fact that each embedding space

Rect((−1, 1), Ii) is contractible (Lemma 5.1.1.3).

5.1.3 Tensor Products of Ek-Modules

Let C be a symmetric monoidal ∞-category and let A ∈ AlgEk(C) be an Ek-algebra object of C.

Under some mild assumptions, the ∞-category ModEkA (C) of has the structure of an Ek-monoidal

∞-category (see Corollary 3.4.4.6). In particular, if k ≥ 1 then we have a tensor product operation

⊗ : ModEkA (C)×ModEkA (C)→ ModEkA (C).

Our goal in this section is to show that this operation is, in some sense, independent of n. More

precisely, we show that there is a monoidal forgetful functor ModEkA (C) → ModE1
A′ (C) is monoidal,

where A′ denotes the image of A in Alg(C). In other words, there is a forgetful functor from

ModEkA (C) to the∞-category ABModA(C) of A-A-bimodule objects of C, and that the tensor product

⊗ corresponds (under this forgetful functor) to the relative tensor product ⊗A of §4.4.2.

Construction 5.1.3.1. Let f : O′⊗ → O⊗ be a map of coherent∞-operads. Then f induces a map

F : KO′ → KO (see Notation 3.3.2.1). Suppose we are given a fibration of∞-operads C⊗ → O⊗, and

set C′⊗ = C⊗×O⊗O
′⊗. Composition with F determines a map ModO(C)⊗ ×O⊗ O′⊗ → ModO′(C′)⊗.

This map fits into a commutative diagram

ModO(C)⊗ ×O⊗ O′⊗ //

��

ModO′(C′)⊗

��
Alg/O(C) // Alg/O′(C

′).

Consequently, for every algebra object A ∈ Alg/O(C) having image A′ ∈ Alg/O′(C
′), we obtain a

map ModO
A(C)⊗ ×O⊗ O′⊗ → ModO′

A′(C
′)⊗.

We can now state our main result:

Theorem 5.1.3.2. Let k ≥ 1 be an integer and let q : C⊗ → E⊗k be a coCartesian fibration of

∞-operads. Assume that C admits geometric realizations of simplicial objects and that the tensor

product functor ⊗ : C×C → C preserves geometric realizations of simplicial objects. Let A ∈
Alg/Ek(C). Then:
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(1) The map ModEkA (C)⊗ → E⊗k is a coCartesian fibration of ∞-operads.

(2) Let A′ denote the image of A in AlgE1/Ek(C). Then the map

F : ModEkA (C)⊗ ×E⊗k E
⊗
1 → ModE1

A′ (C)

of Construction 5.1.3.1 is a monoidal functor.

Remark 5.1.3.3. We can regard Theorem 4.5.2.1 as a limiting case of Theorem 5.1.3.2, where we

take k =∞.

The remainder of this section is devoted to the proof of Theorem 5.1.3.2. Like the proof of

Theorem 5.1.2.2, it rests on a calculation of the homotopy type of certain configuration spaces.

Notation 5.1.3.4. Fix an integer a ≥ 0. We let Ja denote the subcategory of Fin∗〈a〉/ whose

objects are injective maps 〈a〉 → 〈m〉 and whose morphisms are commutative diagrams

〈a〉

}} !!
〈m〉 α // 〈m′〉

where α is a bijection. We define a category J′a as follows:

• The objects of J′a are sequences (〈m1〉, . . . , 〈mb〉, ρ), where (〈m1〉, . . . , 〈mb〉) is an object of

N(Fin∗)
q and ρ : 〈a〉◦ → 〈m1 + · · ·+mb〉◦ is an injection which induces an injection 〈a〉◦ →

〈b〉◦.

• A morphism in J′a from (〈m1〉, . . . , 〈mb〉, ρ) to (〈m′1〉, . . . , 〈m′b′〉, ρ′) is a morphism

(〈m1〉, . . . , 〈mb〉)→ (〈m′1〉, . . . , 〈m′b′〉)

which induces an active map 〈b〉 → 〈b′〉 and a bijection α : 〈m1 + · · ·+mb〉 → 〈m′1 + · · ·+m′b′〉
such that ρ′ = α ◦ ρ.

Let W be the topological category of Construction 5.1.2.10 (so that N(W) ' E⊗1 oE
⊗
k−1). We let

Wa denote the fiber product W×hN(Fin∗)q J
′
a. We define a topological functor T a : Wop

a → Top as

follows: for every object (W,ρ) ∈Wa, we let T (W ) be the summand of MapW(W, (〈1〉)) correspond-

ing to those maps W = (〈m1〉, . . . , 〈mb〉) → (〈1〉) which induce active morphisms 〈b〉 → 〈1〉 and

〈m1 + · · ·+mb〉 → 〈1〉 in Fin∗. Let T a0 denote the space Rect(〈a〉◦ ×21,21)×Rect(2k−1,2k−1)a.

For each (W,ρ) ∈Wn, composition with ρ determines a continuous map T a(W,ρ)→ T a0 .

Let Ea denote the topological category tE⊗k ×Fin∗ Ja. We will identify objects of Ea with pairs

(〈m〉, ρ), where 〈m〉 ∈t E⊗k and ρ : 〈a〉 → 〈m〉 is an injective map of finite linearly ordered sets.

We define a topological functor Ua : Eopa → Top by the formula Ua(〈m〉, ρ) = Mapact
tE⊗k+1

(〈m〉, 〈1〉).

Let Ua0 be the topological space Mapact
tE⊗k

(〈a〉, 〈1〉) = Rect(〈a〉◦ × 2k,2k), so that for every object

(〈m〉, ρ) ∈ Ea composition with ρ determines a map of topological spaces Ua(〈m〉, ρ)→ Ua0 .
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Remark 5.1.3.5. The functors T a and Ua of Notation 5.1.3.4 are given by the composition

Wop
a →Wop T→ Top

Eop
a → Eop

U→ Top,

where T and U are the functors defined in Notation 5.1.2.14 in the special case n = 1. If a = 0,

then we can identify T a with T and Ua with U , and the topological spaces T a0 and Ua0 consist of a

single point.

Let v : C[N(Wa)] → Sing(Wa) and v′ : C[N(Ea)] → Sing(Ea) be the counit maps. We let ∗
denote the simplicial category consisting of a single object, and regard the simplicial sets Sing(U0)

and Sing(T0) as simplicial functors ∗ → S. Let v′′ : C[∆0] → ∗ be the canonical equivalence. The

topological functor ξ : W →t E⊗k+1 restricts to a topological functor ξ0 : Wa → Ea, and we have a

commutative diagram of simplicial sets

Unv Sing(T a) //

��

Unv′′ Sing(T a0 )

��
Unv′ Sing(Ua) // Unv′′ Sing(Ua0 ),

where Un denotes the unstraightening functor of §HTT.2.2.1 .

We will need the following result:

Proposition 5.1.3.6. For every integer a ≥ 0, the diagram of simplicial sets σ :

Unv Sing(T a) //

��

Unv′′ Sing(T a0 )

��
Unv′ Sing(Ua) // Unv′′ Sing(Ua0 )

is a homotopy pullback square (with respect to the usual model structure on Set∆).

Remark 5.1.3.7. In the situation of Proposition 5.1.3.6, the simplical sets Unv′ Sing(Ua),

Unv′′ Sing(Ua0 ), and Unv′′ Sing(T a0 ) are Kan complexes, but Unv Sing(T a) is merely an ∞-category.

Consequently, σ is not a homotopy pullback diagram with respect to the Joyal model structure.

Let S denote the homotopy fiber product (Unv′ Sing(Ua)) ×Unv′′ Sing(Ua0 ) (Unv′′ Sing(T a0 )), so that

σ determines a functor f : Unv Sing(T a) → S. Proposition 5.1.3.6 is equivalent to the assertion

that the homotopy fibers of f (computed with respect to the Joyal model structure) are weakly

contractible.

Remark 5.1.3.8. In the special case a = 0, Proposition 5.1.3.6 follows from Proposition 5.1.2.13.

We will prove Proposition 5.1.3.6 at the end of this section. Let us now see that it implies

Theorem 5.1.3.2.
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Proof of Theorem 5.1.3.2. Let q′ : ModEkA (C)⊗ → E⊗k and q′′ : ModE1
A (C)⊗ → E⊗1 be the projection

maps. Fix an object ~M ∈ ModEkA (C)⊗〈n〉 and a morphism γ : 〈n〉 → 〈m〉 in E⊗k . To prove (1), we

must show that γ can be lifted to a q′-coCartesian morphism γ : ~M → N in ModEkA (C)⊗. We may

assume without loss of generality that γ is the image of a morphism γ0 : 〈n〉 → 〈m〉 in E⊗1 , so that

γ determines a map T (γ) in ModE1
A′ (C). To prove (2), we must show that F (γ) is q′′-coCartesian.

For 1 ≤ i ≤ m, let ni denote the cardinality of the inverse image of {i} under the map of pointed

finite sets 〈n〉 → 〈m〉. Factor the map γ0 as a composition

〈n〉
γ′0→ 〈n′〉

γ′′0→ 〈m〉,

where γ′0 is inert and γ′′0 is active. Replacing γ0 with γ′′0 , we can reduce to the case where γ0 is

active. Then γ0 is an amalgam of active maps 〈ni〉 → 〈1〉; we may therefore assume that m = 1. If

n = 0, the desired result follows from Example 3.4.4.7. If n = 1, the map γ0 is an equivalence and

there is nothing to prove. If n > 2, then the map γ0 factors as a composition

〈n〉 → 〈n− 1〉 → 〈1〉

each of which has fibers of cardinality < n, and the desired result follows from the inductive

hypothesis. We may therefore assume without loss of generality that n = 2.

Let D = ∆1 ×E⊗k KEk and D
′

= ∆1 ×E1 KE1 be as in the statement of Theorem 3.4.4.3. Let

D′ ∈ D′ correspond to the identity map 〈1〉 → 〈1〉 in E1, and let D be the image of D′ in D. Set

D = D×∆1 {0} and D′ = D
′ ×∆1 {0}. Let Dact

/D be the full subcategory of D/D ×D D spanned by

those diagrams

〈2〉 α //

γ

��

X

β

��
〈1〉 // 〈1〉

where β is active (here α is semi-inert), and let D′ act
/D′ be defined similarly.

According to Theorem 3.4.4.3, assertion (1) will follow if we can solve the lifting problem

depicted in the diagram

Dact
/D

//

��

C⊗

q

��
(Dact

/D). //

f

<<

E⊗k

so that f is an operadic q-colimit diagram. Moreover, assertion (2) will follow if we show that the

composite map (D′ act
/D′ )

. → (Dact
/D).

f→ C⊗ is also an operadic q-colimit diagram.

We will prove the following:

(∗) The map of ∞-operads E1 → Ek induces a left cofinal functor D′ act
/D′ → Dact

/D.
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Assuming (∗), we are reduced to the problem of solving the lifting problem

D′ act
/D′

//

��

C⊗

q

��
(D′ act

/D′ )
. //

f ′
<<

E⊗k

so that f ′ is an operadic q-colimit diagram. The equivalence E⊗1 → Assoc⊗ of Example 5.1.0.7

induces an equivalence of D′ act
/D′ with the full subcategory J of (Assoc⊗)〈2〉/ /〈1〉 spanned by those

factorizations

〈a〉
β

  
〈2〉

α
>>

// 〈1〉

where α is injective and β is active. The map β determines a linear ordering of 〈a〉◦. Let J0 be the

full subcategory of J spanned by those diagrams for which the image of α contains the smallest and

largest elements of 〈a〉◦. The inclusion J0 ↪→ J admits a left adjoint, and is therefore left cofinal.

It will therefore suffice to show that every lifting problem of the form

J0
//

��

C⊗

q

��
J.0

g

??

// E⊗k

admits a solution, where g is an operadic q-colimit diagram. This follows from Proposition 3.1.1.20,

since there is an equivalence of ∞-categories J0 ' N(∆)op.

It remains to prove (∗). Let W be as in Construction 5.1.2.10, so that the inclusion i : E⊗1 ↪→ E⊗k
factors as a composition

E⊗1 ↪→ i′→N(W)→ E⊗k

(see Construction 5.1.2.10). Let D′′ denote the subcategory of

Fun(∆1,N(W))/ id(〈1〉) ×Fun(∆1,N(W))/(〈1〉)
{(〈1〉, 〈1〉)}

whose objects are diagrams

(〈1〉, 〈1〉) α //

��

(〈m1〉, . . . , 〈mb〉)

β
��

(〈1〉) // (〈1〉)



786 CHAPTER 5. LITTLE CUBES AND FACTORIZABLE SHEAVES

where the maps 〈2〉 → 〈b〉 and 〈2〉 → 〈m1 + · · ·+mb〉 determined by α are injective, and the maps

〈b〉 → 〈1〉 and 〈mi〉 → 〈1〉 determined by β are active. Morphisms in D′′ are given by diagrams

(〈1〉, 〈1〉)

��

// (〈m′1〉, . . . , 〈m′b′〉)

β′

��
(〈1〉, 〈1〉) //

��

(〈m1〉, . . . , 〈mb〉)

��
(〈1〉) // (〈1〉)

where β′ induces an active map 〈b′〉 → 〈b〉. The map i′ induces a functor Dact
/D → D′′. This functor

admits a left adjoint and is therefore left cofinal. Consequently, to prove (∗) it will suffice to show

that i′′ induces a left cofinal functor Q : D′′ → Dact
/D.

Fix an object E ∈ Dact
/D. According to Theorem HTT.4.1.3.1 , it will suffice to show that ∞-

category X = (Dact
/D) ×Dact

/D
D′′ is weakly contractible. We can identify objects of X with pairs

(E, u : E → Q(E)), where E is an object of D′′ and u is a morphism in Dact
/D. Let X0 be the full

subcategory of X spanned by those objects for which u is an equivalence. Using Proposition 5.1.2.11

and Theorem HTT.4.1.3.1 , we deduce that the inclusion X0 → X is right cofinal, and therefore a

weak homotopy equivalence. It will therefore suffice to show that X0 is weakly contractible. The

∞-category X0 can be identified with a homotopy fiber of the map Unv(Sing(T 2))→ S appearing

in Remark 5.1.3.7, and is therefore weakly contractible by Proposition 5.1.3.6.

We now turn to the proof of Proposition 5.1.3.6. We begin by defining a functor T̃ a : Wop
a → Top,

given on objects by the formula T̃ a(W,ρ) = T a(W )×(2k)a. Given a morphism α : (W,ρ)→ (W ′, ρ′)

in Wop
a , we let

T̃ a(α) : T a(W )× (2k)a → T a(W ′)× (2k)a

be given by

(f, {pi ∈ 2k}1≤i≤a) 7→ (T a(α)(f), {φi(pi) ∈ 2k}1≤i≤a),

where φi : 2k → 2k denotes the rectilinear embedding determined by restricting α to the cube

indexed by ρ(i). Define Ũa : Eopa → Top similarly, so that we have natural transformations of

functors

T̃ a → T a Ũa → U

which induce a commutative diagram

Unv Sing(T̃ a) //

��

Unv Sing(T a) //

��

Unv′′ Sing(T a0 )

��
Unv′ Sing(Ũa) // Unv′ Sing(Ua) // Unv′′ Sing(Ua0 ).
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Since (2k)a is contractible, the horizontal maps on the left of the diagram are categorical equiva-

lences (and therefore weak homotopy equivalences). Consequently, to prove Proposition 5.1.3.6, it

will suffice to show that the outer rectangle is a homotopy pullback square.

Let U ′a0 denote the open subset of Conf(〈a〉◦,2k)× Ua0 = Conf(〈a〉◦,2k)×Rect(〈a〉◦ ×2k,2k)

consisting of those pairs (p, f), where p : 〈a〉◦ → 2k is an injective map and f : 〈a〉◦×2k → 2k is a

rectilinear embedding satisfying p(i) ∈ f({i} ×2k) for 1 ≤ i ≤ a. Let T ′a0 denote the fiber product

T a0 ×Ua0 U
′a
0 . We regard Sing(T ′a0 ) and Sing(U ′a0 ) as simplicial functors ∗ → Set∆, so that we have

a commutative diagram

Unv Sing(T̃ a) //

��

Unv′′ Sing(T ′a0 )

��

// Unv′′ Sing(T a0 )

��
Unv′ Sing(Ũa) // Unv′′ Sing(U ′a0) // Unv′′ Sing(Ua0 ).

Here the left horizontal maps are trivial Kan fibrations. We are therefore reduced to showing that

the square on the right is a homotopy pullback.

Let U ′′a0 denote the configuration space Conf(〈a〉◦,2k) and let T ′′a0 denote the open subset of

U ′′a0 consisting of configurations such that the composite map 〈a〉◦ → 21 is injective. There are

canonical projection maps

U ′a0 → U ′
′a
0 T ′a0 → T ′

′a
0

and it follows easily from Lemma 5.1.1.3 that these maps are homotopy equivalences. We regard

Sing(T ′′a0 ) and Sing(U ′′a0 ) as simplicial functors ∗ → Set∆, so that we have a commutative diagram

Unv Sing(T̃ a) //

��

Unv′′ Sing(T ′a0 )

��

// Unv′′ Sing(T ′′a0 )

��
Unv′ Sing(Ũa) // Unv′′ Sing(U ′a0) // Unv′′ Sing(U ′′a0).

where the left horizontal maps are categorical equivalences. It will therefore suffice to show that

the outer rectangle is a homotopy pullback square.

Fix a point p ∈ T ′′a0 , which we identify with an injective map 〈a〉◦ → 2k. We will show that

the homotopy fiber of the map φ : Unv Sing(T̃ a) → Unv′′ Sing(T ′′a0 ) over the point p is weakly

homotopy equivalent to the homotopy fiber of the map φ′ : Unv′ Sing(Ũa) → Unv′′ Sing(U ′′a0 ) over

p. For every object (W,ρ) ∈ Wop
a , the map T̃ a(W,ρ) → T ′′a0 is a Serre fibration; let us denote its

fiber over p by T̂ (W,ρ). Similarly, for (E, ρ) ∈ Eopa , the map Ũa(E, ρ) → U ′′a0 is a Serre fibration,

and we will denote its fiber by Û(E, ρ). We regard T̂ as a topological functor Wop
a → Top and Û as

a topological functor Eopa → Top. Note that the homotopy fibers of φ and φ′ can be identified with

Unv Sing(T̂ ) and Unv′ Sing(Û), respectively. Consequently, we can reformulate Proposition 5.1.3.6

as follows:
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Proposition 5.1.3.9. For every a ≥ 0 and every point p ∈ Conf(〈a〉◦,21×2k−1) which determines

an injective map 〈a〉◦ → 21, the induced map Unv Sing(T̂ ) → Unv′ Sing(Û) is a weak homotopy

equivalence of simplicial sets.

Remark 5.1.3.10. In what follows, we let

T : Wop
0 → Top U : Eop → Top

be as in Notation 5.1.2.14 (where we take the parameter n appearing in Notation 5.1.2.14 to

be equal to 1). Unwinding the definitions, we see that for W = (〈m1〉, . . . , 〈mb〉) ∈ W and

(W,ρ) ∈Wa, we can identify T̂ (W,ρ) with the open subset of T (W ) consisting of those embeddings

f : 〈m1 + · · ·+mb〉◦×2k → 2k such that p(i) ∈ f({ρ(i)}×2k) for 1 ≤ i ≤ a. Similarly, if (〈m〉, ρ) ∈
Ea, then Û(〈m〉, ρ) can be identified with the open subset of U(〈m〉) = Rect(〈m〉◦ × 2k,2k) con-

sisting of those embeddings f : 〈m〉◦ ×2k → 2k such that p(i) ∈ f({ρ(i)} ×2k) for 1 ≤ i ≤ a.

We will prove Proposition 5.1.3.9 using the same strategy as our proof of Proposition 5.1.2.13:

namely, we will assemble T̂ and Û by forming homotopy colimits of simpler functors, for which the

desired conclusion is easier to verify.

Construction 5.1.3.11. Let P be the partially ordered set defined in Construction 5.1.2.15.

For each object (I,∼) ∈ P , we let TI,∼ : W
op
0 → Top and UI,∼ : Eop → Top be defined as in

Construction 5.1.2.15 (here we take the parameter n appearing in Construction 5.1.2.15 to be 1).

For every element (I,∼) ∈ P , we define subfunctors

T̂I,∼ ⊆ T̂ ÛI,∼ ⊆ Û

by the formulas

T̂I,∼(W,ρ) = T̂ (W,ρ)×T (W ) TI,∼(W ) ÛI,∼(E, ρ) = Û(E, ρ)×U(E) UI,∼(E).

As in the proof of Proposition 5.1.2.13, we are reduced to proving the following trio of assertions:

Proposition 5.1.3.12. The functor Sing(T̂ ) is a homotopy colimit of the diagram of functors

{Sing(T̂I,∼) : Sing(Wa)
op → Set∆}(I,∼)∈P .

Proposition 5.1.3.13. The functor Sing(Û) is a homotopy colimit of the diagram of functors

{Sing(ÛI,∼) : Sing(Ea)
op → Set∆}(I,∼)∈P .

Proposition 5.1.3.14. For every element (I,∼) ∈ P , the canonical map Unv T̂I,∼ → Unv′ ÛI,∼ is

a weak homotopy equivalence.

Proof of Proposition 5.1.3.12. Fix an object W = (〈m1〉, . . . , 〈mb〉) ∈ W0 and an object

(W,ρ) ∈ Wa; we wish to show that Sing T̂ (W,ρ) is a homotopy colimit of the diagram
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{Sing T̂I,∼(W,ρ)}(I,∼)∈P . For 1 ≤ i ≤ a, we let ρ−(i) denote the image of i in 〈b〉◦, and

ρ+(i) the corresponding element of 〈mρ−(i)〉◦.
Let X denote the subspace of

Conf(〈b〉◦, (−1, 1))×
∏

1≤a≤b
Conf(〈ma〉◦,2k)

consisting of tuples (f, g1, . . . , gb) such that, for 1 ≤ i ≤ a, we have p(i) = (f(ρ−(i)), gρ−(i)(ρ+(i))).

For each (I,∼) ∈ P , we let XI,∼ denote the open subset of X consisting of those tuples (f, g1, . . . , gb)

satisfying the following conditions:

• The image of the map f is contained in I ⊆ (−1, 1), so that f induces a map λ : 〈b〉◦ → π0I.

• If a, a′ ∈ 〈b〉◦ satisfy λ(a) ∼ λ(a′), then either a = a′ or the maps ga and ga′ have disjoint

images.

Lemma 5.1.1.3 determines a homotopy equivalence T̃ (W,ρ) → X which restricts to a homotopy

equivalence T̂I,∼(W,ρ) → XI,∼ for each (I,∼) ∈ P . It will therefore suffice to show that Sing(X)

is the homotopy colimit of the diagram of {SingXI,∼}(I,∼)∈P . According to Theorem A.3.1, it will

suffice to prove the following:

(∗) Let x = (f, g1, . . . , gb) be a point of X, and let Px = {(I,∼) ∈ P : x ∈ XI,∼}. Then the

simplicial set N(Px) is weakly contractible.

The proof now proceeds exactly as in the proof of Proposition 5.1.2.16. Let x be as in (∗), and

let P ′x denote the subset of Px consisting of those triples where f induces a surjection λ : 〈b〉◦ → π0I.

The inclusion N(P ′x) ↪→ N(Px) admits a right adjoint and is therefore a weak homotopy equivalence.

It will therefore suffice to show that N(P ′x) is weakly contractible.

Let Q be the collection of all equivalence relations ∼ on the set 〈b〉◦ which have the following

properties:

(i) If f(i) ≤ f(i′) ≤ f(i′′) and i ∼ i′′, then i ∼ i′ ∼ i′′.

(ii) If i ∼ i′ and the image of gi intersects the image of gi′ , then i = i′.

We regard Q as a partially ordered set with respect to refinement. Pullback of equivalence relations

along λ determines a forgetful functor µ : N(P ′x)→ N(Q)op. It is easy to see that µ is a Cartesian

fibration. The simplicial set N(Q) is weakly contractible, since Q has a smallest element (given by

the equivalence relation where i ∼ i′ if and only if i = i′). We will complete the proof of (∗) by

showing that the fibers of µ are weakly contractible, so that µ is left cofinal (Lemma HTT.4.1.3.2 )

and therefore a weak homotopy equivalence.

Fix an equivalence relation ∼∈ Q. Unwinding the definitions, we see that µ−1{∼} can be

identified with the nerve of the partially ordered set R consisting of those subsets I ⊆ (−1, 1)

satisfying the following conditions:
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(a) The set I is a finite union of open intervals.

(b) The set I contains the image of f .

(c) If f(a) and f(a′) belong to the same connected component of I, then a ∼ a′.

To see that N(R) is contractible, it suffices to observe that the partially ordered set Rop is filtered:

this follows from the fact that R is nonempty (it contains
⋃
a∈〈b〉◦(f(a)− ε, f(a) + ε) for sufficiently

small ε > 0) and is closed under pairwise intersections.

Proof of Proposition 5.1.3.13. The proof is essentially the same as that of Proposition 5.1.3.12, with

some minor modifications. Fix an object E = 〈m〉 ∈ E and an lifting (E, ρ) ∈ Ea; we wish to show

that Sing Û(W,ρ) is a homotopy colimit of the diagram {Sing ÛI,∼(E, ρ)}(I,∼)∈P . Let X denote the

subspace of Conf(〈m〉◦,2k) consisting of injective maps f : 〈m〉◦ → 2k satisfying f(ρ(i)) = p(i)

for 1 ≤ i ≤ a. We identify such a map f with a pair of maps (f0, f1), where f0 : 〈m〉◦ → 2k−1 and

f1 : 〈m〉◦ → 21. For each (I,∼) ∈ P , we let XI,∼ denote the open subset of X consisting of those

maps f = (f0, f1) satisfying the following condition:

• The image of the map f1 is contained in I, so that f1 induces a map λ : 〈m〉◦ → π0I.

• If i, j ∈ 〈m〉◦ satisfy λ(i) ∼ λ(j), then either i = j or f0(i) 6= f0(j).

Lemma 5.1.1.3 determines a homotopy equivalence Ũ(E, ρ) → X which restricts to a homotopy

equivalence T̂I,∼(W,ρ) → XI,∼ for each (I,∼) ∈ P . It will therefore suffice to show that Sing(X)

is the homotopy colimit of the diagram of {SingXI,∼}(I,∼)∈P . According to Theorem A.3.1, it will

suffice to prove the following:

(∗) Let f = (f0, f1) be a point of X, and let Px = {(I,∼) ∈ P : f ∈ XI,∼}. Then the simplicial

set N(Px) is weakly contractible.

Let f be as in (∗), and let P ′x denote the subset of Px consisting of those triples where f1 induces

a surjection λ : 〈m〉◦ → π0I. The inclusion N(P ′x) ↪→ N(Px) admits a right adjoint and is therefore

a weak homotopy equivalence. It will therefore suffice to show that N(P ′x) is weakly contractible.

Let Q be the collection of all equivalence relations ∼ on the set 〈m〉◦ which have the following

properties:

(i) If f1(i) ≤ f1(i′) ≤ f1(i′′) and i ∼ i′′, then i ∼ i′ ∼ i′′.

(ii) If i ∼ i′ and f0(i) = f0(i′), then i = i′.

We regard Q as a partially ordered set with respect to refinement. Pullback of equivalence relations

along λ determines a Cartesian fibration functor µ : N(P ′x) → N(Q)op. The simplicial set N(Q) is

weakly contractible, since Q has a smallest element (given by the equivalence relation where i ∼ j
if and only if f1(i) = f1(j)). We will complete the proof of (∗) by showing that the fibers of µ are
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weakly contractible, so that µ is left cofinal (Lemma HTT.4.1.3.2 ) and therefore a weak homotopy

equivalence.

Fix an equivalence relation ∼∈ Q. Unwinding the definitions, we see that µ−1{∼} can be

identified with the nerve of the partially ordered set R consisting of those subsets I ⊆ (−1, 1)

satisfying the following conditions:

(a) The set I is a finite union of open intervals.

(b) The set I contains the image of f1.

(c) If f0(i) and f1(j) belong to the same connected component of I, then i ∼ j.

To see that N(R) is contractible, it suffices to observe that the partially ordered set Rop is filtered:

this follows from the fact that R is nonempty (it contains
⋃
i∈〈n〉◦(f1(i)− ε, f1(i)+ ε) for sufficiently

small ε > 0) and closed under pairwise intersections.

Proof of Proposition 5.1.3.14. Identify 2k with the product 2k−1 ×21, and let

π0 : 2k → 2k−1 π1 : 2k → 21

be the projection maps. We define a functor T̂ 0
I,∼ : Wop

a → Top by the formula

T̂ 0
I,∼((〈m1〉, . . . , 〈mb〉), ρ) = {f ∈ Rect(〈b〉◦ ×21, I) : π1(p(i)) ∈ f({ρ−(i)} ×21)},

where ρ− : 〈a〉◦ → 〈b〉◦ is defined as in the proof of Proposition 5.1.3.12. There is an evident

natural transformation T̂I,∼ → T̂ 0
I,∼, which induces a (projective) fibration of simplicial functors

Sing(T̂I,∼) → Sing(T̂ 0
I,∼) and therefore a right fibration of simplicial sets χ : Unv Sing(T̂I,∼) →

Unv Sing(T̂ 0
I,∼). Unwinding the definitions, we can identify an object of Unv Sing(T̂ 0

I,∼) with an ob-

ject W = (〈m1〉, . . . , 〈mb〉) ∈W0, an injective map of pointed finite sets ρ : 〈a〉 → 〈m1 + · · ·+mb〉,
and a rectilinear embedding f : 〈b〉◦ × 21 → I. Let X ⊆ Unv Sing(T̂ 0

I,∼) be the full subcategory of

Unv Sing(T̂ 0
I,∼) spanned by those pairs (W,ρ, f) for which f induces a bijection 〈b〉◦ → π0I. It is

not difficult to see that the inclusion X ⊆ Unv Sing(T̂ 0
I,∼) admits a left adjoint and is therefore left

cofinal. Since χ is a right fibration, we deduce that the inclusion

X×
Unv Sing(T̂ 0

I,∼)
Unv Sing(T̂I,∼)→ Unv Sing(T̂I,∼)

is also left cofinal (Lemma HTT.4.1.3.2 ), and therefore a weak homotopy equivalence.

Define a functor Û0
I,∼ : Ea → Top by the formula

U0
I,∼(〈m〉, ρ) = {λ ∈ HomSet(〈m〉◦, π0I) : (∀i ∈ 〈a〉◦)π1(p(i)) ∈ λ(ρ(i))}.
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We have a commutative diagram

X×
Unv Sing(T̂ 0

I,∼)
(Unv Sing(T̂ 0

I,∼))
F //

��

Unv′ Sing(ÛI,∼)

��

X
F0 // Unv′ Sing(Û0

I,∼).

We will complete the proof by showing that the upper horizontal map is an equivalence of ∞-

categories. Unwinding the definitions, we deduce easily that F0 is a categorical equivalence. The

vertical maps are right fibrations; it will therefore suffice to show that F induces a homotopy

equivalence between the fibers of the vertical maps. This amounts to the following assertion:

(∗) For every object (W,ρ) = ((〈m1〉, . . . , 〈mb〉), ρ) ∈Wa having image (E, ρ) = (〈m1 + · · ·+mb〉, ρ) =

(〈m〉, ρ) in Ea, if η ∈ T̂ 0
I,∼(W,ρ) determines an isomorphism 〈b〉◦ ' π0I having image

η′ ∈ Û0
I,∼(E, ρ), then the induced map

γ : Sing(T̂I,∼(W )×
T̂ 0
I,∼(W )

{η})→ Sing(ÛI,∼(E)×
Û0
I,∼(E)

{η′})

is a homotopy equivalence.

Let X denote the product
∏

1≤i≤m Rect(21, Ii), where Ii denotes the connected component of

I which is the image of i ∈ 〈m〉◦ under the map η′ : 〈m〉◦ → π0I. Let U denote the open subset of

X consisting of those sequences of embeddings (fi)1≤i≤m having the property that π1(p(j)) ∈ fρ(j)

for 1 ≤ j ≤ a. We note that γ is the product of an identity map with the inclusion of a point into

Sing(U). We complete the proof by observing that U is contractible (Lemma 5.1.1.3).

5.1.4 Comparison of Tensor Products

Let R be a commutative ring, and let C denote the category of R-modules. Then C inherits a

symmetric monoidal structure, which can be described in (at least) two different ways:

(a) Let M and N be R-modules. Then we can regard M as a right R-module and N as a left

R-module, and consider the relative tensor product M ⊗R N .

(b) The absolute tensor product M⊗N can be viewed as a module over the tensor product R⊗R.

The relative tensor product M ⊗R N is the R-module determined by base change of M ⊗N
along the ring homomorphism m : R⊗R→ R encoding the multiplication on R.

These two constructions agree: that is, there is a canonical isomorphism

M ⊗R N ' (M ⊗N)⊗R⊗R R.
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Our goal in this section is to prove a generalization of this assertion, where the ordinary category

of abelian groups is replaced by a symmetric monoidal ∞-category C.

We begin by formulating a somewhat more general problem. Let k ≥ 1 be an integer, and

let A be an Ek-algebra object of a symmetric monoidal ∞-category C. We can then consider the

∞-category ModEkA (C) of Ek-modules over A (see §3.3.3). In good cases, ModEkA (C) inherits the

structure of an Ek-monoidal ∞-category (Theorem 3.4.4.2). On the other hand, we can regard A

as an associative algebra object of C using the forgetful functor

AlgEk(C)→ AlgE1
(C) ' Alg(C),

so that we can consider the ∞-category RModA(C) of right A-module objects of C. It follows from

Corollary 4.8.5.20 that (under mild hypotheses) we can regard RModA(C) as an Ek−1-monoidal

∞-category. Our main goal in this section is to show that (under the same hypotheses) there is an

Ek−1-monoidal forgetful functor ModEkA (C)→ RModA(C) (Theorem 5.1.4.10). We begin by setting

up a bit of notation.

Notation 5.1.4.1. Let Cut : N(∆)op → Assoc⊗ be as in Construction 4.1.2.9 and let E⊗1 → Assoc⊗

be the equivalence of Example 5.1.0.7. We let Assoc2 denote the fiber product N(∆)op×Assoc⊗ E⊗1 ,

so that the projection map Assoc2 → N(∆)op is a trivial Kan fibration.

Let N(∆)op ×∆1 → RM⊗ be defined as in Remark 4.2.2.8 and set

X = (N(∆)op ×∆1)×RM⊗ (RM⊗×Assoc⊗E⊗1 ).

There is a unique vertex x ∈ X lying over the initial object ([0], 0) ∈ N(∆)op ×∆1. We let LM2

denote the ∞-category Xx/. Example 5.1.0.7 implies that the map X → N(∆)op ×∆1 is a trivial

Kan fibration, so that x ∈ X is an initial object and therefore the map LM2 → N(∆)op × ∆1 is

also a trivial Kan fibration. Moreover, the fiber product LM2×∆1{1} is isomorphic to Assoc2.

We will say that a morphism f in Assoc2 or LM2 is inert if its image in LM⊗ is inert.

Construction 5.1.4.2. Let S be a simplicial set, and let C⊗ → E⊗1 ×S be an coCartesian S-family

of E1-monoidal ∞-categories. We let Alg2(C) denote the full subcategory of

FunE⊗1
(Assoc2,C⊗)×Fun(Assoc2,S) S

spanned by those vertices which correspond to a vertex s ∈ S and a map Assoc2 → C⊗s which

carries every inert morphism in Assoc2 to an inert morphism in C⊗s . We let RMod2(C) denote the

full subcategory of

FunE⊗1
(LM2,C⊗)×Fun(LM2,S) S

spanned by those vertices which correspond to a vertex s ∈ S and a map LM2 → C⊗s which carries

inert morphisms in LM2 to inert morphisms in C⊗s .
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Remark 5.1.4.3. Let C⊗ → E⊗1 ×S be a coCartesian S-family of E1-monoidal∞-categories. It fol-

lows from Proposition HTT.3.1.2.1 that the projection maps p : Alg2(C)→ S q : RMod2(C)→
S are coCartesian fibrations. Moreover, the restriction map RMod2(C) → Alg2(C) carries q-

coCartesian morphisms to p-coCartesian morphisms.

Example 5.1.4.4. Let C⊗0 → Assoc⊗×S be a coCartesian S-family of monoidal ∞-categories, let

C⊗ = C⊗0 ×Assoc⊗E⊗1 , and let M⊗ = C⊗0 ×Assoc⊗ RM
⊗. Let Alg(C0) and RMod(M) be defined as in

Notation 4.8.3.11. Composition with the forgetful functors Assoc2 → Assoc⊗ and LM2 → LM⊗

determines restriction maps that fit into a commutative diagram

RMod(M) //

��

RMod2(C)

��
Alg(C0) // Alg2(C).

Using Propositions 4.1.3.19, 4.2.2.12, and HTT.3.3.1.5 , we deduce that the horizontal maps are

categorical equivalences.

Remark 5.1.4.5. Let q : C⊗ → E⊗1 × S be a coCartesian S-family of E1-monoidal ∞-categories.

Using Example 5.1.0.7, we deduce that q is equivalent to C⊗0 ×Assoc⊗E⊗1 , for some coCartesian

S-family of monoidal ∞-categories C⊗0 → E⊗1 × S. It follows that the ∞-categories RMod2(C)

and Alg2(C) can be understood in terms of the constructions described in §4.8.3, as explained in

Example 5.1.4.4.

Construction 5.1.4.6. Let k ≥ 1, let C⊗ → E⊗k be a coCartesian fibration of ∞-operads and let

D⊗ = C⊗×E⊗k (E⊗1 ×E
⊗
k−1), so that D⊗ → E⊗1 ×E

⊗
k−1 is a E⊗k−1-family of E1-monoidal∞-categories.

Let A ∈ Alg/Ek(C), so that composition with A determines a section s of the coCartesian fibration

Alg2(D)→ E⊗k−1. We let RMod2
A(C)⊗ denote the fiber product E⊗k−1 ×Alg2(D) RMod2(D).

Combining Remark 5.1.4.5, Example 5.1.4.4, and Lemma 4.8.3.15, we obtain the following:

Proposition 5.1.4.7. Let k ≥ 1 and let C⊗ → E⊗k be a coCartesian fibration of∞-operads. Assume

that C admits geometric realizations of simplicial objects and that the tensor product C×C → C

preserves geometric realizations of simplicial objects. Then the projection map RMod2
A(C)⊗ → E⊗k−1

is a coCartesian fibration of ∞-operads.

Remark 5.1.4.8. In the situation of Construction 5.1.4.6, the ∞-category C admits a monoidal

structure and A determines an algebra object A′ ∈ Alg(C). We have a canonical equivalence of

∞-categories RMod2
A(C) ' RModA′(C).

Construction 5.1.4.9. By construction, there is a canonical map LM2×∆1 → E⊗1 , which

determines a functor LM2 → Fun(∆1,E⊗1 ). Combining this with the bifunctor of ∞-operads

E⊗1 × E
⊗
k−1 → E⊗k of Construction 5.1.2.1, we obtain a functor

γ : LM2×E⊗k−1 → KEk ⊆ Fun(∆1,E⊗k ),
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where KEk denotes the full subcategory of Fun(∆1,E⊗k ) spanned by the semi-inert morphisms (see

Notation 3.3.2.1).

Suppose that C⊗ → E⊗k is a coCartesian fibration of ∞-operads and let A ∈ Alg/Ek(C). Then

composition with γ determines a functor

ModEkA (C)⊗ ×E⊗k E
⊗
k−1 → RMod2

A(C)⊗.

We can now state our main result as follows:

Theorem 5.1.4.10. Let k ≥ 1, and let q : C⊗ → E⊗k be a coCartesian fibration of ∞-operads.

Assume that the ∞-category C admits geometric realizations of simplicial objects, and that the

tensor product on C preserves geometric realizations separately in each variable. Then for each

A ∈ Alg/Ek(C), the functor

ModEkA (C)⊗ ×E⊗k E
⊗
k−1 → RMod2

A(C)⊗

is an Ek−1-monoidal functor.

Corollary 5.1.4.11. Let C⊗ → N(Fin∗) be a symmetric monoidal ∞-category. Assume that C ad-

mits geometric realizations of simplicial objects and that the tensor product on C preserves geometric

realizations of simplicial objects. Let A ∈ CAlg(C) and let A′ be the image of A in CAlg(Alg(C)).

Then there is a canonical equivalence of symmetric monoidal ∞-categories

ModA(C)⊗ ' RModA′(C)⊗,

where ModA(C)⊗ is the symmetric monoidal ∞-category of Theorem 4.5.2.1.

Proof. Let D⊗ = C⊗×N(Fin∗)(E
⊗
1 × N(Fin∗)), and regard D⊗ as a coCartesian N(Fin∗)-family of

E1-monoidal ∞-categories. The commutative algebra A determines a section of the coCartesian

fibration Alg2(D)→ N(Fin∗), and set E⊗ = RMod2(D)×Alg2(D) N(Fin∗). Arguing as in Example

5.1.4.4, we see that the forgetful functor LM2 → RM⊗ induces an equivalence RModA′(C)⊗ → E⊗

of symmetric monoidal ∞-categories. Combining the bifunctor of ∞-operads E⊗1 × N(Fin∗) →
N(Fin∗) with the map map LM2 → Fun(∆1,E⊗1 ) of Construction 5.1.4.9, we obtain a map γ :

LM2×N(Fin∗) → KComm ⊆ Fun(∆1,N(Fin∗). Composition with γ determines a functor θ :

ModA(C)⊗ → E⊗. We will complete the proof by showing that θ is an equivalence of symmetric

monoidal∞-categories. Using Proposition 4.5.1.4, we deduce that the underlying map ModA(C)→
E is an equivalence of∞-categories. It will therefore suffice to show that the functor θ is symmetric

monoidal. Since every morphism in N(Fin∗) can be lifted to a morphism in E⊗1 , it suffices to show

that the induced map

φ : ModA(C)⊗ ×N(Fin∗) E
⊗
1 → E⊗×N(Fin∗)E

⊗
1

is symmetric monoidal. Let B be the image of A in AlgE2
(C). Then φ factors as a composition

ModA(C)⊗ ×N(Fin∗) E
⊗
1

φ′→ ModE2
B (C)×E⊗2 E

⊗
1
φ′′→ RMod2

B(C)⊗,
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where Theorem 5.1.4.10 implies that φ′′ is an E1-monoidal functor. The forgetful functor

ModE2
B (C) → ModE1

B (C) is conservative (Corollary 3.4.3.4) and E1-monoidal (Theorem 5.1.3.2). It

will therefore suffice to show that the composite functor ModA(C)⊗ ×N(Fin∗) E
⊗
1 → ModE1

B (C)⊗ is

E1-monoidal; this follows from Theorem 4.5.2.1 and Example 5.1.0.7.

The proof of Theorem 5.1.4.10 will require a simple combinatorial lemma.

Lemma 5.1.4.12. Let ? : ∆×∆ → ∆ be the join functor, given by ([m], [n]) 7→ [m] ? [n] '
[m+ n+ 1]. Then the induced map

N(∆)×N(∆)→ N(∆)

is right cofinal.

Proof. Using Theorem HTT.4.1.3.1 , we are reduced to proving the following: let [n] ∈ ∆, and

let C = (∆×∆) ×∆ (∆[n]) be the category of triples ([m], [m′], α : [m] ? [m′] → [n]). Then the

simplicial set N(C) is weakly contractible. Let C0 be the full subcategory of C spanned by those

triples ([m], [m′], α) for which α induces a bijection from [m] to {0, 1, . . . , i} and a bijection from

[m′] to {j, . . . , n} for some 0 ≤ i ≤ j ≤ n. The inclusion C0 ↪→ C admits a left adjoint, so that

the map N(C0)→ N(C) is a weak homotopy equivalence. We conclude by observing that C0 has an

initial object, given by the triple ([0], [0], α : [1]→ [n]) with α(0) = 0, α(1) = n.

Proof of Theorem 5.1.4.10. It is easy to see that the functor

ModEkA (C)⊗ ×E⊗k E
⊗
k−1 → RMod2

A(C)⊗

is a map of ∞-operads which preserves unit objects. If k = 1, this completes the proof. For k ≥ 2,

we note that every morphism in E⊗k−1 is equivalent to the image of a morphism in E⊗1 . It therefore

suffices to show that the induced functor θ : ModEkA (C)⊗ ×E⊗k E
⊗
1 → RMod2

A(C)⊗ ×E⊗k−1
E⊗1 is

E1-monoidal. Let A′ denote the image of A in AlgE2/Ek(C). The functor θ factors as a composition

ModEkA (C)⊗ ×E⊗k E
⊗
1

θ′→ ModE2
A′ (C)⊗ ×E⊗2 E

⊗
1
θ′′→ RMod2

A′(C)⊗ ' RMod2
A(C)⊗ ×E⊗k−1

E⊗1 ,

where θ′ is an E1-monoidal functor by Theorem 5.1.3.2. It will therefore suffice to show that θ′′ is

E1-monoidal. We may therefore replace A by A′ and thereby reduce to the case k = 2.

Let p : ModE2
A (C)⊗ → E⊗2 and p′ : RMod2

A(C)⊗ → E⊗1 be the projection maps. We wish to

show that if α is a p-coCartesian morphism in ModE2
A (C)⊗ whose image in E⊗2 is contained in E⊗1 ,

then θ(α) is a p′-coCartesian morphism in RMod2
A(C)⊗. Since it suffices to show that θ preserves

tensor products of pairs of object, we may assume without loss of generality that α covers the map

α0 : 〈2〉 → 〈1〉 in E⊗2 corresponding to the rectilinear embedding

22 × 〈2〉◦ ' ((−1, 0)× (−1, 1))
∐

((0, 1)× (−1, 1)) ↪→ 22.
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Then α0 determines a map ∆1 → E⊗2 . We let K denote the fiber product ∆1 ×E⊗2 KE2 , so that α

determines a functor F : K→ C⊗.

We now introduce an auxiliary construction. We define a topological category E as follows:

(a) The set of objects of E is given by {X,Z} ∪ {Yn}n≥0.

(b) Morphism spaces in E are given by

MapE(X,X) = MapE(Z,Z) = ∗ MapE(Z, Yn) ' MapE(Z,X) ' MapE(Yn, X) = ∅

MapE(X,Yn) = Rect(22 × {−∞},22 × {−∞})× Rect(22 × {∞},22 × {∞})

MapE(X,Z) = Rect(22 × {−∞,∞},22)

MapE(Yn, Z) = Rect(22 × {−∞,−n,−n+ 1, . . . , n,∞},22).

If m,n ≥ 0, then MapE(Ym, Yn) is the disjoint union, over all nondecreasing maps β : [n] →
[m], of the product of the spaces

Rect(22 × {−∞,−m, . . . ,−β(n) + 1},22 × {−∞})∏
1≤i≤n

Rect(22 × {−β(i), . . . ,−β(i− 1) + 1},22 × {−i})

Rect(22 × {−β(0),−β(0) + 1, . . . , β(0)},22 × {0})∏
1≤i≤n

Rect(22 × {β(i− 1) + 1, . . . , β(i)},22 × {i})

Rect(22 × {β(n) + 1, . . . ,m,∞},22 × {∞}),

(which we can regard as a subspace of the collection of all maps from 22×{−∞,−m, . . . ,m,∞}
to 22 × {−∞,−n, . . . , n,∞}).

(c) Composition of morphisms is given by composition of rectilinear embeddings.

There is an evident forgetful functor ψ : E →t E⊗2 , and α0 lifts uniquely to a morphism α0 :

X → Z in E. We define a topological subcategory E0 ⊆ E, having the same objects as E, as follows:

• A rectilinear embedding f : 22×{−∞,∞} → 2k belongs to MapE0(X,Z) if and only if there

is a rectilinear embedding f0 : (−1, 1)→ (−1, 1) such that

f(s, t,−∞) = (
s− 1

2
, f0(t)) f(s, t,∞) = (

s+ 1

2
, f0(t)).

• A pair of rectilinear embeddings f− : 22×{−∞} → 22×{−∞}, f+ : 22×{∞} → 22×{∞}
belongs to MapE0(X,Yn) if and only if there is a rectilinear embedding f0 : (−1, 1)→ (−1, 1)

such that f+(s, t) = (s, f0(t)) = f−(s, t).
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• A rectilinear embedding f : 22 × {−∞,−n, . . . , n,∞} → 22 belongs to MapE0(Yn, Z) if

and only if there exists a rectilinear embedding f0 : 21 × {−∞,−n, . . . , 0} → 21 such that

f0(t, i) < f0(t, j) for i < j, and

f(s, t, i) =


( s−1

2 , f0(t, i)) if i < 0

(s, f0(t, i)) if i = 0

( s+1
2 , f0(t,−i) if i > 0.

• If f : 22×{−∞,−m, . . . ,m,∞)→ 22×{−∞,−n, . . . , n,∞} is a morphism from Ym to Yn in

E covering a map of linearly ordered sets β : [n]→ [m], then then f belongs to E0 if and only

if there exists a rectilinear embedding f0 : 21 × {−∞,−m, . . . , 0) → 21 × {−∞,−n, . . . , 0}
such that f0(t, i) < f0(t, j) for i < j and

f(s, t, i) =



(s, f0(t, i)) if i < −β(0)

( s−1
2 , f0(t, i)) if − β(0) ≤ i < 0

(s, f0(t, i)) if i = 0

( s+1
2 , f0(t,−i) if 0 < i ≤ β(0)

(s, f0(t,−i)) if β(0) < i.

Note that α0 is a morphism from X to Z in E0. Let X0 be the full subcategory of (N(E0)/Z)X/

spanned by those diagrams of the form

Yn

  
X

>>

α0 // Z.

There is an evident forgetful functor X0 → N(∆)op which is an equivalence of ∞-categories. The

functor F : K→ C⊗ induces a functor δ0 : (X0). → C⊗. Using Lemma 4.8.3.15, we see that θ(α) is

q-coCartesian if and only if δ0 is an operadic q-colimit diagram.

We now define another topological subcategory Ev ⊆ E. Let σ : 22 → 22 be the reflection given

by σ(s, t) = (−s, t).

• A rectilinear embedding f : 22×{−∞,∞} → 2k belongs to MapEv(X,Z) if and only if there

exist rectilinear embeddings f0, f1 : 21 → 21

f(s, t,−∞) = (
−f0(−s)− 1

2
, f1(t)) f(s, t,∞) = (

f0(s) + 1

2
, f1(t)).

• A pair of rectilinear embeddings f− : 22×{−∞} → 22×{−∞}, f+ : 22×{∞} → 22×{∞}
belongs to MapEv(X,Yn) if and only if f+ ◦ σ = σ ◦ f−.
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• Let π0, π1 : 22 → 21 be the projection onto the first and second factors, respectively. A

rectilinear embedding f : 22 × {−∞,−n, . . . , n,∞} → 22 belongs to MapEv(Yn, Z) if and

only if σf(s, t, i) = f(−s, t,−i), π1f(s, t, i) < π1f(s′, t′, i′) when i < i′ ≤ 0, and π0f(s, t, i) < 0

for i < 0 (so that π0f(s, t, i) > 0 for i > 0).

• If f : 22 × {−∞,−m, . . . ,m,∞) → 22 × {−∞,−n, . . . , n,∞} is a morphism from Ym to

Yn in E covering a map of linearly ordered sets β : [n] → [m] given by a collection of maps

{fi : 22 → 22}i∈{−∞,−m,...,m,∞}, then f belongs to Ev if and only if σ ◦ fi = f−i ◦ σ and

π1fi(s, t) < π1fi′(s
′, t′) whenever i < i′ ≤ 0 and f carries 22 × {i} and 22 × {i′} to the same

connected component of 22 × {−∞,−n, . . . , n,∞}.

Note that Ev contains E0, and that the inclusion E0 ↪→ Ev is a weak equivalence of topological

categories. Let Xv be the full subcategory of (N(Ev)/Z)X/ spanned by those diagrams of the form

Yn

  
X

>>

α0 // Z.

Then F determines a functor δv : (Xv). → C⊗. Since the inclusion X0 ↪→ Xv is a categorical

equivalence, we are reduced to proving that δv is an operadic q-colimit diagram.

We define another subcategory Eh ⊆ E as follows:

• A rectilinear embedding f : 22 × {−∞,∞} → 2k belongs to MapEh(X,Z) if and only if it

belongs to Ev.

• A pair of rectilinear embeddings f− : 22×{−∞} → 22×{−∞}, f+ : 22×{∞} → 22×{∞}
belongs to MapEh(X,Yn) if and only if f+ ◦ σ = σ ◦ f−.

• A rectilinear embedding f : 22 × {−∞,−n, . . . , n,∞} → 22 belongs to MapEh(Yn, Z) if and

only if σf(s, t, i) = f(−s, t,−i) and π0f(s, t, i) < π0f(s′, t′, i′) when i < i′.

• If f : 22 × {−∞,−m, . . . ,m,∞) → 22 × {−∞,−n, . . . , n,∞} is a morphism from Ym to

Yn in E covering a map of linearly ordered sets β : [n] → [m] given by a collection of maps

{fi : 22 → 22}i∈{−∞,−m,...,m,∞}, then f belongs to Ev if and only if σ ◦ fi = f−i ◦ σ and

π0fi(s, t) < π0fi′(s
′, t′) whenever i < i′ and f carries 22 × {i} and 22 × {i′} to the same

component of 22 × {−∞,−n, . . . , n,∞}.

Let Eh,v = Eh ∩Ev. We observe that the inclusions

Ev ←↩ Eh,v ↪→ Ev
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are weak equivalences of topological categories. Let Xh be the full subcategory of (N(Eh)/Z)X/

spanned by those diagrams of the form

Yn

  
X

>>

α0 // Z,

and let Xh,v be defined similarly. Then F determines a functor δh : (Xh). → C⊗. Since δh|(Xh,v). =

δv|(Xh,v). and the inclusions Xh ←↩ Xh,v ↪→ Xv are categorical equivalences, we conclude that δv is

an operadic q-colimit diagram if and only if δh is an operadic q-colimit diagram.

Let E1 be the topological subcategory of Eh whose morphisms are given by rectilinear embed-

dings which commute with projection onto the second coordinate. The inclusion E1 ↪→ Eh is a

weak equivalence of topological categories. Let X1 be the full subcategory of (N(E1)/Z)X/ spanned

by those diagrams of the form

Yn

  
X

>>

α0 // Z,

so that the inclusion X1 → Xh is a categorical equivalence. We are therefore reduced to proving

that δ1 = δh|(X1). is an operadic q-colimit diagram.

Let Y denote the full subcategory of ((E1)〈1〉)
〈2〉/ spanned by those diagrams

〈n〉
γ′

  
〈2〉 α0 //

γ
>>

〈1〉

such that γ is semi-inert, γ′ is active, and image of γ contains the smallest and largest elements of

〈n〉◦ (with respect to the ordering induced by γ′). The map δ1 factors as a composition

(X1). → Y.
δ′→ C⊗ .

Since α is p-coCartesian, the proof of Theorem 5.1.3.2 shows that δ′ is an operadic q-colimit diagram.

It will therefore suffice to show that the map X1 → Y is left cofinal. We have a commutative diagram

of ∞-categories

X1 //

��

Y

��
N(∆)op

u // N(∆)op
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where the vertical maps are categorical equivalences and u is the functor given by [n] 7→ [n]? [n]op '
[2n+ 1]. The functor u factors as a composition

N(∆)op
u′→ N(∆)op ×N(∆)op

u′′→ N(∆)op ×N(∆)op
u′′′→ N(∆)op.

The map u′ is left cofinal by Lemma HTT.5.5.8.4 , the map u′′ is an isomorphism (given by order-

reversal on the second coordinate), and the map u′′′ is induced by the join operation which is a left

cofinal functor (Lemma 5.1.4.12). It follows that u is left cofinal so that X1 → Y is also left cofinal,

as desired.

5.2 Bar Constructions and Koszul Duality

Let X be a topological space equipped with a base point x ∈ X, let k be a positive integer, and let

ΩkX = {f : ([0, 1]k, ∂[0, 1]k)→ (X,x)} be the k-fold loop space of X. Then ΩkX can be equipped

with action of the topological operad tEk. If X is k-connective, then it is possible to reconstruct X

(up to weak homotopy equivalence) from ΩkX together with its tEk-algebra structure (see Theorem

5.2.6.15). More precisely, one can recover X by applying an iterated bar construction to the space

ΩkX. Our goal in this section is to study the iterated bar construction and the closely related

theory of Koszul duality for Ek-algebras.

Let us begin by considering the case k = 1. For any pointed topological space X, the loop space

G = ΩX can be regarded as a group object in the ∞-category of spaces. If X is connected, then

it can be recovered as the classifying space of G: that is, the geometric realization of the simplicial

space

· · ·
//////// G×G

////// G
//// ∗

which encodes the multiplication on G. If we regard the ∞-category S as endowed with the

symmetric monoidal structure given by the Cartesian product, then this classifying space can be

described as the relative tensor product ∗⊗G ∗, where we regard G as an associative algebra object

of S and the one-point space ∗ as a left and right module over G.

The above construction makes sense in much greater generality. Let C be a monoidal ∞-

category with unit object 1 and let A be an algebra object of C. Suppose that A is equipped with

an augmentation: that is, a morphism ε : A → 1 in Alg(C). Let us assume further that the C

admits geometric realizations of simplicial objects and that the tensor product

⊗ : C×C→ C

preserves geometric realizations of simplicial objects, so that the relative tensor product 1⊗A 1 is

well-defined. We will denote this tensor product by Bar(A) and refer to it as the bar construction

on the augmented algebra A.
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Our goal in §5.2.2 is to study the bar construction A 7→ Bar(A) and establish some of its

basic properties. The most important of these properties is that (under mild hypotheses) it carries

augmented algebra objects of C to augmented coalgebra objects of C: that is, augmented algebra

objects of the opposite ∞-category Cop. To study this phenomenon, we will need to understand

the relationship between the monoidal structure on C and the induced monoidal structure on Cop.

To this end, in §5.2.1 we will introduce another ∞-category TwArr(C) called the twisted arrow

∞-category of C. By definition, the objects of TwArr(C) are morphisms f : C → D in C, with a

morphism from (f : C → D) to (f ′ : C ′ → D′) given by a commutative diagram

C

��

f // D

C ′
f ′ // D′.

OO

Any monoidal structure on C determines a monoidal structure on TwArr(C) (Example 5.2.2.23),

and the construction

(f : C → D) 7→ (C,D)

determines a monoidal functor from TwArr(C) to C×Cop. We will see that the construction

(C,D) 7→ Alg(TwArr(C))×Alg(C)×Alg(Cop) {(C,D)}

determines a functor χ : Alg(C)op×Alg(Cop)op → S. Our main result asserts that if the unit object

1 ∈ C is final, then for each A ∈ Alg(C) the functor B 7→ χ(A,B) is representable by an object

B0 ∈ Alg(Cop), and that the image of B0 in Cop can be identified with the bar construction Bar(A)

(Theorem 5.2.2.17). The hypothesis that the unit object 1 be final is mainly for convenience, since

it allows us to ignore the distinction between algebra objects of C and augmented algebra objects

of C; we will discuss the general case (where we do not assume that 1 is final) in §5.2.4.

Suppose now that the symmetric monoidal structure on C is symmetric. Then the bar construc-

tion A 7→ Bar(A) = 1⊗A 1 is a symmetric monoidal functor. In particular, if A is an (augmented)

Ek-algebra object of C for k > 0, then we can regard A as an (augmented) Ek−1-algebra object of

Alg(C) so that Bar(A) inherits the structure of an (augmented) Ek−1-algebra object of C. Using

this observation, we can define an iterated bar construction Bar(k) for (augmented) Ek-algebras

using the formula

Bar(k)(A) = Bar(k−1)(Bar(A)).

In §5.2.3, we will show that the iterated bar construction A 7→ Bar(k)(A) carries augmented Ek-
algebra objects of C to Ek-coalgebra objects of C. Moreover, we will see that the Ek-coalgebra

Bar(k)(A) is universal among those objects B ∈ Cop for which the pair (A,B) can be lifted to an

Ek-algebra object of TwArr(C): this gives a direct (non-recursive) definition of the iterated bar

construction Bar(k) (and one which makes sense in slightly greater generality).
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If the monoidal structure on C is symmetric, then the ∞-category AlgEk(C) of augmented Ek-
algebra objects of C inherits a monoidal structure. Given a pair of augmented Ek-algebras

εA : A→ 1 εB : B → 1,

we define a pairing of A with B to be an augmentation on the tensor product A ⊗ B which is

compatible with the given augmentations εA and εB. In §5.2.5, we will show (under mild hypotheses)

that for every augmented Ek-algebra A there exists a pairing A⊗B → 1 which is universal in the

sense that any other pairing of A with another augmented Ek-algebra B′ admits an essentially

unique factorization

A⊗B′ id⊗f→ A⊗B → 1

(see Proposition 5.2.5.1 for a precise statement). Moreover, we will see that B can be realized as the

dual of the iterated bar construction Bar(k)(A): in other words, as an object of C, it is characterized

by the universal mapping property

MapC(C,B) ' MapC(C ⊗ Bar(k)(A),1).

We will refer to B as the Koszul dual of A. The passage from A to its Koszul dual can be regarded

as a special case of the formation of centralizers, which we will study in §5.3 (see Example 5.3.1.5).

In §5.2.6, we will specialize to the case where C is the ∞-category of spaces (endowed with

the symmetric monoidal structure given by the Cartesian product). In this case, we show that the

iterated bar construction Bar(k) induces an equivalence from the∞-category of grouplike Ek-algebra

objects of C to the ∞-category of k-connective pointed spaces (Theorem 5.2.6.15), and that this

equivalence is homotopy inverse to the construction X 7→ ΩkX described above (Theorem 5.2.6.10).

5.2.1 Twisted Arrow ∞-Categories

Let C be an ∞-category. Recall that a functor F : Cop → S is representable if there exists an

object C ∈ C and a point η ∈ F (C) such that evaluation on η induces a homotopy equivalence

MapC(C ′, C) → F (C ′) for each C ′ ∈ C′. The ∞-categorical version of Yoneda’s lemma asserts

that there is a fully faithful embedding j : C → Fun(Cop, S) (Proposition HTT.5.1.3.1 ), whose

essential image is the full subcategory of Fun(Cop, S) spanned by the representable functors. The

functor j classifies a map µ : Cop×C→ S, given at the level of homotopy categories by the formula

(C,D) 7→ MapC(C,D). In [98], we gave an explicit construction of µ by choosing an equivalence of

C with the nerve of a fibrant simplicial category (see §HTT.5.1.3 ).

Our goal in this section is to give another construction of µ, which does not rely on the theory of

simplicial categories. To any ∞-category C, we will associate a new ∞-category TwArr(C), called

the twisted arrow ∞-category of C. Roughly speaking, the objects of TwArr(C) are morphisms
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f : C → D in C, and morphisms in TwArr(C) are given by commutative diagrams

C
f //

��

D

C ′
f ′ // D.

OO

We will give a precise definition of TwArr(C) below (Construction 5.2.1.1) and prove that the con-

struction (f : C → D) 7→ (C,D) determines a right fibration λ : TwArr(C)→ C×Cop (Proposition

5.2.1.3). The right fibration λ is classified by a functor µ : Cop×C → S, which we can view in

turn as a functor C → Fun(Cop, S). We will show that this functor is equivalent to the Yoneda

embedding (Proposition 5.2.1.11); in particular, it is fully faithful and its essential image is the

collection of representable functors F : Cop → S.

The twisted arrow ∞-category TwArr(C) will play an important role when we discuss the

bar construction in §5.2.2. For our applications, it is important to know that the construction

C 7→ TwArr(C) is functorial and commutes with small limits. To prove this, it will be convenient

to describe TwArr(C) by means of a universal property. We will provide two such descriptions at

the end of this section (see Corollary 5.2.1.19).

Construction 5.2.1.1. If I is a linearly ordered set, we let Iop denote the same set with the

opposite ordering. If I and J are linearly ordered sets, we let I ? J denote the coproduct I
∐
J ,

equipped with the unique linear ordering which restricts to the given linear orderings of I and J ,

and satisfies i ≤ j for i ∈ I and j ∈ J . Let ∆ denote the category of combinatorial simplices: that

is, the category whose objects sets of the form [n] = {0, 1, . . . , n} for n ≥ 0, and whose morphisms

are nondecreasing maps between such sets. Then ∆ is equivalent to the larger category consisting

of all nonempty finite linearly ordered sets. The construction I 7→ I ? Iop determines a functor Q

from the category ∆ to itself, given on objects by [n] 7→ [2n+ 1]. If C is a simplicial set (regarded

as a functor ∆op → S), we let TwArr(C) denote the simplicial set given by

[n] 7→ C(Q[n]) = C([2n+ 1]).

Let C be an ∞-category. By construction, the vertices of TwArr(C) are edges f : C → D in C.

More generally, the n-simplices of TwArr(C) are given by (2n+ 1)-simplices of C, which it may be

helpful to depict as diagrams

C0
//

��

C1
//

��

· · · // Cn

��
D0 D1
oo · · ·oo Dn.oo

Example 5.2.1.2. Let C be an ordinary category. Then the simplicial set TwArr(N(C)) is isomor-

phic to the nerve of an ordinary category, which we will will denote by TwArr(C) (so that we have

TwArr(N(C)) ' N(TwArr(C))). Concretely, this category can be described as follows:
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• The objects of TwArr(C) are morphisms f : C → D in C.

• A morphism from (f : C → D) to (f ′ : C ′ → D′) in TwArr(C) consists of a pair of morphisms

g : C → C ′ and h : D′ → D in C satisfying f = h ◦ f ′ ◦ g.

The construction (f : C → D) 7→ (C,D) determines a forgetful functor from λ : TwArr(C) →
C×Cop. This functor exhibits TwArr(C) as fibered in sets over C×Cop, where the fiber over an

object (C,D) ∈ C×Cop is given by the set of morphisms HomC(C,D). Consequently, TwArr(C)

can be identified with category given by applying the Grothendieck construction to the functor

Cop×C→ Set

(C,D) 7→ HomC(C,D).

Let C be an arbitrary simplicial set. For any linearly ordered set I, we have canonical inclusions

I ↪→ I ? Iop ←↩ Iop.

Composition with these inclusions determines maps of simplicial sets

C← TwArr(C)→ Cop .

Proposition 5.2.1.3. Let C be an ∞-category. Then the canonical map λ : TwArr(C) → C×Cop

is a right fibration of simplicial sets. In particular, TwArr(C) is also an ∞-category.

Proof. We must show that the map λ has the right lifting property with respect to the inclusion of

simplicial sets Λni ↪→ ∆n for 0 < i ≤ n. Unwinding the definitions, we must show that every lifting

problem of the form

K

��

// C

��
∆2n+1 //

;;

∆0

admits a solution, where K denotes the simplicial subset of ∆2n+1 consisting of those faces σ which

satisfy one of the following three conditions:

• The vertices of σ are contained in the set {0, . . . , n}.

• The vertices of σ are contained in the set {n+ 1, . . . , 2n+ 1}.

• There exists an integer j 6= i such that 0 ≤ j ≤ n and neither j nor 2n+ 1− j is a vertex of

σ.
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Since C is an ∞-category, it will suffice to show that the inclusion K ↪→ ∆2n+1 is an inner anodyne

map of simplicial sets.

Let us say that a face σ of ∆2n+1 is primary if it does not belong to K and does not contain

any vertex in the set {0, 1, . . . , i− 1}, and secondary if it does not belong to K and does contain a

vertex in the set {0, 1, . . . , i− 1}. Let S be the collection of all simplices of ∆2n+1 which are either

primary and do not contain the vertex i, or secondary and do not contain the vertex 2n+ 1− i. If

σ ∈ S, we let σ′ denote the face obtained from σ by adding the vertex 2n + 1 − i if σ is primary,

and by adding the vertex i if σ is secondary. Note that every face of ∆2n+1 either belongs to K,

belongs to S, or has the form σ′ for a unique σ ∈ S.

Choose an ordering {σ1, σ2, σ3, . . . , σm} of S with the following properties:

• If p ≤ q, then the dimension of σp is less than or equal to the dimension of σq.

• If p ≤ q, the simplices σp and σq have the same dimension, and σq is primary, then σp is also

primary.

For 0 ≤ q ≤ m, let Kq denote the simplicial subset of ∆2n+1 obtained from K by adjoining the

simplices σp and σ′p for 1 ≤ p ≤ q. We have a sequence of inclusions

K = K0 ↪→ K1 ↪→ · · · ↪→ Km = ∆2n+1.

It will therefore suffice to show that each of the maps Kq−1 ↪→ Kq is inner anodyne. Let d denote

the dimension of the simplex σ′q. It now suffices to observe that there is a pushout diagram of

simplicial sets

Λdj

��

// Kq−1

��
∆d σq // Kq,

where 0 < j < d.

Remark 5.2.1.4. Let C be an ∞-category containing a morphism f : C → D. Then f can be

regarded as an object of the ∞-category TwArr(C). Moreover, there is a canonical isomorphism of

simplicial sets

TwArr(C)f/ ' TwArr(CC/ /D);

here CC/ /D denotes the ∞-category whose objects are commutative diagrams

X

  
C

>>

f // D.
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Definition 5.2.1.5. A pairing of ∞-categories is a triple (C,D, λ : M → C×D), where C and D

are ∞-categories and λ is a right fibration of ∞-categories.

Remark 5.2.1.6. In the situation of Definition 5.2.1.5, we will generally abuse terminology by

simply referring to the map λ : M→ C×D as a pairing of ∞-categories. In this case, we will also

say that λ is a pairing of C with D.

Example 5.2.1.7. Let C be an ∞-category. Proposition 5.2.1.3 asserts that the forgetful functor

TwArr(C)→ C×Cop

is a pairing of ∞-categories.

Definition 5.2.1.8. Let λ : M → C×D be a pairing of ∞-categories, and let M ∈ M be an

object having image (C,D) ∈ C×D. We will say that M is left universal if it is a final object of

M×C{C}, and right universal if it is a final object of M×D{D}. We let ML and MR denote the

full subcategories of M spanned by the left universal and right universal objects, respectively. We

say that λ is left representable if, for each object C ∈ C, there exists a left universal object M ∈M

lying over C. We will say that λ is right representable if, for each object D ∈ D, there exists a right

universal object M ∈M lying over D.

Construction 5.2.1.9. Let λ : M→ C×D be a pairing of ∞-categories. As a right fibration, λ is

classified by a functor χ : Cop×Dop → S. Note that λ is left representable if and only if, for each

object C ∈ C, the restriction χC : χ|{C}×Dop → S is representable by an object D ∈ D. In this case,

we can view χ as a map Cop → Fun(Dop, S) which is homotopic to a composition

Cop Dλ−→ D
j−→ Fun(Dop, S)

for some essentially unique functor Dλ : Cop → D (here j : D → Fun(Dop, S) denotes the Yoneda

embedding). We will refer to Dλ as the duality functor associated to λ; it carries each object C ∈ C

to an object Dλ(C) which represents the functor χC (that is, the image in D of a left universal

object M ∈M lying over C ∈ C). More concretely, the functor Dλ is characterized by the existence

of functorial homotopy equivalences

MapD(D,Dλ(C)) ' χ(C,D) 'M×C×D{(C,D)}.

Similarly, if the pairing λ is right representable, then it determines a duality functor D′λ :

Dop → C, which we will also refer to as the duality functor associated to λ. If λ is both left and

right representable, then Dλ : Cop → D is right adjoint to the duality functor D′op
λ : D→ Cop.

Proposition 5.2.1.10. Let C be an ∞-category. Then the pairing λ : TwArr(C) → C×Cop of

Proposition 5.2.1.3 is both left and right representable. Moreover, the following conditions on an

object M ∈ TwArr(C) are equivalent:
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(a) The object M is left universal (in the sense of Definition 5.2.1.8).

(b) The object M is right universal (in the sense of Definition 5.2.1.8).

(c) When viewed as a morphism in the ∞-category C, the object M is an equivalence.

Proof. We will prove that (c)⇒ (b). Then for every object C ∈ C, the identity morphism idC is a

right universal object of TwArr(C) lying over C ∈ Cop, which proves that λ is right representable.

Since a right universal object of TwArr(C) lying over C ∈ Cop is determined uniquely up to equiv-

alence, we may also conclude that (b) ⇒ (c). By symmetry, we can also conclude that (a) ⇔ (c)

and that the pairing λ is left representable.

Fix an object D ∈ Cop, and let TwArr(C)D denote the fiber product TwArr(C)×Cop {D}. Then

λ induces a right fibration of simplicial sets λD : TwArr(C)D → C. We wish to prove that if M

is an object of TwArr(C)D given by an equivalence f : C → D in C, then M represents the right

fibration λD.

For every linearly ordered set I, there is an evident map of linearly ordered sets I ? Iop →
I ? [0], depending functorially on I. Composing with these maps, we obtain a functor ψ : C/D →
TwArr(C)D. This map is bijective on vertices (vertices of both C/D and TwArr(C)D can be identified

with edges f : C → D of the simplicial set C). Since the right fibration C/D → C is representable

by any equivalence f : C → D (see the proof of Proposition HTT.4.4.4.5 ), it will suffice to show

that the ψ is an equivalence of ∞-categories.

We now define an auxiliary simplicial set M as follows. For every [n] ∈∆, we let M([n]) denote

the subset of C([n] ? [0] ? [n]op) consisting of those (2n + 2)-simplices of C whose restriction to

[0] ? [n]op is the constant (n+ 1)-simplex at the vertex D. The inclusions of linearly ordered sets

[n] ? [0] ↪→ [n] ? [0] ? [n]op ←↩ [n] ? [n]op

induce maps of simplicial sets

C/D
φ←M

φ′→ TwArr(C)D.

The map ψ : C/D → TwArr(C) can be obtained by composing φ′ with a section of φ. To prove that

ψ is a categorical equivalence, it will suffice to show that φ and φ′ are categorical equivalences. We

will complete the proof by showing that φ and φ′ are trivial Kan fibrations.

We first show that φ is a trivial Kan fibration: that is, that φ has the right lifting property

with respect to every inclusion ∂∆n ↪→ ∆n. Unwinding the definitions, we are reduced to solving

a lifting problem of the form

K //

��

C

��
∆n ?∆0 ?∆n //

88

∆0
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where K denotes the simplicial subset of ∆n ?∆0 ?∆n ' ∆2n+2 spanned by ∆n ?∆0, ∆0 ?∆n, and

∆I ? ∆0 ? ∆Iop
for every proper subset I ( [n]. Since C is an ∞-category, it suffices to show that

the inclusion K ↪→ ∆n ?∆0 ?∆n is a categorical equivalence.

Lemma HTT.5.4.5.10 implies that the composite map

(∆n ?∆0)
∐
∆0

(∆0 ?∆n)
i
↪→ K → ∆n ?∆0 ?∆n

is a categorical equivalence. It will therefore suffice to show that the map i is a categorical equiva-

lence. Let K0 denote the simplicial subset of K spanned by those faces of the form ∆I ?∆0 ?∆Iop
,

where I is a proper subset of [n]. We have a pushout diagram of simplicial sets

(∂∆n ?∆0)
∐

∆0(∆0 ? ∂∆n)
i0 //

��

K0

��
(∆n ?∆0)

∐
∆0(∆0 ?∆n)

i // K.

Since the Joyal model structure is left proper, we are reduced to proving that the map i0 is a

categorical equivalence. We can write i0 as a homotopy colimit of morphisms of the form

(∆I ?∆0)
∐
∆0

(∆0 ?∆Iop
)→ ∆I ?∆0 ?∆Iop

,

where I ranges over all proper subsets of [n]. Since each of these maps is a categorical equivalence

(Lemma HTT.5.4.5.10 ), we conclude that i0 is a categorical equivalence as desired.

We now prove that φ′ is a trivial Kan fibration. We must show that φ′ has the right lifting

property with respect to every inclusion of simplicial sets ∂∆n ↪→ ∆n. To prove this, we must show

that every lifting problem of the form

L //

f0
��

C

��
∆n ?∆0 ?∆n //

88

∆0

has a solution, where L denotes the simplicial subset of ∆n ?∆0 ?∆n ' ∆2n+2 given by the union

of ∆0 ?∆n, ∆n ?∆n, and K0, and f0 is a map whose restriction to ∆0 ?∆n is constant.

Let σ be a face of ∆2n+2 which does not belong to L. Let i(σ) denote the first vertex of ∆2n+2

which belongs to σ. Since σ does not belong to ∆0 ?∆n ⊆ L, we must have i(σ) ≤ n. For j < i(σ),

we have j /∈ σ. Since σ is not contained in K0, we conclude that 2n+2− j ∈ σ. Let us say that σ is

large if it contains the vertex 2n+ 2− i(σ), and small if it does not contain the vertex 2n+ 2− i(σ).

Let S be the collection of small faces of ∆2n+2 (which are not contained in L). For each σ ∈ S, we

let σ′ denote the face obtained from σ by adding the vertex 2n + 2− i(σ). Choose an ordering of

S = {σ1, σ2, . . . , σm} with the following properties:



810 CHAPTER 5. LITTLE CUBES AND FACTORIZABLE SHEAVES

(a) If p ≤ q, then the dimension of σp is less than or equal to the dimension of σq.

(b) If p ≤ q and the simplices σp and σq have the same dimension, then i(σq) ≤ i(σp).

For 0 ≤ q ≤ m, let Lq denote the simplicial subset of ∆2n+2 obtained from L by adding the faces

σp and σ′p for p ≤ q. We have a sequence of inclusions

L = L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ Lm = ∆2n+2.

To complete the proof, it will suffice to show that the map f0 : L0 → C can be extended to a

compatible sequence of maps {fq : Lq → C}0≤q≤m. We proceed by induction. Assume that q > 0

and that fq−1 : Lq−1 → C has already been constructed. Let d be the dimension of σ′q, and observe

that there is a pushout diagram of simplicial sets

Λdd−i(σq)
//

��

Lq−1

��
∆d // Lq.

Consequently, to prove the existence of fq, it will suffice to show that the map fq−1|Λdd−i(σq) can be

extended to a d-simplex of C. Since d > i(σq), the existence of such an extension follows from the

assumption that C is an∞-category provided that i(σq) > 0. In the special case i(σ) = 0, it suffices

to show that the map fq−1|Λdd carries the final edge of Λdd to an equivalence in C. This follows from

our assumption that f0|(∆0?∆n) is a constant map (note that σ′q automatically contains the vertices

n+ 1 and 2n+ 2, so that the final edge of σ′q is contained in ∆0 ?∆n ⊆ ∆n ?∆0 ?∆n ' ∆2n+2).

Proposition 5.2.1.11. Let C be an ∞-category, and let χ : Cop×C→ S classify the right fibration

λ : TwArr(C) → C×Cop. The map C → Fun(Cop, S) determined by χ is homotopic to the Yoneda

embedding (see §HTT.5.1.3 ).

Remark 5.2.1.12. Let C be an ∞-category and let λ : TwArr(C) → C×Cop be the pairing of

Proposition 5.2.1.3. Proposition 5.2.1.10 implies that λ is right and left representable, so that

Construction 5.2.1.9 yields a pair of adjoint functors

Dop
λ : C→ C D′λ : C→ C .

Proposition 5.2.1.11 asserts that these functors are homotopic to the identity.

Proof. We begin by recalling the construction of the Yoneda embedding j : C → Fun(Cop, S).

Choose a fibrant simplicial category D and an equivalence of ∞-categories ψ : C → N(D). The

construction (D,D′) 7→ MapD(D,D′) determines a simplicial functor F : Dop×D → Kan, where
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Kan denote the (simplicial) category of Kan complexes. Passing to homotopy coherent nerves, we

obtain a functor

µ : C×Cop → N(D)×N(D)op ' N(D×Dop)→ N(Kan) = S

which we can identify with Yoneda embedding C → Fun(Cop, S). We are therefore reduced to

proving that the functor µ classifies the right fibration TwArr(C)→ C×Cop.

Let C : Set∆ → Cat∆ denote the left adjoint to the simplicial nerve functor and let φ :

C[C×Cop]→ D×Dop be the equivalence of simplicial categories determined by ψ, and let

Unφ : SetD
op×D

∆ → (Set∆)/C×Cop

denote the unstraightening functor defined in §HTT.2.2.1 . To complete the proof, it will suffice to

construct an equivalence β : TwArr(C)→ Unφ(F) of right fibrations over C×Cop.

We begin by constructing the map β. Let E be the simplicial category obtained from D×Dop

by adjoining a new element v, with mapping spaces given by

MapE(v, (D,D′)) = ∅ MapE((D,D′), v) = MapD(D,D′).

Unwinding the definitions, we see that giving the map β is equivalent to constructing a map

γ : TwArr(C). → N(E) carrying the cone point of TwArr(C). to v and such that γ|TwArr(C) is given

by the composition

TwArr(C)→ C×Cop → N(D×Dop) ↪→ N(E).

To describe the map γ, it suffices to define the composite map

γσ : ∆n+1 σ.→ TwArr(C).
γ→ N(E)

for every n-simplex σ : ∆n → TwArr(C). We will identify γσ with a map of simplicial categories

C[∆n+1]→ E, carrying the final vertex of ∆n+1 to v and given on C[∆n] by the composite map

C[∆n]
σ×σop

−→ C[C]× C[C]op → D×Dop ⊆ E .

We can identify σ with a map ∆2n+1 → C, which induces a functor of simplicial categories

νσ : C[∆2n+1]→ C(C)→ D .

To complete the definition of γσ, it suffices to describe the induced maps

MapC[∆n+1](i, n+ 1)→ MapE(γσ(i), v) = MapD(νσ(i), νσ(2n+ 1− i))

for 0 ≤ i ≤ n. These maps will be given by a composition

MapC[∆n+1](i, n+ 1)
α→ MapC[∆2n+1](i, 2n+ 1− i) νσ→ MapD(νσ(i), νσ(2n+ 1− i)).
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Recall that for 0 ≤ j ≤ k ≤ m, the mapping space MapC[∆m](j, k) can be identified with the nerve of

the partially ordered collection of subsets of [m] having infimum j and supremum k (see Definition

HTT.1.1.5.1 ). Under this identification, α corresponds to the map of partially ordered sets given

by

S ∪ {n+ 1} 7→ S ∪ {2n+ 1− j : j ∈ S}.

It is not difficult to see that these maps determine a simplicial functor C[∆n+1]→ E, giving a map

of simplicial sets γσ : ∆n+1 → N(E). The construction is functorial in σ, and therefore arises from

the desired map γ : TwArr(C). → N(E).

It remains to prove that β is a homotopy equivalence. Since the maps

TwArr(C)→ C×Cop ← Unφ(F)

are right fibrations, it will suffice to prove that β induces a homotopy equivalence

βC,C′ : TwArr(C)×C×Cop {(C,C ′)} → (Unφ F)×C×C′ {(C,C ′)}

for every pair of objects C,C ′ ∈ C. Consider the map

u : C/C′ → TwArr(C)×Cop {C ′}

appearing in the proof of Proposition 5.2.1.10. Since u induces a homotopy equivalence

HomR
C (C,C ′) = {C} ×C C/C′ → TwArr(C)×C×Cop {(C,C ′)},

we are reduced to proving that the composite map

HomR
C (C,C ′)→ TwArr(C)×C×Cop {(C,C ′)} → (Unφ F)×C×C′ {(C,C ′)}

is a homotopy equivalence. This follows from Proposition HTT.2.2.4.1 .

Our next goal is to characterize the twisted arrow∞-category TwArr(C) by a universal property.

In fact, we will give two such universal properties.

Definition 5.2.1.13. Let λ : M → C×D and λ′ : M′ → C′×D′ be pairings of ∞-categories. A

morphism of pairings from λ to λ′ is a triple of maps

α : C→ C′ β : D→ D′ γ : M→M′

for which the diagram

M
γ //

λ
��

M′

λ′
��

C×D
α×β // C′×D′

commutes. We let CPair∆ denote the category whose objects are pairings (λ : M → C×D) and

whose morphisms are defined as above.
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Construction 5.2.1.14. The category CPair∆ of Definition 5.2.1.13 is equipped with a natu-

ral simplicial enrichment, where the mapping spaces MapCPair∆
(λ, λ′) are characterized by the

following universal property: for every simplicial set K, there is a canonical bijection between

HomSet∆
(K,MapCPair∆

(λ, λ′)) and the set of triples (α, β, γ) where α : K × C → C′ is a map of

simplicial sets carrying each edge of K to an equivalence in Fun(C,C′), β : K ×D → D′ is a map

of simplicial sets carrying each edge of K to an equivalence in Fun(D,D′), and γ : K ×M→M′ is

a map fitting into a commutative diagram

K ×M
γ //

λ
��

M′

λ′

��
K ×K × C×D

α×β // C′×D′

(it then follows automatically that γ carries each edge of K to an equivalence in Fun(M,M′)). It

is not difficult to see that the mapping spaces MapCPair∆
(λ, λ′) are Kan complexes (see Lemma

5.2.1.23 below), so that the homotopy coherent nerve N(CPair∆) is an ∞-category. We will denote

this ∞-category by CPair and refer to it as the ∞-category of pairings of ∞-categories.

Remark 5.2.1.15. It follows from Proposition HTT.4.2.4.4 that CPair is equivalent to the full

subcategory of Fun(Λ2
0,Cat∞) spanned by those diagrams C←M→ D for which the induced map

M→ C×D is equivalent to a right fibration. This subcategory is a localization of Fun(Λ2
0,Cat∞);

in particular, we can identify CPair with a full subcategory of Fun(Λ2
0,Cat∞) which is closed under

small limits.

Variant 5.2.1.16. Suppose that λ : M → C×D and λ′ : M′ → C′×D′ are left representable

pairings of ∞-categories. We will say that a morphism of pairings

M
γ //

λ
��

M′

λ′
��

C×D
α×β // C′×D′

is left representable if the functor γ carries left universal objects of M to left universal objects of

N. We let CPairL denote the subcategory of CPair whose objects are left representable pairings of

∞-categories and whose morphisms are left representable morphisms of pairings. We will refer to

CPairL as the ∞-category of left representable pairings of ∞-categories.

Dually, if λ : M → C×D and λ′ : M′ → C′×D′ are right representable pairings, then we say

that a morphism of pairings

M
γ //

λ
��

M′

λ′
��

C×D
α×β // C′×D′
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is right representable if γ carries right universal objects of M to right universal objects of N. We

let CPairR denote the subcategory of CPair whose objects are right representable pairings of ∞-

categories and whose morphisms are right representable morphisms of pairings. We will refer to

CPairR as the ∞-category of right representable pairings of ∞-categories.

The relevance of the left representability condition on a morphism of pairings can be described

as follows:

Proposition 5.2.1.17. Let λ : M → C×D and λ′ : M′ → C′×D′ be left representable pairings

of ∞-categories, which induce functors Dλ : Cop → D and Dλ′ : C′ op → D′. Let (α, β, γ) be a left

representable morphism of pairings from λ to λ′. Then the diagram

Cop Dλ //

β
��

D

γ
��

C′ op Dλ′ // D′

commutes up to canonical homotopy.

Proof. The right fibrations λ and λ′ are classified by functors

Cop×Dop → S C′ op×D′ op → S,

which we can identify with maps χ : Cop → Fun(Dop, S) and χ′ : C′ op → Fun(D′ op, S). Let

G : Fun(D′ op, S)→ Fun(C′ op, S)

be the functor given by composition with β. Then α induces a natural transformation χ→ G◦χ′◦β.

Let F denote a left adjoint to G, so that we obtain a natural transformation u : F ◦ χ→ χ′ ◦ β of

functors from Cop to Fun(D′ op, S). Let jD : D → Fun(Dop, S) and jD′ : D′ → Fun(D′ op, S) denote

the Yoneda embeddings. Then χ ' jD ◦Dλ and χ′ ' jD′ ◦Dλ′ , and Proposition HTT.5.2.6.3 gives

an equivalence F ◦ jD ' jD′ ◦ γ. Then u determines a natural transformation

jD′ ◦ γ ◦Dλ ' F ◦ jD ◦Dλ ' F ◦ χ
u→ χ′ ◦ β ' jD′ ◦Dλ′ ◦ β.

Since jD′ is fully faithful, this is the image of the a natural transformation of functors γ ◦ Dλ →
Dλ′ ◦ β. Our assumption that α carries left universal objects of M to left universal objects of M′

implies that this natural transformation is an equivalence.

In what follows, we will focus our attention on right representable pairings of ∞-categories

(though all of our results are have analogues for left representable pairings, which can be proven in

the same way).
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Proposition 5.2.1.18. Let C be an ∞-category and let λ : TwArr(C)→ C×Cop be the pairing of

Proposition 5.2.1.3. Let µ : M→ D×E be an arbitrary right representable pairing of ∞-categories.

Then the evident maps

MapCPairR(λ, µ)→ MapCat∞(Cop,E) MapCPairR(µ, λ)→ MapCat∞(D,C)

are homotopy equivalences.

Before giving the proof of Proposition 5.2.1.18, let us describe some of its consequences.

Corollary 5.2.1.19. Let φ, ψ : CPairR → Cat∞ be the forgetful functors given on objects by the

formulas

φ(λ : M→ C×D) = C ψ(λ : M→ C×D) = D .

Then:

(1) The functor φ admits a right adjoint, given at the level of objects by C 7→ TwArr(C).

(2) The functor ψ admits a left adjoint, given at the level of objects by D 7→ TwArr(Dop).

Proof. Combine Propositions 5.2.1.18 and HTT.5.2.4.2 .

Remark 5.2.1.20. Let us say that a pairing of ∞-categories is perfect if it is equivalent (in the

∞-category CPair) to a pairing of the form TwArr(C) → C×Cop, for some ∞-category C. We let

CPairperf denote the subcategory of CPair whose objects are perfect pairings of ∞-categories and

whose morphisms are right representable morphisms of pairings (note that if λ and λ′ are perfect

pairings of ∞-categories, then Proposition 5.2.1.10 implies that a morphism of pairings from λ to

λ′ is left representable if and only if it is right representable). It follows from Corollary 5.2.1.19

that the full subcategory CPairperf ⊆ CPairR is both a localization and a colocalization of CPairR.

Moreover, the forgetful functors φ, ψ : CPairR → Cat∞ of Corollary 5.2.1.19 restrict to equivalences

CPairperf → Cat∞. Composing these equivalences, we obtain an equivalence of ∞-categories from

Cat∞ to itself, given at the level of objects by C 7→ Cop.

Remark 5.2.1.21. Let µ : M → C×D be a right representable pairing of ∞-categories, and let

λ : TwArr(C) → C×Cop be the pairing of Proposition 5.2.1.3. Using Proposition 5.2.1.18, we can

lift the identity functor idC to a right representable morphism of pairings (α, β, γ) : µ → λ. For

every object D ∈ D, the induced map

γD : M×D{D} → TwArr(C)×Cop {β(D)}

is a map between representable right fibrations over C which preserves final objects, and therefore

an equivalence of ∞-categories. It follows that the diagram

M
γ //

��

TwArr(C)

��
D

β // Cop
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is homotopy Cartesian (note that the vertical maps are Cartesian fibrations, so that this condition

can be tested fiberwise).

Corollary 5.2.1.22. Let µ : M → C×D be a pairing of ∞-categories. The following conditions

are equivalent:

(1) The pairing µ is perfect.

(2) The pairing µ is both left and right representable, and an object of M is left universal if and

only if it is right universal.

(3) The pairing µ is both left and right representable, and the adjoint functors

Dop
µ : C→ Dop D′µ : Dop → C

of Construction 5.2.1.9 are mutually inverse equivalences.

Proof. We first prove that conditions (2) and (3) are equivalent. Assume that µ is both left and

right representable. Let C ∈ C, and choose a left universal object M ∈ M lying over C. Let

D = Dµ(C) be the image of M in D, and choose a right universal object N ∈ M lying over D.

Then N is a final object of M×D{D}, so there is a canonical map u0 : M → N in M. Unwinding the

definitions, we see that the image of u0 in C can be identified with the unit map u : C → D′µD
op
µ (C).

Since µ is a right fibration and the image of u0 in D is an equivalence, we conclude that u is an

equivalence if and only if u0 is an equivalence. That is, u is an equivalence if and only if M is also

a right universal object of M. This proves the following:

(∗) The unit map idC → D′µ ◦D
op
µ is an equivalence if and only if every left universal object of

M is also right universal.

The same argument proves:

(∗′) The counit map Dop
µ ◦D′µ → idDop is an equivalence if and only if every right universal object

of M is also left universal.

Combining (∗) and (∗′), we deduce that conditions (2) and (3) are equivalent.

The implication (1) ⇒ (2) follows from Proposition 5.2.1.10. We will complete the proof by

showing that (3) ⇒ (1). Let λ : TwArr(C) → C×Cop be the pairing of Proposition 5.2.1.3. Since

λ is right representable, the identity functor idC can be lifted to a right representable morphism of

pairings (idC, β, γ) : µ→ λ. We wish to prove that β and γ are equivalences. Since the diagram

M
γ //

��

TwArr(C)

��
D

β // Cop
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is homotopy Cartesian (Remark 5.2.1.21), it will suffice to show that β is an equivalence of ∞-

categories.

Using Proposition 5.2.1.17, we see that the diagram of ∞-categories

Dop D′λ //

β
��

C

id
��

C
id // C

commutes up to homotopy: that is, β is homotopic to D′λ, and is therefore an equivalence by virtue

of assumption (3).

We now turn to the proof of Proposition 5.2.1.18. We begin with a general discussion of the

mapping spaces in the ∞-category CPair. Suppose we are given pairings of ∞-categories

λ : M→ C×D λ′ : M′ → C′×D′ .

We have an evident map of simplicial sets

θ : MapCPair∆
(λ, λ′)→ Fun(C,C′)' × Fun(D,D′)'.

Lemma 5.2.1.23. In the situation described above, the map θ is a Kan fibration. In particular,

the mapping space MapCPair∆
(λ, λ′) is a Kan complex.

Proof. Since Fun(C,C′)' × Fun(D,D′)' is a Kan complex, it will suffice to show that the map θ

is a right fibration (Lemma HTT.2.1.3.3 ). We will prove that θ has the right lifting property with

respect to every right anodyne map of simplicial sets i : A → B. Fix a map B → Fun(C,C′)' ×
Fun(D,D′)', and let N denote the fiber product (C×D×B)×C′×D′M

′. Unwinding the definitions,

we are reduced to solving a lifting problem of the form

A×M

i′

��

// N

λ′

��
B ×M //

99

C×D .

The desired result now follows from the fact that i′ is right anodyne (Corollary HTT.2.1.2.7 ), since

λ′ is a right fibration.

Our next step is to analyze the fibers of Kan fibration θ : MapCPair∆
(λ, λ′) → Fun(C,C′)' ×

Fun(D,D′)'. Fix a pair of functors α : C → C′ and β : D → D′. Unwinding the definitions,

we see that the fiber θ−1{(α, β)} is the ∞-category FunC′×D′(M,M′). Let χ : Cop×Dop → S

classify the right fibration λ, and let χ′ : C′ op×D′ op → S classify the right fibration λ′. Then

FunC′×D′(M,M′) is homotopy equivalent to the mapping space MapFun(Cop×Dop,S)(χ, χ
′ ◦ (α× β)).
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Let P(C) = Fun(Cop, S) and define P(C′) similarly, so that χ and χ′ can be identified with maps

ν : Dop → P(C) and ν ′ : D′ op → P(C′). We then have

MapFun(Cop×Dop,S)(χ, χ
′ ◦ (α× β)) ' MapFun(Dop,P(C))(ν,G ◦ ν ′ ◦ β),

where G : P(C′)→ P(C) is the map given by composition with α. Note that G admits a left adjoint

α : P(C)→ P(C′), which fits into a commutative diagram

C //

α

��

P(C)

α
��

D // P(D),

where the horizontal maps are given by the Yoneda embeddings (see Proposition HTT.5.2.6.3 ).

Combining this observation with the analysis above, we obtain a homotopy equivalence

θ−1{(α, β)} = MapFun(Dop,P(C′))(α ◦ ν, ν ′ ◦ β).

Let us now specialize to the case where the pairings λ : M→ C×D and λ′ : M′ → C′×D′ are

right representable. In this case, the functors ν and ν ′ admit factorizations

Dop D′λ−→ C→ P(C)

D′ op
D′
λ′−→ C′ → P(C′)

(see Construction 5.2.1.9). We may therefore identify θ−1{(α, β)} with the mapping space

MapFun(Dop,C′)(α ◦D′λ,D′λ′ ◦ β).

Under this identification, the subspace

MapCPairR(λ, λ′)×Fun(C,C′)'×Fun(D,D′)' {(α, β)}

corresponds the summand of MapFun(Dop,C′)(α ◦D′λ,D′λ′ ◦ β) spanned by the equivalences α ◦D′λ '
D′λ′ ◦ β (see Proposition 5.2.1.17 and its proof).

Proof of Proposition 5.2.1.18. Let C be an ∞-category, let λ : TwArr(C)→ C×Cop be the pairing

of Proposition 5.2.1.3, and let µ : M → D×E be an arbitrary right representable pairing of ∞-

categories. We first show that the forgetful functor

MapCPairR(λ, µ)→ MapCat∞(Cop,E)

is a homotopy equivalence. Let MapCPairR∆
(λ, µ) denote the full simplicial subset of MapCPair∆

(λ, µ)

spanned by the right representable morphisms of pairings. It follows from Lemma 5.2.1.23 that the

map of simplicial sets

φ : MapCPairR∆
(λ, µ)→ Fun(Cop,E)'
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is a Kan fibration. It will therefore suffice to show that the fibers of φ are contractible. Fix a

functor β : Cop → E, so that we have a Kan fibration of simplicial sets u : φ−1{β} → Fun(C,D)'.

Combining Remark 5.2.1.12 with the analysis given above, we see that the fiber of u over a functor

α : C → D can be identified with the summand of MapFun(C,D)(α,D
′
µ ◦ β) spanned by the equiva-

lences. It follows that u is a right fibration represented by the object D′µ ◦ β ∈ Fun(C,D), so that

the fiber φ−1{β} is equivalent to Fun(C,D)'/(D′µ◦β) and therefore contractible.

We now show that the forgetful functor MapCPairR(µ, λ)→ MapCat∞(D,C) is a homotopy equiv-

alence. For this, it suffices to show that the Kan fibration of simplicial sets ψ : MapCPairR∆
(µ, λ)→

Fun(D,C)' has contractible fibers. Fix a functor α : D → C, so that we have a Kan fibra-

tion v : ψ−1{α} → Fun(E,Cop)'. Using Remark 5.2.1.12 and the above analysis, we see that

the fiber of v over a map β : E → Cop can be identified with the summand of the mapping

space MapFun(Eop,C)(α ◦ D′µ, β). It follows that v is a left fibration represented by the object

α ◦ D′µ ∈ Fun(Eop,C), so that the fiber ψ−1{α} is equivalent to Fun(Eop,C)'α◦D′µ/
and therefore

contractible.

We conclude this section by introducing a relative version of the twisted arrow construction

which will be needed in §5.2.3.

Construction 5.2.1.24. Let λ : M→ C×D, be a pairing of ∞-categories, classified by a functor

χ : Dop → Fun(Cop, S) = P(C). Let j : C→ P(C) be the Yoneda embedding, and set

Cλ = C×Fun({0}×Cop,S) Fun(∆1 × Cop, S)×Fun({1}×Cop,S) D
op .

Let e0 : Cλ → C and e1 : Cλ → Dop be the two projection maps, so that we have a natural

transformation α : (j ◦ e0) → (χ ◦ e1) of functors Cλ → Fun(Cop, S). The functor j ◦ e0 classifies a

right fibration µ : TwArrλ(C) → C×C
op
λ , which we regard as a pairing of ∞-categories. We will

refer to TwArrλ(C) as the ∞-category of twisted arrows of C relative to λ.

Note that α classifies a map γ : TwArrλ(C) → M×D C
op
λ of right fibrations over C×C

op
λ . We

therefore obtain a morphism of pairings

TwArrλ(C)
γ //

µ

��

M

λ

��
C×C

op
λ

id×e1 // C×D .

Example 5.2.1.25. In the setting of Construction 5.2.1.24, suppose that D = ∆0 and that λ is

the identity map from C to itself. In this case, the evaluation map e0 : Cλ → C is an equivalence,

and the right fibration TwArrλ(C)→ C×C
op
λ classifies the Yoneda pairing

Cop×Cλ ' Cop×C→ S .



820 CHAPTER 5. LITTLE CUBES AND FACTORIZABLE SHEAVES

Applying Proposition 5.2.1.11, we deduce that the pairing TwArrλ(C) → C×C
op
λ is equivalent to

the pairing TwArr(C) → C×Cop of Construction 5.2.1.3 (this can also be deduced by comparing

the universal properties of TwArr(C) and TwArrλ(C) given by Proposition 5.2.1.18 and 5.2.1.26,

respectively).

Proposition 5.2.1.26. Let λ : M → C×D be a pairing of ∞-categories, let µ : TwArrλ(C) →
C×C

op
λ be as in Construction 5.2.1.24. Then:

(1) The pairing µ is right representable.

(2) Let λ′ : M′ → C′×D′ be an arbitrary right representable pairing of ∞-categories. Then

composition with the canonical morphism µ→ λ induces a homotopy equivalence

θ : MapCPairR(λ′, µ)→ MapCPair(λ, µ).

Corollary 5.2.1.27. The inclusion functor CPairR ↪→ CPair admits a right adjoint, given on

objects by the construction

(λ : M→ C×D) 7→ (TwArrλ(C)→ C×C
op
λ ).

Proof of Proposition 5.2.1.26. We have a commutative diagram

MapCPairR(λ′, µ)
θ //

q

**

MapCPair(λ
′, λ)

p

tt
Fun(C′,C)' × Fun(D′,D)'.

To prove that θ is a homotopy equivalence, it will suffice to show that θ induces a homotopy equiv-

alence of homotopy fibers over any pair of functors (F : C′ → C, G : D′ → D). It now suffice to ob-

serve that both homotopy fibers can be identified with the mapping space MapFun(C′op×D′op
,S)(χ

′, χ◦
(F ×G)), where χ and χ′ classify the right fibrations λ and λ′, respectively.

Remark 5.2.1.28. Let λ : M → C×D be a pairing of ∞-categories and let µ : TwArrλ(C) →
C×C

op
λ be the pairing of Construction 5.2.1.24. Assume that λ is left representable, so that the

duality functor Dλ : Cop → D is defined. Unwinding the definitions, we see that C
op
λ is equivalent

to the ∞-category Cop×D Fun(∆1,D) whose objects are triples (C,D, φ) where C ∈ Cop, D ∈ D,

and φ : D → Dλ(C) is a morphism in D. In particular, the forgetful functor C
op
λ → Cop admits

a fully faithful left adjoint L, whose essential image is spanned by those triples (C,D, φ) where

φ : D → Dλ(C) is an equivalence in D. We will denote this essential image by (C0
λ)op, and we let

TwArr0
λ(C) denote the inverse image of C×(C0

λ)op in TwArrλ(C).

Note that (C0
λ)op is a localization of Cop

λ . Moreover, if f is a morphism in C
op
λ , then Lf is an

equivalence if and only if the image of f in Cop is an equivalence.
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Remark 5.2.1.29. Suppose we are given a morphism of pairings

M

λ
��

//M′

λ′
��

C×D // C×D′ .

We then obtain an induced right representable morphism of pairings

TwArrλ(C) //

��

TwArrλ′(C)

��
C×C

op
λ

// C×C
op
λ′ .

Taking D′ = ∆0 and M′ = C, we obtain a morphism of pairings

TwArrλ(C) //

��

TwArr(C)

��
C×C

op
λ

// C×Cop

(see Example 5.2.1.25). If λ is left representable, this morphism restricts to an equivalence

TwArr0
λ(C) //

��

TwArr(C)

��
C×(C0

λ)op // C×Cop,

where the pairing on the left is defined as in Remark 5.2.1.28.

5.2.2 The Bar Construction for Associative Algebras

Let C be a monoidal ∞-category with unit object 1. Let A be an associative algebra object of C.

An augmentation on A is a map of associative algebra objects ε : A→ 1. In this case, we will refer

to A as an augmented algebra object of C. We let Algaug(C) denote the ∞-category Alg(C)/1 of

augmented algebra objects of C. Note that any augmentation on A determines a forgetful functor

ρ : C ' 1BMod1(C)→ ABModA(C).

Definition 5.2.2.1. Let A be an augmented algebra object of a monoidal ∞-category C. We will

say that a morphism f : A → ρ(C) in ABModA(C) exhibits C as the bar construction on A if, for

every object D ∈ C, composition with f induces a homotopy equivalence

MapC(C,D)→ Map
ABModA(C)(A, ρ(D)).
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Remark 5.2.2.2. Let A be an augmented algebra object of a monoidal ∞-category C. If there

exists a morphism f : A→ ρ(C) in ABModA(C) which exhibits C as a bar construction on A, then

the object C is uniquely determined up to equivalence. In this case, we will denote the object C

by Bar(A).

Example 5.2.2.3. Let C be a monoidal ∞-category which admits geometric realizations of sim-

plicial objects and assume that the tensor product ⊗ : C×C→ C admits geometric realizations of

simplicial objects. If A is an augmented associative algebra object of C, then the forgetful functor

1BMod1(C)→ ABModA(C) admits a left adjoint, given by the construction M 7→ 1⊗AM⊗A1 (see

Proposition 4.6.2.17). Specializing to the case M = A, we deduce that the object Bar(A) exists

and is given by the formula

Bar(A) ' 1⊗A A⊗A 1 ' 1⊗A 1.

Example 5.2.2.4. Let C be a pointed ∞-category which admits small colimits. Then we may

regard C as endowed with the coCartesian symmetric monoidal structure (see §2.4.3). Then the

tensor product

⊗ : C×C→ C

(C,D) 7→ C qD

preserves sifted colimits. Note that the forgetful functor CAlg(C) → C is an equivalence of ∞-

categories (Proposition 2.4.3.9). In particular, every object C ∈ C can be regarded as a commutative

algebra object of C in an essentially unique way. It follows from Proposition 3.2.4.7 that the relative

tensor product C ⊗D E can be identified with the pushout of C with E over D in the ∞-category

CAlg(C), and therefore in the ∞-category C. In particular, for every A ∈ C ' CAlg(C), the bar

construction Bar(A) = 1⊗A 1 can be identified with the suspension Σ(A) ∈ C.

We will need the following slight generalization of Example 5.2.2.3:

Proposition 5.2.2.5. Let C be a monoidal ∞-category which admits geometric realizations of

simplicial objects. Then for every augmented associative algebra object A of C, there exists an

object C ∈ C and a morphism A→ ρ(C) in ABModA(C) which exhibits C as a bar construction on

A.

The proof of Proposition 5.2.2.5 is based on the following simple lemma:

Lemma 5.2.2.6. Let C be a monoidal ∞-category and let A be an associative algebra object of C.

Then there exists a simplicial object X• in ABModA(C) with the following properties:

(a) The geometric realization of X• exists and is equivalent to A (as an object of ABModA(C)).

(b) For every integer n ≥ 0, the object Xn ∈ ABModA(C) is equivalent to a free bimodule A ⊗
Yn ⊗A, where Yn = A⊗n.
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Proof. Suppose first that C admits geometric realizations of simplicial objects and that the tensor

product ⊗ : C×C → C preserves geometric realizations of simplicial objects. In this case, the

desired result follows the equivalence A ' A⊗AA (Proposition 4.4.3.16), together with the explicit

description of A⊗A A supplied by Construction 4.4.2.7.

To treat the general case, it suffices to choose a fully faithful embedding of monoidal ∞-

categories f : C ↪→ C′ where C′ admits geometric realizations and the tensor product⊗ : C′×C′ → C′

preserves geometric realizations. The first part of the proof shows that A is given by the geomet-

ric realization of a simplicial object X• of f(A)BModf(A)(C
′) satisfying conditions (a) and (b),

and condition (b) implies that each Xn belongs to the essential image of the induced embedding

ABModA(C) → f(A)BModf(A)(C
′). To prove the existence of f , we may assume without loss of

generality that C is small (enlarging the universe if necessary); in this case, we can take C′ = P(C)

and f to be the Yoneda embedding (see Variant 4.8.1.11).

Remark 5.2.2.7. More informally, Lemma 5.2.2.6 asserts that any associative algebra A can be

recovered as the geometric realization of a simplicial object

· · ·
// ////// A⊗A⊗A⊗A

// //// A⊗A⊗A // // A⊗A.

The proof supplies a more explicit description of this simplicial object: the face maps are given by

the multiplication on A, and the degeneracy maps are given by the unit of A.

Proof of Proposition 5.2.2.5. Let us say that an object M ∈ ABModA(C) is good if the functor

C 7→ Map
ABModA(C)(M,ρ(C)) is corepresentable by an object of C. It follows immediately from

the definitions that every free bimodule M = A ⊗M0 ⊗ A is good (the corresponding functor is

corepresented by the object M0 ∈ C). Since the ∞-category C admits geometric realizations of

simplicial objects, the collection of corepresentable functors C→ S is closed under totalizations of

cosimplicial objects. It follows that the collection of good objects of ABModA(C) is closed under

geometric realizations of simplicial objects. Using Lemma 5.2.2.6, we deduce that A ∈ ABModA(C)

is good, as desired.

Remark 5.2.2.8. The proof of Proposition 5.2.2.5 shows that the object Bar(A) ∈ C is given by

the geometric realization of a simplicial object

· · ·
//////// A⊗A

////// A
//// 1.

This coincides with the two-sided bar construction BarA(1,1)• of Construction 4.4.2.7.

Remark 5.2.2.9. In the situation of Proposition 5.2.2.5, one can show that all objects of

ABModA(C) are good, so that the forgetful functor

C ' 1BMod1(C)→ ABModA(C)
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admits a left adjoint; see Corollary 5.2.2.41. However, our proof of Corollary 5.2.2.41 does not

provide quite so concrete a description of the bar construction Bar(A) as the one given in Remark

5.2.2.8.

There is a generalization of Example 5.2.2.4 which describes the structure of the bar construction

on a free algebra. First, we need a slight variant on Proposition 4.2.4.10.

Remark 5.2.2.10. Let C be a monoidal ∞-category. Assume that for every countable weakly

contractible simplicial set K, the ∞-category C admits K-indexed colimits and that the tensor

product ⊗ : C×C → C preserves K-indexed colimits separately in each variable. It follows from

Corollary 3.1.3.7 that the forgetful functor

Alg(C)→ AlgE0/Assoc(C) ' C1/

admits a left adjoint, which we will denote by Fr∗ : C1/ → Alg(C).

Construction 5.2.2.11. Let C be as in Remark 5.2.2.10, and suppose we are given an object

C ∈ C1/ equipped with an augmentation ε0 : C → 1 (in the ∞-category C1/). Then ε0 induces a

morphism of algebras ε : Fr∗(C) → 1 which allows us to regard 1 as a left Fr∗(C)-module and ε

as a morphsim of left Fr∗(C)-modules. The canonical map C → Fr∗(C) extends to a map of left

Fr∗(C)-modules m : Fr∗(C) ⊗ C → Fr∗(C), and the morphism ε0 induces a map of free modules

ε0 : Fr∗(C)⊗C → Fr∗(C)⊗1 ' Fr∗(C). As in the discussion preceding Proposition 4.2.4.10, we see

that there is a canonical homotopy from ε ◦ ε0 to ε ◦m, which determines a commutative diagram

Fr∗(C)⊗ C m //

ε0
��

Fr∗(C)

ε

��
Fr∗(C)

ε // 1

in LModFr∗(C)(C).

Proposition 5.2.2.12. Let C be a monoidal ∞-category. Assume that for every countable weakly

contractible simplicial set K, the ∞-category C admits K-indexed colimits and that the tensor

product ⊗ : C×C → C preserves K-indexed colimits separately in each variable. Then for every

object C ∈ C1/ /1, the commutative diagram σC :

Fr∗(C)⊗ C m //

ε0
��

Fr∗(C)

ε

��
Fr∗(C)

ε // 1

of Construction 5.2.2.11 is a pushout square in LModFr∗(C)(C).
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Proof. Using Corollary 4.2.3.5, we are reduced to proving that the diagram σC is a pushout square

in the ∞-category C. Using the constructions of §4.8.1, we can choose a fully faithful embedding

of monoidal ∞-categories u : C→ C with the following properties:

(i) The ∞-category C admits countable colimits.

(ii) The tensor product on C preserves countable colimits.

(iii) The functor u preserves colimits indexed by countable weakly contractible simplicial sets.

Remark 3.1.3.8 implies that the embedding u is compatible with the free algebra functor Fr∗.

We may therefore replace C by C and thereby reduce to the case where the ∞-category C itself

satisfies conditions (i) and (ii). In this case, the forgetful functor Alg(C)→ C admits a left adjoint

Fr : C→ Alg(C), given concretely by the formula Fr(X) = Fr∗(1qX).

Note that the forgetful functor g : C1/ /1 → C/1 admits a left adjoint f , given by f(X) = 1qX.

The functor g exhibits C1/ /1 as monadic over C/1 (this is a special case of Theorem 4.7.0.3). Using

Proposition 4.7.3.14, we see that C can be written as the geometric realization of a simplicial object

C• of C1/ /1, where each Cn belongs to the essential image of f . Since the construction C 7→ σC
commutes with the formation of geometric realizations, we can replace C by Cn and thereby reduce

to the case where C = f(C ′) for some C ′ ∈ C/1. In this case, the diagram σC can be rewritten as

(Fr(C ′)⊗ C ′)q Fr(C ′)
αqid //

βqid
��

Fr(C ′)

��
Fr(C ′) // 1.

The assertion that this diagram is a pushout is equivalent to the assertion that it exhibits 1 as a

coequalizer of the pair of maps α, β : Fr(C ′)⊗C ′ → Fr(C ′), where α is induced by the multiplication

on Fr(C ′) and β is induced by the augmentation on C ′. This follows from Proposition 4.2.4.10.

Corollary 5.2.2.13. Let C be a monoidal ∞-category. Assume that for every countable weakly

contractible simplicial set K, the ∞-category C admits K-indexed colimits and that the tensor

product ⊗ : C×C→ C preserves K-indexed colimits separately in each variable. Then the composite

map

C1/ /1
Fr∗→ Algaug(C)

Bar()→ C

is given by C 7→ 1qC 1.

Proof. We have canonical equivalences

Bar(Fr∗(C)) ' 1⊗Fr∗(C) 1

' 1⊗Fr∗(C) (Fr∗(C)qFr∗(C)⊗C Fr∗(C))

' 1qC 1.
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Remark 5.2.2.14. In the special case where the unit object of C is both initial and final (so that

C is a pointed ∞-category), we can simplify the statement of Corollary 5.2.2.13: it asserts that if

C ∈ C and Fr(C) denotes the free associative algebra object of C generated by C, then there is a

canonical equivalence Bar(Fr(C)) ' ΣC.

Remark 5.2.2.15. In the situation of Corollary 5.2.2.13, the identification Bar(Fr∗(C)) ' 1qC 1

is given by the composition

1qC 1→ 1qFr∗(C) 1→ 1⊗Fr∗(C) 1.

Our goal in this section is to study some of the properties of the bar construction A 7→ Bar(A).

For simplicity, let us first consider the situation of Example 5.2.2.3 (where the bar construction

Bar(A) is given by the relative tensor product 1⊗A 1 defined in §4.4.2). Our main results can be

summarized as follows:

(a) Consider the map

Bar(A) = 1⊗A 1

' 1⊗A A⊗A 1

→ 1⊗A 1⊗A 1

' 1⊗A 1⊗1 1⊗A 1

= Bar(A)⊗ Bar(A).

We can view this map as giving a comultiplication δ : Bar(A) → Bar(A) ⊗ Bar(A). We will

show that this comultiplication is coherently associative: that is, it exhibits Bar(A) as an

associative algebra object in the monoidal ∞-category Cop. Moreover, this algebra object is

equipped with a canonical augmentation, given by the morphism

1 ' 1⊗ 1→ 1⊗A 1 = Bar(A)

in C.

(b) The object Bar(A) ∈ C depends functorially on A (as an associative algebra object of Cop).

More precisely, we view the bar construction as providing a functor

Bar : Algaug(C)op → Algaug(Cop).

(c) Assume that C admits totalizations of cosimplicial objects. Then Cop admits geometric re-

alizations of simplicial objects, so that we can apply the bar construction to augmented

associative algebra objects of Cop. This yields a functor

Cobar : Algaug(Cop)→ Algaug(C)op,
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which we will refer to as the cobar construction. If C is an augmented algebra object of Cop

(which we can think of as a augmented coalgebra object of C), then CoBar(C) is given by

the totalization of a cosimplicial diagram

1 // // C
////// C ⊗ C

//////// · · ·

The functor Cobar : Algaug(Cop) → Algaug(C)op is adjoint to the bar construction Bar :

Algaug(C)op → Algaug(Cop).

Warning 5.2.2.16. Let C be a monoidal ∞-category which admits geometric realizations of sim-

plicial objects and totalizations of cosimplicial objects. There are many cases of interest in which

the tensor product

⊗ : C×C→ C

preserves geometric realizations of simplicial objects or totalizations of cosimplicial objects, but

there are relatively few cases in which the tensor product functor has both of these properties.

Consequently, if we wish to discuss the bar and cobar constructions on an equal footing, it is

important to give arguments which do not require either of these assumptions. This will require

us to exercise some additional care: for example, while it is still possible to define relative tensor

products M ⊗A N (as the geometric realization of a bar construction), it is no longer associative

in general. For this reason, we will refrain from analyzing the bar construction A 7→ Bar(A) using

the formalism developed in §4.4.2.

To simplify the discussion, it will be convenient to assume that the unit object 1 ∈ C is both

initial and final. This can always be achieved by replacing C by the ∞-category C1/ /1; we will give

a more thorough discussion of this point in §5.2.3. Note that the assumption that 1 is a final object

of C implies that it is also a final object of Alg(C) (Corollary 3.2.2.5); the dual assumption that 1

is an initial object of C guarantees that it is final as an object of Alg(Cop). Consequently, we will

be free to ignore the distinction between associative algebras and augmented associative algebras.

Let us now describe the adjunction appearing in assertion (c) more explicitly (under the as-

sumption that the unit object 1 is both initial and final). Suppose we are given an algebra object

A ∈ Alg(C) and a coalgebra object C ∈ Alg(Cop). According to (c), we should have a canonical

homotopy equivalence

MapAlg(C)(A,CoBar(C)) ' MapAlg(Cop)(C,Bar(A)).

We will prove this by identifying both sides with a classifying space for liftings of the pair (A,C) ∈
Alg(C×Cop) to an algebra object of the twisted arrow ∞-category TwArr(C) of Construction

5.2.1.1. Our main result can be formulated more precisely as follows:

Theorem 5.2.2.17. Let C be a monoidal ∞-category, so that Cop and TwArr(C) inherit the struc-

ture of monoidal ∞-categories (see Example 5.2.2.23). Then:
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(1) The induced map Alg(TwArr(C))→ Alg(C)×Alg(Cop) is a pairing of ∞-categories.

(2) Assume that the unit object 1 ∈ C is final (so that every algebra object of C is equipped

with a canonical augmentation) and that C admits geometric realizations of simplicial objects.

Then the pairing λ is left representable, and therefore determines a functor Dλ : Alg(C)op →
Alg(Cop). The composite functor

Alg(C)op Dλ→ Alg(Cop)→ Cop

is given by A 7→ Bar(A).

(3) Assume that the unit object 1 is initial (so that every coalgebra object of C is equipped with

a canonical augmentation) and that C admits totalizations of cosimplicial objects. Then the

pairing λ is right representable, and therefore determined a functor D′λ : Alg(Cop)op → Alg(C).

The composite functor

Alg(Cop)op D′λ→ Alg(C)→ C

is given by C 7→ CoBar(C).

Remark 5.2.2.18. Assertion (3) of Theorem 5.2.2.17 follows from assertion (2), applied to the

opposite ∞-category Cop.

Remark 5.2.2.19. In the situation of Theorem 5.2.2.17, suppose that the unit object 1 is both

initial and final, and that C admits both geometric realizations of simplicial objects and totalizations

of cosimplicial objects. Then the pairing λ : Alg(TwArr(C))→ Alg(C)× Alg(Cop) is both left and

right representable. We therefore obtain adjoint functors

Alg(C)
Dop
λ //coAlg(C),

D′λ

oo

given by the bar and cobar constructions, where coAlg(C) = Alg(Cop)op denotes the ∞-category of

coalgebra objects of C.

More generally, if C is an arbitrary monoidal ∞-category which admits geometric realizations

of simplicial objects and totalizations of cosimplicial objects, then by applying Theorem 5.2.2.17

to the ∞-category C1/ /1 we obtain an adjunction

Algaug(C)
Bar //coAlgaug(C).

Cobar
oo

The proof of Theorem 5.2.2.17 will require some general remarks about pairings between

monoidal ∞-categories.



5.2. BAR CONSTRUCTIONS AND KOSZUL DUALITY 829

Definition 5.2.2.20. Let O⊗ be an ∞-operad. A pairing of O-monoidal ∞-categories is a triple

(p : C⊗ → O⊗, q : D⊗ → O⊗, λ⊗ : M⊗ → C⊗×O⊗ D
⊗)

where p and q exhibit C⊗ and D⊗ as O-monoidal ∞-categories and λ⊗ : M⊗ → C⊗×O⊗ D
⊗ is a

O-monoidal functor which is a categorical fibration and which induces a right fibration λX : MX →
CX ×DX after taking the fiber over any object X ∈ O.

Remark 5.2.2.21. In the situation of Definition 5.2.2.20, we will generally abuse terminology

by simply referring to the O-monoidal functor λ⊗ : M⊗ → C⊗×O⊗ D
⊗ as a pairing of monoidal

∞-categories. In the special case where O⊗ = Assoc⊗ is the associative ∞-operad, we will refer to

λ⊗ simply as a pairing of monoidal ∞-categories. If O⊗ = Comm⊗ is the commutative ∞-operad,

we will refer to λ⊗ as a pairing of symmetric monoidal ∞-categories.

Remark 5.2.2.22. Let CPair denote the∞-category of pairings of∞-categories (see Construction

5.2.1.14), and let O⊗ be an ∞-operad. Unwinding the definitions, we see that the data of a pairing

of O-monoidal ∞-categories is equivalent to the data of a O-monoid object of CPair.

Example 5.2.2.23. Recall that the forgetful functor (λ : M→ C×D) 7→ C induces an equivalence

CPairperf → Cat∞, whose homotopy inverse is given on objects by C 7→ (λ : TwArr(C)→ C×Cop)

(see Remark 5.2.1.20). Let O⊗ be an ∞-operad and let C be a O-monoidal ∞-category, which

we can identify with a O-monoid object in the ∞-category Cat∞. It follows that the pairing

TwArr(C)→ C×Cop admits the structure of a O-monoid object of CPairperf , which we can identify

with a pairing of O-monoidal ∞-categories

TwArr(C)⊗ → C⊗×O⊗(Cop)⊗.

Variant 5.2.2.24. Let O be an ∞-operad, and suppose we are given a pairing of O-monoidal

∞-categories

λ⊗ : M⊗ → C⊗×N(Fin∗) D
⊗,

which we can identify with a O-monoid object of the∞-category CPair. Applying the right adjoint

to the inclusion CPairR ↪→ CPair, we see that the pairing TwArrλ(C) → C×C
op
λ of Construction

5.2.1.24 can be promoted to a O-monoid object of CPairR, corresponding to another pairing of

O-monoidal ∞-categories

µ⊗ : TwArrλ(C)⊗ → C⊗×(Copλ )⊗.

We obtain a commutative diagram

TwArr(C)⊗

��

TwArrλ(C)⊗
γ //

��

oo M⊗

��
C⊗×N(Fin∗)(C

op)⊗ C⊗×N(Fin∗)(C
op
λ )⊗oo // C⊗×N(Fin∗) D

⊗

where the horizontal maps are O-monoidal functors.
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Remark 5.2.2.25. Let λ⊗ : M⊗ → C⊗×E⊗k D⊗ be a pairing of Ek-monoidal ∞-categories and

suppose that the underlying pairing λ : M → C×D is left representable. Then the localization

functor L appearing in Remark 5.2.1.28 is compatible with the Ek-monoidal structure on C
op
λ (in

the sense of Definition 2.2.1.6), so that the full subcategory C0
λ)op ⊆ (C0

λ)op inherits a symmetric

monoidal structure. Moreover, since the projection map C
op
λ → Cop carries L-equivalences to

equivalences, it induces an Ek-monoidal functor β : (C0
λ)op,⊗ → (Cop)⊗. Since the underlying

functor (C0
λ)op → Cop is an equivalence, we conclude that β is an equivalence. Let TwArr0

λ(C)⊗

denote the fiber product

TwArrλ(C)×(Cop
λ )⊗ (C0

λ)op,⊗,

so that we have an equivalence of Ek-monoidal pairings

TwArr(C)⊗

��

TwArr0
λ(C)⊗oo

��
C⊗×N(Fin∗)(C

op)⊗ C⊗×N(Fin∗)(C
0
λ)op,⊗oo

Composing a homotopy inverse of this equivalence with γ, we obtain a commutative diagram

TwArr(C)⊗ //

��

M⊗

��
C⊗×N(Fin∗)(C

op)⊗ // C⊗×N(Fin∗) D
⊗ .

Note that the horizontal maps in this diagram are merely lax Ek-monoidal functors in general.

We can summarize the situation informally as follows: if we given a pairing of Ek-monoidal

∞-categories

λ⊗ : M⊗ → C⊗×E⊗k D⊗

for which the underlying pairing λ : M→ C×D is left dualizable, then the duality map Dλ : Cop →
D of Construction 5.2.1.9 has the structure of a lax Ek-monoidal functor.

Remark 5.2.2.26. Let λ⊗ : M⊗ → C⊗×O⊗ D
⊗ be a pairing of O-monoidal ∞-categories. Then

the induced map Alg/O(M) → Alg/O(C) × Alg/O(D) is a pairing of ∞-categories. This follows

immediately from Corollary 3.2.2.3.

In particular, if λ⊗ : M⊗ → C⊗×Assoc⊗ D
⊗ is a pairing of monoidal ∞-categories, then it

induces a pairing of ∞-categories

Alg(λ) : Alg(M)→ Alg(C)×Alg(D).

The key step in the proof of Theorem 5.2.2.17 is to establish a criterion which can be used to show

that Alg(λ) is left (or right) representable.



5.2. BAR CONSTRUCTIONS AND KOSZUL DUALITY 831

Proposition 5.2.2.27. Let λ⊗ : M⊗ → C⊗×Assoc⊗ D
⊗ be a pairing of monoidal ∞-categories.

Assume that:

(1) If 1 denotes the unit object of D, then the right fibration M×D{1} → C is a categorical

equivalence.

(2) The underlying pairing λ : M→ C×D is left representable.

(3) The ∞-category D admits totalizations of cosimplicial objects.

Then the induced pairing Alg(λ) : Alg(M)→ Alg(C)×Alg(D) is left representable.

The proof of Proposition 5.2.2.27 will occupy our attention for most of this section. We begin

by treating an easy special case.

Proposition 5.2.2.28. Let λ⊗ : M⊗ → C⊗×Assoc⊗ D
⊗ be a pairing between monodial ∞-

categories, and assume that the underlying pairing of ∞-categories λ : M → C×D is left

representable. Let A ∈ Alg(C) be a trivial algebra object of C (see §3.2.1). Then:

(1) There exists a left universal object of Alg(M) lying over A ∈ Alg(C).

(2) An object M ∈ Alg(M) lying over A ∈ Alg(C) is left universal if and only if the image of M

in M is left universal (with respect to the pairing λ : M→ C×D).

Proof. We can identify Alg(M) ×Alg(C) {A} with Alg(N), where N⊗ denotes the monoidal ∞-

category M⊗×C⊗ Assoc⊗. An object of Alg(M) ×Alg(C) {A} is left universal if and only if it is a

final object of Alg(N). Since λ is left representable, N has a final object. Assertions (1) and (2)

are therefore immediate consequences of Corollary 3.2.2.5.

To prove Proposition 5.2.2.27 in general, we must show that an arbitrary algebra object A ∈
Alg(C) can be lifted to a left universal object of Alg(M). This object is not as easy to find: for

example, its image in M is generally not left universal for the underlying pairing λ : M → C×D.

In order to construct it, we would like to reduce to the situation where A is a trivial algebra object

of C. We will accomplish this by replacing C by another monoidal∞-category having A as the unit

object: namely, the ∞-category ModAssoc
A (C) ' ABModA(C) (see Theorem 4.4.1.28).

Lemma 5.2.2.29. Let λ⊗ : M⊗ → C⊗×Assoc⊗ D
⊗ be a pairing of monoidal ∞-categories, and let

M ∈ Alg(M) have image (A,B) ∈ Alg(C)×Alg(D). Then the induced map

ModAssoc
M (M)⊗ → ModAssoc

A (C)⊗ ×Assoc⊗ ModAssoc
B (D)⊗

is also a pairing of monoidal ∞-categories.
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Proof. It will suffice to show that the map MBModM (M)→ ABModA(C)× BBModB(D) is a right

fibration. This map is a pullback of the categorical fibration

θ : BMod(M)→ (BMod(C)× BMod(D))×Alg(C)2×Alg(D)2 Alg(M)2.

We will show that θ is a right fibration. Let

θ′ : (BMod(C)× BMod(D))×Alg(C)2×Alg(D)2 Alg(M)2 → BMod(C)× BMod(D)

be the projection map. Since θ is a categorical fibration, it will suffice to show that θ′ and θ′ ◦ θ
are right fibrations. The map θ′ is a pullback of the forgetful functor Alg(λ) : Alg(M)→ Alg(C)×
Alg(D). We are therefore reduced to proving that Alg(λ) and θ′ ◦ θ are right fibrations, which

follows immediately from Corollary 3.2.2.3.

Proposition 5.2.2.30. Let λ⊗ : M⊗ → C⊗×Assoc⊗ D
⊗ be a pairing of monoidal ∞-categories.

Let M ∈ Alg(M) have image (A,B) ∈ Alg(C) × Alg(D). We will abuse notation by identifying

A and B with their images in C and D, respectively. Assume that B is a trivial algebra object of

D and that, for every object C ∈ C, the Kan complex λ−1{(C,B)} ⊆ M is contractible. Then the

forgetful functor Alg(ModAssoc
M (M)) → Alg(M) carries left universal objects of Alg(ModAssoc

M (M))

to left universal objects of Alg(M).

Proof. It will suffice to show that for every A′ ∈ Alg(ModAssoc
A (C)) ' Alg(C)A/ having image

A′0 ∈ Alg(C), the left fibration Alg(ModAssoc
M (M)) ×Alg(ModAssoc

A (C) {A′} → Alg(M) ×Alg(C) {A′0} is

an equivalence of ∞-categories (and therefore carries final objects to final objects). Since B is a

trivial algebra object of D, the forgetful functor Alg(ModAssoc
B (D))→ Alg(D) is an equivalence of

∞-categories. It will therefore suffice to show that for each B′ ∈ Alg(ModAssoc
B (D)) having image

B′0 in Alg(D), the induced map

Alg(ModAssoc
M (M))×Alg(ModAssoc

A (C))×Alg(ModAssoc
B (D)) {(A

′, B′)} → Alg(M)×Alg(C)×Alg(D) {(A′0, B′0)}

is a homotopy equivalence of Kan complexes. Using Corollary 3.4.1.7, we can identify the domain of

this map with Alg(M)M/×Alg(C)A/×Alg(D)B/ {(A
′, B′)}. We will conclude the proof by showing that

M ∈ Alg(M) is p-initial, where p : Alg(M)→ Alg(C)×Alg(D) denotes the projection. Since p is a

right fibration, we are reduced to showing that that the Kan complex Alg(M)×Alg(C)×Alg(D){(A,B)}
is contractible. This Kan complex is given by a homotopy fiber of the map φ : Alg(N) → Alg(C),

where N = M×D{B}. We now observe that φ is a categorical equivalence, since the monoidal

functor N → C is a categorical equivalence (by virtue of the fact that it is a right fibration whose

fibers are contractible Kan complexes).

Notation 5.2.2.31. Let λ⊗ : M⊗ → C⊗×Assoc⊗ D
⊗ be a pairing of monoidal∞-categories. If M ∈

Alg(M) has image (A,B) ∈ Alg(C)×Alg(D), we let λM denote the induced pairing ModAssoc
M (M)→

ModAssoc
A (C)×ModAssoc

B (D).
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Lemma 5.2.2.32. Let λ⊗ : M⊗ → C⊗×Assoc⊗ D
⊗ be a pairing of monoidal ∞-categories, and let

M ∈ Alg(M) be an object having image (A,B) ∈ Alg(C) × Alg(D), where B is a trivial algebra

object of D. Let F : M → ModAssoc
M (M) ' MBModM (M) be a left adjoint to the forgetful functor,

given by V 7→ M ⊗ V ⊗M (see Corollary 4.3.3.14). Then F carries left universal objects of M

(with respect to the pairing λ : M → C×D) to left universal objects of ModAssoc
M (M) (with respect

to the pairing λM : ModAssoc
M (M)→ ModAssoc

A (C)×ModAssoc
B (D)).

Proof. Let F ′ : C → ModAssoc
A (C) and F ′′ : D → ModAssoc

B (D) be left adjoints to the forgetful

functors G′ : ModAssoc
A (C) → C and G′′ : ModAssoc

B (D) → D. Modifying F by a homotopy if

necessary, we may assume that the diagram

M
F //

��

ModAssoc
M (M)

��
C×D

F ′×F ′′//ModAssoc
A (C)×ModAssoc

B (D)

is commutative. For each C ∈ C, F induces a functor

f : M×C{C} → ModAssoc
M (M)×ModAssoc

A (C) {F
′(C)}.

We wish to show that f preserves final objects. In fact, we will show that f is an equivalence of

∞-categories. Note first that f has a right adjoint g, given by composing the forgetful functor

ModAssoc
M (M) ×ModAssoc

A (C) {F ′(C)} → M×C{(G′ ◦ F ′)(C)} with the pullback functor M×C{(G′ ◦
F ′)(C)} →M×C{C} associated to the unit map C → (G′ ◦ F ′)(C). Let u : id→ g ◦ f be the unit

map. For every object V ∈M×C{C} having image D ∈ D, the unit map uV : V → (g ◦ f)(V ) has

image in D equivalent to the unit map D → (G′′ ◦ F ′′)(D) ' B ⊗D ⊗B in D. Since B is a trivial

algebra, we conclude that the image of uV in D is an equivalence. Because the map M×C{C} → D

is a right fibration, we conclude that uV is an equivalence. A similar argument shows that the

counit map v : f ◦ g → id is an equivalence of functors, so that g is homotopy inverse to f as

desired.

Lemma 5.2.2.33. Let λ⊗ : M⊗ → C⊗×Assoc⊗ D
⊗ be a pairing of monoidal ∞-categories and let

M ∈ Alg(M) be an object having image (A,B) ∈ Alg(C) × Alg(D), where B is a trivial algebra

object of D. Let 1 denote the unit object of M (which we regard as a trivial algebra object of M)

and suppose we are given an augmentation ε : M → 1. Then the induced map

M ' ModAssoc
1 (M)→ ModAssoc

M (M)

carries right universal objects of M (with respect to the pairing λ) to right universal objects of

ModAssoc
M (M) (with respect to the pairing λM ).
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Proof. For each object D ∈ D, let MD denote the fiber M×D{D}. Then each MD can be regarded

as an ∞-category bitensored over M1D
, where 1D denotes the unit object of D. Moreover, we have

a canonical equivalence

ModAssoc
M (M)×ModAssoc

1D
(D) {D} ' MBModM (MD).

It will therefore suffice to show that the canonical map

MD ' 1BMod1(MD)→ MBModM (MD)

preserves final objects. This follows from Corollary 4.3.3.3.

Corollary 5.2.2.34. Let λ⊗ : M⊗ → C⊗×Assoc⊗ D
⊗ be a pairing of monoidal ∞-categories, let

M be an algebra object of M having image (A,B) ∈ Alg(C) × Alg(D). Assume that B is a trivial

algebra object of D, that the underlying pairing of ∞-categories λ : M → C×D is right repre-

sentable, and that there exists an augmentation ε : M → 1 on M . Then the induced pairing

λM : ModAssoc
M (M) → ModAssoc

A (C) × ModAssoc
B (D) is right representable. Moreover, the duality

functor D′λM can be identified with the composition

ModAssoc
B (D) ' D

D′λ→ C→ ModAssoc
A (C),

where the last map is induced by the augmentation ε.

Proof. Combine Lemma 5.2.2.33 with Proposition 5.2.1.17.

Example 5.2.2.35. Let C be a monoidal ∞-category with unit object 1, and consider the pairing

of monoidal ∞-categories

λ⊗ : TwArr(C)⊗ → C⊗×Assoc⊗(Cop)⊗

of Example 5.2.2.23. Let A be an augmented algebra object of C. Then we can identify A with an

algebra object of the monoidal ∞-category C/1 ' TwArr(C) ×Cop {1}; let M denote the image of

this algebra object in TwArr(C). It follows from Corollary 5.2.2.34 that the pairing

λM : ModAssoc
M (TwArr(C))→ ModAssoc

A (C)×ModAssoc
1 (Cop)

is right representable, and that the associated duality functor

D′λM : C ' ModAssoc
1 (Cop)op → ModAssoc

A (C)

is homotopic to the forgetful functor determined by the augmentation ε.

We will need the following general fact about limits of ∞-categories:
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Proposition 5.2.2.36. Let C be an ∞-category and χ : C/ → Cat∞ a functor, classifying a

coCartesian fibration q : D→ C/. Then χ is a limit diagram if and only if the following conditions

are satisfied:

(a) Let v denote the cone point of C/, and for each object C ∈ C let eC : Dv → DC be the

functor induced by the unique morphism fC : v → C in C/. Then the functors eC are jointly

conservative: that is, if α is a morphism in Dv such that each eC(α) is an equivalence in DC ,

then α is an equivalence in Dv.

(b) Let X ∈ FunC/(C,D) be a functor which carries each morphism in C to a q-coCartesian

morphism in D. Then X can be extended to a q-limit diagram X ∈ FunC/(C
/,D). Moreover,

X carries each fC to a q-coCartesian morphism in D.

Moreover, if these conditions are satisfied, then a diagram X ∈ FunC/(C
/,D) is a q-limit diagram

whenever it carries each morphism in C/ to a q-coCartesian morphism in D.

Proof. Let E denote the full subcategory of FunC/(C,D) spanned by those functors which carry each

morphism in C to a q-coCartesian morphism in D, let E be the full subcategory of FunC/(C
/,D)

spanned by those functors which carry each morphism in C/ to a q-coCartesian morphism in D,

and let E
′

be the full subcategory of FunC/(C
/,D) spanned by those functors X which are q-limit

diagrams having the property that X|C belongs to E. Using Proposition HTT.3.3.3.1 , we see that χ

is a limit diagram if and only if the restriction functor r : E→ E is an equivalence of ∞-categories.

Suppose first that this condition is satisfied. Assertion (a) is then obvious (it is equivalent to the

requirement that the functor r is conservative). We will show that the last assertion is satisfied:

that is, we have an inclusion E ⊆ E
′
. It follows that every X ∈ E can be extended to a q-limit

diagram, so that (by Proposition HTT.4.3.2.15 ) the restriction functor E
′ → E is a trivial Kan

fibration. A two-out-of-three argument then shows that the inclusion E ⊆ E
′

is an equivalence of

∞-categories, so that E = E
′
. This proves (b).

To prove that E ⊆ E
′
, consider an arbitrary diagram X ∈ E and let X = X|C. To show

that X is a q-limit diagram, it suffices to show that for every object D ∈ Dv the canonical map

φ : {D} ×D D/X → {D} ×D D/X is a homotopy equivalence of Kan complexes. Choose a diagram

Y ∈ E with Y (v) = D (such a diagram exists and is essentially unique, by virtue of Proposition

HTT.4.3.2.15 ), and let Y = Y |C. Then φ is equivalent to the restriction map

MapE(Y ,X)→ MapE(Y,X),

which is a homotopy equivalence by virtue of our assumption that the functor r is fully faithful.

Now suppose that conditions (a) and (b) are satisfied; we wish to prove that r is an equivalence

of∞-categories. Condition (b) guarantees that E
′ ⊆ E and, by virtue of Proposition HTT.4.3.2.15 ,

that r|
E
′ is a trivial Kan fibration. To complete the proof, it suffices to show that the reverse

inclusion E ⊆ E
′
holds. Fix X ∈ E, let X = X|C, and let X

′ ∈ E
′
be a q-limit of the diagram X. We
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have a canonical map α : X → X
′

which induces the identity map idX : X → X in E. To complete

the proof, it suffices to show that α is an equivalence; that is, that the map αv : X(v) → X
′
(v) is

an equivalence in the ∞-category Dv. This is an immediate consequence of assumption (a).

Corollary 5.2.2.37. Let C be an ∞-category and suppose we are given a natural transformation

ρ : χ→ χ′ between functors χ, χ′ : C/ → Cat∞. Assume that:

(1) The functor χ′ is a limit diagram in Cat∞.

(2) For each object C ∈ C/, the functor ρ(C) : χ(C)→ χ′(C) is conservative.

(3) Let v denote the cone point of C/. Then the ∞-category χ(v) admits C-indexed limits, and

the functor ρ(v) : χ(v)→ χ′(v) preserves C-indexed limits.

(4) For every morphism C → C ′ in C/, the diagram of ∞-categories

χ(C) // χ(C ′)

��
χ′(C) // χ′(C ′)

is right adjointable.

Then χ is also a limit diagram in Cat∞.

Proof. Let q : D→ C/ and q′ : D′ → C/ be coCartesian fibrations classified by χ and χ′, respectively,

so that ρ determines a commutative diagram

D
F //

q

  

D′

q′~~
C/

where F carries q-coCartesian morphisms to q′-coCartesian morphisms. We will complete the proof

by showing that q satisfies conditions (a) and (b) of Proposition 5.2.2.36. To prove (a), suppose that

α : D → D′ is a morphism in the ∞-category χ(v) whose image in χ(C) is an equivalence, for each

C ∈ C. We wish to show that α is an equivalence. Note that the image of α under the composite

functor χ(v)→ χ′(v)→ χ′(C) is an equivalence for each C ∈ C. Since χ′ satisfies condition (a) of

Proposition 5.2.2.36, we conclude that the image of α in χ′(v) is an equivalence, so that α is an

equivalence by virtue of assumption (2).

We now prove (b). Let X ∈ FunC/(C,D) be a functor which carries each morphism in C to a

q-coCartesian morphism in D. It follows from assumption (4) that q and q′ are Cartesian fibrations

and that the functor F carries q-Cartesian morphisms to q′-Cartesian morphisms. Combining

assertion (3) with Propositions HTT.4.3.1.9 and HTT.4.3.1.10 , we deduce that X can be extended
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to a q-limit diagram X ∈ FunC/(C
/,D) and that the image F ◦ X ∈ FunC/(C

/,D′) carries every

morphism in C/ to a q′-coCartesian morphism in D′. It then follows from (2) that X carries each

morphism in C/ to a q-coCartesian morphism in D.

Remark 5.2.2.38. In the situation of Corollary 5.2.2.37, suppose that the maps q and q′ are

Cartesian fibrations and that the functor F carries q-Cartesian morphisms of D to q′-Cartesian

morphisms of D′.

(c′) The functor ρ(v) : χ(v)→ χ′(v) preserves limits of diagrams indexed by the ∞-category C.

Corollary 5.2.2.39. Let f : C → C be a right fibration of ∞-categories, classified by a map

χ : Cop → S and suppose we are given a diagram p : K. → C. The following conditions are

equivalent:

(1) For every commutative diagram σ :

K

��

q // C

f
��

K. p //

q
>>

C

there exists an extension q as indicated, which is an f -colimit diagram.

(2) The restriction χ|(K.)op is a limit diagram in S.

If p is a colimit diagram in C, then these conditions are equivalent to the following:

(3) For every diagram σ as in (1), the diagram q : K → C can be extended to a colimit diagram

in C, whose image in C is also a colimit diagram.

Proof. The equivalence of (1) and (2) follows from Proposition 5.2.2.36, and the equivalence of (1)

and (3) from Proposition HTT.4.3.1.5 .

Lemma 5.2.2.40. Let λ⊗ : M⊗ → C⊗×Assoc⊗ D
⊗ be a pairing of monoidal ∞-categories, and let

M ∈ Alg(M) be an object having image (A,B) ∈ Alg(C)×Alg(D). Assume that:

(1) The object B ∈ Alg(D) is a trivial algebra in D.

(2) The pairing λ : M→ C×D is left representable.

(3) The ∞-category D admits totalizations of cosimplicial objects.

Then the induced pairing λM : ModAssoc
M (M)→ ModAssoc

A (C)×ModAssoc
B (D) is left representable.
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Proof. Fix an object C ∈ ModAssoc
A (C); we wish to show that C can be lifted to a left universal

object of ModAssoc
M (M). Let g : ModAssoc

A (C) ' ABModA(C) → C denote the forgetful functor,

and let f denote its left adjoint. Example 4.7.3.9 implies that g exhibits ModAssoc
A (C) as monadic

over C. Invoking Proposition 4.7.3.14, we deduce that there exists a g-split simplicial object C• of

ModAssoc
A (C) having colimit C, where each Cn belongs to the essential image of the functor f .

Fix an object D ∈ D, let MD denote the fiber product M×D{D}, and consider the induced right

fibration θ : MD → C. Condition (1) implies that D lifts uniquely to an object D ∈ ModAssoc
B (D).

Set N = ModAssoc
M (M) ×ModAssoc

B (D) {D}, so that the projection map N → ModAssoc
A (C) is a right

fibration classified by a map χD : ModAssoc
A (C)op → S. We claim that the canonical map χD(C)→

lim−→χD(C•) is a homotopy equivalence.

To prove this, it will suffice (Corollary 5.2.2.39) to show that for every simplicial object N• of

N lifting C•, there exists a geometric realization |N•| which is preserved by the forgetful functor

q : N → ModAssoc
A (C). Let p : N → MD denote the forgetful functor. Since q′ : MD → C is a right

fibration, it follows from Corollary 4.7.2.11 that p(N•) is a split simplicial object of MD. Since N

can be identified with an ∞-category of bimodule objects of MD, Variant 4.7.2.6 implies that N•
admits a colimit N in N which is preserved by the functor p. Because p(N•) is split, we conclude

that the colimit of N• is preserved by q′ ◦p ' p′ ◦ q. Applying Corollary 4.7.2.11 again, we conclude

that the colimit of N• is preserved by q.

The pairing λM is classified by a functor χ′ : ModAssoc
A (C)op → Fun(ModAssoc

B (D)op, S). The

preceding arguments show that χ′(C) ' lim←−χ
′(C•). We wish to prove that χ′(C) is representable.

Using condition (3), we are reduced to proving that each χ′(Cn) is a representable functor. This

follows immediately from (2) together with Lemma 5.2.2.32.

Corollary 5.2.2.41. Let C be a monoidal ∞-category which admits geometric realizations of sim-

plicial objects, let A be an augmented associative algebra object of C, and let M ∈ Alg(TwArr(C))

be as in Example 5.2.2.35. Then the pairing

λM : ModAssoc
M (TwArr(C))→ ModAssoc

A (C)×ModAssoc
1 (Cop)

is left representable. Moreover, the associated duality functor

DλM : ModAssoc
A (C)→ ModAssoc

1 (Cop)op ' C

is left adjoint to the forgetful functor C → ModAssoc
A (C) induced by the augmentation on A. In

particular, there is a canonical equivalence DλM (A) ' Bar(A) in the ∞-category C.

Proof. Combine Lemma 5.2.2.40 with Example 5.2.2.35.

Proof of Proposition 5.2.2.27. Let A ∈ Alg(C); we wish to show that there is a left universal object

of Alg(M) lying over A. Let B be a trivial algebra object of D, so that condition (1) implies that

the right fibration M×D{B} → C is an equivalence of (monoidal) ∞-categories. It follows that the
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pair (A,B) can be lifted to an object M ∈ Alg(M) in an essentially unique way. Using Proposition

5.2.2.30, we are reduced to proving that there exists a left universal object of Alg(ModAssoc
M (M))

lying over A ∈ Alg(ModAssoc
A (C)). Since A is the unit object of ModAssoc

A (C), it suffices to lift A

to a left universal object of ModAssoc
M (M) (Proposition 5.2.2.28). The existence of such a lift now

follows from Lemma 5.2.2.40.

Proof of Theorem 5.2.2.17. Let C be a monoidal ∞-category and let Alg(λ) : Alg(TwArr(C)) →
Alg(C)×Alg(Cop) be the canonical map. Assertion (1) of the Theorem follows from Remark 5.2.2.26.

We will give the proof of assertion (2); assertion (3) will then follow by symmetry. Assume that the

unit object 1 ∈ C is final and that C admits geometric realizations of simplicial objects. Then the

pairing of monoidal ∞-categories λ⊗ : TwArr(C)⊗ → C⊗×Assoc⊗(Cop)⊗ satisfies the hypotheses of

Proposition 5.2.2.27, so that Alg(λ) is left representable. In particular, we have a duality functor

DAlg(λ) : Alg(C)op → Alg(Cop).

Let A be an algebra object of C. Since the unit object 1 ∈ C is final, there exists an essentially

unique augmentation ε : A→ 1. Let M ∈ Alg(TwArr(C)) be as in Example 5.2.2.35. The proof of

Proposition 5.2.2.27 shows that, as an object of the ∞-category C, we can identify DAlg(λ)(A) with

DλM (A), which is canonically equivalent to Bar(A) by virtue of Corollary 5.2.2.41.

5.2.3 Iterated Bar Constructions

Let C be a symmetric monoidal ∞-category which admits geometric realizations of simplicial ob-

jects. In §5.2.2, we saw that the constructionA 7→ Bar(A) determines a functor from the∞-category

of augmented algebra objects of C to the ∞-category of augmented coalgebra objects of C. In this

section, we will prove analogous results for Ek-algebras for 1 ≤ k < ∞. Our starting point is the

following generalization of Proposition 5.2.2.27:

Theorem 5.2.3.1. Let 1 ≤ k < ∞ and let λ⊗ : M⊗ → C⊗×E⊗k D⊗ be a pairing of Ek-monoidal

∞-categories. Assume that:

(1) If 1 denotes the unit object of D, then the right fibration M×D{1} → C is a categorical

equivalence.

(2) The underlying pairing λ : M→ C×D is left representable.

(3) The ∞-category D admits totalizations of cosimplicial objects.

Then the induced pairing Alg/Ek(λ) : Alg/Ek(M)→ Alg/Ek(C)×Alg/Ek(D) is left representable.

One can attempt to prove this using the strategy outlined in §5.2.2; the main obstacle is in

proving that ∞-categories of the form ModEkA (C) are monadic over C. We will adopt a different

approach which avoids this issue, using the Additivity Theorem to reduce to the case k = 1.
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Remark 5.2.3.2. If the unit object of D is initial, then Theorem 5.2.3.1 is also valid when k = 0;

we leave the proof to the reader.

Proof of Theorem 5.2.3.1. We proceed by induction on k. When k = 1, the desired result follows

from Proposition 5.2.2.27 (see Example 5.1.0.7). Let us therefore assume that k > 1. Consider the

bifunctor of ∞-operads E⊗k−1×E
⊗
1 → E⊗k studied in §5.1.2. Using Remark 5.2.2.26, we see that λ⊗

induces a pairing of E1-monoidal ∞-categories

µ⊗ : AlgEk−1/Ek(M)⊗ → AlgEk−1/Ek(C)⊗ ×E⊗1 AlgEk−1/Ek(D)⊗.

Applying the inductive hypothesis, we deduce that the underlying pairing µ is left representable.

Assertion (1) implies that the map M×D{1} → C is an equivalence of Ek-monoidal ∞-categories

and therefore induces an equivalence

AlgEk−1/Ek(M)×AlgEk−1/Ek
(D) {1} → AlgEk−1/Ek(C).

Using assumption (2) and Corollary 3.2.2.5, we deduce that AlgEk−1/Ek(D) admits totalizations of

cosimplicial objects. Applying Proposition 5.2.2.27 (and Example 5.1.0.7) to µ⊗, we deduce that

the pairing

Alg/E1
(AlgEk−1/Ek(M))→ Alg/E1

(AlgEk−1/Ek(C))×Alg/E1
(AlgEk−1/Ek(D))

is left representable. The desired result now follows from Theorem 5.1.2.2.

Specializing to the case where M is given by the twisted arrow construction on C, we obtain

the following:

Corollary 5.2.3.3. Let C be an Ek-monoidal∞-category. Assume that C admits geometric realiza-

tions of simplicial objects and that the unit object 1 ∈ C is final. Then the pairing of Ek-monoidal

∞-categories

λ⊗ : TwArr(C)⊗ → C⊗×E⊗k (Cop)⊗

of Example 5.2.2.23 induces a left representable pairing

Alg/Ek(λ) : Alg/Ek(TwArr(C))→ Alg/Ek(C)×Alg/Ek(Cop).

Notation 5.2.3.4. In the situation of Corollary 5.2.3.3, we will denote the duality functor

DAlg/Ek
(λ) by Bar(k) : Alg/Ek(C)→ Alg/Ek(Cop)op, and refer to it as the k-fold bar construction.

Remark 5.2.3.5. The inductive strategy used to prove Theorem 5.2.3.1 does not apply directly

to Corollary 5.2.3.3, because the intermediate pairings

AlgEk−1/Ek(TwArr(C))→ AlgEk−1/Ek(C)×AlgEk−1/Ek(Cop)

are usually not perfect.
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Remark 5.2.3.6. Let C be an Ek-monoidal ∞-category which admits totalizations of cosimplicial

objects for which the unit object 1 ∈ C is initial. Then the dual form of Corollary 5.2.3.3 implies

that the pairing

Alg/Ek(λ) : Alg/Ek(TwArr(C))→ Alg/Ek(C)×Alg/Ek(Cop)

is right representable, and therefore induces a duality functor

Cobar(n) : Alg/Ek(Cop)op → Alg/Ek(C)

which we will refer to as the k-fold cobar construction If C admits both totalizations of cosimplicial

objects and geometric realizations of simplicial objects and if the unit object of C is both initial

and final, then the k-fold bar and cobar construction determine an adjunction

Alg/Ek(C)
Bar(k)

//Alg/Ek(Cop)op

Cobar(k)
oo .

In the situation of Theorem 5.2.3.1, we can remove hypothesis (1) by passing to reduced pairings.

Combining Theorem 5.2.3.1 with Proposition 5.2.4.20 and Remark 5.2.4.16, we obtain the following:

Corollary 5.2.3.7. Let 0 < k < ∞ and let λ⊗ : M⊗ → C⊗×E⊗k D⊗ be a pairing of Ek-monoidal

∞-categories. Assume that the underlying pairing λ : M → C×D is left representable and that D

admits totalizations of cosimplicial objects. Then the induced pairing

Alg/Ek(λred) : Alg/Ek(Mred)→ Alg/Ek(Cred)×Alg/Ek(Dred)

is left representable.

Remark 5.2.3.8. In the situation of Corollary 5.2.3.7, the forgetful functor Alg/Ek(Mred) →
Alg/Ek(M) is an equivalence of ∞-categories (Example 5.2.4.18). Consequently, we identify Ek-
algebra objects of M with triples (A,B, η) where A ∈ Alg/Ek(Cred), B ∈ Alg/Ek(Dred), and η : B →
DAlg/Ek

(λred)(A) is a morphism in the ∞-category Alg/Ek(Dred).

Example 5.2.3.9. Let C be an Ek-monoidal ∞-category with a unit object 1. We will regard 1

as a trivial algebra object of both C and Cop, and we define

Algaug
/Ek

(C) = Alg/Ek(C)/1 Algaug
/Ek

(Cop) = Alg/Ek(Cop)/1,

so that Algaug
/Ek

(C) and Algaug
/Ek

(Cop) are equivalent to the ∞-categories of Ek-algebra objects of

C1/ /1 and C
op
1/ /1, respectively. Applying the construction of Example 5.2.4.18 to the pairing of

Ek-monoidal ∞-categories

λ⊗ : TwArr(C)⊗ → C⊗×E⊗k (Cop)⊗,
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we obtain the reduced pairing

TwArr(C1/ /1)→ C1/ /1×C
op
1/ /1

(see Example 5.2.4.17). Passing to algebra objects, we obtain a diagram

Alg/Ek(TwArr(C)) ' Alg/Ek(TwArr(C1/ /1))→ Alg/Ek(C1/ /1)×Alg/Ek(Cop
1/ /1) ' Algaug

/Ek
(C)×Algaug

/Ek
(Cop)

where second map is a pairing of ∞-categories. Using Corollary 5.2.3.7, we see that this pairing

is left representable if C admits geometric realizations of simplicial objects and right representable

if C admits totalizations of cosimplicial objects. We will denote the associated duality functors (if

they exist) by

Bar(k) : Algaug
/Ek

(C)op → Algaug
/Ek

(Cop)

Cobar(k) : Algaug
/Ek

(Cop)→ Algaug
/Ek

(C)op.

In good cases, one can obtain the k-fold bar construction Bar(k) as a k-fold composition of

ordinary bar constructions. To see this, we first need a remark on the functoriality of Theorem

5.2.3.1:

Proposition 5.2.3.10. Let 0 < k < ∞ and suppose we are given pairings of Ek-monoidal ∞-

categories

λ⊗ : M⊗ → C⊗×E⊗k D⊗ λ′
⊗

: M′
⊗ → C⊗×E⊗k D

′⊗.

Let α : C⊗ → C′
⊗

, β : D⊗ → D′
⊗

and γ : M⊗ →M′
⊗

be lax Ek-monoidal functors which fit into a

commutative diagram

M⊗
γ //

λ⊗

��

M′
⊗

λ′⊗

��

C⊗×E⊗k D⊗
α×β // C′

⊗ ×E⊗k D′
⊗

commutative. Assume that:

(1) If 1D and 1D′ are the unit objects of D and D′, respectively, then the right fibrations

M×D{1D} → C and M′×D′{1D′} → C′ are trivial Kan fibrations.

(2) The pairings λ : M→ C×D and λ′ : M′ → C′×D′ are left representable.

(3) The ∞-categories D and D′ admit totalizations of cosimplicial objects.

(4) The lax Ek-monoidal functor α is monoidal and β preserves unit objects.

(5) The underlying functor D→ D′ preserves totalizations of cosimplicial objects.
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(6) The underlying morphism of pairings

M //

λ
��

M′

λ′
��

C×D // C′×D′

is left representable: that is, γ carries left universal objects of M to left universal objects of

M′.

Then the induced morphism of pairings

Alg/Ek(M) //

Alg/Ek
(λ)

��

Alg/Ek(M′)

Alg/Ek
(λ′)

��
Alg/Ek(C)×Alg/Ek(D) // Alg/Ek(C′)×Alg/Ek(D′)

is left representable. In particular, the diagram

Alg/Ek(C)op //

DAlg/Ek
(λ)

��

Alg/Ek(C′)op

DAlg/Ek
(λ′)

��
Alg/Ek(D) // Alg/Ek(D′)

commutes up to canonical homotopy (see Proposition 5.2.1.17).

Example 5.2.3.11. Let f⊗ : C⊗ → C′⊗ be an Ek-monoidal functor between Ek-monoidal ∞-

categories. Assume that the underlying ∞-categories C and C′ admit geometric realizations, that

the underlying functor C→ C′ preserves geometric realizations, and that the unit objects of C and

C′ are final. Then f⊗ induces a morphism between pairings of monoidal ∞-categories

TwArr(C)⊗

λ⊗

��

// TwArr(C′)⊗

λ′⊗

��
C⊗×E⊗k (Cop)⊗ // C′⊗×E⊗k (C′ op)⊗

and therefore a morphism of pairings

Alg/Ek(TwArr(C)) //

Alg/Ek
(λ)

��

Alg/Ek(TwArr(C′))

Alg/Ek
(λ′)

��
Alg/Ek(C)×Alg/Ek(Cop) // Alg/Ek(C′)×Alg/Ek(C′ op).
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Theorem 5.2.2.17 shows that the pairings Alg/Ek(λ) and Alg/Ek(λ′) are left representable, and

Proposition 5.2.3.10 shows that the functor Alg/Ek(TwArr(C))→ Alg/Ek(TwArr(C′)) preserves left

universal objects. Using Proposition 5.2.1.17 we see that the diagram

Alg(C)op Bar(k)
//

��

Alg(Cop)

��
Alg(C′)op Bar(k)

//// Alg(C′ op)

commutes up to canonical homotopy.

If we assume that C and C′ admit totalizations of cosimplicial objects, that the underlying

functor C→ C′ preserves totalizations of cosimplicial objects, and that the unit objects of C and C′

are initial, then the same arguments show that the diagram

Alg/Ek(Cop)
Cobar(k)

//

��

Alg/Ek(C)op

��
Alg/Ek(C′ op)

Cobar(k)
//// Alg/Ek(C′)op

commutes up to canonical homotopy.

Example 5.2.3.12. Let 0 < k, k′ <∞ and let C be an Ek+k′-monoidal ∞-category. Suppose that

C admits geometric realizations of simplicial objects, that the unit object of C is final, and that the

tensor product ⊗ : C×C→ C preserves geometric realizations of simplicial objects. It follows that

AlgEk/Ek+k′
(C) admits geometric realizations of simplicial objects and that the forgetful functor

AlgEk/Ek+k′
(C) → C preserves geometric realizations of simplicial objects (Proposition 3.2.3.1).

Applying Example 5.2.3.11, we conclude that θ is compatible with k′-fold bar constructions: that

is, the diagram of ∞-categories

Alg/Ek′ (AlgEk/Ek+k′
(C))op Bar(k′)

//

��

Alg/Ek′ (AlgEk/Ek+k′
(C)op)

��
Alg/Ek′ (C)op Bar(k′)

// Alg/Ek′ (C
op)

commutes up to canonical homotopy.

We can summarize the situation informally as follows: ifA ∈ Alg/Ek+k′
(C) ' Alg/Ek′ (AlgEk/Ek+k′

(C))

is an Ek+k′-algebra object of C and Bar(k′)(A) denotes the Ek′-algebra object of Cop obtained by

applying the bar construction to the underlying Ek′-algebra of A, then Bar(k′)(A) can be regarded

Ek′-coalgebra object of AlgEk/Ek+k′
(C).
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Example 5.2.3.13. Let 0 < k < ∞ and let λ⊗ : M⊗ → C⊗×E⊗k D⊗ be a pairing of Ek-monoidal

∞-categories. Assume that the underlying pairing λ : M→ C×D is left representable, and consider

the diagram σ :

TwArr(C)⊗ //

µ⊗

��

M⊗

λ⊗

��
C⊗×Assoc⊗(Cop)⊗ // C⊗×Assoc⊗ D

⊗

given in Variant 5.2.2.24. The underlying map of pairings

TwArr(C) //

µ

��

M

λ
��

C×Cop // C×D

is left representable by construction. Assume that the following further conditions are satisfied:

(i) The ∞-category C admits geometric realizations of simplicial objects.

(ii) The ∞-category D admits totalizations of cosimplicial objects.

(iii) The duality functor Dλ : Cop → D preserves totalizations of cosimplicial objects (this condi-

tion is automatic if λ is also right representable).

(iv) Let 1C and 1D be the unit objects of C and D, respectively. Then 1C and 1D are final objects

of C and D, and the right fibrations M×C{1C} → D and M×D{1D} → C are categorical

equivalences.

It follows from (iv) that the duality functor Dλ carries the unit object of C to the unit object of

D, so that the hypotheses of Proposition 5.2.3.10 are satisfied. We conclude that the morphism of

pairings

Alg/Ek(TwArr(C)) //

Alg/Ek
(µ)

��

Alg/Ek(M)

Alg/Ek
(λ)

��
Alg/Ek(C)×Alg/Ek(Cop) // Alg/Ek(C)×Alg/Ek(D)

is left representable. In particular, the duality functor DAlg/Ek
(λ) : Alg/Ek(C)op → Alg/Ek(D) is

given by the composition

Alg/Ek(C)op Bar(k)

−→ Alg/Ek(Cop)
φ→ Alg/Ek(D)

where Bar(k) denotes the k-fold bar construction and φ is given by composition with the lax Ek-
monoidal functor (Cop)⊗ → D⊗ of Remark 5.2.2.25 (given on objects C 7→ Dλ(C)).



846 CHAPTER 5. LITTLE CUBES AND FACTORIZABLE SHEAVES

Example 5.2.3.14. Let 0 < k, k′ <∞ and let C be an Ek+k′-monoidal∞-category. Assume that C

admits geometric realizations of simplicial objects, that the tensor product ⊗ : C×C→ C preserves

geometric realizations of simplicial objects, and that the unit object of C is final. Then the k-fold

bar construction determines a lax Ek′-monoidal functor from AlgEk/Ek+k′
(C)op to AlgEk/Ek+k′

(Cop)

(Remark 5.2.2.25). Applying Example 5.2.3.13, we see that the (k + k′)-fold bar construction is

given by the composition

Alg/Ek+k′
(C)op ' Alg/Ek′ (AlgEk/Ek+k′

(C))op

Bar(k′)
→ Alg/Ek′ (AlgEk/Ek+k′

(C)op)

Bar(k)

→ Alg/Ek′ (AlgEk/Ek+k′
(Cop))

Here Bar(k′) indicates the k′-fold bar construction associated to the Ek′-monoidal ∞-category

AlgEk/Ek+k′
(C), which is compatible with the k′-fold bar construction on C by virtue of Exam-

ple 5.2.3.12.

Proof of Proposition 5.2.3.10. As in the proof of Theorem 5.2.3.1, we will proceed by induction on

k. Assume first that k > 1. Passing to Ek−1-algebras, we obtain a diagram of E1-monoidal pairings

AlgEk−1/Ek(M)⊗ //

AlgEk−1/Ek
(λ)⊗

��

AlgEk−1/Ek(M′)⊗

AlgEk−1/Ek
(λ′)⊗

��
AlgEk−1/Ek(C)⊗ ×E⊗1 AlgEk−1/Ek(D)⊗ // AlgEk−1/Ek(C′)⊗ ×E⊗1 AlgEk−1/Ek(D′)⊗.

By virtue of Theorem 5.1.2.2 and the inductive hypothesis, it will suffice to show that this diagram

satisfies the hypotheses of Proposition 5.2.3.10. Assumptions (1), (2), and (4) follow immediately

from the corresponding assumptions on our original morphism of pairings, (3) and (5) follow from

Corollary 3.2.2.5, and assumption (6) follows from the inductive hypothesis.

It remains to treat the case k = 1. In what follows, we will indulge a slight abuse of notation by

identifying E⊗1 with the associative ∞-operad and work with monoidal ∞-categories throughout.

We wish to show that the functor Alg(M)→ Alg(M′) determined by γ carries left universal objects

to left universal objects. Fix A ∈ Alg(C), and let B ∈ Alg(D) be a trivial algebra so that (by

virtue of assumption (1)) the pair (A,B) can be lifted to an object M ∈ Alg(M) in an essentially

unique way. Let A′ ∈ Alg(C′), B′ ∈ Alg(D′), and M ′ ∈ Alg(M′) be the images of A, B, and M ;

condition (4) guarantees that B′ is a trivial algebra object of D′. Using Propositions 5.2.2.28 and

5.2.2.30, we see that it suffices to show that the induced functor MBModM (M)→ M ′BModM ′(M
′)

preserves left universal objects. In other words, we must show that for C ∈ ABModA(C) having

image C ′ ∈ A′BModA′(C
′), the canonical map uC : β(DλM (C)) → Dλ′

M′
(C ′) is an equivalence in

D′. Let θ : ABModA(C) → C be the forgetful functor and choose a θ-split simplicial object C•
with C ' |C•| such that each Cn belongs to the essential image of the left adjoint of θ. Let C ′•
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be the image of C• in A′BModA′(C
′) and let θ′ : A′BModA′(C

′)→ C′ be the forgetful functor. The

simplicial object θ′(C ′•) = α(θ(C•)) is split with colimit θ′(C ′) ' α(θ(C)). It follows from Variant

4.7.2.6 that the canonical map |C ′•| → C ′ is an equivalence. Moreover, assumption (4) implies that

each C ′n lies in the essential image of the left adjoint to θ′. Arguing as in proof of Lemma 5.2.2.40,

we conclude that the maps

DλMC → lim←−DλMC• Dλ′
M′
C ′ → lim←−Dλ′

M′
C ′•

are equivalences. Combining this with (5), we conclude that uC is the totalization of the diagram

[n] 7→ uCn . It will therefore suffice to prove that uCn is an equivalence for each n ≥ 0. We

may therefore replace C by Cn and thereby reduce to the case where C = φ(C), where φ : C →
ABModA(C) is a left adjoint to θ. Let φ′ : C′ → A′BModA′(C

′) be a left adjoint to θ′, so that

condition (4) implies that C ′ ' φ′(C ′) where C
′
= α(C). Using Lemma 5.2.2.32, we are reduced to

showing that the induced map β(Dλ(C)) → Dλ′(C
′
) is an equivalence, which follows immediately

from (6).

We conclude this section by establishing a generalization of Corollary 5.2.2.13, which describes

the result of applying an iterated bar construction to a free algebra.

Proposition 5.2.3.15. Let 0 < k <∞ and let C be an Ek-monoidal ∞-category. Assume that:

(a) The initial object of C is both initial and final.

(b) For every countable weakly contractible simplicial set K, the ∞-category C admits K-indexed

colimits.

(c) For every countable weakly contractible simplicial set K, the tensor product ⊗ : C×C → C

preserves K-indexed colimits separately in each variable.

Then:

(1) The forgetful functor Alg/Ek(C)→ C admits a left adjoint Free : C→ Alg/Ek(C).

(2) The composite functor

C
Free→ Alg/Ek(C)

Bar(k)

→ Alg/Ek(Cop)op → C

is equivalent to the iterated suspension functor C 7→ ΣkC.

Proof. If k = 1, the desired result follows from Corollary 5.2.2.13 (see Remark 5.2.2.14). We will

handle the general case using induction on k. Assume that k > 1 and set D = AlgEk−1/Ek(C).

Then D inherits the structure of a monoidal ∞-category and Theorem 5.1.2.2 allows us to identify
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Alg/Ek(C) with the ∞-category Alg(D). We first observe that D satisfies conditions (a), (b), and

(c) (see Proposition 5.1.2.9). By the inductive hypothesis, the forgetful functors

D→ C Alg(D)→ D

admit left adjoints which we will denote by Free′ and Free′′, so that the forgetful functor

Alg/Ek(C)→ C admits a left adjoint given by the composition Free′′ ◦Free′. Let us abuse notation

by viewing Bar(k) as a functor from Alg/Ek(C) to C; using Example 5.2.3.14 we can identify Bar(k)

with the composition

Alg(D)
Bar(1)

D = Alg/Ek−1
(C)

Bar(k−1)

→ C .

Using the inductive hypothesis, we compute

Bar(k) ◦Free ' Bar(k−1) ◦Bar(1) ◦Free′′ ◦Free′

' Bar(k−1) ◦ΣD ◦ Free′

' Bar(k−1) ◦Free′ ◦Σ
' Σk−1 ◦ Σ

= Σk,

where ΣD denotes the suspension functor on the ∞-category D, and the third equivalence follows

from the fact that the functor Free′ commutes with suspension by virtue of being a left adjoint.

5.2.4 Reduced Pairings

Let

λ⊗ : M⊗ → C⊗×Assoc⊗ D
⊗

be a pairing of monoidal ∞-categories. Proposition 5.2.2.27 supplies sufficient conditions for the

induced pairing

Alg(λ) : Alg(M)→ Alg(C)×Alg(D)

to be left (or right) representable. However, there are many naturally arising pairings which do not

satisfy the hypotheses of Proposition 5.2.2.27. The main culprit is condition (1), which requires

that the right fibration

θ : M×D{1} → C

be a categorical equivalence. Note that if C is a monoidal ∞-category and λ⊗ is the canonical

pairing TwArr(C)⊗ → C⊗×Assoc⊗(Cop)⊗, then θ is an equivalence if and only if the unit object

1 ∈ C is a final object. This condition is often not satisfied, but we can remedy the situation by

replacing C by the ∞-category C/1. Our goal in this section is to describe an analogous procedure

which can be applied to an arbitrary pairing of monoidal ∞-categories, not necessarily given by

the twisted arrow construction of §5.2.1.
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Definition 5.2.4.1. Let λ : M→ C×D be a pairing of∞-categories. We will say that λ is reduced

if the following conditions are satisfied:

(a) The ∞-categories C and D have initial objects 1C and 1D.

(b) The right fibrations

M×D{1D} → C M×C{1C} → D

are trivial Kan fibrations.

We will say that λ is weakly reduced if the∞-category M has an initial object 1M whose images

in C and D are also initial.

Remark 5.2.4.2. Let λ : M → C×D be a reduced pairing of ∞-categories. Then the fiber

M(1C,1D) is a contractible Kan complex. Moreover, any object 1M ∈ M(1C,1D) is an initial object

of M, so that λ is also weakly reduced.

Definition 5.2.4.3. Let λ : M → C×D and λ′ : M′ → C′×D′ be weakly reduced pairings of

∞-categories. We will say that a morphism of pairings

M
γ //

λ
��

M′

λ′
��

C×D
α×β // C′×D′

is reduced if the functor γ preserves initial objects (from which it follows that α and β also preserve

initial objects).

We let CPairwred denote the subcategory of CPair whose objects are weakly reduced pairings

of ∞-categories and whose morphisms are reduced morphisms. We let CPairred denote the full

subcategory of CPairwred spanned by the reduced pairing of ∞-categories.

Example 5.2.4.4. Let C be an ∞-category containing an initial object X and a final object Y .

Then the ∞-category TwArr(C) has an initial object, given by any morphism f : X → Y . Let λ :

TwArr(C)→ C×Cop be the pairing of ∞-categories of Proposition 5.2.1.3, so that λ(f) = (C,D).

Note that the projection maps

M×{Cop}{D} → C M×C{C} → Cop

are right fibrations represented by the objects D ∈ C and C ∈ Cop, respectively, and are therefore

trivial Kan fibrations. It follows that λ is a reduced pairing of ∞-operads.

Remark 5.2.4.5. The ∞-category CPair has a final object, given by the pairing of ∞-categories

λ0 : ∆0 → ∆0 ×∆0. It is clear that the pairing λ0 is reduced. For any weakly reduced pairing of
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∞-categories λ : M→ C×D, the mapping space MapCPairwred(λ0, λ) is contractible: that is, there

is essentially only one reduced morphism of pairings

∆0 //

λ0
��

M

λ
��

∆0 ×∆0 α×β // C×D,

for which the horizontal maps determine initial objects of M, C, and D. It follows that the ∞-

categories CPairred and CPairwred are pointed, so that the forgetful functors

CPairwred
∗ → CPairwred CPairred

∗ → CPairred

are equivalences of ∞-categories.

Remark 5.2.4.6. It follows immediately from the definitions that the inclusions of subcategories

CPairwred ↪→ CPair←↩ CPairred

induce fully faithful embeddings

CPairwred
∗ ↪→ CPair∗ ←↩ CPairred

∗ .

Remark 5.2.4.7. Let λ : M → C×D be a pairing of ∞-categories, given by a pair of functors

λC : M → C and λD : M → D. Suppose that λ is reduced, so that λC induces an equivalence

of ∞-categories M×D{1D} → C. Let f be a homotopy inverse to this equivalence. Then, when

regarded as a functor from C to M, f is left adjoint to λC. In particular, the functor λC admits a

left adjoint and is therefore left cofinal.

Our first main result is the following:

Proposition 5.2.4.8. The inclusion functor CPairred
∗ ↪→ CPair∗ admits a right adjoint.

By virtue of Remark 5.2.4.5, Proposition 5.2.4.8 is an immediate consequence of the following

pair of results:

Lemma 5.2.4.9. The inclusion CPairwred
∗ ↪→ CPair∗ admits a right adjoint.

Lemma 5.2.4.10. The inclusion CPairred ↪→ CPairwred admits a right adjoint.

We will deduce Lemma 5.2.4.9 from the following more basic assertion:

Lemma 5.2.4.11. Let (Cat∞)∗ denote the ∞-category of pointed objects of Cat∞ (that is, the ∞-

category whose objects are ∞-categories C with a distinguished object C ∈ C) and let (Cat∞)wred
∗

denote the full subcategory of (Cat∞)∗ spanned by those objects for which C ∈ C is initial. Then

the inclusion

(Cat∞)wred
∗ ↪→ (Cat∞)∗

admits a right adjoint, given on objects by (C, C) 7→ (CC/, idC).
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Proof. Let C and D be ∞-categories with distinguished objects C and D. We wish to prove that

if D ∈ D is initial, then the canonical map

θ : Map(Cat∞)∗((D, D), (CC/, idC))→ Map(Cat∞)∗((D, D), (C, C))

is a homotopy equivalence. Unwinding the definitions, we can identify θ the restriction to maximal

Kan complexes of the functor

Fun(D,CC/)×CC/ {idC} → Fun(D,C)×C {C}.

We claim that this map is a trivial Kan fibration. To prove this, it suffices to show that for every

monomorphism of simplicial sets K ↪→ L, every lifting problem

({D} × L)q{D}×K (D×K) // CC/

��
D×L //

55

C

admits a solution. Since the right vertical map is a left fibration, it will suffice to show that the right

vertical map is left anodyne. By virtue of Lemma HTT.2.1.2.4 , this is automatic if the inclusion

{D} ↪→ D is left anodyne (or equivalently right cofinal; see Proposition HTT.4.1.1.3 ). This follows

from Theorem HTT.4.1.3.1 , since D is an initial object of D.

Proof of Lemma 5.2.4.9. Let us identify CPair with the full subcategory of Fun(∆1q{0}∆1,Cat∞)

spanned by those diagrams

C←M→ D

for which the induced map M → C×D is equivalent to a right fibration. It follows from Lemma

5.2.4.11 that the inclusion

Fun(∆1 q{0} ∆1, (Cat∞)wred
∗ ) ↪→ Fun(∆1 q{0} ∆1, (Cat∞)∗)

admits a right adjoint. It will therefore suffice to show that this right adjoint carries the full

subcategory

CPair∗ ⊆ Fun(∆1 q{0} ∆1, (Cat∞)∗)

into CPairwred
∗ ⊆ Fun(∆1 q{0} ∆1, (Cat∞)wred

∗ ). Unwinding the definitions, we must show that if

λ : M → C×D is a right fibration and we are given an object 1M with having image λ(1M) =

(1C,1D) ∈ C×D, then the induced map

λ? : M1M/ → C1C/×D1D/

is also a pairing of ∞-categories. This follows immediately from Proposition HTT.2.1.2.1 .
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We will prove Lemma 5.2.4.10 by means of an explicit construction.

Construction 5.2.4.12. Let λ : M → C×D be a weakly reduced pairing of ∞-categories. We

will identify λ with a pair of maps

λC : M→ C λD : M→ D .

We let C? denote the full subcategory of M spanned by those objects M such that λD(M) is an

initial object of D, and we let D? denote the full subcategory of M spanned by those objects M for

which λC(M) is an initial object of C. We let M? denote the full subcategory of the fiber product

C×Fun(∆1,C) Fun(∆1,M)×Fun({1},M) Fun(∆1,M)×Fun(∆1,D) D

whose objects are diagrams

C
α→M

β← D

such that λC(α) is a degenerate edge of C, λD(β) is a degenerate edge of D, C belongs to C?, and

D belongs to D?. We have evident forgetful functors

λ?C : M? → C? λ?D : M? → D?

(C
α→M

β← D) 7→ C (C
α→M

β← D) 7→ D.

Let λ? : M? → C?×D? denote the product of λ?C with λ?D. By construction, it fits into a commu-

tative diagram

M? γ //

λ?

��

M

λ
��

C?×D?λC×λD // C×D

where the functor γ is given by

γ(C
α→M

β← D) = M.

Lemma 5.2.4.10 is an immediate consequence of the following:

Lemma 5.2.4.13. Let λ : M→ C×D be a weakly reduced pairing of ∞-categories. Then:

(a) The map λ? : M? → C?×D? is a pairing of ∞-categories.

(b) The natural map M? →M is a trivial Kan fibration.

(c) The pairing λ? is reduced.

(d) The canonical map of pairings ρ : λ? → λ is reduced.
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(e) For any reduced pairing of ∞-categories λ′ : M′ → C′×D′, composition with ρ induces a

homotopy equivalence

MapCPairwred(λ′, λ?)→ MapCPairwred(λ′, λ).

Proof. Let C◦ denote the full subcategory of C spanned by the initial objects and let C+ ⊆
Fun(∆1,C) be the full subcategory spanned by those maps f : C → C ′ where C is initial. We

define D◦ and D+ similarly, and let K denote the horn ∆1 q{1} ∆1.

To prove (a), we note that there is a pullback diagram of simplicial sets

M? //

��

(C?×D?)×C×D◦×C◦×D (C+×D+)

��
Fun(K,M) // Fun(K,C×D)×Fun({0}q{0},C×D) Fun({0} q {0},M).

Corollary HTT.2.1.2.9 implies that the bottom horizontal map is a left fibration, so that the upper

horizontal map is also a left fibration. We are therefore reduced to proving that the projection map

(C?×D?)×C×D◦×C◦×D (C+×D+)→ C?×D?

is a left fibration. In fact, this map is a trivial Kan fibration, since it is obtained by pulling back

along the product of the trivial Kan fibrations

C+ → C×C◦ D+ → D×D◦ .

To prove (b), we note that M? can be expressed as a fiber product M0×MM1, where

M0 ⊆ C×Fun(∆1,C) Fun(∆1,M)

is the full subcategory spanned by those maps α : C →M where λC(α) is degenerate and C ∈ C?,

and M1 ⊆ D×Fun(∆1,D) Fun(∆1,M) is defined similarly. It will therefore suffice to show that the

evaluation maps

e0 : M0 →M e1 : M0 →M

are trivial Kan fibrations. We will give the proof for e0; the proof for e1 is similar. Since λ is a

right fibration, the canonical map

f : Fun(∆1,M)→ (Fun(∆1,C)× Fun(∆1,D))×Fun({1},C)×Fun({1},D) Fun({1},M)

is a trivial Kan fibration. The map e0 factors as a composition

M−
e′0→ D+×DM

e′′0→M,
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where e′− is a pullback of f and e′′− is a pullback of the projection map D+ → D. Since both of

these maps are trivial Kan fibrations, it follows that e0 is a trivial Kan fibration.

We now prove (c) and (d). Since the original pairing λ is reduced, the ∞-category M contains

an initial object 1. Note that 1 belongs to the full subcategories C?,D? ⊆ M, so both of these

∞-categories admit initial objects. The diagram

1
id→ 1

id← 1

determines an object of M? which is a preimage of 1 under the trivial Kan fibration M? →M, and

is therefore an initial object of M? which maps to initial objects of C? and D? under the forgetful

functors λ?C and λ?D. This proves that the pairing λ? is weakly reduced, and that the map of pairings

ρ : λ? → λ is reduced. To complete the proof of (c), let M◦ denote the contractible Kan complex

of initial objects of M (which is contained in the intersection C? ∩D?); we will show that the maps

θ : M?×D? M
◦ → C? θ′ : M?×C? M

◦ → D?

are trivial Kan fibrations. This is clear, since θ and θ′ are obtained via base change from the trivial

Kan fibrations e1 and e0, respectively.

We now prove (e). For every pair of ∞-categories X and Y which admit initial objects, let

Fun◦(X,Y) denote the full subcategory of Fun(X,Y) spanned by those functors which preserve

initial objects. Suppose that λ′ : M′ → C′×D′ is a reduced pairing of ∞-categories; we wish to

show that the induced map

MapCPairwred(λ′, λ?)→ MapCPairwred(λ′, λ)

is a homotopy equivalence. Unwinding the definitions, we see that this map is obtained by passing

to the underlying Kan complexes from a functor of ∞-categories

Fun◦(M′,M?)×Fun◦(M′,C?×D?) Fun◦(C′,C?)× Fun◦(D′,D?)

��
Fun◦(M′,M)×Fun◦(M′,C×D) Fun◦(C′,C)× Fun◦(D′,D).

We claim that this map is an equivalence of ∞-categories. Using (b), we are reduced to proving

that the diagram of ∞-categories

Fun(C′,C?)× Fun(D′,D?) //

��

Fun(M′,C?×D?)

��
Fun(C′,C)× Fun(D′,D) // Fun(M′,C×D)
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is a homotopy pullback square. This diagram factors as a product of squares

Fun(C′,C?) //

��

Fun(M′,C?)

��

Fun(D′,D?) //

��

Fun(M′,D?)

��
Fun(C′,C) // Fun(M′,C) Fun(D′,D) // Fun(M′,D),

so it will suffice to show that each of these squares is homotopy Cartesian. This follows from the

observation that the maps C? → C and D? → D are right fibrations, since the projection maps

M′ → C′ and M′ → D′ are left cofinal by virtue of Remark 5.2.4.7.

Notation 5.2.4.14. Let λ : M→ C×D be an arbitrary pairing of ∞-categories, and let 1M ∈M

be a distinguished object having image (1C,1D) ∈ C×D under the map λ. We let

λred : Mred → Cred×Dred

be the reduced pairing of∞-categories obtained from the pair (λ,1M) by applying a right adjoint to

the inclusion CPairred
∗ ↪→ CPair∗. Our proof of Proposition 5.2.4.8 shows that λred can be realized

concretely by the map

M?
1M/
→ C?1C/

×D?
1D/

.

Remark 5.2.4.15. In the situation of Notation 5.2.4.14, we have canonical equivalences

Cred 'M1M/×D1D/
{1D} Mred 'M1/ Dred 'M1M/×C1C/

{1C}.

Remark 5.2.4.16. In the situation of Notation 5.2.4.14, the forgetful functor Cred → C can be iden-

tified with the composition of the right fibration M1M/×D1D/
{1D} → C1C/ with the left fibration

C1C/ → C. Let K be any weakly contractible simplicial set. Combining Propositions HTT.1.2.13.8

and HTT.4.4.2.9 , we deduce the following:

(∗) If C admits K-indexed limits, then the ∞-category Cred admits K-indexed limits and the

forgetful functor Cred → C preserves K-indexed limits.

In particular, if C admits totalizations of cosimplicial objects, then Cred has the same property.

Example 5.2.4.17. Let C be an ∞-category and let λ : TwArr(C) → C×Cop be the pairing of

Proposition 5.2.1.3. Let f : C → D be a morphism in C, so that the ∞-category CC/ /D has both

initial and final objects. Using Example 5.2.4.4, we see that the pairing

λ′ : TwArr(CC/ /D)→ CC/ /D ×C
op
C/ /D

is reduced. It follows that the evident morphism of pairings

TwArr(CC/ /D) //

λ′

��

TwArr(C)

λ

��
CC/ /D ×C

op
C/ /D

// C×Cop .
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Using the identification TwArr(CC/ /D) ' TwArr(C)f/ and the description of λred given in Remark

5.2.4.15, we see that that this morphism of pairings determines an equivalence λ′ ' λred: that is,

it exhibits λ′ as universal among reduced pairings with a map to λ in the ∞-category CPair∗ (here

we regard λ as an object of CPair∗ via the choice of object f ∈ TwArr(C)).

Example 5.2.4.18. Let G : CPair∗ → CPairred
∗ ' CPairred be a right adjoint to the inclusion.

Since the collection of reduced pairings of ∞-categories is closed under Cartesian products, we see

that G preserves products when regarded as a functor from CPair∗ to itself.

Let O⊗ be an ∞-operad and let

λ⊗ : M⊗ → C⊗×O⊗ D
⊗

be a pairing of O-monoidal ∞-categories, which we can identify with a O-monoid object of

CPair. Assume that the ∞-operad O⊗ is unital, so that the forgetful functor MonO(CPair∗) →
MonO(CPair) is an equivalence of ∞-categories. Then G induces a map

MonO(CPair) ' MonO(CPair∗)
G→ MonO(CPairred) ⊆ MonO(CPair),

which can be regarded as a right adjoint to the inclusion MonO(CPairred) ↪→ MonO(CPair). Ap-

plying this functor to λ⊗, we obtain another pairing of O-monoidal ∞-categories

(λred)⊗ : (Mred)⊗ → (Cred)⊗ ×O⊗ (Dred)⊗,

which reduces to the construction of Notation 5.2.4.14 after passing to the fiber over any object

X ∈ O (where the distinguished object of the fiber MX is given by the unit with respect to the

O-monoidal structure).

Remark 5.2.4.19. In the situation of Example 5.2.4.18, the pairing

Alg/O(λ) : Alg/O(M)→ Alg/O(C)×Alg/O(D)

is automatically weakly reduced and the pairing

Alg/O(λred) : Alg/O(Mred)→ Alg/O(Cred)×Alg/O(Dred)

is automatically reduced. It follows that the map of pairings Alg/O(λred) → Alg/O(λ) factors

through a map Alg/O(λred)→ Alg/O(λ)?, which is easily seen to be an equivalence. In particular,

we have canonical equivalences

Alg/O(Cred) ' Alg/O(M)×Alg/O(D) {1} Alg/O(Dred) ' Alg/O(M)×Alg/O(C) {1}

Alg/O(Mred) ' Alg/O(M)

where we use the symbol 1 denote the trivial O-algebra object of both C and D.
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Proposition 5.2.4.20. Let λ : M → C×D be a pairing of ∞-categories, let 1M ∈ M be a distin-

guished object, and let

λred : Mred → Cred×Dred

denote the associated reduced pairing (Notation 5.2.4.14). Then:

(1) Let C be an object of Cred having image C ∈ C. Suppose that there exists a left universal

object M ∈M lying over C. Then there exists a left universal object M ∈Mred lying over C.

Moreover, the image of M in M is also left universal.

(2) If the pairing λ is left representable, then the pairing λred is left representable and the natural

map λred → λ is a left representable morphism of pairings.

Remark 5.2.4.21. In the situation of Proposition 5.2.4.20, if λ is left representable then Propo-

sition 5.2.1.17 supplies a commutative diagram of ∞-categories

Cred
D
λred //

��

Dred

��
C

Dλ // D .

Proof of Proposition 5.2.4.20. Assertion (2) follows immediately from (1). To prove (1), let 1C and

1D denote the images of 1M in C and D and set

C′ = C1C/ M′ = M1M/ D′ = D1D/,

so that we have a pairing λ′ : M′ → C′×D′ and we may assume without loss of generality that λred

is obtained by applying Construction 5.2.4.12 to λ′. In particular, we can identify Cred and Dred

with full subcategories of M′, and we can identify Mred with the fiber product M′0×M′M
′
1 where

the full subcategories

M′0 ⊆ C′×Fun(∆1,C′) Fun(∆1,M′)

M′1 ⊆ D′×Fun(∆1,D′) Fun(∆1,M′)

are defined as in the proof of Lemma 5.2.4.13. We wish to prove that the∞-category Mred×Cred{C}
has a final object. Let C ′ denote the image of C in C′ and let X denote the image of C in M. The

proof of Lemma 5.2.4.13 gives a trivial Kan fibration

Mred×Cred{C} →M′0×Cred{C} 'M′
C/ ×

C′C
′/ {C ′}.

Note that the maps M′ → M and C′ → C are left fibrations and therefore induce trivial Kan

fibrations

M′
C/ →MX/ C′

C′/ → CC/ .
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It will therefore suffice to show that the ∞-category

MX/×
CC/
{C} ' (M×C{C})X/

has a final object. We now conclude the proof by applying Proposition HTT.1.2.13.8 (which implies

that the ∞-category (M×C{C})X/ has a final object which is preserved by the forgetful functor

(M×C{C})X/ →M×C{C}).

Corollary 5.2.4.22. Let λ⊗ : M⊗ → C⊗×E⊗k D⊗ be a pairing of Ek-monoidal ∞-categories for

0 < k < ∞. Assume that the underlying pairing λ : M → C×D is left representable and that D

admits totalizations of cosimplicial objects. Then the induced pairing

Alg/Ek(λred) : Alg/Ek(Mred)→ Alg/Ek(Cred)×Alg/Ek(Dred)

is left representable.

Proof. Combine Proposition 5.2.3.1, Proposition 5.2.4.20, and Remark 5.2.4.16.

5.2.5 Koszul Duality for Ek-Algebras

Fix an integer k ≥ 0. Let C be a symmetric monoidal ∞-category containing a unit object 1 ∈ C,

which we will regard as a trivial Ek-algebra object of C. Suppose we are given a pair of Ek-algebra

objects A,B ∈ Alg(C) which are equipped with augmentations εA : A→ 1 and εB : B → 1. We let

Pair(k)(A,B) denote the homotopy fiber product

MapAlgEk
(C)(A⊗B,1)×MapAlgEk

(C)(A,1)×MapAlgEk
(C)(B,1) {(εA, εB)}.

We will refer to the points of Pair(k)(A,B) as pairings of A with B. More informally: a pairing of

A with B is an augmentation on the tensor product A⊗B which extends the given augmentations

εA and εB.

The construction (A,B) 7→ Pair(k)(A,B) is contravariantly functorial in A and B. In particular,

given a pairing η ∈ Pair(k)(A,B) and another augmented algebra object B′ ∈ Algaug
Ek (C), evaluation

on η determines a canonical map

θB′ : MapAlgaug
Ek

(C)(B
′, B)→ Pair(k)(A,B′).

We will say that the pairing η exhibits B as a Koszul dual of A if, for every object B′ ∈ Algaug
Ek (C),

the map θB′ is a homotopy equivalence. In this case, the object B ∈ Algaug
Ek (C) is determined by A

up to a contractible space of choices. Similarly, we will say that a pairing η exhibits A as a Koszul

dual of B if, for every object A′ ∈ Algaug
Ek (C), evaluation on η induces a homotopy equivalence

MapAlgaug
Ek

(C)(A
′, B)→ Pair(k)(A′, B).

Our goal in this section is to prove the following result:
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Proposition 5.2.5.1. Let C be a symmetric monoidal ∞-category and let k ≥ 0 be an integer.

Assume that:

(1) The ∞-category C admits totalizations of cosimplicial objects.

(2) For each object C ∈ C, the functor D 7→ MapC(C ⊗D,1) is representable by an object of C.

Then for every augmented algebra object B ∈ Algaug
Ek (C), there exists a pairing A ⊗ B → 1 which

exhibits A as a Koszul dual of B.

In what follows, we will restrict our attention to the case k > 0 (in the case k = 0, Proposition

5.2.5.1 is almost tautological: see Example 5.2.5.31). For many applications, it will be convenient

to have a version of Proposition 5.2.5.1 which does not require the monoidal structure on C to be

symmetric. Let us begin by formulating a “noncommutative” version of Proposition 5.2.5.1 in the

case k = 1. Note that if C is a monoidal category, then the unit object 1 can be identified with the

endomorphism object End(1) (see §4.7.1). Consequently, for any algebra object R ∈ Alg(C), the

data of an augmentation ε : R→ 1 is equivalent to the data of a left R-module on the object 1 ∈ C.

If the monoidal structure on C is symmetric and R factors as a tensor product A ⊗ B, then this

is equivalent to the data of an A-Brev bimodule structure on 1 ∈ C (see §4.6.3). If the monoidal

structure on C is not symmetric, then we cannot generally regard the tensor product A⊗B as an

algebra object of C; however, we can still consider bimodules over A and Brev. The only fine point

is that here we should regard B not as an algebra object of the monoidal ∞-category C, but of the

monoidal ∞-category Crev (see Remark 4.1.1.7). This motivates the following:

Definition 5.2.5.2. Let C be a monoidal ∞-category. Suppose we are given augmented algebra

objects A,B ∈ Algaug(C). Let us abuse notation by identifying the augmentations on A and B

with objects

εA ∈ LModA(C) εB ∈ RModB(C)

lying over the unit object 1 ∈ C. We let Pair’(1)(A,B) denote the fiber product

ABModB(C)×LModA(C)×CRModB(C) {(εA, εB)}.

Remark 5.2.5.3. If the monoidal structure on C is symmetric, then for A,B ∈ Algaug(C) '
Algaug

E1
(C) we have a canonical homotopy equivalence Pair(1)(A,B) ' Pair’(1)(A,Brev). The discus-

sion preceding Definition 5.2.5.2 sketches a construction of this equivalence; we will give another

argument (in the more general context of Ek-algebras) below.

Warning 5.2.5.4. In the setting of Definition 5.2.5.2, the construction (A,B) 7→ Pair’(1)(A,B) is

generally not symmetric in A and B (see Remark 5.2.5.17).

Our next step is to realize the construction (A,B) 7→ Pair’(1)(A,B) as arising from a pairing

between monoidal ∞-categories.
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Definition 5.2.5.5. Let C be a monoidal ∞-category with unit object 1. Then the construction

(C,D) 7→ MapC(C ⊗D,1) determines a functor Cop×Cop → S which classifies a right fibration

λ : D(C)→ C×C .

We will refer to λ as the duality pairing on C. We will identify the objects of D(C) with triples

(C,D, µ) where C,D ∈ C and µ : C ⊗D → 1 is a morphism in C.

Remark 5.2.5.6. Let C be a monoidal ∞-category and let (C,D, µ) be an object of D(C). Then

(C,D, µ) is left universal (with respect to the duality pairing λ : D(C) → C×C) if and only if for

every object D′ ∈ C, composition with µ induces a homotopy equivalence

MapC(D′, D)→ MapC(C ⊗D′,1).

In this case, we will say that µ exhibits D as a weak left dual of C. The object D is determined

uniquely up to equivalence and we will indicate the dependence of D on C by D =∨ C.

Similarly, the object (C,D, µ) is right universal with respect to λ if and only if for each C ′ ∈ C,

composition with µ induces a homotopy equivalence

MapC(C ′, C)→ MapC(C ′ ⊗D,1).

In this case, we will say that µ exhibits C as a weak right dual of D. The object C is uniquely

determined up to equivalence, and we will indicate the dependence of C on D by writing C = D∨.

Remark 5.2.5.7. Let C be a monoidal ∞-category and let (C,D, µ) ∈ D(C). If µ exhibits D as

a left dual of C (in the sense of Definition 4.6.1.7), then µ exhibits D as a weak left dual of C

(in the sense of Remark 5.2.5.6). However, the converse fails. For example, if C = N(Vectκ) for

some field κ, then a map µ : V ⊗κ W → κ exhibits W as a weak left dual of V when it induces

an isomorphism W → Homκ(V, κ), but such a map exhibits W as a left dual of V only when V is

finite-dimensional.

Remark 5.2.5.8. Let C a presentable monoidal ∞-category for which the tensor product ⊗ :

C×C→ C preserves small colimits separately in each variable. For each object C ∈ C, the functors

D 7→ MapC(C ⊗D,1) D 7→ MapC(D ⊗ C,1)

carry colimits in D to limits in S, and are therefore representable (Proposition HTT.5.5.2.2 ). It

follows that the duality correspondence D(C)→ C×C is both left and right representable.

Our next observation is that if C is a monoidal ∞-category, then the duality pairing D(C) →
C×C can be promoted to a pairing of monoidal∞-categories. The only caveat is that on the second

copy of C, we should use the reverse of the usual monoidal structure.
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Construction 5.2.5.9. Let M be an ∞-category which is bitensored over a pair of monoidal

∞-categories C and D. Let Drev denote the same ∞-category D but endowed with the reversed

monoidal structure. Using the constructions of §4.6.3, we can regard M as left-tensored over the

monoidal∞-category C×Drev. For each object M ∈M, we let (C×Drev)[M ] denote the monoidal

∞-category given in Definition 4.7.1.1. The projection map (C×Drev)[M ] → C×Drev is a right

fibration, so that we obtain a pairing of monoidal ∞-categories

λ⊗ : (C×Drev)[M ]⊗ → C⊗×Assoc⊗(Drev)⊗.

In the special case where C is a monoidal ∞-category with unit object 1 which we regard as

bitensored over itself, we can identify (C×Crev)[1] with the ∞-category D(C). It follows that we

can regard D(C) as a monoidal ∞-category and that the duality pairing refines to a pairing of

monoidal ∞-categories

D(C)⊗ → C⊗×Assoc⊗(Crev)⊗.

Remark 5.2.5.10. Let C be a monoidal ∞-category. Assume that every object C ∈ C admits a

weak left dual ∨C, so that the duality pairing D(C)→ C×Crev is left representable. It follows from

Remark 5.2.2.25 that the construction C 7→∨ C determines a lax monoidal functor Cop → Crev. In

particular, for every pair of objects C,D ∈ C, we have a canonical map

∨D ⊗∨ C →∨ (C ⊗D).

This map is an equivalence if D is left dualizable, but not in general.

Similarly, if every object C ∈ C is weakly right dualizable, then the construction C 7→ C∨

determines a lax monoidal functor from (Crev)op to C.

Remark 5.2.5.11. Let C be a monoidal ∞-category. At the level of objects, the tensor product

on D(C) is given by

(C,D, µ)⊗ (C ′, D′, µ′) = (C ⊗ C ′, D′ ⊗D, ν)

where ν is given by the composition

C ⊗ C ′ ⊗D′ ⊗D id⊗µ′⊗id→ C ⊗D µ→ 1.

Remark 5.2.5.12. Let C be a monoidal∞-category. Then Theorem 4.7.1.34 determines an equiv-

alence of ∞-categories

Alg(D(C)) ' BMod(C)×C 1.

In particular, if we are given a pair of objects A ∈ Alg(C), B ∈ Alg(Crev), then the fiber

Alg(D())×Alg(C)×Alg(Crev) {(A,B)}

can be identified with the Kan complex ABModBrev(()C)×C {1} of A-Brev bimodule structures on

the unit object 1.
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Remark 5.2.5.13. Let C be a monoidal ∞-category, let

λ : D(C)→ C×Crev

be the duality pairing, and let

λred : D(C)rev → Cred×(Crev)red

be the associated reduced pairing (Notation 5.2.4.14). Unwinding the definitions, we see that Cred

and (Crev)red can be identified with the ∞-category C1/ /1 of augmented E0-algebra objects in C.

Using Example 5.2.4.18 and Remark 5.2.4.19, we see that λred is a pairing of monoidal∞-categories

and that the induced pairing Alg(λred) can be identified with a right fibration

(BMod(C)×C 1)→ Algaug(C)×Algaug(Crev)

classified by the functor (A,B) 7→ Pair’(1)(A,Brev) (alternatively, one can regard this as a precise

definition of the functor Pair’(1) which appears in Definition 5.2.5.2).

Combining Remark 5.2.5.13 with Corollary 5.2.4.22, we obtain the following analogue of Propo-

sition 5.2.5.1:

Proposition 5.2.5.14. Let C be a monoidal ∞-category. Assume that:

(1) The ∞-category C admits totalizations of cosimplicial objects.

(2) For each object C ∈ C, there exists a weak right dual C∨ ∈ C.

Then for every augmented algebra object B ∈ Algaug(C), there exists an augmented algebra A ∈
Algaug(C) and a point η ∈ Pair’(1)(A,B) with the following universal property: for every algebra

object A ∈ Algaug(C), evaluation on η induces a homotopy equivalence

MapAlgaug(C)(A
′, A)→ Pair’(1)(A′, B).

Remark 5.2.5.15. In the situation of Proposition 5.2.5.1, suppose that the ∞-category C admits

geometric realizations of simplicial objects, and that the tensor product on C preserves geometric

realizations of simplicial objects. Then Proposition 5.2.3.10 implies that the algebra A can be

identified with the right dual Bar(B)∨, where Bar(B) ∈ Alg(Cop) denotes the bar construction on

the augmented algebra B.

Remark 5.2.5.16. Let C be a monoidal ∞-category and suppose we are given an augmented

algebra object B ∈ Algaug(C). Let M = RModB(C), so that M is an ∞-category left-tensored

over C. Using the augmentation on B, we can view the unit object 1 ∈ C as a right B-module.

Theorem 4.3.2.7 supplies an equivalence of∞-categories LModA(M) ' ABModB(C) which depends

functorially on A. It follows that a pairing η ∈ Pair’(1)(A,B) induces a homotopy equivalence

MapAlgaug(C)(A
′, A) → Pair’(1)(A′, B) for all A′ ∈ Algaug(C) if and only if it exhibits A as an

endomorphism object of 1 in the ∞-category M, in the sense of §4.7.1.
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Remark 5.2.5.17. In the situation of Proposition 5.2.5.1, suppose that condition (1) is satisfied

and that for every object C ∈ C there exists a weak left dual ∨C ∈ C. Then for every augmented

algebra object B ∈ Algaug(C) we can find an augmented algebra A ∈ Algaug(C) and a point

η ∈ Pair’(1)(B,A) with which induces homotopy equivalences MapAlgaug(C)(A
′, A)→ Pair’(1)(B,A′)

for all A′ ∈ Algaug(C). If C admits geometric realizations of simplicial objects and the tensor

product on C preserves geometric realizations of simplicial objects, then the algebra A can be

realized explicitly as the left dual ∨Bar(B). In particular, we note that this algebra generally does

not agree with the algebra Bar(B)∨ appearing in Remark 5.2.5.15, even when both are well-defined

(see Warning 5.2.5.4)

Our next goal is to generalize Proposition 5.2.5.14 to the setting of Ek-monoidal ∞-categories

for k ≥ 1. We begin by introducing a construction which “reverses” the multiplication on an

Ek-algebra (or an Ek-monoidal ∞-category).

Construction 5.2.5.18. Fix 1 ≤ k < ∞. The open cube 2k = (−1, 1)k is equipped with a

canonical reflection σ : 2k → 2k, given in coordinates by

σ(t1, t2, t3, . . . , tk) = (t1, t2, t3, . . . ,−tk).

Conjugation by σ determines an automorphism of the topological operad tE⊗k (which is the identity

map on objects and replaces each rectilinear embedding f : 2k → 2k by the conjugate embedding

σ ◦ f ◦ σ−1). The involution σ induces an involution on the ∞-operad E⊗k , which we will denote by

rev : E⊗k → E⊗k .

If q : C⊗ → E⊗k is an Ek-monoidal ∞-category, we let (Crev)⊗ denote the E⊗k -monoidal ∞-

category given by the composition

C⊗
q→ E⊗k

rev→ E⊗k .

We will refer to (Crev)⊗ as the reverse of the Ek-monoidal∞-category C⊗. In this case, composition

with σ induces an isomorphism of simplicial sets

Alg/Ek(C) ' Alg/Ek(Crev),

which we will denote by A 7→ Arev.

Remark 5.2.5.19. Many variants on Construction 5.2.5.18 are possible. Every element of the

group G = Σk n {±1}k determines an automorphism σ of 2k of the form

(t1, . . . , tk) 7→ (±tσ(1), . . . ,±tσ(k),

which in turn determines an automorphism of the ∞-operad E⊗k given by conjugation by σ on

each rectilinear embedding from 2k to itself. In §5.4.2, we will see that this action of G on E⊗k
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extends (up to homotopy) to an action of the orthogonal group O(k) on E⊗k . In particular, any two

signed permutations σ, σ′ ∈ G which belong to the same connected component of O(k) determine

equivalent maps from E⊗k to itself (the equivalence is not canonical: it depends on a choice of path

from σ to σ′ in the orthogonal group O(k)).

Remark 5.2.5.20. Let C⊗ → Comm⊗ be a symmetric monoidal ∞-category and set D⊗ =

C⊗×Comm⊗E⊗k be the associated Ek-monoidal ∞-category. Then there is a canonical isomorphism

D⊗ ' (Drev)⊗. Beware, however, that the reversal isomorphism

AlgEk(C) ' Alg/Ek(D)
rev→ Alg/Ek(Drev) ' AlgEk(C)

is not the identity functor (it is given by composition with rev : E⊗k → E⊗k ).

Remark 5.2.5.21. Let Cat∞ be the ∞-category of (small) ∞-categories, which we regard as

endowed with the Cartesian symmetric monoidal structure. Then we can identify Ek-monoidal

∞-categories with Ek-algebra objects of Cat∞. Under this identification, the reversal isomorphism

rev : AlgEk(Cat∞) ' AlgEk(Cat∞) of Remark 5.2.5.20 corresponds to the the construction C⊗ 7→
(Crev)⊗ of Construction 5.2.5.18.

Remark 5.2.5.22. In the special case k = 1, the reversal isomorphism rev : E⊗k → E⊗k fits into a

commutative diagram

E⊗1
rev //

��

E⊗1

��
Assoc⊗

σ // Assoc⊗,

where σ denotes the involution of Remark 4.1.1.7 and the vertical maps are given by the equiva-

lence of Example 5.1.0.7. Consequently, the notion of reversal for E1-monoidal ∞-categories and

E1-algebras agrees with the analogous notion for monoidal ∞-categories and associative algebras

studied in Chapter 4.

Remark 5.2.5.23. Suppose we are given integers k ≥ 0 and k′ ≥ 1. Then the reversal isomor-

phisms revk′ : E⊗k′ → E⊗k′ and revk+k′ : E⊗k+k′ → E⊗k+k′ fit into a commutative diagram

E⊗k × E
⊗
k

//

id× revk′
��

E⊗k+k′

revk+k′

��
E⊗k × E

⊗
k′

// E⊗k+k′ ,

where the horizontal maps are the bifunctors of ∞-operads given in Construction 5.1.2.1. In

particular:
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(a) If C is an Ek+k′-monoidal ∞-category, then composition with revk′ induces an equivalence of

Ek-monoidal ∞-categories

ρ : AlgEk′/Ek+k′
(C)⊗ ' (AlgEk′/Ek+k′

(Crev)⊗.

(b) The diagram of ∞-categories

Alg/Ek+k′
(C)

rev // Alg/Ek+k′
(Crev)

��
Alg/Ek(AlgEk′/Ek+k′

(C)
ρ // Alg/Ek(AlgEk′/Ek+k′

(Crev))

commutes (here the vertical maps are equivalences by Theorem 5.1.2.2).

Example 5.2.5.24. For each integer k ≥ 0, one can define two different embeddings ι, ι′ : E⊗k →
E⊗k+1, given by the compositions

ι : E⊗k ' E
⊗
k × {〈1〉} ↪→ E⊗k × E

⊗
1 → E⊗k+1

ι′ : E⊗k ' {〈1〉} × E
⊗
k ↪→ E⊗1 × E

⊗
k → E⊗k+1.

Using Remark 5.2.5.23, we see that these embeddings fit into commutative diagrams

E⊗k
id //

ι

��

E⊗k
ι

��

E⊗k
rev //

ι′

��

E⊗k

ι′

��
E⊗k+1

rev // E⊗k+1 E⊗k+1
rev // E⊗k+1.

Remark 5.2.5.25. In what follows, it will be convenient to regard the∞-operad E⊗∞ as the colimit

of the sequence

E⊗1
ι′→ E⊗2

ι′→ E⊗3
ι′→ · · · .

It follows from Example 5.2.5.24 that the reversal involutions on the∞-operads E⊗k are compatible

with the transition maps in this sequence and therefore determine an involution rev : E⊗∞ → E⊗∞.

Of course, this automorphism is automatically homotopic to the identity (since E⊗∞ is a final object

in the ∞-category of ∞-operads).

Example 5.2.5.26. Let k ≥ 1 and let C⊗ be an Ek-monoidal ∞-category, which we can identify

with an object of

AlgEk(Cat∞) ' AlgEk−1
(Alg(Cat∞)).

Then the Ek-monoidal∞-category (Crev) is obtained from Cop by composing with the automorphism

of AlgEk−1
(Alg(Cat∞)) induced by the reversal automorphism rev : Alg(Cat∞)→ Alg(Cat∞).
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Construction 5.2.5.27. The formation of duality pairings

C⊗ 7→ (D(C)⊗ → C⊗×Assoc⊗(Crev)⊗)

outlined in Construction 5.2.5.9 determines a functor Alg(Cat∞) → Alg(CPair). It is easy to see

that this functor commutes with finite products and therefore induces a map

AlgEk(Cat∞) ' AlgEk−1
(Alg(Cat∞))→ AlgEk−1

(Alg(CPair)) ' AlgEk(CPair)

for k ≥ 1. This map assigns to each Ek-monoidal ∞-category C⊗ a pairing of Ek-monoidal ∞-

categories

D(C)⊗ → C⊗×E⊗k (Crev)⊗,

which we will refer to as the duality pairing associated to C⊗.

Warning 5.2.5.28. Construction 5.2.5.27 is not invariant under automorphisms of the ∞-operad

E⊗k : it depends on a choice of equivalence between E⊗k and the operadic tensor product of E⊗k−1

with the associative ∞-operad Assoc⊗. One can see this already at the level of the underlying

∞-categories: objects of the ∞-category D(C) are given by triples (C,D, µ) where C,D ∈ C and

µ : C ⊗η D → 1 is a morphism in C, where η is the “north pole” in the sphere Sk−1 ' BinEk; one

can obtain other pairings (which are noncanonically equivalent for k > 1) by choosing other points

η ∈ Sk−1.

Remark 5.2.5.29. Let C be an Ek-monoidal ∞-category for k ≥ 1. Then we have a canonical

equivalence of ∞-categories

Alg/Ek(D(C)) ' Alg/Ek−1
(AlgE1/Ek(D(C)))

' Alg/Ek−1
(BMod(C)×C 1)

' BMod(AlgEk−1/Ek(C))×AlgEk−1/Ek
(C) 1.

In other words, we can identify the objects of Alg/Ek(D(C)) with triples (A,B, µ), where A is an

Ek-algebra in C, B is an Ek-algebra in C, and µ is the data of an A-B bimodule structure on the

trivial algebra 1 ∈ AlgEk−1/Ek(C).

Variant 5.2.5.30. Let C be an Ek-monoidal ∞-category for k ≥ 1. Suppose we are given a

morphism of ∞-operads O⊗ → E⊗k which factors through the inclusion ι : E⊗k−1 ↪→ E⊗k of Example

5.2.5.24. Then the ∞-category AlgO /Ek(C) inherits a monoidal structure. Moreover, if λ : D(C)→
C×Crev is the duality pairing, then the induced pairing

AlgO /Ek(λ) : AlgO /Ek(D(C))×AlgO /Ek(C)×AlgO /Ek(Crev)

is classified by the functor (A,B) 7→ MapAlgO /Ek
(C)(A⊗Brev,1).
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Example 5.2.5.31. In the situation of Variant 5.2.5.30, we can take k = ∞ and O⊗ = E⊗0 .

Unwinding the definitions, we see that the pairing AlgE0/E∞(λred) ' λred is classified by the functor

Pair0 : Algaug
E0

(C)op ×Algaug
E0

(C)op → S .

It follows from Proposition 5.2.4.20 that the pairing λred is right universal if λ is right universal,

which gives a proof of Proposition 5.2.5.1 in the case k = 0. More concretely: if every object C ∈ C

admits a weak right dual C∨, then the Koszul dual of an augmented E0-algebra

C
β

��
1

α
??

id // 1

is given by the augmented E0-algebra

C∨

α∨

!!
1

β∨
>>

id // 1.

Construction 5.2.5.32. Let C be an Ek-monoidal ∞-category and let

λ⊗ : D(C)⊗ → C⊗×E⊗k (Crev)⊗

be the associated duality pairing. Then λ⊗ induces a reduced pairing of Ek-monoidal ∞-categories

(λred)⊗ : (D(C)red)⊗ → (Cred)⊗ ×E⊗k (Crev red)⊗.

We have canonical equivalences

Alg/Ek(Cred) ' Alg/Ek−1
(AlgE1/Ek(Cred))

' Alg/Ek−1
(Algaug

E1/Ek
(C))

' Algaug
/Ek

(C);

a similar calculation yields an identification Alg/Ek(Crev red) ' Algaug
/Ek

(Crev). Identifing Algaug
/Ek

(Crev)

with Algaug
/Ek

(C) via the reversal functor rev, we obtain a pairing of ∞-categories

Alg/Ek(λred) : Alg/Ek(D(C))→ Algaug
/Ek

(C)×Algaug
/Ek

(C).

We let Pair’(k) : Algaug
/Ek

(C)op × Algaug
/Ek

(C)op → S denote a functor which classifies the functor

Alg/Ek(λred).

If A and B are Ek-algebra objects of C equipped with augmentations εA : A→ 1 and εB : B → 1,

then we can identify εA and εB with Ek−1-algebra objects of LModA(C) and RModB(C) (lying over
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the trivial Ek−1-algebra object 1 ∈ C). Unwinding the definitions, we see that Pair’(k)(A,B) is

given by the fiber product

Alg/Ek−1
(ABModB(C))×Alg/Ek−1

(LModA(C))×Alg/Ek−1
(C)Alg/Ek−1

(RModB(C)) {(εA, εB)}.

More informally, Pair’(k)(A,B) is the space of witnesses to the commutativity of the central left

action of A on 1 via εA with the central right action of B on 1 via εB.

Invoking Corollary 5.2.4.22, we obtain the following generalization of Proposition 5.2.5.14:

Proposition 5.2.5.33. Let C be an Ek-monoidal ∞-category. Assume that:

(1) The ∞-category C admits totalizations of cosimplicial objects.

(2) For each object C ∈ C, there exists a weak right dual C∨ with respect to the underlying

monoidal structure on C.

Then the pairing

Alg/Ek(λred) : Alg/Ek(D(C))→ Algaug
/Ek

(C)×Algaug
/Ek

(C).

of Construction 5.2.5.32 is right representable. In other words, for every augmented algebra object

B ∈ Algaug
/Ek

(C), there exists an augmented algebra A ∈ Algaug
/Ek

(C) and a point η ∈ Pair’(k)(A,B)

with the following universal property: for every algebra object A′ ∈ Algaug
/Ek

(C), evaluation on η

induces a homotopy equivalence

MapAlgaug(C)(A
′, A)→ Pair’(k)(A′, B).

Remark 5.2.5.34. If k > 1, then the notion of weak left and right duals for objects C ∈ C are

(noncanonically) equivalent to one another.

Example 5.2.5.35. In the situation of Proposition 5.2.5.33, suppose that C satisfies the following

additional conditions:

(3) The unit object 1 ∈ C is both initial and final.

(4) For every countable weakly contractible simplicial set K, the∞-category C admits K-indexed

colimits.

(5) For every countable weakly contractible simplicial set K, the tensor product ⊗ : C×C → C

preserves K-indexed colimits separately in each variable.

It follows from (5) that the construction C 7→ C∨ determines a functor C → Cop which preserves

K-indexed colimits for every countable weakly contractible simplicial set K. Proposition 5.2.3.15

implies that the forgetful functor Alg/Ek(C) → C admits a left adjoint Free : C → Alg/Ek(C). For



5.2. BAR CONSTRUCTIONS AND KOSZUL DUALITY 869

each C ∈ C, Proposition 5.2.5.33 guarantees that there exists an algebra object A ∈ Alg/Ek(C) and

a point η ∈ Pair’(k)(A,Free(C)) with the following universal property: for each A′ ∈ Alg/Ek(C),

evaluation on η induces a homotopy equivalence

MapAlg/Ek
(C)(A

′, A)→ Pair’(k)(A′,Free(C)).

Using Propositions 5.2.3.10 and 5.2.3.15, we see that A can be identified (as an object of C) with

Bar(k)(Free(C))∨ ' (ΣkC)∨ ' Ωk(C∨).

We now explain the relationship between Propositions 5.2.5.33 and 5.2.5.1.

Lemma 5.2.5.36. Let C be a symmetric monoidal ∞-category. Then for each integer k ≥ 1, there

exist canonical homotopy equivalences

Pair(k)(A,Brev) ' Pair’(k)(A,B)

which depend functorially on A,B ∈ Algaug
Ek (C).

Proof. Let us identify E⊗∞ with the colimit of the sequence

E⊗1
ι′→ E⊗2

ι′→ E⊗3
ι′→ · · ·

as in Remark 5.2.5.25 and regard C as an E∞-monoidal∞-category. Applying Construction 5.2.5.27

in the case k =∞ (or passing to the limit for finite values of k) we obtain an E∞-monoidal duality

pairing

D(C)⊗ → C⊗×E⊗∞(Crev)⊗.

For every map of ∞-operads f : O⊗ → E⊗∞, we obtain an induced pairing AlgO /E∞(λred) which is

classified by a functor φf : AlgO(C)op × AlgO(C)op → S. Taking f to be the tautological inclusion

ρk : E⊗k ↪→ E⊗∞, the functor (A,B) 7→ Pair’(k)(A,B). Taking f to be the composition

E⊗k
ι
↪→ E⊗k+1

ρk+1→ E⊗∞,

we obtain the functor (A,B) 7→ Pair(k)(A,Brev) (see Variant 5.2.5.30). To complete the proof,

it will suffice to show that ρk and ρk+1 ◦ ι are homotopic (as morphisms of ∞-operads from E⊗k
to E⊗∞). This is automatic, since E⊗∞ is a final object of the ∞-categor of ∞-operads (Corollary

5.1.1.5).

Remark 5.2.5.37. In the situation of Lemma 5.2.5.36, it is not necessary to assume that C is

symmetric monoidal: the analogous result holds more generally if we assume only that C is Ek+1-

monoidal. To adapt the proof given above, it is only necessary to know that the inclusion maps

ι, ι′ : E⊗k → E⊗k+1 are homotopic to one another. To prove this, let G = Σk+1 n {±1}k+1 be as in
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Remark 5.2.5.19, so that each element g ∈ G determines an automorphism ρg of E⊗k+1. We now

observe that there is a unique element g ∈ G whose image in O(k + 1) belongs to the identity

component SO(k + 1) and which satisfies ρg ◦ ι = ι′. It will therefore suffice to show that ρg is

homotopic to the identity, which follows from the fact that the action of G on E⊗k+1 factors through

an action of O(k + 1). Note that this argument yields homotopy equivalences

Pair(k)(A,Brev) ' Pair’(k)(A,B)

which depend functorially on A,B ∈ Algaug
Ek/Ek+1

(C) but are not truly canonical (they depend on a

choice of path from g to the identity in the group SO(k + 1)).

Lemma 5.2.5.36 motivates the following:

Definition 5.2.5.38. Let C be an Ek-monoidal ∞-category for 0 < k < ∞. Suppose we are

given augmented algebra objects A ∈ Algaug
/Ek

(C) and B ∈ Algaug
/Ek

(Crev) and an element η ∈
Pair’(k)(A,Brev). We will say that η exhibits B as a left Koszul dual of A if, for every augmented

algebra B′ ∈ Algaug
/Ek

(Crev), evaluation on η induces a homotopy equivalence

MapAlgaug
/Ek

(Crev)(B
′, B)→ Pair’(k)(A,B′).

We will say that η exhibits A as a right Koszul dual of B if, for every object A′ ∈ Algaug
/Ek

(C),

evaluation on η induces a homotopy equialence

MapAlgaug
/Ek

(C)(A
′, A)→ Pair’(k)(A′, B).

In the special case where the monoidal structure on C is symmetric, Definition 5.2.5.38 reduces

to the the definition given at the beginning of this section (this follows immediately from Lemma

5.2.5.36).

Proof of Proposition 5.2.5.1. In the case k = 0, the desired result follows from Example 5.2.5.31.

For k > 0, combine Lemma 5.2.5.36 with Proposition 5.2.5.33.

5.2.6 Iterated Loop Spaces

Let X be a topological space equipped with a base point ∗ and let k ≥ 0 be an integer. We let ΩkX

denote the k-fold loop space of X, which we will identify with the space of maps f : [−1, 1]k → X

which carry the boundary ∂[−1, 1]k to the base point of X. Then ΩkX is equipped with an action

of the topological operad tEk: given a collection of rectilinear embeddings ~γ = {γi : 2k → 2k}1≤i≤n
with disjoint images, there is an induced map∏

1≤i≤n
ΩkX → ΩkX
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(f1, . . . , fn) 7→ f

f(y) =

{
fi(z) if y = γi(z) for some i

∗ otherwise.

It follows that the Kan complex Sing•Ωk(X) is equipped with an action of the simplicial operad

Singt Ek. This action is envoded by a map

θX : Singt E⊗k → Kan,

where Kan denotes the (simplicial) category of Kan complexes. Restricting our attention to the

case where X = |K|, where K is a (pointed) Kan complex, we obtain a simplicial functor

Kan∗/×Singt E⊗k → Kan .

(K, 〈n〉) 7→ (Sing•Ωk|K|)n.

Passing to nerves and using the equivalence N(Kan∗/)→ S∗, we obtain a functor

S∗×E⊗k → S .

For every pointed Kan complex K, the resulting map E⊗k → S is evidently an Ek-monoid object of S

(in the sense of Definition 2.4.2.1). Consequently, N(θ) is adjoint to a functor βk : S∗ → MonEk(S).

We will refer to Ek-monoid objects of S simply as Ek-spaces, and MonEk(S) as the ∞-category

of Ek-spaces. The functor βk implements the observation that for every pointed space X, the k-

fold loop space of X is an Ek-space. This observation has a converse: the functor β is almost an

equivalence of ∞-categories. However, it fails to be an equivalence for two reasons:

(a) If X is a pointed space, then the k-fold loop space ΩkX contains no information about the

homotopy groups πiX for i < k. More precisely, if k > 0 and f : X → Y is a map of pointed

spaces which induces isomorphisms πiX → πiY for i ≥ k, then the induced map ΩkX → ΩkY

is a weak homotopy equivalence of spaces. Consequently, the functor βk : S∗ → MonEk(S) fails

to be conservative. To correct this problem, we need to restrict our attention to k-connective

spaces: that is, pointed spaces X such that πiX ' ∗ for i < k; for such spaces, there is no

information about low-dimensional homotopy groups to be lost.

(b) Suppose that k > 0 and let Y ∈ MonEk(S); we will abuse notation by identifying Y with

the space Y (〈1〉). Then Y carries an action of the ∞-operad E1: in particular, there is

a multiplication map Y × Y → Y which is unital and associative up to homotopy. This

multiplication endows the set of connected components π0Y with the structure of a monoid

(which is commutative if k > 1). If Y ' ΩkX lies in the image of the functor β, then we have

a canonical isomorphism π0Y ' πkX (compatible with the monoid structures on each side).

In particular, we deduce that the monoid π0Y is actually a group (that is, Y is grouplike in

the sense of Definition 5.2.6.6 below).
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Remark 5.2.6.1. In the case k = 0, issues (a) and (b) do not arise: in fact, we have canonical

equivalences of ∞-categories

S∗ ' AlgE0
(S) ' MonE0(S)

(here we regard S as endowed with the Cartesian monoidal structure). The first equivalence results

from Proposition 2.1.3.9, and the second from Proposition 2.4.2.5; the composition of these equiv-

alences agrees with the map β defined above. For this reason, we will confine our attention to the

case k > 0 in what follows.

We first introduce some terminology which is motivated by the above discussion.

Definition 5.2.6.2. Let C be an∞-category which admits finite products and let G be an associa-

tive monoid object of C. Let m : G×G→ G the multiplication maps, and let p1, p2 : G×G→ G be

the projection maps onto the first and second factors, respectively. We will say that G is grouplike

if the maps

(p1,m) : G×G→ G×G (m, p2) : G×G→ G×G

are equivalences. We let Mongp
Assoc(C) denote the full subcategory of MonAssoc(C) spanned by the

grouplike monoid objects of C.

Example 5.2.6.3. Let G be a monoid, which we can regard as an associative monoid object of

the ∞-category N(Set) of sets. Then G is grouplike if and only if the constructions

(x, y) 7→ (x, xy) (x, y) 7→ (xy, y)

determine bijections from G to itself. It is not hard to see that this condition holds if and only if

G is a group.

Example 5.2.6.4. Let G be an associative monoid object of the ∞-category S of spaces. If G

is grouplike, then π0G is a grouplike associative monoid object of the ∞-category N(Set) and

therefore a group. Conversely, suppose that π0G is a group. For each point x ∈ G determining a

connected component [x] ∈ π0G, we can choose another point y ∈ G satisfying [y] = [x]−1. Then

left multiplication by x induces a homotopy equivalence G → G (with homotopy inverse given

by left multiplication by y). Since this condition holds for every x ∈ G, it follows that the map

(p1,m) : G×G→ G×G is also a homotopy equivalence (since we can check on homotopy fibers of

p1). A similar argument shows that the map (m, p2) : G×G→ G×G is a homotopy equivalence.

Remark 5.2.6.5. Let C be an ∞-category which admits finite products. Composition with the

functor Cut : N(∆)op → Assoc⊗ of Construction 4.1.2.9 determines a functor θ : MonAssoc(C) →
Mon(C) ⊆ Fun(N(∆)op,C). An associative monoid object G ∈ MonAssoc(C) is grouplike if and only

if the simplicial object θ(G) is a groupoid object of C, in the sense of §HTT.6.1.2 .
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Definition 5.2.6.6. Let C be an ∞-category which admits finite products. We will say that

an E1-monoid object G : E⊗1 → C is grouplike it belongs to the essential image of Mongp
Assoc(X)

under the equivalence of ∞-categories MonAssoc(X) → MonE1(X) determined by the equivalence

E⊗1 → Assoc⊗. We let Mongp
E1

(X) ⊆ MonE1(X) denote the full subcategory spanned by the grouplike

E1-monoid objects of X.

If 0 < k ≤ ∞, then we will say that an Ek-monoid object G : E⊗k → X is grouplike if the

composite map E⊗1 ↪→ E⊗k
G→ X is an grouplike E1-monoid object of X. We let Mongp

Ek(X) ⊆
MonEk(X) denote the full subcategory spanned by the grouplike Ek-monoid objects.

Remark 5.2.6.7. Let C be an∞-category which admits finite products and let G be an Ek-monoid

object of C for 2 ≤ k ≤ ∞. Then the multiplication map m : G × G → G is commutative up to

homotopy. Consequently, G is grouplike if and only if the map (m, p2) : G × G → G × G is an

equivalence in C.

Remark 5.2.6.8. In the situation of Definition 5.2.6.6, the condition that X is grouplike does not

depend on which of the natural embeddings E⊗1 ↪→ E⊗k is chosen.

Remark 5.2.6.9. Let 1 ≤ k ≤ ∞. Then the full subcategory Mongp
Ek(S) ⊆ MonEk(S) is closed

under small colimits. To prove this, we note that Mongp
Ek(S) is given by the inverse image of

Mongp
Ek(N(Set)) under the colimit-preserving functor

π0 : MonEk(S)→ MonEk(N(Set)).

It will therefore suffice to show that the category of (abelian) groups is closed under small colimits

in the category of (commutative) monoids, which is clear.

The main goal of this section is to prove the following:

Theorem 5.2.6.10 (Boardman-Vogt, May). Let 0 < k <∞, and let S≥k∗ denote the full subcategory

of S∗ spanned by the k-connective spaces. Then:

(1) The functor βk : S∗ → MonEk(S) is fully faithful when restricted to S≥k∗ .

(2) The essential image of βk|S≥k∗ is the full subcategory Mongp
Ek(S) ⊆ MonEk(S) spanned by the

grouplike Ek-spaces.

(3) The equivalence S≥k∗ → Mongp
Ek(S) admits an explicit homotopy inverse, given by the k-fold

bar construction of §5.2.3.

We will prove Theorem 5.2.6.10 in two steps. First, we show that for any ∞-topos X, the

k-fold bar construction induces an equivalence from grouplike Ek-monoid objects of X to pointed

k-connective objects of X (Theorem 5.2.6.15). We then show that in the special case X = S, the

bar construction is homotopy inverse to βk. We begin with some general considerations.
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Notation 5.2.6.11. Let X be an ∞-topos and let X∗ be the ∞-category of pointed objects of X.

We will regard X and X∗ as equipped with the Cartesian symmetric monoidal structures. Let k > 0

be an integer, and observe that the forgetful functors

AlgEk(X∗)→ AlgEk(X) AlgEk(Xop
∗ )→ Xop

∗

are equivalences of ∞-categories. Since X admits geometric realizations of simplicial objects, we

can consider the k-fold bar construction

MonEk(X) ' AlgEk(X∗)
Bar(k)

→ AlgEk(Xop
∗ )op ' X∗ .

Since X admits totalizations of cosimplicial objects, the k-fold bar construction admits a right

adjoint, given the k-fold cobar construction

X∗ ' AlgEk(Xop
∗ )op Cobar(k)

→ AlgEk(X∗) ' MonEk(X).

In what follows, we will abuse notation by denoting these adjoint functors by

Bar(k) : MonEk(X)→ X∗ Cobar(k) : X∗ → MonEk(X).

Remark 5.2.6.12. Let X be an∞-topos and let 0 < k <∞. Using Examples 5.2.2.4 and 5.2.3.14,

we see that the the composite functor

X∗
Cobar(k)

→ MonEk(X)→ X

is given by X 7→ ΩkX.

Example 5.2.6.13. When k = 1, we can identify MonE1(X) with the ∞-category Mon(X) ⊆
Fun(N(∆)op,X) of monoid objects of X. Under this equivalence, the bar construction Bar(1) carries

a monoidG• to its geometric realization |G•|, regarded as a pointed object of X via the augmentation

map G0 → |G•|. Since X is an ∞-topos, this construction determines a fully faithful embedding

from grouplike monoid objects of X (see Remark 5.2.6.5) to the full subcategory of X∗ spanned by

those pointed objects X for which the map ∗ → X is an effective epimorphism.

Example 5.2.6.14. Let G be a discrete group, regarded as a grouplike E1-monoid object of

N(Set) ⊆ S. Then Bar(1)(G) can be identified with the usual classifying space BG (regarded as a

pointed space).

If X is an ∞-topos, we let X∗ denote the ∞-category of pointed objects of X. For each integer

a ≥ 0, we let X≥a∗ denote the full subcategory of X∗ spanned by the a-connective pointed objects.

We regard X≥a∗ as endowed with the Cartesian symmetric monoidal structure. Note that the unit

object of X≥a∗ is its final object and that X≥a∗ admits geometric realizations of simplicial objects,

so that the formalism of §5.2.3 can be applied.
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Theorem 5.2.6.15. Let X be an ∞-topos. For each k > 0, the k-fold cobar construction

Cobar(k) : X∗ → MonEk(X)

restricts to an equivalence of ∞-categories X≥k∗ → Mongp
Ek(X).

Lemma 5.2.6.16. Let X be an ∞-topos and let G be a monoid object of X. If G is 1-connective,

then G is grouplike.

Proof. Since X is an ∞-topos, we can choose a small ∞-category C and a fully faithful embedding

f∗ : X → P(C) with a left exact left adjoint f∗ : P(C) → X. Then f∗G is a monoid object of P(C),

so that τ≤0f∗G inherits the structure of a monoid object of τ≤0 P(C). Let H denote the fiber of the

truncation map (f∗G)→ τ≤0f∗G. Then f∗H can be identified with the fiber of the truncation map

G ' f∗f∗G→ f∗τ≤0f∗G ' τ≤0f
∗f∗G ' τ≤0G ' 1,

and is therefore equivalent to G as a monoid object of X. To prove that G is grouplike, it will suffice

to prove that H is grouplike. We may therefore replace X by P(C) (and G by H) and thereby reduce

to the case where X is an ∞-topos of presheaves. In this case, the monoid object G is grouplike

if and only if for each object C ∈ C, the evaluation G(C) is grouplike when regarded as a monoid

object of S. We may therefore assume without loss of generality that X = S, in which case the

desired result follows immediately from the characterization given in Example 5.2.6.4.

Remark 5.2.6.17. Let k and k′ be positive integers. It follows from Remark 5.2.6.12 that an

object X ∈ X≥k∗ belongs to X≥k+k′
∗ if and only if Cobar(k)(X) belongs to the full subcategory

MonEk(X≥k
′

∗ ) ⊆ MonEk(X∗) ' MonEk(X). Consequently, if Theorem 5.2.6.15 holds for the integer

k, then the cobar construction Cobar(k) induces an equivalence of ∞-categories

X≥k+k′
∗ → MonEk(X≥k

′
∗ ).

Proof of Theorem 5.2.6.15. In the case k = 1, the desired result follows from Example 5.2.6.13.

We treat the general case using induction on k. If k ≥ 2, we can write k = a+ b for a, b ≥ 1. Using

Remark 5.2.3.14, we see that the k-fold cobar construction Cobar(k) factors as a composition

X∗
Cobar(a)

→ MonEa(X∗)

Cobar(b)

→ MonEa(MonEb(X∗))

' MonEk(X∗)

' MonEk(X).

The desired result now follows from the inductive hypothesis together with Remark 5.2.6.17.

Let us now extract some consequences of Theorem 5.2.6.15.
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Corollary 5.2.6.18. For any ∞-topos X, the loop functor The loop functor Ωk : S≥k∗ → S is

conservative and preserves sifted colimits.

Proof. Using Theorem 5.2.6.15 and Remark 5.2.6.12, we may reduce to the problem of showing that

the forgetful functor θ : Mongp
Ek(S)→ S is conservative and preserves sifted colimits. Since Mongp

Ek(S)

is stable under colimits in MonEk(S), it suffices to show that the forgetful functor MonEk(S) → S

is conservative and preserves sifted colimits. This follows from Proposition 2.4.2.5, Proposition

3.2.3.1, and Lemma 3.2.2.6.

We note that the loop functor Ω : S≥1
∗ → S is corepresentable by the 1-sphere S1 ∈ S≥1

∗ . It

follows from Corollary 5.2.6.18 that S1 is a compact projective object of S≥1
∗ . Since the collection

of compact projective objects of S≥1
∗ is stable under finite coproducts, we deduce the following:

Corollary 5.2.6.19. Let F be a finitely generated free group, and BF its classifying space. Then

BF is a compact projective object of S≥1
∗ .

For each n ≥ 0, let F (n) denote the free group on n generators, and BF (n) a classifying

space for F (n). Let F denote the full subcategory of the category of groups spanned by the objects

{F (n)}n≥0. We observe that the construction F (n) 7→ BF (n) determines a fully faithful embedding

i : N(F) → S≥1
∗ . Let PΣ(N(F)) be defined as in §HTT.5.5.8 (that is, PΣ(N(F)) is the ∞-category

freely generated by N(F) under sifted colimits).

Remark 5.2.6.20. According to Corollary HTT.5.5.9.3 , the ∞-category PΣ(N(F)) is equivalent

to the underlying ∞-category of the simplicial model category A of simplicial groups.

It follows from Proposition HTT.5.5.8.15 that the fully faithful embedding i is equivalent to a

composition

N(F)
j→ PΣ(N(F))

F→ S≥1
∗ ,

where F is a functor which preserves sifted colimits (moreover, the functor F is essentially unique).

Corollary 5.2.6.21. The functor F : PΣ(N(F))→ S≥1
∗ is an equivalence of ∞-categories.

Remark 5.2.6.22. Combining Corollary 5.2.6.21 and Remark 5.2.6.20, we recover the following

classical fact: the homotopy theory of pointed connected spaces is equivalent to the homotopy

theory of simplicial groups. See [58] for an explicit combinatorial version of this equivalence.

Proof of Corollary 5.2.6.21. Since i : N(F) → S≥1
∗ is fully faithful and its essential image consists

of compact projective objects (Corollary 5.2.6.19), Proposition HTT.5.5.8.22 implies that F is

fully faithful. We observe that the functor i preserves finite coproducts, so that F preserves small

colimits by virtue of Proposition HTT.5.5.8.15 . Using Corollary HTT.5.5.2.9 , we deduce that F

admits a right adjoint G. Since F is fully faithful, G is a colocalization functor; to complete the

proof, it will suffice to show that G is conservative.
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Let f : X → Y be a morphism in S≥1
∗ such that G(f) is an equivalence; we wish to prove that f

is an equivalence. Let Z be the free group on one generator, and j Z its image in PΣ(N(F)). Then

f induces a homotopy equivalence

Map
S
≥1
∗

(S1, X) ' MapPΣ(N(F))(j Z, GX)→ MapPΣ(N(F))(j Z, GY ) ' Map
S
≥1
∗

(S1, Y ).

It follows that Ω(f) : ΩX → ΩY is a homotopy equivalence, so that f is a homotopy equivalence

by virtue of Corollary 5.2.6.18.

Theorem 5.2.6.10 is an immediate consequence of Theorem 5.2.6.15 together with the following:

Proposition 5.2.6.23. For each integer k > 0, the functors βk,Cobar(k) : S∗ → MonEk(S) are

equivalent to one another.

Remark 5.2.6.24. Suppose we are given a pair of nonnegative integers k and k′. The bifunctor

of ∞-operads E⊗k × E
⊗
k′ → E⊗k+k′ determines a map

ρ : MonEk+k′ (S)→ MonEk(MonEk′ (S)),

which is an equivalence of ∞-categories by virtue of Theorem 5.1.2.2. Let K be a pointed Kan

complex. Then the counit map

Sing•(Ω
k| Sing•(Ω

k′ |K|)|)→ Sing•(Ω
k+k′ |K|)

underlies an equivalence in the ∞-category MonEk(MonEk′ (S)), which depends functorially on K.

In other words, the diagram of ∞-categories

S∗
βk //

βk+k′

��

MonEk(S∗)

βk′

��
MonEk+k′ (S∗)

ρ //MonEk(MonEk′ (S∗))

commutes up to homotopy.

Proof of Proposition 5.2.6.23. Using Remarks 5.2.6.24 and 5.2.3.14, we can reduce to the case

k = 1. Let G : MonE1(S) → S denote the forgetful functor, so that G ◦ β1 and G ◦ Cobar(1)

are both equivalent to the functor Ω : S∗ → S. It follows that for any pointed space X with base

point component X◦, the canonical maps

β1(X◦)→ β1X Cobar(1)X◦ → Cobar(1)X

are equivalences. It will therefore suffice to show that the functors β1|S≥1
∗

and Cobar(1) |
S
≥1
∗

are

equivalent. Using Corollary 5.2.6.18, we see that the functors β1|S≥1
∗

and Cobar(1) |
S
≥1
∗

preserve
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sifted colimits. It will therefore suffice to show that the functors β1 and Cobar(1) are equivalent

when restricted to spaces of the form BF , where F is a finitely generated free group. We have

canonical equivalences

β1(BF ) ' π1(BF )

' F

' Cobar(1) Bar(1) F

' Cobar(1)BF.

since the bar construction Bar(1)(F ) can be functorially identified with the classifying space BF

(Example 5.2.6.14).

Remark 5.2.6.25. Let K be a pointed space. Then the k-fold loop space ΩkK can be endowed

with two a priori different Ek-structures: one coming from the geometric structure of the little cubes

operads, and the second coming from the identification of ΩkK with the k-fold cobar construction

of §5.2.3. Proposition 5.2.6.23 asserts that these two structures are equivalent to one another.

However, our proof is somewhat unsatisfying: rather than directly exhibiting an equivalence of

Ek-spaces, we instead argued that they cannot help but to be equivalent by virtue of all of the

naturality properties that both constructions enjoy. Let us briefly sketch a construction which

relates the functors βk and Cobar(k) more directly.

Fix a pointed topological space X. Let C = 2k be an open k-dimensional cube and let C+

denote its one-point compactification. We let Map(C,X) denote the space of all maps from C to

X (which is homotopy equivalent to X), and Map∗(C
+, X) the space of all pointed maps from

C+ into X (which is homotopy equivalent to the k-fold loop space Ωk(X)). There is an evident

inclusion map ρC : Map∗(C
+, X) ↪→ Map(C,X). Given a collection of rectilinear embeddings

γ1 : C1 ↪→ C · · · γn : Cn ↪→ C

having disjoint images, we can associate a map of pointed spaces δ : C+ → C+
1 ∨ C

+
2 ∨ · · · ∨ C+

n .

We have a commutative diagram

∏
1≤i≤n Map∗(C

+
i , X)

��

∏
ρCi //

∏
1≤i≤n Map(Ci, X)

Map∗(C,X)
ρC //Map(C,X).

OO

where the vertical maps are given by composition with δ and the γi. One can show that these

commutative diagrams exhibit ρC as an Ek-algebra in the twisted arrow category of spaces. Taking

X = |K| for some Kan complex K, we obtain an object of AlgEk(TwArr(S)) whose image in

AlgEk(S) agrees with βkK and whose image in AlgEk(Sop) ' S agrees with K. This determines a

canonical map βkK → Cobar(k)K, which can be shown to be an equivalence.
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Remark 5.2.6.26. For every integer k, the diagram

S∗

βk+1

��

Ω // S∗

βk
��

MonEk+1
(S) //MonEk(S)

commutes up to homotopy, where the lower vertical map is induced by the inclusion of ∞-operads

Ek ↪→ Ek+1. Theorem 5.2.6.10 therefore supplies an identification of the ∞-category Mongp
E∞(S) '

lim←−Mongp
Ek(S) with the homotopy limit of the tower of ∞-categories

· · · → S≥2
∗

Ω→ S≥1
∗

Ω→ S≥0
∗ ,

which is the ∞-category Spcn of connective spectra.

Corollary 5.2.6.27. Let Spcn denote the ∞-category of connective spectra. Then the functor

Ω∞ : Spcn → S is conservative and preserves sifted colimits.

Proof. Using Remark 5.2.6.26, we are reduced to proving that the forgetful functor Mongp
E∞(S)→ S

is conservative and preserves sifted colimits. Since Mongp
E∞(S) is closed under colimits in MonE∞(S),

we are reduced to proving that the forgetful functor MonE∞(S) → S is conservative and preserves

sifted colimits. This follows from Proposition 2.4.2.5, Proposition 3.2.3.1, and Lemma 3.2.2.6.

Remark 5.2.6.28. Let X be an ∞-topos, and regard X as endowed with the Cartesian symmet-

ric monoidal structure. Theorem 5.2.6.15 guarantees the existence of an equivalence θ : X≥1
∗ '

Mongp(X) ' Alggp(X), where Alggp(X) denotes the essential image of Mongp(X) under the equiv-

alence of ∞-categories Mon(X) ' Alg(X) supplied by Propositions 4.1.2.10 and 2.4.2.5. This

equivalence fits into a commutative diagram

Fun(∆1,X)×Fun({1},X) X
≥1
∗

θ //

��

LModgp(X)

��
X≥1
∗

θ // Alggp(X),

where LModgp(X) denotes the fiber product LMod(X)×Alg(X) Alggp(X) and θ is an equivalence of

∞-categories. In other words, if X ∈ X is a pointed connected object, then there is a canonical

equivalence between the ∞-topos X/X and the ∞-category LModθ(X)(X) of θ(X)-module objects

of X.

To prove this, we let D denote the full subcategory of Fun(∆1×N(∆+)op,X) spanned by those

functors F with the following properties:

(i) The functor F is a right Kan extension of its restriction to the full subcategory K ⊆ ∆1 ×
N(∆+)op spanned by the objects (0, [−1]), (1, [−1]), and (1, [0]).
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(ii) The object F (1, [0]) ∈ X is final.

(iii) The augmentation map F (1, [0]) → F (1, [−1]) is an effective epimorphism (equivalently, the

object F (1, [−1]) ∈ X is 1-connective).

It follows from Proposition HTT.4.3.2.15 that the restriction map F 7→ F |K determines a triv-

ial Kan fibration D → Fun(∆1,X) ×Fun({1},X) X
≥1
∗ . Recall that we have a canonical equivalence

LMod(X) ' LMon(X) (Propositions 4.2.2.9 and 2.4.2.5). To construct the functor θ, it will suffice

to show that the restriction functor F 7→ F |(∆1 × N(∆)op) is a trivial Kan fibration from D onto

LMon(X)×Mon(X) Mongp(X), where LMon(X) is defined as in Definition 4.2.2.2. Using Proposition

HTT.4.3.2.8 , we see that (i) is equivalent to the following pair of assertions:

(i0) The restriction F |({1}×N(∆+)op) is a right Kan extension of its restriction to {1}×N(∆≤0
+ )op.

(i1) The functor F determines a Cartesian natural transformation from F0 = F |({0}×N(∆+)op)

to F1 = F |({1} ×N(∆+)op).

Assertions (i0), (ii), and (iii) are equivalent to requirement that the functor F1 belongs to the

full subcategory C ⊆ Fun(N(∆+)op,X) appearing in the proof of Theorem 5.2.6.15. In particular,

these conditions guarantee that F1 is a colimit diagram. Combining this observation with Theorem

HTT.6.1.3.9 allows us to replace (i1) by the following pair of conditions:

(i′1) The functor F0 is a colimit diagram.

(i′′1) The restriction F |(∆1 × N(∆)op) is a Cartesian transformation from F0|N(∆)op to

F1|N(∆)op.

It follows that Y can be identified with the full subcategory of Fun(∆1,N(∆+)op) spanned by those

functors F such that F ′ = F |(∆1×N(∆)op) belongs to LMon(X)×Mon(X) Mongp(X) and F is a left

Kan extension of F ′. The desired result now follows from Proposition HTT.4.3.2.15 .

Remark 5.2.6.29. In the situation of Remark 5.2.6.28, let X be a pointed 1-connective object of

the∞-topos X. Under the equivalence X/X ' LModθ(X)(X), the forgetful functor LModθX(X)→ X

corresponds to the functor (Y → X) 7→ (Y ×X 1) given by passing to the fiber over the base

point η : 1 → X (here 1 denotes the final object of X). It follows that the free module functor

X→ LModθ(X)(X) corresponds to the functor X ' X/1 → X/X given by composition with η.

5.3 Centers and Centralizers

Let A be an associative algebra over a field k with multiplication m. Then the cyclic bar complex

. . . // A⊗k A⊗k A
m⊗id− id⊗m// A⊗k A
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provides a resolution of A by free (A ⊗k Aop)-modules; we will denote this resolution by P•.

The cochain complex HC∗(A) = HomA⊗kAop(P•, A) is called the Hochschild cochain complex of

the algebra A. The cohomologies of the Hochschild cochain complex (which are the Ext-groups

ExtiA⊗kAop(A,A)) are called the Hochschild cohomology groups of the algebra A. A well-known

conjecture of Deligne asserts that the Hochschild cochain complex HC∗(A) carries an action of the

little 2-cubes operad: in other words, that we can regard HC∗(A) as an E2-algebra object in the

∞-category of chain complexes over k. This conjecture has subsequently been proven by many

authors in many different ways (see, for example, [110], [90], and [144]). Our first goal in this

section is to outline a proof of Deligne’s conjecture using the formalism of ∞-operads. The basic

strategy (which we will carry out in §5.3.1) can be summarized as follows:

(1) Let C⊗ be an arbitrary presentable symmetric monoidal ∞-category, and let f : A → B be

a morphism of Ek-algebra objects of C. We will prove that there exists another Ek-algebra

ZEk(f) of C, which is universal with respect to the existence of a commutative diagram

ZEk(f)⊗A

%%
A

u
99

f // B

in the ∞-category AlgEk(C), where u is induced by the unit map 1 → ZEk(f) (Theorem

5.3.1.14). We refer to ZEk(f) as the centralizer of f .

(2) In the case where A = B and f is the identity map, we will denote ZEk(f) by ZEk(A). We

will see that ZEk(A) has the structure of an Ek+1-algebra object of C. (More generally, the

centralizer construction is functorial in the sense that there are canonical maps of Ek-algebras

ZEk(f)⊗ZEk(g)→ ZEk(f ◦ g); in the special case f = g = idA this gives rise to an associative

algebra structure on the Ek-algebra ZEk(A), which promotes ZEk(A) to an Ek+1-algebra by

Theorem 5.1.2.2.)

(3) We will show that the image of ZEk(f) in C can be identified with a classifying object for

morphisms from A to B in the∞-category ModEkA (C) (Theorem 5.3.1.30). In the special case

where k = 1 and f = idA, we can identify this with a classifying object for endomorphisms

of A as an A-A-bimodule (see Theorem 4.4.1.28), thereby recovering the usual definition of

Hochschild cohomology.

Fix an integer k ≥ 0 and let Free : C → AlgEk(C) be a left adjoint to the forgetful functor. If

f : A→ B is a morphism of Ek-algebra objects of C, then for each C ∈ C we have a canonical fiber

sequence

MapC(C,ZEk(f))→ MapAlgEk
(C)(Free(C)⊗A,B)→ MapAlgEk

(C)(A,B).
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Consequently, to understand the structure of Z(Ek)(f) (as an object of C), we need to understand

the structure of tensor products of the form Free(C) ⊗ A (as Ek-algebra objects of C). In §5.3.3,

we will address this problem in the special case where A = Free(D) is itself freely generated by an

object D ∈ C. Our main result (Theorem 5.3.3.3) asserts the existence of a pushout square

Free(C ⊗D ⊗ Sk−1) //

��

Free(C)q Free(D)

��
Free(C ⊗D) // Free(C)⊗ Free(D)

in AlgEk(C). Roughly speaking, this result asserts that Free(C) ⊗ Free(D) is freely generated by

the objects C and D, subject to the constraint that they “commute” with respect to all binary

operatons in the ∞-operad tEk.
To every Ek-algebra object of a symmetric monoidal∞-category C, one can associate a grouplike

Ek-space A× ⊆ MapC(1, A) which we will refer to as the group of units of A. In §5.3.2, we will

study the group of units ZEk(f)× of the centralizer of a morphism of Ek-algebras f : A→ B. Our

main result (Remark 5.3.2.7) implies that that there is a canonical fiber sequence

ZEk(f)× → B× → Ωk−1 MapAlgEk
(C)(A,B)

(which admits several deloopings). We can describe the situation informally as follows: the (k−1)-

fold delooping Bar(k−1)(B) acts on B and therefore also on the mapping space MapAlgEk
(C)(A,B),

and the stabilizer of the point f ∈ Map AlgEk(C)(A,B) can be identified with the (k − 1)-fold

delooping Bar(k−1) ZEk(f)×.

5.3.1 Centers and Centralizers

Let C be a monoidal∞-category and let M be an∞-category which is left-tensored over C. Suppose

we are given an object M ∈M. Recall that an endomorphism object of M is an object End(M) ∈ C

which represents the functor C 7→ MapM(C ⊗M,M). In §4.7.1, we saw that if an endomorphism

object End(M) ∈ C exists, then it has the structure of an associative algebra object of C and that

M has the structure of an End(M)-module. Unfortunately, there are many interesting cases to

which we cannot apply this result directly.

Example 5.3.1.1. Let k be a field, let C be (the nerve of) the category of associative k-algebras

(regarded as a monoidal ∞-category via the tensor product ⊗k), and let M = C. For any object

A ∈ M, the center Z(A) is a commutative k-algebra which we can identify with an associative

algebra object of C. It is not difficult to see that Z(A) is universal among those algebra objects of

C which act on A (this follows from the observation that any algebra homomorphism B ⊗k A→ A

which is the identity on A must carry B into the center Z(A)). However, Z(A) is generally not
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an endomorphism object of A: for example, the action of Z(A) on A usually does not induce a

bijection

HomC(k, Z(A))→ HomM(k ⊗k A,A) ' HomM(A,A).

Our goal in this section is to introduce a generalization of the notion of endomorphism object

of M ∈M, which we will refer to as a center of M ∈M (our terminology is motivated by Example

5.3.1.1). The notions of endomorphism object and center will coincide when the former is defined

(see Lemma 5.3.1.11), but centers will exist in much greater generality (Theorem 5.3.1.14). We

begin by introducing the closely related notion of the centralizer of a morphism.

Definition 5.3.1.2. Let q : C⊗ → LM be a coCartesian fibration of ∞-operads, so that q exhibits

M = Cm as left-tensored over the monoidal∞-category C⊗a . Let 1 denote the unit object of Ca, and

suppose we are given a morphism f : 1 ⊗M → N in M. A centralizer of f is final object of the

∞-category

(Ca)1/ ×M1⊗M/
M1⊗M//N .

We will denote such an object, if it exists, by Z(f). We will refer to Z(f) as the centralizer of the

morphism f .

Remark 5.3.1.3. We will generally abuse notation by identifying Z(f) with its image in the ∞-

category C. By construction, this object is equipped with a map Z(f)⊗M → N which fits into a

commutative diagram

Z(f)⊗M

$$
1⊗M

88

f // N.

Remark 5.3.1.4. In the situation of Definition 5.3.1.2, we can lift M to an object M ∈ LModA(M),

where A is a trivial algebra object of C⊗a . Then we can identify centralizers for a morphism

f : M → N with morphism objects MorMM/
(M,N) computed in the LM-monoidal ∞-category

C⊗
MLM/

(see Definition 4.2.1.28).

Example 5.3.1.5 (Koszul Duality). Let C⊗ be a symmetric monoidal ∞-category and let k ≥ 0.

Then the ∞-category AlgEk(C) inherits a symmetric monoidal structure: in particular, we can

regard D = AlgEk(C) as a monoidal ∞-category which is left-tensored over itself. If ε : A → 1 is

an augmented Ek-algebra object of C, then a centralizer of ε is an Ek-algebra B which is universal

among those for which there exists an augmentation B ⊗ A → 1 which is compatible with ε: in

other words, it is a Koszul dual of A, in the sense of §5.2.5.

Definition 5.3.1.6. Let q : C⊗ → LM⊗ be a coCartesian fibration of ∞-operads, and let M ∈
M = Cm be an object. A center of M is a final object of the fiber product LMod(M)×M {M}. If

such an object exists, we will denote it by Z(M).
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Remark 5.3.1.7. In the situation of Definition 5.3.1.6, we will often abuse notation by identifying

the center Z(M) with its image in the ∞-category Alg(C) of associative algebra objects of the

monoidal ∞-category Ca.

Our first goal is to show that, as our notation suggests, the theory of centers is closely related

to the theory of centralizers. Namely, we have the following:

Proposition 5.3.1.8. Let q : C⊗ → LM⊗ be a coCartesian fibration of ∞-operads, and let M ∈
M = Cm. Suppose that there exists a centralizer of the canonical equivalence e : 1⊗M →M . Then

there exists a center of M . Moreover, a lifting M ∈ LModA(M) of M exhibits A as a center of M

if and only if the diagram

A⊗M

##
1⊗M

99

e //M

exhibits A as a centralizer of e.

The proof will require a few preliminaries.

Lemma 5.3.1.9. Let q : C⊗ → LM⊗ be a fibration of ∞-operads which exhibits the ∞-category

M = Cm as weakly enriched over C⊗a . Assume that C⊗ admits a a-unit object (Definition 3.2.1.1),

and let θ : LMod(M)→M be the forgetful functor.

(1) The functor θ admits a left adjoint L.

(2) Let LMod′(M) ⊆ LMod(M) be the essential image of L. Then θ induces a trivial Kan fibration

LMod′(M)→M. In particular, L is fully faithful.

(3) An object (A,M) ∈ LMod(M) belongs to LMod′(M) if and only if A is a trivial algebra object

of Ca (see §refunitr).

Proof. Let us identify the∞-operad Triv with the full subcategory of LM spanned by those objects

having the form (〈n〉, 〈n〉◦). The functor θ factors as a composition

LMod(M)
θ′→ AlgTriv /LM(C)

θ′′→M,

where θ′′ is a trivial Kan fibration (Example 2.1.3.5). To prove (1), it will suffice to show that

θ′ admits a left adjoint. We claim that this left adjoint exists, and is given by operadic q-left

Kan extension along the inclusion Triv⊗ ⊂ LM⊗. According to Proposition 3.1.3.3, it suffices

to verify that for each M ∈ AlgTriv /LM(C) and every object of the form X ∈ LM, the map

Triv⊗×LM⊗(LM⊗)act
/X → C⊗ can be extended to an operadic q-colimit diagram (lying over the

natural map (Triv⊗×LM⊗(LM⊗)act)/X). → LM⊗). If X = m, then X ∈ Triv⊗ and the result is

obvious. If X = a, then the desired result follows from our assumption that C⊗ admits an a-unit.
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This proves (1). Moreover, we see that if A = (A,M) ∈ LMod(M), then a map f : M → A|Triv⊗

exhibits A as a free LM-algebra generated by M if and only A|Assoc⊗ is a trivial algebra and f

is an equivalence. It follows that the unit map id → θ ◦ L is an equivalence, so that L is a fully

faithful embedding whose essential image LMod′(M) is as described in assertion (3). To complete

the proof, we observe that θ|LMod′(M) is an equivalence of ∞-categories and also a categorical

fibration, and therefore a trivial Kan fibration.

Lemma 5.3.1.10. Let q : C⊗ → LM⊗ be a coCartesian fibration of ∞-operads which exhibits the

∞-category M = Cm as left-tensored over the monoidal∞-category C⊗a . Let A ∈ Alg(Ca) be a trivial

algebra object, and let M ∈ LModA(M). Let C′⊗ = C⊗
MLM/

be defined as in Notation 2.2.2.3, let

M′ = C′m 'MM/, and let M ′ = idM ∈M′. Then the forgetful functor

θ : LMod(M′)×M′ {M ′} → LMod(M)×M {M}

is a trivial Kan fibration. In particular, M has a center in C⊗ if and only if M ′ has a center in

C′⊗.

Proof. Note that M : LM⊗ → C⊗ is a coCartesian section of q, so that C′⊗ → LM⊗ is a coCartesian

fibration of ∞-operads (Theorem 2.2.2.4). Since θ is evidently a categorical fibration, it will suffice

to show that θ is a trivial Kan fibration. To this end, we let A denote the full subcategory

of Fun(∆1,LMod(M)) spanned by those morphisms (N,B) → (N ′, B′) which exhibit (N,B) as

an LMod′(M)-colocalization of (N ′, B′), where LMod′(M) is the full subcategory of LMod(M)

described in Lemma 5.3.1.9 (in other words, a morphism (N,B) → (N ′, B′) belongs to A if and

only if B is a trivial algebra and the map N → N ′ is an equivalence in M). Evaluation at {1} ⊆ ∆1

and m ∈ LM induces a functor e : A→M. The map θ factors as a composition

LMod(M′)×M′ {M ′}
θ′→ A×M{M}

θ′′→ LMod(M)×M {M},

where θ′′ is a pullback of the trivial Kan fibration A→ LMod(M) given by evaluation at {1}. We

conclude by observing that θ′ is also an equivalence of ∞-categories.

Lemma 5.3.1.11. Let M be an ∞-category left-tensored over a monoidal ∞-category C⊗, let

M ∈ M be an object, and suppose that there exists a morphism object MorM(M,M). Then there

exists a center Z(M). Moreover, an object M ∈ LModA(M) lifting M exhibits A as a center of M

if and only if the canonical map A⊗M →M exhibits A as a morphism object MorM(M,M).

Proof. Combine Corollary 4.7.1.42, Corollary 3.2.2.5, and Proposition 4.2.2.12.

Proof of Proposition 5.3.1.8. Combine Lemma 5.3.1.10, Lemma 5.3.1.11, and Remark 5.3.1.4.

We are primarily interested in studying centralizers in the setting of O⊗-algebra objects of a

symmetric monoidal ∞-category C⊗. To emphasize the role of O⊗, it is convenient to introduce a

special notation for this situation:
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Definition 5.3.1.12. Let O⊗ and D⊗ be ∞-operads, and let p : O⊗×LM⊗ → D⊗ be a bifunctor

of∞-operads. Suppose that q : C⊗ → D⊗ is a coCartesian fibration of∞-operads. Then we have an

induced coCartesian fibration of ∞-operads q′ : AlgO /D(C)⊗ → LM⊗. If f : A→ B is a morphism

in AlgO(C)m, then we let ZO(f) denote the centralizer of f (as a morphism in AlgO(C)⊗), provided

that this centralizer exists. If A ∈ AlgO(C)m, we let ZO(A) denote the center of A, provided that

such a center exists.

Remark 5.3.1.13. The primary case of interest to us is that in which D⊗ = N(Fin∗), so that

C⊗ can be regarded as a symmetric monoidal ∞-category and the map p : O⊗×LM⊗ → D⊗ is

uniquely determined. In this case, we will denote AlgO /D(C)m ' AlgO /D(C)a simply by AlgO(C).

If A ∈ AlgO(C), we can identify the center ZO(A) (if it exists) with an associative algebra object of

the symmetric monoidal ∞-category AlgO(C). If O⊗ is a little cubes operad, then Theorem 5.1.2.2

and Example 5.1.0.7 provide equivalences of ∞-categories

AlgEk+1
(C)→ AlgE1

(AlgEk(C))← Alg(AlgEk(C)),

so we can identify ZEk(A) with an Ek+1-algebra object of C.

In the situation of Definition 5.3.1.12, it is generally not possible to prove the existence of

centralizers by direct application of Lemma 5.3.1.11: the tensor product of O-algebra objects usually

does not commute with colimits in either variable, so there generally does not exist a morphism

object MorAlgO(C)m(A,B) for a pair of algebras A,B ∈ AlgO(C)m. Nevertheless, if O is coherent,

then we will show that the centralizer ZO(f) of a morphism f : A → B exists under very general

conditions:

Theorem 5.3.1.14. Let O⊗ be a coherent ∞-operad, let p : O⊗×LM⊗ → D⊗ be a bifunctor of

∞-operads, and let q : C⊗ → D⊗ exhibit C⊗ as a presentable D-monoidal ∞-category. Then, for

every morphism f : A→ B in AlgO(C)m, there exists a centralizer ZO(f).

Corollary 5.3.1.15. Let k ≥ 0, and let C⊗ be a symmetric monoidal ∞-category. Assume that C

is presentable and that the tensor product ⊗ : C×C→ C preserves small colimits separately in each

variable. Then:

(1) For every morphism f : A→ B in AlgEk(C), there exists a centralizer ZEk(f) ∈ AlgEk(C).

(2) For every object A ∈ AlgEk(C), there exists a center

ZEk(A) ∈ Alg(AlgEk(C)) ' AlgEk+1
(C).

Proof. Combine Theorems 5.3.1.14 and 5.1.1.1.

Corollary 5.3.1.16. Let O⊗ be a coherent ∞-operad, and let q : C⊗ → N(Fin∗) exhibit C⊗ as

a presentable symmetric monoidal ∞-category. Let K be a small simplicial set which is weakly

contractible. Then the tensor product functor ⊗ : AlgO(C) × AlgO(C) → AlgO(C) preserves K-

indexed colimits in each variable.
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Proof. Let q : K → AlgO(C) be a diagram with limit A, and suppose we are given algebra objects

B,C ∈ AlgO(C). We wish to prove that the map θ appearing in the diagram

MapAlgO(C)(A⊗B,C) //

θ

��

lim←−v∈K MapAlgO(C)(q(v)⊗B,C)

��
MapAlgO(C)(B,C) //MapAlgO(C)(B,C)

is a homotopy equivalence. For this, it suffices to show that θ induces a homotopy equivalence after

passing to the homotopy fiber over any point f ∈ MapAlgO(C)(B,C). This is clear, since the map

of homotopy fibers can be identified with the natural map

MapAlgO(C)(A,ZO(f))→ lim←−
v∈K

MapAlgO(C)(q(v),ZO(f)).

Corollary 5.3.1.17. Let C be a symmetric monoidal ∞-category. Assume that C is compactly

generated, and that the tensor product ⊗ : C×C→ C preserves compact objects and preserves small

colimits in each variable. Let k ≥ 0. Then:

(1) The ∞-category AlgEk(C) is compactly generated.

(2) The tensor product ⊗ : AlgEk(C)×AlgEk(C)→ AlgEk(C) preserves compact objects separately

in each variable.

Proof. Since the forgetful functor AlgEk(C)→ C preserves filtered colimits, the free algebra functor

Free : C→ AlgEk(C) carries compact objects of C to compact objects of AlgEk(C). Let X denote the

smallest full subcategory of AlgEk(C) which is closed under finite colimits and contains Free(C),

for each compact object. Then X consists of compact objects of AlgEk(C), so the inclusion X ↪→
AlgEk(C) extends to a fully faithful embedding F : Ind(X) → AlgEk(C) which preserves filtered

colimits. Using Proposition HTT.5.5.1.9 , we see that F preserves small colimits. Since AlgEk(C)

is presentable (Corollary 3.2.3.5), the functor F admits a right adjoint G (Corollary HTT.5.5.2.9 .

To prove that F is an equivalence of ∞-categories, it will suffice to show that G is conservative.

Let α : A→ B be a morphism of Ek-algebra objects of C such that G(α) is an equivalence. Then α

induces a homotopy equivalence MapC(C,A)→ MapC(C,B) for every compact object C ∈ C. Since

C is compactly generated, it follows that α is an equivalence. This completes the proof that C is

compactly generated. Moreover, it shows that every compact object of C is a retract of an object

of X.

Let A,B ∈ AlgEk(C) be compact; we wish to prove that A⊗B is a compact object of AlgEk(C).

Let us first regard A as fixed, and let Y ⊆ AlgEk(C) denote the full subcategory spanned by those

objects B for which A⊗ B is compact in AlgEk(C). We wish to show that Y contains all compact
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objects of AlgEk(C). Since Y is closed under retracts, it will suffice to show that X ⊆ Y. Note that

Y contains the initial object of AlgEk(C) (since A is compact), and is closed under pushouts by

Corollary 5.3.1.16. It follows that Y is closed under finite colimits (see Corollary HTT.4.4.2.4 ). To

complete the proof that X ⊆ Y, it will suffice to show that Y contains Free(C), for every compact

object C ∈ C. We are therefore reduced to proving that A ⊗ Free(C) is compact, whenever A is

a compact object of AlgEk(C) and C ∈ C is compact. Fixing C and allowing A to vary, the same

argument allows us to reduce to the case where A = Free(C ′) for some compact object C ′ ∈ C. The

desired result is now an immediate consequence of the presentation of Free(C ′)⊗Free(C) supplied

by Theorem 5.3.3.3.

Example 5.3.1.18 (The Drinfeld Center). Let C be an Ek-monoidal ∞-category. Using Example

2.4.2.4 and Proposition 2.4.2.5, we can view C as an Ek-algebra object of the ∞-category Cat∞
(which we regard as endowed with the Cartesian symmetric monoidal structure). Corollary 5.3.1.15

guarantees the existence of a center ZEk(C), which we can view as an Ek+1-monoidal ∞-category.

In the special case where k = 1 and C is (the nerve of) an ordinary monoidal category, the center

ZE1(C) is also equivalent to the nerve of an ordinary category Z. Example 5.1.2.4 guarantees that

Z admits the structure of a braided monoidal category. This braided monoidal category Z is called

the Drinfeld center of the monoidal category underlying C (see, for example, [82]). Consequently,

we can view the construction C 7→ ZEk(C) as a higher-categorical generalization of the theory of

the Drinfeld center.

Our goal for the remainder of this section is to provide a proof of Theorem 5.3.1.14. The idea

is to change ∞-categories to maneuver into a situation where Lemma 5.3.1.11 can be applied. To

carry out this strategy, we will need to introduce a bit of notation.

Definition 5.3.1.19. Let O⊗ be an ∞-operad and S an ∞-category. A coCartesian S-family of

O-operads is a map q : C⊗ → O⊗×S with the following properties:

(i) The map q is a categorical fibration.

(ii) The underlying map C⊗ → N(Fin∗)×S exhibits C⊗ as an S-family of∞-operads, in the sense

of Definition 2.3.2.10.

(iii) For every object C ∈ C⊗ with q(C) = (X, s) ∈ O⊗×S and every morphism f : s → s′ in S,

there exists a q-coCartesian morphism C → C ′ in C⊗ lifting the morphism (idX , f).

Remark 5.3.1.20. Let q : C⊗ → O⊗×S be a coCartesian S-family of O-operads. Condition

(iii) of Definition 5.3.1.19 guarantees that the underlying map C⊗ → S is a coCartesian fibration,

classified by some map χ : S → Cat∞. The map q itself determines a natural transformation from

χ to the constant functor χ0 taking the value O⊗, so that χ determines a functor χ : S → Cat/O
⊗

∞ .

This construction determines a bijective correspondence between equivalences classes of S-families

of O-operads and equivalence classes of functors from S to the ∞-category (Op∞)/O
⊗

, where Op∞
is the ∞-category of ∞-operads (see Definition 2.1.4.1).
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Definition 5.3.1.21. Let O⊗ be an ∞-operad, S an ∞-category, and q : C⊗ → O⊗×S be a

coCartesian S-family of O-operads. We define a simplicial set AlgS/O(C) equipped with a map

AlgS/O(C)→ S so that the following universal property is satisfied: for every map of simplicial sets

T → S, there is a canonical bijection of FunS(T,AlgS/O(C)) with the subset of FunO⊗×S(O⊗×T,C)

spanned by those maps with the property that for each vertex t ∈ T , the induced map O⊗ → C⊗t
belongs to Alg/O(Ct).

Remark 5.3.1.22. If q : C⊗ → O⊗×S is as in Definition 5.3.1.21, then the induced map q′ :

AlgS/O(C) → S is a coCartesian fibration. We will refer to a section A : S → AlgS/O(C) of q′ as

an S-family of O-algebra objects of C. We will say that an S-family of O-algebra objects of C is

coCartesian if A carries each morphism in S to a q′-coCartesian morphism in AlgS/O(C).

Definition 5.3.1.23. Let O⊗ be a coherent ∞-operad, let q : C⊗ → O⊗×S be a coCartesian S-

family of O-operads, and let C⊗0 denote the product O⊗×S. If A is an S-family of algebra objects

of C, we let ModO
A(C) denote the fiber product

Mod
O

(C)⊗ ×pAlgO(C) S,

where Mod
O

(C) and pAlgO(C) are defined as in §3.3.3 and the map S → pAlgO(C) is determined

by A. We let ModO,S
A (C) denote the fiber product ModO

A(C)×ModO
qA(C0) C0.

Remark 5.3.1.24. Let q : C⊗ → O⊗×S be as in Definition 5.3.1.23 and A is an S-family

of ∞-operads. Then the ∞-category ModO,S
A (C)⊗ is equipped with an evident forgetful functor

ModO,S
A (C)⊗ → O⊗×S. For every object s ∈ S, the fiber ModO,S

A (C)⊗s = ModO
A(C)⊗ ×S {s} is

canonically isomorphic to the ∞-operad ModO
As(Cs)

⊗ defined in §3.3.3.

We will need the following technical result, whose proof will be given at the end of this section.

Proposition 5.3.1.25. Let O⊗ be a coherent ∞-operad, q : C⊗ → O⊗×S a coCartesian S-family

of O-operads, and A ∈ FunS(S,AlgS/O(C)) a coCartesian S-family of O-algebras. Then:

(1) The forgetful functor q′ : ModO,S
A (C)⊗ → O⊗×S is a coCartesian S-family of ∞-operads.

(2) Let f be a morphism in ModO,S
A (C)⊗ whose image in O⊗ is degenerate. Then f is q′-

coCartesian if and only if its image in C⊗ is q-coCartesian.

Remark 5.3.1.26. In the situation of Proposition 5.3.1.25, suppose that O⊗ is the 0-cubes operad

E0. Let C denote the fiber product C⊗×O⊗ O. Then the forgetful functor θ : ModO,S
A (C) → C is a

trivial Kan fibration. To prove this, it suffices to show that θ is a categorical equivalence (since it

is evidently a categorical fibration). According to Corollary HTT.2.4.4.4 , it suffices to show that

θ induces a categorical equivalence after passing to the fiber over each vertex of S, which follows

from Proposition 3.3.3.19.



890 CHAPTER 5. LITTLE CUBES AND FACTORIZABLE SHEAVES

Suppose now that q : C⊗ → O⊗×S is a coCartesian S-family of O-operads and that A is a co-

Cartesian S-family of O-algebra objects of C. Then A determines an S-family of O-algebra objects

of ModO,S
A (C), which we will denote also by A. Note that, for each s ∈ S, As ∈ Alg/O(ModO

As(Cs)) is

a trivial algebra and therefore initial in Alg/O(ModO
As(Cs)) (Proposition 3.2.1.8). Let AlgS/O(C)AS/

be defined as in §HTT.4.2.2 and let AlgS/O(ModO,S
A (C))AS/ be defined similarly. We have a com-

mutative diagram

AlgS/O(ModO,S
A (C))AS/

θ //

''

AlgS/O(C)AS/

yy
S.

The vertical maps are coCartesian fibrations and θ preserves coCartesian morphisms. Using Corol-

lary 3.4.1.7, we deduce that θ induces a categorical equivalence after passing to the fiber over each

object of S. Applying Corollary HTT.2.4.4.4 , we deduce the following:

Proposition 5.3.1.27. Let O⊗ be a coherent ∞-operad, q : C⊗ → O⊗×S a coCartesian S-family

of O-operads, and A a coCartesian S-family of O-algebra objects of C. Then the forgetful functor

θ : AlgSO(ModO,S
A (C))AS/ → AlgS/O(C)AS/

is an equivalence of ∞-categories.

Proposition 5.3.1.27 provides a mechanism for reducing questions about centralizers of arbitrary

algebra morphisms f : A→ B to the special case where A is a trivial algebra.

Remark 5.3.1.28. Let C⊗ → LM⊗ be a coCartesian fibration of ∞-operads which exhibits an

∞-category M = Cm as left-tensored over the monoidal ∞-category Ca. Let 1 denote the unit

object of Ca, let f : M0 →M be a morphism in M, and consider the fiber product X = Ca×MM/M ,

where the map Ca → M is given by tensor product with M0. We will identify the tensor product

1 ⊗M0 with M0, so that the pair (1, f : M0 → M) can be identified with an object X ∈ X. The

undercategory XX/ can be identified with the fiber product (Ca)1/ ×MM0/
MM0/ /M . Assume that

the∞-category X has a final object (in other words, there exists a morphism object MorM(M0,M)

in Ca). Using Proposition HTT.1.2.13.8 , we deduce that the forgetful functor XX/ → X induces

an equivalence between the full subcategories spanned by the final objects of XX/ and X. In other

words:

(i) A map ε : 1→ Z in Ca together with a commutative diagram

Z ⊗M0

g

$$
M0

ε⊗idM0

::

f //M

in M is a centralizer of f if and only if the underlying morphism g exhibits Z as a morphism

object MorM(M0,M).
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(ii) For any object Z ∈ Aa and any morphism Z ⊗M0 → M which exhibits Z as a morphism

object MorM(M0,M), there exists a map 1→ Z and a commutative diagram

Z ⊗M0

g

$$
M0

ε⊗idM0

::

f //M

satisfying the conditions of (i).

Proposition 5.3.1.29. Let q : C⊗ → O⊗×LM⊗ be a coCartesian LM⊗-family of O⊗-operads, and

assume that the induced map AlgLM
⊗

/O (C) → LM⊗ is a coCartesian fibration of ∞-operads (this is

automatic if, for example, the map C⊗ → LM⊗ is a coCartesian fibration of ∞-operads). For every

object X ∈ O⊗, we let CX,a denote the fiber of q over the vertex (X, a), and define CX,m similarly.

Let f : A0 → A be a morphism in AlgLM
⊗

/O (C)m. Assume that:

(i) The ∞-operad O⊗ is unital.

(ii) The algebra object A0 is trivial (see §3.2.1).

(iii) For every object X ∈ O⊗, there exists a morphism object MorCX,m(A0(X), A(X)) ∈ CX,a.

Then:

(1) There exists a centralizer Zf (∈) AlgLM
⊗

O (C)a.

(2) Let Z ∈ AlgLM
⊗

/O (C)a be an algebra object. Then a commutative diagram

Z ⊗A0

g

##
A0

;;

f // A

exhibits Z as a centralizer of f if and only if, for every object X ∈ O, the induced map

gX : Z(X)⊗A0(X)→ A(X) exhibits Z(X) as a morphism object MorCX,m(A0(X), A(X)).

Proof. Let 1 ∈ AlgLM
⊗

/O (C)a be a trivial algebra; we will abuse notation by identifying the tensor

product 1⊗A0 with A0. To prove (1), we must show that the ∞-category

A = (AlgLM
⊗

/O (C)a)1/ ×(AlgLM⊗
/O

(C)m)A0/
(AlgLM

⊗

/O (C)m)A0/ /A

has a final object. Let C⊗a denote the fiber product C⊗×LM⊗{a}, define C⊗m similarly, and set

E⊗ = (C⊗a )1O/ ×(C⊗m)A0O/
(C⊗m)A0O/ /AO
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(see §2.2.2 for an explanation of this notation). Using Theorem 2.2.2.4 (and assumption (ii)),

we deduce that the evident forgetful functor E⊗ → O⊗ is a coCartesian fibration of ∞-operads;

moreover, we have a canonical isomorphism A ' Alg/O(E). For each object X ∈ O⊗, the ∞-

category EX = E⊗×O⊗{X} is equivalent to the fiber product

(CX,a)1(X)/ ×(CX,m)A0(X)/
(CX,m)A0(X)/ /A(X),

which has a final object by virtue of assumption (iii) and Remark 5.3.1.28. It follows that A has

a final object; moreover, an object A ∈ A ' Alg/O(E) is final if and only if each A(X) is a final

object of EX . This proves (1), and reduces assertion (2) to the contents of Remark 5.3.1.28.

We now apply Proposition 5.3.1.29 to the study of centralizers in general. Fix a coherent ∞-

operad O⊗, a bifunctor of ∞-operads O⊗×LM⊗ → D⊗, and a coCartesian fibration of ∞-operads

q : C⊗ → D⊗. Let A ∈ AlgO /D(C)m, and let A ∈ LMod(AlgO /D(C)) be such that Am = A and

Aa is a trivial algebra. We can regard A as a coCartesian LM⊗-family of O-algebra objects of

C⊗×D⊗(O⊗×LM⊗). Let C
⊗

= ModO,LM⊗

A
(C) be the coCartesian S-family of O-operads given by

Proposition 5.3.1.25. Since Aa is trivial, the forgetful functor C
⊗
a → C⊗a = C⊗×D⊗(O⊗×{a}) is an

equivalence of O-operads, and induces an equivalence of∞-categories Alg/O(C)a → AlgO /D(C)a. It

follows from Proposition 5.3.1.27 that every morphism f : A → B in AlgO /D(C)m is equivalent to

θ(f ′), where f ′ : A→ B′ is a morphism in Alg/O(C)m; here we abuse notation by identifying A with

the associated trivial O-algebra object of C
⊗
m . It follows from Proposition 5.3.1.27 that the forgetful

functor θ induces an identification between centralizers of f in AlgO /D(C)a and centralizers of f ′ in

Alg/O(C)a. Combining this observation with Proposition 5.3.1.29, we obtain the following result:

Theorem 5.3.1.30. Let O⊗ be a coherent ∞-operad, O⊗×LM⊗ → D⊗ a bifunctor of ∞-operads,

and q : C⊗ → D⊗ a coCartesian fibration of ∞-operads. Let f : A → B be a morphism in

AlgO /D(C)m and let C
⊗

and f ′ : A→ B′ be defined as above. Assume that:

(∗) For every object X ∈ O, there exists a morphism object MorCX,m(A(X), B′(X)) ∈ CX,a.

Then:

(1) There exists a centralizer Z(f) ∈ AlgO /D(C)a.

(2) Let Z be an arbitrary object of AlgO /D(C)a, and let σ :

Z ⊗A
g

##
A

f //

;;

B
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be a commutative diagram in AlgO /D(C)m. Let Z ′ be a preimage of Z in AlgO(C)a, so that σ

lifts (up to homotopy) to a commutative diagram

Z ′ ⊗A

##
A

;;

f ′ // B′

in Alg/O(C)m. Then σ exhibits Z as a centralizer of f if and only if, for every object

X ∈ O, the induced map Z ′(X) ⊗ A(X) → B′(X) exhibits Z ′(X) as a morphism object

MorCX,m(A(X), B′(X)) ∈ CX,a.

Corollary 5.3.1.31. In the situation of Theorem 5.3.1.30, suppose that O⊗ is the 0-cubes∞-operad

E0. Then we can identify centralizers of a morphism f : A → B in AlgO /D(C)m with morphism

objects MorCm(A,B) in Ca.

Proof. Combine Theorem 5.3.1.30 with Remark 5.3.1.26.

Remark 5.3.1.32. More informally, we can state Theorem 5.3.1.30 as follows: the centralizer of

a morphism f : A→ B can be identified with the classifying object for A-module maps from A to

B. In particular, the center Z(A) can be identified with the endomorphism algebra of A, regarded

as a module over itself.

We now return to the proof of our main result.

Proof of Theorem 5.3.1.14. Combine Theorem 5.3.1.30, Proposition 4.2.1.33, and Theorem 3.4.4.2.

We conclude this section with the proof of Proposition 5.3.1.25. First, we need a lemma.

Lemma 5.3.1.33. Let n ≥ 2, and let C→ ∆n be an inner fibration of ∞-categories. Let q : D→ E

be another inner fibration of ∞-categories. Every lifting problem of the form

Λn0 ×∆n C
g //

��

D

q

��
C

::

// E

admits a solution, provided that g|∆{0,1} ×∆n C is a q-left Kan extension of g|{0} ×∆n C.

Proof. We first define a map r : ∆n ×∆1 → ∆n, which is given on vertices by the formula

r(i, j) =

{
0 if (i, j) = (1, 0)

i otherwise,
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and let j : ∆n → ∆n × ∆1 be the map (id, j0), where j0 carries the first two vertices of ∆n to

{0} ⊆ ∆1 and the remaining vertices to {1} ⊆ ∆1.

Let K = (Λn0 ×∆1)qΛn0×{0} (∆n × {0}), let C′ = (∆n ×∆1)×∆n C, and let C′0 = K ×∆n C. We

will show that there exists a solution to the lifting problem

C′0 //

g′

��

D

q

��
C′ //

??

E .

Composing this solution with the map C→ C′ induced by j, we will obtain the desired result.

For every simplicial subset L ⊆ ∆n, let C′L denote the fiber product

((L×∆1)qL×{0} (∆n × {0}))×∆n C,

and let XL denote the full subcategory of FunE(C′L,D)×FunE(C′∅,D){g′|C′∅} spanned by those functors

F with the following property: for each vertex v ∈ L, the restriction of F to ({v}×∆1)×∆n C is a

q-left Kan extension of F |({v} × {0})×∆n C.

To complete the proof, it will suffice to show that the restriction map X∆n → XΛn0
is surjective

on vertices. We will prove the following stronger assertion:

(∗) For every inclusion L′ ⊆ L of simplicial subsets of ∆n, the restriction map θL′,L : XL → XL′

is a trivial Kan fibration.

The proof proceeds by induction on the number of nondegenerate simplices of L. If L′ = L,

then θL′,L is an isomorphism and there is nothing to prove. Otherwise, choose a nondegenerate

simplex σ of L which does not belong to L′, and let L0 be the simplicial subset of L obtained by

removing σ. The inductive hypothesis guarantees that the map θL′,L0 is a trivial Kan fibration.

Consequently, to show that θL′,L is a trivial Kan fibration, it will suffice to show that θL0,L is a

trivial Kan fibration. Note that θL0,L is a pullback of the map θ∂ σ,σ: we may therefore assume

without loss of generality that L = σ is a simplex of ∆n.

Since the map θL′,L is evidently a categorical fibration, it will suffice to show that each θL′,L is

a categorical equivalence. We may assume by the inductive hypothesis that θ∅,L′ is a categorical

equivalence. By a two-out-of-three argument, we may reduce to the problem of showing that

θ∅,L′ ◦ θL′,L = θ∅,L is a categorical equivalence. In other words, we may assume that L′ is empty.

We are now reduced to the problem of showing that the map Xσ → X∅ is a trivial Kan fibration,

which follows from Proposition HTT.4.3.2.15 .

Proof of Proposition 5.3.1.25. It follows from Remark 3.3.3.15 that q′ is a categorical fibration and

the induced map ModO,S
A (C)⊗ → N(Fin∗) × S exhibits ModO,S

A (C)⊗ as an S-family of ∞-operads

(note that the projection ModO,S
A (C)⊗ → ModO

A(C)⊗ is an equivalence of∞-categories). To complete

the proof of (1), it will suffice to show that q′ satisfies condition (iii) of Definition 5.3.1.19. That is,
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we must show that if M is an object of ModO,S
A (C)⊗ having image (X, s) in O⊗×S and f : s→ s′ is

a morphism in S, then (idX , f) can be lifted to a q′-coCartesian morphism M →M ′ in ModO,S
A (C)⊗.

Let A be the full subcategory of (O⊗)X/ spanned by the semi-inert morphisms X → Y in O⊗, and

let A0 be the full subcategory of A spanned by the null morphisms. The object M ∈ ModO,S
A (C)⊗

determines a functor F : A→ C⊗. Let F0 denote the composite map A
F→ C⊗ → O⊗. Since q exhibit

C⊗ as a coCartesian S-family of ∞-operads, there exists a q-coCartesian natural transformation

H : A×∆1 → C⊗ from F to another map F ′, such that q◦H is the product map A×∆1 F0×f→ O⊗×S.

Let H ′ : A0×∆1 → C⊗ be the composition A0×∆1 → O⊗×S A→ C⊗. Since A is a coCartesian

S-family of O-algebras, the functors H|A0×∆1 and H ′ are equivalent; we may therefore modify H

by a homotopy (fixed on A×{0}) and thereby assume that H|A0×∆1 = H ′, so that H determines

a morphism α : M → M ′ in ModO,S
A (C)⊗ lying over (idX , f). To complete the proof of (1), it will

suffice to show that α is q′-coCartesian.

Let C⊗0 = O⊗×S. We have a commutative diagram of ∞-categories

ModO
A(C)⊗

r//

q′

��

Mod
O

(C)⊗ ×
Mod

O
(C0)⊗

C⊗0
p

((

p′

��
O⊗×S // O⊗× pAlgO(C)×pAlgO(C0) C

⊗
0 p′′

// C⊗0

Since the upper square is a pullback diagram, it will suffice to show that r(α) is p′-coCartesian. In

view of Proposition HTT.2.4.1.3 , we are reduced to showing that r(α) is p-coCartesian and that

(p′ ◦ r)(α) is p′′-coCartesian.

To prove that r(α) is p-coCartesian, we must show that every lifting problem of the form

Λn0
g //

��

Mod
O

(C)⊗ ×
Mod

O
(C)⊗

C0

��
∆n

77

// C⊗0

admits a solution, provided that n ≥ 2 and that g carries the initial edge of Λn0 to the morphism

determined by H. Unwinding the definitions, this amounts to solving a lifting problem of the form

Λn0 ×O⊗ KO

��

G // C⊗

��
∆n ×O⊗ KO

//

88

O⊗×S.

The existence of a solution to this lifting problem is guaranteed by Lemma 5.3.1.33. The assertion

that (p′ ◦ r)(α) is p′′-coCartesian can be proven in the same way. This completes the proof of (1).
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Let f : M → M ′′ be as in (2), let f be the image of f in S, and let f̃ : M → M ′ be the

q′-coCartesian map constructed above. We have a commutative diagram

M ′

g

""
M

f̃
==

f //M ′′.

Let θ : ModO
A(C)⊗ → C⊗ be the forgetful functor. By construction, θ(f) is a q-coCartesian morphism

in C⊗, so that θ(f̃) is q-coCartesian if and only if θ(g) is an equivalence. We note that f is q′-

coCartesian if and only if the map g is an equivalence. The “only if” direction of (2) is now obvious,

and the converse follows from Remark 5.3.1.24 together with Corollary 3.4.3.4.

5.3.2 The Adjoint Representation

Let A be an associative ring, and let A× be the collection of units in A. Then A× forms a group,

which acts on A by conjugation. This action is given by a group homomorphism φ : A× → Aut(A)

whose kernel is the subgroup of A× consisting of units which belong to the center: this group can

be identified with the group of units of the center Z(A). In other words, we have an exact sequence

of groups

0→ Z(A)× → A× → Aut(A).

Our goal in this section is to prove a result which generalizes this statement in the following ways:

(a) In place of a single associative ring A, we will consider instead a map of algebras f : A→ B.

In this setting, we will replace the automorphism group Aut(A) by the set Hom(A,B) of

algebra homomorphisms from A to B. This set is acted on (via conjugation) by the group

B× of units in B. Moreover, the stabilizer of the element f ∈ Hom(A,B) can be identified

with the group of units Z(f)× of the centralizer of the image of f . In particular, we have an

exact sequence of pointed sets

Z(f)× ↪→ B× → Hom(A,B).

(b) Rather than considering rings (which are associative algebra objects of the category of abelian

groups), we will consider algebra objects in an arbitrary symmetric monoidal ∞-category C.

In this setting, we need to determine appropriate analogues of the sets Z(f)×, B×, and

Hom(A,B) considered above. In the last case this is straightforward: the analogue of the

set Hom(A,B) of ring homomorphisms from A to B is the space MapAlg(C)(A,B) of mor-

phisms in the ∞-category Alg(C). Note that the spaces MapC(1,Z(f)) and MapC(1, B) are

equipped with (coherently) associative multiplications (see Definition 5.3.2.4), so that the

sets π0 MapC(1,Z(f)) and π0 MapC(1, B) have the structure of associative monoids. We let
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Z(f)× ⊆ MapC(1,Z(f)) be the union of those connected components corresponding to invert-

ible elements of π0 MapC(1,Z(f)), and let and B× ⊆ MapC(1, B) be defined similarly.

The collection of units in an associative ring R is equipped with the structure of group (with

respect to multiplication). We will see that there is an analogous structure on the space of

units B× for an associative algebra object B of an arbitrary symmetric monoidal∞-category

C: namely, B× is a loop space. That is, there exists a pointed space X(B) and a homotopy

equivalence B× ' ΩX(B). There is an “action” of the loop space B× on the mapping space

MapAlg(C(A,B). This action is encoded by a fibration X(A,B) → X(B), whose homotopy

fiber (over the base point of X(B)) can be identified with MapAlg(C)(A,B). In particular, a

morphism of associative algebra objects f : A→ B determines a base point of X(A,B), and

we will see that the loop space ΩX(A,B) can be identified with the the space of units Z(f)×.

In other words, we have a fiber sequence of spaces

MapAlg(C)(A,B)→ X(A,B)→ X(B)

which, after looping the base and total space, yields a fiber sequence

Z(f)× → B× → MapAlg(C)(A,B)

analogous to the exact sequence of sets described in (a).

(c) Instead of considering only associative algebras, we will consider algebras over an arbitrary

little cubes operad Ek (according to Example 5.1.0.7, we can recover the case of associative

algebras by setting k = 1). If B is an Ek-algebra object of a symmetric monoidal ∞-category

C, then we can again define a space of units B× ⊆ MapC(1, B). The space B× has the

structure of a k-fold loop space: that is, one can define a pointed space X(B) and a homotopy

equivalence B× ' ΩkX(B). If A is another Ek-algebra object of C, then there exists a

fibration X(A,B) → X(B) whose fiber (over a well-chosen point of X(B)) can be identified

with MapAlgEk
(C)(A,B). In particular, every Ek-algebra map f : A → B determines a base

point of the total space X(A,B), and the k-fold loop space ΩkX(A,B) can be identified with

the space of units ZEk(f)× (see Definition 5.3.2.4 below). We therefore have a fiber sequence

of spaces

MapAlgEk
(C)(A,B)→ X(A,B)→ X(B)

which yields, after passing to loop spaces repeatedly, a fiber sequence

ZEk(f)× → B×
φ→ Ωk−1 MapAlgEk

(C)(A,B).

We should regard the map φ as a k-dimensional analogue of the adjoint action of the unit

group B× of an associative ring B on the set of maps Hom(A,B).
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Our first step is to define the spaces of units appearing in the above discussion. This requires

a bit of a digression.

Definition 5.3.2.1. Let O⊗ be an ∞-operad, and let O⊗∗ ⊆ Fun(∆1,O⊗) be the ∞-category of

pointed objects of O⊗. The forgetful functor q : O⊗∗ → O⊗ is a left fibration of simplicial sets. We

let χO : O⊗ → S denote a functor which classifies q.

Proposition 5.3.2.2. Let q : O⊗ → N(Fin∗) be an ∞-operad and let χO : O⊗ → S be as in

Definition 5.3.2.1. Then χO is a O-monoid object of S.

Proof. We must show that if X ∈ O⊗〈n〉, and if αi : X → Xi are a collection of inert morphisms in O⊗

lifting the maps ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n, then the induced map χO(X)→
∏

1≤i≤n χO(Xi) is a

homotopy equivalence. Let 0 denote a final object of O⊗; then the left hand side is homotopy equiv-

alent to MapO⊗(0, X), while the right hand side is homotopy equivalent to
∏

1≤i≤n MapO⊗(0, Xi).

The desired result now follows from the observation that the maps αi exhibit X as a q-product of

the objects {Xi}1≤i≤n.

Remark 5.3.2.3. An ∞-operad O⊗ is unital if and only if the functor χO : O⊗ → S is equivalent

to the constant functor taking the value ∆0.

Definition 5.3.2.4. Let q : C⊗ → O⊗ be a fibration of ∞-operads, where O⊗ is unital, and let

χC : C⊗ → S be as in Definition 5.3.2.1. Composition with χC determines a functor AlgO(C) →
MonO(S).

Suppose that O⊗ = E⊗k , where k > 0. Since the collection of grouplike Ek-spaces is stable under

colimits in MonEk(S) (Remark 5.2.6.9) the inclusion i : Mongp
Ek(S) ⊆ MonEk(S) preserves small

colimits. It follows from Proposition 5.2.6.15 that Mongp
Ek(S) is equivalent to S≥k∗ , and therefore

presentable. Using Corollary HTT.5.5.2.9 , we deduce that the inclusion functor i admits a right

adjoint G. We let GL1 : AlgEk(C)→ Mongp
Ek(S) denote the composite functor

AlgEk(C)
χC◦→ MonEk(C)

G→ Mongp
Ek(C).

If A ∈ AlgEk(C), we will often write A× in place of GL1(A); we will refer to A× as the Ek-space of

units in A.

In the special case k = 0, we let GL1 : AlgEk(C) → MonEk(S) ' S∗ be the functor defined by

composition with χC; we will also denote this functor by A 7→ A×.

We are now prepared to state our main result:

Theorem 5.3.2.5. Let C⊗ be a symmetric monoidal ∞-category. Assume that the underlying

∞-category C is presentable and that the tensor product ⊗ : C×C → C preserves small colimits

separately in each variable. Fix an integer k ≥ 0, and let Map : AlgEk(C)op × AlgEk(C) → S be

the adjoint of the Yoneda embedding AlgEk(C)→ Fun(AlgEk(C)op, S). There exists another functor

X : AlgEk(C)op × AlgEk(C) → S and a natural transformation α : Map → X with the following

properties:
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(1) For every object B ∈ AlgEk(C) and every morphism f : A′ → A in AlgEk(C), the diagram

Map(A,B) //

��

Map(A′, B)

��
X(A,B) // X(A′, B)

is a pullback square.

(2) Let f : A → B be a morphism in AlgEk(C), so that the map f determines a base point of

the space X(A,B) (via α). Then there is a canonical homotopy equivalence ΩkX(A,B) '
ZEk(f)×.

Remark 5.3.2.6. In the situation of Theorem 5.3.2.5, it suffices to prove assertion (1) in the case

where A′ is the initial object 1 ∈ AlgEk(C). This follows by applying Lemma HTT.4.4.2.1 to the

diagram

Map(A,B) //

��

Map(A′, B) //

��

Map(1, B)

��
X(A,B) // X(A′, B) // X(1, B).

Remark 5.3.2.7. In the special case where A′ is the initial object 1 ∈ AlgEk(C), the space

Map(A′, B) is contractible, so that part (1) of Theorem 5.3.2.5 asserts the existence of a fiber

sequence

Map(A,B)→ X(A,B)→ X(1, B).

Fixing a base point (f : A → B) ∈ Map(A,B) and taking loop spaces repeatedly, we have a fiber

sequence

ΩkX(A,B)→ ΩkX(1, B)→ Ωk−1 MapAlgEk
(C)(A,B)

We observe that there is a canonical natural transformation β : ZEk(f0)→ B of functors E⊗k → C⊗.

The natural transformation β induces an equivalence of Ek-spaces ZEk(f0)× → B×. Invoking part

(2) of Theorem 5.3.2.5, we obtain the fiber sequence

ZEk(f)× → B× → Ωk−1 MapAlgEk
(C)(A,B)

described in (c).

An Ek-algebra object A of a symmetric monoidal ∞-category C determines an (∞, k)-category

C(A) enriched over C (having a single j-morphism for each j < k). One approach to the proof of

Theorem 5.3.2.5 would be to define X(A,B) to be the space of functors from C(A) into C(B). Since

we have not developed the theory of enriched (∞, k)-categories in this book, our proof will proceed

along somewhat different lines. We will use an inductive approach, which iteratively replaces the
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∞-category C by the ∞-category LModC of ∞-categories left-tensored over C. To guarantee that

this replacement does not destroy our hypothesis that C is presentable, we need to introduce a few

restrictions on the C-modules that we allow.

Notation 5.3.2.8. Let κ be a regular cardinal. Recall that a presentable ∞-category C is κ-

compactly generated if C is generated by its κ-compact objects under the formation of small, κ-

filtered colimits (see §HTT.5.5.7 ). If C and D are κ-compactly generated ∞-categories, then we

will say that a functor F : C → D is κ-good if F preserves small colimits and carries κ-compact

objects of C to κ-compact objects of D. Equivalently, F is κ-good if F admits a right adjoint G

which commutes with κ-filtered colimits (Proposition HTT.5.5.7.2 ).

Let PrL denote the∞-category of presentable∞-categories and colimit-preserving functors. We

let PrL
κ denote the subcategory of the ∞-category PrL whose objects are κ-compactly generated

presentable ∞-categories and whose morphisms are κ-good functors.

Lemma 5.3.2.9. Let κ be a regular cardinal. Then:

(1) Let K denote the collection of all κ-small simplicial sets together with the simplicial set Idem

introduced in §HTT.4.4.5 . Then the functor C 7→ Indκ(C) determines an equivalence of ∞-

categories from Cat∞(K) to PrL
κ.

(2) The ∞-category PrL
κ is presentable.

(3) The inclusion functor PrL
κ ↪→ PrL preserves small colimits.

Remark 5.3.2.10. In the situation of Lemma 5.3.2.9, the objects of Cat∞(K) are idempotent com-

plete∞-categories which admit κ-small colimits, and the morphisms in Cat∞(K) are functors which

preserve κ-small colimits. If κ is uncountable, then the requirement of idempotent completeness is

automatically satisfied.

Proof. We will prove assertion (1); assertion (2) will then follow from (1) and Lemma 4.8.4.2, and

assertion (3) from the observation that the functor Indκ : Cat∞(K)→ PrL preserves small colimits.

It is clear that the functor Indκ : Cat0
∞(K)→ PrL

κ is essentially surjective. To prove that it is fully

faithful, it will suffice to show that for every pair of ∞-categories C,D ∈ Cat0
∞(K), the canonical

map θ : Fun(C,D) → Fun(Indκ(C), Indκ(D)) induces an equivalence of ∞-categories from the

full subcategory Fun′(C,D) of Fun(C,D) spanned by the those functors which preserve K-indexed

colimits to the full subcategory Fun′(Indκ(C), Indκ(D)) of Fun(Indκ(C), Indκ(D)) spanned by the

κ-good functors. Let Fun′(C, Indκ(D)) denote the full subcategory of Fun(C, Indκ(D)) consisting of

those functors which preserve K-indexed colimits and carry C into the full subcategory of Indκ(D)

spanned by the κ-compact objects. We have a homotopy commutative diagram of ∞-categories

Fun′(C,D)
θ //

θ′ ((

Fun′(Indκ(C), Indκ(D))

θ′′tt
Fun′(C, Indκ(D)),
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where θ′ and θ′′ are given by composing with the Yoneda embeddings for D and C, respectively.

To complete the proof, it will suffice to show that θ′ and θ′′ are categorical equivalences.

To show that θ′ is a categorical equivalence, let D′ denote the collection of all κ-compact objects

of Indκ(D). Since D′ is stable under κ-small colimits in Indκ(D), Fun′(C, Indκ(D)) is isomorphic

to the full subcategory of Fun(C,D′) spanned by those functors which preserve κ-small colimits.

It will therefore suffice to show that the Yoneda embedding induces an equivalence D→ D′. This

follows from Lemma HTT.5.4.2.4 , by virtue of our assumption that D is idempotent-complete.

Repeating the previous argument with C in place of D, we see that an object of Indκ(C) is κ-

compact if and only if it lies in the image of the Yoneda embedding j : C→ Indκ(C). Consequently,

to prove that θ′′ is a categorical equivalence, it suffices to show that composition with j induces

an equivalence from the full subcategory of Fun(Indκ(C), Indκ(C)) spanned by those functors which

preserve small colimits to the full subcategory of Fun(C, Indκ(C)) spanned by those functors which

preserve κ-small colimits; this follows from Proposition HTT.5.5.1.9 .

We now study the interaction between the subcategory PrL
κ ⊆ PrL and the symmetric monoidal

structure PrL⊗ on PrL constructed in §4.8.1. Let PrL
κ
⊗

denote the subcategory of PrL⊗ whose

objects are finite sequences (C1, . . . ,Cn) where each of the∞-categories Ci is κ-compactly generated,

and whose morphisms are given by maps (C1, . . . ,Cm) → (D1, . . . ,Dn) covering a map α : 〈m〉 →
〈n〉 in Fin∗ such that the functors

∏
α(i)=j Ci → Dj preserve κ-compact objects for 1 ≤ j ≤ n.

Lemma 5.3.2.11. Let κ be a regular cardinal. Then:

(1) If C and D are κ-compactly generated presentable monoidal ∞-categories, then C⊗D is κ-

compactly presented. Moreover, the collection of κ-compact objects of C⊗D is generated

under κ-small colimits by tensor products of the form C ⊗D, where C ∈ C and D ∈ D are

κ-compact.

(2) The composite map PrL
κ
⊗ ⊆ PrL⊗ → N(Fin∗) exhibits PrL

κ
⊗

as a symmetric monoidal ∞-

category, and the inclusion PrL
κ
⊗ ⊆ PrL⊗ is a symmetric monoidal functor.

(3) Let K be as in Lemma 5.3.2.9. The functor Indκ induces an equivalence of symmetric

monoidal ∞-categories Cat∞(K)⊗ → PrL
κ
⊗

.

(4) The tensor product ⊗ : PrL
κ ×PrL

κ → PrL
κ preserves small colimits separately in each variable.

Proof. Remark 4.8.1.8 implies that the functor Indκ : Cat∞(K) → PrL extends to a symmetric

monoidal functor. To prove (1), we note that if C ' Indκ(C0) and D ' Indκ(D0), then C⊗D '
Indκ(C0⊗D0) is a κ-compactly generated ∞-category. To prove the second assertion of (1), it

suffices to show that C0⊗D0 is generated under κ-small colimits by the essential image of the

functor C0×D0 → C0⊗D0, which is clear. Assertion (2) follows immediately from (1). Assertion

(3) follows from Lemma 5.3.2.9, and assertion (4) follows from (3) together with Lemma 4.8.4.2.
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Lemma 5.3.2.12. Let C⊗ be a symmetric monoidal ∞-category. Assume that C is presentable and

that the tensor product ⊗ : C×C → C preserves small colimits separately in each variable. Then

there exists an uncountable regular cardinal κ with the following properties:

(1) The ∞-category C is κ-compactly generated.

(2) The tensor product ⊗ : C×C → C preserves κ-compact objects, and the unit object 1 ∈ C is

κ-compact.

(3) For every algebra object A ∈ Alg(C), the ∞-category RModA(C) is κ-compactly generated.

(4) For every algebra object A ∈ Alg(C), the action functor ⊗ : C×RModA(C) → RModA(C)

preserves κ-compact objects.

Proof. Choose an regular cardinal κ0 such that C is κ0-compactly generated. Let C0 be the full

subcategory of C spanned by the κ0-compact objects, and let C1 denote the smallest full subcategory

of C which contains C0, the unit object of C, and the essential image of the tensor product functor

⊗ : C0×C0 → C. Since C1 is essentially small, there exists a regular cardinal κ > κ0 such that

every object in C1 is κ-small. We claim that κ has the desired properties. It is clear that κ is

uncountable and that (1) is satisfied.

To prove (2), choose κ-compact objects C,D ∈ C. Then C and D can be written as κ-small

colimits lim−→(Cα) and lim−→(Dβ), where the objects Cα and Dβ are κ0-compact. Then C ⊗ D '
lim−→(Cα ⊗Dβ) is a κ-small colimit of objects belonging to C1, and is therefore κ-compact.

We now prove (3). According to Corollary 4.2.3.5, the forgetful functor G : RModA(C) → C

preserves κ-filtered colimits (in fact, all small colimits). It follows from Proposition HTT.5.5.7.2

that the left adjoint F to G preserves κ-compact objects. Let X denote the full subcategory

of RModA(C) generated under small colimits by objects of the form F (C), where C ∈ C is κ-

compact; we will show that X = RModA(C). For each M ∈ RModA(C), we can write M '
A ⊗A M = |BarA(A,M)•|. Consequently, to show that M ∈ X, it will suffice to show that X

contains F (A⊗n−1 ⊗ G(M)) for each n ≥ 1. We are therefore reduced to proving that F (C) ∈ X

for each C ∈ C, which is clear (the functor F preserves small colimits and C can be written as a

colimit of κ-compact objects of C by (1)).

We now prove (4). Let Y denote the full subcategory of RModA(C) spanned by those objects M

such that C⊗M ∈ RModA(C) is κ-compact for every κ-compact object C ∈ C. The∞-category Y is

evidently closed under κ-small colimits in RModA(C). Since C⊗F (D) ' F (C⊗D), it follows from

(2) that Y contains F (D) for every κ-compact object D ∈ C. Since every object of Y is κ-compact

in RModA(C), we have a fully faithful embedding f : Indκ(Y) → ModRA(C), which preserves small

colimits by Proposition HTT.5.5.1.9 . The essential image Y′ of f is stable under small colimits and

contains F (D) for every κ-compact object D ∈ C, so that X ⊆ Y′. It follows that f is essentially

surjective and therefore an equivalence of ∞-categories. Lemma HTT.5.4.2.4 now guarantees that

the collection of κ-compact objects of RModA(C) is an idempotent completion of Y. Since κ is
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uncountable, Y is stable under sequential colimits and therefore idempotent complete. It follows

that Y contains every κ-compact object of RModA(C), as desired.

We now proceed with the proof of our main result.

Proof of Theorem 5.3.2.5. We proceed by induction on k. Assume first that k = 0. Let X denote

the composite functor

AlgEk(C)op ×AlgEk(C)→ Cop×C
H′→ S,

where H is the adjoint of the Yoneda embedding for C (given informally by H(C,C ′) =

MapC(C,C ′)). The forgetful functor θ : AlgEk(C) → C determines a natural transformation

of functors Map → X. We claim that this functor satisfies conditions (1) and (2) of Theorem

5.3.2.5.

Suppose we are given a morphism A′ → A in AlgEk(C) and an object B ∈ AlgEk(C). Let 1

denote the unit object of Cm. Proposition 2.1.3.9 implies that AlgEk(C) is equivalent to (C)1/. It

follows that we have a natural transformation of fiber sequences

Map(A,B) //

��

Map(A′, B)

��
X(A,B) //

��

X(A′, B)

��
MapC(1, θ(B)) //MapC(1, θ(B)).

Since the bottom horizontal map is a homotopy equivalence, the upper square is a homotopy

pullback square. This proves (1). To prove (2), we invoke Corollary 5.3.1.31 to identify ZEk(f)× =

MapC(1,ZEk(f)×) with the mapping space MapC(θ(A), θ(B)) = X(A,B).

We now treat the case where k > 0. Applying Corollary 5.1.2.6 (in the setting of ∞-categories

which are not necessarily small, which admit small colimits) we obtain a fully faithful embedding

ψ : AlgEk(C) → AlgEk−1
(LModC(PrL)). Let κ be an uncountable regular cardinal satisfying the

conditions of Lemma 5.3.2.12 and let C′ = ModC(PrL
κ). Using Corollary 4.2.3.7, Lemma 5.3.2.9,

and Lemma 5.3.2.11, we deduce that C′ is a presentable ∞-category equipped with a symmetric

monoidal structure, such that the tensor product ⊗ : C′×C′ → C′ preserves colimits separately in

each variable. The functor ψ induces a fully faithful embedding AlgEk(C)→ AlgEk−1
(C′), which we

will also denote by ψ.

Let Map′ : AlgEk−1
(C′)op × AlgEk−1

(C′) → S be the adjoint to the Yoneda embedding. Invok-

ing the inductive hypothesis, we deduce that there exists another functor X ′ : AlgEk−1
(C′)op ×

AlgEk−1
(C′) → S and a natural transformation α′ : Map′ → X ′ satisfying hypotheses (1) and (2)

for the ∞-category C′. Let X denote the composition

AlgEk(C)op ×AlgEk(C)
ψ×ψ−→ AlgEk−1

(C′)op ×AlgEk−1
(C′)

X′−→ S .
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Since ψ is fully faithful, the composition

AlgEk(C)op ×AlgEk(C)
ψ×ψ−→ AlgEk−1

(C′)op ×AlgEk−1
(C′)

Map′−→ S

is equivalent to Map, so that α′ induces a natural transformation of functors α : Map→ X.

It is clear from the inductive hypothesis that the natural transformation α satisfies condition (1).

We will prove that α satisfies (2). Let f : A→ B be a morphism in AlgEk(C), and let ψ(f) : A→ B

be the induced morphism in AlgEk−1
(C′). Let Z = ZEk(f), so that we have a commutative diagram

Z ⊗A

##
A

;;

f // B.

Applying the (symmetric monoidal) functor ψ, we obtain a diagram

ψ(Z)⊗A

$$
A

::

ψ(f) // B,

which is classified by a map β : ψ(Z) → ZEk−1
(ψ(f)). The inductive hypothesis guarantees a

homotopy equivalence ZEk−1
(ψ(f))× ' Ωn−1X ′(A,B) ' Ωn−1X(A,B). Passing to loop spaces, we

get an homotopy equivalence ΩZEk−1
(ψ(f))× ' ΩnX(A,B). We will complete the proof by showing

the following:

(a) There is a canonical homotopy equivalence Z× ' Ωψ(Z)×.

(b) The map β induces a homotopy equivalence Ωψ(Z)× → ΩZEk−1
(ψ(f))×.

Assertion (a) is easy: the space Ωψ(Z)× can be identified with the summand of the mapping

space MapRModZ(C)(Z,Z) spanned by the equivalences from Z to itself. Corollary 4.2.4.7 fur-

nishes an identification MapRModZ(C)(Z,Z) ' MapC(1, Z), under which the summand Ωψ(Z)× ⊆
MapModRZ (C)(Z,Z) corresponds to the space of units Z×.

The proof of (b) is slightly more involved. We wish to show that β induces a homotopy equiv-

alence

φ : Ω MapModC(PrL
κ)(C,RModZ(C))→ Ω MapModC(PrL

κ)(C,ZEk−1
(ψ(f))).

Let D⊗ be a unitalization of the symmetric monoidal ∞-category ModC(PrL)⊗, so that the un-

derlying ∞-category of D is equivalent to ModC(PrL)C /. Since Ek−1 is unital, we can regard

RModZ(C) and ZEk−1
(ψ(f)) as Ek−1-algebra objects of D. Regard the ∞-category ModC(PrL) as

tensored over spaces, and let D = C⊗S1 (see §HTT.4.4.4 ), regarded as an object of D by choos-

ing a base point ∗ ∈ S1. Then we can identify φ with the morphism MapD(D,RModZ(C)) →
MapD(D,ZEk−1

(ψ(f))).
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Theorem 4.8.5.5 guarantees that the construction C 7→ RModC(C) determines a fully faithful

embedding of symmetric monoidal ∞-categories F : Alg(C)⊗ → D⊗. Theorem 4.8.5.11 guaran-

tees that the underlying functor f : Alg(C) → D admits a right adjoint g, so that f exhibits

Alg(C) as a colocalization of D which is stable under tensor products in D. Using Proposition

2.2.1.1, we see that g can be regarded as a lax symmetric monoidal functor, and induces a map

γ : AlgEk(C) ' AlgEk−1
(Alg(C))→ AlgEk−1

(D) which is right adjoint to the functor given by com-

position with F . Using the fact that ψ is a fully faithful symmetric monoidal functor, we deduce

that γ(β) is an equivalence in AlgEk(C). Consequently, to prove that φ induces an equivalence from

MapD(D,ModRZ(C)) to MapD(D,ZEk−1
(ψ(f))), it will suffice to show that the object D ∈ D lies

in the essential image of the functor f . In other words, we must show that there exists an algebra

object K ∈ Alg(C) such that C⊗S1 is equivalent to RModK(C) in the ∞-category ModC(PrL)C /.

Choosing a symmetric monoidal functor S× → C⊗ (which is well-defined up to a contractible space

of choices), we can reduce to the case where C = S, endowed with the Cartesian symmetric monoidal

structure. In this case, ModC(PrL) is equivalent to the ∞-category PrL of symmetric monoidal ∞-

categories, and the tensor product C⊗S1 can be identified with the ∞-category (S)/S1 of spaces

fibered over the circle. In this case, we can take K = Z ' Ω(S1) ∈ Mon(S) ' Alg(S) to be the

group of integers: the equivalence S/S1 ' AlgK(S) is provided by Remark 5.2.6.28, and the free

module functor S → AlgK(S) corresponds to the map given by the base point on S1 by virtue of

Remark 5.2.6.29.

Warning 5.3.2.13. The spaces X(A,B) constructed in the proof of Theorem 5.3.2.5 depend on the

regular cardinals κ that are chosen at each stage of the induction. We can eliminate this dependence

by replacing the functor X by the essential image of the natural transformation α : Map → X at

each step.

Remark 5.3.2.14. With a bit more effort, one can show that the homotopy equivalence

ΩkX(A,B) ' ZEk(f)× appearing in Theorem 5.3.2.5 is an equivalence of k-fold loop spaces, which

depends functorially on A and B.

5.3.3 Tensor Products of Free Algebras

Let O⊗ be any ∞-operad, and let C⊗ be a symmetric monoidal ∞-category. Applying Construc-

tion 3.2.4.1 to the evident bifunctor of ∞-operads O⊗×N(Fin∗) → N(Fin∗), we deduce that the

∞-category AlgO(C) admits a symmetric monoidal structure (see Proposition 3.2.4.3), given by

pointwise tensor product: for A,B ∈ AlgO(C) and X ∈ O, we have (A⊗B)(X) ' A(X)⊗B(X).

In the special case where O⊗ = N(Fin∗) is the commutative ∞-operad, the tensor product

A ⊗ B can be identified with the coproduct of A and B in the ∞-category AlgO(C) = CAlg(C)

(Proposition 3.2.4.7). For other ∞-operads, this is generally not the case. Suppose, for example,

that O⊗ is the associative ∞-operad, and that C is the (nerve of the) ordinary category VectC of

vector spaces over the field C of complex numbers. Then AlgAssoc(C) is equivalent the nerve of
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the category of associative C-algebras. Given a pair of associative C-algebras A and B, there is a

diagram of associative algebras

A→ A⊗C B ← B,

but this diagram does not exhibit A⊗C B as a coproduct of A and B. Instead, it exhibits A⊗C B

as the quotient of the coproduct AqB by the (two-sided) ideal generated by commutators [a, b] =

ab − ba, where a ∈ A and b ∈ B. In other words, A ⊗C B is freely generated by A and B subject

to the condition that A and B commute in A⊗C B.

In this section, we will prove an ∞-categorical generalization of the above assertion. We will

replace the ordinary category VectC by an arbitrary symmetric monoidal ∞-category C and the

associative ∞-operad Assoc by any coherent ∞-operad O⊗ for which the Kan complex O is con-

tractible.

Notation 5.3.3.1. Let O⊗ be an ∞-operad for which O is a contractible Kan complex. Fix a pair

of objects X ∈ O and Y ∈ O⊗〈2〉. We let Bin(O) denote the summand of MapO⊗(Y,X) consisting

of active morphisms from Y to X. We will refer to Bin(O) as the space of binary operations in O

(note that since O is contractible, the space Bin(O) is canonically independent of the objects X

and Y ).

Let C⊗ → O⊗ be a O-monoidal ∞-category. For every point η ∈ Bin(O), we obtain a map

C×C ' C⊗Y
η!→ C⊗X ' C .

We will refer to this map as the tensor product determined by η and denote it by ⊗η : C×C → C.

Note that the tensor product C⊗ηD depends functorially on the triple (C,D, η). If A ∈ Alg/O(C),

then evaluation at η determines a map A ⊗η A → A (where we abuse notation by identifying A

with its image under the forgetful functor Alg/O(C)→ FunO(O,C) ' C).

Example 5.3.3.2. Let O⊗ = E⊗k for 0 ≤ k ≤ ∞. Then the space of binary operations Bin(O) can

be identified with the space of rectilinear embeddings 2kq2k ↪→ 2k, which is homotopy equivalent

to a sphere Sk−1 (see Lemma 5.1.1.3). We single out three special cases:

• If k = 0, then Bin(O) is empty.

• If k = 1, then Bin(O) is homotopy equivalent to the sphere S0. If C is an E1-monoidal ∞-

category, then the corresponding tensor product operations on C are given by (C,D) 7→ C⊗D
and (C,D) 7→ D ⊗ C.

• If k =∞, then the space of operations Bin(O) is contractible.

Let C⊗ be a symmetric monoidal∞-category which admits small colimits, and assume that that

the tensor product on C preserves small colimits separately in each variable. Let O⊗ be an∞-operad

for which O is a contractible Kan complex. Then the forgetful functor AlgO(C) → C admits a left
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adjoint Free : C→ AlgO(C) (Corollary 3.1.3.5). Given a pair of objects C,D ∈ C, the tensor product

Free(C)⊗ Free(D) is generally not equivalent to the coproduct Free(C)q Free(D) ' Free(C qD).

To measure the difference, we note that every binary operation η ∈ Mul(O) gives rise to a map

fη : C ⊗D → Free(C qD)⊗ Free(C qD)
Free(CqD)(η)−→ Free(C qD).

Note that the composite map C ⊗D → Free(C qD)
g→ Free(C)⊗Free(D) does not depend on the

point η. Allowing η to vary, we obtain a map

f : (C ⊗D)⊗⊗Bin(O)→ Free(C qD)

in C, where we regard C as tensored over the ∞-category S of spaces as explained in §HTT.4.4.4 .

Equivalently, we can view f as a map

Free(C ⊗D ⊗ Bin(O))→ Free(C qD),

which fits into a diagram

Free(C ⊗D ⊗ Bin(O)) //

��

Free(C qD)

��
Free(C ⊗D) // Free(C)⊗ Free(D).

The commutativity of this diagram encodes the fact that g ◦ fη is independent of f ; equivalently, it

reflects the idea that C and D “commute” inside the tensor product Free(C)⊗Free(D). The main

result of this section can be formulated as follows:

Theorem 5.3.3.3. Let C be a symmetric monoidal ∞-category which admits small colimits and

assume that the tensor product on C preserves small colimits separately in each variable. Let O⊗

be an ∞-operad for which O is a contractible Kan complex, and let Free : C → AlgO(C) be a left

adjoint to the forgetful functor. If O⊗ is coherent, then for every pair of objects C,D ∈ C, the

construction sketched above gives rise to a pushout diagram

Free(C ⊗D ⊗ Bin(O)) //

��

Free(C)q Free(D)

��
Free(C ⊗D) // Free(C)⊗ Free(D)

in AlgO(C).

Remark 5.3.3.4. In the statement of Theorem 5.3.3.3, it is possible to weaken the hypothesis that

C admits small colimits: it suffices that C admits sufficiently many colimits for all of the relevant
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constructions to be well-defined. For example, if κ is an uncountable regular cardinal for which O⊗

is κ-small, then it suffices to assume that C admits κ-small colimits and that the tensor product

⊗ : C×C→ C

preserves κ-small colimits separately in each variable. In the special case O⊗ = E⊗k for 0 ≤ k ≤ ∞,

it suffices to assume that C admits countable colimits and that the tensor product ⊗ : C×C → C

preserves countable colimits separately in each variable. These stronger versions of Theorem 5.3.3.3

follow from the proof that we will give in this section. Alternatively, they can be deduced formally

from Theorem 5.3.3.3 by enlarging the ∞-category C, using the formalism described in §4.8.1.

Note that the hypotheses of Theorem 5.3.3.3 are satisfied when O⊗ = E⊗k for 0 ≤ k ≤ ∞; see

Theorem 5.1.1.1 (this is satisfied, for example, if O⊗ is the Ek-operad for 0 ≤ k ≤ ∞; this follows

from Theorem 5.1.1.1 when k <∞ and from Example 3.3.1.12 when k =∞.

Example 5.3.3.5. Suppose that O⊗ = E⊗0 . In this case, we can identify the ∞-category AlgO(C)

with the ∞-category C1/ (Proposition 2.1.3.9); here 1 denotes the unit object of C, and the free

algebra functor Free : C → AlgO(C) is given by the formula C 7→ 1 q C. In this case, Theorem

5.3.3.3 asserts that the diagram

1 //

��

1q C qD

��
1q (C ⊗D) // (1q C)⊗ (1qD)

is a pushout square. This follows immediately from the calculation

(1q C)⊗ (1qD) ' 1q C qD q (C ⊗D).

Example 5.3.3.6. Suppose that O⊗ = E⊗1 ' Assoc⊗ (see Example 5.1.0.7). In this case, Theorem

5.3.3.3 is equivalent to the assertion that the diagram

Free(C ⊗D)
f //
g
// Free(C)q Free(D) // Free(C)⊗ Free(D)

is a coequalizer, where f and g are induced by the maps C ⊗ D → Free(C) q Free(D) given by

multiplication on Free(C)q Free(D) in the two possible orders.

Example 5.3.3.7. Let O⊗ = E⊗∞ ' Comm, so that the space of binary operations Bin(Comm) is

contractible. In this case, the left vertical map in the diagram

Free(C ⊗D ⊗ Bin(O)) //

��

Free(C)q Free(D)

��
Free(C ⊗D) // Free(C)⊗ Free(D)
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is an equivalence. Consequently, Theorem 5.3.3.3 reduces to the assertion that the right vertical

map Free(C)qFree(D)→ Free(C)⊗Free(D) is an equivalence, which is a special case of Proposition

3.2.4.7.

Let us now outline our approach to the proof of Theorem 5.3.3.3. Our first goal is to try to

remove the hypothesis that the ambient ∞-category C is symmetric monoidal. We note that the

theory of O-algebras can be developed in an arbitrary O-monoidal ∞-category. However, if we

assume only that C is an O-monoidal∞-category, then there is no monoidal structure on Alg/O(C).

In particular, the tensor product Free(C)⊗ Free(D) does not generally inherit the structure of an

O-algebra. However, there are some special cases in which it does. For example, suppose that

O = Assoc and that there exists an equivalence α : D ⊗ C → C ⊗D in the ∞-category C. In this

case, we will see that the tensor product

Free(C)⊗ Free(D) ' qm,n≥0C
⊗m ⊗D⊗n

admits the structure of an algebra whose underlying multiplication is determined by the family of

maps

(C⊗m ⊗D⊗n)⊗ (C⊗m
′ ⊗D⊗n′)→ C⊗m+m′ ⊗D⊗n+n′

given by applying α iteratively.

More generally, suppose that C is O-monoidal. If we are given objects C,D ∈ C, we will say

that C commutes with D if the map η 7→ C ⊗η D is nullhomotopic: that is, if there exists another

object E ∈ C and a family of equivalences

αη : C ⊗η D ' E

depending functorially on η ∈ Bin(O). In this case, we will construct another O-algebra object

Free(C)⊗α Free(D). It will follow more or less immediately from the definition that this algebra is

given by the pushout of the diagram

Free(C)q Free(D)← lim−→
η∈Bin(O)

Free(C ⊗η D)→ Free(E).

Our main obstacle will be to describe the structure of this pushout more explicitly: in particular,

we will show that Free(C)⊗α Free(D) is roughly of the expected size (Remark 5.3.3.30). We begin

by studying the data needed to make sense of the tensor product Free(C)⊗α Free(D).

Notation 5.3.3.8. We define a category J as follows:

• The objects of J are triples (〈n〉, S, T ), where S and T are subsets of 〈n〉 which contain the

base point and 〈n〉 = S ∪ T . In this case, we will abuse notation by regarding S and T as

objects of Fin∗.
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• A morphism from (〈n〉, S, T ) to (〈n′〉, S′, T ′) in J consists of a map α : 〈n〉 → 〈n′〉 in Fin∗
which restricts to inert morphisms S → S′, T → T ′.

We let Q⊗ denote the nerve of the category J. Note that the forgetful functor

Q⊗ → N(Fin∗)

(〈n〉, S, T ) 7→ 〈n〉

exhibits Q⊗ as an ∞-operad. The underlying ∞-category Q has exactly three objects

a− = (〈1〉, 〈1〉, {∗}) a± = (〈1〉, 〈1〉, 〈1〉) a+ = (〈1〉, {∗}, 〈1〉).

Notation 5.3.3.9. Let O⊗ be an arbitrary ∞-operad. We let Q(O)⊗ denote the ∞-operad given

by the fiber product O⊗×N(Fin∗) Q
⊗. In the special case where the ∞-category O is a contractible

Kan complex, the forgetful functor

Q(O) ' Q×O→ Q

is an equivalence of ∞-categories. In other words, Q(O) is a Kan complex with exactly three

connected components, each of which is contractible. In this case, we choose objects a−, a+, a± ∈
Q(O) lying over the corresponding objects of Q. Note that we have a canonical homotopy equivalence

MulQ(O)({a−, a+}, a±) ' Bin(O),

and there are no other non-identity operations in the ∞-operad Q(O)⊗.

Example 5.3.3.10. Let O⊗ be an ∞-operad and let C⊗ be a O-monoidal ∞-category. Then

composition with the forgetful functor Q(O)⊗ → O⊗ induces a map

θ : Alg/O(C)→ AlgQ(O)/O(C).

When O is a contractible Kan complex, we can think of this forgetful functor as taking a O-

algebra object A ∈ Alg/O(C) to its image in C together with the family of multiplication maps

{A⊗η A→ A}η∈Bin(O) and all coherence data.

Let O⊗ be an ∞-operad for which O is a contractible Kan complex, let C be an O-monoidal

∞-category and let A ∈ AlgQ(O)/O(C). Then for each operation η ∈ Bin(O), evaluation of A on η

determines a map

A(η) : A(a−)⊗η A(a+)→ A(a±).

As it turns out, this is all there is to say about Q(O)-algebra objects of C:

Proposition 5.3.3.11. Let O⊗ be an ∞-operad for which O is a contractible Kan complex and let

C be a O-monoidal ∞-category. Then the construction outlined above determines an equivalence of

∞-categories

AlgQ(O)/O(C)→ (C×C)×Fun(Bin(O)×{0},C) Fun(Bin(O)×∆1,C)×Fun(Bin(O)×{1},C) C .
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Corollary 5.3.3.12. Let O⊗ be an ∞-operad for which O is a contractible Kan complex, let C be

a O-monoidal ∞-category, and let A,B ∈ AlgQ(O)/O(C). Then the diagram of spaces

MapAlgQ /O(C)(A,B) //

��

MapC(A(a−), B(a−)×MapC(A(a+), B(a+))

��
MapC(A(a±), B(a±)) // lim←−η∈Bin(O)

MapC(A(a−)⊗η A(a+), B(a±))

is a homotopy pullback square.

Corollary 5.3.3.13. Let O⊗ be an ∞-operad for which O is a contractible Kan complex, let C be a

O-monoidal ∞-category, let A ∈ AlgQ(O)/O(C), and let B ∈ Alg/O(C). Then the diagram of spaces

MapAlgQ(O)/O(C)(A,B) //

��

MapC(A(a−), B)×MapC(A(a+), B)

��
MapC(A(a±), B) // lim←−η∈Bin(O)

MapC(A(a−)⊗f A(a+), B)

is a homotopy pullback square.

Corollary 5.3.3.14. Let O⊗ be an ∞-operad for which O is a contractible Kan complex and let

C be a O-monoidal ∞-category. Assume that the ∞-category C admits small colimits and that the

O-monoidal structure on C is compatible with small colimits. Let

Free : C→ Alg/O(C) ρ : AlgQ(O)/O(C)→ Alg/O(C)

denote the left adjoints to the forgetful functors. Then for any object A ∈ AlgQ(O)/Ek(C), there is a

canonical pushout diagram

lim−→η∈Bin(O)
Free(A(a−)⊗η A(a+) //

��

Free(A(a±))

��
Free(a−)q Free(a+) // ρ(A).

Proof of Proposition 5.3.3.11. Let f denote the unique morphism from (〈2〉, {0, ∗}, {1, ∗}) to

(〈1〉, 〈1〉, 〈1〉) in Q⊗, so that f determines a monomorphism of simplicial sets ∆1 ↪→ Q⊗. We let

M denote the inverse image Q(O)⊗ ×Q⊗ ∆1, which we will identify with a subcategory of Q(O)⊗.

Then the projection p : M → ∆1 exhibits M as a correspondence from M0 ' O⊗〈2〉 to M1 ' O⊗〈1〉.

Let us identify Bin(O) with the space Fun∆1(∆1,M) of sections of p. According to Proposition

B.3.17, the canonical map

(O)⊗〈2〉 qBin(O)×{0} (Bin(O)×∆1)qBin(O)×{1} O
⊗
〈1〉 →M
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is a categorical equivalence of simplicial sets. Since the ∞-categories O⊗〈2〉 and O⊗〈1〉 are contractible

Kan complexes, we obtain an equivalence of ∞-categories

FunO⊗(M,C⊗) ' (C×C)×Fun(Bin(O)×{0},C) Fun(Bin(O)×∆1,C)×Fun(Bin(O)×{1},C) C .

We will complete the proof by showing that the restriction map

θ : AlgQ /O(C)→ FunO⊗(M,C⊗)

is a trivial Kan fibration of simplicial sets.

We begin by introducing a slight enlargement of the correspondence M. Consider the unique

maps

f− : (〈2〉, {0, ∗}, {1, ∗})→ (〈1〉, 〈1〉, {∗}) f+ : (〈2〉, {0, ∗}, {1, ∗})→ (〈1〉, {∗}, 〈1〉)

in the∞-category Q⊗. We will abuse notation by identifying f , f−, and f+ with the corresponding

maps of simplicial sets ∆1 → Q⊗. Let K ⊆ Q⊗ be the union of the images of those maps and let

M+ = K ×Q⊗ Q(O)⊗. Then M+ is a subcategory of Q(O)⊗ note that the underlying Kan complex

of M+ has exactly four connected components, each of which is contractible: the components

containing the objects a−, a+, a± ∈ Q(O) together with another component corresponding to the

object

(a−, a+) ∈ Q(O)× Q(O) ' (Q(O)⊗〈2〉.

Let q : C⊗ → O⊗ be the map which exhibits C⊗ as a O-monoidal ∞-category and let D ⊆
FunO⊗(M+,C⊗) denote the full subcategory spanned by those functors A : M+ → C⊗ for which the

induced maps

A(a−)← A(a−, a+)→ A(a+)

are inert morphisms of C⊗. Then the forgetful functor θ factors as a composition

AlgQ /O(C)
θ′→ D

θ′′→ FunO⊗(M,C⊗).

Note that an object A ∈ FunO⊗(M+,C⊗) belongs to D if and only if A is a q-left Kan extension

of q|M. It follows from Proposition HTT.4.3.2.15 that the map θ′′ is a trivial Kan fibration. We

will complete the proof by showing that θ′ is also a trivial Kan fibration. Let A be an object of

FunO⊗(Q⊗,C⊗). Fix an object Q ∈ Q(O)⊗ having image (〈n〉, S, T ) in Q⊗. For 1 ≤ i ≤ n, the inert

morphism ρi : 〈n〉 → 〈1〉 of Notation 2.0.0.2 can be lifted (in an essentially unique fashion) to an

inert morphism

Q→


a− if i ∈ S, i /∈ T
a− if i ∈ T, i /∈ S
a± if i ∈ S ∩ T,
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in Q(O)⊗ which we will denote by ρi. Let E denote the full subcategory of M+
Q/ = M+×Q(O)⊗ Q(O)⊗Q/

spanned by the inert morphisms Q → M . It is not difficult to see that the inclusion E ↪→ M+
Q/

admits a right adjoint and is therefore right cofinal. Moreover, if A|M belongs to D, then the

restriction of A to M+
Q/ is a q-right Kan extension of its restriction to the finite set {ρi}1≤i≤n ⊆M+

Q/.

This proves the following:

(∗) If A ∈ FunO⊗(Q(O)⊗,C⊗) satisfies A|M ∈ D, then A is a q-right Kan extension of A|M+ at an

object Q ∈ Q⊗ if and only if A(ρi) is an inert morphism in C⊗ for each i, where the morphisms

ρi are defined as above.

By virtue of Remark 2.1.2.9, the condition described in (∗) is satisfied for all objects Q ∈ Q(O)⊗

if and only if A is a Q(O)-algebra object of C. It now follows from Proposition HTT.4.3.2.15 that

the restriction map θ′ is a trivial Kan fibration, as desired.

We now introduce a slight variant of Notation 5.3.3.8 which will be useful in what follows.

Construction 5.3.3.15. Consider the horn Λ2
2 ⊆ ∆2, isomorphic to the pushout ∆1 q{1} ∆1.

There is an evident map Q⊗ → Fun(Λ2
2,N(Fin∗)), which carries an object (〈n〉, S, T ) in Q⊗ to the

diagram

T

  
S // 〈n〉;

here we abuse notation by identifying the finite pointed sets S and T with objects of Fin∗.

Let O be an ∞-operad. We let Q(O)
⊗

denote the fiber product

Fun(Λ2
2,O

⊗)×Fun(Λ2
2,N(Fin∗) Q

⊗ .

Evaluation at the vertex {2} ⊆ Λ2
2 induces a forgetful functor Q(O)

⊗ → Q(O)⊗. If O⊗ is a unital

∞-operad and O is a Kan complex, then the forgetful functor Q(O)
⊗ → Q(O)⊗ is a trivial Kan

fibration.

Remark 5.3.3.16. Let q : O⊗ → N(Fin∗) be an ∞-operad. We can identify the objects of Q(O)
⊗

with diagrams

XS → X ← XT

for which the induced maps q(XS) → q(X) ← q(XT ) are injections of finite pointed sets. The

forgetful functor Q(O)
⊗ → Q⊗ is given on objects by

(XS → X ← XT ) 7→ (q(X), im(q(XS)→ q(X)), im(q(XT )→ q(X)).



914 CHAPTER 5. LITTLE CUBES AND FACTORIZABLE SHEAVES

Notation 5.3.3.17. Let O⊗ be a unital ∞-operad for which O is a contractible Kan complex.

We let Triv(O)⊗ denote the subcategory of O⊗ spanned by the inert morphisms. Note that our

assumption on O guarantees that the projection map Triv(O)⊗ → Triv⊗ is an equivalence of ∞-

operads.

Let EnvO(Triv(O))⊗ denote the O-monoidal envelope of the ∞-operad Triv(O)⊗ (see Construc-

tion 2.2.4.1): more concretely, EnvO(Triv(O))⊗ is the full subcategory of the fiber product

Triv(O)⊗ ×Fun({0},O⊗) Fun(∆1,O⊗)

spanned by the active morphisms in O⊗.

We have maps of ∞-operads

ι−, ι+ : Q(O)
⊗ → EnvO(Triv(O))⊗,

given on objects by the formulae

ι−(XS → X ← XT ) = (XS → X)

ι+(XS → X ← XT ) = (XT → X).

If C is an O-monoidal ∞-category, then composition with the functors ι− and ι+ determines

forgetful functors

ψ−, ψ+ : C ' AlgTriv(O)/O(C) ' Fun⊗O (EnvO(Triv(O)),C)→ Alg
Q(O)/O

(C) ' AlgQ(O)/O(C)

More concretely, we have

(ψ−C)(a−) = C (ψ−C)(a+) = 1 (ψ−C)(a±) = C

(ψ+C)(a−) = 1 (ψ+C)(a+) = C (ψ+C)(a±) = C

where in both cases, the collection of maps {C ⊗η 1→ C}η∈Bin(O) is determined by the role of 1 as

the unit object of C.

Remark 5.3.3.18. In the situation of Notation 5.3.3.17, let EnvO(O)⊗ be the O-monoidal envelope

of O itself: that is, the full subcategory of Fun(∆1,O⊗) spanned by the active morphisms). Com-

posing the forgetful functor Q(O)
⊗ → O⊗ with the diagonal inclusion O⊗ → UO(O)⊗, we obtain a

morphism of ∞-operads δ : Q(O)
⊗ → UO(O)⊗. We will identify UO(Triv(O))⊗ with an O-monoidal

subcategory of UO(O)⊗, so that the functors ι− and ι+ of Notation 5.3.3.17 can be regarded as

morphisms of ∞-operads from Q(O)
⊗

to UO(P)⊗. There are evident natural transformations

ι− → δ ← ι+,

which carry an object (XS
α→ X

β← XT ) in Q(O)
⊗

to the maps

α→ idX ← β
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in UO(O)⊗.

If C is an O-monoidal ∞-category and A ∈ Alg/O(C), we obtain natural maps of Q-algebras

ψ−(A)→ A|Q(O)⊗ ← ψ+(A).

For example, the map ψ−(A)→ A|Q⊗ is given by the identity map from A to itself when evaluated

on the objects a− an a±, and by the unit map of A when evaluated on a+.

The main ingredient in our proof of Theorem 5.3.3.3 is the following:

Proposition 5.3.3.19. Let C be a symmetric monoidal ∞-category. Assume that C admits small

colimits and that the tensor product ⊗ : C×C → C preserves small colimits separately in each

variable. Let O⊗ be a coherent operad for which O is a contractible Kan complex. Let A and B be

O-algebra objects of C, let C and D be objects of C, and suppose we are given morphisms

α : C → A β : D → B

in the ∞-category C. Assume that α exhibits A as the free O-algebra generated by C and that β

exhibits B as the free O-algebra generated by D. Then the induced map

ψ−(C)⊗ ψ+(D)→ ψ−(A)⊗ ψ+(B)→ (A⊗B)|Q(O)⊗

exhibits A⊗B as the free O-algebra generated by the Q(O)-algebra ψ−(C)⊗ ψ+(D) ∈ AlgQ(O)(C).

Remark 5.3.3.20. In the statement of Proposition 5.3.3.19, the hypothesis that C is symmetric

monoidal can be weakened: it is only important that there is a reasonable tensor product on

O-algebra objects of C. For example, if O⊗ = E⊗k , then it is sufficient to assume that C is an

Ek+1-monoidal ∞-category.

Proof of Theorem 5.3.3.3. Combine Proposition 5.3.3.19 with Corollary 5.3.3.14.

We now turn to the proof of Proposition 5.3.3.19. Fix an object Z ∈ O. Note that the maps ι−
and ι+ of Notation 5.3.3.17 induce functors

ρ−, ρ+ : Q(O)⊗ ×O⊗ (O⊗)act
/Z → Triv(O)⊗ ×O⊗ (O⊗)act

/Z .

The main ingredient in our proof is the following fundamental calculation:

Lemma 5.3.3.21. Assume that the ∞-operad O⊗ is coherent and that O is a Kan complex. For

each object Z ∈ O, the maps ρ− and ρ+ determine a weak homotopy equivalence of simplicial sets

Q(O)⊗ ×O⊗ (O⊗)act
/Z → (Triv(O)⊗ ×O⊗ (O⊗)act

/Z )2.
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Proof of Proposition 5.3.3.19. Let q : C⊗ → N(Fin∗) exhibit C as a symmetric monoidal ∞-

category. Fix a point Z ∈ O and let K denote the ∞-category Q(O)⊗ ×O⊗ (O⊗)act
/Z . Then the

map of Q(O)-algebras f : (ψ−C) ⊗ (ψ+D) → (A ⊗ B)|Q⊗ determines a map λ : K. → C⊗ which

carries the cone point to A(Z)⊗B(Z) ∈ C and is given on K by the tensor product of (ψ−C) with

(ψ+D). We wish to show that λ is an operadic q-colimit diagram. Using Propositions 3.1.1.15 and

3.1.1.16 (together with our assumption that the tensor product on C is compatible with countable

colimits), we are reduced to proving that a certain map λ′ : K. → C is a colimit diagram.

Let L = Triv(O)⊗×O⊗ (O⊗)act
/Z . Using the factorization of f as a tensor product, we see that λ′

is homotopic to the composite map

K. (ρ−,ρ+)−→ (L× L). → L. × L.
λ′−×λ′+−→ C×C

⊗→ C .

Here λ′− and λ′+ are maps determined by the maps C → A and D → B, and are therefore colimit

diagrams by virtue of our assumption that these maps exhibit A and B are the free O-algebras

generated by C andD respectively. Since the tensor product on C preserves small colimits separately

in each variable, we conclude that the composite map

(L× L). → L. × L.
λ′−×λ′+−→ C×C

⊗→ C

is a colimit diagram. To complete the proof, it will suffice to show that the map (ρ−, ρ+) : K → L×L
is left cofinal. Since L is a Kan complex, this is equivalent to the assertion that (ρ−, ρ+) is a weak

homotopy equivalence (Corollary HTT.4.1.2.6 ), which follows from Lemma 5.3.3.21.

Proof of Lemma 5.3.3.21. Let q : O⊗ → N(Fin∗) exhibit O⊗ as an ∞-operad and let K and L be

as in the proof of Proposition 5.3.3.19; we wish to show that the map (ρ−, ρ+) : K → L × L is a

weak homotopy equivalence. Since L is a Kan complex, it will suffice to show that each homotopy

fiber of (ρ−, ρ+) is weakly contractible. Fix a point of L × L, corresponding to a pair of active

morphisms X−
α→ Z

β← X+ in the ∞-category O⊗. Unwinding the definitions, we see that the

homotopy fiber product K ×L×L {(α, β)} can be identified with the full subcategory

E ⊆ O⊗X−/ /Z ×O⊗
/Z

O⊗X+/ /Z

spanned by those diagrams

X−

  

α

''
Y // Z

X+

>>
β

77
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for which the underlying maps q(X−)→ q(Y )← q(X+) are injective and the map q(X−)qq(X+)→
q(Y ) is surjective. Let E+ denote the full subcategory of O⊗X−/ /Z ×O⊗

/Z
O⊗X+/ /Z

spanned by those

diagrams where α and β are injective. Using the assumption that the ∞-operad O⊗ is unital, we

see that the inclusion E ↪→ E+ admits a right adjoint and is therefore a weak homotopy equivalence.

We will complete the proof by showing that E+ is weakly contractible.

We will henceforth write E+(X+) instead of E+ to indicate the dependence of E+ on the object

X+ (which we will allow to vary). If m = 0, then the ∞-category E+(X+) admits an initial object

(given by X−) and there is nothing to prove. Otherwise, we can choose a semi-inert morphism

α : X ′+ → X+ where q(α) ' 〈m− 1〉. Let KO be as in Notation 3.3.2.1 and let X denote the fiber

product

(KO)idX− / / idZ ×(KO)/ idZ
(KO)α/ / idZ ,

so that evaluation at 0 and 1 induce maps

e0 : X→ O⊗X−/ /Z ×O⊗
/Z

O⊗
X′+/ /Z

e1 : X→ O⊗X−/ /Z ×O⊗
/Z

O⊗X+/ /Z

and let X0 be the inverse image of E+(X+) under the map e1. Let e−1
0 (E+(X ′+)) and e−1

1 (E+(X+))

denote the inverse images of E+(X ′+) and E+(X+) under the functors e0 and e1, respectively, so

that we have a commutative diagram

E+(X ′+)← e−1
0 (E+(X ′+)) ⊇ e−1

1 (E+(X+))→ E+(X+).

Since O⊗ is coherent, evaluation at 0 induces a flat categorical fibration KO → O⊗ (Theorem

3.3.2.2) so that the map e−1
0 (E+(X ′+)) → E+(X ′+) is a weak homotopy equivalence by virtue

of Lemma 3.3.2.8 (see Example 3.3.2.9). The inclusion e−1
1 (E+(X+)) ⊆ e−1

0 (E+(X ′+)) and the

projection maps e−1
1 (E+(X+)) → E+(X+) admit right adjoints and are therefore weak homotopy

equivalences. Since the ∞-category E+(X ′+) is weakly contractible by the inductive hypothesis, it

follows that E+(X+) is weakly contractible as desired.

We now describe another application of Lemma 5.3.3.21.

Definition 5.3.3.22. Let O⊗ be an ∞-operad for which O is a contractible Kan complex and let

C be a O-monoidal ∞-category. A commutativity datum is an object M ∈ AlgQ(O)/O(C) with the

following property: for every point η ∈ Bin(O), the induced map

M(η) : M(a−)⊗η M(a+)→M(a±)

is an equivalence in C.

Example 5.3.3.23. If O⊗ = E⊗0 , then the space of binary operations Bin(O) is empty and therefore

every Q(O)-algebra is a commutativity datum.
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Example 5.3.3.24. In the situation of Definition 5.3.3.22, for every object C ∈ C the Q(O)-algebras

ψ−(C) and ψ+(C) of Notation 5.3.3.17 are commutativity data in C.

Remark 5.3.3.25. In the situation of Definition 5.3.3.22, suppose that we fix a base point

η0 ∈ Bin(O). Using Proposition 5.3.3.11, we see that a commutativity datum M amounts to

the following:

(a) A pair of objects C = M(a−), D = M(a+) ∈ C.

(b) A family of equivalences {αη : C ⊗η D → C ⊗η0 D}η∈Bin(O) for which αη0 is the identity map

(here αη is given by the composition M(η0)−1 ◦M(η)).

In the special case where the monoidal structure on C is symmetric, the family of objects {C ⊗η
D}η∈Bin(O) is constant. We can therefore replace (b) by the following data:

(b′) A map of pointed spaces α : Bin(O)→ MapC'(C ⊗D,C ⊗D).

Example 5.3.3.26. If O⊗ = Comm, then a commutativity datum in a O-monoidal ∞-category C

is determined by a pair of objects C,D ∈ C.

Example 5.3.3.27. If O⊗ = Assoc⊗, then a commutativity datum in a O-monoidal ∞-category C

is given by a pair of objects C,D ∈ C together with an equivalence α : D ⊗ C → C ⊗D.

Example 5.3.3.28. Let O⊗ be as in Definition 5.3.3.22 and let C be a O-monoidal∞-category. For

every pair of objects (C,D) ∈ C, the construction η 7→ C⊗ηD determines a map of Kan complexes

β : Bin(O)→ C' which is nullhomotopic if and only if (C,D) can be extended to a commutativity

datum in C.

Assume now that O⊗ = E⊗k for 2 ≤ k < ∞ and choose a point η0 in Bin(O) ' Sk−1. Then we

can identify β with a pointed map from Sk−2 to the loop space

ΩC' ' MapC'(C ⊗η0 D,C⊗η0D).

We therefore have an obstruction

[β] ∈ πk−2 MapC'(C ⊗η0 D,C ⊗η0 D)

which vanishes if and only if (C,D) can be extended to a commutativity datum in C.

Example 5.3.3.29. In the situation of Example 5.3.3.28, suppose that the monoidal structure

on C is symmetric and that O⊗ = E⊗k for 1 ≤ k < ∞. Fix a point η ∈ Bin(O) ' Sk−1. Then

the collection of commutativity data with underlying objects C,DinC are classified by the set

πk−1 MapC'(C ⊗D,C ⊗D).
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Proposition 5.3.3.30. Let O⊗ be a coherent ∞-operad for which O is a contractible Kan complex

and let C⊗ be a O-monoidal ∞-category which admits small colimits which are compatible with the

O-monoidal structure on C. Let M be a commutativity datum in C and let A be the free O-algebra

object generated by M . Let Free : C → Alg/O(C) denote a left adjoint to the forgetful functor.

Then, for every point η ∈ Bin(O), the induced map

ψ : Free(M(a−))⊗η Free(M(a+))→ A⊗η A
A(η)→ A

in the ∞-category C.

Proof. Let K and L be as in the proof of Proposition 5.3.3.19, so that A can be identified (as an

object of C) with the colimit of a certain diagram φ : K → C determined byM . Since O⊗ is coherent,

Lemma 5.3.3.21 asserts that the map (ρ−, ρ+) : K → L× L is a weak homotopy equivalence. The

choice of η determines a map L × L → K which is a section of (ρ−, ρ+) : K → L × L, and ψ

can be identified with the canonical map lim−→(φ ◦ s) → lim−→(φ). Our hypothesis that each of the

maps M(η) is an equivalence guarantees that φ carries each morphism in K to an equivalence in

C. Since (ρ−, ρ+) is a weak homotopy equivalence, it follows that φ factors (up to homotopy) as a

composition

K
(ρ−,ρ+)→ L× L φ′→ C .

Consequently, the map ψ fits into a commutative diagram

lim−→(φ′ ◦ (ρ−, ρ+))

''
lim−→(φ′ ◦ (ρ−, ρ+) ◦ s)

ψ

55

// lim−→(φ′).

We conclude by observing that the bottom vertical map is an equivalence because (ρ−, ρ+) ◦ s
is homotopic to the identity map from L × L to itself, and that the the right diagonal map is

an equivalence by virtue of the fact that (ρ−, ρ+) is left cofinal (Lemma 5.3.3.21 and Corollary

HTT.4.1.2.6 ).

Warning 5.3.3.31. Let O⊗ be as in Proposition 5.3.3.30 and let C be a symmetric monoidal

∞-category. Assume that C admits small colimits and that the tensor product ⊗ : C×C → C

preserves small colimits separately in each variable. Let M = (C,D, α) be a commutativity datum

in C and let A denote the free O-algebra generated by M . Then each point η ∈ Bin(O) determines

an equivalence ψη : Free(C)⊗ Free(D)→ A. However:

(a) The map ψη is a morphism in the∞-category C: it is generally not a map of O-algebras, even

though both Free(C)⊗ Free(D) and A can be regarded as O-algebras.

(b) The map ψη depends on the chosen point η ∈ Bin(O), even though the domain and codomain

of ψη do not.
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(c) The objects Free(C) ⊗ Free(D) and A need not be equivalent if the space Bin(O) is empty.

For example, if O⊗ = E⊗0 , then every triple of objects M = (M−,M+,M±) can be regarded as

a commutativity datum in C. The free O-algebra generated by M is given by the coproduct

1qM− qM+ qM±,

while the tensor product Free(M−)⊗ Free(M+) is given by

1qM− qM+ q (M− ⊗M+).

In the situation of Proposition 5.3.3.30, suppose we are given an arbitrary object M ∈
AlgQ(O)/O(C). Let A be the free O-algebra generated by M , so that each point η ∈ Bin(O)

determines a map

ψ : Free(M(a−))⊗η Free(M(a+))→ A⊗η A
A(η)→ A

Proposition 5.3.3.30 asserts that if each of the multiplication maps M(γ) : M(a−) ⊗γ M(a+) →
M(a±) is an equivalence, then ψ is also an equivalence. One might ask if the full strength of this

hypothesis is really necessary: perhaps it is enough to require that the map M(η) is an equivalence?

We will prove this in the special case O⊗ = Assoc⊗ (note that it is a trivial consequence of

Proposition 5.3.3.30 if O⊗ = E⊗k for k > 1, since the space Bin(O) ' Sk−1 is connected).

Proposition 5.3.3.32. Let C be a monoidal ∞-category which admits small colimits for which the

tensor product ⊗ : C×C→ C preserves small colimits in each variable. Let M ∈ AlgQ(Assoc)/Assoc(C)

and let A ∈ Alg(C) be the free associative algebra generated by M . Assume that the canonical map

M(a−)⊗M(a+)→M(a±) is an equivalence. Then the composite map

Free(M(a−))⊗ Free(M(a+))→ A⊗A→ A

is an equivalence in the ∞-category C.

Warning 5.3.3.33. In the situation of Proposition 5.3.3.32, the map

Free(M(a+))⊗ Free(M(a−))→ A⊗A→ A

obtained by multiplying in the reverse order need not be an equivalence.

Remark 5.3.3.34. In more concrete terms, Proposition 5.3.3.32 asserts that the free algebra A is

given (as an object of C) by the coproduct

qm,n≥0M(a−)⊗m ⊗M(a+)⊗n.

Proof of Proposition 5.3.3.32. Let K be as in proof of Proposition 5.3.3.19. Unwinding the defini-

tions, we can identify K with the nerve of the category I which may be described as follows:
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• The objects of I are triples (〈n〉, S, T ) where S and T are pointed subsets of 〈n〉 satisfying

S ∪ T = 〈n〉.

• A morphism from (〈n〉, S, T ) to (〈n′〉, S′, T ′) in I is a map of pointed sets 〈n〉 → 〈n′〉 which

restricts to a monotone map 〈n〉◦ → 〈n′〉◦ and induces bijections S ' S′ and T ' T ′.

Unwinding the definitions, we see that the free algebra A can be identified (as an object of C) with

the colimit of a diagram φ : N(I)→ C given on objects by the formula

φ(〈n〉, S, T ) =
⊗

1≤i≤n


M(a−) if i ∈ S, i /∈ T
M(a+) if i ∈ T, i /∈ S
M(a±) if i ∈ S ∩ T.

Note that the nerve N(I) can be decomposed as a disjoint union qp,q≥0 N(Ip,q), where Ip,q denotes

the full subcategory of I spanned by those objects (〈n〉, S, T ) where |S∩〈n〉◦| = p and |T ∩〈n〉◦| = q.

Let φp,q denote the restriction of φ to N(Ip,q), so that A is given by a coproduct of colimits

qp,q≥0 lim−→(φp,q).

Under this identification, the map Free(M(a−)) ⊗ Free(M(a+)) → A is given by a coproduct of

maps

fp,q : φp,q(〈p+ q〉, {∗, 1, . . . , p}, {∗, p+ 1, . . . , p+ q})→ lim−→(φp,q).

It will therefore suffice to show that each of the maps fp,q is an equivalence.

We will proceed by induction on p. Note first that if p = 0, then Ip,q is comprised of the single

object (〈p+ q〉, {∗, 1, . . . , p}, {∗, p+ 1, . . . , p+ q}) and there is nothing to prove. To handle the case

p > 0, we first define the disorder of an object (〈n〉, S, T ) to be the least element of S ∩ 〈n〉◦. For

each integer i > 0, we let J+
i denote the full subcategory of Ip,q spanned by those objects of disorder

≤ i, and we let Ji ⊆ J+
i be the full subcategory spanned by those objects (〈n〉, S, T ) which either

have disorder < i or satisfy i ∈ S − T . Note that the canonical map

φ(〈p+ q〉, {∗, 1, . . . , p}, {∗, p+ 1, . . . , p+ q})→ lim−→(φ|N(J1))

can be identified with the tensor product of fp−1,q with the identity map from M(a−) to itself, and

is therefore an equivalence by virtue of the inductive hypothesis. It will therefore suffice to show

that each of the canonical maps

lim−→(φ|N(J1))→ lim−→(φ|N(J+
1 ))→ lim−→(φ|N(J2))→ · · ·

are equivalences. This follows from the following pair of observations:
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(a) For i > 0, the functor φ|N(J+
i ) is a left Kan extension of φ|N(Ji). To prove this, we observe

that if (〈n〉, S, T ) is any object of J+
i which does not belong to Ji, then the fiber product

Ji×J+
i

(J+
i )/(〈n〉,S,T ) has a final object (〈n+ 1〉, S′, T ′). Moreover, the map φ(〈n+ 1〉, S′, T ′)→

φ(〈n〉, S, T ) is an equivalence in C by virtue of our assumption that the mapM(a−)⊗M(a+)→
M(a±) is an equivalence.

(b) For i > 0, the inclusion N(J+
i ) ↪→ N(Ji+1) admits a left adjoint, and is therefore left cofinal.

5.4 Little Cubes and Manifold Topology

Fix an integer k ≥ 0. In Definition 5.1.0.2 we introduced the ∞-operad E⊗k of little k-cubes. The

underlying ∞-category Ek has a unique object, which we can think of as an abstract open cube

2k of dimension k. The morphisms in E⊗k are described by rectilinear embeddings from 2k to

itself. There are a number of variants on Definition 5.1.0.2, where the condition that an embedding

i : 2k ↪→ 2k be rectilinear is replaced by the requirement that i preserve some other structure. We

will describe a number of these variants in §5.4.2. For our purposes, the main case of interest is

that in which we require all of our cubes to be equipped with an open embedding into a topological

manifold M of dimension k. The collection of such cubes can be organized into an ∞-operad E⊗M
which we will study in §5.4.5. The study of this ∞-operad will require some results from point-set

topology concerning open immersions between topological manifolds, which we will review in §5.4.1.

The ∞-operad E⊗M will play a central role in our discussion of topological chiral homology in

§5.5. In the latter context it is sometimes convenient to work with nonunital E⊗M -algebras: that is,

algebras over the closely related∞-operad (E⊗M )nu ⊆ E⊗M obtained by removing all 0-ary operations.

It is therefore useful to understand the relationship between unital and nonunital algebras over an

∞-operad O⊗. We will consider this problem first for associative algebras in §5.4.3 (using a variation

on formalism developed in §4.7.1) and then for Ek-algebras in §5.4.4 (from which it is easy to deduce

analogous results for EM -algebras; see Proposition 5.4.5.14).

Convention 5.4.0.1. Unless otherwise specified, the word manifold will refer to a paracompact

Hausdorff topological manifold of some fixed dimension k.

5.4.1 Embeddings of Topological Manifolds

In this section, we will review some classical results in point-set topology concerning embeddings

between topological manifolds of the same dimension. We begin by stating a parametrized version

of Brouwer’s invariance of domain theorem (a proof will be given at the end of this section).
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Theorem 5.4.1.1 (Brouwer). Let M and N be manifolds of dimension k, and let X be an arbitrary

topological space. Suppose we are given a continuous map f : M × X → N × X satisfying the

following pair of conditions:

(i) The diagram

M ×X f //

##

N ×X

{{
X

is commutative.

(ii) The map f is injective.

Then f is an open map.

Remark 5.4.1.2. When X is a single point, Theorem 5.4.1.1 was proven by Brouwer in [26].

Corollary 5.4.1.3. Let M and N be manifolds of the same dimension, and let f : M×X → N×X
be a continuous bijection which commutes with the projection to X. Then f is a homeomorphism.

Let M and N be topological manifolds of the same dimension. We let Emb(M,N) denote

the set of all open embeddings M ↪→ N . We will regard Emb(M,N) as a topological space: it

is a subspace of the collection of all continuous maps from M to N , which we endow with the

compact-open topology. We let Homeo(M,N) denote the set of all homeomorphisms of M with

N , regarded as a subspace of Emb(M,N). For k ≥ 0, we let Top(k) denote the topological group

Homeo(Rk,Rk) of homeomorphisms from Rk to itself.

Remark 5.4.1.4. Let M and N be topological manifolds of the same dimension, and let

Map(M,N) denote the set of all continuous maps from M to N , endowed with the compact-open

topology. Since M is locally compact, Map(M,N) classifies maps of topological spaces from M to

N : that is, for any topological space X, giving a continuous map X → Map(M,N) is equivalent

to giving a continuous map M × X → N , which is in turn equivalent to giving a commutative

diagram

M ×X f //

$$

N ×X

zz
X.

Under this equivalence, continuous maps from X to Emb(M,N) correspond to commutative dia-

grams as above where f is injective (hence an open embedding, by Theorem 5.4.1.1), and continuous

maps from X to Homeo(M,N) correspond to commutative diagrams as above where f is bijective

(and therefore a homeomorphism, by Theorem 5.4.1.1). It follows that the space of embeddings

Emb(M,M) has the structure of a topological monoid, and that Homeo(M,M) has the structure

of a topological group.
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In §5.4.2, we will need the to know that the topological monoid Emb(Rk,Rk) is grouplike:

that is, the set of path components π0 Emb(Rk,Rk) forms a group under composition. This is an

immediate consequence of the following version of the Kister-Mazur theorem, whose proof we defer

until the end of this section.

Theorem 5.4.1.5 (Kister-Mazur). For each k ≥ 0, the inclusion Top(k) ↪→ Emb(Rk,Rk) is a

homotopy equivalence.

We now describe some variants on the embedding spaces Emb(M,N) and their homotopy types.

Definition 5.4.1.6. Let M be a topological manifold of dimension k, let S be a finite set, and for

every positive real number t let B(t) ⊂ Rk be as in Lemma 5.4.1.7. We let Germ(S,M) denote the

simplicial set lim−→n
Sing Emb(B( 1

2n ) × S,M). We will refer to Germ(S,M) as the simplicial set of

S-germs in M .

Lemma 5.4.1.7. Let M be a topological manifold of dimension k and S a finite set. For every

positive real number t, let B(t) ⊂ Rk denote the open ball of radius t. For every pair of positive

real numbers s < t, the restriction map r : Emb(B(t)× S,M)→ Emb(B(s)× S,M) is a homotopy

equivalence.

Proof. This follows from the observation that the embedding B(s) ↪→ B(t) is isotopic to a homeo-

morphism.

By repeated application of Lemma 5.4.1.7 we deduce the following:

Proposition 5.4.1.8. Let M be a topological manifold of dimension k and let S be a finite set.

Then the obvious restriction map Sing Emb(Rk×S,M)→ Germ(S,M) is a homotopy equivalence

of Kan complexes.

Notation 5.4.1.9. Let M be a topological manifold of dimension k. Evaluation at the origin

0 ∈ Rk induces a map θ : Emb(Rk,M) → M . We will denote the fiber of this map over a point

x ∈M by Embx(Rk,M). The map θ is a Serre fibration, so we have a fiber sequence of topological

spaces

Embx(Rk,M)→ Emb(Rk,M)→M.

We let Germ(M) denote the simplicial set Germ({∗},M). Evaluation at 0 induces a Kan

fibration Germ(M) → SingM ; we will denote the fiber of this map over a point x ∈ M by

Germx(M). We have a map of fiber sequences

Sing Embx(Rk,M) //

ψ

��

Sing Emb(Rk,M) //

ψ′

��

SingM

ψ′′

��
Germx(M) // Germ(M) // SingM.
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Since ψ′ is a homotopy equivalence (Proposition 5.4.1.8) and ψ′′ is an isomorphism, we conclude

that ψ is a homotopy equivalence.

The simplicial set Germ0(Rk) forms a simplicial group with respect to the operation of compo-

sition of germs. Since Rk is contractible, we have homotopy equivalences of simplicial monoids

Germ0(Rk)← Sing Embx(Rk,Rk)→ Sing Emb(Rk,Rk)← Sing Top(k)

(see Theorem 5.4.1.5): in other words, Germ0(Rk) can be regarded as a model for the homotopy

type of the topological group Top(k).

Remark 5.4.1.10. For any topological k-manifold M , the group Germ0(Rk) acts on Germ(M)

by composition. This action is free, and we have a canonical isomorphism of simplicial sets

Germ(M)/Germ0(Rk) ' SingM .

Remark 5.4.1.11. Let j : U →M be an open embedding of topological k-manifolds and S a finite

set. Then evaluation at 0 determines a diagram of simplicial sets

Sing Emb(Rk×S,U) //

��

Sing Emb(Rk×S,M)

��
Conf(S,U) // Conf(S,M).

We claim that this diagram is homotopy Cartesian. In view of Proposition 5.4.1.8, it suffices to

show that the equivalent diagram

Germ(S,U) //

��

Germ(S,M)

��
Conf(S,U) // Conf(S,M),

is homotopy Cartesian. This diagram is a pullback square and the vertical maps are Kan fibrations:

in fact, the vertical maps are principal fibrations with structure group Germ0(Rk)S .

Taking U = Rk, and S to consist of a single point, we have a larger diagram

Sing Emb0(Rk,Rk) //

��

Sing Emb(Rk,Rk) //

��

Sing Emb(Rk,M)

��
{0} // Sing Rk // SingM.

Since the horizontal maps on the left are homotopy equivalences of Kan complexes, we obtain a

homotopy fiber sequence of Kan complexes

Sing Emb0(Rk,Rk)→ Sing Emb(Rk,M)→ SingM.
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We conclude this section with the proofs of Theorems 5.4.1.1 and 5.4.1.5.

Proof of Theorem 5.4.1.1. Fix a continuous map f : M×X → N×X and an open set U ⊆M×X;

we wish to show that f(U) is open in N × X. In other words, we wish to show that for each

u = (m,x) ∈ U , the set f(U) contains a neighborhood of f(u) = (n, x) in N × S. Since N is

a manifold, there exists an open neighborhood V ⊆ N containing n which is homeomorphic to

Euclidean space Rk. Replacing N by V (and shrinking M and X as necessary), we may assume

that N ' Rk. Similarly, we can replace M and X by small neighborhoods of m and s to reduce to

the case where M ' Rk and U = M ×X.

We first treat the case where X consists of a single point. Let D ⊆M be a closed neighborhood

of m homeomorphic to a (closed) k-dimensional disk, and regard N as an open subset of the

k-sphere Sk. We have a long exact sequence of compactly supported cohomology groups

0 ' Hk−1
c (Sk; Z)→ Hk−1

c (f(∂ D); Z)→ Hk
c (S

k − f(∂ D); Z)→ Hk
c (S

k; Z)→ Hk
c (f(∂ D); Z) ' 0.

Since f is injective, f(∂ D) is homeomorphic to a (k−1)-sphere. It follows that Hk
c (S

k−f(∂ D); Z) is

a free Z-module of rank 2, so that (by Poincare duality) the ordinary cohomology H0(Sk−f(∂ D); Z)

is also free of rank 2: in other words, the open set Sk−f(∂ D) has exactly two connected components.

We have another long exact sequence

0 ' Hk−1
c (f(D); Z)→ Hk

c (S
k − f(D); Z)→ Hk

c (S
k; Z)→ Hk

c (f(D); Z) ' 0.

This proves that Hk
c (S

k − f(D); Z) is free of rank 1 so that (by Poincare duality) Sk − f(D) is

connected. The set Sk − f(∂ D) can be written as a union of connected sets f(D − ∂ D) and

Sk − f(D), which must therefore be the connected components of Sk − f(∂ D). It follows that

f(D − ∂ D) is open Sk so that f(M) contains a neighborhood of f(m) as desired.

Let us now treat the general case. Without loss of generality, we may assume that f(u) = (0, x),

where x ∈ X and 0 denotes the origin of Rk. Let fx : M → N be the restriction of f to M × {x}.
The above argument shows that fx is an open map, so that fx(M) contains a closed ball B(ε) ⊆ Rk

for some positive radius ε. Let S ⊆ M − {m} be the inverse image of the boundary ∂ B(ε), so

that S is homeomorphic to the (k − 1)-sphere. In particular, S is compact. Let π : M ×X → Rk

denote the composition of f with the projection map N ×X → N ' Rk. Shrinking X if necessary,

we may suppose that the distance d(f(s, x), f(s, y)) < ε
2 for all s ∈ S and all y ∈ X. We will

complete the proof by showing that B( ε2)×X is contained in the image of f . Supposing otherwise;

then there exists v ∈ B( ε2) and y ∈ X such that (v, y) /∈ f(M × X). Then fy defines a map

from M to Rk−{v}, so the restriction fy|S is nullhomotopic when regarded as a map from S to

Rk−{v}. However, this map is homotopic (via a straight-line homotopy) to fx|S, which carries

S homeomorphically onto ∂ B(ε) ⊆ Rk−{v}. It follows that the inclusion ∂ B(ε) ⊆ Rk−{v} is

nullhomotopic, which is impossible.

We now turn to the proof of Theorem 5.4.1.5. The main step is the following technical result:
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Lemma 5.4.1.12. Let X be a paracompact topological space, and suppose that there exists a con-

tinuous map f0 : Rk×X → Rk such that, for each x ∈ X, the restriction f0,x = f0|Rk×{x} is

injective. Then there exists an isotopy f : Rk×X × [0, 1]→ Rk with the following properties:

(i) The restriction f |Rk×X × {0} coincides with f0.

(ii) For every pair (x, t) ∈ X × [0, 1], the restricted map ft,x = f |Rk×{x} × {t} is injective.

(iii) For each x ∈ X, the map f1,x is bijective.

(iv) Suppose x ∈ X has the property that f0,x is bijective. Then ft,x is bijective for all t ∈ [0, 1].

Proof. Let w : X → Rk be given by the formula w(x) = f0(0, x). Replacing f0 by the map

(v, x) 7→ f0(v, x) − w(x), we can reduce to the case where w = 0: that is, each of the maps f0,x

carries the origin of Rk to itself.

For every continuous positive real-valued function ε : X → R>0, we let B(ε) denote the open

subset of Rk×X consisting of those pairs (v, x) such that |v| < ε(x). If r is a real number, we let

B(r) = B(ε), where ε : X → R>0 is the constant function taking the value r.

Let g1 : Rk×X → Rk×X be given by the formula g1(v, x) = (f1(v, x), x). The image g1(B(1))

is an open subset of Rk×X (Theorem 5.4.1.1) which contains the zero section {0}×X; it follows that

g1(B(1)) contains B(ε) for some positive real-valued continuous function ε : X → R>0. Replacing

f0 by the funciton (v, x) 7→ f0(v,x)
ε(x) , we can assume that B(1) ⊆ g1(B(1)).

We now proceed by defining a sequence of open embeddings {gi : Rk×X → Rk×X}i≥2 and

isotopies {hit}0≤t≤1 from gi to gi+1, so that the following conditions are satisfied:

(a) Each of the maps gi is compatible with the projection to X.

(b) Each isotopy {hit}0≤t≤1 consists of open embeddings Rk×X → Rk×X which are compatible

with the projection to X. Moreover, this isotopy is constant on the open set B(i) ⊆ Rk×X.

(c) For i ≥ 1, we have B(i) ⊆ gi(B(i)).

(d) Let x ∈ X be such that the map gix : Rk → Rk is a homeomorphism. Then hit,x : Rk → Rk

is a homeomorphism for all t ∈ [0, 1].

Assuming that these requirements are met, we can obtain the desired isotopy ft by the formula

ft(v, x) =

{
πgi(v, x) if (|v| < i) ∧ (t > 1− 1

2i−1 )

πhis(v, x) if t = 1 + s−2
2i
,

where π denotes the projection from Rk×X onto Rk. We now proceed by induction on i. Assume

that gi has already been constructed; we will construct an isotopy hi from gi to another open

embedding gi+1 to satisfy the above conditions. First, we need to establish a bit of notation.

For every pair of real numbers r < s, let {H(r, s)t : Rk → Rk}0≤t≤1 be a continuous family of

homeomorphisms satisfying the following conditions:
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(i) The isotopy {H(r, s)t} is constant on {v ∈ Rk : |v| < r
2} and {v ∈ Rk : |v| > s+ 1}.

(ii) The map H(r, s) restricts to a homeomorphism of B(r) with B(s).

We will assume that the homeomorphisms {H(r, s)t} are chosen to depend continuously on r,

s, and t. Consequently, if ε < ε′ are positive real-valued functions on X, we obtain an isotopy

{H(ε, ε′)t : Rk×X → Rk×X} by the formula H(ε, ε′)t(v, x) = (H(ε(x), ε′(x))t(v), x).

Since gi is continuous and {0} ×X ⊆ (gi)−1B(1
2), there exists a real-valued function δ : X →

(0, 1) such that gi(B(δ)) ⊆ B(1
2). We define a homeomorphism c : Rk×X → Rk×X as follows:

c(v, x) =

{
(v, x) if (v, x) /∈ gi(Rk×X)

gi(H(δ(x), i)−1
1 (w), x) if (v, x) = gi(w, x).

Since gi carries B(δ) into B(1
2), we deduce that c(gi(v, x)) ∈ B(1

2) if (v, x) ∈ B(i). Note that c is

the identity outside of the image giB(i+ 1); we can therefore choose a positive real valued function

ε : X → (i+ 1,∞) such that c is the identity outside of B(ε).

We now define hit by the formula hit = c−1 ◦H(1, ε)t ◦ c ◦ gi (here we identify the real number

1 ∈ R with the constant function X → R taking the value 1). It is clear that hit is an isotopy from

gi = gi0 to another map gi+1 = gi1, satisfying conditions (a) and (d) above. Since H(1, ε)t is the

identity on B(1
2) and c ◦ gi carries B(i) into B(1

2), we deduce that hit is constant on B(i) so that

(b) is satisfied. It remains only to verify (c): we must show that gi+1B(i + 1) contains B(i + 1).

In fact, we claim that gi+1B(i+ 1) contains B(ε). Since c is supported in B(ε), it suffices to show

that (cgi+1)B(i + 1) = (H(1, ε)1 ◦ c ◦ gi)B(i + 1) contains B(ε). For this we need only show that

(c ◦ gi)B(i+ 1) contains B(1) ⊆ B(i) ⊆ giB(i) ⊆ giB(i+ 1). This is clear, since H(δ(x), i)1 induces

a homeomorphism of B(i+ 1) with itself.

Proof of Theorem 5.4.1.5. For every compact set K ⊆ Rk, the compact open topology on the

set of continuous maps Map(K,Rk) agrees with the topology induced by the metric dK(f, g) =

sup{|f(v)− g(v)|, v ∈ K}. Consequently, the compact open topology on the entire mapping space

Map(Rk,Rk) is defined by the countable sequence of metrics {d
B(n)
}n≥0 (here B(n) denotes the

closed ball of radius n), or equivalently by the single metric

d(f, g) =
∑
n≥0

1

2n
inf{1, d

B(n)
(f, g)}.

It follows that Emb(Rk,Rk) ⊆ Map(Rk,Rk) is metrizable and therefore paracompact. Applying

Lemma 5.4.1.12 to the canonical pairing

f0 : Rk×Emb(Rk,Rk) ↪→ Rk×Map(Rk,Rk)→ Rk,

we deduce the existence of an map f : Rk×Emb(Rk,Rk)×[0, 1]→ Rk which is classified by a homo-

topy χ : Emb(Rk,Rk)× [0, 1]→ Emb(Rk,Rk) from idEmb(Rk,Rk) to some map s : Emb(Rk,Rk)→
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Homeo(Rk,Rk). We claim that s is a homotopy inverse to the inclusion i : Homeo(Rk,Rk) →
Emb(Rk,Rk). The homotopy χ shows that i ◦ s is homotopy to the identity on Emb(Rk,Rk),

and the restriction of χ to Homeo(Rk,Rk)× [0, 1] shows that s ◦ i is homotopic to the identity on

Homeo(Rk,Rk).

5.4.2 Variations on the Little Cubes Operads

Fix an integer k ≥ 0. In §5, we introduced a topological operad tEk whose n-ary operations

are given by rectilinear open embeddings from 2k × 〈n〉◦ into 2k. Our goal in this section is to

introduce some variations on this construction, where we drop the requirement that our embeddings

be rectilinear (or replace rectilinearity by some other condition). The main observation is that the

resulting ∞-operads are closely related to the ∞-operad E⊗k studied in §5.1.4 (see Proposition

5.4.2.8 below).

Definition 5.4.2.1. Fix an integer k ≥ 0. We define a topological category tE⊗BTop(k) as follows:

(1) The objects of tE⊗BTop(k) are the objects 〈n〉 ∈ Fin∗.

(2) Given a pair of objects 〈m〉, 〈n〉 ∈t E⊗BTop(k), the mapping space MaptE⊗
BTop(k)

(〈m〉, 〈n〉) is

given by the disjoint union ∐
α

∏
1≤i≤n

Emb(Rk×α−1{i},Rk)

taken over all morphisms α : 〈m〉 → 〈n〉 in Fin∗.

We let BTop(k)⊗ denote the ∞-category given by the homotopy coherent nerve N(tEBTop(k))
⊗.

Remark 5.4.2.2. It follows from Proposition 2.1.1.27 that BTop(k)⊗ is an ∞-operad.

Remark 5.4.2.3. Definition 5.4.2.1 is a close relative of Definition 5.1.0.2. In fact, choosing a

homeomorphism Rk ' 2k, we obtain an inclusion of ∞-operads E⊗k → BTop(k)⊗.

Remark 5.4.2.4. The object 〈0〉 is initial in BTop(k)⊗. It follows that BTop(k)⊗ is a unital

∞-operad.

Example 5.4.2.5. Suppose that k = 1. Every open embedding j : Rk×S ↪→ Rk determines a pair

(<, ε), where < is an element of the set of linear orderings of S (given by s < s′ if j(0, s) < j(0, s′))

and ε : S → {±1} is a function defined so that ε(s) = 1 if j|(Rk×{s}) is orientation preserving, and

ε(s) = −1 otherwise. This construction determines a homotopy equivalence Emb(Rk×S,Rk) →
L(S) × {±1}S , where L(S) denotes the set of linear orderings of S. It follows that BTop(k)⊗ is

equivalent to the nerve of its homotopy category and therefore arises from an operad in the category

of sets via Construction 2.1.1.7. In fact, this is the operad which controls associative algebras with

involution, as described in §2.3.4.
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Notation 5.4.2.6. For each integer k ≥ 0, we let BTop(k) denote the∞-category BTop(k)⊗×N(Fin∗)

{〈1〉} underlying the ∞-operad BTop(k)⊗. Then BTop(k) can be identified with the nerve of the

topological category having a single object whose endomorphism monoid is the space Emb(Rk,Rk)

of open embeddings from Rk to itself. It follows from the Kister-Mazur theorem (Theorem 5.4.1.5)

that Emb(Rk,Rk) is a grouplike topological monoid, so that BTop(k) is a Kan complex. In fact,

Theorem 5.4.1.5 shows that BTop(k) can be identified with a classifying space for the topological

group Top(k) of homeomorphisms from Rk to itself.

Remark 5.4.2.7. We can modify Definition 5.4.2.1 by replacing the embedding spaces Emb(Rk×S,Rk)

by the products
∏
s∈S Emb(Rk,Rk). This yields another ∞-operad, which is canonically isomor-

phic to BTop(k)q. The evident inclusions Emb(Rk×S,Rk) ↪→
∏
s∈S Emb(Rk,Rk) induce an

inclusion of ∞-operads BTop(k)⊗ ↪→ BTop(k)q.

If k > 0, then the Kan complex BTop(k) is not contractible (nor even simply-connected, since an

orientation-reversing homeomorphisms from Rk to itself cannot be isotopic to the identity), so the

∞-operad BTop(k)⊗ is not reduced. Consequently, we can apply Theorem 2.3.4.4 to decompose

BTop(k)⊗ as the assembly of a family of reduced ∞-operads. The key to understanding this

decomposition is the following observation:

Proposition 5.4.2.8. Let k be a nonnegative integer, and choose a homeomorphism Rk ' 2k. The

induced inclusion f : E⊗k → BTop(k)⊗ is an approximation to BTop(k)⊗ (see Definition 2.3.3.6).

Proof. Using Corollaries 2.3.3.16 and 2.3.3.17, we are reduced to proving that for every finite set

S, the diagram

Sing(Rect(2k × S,2k)) //

��

Sing Rect(2k,2k)S

��
Sing(Emb(Rk×S),Rk) // Sing(Emb(Rk,Rk))S

is a homotopy pullback square of Kan complexes. Consider the larger diagram

Sing(Rect(2k × S,2k)) //

��

Sing Rect(2k,2k)S

��
Sing(Emb(Rk×S,Rk)) //

��

Sing(Emb(Rk,Rk))S

��
Germ(S,Rk) //

��

∏
s∈S Germ({s},Rk)

��
Conf(S,Rk) //

∏
s∈S Conf({s},Rk).
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The lower square is a pullback diagram in which the vertical maps are Kan fibrations, and therefore

a homotopy pullback diagram. The middle square is a homotopy pullback diagram because the

middle vertical maps are homotopy equivalences (Proposition 5.4.1.8). The outer rectangle is a

homotopy pullback diagram because the vertical compositions are homotopy equivalences (Lemma

5.1.1.3). The desired result now follows from a diagram chase.

Remark 5.4.2.9. Fix a nonnegative integer k. The∞-operad BTop(k)⊗ is unital and its underly-

ing∞-category BTop(k) is a Kan complex (Notation 5.4.2.6). According to Theorem 2.3.4.4, there

exists a reduced generalized ∞-operad O⊗ and an assembly map O⊗ → BTop(k)⊗. Then O⊗〈0〉 '
O ' BTop(k); we may therefore assume without loss of generality that O⊗ → BTop(k)×N(Fin∗) is

a BTop(k)-family of ∞-operads. Since E⊗k is reduced, Theorem 2.3.4.4 guarantees that the inclu-

sion E⊗k → BTop(k)⊗ factors (up to homotopy) through O⊗. Without loss of generality, this map

factors through O⊗x , where x denotes the unique vertex of BTop(k). The resulting map E⊗k → O⊗x
is a approximation to O⊗x (Proposition 5.4.2.8). Since both E⊗k and O⊗x are reduced, it is an equiv-

alence (Corollary 2.3.3.24). We can summarize the situation as follows: the ∞-operad BTop(k)⊗

is obtained by assembling a reduced BTop(k)-family of ∞-operads, each of which is equivalent to

E⊗k . More informally, we can regard this BTop(k)-family as encoding an action of the loop space

Ω BTop(k) ' Sing(Top(k)) on the∞-operad E⊗k , so that BTop(k)⊗ can be regarded as a semidirect

product of the ∞-operad E⊗k with the topological group Top(k) of homeomorphisms of Rk with

itself.

We can summarize Remark 5.4.2.9 informally as follows: if C⊗ is a symmetric monoidal ∞-

category, then the ∞-category AlgBTop(k)(C) can be identified with the ∞-category of Ek-algebra

objects of C which are equipped with a compatible action of the topological group Top(k). The

requirement that Top(k) act on an Ek-algebra is rather strong: in practice, we often encounter

situations where an algebra A ∈ AlgEk(C) is acted on not by the whole of Top(k), but by some

smaller group. Our next definition gives a convenient formulation of this situation.

Definition 5.4.2.10. Let B be a Kan complex equipped with a Kan fibration B → BTop(k). We

let E⊗B denote the fiber product

BTop(k)⊗ ×BTop(k)q B
q.

Remark 5.4.2.11. It follows immediately from the definitions that E⊗B is a unital ∞-operad and

that the map E⊗B → BTop k⊗ is an approximation of ∞-operads.

Warning 5.4.2.12. Our notation is slightly abusive. The ∞-operad E⊗B depends not only on

the Kan complex B, but also the integer k and the map θ : B → BTop(k). We can think of

θ as classifying a topological fiber bundle over the geometric realization |B|, whose fibers are

homeomorphic to Rk.

Remark 5.4.2.13. Let O⊗ → BTop(k) × N(Fin∗) be the ∞-operad family of Remark 5.4.2.9. If

θ : B → BTop(k) is any map of Kan complexes, then the fiber product O⊗×BTop(k)B is a B-family
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of reduced unital ∞-operads. When θ is a Kan fibration (which we may assume without loss of

generality), then this B-family of ∞-operads assembles to the unital ∞-operad E⊗B (see §2.3.4).

We can informally describe the situation as follows: an EB-algebra object of a symmetric monoidal

∞-category C is a (twisted) family of Ek-algebra objects of C, parametrized by Kan complex B

(the nature of the twisting is determined by the map θ).

Remark 5.4.2.14. Let k and k′ be integers. The homeomorphism Rk+k′ ' Rk×Rk′ determines

a map of Kan complexes BTop(k) × BTop(k′) → BTop(k + k′). This map induces a bifunctor

of ∞-operads BTop(k)q × BTop(k′)q → BTop(k + k′)q which restricts to a functor BTop(k)⊗ ×
BTop(k′)⊗ → BTop(k+ k′)⊗. More generally, if we are given maps of Kan complexes B → BTop k

and B′ → BTop k′, there is an induced bifunctor of ∞-operads

θB,B′ : E⊗B × E
⊗
B′ → E⊗B×B′

where we regard B × B′ as equipped with the composite map B × B′ → BTop k × BTop k′ →
BTop k + k′ (classifying the sum of the bundles pulled back from B and B′, respectively). The

functor θB,B′ exhibits E⊗B×B′ as a tensor product of the ∞-operads E⊗B and E⊗B′ . To prove this, we

observe that Remark 5.4.2.13 implies that the constructions B 7→ E⊗B and B 7→ E⊗B×B′ carry ho-

motopy colimits of Kan complexes (over Top k) to homotopy colimits of∞-operads. Consequently,

we may assume without loss of generality that B ' ∆0. Similarly, we may assume that B′ ' ∆0.

In this case, the bifunctor θB,B′ is equivalent to bifunctor E⊗k × E
⊗
k′ → E⊗k+k′ appearing in the

statement of Theorem 5.1.2.2.

We conclude this section by illustrating Definition 5.4.2.10 with some examples. Another general

class of examples will be discussed in §5.4.5.

Example 5.4.2.15. Let B be a contractible Kan complex equipped with a Kan fibration B →
BTop(k). Then E⊗B is equivalent to the ∞-operad E⊗k .

Example 5.4.2.16. Fix k ≥ 0, and choose a homeomorphism of Rk with the unit ball B(1) ⊆ Rk.

We will say that a map f : B(1)→ B(1) is a projective isometry if there exists an element γ in the

orthogonal group O(k), a positive real number λ, and a vector v0 ∈ B(1) such that f is given by the

formula f(w) = v0 +λγ(w). For every finite set S, we let Isom+(B(1)×S,B(1)) denote the (closed)

subspace of Emb(B(1) × S,B(1)) consisting of those open embeddings whose restriction to each

ball B(1)× {s} is an orientation-preserving projective isometry. Let tESO(k) be the subcategory of
tE⊗BTop(k) having the same objects, with morphism spaces given by

MaptESO(k)
(〈m〉, 〈n〉) =

∐
α

∏
1≤i≤n

Isom+(B(1)× α−1{i}, B(1)).

Then O⊗ = N(tESO(k)) is a unital∞-operad. The inclusion O⊗ ↪→ BTop(k)⊗ is an approximation of

BTop(k)⊗ which induces an equivalence of O⊗ with the ∞-operad EB, where B is a Kan complex
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which plays the role of a classifying space BSO(k) for the special orthogonal group SO(k) (and

we arrange that the inclusion of topological groups SO(k) → Top(k) induces a Kan fibration

BSO(k)→ BTop(k)). This recovers the operad of framed disks described, for example, in [125].

Variant 5.4.2.17. In Example 5.4.2.16, there is no need to restrict our attention to orientation

preserving maps. If we instead allow all projective isometries, then we get another ∞-operad

O⊗ ' E⊗B, where B is a classifying space for the full orthogonal group O(k).

Example 5.4.2.18. In the definition of BTop(k)⊗, we have allowed arbitrary open embeddings

between Euclidean spaces Rk. We could instead restrict our attention to spaces of smooth open

embeddings (which we regard as equipped with the Whitney topology, where convergence is given

by uniform convergence of all derivatives on compact sets) to obtain an ∞-operad ESm. This can

be identified with the ∞-operad EB, where B is a classifying space for the monoid of smooth

embeddings from the open ball B(1) to itself. Since every projective isometry is smooth, there is

an obvious map O⊗ → ESm, where O⊗ is defined as in Variant 5.4.2.17. In fact, this map is an

equivalence of ∞-operads: this follows from the fact that the inclusion from the orthogonal group

O(k) into the space Embsm(B(1), B(1)) of smooth embeddings of B(1) to itself is a homotopy

equivalence (it has a homotopy inverse given by the composition Embsm(B(1), B(1))→ GLk(R)→
O(k), where the first map is given by taking the derivative at the origin and the second is a

homotopy inverse to the inclusion O(k) ↪→ GLk(R)).

Many other variants on Example 5.4.2.18 are possible. For example, we can replace smooth

manifolds with piecewise linear manifolds. We can also consider smooth or piecewise linear mani-

folds equipped with additional structures, such as orientations. We leave the details to the reader.

5.4.3 Digression: Nonunital Associative Algebras and their Modules

Recall that a nonunital ring is an abelian group (A,+) equipped with a bilinear and associative

multiplication m : A × A → A. Every associative ring determines a nonunital ring, simply by

forgetting the multiplicative identity element. On the other hand, if A is an associative ring, then

the ring structure on A is uniquely determined by underlying nonunital ring of A. In other words,

if A is a nonunital ring which admits a multiplicative identity 1, then 1 is uniquely determined.

The proof is simple: if 1 and 1′ are both identities for the multiplication on A, then 1 = 11′ = 1′.

Our goal in this section is to prove an ∞-categorical version of this result. More precisely, we will

show that if A is a nounital algebra object of a monoidal ∞-category C which admits a (two-sided)

unit up to homotopy, then A can be extended to an algebra object of C in an essentially unique way

(Theorem 5.4.3.5). In ordinary category theory, this is a tautology. However, in the ∞-categorical

setting the result is not as obvious, since the unit of an algebra object A of C is required to satisfy

a hierarchy of coherence conditions with respect to the multiplication on A. In what follows, we

will assume that the reader is familiar with the formalism of A∞-monoidal ∞-categories developed

in §4.1.3.
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Definition 5.4.3.1. Let C� → N(∆)op be a A∞-monoidal ∞-category, and let A ∈ Algnu(C) be a

nonunital A∞-algebra object of C. Let 1 denote the unit object of C. A map u : 1 → A is a right

unit if the composition

A ' A⊗ 1
u→ A⊗A→ A

is homotopic to the identity in C. Similarly, we will say that u is a left unit if the composition

A ' 1⊗A u→ A⊗A→ A

is homotopic to the identity in C. We will say that u is a quasi-unit if it is both a left unit and a

right unit. We will say that A is quasi-unital if there exists a quasi-unit u : 1→ A.

Remark 5.4.3.2. Let A be as in Definition 5.4.3.1, and suppose that A admits a left unit u : 1→ A

and a right unit v : 1→ A. Then the composite map

1 ' 1 ' 1
u⊗v→ A⊗A→ A

is homotopic to both u and v, so that u and v are homotopic to each other. It follows that A is

quasi-unital if and only if it admits both a left and a right unit; in this case, the quasi-unit of A is

determined uniquely up to homotopy.

Definition 5.4.3.3. Let C� → N(∆)op be a A∞-monoidal ∞-category, and let A ∈ Algnu
A∞(C) be

a nonunital A∞-algebra object of C, and let u : 1 → A be a quasi-unit of A. We will say that a

morphism f : A → B in Algnu
A∞(C) is quasi-unital if f ◦ u is a quasi-unit for B (in particular, this

implies that B is quasi-unital). We let Algqu
A∞(C) denote the subcategory of Algnu

A∞(C) spanned by

the quasi-unital objects of Algnu
A∞(C) and quasi-unital morphisms between them. We will refer to

Algqu
A∞(C) as the ∞-category of quasi-unital algebra morphisms in C.

Remark 5.4.3.4. In the situation of Definition 5.4.3.3, the condition that a nonunital algebra

object A ∈ Algnu
A∞(C) is quasi-unital can be tested after passing to the homotopy category hC.

Similarly, if A and B are quasi-unital A∞-algebra objects of C, then the condition that a morphism

f : A → B is quasi-unital can also be tested after passing to the homotopy category hC. In other

words, the diagram of ∞-categories

Algqu
A∞(C) //

��

Algnu
A∞(C)

��
Algqu

A∞(N(hC)) // Algnu
A∞(N(hC))

is a pullback square.

We can now state the main result of this section:
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Theorem 5.4.3.5. Let C� → N(∆)op be a A∞-monoidal ∞-category. Then the restriction functor

AlgA∞(C)→ Algnu
A∞(C)

induces a trivial Kan fibration AlgA∞(C)→ Algqu
A∞(C).

Corollary 5.4.3.6. Let C� → N(∆)op be a A∞-monoidal ∞-category. Then the diagram of ∞-

categories

AlgA∞(C) //

��

Algnu
A∞(C)

��
AlgA∞(N(hC)) // Algnu

A∞(N(hC))

is a pullback square.

Proof. Combine Theorem 5.4.3.5 with Remark 5.4.3.4.

We will prove Theorem 5.4.3.5 at the end of this section. The basic idea is as follows: if

A is a quasi-unital A∞-algebra, then A can be identified with the algebra of (left) A-module

endomorphisms of itself. To make this idea precise, we will need a good theory of nonunital

modules over nonunital algebras.

Recall that if A is a nonunital ring, then a nonunital left A-module is an abelian group M

equipped with a bilinear multiplication map A×M →M which satisfies the associativity formula

a(bm) = (ab)m. Note that if A admits a unit, then this condition does not imply that M is an

A-module, because it does not imply that the unit element of A acts by the identity on M . For

example, there is a trivial nonunital A-module structure on any abelian group M , given by the zero

map A×M 0→M.

We now adapt the theory of nonunital left modules to the ∞-categorical context. Let LM⊗nu

denote the ∞-operad LM⊗×N(Fin∗) Comm⊗nu. Given a fibration of∞-operads O⊗ → LM⊗, corre-

sponding to an ∞-category M = Om weakly enriched over C⊗ = O⊗a , we let LModnu(M) denote

the the ∞-category AlgLMnu /LM(O). We will refer to LModnu(M) as the ∞-category of nonunital

left module objects of M. We have the following analogue of Proposition 4.1.2.14, which follows

immediately from Remarks 4.2.2.8 and 2.3.3.9:

Proposition 5.4.3.7. The functor γ : ∆1 × N(∆)op → LM⊗ of Remark 4.2.2.8 determines an

approximation ∆1 ×N(∆s)
op → LM⊗nu to the ∞-operad LM⊗nu.

Definition 5.4.3.8. We will say that a morphism in ∆1×N(∆s)
op is inert if its image in LM⊗nu is

inert. If M� → ∆1×N(∆)op is a map which exhibits M = M�
(0,[0]) as weakly enriched over the planar

∞-operad M�×∆1{1}, then we let LModA
nu
∞ (C) denote the full subcategory of Fun∆1×N(∆)op(∆1×

N(∆s)
op,M�) spanned by those functors which carry inert morphisms in ∆1 N(∆s)

op to inert

morphisms in C�.
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Combining Proposition 5.4.3.7 with Theorem 2.3.3.23, we obtain:

Proposition 5.4.3.9. Let O⊗ → LM⊗ be a fibration of ∞-operads which exhibits M = Om as

weakly enriched over the planar ∞-operad C⊗ = O⊗a , and let M� = O⊗×LM⊗(∆1 × N(∆)op).

Then composition with the map ∆1 × N(∆s)
op → LM⊗nu induces an equivalence of ∞-categories

LModnu(M)→ LModA
nu
∞ (M).

Remark 5.4.3.10. In the situation of Definition 5.4.3.8, there are evident forgetful functors

M← LModA
nu
∞ (M)→ Algnu

A∞(C).

We will generally abuse notation by identifying an object of LModA
nu
∞ (M) with its image in

M. If A is a nonunital A∞-algebra object of C, we let LMod
Anu
∞

A (C) denote the fiber prod-

uct LModA
nu
∞ (M) ×Algnu

A∞ (C) {A}. If A ∈ AlgA∞(C), we will generally abuse notation by writing

LMod
Anu
∞

A (C) for LMod
Anu
∞

θ(A)(C), where θ(A) denotes the image of A under the forgetful functor

θ : AlgA∞(C)→ Algnu
A∞(C).

Definition 5.4.3.11. Let M� → ∆1 × N(∆)op be a coCartesian fibration which exhibits

M = M�
(0,[0]) as left-tensored over the A∞-monoidal ∞-category C� = M�×∆1{1}, and let

M ∈ LModA
nu
∞ (M) be a nonunital module. We will say that M is quasi-unital if the following

conditions are satisfied:

(1) The image of M in Algnu
A∞(C) is a quasi-unital A∞-algebra object A ∈ Algqu

A∞(C).

(2) If u : 1→ A is a quasi-unit for A, then the composite map

ψ : M ' 1⊗M → A⊗M →M

is homotopic to the identity (as a morphism in the ∞-category M).

We let LModA
qu
∞ (M) denote the full subcategory of LModA

nu
∞ spanned by the quasi-unital objects.

Remark 5.4.3.12. In view of Remark 5.4.3.2, the condition of Definition 5.4.3.11 does not depend

on the choice of a quasi-unit u : 1C → A.

Remark 5.4.3.13. In the situation of Definition 5.4.3.11, the condition that ψ be homotopic to the

identity is equivalent to the (apparently weaker) condition that ψ be an equivalence. For suppose

that ψ is an equivalence. Since the composition

1 ' 1⊗ 1
u⊗u−→ A⊗A −→ A

is homotopic to u, we conclude that ψ2 is homotopic to ψ (that is, ψ2 and ψ belong to the same

connected component of MapM(M,M) ). If ψ is invertible in the homotopy category hM, this

forces ψ to be homotopic to the identity.
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We have the following counterpart of Theorem 5.4.3.5:

Proposition 5.4.3.14. Let p : M� → ∆1 × N(∆)op be a coCartesian fibration which exhibits

M = M�
(0,[0]) as left-tensored over the A∞-monoidal ∞-category C� = M�×∆1{1}. Fix an object

A ∈ AlgA∞(C). Then the canonical map

θ : ∆LModA(M)→ LModA
qu
∞

A (M)

is a trivial Kan fibration.

Proof. It is clear that θ is a categorical fibration. It will therefore suffice to show that θ is a

categorical equivalence. We may assume without loss of generality that M� = (∆1×N(∆)op)×LM⊗

M⊗ for some coCartesian fibration of ∞-operads M⊗ → LM⊗. Let M� → C� be defined as in

Notation 4.2.2.17, and let N = N(∆)op ×C� M� where N(∆)op maps to C� via the A∞-algebra A.

Let q : N → N(∆)op be the canonical map, so that q is a locally coCartesian fibration (Lemma

4.2.2.20).

We define a subcategory I ⊆ [1]×∆op as follows:

• Every object of [1]×∆op belongs to I.

• A morphism α : (i, [m]) → (j, [n]) in [1]×∆op belongs to I if and only if either i = 0 or the

map [n]→ [m] is injective.

For i = 0, 1, we let Ii denote the full subcategory of I spanned by the objects {(i, [n])}n≥0, so

that I0 ' ∆op and I1 ' ∆op
s . There is an evident forgetful functor I → ∆op. We observe that

∆LModA(M) and ∆LMod
nu
A (M) can be identified with full subcategories of FunN(∆)op(N(I0),N)

and FunN(∆)op(N(I0 1),N), respectively.

Let X denote the full subcategory of FunN(∆)op(N(I),N) spanned by those functors F with the

following properties:

(i) The restriction F0 = F |N(I0) belongs to ∆LModA(M).

(ii) The functor F is a q-left Kan extension of F−.

Note that conditions (i) and (ii) immediately imply:

(iii) The restriction F1 = F |N(I1) belongs to LModA
qu
∞

A (M).

Conversely, conditions (ii) and (iii) imply (i) (since every inert morphism in N(∆)op belongs to

N(∆s)
op).

The map θ factors as a composition

∆LModA(M)
θ′→ X

θ′′→ ∆LMod
qu
A (M).

Proposition HTT.4.3.2.15 implies that θ′ is the section of a trivial Kan fibration X→ ∆LModA(M),

and therefore a categorical equivalence. We will complete the proof by showing that θ′′ is a trivial

Kan fibration. According to Proposition HTT.4.3.2.15 , it will suffice to prove:
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(a) For every F1 ∈ LModA
qu
∞

A (M) ⊆ FunN(∆)op(N(I1),N), there exists a functor F ∈ FunN(∆)op(N(I),N)

which is a p-right Kan extension of F1.

(b) If F ∈ FunN(∆)op(N(I),N) is a functor such that F1 = F |N(I1) belongs to LModA
qu
∞

A (M), then

F ∈ X if and only if F is a p-right Kan extension of F 0.

We begin by proving (a). Fix a functor F1 ∈ LModA
qu
∞

A (M) ⊆ FunN(∆)op(N(I1),N) and an object

E = (0, [n]) ∈ I0. Let J = I1×I IE/. According to Lemma HTT.4.3.2.13 , it will suffice to show

that f = F1|N(J) can be extended to a q-limit diagram N(J)/ → N (compatible with the evident

map N(J)/ → N(∆)op).

Let J0 denote the full subcategory of J spanned by those maps (0, [n])→ (1, [m]) for which the

image of the underlying map [m] → [n] contains n. We claim that the inclusion N(J0) ⊆ N(J) is

right cofinal. In view of Theorem HTT.4.1.3.1 , it will suffice to show that, for every morphism

E → E′ = (1, [m]) in I, the category Z = J0×IE/ IE//E′ has a weakly contractible nerve. Let

γ : [m]→ [n] be the underlying map of linearly ordered sets. If γ(m) = n then Z has a final object

and there is nothing to prove. Assume therefore that γ(m) < n. Unwinding the definitions, we can

identify Z with a product of categories {Eop
i }0≤i≤n, where

Ei '

{
(∆s,+)γ−1(i)/ if i < n

∆s if i = n.

The categories Ei have initial objects for i < n, and En has weakly contractible nerve (because the in-

clusion N(∆s) ⊆ N(∆) is right cofinal (Lemma HTT.5.5.8.4 ), right cofinal maps are weak homotopy

equivalences (Proposition HTT.4.1.1.3 ), and N(∆) is weakly contractible (Lemma HTT.5.5.8.4 and

Proposition HTT.5.5.8.7 )). It follows that N(Z) '
∏

0≤i≤n N(Ei)
op is likewise weakly contractible.

We are therefore reduced to proving:

(a′) There exists a q-limit diagram g : N(J0)/ → N rendering the following diagram commutative:

N(J0)
g //

� _

��

N

p

��
N(J0)/ //

g

99

N(∆)op,

where g is given by the restriction of F1.

We now observe that, for every morphism α : [m]→ [n] in ∆ for which α(m) = n classifying a

map ∆1 → N(∆)op, the pullback N×N(∆)op∆1 is equivalent to a product M×∆1. It follows that

for every object N ∈ N[m], there exists a locally q-Cartesian morphism α : N ′ → N in N covering

α. Remark 4.2.2.23 implies that α is q-Cartesian.
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Let h1 : N(J0)/ → N(∆)op denote the composition N(J0)/ → N(I)→ N(∆)op, so that we have a

natural transformation h : ∆1×N(J0)/ → N(∆)op from h0 = h|{0}×N(J0)/ to h1, where h0 is the

constant functor taking the value [n]. For each object x ∈ N(J0)/, the restriction of h to ∆1 × {x}
classifies a morphism α : [m]→ [n] satisfying α(m) = n. It follows that we can lift h|(∆1 ×N(J0))

to a p-Cartesian transformation h̃ : g′ → g. Using Proposition HTT.4.3.1.9 , we are reduced to

proving that the diagram g′ : N(J0)→ N[n] can be extended to a q-limit diagram in N[n]. In what

follows, we will abuse notations by identifying N[n] with M, so that g′ can be regarded as a diagram

in M. Let M = f1([0]) ∈M. Unwinding the definitions, we see that the values assumed by g′ can be

identified with M , and the morphisms between these values are given by iterated multiplication by

the unit 1C → A. Since M is assumed to be quasi-unital, it follows that g′ carries every morphism

in J0 to an equivalence in N[n]. The simplicial set N(J0) is weakly contractible, since it is isomorphic

to the product (
∏

0≤i<n N(∆s,+)op)×N(∆s)
op. Applying Corollary HTT.4.4.4.10 , we deduce that

g′ admits a colimit g′ : N(J0). → N[n], and that g′ carries {v}. to an equivalence in N[n]. Since the

∞-category M�
[n] is equivalent to the product C�

[n]×M, we conclude that g′ is a q′[n]-limit diagram,

where q′[n] : M�
[n] → C�

[n] denotes the projection. Applying Corollary HTT.4.3.1.15 to the diagram

M� q′ //

$$

C�

zz
N(∆)op,

we conclude that g′ is a q′-limit diagram. Since q is a pullback of q′, we deduce that g′ is a q-limit

diagram, as desired. This completes the proof of (a). Moreover, the proof shows that an arbitrary

extension F of F1 is a q-right Kan extension at (0, [n]) if and only if, for some γ : [m] → [n] in ∆

with γ(m) = n, the map F (0, [n]) → F (1, [m]) is locally q-Cartesian; moreover, this condition is

independent of the choice of γ. In particular, we can take γ = id[n] to conclude that F is a q-right

Kan extension of F1 if and only if F satisfies condition (ii), which proves (b).

We now return to Theorem 5.4.3.5. Before giving the proof, let us sketch the main idea. Suppose

that A is a nonunital ring, and we wish to promote A to an associative ring. Let M = A, regarded

as a (nonunital) right module over itself. Left multiplication induces a homomorphism of nonunital

algebras φ : A → HomA(M,M). If A admits a left unit 1, then A is freely generated by 1 as a

right A-module, so that evaluation at 1 induces an isomorphism HomA(M,M) ' M . Under this

isomorphism, φ corresponds to the map a 7→ a1. If the element 1 ∈ A is also a right unit, then φ is

an isomorphism. On the other hand, EndA(M,M) is manifestly an associative ring. To translate

this sketch into the setting of higher category theory, we will need the following lemma, which will

be proven at the end of this section:

Lemma 5.4.3.15. Let C be a A∞-monoidal ∞-category, and let A ∈ Algqu
A∞(C). There exists

an ∞-category M which is left-tensored over C and an object M ∈ LModA
qu
∞

A (M) for which the
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underlying map A⊗M →M exhibits A as a classifying object for morphisms from M to M .

We will also need some nonunital analogues of the results of §4.7.1.

Lemma 5.4.3.16. Let p : M� → ∆1 × N(∆)op be a map which exhibits M = M�
0,[0] as weakly

enriched over the planar ∞-operad C� = M�×∆1{1}. Let s : N(∆)op → N(Po)op be the functor

given on objects by [n] 7→ ([n], 0, n). Then, for each object M ∈ M, composition with s induces a

categorical equivalence

θ : Algnu
A∞(C+[M ])→ LModA

nu
∞ (M)×M {M}.

Proof. The proof is essentially identical to that of Theorem 4.7.1.34. Let Pos = Po×∆ ∆s, and

let X ⊆ Fun∆1×N(∆)op(∆1 × N(Pos)
op,M�) be the full subcategory spanned by those functors F

satisfying the following conditions:

(a) If 0 ≤ i ≤ i′ ≤ j ≤ n, then the map F (0, [n], i, j)→ F (0, [n], i′, j) is inert.

(b) If 0 ≤ i ≤ i′ ≤ j′ ≤ n, then the map F (1, [n], i, j)→ F (1, [n], i′, j′) is inert.

(c) For 0 ≤ i ≤ j ≤ n, the map F (0, [n], i, j)→ F (1, [n], i, j) is inert.

(d) If α : [m] → [n] is an inert morphism in ∆, then F (0, [n], α(i), α(j)) → F (0, [m], i, j) is an

equivalence in M�.

Note that conditions (a) and (d) imply the following:

(a′) For every inert morphism α : [m] → [n] in ∆s satisfying α(m) = n, the induced map

F (0, [n], 0, n)→ F (0, [m], 0,m) is inert.

Similarly, (b) and (d) imply:

(b′) For every inert morphism α : [m] → [n] in ∆s, the induced map F (1, [n], 0, n) →
F (1, [m], 0,m) is inert.

Finally, (c) and (d) imply:

(d′) If α : [m] → [n] is an inert morphism in ∆s, then F (1, [n], α(i), α(j)) → F (1, [m], i, j) is an

equivalence in M�.

It follows that composition with s induces a forgetful functor θ′ : X → LModA
nu
∞ (M). Let

Po′s = Po′ ∩Pos, and let X0 ⊆ Fun(N(Po′s)
op,M) be the full subcategory spanned by those functors

which carry each morphism in N(Po′s)
op to an equivalence in M. Let M ∈ X0 be the constant

functor taking the value M ∈ M. Unwinding the definitions, we have a canonical isomorphism
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Algnu
A∞(C+[M ]) ' X×X0M . In other words, we can identify θ′ with the map between vertical fibers

determined by the diagram

X
φ //

��

LModA
nu
∞ (M)

��
X0

φ0 //M .

It will therefore suffice to show that the functors φ and φ0 are categorical equivalences. The map

φ0 is an equivalence since N(Po′s)
op is weakly contractible (it has a final object, given by ([0], 0, 0)).

It will therefore suffice to show that φ is a categorical equivalence. Let X′ be the full subcategory of

Fun∆1×N(∆)op({0} × N(Pos)
op,M�) spanned by those functors F which satisfy (a′), (b′), (d), (d′),

and the following weaker version of (c):

(c′) For n ≥ 0, the map F (0, [n], 0, n)→ F (1, [n], 0, n) is inert.

A functor F ∈ Fun∆1×N(∆)op({0} × N(Pos)
op,M�) belongs to X′ if and only if F0 = F |(∆1 ×

N(∆s)
op) determines an object of LModA

nu
∞ (M) and F is a p-right Kan extension of F0. Then

X′ is a full subcategory of X and Proposition HTT.4.3.2.15 guarantees that the restriction map

φ|X′ is a trivial Kan fibration. We will complete the proof by showing that X = X′. In other

words, we will show that a functor F ∈ X′ also satisfies conditions (a), (b), and (c). To prove

(a), consider 0 ≤ i ≤ i′ ≤ j ≤ n. Condition (d) guarantees that the induced map F (0, [n], i, j) →
F (0, [n], i′, j) is equivalent to the map F ([j− i], 0, j− i)→ F ([j− i′], 0, j− i′) and is therefore inert

by (a′). To prove (b), we assume that 0 ≤ i ≤ i′ ≤ j′ ≤ j ≤ n and note that (d′) implies that

F (0, [n], i, j)→ F (0, [n], i′, j′) is equivalent to the map LF ([j − i], 0, j − i)→ LF ([j′ − i′], 0, j′ − i′)
which is inert by (b′). It remains to verify (c). Fix 0 ≤ i ≤ j ≤ n; we wish to show that the map

u : F (0, [n], i, j) → F (1, [n], i, j) is inert. Using (b), we are reduced to proving that the composite

map F (0, [n], i, j)→ F (1, [n], i, j) ' F (1, [j− i], 0, j− i) is inert. This map factors as a composition

F (0, [n], i, j)
u′→ F (0, [j − i], 0, j − i) u′′→ F (1, [j − i], 0, j − i)

where u′ is an equivalence by (a) and u′′ is inert by virtue of (c′).

Lemma 5.4.3.17. Let M be an ∞-category weakly enriched over a planar ∞-operad C�. For each

object M ∈ M, the forgetful functor θ : C+[M ]� → C� induces a right fibration Algnu
A∞(C+[M ]) →

Algnu
A∞(C).

Proof. Combine Lemmas 4.7.1.36 and 4.7.1.37.

Lemma 5.4.3.18. Let C be a A∞-monoidal ∞-category, M an ∞-category which is left-tensored

over C, and M ∈M an object. Then the forgetful functor

LModA
nu
∞ (M)×M {M} → Algnu

A∞(C)

is a right fibration.
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Proof. Combine Lemma 5.4.3.17 and 5.4.3.16.

Lemma 5.4.3.19. Let M be an ∞-category left-tensored over a A∞-monoidal ∞-category C�.

Assume that the ∞-category C[M ] has a final object A. Then:

(1) The object A can be promoted to an object of Algnu
A∞(C+[M ]) in an essentially unique way.

We will abuse notation by denoting this object also by A.

Let θ : Algnu
A∞(C+[M ])→ Algnu

A∞(C) be the forgetful functor. Then:

(2) There is a canonical equivalence of ∞-categories Algnu
A∞(C)/θ(A) ' LModA

nu
∞ (M)×M {M}.

Proof. Proposition 4.7.1.30 implies that the forgetful functor C[M ]� → N(∆)op exhibits C[M ]�

as a A∞-monoidal ∞-category, so that C[M ]� ' O⊗×Assoc⊗ N(∆)op for some coCartesian fibra-

tion of ∞-operads O⊗ → Assoc⊗. Combining Corollary 3.2.2.5 with Proposition 4.1.3.21, we

deduce that A can be lifted to an object of Algnu
A∞(C[M ]), and that any such lifting is a final

object of AlgA∞(C[M ]) (and therefore uniquely determined up to equivalence). Since the map

AlgA∞(C+[M ]) → AlgA∞(C[M ]) is a trivial Kan fibration; we may lift A to a final object of

AlgA∞(C+[M ]), which we will also denote by A. This proves (1). We have a diagram of maps

Algnu
A∞(C)/θ(A) ← Algnu

A∞(C+[M ])/A → Algnu
A∞(C+[M ])→ LModA

nu
∞ (M)×M {M}

which are equivalences of ∞-categories by virtue of Lemmas 5.4.3.17 and 5.4.3.16.

Corollary 5.4.3.20. Let M be an ∞-category left-tensored over a A∞-monoidal ∞-category C�.

Let M ∈ LModA
nu
∞ (M) be a nonunital left module object having images M ∈M and A ∈ Algnu

A∞(C).

Suppose that the multiplication map A ⊗M → M exhibits A as a classifying object for endomor-

phisms of M . Then, for every nonunital A∞-object B ∈ Algnu
A∞(C), we have a canonical isomor-

phism MapAlgnu
A∞ (C)(B,A) ' LMod

Anu
∞

B (M)×M {M} in the homotopy category H of spaces.

Proof of Theorem 5.4.3.5. The restriction functor θ : AlgA∞(C)→ Algqu
A∞(C) is evidently a categor-

ical fibration. It will therefore suffice to show that θ is a categorical equivalence. We first show that

θ is essentially surjective. Let A0 be a quasi-unital A∞-algebra object of C. According to Lemma

5.4.3.15, we can find an ∞-category M which is left-tensored over C and a quasi-unital module

M0 ∈ LModA
qu
∞

A0
(M) ⊆ LModA

nu
∞ (M) which exhibits A0 as a classifying object for morphisms from

M to M ; here we let M denote the image of M0 under the forgetful functor LModA
qu
∞ (M) → M.

We have a commutative diagram

∆LMod(M)×M {M} //

��

AlgA∞(C+[M ])

θ′

��

// AlgA∞(C)

θ

��
LModA

nu
∞ (M)×M {M} // Algnu

A∞(C+[M ]) // Algnu
A∞(C).
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Let A0 be the image of M0 in Algnu
A∞(C+[M ]). To prove that A0 belongs to the essential image of

θ, it will suffice to show that A0 belongs to the essential image of θ′.

Let C ∈ C+[M ] denote the image of A0. By assumption, C is a final object of C+[M ]. Using

Corollary 3.2.2.5 and Proposition 4.1.3.21, we deduce that A0 is a final object of Algnu(C+[M ]). On

the other hand, Corollary 3.2.2.5 and Proposition 4.1.3.19 imply that Alg(C+[M ]) has a final object

A. Using Corollary 3.2.2.5 and Proposition 4.1.3.21 again, we deduce that θ′(A) is a final object of

Algnu
A∞(C+[M ]) and therefore equivalent to A0, which proves that A0 belongs to the essential image

of θ′.

We now prove that θ is fully faithful. Fix objects A,B ∈ AlgA∞(C), and set A0 = θ(A) ∈
Algqu

A∞(C), B0 = θ(B) ∈ Algqu
A∞(C). We wish to prove that the map MapAlgA∞ (C)(B,A) →

MapAlgqu
A∞ (C)(B0, A0) is a homotopy equivalence. Use Lemma 5.4.3.15 to chooseM0 ∈ ∆LMod

qu
A0

(M)

as above. Consider the diagram

∆LModA(M)

��

∆LModA(M)×M {M}oo //

��

{A} ×AlgA∞ (C) AlgA∞(C+[M ])

ψ

��
LModA

qu
∞

A0
(M) LModA

qu
∞

A0
(M)×M {M}oo // {A0} ×Algqu

A∞ (C) Algqu(C+[M ]).

The left square is a pullback, and the left vertical map is a trivial Kan fibration (Proposition

5.4.3.14). The horizontal maps on the right are both categorical equivalences (Theorem 4.7.1.34

and Lemma 5.4.3.16). Using the two-out-of-three property, we deduce that ψ is a categorical

equivalence. Since ψ is also a categorical fibration, it is a trivial Kan fibration; we may therefore

choose M ∈ ∆LModA(M) lifting M0.

According to Corollary 4.7.1.41 and Lemma 5.4.3.20, we have canonical homotopy equivalences

φ : MapAlgA∞ (C)(B,A) ' ∆LModB(M)×M {M}

φnu : MapAlgnu
A∞ (C)(B0, A0) ' LMod

Anu
∞

B0
(M)×M {M}.

Let f : B0 → A0 be a map of nonunital A∞-algebras, and let N0 be the corresponding object

of LMod
Anu
∞

B0
(M) ×M {M}. Let u : 1 → B be the unit map for the A∞-algebra B. Then f is

quasi-unital if and only if the composition u : 1 → B
f→ A is homotopic to the unit of A; here we

abuse notation by identifying A and B with their images in C. Since A is a classifying object for

morphisms from M to itself, we can identify u with the induced map u′ : 1⊗M →M , so that f is

quasi-unital if and only if u′ is homotopic to the identity, which is equivalent to the condition that

N0 be quasi-unital. It follows that φnu restricts to a homotopy equivalence

φqu : MapAlgqu
A∞ (C)(B0, A0) ' LModA

qu
∞

B0
(M)×M {M}.

We wish to prove that θ induces a homotopy equivalence MapAlgA∞ (C)(B,A)→ MapAlgqu
A∞ (C)(B0, A0).

In view of the above identifications, it will suffice to show that the restriction map

g : ∆LModB(M)×M {M} → ∆LMod
qu
B0

(M)×M {M}
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is a homotopy equivalence. Proposition 5.4.3.14 implies that g is a trivial Kan fibration.

We now turn to the proof of Lemma 5.4.3.15. The idea is to define M to be the ∞-category of

nonunital right A-modules in C, and M ∈M to be A itself, regarded as a right A-module.

Proof of Lemma 5.4.3.15. We may assume without loss of generality that C� = C⊗×Assoc⊗ N(∆)op

for some monoidal∞-category C⊗, and that A is the image of an object of Algnu(C) (which we will

also denote by A). Let us regard C as bitensored over itself. Using a variant on the constructions

described in §4.3.2, we can view the ∞-category M = RModnu
A (C) of nonunital right A-modules as

an ∞-category which is left-tensored over C⊗, and therefore left-tensored over the A∞-monoidal

∞-category C�. Let M ∈ M be the object corresponding to A (regarded as a nonunital right

module over itself in the obvious way), so that M inherits an evident (nonunital) left action of A.

We claim that the action map θ : A⊗M →M exhibits A as a morphism object MorM(M,M). To

prove this, it suffices to show that for every object C ∈ C, composition with θ induces a homotopy

equivalence MapC(C,A)→ MapM(C ⊗M,M).

We must show that for every Kan complex K, θ induces a bijection

[K,MapC(C,A)]→ [K,MapM(C ⊗M,M)];

here [K,X] denotes the set of maps from K to X in the homotopy category H of spaces. Replac-

ing C by Fun(K,C) and A by the nonunital algebra A′ ∈ Algnu(Fun(K,C)) ' Fun(K,Algnu(C))

corresponding to the constant map K → {A} ⊆ Algnu(C), we can reduce to the case where

K = ∆0. In other words, it will suffice to show composition with θ induces a bijection of sets

q : π0 MapC(C,A)→ π0 MapM(C ⊗M,M).

Our next step is to construct an inverse to q. Let u : 1→ A be a quasi-unit. Let φ : C⊗M →M

be an arbitrary morphism in M. Then φ determines a map C ⊗A→ A in C. Let q′(φ) denote the

composition

C ' C ⊗ 1
u→ C ⊗A→ A.

We may view q′ as a map of sets from π0 MapM(C⊗M,M) to π0 MapC(C,A). The composition q′◦q :

π0 MapC(C,A) → π0 MapC(C,A) is induced by the map ru : A → A given by right multiplication

by u. Since u is a right unit of A, we deduce that q′ ◦ q is the identity. In particular, q is injective.

To complete the proof, it will suffice to show that q is surjective. According to Theorem 4.7.1.34,

if C is an object of C, then giving a map φ : C⊗M →M in M is equivalent to lifting C to an object

C̃ ∈ C+[M ]. In particular, the left action of A on M gives rise to a canonical element Ã ∈ C+[M ].

Then φ belongs to the image of q if and only if there exists a map C̃ → Ã in C+[M ]. Consequently,

the surjectivity of q is equivalent to the following assertion:

(∗) For every object C̃ ∈ C+[M ], there exists a morphism C̃ → Ã in C[M ].
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Proposition 4.7.1.39 asserts that the forgetful functor C+[M ] → C is a right fibration. Conse-

quently, the quasi-unit u : 1 → A can be lifted to a map ũ : E → Ã in C+[M ]. Since u is a left

unit of A, the object E classifies a map v : 1 ⊗M → M which is an equivalence in C, so that v

is an equivalence in M. It follows from Remark 4.7.1.31 that E is an invertible object of C+[M ]

(see Remark 4.1.1.17), so that the functor C̃ 7→ C̃ ⊗ E is an equivalence from C+[M ] to itself.

Consequently, condition (∗) is equivalent to:

(∗′) For every object C̃ ∈ C+[M ], there exists a morphism C̃ ⊗ E → Ã in C+[M ].

In view of the existence of ũ : E → Ã, it will suffice to prove the following slightly stronger

assertion:

(∗′′) For every object C̃ ∈ C+[M ], there exists a morphism C̃ ⊗ Ã→ Ã in C+[M ].

Applying Theorem 4.7.1.34 again, we see that (∗′′) is equivalent to the following assertion: for

every map φ : C ⊗M →M , there exists a commutative diagram

C ⊗A⊗M

��

// C ⊗M

φ
��

A⊗M //M ;

in M, where the horizontal arrows are given by the canonical action of A on M . This is a straight-

forward consequence of the constructions of M and M .

5.4.4 Nonunital Ek-Algebras

Let A be an abelian group equipped with a commutative and associative multiplication m : A⊗A→
A. A unit for the multiplication m is an element 1 ∈ A such that 1a = a for each a ∈ A. If there

exists a unit for A, then that unit is unique and A is a commutative ring (with unit). Our goal

in this section is to prove an analogous result, where the category of abelian groups is replaced by

an arbitrary symmetric monoidal ∞-category C (Corollary 5.4.4.7). We begin with a discussion of

nonunital algebras in general.

Definition 5.4.4.1. Let Surj denote the subcategory of Fin∗ containing all objects of Fin∗, such

that a morphism α : 〈m〉 → 〈n〉 belongs to Surj if and only if it is surjective. If O⊗ is an∞-operad,

we let O⊗nu denote the fiber product O⊗×N(Fin∗) N(Surj). Given a fibration of∞-operads C⊗ → D⊗

and a map of ∞-operads O⊗ → D⊗, we let Algnu
O /D(C) denote the ∞-category AlgOnu /D(C). We

will refer to Algnu
O /D(C) as the ∞-category of nounital O-algebra objects of C. In the special case

where D⊗ = O⊗, we will denote Algnu
O /D(C) by Algnu

/O(C). In the special case where D = N(Fin∗),

we will denote Algnu
O /D(C) by Algnu

O (C).
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Our goal is to show that if O⊗ is a little k-cubes operad Ek for some k ≥ 1, then the ∞-

category Algnu
O (C) of nonunital O-algebra objects of C is not very different from the ∞-category

AlgO(C) of unital O-algebras objects of C. More precisely, we will show that the restriction functor

AlgO(C) → Algnu
O (C) induces an equivalence of AlgO(C) onto a subcategory Algqu

O (C) ⊆ Algnu
O (C)

whose objects are required to admit units up to homotopy and whose morphisms are required to

preserve those units (see Definition 5.4.4.2 below).

We now formulate a generalization of Theorem 5.4.3.5.

Definition 5.4.4.2. Let q : C⊗ → E⊗k be a coCartesian fibration of ∞-operads. If k = 1, then the

composite map C⊗ → E⊗k → Assoc⊗ exhibits C⊗ as a monoidal ∞-category. We let let Algqu
/Ek

(C)

denote the subcategory of Algnu
/Ek(C) corresponding to Algqu

A∞(C) ⊆ Algnu
A∞(C) under the equivalence

Algnu
/Assoc(C) ' Algnu

A∞(C) (see Definition 5.4.3.3). More generally, for any k ≥ 1 we let Algqu
/Ek

(C)

denote the fiber product Algnu
/Ek(C)×Algnu

/E1
(C′) Algqu

/E1
(C′), where C′⊗ = E⊗1 ×E⊗k C⊗. We will refer to

Algqu
/Ek

(C) as the ∞-category of quasi-unital Ek-algebra objects of C.

Remark 5.4.4.3. We can make Definition 5.4.4.2 more explicit as follows. If A ∈ Algnu
/Ek(C) and

1 is the unit object of C, we will say that a map u : 1 → A is a quasi-unit for A if its homotopy

class is both a left and right unit with respect to the multiplication on A, as in Definition 5.4.3.1.

Then A belongs to Algqu
/Ek

(C) if and only if it admits a quasi-unit u; in this case, u is determined

uniquely up to homotopy. A morphism f : A → B belongs to Algnu
/Ek(C) belongs to Algqu

/Ek
(C) if

and only if A admits a quasi-unit u : 1→ A and the composite map f ◦ u is a quasi-unit for B.

Remark 5.4.4.4. In the situation of Remark 5.4.4.3, a map e : 1→ A is a quasi-unit for A if and

only if each of the composite maps

A ' 1⊗A e⊗id−→ A⊗A m→ A A ' A⊗ 1
id⊗e−→ A⊗A m→ A

is homotopic to the identity. If k > 1, then the multiplication on A and the tensor product on C

are commutative up to homotopy, so these conditions are equivalent to one another.

Let q : C⊗ → E⊗k be a coCartesian fibration of∞-operads, and let θ : Alg/Ek(C)→ Algnu
/Ek(C) be

the restriction functor. Then θ carries Ek-algebra objects of C to quasi-unital objects of Algnu
/Ek(C),

and morphisms of Ek-algebras to quasi-unital morphisms in Algnu
/Ek(C). Consequently, θ can be

viewed as a functor from Alg/Ek(C) to Algqu
/Ek

(C). The main result of this section is the following

generalization of Theorem 5.4.3.5:

Theorem 5.4.4.5. Let k ≥ 1 and let q : C⊗ → E⊗k be a coCartesian fibration of ∞-operads. Then

the forgetful functor θ : Alg/Ek(C)→ Algqu
/Ek

(C) is an equivalence of ∞-categories.

The proof of Theorem 5.4.4.5 is somewhat elaborate, and will be given at the end of this section.
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Remark 5.4.4.6. In the situation of Theorem 5.4.4.5, we may assume without loss of generality

that C⊗ is small (filtering C⊗ if necessary). Using Proposition 4.8.1.10, we deduce the existence of a

presentable Ek-monoidal∞-category D⊗ → E⊗k and a fully faithful Ek-monoidal functor C⊗ → D⊗.

We have a commutative diagram

Alg/Ek(C)

θ

��

// Alg/Ek(D)

θ′

��
Algqu

/Ek
(C) // Algqu

/Ek
(D)

where the horizontal maps are fully faithful embeddings, whose essential images consist of those

(unital or nonunital) Ek-algebra objects of D whose underlying object belongs to the essential image

of the embedding C ↪→ D. To prove that θ is a categorical equivalence, it suffices to show that θ′

is a categorical equivalence. In other words, it suffices to prove Theorem 5.4.4.5 in the special case

where C⊗ is a presentable Ek-monoidal ∞-category.

We will use Theorem 5.4.4.5 to deduce an analogous assertion regarding commutative algebras.

Let C⊗ be a symmetric monoidal∞-category. We let CAlgnu(C) denote the∞-category Algnu
Comm(C)

of nonunital commutative algebra objects of C. Definition 5.4.4.2 has an evident analogue for

nonunital commutative algebras and maps between them: we will say that a nonunital commutative

algebra A ∈ CAlgnu(C) is quasi-unital if there exists a map e : 1→ A in C such that the composition

A ' 1⊗A e⊗id−→ A⊗A→ A

is homotopic to the identity (in the ∞-category C). In this case, e is uniquely determined up to

homotopy and we say that e is a quasi-unit for A; a morphism f : A → B in CAlgnu(C) is quasi-

unital if A admits a quasi-unit e : 1 → A such that f ◦ e is a quasi-unit for B. The collection

of quasi-unital commutative algebras and quasi-unital morphisms between them can be organized

into a subcategory CAlgqu(C) ⊆ CAlgnu(C).

Corollary 5.4.4.7. Let C⊗ be a symmetric monoidal ∞-category. Then the forgetful functor

CAlg(C)→ CAlgqu(C) is an equivalence of ∞-categories.

Proof. In view of Corollary 5.1.1.5, we have an equivalence of∞-operads lim−→E
⊗
k → Comm⊗ = E⊗∞.

It will therefore suffice to show that the forgetful functor AlgE∞(C)→ Algqu
E∞(C) is an equivalence

of ∞-categories. This map is the homotopy inverse limit of a tower of forgetful functors θk :

AlgEk(C)→ Algqu
Ek(C), each of which is an equivalence of ∞-categories by Theorem 5.4.4.5.

As a first step toward understanding the forgetful functor θ : Alg/O(C) → Algnu
/O(C), let us

study the left adjoint to θ. In classical algebra, if A is a nonunital ring, then we can canonically

enlarge A to a unital ring by considering the product A ⊕ Z endowed with the multiplication

(a,m)(b, n) = (ab + mb + na,mn). Our next result shows that this construction works quite

generally:
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Proposition 5.4.4.8. Let O⊗ be a unital ∞-operad, let q : C⊗ → O⊗ be a coCartesian fibration

of ∞-operads which is compatible with finite coproducts, and let θ : Alg/O(C) → Algnu
/O(C) be the

forgetful functor. Then:

(1) For every object A ∈ Algnu
/O(C), there exists another object A+ ∈ Alg/O(C) and a map A →

θ(A+) which exhibits A+ as a free O-algebra generated by A.

(2) A morphism f : A→ θ(A+) in Algnu
/O(C) exhibits A+ as a free O-algebra generated by A if and

only if, for every object X ∈ O, the map fX : A(X)→ A+(X) and the unit map 1X → A+(X)

exhibit A+(X) as a coproduct of A(X) and the unit object 1X in the ∞-category CX .

(3) The functor θ admits a left adjoint.

Proof. For every object X ∈ O, the ∞-category D = O⊗nu×O⊗(O⊗)act
/X can be written as a disjoint

union of D0 = (O⊗nu)act
/X with the full subcategory D1 ⊆ D spanned by those morphisms X ′ → X

in O⊗ where X ′ ∈ O⊗〈0〉. The ∞-category D0 contains idX as a final object. Since O⊗ is unital,

the ∞-category D1 is a contractible Kan complex containing a vertex v : X0 → X. It follows

that the inclusion {idX , v} is left cofinal in D. Assertions (1) and (2) now follow from Proposition

3.1.3.3 (together with Propositions 3.1.1.15 and 3.1.1.16). Assertion (3) follows from (1) (Corollary

3.1.3.4).

In the stable setting, there is a close relationship between nonunital algebras and augmented

algebras. To be more precise, we need to introduce a bit of terminology.

Definition 5.4.4.9. Let q : C⊗ → O⊗ be a coCartesian fibration of ∞-operads, and assume that

O⊗ is unital. An augmented O-algebra object of C is a morphism f : A → A0 in Alg/O(C), where

A0 is a trivial algebra. We let Algaug
/O (C) denote the full subcategory of Fun(∆1,Alg/O(C)) spanned

by the augmented O-algebra objects of C.

The following result will not play a role in the proof of Theorem 5.4.4.5, but is of some inde-

pendent interest:

Proposition 5.4.4.10. Let q : C⊗ → O⊗ be a coCartesian fibration of∞-operads. Assume that O⊗

is unital and that q exhibits C as a stable O-monoidal ∞-category. Let F : Algnu
/O(C)→ Alg/O(C) be

a left adjoint to the forgetful functor θ : Alg/O(C)→ Algnu
/O(C). Let 0 ∈ Algnu

/O(C) be a final object,

so that F (0) ∈ Alg/O(C) is a trivial algebra (Proposition 5.4.4.8). Then F induces an equivalence

of ∞-categories

T : Algnu
/O(C) ' Algnu

/O(C)/0 → Algaug
/O (C).

Proof. Let p : M→ ∆1 be a correspondence associated to the adjunction Algnu
/O(C)

F //Alg/O(C)
θ
oo .
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Let D denote the full subcategory of Fun∆1(∆1 ×∆1,M) spanned by those diagrams σ

A

��

f // A+

g
��

A0
f0 // A+

0

where A0 is a final object of Algnu
/O(C) and the maps f and f ′ are p-coCartesian; this (together

with Proposition 5.4.4.8) guarantees that A+
0 ∈ Alg/O(C) is a trivial algebra so that g can be

regarded as an augmented O-algebra object of C. Using Proposition HTT.4.3.2.15 , we deduce that

the restriction functor σ 7→ A determines a trivial Kan fibration D→ Algnu
/O(C). By definition, the

functor T is obtained by composing a section of this trivial Kan fibration with the restriction map

φ : D→ Algaug
/O (C) given by σ 7→ g. To complete the proof, it will suffice to show that φ is a trivial

Kan fibration.

Let K denote the full subcategory of ∆1 ×∆1 obtained by removing the object (0, 0), and let

D0 be the full subcategory of Fun∆1(K,M) spanned by those diagrams

A+ g→ A+
0

f0← A0

where A0 is a final object of Algnu
/O(C) and A+

0 is a trivial O-algebra object of C; note that this

last condition is equivalent to the requirement that f0 be p-coCartesian. The functor φ factors as

a composition

D
φ′→ D0

φ′′→ Algaug
O (C).

We will prove that φ′ and φ′′ are trivial Kan fibrations.

Let D1 be the full subcategory of Fun∆1(∆1,M) spanned by the p-coCartesian morphisms

f0 : A0 → A+
0 where A0 is a final object of Algnu

/O(C). It follows from Proposition HTT.4.3.2.15

that the restriction map f0 7→ A0 determines a trivial Kan fibration from D1 to the contractible Kan

complex of final objects in Algnu
/O(C), so that D1 is contractible. The restriction map f0 7→ A+

0 is a

categorical fibration φ
′′

from D1 onto the contractible Kan complex of initial objects of Alg/O(C).

It follows that φ
′′

is a trivial Kan fibration. The map φ′′ is a pullback of φ
′′
, and therefore also a

trivial Kan fibration.

We now complete the proof by showing that φ′ is a trivial Kan fibration. In view of Proposition

HTT.4.3.2.15 , it will suffice to show that a diagram σ ∈ Fun∆1(∆1 ×∆1,M) belongs to D if and

only if σ0 = σ|K belongs to D0 and σ is a p-right Kan extension of σ0. Unwinding the definitions

(and using Corollary 3.2.2.5), we are reduced to showing that if we are given a diagram

A

��

f // A+

g
��

A0
f0 // A+

0
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where A0 is a final object of Algnu
/O(C) and A+

0 is a trivial algebra, then f is p-coCartesian if and

only if the induced diagram

A(X)
fX //

��

A+(X)

��
A0(X) // A+

0 (X)

is a pullback square in CX , for each X ∈ O. Since CX is a stable ∞-category, this is equivalent to

the requirement that the induced map ψ : cofib(fX) → A+
0 (X) is an equivalence. The map ψ fits

into a commutative diagram

1X //

��

1X

��
A+(X) // cofib(f) // A+

0 (X)

where the vertical maps are given by the units for the algebra objects A+ and A+
0 . Since A+

0 (X)

is a trivial algebra, the unit map 1X → A+
0 (X) is an equivalence. Consequently, it suffices to show

that f is p-coCartesian if and only if each of the composite maps 1X → A+(X) → cofib(f) is an

equivalence. We have a pushout diagrm

1X
∐
A(X) //

��

A+(X)

��
1X // cofib(f).

Since CX is stable, the lower horizontal map is an equivalence if and only if the upper horizontal

map is an equivalence. The desired result now follows immediately from the criterion described in

Proposition 5.4.4.8.

Let us now return to the proof of Theorem 5.4.4.5. The case k = 1 follows immediately from

Theorem 5.4.3.5. The proof of Theorem 5.4.4.5 in general will proceed by induction on k. For the

remainder of this section, we will fix an integer k ≥ 1, and assume that Theorem 5.4.4.5 has been

verified for the ∞-operad E⊗k . Our goal is to prove that Theorem 5.4.4.5 is valid also for E⊗k+1. Fix

a coCartesian fibration of ∞-operads q : C⊗ → E⊗k+1; we wish to show that the forgetful functor

θ : Alg/Ek+1
(C) → Algqu

/Ek+1
(C) is an equivalence of ∞-categories. In view of Remark 5.4.4.6, we

can assume that C⊗ is a presentable Ek+1-monoidal ∞-category.

We begin by constructing a left homotopy inverse to θ. Consider the bifunctor of ∞-operads

E⊗1 × E
⊗
k → E⊗k+1 of §5.1.2. Using this bifunctor, we can define E1-monoidal ∞-categories

AlgEk/Ek+1
(C)⊗ and Algnu

Ek/Ek+1
(C)⊗. Moreover, the collection of quasi-unital Ek-algebras and

quasi-unital morphisms between them are stable under tensor products, so we can also consider
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an E1-monoidal subcategory Algqu
Ek/Ek+1

(C)⊗ ⊆ Algnu
Ek/Ek+1

(C)⊗. By the same reasoning, we have

Ek-monoidal ∞-categories AlgE1/Ek+1
(C)⊗, Algnu

E1/Ek+1
(C)⊗, and Algqu

E1/Ek+1
(C)⊗.

There is an evident forgetful functor Algnu
/Ek+1

(C) → Algnu
/E1

(Algnu
Ek/Ek+1

(C)), which obviously

restricts to a functor ψ0 : Algqu
Ek+1

(C) → Algnu
/E1

(Algqu
Ek/Ek+1

(C)). Using the inductive hypothesis

(and Corollary HTT.2.4.4.4 ), we deduce that the evident categorical fibration AlgEk/Ek+1
(C)⊗ →

Algqu
Ek/Ek+1

(C)⊗ is a categorical equivalence and therefore a trivial Kan fibration. It follows that

the induced map

Algnu
E1

(AlgEk/Ek+1
(C))→ Algnu

/E1
(Algqu

Ek/Ek+1
(C))

is a trivial Kan fibration, which admits a section ψ1. Let ψ2 be the evident equivalence

Algnu
/E1

(AlgEk/Ek+1
(C)) ' Alg/Ek(Algnu

E1/Ek+1
(C)).

We observe that the composition ψ2 ◦ ψ1 ◦ ψ0 carries Algqu
/Ek+1

(C) into the subcategory

Alg/Ek(Algqu
E1/Ek+1

(C)) ⊆ Alg/Ek(Algnu
E1/Ek+1

(C)).

Using the inductive hypothesis and Corollary HTT.2.4.4.4 again, we deduce that the forgetful

functor

Alg/Ek(AlgE1/Ek+1
(C))→ Alg/Ek(Algqu

E1/Ek+1
(C))

is a trivial Kan fibration, which admits a section ψ3. Finally, Theorem 5.1.2.2 implies that the func-

tor Alg/Ek+1
(C) → Alg/E1

(AlgEk/Ek+1
(C)) is an equivalence of ∞-categories which admits a homo-

topy inverse ψ4. Let ψ denote the composition ψ4ψ3ψ2ψ1ψ0. Then ψ is a functor from Algqu
/Ek+1

(C)

to Alg/Ek+1
(C). The composition ψ ◦θ becomes homotopic to the identity after composing with the

functor Alg/Ek+1
(C) ' Algqu

/E1
(Algqu

Ek/Ek+1
(C)) ⊆ Algnu

/E1
(Algnu

Ek/Ek+1
(C)), and is therefore homotopic

to the identity on Alg/Ek+1
(C).

To complete the proof of Theorem 5.4.4.5, it will suffice to show that the composition θ ◦ ψ is

equivalent to the identity functor from Algqu
/Ek+1

(C) to itself. This is substantially more difficult,

and the proof will require a brief digression. In what follows, we will assume that the reader is

familiar with the theory of centralizers of maps of Ek-algebras developed in §4.3.3.7 (see Definition

5.3.1.2).

Definition 5.4.4.11. Let C⊗ → E⊗k be a coCartesian fibration of ∞-operads, let A and B be

Ek-algebra objects of C, and let u : 1→ A be a morphism in C. We let MapuAlg/Ek
(C)(A,B) be the

summand of the mapping space MapAlg/Ek
(C)(A,B) given by those maps f : A→ B such that f ◦u

is an invertible element in the monoid HomhC(1, B).

Let f : A → B be a morphism in Alg/Ek(C) and let u : 1 → A be as above. We will say that

f is a u-equivalence if, for every object C ∈ Alg/Ek(C), composition with f induces a homotopy

equivalence

MapfuAlg/Ek
(C)(B,C)→ MapuAlg/Ek

(C)(A,C).
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Remark 5.4.4.12. Let M be an associative monoid. If x and y are commuting elements of M ,

then the product xy = yx is invertible if and only if both x and y are invertible. In the situation

of Definition 5.4.4.11, this guarantees that if u : 1 → A and v : 1 → A are morphisms in C such

that u and v commute in the monoid HomhC(1, A) and w denotes the product map 1 ' 1⊗ 1
u⊗v−→

A ⊗ A → A, then we have MapwAlg/Ek
(C)(A,B) = MapuAlg/Ek

(C)(A,B) ∩MapvAlg/Ek
(C)(A,B) (where

the intersection is formed in the mapping space MapAlg/Ek
(C)(A,B)). It follows that if f : A → B

is a u-equivalence or a v-equivalence, then it is also a w-equivalence.

Remark 5.4.4.13. Let C⊗ → E⊗k be a presentable Ek-monoidal ∞-category, and let e : 1→ A be

the unit map for an Ek-algebra object A ∈ Alg/Ek(C). We will abuse notation by identifying A with

the underlying nonunital Ek-algebra object, and let A+ be the free Ek-algebra generated by this

nonunital Ek-algebra (see Proposition 5.4.4.8). Let e+ denote the composite map 1
e→ A → A+.

Then the counit map v : A+ → A is an e+-equivalence. To see this, it suffices to show that for

every object B ∈ Alg/Ek(C), composition with v induces a homotopy equivalence

MapAlg/Ek
(C)(A,B) = MapeAlg/Ek

(C)(A,B)→ Mape
+

Alg/Ek
(C)(A

+, B).

Note that any nonunital algebra morphism f : A → B carries e to an idempotent element [f ◦ e]
of the monoid HomhC(1, B), so f ◦ e is a quasi-unit for B if and only if [f ◦ e] is invertible. Conse-

quently, the homotopy equivalence MapAlg/Ek
(A+, B) ' MapAlgnu

/Ek
(A,B) induces an identification

Mape
+

Alg/Ek
(C)(A

+, B) ' MapAlgqu
/Ek

(C)(A,B). The desired result now follows from the inductive hy-

pothesis.

Lemma 5.4.4.14. Let q : C⊗ → E⊗k+1 be a presentable Ek+1-monoidal ∞-category, so that

AlgEk/Ek+1
(C) inherits the structure of an E1-monoidal ∞-category. Let f : A → A′ be a mor-

phism in AlgEk/Ek+1
(C), and let u : 1→ A be a morphism in C such that f is a u-equivalence. Let

B ∈ AlgEk/Ek+1
(C) and v : 1→ B be an arbitrary morphism in C. Then:

(1) The induced map f ⊗ idB is a u⊗ v : 1→ A⊗B equivalence.

(2) The induced map idB ⊗f is a v ⊗ u : 1→ B ⊗A-equivalence.

Proof. We will prove (1); the proof of (2) is similar. Let eA : 1 → A and eB : 1 → B denote the

units of A and B, respectively. We note that u ⊗ v is homotopic to the product of maps eA ⊗ v
and u⊗ eB which commute in the monoid HomhC(1, A⊗B). By virtue of Remark 5.4.4.12, it will

suffice to show that f ⊗ idB is a w-equivalence, where w = u⊗ eB.

Let w′ be the composition of w with f⊗idB, and let C ∈ AlgEk/Ek+1
(C). We have a commutative
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diagram

Mapw
′

AlgEk/Ek+1
(C)(A

′ ⊗B,C) //

**

MapwAlgEk/Ek+1
(C(A⊗B,C)

tt
MapAlgEk/Ek+1

(C)(B,C)

and we wish to show that the horizontal map is a homotopy equivalence. It will suffice to show

that this map induces a homotopy equivalence after passing to the homotopy fibers over any

map g : B → C. This is equivalent to the requirement that f induces a homotopy equivalence

MapfuAlgEk/Ek+1
(C)(A

′,ZEk(g)) → MapuAlgEk/Ek+1
(C)(A,ZEk(g)), which follows from our assumption

that f is a u-equivalence.

Lemma 5.4.4.15. Let C⊗ → E⊗k be a presentable Ek-monoidal ∞-category, let A ∈ Alg/Ek(C),

and let u : 1 → A be a morphism in the underlying ∞-category C. Then there exists a morphism

f : A→ A[u−1] in Alg/Ek(C) with the following universal properties:

(1) The map f is a u-equivalence.

(2) The composite map fu is a unit in the monoid HomhC(1, A[u−1]).

Proof. Let P : Alg/Ek(C)→ MonEk(S) be the functor described in §5.2.6. The inclusion Mongp
Ek(S) ⊆

MonEk(S) admits a right adjoint G which can be described informally as follows: G carries an Ek-
space X to the subspace Xgp ⊆ X given by the union of those connected components of X which

are invertible in π0X. Let J : MonEk(S) → S be the forgetful functor, and let χ : Alg/Ek(C) → S

be the functor corepresented by A. We can identify u with a point in the space JP (A), which

determines natural transformation of functors χ→ JP . Let χ denote the fiber product χ×JP JGP
in the∞-category Fun(Alg/Ek(C), S). Since χ, J , G, and P are all accessible functors which preserve

small limits, the functor χ′ is accessible and preserves small limits, and is therefore corepresentable

by an object A[u−1] ∈ Alg/Ek(C) (Proposition HTT.5.5.2.7 ). The evident map χ′ → χ induces a

map f : A→ A[u−1] which is easily seen to have the desired properties.

Remark 5.4.4.16. Let C⊗ → E⊗k be as in Lemma 5.4.4.15, let f : A → B be a morphism in

Alg/Ek(C) and let u : 1→ A be a morphism in C. Then f is a u-equivalence if and only if it induces

an equivalence A[u−1]→ B[(fu)−1] in the ∞-category Alg/Ek(C).

Example 5.4.4.17. Let A ∈ Algqu
/Ek

(C) be a nonunital algebra equipped with a quasi-unit eA :

1 → A. Let A+ ∈ Alg/Ek(C) be an algebra equipped with a nonunital algebra map β : A → A+

which exhibits A+ as the free Ek-algebra generated by A. Then the composite map γ0 : A→ A+ →
A+[(βeA)−1] is quasi-unital, and therefore (by the inductive hypothesis) lifts to an Ek-algebra map

γ : A→ A+[(βeA)−1]. Using the inductive hypothesis again, we deduce that γ is an equivalence in

Alg/Ek(C), so that γ0 is an equivalence of nonunital algebras.
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We now return to the proof of Theorem 5.4.4.5 for a presentable Ek+1-monoidal ∞-category

C⊗ → E⊗k+1. We will assume that Theorem 5.4.4.5 holds for the∞-operad E⊗k , so that the forgetful

functor AlgEk/Ek+1
(C)→ Algqu

Ek/Ek+1
(C) is an equivalence of ∞-categories. Consequently, all of the

notions defined above for Ek-algebras make sense also in the context of quasi-unital Ek-algebras;

we will make use of this observation implicitly in what follows.

Let D denote the fiber product

Fun(∂∆1,Algqu
Ek/Ek+1

(C))×Fun(∂∆1,Algnu
Ek/Ek+1

(C)) Fun(∆1,Algnu
Ek/Ek+1

(C))

whose objects are nonunital maps f : A → B between quasi-unital Ek-algebra objects of C, and

whose morphisms are given by commutative diagrams

A
f //

��

B

��
A′

f ′ // B′

where the vertical maps are quasi-unital. Let D0 denote the full subcategory Fun(∆1,Algqu
Ek/Ek+1

(C)) ⊆
D spanned by the quasi-unital maps f : A → B. The inclusion D0 ↪→ D admits a left adjoint L,

given informally by the formula (f : A→ B) 7→ (A→ B[(feA)−1]), where eA : 1→ A denotes the

unit of A. Using Remark 5.4.4.16, we deduce the following:

Lemma 5.4.4.18. If α is a morphism in D corresponding to a commutative diagram

A
f //

g
��

B

g′

��
A′ // B′,

then L(α) is an equivalence if and only if the following pair of conditions is satisfied:

(i) The map g is an equivalence.

(ii) The map g′ is an feA-equivalence, where eA : 1→ A denotes a quasi-unit for A.

Note that the E1-monoidal structure on Algnu
Ek/Ek+1

(C) induces an E1-monoidal structure on the

∞-category D.

Lemma 5.4.4.19. The localization functor L : D → D0 ⊆ D is compatible with the E1-monoidal

structure on D. In other words, if α : D → D′ is an L-equivalence in D and E is any object of D,

then the induced maps D ⊗ E → D′ ⊗ E and E ⊗D → E ⊗D′ are again L-equivalences.

Proof. Combine Lemmas 5.4.4.18 and 5.4.4.14.
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Combining Lemma 5.4.4.19 with Proposition 2.2.1.9, we deduce that L can be promoted to an

E1-monoidal functor from D to D0; in particular, L induces a functor L′ : Algnu
/E1

(D)→ Algnu
/E1

(D0)

which is left adjoint to the inclusion and therefore comes equipped with a natural transformation

α : idAlgnu
/E1

(D) → L′.

We are now ready to complete the proof of Theorem 5.4.4.5. Let G : Alg/Ek+1
(C)→ Algnu

/Ek+1
(C)

denote the forgetful functor, let F be a left adjoint to G (Proposition 5.4.4.10), and let β :

idAlgnu
/Ek+1

(C) → G ◦ F be a unit transformation. Let j : Algqu
/Ek+1

(C) → Algnu
/Ek+1

(C) be the

inclusion functor and let ξ : Algnu
/Ek+1

(C) → Algnu
/E1

(Algnu
Ek/Ek+1

(C)) be the forgetful functor. If

A ∈ Algnu
/Ek+1

(C) is quasi-unital, then GF (A) is likewise quasi-unital. Consequently, the construc-

tion A 7→ ξ(βA) induces a functor ε : Algqu
/Ek+1

(C) → Algnu
/E1

(D). Let L′ and α : id → L′ be

defined as above. The induced natural transformation ε → L′ε can be regarded as a functor from

Algqu
/Ek+1

(C) to Fun(∆1 ×∆1,Algnu
/E1

(Algnu
Ek/Ek+1

(C))). This functor can be described informally as

follows: it carries a quasi-unital algebra A to the diagram

A
βA //

��

F (A)

��
A // F (A)[(βAeA)−1],

where eA : 1 → A denotes the quasi-unit of A. It follows from Example 5.4.4.17 that the lower

horizontal map is an equivalence. Consequently, the above functor can be regarded as a natural

transformation from ξGFj to ξj in the ∞-category Fun(Algqu
Ek/Ek+1

(C),Algnu
/E1

(Algqu
Ek/Ek+1

(C))).

Composing with ψ4 ◦ψ3 ◦ψ2 ◦ψ1, we obtain a natural transformation δ : ψθF → ψ of functors from

Algqu
/Ek+1

(C) to AlgEk/Ek+1
(C). Since ψθ is homotopic to the identity, we can view δ as a natural

transformation from F |Algqu
/Ek+1

(C) to ψ. This transformation is adjoint to a map of functors

idAlgqu
/Ek+1

(C) → θ ◦ ψ. It is easy to see that this transformation is an equivalence (using the fact

that the forgetful functor Algqu
/Ek+1

(C)→ C is conservative, by Lemma 3.2.2.6), so that ψ is a right

homotopy inverse to θ. This completes the proof of Theorem 5.4.4.5.

5.4.5 Little Cubes in a Manifold

Let M be a topological space equipped with an Rk-bundle ζ → M . Assuming that M is suffi-

ciently nice, we can choose a Kan complex B such that X is homotopy equivalent to the geometric

realization |B|, and the bundle ζ is classified by a Kan fibration of simplicial sets θ : B → BTop(k).

In this case, we can apply the construction of Definition 5.4.2.10 to obtain an ∞-operad E⊗B. In

the special case where M is a topological manifold of dimension k and ζ is the tangent bundle of

M , we will denote this ∞-operad by E⊗M (see Definition 5.4.5.1 below for a precise definition). We

can think of E⊗M as a variation on the ∞-operad E⊗k whose objects are cubes 2k equipped with an

open embedding into M , and whose morphisms are required to be compatible with these open em-

beddings (up to specified isotopy). We will also consider a more rigid version of the∞-operad E⊗M ,
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where the morphisms are required to be strictly compatible with the embeddings into M (rather

than merely up to isotopy); this ∞-operad will be denoted by N(Disk(M))⊗ (Definition 5.4.5.6).

The main result of this section is Theorem 5.4.5.9, which asserts that theory of EM -algebras is

closely related to the more rigid theory of N(Disk(M))⊗-algebras.

Our first step is to define the ∞-operad E⊗M more precisely.

Definition 5.4.5.1. Let M be a topological manifold of dimension k. We define a topological

category CM having two objects, which we will denote by M and Rk, with mapping spaces given

by the formulas

MapCM
(Rk,Rk) = Emb(Rk,Rk) MapCM

(Rk,M) = Emb(Rk,M)

MapCM
(M,Rk) = ∅ MapCM

(M,M) = {idM}.

We identify the Kan complex BTop(k) with a full subcategory of the nerve N(CM ). Let BM denote

the Kan complex BTop(k)×N(CM ) N(CM )/M . We let E⊗M denote the∞-operad BTop(k)⊗×BTop(k)q

BqM In other words, we let E⊗M denote the ∞-operad E⊗BM of Definition 5.4.2.10.

Remark 5.4.5.2. Let M be a topological manifold of dimension k, and let BM be defined as in

Definition 5.4.5.1. Then E⊗M can be obtained as the assembly of a BM -family of ∞-operads, each

of which is equivalent to E⊗k (Remark 5.4.2.13). To justify our notation, we will show that the Kan

complex BM is canonically homotopy equivalent to the (singular complex of) M . More precisely,

we will construct a canonical chain of homotopy equivalences

BM ← B′M → B′′M ← Sing(M).

To this end, we define topological categories C′M and C′′M , each of which consists of a pair of objects

{Rk,M} with morphism spaces given by the formulas

MapC′M
(Rk,Rk) = Emb0(Rk,Rk) MapC′M

(Rk,M) = Emb(Rk,M)

MapC′′M
(Rk,Rk) = {0} MapC′′M

(Rk,M) = M

MapC′M
(M,Rk) = ∅ = MapC′′M

(M,Rk) MapC′M
(M,M) = {idM} = MapC′′M

(M,M).

Here we let Emb0(Rk,Rk) denote the closed subset of Emb(Rk,Rk) spanned by those open em-

beddings f : Rk → Rk such that f(0) = 0.

Let BTop′(k) denote the full subcategory of N(C′M ) spanned by the object Rk, let B′M denote

the fiber product BTop(k) ×N(C′M ) N(C′M )/M , and let B′′M denote the fiber product {Rk} ×N(C′′M )

N(C′′M )/M . We have maps of topological categories CM
θ← C′M

θ′′→ C′′M . The map θ is a weak

equivalence of topological categories, and so induces a homotopy equivalence B′M → BM . We claim

that the induced map ψ : B′M → B′′M is also a homotopy equivalence. We can identify vertices of

B′M with open embeddings Rk →M and vertices of B′′M with points of M ; since M is a k-manifold,
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the map ψ is surjective on vertices. Fix a vertex (j : Rk ↪→M) ∈ B′M . We have a map of homotopy

fiber sequences

MapN(C′M )(R
k,Rk) //

��

MapN(C′M )(R
k,M)

φ //

��

B′M

��
∗ //MapN(C′′M )(R

k,M) // B′′M .

It follows from Remark 5.4.1.11 that the left square is a homotopy pullback. It follows that the

map of path spaces MapB′M (j, j′) → MapB′′M (ψ(j), ψ(j′)) is a homotopy equivalence for every j′

lying in the essential image of φ. Since the space BTop′(k) is connected, the map φ is essentially

surjective, so that ψ is a homotopy equivalence as desired.

We note there is a canonical homotopy equivalence Sing(M) → B′′M (adjoint to the weak

homotopy equivalence appearing in Proposition HTT.2.2.2.7 ). Consequently, we obtain a canonical

isomorphism BM ' B′M ' B′′M ' Sing(M) in the homotopy category H. It follows that E⊗M can be

identified with the colimit of a diagram∞-operads parametrized by M , each of which is equivalent

to E⊗k . This family is generally not constant: instead, it is twisted by the principal Top(k)-bundle

given by the tangent bundle of M . In other words, if C⊗ is an ∞-operad, then we can think of an

object of AlgEM (C) as a (twisted) family of Ek-algebra objects of C⊗, parametrized by the points

of M .

Example 5.4.5.3. Let M be the Euclidean space Rk. Then the Kan complex BM is contractible,

so that E⊗M is equivalent to the littles cubes operad E⊗k (see Example 5.4.2.15). Since the∞-operad

E⊗M depends functorially on M , we obtain another description of the “action up to homotopy” of

the homeomorphism group Top(k) on E⊗k (at least if we view Top(k) as a discrete group).

Example 5.4.5.4. Let M be a k-manifold which is given as a disjoint union of open submanifolds

M ′,M ′′ ⊆ M . Then there is a canonical isomorphism of ∞-operads E⊗M ' E
⊗
M ′ � E

⊗
M ′′ . Using

Theorem 2.2.3.6, we deduce that the canonical map AlgEM (C) → AlgEM′ (C) × AlgEM′′ (C) is an

equivalence, for any ∞-operad C⊗.

Example 5.4.5.5. Let M be a k-manifold and let M ′ be a k′-manifold. There is an evident map of

Kan complexes φ : BM ×BM ′ → BM×M ′ , which induces a bifunctor of ∞-operads θ : E⊗M ×E
⊗
M ′ →

E⊗M×M ′ . Remark 5.4.5.2 implies that φ is a homotopy equivalence, so that θ exhibits E⊗M×M ′ as a

tensor product of the ∞-operads E⊗M and E⊗M ′ (see Remark 5.4.2.14).

We now introduce a more rigid variant of the ∞-operad E⊗M .

Definition 5.4.5.6. Let M be a topological manifold of dimension k. Let Disk(M) denote the

collection of all open subsets U ⊆ M which are homeomorphic to Euclidean space Rk. We regard

Disk(M) as a partially ordered set (with respect to inclusions of open sets), and let N(Disk(M))

denote its nerve. Let N(Disk(M))⊗ denote the subcategory subset of N(Disk(M))q spanned by
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those morphisms (U1, . . . , Um)→ (V1, . . . , Vn) with the following property: for every pair of distinct

integers 1 ≤ i, j ≤ m having the same image k ∈ 〈n〉◦, the open subsets Ui, Uj ⊆ Vk are disjoint.

Remark 5.4.5.7. Let M be a manifold of dimension. Then N(Disk(M))⊗ is the ∞-operad asso-

ciated to the ordinary colored operad O whose objects are elements of Disk(M), with morphisms

given by

MulO({U1, . . . , Un}, V ) =

{
∗ if U1 ∪ . . . ∪ Un ⊆ V and Ui ∩ Uj = ∅ for i 6= j

∅ otherwise.

In particular, N(Disk(M))⊗ is an ∞-operad (see Example 2.1.1.21).

Remark 5.4.5.8. Let Disk(M)′ denote the category whose objects are open embeddings Rk ↪→M ,

and whose morphisms are commutative diagrams

Rk f //

!!

Rk

}}
M

where f is an open embedding. Then the forgetful functor (j : Rk ↪→ M) 7→ j(Rk) determines

an equivalence of categories from Disk(M)′ to Disk(M). If we regard Disk(M) as a colored op-

erad via the construction of Remark 5.4.5.7, then Disk(M)′ inherits the structure of a colored

operad, to which we can associate an ∞-operad N(Disk(M)′)⊗ equipped with an equivalence

φ : N(Disk(M)′)⊗ → N(Disk(M))⊗. The forgetful functor (j : Rk ↪→ M) 7→ Rk determines a

map of colored operads from Disk(M)′ to tE⊗BTop(k). Passing to nerves, we obtain a map of ∞-

operads N(Disk(M)′)⊗ → BTop(k)⊗, which naturally factors through the map E⊗M → BTop(k)⊗.

Composing with a homotopy inverse to φ, we get a map of ∞-operads N(Disk(M))⊗ → E⊗M .

We can describe the situation roughly as follows: the objects of the ∞-operads N(Disk(M))⊗

and E⊗M are the same: copies of Euclidean space Rk equipped with an embedding in M . However,

the morphisms are slightly different: an n-ary operation in E⊗M is a diagram of open embeddings∐
1≤i≤n Rk //

$$

Rk

~~
M

which commutes up to (specified) isotopy, while an n-ary operation in N(Disk(M))⊗ is given by a

diagram as above which commutes on the nose.

The map of ∞-operads ψ : N(Disk(M))⊗ → E⊗M appearing in Remark 5.4.5.8 is not an equiva-

lence. For example, the underlying ∞-category of E⊗M is the Kan complex BM ' Sing(M), while
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the underlying∞-category of N(Disk(M))⊗ is the nerve of the partially ordered set Disk(M), which

is certainly not a Kan complex. However, this is essentially the only difference: the map ψ exhibits

E⊗M as the ∞-operad obtained from N(Disk(M))⊗ by inverting each of the morphisms in Disk(M).

More precisely, we have the following result:

Theorem 5.4.5.9. Let M be a manifold and let C⊗ be an ∞-operad. Composition with the map

N(Disk(M))⊗ → E⊗M

of Remark 5.4.5.8 induces a fully faithful embedding θ : AlgEM (C)→ AlgN(Disk(M))(C). The essential

image of θ is the full subcategory of AlgN(Disk(M))(C) spanned by the locally constant N(Disk(M))⊗-

algebra objects of C (see Definition 4.2.4.1).

Theorem 5.4.5.9 is an immediate consequence of Proposition 2.3.4.5, together with the following

pair of lemmas:

Lemma 5.4.5.10. Let M be a manifold of dimension k. Then the map N(Disk(M))⊗ → E⊗M
induces a weak homotopy equivalence ψ : N(Disk(M))→ BM .

Lemma 5.4.5.11. The map of ∞-operads Disk(M)⊗ → E⊗M is a weak approximation to E⊗M .

Proof of Lemma 5.4.5.10. The construction U 7→ BU determines a functor χ from the category

Disk(M) to the category of simplicial sets. Let X denote the relative nerve Nχ(Disk(M)) (see

§HTT.3.2.5 ), so that we have a coCartesian fibration θ : X → N(Disk(M)) whose over an object

U ∈ Disk(M) is the Kan complex BU . Remark 5.4.5.2 implies that the fibers of θ are contractible,

so that θ is a trivial Kan fibration. The projection map θ has a section s, which carries an object

U ∈ Disk(M) to a chart Rk ' U in BU . The map ψ is obtained by composing the section s

with the evident map ψ′ : X → BM . Consequently, it will suffice to show that the map ψ′ is

a weak homotopy equivalence. According to Proposition HTT.3.3.4.5 , this is equivalent to the

requirement that BM be a colimit of the diagram {U 7→ BU}U∈Disk(M) in the ∞-category of spaces

S. Using Remark 5.4.5.2 again, we may reduce to showing that SingM is a colimit of the diagram

{U 7→ SingU}U∈Disk(M). In view of Theorem A.3.1, we need only show that for every point x ∈M ,

the partially ordered set P : {U ∈ Disk(M) : x ∈ U} is weakly contractible. In fact, P op is filtered:

for every finite collection of open disks Ui ⊆ M containing x, the intersection
⋂
i Ui is an open

neighborhood of x which contains a smaller open neighborhood V ' Rk of x (because M is a

topological manifold).

Proof of Lemma 5.4.5.11. Since the map E⊗M → BTop(k)⊗ is an approximation (Remark 5.4.2.11),

it will suffice to show that the composite map

γ : N(Disk(M))⊗ → E⊗M → BTop(k)⊗
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is a weak approximation to BTop(k)⊗. To this end, fix an object U ∈ Disk(M) and an integer

m ≥ 0; wish to prove that the map

ψ : N(Disk(M))⊗/U ×N(Fin∗)/〈1〉 {〈m〉} → BTop(k)⊗/U ×N(Fin∗)/〈1〉 {〈m〉}

is a weak homotopy equivalence (Corollary 2.3.3.16). We can identify the domain of ψ with the

nerve N(A), where A ⊆ Disk(M)m denotes the partially ordered set of sequences (V1, . . . , Vm) ∈
Disk(M)m such that

⋃
Vi ⊆ U and Vi ∩ Vj = ∅ for i 6= j.

It will now suffice to show that ψ induces a homotopy equivalence after passing to the homotopy

fiber over the unique vertex of the Kan complex BTop(k)m. Unwinding the definitions, we must

show that the canonical map

hocolim(V1,...,Vm)∈A
∏

1≤i≤m
Sing Emb(Rk, Vi)→ Sing Emb(Rk×〈m〉◦, U)

is a weak homotopy equivalence. Using Proposition 5.4.1.8, we can reduce to showing instead that

the map

hocolim(V1,...,Vm)∈A
∏

1≤i≤m
Germ(Vi)→ Germ(〈m〉◦, U)

is a homotopy equivalence. Both sides are acted on freely by the simplicial group Germ0(Rk).

Consequently, it will suffice to show that we obtain a weak homotopy equivalence of quotients

hocolim(V1,...,Vm)∈A
∏

1≤i≤m
Conf({i}, Vi)→ Conf(〈m〉◦, U).

In view of Theorem A.3.1, it will suffice to show that for every injective map φ : 〈m〉◦ → U ,

the partially ordered set Aφ = {(V1, . . . , Vm) ∈ A : φ(i) ∈ Vi} has weakly contractible nerve.

This is clear, since Aop
φ is filtered (because each point φ(i) has arbitrarily small neighborhoods

homeomorphic to Euclidean space Rk).

We can summarize Theorem 5.4.5.9 informally as follows. To give an EM -algebra object A of a

symmetric monoidal ∞-category C, we need to specify the following data:

(i) For every open disk U ⊆M , an object A(U) ∈ C.

(ii) For every collection of disjoint open disks V1, . . . , Vn contained in an open disk U ⊆ M , a

map A(V1)⊗ . . .⊗A(Vn)→ A(U), which is an equivalence when n = 1.

In §5.5.1, we will explain how to describe this data in another way: namely, as a cosheaf on

the Ran space of M (see Definition 5.5.1.1). However, in the setting of the Ran space, it is much

more convenient to work with a nonunital version of the theory of EM -algebras. Consequently, we

will spend the remainder of this section explaining how to adapt the above ideas to the nonunital

case. We associate to every k-manifold M an ∞-operad (E⊗M )nu as in Definition 5.4.4.1. It follows
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from Remark 2.3.3.9 and Proposition 2.3.4.8 that (E⊗M )nu is the assembly of the BM -family of ∞-

operads (BM ×N(Fin∗))×BqM (E⊗M )nu, each fiber of which is equivalent to the nonunital little cubes

operad (E⊗k )nu. If C⊗ is a symmetric monoidal∞-category, we let Algnu
EM (C) denote the∞-category

Alg(EM )nu
(C) of nonunital EM -algebra objects of C. Our next goal is to show that the results of

§5.4.4 can be generalized to the present setting: that is, for any symmetric monoidal ∞-category

C, we can identify AlgEM (C) with a subcategory of Algnu
EM (C) (Proposition 5.4.5.14). Our first step

is to identify the relevant subcategory more precisely.

Definition 5.4.5.12. If C⊗ is a symmetric monoidal∞-category and M is a manifold of dimension

k > 0, we will say that a nonunital EM -algebra object A ∈ Algnu
EM (C) is quasi-unital if, for every

point U ∈ BM , the restriction of A to the fiber ({U}×N(Fin∗))×BqM (E⊗M )nu ' (E⊗k )nu determines

a quasi-unital Ek-algebra object of C, in the sense of Definition 5.4.4.2. Similarly, we will say that

a map f : A → B of quasi-unital EM -algebra objects of C is quasi-unital if its restriction to each

fiber ({U}×N(Fin∗))×BqM (E⊗M )nu determines a quasi-unital map of nonunital Ek-algebras. We let

Algqu
EM (C) denote the subcategory fo Algnu

EM (C) spanned by the quasi-unital EM -algebra objects of

C and quasi-unital morphisms between them.

Remark 5.4.5.13. Let M be a manifold of dimension k > 0 and let A be a nonunital EM -algebra

object of a symmetric monoidal ∞-category C⊗. Fix a point U ∈ BM , corresponding to an open

embedding ψ : Rk ↪→ M . We will say that a map u : 1 → A(U) in C is a quasi-unit for A if, for

every pair of objects V,W ∈ BM and every morphism φ : U ⊕ V →W , the composite map

A(V ) ' 1⊗A(V )
u→ A(U)⊗A(V )→ A(W )

is homotopic to the map induced by the composition U → U ⊕ V
φ→ W in EM . Note that it

suffices to check this condition in the special case where V = W = U and, if k > 1, where φ is

a single map (arbitrarily chosen). Unwinding the definition, we see that A is quasi-unital if and

only if there exists a quasi-unit u : 1→ A(U) for each U ∈ BM . Similarly, a map A→ B between

quasi-unital EM -algebra objects is quasi-unital if, for every quasi-unit u : 1→ A(U), the composite

map 1
u→ A(U) → B(U) is a quasi-unit for B. Moreover, if M is connected, then it suffices to

check these conditions for a single U ∈ BM .

Proposition 5.4.5.14. Let M be a manifold of dimension k > 0 and let C⊗ be a symmetric

monoidal ∞-category. Then the restriction functor AlgEM (C) → Algqu
EM (C) is an equivalence of

∞-categories.

Proof. For every map of simplicial sets K → BM , let O⊗K denote the K-family of ∞-operads

(K ×N(Fin∗))×BqM EM

and set O′⊗K = (K × N(Fin∗)) ×BqM (E⊗M )nu. Note that the projection map q : O⊗K → K is a

coCartesian fibration. Let Alg′OK (C) denote the full subcategory of AlgOK (C) spanned by those ∞-

operad maps which carry q-coCartesian morphisms to equivalences in C, let Alg′
O′K

(C) be defined
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similarly, and let Algqu
OK

(C) denote the subcategory of Alg′
O′K

(C) spanned by those objects which

restrict to quasi-unital O′⊗{v} ' (E⊗k )nu-algebra objects of C and those morphisms which restrict to

quasi-unital O′⊗{v} ' (E⊗k )nu-algebra maps for every vertex v ∈ K. There is an evident restriction

map θK : Alg′OK (C)→ Algqu
O′K

(C) fitting into a commutative diagram

AlgEM (C) //

��

Algqu
EM (C)

��
Alg′OK

θK // Algqu
O′K

(C).

If K = BM , then the vertical maps are categorical equivalences. Consequently, it will suffice to

prove that θK is an equivalence for every map of simplicial sets K → BM . The collection of

simplicial sets K which satisfy this condition is clearly stable under homotopy colimits; we can

therefore reduce to the case where K is a simplex, in which case the desired result follows from

Theorem 5.4.4.5.

It follows from Lemma 5.4.5.11 and Remark 2.3.3.9 that for every manifold M , the map

Disk(M)⊗nu → (E⊗M )nu is a weak approximation to (E⊗M )nu. Combining this with Lemma 5.4.5.10

and Theorem 2.3.3.23, we deduce the following nonunital variant of Theorem 5.4.5.9:

Proposition 5.4.5.15. Let M be a manifold and let C⊗ be an ∞-operad. Then composition with

map N(Disk(M))⊗ → E⊗M of Remark 5.4.5.8 induces a fully faithful embedding

θ : Algnu
EM (C)→ Algnu

N(Disk(M))(C).

The essential image of θ is the full subcategory of Algnu
N(Disk(M))(C) spanned by the locally constant

objects.

Definition 5.4.5.16. Let M be a manifold of dimension k > 0 and let C⊗ be a symmetric monoidal

∞-category. We will say that a locally constant Disk(M)⊗nu-algebra object of C is quasi-unital if

it corresponds to a quasi-unital (E⊗M )nu-algebra object of C under the equivalence of Proposition

5.4.5.15. Similarly, we will say that a map f : A → B between locally constant quasi-unital

Disk(M)⊗nu-algebra objects of C is quasi-unital if it corresponds to a quasi-unital morphism in

Algnu
EM (C) under the equivalence of Proposition 5.4.5.15. We let Algqu,loc

Disk(M)(C) denote the subcate-

gory of AlgDisk(M)(C) spanned by the quasi-unital, locally constant Disk(M)⊗-algebra objects of C

and quasi-unital morphisms between them.

Remark 5.4.5.17. Let A ∈ Algnu
Disk(M)(C), let W ∈ Disk(M) be an open disk in M , and let U ⊆W

be an open disk with compact closure in W . We say that a map 1→ A(U) in C is a quasi-unit for
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A if, for every disk V ∈ Disk(M) such that V ⊆W and V ∩ U = ∅, the diagram

1⊗A(V )

��

u⊗id // A(U)⊗A(V )

��
A(V ) // A(W )

commutes up to homotopy. Note that if M has dimension at least 2, it suffices to check this

condition for a single open disk V . Unwinding the definition, we see that A is quasi-unital if and

only if there exists a quasi-unit u : 1→ A(U) for every pair U ⊆W as above, and a map f : A→ B

in Algnu
Disk(M)(C) is quasi-unital if and only if composition with f carries every quasi-unit 1→ A(U)

to a quasi-unit 1→ B(U) (see Remark 5.4.5.13). In fact, it suffices to check these conditions for a

single pair U ⊆W in each connected component of M .

Combining Proposition 5.4.5.14, Theorem 5.4.5.9, and Proposition 5.4.5.15, we arrive at the

following:

Proposition 5.4.5.18. Let M be a manifold of dimension k > 0 and C⊗ a symmetric monoidal

∞-category. Then the restriction functor Algloc
Disk(M)(C) → Algqu,loc

Disk(M)(C) is an equivalence of ∞-

categories.

In other words, there is no essential loss of information in passing from unital Disk(M)⊗-

algebras to nonunital Disk(M)⊗-algebras, at least in the locally constant case. For this reason, we

will confine our attention to nonunital algebras in §5.5.

5.5 Topological Chiral Homology

Let M be a topological manifold, and let E⊗M be the ∞-operad introduced in Definition 5.4.5.1.

Roughly speaking, we can think of an EM -algebra A object of a symmetric monoidal ∞-category

C⊗ as a family of Ek-algebras Ax parametrized by the points x ∈ M (more accurately, one should

think of this family as “twisted” by the tangent bundle of M : that is, for every point x ∈ M we

should think of Ax as an algebra over an ∞-operad whose objects are little disks in the tangent

space TM,x to M at x).

There is a convenient geometric way to encode this information. We define the Ran space

Ran(M) of M to be the collection of all nonempty finite subsets of M (for a more detailed discussion

of Ran(M), including a description of the topology on Ran(M), we refer the reader to 5.5.1). To

every point S ∈ Ran(M), the tensor product AS =
⊗

s∈S As is an object of C. We will see that

these objects are the stalks of a C-valued cosheaf F on the Ran space. We can regard F as a

constructible cosheaf which is obtained by gluing together locally constant cosheaves along the

locally closet subsets Rann(M) = {S ∈ Ran(M) : |S| = n} ⊆ Ran(M) for n ≥ 1; the “gluing” data

for these restrictions reflects the multiplicative structure of the algebras {Ax}x∈M . In §5.5.4, we will
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see that the construction A 7→ F determines an equivalence of ∞-categories from the ∞-category

of (nonunital) EM -algebras in C to a suitable ∞-category of factorizable C-valued cosheaves on

Ran(M), which are constructible with respect to the above stratification (Theorem 5.5.4.10).

The description of an EM -algebra object A of C as a factorizable C-valued cosheaf F on Ran(M)

suggests an interesting invariant of A: namely, the object F(Ran(M)) ∈ C given by global sections

of F. In the case where M is connected, we will refer to the global sections F(Ran(M)) as the

topological chiral homology of M with coefficients in A, which we will denote by
∫
M A. We will give

an independent definition of
∫
M A (which does not require the assumption that M is connected) in

§5.5.2, and verify that it is equivalent to F(Ran(M)) for connected M in §5.5.4 (Theorem 5.5.4.14).

The construction A 7→
∫
M A can be regarded as a generalization of Hochschild homology (Theorem

5.5.3.11) and has a number of excellent formal properties, which we will discuss in §5.5.3.

In §5.5.6, will use the theory of topological chiral homology to formulate and prove a nonabelian

version of the Poincare duality theorem (Theorem 5.5.6.6). The proof will rely on general version

of Verdier duality (Theorem 5.5.5.4), which we prove in §5.5.5.

Remark 5.5.0.1. We will regard Convention 5.4.0.1 as in force throughout this section: the

word manifold will always refer to a paracompact, Hausdorff, topological manifold of some fixed

dimension k.

5.5.1 The Ran Space

Definition 5.5.1.1. Let M be a manifold. We let Ran(M) denote the collection of nonempty

finite subsets S ⊆M . We will refer to Ran(M) as the Ran space of M .

The Ran space Ran(M) admits a natural topology, which we will define in a moment. Our goal

in this section is to study the basic properties of Ran(M) as a topological space. Our principal

results are Theorem 5.5.1.6, which asserts that Ran(M) is weakly contractible (provided that

M is connected), and Proposition 5.5.1.14, which characterizes sheaves on Ran(M) which are

constructible with respect to the natural filtration of Ran(M) by cardinality of finite sets.

Our first step is to define the topology on Ran(M). First, we need to introduce a bit of

notation. Suppose that {Ui}1≤i≤n is a nonempty collection of pairwise disjoint subsets of M . We

let Ran({Ui}) ⊆ Ran(M) denote the collection of finite sets S ⊆M such that S ⊆
⋃
Ui and S ∩Ui

is nonempty for 1 ≤ i ≤ n.

Definition 5.5.1.2. Let M be a manifold. We will regard the Ran space Ran(M) as equipped with

the coarsest topology for which the subsets Ran({Ui}) ⊆ Ran(M) are open, for every nonempty

finite collection of pairwise disjoint open sets {Ui} of M .

Remark 5.5.1.3. If {Ui} is a nonempty finite collection of pairwise disjoint open subsets of a

manifold M , then the open subset Ran({Ui}) ⊆ Ran(M) is homeomorphic to a product
∏
i Ran(Ui),

via the map {Si ⊆ Ui}) 7→ (
⋃
i Si ⊆M).
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Remark 5.5.1.4. Let M be a manifold, and let S = {x1, . . . , xn} be a point of Ran(M). Then S

has a basis of open neighborhoods in Ran(M) of the form Ran({Ui}), where the Ui range over all

collections of disjoint open neighborhoods of the points xi in M . Since M is a manifold, we may

further assume that that each Ui is homeomorphic to Euclidean space.

Remark 5.5.1.5. If we choose a metric d on on the manifold M , then the topology on Ran(M) is

described by a metric D, where

D(S, T ) = sup
s∈S

inf
t∈T

d(s, t) + sup
t∈T

inf
s∈S

d(s, t).

It follows that Ran(M) is paracompact.

Our first main object in this section is to prove the following result of Beilinson and Drinfeld:

Theorem 5.5.1.6 (Beilinson-Drinfeld). Let M be a connected manifold. Then Ran(M) is weakly

contractible.

We first formulate a relative version of Theorem 5.5.1.6 which is slightly easier to prove.

Notation 5.5.1.7. Let M be a manifold and S a finite subset of M . We let Ran(M)S denote the

closed subset of Ran(M) consisting of those nonempty finite subsets T ⊆ Ran(M) such that S ⊆ T .

Lemma 5.5.1.8 (Beilinson-Drinfeld). Let M be a connected manifold and let S be a nonempty

finite subset of M . Then RanS(M) is weakly contractible.

Proof. We first prove that Ran(M)S is path connected. Let T be a subset of M containing S. For

each t ∈ T , choose a path pt : [0, 1] → M such that pt(0) = t and pt(1) ∈ S (this is possible since

M is connected and S is nonempty). Then the map r 7→ S ∪ {pt(r)}t∈T determines a continuous

path in Ran(M)S joining T with S. We will complete the proof by showing that for each n > 0,

every element η ∈ πn Ran(M)S is trivial; here we compute the homotopy group πn with respect to

the base point given by S ∈ Ran(M)S .

The topological space Ran(M)S admits a continuous product U : Ran(M)S × Ran(M)S →
Ran(M)S , given by the formula U(T, T ′) = T ∪ T ′. This product induces a map of homotopy

groups

φ : πn Ran(M)S × πn Ran(M)S → πn Ran(M)S .

Since S is a unit with respect to the multiplication on Ran(M)S , we conclude that φ(η, 1) = η =

φ(1, η) (where we let 1 denote the unit element of the homotopy group πn Ran(M)S). Because the

composition of the diagonal embedding Ran(M)S → Ran(M)S × Ran(M)S with U is the identity

from Ran(M)S to itself, we have also φ(η, η) = η. It follows that

η = φ(η, η) = φ(η, 1)φ(1, η) = η2

so that η = 1 as desired.
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Proof of Theorem 5.5.1.6. For every point x ∈ M , choose an open embedding jx : Rk ↪→ M such

that jx(0) = x. Let Ux = jx(B(1)) be the image under jx of the unit ball in Rk, and let Vx be the

open subset of Ran(M) consisting of those nonempty finite subsets S ⊆ M such that S ∩ Ux 6= ∅.
Let J be the partially ordered set of all nonempty finite subsets of M (that is, J is the Ran space

Ran(M), but viewed as a partially ordered set). We define a functor from Jop to the category of

open subsets of Ran(M) by the formula

T 7→ VT =
⋂
x∈T

Vx.

For each S ∈ Ran(M), the partially ordered set {T ∈ J : S ∈ VT } is nonempty and stable under

finite unions, and therefore has weakly contractible nerve. It follows that Sing Ran(M) is equivalent

to the homotopy colimit of the diagram {Sing VT }T∈Jop (Theorem A.3.1). We will prove that each of

the spaces VT is weakly contractible, so that this homotopy colimit is weakly homotopy equivalent

to N(Jop) and therefore weakly contractible.

Fix T ∈ J, and choose a continuous family of maps {hr : Rk → Rk}0≤r≤1 with the following

properties:

(i) For 0 ≤ r ≤ 1, the map hr is the identity outside of a ball B(2) ⊆ Rk of radius 2.

(ii) The map h0 is the identity.

(iii) The map h1 carries B(1) ⊆ Rk to the origin.

We now define a homotopy φT : Ran(M)× [0, 1]→ Ran(M) by the formula

φT (S, r) = S ∪
⋃
x∈T

jxhtj
−1
x (S).

The homotopy φT leaves VT and Ran(M)T setwise fixed, and carries VT × {1} into Ran(M)T .

It follows that the inclusion Ran(M)T ⊆ VT is a homotopy equivalence, so that VT is weakly

contractible by Lemma 5.5.1.8.

We now discuss a natural stratification of the Ran space.

Definition 5.5.1.9. Let M be a manifold. We let Ran≤n(M) denote the subspace of Ran(M)

consisting of those subsets S ⊆M having cardinality ≤ n, and Rann(M) the subspace of Ran≤n(M)

consisting of those subsets S ⊆M having cardinality exactly n.

Remark 5.5.1.10. The set Ran≤n(M) is closed in Ran(M), and Rann(M) is open in Ran≤n(M).

Definition 5.5.1.11. Let M be a manifold and let F ∈ Shv(Ran(M)) be a sheaf on Ran(M). For

each n ≥ 0, let i(n) : Ran≤n(M) → Ran(M) denote the inclusion map. We will say that F is

constructible if the following conditions are satisfied:
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(1) The canonical map F → lim←−n i(n)∗i(n)∗ F is an equivalence.

(2) For each n, the restriction of i(n)∗ F to the open subset Rann(M) ⊆ Ran≤n(M) is locally

constant.

Remark 5.5.1.12. Condition (2) of Definition 5.5.1.11 is equivalent to the requirement that F be

Z≥0-constructible, where we regard Ran(M) as Z≥0-stratified via the map Ran(M) → Z≥0 given

by S 7→ |S|. We refer the reader to §A.5 for a general review of the theory of constructible sheaves.

Here we are required to impose condition (1) because the partially ordered set Z≥0 does not satisfy

the ascending chain condition.

Remark 5.5.1.13. We can endow the topological space Ran(M) with another topology, where a

set U ⊆ Ran(M) is open if and only if its intersection with each Ran≤n(M) is open (with respect to

the topology of Definition 5.5.1.1). If F is a sheaf on Ran(M) with respect to this second topology,

then condition (1) of Definition 5.5.1.11 is automatic: this follows from Proposition HTT.7.1.5.8 .

The following result gives a convenient characterization of constructible sheaves on the Ran

space:

Proposition 5.5.1.14. Let M be a manifold and F ∈ Shv(Ran(M)). Then F is constructible if

and only if it is hypercomplete and satisfies the following additional condition:

(∗) For every nonempty finite collection of disjoint disks U1, . . . , Un ⊆M containing open subdisks

V1 ⊆ U1, . . . , Vn ⊆ Un, the restriction map F(Ran({Ui})) → F(Ran({Vi})) is a homotopy

equivalence.

Proof. We first prove the “only if” direction. Suppose that F is constructible. To show that F is

hypercomplete, we write F as a limit lim←− i(n)∗i(n)∗ F as in Definition 5.5.1.11. It therefore suffices

to show that each i(n)∗ F is hypercomplete. This follows from the observation that Ran≤n(M) is

a paracompact topological space of finite covering dimension (Corollary HTT.7.2.1.12 ).

We now prove every constructible sheaf F ∈ Shv(Ran(M)) satisfies (∗). For 1 ≤ i ≤ n, we

invoke Theorem 5.4.1.5 to choose an isotopy {hti : Vi → Ui}t∈R such that h0
i is the inclusion of Vi

into Ui and h1
i is a homeomorphism. These isotopies determine an open embedding

H : Ran({Vi})×R→ Ran({Ui})×R .

Let F′ ∈ Shv(Ran({Ui})×R) be the pullback of F, so that F′ is hypercomplete (see Lemma A.2.6

and Example A.2.8). It follows that H∗ F′ is hypercomplete. Since F is constructible, we deduce

that F′ is foliated. For t ∈ R, let F′t denote the restriction of F to Ran({Vi}) × {t}. We have a

commutative diagram of spaces

F(Ran({Ui})) θ //

θ′

((

F′((Ran({Vi})×R)

θ′′uu
F′1(Ran({Vi}))
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Since each h1
i is a homeomorphism, we deduce that θ′ is a homotopy equivalence. Proposition

A.2.5 guarantees that θ′′ is a homotopy equivalence, so that θ is a homotopy equivalence by the

two-out-of-three property. Applying Proposition A.2.5 again, we deduce that the composite map

F(Ran({Ui}))→ F′0(Ran({Vi})) ' F(Ran({Vi})) is a homotopy equivalence as desired.

We now prove the “if” direction of the proposition. Assume that F is hypercomplete and

that F satisfies (∗); we wish to prove that F is constructible. We first show that the restriction

of F to each Rann(M) is locally constant. Choose a point S ∈ Rann(M); we will show that

F |Rann(M) is constant in a neighborhood of S. Let S = {x1, . . . , xn}, and choose disjoint open

disks U1, . . . , Un ⊆ X such that xi ∈ Ui. Let W ⊆ Rann(M) denote the collection of all subsets

S ⊆M which contain exactly one point from each Ui. We will prove that F |Rann(M) is constant

on W . Let X = F(Ran({Ui})). Since W ⊆ Ran({Ui}), there is a canonical map from the constant

sheaf on W taking the value X to F |W ; we will show that this map is an equivalence. Since

W ' U1× . . .×Un is a manifold, it has finite covering dimension so that Shv(W ) is hypercomplete.

Consequently, to show that a morphism in Shv(W ) is an equivalence, it suffices to check after

passing to the stalk at each point {y1, . . . , yn} ∈ W . This stalk is given by lim−→V
F(V ), where the

colimit is taken over all open subsets V ⊆ Ran(M) containing {y1, . . . , yn}. It follows from Remark

5.5.1.4 that it suffices to take the colimit over those open sets V of the form Ran({Vi}), where each

Vi ⊆ Ui is an open neighborhood of yi. Condition (∗) guarantees that each of the maps X → F(V )

is a homotopy equivalence, so after passing to the filtered colimit we obtain a homotopy equivalence

X → lim−→V
F(V ) as desired.

Let G = lim←−n i(n)∗i(n)∗ F (using the notation of Definition 5.5.1.11). To complete the proof, it

will suffice to show that the canonical map α : F → G is an equivalence. Since each i(n)∗ F is auto-

matically hypercomplete (because Ran≤n(M) is a paracompact space of finite covering dimension),

we see that G is hypercomplete. Using the results of §HTT.6.5.3 , we deduce that the collection of

those open sets U ⊆ Ran(M) such that α induces a homotopy equivalence αU : F(U) → G(U) is

stable under the formation of unions of hypercoverings. It therefore suffices to show that αU is an

homotopy equivalence for some collection of open sets U which forms a basis for the topology of

Ran(M). By virtue of Remark 5.5.1.4, we may assume that U = Ran({Ui}) for some collection of

disjoint open disks U1, . . . , Un.

For each integer m, let F≤m = i(m)∗ F. We wish to prove that the map F(U)→ lim←−m F≤m(U ∩
Ran≤m(M)) is a homotopy equivalence. In fact, we will prove that the individual maps F(U) →
F≤m(U ∩ Ran≤m(M)) are homotopy equivalences for m ≥ n. Choose a point xi in each disk Ui,

and let S = {x1, . . . , xn}. Let FS denote the stalk of F at the point S. We have a commutative

diagram of restriction maps

F(U)

φ ""

// F≤m(U ∩ Ran≤m(M))

φ′
vv

FS
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where φ is a homotopy equivalence by the argument given above. By the two-out-of-three property,

we are reduced to proving that φ′ is a homotopy equivalence.

The set U ∩ Ran≤m(M) admits a stratification by the linearly ordered set [m], which carries

a point T ∈ Ran(M) to the cardinality of T . Let C = Sing[m](U ∩ Ran≤m(M)). Since F is

constructible, the sheaf F |(U ∩Ran≤m(M)) corresponds to some left fibration q : C̃→ C under the

equivalence of ∞-categories provided by Theorem A.9.3. Under this equivalence, we can identify

F≤m(U ∩Ran≤m(M)) with the∞-category FunC(C, C̃) of sections of q, while FS corresponds to the

fiber of C̃S of q over the point S ∈ C. To prove that θ′ is an equivalence, it suffices to show that

S is an initial object of C. To this end, choose homeomorphisms ψi : Rk → Ui for 1 ≤ i ≤ n such

that ψi(0) = xi. We then have a map

c : [0, 1]× (U ∩ Ran≤m(M))→ (U ∩ Ran≤m(M))

given by the formula c(t, T ) = {ψi(tv) : ψi(v) ∈ T}. The continuous map c induces a natural

transformation from the inclusion {S} ↪→ C to the identity functor from C to itself, thereby proving

that S ∈ C is initial as desired.

To apply Proposition 5.5.1.14, it is convenient to have the following characterization of hyper-

completeness:

Proposition 5.5.1.15. Let X be a topological space, U(X) the collection of open subsets of X,

and F : N(U(X)op)→ S a presheaf on X. The following conditions are equivalent:

(1) The presheaf F is a hypercomplete sheaf on X.

(2) Let U be an open subset of X, C be a category, and f : C→ U(U) a functor. Suppose that, for

every point x ∈ U , the full subcategory Cx = {C ∈ C : x ∈ f(C)} ⊆ C has weakly contractible

nerve. Then F exhibits F(U) as a limit of the diagram N(C)op → N(U(X)op)
F→ S.

Lemma 5.5.1.16. Let X be a topological space, and let F ∈ Shv(X) be an ∞-connective sheaf

satisfying the following condition:

(∗) Let A be a partially ordered set and f : A → U(X)op an order-preserving map such that, for

every point x ∈ X, the full subcategory Ax = {a ∈ A : x ∈ f(a)} ⊆ A is filtered. Then F

exhibits F(X) as a limit of the diagram N(A)→ N(U(X)op)
F→ S.

Then the space F(X) is nonempty.

Proof. The functor F : N(U(X)op) → S classifies a left fibration q : E → N(U(X)op). We will

construct a partially ordered set A and a map ψ : N(A) → E such that the composite map

N(A) → N(U(X)op) and each subset Ax is filterd. According to Corollary HTT.3.3.3.3 , we can

identify the limit lim←−a∈A F(f(a)) with the Kan complex FunN(U(X)op)(N(A),E), which is nonempty

by construction.
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We will construct a sequence of partially ordered sets

∅ = A(0) ⊆ A(1) ⊆ . . .

and compatible maps ψ(n) : N(A(n))→ E with the following properties:

(i) For every element a ∈ A(n), the set {b ∈ A(n) : b < a} is a finite subset of A(n− 1).

(ii) For every point x ∈ X and every finite subset S ⊆ A(n − 1)x, there exists an upper bound

for S in A(n)x.

Assuming that this can be done, we can complete the proof by taking A =
⋃
nA(n) and ψ be the

amalgamation of the maps ψ(n).

The construction now proceeds by induction on n. Assume that n > 0 and that the map

ψ(n− 1) : N(A(n− 1))→ E has already been constructed. Let K be the set of pairs (x, S), where

x ∈ X and S is a finite subset of A(n− 1)x which is closed-downwards (that is, a ≤ a′ and a′ ∈ S
implies a ∈ S). We define A(n) to be the disjoint union A(n − 1)

∐
K. We regard A(n) as a

partially ordered set, where a < b in A(n) if and only a, b ∈ A(n − 1) and a < b in A(n − 1), or

a ∈ A(n − 1), b = (x, S) ∈ K, and a ∈ S. It is clear that A(n) satisfies condition (i). It remains

only to construct a map ψ(n) : N(A(n))→ E which extends ψ(n− 1) and satisfies (ii). Unwinding

the definitions, we must show that for every pair (x, S) ∈ K, the extension problem

N(S)
ψ′ //

��

E

N(S).

φ

==

admits a solution, where ψ′ denotes the restriction ψ(n− 1)|N(S) and φ carries the cone point of

N(S). to an object E ∈ E such that x ∈ q(E) ∈ U(X).

Since S is finite, the subset U =
⋂
s∈S q(ψ

′(s)) is an open subset of X containing the point x.

The map ψ′ determines a diagram α : N(S) → E×N(U(X)op){U} ' F(U). To prove the existence

of φ, it suffices to show that there exists a smaller open subset V ⊆ U containing x such that

the composite map N(S)
α→ F(U) → F(V ) is nullhomotopic. Since N(S) is finite, it suffices to

show α induces a nullhomotopic map from N(S) into the stalk Fx = lim−→x∈V F(V ). We conclude by

observing that Fx is contractible (since F is assumed to be ∞-connective).

Proof of Proposition 5.5.1.15. Suppose first that (1) is satisfied; we will verify (2). Let χ : U(X)→
Shv(X) be the functor which carries an open set U to the sheaf χU given by the formula

χU (V ) =

{
∆0 if V ⊆ U
∅ otherwise.
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Let G = lim−→C∈C χf(C). For every point x ∈ U , the stalk Gx is weakly homotopy equivalent to the

nerve of the category Cx, and for x /∈ U the stalk Gx is empty. If each Cx has weakly contractible

nerve, then we conclude that the canonical map G→ χU is ∞-connective, so that

F(U) ' MapShv(X)(χU ,F) ' MapShv(X)(G,F) ' lim←−
C∈C

MapShv(X)(χf(C),F) = lim←−
C∈C

F(f(C)).

Now suppose that (2) is satisfied. Let S ⊆ U(X) be a covering sieve on an open set U ⊆ X.

Then for each x ∈ U , the partially ordered set Sx = {V ∈ S : x ∈ V } is nonempty and stable

under finite intersections, so that N(Sx)op is filtered and therefore weakly contractible. It follows

from (2) that the map F(U) → lim←−V ∈S F(V ) is a homotopy equivalence, so that F is a sheaf. It

remains to show that F is hypercomplete. Choose an ∞-connective morphism α : F → F′, where

F′ is hypercomplete; we wish to show that α is an equivalence. The first part of the proof shows

that F′ also satisfies the condition stated in (2). Consequently, it will suffice to prove the following:

(∗) Let α : F → G be an ∞-connective morphism in Shv(X), where F and G both satisfy (2).

Then α is an equivalence.

To prove (∗), it suffices to show that for each open set U ⊆ X, α induces a homotopy equivalence

αU : F(U) → G(U). We will show that αU is n-connective for each n ≥ 0, using induction on

n. If n > 0, then we can conclude by applying the inductive hypothesis to the diagonal map

β : F → F×G F. It remains to consider the case n = 0: that is, to show that the map αU is

surjective on connected components. In other words, we must show that every map χU → G factors

through α. This follows by applying Lemma 5.5.1.16 to the fiber product χU ×G F (and restricting

to the open set U).

5.5.2 Topological Chiral Homology

Let M be a k-manifold and C⊗ a symmetric monoidal∞-category. We can think of an EM -algebra

A ∈ AlgEM (C) as a family of Ek-algebras Ax ∈ AlgEk(C), parametrized by the points x ∈M . In this

section, we will explain how to extract form A a global invariant
∫
M A, which we call the topological

chiral homology of M (with coefficients in A). Our construction is a homotopy-theoretic analogue

of the Beilinson-Drinfeld theory of chiral homology for the chiral algebas of [14]. It is closely related

to the notion of blob homology studied by Morrison and Walker ([113]).

The basic idea of the construction is simple. According to Theorem 5.4.5.9, we can think of an

EM -algebra object A of a symmetric monoidal ∞-category C as a functor which assigns to every

disjoint union of open disks U ⊆ M an object A(U) ∈ C, which carries disjoint unions to tensor

products. Our goal is to formally extend the definition of A to all open subsets of M . Before we

can give the definition, we need to establish some terminology.

Definition 5.5.2.1. Let M be a manifold and U(M) the partially ordered set of all open subsets

of M . We can identify objects of the ∞-category N(U(M))q with finite sequences (U1, . . . , Un)
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of open subsets of M . We let N(U(M))⊗ denote the subcategory of N(U(M))q spanned by those

morphisms (U1, . . . , Un)→ (V1, . . . , Vm) which cover a map α : 〈n〉 → 〈m〉 in Fin∗ and possess the

following property: for 1 ≤ j ≤ m, the sets {Ui}α(i)=j are disjoint open subsets of Vj .

For every manifold M , the nerve N(U(M)⊗) is an ∞-operad which contains N(Disk(M))⊗ as a

full subcategory.

Definition 5.5.2.2. We will say that a symmetric monoidal ∞-category C⊗ is sifted-complete if

the underlying∞-category C admits small sifted colimits and the tensor product functor C×C→ C

preserves small sifted colimits.

Remark 5.5.2.3. If a simplicial set K is sifted, then the requirement that the tensor product

C×C → C preserve sifted colimits is equivalent to the requirement that it preserve sifted colimits

separately in each variable.

Example 5.5.2.4. Let C⊗ be a symmetric monoidal ∞-category. Assume that the underlying

∞-category C admits small colimits, and that the tensor product on C preserves small colimits

separately in each variable. Let O⊗ be an arbitrary small ∞-operad, so that AlgO(C) inherits

a symmetric monoidal structure (given by pointwise tensor product). The ∞-category AlgO(C)

itself admits small colimits (Corollary 3.2.3.3), but the tensor product on AlgO(C) generally does

not preserve colimits in each variable. However, it does preserve sifted colimits separately in

each variable: this follows from Proposition 3.2.3.1. Consequently, AlgO(C) is a sifted-complete

symmetric monoidal ∞-category.

The main existence result we will need is the following:

Theorem 5.5.2.5. Let M be a manifold and let q : C⊗ → N(Fin∗) be a sifted-complete symmetric

monoidal ∞-category. For every algebra object A ∈ AlgEM (C), the restriction A|N(Disk(M))⊗

admits an operadic left Kan extension to N(U(M)⊗).

Assuming Theorem 5.5.2.5 for the moment, we can give the definition of topological chircal

homology.

Definition 5.5.2.6. Let M be a manifold and let C⊗ be a sifted-complete symmetric monoidal∞-

category. We let
∫

: AlgEM (C)→ AlgN(U(M))(C) be the functor given by restriction to N(Disk(M))⊗

followed by operadic left Kan extension along the inclusion N(Disk(M))⊗ → N(U(M)⊗). If A ∈
AlgEM (C) and U is an open subset of M , we will denote the value of

∫
(A) on the open set U ⊆M

by
∫
U A ∈ C. We will refer to

∫
U A as the topological chiral homology of U with coefficients in A.

Remark 5.5.2.7. To describe the content of Definition 5.5.2.6 more concretely, it is useful to

introduce a bit of notation. If M is a manifold, we let Disj(M) denote the partially ordered

subset of U(M) spanned by those open subsets U ⊆ M which are homeomorphic to S × Rk for
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some finite set S. In the situation of Definition 5.5.2.6, the algebra object A determines a functor

θ : N(Disj(M))→ C, given informally by the formula

V1 ∪ · · · ∪ Vn 7→ A(V1)⊗ · · · ⊗A(Vn)

(here the Vi denote pairwise disjoint open disks in M). The topological chiral homology
∫
M A ∈ C

is then given by the colimit of the diagram θ.

Example 5.5.2.8. Let U ⊆M be an open subset homeomorphic to Euclidean space. Then there

is a canonical equivalence A(U) '
∫
U A.

Remark 5.5.2.9. Suppose that we have a map of ∞-operads ψ : E⊗M → O⊗, where O⊗ is some

other ∞-operad. Let A ∈ AlgO(C). Then we will abuse notation by denoting the topological

chiral homology
∫
M (ψ◦A) simply by

∫
M A. This abuse is consistent with the notation of Definition

4.8.3.5 in the following sense: if A ∈ AlgEM (C), then the topological chiral homology
∫
U A of U with

coefficients in A is equivalent to the topological chiral homology
∫
U (A|E⊗U ) of U with coefficients in

the induced EU -algebra.

Example 5.5.2.10. Let A ∈ AlgBTop(k)(C). Then Remark 5.5.2.9 allows us to define the topological

chiral homology
∫
M A of any k-manifold with coefficients in A. Similarly, if A ∈ AlgESm

(C) (see

Example 5.4.2.18), then
∫
M A is defined for any smooth k-manifold M . Many other variations

on this theme are possible: roughly speaking, if A is an Ek-algebra object of C equipped with a

compatible action of some group G mapping to Top(k), then
∫
M A is well-defined if we are provided

with a reduction of the structure group of M to G.

In order to prove Theorem 5.5.2.5 (and to establish the basic formal properties of topological

chiral homology), we need to have good control over colimits indexed by partially ordered sets of

the form Disj(M), where M is a manifold (see Remark 5.5.2.7). We will obtain this control by

introducing a less rigid version of the ∞-category N(Disj(M)), where we allow open disks in M to

“move”.

Definition 5.5.2.11. Fix an integer k ≥ 0. We let Man(k) denote the topological category whose

objects are k-manifolds, with morphism spaces given by MapMan(k)(N,M) = Emb(N,M). If M is

a k-manifold, we let D(M) denote the full subcategory of the ∞-category N(Man(k))/M spanned

by those objects of the form j : N → M , where N is homeomorphic to S ×Rk for some finite set

S.

Remark 5.5.2.12. An object of the ∞-category D(M) can be identified with a finite collection

of open embeddings {ψi : Rk ↪→ M}1≤i≤n having disjoint images. Up to equivalence, this object

depends only on the sequence of images (ψ1(Rk), . . . , ψn(Rk)), which we can identify with an object

of the category Disj(M). However, the morphisms in these two categories are somewhat different:
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a morphism in D(M) is given by a diagram∐
1≤i≤m Rk

{φi} %%

//
∐

1≤j≤n Rk

{ψj}yy
M

which commutes up to (specified) isotopy, which does not guarantee an inclusion of images⋃
φi(R

k) ⊆
⋃
ψj(R

k). Nevertheless, there is an evident functor γ : N(Disj(M)) → D(M),

defined by choosing a parametrization of each open disk in M (up to equivalence, the functor γ is

independent of these choices).

The fundamental result we will need is the following:

Proposition 5.5.2.13. Let M be a k-manifold. Then:

(1) The functor γ : N(Disj(M))→ D(M), described in Remark 5.5.2.12, is left cofinal.

(2) Let Disj(M)nu denote the subcategory of Disj(M) whose objects are nonempty open sets U ∈
Disj(M) and whose morphisms are inclusions U ↪→ V such that the induced map π0U → π0V

is surjective. If M is connected, then the induced functor N(Disj(M)nu) → D(M) is left

cofinal.

The second assertion of Proposition 5.5.2.13 will require the following technical result:

Lemma 5.5.2.14. Let M be a connected manifold, let S be a finite subset of M , and let Disj(M)nu
S

denote the full subcategory of Disj(M)nu spanned by those objects V ∈ Disj(M)nu such that S ⊆ V .

Then the simplicial set N(Disj(M)nu) is weakly contractible.

Proof. For every object V ∈ Disj(M)nu
S , let ψ(V ) denote the subset of Ran(M) consisting of those

subsets T with the following properties:

(i) We have inclusions S ⊆ T ⊆ V .

(ii) The map T → π0V is surjective.

For every point T ∈ Ran(M)S , let CT denote the full subcategory of Disj(M)nu
S spanned by

those objects V such that T ∈ ψ(V ). Each of the category C
op
T is filtered (for every finite collection

V1, . . . , Vn ∈ CT , we can choose V ∈ CT such that V ⊆
⋂
Vi and each of the maps π0V → π0Vi is

surjective: namely, take V to be a union of sufficiently small open disks containing the points of T ).

It follows from Theorem A.3.1 that the Kan complex Sing Ran(M)S is equivalent to the homotopy

colimit of the diagram {ψ(V )}V ∈Disk(M)nu
S

. For each V ∈ Disj(M)nu
S , write V as a disjoint union of

open disks U1 ∪ . . . ∪ Um. Then ψ(V ) is homeomorphic to a product
∏

1≤i≤m Ran(Um)S∩Um , and

is therefore weakly contractible by Lemmas 5.5.1.8 and 5.5.1.6. It follows that the Kan complex

Sing(Ran(M)S) is weakly homotopy equivalent to the nerve of the category Disj(M)nu. The desired

result now follows from the weak contractiblity of Sing Ran(M)S (Lemmas 5.5.1.8 and 5.5.1.6).
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Proof of Proposition 5.5.2.13. We first give the proof of (1). Let S = {1, . . . , n}, let U = S ×Rk,

and let ψ : U → M be an open embedding corresponding to an object of D(M). According

to Theorem HTT.4.1.3.1 , it will suffice to show that the ∞-category C = N(Disj(M)) ×D(M)

D(M)ψ/ is weakly contractible. We observe that the projection map C → N(Disj(M)) is a left

fibration, associated to a functor χ : N(Disj(M)) → S which carries each object V ∈ Disj(M) to

the homotopy fiber of the map of Kan complexes Sing Emb(U, V ) → Sing Emb(U,M). According

to Proposition HTT.3.3.4.5 , it will suffice to show that the colimit lim−→(χ) is contractible. Since

colimits in S are universal, it will suffice to show that Sing Emb(U,M) is a colimit of the diagram

{Sing Emb(U, V )}V ∈Disj(M). Using Theorem HTT.6.1.3.9 and Remark 5.4.1.11, we are reduced to

showing that Sing Conf(S,M) is a colimit of the diagram {Sing Conf(S, V )}V ∈Disj(M). According

to Theorem A.3.1, it will suffice to show that for every injective map j : S ↪→ M , the partially

ordered set Disj(M)S = {V ∈ Disj(M) : j(S) ⊆ V } has weakly contractible nerve. This is clear,

since Disj(M)opS is filtered: every open neighborhood of j(S) contains a union of sufficiently small

open disks around the points {j(s)}s∈S .

The proof of (2) is identical except for the last step: we must instead show that that for every

injective map j : S ↪→ M , the category Disj(M)nu
S = {V ∈ Disj(M)nu : j(S) ⊆ V } has weakly

contractible nerve, which follows from Lemma 5.5.2.14.

The advantage of the ∞-category D(M) over the more rigid ∞-category N(Disj(M)) is sum-

marized in the following result:

Proposition 5.5.2.15. For every manifold M , the ∞-category D(M) is sifted.

For later use, it will be convenient to prove a slightly more general form of Proposition 5.5.2.15.

Let π : M̃ → M be a covering map between manifolds whose fibers are finite. Since any finite

covering of a disk is homeomorphic to a disjoint union of disks, the construction U 7→ π−1U

determines a functor D(M)→ D(M̃). When M̃ = M
∐
M , this can be identified with the diagonal

map D(M) → D(M)×D(M). Proposition 5.5.2.15 is therefore an immediate consequence of the

following:

Proposition 5.5.2.16. Let π : M̃ → M be a covering map between manifolds which has finite

fibers. Then the induced map π−1 : D(M)→ D(M̃) is left cofinal.

Proof. We have a commutative diagram

N(Disj(M))

γ

xx

θ

&&

D(M)
π−1

// D(M̃),

where γ is left cofinal by virtue of Proposition 5.5.2.13. It will therefore suffice to show that θ

is left cofinal (Proposition HTT.4.1.1.3 ). Fix an object φ : U → M̃ of D(M̃). According to
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Theorem HTT.4.1.3.1 , it will suffice to show that the ∞-category C = D(M̃)φ/×D(M̃)
N(Disj(M))

is weakly contractible. There is an evident left fibration C → N(Disj(M)), classified by a functor

χ : N(Disj(M))→ S which carries an object V ∈ Disj(M) to the homotopy fiber of the map

Sing(Emb(U, π−1V ))→ Sing(Emb(U, M̃))

over the vertex given by (φ, ψ). Using Proposition HTT.3.3.4.5 , we can identify the weak homo-

topy type of C with the colimit lim−→(χ) ∈ S. Consequently, it will suffice to show that lim−→(χ) is

contractible. Since colimits in S are universal, it will suffice to show that Sing(Emb(U, M̃)) is a

colimit of the diagram χ′ : N(Disj(M))→ S given by the formula χ′(V ) = Sing(Emb(U, π−1V )).

Let S ⊆ U be a set which contains on point from each connected component of U and let

χ′′ : N(Disj(M))→ S be the functor given by the formula V 7→ Sing(Conf(S, π−1V )). There is an

evident restriction functor of diagrams χ′ → χ′′. Using Remark 5.4.1.11 and Theorem HTT.6.1.3.9 ,

we are reduced to proving that the canonical map lim−→(χ′′) → Sing(Conf(S, M̃)) is a homotopy

equivalence. In view of Theorem A.3.1, it will suffice to show that for every point j ∈ Conf(S, M̃) the

full subcategory Disj(M)j of Disj(M) spanned by those objects V ∈ Disj(M) such that j(S) ⊆ π−1V

is weakly contractible. This is clear, since Disj(M)opj is filtered.

Armed with Proposition 5.5.2.15, we are ready to prove that topological chiral homology is

well-defined.

Proof of Theorem5.5.2.5. According to Theorem 3.1.2.3, it will suffice to show that for each open

set U ⊆M the induced diagram

N(Disj(U))
θ→ D(U)

β→ EM
A→ C⊗

can be extended to an operadic colimit diagram in C⊗. Since θ is left cofinal (Proposition 5.5.2.13),

it suffices to show that A ◦ β can be extended to an operadic colimit diagram in C⊗. Choose a

q-coCartesian natural transformation from A ◦ β to a functor χ : D(()U) → C, given informally

by the formula χ({ψi : Vi ↪→ U}1≤i≤n) = A(ψ1) ⊗ · · · ⊗ A(ψn). In view of Proposition 3.1.1.15,

it will suffice to show that χ can be extended to an operadic colimit diagram in C. Since D(U)

is sifted (Proposition 5.5.2.15) and the tensor product on C preserves sifted colimits separately in

each variable, it suffices to show that χ can be extended to a colimit diagram in C (Proposition

3.1.1.16). This colimit exists because C admits sifted colimits and D(U) is sifted.

We close this section with the following result concerning the functorial behavior of topological

chiral homology:

Proposition 5.5.2.17. Let M be a manifold, and let F : C⊗ → D⊗ be a symmetric monoidal

functor. Assume C⊗ and D⊗ are sifted-complete and that the underlying functor F : C → D

preserves sifted colimits. Then:
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(1) If A ∈ AlgN(U(M))(C) has the property that A0 = A|N(Disk(M))⊗ is locally constant and A

is an operadic left Kan extension of A0, then FA is an operadic left Kan extension of FA0.

(2) For any locally constant algebra A ∈ AlgEM (C), the canonical map
∫
M FA→ F (

∫
M A) is an

equivalence in C.

Proof. We first prove (1). Since A0 is locally constant, we can assume that A0 factors as a com-

position N(Disk(M))⊗ → E⊗M
A′0→ C⊗ (Theorem 5.4.5.9). We wish to prove that for every object

U ∈ U(M), the diagram FA exhibits FA(U) ∈ D as an operadic colimit of the composite diagram

Disj(M)
α→ D(M)

β→ E⊗M
A′0→ C⊗

F→ D⊗ .

Since α is left cofinal (Proposition 5.5.2.13), it will suffice to show that FA exhibits FA(U) as an

operadic colimit of F ◦A′0 ◦ β.

Let p : C⊗ → N(Fin∗) exhibit C⊗ as a symmetric monoidal ∞-category, and let q : D⊗ →
N(Fin∗) exhibit D⊗ as a symmetric monoidal ∞-category. Choose a p-coCartesian natural trans-

formation α from A′0◦β to a map φ : D(M)→ C. Since F is a symmetric monoidal functor, F (α) is

a q-coCartesian natural transformation from F ◦A′0◦β to F ◦φ. It will therefore suffice to show that

FA exhibits FA(U) as a colimit of the diagram F ◦ φ in the ∞-category D (Propositions 3.1.1.15

and 3.1.1.16). Since F |C preserves sifted colimits and the ∞-category D(M) is sifted (Proposition

5.5.2.15), it suffices to show that A(U) is a colimit of the diagram φ. Using Propositions 3.1.1.15

and 3.1.1.16 again, we are reduced to proving that A(U) is an operadic colimit of the diagram

A′0 ◦ β, which (since α is left cofinal) follows from our assumption that A is an operadic left Kan

extension of A0. This completes the proof of (1). Assertion (2) is an immediate consequence.

5.5.3 Properties of Topological Chiral Homology

Our goal in this section is to establish four basic facts about the theory of topological chiral

homology. In what follows, we will assume that C⊗ is a sifted-complete symmetric monoidal ∞-

category and M a topological manifold of dimension k.

(1) For a fixed algebra A ∈ AlgEM (C), the construction U 7→
∫
U A carries disjoint unions of open

subsets of M to tensor products in the ∞-category C (Theorem 5.5.3.1).

(2) For a fixed open set U ⊆M , the construction A 7→
∫
U A carries tensor products of EM -algebra

objects of C to tensor products in C (Theorem 5.5.3.2).

(3) If A ∈ AlgEM (C) arises from a family {Ax}x∈M of commutative algebra objects of C, then
∫
U A

can be identified with image in C of the colimit lim−→x∈U (Ax) ∈ CAlg(C) (Theorem 5.5.3.8).

(4) If k = 1 and M is the circle S1, then we can view an algebra object A ∈ AlgEM (C) as

an associative algebra object of C (equipped with an automorphism θ given by monodromy
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around the circle). In this case, the topological chiral homology
∫
M A can be identified with

the (θ-twisted) Hochschild homology of A, which is computed by an analogue of the usual

cyclic bar complex (Theorem 5.5.3.11).

We begin with assertion (1). The functor
∫

of Definition 5.5.2.6 carries AlgEM (C) into

AlgN(U(M))(C). Consequently, whenever U1, . . . , Um are disjoint open subsets of U ⊆M , we have a

multiplication map ∫
U1

A⊗ · · · ⊗
∫
Um

A→
∫
U
A.

Theorem 5.5.3.1. Let M be a manifold and C⊗ a sifted-complete symmetric monoidal ∞-

category. Then for every object A ∈ AlgEM (C) and every collection of pairwise disjoint open

subsets U1, . . . , Um ⊆M , the map∫
U1

A⊗ · · · ⊗
∫
Um

A→
∫
⋃
Ui

A

is an equivalence in C.

Proof. It follows from Proposition 5.5.2.13 that for each open set U ⊆ M , the topological chiral

homology
∫
U A is the colimit of a diagram ψU : D(()U) → C given informally by the formula

ψU (V1 ∪ . . . ∪ Vn) = A(V1)⊗ · · · ⊗A(Vn). Since each D(Ui) is sifted (Proposition 5.5.2.15) and the

tensor product on C preserves sifted colimits separately in each variable, we can identify the tensor

product
∫
U1
A⊗· · ·⊗

∫
Um

A with the colimit lim−→D(()U1)×...×D(()Un)
(ψU1⊗· · ·⊗ψUm). Let W =

⋃
Ui.

The tensor product functor ψU1 ⊗ · · · ⊗ ψUm can be identified with the pullback of ψW along the

evident map

α : D(U1)× · · · ×D(Um)→ D(W )

(V1 ⊆ U1, . . . , Vm ⊆ Um) 7→ V1 ∪ . . . ∪ Vm.

Consequently, we are reduced to proving that the α induces an equivalence

lim−→(α ◦ ψW )→ lim−→ψW .

It will suffice to show that α is left cofinal. This follows by applying Proposition HTT.4.1.1.3 to

the commutative diagram

N(Disj(U1)× . . .×Disj(Un)) //

��

D(U1)× . . .×D(Um)

α

��
N(Disj(W )) // D(W );

note that the horizontal maps are left cofinal by Proposition 5.5.2.13, and the map β is an isomor-

phism of simplicial sets.
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To formulate assertion (2) more precisely, suppose we are given a pair of algebras A,B ∈
AlgEM (C). Let

∫
(A),

∫
(B) ∈ AlgN(U(M))(C) be given by operadic left Kan extension. Then (

∫
(A)⊗∫

(B))|N(Disk(M))⊗ is an extension of (A⊗B)|N(Disk(M))⊗, so we have a canonical map
∫

(A⊗
B)→

∫
(A)⊗

∫
(B). We then have the following:

Theorem 5.5.3.2. Let M be a manifold and C⊗ a sifted-complete symmetric monoidal∞-category.

Then for every pair of locally constant algebras A,B ∈ AlgEM (C), the canonical map θ :
∫
M (A ⊗

B)→
∫
M A⊗

∫
M B is an equivalence in C.

We will deduce Theorem 5.5.3.2 from a more general result for covering spaces.

Construction 5.5.3.3. Let M be a k-manifold and let π : M̃ →M be a covering map with finite

fibers, so that we have ∞-operads p : E⊗M → N(Fin∗) and p̃ : E⊗
M̃
→ N(Fin∗). For every finite

set S equipped with an embedding j : Rk×S ↪→ M , the inverse image (Rk×S) ×M M̃ has the

form Rk×S̃, for some finite covering S̃ of S (since the space Rk is simply connected). Moreover,

there is an evident map j̃ : Rk×S̃ → M̃ . The construction (S∗, j) 7→ (S̃∗, j̃) determines a functor

U : E⊗M → E⊗
M̃

. The evident projections S̃ → S determine a natural transformation α : p̃ ◦ U → p,

which we can view as a map E⊗M ×∆1 → N(Fin∗).

Let q : C⊗ → N(Fin∗) be a symmetric monoidal ∞-category. Composition with U determines a

functor.

FunN(Fin∗)(E
⊗
M̃
,C⊗)

◦U→ FunN(Fin∗)(E
⊗
M × {0},C

⊗)

Since q is a coCartesian transformation, the natural transformation α it determines a functor

α! : FunN(Fin∗)(E
⊗
M × {0},C

⊗)→ FunN(Fin∗)(E
⊗
M × {1},C

⊗).

Composing these functors and restricting to AlgE
M̃

(C) ⊆ FunN(Fin∗)(E
⊗
M̃
,C⊗), we obtain a functor

π∗ : AlgE
M̃

(C)→ AlgEM (C).

Remark 5.5.3.4. Let π : M̃ →M and C⊗ be as in Construction 5.5.3.3. We can informally think

of an object A ∈ AlgE
M̃

(C) as a family of Ek-algebras Ay ∈ AlgEk(C), indexed by the points of M̃ .

In terms of this description, we can identify π∗A ∈ AlgEM (C) with the family given by

(π∗A)x =
⊗

π(y)=x

Ay.

Example 5.5.3.5. Let M be a manifold, let S be a finite set, and let C⊗ be a symmetric monoidal

∞-category. Let π : M × S → M denote the projection map, and let A ∈ AlgEM×S (C). Then

π∗A '
⊗

s∈S As, where {As}s∈S denotes the image of A under the equivalence

AlgEM×S (C) '
∏
s∈S

AlgEM (C)

of Example 5.4.5.4.
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Let π : M̃ → M be as in Construction 5.5.3.3. The construction U 7→ π−1U determines a

functors D(M) → D(M̃) and Disj(M)) → Disj(M̃). For any algebra object A ∈ AlgE
M̃

(C), the

composite functors

Disj(M)→ (E⊗M )act π∗A→ (C⊗)act → C

Disj(M)
π−1

→ Disj(M̃)→ (E⊗
M̃

)act A→ (C⊗)act → C

are homotopic to one another. We therefore obtain a canonical map
∫
M (π∗A) →

∫
M̃
A (provided

that both sides are defined).

Theorem 5.5.3.6. Let π : M̃ →M be a covering map between manifolds which has finite fibers, and

let C⊗ be a sifted-complete symmetric monoidal ∞-category. For any algebra object A ∈ AlgE
M̃

(C),

the canonical map ∫
M

(π∗A)→
∫
M̃
A

is an equivalence in C.

Proof. Proposition 5.5.2.13 allows us to identify
∫
M (π∗A) with the colimit of a diagram φ : D(M)→

(E⊗M )act π∗A→ (C⊗)act → C and
∫
M̃
A with the colimit of a diagram ψ : D(M̃)→ (E⊗

M̃
)act A→ (C⊗)act →

C. The desired result now follows from the observation that π−1 : D(M) → D(M̃) is left cofinal

(Proposition 5.5.2.16.

Proof of Theorem 5.5.3.2. Let A,B ∈ AlgEM (C). We may assume without loss of generality that

A and B are given by the restriction of an algebra C ∈ AlgEM∐
M

(C) (Example 5.4.5.4). We have

a commutative diagram

∫
M (A⊗B)

θ //

θ′′

&&

(
∫
M A)⊗ (

∫
M B)

θ′vv∫
M

∐
M C.

The map θ′ is an equivalence by Theorem 5.5.3.1, and the map θ′′ is an equivalence by Theorem

5.5.3.6 (see Example 5.5.3.5). It follows that θ is an equivalence, as desired.

The proof of assertion (3) is based on the following simple observation:

Lemma 5.5.3.7. Let M be a manifold and C an ∞-category which admits small colimits. Regard

C as endowed with the coCartesian symmetric monoidal structure (see §2.4.3). Then, for every

object A ∈ AlgEM (C), the functor
∫
A exhibits the topological chiral homology

∫
M A as the colimit

of the diagram A|N(Disk(M)) : N(Disk(M))→ C.



5.5. TOPOLOGICAL CHIRAL HOMOLOGY 981

Proof. Let χ : N(Disj(M))→ C be the functor given informally by the formula χ(U1 ∪ . . . ∪ Un) =

A(U1)
∐
· · ·

∐
A(Un), where the Ui are disjoint open disks in M . We observe that χ is a left

Kan extension of χ|N(Disk(M)), so that
∫
M A ' colimχ ' colim(χ|N(Disk(M))) (see Lemma

HTT.4.3.2.7 ).

Theorem 5.5.3.8. Let M be a manifold and C⊗ a sifted-complete symmetric monoidal∞-category.

Regard the Kan complex BM as the underlying ∞-category of the ∞-operad BqM , and let A ∈
AlgBM (C) so that

∫
M A is well-defined (see Remark 5.5.2.9). Composing A with the diagonal map

BM × N(Fin∗) → BqM , we obtain a functor ψ : BM → CAlg(C). Let A′ = colim(ψ) ∈ CAlg(C).

Then there is a canonical equivalence
∫
M A ' A′(〈1〉) in the ∞-category C.

Remark 5.5.3.9. Let A be as in the statement of Theorem 5.5.3.8. It follows from Theorem

2.4.3.18 that A is determined by the functor ψ, up to canonical equivalence. In other words, we

may identify A ∈ AlgBM (C) with a family of commutative algebra objects of C parametrized by

the Kan complex BM (which is homotopy equivalent to Sing(M), by virtue of Remark 5.4.5.2).

Theorem 5.5.3.8 asserts that in this case, the colimit of this family of commutative algebras is

computed by the formalism of topological chiral homology.

Proof of Theorem 5.5.3.8. Let φ : Disk(M)⊗ × Fin∗ → Disk(M)⊗ be the functor given by the

construction

((U1, . . . , Um), 〈n〉) 7→ (U ′1, . . . , U
′
mn),

where U ′mi+j = Uj . Composing φ with the map N(Disk(M))⊗ → BqM
A→ C⊗, we obtain a locally

constant algebra object A ∈ AlgN(Disk(M))(CAlg(C)), where CAlg(C) is endowed with the symmetric

monoidal structure given by pointwise tensor product (see Example 3.2.4.4). Since the symmetric

monoidal structure on CAlg(C) is coCartesian (Proposition 3.2.4.7), the colimit lim−→(ψ) can be

identified with the topological chiral homology
∫
M A ∈ CAlg(C). Let θ : CAlg(C)⊗ → C⊗ denote

the forgetful functor. We wish to prove the existence of a canonical equivalence θ(
∫
M A) '

∫
M θ(A).

In view of Proposition 5.5.2.17, it suffices to observe that θ is a symmetric monoidal functor and

that the underlying functor CAlg(C)→ C preserves sifted colimits (Proposition 3.2.3.1).

If M is an arbitrary k-manifold, we can view an EM -algebra object of a symmetric monoidal

∞-category C as a family of Ek-algebras {Ax}x∈M parametrized by the points of M . In general,

this family is “twisted” by the tangent bundle of M . In the special case where M = S1, the

tangent bundle TM is trivial, so we can think of an EM -algebra as a family of associative algebras

parametrized by the circle: that is, as an associative algebra A equipped with an automorphism σ

(given by monodromy around the circle). Our final goal in this section is to show that in this case,

the topological chiral homology
∫
S1 A coincides with the Hochschild homology of the A-bimodule

corresponding to σ.
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Fix an object of D(S1) corresponding to a single disk ψ : R ↪→ S1. An object of D(S1)ψ/ is

given by a diagram

R

ψ   

j // U

ψ′~~
S1

which commutes up to isotopy, where U is a finite union of disks. The set of components π0(S1 −
ψ′(U)) is finite (equal to the number of components of U). Fix an orientation of the circle. We

define a linear ordering ≤ on π0(S1−ψ′(U)) as follows: if x, y ∈ S1 belong to different components

of S1 − ψ′(U), then we write x < y if the three points (x, y, ψ′(j(0))) are arranged in a clockwise

order around the circle, and y < x otherwise. This construction determines a functor from D(S1)ψ/
to (the nerve of) the category of nonempty finite linearly ordered sets, which is equivalent to ∆op.

A simple calculation yields the following:

Lemma 5.5.3.10. Let M = S1, and let ψ : R ↪→ S1 be any open embedding. Then the above

construction determines an equivalence of ∞-categories θ : D(M)ψ/ → N(∆op).

We can now formulate the relationship between Hochschild homology and topological chiral

homology precisely as follows:

Theorem 5.5.3.11. Let q : C⊗ → N(Fin∗) be a sifted-complete symmetric monoidal category. Let

A ∈ AlgES1
(C) be an algebra determining a diagram χ : D(S1)→ C whose colimit is

∫
S1 A. Choose

an open embedding ψ : R ↪→ S1. Then the restriction χ|D(S1)ψ/ is equivalent to a composition

D(S1)ψ/
θ→ N(∆op)

B•→ C,

where θ is the equivalence of Lemma 5.5.3.10 and B• is a simplicial object of C. Moreover, there

is a canonical equivalence
∫
S1 A ' |B•|.

Lemma 5.5.3.12. Let C be a nonempty ∞-category. Then C is sifted if and only if, for each object

C ∈ C, the projection map θC : CC/ → C is left cofinal.

Proof. According to Theorem HTT.4.1.3.1 , the projection map θC is left cofinal if and only if,

for every object D ∈ C, the ∞-category CC/×C CD/ is weakly contractible. Using the evident

isomorphism CC/×C CD/ ' C×(C×C)(C×C)(C,D)/, we see that this is equivalent to the left cofinality

of the diagonal map C→ C×C (Theorem HTT.4.1.3.1 ).

Proof of Theorem 5.5.3.11. The first assertion follows from Lemma 5.5.3.10. The second follows

from the observation that D(S1)ψ/ → D(S1) is a left cofinal map, by virtue of Lemma 5.5.3.12 and

Proposition 5.5.2.15.
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Remark 5.5.3.13. In the situation of Theorem 5.5.3.11, let us view A as an associative algebra

object of C equipped with an automorphism σ. We can describe the simplicial object B• informally

as follows. For each n ≥ 0, the object Bn ∈ C can be identified with the tensor power A⊗(n+1). For

0 ≤ i < n, the ith face map from Bn to Bn−1 is given by the composition

Bn ' A⊗i ⊗ (A⊗A)⊗A⊗(n−1−i) → A⊗i ⊗A⊗A⊗(n−1−i) ' Bn−1,

where the middle map involves the multiplication on A. The nth face map is given instead by the

composition

Bn ' (A⊗A⊗(n−1))⊗A ' A⊗ (A⊗A⊗n−1) ' (A⊗A)⊗A⊗n−1 → A⊗A⊗n−1 ' Bn−1.

Example 5.5.3.14. Let E denote the homotopy category of the ∞-operad BTop(1)⊗, so that

N(E) is the ∞-operad describing associative algebras with involution (see Example 5.4.2.5). Then

N(E) contains a subcategory equivalent to the associative ∞-operad Assoc⊗. Since the circle S1

is orientable, the canonical map E⊗
S1 → BTop(1)⊗ → N(E) factors through this subcategory. We

obtain by composition a functor Alg(C) → AlgES1
(C) for any symmetric monoidal ∞-category C.

If C admits sifted colimits and the tensor product on C preserves sifted colimits, we can then define

the topological chiral homology
∫
S1 A. It follows from Theorem 5.5.3.11 that this topological chiral

homology can be computed in very simple terms: namely, it is given by the geometric realization

of a simplicial object B• of C consisting of iterated tensor powers of the algebra A. In fact, in this

case, we can say more: the simplicial object B• can be canonically promoted to a cyclic object of

C. The geometric realization of this cyclic object provides the usual bar resolution for computing

the Hochschild homology of A.

5.5.4 Factorizable Cosheaves and Ran Integration

Let M be a manifold and let A be an EM -algebra object of a sifted-complete symmetric monoidal

∞-category C⊗. We refer to the object
∫
U A ∈ C introduced in Definition 5.5.2.6 as the topological

chiral homology of U with coefficients in A, which is intended to suggest that (like ordinary homol-

ogy) it enjoys some form of codescent with respect to open coverings in M . However, the situation

is more subtle: the functor U 7→
∫
U A is not generally a cosheaf on the manifold M itself (except in

the situation described in Lemma 5.5.3.7). However, it can be used to construct a cosheaf on the

Ran space Ran(M) introduced in §5.5.1. In other words, we can view topological chiral homology

as given by the procedure of integration over the Ran space (Theorem 5.5.4.14).

We begin with a review of the theory of cosheaves.

Definition 5.5.4.1. Let C be an∞-category, X a topological space, and U(X) the partially ordered

set of open subsets of X. We will say that a functor F : N(U(X)) → C is a cosheaf on X if, for

every object C ∈ C, the induced map

FC : N(U(X))op
F→ Cop

eC→ S
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is a sheaf on X, where eC : Cop → S denotes the functor represented by C. We will say that a

cosheaf F : N(U(X)) → C is hypercomplete if each of the sheaves FC ∈ Shv(X) is hypercomplete.

If X is the Ran space of a manifold M , we will say that F is constructible if each of the sheaves FC

is constructible in the sense of Definition 5.5.1.11.

Remark 5.5.4.2. Let X be a topological space. It follows from Proposition 5.5.1.15 that a functor

F : N(U(X)) → C is a hypercomplete cosheaf on X if and only if, for every open set U ⊆ X and

every functor f : J→ U(U) with the property that Jx = {J ∈ J : x ∈ f(J)} has weakly contractible

nerve for each x ∈ U , the functor F exhibits F(U) as a colimit of the diagram {F(f(J))}J∈J.
In particular, if g : C→ D is a functor which preserves small colimits, then composition with g

carries hypercomplete cosheaves to hypercomplete cosheaves. Similarly, if C = P(E) for some small

∞-category E, a functor F : N(U(X)) → C is a hypercomplete cosheaf if and only if, for every

E ∈ E, the functor U 7→ F(U)(E) determines a cosheaf of spaces N(U(X))→ S.

Our first goal in this section is to show that, if M is a manifold, then we can identify EM -

algebras with a suitable class of cosheaves on the Ran space Ran(M). To describe this class more

precisely, we need to introduce a bit of terminology.

Definition 5.5.4.3. Let M be a manifold, and let U be a subset of Ran(M). The support SuppU

of U is the union
⋃
S∈U S ⊆M . We will say that a pair of subsets U, V ⊆ Ran(M) are independent

if SuppU ∩ SuppV = ∅.

Definition 5.5.4.4. If U and V are subsets in Ran(M), we let U ? V denote the set {S ∪ T : S ∈
U, T ∈ V } ⊆ Ran(M).

Remark 5.5.4.5. If U is an open subset of Ran(X), then SuppU is an open subset of X.

Example 5.5.4.6. If {Ui}1≤i≤n is a nonempty finite collection of disjoint open subsets of a manifold

M , then the open set Ran({Ui}) ⊆ Ran(M) defined in §5.5.1 can be identified with Ran(U1) ?

Ran(U2) ? · · · ? Ran(Un).

Remark 5.5.4.7. If U and V are open in Ran(M), then U ? V is also open in Ran(M).

Remark 5.5.4.8. We will generally consider the set U ? V only in the case where U and V are

independent subsets of Ran(M). In this case, the canonical map U × V → U ? V given by the

formula (S, T ) 7→ S ∪ T is a homeomorphism.

Definition 5.5.4.9. Let M be a manifold. We define a category Fact(M)⊗ as follows:

(1) The objects of Fact(M)⊗ are finite sequences (U1, . . . , Un) of open subsets Ui ⊆ Ran(M).

(2) A morphism from (U1, . . . , Um) to (V1, . . . , Vn) in FactM is a surjective map α : 〈m〉 → 〈n〉 in

Fin∗ with the following property: for 1 ≤ i ≤ n, the sets {Uj}α(j)=i are pairwise independent

and ?α(j)=iUj ⊆ Vi.
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We let Fact(M) ⊆ Fact(M)⊗ denote the fiber product Fact(M)⊗ ×Fin∗ {〈1〉}, so that Fact(M) is

the category whose objects are open subsets of Ran(M) and whose morphisms are inclusions of

open sets.

The ∞-category N(Fact(M)⊗) is an ∞-operad. Moreover, there is a canonical map of ∞-

operads Ψ : N(Disk(M))⊗nu → N(Fact(M)⊗), given on objects by the formula (U1, . . . , Un) 7→
(Ran(U1), . . . ,Ran(Un)).

We can now state our main result:

Theorem 5.5.4.10. Let M be a manifold and let C⊗ be a symmetric monoidal ∞-category. As-

sume that C admits small colimits and that the tensor product on C preserves small colimits sep-

arately in each variable. Then the operation of operadic left Kan extension along the inclusion

Ψ : N(Disk(M))⊗nu → N(Fact(M)⊗) determines a fully faithful embedding F : Algnu
N(Disk(M))(C) →

AlgN(Fact(M))(C). Moreover, the essential image of the full subcategory Algnu,loc
Disk(M)(C) spanned by

the locally constant objects of Algu
N(Disk(M))(C) is the full subcategory of AlgFact(M)(C) spanned by

those objects A satisfying the following conditions:

(1) The restriction of A to N(Fact(M)) is a constructible cosheaf on Ran(M), in the sense of

Definition 5.5.4.1.

(2) Let U, V ⊆ Ran(M) be independent open sets. Then the induced map A(U)⊗A(V )→ A(U?V )

is an equivalence in C.

Remark 5.5.4.11. In view of Proposition 5.4.5.15, we can formulate Theorem 5.5.4.10 more infor-

mally as follows: giving a nonunital EM -algebra object of the ∞-category C is equivalent to giving

a constructible C-valued cosheaf F on the Ran space Ran(M), with the additional feature that

F(U ? V ) ' F(U)⊗ F(V ) when U and V are independent subsets of Ran(M). Following Beilinson

and Drinfeld, we will refer a cosheaf with this property as a factorizable cosheaf on Ran(M).

Remark 5.5.4.12. If M is a manifold, let Ran+(M) denote the collection of all finite subsets of

M , so that Ran+(M) = Ran(M) ∪ {∅}. We regard Ran+(M) as a topological space, taking as a

basis those subsets of the form Ran+(U) where U is an open subset of M . Note that this topology

is usually not Hausdorff: for example, ∅ ∈ Ran+(M) belongs to every nonempty open subset of M .

It is possible to obtain a unital analogue of the easy part of Theorem 5.5.4.10: the formation of

pperadic left Kan extensions embeds the ∞-category AlgN(Disk(M))(C) as a full subcategory of an

∞-category of factorizable cosheaves on Ran+(M). However, we do not know if there if there is a

simple description of the essential image of the locally constant N(Disk(M))-algebras.

The proof of Theorem 5.5.4.10 rests on the following basic calculation:

Lemma 5.5.4.13. Let M be a k-manifold, let D ∈ (E⊗M )nu be an object (corresponding to a

nonempty finite collection of open embeddings {ψi : Rk →M}1≤i≤m), let χ : N(Disj(M)nu)→ S be
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a functor classified by the left fibration N(Disj(M)nu) ×E⊗M ((E⊗M )nu)act
D/ (here Disj(M)nu is defined

as in Proposition 5.5.2.13), and let χ : N(Fact(M))→ S be a left Kan extension of χ. Then χ is a

hypercomplete S-valued cosheaf on Ran(M).

Proof. Recall that a natural transformation of functors α : F → G from an ∞-category C to S is

said to be Cartesian if, for every morphism C → D in C, the induced diagram

F (C) //

��

F (D)

��
G(C) // G(D)

is a pullback square in S. Let D′ be the image of D in BTop(k)⊗, and let χ′ : N(Disj(M)nu)→ S be

a functor classified by the left fibration N(Disj(M)nu)×BTop(k)⊗ (BTop(k)⊗)act
/D′ . There is an evident

natural transformation of functors β : χ→ χ′, which induces a natural transformation β : χ→ χ′.

It is easy to see that β is a Cartesian natural transformation. Let S = {1, . . . ,m}, so that we can

identify χ′ with the functor which assigns to V ∈ Disj(M)nu the summand Sing Emb′(S×Rk, V ) ⊆
Sing Emb(S × Rk, V ) consisting of those open embeddings j : S × Rk → V which are surjective

on connected components. Let χ′′ : N(Disj(M)nu) → S be the functor given by the formula

V 7→ Sing Conf ′(S, V ), where Sing Conf ′(S, V ) ⊆ Sing Conf(S, V ) is the summand consisting of

injective maps i : S → V which are surjective on connected components. We have an evident

natural transformation of functors γ : χ′ → χ′′. Using Remark 5.4.1.10, we deduce that γ is

Cartesian, so that α = γ ◦ β is a Cartesian natural transformation from χ to χ′′.

Let φ : Conf(S,M) → Ran(M) be the continuous map which assigns to each configuration

i : S → M its image i(S) ⊆ M (so that φ exhibits Conf(S,M) as a finite covering space of

Ranm(M) ⊆ Ran(M)). Let χ′′ : N(Fact(M)) → S be the functor given by the formula U 7→
Sing(φ−1U). We observe that χ′′ is canonically equivalent to χ′′. We claim that χ′′ is a left Kan

extension of χ′′. To prove this, it suffices to show that for every open subset U ⊆ Ran(M), the

map χ′′ exhibits Sing(φ−1U) as a colimit of the diagram {χ′′(V )}V ∈J, where J ⊆ Disj(M)nu is the

full subcategory spanned by those unions of disks V = U1 ∪ . . .∪Un such that Ran({Ui}) ⊆ U . For

each x ∈ φ−1(U), let Jx denote the full subcategory of J spanned by those open sets V such that

the map x : S → M factors through a map S → V which is surjective on connected components.

In view of Theorem A.3.1, it will suffice to show that Jx has weakly contractible nerve. In fact, we

claim that Jopx is filtered: this follows from the observation that every open neighborhood of x(S)

contains an open set of the form U1 ∪ . . .∪Um, where the Ui are a collection of small disjoint disks

containing the elements of x(S).

The map α induces a natural transformation α : χ → χ′′. Using Theorem HTT.6.1.3.9 , we

deduce that α is also a Cartesian natural transformation. We wish to show that χ satisfies the

criterion of Remark 5.5.4.2. In other words, we wish to show that if U ⊆ Ran(M) is an open

subset and f : I → Fact(M) is a diagram such that each f(I) ⊆ U and the full subcategory
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Ix = {I ∈ I : x ∈ f(I)} has weakly contractible nerve for each x ∈ U , then χ exhibits χ(U) as a

colimit of the diagram {χ(f(I))}I∈I. By virtue of Theorem HTT.6.1.3.9 , it will suffice to show that

χ′′ exhibits χ′′(U) as a colimit of the diagram {χ′′(f(I))}I∈I. This is an immediate consequence of

Theorem A.3.1.

Proof of Theorem 5.5.4.10. The existence of the functor F follows from Corollary 3.1.3.5. Let A0

be a nonunital N(Disk(M))⊗-algebra object of C. Using Corollary 3.1.3.5, Proposition 3.1.1.15,

and Proposition 3.1.1.16, we see that A = F (A0) can be described as an algebra which assigns to

each U ⊆ Ran(M) a colimit of the diagram

χU : N(Disk(M))⊗ ×N(Fact(M)⊗) N(Fact(M)⊗)act
/U → C .

The domain of this functor can be identified with the nerve of the category CU whose objects

are finite collections of disjoint disks V1, . . . , Vn ⊆ M such that Ran({Vi}) ⊆ U . In particular, if

U = Ran(U ′) for some open disk U ′ ⊆ M , then the one-element sequence (U ′) is a final object of

CU . It follows that the canonical map A0 → A|N(Disk(M))⊗ is an equivalence, so that the functor

F is fully faithful.

We next show that if A = F (A0) for some A0 ∈ Algloc,nu
N(Disk(M))(C), then A satisfies conditions (1)

and (2). To prove that A satisfies (2), we observe that if U, V ⊆ Ran(M) are independent then we

have a canonical equivalence CU?V ' CU ?CV . Under this equivalence, the functor χU?V is given by

the tensor product of the functors χU and χV . The map A(U)⊗A(V )→ A(U ? V ) is a homotopy

inverse to the equivalence

lim−→
N(CU?V )

χU?V ' lim−→
N(CU )×N(CV )

χU ⊗ χV → ( lim−→
N(CU )

χU )⊗ ( lim−→
N(CV )

χV )

provided by our assumption that the tensor product on C preserves small colimits separately in

each variable.

We next show that A|N(Fact(M)) is a hypercomplete cosheaf on Ran(M). By virtue of Propo-

sition 5.4.5.15, we can assume that A0 factors as a composition

Disk(M)⊗nu → (E⊗M )nu
A′0→ C⊗ .

Let D be the subcategory of (E⊗M )nu spanned by the active morphisms. As explained in §2.2.4, the

∞-category D admits a symmetric monoidal structure and we may assume that A′0 factors as a

composition

(E⊗M )nu → D⊗
A′′0→ C⊗,

where A′′0 is a symmetric monoidal functor. Corollary 4.8.1.12 implies that the P(D) inherits a

symmetric monoidal structure, and that A′′0 factors (up to homotopy) as a composition

D⊗ → P(D)⊗
T→ C⊗
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where T is a symmetric monoidal functor such that the underlying functor T〈1〉 : P(D)→ C preserves

small colimits. Let B0 denote the composite map

Disk(M)⊗nu → (E⊗M )nu → D⊗ → P(D)⊗,

and let B ∈ AlgFact(M)(P(D)) be an operadic left Kan extension of B0, so that A0 ' T ◦ B0 and

A ' T ◦ B. Since T〈1〉 preserves small colimits, it will suffice to show that B|N(Fact(M)) is a

hypercomplete P(D)-valued cosheaf on Ran(M) (Remark 5.5.4.2). Fix an object D ∈ D, and let

eD : P(D) → S be the functor given by evaluation on D. In view of Remark 5.5.4.2, it will suffice

to show that eD ◦ (B|N(Fact(M))) is a hypercomplete S-valued cosheaf on Ran(M). The desired

result is now a translation of Lemma 5.5.4.13.

To complete the proof that A satisfies (1), it suffices to show that for each C ∈ C, the functor

U 7→ MapC(A(U), C) satisfies condition (∗) of Proposition 5.5.1.14. Let U1, . . . , Un ⊆M be disjoint

disks containing smaller disks V1, . . . , Vn ⊆ M ; it will suffice to show that the corestriction map

A(Ran({Vi})) → A(Ran({Ui})) is an equivalence in C. Since A satisfies (2), we can reduce to the

case where n = 1. In this case, we have a commutative diagram

A0(V1)
β //

��

A0(U1)

��
A(Ran(V1))

β′ // A(Ran(U1)).

The vertical maps are equivalences (since F is fully faithful), and the map β is an equivalence

because A0 is locally constant.

Now suppose that A ∈ AlgN(Fact(M))(C) satisfies conditions (1) and (2); we wish to prove that

A lies in the essential image of F |Algloc,nu
N(Disk(M))(C). Let A0 = A|N(Disk(M))⊗. Since A satisfies

(1), Proposition 5.5.1.14 guarantees that A0 is locally constant; it will therefore suffice to show

that the canonical map F (A0) → A is an equivalence in the ∞-category AlgN(Fact(M))(C). It

will suffice to show that for every open set U ⊆ Ran(M) and every object C ∈ C, the induced

map αU : MapC(A(U), C) → MapC(F (A0)(U), C) is a homotopy equivalence of spaces. Since A

and F (A0) both satisfy condition (1), the collection of open sets U such that αU is a homotopy

equivalence is stable under unions of hypercovers. Consequently, Remark 5.5.1.4 allows us to assume

that U = Ran(V1) ? · · · ? Ran(Vn) for some collection of disjoint open disks V1, . . . , Vn ⊆ M . We

claim that β : F (A0)(U)→ A(U) is an equivalence. Since A and F (A0) both satisfy (2), it suffices

to prove this result after replacing U by Ran(Vi) for 1 ≤ i ≤ n. We may therefore assume that

U = Ran(V ) for some open disk V ⊆M . In this case, we have a commutative diagram

A0(V )
β′′

$$
F (A0)(U)

β //

β′
99

A(U).
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The map β′ is an equivalence by the first part of the proof, and β′′ is an equivalence by construction.

The two-out-of-three property shows that β is also an equivalence, as desired.

The construction of topological chiral homology is quite closely related to the left Kan extension

functor F studied in Theorem 5.5.4.10. Let M be a manifold, let A ∈ AlgN(Disk(M))(C), and let

A0 = A|N(Disk(M))⊗nu. Evaluating Ψ(A0) on the Ran space Ran(M), we obtain an object of C

which we will denote by
∫ nu
M A. Unwinding the definition, we see that

∫ nu
M A can be identified

with the colimit lim−→V ∈Disj(M)nu
χ(V ), where χ : N(Disj(M)) → C is the functor given informally

by the formula χ(U1 ∪ . . . ∪ Un) = A(U1)⊗ · · · ⊗ A(Un). The topological chiral homology
∫
M A is

given by the colimit lim−→V ∈Disj(M)
χ(V ). The inclusion of Disj(M)nu into Disj(M) induces a map∫ nu

M A→
∫
M A. We now have the following result:

Theorem 5.5.4.14. Let M be a manifold and C⊗ a symmetric monoidal ∞-category. Assume

that C admits small colimits and that the tensor product on C preserves colimits separately in each

variable, and let A ∈ AlgN(Disk(M))(C). Suppose that M is connected and that A is locally constant.

Then the canonical map
∫ nu
M A→

∫
M A is an equivalence in C.

Proof. The map A determines a diagram ψ : N(Disj(M)) → C, given informally by the for-

mula ψ(U1 ∪ . . . ∪ Un) = A(U1) ⊗ · · · ⊗ A(Un). We wish to prove that the canonical map

θ : lim−→(ψ|N(Disj(M)nu)) → lim−→(ψ) is an equivalence. Since A is locally constant, we can use

Theorem 5.4.5.9 to reduce to the case where A factors as a composition Disk(M)⊗ → EM
A′→ C⊗ .

In this case, ψ factors as a composition N(Disj(M)) → D(M)
ψ′→ C, so we have a commutative

diagram

lim−→(ψ|N(Disj(M)nu))

θ′ ((

θ // lim−→(ψ)

θ′′zz
lim−→(ψ′).

Proposition 5.5.2.13 guarantees that θ′ and θ′′ are equivalences in C, so that θ is an equivalence by

the two-out-of-three property.

Theorem 5.5.4.14 can be regarded as making the functor Ψ of Theorem 5.5.4.10 more explicit:

if A0 is a locally constant quasi-unital N(Disk(M))⊗-algebra and M is connected, then the global

sections of the associated factorizable cosheaf can be computed by the topological chiral homology

construction of Definition 5.5.2.6. We can also read this theorem in the other direction. If A is

a locally constant N(Disk(M))⊗-algebra, the the functor U 7→
∫
U A does not determine a cosheaf

N(U(M)) → C in the sense of Definition 5.5.4.1. However, when U is connected, the topological

chiral homology
∫
U A can be computed as the global sections of a sheaf on the Ran space Ran(U).

This is a reflection of a more subtle sense in which the construction U 7→
∫
U A behaves “locally in

U .” We close this section with a brief informal discussion.
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Let M be a manifold of dimension k, and let N ⊆ M be a submanifold of dimension k − d
which has a trivial neighborhood of the form N × Rd. Let A ∈ AlgEM (C) and let

∫
(A) denote

the associated N(U(M))⊗-algebra object of C. Restricting
∫

(A) to open subsets of M of the

form N × V , where V is a union of finitely many open disks in Rd, we obtain another algebra

AN ∈ AlgN(Disk(Rd))(C). This algebra is locally constant, and can therefore be identified with an

Ed-algebra object of C (Theorem 5.4.5.9). We will denote this algebra by
∫
N A.

Warning 5.5.4.15. This notation is slightly abusive: the Ed-algebra
∫
N A depends not only on

the closed submanifold N ⊆M but also on a trivialization of a neighborhood of N .

Suppose now that d = 1, and that N ⊆ M is a hypersurface which separates the connected

manifold M into two components. Let M+ denote the union of one of these components with the

neighborhood N ×R of N , and M− the union of the other component with N ×R of N . After

choosing appropriate conventions regarding the orientation of R, we can endow the topological

chiral homology
∫
M+

A with the structure of a right module over
∫
N A (which we will identify with

an associative algebra object of C), and
∫
M−

A with the structure of a left module over
∫
N A. There

is a canonical map

(

∫
M+

A)⊗∫
N A (

∫
M−

A)→
∫
M
A,

which can be shown to be an equivalence. In other words, we can recover the topological chiral

homology
∫
M A of the entire manifold M if we understand the topological chiral homologies of M+

and M−, together with their interface along the hypersurface N .

Using more elaborate versions of this analysis, one can compute
∫
M A using any sufficiently nice

decomposition of M into manifolds with corners (for example, from a triangulation of M). This

can be made precise using the formalism of extended topological quantum field theories (see [99]

for a sketch).

Example 5.5.4.16. Let M = Rk, so that the ∞-operad E⊗M is equivalent to E⊗k . Let N = Sk−1

denote the unit sphere in Rk. We choose a trivialization of the normal bundle to N in M , which

assigns to each point x ∈ Sk−1 ⊆ Rk the “inward pointing” normal vector given by −x itself.

According to the above discussion, we can associate to any algebra object A ∈ AlgEk(C) an E1-

algebra object of C, which we will denote by B =
∫
Sk−1 A. Using Example 5.1.0.7, we can identify

B with an associative algebra object of C. One can show that this associative algebra has the

following property: there is an equivalence of ∞-categories θ : ModEkA (C) ' LModB(C) which fits

into a commutative diagram of ∞-categories

ModEkA (C)
θ //

$$

LModB(C)

zz
C
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which are right-tensored over C (in view of Theorem 4.8.5.5, the existence of such a diagram

characterizes the object B ∈ Alg(C) up to canonical equivalence). Under the equivalence θ, the left

B-module B corresponds to the object F (1) ∈ ModEkA (C) appearing in the statement of Theorem

7.3.5.1.

5.5.5 Verdier Duality

Our goal in this section is to prove the following result:

Theorem 5.5.5.1 (Verdier Duality). Let C be a stable ∞-category which admits small limits and

colimits, and let X be a locally compact Hausdorff space. There is a canonical equivalence of

∞-categories

D : Shv(X;C)op ' Shv(X;Cop).

Remark 5.5.5.2. Let k be a field and let A denote the category of chain complexes of k-vector

spaces. Then A has the structure of a simplicial category; we let C = N(A) denote the nerve of A

(that is, the derived ∞-category of the abelian category of k-vector spaces; see Definition 1.3.2.7).

Vector space duality induces a simplicial functor Aop → A, which in turn gives rise to a functor

Cop → C. This functor preserves limits, and therefore induces a functor Shv(X;Cop) → Shv(X;C)

for any locally compact Hausdorff space X. Composing this map with the equivalence D of Theorem

5.5.5.1, we obtain a functor D′ : Shv(X;C)op → Shv(X,C): that is, a contravariant functor from

Shv(X;C) to itself.

It is the functor D′ which is usually referred to as Verdier duality. Note that D′ is not an

equivalence of ∞-categories: it is obtained by composing the equivalence D with vector space

duality, which fails to be an equivalence unless suitable finiteness restrictions are imposed. We

refer the reader to [158] for further discussion.

The first step in the proof of Theorem 5.5.5.1 is to choose a convenient model for the∞-category

Shv(X;C) of C-valued sheaves on X. Let K(X) denote the collection of all compact subsets of X,

regarded as a partially ordered set with respect to inclusion. Recall (Definition HTT.7.3.4.1 ) that a

K-sheaf on X (with values in an ∞-category C) is a functor F : N(K(X))op → C with the following

properties:

(i) The object F(∅) ∈ C is final.

(ii) For every pair of compact sets K,K ′ ⊆ X, the diagram

F(K ∪K ′) //

��

F(K)

��
F(K ′) // F(K ∩K ′)

is a pullback square in C.



992 CHAPTER 5. LITTLE CUBES AND FACTORIZABLE SHEAVES

(iii) For every compact set K ⊆ X, the canonical map lim−→K′
F(K ′) → F(K) is an equivalence,

where K ′ ranges over all compact subsets of X which contain a neighborhood of K.

We let ShvK(X;C) denote the full subcategory of Fun(N(K(X)op),C) spanned by the K-sheaves.

We now have the following:

Lemma 5.5.5.3. Let X be a locally compact Hausdorff space and C a stable ∞-category which

admits small limits and colimits. Then there is a canonical equivalence of∞-categories Shv(X;C) '
ShvK(X;C).

Proof. Since C is stable, filtered colimits in C are left exact. The desired result is now a consequence

of Theorem HTT.7.3.4.9 (note that Theorem HTT.7.3.4.9 is stated under the hypothesis that C is

presentable, but this hypothesis is used only to guarantee the existence of small limits and colimits

in C).

Using Lemma 5.5.5.3, we can reformulate Theorem 5.5.5.1 as follows:

Theorem 5.5.5.4. Let X be a locally compact Hausdorff space and let C be a stable ∞-category

which admits small limits and colimits. Then there is a canonical equivalence of ∞-categories

ShvK(X;C)op ' ShvK(X;Cop).

We will prove Theorem 5.5.5.4 by introducing an ∞-category which is equivalent to both

ShvK(X;C)op and ShvK(X;Cop).

Notation 5.5.5.5. Fix a locally compact Hausdorff space X. We define a partially ordered set M

as follows:

(1) The objects of M are pairs (i, S) where 0 ≤ i ≤ 2 and S is a subset of X such that S is

compact if i = 0 and X − S is compact if i = 2.

(2) We have (i, S) ≤ (j, T ) if either i ≤ j and S ⊆ T , or i = 0 and j = 2.

Remark 5.5.5.6. The projection (i, S) 7→ i determines a map of partially ordered sets φ : M → [2].

For 0 ≤ i ≤ 2, we let Mi denote the fiber φ−1{i}. We have canonical isomorphisms M0 ' K(X)

and M2 ' K(X)op, while M1 can be identified with the partially ordered set of all subsets of X.

The proof of Theorem 5.5.5.4 rests on the following:

Proposition 5.5.5.7. Let X be a locally compact Hausdorff space, C a stable ∞-category which

admits small limits and colimits, and let M be the partially ordered set of Notation 5.5.5.5. Let

F : N(M)→ C be a functor. The following conditions are equivalent:

(1) The restriction (F |N(M0))op determines a K-sheaf N(K(X))op → Cop, the restriction

F |N(M1) is zero, and F is a left Kan extension of the restriction F |N(M0 ∪M1).
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(2) The restriction F |N(M2) determines a K-sheaf N(K(X))op → C, the restriction F |N(M1) is

zero, and F is a right Kan extension of F |N(M1 ∪M2).

Assuming Proposition 5.5.5.7 for the moment, we can give the proof of Theorem 5.5.5.4.

Proof of Theorem 5.5.5.4. Let E(C) be the full subcategory of Fun(N(M),C) spanned by those

functors which satisfy the equivalent conditions of Proposition 5.5.5.7. The inclusions M0 ↪→M ←↩
M2 determine restriction functors

ShvK(X;Cop)
θ← E(C)op

θ′→ ShvK(X;C)op.

Note that a functor F ∈ Fun(N(M),C) belongs to E(C) if and only if F |N(M0) belongs to

ShvK(X;Cop), F |N(M0 ∪ M1) is a right Kan extension of F |N(M0), and F is a left Kan ex-

tension of F |N(M0 ∪M1). Applying Proposition HTT.4.3.2.15 , we deduce that θ is a trivial Kan

fibration. The same argument shows that θ′ is a trivial Kan fibration, so that θ and θ′ determine

an equivalence ShvK(X;Cop) ' ShvK(X;C)op.

Remark 5.5.5.8. The construction (i, S) 7→ (2− i,X−S) determines an order-reversing bijection

from the partially ordered set M to itself. Composition with this involution induces an isomorphism

E(C)op ' E(C)op, which interchanges the restriction functors θ and θ′ appearing in the proof of

Theorem 5.5.5.4. It follows that the equivalence of Theorem 5.5.5.4 is symmetric in C and Cop (up

to coherent homotopy).

We will give the proof of Proposition 5.5.5.7 at the end of this section. For the moment, we will

concentrate on the problem of making the equivalence of Theorem 5.5.5.1 more explicit.

Definition 5.5.5.9. Let X be a locally compact Hausdorff space and let C be a pointed∞-category

which admits small limits and colimits. Let F be a C-valued sheaf on X. For every compact set

K ⊆ X, we let ΓK(X;F) denote the fiber product F(X)×F(X−K) 0, where 0 denotes a zero object of

C. For every open set U ⊆ X, we let Γc(U ;F) denote the filtered colimit lim−→K⊆U ΓK(M ;F), where

K ranges over all compact subsets of U . The construction U 7→ Γc(U ;F) determines a functor

N(U(X))→ C, which we will denote by Γc(•;F).

Proposition 5.5.5.10. In the situation of Definition 5.5.5.9, suppose that the ∞-category C is

stable. Then the equivalence D of Theorem 5.5.5.1 is given by the formula D(F)(U) = Γc(U ;F).

Remark 5.5.5.11. Proposition 5.5.5.10 is an abstract formulation of the following more classical

fact: conjugation by Verdier duality exchanges cohomology with compactly supported cohomology.

Proof. It follows from the proof of Theorem HTT.7.3.4.9 that the equivalence

θ : ShvK(X;Cop)op ' Shv(X;Cop)op
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of Lemma 5.5.5.3 is given by the formula θ(G)(U) = lim−→K⊆U G(K). Consequently, it will suffice

to show that the composition of the equivalence ψ : Shv(X;C) → ShvK(X;C) of Lemma 5.5.5.3

with the equivalence ψ′ : ShvK(X;C) → ShvK(X;Cop)op is given by the formula (ψ′ ◦ ψ)(F)(K) =

ΓK(X;F). To prove this, we need to introduce a bit of notation.

Let M ′ denote the partially ordered set of pairs (i, S), where 0 ≤ i ≤ 2 and S is a subset of X

such that S is compact if i = 0 and X − S is either open or compact if i = 2; we let (i, S) ≤ (j, T )

if i ≤ j and S ⊆ T or if i = 0 and j = 2. We will regard the set M of Notation 5.5.5.5 as a

partially ordered subset of M ′. For 0 ≤ i ≤ 2, let M ′i denote the subset {(j, S) ∈M ′ : j = i} ⊆M ′.
Let D denote the full subcategory of Fun(N(M ′),C) spanned by those functors F which satisfy the

following conditions:

(i) The restriction F |N(M2) is a K-sheaf on X.

(ii) The restriction F |N(M ′2) is a right Kan extension of F |N(M2).

(iii) The restriction F |N(M ′1) is zero.

(iv) The restriction F |N(M ′) is a right Kan extension of F |N(M ′1 ∪M ′2).

Note that condition (ii) is equivalent to the requirement that F |N(M ′1 ∪M ′2) is a right Kan

extension of F |N(M1 ∪M2). It follows from Proposition HTT.4.3.2.8 that condition (iv) is equiv-

alent to the requirement that F |N(M) is a right Kan extension of F |N(M1 ∪M2). Consequently,

the inclusion M ↪→M ′ induces a restriction functor D→ E, where E ⊆ Fun(N(M),C) is defined as

in the proof of Theorem 5.5.5.4. Using Theorem HTT.7.3.4.9 and Proposition HTT.4.3.2.15 , we

deduce that the restriction functor D→ Fun(N(U(X))op,C) is a trivial Kan fibration onto the full

subcategory

Shv(X;C) ⊆ Fun(N(U(X))op,C); moreover, the composition ψ′ ◦ ψ is given by composing a ho-

motopy inverse of this trivial Kan fibration with the restriction functor D → Fun(N(M0),C) '
Fun(N(K(X))op,Cop)op.

We define a map of simplicial sets φ : N(M0) → Fun(∆1 × ∆1,N(M ′)) so that φ carries an

object (0,K) ∈M0 to the diagram

(0,K) //

��

(1,K)

��
(2, ∅) // (2,K).

It follows from Theorem HTT.4.1.3.1 that for each (0,K) ∈M0, the image φ(0,K) can be regarded

as a left cofinal map Λ2
2 → N(M ′)(0,K)/×N(M ′) N(M ′1∪M ′2). Consequently, if F ∈ D then condition

(iv) is equivalent to the requirement that the composition of F with each φ(0,K) yields a pullback
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diagram

F (0,K) //

��

F (1,K)

��
F (2, ∅) // F (2,K)

in the ∞-category C. Since F (1,K) is a zero object of C (condition (iii)), we can identify F (0,K)

with the fiber of the map F (2, ∅) → F (2,K). Taking F to be a preimage of F ∈ Shv(X;C) under

the functor θ, we obtain the desired equivalence

(ψ′ ◦ ψ)(F)(K) ' fib(F(X)→ F(X −K)) = ΓK(X;F).

Corollary 5.5.5.12. Let X be a locally compact Hausdorff space, let C be a stable ∞-category

which admits small limits and colimits, and let F ∈ Shv(X;C) be a C-valued sheaf on X. Then the

functor Γc(•;F) is a C-valued cosheaf on X.

We will need the following consequence of Corollary 5.5.5.12 in the next section.

Corollary 5.5.5.13. Let M be a manifold and let F ∈ Shv(M ; Sp) be a Sp-valued sheaf on M .

Then:

(1) The functor F exhibits Γc(M ;F) as a colimit of the diagram {Γc(U ;F)}U∈Disk(M).

(2) The functor F exhibits Γc(M ;F) as a colimit of the diagram {Γc(U ;F)}U∈Disj(M).

Proof. We will give the proof of (1); the proof of (2) is similar. According to Corollary 5.5.5.12, the

functor U 7→ Γc(U ;F) is a cosheaf of spectra on M . Since every open subset of M is a paracompact

topological space of finite covering dimension, the ∞-topos Shv(M) is hypercomplete so that F is

automatically hypercomplete. According to Remark 5.5.4.2, it will suffice to show that for every

point x ∈ M , the category Disk(M)x = {U ∈ Disk(M) : x ∈ U} has weakly contractible nerve.

This follows from the observation that Disk(M)opx is filtered (since every open neighborhood of M

contains an open set U ∈ Disk(M)x).

We conclude this section by giving the proof of Proposition 5.5.5.7.

Proof of Proposition 5.5.5.7. We will prove that condition (2) implies (1); the converse follows by

symmetry, in view of Remark 5.5.5.8. Let F : N(M)→ C be a functor satisfying condition (2), and

let M ′ and D ⊆ Fun(N(M ′),C) be defined as in the proof of Proposition 5.5.5.10. Using Proposition

HTT.4.3.2.15 , we deduce that F can be extended to a functor F ′ : N(M ′)→ C belonging to D. It

follows from Theorem HTT.7.3.4.9 that the inclusion U(X)op ⊆M ′2 determines a restriction functor

D→ Shv(X;C); let F ∈ Shv(X;C) be the image of F ′ under this restriction functor. The proof of

Proposition 5.5.5.10 shows that G = F |N(M0) is given informally by the formula G(K) = ΓK(X;F).

We first show that Gop is a Cop-valued K-sheaf on X. For this, we must verify the following:
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(i) The object G(∅) ' Γ∅(X;F) is zero. This is clear, since the restriction map F(X)→ F(X−∅)
is an equivalence.

(ii) Let K and K ′ be compact subsets of X. Then the diagram σ:

G(K ∩K ′) //

��

G(K)

��
G(K ′) // G(K ∪K ′)

is a pushout square in C. Since C is stable, this is equivalent to the requirement that σ is a

pullback square. This follows from the observation that σ is the fiber of a map between the

squares

F(X) //

��

F(X)

��

F(X − (K ∩K ′)) //

��

F(X −K)

��
F(X) // F(X) F(X −K ′) // F(X − (K ∪K ′)).

The left square is obviously a pullback, and the right is a pullback since F is a sheaf.

(iii) For every compact subsetK ⊆ X, the canonical map θ : G(K)→ lim←−K′ G(K ′) is an equivalence

in C, where K ′ ranges over the partially ordered set A of all compact subsets of X which

contain a neighborhood of K. We have a map of fiber sequences

G(K)
θ //

��

lim←−K′∈A G(K ′)

��
F(X)

θ′ //

��

lim←−K′∈A F(X)

��
F(X −K)

θ′′ // lim←−K′∈A F(X −K ′).

It therefore suffices to show that θ′ and θ′′ are equivalences. The map θ′ is an equivalence

because the partially ordered set A has weakly contractible nerve (in fact, both A and Aop are

filtered). The map θ′′ is an equivalence because F is a sheaf and the collection {X −K ′}K′∈A
is a covering sieve on X −K.

To complete the proof, we will show that F is a left Kan extension of F |N(M0 ∪M1). Let

M ′′ ⊆M0∪M1 be the subset consisting of objects of the form (i, S), where 0 ≤ i ≤ 1 and S ⊆ X is

compact. We note that F |N(M0∪M1) is a left Kan extension of F |N(M ′′). In view of Proposition

HTT.4.3.2.8 , it will suffice to show that F is a left Kan extension of F |N(M ′′) at every element

(2, S) ∈ M2. We will prove the stronger assertion that F ′|N(M ′′ ∪M ′2) is a left Kan extension of
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F |N(M ′′). To prove this, we let B denote the subset of M ′2 consisting of pairs (2, X − U) where

U ⊆ X is an open set with compact closure. In view of Proposition HTT.4.3.2.8 , it suffices to

prove the following:

(a) The functor F ′|N(M ′′ ∪M ′2) is a left Kan extension of F ′|N(M ′′ ∪B).

(b) The functor F ′|N(M ′′ ∪B) is a left Kan extension of F |N(M ′′).

To prove (a), we note that Theorem HTT.7.3.4.9 guarantees that F ′|N(M ′2) is a left Kan extension

of F ′|N(M ′′′) (note that, if K is a compact subset of X, then the collection of open neighborhoods

of U of K with compact closure is cofinal in the collection of all open neighborhoods of K in

X). To complete the proof, it suffices to observe that for every object (2, X −K) ∈ M ′2 − B, the

inclusion N(M ′′′)/(2,X−K) ⊆ N(M ′′∪M ′′′)/(2,X−K) is left cofinal. In view of Theorem HTT.4.1.3.1 ,

this is equivalent to the requirement that for every object (i, S) ∈ M ′′, the partially ordered set

P = {(2, X − U) ∈ B : (i, S) ≤ (2, X − U) ≤ (2, X −K)} has weakly contractible nerve. This is

clear, since P is nonempty and stable under finite unions (and therefore filtered). This completes

the proof of (a).

To prove (b), fix an open subset U ⊆ X with compact closure; we wish to prove that F ′(2, X−U)

is a colimit of the diagram F ′|N(M ′′)/(2,X−U). For every compact set K ⊆ X, let M ′′K denote the

subset of M ′′ consisting of those pairs (i, S) with (0,K) ≤ (i, S) ≤ (2, X−U). Then N(M ′′)/(2,X−U)

is a filtered colimit of the simplicial sets N(M ′′K), where K ranges over the collection of compact

subsets of X which contain U . It follows that colim(F ′|N(M ′′)/(2,X−U)) can be identified with the

filtered colimit of the diagram {colim(F ′|N(M ′′K)}K (see §HTT.4.2.3 ). Consequently, it will suffice

to prove that for every compact setK containing U , the diagram F ′ exhibits F ′(2, X−U) as a colimit

of F ′|N(M ′′K). Theorem HTT.4.1.3.1 guarantees that the diagram (K, 0)← (K−U, 0)→ (K−U, 1)

is left cofinal in N(M ′′K). Consequently, we are reduced to proving that the diagram

F ′(0,K − U) //

��

F ′(1,K − U)

��
F ′(0,K) // F ′(2, X − U)
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is a pushout square in C. Form a larger commutative diagram

F ′(0,K − U) //

��

F (1,K − U)

��
F ′(0,K) //

��

Z //

��

F (1,K)

��
F (2, ∅) // F (2,K − U) //

��

F (2,K)

��
F (2, X − U) // F (2, X),

where the middle right square is a pullback. Since F ′ is a right Kan extension of F ′|N(M1 ∪M ′2),

the proof of Proposition 5.5.5.10 shows that the middle horizontal rectangle is also a pullback

square. It follows that the lower middle square is a pullback. Since the left vertical rectangle is a

pullback diagram (Proposition 5.5.5.10 again), we deduce that the upper left square is a pullback.

Since C is stable, we deduce that the upper left square is a pushout diagram. To complete the

proof of (b), it suffices to show that the composite map Z → F (2,K − U) → F (2, X − U) is an

equivalence. We note that F (1,K −U) and F (2, X) ' F(∅) are zero objects of C, so the composite

map F (1,K − U) → F (2,K) → F (X) is an equivalence. It will therefore suffice to show that

the right vertical rectangle is a pullback square. Since the middle right square is a pullback by

construction, we are reduced to proving that the lower right square is a pullback. This is the

diagram

F((X −K) ∪ U) //

��

F(X −K)

��
F(U) // F(∅),

which is a pullback square because F is a sheaf and the open sets U,X −K ⊆ X are disjoint.

5.5.6 Nonabelian Poincare Duality

Let M be an oriented k-manifold. Poincare duality provides a canonical isomorphism

Hm
c (M ;A) ' Hk−m(M ;A)

for any abelian group A (or, more generally, for any local system of abelian groups on M). Our

goal in this section is to establish an analogue of this statement for nonabelian cohomology: that is,

cohomology with coefficients in a local system of spaces on M . To formulate this analogue, we will

need to replace the right hand side by the topological chiral homology
∫
M A of M with coefficients

in an appropriate EM -algebra.
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Remark 5.5.6.1. The ideas described in this section are closely related to results of Segal, McDuff,

and Salvatore on configuration spaces (see [131], [111], and [124]). In particular, a special case of

our main result (Theorem 5.5.6.6) can be found in [124].

Definition 5.5.6.2. Let M be a manifold, and let p : E →M be a Serre fibration equipped with

a distinguished section s : M → E. Given a commutative diagram

|∆n| ×M

$$

f // E

p
��

M,

we will say that f is trivial on an open set U ⊆ M if the restriction f |(|∆n| × U) is given by the

composition

|∆n| × U → U ⊆M s→ E.

We define the support of f to be the smallest closed set K such that f is trivial on M −K. Given

an open set U ⊆ M , we let Γ(U ;E) denote the simplicial set whose n-simplices are maps f as

above, and Γc(U ;E) the simplicial subset spanned by those simplices such that the support of f is

a compact subset of U (in this case, f is determined by its restriction f |(|∆n| × U)).

The construction (U1, . . . , Un) 7→ Γc(U1;E)× . . .×Γc(Un;E) determines a functor from U(M)⊗

to the simplicial category of Kan complexes. Passing to nerves, we obtain a functor N(UM⊗)→ S,

which we view as a N(U(M)⊗)-monoid object of S. Let us regard the ∞-category S as endowed

with the Cartesian monoidal structure, so that this monoid object lifts in an essentially unique way

to a N(U(M)⊗)-algebra object of S (Proposition 2.4.2.5). We will denote this algebra by E!.

Remark 5.5.6.3. Let p : E →M be as in Definition 5.5.6.2. Every inclusion of open disks U ⊆ V
in M is isotopic to a homeomorphism (Theorem 5.4.1.5), so the inclusion Γc(U ;E) → Γc(V ;E)

is a homotopy equivalence. It follows that the restriction E!|N(Disk(M))⊗ is a locally constant

object of AlgN(Disk(M))(S), and is therefore equivalent to the restriction E!|N(Disk(M))⊗ for some

essentially unique EM -algebra E! ∈ AlgEM (S) (Theorem 5.4.5.9).

Remark 5.5.6.4. Let M be a manifold and let p : E → M be a Serre fibration equipped with a

section s. Then the functor U 7→ Γ(U ;E) determines a sheaf F on M with values in the∞-category

S∗ of pointed spaces (Proposition HTT.7.1.3.14 ). Using Remark 5.5.6.14 and Lemma 5.5.6.15, we

can identify the functor U 7→ Γc(U ;F) of Definition 5.5.5.9 with the functor U 7→ Γc(U ;E).

Remark 5.5.6.5. Let p : E →M be as in Definition 5.5.6.2. Since p is a Serre fibration, the inverse

image U×ME is weakly homotopy equivalent to a product U×K for every open disk Rk ' U ⊆M ,

for some pointed topological space K. For every positive real number r, let Xr denote the simplicial

subset of Γc(U ;E) whose n-simplices correspond to maps which are supported in the closed ball

B(r) ⊆ Rk ' U . Then each Xr is homotopy equivalent to the iterated loop space Sing(ΩkK).
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Since there exist compactly supported isotopies of Rk carrying B(r) to B(s) for 0 < r < s, we

deduce that the inclusion Xr ⊆ Xs is a homotopy equivalence for each r < s. It follows that

Γc(U ;E) = lim−→r
Xr is weakly homotopy equivalent to Xr for every real number r.

In other words, we can think of E! : E⊗M → S× as an algebra which assigns to each open disk

j : U ↪→ M the k-fold loop space of F , where F is the fiber of the Serre fibration p : E → M over

any point in the image of j.

We can now state our main result as follows:

Theorem 5.5.6.6 (Nonabelian Poincare Duality). Let M be a k-manifold, and let p : E → M be

a Serre fibration whose fibers are k-connective, which is equipped with a section s : M → E. Then

E! exhibits Γc(M ;E) as the colimit of the diagram E!|N(Disj(M)). In other words, Γc(M ;E) is the

topological chiral homology
∫
M E!, where E! ∈ AlgEM (S) is the algebra described in Remark 5.5.6.3.

Remark 5.5.6.7. The assumption that p : E → M have k-connective fibers is essential. For

example, suppose that E = M
∐
M and that the section s : M → E is given by the inclusion of

the second factor. If M is compact, then the inclusion of the second factor determines a vertex

η ∈ Γc(M ;E). The support of η is the whole of the manifold M : in particular, η does not lie in the

essential image of any of the extension maps i : Γc(U ;E) → Γc(M ;E) where U is a proper open

subset of M . In particular, if U is a disjoint union of open disks, then η cannot lie in the essential

image of i unless k = 0 or M is empty.

Remark 5.5.6.8. Theorem 5.5.6.6 implies in particular that any compactly supported section s′

of p : E →M is homotopic to a section whose support is contained in the union of disjoint disks in

M . It is easy to see this directly, at least when M admits a triangulation. Indeed, let M0 ⊆M be

the (k − 1)-skeleton of this triangulation, so that the open set M −M0 consists of the interiors of

the k-simplices of the triangulation and is thus a union of disjoint open disks in M . Since the fibers

of p are k-connective, the space of sections of p over the (k−1)-dimensional space M0 is connected.

Consequently, we can adjust s′ by a homotopy so that it agrees with s on a small neighborhood of

M0 in M , and is therefore supported in M −M0.

Remark 5.5.6.9. Theorem 5.5.6.6 can be rephrased in terms of the embedding calculus developed

by Weiss (see [163]). Let p : E →M be a Serre fibration, and regard the functor U 7→ Γc(U ;E) as

a precosheaf F on M with values in Set∆. Applying the formalism of the embedding calculus, we

obtain a sequence of polynomial approximations

F≤0 → F≤1 → F≤2 → · · · ,

where each F≤n is a left Kan extension of the restriction of F to those open subsets of M which

are homeomorphic to a union of at most n disks. Theorem 5.5.6.6 asserts that, when the fibers of

p are sufficiently connected, the canonical map

hocolimn F
≤n → F
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is a weak equivalence. In other words, the functor U 7→ Γc(U ;E) can be recovered as the limit of

its polynomial approximations.

Example 5.5.6.10. LetM be the circle S1, letX be a connected pointed space, and let E = X×S1,

equipped with the projection map p : E →M . Then E! ∈ AlgES1
(S) is the ES1-algebra determined

by the associative algebra object Sing(ΩX) ∈ AlgAssoc(S). Since M is compact, we can identify

Γc(S
1;E) with the singular complex of the space LX = Map(S1, X) of all sections of p. In view

of Example 5.5.3.14, Theorem 5.5.6.6 recovers the following classical observation: the free loop

space LX is equivalent to the Hochschild homology of the based loop space ΩX (regarded as an

associative algebra with respect to composition of loops).

Remark 5.5.6.11. Let M be a k-manifold. We will say than an algebra A ∈ AlgEM (S) is grouplike

if, for every open disk U ⊆ M , the restriction A|EU ∈ AlgEU (S) ' AlgEk(S) is grouplike in the

sense of Definition 5.2.6.6 (by convention, this condition is vacuous if k = 0). For every fibration

E → M , the associated algebra E! ∈ AlgEM (S) is grouplike. In fact, the converse holds as well:

every grouplike object of AlgEM (S) has the form E!, for an essentially unique Serre fibration E →M

with k-connective fibers.

To prove this, we need to introduce a bit of notation. For each open set U ⊆M , let AU denote

the simplicial category whose objects are Serre fibrations p : E → U equipped with a section s,

where the pair (U,E) is a relative CW complex and the fibers of p are k-connective; an n-simplex

of MapCU
(E,E′) is a commutative diagram

E ×∆n

p
##

f // E′

p′~~
U,

such that f respects the preferred sections of p and p′. Let BU denote the full subcategory of

AlgEU (S) spanned by the grouplike objects. The construction E 7→ E! determines a functor θU :

N(AU )→ BU , which we claim is an equivalence of ∞-categories. If U ' Rk is an open disk in M ,

then this assertion follows from Theorem 5.2.6.15 (at least if k > 0; the case k = 0 is trivial). Let J

denote the collection of all open subsets U ⊆M which are homeomorphic to Rk, partially ordered

by inclusion. This collection of open sets satisfies the following condition:

(∗) For every point x ∈ M , the subset Jx = {U ∈ J : x ∈ U} has weakly contractible nerve (in

fact, Jopx is filtered, since every open subset of M containing x contains an open disk around

x).
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We have a commutative diagram of ∞-categories

N(AM )
θM //

φ

��

BM

ψ

��
lim←−U∈Jop N(AU ) // lim←−U∈Jop BU

(here the limits are taken in the∞-category Cat∞). Here the lower horizontal map is an equivalence

of ∞-categories. Consequently, to prove that θM is an equivalence of ∞ categories, it suffices to

show that the vertical maps are equivalences of ∞-categories. We consider each in turn.

For each U ⊆M , let CU denote the simplicial category whose objects are Kan fibrations p : X →
Sing(U). The functor E 7→ Sing(E) determines an equivalence of ∞-categories N(AU )→ N(CU )∗.

Consequently, to show that φ is a categorical equivalence, it will suffice to show that the associated

map N(CM ) → lim←−U∈Jop N(CU ) is a categorical equivalence. This is equivalent to the requirement

that Sing(M) is a colimit of the diagram {Sing(U)}U∈J in the ∞-category S, which follows from

(∗) and Theorem A.3.1.

To prove that ψ is a categorical equivalence, it suffices to show that AlgEM (S) is a limit of

the diagram {AlgEU (S)}U∈Jop . For each U ⊆ M , let DU denote the ∞-category AlgOU (S), where

O⊗U denotes the generalized ∞-operad BTop(k)⊗ ×BTop(k)q (BU × N(Fin∗)). It follows that the

restriction functor A 7→ A|O⊗ determines an equivalence of ∞-categories AlgEU (S) → DU . It will

therefore suffices to show that DM is a limit of the diagram of ∞-categories {DU}U∈Jop . To prove

this, we show that the functor U 7→ O⊗U exhibits the generalized ∞-operad O⊗M as a homotopy

colimit of the generalized ∞-operads {O⊗U}U∈J. For this, it is sufficient to show that the Kan

complex BM is a homotopy colimit of the diagram {BU}U∈J, which follows from Remark 5.4.5.2,

(∗), and Theorem A.3.1.

Remark 5.5.6.12. In proving Theorem 5.5.6.6, it is sufficient to treat the case where the manifold

M is connected. To see this, we note that for every open set U ⊆M , we have a map θU :
∫
U E

! →
Γc(U ;E). Assume that θU is a homotopy equivalence whenever U is connected. We will prove that

θU is a homotopy equivalence whenever the set of connected components π0(U) is finite. It will

then follow that θU is an equivalence for every open set U ⊆ M , since the construction U 7→ θU
commutes with filtered colimits; in particular, it will follow that θM is a homotopy equivalence.

To carry out the argument, let U ⊆M be an open set with finitely many connected components

U1, . . . , Un, so that we have a commutative diagram

∏
1≤i≤n

∫
Ui
E!

θU1
×···×θUn //

φ

��

∏
1≤i≤n Γc(Ui, E)

ψ

��∫
U E

! θU // Γc(U,E).
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The map θU1 × · · · × θUn is a homotopy equivalence since each Ui is connected, the map φ is a

homotopy equivalence by Theorem 5.5.3.1, and the map ψ is an isomorphism of Kan complexes; it

follows that θU is a homotopy equivalence as desired.

Notation 5.5.6.13. Let p : E → M be as in Definition 5.5.6.2. Given a compact set K ⊆ M , we

let ΓK(M ;E) denote the simplicial set whose n-simplices are commutative diagrams

(|∆n| ×M)
∐
|∆n|×(M−K)×{0}(|∆n| × (M −K)× [0, 1])

++
f

ssE
p //M

such that f |(|∆n| × (M −K)× {1}) is given by the composition

|∆n| × V × {1} → (M −K) ⊆M s→ E.

In other words, an n-simplex of ΓK(M ;E) is an n-parameter family of sections of E, together with

a nullhomotopy of this family of sections on the open set M −K.

Note that any n-simplex of Γc(M ;E) which is trivial on M − K extends canonically to an

n-simplex of ΓK(M ;E), by choosing the nullhomotopy to be constant. In particular, if U ⊆ M is

any open set, then we obtain a canonical map

Γc(U ;E)→ lim−→
K⊆U

ΓK(M ;E),

where the colimit is taken over the (filtered) collection of all compact subsets of U .

Remark 5.5.6.14. The simplicial set ΓK(M ;E) can be identified with the homotopy fiber of the

restriction map F(M) → F(M − K), where F ∈ Shv(M) is the sheaf associated to the fibration

p : E →M .

Lemma 5.5.6.15. Let p : E → M be a Serre fibration equipped with a section s (as in Definition

5.5.6.2), let U ⊆M be an open set. Then the canonical map

Γc(U ;E)→ lim−→
K⊆U

ΓK(M ;E)

is a homotopy equivalence.

Proof. It will suffice to show that if A ⊆ B is an inclusion of finite simplicial sets and we are given

a commutative diagram

A //

��

Γc(U ;E)

��
B

f
//

f ′
88

lim−→K⊆U ΓK(M ;E),
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then, after modifying f by a homotopy that is constant on A, there exists a dotted arrow f ′ as

indicated in the diagram (automatically unique, since the right vertical map is a monomorphism).

Since B is finite, we may assume that f factors through ΓK(M ;E) for some compact subset K ⊆ U .

Such a factorization determines a pair (F, h), where F : |B| ×M → E is a map of spaces over M

and h : |B| × (M −K)× [0, 1]→ E is a fiberwise homotopy of F |(|B| × (M −K)) to the composite

map |B| × (M −K)→M
s→ E. Choose a continuous map λ : M → [0, 1] which is supported in a

compact subset K ′ of U and takes the value 1 in a neighborhood of K. Let F ′ : |B| ×M → E be

the map defined by the formula

F ′(b, x) =

{
F (b, x) if x ∈ K
h(b, x, 1− λ(x)) if x /∈ K.

Then F ′ determines a map B → Γc(U ;E) such that the composite map B → Γc(U ;E) →
lim−→K⊆U ΓK(M ;E) is homotopic to f relative to A, as desired.

We now proceed with the proof of Theorem 5.5.6.6. If M is homeomorphic to Euclidean space

Rk, then Disj(M) contains M as a final object and Theorem 5.5.6.6 is obvious. Combining this

observation with Remark 5.5.6.12, we obtain an immediate proof in the case k = 0. If k = 1,

then we may assume (by virtue of Remark 5.5.6.12) that M is homeomorphic to either an open

interval (in which case there is nothing to prove) or to the circle S1. The latter case requires some

argument:

Proof of Theorem 5.5.6.6 for M = S1. Choose a small open disk U ⊆ S1 and a parametrization

ψ : R ' U , and let χ : D(S1)/ψ → S be the diagram determined by E!. According to Theorem

5.5.3.11, the functor χ is equivalent to a composition D(S1)/ψ → N(∆op)
B•→ S for some simplicial

object B• of S, and the topological chiral homology
∫
S1 E

! can be identified with the geometric

realization |B•|. We wish to show that the canonical map θ : |B•| → Γc(S
1;E) is an equivalence in

S. Since S is an ∞-topos, it will suffice to verify the following pair of assertions:

(a) The map θ0 : B0 → Γc(S
1;E) is an effective epimorphism. In other words, θ0 induces a

surjection π0B0 = π0Γc(U ;E)→ π0Γc(S
1;E).

(b) The map θ exhibits B• as a Čech nerve of θ0. That is, for each n ≥ 0, the canonical map

Bn → B0 ×Γc(S1;E) · · · ×Γc(S1;E) B0

is a homotopy equivalence (here the fiber products are taken in the ∞-category S).

To prove (a), let s : S1 → E denote our given section of the Serre fibration p : E → S1, and let

f : S1 → E denote any other section of p. Choose a point x ∈ U . Since S1 − {x} is contractible

and the fibers of p are connected, there exists a (fiberwise) homotopy h : (S1 − {x}) × [0, 1] → E

from f |(S1 − {x}) to s|(S1 − {x}). Let λ : S1 → [0, 1] be a continuous function which vanishes in
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a neighborhood of x, and takes the value 1 outside a compact subset of U . Let h′ : S1 × [0, 1]→ E

be the map defined by

h′(y, t) =

{
f(x) if y = x

h(y, tλ(y)) if y 6= x.

Then h′ determines a homotopy from f to another section f ′ = h′|(S1 × {1}), whose support is a

compact subset of U .

We now prove (b). Choose a collection of open disks U1, . . . , Un ⊆ S1 which are disjoint from

one another and from U . Then the closed set S1−(U ∪U1∪ . . .∪Un) is a disjoint union of connected

components A0, . . . , An. Unwinding the definitions, we are required to show that the simplicial set

Γc(U ∪ U1 ∪ . . . ∪ Un;E) is a homotopy product of the simplicial sets Γc(S
1 − Ai;E) in the model

category (Set∆)/Γc(S1;E). For each index i, let Ui denote the collection of all open subsets of S1 that

contain Ai, and let U =
⋂
Ui. It follows from Lemma 5.5.6.15 that we have canonical homotopy

equivalences

Γc(S
1 −Ai;E)→ lim−→

V ∈Ui
ΓS1−V (S1;E)

Γc(U ∪ U1 ∪ . . . ∪ Un;E)→ lim−→
V ∈U

ΓS1−V (S1;E).

Note that for each V ∈ Ui, the forgetful map ΓS1−V (S1;E) → Γc(S
1;E) is a Kan fibration.

It follows that each lim−→V ∈Ui
ΓS1−V (S1;E) is a fibrant object of (Set∆)/Γc(S1;E), so the relevant

homotopy product coincides with the actual product
∏

0≤i≤n lim−→Vi∈Ui
ΓS1−Vi(S

1;E) (formed in

the category (Set∆)/Γc(S1;E). Let V denote the partially ordered set of sequences (V0, . . . , Vn) ∈
U0× · · · × Un such that Vi ∩ Vj = ∅ for i 6= j. We observe that the inclusion V ⊆ (U0× · · · × Un)

is right cofinal, and the construction (V0, . . . , Vn) 7→
⋃
Vi is a right cofinal map from V to U.

Consequently, we obtain isomorphisms

lim−→
V ∈U

ΓS1−V (S1;E) ' lim−→
(V0,...,Vn)

ΓS1−
⋃
Vi(S

1;E)

∏
0≤i≤n

lim−→
Vi∈Ui

ΓS1−Vi(S
1;E) ' lim−→

(V0,...,Vn)∈V

∏
0≤i≤n

ΓS1−Vi(S
1;E);

here the product is taken in the category (Set∆)/Γc(S1;E). To complete the proof, it suffices to show

that for each (V0, V1, . . . , Vn) ∈ V, the canonical map

θ : ΓS1−
⋃
Vi(S

1;E)→
∏

0≤i≤n
ΓS1−Vi(S

1;E)

is a homotopy equivalence.

We now complete the proof by observing that θ is an isomorphism (since the open sets Vi are

assumed to be pairwise disjoint).
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Our proof of Theorem 5.5.6.6 in higher dimensions will use a rather different method. We first

consider the following linear version of Theorem 5.5.6.6, which is an easy consequence of the version

of Verdier duality presented in §5.5.5.

Proposition 5.5.6.16. Let M be a k-manifold, let F ∈ Shv(M ; Sp) be a locally constant Sp-

valued sheaf on M , and let F′ ∈ Shv(M ; S∗) be the sheaf of pointed spaces given by the formula

F′(U) = Ω∞∗ F(U). Assume that for every open disk U ⊆ M , the spectrum F(U) is k-connective.

Then F′ exhibits Γc(M ;F′) as a colimit of the diagram {Γc(U ;F′)}U∈Disj(M) in the ∞-category S∗.

Proof. It follows from Corollary 5.5.5.13 that F exhibits Γc(M ;F) as a colimit of the diagram

{Γc(U ;F)}U∈Disj(M)

in the∞-category Sp of spectra. It will therefore suffice to show that the functor Ω∞∗ preserves the

colimit of the diagram {Γc(U ;F)}U∈Disj(M).

Let us regard the ∞-category Sp as endowed with its Cartesian symmetric monoidal structure,

which (by virtue of Proposition 2.4.3.19) is also the coCartesian symmetric monoidal structure.

The functor U 7→ Γc(U ;F) determines a functor N(Disk(M)) → Sp, which extends to a map of

∞-operads N(Disk(M))q → Spq and therefore determines an algebra A ∈ AlgN(Disk(M))(Sp). Since

F is locally constant, the algebra A is locally constant and is therefore equivalent to a composition

N(Disk(M))⊗ → E⊗M
B→ Sp× .

Let A′ : N(Disk(M))⊗ → Sp and B′ : EM → Sp be the associated monoid objects of Sp (see Propo-

sition 2.4.2.5). We wish to show that Ω∞∗ preserves the colimit of the diagram {A′(U)}U∈Disj(M).

In view of Proposition 5.5.2.13, it will suffice to prove that Ω∞∗ preserves the colimit of the diagram

B′|D(M). For every open set U = U1 ∪ . . .∪Un of D(M), the spectrum B′(U) '
∏

1≤i≤nB
′(Ui) '∏

1≤i≤n Ωk F(Ui) is connective. Since the ∞-category D(M) is sifted (Proposition 5.5.2.15), the

desired result follows from Corollary 5.2.6.27.

Recall that if X is an ∞-topos, then colimits in X are universal: that is, for every morphism

f : X → Y in X, the fiber product construction Z 7→ X ×Y Z determines a colimit-preserving

functor from X/Y to X/X . In other words, the fiber product X×Y Z is a colimit-preserving functor

of Z. The same argument shows that X ×Y Z is a colimit-preserving functor of X. However, the

dependence of the fiber product X ×Y Z on Y is more subtle. The following result, which asserts

that the construction Y 7→ X ×Y Z commutes with colimits in many situations.

Lemma 5.5.6.17. Let X be an ∞-topos, and let X≥1
∗ denote the full subcategory of X∗ spanned

by the pointed connected objects. Let C denote the ∞-category Fun(Λ2
2,X) ×Fun({2},X) X

≥1
∗ whose

objects are diagrams X → Z ← Y in X, where Z is a pointed connected object of X. Let F : C→ X

be the functor

C −→ Fun(Λ2
2,X)

lim←−−→ X

given informally by the formula (X → Z ← Y ) 7→ X ×Z Y . The F preserves sifted colimits.
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Proof. Let C′ denote the full subcategory of Fun(∆1 ×∆1 ×N(∆op
+ ),X) spanned by those functors

G which corresponding to diagrams of augmented simplicial objects

W• //

��

X•

��
Y• // Z•

which satisfy the following conditions:

(i) The object Z0 is final.

(ii) The augmentation map Z0 → Z−1 is an effective epimorphism (equivalently, Z−1 is a con-

nected object of X).

(iii) Let K denote the full subcategory of ∆1 ×∆1 × N(∆op
+ ) spanned by the objects (1, 0, [−1]),

(0, 1, [−1]), (1, 1, [−1]), and (1, 1, [0]). Then G is a right Kan extension of G|K. In particular,

the diagram

W−1
//

��

X−1

��
Y−1

// Z−1

is a pullback square.

It follows from Proposition HTT.4.3.2.15 that the restriction map G 7→ G|K induces a trivial

Kan fibration q : C′ → C. Note that the functor F is given by composing a section of q with the

evaluation functor G 7→ G(0, 0, [−1]). To prove that F commutes with sifted colimits, it will suffice

to show that C′ is stable under sifted colimits in Fun(∆1 ×∆1 ×N(∆op
+ ),X).

Let D be the full subcategory of Fun(∆1 × ∆1 × N(∆op),X) spanned by those diagrams of

simplicial objects

W• //

��

X•

��
Y• // Z•

satisfying the following conditions:

(i′) The simplicial object Z• is a group object of X (that is, Z• is a groupoid object of X and Z0

is final in X; equivalently, for each n ≥ 0 the natural map Zn → Zn1 is an equivalence).

(ii′) For each integer n and each inclusion [0] ↪→ [n], the induced maps

Xn → X0 × Zn Yn → Y0 × Zn Wn → X0 × Y0 × Zn

are equivalences.
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Since the product functor X×X→ X commutes with sifted colimits (Proposition HTT.5.5.8.6 ),

we deduce that D is stable under sifted colimits in Fun(∆1×∆1×N(∆op),X). Let D′ ⊆ Fun(∆1×
∆1 × N(∆op

+ ),X) be the full subcategory spanned by those functors G such that G is a left Kan

extension of G0 = G|(∆1 ×∆1 × N(∆op
+ )) and G0 ∈ D. Then D′ is stable under sifted colimits in

Fun(∆1 ×∆1 ×N(∆op
+ ),X). We will complete the proof by showing that D′ = C′.

Suppose first that G ∈ C′, corresponding to a commutative diagram of augmented simplicial

objects

W• //

��

X•

��
Y• // Z•.

Condition (iii) guarantees that Z• is a Čech nerve of the augmentation map Z0 → Z−1. Since this

augmentation map is an effective epimorphism (by virtue of (ii)), we deduce that the augmented

simplicial object Z• is a colimit diagram. Condition (iii) guarantees that the natural maps Xn →
Zn ×Z−1 X−1 is are equivalences. Since colimits in X are universal, we deduce that X• is also a

colimit diagram. The same argument shows that Y• and W• are colimit diagrams, so that G is a

left Kan extension of G0 = G|(∆1 ×∆1 ×N(∆op)). To complete the proof that G ∈ D′, it suffices

to show that G0 satisfies conditions (i′) and (ii′). Condition (i′) follows easily from (i) and (iii),

and condition (ii′) follows from (iii).

Conversely, suppose that G ∈ D′; we wish to show that G satisfies conditions (i), (ii), and

(iii). Condition (i) follows immediately from (i′), and condition (ii) from the fact that Z• is a

colimit diagram. It remains to prove (iii). Let K ′ denote the full subcategory of ∆1×∆1×N(∆op
+ )

spanned by the objects (0, 1, [−1), (1, 0, [−1]), and {(1, 1, [n])}n≥−1. Since X is an ∞-topos and Z•
is the colimit of a groupoid object of X, it is a Čech nerve of the augmentation map Z0 → Z−1.

This immediately implies that G|K ′ is a right Kan extension of G|K. To complete the proof, it

will suffice to show that G is a right Kan extension of G|K ′ (Proposition HTT.4.3.2.8 ).

We first claim that G is a right Kan extension of G|K ′ at (0, 1, [n]) for each n ≥ 0. Equivalently,

we claim that each of the maps

Xn
//

��

X−1

��
Zn // Z−1

is a pullback diagram. Since X• and Z• are both colimit diagrams, it will suffice to show that the

map X• → Z• is a Cartesian transformation of simplicial objects (Theorem HTT.6.1.3.9 ): in other

words, it will suffice to show that for every morphism [m]→ [n] in ∆, the analogous diagram

Xn
//

��

Xm

��
Zn // Zm
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is a pullback square. Choosing a map [0] ↪→ [m], we obtain a larger diagram

Xn
//

��

Xm
//

��

X0

��
Zn // Zm // Z0.

Since Z0 is a final object of X, condition (ii′) implies that the right square and the outer rectangle

are pullback diagrams, so that the left square is a pullback diagram as well. A similar argument

shows that Y• → Z• and W• → Z• are Cartesian transformations, so that G is a right Kan extension

of G|K ′ at (1, 0, [n]) and (0, 0, [n]) for each n ≥ 0.

To complete the proof, we must show that G is a right Kan extension of G|K ′ at (0, 0, [−1]): in

other words, that the diagram σ :

W−1
//

��

X−1

��
Y−1

// Z−1

is a pullback square. Since the map ε : Z0 → Z−1 is an effective epimorphism, it suffices to show

that the diagram σ becomes a pullback square after base change along ε. In other words, we need

only show that the diagram

W0
//

��

X0

��
Y0

// Z0

is a pullback square, which follows immediately from (ii′).

Proof of Theorem 5.5.6.6 for k ≥ 2. Replacing E by | Sing(E)|, we can assume without loss of gen-

erality that E is the geometric realization of a simplicial set X equipped with a Kan fibration

X → Sing(M). We wish to prove that the canonical map
∫
M E! → Γc(M ;E) is a homotopy equiv-

alence. For this, it suffices to show that τ≤m(
∫
M E!) → τ≤mΓc(M ;E) is a homotopy equivalence

for every integer m ≥ 0. Since the truncation functor τ≤m : S→ τ≤m S preserves small colimits and

finite products, Proposition 5.5.2.17 allows us to identify the left hand side with the topological

chiral homology
∫
M (τ≤mE

!) in the ∞-category τ≤m S.

Regard X as an object of the ∞-topos X = S/ Sing(M), let X ′ be an (m + k)-truncation of

X, and let E′ = |X ′|. The map X → X ′ induces a map E! → E′! which is an equivalence on

m-truncations, and therefore induces an equivalence τ≤m(
∫
M E!)→ τ≤m(

∫
M E′!). This equivalence

fits into a commutative diagram

τ≤m
∫
M E! α //

��

τ≤mΓc(M ;E)

β

��
τ≤m

∫
M E′!

α′ // τ≤mΓc(M ;E′),
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where β is also an equivalence (since M has dimension k). Consequently, to prove that α is an

equivalence, it suffices to prove that α′ is an equivalence. We may therefore replace X by X ′ and

thereby reduce to the case where X is an n-truncated object of X for some n� 0.

The proof now proceeds by induction on n. If n < k, then X is both k-connective and (k − 1)-

truncated, and is therefore equivalent to the final object of X. In this case, both
∫
M E! and Γc(M ;E)

are contractible and there is nothing to prove. Assume therefore that n ≥ k ≥ 2. Let A = πnX,

regarded as an object of the topos of discrete objects DiscX/X . Since X is a 2-connective object

of X, this topos is equivalent to the topos of discrete objects DiscX of local systems of sets on the

manifold M . We will abuse notation by identifying A with its image under this equivalence; let

K(A,n+ 1) denote the associated Eilenberg-MacLane objects of X. Let Y = τ≤n−1X, so that X is

an n-gerbe over Y banded by A and therefore fits into a pullback square

X //

��

1

��
Y // K(A,n+ 1)

Let E0 = |Y | and E1 = |K(A,n + 1)|, so that we have a fiber sequence E → E0 → E1 of Serre

fibrations over M . We then have a commutative diagram∫
M E! α //

��

∫
M E!

0
//

α0

��

∫
M E!

1

α1

��
Γc(M ;E) // Γc(M ;E0) // Γc(M ;E1)

where α0 is a homotopy equivalence by the inductive hypothesis, and α1 is a homotopy equivalence

by Proposition 5.5.6.16. Consequently, to prove that α is a homotopy equivalence, it suffices to

prove that the upper line is a fiber sequence. The algebras E!, E!
0, and E!

1 determine functors

χ, χ0, χ1 : D(M)→ S∗, which fit into a pullback square

χ

��

// ∗

��
χ0

// χ1.

To complete the proof, it suffices to show that the induced square of colimits

lim−→(χ) //

��

∗

��
lim−→(χ0) // lim−→(χ1)

is again a pullback diagram. Since n ≥ k, the object K(A,n+ 1) is (k + 1)-connective, so that χ1

takes values in connected spaces. The desired result now follows from Lemma 5.5.6.17, since D(M)

is sifted (Proposition 5.5.2.15).



Chapter 6

The Calculus of Functors

Let f : R → R be a smooth function. Then, for each point x0 ∈ R, there exists a real number

s = f ′(x0) such that f is closely approximated by the linear function x 7→ f(x0) + s(x − x0) in a

small neighborhood of x0. For many purposes, this allows us to reduce questions about arbitrary

smooth functions to questions about linear functions, which are usually much more tractable.

In this chapter, we will give an exposition of Goodwillie’s calculus of functors, which attempts

to exploit the same idea in a different context: rather than looking for approximations to a smooth

function f : R → R, we instead seek linear (or polynomial) approximations to a functor of ∞-

categories F : C→ D. Our investigation is loosely informed by the following table of analogies:

Differential Calculus Calculus of Functors

Smooth manifold M Compactly generated ∞-category C

Smooth function f : M → N Functor F : C→ D which preserves filtered colimits

Point x ∈M Object C ∈ C

Real vector space Stable ∞-category

Real numbers R ∞-category Sp of spectra

Linear map of vector spaces Exact functor between stable ∞-categories

Tangent space TM,x to M at x ∞-category of spectrum objects Sp(C/C)

Differential of a smooth function Excisive approximation of a functor (see Theorem 6.1.1.10)

1011
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We will begin in §6.1 by reviewing the contents of Goodwillie’s paper [61], which introduces and

analyzes a sequence of Taylor approximations Pn(F ) to a functor F : C → D between compactly

generated∞-categories. Restricting to the case n = 1, we obtain a theory of first derivatives, which

we will study in §6.2. One of our main results is the Klein-Rognes chain rule (Theorem 6.2.1.22),

which asserts that (under some mild hypotheses) the first derivative of a composite functor G ◦ F
is obtained by composing the derivative of G with the derivative of F . In §6.3, we discuss the chain

rule of Arone-Ching, a more general statement which gives information about the higher derivatives

of a composite functor. Using the theory of ∞-operads developed in §2, we formulate and prove a

Koszul dual version of this chain rule.

6.1 The Calculus of Functors

Let f : R → R be a smooth (that is, infinitely differentiable) function. For each n ≥ 0, Taylor’s

formula gives an identity

f(x) = c0 + c1x+ · · ·+ cnx
n + u(x)xn+1

where cm = f (m)(0)
m! and u : R→ R is another infinitely differentiable function. We will refer to the

polynomial g(x) = c0 + c1x+ · · ·+ cnx
n as the nth Taylor approximation to f (at the point 0 ∈ R).

It is uniquely characterized by the following properties:

(a) The function g(x) is a polynomial of degree ≤ n.

(b) The difference f(x)− g(x) vanishes to order n at 0 ∈ R.

Our goal in this section is to give an exposition of Goodwillie’s calculus of functions, which

develops an analogous theory of Taylor approximations where we replace the real numbers R by

the ∞-category Sp of spectra, and replace smooth functions f : R → R by functors F : Sp → Sp

which commute with filtered colimits.

Question 6.1.0.1. Let F : Sp→ Sp be a functor which commutes with filtered colimits. Can we

find another functor G : Sp→ Sp satisfying some analogues of conditions (a) and (b)?

To address Question 6.1.0.1, we first need to isolate a class of functors G : Sp → Sp which

behave like polynomials of degree ≤ n. Note that function f : R → R is a polynomial of degree

≤ n if and only if f can be written as an R-linear combination of the functions {qm : R→ R}0≤m≤n
given by qm(x) = xm. Each of these functions has an obvious analogue in the setting of functors

from Sp to Sp: namely, the functor Qm : Sp → Sp given by Qm(X) = X⊗m determined by the

smash product monoidal structure on Sp (see §4.8.2). This motivates the following definition:

Definition 6.1.0.2. We let Polyn(Sp, Sp) denote the smallest full subcategory of Fun(Sp,Sp) which

is closed under translation, small colimits and contains the functors Qm : Sp→ Sp for 0 ≤ m ≤ n.

We will say that a functor G : Sp→ Sp is polynomial of degree ≤ n if it belongs to Polyn(Sp, Sp).
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Example 6.1.0.3. For every sequence of “coefficients” C0, C1, . . . , Cn ∈ Sp, the functor

X 7→
⊕

0≤m≤n
Cm ⊗X⊗m

from Sp to itself is polynomial of degree ≤ n. However, not every polynomial functor has this form.

Definition 6.1.0.2 does a good job of capturing the intuitive notion of polynomial for a functor

from Sp to Sp. However, for some purposes it is rather inconvenient:

(i) Given a functor G : Sp → Sp, Definition 6.1.0.2 does not immediately suggest any method

for testing whether or not G is a polynomial of degree ≤ n.

(ii) Definition 6.1.0.2 relies on specific structural features of the ∞-category Sp (namely, the

“monomial” functors Qm : Sp→ Sp), and does not immediately generalize to other contexts.

For these reasons, it will be convenient to work with a more flexible definition. Suppose that C is

an∞-category which admits finite colimits and that D is an∞-category which admits finite limits.

In §6.1.1, we will introduce the notion of an n-excisive functor F : C→ D (see Definition 6.1.1.3).

This notion is completely intrinsic to F , and is applicable in a wide variety of situations. Moreover,

it is closely related to Definition 6.1.0.2: we will eventually show that a functor F : Sp → Sp

is polynomial of degree ≤ n if and only if it is n-excisive and commutes with filtered colimits

(Corollary 6.1.4.15).

The collection of n-excisive functors from C to D span a full subcategory of Fun(C,D), which

we will denote by Excn(C,D). Our first main result is that, under some mild hypotheses (which we

will suppress mention of for the moment), the inclusion functor Excn(C,D) ↪→ Fun(C,D) admits a

left adjoint (Theorem 6.1.1.10). We will denote this left adjoint by Pn : Fun(C,D) → Excn(C,D).

Given an arbitrary functor F : C → D, we can think of Pn(F ) as an nth Taylor approximation to

F : it is, in a precise sense, a “best possible” approximation to F among n-excisive functors.

An easy consequence of the definition of n-excisive functors is that any n-excisive functor is also

m-excisive for m ≤ n (Corollary 6.1.1.14). From this we deduce the existence of canonical maps

Pn(F )→ Pm(F ), which we can arrange into a tower of natural transformations

· · · → Pn(F )→ Pn−1(F )→ · · · → P0(F ),

called the Taylor tower of F .

Remark 6.1.0.4. For any functor F : C→ D, there is a canonical map F → lim←−n Pn(F ). In many

cases, one can show that this natural transformation is an equivalence, or at least an equivalence

when restricted to a large subcategory of C. However, this requires strong assumptions on F : it

is analogous to the assertion that an infinitely differentiable function f : R→ R can be recovered

from its Taylor series

f(x) =
∑
n≥0

f (n)(0)

n!
xn.
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We refer the reader to [60] for a treatment of these types of convergence questions.

In §6.1.2 we will show that the Taylor tower of any functor F is a tower of principal fibrations.

That is, we can always recover Pn(F ) as the homotopy fiber of a map Pn−1(F )→ R(F ), where R(F )

is functor which is homogeneous of degree n: that is, R(F ) is n-excisive and Pn−1(R(F )) is trivial.

In this sense, every n-excisive functor F : C → D can be “built from” m-homogeneous functors

for 0 ≤ m ≤ n. This should be regarded as an analogue of the assertion that every polynomial

function g : R → R can be written (uniquely) as a sum of monomials which are homogeneous of

degree m for 0 ≤ m ≤ n.

In §6.1.4, we will review Goodwillie’s classification of homogeneous functors. The main result

is that every n-homogeneous functor H : C→ D has a unique expression as

H(C) = Ω∞D (h(C,C, . . . , C)Σn), (6.1)

where h : Cn → Sp(D) is a functor which is 1-homogeneous in each variable and symmetric in

its arguments, and h(C, . . . , C)Σn denotes the coinvariants for the action of the symmetric group

Σn on h(C, . . . , C) in the ∞-category Sp(D) (see Theorem 6.1.4.7). In the special case where

H = fib(Pn(F ) → Pn−1(F )) is the n-homogenous part of the n-excisive approximation to F , we

can regard the functor h as an avatar of the nth derivative of F (evaluated at zero), so that 6.1

can be regarded as the analogue of the formula cm = f (m)

m! for the coefficients appearing in the

Taylor approximation g(x) = c0 + c1x+ . . .+ cnx
n for a smooth function f : R→ R. The proof of

Theorem 4.2.1.26 requires an extension of the theory of n-excisiveness to the setting of functors of

many variables, which we describe in §6.1.4.

The remainder of this section is devoted to studying the classification of n-excisive functors in

general. This is quite a bit more difficult than the classification of n-homogeneous functors: in order

to understand an n-excisive functor F ' Pn(F ), one must understand not only its homogeneous

layers fib(Pm(F ) → Pm−1(F )) for 0 ≤ m ≤ n, but also the “k-invariants” which describe how

these layers are connected to one another. In general, this is a difficult problem. However, there

are special cases in which one say a great deal. In §6.1.5, we will show that an n-excisive functor

F : S → Sp which commutes with filtered colimits is determined by its restriction to finite sets of

cardinality ≤ n, which may be prescribed arbitrarily (Theorem 6.1.5.1). In §6.1.6, we will study

the classification of n-excisive functors between stable ∞-categories, where the relevant extension

problems are controlled by a form of Tate cohomology (see Remark 6.1.6.29).

Remark 6.1.0.5. The calculus of functors was introduced by Tom Goodwillie, and most of the

ideas presented in this section are due to him. In particular, our exposition in §6.1.1 through §6.1.4

can be regarded as a translation of Goodwillie’s paper [61] to the language of∞-categories (in fact,

very little translation was necessary: the arguments given in [61] can be adapted to the present

setting, without essential change).



6.1. THE CALCULUS OF FUNCTORS 1015

6.1.1 n-Excisive Functors

Let C and D be ∞-categories, and assume that C admits finite colimits. Recall that a functor

F : C → D is said to be excisive if it carries pushout squares in C to pullback squares in D

(Definition 1.4.2.1). The condition that F be excisive can be regarded as an abstraction of the

excision axiom in the definition of a homology theory (see Remark 1.4.3.3). However, there is

another way of thinking about excisive functors. If C and D are stable∞-categories, then a functor

F : C→ D is excisive if and only if it is the direct sum of a constant functor and an exact functor

(see Remark 1.4.2.2). In the functor-function analogy, such functors correspond to maps between

vector spaces which are affine: that is, which can be given by polynomials of degree at most 1.

In this section, we will introduce the more general notion of an n-excisive functor F : C → D,

which can be viewed as the analogue of inhomogeneous polynomials of degrees ≤ n (Definition

6.1.1.3). The collection of n-excisive functors from C to D span a full subcategory of Fun(C,D),

which we will denote by Excn(C,D). Our main objective in this section is to show that that, under

some mild assumptions on C and D, the inclusion Excn(C,D) ↪→ Fun(C,D) admits a left adjoint

Pn : Fun(C,D)→ Excn(C,D) (Theorem 6.1.1.10).

Notation 6.1.1.1. For every finite set S, we let P(S) denote the collection of subsets of S. We

regard P(S) as a partially ordered set with respect to inclusion. Given an integer i, we let P≤i(S)

denote the subset of P(S) consisting of subsets of S having cardinality at most i, and P>i(S) the

subset of P(S) consisting of those subsets of S having cardinality greater than i.

Definition 6.1.1.2. Let C be an ∞-category and S a finite set. An S-cube in C is a functor

N(P(S))→ C. We let CbSC = Fun(N(P(S)),C) denote the ∞-category of S-cubes.

We will say that an S-cube X : N(P(S))→ C is Cartesian if it is a limit diagram: that is, if X

induces an equivalence

X(∅)→ lim←−
∅6=S0⊆S

X(S0).

We will say that an S-cube X : N(P(S)) → C is strongly coCartesian if X is a left Kan extension

of its restriction to P≤1(S).

Definition 6.1.1.3. Let C be an ∞-category which admits finite colimits and D an ∞-category

which admits finite limits. Let n ≥ 0 be an integer and set S = [n] = {0, . . . , n}. We will say that

a functor F : C→ D is n-excisive if composition with F carries strongly coCartesian S-cubes in C

to Cartesian S-cubes in D. We let Excn(C,D) denote the full subcategory of Fun(C,D) spanned

by the n-excisive functors.

Example 6.1.1.4. Let S = [0] = {0}. Then an S-cube in an∞-category C is just a morphism in C.

Every S-cube is strongly coCartesian, and an S-cube is Cartesian if and only if the corresponding

morphism is an equivalence in C. Consequently, a functor F : C→ D is 0-excisive if and only if it

it factors through D': that is, if and only if it carries each morphism in C to an equivalence in D.
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Example 6.1.1.5. Let S = [1] = {0, 1}. Then an S-cube in an∞-category C is just a commutative

diagram

C //

��

C0

��
C1

// C01.

Such a diagram determines a Cartesian S-cube if and only if it is a pullback square, and a coCarte-

sian S-cube if and only if it is a pushout square. Consequently, a functor F : C→ D is 1-excisive if

and only if it is excisive, in the sense of Definition 1.4.2.1: that is, if and only if it carries pushout

squares in C to pullback squares in D.

Our main goal in this section is to construct a left adjoint to the inclusion functor Excn(C,D) ↪→
Fun(C,D). For this, we will need to introduce a mild assumption on D.

Definition 6.1.1.6. Let C be an ∞-category. We will say that C is differentiable if it satisfies the

following conditions:

(a) The ∞-category C admits finite limits.

(b) The ∞-category C admits sequential colimits: that is, every diagram N(Z≥0) → C admits a

colimit in C.

(c) The colimit functor lim−→ : Fun(N(Z≥0),C) → C is left exact. More informally: the formation

of sequential colimits in C commutes with finite limits.

Example 6.1.1.7. Let C be a stable ∞-category. Then C automatically satisfies condition (a)

of Definition 6.1.1.6. Condition (b) is equivalent to the requirement that C admits countable

coproducts (see Proposition 1.4.4.1). If this condition is satisfied, then (c) follows automatically.

Example 6.1.1.8. Every ∞-topos is differentiable (see Example HTT.7.3.4.7 ).

Example 6.1.1.9. Let C be a compactly generated ∞-category, and Cc the full subcategory of C

spanned by the compact objects. Then C ' Ind(Cc) can be identified with a full subcategory of

Fun(Copc , S) which is closed under filtered colimits. It follows that C is a presentable ∞-category

and that filtered colimits in C are left exact, so that C is differentiable.

We can now state the main result of this section:

Theorem 6.1.1.10. Let C be an ∞-category which admits finite colimits and has a final object,

and let D be a differentiable ∞-category. Then:

(1) The inclusion Excn(C,D) ↪→ Fun(C,D) admits a left adjoint Pn : Fun(C,D)→ Excn(C,D).

(2) The functor Pn is left exact.
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Remark 6.1.1.11 (Rezk). Let C be a small ∞-category which admits finite colimits and has a

final object, and let X be an ∞-topos. Theorem 6.1.1.10 implies that Excn(C,X) is an accessible

left-exact localization of the ∞-category Fun(C,X), and therefore an ∞-topos (which is usually far

from hypercomplete when n > 0).

We will give the proof of Theorem 6.1.1.10 at the end of this section. First, we record some

basic facts about Cartesian and strongly coCartesian cubes.

Definition 6.1.1.12. Let S be a finite set, and suppose we are given a decomposition S = T− q
T q T+. The construction T0 7→ T− q T0 determines an order-preserving map from P(T ) to P(S).

Given an S-cube X : N(P(S))→ C in an∞-category C, the composition N(P(T ))→ N(P(S))
X→ C

is a T -cube in C. We will refer to the T -cubes which arise in this way as T -faces of X.

Proposition 6.1.1.13. Let S be a finite set and T a finite subset of S. Suppose we are given an

S-cube X : N(P(S))→ C in an ∞-category C. Then:

(1) If X is strongly coCartesian, then every T -face of X is strongly coCartesian.

(2) If every T -face of X is Cartesian, then X is Cartesian.

Proof. We first prove (1). Assume that X is strongly coCartesian, choose a decomposition S =

T−qT qT+, and let Y : N(P(T ))→ C be the corresponding T -face of X. We wish to prove that Y

is a left Kan extension of its restriction to P≤1(T ). Unwinding the definitions, we must show that

for every subset T0 ⊆ T , the functor X induces an equivalence

lim−→
T ′0

X(T−
∐

T ′0)→ X(T−
∐

T0),

where T ′0 ranges over all subsets of T0 having cardinality at most 1. Let J denote the collection of

all subsets J ⊆ T−
∐
T0 whose intersection with T0 has cardinality at most 1. The construction

T ′0 7→ T−
∐
T ′0 induces an injection P≤1(T0) → J. This map admits a left adjoint and therefore

induces a left cofinal map of simplicial sets N(P≤1(T0)) → N(J). It will therefore suffice to show

that X exhibits X(T−
∐
T0) as a colimit of the diagram X|N(J). Note that X|N(J) is a left

Kan extension of X|N(P≤1(T−
∐
T0)). It will therefore suffice to show that X(T−

∐
T0) is a

colimit of the restriction X|N(P≤1(T−
∐
T0)), which follows from our assumption that X is strongly

coCartesian.

We now prove (2). Assume that every T -face of X is Cartesian; we will show that X is Cartesian.

We wish to show that X exhibits X(∅) as a limit of X|N(P>0(S)). Let I denote the subset of P(S)

consisting of those subsets S0 ⊆ S which have nonempty intersection with T . Since the T -faces

of X are Cartesian, X|N(P>0(S)) is a right Kan extension of X|N(I). It will therefore suffice to

show that X exhibits X(∅) as a limit of the diagram X|N(I). Note that the inclusion P>0(T ) ↪→ I

admits a right adjoint, so that the map of ∞-categories N(P>0(T )) → N(I) is right cofinal. It

will therefore suffice to show that X exhibits X(∅) as a limit of the diagram X|N(P>0(T )), which

follows from our assumption that the T -faces of X are Cartesian.
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Corollary 6.1.1.14. Let F : C → D be a functor between ∞-categories. Assume that C admits

finite colimits and D admits finite limits. If F is n-excisive, the F is m-excisive for each m ≥ n.

Proposition 6.1.1.15. Let S be a finite set, let C be an ∞-category which admits finite colimits,

and let X : N(P(S))→ C be an S-cube. The following conditions are equivalent:

(1) The S-cube X is strongly coCartesian.

(2) For every pair of finite sets T, T ′ ⊆ S, the diagram

X(T ∩ T ′) //

��

X(T )

��
X(T ′) // X(T ∪ T ′)

is a pushout square in C.

(3) For every subset T ⊆ S and every element s ∈ S − T , the diagram

X(∅) //

��

X(T )

��
X({s}) // X(T ∪ {s})

is a pushout square in C.

Proof. We first show that (1)⇒ (2). Let P ⊆ P(S) denote the collection of those subsets S′ such

that S′ ⊆ T or S′ ⊆ T ′, let P0 = P ∩ P≤1(S), and let P1 = {T, T ′, T ∩ T ′}. We wish to prove

that X exhibits X(T ∪T ′) as a colimit of X|N(P1). It follows from Theorem HTT.4.1.3.1 that the

inclusion N(P1) ⊆ N(P0) is left cofinal. It will therefore suffice to show that X exhibits X(T ∪T ′) as

a colimit of X|N(P ). Our assumption that X is strongly coCartesian implies that X|N(P ) is a left

Kan extension of X|N(P0). It will therefore suffice to show that X exhibits X(T ∪ T ′) as a colimit

of X|N(P0), which follows immediately from our assumption that X is strongly coCartesian.

The implication (2) ⇒ (3) is obvious. We will complete the proof by showing that (3) ⇒ (1).

Let X0 = X|N(P≤1(S)). Since C admits finite colimits, we can extend X0 to a strongly coCartesian

S-cube X ′ : N(P(S))→ C. The identification X ′|N(P≤1(S)) = X|N(P≤1(S)) extends to a natural

transformation α : X ′ → X. To prove that X is strongly coCartesian, it will suffice to show that

α is an equivalence. For each T ⊆ S, let αT : X ′(T ) → X(T ) denote the induced map. We will

prove that each of the maps αT is an equivalence. We proceed by induction on the cardinality of

T . The result is obvious if the cardinality of T is ≤ 1. Otherwise, choose an element s ∈ T and let

T ′ = T − {s}. Since X ′ and X both satisfy condition (3), we have a pushout diagram

α∅ //

��

αT ′

��
α{s} // αT
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in Fun(∆1,C). Since α∅, αT ′ , and α{s} are equivalences by the inductive hypothesis, we conclude

that αT is an equivalence.

Corollary 6.1.1.16. Let C be a stable ∞-category, let S be a finite set, and let X : N(P(S))→ C

be an S-cube in C. Define X ′ : N(P(S))→ Cop by the formula X ′(T ) = X(S − T ). Then:

(1) The functor X is a strongly coCartesian S-cube in C if and only if X ′ is a strongly coCartesian

S-cube in Cop.

(2) The functor X is a Cartesian S-cube in C if and only if X ′ is a Cartesian S-cube in Cop.

Proof. Assertion (2) follows immediately from Proposition 1.2.4.13. Assertion (1) follows from

Proposition 1.2.4.13 and the characterization of strongly coCartesian S-cubes given in Proposition

6.1.1.15.

Corollary 6.1.1.17. Let C and D be stable ∞-categories, and let n ≥ 0 be an integer. Then a

functor F : C→ D is n-excisive if and only if the induced map Cop → Dop is n-excisive.

We now turn to the construction of the functor Pn appearing in the statement of Theorem

6.1.1.10. First, we need to introduce some notation.

Construction 6.1.1.18. Let Fini denote the category whose objects are finite sets and whose

morphisms are injections, and let Fini≤ n denote the full subcategory of Fini spanned by those

finite sets having cardinality ≤ n. Let C be an ∞-category which admits finite colimits and has a

final object. Consider the following conditions on a functor F : N(Fini )→ C:

(i) Whenever S is a set of cardinality exactly 1, the object F (S) ∈ C is final.

(ii) For every finite set S, F exhibits F (S) as the colimit of the diagram F |N(P≤1(S)).

Let C denote the full subcategory of Fun(N(Fini ),C) spanned by those functors which satisfy (i) and

(ii). Condition (i) is equivalent to the requirement that F |N(Fini≤ 1) is a right Kan extension of

F |N(Fini≤ 0), and condition (ii) is equivalent to the requirement that F is a left Kan extension of

F |N(Fini≤ 1). Using Proposition HTT.4.3.2.15 , we deduce that the evaluation functor F 7→ F (∅)
determines a trivial Kan fibration C → C. Choose a section of this Kan fibration. We can regard

this section as determining a functor C×N(Fini )→ C, which we will denote by (X,S) 7→ CS(X).

We will refer to CS(X) as the S-pointed cone on X.

Example 6.1.1.19. Let C be an ∞-category which admits finite colimits and has a final object

∗. If S = ∅, we have CS(X) = X for each X ∈ C. If S has a single element, then CS(X) is a

final object of C. If S has two elements, then we can identify CS : C → C with the (unreduced)

suspension functor ΣC : C→ C, which carries an object X ∈ C to a pushout ∗ qX ∗.
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Remark 6.1.1.20. Let C and D be∞-categories which admit finite colimits and final objects, and

let

CC : C×N(Fini )→ C CD : D×N(Fini )→ D

be as in Construction 6.1.1.18. Suppose F : C → D is a functor which preserves final objects and

pushouts. Then composition with F carries C into D (where C and D are defined as in Construction

6.1.1.18). It follows that the diagram

C×N(Fini )
F×id //

CC

��

D×N(Fini )

CD

��
C

F // D

commutes up to canonical homotopy.

Example 6.1.1.21. Let C be an∞-category which admits finite colimits and has a final object. For

every finite set S, the functor X 7→ CS(X) preserves final objects and finite colimits. Using Remark

6.1.1.20, we conclude that for every pair of finite sets S and T , we have a canonical equivalence of

functors CS ◦ CT ' CT ◦ CS . This equivalence depends functorially on the pair (S, T ).

Construction 6.1.1.22. Let C be an ∞-category which admits finite colimits and has a final

object, let D an ∞-category which admits finite limits, and let F : C → D a functor. For each

integer n ≥ 0, we define a new functor Tn(F ) : C→ D by the formula

(TnF )(X) = lim←−
∅6=S⊆[n]

F (CS(X)).

The canonical map

F (X) = F (C∅(X))→ lim←−
∅6=S⊆[n]

F (CS(X))

determines a natural transformation of functors F → TnF , which depends functorially on F .

Example 6.1.1.23. Let F : C→ D be as in Construction 6.1.1.22, and let ∗ denote a final object

of C. Then T0F is equivalent to the constant functor taking the value F (∗). If F is reduced (that

is, F (∗) is a final object of D), then T1(F ) is given by the composition ΩD ◦ F ◦ ΣC.

Remark 6.1.1.24. The construction F 7→ TnF commutes with finite limits (in fact, it commutes

with K-indexed limits, for any simplicial set K such that D admits K-indexed limits).

Remark 6.1.1.25. In the situation of Construction 6.1.1.22, suppose we are given another ∞-

category C which admits finite colimits and a final object, and a functor F ′ : C′ → C which preserves

pushouts and final objects. Then we have a canonical equivalence of functors Tn(F◦F ′) ' (TnF )◦F ′.
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Lemma 6.1.1.26. Let C be an ∞-category which admits finite colimits and a final object, let D

be an ∞-category which admits finite limits, and let F : C → D be a functor. Let n ≥ 0 and let

S = [n] = {0, . . . , n}. Suppose that X : N(P(S)) → C is a strongly coCartesian S-cube. Then the

canonical map of S-cubes θF : F (X)→ (TnF )(X) factors through a Cartesian S-cube of D.

Proof (Rezk): Let θ : C → CbSC be given by the formula θ(U)(I) = CI(U). For every subset

I ⊆ S, let XI : N(P(S)) → C denote the functor given by the formula XI(I
′) = X(I ∪ I ′). Note

that each XI is a left Kan extension of its restriction to N(P≤1(S)). Since θ(X(I))|N(P≤1(S)) is a

right Kan extension of its restriction to N(P≤0(S)), the identity map XI(∅)→ θ(X(I))(∅) admits

an essentially unique extension to a map of S-cubes XI → θ(X(I)), depending functorially on I.

Define

Y (I) = lim←−
∅6=S′⊆S

F (XI(S
′)).

The map θ : F (X)→ (TnF )(X) factors canonically as a composition

F (X)→ Y → (TnF )(X).

To complete the proof, it will suffice to show that Y is a Cartesian S-cube. Since the collection

of Cartesian S-cubes is stable under finite limits, it will suffice to show that for every nonempty

set S′ ∈ S, the functor T 7→ F (XI(S
′)) = F (X(I ∪ S′)) is a Cartesian S-cube. Since every S′-face

of this S-cube is constant and S′ is nonempty, every S′-face is Cartesian; the desired result now

follows from Proposition 6.1.1.13.

Construction 6.1.1.27. Let C be an ∞-category which admits finite colimits and has a final

object. Suppose we are given a functor F : C → D, where D is differentiable. For each integer

n ≥ 0, we let PnF denote the colimit of the sequence of functors

F
θF−→ TnF

θTnF−→ TnTnF → · · ·

We will refer to PnF as the n-excisive approximation to F .

Example 6.1.1.28. Let F : C → D be as in Construction 6.1.1.27. If F is reduced, then the

1-excisive approximation to F is given by lim−→m
Ωm
D ◦ F ◦ Σm

C (see Example 6.1.1.23).

Remark 6.1.1.29. In the situation of Construction 6.1.1.27, the construction F 7→ PnF commutes

with finite limits. This follows from Remark 6.1.1.24, since the formation of finite limits in D

commutes with sequential colimits.

Remark 6.1.1.30. In the situation of Construction 6.1.1.27, suppose we are given another ∞-

category C′ which admits finite colimits and a final object, and let F ′ : C′ → C be a functor

which preserves pushouts and final objects. Then we have a canonical equivalence of functors

Pn(F ◦ F ′) ' (PnF ) ◦ F ′.
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Remark 6.1.1.31. In the situation of Construction 6.1.1.27, let K be a simplicial set such that D

admits K-indexed colimits, and the formation of K-indexed colimits commutes with the formation

of finite limits. It follows that the construction F 7→ TnF commutes with K-indexed colimits, so

that the construction F 7→ PnF commutes with K-indexed colimits. In particular, the hypotheses

of Construction 6.1.1.27 guarantee that the construction F 7→ PnF commutes with sequential

colimits.

Remark 6.1.1.32. In the situation of Construction 6.1.1.27, suppose we are given another differ-

entiable∞-category D′ and let G : D→ D′ be a functor which preserves finite limits and sequential

colimits. For any functor F : C→ D, we have a canonical equivalence Pn(G ◦ F ) ' G ◦ Pn(F ).

We now wish to show that the functor F 7→ PnF satisfies the conclusions of Theorem 6.1.1.10.

Lemma 6.1.1.33. Let C be an ∞-category which admits finite colimits and has a final object.

Suppose we are given a functor F : C→ D, where D is differentiable. Then the functor PnF : C→ D

is n-excisive.

Proof. Let S = [n] = {0, . . . , n}, and let X : N(P(S)) → C be a strongly coCartesian S-cube; we

wish to show that (PnF )(X) is a Cartesian S-cube in D. We can write (PnF )(X) as the colimit of

a sequence of S-cubes

F (X)→ (TnF )(X)→ (T 2
nF )(X)→ · · ·

According to Lemma 6.1.1.26, each of the maps (T knF )(X) → (T k+1
n F )(X) factors through a

Cartesian S-cube Yk in D. Then (PnF )(X) can be realized as the colimit of the sequence of

S-cubes

Y0 → Y1 → Y2 → · · ·

Since each Yi is Cartesian and finite limits in D commute with sequential colimits, we conclude

that (PnF )(X) ' lim−→Yi is Cartesian, as desired.

Lemma 6.1.1.34. Let C be an ∞-category which admits finite colimits and has a final object.

Suppose we are given a functor F : C → D, where D is a differentiable ∞-category. Let θ denote

the canonical map from F to TnF . Then θ induces an equivalence Pn(F )→ Pn(TnF ).

Proof. We have TnF = lim←−∅6=S⊆[n]
F ◦ CS . Since Pn commutes with finite limits (Remark

6.1.1.29), the canonical map Pn(Tn(F )) → lim←−∅6=S⊆[n]
Pn(F ◦ CS) is an equivalence. Each of

the functors CS preserves pushouts and final objects, so that Remark 6.1.1.30 gives an equiv-

alence Pn(TnF ) ' lim←−∅6=S⊆[n]
(PnF ) ◦ CS . It will therefore suffice to show that the canonical

map PnF → lim←−∅6=S⊆[n]
(PnF ) ◦ CS is an equivalence, which follows immediately from Lemma

6.1.1.33.

Lemma 6.1.1.35. Let F : C → D be a functor, where C admits finite colimits and a final object

and D is differentiable. Let φ : F → PnF be the canonical natural transformation. Then Pn(φ) :

Pn(F )→ Pn(Pn(F )) is an equivalence.
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Proof. Using Remark 6.1.1.31, we can identify Pn(φ) with the colimit of the sequence of natural

transformations Pn(F )→ Pn(T kn (F )), each of which factors as a composition of equivalences

Pn(F )→ Pn(Tn(F ))→ Pn(T 2
n(F ))→ · · · → Pn(T kn (F ))

by virtue of Lemma 6.1.1.34.

Proof of Theorem 6.1.1.10. Let C be an∞-category which admits finite colimits and a final object,

let D be a differentiable ∞-category, and let Pn : Fun(C,D) → Fun(C,D) be the functor given

by Construction 6.1.1.27. We have already seen that Pn is left exact (Remark 6.1.1.29), and the

essential image of Pn is contained in Excn(C,D) (Lemma 6.1.1.33). If F ∈ Fun(C,D) is n-excisive,

then it follows immediately from the definition that the canonical map F → TnF is an equivalence.

Applying this observation iteratively, we deduce that the canonical map F → PnF is an equivalence,

so that F belongs to the essential image of the functor Pn.

By construction, we have a natural transformation θ : id → Pn of functors from Fun(C,D) to

itself. We will complete the proof by showing that θ exhibits Pn as a localization functor. According

to Proposition HTT.5.2.7.4 , it will suffice to show that for every F ∈ Fun(C,D), the canonical maps

Pn(θF ), θPnF : Pn(F )→ Pn(Pn(F ))

are equivalences. The map θPn(F ) is an equivalence by the argument given above, since Pn(F ) is

n-excisive by Lemma 6.1.1.33. We conclude by applying Lemma 6.1.1.35 to deduce that Pn(θF ) is

also an equivalence.

6.1.2 The Taylor Tower

Let C be an ∞-category which admits finite colimits and has a final object, and let D be a dif-

ferentiable ∞-category. For every integer n ≥ 0, we let Excn(C,D) denote the full subcategory of

Fun(C,D) spanned by the n-excisive functors (Definition 6.1.1.3), and Pn : Fun(C,D)→ Excn(C,D)

a left adjoint to the inclusion functor (see Theorem 6.1.1.10). According to Corollary 6.1.1.14, we

have inclusions

· · ·Exc3(C,D) ⊇ Exc2(C,D) ⊇ Exc1(C,D) ⊇ Exc0(C,D),

so that the localization functors Pn form an inverse system

· · · → P3 → P2 → P1 → P0.

If F : C→ D is a functor, then we obtain a diagram of functors

· · · → P3F → P2F → P1F → P0F

is called the Taylor tower of F . We can think of the Taylor tower {PnF}n≥0 as a sequence of

approximations to the functor F , which become more accurate as n grows large. Our goal in
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this section is to study the difference between successive Taylor approximations (as measured, for

example, by taking fibers of the maps PnF → Pn−1F ). Before we can state our main result, we

need to introduce a bit of terminology.

Definition 6.1.2.1. Let C be an ∞-category which admits finite colimits and has a final object,

and let D be a differentiable∞-category. If n is a positive integer, we say that a functor F : C→ D

is n-reduced if Pn−1F is a final object of Excn−1(C,D) (that is, if (Pn−1F )(C) is a final object

of D, for each C ∈ C). We will say that F is n-homogeneous if it is n-excisive and n-reduced.

We let Excn∗ (C,D) denote the full subcategory of Fun(C,D) spanned by those functors which are

n-excisive and 1-reduced, and Homogn(C,D) the full subcategory of Fun(C,D) spanned by those

functors which are n-homogeneous.

Remark 6.1.2.2. Let F : C→ D be a functor, where C has finite colimits and a final object and

D is differentiable. Then P0F can be identified with the constant functor taking the value F (∗),
where ∗ denotes a final object of C. Consequently, the functor F is 1-reduced if and only if F (∗) is

a final object of D: that is, if and only if F is reduced, in the sense of Definition 1.4.2.1.

Remark 6.1.2.3. In the situation of Definition 6.1.2.1, the functors Pn and Pn−1 commute with

sequential colimits (Remark 6.1.1.31). It follows that the collections of n-excisive and n-reduced

functors are closed under sequential colimits in Fun(C,D). In particular, the full subcategory

Homogn(C,D) ⊆ Fun(C,D) is closed under sequential colimits.

We can now state the main result of this section.

Theorem 6.1.2.4 (Goodwillie). Let C be an ∞-category which admits finite colimits and has a

final object, let D be a differentiable ∞-category, and let n ≥ 1 be an integer. Then there exists a

pullback diagram of functors

Pn //

��

Pn−1

��
K // R

from Fun∗(C,D) to itself having the following properties:

(1) For every reduced functor F : C→ D, K(F ) carries every object of C to a final object of D.

(2) For every reduced functor F : C→ D, the functor R(F ) is n-homogeneous.

(3) The functor R : Fun∗(C,D)→ Fun∗(C,D) is left exact.

(4) If F ∈ Fun∗(C,D) is (n− 1)-excisive, then R(F ) carries each object of C to a final object of

D.

Before proving Theorem 6.1.2.4, let us describe some of its consequences.
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Theorem 6.1.2.5. Let C be an ∞-category which admits finite colimits and has a final object, let

D be a differentiable ∞-category, and let n ≥ 1 be an integer. Let E ⊆ Fun(Λ2
2,Fun∗(C,D)) spanned

by those diagrams of functors

E → H ← H0

where E is reduced and (n−1)-excisive, H is n-homogeneous, and H0 is a final object of Fun(C,D).

Then the construction

lim←− : Fun(Λ2
2,Fun∗(C,D))→ Fun∗(C,D)

induces an equivalence of ∞-categories E→ Excn∗ (C,D).

In other words, every reduced n-excisive functor F : C→ D can be written uniquely as a fiber of

some natural transformation α : E → H, where E is a reduced (n− 1)-excisive functor and H is n-

homogeneous functor. Here the fiber is taken over a “base point” given by a natural transformation

β : H0 → H, where H0 is a final object of Fun(C,D). We can identify β with a lifting of H to an

n-homogeneous functor from C to the ∞-category D∗ of pointed objects of D. The existence of the

natural transformation α follows immediately from Theorem 6.1.2.4 (namely, we take α to be the

natural transformation Pn−1(F )→ R(F ) appearing in the statement of Theorem 6.1.2.4). We will

deduce the uniqueness from the following somewhat technical lemma:

Lemma 6.1.2.6. Let C be an ∞-category which admits finite limits. Suppose we are given a

diagram σ :

X00
//

��

X01

��

X02
φ′oo

φ
��

X10
// X11 X12

oo

X20
ψ′ //

ψ

OO

X21

OO

X22
oo

OO

For i ∈ {0, 1, 2}, let Xh
i denote the fiber product Xi0 ×Xi1 Xi2, and let Xv

i denote the fiber product

X0i ×X1i X2i. Assume that φ, φ′, ψ, and ψ′ are equivalences. Then the diagrams Λ2
2 → C given by

Xh
0 → Xh

1 ← Xh
2

and

Xv
0 → Xv

1 ← Xv
2

are equivalent. Moreover, the equivalence can be chosen to depend functorially on σ.

Proof. Let σ− denote the diagram obtained from σ by omitting the lower right corner, σ+ the

diagram obtained from σ by omitting the upper left corner, and σ0 the diagram obtained from σ

by omitting both the upper left and lower right corners. We will prove that the diagram

Xh
0 → Xh

1 ← Xh
2
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is canonically equivalent to the diagram

lim←−σ− → lim←−σ0 ← lim←−σ+ (6.2)

(via an equivalence which depends functorially in σ) By symmetry, it will follow that

Xv
0 → Xv

1 ← Xv
2

is also equivalent to (6.2), and the proof will be complete.

Let σ′− denote the diagram obtained from σ by omitting the lower row, σ′+ the diagram obtained

from σ by omitting the upper row, and σ′0 the diagram obtained from σ by omitting both the upper

and lower rows. Then

Xh
0 → Xh

1 ← Xh
2

can be identified with the upper row of the commutative diagram

lim←−σ
′
− // lim←−σ

′
0 lim←−σ

′
+

oo

lim←−σ−
//

OO

lim←−σ0

θ

OO

lim←−σ+.oo

OO

It will therefore suffice to show that the vertical maps in this diagram are equivalences. We will

show that the map θ is an equivalence; the proofs for the other two maps are similar (but easier).

Consider the diagram σ′′0 :

X02

φ
��

X10
// X11 X12

oo

X20.

ψ

OO

The map θ factors as a composition

lim←−σ0
θ′→ lim←−σ

′′
0
θ′′→ lim←−σ

′
0.

Since φ and ψ are equivalences, the diagram σ′′0 is a right Kan extension of σ′0, so that θ′′ is an

equivalence. The map θ′ is an equivalence by a cofinality argument, so that θ is an equivalence as

desired.

Proof of Theorem 6.1.2.5. Since the collection of reduced, n-excisive functors is closed under lim-

its, it is clear that the formation of fiber products induces a functor φ : E → Excn∗ (C,D). The

construction which carries a functor F to the diagram

Pn−1(F )→ R(F )← K(F )
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(see Theorem 6.1.2.4) determines a functor ψ : Excn∗ (C,D) → E. It follows from Theorem 6.1.2.4

that the composition φ ◦ψ is equivalent to the identity on Excn∗ (C,D). We will complete the proof

by showing that ψ◦φ is equivalent to the identity functor. Consider an object Y ∈ E, corresponding

to a diagram of reduced functors

E → H ← H0

where E is (n − 1)-excisive, H is n-homogeneous, and H0 carries every object of C to an initial

object of D. Consider the diagram of functors σ :

Pn−1(E) //

��

Pn−1(H)

��

Pn−1(H0)oo

��
R(E) // R(H) R(H0)oo

K(E) //

OO

K(H)

OO

K(H0).

OO

oo

Assertion (1) of Theorem 6.1.2.4 implies that K(E), K(H), and K(H0) are final objects of

Fun∗(C,D). Since Pn−1 and R are left exact, the object Pn−1(H0) and R(H0) are final in

Fun∗(C,D). The object Pn−1(H) ∈ Fun∗(C,D) is final since H is n-homogeneous, and the object

R(E) ∈ Fun∗(C,D) is final by part (4) of Theorem 6.1.2.4. Since E, H, and H0 are n-excisive,

taking the limits along the columns of the diagram σ yields the diagram

E → H ← H0

given by Y . Since Pn−1, R, and K are left exact functors, taking the limits along the rows of the

diagram σ gives the diagram (ψ ◦ φ)(Y ) :

Pn−1(E ×H H0)→ R(E ×H H0)← K(E ×H H0).

Invoking Lemma 6.1.2.6, we obtain an equivalence Y ' (ψ◦φ)(Y ), depending functorially on Y .

In the situation of Theorem 6.1.2.5, suppose that F : C → D is given by the fiber product

E ×H H0 of a diagram in E. Then Pn−1F ' Pn−1E ×Pn−1H Pn−1H0 ' Pn−1E ' E. In particular,

F is n-homogeneous if and only if E is a final object of Fun∗(C,D). We therefore have the following

specialization of Theorem 6.1.2.5:

Corollary 6.1.2.7. Let C be an ∞-category which admits finite colimits and has a final object, let

D be a differentiable ∞-category, and let n ≥ 1 be an integer. Let E0 be the full subcategory of

Fun(Λ2
2,Fun∗(C,D)) spanned by those diagrams of functors

H1 → H ← H0
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where H is n-homogeneous and the functors H0 and H1 carry each object of C to a final object of

D. Then the construction

lim←− : Fun(Λ2
2,Fun∗(C,D))→ Fun∗(C,D)

induces an equivalence E0 → Homogn(C,D).

An important special case of Corollary 6.1.2.7 occurs when the∞-category D is pointed: that is,

the final objects of D are also initial. In this case, the ∞-category Fun∗(C,D) is also pointed. We

may therefore identify the ∞-category E0 with Homogn(C,D) (by means of the evaluation functor

(H1 → H ← H0) 7→ H, which is a trivial Kan fibration by Proposition HTT.4.3.2.15 ). Corollary

6.1.2.7 now asserts that the loop functor Ω : Fun(C,D) → Fun(C,D) restricts to an equivalence

of ∞-categories Ω : Homogn(C,D) → Homogn(C,D). Combining this observation with Corollary

1.4.2.27, we obtain the following generalization of Proposition 1.4.2.16:

Corollary 6.1.2.8. Let C be an ∞-category which admits finite colimits and has a final object,

let D be a pointed differentiable ∞-category, and let n ≥ 1 be an integer. Then the ∞-category

Homogn(C,D) is stable.

In the situation of Corollary 6.1.2.8, let Sp(D) denote the ∞-category of spectrum objects of

D (Definition 1.4.2.8), which we regard as a full subcategory of Fun(Sfin
∗ ,D). For every pointed

finite space K ∈ Sfin
∗ , the evaluation X 7→ X(K) determines a functor eK : Sp(D) → D. Note

that Sp(D) is closed under finite limits and sequential colimits in Fun(Sfin
∗ ,D). For every functor

F : C→ Sp(D), we have canonical equivalences

eK ◦ (PnF ) ' Pn(eK ◦ F ) eK ◦ (Pn−1F ) ' Pn−1(eK ◦ F )

(see Remark 6.1.1.32). It follows that F is n-excisive if and only if each of the functors eK ◦ F is

n-excisive, and n-reduced if and only if each of the functors eK ◦F is n-reduced. We therefore have

canonical isomorphisms

Excn∗ (C,Sp(D)) ' Sp(Excn∗ (C,D)) Homogn(C,Sp(D)) ' Sp(Homogn(C,D)).

Combining this second isomorphism, Proposition 1.4.2.21, and Corollary 6.1.2.8, we obtain the

following result:

Corollary 6.1.2.9. Let C be an ∞-category which admits finite colimits and has a final object, let

D be a pointed differentiable ∞-category, and let n ≥ 1 be an integer. Then composition with the

functor Ω∞ : Sp(D)→ D induces an equivalence of ∞-categories

Homogn(C, Sp(D))→ Homogn(C,D).
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Remark 6.1.2.10. Let C be an ∞-category which admits finite colimits and a final object, and

let D be a pointed differentiable ∞-category. Then the ∞-category Fun(C,D) is also pointed. For

n ≥ 1 and F ∈ Fun(C,D), let U(F ) denote the fiber of the map F → Pn−1(F ). Since the functor

Pn−1 is left exact, Pn−1U(F ) is the fiber of the equivalence Pn−1(F ) → Pn−1Pn−1(F ). It follows

that U(F ) is n-reduced. If G : C → D is any n-reduced functor, then MapFun(C,D)(G,Pn−1F ) '
MapFun(C,D)(Pn−1G,Pn−1F ) is contractible, so that the canonical map

MapFun(C,D)(G,U(F ))→ MapFun(C,D)(G,F )

is a homotopy equivalence. It follows that the construction F 7→ U(F ) is a right adjoint to the

inclusion from the ∞-category of n-reduced functors to the ∞-category of all functors from C to

D. Note that if F is n-excisive, then U(F ) is also n-excisive (and therefore n-homogeneous).

Let C be an ∞-category which admits finite colimits and a final object, and let C∗ be the

∞-category of pointed objects of C. The forgetful functor θ : C∗ → C preserves final objects and

strongly coCartesian cubes. It follows that for any differentiable∞-category D, composition with θ

induces a functor ν : Excn(C,D)→ Excn(C∗,D). Using Remark 6.1.1.30, we obtain an equivalence

equivalence Pn(F ◦ θ) ' Pn(F ) ◦ θ for every functor F : C → D. In particular, if F is n-reduced,

then F ◦ θ is also n-reduced. Consequently, ν restricts to a map Homogn(C,D)→ Homogn(C∗,D).

Proposition 6.1.2.11. Let C be an ∞-category which admits finite colimits and a final object, and

let D be a pointed differentiable ∞-category. For each integer n ≥ 1, composition with the forgetful

functor C∗ → C induces an equivalence of ∞-categories φ : Homogn(C,D)→ Homogn(C∗,D).

Proof. We have a commutative diagram

Homogn(C,Sp(D))

��

// Homogn(C∗,Sp(D))

��
Homogn(C,D) // Homogn(C∗,D)

where the vertical maps are equivalences by Corollary 6.1.2.9. We may therefore replace D by

Sp(D) and thereby reduce to the case where D is stable.

Let ∗ denote the final object of C. Since C admits finite colimits, the forgetful functor C∗ → C

admits a left adjoint, given by X 7→ X+ = X q ∗. Composition with this left adjoint determines a

functor ψ0 : Fun(C∗,D)→ Fun(C,D). Since the construction X 7→ X+ preserves finite colimits, ψ0

restricts to a functor ψ1 : Excn(C∗,D)→ Excn(C,D), which is right adjoint to the forgetful functor

Ext(n)(C,D)→ Exc(n)(C∗,D). Let U be as in Remark 6.1.2.10, and let ψ denote the composition

Homogn(C∗,D) ⊆ Excn(C∗,D)
ψ1→ Excn(C,D)

U→ Homogn(C,D),

so that ψ is right adjoint to φ.
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We next prove that for every F ∈ Homogn(C,D), the unit map u : F → ψφF is an equivalence.

We first prove that u is an equivalence. By assumption, F is n-reduced. Consequently, we can

identify u with U(u0), where u0 is the unit map F → ψ0φF . Since D is stable, to prove that u is an

equivalence, it will suffice to show that fib(u0) is (n− 1)-excisive. Let S = [n− 1] = {0, . . . , n− 1}
and let X be a strongly coCartesian S-cube in C; we wish to show that fib(u0)(X) is a Cartesian

S-cube in D. Let S+ = [n] = S ∪ {n}, and let Y be the strongly coCartesian S-cube given by

Y (T ) =

{
X(T ) if n /∈ T
X(T )+ if n ∈ T.

To prove that fib(u0)(X) is a Cartesian S-cube, it suffices to show that F (Y ) is a Cartesian S+.

Since F is n-excisive, it suffices to show that Y is a strongly coCartesian S-cube, which is clear.

It follows from the above argument that the functor φ is fully faithful. To complete the proof,

we will show that the functor ψ is conservative. Because ψ is an exact functor between stable

∞-categories, it will suffice to show that if G ∈ Homogn(C∗,D) satisfies ψG ' 0, then G is a

zero object of Homog(n)(C∗,D). The assumption that ψG ' 0 implies that the canonical map

ψ1G → Pn−1(ψ1G) is an equivalence: that is, ψ1G is (n − 1)-excisive. We will show that G is

(n − 1)-excisive: combined with our assumption that G is (n − 1)-reduced, this will allow us to

conclude that G is a zero object of Homogn(C,D).

Let S = [n− 1] = {0, . . . , n− 1} and let X : N(P(S))→ C∗ be a strongly coCartesian S-cube.

Let S+ = [n] = S ∪ {n} and let Y : N(P(S+))→ C∗ be defined by the formula

Y (T ) =

{
(θX(T ))+ if n /∈ T
X(T − {n}) if n ∈ T.

The assumption that X is a strongly coCartesian S-cube implies that Y is a strongly coCartesian

S+-cube. Since G is n-excisive, we conclude that G(Y ) is a Cartesian S+-cube in D. It follows that

the diagram

G(Y (∅)) //

��

G(Y ({n}))

��
lim←−∅6=T⊆S G(Y (T )) // lim←−∅6=T⊆S G(Y (T ∪ {n}))

is a pullback square in D. The assumption that ψ1G is (n−1)-excisive implies that the left vertical

map is an equivalence. Using the stability of D, we conclude that the right vertical map is also an

equivalence: that is, G(X) is a Cartesian S-cube.

We now turn to the proof of Theorem 6.1.2.4. We will need a rather elaborate construction. Fix

an integer m ≥ 0. Let P = P>0([n]) denote the partially ordered set of nonempty subsets of the

set [n] = {0, . . . , n}. We define a functor χm : N(P)m × Fun∗(C,D)→ Fun∗(C,D) by the formula

χi(S1, . . . , Sm, F ) = F ◦ CS1 ◦ · · · ◦ CSm ,
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where the functors CT : C → C are defined as in Construction 6.1.1.18. For every subset I ⊆ Pm,

let UI : Fun∗(C,D)→ Fun∗(C,D) be given by the formula

UI(F ) = lim←−χm|(N(I)× {F}).

Remark 6.1.2.12. Suppose we are given subsets I ⊆ Pm and I ′ ⊆ Pm′ . Then we can identify I×I ′

with a subset of Pm+m′ . Moreover, we have a canonical equivalence of functors UI×I′ ' UI′ ◦ UI
from Fun∗(C,D) to itself.

Let B ⊆ P be the collection of those subsets S ⊆ [n] having nonempty intersection with

[n − 1] = {0, . . . , n − 1} ⊆ {0, . . . , n} ⊆ [n]. For each integer m ≥ 0, let Am ⊆ Pm denote the

collection of tuples (S1, . . . , Sm) such that at least one of the sets Si contains n ∈ [n]. We have a

commutative diagram of subsets of Pm+1 :

Pm+1 Bm ×Poo Bm+1oo

Am+1

OO

Am+1 ∩ (Bm ×P)

OO

oo Am+1 ∩Bm+1oo

OO

Am ×P

OO

(Am ∩Bm)×P

OO

oo

which determines a commutative diagram of left exact functors τm:

UPm+1 //

��

UBm×P
//

��

UBm+1

��
UAm+1

//

φ

��

UAm+1∩(Bm×P)
//

φ′

��

UAm+1∩Bm+1

UAm×P
// U(Am∩Bm)×P

from Fun∗(C,D) to itself.

Lemma 6.1.2.13. For each m ≥ 0, the functor UAm : Fun∗(C,D) → Fun∗(C,D) carries each

F ∈ Fun∗(C,D) to a final object of Fun∗(C,D).

Proof. Let A′m = Pm − Bm. We claim that the inclusion of simplicial sets N(A′m) → N(Am) is

right cofinal. To prove this, consider a sequence (S1, . . . , Sm) ∈ Am, and let W = {(S′1, . . . , S′n) ∈
A′m : (∀1 ≤ i ≤ n)[S′i ⊆ Si]}. According to Theorem HTT.4.1.3.1 , it will suffice to show that the

partially ordered set W has weakly contractible nerve. Let I ⊆ {1, . . . ,m} be the set of indices for

which n ∈ Si. For every subset J ⊆ I, let WJ denote the subset of W consisting of those tuples

(S′1, . . . , S
′
m) such that S′j = {n} for j ∈ J . Then N(W ) is the homotopy limit of the diagram
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of simplicial sets {N(WJ)}∅6=J⊆I . Since I is nonempty, it will suffice to show that each of the

simplicial set N(WJ) is contractible. This is clear, since WJ has a largest element (namely, the

tuple (S′1, . . . , S
′
m) with S′i =

{
{n} if i ∈ J
Si otherwise.

).

It follows from the above argument that the inclusion A′m ↪→ Am induces an equivalence

UAm(F ) → UA′m(F ) for every F ∈ Fun∗(C,D). Note that if (S1, . . . , Sm) ∈ A′m, then at least

one of the sets Si is a singleton, so that the composite functor CS1 ◦ · · · ◦CSm : C→ C carries each

object of C to a final object of C. Since F is reduced, it follows that

UA′m(F ) = lim←−
(S1,...,Sm)∈A′m

(F ◦ CS1 ◦ · · · ◦ CSm)

carries each object of C to a final object of D, as desired.

Lemma 6.1.2.14. In the above diagram, the maps φ and φ′ are equivalences of functors from

Fun∗(C,D) to itself.

Proof. We will prove that the map φ is an equivalence; the proof for φ′ is similar. Observe that

N(Am+1) is the union of the simplicial subsets N(Am ×P) and N(Bm ×A1), whose intersection is

N((Bm ∩Am)×A1). Using the results of §HTT.4.2.3 , we deduce that the diagram of functors

UAm+1

φ

��

// UBm×A1

ψ

��
UAm×P

// U(Bm∩Am)×A1

is a pullback square. It will therefore suffice to show that ψ is an equivalence. Note that UBm×A1 '
UA1 ◦ UBm (Remark 6.1.2.12), and therefore carries each F ∈ Fun∗(C,D) to a final object of

Fun∗(C,D) (Lemma 6.1.2.13). The same argument shows that U(Bm∩Am)×A1
carries each F ∈

Fun∗(C,D) to a final object of Fun∗(C,D), so that ψ is an equivalence as desired.

Proof of Theorem 6.1.2.4. For each m ≥ 0, let σm be the diagram

UPm
//

��

UBm

��
UAm // UBm∩Am

of functors from the ∞-category Fun∗(C,D) to itself. Let Tn : Fun∗(C,D)→ Fun∗(C,D) be defined

as in Construction 6.1.1.22, so that Tn ' UP. Using Remark 6.1.2.12 and Lemma 6.1.2.14, we can

identify Tnσm with the commutative diagram

UPm+1 //

��

UBm×P

��
UAm+1

// UAm+1∩(Bm×P),
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so that the commutative diagram τm above induces a natural transformation αm : Tn(σm)→ σm+1.

Let σ∞ denote a colimit of the sequence

σ0 → Tn(σ0)
α0→ σ1 → Tn(σ1)

α1→ σ2 → · · ·

Then σ∞ is a commutative diagram of functors

P //

��

P ′

��
K // R

from Fun∗(C,D) to itself. We claim that this commutative diagram has the desired properties.

Using the fact that UP = Tn and Remark 6.1.2.12, we see that UPm can be identified with Tmn .

Unwinding the definitions, we deduce that P is the colimit of the sequence of functors

id→ Tn → T 2
n → · · · ,

and can therefore be identified with the functor Pn of Construction 6.1.1.27. There is an evident

inclusion of partially ordered sets P>0([n−1]) ↪→ B, which induces a right cofinal map of simplicial

sets N(P>0([n − 1])) ↪→ N(B). It follows that UB ' UN(P>0([n−1]))op can be identified with the

functor Tn−1 : Fun∗(C,D) → Fun∗(C,D). Using Remark 6.1.2.12, we obtain an equivalence of

functors UBm ' Tmn−1. The functor P ′ can be identified with the colimit of the sequence

id→ Tn−1 → T 2
n−1 → T 3

n−1 → · · · ,

which is the functor Pn−1 of Construction 6.1.1.27. Lemma 6.1.2.13 implies that K is the colimit

of a sequence of functors which carry every functor F ∈ Fun∗(C,D) to a final object of Fun∗(C,D).

It follows that K carries every functor F ∈ Fun∗(C,D) to a final object of Fun∗(C,D). We can

therefore identify σ∞ with a commutative diagram

Pn //

��

Pn−1

��
K // R.

Note that for I ⊆ Pm, the functor UI : Fun∗(C,D) → Fun∗(C,D) is a limit of functors which

preserve finite limits, and is therefore itself preserve finite limits. Since finite limits in D commute

with sequential colimits, finite limits in Fun∗(C,D) commute with sequential colimits. In particular,

the collection of functors from Fun∗(C,D) to itself which commute with finite limits is closed under

sequential colimits, so that R preserves finite limits.

We now prove that σ∞ is a pullback square. Since finite limits in D commute with sequential

colimits, the collection of pullback square in Fun∗(C,D) is closed under sequential colimits. It will
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therefore suffice to show that each σm is a pullback square of functors from Fun∗(C,D) to itself.

This follows from the results of §HTT.4.2.3 , since the simplicial set N(Pm) is the union of the

simplicial subsets N(Bm) and N(Am) having intersection N(Bm ∩Am).

We next prove that if F : C→ D is reduced and (n− 1)-excisive, then R(F ) is a final object of

Fun∗(C,D). Since we can write R(F ) as the colimit of a sequence of functors UBm∩Am(F ), it will

suffice to show that each UBm∩Am(F ) is a final object of Fun∗(C,D). There is an isomorphism of

partially ordered sets

Bm ∩Am ' P>0([n− 1])×P>0({1, . . . ,m}),

given by

(S1, . . . , Sm) 7→ (S1 ∩ [n− 1], . . . , Sm ∩ [n− 1], {i : n ∈ Si})

We may therefore write UBm∩Am(F ) as a limit of a diagram

G : N(P>0([n− 1]))m ×N(P>0({1, . . . ,m})→ Fun∗(C,D).

For every nonempty subset T ⊆ {1, . . . ,m}, let GT denote the restriction of G to N(P>0([n−1])m×
{T}. Then UBm∩Am(F ) can be written as the limit lim←−∅6=T⊆{1,...,m} lim←−GT . It will therefore suffice

to show that each of the functors lim←−GT is a final object of Fun∗(C,D). Using our assumption that

F is (n− 1)-excisive, we obtain a canonical equivalence

lim←−GT ' F ◦ CS1 ◦ · · · ◦ CSm ,

where Si =

{
{n} if i ∈ T
∅ if i /∈ T.

Since T is nonempty, at least one of the functors CSi carries every

object of C to the final object (see Example 6.1.1.23). Using our assumption that F is reduced, we

conclude that lim←−GT carries every object of C to a final object in D. This completes the proof that

R(F ) is a final object of Fun∗(C,D) whenever F is (n− 1)-excisive.

We complete the proof by showing that for an arbitrary functor F ∈ Fun∗(C,D), the functor

R(F ) is n-homogeneous. Note that we have a canonical equivalence

Pn−1(R(F )) ' R(Pn−1F ).

Since Pn−1F is reduced and n-excisive, R(Pn−1F ) is a final object of Fun∗(C,D), so that R(F )

is n-reduced. It will therefore suffice to show that R(F ) is n-excisive. Let S = [n] and let X :

N P(S) → C be a strongly coCartesian n-cube. Then (R(F ))(X) is given by the colimit of a

sequence of S-cubes

UB0∩A0
(F )(X)

β0→ Tn(UB0∩A0
(F ))(X)→ UB1∩A1

(F )(X)
β1→ Tn(UB1∩A1

(F ))(X)→ · · ·

According to Lemma 6.1.1.26, each of the maps βi factors through a Cartesian S-cube. It follows

that (R(F ))(X) can be written as the colimit of a sequence of Cartesian S-cubes, and is therefore

Cartesian (since finite colimits in D commute with sequential limits).
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6.1.3 Functors of Many Variables

Suppose we are given a functor F : C−×C+ → D between ∞-categories. We can think about F in

several different ways:

(a) We can understand F as a family of functors C+ → D, parametrized by the objects of C−.

(b) We can understand F as a family of functors C− → D, parametrized by the objects of C+.

(c) We can understand F as a single functor C→ D, where C denotes the product C−×C+.

The ideas of §6.1.1 and 6.1.2 can be applied from each of these perspectives, to obtain several

different notions of what it means for F to be reduced, excisive and homogeneous. Our goal in

this section is to study the relationships between these notions. We begin by introducing some

terminology.

Definition 6.1.3.1. Suppose we are given ∞-categories C1,C2, . . . ,Cm which admit pushouts,

and an ∞-category D which admits finite limits, and a sequence of nonnegative integers ~n =

(n1, . . . , nm). We will say that a functor F : C1× · · · × Cm → D is ~n-excisive if, for all 1 ≤ i ≤ m

and every sequence of objects {Xj ∈ Cj}j 6=i, the induced functor

Ci ↪→ Ci×
∏
j 6=i
{Xj} ↪→ C1× · · · × Cm

F→ D

is ni-excisive. We let Exc~n(
∏

Ci,D) denote the full subcategory of Fun(
∏

Ci,D) spanned by

those functors which are ~n-excisive. In the special case where ~n = (1, 1, . . . , 1), we will denote

Exc~n(
∏

Ci,D) by Exc(
∏

Ci,D).

Warning 6.1.3.2. The notation of Definition 6.1.3.1 is potentially ambiguous. Suppose we are

given a finite collection of ∞-categories {Cs}s∈S which admit pushouts, and let C =
∏
s∈S Cs.

Then Exc(
∏
s∈S Cs,D) and Exc(C,D) denote two different ∞-categories: Exc(

∏
s∈S Cs,D) is the

full subcategory of Fun(
∏
s∈S Cs,D) spanned by those functors which are excisive separately in

each variable, while Exc(C,D) denotes the full subcategory of Fun(
∏
s∈S Cs,D) spanned by those

functors which are excisive when viewed as a functor of a single variable.

Remark 6.1.3.3. In the situation of Definition 6.1.3.1, suppose that m > 0 and set let ~n′ =

(n2, . . . , nm). We then have a canonical isomorphism

Exc~n(
∏

1≤i≤m
Ci,D) ' Excn1(C1,Exc~n

′
(

∏
2≤i≤m

Ci,D)).

Proposition 6.1.3.4. Let C1, . . . ,Cm be∞-categories which admit finite colimits, D an∞-category

which admits finite limits, and F : C1× · · · × Cm → D an (n1, . . . , nm)-excisive functor. Then F

is n-excisive when regarded as a functor of one variable (with values in C = C1× . . .× Cm), where

n = n1 + · · ·+ nm.
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Corollary 6.1.3.5. Let C be an ∞-category which admits finite colimits, δ : C→ Cm the diagonal

map, D a functor which admits finite limits, and F : Cm → D an (n1, . . . , nm)-excisive functor.

Then F ◦ δ is n-excisive, where n = n1 + · · ·+ nm.

Proof. Combine Proposition 6.1.3.4 with the observation that the diagonal map δ preserves strongly

coCartesian cubes.

Proof of Proposition 6.1.3.4. Let S = [n] = {0, . . . , n} and let X : N(P(S)) → C be a strongly

coCartesian S-cube in C, corresponding to a sequence of strongly coCartesian S-cubes {Xi :

N(P(S)) → Ci}1≤i≤m. Let δ0 : N(P(S)) → N(P(S))m be the diagonal map. We wish to show

that the composition

N(P(S))
δ0→ N(P(S)m)

∏
Xi−→ C

F→ D

is a Cartesian S-cube in D.

Let A ⊆ P(S)m be the image of P>0(S) under the map δ0: that is, A is the collection of

sequences (S1, . . . , Sm) where S1 = S2 = · · · = Sm is a nonempty subset of S. Let Y : N(P(S)m)→
D be the composition of F with

∏
Xi. We wish to show that Y exhibits Y (∅, . . . , ∅) as a limit of

the diagram Y |N(A).

Let B ⊆ P(S)m be the collection of sequences (S1, . . . , Sm) for which the intersection S1∩· · ·∩Sm
is nonempty. Then A ⊆ B. Moreover, the inclusion A ⊆ B admits a right adjoint, given by

(S1, . . . , Sm) 7→ (T, . . . , T ) where T =
⋂
Si. It follows that the canonical map lim←−(Y |N(B)) →

lim←−(Y |N(A)) is an equivalence. It will therefore suffice to show that Y exhibits Y (∅, . . . , ∅) as a

limit of the diagram Y |N(B). We will prove a stronger assertion: namely, that the functor Y is a

right Kan extension of Y |N(B).

Choose a sequence of subsets

B = B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bk = P(S)m

so that the following conditions are satisfied:

(a) Each Bj is closed upwards in the partially ordered set P(S)m (that is, if (S1, . . . , Sm) ∈ Bj
and Si ⊆ S′i ⊆ S, then (S′1, . . . , S

′
m) ∈ Bj).

(b) For 0 < j ≤ k, the set Bj is obtained from Bj−1 by adding a single element (S1, . . . , Sm) ∈
P(S)m.

To prove that Y is a right Kan extension of Y |N(B), it will suffice to show that Y |N(Bj) is

a right Kan extension of Y |N(Bj−1) for 0 < j ≤ k. Let us suppose that Bj is obtained from

Bj−1 by adjoining a single element (S1, . . . , Sm) ∈ P(S)m. Then (S1, . . . , Sm) /∈ B, so we have

S =
⋃
i(S−Si). Since the cardinality of S is larger than n = n1 + · · ·+nm, we conclude that there

is an integer a with 1 ≤ a ≤ m such that S − Sa has cardinality larger than na.
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Let T =
∐

1≤i≤m(S−Si). Note that there is bijective correspondence between subsets of T and

sequences (S′1, . . . , S
′
m) ∈ P(S)m such that Si ⊆ S′i for all i. Consequently, Y determines a T -cube

YT : N(P(T ))→ D. Using (a), we see that Y |N(Bj) is a right Kan extension of Y |N(Bj−1) if and

only if YT is a Cartesian T -cube in D. Let T0 be a subset of S − Sa having cardinality na + 1, and

regard T0 as a subset of T . According to Proposition 6.1.1.13, it will suffice to show that every

T0-face of YT is Cartesian. This follows immediately from our assumption that the functor F is

na-excisive in the ath variable.

We have the following analogue of Theorem 6.1.1.10:

Proposition 6.1.3.6. Let C1, . . . ,Cm be ∞-categories which admit finite colimits and final objects,

and let D be a pointed differentiable ∞-category. For every sequence of nonnegative integers ~n =

(n1, . . . , nm), the inclusion functor ι : Exc~n(
∏

1≤i≤m Ci,D) ↪→ Fun(
∏

1≤i≤m Ci,D) admits a left

adjoint P~n. Moreover, the functor P~n is left exact.

Proof. We proceed by induction on m. If m = 0, then Exc~n(
∏

1≤i≤m Ci,D) = Fun(
∏

1≤i≤m Ci,D)

and there is nothing to prove. Assume therefore that m > 0, and set ~n′ = (n2, . . . , nm). Using

Remark 6.1.3.3, we see that i is equivalent to the composition

Fun(C1,Fun(
∏

2≤i≤m
Ci,D))

ι′
↪→ Fun(C1,Exc~n

′
(

∏
2≤i≤m

Ci,D))
ι′′→ Excn1(C1,Exc~n

′
(

∏
2≤i≤m

Ci,D)).

The inductive hypothesis implies that the inclusion Exc~n
′
(
∏

2≤i≤m Ci,D) ↪→ Fun(
∏

2≤i≤m Ci,D)

admits a left exact left adjoint. It follows that ι′ admits a left exact left adjoint. We now complete

the proof by invoking Theorem 6.1.1.10, which guarantees that ι′′ admits a left exact left adjoint.

We now turn our attention to reduced functors.

Definition 6.1.3.7. Let C1,C2, . . . ,Cm be∞-category which admit finite colimits and final objects,

let D be a differentiable ∞-category, and let ~n = (n1, . . . , nm) be a sequence of positive integers.

We will say that a functor F : C1× · · · × Cm → D is ~n-reduced if, for all 1 ≤ i ≤ m and every

sequence of objects {Xj ∈ Cj}j 6=i, the induced functor

Ci ↪→ Ci×
∏
j 6=i
{Xj} ↪→ C1× · · · × Cm

F→ D

is ni-reduced. We will say that F is ~n-homogeneous if F is ~n-reduced and ~n-excisive.

We will say that F is reduced if it is (1, 1, . . . , 1)-reduced: that is, if F is reduced in each

variable. We let Fun∗(
∏

1≤i≤m Ci,D) denote the full subcategory of Fun(
∏

1≤i≤m Ci,D) spanned

by the reduced functors. We will say that F is multilinear if it is (1, 1, . . . , 1)-homogeneous; we let

Exc∗(
∏

1≤i≤m
Ci,D) = Exc(

∏
1≤i≤m

Ci,D) ∩ Fun∗(
∏

1≤i≤m
Ci,D)

denote the full subcategory of Fun(
∏

1≤i≤m Ci,D) spanned by the multilinear functors.
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Warning 6.1.3.8. The notation of Definition 6.1.3.7 is potentially ambiguous. Given a finite

collection of ∞-categories {Cs}s∈S which admit finite colimits and final objects, set C =
∏
s∈S Cs.

Then the full subcategories Fun∗(
∏
s∈S Cs,D),Exc∗(

∏
s∈S Cs,D) ⊆ Fun(

∏
s∈S Cs,D) are generally

different from the full subcategories Fun∗(C,D),Exc∗(C,D) ⊆ Fun(C,D) introduced in Definition

1.4.2.1. A functor F : C =
∏
s∈S Cs → D belongs to Fun∗(

∏
s∈S Cs,D) (Exc∗(

∏
s∈S Cs,D)) if it is

reduced (reduced and excisive) separately in each variable; it belongs to Fun∗(C,D) (Exc∗(C,D))

if it is reduced (reduced and excisive) when viewed as a functor of a single variable.

Remark 6.1.3.9. The requirement that a functor F :
∏
s∈S Cs → D be reduced can be stated

more simply as follows: given a collection of objects {Xs ∈ Cs}, if any Xs is a final object of Cs,

then F ({Xs}s∈S) is a final object of D.

Proposition 6.1.3.10. Let C1,C2, . . . ,Cm be ∞-category which admit finite colimits and final

objects, let D be a differentiable ∞-category, and let F : C1× · · · × Cm → D be a functor which is

(1, . . . , 1)-reduced. Let C =
∏

1≤i≤m Ci. Then F is m-reduced when viewed as a functor from C to

D.

Corollary 6.1.3.11. In the situation of Proposition 6.1.3.10, suppose that F is (1, . . . , 1)-

homogeneous. Then F is m-homogeneous when regarded as a functor from C to D.

Proof. Combine Propositions 6.1.3.4 and 6.1.3.10.

Corollary 6.1.3.12. Let C be an ∞-category which admits finite colimits and a final object, let D

be a differentiable ∞-category, and let F : Cm → D be a functor which is (1, . . . , 1)-reduced. Then

the composite functor f : C ↪→ Cm
F→ D is m-reduced. If F is multilinear, then f is m-homogeneous.

Proof. The first assertion follows by combining Proposition 6.1.3.10 with Remark 6.1.1.30 (note

that the diagonal map C → Cm preserves final objects and pushout squares), and the second

assertion follows from the first and Proposition 6.1.3.4.

Proof of Proposition 6.1.3.10. We will prove the following:

(∗) Let X ∈ C and G : C1× · · · × Cm → D be a (1, . . . , 1)-reduced functor. Let G′ be the same

functor, regarded as a functor of one variable. Then the map u : G(X) → (Tn−1G
′)(X)

factors through a final object of D.

Assuming (∗), we can complete the proof as follows. Let X ∈ C be an object and let F ′ be

the functor F , regarded as a functor of one variable. We wish to show that (Pn−1F
′)(X) is a final

object of D. We can write (Pn−1F
′)(X) as the colimit of a sequence

F ′(X)
α0→ (Tn−1F

′)(X)
α1→ (T 2

n−1F
′)(X)→ · · · .
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Using (∗), we deduce that each of the maps αi factors through a final object of D. Thus (Pn−1F
′)(X)

is the colimit of a sequence of final objects of D, and is therefore itself final.

It remains to prove (∗). The object X ∈ C corresponds to a sequence of objects {Xi ∈ Ci}1≤i≤m.

Let S = {1, . . . ,m}, and consider the functor Y : N(P(S)m)→ D given by the formula

Y (S1, . . . , Sm) = G(CS1(X1), . . . , CSm(Xm)).

Let A ⊆ P(S)m be the collection of all sequences of the form (S1, . . . , Sm) where S1 = S2 = · · · = Sm
and each Si is nonempty. Unwinding the definitions, we can identify u with the restriction map

G(X) = Y (∅, . . . , ∅) ' lim←−(Y )→ lim←−(Y |N(A)).

Let B denote the subset of P(S)m consisting of those sequences (S1, . . . , Sm) such that i ∈ Si for

some i ∈ {1, . . . ,m}. Then A ⊆ B, so u factors as a composition

lim←−(Y )→ lim←−(Y |N(B))→ lim←−(Y |N(A)).

We will complete the proof by showing that lim←−(Y |N(B)) is a final object of D.

Let B0 ⊆ B be the subset consisting of those sequences (S1, . . . , Sm) such that Si = {i} for

some i ∈ {1, . . . ,m}. We claim that the inclusion φ : N(B0) ↪→ N(B) is right cofinal. According to

Theorem HTT.4.1.3.1 , it will suffice to show that if (S1, . . . , Sm) ∈ B, then the partially ordered

set

V = {(S′1, . . . , S′m) ∈ B0 : S′i ⊆ Si}

has weakly contractible nerve. Let V0 be the subset of V consisting of those sequences (S′1, . . . , S
′
m)

such that S′i ⊆ {i} for all i. The inclusion V0 ⊆ V has a right adjoint, given by the construction

(S′1, . . . , S
′
m)→ (S′1 ∩ {1}, . . . , S′m ∩ {m}).

It follows that the inclusion N(V0) ⊆ N(V ) is a weak homotopy equivalence. It will therefore suffice

to show that N(V0) is weakly contractible. This is clear, since V0 has a final object.

The right cofinality of φ implies that the restriction map lim←−(Y |N(B)) → lim←−(Y |N(B0)) is an

equivalence. It will therefore suffice to show that lim←−(Y |N(B0)) is a final object of D. In fact, we

claim that Y (S1, . . . , Sm) ∈ D is final whenever (S1, . . . , Sm) ∈ B0. For this, it suffices to observe

that one of the sets Si is a singleton, so that CSi(Xi) is a final object of C. Then

Y (S1, . . . , Sm) = G(CS1(X1), . . . , CSm(Xm))

is final by virtue of our assumption that G is (1, . . . , 1)-reduced.

We next establish a partial converse to Proposition 6.1.3.4.
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Proposition 6.1.3.13. Let C1, . . . ,Cm be∞-categories which admit finite colimits and final objects,

let D be an ∞-category which admits finite limits, and suppose that F : C1× · · · × Cm → D is a

functor which is reduced in each variable. Let C = C1× · · · × Cm and let F ′ = F , regarded as a

functor (of one variable) from C to D. If F ′ is m-excisive, then F is (1, . . . , 1)-excisive.

Proof. Without loss of generality, it will suffice to show that F is excisive in its first argument.

Suppose we are given objects {Xi ∈ Ci}2≤i≤n and a pushout square σ :

Y //

��

Z

��
Y ′ // Z ′

in C1. We wish to show that the diagram τ :

F (Y,X2, . . . , Xm) //

��

F (Z,X2, . . . , Xm)

��
F (Y ′, X2, . . . , Xm) // F (Z ′, X2, . . . , Xm)

is a pullback square in D. Let S = [m] = {0, . . . ,m}. For 2 ≤ i ≤ m, choose a morphism Xi → ∗i,
where ∗i is a final object of Ci. These morphisms determine maps of simplicial sets ∆1 → Ci.

Taking the product of these maps with σ : ∆1×∆1 → C1, we obtain a strongly coCartesian S-cube

U : N(P(S)) ' (∆1)m+1 → C1× · · · × Cm .

Since F ′ is m-excisive, we deduce that F (U) is a Cartesian S-cube in D. Our assumption that F

is reduced in each variable implies that F (U)(T ) is a final object of D unless T ⊆ {0, 1}. It follows

that F (U) is a right Kan extension of its restriction to N(P({0, 1})), so that τ = F (U)|N(P({0, 1})
is a pullback diagram as desired.

Corollary 6.1.3.14. Let C1, . . . ,Cm be ∞-categories which admit finite colimits and final objects,

let D be a differentiable ∞-category, and let F : C1× · · · × Cm → D be a functor which is reduced

in each variable. Let C =
∏

1≤i≤m Ci, and let F ′ denote the map F , regarded as a functor from C

to D. Then there is a canonical equivalence Pm(F ′) ' P1,...,1(F ) (where P1,...,1(F ) is defined as in

Proposition 6.1.3.6).

Proof. Since P1,...,1(F ) is (1, . . . , 1)-excisive, it is m-excisive when viewed as a functor of one variable

(Proposition 6.1.3.4). It follows that the canonical map F → P1,...,1(F ) factors as a composition

F → Pm(F ′)
α→ P1,...,1(F ),

for some map α which is uniquely determined up to homotopy.
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For 1 ≤ i ≤ m, let Ei ⊆ C be the full subcategory spanned by those sequences (X1, . . . , Xm)

where Xi is a final object of Ci. The inclusion Ei ⊆ C preserves pushout squares, so that

(PmF
′)|Ei = Pm(F ′|Ei). Since F is reduced in each variable, F ′|Ei carries each object of Ei

to a final object of D. It follows that Pm(F ′|Ei) has the same property, so that PmF
′ is reduced

in each variable. Invoking Proposition 6.1.3.13, we deduce that PmF
′ is (1, . . . , 1)-excisive, so that

the canonical map F → PmF
′ admits a factorization

F → P1,...,1(F )
β→ Pm(F ′).

It is easy to see that α and β are homotopy inverse to one another.

We now describe a procedure for replacing an arbitrary functor F : C1× · · · × Cm → D by a

reduced functor.

Construction 6.1.3.15. Let C1, . . . ,Cm be∞-categories which admit final objects {∗i ∈ Ci}1≤i≤m,

and let D be a pointed ∞-category which admits finite limits. For 1 ≤ i ≤ m, let Ui : Ci → Ci

denote the constant functor taking the value ∗i, and choose a natural transformation of functors

αi : idCi → Ui. Let S = {1, . . . ,m}. For each functor F : C1× · · · × Cm → D, consider the functor

F : C1× · · · × Cm×N(P(S))
∏
αi→ C1× · · · × Cm

F→ D

For each T ⊆ S, we let F T denote the restriction of F to C1× · · · × Cm×{T}, so that F T is given

by the formula F T (X1, . . . , Xm) = F (X ′1, . . . , X
′
m) where X ′i =

{
Xi if i /∈ T
∗i if i ∈ T.

.

The functor F determines a natural transformation β : F = F ∅ → lim←−∅6=T⊆S F
T . We let Red(F )

denote the fiber of β (in the pointed ∞-category Fun(C1× · · · × Cm,D)). We will refer to Red(F )

as the reduction of F .

Example 6.1.3.16. In the situation of Construction 6.1.3.15, suppose that F is constant in its ith

variable, for some 1 ≤ i ≤ m. Then Red(F ) carries each object of C1× . . .×Cm to a final object of

D.

Proposition 6.1.3.17. Let F : C1× · · · × Cm → D be a functor between ∞-categories. Assume

that each Ci has a final object and that D is pointed and admits finite limits. Then:

(a) The functor Red(F ) : C1× · · · × Cm → D is reduced.

(b) Let G : C1× · · · × Cn → D be any reduced functor. Then the canonical map Red(F ) → F

induces a homotopy equivalence

MapFun(C1×···×Cm,D)(G, red(F ))→ MapFun(C1×···×Cm,D)(G,F ).
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Proof. We first prove (a). For T ⊆ S = {1, . . . ,m}, let F T be defined as in Construction 6.1.3.15.

Suppose we are given objects {Xi ∈ Ci}1≤i≤m such that some Xj is a final object of Cj . Then for

T ⊆ S, the canonical map F T (X1, . . . , Xm) → F T∪{j}(X1, . . . , Xm) is an equivalence. It follows

that the diagram {F T (X1, . . . , Xm)}∅6=T⊆S is a right Kan extension of {F T (X1, . . . , Xm)}{j}⊆T⊆S ,

so that the canonical map

lim←−
∅6=T⊆S

F T (X1, . . . , Xm)→ F {j}(X1, . . . , Xm)

is an equivalence. Consequently, Red(F )(X1, . . . , Xm) is given by the fiber of the map

F ∅(X1, . . . , Xm)→ F {j}(X1, . . . , Xm).

Since this map is an equivalence, we deduce that Red(F )(X1, . . . , Xm) is a final object of D.

We now prove (b). We have a fiber sequence of spaces

MapFun(C1×···×Cm,D)(G,Red(F ))→ MapFun(C1×···×Cm,D)(G,F )→ lim←−
∅6=T⊆S

MapFun(C1×···×Cm,D)(G,F
T ).

It will therefore suffice to show that the mapping space MapFun(C1×···×Cm,D)(G,F
T ) is contractible

for every nonempty subset T ⊆ S. Choose an element j ∈ T , and let E ⊆ C1× · · · × Cm be

the full subcategory spanned by those objects (X1, . . . , Xm) for which Xj is a final object. Note

that F T is a right Kan extension of F T |E, so the restriction map MapFun(C1×···×Cm,D)(G,F
T ) →

MapFun(E,D)(G|E, F T |E) is a homotopy equivalence. It will therefore suffice to show that

MapFun(E,D)(G|E, F T |E) is contractible. In fact, we claim that G|E is an initial object of

Fun(E,D). This follows immediately from our assumption that G is reduced (since the∞-category

D is assumed to be pointed).

Corollary 6.1.3.18. Let C1, . . . ,Cm be ∞-categories which admit final objects, let D be a pointed

∞-category which admits finite limits, and let Fun∗(C1× · · ·×Cm,D) denote the full subcategory of

Fun(C1× · · · × Cn,D) spanned by the reduced functors. Then the inclusion

Fun∗(C1× · · · × Cm,D)→ Fun(C1× · · · × Cm,D)

admits a right adjoint, given by the construction F 7→ Red(F ).

Remark 6.1.3.19. Let C1, . . . ,Cm be∞-categories which admit finite colimits and final object, let

C =
∏

1≤i≤m Cm, and let D be a pointed differentiable ∞-category. Since the localization functors

Pn : Fun(C,D)→ Fun(C,D)

are left exact, we have a canonical equivalence

Pn(Red(F )) ' Red(PnF )
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for every functor F : C → D. In the case n = m, we can identify the left hand side

with P1,...,1(Red(F )) (Corollary 6.1.3.14) and thereby obtain an equivalence P1,...,1(Red(F )) '
Red(PnF ).

Construction 6.1.3.20. Let C be an ∞-category which admits finite colimits and a final object,

and let D be a pointed ∞-category which admits finite limits. Consider the functor q : Cn → C,

given by the formula

(X1, . . . , Xn)→
∐

1≤i≤n
Xi.

For every functor F : C→ D, we let crn(F ) = Red(F ◦ q) denote the reduction of the functor

(X1, . . . , Xn) 7→ F (X1 q · · · qXn).

We will refer to crn(F ) as the nth cross effect of F .

Variant 6.1.3.21. Suppose we are given a finite collection of ∞-categories {Cs}s∈S which admit

finite colimits and final objects and a collection of nonnegative integers ~n = {ns}s∈S . Let C =∏
s∈S Cs and let D be a pointed∞-category which admits finite limits. The product of the maps qs :

Cnss → Cs of Construction 6.1.3.20 gives a map q :
∏
s∈S C

ns
s → C. We define cr~n(F ) = Red(F ◦ q).

When S has a single element, this reduces to the cross effect appearing in Construction 6.1.3.20.

When each of the integers ns is equal to 1, it reproduces the reduction functor of Construction

6.1.3.15.

Proposition 6.1.3.22. Let C be an ∞-category which admits finite colimits and a final object, let

D be a pointed differentiable ∞-category, and let F : C → D be an n-excisive functor. For each

m ≤ n+ 1, the cross-effect crm(F ) : Cm → D is (n−m+ 1, . . . , n−m+ 1)-excisive.

Proof. The proof proceeds by induction on m. When m = 0 it is vacuous. When m = 1, cr1(F )

is given by the fiber of a natural transformation F → F0, where F0 is a constant functor. Since

F and F0 are both n-excisive, we conclude that cr1(F ) is n-excisive. Let us therefore assume that

m ≥ 2. Fix objects X2, X3, . . . , Xm ∈ C; we will show that the functor

X1 7→ crm(F )(X1, . . . , Xm)

is (n − m + 1)-excisive. Let ∗ denote a final object of C. Let G,G′′ : C → D be defined by the

formulas

G(X) = G(X qXm) G′′(X) = F (X q ∗).

Let G′ be the fiber of the natural transformation G→ G′′ induced by the map Xm → ∗. Unwinding

the definitions, we obtain an equivalence

crm(F )(X1, . . . , Xm) ' crm−1(G′)(X1, . . . , Xm−1).
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It will therefore suffice to show that crm−1(G′) is (n −m + 1, . . . , n −m + 1)-excisive. Using the

inductive hypothesis, we are reduced to proving that G′ is (n − 1)-excisive. Let S = [n − 1] =

{0, . . . , n− 1} and let Y : N(P(S))→ C be a strongly coCartesian S-cube. Let S+ = S ∪ {n} and

define a functor Y+ : N(P(S+))→ C by the formula

Y+(T ) =

{
Y (T )qXm if n /∈ T
Y (T )q ∗ if n ∈ T.

We observe that Y+ is a strongly coCartesian S+-cube in C. Since F is n-excisive, F (Y+) is a

Cartesian S+-cube in D. It follows that the diagram

F (Y (∅)qXm) //

��

lim←−∅6=T⊆S F (Y (T )qXm)

��
F (Y (∅)q ∗) // lim←−∅6=T⊆S F (Y (T )q ∗)

is a pullback square. Taking fibers in the vertical direction, we deduce that G′(Y ) is a Cartesian

S-cube in D.

Remark 6.1.3.23. Let C be an ∞-category which admits finite colimits and a final object, D a

pointed differentiable ∞-category, and F : C → D a functor. Combining Remarks 6.1.3.19 and

6.1.1.30, we obtain a canonical equivalence

P1,...,1 crn(F ) ' crn(Pn(F )).

It follows from Proposition 6.1.3.22 that the functor crn(Pn−1F ) is a final object of Fun(Cn,D).

Since the functor crn is left exact, we obtain an equivalence crn(Dn(F )) → crn Pn(F ), where

Dn(F ) = fib(Pn(F )→ Pn−1(F )). We therefore obtain an equivalence of functors

crn(Dn(F )) ' P1,...,1 crn(F ).

Proposition 6.1.3.24. Let C be an ∞-category which admits finite colimits and has a final object,

let D be a pointed differentiable∞-category, let n ≥ 1 be an integer, and let F : C→ D be a functor.

Then F is n-reduced if and only if it satisfies the following conditions:

(1) The functor F is 1-reduced: that is, it carries final objects of C to final objects of D.

(2) For every positive integer m < n, the functor P1,...,1 crm(F ) carries each object of Cm to a

final object of D.

Proof. If F is n-reduced, then assertion (1) is obvious and assertion (2) follows from Remark

6.1.3.23. Conversely, suppose that F satisfies (1) and (2). We will prove that F is k-reduced for

1 ≤ k ≤ n. The proof proceeds by induction on k. When k = 1 the desired result follows from

(1). To carry out the inductive step, it suffices to show that if F is m-reduced and P1,...,1 crm F is

trivial, then F is (m+ 1)-reduced. This follows immediately from Remark 6.1.3.23.
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6.1.4 Symmetric Functors

Let F : C → D be a functor, where C is an ∞-category which admits finite colimits and a final

object and D is a pointed differentiable ∞-category. In §6.1.2 we defined the the Taylor tower

· · · → P3F → P2F → P1F → P0F.

In good cases, this affords a representation of F as a successive extension of homogeneous functors

DnF = fib(PnF → Pn−1F ), each of which is an n-homogeneous functor from C to D. In this

section, we will continue the analysis by providing a classification of n-homogeneous functors.

Let us begin with a bit of motivation from linear algebra. Let V be a finite-dimensional vector

space over the real numbers, and let q : V → R be a quadratic form (that is, a map given by a

homogeneous polynomial of degree 2). Then q determines a symmetric bilinear form b : V ×V → R,

given by the formula

b(v, w) = q(v + w)− q(v)− q(w).

We will refer to b as the polarization of q. Conversely, any symmetric bilinear form b : V ×
V → R determines a quadratic form q : V → R, given by the formula q(v) = 1

2b(v, v). These

two constructions are inverse to one another, and establish a bijective correspondence between

symmetric bilinear forms on V and quadratic forms on V . In this section, we will establish an

analogous correspondence in the setting of the calculus of functors. Suppose that Q : C → D is a

2-homogeneous functor. The analogue of the polarization in this context is the 2-fold cross-effect

cr2(F ) : C×C → D (see Construction 6.1.3.20). Using Proposition 6.1.3.22, we see that cr2(F )

is reduced and excisive in each variable: that is, it can be regarded as the analogue of a bilinear

form. It is not difficult to see that cr2(F ) is symmetric in its two arguments. Our main goal is to

show that F can be functorially recovered from cr2(F ). To carry out this recovery, we need to take

into account the fact that cr2(F ) is a symmetric bifunctor: that is, we have a canonical equivalence

cr2(F )(X,Y ) ' cr2(F )(Y,X) for X,Y ∈ C. We begin by introducing some terminology for a more

systematic treatment of symmetry.

Notation 6.1.4.1. For every group G, we let EG denote the simplicial set given by the Čech

nerve of the map G→ ∗ (so that the set of m-simplices of EG is given by Gm+1, for each m ≥ 0).

Then EG is a contractible Kan complex with a free action of the group G. We let BG denote the

quotient EG/G. We refer to BG as the classifying space of G.

Let n ≥ 0 be an integer and let Σn be the symmetric group on n letters. For every simplicial set

K, we let K(n) denote the quotient (Kn × EΣn)/Σn. We refer to K(n) as the nth extended power

of K. If K is an ∞-category, then K(n) is also an ∞-category, and is a model for the ∞-category

Symn(K) given by the homotopy quotient for the action of Σn acting on Kn.

Let C and D be∞-categories. A symmetric n-ary functor from C to D is a functor F : C(n) → D.

In this case, F determines a functor Cn → D, which is invariant up to (coherent) homotopy

under permutation of its arguments. We let SymFunn(C,D) denote the ∞-category Fun(C(n),D)
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of symmetric n-ary functors from C to D. If C and D admit final objects, we say that a symmetric

n-ary functor F : C(n) → D is reduced if the underlying functor Cn → D is reduced (in each

variable). We let SymFunn∗ (C,D) denote the full subcategory of SymFunn(C,D) spanned by the

reduced symmetric n-ary functors.

Example 6.1.4.2. Let C be a symmetric monoidal ∞-category, which we can regard as a commu-

tative monoid object of Cat∞. The symmetric monoidal structure determines a symmetric n-ary

functor

C(n) ' Symn(C)→ C,

whose underlying map Cn → C is given by (X1, . . . , Xn) 7→ X1 ⊗ · · · ⊗Xn.

If C is an ∞-category which admits finite coproducts, then we can regard C as endowed with

the coCartesian symmetric monoidal structure of §2.4.3. We therefore obtain a symmetric n-ary

functor
∐

: C(n) → C, whose underlying map Cn → C carries a sequence of objects (X1, . . . , Xn) to

the coproduct
∐

1≤i≤nXi.

Our first goal is to show that for any functor F : C→ D, the cross-effect crn(F ) has the structure

of a symmetric n-ary functor.

Proposition 6.1.4.3. Let C be an∞-category with a final object and let D be a pointed∞-category

which admits finite limits. Then the inclusion i : SymFunn∗ (C,D) ↪→ SymFunn(C,D) admits a right

adjoint.

Proof. Consider the inclusion map j : Fun∗(C
n,D) → Fun(Cn,D) (here Fun∗(C

n,D) denotes the

full subcategory of Fun(Cn,D) spanned by those functors which are reduced in each variable). The

∞-category Fun(Cn,D) carries an action of the symmetric group Σn which preserves the image of

j, and i is the map induced by j by taking homotopy invariants with respect to this action. Since

the functor j has a right adjoint (Corollary 6.1.3.18), we conclude that i has a right adjoint.

Remark 6.1.4.4. The proof of Proposition 6.1.4.3 gives a bit more information: namely, it shows

that the right adjoint SymFunn(C,D) → SymFunn∗ (C,D) to i fits into a commutative diagram of

∞-categories

SymFunn(C,D)
θ //

��

SymFunn∗ (C,D)

��
Fun(Cn,D)

Red // Fun∗(C
n,D),

where the functor Red is as defined in Construction 6.1.3.15. We will abuse notation by denoting

the induced functor SymFunn(C,D)→ SymFunn∗ (C,D) also by Red. If F : Cn → D is a symmetric

n-ary functor, we will refer to Red(F ) as the reduction of F .
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Construction 6.1.4.5. Let F : C → D be a functor between ∞-categories. Assume that C has

finite coproducts and a final object, and that D is pointed and admits finite limits. Let
∐

: C(n) → C

be as in Example 6.1.4.2, so that the composition

C(n)
∐
→ C

F→ D

is a symmetric n-ary functor from C to D. We let cr(n)(F ) ∈ SymFunn∗ (C,D) denote the reduction

of F ◦
∐

. We will refer to cr(n)(F ) as the symmetric cross-effect of F .

Remark 6.1.4.6. In the situation of Construction 6.1.4.5, the symmetric cross effect cr(n)(F )

induces a map Cn → D, which can be identified with the cross effect crn(F ) of Construction

6.1.3.20 (see Remark 6.1.4.4).

We can now state the main result of this section.

Theorem 6.1.4.7. Let C be a pointed ∞-category which admits finite colimits and let D be a

pointed differentiable ∞-category. Then the formation of symmetric cross-effects induces a fully

faithful embedding

cr(n) : Homogn(C,D)→ SymFunn(C,D).

The essential image of cr(n) is the full subcategory SymFunnlin(C,D) ⊆ SymFunn(C,D) spanned

by those symmetric n-ary functors E : C(n) → D such that the underlying functor Cn → D is

multilinear.

We will give the proof of Theorem 6.1.4.7 at the end of this section. The main idea is to

use Corollary 6.1.2.9 to reduce to the case where D is a stable ∞-category, in which case we can

explicitly construct a homotopy inverse to the functor cr(n). To carry out this strategy, we will

need some preliminary results.

Lemma 6.1.4.8. Let C be an ∞-category which admits finite colimits and has final object, let D

be an ∞-category which admits finite limits, and let F : C→ D be an n-excisive functor for n ≥ 1.

The following conditions are equivalent:

(1) The functor F is (n− 1)-excisive.

(2) Let S = {1, . . . , n}. For every strongly coCartesian S-cube X : N(P(S))→ C such that X(∅)
is a final object of C, F (X) is a Cartesian S-cube of D.

Proof. The implication (1)⇒ (2) is obvious. Suppose that (2) is satisfied. Let S = {1, . . . , n} and

let X : N(P(S)) → C be a strongly coCartesian S-cube. Let S+ = S ∪ {0} and choose a strongly

coCartesian S+-cube X+ : N(P(S+)) → C extending S such that X+({0}) is a final object ∗ ∈ C.
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Since F is n-excisive, F (X+) is a Cartesian S+ cube in D so we have a pullback square

F (X(∅)) //

��

lim←−∅6=T⊆S F (X(T ))

��
F (∗) // lim←−∅6=T⊆S F (X(T ∪ {0})).

Using condition (2) and Proposition 6.1.1.13, we deduce that the lower horizontal map is an equiv-

alence. It follows that the upper horizontal map is an equivalence, so that F (X) is a Cartesian

S-cube in D.

Lemma 6.1.4.9. Let C be an ∞-category which admits finite colimits and has a final object ∗, let

D be a stable ∞-category, and let F : C → D be an n-excisive functor. Let
∐

: Cn → C be the

functor given by (C1, . . . , Cn) 7→
∐

1≤i≤nCi. The following conditions are equivalent:

(1) The functor F is n-excisive.

(2) For every finite sequence of morphisms {∗ → Ci}1≤i≤n in C (given by maps αi : ∆1 → C), let

S = {1, . . . , n} and let X : N(P(S))→ C be the S-cube given by the composition

N(P(S)) ' (∆1)n
∏
i αi−→ C .

Then F (X) is a Cartesian S-cube in D.

Proof. The implication (1) ⇒ (2) is obvious. Assume that (2) is satisfied. We will show that F

satisfies the criterion of Lemma 6.1.4.8. To this end, let S = {1, . . . , n} and let Y : N(P(S)) → C

be a coCartesian S-cube in C with Y (∅) = ∗. We wish to prove that F (Y ) is a Cartesian S-cube

in D. For 1 ≤ i ≤ n, let Ci = Y ({i}), so that Y determines a map ∗ → Ci. Let X be the S-cube

defined in (2). Then there is an evident natural transformation of S-cubes α : X → Y , which we

can identify with a strongly coCartesian S+-cube in C for S+ = {0, . . . , n}. Since F is n-excisive,

we have a pullback diagram

F (X(∅)) //

��

lim←−∅6=T⊆S F (X(T ))

��
F (Y (∅)) // lim←−∅6=T⊆S F (Y (T )).

Assumption (2) implies that the upper horizontal map is an equivalence. Since D is stable, this

implies that the lower horizontal horizontal map is also an equivalence: that is, F (Y ) is a Cartesian

S-cube in D.
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Proposition 6.1.4.10. Let C be an ∞-category which admits finite colimits and has a final object,

and let D be a stable ∞-category. Suppose that F : C→ D is an n-excisive functor for some n ≥ 1.

The following conditions are equivalent:

(a) The functor F is (n− 1)-excisive.

(b) The n-fold cross-effect crn(F ) carries each object of Cn to a zero object of D.

Proof. If F is (n−1)-excisive, then Proposition 6.1.3.22 implies that crn(F ) is (0, 0, . . . , 0)-excisive:

that is, constant. Since crn(F ) is reduced (and n > 0) we conclude that (a) ⇒ (b). Conversely,

suppose that (b) is satisfied. We will prove that F is (n − 1)-excisive by showing that it satisfies

the second condition of Lemma 6.1.4.9. Let ∗ be a final object of C and suppose we are given a

finite collection of morphisms {αi : ∗ → Ci}1≤i≤n. Let S = {1, . . . , n} and let X : N(P(S)) → C

be the strongly coCartesian S-cube defined in part (2) of Lemma 6.1.4.9. We wish to prove that

F (X) is a Cartesian S-cube in D.

For 1 ≤ i ≤ n, extend αi to a 2-simplex σi :

Ci

  
∗

αi
>>

id // ∗

in C. Let
∐

: CS → C be the functor given by the formula

(K1, . . . ,Kn) 7→
∐

1≤i≤n
Ki,

and let Y : (∆2)S → C denote the composition

(∆2)S
∏
σi−→ CS

∐
→ C .

For 0 ≤ i ≤ n, let Yi : N(P(S))→ C be defined by the formula Yi(T ) = Y (a1, . . . , an), where

aj =


0 if j ≥ i and j /∈ T
2 if j < i and j ∈ T
1 otherwise.

Note that Yn is equivalent to the S-cube X. Consequently, to complete the proof it will suffice to

show that each F (Yi) is a Cartesian S-cube in D. The proof proceeds by induction on i. When

i = 0, we must show that the canonical map

u : F (Y0(∅))→ lim←−
∅6=T⊆S

F (Y0(T ))
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is an equivalence. Unwinding the definitions, we see that the fiber of u is given by crn(F )(X1, . . . , Xn),

which vanishes by (2).

Now suppose that i > 0, and let S′ = S − {i}. We have a commutative diagram

F (Yi(∅)) //

��

F (Yi−1(∅)) //

��

F (Yi−1({i})

��
lim←−∅6=T⊆S′ F (Yi(T )) // lim←−∅6=T⊆S′ F (Yi−1(T )) // lim←−∅6=T⊆S′ F (Yi−1(T ∪ {i})).

We wish to prove that the left square is a pullback diagram (note that Yi−1(T ) = Yi(T ∪ {i}) for

T ⊆ S′). To prove this, we observe that the right square is a pullback diagram by the inductive

hypothesis, and the outer rectangle is a pullback square because the horizontal compositions are

equivalences.

Corollary 6.1.4.11. Let C be a pointed ∞-category which admits finite colimits, and let D be a

stable ∞-category which admits countable colimits. Let α : F → G be a natural transformation

between n-homogeneous functors F,G : C→ D. Then α is an equivalence if and only if the induced

map crn(F )→ crn(G) is an equivalence.

Proof. Suppose crn(α) is an equivalence. Let H be the fiber of α. Note that H is n-homogeneous

and that crn(H) ' fib(crn(α)) is a final object of Fun(C,D). Using Proposition 6.1.4.10, we deduce

that H is (n− 1)-excisive. Since H is n-reduced, we conclude that H is a zero object of the stable

∞-category Fun(C,D), so that α is an equivalence.

Lemma 6.1.4.12. Let C be an ∞-category which admits finite colimits, let D be a stable ∞-

category, and let F : C→ D be a 1-excisive functor. Then F carries strongly coCartesian cubes in

C to strongly coCartesian cubes in D.

Proof. This follows immediately from the characterization of strongly coCartesian cubes given in

Proposition 6.1.1.15.

Proposition 6.1.4.13. Let C be an ∞-category which admits finite colimits and has a final object,

and let D be a stable ∞-category. Let F : Cn → D be a functor, and for every permutation σ in

the symmetric group Σn, let F σ : Cn → D be the composition of F with the isomorphism Cn → Cn

obtained by applying the permutation σ. Let δ : C → Cn be the diagonal map and let f = F ◦ δ,

so that f = F σ ◦ δ for every permutation σ. Suppose that F is (1, . . . , 1)-excisive. Then there is a

canonical equivalence

crn(f) '
⊕
σ∈Σn

Red(F σ).

In particular, if F is (1, . . . , 1)-homogeneous, then crn(f) '
⊕

σ∈Σn
F σ.
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Proof. Let S = {1, . . . , n}. Choose an initial object ∅ ∈ C. For every finite sequence of subsets
~T = (T1, T2, . . . , Tn) ∈ P(S)n, define U~T : Cn → Cn by the formula

U~T (X1, . . . , Xn) = (
∐
i∈T1

Xi, . . . ,
∐
i∈Tn

Xi)

and let F~T = F ◦ U~T . By construction, crn(f) is the reduction of the functor F(S,...,S).

For any sequence of objects X1, . . . , Xn ∈ C, our assumption that F is (1, . . . , 1)-excisive implies

that the construction ~T 7→ F~T (X1, . . . , Xn) is a strongly coCartesian separately in each variable

(Lemma 6.1.4.12). It follows that the canonical map

lim−→
~T∈P≤1(S)n

F~T → F(S,...,S)

is an equivalence, so that crn(f) can be identified with the colimit of the diagram Z : N(P≤1(S)n)→
Fun(Cn,D) given by Z(~T ) = Red(F~T ).

Let P ⊆ P≤1(S)n be the subset consisting of those sequences ~T = (T1, . . . , Tn) with
⋃
i Ti =

S. Note that if
⋃
i Ti 6= S, then the functor F~T is independent of one of its arguments and

therefore Red(F~T ) ' 0 (Example 6.1.3.16). It follows that the diagram Z is a left Kan extension of

Z|N(P ). Moreover, N(P ) is a discrete partially ordered set, whose elements can be identified with

permutations of S. The desired result now follows from the observation that if ~T corresponds to a

permutation σ ∈ Σn, then F~T ' F
σ.

Proof of Theorem 6.1.4.7. We first show that the essential image of cr(n) is contained in

SymFunnlin(C,D). In view of Remark 6.1.4.6, it will suffice to show that if F : C → D is n-

homogeneous, then crn(F ) is (1, . . . , 1)-homogeneous. The functor crn(F ) is (1, . . . , 1)-reduced by

Proposition 6.1.3.17 and (1, . . . , 1)-excisive by Proposition 6.1.3.22.

We have a commutative diagram of ∞-categories

Homogn(C, Sp(D))
cr(n) //

��

SymFunnlin(C,Sp(D))

ψ

��
Homogn(C,D)

cr(n) // SymFunnlin(C,D).

The left vertical map is a categorical equivalence by Corollary 6.1.2.9. The functor ψ is obtained

from the forgetful functor ψ0 : Exc∗(C
n,Sp(D)) → Exc∗(C

n,D) by taking homotopy invariants

with respect to the action of Σn. Iterated application of Corollary 6.1.2.9 shows that ψ0 is a

categorical equivalence, so that ψ is a categorical equivalence. Consequently, to show that the

lower horizontal map in the above diagram is a categorical equivalence, it will suffice to show that

the upper horizontal map is a categorical equivalence. We may therefore replace D by Sp(D)

and thereby reduce to the case where D is stable. In particular, D admits finite colimits. Since D
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admits sequential colimits, it admits countable filtered colimits, and therefore all countable colimits

(Corollary HTT.4.2.3.11 ).

Let
∐

: C(n) → C be as in Example 6.1.4.2. For every object C ∈ C, the inclusion map

{C}(n) ↪→ C(n)×C C/C is left cofinal. Note that {C}(n) is isomorphic to the classifying space

BΣn = EΣn/Σn, which has countably many simplices. Consequently, every functor {C}(n) → D

admits a colimit in D. It follows that every functor C(n) → D admits a left Kan extension along∐
. The formation of left Kan extensions defines a functor ψ : SymFunn(C,D)→ Fun(C,D) which

may be described explicitly as follows: if F : C(n) → D is a symmetric n-ary functor from C to

D with underlying functor f : Cn → D, then (ψF )(X) is given by extracting coinvariants with

respect to the action of Σn on f(X, . . . ,X) ∈ D. Note that the functor ψ is left adjoint to the

forgetful functor Fun(C,D) → SymFunn(C,D). It follows that ψ| SymFunn∗ (C,D) is left adjoint to

the symmetric cross effect construction cr(n) : Fun(C,D)→ SymFunn∗ (C,D).

We now claim that ψ carries SymFunnlin(C,D) into Homogn(C,D). Let F : C(n) → D be a

symmetric n-ary functor from C to D and let f : Cn → D be the underlying functor. Let δ : C→ Cn

be the diagonal map. If f is 1-homogeneous in each variable, then f◦δ is n-homogeneous (Corollaries

6.1.3.4 and 6.1.3.12). Note that F restricts to a map C×BΣn → D, which we can identify with a

map χ : BΣn → Fun(C,D) carrying the base point to f ◦ δ. Moreover, ψ(F ) is given by the colimit

of the diagram χ.

The collection of n-reduced functors from C to D is evidently stable under colimits. The

functor Pn : Fun(C,D) → Fun(C,D) is left exact by Remark 6.1.1.29. Since Fun(C,D) is stable,

the functor Pn is also right exact. Since Pn preserves sequential colimits (Remark 6.1.1.31), it

preserves countable filtered colimits and therefore all countable colimits (Corollary HTT.4.2.3.12 ).

It follows that the collection of n-excisive functors from C to D is stable under countable colimits.

Since the collection of n-reduced functors is evidently stable under countable colimits, we conclude

that Homogn(C,D) ⊆ Fun(C,D) is stable under countable colimits. In particular, we deduce that

ψ(F ) = lim−→(χ) is n-homogeneous.

Let ψ0 = ψ|SymFunnlin(C,D). The above arguments show that we have a pair of adjoint functors

SymFunnlin(C,D)
ψ0 //Homogn(C,D).

cr(n)

oo

We claim that these adjoint functors are mutually inverse equivalences. It follows from Corollary

6.1.4.11 (and Remark 6.1.4.6) that the functor cr(n) is conservative on Homogn(C,D). It will

therefore suffice to show that the unit map u : id → cr(n) ◦ψ0 is an equivalence of functors from

SymFunnlin(C,D) to itself.

Let F : C(n) → D be a symmetric n-ary functor such that the underlying map f : Cn → D

is 1-homogeneous in each variable. We wish to prove that u induces an equivalence of symmetric

n-ary functors

uF : F → cr(n)(ψF ).
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Since the forgetful functor SymFunn(C,D)→ Fun(Cn,D) is conservative, it will suffice to show that

the induced map v : f → crn(ψF ) is an equivalence. Because D is stable, the formation of colimits

in D commutes with finite limits. It follows that crn(ψF ) can be identified with the coinvariants

for the permutation action of the symmetric group Σn on crn(f ◦ δ).
Proposition 6.1.4.13 gives a canonical equivalence crn(f ◦ δ) '

⊕
σ∈Σn

fσ, where the summands

are permuted by the action of Σn. It follows that the Σn-coinvariants on crn(f ◦δ) can be identified

with the functor f . Unwinding the definitions, we see that this identification is given by the map

v.

We will later need the following variant of Theorem 6.1.4.7:

Proposition 6.1.4.14. Let C be an ∞-category which admits finite colimits and a final object, let

D be a stable ∞-category which admits countable colimits, and let ψ : SymFunn(C,D)→ Fun(C,D)

be defined as in the proof of Theorem 6.1.4.7 (so that if F ∈ SymFunn(C,D) has underlying functor

f : Cn → D, then ψ(F ) assigns to each object X ∈ C the coinvariants for the action of the symmetric

group Σn on f(X, . . . ,X)). Then composition with ψ induces an equivalence of ∞-categories

SymFunnlin(C,D)→ Homogn(C,D).

Proof. Let F ∈ SymFunnlin(C,D), and let f : Cn → D be the underlying functor. Using Corollary

6.1.3.11, we deduce that the functor X 7→ f(X, . . . ,X) is n-homogeneous. Note that D and

therefore Fun(C,D) admit countable colimits. The ∞-category of n-reduced functors from C to

D is evidently closed under countable colimits. The functor Pn : Fun(C,D) → Fun(C,D) is left

exact by Remark 6.1.1.29, and therefore also right exact since D is stable. Since Pn commutes with

sequential colimits (Remark 6.1.1.31), we conclude that the class of n-excisive functors is stable

under finite colimits and sequential colimits and therefore under all countable colimits. Since ψ(F )

is a countable colimit of functors equivalent to f , we deduce that ψ(F ) ∈ Homogn(C,D).

Let C∗ denote the ∞-category of pointed objects of C, and let ψ∗ : SymFunnlin(C∗,D) →
Homogn(C∗,D) be defined as above. We have a commutative diagram

SymFunnlin(C,D)
ψ //

φ

��

Homogn(C,D)

φ′

��
SymFunnlin(C∗,D)

ψ∗ // Homogn(C∗,D).

The proof of Theorem 6.1.4.7 shows that ψ∗ is left adjoint to an equivalence of ∞-categories, and

is therefore itself an equivalence of ∞-categories. The map φ′ is an equivalence of ∞-categories

by Proposition 6.1.2.11. It will therefore suffice to show that φ is an equivalence of ∞-categories.

Note that φ is obtained from a functor φ0 : Exc∗(C
n
∗ ,D) → Exc∗(C

n,D) by taking homotopy

invariants with respect to the action of the symmetric group Σn. Here Homog(1,...,1)(Cn,D) denotes

the full subcategory of Fun(Cn,D) spanned by those functors which are (1, . . . , 1)-homogeneous,
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and Exc∗(C
n
∗ ,D) is defined similarly. It will therefore suffice to show that φ0 is an equivalence of

∞-categories. This follows from n applications of Proposition 6.1.2.11.

Corollary 6.1.4.15. Let F : Sp → Sp be a functor, and let n ≥ 0 be an integer. The following

conditions are equivalent:

(1) The functor F is n-excisive and commutes with filtered colimits.

(2) The functor F is polynomial of degree ≤ n, in the sense of Definition 6.1.0.2.

Proof. Let Polyn(Sp,Sp) ⊆ Fun(Sp,Sp) be as in Definition 6.1.0.2, and let X ⊆ Fun(Sp, Sp) be

the full subcategory spanned by those functors which are n-excisive and commute with filtered

colimits. We first show that (2) ⇒ (1): that is, Polyn(Sp, Sp) ⊆ X. For 0 ≤ m ≤ n, the functor

X 7→ X⊗m obviously commutes with filtered colimits, and is n-excisive by Corollary 6.1.3.5. It

will therefore suffice to show that the subcategory X ⊆ Fun(Sp,Sp) is closed under translation and

small colimits. The collection of functors F : Sp → Sp which commute with filtered colimits is

closed under translations and small colimits by Lemma HTT.5.5.2.3 . We are therefore reduced

to proving that Excn(Sp,Sp) ⊆ Fun(Sp,Sp) is closed under translation and small colimits. Since

Excn(Sp, Sp) is closed under filtered colimits, it suffices to show that it is a stable subcategory of

Fun(Sp, Sp). This is clear, since Excn(Sp,Sp) is closed under translation and finite limits.

We now prove that (1) ⇒ (2), using induction on n. Let F : Sp → Sp be an n-excisive

functor which commutes with filtered colimits. The inductive hypothesis implies that Pn−1(F ) ∈
Polyn−1(Sp,Sp) ⊆ Polyn(Sp,Sp). Using the fiber sequence

Dn(F )→ F → Pn−1(F ),

we are reduced to proving that Dn(F ) ∈ Polyn(Sp,Sp). Using Proposition 6.1.4.14, we can write

Dn(F ) as a colimit (indexed by the Kan complex BΣn) of functors of the form

Sp
δ→ Spn

G→ Sp,

where G ' crn(F ) is a functor which commutes with filtered colimits and is 1-homogeneous in

each variable. It follows that G preserves small colimits separately in each variable. Let S ∈ Spn

denote the sphere spectrum, let E = G(S, . . . , S), and let GE : Spn → Sp be the functor given by

(X1, . . . , Xn) 7→ E ⊗X1 ⊗ · · · ⊗Xn. Applying Corollary 1.4.4.6, we deduce that G ' GE , so that

Dn(F ) is a colimit of functors of the form GE . Let C ⊆ Sp denote the full subcategory spanned

by those spectra E for which the functor GE belongs to Polyn(Sp,Sp). Since Polyn(Sp, Sp) is a

stable subcategory of Fun(Sp, Sp) which is closed under small colimits, C is a stable subcategory

of Sp which is closed under small colimits. By construction, we have S ∈ C, so that C = Sp and

therefore GE ∈ Polyn(Sp,Sp) as desired.
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6.1.5 Functors from Spaces to Spectra

Let C be an ∞-category which admits finite colimits, and D an ∞-category which admits finite

limits. In §6.1.1, we introduced the notion of an n-excisive functor from C to D. If C is the ∞-

category of spaces and D is the∞-category of spectra, then n-excisive functors admit the following

characterization:

Theorem 6.1.5.1. Let F : S → Sp be a functor, and let n ≥ 0 be an integer. The following

conditions are equivalent:

(1) The functor F is a left Kan extension of F |N(Fin≤n). Here Fin≤n denotes the category of

finite sets having cardinality ≤ n.

(2) The functor F is n-excisive and commutes with small filtered colimits.

Corollary 6.1.5.2. Let Excnc (S,Sp) denote the full subcategory of Fun(S,Sp) spanned by those

functors which are n-excisive and preserve small filtered colimits. Then the restriction functor

Excnc (S, Sp)→ Fun(N(Fin≤n), Sp) is an equivalence of ∞-categories.

Proof. Combine Theorem 6.1.5.1 with Proposition HTT.4.3.2.15 .

Our goal in this section is to formulate and prove a slightly stronger form of Theorem 6.1.5.1.

We begin by introducing some notation.

Notation 6.1.5.3. Let C be an ∞-category which admits small colimits and D an ∞-category

which admits finite limits and filtered colimits. We let Excnc (C,D) denote the full subcategory of

Fun(C,D) spanned by those functors which are n-excisive and preserve small filtered colimits.

Proposition 6.1.5.4. Let C be a small ∞-category which admits finite colimits and let D be an

∞-category which admits finite limits and small filtered colimits. Assume that filtered colimits in D

are left exact. Then composition with the Yoneda embedding j : C→ Ind(C) induces a fully faithful

functor

θ : Excnc (Ind(C),D))→ Fun(C,D),

whose essential image is the full subcategory Excn(C,D) ⊆ Fun(C,D) spanned by the n-excisive

functors.

Proof. Let Func(Ind(C),D) be the full subcategory of Fun(Ind(C),D) spanned by those functors

which preserve small filtered colimits. Proposition HTT.5.3.5.10 implies that the forgetful functor

Func(Ind(C),D) → Fun(C,D) is an equivalence of ∞-categories. It follows immediately that θ

is fully faithful. The Yoneda embedding j : C → Ind(C) preserves finite colimits (Proposition

HTT.5.3.5.14 ) and therefore carries strongly coCartesian cubes to strongly coCartesian cubes. It
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follows that the essential image of θ is contained in Excn(C,D). Conversely, suppose that f : C→ D

is an n-excisive functor which factors as a composition

C
j→ Ind(C)

F→ D

where F preserves small filtered colimits. We wish to show that F is n-excisive. Let S = [n] =

{0, . . . , n} and let X : N(P(S))→ Ind(C) be a strongly coCartesian S-cube. We wish to show that

F (X) is a Cartesian S-cube in D. Let X≤1 = X|N(P≤1(S)). Using Proposition HTT.5.3.5.15 , we

can write X≤1 as a small filtered colimits of diagrams j◦Y α, where Y α is a functor N(P≤1(S))→ C.

We can extend each Y α to a strongly coCartesian S-cube Zα : N(P(S)) → C, so that X '
lim−→α

(j ◦ Zα). Since F commutes with small filtered colimits, we have F (X) ' lim−→α
f(Zα). Since

filtered colimits in D commute with finite limits, it will suffice to show that f(Zα) is a Cartesian

S-cube in D. This follows from our assumption that f is n-excisive.

Notation 6.1.5.5. Let C be a small ∞-category. We let P(C) denote the ∞-category Fun(Cop, S)

of presheaves of spaces on C. We let Pc(C) denote the full subcategory of P(C) spanned by the

compact objects, so that Pc(C) is an essentially small ∞-category with P(C) ' Ind(Pc(C)). Let

j : C→ P(C) be the Yoneda embedding.

For every integer n ≥ 0, we let P≤n(C) denote the full subcategory of C spanned by the objects

which can be written as a coproduct
∐

1≤i≤m j(Xi) for some m ≤ n and some objects Xi ∈ C.

We can now state the main result of this section.

Theorem 6.1.5.6. Let C be a small ∞-category, let D be a presentable stable ∞-category, and let

n ≥ 0 be an integer. Let F : P(C)→ D be a functor. The following conditions are equivalent:

(1) The functor F is a left Kan extension of F |P≤n(C).

(2) The functor F is n-excisive and preserves small filtered colimits.

Note that Theorem 6.1.5.6 immediately implies Theorem 6.1.5.1 (take C = ∆0 and D = Sp).

Together with Proposition 6.1.5.4, it implies the following version of Corollary 6.1.5.2.

Corollary 6.1.5.7. Let C be a small ∞-category and let D be a presentable stable ∞-category.

Then the restriction functors

Excnc (P(C),D)→ Excn(Pc(C),D)→ Fun(P≤n(C),D)

are equivalences of ∞-categories.

The proof of Theorem 6.1.5.6 will require some preliminary results.
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Lemma 6.1.5.8. Suppose we are given∞-categories C1, . . . ,Cm, and C which admit finite colimits,

and a functor F : C1× · · ·×Cm → C which preserves finite colimits separately in each variable. Let

S be a finite set and suppose we are given S-cubes Xi : N(P(S))→ Ci. Let X denote the S-cube in

C given by the composition

N(P(S))
∏
Xi−→

∏
Ci

F→ C .

Suppose we are given integers ai such that each Xi is a left Kan extension of Xi|N(P≤ai(S)). Then

X is a left Kan extension of X|N(P≤a(S)), where a = a1 + · · ·+ am.

Proof. Define Y : N(P(S))m → C by the formula Y (S1, . . . , Sm) = F (X1(S1), . . . , Xm(Sm)). Let

A ⊆ P(S)m be the subset consisting of sequences (S1, . . . , Sm) where S1 = · · · = Sm and each Si
has cardinality ≤ a. We wish to show that Y exhibits Y (S, . . . , S) as a colimit of the diagram

Y |N(A). Let B0 ⊆ P(S)m be the subset consisting of sequences (S1, . . . , Sm) such that the union⋃
i Si has cardinality ≤ a. Then A ⊆ B. The inclusion N(A) → N(B) admits a left adjoint and is

therefore left cofinal. It will therefore suffice to show that Y exhibits Y (S, . . . , S) as a colimit of

Y |N(B). We will prove the following stronger result: Y is a left Kan extension of Y |N(B).

Choose a sequence of downward-closed subsets

B = B0 ⊆ B1 ⊆ · · · ⊆ Bk = P(S)m,

where each Bj is obtained from Bj−1 by adjoining a single element of P(S)m. To complete the

proof, it will suffice to show that Y |N(Bj) is a left Kan extension of Y |N(Bj−1) for 0 < j ≤ k.

Suppose that Bj is obtained from Bj−1 by adjoining the element (S1, . . . , Sm) ∈ P(S)m. Unwinding

the definitions, we must show that Y |
∏

1≤i≤m N(P(Si)) is a colimit diagram in C.

Since (S1, . . . , Sm) /∈ B0, the union
⋃
Si has cardinality larger than a. It follows that some Si

has cardinality larger than ai. Without loss of generality, we may assume that S1 has cardinality

larger than a1. Let P = (
∏
i P(Si)) − {(S1, . . . , Sm)}, and let P0 ⊆ P be the subset spanned by

those sequences (T1, . . . , Tm) such that T1 6= S1, and let P1 ⊆ P0 be the subset consisting of those

sequences having the form (T1, S2, S3, . . . , Sm). Using the fact that X1 is a left Kan extension of

X1|N(P≤a1(S)) and that F preserves finite colimits in the first variable, we deduce that Y |N(P )

is a left Kan extension of the diagram Y |N(P0). It will therefore suffice to show that Y exhibits

Y (S1, . . . , Sm) as a colimit of Y |N(P0). Note that the inclusion P1 ⊆ P0 admits a left adjoint (given

by (T1, . . . , Tm) 7→ (T1, S2, . . . , Sm)) and therefore induces a left cofinal map N(P1) → N(P0). We

are therefore reduced to proving that Y exhibits Y (S1, . . . , Sm) as a colimit of Y |N(P1). Since F

preserves finite colimits in the first variable, it suffices to show that X1|N(S1) is a colimit diagram.

Since S1 has cardinality larger than a1, this follows from our assumption that X1 is a left Kan

extension of X1|N(P≤a1(S)).

Lemma 6.1.5.9. Let C be a presentable ∞-category and let D be a presentable stable ∞-category.

Let F : C→ D be a 1-excisive functor such that the composition F+ : C∗ → C
F→ D preserves small

filtered colimits. Then F preserves small filtered colimits.
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Proof. Let ∅ and ∗ denote initial and final objects of C, respectively, and let G∅ and G∗ denote the

constant functors C → C taking the values ∅ and ∗. Let U denote the pushout id
∐
G∅
G∗, formed

in the ∞-category Fun(C,C). Since F is 1-excisive, we obtain a pullback diagram of functors

F ◦G∅ //

��

F ◦G∗

��
F // F ◦ U.

It follows that the fiber of the map F → F ◦U is equivalent to a constant functor from C to D, and

therefore commutes with filtered colimits. Consequently, to prove that F commutes with filtered

colimits, it will suffice to show that F ◦U commutes with filtered colimits. This is clear, since F ◦U
factors as a composition C

T→ C∗
F+→ D, where T is a left adjoint to the forgetful functor C∗ → C.

Remark 6.1.5.10. Let C be an∞-category which admits finite colimits, and D a stable∞-category

which admits small colimits. The inclusion functor Excn(C,D)→ Fun(C,D) is a left exact functor

between stable ∞-categories, and therefore right exact. It follows that the collection of n-excisive

functors from C to D is closed under finite colimits. The collection of n-excisive functors from C

to D is also closed under small filtered colimits (since filtered colimits in D are left exact), and

therefore closed under all small colimits.

Proof of Theorem 6.1.5.6. We first show that (1) ⇒ (2). Since the ∞-category D is presentable,

we can regard it as tensored over the ∞-category S of spaces (see §4.8.1.15); we let ⊗ : S×D→ D

denote the corresponding tensor product functor. Let E = Fun(P≤n(C),D). For every object

X ∈ P≤n(C), let X∗ : E → D be the functor given by evaluation at X. This functor admits a left

adjoint X!, which is given on objects by the formula (X!(D))(Y ) = MapC(X,Y )⊗D.

Let E0 ⊆ E be the smallest full subcategory which contains the essential image of each of the

functors X! and is closed under small colimits. We claim that E0 = E. Note that both E0 and E are

presentable, so Corollary HTT.5.5.2.9 implies that the inclusion E0 ⊆ E admits a right adjoint G.

To prove that E0 = E, it will suffice to show that G is conservative. This is clear: if α : E → E′ is a

morphism in E such that G(α) is an equivalence, then X∗(α) is an equivalence for each X ∈ P≤n(C)

and therefore α is an equivalence.

Let E1 denote the full subcategory of E spanned by those functors E : P≤n(C) → D satisfying

the following condition: if E : P(C) → D is a left Kan extension of E, then E is n-excisive and

preserves filtered colimits. We wish to show that E1 = E. In view of the preceding arguments,

it will suffice to show that E0 ⊆ E1. Note that E1 is closed under small colimits in E by Remark

6.1.5.10. It will therefore suffice to show that E1 contains the functor X!(D), for each X ∈ P≤n(C)

and each D ∈ D. Since X is a compact object of P(C), the functor X!(D) preserves small filtered

colimits. We must show that it is n-excisive.

Let j : C → P(C) denote the Yoneda embedding, so we can write X =
∐

1≤i≤m j(Ci) for some

objects Ci ∈ C, where m ≤ n. We will show that X!(D) is m-excisive. Let S = [m] = {0, . . . ,m} and
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choose a strongly coCartesian S-cube Y : N(P(S))→ P(C). We wish to prove that (X!(D))(Y ) is a

Cartesian S-cube in D. According to Proposition 1.2.4.13, it will suffice to show that (X!(D))(Y )

is a colimit diagram in D. Using the formula for X!(D) given above, we are reduced to proving that

the S-cube of spaces {MapP(C)(X,Y (T ))}T⊆S is a colimit diagram: that is, it is a left Kan extension

of its restriction to N(P≤m(S)). Note that this cube is equivalent to a product of the S-cubes of

spaces given by {(Y (T ))(Ci)}T⊆S , each of which is strongly coCartesian (since we assumed that Y

is strongly coCartesian). The desired result now follows from Lemma 6.1.5.8. This completes the

proof that (1)⇒ (2).

We now prove that (2) ⇒ (1). Let E′ ⊆ Fun(P(C),D) be the full subcategory of Fun(P(C),D)

spanned by those functors which are left Kan extensions of their restrictions to P≤n(C). We wish

to show that if F : P(C) → D is an excisive functor which commutes with filtered colimits, then

F ∈ E′. The proof proceeds by induction on n. If n = 0, then F is constant functor and the result

is obvious. Assume that n > 0. It follows from the inductive hypothesis (and the transitivity of

left Kan extensions) that E′ contains every (n − 1)-excisive functor which commutes with filtered

colimits. Applying Theorem 6.1.2.4, we obtain a fiber sequence of functors

F → Pn−1F → R

where R is n-homogeneous. Using the assumption that F commutes with filtered colimits and the

construction of Pn−1, we conclude that Pn−1F commutes with filtered colimits. It follows that

Pn−1F ∈ E′ and that R commutes with filtered colimits. Consequently, we may replace F by R

and thereby reduce to the case where F is homogeneous.

Let ψ : SymFunnlin(P(C),D) → Homogn(C,D) be the equivalence of Proposition 6.1.4.14. We

may assume that F = ψ(H) for some H ∈ SymFunnlin(P(C),D). Let H : P(C)n → D be the n-ary

functor underlying H, so that H is 1-homogeneous in each variable. The proof of Proposition

6.1.4.14 shows that the restriction H|P(C)n∗ is given by the cross effect crn(F |P(C)∗), and therefore

preserves filtered colimits separately in each variable. Using Lemma 6.1.5.9, we conclude that H

preserves filtered colimits separately in each variable. Let δ : P(C) → P(C)n be the diagonal map,

so that F is the colimit of a diagram BΣn → Fun(P(C),D) carrying the vertex to H ◦ δ. Since E′

is closed under small colimits, it will suffice to show that H ◦ δ ∈ E′. Let E′′ ⊆ Fun(P(C)n,D) be

the full subcategory spanned by those functors G : P(C)n → D such that G ◦ δ ∈ E′. To complete

the proof, it will suffice to show the following:

(∗) Any functor G : P(C)n → D which commutes with filtered colimits and is 1-excisive in each

variable belongs to E′′.

The proof of (∗) proceeds by induction on n. Suppose that G : P(C)n → D commutes with

filtered colimits and is 1-excisive in each variable. Fix 1 ≤ i ≤ n, let ∅ denote an initial object of

PC, and define G′ : P(C)n → D by the formula G′(X1, . . . , Xn) = G(X1, . . . , Xi−1, ∅, Xi+1, . . . , Xn).

Choose a fiber sequence of functors

G′ → G→ G′′.
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The inductive hypothesis implies that G′ ∈ E′′. Consequently, to prove that G ∈ E′′ it will suffice to

show that G′′ ∈ E′′. As a functor of its ith argument, G′′ is 1-excisive and preserves initial objects,

and is therefore right exact. Since G′′ preserves filtered colimits in the ith argument, we conclude

that G′′ preserves small colimits in the ith argument. Replacing G by G′′, we can assume that G

preserves small colimits in the ith argument. Applying this argument repeatedly, we can reduce to

the case where G preserves small colimits separately in each variable. Let j : Cn → P(C)n be the

nth power of the Yoneda embedding. Using Lemma HTT.5.1.5.5 repeatedly, we deduce that G is

a left Kan extension of g = G ◦ j along j. It will therefore suffice to prove the following:

(∗′) Let g : Cn → D be any functor, and let G : P(C)n → D be a left Kan extension of g along

j : Cn → P(C)n. Then G ∈ E′′.

Let X denote the full subcategory of Fun(Cn,D) spanned by those functors g such that G ∈ E′′,

where G is a left Kan extension of g along j. We wish to prove that X = Fun(Cn,D). For each

object ~C = (C1, . . . , Cn) ∈ Cn, let e ~X : Fun(Cn,D) → D be the functor given by evaluation at ~C,

and let ~C! : D→ Fun(Cn,D) be a left adjoint to e ~C , so that ~C! is given by the formula

(~C!(D))(Y1, . . . , Yn) = (
∏
i

MapC(Ci, Yi))⊗D.

Let X′ denote the smallest full subcategory of Fun(Cn,D) which is closed under small colimits

and contains all objects of the form ~C!(D). Then X′ is a presentable ∞-category which is closed

under colimits in Fun(Cn,D), so Corollary HTT.5.5.2.9 implies that the inclusion X′ → Fun(Cn,D)

admits a right adjoint U . We claim that X′ = Fun(Cn,D). To prove this, it suffices to show

that U is conservative. This is clear: if α : g → g′ is a morphism in Fun(Cn,D) such that U(α)

is an equivalence, then e ~C(α) is an equivalence for each ~C ∈ Cn. Consequently, to prove that

X = Fun(Cn,D), it will suffice to prove that X′ ⊆ X. Because X is closed under small colimits

in Fun(Cn,D), it will suffice to show that X contains every object of the form g = ~C!(D), where
~C = (C1, . . . , Cn) ∈ Cn and D ∈ D. Let G : P(C)n → D be a left Kan extension of g along j.

Unwinding the definitions, we see that G is given by the formula G(X1, . . . , Xn) = (
∏
iXi(Ci))⊗D.

In particular, G ◦ δ is the functor given by

X 7→ (
∏
i

X(Ci))⊗D ' MapP(C)(X0, X)⊗D,

where X0 ∈ P≤n(C) denotes the coproduct of the functors represented by the objects Ci ∈ C. It

follows that G ◦ δ is the left Kan extension of a constant functor (taking the value D) on the

∞-category {X0} ⊆ P≤n(C), and therefore belongs to E′ as desired.

6.1.6 Norm Maps

Let C and D be pointed ∞-categories, where C admits finite colimits and D is a differentiable

∞-category. According to Theorem 6.1.2.5, every reduced n-excisive functor from C to D can be
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described (in an essentially unique way) as the fiber of an “attaching map” ν : F → G in Fun(C,D),

where F is reduced and (n− 1)-excisive and G is n-homogeneous. Consequently, the classification

of all n-excisive functors from C to D can be broken into three problems:

(a) Classify all (n− 1)-excisive functors from C to D.

(b) Classify all n-homogeneous functors from C to D.

(c) Given F ∈ Excn−1
∗ (C,D) and G ∈ Homogn(C,D), classify all natural transformations ν : F →

G.

We can regard (a) as a simpler instance of the same problem (note that if n = 0, then Excn∗ (C,D)

is a contractible Kan complex), and (b) is addressed in §6.1.4. In this section, we will discuss problem

(c) in the special case where C and D are stable, and D admits countable limits. In this case, every

n-homogeneous functor G : C→ D can be described by the formula C 7→ g(C,C, . . . , C)Σn , where

g : C(n) → D is an symmetric n-ary functor from C to D which is exact in each variable. In this

situation, we will show that there is a universal example of an (n− 1)-excisive functor F equipped

with a natural transformation F → G. We can describe F explicitly as the functor which carries

an object C ∈ C to the fiber of the norm map

Nm : g(C,C, . . . , C)Σn → g(C,C, . . . , C)Σn .

We begin with a general discussion. Let M be an abelian group equipped with an action of a

group G. We can associate to M the subgroup MG = {x ∈ M : (∀g ∈ G)[g(x) = x]} consisting of

G-invariant elements, as well as the quotient group MG = M/K, where K is the subgroup of M

generated by all elements of the form g(x) − x. When the group G is finite, there is a canonical

norm map

Nm : MG →MG,

which is induced by the map from M to itself given by x 7→
∑

g∈G g(x). Our first goal in this

section is to describe an analogous construction in the ∞-categorical setting.

Notation 6.1.6.1. Let C be an ∞-category and X a Kan complex. We let CX denote the ∞-

category Fun(X,C) of all maps from X to C. If f : X → Y is a map of Kan complexes, then

composition with f induces a map f∗ : CY → CX . Assume that C admits limits and colimits

indexed by the simplicial sets X ×Y Y/y, for each y ∈ Y . Then f∗ admits left and right adjoints,

which we denote by f∗ and f!, respectively.

Example 6.1.6.2. Let G be a group and BG its classifying space (which we regard as a Kan

complex). If C is an ∞-category, we define a G-equivariant object of C is an object of CBG. Let

f : BG→ ∆0 be the projection map. If C admits small limits and colimits, then we have functors

f∗, f! : CBG → C. We will denote these functors by M 7→MG and M 7→MG, respectively.
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We can now formulate our problem more precisely. Let G be a finite group, f : BG→ ∆0 the

projection map, and C be a sufficiently nice ∞-category. We wish to associate to the pair (G,C) a

natural transformation Nm : f! → f∗. That is, we wish to construct a natural map MG →MG for

each G-equivariant object M ∈ C. It will be convenient to construct this natural transformation

more generally for any map f : X → Y having reasonably simple homotopy fibers. We will proceed

in several steps, each time allowing slightly more general homotopy fibers.

Lemma 6.1.6.3. Suppose we are given a homotopy pullback diagram of Kan complexes σ :

X ′
f ′ //

g

��

Y ′

g′

��
X

f // Y.

Let C be an ∞-category, and assume that for each y ∈ Y the ∞-category C admits limits indexed

by the Kan complex X ×Y Yy/. Then the diagram of ∞-categories

CY //

��

CX

��

CY
′ // CX

′

is right adjointable.

Proof. Let F : X → C be a functor; we wish to show that the canonical map g′∗f∗ F → f ′∗g
∗ F is

an equivalence in CY
′
. Unwinding the definition, we must show that for each vertex y′ ∈ Y ′, the

map

lim←−(F |X ×Y Yg′(y)/)→ lim←−(F |X ′ ×Y ′ Y ′y/)

is an equivalence in C. This follows from the fact that the map X ′ ×Y ′ Y ′y/ → X ×Y Yg′(y)/ is a

homotopy equivalence, since we have assumed that σ is a homotopy pullback diagram.

Construction 6.1.6.4. Let C be an∞-category which has both an initial object and a final object.

It follows that for any map of Kan complexes f : X → Y with (−1)-truncated homotopy fibers,

the pullback functor f∗ : CY → CX admits left and right adjoints f! and f∗, given by left and right

Kan extension along f .

Let X×Y X denote the homotopy fiber product of X with itself over Y and let δ : X → X×Y X
be the diagonal map. Since f is (−1)-truncated, δ is a homotopy equivalence. It follows that the

Kan extension functors δ!, δ∗ : CX → CX×YX are both homotopy inverse to δ∗, so there is a canonical

equivalence δ∗ → δ!. Let p0, p1 : X ×Y X → X be the projection onto the first and second factor,

respectively. We have a natural transformation of functors

p∗0 → δ∗δ
∗p∗0 ' δ∗ ' δ! ' δ!δ

∗p∗1 → p∗1
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which is adjoint to a natural transformation β : idCX → (p0)∗p
∗
1. Since we have a homotopy pullback

diagram

X ×Y X
p0 //

p1

��

X

f
��

X
f // Y,

Lemma 6.1.6.3 implies that the canonical map f∗f∗ → (p0)∗p
∗
1 is an equivalence, so that β deter-

mines a natural transformation idCX → f∗f∗, which is in turn adjoint to a map Nmf : f! → f∗.

We will refer to Nmf as the norm map determined by f .

Example 6.1.6.5. Let C be an ∞-category with initial and final objects and let f : X → Y

be a homotopy equivalence of Kan complexes. Then the natural transformation Nmf : f! → f∗
of Construction 6.1.6.4 is the equivalence determined by the observation that f! and f∗ are both

homotopy inverse to f∗: in other words, it is determined by the requirement that the induced map

f∗f! → f∗f∗ is homotopy inverse to the composition of counit and unit maps

f∗f∗ → idCX → f∗f!.

Example 6.1.6.6. Let Y = ∆0 and let C be an ∞-category with initial and final objects. If

f : X → Y is a (−1)-truncated map of Kan complexes, then X is either empty or contractible.

If X is contractible, then the norm map Nmf is the equivalence described in Example 6.1.6.5. If

X = ∅, then CX ' ∆0 and the functors f! and f∗ can be identified with initial and final objects of

C ' CY , respectively. In this case, the norm map Nmf is determined up to a contractible space of

choices, since it is a map from an initial object of C to a final object of C.

Proposition 6.1.6.7. Let C be an ∞-category with an initial and final object. The following

conditions are equivalent:

(1) For every map of Kan complexes f : X → Y with (−1)-truncated homotopy fibers, the norm

map Nmf : f! → f∗ is an equivalence.

(2) Condition (1) holds whenever Y = ∆0.

(3) The ∞-category C is pointed.

Proof. The equivalence of (1) and (2) is easy, and the equivalence of (2) and (3) follows from

Example 6.1.6.6.

When the hypotheses of Proposition 6.1.6.7 are satisfied, it is possible to perform a more

elaborate version of Construction 6.1.6.4.
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Construction 6.1.6.8. Let C be an ∞-category which admits finite products and coproducts. It

follows that for any map of Kan complexes f : X → Y whose homotopy fibers are 0-truncated

and have finitely many path components, the pullback functor f∗ : CY → CX admits left and right

adjoints f! and f∗, given by left and right Kan extension along f .

Let X×Y X denote the homotopy fiber product of X with itself over Y and let δ : X → X×Y X
be the diagonal map. Since f is 0-truncated, the map δ is (−1)-truncated, so that Construction

6.1.6.4 defines a norm map Nmδ : δ! → δ∗. Assume that C is pointed. Proposition 6.1.6.7 implies

that Nmδ is an equivalence, and therefore admits a homotopy inverse Nm−1
δ : δ∗ → δ!.

Let p0, p1 : X ×Y X → X be the projection onto the first and second factor, respectively. We

have a natural transformation of functors

p∗0 → δ∗δ
∗p∗0

Nm−1
δ−→ δ∗ ' δ! ' δ!δ

∗p∗1 → p∗1

which is adjoint to a natural transformation β : idCX → (p0)∗p
∗
1. Since we have a homotopy pullback

diagram

X ×Y X
p0 //

p1

��

X

f
��

X
f // Y,

Lemma 6.1.6.3 implies that the canonical map f∗f∗ → (p0)∗p
∗
1 is an equivalence, so that β deter-

mines a map idCX → f∗f∗, which is adjoint to a natural transformation Nmf : f! → f∗. We will

refer to Nmf as the norm map determined by f .

Remark 6.1.6.9. In the situation of Construction 6.1.6.8, assume that f is (−1)-truncated. Then

our definition of Nmf is unambiguous: in other words, the natural transformations Nmf : f! →
f∗ described in Constructions 6.1.6.4 and 6.1.6.8 agree. This follows immediately from Example

6.1.6.5.

Remark 6.1.6.10. Suppose we are given a homotopy pullback diagram

X ′
f ′ //

p′

��

Y ′

p

��
X

f // Y

where the homotopy fibers of f are 0-truncated and have finitely many homotopy groups. Let C

be a pointed ∞-category which admits finite products and coproducts. Using Lemma 6.1.6.3, it

is not difficult to show that the natural transformation f ′! ◦ p′
∗ → f ′∗ ◦ p′

∗ determined by Nmf ′ is

homotopic to the composition

f ′! ◦ p′
∗ → p∗ ◦ f!

Nmf−→ p∗ ◦ f∗ → f ′∗ ◦ p′
∗
.
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Example 6.1.6.11. Let C be a pointed ∞-category which admits finite products and coproducts,

let S be a finite set (regarded as a discrete simplicial set), and let f : S → ∆0 be the canonical

projection map. We can identify objects of CS with tuples C = (Cs ∈ C)s∈S . The norm map

f!(C)→ f∗(C) can be identified with the map∐
s∈S

Cs →
∏
t∈S

Ct,

which classifies a collection of maps φs,t : Cs → Ct in C where φs,t = id if s = t and the zero map

otherwise.

Proposition 6.1.6.12. Let C be a pointed∞-category which admits finite products and coproducts.

The following conditions are equivalent:

(1) For every map of Kan complexes f : X → Y whose homotopy fibers are discrete and have

finitely many connected components, the norm map Nmf : f! → f∗ is an equivalence.

(2) Condition (1) holds whenever Y = ∆0.

(3) For every finite collection of objects {Cs ∈ C}s∈S, the map∐
s∈S

Cs →
∏
t∈S

Ct

described in Example 6.1.6.11 is an equivalence.

Proof. The implication (1) ⇒ (2) is obvious and the converse follows from Remark 6.1.6.10. The

equivalence of (2) and (3) follows from Example 6.1.6.11.

Definition 6.1.6.13. We will say that an∞-category C is semiadditive if it satisfies the equivalent

conditions of Proposition 6.1.6.12.

Remark 6.1.6.14. Let C be a semiadditive ∞-category. Suppose we are given a pair of objects

C,D ∈ C and a finite collection of maps {φs : C → D}s∈S . Then we can define a new map

φ : C → D by the composition

C →
∏
s∈S

C
(φs)s∈S−→

∏
s∈S

D '
∐
s∈S

D → D,

where the first map is the diagonal of C and the last the codiagonal of D. This construction

determines a map ∏
s∈S

MapC(C,D)→ MapC(C,D),

which endows MapC(C,D) with the structure of a commutative monoid up to homotopy. We will

denote the image of a collection of morphisms (φs)s∈S by
∑

s∈S φs.



1066 CHAPTER 6. THE CALCULUS OF FUNCTORS

It is possible to make a much stronger assertion: the addition on MapC(C,D) is not only

commutative and associative up to homotopy, but up to coherent homotopy. That is, each mapping

space in C can be regarded as a commutative algebra object of S, and the composition of morphisms

in C is multilinear. Since we do not need this for the time being, we omit the proof.

Remark 6.1.6.15. Let C be an ∞-category which admits finite products and coproducts. Since

products and coproducts in C are also products and coproducts in the homotopy category hC, we

see that C is semiadditive if and only if (the nerve of) the category hC is semiadditive.

Example 6.1.6.16. Let A be an additive category (see Definition 1.1.2.1). Then the ∞-category

N(A) is semiadditive.

Example 6.1.6.17. Let C be a stable ∞-category. Then the homotopy category hC is additive

(Lemma 1.1.2.9). Combining this with Example 6.1.6.16 and Remark 6.1.6.15, we deduce that C is

semiadditive.

Definition 6.1.6.18. Let X be a Kan complex. We will say that X is a finite groupoid if the

following conditions are satisfied:

(1) The set of connected components π0X is finite.

(2) For every point x ∈ X, the fundamental group π1(X,x) is finite.

(3) The homotopy groups πn(X,x) vanish for n ≥ 2.

More generally, we say that a map of Kan complexes f : X → Y is a relative finite groupoid if the

homotopy fibers of f are finite groupoids.

Construction 6.1.6.19. Let C be a semiadditive ∞-category which admits limits and colimits

indexed by finite groupoids. It follows that for any map of Kan complexes f : X → Y which is a

relative finite groupoid, the pullback functor f∗ : CY → CX admits left and right adjoints f! and

f∗, given by left and right Kan extension along f .

Let X×Y X denote the homotopy fiber product of X with itself over Y and let δ : X → X×Y X
be the diagonal map. Since f is a relative finite groupoid, the homotopy fibers of δ are homotopy

equivalent to finite discrete spaces. Construction 6.1.6.8 defines a norm map Nmδ : δ! → δ∗.

Since C is semiadditive, the natural transformation Nmδ is an equivalence and therefore admits a

homotopy inverse Nm−1
δ : δ∗ → δ!.

Let p0, p1 : X ×Y X → X be the projection onto the first and second factor, respectively. We

have a natural transformation of functors

p∗0 → δ∗δ
∗p∗0

Nm−1
δ−→ δ∗ ' δ! ' δ!δ

∗p∗1 → p∗1
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which is adjoint to a natural transformation β : idCX → (p0)∗p
∗
1. Since we have a homotopy pullback

diagram

X ×Y X
p0 //

p1

��

X

f
��

X
f // Y,

Lemma 6.1.6.3 implies that the canonical map f∗f∗ → (p0)∗p
∗
1 is an equivalence, so that β deter-

mines a map idCX → f∗f∗, which is adjoint to a natural transformation Nmf : f! → f∗. We will

refer to Nmf as the norm map determined by f .

Remark 6.1.6.20. In the situation of Construction 6.1.6.19, assume that f is 0-truncated. Then

the definition of Nmf given in Construction 6.1.6.19 agrees with that given in Construction 6.1.6.8

(and, if f is (−1)-truncated, with that given in Construction 6.1.6.4): this follows easily from

Remark 6.1.6.9.

Remark 6.1.6.21. In the situation of Construction 6.1.6.19, suppose we are given a homotopy

pullback diagram

X ′
f ′ //

p′

��

Y ′

p

��
X

f // Y.

Using Lemma 6.1.6.3, we deduce that the natural transformation f ′! ◦ p′
∗ → f ′∗ ◦ p′

∗ determined by

Nmf ′ is homotopic to the composition

f ′! ◦ p′
∗ → p∗ ◦ f!

Nmf→ p∗ ◦ f∗ → f ′∗ ◦ p′
∗
.

Example 6.1.6.22. Let G be a finite group. Then the classifying space BG is a finite groupoid.

Let f : BG→ ∆0 be the projection map. If C is semiadditive ∞-category which admits limits and

colimits indexed by finite groupoids, then Construction 6.1.6.19 determines a natural transformation

Nmf : f! → f∗. In particular, for every G-equivariant object M ∈ C, we obtain a canonical map

Nm : MG →MG.

Remark 6.1.6.23. Let C be a semiadditive ∞-category which admits limits and colimits indexed

by finite groupoids, and let G be a finite group. Let M be a G-equivariant object of C, and

abuse notation by identifying M with its image in C. We have canonical maps e : M → MG and

e′ : MG →M . Unwinding the definitions, we see that the composition

M
e→MG

Nm→ MG e′→M

is given by
∑

g∈G φg, where for each g ∈ G we let φg : M → M be the map given by evaluation

on the 1-simplex of BG corresponding to g; here the sum is formed with respect to the addition

described in Remark 6.1.6.14.
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If C is equivalent to the nerve of an ordinary category, then the map M →MG is a categorical

epimorphism and the map MG → M is a categorical monomorphism. It follows that the map

Nm : MG →MG is determined (up to homotopy) by the formula e′ ◦Nm ◦ e '
∑

g φg. Moreover,

the map Nm exists by virtue of the observation that the map
∑

g φg : M → M is invariant under

left and right composition with the maps φg.

Definition 6.1.6.24. Let C be a stable ∞-category which admits countable limits and colimits.

Let G be a finite group, and let M be a G-equivariant object of C. We will denote the cofiber

of the norm map Nm : MG → MG by M tG. We refer to the formation M 7→ M tG as the Tate

construction.

Remark 6.1.6.25. Let C be a semiadditive ∞-category which admits limits and colimits indexed

by finite groupoids. Assume that for every finite group G and every G-equivariant object M of C,

the norm map Nm : MG →MG is an equivalence (if C is stable, this is equivalent to the requirement

that the Tate construction M tG vanish). It follows that for every relative finite groupoid f : X → Y ,

the norm map Nmf : f! → f∗ is an equivalence of functors from CX to CY . We can then repeat

Construction 6.1.6.19 to define a norm map Nmf : f! → f∗ for maps f : X → Y whose homotopy

fibers are finite 2-groupoids. If C also admits limits and colimits indexed by finite 2-groupoids, then

we can repeat Construction 6.1.6.19 to define a norm map Nmf : f! → f∗ whenever f is a relative

finite 2-groupoid. This condition is satisfied, for example, if C is a Q-linear ∞-category (here Q

denotes the field of rational numbers), but is generally not satisfied for stable ∞-categories defined

in positive or mixed characteristics. However, it is always satisfies in the setting of K(n)-local

stable homotopy theory. We will study this construction in more detail in a future work.

Example 6.1.6.26. Let C be a semiadditive∞-category which admits limits and colimits indexed

by finite groupoids. Let G be a finite group, let i : ∆0 → BG be the inclusion of the base point

and let f : BG → ∆0 be the projection map. Let M ∈ C ' C∆0
and let N = i!M ∈ CBG, so that

N = i!M '
∐
g∈GM '

∏
g∈GM ' i∗M . Unwinding the definitions, we see that the norm map

f!(N)→ f∗(N) is given by the composition

f!(N) = f!i!M ' (id!M) ' (id∗M) ' f∗i∗(M) ' f∗(N)

and is therefore an equivalence. If C is stable, we conclude that the Tate construction N tG is a zero

object of C.

Let us now return to the calculus of functors. Suppose we are given a symmetric n-ary functor

F : C(n) → D, where D is a stable ∞-category which admits countable limits and colimits. Re-

stricting to the diagonal, F determines a diagram (Fδ) : BΣn → Fun(C,D). Taking the colimit and

limit of this diagram, we obtain functors (Fδ)Σn , (Fδ)Σn : C → D, and a natural transformation

Nm : (Fδ)Σn → (Fδ)Σn . We will denote the cofiber of this natural transformation by (Fδ)tΣn .
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Proposition 6.1.6.27. Let C be an ∞-category which admits finite colimits and has a final object,

and let D be a stable ∞-category which admits finite limits and colimits. Let F ∈ SymFun
(n)
lin (C,D).

Then the functor (Fδ)tΣn is (n− 1)-excisive.

Proof. The functor (Fδ)Σn is n-homogeneous by Proposition 6.1.5.4. Since the collection of n-

excisive functors from C to D is stable under countable limits, Proposition 6.1.3.4 implies that

(Fδ)Σn is n-excisive. It follows that (Fδ)tΣn is also n-excisive. Consequently, to prove that the

cross effect crn(Fδ)tΣn vanishes (Proposition 6.1.4.10). Let (Fδ) : BΣn → Fun(C,D) be as above,

so that crn ◦(Fδ) determines a map BΣn → Fun(Cn,D). This diagram has both a colimit and a

limit, which we will denote by (crn ◦(Fδ))Σn and (crn ◦(Fδ))Σn , respectively. Moreover, we have a

transfer map

Nm : (crn ◦(Fδ))Σn → (crn ◦(Fδ))Σn

whose cofiber is the cross-effect crn(Fδ)tΣn . It will therefore suffice to show that Nm is an equiva-

lence. In view of Example 6.1.6.26, it will suffice to show that the diagram crn ◦(Fδ) is an induced

representation of the symmetric group Σn: that is, that it is given by a left Kan extension along a

map ∆0 → BΣn. This follows immediately from Proposition 6.1.4.13.

Remark 6.1.6.28. Let C and D be stable ∞-categories, and assume that D admits countable

limits and colimits. Suppose we are given a symmetric n-ary functor F : C(n) → D, and consider

the fiber sequence

(Fδ)Σn
Nm→ (Fδ)Σn → (Fδ)tΣn

constructed above. Proposition 6.1.4.14 implies that (Fδ)Σn is n-homogeneous: that is, it is n-

excisive and MapFun(C,D)((Fδ)Σn , G) is contractible for every (n − 1)-excisive functor G : C → D.

Replacing C and D by their opposite ∞-categories (which does not change the notion of k-excisive

functor; see Corollary 6.1.1.17), the same argument shows that (Fδ)Σn is n-cohomogeneous: that

is, it is n-excisive and the mapping space MapFun(C,D)(G, (Fδ)
Σn)) is contractible whenever G is

(n− 1)-excisive. It follows that for any (n− 1)-excisive functor G, the canonical map

MapFun(C,D)(G, (Fδ)
tΣn)→ MapFun(C,D)(G, (Fδ)Σn [−1])

is a homotopy equivalence.

Remark 6.1.6.29. Let C and D be stable ∞-categories, let n > 0 be an integer, and assume that

D admits countable limits and colimits. Combining Remark 6.1.6.28, Proposition 6.1.6.27, and

Theorem 6.1.2.5, we deduce that giving a reduced n-excisive functor F : C → D is equivalent to

giving the following data:

(a) A reduced (n− 1)-excisive E : C→ D (which will be given by Pn−1(F )).

(b) A functor K ∈ SymFun
(n)
lin (C,D) (which is a preimage of fib(F → Pn−1F ) under the equiva-

lence of Proposition 6.1.4.14).
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(c) A natural transformation of (n − 1)-excisive functors α : E → (Kδ)tΣn (which is equivalent

to the data of a map E → (Kδ)Σn [−1], by Remark 6.1.6.28).

From the data of (a), (b), and (c), we can recover an n-excisive functor F by taking the fiber of the

composite map E
α→ (Kδ)tΣn → (Kδ)Σn [−1], which can also be described as the fiber product

E ×(Kδ)tΣn (Kδ)Σn .

6.2 Differentiation

Let C be an ∞-category which admits finite limits. In §1.4.2, we introduced the stable ∞-category

Sp(C) of spectrum objects of C. In this section, we will discuss the extent to which the construction

C 7→ Sp(C) is functorial in C. For example, suppose that F : C → D is a functor between ∞-

categories which admits finite limits. Under what conditions does F determine a functor from

Sp(C) to Sp(D)? The most obvious case to consider is when the functor F is left exact. In this

case, pointwise composition with F determines a functor ∂ F : Sp(C)→ Sp(D). This functor f fits

into a commutative diagram

Sp(C)
∂ F //

Ω∞

��

Sp(D)

Ω∞

��
C

F // D .

There is a dual situation which is also important. Suppose C and D are presentable∞-categories,

and that the functor F preserves small colimits. Applying Corollary HTT.5.5.2.9 , we deduce that

F admits a right adjoint G. Since G is left exact, we can apply the above reasoning to obtain an

induced functor ∂ G : Sp(D) → Sp(C). We can use Corollary HTT.5.5.2.9 again to deduce that

∂ G admits a left adjoint ∂ F . This left adjoint fits into a commutative diagram of ∞-categories

Sp(C)
∂ F // Sp(D)

C

Σ∞+

OO

F // D .

Σ∞+

OO

This raises a number of questions. For example, suppose that a functor F : C → D preserves

small colimits and finite limits. In this case, we can apply either of the above constructions to

produce a functor Sp(C) → Sp(D): do the resulting functors coincide (up to homotopy)? On the

other hand, suppose that F satisfies neither condition; can one still hope to find an exact functor

∂ F : Sp(C)→ Sp(D) which is somehow related to F?

To address these questions, it is convenient to reformulate them in terms that do not men-

tion spectrum objects at all. Let C and D be presentable pointed ∞-categories. Composi-

tion with the functors Σ∞C : C → Sp(C) and Ω∞D : Sp(D) → D determines a forgetful func-

tor θ : LFun(Sp(C), Sp(D)) → Fun(C,D), where LFun(Sp(C),Sp(D)) denotes the ∞-category of
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colimit-preserving functors from Sp(C) to Sp(D) (that is, the ∞-category of exact functors which

preserve filtered colimits). Under mild assumptions on D, the functor θ is fully faithful, and its

essential image is a full subcategory of Fun(C,D) spanned by those reduced, excisive functors which

preserve filtered colimits. Consequently, we may rephrase our problem as follows: given a functor

F : C→ D, can we choose a reduced, excisive functor F ′ : C→ D which preserves filtered colimits

and is, in some sense, a best approximation to the original functor F?

These questions can be readily addressed using ideas introduced in §6.1. Let us suppose that

F : C → D is a reduced functor between compactly generated pointed ∞-categories, which pre-

serves small filtered colimits. According to Theorem 6.1.1.10, there exists a natural transformation

α : F → P1F , which is universal among natural transformations from F to an excisive functor.

Corollary 6.1.2.9 implies that P1F is given by the composition

C
f→ Sp(D)

Ω∞
D→ D,

where f is reduced and excisive (and therefore right exact). The functor P1F preserves small

filtered colimits (Remark 6.1.1.31), so that f preserves small filtered colimits and therefore all

small colimits. It follows from Corollary 1.4.4.5 that the functor f factors as a composition

C
Σ∞

C→ Sp(C)
∂(F )→ Sp(D),

where ∂(F ) is an exact functor between stable ∞-categories. We can then regard α as a natural

transformation from F to Ω∞D ◦ ∂ F ◦Σ∞C . We will refer to the functor ∂(F ) as the derivative of F .

Our first objective in this section is to study the passage from F to ∂(F ). In §6.2.1, we will

give a concrete description of ∂(F ), analogous to the formula P1F ' lim−→Ωm
D ◦ F ◦ Σm

C of Example

6.1.1.28. As an application, we prove a version of the Klein-Rognes chain rule, which asserts that

if G : D→ E is another reduced functor between compactly generated pointed ∞-categories which

commutes with filtered colimits, then there is canonical equivalence ∂(G ◦ F ) ' ∂(G) ◦ ∂(F ) of

functors from Sp(C) to Sp(E) (see Theorem 6.2.1.22 and Corollary 6.2.1.24). We can informally

summarize the situation informally as follows: there is a functor of∞-categories which carries each

compactly generated pointed ∞-category C to the stable ∞-category Sp(C), and to each reduced

functor F : C → D which commutes with filtered colimits its derivative ∂(F ). In §6.2.2, we will

give a precise formulation and proof of this assertion (Theorem 6.2.2.1), using the a relative version

of the stabilization construction C 7→ Sp(C) (see Construction 6.2.2.2).

In §6.2.3, we will study the inclusion Exc∗(C,D) ↪→ Fun(C,D). Under some mild hypotheses,

we show that this functor admits a left adjoint, which carries a functor F : C→ D to its differential

DF : C→ D. If F is reduced, then DF can be identified with the 1-excisive approximation P1(F )

introduced in §6.1.1. In the general case, we have DF ' P1(cored(F )), where the coreduction of

F is given by the formula cored(F )(C) = cofib(F (∗) → F (C)). Our main result is that there is a

close connection between the derivative ∂(F ) and the differential DF for a large class of (possibly

nonreduced) functors F (Corollary 6.2.3.24).
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Throughout this section, we will study differentiation not only for one-variable functors F : C→
D, but also for multifunctors F :

∏
s∈S Cs → D. One motivation for this generality is that it gives

a new perspective on the smash product monoidal structure on spectra constructed in §4.8.2: for

each n ≥ 0, the iterated smash product functor ⊗ : Spn → Sp can be identified with the derivative

of the iterated Cartesian product functor × : Sn → S. In §6.2.4, we will use this observation to

obtain a generalization of the smash product to Sp(C), where C is an arbitrary compactly generated

∞-category. This generalization will play an important role in our discussion of the chain rule in

§6.3. To construct it, we will need to generalize the stabilization construction of §6.2.2 to the case of

multifunctors. Our treatment of this generalization is somewhat technical; we give the construction

in §6.2.5, and characterize the result by a universal property in §6.2.6.

6.2.1 Derivatives of Functors

Let F : C → D be a functor between ∞-categories which admit finite limits. We will define the

derivative of F to be an exact functor Sp(C) → Sp(D) which is, in some sense, the best possible

“linear” approximation to f . For later applications, we give a definition in the setting of functors

of several variables.

Definition 6.2.1.1. Let {Cs}s∈S be a finite collection of ∞-categories which admit finite limits,

D an ∞-category which admits finite limits, and suppose we are given functors

F :
∏
s∈S

Cs → D f :
∏
s∈S

Sp(Cs)→ Sp(D).

We will say that a natural transformation

α : F ◦
∏
s∈S

Ω∞Cs → Ω∞D ◦ f

exhibits f as a derivative of F if the following conditions are satisfied:

(1) The functor f is multilinear (that is, it is exact in each variable).

(2) For every multilinear functor g :
∏
s∈S Sp(Cs)→ Sp(D), composition with α induces a homo-

topy equivalence

MapFun(
∏
s∈S Sp(Cs),Sp(D))(f, g)→ MapFun(

∏
s∈S Sp(Cs),D)(F ◦

∏
s∈S

Ω∞Cs ,Ω
∞
D ◦ g).

Notation 6.2.1.2. Let F :
∏
s∈S Cs → D be as in Definition 6.2.1.1. If there exists a natural

transformation α : F ◦
∏
s∈S Ω∞Cs → Ω∞D ◦ f which exhibits f as a derivative of F , then f is

determined by F , up to canonical equivalence. We will emphasize the dependence of F on f by

writing f as ~∂F . In the special case where S has a single element, we will denote f simply by ∂ F .
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Warning 6.2.1.3. The derivative ~∂ of a functor F :
∏
s∈S Cs → D depends not only on F , but

also on the product decomposition of
∏
s∈S Cs. For example, the derivative ~∂F is generally quite

different from the functor ∂ F , obtained by viewing F as a functor of one variable from C =
∏
s∈S Cs

into D.

Example 6.2.1.4. Let F : C→ D be a left exact functor between∞-categories which admit finite

limits. Then composition with F induces a functor f : Sp(C) → Sp(D), and we have an evident

equivalence α : F ◦ Ω∞C ' Ω∞D ◦ f . Since F is left exact, the functor f is exact. Using Proposition

1.4.2.22, we deduce that α exhibits f as a derivative of F .

In particular, if C is an ∞-category which admits finite limits, then the identity functor idSp(C)

is a derivative of the identity functor idC.

Example 6.2.1.5. In the situation of Definition 6.2.1.1, suppose that S is empty, so that we can

identify a functor F :
∏
s∈S : Cs → D with an object D ∈ D and a functor f :

∏
s∈S Sp(Cs)→ Sp(D)

with an object X ∈ Sp(D). A morphism α : D → Ω∞D (X) exhibits f as a derivative of F if and

only if it has the following universal property: for every spectrum object Y ∈ Sp(D), composition

with α induces a homotopy equivalence

MapSp(D)(X,Y )→ MapD(D,Ω∞D Y ).

The requirement that every functor
∏
s∈S Cs → D admits a derivative is then equivalent to the

requirement that the functor Ω∞D : Sp(D)→ D admits a left adjoint Σ∞+ : D→ Sp(D).

Remark 6.2.1.6. Let {Cs}s∈S be a finite collection of ∞-categories which admit finite limits, D

an ∞-category which admits finite limits, and F :
∏
s∈S Cs → D a functor. For each s ∈ S, let Cs,∗

denote the ∞-category of pointed objects of Cs, so that the forgetful functor Cs,∗ → Cs induces an

equivalence of∞-categories us : Sp(Cs,∗)→ Sp(Cs) (Remark 1.4.2.18). Let F∗ denote the composite

map ∏
s∈S

Cs,∗ →
∏
s∈S

Cs
F→ D,

and let u be the product of the functors us. Then a natural transformation α : F ◦
∏
s∈S Ω∞Cs →

Ω∞D ◦ f exhibits f as a derivative of F if and only if the induced transformation

F∗ ◦
∏
s∈S

Ω∞Cs,∗ → Ω∞D ◦ f ◦ u

exhibits f ◦ u as a derivative of F∗.

Remark 6.2.1.7. Let {Cs}s∈S be finite collection of ∞-categories which admit finite limits, let D

be an ∞-category which admits finite limits so that we have a commutative diagram

Sp(D∗)
u //

Ω∞
D∗
��

Sp(D)

Ω∞
D

��
D∗

v // D .
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Suppose we are given functors

F :
∏
s∈S

Cs → D∗ f :
∏
s∈S

Sp(Cs)→ Sp(D∗).

For any functor g :
∏
s∈S Sp(Cs)→ Sp(D∗) which preserves final objects, the canonical maps

MapFun(
∏
s∈S Sp(Cs),D∗)(F ◦

∏
s∈S

Ω∞Cs ,Ω
∞
D∗ ◦ g)→ MapFun(

∏
s∈S Sp(Cs),D)(v ◦ F ◦

∏
s∈S

Ω∞Cs ,Ω
∞
D ◦ u ◦ g)

MapFun(
∏
s∈S Sp(Cs),D∗)(Ω

∞
D ◦ f,Ω∞D∗ ◦ g)→ MapFun(

∏
s∈S Sp(Cs),D)(Ω

∞
D ◦ u ◦ f,Ω∞D ◦ u ◦ g).

If S is nonempty, then any multilinear functor g preserves final objects. It follows that a natural

transformation α : F ◦
∏
s∈S Ω∞Cs → Ω∞D ◦ f exhibits f as a derivative of F if and only if it exhibits

u ◦ f as a derivative of v ◦ f .

Remark 6.2.1.8. Let {Cs}s∈S be a nonempty finite collection of pointed∞-categories which admit

finite limits, and let D be another ∞-category which admits finite limits. Repeatedly applying

Proposition 1.4.2.22, we see that composition with Ω∞D induces an equivalence of ∞-categories

Exc∗(
∏
s∈S

Cs, Sp(D))→ Exc∗(
∏
s∈S

Cs,D).

Consequently, condition (2) of Definition 6.2.1.1 is equivalent to the following:

(2′) For every multilinear functor G :
∏
s∈S Sp(Cs)→ D, composition with α induces a homotopy

equivalence

MapFun(
∏
s∈S Sp(Cs),D)(Ω

∞
D ◦ f, g)→ MapFun(

∏
s∈S Sp(Cs),D)(F ◦

∏
s∈S

Ω∞Cs , G).

We have the following basic existence result for derivatives:

Proposition 6.2.1.9. Let {Cs}s∈S be a nonempty finite collection of ∞-categories which admit

finite colimits, D a differentiable ∞-category, and F :
∏
s∈S Cs → D a functor which is reduced in

each variable. Then F admits a derivative ~∂F :
∏
s∈S Sp(Cs)→ Sp(D).

Proof. Let P~1 : Fun∗(
∏
s∈S Sp(Cs),D) → Exc∗(

∏
s∈S Sp(Cs),D) be a left adjoint to the inclusion

(obtained by iterated application of Theorem 6.1.1.10), and let F ′ = P~1(F ◦
∏
s∈S Ω∞Cs). Then

F ′ is multilinear, so Proposition 1.4.2.22 implies that F ′ = Ω∞D ◦ f for some multilinear functor

f :
∏
s∈S Sp(Cs)→ Sp(D). It follows from Remark 6.2.1.8 that the canonical map

F ◦
∏
s∈S

Ω∞Cs → F ′ ' Ω∞D ◦ f

exhibits f as a derivative of F .
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Our next goal is to obtain a more explicit construction for the derivative ~∂F of a reduced functor

F :
∏
s∈S Cs → D. This will require a brief digression.

Notation 6.2.1.10. Let S∗ denote the ∞-category of pointed spaces. According to Remark

4.8.2.14, the smash product functor (X,Y ) 7→ X ∧ Y underlies a symmetric monoidal structure on

S∗, which is characterized up to equivalence by the requirement that S0 ∈ S∗ is the unit object

and the smash product preserves small colimits separately in each variable. The full subcategory

Sfin
∗ ⊆ S∗ contains the unit object and is closed under smash products, and therefore inherits a

symmetric monoidal structure from S∗. In particular, for every finite set S, the iterated smash

product determines a functor

∧ :
∏
s∈S

Sfin
∗ → Sfin

∗ .

Proposition 6.2.1.11. Let T be a nonempty finite set, and let C be an ∞-category which admits

finite limits. Then composition with the smash product functor ∧ :
∏
t∈T Sfin

∗ → Sfin
∗ induces an

equivalence of ∞-categories

θ : Sp(C) = Exc∗(S
fin
∗ ,C)→ Exc∗(

∏
t∈T

Sfin
∗ ,C).

Proof. Choose an element s ∈ T , and let u : Sfin
∗ →

∏
t∈T Sfin

∗ be the functor which is the identity on

the sth component, and takes the value S0 on all other components. Composition with u induces

a functor θ′ : Exc∗(
∏
t∈T Sfin

∗ ,C)→ Exc∗(S
fin
∗ ,C) = Sp(C). The composite functor

Sfin
∗

u→
∏
t∈T

Sfin
∗
∧→ Sfin

∗

is equivalent to the identity, so that θ′ ◦ θ is an equivalence of ∞-categories. To prove that θ is an

equivalence of ∞-categories, it will suffice to prove that θ′ is an equivalence of ∞-categories. This

follows by repeated application of Proposition 1.4.2.21.

Corollary 6.2.1.12. Let T be a nonempty finite set and let C be a differentiable ∞-category. Then

composition with the smash product functor ∧ :
∏
t∈T Sfin

∗ → Sfin
∗ induces a fully faithful embedding

Sp(C)→ Fun∗(
∏
t∈T Sfin

∗ ,C), which admits a left adjoint LTC .

Proof. Proposition 6.2.1.11 implies that the functor Sp(C) → Fun∗(
∏
t∈T Sfin

∗ ,C) is a fully faithful

embedding whose essential image is Exc∗(
∏
t∈T Sfin

∗ ,C). It will therefore suffice to show that the

inclusion

Exc∗(
∏
t∈T

Sfin
∗ ,C) ↪→ Fun∗(

∏
t∈T

Sfin
∗ ,C)

admits a left adjoint. This left adjoint is given by the functor P(1,...,1) of Proposition 6.1.3.6.
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Remark 6.2.1.13. Let C be a differentiable ∞-category, let T be a nonempty set, and let

LTC : Fun∗(
∏
t∈T

Sfin
∗ ,C)→ Sp(C)

be as in Corollary 6.2.1.12. Let ZT≥0 be the collection of all finite sequences of natural numbers

{ns ∈ Z≥0}t∈T , and for ~n ∈ ZT≥0 let |~n| =
∑

t∈T nt. Using Example 6.1.1.28 and the proof of

Proposition 6.2.1.11, we see that Ω∞ ◦ LTC can be described explicitly by the formula

Ω∞(LTCF ) = lim−→
~n∈ZT≥0

Ω|~n|F ({Snt}t∈T ) ∈ C .

Construction 6.2.1.14. Let q : S → T be a surjection of nonempty finite sets. For each t ∈ T , we

let St = q−1{t} ⊆ S denote the inverse image of t under the map q. Let {Ct}t∈T be a collection of

∞-categories which admit finite limits and let D be a differentiable ∞-category. For every reduced

functor F :
∏
t∈T C → D, we let F+ :

∏
t∈T Fun∗(

∏
s∈St S

fin
∗ ,Ct) → Fun∗(

∏
t∈T Sfin

∗ ,D) denote the

functor which carries a collection of functors {Xt :
∏
s∈St S

fin
∗ → Ct}t∈T to the composite functor

∏
s∈S

Sfin
∗
{Xt}→

∏
t∈T

Ct
F→ D .

We let F ′ :
∏
t∈T Sp(Ct)→ Sp(D) denote the functor given by the composition

∏
t∈T

Sp(Ct)→
∏
t∈T

Fun∗(
∏
s∈St

Sfin
∗ ,Ct)

F+

→ Fun∗(
∏
t∈T

Sfin
∗ ,D)

LT
D→ Sp(D),

where LTD is defined as in Corollary 6.2.1.12.

Note that the notation of Construction 6.2.1.14 is somewhat abusive: the functor F+ depends

not only on the functor F , but also on a choice of surjective map q : S → T . However, this

ambiguity is mostly harmless: under some mild assumptions, we will show that the functor F ′ is a

derivative of F (Proposition 6.2.1.19), and therefore canonically independent of q.

Remark 6.2.1.15. Let J be a filtered∞-category with only countably many simplices. Then there

exists a left cofinal map N(Z≥0) → J. To prove this, we first invoke Proposition HTT.5.3.1.18 to

choose a left cofinal map N(A) → J, where A is a filtered partially ordered; note that the proof

of Proposition HTT.5.3.1.18 produces a countable partially ordered set A in the case where C has

only countably many simplices. Let A = {a0, a1, a2, . . .}. Let b0 = a0, and for each n > 1 choose

an element bn ∈ A which is an upper bound for the set {bn−1, an}. The sequence b0 ≤ b1 ≤ b2 ≤ . . .
determines a map N(Z≥0)→ N(A); Theorem HTT.4.1.3.1 implies that this map is left cofinal.

Remark 6.2.1.16. Using Remark 6.2.1.15, we deduce the following:
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(1) Let C be an ∞-category. Then C admits countable filtered colimits if and only if it admits

sequential colimits. (In particular, if C also admits finite colimits and sequential colimits,

then C admits all countable colimits.)

(2) Let F : C→ D be a functor where the∞-category C satisfies the equivalent conditions of (1).

Then F preserves countable filtered colimits if and only if F preserves sequential colimits.

Example 6.2.1.17. Let C be a differentiable ∞-category. Then C admits sequential colimits, so

that Fun(Sfin
∗ ,C) also admits sequential colimits. Since sequential colimits in C are left exact, the

full subcategory Sp(C) ⊆ Fun(Sfin
∗ ,C) is closed under sequential colimits. It follows from Remark

6.2.1.16 that Sp(C) admits countable filtered colimits, and that the forgetful functor Ω∞ : Sp(C)→ C

preserves countable filtered colimits. Since Sp(C) is a stable ∞-category (Corollary 1.4.2.17), it

admits finite colimits. It follows that Sp(C) admits all countable colimits (Proposition HTT.4.4.3.2 ).

If D is another differentiable ∞-category, then a functor F : Sp(C) → Sp(D) preserves countable

colimits if and only if it is exact (that is, it preserves finite colimits) and preserves sequential

colimits.

Proposition 6.2.1.18. Let {Ct}t∈T be a nonempty finite collection of differentiable ∞-categories,

let D be a differentiable ∞-category, and let F :
∏
t∈T Ct → D be a functor which is reduced in each

variable and preserves sequential colimits. For every surjection q : S → T of finite sets, the functor

F ′ :
∏
t∈T Sp(C) → Sp(D) of Construction 6.2.1.14 preserves countable colimits separately in each

variable. In particular, F ′ is multilinear.

Proof. The functor F ′ is given by a composition

∏
t∈T

Sp(Ct)
i→
∏
t∈T

Fun∗(
∏
s∈St

Sfin
∗ ,Ct)

F+

→ Fun∗(
∏
t∈T

Sfin
∗ ,D)

LT
D→ Sp(D).

The functor i preserves sequential colimits since Exc∗(
∏
s∈St ,Ct) is closed under sequential colimits

in Fun∗(
∏
s∈St S

fin
∗ ,Ct)) (because sequential colimits in C are left exact). The functor F+ preserves

sequential colimits because F does, and the functor LTD preserves sequential colimits because it is

a left adjoint. It follows that F ′ preserves sequential colimits.

To complete the proof, it will suffice to show that the functor F ′ is exact in each variable

(Example 6.2.1.17). Fix an element t0 ∈ T and spectrum objects {Yt ∈ Sp(Ct)}t∈T−{t0}, and

let G : Sp(Cs) → Sp(D) be the functor given by the formula G(X) = F ′(X, {Yt}t∈T−{t0}). We

wish to show that G is exact. In view of Corollary 1.4.2.14, it will suffice to show that for every

object X ∈ Sp(Cs), the canonical map ν : ΣSp(D)G(X) → G(ΣSp(C)X) is an equivalence in Sp(D).

Note that ΣSp(C)(X) ' X ◦ ΣSfin
∗

. Choose an element s0 ∈ S such that q(s) = t0, and let Let

U :
∏
s∈S S

fin
∗ →

∏
s∈S S

fin
∗ be the functor given by the suspension on the s0th coordinate, and

the identity on the remaining coordinates. Then composition with U induces a functor from
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Exc∗(
∏
s∈S S

fin
∗ ,D) to itself, which fits into a commutative diagram

Sp(D)
ΣSp(D) //

��

Sp(D)

��
Exc∗(

∏
s∈S S

fin
∗ ,D)

◦U // Exc∗(
∏
s∈S S

fin
∗ ,D)

where the vertical maps are given by the equivalence of Proposition 6.2.1.11. Let Z :
∏
s∈S S

fin
∗ → D

be the functor given by the composition∏
s∈S

Sfin
∗ '

∏
t∈T

(
∏
s∈St

Sfin
∗ )

∏
t∈T ∧−→

∏
t∈T

Sfin
∗

X,{Yt}−→
∏
t∈T

Ct
F→ D,

and let P~1 : Fun∗(
∏
s∈S S

fin
∗ ,D)→ Exc∗(

∏
s∈S S

fin
∗ ,D) be a left adjoint to the inclusion. Unwinding

the definitions, we can identify ν with the canonical map P~1(Z) ◦ U → P~1(Z ◦ U), which is an

equivalence by virtue of Remark 6.1.1.30.

Let F :
∏
t∈T Ct → D be as in Proposition 6.2.1.18 and let q : S → T be a surjection of finite

sets. For {Xt ∈ Sp(Ct)}t∈T , we have a canonical map

F ({Ω∞Xt}t∈T ) = F+({Xt}t∈T )(S0, S0, . . . , S0)→ Ω∞F ′({Xt}).

This construction determines a natural transformation α : F ◦
∏
t∈T Ω∞Ct → Ω∞D ◦ F ′.

Proposition 6.2.1.19. Let {Ct}t∈T be a nonempty finite collection of differentiable ∞-categories,

let D be a differentiable ∞-category, and let F :
∏
t∈T Ct → D be a reduced functor which preserves

sequential colimits. For every surjection of finite sets q : S → T , the natural transformation

α : F ◦
∏
t∈T Ω∞Ct → Ω∞D ◦ F ′ defined above exhibits F ′ as a derivative of F .

Proof. Let P~1 : Fun∗(
∏
t∈T Sp(Ct),D) → Exc∗(

∏
t∈T Sp(Ct),D) be a left adjoint to the inclusion.

Since the functor F ′ is multilinear, the natural transformation α factors as a composition

F ◦
∏
t∈T

Ω∞C
α′→ P~1(F ◦

∏
t∈T

Ω∞C )
α′′→ Ω∞D ◦ F ′.

To prove that α exhibits F ′ as a derivative of F , it will suffice to show that α′′ is an equivalence

(Remark 6.2.1.8). Fix a collection of spectrum objects {Xt ∈ Sp(Ct)}t∈T . For ~n ∈ ZS≥0 and t ∈ T ,

we let ~nt denote the restriction of ~n to the subset St ⊆ S. Note that the construction ~n 7→ {|~nt|}t∈T
induces a cofinal map of partially ordered sets ZS≥0 → ZT≥0. Using Remark 6.2.1.13, we compute

(Ω∞D ◦ F ′)({Xt}) = (Ω∞D ◦ LD)(F+({Xt}))
' lim−→

~n∈ZS≥0

Ω
|~n|
D F ({X(S|~nt|)})

' lim−→
~m∈ZT≥0

Ω
|~m|
D ◦ (F ◦

∏
t∈T

Ω∞Ct ) ◦
∏
t∈T

Σmt
Sp(C)(Xt)

' P~1(F ◦ Ω∞C )({Xt}).
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When using Proposition 6.2.1.19 to compute derivatives of functors, the following result is often

useful:

Proposition 6.2.1.20. Let q : S → T be a surjective map of nonempty finite sets, let {Ct}t∈T be a

collection of differentiable∞-categories, let D be a differentiable∞-category, and let F :
∏
t∈T Ct →

D be a reduced functor which preserves sequential colimits. For each t ∈ T , let St = q−1{t} ⊆ S,

and let

F+ :
∏
t∈T

Fun∗(
∏
s∈St

Sfin
∗ ,Ct)→ Fun∗(

∏
s∈S

,D)

denote the functor given by composition with F . Then F+ carries
∏
t∈T L

St
Ct

-equivalences to LSD-

equivalences.

Proof. Let P~1 : Fun∗(
∏
s∈S S

fin
∗ ,D) → Exc∗(

∏
s∈S S

fin
∗ ,D) be a left adjoint to the inclusion, and

for each t ∈ T left P t~1 : Fun∗(
∏
s∈St S

fin
∗ ,Ct) → Exc∗(

∏
s∈St S

fin
∗ ,Ct) be a left adjoint to the in-

clusion. Suppose we are given a collection of morphisms {αt : Xt → Yt}t∈T in the ∞-categories

Fun∗(
∏
s∈St S

fin
∗ ,Ct) such that each P t~1(αt) is an equivalence. We wish to show that the induced map

P~1F
+({Xt}) → P~1F

+({Yt}) is an equivalence. Fix a finite collection of pointed spaces {Ks}s∈S .

Using the description of P~1 supplied by Example 6.1.1.28, we are reduced to proving that the

canonical map

γ : lim−→
~m∈ZS≥0

Ω
|~m|
D F ({Xt({ΣmsKs}s∈St)}t∈T )→ lim−→

~n∈ZS≥0

Ω
|~m|
D F ({Yt({ΣmsKs}s∈St)}t∈T )

is an equivalence in D. For ~n ∈ ZS≥0, let ~nt denote the restriction of ~n to the subset St ⊆ S. We

have a commutative diagram

lim−→~m∈ZS≥0

Ω
|~m|
D F ({Xt({ΣmsKs}s∈St)}t∈T )

γ //

��

lim−→~m∈ZS≥0

Ω
|~m|
D F ({Yt({ΣmsKs}s∈St)}t∈T )

��

lim−→~m,~n∈ZS≥0

Ω
|~m|
D F ({Ω|~nt|Ct

Xt{Σms+nsKs}s∈St}t∈T )
γ′ //

��

lim−→~m,~n∈ZS≥0

Ω
|~m|
D F ({Ω|~nt|Ct

Yt{Σms+nsKs}s∈St}t∈T )

��

lim−→~m,~n∈ZS≥0

Ω
|~m|+|~n|
D F ({Xt{Σms+nsKs}s∈St}t∈T )

γ′′ // lim−→~m,~n∈ZS≥0

Ω
|~m|+|~n|
D F ({Yt{Σms+nsKs}s∈St}t∈T ).

A simple cofinality argument shows that the vertical composite maps are equivalences, so that we

can regard γ as a retract of γ′ in the ∞-category Fun(∆1,D). It will therefore suffice to show that
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γ′ is an equivalence. Since the functors ΩD and F commute with sequential colimits, it will suffice

to show that each of the maps

lim−→
~nt∈Z

St
≥0

Ω
|~nt|
Ct
Xt({Σms+nsKs}s∈St)→ lim−→

~nt∈Z
St
≥0

Ω
|~nt|
Ct
Yt({Σms+nsKs}s∈St),

which follows immediately from our assumption that P t~1(αt) is an equivalence.

We conclude this section by describing an application of Propositions 6.2.1.19 and 6.2.1.20.

Notation 6.2.1.21. Let {Cs}s∈S and D be differentiable ∞-categories. We let Fun?(
∏
s∈S Cs,D)

denote the full subcategory of Fun(
∏
s∈S Cs,D) spanned by those functors which are reduced in each

variable and preserve sequential colimits. If each Cs admits finite colimits, we let Exc?(
∏
s∈S Cs,D)

denote the full subcategory of Fun(
∏
s∈S Cs,D) spanned by those functors which are multilinear

and preserve sequential colimits.

Theorem 6.2.1.22 (Chain Rule for First Derivatives). Suppose we are given a surjective

map of nonempty finite sets p : S → T , differentiable ∞-categories {Cs}s∈S, {Dt}t∈T , and

E, and functors functors {Ft ∈ Fun?(
∏
s∈St Cs,Dt)}t∈T and G ∈ Fun?(

∏
t∈T Dt,E). Let

{ft :∈ Exc?(
∏
s∈St Sp(Cs),Sp(Dt))}t∈T and g ∈ Exc?(

∏
t∈T Sp(Dt), Sp(E)) be functors equipped

with natural transformations

Ft ◦
∏
s∈St

Ω∞Cs → Ω∞Dt ◦ ft G ◦
∏
t∈T

Ω∞Dt → Ω∞E ◦ g

which exhibit g as a derivative of G and each ft as a derivative of Ft. Then the composite trans-

formation

γ : G ◦
∏
t∈T

Ft ◦
∏
s∈S

Ω∞Cs → G ◦
∏
t∈T

Ω∞Dt ◦
∏
t∈T

ft

→ Ω∞E ◦ g ◦
∏
t∈T

ft

exhibits the functor g ◦
∏
t∈T ft :

∏
s∈S Sp(Cs)→ Sp(E) as a derivative of G ◦

∏
t∈T Ft.

Remark 6.2.1.23. We can state Theorem 6.2.1.22 more informally as follows: given composable

multifunctors Ft :
∏
s∈St Cs → Dt and G :

∏
t∈T Dt → E which are reduced in each variable and

preserve sequential colimits, we have a canonical equivalence

~∂(G ◦
∏
t∈T

Ft) ' ~∂(G) ◦
∏
t∈T

~∂Ft.

Corollary 6.2.1.24 (Klein-Rognes). Let C, D, and E be differentiable ∞-categories, and let F :

C → D and G : D → E be reduced functors which preserve sequential colimits. Let α : F ◦ Ω∞C →
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Ω∞D ◦ f be a natural transformation which exhibits a functor f : Sp(C)→ Sp(D) as a derivative of

F , and let β : G ◦ Ω∞D → Ω∞E ◦ g be a natural transformation which exhibits g : Sp(D)→ Sp(E) as

a derivative of G. Then the composite map

γ : G ◦ F ◦ Ω∞C
α→ G ◦ Ω∞D ◦ f

β→ Ω∞E ◦ g ◦ f

exhibits g ◦ f as a derivative of G ◦ F .

Remark 6.2.1.25. For a proof of Corollary 6.2.1.24 in the setting of classical homotopy theory,

we refer the reader to [87].

Corollary 6.2.1.26. Let {Cs}s∈S be a nonempty finite collection of differentiable ∞-categories, let

D and E be differentiable ∞-categories, and suppose we are given functors

F ∈ Fun?(
∏
s∈S

Cs,D) G ∈ Fun?(D,E).

Assume that G is left exact, so that pointwise composition with G induces a functor g : Sp(D) →
Sp(E). Let α : F ◦

∏
s∈S Ω∞Cs → Ω∞D ◦ f be a natural transformation which exhibits f as a derivative

of F . Then the induced map

G ◦ F ◦
∏
s∈S

Ω∞Cs
α→ G ◦ Ω∞D ◦ f = Ω∞E ◦ g ◦ f

exhibits g ◦ f as a derivative of G ◦ F . In particular, we have a canonical equivalence

~∂(G ◦ F ) ' g ◦ ~∂(F ).

Proof. Combine Theorem 6.2.1.22 with Example 6.2.1.4 (one can also deduce this result directly

from the construction of the derivative supplied by the proof of Proposition 6.2.1.9).

Proof of Theorem 6.2.1.22. Let F+
t and G+ be defined as in Construction 6.2.1.14. Using Propo-

sition 6.2.1.19, we may assume that the functors ft and g are given by the compositions

∏
s∈St

Sp(Cs)
it→

∏
s∈St

Fun∗(S
fin
∗ ,Cs)

F+
t→ Fun∗(

∏
s∈St

Sfin
∗ ,Dt)

L
St
Dt→ Sp(Dt)

∏
t∈T

Sp(Dt)
j→
∏
t∈T

Fun∗(
∏
s∈St

Sfin
∗ ,Dt)

G+

→ Fun∗(
∏
s∈S

Sfin
∗ ,E)

LS
E→ Sp(E).

The natural transformation γ can be written as a composition

G ◦
∏
t∈T

Ft ◦
∏
s∈S

Ω∞Cs
γ′→ Ω∞E ◦ LSE ◦G+ ◦

∏
t∈T

F+
t ◦

∏
t∈T

it

γ′′→ Ω∞E ◦ LSE ◦G+ ◦ j ◦
∏
t∈T

LStDt ◦
∏
t∈T

F+
t ◦

∏
t∈T

it.
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Proposition 6.2.1.19 implies that γ′ exhibits the functor LSE ◦G+ ◦
∏
t∈T F

+
t ◦

∏
t∈T it as a derivative

of G ◦
∏
t∈T Ft. To complete the proof, it will suffice to show that γ′′ is an equivalence. Note that

γ′′ is induced by a natural transformation

β : LSE ◦G+ → LSE ◦G+ ◦ j ◦
∏
t∈T

LStDt

of functors from
∏
t∈T Fun(

∏
s∈St S

fin
∗ ,Dt) to Sp(E). Proposition 6.2.1.20 implies that β is an

equivalence.

6.2.2 Stabilization of Differentiable Fibrations

Let Cat?∞ denote the subcategory of Cat∞ whose objects are differentiable ∞-categories and whose

morphisms are reduced functors which preserve sequential colimits. Let CatEx,?
∞ denote the subcat-

egory of Cat∞ whose objects are stable ∞-categories which admit countable colimits and whose

morphisms are functors which preserve countable colimits. We can define a functor

Φ0 : hCat?∞ → hCatEx,?
∞ ,

given on objects by C 7→ Sp(C) and on morphisms by F 7→ ∂ F . It follows from Example 6.2.1.4

and Corollary 6.2.1.24 that this construction preserves identity morphisms and composition of

morphisms, up to homotopy. Our main goal in this section is to prove the following result:

Theorem 6.2.2.1. The functor Φ0 : hCat?∞ → hCatEx,?
∞ lifts to a functor of ∞-categories Φ :

Cat?∞ → CatEx,?
∞ .

Our basic strategy for proving Theorem 6.2.2.1 is to construct the coCartesian fibration X →
Cat?∞ classified by the composite map

Cat?∞
Φ→ CatEx,?

∞ ↪→ Cat∞ .

We can obtain X by stabilizing the fibration Y→ Cat?∞ classified by the inclusion Cat?∞ ↪→ Cat∞.

Construction 6.2.2.2. Let p : C → S be an inner fibration of simplicial sets. For each s ∈ S,

we let Cs denote the ∞-category C×S{s}. Assume that each of the ∞-categories Cs admits finite

limits. We define simplicial sets

St(p) ⊆ PSt∗(p) ⊆ PSt(p)→ S

as follows:

• For every map of simplicial sets K → S, we have a canonical bijection

HomS(K,PSt(p)) ' HomS(K × Sfin
∗ ,C).

In particular, we can identify vertices of PSt(p) with pairs (s,X), where s is a vertex of S

and X : Sfin
∗ → Cs is a functor.
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• We let PSt∗(p) denote the full simplicial subset of PSt(p) spanned by those pairs (s,X) for

which X is a reduced functor.

• We let St(p) denote the full simplicial subset of PSt(p) spanned by those pairs (s,X) where

X is a spectrum object of Cs.

Remark 6.2.2.3. Suppose we are given a pullback diagram of simplicial sets

C′

p′

��

// C

p

��
S′ // S

where the vertical maps are inner fibrations whose fibers admit finite limits. We then have canonical

isomorphisms

PSt(p′) ' S′ ×S PSt(p) PSt∗(p) ' S′ ×S PSt∗(p) St(p′) ' S′ ×S St(p).

Remark 6.2.2.4. In the situation of Construction 6.2.2.2, we have a canonical isomorphism

St(p)s ' Sp(Cs) for each vertex s ∈ S. In other words, we can think of the construction p 7→ St(p)

as a relative version of the construction C 7→ Sp(C).

Proposition 6.2.2.5. Let p : C → S be an inner fibration of simplicial sets, where each fiber Cs

admits finite limits. Then the maps

St(p)→ PSt∗(p)→ PSt(p)→ S

are inner fibrations.

Proof. The map PSt(p)→ S is a pullback of the map Fun(Sfin
∗ ,C)→ Fun(Sfin

∗ , S), and therefore an

inner fibration by Corollary HTT.2.3.2.5 . The maps St(p) ↪→ PSt∗(p) ↪→ PSt(p) are inclusions of

full simplicial subsets, and therefore automatically inner fibrations.

Definition 6.2.2.6. Let p : C → S be a map of simplicial sets. We will say that p is a locally

differentiable fibration if the following conditions are satisfied:

(a) The map p is a locally coCartesian fibration of simplicial sets.

(b) For each fiber s ∈ S, the ∞-category Cs is differentiable.

(c) For each edge s→ s′ in S, the induced functor Cs → Cs′ preserves sequential colimits.

We will say that a locally differentiable fibration is reduced if it satisfies the following further

condition:

(d) For each edge s→ s′ in S, the induced functor Cs → Cs′ is reduced.
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We will say that a locally differentiable fibration p is a differentiable fibration if it is locally differ-

entiable and a coCartesian fibration.

Remark 6.2.2.7. Let p : C → S be a coCartesian fibration of simplicial sets, classified by a map

χ : S → Cat∞. Then p is a reduced differentiable fibration if and only if χ factors through the

subcategory Cat?∞ ⊆ Cat∞.

Proposition 6.2.2.8. Let p : C→ S be an inner fibration of simplicial sets, and assume that each

fiber Cs of p admits finite limits.

(1) Assume that p is a coCartesian fibration. Then the induced map q : PSt(p) → S is a co-

Cartesian fibration. Moreover, an edge e : (s,X)→ (s′, X ′) in PSt(p) is q-coCartesian if and

only if, for every finite pointed space K ∈ Sfin
∗ , the resulting edge e(K) : X(K)→ X ′(K) is a

p-coCartesian edge of C.

(2) Assume that p is a coCartesian fibration and that, for each edge s → s′ in S, the induced

functor Cs → Cs′ is reduced. Then the map q′ : PSt∗(p) → S is a coCartesian fibration.

Moreover, an edge e of PSt∗(p) is q′-coCartesian if and only if it is q-coCartesian, when

regarded as an edge of PSt(p).

(3) If p is a reduced locally differentiable fibration, then the induced map q′′ : St(p) → S is a

locally coCartesian fibration.

(4) If p is a reduced differentiable fibration, then q′′ : St(p)→ S is a coCartesian fibration.

Proof. Assertion (1) follows from Proposition HTT.3.1.2.1 , and (2) follows immediately from (1).

We now prove (3). Since q′′ is an inner fibration by Proposition 6.2.2.5, we may reduce to the case

where S = ∆1. Then the map p : C → ∆1 is a coCartesian fibration classifying a reduced functor

F : C0 → C1 which preserves sequential colimits. Let X ∈ Sp(C0) ⊆ Fun(Sfin
∗ ,C0); we wish to show

that there exists a morphism α : F ◦X → Y in Fun∗(S
fin
∗ ,C1), where Y ∈ Sp(C1) and composition

with α induces a homotopy equivalence MapSp(C1)(Y,Z)→ MapFun∗(Sfin
∗ ,C1)(F ◦X,Z). To prove the

existence of Y , it suffices to note that the inclusion Fun∗(S
fin
∗ ,C1) ↪→ Sp(C1) admits a left adjoint

(Corollary 6.2.1.12).

We now prove (4). Assume that p is a reduced differentiable fibration. Since q′′ : St(p) → S

is a locally coCartesian fibration by (3), it will suffice to show that the collection of locally q′′-

coCartesian edges is closed under composition (Proposition HTT.2.4.2.8 ). Suppose we are given a

2-simplex

Y
β

��
X

α

>>

γ // Z

in St(p), where X ∈ Sp(Cx), Y ∈ Sp(Cy), and Z ∈ Sp(Cz), and the morphisms α and β are

locally q′′-coCartesian. We wish to show that γ is locally q′′-coCartesian. The images of α and
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β in S determine functors F : Cx → Cy and G : Cy → Cz. Let Ly : Fun∗(S
fin
∗ ,Cy) → Sp(Cy) and

Lz : Fun∗(S
fin
∗ ,Cz) → Sp(Cz) denote left adjoints to the inclusion functors. Using the first part of

the proof, we may assume without loss of generality that Y = Ly(F ◦X) and Z = Lz(G◦Y ). Then

α and β determine a natural transformation δ : G ◦ F ◦X → Lz(G ◦ Ly(F ◦X)). To prove that γ

is locally q′′-coCartesian, it will suffice to show that Lz(δ) is an equivalence. Equivalently, we wish

to show that composition with G carries the map F ◦ Z → Ly(F ◦X) to an Lz-equivalence, which

follows from Proposition 6.2.1.20.

Notation 6.2.2.9. Let p : C→ S be an inner fibration whose fibers Cs admit finite limits. We let

Ω∞p : St(p)→ C denote the functor given by evaluation on the 0-sphere S0 ∈ Sfin
∗ .

Proposition 6.2.2.10. Let p : C→ S be a reduced locally differentiable fibration. Let e : s→ s′ be

an edge of S, so that e induces functors

F : Cs → Cs′ f : Sp(Cs) ' St(p)s → St(p)s′ ' Sp(Cs′).

Then the functor Ω∞p : St(p)→ C induces a natural transformation

F ◦ Ω∞Cs → Ω∞Cs′ ◦ f

which exhibits f as a derivative of F .

Proof. Combine Proposition 6.2.1.19 with the proof of Proposition 6.2.2.8.

Corollary 6.2.2.11. Let p : C→ S be a reduced locally differentiable fibration. Then for each edge

s → s′ in S the induced functor St(p)s → St(p)s′ preserves countable colimits. In particular, it is

an exact functor between stable ∞-categories.

Proof. Combine Propositions 6.2.2.10 and 6.2.1.18.

Proof of Theorem 6.2.2.1. The inclusion functor Cat?∞ ↪→ Cat∞ classifies a reduced differentiable

fibration p : Y → Cat?∞ (Remark 6.2.2.7). Let X = St(p). Then the projection map q : X → Cat?∞
is a coCartesian fibration (Proposition 6.2.2.8), classified by a functor Φ : Cat?∞ → Cat∞. Using

Remark 6.2.2.4 and Proposition 6.2.2.10, we see that Φ is given on objects by C 7→ Sp(C) and on

morphisms by F 7→ ∂ F . It follows immediately that Φ factors through the subcategory Cat?,Ex
∞ ⊆

Cat∞, and that Φ is a lift of the functor Φ0 : hCat?∞ → hCat?,Ex
∞ described in the introduction to

this section.

Remark 6.2.2.12. Theorem 6.2.2.1 can be improved upon: if we take into account non-invertible

natural transformations, we can regard Cat?∞ and Cat?,Ex
∞ as (∞, 2)-categories, and the functor Φ

can be extended to a functor of (∞, 2)-categories. This can be deduced formally from the fact

that the construction p 7→ St(p) is defined on (reduced) locally differentiable fibrations, rather than

merely on (reduced) differentiable fibrations.
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Proposition 6.2.2.8 has a counterpart for Cartesian fibrations:

Proposition 6.2.2.13. Let p : C→ S be a Cartesian fibration of simplicial sets, and assume that

each fiber Cs of p admits finite limits.

(1) The induced map q : PSt(p) → S is a coCartesian fibration. Moreover, an edge e : (s,X) →
(s′, X ′) in PSt(p) is q-Cartesian if and only if, for every finite pointed space K ∈ Sfin

∗ , the

resulting edge e(K) : X(K)→ X ′(K) is a p-coCartesian edge of C.

(2) Assume that, for each edge s → s′ in S, the induced functor Cs′ → Cs is reduced. Then the

map q′ : PSt∗(p)→ S is a Cartesian fibration. Moreover, an edge e of PSt∗(p) is q′-Cartesian

if and only if it is q-coCartesian, when regarded as an edge of PSt(p).

(3) Assume that, for each edge s→ s′ in S, the induced functor Cs′ → Cs is left exact. Then the

map q′′ : St(p) → S is a Cartesian fibration. Moreover, an edge e of St(p) is q′-Cartesian if

and only if it is q-Cartesian, when regarded as an edge of PSt(p).

Proof. Assertion (1) follows from Proposition HTT.3.1.2.1 , and assertions (2) and (3) follow im-

mediately from (1).

Corollary 6.2.2.14. Let p : C→ S be a locally Cartesian fibration of simplicial sets. Assume that

each fiber Cs of p admits finite limits and that each edge s → s′ in S induces a left exact functor

Cs′ → Cs. Then:

(1) The induced map q : St(C)→ S is a locally Cartesian fibration.

(2) The forgetful functor Ω∞p : St(p) → C carries locally q-Cartesian morphisms to locally p-

Cartesian morphisms.

(3) Let e : s→ s′ be an edge of S, so that e induces functors

F : Cs′ → Cs f : Sp(Cs′) ' St(p)s′ → St(p)s ' Sp(Cs).

Then Ω∞p induces an equivalence

F ◦ Ω∞Cs′ ' Ω∞Cs ◦ f,

which exhibits f as a derivative of F .

Proof. Assertion (1) follows from Propositions 6.2.2.13 and 6.2.2.5, assertion (2) follows from Propo-

sition 6.2.2.13, and assertion (3) follows from (2) and Example 6.2.1.4.

It follows from the above analysis that differentiation preserves adjunctions:
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Proposition 6.2.2.15. Suppose we are given a pair of adjoint functors

C
F //D,
G
oo

where C and D are differentiable ∞-categories. Assume that F is reduced. Then:

(1) The functor F preserves sequential colimits.

(2) The functor G preserves finite limits.

(3) The functors F and G admit derivatives ∂ F , ∂ G.

(4) The functors ∂ F and ∂ G are adjoint to one another.

Proof. Assertions (1) and (2) follow from Proposition HTT.5.2.3.5 , and assertion (3) follows from

Example 6.2.1.4 and Proposition 6.2.1.9. To prove (4), we note that an adjunction between F and G

determines a correspondence of∞-categories p : M→ ∆1, with C 'M×∆1{0} and D 'M×∆1{1}.
Then p is a reduced differentiable fibration, so that the induced map q : St(p)→ ∆1 is a coCartesian

fibration associated to the functor ∂ F : Sp(C) → Sp(D) (Proposition 6.2.2.10). Since p is also a

Cartesian fibration, using (2) and Corollary 6.2.2.14 we conclude that q associated to the functor

∂ G : Sp(D) → Sp(C). It follows that the correspondence St(p) → ∆1 realizes an adjunction

between the functors ∂ F and ∂ G.

Corollary 6.2.2.16. Suppose given a pair of adjoint functors

C
F //D
G
oo

between differentiable ∞-categories. Assume that F is reduced, and let g : Sp(D) → Sp(C) be the

functor given by pointwise application of G. Then:

(1) The functor g admits a left adjoint f : Sp(C)→ Sp(D).

(2) If the functor G preserves sequential colimits, then the composite functor g ◦ f is equivalent

to the derivative ∂(G ◦ F ).

(3) If D is monadic over C, then the adjunction Sp(C)
f //Sp(D)
g
oo exhibit Sp(D) as monadic over

Sp(C).

Proof. The functor g is a derivative of G (Example 6.2.1.4), so that assertion (1) follows from

Proposition 6.2.2.15. Assertion (2) follows from Corollary 6.2.1.24, and assertion (3) follows from

(1) and Example 4.7.3.10.

The following consequence of Corollary 6.2.2.16 will play an important role in §7.3:
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Corollary 6.2.2.17. Suppose given an adjunction C
F //D
G
oo between differentiable ∞-categories.

Assume that F is reduced, G preserves sequential colimits, and that G exhibits D as monadic over

C. If the unit map idC → G ◦ F induces an equivalence ∂ idC → ∂(G ◦ F ), then G induces an

equivalence of ∞-categories Sp(D)→ Sp(C).

We conclude this section by characterizing the construction p 7→ St(p) by a universal property.

As a first step, let us introduce a definition which summarizes the important properties of St(p):

Definition 6.2.2.18. Let p : C→ S be a reduced locally differentiable fibration of simplicial sets.

We will say that a map of simplicial sets U : C→ C exhibits C as a stabilization of p if the following

conditions are satisfied:

(1) The composite map q = p ◦ U : C→ S is a locally coCartesian fibration.

(2) For each vertex s ∈ S, the ∞-category C is stable.

(3) For each vertex s ∈ S, the functor Us : Cs → Cs is left exact. Consequently, Us admits an

essentially unique factorization Cs
Vs→ Sp(Cs)

Ω∞
Cs→ Cs, where Vs is an exact functor (Corollary

1.4.2.23).

(4) For each vertex s ∈ S, the functor Vs : Cs → Sp(Cs) is an equivalence of ∞-categories, and

therefore admits a homotopy inverse which we will denote by V −1
s .

(5) Let e : s→ s′ be an edge of S, so that e induces functors

F : Cs → Cs′ F : Cs → Cs′ .

Then the natural transformation

F ◦ Ω∞Cs ' F ◦ Us ◦ V
−1
s → Us′ ◦ F ◦ V −1

s ' Ω∞Cs′ ◦ (Vs′ ◦ F ◦ V −1
s )

exhibits Vs′ ◦ F ◦ V −1
s as a derivative of F .

Example 6.2.2.19. Let p : C → S be a reduced locally differentiable fibration of simplicial sets.

Then the map Ω∞p : St(p)→ C of Notation 6.2.2.9 exhibits St(p) as a stabilization of p.

Stabilizations of a reduced locally differentiable fibration enjoy the following universal property:

Theorem 6.2.2.20. Let p : C → S be a reduced locally differentiable fibration of simplicial sets

and let U : C → C be a map which exhibits C as a stabilization of p. Let q : D → S be a locally

coCartesian fibration of simplicial sets. Suppose that each fiber Ds of q is a pointed ∞-category

which admits finite colimits and each edge s→ s′ of S induces a functor Ds → Ds′ which is reduced

and right exact. Let X denote the full subcategory of FunS(D,C) spanned by those maps F : D→ C

which induce a reduced excisive functor Fs : Ds → Cs for each s ∈ S, and define X ⊆ FunS(D,C)

similarly. Then composition with U induces an equivalence of ∞-categories X→ X.
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Remark 6.2.2.21. For most applications of Theorem 6.2.2.20, we will take q to be a locally

coCartesian fibration whose fibers are stable ∞-categories.

Remark 6.2.2.22. We can regard Theorem 6.2.2.20 as a relative version of Proposition 1.4.2.22.

Corollary 6.2.2.23. Let p : C→ S be a reduced locally differentiable fibration, and let U : C→ C

be a map which exhibits C as a stabilization of p. Then U factors as a composition

C
U ′→ St(p)

Ω∞p→ C,

where U ′ is an equivalence of local coCartesian fibrations over S (that is, U ′ induces an equivalence

of ∞-categories Cs → St(p)s ' Sp(Cs) for each s ∈ S, and carries locally (p ◦U)-coCartesian edges

of C to locally (p ◦ Ω∞p )-coCartesian edges of St(p).

Remark 6.2.2.24. The conclusions of Corollary 6.2.2.23 guarantee that U ′ admits a homotopy

inverse fiberwise over S: see Lemma B.2.4. In other words, St(p) is the unique stabilization of the

reduced locally differentiable fibration p : C→ S, up to fiberwise homotopy equivalence over S.

Proof of Corollary 6.2.2.23. Since U exhibits C as a stabilization of p, each fiber Cs is equivalent

to St(Cs) and is therefore a stable ∞-category which admits countable colimits. Moreover, every

edge s → s′ induces a functor Cs → Cs′ which is equivalent to the derivative of the underlying

functor Cs → Cs′ , and therefore preserves countable colimits (Proposition 6.2.1.18). Note that

composition with Ω∞p induces a categorical fibration of ∞-categories FunS(C, St(p))→ FunS(C,C).

Since Ω∞p exhibits St(p) as a stabilization of p (Example 6.2.2.19), Theorem 6.2.2.20 implies that U

factors as a composition Ω∞p ◦U ′, where U ′ : C→ St(p) is a map which induces a left exact functor

U ′s : Cs → St(p)s ' Sp(Cs) for each vertex s ∈ S. Since C satisfies condition (4) of Definition

6.2.2.18, we deduce that each of the functors U ′s is an equivalence of ∞-categories. Condition

(5) of Definition 6.2.2.18 guarantees that U ′ carries locally (p ◦ U)-coCartesian edges to locally

(p ◦ Ω∞p )-coCartesian edges.

Our proof of Theorem 6.2.2.20 will require an analogue of Proposition HTT.3.2.2.7 , which

describes the structure of locally coCartesian fibrations over a simplex. To state this result, we

need to introduce a bit of notation.

Notation 6.2.2.25. Fix an integer n ≥ 0. We can identify objects of the simplicial category

C[∆n+1] with elements of the linearly ordered set [n + 1] = {0, . . . , n + 1}. For 0 ≤ i ≤ n, we

can identify vertices of MapC[∆n+1](i, n + 1) with subsets S ⊆ {i, i + 1, . . . , n} which contain i.

The construction which assigns to each subset S its largest element extends uniquely to a map of

simplicial sets φi : MapC[∆n+1](i, n+ 1)→ ∆n.

Let j! : (Set∆)C[∆n] → (Set∆)C[∆n+1] denote the functor given by left Kan extension along the

inclusion j : C[∆n] → C[∆n+1], and let M : (Set∆)C[∆n] → Set∆ denote the composition of i! with

the functor (Set∆)C[∆n+1] → Set∆ given by evaluation at n + 1. For every F ∈ (Set∆)C, we can
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identify M(F) with a quotient of the disjoint union
∐

0≤i≤n F(i)×MapC[∆n+1](i, n+ 1). The maps

{φi}0≤i≤n determine a map of simplicial sets M(F)→ ∆n. This map depends functorially on F; we

may therefore view M as defining a functor from (Set∆)C[∆n] to (Set∆)/∆n . We will abuse notation

by denoting this functor also by M.

Remark 6.2.2.26. For every object F ∈ (Set∆)C[∆n] and every 0 ≤ i ≤ n, there is a canonical

isomorphism M(F)×∆n {i} ' F(i). Moreover, the marking on this simplicial set provided by M(F)+

is trivial: only degenerate edges of F(i) are marked.

Proposition 6.2.2.27. Let F ∈ Set∆
C[∆n], and suppose we are given a commutative diagram

M(F)
f //

##

C

q~~
∆n

with the following properties:

(1) The map q is a locally coCartesian fibration.

(2) Let v be a vertex of F(i), and let S ⊆ S′ ⊆ {i, . . . , n} be subsets containing i, so that there is an

edge e joining the vertex (v, S) to the vertex (v, S′) in the simplicial set F(i)×MapC[∆n+1](i, n+

1). If S′ − S consists of a single element, then the image of e under the map

F(i)×MapC[∆n+1](i, n+ 1)→ M(F)
f→ C

is a q-coCartesian morphism in C.

(3) For 0 ≤ i ≤ n, the composite map

F(i)→ M(F)×∆n {i} → C×∆n{i}

is a categorical equivalence.

Then f is a categorical equivalence.

Proof. The proof proceeds by induction on n. If n = 0 the result is obvious, so we may suppose

n > 0. Let F0 = F |C[∆n−1]. Unwinding the definition, we have a canonical isomorphism of

simplicial sets

α : M(F) ' (M(F′)×∆1)
∐

M(F′)×{1}

F(n)

Let q denote the composition C → ∆n q0→ ∆1, where q−1
0 {0} = ∆n−1 ⊆ ∆n. The map q is a

coCartesian fibration of simplicial sets. The desired result now follows by combining the inductive

hypothesis with Proposition HTT.3.2.2.10 .
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Proposition 6.2.2.28. Let C→ ∆n be a locally coCartesian fibration of ∞-categories. Then there

exists a projectively cofibrant diagram F ∈ (Set∆)C[∆n] and a map f : M(F)→ C which satisfies the

hypotheses of Proposition 6.2.2.27.

Proof. The proof goes by induction on n. The result is obvious if n = 0, so assume n > 0. Let

C0 = C×∆n∆n−1. The inductive hypothesis guarantees the existence of a projectively cofibrant

diagram F0 ∈ (Set∆)C[∆n−1] and a map f0 : M(F0) → C0 satisfying the hypotheses of Proposition

6.2.2.27. Let q : C→ ∆1 be defined as in the proof of Proposition 6.2.2.27. Then q is a coCartesian

fibration, and f0 determines a map of simplicial sets h0 : M(F0) × {0} → C×∆1{0}. We can

therefore choose a q-coCartesian extension of h0 to a map h : M(F0)×∆1 → C, where h|M(F0)×{1}
determines a map h1 : M(F0)→ C×∆n{n}. Choose a factorization of h1 as a composition

M(F0)
g′→ X

g′′→ C×∆n{n},

where g′ is a cofibration of simplicial sets and g′′ is a categorical equivalence. The map g′ determines

an extension of F0 to a functor F ∈ (Set∆)C[∆n] with F(n) = X, and the maps h and g′′ can be

amalgamated to a map of marked simplicial sets M(F)→ C with the desired properties.

Lemma 6.2.2.29. Suppose given a commutative diagram of simplicial sets

C
p

  

U // C

p
~~

∆n,

where p is a reduced locally differentiable fibration and U exhibits C as a stabilization of p. Let D

be a pointed ∞-category which admits finite colimits and a final object, let V ⊆ Fun(D,C) denote

the full subcategory spanned by those functors given by reduced, excisive maps D → Ci for some

0 ≤ i ≤ n, and define V ⊆ Fun(D,C) similarly. Then composition with U induces a categorical

equivalence V → V .

Proof. Composition with the map p and evaluation at a final object of D determines a functor

q : V → ∆n. Let q = q ◦ U . Using Lemma B.2.4, we are reduced to proving the following:

(i) The projection q : V → S is a locally coCartesian fibration.

(ii) The projection q : V → S is a locally coCartesian fibration.

(iii) The map V → V carries locally q-coCartesian edges to q-coCartesian edges.

(iv) For every vertex s ∈ S, the induced map V s → Vs is an equivalence of ∞-categories.
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The map q admits a factorization

V → Fun(D,C)×Fun(D,∆n) ∆n → ∆n.

The first map is the inclusion of a full subcategory, and therefore an inner fibration. The second

map is a pullback of the projection Fun(D,C) → Fun(D,∆n), and therefore an inner fibration by

Corollary HTT.2.3.2.5 . It follows that q is an inner fibration; likewise q is an inner fibration. To

prove the remaining assertions, it suffices to treat the case n = 1. In particular, we may assume

that p and p are coCartesian fibrations.

We now prove (i). Proposition HTT.3.1.2.1 implies that the projection q′ : Fun(D,C) →
Fun(D,∆1) is a coCartesian fibration. Moreover, an edge f → g in the fiber product Fun(D,C) is

q′-coCartesian if and only if, for each D ∈ D, the induced edge f(D) → g(D) is an p-coCartesian

edge of C. Since every edge s→ s′ induces an exact functor Cs → Cs′ , we conclude that if f ∈ W ,

then g ∈ W . This proves that q = q′|W is a coCartesian fibration, and that an edge of W is

q-coCartesian if and only if it is q′-coCartesian.

Assertion (iv) follows immediately from Proposition 1.4.2.22. To prove (iii), write C as the

correspondence associated to a reduced functor F : C0 → C1 which preserves sequential colimits.

Since U exhibits C as a stabilization of p, we can identify C with the correspondence associated

to the derivative ∂ F : Sp(C0) → Sp(C1) of F . Let G : D → Sp(C0) be a reduced, excisive

functor and let e : G → ∂ F ◦ G be the corresponding q-coCartesian edge of V ; we wish to show

that the image of e in V is q-coCartesian. Unwinding the definitions, we are reduced to proving

that the canonical natural transformation F ◦ Ω∞C0
◦ G → Ω∞C1

◦ ∂ F ◦ G induces an equivalence

P1(F ◦ Ω∞C0
◦G) ' Ω∞C1

◦ ∂ F ◦G. This follows from Remark 6.1.1.30.

We now prove (ii). Suppose we are given an vertex f : D → C0 of V ; we wish to show that

there exists a q-coCartesian morphism α : f → g in V , for some g : D → C1. Using (iv), we may

assume without loss of generality that f can be lifted to a vertex f : D → C0 in V . Using (i), we

can choose an q-coCartesian edge f → g for some g : D → C1. We now take α to be the image of

α in V , which is q-coCartesian by virtue of (iii).

Proof of Theorem 6.2.2.20. According to Theorem B.0.20, there exists a model structure on the

category of marked simplicial sets over S whose cofibrations are monomorphisms and whose fibrant

objects are pairs (X,E), where X → S is a locally coCartesian fibration and E is the collection of

locally coCartesian edges of X. Without loss of generality, we may assume that the map U : C→ C

determines a fibration with respect to this model structure. We define a simplicial set Z by the

following universal property: for every simplicial set K, HomSet∆
(K,Z) can be identified with the

set of pairs (b, φ), where b : K → S is a map of simplicial sets and φ : K ×S D→ K ×S C is a map

which is compatible with the projection to K, and induces a reduced, excisive functor Db(k) → Cb(k)

for each vertex k of K. Let Z be defined similarly, using C in place of C. The map X → X is a

pullback of the canonical map Fun(S,Z) → Fun(S,Z). It will therefore suffice to show that the
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map Z → Z is a trivial Kan fibration. In other words, we need only show that every lifting problem

of the form

∂∆n
� _

��

// Z

��
∆n // Z

admits a solution. Without loss of generality, we may replace S by ∆n. Let D′ = D×∆n ∂∆n.

Unwinding the definitions, we are required to solve a lifting problem of the form

D′� _

��

// C

U
��

D
φ0 //

φ
>>

C .

Moreover, if n = 0, we must further guarantee that the functor φ is left exact.

Let us first consider the case n = 0. By assumption, the map U is equivalent to the functor

Ω∞C : Sp(C) → C, and φ0 is a left exact functor whose domain is stable. Invoking Proposition

1.4.2.22, we deduce that φ0 ' U ◦ φ′, where φ′ : D→ C is an exact functor. Since U is a fibration,

any equivalence of U ◦ φ′ with φ0 can be lifted to an equivalence of φ′ with an exact functor

φ : D→ C satisfying U ◦ φ = φ0.

We now treat the case n > 0. Since q is a locally coCartesian fibration, Proposition 6.2.2.28

guarantees the existence of a simplicial functor F : C[∆n] → Set∆ and a map u : M(F) → D

which induces categorical equivalences F(i) → D×∆n{i} for 0 ≤ i ≤ n. For every face σ ⊆ ∆n,

let Wσ = M(F |C[σ]). Finally, for every simplicial subset S′ ⊆ S, let WS′ denote the colimit

colimσ∈S′Wσ. For each S′ ⊆ S, we have a canonical map ψS′ : WS′ → Y ×S S′. Using Proposition

6.2.2.27, we deduce that ψS′ is a categorical equivalence whenever S′ is a simplex. Since the domain

and codomain of ψS′ both carry pushout squares of simplicial subsets of S to homotopy pushout

squares of simplicial sets, we deduce that ψS′ is a categorical equivalence for all S′ ⊆ S. Invoking

Proposition HTT.A.2.3.1 , we are reduced to solving the lifting problem depicted in the diagram

W∂∆n //
� _

��

C

U
��

W∆n //

<<

C .

Let C = (∆1)n denote an n-dimensional cube, and ∂ C its boundary. Then the left vertical map

is a pushout of the inclusion (∂ C)× F(0) ⊆ C × F(0). Consequently, the above lifting problem is

equivalent to providing a dotted arrow in the diagram

(∂ C)× F(0) //

��

C

U

��
C × F(0) //

99

C .
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We may assume without loss of generality that the functor F is projectively fibrant (otherwise,

we simply make a fibrant replacement for F), so that F(0) is an ∞-category which is equivalent to

the fiber D×∆n{0}. In particular, F(0) admits finite colimits and a final object. Let V denote the

full simplicial subset of Fun(F(0),C) spanned by those functors which belong to Exc∗(F(0),Ci) for

some 0 ≤ i ≤ n, and define V similarly. We can now rewrite our lifting problem yet again:

∂ C //

��

V

U ′

��
C // V.

To solve this lifting problem, it suffices to show that U ′ is a trivial Kan fibration. Our assumption

on U guarantees that U ′ is a categorical fibration. We complete the proof by observing that Lemma

6.2.2.29 guarantees that U ′ is a categorical equivalence.

6.2.3 Differentials of Functors

Let F : C→ D be a functor between ∞-categories which admit finite limits. In §6.2.1, we defined

the derivative ∂ F of F , as a functor from Sp(C) to Sp(D). In this section, we introduce a closely

related notion, which we call the differential of F .

Definition 6.2.3.1. Let {Cs}s∈S be a finite collection of ∞-categories which admit finite colimits

and final objects, let D be an ∞-category which admits finite limits, and suppose we are given

functors F, F ′ :
∏
s∈S Cs → D. We will say that a natural transformation β : F → F ′ exhibits F ′

as a differential of F if the following conditions are satisfied:

(1) The functor F ′ is multilinear (that is, it is reduced and excisive in each variable).

(2) For every multilinear functor G :
∏
s∈S Cs → D, composition with β induces a homotopy

equivalence

MapFun(
∏
s∈S Cs,D)(F

′, G)→ MapFun(
∏
s∈S Cs,D)(F,G).

Remark 6.2.3.2. In the situation of Definition 6.2.3.1, if F :
∏
s∈S Cs → D admits a differential

F ′, then the F ′ is determined by F up to canonical equivalence. We will sometimes indicate the

dependence of F ′ on F by writing F ′ = DF or F ′ = D(F ).

Example 6.2.3.3. In the situation of Definition 6.2.3.1, suppose that S is empty. Then every

functor F :
∏
s∈S Cs → D is multilinear, so that a natural transformation β : F → F ′ exhibits F ′

as a differential of F if and only β is an equivalence.

Remark 6.2.3.4. Let {Cs}s∈S and D as in Definition 6.2.3.1, and suppose we are given functors

F :
∏
s∈S

Cs → D f :
∏
s∈S

Sp(Cs)→ Sp(D).
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If S is nonempty, then a natural transformation α : F ◦
∏
s∈S Ω∞Cs → Ω∞D ◦f exhibits f as a derivative

of F if and only if it exhibits Ω∞D ◦ f as a differential of F ◦
∏
s∈S Ω∞Cs (see Remark 6.2.1.8). This

relationship between derivatives and differentials breaks down when S is empty: see Examples

6.2.3.3 and 6.2.1.5.

Example 6.2.3.5. Let {Cs}s∈S be a finite collection of ∞-categories which admit finite colim-

its and final objects and let D be a differentiable ∞-category. Let P~1 : Fun(
∏
s∈S Cs,D) →

Exc∗(
∏
s∈S Cs,D) be a left adjoint to the inclusion (see Proposition 6.1.3.6). If F :

∏
s∈S Cs → D is

a reduced functor, then P~1F is also reduced. It follows that the canonical map F → P~1F exhibits

P~1F as a differential of F . In particular, there exists a differential of F .

We can construct differentials (and derivatives) of more general functors by first passing to the

case of reduced functors. For this, we introduce a dual version of Construction 6.1.3.15.

Construction 6.2.3.6. Let {Cs}s∈S be ∞-categories which admit zero objects ∗s ∈ Cs, and let D

be an ∞-category which admits finite colimits and a final object ∗. For 1 ≤ i ≤ n, let Ui : Ci → Ci

denote the constant functor taking the value ∗i, and choose a natural transformation of functors

αi : Ui → idCi . For each functor F :
∏
s∈S Cs → D, consider the functor

F :
∏
s∈S

Cs×N(P(S))
∏
αi−→

∏
s∈S

Cs
F→ D

For each T ⊆ S, we let FT denote the restriction of F to
∏
s∈S Cs×{T}, so that FT is given by the

formula FT ({Xs}) = F ({X ′s}) where X ′s =

{
Xs if s ∈ T
∗s if s /∈ T.

. The functor F determines a natural

transformation

β : lim−→
T(S

FT → FS = F.

Let ∗ denote the constant functor
∏
s∈S Cs → D taking the value ∗ ∈ D. We let cored(F ) denote

the pushout

lim−→
T(S
∗

∐
lim−→T(S

FT

F,

We will refer to cored(F ) as the coreduction of F .

Remark 6.2.3.7. Let F :
∏
s∈S Cs → D be as in Construction 6.2.3.6. If S is empty, then the

canonical map F → cored(F ) is an equivalence. Otherwise, the partially ordered set {T : T ( S} is

weakly contractible, so we can identify cored(F ) with the cofiber of the canonical map lim−→T(S FT →
F .

The coreduction of a functor F enjoys the following universal property:
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Proposition 6.2.3.8. Let {Cs}s∈S be a finite collection of pointed ∞-categories, let D be an ∞-

category which admits finite colimits and a final object, and let F :
∏
s∈S Cs → D be a functor.

Then:

(a) The functor cored(F ) :
∏
s∈S CS → D is reduced (in each variable).

(b) Let G :
∏
s∈S Cs → D be any reduced functor. Then the canonical map F → cored(F ) induces

a homotopy equivalence

MapFun(
∏
s∈S Cs,D)(cored(F ), G))→ MapFun(

∏
s∈S Cs,D)(F,G).

Proof. If S is empty, the result is obvious. Let us therefore assume that S is nonempty. If D is

pointed, the desired result follows immediately from Proposition 6.1.3.17. The proof in the general

case is similar. Suppose we are given a collection of objects ~X = {Xs ∈ Cs}s∈S such that some Xs

is a zero object of Cs. Then for T ⊆ S, the canonical map FT ( ~X)→ FT−{s}( ~X) is an equivalence.

It follows that the diagram {FT ( ~X)}T(S is a left Kan extension of {FT ( ~X)}j /∈T⊂S , so that the

canonical map

FS−{j}( ~X)→ lim−→
∅6=T⊆S

FT ( ~X)

is an equivalence. In particular, cored(F )( ~X) is given by the cofiber of the map FS−{j}( ~X)→ F ( ~X).

Since this map is an equivalence, we conclude that cored(F )( ~X) is a final object of D. This proves

(a).

We now prove (b). Let G :
∏
s∈S Cs → D be reduced. We have a pullback diagram of mapping

spaces

MapFun(
∏
s∈S Cs,D)(cored(F ), G) //

��

lim←−T(S MapFun(
∏
s∈S Cs,D)(∗, G)

��
MapFun(

∏
s∈S Cs,D)(F,G) // lim←−T(S MapFun(

∏
s∈S Cs,D)(FT , G),

where ∗ denotes the constant functor taking the value ∗ ∈ D. To prove that the left verti-

cal map is a homotopy equivalence, it suffices to prove that the right vertical map is a homo-

topy equivalence. For this, we show that for every proper subset T ( S, the canonical map

MapFun(
∏
s∈S Cs,D)(∗, G) MapFun(

∏
s∈S Cs,D)(FT , G) is a homotopy equivalence. Choose an element

t ∈ S − T , and let C denote the full subcategory of
∏
s∈S Cs spanned by those objects whose tth

coordinate is a zero object of Ct. Then ∗ and FT are both left Kan extensions of their restrictions

to C. It will therefore suffice to show that the canonical map

MapFun(C,D)(∗|C, G|C)→ MapFun(C,D)(FT |C, G|C)

is a homotopy equivalence. This is clear, since G|C is a final object of Fun(C,D).
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Corollary 6.2.3.9. Let {Cs}s∈S be a finite collection of pointed ∞-categories, let D an ∞-category

which admits finite colimits and a final object, and let Fun∗(
∏
s∈S Cs,D) be the full subcategory of

Fun(
∏
s∈S Cs,D) spanned by the reduced functors. Then the inclusion

Fun∗(
∏
s∈S

Cs,D)→ Fun(
∏
s∈S

Cs,D)

admits a left adjoint, given by the construction F 7→ cored(F ).

Example 6.2.3.10. Let F : C1× · · · × Cn → D be as in Construction 6.2.3.6. Suppose that there

exist integers 1 ≤ j < k ≤ n such that, for every sequence of objects {Xi ∈ Ci}, the diagram

F (X1, . . . , Xj−1, ∗j , Xj+1, . . . , Xk−1, ∗k, Xk+1, . . . , Xn)

ss ++
F (X1, . . . , Xj−1, ∗j , Xj+1, . . . , Xn)

++

F (X1, . . . , Xk−1, ∗k, Xk+1, . . . , Xn)

ss
F (X1, . . . , Xn)

is a pushout square. Then the diagram of functors {FT }T(S is a left Kan extension of its restriction

to N({T ∈ P(S) : T ∩ {j, k} 6= {j, k}}), which contains N({S − {j}, S − {j, k}, S − {k}}) as a left

cofinal subset. It follows that the map β : lim−→T(S FT → FS = F is an equivalence, so that the

coreduction cored(F ) is trivial.

Proposition 6.2.3.11. Let α : S → T be a surjective map of finite sets, let {Cs}s∈S and {Dt}t∈T
be pointed ∞-categories, and let E be an ∞-category which admits finite colimits and a final object.

Suppose we are given functors

Gt :
∏

α(s)=t

Cs → Dt F :
∏
t∈T

Dt → E

where each Gt is reduced. Then we have a canonical equivalence cored(F ◦
∏
t∈T Gt) ' cored(F ) ◦∏

t∈T Gt.

Proof. Since each Gt is reduced, the functor cored(F ) ◦
∏
t∈T Gt. Consequently, the canonical map

F ◦
∏
t∈T Gt → cored(F ) ◦

∏
t∈T Gt factors as a composition

F ◦
∏
t∈T

Gt → cored(F ◦
∏
t∈T

Gt)
β→ cored(F ) ◦

∏
t∈T

Gt.

We wish to prove that β is an equivalence. For this, it will suffice to show that cored(F ) ◦
∏
t∈T Gt

satisfies the universal property of Proposition 6.2.3.8: that is, for every reduced functor H :∏
s∈S Cs → E induces a homotopy equivalence

θ : MapFun(
∏
s∈S Cs,E)(cored(F ) ◦

∏
t∈T

Gt, H)→ MapFun(
∏
s∈S Cs,E)(F ◦

∏
t∈T

Gt, H).
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Let ∗ :
∏
t∈T Dt → E be the constant functor taking the value ∗ ∈ E, where ∗ is a final object of E.

Then θ is the pullback of a map

lim←−
T ′(T

MapFun(
∏
s∈S Cs,E)(∗ ◦

∏
t∈T

Gt, H)→ lim←−
T ′(T

MapFun(
∏
s∈S Cs,E)(FT ′ ◦

∏
t∈T

Gt, H).

It will therefore suffice to show that for every proper subset T ′ ( T , the map

θT ′ : MapFun(
∏
s∈S Cs,E)(∗ ◦

∏
t∈T

Gt, H)→ MapFun(
∏
s∈S Cs,E)(FT ′ ◦

∏
t∈T

Gt, H)

is a homotopy equivalence. Choose an element t ∈ T − T ′, choose an element t ∈ S with α(t) = t,

and let C ⊆
∏
s∈S Cs be the full subcategory spanned by those objects whose tth coordinate is a zero

object of Ct. Then FT ′ ◦
∏
t∈T Gt and ∗ ◦

∏
t∈T Gt are both left Kan extensions of their restrictions

to C. It will therefore suffice to show that the canonical map

MapFun(C,E)((∗ ◦
∏
t∈T

Gt)|C, H|C)→ MapFun(C,E)((FT ′ ◦
∏
t∈T

Gt)|C, H|C)

is a homotopy equivalence. This is clear, since H|C is a final object of Fun(C,E).

Remark 6.2.3.12. Let F :
∏
s∈S Cs → D be as in Construction 6.2.3.6, and suppose we are given

a collection of reduced functors Gs : C′s → Cs. Then we have a canonical equivalence

cored(F ) ◦
∏
s∈S

Gs ' cored(F ◦
∏
s∈S

Gs).

Proposition 6.2.3.13. Let {Cs}s∈S be a finite collection of ∞-categories, let D be a differentiable

∞-category which admits finite colimits, and let F :
∏
s∈S Cs → D be a functor. Then:

(1) If each Cs admits finite colimits and a zero object, then there exists a differential of F .

(2) If each Cs admits finite limits, then there exists a derivative of F .

Proof. We first prove (1). Set G = cored(F ). If β : G→ G′ exhibits G′ as a differential of G, then

the composite functor F → G→ G′ exhibits G′ as a differential of F . Consequently, assertion (1)

follows from Example 6.2.3.5.

If S is empty, then assertion (2) follows from Example 6.2.1.5 and Proposition 6.2.3.16. Let us

now prove (2) in the case where F is nonempty. Using Remark 6.2.1.6, we can replace each Cs by

the∞-category of pointed objects Cs,∗, and thereby reduce to the case where each Cs is pointed. Let

G = cored(F ) as above. If α : G ◦
∏
s∈S Ω∞Cs → Ω∞D ◦ g exhibits a functor g :

∏
s∈S Sp(Cs)→ Sp(D)

as a derivative of G, then the composite map

F ◦
∏
s∈S

Ω∞Cs → G ◦
∏
s∈S

Ω∞Cs
α→ Ω∞D ◦ g

exhibits g as a derivative of F (since G◦
∏
s∈S Ω∞Cs is a coreduction of F ◦

∏
s∈S Ω∞Cs , by Proposition

6.2.3.11). The desired result now follows from Proposition 6.2.1.9.
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Lemma 6.2.3.14. Let {Cs}s∈S be a nonempty finite collection of ∞-categories which admit finite

colimits and final objects, let D be an ∞-category which admits finite colimits and a final object,

and let E be a differentiable ∞-category. Let

P1 : Fun(D,E)→ Exc(D,E) P~1 : Fun(
∏
s∈S

Cs,E)→ Exc(
∏
s∈S

Cs,E)

be left adjoints to the inclusion functors, and let F :
∏
s∈S Cs → D be a functor which is reduced

and right exact in each variable. Then, for every reduced functor G : D→ E, we have a canonical

equivalence P~1(G ◦ F ) ' P1(G) ◦ F .

Proof. Since F is right exact in each variable and G is excisive, the functor P1(G) ◦ F is excisive

in each variable. Consequently, the canonical map α : G ◦ F → P1(G) ◦ F induces a natural

transformation β : P~1(G ◦ F )→ P1(G) ◦ F . Let H :
∏
s∈S Cs → E be an arbitrary functor, so that

composition with α induces a map

θ : MapFun(
∏
s∈S Cs,E)(P1(G) ◦ F,H)→ MapFun(

∏
s∈S Cs,E)(G ◦ F,H).

Fix an element s ∈ S, and regard F as defining a functor

f :
∏
t6=s

Ct → Fun(Cs,D).

Applying Remark 6.1.1.30, we see that P1(G) ◦ F classifies the functor∏
t6=s

Ct
f→ Fun(Cs,D)

G◦−→ Fun(Cs,E)
L→ Exc(Cs,E),

where L : Fun(Cs,E) → Exc(Cs,E) denotes a left adjoint to the inclusion. It follows that the

natural transformation θ is an homotopy equivalence whenever H is excisive in the sth variable. In

particular, it is an equivalence when H is excisive in each variable, so that β is an equivalence.

Proposition 6.2.3.15. Let α : S → T be a surjective map of finite sets. Suppose we are given

pointed ∞-categories {Cs}s∈S, {Dt}t∈T which admit finite colimits, and a differentiable ∞-category

E which is pointed and admits finite colimits. Let γ : F → F ′ be a natural transformation between

functors F, F ′ :
∏
t∈T Dt → E which exhibits F ′ as a differential of F , and suppose we are given a

collection of functors Gt :
∏
α(s)=t Cs → Dt which are right exact in each variable. Then the induced

natural transformation

F ◦
∏
t∈T

Gt → F ′ ◦
∏
t∈T

Gt

exhibits F ′ ◦
∏
t∈T Gt as a differential of F ◦

∏
t∈T Gt.

Proof. Using Proposition 6.2.3.11 we can replace F by cored(F ), and thereby reduce to the case

where the functor F is reduced. In this case, the desired result follows from repeated application

of Lemma 6.2.3.14.



1100 CHAPTER 6. THE CALCULUS OF FUNCTORS

Under some mild hypotheses, one can show that the derivative and differential of a functor

F :
∏
s∈S Cs → D are interchangeable data. More precisely, we can recover the differential of F as

the composition ∏
s∈S

Cs

∏
Σ∞

Cs−→
∏
s∈S

Sp(Cs)
~∂F−→ Sp(D)

Ω∞
D→ D,

where Σ∞Cs denotes a left adjoint to the functor Ω∞Cs . We begin by studying some existence criteria

for the functors Σ∞Cs .

Proposition 6.2.3.16. Let C be a differentiable ∞-category which admits finite colimits. Then the

functor Ω∞ : Sp(C)→ C admits a left adjoint.

Definition 6.2.3.17. Let C be a differentiable ∞-category which admits finite colimits. We let

Σ∞+ : C → Sp(C) denote a left adjoint to the functor Ω∞C : Sp(C) → C. We will refer to Σ∞+ as the

infinite suspension functor. In the special case where the ∞-category C is pointed, we will denote

the functor Σ∞+ simply by Σ∞ (or by Σ∞C , if we wish to emphasize the dependence on C).

Remark 6.2.3.18. The notation of Definition 6.2.3.17 is consistent with that of Proposition 1.4.4.4,

in the special case where C is a presentable ∞-category.

The proof of Proposition 6.2.3.16 is based on the following lemma:

Lemma 6.2.3.19. Let C be an ∞-category which admits finite colimits and a final object, and let

θ : Fun∗(S
fin
∗ ,C)→ C be the functor given by evaluation on the 0-sphere S0 ∈ Sfin

∗ . Then θ admits a

left adjoint Σ
∞

: C→ Fun∗(S
fin
∗ ,C).

Proof. Let FunRex(Sfin,C) denote the full subcategory of Fun(Sfin,C) spanned by the right ex-

act functors, so that evaluation on the one-point space ∗ ∈ Sfin induces a trivial Kan fibration

FunRex(Sfin,C)→ C (see Remark 1.4.2.5). Choose a section of this trivial Kan fibration, which we

will denote by C 7→ fC . For each C ∈ C, we let f+
C : Sfin

∗ → C denote the functor given by the

formula

f+
C (K) = fC(K)

∐
C

∗,

where ∗ denotes a final object of C and the map C → fC(K) is determined by the base point of

K. Let Σ
∞

: C → Fun∗(S
fin
∗ ,C) be the functor given by F (C) = f+

C . For each C ∈ C, we have a

canonical equivalence

θ(F (C)) = f+
C (S0) ' C q ∗,

which determines a natural transformation u : id→ θ ◦Σ
∞

. We claim that u is the unit map for an

adjunction between θ and F . To prove this, fix an object C ∈ C and a reduced functor g : Sfin
∗ → C;

we wish to show that u induces a homotopy equivalence

MapFun(Sfin
∗ ,C)(f

+
C , g)→ MapC(f+

C (S0), g(S0))→ MapC(C, g(S0)).
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Note that if h : Sfin
∗ → C is a constant functor, then h is a left Kan extension of its restriction to

the final object of Sfin
∗ . Since g is reduced, we deduce that MapFun(Sfin

∗ ,C)(h, g) is contractible. Let

φ : Sfin
∗ → Sfin be the forgetful functor. We then have a pushout diagram of functors

C //

��

∗

��
fC ◦ φ // f+

C ,

where C : Sfin
∗ → C denotes the constant functor taking the value C and ∗ is defined similarly.

It follows that the restriction map MapFun(Sfin
∗ ,C)(f

+
C , g) → MapFun(Sfin

∗ ,C)(fC ◦ φ, g) is a homotopy

equivalence. Note that φ admits a left adjoint ψ, which carries each finite space K to the space

obtained from K by adding a disjoint base point. Unwinding the definitions, we wish to prove that

the canonical map

MapFun(Sfin
∗ ,C)(fC ◦ φ, g) ' MapFun(Sfin,C)(fC , g ◦ ψ)→ MapC(C, (g ◦ ψ)(∗))

is a homotopy equivalence. This follows from the fact that fC is a left Kan extension of its restriction

along the inclusion {∗} ↪→ Sfin.

Proof of Proposition 6.2.3.16. The functor Ω∞ factors as a composition

Sp(C) ↪→ Fun∗(S
fin
∗ ,C)

θ→ C,

where θ is given by evaluation at S0 ∈ Sfin
∗ . The desired result now follows from Proposition 6.2.1.9

and Lemma 6.2.3.19.

Remark 6.2.3.20. Let S be a nonempty finite set and let D be a differentiable ∞-category which

admits finite colimits, and let LSD : Fun∗(
∏
s∈S S

fin
∗ ,D)→ Exc∗(

∏
s∈S S

fin
∗ ,D) be a left adjoint to the

inclusion (see Construction 6.2.1.14). Then the inclusion Fun(
∏
s∈S S

fin
∗ ,D) → Exc∗(

∏
s∈S S

fin
∗ ,D)

admits a left adjoint, given by X 7→ LSD cored(X).

Now suppose we are given a collection of pointed differentiable ∞-categories {Cs}s∈S . For each

functor F :
∏
s∈S Cs → D, let F+ :

∏
s∈S Fun∗(S

fin
∗ ,C) → Fun(

∏
s∈S S

fin
∗ ,D) be the functor given

by composition with F . For every collection of reduced functors Xs ∈ Fun∗(S
fin
∗ ,Cs), Proposition

6.2.3.11 supplies an equivalence cored(F+({Xs})) ' cored(F )+({Xs}). Combining this observation

with Proposition 6.2.1.19, we see that differential ~∂F ' ~∂ cored(F ) is given by the composition∏
s∈S

Sp(Cs) ↪→
∏
s∈S

Fun∗(S
fin
∗ ,Cs)

F+

→ Fun(
∏
s∈S

Sfin
∗ ,D)→ Exc∗(

∏
s∈S

Sfin
∗ ,D),

where the last functor is a left adjoint to the inclusion.

The main result of this section is the following:
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Theorem 6.2.3.21. Let {Cs}s∈S be a finite collection of pointed differentiable ∞-categories which

admit finite colimits, and let D be a differentiable ∞-category. Then composition with the functors

Σ∞Cs : Cs → Sp(Cs) induces an equivalence of ∞-categories

Exc?(
∏
s∈S

Sp(Cs),D)→ Exc?(
∏
s∈S

Cs,D).

Before giving the proof of Theorem 6.2.3.21, let us describe some its consequences.

Corollary 6.2.3.22. Let {Cs}s∈S be a nonempty finite collection of pointed differentiable ∞-

categories which admit finite colimits and let D be a differentiable ∞-category. Then the construc-

tion f 7→ Ω∞D ◦f◦
∏
s∈S Σ∞Cs induces an equivalence of∞-categories φ : Exc?(

∏
s∈S Sp(Cs),Sp(D))→

Exc?(
∏
s∈S Cs,D).

Proof. Using Theorem 6.2.3.21, we are reduced to proving that composition with Ω∞D induces an

equivalence of ∞-categories

θ : Exc?(
∏
s∈S

Cs, Sp(D))→ Exc?(
∏
s∈S

,D).

This follows from Proposition 1.4.2.22 together with the following assertion:

(∗) Let C be an ∞-category which admits countable colimits and let F : C → Sp(D) be an

excisive functor. Then F preserves sequential colimits if and only if the functor Ω∞D ◦ F
preserves sequential colimits.

The “only if” direction is obvious, since the functor Ω∞D preserves sequential colimits (see Example

6.2.1.17). Conversely, suppose that Ω∞D ◦ F preserves sequential colimits; we wish to prove that

F preserves sequential colimits. Using Remark 1.4.2.25, we are reduced to proving that for each

n ≥ 0, the functor Ω∞−nD ◦ F ' Ω∞D (Σn
Sp(D) ◦ F ) commutes with sequential colimits. Since F is

excisive, we can rewrite this functor as Ω∞D ◦F ◦Σn
C, which commutes with with sequential colimits

by virtue of the fact that the functors Ω∞D ◦ F and Σn
C commute with sequential colimits.

Remark 6.2.3.23. In the situation of Corollary 6.2.3.22, one can give a homotopy inverse

to φ explicitly by the construction F 7→ ~∂F . To see this, it suffices to show that for

f ∈ Exc?(
∏
s∈S Sp(Cs), Sp(D)), the canonical map

α : Ω∞D ◦ f ◦
∏
s∈S

Σ∞Cs ◦
∏
s∈S

Ω∞Cs → Ω∞D ◦ f

exhibits f as a derivative of F = Ω∞D ◦ f ◦
∏
s∈S Σ∞Cs . Since f is multilinear, it suffices to show that

for each multilinear functor g :
∏
s∈S Sp(Cs)→ Sp(D), the map

MapFun(
∏
s∈S Sp(C),Sp(D))(Ω

∞
D ◦ f, g) → MapFun(

∏
s∈S Sp(C),Sp(D))(Ω

∞
D ◦ f ◦

∏
s∈S

Σ∞Cs ◦
∏
s∈S

Ω∞Cs , g)

→ MapFun(
∏
s∈S C,Sp(D))(Ω

∞
D ◦ f ◦

∏
s∈S

Σ∞Cs , g ◦
∏
s∈S

Σ∞Cs)
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is a homotopy equivalence. This follows from Theorem 6.2.3.21.

Corollary 6.2.3.24. Let {Cs}s∈S be a nonempty finite collection of pointed differentiable ∞-

categories which admit finite colimits, let D be a differentiable ∞-category, and suppose we are

reduced functors

F :
∏
s∈S

Cs → D f :
∏
s∈S

Sp(Cs)→ Sp(D)

where F preserves sequential colimits and f is exact in each variable. Let α : F ◦
∏
s∈S Ω∞Cs → Ω∞D ◦f

be a natural transformation. The following conditions are equivalent:

(a) The natural transformation α exhibits f as a derivative of F .

(b) The composite transformation

β : F → F ◦
∏
s∈S

Ω∞Cs ◦
∏
s∈S

Σ∞Cs
α→ Ω∞D ◦ f ◦

∏
s∈S

Σ∞Cs

exhibits Ω∞D ◦ f ◦
∏
s∈S Σ∞Cs as a differential of f .

Remark 6.2.3.25. In the situation of Corollary 6.2.3.24, suppose that the ∞-category D admits

finite colimits, so that the functor Ω∞D : Sp(D) → D admits a left adjoint Σ∞+ : D → Sp(D)

(Proposition 6.2.3.16). Using Proposition 1.4.2.22, we obtain the following additional variantions

on (a) and (b):

(c) The composite transformation

γ : Σ∞+ ◦ F ◦
∏
s∈S

Ω∞Cs
α→ Σ∞+ ◦ Ω∞D ◦ f → f

exhibits f as a differential of Σ∞+ ◦ F ◦
∏
s∈S Ω∞Cs .

(d) The composite transformation

δ : Σ∞+ ◦ F → Σ∞+ ◦ F ◦
∏
s∈S

Ω∞Cs ◦
∏
s∈S

Σ∞Cs
α→ Σ∞+ ◦ Ω∞D ◦ f ◦

∏
s∈S

Σ∞Cs → f ◦
∏
s∈S

Σ∞Cs

exhibits f ◦
∏
s∈S Σ∞Cs as a differential of the functor Σ∞+ ◦ F .

In this situation, we will sometimes abuse terminology by saying that any of the natural transfor-

mations β, γ, and δ exhibits f as a derivative of F .

Theorem 6.2.3.21 is a close relative of Corollary 1.4.4.5. In fact, it is possible to deduce Theorem

6.2.3.21 from Corollary 1.4.4.5, by replacing the ∞-categories Cs by Indκ(Cs), where κ denotes the

least uncountable cardinal. However, we will give a more direct proof which is based on the following

lemma:
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Lemma 6.2.3.26. Let C be a pointed differentiable∞-category which admits finite colimits, and let

X be a stable subcategory of Sp(C) which contains the essential image of the functor Σ∞C : C→ Sp(C).

If X is closed under sequential colimits, then X = Sp(C).

Proof. Example 6.2.1.4 implies that the identity functor idSp(C) is a derivative of the identity func-

tor idC. It follows that the counit map Σ∞C ◦ Ω∞C → idSp(C) exhibits idSp(C) as the 1-excisive

approximation to Σ∞C ◦ Ω∞C : that is, the identity functor idSp(C) is given by the colimit

lim−→
n

Ωn
Sp(C) ◦ Σ∞C ◦ Ω∞C ◦ Σn

Sp(C).

In particular, for every spectrum object X ∈ Sp(C), we have a canonical equivalence

X ' lim−→
n

Ωn
Sp(C)(Σ

∞
C X(Sn)).

Since X contains the essential image of Σ∞C and is closed under desuspension, it contains each of

the objects Ωn
Sp(C)(Σ

∞
C X(Sn)). Using the fact that that X is closed under sequential colimits, we

deduce that X ∈ X.

Proof of Theorem 6.2.3.21. Working separately in each argument, we are reduced to proving the

following assertion:

(∗) Let C be a pointed differentiable ∞-category which admits finite colimits and D an arbitrary

differentiable ∞-category. Then composition with the functor Σ∞C induces an equivalence of

∞-categories

Exc?(Sp(C),D)→ Exc?(C,D).

Let φ : Exc?(Sp(C),D) → Fun(C,D) denote the functor given by precomposition with Σ∞C , and

write φ as a composition of functors

Exc?(Sp(C),D) ↪→ Fun?(Sp(C),D)
◦Σ∞

C→ Fun?(C,D).

Each of these functors admits a left adjoint; it follows that φ admits a left adjoint ψ, given by the

composition

Exc?(Sp(C),D)
P1← Fun?(Sp(C),D)

◦Ω∞
C← Fun?(C,D),

which is given by F 7→ Ω∞D ◦∂ F . Since the functor Σ∞C is right exact, the functor φ factors through

Exc?(C,D). We therefore obtain an adjunction

Exc?(C,D)
ψ0 //Exc?(Sp(C),D)
φ0

oo
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We wish to show that these functors are mutually inverse equivalences of categories. We begin by

showing that the functor ψ0 is fully faithful. Let F : C → D be a reduced, excisive functor which

commutes with sequential colimits; we wish to show that the unit map

uF : F → φ0ψ0F = Ω∞D ◦ ∂ F ◦ Σ∞C

is an equivalence. Fix an object C ∈ C; we wish to show that uF induces an equivalence uF (C) :

F (C) → Ω∞D ◦ ∂ F ◦ Σ∞C (C). Let LC : Fun∗(S
fin
∗ ,C) → Sp(C) and LD : Fun∗(S

fin
∗ ,D) → Sp(D) be

left adjoints to the inclusion, and let F+ : Fun∗(S
fin
∗ ,C) → Fun∗(S

fin
∗ ,D) be the functor given by

pointwise composition with F , and let Σ
∞
C : C→ Fun∗(S

fin
∗ ,C) be a left adjoint to the functor given

by evaluation on S0 ∈ Sfin
∗ . Then Σ∞C ' LC ◦ Σ

∞
C . Applying Propositions 6.2.1.19 and 6.2.1.20, we

obtain equivalences

∂ F (Σ∞C C) ' LDF
+(Σ∞C C) ' LDF

+(Σ
∞
C C).

Combining this with Remark 6.2.1.13, we obtain an equivalence

(Ω∞D ◦ ∂ F ◦Σ∞C ) ' (Ω∞D ◦ LD)F+(Σ
∞
C C) ' lim−→

n

Ωn
D(F+(Σ

∞
C C)(Sn)) ' lim−→

n

Ωn
DF (Σn

CC) ' (P1F )(C).

Under this equivalence, the uF (C) corresponds to the canonical map from F (C) to (P1F )(C), which

is an equivalence by virtue of our assumption that F is excisive.

To complete the proof that φ0 and ψ0 are mutually inverse equivalences of ∞-categories, it will

suffice to show that the functor φ0 is conservative. Let β : f → g be a morphism in Exc?(Sym(C),D)

which induces an equivalence f ◦ Σ∞C → g ◦ Σ∞C ; we wish to show that β is an equivalence. Using

Proposition 1.4.2.22, we can replace D by Sp(D) and thereby reduce to the case where D is stable,

so that f and g are exact functors. Let X ⊆ Sp(C) denote the full subcategory spanned by those

objects X for β induces an equivalence βX : f(X)→ g(X) in D. Since f and g are exact functors

which commute with sequential colimits, X is a stable subcategory of Sp(C) which is closed under

sequential colimits. Since X contains the essential image of the functor Σ∞C , we conclude from

Lemma 6.2.3.26 that X = Sp(C).

In Example 6.2.1.4, we saw that the derivative of a left exact functor has a simple description.

We conclude this section by establishing an analogue for right exact functors:

Proposition 6.2.3.27. Let {Cs}s∈S and D be pointed differentiable∞-categories which admit finite

colimits, and suppose we are given functors

F :
∏
s∈S

Cs → D f :
∏
s∈S

Sp(Cs)→ Sp(D)

which preserve countable colimits in each variable. Then a natural transformation δ : Σ∞D ◦ F →
f ◦

∏
s∈S Σ∞Cs exhibits f as a derivative of F (see Remark 6.2.3.25) if and only if δ is an equivalence.
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Proof. Note that the hypotheses guarantee that F is reduced. Let

F+ :
∏
s∈S

Fun∗(S
fin
∗ ,Cs)→ Fun∗(

∏
s∈S

Sfin
∗ ,D)

and LSD : Fun∗(
∏
s∈S S

fin
∗ ,D) → Sp(D) be defined as in Construction 6.2.1.14, let LCs :

Fun∗(S
fin
∗ ,Cs)→ Sp(Cs) be left adjoints to the inclusion functors, and let Σ

∞
Cs be defined as in Lemma

6.2.3.19. Repeated application of Lemma 6.2.3.19 shows that the functor Fun(
∏
s∈S S

fin
∗ ,D) → D

given by evaluation at (S0, . . . , S0) admits a left adjoint U . Moreover, we have a canonical equiva-

lence U ◦ F ' F+ ◦
∏
s∈S Σ

∞
C . Using Propositions 6.2.1.20 and 6.2.1.19, we obtain equivalences

Σ∞D ◦ F ' LSD ◦ U ◦ F
' LSD ◦ F+ ◦

∏
s∈S

Σ
∞
Cs

' LSD ◦ F+ ◦
∏
s∈S

LCs ◦
∏
s∈S

Σ
∞
Cs

' LSD ◦ F+ ◦
∏
s∈S

Σ∞Cs

' ~∂F ◦
∏
s∈S

Σ∞Cs .

This proves the “if” direction of our assertion.

Conversely, suppose that δ is an equivalence. Let ~∂F be a derivative of F . Since f ◦ Σ∞C is

excisive, Corollary 6.2.3.24 implies that δ factors as a composition

Σ∞D ◦ F
δ′→ ~∂F ◦

∏
s∈S

Σ∞Cs
δ′′→ f ◦

∏
s∈S

Σ∞Cs ,

where δ′ exhibits ~∂F as a derivative of F . The first part of the proof shows that δ′ is an equivalence,

so that δ′′ is an equivalence by the two-out-of-three property. It follows that δ exhibits f as a

derivative of F .

Example 6.2.3.28. Let F : Sn∗ → S∗ be the functor given by

F (X1, . . . , Xn) =
∏

Xi.

For n ≥ 1, the functor cored(F ) is given by the iterated smash product

cored(F )(X1, . . . , Xn) = X1 ∧ · · · ∧Xn.

Since the suspension spectrum functor Σ∞ : S∗ → Sp is symmetric monoidal, we have a commuta-

tive diagram

Sn∗
Σ∞ //

∧
��

Spn

⊗
��

S∗
Σ∞ // Sp .
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Applying Proposition 6.2.3.27, we can identify the derivative ~∂(F ) ' ~∂(cored(F )) with the iterated

smash product functor ⊗ : Spn → Sp.

Variant 6.2.3.29. Let F : Sn → S be the functor given by the Cartesian product. If n ≥ 1, then

we can use Remark 6.2.1.6, Remark 6.2.1.7, and Example 6.2.3.28 to identify the derivative ~∂(F )

with the iterated smash product functor ⊗ : Spn → Sp. This description is also correct in the case

n = 0: Example 6.2.1.5 allows us to identify ~∂(F ) with the sphere spectrum S = Σ∞+ (∗) (which is

the unit object for the smash product monoidal structure on Sp).

6.2.4 Generalized Smash Products

Let Sp = Sp(S) denote the∞-category of spectra. In §4.8.2, we showed that Sp admits a symmetric

monoidal structure, with tensor product ⊗ : Sp×Sp→ Sp given by the classical smash product of

spectra. Our goal in this section is to address the following question:

Question 6.2.4.1. Let C be an ∞-category which admits finite limits, and let Sp(C) denote the

∞-category of spectrum objects of C. Can we equip the∞-category Sp(C) with some sort of smash

product operation, generalizing the classical smash product of spectra?

We will attempt to answer Question 6.2.4.1 using the calculus of functors (more precisely, using

the theory of derivatives developed in §6.2.1). According to Variant 6.2.3.29, the smash product

functor ⊗ : Sp× Sp → Sp can be identified with the derivative of the Cartesian product functor

S× S→ S. This suggests the following generalization:

Definition 6.2.4.2. Let C be a differentiable ∞-category which admits finite colimits. We define

⊗ : Sp(C)× Sp(C)→ Sp(C) to be the derivative of the Cartesian product functor C×C→ C.

Let us now study the properties of the tensor product functor ⊗ : Sp(C)× Sp(C)→ Sp(C). By

construction, it is exact in each variable (in fact, it even preserves countable colimits separately

in each variable). Moreover, it is evidently symmetric: that is, we have canonical equivalences

X ⊗ Y ' Y ⊗ X, depending functorially on X,Y ∈ Sp(C). The matter of associativity is more

subtle. Consider the functors

F,G : Sp(C)× Sp(C)× Sp(C)→ Sp(C),

given by F (X,Y, Z) = X ⊗ (Y ⊗Z), G(X,Y, Z) = (X ⊗ Y )⊗Z. By construction, for every pair of

spectrum objects X,Y ∈ Sp(C), we have a canonical map

αX,Y : Ω∞C (X)× Ω∞C (Y )→ Ω∞C (X ⊗ Y ),

depending functorially on X and Y . We therefore obtain maps

βX,Y,Z : Ω∞C (X)× Ω∞C (Y )× Ω∞C (Z)
αY,Z−→ Ω∞C (X)× Ω∞C (Y ⊗ Z)

αX,Y⊗Z−→ Ω∞C F (X,Y, Z)
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γX,Y,Z : Ω∞C (X)× Ω∞C (Y )× Ω∞C (Z)
αX,Y−→ Ω∞C (X ⊗ Y )× Ω∞C (Z)

αX⊗Y,Z−→ Ω∞C G(X,Y, Z).

Let ⊗3 : Sp(C)× Sp(C)× Sp(C)→ Sp(C) denote the derivative of the three-fold Cartesian product

functor C×C×C→ C. Since the functors F and G are exact in each variable, β and γ determine

natural transformations F
β′← ⊗3 γ′→ G. In particular, for every triple of spectrum objects X,Y, Z ∈

Sp(C), we have maps

X ⊗ (Y ⊗ Z)← ⊗3{X,Y, Z} → (X ⊗ Y )⊗ Z.

In the special case where C = S, these maps are equivalences, and determine an associativity

constraint X ⊗ (Y ⊗ Z) ' (X ⊗ Y ) ⊗ Z. However, this depends crucially on special properties of

the ∞-category of spaces (specifically, the fact that the formation of Cartesian products commutes

with colimits in each variable). In general, the tensor product functor of Definition 6.2.4.2 is not

associative; however, we can regard the functor ⊗3 and the natural transformations β′ and γ′ as

providing a weak form of the associative law. To discuss this type of structure more systematically,

it will be convenient to introduce the following definition:

Definition 6.2.4.3. Let p : O⊗ → N(Fin∗) be an∞-operad. We will say that O⊗ is corepresentable

if the map p is a locally coCartesian fibration.

Remark 6.2.4.4. Let p : O⊗ → N(Fin∗) be a corepresentable ∞-operad. For n ≥ 0, the unique

active morphism 〈n〉 → 〈1〉 in Fin∗ induces a functor

On ' O⊗〈n〉 → O⊗〈1〉 = O,

which we will denote by {Xi}1≤i≤n 7→ ⊗n{Xi}. Since this construction is Σn-equivariant, it can be

described more invariantly: for every finite set I, we obtain a tensor product functor ⊗I : OI → O.

Remark 6.2.4.5. Let p : O⊗ → N(Fin∗) be an ∞-operad. Then p is corepresentable if and only if

it satisfies the following conditions:

(∗) For every finite collection of objects {Xi}i∈I of O, there exists a object Y ∈ O and an

operation φ ∈ MulO({Xi}i∈I , Y ) which is universal in the following sense: for every object

Z ∈ O, composition with φ induces a homotopy equivalence MapO(Y,Z)→ MulO({Xi}i∈I , Z).

Here Y = ⊗{Xi}i∈I , where ⊗ denotes the functor of Remark 6.2.4.4.

Remark 6.2.4.6. Let O⊗ be a corepresentable ∞-operad. The 0-fold tensor product ⊗0 : ∆0 '
O0 → O can be identified with an object E ∈ O. Note that O⊗ is a unital ∞-operad (in the sense

of Definition 2.3.1.1) if and only if E is an initial object of O.

Remark 6.2.4.7. Let p : O⊗ → N(Fin∗) be a corepresentable ∞-operad. Then the underlying

∞-category O is equipped with a tensor product operation ⊗ : O×O → O, given by the functor

⊗2 of Remark 6.2.4.4. The tensor product ⊗ is commutative (up to canonical equivalence), but is

generally not associative. To every triple of objects X,Y, Z ∈ O, the locally coCartesian fibration
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O⊗ → N(Fin∗) associates a 3-fold tensor product ⊗3{X,Y, Z}, which is equipped with canonical

maps

X ⊗ (Y ⊗ Z)← ⊗3{X,Y, Z} → (X ⊗ Y )⊗ Z.

These maps are equivalences if O⊗ is a nonunital symmetric monoidal ∞-cateogry, in general need

not be.

Remark 6.2.4.8. Let O⊗ be a corepresentable∞-operad, and suppose we are given a map of finite

sets α : I → J . Let {Xi}i∈I be a collection of objects of O. For j ∈ J , set Ij = α−1{j} ⊆ I, set

Yj = ⊗Ij{Xi}i∈Ij , and set Z = ⊗J{Yj}j∈J . We have canonical operations

φj ∈ MulO({Xi}i∈Ij , Yj) ψ ∈ MulO({Yj}j∈J , Z).

Composing these, we obtain a point of MulO({Xi}i∈I , Z), which is classified by a map ⊗I{Xi}i∈I →
Z. This construction is functorial in each Xi, and therefore defines a natural transformation of

functors

vα : ⊗I → ⊗J ◦
∏
j∈J
⊗Ij

from OI to O. In particular, for objects X,Y, Z ∈ O, we have canonical maps

⊗2(X,⊗2(Y,Z))← ⊗3(X,Y, Z)→ ⊗2(⊗2(X,Y ), Z).

Example 6.2.4.9. Every symmetric monoidal ∞-category is a corepresentable ∞-operad. Con-

versely, a corepresentable ∞-operad O⊗ is a symmetric monoidal ∞-category if and only if, for

every map of finite sets α : I → J , the natural transformation

vα : ⊗I → ⊗J ◦
∏
j∈J
⊗Ij

of Remark 6.2.4.8 is an equivalence of functors from OI to O.

We now discuss the process of stabilizing a corepresentable ∞-operad.

Definition 6.2.4.10. Let p : O⊗ → N(Fin∗) be an ∞-operad. We will say that O⊗ is stable if the

following conditions are satisfied:

(1) The ∞-operad O⊗ is corepresentable (that is, p is a locally coCartesian fibration).

(2) The underlying ∞-category O is stable.

(3) For every finite set I, the tensor product functor ⊗I : OI → O is exact in each variable.

Definition 6.2.4.11. Let p : O⊗ → N(Fin∗) be an∞-operad. We will say that O⊗ is differentiable

if the following conditions are satisfied:
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(1) The ∞-operad O⊗ is corepresentable (that is, p is a locally coCartesian fibration).

(2) The underlying ∞-category O is differentiable and admits finite colimits.

(3) For every finite set I, the tensor product functors ⊗I : OI → O preserves sequential colimits.

Definition 6.2.4.12. Let p : O⊗ → N(Fin∗) be a differentiable ∞-operad. We will say that a map

of ∞-operads q : O
⊗ → N(Fin∗) exhibits O

⊗
as a stabilization of O⊗ if the following conditions are

satisfied:

(1) The ∞-operad O
⊗

is stable.

(2) The underlying functor O→ O is left exact.

It follows from (2) and Corollary 1.4.2.23 that the functor O→ O factors (in an essentially unique

way) as a composition O
e→ Sp(O)→ O, where the functor e is exact.

(3) The functor e : O→ Sp(O) is an equivalence of ∞-categories; we let e−1 denote a homotopy

inverse to e.

(4) For every finite set I, let ⊗I : OI → O and ⊗I : O
I → O be defined as in Remark 6.2.4.4.

Then q induces a natural transformation

⊗I ◦ (Ω∞O )I → Ω∞O ◦ (e ◦ ⊗I ◦ (e−1)I)

of functors from Sp(O)I into O which exhibits e ◦ ⊗I ◦ (e−1)I as a derivative of the functor

⊗I .

Example 6.2.4.13. Let S× denote the Cartesian symmetric monoidal∞-category whose underly-

ing∞-category is S. Then S× is an initial object in the∞-category of commutative algebra objects

of PrL (see Example 4.8.1.20). In particular, there is an essentially unique symmetric monoidal

functor S× → Sp⊗, where the underlying map of ∞-categories is given by the suspension spectrum

functor Σ∞+ : S→ Sp. The functor Σ∞+ is left adjoint to the functor Ω∞ : Sp→ S. Applying Corol-

lary 7.3.2.7, we see that Ω∞ underlies a map of ∞-operads q : Sp⊗ → S×. Invoking the analysis

of Example 6.2.3.28 and Variant 6.2.3.29, we deduce that q exhibits Sp⊗ as the stabilization of the

(differentiable) ∞-operad S×.

The fundamental properties of Definition 6.2.4.12 are summarized in the following pair of results,

which we will prove (in a more general form) in §6.2.5 and §6.2.6:

Proposition 6.2.4.14. Let C⊗ be a differentiable ∞-operad. Then there exists a stable ∞-operad

C
⊗

and a map of ∞-operads q : C
⊗ → C⊗ which exhibits C

⊗
as a stabilization of C⊗.
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Proposition 6.2.4.15. Let q : C
⊗ → C⊗ be a map of∞-operads which exhibits the stable∞-operad

C
⊗

as a stabilization of the differentiable ∞-operad C⊗, and let O⊗ be an arbitrary stable ∞-operad.

Let Algex
O (C) denote the full subcategory of AlgO(C) spanned by those ∞-operad maps O⊗ → C⊗ for

which the underlying functor O→ C is left exact, and define Algex
O (C) similarly. Then composition

with q induces an equivalence of ∞-categories Algex
O (C)→ Algex

O (C).

Remark 6.2.4.16. It follows from Proposition 6.2.4.15 that the stabilization of a differentiable

∞-operad C⊗ is determined up to equivalence by C⊗.

Example 6.2.4.17. Let S∗ denote the ∞-category of pointed spaces, which we regard as endowed

with a symmetric monoidal structure via the smash product (see Remark 4.8.2.14). This symmetric

monoidal structure is encoded by a coCartesian fibration S∧∗ → N(Fin∗). The ∞-operad S∧∗ is

differentiable, and therefore admits a stabilization q : C⊗ → S∧∗ by Proposition 6.2.4.14. The

underlying ∞-category C of C⊗ can be identified with Sp(S∗) ' Sp. It follows from the analysis

of Example 6.2.3.28 that for every nonempty finite set I, the associated tensor product functor

⊗I : CI → C is given by the iterated smash product of spectra. However, when I = ∅ the tensor

product functor ⊗I : ∆0 ' CI → C is given by a zero object of C (rather than the sphere spectrum).

In particular, we see that C⊗ is a unital corepresentable ∞-operad (Remark 6.2.4.6), which is not

a symmetric monoidal ∞-category. Informally speaking, the corepresentable ∞-operad C⊗ can be

obtained from Sp⊗ by “killing the unit object”.

Using Example 6.2.3.28, we also see that C⊗ can be identified with the stabilization of the

differentiable ∞-operad S×∗ ; the identification is induced by composing the map q : C⊗ → S∧∗ with

a map of ∞-operads S∧∗ → S×∗ .

6.2.5 Stabilization of ∞-Operads

Let C⊗ be a differentiable ∞-operad (see Definition 6.2.4.11). In §6.2.4, we introduced the notion

of a stabilization of C⊗. Our goal in this section is to prove Proposition 6.2.4.14, which asserts

that C⊗ admits a stabilization. The proof will proceed by means of an explicit construction, which

is closely related to the stabilization construction given in §6.2.2. However, the present case is

considerably more complicated, because we must consider functors of several variables. For later

use, it will be convenient to introduce one other complication: we will treat not only the case of a

single differentiable ∞-operad, but a family of differentiable ∞-operads.

Definition 6.2.5.1. Let p : O⊗ → S × N(Fin∗) be a map of simplicial sets. We will say that

p is a local S-family of ∞-operads if, for every n-simplex of S, the induced map ∆n ×S O⊗ →
∆n × N(Fin∗) is a ∆n-family of ∞-operads, in the sense of Definition 2.3.2.10. We will say that p

is a corepresentable local S-family of ∞-operads it is a local S-family of ∞-operads, and the map p

is a locally coCartesian fibration.

Warning 6.2.5.2. Let S be an ∞-category. If p : O⊗ → S ×N(Fin∗) is an S-family of ∞-operads

(in the sense of Definition 2.3.2.10), then p is a local S-family of ∞-operads. The converse is
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generally not true: Definition 6.2.5.1 does not require that p be a categorical fibration of simplicial

sets. However, if every every equivalence in S is a degenerate edge (for example, if S is the nerve

of a partially ordered set), then every local S-family of ∞-operads is an S-family of ∞-operads.

This follows from the characterization of categorical fibrations supplied by Corollary HTT.2.4.6.5 .

Remark 6.2.5.3. Let p : O⊗ → S ×N(Fin∗) be a local S-family of ∞-operads. We will generally

abuse terminology by referring to O⊗ as a local S-family of ∞-operads, if the map p is clear

in context. For each vertex s ∈ S, we let O⊗s denote the ∞-operad given by the fiber product

O⊗×S{s}, and Os its underlying ∞-category.

Remark 6.2.5.4. Let q : O⊗ → S × N(Fin∗) be a corepresentable local S-family of ∞-operads,

and let e : X → Y be an edge of O⊗ lying over an edge e0 : s → t in S. The following conditions

are equivalent:

(1) The edge e is locally q-coCartesian.

(2) For every inert morphism e′ : Y → Z in O⊗t and every 2-simplex

Y
e′

��
X

e

>>

f // Z

in C⊗ lying over the degenerate 2-simplex

t
id

��
s

e0

@@

e0 // t

of S, f is a locally q-coCartesian edge of O⊗.

(3) For every inert morphism e′ : Y → Z in O⊗t such that Z ∈ Ot and every 2-simplex

Y
e′

��
X

e

>>

f // Z

in C⊗ lying over the degenerate 2-simplex

t
id

��
s

e0

@@

e0 // t,

of S, f is a locally q-coCartesian edge of O⊗.
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Definition 6.2.5.5. Let p : O⊗ → S ×N(Fin∗) be a corepresentable local S-family of ∞-operads.

We will say that p is stable ( differentiable ) if the following conditions are satisfied:

(a) For each vertex s ∈ S, the ∞-category Os is stable (differentiable and admits finite colimits).

(b) For every edge s→ t in S and every n ≥ 0, the unique active morphism 〈n〉 → 〈1〉 induces a

functor

Ons ' O⊗(s,〈n〉) → O⊗(t,〈1〉) ' Ot

is exact in each variable (preserves sequential colimits).

Our goal is to describe a procedure for converting a differentiable local S-family of ∞-operads

into a stable local S-family of ∞-operads. We first establish some terminology which will allow us

to work locally on the simplicial set S ×N(Fin∗).

Definition 6.2.5.6. Let C be an ∞-category and let I be a finite set. An I-decomposition of C

is a finite collection {W (i)}i∈I , where each W (i) is a collection of morphisms of C, satisfying the

following condition:

(∗) There exists an equivalence of ∞-categories C →
∏
i∈I C(i), where each C(i) is a weakly

contractible ∞-category, such that for each j ∈ I, W (j) is the collection of those morphisms

f in C such that the image of f under the functor C→
∏
i∈I C(i)→ C(j) is an equivalence in

C(j).

Remark 6.2.5.7. Let C be an∞-category equipped with an I-decomposition {W (i)}i∈I . Then the

equivalence C →
∏
i∈I C(i) appearing in condition (∗) of Definition 6.2.5.6 is determined uniquely

up to equivalence. For each i ∈ I, let W ′(i) =
⋂
j 6=iW (j). Since C(j) is weakly contractible for

j 6= i, we can identify C(i) with the ∞-category C[W ′(i)−1] obtained from C by formally inverting

the morphisms belonging to W ′(i).

Definition 6.2.5.8. Let S be a simplicial set equipped with a map χ : S → N(Fin∗), and let

p : C→ S be a locally coCartesian fibration. For each vertex s ∈ S, let χ(s) = Is∗ , and let Cs denote

the fiber of p over s. A χ-decomposition of C consists of an Is-decomposition {W (i)s}i∈Is of each

fiber Cs, satisfying the following condition:

(∗) Let e : s → t be an edge of the simplicial set S, so that e induces a functor e! : Cs → Ct be

the induced functor and a map of pointed finite sets α : Is∗ → It∗. Then for each j ∈ It, the

functor e! carries
⋂
i∈α−1{j}W (i)s into W (j)t.

Remark 6.2.5.9. Let χ : S → N(Fin∗) be a map of simplicial sets and let p : C→ S be a locally

coCartesian fibration equipped with a χ-decomposition. For every vertex s ∈ S, the fiber Cs is

equivalent to a product
∏
i∈Is Cs(i), where χ(s) = Is∗ . Moreover, every edge e : s→ t determines a
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map of pointed finite sets α : Is∗ → It∗ and a functor e! :
∏
i∈Is Cs(i) →

∏
j∈It Ct(j), which factors

as a composition ∏
i∈Is

Cs(i)→
∏

i∈α−1It

Cs(i)

∏
j∈It Fj−→

∏
j∈It

Ct(j),

for some functors Fj :
∏
i∈α−1{j} Cs(i)→ Ct(j). Moreover, the functors Fj are uniquely determined

up to equivalence.

Example 6.2.5.10. Let p : O⊗ → S×N(Fin∗) be a corepresentable local S-family of∞-operads, so

that p induces a locally coCartesian fibration q : O⊗ → S×N(Fin∗). Let χ : S×N(Fin∗)→ N(Fin∗)

be the projection onto the second factor. Assume that, for each vertex s ∈ S, the∞-category Os is

weakly contractible. Then there is a canonical χ-decomposition on the locally coCartesian fibration

q. For each vertex (〈n〉, s) ∈ N(Fin∗)× S, we have a 〈n〉◦-decomposition {W (i)}1≤i≤n of the fiber

O⊗〈n〉,s, where W (i) is the collection of morphisms α in O⊗〈n〉,s such that φ(α) is an equivalence, where

φ : O⊗〈n〉,s → Os is the functor associated to the inert morphism ρi : 〈n〉 → 〈1〉 in the category Fin∗.

Notation 6.2.5.11. Let χ : S → N(Fin∗) be a map of simplicial sets, which assigns to each vertex

s ∈ S a pointed finite set Is∗ . Suppose we are given locally coCartesian fibrations p : C → S and

q : D → S equipped with χ-decompositions {W (i)sC}s∈S,i∈Is and {W (i)sD}s∈S,i∈Is . We will say

that a functor U ∈ FunS(C,D) is decomposition-compatible if, for every vertex s ∈ S, the induced

functor Us : Cs → Ds carries W (i)sC into W (i)sD, for each i ∈ Is. We let Funχ(C,D) denote the full

subcategory of FunS(C,D) spanned by those functors which are decomposition-compatible.

Remark 6.2.5.12. Let χ : S → N(Fin∗), p : C→ S and q : D→ S be as in Notation 6.2.5.11, so

that the χ-decompositions of C and D determine equivalences

Cs '
∏
i∈Is

Cs(i) Ds '
∏
i∈Is

Ds(i)

for each vertex s ∈ S. If U ∈ FunS(C,D) is decomposition-compatible, then the induced functor

Us : Cs → Ds can be identified with a product of functors {Us(i) : Cs(i)→ Ds(i)}i∈Is for s ∈ S.

Let e : s → t be an edge of S inducing a map of pointed finite sets α : Is∗ → It∗, so that the

induced maps Cs → Ct and Ds → Dt determine functors

Fj :
∏

i∈α−1{j}

Cs(i)→ Ct(j) Gj :
∏

i∈α−1{j}

Ds(i)→ Dt(j)

for j ∈ It. For each j ∈ It, U determines a natural transformation

βj : Gj ◦
∏

i∈α−1{j}

Us(i)→ Ut(j) ◦ Fj

of functors from
∏
i∈α−1{j} Cs(i) to Dt(j).
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Definition 6.2.5.13. Let χ : S → N(Fin∗) be a map of simplicial sets. Suppose we are given

locally coCartesian fibrations q : C → S and p : C → S equipped with χ-decompositions, and that

each fiber Cs = C×S{s} is an ∞-category which admits finite limits. We will say that a functor

U ∈ FunS(C,C) exhibits C as a stabilization of p if the following conditions are satisfied:

(a) The functor U is decomposition-compatible (Notation 6.2.5.11).

(b) For each s ∈ S, write χ(s) = Is∗ for some finite set Is, so that the χ-decompositions of p and

q determine equivalences

Cs '
∏
i∈Is

Cs(i) Cs =
∏
i∈Is

Cs(i),

and U induces functors Us(i) :: Cs(i) → Cs(i). Then each Us(i) factors as a composition

Cs(i)
Vs(i)' Sp(Cs(i))

Ω∞
Cs(i)−→ Cs(i). In particular, each Cs(i) is a stable ∞-category, and each of

the functors Us(i) is left exact.

(c) Let e : s → t be an edge of S, inducing a map of pointed finite sets α : Is∗ → It∗. Then e

induces functors

Fj :
∏

i∈α−1{j}

Cs(i)→ Ct(j) fj :
∏

i∈α−1{j}

Cs(i)→ Ct(j),

and U determines natural transformations

βj : Fj ◦
∏

i∈α−1{j}

Us(i)→ Ut(j) ◦ fj

for j ∈ It. Then βj exhibits the functors Vt(j)
−1 ◦ fj ◦

∏
i∈α−1{j} Vs(i) as derivatives of the

functors Fj .

Remark 6.2.5.14. In the situation of Definition 6.2.5.13, suppose that χ : S → N(Fin∗) is the

constant functor taking the value 〈1〉 and that p : C→ S is a locally differentiable fibration. Then

a map U : C→ C exhibits C as a stabilization of p in the sense of Definition 6.2.5.13 if and only if

it exhibits C as a stabilization of p in the sense of Definition 6.2.2.18.

Warning 6.2.5.15. Let S be a simplicial set equipped with a map χ : S → N(Fin∗), let p : C→ S

be a locally differentiable fibration equipped with a χ-decomposition, and suppose that each fiber

Cs admits finite colimits. Let U : C → C be a map which exhibits C as stabilization of p, and

let p = p ◦ U . If p is a coCartesian fibration, it generally does not follow that p is a coCartesian

fibration. To understand the issue, let us suppose for simplicity that S = ∆2, so that χ classifies

a pair of maps I∗
α→ J∗

β→ K∗ between pointed finite sets. Let us denote the fibers of p by C0, C1,

and C2. Then the χ-decomposition of C determines equivalences

C0 '
∏
i∈I

C(i) C1 '
∏
j∈J

C(j) C2 '
∏
k∈K

C(k),
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together with functors

{F (j) :
∏

α(i)=j

C(i)→ C(j)}j∈J {G(k) :
∏

β(j)=k

C(j)→ C(k)}k∈K {H(k) :
∏

(β◦α)(i)=k

C(i)→ C(k)}k∈K

and natural transformations {φk : H(k)→ G(k) ◦
∏
β(j)=K F (j)}k∈K . The map p is a coCartesian

fibration if and only if each of the natural transformations φk is an equivalence. However, the map

p is a coCartesian fibration if and only if each of the composite maps

~∂H(k)→ ~∂(G(k) ◦
∏

β(j)=k

F (j))
ιk→ ~∂G(k) ◦

∏
β(j)=k

~∂F (j).

Consequently, if p is a coCartesian fibration, then p is a coCartesian fibration if and only if each of

the natural transformations ιk is an equivalence. This is automatic in the following situations:

(a) The map α is inert, and each of the maps F (j) is an equivalence.

(b) The map β is inert, and each of the maps G(k) is an equivalence.

(c) The maps α and β are surjective, and the functors F (j) and G(k) are reduced in each variable

(see Theorem 6.2.1.22).

Proposition 6.2.4.14 is an immediate consequence of the following pair of assertions:

Proposition 6.2.5.16. Let χ : S → N(Fin∗) be a map of simplicial sets which carries each vertex

s ∈ S to a finite pointed set Is∗ . Let p : C → S be a differentiable fibration equipped with a

χ-decomposition, and suppose that each fiber Cs admits finite limits. Then there exists a locally

coCartesian fibration C → S equipped with a χ-decomposition, and a map U ∈ FunS(C,C) which

exhibits C as a stabilization of C.

Proposition 6.2.5.17. Let p : O⊗ → S × N(Fin∗) be a differentiable S-family of ∞-operads. Let

χ : S×N(Fin∗)→ N(Fin∗) be the projection onto the second factor, and regard O⊗ as endowed with

the χ-decomposition of Example 6.2.5.10. Suppose that U : O
⊗ → O⊗ exhibits O

⊗
as a stabilization

of O⊗, in the sense of Definition 6.2.5.13. Then the underlying map O
⊗ → S ×N(Fin∗) is a stable

local S-family of ∞-operads.

We begin with the proof of Proposition 6.2.5.17, which is rather formal. We need the following

general recognition principle:

Lemma 6.2.5.18. Let q : O⊗ → S × N(Fin∗) be a locally coCartesian fibration. Then q is a

corepresentable local S-family of ∞-operads if and only if the following conditions are satisfied:
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(1) Let e : (s, 〈m〉)→ (t, 〈n〉) be an edge of S×N(Fin∗), suppose we are given an inert morphism

α : 〈m′〉 → 〈m〉, and let σ : ∆2 → S ×N(Fin∗) be the 2-simplex corresponding to the diagram

(s, 〈m〉)
e

%%
(s, 〈m′〉)

(id,α)
99

// (t, 〈n〉).

Then the projection map ∆2 ×S×N(Fin∗) O
⊗ → ∆2 is a coCartesian fibration.

(2) Let e : (s, 〈m〉)→ (t, 〈n〉) be an edge of S×N(Fin∗), let β : 〈n〉 → 〈n′〉 be an inert morphism,

and let σ : ∆2 → S ×N(Fin∗) be the 2-simplex corresponding to the diagram

(t, 〈n〉)
(id,β)

%%
(s, 〈m〉)

e
99

e′! // (t, 〈n′〉).

Then the projection map ∆2 ×S×N(Fin∗) O
⊗ → ∆2 is a coCartesian fibration.

(3) For each vertex s ∈ S and each n ≥ 0, the collection of inert maps ρi : 〈n〉 → 〈1〉 induce

functors O⊗(s,〈n〉) → O⊗(s,〈1〉) which determine an equivalence O⊗(s,〈n〉) ' (O⊗(s,〈1〉))
n.

Proof. We may assume without loss of generality that S = ∆k for some integer k. Using Lemma

HTT.2.4.2.7 , we can reformulate (1) as follows:

(1′) For each vertex s ∈ S and each locally q-coCartesian f in O⊗s whose image in N(Fin∗) is inert,

f is q-coCartesian.

Suppose that (3) is satisfied. We will show that (2) can be formulated as follows:

(2′) Let t be a vertex of S, let C ∈ O⊗s be an object, and suppose we are given a pair of locally

q-coCartesian morphisms C → C ′ and C → C ′′ in O⊗t covering inert morphisms β : 〈n〉 → 〈n′〉
and γ : 〈n〉 → 〈n′′〉 which induce a bijection 〈n′〉◦

∐
〈n′′〉◦ → 〈n〉◦. Then C is a q-product of

C ′ with C ′′.

Note that O⊗ is an S-family of ∞-operads if and only if it satisfies conditions (a), (b), and (c) of

Definition 2.3.2.10. The desired result follows from the implications (a) ⇔ (1′), (b) ⇔ (2′), and

(a) + (b) + (c)⇒ (3)⇒ (c).

Assume now that (3) is satisfied; we will show that (2) ⇔ (2′). Fix a morphism e : (s, 〈m〉) →
(t, 〈n〉) and an inert morphism β : 〈n〉 → 〈n′〉, and choose another inert morphism γ : 〈n〉 → 〈n′′〉
such that γ−1〈n′′〉◦ is the complement of β−1〈n′〉◦ in 〈n〉◦. Let e′ : (s, 〈m〉) → (t, 〈n′〉) and e′′ :
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(s, 〈m〉) → (t, 〈n′′〉) be the compositions of e with β and γ, respectively. Consider the induced

functors

e! : O⊗(s,〈m〉) → O⊗(t,〈n〉) e′! : O⊗(s,〈m〉) → O⊗(t,〈n′〉) e′′! : O⊗(s,〈m〉) → O⊗(t,〈n′′〉)

β! : O⊗(t,〈n〉) → O⊗(t,〈n′〉) γ! : O⊗(t,〈n〉) → O⊗(t,〈n′′〉),

so that we have natural transformations

e′! → β! ◦ e! e′′! → γ! ◦ e!.

Condition (2) asserts that these natural transformations are equivalences. In other words, condition

(2) is equivalent to the requirement that the induced map e′!×e′′! → (β!×γ!)◦e! is an equivalence of

functors from O⊗(s,〈m〉) to O⊗(t,〈n′〉)×O⊗(t,〈n′′〉). Condition (3) guarantees that β!× γ! is an equivalence

of ∞-categories. Consequently, we can reformulate condition (2) as follows: for every pair (e, β) as

above, for every object X ∈ O⊗(s,〈m〉) and for every object Y ∈ O⊗(t,〈n〉), the canonical map

MapO⊗
(t,〈n〉

(e!X,Y )→ MapO⊗
(t,〈n′〉)

(e′!X,β!Y )×MapO⊗
(t,〈n′′〉)

(e′′! X, γ!Y )

is a homotopy equivalence. If we regard Y and β as fixed, then this condition is satisfied for all

pairs (e,X) if and only if the canonical maps β!Y ← Y → γ!Y exhibit Y as a q-product of β!Y

with γ!Y . It follows that (2)⇔ (2′), as desired.

Proof of Proposition 6.2.5.17. Let p : O⊗ → S × N(Fin∗) be a differentiable local S-family of ∞-

operads, and let O
⊗

be a stabilization of p (in the sense of Definition 6.2.5.13). We will show that

O
⊗

is a corepresentable local S-family of ∞-operads (the stability of O
⊗ → S × N(Fin∗) will then

follow immediately from the definition of a stabilization). For this, it will suffice to show that the

underlying locally coCartesian fibration q : O
⊗ → S ×N(Fin∗) satisfies hypotheses (1), (2) and (3)

of Lemma 6.2.5.18. Condition (3) follows immediately from Definition 6.2.5.13, and conditions (1)

and (2) follow from the discussion in Warning 6.2.5.15.

We devote the remainder of this section to an explicit construction of the stabilizations whose

existence is asserted by Proposition 6.2.5.16.

Notation 6.2.5.19. The ∞-category Sfin
∗ of pointed finite spaces admits a symmetric monoidal

structure given by the smash product of pointed spaces (see Notation 6.2.1.10), encoded by a

coCartesian fibration p : (Sfin
∗ )∧ → N(Fin∗). The coCartesian fibration p is equipped with a χ-

decomposition, where χ denotes the identity map from N(Fin∗) to itself (see Example 6.2.5.10).

Construction 6.2.5.20. Let χ : S → N(Fin∗) be a map of simplicial sets which carries each vertex

s ∈ S to a finite pointed set Is∗ . Let p : C → S be a locally coCartesian fibration equipped with a

χ-decomposition {W (i)s}s∈S,i∈Is , and assume that each of the∞-categories Cs admits finite limits.
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We define a simplicial set PStχ(p) equipped with a map PStχ(p) → S so that the following

universal property is satisfied: for every map of simplicial sets K → S, we have a bijection

FunS(K,PStχ(p)) = FunS(K ×N(Fin∗) (Sfin
∗ )∧,C).

For each vertex s ∈ S, we can identify the fiber PStχ(p)s with the ∞-category Fun((Sfin
∗ )∧Is∗ ,Cs).

If we are given an object of PStχ(p)s corresponding to a decomposition-compatible functor F :

(Sfin
∗ )∧Is∗ → Cs, then F factors as a composition

(Sfin
∗ )∧Is∗ '

∏
i∈Is

Sfin
∗

Fi→
∏
i∈Is

Cs(i) ' Cs

for some functors Fi : Sfin
∗ → Cs(i) (here the ∞-categories Cs(i) are defined as in Remark 6.2.5.9).

We let Stχ(p) denote the full simplicial subset of PStχ(p) spanned by those vertices which correspond

to decomposition-compatible functors F for which each of the functors F (i) is reduced and excisive.

Note that the unit S0 ∈ Sfin
∗ has the structure of a commutative algebra object of Sfin

∗ , and

therefore determines a section of the coCartesian fibration (Sfin
∗ )∧ → N(Fin∗). Composition with

this section determines an evaluation map PStχ(p)→ C, which restricts to a map Ω∞χ : Stχ(p)→ C.

Remark 6.2.5.21. In the special case where χ : S → N(Fin∗) is the constant functor taking the

value 〈1〉, Construction 6.2.5.20 reduces to Construction 6.2.2.2.

Let C
p→ S

χ→ N(Fin∗) be as in Construction 6.2.5.20. Our next goal is to prove that, under

some mild assumptions, the map Ω∞χ : Stχ(p) → C exhibits Stχ(p) as a stabilization of C. Here

we will depart slightly from the exposition of §6.2.2: for the applications in §6.3, we need to treat

the case of locally differentiable fibrations which are not reduced. In this case, the existence of the

requisite derivatives requires some additional assumptions.

Remark 6.2.5.22. Let {Ci}i∈I be a finite collection of weakly contractible ∞-categories. Then

the product
∏
i∈I Ci is differentiable, pointed, or admits finite colimits if and only if each of the

∞-categories Ci has the same property. Consequently, if χ : S → Fin∗ is a map of simplicial sets

and p : C → S is a locally coCartesian fibration equipped with a χ-decomposition, then p is a

locally differentiable fibration if and only if the following conditions are satisfied:

(a) For each vertex s ∈ S, let χ(s) = Is∗ so that the χ-decomposition of p determines an equiva-

lence Cs '
∏
i∈Is Cs(i). Then each Cs(i) is a differentiable ∞-category.

(b) Let s → t be an edge of S inducing a map of pointed finite sets α : Is → It. Then, for each

j ∈ It, the induced functor ∏
i∈α−1{j}

Cs(i)→ Ct(j)

preserves sequential colimits separately in each variable.
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Example 6.2.5.23. Let S = ∆0 and let χ : S → N(Fin∗) be the map given by an object I∗ ∈ Fin∗,

where I is some finite set. Any∞-category C admits a unique locally coCartesian fibration p : C→
S, and giving a χ-decomposition of C is equivalent to giving an I-decomposition of C in the sense

of Definition 6.2.5.6. Such a decomposition determines an equivalence C '
∏
i∈I C(i). If C admits

finite limits, we have a canonical equivalence of ∞-categories Stχ(p) '
∏
i∈I Sp(C(i)) ' Sp(C).

Remark 6.2.5.24. Let χ : S → N(Fin∗) be a map of simplicial sets, and let p : C→ S be a locally

coCartesian fibration equipped with a χ-decomposition. For every map of simplicial sets φ : T → S,

let pT : C×ST → T be the induced locally coCartesian fibration, and observe that C×ST inherits a

(χ ◦ φ)-decomposition. Unwinding the definitions, we obtain a canonical isomorphism of simplicial

sets Stχ◦φ(pT ) ' Stχ(p)×S T .

Proposition 6.2.5.16 is an immediate consequence of the following more precise assertion:

Theorem 6.2.5.25. Let χ : S → N(Fin∗) be a map of simplicial sets which carries each vertex

s ∈ S to a finite pointed set Is∗ . Let p : C → S be a differentiable fibration equipped with a

χ-decomposition {W (i)s}s∈S,i∈Is. Assume that, for each s ∈ S, the ∞-category Cs admits finite

colimits. Then:

(1) The induced map q : Stχ(p)→ S is a locally coCartesian fibration.

(2) For each s ∈ S and i ∈ Is, let W s(i) be the collection of those morphisms α : F → F ′ in

Stχ(p)s such that, for each object X ∈ (Sfin
∗ )∧Is∗ , the induced map F (X) → F ′(X) belongs to

W (i)s. Then the collection {W s(i)}s∈S,i∈Is determines a χ-decomposition of Stχ(p).

(3) Let Ω∞χ : Stχ(p)→ C be as in Construction 6.2.5.20. Then Ω∞χ exhibits Stχ(p) as a stabiliza-

tion of p, in the sense of Definition 6.2.5.13.

Proof. We first prove that the map Stχ(p) → S is an inner fibration. Using Remark 6.2.5.24, we

can reduce to the case where S is a simplex. In this case, Theorem HTT.2.4.6.1 implies that p

is a categorical fibration. The projection map (Sfin
∗ )∧ → N(Fin∗) is a coCartesian fibration and

therefore a flat categorical fibration (Example B.3.11). Using Proposition B.4.5, we deduce that

PStχ(p) → S is a categorical fibration, and in particular an inner fibration. Since Stχ(q) is a full

simplicial subset of PStχ(p), we conclude that Stχ(p)→ S is also an inner fibration.

We now complete the proof of (1) by showing that q : Stχ(p) → S is a locally coCartesian

fibration. Fix an edge e : s → t in the simplicial set S and an object F ∈ Stχ(p)s. We wish to

show that there exists an object G ∈ Stχ(p)t and a locally q-coCartesian edge e : F → G lifting e.

Replacing C by the fiber product ∆1 ×S C, we may reduce to the case where S = ∆1. Evaluating

χ on the edge e, we obtain a map of pointed finite sets α : Is∗ → It∗. The χ-decomposition of C

determines equivalences

Cs '
∏
i∈Is

Cs(i) Ct '
∏
j∈It

Ct(j).
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Moreover, the edge e determines a functor e! : Cs → Ct, which is given as a product of functors

{e!(j) :
∏
α(i)=j Cs(i)→ Ct(j)}j∈It . Let us identify F with a sequence of reduced, excisive functors

{F (i) : Sfin
∗ → Cs(i)}i∈Is . Let H be any object of Stχ(p)t, which we can identify with a sequence

of reduced excisive functors {H(j) : Sfin
∗ → Ct(j)}j∈It . Unwinding the definitions, we can identify

MapStχ(p)(F,H) with the product of the mapping spaces

MapFun(
∏
α(i)=j S

fin
∗ ,Dt(j))

(e!(j) ◦
∏

α(i)=j

F (i), H(j) ◦ ∧(j)),

where j ranges over the set It and ∧(j) :
∏
α(i)=j S

fin
∗ → Sfin

∗ denotes the iterated smash product

functor.

To complete the proof of (1), we wish to show that there exists an object G ∈ Stχ(p)t and a

morphism e : F → G in Stχ(p) such that composition with e induces a homotopy equivalence

MapStχ(p)t(G,H)→ MapStχ(p)(F,H)

for every object H ∈ Stχ(p)t. To achieve this, we choose e to correspond to a sequence of natural

transformations

{βj : e!(j) ◦
∏

α(i)=j

F (i), G(j) ◦ ∧(j)}j∈It

with the following properties:

(a) If α−1{j} is nonempty, then βj exhibits the functor G(j) ◦ ∧(j) as a differential of e!(j) ◦∏
α(i)=j F (i) (the existence of βj follows from Propositions 6.2.3.13 and 6.2.1.11).

(b) If α−1{j} = ∅, then e!(j) determines an object X ∈ Ct(j). In this case, we choose G(j)

to correspond to the spectrum Σ∞+ (X) ∈ Sp(Ct(j)) (see Proposition 6.2.3.16) and βj to

correspond to the unit map X → Ω∞CtΣ
∞
+ X.

Assertion (2) follows immediately from the construction, and assertion (3) follows from the

construction together with the description of derivatives supplied by Remark 6.2.3.20 and Example

6.2.1.5.

6.2.6 Uniqueness of Stabilizations

Let C⊗ be a differentiable ∞-operad. In the last section, we saw that there exists a map of ∞-

operads C
⊗ → C⊗ which exhibits C

⊗
as a stabilization of C⊗. In this section, we will prove that

C
⊗

is uniquely determined up to equivalence. For this, it will suffice to show that C
⊗

can be

characterized by a universal property (Proposition 6.2.4.15). As in §6.2.5, it will be convenient to

work in the more general setting of (local) ∞-operad families.

Definition 6.2.6.1. Let p : O⊗ → S×N(Fin∗) be a local S-family of∞-operads. We will say that

O⊗ is right exact if the following conditions are satisfied:
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(a) The map p is a locally coCartesian fibration (that is, O⊗ is a corepresentable local S-family

of ∞-operads).

(b) For each vertex s ∈ S, the ∞-category Os is pointed and admits finite colimits.

(c) Fpr each edge s→ t in S and each n ≥ 1, the unique active morphism 〈n〉 → 〈1〉 determines

a functor

Ons ' O⊗(s,〈n〉) → O⊗(t,〈1〉) = Ot

which is right exact in each variable.

Suppose that O⊗ is a right exact local S-family of ∞-operads, and that C⊗ is a differentiable

local S-family of ∞-operads. We let Algex
O (C) denote the full subcategory of FunS×N(Fin∗)(O

⊗,C⊗)

spanned by those maps F : O⊗ → C⊗ with the following properties:

(i) For each s ∈ S, the restriction Fs : O⊗s → C⊗s of F is a map of ∞-operads.

(ii) For each s ∈ S, the underlying map of ∞-categories Os → Cs is reduced and excisive.

Theorem 6.2.6.2. Let C⊗ → S × N(Fin∗) be a differentiable local S-family of ∞-operads, let

C
⊗ → S × N(Fin∗) be a stable local S-family of ∞-operads, and let U : C

⊗ → C⊗ exhibit C
⊗

as a

stabilization of C⊗ (in the sense of Definition 6.2.5.13). Then, for every right exact local S-family

of ∞-operads O⊗ → S × N(Fin∗), composition with U induces an equivalence of ∞-categories

Algex
O (C)→ Algex

O (C).

Remark 6.2.6.3. Proposition 6.2.4.15 follows immediately from the implication (1) ⇒ (3) of

Theorem 6.2.6.2, applied in the case S = ∆0.

The proof of Theorem 6.2.6.2 involves a local analysis on each simplex of S×N(Fin∗). To carry

out this analysis, it will be convenient to formulate a “local” version of Theorem 6.2.6.2.

Definition 6.2.6.4. Let χ : S → N(Fin∗) be a map of simplicial sets and let p : C→ S be a locally

coCartesian fibration equipped with a χ-decomposition. We will say that the χ-decomposition of

C is right exact if the following conditions are satisfied:

(a) Let s ∈ S, write χ(s) = Is∗ , and let Cs '
∏
i∈Is Cs(i) be the corresponding product decompo-

sition of Cs. Then each Cs(i) is a pointed ∞-category which admits finite colimits.

(b) Let e : s→ t be an edge of S, so that the associated functor e! : Cs → Ct is given by a product

of functors

Fj :
∏

α(i)=j

Cs(i)→ Ct(j)

(see Remark 6.2.5.9). Then each of the functors Fj is right exact in each variable.
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We will say that the χ-decomposition of C is stable if it satisfies (b) together with the following

stronger version of (a):

(a′) Let s ∈ S, write χ(s) = Is∗ , and let Cs '
∏
i∈Is Cs(i) be the corresponding product decompo-

sition of Cs. Then each factor Cs(i) is a stable ∞-category.

Notation 6.2.6.5. Let χ : S → N(Fin∗) be a map of simplicial sets, and suppose we are given

locally coCartesian fibrations p : C→ S and q : D→ S equipped with χ-decompositions. For each

s ∈ S, write χ(s) = Is∗ . Assume that the χ-decomposition of C is right exact and that each fiber Ds

of q admits finite limits. We let Excχ∗ (C,D) denote the full subcategory of FunS(C,D) spanned by

those functors F : C → D which are decomposition-compatible (Notation 6.2.5.11) and such that

the induced map Cs(i)→ Ds(i) is reduced and excisive for each s ∈ S and each i ∈ Is.

We can now formulate our main result.

Theorem 6.2.6.6. Let χ : S → N(Fin∗) be a map of simplicial sets. Suppose we are given a locally

differentiable fibration p : C→ S equipped with a χ-decomposition, and suppose that each fiber Csof

p admits finite colimits. Let p : C → S be another locally coCartesian fibration equipped with a

stable χ-decomposition, and let U ∈ Excχ∗ (C,C) (so that U induces a left exact functor Cs → Cs for

each s ∈ S). The following conditions are equivalent:

(1) The map U exhibits C as a stabilization of p (in the sense of Definition 6.2.5.13).

(2) Let q : D→ S be a locally coCartesian fibration equipped with a right exact χ-decomposition.

Then composition with U induces an equivalence of ∞-categories

Excχ∗ (D,C)→ Excχ∗ (D,C).

(3) Let p : D→ S be a locally coCartesian fibration equipped with a stable χ-decomposition. Then

composition with U induces an equivalence of ∞-categories

Excχ∗ (D,C)→ Excχ∗ (D,C).

We will give the proof of Theorem 6.2.6.6 at the end of this section.

Proof of Theorem 6.2.6.2. Let S be a simplicial set, let χ : S × N(Fin∗) → N(Fin∗) denote the

projection onto the second factor. To deduce Theorem 6.2.6.2 from Theorem 6.2.6.6, it will suffice

to verify the following:

(∗) Let O⊗ → S×N(Fin∗) be a right exact local S-family of∞-operads, let C⊗ → S×N(Fin∗) be

a differentiable local S-family of∞-operads, and let U : C
⊗ → C⊗ exhibit C

⊗
as a stabilization

of C⊗. Regard O⊗, C⊗, and C
⊗

as endowed with the χ-decompositions described in Example

6.2.5.10. Then a map F ∈ Excχ∗ (O
⊗,C

⊗
) belongs to Algex

O (C) if and only if U ◦ F belongs to

Algex
O (C).
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The “only if” direction is obvious. To prove the converse, assume that U ◦ F belongs to Algex
O (C);

we wish to show that F ∈ Algex
O (C). To prove this, it suffices to verify that for each vertex s ∈ S,

the induced map Fs : O⊗s → C
⊗
s is a map of ∞-operads. Let α : 〈m〉 → 〈n〉 be a morphism

in Fin∗, so that α determines functors α! : O⊗(s,〈m〉) → O⊗(s,〈n〉) and α′! : C
⊗
(s,〈m〉) → C

⊗
(s,〈n〉), while

F induces functors Fm : O⊗(s,〈m〉) → C⊗(s,〈m〉) and Fn : O⊗(s,〈n〉) → C⊗(s,〈n〉), together with a natural

transformation uα : α′! ◦ Fm → Fn ◦ α!. We wish to show that uα is an equivalence whenever α is

inert. By assumption, uα induces an equivalence U ◦α′!◦Fm → U ◦Fn◦α! of functors from O⊗(s,〈m〉) to

C⊗(s,〈n〉). Since U exhibits C
⊗

as a stabilization of C⊗, Proposition 1.4.2.22 implies that composition

with U induces an equivalence of ∞-categories Exc∗(O
⊗
(s,〈m〉),C

⊗
(s,〈n〉)) → Exc∗(O

⊗
(s,〈m〉),C

⊗
(s,〈n〉)). It

will therefore suffice to show that the functors α! ◦ Fm and Fn ◦ α! are reduced and excisive (when

viewed as functors of a single variable). This is clear: Fm and Fn are reduced and excisive (since

F ∈ Excχ∗ (O
⊗,C

⊗
)), the functor α! is right exact (since α is inert), and the functor α′! is left exact

(again because α is inert).

The proof of Theorem 6.2.6.6 will require some preliminaries.

Lemma 6.2.6.7. Let C be an ∞-category, let n ≥ 1 be an integer, and suppose we are given a map

of simplicial sets f : ∂∆n → C with f(0) = X and f(n) = Y . Let g : C → D be a functor, and

suppose that g induces a homotopy equivalence η : MapC(X,Y )→ MapD(X,Y ). Then g induces a

homotopy equivalence of Kan complexes

θ : Fun(∆n,C)×Fun(∂∆n,C) {f} → Fun(∆n,D)×Fun(∂∆n,D) {g ◦ f}.

Proof. We proceed by induction on n. In the case n = 1, we can identify η with θ (see Corollary

HTT.4.2.1.8 ) so there is nothing to prove. If n > 1, we can choose an integer 0 < i < n. Let

f0 = f |Λni . We have a diagram of fiber sequences

Fun(∆n,C)×Fun(∂∆n,C) {f}
θ //

��

Fun(∆n,D)×Fun(∂∆n,D) {g ◦ f}

��
Fun(∆n,C)×Fun(Λni ,C) {f0} θ′ //

��

Fun(∆n,D)×Fun(Λni ,D) {g ◦ f0}

��
Fun(∂∆n,C)×Fun(Λni ,C) {f0} θ′′ // Fun(∂∆n,D)×Fun(∂∆n,D) {g ◦ f0}.

Since the inclusion Λni is inner anodyne, the domain and codomain of θ′ are contractible. We are

therefore reduced to proving that θ′′ is a homotopy equivalence. Let f1 denote the restriction of f

to the face of ∆n opposite the ith vertex. Then θ′′ is a (homotopy) pullback of the map

θ : Fun(∆n−1,C)×Fun(∂∆n−1,C) {f1} → Fun(∆n−1,D)×Fun(∂∆n−1,D) {g ◦ f1},

and therefore a homotopy equivalence by the inductive hypothesis.
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Lemma 6.2.6.8. Let n ≥ 0 be an integer, and let Y be the simplicial subset of ∆n ×∆1 given by

the union of ∂∆n×∆1 and ∆n×∂∆1. Then the inclusion Y ↪→ ∆n×∆1 factors as a composition

Y
i
↪→ X

j
↪→ ∆n ×∆1, where i is inner anodyne and j fits into a pushout diagram

∂∆n+1 //

��

∆n+1

σ
��

X
j // ∆n ×∆1

with σ(0) = (0, 0) and σ(n+ 1) = (n, 1).

Proof. Use the filtration described in the proof of Proposition HTT.2.1.2.6 .

Lemma 6.2.6.9. Let C = (∆1)n denote a cube of dimension n, let v = (0, . . . , 0) be the initial

vertex of C, and let w = (1, . . . , 1) be the final vertex of C. Then the inclusion ∂ C ↪→ C factors as

a composition

∂ C
i
↪→ X

j
↪→ C,

where i is inner anodyne and j fits into a pushout diagram

∂∆n //

��

∆n

σ
��

X
j // C

with σ(0) = v and σ(n) = w.

Proof. We proceed by induction on n, the case n = 0 being obvious. If n > 0, set C ′ = (∆1)n−1 and

use the inductive hypothesis to factor the inclusion ∂ C ′ ↪→ C ′ as a composition ∂ C ′
i′
↪→ X ′

j′

↪→ C ′.

Write C = C ′ × ∆1, and let Y be the simplicial subset of C given by the union of X ′ × ∆1 and

C ′× (∂∆1). Then the inclusion ∂ C ↪→ Y is inner anodyne (Corollary HTT.2.3.2.4 ). The inclusion

Y ↪→ C is a pushout of the inclusion

(∂∆n−1 ×∆1)q∂∆n−1×∂∆1 (∆n−1 × ∂∆1) ↪→ ∆n−1 ×∆1.

We now conclude by applying Lemma 6.2.6.8.

Lemma 6.2.6.10. Let C = (∆1)n denote a cube of dimension n > 0, let C be an ∞-category, and

let f : ∂ C → C be a functor carrying the initial vertex of C to an object X ∈ C and the final vertex

of C to an object Y ∈ C. Suppose that g : C → D is a functor of ∞-categories which induces a

homotopy equivalence MapC(X,Y )→ MapD(g(X), g(Y )). Then g induces a homotopy equivalence

of Kan complexes

Fun(C,C)×Fun(∂ C,C) {f} → Fun(C,D)×Fun(∂ C,D) {g ◦ f}.
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Proof. Combine Lemmas 6.2.6.7 and 6.2.6.9.

Lemma 6.2.6.11. Let I be a finite set. Suppose we are given differentiable ∞-categories {Di}i∈I
and E which admit finite colimits, a pair of functors

F :
∏
i∈I

Di → E f :
∏
i∈I

Sp(Di)→ Sp(E),

and a natural transformation ε : F ◦
∏
i∈I Ω∞Di → Ω∞E ◦ f which exhibits f as a derivative of F .

Suppose further that we are given a collection of pointed ∞-categories {Ci}i∈I which admit finite

colimits, together with functors

{Gi : Ci → Sp(Di)}i∈I H :
∏
i∈I

Ci → Sp(E)

where each Gi is right exact and H is right exact in each variable. Then composition with ε induces

a homotopy equivalence

θ : MapFun(
∏
i∈I Ci,Sp(E))(f ◦

∏
i∈I

Gj , H)→ MapFun(
∏
i∈I Ci,E)(F ◦

∏
i∈I

(Ω∞Di ◦Gj),Ω
∞
E ◦H).

Proof. We will assume that the set I is empty (otherwise the statement is a tautology). Since the

functors H and f ◦
∏
i∈I Gi are multilinear, Proposition 1.4.2.22 implies that composition with Ω∞E

induces a homotopy equivalence

MapFun(
∏
i∈I Ci,Sp(E))(f ◦

∏
i∈I

Gj , H)→ MapFun(
∏
i∈I Ci,E)(Ω

∞
E ◦ f ◦

∏
i∈I

Gi,Ω
∞
E ◦H).

It will therefore suffice to show that ε induces a natural transformation ε′ : F ◦
∏
i∈I Ω∞Di ◦

∏
i∈I Gi →

Ω∞E ◦ f ◦
∏
i∈I Gj which exhibits Ω∞E ◦ f ◦

∏
i∈I Gj as a differential of F ◦

∏
i∈I Ω∞Di ◦

∏
i∈I Gj . This

follows from Remark 6.2.3.4 together with Proposition 6.2.3.15.

Proof of Theorem 6.2.6.6. The implication (2) ⇒ (3) is obvious. Assume that (1) ⇒ (2) for the

moment; we will show that (3) ⇒ (1). Let us regard p : C → S as fixed. It is clear that if there

exists a diagram

C
p

��

U // C
p

��
S

where q is a locally coCartesian fibration equipped with a stable χ-decomposition satisfying con-

dition (3), then C is well-defined up to equivalence fiberwise over S. Consequently, to prove that

(3) ⇒ (1), it will suffice to exhibit such a diagram which having the additional property that U

exhibits C as a stabilization of C. Since (1) ⇒ (2) ⇒ (3), it suffices to show that p admits a

stabilization, which follows from Theorem 6.2.5.25.
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It remains to prove that (1) ⇒ (2). Assume that U : C → C exhibits C as a stabilization of p,

and let q : D→ S be a locally coCartesian fibration equipped with a right exact χ-decomposition.

We wish to prove that composition with U induces an equivalence of ∞-categories

Excχ∗ (D,C)→ Excχ∗ (D,C).

For this, it suffices to show that for every simplicial set K, the induced map Fun(K,Excχ∗ (D,C))→
Fun(K,Excχ∗ (D,C)) restricts to a homotopy equivalence Fun(K,Excχ∗ (D,C))' → Fun(K,Excχ∗ (D,C))'

between the underlying Kan complexes. Replacing C by Fun(K,C) ×Fun(K,S) S and C by

Fun(K,C)×Fun(K,S) S, we are reduced to proving that the map θ : Excχ∗ (D,C)' → Excχ∗ (D,C)' is

a homotopy equivalence of Kan complexes.

For every map of simplicial sets T → S, let DT = T ×S D, CT = T ×S C, and CT = T ×S C. Set

XT = Exc
χ|T
∗ (DT ,CT )' YT = Exc

χ|T
∗ (DT ,CT )'.

Composition with the map U induces a map of Kan complexes θT : XT → YT . We will prove that

θT is a homotopy equivalence of Kan complexes, for every map T → S. Write T as a union of its

skeleta

∅ = sk−1 T ⊆ sk0 T ⊆ sk1 T ⊆ · · · .

Then θT is a homotopy limit of the tower of maps {θski T }. It will therefore suffice to prove that

each of the morphisms θskn T is a homotopy equivalence. We may therefore assume without loss of

generality that T has dimension ≤ n, for some integer n. We proceed by induction on n, the case

n = −1 being trivial. Assume n ≥ 0 and let A denote the set of n-simplices of T , so that we have

a pushout diagram of simplicial sets

A× ∂∆n //

��

A×∆n

��
skn−1 T // T,

which determines a homotopy pullback diagram

θA×∂∆n θA×∆noo

θskn−1 T

OO

θT .

OO

oo

Using the inductive hypothesis, we deduce that θA×∂∆n and θskn−1 T are homotopy equivalences.

Consequently, to prove that θT is a homotopy equivalence, it will suffice to show that θA×∆n is a

homotopy equivalence. Note that θA×∆n is a product of the functors θ{a}×∆n (where the product

is taken over the elements a ∈ A). It will therefore suffice to show that each of the morphisms
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θ{a}×∆n is a homotopy equivalence. Replacing S by {a} ×∆n, we may reduce to the case where S

is an n-simplex for some n ≥ 0.

We first treat the case where n = 0, so that S consists of a single vertex. The functor χ carries

this vertex to a pointed finite set I∗, and the χ-decompositions of C, C, and D give equivalences

C '
∏
i∈I

C(i) C =
∏
i∈I

C(i) D '
∏
i∈I

D(i)

Unwinding the definitions, we can identify θS with the product of the maps

Exc∗(D(i),C(i))' → Exc∗(D(i),C(i))'.

Since U satisfies condition (1), each of these functors is a homotopy equivalence by Proposition

1.4.2.22.

We now treat the case n > 0. For 0 ≤ i ≤ n, write χ(i) = J i∗ for some finite set J i. Since

p : D → ∆n is a locally coCartesian fibration, Proposition 6.2.2.28 guarantees the existence of

a simplicial functor F : C[∆n] → Set∆ and a map u : M(F) → D which induces categorical

equivalences F(i) → D×∆n{i} for 0 ≤ i ≤ n. We may assume without loss of generality that F

is a fibrant diagram, so that each F(i) is an ∞-category. Let D′ = M(F). For every simplicial

subset T ⊆ ∆n, let D′T = D′×∆nT , so that u induces a map D′T → D×∆nT (which is a categorical

equivalence of ∞-categories if T is a simplex). Let X ′(T ) denote the essential image of X(T ) in

FunT (D′(T ),CT )' and let Y ′(T ) denote the essential image of Y (T ) in FunT (D′(T ),CT )'. The

evident maps X(T ) → X ′(T ) and Y (T ) → Y ′(T ) are homotopy equivalences. It follows from the

inductive hypothesis that the canonical map X ′(T ) → Y ′(T ) is a homotopy equivalence for every

proper subset T ⊆ ∆n, and we wish to show that X ′(T )→ Y ′(T ) is an equivalence when T = ∆n.

For this, it suffices to show that the diagram of spaces σ :

X ′(∆n) //

��

Y ′(∆n)

��
X ′(∂∆n) // Y ′(∂∆n)

is a homotopy pullback square.

Let X denote the full subcategory of Fun(F(0),C) spanned by those functors F which satisfy

the following condition:

(∗) There exists a vertex i ∈ ∆n such that F factors through Ci (this condition is actually

automatic, since the ∞-category Ci is pointed). Let α : J0
∗ → J i∗ denote the map of pointed

finite sets determined by χ. The χ-decompositions of C and D determine equivalences of

∞-categories

D0 '
∏
j∈J0

D0(j) Ci =
∏
j′∈Ji

Ci(j
′).
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Then F is equivalent to a composition

F(0) '
∏
j∈J0

D0(j)

∏
j′∈Ji Fj′−→

∏
j′∈Ji

Ci(k) ' Ci

where each of the functors Fk :
∏
α(j)=kD0(j)→ Ci is reduced and excisive in each variable.

Define X ⊆ Fun(F(0),C) similarly. Let C = (∆1)n denote a cube of dimension n. Unwinding the

definitions, we obtain a pushout diagram of simplicial sets

∂ C × F(0) //

��

C × F(0)

��
D′∂∆n

// D′∆n ,

compatible with a projection map π : C → ∆n. Set

X ′′ = Fun(C,X)' ×Fun(C,∆n)' {π} X ′′0 = Fun(∂ C,X)' ×Fun(∂ C,∆n)' {π| ∂ C}

Y ′′ = Fun(C,X)' ×Fun(C,∆n)' {π} Y ′′0 = Fun(∂ C,X)' ×Fun(∂ C,∆n)' {π| ∂ C}

We have a commutative diagram

X ′(∆n) //

��

Y ′(∆n)

��

// Y ′′

��
X ′(∂∆n) // Y ′(∂∆n) // Y ′′0

where right square is a homotopy pullback. Consequently, to prove that σ is a homotopy pullback

square, it will suffice to show that the outer rectangle is a homotopy pullback square. This outer

rectangle fits into a commutative diagram

X ′(∆n) //

��

X ′′

��

// Y ′′

��
X ′(∂∆n) // X ′′0

// Y ′′0

where the left square is a homotopy pullback diagram. We are therefore reduced to showing that

the right square in this diagram is a homotopy pullback. For this, it suffices to show that for every

point x ∈ X ′′0 , the induced map X ′′ ×X′′0 {x} → Y ′′ ×Y ′′0 {x} is a homotopy equivalence of Kan

complexes. Let us identify x with a map f : ∂ C → X; we wish to show that the projection map

g : X→ X induces a homotopy equivalence

Fun(C,X)×Fun(∂ C,X) {f} → Fun(C,X)×Fun(∂ C,X) {g ◦ f}.

Let F, F ′ ∈ X be the images under f of the initial and final vertices of C, respectively. Using

Lemma 6.2.6.9, we are reduced to proving that g induces a homotopy equivalence MapX(F, F ′)→
MapX(g(F ), g(F ′)). This follows from Lemma 6.2.6.11 (after an unpacking of definitions).
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6.3 The Chain Rule

Let C and D be compactly generated pointed∞-categories, and let F : C→ D be a reduced functor

which preserves filtered colimits. In §6.1.2, we saw how to associate to F a tower of approximations

· · · → P3(F )→ P2(F )→ P1(F )→ P0(F ) ' ∗,

where each PnF is n-excisive. Roughly speaking, we can think of this tower as a providing a

filtration of F whose “successive quotients” Dn(F ) = fib(Pn(F ) → Pn−1(F )) are n-homogeneous.

According to Theorem 6.1.4.7, each functor Dn is determined by its symmetric cross-effect

cr(n)Dn(F ) ∈ SymFunnlin(C,D). Corollary 6.2.3.22 supplies an equivalence of ∞-categories

θ : Exc?(Sp(C)n,Sp(D))→ Exc?(C
n,D).

Consequently, the functor crnDn(F ) : Cn → D is given by the composition

Cn
Σ∞

C−→ Sp(C)n
∂n(F )−→ Sp(D)

Ω∞
D→ D

for some functor ∂n(F ) : Sp(C)n → Sp(D) which is excisive in each variable. We will refer to ∂n(F )

as the nth derivative of the functor F .

In this section, we will be concerned with the following:

Question 6.3.0.1. Suppose that F : C → D and G : D → E are reduced functors between

pointed compactly generated ∞-categories which preserve filtered colimits. Can one compute the

derivatives of the composite functor G ◦ F in terms of the derivatives of G and F?

To address Question 6.3.0.1, it will be convenient to introduce some terminology. Note that

the equivalence of ∞-categories θ is equivariant with respect to the action of the symmetric

group Σn. It follows that each of the functors ∂n(F ) : Sp(C)n → Sp(D) is invariant under

permutations of its arguments. More precisely, ∂n(F ) underlies a symmetric multilinear functor

∂(n)(F ) ∈ SymFunnlin(Sp(C),Sp(D)).

Definition 6.3.0.2. Let C and D be stable ∞-categories. A symmetric sequence of functors from

C to D is a collection of symmetric multilinear functors {F(n) : SymFunnlin(C,D)}n≥1. We let

SSeq(C,D) denote the ∞-category
∏
n≥1 SymFunnlin(C,D) of symmetric sequences from C to D.

Remark 6.3.0.3. We will generally denote a symmetric sequence of functors {F(n) ∈ SymFunnlin(C,D)}n≥1

simply by F∗ ∈ SSeq(C,D).

Remark 6.3.0.4. Let C and D be stable ∞-categories. We can think of a symmetric sequence

F∗ ∈ SSeq(C,D) as a collection of functors FI : CI → D which are exact in each variable, defined

for every nonempty finite set I and depending functorially on I.
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Example 6.3.0.5. Let F : C → D be a reduced functor between compactly generated pointed

∞-categories, and assume that F commutes with filtered colimits. Then the collection of derivates

{∂(n)(F )}n≥1 is a symmetric sequence from Sp(C) to Sp(D), which we will denote by ∂∗(F ) ∈
SSeq(Sp(C),Sp(D)).

Suppose we are given a triple of stable ∞-categories C, D, and E. There is a composition

product

◦ : SSeq(D,E)× SSeq(C,D)→ SSeq(C,E),

which is given informally by G∗ ◦ F∗ = H∗, with

HI =
⊕
E

GI/E ◦ {FJ}J∈I/E

where the sum is taken over all equivalence relations E on the nonempty finite set I. This com-

position product is coherently associative. In particular, if C is a compactly generated stable

∞-category, then SSeq(C,C) can be regarded as a monoidal∞-category. If D is another compactly

generated stable ∞-category, then SSeq(C,D) is left tensored over SSeq(D,D) and right tensored

over SSeq(C,C).

Remark 6.3.0.6. We will not give a precise definition for the composition product of symmetric

sequences in this book. The reader can regard the above discussion as heuristic (though, with some

effort, it can be made precise). Note that the associativity of the composition product described

above depends crucially on the fact that we are working with stable ∞-categories, and that all

functors are assumed to be exact.

A complete answer to Question 6.3.0.1 can be given as follows:

Conjecture 6.3.0.7 (Chain Rule). (1) Let C be a compactly generated pointed∞-category, and

let idC : C→ C denote the identity functor. Then the symmetric sequence ∂∗(idC) is equipped

with a coherently associative multiplication: that is, it can be regarded as an algebra object

of the monoidal ∞-category SSeq(Sp(C), Sp(C)).

(2) Let F : C → D be a reduced functor between compactly generated pointed ∞-categories

which commutes with filtered colimits. Then ∂∗(F ) can be regarded as an ∂∗(idD)-∂∗(idC)

bimodule object of SSeq(Sp(C), Sp(D)).

(3) Let F : C → D and G : D → E be reduced functors between compactly generated pointed

∞-categories which commute with filtered colimits. Then there is a canonical equivalence

∂∗(G ◦ F ) ' ∂∗(G)⊗∂∗(idD) ∂∗(F )

in the ∞-category of ∂∗(idE)-∂∗(idC) bimodule objects of SSeq(Sp(C),Sp(E)).
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Remark 6.3.0.8. In the case where C,D,E ∈ {Sp, S∗}, Conjecture 6.3.0.7 was proven (in a different

setting) by Arone and Ching. We refer the reader to [2] for more details.

Remark 6.3.0.9. If we restrict our attention to first derivatives, Conjecture 6.3.0.7 reduces to

(the single variable version of) Theorem 6.2.1.22.

To arrive at a more precise formulation of Conjecture 6.3.0.7, it is convenient to use the language

of corepresentable ∞-operads developed in §6.2.4. Suppose that O⊗ is a stable ∞-operad (see

Definition 6.2.4.10). For each n > 0, Remark 6.2.4.4 provides a functor ⊗n : On → O, which is

exact in each variable. We can regard the collection of functors {⊗n}n≥1 as a symmetric sequence

from O to itself, which we will denote by ⊗∗ ∈ SSeq(O,O). Let I be a finite set and let Equiv(I)

denote the set of all equivalence relations on I. For every equivalence relation E on I, Remark

6.2.4.8 supplies a natural transformation of functors

⊗I → ⊗I/E ◦
∏

J∈I/E

⊗J .

Taking the direct sum of these natural transformations over all E, we obtain a map ⊗I → (⊗∗◦⊗∗)I

Allowing I to vary, we get a map of symmetric sequences δ : ⊗∗ → ⊗∗ ◦ ⊗∗.
Let us regard the stable ∞-operad O⊗ as encoded by a locally coCartesian fibration p : O⊗ →

N(Fin∗). The underlying ∞-category O can be recovered by studying the fibers of p over vertices

of N(Fin∗) (in fact, over the single vertex 〈1〉 ∈ N(Fin∗)), the symmetric sequence ⊗∗ can be

recovered by studying the restriction of p to edges of N(Fin∗), and the comultiplication map δ can

be recovered by studying the restriction of p to 2-simplices of N(Fin∗). We can regard the entire

locally coCartesian fibration p as witnessing the fact that the comultiplication δ is associative up

coherent homotopy. In other words, a corepresentable∞-operad O⊗ determines a stable∞-category

O together with a coalgebra object of the monoidal ∞-category SSeq(O,O).

Remark 6.3.0.10. Let O be a stable ∞-category. With some effort, one can show that the

construction sketched above underlies an equivalence between the following two types of data:

(a) Coalgebra objects F ∗ of SSeq(O,O) for which the counit map restricts to an equivalence

F 1 ' idO.

(b) Stable unital ∞-operads O⊗ having underlying ∞-category O.

Since we will not need this fact, we will not give a precise formulation here.

Example 6.3.0.11. Let O⊗ → N(Fin∗) be a stable ∞-operad. Suppose that the underlying ∞-

category O is the ∞-category of spectra, and that each of the functors ⊗n : On → O preserves

filtered colimits. Then each of the functors ⊗n : On → O preserves small colimits separately in each

variable, and is therefore given by the formula

(X1, X2, . . . , Xn) 7→ En ⊗X1 ⊗ · · · ⊗Xn
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for some spectrum En (given concretely by En = ⊗n{S}1≤i≤n). Then the collection {En}n≥1 can

be regarded as a cooperad in ∞-category of spectra. That is, each En is equipped with an action

of the symmetric group Σn, and we have coproduct maps

En1+···+nk → Ek ⊗
⊗

1≤i≤k
Eni

which satisfy an associative law up to coherent homotopy.

Warning 6.3.0.12. The dictionary provided by Example 6.3.0.11 poses some danger of creating

confusion. To every cooperad {En}n≥1 in spectra (in the sense of classical homotopy theory), we

can reverse engineer the construction of Example 6.3.0.11 to produce a unital stable ∞-operad

O⊗ → N(Fin∗) (in the sense of Definition 6.2.4.10). In other words, the same mathematical

structure has two incarnations: first, as an cooperad (enriched in spectra) and second, as an

operad (with several colors, encriched in spaces). The first perspective is useful for comparing the

constructions given here with the existing literature ([2]). However, we will avoid it in what follows,

to avoid conflict with the terminology established earlier in this book.

Using the above dictionary and the canonical equivalence SSeq(O,O)op ' SSeq(Oop,Oop), we

can now give a precise formulation of the first assertion of Conjecture 6.3.0.7:

Conjecture 6.3.0.13. Let C be a compactly generated pointed ∞-category. Then there exists a

unital stable ∞-operad O⊗ with the following properties:

(a) The underlying ∞-category of O⊗ is given by O ' Sp(C)op.

(b) For each n ≥ 1, the tensor product functor ⊗n : On → O is equivalent to (the opposite of)

the functor ∂n(idC) : Sp(C)n → Sp(C).

Using the ideas developed in §6.2, we can immediately deduce a close relative of Conjecture

6.3.0.13. Let C be a compactly generated pointed ∞-category, and let C× be the associated Carte-

sian symmetric monoidal ∞-category. Then C× is a differentiable ∞-operad, so it admits a stabi-

lization O′⊗ (Proposition 6.2.4.14). Note that since C is pointed, the ∞-operad O′⊗ is unital. This

proves the following:

Proposition 6.3.0.14. Let C be a compactly generated pointed ∞-category. Then there exists a

unital stable ∞-operad O′⊗ with the following properties:

(a) The underlying ∞-category of Sp(C)⊗ with underlying ∞-category Sp(C).

(b) For each n ≥ 1, the tensor product functor ⊗n : Sp(C)n → Sp(C) is given by the derivative of

the Cartesian product functor Cn → C.
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To bring out the analogy between Conjecture 6.3.0.13 and Proposition 6.3.0.14, let us recall how

to describe explicitly the nth derivative ∂n(F ) of a functor F : C→ D. Combining Remark 6.1.3.23

with Proposition 6.2.3.15, we see that ∂n(F ) can be identified with the (multivariate) derivative
~∂ crn(F ), where crn(F ) denotes the nth cross effect of F . In other words, we have a canonical

equivalence

∂n(F ) ' ~∂ red(Fq),

where Fq : Cn → D is the functor given by Fq(C1, . . . , Cn) = F (C1q· · ·qCn). For our purposes, it

will be easier to study a dual construction, where we replace coproducts by products and reduction

by coreduction.

Definition 6.3.0.15. Let C and D be compactly generated pointed ∞-categories, and let F :

C → D be a reduced functor which commutes with filtered colimits. For each integer n ≥ 1,

let ∂n(F ) : Sp(C)n → Sp(D) denote the functor ~∂ cored(F×), where F× : Cn → D is given by

F×(C1, . . . , Cn) = F (C1 × · · · × Cn). We will refer to ∂n(F ) as the nth coderivative of F .

Remark 6.3.0.16. Our description of ∂n(F ) as ~∂ cored(F×) was made to emphasize the analogy

with the description of the usual derivative ∂n(F ) as ~∂ red(Fq). However, Definition 6.3.0.15 can

be simplified: since the canonical map F× → cored(F×) induces an equivalence of derivatives, we

have ∂n(F ) = ~∂(F×). This observation renders the study of coderivatives much more tractable

than the formally dual theory of derivatives.

We can summarize Proposition 6.3.0.14 informally as follows: for every compactly generated

∞-category C, the symmetric sequence of coderivatives {∂n(idC)}n≥1 can be regarded as a coalgebra

object of SSeq(O,O). In other words, we can regard Proposition 6.3.0.14 as a dual version of the

first part of Conjecture 6.3.0.7. Our goal in this section is to formulate and prove dual versions of

the remaining assertions of Conjecture 6.3.0.7:

(2′) Let F : C → D be a reduced functor between compactly generated pointed ∞-categories

which commutes with filtered colimits. Then ∂∗(F ) is equipped with compatible left and

right (co)actions of the coalgebras ∂∗(idD) and ∂∗(idC).

(3′) Let F : C → D and G : D → E be reduced functors between compactly generated pointed

∞-categories which commute with filtered colimits. Then there is a canonical equivalence

∂∗(G ◦ F ) ' ∂∗(G)⊗∂
∗(idD) ∂∗(F ),

where the superscript indicates that the relative tensor product is formed in the opposite

∞-category: that is, the right hand side is given by the totalization of a cosimplicial object

∂∗(G) ◦ ∂∗(F ) //// ∂∗(G) ◦ ∂∗(idD) ◦ ∂∗(F )
////// · · ·

in the ∞-category SSeq(Sp(C), Sp(E)).
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The proof of (2′) is essentially already contained in §6.2: in §6.3.1, we will construct the relevant

structures on ∂∗(F ) can be obtained by applying the stabilization construction of §6.2.5 to a

suitable correspondence between ∞-operads. In §6.3.2 we will give a precise formulation of (3′) by

constructing a map

∂∗(G ◦ F )→ ∂∗(G)⊗∂
∗(idD) ∂∗(F ).

The hard part is to show that this map is an equivalence, which we prove in §6.3.6 (see Theorem

6.3.2.1). Our strategy is to use the formula ∂n(F ) ' ~∂(F×) of Remark 6.3.0.16 to reduce to the

chain rule for first derivatives (Theorem 6.2.1.22). The main obstacle is that Theorem 6.2.1.22

applies only to functors which are reduced in each variable. In §6.3.5, we will explain how to

circumvent this difficulty by introducing suitable “correction terms” into the formula for the chain

rule. The main ingredient is a certain technical result concerning the commutation of differentiation

with limits (Theorem 6.3.3.14), which we prove in §6.3.4. This result can be regarded as a relative

version of Arone-Mahowald calculation of the derivatives of the identity functor on the∞-category

of pointed spaces, which we review in §6.3.3.

Remark 6.3.0.17. Let C be a compactly generated pointed∞-category. The relationship between

the symmetric sequences ∂∗(idC) and ∂∗(idC) is more than an analogy: they are Koszul dual to one

another. Given a suitable theory of Koszul duality, one can deduce Conjecture 6.3.0.13 from

Proposition 6.3.0.14, and the remaining assertions of Conjecture 6.3.0.7 from the versions of (2′)

and (3′) that we prove in this section. We plan to return to the subject in a future work.

6.3.1 Cartesian Structures

Let C be a compactly generated pointed ∞-category. According to Proposition 6.3.0.14, the sym-

metric sequence of coderivatives {∂n(idC)}n≥1 is equipped with a coherently associative comulti-

plication, encoded by a (unital) stable ∞-operad Sp(C)⊗ with underlying ∞-category Sp(C). The

∞-operad Sp(C)⊗ was constructed in §6.2.4 by stabilizing the Cartesian symmetric monoidal ∞-

category C×.

Now suppose that F : C → D is a reduced functor between compactly generated pointed ∞-

categories. Our goal in this section is to show that the symmetric sequence {∂n(F )}n≥1 is equipped

with (compatible) left and right (co)actions of {∂n(idD)}n≥1 and {∂n(idC)}n≥1, respectively. We

first explain how to encode these actions using the language of (families of) ∞-operads.

Definition 6.3.1.1. A correspondence of ∞-operads is ∆1-family of ∞-operads p : O⊗ → ∆1 ×
N(Fin∗). We will say that O⊗ is a correspondence from the ∞-operad O⊗0 = {0} ×∆1 O⊗ to the

∞-operad O⊗1 = {1} ×∆1 O⊗. We will say that a correspondence of ∞-operads p is corepresentable

(stable, differentiable) it is corepresentable (stable, differentiable) when regarded as a (local) ∆1-

family of ∞-operads.

Let p : O⊗×∆1 × N(Fin∗) be a corepresentable correspondence from an ∞-operad O⊗0 to an

∞-operad O⊗1 . For each n ≥ 0, the unique active morphism 〈n〉 → 〈1〉 determines a map from
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(0, 〈n〉) to (1, 〈1〉) in ∆1 ×N(Fin∗), to which we can associate a functor

Fn : On0 ' O⊗(0,〈n〉) → O⊗(1,〈1〉) ' O1 .

Each Fn is equivariant with respect to the action of the symmetric group Σn on On0 ; we may

therefore think of this construction as giving a family of functors F I : OI0 → O1 for every nonempty

finite set I. If O⊗ is a stable correspondence of ∞-operads, then each of the functors F I is exact

in each variable, so that we can view {Fn}n≥1 as a symmetric sequence of functors from O0 to O1.

We will denote this symmetric sequence by F ∗.

Since O⊗0 and O⊗1 are corepresentable ∞-operads, Remark 6.2.4.4 supplies tensor product func-

tors

⊗I0 : OI0 → O0 ⊗I1 : OI1 → O1

for every nonempty finite set I. If E is an equivalence relation on I, we have canonical natural

transformations

⊗I/E1 ◦
∏

J∈I/E

F J ← F I → F I/E ◦
∏

J∈I/E

⊗J0 .

If we suppose that p is a stable correspondence of ∞-operads, then we can combine these maps as

E varies over Equiv(I), to obtain maps⊕
E∈Equiv(I)

⊗I/E1 ◦
∏

J∈I/E

F J ← F I →
⊕

E∈Equiv(I)

F I/E ◦
∏

J∈I/E

⊗J0 .

Allowing I to vary, we obtain maps of symmetric sequences

F ∗ → F ∗ ◦ ⊗∗0 F ∗ → ⊗∗1 ◦ F ∗.

Remark 6.3.1.2. Let O⊗0 and O⊗1 be reduced stable ∞-operads, corresponding (under the dic-

tionary of Remark 6.3.0.10) to associative coalgebra objects ⊗∗0 and ⊗∗1 of SSeq(O0,O0) and

SSeq(O1,O1), respectively.

(a) Symmetric sequences F ∗ ∈ SSeq(O0,O1) which are equipped with (compatible) left coactions

of ⊗∗1 and right coactions of ⊗∗0.

(b) Stable correspondences O⊗ from O⊗0 to O⊗1 which are unital in the sense that the initial object

of O⊗0 is also an initial object of O⊗.

As in Remark 6.3.0.10, we will be content to view this as a heuristic principle: we will not attempt

to give a proof (or even a precise formulation) in this book.

Motivated by this analysis, we formulate the following dual version of assertion (2) of Conjecture

6.3.0.7:
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Proposition 6.3.1.3. Let C and D be compactly generated pointed∞-categories, and let F : C→ D

be a reduced functor which preserves filtered colimits. Then there exists a stable correspondence of

∞-operads q : O⊗ → ∆1 ×N(Fin∗) with the following properties:

(1) The underlying stable ∞-operads O⊗0 and O⊗1 are given by Sp(C)⊗ and Sp(D)⊗, respectively

(where Sp(C)⊗ and Sp(D)⊗ are as in Proposition 6.3.0.14.

(2) For each n ≥ 1, the functor Sp(C)n → Sp(D) determined by q is equivalent to the coderivative

∂n(F ).

Our construction of the correspondence O⊗ → ∆1×N(Fin∗) of Proposition 6.3.1.3 will proceed

in three steps:

(a) First, take p : M→ ∆1 be a correspondence of∞-categories associated to the functor F . That

is, p is a coCartesian fibration with fibers C ' M0 = M×∆1{0} and D ' M1 = M×∆1{1},
and the induced map from M0 to M1 is given by F .

(b) We will show that the correspondence M from C to D determines a correspondence of ∞-

operads M× from C× to D×, using a relative version of Construction 2.4.1.4.

(c) By applying the stabilization construction described in §6.2.5 to M×, we will obtain a stable

correspondence from Sp(C)⊗ to Sp(D)⊗.

We will devote most of this section to carrying out step (b). We begin with a relative version

of Definition 2.4.0.1.

Definition 6.3.1.4. Let S be a simplicial set and let q : O⊗ → S×N(Fin∗) be a map of simplicial

sets. We will say that q is a Cartesian local S-family of ∞-operads if it satisfies the following

conditions:

(1) The map q is a corepresentable local S-family of ∞-operads.

(2) For each s ∈ S, the induced map qs : C⊗s → N(Fin∗) is a coCartesian fibration which

determines a Cartesian symmetric monoidal structure on the ∞-category Cs (see Definition

2.4.0.1).

(3) For every s ∈ S, the inclusion C⊗s ↪→ C⊗ carries qs-coCartesian edges to q-coCartesian edges.

Remark 6.3.1.5. Let C and D be ∞-categories which admit finite products, and let q : O⊗ →
∆1 ×N(Fin∗) be a corepresentable correspondence between the symmetric monoidal ∞-categories

O⊗0 = C× and O⊗1 = D×. For each n ≥ 0, restricting q to the active morphism α : (0, 〈n〉)→ (1, 〈1〉)
of ∆1 × N(Fin∗) gives a functor Fn : Cn → D. Note that α factors as a composition (0, 〈n〉) →
(0, 〈1〉)→ (1, 〈1〉). For every n-tuple of objects C1, . . . , Cn ∈ C, this factorization determines a map

Fn(C1, . . . , Cn)→ F 1(C1 × · · · × Cn).
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Condition (3) of Definition 6.3.1.4 guarantees that these map is an equivalences: that is, we can

recover each of functors Fn : Cn → D by composing the single functor F 1 : C → D with the

Cartesian product on C.

The analysis given in Remark 6.3.1.5 suggests that Cartesian local S-family of∞-operads should

be determined by the underlying locally coCartesian fibration

O ' O⊗×N(Fin∗){〈1〉} → S.

We can formulate this more precisely as follows:

Theorem 6.3.1.6. Let C→ S be a locally coCartesian fibration of simplicial sets. Then there exists

a Cartesian local S-family of ∞-operads C× → S ×N(Fin∗) with C ' C××N(Fin∗){〈1〉}. Moreover,

C× is determined uniquely up to equivalence.

Proof of Proposition 6.3.1.3. Let F : C → D be a reduced functor between compactly generated

pointed ∞-categories which preserves filtered limits, and let M→ ∆1 be a correspondence from C

to D associated to F . According to Theorem 6.3.1.6, we can extend M to a Cartesian ∆1-family

of ∞-operads q : M× → ∆1 × N(Fin∗). Then q is a differentiable local S-family of ∞-operads; let

O⊗ → ∆1 ×N(Fin∗) denote the stable ∆1-family of ∞-operads obtained by applying Construction

6.2.5.20. Then O⊗ is a stable correspondence from Sp(C)⊗ to Sp(D)⊗. The identification of the

induced functors Sp(C)n → Sp(D) with ∂n(F ) follows from Remark 6.3.1.5.

Theorem 6.3.1.6 is an immediate consequence of a more precise result (Theorem 6.3.1.15), which

we will prove at the end of this section. First, we need to formulate a generalization of Definition

2.4.1.1.

Definition 6.3.1.7. Let q : C⊗ → S × N(Fin∗) be a corepresentable local S-family of ∞-operads,

and let p : D→ S be a locally coCartesian fibration. We will say that a functor π ∈ FunS(C⊗,D)

is a weak Cartesian structure on C⊗ if it satisfies the following conditions:

(1) For each s ∈ S, the fiber C⊗s is a symmetric monoidal ∞-category and the induced map

πs : C⊗s → Ds is a weak Cartesian structure on the symmetric monoidal ∞-category C⊗s (see

Definition 2.4.1.1).

(2) Let e be a locally q-coCartesian edge of C⊗ lying over the unique active morphism 〈n〉 → 〈1〉
in N(Fin∗). Then p(e) is a locally p-coCartesain edge of D.

We say that π is a Cartesian structure if it is a weak Cartesian structure which induces an equiva-

lence of ∞-categories Cs → Ds for each vertex s ∈ S.

Lemma 6.3.1.8. Let S be a simplicial set and let q : C⊗ → S × N(Fin∗) be a corepresentable

local S-family of ∞-operads. If q admits a Cartesian structure, then it is a Cartesian S-family of

∞-operads.
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Proof. It suffices to prove that each pullback C⊗×S∆n is a corepresentable ∆n-family of∞-operads

for every map ∆n → S. We may therefore assume without loss of generality that S is an∞-category.

The only nontrivial point is to verify condition (3) of Definition 6.3.1.4. Let f : X → Y be a qs-

coCartesian morphism in C⊗; we wish to show that f is q-coCartesian. According to Lemma

HTT.2.4.2.7 , it will suffice to show that for every locally q-coCartesian morphism g : Y → Z, the

composition g ◦ f is locally q-coCartesian. Using Remark 6.2.5.4, we can reduce to the case where

Z ∈ C = C⊗〈1〉. The map g factors as a composition Y
g′→ Y ′

g′′→ Z, where g′ is inert (and therefore

q-coCartesian) and g′′ is active. Since g is locally q-coCartesian, Lemma HTT.2.4.2.7 implies that

g′′ is locally q-coCartesian. We may replace Y by Y ′ and thereby reduce to the case where the

image of g in N(Fin∗) is active. Factor f as a composition f ′′ ◦ f ′, where f ′ is inert and f ′′ is

active. Lemma HTT.2.4.2.7 implies that g ◦ f is locally q-coCartesian if and only if g ◦ f ′′ is locally

q-coCartesian. We may therefore replace f by f ′′ and thereby reduce to the case where f is active.

Let s denote the image of Z in S, and factor g ◦ f as a composition

X
h′→ Z ′

h′′→ Z

where h′ is locally q-coCartesian and h′′ is a morphism in Cs. We wish to prove that h′′ is an

equivalence.

Let p : D → S be a locally coCartesian fibration and let π : C⊗ → D be a Cartesian structure

on C⊗. Let t ∈ S denote the image of Z. Then π induces an equivalence Ct → Dt (by condition

(1) of Definition 6.3.1.7). It will therefore suffice to show that π(h′′) is an equivalence in Dt.

Since π(h′) is locally p-coCartesian (condition (2) of Definition 6.3.1.7), we are reduced to proving

that π(h) = π(g) ◦ π(f) is locally q-coCartesian. Because f is an active qs-coCartesian morphism

in C⊗s , the map π(f) is an equivalence in Cs (by condition (1) of Definition 6.3.1.7). We are

therefore reduced to proving that π(g) is locally q-coCartesian, which follows from immediately

from condition (2) of Definition 6.3.1.7.

Proposition 6.3.1.9. Let p : C⊗ → S × N(Fin∗) be a Cartesian local S-family of ∞-operads, let

q : D → S be a locally coCartesian fibration such that each fiber Ds admit finite products. Let

Fun×S (C⊗,D) denote the full subcategory of FunS(C⊗,D) spanned by the weak Cartesian structures

and let Fun×S (C,D) be the full subcategory of FunS(C,D) spanned by those maps F : C → D

satisfying the following conditions:

(a) The functor F carries locally p-coCartesian edges to locally q-coCartesian edges.

(b) For each vertex s ∈ S, the induced map Cs → Ds preserves finite products.

Then the restriction map Fun×S (C⊗,D)→ Fun×S (C,D) is an equivalence of ∞-categories.

Proof. For every map of simplicial sets T → S, let C⊗T = T ×S C⊗ and CT = T ×S C. Let

Fun×S (C⊗T ,D) denote the full subcategory of FunS(C⊗T ,D) spanned by those functors which determine
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weak Cartesian structures C⊗T → T ×S D, and define Fun×S (CT ,D) ⊆ FunS(CT ,D) similarly. We

will prove that each restriction map θT : Fun×S (C⊗T ,D) → Fun×S (CT ,D) is an equivalence of ∞-

categories. The construction T 7→ θT carries homotopy colimits to homotopy limits. We may

therefore reduce to the case where T is a simplex. Replacing S by T , we may assume that S = ∆k

for some integer k ≥ 0.

We define a subcategory I ⊆ S × Fin∗×[1] as follows:

(a) Every object of S × Fin∗×[1] belongs to I.

(b) A morphism (s, 〈n〉, i) → (s′, 〈n′〉, i′) in Fin∗×[1] belongs to I if and only if either i′ = 1 or

the induced map α : 〈n〉 → 〈n′〉 is active.

Let C′ denote the fiber product C⊗×S×N(Fin∗) N(I), which we regard as a subcategory of C⊗×∆1,

and let p′ : C′ → N(I) denote the projection. Let C′0 and C′1 denote the intersections of C′ with

C⊗×{0} and C⊗×{1}, respectively. We note that there is a canonical isomorphism C′1 ' C⊗.

Let E denote the full subcategory of FunS(C′,D) spanned by those functors F which satisfy the

following conditions:

(i) For every object C ∈ C⊗, the induced map F (C, 0)→ F (C, 1) is an equivalence in D.

(ii) The restriction F |C′1 is a weak Cartesian structure on C⊗.

It is clear that if (i) and (ii) are satisfied, then the restriction F0 = F |C′0 satisfies the following

additional conditions:

(iii) For each s ∈ S, the restriction F0|Cs is a functor from Cs to Ds which preserves finite

products.

(iv) Let s ∈ S, and let α be an active locally ps-coCartesian morphism in C⊗s . Then F0(α) is an

equivalence in D.

(v) Let α be a locally p-coCartesian morphism in C. Then F0(α) is a locally q-coCartesian

morphism in D.

Condition (i) is equivalent to the assertion that F is a right Kan extension of F |C′1. Proposition

HTT.4.3.2.15 implies that the restriction map r : E→ Fun×S (C⊗,D) induces a trivial Kan fibration

onto its essential image. The map r has a section s, given by composition with the projection map

C′ → C⊗. The restriction map Fun×S (C⊗,D)→ Fun×S (C,D) factors as a composition

Fun×S (C⊗,D)
s→ E

e→ Fun×S (C,D),

where e is induced by composition with the inclusion C ⊆ C′0 ⊆ C′. Consequently, it will suffice to

prove that e is an equivalence of ∞-categories.
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Let E0 ⊆ Fun(C′0,D) be the full subcategory spanned by those functors which satisfy conditions

(iii), (iv), and (v). The map e factors as a composition

E
e′→ E0

e′′→ Fun×(C,D).

We will complete the proof by showing that that e′ and e′′ are trivial Kan fibrations.

Let f : C′0 → D be an arbitrary functor, and let C ∈ C⊗j,〈n〉 ⊆ C′0. There exists a unique map

α : (j, 〈n〉, 0) → (j, 〈1〉, 0) in I; choose a locally p′-coCartesian morphism α : C → C ′ lifting α.

Since C⊗ is Cartesian S-family of ∞-operads, the morphism α is p′-coCartesian. It follows that α

exhibits C ′ as an initial object of C×(C′0)/C′×C′0
C. Consequently, f is a right Kan extension of f |C

at C if and only if f(α) is an equivalence. It follows that f satisfies (iv) if and only if f is a right

Kan extension of f |C. The same argument (and Lemma HTT.4.3.2.7 ) shows that every functor

f0 : C → D admits a right Kan extension to C′0. Applying Proposition HTT.4.3.2.15 , we deduce

that e′′ is a trivial Kan fibration.

It remains to show that e′ is a trivial Kan fibration. In view of Proposition HTT.4.3.2.15 , it

will suffice to prove the following pair of assertions, for every functor f ∈ E0:

(1) There exist a functor F : C′ → D which is a left Kan extension of f = F |C′0.

(2) Let F : C′ → D be an arbitrary extension of f . Then F is a left Kan extension of f if and

only if F belongs to E.

For every finite linearly ordered set J , let J+ denote the disjoint union J
∐
{∞}, where ∞ is a

new element larger than every element of J . Let (C, 1) ∈ C⊗J∗ ×{1} ⊆ C′ lying over a vertex s ∈ S.

Since there exists a final object 1s ∈ Cs, the ∞-category C′0×C′ C
′
/C also has a final object, given

by the map α : (C ′, 0)→ (C, 1), where C ′ ∈ C⊗
J+
∗

corresponds, under the equivalence

C⊗
s,J+
∗
' Cs×C⊗s,J∗ ,

to the pair (1s, C). We now apply Lemma HTT.4.3.2.13 to deduce (1), together with the following

analogue of (2):

(2′) An arbitrary functor F : C′ → D which extends f is a left Kan extension of f if and only if,

for every morphism α : (C ′, 0)→ (C, 1) as above, the induced map F (C ′, 0)→ F (C, 1) is an

equivalence in D.

To complete the proof, it will suffice to show that F satisfies the conditions stated in (2′) if and

only if F ∈ E. We first prove the “if” direction. Suppose that F ∈ E and let α : (C ′, 0) → (C, 1)

be as above; we wish to prove that F (α) : F (C ′, 0) → F (C, 1) is an equivalence in D. The map α

factors as a composition

(C ′, 0)
α′→ (C ′, 1)

α′′→ (C, 1).
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Condition (i) guarantees that F (α′) is an equivalence. Condition (ii) guarantees that F (C ′, 1) is

equivalent (as an object of Ds) to a product to a product F (1s, 1) × F (C, 1), and that F (α′′) can

be identified with the projection onto the second factor. Moreover, since 1s is a final object of

Cs, condition (ii) also guarantees that F (1s, 1) is a final object of Ds. It follows that F (α′′) is an

equivalence, so that F (α) is an equivalence as desired.

Now let us suppose that F satisfies the condition of (2′). We wish to prove that F ∈ E. We begin

by verifying condition (i). Let C ∈ C⊗J∗ for some finite linearly ordered set J , lying over a vertex

s ∈ S. Let α : (C ′, 0) → (C, 1) be defined as above. Let β : (J∗, 0) → (J+
∗ , 0) be the morphism in

I induced by the inclusion J ⊆ J+. Choose a locally p′-coCartesian morphism β : (C, 0)→ (C ′′, 0)

lifting β. Since the symmetric monoidal structure on Cs is Cartesian, the final object 1s ∈ Cs is also

the unit object of C and we can identify C ′′ with C ′. The composition (C, 0)
β→ (C ′, 1)

α→ (C, 1) is

homotopic to the canonical map γ : (C, 0) → (C, 1) appearing in the statement of (i). Condition

(iv) guarantees that F (β) is an equivalence, and (2′) guarantees that F (α) is an equivalence. Using

the two-out-of-three property, we deduce that F (γ) is an equivalence, so that F satisfies (i).

Let F1 = F |C′1, so that we can regard F1 as a functor C⊗ → D. To prove that F satisfies (ii),

we must verify three conditions:

(ii0) If s ∈ S and β is an active ps-coCartesian morphism of C⊗s , then F1(β) is an equivalence.

(ii1) Let C ∈ C⊗s,〈n〉 and choose inert morphisms γi : C→ Ci in C⊗s covering the maps ρi : 〈n〉 → 〈1〉
for 1 ≤ i ≤ n. Then the morphisms γi exhibit F1(C) as a product

∏
1≤i≤n F1(Ci) in the

∞-category Ds.

(ii2) Let β be a locally p-coCartesian morphism in C⊗ covering the unique active morphism 〈n〉 →
〈1〉 in Fin∗. Then F1(β) is a locally q-coCartesian morphism in C⊗.

Condition (ii0) follows immediately from (i) and (iv). To prove (ii1), we consider the maps

α : (C ′, 0) → (C, 1) and αi : (C ′i, 0) → (Ci, 1) which appear in the statement of (2′). For each

1 ≤ i ≤ n, we have a commutative diagram

(C ′, 0)
α //

γ′j
��

(C, 1)

γj

��
(C ′i, 0)

αj // (Ci, 1).

Condition (2′) guarantees that the maps F (α) and F (αi) are equivalences in D. Consequently,

it will suffice to show that the maps f(γ′i) exhibit f(C ′, 0) as a product
∏
j∈J f(C ′j , 0) in D. Let

f0 = f |C. Using condition (iv), we obtain canonical equivalences

f(C ′, 0) ' f0(1s ⊗⊗1≤i≤nCi) f(C ′i, 0) ' f0(1s ⊗ Ci)
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Since condition (iii) guarantees that f0 preserves products, it will suffice to show that the canonical

map

1s ⊗ (⊗1≤i≤nCi)→ ⊗1≤i≤n(1s ⊗ Cj)

is an equivalence in the∞-category Cs. This follows easily from our assumption that the symmetric

monoidal structure on C is Cartesian.

It remains to prove (ii2). Let C ∈ C⊗s,〈n〉 and let β : C → D be a locally p-coCartesian

morphism in C⊗ covering the unique active map β0 : 〈n〉 → 〈1〉. Choose a ps-coCartesian morphism

β′ : C → C ′ in C⊗s lying over β0. Since C⊗ is a Cartesian S-family of ∞-operads, the morphism β′

is p-coCartesian. We can therefore factor β as a composition

C
β′→ C ′

β′′→ D,

where β′′ is a morphism in C. Since β is locally p-coCartesian and β′ is p-coCartesian, the morphism

β′′ is also locally p-coCartesian. Since F1(β′) is an equivalence (by (ii0)), it will suffice to show

that F1(β′′) is locally q-coCartesian. We have a commutative diagram

F (C ′, 0) //

f(β′′)
��

F (C ′, 1)

F1(β′′)
����

F (D, 0) // F (D, 1).

Since F satisfies (i), the horizontal maps in this diagram are equivalences. We are therefore reduced

to proving that f(β′′) is locally q-coCartesian, which follows from (v).

It follows from Proposition 6.3.1.12 that if O⊗ → S × N(Fin∗) is a Cartesian local S-family of

∞-operads which admits a Cartesian structure, then O⊗ is determined up to equivalence by the

underlying locally Cartesian fibration O→ S. We next prove a converse: given a locally coCartesian

fibration O → S where each fiber Os admits finite products, we construct a local S-family of ∞-

operads O⊗ → S×N(Fin∗) and a Cartesian structure O⊗ → O. For this, we need a relative version

of Construction 2.4.1.4.

Construction 6.3.1.10. Let Γ× be the category introduced in Notation 2.4.1.2 (so that the objects

of Γ× are pairs (〈n〉,K), where K ⊆ 〈n〉◦. Let p : C → S be a locally coCartesian fibration

of simplicial sets. We define a simplicial set C̃
×

equipped with a map C̃
×
→ S × N(Fin∗) by the

following universal property: for every map of simplicial sets K → N(Fin∗), we have an isomorphism

FunS×N(Fin∗)(K, C̃
×

) ' FunS(K ×N(Fin∗) N(Γ×),C).

Note that for each s ∈ S, we have a canonical isomorphism C̃
×
×S{s} ' C̃

×
s , where C̃

×
s is obtained

by applying Construction 2.4.1.4 to the ∞-category Cs. We let C× denote the full simplicial subset

of C̃
×

spanned by those vertices which belong to C×s ⊆ C̃
×
s , for some vertex s ∈ S.
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Remark 6.3.1.11. Let p : C → S be a locally coCartesian fibration of simplicial sets. We will

identify vertices of C̃
×

with triples (〈n〉, s, λ), where 〈n〉 is an object of N(Fin∗), s is a vertex of S,

and λ is a map from the nerve of the partially ordered set of subsets of 〈n〉◦ ' {1, . . . , n} (ordered

by reverse inclusion) to the ∞-category Cs.

The fundamental properties of Construction 6.3.1.10 are summarized in the following result:

Proposition 6.3.1.12. Let p : C→ S be a locally coCartesian fibration of simplicial sets. Then:

(1) The projection q̃ : C̃
×
→ S ×N(Fin∗) is a locally coCartesian fibration.

(2) Let α : (〈n〉, s, λ)→ (〈n′〉, t, λ′) be an edge of C̃
×

, so that α determines a map α : 〈n〉 → 〈n′〉
in Fin∗ and an edge e : s→ s′ in S. Then α is locally q̃-coCartesian if and only if, for every

K ⊆ 〈n′〉◦, the induced map λ(α−1K)→ λ′(K) is locally p-coCartesian.

(3) Suppose that each of the ∞-categories Cs admits finite products. Then q : C× → S ×N(Fin∗)

is a locally coCartesian fibration. Moreover, an edge α : (〈n〉, s, λ)→ (〈n′〉, t, λ′) is locally q-

coCartesian if and only if, for every element j ∈ 〈n′〉◦, the induced map λ(α−1{j})→ λ′({j})
is locally p-coCartesian.

(4) Suppose that each of the ∞-categories Cs admits finite products. Then q exhibits C× as a

corepresentable local S-family of ∞-operads.

(5) Suppose that each Cs admits finite products, and let π : C× → C be the map given by

composition with the section s : N(Fin∗) → N(Γ×) defined in Remark 2.4.1.3 (given by

〈n〉 7→ (〈n〉, 〈n〉◦)). Then π is a Cartesian structure on C×.

Proof. The forgetful functor N(Γ×)→ N(Fin∗) is a Cartesian fibration, and therefore a flat categor-

ical fibration (Example B.3.11). It follows from Proposition B.3.14 that q is a categorical fibration.

To prove that q is a locally coCartesian fibration, it will suffice to show that for every edge ∆1 → S

the induced map ∆1 ×S C̃
×
→ ∆1 × N(Fin∗) is a locally coCartesian fibration. We may therefore

replace S by ∆1 and thereby reduce to the case where p is a coCartesian fibration. Assertions (1)

and (2) now follow from Corollary HTT.3.2.2.13 .

We now prove (3). Fix a vertex (s, 〈n〉) of S×N(Fin∗), so that we can identify objects of C̃
×
s,〈n〉

with functors N(P(〈n〉◦)) → Cs. The full subcategory C×s,〈n〉 is spanned by those functors which

are right Kan extensions of their restriction to the full subcategory N(P1(〈n〉◦)) ⊆ N(P(〈n〉◦)),
where P1(〈n〉◦) consists of subsets having cardinality 1. Using our assumption that Cs admits

finite products, we deduce that the inclusion C×s,〈n〉 ↪→ C̃
×
s,〈n〉 admits a left adjoint Ls,〈n〉. Moreover,

a morphism λ→ λ′ in C̃
×
s,〈n〉 is an Ls,〈n〉 equivalence if and only if, for every element j ∈ 〈n〉◦, the

induced map λ({j})→ λ′({j}) is an equivalence.

We now argue that q is a locally coCartesian fibration. Suppose we are given a vertex (〈n〉, s, λ)

in C⊗ and an edge α : (〈n〉, s) → (〈n′〉, t) in N(Fin∗) × S. Let α′ : (〈n〉, s, λ) → (〈n′〉, t, λ′) be a
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locally q̃-coCartesian morphism in C̃
⊗

lifting α. Let α′′ : λ′ → λ′′ be a morphism in the∞-category

C̃
×
t,〈n′〉 which exhibits λ′′ as a C×t,〈n′〉-localization of λ′. Since q̃ is an inner fibration, we can choose

a 2-simplex

(〈n′〉, t, λ′)
α′′

''
(〈n〉, s, λ)

α′
88

α // (〈n′〉, t, λ′′)

lifting the degenerate 2-simplex

(〈n′〉, t)
id

%%
(〈n〉, s)

α
99

α // (〈n′〉, t)

of N(Fin∗)× S. We note that α is locally q-coCartesian. Moreover, condition (2) implies that for

every subset K ⊆ 〈n′〉◦, α′ induces a locally p-coCartesian edge λ(α−1K)→ λ′(K). Since α′ is an

Lt,〈n′〉-equivalence, it induces an equivalence λ′({j}) → λ′′({j}) for each j ∈ 〈n′〉◦. It follows by

transitivity that λ(α−1{j}) → λ′′({j}) is locally p-coCartesian for each j ∈ 〈n′〉◦. This proves the

“only if” direction of the final assertion of (3). To prove the converse, suppose we are given an

arbitrary edge of β : (〈n〉, s, λ) → (〈n′〉, t, µ) in C× which lifts α and induces locally p-coCartesian

edges λ(α−1{j}) → µ({j}) for each j ∈ 〈n〉◦. Since α is locally q-coCartesian, we can choose a

2-simplex

(〈n′〉, t, λ′′)
γ

''
(〈n〉, s, λ)

α
77

β // (〈n′〉, t, µ)

where γ is a morphism in C×t,〈n′〉. Then γ induces an equivalence λ′′({j})→ µ({j}) for each j ∈ 〈n′〉◦.
It follows that γ is an equivalence, so that β is also locally q-coCartesian.

We now prove (4). We may assume without loss of generality that S = ∆n. We will show

that it is a corepresentable local S-family of ∞-categories by verifying the hypotheses of Lemma

6.2.5.18. The third hypothesis is clear (it follows from Proposition 2.4.1.5 that C×s → N(Fin∗) is

a symmetric monoidal ∞-category for each vertex s ∈ S). We will check the first hypothesis; the

proof of the second is similar. Suppose we are given a 2-simplex

(〈m〉, s, λ′)
β

''
(〈m′〉, s, λ)

α
77

γ // (〈n〉, t, λ′′)

in C× where α is inert and β is locally q-coCartesian. Let γ0 : 〈m′〉 → 〈n〉 be the image of γ in

N(Fin∗), and define α0 and β0 similarly. We wish to show that γ is locally q-coCartesian. Unwinding
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the definitions, we must show that for j ∈ 〈m〉◦, then the induced edge λ(γ−1
0 {j}) → λ′′({j}) is

locally p-coCartesian. Since β is locally q-coCartesian, the edge λ′(β−1
0 {j}) → λ′′({j}) is locally

p-coCartesian. It will therefore suffice to show that λ(γ−1
0 {j}) → λ′(β−1

0 {j}) is an equivalence,

which follows from the inertness of α.

To prove (5), we node that the first condition of Definition 6.3.1.7 follows from Proposition

2.4.1.5, and the second follows the description of the class of locally q-coCartesian morphisms given

by (2) and (3).

Notation 6.3.1.13. Let S be a simplicial set and let p : C⊗ → S × N(Fin∗) and q : D⊗ →
S×N(Fin∗) be corepresentable local S-families of∞-operads. We let Fun⊗S (C⊗,D⊗) denote the full

subcategory of FunS×N(Fin∗)(C
⊗,D⊗) spanned by those maps F which carry locally p-coCartesian

edges of C⊗ to locally q-coCartesian edges of D⊗.

Proposition 6.3.1.14. Let p : C⊗ → S × N(Fin∗) be a corepresentable local S-family of ∞-

operads, let q : D→ S be a locally coCartesian fibration, and assume that each of the ∞-categories

Ds admits finite products. Let π : D× → D be the Cartesian structure of Proposition 2.4.1.5. Then

composition with π induces a trivial Kan fibration

Fun⊗S (C⊗,D×)→ Fun×S (C⊗,D),

where Fun×S (C⊗,D) is defined as in Proposition 6.3.1.9.

Proof. Arguing as in the proof of Proposition 6.3.1.9, we can reduce to the case where S = ∆k

is a simplex (and, in particular, an ∞-category). Unwinding the definitions, we can identify

Fun⊗S (C⊗,D×) with the full subcategory of FunS(C⊗×N(Fin∗) N(Γ×),D) spanned by those func-

tors F which satisfy the following condition:

(1) For every vertex s ∈ S and every object C ∈ C⊗s,〈n〉 and every subset J ⊆ 〈n〉◦, the functor F

induces an equivalence

F (C, J)→
∏
j∈J

F (C, {j})

in the ∞-category Ds.

(2) For every locally p-coCartesian morphism α : C → C ′ covering a map α0 : 〈n〉 → 〈n′〉 in

Fin∗, and every element j ∈ 〈n′〉◦, the induced map F (C,α−1{j}) → F (C ′, {j}) is a locally

q-coCartesian morphism of D.

The functor F ′ = π ◦F can be described by the formula F ′(C) = F (C, 〈n〉◦), for each C ∈ C⊗〈n〉.

In other words, F ′ can be identified with the restriction of F to the full subcategory of C′ ⊆
C⊗×N(Fin∗) N(Γ×) spanned by objects of the form (C, 〈n〉◦) (note that C′ is canonically isomorphic

to C⊗).
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Let X = (C, J) be an object of the fiber product C⊗×N(Fin∗) N(Γ×). Here C ∈ C⊗〈n〉 and

J ⊆ 〈n〉◦. We claim that the ∞-category C′X/ has an initial object. More precisely, if we choose an

inert morphism α : C → C ′ covering the map α : 〈n〉 → J∗ given by the formula

α(j) =

{
j if j ∈ J
∗ otherwise,

then the induced map α̃ : (C, J)→ (C ′, J) is an initial object of C′X/. It follows that every functor

F ′ : C′ → D admits a right Kan extension to C⊗×N(Fin∗) N(Γ×), and that an arbitrary functor

F : C⊗×N(Fin∗) N(Γ×)→ D is a right Kan extension of F |C′ if and only if F (α̃) is an equivalence,

for every α̃ defined as above.

Let E be the full subcategory of Fun(C⊗×N(Fin∗) N(Γ×),D) spanned by those functors F which

satisfy the following conditions:

(1′) The restriction F ′ = F |C′ is a weak Cartesian structure on C′ ' C⊗.

(2′) The functor F is a right Kan extension of F ′.

Using Proposition HTT.4.3.2.15 , we conclude that the restriction map E→ Fun×S (C⊗,D) is a trivial

fibration of simplicial sets. To prove that θ is a trivial Kan fibration, it will suffice to show that

conditions (1) and (2) are equivalent to conditions (1′) and (2′).

Suppose first F is a functor satisfying conditions (1′) and (2′). We first verify condition (1).

Let C ∈ C⊗s,〈n〉, let J ⊆ 〈n〉◦. We wish to show that the canonical map F (C, J) →
∏
j∈J F (C, {j})

is an equivalence in Ds. Let α̃ : (C, J) → (C ′, J) and {α̃j : (C, {j}) → (C ′j , {j})}j∈J be defined as

above. We have a commutative diagram

F (C, J) //

��

∏
j∈J F (C, {j})

��
F (C ′, J) //

∏
j∈J F (C ′j , {j})

in the ∞-category Ds. Using condition (2′), we deduce that the vertical maps are equivalences.

It will therefore suffice to show that the lower horizontal map is an equivalence, which follows

immediately from (1′).

We now verify condition (2). Choose a locally p-coCartesian morphism β̃ : C → C ′ cover-

ing a map β : 〈n〉 → 〈n′〉 in Fin∗ and let j ∈ 〈n′〉◦. We wish to prove that the induced map

F (C, β−1{j}) → F (C ′, {j}) is locally q-coCartesian. Lift the morphism ρj : 〈n〉 → 〈1〉 to an inert

morphism C ′ → C ′′ in C⊗. Condition (2′) implies the induced map F (C ′, {j})→ F (C ′′, {1}) is an

equivalence. We may therefore replace C ′ by C ′′ and thereby reduce to the case where n′ = 1. The

map β̃ factors as a composition

C
β̃′→ C0

β̃′′→ C ′
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where β̃′ is inert and β̃′′ is active. Using (2′) again, we deduce that F (β̃′) is an equivalence. We may

therefore replace C by C0 and thereby reduce to the case where β̃ is active, so that β−1{1} = 〈n〉◦.
We are therefore reduced to proving that F (β̃) is locally p-coCartesian, which follows from (1′).

Now suppose that F satisfies (1) and (2). We first verify that F satisfies (2′). Fix an object

C ∈ C⊗〈n〉 and a subset J ⊆ 〈n〉◦, and choose an inert morphism C → C ′ covering the canonical

map 〈n〉 → J∗. We wish to prove that the induced map F (C, J) → F (C ′, J) is an equivalence in

D. Using condition (1), we are reduced to proving that the induced map F (C, {j}) → F (C ′, {j})
is an equivalence for each j ∈ J , which is a special case of (2).

We now verify condition (1′). We first show that for each vertex s ∈ S, F ′ induces a weak

Cartesian structure on the ∞-operad C⊗s . Suppose that C ∈ C⊗s,〈n〉, and choose inert morphisms

C → Ci lying over ρi : 〈n〉 → 〈1〉 for 1 ≤ i ≤ n. We wish to show that the induced maps

F ′(C)→ F ′(Ci) exhibit F ′(C) as a product of the objects F (Ci) in the ∞-category Ds. It follows

from condition (1) that F ′(C) is a product of the objects F (C, {i}) for 1 ≤ i ≤ n. It therefore

suffices to show that each of the maps F (C, {i})→ F (Ci, {1}) is an equivalence, which follows from

(2). To complete the proof that F ′ is a weak Cartesian structure on C⊗, it suffices to show that if

e : C → C ′ is a locally p-coCartesian morphism in C⊗ covering an active map 〈n〉 → 〈1〉 in N(Fin∗),

then F ′(e) is locally q-coCartesian. This is also a special case of assumption (2).

Theorem 6.3.1.15. Fix a simplicial set S.

(1) Let p : C → S be a locally coCartesian fibration, and suppose that for each vertex s ∈ S,

the ∞-category Cs admits finite products. Then there exists a Cartesian local S-family of

∞-operads p : O⊗ → S ×N(Fin∗) and a Cartesian structure π : O⊗ → C. In particular, there

is an equivalence C ' O (of locally coCartesian fibrations over S).

(2) Let p : C⊗ → S × N(Fin∗) and q : D⊗ → S × N(Fin∗) be Cartesian S-families of ∞-

operads, let Fun⊗S (C⊗,D⊗) be defined as in Notation 6.3.1.13, and let Fun×S (C,D) be defined

as in Proposition 6.3.1.9. Then the restriction map θ : Fun⊗S (C⊗,D⊗) → Fun×S (C,D) is an

equivalence of ∞-categories.

Proof. Assertion (1) follows immediately from Proposition 2.4.1.5. To prove (2), we first define D×

as in the proof of Proposition 2.4.1.5. Since D⊗ is a Cartesian S-family of ∞-operads, Proposition

6.3.1.9 implies that there exists a Cartesian structure π : D⊗ → D. Using Proposition 6.3.1.14, we

can assume that π factors as a composition

D⊗
φ→ D×

π′→ D,

where π′ is the Cartesian structure of Proposition 2.4.1.5 and φ ∈ Fun⊗S (D⊗,D×). For every vertex

s ∈ S and each 〈n〉 ∈ N(Fin∗), the induced map

D⊗s,〈n〉 → D×s,〈n〉
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is an equivalence of ∞-categories (since both sides can be identified with the nth power of the

∞-category Ds). It follows that φ is a categorical equivalence. We may therefore replace D⊗ by

D×. In this case, the functor θ factors as a composition

Fun⊗S (C⊗,D×)
θ′→ Fun×S (C⊗,D)

θ′′→ Fun×S (C,D),

where θ′ is an equivalence of ∞-categories by Proposition 6.3.1.14 and θ′′ is an equivalence of

∞-categories by Proposition 6.3.1.9.

6.3.2 Composition of Correspondences

Let F : C → D be a reduced functor between compactly generated pointed ∞-categories which

commutes with filtered colimits. Propositions 6.3.0.14 and 6.3.1.3 can be summarized informally

as follows: the symmetric sequences ∂∗(idC) and ∂∗(idD) are equipped with coherently associative

comultiplications

∂∗(idC)→ ∂∗(idC) ◦ ∂∗(idC) ∂∗(idD)→ ∂∗(idD) ◦ ∂∗(idD),

and the symmetric sequence ∂∗(F ) is equipped with commuting coactions

∂∗(F )→ ∂∗(idD) ◦ ∂∗(F ) ∂∗(F )→ ∂∗(F ) ◦ ∂∗(idC).

We can regard these assertions as a dual version of parts (1) and (2) of Conjecture 6.3.0.7. In this

section, we will study the analogue of the third part of Conjecture 6.3.0.7. That is, we wish to show

that if G : D → E is another reduced functor between compactly generated pointed ∞-categories

which commutes with filtered colimits, then the symmetric sequence ∂∗(G ◦ F ) can be regarded as

a kind of tensor product of ∂∗(G) with ∂∗(F ) over ∂∗(idD). We begin by formalizing this idea more

precisely using the language of stable families of ∞-operads.

Suppose that p : O⊗ → ∆2 × N(Fin∗) is a corepresentable ∆2-family of ∞-operads. Taking

the fibers of the map O⊗ → ∆2, we obtain corepresentable ∞-operads O⊗0 , O⊗1 , and O⊗2 , and in

particular we obtain tensor product functors

⊗I0 : OI0 → O0 ⊗I1 : OI1 → O1 ⊗I2 : OI2 → O2

(see Remark 6.2.4.4). Taking the inverse image of edges in ∆2, we obtain corepresentable corre-

spondences from O⊗i to O⊗j for i < j. In particular, for every finite set I, we obtain functors

F I : OI0 → O1 GI : OI1 → O2 HI : OI0 → O2

(see the discussion following Definition 6.3.1.1). Every equivalence relation E on a finite set I

determines a 2-simplex (0, I∗) → (1, (I/E)∗) → (2, 〈1〉) in ∆2 × N(Fin∗), to which the locally

coCartesian fibration p associates a natural transformation

HI → GI/E ◦
∏

J∈I/E

F J
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of functors from OI0 to O2. If O⊗ is a stable ∆2-family of ∞-operads, then we obtain a map

of symmetric sequences δ : H∗ → G∗ ◦ F ∗ in the ∞-category SSeq(O0,O2). By studying the

restriction of p to 3-simplices of ∆2 × N(Fin∗), it is not difficult to verify that the diagram of

symmetric sequences

H∗
δ //

δ
��

G∗ ◦ F ∗

id×φ
��

G∗ ◦ F ∗ ψ◦id// G∗ ◦ ⊗∗1 ◦ F ∗

commutes up to homotopy, where φ : F ∗ → ⊗∗1◦F ∗ and ψ : G∗ → G∗◦⊗∗1 are given by the coactions

of ⊗∗1 on F ∗ and G∗, respectively. By studying the inverse image under p of higher-dimensional

simplices of ∆2 ×N(Fin∗), we obtain certain higher coherence conditions. We may summarize the

situation informally as follows:

(∗) A stable ∆2-family of ∞-operads O⊗ → ∆2 × N(Fin∗) determines coalgebras ⊗∗i ∈
SSeq(Oi,Oi), an ⊗∗1-⊗∗0 bimodule F ∗ ∈ SSeq(O0,O1), an ⊗∗2-⊗∗1 bimodule G∗ ∈ SSeq(O1,O2),

and a map of ⊗∗2-⊗∗0 bimodules H∗ → G∗ ◦⊗∗1 F ∗ in SSeq(O0,O2).

Now suppose we are given compactly generated pointed ∞-categories C, D, and E, together

with reduced functors F : C → D, G : D → E, and H : C → E commuting with filtered colimits,

and a natural transformation α : H → G ◦ F . We can encode this data by locally coCartesian

fibration M → ∆2 with M0 ' C, M1 ' D, and M2 ' D Let p : M× → ∆2 × N(Fin∗) be as in

Construction 6.3.1.10. Then p is a differentiable ∆2-family of∞-operads, so it admits a stabilization

q : O⊗ → ∆2 ×N(Fin∗). According to (∗), the stable ∆2-family of ∞-operads q determines a map

of symmetric sequences

α+ : ∂∗(H)→ ∂∗(G) ◦∂
∗(idD) ∂∗(F ).

We would like to say that if α is an equivalence (that is, if the map M→ ∆2 is actually a coCartesian

fibration), then the map α+ is also an equivalence. What we will actually prove is a reformulation

of this assertion, which does not require us to define (relative) composition products of symmetric

sequences or to justify the heuristic (∗) given above. Our reformulation is based on the notion

of a thin ∆2-family of ∞-operads (Definition 6.3.2.12). Informally speaking, a stable ∆2-family

of ∞-operads O⊗ → ∆2 × N(Fin∗) is thin if it determines a morphism H∗ → G∗ ◦⊗∗1 F ∗ which

is an equivalence in SSeq(O0,O2). However, the precise definition of thinness does not directly

reference the theory of symmetric sequences, and makes sense also in unstable situations. Granting

the notion of flatness, we can formulate our main result as follows:

Theorem 6.3.2.1. Let p : C → ∆2 be a coCartesian fibration. Assume that the fibers of p are

pointed and compactly generated, and that for i < j the induced functor Ci → Cj is reduced and

preserves filtered colimits. Let q : C
⊗ → ∆2 × N(Fin∗) be a stabilization of the differentiable ∆2-

family of ∞-operads C× → ∆2 → N(Fin∗). Then C
⊗

is a thin ∆2-family of ∞-operads.
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Theorem 6.3.2.1 is an immediate consequence of the following pair of assertions:

Theorem 6.3.2.2. Let p : C⊗ → ∆2×N(Fin∗) be a Cartesian ∆2-family of∞-operads, and suppose

that the underlying locally coCartesian fibration p0 : C → ∆2 is a coCartesian fibration. Then C⊗

is a thin ∆2-family of ∞-operads.

Theorem 6.3.2.3. Let q : C⊗ → ∆2 × N(Fin∗) be a corepresentable ∆2-family of ∞-operads.

Assume that:

(1) Each of the ∞-categories Ci is pointed and compactly generated.

(2) For every pair of induces 0 ≤ i ≤ j ≤ 2 and every finite set I, the induced functor CIi → Cj

preserves filtered colimits and zero objects.

(3) Let 0 ≤ i ≤ 2, let α : 〈m〉 → 〈n〉 be an injective map of pointed finite sets, and let α be a

morphism in C⊗ lifting the induced map (i, 〈m〉)→ (i, 〈n〉). If α is locally q-coCartesian, then

α is q-coCartesian.

Let C
⊗ → ∆2 ×N(Fin∗) be a stabilization of C⊗. If C⊗ is a thin ∆2-family of ∞-operads, then C

⊗

is also a thin ∆2-family of ∞-operads.

Remark 6.3.2.4. Let q : C⊗ → ∆2 × N(Fin∗) be a corepresentable ∆2-family of ∞-operads

satisfying conditions (1) and (2). Then each of the ∞-categories Ci admits a zero object ∗i. If

S is a finite set and 0 ≤ i ≤ j ≤ 2, then q determines a functor FSi,j : CSi → Cj satisfying

FSi,j(∗i, ∗i, . . . , ∗i) ' ∗j . Moreover, for every finite set T , we have canonical maps

FSi,j({Xs}s∈S)→ FS∪Ti,j ({Xs}s∈S , {∗i}t∈T ).

Condition (3) of Theorem 6.3.2.1 asserts that each of these maps is an equivalence. Note that this

condition is automatically satisfied if q is a Cartesian ∆2-family of ∞-operads.

We will prove Theorem 6.3.2.2 at the end of this section. The proof of Theorem 6.3.2.3 is quite

a bit more difficult, and will be given in §6.3.6.

Our first step is to define the notion of a thin ∆2-family of ∞-operads. This will require a brief

digression. Suppose that q : X → S is a locally coCartesian fibration of simplicial sets. Then every

edge e : s → t in S induces a functor of ∞-categories Xs → Xt. More generally, we can associate

to every n-simplex σ : ∆n → S a functor from Xσ(0) to Xσ(n), given by the composition of the

functors

θ(σ) : Xσ(0) → Xσ(1) → · · · → Xσ(n)

associated to the edges belonging to the “spine” of ∆n. If q is a coCartesian fibration, then the

functor θ(σ) depends only on the edge σ(0)→ σ(n) of S determined by σ. However, if we assume

only that q is a locally coCartesian fibration, then θ(σ) depends on the entire simplex σ. We will

need to precisely articulate the sense in which the functor θ(σ) depends on σ.
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Notation 6.3.2.5. Let S be a simplicial set. We let ∆S denote the category of simplices of S.

The objects of ∆S are maps σ : ∆m → S. Given a pair of objects σ : ∆m → S and τ : ∆n → S, we

let Hom∆S
(σ, τ) denote the collection of commutative diagrams

∆m //

σ

!!

∆n

τ}}
S.

Suppose we are given a pair of vertices s, t ∈ S. We define a subcategory ∆s,t
S as follows:

(i) An object σ : ∆m → S belongs to ∆s,t
S if n ≥ 1, σ(0) = s, and σ(n) = t.

(ii) Given objects σ, τ ∈∆s,t
S , a commutative diagram

∆m θ //

σ

!!

∆n

τ}}
S.

determines a morphism in ∆s,t
S if and only if θ(0) = 0 and θ(m) = n.

Construction 6.3.2.6. Let q : X → S be a locally coCartesian fibration of simplicial sets, and

suppose we are given vertices s, t ∈ S. We define a functor φ : (∆s,t
S )op → Set∆ by the formula

φ(σ : ∆m → S) = FunS(∆m, X)op. Let Z denote the opposite of the relative nerve Nφ((∆s,t
S ))

(see Definition HTT.3.2.5.2 ). Then Z is an ∞-category equipped with a Cartesian fibration Z →
N(∆s,t

S ). Unwinding the definitions, we can identify the objects of Z with simplices σ : ∆n → X

such that n ≥ 1, σ(0) ∈ Xs, and σ(n) ∈ Xt. Note that the evaluation maps σ 7→ σ(0) and τ 7→ τ(0)

determine functors es : Zq → Xs and et : Zq → Xt.

Let Z0 denote the full subcategory of Z spanned by those simplices σ : ∆n → X such that, for

each 1 ≤ i ≤ n, the map σ(i− 1)→ σ(i) is locally q-coCartesian.

Lemma 6.3.2.7. Let q : X → S be a locally coCartesian fibration of simplicial sets, let s, t ∈ S be

vertices, and let Z0 ⊆ Z be defined as in Construction 6.3.2.6. For each σ ∈ ∆s,t
S , let Zσ denote

the fiber of Z→ N(∆s,t
S )op over σ, and define Z0

σ similarly. Then:

(a) For each σ ∈∆s,t
S , the map es induces a trivial Kan fibration Z0

σ → Xs.

(b) For every object σ ∈ ∆s,t
S , the inclusion Z0

σ ↪→ Zσ admits a right adjoint Lσ. Moreover, if

α is a morphism in Zσ, then Lσ(α) is an equivalence if and only if e0(α) is an equivalence,

where e0 : Zσ → Xs is defined as in Construction 6.3.2.6.

(c) The forgetful functor f : Z→ N(∆s,t
S )op restricts to a Cartesian fibration f0 : Z0 → N(∆s,t

S ).
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(d) The map es induces an equivalence of ∞-categories

Z0
σ → Xs ×N(∆s,t

S ).

Proof. We first prove (a). Fix an object σ : ∆n → S of ∆s,t
S . For 0 ≤ j ≤ n, let

Cj = FunS(∆{0,1}
∐
{1}

∆{1,2}
∐
· · ·

∐
{j−1}

∆{j−1,j}, X),

and let C′j denote the full subcategory of Cj spanned by those diagrams which carry each edge

∆{i−1,i} to a q-coCartesian edge of X for 1 ≤ i ≤ j. Each of the restriction maps C′j → C′j−1 is a

pullback of the restriction map

rj : Fun′S(∆{j−1,j}, X)→ FunS({j − 1}, X),

where Fun′S(∆{j−1,j}, X) denotes the full subcategory of FunS(∆{j−1,j}, X) spanned by the locally

q-coCartesian edges. Proposition HTT.4.3.2.15 (and our assumption that q is a locally coCartesian

fibration) imply that each rj is a trivial Kan fibration. We have a pullback diagram

Z0
σ

//

��

C′n

��
Zσ // Cn .

The lower horizonal map is a trivial Kan fibration because the inclusion

∆{0,1}
∐
{1}

∆{1,2}
∐
· · ·

∐
{n−1}

∆{n−1,n} ↪→ ∆n

is inner anodyne. It follows that the restriction map Z0
σ → C′n is a trivial Kan fibration, so that

the composite map

θ : Z0
σ → C′n → C′n−1 → · · · → C′1 → C′0 ' Xs

is a trivial Kan fibration, as desired.

We now prove (b). Let σ be as above, and let s : Xs → Z0
σ be a section of the trivial Kan

fibration θ0 : Z0
σ. We will show that the identity map idXs → θ0 ◦ s exhibits s as a left adjoint to

θ0; it will then follow from (a) that the composition s ◦ θ0 is a right adjoint to the inclusion. Fix

an object x ∈ Xs and an object z ∈ Zσ; we wish to show that the canonical map

MapZσ(s(x), z)→ MapXs(x, θ0(z))

is a homotopy equivalence. For each 0 ≤ j ≤ n, let θj : Zσ → Cj be the restriction functor. We will

prove that each of the maps

MapZσ(s(x), z)→ MapCj
(θjs(x), θj(z))
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is a homotopy equivalence using descending induction on j. When j = n, the desired result is

obvious (since θn is a trivial Kan fibration), and when j = 0 it will imply the desired result. To

carry out the inductive step, it will suffice to show that the map

u : MapCj
(θjs(x), θj(z))→ MapCj−1

(θj−1s(x), θj−1(z))

is a homotopy equivalence. Let x′ and z′ be the images of s(x) and z in FunS(∆{j−1,j}, X) and let

x′0 and z′0 be their images in Xσ(j−1). Then u is a pullback of the restriction map

MapFunS(∆{j−1,j},X)(x
′, z′)→ MapXσ(j−1)

(x′0, z
′
0),

which is a homotopy equivalence by virtue of the fact that x′ is a locally q-coCartesian edge of X.

Assertion (c) follows from (b) and Lemma 2.2.1.11, and assertion (d) follows from Corollary

HTT.2.4.4.4 together with (a) and (c).

Definition 6.3.2.8. Let q : X → S be a locally coCartesian fibration of simplicial sets. Let s, t ∈ S
be vertices, let Z0 ⊆ Z be defined as in Construction 6.3.2.6, and let h : Xs × N(∆s,t

S ) → Z0 be a

homotopy inverse to the equivalence of ∞-categories Z0 → Xs × N(∆s,t
S ) of Lemma 6.3.2.7. The

composite map

Xs ×N(∆s,t
S )

h→ Z0 ⊆ Z
et→ Xt

determines a functor θ : N(∆s,t
S ) → Fun(Xs, Xt), which is well-defined up to homotopy. We will

refer to θ as the spray associated to q.

Remark 6.3.2.9. In the situation of Definition 6.3.2.8, suppose that σ : ∆n → S is an object of

∆s,t
S , so that σ determines a sequence of edges

s = s0
f(1)→ s1

f(2)→ · · · f(n)→ sn = t.

Since q is a coCartesian fibration, each of the edges f(i) determines a functor f(i)! : Xσ(i−1) → Xσ(i).

If θ : N(∆s,t
S )→ Fun(Xs, Xt) is the spray associated to q, then θ(σ) is given (up to homotopy) by

the composition f(n)! ◦ f(n− 1)! ◦ · · · ◦ f(1)!.

Remark 6.3.2.10. In the situation of Definition 6.3.2.8, suppose that the map q : X → S is

a coCartesian fibration of simplicial sets. Then the spray θ : N(∆s,t
S ) → Fun(Xs, Xt) is locally

constant: that is, it carries each morphism in ∆s,t
S to an equivalence in Fun(Xs, Xt).

Notation 6.3.2.11. Let S be a finite set, and let Equiv(S) be the partially ordered set of equiv-

alence relations on S (see Construction 6.3.3.12). We let Part(S) denote the partially ordered set

consisting of linearly ordered subsets of Equiv(S). We regard Part(S) as partially ordered with

respect to inclusions. Let Part0(S) ⊆ Part(S) denote the subset consisting of nonempty linearly

ordered subsets of Equiv(S).
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Suppose that S = {1, . . . , n}. The construction

(E ∈ Equiv(S)) 7→ (S/E)∗

determines a functor Equiv(S) → Fin∗. Let s = (0, 〈n〉) ∈ ∆2 × N(Fin∗) and t = (2, 〈1〉) ∈
∆2 ×N(Fin∗). We define a functor

χ : Part(S)→∆s,t
∆2×N(Fin∗)

as follows: to every chain of equivalence relations E1 ⊆ E2 ⊆ · · · ⊆ Ek in Equiv(S), χ associates

the (k + 1)-simplex of ∆2 ×N(Fin∗) given by the sequence of active morphisms

(0, 〈n〉)→ (1, (S/E1)∗)→ (1, (S/E2)∗)→ · · · → (1, (S/Ek)∗)→ (2, 〈1〉).

Definition 6.3.2.12. Let q : O⊗ → ∆2 ×N(Fin∗) be a ∆2-family of ∞-operads. We will say that

O⊗ is thin if is corepresentable, the ∞-category O2 admits finite limits and the following condition

is satisfied for each n ≥ 1:

(∗) Let S = {1, . . . , n}, let T = ∆2 × N(Fin∗), let χ : Part(S)→ ∆s,t
T be as in Notation 6.3.2.11

and let θ : N(∆s,t
T )→ Fun(O⊗〈n〉,O) be the spray associated to q (see Definition 6.3.2.8). Then

the composite map

N(Part0(S))/ ' N(Part(S))
χ→ N(∆s,t

T )
θ→ Fun(O⊗(0,〈n〉),O

⊗
(2,〈1〉)) ' Fun(OS0 ,O2)

is a limit diagram in the ∞-category Fun(OS0 ,O2).

Remark 6.3.2.13. Let q : O⊗ → ∆2 × N(Fin∗) be a corepresentable ∆2-family of ∞-operads, so

that q determines functors

⊗m0 : Om0 → O0 ⊗m1 : Om1 → O1 ⊗m2 : Om2 → O2

Fm : Om0 → O1 Gm : Om1 → O2 Hm : Om0 → O2

for every integer m ≥ 0. When n = 1, condition (∗) of Definition 6.3.2.12 asserts that for every

object X ∈ O0, the canonical map H1(X)→ G1(F 1(X)) is an equivalence. When n = 2, condition

(∗) of Definition 6.3.2.12 guarantees that for every pair of objects X,Y ∈ O0, the diagram

H2(X,Y ) //

��

G1(F 2(X,Y ))

��
G2(F 1(X), F 1(Y )) // G1(F 1(X)⊗2

1 F
1(X)).

For larger values of n, condition (∗) guarantees that the functor Hn : On0 → O2 can be recovered

as the limit of a finite diagram of functors obtained by composing the functors F p, Gq, and ⊗r1 for

p, q, r > 0.
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Remark 6.3.2.14. To place Definition 6.3.2.12 in context, we remark that there exists an (∞, 2)-

category SSeq which may be described roughly as follows:

• The objects of SSeq are pairs (O, U∗), where O is a stable ∞-category and U∗ is a coalgebra

object of SSeq(O,O) whose counit induces an equivalence U1 → idO (equivalently, we can

define the objects of SSeq to be unital stable ∞-operads: see Remark 6.3.0.10).

• Given a pair of objects (O, U∗), (O′, U ′∗) ∈ SSeq, the ∞-category of morphisms from (O, U∗)

to (O′, U ′∗) in SSeq can be identified with the collection of U ′∗-U∗ comodule objects of

SSeq(O,O′) (which we can think of as stable correspondences between the corresponding

stable ∞-operads: see Remark 6.3.1.2).

Every stable ∆2-family of ∞-operads q : O⊗ → ∆2 ×N(Fin∗) determines 1-morphisms

f : (O0,⊗∗0)→ (O1,⊗∗1) g : (O1,⊗∗1)→ (O2,⊗∗2) h : (O2,⊗∗0)→ (O2,⊗∗2)

together with a 2-morphism α : h → g ◦ f in the (∞, 2)-category SSeq. The thinness of q is

equivalent to the invertibility of the 2-morphism α.

We warn the reader that this (∞, 2)-categorical interpretation of Definition 6.3.2.12 is specific

to the case of stable families of ∞-operads, and can lead to misleading intuitions in the unstable

case.

Proof of Theorem 6.3.2.2. Let C0, C1, and C2 denote the fibers of the coCartesian fibration p0 :

C → ∆2, so that p0 determines functors F : C0 → C1 and G : C1 → C2. Fix a nonempty finite set

I. The construction of Notation 6.3.2.11 determines a functor θ : N(Part(I)) → Fun(CI0,C2). We

wish to show that for every sequence of objects ~C = {Ci ∈ C0}i∈I , the induced map

θ(∅)(~C)→ lim−→
P∈Part0(I)

θ(P )(~C)

is an equivalence in C2. Unwinding the definitions, we see that θ carries a nonempty chain of

equivalence relations P = (E1 ⊂ E2 ⊂ · · · ⊂ Ek) to the functor θ(P ) given by the formula

θ(P )({Ci}) = G(
∏

J∈I/E1

F (
∏
j∈J

Cj)).

In particular, θ0 = θ|N(Part0(I)) factors as a composition

N(Part0(I))
φ→ N(Equiv(I))op

ψ→ Fun(CI0,C2),

where φ carries a chain of equivalence relations (E1 ⊂ E2 ⊂ · · · ⊂ Ek) to the equivalence relation

E1. We claim that φ is right cofinal. Since φ is a coCartesian fibration, it suffices to show that the
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fibers of φ are weakly contractible (Lemma HTT.4.1.3.2 ). This is clear, since each of these fibers

has both an initial object. We are therefore reduced to proving that the canonical map

θ(∅)(~C)→ lim←−
E∈Equiv(I)

ψ(E)({Ci})

is an equivalence. Note that N(Equiv(I)) has a final object, given by the indiscrete equivalence

relation E> (such that iE>j for all i, j ∈ I). We are therefore reduced to proving that the natural

transformation θ(∅)→ ψ(E>) is an equivalence of functors from CI0 to C2, which follows immediately

from the definitions.

6.3.3 Derivatives of the Identity Functor

Let C be a compactly generated pointed ∞-category. Conjecture 6.3.0.7 asserts in particular that

the derivatives {∂n(idC)}n≥1 can be regarded as an algebra object in the ∞-category of symmetric

sequences SSeq(Sp(C),Sp(C)). Let us consider the special case where C = S∗ is the ∞-category of

pointed spaces, so that Sp(C) ' Sp is the ∞-category of spectra. Let S ∈ Sp(S∗) ' Sp denote the

sphere spectrum. Repeatedly applying Corollary 1.4.4.6, we see that each of the functors ∂n(idC)

is determined by the single object (∂n F )(S, S, . . . , S) ∈ Sp(C), which we will denote by ∂n(F ). In

the special case where C = S∗, we can identify each ∂n(F ) with a spectrum, so that {∂n(F )}n≥1

can be viewed as a symmetric sequence of spectra.

Let id : S∗ → S∗ be the identity functor. Conjecture 6.3.0.7 implies in particular that

{∂n(id)}n≥1 can be regarded as an algebra with respect to the composition product on symmetric

sequences of spectra. In other words, it implies that can regard {∂n(id)}n≥1 as an operad in the

category of spectra, in that it is equipped with composition maps

∂m(id)⊗ ∂n1(id)⊗ · · · ⊗ ∂nm(id)→ ∂n1+···+nm(id)

satisfying suitable associative laws. A structure of this type was constructed by Ching, who showed

that {∂n(id)}n≥1 can be regarded as a homotopy-theoretic analogue of the Lie operad (see [29]).

Ching’s work built upon earlier results of Arone and Mahowald, who gave an explicit description

of the spectra ∂n(id) as the Spanier-Whitehead dual of a certain partition complex. To recall their

result, we need to introduce a bit of notation.

Definition 6.3.3.1. Let I be a nonempty finite set. We let Equiv(I) denote the collection of all

equivalence relations on I. We will regard Equiv(I) as a partially ordered set, where E ≤ E′ if

xEy implies xE′y.

We let E> denote the trivial equivalence relation on I (so that xE>y for all x, y ∈ S) and E⊥
the discrete equivalence relation on I (so that xE⊥y if and only if x = y). Then E> and E⊥ are

the greatest and smallest elements of Equiv(I), respectively. We set

Equiv+(I) = Equiv(I)− {E>} Equiv−(I) = Equiv(I)− {E⊥}
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Equiv±(I) = Equiv+(I) ∩ Equiv−(I) = Equiv(I)− {E>, E⊥}.

Notation 6.3.3.2. Let S ∈ Sp denote the sphere spectrum. Since the ∞-category Spop admits

small colimits, Theorem HTT.5.1.5.6 implies that there is an essentially unique functor F : S →
Spop which preserves small colimits and satisfies F (∗) = S. If X is a space, we will denote the

spectrum F (X)by SX , and refer to it as the Spanier-Whitehead dual of X.

More generally, if K is any simplicial set, we let SK denote the Spanier-Whitehead dual of a

fibrant replacement for K.

Theorem 6.3.3.3 (Arone-Mahowald). Let n ≥ 1 be a positive integer and set I = {1, . . . , n}.
Then there is a fiber sequence of spectra

∂n(id)→ SN(Equiv(I)) → SN(Equiv+(I)) ×
SN(Equiv±(I)) S

N(Equiv−(I)).

Remark 6.3.3.4. The fiber sequence of Theorem 6.3.3.3 is equivariant with respect to the action

of the symmetric group Σn.

Remark 6.3.3.5. If n = 1, then the partially ordered sets Equiv+(I), Equiv−(I), and Equiv±(I)

are empty. In this case, Theorem 6.3.3.3 asserts the existence of an equivalence ∂1(id) ' S, which

can be deduced directly from Example 6.2.1.4. If n > 1, then the simplicial sets N(Equiv(I)),

N(Equiv+(I)), and N(Equiv−(I)) are weakly contractible. In this case, Theorem 6.3.3.3 asserts the

existence of an equivalence

∂n(id)→ Ω fib(S → SN(Equiv±(I))).

For the original proof of Theorem 6.3.3.3, we refer the reader to [3]. In this section, we will give

a rather different proof which is based on the exactness properties of the construction F 7→ ~∂(F ),

where F : C1× · · · × Cn → D is a functor of several variables. Recall that the differential of F

is given by P~1 cored(F ), where cored(F ) denotes the coreduction of F (Construction 6.2.3.6) and
~1 = (1, . . . , 1) (see Example 6.2.3.5). The construction F 7→ P~1F is preserves finite limits (Theorem

6.1.1.10), but the formation of coreductions generally does not. The key to our proof of Theorem

6.3.3.3 will be to show that, nevertheless, the construction F 7→ ~∂F commutes with certain very

special finite limits. Before we can formulate a precise result, we need to introduce some notation.

Notation 6.3.3.6. Let C be a pointed ∞-category which admits finite limits, let K be a finite

simplicial set, and let U : K/ → C be a diagram. Let v denote the cone point of K/. We let tfib(U)

denote the fiber of the induced map

U(v)→ lim←−(U |K).

We will refer to tfib(U) as the total fiber of the diagram U .

Remark 6.3.3.7. In the situation of Notation 6.3.3.6, if U is a limit diagram, then tfib(U) is a

final object of C. The converse holds if the ∞-category C is stable.
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Remark 6.3.3.8. Let C and D be pointed∞-categories which admit finite limits, and let F : C→ D

be a functor which preserves zero objects. For every finite diagram U : K/ → C, there is a canonical

map F (tfib(U))→ tfib(F ◦ U). If F is left exact, then this map is an equivalence.

Remark 6.3.3.9. Let {Cs}s∈S be a finite collection of pointed ∞-categories which admit finite

limits, let {Ks}s∈S be a finite collection of finite simplicial sets, and suppose we are given diagrams

Us : K/
s → Cs. Let D be a pointed∞-category which admits finite limits, and let G :

∏
s∈S Cs → D

be a functor which is left exact in each variable. Then G({tfib(Us)}s∈S) can be identified with the

total fiber of the diagram ∏
s∈S

K/
s

∏
Us→

∏
s∈S

Cs
G→ D .

Example 6.3.3.10. In the situation of Notation 6.3.3.6, suppose that K = ∆0, so that a map

U : K/ → C can be identified with a morphism f in C. We then have a canonical equivalence

tfib(U) ' fib(f).

Example 6.3.3.11. Let {Cs}s∈S be a finite collection of ∞-categories which admit final objects,

let D be a pointed ∞-category which admits finite limits, and let F :
∏
s∈S Cs → D be a functor.

Then the reduction Red(F ) introduced in Construction 6.1.3.15 is given by the total fiber of the

diagram of functors {F T }T⊆S .

Our next goal is to construct a variant of Example 6.3.3.11. More precisely, we will show that

if F :
∏
s∈S Cs → D is a functor which carries final objects of

∏
s∈S Cs to final objects of D, then

the reduction Red(F ) has a different description as the total fiber of a diagram of functors (which

is better behaved with respect to differentiation).

Construction 6.3.3.12. Let {Cs}s∈S be a nonempty finite collection of∞-categories which admit

final objects ∗s ∈ Cs. Let F :
∏
s∈S Cs → D be a functor, where D is an ∞-category which admits

finite products. For every equivalence relation E on the set S, we let FE :
∏
s∈S Cs → D denote

the functor given by the formula

FE({Xs}s∈S) =
∏

T∈S/E

F ({XT
s }s∈S)

where

XT
s =

{
Xs if s ∈ T
∗s if s /∈ T.

It will be convenient to have a more formal construction of the collection of functors

{FE}E∈Equiv(S). For this, we define a partially ordered set Equiv(S) as follows:

(a) The objects of Equiv(S) are pairs (T,E), where T ⊆ S and E is an equivalence relation on

T .
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(b) We have (T,E) ≤ (T ′, E′) if and only if T ⊆ T ′ and xEy implies xE′y for x, y ∈ T .

Let us identify Equiv(S) with the partially ordered subset of Equiv(S) consisting of those pairs

(T,E) where T = S, and let Equiv0(S) denote the subset of Equiv(S) consisting of those pairs

(T,E) where E is a trivial equivalence relation on T .

Now let F :
∏
s∈S Cs → D be as above, and for T ⊆ S let F T be the functor defined in

Construction 6.1.3.15. The construction (T,E) 7→ FS−T determines a functor N(Equiv0(S))op →
Fun(

∏
s Cs,D). This functor admits a right Kan extension N(Equiv(S))op → Fun(

∏
s Cs,D), which

we will denote by (T,E) 7→ F (T,E). When T = S, we will denote F (T,E) simply by FE . Note that

FE '
∏
T∈S/E F

T agrees with the functor defined informally above.

Proposition 6.3.3.13. Let S be a nonempty finite set, let F :
∏
s∈S Cs → D be a functor between

∞-categories. Assume that each Cs has a final object ∗s, that D is pointed and admits finite limits,

and that F ({∗s}) is a final object of D. Let H denote the total fiber of the diagram {FE}E∈Equiv(S).

Then:

(a) The functor H :
∏
s∈S Cs → D is reduced.

(b) Let G :
∏
s∈S Cs → D be any reduced functor. Then the canonical map H → FE> ' F

induces a homotopy equivalence

MapFun(
∏
s∈S Cs,D)(G,H)→ MapFun(

∏
s∈S Cs,D)(G,F ).

Consequently, we have a canonical equivalence H ' Red(F ).

Proof. We first prove (a). We will assume that S has more than one element (otherwise H = F

and the result is obvious). Fix an element t ∈ S, and choose a sequence of objects {Xs ∈ Cs}
such that Xt = ∗t. We will prove that the canonical map F ({Xs}) → lim←−E∈Equiv+(S)

FE({Xs})
is an equivalence. Let U ⊆ Equiv(S) denote the subset consisting of those equivalence relations

E on S such that, if sEt, then s = t (that is, the set {t} is an equivalence class with respect to

E). Note that the inclusion N(U)→ N(Equiv(S)) admits a right adjoint, which we will denote by

E 7→ E′. Using our assumption that Xt = ∗t and that F ({∗s}) is a final object of D, we deduce

that the canonical map FE({Xs}) → FE
′
({Xs}) is an equivalence for every equivalence relation

E ∈ Equiv(S). Let U+ = U ∩ Equiv+(S). The preceding argument shows that the diagram

{FE({Xs})}E∈Equiv+(S) is a right Kan extension of its restriction to {FE({Xs})}E∈U+ . Note that

U+ has a largest element (given by the equivalence E0 relation corresponding to the partition

S = {t} ∪ (S − {t})), so that lim←−E∈Equiv+(S)
FE({Xs}) is given by FE0({Xs}). It now suffices to

observe that the map F ({Xs})→ FE0({Xs}) is an equivalence.

To prove (b), it will suffice to show that the space

MapFun(
∏
s∈S Cs,D)(G, lim←−

E∈Equiv+(S)

FE)
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is contractible. In fact, we claim that the mapping space

MapFun(
∏
s∈S Cs,D)(G,F

E)

is contractible for every nontrivial equivalence relation E on S. Let S1, . . . , Sk denote the equiva-

lence classes with respect to ∼, so that FE =
∏

1≤i≤k F
Si (where FSi is defined as in Construction

6.1.3.15). It will therefore suffice to show that each of the mapping spaces MapFun(
∏
s∈S Cs,D)(G,F

Si)

is contractible. Let E ⊆
∏
s∈S Cs be the full subcategory spanned by those sequences {Ys}s∈S such

that Ys is a final object of Cs for s /∈ Si. Then FSi is a right Kan extension of its restriction to E.

It will therefore suffice to show that MapFun(E,D)(G|E, FSi |E) is contractible. This is clear, since

G carries each object of E to a zero object of D.

The main ingredient in our proof of Theorem 6.3.3.3 is the following assertion:

Theorem 6.3.3.14. Let {Cs}s∈S be a nonempty finite collection of pointed ∞-categories which

admit finite colimits. For each functor F :
∏
s∈S Cs → S∗, let DF denote a differential of F (see

Definition 6.2.3.1 and Proposition 6.2.3.13). Suppose that F :
∏
s∈S Cs → S∗ is a functor such

that F ({∗s}) is contractible, so that Proposition 6.3.3.13 furnishes an equivalence θ : Red(F ) '
tfib{FE}E∈Equiv(S). Then θ induces an equivalence DRed(F ) ' tfib{DFE}E∈Equiv(S).

Example 6.3.3.15. In the situation of Theorem 6.3.3.14, suppose that S = {0, 1} and let ∗
denote the zero object of both C0 and C1. Theorem 6.3.3.14 asserts that, if F : C0×C1 → S∗
is a functor such that F (∗, ∗) is contractible and we define G : C0×C1 → S∗ by the formula

G(C,D) = F (C, ∗)× F (∗, D), then the fiber sequence

Red(F )→ F → G

induces a fiber sequence of differentials

DRed(F )→ DF → DG.

Combining Theorem 6.3.3.14 with Corollary 6.2.3.22, we obtain the following result:

Corollary 6.3.3.16. Let {Cs}s∈S be a nonempty finite collection of pointed differentiable ∞-

categories which admit finite colimits, and let F :
∏
s∈S Cs → S∗ be a functor which preserves

final objects and sequential colimits. Then the equivalence Red(F ) ' tfib{FE}E∈Equiv(S) induces

an equivalence ~∂ Red(F ) ' tfib{~∂FE}E∈Equiv(S) of functors from
∏
s∈S Sp(Cs) to Sp(D).

The proof of Theorem 6.3.3.14 is rather elaborate, and will be given in §6.3.4. We conclude this

section by showing how Theorem 6.3.3.3 can be deduced from Theorem 6.3.3.14.

Proof of Theorem 6.3.3.3. Let id : S∗ → S∗ be the identity functor; we wish to describe the spec-

trum ∂n(id) or equivalently the functor ∂n(id) : Spn → Sp. Let F : Sn∗ → S∗ be the functor
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given by F (X1, . . . , Xn) = X1 q · · · q Xn, so that the functor ∂n(id) is given by the derivative

of Red(F ). Set T = {1, . . . , n}. Using Corollary 6.3.3.16, we obtain an equivalence of functors

α : ∂n(id) ' tfib{~∂(FE)}E∈Equiv(T ). Since the product functor on S∗ preserves pushouts in each

variable, it follows from Example 6.2.3.10 that cored(FE) is trivial for E 6= E⊥. Moreover, FE⊥

is given by the formula FE⊥(X1, . . . , Xn) = X1 × · · · × Xn, so that cored(FE⊥) is the iterated

smash product functor ∧ : Sn∗ → S∗ and therefore ~∂(FE⊥) : Spn → Sp is also given by the iterated

smash product (see Example 6.2.3.28). In particular, we have ~∂(FE)(S, S, . . . , S) ' G′(E), where

G′ : N(Equiv(T ))op → Sp denote the functor given by the formula

G′(E) =

{
S if E = E⊥

0 otherwise.

Evaluating α on the sphere spectrum, we obtain an equivalence of spectra ∂n(id) ' tfib(G′).

Let G : N(Equiv(T ))op → Sp be the constant functor taking the value S, and let G′′ :

N(Equiv(T ))op → Sp be given by G′′(E) =

{
0 if E = E⊥

S otherwise.
so that we have a fiber sequence

of functors

G′ → G→ G′′

and therefore a fiber sequence of spectra

∂n(id)→ tfib(G)→ tfib(G′′).

Unwinding the definitions, we have equivalences

tfib(G) = fib(lim←−(G)→ lim←−(G|N(Equiv+(T ))) tfib(G′′) = fib(lim←−(G′′)→ lim←−(G′′|N(Equiv+(T ))).

Note that G′′ is a right Kan extension of G|N(Equiv−(T )), so that

tfib(G′′) ' fib(lim←−(G|N(Equiv−(T )))→ lim←−(G|N(Equiv±(T ))).

We may therefore identify ∂n(id) with the total fiber of the diagram of spectra

lim←−(G) //

��

lim←−(G|N(Equiv+(T )))

��
lim←−(G|N(Equiv−(T ))) // lim←−(G|N(Equiv±(T ))),

which is the fiber of the canonical map

SN(Equiv(T )) → SN(Equiv+(T )) ×
SN(Equiv±(T )) S

N(Equiv−(T )).
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6.3.4 Differentiation and Reduction

Let {Cs}s∈S be a nonempty finite collection of pointed ∞-categories which admit finite colimits,

and let F :
∏
s∈S Cs → S∗ be a functor which preserves final objects. Our goal in this section is to

prove Theorem 6.3.3.14, which asserts that the canonical map

dRed(F )→ tfib{dFE}E∈Equiv(S)

is an equivalence of functors from
∏
s∈S Cs → S∗ (here dG denotes the differential of a functor G).

We can outline our strategy as follows:

(a) Let C =
∏
s∈S Cs. We will show that any functor F : C → S∗ can be “approximated” by

products of homogeneous functors (Proposition 6.3.4.4).

(b) We show that any homogeneous functor from C to D is a product of functors which are

homogeneous in each variable (Proposition 6.3.4.11).

(c) Using (a) and (b), we are reduced to proving Theorem 6.3.3.14 for (products of) functors

which are homogeneous in each variable. In this case, we will obtain the desired result by

combining the classification of homogeneous functors given in §6.1.4 with an analysis of the

partially ordered set Equiv(S) of equivalence relations on S.

To carry out step (a), we need to introduce some terminology.

Definition 6.3.4.1. Let C be an ∞-category which admits finite colimits and has a final object

and let D be a differentiable ∞-category. We will say that a natural transformation α : F → G of

functors F,G : C→ D is a jet equivalence if α induces an equivalence PnF → PnG for every integer

n.

Remark 6.3.4.2. Let C be an ∞-category which admits finite colimits and has a final object, let

D be a differentiable ∞-category, and suppose we are given a pullback diagram

F
α //

��

F ′

��
G

β // G′

in the∞-category Fun(C,D). If β is a jet equivalence, then α is also a jet equivalence. This follows

from the fact that each of the functors Pn : Fun(C,D)→ Fun(C,D) is left exact (Remark 6.1.1.29).

Remark 6.3.4.3. Let C be an ∞-category which admits finite colimits and has a final object and

let D be a differentiable∞-category. Assume that D admits K-indexed colimits, for some simplicial

set K. Then the collection of jet equivalences is closed under K-indexed colimits (when regarded

as a full subcategory of Fun(∆1,Fun(C,D))). This follows immediately from the observation that

Pn : Fun(C,D)→ Fun(C,D) is a localization functor.



1164 CHAPTER 6. THE CALCULUS OF FUNCTORS

The main ingredient in our proof of Theorem 6.3.3.14 is the following general approximation

result:

Proposition 6.3.4.4. Let C be an ∞-category which admits finite colimits and has a final object,

let F : C → S∗ be a reduced functor, and let n ≥ 0 be an integer. Then there exists a simplicial

object F• of Fun(C, S∗) and a jet equivalence α : |F•| → PnF satisfying the following condition:

(∗n) For each integer p ≥ 0, the functor Fp can be written as a finite product Fp '
∏
α Fp,α, each

each Fp,α : C→ S∗ is kα-homogeneous for some 1 ≤ kα ≤ n.

The proof of Proposition 6.3.4.4 will require some preliminaries.

Lemma 6.3.4.5. Let C be an ∞-category which admits finite colimits and has a final object, let

D be a pointed differentiable ∞-category, and let α : F → G be a natural transformation between

functors F,G : C→ D. Assume that:

(i) The map α induces an equivalence F (∗)→ G(∗), where ∗ denotes the final object of C.

(ii) There exists an integer k such that α induces an equivalence of functors Ωk(F )→ Ωk(G).

Then α is a jet equivalence.

Proof. We will prove that Pn(α) is an equivalence using induction on n. If n = 0, the desired result

follows from (i). If n > 0, we use Theorem 6.1.2.4 to construct a map of fiber sequences

PnF //

Pn(α)

��

Pn−1F

Pn−1(α)

��

// RF

R(α)

��
PnG // Pn−1G // RG.

Since Pn−1(α) is an equivalence by the inductive hypothesis, it will suffice to show that R(α) is

an equivalence. Because the functor R is left exact, condition (ii) implies that R(α) induces an

equivalence ΩkRF → ΩkRG for some integer k. Since the ∞-category Homogn(C,D) is stable

(Corollary 6.1.2.8), this implies that R(α) is itself an equivalence.

Lemma 6.3.4.6. Let C be an ∞-category which admits finite colimits and has a final object. Let

n ≥ 0, and let U : Fun(N(∆)op,Fun∗(C, S∗)) → Fun∗(C, S∗) be the functor given by the formula

U(F•) = Pn|F•|. Then U preserves finite limits.

Proof. Since it is clear that U preserves final objects, it will suffice to show that U preserves

pullback squares (Corollary HTT.4.4.2.5 ). Let τ≥1 : S∗ → S∗ be the functor which assigns to

each pointed space X the connected component of its base point (so that we have a fiber sequence

τ≥1X → X → π0X). For every functor F : C→ S∗, let F o denote the composite functor

C
F→ S∗

τ≥1→ S∗ .



6.3. THE CHAIN RULE 1165

There is an evident natural transformation F o → F . According to Lemma 6.3.4.5, this natural

transformation is a jet equivalence whenever F is reduced (or, more generally, whenever F carries

the final object of C to a connected space). If we are given a simplicial object F• in Fun∗(C,D), then

we obtain a new simplicial object F o
• , and Remark 6.3.4.3 implies that the induced map |F o

• | → |F•|
is also a jet equivalence, and therefore induces an equivalence U(F o

• )→ U(F•).

Suppose now that we are given a pullback diagram σ :

F• //

��

F ′•

��
G• // G′•

of simplicial objects of Fun∗(C,D). We would like to show that U(σ) is also a pullback diagram.

In view of the above arguments, it will suffice to show that U carries the diagram σ′:

F o
• //

��

F ′o•

��
Go
• // G′o•.

to a pullback diagram in Fun∗(C, S∗). Let H• be the simplicial functor given by the fiber product

F ′o• ×G′o• G
o
•. For every integer k ≥ 0 and every object X ∈ C, we have a pullback diagram

F o
k (X) //

��

Hk(X)

��
π0Fk(X) // π0F

′
k(X)×π0G′k(X) π0Gk(X)

,

so that the canonical map F o
k (X)→ Hk(X) has nonempty, discrete homotopy fibers (that is, it is

a covering map). Using Lemma 6.3.4.5, we deduce that the map F o
k → Hk is a jet equivalence,

so that Remark 6.3.4.3 implies that U(F o
• ) → U(H•) is an equivalence. It will therefore suffice to

show that the pullback diagram

H• //

��

F ′o•

��
Go
• // G′o•

remains a pullback diagram after applying the functor U . Because Pn is left exact (Remark 6.1.1.29),

we are reduced to proving that the diagram

|H•| //

��

|F ′o•|

��
|Go
•| // |G′o•|
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is a pullback square of functors. This is equivalent to the assertion that for every object X ∈ C,

the diagram

|H•(X)| //

��

|F ′o•(X)|

��
|Go
•(X)| // |G′o•(X)|

is a pullback square of spaces. This follows from Lemma 5.5.6.17 (note that each G′ok (X) is con-

nected, by construction).

Proof of Proposition 6.3.4.4. Let G : C→ S∗ denote the constant functor taking the value ∆0, and

let G• be the constant simplicial object of Fun(C, S∗) taking the value G. We proceed by induction

on n. When n = 0, we can take F• = G•. Let us therefore assume that n > 0. By the inductive

hypothesis, we can choose a jet equivalence α : |F•| → Pn−1F satisfying condition (∗n−1). Choose

a natural transformation u : G• → F•, and let F•,• be the Čech nerve of u. For every integer p ≥ 0,

we have an augmentation map

vp : lim−→
[q]

Fp,q → Fp

which exhibits lim−→[q]
Fp,q(X) as the base point component of Fp(X), for every object X ∈ C. Using

Lemma 6.3.4.5, we deduce that vp is a jet equivalence. It follows that the composite map

Pm( lim−→
[p],[q]

Fp,q)→ Pm|F•| ' Pn−1F

is also a jet equivalence. Define a simplicial object F ′• of Fun(C, S∗) by the formula F ′p = Fp,p. Since

the ∞-category N(∆)op is sifted, we conclude that the map |F ′•| → Pn−1F is a jet equivalence.

Theorem 6.1.2.4 supplies a fiber sequence of functors

PnF → Pn−1F → RF,

where R is n-homogeneous, and let F ′′• denote the simplicial object of Fun(C, S∗) whose pth term

is given by the fiber of the composite map

F ′p → Pn−1F → RF.

We claim that the evident map β : |F ′′• | → PnF satisfies our requirements. Since colimits in S are

universal, we have a pullback diagram

|F ′′• | //

β

��

|F ′•|
γ

��
PnF // Pn−1F.
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For every integer p ≥ 0, the map F ′p → Pn−1F → R factors through F ′0 ' G and is therefore

nullhomotopic. We therefore have an equivalence

F ′′p ' Ω(RF )× F ′p ' Ω(RF )× Fp,p ' Ω(RF )× Ω(Fp)
p.

Because the simplicial object F• satisfies (∗n−1) and R is n-homogeneous, we deduce that F ′′•
satisfies (∗n).

To apply Proposition 6.3.4.4 in our context, we need to know something about the classification

of homogeneous functors with domain
∏
s∈S Cs. For this, we need to generalize some of the results

of §6.1.4 to the multivariate case. We begin by proving a generalization of Proposition 6.1.3.10.

Proposition 6.3.4.7. Let {Cs}s∈S be a nonempty finite collection of pointed ∞-categories which

admit finite colimits, let C =
∏
s∈S Cs, and let D be a pointed differentiable ∞-category. Let

F :
∏
s∈S Cs → D be a functor which is ns-reduced in the sth argument. Then F is n-reduced (when

regarded as a functor from C to D.

Lemma 6.3.4.8. Let C0 and C1 be ∞-categories which admit finite colimits and zero objects ∗0
and ∗1, let C = C0×C1, and let D be an ∞-category which admits finite limits. Let φ0 denote the

composite functor

C0 ' C0×{∗1} ↪→ C0×C1 = C,

and define φ1 : C1 → C similarly. Then composition with φ0 and φ1 induces an equivalence of

∞-categories

θ : Exc∗(C,D)→ Exc∗(C0,D)× Exc∗(C1,D).

Proof. Let ξ : Exc∗(C0,D)× Exc∗(C1,D)→ Exc∗(C0×C1,D) be the functor given by the formula

ξ(F0, F1)(X,Y ) = F0(X)× F1(Y ).

It is easy to see that ξ is a homotopy inverse to θ.

Remark 6.3.4.9. Let {Cs}s∈S be a nonempty finite collection of pointed∞-categories which admit

finite colimits, let C =
∏
s∈S Cs, let D be a pointed ∞-category which admits finite products. Let

F : C → D be a functor and let crn(F ) : Cn → D be its nth cross effect. Let d crn(F ) denote the

differential of crn(F ) (where we regard crn(F ) as a functor of n variables). The proof of Lemma

6.3.4.8 shows that d crn(F ) can be written as a product of functors given by the composition

Cn →
∏
s∈S

Cnss
d cr~n(F )−→ D

where ~n varies over those tuples {ns}s∈S having sum n and the cross effects cr~n are defined as in

Variant 6.1.3.21.
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Proof of Proposition 6.3.4.7. If each ns = 0, there is nothing to prove. Assume therefore that

ns > 0 for some s ∈ S. Then F is 1-reduced as a functor of its sth argument, and therefore 1-

reduced when regarded as a functor from C to D. According to Proposition 6.1.3.24, it will suffice

to show that for m < n, the differential d crm(F ) vanishes. Using Remark 6.3.4.9, we are reduced

to proving that the functor

d cr~m(F ) :
∏
s∈S

Cmss → D

is trivial for every sequence {ms}s∈S satisfying
∑

s∈Sms < n. For such a sequence, we must have

ms < ns for some s. The desired result now follows by applying Remark 6.1.3.23 to F , regarded as

a functor from Cs to Fun(
∏
t6=s Ct,D).

Corollary 6.3.4.10. Let {Cs}s∈S be a nonempty finite collection of ∞-categories which admit

finite colimits and final objects, and let D be a pointed differentiable ∞-category. For every collec-

tion of nonnegative integers ~n = {ns}s∈S, let Homog~n(
∏
s∈S Cs,D) denote the full subcategory of

Fun(
∏
s∈S Cs,D) spanned by those functors F which are ns-homogeneous when regarded as a func-

tor from Cs to Fun(
∏
t6=s Ct,D). Then Homog~n(

∏
s∈S Cs,D) ⊆ Homogn(C,D), where C =

∏
s∈S Cs

and n =
∑

s∈S ns.

Proof. Combine Proposition 6.3.4.7 with Proposition 6.1.3.4.

In the situation of Corollary 6.3.4.10, the∞-category Homogn(C,D) can be reconstructed from

the ∞-categories Homog~n(
∏
s∈S Cs,D) as follows:

Proposition 6.3.4.11. Let {Cs}s∈S be a nonempty finite collection of pointed ∞-categories which

admit finite colimits, let C =
∏
s∈S Cs, let D be a pointed differentiable ∞-category, and let n ≥ 0 be

an integer. For every collection of nonnegative integers ~n = {ns}s∈S, let |~n| =
∑

s∈S ns. Consider

the functor

Φ :
∏
|~n|=n

Homog(~n)(
∏
s∈S

Cs,D)→ Homog(n)(C,D)

given by

Φ({F~n}) =
∏
|~n|=n

F~n.

Then Φ is an equivalence of ∞-categories.

Lemma 6.3.4.12. Let S be a finite set. Suppose we are given a finite collection of pointed ∞-

categories {Cs}s∈S which admit finite colimits, and let D be an ∞-category which admits finite

limits. Let C =
∏
s∈S Cs, and for each s ∈ S, let φs : Cs → C be the functor given by the product of

the identity map id : Cs → Cs with constant functor Cs → Ct carrying Cs to a zero object of Ct for

t 6= s.
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Fix an integer n ≥ 0. For every collection of nonnegative integers ~n = {ns}s∈S, set

C~n =
∏
s∈S

Cnss C(~n) =
∏
s∈S

C(ns)
s ,

where C(ns)
s denotes the nsth extended power of Cs (see Notation 6.1.4.1). Let SymFun~n(C,D)

denote the ∞-category Fun(C(~n),D), and let SymFun
(~n)
lin (C,D) denote the full subcategory of

SymFun~n(C,D) spanned by those functors for which the underlying functor
∏
s∈S C

ns
s → D is

1-homogeneous in each variable. Let U~n denote the composite map

U~n : C~n →
∏
s∈S

C(ns) → C(n) .

Then the maps U~n induce an equivalence of ∞-categories

Ψ : SymFunnlin(C,D)→
∏
|~n|=n

SymFun~nlin(C,D).

Proof. Using Lemma 6.3.4.8 repeatedly, we obtain an equivalence of ∞-categories

Exc∗(C
n,D)→

∏
(s1,...,sn)∈Sn

Exc∗(
∏

1≤i≤n
Csi ,D).

The desired result is now obtained by extracting homotopy fixed points with respect to the action

of the symmetric group Σn on each side.

Remark 6.3.4.13. Let C =
∏
s∈S Cs and D be as in Lemma 6.3.4.12, and assume that D is

pointed. Let F : C → D be a functor. For every ~n = {ns}s∈S with
∑

s∈S ns = n, we let

cr(~n)(F ) ∈ SymFun(~n)(C,D) be the composition of cr(n)(F ) ∈ SymFun(n)(C,D) with the functor

U~n : C(~n) → C(n) in the statement of Lemma 6.3.4.12. Note that the underlying n-ary functor of

cr(~n)(F ) is given by the functor cr~n(F ) :
∏
s∈S C

ns
s → D appearing in Variant 6.1.3.21.

Proof of Proposition 6.3.4.11. Suppose we are given two sequences ~m and ~n with |~m| = |~n| = n.

Consider the composite functor

U~m,~n : Homog~m(
∏
s∈S

Cs,D) ⊆ Homogn(C,D)
cr(n)→ SymFunnlin(C,D)→ SymFun~nlin(C,D).

If ~m = ~n, then iterated application of Theorem 6.1.4.7 shows that U~m,~n is an equivalence of ∞-

categories. It ~m 6= ~n, we claim that U~m,~n carries each object F ∈ Homog~m(
∏
s∈S Cs,D) to a zero

object of the ∞-category SymFun~nlin(C,D). Using Remark 6.3.4.13, we are reduced to proving that

cr~m(F ) carries each object of
∏
s∈S C

ms
s to a zero object of D. Since

∑
s∈Sms =

∑
s∈S ns, we have

ms > ns for some s ∈ S, in which case the desired result follows by applying Proposition 6.1.3.22

to the functor Cs → Fun(
∏
t6=s Ct,D) determined by F .
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It follows from the above argument that the composite functor∏
|~m|=n

Homog~m(
∏
s∈S

Cs,D)
Φ→ Homogn(C,D)

cr(n)→ SymFunnlin(C,D)
Ψ→

∏
|~n|=n

SymFun~nlin(C,D)

is an equivalence of ∞-categories, where Ψ is the equivalence of ∞-categories appearing in Lemma

6.3.4.12. Since cr(n) is an equivalence of ∞-categories by Theorem 6.1.4.7, we conclude that Φ is

an equivalence of ∞-categories.

We now turn to the proof of Theorem 6.3.3.14.

Remark 6.3.4.14. Let {Cs} be a finite collection of pointed ∞-categories which admit finite

colimits. Suppose we are given functors F, F ′ :
∏
s∈S Cs → S∗ and an element s ∈ S such that F ′

is 2-reduced when regarded as a functor from Cs to Fun(
∏
t6=s Ct, S∗). Form fiber sequences

H → F → lim←−
E∈Equiv+(S)

FE .

H ′ → F ′ → lim←−
E∈Equiv+(S)

F ′E .

Using Remark 6.1.1.29, we deduce that H ′ and each of the functors F ′E is also 2-reduced when

regarded as a functor Cs → Fun(
∏
t6=s Ct, S∗). It follows that the projection maps

H ×H ′ → H (F × F ′)E ' FE × F ′E → FE

induce equivalences after applying the functor P~1 for ~1 = (1, . . . , 1), and therefore equivalences of

differentials. Consequently, the conclusion of Theorem 6.3.3.14 is valid for F if and only if it is

valid for the product F × F ′.

Proof of Theorem 6.3.3.14. Let n be the cardinality of the set S, let C =
∏
s∈S Cs, and let

Exc∗(
∏
s∈S Cs, S∗) denote the full subcategory of Fun(C, S∗) spanned by those functors which

are reduced and excisive in each variable. Note that any functor F :
∏
s∈S Cs → D which is

1-homogeneous in each variable is n-homogeneous when regarded as a functor from C to D (Corol-

lary 6.1.3.11). It follows that any natural transformation F ′ → F which induces an equivalence

PnF
′ → PnF also induces an equivalence of differentials DF ′ → DF .

Let F :
∏
s∈S Cs → S∗ be a functor which preserves final objects. For every subset T ⊆ S,

let F T : C → S∗ be defined as in Construction 6.1.3.15, and note that (PnF
T ) ' Pn(F T ). Since

Pn is left exact, we conclude that Pn Red(F ) ' Red(PnF ). In particular, we have DRed(F ) '
DRed(PnF ) and DFE ' DPn(FE) ' D(PnF )E for each equivalence relation E on S. We may

therefore replace F by PnF and thereby reduce to the case where F is n-excisive.

Using Proposition 6.3.4.4, we can choose a jet equivalence |F•| → F such that each Fk is a finite

product of homogeneous functors from C to D. Let F ′ denote the functor |F•|. Note that for every
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subset T ⊆ S, the functor F ′T is given by |F T• | (using the notation of Construction 6.1.3.15). Since

geometric realizations in S commute with products, we deduce that for every equivalence relation E

on S, the canonical map |FE• | → F ′E is an equivalence. Since F ′ → F is a jet equivalence, the left

exactness of the functors Pm implies that F ′E → FE is a jet equivalence for every E ∈ Equiv(S), so

that we have a jet equivalence |FE• | → FE . In particular, we obtain an equivalence of differentials

D|FE• | ' DFE , so that DFE is the geometric realization of the simplicial object DFE• in the

∞-category Exc∗(
∏
s∈S Cs, S∗). Since the ∞-category Exc∗(

∏
s∈S Cs, S∗) is stable (see Corollary

6.1.2.8), we deduce that the canonical map

| tfib{DFE• }E∈Equiv(S)| → tfib{|DFE• |}E∈Equiv(S)

is an equivalence in Exc∗(
∏
s∈S Cs, S∗).

Let H• be the simplicial functor given by tfib{FE• }E∈Equiv(S), and let H = tfib{FE}E∈Equiv(S).

It follows from Lemma 6.3.4.6 that the canonical map |H•| → H is a jet equivalence, so that

DH ' D|H•| is the geometric realization of the simplicial object of the simplicial object dH• in

the ∞-category Exc∗(
∏
s∈S Cs, S∗). It follows that the map

DH → tfib{DFE)}E∈Equiv(S)

can be realized as a colimit of maps DHm → tfib{FEm}E∈Equiv(S). We may therefore replace F by

Fm and thereby reduce to the case where F : C → S∗ is a finite product of reduced homogeneous

functors.

Using Proposition 6.3.4.11, we can write F as a finite product
∏
α∈A Fα, where each F (α)

belongs to Homog~nα(
∏
s∈S Cs, S∗), where ~nα = {nα,s}s∈S is a collection of nonnegative integers

with |~nα| =
∑

s∈S nα,s > 0. Let A0 ⊆ A be the subset consisting of those indices α such that

nα,s ≤ 1 for all s ∈ S. Let F =
∏
α∈A0

F (α). Applying Remark 6.3.4.14 repeatedly, we can replace

F by F and thereby reduce to the case where A0 = A. For every subset T ⊆ S, let FT denote the

product of those functors Fα for which α ∈ A satisfies nα,s =

{
1 if s ∈ T
0 if s /∈ T.

Then F '
∏
∅6=T⊆S FT ,

where each FT can be written as a composition∏
s∈S

Cs →
∏
s∈T

Cs
F̃T→ S∗

for some functor F̃T which is reduced and excisive in each variable.

Let U be a collection of nonempty subsets of S, and set FU =
∏
T∈U FT . Note that for E ∈

Equiv(S), we have FEU =
∏
T FT , where the product is taken over all subsets T ∈ U which are

contained in a single equivalence class of the equivalence relation E. If T 6= S, then the collection of

equivalence relations E ∈ Equiv+(S) satisfying this condition has a smallest element, and therefore

a weakly contractible nerve. It follows that lim←−E∈Equiv+(S)
FEU is given by the product

∏
T∈U,T 6=S FT .
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Form a fiber sequence

HU → FU → lim←−
E∈Equiv+(S)

FEU ,

so that HU '

{
FS if S ∈ U

∗ otherwise,
where ∗ denotes the constant functor C → S∗ carrying every

object to a single point.

We will prove that for every collection U of nonempty subsets of S, the canonical map

θU : DHU → tfib{DFEU }E∈Equiv(S)

is an equivalence. Taking U = P(S), we obtain a proof of the desired result. Our proof will proceed

by induction on the cardinality of U. Let us therefore assume that θU′ is an an equivalence for every

proper subset U′ ( U. Since the ∞-category Exc∗(
∏
s∈S Cs, S∗) is stable (Corollary 6.1.2.8) and

the differentiation functor d : Fun(
∏
s∈S Cs, S∗)→ Exc∗(

∏
s∈S Cs, S∗) preserves colimits, we deduce

that the map

θ′ : D( lim−→
U′(U

HU′)→ tfib{D( lim−→
U′(U

FEU′}E∈Equiv(S)

For each equivalence relation E ∈ Equiv(S), let G(E) denote the cofiber of the canonical map

lim−→
U′(U

FEU′ → FEU .

When E = E⊥ is the discrete equivalence relation on S (that is, sE⊥t for all s, t ∈ S), we denote

G(E) by G. Let H0 denote the cofiber of the map lim←−U′(UHU′ → HU. Using the description of the

functor HU given above, we see that

H0 =

{
FS if U = {S}
0 otherwise.

We have a fiber sequence

θ′ → θU → θ′′

in the stable ∞-category Fun(∆1,Exc∗(
∏
s∈S Cs, S∗)), where θ′′ denotes the canonical map

dH0 → tfib{DG(E)}E∈Equiv(S).

Consequently, to prove that θU is an equivalence, it will suffice to show that θ′′ is an equivalence.

If U = {S}, then H0 ' G ' FS and G(E) is trivial for E ∈ Equiv+(S). Let us therefore assume

that U 6= {S}. Then H0 is trivial, so we are reduced to proving that the canonical map

φ : DG→ tfib{DG(E)}E∈Equiv(S)
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is an equivalence.

Let ∧ : S∗× S∗ → S∗ denote the smash product functor on pointed spaces (see Example 6.2.3.28).

Unwinding the definitions, we see that for each equivalence relation E ∈ Equiv(S), the functor G(E)

is given by the smash product
∧
T∈U FT if each element T ∈ U is contained in an equivalence class

of E, and is trivial otherwise. There are several cases to consider:

(a) Suppose there is some element s ∈ S which does not belong to any element of U. Then each

of the functors G(E) is constant when regarded a functor Cs → Fun(
∏
t6=s Ct, S∗), so that the

differential DG(E) is a zero object of Exc∗(
∏
s∈S Cs, S∗). In this case, φ is a map between

zero objects of Exc∗(
∏
s∈S Cs, S∗), and therefore an equivalence.

(b) Suppose that some element s ∈ S belongs to T∩T ′ for some pair of distinct elements T, T ′ ∈ U.

Using Proposition 6.1.3.10, we deduce that each of the functors G(E) is 2-reduced when

regarded as a functor from Cs to Fun(
∏
t6=s Ct, S∗), so that the differential DG(E) vanishes

(Remark 6.3.4.14). We again see that φ is a map between zero objects of Exc∗(
∏
s∈S Cs, S∗),

and therefore an equivalence.

(c) Suppose that U = {T1, . . . , Tk} for some collection of disjoint nonempty subsets T1, . . . , Tk ⊆
S satisfying S =

⋃
Ti. Let Equiv++(S) ⊆ Equiv+(S) be the subset consisting of those

equivalence relations such that each Ti is contained in an equivalence class. Our analysis

above shows that the functors G(E) are given by the formula

G(E) =

{
G if E ∈ Equiv++(S)

∗ otherwise,

so that the diagram (E ∈ Equiv+(S)) 7→ G(E) is a right Kan extension of its restriction to

the ∞-category N(Equiv++(S))op. Consequently, to prove that φ is an equivalence, it will

suffice to show that the simplicial set N(Equiv++(S)) is weakly contractible. In fact, the

partially ordered set Equiv++(S) has a smallest element: namely, the equivalence relation

whose equivalence classes are precisely the sets Ti (note that this equivalence relation belongs

to Equiv+(S) by virtue of our assumption that U 6= {S}).

6.3.5 Consequences of Theorem 6.3.3.14

Let {Cs}s∈S be a nonempty finite collection of pointed ∞-categories which admit finite colimits,

let D be a pointed differentiable ∞-category, and let

D : Fun(
∏
s∈S

Cs,D)→ Exc∗(
∏
s∈S

Cs,D)
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be a left adjoint to the inclusion (given by differentiation). When restricted to the full subcategory

of Fun(
∏
s∈S Cs,D) spanned by those functors which are reduced in each variable, the functor D

coincides with P~1 of Proposition 6.1.3.6 (with ~1 = (1, 1, . . . , 1)), and is therefore left exact. In

general D is not left exact. Nevertheless, Theorem 6.3.3.14 implies that D commutes with a very

special type of limits. In this section, we will apply Theorem 6.3.3.14 to show that differentiation

commutes with a larger class of limits (Theorem 6.3.5.5). We will also obtain a generalization of

the chain rule of Theorem 6.2.1.22 to the case of nonreduced functors (Theorem 6.3.5.6).

We begin by formulating a more general version of Theorem 6.3.3.14.

Notation 6.3.5.1. Let p : S → T be a map of finite sets. For each t ∈ T , we let St denote the fiber

of p−1{t} ⊆ S. We let Equivp(S) denote the subset of Equiv(S) consisting of those equivalence

relations E on S such that p is constant on each equivalence class: that is, equivalence relations

for which xEy implies p(x) = p(y). If E ∈ Equiv(S) and t ∈ T , we let Et denote the restriction

of E to an equivalence relation on St ⊆ S. Note that the construction E 7→ {Et}t∈T determines

an isomorphism of partially ordered sets Equivp(S) '
∏
t∈T Equiv(St). Note that Equivp(S) has a

largest element Ep, where xEpy if and only if p(x) = p(y). We let Equiv+
p (S) denote the partially

ordered set Equivp(S)− {Ep}.

Proposition 6.3.5.2. Let p : S → T be a surjective map of nonempty finite sets. Suppose we

are given a collection of pointed ∞-categories {Cs}s∈S which admit finite colimits, a collection of

pointed ∞-categories {Dt}t∈T , and a pointed presentable differentiable ∞-category E. Let {Ft :∏
p(s)=t Cs → Dt} and G :

∏
t∈T Dt → E be functors which preserve zero objects. For each E ∈

Equivp(S), let FE denote the functor

∏
s∈S

Cs

∏
t∈T F

Et
t−→

∏
t∈T

Dt .

Then the canonical map

D(G ◦ tfib{FE}E∈Equivp(S))→ tfib{D(G ◦ FE)}E∈Equivp(S)

is an equivalence in the ∞-category Exc∗(
∏
s∈S Cs,E).

Remark 6.3.5.3. In the special case where T has a single element, E = S∗, and the functor G is

an equivalence, Proposition 6.3.5.2 reduces to Theorem 6.3.3.14.

Before giving the proof of Proposition 6.3.5.2, let us describe some of its consequences.

Notation 6.3.5.4. If C and D are compactly generated ∞-categories, we let Func(C,D) denote

the full subcategory of Fun(C,D) spanned by those functors which preserve filtered colimits.
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Theorem 6.3.5.5. Let S be a nonempty finite set. Suppose we are given compactly generated

pointed ∞-categories {Cs}s∈S, and D. Let K be a finite simplicial set and suppose we are given a

diagram

α : K/ → Func(
∏
s∈S

Cs,D),

carrying each vertex v ∈ K/ to a functor Fv :
∏
s∈S Cs → D. For every nonempty subset S′ ⊆ S,

let Fv,S′ denote the restriction of Fv to∏
s∈S′

Cs '
∏
s∈S′

Cs×
∏

s∈S−S′
{∗s} ⊆

∏
s∈S

Cs;

here ∗s denotes a zero object of Cs for s ∈ S. Assume that:

(1) Each of the functors Fv carries zero objects of
∏
s∈S Cs to zero objects of D.

(2) For each equivalence relation E ∈ Equiv(S), there exists a map of finite simplicial sets u :

K →
∏
S′∈S/EKS′ satisfying the following conditions:

(a) The map of simplicial sets u is right cofinal.

(b) For each S′ ∈ S/E, there exists a limit diagram βS′ : K/
S′ → Func(

∏
s∈S′ Cs,D) such

that the composite map

K/ u→
∏

S′′∈S/E

K/
S′′ → K/

S′
βS′→ Func(

∏
s∈S′

Cs,D)

is given by v 7→ Fv,S′.

Let v0 denote the cone point of K/. Then the canonical map

φ : ~∂(Fv0)→ lim←−
v∈K

~∂(Fv)

is an equivalence in Exc∗(
∏
s∈S Sp(Cs), Sp(D)).

Proof of Theorem 6.3.5.5. For every compact object D ∈ D, let JD : D → S∗ denote the functor

corepresented by D. Then JD is left exact, so that its derivative jD = ∂(JD) : Sp(D)→ Sp is given

by pointwise composition with JD (Example 6.2.1.4). Since D is compactly generated, the functors

jD are jointly conservative. Consequently, it will suffice to show that each of the induced maps

αG : jD ◦ ~∂(Fv0)→ lim←− jD ◦
~∂(Fv)

is an equivalence. Using Theorem 6.2.1.22, we can identify α with the map

~∂(JD ◦
∏
s∈S

Fs)→ lim←−
v∈K

~∂(JD ◦ Fv).
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We may therefore replace F by JD ◦ F and thereby reduce to the case where D = S∗.

For each equivalence relation E ∈ Equiv(S), let φE denote the canonical map ~∂(FEv0
) →

lim←−v∈K
~∂(FEv ). We will prove that each of the maps φE is an equivalence. The proof will proceed

by induction. For every equivalence relation E, let EquivE(S) denote the collection of equiva-

lence relations on S that refine E (that is, EquivE(S) = {E′ ∈ Equiv(S) : E′ ≤ E}) and let

Equiv+
E(S) = EquivE(S)−{E}. To complete the proof, it will suffice to show that if E ∈ Equiv(S)

has the property that φE′ is an equivalence for each E′ ∈ Equiv+
E(S), then φE is an equivalence.

Fix an equivalence relation E ∈ Equiv(S) as above, and let T = S/E. Let G :
∏
t∈T S∗ → S∗

denote the functor given by iterated Cartesian product. Then φE can be identified with the upper

horizontal map appearing in the diagram σ :

~∂(G ◦
∏
S′∈T Fv0,S′)

//

��

lim←−v∈K
~∂(G ◦

∏
S′∈T Fv,S′)

��

lim←−E′∈Equiv+
E(S)

Diff(G ◦
∏
S′∈T F

E′
v0,S′

) // lim←−v∈K lim←−E′∈Equiv+
E(S)

(~∂(G ◦
∏
S′∈T F

E′
v,S′)).

Here the lower horizontal map is an equivalence by the inductive hypothesis. Since Exc∗(
∏
s∈S Sp(Cs),Sp)

is a stable ∞-category, it will suffice to show that σ induces an equivalence after passing to the

fibers of the vertical maps. Using Proposition 6.3.5.2, we are reduced to providing that the map

~∂(G ◦
∏
S′∈T

Red(Fv0,S′))→ lim←−
v∈K

~∂(G ◦
∏
S′∈T

Red(Fv,S′))

is an equivalence.

Let G′ :
∏
t∈T S∗ → S∗ denote the iterated smash product functor. For each vertex v ∈ K, the

canonical map

G ◦
∏
S′∈T

Red(Fv,S′)→ G′ ◦
∏
S′∈T

Red(Fv,S′)

induces an equivalence of derivatives. It will therefore suffice to show that the canonical map

θ : ~∂(G′ ◦
∏
S′∈T

Red(Fv0,S′))→ lim←−
v∈K

~∂(G′ ◦
∏
S′∈T

Red(Fv,S′))

is an equivalence. Using Theorem 6.2.1.22 and Example 6.2.3.28, we can identify θ with the

canonical map

θ′ : ⊗S′∈T~∂(Red(Fv0,S′))→ lim←−
v∈K
⊗S′∈T~∂(Red(Fv,S′)).

Choose a map u : K →
∏
S′∈S/EKS′ and maps βS′ : K/

S′ → Func(
∏
s∈S′ Cs,D) as in (2). For

S′ ∈ T , let v0,S′ denote the cone point of K/
S′ . Using the right cofinality of u, we can identify θ

with the canonical map

⊗S′∈T~∂ Red(βS′(v0,S′))→ lim←−
{vS′∈KS′}

⊗S′∈T~∂ Red(βS′(vS′)) ' ⊗S′∈T lim←−
vS′∈KS′

~∂ Red(βS′(vS′)).
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We are therefore reduced to proving that for each S′ ∈ T , the canonical map

~∂ Red(βS′(v0,S′))→ lim←−
vS′∈KS′

~∂ Red(βS′(vS′))

is an equivalence. Since differentiation is left exact when restricted to functors which are reduced in

each variable, so it suffices to show that Red(βS′(v0,S′)) ' lim←−vS′∈KS′ RedβS′(vS′) is an equivalence.

This follows from our assumption that βS′ is a limit diagram, since the reduction functor Red is

left exact.

Theorem 6.3.5.6. Let p : S → T be a surjective map of nonempty finite sets. Suppose we are given

compactly generated pointed∞-categories {Cs}s∈S, {Dt}t∈T , and E. Let G ∈ Func(
∏
t∈T Dt,E). Let

K be a finite simplicial set, and suppose that for each t ∈ T we are given a diagram

K/ → Func(
∏
s∈St

Cs,Dt),

carrying each vertex v ∈ K/ to a functor Ft,v :
∏
s∈St Cs → Dt. Assume that:

(1) Each of the functors Ft,v carries zero objects of
∏
s∈St Cs to zero objects of Dt, and G carries

zero objects of
∏
t∈T Dt to zero objects of E.

(2) For each E ∈ Equiv+
p (S), there exists a map of finite simplicial sets u : K/ → K/

E satisfying

the following conditions:

(a) The underlying map K → K/
E is right cofinal.

(b) For each t ∈ T , the functor K/ → Func(
∏
s∈St Cs,Dt) given by v 7→ FEtt,v factors through

u.

(c) The map u carries the cone point of K/ to the cone point of K/
E.

Let v0 denote the cone point of K/. Then the diagram σ:

~∂(G ◦
∏
t∈T Ft,v0) //

��

lim←−v∈K
~∂(G ◦

∏
t∈T Ft,v)

��
~∂(G) ◦

∏
t∈T

~∂(Ft,v0) // lim←−v∈K
~∂(G) ◦

∏
t∈T

~∂(Ft,v)

is a pullback square in Fun(
∏
s∈S Sp(Cs),Sp(E)).

Proof. For each E ∈ Equiv+
p (S), let σ(E) denote the diagram

~∂(G ◦
∏
t∈T F

Et
t,v0

) //

��

lim←−v∈K
~∂(G ◦

∏
t∈T F

Et
t,v )

��
~∂(G) ◦

∏
t∈T

~∂(FEtt,v0
) // lim←−v∈K

~∂(G) ◦
∏
t∈T

~∂(FEtt,v ).
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Form a fiber sequence

τ → σ → lim←−
E∈Equiv+

p (S)

σ(E).

in the stable ∞-category Fun(∆1 ×∆1,Exc∗(
∏
s∈S Sp(Cs),Sp(E))). To prove that σ is a pullback

diagram, it will suffice to show that τ is a pullback diagram and that σ(E) is a pullback diagram,

for each E ∈ Equiv+
p (S).

We first show that τ is a pullback diagram. Unwinding the definitions, we can write τ as a

commutative diagram

tfib{~∂(G ◦
∏
t F

Et
t,v0

)}E∈Equivp(S)
//

��

lim←−v∈K tfib{~∂(G ◦
∏
t F

Et
t,v )}E∈Equivp(S)

��

tfib{~∂(G) ◦
∏
t
~∂(FEtt,v0

)}E∈Equivp(S)
// lim←−v∈K tfib{~∂(G) ◦

∏
t
~∂(FEtt,v )}E∈Equivp(S).

To prove that this diagram is a pullback square, it will suffice to show that the vertical maps are

equivalences. Fix a vertex v ∈ K/; we will show that the map

θ : tfib{~∂(G ◦
∏
t∈T

FEtt,v )}E∈Equivp(S) → tfib{~∂(G) ◦
∏
t∈T

~∂(FEtt,v )}E∈Equivp(S)

is an equivalence. Since the functor ~∂(G) is left exact in each variable, the right hand side is given

by
~∂(G) ◦

∏
t∈T

tfib{~∂(FEtt,v )}Et∈Equiv(St).

We have a commutative diagram

~∂(G ◦
∏
t∈T tfib{FEtt,v }Et∈Equiv(St))

//

θ′

��

tfib{G ◦
∏
t∈T F

Et
t,v }E∈Equivp(S)

θ
��

~∂(G) ◦
∏
t∈T

~∂(tfib{FEtt,v }Et∈Equiv(St))
// ~∂(G) ◦

∏
t∈T tfib{~∂(FEtt,v )}Et∈Equiv(St).

The horizontal maps in this diagram are equivalences by Proposition 6.3.5.2. We are therefore

reduced to proving that θ′ is an equivalence. This follows from Theorem 6.2.1.22, since each of

the functors tfib{FEtt,v } is reduced in each variable. This completes the proof that τ is a pullback

square.

Now suppose that E ∈ Equiv+
p (S); we will show that the diagram σ(E) is a pullback square.

Choose a map u : K/ → K/
E satisfying the requirements of hypothesis (2). Condition (b) implies

that for each t ∈ T , we can choose a diagram u′t : K/
t,E → Func(

∏
s∈St Cs,Dt) such that the

composition of u′t ◦ ut is given by the formula v 7→ FEtt,v . Let K/
E denote the product

∏
t∈T K

/
t,E .
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For each vertex w ∈ {wt}t∈T , let Ht,w :
∏
s∈St Cs → Dt denote the image of wt under the diagram

u′t. Then we rewrite σ(E) as a diagram

~∂(G ◦
∏
t∈T Ht,ut(v0)) //

��

lim←−v∈K
~∂(G ◦

∏
t∈T Ht,ut(v))

��
~∂(G) ◦

∏
t∈T

~∂(Ht,ut(v0)) // lim←−v∈K
~∂(G) ◦

∏
t∈T

~∂(Ht,ut(v)).

Let w0 denote the cone point of K/
E . Using assumptions (a) and (c), we can rewrite the diagram

σ(E) again:

~∂(G ◦
∏
t∈T Ht,w0) //

��

lim←−w∈K/
E

~∂(G ◦
∏
t∈T Ht,w)

��
~∂(G) ◦

∏
t∈T

~∂(Ht,w0) // lim←−w∈K/
E

~∂(G) ◦
∏
t∈T

~∂(Ht,w).

Since K/
E contains w0 as an initial object, the horizontal maps in this diagram are equivalences.

The proof of Proposition 6.3.5.2 will require a bit of terminology.

Notation 6.3.5.7. Let {Cs}s∈S be a nonempty finite collection of pointed ∞-categories which

admit finite colimits, and let D be a differentiable ∞-category. Suppose we are given functors

F :
∏
s∈S

Cs → D f :
∏
s∈S

Cs → Sp(D).

We will say that a natural transformation α : F → Ω∞D ◦ f exhibits f as a predifferential of F if it

exhibits Ω∞D ◦ f as a differential of f , in the sense of Definition 6.2.3.1.

Using Proposition 1.4.2.22, we see that Ω∞D induces a trivial Kan fibration

Exc∗(
∏
s∈S

Cs, Sp(D))→ Exc∗(
∏
s∈S

Cs,D).

It follows from Proposition 6.2.3.13 that for every functor F :
∏
s∈S Cs → D, there exists a functor

f :
∏
s∈S Cs → Sp(D) and a natural transformation α : F → Ω∞D ◦ f . The functor f is determined

by f up to equivalence; we will denote it by d(F ).

Example 6.3.5.8. In the situation of Notation 6.3.5.7, let Σ∞D : D → Sp(D) be a left adjoint

to Ω∞D (Proposition 6.2.3.16). Then a natural transformation α : F → Ω∞D ◦ f exhibits f as a

predifferential of F if and only if the adjoint map Σ∞D ◦F → f exhibits f as a differential of Σ∞D ◦F .

Lemma 6.3.5.9. Let p : S → T be a surjective map between nonempty finite sets, and let {Cs}s∈S
be a collection of pointed∞-categories which admit finite colimits. Suppose we are given a collection
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of functors {Ft :
∏
p(s)=t Cs → S∗}t∈T such that each Ft({∗s}p(s)=t) is contractible. Let F denote

the composite functor ∏
s∈S

Cs

∏
Ft→

∏
t∈T

S∗
×→ S∗ .

For each E ∈ Equivp(S), let FE× denote the composition

∏
s∈S

Cs

∏
F
Et
t−→

∏
t∈T

S∗
×→ S∗ .

Then the canonical map

d tfib{FE× }E∈Equivp(S) → tfib{dFE× }E∈Equivp(S)

is an equivalence.

Proof. Let E ∈ Equivp(S). Since the formation of products in S preserves colimits separately in

each variable, the product functor on S∗ preserves contractible colimits seperately in each variable.

It follows that the coreduction of FE× is given by the composition

∏
s∈S

Cs

∏
t∈T cored(F

Et
t )

−→
∏
t∈T

S∗
∧→ S∗ .

Consequently, the functor Σ∞ ◦ cored(FE× ) :
∏
s∈S Cs → Sp is given by the composition

∏
s∈S

Cs

∏
t∈T cored(F

Et
t )

−→
∏
t∈T

S∗
Σ∞→

∏
t∈T

Sp
⊗→ Sp,

where ⊗ denotes the functor given by iterated smash product of spectra. Since the functor ⊗ is

left exact and preserves sequential colimits in each variable, we have canonical equivalences

d(FE× ) ' d(cored(FE× ))

' D(Σ∞ ◦ cored(FE× ))

' ⊗t∈TD(Σ∞ ◦ cored(FEtt ))

' ⊗t∈Td(cored(FEtt ))

' ⊗t∈Td(FEtt ).

It follows that the differential d(FE× ) is given by the composition

∏
s∈S

Cs
d(F

Et
t )
−→

∏
t∈T

Sp
⊗→ Sp

Ω∞→ S∗ .
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Since the formation of smash products of spectra is left exact in each variable, Remark 6.3.3.9

implies that the total fiber tfib{D(FE× )}E∈Equivp(S) is given by the composition

∏
s∈S

Cs
tfib{d(F

Et
t )}

−→
∏
t∈T

Sp
⊗→ Sp

Ω∞→ S∗ .

Invoking Theorem 6.3.3.14, we can identify this composition with the functor∏
s∈S

Cs

∏
t∈T d(Red(Ft))−→

∏
t∈T

Sp
⊗→ Sp

Ω∞→ S∗,

which is the differential of the functo∏
s∈S

Cs

∏
t Red(Ft)−→

∏
t∈T

S∗
×→ S∗ .

Using Remark 6.3.3.9 again, we can identify this composition with tfib{FE× }E∈Equivp(S).

Proof of Proposition 6.3.5.2. It will suffice to show that the natural transformation

d(G ◦ tfib{FE}E∈Equivp(S))→ tfib{d(G ◦ FE)}E∈Equivp(S)

is an equivalence in Fun(
∏
s∈S Cs, Sp(E)) (we can then deduce the analogous result for differentials

by composing with the left exact functor Ω∞E ). Replacing G by Σ∞E ◦G (and using Example 6.3.5.8),

we are reduced to proving Proposition 6.3.3.14 in the special case where the∞-category E is stable.

We may assume without loss of generality that the ∞-categories Cs and Dt are small. Let

X denote the full subcategory of Fun(
∏
t∈T Dt,E) spanned by those functors which preserve zero

objects. Let us regard the functors Ft :
∏
p(s)=t Cs → Dt as fixed, and allow G to vary over objects

of X. For each G ∈ X, let θG denote the canonical map

D(G ◦ tfib{FE}E∈Equivp(S))→ tfib{D(G ◦ FE)}E∈Equivp(S).

Let X0 ⊆ X denote the full subcategory spanned by those functors G ∈ X such that θG is an

equivalence. We wish to show that X0 = X.

For every collection of objects ~D = {Dt ∈ Dt}t∈T and every object E ∈ E, let G ~D,E ∈ X be the

functor given by the formula

G ~D,E({D′t}t∈T ) = (
∏
t∈T

MapDt(Dt, D
′
t)) ∧ E

(here ∧ : S∗×E→ E indicates the action of the∞-category of pointed spaces on E; see Proposition

4.8.2.11). Let X1 denote the smallest full subcategory of X which is closed under small colimits

and contains each G ~D,E . Using the presentability of E, we deduce that X1 is generated by a small

collection of objects under small colimits, and is therefore a presentable ∞-category.
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Using Corollary HTT.5.5.2.9 , we deduce that the inclusion X1 → X admits a right adjoint V .

We claim that V is conservative (so that X1 = X). To prove this, consider a morphism α : G→ G′

in X such that V (α) is an equivalence. Then the composite map

MapE(E,G( ~D)) ' MapX(G ~D,E , G)→ MapX(G ~D,E , G
′) ' MapE(E,G′( ~D))

is a homotopy equivalence for every pair ( ~D,E), from which it follows that α is an equivalence.

To prove that X0 = X, it will suffice to show that X1 ⊆ X0. Using the stability of E, we deduce

that the construction G 7→ θG preserves small colimits. It follows that X0 is closed under small

colimits in X. It will therefore suffice to show that G ~D,E ∈ X1 for every pair ( ~D,E). In other

words, we can reduce to the case where the functor G is given by a composition∏
t∈T

Dt
e~D→ S∗

Σ∞→ Sp
⊗E→ E .

where e ~D denotes the functor corepresented by ~D ∈
∏
t∈T Dt. Since the last of these functors

commutes with small colimits and finite limits, we can replace G by the composition Σ∞ ◦e ~D and E

by the∞-category of spectra. Using Example 6.3.5.8, we are reduced to proving that the canonical

map

ψ : d(e ~D ◦ tfib{FE}E∈Equivp(S))→ tfib{d(e ~D ◦ F
E)}E∈Equivp(S).

For each t ∈ T , let F ′t :
∏
p(s)=t Cs → S∗ denote the composite functor∏

p(s)=t

CS
Ft→ Dt

MapD(Dt,•)−→ S∗ .

Since corepresentable functors preserve limits, we can identify ψ with the canonical map

D(tfib{F ′E}E∈Equivp(S))→ tfib{d(F ′E)}E∈Equivp(S).

The desired result now follows from Lemma 6.3.5.9.

6.3.6 The Dual Chain Rule

Recall that Theorem 6.3.2.3 asserts that if q : C⊗ → ∆2×N(Fin∗) is a thin ∆2-family of∞-operads

satisfying some mild hypotheses, then the stabilization of q is also a thin ∆2-family of ∞-operads.

We will devote the entirety of this section to the proof of Theorem 6.3.2.3. We begin with a simple

combinatorial lemma.

Lemma 6.3.6.1. Let K be a finite product of simplices
∏

1≤i≤n ∆ai, and let v denote the final

vertex of K. Let P denote the partially ordered set of nondegenerate simplices of K (ordered by

inclusion) and let P 0 = P −{v}. If at least one of the integers ai is positive, then N(P 0) is weakly

contractible.
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Proof. By omitting those factors ∆ai where ai = 0, we may assume that each ai is positive. For

1 ≤ i ≤ n, let Pi ⊆ P denote the subset consisting of those simplices σ ⊆ K such that the projection

map K → ∆ai does not carry σ to the final vertex of ∆ai . For I ⊆ {1, . . . , n}, we let PI =
⋂
i∈I Pi.

We will identify each N(PI) with a simplicial subset of N(P ). Note that N(PI) =
⋂
i∈I N(Pi) and

that N(P 0) =
⋃

1≤i≤n N(Pi). It follows that N(P 0) can be identified with the homotopy colimit of

the diagram I 7→ N(PI), where I ranges over the collection of nonempty subsets of {1, . . . , n}. To

complete the proof, it will suffice to show that each N(PI) is weakly contractible.

For every nonempty subset I ⊆ {1, . . . , n}, let KI denote the product∏
i∈I

∆ai−1 ×
∏
i/∈I

∆ai ⊆ K.

Let QI denote the partially ordered collection of nondegenerate simplices of KI . Then N(QI) is

the barycentric subdivision of KI , and therefore weakly contractible (since KI is a product of

simplices). The inclusion N(QI) → N(PI) admits a right adjoint, which carries a simplex σ to its

intersection with the simplicial subset KI ⊆ K. It follows that N(PI) is also weakly contractible,

as desired.

Lemma 6.3.6.2. Let S → T be a surjective map of nonempty finite sets, let {Cs}s∈S be a collection

of differentiable pointed ∞-categories, {Dt} a collection of differentiable stable ∞-categories, and

E a differentiable stable ∞-category. Suppose that we are given a collection of functors

{Ft :
∏
s∈St

Cs → Dt}t∈T G :
∏
t∈T

Dt → E .

Assume that each Ft commutes with sequential colimits, and that G commutes with sequential

colimits and is exact in each variable. For each t ∈ T , let αt : Ft → D(Ft) be a map which exhibits

D(Ft) as a differential of Ft. Then the induced map

α : G ◦
∏
t∈T

Ft → G ◦
∏
t∈T

D(Ft)

exhibits G ◦
∏
t∈T D(Ft) as a differential of G ◦

∏
t∈T Ft.

Proof. Since the functor G is reduced and right exact in each variable, we the canonical map

G ◦
∏
t∈T Ft → G ◦

∏
t∈T cored(Ft) exhibits G ◦

∏
t∈T cored(Ft) as a coreduction of G ◦

∏
t∈T Ft.

We may therefore replace each Ft by cored(Ft) and thereby reduce to the case the functors Ft are

reduced in each variable. Using Corollary 6.2.3.22, we can write each of the functors D(Ft) as a

composition ∏
s∈St

Cs
Σ∞→

∏
s∈St

Sp(Cs)
~∂(Ft)→ Sp(Dt) ' Dt
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where ~∂(Ft) is a multilinear functor, and the map αt exhibits ~∂(Ft) as a derivative of Ft. Let
~∂G :

∏
t∈T Sp(Dt) → Sp(E) denote a derivative of G. Since the ∞-categories Dt and E are stable

and the functor G is exact in each variable, the diagram

∏
t∈T Sp(Dt)

~∂G //

Ω∞

��

Sp(E)

Ω∞

��∏
t∈T Dt

// E

commutes (up to canonical homotopy). Using Theorem 6.2.1.22, we conclude that α exhibits the

composite map ∏
s∈S

Sp(Cs)
∏~∂(Ft)→

∏
t∈T

Sp(Dt)
~∂G→ Sp(E)

as a derivative of G◦
∏
t∈T Ft. It follows from Corollary 6.2.3.24 that α also exhibits G◦

∏
t∈T D(Ft)

as a differential of G ◦
∏
t∈T Ft.

Proof of Theorem 6.3.2.3. Let q : C⊗ → ∆2×N(Fin∗) be a thin ∆2-family of ∞-operads satisfying

the following conditions:

(1) Each of the ∞-categories Ci is pointed and compactly generated.

(2) For every i ≤ j, each of the induced functors Cni → Cj preserves final objects and filtered

colimits.

(3) Let i ∈ ∆2 be a vertex and α : 〈m〉 → 〈n〉 be an injective map of pointed finite sets. If α is

a locally q-coCartesian morphism in C⊗ lifting the map (i, 〈m〉) → (i, 〈n〉) in ∆2 × N(Fin∗),

then α is q-coCartesian.

Let U : Sp(C)⊗ → C⊗ be a map which exhibits Sp(C)⊗ as a stabilization of C⊗. We wish to show

that Sp(C)⊗ is also a thin ∆2-family of ∞-operads.

Let us regard the canonical map Uop : (Sp(C)⊗)op → (C⊗)op as giving a diagram υ : [1]→ Set∆,

and let M denote the relative nerve Nυ(∆1)op (see Definition HTT.3.2.5.2 ). We have a canonical

map u0 : M → ∆1, whose fibers are given by M0 = C⊗, M1 = Sp(C)⊗. Let υ0 : [1] → Set∆ be the

constant functor taking the value ∆2 ×N(Fin∗). Since the maps

C⊗ → ∆2 ×N(Fin∗) Sp(C)⊗ → ∆2 ×N(Fin∗)

are categorical fibrations, the map u0 lifts to a categorical fibration

u : M = Nυ(∆1)op → Nυ0(∆1)op ' ∆2 ×N(Fin∗)×∆1

(see Lemma HTT.3.2.5.11 ).
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For every object A = (j, 〈n〉) ∈ ∆2 × N(Fin∗), the forgetful functor Sp(C)⊗A → C⊗A can be

identified with a product of n copies of the forgetful functor Ω∞Cj : Sp(Cj) → Cj , and therefore

admits a left adjoint Σ∞A : C⊗A → Sp(C)⊗A. It follows that u restricts to a coCartesian fibration

uA : MA → {A} × ∆1. In particular, for every object X ∈ C⊗A, we can choose a locally u-

coCartesian morphism α : X → Σ∞A (X) in M which covers the canonical map (A, 0) → (A, 1) in

∆2 ×N(Fin∗)×∆1.

We first prove:

(i) Suppose we are given a locally q-coCartesian morphism β : X ′ → X in C⊗, where X ∈ C⊗A
for some A ∈ ∆2 × N(Fin∗). Let αX : X → Σ∞A (X) be defined as above. Then αX ◦ β is a

locally u-coCartesian morphism in M.

To prove (i), let β0 : A′ → A denote the image of β in ∆2×N(Fin∗). Fix an object Y ∈ Sp(C)⊗A.

Let MapαX◦βM (X ′, Y ) denote the inverse image of u(αX ◦ β) in the mapping space MapM(X ′, Y ).

We wish to show that composition with αX ◦ β induces a homotopy equivalence

ξ : MapSp(C)⊗A
(Σ∞A (X), Y )→ MapαX◦βM (X ′, Y ).

Using the definition of Σ∞A and of the ∞-category M, we can identify ξ with the map

MapC⊗A
(X,U(Y ))→ Mapβ

C⊗
(X ′, U(Y ))

given by composition with β. The desired result now follows from the fact that β is locally q-

coCartesian.

Using (i), we next prove the following:

(ii) The map u : M→ ∆2 ×N(Fin∗)×∆1 is a locally coCartesian fibration.

To prove this, suppose we are given a morphism γ0 : (j′, 〈n′〉, i′)→ (j, 〈n〉, i) in ∆2×N(Fin∗)×∆1

and an object X ′ ∈ M lying over (j′, 〈n′〉, i′). We wish to show that γ can be lifted to a locally

u-coCartesian morphism γ : X ′ → Y in M. If i = i′, then the desired result follows from the fact

that q : C⊗ → ∆2×N(Fin∗) and (q◦U) : Sp(C)⊗ → ∆2×N(Fin∗) are locally coCartesian fibrations.

Let us therefore assume that i′ = 0 and i = 1. In this case, γ0 factors as a composition

(j′, 〈n′〉, 0)
β0→ (j, 〈n〉, 0)

α0→ (j, 〈n〉, 1).

Since q is a locally coCartesian fibration, we can choose a locally q-coCartesian morphism β : X ′ →
X lifting β0. Let αX : X → Σ∞(j,〈n〉)X be as above. It follows from (i) that the composition αX ◦ β
is a locally u-coCartesian morphism lifting γ.

Fix an integer n ≥ 1 and let S = {1, . . . , n}. Let T = ∆2 N(Fin∗). Then T contains objects

t = (0, 〈n〉) and t′ = (2, 〈1〉). Let χ : Part(S) → ∆t,t′

T be as in Notation 6.3.2.11, and let θ :

N(∆t,t′

T ) → Fun(Sp(C)⊗(0,〈n〉),Sp(C)2) be the spray associated to the locally coCartesian fibration
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(q ◦U) : Sp(C)⊗ → N(Fin∗)×∆2. To prove that Sp(C)⊗ is thin, we must show that the composite

map

φ : N(Part0(S))/ ' N(Part(S))
χ→ N(∆t,t′

T )
θ→ Fun(Sp(C)⊗(0,〈n〉),Sp(C)2)

is a limit diagram in the ∞-category Fun(Sp(C)⊗(0,〈n〉), Sp(C)2). Note that φ takes values in the

full subcategory of Fun(Sp(C)⊗(0,〈n〉),Sp(C)2) spanned by those maps which correspond to functors

Sp(C0)n → Sp(C2) which are excisive in each variable and commute with filtered colimits. Using

Theorem 6.2.3.21, we are reduced to showing that the composite map

φ′ : N(Part(S))
φ→ Fun(Sp(C)⊗(0,〈n〉), Sp(C)2)→ Fun(Cn0 , Sp(C)2)

is a limit diagram, where the second map is given by composition with the functor

Cn0
Σ∞

C0→ Sp(C0)n ' Sp(C)⊗(0,〈n〉).

Set T+ = ∆2 ×N(Fin∗)×∆1, so that T+ contains objects t+ = (0, 〈n〉, 0) and t′+ = (2, 〈1〉, 1).

Let U ⊆ Equiv(S) be a downward-closed subset (that is, if an equivalence relation E on S belongs to

U, then any finer equivalent relation also belongs to U). We define a functor χU : Part(S)→∆t+,t′+

T+

as follows. To every chain of equivalence relations (E1 ⊆ · · · ⊆ Ek) on S, χU assigns the (k + 1)-

simplex of T+ given by the chain of morphisms

(0, 〈n〉, 0)→ (1, (S/E1)∗, i1)→ (1, (S/E2)∗, i2)→ · · · → (1, (S/Ek)∗, ik)→ (2, 〈1〉, 1),

where

ij =

{
0 if Ej ∈ U

1 if Ej /∈ U .

Let χ′ : Part(S)→∆t+,t′+

T+ be the functor which carries a chain of equivalence relations (E1 ⊆ · · · ⊆
Ek) to the (k + 2)-simplex of T+ given by the chain of morphisms

(0, 〈n〉, 0)→ (0, 〈n〉, 1)→ (1, (S/E1)∗, 1)→ (1, (S/E2)∗, 1)→ · · · → (1, (S/Ek)∗, 1)→ (2, 〈1〉, 1),

Let θ+ : N(∆t+,t′+

T+ ) → Fun(Cn0 , Sp(C)2) be the functor obtained by combining the equivalence

Cn0 ' C⊗(0,〈n〉) with the spray associated to the locally coCartesian fibration u. Unwinding the

definition, we can identify φ′ with the composition θ+ ◦ χ′. For every downward closed subset

U ⊆ Equiv(S), we let φU denote the composite map

N(Part(S))
χU→ N(∆t+,t′+

T+ )
θ+

→ Fun(Cn0 ,Sp(C)2).

Let D : Fun(Cn0 ,Sp(C)2) → Exc∗(C
n
0 , Sp(C)2) be a left adjoint to the inclusion, given by the

differentiation construction described in §6.2.3. We have an evident natural transformation χ∅ → χ′

of functors from Part(S) into ∆t+,t′+

T+ , which induces a natural transformation ι : φ∅ → φ′. Since φ′
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takes values in the full subcategory Exc∗(C
n
0 , Sp(C)2), ι induces a map D ◦ φ∅ → φ′. Using Lemma

6.3.6.2, we deduce that this map is an equivalence: that is, for every chain of equivalence relations
~E = (E1 ⊆ · · · ⊆ Ek) ∈ Part(S), the map ι ~E : φ∅( ~E) → φ′( ~E) exhibits φ′( ~E) as a differential of

φ∅( ~E). We will deduce that φ′ is a limit diagram from the following more general assertion:

(iii) For every downward-closed U ⊆ Equiv(S), the composition D◦φU determines a limit diagram

N(Part(S))→ Exc∗(C
n
0 ,Sp(C)2).

The proof of (iii) proceeds by descending induction on the cardinality of U. Our base case is the

following:

(iv) If U = Equiv(S), then the functor D ◦ φU determines a limit diagram N(Part(S)) →
Exc∗(C

n
0 ,Sp(C)2).

To carry out the inductive step, we will prove the following:

(v) Let U ( Equiv(S) be a proper downward closed subset. Let E be an equivalence relation on

S which is minimal among those elements which does not belong to U, let U′ = U∪{E}, and

assume that D ◦ φU′ is a limit diagram in Exc∗(C
n
0 , Sp(C)2). Then D ◦ φU is a limit diagram

in Exc∗(C
n
0 ,Sp(C)2).

We now prove (iv). Let θ− : N(∆t,t′

T ) → Fun(C⊗〈n〉,0,C2) be the spray associated to the locally

coCartesian fibration q : O⊗ → T , and let Σ∞C2
: C2 → Sp(C)2 be a left adjoint to the functor

Sp(C)2 → C2 determined by p. Using (i), we deduce that φEquiv(S) is equivalent to the composition

N(Part(S))
ψ→ Fun(Cn0 ,C2)

Σ∞
C2
◦

→ Fun(Cn0 ,Sp(C)2),

where ψ denotes the composition

N(Part(S))
χ→ N(∆t,t′

T )
θ−→ Fun(C⊗〈n〉,0,C2) ' Fun(Cn0 ,C2).

Let D′ : Fun(Cn0 ,C2) → Exc∗(C
n
0 ,C2) be a left adjoint to the inclusion. The commutative diagram

of ∞-categories

Exc∗(C
n
0 ,Sp(C)2)

Ω∞
C2
◦
//

��

Exc∗(C
n
0 ,C2)

��
Fun(Cn0 ,Sp(C)2)

Ω∞
C2
◦
// Fun(Cn0 ,C2)

determines a commutative diagram of left adjoint functors

Exc∗(C
n
0 , Sp(C)2) Exc∗(C

n
0 ,C2)oo

Fun(Cn0 ,Sp(C)2)

D

OO

Fun(Cn0 ,C2),

D′

OO

Σ∞
C2
◦

oo
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where the upper horizontal map is an equivalence by virtue of Proposition 1.4.2.22. Consequently,

to show that D ◦ φEquiv(S) ' D ◦ Σ∞C2
(ψ) is a limit diagram in Exc∗(C

n
0 , Sp(C)2), it will suffice to

show that D′ ◦ ψ is limit diagram in Exc∗(C
n
0 ,C2). Using Corollary 6.2.3.24, we are reduced to

proving that the diagram ~∂ ◦ ψ is a limit diagram in Exc∗(Sp(C0)n, Sp(C)2). We will prove this by

verifying the hypotheses of Theorem 6.3.5.5. Fix an equivalence relation E on S. We let EquivE(S)

denote the subset of Equiv(S) spanned by those equivalence relations E′ on S which refine E. We

have a canonical isomorphism of partially ordered sets

EquivE(S) =
∏

S′∈S/E

Equiv(S′),

where the product is taken over all equivalence classes in S (which we regard as subsets of S). The

inclusion EquivE(S) ↪→ Equiv(S) admits a right adjoint, which we can identify with the map

η : Equiv(S)→
∏

S′∈S/E

Equiv(S′)

given by restricting an equivalence relation on S to each of the subsets S′ ∈ S/E. Composing with

η gives a map γ : Part(S)→
∏
S′∈S/E Part(S′). We first verify:

(a) The map u restricts to a right cofinal map Part0(S) →
∏
S′∈S/E Part0(S′). According to

Theorem HTT.4.1.3.1 , this is equivalent to the assertion that for every element {XS′}S′∈S/E ∈∏
S′∈S/E Part0(S′), the partially ordered set P = {X ∈ Part0(S) : γ(X) ≤ {XS′}} has weakly

contractible nerve.

We can identify each XS′ with a nondegenerate simplex in N(Equiv(S′)). Unwinding the

definitions, we see that the simplicial set N(P ) is isomorphic to the barycentric subdivision

of the simplicial set Q = N(Equiv(S)) ×∏
S′∈S/E N(Equiv(S′)) ×

∏
S′∈S/E XS′ , which is a full

subcategory of N(Equiv(S)). Let Q0 denote the full subcategory of Q spanned by those

equivalence relations on S which refine E. The inclusion Q0 ↪→ Q admits a right adjoint and

is therefore a weak homotopy equivalence. We are therefore reduced to proving that Q0 is

weakly contractible. It now suffices to observe that the projection map Q0 →
∏
S′∈S/E XS′ is

an isomorphism, so that Q0 is a product of simplices.

For each S′ ∈ S/E, let tS′ = (0, S′∗) ∈ T , let θS′ : N(∆
tS′ ,t

′

T ) → Fun(C⊗(0,S′∗)
,C2) be the spray

associated to the locally coCartesian fibration q. Composing with the functor Part(S′)→ N(∆
tS′ ,t

′

T )

and using the identification C⊗(0,S′∗)
' CS

′
0 , we obtain a map ψS

′
: N(Part(S′))→ Fun(CS

′
0 ,C2). Using

(3), we see that the composite map

N(Part(S))→ N(Part(S′))
ψS
′

→ Fun(CS
′

0 ,C2)
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is given by composing the functor ψ : N(Part(S)) → Fun(CS0 ,C2) with the map Fun(CS0 ,C2) →
Fun(CE0 ,C2) determined by the inclusion

CS
′

0 '
∏
s∈S′

C0×
∏

s∈S−S′
{∗} ⊆ Cn0 ,

where ∗ denotes a zero object of C0 (see Remark 6.3.2.4).

To complete the verification of the hypotheses of Theorem 6.3.5.5, it suffices to observe the

following:

(b) Each of the functors ψS
′ → N(Part(S′))→ Fun(CS

′
0 ,C2) is a limit diagram.

This follows immediately from our assumption that the corepresentable ∆2-family of ∞-operads

O⊗ → N(Fin∗)×∆2 is thin.

We now prove (v). Let U ( Equiv(S) be a downward closed subset, let E be a minimal element

of Equiv(S)− U, let U′ = U∪{E}, and assume that D ◦ φU′ is a limit diagram. We wish to prove

that D ◦ φU is a limit diagram. We define a functor

χU,U′ : Part(S)→∆t+,t′+

T+

as follows. If ~E = (E1 ⊆ · · · ⊆ Ek) is a chain of equivalence relations on S which does not contain

the equivalence relation E, then we set χU,U′(
~E) = χU( ~E) = χU′(

~E). Otherwise, there is a unique

integer p ≤ k such that Ep = E. We define χU,U′(J) to be the simplex of T+ given by the chain of

morphisms

(0, 〈n〉, 0) → (1, (S/E1)∗, 0)

→ · · ·
→ (1, (S/Ep)∗, 0)

→ (1, (S/Ep)∗, 1)

→ · · ·
→ (1, (S/Ek)∗, 1)

→ (2, 〈1〉, 1).

Composing with θ+, we obtain a functor φU,U′ : N(Part(S))→ Fun(Cn0 ,Sp(C)2). Moreover, we have

evident natural transformations χU → χU,U′ ← χU′ , which induce natural transformations

φU
ε→ φU,U′

ε′← φU′ .

Using (i), we deduce that the map ε is an equivalence. Consequently, to complete the proof of (v),

it will suffice to show that D ◦ φU,U′ is a limit diagram.
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Let P ⊆ [1] × Part(S) be the subset consisting of those pairs (i, ~E) where either i = 0 or ~E

contains E. We define a map χP : P →∆t+,t′+

T+ by the formula

χP (i, ~E) =

{
χU,U′(

~E) if i = 1

χU′(
~E) otherwise.

Note that composition with θ+ determines a map φP : N(P ) → Fun(Cn0 , Sp(C)2). Let P 0 denote

the partially ordered subset of P obtained by removing the least element (0, ∅). By assumption, the

restriction of D ◦ φP to N({0} × Part(S)) is a limit diagram. The inclusion N({0} × Part0(S)) ↪→
N(P 0) admits a right adjoint ( given by the projection P 0 → Part0(S)) and is therefore right

cofinal. It follows that D ◦ φP is a limit diagram.

Define partially ordered subsets P ′′ ⊆ P ′ ⊆ P as follows:

• A pair (i, ~E) ∈ P belongs to P ′ if either i = 1 or ~E does not contain E as a least element.

• A pair (i, ~E) ∈ P belongs to P ′′ if either i = 1 or ~E does not contain E.

Set P ′0 = P ′ ∩ P 0 and P ′′0 = P ′′ ∩ P 0. Note that the projection map P ′′ → Part(S) is an

isomorphism of partially ordered sets, and that the restriction of φP to N(P ′′) coincides with

φU,U′ . To complete the proof, it will suffice to show that the restriction of D ◦ φP to N(P ′′)

is a limit diagram. The inclusion N(P ′′0) → N(P ′0) admits a right adjoint (given by (i, ~E) 7→{
(0, ~E − {E}) if i = 0

(1, ~E) if i = 1.
), and is therefore right cofinal. We are therefore reduced to proving that

the restriction of D ◦ φP to N(P ′) is a limit diagram. Since D ◦ φP is a limit diagram, this is a

consequence of the following assertion:

(vi) The diagram D ◦ φP is a right Kan extension of its restriction to N(P ′).

To prove (vi), fix an object (0, ~E) ∈ P − P ′; we will show that D ◦ φP is a right Kan extension

of (D ◦ φP )|N(P ′) at (0, ~E). We can identify ~E with a chain of equivalence relations

E = E0 ⊆ E1 ⊆ · · · ⊆ Ek

on S. Let P ′
≥ ~E

= {(i, ~E′) ∈ P ′ : ~E ⊆ ~E′}. We wish to prove that the canonical map

D(φP (0, ~E))→ lim←−
(i, ~E′)∈P ′

≥~E′

D(φP (i, ~E′))

is an equivalence. Let Q ⊆ P ′
≥ ~E

be the partially ordered subset spanned by those pairs (i, ~E′), where

~E′∩{E′ ∈ Equiv(S) : E ⊆ E′} = ~E. The construction (i, ~E′) 7→ (i, ~E′−{E′ ∈ Equiv(S) : E ⊆ E′ /∈
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~E}) determines a right adjoint to the inclusion Q ↪→ P ′
≥ ~E

, so that the inclusion N(Q) → N(P ′
≥ ~E

)

is right cofinal. It will therefore suffice to prove that the canonical map

D(φP (0, ~E))→ lim←−
(i, ~E′)∈Q

D(φP (i, ~E′))

is an equivalence.

Let Part′(S) denote the subset of Part(S) consisting of those linearly ordered subsets of Equiv(S)

which contain E as a largest element. The construction ~E′ 7→ ~E′ ∪ ~E induces a bijection from

Part′(S) to the subset of Part(S) consisting of those chains which contain ~E as a final segment. Let

Part′0(S) denote the subset of Part′(S) consisting of linearly ordered subsets which have at least

two elements. Unwinding the definitions, we are reduced to proving that the diagram σ :

DφP (0, ~E) //

��

lim←− ~E′∈Part′0(S)
DφP (0, ~E′ ∪ ~E)

��

DφP (1, ~E) // lim←− ~E′∈Part′0(S)
DφP (1, ~E′ ∪ ~E)

is a pullback square in the ∞-category Fun(Cn0 , Sp(C)2).

Let t′′ denote the vertex (1, (S/E)∗) of ∆2×N(Fin∗). The locally coCartesian fibration q : C⊗ →
∆2×N(Fin∗) determines a spray θ̂ : N(∆t,t′′

T )→ Fun(C⊗(0,〈n〉),C
⊗
(1,(S/∼)∗)

). Let χ′′ : Part′(S)→∆t,t′′

T

be the map which carries a chain of equivalence relations

E′0 ⊆ E′1 ⊆ · · · ⊆ E′k′ = E

to the simplex corresponding to the chain of maps

t = (0, 〈n〉)→ (1, (S/E′0)∗)→ · · · → ((S/E′k′)∗, 1).

Composing χ′′ and θ̂ and using the identifications C⊗(0,〈n〉) ' Cn0 and C⊗(1,(S/E)∗)
' C

S/E
1 , we we

obtain a diagram ψE : N(Part′(S))→ Fun(On0 ,O
S/E
1 ).

For every nonempty subset S′ ⊆ S, let ES′ denote the restriction of the equivalence relation E

to S′, and let Part′(S′) denote the subset of Part(S′) consisting of those linearly ordered subsets

of Equiv(E) which contain ES′ as a maximal element. Consider the vertices tS′ = (0, S′∗) and

t′′S′ = (1, 〈1〉) of T , and let θ̂S′ : N(∆
tE ,t

′′
E

T )→ Fun(C⊗(0,S′∗)
,C1) be the spray associated to the locally

coCartesian fibration q : C⊗ → T . Let χS′ : Part′(S′) → ∆
tE ,t

′′
E

T be the functor which carries a

chain of equivalence relations

E′0 ⊆ E′1 ⊆ · · · ⊆ E′k′

to the simplex given by the chain of maps

tE = (0, S′∗)→ (1, (S′/E′0)∗)→ · · · → (1, (S′/E′k′)∗).
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Composing χS′ and θS′ , we obtain a functor ψS′ : N(Part′(S′)) → Fun(CS
′

0 ,C1). The inclusion

S′ ↪→ S determines a map Equiv(S)→ Equiv(S′), which induces a restriction map rS′ : Part′(S)→
Part′(S′). Unwinding the definitions, we see that ψE is equivalent to the composition

N(Part′(S))

∏
S′∈S/E rS′−→

∏
S′∈S/E

N(Part′(S′))

∏
S′∈S/E ψS′−→

∏
S′∈S/E

Fun(CS
′

0 ,C1)→ Fun(Cn0 ,C
S/E
1 ).

We now divide the proof into two cases. Suppose first that k = 0, so that ~E = {E}. The edge

(1, (S/E)∗) → (2, 〈1〉) of T determines a functor G : C
S/E
1 → C2. Unwinding the definitions, we

obtain canonical equivalences

φP (0, ~E′ ∪ ~E) ' Σ∞C2
◦G ◦

∏
S′∈S/E

ψS′(rS′ ~E
′)

φP (1, ~E′ ∪ ~E) ' ~∂(G) ◦
∏

S′∈S/E

Σ∞C1
◦ ψS′(rS′ ~E′).

To prove that σ is a pullback diagram, it will suffice to show that the square

~∂(G ◦
∏
S′∈S/E(ψS′ ◦ r′S)({E})) //

��

lim←− ~E′∈Part′0(S)
~∂(G ◦

∏
S′∈S/E(ψS′ ◦ rS′)( ~E))

��
~∂(G) ◦

∏
S′∈S/E

~∂((ψS′ ◦ rS′)({E})) // lim←− ~E′∈Part′0(S)
~∂(G) ◦

∏
S′∈S/E

~∂(ψS′ ◦ rS′)( ~E)

is a pullback square in Exc∗(Sp(C0)n,Sp(C2)). We will deduce this from Theorem 6.3.5.6.

Choose an equivalence relation E′ ( E on S. If S′ ⊆ S, we let E′S′ denote the restriction of the

equivalence relation E′ to S′. Unwinding the definitions, we see that for each S′ ∈ S/E and each
~E ∈ Part′(S), the functor (ψS′ ◦ rS′)( ~E′)E

′
S′ canonically equivalent to the composition

CS
′

0 '
∏

S′′∈S′/E′
S′

CE
′

0

∏
(ψS′′◦rS′′ )( ~E′)→ C

S′/E′
S′

1
×→ C1,

where the final functor is given by the iterated product. To satisfy the hypotheses of Theorem

6.3.5.6, it will suffice to verify the following:

(vii) The restriction maps rS′′ determine a right cofinal map N(Part′0(S))→
∏
S′′∈S/E′ N(Part′(S′′)).

Fix elements { ~E′S′′ ∈ Part′(S′′)} for S′′ ∈ S/E′. Let Part′′0(S) denote the subset of Part′0(S)

consisting of those elements ~E′ such that rS′′( ~E
′) ⊆ ~E′S′ for S′′ ∈ S/E′. According to Theorem

HTT.4.1.3.1 , it will suffice to show that the partially ordered set Part′′0(S) has weakly contractible

nerve.
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Let EquivE(S) denote the subset of Equiv(S) consisting of equivalence relations which refine E,

and define EquivE′(S) ⊆ EquivE(S) similarly. For every downward-closed subset V ⊆ EquivE(S)−
({E} ∪ EquivE′(S)), we let Part′′0V (S) denote the subset of Part′′0(S) consisting of those linearly

ordered subsets ~E′ ⊆ Equiv(S) which do not intersect V. We will prove that Part′′0V (S) has weakly

contractible nerve by descending induction on the cardinality of V. Taking V = ∅, this will complete

the proof of (vi). We first treat the base case V = EquivE(S)− ({E} ∪ EquivE′(S)) Let R denote

the subset of Part′′0V (S) consisting of those subsets ~E′ ⊆ Equiv(S) which contain E′. The inclusion

R ⊆ Part′′0V (S) admits a left adjoint, given by ~E′ 7→ ~E′ ∪{E′}. It will therefore suffice to show that

N(R) is weakly contractible. This is clear, since R contains a least element (given by the linearly

ordered subset {E′ ( E} ⊆ Equiv(S)).

We now carry out the inductive step. Assume that Part′′0V (S) has weakly contractible nerve for

some nonempty subset V ⊆ EquivE(S) − ({E} ∪ EquivE′(S)). Let E′′ be a maximal element of

V and let V′ = V−{E′′}. We will prove that Part′′0
V′ (S) has weakly contractible nerve by showing

that the inclusion

i : N(Part′′0V (S)) ↪→ N(Part′′0V′ (S))

is a weak homotopy equivalence. Let R denote the subset of Part′′0
V′ (S) consisting of those linearly

ordered subsets ~E′ ⊆ Equiv(S) with the following property: if E′′ belongs to ~E′, then the common

refinement E′ ∩ E′′ belongs to ~E′. Then the inclusion map i factors as a composition

N(Part′′0V (S))
i′
↪→ N(R)

i′′
↪→ N(Part′′0V′ (S)).

Here i′ admits a right adjoint and i′′ admits a left adjoint. It follows that i′ and i′′ are weak

homotopy equivalences, so that i is a weak homotopy equivalence. This completes the proof of

(vii).

We now return to the proof of (vi) in the case where k > 0. Let W = S/E1. Given an element

w ∈W , let Sw denote its inverse image in S and let Ew be the restriction of E to Sw. The map of

pointed finite sets (S/E)∗ →W∗ determines functors

Gw :
∏

E∈Sw/E

C1 → C1

. Let H : Sp(C)W1 → Sp(C)2 be the functor given by the composition

Sp(C)
S/E1

1 → Sp(C)
S/E2

1 → · · · → Sp(C)
S/∼k
1 → Sp(C)2

determined by ~E. Unwinding the definitions, we obtain canonical equivalences

φP (0, ~E′ ∪ ~E) ' H ◦
∏
w∈W

(Σ∞C1
◦Gw) ◦

∏
S′∈Sw/Ew

ψS′(rS′ ~E
′)

φP (1, ~E′ ∪ ~E) ' H ◦
∏
w∈W

(~∂(Gw)) ◦
∏

S′∈Sw/Ew

Σ∞C1
◦ ◦ψS′(rS′( ~E))



1194 CHAPTER 6. THE CALCULUS OF FUNCTORS

for ~E′ ∈ Part′(S). Since Sp(C)⊗ is a stable ∆2-family of ∞-operads, the functor H is exact in each

variable. Using Lemma 6.3.6.2 and Corollary 6.2.3.24, we see that σ is a pullback diagram if and

only if the diagram

H ◦
∏
w∈W

~∂(Gw ◦
∏
S′∈Sw/Ew(ψS′ ◦ rS′)({E}))

uu

!!

lim←− ~E′∈Part′0(S)
H ◦

∏
w∈W

~∂(Gw ◦
∏
S′∈Sw/Ew(ψS′ ◦ rS′)( ~E))

##

H ◦
∏
w∈W

~∂(Gw) ◦
∏
S′∈Sw/Ew

~∂(ψS′ ◦ rS′)({E})

vv

lim←− ~E′∈Part′0(S)
H ◦

∏
w∈W

~∂(Gw) ◦
∏
S′∈Sw/Ew

~∂(ψE ◦ rE)(I)

is a pullback square in Exc∗(Sp(C)n0 , Sp(C)2).

Define F, F ′ : N(Part′(S))→ Exc∗(Sp(C)n0 , Sp(C)2) by the formulae

F ( ~E) = H◦
∏
w∈W

~∂(Gw◦
∏

S′∈Sw/Ew

(ψS′◦rS′)( ~E)) F ′( ~E) = H◦
∏
w∈W

~∂(Gw)◦
∏

S′∈Sw/Ew

Diff(ψS′◦rS′)( ~E).

We wish to prove that the evident natural transformation F → F ′ induces an equivalence tfib(F )→
tfib(F ′) in the stable ∞-category Exc∗(Sp(C)n0 ,Sp(C)2). To study this map, we need the following

observation:

(viii) Let (
∏
w∈W Part′(Sw))0 denote the subset of (

∏
w∈W Part′(Sw)) obtained by removing the

least element. Then the restriction maps The restriction maps {rSw : Part′(S)→ Part′(Sw)}
induce a right cofinal functor

N(Part′0(S))→ N(
∏
w∈W

Part′(Sw))0.

To prove (viii), let us fix an element { ~E′w}w∈W of
∏
w∈W Part′(Sw) which is not the least

element. Using the criterion of Theorem HTT.4.1.3.1 , we are reduced to proving that the partially

ordered set Z = { ~E′ ∈ Part′0(S) : (∀w ∈ W )[rSw( ~E′) ⊆ ~Ew]} has weakly contractible nerve. Let

Z ′′ ⊆ Part(S) be the subset consisting of those nonempty chains ~E′ = (E′0 ⊆ . . . ⊆ E′k′) ∈ Part(S)

such that E′k′ ⊆ E and rSw( ~E′) ⊆ ~E′w for each w ∈ W , and let Z ′ ⊆ Z ′′ be the subset obtained

by removing the one-element chain {E}. The inclusion Z ↪→ Z ′ has a left adjoint (given by

the construction ~E′ 7→ ~E′ ∪ {E}) and therefore induces a weak homotopy equivalence N(Z) →
N(Z ′). We are therefore reduced to proving that N(Z ′) is weakly contractible. Note that each
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~E′w determines an embedding ∆aw ↪→ Equiv(Sw). Since { ~E′w}w∈W is not the least element of∏
w∈W Part′(Sw), at least one of the integers aw is nonzero. Unwinding the definitions, we can

identify N(Z ′′) with the barycentric subdivision of the product
∏
w∈W ∆aw . The weak contractibility

of N(Z ′) now follows from Lemma 6.3.6.1.

For every subset S′ ⊆ Sw, we let rwS′ : Part′(Sw)→ Part′(S′) denote the evident restriction map.

Define functors Fw, F
′
w : N(Part′(Sw))→ Fun(Sp(C)n0 ,Sp(C)1) by the formulae

Fw( ~E′w) = ~∂(Gw ◦
∏

S′∈Sw/Ew

(ψS′ ◦ rwS′)( ~E′w)) F ′w({ ~E′w}) = ~∂(Gw) ◦
∏

S′∈Sw/Ew

~∂(ψS′ ◦ rwS′)( ~E′w).

Let

F0 :
∏
w∈W

N(Part′(Sw))→ Fun(Sp(C)n0 ,Sp(C)2)

be given by the formula F0({ ~Ew}) = H ◦
∏
w∈W Fw( ~Ew), and define F ′0 similarly. Then we can

recover F and F ′ as the composite functors

Part′(S)→
∏
w∈W

Part′(Sw)
F0→ Fun(Sp(C)n0 ,Sp(C)2)

Part′(S)→
∏
w∈W

Part′(Sw)
F ′0→ Fun(Sp(C)n0 ,Sp(C)2).

We have an evident commutative diagram

tfibF0
//

��

tfibF ′0

��
tfibF // tfibF ′,

and assertion (viii) guarantees that the vertical maps are equivalences. We are therefore reduced to

proving that the map ρ : tfibF0 → tfibF ′0 is an equivalence. Since the functorH is exact in each vari-

able, we can identify ρ with the canonical map H ◦
∏
w∈W {tfibFw}w∈W → H ◦

∏
w∈W {tfibF ′w}w∈W .

It will therefore suffice to show that for each w ∈ W , the map tfibFw → tfibF ′w is an equivalence.

Equivalently, we wish to show that the diagram

~∂(G ◦
∏
S′∈Sw/Ew(ψS′ ◦ rwS′)({Ew})) //

��

lim←− ~E′w∈Part′0(Sw)
~∂(G ◦

∏
S′∈Sw/Ew(ψS′ ◦ rwE)( ~E′w))

��
~∂(G) ◦

∏
S′∈Sw/Ew

~∂((ψS′ ◦ rwS′)({Ew})) // lim←− ~E′w∈Part′0(Sw)
~∂(G) ◦

∏
S′∈Sw/Ew

~∂(ψS′ ◦ rwS′)( ~E′w)

is a pullback square in Fun(Sp(C)n0 ,Sp(C)1). The proof now proceeds exactly as in the case k = 0

(with some minor changes in notation).



Chapter 7

Algebra in the Stable Homotopy

Category

Let Sp denote the ∞-category of spectra. In §4.8.2, we saw that Sp admits a symmetric monoidal

structure (the smash product symmetric monoidal structure) which is characterized up to equiva-

lence by the requirement that the sphere spectrum S ∈ Sp is the unit object and the tensor product

functor ⊗ : Sp×Sp → Sp preserves colimits separately in each variable. This operation can be

regarded as a homotopy theoretic analogue of the usual tensor product of abelian groups. In this

chapter, we will undertake a systematic study of commutative and noncommutative algebra in the

∞-category Sp.

We begin in §7.1 by introducing the notion of an Ek-ring, for 0 ≤ k ≤ ∞. To guide the reader’s

intuition, we offer the following table of analogies:

Ordinary Algebra ∞-Categorical Algebra

Set Space

Abelian group Spectrum

Tensor product of abelian groups Smash product of spectra

Associative Ring E1-Ring

Commutative Ring E∞-Ring

Our goal in §7.2 is to show that these analogies are fairly robust, in the sense that many of the

basic tools used in commutative and noncommutative algebra can be generalized to the setting of

structured ring spectra.

1196
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The remainder of this chapter is devoted to studying the deformation theory of Ek-rings. In

§7.3, we will introduce a general formalism describing the relative cotangent complex LB/A of a

morphism φ : A→ B in a presentable ∞-category C. When C is the ∞-category of E∞-rings, then

we can identify LB/A with an object of the ∞-category ModB(Sp) of B-module spectra. In §7.4,

we will see that many questions about a map φ : A→ B of E∞-rings can be reduced to questions

about LB/A: that is, to problems in stable homotopy theory. In §7.5, we will apply this technology

to obtain a classification of étalemorphisms between structured ring spectra.

Warning 7.0.0.1. Let R be an associative ring, and let M and N be right and left modules over

R, respectively. Then we can regard R as a discrete E1-algebra in the ∞-category of spectra, and

M and N as discrete module spectra over R. Consequently, we can compute the tensor product

M ⊗R N either in the ∞-category of spectra or in the ordinary category of abelian groups. Unless

otherwise specified, the notation M ⊗R N will indicate the relative tensor product in the ∞-

category of spectra. We will denote the ordinary algebraic tensor product by TorR0 (M,N). These

are generally different from one another: for example, the spectrum M ⊗RN need not be discrete.

In fact, in §7.2 we will see that there are canonical isomorphisms πi(M ⊗R N) ' TorRi (M,N)

(Corollary 7.2.1.22). In particular, the algebraic tensor product TorR0 (M,N) can be realized as the

0th homotopy group of the spectrum M ⊗R N .

In cases where the groups TorRi (M,N) vanish for i > 0 (for example, if either M or N is a

projective module over R), we will generally not distinguish in notation between M ⊗R N and

TorR0 (M,N).

Remark 7.0.0.2. The theory of structured ring spectra plays an important role in modern stable

homotopy theory. There is a vast literature on the subject, which we will not attempt to review here.

We refer the readers to [51] for a foundational approach using the language of model categories,

rather than the language of ∞-categories which we employ in this book.

7.1 Structured Ring Spectra

In this section, we introduce homotopy-theoretic analogues of some elementary notions from com-

mutative and noncommutative algebra. Our starting point is the following:

Definition 7.1.0.1. Let 0 ≤ k ≤ ∞, and let Sp denote the∞-category of spectra (which we regard

as endowed with the smash product monoidal structure of §4.8.2). Let E⊗k denote the ∞-operad of

little k-cubes (Definition 5.1.0.2). An Ek-ring is an Ek-algebra object of Sp. We let Alg(k) denote

the ∞-category AlgEk(Sp) of Ek-rings.

In the special case k =∞, we will agree that E⊗k denotes the commutative∞-operad Comm⊗ =

N(Fin∗) (see Corollary 5.1.1.5) and we let CAlg denote the ∞-category CAlg(Sp) = AlgE∞(Sp) of

E∞-rings.
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Remark 7.1.0.2. The terminology of Definition 7.1.0.1 is somewhat nonstandard. What we call

Ek-rings are often called Ek-ring spectra. In the special case k = ∞, the term commutative ring

spectrum is sometimes used, though some authors reserve this term for commutative algebra objects

in the homotopy category hSp (that is, spectra which are equipped with a multiplication which

is commutative and associative up to homotopy, rather than up to coherent homotopy). In the

special case k = 1, many authors refer to E1-rings as associative ring spectra or A∞-ring spectra.

Remark 7.1.0.3. Let R be an Ek-ring for 0 ≤ k ≤ ∞. We will say that R is discrete if its

underlying spectrum is discrete: that is, if πiR ' 0 for i 6= 0. The ∞-category of discrete Ek-rings

can be identified with the ∞-category of Ek-algebra objects of Sp♥, which is equivalent to the

nerve of the ordinary category of abelian groups. It follows that when k = 1, the ∞-category of

discrete E1-rings is equivalent to the nerve of the category of associative rings. Using Corollary

5.1.1.7, we see that the ∞-category of discrete Ek-rings is equivalent to the nerve of the category

of commutative rings whenever k ≥ 2.

Remark 7.1.0.4. If R is an Ek-ring, then we can view R as an Ek′-ring for any k′ ≤ k. More

precisely, the sequence of maps

E⊗0 ↪→ E⊗1 → · · · → E⊗∞ = Comm⊗

induces forgetful functors

CAlg→ · · · → Alg(2) → Alg(1) → Alg(0) .

If R ∈ Alg(k), we will generally abuse notation by identifying R with its image in Alg(k′) for k′ ≤ k.

Remark 7.1.0.5. Using Remark 4.8.2.22, we can identify the ∞-category Alg(1) of E1-rings with

the full subcategory of Alg(Fun(Sp,Sp)) spanned by those monads T on Sp which preserve small

colimits.

We will begin our study of Ek-rings by considering the case k = 1. According to Example 5.1.0.7,

we can identify the ∞-category Alg(1) of E1-rings with the ∞-category Alg = Alg(Sp). In other

words, we can think of an E1-ring as a spectrum A equipped with a multiplication A ⊗ A → A,

which is associative up to coherent homotopy. The technology of Chapter 4 provides us with a

robust theory of (left and right) modules over E1-rings, which we study in §7.1.1.

For any E1-ring A, the∞-category LModA = LModA(Sp) is stable and compactly generated. In

§7.1.2 we will prove a converse to this statement (due to Schwede and Shipley): if C is a presentable

stable ∞-category which is generated by a single compact object 1 ∈ C, then we can describe

C as the ∞-category of left modules over the endomorphism object R = EndC(1) (see Theorem

7.1.2.1). Moreover, we show that promoting R to an Ek+1-ring is equivalent to promoting C to an

Ek-monoidal ∞-category (having 1 as unit object). In this case, it makes sense to consider Ek-
algebra objects of C, which we refer to as Ek-algebras over R. In §7.1.3, we will study the theory
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of Ek-algebras over an Ek+1-ring R, and prove a technical result (Theorem 7.1.3.1) which implies

that many natural constructions are compatible with change of R.

Using Theorem 4.1.8.4, we conclude that Alg(1) is equivalent to the underlying ∞-category

of strictly associative monoids in any sufficiently nice monoidal model category of spectra (see

Example 4.1.8.6). If we are interested in studying algebras over a discrete E∞-ring R, then much

more concrete models are available. In §7.1.4, we will show that the theory of E1-algebras over R is

equivalent to the theory of differential graded algebras (Proposition 7.1.4.6). When R contains the

field Q of rational numbers, there is a similar description of the ∞-category of E∞-algebras over R

(Proposition 7.1.4.11).

7.1.1 E1-Rings and Their Modules

Let R ∈ Alg(1) be an E1-ring. In this section, we will introduce the theory of R-module spectra.

This can be regarded as a generalization of homological algebra: if R is an ordinary ring (regarded

as a discrete E1-ring via Proposition 7.1.3.18), then the homotopy category of R-module spectra

coincides with the classical derived category of R (Proposition 7.1.1.15); in particular, the theory

of R-module spectra is a generalization of the usual theory of R-modules.

Notation 7.1.1.1. According to Example 5.1.0.7, there is a trivial Kan fibration of ∞-operads q :

E⊗1 → Assoc⊗. We will fix a section of q. For any symmetric monoidal ∞-category C, composition

with this section induces an equivalence of ∞-categories θ : AlgE1
(C)→ Alg(C). We will generally

abuse notation by identifying an E1-algebra object A ∈ AlgE1
(C) with its image in Alg(C). In

particular, we will denote the ∞-categories LModθ(A)(C) and RModθ(A)(C) defined in §4.2.1 by

LModA(C) and RModA(C), respectively.

If A is an E∞-ring, then we let ModA denote the ∞-category ModE∞A (Sp), so that we have

canonical equivalences

LModA ← ModA → RModA

(see Proposition 4.5.1.4).

Definition 7.1.1.2. Let R be an E1-ring. We let LModR denote the ∞-category LModR(Sp). We

will refer to LModR as the ∞-category of left R-module spectra. Similarly, we let RModR denote

the ∞-category RModR(Sp) of right R-module spectra.

Remark 7.1.1.3. If R is an E1-ring, we will often refer to (left or right) R-module spectra simply

as (left or right) R-modules.

For the sake of definiteness, we will confine our attention to the study of left module spectra

throughout this section; the theory of right module spectra can be treated in an entirely parallel

way.

Our first goal is to prove that the ∞-category of modules over an E1-ring is stable. This is a

consequence of the following more general assertion:
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Proposition 7.1.1.4. Let C be an ∞-category equipped with a monoidal structure and a left action

on an ∞-category M. Assume that M is a stable ∞-category, and let R ∈ Alg(C) be such that

the functor M 7→ R ⊗M is exact. Then LModR(M) is a stable ∞-category. Moreover, if N is an

arbitrary stable ∞-category, then a functor N → LModR(M) is exact if and only if the composite

functor N → LModR(M) → M is exact. In particular, the forgetful functor LModR(M) → M is

exact.

Proof. This is a special case of Proposition 4.2.3.4.

Corollary 7.1.1.5. Let R be an E1-ring. Then the ∞-categories LModR and RModR are stable.

We next consider connectivity properties of E1-rings and their modules. Let R be an E1-ring.

We will generally not distinguish notationally between R and its underlying spectrum. In particular,

for each n ∈ Z, we let πnR denote the nth homotopy group of the underlying spectrum. We observe

that πnR can be identified with the set π0 MapSp(S[n], R), where S denotes the sphere spectrum.

Since S is the identity for the smash product, there is a canonical equivalence S⊗S ' S; using the

fact that ⊗ is exact in each variable, we deduce the existence of equivalences S[n]⊗S[m] ' S[n+m]

for all n,m ∈ Z. The multiplication map

MapSp(S[n], R)×MapSp(S[m], R)→ MapSp(S[n]⊗ S[m], R⊗R)→ MapSp(S[n+m], R)

determines a bilinear map πnR × πmR→ πn+mR. It is not difficult to see that these maps endow

π∗R =
⊕

n πnR with the structure of a graded associative ring, which depends functorially on R. In

particular, π0R is an ordinary associative ring, and each πnR has the structure of a π0R-bimodule.

Remark 7.1.1.6. If R admits the structure of an Ek-ring for k ≥ 2, we can say a bit more. In this

case, the multiplication on R is commutative (up to homotopy). It follows that the multiplication

on π∗R is graded commutative. That is, for x ∈ πnR and y ∈ πmR, we have xy = (−1)nmyx. Here

the sign results from the fact that the composition

S[n+m] ' S[n]⊗ S[m]
σ' S[m]⊗ S[n] ' S[n+m]

is given by the sign (−1)nm. In particular, the homotopy group π0R is equipped with the structure

of a commutative ring, and every other homotopy group πnR has the structure of a module over

π0R.

We will need the following basic result:

Lemma 7.1.1.7. The t-structure on the ∞-category Sp determined by the class of connective

objects is compatible with the smash product symmetric monoidal structure (in the sense of Example

2.2.1.3). In other words, the full subcategory Spcn ⊆ Sp spanned by the connective objects is closed

under smash products and contains the unit object. Consequently, the monoidal structure on Sp

determines a monoidal structure on Spcn.
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Proof. The ∞-category Spcn is the smallest full subcategory of Sp which contains the sphere spec-

trum S ∈ Sp and is stable under colimits and extensions. Let C be the full subcategory of Sp

spanned by those spectra X such that, for all Y ∈ Spcn, X ⊗ Y is connective. We wish to prove

that Spcn ⊆ C. Since the smash product preserves colimits separately in each variable, we conclude

that C is closed under colimits and extensions in Sp. It will therefore suffice to prove that S ∈ C.

This is clear, since S is the unit object of Sp.

Recall that a spectrum X is said to be connective if πnX ' 0 for n < 0. We will say that

an Ek-ring R is connective if its underlying spectrum is connective. We let Alg(k),cn denote the

full subcategory of Alg(k) spanned by the connective Ek-rings. We can equivalently define Alg(k),cn

to be the ∞-category AlgEk(Spcn), where Spcn denotes the full subcategory of Sp spanned by the

connective spectra (the full subcategory Spcn ⊂ Sp inherits a symmetric monoidal structure in

view of Proposition 2.2.1.1 and Lemma 7.1.1.7). In the special case k = ∞, we will denote this

∞-category CAlgEk(Spcn) by CAlgcn.

Let M be a left R-module spectrum for some E1-ring R. We will generally abuse notation by

identifying M with its image in Sp. In particular, we define the homotopy groups {πnM}n∈Z of

M to be the homotopy groups of the underlying spectrum. The action map R ⊗M →M induces

bilinear maps πnR×πmM → πn+mM , which endow the sum π∗M =
⊕

n∈Z πnM with the structure

of a graded left module over π∗R. We will say that M is connective if its underlying spectrum is

connective; that is, if πnM ' 0 for n < 0.

Remark 7.1.1.8. When restricted to connective Ek-rings, the functor Ω∞ detects equivalences: if

f : A→ B is a morphism in Alg(k),cn such that Ω∞(f) is an equivalence, then f is an equivalence.

We observe that the functor Ω∞ : Alg(k),cn → S is a composition of a pair of functors AlgEk(Spcn)→
Spcn → S, both of which preserve sifted colimits (Corollaries 3.2.3.2 and 1.4.3.9) and admit left

adjoints. It follows from Theorem 4.7.3.5 that Alg(k),cn can be identified with the ∞-category of

modules over a suitable monad on S. In other words, we can view connective Ek-rings as spaces

equipped with some additional structures. Roughly speaking, these additional structures consist of

an addition and multiplication which satisfy the axioms for a ring (commutative if k ≥ 2), up to

coherent homotopy.

The functor Ω∞ : Alg(k) → S is not conservative: a map of Ek-rings f : A → B which induces

a homotopy equivalence of underlying spaces need not be an equivalence in Alg(k). We observe

that f is an equivalence of Ek-rings if and only if it is an equivalence of spectra; that is, if and

only if πn(f) : πnA → πnB is an isomorphism of abelian groups for all n ∈ Z. However, Ω∞(f)

is a homotopy equivalence of spaces provided only that πn(f) is an isomorphism for n ≥ 0; this is

generally a weaker condition.

Remark 7.1.1.9. Roughly speaking, if we think of an E1-ring R as a space equipped with the

structure of an associative ring up to coherent homotopy, then a left R-module can be thought of

as another space which has an addition and a left action of R, up to coherent homotopy in the
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same sense. This intuition is really only appropriate in the case where R and M are connective,

since the homotopy groups in negative degree have no simple interpretation in terms of underlying

spaces.

If R is a connective E1-ring, the formation of homotopy groups of a left R-module M can be

interpreted in terms of an appropriate t-structure on LModR.

Notation 7.1.1.10. If R is an E1-ring, we let LMod≥0
R be the full subcategory of LModR spanned

by those left R-modules M for which πnM ' 0 for n < 0, and LMod≤0
R the full subcategory of

LModR spanned by those R-modules M for which πnM ' 0 for n > 0.

Notation 7.1.1.11. Let R be an E1-ring, and let M and N be left R-modules. We let ExtiR(M,N)

denote the abelian group π0 MapLModR(M,N [i]).

Remark 7.1.1.12. Suppose that R is an associative ring, regarded as a discrete E1-ring, and let

M and N be discrete left R-modules. Then the abelian groups ExtiR(M,N) of Notation 7.1.1.11

can be identified with the usual Yoneda Ext-groups, computed in the abelian category of (discrete)

left R-modules. This is a consequence of Proposition 7.1.1.15, proven below.

Proposition 7.1.1.13. Let R be a connective E1-ring. Then:

(1) The full subcategory LMod≥0
R ⊆ LModR is the smallest full subcategory which contains R

(regarded as an R-module in the natural way; see Example 4.2.1.17) and is stable under small

colimits.

(2) The subcategories LMod≥0
R ,LMod≤0

R determine an accessible t-structure on LModR (see

§1.2.1).

(3) The t-structure described in (2) is both left and right complete, and the functor π0 determines

an equivalence of the heart LMod♥R with the (nerve of the) ordinary category of (discrete)

π0R-modules.

(4) The subcategories LMod≥0
R ,LMod≤0

R ⊆ LModR are stable under small products and small

filtered colimits.

Proof. According to Proposition 1.4.4.11, there exists an accessible t-structure (LMod′R,LMod′′R)

with the following properties:

(a) An object M ∈ LModR belongs to LMod′′R if and only if ExtiR(R,M) ' 0 for i < 0.

(b) The ∞-category LMod′R is the smallest full subcategory of LModR which contains the object

R and is stable under extensions and small colimits.
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Corollary 4.2.4.8 implies that R (regarded as an object of LModR) corepresents the composition

LModR → Sp
Ω∞→ S . It follows that LMod′′R = LMod≤0

R . Because the forgetful functor LModR → Sp

preserves small colimits (Corollary 4.2.3.5), we conclude that LMod≥0
R is stable under extensions

and small colimits. Since R is connective, R ∈ LMod≥0
R , so that LMod′R ⊆ LMod≥0

R . Let C be the

smallest full subcategory of LModR which contains R and is stable under small colimits, so that

C ⊆ LMod′R. We will complete the proof of (1) and (2) by showing that C = LMod≥0
R .

Let M ∈ LMod≥0
R . We will construct a diagram

M(0)→M(1)→M(2)→ . . .

in (LModR)/M with the following properties:

(i) Let i ≥ 0, and let K(i) be a fiber of the map M(i)→M . Then πjK(i) ' 0 for j < i.

(ii) The R-module M(0) is a coproduct of copies of R.

(iii) For i ≥ 0, there is a pushout diagram

F [i] //

��

0

��
M(i) //M(i+ 1),

where F is a coproduct of copies of R.

We begin by choosing M(0) to be any coproduct of copies of R equipped with a map M(0)→M

which induces a surjection π0M(0) → π0M ; for example, we can take M(0) to be a coproduct of

copies of R indexed by π0M . Let us now suppose that the map f : M(i)→M has been constructed,

with K(i) = fib(f) such that πjK(i) ' 0 for j < i. We now choose F to be a coproduct of copies

of R and a map g : F [i] → K(i) which induces a surjection π0F → πiK(i). Let h denote the

composite map F [i]→ K(i)→M(i), and let M(i+ 1) = cofib(h). The canonical nullhomotopy of

K(i)→M(i)→M induces a factorization

M(i)→M(i+ 1)
f ′→M

of f . We observe that there is a canonical equivalence fib(f ′) ' cofib(g), so that πj fib(f ′) ' 0 for

j ≤ i.
Let M(∞) be the colimit of the sequence {M(i)}, and let K be the fiber of the canonical

map M(∞) → M . Then K can be identified with a colimit of the sequence {K(i)}i≥0. Since the

formation of homotopy groups is preserves filtered colimits, we conclude that πjK ' colimπjK(i) '
0. Thus M(∞) 'M , so that M ∈ C as desired.

Assertion (4) follows from the corresponding result for Sp, since the forgetful functor LModR →
Sp preserves all limits and colimits (Corollaries 4.2.3.3 and 4.2.3.5). Since LModR → Sp is a
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conservative functor, an R-module M is zero if and only if πnM is zero for all n ∈ Z. It follows

from Proposition 1.2.1.19 that LModR is both right and left complete.

Let F be the functor from LMod≥0
R to the (nerve of the) ordinary category of left π0R-modules,

given by M 7→ π0M . It is easy to see that F preserves colimits, and that the restriction of F

to LMod♥R is an exact functor. We wish to prove that F0 = F |LMod♥R is an equivalence. We

first show that the restriction of F0 is fully faithful. Fix N ∈ LMod♥R, and let D be the full

subcategory of LMod≥0
R spanned by those objects M for which the map π0 MapLModR(M,N) →

Hom(F (τ≤0M), F (N)) is bijective, where the right hand side indicates the group of π0R-module

homomorphims. It is easy to see that D is stable under colimits and contains R. The first part of

the proof shows that D = LMod≥0
R . In particular, F0 is fully faithful.

It remains to show that F0 is essentially surjective. Since F0 is fully faithful and exact, the

essential image of F0 is closed under the formation of cofibers. It will therefore suffice to show that

every free left π0R-module belongs to the essential image of F0. Since F0 preserves coproducts,

it will suffice to show that π0R itself belongs to the essential image of F0. We now conclude by

observing that F0(τ≤0R) ' π0R.

Warning 7.1.1.14. Let R be an associative ring, which we can identify with a discrete E1-ring

(Proposition 7.1.3.18). The theory of R-module spectra (Definition 7.1.1.2) does not agree with the

usual theory of R-modules. Instead, Proposition 7.1.1.13 allows us to identify the usual category

of R-modules with the ∞-category of discrete R-module spectra.

Let R be a connective E1-ring, let A be the abelian category of left modules over the (ordinary)

ring π0R. Then A has enough projective objects, so we can consider the derived∞-category D−(A)

described in §1.3.2. Part (3) of Proposition 7.1.1.13 determines an equivalence N(A) ' LMod♥R.

Using Proposition 1.3.3.12, we deduce the existence of an (essentially unique) right t-exact functor

θ : D−(A)→ LModR.

Proposition 7.1.1.15. Let R be a connective E1-ring, and let θ : D−(A)→ LModR be the functor

constructed above. The following conditions are equivalent:

(1) The E1-ring R is discrete. That is, πiR ' 0 for i > 0.

(2) The functor θ is fully faithful, and induces an equivalence of D−(A) with the ∞-category of

right bounded objects of LModR.

Proof. Let P ∈ A be the projective object corresponding to the free left π0R-module on one

generator. Then, for M ∈ D−(A), we have a canonical isomorphism Ext0
D−(A)

(P,M) ' π0M. If (2)

is satisfied, then we deduce the existence of a canonical isomorphisms

Ext0
R(θ(P ),M) ' π0M ' Ext0

R(R,M)

for M ∈ LMod≥0
R . Thus θ(P ) and R are isomorphic in the homotopy category hLModR. Since

θ(P ) is discrete, we conclude that R is discrete, which proves (1).



7.1. STRUCTURED RING SPECTRA 1205

For the converse, let us suppose that R is discrete. Let us regard (the nerve of) A as a full

subcategory of both D−(A) and LModR. For M,N ∈ A, let ExtiA(M,N) denote the abelian group

π0 MapD−(A)(M,N [i]) (in other words, ExtiA(M,N) is the classical Yoneda Ext-group computed

in the abelian category A). We claim that the canonical map ExtiA(M,N) → ExtiR(M,N) is an

isomorphism. For i < 0, both sides vanish. The proof in general goes by induction on i, the case

i = 0 being trivial. For i > 0, we choose an exact sequence

0→ K → P →M → 0

in A, where P is a free π0R-module. We have a commutative diagram of abelian groups with exact

rows

Exti−1
A (P,N) //

ψ1

��

Exti−1
A (K,N) //

ψ2

��

ExtiA(M,N) //

ψ3

��

ExtiA(P,N)

��
Exti−1

R (P,N) // Exti−1
R (K,N) // ExtiR(M,N) // ExtiR(P,N).

We wish to show that ψ3 is an isomorphism. Since ψ1 and ψ2 are bijective by the inductive

hypothesis, it will suffice to show that ExtiA(P,N) ' 0 ' ExtiR(P,N). The first equivalence follows

from the fact that P is a projective object of A. For the second, we observe that as an object of

LModR, P coincides with a coproduct of copies of R (in virtue of assumption (1)). Consequently,

ExtiR(P,N) can be identified with a product of copies of π−iN , which vanishes since i > 0 and

N ∈ LMod≥0
R .

Now suppose that M ∈ A, and consider the full subcategory C ⊆ D−(A) spanned by those

objects N for which the canonical map Exti
D−(A)

(M,N) → ExtiR(θ(M), θ(N)) is an isomorphism

for all i ∈ Z. Applying the five lemma to the relevant long exact sequences, we conclude that C is

stable under extensions in D−(A). The above argument shows that C contains the heart of D−(A);

it therefore contains the full subcategory Db(A) of bounded object of D−(A).

Now let C′ ⊆ D−(A) spanned by those objects M having the property that for every N ∈ Db(A),

the canonical map Exti
D−(A)

(M,N) → ExtiR(θ(M), θ(N)) is an isomorphism for i ∈ Z. Repeating

the above argument, we conclude that Db(A) ⊆ C′. In particular, the restriction θ|Db(A) is fully

faithful.

We claim that the essential image of θ|Db(A) consists of precisely the t-bounded objects of

LModR. Let M ∈ LModR be a t-bounded object. We wish to prove that M belongs to the

essential image of θ. Without loss of generality, we may suppose that M ∈ LMod≥0
R . Since M is

t-bounded, we have also M ∈ LMod≤nR for some n ≥ 0. We now work by induction on n. If n = 0,

then M belongs to the heart of LModR and the result is obvious. If n > 0, then we have a fiber

sequence

τ≥nM →M → τ≤n−1M.

Since θ is exact and fully faithful, it will suffice to show that τ≥nM [−n] and τ≤n−1M belong to the

essential image of θ, which follows from the inductive hypothesis.
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The preceding argument shows that θ induces an equivalence Db(A)→ LModbR between the full

subcategories of bounded objects. We now conclude by observing that both D−(A) and LModR
are left complete.

Remark 7.1.1.16. Let R and A be as in Proposition 7.1.1.15, and assume that R is discrete. Let

D(A) be the unbounded derived ∞-category of A (Definition 1.3.5.8), so that Proposition 1.3.5.24

allows us to identify D−(A) with the full subcategory of D(A) spanned by the right bounded objects.

Since D(A) and LModR are both right complete (Propositions 1.3.5.21 and 7.1.1.13), the fully

faithful embedding D(A)− → LModR induces an equivalence of ∞-categories D(A) ' LModR. In

other words, the∞-category of left R-module spectra can be identified with the derived∞-category

of the abelian category of (discrete) R-modules.

7.1.2 Recognition Principles

Let R be a commutative ring and let A denote the abelian category of (discrete) R-modules. We

will regard R as a discrete E∞-ring, and let ModR denote the ∞-category of R-module spectra

as in Notation 7.1.1.1. According to Remark 7.1.1.16, we can identify ModR with the derived

∞-category D(A) of chain complexes of R-modules. Since R is commutative, we can regard ModR
as a symmetric monoidal ∞-category. In this section, we will show that the symmetric monoidal

structure on ModR is determined by the symmetric monoidal structure on the ordinary category

Ch(A) of chain complexes with values in A.

We begin with a much more general question. Given a stable∞-category C (such as the derived

∞-category D(A) of an abelian category A), under what circumstances can C be realized as the

∞-category RModR of right modules over an E1-ring R? This question is addressed by the following

result of Schwede and Shipley:

Theorem 7.1.2.1. [Schwede-Shipley [129]] Let C be a stable ∞-category. Then C is equivalent

to RModR, for some E1-ring R, if and only if C is presentable and there exists a compact object

C ∈ C which generates C in the following sense: if D ∈ C is an object having the property that

ExtnC(C,D) ' 0 for all n ∈ Z, then D ' 0.

Proof. Suppose first that C ' RModR, and let C = R (regarded as a left module over itself). Then

C is presentable, C is a compact object of C, and ExtnC(C,D) ' π−nD for every object D ∈ C. It

follows that D ' 0 if and only if ExtnC(C,D) ' 0 for all integers n, so that C generates C.

Conversely, suppose that C is presentable and let C ∈ C be a compact generator. Let PrL denote

the symmetric monoidal∞-category of presentable∞-categories, so that we can regard C as a right

module over the ∞-category Sp (see Proposition 4.8.2.18). We will complete the proof by showing

that the pair (C, C) lies in the image of the fully faithful embedding Alg(Sp) → ModSp(PrL)Sp /

of Proposition 4.8.5.8. Corollary HTT.5.5.2.9 guarantees that the functor F : Sp → C given by

X 7→ X ⊗ C admits a right adjoint G. According to Proposition 4.8.5.8, it will suffice to show the

following:
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(a) The functor G preserves geometric realizations of simplicial objects.

(b) The functor G is conservative.

(c) For every object D ∈ C and every spectrum X ∈ Sp, the canonical map θX : X ⊗ G(D) →
G(X ⊗D) is an equivalence of spectra.

To prove (a), it suffices to show that G preserves all small colimits. Since G is exact, this

is equivalent to the requirement that G preserves small filtered colimits, which follows from our

assumption that C is compact. To prove (b), suppose we are given a map α : D → D′ such that

G(α) is an equivalence. Let D′′ be the cofiber of α. Since G is exact, we deduce that G(D′′) ' 0,

so that πnG(D′′) ' Ext−nC (C,D′′) vanishes for every integer n. Our assumption that C generates

C implies that D′′ ' 0, so that α is an equivalence.

It remains to prove (c). Fix an object D ∈ C, and let X ⊆ Sp be the full subcategory spanned

by those spectra X for which the map θX is an equivalence. Since G preserves small colimits, the

∞-category X ⊆ Sp is stable under small colimits. To prove that X = Sp, it suffices to show that

S[n] ∈ X for every integer n, where S denotes the sphere spectrum. Since the functor G is exact,

we can reduce to the case n = 0, where the result is obvious.

Remark 7.1.2.2. Let C be a stable∞-category, and let X ∈ C be an object. Then it is possible to

extract from C an E1-ring spectrum EndC(X) with the property that πn EndC(X) ' Ext−nC (X,X)

for all n ∈ Z, and the ring structure on π∗ EndC(X) is given by composition in the triangulated

category hC. We will describe the argument in the case where C is presentable (the general case

can be reduced to this case by first replacing C by a small subcategory which contains X, and

then enlarging C by formally adjoining filtered colimits). According to Remark 4.8.2.20, the ∞-

category C is naturally left-tensored over Sp. Proposition 4.2.1.33 implies that C is also enriched

over Sp, so that there exists a morphism object MorC(X,X). The object EndC(X) = MorC(X,X)

can be lifted to a final object of the monoidal ∞-category C+[X], and can therefore be lifted to

Alg(Sp) ' AlgE1
(Sp). The identification of the homotopy groups of EndC(X) follows from the

homotopy equivalence MapSp(S[n],EndC(X)) ' MapC(S[n]⊗X,X).

Remark 7.1.2.3. Let C be a presentable stable ∞-category containing an object C. The E1-ring

R appearing in the proof of Theorem 7.1.2.1 can be identified with the endomorphism algebra

EndC(C) described in Remark 7.1.2.2.

In the situation of Theorem 7.1.2.1, the E1-ring R is determined up to equivalence by the pair

(C, C), but not by the ∞-category C alone. As in classical Morita theory, an equivalence between

module categories RModR and RModR′ need not result from an equivalence between R and R′.

However, every equivalence between RModR and RModR′ is obtained by tensor product with a

suitable R-R′-bimodule spectrum. In fact, we have the following more general result:
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Proposition 7.1.2.4. Let R and R′ be E1-rings, and let LFun(RModR,RModR′) be the∞-category

of functors from RModR to RModR′ which preserve small colimits. Then the relative tensor product

functor ⊗R : RModR×RBModR′(Sp)→ RModR′ induces an equivalence of ∞-categories

RBModR′(Sp)→ LFun(RModR,RModR′).

Proof. Combine Proposition 4.8.2.18, Theorem 4.8.4.1, and Theorem 4.3.2.7.

If we wish to recover the E1-ring from the ∞-category RModR of right R-modules, we should

consider not only RModR but also the distinguished object R (regarded as a right module over

itself), whose endomorphism algebra can be identified with R. More generally, for any k ≥ 1, we

can recover an Ek-ring R from the ∞-category of right R-modules, regarded as an Ek−1-monoidal

∞-category. Before stating the precise result, we need to introduce a bit of terminology.

Notation 7.1.2.5. Fix a section s of the trivial Kan fibration E⊗1 → Assoc⊗ of Example 5.1.0.7, so

that composition with s determines a map of∞-operads RM⊗ → E⊗1 and therefore a bifunctor of∞-

operads RM⊗×E⊗k−1 → E⊗k for each k > 0. If C is an Ek-monoidal ∞-category and R ∈ Alg/Ek(C),

then we let RModR(C) denote the fiber product AlgRM /Ek(C) ×AlgAssoc /Ek
{R}. If we assume that

C admits geometric realizations of simplicial objects and that the tensor product on C preserves

geometric realizations of simplicial objects, then the constructions of §4.8.3 show that RModR(C)

inherits the structure of an Ek−1-monoidal ∞-category.

Proposition 7.1.2.6. Let k ≥ 1. The construction R 7→ RMod⊗R determines a fully faithful

embedding from the∞-category Alg(k) of Ek-rings to the∞-category AlgEk−1
(PrL) of Ek−1-monoidal

presentable ∞-categories. An Ek−1-monoidal ∞-category C⊗ → E⊗k−1 belongs to the essential image

of this embedding if and only if the following conditions are satisfied:

(1) The ∞-category C is stable and presentable, and if k > 1 then the tensor product functor

⊗ : C×C→ C preserves small colimits separately in each variable.

(2) The unit object 1 ∈ C is compact.

(3) The object 1 generates C in the following sense: if C ∈ C is an object such that ExtiC(1, C) ' 0

for all integers i, then C ' 0.

Proof. The full faithfulness follows from Corollary 5.1.2.6 and Proposition 4.8.2.18. The description

of the essential image follows as in the proof of Theorem 7.1.2.1.

Proposition 7.1.2.6 is also valid (with the same proof) in the the limiting case k =∞:

Proposition 7.1.2.7. The construction R 7→ Mod⊗R determines a fully faithful embedding from the

∞-category CAlg of E∞-rings to the ∞-category CAlg(PrL) of presentable symmetric monoidal ∞-

categories. A symmetric monoidal ∞-category C⊗ belongs to the essential image of this embedding

if and only if the following conditions are satisfied:
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(1) The ∞-category C is stable and presentable and the tensor product functor ⊗ : C×C → C

preserves small colimits separately in each variable.

(2) The unit object 1 ∈ C is compact.

(3) The object 1 generates C in the following sense: if C ∈ C is an object such that ExtiC(1, C) ' 0

for all integers i, then C ' 0.

Our next goal is to use Proposition 7.1.2.7 to address the question raised at the beginning of

this section. Suppose that R is a commutative ring, and let A be the category of chain complexes of

R-modules. We will show that the equivalence of∞-categories D(A) ' ModR provided by Remark

7.1.1.16 can be promoted to an equivalence of symmetric monoidal ∞-categories. To formulate

this result more precisely, we need to define a suitable symmetric monoidal structure on D(A).

Roughly speaking, it is given by the tensor product of chain complexes over R. To analyze this

tensor product more explicitly, it is convenient to introduce an appropriate model structure on

Ch(A).

Proposition 7.1.2.8. Let R be an associative ring and let A be the abelian category of (discrete)

right R-modules. Then the category Ch(A) admits a left proper combinatorial model structure,

which can be described as follows:

(W ) A map of chain complexes f : M∗ → N∗ is a weak equivalence if it is a quasi-isomorphism:

that is, if it induces an isomorphism on homology.

(F ) A map of chain complexes f : M∗ → N∗ is a fibration if each of the maps Mi → Ni is

surjective.

(C) A map of chain complexes f : M∗ → N∗ is a cofibration if and only if it has the left lifting

property with respect to every map g which is simultaneously a fibration and a weak equiva-

lence.

Proof. For every integer n, we let E(n)∗ denote the chain complex

· · · → 0→ R
id→ R→ 0→ · · ·

which is nontrivial only in degrees n and n−1, and we let ∂ E(n)∗ denote the subcomplex consisting

of the module R concentrated in degree n − 1. Let C0 be the collection of all monomorphisms of

chain complexes {∂ E(n)∗ ↪→ E(n)∗}n∈Z. Let C be the smallest weakly saturated collection of

morphisms containing C0. We first show that that there is a model structure on Ch(A) whose

class of cofibrations is given by C and whose weak equivalences are quasi-isomorphisms. For this,

it suffices to verify the hypotheses of Proposition HTT.A.2.6.15 .

Note that every morphism in C is a cofibration with respect to the model structure of Proposition

1.3.5.3. It follows from Proposition 1.3.5.3 that the class of weak equivalences in Ch(A) is perfect
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and is stable under pushouts by morphisms in C. It therefore suffices to show that if f : M∗ → N∗
is a morphism which has the right lifting property with respect to every morphism in C0, then f

is a quasi-isomorphism. Unwinding the definitions, our assumption guarantees that if x ∈ Ni and

y ∈Mi−1 satisfy f(y) = dx, then there exists an element x ∈Mi with dx = y and f(x) = x. Taking

x to be an arbitrary cycle and y = 0, we deduce that f induces a surjection Hi(M) → Hi(N). To

prove injectivity, choose a homology class η ∈ Hi(M) represented by y ∈Mi, and suppose that the

image of η in Hi(N) vanishes. Then f(y) = dx for some x ∈Mi+1, and our hypothesis guarantees

the existence of an element x ∈Mi+1 with dx = y, so that η = 0 as desired.

To complete the proof, it suffices to show that the model structure we have constructed satisfies

the requirements of Proposition 7.1.2.8: that is, we must show that a map f : M∗ → N∗ is a

fibration if and only if it is degreewise surjective. Assume first that f is a fibration. We wish

to show that for every integer n, f has the right lifting property with respect to the inclusion

g : 0 ↪→ E(n)∗. The map g is clearly a quasi-isomorphism. Moreover, g can be obtained as a

composition of maps

0
g′→ ∂ E(n)∗

g′′→ E(n)∗

where g′′ belongs to C0 and g′ is a pushout of the morphism ∂ E(n− 1)∗ → E(n− 1)∗ belonging to

C0. It follows that g is a trivial cofibration, so that f has the right lifting property with respect to

g by virtue of our assumption that f is a fibration.

Now suppose that f : M∗ → N∗ is degreewise surjective; we wish to show that f is a fibration.

Let g : P∗ → Q∗ be a trivial cofibration in Ch(A). For every pair of chain complexes of right

R-modules X∗ and Y∗, let Map(X∗, Y∗) be the chain complex of abelian groups given by Definition

1.3.2.1. We wish to show that the map

φ : Map(Q∗,M∗)∗ → Map(P∗,M∗)∗ ×Map(P∗,N∗)∗ Map(Q∗, N∗)∗

is surjective on 0-cycles. Since g is a trivial cofibration, each of the maps Pn → Qn is a split

monomorphism, and each quotient Fn = Qn/Pn is a projective right R-module. We therefore

obtain a diagram of exact sequences (of chain complexes of abelian groups)

0 //Map(F∗,M∗)∗ //

θ
��

Map(Q∗,M∗)∗ //

��

Map(P∗,M∗)∗ //

��

0

0 //Map(F∗, N∗)∗ //Map(Q∗, N∗)∗ //Map(P∗, N∗)∗. // 0

Since F∗ is degreewise projective and f is degreewise surjective, the map θ is an epimorphism. It

follows from a diagram chase that the map φ degreewise surjective, and that ker(φ) ' ker(θ). Let

K∗ = ker(φ), so that K∗ ' Map(F∗, ker(f)). Let x be a 0-cycle in Map(P∗,M∗)∗ ×Map(P∗,N∗)∗

Map(Q∗, N∗)∗, and write x = φ(x̃) for x̃ ∈ Map(Q∗,M∗)0. Then dx̃ is a (−1)-cycle of K. If we can

write dx̃ = dy for some y ∈ K0, then x̃ − y is a 0-cycle of Map(Q∗,M∗) lifting x. It will therefore
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suffice to show that the chain complex K∗ is acyclic. For this, it suffices to show that the chain

complex F∗ has a contracting homotopy.

We will prove the following more general assertion: for every cofibrant object Z∗ ∈ Ch(A) and

every map of chain complexes u : Z∗ → F∗, where exists a nullhomotopy for u: that is, a collection

of maps h : Zm → Fm+1 satisfying dh + hd = u. Taking u to be the identity map idF∗ , we will

obtain the desired result. Without loss of generality we may assume that Z∗ is the colimit of a

transfinite sequence of chain complexes

0 = Z(0)∗ → Z(1)∗ → Z(2)∗ → · · ·

where each of the maps Z(α)∗ → Z(α + 1)∗ is the pushout of an inclusion ∂ E(nα)∗ ↪→ E(nα)∗.

We construct a compatible family of maps hα : Z(α)m → Fm+1 satisfying dhα + hαd = u|Z(α)m
using induction on α. When α is a limit ordinal (including the case α = 0), there is nothing to

prove. Let us therefore assume that hα has been constructed, and explain how to define hα+1. By

assumption, the chain complex Z(α+ 1)∗ is freely generated by Z(α)∗ together with an additional

element x in degree nα, satisfying dx = y ∈ Z(α)nα−1. The element u(x)− hα(y) ∈ Fnα satisfies

d(u(x)− hα(y)) = u(dx)− dhα(y)− hα(dy) = u(y)− u(y) = 0,

so that u(x)− hα(y) is a cycle. Since g : P∗ → Q∗ is a trivial cofibration, the chain complex F∗ is

acyclic. We may therefore find an element z ∈ Fnα+1 with dz = u(x) − hα(y). We now complete

the construction by defining hα+1 so that hα+1(x) = z and hα+1|Z(α)∗ = hα.

Remark 7.1.2.9. Let R be an associative ring and A the abelian category of (discrete) R-modules.

We will refer to the model structure on Ch(A) described in Proposition 7.1.2.8 as the projective

model structure on the category Ch(A). It generally does not agree with the model structure of

Proposition 1.3.5.3. However, these model structures have the same weak equivalences. It follows

that the underlying ∞-category of Ch(A) does not depend on which model structure we consider

(it is the ∞-category obtained from Ch(A) by formally inverting all weak equivalences). We will

denote this ∞-category by D(A) in what follows.

Remark 7.1.2.10. Let R be a field (not necessarily commutative). Then for every monomorphism

M → N of right R-modules, the inclusion of the chain complex

· · · → 0→M → N → 0→ · · ·

into

· · · → 0→ N
id→ N → 0→ · · ·

is a pushout of coproducts of generating cofibrations appearing in Proposition 7.1.2.8. It follows

that the model structures of Propositions 1.3.5.3 and 7.1.2.8 coincide. In particular, every object

of Ch(A) is cofibrant with respect to the projective model structure.
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Proposition 7.1.2.11. Let R be a commutative ring, let A denote the abelian category of (discrete)

R-modules, and regard Ch(A) as a symmetric monoidal category via the tensor product of chain

complexes (see Remark 1.2.3.21). Then Ch(A) is a symmetric monoidal model category, with

respect to the projective model structure of Proposition 7.1.2.8.

Proof. It is easy to see that the unit object of Ch(A) (given by the module R, considered as a chain

complex concentrated in degree zero) is cofibrant. Suppose we are given cofibrations f : M∗ →M ′∗
and g : N∗ → N ′∗; we must show that the induced map

f ∧ g : (M∗ ⊗N ′∗)
∐

M∗⊗N∗

(M ′∗ ⊗N∗)→M ′∗ ⊗N ′∗

is a cofibration, which is trivial if either f or g is trivial. We first show that f ∧ g is a cofibration.

Without loss of generality, we may assume that both f and g are generating cofibrations, having

the form

∂ E(m)∗ → E(m)∗ ∂ E(n)∗ → E(n)∗

for some integers m and n (for an explanation of this notation, see the proof of Proposition 7.1.2.8).

Unwinding the definitions, we see that f∧g is a pushout of the generating cofibration ∂ E(m+n)∗ →
E(m+ n)∗, and therefore a cofibration.

Now suppose that f is a trivial cofibration; we wish to show that f ∧ g is a trivial cofibration.

If we regard f as fixed, then the collection of morphisms g for which f ∧ g is a trivial cofibration

is weakly saturated. We may therefore assume that g is a generating trivial cofibration of the form

∂ E(n)∗ → E(n)∗. In this case, the map f ∧ g is an injection whose cokernel is isomorphic (after a

shift) to the cokernel of f . Since f is a quasi-isomorphism which is degreewise injective, the chain

complex coker(f) is acyclic, so that f ∧ g is also a quasi-isomorphism.

Remark 7.1.2.12. Combining Proposition 7.1.2.11 with Example 4.1.7.6, we conclude that if

A is the abelian category of modules over a commutative ring R, then the derived ∞-category

D(A) inherits a symmetric monoidal structure. This symmetric monoidal structure is determined

uniquely (up to equivalence) by the requirement that the functor N(Ch(A)o) → D(A) can be

promoted to a symmetric monoidal functor; here Ch(A)o denotes the full subcategory of Ch(A)

spanned by those objects which are cofibrant with respect to the model structure of Proposition

7.1.2.8.

We are now ready to address the question raised at the beginning of this section.

Theorem 7.1.2.13. Let R be a commutative ring, let A denote the abelian category of R-modules,

and regard R as a discrete E∞-ring. Then there is a canonical equivalence of symmetric monoidal

∞-categories ModR → D(A); here we regard D(A) as a symmetric monoidal ∞-category as in

Remark 7.1.2.12.
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Proof. The ∞-category D(A) is presentable by Proposition 1.3.4.22, and the tensor product on

D(A) preserves colimits separately in each variable since it is induced by a left Quillen bifunctor.

The∞-category D(A) is stable by Remark 7.1.2.9 and the results of §1.3.2. Let R be the unit object

of D(A). For any M∗ ∈ D(A), we have canonical equivalences Hn(M) ' Ext−n
D(A)(R,M∗). It follows

that R is a compact generator for D(A), so that Proposition 7.1.2.7 yields a symmetric monoidal

equivalence D(A) ' ModA for some E∞-ring A. Here we can regard A as the endomorphism

algebra of R ∈ D(A), so that

πnA ' Ext−n
D(A)(R,R) '

{
R if n = 0

0 otherwise.

In particular, we deduce that A is a discrete E∞-ring which can be identified with R, so that we

have a symmetric monoidal equivalence D(A) ' ModR.

7.1.3 Change of Ring

Let Ab denote the category of abelian groups and let R ∈ CAlg(Ab) be a commutative ring. Suppose

that A is an R-algebra: that is, an associative ring equipped with a map φ : R → A whose image

is contained in the center of A. Suppose that M is a left A-module. We may then regard M as an

R-module (via the homomorphism φ). The action of A on M is determined by a map of abelian

groups φ : A ⊗M → M . This map is R-bilinear: for every triple of elements a ∈ A, x ∈ M , and

λ ∈ R, we have

λ(ax) = (λa)x = (aλ)x = a(λx).

It follows that the map φ factors through the relative tensor product A⊗RM . We can rephrase this

statement more categorically as follows: the associative ring A can be regarded as an associative

algebra object of the category ModR(Ab) of R-modules, and M can be regarded as a left A-module

object of the category ModR(Ab).

We begin this section by generalizing this observation to the ∞-categorical setting. Let C be

a symmetric monoidal ∞-category and let R ∈ CAlg(C) be a commutative algebra object of C.

Under some mild assumptions, the ∞-category ModR(C) of R-module objects of C inherits the

structure of a symmetric monoidal ∞-category. Moreover, the forgetful functor ModR(C) → C is

lax symmetric monoidal. It follows that every algebra object A ∈ Alg(ModR(C)) determines an

algebra A′ ∈ Alg(C), and we have a forgetful functor LModA(ModR(C)) → LModA′(C). We will

show that this forgetful functor is an equivalence of ∞-categories. In fact, we do not even need to

assume that the tensor product on C is fully commutative.

Theorem 7.1.3.1. Let C be an E2-monoidal ∞-category. Assume that C admits geometric realiza-

tions of simplicial objects and that the tensor product on C preserves geometric realizations sepa-

rately in each variable. Let R ∈ Alg/E2
(C) ' Alg/E1

(Alg/E1
(C)), so that the ∞-category LModR(C)

inherits an E1-monoidal structure. For every algebra object A ∈ Alg/E1
(LModR(C)) having image
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A′ ∈ AlgE1/E2
(C), the forgetful functor θ : LModA(LModR(C)) → LModA′(C) is an equivalence of

∞-categories.

Remark 7.1.3.2. With a bit more care, the conclusion of Theorem 7.1.3.1 remains valid for an

arbitrary fibration of ∞-operads p : C⊗ → E⊗2 : we do not need to assume that p is a coCartesian

fibration or that p is compatible with N(∆)op-indexed colimits. This more general statement can

be reduced to the statement of Theorem 7.1.3.1 by first replacing p by its E2-monoidal envelope

(see §2.2.4) and then using Proposition 4.8.1.10.

Proof. In what follows, it will be convenient to think of the E2-monoidal structure on C as giving

determining two tensor product operations ⊗,� : C×C→ C, which are coherently associative and

commute with one another. The operations ⊗ and � can be identified with one another by the

Eckmann-Hilton argument (see Example 5.1.2.4), but the argument will be clearer if we do not

exploit this.

We have a diagram of forgetful functors

LModA(LModR(C))

G

''

θ // LModA′(C)

G′yy
C

To show that θ is an equivalence of ∞-categories, it will suffice to show that this diagram satisfies

the hypotheses of Corollary 4.7.3.16. Using Corollaries 4.2.3.2 and 4.2.3.5, we deduce that G and G′

are conservative and preserve geometric realizations of simplicial objects. Corollary 4.2.4.8 implies

that G′ admits a left adjoint F ′, given informally by M 7→ A′ ⊗M . The functor G factors as a

composition

LModA(LModR(C))
G1−→ LModR(C)

G2−→ C .

Using Corollary 4.2.4.8 again, we deduce that these functors admit left adjoints F1 and F2. The

functor F2 is given by M 7→ R �M , and Lemma 4.8.3.15 shows that the functor F1 is given by

N 7→ R�R⊗R (A⊗N). It follows that G admits a left adjoint F = F1 ◦F2. To complete the proof,

it will suffice to show that for each M ∈ C, the canonical map F ′(M)→ θF (M) is an equivalence

in LModA′(C). Unwinding the definitions, we must show that the canonical map

α : A⊗M → R�R⊗R (A⊗ (R�N))

is an equivalence in C. We note that α factors as a composition of equivalences

A⊗M ' R�R (A⊗M) ' R�R⊗1 (A⊗ (1�M)) ' R�R⊗R (A⊗ (R�M)).

The equivalences in Theorem 7.1.3.1 are compatible with the formation of relative tensor prod-

ucts:
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Proposition 7.1.3.3. Let C be an E2-monoidal ∞-category. Assume that C admits geometric re-

alizations of simplicial objects and that the tensor product on C preserves geometric realizations

separately in each variable. Let R ∈ Alg/E2
(C) ' Alg/E1

(Alg/E1
(C)), so that the ∞-category

LModR(C) inherits an E1-monoidal structure. Let θ : LModR(C) → C denote the forgetful func-

tor. Suppose we are given an algebra object A ∈ Alg/E1
(LModR(C)), and let A′ be the image

of A in AlgE1/E2
(C), so that θ induces forgetful functors θL : LModA(LModR(C)) → LModA(C)

and θR : RModA(LModR(C)) → RModA(C) (which are equivalences of ∞-categories by Proposi-

tion 7.1.3.1). For every pair of objects M ∈ RModA(LModR(C)), N ∈ LModA(LModR(C)), the

canonical map

φM,N : θR(M)⊗A′ θL(N)→ θ(M ⊗A N)

is an equivalence in C.

Proof. Let us regard N ∈ LModA(LModR(C)) as fixed, and let X ⊆ RModA(LModR(C)) be the full

subcategory spanned by those objects for which the map φ is an equivalence. Since the forgetful

functor θ and the relative tensor product functors commute with geometric realization, we conclude

that X is stable under geometric realizations in RModA(LModR(C)). Using Proposition 4.7.3.14, we

are reduced to proving that X contains the essential image of the functor F appearing in the proof

of Theorem 7.1.3.1. Unwinding the definitions, we must show that if M0 ∈ C, then the canonical

map

(M0 ⊗A′)⊗A′ θL(N)→ θ((M0 ⊗A)⊗A N)

is an equivalence. This is clear, since both sides can be identified with the absolute tensor product

M0 ⊗N .

Corollary 7.1.3.4. Let k ≥ 1 be an integer and let C be an Ek+1-monoidal ∞-category. Assume

that C admits geometric realizations of simplicial objects and that the tensor product on C preserves

geometric realizations of simplicial objects separately in each variable. Let R be an Ek+1-algebra in

C, let A ∈ Alg/Ek(LModR(C)), and let A′ denote the image of A in Alg/Ek(C). Then the forgetful

functor

LModA(LModR(C))→ LModA′(C)

is an equivalence of Ek−1-monoidal ∞-categories.

Proof. Combine Theorem 7.1.3.1, Proposition 7.1.3.3, and Theorem 4.4.1.28.

We now specialize to the setting of structured ring spectra.

Definition 7.1.3.5. Let k ≥ 0, and let R ∈ Alg(k+1) = Alg/Ek+1
(Sp) be an Ek+1-ring. We let

LModR denote the ∞-category LModR(Sp) of left R-module spectra, which we regard as an Ek+1-

monoidal∞-category. We let Alg
(k)
R denote the∞-category AlgEk(LModR). We will refer to Alg

(k)
R

as the ∞-category of Ek-algebras over R.
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Example 7.1.3.6. Let R = S be the sphere spectrum, regarded as a trivial Ek+1-algebra object

of Sp. Then the forgetful functor LModR → Sp is an equivalence of Ek-monoidal ∞-categories. It

follows that the forgetful functor Alg
(k)
R → Alg(k) is an equivalence: that is, an Ek-algebra over the

sphere spectrum is just an Ek-ring, in the sense of Definition 7.1.0.1.

Remark 7.1.3.7. Let 0 ≤ k, let R be an Ek+1-ring, and let A be an Ek-algebra over R. We will

generally abuse notation by identifying A with its image under the forgetful functor Alg
(k)
R → Alg(k).

Theorem 7.1.3.1 gives an equivalence of ∞-categories

LModA(LModR(Sp)) ' LModA(Sp),

which is Ek−1-monoidal if k > 0 (by Corollary 7.1.3.4). Consequently, we may speak unambiguously

about (left) A-module spectra and their relative tensor product over A, without making reference

to the underlying Ek+1-ring R.

Variant 7.1.3.8. Definition 7.1.3.5 continues to make sense in the special case k =∞: if R is an

E∞-ring, then the ∞-category ModR(Sp) ' LModR(Sp) inherits a symmetric monoidal structure,

so that the ∞-category CAlg(LModR(Sp)) is well-defined. We will denote this ∞-category by

CAlgR and refer to its objects as E∞-algebras over R. Using Theorem 5.1.4.10 and Proposition

3.4.1.4, we obtain a canonical equivalence of∞-categories CAlgR ' CAlgR/: that is, we can identify

an E∞-algebra over R with an E∞-ring A together with a map R→ A.

Warning 7.1.3.9. Let k < ∞ and let R be an Ek+1-ring. We can identify the unit object of

LModR with R itself, so there is an evident forgetful functor

Alg
(k)
R ' (Alg

(k)
R )R/ → Alg

(k)
R/

generalizing the equivalence described in Variant 7.1.3.8. However, this functor is generally not an

equivalence: a map of Ek-rings from R to another Ek-ring A does not exhibit A as an Ek-algebra

object of LModR unless it factors through the center ZEk(A) (see Definition 5.3.1.12).

Let 0 ≤ k ≤ ∞ and let R be a connective Ek+1-ring. We will say that an Ek-algebra A ∈ Alg
(k)
R

is connective if its underlying spectrum is connective. We let Alg
(k),cn
R denote the full subcategory

of Alg
(k)
R spanned by the connective Ek-algebras over R. Note that Alg

(k),cn
R can be identified with

the ∞-category of Ek-algebra objects of the subcategory LModcn
R ⊆ LModR. To study this notion,

we need the following observation:

Lemma 7.1.3.10. Let 0 ≤ k ≤ ∞ and let R be a connective Ek+1-ring. Then the t-structure on

LModR (see Proposition 7.1.1.13) is compatible with the Ek-monoidal structure.

Proof. If k = 0, it suffices to show that the unit object of LModR is connective; this unit object

is given by R, so the result is immediate. If k ≥ 1, we must also show that for M,N ∈ LModcn
R ,

the tensor product M ⊗RN also belongs to LModcn
R . Since LModcn

R is generated by R under small

colimits, we can assume that M = N = R, in which case the result is obvious.
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For any object A ∈ Alg
(k)
R , we can find a closest approximation to A which belongs to Alg

(k),cn
R .

Definition 7.1.3.11. Let R be a connective Ek+1-ring for 0 ≤ k ≤ ∞ and let A ∈ Alg
(k)
R . A

connective cover of A is a morphism φ : A′ → A of Ek-algebras over R with the following properties:

(1) The Ek-algebra A′ is connective.

(2) For every connective object A′′ ∈ Alg
(k)
R , composition with φ induces a homotopy equivalence

Map
Alg

(k)
R

(A′′, A′)→ Map
Alg

(k)
R

(A′′, A).

Remark 7.1.3.12. In the situation of Definition 7.1.3.11, we will generally abuse terminology and

simply refer to A′ as a connective cover of A, in the case where the map φ is implicitly understood.

Proposition 7.1.3.13. Let 0 ≤ k ≤ ∞, and let R be a connective Ek+1-ring. Then:

(1) Every Ek-algebra A ∈ Alg
(k)
R admits a connective cover.

(2) An arbitrary map φ : A′ → A of Ek-algebras over R is a connective cover of A if and only if

A′ is connective and the induced map πnA
′ → πnA is an isomorphism for n ≥ 0.

(3) The inclusion Alg
(k),cn
R ⊆ Alg

(k)
R admits a right adjoint G, which carries each Ek-algebra

A ∈ Alg
(k)
R to a connective cover A′ of A.

Proof of Proposition 7.1.3.13. Combine Proposition 2.2.1.1 with Lemma 7.1.3.10.

Recall that an object X of an ∞-category C is said to be n-truncated if the mapping spaces

MapC(Y,X) are n-truncated, for every Y ∈ C (see §HTT.5.5.6 ). Let R be a connective Ek+1-ring

for 0 ≤ k ≤ ∞. Corollary 3.2.3.5 implies that the ∞-categories Alg
(k)
R and Alg

(k),cn
R are presentable

for 0 ≤ k ≤ ∞, so we have a good theory of truncation functors.

Proposition 7.1.3.14. Let 0 ≤ k ≤ ∞, let R be a connective Ek+1-ring, and let A ∈ Alg
(k)
R . The

following conditions are equivalent:

(1) As an object of Alg
(k),cn
R , A is n-truncated.

(2) As an object of LModcn
R , A is n-truncated.

(3) As an object of Spcn, A is n-truncated.

(4) The space Ω∞(R) is n-truncated.

(5) For every m > n, the homotopy group πmR is trivial.
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Proof. The equivalence (4) ⇔ (5) is easy (Remark HTT.5.5.6.4 ), and the equivalences (2) ⇔
(3) ⇔ (5) are explained in Warning 1.2.1.9. The implication (1) ⇒ (2) follows from Proposition

HTT.5.5.6.16 , since the forgetful functor Alg
(k),cn
R → LModcn

R preserves small limits (Corollary

3.2.2.5).

We now prove that (2)⇒ (1). Assume that A is n-truncated as a left R-module spectrum. Let

T : (Alg(k),cn)op → S be the functor represented by A. Let C ⊆ Alg
(k),cn
R be the full subcategory

of Alg
(k),cn
R spanned by those objects B such that T (B) is n-truncated. We wish to prove that

C = Alg
(k),cn
R . Since T preserves limits (Proposition HTT.5.1.3.2 ) and the class of n-truncated

spaces is stable under limits (Proposition HTT.5.5.6.5 ), we conclude that C is stable under small

colimits in Alg
(k),cn
R . Let F be a left adjoint to the forgetful functor Alg

(k),cn
R → LModR. Proposition

4.7.3.14 implies that Alg
(k),cn
R is generated under colimits by the essential image of F . Consequently,

it will suffice to show that F (M) ∈ C for every M ∈ LModR. Equivalently, we must show that the

space Map
Alg

(k),cn
R

(F (M), A) ' MapLModR(M,A) is n-truncated, which follows from (2).

Let R be a connective Ek+1-ring, let τ≤n : LModcn
R → LModcn

R be the truncation functor on

connective left R-module spectra, and let τ
(k)
≤n : Alg

(k),cn
R → Alg

(k),cn
R be the truncation functor

on connective Ek-algebras over R. Since the forgetful functor θ : Alg
(k),cn
R → LModcn

R preserves

n-truncated objects, there is a canonical natural transformation α : τ≤n ◦ θ → θ ◦ τ (k)
≤n . Our next

goal is to show that α is an equivalence.

Proposition 7.1.3.15. Let 0 ≤ k ≤ ∞, let R be a connective Ek+1-ring, and let n ≥ 0 be an

integer. Then:

(1) The localization functor τ≤n : LModcn
R → LModcn

R is compatible with the Ek-monoidal struc-

ture on LModcn
R , in the sense of Definition 2.2.1.6.

(2) The Ek-monoidal structure on LModcn
R induces an Ek-monoidal structure on the ∞-category

LModcn
R ∩(LModR)≤n

and an identification

Alg/Ek(LModcn
R ∩(LModR)≤n) ' τ (k)

≤n Alg
(k),cn
R .

(3) For every connective Ek-algebra A over R, the map of left R-module spectra τ≤nA → τ
(k)
≤nA

described above is an equivalence.

Proof. Assertion (1) follows from Proposition 2.2.1.8 and Lemma 7.1.3.10. Assertions (2) and (3)

follow from (1) together with Proposition 2.2.1.9.

More informally, Proposition 7.1.3.15 asserts that if A is connective Ek-algebra over a connective

Ek+1-ring R, then for each n ≥ 0 the truncation τ≤nA inherits the structure of an Ek-algebra over

R.
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Remark 7.1.3.16. Let k ≥ 1 and let R be a connective Ek+1-ring. The Ek-monoidal structure

on LModR induces an Ek-monoidal structure on the subcategory LMod♥R of discrete objects of

LModR, which is equivalent to the nerve of the ordinary category of discrete modules over π0R.

This Ek-monoidal structure is given by the usual tensor product of modules over the commutative

ring π0R. This follows, for example, from Theorem 7.1.2.13. We will discuss this point at greater

length in §7.2.1.

Definition 7.1.3.17. Let 0 ≤ k ≤ ∞ and let R be a connective Ek+1-ring. We say that an Ek-
algebra R is discrete if it is connective and 0-truncated. We let Alg

(k),disc
R denote the full subcategory

of Alg
(k)
R spanned by the discrete objects.

Since the mapping spaces in Alg
(k),disc
R are 0-truncated, it follows that Alg

(k),disc
R is equivalent

to the nerve of an ordinary category. We next identify the relevant category.

Proposition 7.1.3.18. Let 1 ≤ k ≤ ∞, and let R be a connective Ek+1-ring. If k = 1, then the

construction A 7→ π0A induces an equivalence from Alg
(k)
R to the (nerve of the) ordinary category

of discrete associative algebras over π0R. If k ≥ 2, then the construction A 7→ π0A determines

an equivalence from Alg
(k)
R to the (nerve of the) ordinary category of discrete commutative algebras

over π0R.

Proof. Using Proposition 7.1.3.15, we can identify Alg
(k),disc
R with the ∞-category of Ek-algebra

objects of the heart LMod♥R. Combining this with Remark 7.1.3.16, we see that Alg
(1),disc
R can be

identified with the nerve of the category of associative algebras over π0R. When k ≥ 2, Remark

7.1.3.16 and Corollary 5.1.1.7 imply that Alg/Ek(LMod♥R) can be identified with the nerve of the

ordinary category of commutative π0R-algebras.

Let 0 ≤ k ≤ ∞ and let R be a connective Ek+1-ring. Since the t-structure on LModR is left

complete (Proposition 7.1.1.13), the map

LModcn
R → lim←−

n

LModcn
R ∩(LModR)≤n

is an equivalence of ∞-categories. The forgetful functor Alg/Ek(Ĉat∞) → Ĉat∞ preserves small

limits (Corollary 3.2.2.5), so that LModcn
R is also a limit of the sequence {LModcn

R ∩(LModR)≤n}
in the ∞-category of Ek-monoidal ∞-categories and therefore also in the ∞-category Op∞ of ∞-

operads. This immediately implies the following:

Proposition 7.1.3.19. Let 0 ≤ k ≤ ∞, and let R be a connective Ek+1-ring. Then the canonical

map

Alg
(k),cn
R → lim←−

n

(τ≤n Alg
(k),cn
R )

is an equivalence of ∞-categories. In other words, Postnikov towers are convergent in the ∞-

category Alg
(k),cn
R of connective Ek-algebras over R (see Definition HTT.5.5.6.23 ).
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7.1.4 Algebras over Commutative Rings

Let R be a commutative ring, which we regard as a discrete E∞-ring. Our goal in this section is to

describe some explicit models for the ∞-category of E1-algebras over R and (when R contains the

field Q of rational numbers) the ∞-category of E∞-algebras over R. We begin by reviewing a bit

of terminology.

Definition 7.1.4.1. Let R be a commutative ring. A differential graded algebra over R is a graded

associative algebra A∗ over R equipped with a differential d : A∗ → A∗−1 satisfying the following

conditions:

• The square of the differential d is equal to zero.

• The map d is a (graded) derivation. That is, we have the Leibniz rule d(xy) = (dx)y +

(−1)mxdy for x ∈ Am, y ∈ An.

If A∗ and B∗ are differential graded algebras over R, then a morphism of differential graded

algebras from A∗ to B∗ is a homomorphism of graded R-algebras φ : A∗ → B∗ such that φ(dx) =

dφ(x). With this notion of morphism, the collection of differential graded algebras over R forms a

category, which we will denote by Algdg
( R).

Remark 7.1.4.2. Let R be a commutative ring and let A be the abelian category of (discrete) R-

modules. Then we can identify differential graded algebras over R with associative algebra objects

in the category Ch(A) of chain complexes of R-modules. This identification gives an equivalence

of categories Alg(Ch(A)) ' Algdg
( R).

If we want to understand the structure of differential graded algebras over R, we should begin

by studying the tensor product of chain complexes over R.

Proposition 7.1.4.3. Let R be a commutative ring, let A be the category of R-modules, and regard

Ch(A) as a symmetric monoidal model category with respect to the projective model structure of

Proposition 7.1.2.8. Then Ch(A) satisfies the monoid axiom (see Definition 4.1.8.1).

Proof. Let U be the collection of all morphisms in Ch(A) of the form M∗ ⊗N ′∗ →M∗ ⊗N∗, where

N ′∗ → N∗ is a trivial cofibration. Let U be the weakly saturated class of morphisms generated by

U . We wish to show that every morphism in U is a quasi-isomorphism. We will prove a stronger

assertion: namely, every morphism in U is a trivial cofibration with respect to the model structure

described in Proposition 1.3.5.3. For this, it suffices to show that every morphism in U is a trivial

cofibration with respect to the model structure of Proposition 1.3.5.3.

Let M∗ be an arbitrary object of Ch(A), and let f : N ′|ast → N∗ be a trivial cofibration with

respect to the projective model structure; we wish to show that the induced map F : M∗ ⊗N ′∗ →
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M∗⊗N∗ is a trivial cofibration with respect to the model structure of Proposition 1.3.5.3. We have

an exact sequence of chain complexes

0→ N ′∗ → N∗ → N ′′∗ → 0

where each of the maps

0→ N ′i → Ni → N ′′i → 0

is split exact. It follows that the sequence of chain complexes

0→M∗ ⊗N ′∗
F→M∗ ⊗N∗ →M∗ ⊗N ′′∗ → 0

is exact, so that F is a monomorphism. We must show that F is a quasi-isomorphism. Equivalently,

we must show that the chain complex M∗⊗N ′′∗ is acyclic. As in the proof of Proposition 7.1.2.8, we

observe that the chain complex N ′′∗ admits a contracting homotopy, so that M∗ ⊗N ′′∗ also admits

a contracting homotopy and is therefore acyclic.

Remark 7.1.4.4. Let A∗ be a differential graded algebra over a commutative ring R. Then we can

regard A∗ as a chain complex of R-modules. We will denote the homology of this chain complex

by H∗(A). The multiplication on A∗ induces a multiplication on H∗(A), so that H∗(R) has the

structure of a graded R-algebra.

We say that a map φ : A∗ → B∗ of differential graded algebras is a quasi-isomorphism if

it induces a quasi-isomorphism of chain complexes over R: that is, if and only if it induces an

isomorphism of graded rings H∗(A)→ H∗(B).

Proposition 7.1.4.5. Let R be a commutative ring. Then there exists a combinatorial model struc-

ture on the category Algdg
( R) of differential graded algebras over R with the following properties:

(W ) A morphism of differential graded algebras φ : A∗ → B∗ is a weak equivalence if and only if

it is a quasi-isomorphism.

(F ) A morphism of differential graded algebras φ : A∗ → B∗ is a fibration if and only if each of

the maps An → Bn is surjective.

Moreover, if R is a field, then the model category Algdg
( R) is left proper.

Proof. Combine Proposition 4.1.8.3, Proposition 7.1.4.3, and Proposition 7.1.2.8. The last assertion

follows from Proposition 4.1.8.3 and Remark 7.1.2.10.

Proposition 7.1.4.6. Let R be a commutative ring, let Algdg
( R) denote the category of differential

graded algebras over R, let Algdg
( R)c be the full subcategory of Algdg

( R) spanned by the cofibrant
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objects, and let W denote the collection of weak equivalences in Algdg
( R)c. Then there is a canonical

equivalence of ∞-categories

N(Algdg
( R)c)[W−1] ' Alg

(1)
R .

In other words, we can identify the∞-category of E1-algebras over R with the underlying∞-category

of the model category Algdg
( R) of differential graded R-algebras.

Proof. Combine Theorems 7.1.2.13 and 4.1.8.4.

We next prove an analogue of Proposition 7.1.4.6 for E∞-algebras, assuming that the commu-

tative ring R has characteristic zero.

Proposition 7.1.4.7. Let R be a commutative ring containing the field Q of rational numbers and

let A be the abelian category of discrete R-modules. Regard Ch(A) as endowed with the projective

model structure of Proposition 7.1.2.8. Then Ch(A) is freely powered (see Definition 4.5.4.2).

Proof. We must show that if f : M∗ → N∗ is a cofibration in Ch(A), then f is a power cofibration.

Without loss of generality, we may assume that f is a generating cofibration of the form ∂ E(m)∗ →
E(m)∗ for some m ∈ Z (see the proof of Proposition 7.1.2.8 for an explanation of this notation). We

wish to show that for each n ≥ 0, the induced map φ : �n(f)→ E(m)⊗n∗ is a projective cofibration

in Ch(A)Σn , where Σn denotes the symmetric group on n letters. Note that φ is a pushout of the

inclusion φ0 : ∂ E(nm)∗ → E(nm)∗, where the symmetric group acts trivially on E(nm)∗ if m is

even and by the sign representation if m is odd. In either case, the assumption that R contains the

field Q guarantees that φ0 is a retract of the projective cofibration

∂ E(nm)∗ ⊗R R[Σn]→ E(nm)∗ ⊗R R[Σn],

where R[Σn] denotes the regular representation of Σn over R.

Definition 7.1.4.8. Let R be a commutative ring and let A∗ be a differential graded algebra over

R. We will say that A∗ is a commutative differential graded algebra if for every pair of elements

x ∈ Am, y ∈ An, we have xy = (−1)mnyx. We let CAlgdg
( R) denote the full subcategory of

Algdg
( R) spanned by the commutative differential graded algebras over R.

Remark 7.1.4.9. Let R be a commutative ring and let A be the abelian category of (discrete) R-

modules. Then we can identify commutative differential graded algebras over R with commutative

algebra objects in the category Ch(A) of chain complexes of R-modules. This identification gives

an equivalence of categories CAlg(Ch(A)) ' CAlgdg
( R).

Combining Proposition 7.1.4.3, Proposition 7.1.4.7, and Proposition 4.5.4.6, we obtain the fol-

lowing:
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Proposition 7.1.4.10. Let R be a commutative ring which contains the field Q of rational numbers.

Then there exists a combinatorial model structure on the category CAlgdg
( R) of differential graded

algebras over R with the following properties:

(W ) A morphism of commutative differential graded algebras φ : A∗ → B∗ is a weak equivalence if

and only if it is a quasi-isomorphism.

(F ) A morphism of commutative differential graded algebras φ : A∗ → B∗ is a fibration if and

only if each of the maps An → Bn is surjective.

Using Theorems 7.1.2.13 and 4.5.4.7, we obtain:

Proposition 7.1.4.11. Let R be a commutative ring and let CAlgdg
( R) denote the category of

commutative differential graded algebras over R. Assume that R contains the field Q of rational

numbers, let CAlgdg
( R)c be the full subcategory of CAlgdg

( R) spanned by the cofibrant objects, and let

W denote the collection of weak equivalences in CAlgdg
( R)c. Then there is a canonical equivalence

of ∞-categories

N(CAlgdg
( R)c)[W−1] ' CAlgR .

In other words, we can identify the ∞-category of E∞-algebras over R with the underlying ∞-

category of the model category CAlgdg
( R) of commutative differential graded R-algebras.

Propositions 7.1.4.6 and 7.1.4.11 provided concrete models for the ∞-categories of E1 and E∞-

algebras over discrete commutative rings. If we are willing to restrict our attention to connective

algebras, then there is another concrete model available, provided by the theory of simplicial rings.

We begin with a few preliminary remarks.

Let C be a presentable ∞-category. We recall that an object C ∈ C is said to be compact

and projective if the corepresentable functor MapC(C, •) preserves sifted colimits. We say that C

is projectively generated if there exists a small collection of compact projective objects {Cα} of C

which generates C under small colimits; see Definition HTT.5.5.8.23 . In this case, we will say that

{Cα} is a set of compact projective generators for C.

Proposition 7.1.4.12. Let G : C → D be a functor between presentable ∞-categories. Assume

that G preserves small limits, small sifted colimits, and is conservative. Then:

(1) The functor G admits a left adjoint F .

(2) The functor F carries compact projective objects of D to compact projective objects of C.

(3) Let {Dα} be a set of compact projective generators for D. Then {F (Dα)} is a set of compact

projective generators for C.

(4) If D is projectively generated, so is C.
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Proof. Assertion (1) follows from Corollary HTT.5.5.2.9 and assertion (2) from the assumption that

G preserves sifted colimits. To prove (3), let C0 be the full subcategory of C generated under small

colimits by the objects {F (Dα)}. Then the inclusion C0 ↪→ C admits a right adjoint U (by Corollary

HTT.5.5.2.9 ). To prove that U is an equivalence, it suffices to show that for each C ∈ C, the map

U(C)→ C is an equivalence. Since G is conservative, it suffices to show that G(U(C))→ G(C) is

an equivalence in D. Because the objects {Dα} generate D under small colimits, we are reduced

to proving that the map

MapD(Dα, G(U(C))) ' MapC(F (Dα), U(C))→ MapC(F (Dα), C) ' MapD(Dα, G(C))

is a homotopy equivalence, which is clear. Assertion (4) is an immediate consequence of (3).

Corollary 7.1.4.13. The ∞-category Spcn of connective spectra is projectively generated: in fact,

the sphere spectrum S is a compact projective generator for Spcn.

Proof. Apply Proposition 7.1.4.12 to the 0th space functor Ω∞ : Sp≥0 → S and invoke Proposition

1.4.3.9.

Corollary 7.1.4.14. Let M be a presentable ∞-category which is left-tensored over a monoidal ∞-

category C, and let R ∈ Alg(C) be an algebra object such that tensor product with R induces a functor

M → M which commutes with small colimits. If M is projectively generated, then LModR(M) is

projectively generated. Moreover, if {Mα} is a collection of compact projective generators for M,

then the free modules {R⊗Mα} are compact projective generators for the ∞-category LModR(M).

Proof. Apply Proposition 7.1.4.12 to the forgetful functor LModR(M) → M and use Corollary

4.2.3.7.

Corollary 7.1.4.15. Let R be a connective E1-ring. Then the ∞-category LModcn
R is projectively

generated; in fact, the object R (regarded as a left module over itself) is a compact projective

generator for LModcn
R .

Proof. Combine Corollaries 7.1.4.13 and 7.1.4.14.

Corollary 7.1.4.16. Let O⊗ be an ∞-operad and let p : C⊗ → O⊗ be a coCartesian fibration

of ∞-operads. Assume that p is compatible with small colimits and that for each object X ∈ O,

the fiber CX is a projectively generated ∞-category. Then the ∞-category Alg/O(C) is projectively

generated.

For each X ∈ O, let FreeX : CX → Alg/O(C) be a left adjoint to the evaluation functor, and let

{CX,α ∈ CX} is a collection of compact generators for the ∞-category CX . Then the collection of

objects {FreeX(CX,α)} (where X ranges over the objects of O) is a collection of compact projective

generators for the ∞-category Alg/O(C).

Proof. Apply Proposition 7.1.4.12 to the forgetful functor Alg/O(C)→
∏
X∈O CX .
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Corollary 7.1.4.17. Let R be a connective Ek+1-ring for 0 ≤ k ≤ ∞. Then the ∞-category

Alg
(k),cn
R of connective Ek-algebras over R is projectively generated. Moreover, if Free : LModR →

Alg
(k),cn
R denotes a left adjoint to the forgetful functor, then Free(R) is a compact projective gener-

ator for Alg
(k),cn
R .

Proof. Combine Corollaries 7.1.4.16 and 7.1.4.17.

Let R be a commutative ring and let M ' Rm be a free R-module of finite rank m. For

every n ≥ 0, the tensor power M⊗n can be identified with a free module of rank mn: here the

tensor power can be computed either in the ordinary category of R-modules, or in the ∞-category

ModR(Sp) of R-module spectra. It follows that the tensor algebra

T (M) =
⊕
n≥0

M⊗n

can be identified with the free E1-algebra over R generated by M (see Proposition 4.1.1.18).

Let AlgR denote the category of associative R-algebras (that is, associative algebras in the

abelian category of R-modules) and let Alg0
R denote the full subcategory of AlgR spanned by

objects of the form T (M), where M is a free R-module of finite rank. According to Proposition

7.1.3.18, we can identify N(AlgR) with the full subcategory Alg
(1),disc
R ⊆ Alg

(1)
R . Under this equiv-

alence, N(Alg0
R) can be identified with the full subcategory of Alg

(1)
R given by finite coproducts of

T (R), which is a compact projective generator for Alg
(1),cn
R by Corollary 7.1.4.17. It follows from

Proposition HTT.5.5.8.25 that the fully faithful embedding N(Alg0
R) → Alg

(1),cn
R extends to an

equivalence of ∞-categories PΣ(N(Alg0
R)) ' Alg

(1),cn
R . In particular, the ∞-category Alg

(1),disc
R of

discrete objects of Alg
(1),cn
R can be identified with the full subcategory of PΣ(N(Alg0

R)) spanned by

those functors N(Alg0
R)op → S which preserve finite products and take 0-truncated values. Passing

to homotopy categories, we obtain an equivalence

AlgR ' hAlg
(1 ),disc
R ' Fun′((Alg0

R)op, Set),

where Fun′((Alg0
R)op, Set) denotes the full subcategory of Fun((Alg0

R)op, Set) spanned by those

functors which preserve finite products. Applying Propositions HTT.5.5.9.1 and HTT.5.5.9.2 , we

obtain the following analogue of Proposition 7.1.4.6:

Proposition 7.1.4.18. Let R be a commutative ring, let AlgR be the category of (discrete) asso-

ciative R-algebras, and let A denote the category of simplicial objects of AlgR. Then A admits a

simplicial model structure which may be described as follows:

(W ) A map of simplicial associative R-algebras A• → B• is a weak equivalence if and only if the

underlying map of simplicial sets is a weak homotopy equivalence.

(F ) A map of simplicial associative R-algebras A• → B• is a fibration if and only if the underlying

map of simplicial sets is a Kan fibration.
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Moreover, the underlying ∞-category N(Ao) is canonically equivalent to the ∞-category Alg
(1),cn
R

of connective E1-algebras over R.

Remark 7.1.4.19. Let A be a connective E1-algebra over a discrete commutative ring R. Propo-

sition 7.1.4.18 allows us to identify A with a simplicial object A• in the category of associative

R-algebras. The geometric realization |A•| is a topological associative R-algebra, which determines

A• (and therefore the original E1-algebra A) up to equivalence. In particular, we can think of

connective E1-algebras over Z as topological associative rings.

Suppose now that R is a commutative ring which contains the field Q of rational numbers. Let

A be the abelian category of R-modules and regard the category CAlgdg
( R) as endowed with the

model structure described in Proposition 7.1.4.10. The forgetful functor CAlgdg
( R) → Ch(A) is a

right Quillen functor, so its left adjoint M∗ 7→ Sym∗(M∗) is a left Quillen functor. If M is a free

R-module, then M is a cofibrant object of Ch(A) (when regarded as a chain complex concentrated

in degree zero). It follows that if Free : ModR → CAlgR denotes a left adjoint to the forgetful

functor, then Free carries the object M ∈ N(A) ' Mod♥R to the discrete commutative algebra

Sym∗(M), which is a polynomial algebra over R.

We can now repeat the reasoning which precedes the statement of Proposition 7.1.4.18. Let

CAlgR denote the category of (discrete) commutative R-algebras and let PolyR denote the full

subcategory of CAlgR spanned by objects of the form R[x1, . . . , xn] ' Sym∗(Rn). According to

Proposition 7.1.3.18, we can identify N(CAlgR) with the full subcategory CAlgdisc
R ⊆ CAlg

(1)
R .

Under this equivalence, N(PolyR) can be identified with the full subcategory of CAlgR given by

finite coproducts of R[x] ' Free(R), which is a compact projective generator for CAlgcn
R by Corollary

7.1.4.17. It follows from Proposition HTT.5.5.8.25 that the fully faithful embedding N(PolyR) →
CAlgcn

R extends to an equivalence of ∞-categories PΣ(N(PolyR)) ' CAlgcn
R . In particular, the

∞-category CAlgdisc
R of discrete objects of CAlgcn

R can be identified with the full subcategory of

PΣ(N(PolyR)) spanned by those functors N(PolyR)op → S which preserve finite products and take

0-truncated values. Passing to homotopy categories, we obtain an equivalence

CAlgR ' hCAlgdisc
R ' Fun′((CAlg0

R)op, Set),

where Fun′((PolyR)op, Set) denotes the full subcategory of Fun((PolyR)op, Set) spanned by those

functors which preserve finite products. Using Propositions HTT.5.5.9.1 and HTT.5.5.9.2 , we

obtain a commutative analogue of Proposition 7.1.4.18:

Proposition 7.1.4.20. Let R be a commutative ring which contains the field Q of rational numbers,

let CAlgR be the category of (discrete) commutative R-algebras, and let A denote the category of

simplicial objects of CAlgR. Then A admits a simplicial model structure which may be described

as follows:

(W ) A map of simplicial commutative R-algebras A• → B• is a weak equivalence if and only if the

underlying map of simplicial sets is a weak homotopy equivalence.
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(F ) A map of simplicial commutative R-algebras A• → B• is a fibration if and only if the under-

lying map of simplicial sets is a Kan fibration.

Moreover, the underlying ∞-category N(Ao) is canonically equivalent to the ∞-category CAlgcn
R of

connective E∞-algebras over R.

Warning 7.1.4.21. For any commutative ring R, the category A of simplicial commutative R-

algebras can be endowed with a model structure, with weak equivalences and fibrations as de-

scribed in Proposition 7.1.4.20. Moreover, Proposition HTT.5.5.9.2 gives an equivalence N(Ao) '
PΣ(N(PolyR)), so that the fully faithful embedding N(PolyR) → CAlgdisc

R ⊆ CAlgR extends in an

essentially unique way to a functor N(Ao)→ CAlgR which preserves sifted colimits. However, this

functor is generally not an equivalence unless R contains the field Q of rational numbers.

7.2 Properties of Rings and Modules

In §7.1, we introduced the theory of structured ring spectra and their modules. Our approach

was rather abstract: the basic definitions were obtained by specializing the theory of algebras and

modules over ∞-operads (developed in the earlier chapters of this book) to the case where the

ambient symmetric monoidal∞-category is the∞-category of spectra. In this section, we consider

some less formal aspects of the theory. In particular, we will show that several basic tools of

noncommutative and homological algebra can be can be generalized to the setting of structured

ring spectra.

We will begin by considering the relative tensor product construction introduced in §4.4.2. If

R is an E1-ring, M a right R-module, and N a left R-module, then we can consider the tensor

product spectrum M⊗RN . In §7.2.1, we address the question of computing the homotopy groups of

π∗(M ⊗RN). Our main result (Proposition 7.2.1.19) asserts that π∗(M ⊗RN) can be computed by

means of a spectral sequence, whose second page can be described in terms of the graded Tor-groups

Torπ∗R∗ (π∗M,π∗N). Many questions about the theory of structured ring spectra can be reduced to

an analysis of appropriate tensor products, for which this spectral sequence is an invaluable tool.

In §7.2.2, we define flat and projective modules over a connective E1-ring R. These definitions

specialize to give the usual theory of flat and projective modules in the special case where R is

discrete. Most of the familiar properties of flat and projective modules can be generalized to the

nondiscrete case. For example, we prove a generalization of Lazard’s theorem, which asserts that

every flat R-module can be obtained as a filtered colimit of (finitely generated) projective R-modules

(Theorem 7.2.2.15).

One of the most important constructions in commutative algebra is the formation of localiza-

tions: if R is a commutative ring, then we can associate to every multiplicatively closed subset

S ⊆ R a ring of fractions R[S−1] obtained by formally inverting the elements of S. In §7.2.3 we will

review the theory of Ore localization, which extends this construction to noncommutative rings. We

will then generalize the theory of Ore localization to the setting of E1-rings (and their modules).
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For every E1-ring R, the ∞-category LModR is compactly generated. We will refer to the

compact objects of LModR as perfect R-modules. There is a closely related notion of almost perfect

R-module, which we will introduce in §7.2.4. We also introduce the definition of a (left) Noetherian

E1-ring R, generalizing the classical theory of Noetherian rings. As in the classical case, the

assumption that R is (left) Noetherian ensures that finiteness conditions on (left) R-modules behave

well. Moreover, if we restrict our attention to E∞-rings, then the condition of being Noetherian is

robust: for example, we have an analogue of the Hilbert basis theorem (Proposition 7.2.4.31).

7.2.1 Free Resolutions and Spectral Sequences

Let R be an E1-ring. In §7.1.1, we introduced the notion of left and right modules over R. If M is

a right R-module and N is a left R-module, then we let M ⊗RN denote the relative tensor product

of M and N (in the ∞-category of spectra). Our goal in this section is to develop some techniques

which, in favorable cases, allow us to compute the homotopy groups of the tensor product M ⊗RN
in terms of classical homological algebra.

We begin by recalling a few definitions. Let R be an associative ring and let N be a (discrete)

left module over R. A free resolution of N is an exact sequence of left R-modules

· · · → P2 → P1 → P0 → N → 0,

where each Pi is a free left module over R. If M is a right R-module, we obtain a chain complex

of abelian groups

· · · →M ⊗R P2 →M ⊗R P1 →M ⊗R P0.

We denote the homology groups of this chain complex by TorRi (M,N). In particular, the usual

tensor product M ⊗R N can be identified with TorR0 (M,N).

The Tor groups TorRi (M,N) are independent of the choice of free resolution P∗ for the module

N , up to canonical isomorphism, and depend functorially on the pair (M,N). To prove this, one

can argue as follows: given any two projective resolutions P∗ and Q∗ of N , there exists a map of

chain complexes of left R-modules

· · · // P2
//

f2

��

P1
//

f1

��

P0
//

f0

��

N

id
��

· · · // Q2
// Q1

// Q0
// N,

which is unique up to chain homotopy. Consequently, one obtains a map of chain complexes of

abelian groups

· · · //M ⊗R P2
//

��

M ⊗R P1
//

��

M ⊗R P0

��
· · · //M ⊗R Q2

//M ⊗R Q1
//M ⊗R Q0.
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whose induced map on homology groups does not depend on the choice of f∗.

We would like to generalize some of the above ideas to the setting of ∞-categories. First, we

need to recall a bit of terminology.

Notation 7.2.1.1. Let C be a presentable ∞-category, and let X• be a simplicial object of C.

For each n ≥ 0, we let Ln(X) and Mn(X) denote the nth latching and matching object of X,

respectively (see §HTT.A.2.9 ).

Definition 7.2.1.2. Let C be a presentable ∞-category and let S be a collection of objects of C.

We will say that a simplicial object X• of C is S-free if, for every integer n, there exists a map

F → Xn in C which induces an equivalence Ln(X)
∐
F → Xn, such that F is a coproduct of objects

of S.

Let C ∈ C and let X• be a simplicial object of C/C . We will say that X• is an S-hypercovering

of C if, for every object Y ∈ S corepresenting a functor χ : C→ S, the simplicial object χ(X•) is a

hypercovering in the ∞-topos S/χ(C) (see Definition HTT.6.5.3.2 ).

Example 7.2.1.3. Let A be the category of left R-modules, for some associative ring R, and let

S = {R}. Using Theorem 1.2.3.7, we can identify simplicial objects of N(A) with nonnegatively

graded chain complexes of R-modules. Let M• be a simplicial object of N(A) and let P∗ = N∗(M)

be the corresponding chain complex. Then M• is S-free if and only if each Pn is a free left R-

module. A map |M•| →M exhibits M• as an S-hypercovering of a left R-module M if and only if

the associated chain complex

· · · → P2 → P1 → P0 →M → 0

is exact.

Our first goal in this section is to establish some basic existence and uniqueness theorems for

free resolutions. For existence, we have the following:

Proposition 7.2.1.4. Let C be a presentable ∞-category and let S be a set of objects of C. Then,

for every object C ∈ C, there exists an S-hypercovering X• : N(∆)op → C/C whose image in C is

S-free.

Proof. We will construct a compatible sequence of functors F≤n : N(∆+,≤n)op → C satisfying the

following conditions:

(a) For each n ≥ 0, there exists an object Z ∈ C which is a coproduct of objects belonging to

S and a map Z → F≤n([n]) which induces an equivalence Z
∐
Ln(F≤n−1)→ F≤n([n]); here

Ln(F≤n−1) denotes the nth latching object defined in §HTT.A.2.9 .

(b) For n ≥ 0 and each Y ∈ C, the map MapC(Y, F≤n([n]))→ MapC(Y,Mn(F≤n−1)) is surjective

on connected components; here Mn(F≤n−1) denotes the nth matching object as defined in

§HTT.A.2.9 .
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(c) We have F≤−1([−1]) = C.

Assuming that such a sequence can be constructed, the union
⋃
n F
≤n defines a simplicial object

of C/C having the desired properties. The construction of the diagrams F≤n proceeds by induction

on n. If n = −1, then F≤n is uniquely determined by condition (c). Otherwise, extending F≤n−1

to a diagram F≤n is equivalent to factoring the canonical map α : Ln(F≤n−1)→Mn(F≤n−1) as a

composition

Ln(F≤n−1)
α′→ F≤n([n])

α′′→Mn(F≤n−1)

(see Proposition HTT.A.2.9.14 ). To satisfy condition (a) we must have F≤n([n]) ' Ln(X≤n−1
• )

∐
Z

for some Z ∈ C which is a coproduct of objects of S. Let M = Mn(F≤n−1). To supply a

morphism α′′ which satisfies (b), it suffices to give a map η : Z → M such that the induced map

MapC(Y,Z) → MapC(Y,M) is surjective on connected components for each Y ∈ S. For this, we

take Z to be the coproduct
∐
α Yα, where α ranges over all equivalence classes of pairs (Yα, uα)

such that Yα ∈ S and uα : Yα →M is a morphism in C.

We next address the uniqueness properties of S-free resolutions.

Proposition 7.2.1.5. Let C be a presentable ∞-category and let S be a set of objects of C. Let C

be an object C, let Y• be an S-hypercovering of C, and let X• be a simplicial object of C/C whose

image in C is S-free. Then there exists a map f : X• → Y• of simplicial objects in C/C .

Proof. We construct f as the amalgam of a compatible sequence of maps f≤n : X•|N(∆≤n) →
Y•|N(∆≤n). Assume that f≤n−1 has already been constructed. Using Proposition HTT.A.2.9.14 ,

we are reduced to the problem of solving the lifting problem

Ln(X) //

��

Yn

��
Xn

//Mn(Y )

in C/C . Since X• is S-free, we can write Xn as a coproduct Ln(X)
∐
F , where F is a coproduct of

objects of S. It then suffices to show that every map F →Mn(Y ) can be lifted to a map F → Yn,

which follows immediately from our assumption that Y• is an S-hypercovering of C.

In the situation of Proposition 7.2.1.5, the map f is generally not unique. However, one can

show that f is unique up to homotopy, in the following precise sense:

Definition 7.2.1.6. Let C be an∞-category and let X•, Y• : N(∆)op → C be simplicial objects. Let

δ∗ : Fun(N(∆)op,C) → Fun(N(∆/[1])
op,C) be the functor given by composition with the forgetful

functor ∆/[1] →∆. A simplicial homotopy from X• to Y• is a morphism h : δ∗(X•)→ δ∗(Y•).

The inclusion maps {0} ↪→ [1]←↩ {1} induce forgetful functors

i∗0, i
∗
1 : Fun(N(∆/[1])

op,C)→ Fun(N(∆)op,C).
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Consequently, a simplicial homotopy h from X• to Y• determines maps of simplicial objects

f = i∗0(h) : X• → Y• g = i∗1(h) : X• → Y•.

In this case, we will say that h is a simplicial homotopy from f to g. We will say that f and g are

simplicially homotopic if there is a simplicial homotopy from f to g.

Warning 7.2.1.7. The relation of simplicial homotopy introduced in Definition 7.2.1.6 is neither

symmetric nor transitive in general.

Proposition 7.2.1.8. Let C be a presentable ∞-category containing an object C, and let S be a

set of objects of C. Let X• be a simplicial object of C/C which is S-free and Y• an S-hypercovering

of C, and suppose we are given a pair of maps f, g : X• → Y• between simplicial objects of C/C .

Then there is a simplicial homotopy from f to g.

Proof. We employ the notation of Definition 7.2.1.6. Let K0 be the full subcategory of N(∆/[1])
op

spanned by the constant maps σ : [n]→ [1] and let p0 : K0 → N(∆)op be the projection map, so that

f and g determine a natural transformation h0 : p0 ◦X• → p0 ◦Y•. We wish to show that h0 can be

extended to a natural transformation δ∗(X•)→ δ∗(Y•). Let {σi : [ni]→ [1]}i≥0 be an enumeration

of the objects of ∆/[1] which do not belong to K0, having the property that ni < nj implies i < j.

For j ≥ 1, let Kj denote the full subcategory of N(∆[1])
op spanned by the objects of K0 together

with the objects {σi}i<j , and let pj : Kj → N(∆)op be the projection map. We will show that h0

can be extended to a compatible family of natural transformations hj : pj ◦ X• → pj ◦ Y•. The

construction proceeds by induction on j. Assume that hj has already been constructed; we wish

to show that hj can be extended to a natural transformation hj+1 : pj+1 ◦ X• → pj+1 ◦ Y•. The

collection of injective and surjective maps endow (∆/[1])
op with the structure of a Reedy category.

Using Proposition HTT.A.2.9.14 , we are reduced to solving a lifting problem of the form

Lnj (X) //

��

Ynj

��
Xnj

//Mnj (Y )

in the ∞-category C/C . Since X• is S-free, we can write Xnj ' Lnj (X)
∐
F where F ∈ C/C is a

coproduct of objects belonging to S. It therefore suffices to show that every map F →Mnj (Y ) can

be lifted to a map F → Ynj , which follows from our assumption that Y is an S-hypercovering.

Remark 7.2.1.9. In the situation of Proposition 7.2.1.8, the simplicial homotopy h between f and

g is not unique. It is possible to address this issue by introducing a notion of higher (simplicial)

homotopy. The proof of Proposition 7.2.1.8 then adapts to show that h is unique up to higher

homotopy, which is itself unique up to a higher homotopy, and so forth. Since these results will not

be needed in what follows, we leave them to the reader’s imagination.



1232 CHAPTER 7. ALGEBRA IN THE STABLE HOMOTOPY CATEGORY

Remark 7.2.1.10. Let A be an abelian category and let A• and B• be simplicial objects of A.

Suppose we are given maps of simplicial objects f, g : A• → B• which are simplicially homotopic.

Then the induced maps of unnormalized chain complexes C∗(A) → C∗(B) are chain homotopic:

that is, there exists maps hn : Nn(A) → Nn+1(B) such that d ◦ hn + hn−1 ◦ d = f − g, where we

adopt the convention that h−1 = 0. It follows that f and g induce the same map on homology

objects H∗(A)→ H∗(B).

To prove this, suppose that H is a simplicial homotopy from f to g. We then define hn to be

the sum of the maps

An
si−→ An+1

H(σi)−→ Bn+1,

where si denotes the ith degeneracy map (induced by the unique surjection a : [n + 1] → [n]

satisfying a(i) = a(i+ 1)) and σi ∈∆/[1] denotes the map given by σi(j) =

{
0 if j ≤ i
1 if j > i.

We now have the following general observation:

Proposition 7.2.1.11. Let C be a presentable ∞-category containing a set of objects S and let A

be an ordinary category. Let C′ denote the full subcategory of Fun(N(∆)op,C) spanned by the S-free

simplicial objects and let U : C′ → C be the geometric realization functor. Suppose we are given a

functor F0 : hC′ → A with the following property:

(∗) Let f, g : X• → Y• be simplicially homotopic morphisms in C′. Then F0(f) = F0(g).

Then there exists a functor F : hC → A together with a natural transformation α : F0 → F ◦ U
having the following property: whenever X• is an S-free S-hypercovering of an object C ∈ C, the

induced map F0(X•)
α→ F (|X•|) → F (C) is an isomorphism in A. Moreover, the functor F (and

natural transformation α) are unique up to (unique) isomorphism.

Proof. We can characterize the functor F abstractly as a left Kan extension of F0 along the functor

U . However, it is easy enough to give a concrete construction of F :

(a) For every object C ∈ C, we can choose an S-free S-hypercovering X• of C (Proposition

7.2.1.4). We then define F (C) to be F0(X•) ∈ A.

(b) Let u : C → C ′ be a morphism in C, and let X• and Y• be the S-free S-hypercoverings

of C and C ′ chosen in (a). It follows from Proposition 7.2.1.5 that u can be lifted to a

map of simplicial objects u : X• → Y•. We define F (u) : F (C) → F (C ′) to be the map

F0(u) : F0(X•) → F0(Y•). It follows from Proposition 7.2.1.8 and assumption (∗) that F (u)

does not depend on the choice of u.

This construction determines a functor F : hC → A. For each object Y• ∈ C′, let C = |Y•| and let

X• be the S-free S-hypercovering of C chosen in (a). Using Proposition 7.2.1.5, we can choose a
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map of simplicial objects v : Y• → X• in C/C . Let α(Y•) = F0(v) : F0(Y•) → F0(X•) = F (C). It

follows from Proposition 7.2.1.8 and assumption (∗) that the map α(C) does not depend on v, so

that α determines a natural transformation of functors F0 → F ◦ U .

We next claim that if X• is an S-hypercovering of an object C, then the composite map

F0(X•)
α(X•)→ F (|X•|)→ F (C) is an isomorphism in A. To prove this, let Y• and Z• denote the S-

free S-hypercoverings of |X•| and C chosen in (a). Choose a map of simplicial objects u : X• → Y•
in C/|X•| and a map of simplicial objects v : Y• → Z• in C/C ; we wish to show that F0(v ◦ u) is

an isomorphism. To prove this, we use Proposition 7.2.1.5 to choose a map of simplicial objects

w : Z• → X• in C/C . Then w◦ (v ◦u) and (v ◦u)◦w are simplicially homotopic to the identity maps

on Z• and X•, respectively (Proposition 7.2.1.8). Using (∗), we conclude that F0(w) is both right

and left inverse to F0(v ◦ u), so that F0(v ◦ u) is an isomorphism. This completes the construction

of F and α.

Now suppose that F ′ : hC → A is any other functor equipped with a natural transformation

α′ : F0 → F ′ ◦ U . There is a unique natural transformation β : F → F ′ such that the diagram

F0

α

{{

α′

##
F ◦ U β′ // F ′ ◦ U

is commutative. The natural transformation β can be described explicitly as follows: if C ∈ C is

an object and X• be the S-free S-hypercovering of C chosen in (a), then β is the composite map

F (C) = F0(X•)→ F ′(|X•|)→ F ′(C).

To complete the proof, it suffices to observe that if α′ has the property that the composite map

F0(X•) → F ′(C) is an isomorphism whenever X• is an S-hypercovering of C, then the natural

transformation β is an isomorphism.

Example 7.2.1.12. Let R be an associative ring, let C be the category of left R-modules, and let

A be any abelian category.

Let C′ denote the subcategory of Ch(C) consisting of nonnegatively graded chain complexes

of free left R-modules, and suppose we are given an additive functor F from the category of free

R-modules into A. Applying F termwise, we obtain a chain-complex valued functor C′ → Ch(A)

which we will also denote by F . For every integer n, the composite functor

C′
F−→ Ch(A)

Hn−→ A

can be regarded as an A-valued functor on simplicial objects in the category of free left R-modules.

Remark 7.2.1.10 implies that this functor satisfies hypothesis (∗) of Proposition 7.2.1.11, and there-

fore induces a functor LnF : C → A. We refer to LnF as the nth left derived functor of F .
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Concretely, if N is a left R-module having a free resolution

· · · → P2 → P1 → P0 → N,

then LnF (N) can be identified with the nth homology object of the chain complex

· · · → F (P2)→ F (P1)→ F (P0).

Remark 7.2.1.13. In the special case where F is right exact and A has enough projective objects,

the functors LnF are given by the composition

N(C) −→ D−(C)
LF−→ D−(A)

πn−→ N(A),

where LF : D−(C)→ D−(A) is the left derived functor of F described in Example 1.3.3.4.

Example 7.2.1.14. Let R be an associative ring and let M be a right R-module. Then the usual

tensor product construction N 7→ M ⊗R N determines a functor from the category C of left R-

modules to the category Ab of abelian groups. The left derived functors of this construction are

denoted by TorRn (M, •) : C→ Ab.

Variant 7.2.1.15. Let R be a graded associative ring and let C be the abelian category of graded

left R-modules. For every integer n, let R[n] ∈ C denote the ring R itself, equipped with the shifted

grading given by R[n]m ' Rm−n. We say that a graded left R-module N is graded-free if it is

isomorphic to a direct sum
⊕

α∈AR[nα] for some collection of integers {nα}α∈A. Let C0 be the full

subcategory of C spanned by the graded-free R-modules.

Let GrAb denote the category of graded abelian groups. If M is a graded right R-module and

N is a graded left R-module, then the algebraic tensor product M ⊗RN inherits a grading; we may

therefore view the construction N 7→M ⊗R N as a functor from the category C to the category of

graded abelian groups. Arguing as in Example 7.2.1.12, we can use Proposition 7.2.1.11 to define

left derived functors

TorRn (M, •) : C→ GrAb .

Concretely, the graded abelian group TorRn (M,N) is given by nth homology of the chain complex

· · · →M ⊗R P2 →M ⊗R P1 →M ⊗R P0,

where P∗ denotes a resolution of N by graded-free objects of C.

Our next goal is to apply the formalism developed above to study the tensor product of modules

over a ring spectrum. Let R be an E1-ring. Recall that the homotopy groups π∗R have the structure

of a graded ring and that if M is a (left or right) module spectrum over R, then π∗M is a graded

(left or right) module over π∗R. We can regard π∗R as a kind of “first approximation” to R, and the

ordinary tensor product of graded π∗R-modules as a “first approximation” to the relative tensor
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product over R. More precisely, suppose we are given objects M ∈ RModR and N ∈ LModR,

together with homotopy classes x ∈ πmM and y ∈ πnN . Then x and y are represented by maps

R[m]→ R and R[n]→ R in RModR and LModR, respectively. Combining these, we obtain a map

of spectra

R[m+ n] ' R[m]⊗R R[n]
(x,y)−→ M ⊗R N.

The image of the identity 1 ∈ π0R ' πm+nR[m + n] is an element of πm+n(M ⊗R N), which we

will denote by x⊗ y. It is not difficult to see that the construction (x, y) 7→ x⊗ y is π∗R-bilinear,

and therefore induces a map of graded abelian groups

Torπ∗R0 (π∗M,π∗N)→ π∗(M ⊗R N).

This map is generally not an equivalence without some strong additional assumptions.

Definition 7.2.1.16. Let R be an E1-ring and let N be a left R-module spectrum. We say that M

is quasi-free if N '
⊕

α∈AR[nα] for some integers nα. We let LModqf
R denote the full subcategory

of LModR spanned by the quasi-free left R-modules.

Proposition 7.2.1.17. Let R be an E1-ring and let N be a quasi-free left R-module. For any

R-module M , the map

Torπ∗R0 (π∗M,π∗N)→ π∗(M ⊗R N)

is an isomorphism of graded abelian groups.

Proof. Both sides are compatible with the formation of direct sums and suspensions. We may

therefore assume that N = R, in which case the result is obvious.

We can obtain information about the homotopy groups of an arbitrary tensor product M ⊗RN
by resolving N by quasi-free R-modules.

Construction 7.2.1.18. Let R be an E1-ring and let M ∈ RModR. If P• is any simplicial

object in LModR, then we can regard M ⊗R P• as a simplicial object in the ∞-category of Sp.

Applying Remark 1.2.4.4, we obtain a spectral sequence of abelian groups {Ep,qr , dr}r≥1 converging

to π∗M ⊗R |P•|, where E∗,q1 is the normalized chain complex associated to the simplicial abelian

group πq(M⊗RP•). If P ′• is another simplicial left R-module with associated spectral {E′p,qr , d′r}r≥1,

then a map of simplicial objects P• → P ′• induces a map of spectral sequences {Ep,qr , dr}r≥1 →
{E′p,qr , d′r}r≥1. If f, g : P• → P ′• are simplicially homotopic maps of simplicial objects, then Remark

7.2.1.10 implies that the induced maps of chain complexes E∗,q1 → E′∗,q1 are chain homotopic, so

that f and g induce the same map Ep,qr → E′p,qr for r = 2 and therefore for r ≥ 2.

Let S be the collection of all left R-modules of the form R[n], where n is an integer, and let C′

be the full subcategory of Fun(N(∆)op,LModR) spanned by the S-free simplicial objects. Let A

denote the abelian category whose objects are spectral sequences {Ep,qr , dr}r≥2 which begin at the
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second page. The above construction determines a functor F0 : hC′ → A which carries simplicially

homotopic morphisms to the same morphism in A. Applying Proposition 7.2.1.11, we obtain a

functor F : hLModR → A together with a natural transformation F0(P•) → F (|P•|) which is an

equivalence whenever P• is an S-hypercovering of |P•|.

Let R be an E1-ring and suppose we are given modules M ∈ RModR, N ∈ LModR. Let

{Ep,qr , dr}r≥2 be the spectral sequence determined by Construction 7.2.1.18. Unwinding the def-

initions, we see that {Ep,qr , dr}r≥2 is the spectral sequence associated to the simplicial spectrum

M ⊗R P•, where P• is an S-free S-hypercovering of N . A choice of P• gives a well-defined E1-page

for the spectral sequence, where for each q ∈ Z, the chain complex (E∗,q1 , d1) is the normalized chain

complex associated to the simplicial abelian group πq(M ⊗R P•). Since P• is S-free, each Pn is a

quasi-free left R-module, so Proposition 7.2.1.17 gives an isomorphism of graded abelian groups

Torπ∗R0 (π∗M,π∗P•)→ π∗(M ⊗R P•).

Since P• is an S-hypercovering of N , the normalized chain complex associated to π∗P• is a resolution

of π∗N by graded-free left π∗R-modules. Passing to homology, we obtain a canonical isomorphism

Ep,∗2 ' Torπ∗Rp (π∗M,π∗N).

We have proven the following:

Proposition 7.2.1.19. Let R be an E1-ring, let M be a right A-module, and let N be a left A-

module. We regard π∗M and π∗N as graded modules over the graded ring π∗R. Then there exists

a spectral sequence {Ep,qr , dr}r≥2 with E2-page Ep,q2 = Torπ∗Ap (π∗M,π∗N)q which converges (as in

the proof of Proposition 1.2.2.14) to πp+q(M ⊗R N).

Remark 7.2.1.20. The spectral sequence {Ep,qr , dr} of Proposition 7.2.1.19 depends functorially

on the triple (R,M,N).

Remark 7.2.1.21. Let R, M , and N be as in Proposition 7.2.1.19. We have constructed a

spectral sequence {Ep,qr , dr}r≥2 by choosing a resolution P• of N by quasi-free left R-modules.

Using exactly the same reasoning, we can construct another spectral sequence {E′p,qr , dr}r≥2 by

choosing a resolution Q• of M by quasi-free right R-modules. In fact, these two spectral sequences

are canonically isomorphic. Both can be identified with the spectral sequence associated to the

simplicial spectrum [n] 7→ Qn ⊗R Pn.

We now give a few simple applications of Proposition 7.2.1.19.

Corollary 7.2.1.22. Let R be an E1-ring, M a right R-module, and N a left R-module. Suppose

that R, M , and N are discrete. Then there exists a canonical isomorphism

πn(M ⊗R N) ' Torπ0R
n (π0M,π0N).
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Corollary 7.2.1.23. Let A be a connective E1-ring, M a connective right R-module, and R a

connective left A-module. Then:

(1) The relative tensor product M ⊗R N is connective.

(2) There is a canonical isomorphism π0(M ⊗R N) ' π0M ⊗π0R π0N in the category of abelian

groups.

Proof. This follows from the spectral sequence of Proposition 7.2.1.19, since Ep,q2 vanishes for p < 0

or q < 0, while E0,0
2 ' π0M ⊗π0R π0N .

Variant 7.2.1.24. Let R be an E1-ring. Using Propositions 4.8.2.18 and 4.2.1.33, we see that

the ∞-category LModR is canonically enriched over the ∞-category of spectra. The formation of

morphism objects determines a bifunctor

MorR : LModop
R ×LModR → Sp .

Arguing as in Construction 7.2.1.18, we can associate to every pair of objects M,N ∈ LModR
a spectral sequence {Ep,qr , dr}r≥2 in the opposite of the category of abelian groups, whose second

page is given by Ep,q2 ' Extpπ∗R(π∗M,π∗N)−q. Since the t-structure on the ∞-category Sp is not

compatible with sequential limits, some care must be taken with the convergence of this spectral

sequence. In good cases, one can show that it converges to π−p−q MorR(M,N). For example, if

M and R are connective and πnN ' 0 for n� 0, a strong convergence statement can be deduced

from Proposition 1.2.4.5.

7.2.2 Flat and Projective Modules

Let R be a connective E1-ring. In this section, we will see that there is a good theory of flat and

projective R-modules, which reduces to the classical theory in the case where R is discrete.

Definition 7.2.2.1. Let R be an E1-ring. We will say that a left R-module M is free if is equivalent

to a coproduct of copies of R (where we view R as a left module over itself). We will say that a

free left module M is finitely generated if it can be written as a finite coproduct of copies of R.

Suppose that R is connective. We will say that a map f : M → N of connective left R-modules

is surjective if it induces a surjection of π0R-modules π0M → π0N .

Warning 7.2.2.2. The notion of free module introduced in Definition 7.2.2.1 is different from the

general notion of freeness considered in §4.2.4. If M0 is a spectrum, then the tensor product R⊗M0

is generally not free as a left R-module (in the sense of Definition 7.2.2.1), unless we assume that

M0 is a coproduct of copies of the sphere spectrum.

Remark 7.2.2.3. Using the long exact sequence of homotopy groups associated to an exact tri-

angle, we conclude that a map f : M → N of connective modules over a connective E1-ring is

surjective if and only if fib(f) is also connective.
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Definition 7.2.2.4. Let R be a connective E1-ring. We will say that a left R-module P is projective

if it is a projective object of the ∞-category LModcn
R of connective left R-modules, in the sense of

Definition HTT.5.5.8.18 .

Remark 7.2.2.5. The terminology of Definition 7.2.2.4 is potentially ambiguous: a projective

left R-module is typically not projective as an object of LModR. However, there is little risk of

confusion, since the ∞-category LModR has no nonzero projective objects.

The following criterion for projectivity is often convenient:

Proposition 7.2.2.6. Let C be a stable ∞-category equipped with a left-complete t-structure. Let

P ∈ C≥0. The following conditions are equivalent:

(1) The object P is projective in C≥0.

(2) For every Q ∈ C≥0, the abelian group Ext1
C(P,Q) vanishes.

(3) For every Q ∈ C≥0 and every integer i > 0, the abelian group ExtiC(P,Q) vanishes.

(4) For every Q ∈ C♥ and every integer i > 0, the abelian group ExtiC(P,Q) vanishes.

(5) Given a fiber sequence

N ′ → N → N ′′,

where N ′, N,N ′′ ∈ C≥0, the induced map Ext0
C(P,N)→ Ext0

C(P,N ′′) is surjective.

Proof. It follows from Lemma 1.3.3.11 that C≥0 admits geometric realizations for simplicial objects,

so that condition (1) makes sense. We first show that (1) ⇒ (2). Let f : C → S be the functor

corepresented by P . Let M• be a Čech nerve for the morphism 0→ Q[1], so that Mn ' Qn ∈ C≥0.

Then Q[1] can be identified with the geometric realization |M•|. Since P is projective, f(Q[1])

is equivalent to the geometric realization |f(M•)|. We have a surjective map ∗ ' π0f(M0) →
π0|f(M•)|, so that π0f(Q[1]) = Ext1

C(P,Q) = 0.

We now show that (2)⇒ (1). Proposition 1.4.2.22 implies that f is homotopic to a composition

C
F→ Sp

Ω∞→ S,

where F is an exact functor. Applying (2), we deduce that F is right t-exact (Definition 1.3.3.1).

Lemma 1.3.3.11 implies that the induced map C≥0 → Spconn preserves geometric realizations of

simplicial objects. Applying Proposition 1.4.3.9, we conclude that f |C≥0 preserves geometric real-

izations as well.

The implications (3) ⇒ (2) and (3) ⇒ (4) are obvious. The implication (2) ⇒ (3) follows by

replacing Q by Q[i− 1], and (2)⇒ (5) follows immediately from the exactness of the sequence

Ext0
C(P,N)→ Ext0

C(P,N ′′)→ Ext1
C(P,N ′).
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We next show that (5) ⇒ (2). Let Q ∈ C≥0 and let η ∈ Ext1
C(P,Q). Then η classifies a fiber

sequence

Q→ Q′
g→ P.

Since Q,P ∈ C≥0, we have Q′ ∈ C≥0 as well. Invoking (5), we deduce that g admits a section, so

that η = 0.

We now complete the proof by showing that (4)⇒ (2). Let Q ∈ C≥0. For every integer n ≥ 0,

we have a fiber sequence

(πnQ)[n]→ τ≤nQ→ τ≤n−1Q,

which gives rise to an exact sequence of abelian groups

Exti+nC (P, πnQ)→ ExtiC(P, τ≤nQ)→ ExtiC(P, τ≤n−1Q)→ Exti+n+1
C (P, πnQ).

It follows from condition (4) that the tower of abelian groups {ExtiC(P, τ≤nQ)}n≥0 is constant for

n > −i. Since C is left complete, we have Q ' lim←− τ≤nQ so that ExtiC(P,Q) ' ExtiC(P, τ≤nQ) for

any n > −i. In particular, for i > 0 we have ExtiC(P,Q) ' ExtiC(P, π0Q) ' 0.

Proposition 7.2.2.7. Let R be a connective E1-ring, and let P be a connective left R-module. The

following conditions are equivalent:

(1) The left R-module P is projective.

(2) There exists a free R-module M such that P is a retract of M .

Proof. Suppose first that P is projective. Choose a map of left R-modules p : M → P , where

M is free and the induced map π0M → π0P is surjective (for example, we can take M to be a

direct sum of copies of R indexed by the set π0P ). Invoking Proposition 7.2.2.6, we deduce that

p admits a section (up to homotopy), so that P is a retract of M . This proves (2). To prove the

converse, we observe that the collection of projective left R-modules is stable under retracts. It

will therefore suffice to show that every free left R-module is projective. This follows immediately

from the characterization given in Proposition 7.2.2.6.

Remark 7.2.2.8. It follows from the proof of Proposition 7.2.2.7 that, if π0P is a finitely generated

left module over π0R, then we can choose M to be a finitely generated free R-module.

Corollary 7.2.2.9. Let R be a connective E1-ring. The following conditions on a connective left

R-module P are equivalent:

(1) The R-module P is projective, and π0P is finitely generated as a π0R-module.

(2) The R-module P is a compact projective object of (LModR)≥0.

(3) There exists a finitely generated free R-module M such that P is a retract of M .
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Proof. The equivalence (2)⇔ (3) follows by applying Corollary 4.7.3.18 to the composition

(LModR)≥0 → Sp≥0
Ω∞→ S,

and invoking Example HTT.5.5.8.24 . The equivalence (1)⇔ (3) follows from Remark 7.2.2.8.

Recall that, if N is a (discrete) left module over an associative ring R, we say that N is flat if

the functor M 7→M ⊗R N is exact.

Definition 7.2.2.10. Let M be a left module over an E1-ring R. We will say that M is flat if the

following conditions are satisfied:

(1) The homotopy group π0M is flat as a left module over π0R, in the usual sense.

(2) For each n ∈ Z, the natural map πnR⊗π0Rπ0M → πnM is an isomorphism of abelian groups.

Remark 7.2.2.11. Let R be a connective E1-ring. Then every flat left R-module is also connective.

Remark 7.2.2.12. Let R be a discrete E1-ring. A left R-module M is flat if and only if M is

discrete, and π0M is flat over π0R (in the sense of classical algebra). In other words, Definition

7.2.2.10 is compatible with the usual definition of flatness.

Proposition 7.2.2.13. Let R be an E1-ring, M a right R-module, and N a left R-module. Suppose

that N is flat. For each n ∈ Z, the canonical map

Torπ0R
0 (πnM,π0N)→ πn(M ⊗R N)

is an isomorphism of abelian groups.

Proof. IfN is flat, then Torπ∗Rp (π∗M,π∗N) vanishes for p > 0, and is isomorphic to Torπ0R
0 (π∗M,π0N)

for p = 0. It follows that the spectral sequence of Proposition 7.2.1.19 degenerates at the second

page and yields the desired result.

Our next goal is to prove an analogue of Lazard’s theorem, which characterizes the class of flat

modules over a connective E1-ring.

Lemma 7.2.2.14. Let R be an E1-ring.

(1) The collection of flat left R-modules is stable under coproducts, retracts, and filtered colimits.

(2) Every free left R-module is flat. If R is connective, then every projective left R-module is flat.

Proof. Assertion (1) is obvious, and (2) follows from Proposition 7.2.2.6.

Theorem 7.2.2.15 (Lazard’s Theorem). Let R be a connective E1-ring, and let N be a connective

left A-module. The following conditions are equivalent:
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(1) The left R-module N can be obtained as a filtered colimit of finitely generated free modules.

(2) The left R-module N can be obtained as a filtered colimit of projective left A-modules.

(3) The left R-module N is flat.

(4) The functor M 7→M ⊗A N is left t-exact; in other words, it carries (RModR)≤0 into Sp≤0.

(5) If M is a discrete right R-module, then M ⊗R N is discrete.

Proof. The implication (1) ⇒ (2) is obvious, (2) ⇒ (3) follows from Lemma 7.2.2.14, (3) ⇒ (4)

from Proposition 7.2.2.13, and (4)⇒ (5) from Corollary 7.2.1.23.

We next show that (5) ⇒ (3). Suppose that (5) is satisfied. The functor M 7→ M ⊗R N is

exact, and carries the heart of RModR to the category of abelian groups. It therefore induces an

exact functor from the abelian category of right π0R-modules to the category of abelian groups.

According to Corollary 7.2.1.23, this functor is given by (classical) tensor product with the left

π0R-module π0N . From the exactness we conclude that π0N is a flat π0R-module.

We now prove that the natural map φ : πnR⊗π0R π0N → πnN is an isomorphism for all n ∈ Z.

For n < 0, this follows from the assumption that both N and R are connective. If n = 0 there

is nothing to prove. We may therefore assume that n > 0, and we work by induction on n. Let

M be the discrete right R-module corresponding to π0A. The inductive hypothesis implies that

Torπ∗Ap (π∗M,π∗N)q vanishes unless p = q = 0 or q ≥ n. These Tor-groups can be identified with

the E2-terms of the spectral sequence of Proposition 7.2.1.19, which computes the homotopy groups

of the discrete spectrum M ⊗RN . Consequently, we have E0,0
∞ = E0,0

2 ' π0N . A simple calculation

shows that E0,n
2 ' coker(φ), and that if φ is surjective then E1,n

2 ' ker(φ). To complete the proof,

it suffices to prove that Ei,n2 ' ∗ for 0 ≤ i ≤ 1. To see this, we observe that the vanishing of the

groups Ei−r,n+r−1
2 and Ei+r,n−r+1

2 for r ≥ 2 implies that Ei,n2 ' Ei,n∞ , and the latter is a subquotient

of πi+n(M ⊗R N), which vanishes in view of assumption (5).

To complete the proof, it will suffice to show that (3) implies (1). Let C be the full subcategory

of LModR spanned by a set of representatives for all free, finitely generated R-modules. Then

C is essentially small, and consists of compact projective objects of (ModR)≥0 which generate

(ModR)≥0 under small colimits. It follows (see §HTT.5.5.8 ) that the inclusion C ⊆ LModR induces

an equivalence PΣ(C) → LModcn
R . Applying Lemma HTT.5.1.5.5 , we conclude that the identity

functor from LModcn
R is a left Kan extension of its restriction to C. It follows that for every

connective left R-module N , the canonical diagram C/N = C×LModR(LModR)/N → LModR has N

as a colimit. To complete the proof, it will suffice to show that C/N is filtered provided that N is

flat.

According to Proposition HTT.5.3.1.15 , it will suffice to verify the following conditions:

(i) For every finite collection of objects {Xi} of C/N , there exists an object X ∈ C/N together

with morphisms Xi → X.
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(ii) For every pair X,Y ∈ C/N , every nonnegative integer n ≥ 0, and every map Sn →
MapC/N

(X,Y ) in the homotopy category H, there exists a morphism Y → Z in C/N such

that the induced map Sn → MapC(X,Z) is nullhomotopic.

Assertion (i) follows immediately from the stability of C under finite coproducts. We now prove

(ii). Suppose given a pair of maps f : X → N and g : Y → N , respectively. We have a homotopy

fiber sequence

MapC/N
(f, g)→ MapC(X,Y )→ MapLModR(X,N).

Since LModR is stable, MapC/N
(f, g) is a torsor for MapLModR(X,fib(g)). It follows that any map

Sn → MapLModR(X,fib(g)) determines a homotopy class η ∈ Ext−nR (X,fib(g)). We wish to prove

that there exists a commutative diagram

Y //

g

  

Z

h~~
N

such that the image of η in Ext−nR (X,fib(h)) vanishes. Arguing iteratively, we can reduce to the

case where X ' A, so that η can be identified with an element of πn fib(g).

Let η′ ∈ πnY denote the image of η. Our first step is to choose a diagram as above with the

property that the image of η′ in πnZ vanishes. We observe that η′ lies in the kernel of the natural

map πn(g) : πnY → πnN ' Torπ0R
0 (πnA, π0N). The classical version of Lazard’s theorem (see [94])

implies that π0N is isomorphic to a filtered colimit of free left π0R-modules. It follows that there

exists a commutative diagram

P
h

!!
π0Y

π0g //

k

==

π0N

of left π0R-modules, where P is a finitely generated free module, and the image of η′ in πnR⊗π0RP

vanishes. Using the freeness of P , we can realize h as π0h, where h : Z → N is a morphism of left

R-modules, and Z is a finitely generated free module with π0Z ' P . Similarly, we can realize k as

π0k, where k : Y → Z is a morphism of left R-modules. Using the freeness of Y again, we conclude

that the diagram

Z
h

  
Y

g //

k

??

N

commutes in the homotopy category hLModR, and can therefore be lifted to a commutative triangle

in LModA. By construction, the image of η′ in πnZ vanishes. Replacing Y by Z, we may reduce

to the case where η′ = 0.
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We now invoke the exactness of the sequence

πn+1N → πn fib(g)→ πnY

to conclude that η is the image of a class η′′ ∈ πn+1N ' πn+1R ⊗π0R π0N . Invoking Lazard’s

theorem once more, we deduce the existence of a commutative diagram of left π0A-modules

Q

!!
π0Y

π0g //

==

π0N

where Q is a finitely generated free module, and η′′ is the image of some element of πn+1R⊗π0RN .

Arguing as before, we may assume that the preceding diagram is induced by a commutative triangle

of left A-modules

Z

  
Y

g //

??

N.

Replacing Y by Z, we may assume that η′′ lies in the image of the map πn+1Y → πn+1N . The

exactness of the sequence

πn+1Y → πn+1N → πn fib(g)

now implies that η = 0, as desired. This completes the proof of the implication (3)⇒ (1).

We now study the behavior of flatness under base change.

Proposition 7.2.2.16. Let f : A → B be a map of E1-rings, let G : LModB → LModA be the

forgetful functor, and let F : LModA → LModB be a left adjoint to G (given by M 7→ B ⊗AM , in

view of Proposition 4.6.2.17). Then:

(1) The functor F carries free (projective, flat) A-modules to free (projective, flat) B-modules.

(2) Suppose that B is free (projective, flat) as a left A-module (that is, G(B) is free, projective,

or flat). Then G carries free (projective, flat) B-modules to free (projective, flat) A-modules.

(3) Suppose that, for every n ≥ 0, the map f induces an isomorphism πnA → πnB. Then

F induces an equivalence of categories LMod[A → LMod[B; here LMod[A denotes the full

subcategory of LModA spanned by the flat left A-modules, and LMod[B is defined likewise.

Proof. Assertions (1) and (2) are obvious. To prove (3), we first choose A′ to be a connective cover

of A (see Proposition 7.1.3.13). We have a homotopy commutative triangle of ∞-categories

LMod[A

%%
LMod′[A

::

// LMod[B .
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It therefore suffices to prove the analogous assertion for the morphisms A′ → A and A′ → B. In

other words, we may reduce to the case where A is connective.

Since A is connective, the∞-category ModA admits a t-structure. Let F ′ denote the composite

functor

(LModA)≥0 ⊆ LModA
F→ ModB .

Then F ′ has a right adjoint, given by the composition G′ = τ≥0 ◦G. Assertion (1) implies that F ′

preserves flatness, and a simple calculation of homotopy groups shows that G′ preserves flatness as

well. Consequently, F ′ and G′ induce adjoint functors

LMod[A
F ′′ //LMod[B
G′′
oo .

It now suffices to show that the unit and counit of the adjunction are equivalences. In other words,

we must show:

(i) For every flat left A-module M , the unit map M → τ≥0B ⊗A M is an equivalence. For

this, it suffices to show that πiM ' πiτ≥0B ⊗A M is an isomorphism for i ∈ Z. If i < 0,

then both groups vanish, so there is nothing to prove. If i ≥ 0, then we must show that

πiM ' πi(B⊗AM), which follows immediately from Proposition 7.2.2.13 and the assumption

that πiA ' πiB.

(ii) For every flat left B-module N , the counit map B ⊗A τ≥0G(N) → N is an equivalence. In

other words, we must show that for each j ∈ Z, the map πj(B ⊗A τ≥0G(N)) → πjN is an

isomorphism of abelian groups. Since G(N) is flat over A, Proposition 7.2.2.13 implies that

the left side is given by πjB ⊗π0A π0N . The desired result now follows immediately from our

assumption that N is flat.

In general, if M is a flat left module over an E1-ring R, then then “global” properties of M as

an R-module are often controlled by “local” properties of π0R, viewed as a left module over the

discrete ring π0R. Our next pair of results illustrates this principle.

Lemma 7.2.2.17. Let R be an E1-ring and let f : M → N be a map of flat left R-modules. Then

f is an equivalence if and only if it induces an isomorphism π0M → π0N .

Proof. This follows immediately from the definition of flatness.

Proposition 7.2.2.18. Let R be a connective E1-ring. A flat left R-module M is projective if and

only if π0M is a projective module over π0R.
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Proof. Suppose first that π0M is freely generated by elements {ηi}i∈I . Let P =
⊕

i∈I R, and

let f : P → M be a map represented by {ηi}i∈I . By construction, f induces an isomorphism

π0P → π0M . Lemma 7.2.2.17 implies that f is an equivalence, so that M is free.

In the general case, there exists a free π0R-module F0 and a direct sum decomposition F0 '
N0 ⊕ π0M . Replacing F0 by ⊕n≥0F0 if necessary, we may assume that N0 is itself free. The

projection map F0 → π0M is induced by a map g : F → M of left R-modules, where F is free.

Then g induces a surjection π0F ' F0 → π0M . Using the flatness of M , we conclude that the maps

πiF ' πiR⊗π0R π0F → πiR⊗π0R π0M ' πiM

are also surjective. Let N be a fiber of g, so that we have a commutative diagram

0 // πiR⊗π0R π0N //

φ′

��

πiR⊗π0R π0F //

φ

��

πiR⊗π0R π0M //

φ′′

��

0

0 // πiN // πiF // πiM // 0.

Using the flatness of F and M , we deduce that the upper row is short exact, and that the maps

φ and φ′′ are isomorphisms. The snake lemma implies that φ′ is an isomorphism; moreover, π0N

is isomorphic to the kernel of a surjection between flat π0R-modules, and is therefore itself flat. It

follows that N is a flat R-module. Since π0N is free, the first part of the proof shows that N is

itself free.

Let p : N → F denote the natural map. Since π0M is projective, the inclusion π0N ⊆ π0F is

split. Since F is free, we can lift this splitting to a morphism q : F → N . Then q ◦ p : N → N

induces the identity map from π0N to itself. Since N is free, we conclude that there is a homotopy

q◦p ' idN . It follows that N is a direct summand of F in the homotopy category hC. Consequently,

M ' cofib(p) can be identified with the complementary summand, and is therefore projective.

Corollary 7.2.2.19. Let f : R → R′ be a map of connective E1-rings. Let Proj(R) denote the

full subcategory of LModR spanned by the projective left R-modules, and define Proj(R′) similarly.

Suppose that f induces an isomorphism π0R→ π0R
′. Then the base change functor M 7→ R′⊗RM

induces an equivalence of homotopy categories

φ : hProj(R)→ hProj(R′).

Proof. We first show that the functor φ is fully faithful. For this, we must show that if P and Q

are projective left R-modules, then the canonical map

Ext0
R(P,Q)→ Ext0

R′(R
′ ⊗R P,R′ ⊗R Q)

is bijective. Without loss of generality, we may suppose that P is free. In this case, the left hand

side can be identified with a product of copies of π0Q, while the right hand side can be identified
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with a product of copies of π0(R′⊗RQ). Since Q is connective, the latter module can be identified

with Torπ0R
0 (π0R

′, π0Q) (Corollary 7.2.1.23), which is isomorphic to π0Q in view of our assumption

that f induces an isomorphism π0R→ π0R
′.

We now prove that φ is essentially surjective. Let P be a projective R′-module. Then there

exists a free R′-module F and an idempotent map e : F → F , so that P can be identified with the

colimit of the sequence

F
e→ F

e→ . . . .

Choose a free left R-module F and an equivalence φ(F ) ' F . Using the first part of the proof, we

deduce the existence of a map e : F → F (not necessarily idempotent) such that the diagram

φ(F )
φ(e) //

��

φ(F )

��
F

e // F

commutes up to homotopy. Since the functor M 7→ R′ ⊗RM preserves colimits, we deduce that P

is equivalent to φ(P ), where P denotes the colimit of the sequence

F
e→ F

e→ . . . .

To complete the proof, it will suffice to show that P is projective. In view of Proposition 7.2.2.18,

it will suffice to show that π0P is a projective module over the ordinary associative ring π0R, and

that P is a flat R-module. The first assertion follows from the isomorphism

π0P ' π0(R′ ⊗R P ) ' π0P ,

and the second from the observation that the collection of flat left R-modules is stable under filtered

colimits (Lemma 7.2.2.14).

Remark 7.2.2.20. Let A be an E1-ring, and let P be a projective left A-module. Then P is a

finitely generated projective left A-module if and only if π0P is finitely generated as a (discrete)

left module over π0A. The “only if” direction is obvious. For the converse, suppose that π0P is

generated by a finite set of elements {xi}i∈I . Let M be the (finitely generated) free module on a

set of generators {Xi}i∈I , so that we have a canonical map φ : M → P . Since P is projective and

φ induces a surjection π0M → π0P , the map φ splits (Proposition 7.2.2.6), so that P is a direct

summand of M .

Remark 7.2.2.21. Let R be an E2-ring, and regard the ∞-category LModR as a monoidal ∞-

category (whose monoidal structure is given by relative tensor product over R). Then π0R is a

commutative ring. The proof of Proposition 7.2.1.19 gives a spectral sequence {Ep,qr , dr}r≥2 in the

category of π0R-modules with

Ep,q2 = Torπ∗Rp (π∗M,π∗N)q,
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which converges to πp+q(M⊗RN). If M or N is flat over R, then Ep,q2 vanishes for p 6= 0. It follows

that this spectral sequence degenerates at the E2-page, and we get a canonical isomorphism

π∗(M ⊗R N) ' E0,∗
2 ' Torπ∗R0 (π∗M,π∗N).

It follows that if M and N are both flat over R, then the relative tensor product M ⊗R N is again

flat over R (this can also be deduced from Theorem 7.2.2.15). Since the unit object R ∈ LModR is

flat, Proposition 2.2.1.1 implies that the full subcategory LMod[R ⊆ LModR inherits the structure

of a monoidal ∞-category.

If R is an Ek+1-ring, then LMod[R inherits the structure of an Ek-monoidal ∞-category. If A

is an Ek-algebra over R, then we will say that A is flat over R if A is flat when regarded as a left

R-module. We let Alg
(k),[
R denote the full subcategory of Alg

(k)
R spanned by the flat Ek-algebras. If

k =∞, we will denote Alg
(k),[
R by CAlg[R.

Remark 7.2.2.22. Let R be an E∞-ring. Combining Corollary 3.4.1.7 with Remark 7.2.2.21,

we can identify the ∞-category CAlg[R with the full subcategory of CAlgR/ spanned by those

morphisms φ : R→ A which exhibit A as a flat module (either left or right) over R.

Remark 7.2.2.23. Let R be an Ek+1-ring and let A be a flat Ek-algebra over R. If R is connective,

then A is also connective; if R is discrete, then A is also discrete.

From Proposition 7.2.2.16, we immediately deduce the following:

Proposition 7.2.2.24. Let f : R → R′ be a map of Ek+1-rings. Suppose that f induces an

isomorphism πiR → πiR
′ for all i ≥ 0. Then the tensor product functor A 7→ R′ ⊗R A induces an

equivalence from the ∞-category Alg
(k),[
R of flat Ek-algebras over R to the ∞-category Alg

(k),[
R′ of

flat Ek-algebras over R′.

7.2.3 Localizations and Ore Conditions

Let R be a commutative ring and let S be a subset of R which contains the unit and is closed

under multiplication. In this case, one can define a commutative ring R[S−1] together with a

ring homomorphism φ : R → R[S−1] with the following universal property: if R′ is any other

commutative ring, the composition with φ induces a bijection from the set of ring homomorphisms

R[S−1] → R′ to the set of ring homomorphisms from R into R′ which carry each element of S to

an invertible element in R′. The ring R[S−1] can be described concretely as follows: elements of

R[S−1] are equivalence classes of symbols x
s , where x ∈ R and s ∈ S; here we let x

s = x′

s′ if and only

if there exists an element t ∈ S such that xs′t = x′st.

Now suppose that R is an associative ring and that S is a multiplicatively closed subset of

R. By general nonsense, one can construct a new associative ring R[S−1] by freely adjoining to

R multiplicative inverses for the elements of S. There is generally no easy description of the ring

R[S−1]: for example, it can be very difficult to decide whether the map R → R[S−1] is injective.

However, we can do much better if we are willing to introduce a suitable assumption on S.
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Definition 7.2.3.1. Let R be an associative ring and let S be a subset of R. We say that S

satisfies the left Ore condition if the following hold:

(a) The set S contains the unit element of R and is closed under multiplication.

(b) For every pair of elements x ∈ R, s ∈ S, there exist elements y ∈ R and t ∈ S such that

tx = ys.

(c) Let x ∈ R be an element for which there exists s ∈ S such that xs = 0. Then there exists an

element t ∈ S such that tx = 0.

Remark 7.2.3.2. Conditions (b) and (c) of Definition 7.2.3.1 are automatic if the ring R is com-

mutative, or more generally if the set S is contained in the center of R.

Remark 7.2.3.3. We say that a set S ⊆ R satisfies the right Ore condition if it satisfies condition

(a) of Definition 7.2.3.1, together with the following versions of (b) and (c):

(b′) For every pair of elements x ∈ R, s ∈ S, there exist elements y ∈ R and t ∈ S such that

xt = sy.

(c′) Let x ∈ R be an element for which there exists s ∈ S such that sx = 0. Then there exists an

element t ∈ S such that xt = 0.

Equivalently, S ⊆ R satisfies the right Ore condition if it satisfies the left Ore condition when

viewed as a subset of Rrev, the same ring with the opposite multiplication.

Construction 7.2.3.4. Let R be an associative ring, let S ⊆ R be a subset which satisfies the left

Ore condition, and let M be a left R-module. We define a relation ∼ on the product S ×M as

follows: we have (s, x) ∼ (s′, x′) if there exists elements a, a′ ∈ R such that the products as and a′s′

belong to S, as = a′s′, and ax = a′x′. It is obvious that this relation is symmetric and reflexive. It

is also reflexive: if (s, x) ∼ (s′, x′) ∼ (s′′, x′′), then we can choose elements a, a′, b′, b′′ ∈ R such that

as = a′s′ ∈ S b′s′ = b′′s′′ ∈ S ax = a′x′ b′x′ = b′′x′′.

Since S satisfies condition (b) of Definition 7.2.3.1, we can find elements u ∈ S, c ∈ R such that

ua′s′ = cb′s′. Thus ua′ − cb′ is annihilated by right multiplication by s′ ∈ S; using condition (c),

we deduce that ua′ − cb′ is annihilated by left multiplication by some element t ∈ S. Then

tuas = tua′s′ = tcb′s′ = tcb′′s′′,

and this product belongs to S since t, u, as ∈ S and S is closed under multiplication. To prove that

(s, x) ∼ (s′′, x′′), it suffices to observe that

tuax = tua′x′ = tcb′x′ = tcb′′x′′.
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Let S−1M denote the quotient of S ×M by the equivalence relation ∼. We denote the image

of a pair (s, x) in S−1M by s−1x. We refer to S−1M as the left module of fractions associated to

the pair (S,M). There is a canonical map φ : M → S−1M , given by φ(x) = 1−1x.

We now summarize the some of the main properties of Construction 7.2.3.4.

Proposition 7.2.3.5. Let R be an associative ring, let S ⊆ R be a subset which satisfies the left

Ore condition, and let M be a left module over R. Then:

(1) The set S−1M admits a unique R-module structure satisfying the following pair of conditions:

(a) The canonical map φ : M → S−1M is an R-module homomorphism.

(b) For every pair of elements s ∈ S, x ∈M , we have φ(x) = s(s−1x).

(2) For each s ∈ S, multiplication by s induces a bijection from S−1M to itself.

(3) Let N be another left R-module, and assume that for each s ∈ S, left multiplication by s

induces a bijection from N to itself. For every R-module homomorphism ψ : M → N , there

exists a unique R-module homomorphism ψ′ : S−1M → N such that the diagram

S−1M
ψ′

##
M

φ
;;

ψ // N

is commutative.

(4) Suppose that M = R. Then there is a unique associative ring structure on S−1M = S−1R

such that φ : R→ S−1R is a ring homomorphism satisfying condition (b) above.

(5) The ring homomorphism φ carries each element of S to an invertible element of S−1R.

(6) Let A be an associative ring, and let ψ : R → A be a ring homomorphism with the property

that for each s ∈ S, the image ψ(s) ∈ A is invertible. Then there exists a unique ring

homomorphism ψ′ : S−1R→ A such that the diagram

S−1R
ψ′

""
R

φ
<<

ψ // A

is commutative.

Remark 7.2.3.6. Let R be an associative ring and let S ⊆ R be a subset. If S satisfies the left

Ore condition, then we can define a left ring of fractions S−1R as in Proposition 7.2.3.5. If S also

satisfies the right Ore condition, then the dual version of Proposition 7.2.3.5 allows us to construct

a right ring of fractions RS−1. It follows from assertion (5) of Proposition 7.2.3.5 that there is a

canonical isomorphism S−1R ' RS−1.
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It is not difficult (though somewhat tedious) to prove Proposition 7.2.3.5 by direct calculation.

In this section, we will give a different proof of a more general result, where the associative ring R

is replaced by an E1-ring and M by a left R-module spectrum.

Remark 7.2.3.7. Let R be an E1-ring, and regarded π∗R as a graded associative ring. Let S be

a set of homogeneous elements of π∗R which satisfies the left Ore condition. In particular, we have

the following:

(b) For every pair of elements x ∈ π∗R, s ∈ S, there exist elements y ∈ π∗R and t ∈ S such that

tx = ys.

(c) Let x ∈ π∗R be an element for which there exists s ∈ S such that xs = 0. Then there exists

an element t ∈ S such that tx = 0.

Note that it suffices to verify conditions (b) and (c) in the case where x is a homogeneous element

of π∗R. Moreover, in case (b), we may assume that the element y is also homogeneous.

Definition 7.2.3.8. Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements which

contains the unit and is closed under multiplication. Suppose that M is a left R-module spectrum.

We will say that M is S-nilpotent if, for every x ∈ πnM , there exists an element s ∈ S such that

sx = 0.

Lemma 7.2.3.9. Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements which

contains the unit and is closed under multiplication. Suppose we are given a fiber sequence

M ′
ψ→M

φ→M ′′

in LModR. If any two of the left A-modules M , M ′, and M ′′ are S-nilpotent, then so it the third.

Remark 7.2.3.10. Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements

which contains the unit and is closed under products. It is easy to see that the collection of S-

nilpotent left R-modules is closed under shifts and (possibly infinite) coproducts. Combining this

observation with Lemma 7.2.3.9, we deduce that the collection of S-nilpotent left R-modules is a

stable subcategory of LModR, which is closed under small colimits.

Proof of Lemma 7.2.3.9. For the sake of definiteness, suppose that M ′ and M ′′ are S-nilpotent;

we will show that M is S-nilpotent. Let x ∈ πnM for some integer n. Since M ′′ is S-nilpotent,

the image φ(x) ∈ πnM ′′ is annihilated by multiplication by some element s ∈ S having degree d.

Then φ(sx) = sφ(x) = 0, so that sx belongs to to the kernel of the map πn+dM → πn+dM
′′. The

exactness of the sequence

πn+dM
′ → πn+dM → πn+dM

′′

implies that sx = ψ(y) for some element y ∈ πn+dM
′. Since M ′ is S-nilpotent, there exists an

element t ∈ S such that ty = 0. Then (ts)x = t(sx) = tψ(y) = ψ(ty) = 0.
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The left Ore condition of Definition 7.2.3.1 has a convenient reformulation in terms of S-

nilpotent modules.

Lemma 7.2.3.11. Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements which

contains the unit and is closed under multiplication. The following conditions are equivalent:

(1) The set S satisfies the left Ore condition.

(2) For every element s ∈ S of degree d, if R/Rs denotes the cofiber of the map of left R-modules

R[d]→ R given by right multiplication by s, then R/Rs is S-nilpotent.

Proof. Assume first that (1) is satisfied. Let x ∈ πnR/Rs; we wish to show that x is annihilated

by some element of S. Using the exact sequence

πnR/Rs
φ→ πn−d−1R

s→ πn−1R,

we deduce that φ(x) ∈ πn−d−1R is annihilated by right multiplication by s. Using condition

(c) of Definition 7.2.3.1, we deduce that there exists an element t ∈ S of degree d′ such that

0 = tφ(x) ∈ πn+d′−d−1. Using the exactness of the sequence

πn+d′R
ψ→ πn+d′R/Rs→ πn+d′−d−1R

we conclude that tx = ψ(y) for some y ∈ πn+d′R. Using condition (b) of Definition 7.2.3.1 (and

Remark 7.2.3.7), we conclude that there exists an element u ∈ S of degree d′′ and an element

z ∈ πn+d′+d′′−dR such that uy = zs. It follows that the image of uy in πn+d′+d′′R/Rs vanishes, so

that (ut)x = 0. This completes the proof of (2).

Now suppose that (2) is satisfied. We will show that S satisfies conditions (b) and (c) of

Definition 7.2.3.1. Suppose first that x ∈ π∗R and s ∈ S; we wish to show that there exists y ∈ π∗R
and t ∈ S such that tx = ys. As noted in Remark 7.2.3.7, we may assume without loss of generality

that x is homogeneous; say x ∈ πnR. Let s ∈ S have degree d. The image of x in πnR/Rs is

annihilated by multiplication by some homogeneous element t ∈ S of degree d′. It follows that tx

belongs to the kernel of the map πn+d′R → πn+d′R/Rs, and therefore to the image of the map

πn+d′−dR
s→ πn+d′R given by right multiplication by s.

We now verify (c). As noted in Remark 7.2.3.7, it suffices to show that if x ∈ πnR is annihilated

right multiplication by some element s ∈ S of degree d, then tx = 0 for some t ∈ S. The exactness

of the sequence

πn+d+1R/Rs
φ→ πnR

s→ πn+dR

shows that x = φ(y) for some y ∈ πn+d+1R/Rs. Since R/Rs is S-nilpotent, there exists an element

t ∈ S such that ty = 0, from which it follows immediately that tx = tφ(y) = 0.

Lemma 7.2.3.12. Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements which

contains the unit and is closed under products. Let M be a left R-module which is S-nilpotent.

Then there exists a map of left R-modules f : N →M with the following properties:
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(1) The left R-module N is isomorphic to a coproduct of left R-modules of the form (R/Rsα)[nα],

where the sα are elements of S and R/Rsα is defined as in Lemma 7.2.3.11.

(2) The map f induces a surjection of graded abelian groups π∗N → π∗M .

Proof. Let y ∈ πnM . Then y is classified by a map of left R-modules fy : R[n] → M . Since M is

S-nilpotent, we have sy = 0 for some element s ∈ S of degree d. It follows that the composition

R[n+ d]
s→ R[n]

fy→M

is nullhomotopic, so that fy factors as a composition

R[n]→ (R/Rx)[n]
f ′y→M.

Taking the coproduct of the maps f ′y over all homogeneous elements y ∈ π∗M , we obtain the desired

map f : N →M .

Lemma 7.2.3.13. Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements which

satisfies the left Ore condition. Let M be an S-nilpotent left R-module. Then there exists a sequence

0 = M0 →M1 →M2 → · · ·

of left R-modules with the following properties:

(1) For each i ≥ 0, the fiber of the map Mi →Mi+1 is a coproduct of left A-modules of the form

(R/Rsα)[nα], for some elements sα ∈ S and integers nα.

(2) The colimit lim−→Mi is equivalent to M (as an object of LModA).

Proof. We construct S-nilpotent left R-modules Mi and maps fi : Mi → M using induction on i.

When i = 0, set Mi = 0, so that fi : 0 → M is determined up to a contractible space of choices.

For the inductive step, assume that fi : Mi → M has been constructed. Since Mi and M are

S-nilpotent, the fiber Ki of fi is also S-nilpotent. We may therefore choose a map gi : Ni → Ki

which induces a surjection on homotopy groups, where Ni is a coproduct of left A-modules of the

form (A/As)[n]. Since S satisfies the left Ore condition, Remark 7.2.3.10 and Lemma 7.2.3.11 imply

that Ni is S-nilpotent. We define Mi+1 to be a cofiber of the composite map Ni
gi→ Ki → Mi. By

construction, fi admits a canonical factorization

Mi −→Mi+1
fi+1−→M.

Lemma 7.2.3.9 guarantees that Mi+1 is also S-nilpotent.

The above construction obviously satisfies condition (1). To prove (2), note that for each i we

have an exact triangle

Ni → Ki → Ki+1.
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Since the first map is surjective on homotopy, we conclude that the induced map π∗Ki → π∗Ki+1

vanishes. It follows that π∗ lim−→Ki ' lim−→π∗Ki ' 0, so that the map lim−→Mi 'M is an equivalence.

Proposition 7.2.3.14. Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements

satisfying the left Ore condition. Let N be a left R-module. The following conditions are equivalent:

(1) For every element s ∈ S, left multiplication by s induces an isomorphism of graded abelian

groups from π∗N to itself.

(2) For every element s ∈ S and every integer n, the mapping space MapLModA(R/Rs[n], N) is

contractible.

(3) For every S-nilpotent object M ∈ LModA, the mapping space MapLModA(M,N) is con-

tractible.

Proof. Let s ∈ S be an element of degree d. The fiber sequence

R[d]
s→ R→ R/Rs

determines a long exact sequence

ExtnR(R/Rs,N)→ π−nN
s→ πd−nN → Extn+1

R (R/Rs,N),

from which the equivalence (1)⇔ (2) follows immediately. The implication (3)⇒ (2) follows from

Lemma 7.2.3.11. We now prove (2)⇒ (3). Let M ∈ LModR be S-nilpotent, and choose a sequence

0 = M0 →M1 →M2 → · · ·

satisfying the hypotheses of Lemma 7.2.3.13. Since M ' lim−→Mi, we have

MapLModR(M,N) ' lim←−MapLModR(Mi, N).

It will therefore suffice to show that each mapping space MapLModR(Mi, N) is contractible. We

proceed by induction on i, the case i = 0 being obvious. Assume that MapLModR(Mi, N) is

contractible. We have a fiber sequence

MapLModR(Mi+1, N)→ MapLModR(Mi, N)→ MapLModR(Ni, N),

where Ni is a coproduct of left R-modules of the form (R/Rsα)[nα]. It therefore suffices to show that

MapLModR(Ni, N) '
∏
α MapLModR((R/Rsα)[n], N) is contractible, which follows from (2).

Definition 7.2.3.15. Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements

satisfying the left Ore condition. We will say that a left R-module N is S-local if it satisfies

the equivalent conditions of Proposition 7.2.3.14. We let LModS−nilR denote the full subcategory of

LModR spanned by the S-nilpotent left R-modules, and LMod
Loc(S)
R the full subcategory of LModR

spanned by the S-local R-modules.
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Remark 7.2.3.16. It follows immediately from characterization (1) of Proposition 7.2.3.14 that

LMod
Loc(S)
R is a stable subcategory of LModR, which is closed under small coproducts and therefore

under arbitrary small colimits.

In the situation of Definition 7.2.3.15, Remark 7.2.3.10 implies that LModS−nilR is closed under

small colimits in LModR. Moreover, there exists a set of objects which generate LModS−nilR under

small colimits: for example, the objects of the form R/Rs[n], where s ∈ S (Lemma 7.2.3.13). It fol-

lows that the ∞-category LModS−nilR is presentable. Using Corollary HTT.5.5.2.9 , we deduce that

the inclusion LModS−nilR → LModR admits a right adjoint G. If M ∈ LModS−nilR and N ∈ LModR,

then the counit map u : G(N)→ N induces an equivalence ExtiR(M,G(N))→ ExtiR(M,N) for all

integers i. It follows that the cofiber of u is S-local. We can summarize the situation as follows:

Proposition 7.2.3.17. Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements sat-

isfying the left Ore condition. Then LModS−nilR and LMod
Loc(S)
R are stable subcategories of LModR,

which are closed under small colimits. Moreover, the pair (LModS−nilR ,LMod
Loc(S)
R ) determines an

accessible t-structure on LModR (with trivial heart).

Remark 7.2.3.18. In the situation of Proposition 7.2.3.17, every object M ∈ LModR determines

a fiber sequence

M ′ →M →M ′′,

where M ′ is S-nilpotent and M ′′ is S-local. This fiber sequence is determined by M up to con-

tractible ambiguity, so we can regard M ′ and M ′′ as functors of M . We will denote M ′′ by S−1M ,

and refer to it as the S-localization of M .

Our next goal is to describe the S-localization of a left R-module M more explicitly. In partic-

ular, we will see that the homotopy groups of S−1M can be computed using a graded analogue of

Construction 7.2.3.4.

Construction 7.2.3.19. Let R be an E1-ring, let S ⊆ π∗R be a set of homogeneous elements of

π∗R which satisfy the left Ore condition, and let M be a left R-module. For every integer d, let Sd
denote the subset of S consisting of homogeneous elements of degree d. Let φ : M → S−1M be the

canonical map. Let s ∈ Sd and let x ∈ πn+dM . Since left multiplication by s on π∗M is bijective,

there exists a unique element ψd,n(s, x) ∈ πnS−1M such that sψd,n(s, x) = φ(x).

Proposition 7.2.3.20. Let R be an E1-ring, let S ⊆ π∗R be a set of homogeneous elements of π∗R

which satisfy the left Ore condition, and let M be a left R-module. Then:

(1) Every element x ∈ πnS−1M has the form ψd,n(s, y) for some s ∈ Sd and y ∈ πn+dM . Here

we employ the notation of Construction 7.2.3.19.

(2) Suppose we are given elements s ∈ Sd, s
′ ∈ Sd′, y ∈ πn+dM and y′ ∈ πn+d′M . Then

ψd,n(s, y) = ψd′,n(s′, y′) if and only if there exist an integer m and homogeneous elements

z ∈ πm−dR, z′ ∈ πm−d′R such that zs = z′s′ ∈ Sm and zy = z′y′ ∈ πn+mM .
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Proof. We have a fiber sequence

M
β→ S−1M

α→M ′,

where M ′ is S-nilpotent. Let x ∈ πnS−1M . Since M ′ is S-nilpotent, there exists an element s ∈ Sd
such that α(sx) = sα(x) = 0 ∈ πn+dM

′. It follows that sx = β(y) for some y ∈ πn+dM : that is,

x = ψd,n(s, y). This proves (1).

We now prove (2). The “if” direction is obvious. For the converse, suppose that ψd,n(s, y) =

x = ψd′,n(s′, y′). Since S satisfies the left Ore condition, we can choose homogeneous elements

u ∈ Sk−d, v ∈ πk−d′R such that us = vs′. Then

β(uy) = uβ(y) = u(sx) = (us)x = (vs′)x = v(s′x) = vβ(y′) = β(vy′),

so that uy − vy′ ∈ πn+kM is annihilated by β. It follows that uy − vy′ is the image of an element

ξ ∈ πn+k+1M
′. Since M ′ is S-nilpotent, we can choose an element t ∈ Sk′ such that tξ = 0, so that

tuy = tvy′. Set m = k + k′, z = tu, and z′ = tu′. Then z ∈ Sm−d so that zs ∈ Sm, and zs = z′s′

since us = vs′. We have zy = tuy = tvy′ = z′y′, thereby completing the proof of (2).

Proof of Parts (1), (2), and (3) of Proposition 7.2.3.5. Let R be an associative ring, let M be a

(discrete) left R-module, and let S ⊆ R be a subset which satisfies the left Ore condition. Let X

denote the quotient of S ×M by the equivalence relation of Definition 7.2.3.4; for (s, x) ∈ S ×M ,

we will denote the image of (s, x) in X by s−1x. Let S−1M denote the S-localization of M as an

R-module spectrum. Proposition 7.2.3.20 implies that S−1M is discrete; we will abuse notation by

identifying S−1M with the ordinary R-module π0(S−1M). Proposition 7.2.3.20 also determines a

bijection of sets ψ : X → S−1M , given by the formula s−1x 7→ ψ0,0(s, x). This proves the existence

assertion of (1). Assertions (2) follows from the fact that S−1M is S-local, and assertion (3) from

the fact S−1M is the S-localization of M .

To complete the proof, it suffices to prove the uniqueness of the R-module structure on X

constructed above. Suppose we are given some other left R-module structure on X satisfying the

following conditions:

(a) The canonical map φ : M → S−1M is an R-module homomorphism.

(b) For every pair of elements s ∈ S, x ∈M , we have φ(x) = s(s−1x).

We claim that X is S-local (when regarded as a discrete R-module spectrum): in other words, we

claim that for s ∈ S, the left multiplication map X
s→ X is invertible. We first show that this map

is injective. Suppose that s(t−1x) = 0 for some element t−1x ∈ S. Since S satisfies the left Ore

condition, we can choose elements u ∈ S, a ∈ R such that as = ut. Then

0 = a(s(t−1x)) = (as)(t−1x) = (ut)(t−1x) = u(t(t−1x)) = uφ(x) = φ(ux),

so there exists v ∈ S such that v(ux) = (vu)x vanishes. This immediately implies that t−1x = 0 in

X.
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We now claim that left multiplication by s is surjective. To prove this, let t−1x be an element

of X. We claim that t−1x = s((ts)−1x). Since multiplication by t is injective, it suffices to show

that t(t−1x) = (ts)((ts)−1x). It follows from (b) that both sides are given by φ(x). This completes

the proof that X is S-local. It follows that φ admits a unique factorization

M
u→ S−1M

θ→ X,

where u denotes the canonical map from M to its S-localization. To complete the proof, it will

suffice to show that the map θ is inverse to the bijection of sets ψ : X → S−1M constructed above.

We will show that θ ◦ ψ = idX (since ψ is bijective, it follows that ψ ◦ θ is the identity map on

S−1M). By construction, ψ(s−1x) is the unique element of S−1M satisfying sψ(s−1x) = φ(x).

It follows that s(θ ◦ ψ)(s−1x) = φ(x) = s(s−1x). Since multiplication by s is injective on X, we

conclude that (θ ◦ ψ)(s−1x) = s−1x.

Remark 7.2.3.21. The proof given above shows that the notation S−1M introduced in Construc-

tion 7.2.3.4 (where M is a discrete module over an associative ring) is compatible with our notation

for S-localizations introduced in Remark 7.2.3.18.

Definition 7.2.3.22. Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements which

satisfies the left Ore condition. We will say that a left R-module M is S-complete if ExtiR(N,M) ' 0

for every S-local left R-module N . We let LMod
Cpl(S)
R denote the full subcategory of LModR

spanned by the S-complete R-modules.

Proposition 7.2.3.23. Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements

which satisfies the left Ore condition. Then:

(1) The ∞-category LMod
Cpl(S)
R is a stable subcategory of LModR.

(2) The inclusion LMod
Cpl(S)
R → LModR admits a left adjoint F .

(3) For every M ∈ LModR, there exists a fiber sequence

M ′ →M →M ′′

where M ′ is S-local and M ′′ is S-complete.

(4) The pair of subcategories (LMod
Loc(S)
R ,LMod

Cpl(S)
R ) is a t-structure on LModR (with trivial

heart).

(5) The functor F induces an equivalence of ∞-categories LModS−nilR → LMod
Cpl(S)
R .

Proof. Assertion (1) is obvious. Note that Proposition 7.2.3.17 implies that LMod
Loc(S)
R is a pre-

sentable ∞-category which is closed under small colimits in LModR. It follows from Corollary
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HTT.5.5.2.9 that the full subcategory inclusion φ : LMod
Loc(S)
R → LModR admits a right ad-

joint ψ. For every object M ∈ LModR, the counit map v : ψM → M induces an isomorphism

Ext∗R(N,ψM) → Ext∗R(N,M) for every S-local object N . It follows that the cofiber of v is S-

complete, which proves (3). Assertions (2) and (4) follow immediately from (3).

We now prove (5). Let F denote a left adjoint to the inclusion LMod
Cpl(S)
R → LModR and

let G denote a right adjoint to the inclusion LModS−nilR → LModR. We will abuse notation by

identifying F and G with their restrictions to LModS−nilR and LMod
Cpl(S)
R , respectively. It follows

that we have an adjunction

LModS−nilR

F //LMod
Cpl(S)
R .

G
oo

We claim that this adjunction exhibits the functors F and G as homotopy inverse. We first show

that the unit map u : id → G ◦ F is an equivalence. Let M ∈ LModS−nilR , so that we have a fiber

sequence

ψ(M)→M → F (M).

We wish to show that the map M → (G ◦ F )(M) is an equivalence. Since M ' G(M), it will

suffice to show that G(ψ(M)) ' 0. This is clear, since ψ(M) is S-local. To prove that the counit

map F ◦G→ id is an equivalence, consider an arbitrary S-complete object N ∈ LModR. We have

a fiber sequence

G(N)→ N → S−1N.

Since N is S-complete, we have N ' F (N). Consequently, to prove that the unit map (F ◦G)(N)→
N is an equivalence, it will suffice to show that F (S−1N) ' 0, which follows immediately from the

observation that S−1N is S-local.

In the case where R is connective, the subcategories of LModR defined above interact nicely

with the t-structure on LModR.

Proposition 7.2.3.24. Let R be a connective E∞-ring and let S ⊆ π∗R be a set of homogeneous

elements which satisfies the left Ore condition. Then:

(1) Let M be an S-nilpotent R-module. Then the truncations τ≥nM and τ≤nM are S-nilpotent for

every integer n. It follows that the t-structure on LModR determines an accessible t-structure

(LModS−nilR ∩(LModR)≥0,LModS−nilR ∩(LModR)≤0)

on LModS−nilR , which is both right and left complete.

(2) Let G : LModR → LModS−nilR be a right adjoint to the inclusion. Then G is left t-exact.

(3) The localization functor M 7→ S−1M is left t-exact (when regarded as a functor from LModR
to itself).
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Proof. Assertion (1) is immediate from the definition. Since the inclusion functor LModS−nilR →
LModR is left t-exact, its right adjoint is left t-exact; this proves (2). Assertion (3) follows easily

from Proposition 7.2.3.20.

If we are localizing with respect to a collection of elements S of degree zero in π∗R, we can be

more precise.

Proposition 7.2.3.25. Let R be a connective E1-ring and let S ⊆ π0R be a subset which satisfies

the left Ore condition as a subset of π∗R. Then:

(1) Let M be an R-module. Then M is S-complete if and only if each homotopy group πnM is

S-complete, when regarded as a discrete R-module. It follows that the t-structure on LModR
determines an accessible t-structure (LMod

Loc(S)
R ∩(LModR)≥0,LMod

Loc(S)
R ∩(LModR)≤0) on

LMod
Loc(S)
R , which is both right and left complete.

(2) The localization functor M 7→ S−1M is t-exact (when regarded as a functor from LModR to

itself).

Proof. Assertion (1) follows immediately from the definitions, and assertion (2) is a consequence

of Proposition 7.2.3.20.

Let R be an E1-ring and let S ⊆ π∗R be a set of homogeneous elements which satisfies the

left Ore condition. Since the inclusion LMod
Loc(S)
R → LModR preserves filtered colimits, the left

adjoint functor M 7→ S−1M carries compact objects of LModR to compact objects of LMod
Loc(S)
R

(Proposition HTT.5.5.7.2 ). In particular, S−1R is a compact object of LMod
Loc(S)
R . For any S-local

left R-module M , we have isomorphisms

ExtnR(S−1R,M) ' ExtnR(R,M) ' π−nM.

It follows that these groups vanish if and only if M ' 0, so that S−1R is a compact generator for

the stable ∞-category LMod
Loc(S)
R . Let R[S−1] denote the E1-ring classifying endomorphisms of

S−1R in LMod
Loc(S)
R . Using Theorem 7.1.2.1 (and Remark 7.1.2.3), we obtain an equivalence of

stable ∞-categories LMod
Loc(S)
R ' LModR[S−1] carrying S−1R to R[S−1]. Composing this with the

localization functor M 7→ S−1M , we obtain a colimit-preserving functor

Φ : LModR → LModR[S−1]

carrying R to R[S−1]. Using Theorem 4.8.5.5, we see that Φ is induced by a map of E1-rings

φ : R→ R[S−1], which is well-defined up to a contractible space of choices.

Remark 7.2.3.26. We can summarize the above discussion more informally as follows: if R is an

E1-ring and S ⊆ π∗R is a set of homogeneous elements satisfying the left Ore condition, then the

spectrum S−1R admits the structure of an E1-ring, and the left R-module structure on S−1R arises

from a map of E1-rings.
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Proposition 7.2.3.27. Let R be an E1-ring, let S ⊆ π∗R be a set of homogeneous elements

satisfying the left Ore condition, and let φ : R → R[S−1] be defined as above. If A is any E1-ring,

then composition with φ induces a fully faithful map of Kan complexes θ : MapAlg(1)(R[S−1], A)→
MapAlg(1)(R,A), whose essential image is the collection of E1-rings ψ : R → A such that ψ(s) is

invertible in π∗A, for each s ∈ S.

Proof. Let F : LModR → LMod
Loc(S)
R be a left adjoint to the inclusion, given by M 7→ S−1M .

Since F is a localization functor, composition with F induces a fully faithful embedding

LFun(LMod
Loc(S)
R ,LModA) → LFun(LModR,LModA), where LFun(LModR,LModA) denotes

the full subcategory of Fun(LModR,LModA) spanned by those functors which preserve small

colimits, and LFun(LMod
Loc(S)
R ,LModA) is defined similarly.

Using Theorem 4.8.5.5 and the equivalence LModR[S−1] ' LMod
Loc(S)
R , we deduce immediately

that θ is fully faithful. Moreover, a map of E1-rings ψ : R→ A belongs to the essential image of θ

if and only if it satisfies the following condition:

(∗) For every map of left R-modules M → M ′ which induces an equivalence S−1M → S−1M ′,

the induced map A⊗RM → A⊗RM ′ is an equivalence.

Passing to fibers, we can reformulate condition (∗) as follows:

(∗′) For every S-nilpotent R-module M , we have A⊗RM ' 0.

Since the collection of S-nilpotent R-modules M is generated under colimits by R-modules of

the form (R/Rs)[n] where s ∈ S is a homogeneous element of degree d (Lemma 7.2.3.13), it suffices

to verify condition (∗′) in the case M = R/Rs. In this case, A ⊗R M is the cofiber of the map

A[d]
s→ A given by multiplication by s, so that A⊗RM ' 0 if and only if ψ(s) ∈ πdA is invertible

in π∗A.

Using Proposition 7.2.3.27, we can easily recover the classical theory of left rings of fractions:

Proof of Assertions (4), (5), and (6) of Proposition 7.2.3.5. Let R be an associative ring and let

S ⊆ R satisfy the left Ore condition. Let X denote the quotient of S ×M by the equivalence

relation of Definition 7.2.3.4; for (s, x) ∈ S × M , we will denote the image of (s, x) in X by

s−1x. Let φ0 : R→ X be the map given by φ0(x) = 1−1x, and let φ : R→ R[S−1] be the E1-rings

appearing in Proposition 7.2.3.27. Proposition 7.2.3.20 implies that R[S−1] is discrete; we will abuse

notation and identify R[S−1] with the ordinary associative ring π0R[S−1]. Proposition 7.2.3.20 also

determines a bijection of sets ψ : X → R[S−1], which is characterized by the requirement that

φ(s)ψ(s−1x) = φ(x) for all s ∈ S, x ∈ R. Taking s = 1, we deduce that φ = ψ ◦ φ0. There is a

unique associative ring structure on X so that ψ is an isomorphism of rings, so that φ0 : R→ X is

a ring homomorphism satisfying φ0(s)(s−1x) = φ0(x). This proves the existence clause of (4).

Let us regard X as a left R-module via the map φ0. This left R-module structure must coincide

with the left R-module structure of part (1), so that (2) implies that multiplication by φ0(s) induces
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a bijection X → X for each s ∈ S. It follows that φ0 carries each element of S to an invertible

element in X, which proves (5). Assertion (6) follows immediately from Proposition 7.2.3.27.

It remains only to prove the uniqueness clause of (4). Suppose that X is endowed with an

arbitrary associative ring structure such that φ0 is a ring homomorphism satisfying φ0(s)(s−1x) =

φ0(x) for s ∈ S and x ∈ R. Then the induced left R-module structure on X must coincide

with the left R-module structure appearing in assertion (1), so that assertion (2) implies that left

multiplication by φ0(s) induces a bijection from X to itself for each s ∈ S. In other words, φ0

carries each element of S to an invertible element of X, so that Proposition 7.2.3.27 gives a unique

ring homomorphism θ : R[S−1]→ X satisfying θ ◦ φ = φ0. We will complete the proof by showing

that θ is an inverse of the bijection ψ : X → R[S−1], so that ψ = θ−1 is also a ring isomorphism.

For this, we compute

φ0(s)(θ ◦ψ)(s−1x) = (θ ◦ φ)(s)(θ ◦ψ)(s−1x) = θ(φ(s)ψ(s−1x)) = (θ ◦ φ)(x) = φ0(x) = φ0(s)(s−1x).

Since φ0(s) is an invertible element of X, we conclude that (θ ◦ψ)(s−1x) = s−1x for every element

s−1x ∈ X, as desired.

7.2.4 Finiteness Properties of Rings and Modules

In this section, we will discuss some finiteness conditions on the ∞-categories of modules over an

E1-ring R. We begin by introducing the definition of a perfect R-module. Roughly speaking, an

R-module M is perfect if it can be obtained as a successive extension of finitely many (possibly

shifted) copies of R, or is a retract of such an R-module. Alternatively, we can describe the class

of perfect R-modules as the compact objects of the ∞-category LModR (Proposition 7.2.4.2).

In general, the condition that an R-module be perfect is very strong. For example, if R is a

discrete commutative ring and M is a finitely generated (discrete) module over R, then M need not

be perfect when viewed as an object of the stable ∞-category LModR (though this is true if R is a

regular Noetherian ring of finite Krull dimension). To remedy the situation, we will introduce the

weaker notion of an almost perfect R-module. This notion has a closer relationship with finiteness

conditions in the classical theory of rings and modules. For example, we will show that under some

mild assumptions on R, a left R-module M is almost perfect if and only if each homotopy group

πiM is a finitely presented left module over π0R, and πiM ' 0 for i� 0 (Proposition 7.2.4.17), at

least when R itself satisfies a suitable finiteness condition (that is, when R is left coherent in the

sense of Definition 7.2.4.13).

Definition 7.2.4.1. Let R be an E1-ring. We let LModperf
R denote the smallest stable subcategory

of LModR which contains R (regarded as a left module over itself) and is closed under retracts.

Similarly, we let RModperf
R denote the smallest stable subcategory of RModR which contains R

and is closed under retracts. We will say that a left (right) R-module M is perfect if it belongs to

LModperf
R (RModperf

R ).
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Proposition 7.2.4.2. Let R be an E1-ring. Then:

(1) The ∞-category LModR is compactly generated.

(2) An object of LModR is compact if and only if it is perfect.

Proof. The compact objects of LModR form a stable subcategory which is closed under the forma-

tion of retracts. Moreover, Corollary 4.2.4.8 implies R ∈ LModR corepresents the functor given by

the composition

LModR = LModR(Sp) −→ Sp
Ω∞−→ S

of two functors which each preserve filtered colimits. It follows that R is compact as a left R-module,

from which it immediately follows that all perfect objects of LModR are compact.

According to Proposition HTT.5.3.5.11 , the inclusion f : LModperf
R ⊆ LModR induces a fully

faithful functor F : Ind(LModperf
R )→ LModR. To complete the proof, it will suffice to show that F

is essentially surjective. Since f is right exact, F preserves all colimits (Proposition HTT.5.5.1.9 ), so

the essential image of F is stable under colimits. If F is not essentially surjective, then Proposition

1.4.4.11 implies that there exists a nonzero N ∈ LModR such that MapLModR(N ′, N) ' ∗ for all N ′

belonging to the essential image of F . In particular, taking N ′ = R[n], we conclude that πnN ' ∗.
It follows that N is a zero object of LModR, contrary to our assumption.

Let R be an E1-ring. It follows from Remark 4.8.4.8 that the the ∞-categories LModR and

RModR are duals of one another (in the symmetric monoidal ∞-category of presentable stable

∞-categories). In this special case, it is easy to verify the duality directly:

Proposition 7.2.4.3. Let R be an E1-ring. The relative tensor product functor

⊗R : RModR×LModR → Sp

induces fully faithful embeddings

θ : RModR → Fun(LModR, Sp) θ′ : LModR → Fun(RModR, Sp).

A functor f : LModR → Sp (g : RModR → Sp) belongs to the essential image of θ (θ′) if and only

if f (g) preserves small colimits.

Proof. Let C be the full subcategory of Fun(LModR, Sp) spanned by those functors which preserve

small colimits. Proposition HTT.5.5.3.8 implies that C is presentable, and Proposition 4.4.2.14

implies that θ factors through C. We will show that θ induces an equivalence G : RModR → C; the

analogous assertion for left modules follows by the same argument.

Proposition 7.2.4.2 implies that LModR is equivalent to the ∞-category Ind(LModperf
R ). It

follows from Propositions HTT.4.2.3.11 , HTT.5.5.1.9 and 1.1.4.1 that C is equivalent to the ∞-

category FunEx(LModperf
R ,Sp) of exact functors from LModperf

R to spectra. In particular, for every
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perfect left R-module N , evaluation on N induces a functor C→ Sp that preserves all small limits

and colimits.

Let G′ : C→ Sp be given by evaluation on R, regarded as a (perfect) left module over itself. If

α : f → f ′ is a natural transformation of functors from LModperf
R to Sp, then the full subcategory of

hLModperf
R spanned by objects C such that α(C) : f(C)→ f ′(C) is an equivalence is a triangulated

subcategory of hLModperf
R which is stable under retracts. If follows that G′ is conservative: if G′(α)

is an equivalence, then α is an equivalence. Since G′ preserves small limits, we deduce also that G′

detects small limits: if p : K/ → C is such that G′ ◦ p is a limit diagram in Sp, then p is a limit

diagram in C. Similarly, G′ detects small colimits.

The composite functor G′ ◦ G : RModR → Sp can be identified with the forgetful functor, in

view of Corollary 4.2.4.8. It follows that G′ ◦G preserves all limits and colimits (Corollaries 4.2.3.3

and 4.2.3.5). Since G′ detects small limits and colimits, we deduce that G preserves small limits and

colimits. Corollary HTT.5.5.2.9 implies that G and G′ admit left adjoints, which we will denote

by F and F ′.

Choose unit and counit transformations

u : id→ G ◦ F, v : F ◦G→ id .

We wish to prove that u and v are equivalences. Since G′ ◦G detects equivalences, the functor G

detects equivalences, so that v is an equivalence if and only if G(v) : G◦F ◦G→ G is an equivalence.

Since G(v) has a section determined by u, it will suffice to prove that u is an equivalence.

Let C′ be the full subcategory of C spanned by those objects f ∈ C for which the map u(f) : f →
(G ◦ F )(f) is an equivalence. Since G and F preserve small colimits, we deduce that C′ is stable

under shifts and colimits in C. Proposition 4.7.3.14 implies that C is generated, under geometric

realizations, by the essential image of F ′. Let Sp′ ⊆ Sp be the inverse image of C′ under F ′. Since

F ′ is a colimit-preserving functor, we deduce that Sp′ ⊆ Sp is closed under shifts and colimits.

Since Sp is generated under colimits by the objects S[n], where n ∈ Z and S ∈ Sp denotes the

sphere spectrum, it will suffice to show that S ∈ Sp′.

Corollary 4.2.4.8 allows us to identify (F ◦F ′)(S) with R⊗S ' R, regarded as a left module over

itself. It follows that (G ◦F )(F ′(S)) can be identified with the forgetful functor f0 : LModR → Sp.

We are reduced to proving that the unit map S → R ' f0(R) induces an equivalence F ′(S) ' f0

in C.

Applying Proposition 1.4.2.22, we can identify C with the full subcategory D ⊆ Fun(LModperf
R , S) =

P(LModperf,op
R ) spanned by those functors which preserve finite limits. Under this equivalence,

f0 corresponds to the composition LModperf
R ⊆ LModR → Sp

Ω∞→ S, while F ′(S) corresponds to

the image of ∗ ∈ S under the composition S
Σ∞→ Sp

F ′→ C ' D which is the left adjoint to the the

functor D → S given by evaluation at R ∈ LModperf
R . To complete the proof, it will suffice to

show that the unit 1 ∈ π0R exhibits the composite functor LModR → Sp
Ω∞→ S as corepresented

by R ∈ LModR. In other words, we must show that for every M ∈ LModR, the canonical map
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MapLModR(R,M) → Ω∞M is a homotopy equivalence. Using Corollary 4.2.4.8, we can reduce to

the case where R is the unit object of S ∈ Alg(Sp). We are therefore reduced to proving that if

M ∈ Sp, then the canonical map MapSp(S,M)→ Ω∞M is an equivalence, which is clear.

Proposition 7.2.4.4. Let R be an E1-ring, and let M be a left R-module. The following conditions

are equivalent:

(1) The left R-module M is perfect.

(2) The left R-module M is a compact object of LModR.

(3) There exists a right R-module M∨ such that the composition LModR
M∨⊗R•−→ Sp

Ω∞−→ S is

equivalent to the functor corepresented by M .

Moreover, if these conditions are satisfied, then the object M∨ ∈ RModR is also perfect.

Proof. The equivalence (1) ⇔ (2) is Proposition 7.2.4.2. Let C denote the full subcategory of

Fun(LModR,Sp) spanned by those functors which are continuous and exact. Proposition 7.2.4.3

yields an equivalence of∞-categories RModR → C. According to Propositions 1.4.2.22 and 1.4.4.4,

composition with Ω∞ induces a fully faithful embedding C → Fun(LModR, S), whose essential

image C′ consists precisely of those functors which are continuous and left exact. The functor co-

represented by M is automatically left-exact, and is continuous if and only if M is compact. This

proves that (2)⇔ (3).

Let j : (LModR)op → Fun(LModR, S) denote the dual Yoneda embedding, so that j restricts

to a map j′ : (LModperf
R )op → C′. Composing j′ with a homotopy inverse to the equivalence

RModR → C→ C′, we obtain a “dualization” map (LModperf
R )op → RModR, which we will indicate

by M 7→M∨. Let D ⊆ LModperf
R be the full subcategory spanned by those objects M such that M∨

is perfect. We wish to show that D = LModperf
R . The functor M 7→ M∨ is exact, and RModperf

R

is a stable subcategory of RModR which is closed under retracts. It follows that D is a stable

subcategory of LModR which is closed under retracts. Since A∨ ' A belongs to D, we conclude

that LModperf
R ⊆ D.

Corollary 7.2.4.5. Let R be a connective E1-ring, and let M be a perfect left R-module. Then:

(1) The homotopy groups πmM vanish for m� 0.

(2) Suppose that πmM ' 0 for all m < k. Then πkM is a finitely presented module over π0A.

Proof. We have an equivalence M ' lim−→(τ≥−nM). Since M is compact (Proposition 7.2.4.2), we

conclude that M is a retract of some τ≥−nM , so that πmM ' 0 for m < −n. This proves (1).

To prove (2), we observe that the inclusion of the heart of LModR into LModcn
R preserves filtered

colimits, so the right adjoint τ≤0 : LModcn
R → LMod♥R preserves compact objects. It now suffices to

observe that the compact objects in the ordinary category of π0R-modules are precisely the finitely

presented modules.
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In the situation of Proposition 7.2.4.4, we will refer to M∨ as a dual of M . We next prove

that this notion of duality determines an antiequivalence between the ∞-categories LModperf
R and

RModperf
R .

Lemma 7.2.4.6. Let C and D be∞-categories, and let F : C×D→ S be a bifunctor. The following

conditions are equivalent:

(1) The induced map f : C → Fun(D, S) = P(Dop) is fully faithful, and the essential image of f

coincides with the essential image of the Yoneda embedding Dop → P(Dop).

(2) The induced map f ′ : D → Fun(C, S) = P(Cop) is fully faithful, and the essential image of f

coincides with the essential image of the Yoneda embedding Cop → P(Cop).

Proof. Let

GC : C×Cop → S, GD : Dop×D→ S

be the maps used in the definition of the Yoneda embeddings (see §HTT.5.1.3 ). Then (1) is

equivalent to the existence of an equivalence α : Dop → C such that the composition Dop×D −→
C×D

F−→ S is homotopic to GD. If β is a homotopy inverse to α, then the composition C×Cop βop

→
C×D

F→ S is homotopic to GC, which proves (2). The converse follows by the same argument.

We will say that a functor F : C×D → S is a perfect pairing if it satisfies the hypotheses of

Lemma 7.2.4.6. In this case, F determines an equivalence between C and Dop, well-defined up to

homotopy. The proof of Proposition 7.2.4.4 yields the following:

Proposition 7.2.4.7. Let R be an E1-ring. Then the bifunctor

RModperf
R ×LModperf

R

⊗R−→ Sp
Ω∞−→ S

is a perfect pairing.

Let R be an E1-ring, and let M be a left R-module. Roughly speaking, M is perfect if it can

built from finitely many copies of R (by forming shifts, extensions, and retracts). This is a very

strong condition which is often violated in practice. For example, suppose that R is a commutative

Noetherian ring and that M is a discrete R-module, such that π0M is finitely generated over R in

the sense of classical commutative algebra. In this case, we can choose a resolution

. . .→ P2 → P1 → P0 → π0M

where each Pi is a free R-module of finite rank. However, we cannot usually guarantee that Pn ' 0

for n � 0; in general this is possible only when R is regular ([50]). Consequently, the module M

is not generally perfect as an R-module spectrum (see Example 7.2.4.25 below). Nevertheless, the

fact that we can choose each Pi to be of finite rank can be regarded as a weaker finiteness condition

on M , which we now formulate.
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Definition 7.2.4.8. Let C be a compactly generated∞-category. We will say that an object C ∈ C

is almost compact if τ≤nC is a compact object of τ≤n C for all n ≥ 0.

Remark 7.2.4.9. Let C be a compactly generated ∞-category. Then every compact object of C

is almost compact.

Definition 7.2.4.10. Let R be a connective E1-ring. We will say that a left R-module M is almost

perfect if there exists an integer k such that M ∈ (LModR)≥k and is almost compact as an object

of (LModR)≥k. We let LModaperf
R denote the full subcategory of LModR spanned by the almost

perfect left R-modules.

Proposition 7.2.4.11. Let R be a connective E1-ring. Then:

(1) The full subcategory LModaperf
R ⊆ LModR is closed under translations and finite colimits, and

is therefore a stable subcategory of LModR.

(2) The full subcategory LModaperf
R ⊆ LModR is closed under the formation of retracts.

(3) Every perfect left R-module is almost perfect.

(4) The full subcategory (LModaperf
R )≥0 ⊆ LModR is closed under the formation of geometric

realizations of simplicial objects.

(5) Let M be a left R-module which is connective and almost perfect. Then M can be obtained as

the geometric realization of a simplicial left R-module P• such that each Pn is a free R-module

of finite rank.

Proof. Assertions (1) and (2) are obvious, and (3) follows from Proposition 7.2.4.2 and Corollary

7.2.4.5. To prove (4), it suffices to show that the collection of compact objects of τ≤n LModcn
R is

closed under geometric realizations, which follows from Lemma 1.3.3.10.

We now prove (5). In view of Theorem 1.2.4.1 and Remark 1.2.4.3, it will suffice to show that

M can be obtained as the colimit of a sequence

D(0)
f1→ D(1)

f2→ D(2)→ . . .

where each cofib(fn)[−n] is a free R-module of finite rank; here we agree by convention that f0

denotes the zero map 0→ D(0). The construction goes by induction. Suppose that the diagram

D(0)→ . . .→ D(n)
g→M

has already been constructed, and that N = fib(g) is n-connective. Part (1) implies that N is

almost perfect, so that the bottom homotopy group πnN is a compact object in the category of

left π0A-modules. It follows that there exists a map β : Q[n]→ N , where Q is a free left R-module
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of finite rank, and β induces a surjection π0Q → πnN . We now define D(n + 1) to be the cofiber

of the composite map Q(n)
β→ N → D(n), and construct a diagram

D(0)→ . . .→ D(n)→ D(n+ 1)
g′→M.

Using the octahedral axiom, we obtain a fiber sequence

Q[n]→ fib(g)→ fib(g′),

and the associated long exact sequence of homotopy groups proves that fib(g′) is (n+1)-connective.

In particular, we conclude that for fixed m, the maps πmD(n) → πmM are isomorphisms for

n� 0, so that the natural map lim−→D(n)→M is an equivalence of left R-modules, as desired.

Using Proposition 7.2.4.11, we can give the following characterization of the ∞-category of

(connective) almost perfect modules over a connective E1-ring.

Corollary 7.2.4.12. Let R be a connective E1-ring, let C denote the full subcategory of LModR
spanned by those left A-modules which are connective and almost perfect, and let C0 ⊆ C denote

the full subcategory of C spanned by the objects {Rn}n≥0. Let D be an arbitrary ∞-category which

admits geometric realizations for simplicial objects, and let Funσ(C,D) be the full subcategory of

Fun(C,D) spanned by those functors which preserve geometric realizations of simplicial objects.

Then the restriction functor Funσ(C,D)→ Fun(C0,D) is an equivalence of ∞-categories.

Proof. Let C′ be the smallest full subcategory of P(C0) which contains the essential image of the

Yoneda embedding and is stable under geometric realizations of simplicial objects, and let j : C0 →
C′ be the Yoneda embedding. Using Remark HTT.5.3.5.9 , we conclude that composition with j

induces an equivalence Funσ(C′,D) → Fun(C0,D) for any ∞-category D which admits geometric

realizations of simplicial objects. In particular, the inclusion C0 ⊆ C extends (up to homotopy) to

a functor F : C′ → C which commutes with geometric realizations. To complete the proof, it will

suffice to show that F is an equivalence of∞-categories. Using the fact that each Rn is a projective

object of LModcn
R , we deduce that F is fully faithful. Part (5) of Proposition 7.2.4.11 implies that

F is essentially surjective.

For a general connective E1-ring R, the t-structure on LModR does not restrict to a t-structure

on the full subcategory LModaperf
R . One might naively expect the heart of LModaperf

R to be equivalent

to the ordinary category of finitely presented π0R-modules. In general, this is not an abelian

category. We can correct this defect by introducing an appropriate hypothesis on R. We begin by

recalling a definition from classical algebra.

Definition 7.2.4.13. An associative ring R is left coherent if every finitely generated left ideal of

R is finitely presented (as a left R-module).
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Example 7.2.4.14. An associative ring R is left Noetherian if every left ideal in R is finitely

generated. Every left Noetherian ring is left coherent. An infinitely generated polynomial ring

Z[x1, x2, x3, . . .] is an example of a (left) coherent ring which is not (left) Noetherian.

For completeness, we include a proof of the following classical result:

Lemma 7.2.4.15. Let R be a left coherent associative ring. Then:

(1) Every finitely generated submodule of Rn is finitely presented.

(2) Every finitely generated submodule of a finitely presented left R-module is finitely presented.

(3) If f : M → N is a map of finitely presented left R-modules, then ker(f) and coker(f) are

finitely presented.

Proof. We first make the following elementary observations, which do not require the assumption

that R is left coherent:

(a) Suppose f : M → N is an epimorphism of left R-modules. If M is finitely generated and N

is finitely presented, then ker(f) is finitely generated.

(b) Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of left R-modules. If M ′ and M ′′

are finitely presented, then M is finitely presented.

We now prove (1) using induction on n. When n = 0 there is nothing to prove. Suppose that

n > 0 and that M ⊆ Rn is finitely generated. Form a diagram

0 //

��

M ′ //

��

M //

��

M ′′ //

��

0

��
0 // Rn−1 // Rn // R // 0

where the vertical maps are monomorphisms. Then M ′′ can be identified with a finitely generated

left ideal of R. Since R is left coherent, we conclude that M ′′ is finitely presented. Using (a), we

deduce that M ′ is itself finitely generated. The inductive hypothesis now implies that M ′ is finitely

presented, so that we can use (b) to conclude that M is finitely presented.

We next prove (2). Suppose that f : M → N is a monomorphism, where N is finitely presented

and M is finitely generated. Choose an epimorphism g : Rn → N , and form a pullback diagram

K //

��

Rn

��
M // N.

Then K can be identified with the kernel of the induced map Rn → N/M , and is therefore

finitely generated. Part (1) implies that K is finitely presented. The induced map K → M is
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an epimorphism, whose kernel is isomorphic to ker(g) and is therefore finitely generated. It follows

that M is finitely presented, as desired.

We now prove (3). It is clear that coker(f) is finitely presented (this does not require the left

coherence of R). We next show that ker(f) is finitely presented. The image of f is a finitely

generated submodule of N , and therefore finitely presented by (2). Consequently, we may replace

N by im(f), and thereby reduce to the case where f is an epimorphism. We now apply (a) to

deduce that ker(f) is finitely generated. Invoking (2) again, we conclude that ker(f) is finitely

presented as desired.

Definition 7.2.4.16. Let R be an E1-ring. We will say that R is left coherent if the following

conditions are satisfied:

(1) The E1-ring R is connective.

(2) The associative ring π0R is left coherent (in the sense of Definition 7.2.4.13).

(3) For each n ≥ 0, the homotopy group πnR is finitely presented as a left module over π0R.

Proposition 7.2.4.17. Let R be an E1-ring and M a left R-module. Suppose that R is left coherent.

Then M is almost perfect if and only if the following conditions are satisfied:

(i) For m� 0, πmM = 0.

(ii) For every integer m, πmM is finitely presented as a π0R-module.

Proof. Without loss of generality, we may assume that M is connective. Suppose first that M

is almost perfect. We will prove by induction on n that πnM is finitely presented as a π0R-

module. If n = 0, this simply reduces to the observation that the compact objects of the ordinary

category of left π0R-modules are precisely the finitely presented π0R-modules. In particular, we

can choose a finitely generated free R-module P and a map α : P →M which induces a surjection

π0P → π0M . Since R is left coherent, the homotopy groups πmP are finitely presented π0R-

modules. Let K = fib(α). Then K is connective by construction, and almost perfect by Proposition

7.2.4.11. The inductive hypothesis implies that πiK is finitely presented for 0 ≤ i < n.

We have a short exact sequence

0→ coker(πnK → πnP )→ πnM → ker(πn−1K → πn−1P )→ 0.

Using Lemma 7.2.4.15, we deduce that the outer terms are finitely generated, so that πnM is

finitely generated. Applying the same reasoning, we conclude that πnK is finitely generated, so

that coker(πnK → πnP ) is finitely presented. Using the exact sequence again, we conclude that

πnM is finitely presented.

Now suppose that the connective left R-module M satisfies condition (ii). We will prove that

M can be obtained as the geometric realization of a simplicial left R-module P• such that each Pn
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is a free A-module of finite rank. As in the proof of Proposition 7.2.4.11, it will suffice to show that

M is the colimit of a sequence

D(0)
f1→ D(1)

f2→ D(2)→ . . .

where each cofib(fn)[−n] is a free R-module of finite rank. Supposing that the partial sequence

D(0)→ . . .→ D(n)
g→M

has been constructed, with the property that fib(g) is n-connective. If πn fib(g) is finitely generated

as a π0R-module, then we can proceed as in the proof of Proposition 7.2.4.11. To verify this, we

observe that D(n) is almost perfect and therefore satisfies (ii) (by the first part of the proof). We

now use the exact sequence

0→ coker(πn+1D(n)→ πn+1M)→ πn fib(g)→ ker(πnD(n)→ πnM)→ 0

to conclude that πn fib(g) is finitely presented.

Proposition 7.2.4.18. Let R be a connective E1-ring. The following conditions are equivalent:

(1) The E1-ring R is left coherent.

(2) For every left R-module M , if M is almost perfect, then τ≥0M is almost perfect.

(3) The pair of ∞-categories

(LModaperf
R ∩LMod≥0

R ,LModaperf
R ∩LMod≤0

R )

determines a t-structure on LModaperf
R .

Proof. The implication (1) ⇒ (2) follows from the description of almost perfect modules given in

Proposition 7.2.4.17. The equivalence (2)⇔ (3) is obvious. We will show that (3)⇒ (1).

Suppose that (3) is satisfied. We note that the first non-vanishing homotopy group of any

almost perfect R-module is a finitely presented module over π0R. Applying (2) to the module

R[−n], we deduce that πnR is a finitely presented π0R-module. To complete the proof, it suffices

to show that π0R is left coherent.

Let A = π0R, and regard A as a discrete left R-module. Using condition (3), we deduce that

A is almost perfect. Let I ⊆ A be a finitely generated left ideal. Then I is the image of a map

f : An → A. Let K denote the fiber of f (in the ∞-category LModR). Then K is almost perfect.

We have a short exact sequence

0→ π0K → An → I → 0.

Since K is almost perfect, condition (3) implies that π0K is finitely generated as an A-module, so

that I is finitely presented as a A-module. This completes the proof of (1).
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Remark 7.2.4.19. Let R be a left coherent E1-ring, and regard LModaperf
R as endowed with the

t-structure described in Proposition 7.2.4.18. Then LModaperf
R is right bounded and left complete,

and the functor M 7→ π0M determines an equivalence from the heart of LModaperf
R to the (nerve

of the) category of finitely presented left modules over A = π0R.

We now study the interaction between finiteness and flatness properties of modules.

Proposition 7.2.4.20. Let R be a connective E1-ring, and let M be a connective left R-module.

The following conditions are equivalent:

(1) The left R-module M is a retract of a finitely generated free R-module.

(2) The left R-module M is flat and almost perfect.

Proof. The implication (1)⇒ (2) is obvious. Conversely, suppose that M is flat and almost perfect.

Then π0M is a left module over π0R which is finitely presented and flat, and therefore projective.

Using Proposition 7.2.2.18, we deduce that M is projective. Choose a map f : P → M , where P

is a free left R-module of finite rank and the induced map π0P → π0M is surjective. Since M is

projective, the map f splits, so that M is a summand of P . This proves (1).

It follows from Proposition 7.2.4.20 that if an almost perfect left R-module M is flat, then M

is perfect. We conclude with a mild generalization of this statement, where the flatness hypothesis

is relaxed.

Definition 7.2.4.21. Let R be a connective E1-ring. We will say that a left R-module M has

Tor-amplitude ≤ n if, for every discrete right R-module N , the homotopy groups πi(N ⊗R M)

vanish for i > n. We will say that M is of finite Tor-amplitude if it has Tor-amplitude ≤ n for

some integer n.

Remark 7.2.4.22. In view of Theorem 7.2.2.15, a connective left R-module M has Tor-amplitude

≤ 0 if and only if M is flat.

Proposition 7.2.4.23. Let R be a connective E1-ring.

(1) If M is a left R-module of Tor-amplitude ≤ n, then M [k] has Tor-amplitude ≤ n+ k.

(2) Let

M ′ →M →M ′′

be a fiber sequence of left R-modules. If M ′ and M ′′ have Tor-amplitude ≤ n, then so does

M .

(3) Let M be a left R-module of Tor-amplitude ≤ n. Then any retract of M has Tor-amplitude

≤ n.
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(4) Let M be an almost perfect left module over R. Then M is perfect if and only if M has finite

Tor-amplitude.

(5) Let M be a left module over R having Tor-amplitude ≤ n. For every N ∈ (RModR)≤0, the

homotopy groups πi(N ⊗RM) vanish for i > n.

Proof. The first three assertions follow immediately from the exactness of the functor N 7→ N⊗RM .

It follows that the collection left R-modules of finite Tor-amplitude is stable under retracts and

finite colimits, and contains the module R[n] for every integer n. This proves the “only if” direction

of (4). For the converse, let us suppose that M is almost perfect and of finite Tor-amplitude. We

wish to show that M is perfect. We first apply (1) to reduce to the case where M is connective.

The proof now goes by induction on the Tor-amplitude n of M . If n = 0, then M is flat and we

may conclude by applying Proposition 7.2.4.20. We may therefore assume n > 0.

Since M is almost perfect, there exists a free left R-module P of finite rank and a fiber sequence

M ′ → P
f→M

where f is surjective. To prove that M is perfect, it will suffice to show that P and M ′ are

perfect. It is clear that P is perfect, and it follows from Proposition 7.2.4.11 that M ′ is almost

perfect. Moreover, since f is surjective, M ′ is connective. We will show that M ′ is of Tor-amplitude

≤ n−1; the inductive hypothesis will then imply that M is perfect, and the proof will be complete.

Let N be a discrete right R-module. We wish to prove that πk(N ⊗RM ′) ' 0 for k ≥ n. Since

the functor N ⊗R • is exact, we obtain for each k an exact sequence of homotopy groups

πk+1(N ⊗RM)→ πk(N ⊗RM ′)→ πk(N ⊗R P ).

The left entry vanishes in virtue of our assumption that M has Tor-amplitude ≤ n. We now

complete the proof of (4) by observing that πk(N ⊗R P ) is a finite direct sum of copies of πkN ,

and therefore vanishes because k ≥ n > 0 and N is discrete.

We now prove (5). Assume that M has Tor-amplitude ≤ m. Let N ∈ (RModR)≤0; we wish to

prove that πi(N ⊗RM) ' 0 for i > n. Since N ' lim−→ τ≥−mN , it will suffice to prove the vanishing

after replacing N by τ≥−mN for every integer m. We may therefore assume that N ∈ (RModR)≥−m
for some m ≥ 0. We proceed by induction on m. When m = 0, the desired result follows

immediately from our assumption on M . If m > 0, we have a fiber sequence

τ≥1−mN → N → (π−mN)[−m],

hence an exact sequence

πi((τ≥1−mN)⊗RM)→ πi(N ⊗RM)→ πi+m(π−mN ⊗RM).

If i > n, then the first group vanishes by the inductive hypothesis, and the second by virtue of our

assumption that M has Tor-amplitude ≤ n.
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Remark 7.2.4.24. Let R be a connective E1-ring, and let C be the smallest stable subcategory of

LModR which contains all finitely generated projective modules. Then C = LModperf
R . The inclusion

C ⊆ LModperf
R is obvious. To prove the converse, we must show that every object M ∈ LModperf

R

belongs to C. Invoking Corollary 7.2.4.5, we may reduce to the case where M is connective. We

then work by induction on the (necessarily finite) Tor-amplitude of M . If M is of Tor-amplitude

≤ 0, then M is flat and the desired result follows from Proposition 7.2.4.20. In the general case,

we choose a finitely generated free R-module P and a map f : P →M which induces a surjection

π0P → π0M (which is possible in view of Corollary 7.2.4.5). As in the proof of Proposition 7.2.4.23,

we may conclude that that fiber K of f is a connective perfect module of smaller Tor-amplitude

than that of M , so that K ∈ C by the inductive hypothesis. Since P ∈ C and C is stable under the

formation of cofibers, we conclude that M ∈ C as desired.

Example 7.2.4.25. Let R be an associative ring which we regard as a discrete E1-ring. Let

LMod−R ⊆ LModR be the full subcategory consisting of bounded-above objects, and let M ∈
LMod−R. Using an inverse to the functor θ of Proposition 7.1.1.15, we can identify any M ∈ LMod−R
with a (bounded above) complex P• in the abelian category of (discrete) R-modules. It follows

from Remark 7.2.4.24 that M is perfect if and only if P• can be chosen to have only finitely many

terms, each of which is finitely generated over R.

We conclude this section by discussing some finiteness conditions for algebras over structured

ring spectra.

Definition 7.2.4.26. Let 1 ≤ k ≤ ∞ and let R be a connective Ek+1-ring. We let Free : LModR →
Alg

(k)
R denote a left adjoint to the forgetful functor. Note that Free carries connective R-modules

to connective Ek-algebras over R. Let A be a connective Ek-algebra over R. We say that A is:

• finitely generated and free if there exists a finitely generated free left R-module M and an

equivalence A ' Free(M) in Alg
(k)
R . We let Alg

(k),free
R denote the full subcategory spanned by

the finitely generated free algebras.

• of finite presentation if A belongs to the smallest full subcategory of Alg
(k)
R which contains

Alg
(k),free
R and is stable under finite colimits.

• locally of finite presentation if A is a compact object of Alg
(k)
R .

• almost of finite presentation if A is an almost compact object of Alg
(k)
R (see Definition 7.2.4.8):

that is, if τ≤nA is a compact object of τ≤n Alg
(k)
R for all n ≥ 0.

The basic properties of Definition 7.2.4.26 can be summarized as follows:

Proposition 7.2.4.27. Let 1 ≤ k ≤ ∞ and let R be a connective Ek+1-ring. Then:
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(1) The ∞-category Alg
(k),cn
R is projectively generated (Definition HTT.5.5.8.23 ). Moreover, a

connective R-algebra A is a compact projective object of Alg
(k),cn
R if and only if A is a retract

of a finitely generated free commutative R-algebra.

(2) Let Alg
(k),fp
R ⊆ Alg

(k)
R denote the full subcategory spanned by those Ek-algebras over R

which are connective and of finite presentation. Then the inclusion induces an equivalence

Ind(Alg
(k),fp
R ) ' Alg

(k)
R .

(3) The ∞-category Alg
(k),cn
R of connective Ek-algebras over R is compactly generated. The com-

pact objects of Alg
(k),cn
R are those connective Ek-algebras which are locally of finite presentation

over R.

(4) A connective Ek-algebra A over R is almost of finite presentation if and only if, for each

n ≥ 0, there exists an R-algebra A′ of finite presentation such that τ≤nA is a retract of

τ≤nA
′.

Proof. Assertion (1) from Corollary 7.1.4.17 and its proof. Assertion (2) then follows from Propo-

sition HTT.5.3.5.11 , (3) from Lemma HTT.5.4.2.4 , and (4) from Corollary HTT.5.5.7.4 .

Remark 7.2.4.28. Let R→ R′ be a map of connective Ek+1-rings, let A ∈ Alg
(k),cn
R be a connective

Ek-algebra over R, and let A′ ' R′ ⊗R A be the image of A in Alg
(k),cn
R′ . If A is free and finitely

generated (finitely presented, almost finitely presented) over R, then A′ is free and finitely generated

(finitely presented, almost finitely presented) over R′. In the first three cases, this is obvious. The

last two follow from assertions (3) and (4) of Proposition 7.2.4.27, together with the observation

that τ≤nA
′ ' τ≤n(R′ ⊗R τ≤nA).

Remark 7.2.4.29. Suppose given a commutative diagram

B

  
A //

??

C

of E∞-rings, where B is of locally of finite presentation over A. Then C is locally of finite presenta-

tion over B if and only if C is locally of finite presentation over A. This follows immediately from

Propositions 7.2.4.27 and HTT.5.4.5.15 . In §7.4.3, we will prove the analogue of this statement for

morphisms which are almost of finite presentation.

Definition 7.2.4.30. Let R be a connective Ek-ring for 2 ≤ k ≤ ∞. We will say that R is left

coherent if it is left coherent, when regarded as an E1-ring: that is, if π0R is a coherent ring (in

the sense of ordinary commutative algebra) and each homotopy group πiR is a finitely presented

module over π0R. We will say that R is Noetherian if R is coherent and the ordinary commutative

ring π0R is Noetherian.
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The following result relates some of the absolute and relative finiteness conditions introduced

above:

Proposition 7.2.4.31 (Hilbert Basis Theorem). Let f : R→ R′ be a map of connective E∞-rings.

Suppose that R is Noetherian. Then R′ is almost of finite presentation as an R-algebra if and only

if the following conditions are satisfied:

(1) The ring π0R
′ is a finitely generated π0R-algebra.

(2) The E∞-ring R′ is Noetherian.

Proof. We first prove the “only if” direction. We first note that π0R
′ = τ≤0R

′ is a compact object

in the ordinary category of commutative π0R-algebras. This proves (1). The classical Hilbert basis

theorem implies that π0R
′ is Noetherian. It remains only to show that each πnR

′ is a finitely

generated module over π0R
′. This condition depends only on the truncation τ≤nR

′. In view of part

(4) of Proposition 7.2.4.27, we may assume that R′ is a finitely presented commutative R-algebra.

Let C be the full subcategory of CAlgR spanned by those connective E∞-algebras over R which

satisfy (1) and (2). To show that C contains all finitely presented R-algebras, it will suffice to

show that C is stable under finite colimits, and contains the free commutative R-algebra on a single

generator. We first prove the stability under finite colimits. In view of Corollary HTT.4.4.2.4 , it

will suffice to show that R ∈ C and that C is stable under pushouts. The inclusion R ∈ C is obvious

(since R is Noetherian by assumption). Suppose given a pushout diagram

A //

��

A′

��
A′′ // A′ ⊗A A′′

in CAlgR, where A,A′, A′′ ∈ C. We wish to prove that A′ ⊗A A′′ ∈ C. According to Corollary

7.2.1.23, the commutative ring B = π0(A′ ⊗A A′′) is canonically isomorphic to the classical tensor

product π0A
′ ⊗π0A π0A

′′, and is therefore a finitely generated commutative π0R-algebra. Thus

A′ ⊗A A′′ satisfies (1). Moreover, Proposition 7.2.1.19 yields a convergent spectral sequence

Ep,q2 = Torπ∗Ap (π∗A
′, π∗A

′′)q ⇒ πp+q(A
′ ⊗A A′′).

It is not difficult to see that this is a spectral sequence of modules over the commutative ring B.

Each of the B-modules Ep,q2 is a finitely generated B-module. It follows that the subquotients Ep,q∞
are likewise finitely generated over B. Consequently, each homotopy group πn(A′ ⊗A A′′) has a

finite filtration by finitely generated B-modules, and is therefore itself finitely generated over B.

This proves that A′ ⊗A A′′ satisfies (2), and therefore belongs to the ∞-category C.

Let R{X} = Sym∗(R) denote the free commutative R-algebra on a single generator. We wish

to show that R{X} ∈ C. We first treat the case where R is discrete. Let k denote the commutative
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ring π0R. Proposition 3.1.3.13 supplies canonical isomorphisms

πmR{X} ' πm(
∐
n

Symn(R)) ' ⊕n≥0 Hm(BΣn; k).

In particular, π0R{X} is canonically isomorphic to the polynomial ring k[x], which proves (1).

To prove (2), we must show that each of the groups ⊕n≥0 Hm(Σn; k) is a finitely generated k{x}-
module. Since the homology of a finite group can be computed using a finite complex, each of the

groups Hm(BΣn; k) is individually a finite k-module. Moreover, multiplication by x is given by the

maps

ηm,n : Hm(BΣn; k)→ Hm(BΣn+1; k)

induced by the inclusions Σn ⊆ Σn+1. To complete the proof, it will suffice to show that for fixed

m, ηm,n is surjective for n� 0. This follows from Nakaoka’s homological stability theorem for the

symmetric groups (for a simple proof, we refer to the reader to [86]).

Let us now treat the general case. Let B denote the polynomial ring π0R{X} = (π0R)[X]. Then

B is finitely generated over π0R, so R{X} satisfies (1). We wish to prove that R{X} satisfies (2).

Assume otherwise, and choose m minimal such that πmR{X} is not a finitely generated B-module;

note that m is necessarily positive. Set R0 = τ≤0. Then the argument above proves that the tensor

product R0 ⊗R R{X} ' R0{X} belongs to C. Invoking Proposition 7.2.1.19 again, we obtain a

convergent spectral sequence of B-modules

Ep,q2 = Torπ∗Rp (π0R, π∗(R{X}))q ⇒ πp+q(R0{X}).

Using the minimality of m, we deduce that Ep,q2 is finitely generated over B for all q < m. It follows

that E0,m
∞ is the quotient of E0,m

2 by a finitely generated submodule. Since E0,m
∞ is a submodule of

the finitely generated B-module πm(R0{X}), we conclude that E0,m
2 is itself finitely generated over

B. But E0,m
2 contains πm(R{X}) as a summand, contradicting our choice of m. This completes

the proof of the “only if” direction.

Now suppose that R′ satisfies (1) and (2). We will construct a sequence of maps ψn : An → R′

in CAlgR with the property that the maps ψn induce isomorphisms πmAn → πmR
′ for m < n

and surjections πnAn → πnR
′. To construct A0, we invoke assumption (1): choose a finite set of

elements x1, . . . , xi ∈ π0R
′ which generate π0R

′ as an π0R-algebra. These elements determine a

map of R-algebras ψ0 : Sym∗(Ri)→ R′ with the desired property.

Let us now suppose that ψn : An → R′ has already been constructed. Let K denote the fiber

of the map ψn, formed in the ∞-category of An-modules. Our assumption on ψn implies that

πiK ' 0 for i < n. Let B = π0An. Since An is almost of finite presentation over R, the first part

of the proof shows that B is a Noetherian ring and that each of the homotopy groups πiAn is a

finitely generated B-module. Moreover, since the map B → π0R
′ is surjective and R′ satisfies (2),

we conclude that each of the homotopy groups πiR
′ is a finitely generated B-module. Using the

long exact sequence

. . .→ πn+1R
′ → πnK → πnAn → . . .



1276 CHAPTER 7. ALGEBRA IN THE STABLE HOMOTOPY CATEGORY

we deduce that πnK is a finitely generated B-module. Consequently, there exists a finitely generated

free An-module M and a map M [n]→ K which is surjective on πn. Let f : Sym∗(M [n])→ An be

the induced map, and form a pushout diagram

Sym∗(M [n])
f //

f0

��

An

f ′0
��

An // An+1,

where f0 classifies the zero from M [n] to An. By construction, we have a canonical homotopy from

ψn ◦ f to ψn ◦ f0, which determines a map ψn+1 : An+1 → R′. We observe that there is a fiber

sequence of An-modules

fib(f ′0)→ fib(ψn)→ fib(ψn+1).

To show that ψn+1 has the desired properties, it suffices to show that πi fib(ψn+1) ' 0 for i ≤ n.

Using the long exact sequence associated to the fiber sequence above, we may reduce to proving

the following pair of assertions:

(a) The homotopy groups πi fib(f ′0) vanish for i < n.

(b) The canonical map πn fib(f ′0)→ πnK is surjective.

We now observe that there is an equivalence fib(f ′0) ' fib(f0) ⊗Sym∗(M [n]) An. In view of

Corollary 7.2.1.23, it will suffice to prove the same assertions after replacing f ′0 by f0. Using

Proposition 3.1.3.13, we obtain a canonical equivalence

fib(f0) '
⊕
m>0

Symm(M [n]).

Because the ∞-category Modcn
An is closed under colimits in ModAn , it follows that the homotopy

groups πi Symm(M [n]) vanish for i < mn. This proves (a). To prove (b), it will suffice to show

that the composite map

M [n] ' Sym1(M [n])→
⊕
m>0

Symm(M [n])→ K

induces a surjection on πn, which follows immediately from our construction.

7.3 The Cotangent Complex Formalism

Let R be a connective E∞-ring. Then π0R is an ordinary commutative ring. We can view π0R

as the underlying commutative ring of R, so that the E∞-ring R is determined by π0R together

with some additional information, which is somehow encoded in the higher homotopy groups of
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R. It often useful to think of this information as “infinitesimal” in nature, so that the truncation

map R → π0R (which kills the higher homotopy groups of R) is somehow very close to being an

equivalence. Our goal in this section is to develop some technology which will allow us to exploit

this idea: namely, the theory of the cotangent complex of an E∞-ring.

We begin by reviewing a bit of classical commutative algebra. Suppose we are given a pair of

commutative rings A and B, and that we wish to study ring homomorphisms from A to B. Writing

A as a quotient of a polynomial ring (perhaps on infinitely many generators), this amounts to finding

the solutions to some set of polynomial equations in B. This problem is generally very difficult.

However, if we fix a ring a homomorphism φ : A → B, it is often not very difficult to describe all

ring homomorphisms φ′ : A→ B which are sufficiently “close” to φ. For example, suppose we are

given an ideal I ⊆ B such that I2 = 0, and that we wish to classify ring homomorphisms φ′ : A→ B

such that φ(x) ∼= φ′(x) modulo I for all x ∈ A. In this case, we can write φ′(x) = φ(x) + dx for

some map d : A→ I. Since I2 = 0, the condition that φ′ is a ring homomorphism translates into a

relatively simple condition on d: namely, it must satisfy the Leibniz rule d(xy) = φ(x)dy+ φ(y)dx.

In summary, the classification of ring homomorphisms φ′ : A→ B which are congruent to φ modulo

I requires only that we solve a set of linear equations, rather than a set of polynomial equations.

This is quite a bit more tractable.

To study the situation more systematically, it is convenient to introduce a bit of terminology.

Let A be a commutative ring and let M be an A-module. A derivation from A into M is a map

d : A→M satisfying the conditions

d(x+ y) = dx+ dy d(xy) = xdy + ydx.

The collection of derivations of A into M forms an abelian group, which we will denote by

Der(A,M). If A is fixed, then the functor M 7→ Der(A,M) is corepresented by an A-module

ΩA, called the A-module of absolute Kähler differentials. One can construct ΩA explicitly as a

quotient of the free module generated by symbols {dx}x∈A by the submodule generated by the

elements {d(x+ y)− dx− dy, d(xy)− x(dy)− y(dx)}x,y∈A.

Our goal in this section is to introduce an analogue of the construction A 7→ ΩA, where we

replace the commutative ring A with an arbitrary E∞-ring. More precisely, if A is an E∞-ring,

we will define an A-module spectrum LA, which we call the absolute cotangent complex of A.

By construction, LA will enjoy the following universal property: for any A-module M , there is a

bijection between homotopy classes of maps LA → M with homotopy classes of derivations of A

into M .

To make this idea precise, we need a new definition of derivation: the definition for ordinary

commutative rings given above is given in terms of equations, and does not generalize easily to the

∞-categorial setting. Instead, let us take our cue from the preceding discussion. If φ, φ′ : A → B

are two ring homomorphisms between commutative rings A and B which are congruent modulo

an ideal I ⊆ B with I2 = 0, then φ′ − φ is a derivation from A into I. Every derivation from a



1278 CHAPTER 7. ALGEBRA IN THE STABLE HOMOTOPY CATEGORY

commutative ring A into an A-module M arises in this way. To see this, we can take B to be the

direct sum A ⊕M , equipped with the ring structure given by (a,m)(a′,m′) = (aa′, am′ + a′m).

There is a natural inclusion φ : A→ B, and we can identify M with an ideal of B satisfying M2 = 0,

so that Der(A,M) can be identified with the set of ring homomorphsims from A into B which are

congruent to φ modulo M : that is, with the collection of sections of the projection map A⊕M → A.

This description of Der(A,M) does not directly require writing any equations: instead, it depends

on our ability to endow the direct sum A⊕M with the structure of a commutative ring.

To describe the situation a little bit more systematically, let Ring denote the category of com-

mutative rings, and Ring+ the category of pairs (A,M), where A is a commutative ring and M

is an A-module. A morphism in the category Ring+ is a pair of maps (f, f ′) : (A,M) → (B,N),

where f : A → B is a ring homomorphism and f ′ : M → N is a map of A-modules, (here we

regard N as an A-module via transport of structure along f). Let G : Ring+ → Ring be the

square-zero extension functor given by the formula (A,M) 7→ A⊕M . Then the functor G admits

a left adjoint F , which is described by the formula F (A) = (A,ΩA). Here ΩA is the A-module of

Kähler differentials defined above.

We now make two observations:

(1) In addition to the functor G, there is a forgetful functor G′ : Ring+ → Ring, given by

(A,M) 7→ A. Moreover, there is a natural transformation of functors from G to G′, which

can itself be viewed as a functor from Ring+ into the category Fun([1],Ring) of arrows in

Ring.

(2) For every commutative ring A, the fiber G′−1{A} is an abelian category (namely, the category

of A-modules).

We wish to produce an analogous theory of derivations in the case where the category Ring

is replaced by an arbitrary presentable ∞-category C. What is the proper analogue of Ring+ in

this general situation? Observation (1) suggests that we should choose another ∞-category C+

equipped with a functor C+ → Fun(∆1,C). Observation (2) suggests that the fibers of composite

map

φ : C+ → Fun(∆1,C)→ Fun({1},C) ' C

should be “abelian” in some sense. There is a good∞-categorical analogue of the theory of abelian

categories: the theory of stable ∞-categories introduced in Chapter 1. It is therefore natural to

require that the the fibers of φ be stable. In §7.3.1, we will see that there is a canonical choice

for the ∞-category C+ with these properties. We will refer to this canonical choice as the tangent

bundle to C and denote by TC. Roughly speaking, an object of TC consists of a pair (A,M), where

A ∈ C and M ∈ Sp(C/A).

Once we have established the theory of tangent bundles, we can proceed to define the analogue

of the Kähler differentials functor. Namely, for any presentable ∞-category C, we will define the
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cotangent complex functor L : C→ TC to be a left adjoint to the forgetful functor

TC → Fun(∆1,C)→ Fun({0},C) ' C .

However, it is important to exercise some care here: in the algebraic situation, we want to make

sure that the cotangent complex LA of an E∞-ring produces an A-module. In other words, we want

to ensure that the composition

C
L→ TC → Fun(∆1,C)→ Fun({1},C) ' C

is the identity functor. We will construct a functor L with this property using a notion of relative

adjunction, which we explain in §7.3.2.

Given an object A ∈ C and M ∈ TC ×C {A}, we can define the notion of a derivation of A into

M . This can be described either as map from LA into M in the ∞-category TC ×C {A}, or as a

section of the canonical map G(M) → A in C. For many purposes, it is convenient to work in

an ∞-category containing both C and TC, in which the morphisms are given by derivations. Such

an ∞-category is readily available: namely, the correspondence associated to the pair of adjoint

functors C
L //TC
G
oo , where G and L are defined as above. We will call this ∞-category the tangent

correspondence to C; an explicit construction will be given in §7.3.6.

In the classical theory of Kähler differentials, it is convenient to consider the absolute

Kähler differentials ΩA of a commutative ring A, but also the module of relative Kähler differentials

ΩB/A associated to a ring homomorphism A → B. In §7.3.3 we will introduce an analogous

relative version of the cotangent complex L. We will then establish some of the basic formal

properties of the relative cotangent complex. For example, given a sequence of commutative ring

homomorphisms A→ B → C, there is an associated short exact sequence

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0.

Corollary 7.3.3.6 provides an ∞-categorical analogue of this statement: for every commutative

diagram

B
f

  
A

??

// C

in a presentable ∞-category C, there is an associated fiber sequence

f∗LB/A → LC/A → LC/B

in the stable ∞-category Sp(C/C).

In §7.3.4, we will specialize our abstract theory of the cotangent complex to the setting where C

is the ∞-category CAlg of E∞-rings. In this case, we will show that the tangent bundle TC can be
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identified with the ∞-category Mod(Sp) consisting of pairs (A,M), where A ∈ CAlg is an E∞-ring

and M ∈ ModA is an A-module spectrum. In particular, we can view the cotangent complex LA
(or the relative cotangent complex LA/B, if φ : B → A is a map of E∞-rings) as an A-module

spectrum.

There are many variations on the theme described above. For example, if A is an Ek-ring for

some integer k, then Sp(Alg
(k)
/A ) can be identified with the ∞-category ModEkA (Sp) of Ek-modules

over A. When k < ∞, the results of §5.3.2 can be used to obtain useful explicit formula for the

cotangent omplex LA ∈ ModEkA (Sp), which we explain in §7.3.5.

Roughly speaking, we can regard the cotangent complex LA of an E∞-ring A as an object which

controls the “infinitesimal” behavior of A. Since the difference between a connective E∞-ring A

and the ordinary commutative ring π0A is purely “infinitesimal,” one can often reduce questions

about A to questions about the ordinary commutative ring π0A and questions about the cotangent

complex LA. We will exploit this principle systematically in §7.4.

Remark 7.3.0.1. If A is an E∞-ring, the homotopy groups of the cotangent complex LA are often

called the topological André-Quillen homology groups of A, and have been studied by many authors.

We refer the reader to [10], [11], [8], and [105].

Warning 7.3.0.2. The classical theory of André-Quillen homology is obtained by forming the

nonabelian left derived functor of the Kähler differentials functor A 7→ ΩA. If A is a commutative

ring, then this construction does not generally recover the cotangent complex LA studied in this

book, unless we assume that A contains the field Q of rational numbers.

7.3.1 Stable Envelopes and Tangent Bundles

Let p : C→ D be a categorical fibration of∞-categories. In §6.2.2, we introduced a new∞-category

St(p) whose objects are pairs (D,X), where D is an object of D and X is a spectrum object of the

fiber CD (see Construction 6.2.2.2). This definition is sensible only in cases where the fibers of p

are pointed ∞-categories. In this section, we will discuss a slightly different construction, given by

applying fiberwise application of the stabilization construction E 7→ Sp(E) procedure of Definition

1.4.2.8. We will then apply this construction to define the tangent bundle TC of a presentable

∞-category C.

Definition 7.3.1.1. Let C be a presentable ∞-category. A stable envelope of C is a categorical

fibration u : C′ → C with the following properties:

(i) The ∞-category C′ is stable and presentable.

(ii) The functor u admits a left adjoint.

(iii) For every presentable stable (pointed) ∞-category E, composition with u induces an equiv-

alence of ∞-categories RFun(E,C′)→ RFun(E,C). Here RFun(E,C′) denotes the full subcat-
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egory of Fun(E,C′) spanned by those functors which admit left adjoints, and RFun(E,C) is

defined similarly.

More generally, suppose that p : C → D is a presentable fibration. A stable envelope of p is a

categorical fibration u : C′ → C with the following properties:

(1) The composition p ◦ u is a presentable fibration.

(2) The functor u carries (p ◦ u)-Cartesian morphisms of C′ to p-Cartesian morphisms of C.

(3) For every object D ∈ D, the induced map C′D → CD is a stable envelope of C′D.

Remark 7.3.1.2. Let C be a presentable ∞-category, so that the projection p : C → ∆0 is a

presentable fibration. It follows immediately from the definitions that a map u : C′ → C is a stable

envelope of C if and only if u is a stable envelope of p.

Let p : C → D be a presentable fibration, and let u : C′ → C be a stable envelope of p. We

will often abuse terminology by saying that C′ is a a stable envelope of p, or that u exhibits C′ as a

stable envelope of p. In the case where D ' ∆0, we will say instead that C′ is a stable envelope of

C, or that u exhibits C′ as a stable envelope of C.

Remark 7.3.1.3. Suppose given a pullback diagram of simplicial sets

C0
//

p0

��

C

p

��
D0

// D

where p (and therefore also p0) is a presentable fibration. If u : C′ → C is a stable envelope of the

presentable fibration p, then the induced map C′×C C0 → C0 is a stable envelope of the presentable

fibration p0.

Example 7.3.1.4. Let C be a presentable ∞-category. Then the map Ω∞C : Sp(C) → C exhibits

Sp(C) as a stable envelope of C. This follows immediately from Corollary 1.4.4.5.

Example 7.3.1.5. Let p : C → D be a presentable fibration, and let St(p) be defined as in

Construction 6.2.2.2. Using Proposition 6.2.2.13, we see that the map Ω∞p : St(p) → C exhibits

St(p) as a stable envelope of p.

Remark 7.3.1.6. Let C be a presentable∞-category. A stable envelope of C is determined uniquely

up to equivalence by the universal property given in Definition 7.3.1.1, and is therefore equivalent

to Sp(C). More precisely, suppose we are given a commutative diagram

C′
w //

u

��

C′′

v
��

C
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in which u and v are stable envelopes of C. Then the functor w is an equivalence of ∞-categories

(observe that in this situation, the functor w automatically admits a left adjoint by virtue of

Proposition 1.4.4.4).

Our next goal is to establish a relative version of Remark 7.3.1.6. First, we need to introduce

a bit of notation. Suppose we are given a diagram

C
p

��

D

q
��

E

of ∞-categories, where p and q are presentable fibrations. We let FunRE (C,D) denote the full

subcategory of FunE(C,D) spanned by those functors G : C→ D with the following properties:

(i) The functor G carries p-Cartesian edges of C to q-Cartesian edges of D.

(ii) For each object E ∈ E, the induced functor GE : CE → DE admits a left adjoint.

We let FunRE (C,D)' denote the largest Kan complex contained in FunRE (C,D).

Proposition 7.3.1.7. Let p : C→ D be a presentable fibration of ∞-categories. Then there exists

a functor u : C′ → C with the following properties:

(1) The functor u is a stable envelope of the presentable fibration p.

(2) Let q : E→ D be a presentable fibration, and assume that each fiber of q is a stable∞-category.

Then composition with u induces a trivial Kan fibration

FunRD(E,C′)' → FunRD(E,C)'.

(3) Let v : E→ C be any stable envelope of p. Then v factors as a composition

E
v→ C′

u→ C,

where v is an equivalence of ∞-categories.

Remark 7.3.1.8. Assertion (2) of Proposition 7.3.1.7 implies the stronger property that the map

FunRD(E,C′)→ FunRD(E,C)

is a trivial Kan fibration, but we will not need this fact.
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Proof. Let RPr denote the ∞-category whose objects are presentable ∞-categories and whose

morphisms are functors which admit left adjoints (see §HTT.5.5.3 ), and let RPrstab be the full

subcategory of RPr spanned by those presentable ∞-categories which are stable. It follows from

Corollary 1.4.4.5 that the inclusion RPrstab ⊆ RPr admits a right adjoint, given by the construction

X 7→ Sp(X). Let us denote this right adjoint by G.

The presentable fibration p is classified by a functor χ : Dop → RPr. Let α denote the counit

transformation G ◦ χ→ χ. Then α is classified by a map u : C′ → C of presentable fibrations over

D. Making a fibrant replacement if necessary, we may suppose that u is a categorical fibration.

Assertion (1) now follows immediately from the construction.

To prove (2), let us suppose that the presentable fibration q is classified by a functor χ′ : Dop →
RPr. Using Theorem HTT.3.2.0.1 and Proposition HTT.4.2.4.4 , we deduce the existence of a

commutative diagram

MapFun(Dop,RPr)(χ
′, G ◦ χ) //

��

MapFun(Dop,RPr)(χ
′, χ)

��

FunR,∼D (E,C′) // FunR,∼D (E,C)

in the homotopy category of spaces, where the vertical arrows are homotopy equivalences. Since

the fibers of q are stable, χ′ factors through RPrstab ⊆ RPr, so the upper horizontal arrow is a

homotopy equivalence. It follows that the lower horizontal arrow is a homotopy equivalence as well.

Since u is a categorical fibration, the lower horizontal arrow is also a Kan fibration, and therefore

a trivial Kan fibration.

We now prove assertion (3). The existence of v (and its uniqueness up to homotopy) follows

immediately from (2). To prove that v is an equivalence, we first invoke Corollary HTT.2.4.4.4 to

reduce to the case where D consists of a single vertex. In this case, the result follows from Remark

7.3.1.6.

Definition 7.3.1.9. Let C be a presentable ∞-category. A tangent bundle to C is a functor

TC → Fun(∆1,C) which exhibits TC as the stable envelope of the presentable fibration Fun(∆1,C)→
Fun({1},C) ' C.

In the situation of Definition 7.3.1.9, we will often abuse terminology by referring to TC as the

tangent bundle to C. We note that TC is determined up equivalence by C. Roughly speaking, we

may think of an object of TC as a pair (A,M), where A is an object of C and M is a spectrum object

of C/A. In the case where C is the ∞-category of E∞-rings, we can identify M with an A-module

(Corollary 7.3.4.14). In this case, the functor TC → Fun(∆1,C) associates to (A,M) the projection

morphism A ⊕M → A. Our terminology is justified as follows: we think of this morphism as a

“tangent vector” in the ∞-category C, relating the object A to the “infinitesimally near” object

A⊕M (this analogy with differential geometry is based on suggestions of Tom Goodwillie).
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For some purposes, it is convenient to have an explicit construction for the tangent bundle TC
of a presentable ∞-category C. The following is a variation on Example 7.3.1.5:

Proposition 7.3.1.10. Let C be a presentable ∞-category, and let e : Exc(Sfin
∗ ,C) → Fun(∆1,C)

be the functor which carries an excisive functor X : Sfin
∗ → C to the map X(S0) → X(∗). Then e

exhibits TC as a tangent bundle to C.

Proof. Let E denote the full subcategory of Fun(∆1 × Sfin
∗ ,C) spanned by those functors F : ∆1 ×

Sfin
∗ → C with the following properties:

(i) The restriction F |({0} × Sfin
∗ ) belongs to TC.

(ii) The canonical map F (0, ∗)→ F (1, ∗) is an equivalence in C.

(iii) For every pointed finite space X, the canonical map F (1, X) → F (1, ∗) is an equivalence in

C.

If we let Sfin
∗
′
denote the full subcategory of ∆1×Sfin

∗ spanned by {0}×Sfin
∗ together with the object

(1, ∗), then (iii) is equivalent to the assertion that F is a right Kan extension of F | Sfin
∗
′
, and (ii)

is equivalent to the assertion that F | Sfin
∗
′

is a left Kan extension of F |({0} × Sfin
∗ ). It follows from

Proposition HTT.4.3.2.15 that restriction along the inclusion {0} × Sfin
∗ ↪→ ∆1 × Sfin

∗ induces a

trivial Kan fibration φ : E→ TC.

Let c : Sfin
∗ → Sfin

∗ denote the constant functor taking the value ∗ ∈ Sfin
∗ . There is a unique

natural transformation id → c, classified by a map h : ∆1 × Sfin
∗ → Sfin

∗ . Composition with h

determines a map TC → E which is a section of the trivial Kan fibration φ. The map p factors as a

composition

TC → E
p′→ Fun(∆1,C),

where p′ is given by evaluation at the object S0 ∈ Sfin
∗ . It will therefore suffice to show that p′

exhibits E as a tangent bundle to C.

Let E′ = E×Fun({1}×Sfin
∗ ,C) C. Using Proposition HTT.4.3.2.15 , we deduce that the inclusion

E′ ↪→ E is an equivalence of ∞-categories. Example 7.3.1.5 implies that the composite map

E′ → E → Fun(∆1,C) exhibits E′ as a stable envelope of Fun(∆1,C) → C, from which it follows

immediately that p′ exhibits E as a tangent bundle to C.

Corollary 7.3.1.11. Let C be a presentable ∞-category. Then the tangent bundle TC is also a

presentable ∞-category.

Proof. It follows from Proposition 7.3.1.10 (and Lemmas HTT.5.5.4.19 , HTT.5.5.4.17 , and

HTT.5.5.4.18 ) that TC can be realized as an accessible localization of Fun(Sfin
∗ ,C).

It follows from Corollary 7.3.1.11 that if C is a presentable∞-category, then the tangent bundle

TC admits small limits and colimits. The following result describes these limits and colimits in more

detail:
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Proposition 7.3.1.12. Let C be a presentable ∞-category, let TC be a tangent bundle to C, and

let p denote the composition

TC → Fun(∆1,C)→ Fun({1},C) ' C .

Then:

(1) A small diagram q : K. → TC is a colimit diagram if and only if q is a p-colimit diagram and

p ◦ q is a colimit diagram in C.

(2) A small diagram q : K/ → TC is a limit diagram if and only if q is a p-limit diagram and p◦ q
is a limit diagram in C.

Proof. We will prove (1); assertion (2) will follow from the same argument. The “if” direction

follows from Proposition HTT.4.3.1.5 . The converse then follows from the uniqueness of colimit

diagrams and the following assertion:

(∗) Let K be a small simplicial set, and let q : K → TC be a diagram. Then q admits an extension

q : K. → TC such that q is a p-colimit diagram, and p ◦ q is a colimit diagram in C.

To prove (∗), we first invoke the assumption that C is presentable to deduce the existence of a

colimit diagram q0 : K. → C extending p ◦ q. It then suffices to show that we can lift q0 to a

p-colimit diagram in TC; this follows from the fact that p is a presentable fibration.

We now study the functorial properties of the construction of tangent bundles.

Lemma 7.3.1.13. Let C be a presentable ∞-category, let TC = Exc(Sfin
∗ ,C) ⊆ Fun(Sfin

∗ ,C) the

tangent bundle of C given in Proposition 7.3.1.10, and let L : Fun(Sfin
∗ ,C) → TC be a left adjoint

to the inclusion. A morphism α : X → Y in Fun(Sfin
∗ ,C) is an L-equivalence if and only if the

following conditions are satisfied:

(1) The map X(∗)→ Y (∗) is an equivalence in C.

(2) Let X ′, Y ′ : Sfin
∗ → CX(∗)/ /Y (∗) be the functors determined by X and Y , and choose left Kan

extensions X,Y : S∗ → CX(∗)/ /Y (∗) of X ′ and Y ′, respectively. Then the canonical map

X → Y induces an equivalence ∂ X → ∂ Y in Sp(CX(∗)/ /Y (∗)) (see Definition 6.2.1.1).

Proof. Assume first that α is an L-equivalence. For each K ∈ C, let ZK ∈ Fun(Sfin
∗ ,C) be the

constant functor taking the value K. Note that ZK is a right Kan extension of its restriction to

{∗} ⊆ Sfin
∗ . Since ZK ∈ TC, composition with α induces a homotopy equivalence

MapC(Y (∗),K) ' MapFun(Sfin
∗ ,C)(Y, ZK)→ MapFun(Sfin

∗ ,C)(X,ZK) ' MapC(X(∗),K).
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Since K is arbitrary, condition (1) follows. To prove (2), let C′ denote the pointed ∞-category

CX(∗)/ /Y (∗) and let Z : S∗ → C′ be an arbitrary strongly excisive functor which commutes with

sequential colimits. We wish to prove that the canonical map

θ : MapFun(S∗,C
′)(Y , Z)→ MapFun(S∗,C

′)(X,Z)

is a homotopy equivalence. Let Z ′ = Z| Sfin
∗ . Since X and Y are left Kan extensions of X ′ and Y ′,

respectively, we can identify θ with the map

θ0 : MapFun(Sfin
∗ ,C

′)(Y
′, Z ′)→ MapFun(Sfin

∗ ,C
′)(X

′, Z ′).

The map Z ′ induces a functor Z : Sfin
∗ → C. To prove that θ0 is an equivalence, it suffices to show

that the underlying map MapFun(Sfin
∗ ,C)(Y, Z) → MapFun(Sfin

∗ ,C)(X,Z) is a homotopy equivalence.

This follows from our assumption that α is an L-equivalence and the observation that Z ∈ TC.

We now prove the converse. Assume that conditions (1) and (2) are satisfied; we wish to show

that α is an L-equivalence. Fix an object Z ∈ TC. We have a commutative diagram

MapFun(Sfin
∗ ,C)(Y,Z)

φ //

��

MapFun(Sfin
∗ ,C)(X,Z)

��
MapC(Y (∗), Z(∗)) φ0 //MapC(X(∗), Z(∗)

and we wish to show that φ is a homotopy equivalence. Condition (1) implies that φ0 is a homotopy

equivalence. It will therefore suffice to show that φ induces a homotopy equivalence after passing to

the homotopy fibers over any point η ∈ MapC(Y (∗), Z(∗)). Let K = Z(∗) and let C′ be defined as

above, so that Z determines a functor Z ′ : Sfin
∗ → C′ given on objects by Z ′(U) = Z(U)×Z(∗) Y (∗).

We observe that the induced map of homotopy fibers is given by φ′ : MapFun(Sfin
∗ ,C

′)(Y
′, Z ′) →

MapFun(Sfin
∗ ,C

′)(X
′, Z ′). Let Z : S∗ → C′ be a left Kan extension of Z ′, so that φ′ is equivalent to

the map

φ : MapFun(S∗,C
′)(Y , Z)→ MapFun(S∗,C

′)(X,Z).

Since Z ∈ TC, the functor Z ′ is strongly excisive, so that Z is also strongly excisive. It follows from

assumption (2) that φ is a homotopy equivalence, as desired.

Proposition 7.3.1.14. Let f : C → D be a functor between presentable ∞-categories which pre-

serves filtered colimits. Let TC ⊆ Fun(Sfin
∗ ,C) and TD = Exc(Sfin

∗ ,D) ⊆ Fun(Sfin
∗ ,D) be the tangent

bundle of Proposition 7.3.1.10, and let L : Fun(Sfin
∗ ,C)→ TC and L′ : Fun(Sfin

∗ ,D)→ TD denote left

adjoints to the inclusion functor. Let F : Fun(Sfin
∗ ,C)→ Fun(Sfin

∗ ,D) be given by composition with

f . Then F carries L-equivalents to L′-equivalences (and therefore induces a functor TC → TD).

Proof. Combine Corollary 6.2.1.24 with the criterion of Lemma 7.3.1.13.

Example 7.3.1.15. Let p : C⊗ → O⊗ be a coCartesian fibration of ∞-operads. Assume that:
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(i) For every object X ∈ O, the ∞-category CX is presentable.

(ii) For every operation φ ∈ MulO({Xi}i∈I , Y ), the associated functor φ! :
∏
i∈I CXi → CY pre-

serves sequential colimits.

The projection map p′ : Fun(Sfin
∗ ,C

⊗)×Fun(Sfin
∗ ,O

⊗) O
⊗ → O⊗ is again a coCartesian fibration of ∞-

operads. Let TC denote the full subcategory of Fun(Sfin
∗ ,C)×Fun(Sfin

∗ ,O) O spanned by those objects

which correspond to functors F : Sfin
∗ → CX which carry pushout squares to pullback squares (for

some X ∈ O), and let T⊗C denote the corresponding full subcategory of Fun(Sfin
∗ ,C

⊗)×Fun(Sfin
∗ ,O

⊗)O
⊗

(see Definition 2.2.1). Using Propositions 7.3.1.14 and 2.2.1.9, we conclude that the forgetful functor

T⊗C → O⊗ is again a coCartesian fibration of ∞-operads. Taking O⊗ = E⊗k for 1 ≤ k ≤ ∞, we

obtain the following result:

(∗) Let C be a presentable ∞-category equipped with an Ek-monoidal structure, such that the

tensor product functor ⊗ : C×C→ C preserves sequential colimits. Then the tangent bundle

TC inherits an Ek-monoidal structure.

7.3.2 Relative Adjunctions

Let C be a presentable∞-category and let TC denote the tangent bundle of C (see Definition 7.3.1.9).

Our goal in this section is to produce a left adjoint to the composite functor

TC → Fun(∆1,C)→ Fun({0},C) ' C .

The existence of the desired left adjoint can be deduced easily from the adjoint functor theorem

(Corollary HTT.5.5.2.9 ). However, we will later need more detailed information about L. To

obtain this information, it is convenient to formulate a relative version of the theory of adjoint

functors.

Proposition 7.3.2.1. Suppose we are given a commutative diagram

C

q
��

D

p
��

Goo

E

of ∞-categories, where the maps p and q are categorical fibrations. The following conditions are

equivalent:

(1) The functor G admits a left adjoint F . Moreover, for every object C ∈ C, the functor q carries

the unit map uC : C → GFC to an equivalence in E.

(2) There exists a functor F : C→ D and a natural transformation u : idC → G◦F which exhibits

F as a left adjoint to G, and has the property that q(u) is the identity transformation from q

to itself (in particular, p ◦ F = q).
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Proof. We first construct a correspondence associated to the functorG. LetX = C
∐

D×{0}(D×∆1).

Using the small object argument, we can construct a factorization

X
i→M

r→ E×∆1

where i is inner anodyne and r is an inner fibration. Moreover, we may assume that the maps

C→M×∆1{0}

D→M×∆1{1}

are isomorphisms of simplicial sets. We will henceforth identify C and D with full subcategories of

M via these isomorphisms.

The functor G admits a left adjoint F if and only if the projection r′ : M→ ∆1 is a coCartesian

fibration. We will show that conditions (1) and (2) Proposition 7.3.2.1 are equivalent to the existence

of F , together with the following additional requirement:

(3) The projection r′′ : M→ E carries r′-coCartesian morphisms to equivalences in E.

We will assume for the remainder of the proof that r′ is a coCartesian fibration. The implications

(2)⇒ (1) is obvious. We next prove that (1)⇒ (3). Let α : C → D be an r′-coCartesian morphism

in M; we wish to prove that r′′(α) is an equivalence in E. We may assume that C ∈ C and D ∈ D

(otherwise, α is itself an equivalence and the result is obvious). The map α fits into a commutative

diagram

G(D)
γ

""
C

β
<<

α // D

where r′′(γ) is degenerate. Consequently, to prove that r′′(α) is an equivalence, it suffices to show

that r′′(β) = q(β) is an equivalence. This follows from (1), since β can be identified with the unit

map uC .

We now complete the proof by showing that (3) ⇒ (2). Assume that (3) is satisfied. We will

construct a commutative diagram

C×{0} �
� //

� _

��

M

r
��

C×∆1 //

h

99

E×∆1.

with the following property: for every object C ∈ C, the functor h carries {C} × ∆1 to an r′-

coCartesian morphism of M. To construct β, we work simplex-by-simplex on C. Let us first

consider the case of zero-dimensional simplices. Fix an object C ∈ C and choose an r′-coCartesian
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morphism α : C → D in M. Assumption (3) guarantees that r′′(α) is an equivalence in E, so there

exists a commutative diagram σ :

r′′(D)
β

$$
r′′(C)

r′′(α)
::

id // r′′(C)

in the ∞-category E. Since p is a categorical fibration, we can lift β to an equivalence β : D → D′

in D. Since r is an inner fibration, we can further lift σ to a 2-simplex

D
β

!!
C

α

??

γ // D′.

in M. Since β is an equivalence, the map γ is equivalent to α and therefore r′-coCartesian; we can

therefore define the restriction h|({C} ×∆1) to coincide with γ.

To handle simplices of larger dimension, we need to solve mapping problems of the form

(∆n × {0})
∐
∂∆n×{0}(∂∆n ×∆1)

j //
� _

��

M

r

��
∆n ×∆1

44

// E×∆1,

where n > 0 and the map j carries {0} × ∆1 to an r′-coCartesian morphism in M. Note that

condition (3) guarantees that any r′-coCartesian morphism in M is also r-coCartesian (Proposition

HTT.2.4.1.3 ). The existence of the required extension now follows from Proposition HTT.2.4.1.8 .

We now define F : C → D to be the restriction of h to C×{1}. Together with the evident

inclusion D×∆1 ↪→M, the map h determines a commutative diagram

G ◦ F
h′

""
idC

u

;;

h // F

in the ∞-category FunE(C,M). The natural transformation h′ is evidently r′-coCartesian; using

Proposition HTT.2.4.1.3 we deduce that h′ is r-coCartesian so that there exists a dotted arrow u

as indicated in the diagram, thereby proving that condition (2) is satisfied.

Definition 7.3.2.2. Suppose we are given a commutative diagram of ∞-categories

C

q ��

D

p��

Goo

E,
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where p and q are categorical fibrations. We will say that G admits a left adjoint relative to E if

the equivalent conditions of Proposition 7.3.2.1 are satisfied.

Remark 7.3.2.3. In the situation of Proposition 7.3.2.1, if F and u : idC → G ◦ F are as in

condition (2), then we will say that u is the unit for an adjunction between F and G relative to E,

or that u exhibits F as a left adjoint of G relative to E.

Remark 7.3.2.4. Given a commutative diagram

C
F //

q

��

D

p��
E,

we can define an evident dual condition that F admit a right adjoint G relative to E. In this case,

the functor G a left adjoint relative to E. Indeed, we claim that for every object C ∈ C, the functor

q carries the unit map u : C → (G ◦F )(C) to an equivalence in E. To prove this, it suffices to show

that p carries F (u) to an equivalence in E. But the map F (u) fits into a commutative diagram

(F ◦G ◦ F )(C)

v

''
F (C)

F (u)
77

idF (C) // F (C).

By a two-out-of-three argument, it suffices to show that p(idF (C)) is an equivalence in E (which is

obvious) and that p(v) is an equivalence in E (which follows from our assumption that F admits a

right adjoint relative to G).

Proposition 7.3.2.5. Suppose we are given a commutative diagram

C
q

��

D

p
��

G
oo

E

of ∞-categories, where the maps p and q are categorical fibrations. Let F : C→ D be a functor with

pF = q and u : idC → G◦F a natural transformation which exhibits F as a left adjoint of G relative

to E. Then, for every functor E′ → E, if we let F ′ : C×E E
′ → D×E E

′ and G′ : D×E E
′ → C×E E

′

denote the induced functors and u′ : id → G′ ◦ F ′ the induced natural transformation, then u′

exhibits F ′ as a left adjoint to G′ relative to E′. In particular, for every object E ∈ E, the induced

natural transformation uE : idCE → GE ◦ FE is the unit of an adjunction between the ∞-categories

CE and DE.
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Proof. Fix objects C ′ ∈ C×E E
′ and D′ ∈ D×E E

′ having images C ∈ C and D ∈ D. Let E′0 and

E′1 denote the images of C ′ and D′ in E′, and let E0 and E1 denote their images in E. We wish to

prove that the composite map

MapD×E E′(F
′(C ′), D′)→ MapC×E E′((G

′ ◦ F ′)(C ′), G′(D′)) u′→ MapC×E E′(C
′, G′(D′))

is a homotopy equivalence. This map fits into a homotopy coherent diagram

MapD×E E′(F
′(C ′), D′) //

��

MapC×E E′(C
′, G′(D′)) //

��

MapE′(E
′
0, E

′
1)

��
MapD(F (C), D)

φ //MapC(C,G(D)) //MapE(E0, E1).

The right square and the outer rectangle are homotopy pullback diagrams, so that the left square

is also a homotopy pullback diagram. It therefore suffices to show that the map φ is a homotopy

equivalence, which follows from our assumption that u is the unit of an adjunction between F and

G.

We now establish some useful criteria for establishing the existence of relative adjoints.

Proposition 7.3.2.6. Suppose given a commutative diagram

C
q

��

D

p
��

G
oo

E

of ∞-categories, where p and q are locally Cartesian categorical fibrations. Then G admits a left

adjoint relative to E if and only if the following conditions are satisfied:

(1) For every object E ∈ E, the induced map of fibers GE : DE → CE admits a left adjoint.

(2) The functor G carries locally p-Cartesian morphisms in D to locally q-Cartesian morphisms

in C.

Proof. Suppose first that u : idC → G ◦ F exhibits F : C → D as a left adjoint to G relative

to E. Proposition 7.3.2.5 implies that condition (1) is satisfied. To prove (2), let α : D → D′

be a locally p-Cartesian morphism in D; we wish to prove that G(α) is locally q-Cartesian. The

map p(α) determines a 1-simplex ∆1 → E. Replacing C and D by their pullbacks C×E∆1 and

D×E∆1 (and invoking Proposition 7.3.2.5 once more), we can reduce to the case where E = ∆1.

Let C ∈ C×∆1{0}; we wish to prove that composition with G(α) induces a homotopy equivalence

MapC(C,G(D))→ MapC(C,G(D′)).
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This is equivalent to the requirement that composition with α induce a homotopy equivalence

MapD(F (C), D)→ MapD(F (C), D′),

which follows from the observation that F (C) ∈ D×∆1{0} (since α is assumed to be locally p-

coCartesian).

Now suppose that (1) and (2) are satisfied. We will prove that G satisfies the first criterion

of Proposition 7.3.2.1. In other words, we must show that for each C ∈ C, there exists an object

D ∈ D and a map u : C → G(D) satisfying the following pair of conditions:

(i) For every object D′ ∈ D, composition with u induces an equivalence

MapD(D,D′)→ MapC(C,G(D′)).

(ii) The morphism q(u) is an equivalence in E.

To construct u, we let E denote the image of the object C in the ∞-category E. Assumption

(1) implies that GE : DE → CE admits a left adjoint FE . In particular, there exists an object

D = FE(C) ∈ DE and a morphism u : C → G(D) in CE which satisfies the following modified

version of condition (i):

(i′) For every object D′ ∈ DE , composition with u induces an equivalence

MapDE
(D,D′)→ MapCE

(C,G(D′)).

It is obvious that u satisfies condition (ii). We will prove that condition (i) is satisfied. Let D′ ∈ D

be arbitrary: we wish to prove that the map φ : MapD(D,D′) → MapC(C,G(D′)) is a homotopy

equivalence. Let E′ denote the image of D′ in E. It will suffice to show that φ induces a homotopy

equivalence after passing to the homotopy fiber over any point α ∈ MapE(E,E′). Choose a locally

p-coCartesian morphism D′′ → D′ in D lying over α. Condition (2) guarantees that the induced

map G(D′′) → G(D′) is locally q-Cartesian. Using Proposition HTT.2.4.4.2 , we can identify the

map of homotopy fibers φα with the map MapDE
(D,D′′)→ MapCE

(C,G(D′′)), which is a homotopy

equivalence by virtue of (i′).

Corollary 7.3.2.7. Suppose we are given a commutative diagram

C⊗

p !!

F // D⊗

q

}}
O⊗

of ∞-operads, where p and q are coCartesian fibrations. Assume that, for every object X ∈ O, the

induced map of fibers FX : CX → DX admits a right adjoint GX . Then F admits a right adjoint G

relative to O⊗. Moreover, G is a map of ∞-operads.
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Proof. Let X ∈ O⊗〈n〉, and choose inert morphisms X → Xi covering the maps ρi : 〈n〉 → 〈1〉 for

1 ≤ i ≤ n. Then the induced map FX is homotopic to the composition

CX '
∏

1≤i≤n
CXi

∏
FXi→

∏
1≤i≤n

DXi ' DX .

It follows that FX admits a right adjoint GX , given by the product of the right adjoints GXi to the

functors FXi . Applying the dual version of Proposition 7.3.2.6, we deduce that F admits a right

adjoint G relative to O⊗. The description of GX given above shows that G carries inert morphisms

of D⊗ to inert morphisms of C⊗.

Example 7.3.2.8. Let C⊗ be a monoidal ∞-category, let M and N be ∞-categories left tensored

over C, let F ∈ LinFunC(M,N), and let f : M → N be the functor underlying F . The action of

C on M and N can be encoded by coCartesian fibrations of ∞-operads M⊗ → LM⊗ ← N⊗, and

F determines an LM-monoidal functor F⊗ : M⊗ → N⊗. Suppose that f admits a right adjoint

g. Corollary 7.3.2.7 implies that F⊗ admits a right adjoint G⊗ relative to LM⊗, and that G⊗ is a

map of ∞-operads. It follows that F⊗ and G⊗ induce adjoint functors

LMod(M)
φ //LMod(N).
ψ
oo

such that the diagram

LMod(M)

��

LMod(N)
ψoo

��
M Ng
oo

commutes up to (canonical) homotopy. The adjunction between φ and ψ is relative to the ∞-

category Alg(C). In particular, for every algebra object A ∈ Alg(C) we obtain adjoint functors

LModA(M)
φA //LModA(N).
ψA
oo

Remark 7.3.2.9. In the situation of Example 7.3.2.8, suppose that C ∈ C and N ∈ N. The counit

map F (G(N))→ N induces a map

F (C ⊗G(N)) ' C ⊗ F (G(N))→ C ⊗N

which is adjoint to a map C ⊗ G(N) → G(C ⊗ N). If this map is an equivalence for every pair

(C,N) ∈ C×N, then the functor G⊗ is an LM-monoidal functor: that is, we can regard G as a

C-linear functor from N to M. Moreover, the unit and counit maps

u : idM → G ◦ F v : F ◦G→ idN

can be promoted to C-linear natural transformations.
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Example 7.3.2.10. Let C be an ∞-category, let C0 ⊆ C. Let T be a monad on C, and suppose

that the action of T carries C0 to itself. Let Fun0(C,C) be the full subcategory of Fun(C,C)

spanned by those functors U such that U(C0) ⊆ C0. Then Fun0(C,C) is stable under composition,

and therefore inherits a monoidal structure from the monoidal structure on Fun(C,C) (see §2.2.1).

Then T is an algebra object of Fun0(C,C), so that T determines a monad on C0 (which we will

also denote by T ) via the evident monoidal functor Fun0(C,C) → Fun(C0,C0). The inclusion

C0 ↪→ C is Fun0(C,C)-linear, and therefore induces a fully faithful embedding ModT (C0)→ ModT (C)

(whose essential image is the full subcategory C0×C ModT (C) ⊆ ModT (C)). Suppose that the

inclusion C0 ⊆ C admits a right adjoint g. It then follows from Example 7.3.2.8 that the inclusion

ModT (C0)→ ModT (C) admits a right adjoint G, and that the diagram

ModT (C0)

��

ModT (C)

��

G
oo

C0 Cg
oo

commutes up to canonical homotopy.

There is a similar criterion for detecting the existence of relative left adjoints in the setting of

locally coCartesian fibrations:

Proposition 7.3.2.11. Suppose we are given a commutative diagram of ∞-categories

C
q

��

D

p
��

G
oo

E

where p and q are locally coCartesian categorical fibrations. Then G admits a left adjoint relative

to E if and only if the following conditions are satisfied:

(1) For each object E ∈ E, the induced map GE : DE → CE admits a left adjoint FE.

(2) Let C ∈ C be an object and let α : E → E′ be a morphism in E, where E = q(C). Let

α : FE(C)→ D be a locally p-coCartesian morphism in D lying over α, and let β : C → G(D)

be the composition of the unit map C → (G ◦ FE)(C) with G(β). Choose a factorization of β

as a composition

C
β′→ C ′

β′′→ G(D)

where β′ is a locally q-coCartesian morphism lifting α and β′′ is a morphism in CE′. Then

β′′ induces an equivalence FE′(C
′)→ D in the ∞-category DE′.

Proof. Suppose first that u : idC → G ◦ F exhibits F : C → D as a left adjoint to G relative

to E. Proposition 7.3.2.5 implies that condition (1) is satisfied. In the situation of condition
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(2), we can identify FE and FE′ with the restrictions of F . Under these identifications, the map

φ : FE′(C
′)→ D adjoint to β′′ fits into a commutative diagram

F (C)
F (β′)

{{

α

""
F (C ′)

φ // D.

Consequently, φ is an equivalence if and only if F (β′) is locally p-coCartesian. We now complete the

proof by observing that F admits a right adjoint relative to E (Remark 7.3.2.4) and therefore carries

locally q-coCartesian morphisms in C to locally p-coCartesian morphisms in D (apply Proposition

7.3.2.6 after passing to opposite ∞-categories).

Conversely, suppose that conditions (1) and (2) are satisfied. The argument proceeds as in the

proof of Proposition 7.3.2.6. We must show that for each C ∈ C, there exists an object D ∈ D and

a map u : C → G(D) satisfying the following pair of conditions:

(i) For every object D′ ∈ D, composition with u induces an equivalence

MapD(D,D′)→ MapC(C,G(D′)).

(ii) The morphism q(u) is an equivalence in E.

To construct u, we let E denote the image of the object C in the ∞-category E. Assumption

(1) implies that GE : DE → CE admits a left adjoint FE . In particular, there exists an object

D = FE(C) ∈ DE and a morphism u : C → G(D) in CE which satisfies the following modified

version of condition (i):

(i′) For every object D′ ∈ DE , composition with u induces an equivalence

MapDE
(D,D′)→ MapCE

(C,G(D′)).

It is obvious that u satisfies condition (ii). We will complete the proof by showing that u satisfies

(i). Let D′ ∈ D be arbitrary: we wish to prove that the map φ : MapD(D,D′)→ MapC(C,G(D′)) is

a homotopy equivalence. Let E′ denote the image of D′ in E. It will suffice to show that φ induces

a homotopy equivalence after passing to the homotopy fiber over any point α ∈ MapE(E,E′).

Choose a locally p-coCartesian morphism α : D → D′′ lying over α, and factor the composition

β : C → G(D)→ G(D′′) as a composition

C
β′→ C ′

β′′→ G(D′′)

where β′ is a locally q-coCartesian lift of α and β′′ is a morphism in CE′ . Using Proposition

HTT.2.4.4.2 , we can identify the homotopy fiber φα with the induced map

MapDE′
(D′′, D′) −→ MapCE′

(G(D′′), G(D′))
◦β′′−→ MapCE′

(C ′, G(D′)).



1296 CHAPTER 7. ALGEBRA IN THE STABLE HOMOTOPY CATEGORY

Identifying the latter space with MapDE′
(FE′(C

′), D′), we see that the map φα is induced by

composition with the map FE′(C
′) → D′′ adjoint to β′′, which is an equivalence by virtue of

(2).

Corollary 7.3.2.12. Suppose we are given a commutative diagram

C⊗

p !!

D⊗

}}

Goo

O⊗

of ∞-operads, where p and q are coCartesian fibrations. Assume that:

(1) For every object X ∈ O, the induced map of fibers GX : DX → CX admits a left adjoint FX .

(2) For every operation φ ∈ MulO({Xi}i∈I , Y ) in O⊗, if we let φC! and φD! denote the associated

functors ∏
i∈I

CXi → CY
∏
i∈I

DXi → DY ,

then the evident natural transformation

FY ◦ φC! → φD! ◦ (
∏
i∈I

FXi)

is an equivalence of functors from
∏
i CXi to DY .

Then G admits a left adjoint F relative to O⊗. Moreover, F is a O⊗-monoidal functor.

Proof. The existence of F follows from Proposition 7.3.2.11. Using Proposition 7.3.2.6, we deduce

that F carries p-coCartesian morphisms in C⊗ to q-coCartesian morphisms in D⊗ and is therefore

a O-monoidal functor.

Remark 7.3.2.13. In the situation of Corollary 7.3.2.12, Proposition 7.3.2.5 implies that F and

G induce adjoint functors Alg/O(C) //Alg/ODoo .

We now apply the theory of relative adjunctions to the study of tangent bundles.

Definition 7.3.2.14. Let C be a presentable ∞-category, and consider the associated diagram

TC
G //

p
��

Fun(∆1,C)

q
zz

C

where q is given by evaluation at {1} ⊆ ∆1. The functor G carries p-Cartesian morphisms to

q-Cartesian morphisms, and for each object A ∈ C the induced map GA : Sp(C/A)→ C/A admits a
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left adjoint Σ∞. Applying Proposition 7.3.2.6, we conclude that G admits a left adjoint relative to

C, which we will denote by F . The absolute cotangent complex functor L : C→ TC is defined to be

the composition

C→ Fun(∆1,C)
F→ TC,

where the first map is given by the diagonal embedding. We will denote the value of L on an object

A ∈ C by LA ∈ Sp(C/A), and will refer to LA as the cotangent complex of A.

Remark 7.3.2.15. Let C be a presentable ∞-category. Since the diagonal embedding C →
Fun(∆1,C) is a left adjoint to the evaluation map Fun(∆1,C) → Fun({0},C) ' C, we deduce

that the absolute cotangent complex functor L : C→ TC is left adjoint to the composition

TC → Fun(∆1,C)→ Fun({0},C) ' C .

Remark 7.3.2.16. The terminology of Definition 7.3.2.14 is slightly abusive, since the tangent

bundle TC and the functor L are only well-defined up to equivalence. It would perhaps be more

accurate to refer to L : C→ TC as an absolute cotangent functor. However, L and TC are well-defined

up to a contractible space of choices, so we will tolerate the ambiguity.

Remark 7.3.2.17. Let C be a presentable ∞-category containing an object A. We observe that

the fiber of the tangent bundle TC over A ∈ C can be identified with the ∞-category Sp(C/A).

Under this identification, the object LA ∈ Sp(C/A) corresponds to the image of idA ∈ C/A under

the suspension spectrum functor Σ∞+ : C/A → Sp(C/A).

Remark 7.3.2.18. Let C be a presentable ∞-category. Since the cotangent complex functor L is

a left adjoint, it carries colimit diagrams in C to colimit diagrams in TC. In view of Proposition

7.3.1.12, we see that L also carries small colimit diagrams in C to p-colimit diagrams in TC, where

p denotes the composition

TC → Fun(∆1,C)→ Fun({1},C) ' C .

Remark 7.3.2.19. Let C be a presentable ∞-category, and let A be an initial object of C. Using

Remark 7.3.2.18, we deduce that LA is an initial object of the tangent bundle TC. Equivalently, LA
is a zero object of the stable ∞-category Sp(C/A).

7.3.3 The Relative Cotangent Complex

Let C be a presentable ∞-category. In §7.3.2, we defined the absolute cotangent complex functor

L : C → TC, which associates to each A ∈ C an object LA ∈ Sp(C/A). For many applications, it is

convenient to consider also a relative cotangent complex associated to a morphism f : A→ B in C.

In this section, we will define the relative cotangent complex LB/A and establish some of its basic

properties.
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Definition 7.3.3.1. Let C be a presentable ∞-category and let p : TC → C be a tangent bundle to

C. A relative cofiber sequence in TC is a diagram σ:

X //

��

Y

��
0 // Z

in TC with the following properties:

(1) The map p ◦ σ factors through the projection ∆1 × ∆1 → ∆1, so that the vertical arrows

above become degenerate in C.

(2) The diagram σ is a pushout square. (Since condition (1) implies that p ◦ σ is a pushout

square, this is equivalent to the requirement that σ be a p-colimit diagram; see Proposition

7.3.1.12).

Let E denote the full subcategory of

Fun(∆1 ×∆1, TC)×Fun(∆1×∆1,C) Fun(∆1,C)

spanned by the relative cofiber sequences. There is an evident forgetful functor ψ : E →
Fun(∆1, TC), given by restriction to the upper half of the diagram. Invoking Proposition

HTT.4.3.2.15 twice, we deduce that ψ is a trivial Kan fibration.

The relative cotangent complex functor is defined to be the composition

Fun(∆1,C)
L→ Fun(∆1, TC)

s→ E
s′→ TC,

where s is a section of ψ and s′ is given by evaluation at the vertex {1} × {1} ⊆ ∆1 ×∆1.

We will denote the image of a morphism f : A → B under the relative cotangent complex

functor by LB/A ∈ TC ×C {B} ' Sp(CB/).

Remark 7.3.3.2. Let C and p : TC → C be as in Definition 7.3.3.1. By definition, the relative

cotangent complex of a morphism f : A→ B fits into a relative cofiber sequence

LA //

��

LB

��
0 // LB/A

in the∞-category TC. Using Proposition HTT.4.3.1.9 , we deduce the existence of a cofiber sequence

f!LA → LB → LB/A

in the stable ∞-category Sp(C/B) ' TC ×C {B}; here f! : Sp(C/A) → Sp(C/B) denotes the functor

induced by the coCartesian fibration p.
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Remark 7.3.3.3. Let C be a presentable∞-category containing a morphism f : A→ B. If A is an

initial object of C, then the canonical map LB → LB/A is an equivalence. This follows immediately

from Remark 7.3.3.2, since the absolute cotangent complex LA vanishes (Remark 7.3.2.19). We

will sometimes invoke this equivalence implicitly, and ignore the distinction between the relative

cotangent complex LB/A and the absolute cotangent complex LB.

Remark 7.3.3.4. Let C be a presentable ∞-category containing a morphism f : A → B. If f is

an equivalence, then the relative cotangent complex LB/A is a zero object of Sp(C/B). This follows

immediately from Remark 7.3.3.2.

We next study the fiber sequence of cotangent complexes associated to a triple of morphisms

A→ B → C.

Proposition 7.3.3.5. Let C be a presentable ∞-category, let TC be a tangent bundle to C. Suppose

given a commutative diagram

B

  
A

??

// C

in C. The resulting square

LB/A
f //

��

LC/A

��
LB/B // LC/B

is a pushout diagram in TC (and therefore a relative cofiber sequence, in view of Remark 7.3.3.4).

Proof. We have a commutative diagram

LA //

��

LB //

��

LC

��
LA/A // LB/A //

��

LC/A

��
LB/B // LC/B

in the ∞-category TC. Here LA/A and LB/B are zero objects in the fibers Sp(C/A) and Sp(C/B),

respectively (Remark 7.3.3.4). By construction, the upper left square and both large rectangles in

this diagram are coCartesian. It follows first that the upper right square is coCartesian, and then

that the lower right square is coCartesian as desired.
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Corollary 7.3.3.6. Let C be a presentable ∞-category containing a commutative triangle

B
f

  
A

??

// C,

and let f! : Sp(C/B)→ Sp(C/C) denote the induced map. Then we have a canonical cofiber sequence

f!LB/A → LC/A → LC/B

in the ∞-category Sp(C/C).

Our next result records the behavior of the relative cotangent complex under base change.

Proposition 7.3.3.7. Let C be a presentable ∞-category, TC a tangent bundle to C, and p the

composite map

TC → Fun(∆1,C)→ Fun({1},C) ' C .

Suppose given a pushout diagram

A //

��

B

f
��

A′ // B′

in C. Then the induced map β : LB/A → LB′/A′ is a p-coCartesian morphism in TC.

Proof. Using Definition 7.3.3.1, we deduce the existence of a map between relative cofiber sequences

in TC, which we can depict as a cubical diagram τ :

LA //

��

!!

LB

��

##
0A

��

// LB/A

��

LA′ //

!!

LB′

##
0A′ // LB′/A′ .

Let K ⊆ ∆1 ×∆1 ×∆1 denote the full simplicial subset obtained by omitting the final vertex. Let

K0 ⊆ K be obtained by omitting the vertex v = {1} × {1} × {0} such that τ(v) = LB′ , and let

K1 ⊆ K be obtained by omitting the vertex w = {1} × {0} × {1} such that τ(w) = LB/A. By
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construction, τ is a p-left Kan extension of τ |K1. Using Proposition HTT.4.3.2.8 , we conclude that

τ is a p-colimit diagram.

Remark 7.3.2.18 implies that the square

LA //

��

LB

��
LA′ // LB′

is a p-colimit diagram, so that τ |K is a p-left Kan extension of τ |K0. Invoking Proposition

HTT.4.3.2.8 again, we deduce that τ is a p-left Kan extension of τ |K0. It follows that τ restricts

to a p-colimit square:

0A //

��

LB/A

��
0A′ // LB′/A′ .

Proposition HTT.4.3.1.9 implies that the induced square

0 //

��

f!LB/A

α

��
0 // LB′/A′

is a pushout square in Sp(C/B
′
); in other words, the map α is an equivalence. This is simply a

reformulation of the assertion that β is p-coCartesian.

There is another way to view the relative cotangent complex: if we fix an object A ∈ C, then

the functor B 7→ LB/A can be identified with the absolute cotangent complex for the ∞-category

CA/. The rest of this section will be devoted to justifying this assertion. These results will not be

needed elsewhere in this paper, and may be safely omitted by the reader. We begin by describing

the tangent bundle to an ∞-category of the form CA/.

Proposition 7.3.3.8. Let C be a presentable ∞-category containing an object A, and let D =

CA/. Let TC and TD denote tangent bundles to C and D, respectively. Then there is a canonical

equivalence

TD ' TC ×C D

of presentable fibrations over D.

Proposition 7.3.3.8 a relative version of the following more elementary observation:
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Lemma 7.3.3.9. Let C be an ∞-category which admits finite limits and let A be an object of C.

The forgetful functor CA/ → C induces equivalences of ∞-categories

f : (CA/)∗ → C∗ g : Sp(CA/)→ Sp(C).

Proof. We will prove that f is an equivalence; the assertion that g is an equivalence is an obvious

consequence. Let 1 denote a final object of C. Using Proposition HTT.1.2.13.8 , we deduce that

CA/ admits a final object, given by a morphism u : A→ 1. Using Lemma HTT.7.2.2.8 , we deduce

the existence of a commutative diagram

Cu/
f ′ //

��

C1/

��
(CA/)∗

f // C∗,

where the vertical arrows are equivalences. It follows that f is an equivalence if and only if f ′ is

an equivalence. But f is a trivial Kan fibration, since the inclusion {1} ⊆ ∆1 is right anodyne.

Proof of Proposition 7.3.3.8. Let E = Fun(∆1,C) ×Fun({1},C) D, so that we have a commutative

diagram

Fun(∆1,D)

q
%%

f // E

q′��
D,

where q and q′ are presentable fibrations. We first claim that f carries q-limit diagrams to q′-

limit diagrams. In view of Propositions HTT.4.3.1.9 and HTT.4.3.1.10 , it will suffice to verify the

following pair of assertions:

(i) For each object B ∈ D, corresponding to a morphism A→ B in C, the induced map of fibers

fB : D/B → C/B

preserves limits.

(ii) The map f carries q-Cartesian morphisms to q′-Cartesian morphisms.

To prove (i), we observe that fB is equivalent to the forgetful functor (C/B)A/ → C/B, which

preserves limits by Proposition HTT.1.2.13.8 . Assertion (ii) is equivalent to the requirement that

the forgetful functor D → C preserves pullback diagrams, which follows again from Proposition

HTT.1.2.13.8 .
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Using Remark 7.3.1.3, we can identify TC ×C D with the stable envelope of the presentable

fibration q′. It follows from the universal property of Proposition 7.3.1.7 that the map f fits into

a commutative diagram

TD
f //

��

TC ×C D

��
Fun(∆1,D)

f // E .

To complete the proof, we will show that f is an equivalence. In view of Corollary HTT.2.4.4.4 ,

it will suffice to show that for each B ∈ D classifying a map A → B in C, the induced map

Sp(D/B) → Sp(C/B) is an equivalence of ∞-categories. This follows immediately from Lemma

7.3.3.9.

We now wish to study the relationship between the cotangent complex functors of C and CA/,

where A is an object of C. For this, it is convenient to introduce a bit of terminology.

Definition 7.3.3.10. Let F, F ′ : C → D be a functors from an ∞-category C to an ∞-category

D, and let α : F → F ′ be a natural transformation. We will say that α is coCartesian if, for every

morphism C → C ′ in C, the induced diagram

F (C) //

αC
��

F (C ′)

αC′

��
F ′(C) // F ′(C ′)

is a pushout square in D.

The basic properties of the class of coCartesian natural transformations are summarized in the

following lemma:

Lemma 7.3.3.11. (1) Let F, F ′, F ′′ : C→ D be functors between ∞-categories, and let α : F →
F ′ and β : F ′ → F ′′ be natural transformations. If α is coCartesian, then β is coCartesian if

and only if β ◦ α is coCartesian.

(2) Let F : C → D be a functor between ∞-categories, let G,G′ : D → E be a pair of functors,

and let α : G → G′ be a natural transformation. If α is coCartesian, then so is the induced

transformation GF → G′F .

(3) Let F, F ′ : C→ D be a pair of functors between ∞-categories, let G : D→ E another functor,

and let α : F → F ′ be a natural transformation. If α is coCartesian and G preserves all

pushout squares which exist in D, then the induced transformation GF → GF ′ is coCartesian.
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Definition 7.3.3.12. We will say that a commutative diagram of ∞-categories

D
H //

G
��

C

G′
��

D′
H′ // C′

is rectilinear if the following conditions are satisfied:

(1) The functors G and G′ admit left adjoints, which we will denote by F and F ′ respectively.

(2) The identity map H ′G ' G′H induces a coCartesian natural transformation F ′H ′ → HF .

Remark 7.3.3.13. The condition of being rectilinear is closely related to the condition of being

left adjointable, as defined in §HTT.7.3.1 .

Proposition 7.3.3.14. Let C be a presentable ∞-category containing an object A and let D = CA/.

Let G : TC → C denote the composite map

TC → Fun(∆1,C)→ Fun({0},C) ' C,

and let G′ : TD → D be defined similarly, so that we have a commutative diagram

TD //

��

TC

��
D // C

(see the proof of Proposition 7.3.3.8). Then the above diagram is rectilinear.

Corollary 7.3.3.15. Let C and D = CA/ be as in Proposition 7.3.3.14, and let LC : C → TC and

LD : D→ TD be cotangent complex functors for C and D, respectively. Then:

(1) Let p : D → C be the projection, and let q : TD → TC be the induced map. Then there is a

coCartesian natural transformation LC ◦ p→ q ◦ LD.

(2) There is a pushout diagram of functors

LC
A

//

��

LC ◦ p

��
0 // q ◦ LD.

Here the terms in the left hand column indicate the constant functors taking the values LC
A, 0 ∈

Sp(C/A) ⊆ TC.
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(3) The functor q ◦ LD : D→ TC can be identified with the functor B 7→ LB/A.

Proof. Assertion (1) is merely a reformulation of Proposition 7.3.3.14. To prove (2), we let e : D→
D denote the constant functor taking the value idA ∈ D, so that we have a natural transformation

α : e→ idD. Applying the coCartesian transformation of (1) to α yields the desired diagram, since

LD ◦ e vanishes by Remark 7.3.2.19. Assertion (3) follows immediately from (2) and the definition

of the relative cotangent complex.

To prove Proposition 7.3.3.14, we observe that the square in question fits into a commutative

diagram

TD //

��

TC

��
Fun(∆1,D) //

��

Fun(∆1,C)

��
Fun({0},D) // Fun({0},C).

It will therefore suffice to prove the following three results:

Lemma 7.3.3.16. Suppose given a commutative diagram of ∞-categories

D
H //

G0
��

C

G1
��

D′
H′ //

G′0
��

C′

G′1
��

D′′
H′′ // C′′

If the upper and lower squares are rectilinear, then the outer square is rectilinear.

Lemma 7.3.3.17. Let p : D → C be a functor between ∞-categories. Then the commutative

diagram

Fun(∆1,D) //

G
��

Fun(∆1,C)

G′

��
Fun({0},D) // Fun({0},C)

is rectilinear.

Lemma 7.3.3.18. Let C be a presentable ∞-category containing an object A, and let D = CA/.

Then the diagram

TD //

��

TC

��
Fun(∆1,D) // Fun(∆1,C)



1306 CHAPTER 7. ALGEBRA IN THE STABLE HOMOTOPY CATEGORY

(see the proof of Proposition 7.3.3.8) is rectilinear.

Proof of Lemma 7.3.3.16. We observe that G1G0 admits a left adjoint L0L1, where L0 and L1 are

left adjoints to G0 and G1, respectively. Similarly, G′1G
′
0 admits a left adjoint L′0L

′
1. It remains

only to show that the composite transformation

L0L1H
′′ → L0H

′L′1 → HL′0L
′
1

is coCartesian, which follows from Lemma 7.3.3.11.

Proof of Lemma 7.3.3.17. For any∞-category C, the evaluation functor Fun(∆1,C)→ Fun({0},C) '
C has a left adjoint given by the diagonal embedding δC : C → Fun(∆1,C). In the situation of

Lemma 7.3.3.17, we obtain a strictly commutative diagram of adjoint functors

Fun(∆1,D) // Fun(∆1,C)

D //

δD

OO

C .

δC

OO

It now suffices to observe that that any invertible natural transformation is automatically coCarte-

sian.

To prove Lemma 7.3.3.18, we once again break the work down into two steps. First, we need a

bit of terminology:

Notation 7.3.3.19. For every∞-category C, we let P∗(C) denote the full subcategory of Fun(∆2,C)

spanned by those diagrams

B

  
A

f //

??

C

such that f is an equivalence. If C is presentable, then the evaluation map

P∗(C)→ Fun(∆{1,2},C) ' Fun(∆1,C)

exhibits P∗(C) as a pointed envelope of the presentable fibration Fun(∆1,C)→ Fun({1},C) ' C.

Now let p : D → C be as in Lemma 7.3.3.18. The proof of Proposition 7.3.3.8 gives a commu-

tative diagram

TD //

��

TC

��
P∗(D) //

��

P∗(C)

��
Fun(∆1,D) // Fun(∆1,C).
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We wish to prove that the outer square is rectilinear. In view of Lemma 7.3.3.16, it will suffice

to prove the upper and bottom squares are rectilinear. For the upper square, we observe that

Proposition 7.3.3.8 gives a homotopy pullback diagram

TD //

��

TC

��
P∗(D)

��

// P∗(C)

��
C // D .

Lemma 7.3.3.18 is therefore a consequence of the following pair of results:

Lemma 7.3.3.20. Suppose given a commutative diagram

D //

��

C

G
��

D′ //

��

C′

��
D′′ // C′′

of ∞-categories, where each square is homotopy Cartesian. If G admits a left adjoint relative to

C′′, then the upper square is rectilinear.

Lemma 7.3.3.21. Let C be a presentable ∞-category containing an object A, let D = CA/. Then

the diagram

P∗(D) //

G′

��

P∗(C)

G
��

Fun(∆1,D) // Fun(∆1,C)

is rectilinear.

Proof of Lemma 7.3.3.20. Without loss of generality, we may assume that every map in the diagram

D //

G′
��

C

G
��

D′ //

��

C′

��
D′′ // C′′
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is a categorical fibration, and that each square is a pullback in the category of simplicial sets.

Let F be a left adjoint to G relative to C′′, and choose a counit map v : F ◦ G → idC which

is compatible with the projection to C′′ (so that v can be identified with a morphism in the ∞-

category MapC′′(C,C) ). Let F ′ : D′ → D be the map induced by F , so that v induces a natural

transformation F ′ ◦G′ → idD, which is easily verified to be the counit of an adjunction. It follows

that we have a strictly commutative diagram

D // C

D′

F ′

OO

// C′ .

F

OO

To complete the proof it suffices to observe that any invertible natural transformation is automat-

ically coCartesian.

Proof of Lemma 7.3.3.21. The forgetful functor G : P∗(C) → Fun(∆1,C) has a left adjoint F . We

can identify F with the functor which carries a diagram B → C in C to the induced diagram

B
∐
C

""
C

<<

id // C,

regarded as an object of P∗(C). Similarly, G′ has a left adjoint F ′, which carries a diagram A →
B → C to the induced diagram

B
∐
AC

##
A // C

id //

;;

C.

We observe that a diagram in P∗(C) is a pushout square if and only if it determines a pushout

square in C after evaluating at each vertex in ∆2. Unwinding the definition, we see that the Lemma

7.3.3.21 is equivalent to the following elementary assertion: for every commutative diagram

A

  

// B //

��

C

��
B′ // C ′

in C, the induced diagram

B
∐
C

��

// B
∐
AC

��
B′

∐
C ′ // B′

∐
AC

′

is a pushout square.
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7.3.4 Tangent Bundles to ∞-Categories of Algebras

Let A be a commutative ring, and let M be an A-module. Then the direct sum A⊕M inherits the

structure of a commutative ring, with multiplication described by the formula

(a,m)(a′,m′) = (aa′, am′ + a′m).

We wish to describe an analogous construction in the case where A is an E∞-ring and M is a

module spectrum over A. In this context we cannot define a ring structure on A ⊕M simply by

writing formulas: we must obtain A ⊕M in some other way. We begin by listing some features

which we expect of this construction:

(a) The square-zero extension A⊕M admits a projection map A⊕M → A.

(b) The square-zero extension A⊕M depends functorially on M . In other words, it is given by

a functor

G : ModA → CAlg/A .

(c) The underlying spectrum of A⊕M can be identified (functorially) with the usual coproduct

of A and M in the ∞-category of Sp.

Condition (c) automatically implies that the functor G preserves limits. Since the ∞-category

ModA is stable, the functor G would then be equivalent to a composition

ModA
G′−→ Sp(CAlg/A)

Ω∞−→ CAlg/A .

In fact, we will prove something stronger: the functor G′ is an equivalence of ∞-categories. Let

us describe a functor F ′ which is homotopy inverse to G′. Let X be an object of Sp(CAlg/A).

Then the 0th space of X is a pointed object of CAlg/A, which we can identify with an augmented

A-algebra: that is, an E∞-ring B which fits into a commutative diagram

B
f

  
A

??

id // A.

We now observe that in this situation, the fiber of f inherits the structure of an A-module. We can

therefore define a functor F ′ : Sp(CAlg/A)→ ModA by taking F ′(X) to be the fiber of f .

We now have an approach to defining the desired functor G. Namely, we first construct the

functor F ′ : Sp(CAlg/A) → ModA described above. If we can prove that F ′ is an equivalence of

∞-categories, then we can define G′ to be a homotopy inverse to F ′, and G to be the composition

of G′ with the 0th space functor Ω∞ : Sp(CAlg/A)→ CAlg/A.

Our goal in this section is to flesh out the ideas sketched above. It will be convenient to work

in a bit more generality: rather than only considering commutative algebras, we consider algebras

over an arbitrary coherent ∞-operad. We begin with some generalities.
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Definition 7.3.4.1. Let O⊗ be an ∞-operad. We will say that a map q : C⊗ → O⊗ is a stable

O-monoidal ∞-category if the following conditions are satisfied:

(1) The map q is a coCartesian fibration of ∞-operads.

(2) For each object X ∈ O, the fiber CX is a stable ∞-category.

(3) For every morphism α ∈ MulO({Xi}, Y ), the associated functor α! :
∏
i CXi → CY is exact

separately in each variable.

Remark 7.3.4.2. Let O⊗ be an∞-operad and let q : C⊗ → O⊗ be a stable O-monoidal∞-category.

Then the ∞-category FunO(O,C) of sections of the restricted map q0 : C→ O is stable: this follows

immediately from Proposition HTT.5.4.7.11 .

Definition 7.3.4.3. Let O⊗ be a unital∞-operad, and let q : C⊗ → O⊗ be a coCartesian fibration

of ∞-operads. An augmented O-algebra object of C is a morphism f : A → A0 in AlgO(C) such

that A0 is an initial object of AlgO(C). (In view of Proposition 3.2.1.8, this is equivalent to the

requirement that A0(0) → A0(X) is q-coCartesian whenever 0 → X is a morphism in O⊗ with

0 ∈ O⊗〈0〉.) We let Algaug
O (C) denote the full subcategory of Fun(∆1,AlgO(C)) spanned by the

augmented O-algebra objects in C.

Suppose further that C⊗ is a stable O-monoidal ∞-category, so that FunO(O,C) is stable (Re-

mark 7.3.4.2). Let θ : AlgO(C) → FunO(O,C) denote the restriction functor. Given an augmented

O-algebra object A → A0 of C, we define the augmentation ideal to the the fiber of the induced

morphism θ(A)→ θ(A0). The formation of augmentation ideals determines a functor

Algaug
O (C)→ FunO(O,C).

Remark 7.3.4.4. Let O⊗ be a small ∞-operad and let q : C⊗ → O⊗ be a presentable O-monoidal

∞-category. It follows from Proposition HTT.5.4.7.11 that the ∞-category FunO(O,C) is pre-

sentable, and that for each object X ∈ O the evaluation functor eX : FunO(O,C) preserves small

limits and small colimits. It follows from Corollary HTT.5.5.2.9 that eX admits both a left and a

right adjoint, which we will denote by (eX)! and (eX)∗.

The following result characterizes the augmentation ideal functor by a universal property:

Proposition 7.3.4.5. Let O⊗ be a small unital ∞-operad and let C⊗ → O⊗ be a presentable

stable O-monoidal ∞-category. Let 0C denote a zero object of the stable ∞-category FunO(O,C),

and let 1C denote an initial object of AlgO(C). Then there exists a pair of adjoint functors

FunO(O,C)
f //Algaug

O (C)
g
oo with the following properties:
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(1) The functor f is given by composition

FunO(O,C) ' FunO(O,C)/0C → AlgO(C)/1C ' Algaug
O (C),

where the middle map is induced by a left adjoint F to the forgetful functor G : AlgO(C) →
FunO(O,C). Here we implicitly invoke the identification 1C ' F (0C); note that the existence

of F follows from Corollary 3.1.3.5.

(2) The functor g : Algaug
O (C)→ FunO(O,C) is the augmentation ideal functor.

(3) Let X and Y be objects of O⊗, and let (eX)! : CX → FunO(O,C) and eY : FunO(O,C) be as in

Remark 7.3.4.4. Then the composition

CX
(eX)!−→ FunO(O,C)

f−→ Algaug
O (C)

g−→ FunO(O,C)
eY−→ CY

is equivalent to the functor C 7→
∐
n>0 Symn

O,Y (C) (see Construction 3.1.3.9).

Proof. The existence of the functor g and assertion (2) follow from Proposition HTT.5.2.5.1 , to-

gether with the definition of the augmentation ideal functor. Invoking (2), we deduce that there is

a fiber sequence

g ◦ f → G ◦ F h→ G(1C)

in the stable ∞-category of functors from FunO(O,C) to itself, where G(1C) denotes the constant

functor taking the value G(1C). Theorem The results of §3.1.3 guarantee that eY ◦G◦F ◦ (eX)! can

be idenitifed with the functor
∐
n≥0 Symn

O,Y . We observe that the map h is split by the inclusion

Sym0
O,Y →

∐
n≥0 Symn

O,Y , so that we obtain an identification of g ◦ f with the complementary

summand
∐
n>0 Symn

O,Y .

Remark 7.3.4.6. Let FunO(O,C)
f //Algaug

O (C)
g
oo be as in Proposition 7.3.4.5, and let X,Y ∈ O.

Unwinding the definitions, we see that the unit map id → g ◦ f induces a functor eY ◦ (eX)! →
eY ◦g◦f ◦(eX)!. This can be identified with the inclusion of the summand Sym1

O,Y →
∐
n>0 Symn

O,Y .

The main result of this section is the following:

Theorem 7.3.4.7. Let O⊗ be a unital ∞-operad and let C⊗ → O⊗ be a stable O-monoidal ∞-

category. Then the augmentation ideal functor G : Algaug
O (C)→ FunO(O,C) induces an equivalence

of ∞-categories Sp(Algaug
O (C))→ Sp(FunO(O,C)) ' FunO(O,C).

The proof of Theorem 7.3.4.7 will use some ideas from the calculus of functors.

Lemma 7.3.4.8. Let K be a simplicial set. Let C be a pointed ∞-category which admits finite

colimits, and let D be stable ∞-category which admits sequential colimits and K-indexed colimits.

Then the derivative functor ∂ : Fun∗(C,D)→ Exc(C,D) preserves K-indexed colimits.
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Proof. Since D is stable, the loop functor ΩD is an equivalence of ∞-categories. It follows that

ΩD preserves K-indexed colimits. We observe that Exc(C,D) is the full subcategory of Fun(C,D)

spanned by those functors which are right exact; it follows that Exc(C,D) is stable under K-indexed

colimits in Fun(C,D). Similarly, Fun∗(C,D) is stable under K-indexed colimits in Fun(C,D); we

therefore conclude that K-indexed colimits in Fun∗(C,D) and Exc(C,D) are computed pointwise.

The desired result now follows from the formula for computing the derivative given in Example

6.1.1.28

Remark 7.3.4.9. Let C → O be a presentable fibration of ∞-categories, where O is small. For

each X ∈ O, let (eX)! denote a left adjoint to the evaluation functor eX : FunO(O,C)→ CX . Then

the essential images of the functors (eX)! generate the ∞-category D = FunO(O,C) under small

colimits. To prove this, let D0 denote the smallest full subcategory of D containing the essential

image of each (eX)! and closed under small colimits in D. Since the essential image of each (eX)!

is generated under small colimits by a small collection of objects, we deduce that D0 ⊆ D is

presentable. Let D be an object of D; we wish to prove that D ∈ D0. Let χ : Dop → S be the

functor represented by D. The composite functor

χ|D0 : Dop
0 → Dop → S

preserves small limits, and is therefore representable by an object D0 ∈ D0 (Proposition

HTT.5.5.2.2 ). We therefore obtain a map f : D0 → D which exhibits D0 as a D0-colocalization

of D. In particular, for each X ∈ O and each C ∈ CX , composition with f induces a homotopy

equivalence

MapCX
(C,D0(X)) ' MapD((eX)!(C), D0)→ MapD((eX)!(C), D) ' MapCX

(C,D(X)).

This proves that eX(f) is an equivalence for each X ∈ O, so that f is an equivalence and D ∈ D0

as required.

Proposition 7.3.4.10. Let O⊗ be a unital∞-operad, and let C⊗ be a presentable stable O-monoidal

∞-category. Let G : Algaug
O (C)→ FunO(O,C) be the augmentation ideal functor, and let F be a left

adjoint to G. Then the unit map id→ GF induces an equivalence of derivatives α : ∂ id→ ∂(GF ).

Proof. We wish to show that for every object M ∈ FunO(O,C), the natural transformation α induces

an equivalence

αM : M ' ∂(id)(M)→ ∂(GF )(M).

Since both sides are compatible with the formation of colimits in M , it will suffice to prove this in

the case where M = (eX)!(C) for some X ∈ O and some C ∈ CX (Remark 7.3.4.9). Moreover, to

prove that αM is an equivalence, it suffices to show that eY (αM ) is an equivalence in CY , for each

Y ∈ O. In other words, it suffices to show that α induces an equivalence

β : eY ◦ (eX)! → eY ◦ ∂(GF ) ◦ (eX)!.
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Since the functors (eX)! and eY are exact, we can identify the latter composition with ∂(eY ◦G ◦
F ◦ (eX))! (Corollary 6.2.1.24).

According to Proposition 7.3.4.5, the functor eY ◦G ◦F ◦ (eX)! can be identified with the total

symmetric power functor C 7→
∐
n>0 Symn

O,Y (C). According to Remark 7.3.4.6, we can express this

as the coproduct of eY ◦(eX)! with the functor T given by the formula T (C) '
∐
n≥2 Symn

O,Y (C). In

view of Lemma 7.3.4.8, it will suffice to show that each of the derivatives ∂ Symn
O,Y is nullhomotopic

for n ≥ 2. We observe that Symn
O,Y can be expressed as a colimit of functors of the form

CX
δ→ CnX

γ!→ CY

where γ! denotes the functor associated to an operation γ ∈ MulO({X}1≤i≤n, Y ). In view of

Lemma 7.3.4.8, it suffices to show that each constituent ∂(δ ◦ γ!) is nullhomotopic, which follows

from Proposition 6.1.3.10.

Lemma 7.3.4.11. Let C be a stable ∞-category, let f : C → D be a morphism in C, and let

f∗ : C/D → C/C be the functor given by pullback along f . Then:

(1) The functor f∗ is conservative.

(2) Let K be a weakly contractible simplicial set, and assume that C admits K-indexed colimits.

Then the functor f∗ preserves K-indexed colimits.

Proof. Let E denote the full subcategory of Fun(∆1 × ∆1,C) ×Fun({1}×∆1,C) {f} spanned by the

pullback diagrams

C ′

��

// D′

��
C

f // D.

Since C admits pullbacks, Proposition HTT.4.3.2.15 implies that evaluation along ∆1×{1} induces

a trivial Kan fibration E→ C/D. Let g denote a section of this trivial fibration. Then the functor

f∗ can be identified with the composition

C/D
g→ E

g′→ C/C ,

where g′ is given by evaluation along ∆1 × {0}.
Let u be a morphism in C/D. Let σ denote the fiber of the morphism g(u), formed in the stable

∞-category Fun(∆1 ×∆1,C). Then σ is a pullback diagram

W //

��

X

��
Y // Z
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in the ∞-category C. The objects Y and Z are both zero, so the bottom horizontal map is an

equivalence. It follows that the upper horizontal map is an equivalence. If f∗(u) is an equivalence,

then W ' 0. It follows that X ' 0, so that u is an equivalence in C/D. This completes the proof

of (1).

To prove (2), let us choose a colimit diagram p : K. → C/D. Let q = g ◦ p. We wish to prove

that g′ ◦ q is a colimit diagram in C/C . In view of Proposition HTT.1.2.13.8 , it will suffice to show

that q defines a colimit diagram in Fun(∆1 ×∆1,C). Let q = q|K, and let σ ∈ Fun(∆1 ×∆1,C) be

a colimit of q in Fun(∆1×∆1,C). Since the class of pushout diagrams in C is stable under colimits,

we conclude that σ is a pushout diagram. Let σ′ be the image under q of the cone point of K., let

α : σ → σ′ be the map determined by q, and let τ ∈ Fun(∆1 ×∆1,C) be the cofiber of α. We wish

to prove that α is an equivalence, which is equivalent to the assertion that τ ' 0. We may view τ

as a pushout diagram

W //

��

X

��
Y // Z

in C. Since C is stable, this diagram is also a pullback. Consequently, it will suffice to show that

the objects X,Y, Z ∈ C are equivalent to zero. For the object X, this follows from our assumption

that p is a colimit diagram (and Proposition HTT.1.2.13.8 ). To show that Y and Z are zero, it

suffices to observe that every constant map K. → C is a colimit diagram, because K is weakly

contractible (Corollary HTT.4.4.4.10 ).

Lemma 7.3.4.12. Suppose given an adjunction of ∞-categories

C
F //D
G
oo

where C is stable. Let C be an object of C, and consider the induced adjunction

C/C
f //D/FCg
oo

(see Proposition HTT.5.2.5.1 ). Then:

(1) If the functor G is conservative, then g is conservative.

(2) Let K be a weakly contractible simplicial set. Assume that C and D admit K-indexed colimits,

that the functor G preserves K-indexed colimits, and that C is stable. Then the ∞-categories

D/FC and C/C admit K-indexed colimits, and the functor g preserves K-indexed colimits.

Proof. We first prove (1). Proposition HTT.5.2.5.1 shows that g can be written as a composition

D/FC
g′→ C/GFC

g′′→ C/C ,
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where g′ is induced by G and g′′ is given by pullback along the unit map C → GFC. It will therefore

suffice to show that g′ and g′′ are conservative. We have a commutative diagram of ∞-categories

D/FC

��

g′ // C/GFC

��
D

G // C .

Since the vertical functors detect equivalences and G is conservative, we deduce that g′ is conser-

vative. It follows from Lemma HTT.5.2.8.22 that g′′ is conservative as well.

We now prove (2). Proposition HTT.1.2.13.8 implies that the ∞-categories C/C , C/GFC , and

D/FC admit K-indexed colimits. Consequently, it will suffice to show that g′ and g′′ preserve K-

indexed colimits. For the functor g′, this follows from Proposition HTT.1.2.13.8 and our assumption

that G preserves K-indexed colimits. For the functor g′′, we invoke Lemma 7.3.4.11.

Proof of Theorem 7.3.4.7. Enlarging the universe if necessary, we may suppose that O⊗ and C⊗

are small. The coCartesian fibration C⊗ → O⊗ is classified by a map of∞-operads χ : O⊗ → Cat×∞.

Let χ′ denote the composition of χ with the ∞-operad map Ind : Cat×∞ → Ĉat
×
∞ determined by

Remark 4.8.1.8, and let C′⊗ → O⊗ be the O-monoidal ∞-category classified by χ′. Then we have

a fully faithful functor C⊗ → C′⊗ which induces a homotopy pullback diagram

Algaug
O (C)

��

// Algaug
O (C′)

��
FunO(O,C) // FunO(O,C′)

where the horizontal maps are fully faithful inclusions. Passing to stable envelopes, we get a

homotopy pullback diagram

Sp(Algaug
O (C))

��

// Sp(Algaug
O (C′)

��
Sp(FunO(O,C)) // Sp(FunO(O,C′)).

It will therefore suffice to show that the right vertical map is an equivalence. In other words, we

may replace C⊗ by C′⊗ and thereby reduce to the case where C⊗ → O⊗ is a presentable stable

O-monoidal ∞-category.

The forgetful functor AlgO(C) → FunO(C) is conservative (Lemma 3.2.2.6) and preserves geo-

metric realizations of simplicial objects (Proposition 3.2.3.1). It follows from Lemma 7.3.4.12 that

G has the same properties. Using Theorem 4.7.3.5, we deduce that G exhibits Algaug
O (C) as monadic

over FunO(O,C) (see Definition 4.7.3.4). The desired result now follows by combining Proposition

7.3.4.10 with Corollary 6.2.2.17.
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In the special case where the ∞-operad O⊗ is coherent, we can use Theorem 7.3.4.7 to describe

other fibers of the tangent bundle of AlgO(C):

Theorem 7.3.4.13. Let O⊗ be a coherent ∞-operad, let C⊗ → O⊗ be a stable O-monoidal ∞-

category, and let A ∈ AlgO(C) be a O-algebra object of C. Then the ∞-category Sp(AlgO(C)/A) is

canonically equivalent to FunO(O,ModO
A(C)).

Corollary 7.3.4.14. Let A be an E∞-ring. There is a canonical equivalence of ∞-categories

Sp(CAlg/A) ' ModA .

Remark 7.3.4.15. In the situation of Theorem 7.3.4.13, we have an evident functor

Ω∞ : FunO(O,ModO
A(C)) ' Sp(AlgO(C)/A)→ AlgO(C)/A.

This functor associates to each M ∈ FunO(O,ModO
A(C)) a commutative algebra object which we

will denote by A ⊕M . The proof of Theorem 7.3.4.13 will justify this notation; that is, we will

see that when regarded as an object of FunO(O,C), A ⊕M can be canonically identified with the

coproduct of A and M .

Proof. The desired equivalence is given by the composition

Sp(AlgO(C)/A) ' Sp((AlgO(C)/A)A/)

' Sp((AlgO(C)A/)/A)

φ
' Sp(AlgO(ModO

A(C)))/A

' Sp(Algaug
O (ModO

A(C)))

φ′

' FunO(O,ModO
A(C)).

Here φ is the equivalence of Corollary 3.4.1.7, φ′ is given by Proposition 7.3.4.7.

Remark 7.3.4.16. Let C⊗ be a stable symmetric monoidal ∞-category (such that the tensor

product on C is exact in each variable) let A be a commutative algebra object of C, let M be an

A-module, and let A⊕M denote the image of M under the composition

ModA(C) ' Sp(CAlg(C)/A)
Ω∞−→ CAlg(C)/A.

We claim that the algebra structure on A ⊕M is “square-zero” in the homotopy category hC. In

other words:

(1) The unit map 1C → A ⊕M is homotopic to the composition of 1C → A with the inclusion

A→ A⊕M .
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(2) The multiplication

m : (A⊗A)⊕ (A⊗M)⊕ (M ⊗A)⊕ (M ⊗M) ' (A⊕M)⊗ (A⊕M)→ A⊕M

is given as follows:

(i) On the summand A⊗A, the map m is homotopic to the composition of the multiplication

map A⊗A→ A with the inclusion A→ A⊕M .

(ii) On the summands A⊗M and M ⊗ A, the map m is given by composing the action of

A on M with the inclusion M → A⊕M .

(iii) On the summand M ⊗M , the map m is nullhomotopic.

Only assertion (iii) requires proof. For this, we will invoke the fact that the commutative algebra

structure on A⊕M depends functorially on M . Consequently, for every A-module N we obtain a

map ψN : N ⊗N → N , which we must show to be nullhomotopic. Let M ′ and M ′′ be copies of the

A-module M , which we will distinguish notationally for clarity, and let f : M ′ ⊕M ′′ →M denote

the “fold” map which is the identity on each factor. Invoking the functoriality of ψ, we deduce that

the map ψM : M ⊗M →M factors as a composition

M ⊗M = M ′ ⊗M ′′ → (M ′ ⊕M ′′)⊗ (M ′ ⊕M ′′)
ψM′⊕M′′−→ M ′ ⊕M ′′ f→M.

Consequently, to prove that ψM is nullhomotopic, it will suffice to show that φ = ψM ′⊕M ′′ |(M ′⊗M ′′)
is nullhomotopic. Let πM ′ : M ′ ⊕M ′′ → M ′ and πM ′′ : M ⊕M ′′ → M ′′ denote the projections

onto the first and second factor, respectively. To prove that ψM ′⊕M ′′ is nullhomotopic, it suffices

to show that πM ′ ◦ φ and πM ′′ ◦ φ are nullhomotopic. We now invoke functoriality once more to

deduce that πM ′ ◦ φ is homotopic to the composition

M ′ ⊗M ′′ (id,0)−→ M ′ ⊗M ′
ψM′−→M ′.

This composition is nullhomotopic, since the first map factors through M ′ ⊗ 0 ' 0. The same

argument shows that πM ′′ ◦ φ is nullhomotopic, as desired.

Remark 7.3.4.17. Let A be an E∞-ring, let M be an A-module, and let A ⊕ M denote the

corresponding square-zero extension. As a graded abelian group, we may identify π∗(A⊕M) with

the direct sum (π∗A)⊕(π∗M). It follows from Remark 7.3.4.16 that the multiplication on π∗(A⊕M)

is given on homogeneous elements by the formula

(a,m)(a′,m′) = (aa′, am′ + (−1)deg(a′) deg(m)a′m).

In particular, if A is an ordinary commutative ring (viewed as a discrete E∞-ring) and M is an

ordinary A-module, then we can identify the discrete E∞-ring A⊕M with the classical square-zero

extension discussed in the introduction to this section.
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We now prove a “global” version of Theorem 7.3.4.13:

Theorem 7.3.4.18. Let O⊗ be a coherent ∞-operad, and let C⊗ → O⊗ be a presentable stable

O-monoidal ∞-category. Then there is a canonical equivalence

φ : TAlgO(C) → AlgO(C)×Fun(O,AlgO(C) FunO(O,ModO(C))

of presentable fibrations over AlgO(C).

In other words, we may view TAlgO(C) as the ∞-category whose objects are pairs (A,M), where

A is a O-algebra object of C and M is an A-module. The idea of the proof is simple: we will define

φ using a relative version of the augmentation ideal functor defined above. We will then show that

φ is a map of Cartesian fibrations, so that the condition that φ be an equivalence can be checked

fibrewise. We are then reduced to the situation of Theorem 7.3.4.13.

Proof. We will denote objects of M = AlgO(C) ×Fun(O,AlgO(C) FunO(O,ModO(C)) by pairs (A,M),

where A ∈ AlgO(C) and M ∈ FunO(O,ModO(C)) is a module over A.

Let E = Fun(∆1 ×∆1,AlgO(C))×Fun(∆2,AlgO(C)) AlgO(C) denote the ∞-category of diagrams of

the form

A

id
��

//

id

��

B

��
A

id
// A,

of O-algebra objects of C. The canonical map AlgO(C)→ AlgO(ModO(C)) determines a section s of

the projection

p : X→ AlgO(C),

which we can think of informally as assigning to an algebra A the pair (A,A) where we regard A

as a module over itself.

Let D denote the fiber product

Fun(∆1 ×∆1,M)×Fun(∆1×{1},M) Fun(∆1 × {1},AlgO(C)),

so that we can identify objects of D with commutative squares

(A,M)

��

// (B,B)

��
(A′,M ′) // (B′, B′)
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in the∞-category M. Let E denote the full subcategory of E×Fun(∆1×∆1,AlgO(C) D spanned by those

squares

(A,M)

��

// (B,B)

��
(A,M ′) // (A,A)

which are p-limit diagrams, and such that M ′ is a zero object of FunO(O,ModO
A(C)). Invoking

Proposition HTT.4.3.2.15 twice (and Theorem 3.4.3.1), we deduce that the projection map E→ E

is a trivial Kan fibration. Let r : E→ E be a section of this projection, and let r′ : E→ X be given

by evaluation in the upper left hand corner. Let ψ denote the composition

ψ : E
r→ E

r′→M,

so that ψ carries a diagram

A

id
��

//

id

��

B

f
��

A
id
// A,

to the augmentation ideal fib(f), regarded as an A-module.

We observe that the restriction map E→ Fun(∆1×{1},AlgO(C)) can be regarded as a pointed

envelope of the presentable fibration

Fun(∆1 × {1},AlgO(C))→ Fun({1} × {1},AlgO(C)) ' AlgO(C).

Let Ω∞∗ : TAlgO(C) → E exhibit TAlgO(C) as a tangent bundle to AlgO(C). Let φ denote the composi-

tion

TAlgO(C)
Ω∞−→ E

ψ−→M .

To complete the proof, it will suffice to show that φ is an equivalence of ∞-categories.

By construction, we have a commutative diagram

TAlgO(C)

q

%%

Ω∞∗ // E

q′

��

φ0 //M

q′′{{
AlgO(C),

with φ = φ0◦Ω∞∗ , where q, q′, and q′′ are presentable fibrations. Since Ω∞∗ is a right adjoint relative

to AlgO(C), it carries q-Cartesian morphisms to q′-Cartesian morphisms. We observe that φ0 carries

q′-Cartesian morphisms to q′′-Cartesian morphisms; in concrete terms, this merely translates into
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the observation that every pullback diagram

A //

f
��

B

f ′

��
A′ // B′

in AlgO(C) is also a pullback diagram in FunO(O,C) (Corollary 3.2.2.5), and therefore induces an

equivalence fib(f) ' fib(f ′) in M. It follows that φ carries q-Cartesian morphisms to q′′-Cartesian

morphisms.

We now invoke Corollary HTT.2.4.4.4 : the map φ is an equivalence of∞-categories if and only

if, for every commutative algebra object A ∈ AlgO(C), the induced map

φA : Sp(AlgO(C)/A)→ FunO(O,ModO
A(C))

is an equivalence of∞-categories. We now observe that φA can be identified with the augmentation

ideal functor which appears in the proof of Theorem 7.3.4.13, and therefore an equivalence as

required.

7.3.5 The Cotangent Complex of an Ek-Algebra

Let k → A be a map of commutative rings. The multiplication map A ⊗k A → A is a surjection

whose kernel is an ideal I ⊆ A ⊗k A. The quotient I/I2 is an A-module, and there is a canonical

k-linear derivation d : A→ I/I2, which carries an element a ∈ A to the image of (a⊗1−1⊗a) ∈ I.

In fact, this derivation is universal: for any A-module M , composition with d induces a bijection

HomA(I/I2,M)→ Derk(A,M). In other words, the quotient I/I2 can be identified with the module

of Kähler differentials ΩA/k.

The above analysis generalizes in a straightforward way to the setting of associative algebras.

Assume that k is a commutative ring and that A is an associative k-algebra. Let M be an A-

bimodule (in the category of k-modules: that is, we require λm = mλ for m ∈ M and λ ∈ k).

A k-linear derivation from A into M is a k-linear map d : A → M satisfying the Leibniz formula

d(ab) = d(a)b+ ad(b). If we let I denote the kernel of the multiplication map A⊗k A→ A, then I

has the structure of an A-bimodule, and the formula d(a) = a⊗ 1− 1⊗ a defines a derivation from

A into M . This derivation is again universal in the following sense:

(∗) For any bimodule M , composition with d induces a bijection of Hom(I,M) with the set of

k-linear derivations from I into M .

If A is commutative, then I/I2 is the universal A-module map which receives an A-bimodule

homomorphism from I. Consequently, (∗) can be regarded as a generalization of the formula

ΩA/k ' I/I2.
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Our goal in this section is to obtain an∞-categorical analogue of assertion (∗). Rather than than

working in the ordinary abelian category of k-modules, we will work with a symmetric monoidal

stable ∞-category C. In this case, we can consider algebra objects A ∈ AlgO(C) for any coherent

∞-operad O⊗. According to Theorem 7.3.4.18, we can identify Sp(AlgO(C)/A) with the stable ∞-

category ModO
A(C) of O-algebra objects of C. In particular, the absolute cotangent complex LA

can be identified an object of ModO
A(C). Our goal is to obtain a concrete description of LA in the

special case where O⊗ = E⊗k is the ∞-operad of little k-cubes.

To motivate the description, let us consider first the case where k = 1. In this case, we

can identify ModO
A(C) with the ∞-category of A-bimodule objects of C (see Theorem 4.4.1.28).

Motivated by assertion (∗), we might suppose that LA can be identified with the fiber of the

multiplication map A ⊗ A → A (which we regard as a map of A-bimodules). The domain of

this map is the free A-bimodule, characterized up to equivalence by the existence of a morphism

e : 1→ A⊗A with the property that it induces homotopy equivalences

MapModO
A(C)(A⊗A,M)→ MapC(1,M)

(here and in what follows, we will identify A-module objects of C with their images in C).

Assume now that k ≥ 0 is arbitrary, that C is presentable, and that the tensor product on C

preserves colimits separately in each variable. The forgetful functor ModO
A(C)→ C preserves small

limits and colimits (Corollaries 3.4.3.2 and 3.4.4.6), and therefore admits a left adjoint Free : C→
ModO

A(C) (Corollary HTT.5.5.2.9 ). We can formulate our main result as follows:

Theorem 7.3.5.1. Let C⊗ be a stable symmetric monoidal ∞-category and let k ≥ 0. Assume that

C is presentable and that the tensor product operation on C preserves colimits separately in each

variable. For every Ek-algebra object A ∈ AlgEk(C), there is a canonical fiber sequence

Free(1)→ A→ LA[k]

in the stable ∞-category ModO
A(C). Here Free : C → ModO

A(C) denotes the free functor described

above, and the map of A-modules Free(1) → A is determines by the unit map 1 → A in the

∞-category C.

Remark 7.3.5.2. A version of Theorem 7.3.5.1 is proven in [53].

Remark 7.3.5.3. If A is an Ek-algebra object of C, then we can think of an A-module M ∈
ModEkA (C) as an object of C equipped with a commuting family of (left) actions of A parametrized

by the (k − 1)-sphere of rays in the Euclidean space Rk which emanate from the origin. This is

equivalent to the action of a single associative algebra object of C: namely, the topological chiral

homology
∫
Sk−1 A (see the discussion at the end of §5.5.3). The free module Free(1) can be identified

with
∫
Sk−1 A itself.
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An equivalent formulation of Theorem 7.3.5.1 asserts the existence of a fiber sequence of A-

modules

LA
θ→ Ωk−1 Free(1)

θ′→ Ωk−1A.

In particular, the map θ classifies a derivation d of A into Ωk−1 Free(1). Informally, this derivation

is determined by pairing the canonical Sk−1-parameter family of maps A →
∫
Sk−1 A with the

fundamental class of Sk−1. Because the induced family of composite maps A →
∫
Sk−1 A → A is

constant, this derivation lands in the fiber of the map θ′. When k = 1, we can identify F (1) with

the tensor product A⊗A, and our heuristic recovers the classical formula d(a) = a⊗ 1− 1⊗ a.

Remark 7.3.5.4. In the statement of Theorem 7.3.5.1, the shift LA[k] can be identified with the

tensor product of LA with the pointed space Sk, regarded as the one-point compactification of the

Euclidean space Rk. With respect to this identification, the fiber sequence of Theorem 7.3.5.1 can

be constructed so as to be equivariant with respect to the group of self-homeomorphisms of Rk

(which acts on the ∞-operad Ek up to coherent homotopy, as explained in §5.4.2). However, this

equivariance is not apparent from the construction we present below.

We now explain how to deduce Theorem 7.3.5.1 from Theorem 5.3.2.5. Fix an Ek-algebra

A ∈ AlgEk(C), and let E = AlgEk(C)A/. Consider the functors X,Y, Z : E→ S∗ given informally by

the formulas

X(f : A→ B) = Ωn MapAlgEk
(A,B) Y (f : A→ B) = ZEk(f)× Z(f : A→ B) = B×.

Theorem 5.3.2.5 implies that these functors fit into a pullback diagram

X //

��

Y

��
∗ // Z,

where ∗ : E→ S∗ is the constant diagram taking the value ∗. (In fact, we have a pullback diagram

in the ∞-category of functors from E to the ∞-category MonEk(S) of Ek-spaces, but we will not

need this).

Let E′ = AlgEk(C)A//A. Let X ′ : E′ → S∗ be the functor which assigns to a diagram

B

��
A

f
??

idA // A

the fiber of the induced map X(f)→ X(idA), and let Y ′ and Z ′ be defined similarly. Using Lemma

HTT.5.5.2.3 , we deduce the existence of a pullback diagram of functors

X ′ //

��

Y ′

��
∗ // Z ′.
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Let φ : ModO
A(C)→ AlgEk(C)A//A be the functor given informally by the formula M 7→ A⊕M

(that is, φ is the composition of the identification ModO
A(C) ' Sp(AlgEk(C)/A) with the functor

Ω∞ : Sp(AlgEk(C)/A) → AlgEk(C)A//A). Let X ′′ = X ′ ◦ φ, and define Y ′′ and Z ′′ similarly. We

have a pullback diagram of functors

X ′′ //

��

Y ′′

��
∗ // Z ′′

from ModO
A(C) to S∗.

The functor Z ′′ carries an A-module M to the fiber of the map (A ⊕ M)× → A×, which

can be identified with MapC(1,M) ' Map
Mod

Ek
A (C)

(Free(1),M). In other words, the functor Z ′′

is corepresentable by the object Free(1) ∈ ModEkA (C). Similarly, Theorem 5.3.1.30 implies that

the functor Y ′′ is corepresentable by the object A ∈ ModEkA (C). By definition, the functor X ′′ is

corepresentable by the shifted cotangent complex LA[k]. Since the Yoneda embedding for ModEkA (C)

is fully faithful, we deduce the existence of a commutative diagram of representing objects

LA[k] Aoo

0

OO

Free(1)oo

OO

which is evidently a pushout square. This yields the desired fiber sequence

Free(1)→ A→ LA[k].

in ModEkA (C).

Remark 7.3.5.5. The fiber sequence of Theorem 7.3.5.1 can be chosen to depend functorially on

A (this follows from a more careful version of the construction above). We leave the details to the

reader.

Remark 7.3.5.6. Let A be a commutative algebra object of C. Then A can be regarded as an

Ek-algebra object of C for every nonnegative integer k. When regarded as an Ek-algebra object,

A has a cotangent complex which we will denote by L
(k)
A (to emphasize the dependence on k).

The topological chiral homology (see Definition 5.5.2.6)
∫
Sk−1 A can be identified with the tensor

product A ⊗ Sk−1 (Theorem 5.5.3.8), which is the (k − 1)-fold (unreduced) suspension Σk−1A

of A, regarded as an object of CAlg(C)/A. According to Theorem 7.3.5.1, we have a canonical

identification L
(k)
A ' fib(Ωk−1Σk−1(A) → A) in the ∞-category C. Since the ∞-operad Comm

is equivalent to the colimit of the ∞-operads Ek (see Corollary 5.1.1.5), we conclude that the

commutative algebra cotangent complex LA can be computed as the colimit lim−→k
L

(k)
A . Combining

this observation with the above identification, we obtain an alternative “derivation” of the formula

Ω∞Σ∞ ' lim−→k
ΩkΣk.
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Example 7.3.5.7. Let C be as in Theorem 7.3.5.1 and let ε : A→ 1 be an augmented Ek-algebra

object of C. Theorem 5.3.1.30 guarantees the existence of a Koszul dual D(A) = ZEk(ε) (see

Example 5.3.1.5). Moreover, as an object of the underlying ∞-category C, D(A) can be identified

with a morphism object Mor
Mod

Ek
A (C)

(A,1). Combining this observation with the fiber sequence of

Theorem 7.3.5.1 (and observing that the morphism object Mor
Mod

Ek
A (C)

(Free(1),1) is equivalent to

1), we obtain a fiber sequence

Mor
Mod

Ek
A (C)

(ΣkLA,1)→ D(A)
θ→ 1

in C. We may therefore view Mor
Mod

Ek
A (C)

(ΣkLA,1) as the “augmentation ideal” of the Koszul dual

D(A).

In heuristic terms, we can view the Ek-algebra A as determining a “noncommutative scheme”

SpecA, which is equipped with a point given by the augmentation ε. We can think of LA as a

version of the cotangent bundle of SpecA, and Mor
Mod

Ek
A (C)

(LA,1) as a version of the tangent space

to SpecA at the point determined by ε. The above analysis shows that, up to k-fold suspension,

this “tangent space” itself is the augmentation ideal in a different augmented Ek-algebra object of

C (namely, the Koszul dual algebra D(A)). We will return to this perspective in a future work.

We close this section with an application of Theorem 7.3.5.1. Let R be an E∞-ring, and let

A ∈ AlgR be an E1-algebra over R. By definition, A is proper (in the sense of Definition 4.6.4.2) if

and only if it is perfect when regarded as an R-module: that is, if and only if its image in ModR is

compact. We now show that the smoothness of A can also be regarded as a finiteness condition:

Proposition 7.3.5.8. Let R be an E∞-ring, and let A be an E1-algebra over R. Then:

(1) If A is compact when regarded as an object of AlgR, then it is smooth (in the sense of Definition

4.6.4.13).

(2) If A is smooth and proper, then A is a compact object of AlgR.

Corollary 7.3.5.9. Let R be an E∞-ring, and let A be an E1-algebra over R. Then A is smooth

and proper if and only if it is compact when viewed both as an object of ModR and of AlgR.

The proof of Proposition 7.3.5.8 will require some preliminaries. First, we introduce a bit of

notation. Let Cat?∞ denote the subcategory of Cat∞ whose objects are idempotent complete ∞-

categories which admit finite colimits, and whose morphisms are functors which preserve finite

colimits.

Lemma 7.3.5.10. The inclusion Cat?∞ ↪→ Cat∞ preserves filtered colimits.

Proof. It will suffice to prove the following three assertions:
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(a) Suppose we are given a filtered diagram of ∞-categories {Cα} having colimit C. If each Cα is

idempotent complete and admits finite colimits, and each of the functors Cα → Cβ preserves

finite colimits, then C admits finite colimits.

(b) In the situation of (a), suppose that D is another idempotent complete ∞-category which

admits finite colimits. Then a functor C→ D preserves finite colimits if and only if, for each

index α, the composite map Cα → C→ D preserves finite colimits.

We first prove (a). Using Proposition HTT.5.3.1.18 , we may assume without loss of generality

that our diagram is indexed by a filtered partially ordered set A. Using Proposition HTT.4.2.4.4 ,

we may assume that the diagram α 7→ Cα is given by a functor from A to the ordinary category

of simplicial sets. Since filtered colimits of simplicial sets are also homotopy colimits with respect

to the Joyal model structure, we may identify C with the colimit of the diagram {Cα}α∈A, in the

sense of ordinary category theory.

We next claim that for each α ∈ A, the canonical map Cα → C preserves finite colimits. To

prove this, choose a finite simplicial set K and a colimit diagram uα : K. → Cα. Let u denote the

composition of uα with the canonical map Cα → C. We claim that u is a colimit diagram in C. Let

us regard u as an object of the ∞-category Cu/. For each β ≥ α, let uβ denote the composition of

uα with the map Cα → Cβ and set uβ = uβ|K. Then each uβ is a colimit diagram, and can therefore

be identified with an initial object of the ∞-category (Cβ)uβ/. Since K is finite, the canonical map

lim−→
β≥α

(Cβ)uβ/ → Cu/

is an equivalence, so that we can identify u with an initial object of Cu/.

Now suppose we are given a finite simplicial set K and a diagram u : K → C. Since K is finite,

we may assume without loss of generality that u factors as a composition

K
uα−→ Cα → C

for some α ∈ A. Since Cα admits finite colimits, the diagram uα admits a colimit uα : K. → Cα. It

follows from the preceding argument that the composite map K. uα−→ Cα → C is a colimit diagram

in C which extends u. This completes that C admits finite colimits. The idempotent completeness

of C follows from Corollary HTT.4.4.5.21 .

We now prove (b). Let D be an ∞-category which admits finite colimits and suppose we are

given a functor f : C→ D. If f preserves finite colimits, then the argument given above establishes

that each composite map fα : Cα → C→ D preserves finite colimits. Conversely, suppose that each

fα preserves finite colimits, let K be a finite simplicial set, and suppose we are given a diagram

u : K → C. Since K is finite, there exists an index α ∈ A such that u is given by a composition

K
uα−→ Cα → C. Let uα : K. → Cα be a colimit diagram extending uα, and define u as before.

Then u is a colimit diagram extending u. Since fα preserves finite colimits, f ◦ u = fα ◦ uα is a

colimit diagram in D.
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Lemma 7.3.5.11. Let q : C→ D be a coCartesian fibration of ∞-categories. Assume that:

(a) For each object D ∈ D, the ∞-category CD = q−1{D} is compactly generated.

(b) For every morphism α : D → D′ in D, the induced functor α! : CD → CD′ preserves compact

objects.

(c) The ∞-category D admits small filtered colimits.

(d) The coCartesian fibration q is classified by a functor χ : D → PrL which preserves small

filtered colimits.

Let Cc denote the full subcategory of C spanned by those objects C ∈ C which are compact when

viewed as objects of Cq(C), and let q0 = q|Cc. Then:

(1) The map q0 is a coCartesian fibration.

(2) A morphism in Cc is q0-coCartesian if and only if it is q-coCartesian (when viewed as a

morphism of C).

(3) Let χ0 : D→ Cat∞ classify the coCartesian fibration q0. Then χ0 preserves filtered colimits.

Proof. Assertions (1) and (2) follow immediately from assumptions (a) and (b). We now prove (3).

Let X denote the subcategory of PrL whose objects are compactly generated ∞-categories, and

whose morphisms are functors which preserve small colimits and compact objects. Assumptions

(a) and (b) guarantee that the map χ takes values in X ⊆ PrL. Note that the functor χ0 takes

values in Cat?∞ ⊆ Cat∞
According to Lemma 5.3.2.9, the inclusion functor X ↪→ PrL preserves small colimits. It follows

from assumption (d) that the functor χ : D→ X preserves small filtered colimits.

According to Lemma 5.3.2.9, the construction E 7→ Ind(E) induces an equivalence of ∞-

categories Ind : Cat?∞ → X. Using (2), we see that the inclusion Cc ↪→ C determines a natural

transformation χ0 → χ in the ∞-category of functors from D to Ĉat∞, which induces an equiv-

alence χ ' Ind ◦χ0. It follows that the functor χ0 : D → Cat?∞ preserves small filtered colimits.

Applying Lemma 7.3.5.10, we deduce that the composite functor D→ Cat?∞ → Cat∞ also preserves

small filtered colimits.

Lemma 7.3.5.12. Let χ : Alg → PrL be a map classifying the forgetful functor LMod(Sp) →
Alg(Sp) = Alg (so that χ(A) = LModA). Then χ preserves all colimits indexed by weakly con-

tractible simplicial sets K.

Proof. Let us regard PrL as a symmetric monoidal∞-category (see Proposition 4.8.1.15). According

to Proposition 4.8.2.18, the forgetful functor ModSp(PrL)→ PrL is a fully faithful embedding, whose

essential image is the full subcategory of PrL spanned by the presentable stable ∞-categories. We
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can identify ModSp(PrL)Sp / with an ∞-category whose objects are pairs (C, C), where C is a

presentable stable ∞-category and C ∈ C is an object. The functor χ factors as a composition

Alg = Alg(Sp)
Θ→ ModSp(PrL)Sp /

φ→ ModSp(PrL)
ψ→ PrL .

Here the functor Θ admits a right adjoint (which carries a pair (C, C) to the spectrum of endo-

morphisms of C; see Theorem 4.8.5.11), and therefore preserves all small colimits. The functor φ

preserves colimits indexed by weakly contractible simplicial sets (Proposition HTT.4.4.2.9 ), and

the functor ψ preserves all small colimits (Corollary 4.2.3.5). It follows that χ preserves colimits

indexed by small weakly contractible simplicial sets.

Lemma 7.3.5.13. The construction R 7→ LModperf
R determines a functor Alg → Cat∞ which

commutes with filtered colimits.

Proof. Combine Lemmas 7.3.5.12 and 7.3.5.11.

Proof of Proposition 7.3.5.8. We first prove (1). Assume that A ∈ AlgR is compact; we wish to

prove that the evaluation module Ae ∈ A⊗RArevBModR(ModR) ' LModA⊗RArev is left dualizable

(see Proposition 4.6.4.12). The collection of left dualizable modules over A ⊗R Arev comprise a

stable subcategory of LModA⊗RArev which is closed under the formation of retracts and contains

A⊗R Arev. Consequently, to show that Ae belongs to this subcategory, it will suffice to show that

Ae is perfect: that is, that Ae is a compact object of LModA⊗RArev . Using Proposition 4.6.3.11, we

are reduced to proving that A is compact when viewed as an object of ABModA(ModR).

Using Theorem 7.3.4.7, we can identify the ∞-category of spectrum objects Sp((AlgR)/A) with

the ∞-category ABModA(ModR). Since the ∞-category AlgR is compactly generated, the zeroth

space functor Ω∞ : ABModA(ModR)→ (AlgR)/A preserves filtered colimits, so its left adjoint Σ∞ :

(AlgR)/A → ABModA(ModR) preserves compact objects. In particular, if A is a compact object of

AlgR, then its absolute cotangent complex LA = Σ∞(A) is a compact object of ABModA(ModR).

Theorem 7.3.5.1 supplies a cofiber sequence of A-bimodules

LA → A⊗R Arev → A.

Since A⊗RArev is also a compact object of ABModA(ModR), we deduce that A is a compact object

of ABModA(ModR). This completes the proof of (1).

We now prove (2). Assume that A is smooth and proper as an object of AlgR; we wish to prove

that A is a compact object of AlgR. Using Corollary 4.8.5.6, we deduce that for every algebra

object B ∈ AlgR, the canonical map

MapAlg(R)(A,B)→ BBModA(ModR)×LModB {B}

is a homotopy equivalence.
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Let YB denote the full subcategory of BBModA(ModR) spanned by the compact objects, and

observe that the canonical map MapAlgR
(A,B) → BBModA(ModR) carries a map φ : A → B

to the R-module spectrum B, regarded as a B-A bimodule via φ. This is the image of A ∈
ABModA(ModR) under the base change functor ABModA(ModR) → BBModA(ModR), and there-

fore a compact object of BBModA(ModR) (since A is smooth). Since A is proper, the forgetful

functor BBModA(ModR)→ LModB carries YB into LModperf
B , so that θ induces a homotopy equiv-

alence

MapAlgR
(A,B)→ YB ×LModperf

B
{B}.

Since the constructions B 7→ YB and B 7→ LModperf
B commute with filtered colimits (Lemma

7.3.5.13 and Proposition 4.6.3.11), we conclude that the functor B 7→ MapAlgR
(A,B) commutes

with filtered colimits.

7.3.6 The Tangent Correspondence

Let C be an∞-category, TC a tangent bundle to C (Definition 7.3.1.9), and L : C→ TC the associated

cotangent complex functor (Definition 7.3.2.14). Then there exists a coCartesian fibration p : M→
∆1 with M×∆1{0} ' C, M×∆1{1} ' TC, such that the associated functor C→ TC can be identified

with L (see §HTT.5.2.1 ). We will refer to M as a tangent correspondence to C. The tangent

correspondence will play an essential role in §7.4. For this reason, we devote the present section to

giving an explicit construction of a tangent correspondence to C, which we will denote by MT (C).

Remark 7.3.6.1. Since the cotangent complex functor L admits a right adjoint, the coCartesian

fibration p : M → ∆1 considered above is also a Cartesian fibration, associated to the composite

functor

TC → Fun(∆1,C)→ Fun({0},C) ' C .

Recall that a correspondence between a pair of ∞-categories C and D is an ∞-category M

equipped with a functor p : M → ∆1 and isomorphisms C ' M×∆1{0} and D ' M×∆1{1}. If p

is a Cartesian fibration, then a correspondence determines a functor D→ C, which is well-defined

up to homotopy. It is therefore reasonable to think of a correspondence as a “generalized functor”.

Our first result describes how to compose these “generalized functors” with ordinary functors.

Lemma 7.3.6.2. Suppose given sequence of maps A
f→ B → ∆1 in the category of simplicial sets.

Let A1 denote the fiber product A×∆1 {1}, and define B1 similarly. If f is a categorical equivalence,

then the induced map A1 → B1 is a categorical equivalence.

Proof. This follows immediately from the definition, since C(A1) and C(B1) can be identified with

the full simplicial subcategories of C(A) and C(B) lying over the object {1} ∈ C(∆1).

Proposition 7.3.6.3. Let C and D be ∞-categories, and let p : M→ ∆1 be a correspondence from

C to D. Let G : D′ → D be a categorical fibration of simplicial sets. We define a new simplicial
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set M′ equipped with a map p′ : M′ → M, so that the following universal property is satisfied: for

every map of simplicial sets A→ ∆1, we have a pullback diagram of sets

Hom∆1(A,M′)

��

// Hom(A×∆1 {1},D′)

��
Hom∆1(A,M) // Hom(A×∆1 {1},D).

Then:

(1) The map M′ →M is an inner fibration of simplicial sets.

(2) The simplicial set M′ is an ∞-category.

(3) Let f : C → D′ be a morphism in M′ from an object of C to an object of D′. Then f is a

(p ◦ p′)-Cartesian morphism of M′ if and only if p′(f) is a p-Cartesian morphism of M.

(4) Assume that the map M → ∆1 is a Cartesian fibration, associated to a functor G′ : D → C.

Then the composite map M′ → M → ∆1 is a Cartesian fibration, associated to the functor

G′ ◦G.

Proof. We first prove (1). We wish to show that the projection M′ → M has the right lifting

property with respect to every inclusion A → B which is a categorical equivalence of simplicial

sets. Fix a map α : B → ∆1; we must show that it is possible to solve any mapping problem of the

form

A×∆1 {1} //
� _

i
��

D′

G
��

B ×∆1 {1} // D .

Since G is assumed to be a categorical fibration, it will suffice to show that i is a categorical

equivalence, which follows from Lemma 7.3.6.2. This completes the proof of (1). Assertion (2)

follows immediately.

We now prove (3). Let f denote the image of f in M. We have a commutative diagram of

simplicial sets

M/f

ψ

!!
M′/f

φ
==

// C/C .

We observe that f is (p ◦ p′)-Cartesian if and only if (ψ ◦ φ) is a trivial Kan fibration, and that f

is p-Cartesian if and only if ψ is a trivial Kan fibration. The desired equivalence now follows from

the observation that φ is an isomorphism.
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To prove (4), let us suppose that we are given a map h : D×∆1 → M which is a p-Cartesian

natural transformation from G′ to idD. Using the definition of M′, we see that the composition

D′×∆1 → D×∆1 h→M

can be lifted uniquely to a map h′ : D′×∆1 →M′ which is a natural transformation from G′ ◦G to

idD′ . It follows from (3) that h′ is a (p ◦ p′)-Cartesian transformation, so that (p ◦ p′) is a Cartesian

fibration associated to the functor G′ ◦G.

We now describe an important example of a correspondence.

Notation 7.3.6.4. Let K ⊆ ∆1×∆1 denote the full subcategory spanned by the vertices {i}×{j}
where i ≤ j (so that K is isomorphic to a 2-simplex ∆2). For every simplicial set A equipped with

a map f : A→ ∆1, we let A denote the inverse image of K under the induced map

∆1 ×A→ ∆1 ×∆1.

Note that the map A
(f,id)→ ∆1 × A factors through A; we will denote the resulting inclusion by

ψA : A→ A.

Let C be an∞-category. The fundamental correspondence of C is a simplicial set M0(C) equipped

with a map p : M0(C) → ∆1, characterized by the following universal property: for every map of

simplicial sets A→ ∆1, we have a canonical bijection of sets

Hom∆1(A,M0(C)) ' Hom(A,C).

The inclusions ψA : A → A determine a map q : M0(C) → C. Together p and q determine a map

M0(C)→ C×∆1, which we will call the fundamental projection.

Remark 7.3.6.5. Let C be an∞-category, and let M0(C) be its fundamental correspondence. Then

the fiber M0(C)×∆1 {0} is canonically isomorphic to C, and the fiber M0(C)×∆1 {1} is canonically

isomorphic to Fun(∆1,C). We will generally abuse terminology, and use these isomorphisms identify

C and Fun(∆1,C) with subsets of M0(C). The map q : M0(C) → C is given by the identity on C,

and by evaluation at {1} ⊆ ∆1 on Fun(∆1,C).

Proposition 7.3.6.6. Let C be an ∞-category, let M0(C) be the fundamental correspondence of

C, and let π : M0(C) → C×∆1 denote the fundamental projection, and p : M0(C) → ∆1 the

composition of π with projection onto the second factor. Then:

(1) The fundamental projection π is a categorical fibration. In particular, M0(C) is an∞-category.

(2) The map p is a Cartesian fibration.
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(3) Let A ∈ C ⊆ M0(C), and let (f : B → C) ∈ Fun(∆1,C) ⊆ M0(C). Let α : A → f be a

morphism in M0(C), corresponding to a commutative diagram

A
α //

��

B

f
��
C

in C. Then α is p-Cartesian if and only if α is an equivalence in C.

(4) The Cartesian fibration p is associated to the functor Fun(∆1,C)→ C given by evaluation at

the vertex {0} ∈ ∆1.

(5) The map p is also a coCartesian fibration, associated to the diagonal inclusion C →
Fun(∆1,C).

The proof will require a few lemmas. In what follows, we will employ the conventions of Notation

7.3.6.4.

Lemma 7.3.6.7. Let A be a simplicial set equipped with a map A→ ∆1, and let

Ã = (A× {0})
∐

A1×{0}

(A1 ×∆1) ⊆ A.

Then the inclusion Ã ⊆ A is a categorical equivalence.

Proof. The functors A 7→ Ã and A 7→ A both commute with colimits. Since the class of categorical

equivalences is stable under filtered colimits, we may reduce to the case where A has only finitely

many simplices. We now work by induction on the dimension n of A, and the number of nonde-

generate simplices of dimension n. If A is empty there is nothing to prove; otherwise there exists

a pushout diagram

∂∆n //

��

∆n

��
A′ // A.

This induces homotopy pushout diagrams

∂∆n //

��

∆n

��

∂̃∆n //

��

∆̃n

��

A
′ // A Ã′ // Ã.

It will therefore suffice to prove the lemma after replacing A by A′, ∂∆n, or ∆n. In the first

two cases this follows from the inductive hypothesis. We may therefore assume that A = ∆n. In

particular, A is an ∞-category. The composite map

A ⊆ A×∆1 → ∆1
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is a Cartesian fibration associated to the inclusion i : A1 → A, and Ã can be identified with the

mapping cylinder of i. The desired result now follows from Proposition HTT.3.2.2.10 .

Lemma 7.3.6.8. Suppose given maps of simplicial sets A
f→ B → ∆1. If f is a categorical

equivalence, then the induced map A→ B is a categorical equivalence.

Proof. Let Ã and B̃ be defined as in Lemma 7.3.6.7. We have a commutative diagram

Ã� _

��

f̃ // B̃� _

��
A

f // B,

where the vertical maps are categorical equivalences by Lemma 7.3.6.7. It will therefore suffice

to show that f̃ is a categorical equivalence. The map f̃ determines a map of homotopy pushout

diagrams

A1 × {0} //

��

A× {0}

��

B1 × {0} //

��

B × {0}

��

A1 ×∆1 // Ã B1 ×∆1 // B̃.

It therefore suffices to show that the map A1 → B1 is a categorical equivalence, which follows from

Lemma 7.3.6.2.

Proof of Proposition 7.3.6.6. We first prove (1). Consider a lifting problem

A� _

i

��

//M0(C)

π
��

B

<<

// C×∆1,

where i is a monomorphism of simplicial sets. We must show that this lifting problem has a solution

if i is a categorical equivalence. Unwinding the definitions (and using the conventions of Notation

7.3.6.4, we are reduced to showing that C has the extension property with respect to the inclusion

j : A
∐
AB → B. For this, it suffices to show that j is a categorical equivalence. Since the Joyal

model structure is left proper, it will suffice to show that the inclusion A → B is a categorical

equivalence, which follows from Lemma 7.3.6.8.

We next prove (3). Let us identify α with a 2-simplex in C. Unwinding the definitions, we

see that α is p-Cartesian if and only if the map φ : C/α → C/f is a trivial Kan fibration. In

view of Proposition HTT.1.2.4.3 , this is equivalent to the requirement that the map A → B

be an equivalence in C/C , which is equivalent to the requirement that α be an equivalence in C

(Proposition HTT.1.2.13.8 ).
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We now prove (2). Since p is the composition of π with the projection map C×∆1 → ∆1, we

deduce immediately that p is an inner fibration. To show that p is a Cartesian fibration, it will

suffice to show that for every object X ∈ M0(C) and every morphism α : y → p(x) in ∆1, there

exists a p-Cartesian morphism α : Y → X lifting α. If α is degenerate, we can choose α to be

degenerate. We may therefore assume that X ∈ Fun(∆1,C) classifies a map B → C in C. We can

then choose α to classify the diagram

B
id //

  

B

��
C.

It follows from (3) that α is p-Cartesian.

Let G : Fun(∆1,C) → C denote the functor given by evaluation at the vertex {0}. To prove

(4), we must exhibit a p-Cartesian natural transformation h : ∆1 × Fun(∆1,C) → M0(C) from G

to idFun(∆1,C). We now choose h to classify the composite map

K × Fun(∆1,C)
(h0,id)−→ ∆1 × Fun(∆1,C)→ C

where K is defined as in Notation 7.3.6.4, and h0 : K ' ∆2 → ∆1 is the map which collapses

the edge ∆{0,1} ⊆ ∆2. It follows from (3) that h is a Cartesian transformation with the desired

properties.

We now prove (5). Let F : C→ Fun(∆1,C) denote the diagonal embedding. The G ◦ F = idC.

The identity map idC → G ◦ F is the unit for an adjunction between G and F . Thus p is also a

coCartesian fibration, associated to the functor F , as desired.

Definition 7.3.6.9. Let C be a presentable ∞-category and let G : TC → Fun(∆1,C) be a tangent

bundle to C. We define the tangent correspondence MT (C) to be the result of applying the con-

struction of Proposition 7.3.6.3 using the fundamental correspondence M0(C) and the functor G.

By construction, MT (C) is equipped with a projection map π : MT (C)→ ∆1 × C.

Remark 7.3.6.10. The terminology of Definition 7.3.6.9 is slightly abusive: the tangent corre-

spondence MT (C) depends on a choice of tangent bundle TC → Fun(∆1,C). However, it is easy to

eliminate this ambiguity: for example, we can use an explicit construction of TC (see Proposition

7.3.1.10).

The following result is an immediate consequence of Propositions 7.3.6.6, Proposition 7.3.6.3,

and the definition of the cotangent complex functor L:

Proposition 7.3.6.11. Let C be a presentable ∞-category. Then:

(1) The projection MT (C)→ ∆1 × C is a categorical fibration.
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(2) The composite map p : MT (C) → ∆1 × C → ∆1 is a Cartesian fibration, associated to the

functor

TC → Fun(∆1,C)→ Fun({0},C) ' C .

(3) The map p is also a coCartesian fibration, associated to the cotangent complex functor L :

C→ TC.

7.4 Deformation Theory

In §7.3, we studied the general formalism of cotangent complexes. For every presentable∞-category

C, we defined the tangent bundle TC and a relative cotangent complex functor Fun(∆1,C)→ TC

(f : A→ B) 7→ LB/A ∈ Sp(C/B).

In this section, we will specialize to the situation where C is the ∞-category CAlg of E∞-rings. In

this case, Theorem 7.3.4.18 allows us to identify the tangent bundle TC with the∞-category of pairs

(A,M), where A is an E∞-ring and M is an A-module. We will henceforth use this identification to

view the relative cotangent complex LB/A as taking its value in the∞-category ModB of B-module

spectra.

The basic idea we emphasize in this section is that the theory of the relative cotangent complex

“controls” the deformation theory of E∞-rings. In §7.4.1, we will make this precise by introducing

the notion of a square-zero extension of E∞-rings. To every map φ : A→ B of E∞-rings and every

map of B-modules η : LB/A → M , we will associate a new A-algebra Bη equipped with a map

Bη → B: roughly speaking, Bη is given by the fiber of the A-linear derivation B →M determined

by η. We say that a map B̃ → B is a square-zero extension if it arises via this construction.

Our main result asserts that a large class of morphisms can be obtained as square zero extensions:

for example, the Postnikov tower of a connective E∞-ring B is given by successive square-zero

extensions

· · · → τ≤2B → τ≤1B → τ≤0B.

Suppose we are given a square-zero extension E∞-rings Ã → A. In this case, there is a close

relationship between E∞-algebras over Ã and E∞-algebras over A. Every E∞-algebra B̃ over Ã

determines an E∞-algebra B = B̃ ⊗
Ã
A. Under some mild connectivity assumptions, we will see

that B̃ can be recovered as a square-zero extension of B. This leads to an algebraic version of

Kodaira-Spencer theory, which reduces the classification of E∞-algebras over Ã to the classification

over A, together with a “linear” problem involving the relative cotangent complex (see Theorem

7.4.2.7).

In §7.4.3, will study connectivity and finiteness properties of the relative cotangent complex

LB/A associated to a morphism φ : A→ B between connective E∞-rings. It is not difficult to show

that finiteness properties of f are inherited by the relative cotangent complex LB/A. For example,
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if f is of finite presentation, then the relative cotangent complex LB/A is a perfect B-module. We

will see that the converse holds under some mild additional assumptions (Theorem 7.4.3.18).

Remark 7.4.0.1. There is a voluminous literature on deformation theory in the setting of ordinary

commutative algebra and in algebraic geometry. Some references include [97], [75], and [76].

7.4.1 Square-Zero Extensions

Let R be a commutative ring. A square-zero extension of R is a commutative ring R̃ equipped with

a surjection φ : R̃ → R, with the property that the product of any two elements in ker(φ) is zero.

In this case, the kernel M = ker(φ) inherits the structure on R-module.

Let R̃ be a square-zero extension of a commutative ring R by an R-module M . There exists a

ring homomorphism

(R⊕M)×R R̃→ R̃,

given by the formula

(r,m, r̃) 7→ r̃ +m.

This map exhibits R̃ as endowed with an action of R ⊕M in the category of commutative rings

with a map to R (we observe that R ⊕M has the structure of an abelian group object in this

category). Consequently, in some sense square-zero extensions of R by M can be viewed as torsors

for the trivial square-zero extension R⊕M .

In general, if φ : R̃ → R is a square-zero extension of R by M ' ker(φ), we say that R̃ is

trivial if φ admits a section. In this case, a choice of left inverse to φ determines an isomorphism

R̃ ' R ⊕M . Such an isomorphism need not exist (for example, we could take R = Z /pZ and

R̃ = Z /p2 Z), and need not be unique. However, any two sections of φ differ by a derivation from

R into M , which is classified by an R-linear map from the module of Kähler differentials ΩR into

M . Conversely, any derivation of R into M determines an automorphism of R̃ (whether R̃ is trivial

or not), which permutes the set of sections of φ. Consequently, we deduce that the automorphism

group of the trivial square zero extension of R by M can be identified with the group of R-module

homomorphisms Ext0
R(ΩR,M).

It is tempting to try to pursue this analogy further, and to try identify the isomorphism classes

of square-zero extensions of R by M with the higher Ext-group Ext1
R(ΩR,M). Given an extension

class η ∈ Ext1
R(ΩR,M), we can indeed construct a square-zero extension R̃ of R by M . Indeed, let

us view η as defining an exact sequence

0→M → M̃
f→ ΩR → 0
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in the category of R-modules. We now form a pullback diagram

R̃ //

��

R

d

��
M̃ // ΩR

in the category of abelian groups. We can identify elements of R̃ with pairs (r, m̃), where r ∈ R
and m̃ ∈ M̃ satisfy the equation f(m̃) = dr. The abelian group R̃ admits a ring structure, given

by the formula

(r, m̃)(r′, m̃′) = (rr′, r′m̃+ rm̃′).

It is easy to check that R̃ is a square-zero extension of R by M . However, not every square-zero

extension of R by M can be obtained from this construction. In order to obtain all square-zero

extensions of R, it is necessary to replace the module of Kähler differentials ΩR by a more refined

invariant, such as the E∞-ring cotangent complex LR.

Our goal in this section is to study analogues of all of the ideas sketched above in the setting of

E∞-rings. Roughly speaking, we will mimic the above construction to produce a functor Φ : Der→
Fun(∆1,CAlg). Here Der denotes an ∞-category of triples (A,M, η), where A is an E∞-ring, M

is an A-module, and η : A → M [1] is a derivation (which we can identify with a morphism of

A-modules LA into M [1]). The functor Φ carries (A,M, η) to a map Aη → A; here we will refer to

Aη as the square-zero extension of A classified by η.

Using this definition, it follows more or less tautologically that square-zero extensions of an

E∞-ring A are “controlled” by the absolute cotangent complex of LA. For example, if LA vanishes,

then every square-zero extension of A by an A-module M is equivalent to the trivial extension

A ⊕ M constructed in §7.3.4. The trouble with this approach is that it is not obvious how to

give an intrinsic characterization of the class of square-zero extensions. For example, suppose

that f : Ã → A is a square-zero extension of A by an A-module M . We then have a canonical

identification M ' fib(f) in the ∞-category of Ã-modules. However, in general there is no way to

recover the A-module structure on fib(f) from the morphism f alone. In other words, the functor

Φ described above fails to be fully faithful. We can remedy the situation by studying a more

restricted class of morphisms between E∞-rings, which we call n-small extensions. This collection

of morphisms has two important features:

(i) Given a map f : Ã→ A, it is easy to decide whether or not f is an n-small extension. Namely,

one must check that the fiber fib(f) has certain connectivity properties, and that a certain

bilinear map πn fib(f)× πn fib(f)→ π2n fib(f) vanishes.

(ii) On the class of n-small extensions of E∞-rings, one can construct an inverse to the functor

Φ (Theorem 7.4.1.26). In particular, every n-small extension is a square-zero extension.
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In conjunction, (i) and (ii) imply that square-zero extensions exist in abundance. For example,

if A is a connective E∞-ring, then the Postnikov tower

. . .→ τ≤2A→ τ≤1A→ τ≤0A

is a sequence of square-zero extensions.

We begin by defining the notion of a square-zero extension in an arbitrary presentable ∞-

category C. Although we are primarily interested in the case where C = CAlg is the ∞-category

of E∞-rings, the theory we develop here also has many applications in “nonlinear” settings. For

example, when C is the ∞-category of spaces, it can be regarded as a generalization of classical

obstruction theory.

Definition 7.4.1.1. Let C be a presentable ∞-category, and let p : MT (C) → ∆1 × C denote a

tangent correspondence to C (see Definition 7.3.6.9). A derivation in C is a map f : ∆1 → MT (C)

such that p ◦ f coincides with the inclusion ∆1 × {A} ⊆ ∆1 × C, for some A ∈ C. In this case, we

will identify f with a morphism η : A→ M in MT (C), where M ∈ TC ×C {A} ' Sp(C/A). We will

also say that η : A→M is a derivation of A into M .

We let Der(C) denote the fiber product Fun(∆1,MT (C))×Fun(∆1,∆1×C)C. We will refer to Der(C)

as the ∞-category of derivations in C.

Remark 7.4.1.2. In the situation of Definition 7.4.1.1, let L : C → TC be a cotangent complex

functor. A derivation η : A→M can be identified with a map d : LA →M in the fiber TC×C{A} '
Sp(C/A). We will often abuse terminology by identifying η with d, and referring to d as a derivation

of A into M .

Definition 7.4.1.3. Let C be a presentable ∞-category, and let p : MT (C)→ ∆1×C be a tangent

correspondence for C. An extended derivation is a diagram σ

Ã
f //

��

A

η

��
0 //M

in MT (C) with the following properties:

(1) The diagram σ is a pullback square.

(2) The objects Ã and A belong to C ⊆MT (C), while 0 and M belong to TC ⊆MT (C).

(3) Let f : ∆1 → C be the map which classifies the morphism f appearing in the diagram above,

and let e : ∆1 × ∆1 → ∆1 be the unique map such that e−1{0} = {0} × {0}. Then the
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diagram

∆1 ×∆1 σ //

e
��

MT (C)
p // ∆1 × C

��
∆1 f // C

is commutative.

(4) The object 0 ∈ TC is a zero object of Sp(C/A). Equivalently, 0 is a p-initial vertex of MT (C).

We let D̃er(C) denote the full subcategory of

Fun(∆1 ×∆1,MT (C))×Fun(∆1×∆1,∆1×C) Fun(∆1,C)

spanned by the extended derivations.

If σ is an extended derivation in C, then η is a derivation in C. We therefore obtain a restriction

functor

D̃er(C)→ Der(C).

Let C and MT (C) be above, and let

σ ∈ Fun(∆1 ×∆1,MT (C))×Fun(∆1×∆1,∆1×C) Fun(∆1,C).

Then σ automatically satisfies conditions (2) and (3) of Definition 7.4.1.3. Moreover, σ satisfies

condition (4) if and only if σ is a p-left Kan extension of σ|{1} × ∆1 at the object {0} × {1}.
Invoking Proposition HTT.4.3.2.15 twice, we deduce the following:

Lemma 7.4.1.4. Let C be a presentable ∞-category. Then the forgetful ψ : D̃er(C)→ Der(C) is a

trivial Kan fibration.

Notation 7.4.1.5. Let C be a presentable ∞-category. We let Φ : Der(C) → Fun(∆1,C) denote

the composition

Der(C)→ D̃er(C)→ Fun(∆1,C),

where the first map is a section of the trivial fibration D̃er(C) → Der(C), and the second map is

induced by the inclusion ∆1 × {0} ⊆ ∆1 × ∆1. In other words, Φ associates to every derivation

η : A→M a map f : Ã→ A which fits into a pullback diagram

Ã
f //

��

A

η

��
0 //M

in the ∞-category MT (C).
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Definition 7.4.1.6. Let C be a presentable ∞-category, and let Φ : Der(C) → Fun(∆1,C) be the

functor described in Notation 7.4.1.5. We will denote the image of a derivation (η : A → M) ∈
Der(C) under the functor Φ by (Aη → A).

Let f : Ã→ A be a morphism in C. We will say that f is a square-zero extension if there exists

a derivation η : A → M in C and an equivalence Ã ' Aη in the ∞-category C/A. In this case, we

will also say that Ã is a square-zero extension of A by M [−1].

Remark 7.4.1.7. Let η : A → M be a derivation in a presentable ∞-category C, and let A ⊕M
denote the image of M under the functor Ω∞ : Sp(C/A) → C. Using Proposition HTT.4.3.1.9 , we

conclude that there is a pullback diagram

Aη //

��

A

dη
��

A
d0 // A⊕M

in the ∞-category C. Here we identify d0 with the map associated to the zero derivation LA →M .

Remark 7.4.1.8. In the situation of Remark 7.4.1.7, let B be another object of C. We have a

pullback diagram of mapping spaces

MapC(B,Aη) //

��

MapC(B,A)

��
MapC(B,A) //MapC(B,A⊕M).

Fix a map φ : B → A in C, and let φ∗ : Sp(C/B) → Sp(C/A) denote the functor induced

by φ, so that φ determines a map η′ : φ∗LB → LA
η→ M . It follows that the fiber prod-

uct MapC(B,Aη) ×MapC(B,A) {φ} can be identified with the space of paths from 0 to η′ in

MapSp(C/A)(φ
∗LB,M).

Example 7.4.1.9. Let C be a presentable ∞-category containing an object A. Let M ∈ Sp(C/A),

and let η : A → M be the derivation classified by the zero map LA → M in Sp(C/A). Since

the functor Ω∞ : Sp(C/A) → C/A preserves small limits, we conclude from Remark 7.4.1.7 that

the square-zero extension Aη can be identified with Ω∞M [−1]. In particular, if M = 0, then the

canonical map Aη → A is an equivalence, so we can identify Aη with A.

Warning 7.4.1.10. Let C be a presentable ∞-category, and let f : Ã → A be a morphism in

C. Suppose f is a square-zero extension, so that there exists a map η : LA → M in Sp(C/A)

and an equivalence Ã ' Aη. In this situation, the object M and the map η need not be uniquely

determined, even up to equivalence. However, this is true in some favorable situations; see Theorem

7.4.1.26.
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Example 7.4.1.11. Suppose we are given a fibration of simply connected spaces

F → E
f→ B,

such that πkF ' ∗ for all k 6= n. In this case, the fibration f is classified by a map η from B into

an Eilenberg-MacLane space K(A,n + 1), where A = πnF . It follows that we have a homotopy

pullback diagram

E
f //

��

B

(id,η)
��

B
(id,0) // B ×K(A,n+ 1).

The space B × K(A,n + 1) is an infinite loop object of the ∞-category of spaces over B: it has

deloopings given by K(A,n + m) for m ≥ 1. Consequently, the above diagram exhibits E as a

square-zero extension of B in the ∞-category of spaces.

In fact, using a slightly more sophisticated version of the same construction, one can show that

the same result holds without any assumptions of simple-connectedness; moreover it is sufficient

that the homotopy groups of F be confined to a small range, rather than a single degree.

Our ultimate goal in this section is to show that, in the setting of E∞-rings, square-zero exten-

sions exist in abundance. For example, if A is a connective E∞-ring, then the Postnikov tower

. . .→ τ≤2A→ τ≤1A→ τ≤0A,

consists of square-zero extensions.

We begin by considering the case of associative algebra objects. Let C be a presentable stable

∞-category, and assume that C is equipped with monoidal structure such that the tensor product

functor ⊗ : C×C→ C preserves small colimits separately in each variable. According to Theorem

7.3.4.13, for any associative algebra object A ∈ C, we have a canonical equivalence

Sp(Alg(C)/A) ' ModAssoc
A (C) ' ABModA(C).

If A is an associative algebra object of C, we let LA denote its absolute cotangent complex (viewed

as an object of ABModA(C)). Given a map of associative algebras f : A → B, we let LB/A ∈
BBModB(C) denote the relative cotangent complex of f .

Remark 7.4.1.12. Applying Theorem 7.3.5.1 in the monoidal∞-category ABModA(C), we deduce

the existence of a canonical fiber sequence

LB/A → B ⊗A B → B.

Let f : A→ B be a map of associative algebra objects of C. The fiber I of f can be identified

with the limit of a diagram

A
f→ B ← 0,
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which we can view as a diagram of nonunital algebra objects of the monoidal ∞-category

ABModA(C) of A-bimodule objects of C. It follows that I inherits the structure of a nonunital

algebra in ABModA(C). In particular, I has the structure of an A-bimodule, and there is a natural

multiplication map m : I ⊗A I → I.

Remark 7.4.1.13. In the above situation, the multiplication I ⊗A I is given by the composition

I ⊗A I → I ⊗A A ' I.

Our next result can be regarded as a partial justification for the terminology “square-zero

extension”.

Proposition 7.4.1.14. Let C be a presentable stable∞-category equipped with a monoidal structure

which preserves colimits separately in each variable, let f : Aη → A be a square-zero extension in

Alg(C), and let I denote the fiber of f . Then the multiplication map θ : I⊗Aη I → I is nullhomotopic

(as a map of Aη-bimodules).

Proof. Without loss of generality, we may assume that Aη is a square-zero extension classified by a

derivation η : LA →M [1], for some A-A-bimodule M ∈ ABModA(C). We have a pullback diagram

of associative algebras

Aη //

��

A

��
A

f ′// A⊕M [1].

Then I 'M , and the multiplication map θ factors as a composition

I ⊗Aη I →M ⊗AM
θ′→M

where θ′ is the map of A-bimodules determined by the multiplication on the fiber of f ′. According

to Remark 7.4.1.13, θ′ is obtained from the map θ′′ : M → A by tensoring over A with M . It will

therefore suffice to show that θ′′ is nullhomotopic (as a map of A-bimodules). This follows from

the observation that f ′ admits a left inverse (as a morphism in Alg(C)A/, and therefore also as a

map of A-bimodules).

Proposition 7.4.1.15. Let C be a presentable stable∞-category equipped with a monoidal structure

for which the tensor product preserves small colimits separately in each variable. Let f : A→ B be

a map of associative algebra objects of C, let η : B → B ⊕ LB/A be the universal derivation, and

factor f as a composition A
f ′→ Bη f ′′→ B. Then there is a fiber sequence of A-A-bimodules

fib(f)⊗A fib(f)
α→ fib(f)

β→ fib(f ′′),

where α is given by the multiplication on fib(f).
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Proof. Remark 7.4.1.12 supplies an identification of LB/A with the fiber of the multiplication map

m : B ⊗A B → B. Note that m admits a left inverse s, given by

B ' B ⊗A A
id⊗f−→ B ⊗A B.

It follows that LB/A ' fib(m) ' cofib(s) ' B ⊗A cofib(f). In particular, fib(f ′′) ' LB/A[−1] '
B ⊗A fib(f). Under this identification, the map β is obtained from f by tensoring over A with

fib(f). It follows that fib(β) ' fib(f) ⊗A fib(f). Using Remark 7.4.1.13, we see that the induced

map fib(f)⊗A fib(f) ' fib(β)→ fib(f) coincides with α.

Remark 7.4.1.16. Let f : A → B be as in Proposition 7.4.1.14. It follows that the composite

map

fib(f)⊗A fib(f)
α→ fib(f)

β→ fib(f ′′)

is canonically nullhomotopic. We can describe the nullhomotopy explicitly as follows. The factor-

ization f = f ′′ ◦ f ′ determines a commmutative diagram

fib(f)⊗A fib(f)
α //

��

fib(f)

β
��

fib(f ′′)⊗Bη fib(f ′′)
α′ // fib(f ′′)

in ABModA(C). Proposition 7.4.1.14 supplies a canonical nullhomotopy of α′, whence a canonical

nullhomotopy of β ◦ α.

Remark 7.4.1.17. Let f : A → B be as in Proposition 7.4.1.15. Using Proposition 7.4.1.15, we

obtain a fiber sequence

fib(f)⊗A fib(f)→ A→ Bη.

We can summarize the situation informally as follows: the universal square-zero extension Bη of B

through which f factors has the form A/(I ⊗A I), where I = fib(f).

We now introduce a special class of morphisms between E1-algebras, which we call small exten-

sions.

Definition 7.4.1.18. Let C be a stable presentable∞-category equipped with a monoidal structure

and a t-structure. Assume that the unit object 1 ∈ C belongs to C≥0, that the tensor product

⊗ : C×C → C preserves small colimits separately in each variable, and that ⊗ carries C≥0×C≥0

into C≥0.

Let f : A→ B be a map of associative algebra objects of C and let n ≥ 0. We will say that f is

an n-connective extension if A ∈ C≥0 and fib(f) ∈ C≥n. We will say that f is an n-small extension

if the following additional conditions are satisfied:
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(1) The fiber fib(f) belongs to C≤2n.

(2) The multiplication map fib(f)⊗A fib(f)→ fib(f) is nullhomotopic.

We let Funn−con(∆1,Alg(C)) denote the full subcategory of Fun(∆1,Alg(C)) spanned by the

n-connective extensions, and Funn−sm(∆1,Alg(C)) the full subcategory of Funn−con(∆1,Alg(C))

spanned by the n-small extensions.

Remark 7.4.1.19. Let C be as in Definition 7.4.1.18 and let f : A → B be an n-connective

extension for n ≥ 0. Since A and fib(f) belong to C≥0, we deduce that B ∈ C≥0. Moreover, the

map π0A→ π0B is an epimorphism in the abelian category C♥.

Remark 7.4.1.20. Let C be as in Definition 7.4.1.18, and let f : A → B be an n-connective

extension such that fib(f) ∈ C≤2n. Since fib(f)⊗A fib(f) ∈ C≥2n, the multiplication map fib(f)⊗A
fib(f) → fib(f) is nullhomotopic if and only if it induces the zero map π2n(fib(f) ⊗A fib(f)) →
π2n fib(f) in the abelian category C♥. In other words, condition (2) of Definition 7.4.1.18 is equiv-

alent to the vanishing of a certain map

πn fib(f)⊗ πn fib(f)→ π2n fib(f)

in C♥.

Example 7.4.1.21. Let C = Sp be the ∞-category of spectra, and let A be an associative ring,

which we regard as a discrete algebra object of C. A map f : Ã→ A in Alg(C) is a 0-small extension

if and only if the following conditions are satisfied:

(a) The algebra object Ã ∈ Alg(C) is discrete.

(b) The map f induces a surjection of associative rings π0Ã→ π0A.

(c) If I ⊆ π0Ã is the kernel of the ring homomorphism of (b), then I2 = 0 ⊆ π0Ã.

In other words, the theory of 0-small extensions of discrete associative algebras in C is equivalent

to the classical theory of square-zero extensions between ordinary associative rings.

Notation 7.4.1.22. Let C be as in Definition 7.4.1.18. We let Der denote the ∞-category

Der(Alg(C)) of derivations in Alg(C). Using Theorem 7.3.4.13, we can identify objects of Der

with pairs (A, η : LA →M [1]) where A is an algebra object of C and η is a map of A-A-bimodules.

We let Dern−con denote the full subcategory of Der spanned by those pairs (A, η : LA → M [1])

such A ∈ C≥0 and M ∈ C≥n. We let Dern−sm denote the full subcategory of Dern−con spanned by

those pairs (A, η : LA →M [1]) such that M ∈ C≤2n.

We can now state a preliminary version of our main result:
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Theorem 7.4.1.23. Let C be as in Definition 7.4.1.18, and let Φ : Der→ Fun(∆1,Alg(C)) be the

functor of Notation 7.4.1.5, given informally by the formula

(A, η : LA →M [1]) 7→ (Aη → A).

For each n ≥ 0, the functor Φ induces an equivalence of ∞-categories

Φn−sm : Dern−sm → Funn−sm(∆1,Alg(C)).

Proof. Let A ∈ Alg(C) and let M ∈ ABModA(C). For any derivation η : LA → M [1], we can

identify the fiber of square-zero extension Aη → A with M (as an object of C). It follows imme-

diately that the functor Φ : Der → Fun(∆1,Alg(C)) restricts to a functor Φn−con : Dern−con →
Funn−con(∆1,Alg(C)). For any square-zero extension f : Aη → A, the induced multiplication

fib(f) ⊗Aη fib(f) → fib(f) is nullhomotopic (Proposition 7.4.1.14), so that Φ also restricts to a

functor Φn−sm : Dern−sm → Funn−sm(∆1,Alg(C)).

The functor Φ admits a left adjoint Ψ : Fun(∆1,Alg(C))→ Der, given informally by the formula

(Ã→ A) 7→ (A, η : LA → L
A/Ã

).

Assume that f : Ã → A is an n-connective extension. Remark 7.4.1.12 implies that L
A/Ã

can be

identified with the fiber of the multiplication map m : A⊗
Ã
A→ A, and therefore with the cofiber

of the section

s : A ' A⊗
Ã
Ã→ A⊗

Ã
A

of m. Thus L
A/Ã

[−1] ' fib(f) ⊗
Ã
A. Since fib(f) is n-connective and A and Ã are connec-

tive, we deduce that L
A/Ã

is n-connective. It follows that Ψ restricts to a functor Ψn−con :

Funn−con(∆1,Alg(C))→ Dern−con.

Let i : Dern−sm ↪→ Dern−con be the inclusion functor. Then i admits a left adjoint τ , given

informally by the formula

τ(A,LA →M [1]) = (A,LA → (τ≤2nM)[1]).

It follows that Φn−sm also admits a left adjoint Ψn−sm, given by the composition τ ◦Ψn−con. The

functor Φn−sm is clearly conservative. To prove that Φn−sm is an equivalence of ∞-categories, it

will suffice to show that the unit transformation u : id → Φn−sm ◦ Ψn−sm is an equivalence. In

other words, we must show that if f : Ã → A is an n-small extension, then the transformation

uf : f → (Φ ◦ τ ◦Ψ)(f) is an equivalence. Let η0 : L
A/Ã
→ LA/Ã be the identity map, and let η be

the truncation map L
A/Ã
→ τ≤2n+1LA/Ã. We wish to show that the composite map Ã→ Aη0 → Aη

is an equivalence. We have a commutative diagram

Ã

f
��

g // Aη0

f ′

��

// Aη

f ′′

��
A // A // A.
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By construction, we have fib(f ′′) ' τ≤2n fib(f ′). It will therefore suffice to show that g induces an

equivalence fib(f) ' τ≤2n fib(f ′). We have a fiber sequence

fib(g)
α→ fib(f)

β→ fib(f ′).

Proposition 7.4.1.15 allows us to identify α with the multiplication map m : fib(f) ⊗
Ã

fib(f) →
fib(f). Since f is a small extension, m is nullhomotopic, so that β induces an equivalence fib(f ′) '
fib(f)⊕ (fib(f)⊗

Ã
fib(f))[1]. Since fib(f) ∈ C≤2n ∩C≥n, (fib(f)⊗

Ã
fib(f))[1] ∈ C≥2n+1, so that the

composite map fib(f)→ fib(f ′)→ τ≤2n fib(f ′) is an equivalence as desired.

Remark 7.4.1.24. In the situation of Theorem 7.4.1.23, the full subcategory Funn−sm(∆1,Alg(C))

is a localization of Funn−con(∆1,Alg(C)). Indeed, we claim that the functor Φn−sm ◦ τ ◦ Ψn−con

is a left adjoint to the inclusion Funn−sm(∆1,Alg(C)) ↪→ Funn−con(∆1,Alg(C)). Using Theorem

7.4.1.23, we are reduced to proving that τ ◦ Ψn−con : Funn−con(∆1,Alg(C)) → Dern−sm is left

adjoint to composition

Dern−sm ↪→ Dern−con
Φ→ Funn−con(∆1,Alg(C)),

which is evident.

We now generalize the above discussion to the case of Ek-algebras, for k ≥ 1.

Notation 7.4.1.25. Let 1 ≤ k ≤ ∞ and let C be presentable stable ∞-category equipped with a

t-structure. Assume also that C is an Ek-monoidal ∞-category, the unit object 1 belongs to C≥0,

and that the tensor product ⊗ : C×C→ C preserves small colimits separately in each variable and

carries C≥0×C≥0 into C≥0.

We let Alg(k)(C) denote the ∞-category Alg/Ek(C) and Alg(C) the ∞-category AlgE1/Ek(C), so

that the inclusion E1 ↪→ Ek determines a forgetful functor θ : Alg(k)(C) → Alg(C). For n ≥ 0, we

say that a morphism f : A→ B in Alg(k)(C) is an n-small extension if θ(f) is an n-small extension.

We let Funn−sm(∆1,Alg(k)(C)) denote the full subcategory of Fun(∆1,Alg(k)(C)) spanned by the

n-small extensions.

For A ∈ Alg(k)(C), we let L
(k)
A ∈ Sp(Alg(k)(C)/A) ' ModEkA (C) denote its cotangent complex as

an object of Alg(k)(C). Let Der(k) denote the∞-category Der(Alg(k)(C)) of derivations in Alg(k)(C),

so that the objects of Der(k) can be identified with pairs (A, η : L
(k)
A → M [1]) where A is an Ek-

algebra object of C and η is a morphism in ModEkA (C). We let Der
(k)
n−sm denote the full subcategory

of Der(k) spanned by those pairs (A, η : L
(k)
A → M [1]) such that A is connective and the image of

M belongs to C≥n ∩C≤2n.

We have the following generalization of Theorem 7.4.1.23:
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Theorem 7.4.1.26. Let C be as in Notation 7.4.1.25 and let Φ(k) : Der(k) → Fun(∆1,Alg(k)(C))

be the functor of Notation 7.4.1.5 for 1 ≤ k ≤ ∞. For each n ≥ 0, the functor Φ(k) induces an

equivalence of ∞-categories

Φ
(k)
n−sm : Der

(k)
n−sm → Funn−sm(∆1,Alg(k)(C)).

Corollary 7.4.1.27. Let C be as in Notation 7.4.1.25. Then every n-small extension in Alg(k)(C)

is a square-zero extension.

Corollary 7.4.1.28. Let C be as in Notation 7.4.1.25, and let A ∈ Alg(k)(C≥0). Then every map

in the Postnikov tower

. . .→ τ≤3A→ τ≤2A→ τ≤1A→ τ≤0A

is a square-zero extension.

Remark 7.4.1.29. Corollary 7.4.1.28 underscores the importance of the cotangent complex in

the study of algebraic structures. For example, suppose we wish to understand the space of maps

MapAlg(k)(A,B) between two connective Ek-rings A and B. This space can be realized as the

homotopy inverse limit of the mapping spaces MapAlg(k)(A, τ≤nB). In the case n = 0, this is simply

the discrete set of ring homomorphisms from π0A to π0B. For n > 0, Corollary 7.4.1.28 implies

the existence of a pullback diagram

τ≤nB //

��

τ≤n−1B

��
τ≤n−1B // τ≤n−1B ⊕ (πnB)[n+ 1].

This reduces us to the study of MapAlg(k)(A, τ≤n−1B) and the “linear” problem of understanding

derivations from A into (πnB)[n+ 1]. This linear problem is controlled by the cotangent complex

L
(k)
A .

Lemma 7.4.1.30. Let C be a stable monoidal ∞-category equipped with a t-structure. Assume that

the tensor product ⊗ : C×C → C is exact in each variable and carries C≥0×C≥0 into C≥0. Let

n ≥ 0, and suppose we are given a finite collection of morphisms {pi : Bi → Ai}1≤i≤m in C such

that each Ai ∈ C≥0 and each fib(pi) is (n+ 1)-connective. Let f denote the induced map

fib(
⊗
i

pi)→
∏

1≤j≤m
fib(idA1 ⊗ · · · ⊗ idAj−1 ⊗pj ⊗ idAj+1 ⊗ · · · ⊗ idAm).

Then fib(f) ∈ C≥2n+2.

Proof. We proceed by induction on n. When n = 0, fib(f) ' 0 and the result is obvious. Assume

therefore that n > 0. Let p =
⊗

1≤i≤m pi and let p′ =
⊗

1<i≤n pi. We have a transformation of
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fiber sequences

B1 ⊗ fib(p′)
g //

��

∏
1<j≤m fib(idA1 ⊗ · · · ⊗ pj ⊗ · · · ⊗ idAm)

��
fib(p)

f //

��

∏
1≤j≤m fib(idA1 ⊗ · · · ⊗ pj ⊗ · · · ⊗ idAm)

��
fib(p1)⊗A2 ⊗ · · · ⊗An // fib(p1 ⊗ idA2 ⊗ · · · ⊗ idAm).

Since the tensor product on C is exact in each variable, the bottom horizontal map is an equivalence,

so that fib(f) ' fib(g). The map g factors as a composition

B1⊗fib(p′)
idB1

⊗f ′
−→

∏
1<j≤m

B1⊗A2⊗· · ·⊗fib(pj)⊗· · ·⊗Am
g′−→

∏
1<j≤m

A1⊗A2⊗· · ·⊗fib(pj)⊗· · ·⊗Am.

The inductive hypothesis implies that fib(f ′) ∈ C≥2n+2. Since A1 ∈ C≥0 and fib(p1) ∈ C≥n+1, the

object B1 belongs to C≥0, so that B1⊗ fib(f ′) ∈ C≥2n+2. We are therefore reduced to proving that

fib(g′) ∈ C≥2n+2. The map g′ factors as a product of maps g′j with fib(g′j) ' fib(p1) ⊗ A2 ⊗ · · · ⊗
fib(pj) ⊗ · · · ⊗ Am. Since each Ai belongs to C≥0 and fib(p1), fib(pj) ∈ C≥n+1, we conclude that

fib(g′j) ∈ C≥2n+2. It follows that fib(g′) '
∏

1<j≤m fib(g′j) ∈ C≥2n+2 as desired.

Proof of Theorem 7.4.1.26. When k = 1, the desired result follows immediately from Theorem

7.4.1.23 (since the ∞-operads E⊗1 and Assoc⊗ are equivalent; see Example 5.1.0.7). We will reduce

the general case to the case k = 1 using Theorem 5.1.2.2. We will assume for notational simplicity

that k ≥ 2 is finite (the case k = ∞ can be treated by the same method, or by passage to

the limit over finite k). Using the bifunctor of ∞-operads E⊗k−1 × E
⊗
1 → E⊗k of Construction

5.1.2.1, we regard Alg(C) as an Ek−1-monoidal ∞-category. Note that the tensor product on

Alg(C) preserves small sifted colimits, and in particular filtered colimits. According to Example

7.3.1.15, the tangent bundle TAlg(C) inherits an Ek−1-monoidal structure, which induces in turn

an Ek−1-monoidal structure on Der(1). The tensor product on Der(1) is given informally by the

formula

(A, η : LA →M [1])⊗ (A′, η′ : LA′ →M ′[1]) ' (A⊗A′, η : LA⊗A′ → (A⊗M ′)[1]⊕ (M ⊗A′)[1]);

here we can think of η as the differential on A ⊗ A′ determined by the Leibniz rule. We regard

Fun(∆1,Alg(C)) as endowed with the Ek−1-monoidal structure given by pointwise tensor product

(see Remark 2.1.3.4), so that the functor Φ(1) : Der(1) → Fun(∆1,Alg(C)) is lax Ek−1-monoidal.

Let (Der
(1)
n−sm)⊗ ⊆ (Der(1))⊗ be the ∞-suboperad of Der⊗ determined by the full subcategory

Dern−sm ⊆ Der (as explained in §2.2.1). Define Funn−sm(∆1,Alg(C))⊗ similarly, so that Φ
(1)
n−sm

induces a map of ∞-operads

Φ′ : (Der
(1)
n−sm)⊗ → Funn−sm(∆1,Alg(C))⊗.
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We have a commutative diagram

Der
(k)
n−sm

��

Φ
(k)
n−sm // Funn−sm(∆1,Alg(k)(C))

��
Alg/Ek−1

(Der
(1)
n−sm) // Alg/Ek−1

(Funn−sm(∆1,Alg(C))).

Using Theorem 5.1.2.2, we deduce that the vertical maps are equivalences of ∞-categories. The

lower horizontal map is given by composition with Φ′; it will therefore suffice to show that Φ′ is an

equivalence of ∞-operads.

Theorem 7.4.1.26 guarantees that Φ′ induces an equivalence of underlying ∞-categories

Φn−sm : Der
(1)
n−sm → Funn−sm(∆1,Alg(C)).

In particular, Φn−sm is essentially surjective. It will therefore suffice to show that Φ′ is fully faithful.

Unwinding the definitions, we must show that for every sequence of objects {(Ai, ηi : LAi →Mi) ∈
Der

(1)
n−sm}1≤i≤m and every object (B, η′ : LB → N) ∈ Der

(1)
n−sm, if fi : Aηii → Ai and g : Bη′ → B

denote their images under Φ(1), then Φ(1) induces a homotopy equivalence

θ : Map
Der(1)(

⊗
1≤i≤m

(Ai, ηi), (B, η))→ HomFun(∆1,Alg(C))(
⊗

1≤i≤n
fi, g).

Let Ψ(1) : Fun(∆1,Alg(C)) → Der(1) be the left adjoint to Φ(1) and τ : Dern−con → Dern−sm a

left adjoint to the inclusion, as in Theorem 7.4.1.26. The codomain of θ is homotopy equivalent

to the mapping space Map
Der(1)(Ψ(⊗ifi), (B, η′)). Since η′ is n-small, it will suffice to show that

if v : Ψ(⊗ifi) →
⊗

i(Ai, ηi) is the evident counit map, then τ(v) is an equivalence in Der(1). Let

A =
⊗

iAi and A′ =
⊗

iA
ηi
i , so we can identify v with a map of A-A-bimodules

v : LA/A′ →
∏
i

A1 ⊗ · · · ⊗Ai−1 ⊗Mi ⊗Ai+1 ⊗ · · · ⊗Am.

We wish to show that τ≤2n+1(v) is an equivalence in C.

Using Remark 7.4.1.12, we can identify LA/A′ with the cofiber of ⊗1≤i≤npi, where each pi is the

multiplication map Ai ⊗Aηii Ai → Ai. Unwinding the definitions, we see that v is is a product of

maps {vj}1≤j≤m, each of which is given by the composition

fib(⊗ipi)
v′j→ fib(idA1 ⊗ · · · ⊗ idAj−1 ⊗pj ⊗ idAj+1 ⊗ · · · ⊗ idAm

' A1 ⊗ · · · ⊗Aj−1 ⊗ fib(pj)⊗Aj+1 ⊗ · · · ⊗Am
v′′j→ A1 ⊗ · · ·Aj−1 ⊗Mj ⊗Aj+1 ⊗ · · · ⊗Am.

Here each v′′j is induced by the map tj : fib(pj) ' L
Aj/A

ηj
j
→ Mj determined by the adjunction of

Φ(1) and Ψ(1). The proof of Theorem 7.4.1.26 shows that τ≤2n+1(tj) is an equivalence. Since each
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Ai is connective, it follows that τ≤2n+1(v′′j ) is an equivalence. To complete the proof, it will suffice

to show that if

v′ : fib(⊗ipi)→
∏

1≤j≤m
A1 ⊗ · · · ⊗Aj−1 ⊗ fib(pj)⊗Aj+1 ⊗ · · · ⊗Am

is the product of the maps v′j , then τ≤2n+1(v′) is an equivalence in C. This follows from Lemma

7.4.1.30, since fib(mi) is (n+ 1)-connective for 1 ≤ i ≤ m.

7.4.2 Deformation Theory of E∞-Algebras

Suppose we are given a map of commutative rings φ : Ã → A. Let B be a flat commutative

A-algebra. A deformation of B over Ã is a pair (B̃, α), where B̃ is a flat commutative Ã-algebra

and α is an isomorphism of A-algebras B̃ ⊗
Ã
A ' B. One of the basic problems of deformation

theory is to classify the deformations of B over Ã. In the special case where Ã is a square-zero

extension of A by an A-module M ' ker(φ), this can be translated into a linear problem involving

the cotangent complexes of B and A. In this section, we will explain this translation in a more

general context. We begin by introducing some terminology.

Definition 7.4.2.1. Let A be an E∞-ring and suppose we are given a square-zero extension Ã

of A by an A-module M . If B ∈ CAlgA, then a deformation of B to Ã is a pair (B̃, α), where

B̃ ∈ CAlg
Ã

and α is an equivalence B̃ ⊗
Ã
A ' B in CAlgA.

Remark 7.4.2.2. In Definition 7.4.2.1, it is not necessary to require that B̃ be flat over Ã. If A is

connective and Ã is a square-zero extension of A by a connective A-module M , then a deformation

B̃ of B will be flat over Ã if and only if B is flat over A. The “only if” direction is obvious. For the

converse, suppose that B is flat over A: we claim that for every discrete Ã-module N , the relative

tensor product B̃ ⊗
Ã
N is discrete. To prove this, let I ⊆ π0Ã be the kernel of the surjective map

π0Ã→ π0A, so that we have a short exact sequence of modules over π0Ã:

0→ IN → N → N/IN → 0

It will therefore suffice to show that the tensor products B̃ ⊗
Ã
IN and B̃ ⊗

Ã
N/IN are discrete.

Replacing N by IN or N/IN , we can reduce to the case where IN = 0, so that N has the structure

of an A-module. Then B̃ ⊗
Ã
N ' B ⊗A N is discrete by virtue of the assumption that B is flat

over A.

In the situation of Definition 7.4.2.1, the assumption that Ã is a square-zero extension of A by

M implies that Ã ' Aη for some A-linear map η : LA → M [1]. Given a map of E∞-rings A→ B,

we get a map of B-modules ηB : B ⊗A LA → B ⊗A M [1]. Our main result can be summarized

informally as follows (see Proposition 7.4.2.5 below for a precise formulation):
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(∗) Assume that A, B, and M are connective. Then giving a deformation of B̃ of B over Ã is

equivalent to providing a factorization of ηB as a composition

B ⊗A LA → LB
η′→ B ⊗AM [1].

In this case, the corresponding extension is given by B̃ = Bη′ .

In particular, B admits a deformation over Ã if and only if the composite map

LB/A[−1]→ B ⊗A LA
ηB→ B ⊗AM [1]

vanishes.

Remark 7.4.2.3. More concretely, we see that a square-zero extension of A by an A-module M

and a map of E∞-rings A → B determine an obstruction class in Ext2
B(LB/A, B ⊗A M), given

by the composition LB/A[−1] → B ⊗A LA → B ⊗A M [1]. If A and M are connective, then this

obstruction class vanishes if and only if B admits a deformation over Ã. In this case, the collection

of equivalence classes of extensions is a torsor for the abelian group Ext1
B(LB/A, B ⊗AM).

This is a precise analogue of the situation in the classical deformation theory of algebraic

varieties. Suppose given a smooth morphism of smooth, projective varieties X → Y over a field k.

Given a first-order deformation Ỹ of Y , we encounter an obstruction in H2(X;TX/Y ) to extending

Ỹ to a first-order deformation of X. If this obstruction vanishes, then the set of isomorphism classes

of extensions is naturally a torsor for the cohomology group H1(X;TX/Y ) (see [89]).

In order to formulate assertion (∗) more precisely, we need to introduce a bit of terminology.

Notation 7.4.2.4. Throughout this section, we let Der = Der(CAlg) denote the ∞-category of

derivations in CAlg (see Definition 7.4.1.1). More informally, the objects of Der are triples (A,M, η),

where A is an E∞-ring, M is an A-module spectrum, and η : A → M [1] is a derivation. In what

follows, we will generally abuse notation by identifying the triple (A,M, η) with the underlying

map η : A→M [1]. We let Aη = fib(η) denote the corresponding square-zero extension of A.

We define a subcategory Der+ ⊆ Der as follows:

(i) An object (η : A→M [1]) ∈ Der belongs to Der+ if and only if both A and M are connective.

Equivalently, η belongs to Der+ if both A and Aη are connective, and the map of commutative

rings π0A
η → π0A is surjective.

(ii) Let f : (η : A → M [1]) → (η′ : B → N [1]) be a morphism in Der between objects which

belong to Der+. Then f belongs to Der+ if and only if the induced map B ⊗AM → N is an

equivalence of B-modules.

We can now formulate (∗) more precisely:
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Proposition 7.4.2.5. Let A be a connective E∞-ring, M a connective A-module, and η : A→M [1]

a derivation. Then the functor Φ of Notation 7.4.1.5 induces an equivalence of ∞-categories

Der+
η/ → CAlgcn

Aη ,

given on objects by (η′ : B → N [1]) 7→ Bη′.

We will deduce Proposition 7.4.2.5 from a slightly stronger result, whose statement will require

a bit more notation.

Notation 7.4.2.6. We define a subcategory Fun+(∆1,CAlg) as follows:

(i) An object f : Ã→ A of Fun(∆1,CAlg) belongs to Fun+(∆1,CAlg) if and only if both A and

Ã are connective, and f induces a surjection π0Ã→ π0A.

(ii) Let f, g ∈ Fun+(∆1,CAlg), and let α : f → g be a morphism in Fun(∆1,CAlg). Then α

belongs to Fun+(∆1,CAlg) if and only if it classifies a pushout square in the ∞-category

CAlg.

Theorem 7.4.2.7. Let Φ : Der→ Fun(∆1,CAlg) be the functor defined in Notation 7.4.1.5, given

by (η : A→M [1]) 7→ Aη. Then Φ induces a functor Φ+ : Der+ → Fun+(∆1,CAlg). Moreover, the

functor Φ+ factors as a composition

Der+ Φ+
0−→ Der

+ Φ+
1−→ Fun+(∆1,CAlg),

where Φ+
0 is an equivalence of ∞-categories and Φ+

1 is a left fibration.

Proof of Proposition 7.4.2.5. Let η : A → M [1] be an object of Der+. Theorem 7.4.2.7 implies

that Φ induces an equivalence Der+
η/ → Fun+(∆1,CAlg)Φ(η)/. It now suffices to observe that the

evaluation map Fun+(∆1,CAlg)Φ(η)/ → CAlgcn
Aη is a trivial Kan fibration.

The proof of Theorem 7.4.2.7 will require a few lemmas.

Lemma 7.4.2.8. Let

η′

f ′′

��
η

f ′
@@

f // η′′

be a commutative diagram in the ∞-category Der. If f and f ′ belong to Der+, then so does f ′′.

Proof. This follows immediately from Proposition HTT.2.4.1.7 .

Lemma 7.4.2.9. Let f : (η : A→M [1])→ (η′ : B → N [1]) be a morphism in Der+. If the induced

map Aη → Bη is an equivalence of E∞-rings, then f is an equivalence.
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Proof. The morphism f determines a map of fiber sequences

Aη //

��

A //

f0

��

M [1]

f1

��
Bη′ // B // N [1]

Since the left vertical map is an equivalence, we obtain an equivalence α : cofib(f0) ' cofib(f1).

To complete the proof, it will suffice to show that cofib(f0) vanishes. Suppose otherwise. Since

cofib(f0) is connective, there exists some smallest integer n such that πn cofib(f0) 6= 0. In particular,

cofib(f0) is n-connective.

Since f induces an equivalence B ⊗A M → N , the cofiber cofib(f1) can be identified with

cofib(f0)⊗AM [1]. Since M is connective, we deduce that cofib(f1) is (n+ 1)-connective. Using the

equivalence α, we conclude that cofib(f0) is (n+ 1)-connective, which contradicts our assumption

that πn cofib(f0) 6= 0.

Lemma 7.4.2.10. Let D0 ⊆ D be small∞-categories, and let p : M→ C be a presentable fibration.

Then:

(1) The induced map

q : Fun(D,M)→ Fun(D,C)×Fun(D0,C) Fun(D0,M)

is a coCartesian fibration.

(2) A morphism in Fun(D,M) is q-coCartesian if and only if the induced functor f : D×∆1 →M

is a p-left Kan extension of its restriction to (D×{0})
∐

D0×{0}(D×∆1).

Proof. The “if” direction of (2) follows immediately from Lemma HTT.4.3.2.12 . Since every dia-

gram

(D×{0})
∐

D0×{0}(D×∆1) //
� _

��

M

p

��
D×∆1 //

66

C

admits an extension as indicated, which is a p-left Kan extension, assertion (1) follows immedi-

ately. The “only if” direction of (2) then follows from the uniqueness properties of q-coCartesian

morphisms.

Proof of Theorem 7.4.2.7. We let D̃er denote the ∞-category of extended derivations in CAlg (so

that the forgetful functor D̃er→ Der is a trivial Kan fibration), and MT a tangent correspondence



7.4. DEFORMATION THEORY 1353

for the ∞-category CAlg. Form a pullback diagram

D̃er
+ //

u+

��

D̃er

u

��
Der+ // Der .

Since the map u is a trivial Kan fibration, u+ is also a trivial Kan fibration.

Let X denote the full subcategory of Fun(∆1 ×∆1,CAlg) spanned by those diagrams

Ã //

��

A

α
��

A′
β // A′′.

such that α and β are equivalences. The diagonal inclusion ∆1 ⊆ ∆1 × ∆1 induces a map ε :

X → Fun(∆1,CAlg). Using Proposition HTT.4.3.2.15 , we deduce that this map is a trivial Kan

fibration. The map ε has a section υ, which carries a morphism Ã→ A to the commutative diagram

Ã //

��

A

id
��

A
id // A.

It follows that υ is also an equivalence.

Let Der denote the full subcategory of Fun(∆1 ×∆1,MT ) spanned by those pullback diagrams

Ã //

��

A

η

��
0

γ //M

such that the objects Ã and A belong to CAlg ⊆ MT , the objects 0 and M belong to TCAlg, the

maps η and γ induce equivalences in CAlg, and 0 is a p-initial object of TCAlg. We have a homotopy

pullback diagram of ∞-categories

D̃er
υ′ //

��

Der

��
Fun(∆1,CAlg)

υ // X .

Since υ is a categorical equivalence, we conclude that υ′ is also a categorical equivalence.
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The functor Φ is defined to be a composition

Der
s→ D̃er

υ′→ Der
s′→ X

s′′→ Fun(∆1,CAlg),

where s is a section to u and s′′ is the map which carries a diagram

Ã //

α
��

A

��
A′ // A′′

to the map α. We define Φ+
0 and Φ+

1 to be the restrictions of υ′ ◦ s and s′′ ◦ s′, respectively.

To complete the proof, it will suffice to show that s′ induces a left fibration of simplicial sets

Der
+ → Fun+(∆1,CAlg). To prove this, we will describe the ∞-category Der

+
in another way.

Let D denote the full subcategory of Fun(∆1,MT ) spanned by morphisms of the form η0 : Ã→ 0,

satisfying the following conditions:

(i) The object Ã belongs to CAlg ⊆MT .

(ii) Let f : Ã→ A′ be the image of η0 under the map MT → CAlg. Then Ã and A′ are connective,

and f induces a surjection π0Ã→ π0A
′.

(iii) The object 0 belongs to TCAlg ⊆ MT . Moreover, 0 is a zero object of TCAlg ×CAlg {A′} '
ModA′ .

Using Proposition HTT.4.3.2.15 , we deduce that projection map ψ0 : D→ Fun′(∆1,CAlg) is a

trivial Kan fibration, where Fun′(∆1,CAlg) denotes the full subcategory of Fun(∆1,CAlg) spanned

by those morphisms Ã→ A which satisfy condition (ii).

Let D denote the full subcategory of Fun(∆1 ×∆1,M) spanned by those diagrams

Ã
e //

η0

��

A

η

��
0

γ //M

satisfying properties (i), (ii), and (iii) above, where A ∈ CAlg ⊆ MT and M ∈ TCAlg ⊆ MT .

Restriction to the left half of the diagram yields a forgetful functor ψ1 : D → D, which fits into a

pullback square

D

ψ1

��

// Fun(∆1 ×∆1,M)

ψ′1
��

D // Fun(∆1,MT )×Fun(∆1,∆1) Fun(∆1 ×∆1,∆1).
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Applying Lemma 7.4.2.10 to the presentable fibration MT → ∆1, we conclude that ψ′1 is a co-

Cartesian fibration. It follows that ψ1 is also a coCartesian fibration, and that a morphism in D is

ψ1-coCartesian if and only if it satisfies criterion (2) in the statement of Lemma 7.4.2.10.

We define subcategories D0 ⊆ D1 ⊆ D as follows:

• Every object of D belongs to D1.

• A morphism f in D belongs to D1 if and only if (ψ0 ◦ψ1)(f) belongs to Fun+(∆1,CAlg), and

f is ψ1-coCartesian. Since ψ0 is a trivial Kan fibration, this is equivalent to the requirement

that f is ψ1 ◦ ψ0-coCartesian.

• We define D0 to be the full subcategory of is the full subcategory of D1 spanned by those

diagrams

Ã //

��

A

η

��
0

γ //M

which are pullback diagrams in MT , such that η and γ induce equivalences in CAlg.

Using Corollary HTT.2.4.2.5 , we deduce immediately that ψ0 ◦ ψ1 induces a left fibration

ψ : D1 → Fun+(∆1,C). To complete the proof, it will suffice to verify the following:

(1) The subcategory D0 ⊆ D1 is a cosieve in D1. That is, if f : X → Y is a morphism in D1 and

X belongs to D0, then Y also belongs to D0. It follows immediately that ψ restricts to a left

fibration D0 → Fun+(∆1,CAlg).

(2) We have an equality D0 = Der
+

of subcategories of Der.

In order to prove these results, we will need to analyze the structure of a morphism f : X → Y

in the ∞-category D in more detail. Let us suppose that X,Y ∈ D classify diagrams

Ã //

��

A

��

B̃ //

��

B

��
0 //M 0′ // N

in MT , lying over diagrams

Ã //

��

A

��

B̃ //

��

B

��
A′ // A′′ B′ // B′′

in E∞. Unwinding the definitions, we see that the morphism f belongs to D1 if and only if the

following conditions are satisfied:
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(a) The morphism ψ(f) belongs to Fun+(∆1,CAlg). In other words, the diagram

Ã

��

// B̃

��
A′ // B′

is a pushout square of E∞-rings.

(b) The diagram

Ã

��

// B̃

��
A // B

is a pushout square of E∞-rings.

(c) The diagram

0 //

��

M

j
��

0′ // N

is a pushout square in TCAlg. Unwinding the definitions, this is equivalent to the requirement

that the diagram

A //

��

B

��
A′′ // B′′

is a pushout square of E∞-rings, and that the induced map M ⊗A′′ B′′ → N is an equivalence

of B′′-modules.

We observe that (b) and (c) are simply a translation of the requirement that f satisfies criterion

(2) of Lemma 7.4.2.10.

We now prove (1). Suppose that X ∈ D0; we wish to prove that Y ∈ D0. It follows from (c)

that the map B → B′′ is an equivalence. To prove that the map B′ → B′′ is an equivalence, we

consider the commutative diagram

Ã //

��

A′ //

��

A′′

��
B̃ // B′ // B′′.

From (a) we deduce that the left square is a pushout, and from (b) and (c) together we deduce

that the large rectangle is a pushout. It follows that the right square is a pushout as well. Since
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the map A′ → A′′ is an equivalence (in virtue of our assumption that X ∈ D0), we conclude that

B′ → B′′ is an equivalence as desired.

To complete the proof that Y ∈ D0, it will suffice to show that Y is a pullback diagram. This

is equivalent to the assertion that the induced diagram Y ′:

B̃ //

��

B′

��
B // B′′ ⊕N

is a pullback diagram of E∞ B̃-algebras. Since the forgetful functor CAlg(Mod
B̃

)→ Mod
B̃

preserves

limits, it will suffice to show that Y ′ is a pullback diagram in the ∞-category of B̃-modules.

Let X ′ denote the diagram

Ã //

��

A′

��
A // A′′ ⊕M

determined by X. Since X ∈ D0, X ′ is a pullback diagram of E∞-rings, and therefore a pullback

diagram of Ã-modules. Since the relative tensor product functor ⊗
Ã
B̃ is exact, it will suffice to

show that the map f : X → Y induces an equivalence X ′⊗
Ã
B̃ → Y ′. In other words, it suffices to

show that each of the induced diagrams

Ã //

��

A

��

Ã //

��

A′

��

Ã

��

// A′′ ⊕M

��
B̃ // B B̃ // B′ B̃ // B′′ ⊕N

is a pushout square of E∞-rings. For the left and middle squares, this follows from (a) and (b).

The rightmost square fits into a commutative diagram

Ã //

��

A //

��

A′′ ⊕M

��
B̃ // B // B′′ ⊕N

where the left part of the diagram is a pushout square by (b) and the right square is a pushout by

(c). This completes the proof that Y ∈ D0, so that D0 ⊆ D1 is a cosieve as desired.

We now prove (2). We first show that the subcategories

D0,Der
+ ⊆ Der
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consist of the same objects. Let X ∈ Der be given by a diagram

Ã //

��

A′

��
0 //M,

projecting to a diagram

Ã //

��

A′

��
A // A′′

in the ∞-category CAlg. Then X belongs to D0 if and only if the both A and Ã are connective,

and the map π0Ã → π0A is surjective. On the other hand, X belongs to D̃er
+

if and only if

both A′ and M [−1] are connective. The equivalence of these conditions follows immediately from

the observation that A and A′ are equivalent, and the long exact sequence of homotopy groups

associated to the fiber sequence

Ã→ A→M.

Now let us suppose that f : X → Y is a morphism in Der, where both X and Y belong to D0.

We wish to show that f belongs to D0 if and only if f belongs to Der
+

. We observe that f belongs

to D0 if and only if f satisfies the conditions (a), (b), and (c) described above. On the other hand,

f belongs to Der
+

if and only if the induced map M ⊗A′′ B′′ → N is an equivalence. Since this

follows immediately from condition (c), we conclude that we have inclusions

D0 ⊆ D̃er
+
⊆ D̃er.

To prove the reverse inclusion, let f : X → Y be a morphism in Der
+

. We wish to show that

f belongs to D0. In other words, we must show that f satisfies conditions (a), (b), and (c). Since

the maps

A→ A′′ ← A′ B → B′′ ← B′

are equivalences, condition (c) is automatic and conditions (a) and (b) are equivalent to one another.

We are therefore reduced to the problem of showing that the diagram

Ã //

��

B̃

��
A // B

is a pushout square.
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The image Φ(f) can be factored as a composition g′ ◦ g′′, corresponding to a diagram

Ã

��

// B̃
id //

��

B̃

��
A // C // B,

where the left square is a pushout. Let f ′ : X → Z be a ψ-coCartesian lift of g′, so that f is

homotopic to some composition X
f ′→ Z

f ′′→ Y. We observe that f ′ belongs to D0. It will therefore

suffice to show that f ′′ belongs to D0 as well. Lemma 7.4.2.8 implies that f ′′ belongs to Der
+

. We

may therefore replace f by f ′′ and thereby reduce to the situation where f induces an equivalence

Ã → B̃. In this case, condition (a) is equivalent to the assertion that f induces an equivalence

A→ B, which follows from Lemma 7.4.2.9.

7.4.3 Connectivity and Finiteness of the Cotangent Complex

Let φ : A → B be a morphism of connective E∞-rings. According to Remark 7.3.3.4, the relative

cotangent complex LB/A vanishes whenever φ is an equivalence. We may therefore regard LB/A as

a measure of a failure of f to be an equivalence. Our goal in this section is to prove that this is a

good measure in (at least) two respects:

(1) The relative cotangent complex LB/A is highly connected if φ is highly connected. Moreover,

the converse holds if φ induces an isomorphism of commutative rings π0A→ π0B (Corollary

7.4.3.2).

(2) If B is locally of finite presentation over A (Definition 7.2.4.26), then the relative cotangent

complex LB/A is perfect. Conversely, if LB/A is perfect and π0B is a finitely presented π0A-

algebra, then B is locally of finite presentation over A. Similar results hold if we replace

“locally of finite presentation” by “almost of finite presentation” and “perfect” by “almost

perfect” (Theorem 7.4.3.18).

We begin with the following more precise formulation of (1):

Theorem 7.4.3.1. Let f : A → B be a morphism between connective E∞-rings. Assume that

cofib(f) is n-connective for n ≥ 0. Then there is a canonical (2n)-connective map of B-modules

εf : B ⊗A cofib(f)→ LB/A.

We will give the proof of Theorem 7.4.3.1 later in this section. First, let us deduce some

consequences.

Corollary 7.4.3.2. Let f : A → B be a map of connective E∞-rings. Assume that cofib(f) is

n-connective, for n ≥ 0. Then the relative cotangent complex LB/A is n-connective. The converse

holds provided that f induces an isomorphism π0A→ π0B.
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Proof. Let εf : B ⊗A cofib(f)→ LB/A be the map described in Theorem 7.4.3.1, so that we have a

fiber sequence of B-modules:

fib(εf )→ B ⊗A cofib(f)→ LB/A

To prove that LB/A is n-connective, it suffices to show that cofib(f)⊗AB is n-connective and that

fib(εf ) is (n − 1)-connective. The first assertion is obvious, and the second follows from Theorem

7.4.3.1 since 2n ≥ n− 1.

To prove the converse, let us suppose that cofib(f) is not n-connective. We wish to show that

LB/A is not n-connective. Let us assume that n is chosen as small as possible, so that cofib(f)

is (n − 1)-connective. By assumption, f induces an isomorphism π0A → π0B, so we must have

n ≥ 2. Applying Theorem 7.4.3.1, we conclude that εf is (2n − 2)-connective. Since n ≥ 2, we

deduce in particular that εf is n-connective, so that the map πn−1(B ⊗A cofib(f))→ πn−1LB/A is

an isomorphism. Since cofib(f) is (n − 1)-connective and π0A ' π0B, the map πn−1 cofib(f) →
πn−1(B ⊗A cofib(f)) is an isomorphism. It follows that πn−1 cofib(f) → πn−1LB/A is also an

isomorphism, so that πn−1LB/A is nonzero.

Corollary 7.4.3.3. Let A be a connective E∞-ring. Then the absolute cotangent complex LA is

connective.

Proof. Apply Corollary 7.4.3.2 to the unit map S → A in the case n = 0.

Corollary 7.4.3.4. Let f : A→ B be a map of connective E∞-rings. Then f is an equivalence if

and only if the following conditions are satisfied:

(1) The map f induces an isomorphism π0A→ π0B.

(2) The relative cotangent complex LB/A vanishes.

Corollary 7.4.3.5. Let f : A → B be a map of connective E∞-rings. Assume that cofib(f) is n-

connective for n ≥ 0. Then the induced map Lf : LA → LB has n-connective cofiber. In particular,

the canonical map π0LA → π0Lπ0A is an isomorphism.

Proof. The map Lf factors as a composition

LA
g→ B ⊗A LA

g′→ LB.

We observe that cofib(g) ' cofib(f)⊗ALA. Since the cotangent complex LA is connective (Corollary

7.4.3.3) and cofib(f) is n-connective, we conclude that cofib(g) is n-connective. It will therefore

suffice to show that cofib(g′) ' LB/A is n-connective. Let εf : B ⊗A cofib(f) → LB/A be as in

Theorem 7.4.3.1, so we have a fiber sequence

B ⊗A cofib(f)→ LB/A → cofib(εf ).
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It therefore suffices to show that B ⊗A cofib(f) and cofib(εf ) are n-connective. The first assertion

follows immediately from the n-connectivity of cofib(f), and the second from Theorem 7.4.3.1 since

2n+ 1 ≥ n.

Corollary 7.4.3.6. Let f : A→ B be a map of E∞-rings, and suppose that cofib(f) is n-connective.

Then there exists a canonical (2n− 1)-connective map of A-modules cofib(f)→ LB/A.

Proof. We have a fiber sequence

cofib(f)
δ→ B ⊗A cofib(f)→ cofib(f)⊗A cofib(f),

so that the map δ is (2n − 1)-connective. If εf denotes the map appearing in the statement of

Theorem 7.4.3.1, then εf ◦ δ is a (2n− 1)-connective map cofib(f)→ LB/A.

The theory of the cotangent complex of E∞-rings can be regarded as a homotopy-theoretic

analogue of the classical theory of Kähler differentials. We now apply Theorem 7.4.3.1 to make this

analogy more explicit. First, we need a bit of terminology. Recall that if R is a commutative ring,

then the module of (absolute) Kähler differentials is the free R-module generated by the symbols

{dr}r∈R, subject to the relations

d(rr′) = rdr′ + r′dr

d(r + r′) = dr + dr′.

We denote this R-module by ΩR. Given a map of commutative rings η : R′ → R, we let ΩR/R′

denote the quotient of ΩR by the submodule generated by the elements {dη(r′)}r′∈R′ .

Remark 7.4.3.7. Let η : R′ → R be a homomorphism of commutative rings. Then we have a

canonical short exact sequence

TorR
′

0 (ΩR′ , R)→ ΩR → ΩR/R′ → 0

in the category of R-modules.

Lemma 7.4.3.8. Let A be a discrete E∞-ring. Then there is a canonical isomorphism

π0LA ' Ωπ0A

in the category of (discrete) π0A-modules.

Proof. It will suffice to show that π0LA and Ωπ0A corepresent the same functor on the ordinary

category of modules over the commutative ring π0A. Let M be a π0A-module, which we will

identify with the corresponding discrete A-module. We have homotopy equivalences

MapModA(π0LA,M) ' MapModA(LA,M) ' MapCAlg/A
(A,A⊕M).
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Since A and M are both discrete, the space on the right is homotopy equivalent to the discrete

set of ring homomorphisms from π0A to π0(A ⊕M) which reduce to the identity on π0A. These

are simply derivations from π0A into M in the usual sense, which are classified by (π0A)-module

homomorphisms from Ωπ0A into M .

Proposition 7.4.3.9. Let f : A→ B be a morphism of connective E∞-rings. Then:

(1) The relative cotangent LB/A is connective.

(2) As a π0B-module, π0LB/A is canonically isomorphic to the module of relative Kähler differentials

Ωπ0B/π0A.

Proof. Assertion (1) follows from Corollary 7.4.3.3 and the existence of a fiber sequence

LA ⊗A B → LB → LB/A.

Associated to this fiber sequence we have a long exact sequence

π0(LA ⊗A B)
g→ π0LB → π0LB/A → π−1(LA ⊗A B) ' 0

of discrete π0B-modules. Consequently, we may identify π0LB/A with the cokernel of the map g.

Using Corollary 7.4.3.5 and Lemma 7.4.3.8, we can identify π0LA and π0LB with the modules

Ωπ0A and Ωπ0B, respectively. Using Corollary 7.2.1.23, we can identify π0(LA⊗AB) with the discrete

π0B-module Torπ0A
0 (Ωπ0A, π0B). The desired result now follows from the short exact sequence of

Remark 7.4.3.7.

We now turn to the proof of Theorem 7.4.3.1. We begin with a construction of the map εf . For

later applications, it will be useful to work in a slightly more general setting.

Construction 7.4.3.10. Let C denote a symmetric monoidal stable ∞-category equipped with a

t-structure which satisfies the following conditions:

(i) The ∞-category C is presentable.

(ii) The tensor product ⊗ : C×C→ C preserves small colimits separately in each variable.

(iii) The full subcategory C≥0 ⊆ C contains the unit object and is closed under tensor products.

Let f : A→ B be a morphism of commutative algebra objects of C, so that f induces a map of

B-module objects η : LB → LB/A. We let Bη denote the associated square-zero extension of B by

LB/A[−1]. Since the restriction of η to LA is nullhomotopic, the map f factors as a composition

A
f ′→ Bη f ′′→ B.

We therefore obtain a map of A-modules cofib(f) → cofib(f ′′), which is adjoint to a map of B-

modules

εf : B ⊗A cofib(f)→ cofib(f ′′) ' LB/A.
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Remark 7.4.3.11. The ∞-category of spectra (endowed with the smash product monoidal struc-

ture) satisfies conditions (i) through (iii) of Construction 7.4.3.10. However, these conditions are

also satisfied in other situations of interest: for example, C might be the ∞-category of sheaves of

spectra on a topological space X.

We can now state the following more precise version of Theorem 7.4.3.1:

Theorem 7.4.3.12. Let C be a symmetric monoidal stable ∞-category equipped with a t-structure

satisfying conditions (i) through (iii) of Construction 7.4.3.10. Let f : A → B be a morphism of

commutative algebra objects of C≥0, and assume that cofib(f) ∈ C≥n. Let εf : B⊗Acofib(f)→ LB/A
be as in Construction 7.4.3.10. Then fib(εf ) ∈ C≥2n.

The proof of Theorem 7.4.3.12 will require some preliminaries.

Remark 7.4.3.13. Let C be as in Construction 7.4.3.10, and let M ∈ C≥m. Then each tensor

power M⊗k belongs to C≥km. Using the closure of C≥km under colimits, we conclude that the

symmetric power Symk(M) belongs to C≥km.

Proposition 7.4.3.14. Let C be as in Construction 7.4.3.10, let M ∈ C, and let A = Sym∗M

denote the commutative algebra object of C freely generated by M . Then there is a canonical

equivalence LA ' A⊗M in the ∞-category of A-modules.

Proof. For every A-module N , we have a chain of homotopy equivalences

MapModA(C)(A⊗M,N) ' MapC(M,N)

' MapC/A
(M,A⊕N)

' MapCAlg(C)/A
(A,A⊕N)

' MapModA(C)(LA, N).

It follows that M ⊗A and LA corepresent the same functor in the homotopy category hModA(C),

and are therefore equivalent.

Our connectivity estimates for the cotangent complex all hinge on the following basic observa-

tion:

Lemma 7.4.3.15. Let C be as in Construction 7.4.3.10 and let Sym∗ : C→ CAlg(C) denote a left

adjoint to the forgetful functor CAlg(C) → C. Let f : A → B be a morphism in CAlg(C≥0) and

assume that cofib(f) is n-connective for some n ≥ 0. Then there exists an object M ∈ C≥n−1 and
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a commutative diagram

Sym∗M
φ //

��

1

��
A //

f

$$

A′

f ′

��
B

in CAlg(C), where the upper square is a pushout, A′ ∈ CAlg(C≥0), cofib(f ′) ∈ C≥n+1, and φ is

adjoint to the zero map M → 1 in C. Here 1 denotes the unit object of C, regarded as an initial

object of CAlg(C).

Proof. We will abuse notation by not distinguishing between the objects A,B ∈ CAlg(C) and their

images in C. Let M = fib(f), so that we have a pushout diagram of spectra

M

��

// 0

��
A

f // B.

Invoking the universal property of Sym∗, we obtain a commutative diagram

Sym∗M //

��

Sym∗ 0

��
Sym∗A //

��

Sym∗B

��
A // B

in the ∞-category CAlg(C), where the upper square is a pushout. We observe that Sym∗ 0 is

equivalent to the unit object 1. Let A′ denote the tensor product A⊗Sym∗M 1 so that we obtain a

commutative diagram

Sym∗M
φ //

��

{1}

��
A //

f

%%

A′

f ′

��
B

as above. Since A′ can also be identified with the tensor product

A⊗Sym∗ A Sym∗B,
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we conclude that A′ is connective. The only nontrivial point is to verify that cofib(f ′) ∈ C≥n+1.

Suppose first that n = 0; in this case, we wish to show that f ′ induces an epimorphism π0A
′ → π0B

in the heart of C. To prove this, we observe that the counit map

f ′′ : Sym∗B → B

factors through f ′. The map f ′′ induces an epimorphism on all homotopy groups, because the

underlying morphism in C admits a section.

We now treat the more generic case n ≥ 1. Let I denote the fiber of the projection map

Sym∗M → 1, so that we have a map of fiber sequences

A⊗Sym∗M I

g

��

// A

=

��

// A′

f ′

��
M // A // B

in the ∞-category C. Consequently, we obtain an equivalence of spectra cofib(f ′) ' cofib(g)[1], so

it will suffice to show that cofib(g) ∈ C≥n. Using Proposition 3.1.3.13, we can identify I with the

coproduct ⊕i>0 Symi(M). The map g admits a section, given by the composition

M ' Sym1(M)→ I → A⊗Sym∗M I.

We may therefore identify the fib(g) with a summand of the tensor product A⊗Sym∗M I. It will now

suffice to show that this tensor product is (n−1)-connective. Since A and Sym∗M are connective, it

will suffice to show that I is (n−1)-connective. This follows immediately from Remark 7.4.3.13.

Lemma 7.4.3.16. Let C be as in Construction 7.4.3.10. Let f : A → B be a morphism in

CAlg(C≥0), and choose objects M,N ∈ ModB(C≥0). If cofib(f) is n-connective, then the induced

map θ : M ⊗A N →M ⊗B N is n-connective.

Proof. We note that the fiber fib(θ) can be identified with the geometric realization of a simplicial

object C• of C, given by

C• = fib(BarA(M,N)• → BarB(M,N)•).

Using the spectral sequence of Proposition 1.2.4.5, we are reduced to showing that each of the

objects Cm belongs to C≥n−m. When m = 0, Cm vanishes and the result is obvious. Assume

therefore that m > 0; we claim that Cm ∈ C≥n−1 ⊆ C≥n−m. That is, we claim that the canonical

map

M ⊗A⊗m ⊗N →M ⊗B⊗m ⊗N

is (n− 1)-connective. This follows immediately from the (n− 1)-connectivity of f .
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Lemma 7.4.3.17. Let C be as in Construction 7.4.3.10 and let f : A → B be a morphism in

CAlg(C≥0). Suppose that n ≥ 0 and that f induces an equivalence τ≤nA→ τ≤nB. Then τ≤nLB/A '
0.

Proof. It will suffice to show that f induces an equivalence τ≤n(B ⊗A LA)→ τ≤nLB. To this end,

choose an arbitrary object M ∈ ModB(C)≤n; we wish to show that the canonical map

θ : MapModB(C)(LB,M)→ MapModA(C)(LA,M)

is a homotopy equivalence. Equivalently, we must show that the map

θ′ : MapCAlg(C)/B
(B,B ⊕M)→ MapCAlg(C)/B

(A,B ⊕M)

is an equivalence. Since A and B belong to CAlg(C≥0), we may replace M by τ≥0M and thereby

reduce to the case where M ∈ C≥0. We have a pullback diagram

B ⊕M //

��

τ≤nB ⊕M

��
B // τ≤nB,

so that θ′ is equivalent to the map

θ′′ : MapCAlg(C)/τ≤nB
(B, (τ≤nB)⊕M)→ MapCAlg(C)/τ≤nB

(A, τ≤nB ⊕M)

Since τ≤nB and τ≤nB⊕M belong to CAlg(C≥0 ∩C≤n), the condition that f induces an equivalence

τ≤nA→ τ≤nB ensures that θ′′ is a homotopy equivalence.

Proof of Theorem 7.4.3.12. Let us say that a morphism f : A→ B in CAlg(C) is n-good if fib(εf ) ∈
C≥2n. We make the following observations:

(a) Suppose given a commutative triangle

B
g

  
A

f
??

h // C

in CAlg(C≥0). If f and g are n-good and cofib(f), cofib(g) ∈ C≥n, then h is n-good. To prove

this, we consider the diagram of C-modules

C ⊗A cofib(f)

ε′

��

// C ⊗A cofib(h)

εh

��

// C ⊗A cofib(g)

ε′′

��
C ⊗B LB/A // LC/A // LC/B.



7.4. DEFORMATION THEORY 1367

Here ε′ = idC ⊗εf , so that fib(ε′) ∈ C≥2n. It will therefore suffice to show that fib(ε′′) ∈ C≥2n.

We can write ε′′ as a composition

C ⊗A cofib(g)
φ→ C ⊗B cofib(g)

εg→ LC/B,

so that we have a fiber sequence

fib(φ)→ fib(ε′′)→ fib(εg).

It will therefore suffice to show that fib(φ) ∈ C≥2n. This follows from Lemma 7.4.3.16, since

cofib(f) and cofib(g) are n-connective.

(b) Suppose given a pushout diagram

A
f //

��

B

��
A′

f ′ // B′

in CAlg(C), where B,B′ ∈ CAlg(C≥0). If f is n-good, then so is f ′. This follows immediately

from the equivalence fib(εf ′) ' B′ ⊗B fib(εf ).

(c) Let f : A→ B be an arbitrary morphism in CAlg(C). Then the domain B⊗A cofib(f) of the

morphism εf can be identified with the cofiber of the map B → B⊗AB given by the inclusion

of the second factor. This map admits a left homotopy inverse (given by the multiplication

on B).

(d) Let M ∈ C≥n−1, let 1 denote the unit object of C, and consider the map f : Sym∗M → 1 in

CAlg(C) which is adjoint to the zero map M → 1 in C. Then f is n-good. To prove this, we

will explicitly compute both the domain and codomain of εf .

Using Corollary 7.3.3.6 we obtain a fiber sequence

1⊗Sym∗M LSym∗M → L1 → L1/ Sym∗M

in Mod1(C) = C. Using Proposition 7.4.3.14, we may rewrite this fiber sequence

M → 0→ L1/ Sym∗M

so that the codomain of εf is given by L1/Sym∗M 'M [1].

We next observe that the pushout diagram

M //

��

0

��
0 //M [1]
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induces an equivalence of E∞-rings 1⊗Sym∗M 1 ' Sym∗M [1]. Invoking (c), we deduce that

1⊗Sym∗M cofib(f) can be identified with the cofiber of the unit map 1→ Sym∗M [1]. Using

Proposition 3.1.3.13, we can identify this fiber with the direct sum ⊕i>0 Symi(M [1]).

We now observe that the composition

M [1] ' Sym1(M [1])[−1]→ ⊕i>0 Symi(M [1])[−1]
εf→M [1]

is homotopic to the identity. Consequently, the fiber of εf can be identified with the direct

sum ⊕i≥2 Symi(M [1]). To complete the proof that fib(εf ) ∈ C≥2n, it will suffice to show that

each symmetric power Symi(M [1]) belongs to C≥2n for i ≥ 2. This follows immediately from

Remark 7.4.3.13.

(e) If f : A→ B is a morphism in CAlg(C≥0) which induces an equivalence τ≤2n−1A→ τ≤2n−1B,

then f is n-good. To prove this, we note that B⊗A cofib(f) and LB/A[1] both belong to C≥2n

(see Lemma 7.4.3.17).

We are now ready to proceed with the proof of Theorem 7.4.3.1. Let f : A→ B be a morphism

in CAlg(C≥0) and suppose that cofib(f) ∈ C≥n; we wish to show that f is n-good. Applying Lemma

7.4.3.15 repeatedly, we deduce the existence of a sequence of objects

An → An+1 → An+2 → . . .

in CAlg(C)/B, with the following properties:

(i) The object An coincides with A (as an object of CAlg(C)/B).

(ii) For m ≥ n, the cofiber of the map Am → B belongs to C≥m, and Am ∈ CAlg(C≥0).

(iii) For each m ≥ n, there exists an object M ∈ C≥m−1 and a pushout diagram

Sym∗M
φm //

��

1

��
Am

gm,m+1 // Am+1,

where gj,k denotes the morphism in CAlg(C) underlying the map from Aj to Ak in our direct

system, and φm is adjoint to the zero map M → 1 in C.

Using (e), we deduce that the map A2n+1 → B is n-good. Using (a), we are reduced to showing

that the maps gm,m+1 are n-good for m ≤ 2n. Using (b) and (iii), we are reduced to showing that

each of the morphisms φm is n-good, which follows immediately from (d).

We close this section by studying the finiteness properties of the relative cotangent complex

LB/A for a map A→ B of E∞-rings. Our main result can be formulated as follows:
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Theorem 7.4.3.18. Let A be a connective E∞-ring, and let B be a connective E∞-algebra over A.

Then:

(1) If B is locally of finite presentation over A, then LB/A is perfect as a B-module. The converse

holds provided that π0B is finitely presented as a π0A-algebra.

(2) If B is almost of finite presentation over A, then LB/A is almost perfect as a B-module. The

converse holds provided that π0B is finitely presented as a π0A-algebra.

As an immediate consequence, we deduce the following analogue of Remark 7.2.4.29:

Corollary 7.4.3.19. Suppose given a commutative diagram

B

  
A

??

// C

of connective E∞-rings. Assume furthermore that B is of almost of finite presentation over A.

Then C is almost of finite presentation over A if and only if C is almost of finite presentation over

B.

Proof of Theorem 7.4.3.18. We first prove the forward implications. It will be convenient to phrase

these results in a slightly more general form. Suppose given a commutative diagram σ:

B

  
A

??

// C

of connective E∞-rings, and let F (σ) = LB/A ⊗B C. We will show:

(1′) If B is locally of finite presentation as an E∞-algebra over A, then F (σ) is perfect as a

C-module.

(2′) if B is almost of finite presentation as an E∞-algebra over A, then F (σ) is almost perfect as

a C-module.

We will obtain the forward implications of (1) and (2) by applying these results in the case B = C.

We first observe that the construction σ 7→ F (σ) defines a functor from CAlgA//C into ModC .

Using Remark 7.3.2.18 and Proposition HTT.4.3.1.10 , we deduce that this functor preserves col-

imits. Since the collection of finitely presented C-modules is closed under finite colimits and re-

tracts, it will suffice to prove (1′) in the case where B is finitely generated and free. In this case,

B = Sym∗AM for some finitely generated free A-module M . Using Proposition 7.4.3.14, we deduce

that F (σ) 'M ⊗A C is a finitely generated free C-module, as desired.
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We now prove (2′). It will suffice to show that for each n ≥ 0, there exists a commutative

diagram

B′
f // B

��
A

>>

// C

such that LB′/A ⊗B′ C is perfect, and the induced map

τ≤n(LB′/A ⊗B′ C)→ τ≤n(LB/A ⊗B C)

is an equivalence. To guarantee the latter condition, it suffices to choose B′ so that the relative

cotangent complex LB/B′ is n-connective. Using Corollary 7.4.3.2, it suffices to guarantee that f is

(n+ 1)-connective. Moreover, assertion (1′) implies that LB′/A ⊗B′ C will be perfect so long as B′

is locally of finitely presentation as an A-algebra. The existence of a commutative A-algebra with

the desired properties now follows from Proposition 7.2.4.27.

We now prove the reverse implication of (2). Assume that LB/A is almost perfect and that

π0B is a finitely presented as a (discrete) π0A-algebra. To prove (2), it will suffice to construct a

sequence of maps

A→ B(−1)→ B(0)→ B(1)→ . . .→ B

such that each B(n) is locally of finite presentation as an A-algebra, and each map fn : B(n)→ B

is (n + 1)-connective. We begin by constructing B(−1) with an even stronger property: the map

f−1 induces an isomorphism π0B(−1)→ π0B. Choose a finite presentation

π0B ' (π0A)[x1, . . . , xk]/(g1, . . . , gm)

for the ordinary commutative ring π0B. Let M denote the free A-module generated by sym-

bols {Xi}1≤i≤k, so that the elements {xi} ⊆ π0B determine a map of A-modules M → B.

Let h : Sym∗A(M) → B be the adjoint map. We observe that there is a canonical isomorphism

π0(Sym∗A(M)) ' (π0A)[x1, . . . , xk]. It follows that the image of the induced map

π0 fib(h)→ π0 Sym∗A(M)

can be identified with the ideal in (π0A)[x1, . . . , xk] generated by the elements {gj}1≤j≤m. Choose

elements {gj}1≤j≤m in π0 fib(h) lifting {gj}1≤j≤m. Let N be the free A-module generated by

symbols {Gj}1≤j≤m, so that the elements {gj}1≤j≤m determine a map of A-modules N → fib(h).

This map classifies a commutative diagram of A-modules

N

��

// 0

��
Sym∗A(M)

h // B.



7.4. DEFORMATION THEORY 1371

Adjoint to this, we obtain a commutative diagram

Sym∗AN

��

// A

��
Sym∗A(M) // B

in CAlgA. Let B(−1) denote the tensor product

A⊗Sym∗AN
Sym∗AM.

Then the above diagram classifies a map of commutative A-algebras f−1 : B(−1) → B. By

construction, B(−1) is of finite presentation over A, and f−1 induces an isomorphism

π0B(−1) ' (π0A)[x1, . . . , xk]/(g1, . . . , gm) ' π0B.

We now proceed in an inductive fashion. Assume that we have already constructed a connective

A-algebra B(n) which is of finite presentation over A, and an (n + 1)-connective morphism fn :

B(n)→ B of commutative A-algebras. Moreover, we assume that the induced map π0B(n)→ π0B

is an isomorphism (if n ≥ 0 this is automatic; for n = −1 it follows from the specific construction

given above). We have a fiber sequence of B-modules

LB(n)/A ⊗B(n) B → LB/A → LB/B(n).

By assumption, LB/A is almost perfect. Assertion (2′) implies that LB(n)/A⊗B(n)B is perfect. Using

Proposition 7.2.4.11, we deduce that the relative cotangent complex LB/B(n) is almost perfect.

Moreover, Corollary 7.4.3.2 ensures that LB/B(n) is (n+ 2)-connective. It follows that πn+2LB/B(n)

is a finitely generated as a (discrete) module over π0B. Using Theorem 7.4.3.1 and the bijectivity

of the map π0B(n)→ π0B, we deduce that the canonical map

πn+1 fib(fn)→ πn+2LB/B(n)

is bijective. Choose a finitely generated projective B(n)-module M and a map M [n+ 1]→ fib(fn)

such that the composition

π0M ' πn+1M [n+ 1]→ πn+1 fib(f) ' πn+2LB/B(n)

is surjective (for example, we can take M to be a free B(n)-module indexed by a set of generators for

the π0B-module πn+2LB/B(n)). By construction, we have a commutative diagram of B(n)-modules

M [n+ 1] //

��

0

��
B(n) // B.
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Adjoint to this, we obtain a diagram

Sym∗B(n)(M [n+ 1]) //

��

B(n)

��
B(n) // B.

in the ∞-category of CAlgA. We now define B(n+ 1) to be the pushout

B(n)⊗Sym∗B(n) M [n+1] B(n),

and fn+1 : B(n + 1) → B to be the induced map. It is clear that B(n + 1) is locally of finite

presentation over B(n), and therefore locally of finite presentation over A (Remark 7.2.4.29). To

complete the proof of (2), it will suffice to show that the fiber of fn+1 is (n+ 2)-connective.

By construction, we have a commutative diagram

π0B(n+ 1)

e′′

%%
π0B(n)

e′
88

e // π0B

where the map e′ is surjective and e is bijective. It follows that e′ and e′′ are also bijective. In view

of Corollary 7.4.3.2, it will now suffice to show LB/B(n+1) is (n + 3)-connective. We have a fiber

sequence of B-modules

LB(n+1)/B(n) ⊗B(n+1) B → LB/B(n) → LB/B(n+1)

Using Proposition 7.4.3.14 and Proposition 7.3.3.7, we conclude that LB(n+1)/B(n) is canonically

equivalent to M [n+ 2]⊗B(n) B(n+ 1). We may therefore rewrite our fiber sequence as

M [n+ 2]⊗B(n) B → LB/B(n) → LB/B(n+1).

The inductive hypothesis and Corollary 7.4.3.2 guarantee that LB/B(n) is (n+ 2)-connective. The

(n+ 3)-connectiveness of LB/B(n+1) is therefore equivalent to the surjectivity of the map

π0M ' πn+2(M [n+ 2]⊗B(n) B)→ πn+2LB/B(n),

which is evident from our construction. This completes the proof of (2).

To complete the proof of (1), we use the same strategy but make a more careful choice of M .

Let us assume that LB/A is perfect. It follows from the above construction that each cotangent

complex LB/B(n) is likewise perfect. Using Proposition 7.2.4.23, we may assume LB/B(−1) is of

Tor-amplitude ≤ k + 2 for some k ≥ 0. Moreover, for each n ≥ 0 we have a fiber sequence of

B-modules

LB/B(n−1) → LB/B(n) → P [n+ 2]⊗B(n) B,
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where P is finitely generated and projective, and therefore of Tor-amplitude ≤ 0. Using Proposition

7.2.4.23 and induction on n, we deduce that the Tor-amplitude of LB/B(n) is ≤ k+ 2 for n ≤ k. In

particular, the B-module M = LB/B(k)[−k−2] is connective and has Tor-amplitude ≤ 0. It follows

from Remark 7.2.4.22 that M is a flat B-module. Invoking Proposition 7.2.4.20, we conclude that

M is a finitely generated projective B-module. Using Corollary 7.2.2.19, we can choose a finitely

generated projective B(k)-module M and an equivalance M [k + 2]⊗B(k) B ' LB/B(k). Using this

map in the construction outlined above, we guarantee that the relative cotangent complex LB/B(k+1)

vanishes. It follows from Corollary 7.4.3.4 that the map fk+1 : B(k + 1)→ B is an equivalence, so

that B is locally of finite presentation as an E∞-algebra over A, as desired.

7.5 ÉtaleMorphisms

In this section, we will develop an ∞-categorical generalization of the theory of étalemorphisms

between commutative rings. We begin by recalling a definition from commutative algebra.

Definition 7.5.0.1. Let f : A→ B be a map of commutative rings. We say that f is étale if the

following conditions are satisfied:

(1) The commutative ring B is finitely presented as an A-algebra.

(2) The map f exhibits B as a flat A-module.

(3) The multiplication map p : B ⊗A B → B is the projection onto a summand: that is, there

exists another map of commutative rings q : B ⊗A B → R such that p and q induce an

isomorphism B ⊗A B → B ×R.

Remark 7.5.0.2. Condition (3) of Definition 7.5.0.1 is equivalent to the following assertion:

(∗) There exists an idempotent element e ∈ B ⊗A B such that p induces an isomorphism (B ⊗A
B)[1

e ] ' B.

Indeed, if B ⊗A B ' B × R, we can take e to be the preimage of the element (1, 0) ∈ B × R.

Conversely, if (∗) is satisfied, then we can take R = (B ⊗A B)[ 1
1−e ].

Remark 7.5.0.3. For any étalemap of commutative rings f : A → B, the module of

Kähler differentials ΩB/A is trivial. Equivalently, for every B-module M , the projection map

p : B ⊕M → B admits a unique section (as a map of A-modules). Indeed, if p has two sections s

and s′, then we get an induced map f : B ⊗A B → B ⊕M . If e ∈ B ⊗A B is the idempotent of

Remark 7.5.0.2, then f(e) = 1 + m for some m ∈ M and is therefore invertible. It follows that f

factors through the multiplication map B ⊗A B → B, so that s = s′.

Our goal in this section is to study the following generalization of Definition 7.5.0.1:
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Definition 7.5.0.4. Let 2 ≤ k ≤ ∞, and let φ : A→ B be a map of Ek-rings. We will say that φ

is étale if the following conditions are satisfied:

(1) The underlying map of commutative rings π0A → π0B is étale(in the sense of Definition

7.5.0.1).

(2) The map φ exhibits B as a flat (left or right) A-module.

Remark 7.5.0.5. Suppose given a pushout diagram of E∞-rings

A //

f
��

A′

f ′

��
B // B′.

If f is étale, then so is f ′. The flatness of f follows from Proposition 7.2.2.16. Moreover, Proposition

7.2.2.13 ensures that the induced diagram

π0A //

��

π0A
′

��
π0B // π0B

′

is a pushout in the category of ordinary commutative rings. Since the left vertical map is étale, it

follows that the right vertical map is étale, so that f ′ is likewise étale.

One of our main results can be stated as follows:

Theorem 7.5.0.6. Let 2 ≤ k ≤ ∞, let R be an Ek+1-ring, and let A be an Ek-algebra over R.

Let (Alg
(k)
R )ét

A/) denote the full subcategory of (Alg
(k)
R )A/ spanned by the étalemorphisms. Then the

construction B 7→ π0B induces an equivalence from (Alg
(k)
R )ét

A/ to the nerve of the ordinary category

of étaleπ0A-algebras.

More informally: given an Ek-ring A and an étalemorphism of commutative rings π0A → B0,

there exists an étalemap of Ek-rings f : A→ B and an isomorphism of (π0A)-algebras π0B ' B0;

moreover, B is determined uniquely up to equivalence.

Example 7.5.0.7. Let A be an Ek-ring for 2 ≤ k ≤ ∞ and let x ∈ π0A. Theorem 7.5.0.6

implies that there exists another Ek-ring A[x−1], equipped with a map A→ A[x−1] which induces

an isomorphism (π∗A)[x−1] ' π∗(A[x−1]). Using Proposition 7.2.3.20, we deduce that A[x−1]

can be identified with the Ore localization A[S−1] where S is the multiplicatively closed subset

{xn}n≥0 ⊆ π0A.
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In the case k = ∞, it is possible to give a very direct proof of Theorem 7.5.0.6 using the

deformation theory developed in §7.4.2. We will adopt a more roundabout strategy which also

works in the case k < ∞. We will begin in §7.5.1 by formulating and proving an analogue of

Theorem 7.5.0.6 in the case k = 1, assuming that R is the sphere spectrum and that A is connective.

In §7.5.2, we will generalize this result to the case where A is not assumed to be connective, and in

§7.5.3 we will generalize to the case where R is arbitrary. Finally, in §7.5.4 we will prove Theorem

7.5.0.6 in general, reducing to the case k = 1 using a mechanism provided by Theorem 5.1.2.2.

7.5.1 ÉtaleMorphisms of E1-Rings

Our goal in this section is to prove a version of Theorem 7.5.0.6 in the setting of E1-rings. The

first step is to decide what we mean by an étalemap φ : A→ B of E1-rings. The definition that we

adopt requires some mild commutativity assumptions on A and B.

Definition 7.5.1.1. Let A be an E1-ring. We will say that A is quasi-commutative if the following

condition is satisfied: for every x ∈ π0A and every y ∈ πnA, we have xy = yx ∈ πnA.

Remark 7.5.1.2. Let A be an Ek ring for 2 ≤ k ≤ ∞. Then the underlying E1-ring of A is quasi-

commutative. To see this, it suffices to observe that for x ∈ π0A, the spectrum maps lx, rx : A→ A

given by left and right multiplication by x are homotopic to one another (since the multiplication

A⊗A→ A is commutative up to homotopy).

Remark 7.5.1.3. Let A be quasi-commutative E1-ring. Then π0A is a commutative ring.

We now adapt Definition 7.5.0.4 to the setting of E1-rings.

Definition 7.5.1.4. Let φ : A → B be a morphism of E1-rings. We will say that φ is étale if the

following conditions are satisfied:

(1) The E1-rings A and B are quasi-commutative.

(2) The morphism φ induces an étalehomomorphism of commutative rings π0A→ π0B (Definition

7.5.0.1).

(3) For every integer n ∈ Z, the associated map Torπ0A
0 (πnA, π0B)→ πnB is an isomorphism of

abelian groups.

Remark 7.5.1.5. In the situation of Definition 7.5.1.4, condition (1) guarantees that the left and

right actions of π0B on πnB agree, so that the map πnA⊗π0Aπ0B → πnB is unambiguously defined.

In other words, if condition (1) is satisfied, then condition (3) is equivalent to either of the following

assertions:

(3′) The map φ exhibits B as a flat left A-module.
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(3′′) The map φ exhibits B as a flat right A-module.

Remark 7.5.1.6. The collection of étalemorphisms between E1-rings is closed under composition.

In particular, every equivalence of quasi-commutative E1-rings is étale.

Remark 7.5.1.7. Suppose given a commutative diagram

B
g

  
A

f
??

h // C

of quasi-commutative E1-rings. If f is étale, then g is étaleif and only if h is étale. The “only if”

direction is Remark 7.5.1.6. For the converse, let us suppose that f and h are both étale. The

induced maps π0A → π0B and π0A → π0C are both étalemap of ordinary commutative rings,

so that g also induces an étalemap π0B → π0C. We now observe that for n ∈ Z, we have a

commutative diagram

Torπ0B
0 (Torπ0A

0 (πnA, π0B), π0C) //

��

Torπ0A
0 (πnA, π0C)

��
Torπ0B

0 (πnB, π0C) // πnC.

Since f and h are flat, the vertical maps are isomorphisms. The upper horizontal map is obviously

an isomorphism, so the lower horizontal map is an isomorphism as well.

Remark 7.5.1.8. Let φ : A→ B be a morphism of Ek-rings for 2 ≤ k ≤ ∞. Then the underlying

map of E1-rings satisfies condition (1) of Definition 7.5.1.4. It follows that φ is étaleas a map of

Ek-rings (in the sense of Definition 7.5.0.4) if and only if it is étaleas a map of E1-rings (in the

sense of Definition 7.5.1.4).

Remark 7.5.1.9. Let A be an ordinary associative ring, regarded as a discrete E1-ring. Then A

is quasi-commutative if and only if it is a commutative ring. A morphism φ : A→ B is étale(in the

sense of Definition 7.5.1.4) if and only if B is discrete (as an E1-ring) and the underlying associative

ring is a commutative ring which is étaleover A, in the sense of Definition 7.5.0.1.

The primary objective in this section gives a classification of étalemorphisms φ : A→ B, in the

case where A is a connective, quasi-commutative E1-ring. To state it, we need to introduce a bit

of notation.

Notation 7.5.1.10. Let A be a quasi-commutative E1-ring. We let Alg
(1),ét
A/ denote the full subcat-

egory of Alg
(1)
A/ spanned by the étalemorphisms φ : A→ B. If we are given a morphism of E1-rings
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ψ : A→ C, we let Alg
(1),ét
A//C denote the full subcategory of Alg

(1)
A//C spanned by those diagrams

B

  
A

φ
??

ψ // C

where φ is étale.

Let Ring denote the category of commutative rings. Given a commutative ring A, we let Ringét
A/

denote the full subcategory of RingA/ spanned by the étalering homomorphisms A → B. If we

are given a map of commutative rings ψ : A→ C, we let Ringét
A//C denote the full subcategory of

RingA//C spanned by those diagrams

B

  
A

φ
??

ψ // C

where φ is étale.

We can now state our main result:

Theorem 7.5.1.11. Let A be an E1-ring which is connective and quasi-commutative. Then the

forgetful functor B 7→ π0B determines an equivalence of ∞-categories

Alg
(1),ét
A/ → N(Ringét

π0A/
).

The proof of Theorem 7.5.1.11 will occupy our attention for the remainder of this section. We

begin by introducing a bit of terminology.

Definition 7.5.1.12. Let R be an E1-ring. We will say that an element x ∈ π0R is quasi-central

if the set S = {xn}n≥0 satisfies the left Ore condition (Definition 7.2.3.1).

Remark 7.5.1.13. Suppose that R is a quasi-commutative E1-ring. Then every element x ∈ π0R

is quasi-central. Let R[x−1] denote the localization R[S−1], where S = {xn}n≥0. Proposition

7.2.3.20 implies that the ring π∗R[x−1] is obtained from π∗R by inverting the element x. It follows

immediately that the localization map R→ R[x−1] is étale.

Lemma 7.5.1.14. Let A and B be quasi-commutative E1-rings with connective covers Ã and B̃.

Then every element x ∈ π0(Ã⊗ B̃) has quasi-central image in π0(A⊗ B). In particular, if A and

B are connective, then every element of π0(A⊗B) is quasi-central.

Proof. We will say that a left Ã⊗ B̃-module P is x-nilpotent if it is {xn}n≥0-nilpotent, in the sense

of Definition 7.2.3.8 (that is, if and only if every element of π∗P is annihilated by left multiplication
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by power of x). If M ∈
Ã

BMod
Ã

(Sp) and N ∈
B̃

BMod
B̃

(Sp), then M ⊗N has the structure of an

(Ã⊗ B̃)-bimodule spectrum. In this case, let rM,N
x : M ⊗N →M ⊗N be the map given by right

multiplication by x. Let us say that the pair (M,N) is good if the cofiber cofib(rM,N
x ) is x-nilpotent

(as a left (Ã ⊗ B̃)-module). According to Lemma 7.2.3.11, the image of x is quasi-central if and

only if the pair (A,B) is good. The collection of all N ∈ BBModB(Sp) such that (A,N) is good

is closed under small colimits. It will therefore suffice to show that each pair (A, τ≥nB) is good.

Using the same reasoning, we are reduced to showing that every pair of the form (τ≥mA, τ≥nB) is

good. Note that for p ≤ q +m+ n, the natural map

πp cofib(r
τ≤m+qτ≥mA,τ≤n+qτ≤nB
x )→ πp cofib(r

τ≥mA,τ≥nB
x )

is an isomorphism. It will therefore suffice to show that each of the pairs (τ≤m+qτ≥mA, τ≤n+qτ≥nB)

is good. Since the collection of x-nilpotent left modules is closed under shifts and extensions, we

are reduced to proving that the pair (M,N) is good in the case M = πm′A, N = πn′B.

Note that the commutative ring π0(Ã⊗B̃) can be identified with TorZ
0 (π0A, π0B). In particular,

π0(Ã⊗ B̃) is a commutative ring, and we have commutative ring homomorphisms

π0A
φ→ π0(Ã⊗ Ã)

ψ← π0B.

We claim that every element x ∈ π0(A⊗B) satisfies the following condition:

(∗) Left and right multiplication by x induce homotopic maps from the spectrum M⊗N to itself.

The collection of those elements of π0(Ã⊗ B̃ which satisfy (∗) is stable under sums. Consequently,

it suffices to prove (∗) in the case x = φ(a)ψ(b), for some a ∈ π0A and b ∈ π0B. The desired result

then follows from the observation that left and right multiplication by a induce the same map from

M ' N to itself (since M and N are discrete, it suffices to check this at the level of homotopy

groups, in which case it follows from our assumption that A and B are quasi-commutative).

Let X = cofib(rM,N
x ). We have a long exact sequence

πp(M ⊗N)
f→ πpM ⊗N → πpX → πp−1(M ⊗N)

f ′→ πp−1(M ⊗N).

Condition (∗) guarantees that f and f ′ are given by left multiplication by x. It follows that the

cokernel of f and the kernel of f ′ (in the ordinary category of abelian groups) are annihilated by

left multiplication by x, so that πnX is annihilated by left multiplication by x2.

We now show that if φ : A→ B is an étalemap of connective E1-rings, then B is determined by

A and π0B. More precisely, we have the following universal property:

Proposition 7.5.1.15. Let φ : A → B be an étalemap of connective E1-rings and let C be an

arbitrary quasi-commutative E1-ring. Then the diagram σ :

MapAlg(1)(B,C) //

��

MapAlg(1)(A,C)

��
HomRing(π0B, π0C) // HomRing(π0A, π0C)
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is a pullback square in S.

Proof. Since A and B are connective, we may replace C by its connective cover τ≥0C and thereby

reduce to the case where C is connective. For every map C ′ → τ≤0C in Alg(1), we let σC′ denote

the commutative diagram

MapAlg(1)(B,C ′) //

��

MapAlg(1)(A,C ′)

��
MapAlg(1)(B, τ≤0C) //MapAlg(1)(π0A, τ≤0C).

Note that σ is equivalent to σC ; it will therefore suffice to prove that σC is a pullback square in S.

The collection of objects C ′ for which σC′ is a pullback square is closed under limits in Alg
(1)
/τ≤0C

.

Since C can be realized as the limit of its Postnikov tower

· · · → τ≤2C → τ≤1C → τ≤0C

(Proposition 7.1.3.19), we may replace C by τ≤nC and thereby reduce to the case where C is n-

truncated. We now proceed by induction on n, the case n = 0 being trivial. If n > 0, then the

truncation map C → τ≤n−1C is a square-zero extension (Corollary 7.4.1.28), so we have a pullback

diagram

C //

��

τ≤n−1C

��
τ≤n−1C // (τ≤n−1C)⊕ (πnC)[n+ 1].

It will therefore suffice to prove that σC′ is a pullback diagram, where C ′ is the trivial square-zero

extension of C by (πnC)[n + 1]. Unwinding the definitions, we are reduced to proving that for

any ring homomorphism φ : π0B → π0C, the abelian groups ExtkC(LB/A, πnC) are trivial, where

C denotes the stable ∞-category BBModB(Sp), LB/A ∈ C is the relative cotangent complex of B

over A, and we regard πnC as a discrete object of C via the ring homomorphism φ.

Proposition 4.6.3.15 furnishes an equivalence of∞-categories C ' LModT , where T denotes the

E1-ring Brev⊗B. Since the map π0A→ π0B is an étalehomomorphism of commutative rings, there

exists an idempotent element e ∈ Torπ0A
0 (π0B, π0B) such that Torπ0A

0 (π0B, π0B)[1
e ] ' B (Remark

7.5.0.2). The map π0T ' TorZ
0 (π0B, π0B)→ Torπ0A

0 (π0B, π0B) is surjective, so we can lift e to an

element x ∈ π0T . Since B is connective and quasi-commutative, Lemma 7.5.1.14 guarantees that

x is quasi-central.

Using Remark 7.4.1.12, we can identify the relative cotangent complex LB/A with the cofiber

of the multiplication map B⊗AB → B. Using the flatness of B over A, we obtain an isomorphism

π∗LB/A[−1] ' Torπ0A
0 (π0B, π∗B)[

1

1− e
].
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In particular, π∗LB/A is annihilated by x ∈ π0T , so that LB/A is x-nilpotent. Since C is quasi-

commutative, the left and right actions of π0B on πnC (through the chosen homomorphism φ)

coincide, so that the action of π0T on πnC factors through the map

π0T ' Torπ0R
0 (π0B, π0B)→ π0B.

It follows that x ∈ π0T acts by the identity on πnC, so that the groups ExtkC(LB/A, πnC) vanish by

Proposition 7.2.3.14.

Proof of Theorem 7.5.1.11. Let A be a connective quasi-commutative E1-ring; we wish to show

that the forgetful functor θ : Alg
(1),ét
A/ → N(Ringét

π0A/
) is an equivalence of ∞-categories. Using

Proposition 7.1.3.19, we deduce that Alg
(1),ét
A/ is equivalent to the homotopy limit of the tower of

∞-categories

· · · → Alg
(1),ét
τ≤2A/

→ Alg
(1),ét
τ≤1A/

→ Alg
(1),ét
τ≤0A/

' N(Ringét
π0A/

).

We may therefore assume without loss of generality that A is n-truncated. We proceed by induction

on n, the case n = 0 being trivial. Assume therefore that n > 0. Proposition 7.5.1.15 guarantees

that θ is fully faithful; it will therefore suffice to show that θ is essentially surjective. Fix an

étalemap of commutative rings φ0 : π0A→ B0. Let A′ = τ≤n−1A. Using the inductive hypothesis,

we can lift φ0 to an étalemorphism φ′ : A′ → B′ of E1-rings. According to Corollary 7.4.1.28, we

conclude that the truncation map A→ A′ is a square-zero extension. Let LA′ denote the cotangent

complex of A (as an E1-ring), and write A = A′η for some derivation η : LA′ → M [n + 1], where

M ∈ A′BModA′(Sp) corresponds to the discrete (π0A)-(π0A)-bimodule given by πnA. Since A is

quasi-commutative, the left and right actions of π0A on M agree.

Let N denote the abelian group B0 ⊗π0A πnA. We can regard N as a bimodule over B0, where

the left and right actions of B0 on N agree. We may thereby identify N with a discrete object of

B′BModB′(LModR). The map of A′-A′-bimodules LA′
η→ M [n + 1] → N [n + 1] induced a map of

B′-B′-bimodules η′ : B′ ⊗A′ LA′ ⊗A′ B′ → N [n+ 1]. Consider the cofiber diagram

B′ ⊗A′ LA′ ⊗A′ B′ → LB′ → LB′/A′ .

Write B′BModB′(Sp) ' LModT and choose x ∈ π0T as in the proof of Proposition 7.5.1.15, so that

x is quasi-central and LB′/A′ is x-nilpotent. Since the left and right actions of π0B on N coincide,

multiplication by x is homotopic to the identity on N . Using Proposition 7.2.3.14, we deduce that

the groups ExtiT (LB′/A′ , N) are trivial. It follows that the map η′ factors as a composition

B′ ⊗A′ LA′ ⊗A′ B′ → LB′
γ→ N.

The induced map A ' A′η → B′γ is an object Alg
(1),ét
A/ whose image in N(Ringét

π0A/
) is isomorphic

to the original ring homomorphism φ : π0A→ B0.

For later use, we record the following hybrid of Theorem 7.5.1.11 and Proposition 7.5.1.15.
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Theorem 7.5.1.16. Let ψ : A → C be a map of connective, quasi-commutative E1-rings. Then

the construction B 7→ π0B induces an equivalence of ∞-categories

Alg
(1),ét
A//C → N(Ringét

π0A//π0C
).

Proof. We have a commutative diagram of ∞-categories

Alg
(1),ét
A//C

//

p

��

N(Ringét
π0A//π0C

)

q

��
Alg

(1),ét
A/

// N(Ringét
π0A/

).

The vertical maps are right fibrations, and the bottom horizontal map is an equivalence of ∞-

categories (Proposition 7.5.1.11). It therefore suffices to show that for every étalemap A→ A′, the

functor θ induces a homotopy equivalence from the fiber of p over A′ to the fiber of q over π0A
′

(Corollary HTT.2.4.4.4 ). This follows immediately from Proposition 7.5.1.15.

7.5.2 The Nonconnective Case

Let A be a quasi-commutative E1-ring, and suppose we are given an étalehomomorphism φ0 : π0A→
B0 of commutative rings. In §7.5.1, we showed that when A is connective, there is an essentially

unique way to lift φ0 to an étalemap φ : A→ B of quasi-commutative E1-rings (Theorem 7.5.1.11).

Our goal in this section is to extend this result to the case where A is not assumed to be connective.

We begin by outlining our strategy. Let A be as above, and let τ≥0A be its connective cover.

Using Theorem 7.5.1.11, we deduce that φ0 can be lifted to an étalemap of connective E1-rings

τ≥0A → B′. In particular, B′ is flat over τ≥0A. The tensor product B = A ⊗τ≥0A B
′ is a flat A-

module, which is equipped with a canonical isomorphism π0B ' π0B
′ ' B0. It is not obvious that

B is an E1-ring: a relative tensor product of associative ring spectra does not generally inherit a

ring structure. We will show that B admits an E1-structure by exploiting the quasi-commutativity

of A. Before giving the details, we need to embark on a bit of a digression.

Definition 7.5.2.1. Let R be an associative ring, and let M be a (discrete) R-R-bimodule. For

every element x ∈ R, let lx, rx : M →M be the endomorphisms given by left and right multiplica-

tion by x, respectively. We will say that M is x-balanced if the difference lx−rx is locally nilpotent:

that is, for each y ∈ M , we have (lx − rx)n(y) = 0 for n � 0. We say that M is balanced if it is

x-balanced for each x ∈ R.

Remark 7.5.2.2. Let R and M be as in Definition 7.5.2.1. Suppose that R is commutative, and

let X denote the affine scheme given by the spectrum of R and identify M with a quasi-coherent

sheaf on the product X ×X. Then M is balanced if and only if the restriction of M to the open

set X ×X −∆ is zero, where ∆ ⊆ X ×X denotes the image of the diagonal map X → X ×X.
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Remark 7.5.2.3. Let R be an associative ring, and let RBModR(Ab) denote the abelian category

of (discrete) R-R-bimodules. For each x ∈ R, let C ⊆ RBModR(Ab) be the full subcategory spanned

by the x-balanced bimodules. Then Cx is an abelian subcategory of RBModR(Ab), which is closed

under colimits, extensions, and the formation of subobjects and quotient objects. It follows that

the category
⋃
x∈R Cx of balanced bimodules is also an abelian subcategory of RBModR(Ab), closed

under extensions, small colimits, passage to subobjects, and passage to quotient objects.

Remark 7.5.2.4. Let R be an associative ring and let x be an element of the center of R. For every

right R-module M , multiplication by x defines an R-module endomorphism M
x→ M . Similarly,

if N is a left R-module, then multiplication by x determines an A-linear map N
x→ N . For each

n ≥ 0, these endomorphisms induce the same map from TorRn (M,N) to itself.

Suppose we are given associative rings A, B, and C. Let M be a discrete A-B-bimodule and

let N a discrete B-C-bimodule. Then the relative tensor product M ⊗B N is an A-C-bimodule

spectrum, with homotopy groups given by πn(M ⊗B N) = TorBn (M,N). In particular, taking A =

B = C, we see that if M and N are A-A-bimodules, then each of the abelian groups TorAn (M,N)

has the structure of an A-A-bimodule.

Lemma 7.5.2.5. Let R be an associative ring, let x be an element of the center of A, and let M

and N be discrete R-R-bimodules. If M and N are x-balanced, then TorRn (M,N) is x-balanced.

Proof. Let lx, rx : M →M be the maps given by left multiplication and right multiplication by x,

respectively. For each integer k ≥ 0, let Mk denote the kernel of (lx − rx)k. Since x is central, Mk

is an R-R submodule of M . Our assumption that M is x-balance implies that M =
⋃
kMk, so that

TorRn (M,N) ' lim−→TorRn (Mk, N). Since the collection of x-balanced submodules is closed under

colimits, it will suffice to show that each TorRn (Mk, N) is x-balanced. We proceed by induction on

k. Using the exact sequences

TorRn (Mk, N)→ TorRn (Mk+1, N)→ TorRn (Mk+1/Mk, N),

we are reduced to proving that each of the bimodules TorRn (Mk+1/Mk, N) is x-balanced. We may

therefore replace M by Mk+1/Mk, and thereby reduce to the case where left and right multiplication

by x induce the same map from M to itself. By the same argument, we can assume that left and

right multiplication by x induce the same map from N to itself. In this case, Remark 7.5.2.4

immediately implies that left and right multiplication by x induce the same map from TorRn (M,N)

to itself, from which it follows immediately that TorRn (M,N) is x-balanced.

Definition 7.5.2.6. Let A be a quasi-commutative E1-ring, and let M ∈ ABModA(Sp). Let

x ∈ π0A. We will say that M is x-balanced if every homotopy group πnM is x-balanced, in the

sense of Definition 7.5.2.1. We will say that M is balanced if it is x-balanced, for each x ∈ π0A.
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Remark 7.5.2.7. Let A be a quasi-commutative E1-ring, and let M be a discrete A-A-bimodule.

Then M is balanced (x-balanced) in the sense of Definition 7.5.2.6 if and only if it is balanced

(x-balanced) in the sense of Definition 7.5.2.1, when viewed as a bimodule over the commutative

ring π0A.

Notation 7.5.2.8. Let A be a quasi-commutative E1-ring. We let ABModbal
A (Sp) denote the full

subcategory of ABModA(Sp) spanned by the balanced A-A-bimodules. It follows immediately from

Remark 7.5.2.3 that ABModbal
A (Sp) is a stable subcategory of ABModA(Sp), which is closed under

small colimits.

Proposition 7.5.2.9. Let A be a connective, quasi-commutative E1-ring. Then the full subcategory

ABModbal
A (Sp) ⊆ ABModA(Sp)

contains A and is closed under the relative tensor product ⊗A.

Proof. Since A is quasi-commutative, it is obvious that the unit object A ∈ ABModA(Sp) is bal-

anced. Suppose that M,N ∈ ABModA(Sp) are balanced; we wish to show that M ⊗A N is

also balanced. Fix x ∈ π0A; we will show that M ⊗A N is x-balanced. According to Propo-

sition 7.2.1.19, there exists a spectral sequence {Ep,qr , dr}r≥1 converging to πp+q(M ⊗A N), with

Ep,q2 = Torπ∗Ap (π∗M,π∗N)q. Using the functoriality of the construction of this spectral sequence, we

see that it is a spectral sequence of bimodules over the graded ring π∗A. It follows that π∗(M⊗AN)

admits an exhaustive filtration by bimodules over π∗A, and that the associated graded objects for

this filtration are given by subquotients of bimodules of the form Torπ∗Ap (π∗M,π∗N). Using Re-

mark 7.5.2.3, we are reduced to showing that each of the (π∗A)-bimodules Torπ∗Ap (π∗M,π∗N) is

x-balanced, which follows from Lemma 7.5.2.5.

Lemma 7.5.2.10. Let φ : A → B be an étalehomomorphism of commutative rings, and choose

an element e ∈ TorZ
0 (B,B) whose image e ∈ R = TorA0 (B,B) is an idempotent satisfying

TorA0 (B,B)[e−1] ' B (see Remark 7.5.0.2). Let M be a (discete) B-B-bimodule. Then M is

balanced as a B-B-bimodule if and only if the following conditions are satisfied:

(1) As an A-A-bimodule, M is balanced.

(2) The canonical map M →M [e−1] is an isomorphism.

Proof. Assume first that M is balanced as a B-B-bimodule. Condition (1) is obvious. To verify

(2), write A as a union of finitely generated subrings Aα. The structure theory of étalemorphisms

of commutative rings implies that there exists an index α and an étalehomomorphism Aα → Bα
such that B ' TorAα0 (A,Bα). Enlarging Aα if necessary, we may assume that e is the image of an

element e′ ∈ TorZ
0 (Bα, Bα) whose image e′ ∈ TorAα0 (Bα, Bα) satisfies TorAα0 (Bα, Bα)[e′−1] ' Bα.

Replacing A by Aα, B by Bα, and e by e′, we may assume that the commutative ring A is finitely

generated over Z.
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Let I be the kernel of the multiplication map m : TorZ
0 (B,B) → B. Since B is a finitely

generated commutative ring, TorZ
0 (B,B) also a finitely generated commutative ring and therefore

Noetherian, so the ideal I is finitely generated. Since M is balanced as a B-B-bimodule, every

element of I has a locally nilpotent action on M . It follows that every element x ∈M is annihilated

by some power of I. For each k ≥ 0, let Mk denote the submodule of M which is annihilated by

Ik. Then M =
⋃
kMk. Consequently, to prove (b), it suffices to show that each of the maps

Mk → Mk[e
−1] is an isomorphism. We proceed by induction on k, the case k = 0 being obvious.

To handle the inductive step, we observe that there is a commutative diagram with exact rows

0 //Mk

��

//Mk+1
//

��

Mk+1/Mk
//

ψ
��

0

0 //Mk[e
−1] //Mk+1[e−1] // (Mk+1/Mk)[e

−1] // 0.

Using the inductive hypothesis and the snake lemma, we are reduced to proving that the map ψ is

an isomorphism. We may therefore replace M by Mk+1/Mk, and thereby reduce to the case where

the action of TorZ
0 (B,B) on M factors through TorZ

0 (B,B)/I ' B. The desired result now follows

from the observation that m(e) = 1.

Now suppose that (1) and (2) are satisfied; we wish to prove that M is balanced as a B-B-

bimodule. Choose x ∈ B; we will show that M is x-balanced. Arguing as above, we can reduce

to the case where A is a finitely generated commutative ring. Let m′ : TorZ
0 (A,A) → A be

the multiplication map and let J be the kernel of m′. Since TorZ
0 (A,A) is a finitely generated

commutative ring, it is Noetherian. It follows that J is finitely generated. Since M is balanced as

an A-A-bimodule, the action of J on M is locally nilpotent. We may therefore write M =
⋃
k≥0M

′
k,

whereM ′k denotes the submodule ofM which is annihilated by Jk. Since the collection of x-balanced

bimodules is closed under filtered colimits, it will suffice to show that each M ′k is x-balanced. We

proceed by induction on k. Since the collection of x-balanced bimodules is closed under extensions,

we are reduced to proving that each quotient M ′k+1/M
′
k is x-balanced. Replacing M by M ′k+1/M

′
k,

we may reduce to the case where JM = 0: that is, the left and right actions of A on M coincide. It

follows that we may regard M as a module over the ring TorA0 (B,B). Using condition (2), we see

that e ∈ TorA0 (B,B) acts invertibly on M : that is, the action of TorZ
0 (B,B) on M factors through

the map TorZ
0 (B,B)→ TorA0 (B,B)[e−1] ' B, so that the left and right actions of B on M coincide.

In this case, it is obvious that M is x-balanced.

Remark 7.5.2.11. In the situation of Lemma 7.5.2.10, suppose that M satisfies condition (2) and

that the left and right actions of A on M coincide. The proof of Lemma 7.5.2.10 shows that the

left and right actions of B on M coincide.

Notation 7.5.2.12. Let B be a connective E1-ring and let M ∈ BBModB(C), so that we can

identify M with a left module over the E1-ring B ⊗ Brev (see Proposition 4.6.3.15). Suppose that
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e ∈ π0(B ⊗ Brev) ' TorZ
0 (π0B, π0B) is quasi-central: that is, the set S = {en}n≥0 ⊆ π0(B ⊗ Brev)

satisfies the left Ore condition. We will denote the localization M [S−1] by M [e−1], and we will say

that M is e-local if the unit map M →M [e−1] is an equivalence.

In the situation of Notation 7.5.2.12, if B is quasi-commutative, then every element of π0(B ⊗
Brev) is quasi-central (Lemma 7.5.1.14). We immediately deduce the following generalization of

Lemma 7.5.2.10.

Lemma 7.5.2.13. Let φ : A→ B be an étalemap of connective, quasi-commutative E1-rings, and

let M ∈ BBModB(Sp). Then M is balanced as a B-B-bimodule if and only if it is balanced as an

A-A-bimodule and e-local, where e ∈ TorZ
0 (π0B, π0B) is chosen as in Lemma 7.5.2.10.

Our next goal is to describe a “base-change” functor for balanced bimodules along an

étalemorphism.

Lemma 7.5.2.14. Let φ : A→ B be an étalehomomorphism of commutative rings and let e be as

in Lemma 7.5.2.10. Let M be a balanced A-A-bimodule. Then the canonical map

θM : B ⊗AM → (B ⊗AM ⊗A B)[e−1]

is an isomorphism of left B-modules.

Proof. Arguing as in the proof of Lemma 7.5.2.10, we reduce to the case in which A is a finitely

generated commutative ring. Let I denote the kernel of the multiplication map TorZ
0 (A,A) → A.

Then I is a finitely generated ideal. Since every element of I has a locally nilpotent action on M ,

we conclude that M =
⋃
k≥0Mk, where Mk denotes the submodule of M annihilated by Ik. It will

therefore suffice to show that each of the maps θMk
is an isomorphism. We proceed by induction

on k, the case k = 0 being trivial. To handle the inductive step, we use the short exact sequence

0→Mk →Mk+1 →Mk+1/Mk → 0

to reduce to the problem of showing that θMk+1/Mk
is an isomorphism. Replacing M by Mk+1/Mk,

we reduce to the case where IM = 0: that is, the left and right actions of A on M are the same.

In this case, we can identify θM with a map

B ⊗AM → TorA0 (B,B)[e−1]⊗AM.

This map is an isomorphism, since e was chosen so that TorA0 (B,B)[e−1] ' B.

Lemma 7.5.2.15. Let φ : A → B be an étalemap between connective quasi-commutative E1-

rings. Then the forgetful functor BBModbal
B (Sp) → ABModbal

A (Sp) admits a left adjoint F :

ABModbal
A (Sp) → BBModbal

B (Sp). Moreover, for every object M ∈ ABModbal
A (Sp), the compos-

ite map

B ⊗AM → B ⊗AM ⊗A B → F (M)

is an equivalence of left B-modules.
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Proof. Let e ∈ π0(B⊗Brev) ' TorZ
0 (π0B, π0B) be as in Lemma 7.5.2.10. Using Lemma 7.5.2.13, we

deduce that the functor F exists and is given on objects by the formula F (M) = (B⊗AM⊗AB)[e−1].

The last assertion follows from Lemma 7.5.2.14.

In the situation of Lemma 7.5.2.15, let us regard BBModbal
B (Sp) and ABModbal

A (Sp) as monoidal

∞-categories, so that the forgetful functor G : BBModbal
B (Sp) → ABModbal

A (Sp) is lax monoidal.

We therefore obtain a canonical map F (M ⊗A N) → F (M) ⊗B F (N) for every pair of objects

M,N ∈ ABModbal
A (Sp). We claim that this map is an equivalence. To prove this, it will suffice (by

Lemma 7.5.2.15) to show that the composite map

B ⊗A (M ⊗A N)→ F (M ⊗A N)→ F (M)⊗B F (N)

is an equivalence. This map factors as a composition

B ⊗AM ⊗A N
ψ→ F (M)⊗A N

ψ′→ F (M)⊗B F (N),

where ψ and ψ′ are equivalences by Lemma 7.5.2.15. A similar argument shows that the canonical

map F (A) → B is an equivalence. Using Corollary 7.3.2.12, we deduce that F can be regarded

as a monoidal functor from ABModbal
A (Sp) to BBModbal

B (Sp), and Remark 7.3.2.13 implies that

composition with F induces a functor

Alg(ABModbal
A (Sp))→ Alg(BBModbal

B (Sp))

which is left adjoint to the forgetful functor. Combining this observation with Corollary 3.4.1.7, we

obtain the following result:

Proposition 7.5.2.16. Let φ : A→ B be an étalemorphism between connective, quasi-commutative

E1-rings. Let Alg
(1),bal
A/ denote the full subcategory of Alg

(1)
A/ spanned by those morphisms of E1-rings

ψ : A → A′ which exhibit A′ as a balanced A-A-bimodule, and let Alg
(1),bal
B/ be defined similarly.

Then the forgetful functor Alg
(1),bal
B/ → Alg

(1),bal
A/ admits a left adjoint F . Moreover, for every

A′ ∈ Alg
(1),bal
A/ , the canonical map B ⊗A A′ → F (A′) is an equivalence of left B-modules.

Remark 7.5.2.17. In the situation of Proposition 7.5.2.16, the map φ : A → B exhibits B as a

flat right module over A. It follows from Proposition 7.2.2.13 that for every A′ ∈ Alg
(1),bal
A/ , the

canonical map Torπ0A
0 (π0B, πnA

′)→ πnF (A′) is an isomorphism for every integer n. It follows that

F (A′) is flat as a right A′-module. If we assume in addition that A′ is quasi-commutative and the

natural map π0A→ π0A
′ is an isomorphism, then we obtain an isomorphism π0B → π0F (A′), and

Remark 7.5.2.11 shows that the left and right actions of π0F (A′) on πnF (A′) coincide for each n.

It follows that F (A′) is quasi-commutative and that the map A′ → F (A′) is an étalemorphism of

E1-rings.
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Proposition 7.5.2.18. Let A be a quasi-commutative E1-ring. Suppose we are given an

étalemorphism of commutative rings φ0 : π0A → B0. Then there exists a map of E1-rings

φ : A→ B with the following properties:

(1) The map φ is étale(in particular, B is quasi-commutative).

(2) There is an isomorphism of commutative rings π0B ' B0 such that φ induces the map φ0 :

π0A→ B0.

(3) For every quasi-commutative E1-ring C, the canonical map

MapAlg(1)(B,C)→ MapAlg(1)(A,C)×HomRing(π0A,π0C) HomRing(π0B, π0C).

Proof. Let A′ be a connective cover of A. Using Theorem 7.5.1.11, we can choose an étalemap of

connective E1-rings φ′ : A′ → B′ and an isomorphism π0B
′ ' B0. Let F : Alg

(1),bal
A′/ → Alg

(1),bal
B′/ be

as in Proposition 7.5.2.16, and set B = F (A). We have a commutative diagram of E1-rings

A′
φ′ //

��

B′

��
A

φ // B.

It follows from Remark 7.5.2.17 that φ is étaleand that π0B ' π0B
′ ' B0. Using the definition of

F , we note that for every map of E1-rings A→ C which exhibits C as a balanced bimodule over A,

we have Map
Alg

(1)
A/

(B,C) ' Map
Alg

(1)

A′/
(B′, C). If C is quasi-commutative, then it is automatically

balanced as a bimodule, so that upper square in the diagram

MapAlg(1)(B,C) //

��

MapAlg(1)(A,C)

��
MapAlg(1)(B′, C) //

��

MapAlg(1)(A′, C)

��
HomRing(B0, π0C) // HomRing(π0A, π0C)

is a pullback square. The lower square is pullback by Proposition 7.5.1.15, so that the outer

rectangle is also a pullback diagram.

Corollary 7.5.2.19. Let φ : A → B be an étalemorphism between quasi-commutative E1-rings.

Then, for every quasi-commutative E1-ring C, the canonical map

MapAlg(1)(B,C)→ MapAlg(1)(A,C)×HomRing(π0A,π0C) HomRing(π0B, π0C)

is a homotopy equivalence.
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Proof. Let B0 = π0B and let φ0 : π0A → B0 be the étalemap of commutative rings induced by

φ. Choose an étalemorphism φ′ : A → B′ satisfying the conclusions of Proposition 7.5.2.18. In

particular, we see that the map φ : A→ B factors as a composition

A
φ′→ B′

ψ→ B,

where ψ induces the identity map π0B
′ → π0B. Since B′ and B are both flat over A, we deduce

that for every integer n the map

πnB
′ ' Torπ0A

0 (πnA, π0B
′)→ Torπ0A

0 (πnA, π0B) ' πnB

is an isomorphism. It follows that ψ is an equivalence, so that φ : A → B also satisfies the

conclusions of Proposition 7.5.2.18.

We are now ready to prove a non-connective version of Theorem 7.5.1.16.

Theorem 7.5.2.20. Let ψ : A→ C be a map of quasi-commutative E1-rings. Then the construc-

tion B 7→ π0B induces an equivalence of ∞-categories

θ : Alg
(1),ét
A//C → N(Ringét

π0A//π0C
).

Proof. We have a commutative diagram of ∞-categories

Alg
(1),ét
A//C

//

p

��

N(Ringét
π0A//π0C

)

q

��
Alg

(1),ét
A/

θ′ // N(Ringét
π0A/

).

The vertical maps are right fibrations. The map θ′ is essentially surjective by Proposition 7.5.2.18,

and fully faithful by Corollary 7.5.2.19. It follows that θ′ is an equivalence of ∞-categories. It

therefore suffices to show that for every étalemap A → B, the functor θ induces a homotopy

equivalence from the fiber of p over B to the fiber of q over π0B (Corollary HTT.2.4.4.4 ). This

follows immediately from Corollary 7.5.2.19.

7.5.3 Cocentric Morphisms

For every associative ring A, let Z(A) denote the center of A. The construction A 7→ Z(A) is not

functorial: if φ : A→ B is a morphism of commutative rings, then φ does not generally carry Z(A)

into Z(B). However, we can guarantee that φ(Z(A)) ⊆ Z(B) if we are willing to assume that φ

satisfies the following condition:

(∗) The inclusion Z(B) ⊆ Z(φ) is a bijection. In other words, an element b ∈ B is central if and

only if bφ(a) = φ(a)b for all a ∈ A.
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Condition (∗) has the virtue of being phrased in terms of centralizers, and can therefore be gener-

alized to an arbitrary monoidal ∞-category.

Definition 7.5.3.1. Let C be a monoidal∞-category, let M be an∞-category which is left-tensored

over M, and suppose we are given morphisms A
φ→ B

ψ→ C in M. We will say that φ is cocentric

relative to ψ if the following conditions are satisfied:

(i) There exists a centralizer Z(ψ) of ψ.

(ii) The composite map

Z(ψ)⊗A id⊗φ−→ Z(ψ)⊗B −→ C

exhibits Z(ψ) as a centralizer of ψ ◦ φ.

We will say that a morphism φ : A→ B in M is cocentric if it is cocentric relative to idB.

Example 7.5.3.2. Let C be the nerve of the category of associative rings. Regard C as a monoidal

∞-category via the usual tensor product of rings. A ring homomorphism φ : A → B in C is

cocentric if and only if it satisfies condition (∗) above.

Example 7.5.3.3. In [45], the authors define a centric map of spaces to be a map f : X → Y which

induces a homotopy equivalence MapS(X,X)idX → MapS(X,Y )f . Here MapS(X,X)idX denote the

connected component of MapS(X,X) containing idX , and MapS(X,Y )f is defined similarly. Let

S≥1 be the full subcategory of S spanned by the connected spaces, which we regard as endowed

with the Cartesian monoidal structure, and regard S as left-tensored over S≥1 (via the Cartesian

product). For every map of spaces f : X → Y , the space MapS(X,Y )f can be identified with the

centralizer of f in S≥1. Consequently, f is centric if and only if it induces a homotopy equivalence

Z(idX)→ Z(f). This is precisely dual to the requirement of Definition 7.5.3.1.

In this section, we will develop the theory of cocentric morphisms and apply it to obtain a

relative version of Theorem 7.5.2.20. Our first main result is that if φ : A → B is a cocentric

morphism, the φ induces a map from the center of A (provided that it exists) to the center of B.

Proposition 7.5.3.4. Let C be a monoidal ∞-category containing an algebra object R ∈ Alg(C),

let M be an ∞-category left-tensored over C. Suppose we are given a diagram

Λn0
U0 //

��

LModR(M)

��
∆n V //

U
99

M

for some integer n > 0. Let A = V (0), B = V (1), and C = V (n), so that V induces morphisms

A
φ→ B

ψ→ C in M. If φ is cocentric relative to ψ, then there exists a dotted arrow U as indicated,

rendering the diagram commutative.
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We will give the proof of Proposition 7.5.3.4 at the end of this section.

Remark 7.5.3.5. In the case n = 1, Proposition 7.5.3.4 asserts that if φ : A → B is a cocentric

morphism and A admits a left action of an algebra object R ∈ Alg(C), then B also admits a left

action of R so that φ is a map of left R-modules. In particular, if there exists a center Z(A) for A,

then Z(A) acts on B via some map Z(A)→ Z(B). Applying Proposition 7.5.3.4 for n > 0, one can

argue that this map is unique up to a contractible space of choices.

The basic example of interest to us is the following:

Proposition 7.5.3.6. Let Alg(1) denote the symmetric monoidal ∞-category of E1-rings, which

we regard as left-tensored over itself. Suppose we are given morphisms A
φ→ B

ψ→ C in Alg(1) such

that C is quasi-commutative and φ is étale(so that A and B are also quasi-commutative). Then φ

is cocentric relative to ψ.

Proof. Let us regard the ∞-categories BBModB(Sp) and ABModA(Sp) as left-tensored over the

∞-category of spectra. Using Theorem 5.3.1.30, we deduce that the centralizers Z(ψ) and Z(ψ ◦φ)

exist, and are given by

Z(ψ) ' Mor
BBModB(Sp)(B,C) Z(ψ ◦ φ) ' Mor

ABModA(Sp)(A,C) ' Mor
BBModB(Sp)(B ⊗A B,C).

To show that the canonical map Z(ψ) → Z(ψ ◦ φ) is an equivalence of spectra, it suffices to show

that it induces an isomorphism on homotopy groups.

Let K denote the fiber of the map B⊗AB → B; we wish to show that Extn
BBModB(Sp)(K,C) ' 0

for every integer n. Since φ is étale, there exists an element e ∈ TorZ
0 (π0B, π0B) whose image

e ∈ Torπ0A
0 (π0B, π0B) is an idempotent satisfying Torπ0A

0 (π0B, π0B)[e−1] ' π0B. According to

Lemma 7.5.1.14, the image x of e in π0(B ⊗ Brev) is quasi-central. Since C is quasi-commutative,

multiplication by x induces the identity map from π∗C to itself. It will therefore suffice to show that

K is x-nilpotent, which is clear (since the homotopy groups of K are annihilated by multiplication

by e).

Corollary 7.5.3.7. Every étalemorphism in Alg(1) is cocentric.

Corollary 7.5.3.8. Let R be an E2-ring and let A be an E1-algebra over R. Suppose we are given

an étalemap φ : A → B of E1-rings. Then there exists an R-algebra structure on B such that φ

lifts to a morphism of E1-algebras over R.

Proof. Combine Propositions 7.5.3.6 and 7.5.3.4 (in the case n = 1).

Corollary 7.5.3.9. Let R be an E2-ring and let A be an E1-algebra over R. Suppose we are given

a commutative diagram

∂∆m //

��

(Alg
(1)
R )A/

q

��
∆m U //

::

(Alg(1))A/
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(here we have arranged that q is a categorical fibration). If the map A→ U(0) is étaleand the image

of U(n) in Alg(1) is quasi-commutative, then there exists a dotted arrow as indicated, rendering the

diagram commutative.

Proof. Combine Proposition 7.5.3.6 with Proposition 7.5.3.4 (in the case n = m+ 1).

Corollary 7.5.3.10. Let R be an E2-ring. Suppose we are given maps φ : A→ B and ψ : A→ C

of quasi-commutative E1-algebras over R, where φ is étale. Let θ : Alg
(1)
R → Alg(1) be the forgetful

functor. Then θ induces a homotopy equivalence

Map
(Alg

(1)
R )A/

(B,C)→ Map
Alg

(1)
θ(A)/

(θ(B), θ(C)).

Notation 7.5.3.11. Let R be an E2-ring, and suppose we are given a map ψ : A → C of quasi-

commutative E1-algebras over R. We let (Alg
(1)
R )ét

A//C denote the full subcategory of (Alg
(1)
R )A//C

spanned by those diagrams

B

  
A

φ
??

ψ // C

where φ is étale.

Corollary 7.5.3.12. Let R be an E2-ring and let A be a quasi-commutative E1-algebra over R.

Then the forgetful functor

(Alg
(1)
R )ét

A//C → Alg
(1),ét
A//C

is an equivalence of ∞-categories.

Proof. Combine Corollaries 7.5.3.10 and 7.5.3.8.

Corollary 7.5.3.13. Let R be an E2-ring and let ψ : A→ C be a morphism of quasi-commutative

E1-algebras over R. Then the construction B 7→ π0B induces an equivalence of ∞-categories

(Alg
(1)
R )ét

A//C → N(Ringét
π0A/ /π0C

).

Proof. Combine Corollary 7.5.3.12 with Theorem 7.5.2.20.

Proof of Proposition 7.5.3.4. Let p : M� → C� be defined as in Notation 4.2.2.17. Then R de-

termines a map N(∆)op → C�. We let N denote the fiber product M�×C� N(∆)op, so that the

projection map q : N → N(∆)op is a locally coCartesian fibration whose fibers are canonically

equivalent to the ∞-category M. Using Corollary 4.2.2.16 and Proposition HTT.A.2.3.1 , we see

that it suffices to solve the weakly equivalent lifting problem

Λn0
U0 //

��

LModA∞R (M)

��
∆n V //M .
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Here we can identify LModA∞R (M) with a full subcategory of the∞-category FunN(∆)op(N(∆)op,N)

of sections of q. Consequently, U0 determines a map f : N(∆)op × Λn0 → N. To construct U , we

must find a suitable map F : N(∆)op ×∆n → N extending f .

Let X = N(∆)op × Λn0 , and let X ′ = X
∐
{[0]}×Λn0

({[0]} × ∆n). We regard X ′ as a simplicial

subset of N(∆)op×∆n. Amalgamating f and V , we obtain a map f ′ : X ′ → N. Let X ′′ denote the

simplicial subset of N(∆)op×∆n given by the union of X ′ with those simplices σ whose intersection

with N(∆)op ×∆{1,...,n} is contained in {[0]} ×∆{1,...,n}. We claim that the inclusion X ′ ↪→ X ′′ is

a categorical equivalence. Note that there is a pushout diagram

(N(∆[0]/)
op ? ∂∆{1,...,n})

∐
Λn0

∆ni //

��

N(∆[0]/)
op ?∆{1,...,n}

��
X ′ // X ′′.

It will therefore suffice to show that the map i is a categorical equivalence: that is, that the diagram

Λn0
//

��

∆n

��
N(∆[0]/)

op ? ∂∆{1,...,n} // N(∆[0]/)
op ?∆{1,...,n}

is a homotopy pushout square (with respect to the Joyal model structure). This follows immediately

from the observation that the inclusion {[0]} ↪→ N(∆[0]/)
op is right anodyne.

Let X ′′′ ⊆ N(∆)op ×∆n be the simplicial subset consisting of X together with all those non-

degenerate simplices σ whose intersection with N(∆)op × {1} is contained in {[0]} × {1}. To prove

this, we let K denote the product N(∆)op ×∆{2,...,n} and K0 ⊆ K the simplicial subset given by

(N(∆)op × ∂∆{2,...,n})
∐

{[0]}×∂∆{2,...,n}

({[0]} ×∆{2,...,n}).

Since [0] is an initial object of N(∆)op, the inclusion K0 ↪→ K is left anodyne. It follows that the

diagram

N(∆[0]/)
op ? K0

//

��

N(∆[0]/)
op ? K/

0

��
N(∆[0]/)

op ? K // N(∆[0]/)
op ? K/

is a homotopy pushout square (with respect to the Joyal model structure). We have a pushout

diagram of simplicial sets

(N(∆[0]/)
op ? K/

0 )
∐

N(∆[0]/)op?K0
(N(∆[0]/)

op ? K) //

��

N(∆[0]/)
op ? K/

��
X ′′ // X ′′′,
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so that the inclusion X ′′ ↪→ X ′′′ is a categorical equivalence. It follows that the inclusion X ′ ↪→ X ′′′

is also a categorical equivalence. Because q is a categorical fibration, the lifting problem depicted

in the diagram

X ′
f ′ //

��

N

q

��
X ′′′ //

F0

::

N(∆)op

admits a solution.

Let S be the collection of all nondegenerate simplices σ : ∆m → N(∆)op ×∆{1,...,n} such that

the induced map ∆m → ∆{1,...,n} is surjective and σ(0) = ([k], 1) for k > 0. If σ is a nondegenerate

simplex ∆m → N(∆)op×∆n which is not contained inX ′′′, we let λσ denote the smallest integer such

that σ(λσ) = ([k], 1) for k > 0, and define the tail of σ to be the simplex t(σ) = (σ|∆{λσ ,λσ+1,...,m}),

so that t(σ) ∈ S. Choose a well-ordering of S such that σ < σ′ whenever σ has dimension smaller

than that of σ′. Let α denote the order type of S, so that we have a bijection

{β : β < α} → S

β 7→ σβ.

For every ordinal β ≤ α, let Eβ ⊆ N(∆)op × ∆n be the simplicial subset consisting of those

nondegenerate simplices σ which either belong to X ′′′ or satisfy t(σ) = σγ for some γ < β, so

that E0 = X ′′′. We will extend F0 to a compatible family of maps Fβ ∈ FunN(∆)op(Eβ,N). The

construction proceeds by induction on β. If β is a limit ordinal, we set Fβ =
⋃
γ<β Fγ .

Let us assume that Fβ has been defined for some β < α; our goal is to construct Fβ+1. Let

σ = σβ : ∆m → N(∆)op ×∆n. Let Y denote the full subcategory of (N(∆)op ×∆n)/σ spanned by

those objects whose image in N(∆)op×∆n are either of the form ([k], 0) or ([0], 1), so that we have

a pushout diagram of simplicial sets

Y ? ∂∆m //

��

Y ?∆m

��
Eβ // Eβ+1 .

Consequently, to construct Fβ+1 from Fβ, it suffices to solve the lifting problem depicted in the

diagram

Y ? ∂∆m //

��

N

q

��
Y ?∆m //

88

N(∆)op.
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Let g denote the composite map Y → Eβ
Fβ→ N, so that we can rewrite our lifting problem as

follows:

∂∆m //

��

Ng/

q

��
∆m //

88

(N(∆)op)qg/.

Let σ(0) = ([k], 1) for some k > 0. Note that there is a left cofinal map Λ2
0 → Y , whose image in

N(∆)op ×∆n is the diagram

([k], 0)← ([0], 0)→ ([0], 1).

Let g0 = g|Λ2
0. Since the map Ng/ → Ng0/×(N(∆)op)qg0/

(N(∆)op)qg/ is a trivial Kan fibration, it

suffices to solve the lifting problem depicted in the diagram τ :

∂∆m h0 //

��

Ng0/

q′

��
∆m //

88

(N(∆)op)qg0/.

We now treat the special case m = 0 (in which case we must also have n = 1). Let δ denote

the unique map [0]→ [k] in N(∆)op. We are required to choose a commutative diagram

Fβ([0], 0)
Fβ(δ,id)

//

��

Fβ([k], 0)

��
Fβ([0], 1)

u // X

in the ∞-category N covering the diagram

[0]
δ //

id
��

[k]

id
��

[0]
δ // [k]

in N(∆)op. Note that q is a locally coCartesian fibration, and that Fβ(δ, id) is a locally q-coCartesian

morphism (since U0(0) belongs to LModA∞(M)). We can therefore make our choice in such a way

that u is also locally q-coCartesian. This strategy guarantees that our maps Fβ satisfy the following

additional condition:

(∗) If n = 1 and ([k], 1) ∈ Eβ, then Fβ induces a locally q-coCartesian morphism Fβ([0], 1) →
Fβ([k], 1).
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Let us now treat the case where m > 0. Define objects B,C ∈ Ng0/ by B = h0(0) and let

C = h0(m). To prove that the lifting problem depicted in the diagram τ admits a solution, it

suffices to show that the mapping space MapNg0/
(B,C) is contractible. Let us abuse notation by

identifying each fiber of q with the ∞-category M, so that (by virtue of (∗)) we may assume that

B and C have images B,C ∈ M. Note that q′(Y ) determines a morphism v : [k′]→ [k] in ∆. Let

j = k − v(k′). Unwinding the definitions, we see that MapNg0/
(B,C) can be identified with the

total homotopy fiber of a diagram

MapM(R⊗j ⊗B,C) //

θ0
��

MapM(R⊗j ⊗A,C)

θ1
��

MapM(B,C) //MapM(A,C)

over a point having image ψ ∈ MapM(B,C). Our assumption that φ is cocentric relative to ψ

guarantees that the centralizers Z(ψ) and Z(ψ ◦ φ) exist. Note that the homotopy fiber of θ0 over

ψ can be identified with the mapping space MapC1/
(R⊗j ,Z(ψ)), and the homotopy fiber of θ1 over

ψ◦φ can be identified with the mapping space MapC1/
(R⊗j ,Z(ψ◦φ)). To complete the construction

of Fβ+1, it suffices to show that the canonical map Z(ψ) → Z(ψ ◦ φ) is an equivalence in C; this

follows from our assumption that φ is cocentric relative to ψ.

Since Eα = N(∆)op×∆n, the morphism F = Fα determines a map U : ∆n → FunN(∆)op(N(∆)op,N)

extending U0. To complete the proof, it suffices to show that U factors through the full subcategory

LModA∞R (M) ⊆ FunN(∆)op(N(∆)op,N). This is automatic if n > 1. When n = 1, it follows from

the fact that our construction satisfies condition (∗).

7.5.4 ÉtaleMorphisms of Ek-Rings

Let 2 ≤ k ≤ ∞ and letA be an Ek-ring. Theorem 7.5.0.6 asserts that every étalemap of commutative

rings π0A → B0 can be lifted (in an essentially unique way) to an étalemap between Ek-rings

φ : A → B. Our goal in this section is to prove Theorem 7.5.0.6. In fact, we will prove a slightly

stronger result, which characterizes the Ek-ring B by a universal property. To state this result, we

need to introduce a bit of terminology.

Notation 7.5.4.1. Let 2 ≤ k ≤ ∞, let R be an Ek+1-ring, and let A be an Ek-algebra over R. We

let (Alg
(k)
R )ét

A/ denote the full subcategory of (Alg
(k)
R )A/ spanned by the étalemorphisms φ : A→ B

of Ek-algebras over R. If we are given a morphism of Ek-algebras ψ : A → C, we let (Alg
(k)
R )ét

A//C

denote the full subcategory of (Alg
(k)
R )A//C spanned by those diagrams

B

  
A

φ
??

ψ // C
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where φ is étale.

Theorem 7.5.4.2. Fix 2 ≤ k ≤ ∞, let R be an Ek+1-ring, and let ψ : A → C be a morphism of

Ek-algebras over R. Then the construction B 7→ π0B induces an equivalence of ∞-categories

(Alg
(k)
R )ét

A//C → N(Ringét
π0A/ /π0C

).

In the special case C = 0 of Theorem 7.5.4.2, we recover Theorem 7.5.0.6; for the reader’s

convenience we recall the statement:

Corollary 7.5.4.3. Let 2 ≤ k ≤ ∞, let R be an Ek+1-ring, let A be an Ek-algebra over R. Then

the forgetful functor B 7→ π0B induces an equivalence from (Alg
(k)
R )ét

A/ to the nerve of the ordinary

category of étaleπ0A-algebras.

Theorem 7.5.4.2 has some other pleasant consequences.

Corollary 7.5.4.4. Let k ≥ 2, let R be an Ek+1-ring, and let A be an Ek-algebra over R. If

φ : A→ B is an étalemorphism in Alg
(k)
R , then φ exhibits B as a compact object of (Alg

(k)
R )A/.

Corollary 7.5.4.5. Let 2 ≤ k ≤ ∞, let R be an Ek+1-ring, and let f : A → B be an

étalemorphism between connective Ek-algebras over R. Then the relative cotangent complex

LB/A ∈ Sp((Alg
(k)
R )/B) ' ModEkB (LModR) vanishes.

Proof. Let C = ModEkB (LModR). Fix an object M ∈ C, and let C = B ⊕ M ∈ Alg
(k)
R de-

note the corresponding square-zero extension. We wish to prove that MapC(LB/A,M) is con-

tractible. For this, it suffices to show that composition with f induces a homotopy equivalence

Map
(Alg

(k)
R )/B

(B,C)→ Map
(Alg

(k)
R )/B

(A,C). Using Theorem 7.5.4.2, we are reduced to proving that

the map

HomRing/π0B
(π0B, π0B ⊕ π0M)→ HomRing/π0B

(π0A, π0B ⊕ π0M)

is bijective, which follows from our assumption that π0B is an étaleπ0A-algebra (Remark 7.5.0.3).

Corollary 7.5.4.6. Let 2 ≤ k ≤ ∞, let R be an Ek+1-ring, let φ : A → B be an étalemap of

Ek-algebras over R, and let C ∈ Alg
(k)
R be arbitrary. Then the canonical map

Map
(Alg

(k)
R )A/

(B,C)→ HomRingπ0A/
(π0B, π0C)

is a homotopy equivalence. In particular, Map
(Alg

(k)
R )A/

(B,C) is homotopy equivalent to a discrete

space.

Remark 7.5.4.7. Let A be an Ek-ring for 2 ≤ k ≤ ∞, and suppose we are given a map φ0 : π0A→
B0 in the category of ordinary commutative rings. One can then study the problem of realizing φ0

be a map of Ek-rings: that is, finding a map of Ek-rings φ : A → B such that the induced map

π0A → π0B can be identified with φ0. In general, there may exist many choices for B. There are

(at least) two different ways to narrow our selection:
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(i) If φ0 is a flat map, then we can demand that B be flat over A. In this case, the homotopy

groups of B are determined by the homotopy groups of A. Consequently, we have good

understanding of mapping spaces Map(Alg(k))A/
(C,B) with codomain B, at least in the case

where C is well-understood (for example, if C is free).

(ii) We can demand that the canonical map

Map
Alg

(k)
A/

(B,C)→ Hom(Ring)π0A/
(B0, π0C)

be a homotopy equivalence for every C ∈ Alg
(k)
A/ . In this case, we have a good understanding

of the mapping spaces Map
Alg

(k)
A/

(B,C) with domain B.

It is clear that property (ii) characterized B up to equivalence. If φ0 is étale, then Theorem

7.5.4.2 asserts that (i) ⇒ (ii). Moreover, Theorem 7.5.4.2 implies the existence of an A-algebra

B satisfying (i). We therefore have an example satisfying both (i) and (ii); since property (ii)

characterizes B up to equivalence, we conclude that (i) ⇒ (ii). The equivalence of (i) and (ii)

makes the theory of étalemorphisms between Ek-rings extremely well-behaved.

We now turn to the proof of Theorem 7.5.4.2. According to Corollary 7.5.3.13, the conclusion

of Theorem 7.5.4.2 is valid in the case k = 1 provided that we assume that A and C are quasi-

commutative. We will prove Theorem 7.5.4.2 by reducing to the case k = 1, using Theorem 5.1.2.2.

Note that if R is an Ek+1-ring, then LModR is an Ek-monoidal ∞-category, so that Alg
(1)
R inherits

an Ek−1-monoidal structure. In particular, if k ≥ 2, then Alg
(1)
R inherits a monoidal structure.

We begin by showing that this monoidal structure is compatible with the notion of étalemorphism

introduced in Definition 7.5.0.4.

Lemma 7.5.4.8. Let k ≥ 2, let R be a connective Ek+1-ring, and let f : A → A′ be an

étalemorphism of quasi-commutative E1-algebras over R. Let B be another E1-algebra over R.

Assume that B and A⊗RB are quasi-commutative. Then the induced map f ′ : A⊗RB → A′⊗RB
is étale(in particular, A′ ⊗R B is quasi-commutative).

Proof. We have an equivalence A′ ⊗R B ' A′ ⊗A (A ⊗R B). Since A′ is flat over A, we obtain

isomorphisms

θn : πn(A′ ⊗R B) ' Torπ0A
0 (π0A

′, πn(A⊗R B)).

Let φ : π0A
′ → π0(A′ ⊗R B) and ψ : π0(A⊗R B)→ π0(A′ ⊗R B) denote the canonical maps.

We first claim that A′ ⊗R B is quasi-commutative. Let X be the collection of all elements of

π0(A′ ⊗R B) which are central in π∗(A
′ ⊗R B). Then X is an additive subgroup of π0(A′ ⊗R B);

to prove that X = π0(A′ ⊗R B) it suffices to show that it contains φ(a′)ψ(b), where a′ ∈ π0A
′ and

b ∈ π0(A⊗RB). This follows immediately by inspecting the isomorphisms θn, since A′ and A⊗RB
are quasi-commutative by assumption.
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Comparing the isomorphisms θn and θ0, we deduce that the canonical map

Tor
π0(A⊗RB)
0 (π0(A′ ⊗R B), πn(A⊗R B))→ πn(A′ ⊗R B)

is an isomorphism. Thus A′⊗RB is flat over A⊗RB. The isomorphism θ0 shows that π0(A⊗RB)→
π0(A′ ⊗R B) is an étalehomomorphism of commutative rings, so that f ′ is étaleas desired.

Proof of Theorem 7.5.4.2. Since R is an Ek+1-algebra, the∞-category Alg
(1)
R is Ek−1-monoidal. In

what follows, we will abuse notation by identifying A and C with the corresponding Ek−1-algebra

objects of Alg
(1)
R .

Let B be an E1-algebra over R. We will say that B is good if, for every element x ∈ π0B, left

and right multiplication by x induce homotopic maps from B to itself (in the∞-category LModR).

We make the following elementary observations:

(i) If B admits the structure of an E2-algebra over R, then B is good (when regarded as an

E1-algebra).

(ii) If B is good, then B is quasi-commutative.

(iii) The collection of good E1-algebras over R is closed under tensor products. (in particular, R

itself is good).

Theorem 2.2.2.4 implies that (Alg
(1)
R )/C inherits an Ek−1-monoidal structure. Let C denote

the full subcategory of (Alg
(1)
R )/C spanned those maps B → C where B is good. Assertion (iii)

guarantees C′ is closed under tensor products, and therefore inherits an Ek−1-monoidal structure.

Let D denote the full subcategory of Fun(∆1, (Alg
(1)
R )/C) spanned by those maps f : B → B′

in (Alg
(1)
R )/C such that B is good and f is étale. The functor ∞-category Fun(∆1, (Alg

(1)
R )/C) is

equipped with an Ek−1-monoidal structure (given by pointwise tensor product; see Remark 2.1.3.4).

We claim that D is closed under tensor products in Fun(∆1, (Alg
(1)
R )/C) and therefore inherits an

Ek−1-monoidal structure. Since the unit object idR : R → R obviously belongs to D, we are

reduced to proving that if a pair of morphisms f0 : B0 → B′0 and f1 : B1 → B′1 belong to D, then

(f0⊗f1) : B0⊗RB1 → B′0⊗RB′1 belongs to D. Since B0⊗RB1 is good by (iii), it will suffice to show

that f ⊗ f ′ is étale. Using (ii) and Lemma 7.5.4.8, we deduce that f0 ⊗ idB1 is étale; in particular,

B′0 ⊗B1 is quasi-commutative. Applying Lemma 7.5.4.8 again, we conclude that idB′0 ⊗f1 is étale.

Using Remark 7.5.1.6, we conclude that f ⊗ f ′ is étale, as desired.

Let Funét(∆1, (Alg
(k)
R )/C) denote the full subcategory of Fun(∆1, (Alg

(k)
R )/C) spanned by those

morphisms B → B′ which are étale. Using observation (i) and Proposition 5.1.2.2, we obtain

equivalences of ∞-categories

(Alg
(k)
R )/C ' Alg/Ek−1

(C)

Funét(∆1, (Alg
(k)
R )/C) ' Alg/Ek−1

(D).
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Let Ring′ denote the full subcategory of Fun([1],Ring/π0C) spanned by the etale maps of com-

mutative rings B → B′ over π0C. The ∞-categories N(Ring/π0C) and N(Ring′) are also endowed

with Ek−1-monoidal structures, arising from the coCartesian symmetric monoidal structure given

by tensor products of commutative rings. Since the ∞-operad Ek−1 is unital, Proposition 2.4.3.9

provides equivalences

Alg/Ek−1
(N(Ring/π0B))→ N(Ring/π0C)

Alg/Ek−1
(N(Ring′))→ N(Ring′).

The construction B 7→ π0B determines a lax Ek−1-monoidal functor C⊗ → N(Ring/π0C)⊗. Let C
⊗

denote the fiber product C⊗×N(Ring/π0C
)⊗ N(Ring′)⊗ and C = C×N(Ring/π0C

) N(Ring′) its underlying

∞-category. We can identify the objects of C with pairs (B, f : π0B → T ), where B ∈ (Alg
(1)
R )/C

is good and f is an étalemorphism in Ring/π0C .

The forgetful functor C
⊗ → E⊗k−1 determines an Ek−1-monoidal structure on C, where the tensor

product of objects is given by the formula

(B0, π0B0 → T0)⊗ (B1, π0B1 → T1) ' (B0 ⊗B1, π0(B0 ⊗B1)→ T0 ⊗π0B0 π0(B0 ⊗B1)⊗π0B1 T1).

The construction (f : B → B′) 7→ (B, (π0f) : π0B → π0B
′) determines an Ek−1-monoidal

functor from θ : D→ C. We claim that θ is an equivalence of Ek−1-monoidal ∞-categories. Using

Remark 2.1.3.8, we are reduced to proving that θ induces an equivalence on underlying∞-categories.

We have a commutative diagram of ∞-categories

D
θ //

p

��

C

q
��

C

where p and q are coCartesian fibrations and the functor θ carries p-coCartesian morphisms to q-

coCartesian morphisms. It therefore suffices to show that θ induces an equivalence of ∞-categories

after passing to the fiber over any object of C (Corollary HTT.2.4.4.4 ), which follows from Corollary

7.5.3.13.

Passing to Ek−1-algebra objects, we obtain a chain of equivalences

Funét(∆1, (Alg
(k)
R )/C) ' Alg/Ek−1

(D)

' Alg/Ek−1
(C)

' Alg/Ek−1
(C)×Alg/Ek−1

(N(Ring/π0C
)) Alg/Ek−1

(N(Ring′))

' (Alg
(k)
R )/C ×N(Ring/π0C

) N(Ring′).

Taking homotopy fibers over the object A ∈ (Alg
(k)
R )/C , we conclude that the forgetful functor

(Alg
(k)
R )ét

A//C → N(Ringét
π0A/ /π0C

)
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is an equivalence of ∞-categories.



Appendix A

Constructible Sheaves and Exit Paths

Let X be a topological space and let F be a locally constant sheaf of sets on X. For every point

x ∈ X, we let Fx denote the stalk of the sheaf F at the point x. The construction (x ∈ X) 7→ Fx

determines a functor from the fundamental groupoid π≤1X of X to the category of sets: every

path p : [0, 1] → X from x = p(0) to y = p(1) determines a bijection of sets Fx → Fy, depending

on only the homotopy class of the path p. If the topological space X is sufficiently nice, then the

converse holds: every functor from the fundamental groupoid of X into the category of sets arises

via this construction, for some locally constant sheaf of sets F. In fact, the category of functors

Fun(π≤1X, Set) is equivalent to the category of locally constant sheaves on X.

Our goal in this appendix is to describe some generalizations of the equivalence of categories

sketched above. The situation we consider will be more general in two respects:

(a) Rather than working with sheaves of sets, we will consider arbitrary S-valued sheaves on X.

(b) We will consider not only locally constant sheaves, but sheaves that are locally constant along

the strata of some stratification of X.

We begin in §A.1 by introducing the notion of a locally constant sheaf on an ∞-topos X. This

is a poor notion in general, but behaves well if we make a technical assumption on X (namely, that

X is locally of constant shape: see Definition A.1.5). Under this assumption, we prove an abstract

version of the equivalence described above: namely, the ∞-category of locally constant sheaves on

X can be identified with Fun(K, S) ' S/K (see Theorem A.1.15), where K is a Kan complex called

the shape of X.

For the abstract result cited above to be useful in practice, we need an explicit description of

the shape of an ∞-topos X. Suppose, for example, that X is the ∞-category Shv(X) of S-valued

sheaves on a topological space X. In §A.2, we show that the shape of X is a homotopy invariant

of X. In good cases, we can identify the shape of X with the singular complex Sing(X) of X. In

§A.4, we will establish such an identification for a large class of topological spaces X (including,

1401
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for example, all metric absolute neighborhood retracts); see Theorem A.4.19. The proof relies on

a generalization of the Seifert-van Kampen theorem, which we describe in §A.3.

We can summarize the above discussion as follows: if X is a sufficiently nice topological space,

then there is a fully faithful embedding ΨX : Fun(Sing(X), S) → Shv(X), whose essential image

is the ∞-category of locally constant sheaves on X. The remainder of this appendix is devoted to

explaining how to enlarge the ∞-category Fun(Sing(X), S) to obtain a description of sheaves on X

which are not assumed to be locally constant. Suppose that X is equipped with a stratification:

that is, a partition of X into subsets Xα indexed by a partially ordered set A. In §A.5, we will

study the notion of an A-constructible sheaf on X: that is, a sheaf on X whose restriction to each

stratum Xα is locally constant. In §A.6, we will define a simplicial subset SingA(X) ⊆ Sing(X).

Under some mild assumptions, we will show that SingA(X) is an ∞-category (Theorem A.6.4),

which we call the ∞-category of exit paths in X. Our main goal is to show that ΨX extends to

a fully faithful embedding Fun(SingA(X), S) → Shv(X), whose essential image is the ∞-category

of A-constructible sheaves on X. We will prove a result of this type in §A.9 (Theorem A.9.3).

Our proof will require some techniques for analyzing complicated ∞-categories in terms of simpler

pieces, which we develop in §A.8.

Most of the results in this appendix are not explicitly used in the body of the book (an exception

is the version of the Seifert-van Kampen theorem given in §A.3, which we use several times in

Chapter 5). However, the description of constructible sheaves in terms of exit path ∞-categories

is indirectly relevant to our study of factorizable (co)sheaves in §5.5, and should prove useful in

studying applications of the theory developed there.

A.1 Locally Constant Sheaves

Let X be a topological space. A sheaf of sets F on X is said to be constant if there exists a set A

and a map η : A → F(X) such that, for every point x ∈ X, the composite map A → F(X) → Fx

is a bijection from A to the stalk Fx of F at x. More generally, we say that a sheaf of sets F is

locally constant if every point x ∈ X has an open neighborhood U such that the restriction F |U is

a constant sheaf on U . The category of locally constant sheaves of sets on X is equivalent to the

category of covering spaces of X. If X is path connected and semi-locally simply connected, then

the theory of covering spaces guarantees that this category is equivalent to the category of sets

with an action of the fundamental group π1(X,x) (where x is an arbitrarily chosen point of X).

Our goal in this section is to obtain an ∞-categorical analogue of the above picture. More

precisely, we will replace the topological space X by an ∞-topos X. Our goal is to introduce a full

subcategory of X consisting of “locally constant” objects (see Definition A.1.12). We will further

show that if X is sufficiently well-behaved, then this full subcategory is itself an ∞-topos: more

precisely, it is equivalent to an ∞-category of the form S/K , for some Kan complex K. In §A.4, we

will show that if X is the ∞-category Shv(X) of sheaves on a well-behaved topological space X,
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then we can take K to be the Kan complex Sing(X).

The first step is to formulate a condition on an∞-topos which is a counterpart to the hypothesis

of semi-local simple connectivity in the usual theory of covering spaces.

Definition A.1.1. Let X be an ∞-topos, let π∗ : X → S be the functor corepresented by the

final object of X, and let π∗ be a left adjoint to π∗. We will say that X has constant shape if the

composition π∗π
∗ : S→ S is corepresentable.

Remark A.1.2. Recall that the shape of an ∞-topos X is the functor π∗π
∗ : S → S, which can

be regarded as a pro-object of the ∞-category S (see §HTT.7.1.6 ). The ∞-topos X has constant

shape if this pro-object can be taken to be constant.

Remark A.1.3. According to Proposition HTT.5.5.2.7 , an ∞-topos X has constant shape if and

only if the functor π∗π
∗ preserves small limits.

Remark A.1.4. Let X be a paracompact topological space, and let π∗ : Shv(X) → Shv(∗) ' S

be the global sections functor. It follows from the results of §HTT.7.1 that we can identify the

composition π∗π
∗ with the functor K 7→ MapTop(X, |K|). Consequently, the ∞-topos Shv(X) has

constant shape if and only if there exists a simplicial set K0 and a continuous map f : X →
|K0| such that, for every Kan complex K, composition with f induces a homotopy equivalence

MapSet∆
(K0,K) ' MapTop(|K0|, |K|)→ MapTop(X, |K|). This is guaranteed, for example, if f is a

homotopy equivalence: in other words, if X is a paracompact topological space with the homotopy

type of a CW complex, then X has constant shape.

Definition A.1.5. Let X be an ∞-topos. We will say that an object U ∈ X has constant shape if

the∞-topos X/U has constant shape. We will say that X is locally of constant shape if every object

U ∈ X has constant shape.

The following result guarantees that Definition A.1.5 is reasonable:

Proposition A.1.6. Let X be an ∞-topos, and let X′ be the full subcategory of X spanned by

those objects which have constant shape. Then X′ is stable under small colimits in X.

Proof. For each U ∈ X, let χU : X→ S be the functor corepresented by U , and let π∗ : S→ X be a

geometric morphism. Then U has constant shape if and only if the functor χU◦π∗ is corepresentable:

in other words, if and only if χU ◦ π∗ preserves small limits (Remark A.1.3). Suppose that U is

the colimit of a diagram {Uα}. Then χU is the limit of the induced diagram of functors {χUα}
(Proposition HTT.5.1.3.2 ), so that χU ◦π∗ is a limit of the diagram of functors {χUα ◦π∗}. If each

Uα has constant shape, then each of the functors χUα ◦ π∗ preserves small limits, so that χU ◦ π∗

preserves small limits (Lemma HTT.5.5.2.3 ).

Corollary A.1.7. Let X be an ∞-topos. Suppose that there exists a collection of objects Uα ∈ X

such that the projection U =
∐
α Uα → 1 is an effective epimorphism, where 1 denotes the final
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object of X. If each of the ∞-topoi X/Uα is locally of constant shape, then X is locally of constant

shape.

Proof. Let V ∈ X; we wish to show that V has constant shape. Let V0 = U × V , and let V• be

the Čech nerve of the effective epimorphism V0 → V . Since X is an ∞-topos, V is equivalent to

the geometric realization of the simplicial object V•. In view of Proposition A.1.6, it will suffice

to show that each Vn has constant shape. We note that Vn is a coproduct of objects of the form

Uα0 × . . .×Uαn × V . Then X/Vn admits an étalegeometric morphism to the ∞-topos X/Uα0
, which

is locally of constant shape by assumption. It follows that X/Vn is of constant shape.

Proposition A.1.8. Let X be an ∞-topos and let π∗ : S → X be a geometric morphism. The

following conditions are equivalent:

(1) The ∞-topos X is locally of constant shape.

(2) The functor π∗ admits a left adjoint π!.

Proof. According to Corollary HTT.5.5.2.9 , condition (2) is equivalent to the requirement that π∗

preserves small limits. In view of Proposition HTT.5.1.3.2 , this is equivalent to the assertion that

for each U ∈ X, the composition χU ◦ π∗ : S→ S preserves limits, where χU : X→ S is the functor

corepresented by U .

Let X be an∞-topos which is locally of constant shape, and let π! and π∗ be the adjoint functors

appearing in Proposition A.1.8. Let X → Y be a morphism in S and let Z → π∗Y be a morphism

in X. Then we have a commutative diagram

π!(π
∗X ×π∗Y Z) //

��

π!Z

��
π!π
∗X //

��

π!π
∗Y

��
X // Y,

and the outer square determines a canonical map π!(π
∗X ×π∗Y Z)→ X ×Y π!Z.

Proposition A.1.9. Let X be an ∞-topos which is locally of constant shape, let π∗ : S → X be

a geometric morphism and π! a left adjoint to π∗ (so that X is locally of constant shape). For

every morphism α : X → Y in S and every morphism β : Z → π∗Y in X, the associated push-pull

morphism

π!(π
∗X ×π∗Y Z)→ X ×Y π!Z

is an equivalence.
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Proof. Let us first regard the morphism α as fixed, and consider the full subcategory Y ⊆ X/π∗Y

spanned by those objects Z for which the conclusion holds. Since both π!(π
∗X ×π∗Y Z) and

X ×Y π!Z are colimit-preserving functors of Z, the full subcategory Y is stable under colimits

in X/π∗Y . Regard Y as a Kan complex, and let C be the category of simplices of Y , so that

we can identify Y with the colimit lim−→C∈C(∆0) of the constant diagram C → S taking the value

∆0. For every Z ∈ X/π∗Y , we have a canonical equivalence Z ' lim−→C∈C(Z ×π∗Y π∗∆0). We may

therefore replace Z by the fiber product Z ×π∗Y π∗∆0, and thereby reduce to the case where β

factors through the map π∗∆0 → π∗Y determined by a point of Y . Replacing Y by ∆0 and X by

X ×Y ∆0, we can reduce to the case where Y = ∆0. In this case, we must show that the canonical

map π!(π
∗X × Z) → X × π!Z is an equivalence. Let us now regard Z as fixed and consider the

full subcategory Z ⊆ S spanned by those objects for which the conclusion holds. Since the functors

π!(π
∗X × Z) and X × π!Z both preserve colimits in X, the full subcategory Z ⊆ S is stable under

small colimits. It will therefore suffice to show that ∆0 ∈ S, which is obvious.

Let X be an ∞-topos which is locally of constant shape. Let π! and π∗ denote the adjoint

functors appearing in Proposition A.1.8. Let 1 be a final object of X. We have a canonical functor

X ' X/1
π!→ S/π!1,

which we will denote by ψ!. The functor ψ! admits a right adjoint ψ∗, which can be described

informally by the formula ψ∗X = π∗X ×π∗π!1 1 (Proposition HTT.5.2.5.1 ). We observe that ψ∗

preserves small colimits, and is therefore a geometric morphism of ∞-topoi.

Remark A.1.10. The object π!1 ∈ S can be identified with the shape of the ∞-topos X.

Proposition A.1.11. Let X be an∞-topos which is locally of constant shape, and let ψ∗ : S/π!1 →
X be defined as above. Then ψ∗ is fully faithful.

Proof. Fix an object X → π!1 in S/π!1; we wish to show that the counit map v : ψ!ψ
∗X → X

is an equivalence. Unwinding the definitions, we see that v can be identified with the push-pull

transformation

π!(1×π∗π!1 π
∗X)→ π!1×π!1 X ' X,

which is an equivalence by virtue of Proposition A.1.9.

We now describe the essential image of the fully faithful embedding ψ∗.

Definition A.1.12. Let X be an ∞-topos, and let F be an object of X. We will say that F

is constant if it lies in the essential image of a geometric morphism π∗ : S → X (the geometric

morphism π∗ is unique up to equivalence, by virtue of Proposition HTT.6.3.4.1 ). We will say that

F is locally constant if there exists a small collection of objects {Uα ∈ X}α∈S such that the following

conditions are satisfied:
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(i) The objects Uα cover X: that is, there is an effective epimorphism
∐
Uα → 1, where 1 denotes

the final object of X.

(ii) For each α ∈ S, the product F×Uα is a constant object of the ∞-topos X/Uα .

Remark A.1.13. Let f∗ : X→ Y be a geometric morphism of ∞-topoi. Then f∗ carries constant

objects of X to constant objects of Y and locally constant objects of X to locally constant objects

of Y.

Remark A.1.14. Let F be a locally constant object of Shv(X), where X is a topological space.

Then there exists an open covering {Uα ⊆ X} such that each F |Uα is constant. Moreover, if X is

paracompact, we can assume that each Uα is an open Fσ set.

We now come to the main result of this section, which provides an ∞-categorical version of the

classical theory of covering spaces.

Theorem A.1.15. Let X be an∞-topos which is locally of constant shape, and let ψ∗ : S/π!1 → X

be the functor of Proposition A.1.11. Then ψ∗ is a fully faithful embedding, whose essential image

is the full subcategory of X spanned by the locally constant objects.

Proof. Suppose first that X → π!1 is an object of S/π!1; we will prove that ψ∗(X) is locally

constant. Choose an effective epimorphism
∐
α∈AKα → π!1 in S, where each Kα is contractible.

Then we obtain an effective epimorphism
∐
α∈A ψ

∗Kα → 1; it will therefore suffice to show that

each ψ∗X × ψ∗Kα is a constant object of X/ψ∗Kα . The composite functor

S/π!1
ψ∗→ X

×ψ∗Kα−→ X/ψ∗Kα

is equivalent to a composition of geometric morphisms

S/π!1 → S/Kα ' S→ X/ψ∗Kα

and so its essential image consists of constant objects.

For the converse, suppose that F ∈ X is a locally constant object; we wish to show that F belongs

to the essential image of ψ∗. Since F is locally constant, there exists a diagram {Uα} in X having

colimit 1, such that each product Uα × F is a constant object of X/Uα . We observe that S/π!1 can

be identified with the limit of the diagram of ∞-categories {S/π!Uα}, and that X can be identified

with the limit of the diagram of ∞-categories {X/Uα} (Theorem HTT.6.1.3.9 ). Moreover, the fully

faithful embedding ψ∗ is the limit of fully faithful embeddings ψ∗α : S/π!Uα → X/Uα . Consequently,

F belongs to the essential image of ψ∗ if and only if each product F×Uα belongs to the essential

image of ψ∗α. We may therefore replace X by X/Uα and thereby reduce to the case where F is

constant. In this case, F belongs to the essential image of any geometric morphism φ∗ : Y → X,
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since we have a homotopy commutative diagram of geometric morphisms

Y
φ∗

  
S

@@

π∗ // X .

Corollary A.1.16. Let X be an ∞-topos which is locally of constant shape. Then the collection

of locally constant objects of X is stable under small colimits.

Corollary A.1.17. Let X be an∞-topos which is locally of constant shape. Then for every locally

constant object X ∈ X, the canonical map X → lim←− τ≤nX is an equivalence; in particular, X is

hypercomplete.

Proof. Let π! : X → S and ψ∗ : S/π!1 → X be as in Proposition A.1.11. According to Theorem

A.1.15, we can write X = ψ∗X0 for some X0 ∈ S/π!1. Since ψ∗ commutes with truncations and

preserves limits (being a right adjoint), we can replace X by S/π!1. Since the result is local on X,

we can reduce further to the case where X = S, in which case there is nothing to prove.

A.2 Homotopy Invariance

Let X be a topological space, and let F be a locally constant sheaf of sets on X. If p : [0, 1] → X

is a continuous path from x = p(0) to y = p(1), then p induces a bijection between the stalks Fx

and Fy of the sheaf F, given by transport along p. More generally, if h : Y × [0, 1] → X is any

homotopy from a continuous map h0 : Y → X to a continuous map h1 : Y → X, then h induces

an isomorphism of sheaves h∗0 F ' h∗1 F. Our goal in this section is to generalize these statements

to the case where F is a sheaf of spaces.

Our first step is to study locally constant sheaves on the unit interval [0, 1]. These are charac-

terized by the following result:

Proposition A.2.1. Let X be the unit interval [0, 1], and let F ∈ Shv(X). Let π∗ : Shv(X) →
Shv(∗) = S be the global sections functor, and let π∗ be a left adjoint to π∗. The following conditions

are equivalent:

(i) The sheaf F is locally constant.

(ii) The sheaf F is constant.

(iii) The canonical map θ : π∗π∗ F → F is an equivalence.

Before giving the proof, we need an easy lemma.
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Lemma A.2.2. Let X be a contractible paracompact topological space, let π∗ : Shv(X) →
Shv(∗) ' S be the global sections functor, and let π∗ be a right adjoint to π∗. Then π∗ is fully

faithful.

Proof. Let K be a Kan complex (regarded as an object of the ∞-category S); we wish to prove

that the unit map u : K → π∗π
∗K is an equivalence. The results of §HTT.7.1 show that π∗π

∗K

has the homotopy type of the Kan complex of maps MapTop(X, |K|). Under this identification, the

map u corresponds to the diagonal inclusion K → Sing |K| ' MapTop(∗, |K|) → MapTop(X, |K|).
Since X is contractible, this inclusion is a homotopy equivalence.

Proof of Proposition A.2.1. The implications (iii)⇒ (ii)⇒ (i) are obvious. We prove that (ii)⇒
(iii). Suppose that F is constant; then F ' π∗K for some K ∈ S. Then θ admits a right homotopy

inverse, given by applying π∗ to the unit map u : K → π∗π
∗K. It follows from Lemma A.2.2 that

u is an equivalence, so that θ is an equivalence as well.

We now prove that (i) ⇒ (ii). Assume that F is locally constant. Let S ⊆ [0, 1] be the set of

real numbers t such that F is constant in some neighborhood of the interval [0, t] ⊆ [0, 1]. Let s be

the supremum of the set S (since F is constant in a neighborhood of 0, we must have s > 0). We

will show that s ∈ S. It will follow that s = 1 (otherwise, since F is locally constant on [0, s + ε]

for ε sufficiently small, we would have s+ ε
2 ∈ S) so that F is locally constant on [0, 1], as desired.

Since F is locally constant, it is constant when restricted to some open neighborhood U of

s ∈ [0, 1]. Since s is a limit point of S, we have S ∩ U 6= ∅. Consequently, we can choose some

point t ∈ S ∩ U , so that F is constant on U and on [0, t). We will prove that F is constant on the

neighborhood V = U ∪ [0, t) of [0, s], so that s ∈ S as desired.

Since F is constant on [0, t), we have an equivalence α : (F |[0, t)) ' (π∗K|[0, t)) for some object

K ∈ S. Similarly, we have an equivalence β : (F |U) ' (π∗K ′|U) for some K ′ ∈ S. Restricting to the

intersection, we get an equivalence γ : (π∗K|U ∩ [0, t)) ' (π∗K ′|U ∩ [0, t)). Since the intersection

U ∩ [0, t) is contractible, Lemma A.2.2 guarantees that γ is induced by an equivalance γ0 : K ' K ′

in the ∞-category S. Identifying K with K ′ via γ0, we can reduce to the case where K = K ′ and

γ′ is homotopic to the identity. For every open subset W ⊆ [0, 1], let χW ∈ Shv(X) denote the

sheaf given by the formula

χW (W ′) =

{
∗ if W ′ ⊆W
∅ otherwise.

We then have a commutative diagram

π∗K × χU∩[0,t)
//

��

π∗K × χU

��
π∗K × χ[0,t)

// F .

This diagram induced a map π∗K ×χV → F, which determines the required equivalence π∗K|V '
F |V .
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Remark A.2.3. Proposition A.2.1 remains valid (with essentially the same proof) if we replace

the closed unit interval [0, 1] by an open interval (0, 1) or a half-open interval [0, 1).

Let h0, h1 : X → Y be a pair of continuous maps from a topological space X to another

topological space Y . If h0 is homotopic to h1, then there exists a continuous map h : X ×R→ Y

such that h0 = h|X × {0} and h1 = h|X × {1}. In this case, we can attempt to understand

the relationship between the pullbacks h∗0 F and h∗1 F of a sheaf F on Y by studying the pullback

h∗ F ∈ Shv(Y × R). If F is locally constant, then so is h∗ F. It will be convenient for us to

consider a more general situation where F is only required to be locally constant along the paths

h|({y} ×R) (and, for technical reasons, hypercomplete). The following definition axiomatizes the

expected properties of the pullback h∗ F:

Definition A.2.4. Let X be a topological space and let F ∈ Shv(X ×R). We will say that F is

foliated if the following conditions are satisfied:

(i) The sheaf F is hypercomplete (see §HTT.6.5.2 ).

(ii) For every point x ∈ X, the restriction F |({x} ×R) is constant.

The main result of this section is the following result, which should be regarded as a relative

version of Proposition A.2.1 (where we have replaced the unit interval [0, 1] with the entire real

line):

Proposition A.2.5. Let X be a topological space, let π : X ×R→ X denote the projection, and

let F ∈ Shv(X ×R). The following conditions are equivalent:

(1) The sheaf F is foliated.

(2) The pushforward π∗ F is hypercomplete, and the counit map v : π∗π∗ F → F is an equivalence.

The proof of Proposition A.2.5 will require a few preliminaries.

Lemma A.2.6. Let f∗ : X → Y be a geometric morphism of ∞-topoi. Assume that f∗ admits a

left adjoint f!. Then f∗ carries hypercomplete objects of X to hypercomplete objects of Y.

Proof. To show that f∗ preserves hypercomplete objects, it will suffice to show that the left adjoint

f! preserves ∞-connective morphisms. We will show that f! preserves n-connective morphisms for

every nonnegative integer n. This is equivalent to the assertion that f∗ preserves (n− 1)-truncated

morphisms, which follows from Proposition HTT.5.5.6.16 .

Example A.2.7. Every étalemap of ∞-topoi satisfies the hypothesis of Lemma A.2.6. Conse-

quently, if X is a hypercomplete object of an ∞-topos X, then X ×U is a hypercomplete object of

X/U for each U ∈ X.
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Example A.2.8. Let X and Y be topological spaces, and let π : X × Y → X be the projection.

Assume that Y is locally compact and locally of constant shape. Then π∗ satisfies the hypothe-

sis of Lemma A.2.6, and therefore preserves hypercompleteness. To prove this, we observe that

Shv(X×Y ) can be identified with Shv(X)⊗Shv(Y ), where ⊗ denotes the tensor product operation

on presentable ∞-categories described in §4.8.1: this follows from Proposition HTT.7.3.1.11 and

Example 4.8.1.19. The functor π∗ can be identified with the tensor product idShv(X)⊗π′∗, where

π′ : Y → ∗ is the projection. Proposition A.1.8 guarantees that π′∗ admits a left adjoint π′!. It

follows that idShv(X)⊗π′! is a left adjoint to π∗. Moreover, if π′∗ is fully faithful, then the counit

map v : π′!π
′∗ → id is an equivalence, so the counit map π!π

∗ → idShv(X) is also an equivalence: it

follows that π∗ is fully faithful.

Lemma A.2.9. Let X be a topological space and let π : X × (0, 1) → X denote the projection.

Then the pullback functor π∗ : Shv(X) → Shv(X × (0, 1)) is fully faithful (so that the unit map

F → π∗π
∗ F is an equivalence for every F ∈ Shv(X)).

Proof. Let ψ : (0, 1)→ ∗ denote the projection map, and let ψ∗ : S→ Shv((0, 1)) be the associated

geometric morphism. Then ψ∗ admits a left adjoint ψ! (Proposition A.1.8) and the counit trans-

formation v : ψ!ψ
∗ → id is an equivalence of functors from S to itself. As in Example A.2.8, we can

identify Shv(X × (0, 1)) with the tensor product Shv(X)⊗ Shv((0, 1)), so that ψ! and ψ∗ induce a

pair of adjoint functors

Shv(X × (0, 1))
F //Shv(X).
G
oo

The functor G can be identified with π∗. Since the counit map v is an equivalence, the counit

F ◦G→ idShv(X) is likewise an equivalence, which proves that G ' π∗ is fully faithful.

Variant A.2.10. In the statement of Lemma A.2.9, we can replace (0, 1) by a closed or half-open

interval.

Proof of Proposition A.2.5. Suppose first that (2) is satisfied, and let G = π∗ F. Then G is hyper-

complete, so π∗ G is hypercomplete (Example A.2.8); since v : π∗ G→ F is an equivalence, it follows

that F is hypercomplete. It is clear that F ' π∗ G is constant along {x} ×R, for each x ∈ X.

Conversely, suppose that F is foliated. To prove that π∗ F is hypercomplete, it suffices to show

that π∗ F is local with respect to every ∞-connective morphism α in Shv(X). This is equivalent

to the requirement that F is local with respect to π∗(α). This follows from our assumption that F

is hypercomplete, since π∗(α) is again ∞-connective. To complete the proof that (1)⇒ (2), it will

suffice to show that the counit map v : π∗ G→ F is an equivalence.

For each positive integer n, let Fn = F |(X×(−n, n)) ∈ Shv(X×(−n, n)), let πn : X×(−n, n)→
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X be the projection map, and let Gn = (πn)∗ F. We have a commutative diagram

(π∗ G)|(X × (−n, n))
v //

��

F |(X × (−n, n))

��
π∗n Gn

vn // Fn .

To prove that v is an equivalence, it will suffice to show that the left vertical and lower horizontal

maps in this diagram are equivalences (for each n). This will follow from the following pair of

assertions:

(a) For each n > 0, the restriction map Gn+1 → Gn is an equivalence (so that G ' lim←−n Gn is

equivalent to each Gn).

(b) For each n > 0, the map π∗n Gn → Fn is an equivalence.

Note that assertion (a) follows from (b): if we let i : X → X × R be the map induced by the

inclusion {0} ↪→ R, then we have a commutative diagram

Gn //

��

Gn+1

��
i∗π∗n Gn //

��

i∗π∗n+1 Gn+1

��
i∗ Fn

s // i∗ Fn+1

in which the upper vertical maps are equivalences, the lower horizontal maps are equivalences by

(b), and the map s is an equivalence by construction.

To prove (b), let F+
n ∈ Shv(X × [−n, n]) denote the hypercompletion of the restriction F |(X ×

[−n, n]), let πn : X × [−n, n]→ X be the projection, and let G+
n = πn∗ F

+
n . Let v′ : (πn)∗ G+

n → F+
n

be the counit map. We claim that v′ is an equivalence. Since F+
n is hypercomplete by assumption,

G+
n ' πn∗ F+

n is likewise hypercomplete and so (πn)∗ G+
n is hypercomplete by virtue of Example A.2.8.

Consequently, to prove that v′ is an equivalence, it will suffice to show that v′ is ∞-connective.

To prove this, choose a point x ∈ X and let j : [−n, n] → X × [−n, n] be the map induced by

the inclusion j′ : {x} ↪→ X. We will show that j∗(v′) is an equivalence. Consider the diagram of

∞-topoi

Shv([−n, n])
j∗ //

ψ∗
��

Shv(X × [−n, n])

πn∗
��

// Shv([0, 1])

ψ∗
��

Shv(∗)
j′∗ // Shv(X) // Shv(∗).

The right square and the outer rectangle are pullback diagrams (Proposition HTT.7.3.1.11 ), so the

left square is a pullback diagram as well. Moreover, the geometric morphism ψ∗ is proper (Corollary
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HTT.7.3.4.11 ), so that πn∗ is likewise proper and the push-pull morphism e : j′∗πn∗ → ψ∗j
∗ is an

equivalence. We have a commutative diagram

ψ∗j′∗πn∗ F
+
n

//

e
��

j∗(πn)∗πn∗ F
+
n

j∗(v′)
��

ψ∗ψ∗j
∗ F+

n

v′x // j∗ F+
n .

By virtue of the above diagram (and the fact that e is an equivalence), we are reduced to proving

that v′x is an equivalence. To prove this, it suffices to verify that j∗ F+
n ∈ Shv([−n, n]) is constant

(Proposition A.2.1). We have an∞-connective morphism θ : F |({x}×[−n, n])→ j∗ F+
n . Since every

open subset of the topological space [−n, n] has covering dimension ≤ 1, the ∞-topos Shv([−n, n])

is locally of homotopy dimension ≤ 1 (Theorem HTT.7.2.3.6 ) and therefore hypercomplete. It

follows that θ is an equivalence. Since F is foliated, the restriction F |({x} × [−n, n]) is constant,

from which it follows immediately that j∗ F+
n is constant as well.

The ∞-connective morphism F |(X × [−n, n]) → F+
n induces another ∞-connective morphism

α : Fn → F+
n |(X×(−n, n)). Since the domain and codomain of α are both hypercomplete (Example

A.2.7), we deduce that α is an equivalence. In particular, we have Fn ' ((πn)∗ G+
n )|(X × (−n, n) =

π∗n G
+
n . Thus Fn lies in the essential image of the functor π∗n, which is fully faithful by virtue of

Lemma A.2.9. It follows that that the counit map π∗n(πn)∗ Fn → Fn is an equivalence as desired.

A.3 The Seifert-van Kampen Theorem

Let X be a topological space covered by a pair of open sets U and V , such that U , V , and U ∩ V
are path-connected. The Seifert-van Kampen theorem asserts that, for any choice of base point

x ∈ U ∩ V , the diagram of groups

π1(U ∩ V, x) //

��

π1(U, x)

��
π1(V, x) // π1(X,x)

is a pushout square. In this section, we will prove a generalization of the Seifert-van Kampen

theorem, which describes the entire weak homotopy type of X in terms of any sufficiently nice

covering of X by open sets:

Theorem A.3.1. Let X be a topological space, let U(X) denote the collection of all open subsets

of X (partially ordered by inclusion). Let C be a small category and let χ : C→ U(X) be a functor.

For every x ∈ X, let Cx denote the full subcategory of C spanned by those objects C ∈ C such that

x ∈ χ(C). Assume that χ satisfies the following condition:

(∗) For every point x, the simplicial set N(Cx) is weakly contractible.
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Then the canonical map lim−→C∈C Sing(χ(C)) → Sing(X) exhibits the simplicial set Sing(X) as a

homotopy colimit of the diagram {Sing(χ(C))}C∈C.

The proof of Theorem A.3.1 will occupy our attention throughout this section. The main step

will be to establish the following somewhat weaker result:

Proposition A.3.2. Let X be a topological space, let U(X) be the partially ordered set of

all open subsets of X, and let S ⊆ U(X) be a covering sieve on X. Then the canonical map

lim−→U∈S Sing(U) → Sing(X) exhibits the simplicial set Sing(X) as the homotopy colimit of the

diagram of simplicial sets {Sing(U)}U∈S .

Proposition A.3.2 is itself a consequence of the following result, which guarantees that Sing(X)

is weakly homotopy equivalent to the simplicial subset consisting of “small” simplices:

Lemma A.3.3. Let X be a topological space, and let {Uα} be an open covering of X. Let Sing′(X)

be the simplicial subset of Sing(X) spanned by those n-simplices |∆n| → X which factor through

some Uα. Then the inclusion i : Sing′(X) ⊆ Sing(X) is a weak homotopy equivalence of simplicial

sets.

The proof of Lemma A.3.3 will require a few technical preliminaries.

Lemma A.3.4. Let X be a compact topological space and let K be a simplicial set. Then every

continuous map f : X → |K| factors through |K0|, for some finite simplicial subset K0 ⊆ K.

Proof. Let K0 be the simplicial subset of K spanned by those simplices σ such that the interior

of |σ| intersects f(X). We claim that K0 is finite. Otherwise, we can choose an infinite sequence

of points x0, x1, . . . ∈ X such that each f(xi) belongs to the interior of a different simplex of |K|.
Let U = |K| − {f(x0), f(x1), . . . , }, and for each i ≥ 0 let Ui = U ∪ {f(xi)}. Then the collection of

open sets {Ui} forms an open cover of K, so that {f−1Ui} forms an open covering of X. This open

covering does not admit a finite subcovering, contradicting our assumption that X is compact.

Lemma A.3.5. Let i : K0 ⊆ K be an inclusion of simplicial sets. Suppose that the following

condition is satisfied:

(∗) For every finite simplicial subset L ⊆ K, there exists a homotopy h : |L| × [0, 1] → |K| such

that h|(|L| × {0}) is the inclusion, h|(|L| × {1}) ⊆ |K0|, and h|(|L0| × [0, 1]) ⊆ |K0|, where

L0 = L ∩K0.

Then the inclusion i is a weak homotopy equivalence.

Proof. We first show the following:

(∗′) Let X be a compact topological space, X0 a closed subspace, and f : X → |K| a continuous

map such that f(X0) ⊆ |K0|. Then there exists a homotopy h : X × [0, 1] → |K| such that

h|(X × {0}) = f , h(X × {1}) ⊆ |K0|, and h|(X0 × [0, 1]) ⊆ |K0|.



1414 APPENDIX A. CONSTRUCTIBLE SHEAVES AND EXIT PATHS

To prove (∗′), we note that since X is compact, the map f factors through |L|, where L is some

finite simplicial subset of K. Then f |X0 factors through |L0|, where L0 = L∩K0. We may therefore

replace X and X0 by |L| and |L0|, in which case (∗′) is equivalent to our assumption (∗).
Applying (∗′) in the case where X is a point and X0 is empty, we deduce that the inclusion i

is surjective on connected components. It will therefore suffice to show that i induces a bijection

φ : πn(|K0|, v) → πn(|K|, v) for each n ≥ 0 and each vertex v of K. To prove that φ is surjective,

consider a homotopy class η ∈ πn(|K|, v). This homotopy class can be represented by a pointed

map f : (Sn, ∗) → (|K|, v). Applying (∗′), we deduce that f is homotopic to a another map

g : Sn → |K0|, via a homotopy which, when restricted to the base point ∗ ∈ Sn, determines a path

p from v to another point v′ ∈ |K0|. Then g determines an element η′ ∈ πn(|K0|, v′). The image of

η′ under the transport isomorphism p∗ : πn(|K0|, v′) ' πn(|K0|, v) is a preimage of η under φ.

We now prove that φ is injective. Suppose we are given a continuous map f0 : Sn → |K0| which

extends to a map f : Dn+1 → |K|; we wish to show that f0 is nullhomotopic. Applying (∗′), we

deduce that f0 is homotopic to a map which extends over the disk Dn+1, and is therefore itself

nullhomotopic.

Before we can proceed with the proof of Lemma A.3.3, we need to recall some properties of the

barycentric subdivision construction in the setting of simplicial sets.

Notation A.3.6. Let [n] be an object of ∆. We let P [n] denote the collection of all nonempty

subsets of [n], partially ordered by inclusion. We let P [n] denote the disjoint union P [n]
∐

[n]. We

regard P [n] as endowed with a partial ordering which extends the partial orderings on P [n] and

[n], where we let i � σ for i ∈ [n] and σ ∈ P [n], while σ ≤ i if and only if each element of σ is ≤ i.
The functors [n] 7→ NP [n] and [n] 7→ NP [n] extend to colimit-preserving functors from the

category of simplicial sets to itself. We will denote these functors by sd and sd, respectively.

Let us identify the topological n-simplex |∆n| which the set of all maps t : [n] → [0, 1] such

that t(0) + . . . + t(n) = 1. For each n ≥ 0, there is a homeomorphism ηn : |P [n]| → |∆n| × [0, 1]

which is linear on each simplex, carries a vertex i ∈ [n] to (ti, 0) where ti is given by the formula

ti(j) =

{
1 if i = j

0 if i 6= j,
and carries a vertex σ ∈ P [n] to the pair (tσ, 1), where

tσ(i) =

{
1
m if i ∈ σ
0 if i /∈ σ

where m is the cardinality of σ. This construction is functorial in [n], and induces a homeomorphism

|sdK| → |K| × [0, 1] for every simplicial set K. We observe that sdK contains K and sdK as

simplicial subsets, whose geometric realizations map homeomorphically to |K|×{0} and |K|×{1},
respectively.
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Proof of Lemma A.3.3. We will show that i satisfies the criterion of Lemma A.3.5. Let L ⊆ Sing(X)

be a finite simplicial subset, and let L0 = L∩Sing′(X). Fix n ≥ 0, let L denote the iterated pushout

sd sdn−1 L
∐

sdn−1 L

sd sdn−2 L
∐

sdn−2 L

. . .
∐
sdL

L,

and define L0 similarly. Using the homeomorphisms |sdK| ' |K| × [0, 1] of Notation A.3.6 re-

peatedly, we obtain a homeomorphism |L| ' |L| × [0, n] (which restricts to a homeomorphism

|L0| ' |L0| × [0, n]).

The inclusion map L ⊆ Sing(X) is adjoint to a continuous map of topological spaces f : |L| → X.

Let f denote the composite map

|L| ' |L| × [0, n]→ |L| f→ X.

Then f determines a map of simplicial sets L→ Sing(X); we observe that this map carries L0 into

Sing′(X). Passing to geometric realizations, we get a map h : |L| × [0, n] ' |L| → |Sing(X)|, which

is a homotopy from the inclusion |L| ⊆ |Sing(X)| to the map g = h|(|L| × {n}) (by construction,

this homotopy carries |L0| × [0, n] into |Sing′(X)|). We note that g is the geometric realization of

the map sdn L → Sing′(X), which is adjoint to the composition | sdn L| ' |L| f→ X. To complete

the proof, it suffices to observe that for n sufficiently large, each simplex of the n-fold barycentric

subdivision | sdn L| will map into one of the open sets Uα, so that g factors through |Sing′(X)| as

required.

Armed with Lemma A.3.3, it is easy to finish the proof of Proposition A.3.2.

Proof of Proposition A.3.2. Choose a collection of open sets {Uα}α∈A which generates the sieve

S. Let P (A) denote the collection of all nonempty subsets of A, partially ordered by reverse

inclusion. Let P0(A) be the subset consisting of nonempty finite subsets of A. For each A0 ∈ P (A),

let UA0 =
⋂
α∈A0

Uα (if A0 is finite, this is an open subset of X, though in general it need not

be). The construction A0 7→ UA0 determines a map of partially ordered sets P0(A) → S. Using

Theorem HTT.4.1.3.1 , we deduce that the map N(P0(A)) → N(S) is left cofinal, so that (by

virtue of Theorem HTT.4.2.4.1 ) it will suffice to show that Sing(X) is a homotopy colimit of the

diagram {Sing(UA0)}A0∈P0(A). A similar argument shows that the inclusion N(P0(A)) ⊆ N(P (A))

is left cofinal, so we are reduced to showing that Sing(X) is a homotopy colimit of the diagram

ψ = {Sing(UA0)}A0∈P (A). The actual colimit of the diagram ψ is the simplicial set Sing′(X) which

is weakly equivalent to Sing(X) by Lemma A.3.3. It will therefore suffice to show that the diagram

ψ is projectively cofibrant. To prove this, we will show more generally that for any pair of simplicial

subsets K0 ⊆ K ⊆ Sing(X), the induced map

φ : {Sing(UA0) ∩K0}A0∈P (A) ↪→ {Sing(UA0) ∩K}A0∈P (A)
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is a projective cofibration of diagrams (taking K0 = ∅ and K = Sing(X) will then yield the

desired result). Working simplex by simplex, we may assume that K is obtained from K0 by

adjoining a single nondegenerate simplex σ : |∆n| → X whose boundary already belongs to K0.

Let A′ = {α ∈ A : σ(|∆n|) ⊆ Uα}. If A′ is empty, then φ is an isomorphism. Otherwise, φ is a

pushout of the projective cofibration F0 ↪→ F , where

F0(A0) =

{
∂∆n if A0 ⊆ A′

∅ otherwise
F (A0) =

{
∆n if A0 ⊆ A′

∅ otherwise.

Variant A.3.7. If X is a paracompact topological space, we can replace U(X) with the collection

of all open Fσ subsets of X in the statement of Proposition A.3.2; the proof remains the same.

Remark A.3.8. Let X be a topological space, and let U(X) denote the partially ordered set of

all open subsets of X. The construction U 7→ Sing(U) determines a functor between ∞-categories

N(U(X))→ S. Theorem HTT.5.1.5.6 implies that this functor is equivalent to a composition

N(U(X))
j→ P(U(X))

F→ S,

where j denotes the Yoneda embedding and the functor F preserves small colimits (moreover, the

functor F is determined uniquely up to equivalence). Proposition A.3.2 implies that F is equivalent

to the composition

P(U(X))
L→ Shv(X)

F→ S,

where L denotes a left adjoint to the inclusion Shv(X) ⊆ P(U(X)) and we identify F with its

restriction to Shv(X). In particular, the functor F : Shv(X)→ S preserves small colimits.

We now explain how to deduce Theorem A.3.1 from Proposition A.3.2. The main technical

obstacle is that the ∞-topos Shv(X) need not be hypercomplete. We will address this problem

by showing that the functor F of Remark A.3.8 factors through the hypercompletion of Shv(X):

in other words, that F carries ∞-connected morphisms in Shv(X) to equivalences in S (Lemma

A.3.10). We first note that ∞-connectedness is a condition which can be tested “stalkwise”:

Lemma A.3.9. Let X be a topological space, and let α : F → F′ be a morphism in the∞-category

Shv(X). For each point x ∈ X, let x∗ : Shv(X)→ Shv({x}) ' S denote the pullback functor. The

following conditions are equivalent:

(1) The morphism α is ∞-connective.

(2) For each x ∈ X, the morphism x∗(α) is an equivalence in S.



A.3. THE SEIFERT-VAN KAMPEN THEOREM 1417

Proof. The implication (1)⇒ (2) is obvious, since the pullback functors x∗ preserve∞-connectivity

and the ∞-topos S is hypercomplete. Conversely, suppose that (2) is satisfied. We will prove by

induction on n that the morphism α is n-connective. Assume that n > 0. By virtue of Proposition

HTT.6.5.1.18 , it will suffice to show that the diagonal map F×F′ F is (n − 1)-connective, which

follows from the inductive hypothesis. We may therefore reduce to the case n = 0: that is, we must

show that α is an effective epimorphism. According to Proposition HTT.7.2.1.14 , this is equivalent

to the requirement that the induced map α′ : τ≤0 F → τ≤0 F
′ is an effective epimorphism. We may

therefore replace α by α′ and thereby reduce to the case where F,F′ ∈ ShvSet(X) are sheaves of

sets on X, in which case the result is obvious.

Lemma A.3.10. Let X be a topological space, and let F : Shv(X) → S be as in Remark A.3.8.

Then F carries ∞-connective morphisms of Shv(X) to equivalences in S.

Proof. Let α be an∞-connectivemorphism in Shv(X). We will show that F (α) is an∞-connective

morphism in S, hence an equivalence (since the ∞-topos S is hypercomplete). For this, it suffices

to show that for each n ≥ 0, the composite functor

Shv(X)
F→ S

τS≤n−→ τ≤n S

carries α to an equivalence. Since τ≤n S is an n-category, the functor τS≤n ◦ F is equivalent to a

composition

Shv(X)
τ
Shv(X)
≤n−→ τ≤n Shv(X)

Fn−→ τ≤n S .

We now observe that τ
Shv(X)
≤n (α) is an equivalence, since α is assumed to be ∞-connective.

We now have the tools in place to complete the proof of our main result.

Proof of Theorem A.3.1. Passing to nerves, we obtain a diagram of ∞-categories p : N(C). → S.

In view of Theorem HTT.4.2.4.1 , it will suffice to show that p is a colimit diagram. Note that p is

equivalent to the composition

N(C).
χ→ N(U(X))

j→ Shv(X)hyp F→ S,

where Shv(X)hyp denotes the full subcategory of P(U(X)) spanned by the hypercomplete sheaves

on X, j denotes the Yoneda embedding, and F is defined as in Remark A.3.8. Using Proposition

A.3.2 and Lemma A.3.10, we deduce that F preserves small colimits. It therefore suffices to show

that j ◦ χ is a colimit diagram. Since Shv(X)hyp is hypercomplete, it suffices to show that the

composition f∗ ◦ j ◦ χ is a colimit diagram, where f : {x} ↪→ X is the inclusion of any point into

X. This follows immediately from assumption (∗).
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A.4 Singular Shape

In §A.1, we defined the notion of a locally constant object of an ∞-topos X. Moreover, we proved

that the ∞-topos X is locally of constant shape, then the ∞-category of locally constant objects

of X is equivalent to the ∞-topos S/K of spaces lying over some fixed object K ∈ S (Theorem

A.1.15). This can be regarded as an analogue of the main result in the theory of covering spaces,

which asserts that the category of covering spaces of a sufficiently nice topological space X can be

identified with the category of sets acted on by the fundamental group of X. If we apply Theorem

A.1.15 in the special case X = Shv(X), then we deduce that the fundamental groups of X and K

are isomorphic to one another. Our objective in this section is to strengthen this observation: we

will show that if X is a sufficiently nice topological space, then the ∞-topos Shv(X) of sheaves

on X is locally of constant shape, and the shape K of Shv(X) can be identified with the singular

complex Sing(X).

Remark A.4.1. We refer the reader to [147] for a closely related discussion, at least in the case

where X is a CW complex.

Our first step is to describe a class of topological spaces X for which the theory of locally

constant sheaves on X is well-behaved. By definition, if F is a locally constant sheaf on X, then

every point x ∈ X has an open neighborhood U such that the restriction F |U is constant. Roughly

speaking, we want a condition on X which guarantees that we can choose U to be independent of

F.

Definition A.4.2. Let f∗ : X→ Y be a geometric morphism of ∞-topoi. We will say that f∗ is a

shape equivalence if it induces an equivalence of functors π∗π
∗ → π∗f∗f

∗π∗, where π∗ : S→ X is a

geometric morphism.

Remark A.4.3. Let X be an ∞-topos. Then X has constant shape if and only if there exists a

shape equivalence f∗ : S/K → X, for some Kan complex K. The “if” direction is obvious (since

S/K is of constant shape). Conversely, if X is of constant shape, then π∗π
∗ is corepresentable by

some object K ∈ S. In particular, there is a canonical map ∆0 → π∗π
∗K, which we can identify

with a map α : 1 → π∗K in the ∞-topos X, where 1 denotes the final object of X. According to

Proposition HTT.6.3.5.5 , α determines a geometric morphism of ∞-topoi f∗ : S/K → X, which is

easily verified to be a shape equivalence.

Definition A.4.4. Let f : X → Y be a continuous map of topological spaces. We will say that

f is a shape equivalence if the associated geometric morphism f∗ Shv(X) → Shv(Y ) is a shape

equivalence, in the sense of Definition A.4.2.

Example A.4.5. Let f : X → Y be a continuous map between paracompact topological spaces.

Then f is a shape equivalence in the sense of Definition A.4.4 if and only if, for every CW com-

plex Z, composition with f induces a homotopy equivalence of Kan complexes MapTop(Y,Z) →
MapTop(X,Z).
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Example A.4.6. If X is any topological space, then the projection map π : X×R→ X is a shape

equivalence. This follows immediately from the observation that π∗ is fully faithful (Example

A.2.8).

Remark A.4.7. It follows from Example A.4.6 that every homotopy equivalence of topological

spaces is also a shape equivalence.

Warning A.4.8. For general topological spaces, Definition A.4.4 does not recover the classical

notion of a shape equivalence (see, for example, [104]). However, if X and Y are both paracompact

then we recover the usual notion of strong shape equivalence (Remark HTT.7.1.6.7 ).

Definition A.4.9. Let X be a topological space. We will say that X has singular shape if the

counit map |Sing(X)| → X is a shape equivalence.

Remark A.4.10. If X is a topological space with singular shape, then the ∞-topos Shv(X) has

constant shape: indeed, Shv(X) is shape equivalent to Shv(|Sing(X)|), and |Sing(X)| is a CW

complex (Remark A.1.4).

Remark A.4.11. Let f : X → Y be a homotopy equivalence of topological spaces. Then X has

singular shape if and only if Y has singular shape. This follows immediately from Remark A.4.7

by inspecting the diagram

| Sing(X)| //

��

| Sing(Y )|

��
X // Y.

Example A.4.12. Let X be a paracompact topological space. Then X has singular shape if and

only if, for every CW complex Y , the canonical map

MapTop(X,Y )→ MapSet∆
(Sing(X),Sing(Y )) ' MapTop(|Sing(X)|, Y )

is a homotopy equivalence of Kan complexes.

Remark A.4.13. Let X be a paracompact topological space. There are two different ways that we

might try to assign to X a homotopy type. The first is to consider continuous maps from nice spaces

(such as CW complexes) into the space X. Information about such maps is encoded in the Kan

complex Sing(X) ∈ S, which controls the weak homotopy type of X. Alternatively, we can instead

consider maps from X into CW complexes. These are controlled by the pro-object Sh(X) of S

which corepresents the functor K 7→ MapTop(X, |K|). There is a canonical map Sing(X)→ Sh(X),

and X has singular shape if and only if this map is an equivalence.

Lemma A.4.14. Let X be a topological space, and let {Uα ∈ U(X)}α∈A be an open covering of

X. Assume that for every nonempty finite subset A0 ⊆ A, the intersection UA0 =
⋂
α∈A0

Uα has

singular shape. Then X has singular shape.
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Proof. Let π∗ : S→ Shv(X) be a geometric morphism. For each open set U ⊆ X, let FU : S→ S be

the functor given by composing π∗ with evaluation at U , and let GU : S→ S be the functor given

by K 7→ Fun(Sing(U),K). There is a natural transformation of functors γU : FU → GU , and U has

singular shape if and only if γU is an equivalence. We observe that FX can be identified with a limit

of the diagram {FUA0
} where A0 ranges over the finite subsets of A, and that GX can be identified

with a limit of the diagram {GUA0
} (since Sing(X) is the homotopy colimit of {Sing(UA0)} by

Theorem A.3.1). Under these identifications, γX is a limit of the functors {γUA0
}. Since each of

these functors is assumed to be an equivalence, we deduce that γX is an equivalence.

Definition A.4.15. We will say that topological space X is locally of singular shape if every open

set U ⊆ X has singular shape.

Remark A.4.16. Let X be a topological space. Suppose that X admits a covering by open sets

which are locally of singular shape. Then X is locally of singular shape (this follows immediately

from Lemma A.4.14).

Let X be a topological space which is locally of singular shape. Then Shv(X) is locally of

constant shape, and the shape of Shv(X) can be identified with the Kan complex Sing(X). It follows

from Theorem A.1.15 that the ∞-category of locally constant objects of Shv(X) is equivalent to

S/ Sing(X). Our goal for the remainder of this section is to give a more explicit description of this

equivalence.

Construction A.4.17. Let X be a topological space. We let AX denote the category

(Set∆)/ Sing(X), endowed with the usual model structure. Let Ao
X denote the full subcategory of

AX spanned by the fibrant-cofibrant objects (these are precisely the Kan fibrations Y → Sing(X)).

We define a functor θ : U(X)op×AX → Set∆ by the formula θ(U, Y ) = FunSing(X)(Sing(U), Y ).

Restricting to Ao
X and passing to nerves, we get a map of ∞-categories N(U(X)op)×N(Ao

X)→ S,

which we regard as a map of ∞-categories N(Uo
X) → P(U(X)). It follows from Variant A.3.7

on Proposition A.3.2 that this functor factors through the full subcategory Shv(X) ⊆ P(U(X))

spanned by the sheaves on X. We will denote the underlying functor N(Ao
X)→ Shv(X) by ΨX .

Example A.4.18. Let X be a topological space. The construction K 7→ K × Sing(X) determines

a functor from Set∆ ' A∗ to AX , which restricts to a functor Ao
∗ → Ao

X . Passing to nerves and

composing with ΨX , we get a functor ψ : S → Shv(X), which carries a Kan complex K to the

sheaf U 7→ MapSet∆
(Sing(U),K). Let π∗ : Shv(X) → S be the functor given by evaluation on X.

There is an evident natural transformation idS → π∗ ◦ ψ, which induces a natural transformation

π∗ → ψ. The space X is locally of singular shape if and only if this natural transformation is an

equivalence.

We note that the object ψ Sing(X) ∈ Shv(X) has a canonical global section given by the identity

map from Sing(X) to itself. If Y → Sing(X) is any Kan fibration, then ΨX(Y ) can be identified
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with the (homotopy) fiber of the induced map ψ(Y )→ ψ(Sing(X)). It follows that the functor ΨX

is an explicit model for the fully faithful embedding described in Proposition A.1.11. Coupling this

observation with Theorem A.1.15, we obtain the following:

Theorem A.4.19. Let X be a topological space which is locally of singular shape. Then the

functor ΨX : N(Ao
X) → Shv(X) is a fully faithful embedding, whose essential image is the full

subcategory of Shv(X) spanned by the locally constant sheaves on X.

A.5 Constructible Sheaves

In §A.1 and §A.4, we studied the theory of locally constant sheaves on a topological space X.

In many applications, one encounters sheaves F ∈ Shv(X) which are not locally constant but

are nevertheless constructible: that is, they are locally constant along each stratum of a suitable

stratification of X. We begin by making this notion more precise.

Definition A.5.1. Let A be a partially ordered set. We will regard A as a topological space, where

a subset U ⊆ A is open if it is closed upwards: that is, if x ≤ y and x ∈ U implies that y ∈ U .

Let X be a topological space. An A-stratification of X is a continuous map f : X → A. Given

an A-stratification of a space X and an element a ∈ A, we let Xa, X≤a, X<a, X≥a, and X>a denote

the subsets of X consisting of those points x ∈ X such that f(x) = a, f(x) ≤ a, f(x) < a, f(x) ≥ a,

and f(x) > a, respectively.

Definition A.5.2. Let A be a partially ordered set and let X be a topological space equipped with

an A-stratification. We will say that an object F ∈ Shv(X) is A-constructible if, for every element

a ∈ A, the restriction F |Xa is a locally constant object of Shv(Xa). Here F |Xa denotes the image

of F under the left adjoint to the pushforward functor Shv(Xa)→ Shv(X).

We let ShvA(X) denote the full subcategory of Shv(X) spanned by the A-constructible objects.

To ensure that the theory of A-constructible sheaves is well-behaved, we introduce a regularity

condition on the stratification X → A.

Definition A.5.3. Let A be a partially ordered set, and let A/ be the partially ordered set obtained

by adjoining a new smallest element −∞ to A. Let f : X → A be an A-stratified space. We define

a new A/-stratified space C(X) as follows:

(1) As a set C(X) is given by the union {∗} ∪ (X ×R>0).

(2) A subset U ⊆ C(X) is open if and only if U ∩ (X × R>0) is open, and if ∗ ∈ U then

X × (0, ε) ⊆ U for some positive real number ε.

(3) The A/-stratification of C(X) is determined by the map f : C(X)→ A/ such that f(∗) = −∞
and f(x, t) = f(x) for (x, t) ∈ X ×R>0.
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We will refer to C(X) as the open cone on X.

Remark A.5.4. If the topological space X is compact and Hausdorff, then the open cone C(X)

is homeomorphic to the pushout (X ×R≥0)
∐
X×{0}{∗}.

Definition A.5.5. Let A be a partially ordered set, let X be an A-stratified space, and let x ∈
Xa ⊆ X be a point of X. We will say that X is conically stratified at the point x if there exists an

A>a-stratified topological space Y , a topological space Z, and an open embedding Z ×C(Y ) ↪→ X

of A-stratified spaces whose image Ux contains x. Here we regard Z × C(Y ) as endowed with the

A-stratification determined by the A/>a ' A≥a-stratification of C(Y ).

We will say that X is conically stratified if it is conically stratified at every point x ∈ X.

Remark A.5.6. In Definition A.5.5, we do not require that the space Y itself be conically stratified.

Definition A.5.7. We will say that a partially ordered set A satisfies the ascending chain condition

if every nonempty subset of A has a maximal element.

Remark A.5.8. Equivalently, A satisfies the ascending chain condition if there does not exist any

infinite ascending sequence a0 < a1 < · · · of elements of A.

The main goal of this section is to prove the following somewhat technical convergence result

concerning constructible sheaves:

Proposition A.5.9. Let A be a partially ordered set, and let X be an A-stratified space. Assume

that:

(i) The space X is paracompact and locally of singular shape.

(ii) The A-stratification of X is conical.

(iii) The partially ordered set A satisfies the ascending chain condition.

Let F ∈ ShvA(X) be an A-constructible sheaf. Then the canonical map θ : F → lim←− τ≤n F is an

equivalence. In particular, F is hypercomplete.

The proof of Proposition A.5.9 will require several preliminaries, and will be given at the end

of this section. Our first step is to consider the case of a very simple stratification of X: namely,

a decomposition of X into an open set and its closed complement. The following result is useful

for working with constructible sheaves: it allows us to reduce global questions to questions which

concern individual strata.

Lemma A.5.10. Let X be an∞-topos and U a (−1)-truncated object of X. Let i∗ : X→ X /U and

j∗ : X → X/U be the canonical geometric morphisms, j∗ a right adjoint to j∗, and let p : K/ → X

be a small diagram in X indexed by a weakly contractible simplicial set K. Suppose that i∗p, j∗p,

and i∗j∗j
∗p are all limit diagrams. Then p is a limit diagram.
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Proof. Let F denote the image of the cone point of K/ under p, let p′ : K → X be the constant

diagram taking the value F, and let p = p|K. Then p determines a natural transformation of

diagrams α : p′ → p; we wish to prove that α induces an equivalence lim←−(p′) → lim←−(p) in X. For

this, it suffices to show that for every object V ∈ X, the induced map

θ : MapX(V, lim←−(p′))→ MapX(V, lim←−(p))

is a homotopy equivalence. Replacing X by X/V , we can reduce to the case where V is the final

object of X. In this case, we let Γ denote the functor X → S corepresented by V (the functor of

global sections).

Fix a point η ∈ Γ(lim←−(p)); we will show that the homotopy fiber of θ over η is contractible.

Let j∗ denote a right adjoint to j∗, let q = j∗ ◦ j∗ ◦ p, and let q′ = j∗ ◦ j∗ ◦ p′. Then η determines

a point η0 ∈ Γ(lim←−(q)). Since j∗ ◦ p is a limit diagram (and the functor j∗ preserves limits), the

canonical map lim←−(q′)→ lim←−(q) is an equivalence, so we can lift η0 to a point η1 ∈ Γ(lim←−(q′)). This

point determines a natural transformation from the constant diagram c : K → X taking the value

V ' 1 to the diagram q′. Let p′0 = c×q′ p′ and let p0 = c×q p. We have a map of homotopy fiber

sequences

Γ(lim←−(p′0)) //

θ′

��

Γ(lim←−(p′)) //

θ

��

Γ(lim←−(q′))

θ′′

��
Γ(lim←−(p0)) // Γ(lim←−(p)) // Γ(lim←−(q)).

Here θ′′ is a homotopy equivalence. Consequently, to prove that the homotopy fiber of θ is con-

tractible, it will suffice to show that θ′ is a homotopy equivalence.

By construction, the diagrams p′0 and p0 take values in the full subcategory X /U ⊆ X, so that

the localization maps p′0 → i∗p′0 and p0 → i∗p0 are equivalences. It therefore suffices to show

that the map Γ(lim←−(i∗p′0)) → Γ(lim←−(i∗p0)) is a homotopy equivalence. We have another map of

homotopy fiber sequences

Γ(lim←−(i∗p′0)) //

ψ′

��

Γ(lim←−(i∗p′)) //

ψ

��

Γ(lim←−(i∗q′))

ψ′′

��
Γ(lim←−(i∗p0)) // Γ(i∗ lim←−(p)) // Γ(lim←−(i∗q)).

The map ψ is a homotopy equivalence by virtue of our assumption that i∗p is a limit diagram, and

the map ψ′′ is a homotopy equivalence by virtue of our assumption that i∗j∗j
∗p is a limit diagram.

It follows that ψ′ is also a homotopy equivalence, as desired.

Lemma A.5.11. Let X be an ∞-topos and U a (−1)-truncated object of X. Let i∗ : X → X /U

and j∗ : X → X/U be the canonical geometric morphisms, and let α : F → G be a morphism in X.

Suppose that i∗(α) and j∗(α) are equivalences. Then α is an equivalence.
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Proof. Apply Lemma A.5.10 in the special case where K = ∆0 (note that i∗j∗ automatically

preserves j-indexed limits).

Lemma A.5.12. Let X be a paracompact topological space, Y any topological space, V an open

neighborhood of X in X × C(Y ). Then there exists a continuous function f : X → (0,∞) such

that V contains

Vf = {(x, y, t) : t < f(x)} ⊆ X × Y × (0,∞) ⊆ X × C(Y ).

Proof. For each point x ∈ X, there exists a neighborhood Ux of x and a real number tx such that

{(x′, y, t) : t < tx ∧ x′ ∈ Ux} ⊆ V . Since X is paracompact, we can choose a locally finite partition

of unity {ψx}x∈X subordinate to the cover {Ux}x∈X . We now define f(y) =
∑

x∈X ψx(y)tx.

Remark A.5.13. In the situation of Lemma A.5.12, the collection of open sets of the form Vf is

nonempty (take f to be a constant function) and stable under pairwise intersections (Vf ∩ Vg =

Vinf{f,g}). The collection of such open sets is therefore cofinal in partially ordered set of all open

subsets of X × C(Y ) which contain X (ordered by reverse inclusion).

Lemma A.5.14. Let X be a paracompact topological space. Let π denote the projection X ×
[0,∞) → X, let j denote the inclusion X × (0,∞) ↪→ X × [0,∞), and let π0 = π ◦ j. Then the

obvious equivalence π∗0 ' j∗π∗ is adjoint to an equivalence of functors α : π∗ → j∗π
∗
0 from Shv(X)

to Shv(X × [0,∞)).

Proof. Let F ∈ Shv(X); we wish to prove that α induces an equivalence π∗ F → j∗π
∗
0 F. It is clear

that this map is an equivalence when restricted to the open set X× (0,∞). Let i : X → X× [0,∞)

be the map induced by the inclusion {0} ⊆ [0,∞). By Corollary A.5.11, it will suffice to show that

the map

β : F ' i∗π∗ F → i∗j∗π
∗
0 F

determined by α is an equivalence. Let U be an open Fσ subset of X; we will show that the map

βU : F(U) → (i∗j∗π
∗
0 F)(U) is a homotopy equivalence. Replacing X by U , we can assume that

U = X.

According to Corollary HTT.7.1.5.6 , we can identify (i∗j∗π
∗
0 F)(X) with the colimit lim−→V ∈S(j∗π

∗
0 F)(V ) '

lim−→V ∈S(π∗0 F)(V − X), where V ranges over the collection S of all open neighborhoods of

X = X × {0} in X × [0,∞). Let S′ ⊆ S be the collection of all open neighborhoods of the form

Vf = {(x, t) : t < f(x)}, where f : X → (0,∞) is a continuous function (see Lemma A.5.12). In

view of Remark A.5.13, we have an equivalence lim−→V ∈S(π∗0 F)(V − X) ' lim−→V ∈S′(π
∗
0 F)(V − X).

Since S′ is a filtered partially ordered set (when ordered by reverse inclusion), to prove that βX is

an equivalence it suffices to show that the pullback map F(X) → (π∗0 F)(Vf − X) is a homotopy

equivalence, for every continuous map f : X → (0,∞). Division by f determines a homeomorphism

Vf −X → X × (0, 1), and the desired result follows from Lemma A.2.9.
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Lemma A.5.15. Let X be a paracompact topological space of the form Z × C(Y ), and consider

the (noncommuting) diagram

Z × Y × (0,∞)
j //

π0

))

Z × Y × [0,∞)

π

��

k // X

Z × Y ψ // Z.

i

OO

Let i′ denote the inclusion Z × Y → Z × Y × [0,∞) given by {0} ↪→ [0,∞). Assume that X is

paracompact. Then:

(i) The canonical map α : π∗ → j∗π
∗
0 is an equivalence of functors from Shv(Z × Y ) to Shv(Z ×

Y × [0,∞)).

(ii) Let β : π∗ → i′∗ be the natural transformation adjoint to the equivalence i′∗π∗ ' idShv(Z×Y ).

Then the natural transformation

γ : i∗k∗π
∗ β→ i∗k∗i

′
∗ ' i∗i∗ψ∗ → ψ∗

is an equivalence of functors from Shv(Z × Y ) to Shv(Z).

(iii) The functor i∗j∗π
∗
0 is equivalent to ψ∗.

Proof. Note that Z×Y ' Z×Y ×{1} can be identified with a closed subset of X, and is therefore

paracompact. Consequently, assertion (i) follows from Lemma A.5.14. Assertion (iii) follows

immediately from (i) and (ii). It will therefore suffice to prove (ii).

Since Z can be identified with a closed subset of X, it is paracompact. Let F ∈ Shv(Z × Y ),

and let U be an open Fσ subset of Z. We will show that γ induces a homotopy equivalence

(i∗k∗π
∗ F)(U) → (ψ∗ F)(U). Shrinking Z if necessary, we may suppose that Z = U . The right

hand side can be identified with F(Z × Y ), while the left hand side is given (by virtue of Corollary

HTT.7.1.5.6 ) by the colimit lim−→V ∈S(π∗ F)(k−1V ), where V ranges over partially ordered set S of

open subsets of Z × C(Y ) which contain Z. By virtue of Remark A.5.13, we can replace S by the

cofinal subset S′ consisting of open sets of the form V = Vf , where f : Z → (0,∞) is a continuous

function (see Lemma A.5.12). Since S′ is filtered, it will suffice to show that each of the maps

(π∗ F)(k−1V )→ F(Z×Y ) is an equivalence. Division by f allows us to identify (π∗ F)(k−1V ) with

(π∗ F)(Z×Y × [0, 1)), and the desired result now follows from Variant A.2.10 on Lemma A.2.9.

Lemma A.5.16. Let X be a paracompact space equipped with a conical A-stratification. Then

every point x ∈ Xa admits a open Fσ neighborhood V which is homeomorphic (as an A-stratified

space) to Z × C(Y ), where Y is some A>a-stratified space.

Proof. Since the stratification of X is conical, there exists an open neighborhood U of x which is

homeomorphic (as an A-stratified space) to Z ×C(Y ), where Y is some A>a-stratified space. The
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open set U need not be paracompact. However, there exists a smaller open set U ′ ⊆ U containing

x such that U ′ is an Fσ subset of X, and therefore paracompact. let Z ′ = U ′ ∩ Z. Then Z ′ is a

closed subset of the paracompact space U ′, and therefore paracompact. Replacing Z by Z ′, we can

assume that Z is paracompact. Applying Lemma A.5.12, we deduce that there exists a continuous

function f : Z → (0,∞) such that Vf ⊆ U (see Lemma A.5.12 for an explanation of this notation).

The set Vf is the union of the closures in U ′ of the open sets {V n
n+1

f}n>0. It is therefore an open

Fσ subset of U ′ (and so also an Fσ subset of the space X). We conclude by observing that Vf is

again homeomorphic to the product Z × C(Y ).

Remark A.5.17. If A is a partially ordered set satisfying the ascending chain condition, then we

can define an ordinal-valued rank function rk on A. The function rk is uniquely determined by the

following requirement: for every element a ∈ A, the rank rk(a) is the smallest ordinal not of the

form rk(b), where b > a. More generally, suppose that X is an A-stratified topological space. We

define the rank of X to be the supremum of the set of ordinals {rk(a) : Xa 6= ∅}.

Remark A.5.18. Let X be a paracompact topological space of the form Z × C(Y ). Then Z is

paracompact (since it is homeomorphic to a closed subset of X). Suppose that X has singular

shape. Since the inclusion Z ↪→ X is a homotopy equivalence, we deduce also that Z has singular

shape (Remark A.4.11). The same argument shows that if X is locally of singular shape, then Z is

locally of singular shape.

Proof of Proposition A.5.9. The assertion that θ : F → lim←− τ≤n F is an equivalence is local on X. It

will therefore suffice to prove that every point x ∈ Xa admits an open Fσ neighborhood U such that

θ is an equivalence over U . Since A satisfies the ascending chain condition, we may assume without

loss of generality that the same result holds for every point x′ ∈ X>a. Using Lemma A.5.16, we

may assume without loss of generality that U is a paracompact open set of the form Z × C(Y ),

where Y is some A>a-stratified space.

Let i : Z → Z×C(Y ) and j : Z×Y ×(0,∞)→ Z×C(Y ) denote the inclusion maps. According

to Lemma A.5.10, it will suffice to verify the following:

(a) The canonical map i∗ F → lim←− i
∗τ≤n F ' lim←− τ≤ni

∗ F is an equivalence.

(b) The canonical map j∗ F → lim←− j
∗τ≤n F ' lim←− τ≤nj

∗ F is an equivalence.

(c) The canonical map i∗j∗j
∗ F → lim←− i

∗j∗j
∗τ≤n F is an equivalence.

Assertion (a) follows from Corollary A.1.17 (note that Z is locally of singular shape by Remark

A.5.18), and assertion (b) follows from the inductive hypothesis. To prove (c), let π : Z×Y ×(0,∞)

denote the projection. Using the inductive hypothesis, we deduce that j∗ F is hypercomplete. Since

each fiber {z}×{y}× (0,∞) is contained in a stratum of X, we deduce that j∗ F is foliated, so that

the counit map π∗π∗j
∗ F → j∗ F is an equivalence. The same reasoning shows that π∗π∗j

∗τ≤n F →
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j∗τ≤n F is an equivalence for each n ≥ 0. Consequently, (c) is equivalent to the assertion that the

canonical map

i∗j∗π
∗ G→ lim←− i

∗j∗π
∗ Gn

is an equivalence, where G = π∗j
∗ F and Gn = π∗j

∗τ≤n F. Since the functor π∗ preserves limits,

the canonical map G → lim←−Gn is an equivalence by virtue of (b). The desired result now follows

from the fact that the functor i∗j∗π
∗ is equivalent to π∗, and therefore preserves limits (Lemma

A.5.15).

Remark A.5.19. Let X be a paracompact topological space equipped with a conical A-

stratification, where A is a partially ordered set which satisfies the ascending chain condition.

Suppose that each stratum Xa is locally of singular shape. Then X is locally of singular shape. To

prove this, it suffices to show that X has a covering by open sets which are locally of singular shape

(Remark A.4.16). Using Lemma A.5.16, we may reduce to the case where X = Z × C(Y ), where

Y is some A>a-stratified space and Z × C(Y ) is endowed with the induced A≥a-stratification.

Working by induction on a, we may suppose that X − Z ' Z × Y × (0,∞) is locally of singular

shape. Let U be an open Fσ subset of X and let U0 = U ∩ Z. We wish to prove that U is

locally of singular shape. Using Lemma A.5.12, we deduce that there exists a continuous map

f : U0 → (0,∞) such that U contains the open set Vf = U0∪{(z, y, t) ∈ U0×Y ×(0,∞) : t < f(z)}.
Then U is covered by the open subsets Vf and U − U0. According to Lemma A.4.14, it suffices

to show that Vf , U − U0, and Vf ∩ (U − U0) are of singular shape. The open sets U − U0 and

Vf ∩ (U −U0) belong to X>a and are therefore of singular shape by the inductive hypothesis. The

open set Vf is homotopy equivalent to U0, and thus has singular shape by virtue of our assumption

that Xa is locally shapely (Remark A.4.11).

A.6 ∞-Categories of Exit Paths

If X is a sufficiently nice topological space, then Theorem A.4.19 guarantees that the∞-category of

locally constant sheaves on X can be identified with the ∞-category S/ Sing(X) ' Fun(Sing(X), S).

Roughly speaking, we can interpret a sheaf F on X as a functor which assigns to each x ∈ X the

stalk Fx ∈ S, and to each path p : [0, 1]→ X joining x = p(0) to y = p(1) the homotopy equivalence

Fx ' Fy given by transport along p (see §A.2).

Suppose now that F is a sheaf on X which is not locally constant. In this case, a path p :

[0, 1] → X from x = p(0) to y = p(1) does not necessarily define a transport map Fx → Fy.

However, every point η0 in the stalk Fx can be lifted to a section of F over some neighborhood of x,

which determines points ηt ∈ Fp(t) for t sufficiently small. If we assume that p∗ F is locally constant

on the half-open interval (0, 1], then each ηt can be transported to a point in the stalk Fy, and we

should again expect to obtain a well-defined map Fx → Fy. For example, suppose that F is a sheaf

which is locally constant when restricted to some closed subset X0 ⊆ X, and also when restricted
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to the open set X − X0. In this case, the above analysis should apply whenever p−1X0 = {0}:
that is, whenever p is a path which is exiting the closed subset X0 ⊆ X. Following a proposal of

MacPherson, we might try to identify F with an S-valued functor defined on some subset of the

Kan complex Sing(X), which allows paths to travel from X0 to X −X0 but not vice-versa.

Our objective in this section is to introduce a simplicial subset SingA(X) associated to any

stratification f : X → A of a topological space X by a partially ordered set A. Our main result,

Theorem A.6.4, asserts that SingA(X) is an ∞-category provided that the stratification of X

is conical (Definition A.5.5). In this case, we will refer to SingA(X) as the ∞-category of exit

paths in X with respect to the stratification X → A. In §A.9, we will show that (under suitable

hypotheses) the ∞-category of A-constructible sheaves on X is equivalent to the ∞-category of

functors Fun(SingA(X), S).

Remark A.6.1. The exit path ∞-category SingA(X) can be regarded as an ∞-categorical gener-

alization of the 2-category of exit paths constructed in [156].

Definition A.6.2. Let A be a partially ordered set, and let X be a topological space equipped

with an A-stratification f : X → A. We SingA(X) ⊆ Sing(X) to be the simplicial subset consisting

of those n-simplices σ : |∆n| → X which satisfy the following condition:

(∗) Let |∆n| = {(t0, . . . , tn) ∈ [0, 1]n+1 : t0 + . . .+tn = 1}. Then there exists a chain a0 ≤ . . . ≤ an
of elements of A such that for each point (t0, . . . , ti, 0, . . . , 0) ∈ |∆n| where ti 6= 0, we have

f(σ(t0, . . . , tn)) = ai.

Remark A.6.3. Let A be a partially ordered set, regarded as a topological space as in Definition

A.5.1. Then there is a natural map of simplicial sets N(A)→ Sing(A), which carries an n-simplex

(a0 ≤ . . . ≤ an) of N(A) to the map σ : |∆n| → A characterized by the formula

σ(t0, . . . , ti, 0, . . . , 0) = ai

whenever ti > 0. For any A-stratified topological space X, the simplicial set SingA(X) can be

described as the fiber product Sing(X) ×Sing(A) N(A). In particular, there is a canonical map of

simplicial sets SingA(X)→ N(A).

We can now state our main result as follows:

Theorem A.6.4. Let A be a partially ordered set, and let X be a conically A-stratified topological

space. Then:

(1) The projection SingA(X)→ N(A) is an inner fibration of simplicial sets.

(2) The simplicial set SingA(X) is an ∞-category.

(3) A morphism in SingA(X) is an equivalence if and only if its image in N(A) is degenerate (in

other words, if and only if the underlying path [0, 1]→ X is contained in a single stratum).
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Remark A.6.5. In the situation of Theorem A.6.4, we will refer to the ∞-category SingA(X) as

the ∞-category of A-stratified exit paths in X or simply as the ∞-category of exit paths in X if the

stratification of X is clear from context.

Proof. The implication (1) ⇒ (2) is obvious. The “only if” direction of (3) is clear (since any

equivalence in SingA(X) must project to an equivalence in N(A)), and the “if” direction follows

from the observation that each fiber SingA(X)×N(A){a} is isomorphic to the Kan complex Sing(Xa).

It will therefore suffice to prove (1). Fix 0 < i < n; we wish to prove that every lifting problem of

the form

Λni
σ0 //

��

SingA(X)

��
∆n //

σ
::

N(A)

admits a solution.

The map ∆n → N(A) determines a chain of elements a0 ≤ a1 ≤ . . . ≤ an. Without loss of

generality, we may replace A by A′ = {a0, . . . , an} and X by X ×A A′. We may therefore assume

that A is a finite nonempty linearly ordered set. We now work by induction on the number of

elements of A. If A has only a single element, then SingA(X) = Sing(X) is a Kan complex and

there is nothing to prove. Otherwise, there exists some integer p < n such that ap = a0 and

ap+1 6= a0. There are two cases to consider.

(a) Suppose that p < i < n. Let q = n−p−1 and let j = i−p−1, so that we have isomorphisms

of simplicial sets

∆n ' ∆p ?∆q Λni ' (∆p ? Λqq′)
∐

∂∆p?Λqj

(∂∆p ?∆q).

We will use the first isomorphism to identify |∆n| with the pushout

|∆p|
∐

|∆p|×|∆q |×{0}

(|∆p| × |∆q| × [0, 1])
∐

|∆p|×|∆q |×{1}

|∆q|.

Let K ⊆ |∆p| × |∆q| be the union of the closed subsets | ∂∆p| × |∆q| and |∆p| × |Λqj |, so that

|Λni | can be identified with the pushout

|∆p|
∐

|∆p|×|∆q |×{0}

(K × [0, 1])
∐

|∆p|×|∆q |×{1}

|∆q|.

Let K ′ ⊆ |∆p| × |∆q| × [0, 1] be the union of K × [0, 1] with |∆p| × |∆q| × {0, 1}. Then σ0

determines a continuous map F0 : K ′ → X. To construct the map σ, we must extend F0

to a map F : |∆p| × |∆q| × [0, 1] → X satisfying the following condition: for every point

s ∈ (|∆p| × |∆q| × [0, 1])−K ′, we have F (s) ∈ Xan .
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Let F− : |∆p| → Xa0 be the map obtained by restricting F0 to |∆p|×|∆q|×{0}. For every point

x ∈ Xa0 , choose an open neighborhood Ux ⊆ X as in Definition A.5.5. Choose a triangulation

of the simplex |∆p| with the following property: for every simplex τ of the triangulation, the

image F−(τ) is contained in some Ux. Refining our triangulation if necessary, we may assume

that | ∂∆p| is a subcomplex of |∆p|. For every subcomplex L of |∆p| which contains | ∂∆p|, we

let KL ⊆ |∆p|×|∆q| denote the union of the closed subsets L×|∆q| and |∆p|×|Λqj | and K ′L ⊆
|∆p| × |∆q| × [0, 1] denote the union of the closed subsets KL× [0, 1] and |∆p| × |∆q| × {0, 1}.
We will show that F0 can be extended to a continuous map FL : K ′L → X (satisfying the

condition that FL(s) ∈ Xan for s /∈ K ′), using induction on the number of simplices of L. If

L = | ∂∆p|, there is nothing to prove. Otherwise, we may assume without loss of generality

that L = L0∪ τ , where L0 is another subcomplex of |∆p| containing | ∂∆p| and τ is a simplex

of L such that τ ∩ L0 = ∂ τ . The inductive hypothesis guarantees the existence of a map

FL0 : K ′L0
→ X with the desired properties.

Let Kτ ⊆ τ × |∆q| be the union of the closed subsets ∂ τ × |∆q| and τ × |Λqj |, and let

K ′τ ⊆ τ × |∆q| × [0, 1] be the union of the closed subsets Kτ × [0, 1] and τ × |∆q| × {0, 1}.
The map FL0 restricts to a map G0 : K ′τ → X. To construct FL, it will suffice to extend G0

to a continuous map G : τ × |∆q| × [0, 1]→ X (satisfying the condition that G(s) ∈ Xan for

s /∈ K ′τ ).

By assumption, the map G0 carries τ × |∆q| × {0} into an open subset Ux, for some x ∈ Xa0 .

Let U = Ux, and choose a homeomorphism U ' Z × C(Y ), where Y is an A>a0-stratified

space. Since τ × |∆q| is compact, we deduce that G0(τ × |∆q| × [0, r]) ⊆ U for some real

number 0 < r < 1. Let X ′ = X − Xa0 and let A′ = A − {a0}, so that X ′ is an A′-

stratified space. Let m be the dimension of the simplex τ . The restriction G0|(τ ×|∆q|×{1})
determines a map of simplicial sets h1 : ∆m ×∆q → SingA

′
(X ′). Let J denote the simplicial

set (∂∆m×∆q)
∐
∂∆m×Λqj

(∆m×Λqj). The restriction of G0 to Kτ × [r, 1] determines another

map of simplicial sets h : J × ∆1 → SingA
′
(X ′), which is a natural transformation from

h0 = h|(J × {0}) to h1 = h|(J × {1}) = h1|J . It follows from the inductive hypothesis that

SingA
′
(X ′) is an∞-category, and (using (3)) that natural transformation h is an equivalence.

Consequently, we can lift h to an equivalence h : h0 → h1 in Fun(J,SingA
′
(X ′)). This

morphism determines a continuous map G+ : τ × |∆q| × [r, 1]→ X which agrees with G0 on

(τ × |∆q| × [r, 1]) ∩K ′τ .

Let us identify |∆q| with the set of tuples of real numbers ~t = (t0, t1, . . . , tq) such that

0 ≤ tk ≤ 1 and t0 + · · ·+ tq = 1. In this case, we let d(~t) = inf{tk : k 6= j}: note that d(~t) = 0

if and only if ~t ∈ |Λqj |. If u is a real number satisfying 0 ≤ u ≤ d(~t), we let ~tu denote the tuple

(t0 − u, t1 − u, . . . , tj−1 − u, tj + qu, tj+1−u − u, . . . , tq − u) ∈ |∆q|.

Choose a continuous function d′ : τ → [0, 1] which vanishes on ∂ τ and is positive on the

interior of R. For every positive real number v, let cv : τ × |∆q| × [r, 1] → τ × |∆q| × [r, 1]



A.6. ∞-CATEGORIES OF EXIT PATHS 1431

given by the formula

cv(s,~t, r
′) = (s,~td(~t)

vd′(s)(1− r′)
1 + vd′(s)(1− r′)

, r′),

and let Gv+ denote the composition G+ ◦ cv. Since G+ agrees with G0 on Kτ ×{r}, it carries

Kτ × {r} into U . By continuity, there exists a neighborhood V of Kτ in τ × |∆q| such that

G+(V ×{r}) ⊆ U . If the real number v is sufficiently large, then cv(τ×|∆q|×{r}) ⊆ V , so that

Gv+(τ × |∆q| × {r}) ⊆ U . Replacing G+ by Gv+, we may assume that G+(τ × |∆q| × {r}) ⊆ U
(here we invoke the assumption that j < q to guarantee that G+ continues to satisfy the

requirement that G+(s,~t, r′) ∈ Xan whenever ~t /∈ |Λqj |).

Let X ′′ = U − Xa0 ' Z × Y × R>0. The A′-stratification of X ′ restricts to a (conical)

A′-stratification of X ′′. Let g : τ × |∆q| × {r} → X ′′ be the map obtained by restricting G+.

Then g determines a map of simplicial sets φ0 : ∆m ×∆q → SingA
′
(X ′′). Let I denote the

simplicial set

∆{0,1}
∐
{1}

∆{1,2}
∐
{2}

∆{2,3}
∐
{3}

. . . ,

and identify the geometric realization |I| with the open interval (0, r]. Then G0 determines

a map of simplicial sets J × I → SingA
′
(X ′′), which we can identify with a sequence of

maps φ0, φ1, . . . ∈ Fun(J, SingA
′
(X ′′)) together with natural transformations φ0 → φ1 → . . ..

We note that φ0 = φ0|J . The inductive hypothesis guarantees that SingA
′
(X ′′) is an ∞-

category, and assertion (3) ensures that each of the natural transformations φk → φk+1 is an

equivalence. It follows that we can lift these natural transformations to obtain a sequence of

equivalences

φ0 → φ1 → φ2 → · · ·

in the ∞-category Fun(∆m × ∆q, SingA
′
(X ′′)). This sequence of equivalences is given by a

map of simplicial sets ∆m ×∆q × I → SingA
′
(X ′′), which we can identify with a continuous

map τ × |∆q| × (0, r]→ Z × Y ×R>0. Let y : τ × |∆q| × (0, r]→ Y be the projection of this

map onto the second fiber.

We observe that G+ and G0 together determine a map (Kτ × [0, r])
∐
Kτ×{0,r}(τ × |∆

q| ×
{0, r}) → X ′. Let z denote the composition of this map with the projection U → Z ×R≥0.

Since the domain of z is a retract of τ × |∆q| × [0, r], we can extend z to a continuous map

z : τ × |∆q| × [0, r] → Z × R≥0. Let z1 : τ × |∆q| × [0, r] → R≥0 be obtained from z

by projection onto the second factor. By adding to z1 a function which vanishes on (Kτ ×
[0, r])

∐
Kτ×{0,r}(τ × |∆

q| × {0, r}) and is positive elsewhere, we can assume that z−1
1 {0} =

τ × |∆q| × {0}. Let G− : τ × |∆q| × [0, r] → U ' Z × C(Y ) be the map which is given by

z on τ × |∆q| × {0} and by the pair (z, y) on τ × |∆q| × (0, r]. Then G− and G+ together

determine an extension G : τ × |∆q| × [0, 1]→ X of G0 with the desired properties.
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(b) Suppose now that 0 < i ≤ p. The proof proceeds as in case (a) with some minor changes.

We let q = n− p− 1 as before, so that we have an identification of |∆n| with the pushout

|∆p|
∐

|∆p|×|∆q |×{0}

(|∆p| × |∆q| × [0, 1])
∐

|∆p|×|∆q |×{1}

|∆q|.

Let K ⊆ |∆p| × |∆q| be the union of the closed subsets |Λpi | × |∆q| and |∆p| × | ∂∆q|, so that

|Λni | can be identified with the pushout

|∆p|
∐

|∆p|×|∆q |×{0}

(K × [0, 1])
∐

|∆p|×|∆q |×{1}

|∆q|.

Let K ′ ⊆ |∆p| × |∆q| × [0, 1] be the union of K × [0, 1] with |∆p| × |∆q| × {0, 1}. Then σ0

determines a continuous map F0 : K ′ → X. To construct the map σ, we must extend F0

to a map F : |∆p| × |∆q| × [0, 1] → X satisfying the following condition: for every point

s ∈ (|∆p| × |∆q| × [0, 1])−K ′, we have F (s) ∈ Xan .

We observe that there is a homeomorphism of |∆p| with |∆p−1| × [0, 1] which carries |Λpi | to

|∆p−1| × {0}. Let F− : |∆p−1| × [0, 1] → Xa0 be the map determined by σ0 together with

this homeomorphism. For every point x ∈ Xa0 , choose an open neighborhood Ux ⊆ X as in

Definition A.5.5. Choose a triangulation of the simplex |∆p−1| and a large positive integer N

so that the following condition is satisfied: for every simplex τ of |∆p−1| and every nonnegative

integer k < N , the map F− carries τ × [ kN ,
k+1
N ] into some Ux. For every subcomplex L of

|∆p−1|, we let KL ⊆ |∆p| × |∆q| denote the union of the closed subsets L × [0, 1] × |∆q|,
|∆p−1| × {0} × |∆q|, and |∆p−1| × [0, 1] × | ∂∆q|. Let K ′L ⊆ |∆p| × |∆q| × [0, 1] denote the

union of the closed subsets KL × [0, 1] and |∆p| × |∆q| × {0, 1}. We will show that F0 can be

extended to a continuous map FL : K ′L → X (satisfying the condition that FL(s) ∈ Xan for

s /∈ K ′), using induction on the number of simplices of L. If L is empty there is nothing to

prove. Otherwise, we may assume without loss of generality that L = L0 ∪ τ , where τ is a

simplex of |∆p−1| such that τ ∩ L0 = ∂ τ . The inductive hypothesis guarantees the existence

of a map FL0 : K ′L0
→ X with the desired properties.

For 0 ≤ k ≤ N , let Kτ,k ⊆ τ× [0, 1]×|∆q| be the union of the closed subsets ∂ τ× [0, 1]×|∆q|,
τ × [0, kN ] × |∆q|, and τ × [0, 1] × | ∂∆q|. Let K ′τ,k ⊆ τ × [0, 1] × |∆q| × [0, 1] be the union

of the closed subsets Kτ,k × [0, 1] and τ × |∆q| × {0, 1}. The map FL0 restricts to a map

F [0] : K ′τ,0 → X. To construct FL, it will suffice to extend G0 to a continuous map F [N ] :

Kτ,N× [0, 1]→ X (satisfying the condition that F [n](s) ∈ Xan for s /∈ K ′τ ). We again proceed

by induction, constructing maps F [k] : K ′τ,k → X for k ≤ N using recursion on k. Assume

that k > 0 and that F [k − 1] has already been constructed.

Let τ denote the prism τ × [k−1
N , kN ], and let τ0 denote the closed subset of τ which is the

union of ∂ τ × [k−1
N , kN ] with τ × {k−1

N }. Let Kτ ⊆ τ × |∆q| denote the union of the closed

subsets τ ×| ∂∆q| and τ0×|∆q|. Let K ′τ ⊆ τ ×|∆q|× [0, 1] be the union of the closed subsets
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Kτ × [0, 1] with τ × |∆q| × {0, 1}. Then F [k − 1] determines a map G0 : K ′τ → X. To find

the desired extension F [k] of F [k − 1], it will suffice to prove that G0 admits a continuous

extension G : τ × |∆q| × [0, 1] (again satisfying the condition that G(s) ∈ Xan whenever

s /∈ K ′τ ).

By assumption, the map G0 carries τ × |∆q| × {0} into an open subset Ux, for some x ∈ Xa0 .

Let U = Ux, and choose a homeomorphism U ' Z × C(Y ), where Y is an A>a0-stratified

space. Since τ×|∆q| is compact, we deduce that G0(τ×|∆q|×[0, r]) ⊆ U for some real number

0 < r < 1. Let X ′ = X − Xa0 and let A′ = A − {a0}, so that X ′ is an A′-stratified space.

Let m be the dimension of the simplex τ . The restriction G0|(τ × |∆q| × {1}) determines a

map of simplicial sets h1 : ∆m×∆1×∆q → SingA
′
(X ′). Let J denote the simplicial subset of

∆m×∆1×∆q spanned by ∆m×{0}×∆q, ∆m×∆1×∂∆q, and ∂∆m×∆1×∆q. The restriction

of G0 to Kτ × [r, 1] determines another map of simplicial sets h : J ×∆1 → SingA
′
(X ′), which

is a natural transformation from h0 = h|(J × {0}) to h1 = h|(J × {1}) = h1|J . It follows

from the inductive hypothesis that SingA
′
(X ′) is an ∞-category, and (using (3)) that natural

transformation h is an equivalence. Consequently, we can lift h to an equivalence h : h0 → h1

in Fun(J, SingA
′
(X ′)). This morphism determines a continuous map G+ : τ×|∆q|×[r, 1]→ X

which agrees with G0 on (τ × |∆q| × [r, 1]) ∩K ′τ .

Let d : |∆q| → [0, 1] be a continuous function which vanishes precisely on | ∂∆q|, and choose

d′ : τ → [0, 1] similarly. For every nonnegative real number v, let cv be the map from

τ × [k−1
N , kN ]× |∆q| × [r, 1]→ τ × |∆q| × [r, 1] to itself which is given by the formula

cv(x,
k − 1

N
+ t, y, r′) = (x,

k − 1

N
+

t

1 + vd′(x)d(y)(1− r′)
, y, r′)

and let Gv+ denote the composition G+ ◦ cv. Since G+ agrees with G0 on Kτ ×{r}, it carries

Kτ × {r} into U . By continuity, there exists a neighborhood V of Kτ in τ × |∆q| such that

G+(V ×{r}) ⊆ U . If the real number v is sufficiently large, then cv(τ×|∆q|×{r}) ⊆ V , so that

Gv+(τ ×|∆q|×{r}) ⊆ U . Replacing G+ by Gv+, we may assume that G+(τ ×|∆q|×{r}) ⊆ U .

Let X ′′ = U − Xa0 ' Z × Y × R>0. The A′-stratification of X ′ restricts to a (conical)

A′-stratification of X ′′. Let g : τ × |∆q| × {r} → X ′′ be the map obtained by restricting G+.

Then g determines a map of simplicial sets φ0 : ∆m ×∆1 ×∆q → SingA
′
(X ′′). Let I denote

the simplicial set

∆{0,1}
∐
{1}

∆{1,2}
∐
{2}

∆{2,3}
∐
{3}

. . . ,

and identify the geometric realization |I| with the open interval (0, r]. Then G0 determines

a map of simplicial sets J × I → SingA
′
(X ′′), which we can identify with a sequence of

maps φ0, φ1, . . . ∈ Fun(J, SingA
′
(X ′′)) together with natural transformations φ0 → φ1 → . . ..

We note that φ0 = φ0|J . The inductive hypothesis guarantees that SingA
′
(X ′′) is an ∞-

category, and assertion (3) ensures that each of the natural transformations φk → φk+1 is an
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equivalence. It follows that we can lift these natural transformations to obtain a sequence of

equivalences

φ0 → φ1 → φ2 → · · ·

in the ∞-category Fun(∆m ×∆1 ×∆q,SingA
′
(X ′′)). This sequence of equivalences is given

by a map of simplicial sets ∆m × ∆1 × ∆q × I → SingA
′
(X ′′), which we can identify with

a continuous map τ × |∆q| × (0, r] → Z × Y × R>0. Let y : τ × |∆q| × (0, r] → Y be the

projection of this map onto the second fiber.

We observe that G+ and G0 together determine a map (Kτ × [0, r])
∐
Kτ×{0,r}(τ × |∆

q| ×
{0, r}) → X ′. Let z denote the composition of this map with the projection U → Z ×R≥0.

Since the domain of z is a retract of τ × |∆q| × [0, r], we can extend z to a continuous map

z : τ × |∆q| × [0, r] → Z × R≥0. Let z1 : τ × |∆q| × [0, r] → R≥0 be obtained from z

by projection onto the second factor. By adding to z1 a function which vanishes on (Kτ ×
[0, r])

∐
Kτ×{0,r}(τ × |∆

q| × {0, r}) and is positive elsewhere, we can assume that z−1
1 {0} =

τ × |∆q| × {0}. Let G− : τ × |∆q| × [0, r] → U ' Z × C(Y ) be the map which is given by

z on τ × |∆q| × {0} and by the pair (z, y) on τ × |∆q| × (0, r]. Then G− and G+ together

determine an extension G : τ × |∆q| × [0, 1]→ X of G0 with the desired properties.

We conclude this section by describing the ∞-category of exit paths for a particularly simple

class of stratified spaces: namely, the collection of simplicial complexes. We begin by reviewing

some definitions.

Definition A.6.6. An abstract simplicial complex consists of the following data:

(1) A set V (the set of vertices of the complex).

(2) A collection S of nonempty finite subsets of V satisfying the following condition:

(∗) If ∅ 6= σ ⊆ σ′ ⊆ V and σ′ ∈ S, then σ ∈ S.

We will say that (V, S) is locally finite if each element σ ∈ S is contained in only finitely many

other elements of S.

Let (V, S) be an abstract simplicial complex, and choose a linear ordering on V . We let ∆(V,S)

denote the simplicial subset of ∆V spanned by those simplices σ of ∆V such that the set of vertices

of σ belongs to S. Let |∆(V,S)| denote the geometric realization of ∆(V,S). This topological space

is independent of the choice of linear ordering on S, up to canonical homeomorphism. As a set,

|∆V,S | can be identified with the collection of maps w : V → [0, 1] such that Supp(w) = {v ∈ V :

w(v) 6= 0} ∈ S and
∑

v∈V w(v) = 1.
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Definition A.6.7. Let (V, S) be an abstract simplicial complex. We regard S as a partially ordered

set with respect to inclusions. Then |∆(V,S)| is equipped with a natural S-stratification, given by

the map

(t ∈ |∆(V,S)|) 7→ (Supp(t) ∈ S).

Proposition A.6.8. Let (V, S) be a locally finite abstract simplicial complex. Then the S-

stratification of |∆(V,S)| is conical.

Proof. Consider an arbitrary σ ∈ S. Let V ′ = V − σ, and let S′ = {σ′ − σ : σ ⊂ σ′ ∈ S}. Then

(V ′, S′) is another abstract simplicial complex. Let Z = |∆(V,S)|σ and let Y = |∆(V ′,S′)|. Then the

inclusion Z ↪→ |∆(V,S)| extends to an open embedding h : Z × C(Y )→ |∆(V,S)|, which is given on

Z × Y × (0,∞) by the formula

h(wZ , wY , t)(v) =

{
wZ(v)
t+1 if v ∈ σ
twY (v)
t+1 if v /∈ σ

If (V, S) is locally finite, then h is an open embedding whose image is |∆(V,S)|>σ, which proves that

the S-stratification of |∆(V,S)| is conical.

Corollary A.6.9. Let (V, S) be an abstract simplicial complex. Then the simplicial set

SingS |∆(V,S)| is an ∞-category.

Proof. For every subset V0 ⊆ V , let S0 = {σ ∈ S : σ ⊆ V0}. Then SingS |∆(V,S)| is equivalent to

the filtered colimit lim−→V0
SingS0 |∆(V0,S0)|, where the colimit is taken over all finite subsets V0 ⊆ V .

It will therefore suffice to prove that each SingS0 |∆(V0,S0)| is an ∞-category. Replacing V by V0,

we may assume that V is finite so that (V, S) is locally finite. In this case, the desired result follows

immediately from Proposition A.6.8 and Theorem A.6.4.

Theorem A.6.10. Let (V, S) be an abstract simplicial complex. Then the projection q :

SingS |∆(V,S)| → N(S) is an equivalence of ∞-categories.

Proof. Since each stratum of |∆(V,S)| is nonempty, the map q is essentially surjective. To

prove that q is fully faithful, fix points x ∈ |∆(V,S)|σ and y ∈ |∆(V,S)|σ′ . It is clear that

M = MapSingS |∆(V,S)|(x, y) is empty unless σ ⊆ σ′. We wish to prove that M is contractible if

σ ⊆ σ′. We can identify M with SingP , where P is the space of paths p : [0, 1] → |∆(V,S)| such

that p(0) = x, p(1) = y, and p(t) ∈ |∆(V, S)|σ′ for t > 0. It now suffices to observe that there is a

contracting homotopy h : P × [0, 1]→ P , given by the formula

h(p, s)(t) = (1− s)p(t) + s(1− t)x+ sty.
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Remark A.6.11. Let (V, S) be an abstract simplicial complex. It is possible to construct an

explicit homotopy inverse to the equivalence of ∞-categories q : SingS |∆(V,S)| → N(S) of Theorem

A.6.10. For each σ ∈ S having cardinality n, we let wσ ∈ |∆(V,S)| be the point described by the

formula

wσ(v) =

{
1
n if v ∈ σ
0 if v /∈ σ.

For every chain of subsets ∅ 6= σ0 ⊆ σ1 ⊆ . . . ⊆ σk ∈ S, we define a map |∆k| → |∆(V,S)| by the

formula

(t0, . . . , tk) 7→ t0wσ0 + · · ·+ tkwσk .

This construction determines section φ : N(S)→ SingS |∆(V,S)| of q, and is therefore an equivalence

of ∞-categories. The induced map of topological spaces |N(S)| → |∆(V,S)| is a homeomorphism: it

is given by the classical process of barycentric subdivision of the simplicial complex |∆(V,S)|.

A.7 A Seifert-van Kampen Theorem for Exit Paths

Our goal in this section is to prove the following generalization of Theorem A.3.1:

Theorem A.7.1. Let A be a partially ordered set, let X be an A-stratified topological space, and

let C be a category equipped with a functor U : C → U(X), where U(X) denotes the partially

ordered set of all open subsets of X. Assume that the following conditions are satisfied:

(i) The A-stratification of X is conical.

(ii) For every point x ∈ X, the full subcategory Cx ⊆ C spanned by those objects C ∈ C such

that x ∈ U(C) has weakly contractible nerve.

Then U exhibits the∞-category SingA(X) as the colimit (in the∞-category Cat∞) of the diagram

{SingA(U(C))}C∈C.

Remark A.7.2. Theorem A.7.1 reduces to Theorem A.3.1 in the special case where A has only a

single element.

The proof of Theorem A.7.1 will occupy our attention throughout this section. We begin by

establishing some notation.

Definition A.7.3. Let A be a partially ordered set and X an A-stratified topological space. Given

a chain of elements a0 ≤ . . . ≤ an in A (which we can identify with an n-simplex ~a in N(A)), we

let SingA(X)[~a] denote the fiber product Fun(∆n, SingA(X))×Fun(∆n,N(A)) {~a}.
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Remark A.7.4. Suppose that X is a conically A-stratified topological space. It follows immedi-

ately from Theorem A.6.4 that for every n-simplex ~a of N(A), the simplicial set SingA(X)[~a] is a

Kan complex.

Example A.7.5. Let a ∈ A be a 0-simplex of N(A), and let X be an A-stratified topological space.

Then SingA(X)[a] can be identified with the Kan complex Sing(Xa).

In the special case where ~a = (a0 ≤ a1) is an edge of N(A), the simplicial set SingA(X)[~a] can

be viewed as the space of paths p : [0, 1]→ X such that p(0) ∈ Xa0 and p(t) ∈ Xa1 for t 6= 0. The

essential information is encoded in the behavior of the path p(t) where t is close to zero. To make

this more precise, we need to introduce a bit of notation.

Definition A.7.6. Let A be a partially ordered set, let X be an A-stratified topological space,

and let a ≤ b be elements of A. We define a simplicial set SingAa≤b(X) as follows:

(∗) An n-simplex of SingAa≤b(X) consists of an equivalence class of pairs (ε, σ), where ε is a positive

real number and σ : |∆n| × [0, ε]→ X is a continuous map such that σ(|∆n| × {0}) ⊆ Xa and

σ(|∆n| × (0, ε]) ⊆ Xb. Here we regard (ε, σ) and (ε′, σ′) as equivalent if there exists a positive

real number ε′′ < ε, ε′ such that σ|(|∆n| × [0, ε′′]) = σ′|(|∆n| × [0, ε′′]).

More informally, we can think of SingAa≤b(X) as the space of germs of paths in X which begin in

Xa and then pass immediately into Xb. There is an evident map SingA(X)[a ≤ b] → SingAa≤b(X),

which is given by passing from paths to germs of paths.

Lemma A.7.7. Let A be a partially ordered set, X an A-stratified topological space, and a ≤ b

elements of A. Then the map φ : SingA(X)[a ≤ b] → SingAa≤b(X) is a weak homotopy equivalence

of simplicial sets.

Proof. For every positive real number ε, let S[ε] denote the simplicial set whose n-simplces are

maps σ : |∆n| × [0, ε] → X such that σ(|∆n| × {0}) ⊆ Xa and σ(|∆n| × (0, ε]) ⊆ Xb. There are

evident restriction maps

SingA(X)[a ≤ b] = S[1]→ S[
1

2
]→ S[

1

4
]→ · · ·

and the colimit of this sequence can be identified with SingAa≤b(X). Consequently, to prove that φ is

a weak homotopy equivalence, it will suffice to show that each of the restriction maps ψ : S[ε]→ S[ ε2 ]

is a weak homotopy equivalence. It now suffices to observe that ψ is a pullback of the trivial Kan

fibration Fun(∆1,Sing(Xb))→ Fun({0},Sing(Xb)).

The space of germs SingAa≤b(X) enjoys a formal advantage over the space of paths of fixed

length:

Lemma A.7.8. Let A be a partially ordered set, X a conically A-stratified topological space, and

a ≤ b elements of A. Then the restriction map SingAa≤b(X)→ Sing(Xa) is a Kan fibration.
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Proof. We must show that every lifting problem of the form

Λn+1
i

F 0
+ //

��

SingAa≤b(X)

��
∆n+1

F 0
− //

99

Sing(Xa)

admits a solution. Let us identify |∆n+1| with a product |∆n| × [0, 1] in such a way that the

closed subset |Λn+1
i | is identified with |∆n| × {0}. We can identify F 0

+ with a continuous map

|∆n| × {0} × [0, ε] → X for some positive real number ε, and F 0
− with a continuous map |∆n| ×

[0, 1] × {0} → Xa. To solve the lifting problem, we must construct a positive real number ε′ ≤ ε

and a map F : |∆n| × [0, 1]× [0, ε′]→ X compatible with F 0
− and F 0

+ with the following additional

property:

(∗) For 0 < t, we have F (v, s, t) ∈ Xb.

For each point x ∈ Xa, choose a neighborhood Ux of x as in Definition A.5.5. Choose a

triangulation of |∆n| and a nonnegative integer N � 0 with the property that for each simplex τ of

|∆n| and 0 ≤ k < N , the map F 0
− carries τ× [ kN ,

k+1
N ] into some Ux for some point x ∈ Xa. For each

subcomplex L of |∆n|, we will prove that there exists a map FL : L × [0, 1] × [0, ε] → X (possibly

after shrinking ε) compatible with F 0
− and F 0

+ and satisfying condition ∗. Taking L = |∆n| we will

obtain a proof of the desired result.

The proof now proceeds by induction on the number of simplices of L. If L = ∅ there is nothing

to prove. Otherwise, we can write L = L0 ∪ τ , where τ is a simplex of |∆n| such that L0 ∩ τ = ∂ τ .

By the inductive hypothesis, we may assume that the map FL0 has already been supplied; let F∂ τ
be its restriction to ∂ τ × [0, 1] × [0, ε]. To complete the proof, it will suffice to show that we can

extend F∂ τ to a map Fτ : τ × [0, 1] × [0, ε] → X compatible with F 0
− and F 0

+ and satisfying (∗)
(possibly after shrinking the real number ε). We again proceed in stages by defining a compatible

sequence of maps F kτ : τ × [0, kN ]× [0, ε]→ X using induction on k ≤ N . The map F 0
τ is determined

by F 0
+. Assume that F k−1

τ has already been constructed. Let K = τ × [k−1
N , kN ] and let K0 be the

closed subset of K given by the union of ∂ τ × [k−1
N , kN ] and τ × {k−1

N }. Then F k−1
τ determines a

continuous map

g0 : (K × {0})
∐

K0×{0}

(K0 × [0, ε])→ X.

To construct F kτ , it will suffice to extend g0 to a continuous map g : K × [0, ε] → X satisfying (∗)
(possibly after shrinking ε).

By assumption, the map g0 carries K × {0} into some open set U = Ux of the form Z × C(Y )

described in Definition A.5.5. Shrinking ε if necessary, we may assume that g0 also carries K0×[0, ε]

into U . Let g′0 : (K×{0})
∐
K0×{0}(K0×[0, ε])→ C(Y ) be the composition of g0 with the projection

to C(Y ), and let g′′0 : (K×{0})
∐
K0×{0}(K0× [0, ε])→ Z be defined similarly. Let r be a retraction
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of K onto K0, and let g′ be the composition K × [0, ε] → K0 × [0, ε]
g′0→ C(Y ); we observe that g′

is an extension of g′0 (since g′0 is constant on K × {0}). Let r′ be a retraction of K × [0, ε] onto

(K × {0})
∐
K0×{0}(K0 × [0, ε]), and let g′′ be the composition g′′0 ◦ r′. The pair (g′, g′′) determines

a map g : K × [0, ε]→ X with the desired properties.

Proposition A.7.9. Let A be a partially ordered set, let X be a conically A-stratified space, let

U be an open subset of X (which inherits the structure of a conically A-stratified space), and let

~a = (a0 ≤ a1 ≤ . . . ≤ an) be an n-simplex of N(A). Then the diagram of Kan complexes

SingA(U)[~a] //

��

SingA(X)[~a]

��
Sing(Ua0) // Sing(Xa0)

is a homotopy pullback square.

Proof. The proof proceeds by induction on n. If n = 0 the result is obvious. If n > 1, then let

~a′ denote the truncated chain (a0 ≤ a1) and ~a′′ the chain (a1 ≤ . . . ≤ an−1 ≤ an). We have a

commutative diagram

SingA(U)[~a] //

��

SingA(X)[~a]

��
SingA(U)[~a′]×Sing(Ua1 ) SingA(U)[~a′′] //

��

SingA(X)[~a′]×Sing(Xa1 ) SingA(X)[~a′′]

��
SingA(U)[~a′] //

��

SingA(X)[~a′]

��
Sing(Ua0) // Sing(Xa0).

The upper square is a homotopy pullback because the vertical maps are weak homotopy equivalences

(since SingA(U) and SingA(X) are ∞-categories, by virtue of Theorem A.6.4). The lower square is

a homotopy pullback by the inductive hypothesis. The middle square is a (homotopy) pullback of

the diagram

SingA(U)[~a′′] //

��

SingA(X)[~a′′]

��
Sing(Ua1) // Sing(Xa1),

and therefore also a homotopy pullback square by the inductive hypothesis. It follows that the

outer rectangle is a homotopy pullback as required.
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It remains to treat the case n = 1. We have a commutative diagram

SingA(U)[a0 ≤ a1] //

��

SingA(X)[a0 ≤ a1]

��
SingAa0≤a1

(U) //

��

SingAa0≤a1
(X)

��
Sing(Ua0) // Sing(Xa0).

The lower square is a homotopy pullback since it is a pullback square in which the vertical maps are

Kan fibrations (Lemma A.7.8). The upper square is a homotopy pullback since the upper vertical

maps are weak homotopy equivalences (Lemma A.7.7). It follows that the outer square is also a

homotopy pullback, as desired.

Proposition A.7.10. Let G : Cat∞ → Fun(N(∆)op, S) be the functor given by the formula

G(C)([n]) = MapCat∞(∆n,C).

Then G is a fully faithful embedding.

Remark A.7.11. In fact, one can be more precise: the essential image of the functor G : Cat∞ →
Fun(N(∆)op, S) can be identified with the full subcategory of Fun(N(∆)op, S) spanned by the com-

plete Segal spaces. We refer the reader to [83] for a proof of this statement (in the language of

model categories).

Proof of Proposition A.7.10. Let f : N(∆) → Cat∞ be the functor given by [n] 7→ ∆n, so that f

extends (in an essentially unique way) to a colimit-preserving functor F : P(N(∆))→ Cat∞ which

is left adjoint to G. We will show that the counit map F ◦G→ id is an equivalence from Cat∞ to

itself.

We now reformulate the desired conclusion in the language of model categories. We can identify

Cat∞ with the underlying ∞-category Ao of the simplicial model category A = Set+
∆ of marked

simplicial sets, with the Cartesian model structure described in §HTT.3.1 . The diagram f is then

obtained from a diagram f : ∆ → A, given by the cosimplicial object [n] 7→ (∆n)[, which we can

extend to a colimit-preserving functor

F : Fun(∆op, Set∆)→ A.

Here Fun(∆op, Set∆) can be identified with the category of bisimplicial sets. Since the cosimplicial

object f ∈ Fun(∆,A) is Reedy cofibrant (see §HTT.A.2.9 ), the functor F is a left Quillen functor

if we endow Fun(∆op, Set∆) with the injective model structure (Example HTT.A.2.9.28 ). The

functor F has a right adjoint G, given by the formula

G(X)m,n = HomA((∆m)[ × (∆n)], X).
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This right adjoint induces a functor from Ao to Fun(∆op, Set∆)o, which (after passing to the

simplicial nerve) is equivalent to the functor G : Cat∞ → P(N(∆)) considered above. Consequently,

it will suffice to show that the counit map LF ◦ RG → idhA is an equivalence of functors, where

LF and RG denote the left and right derived functors of F and G, respectively. Since every object

of Fun(∆op, Set∆) is cofibrant, we can identify F with its left derived functor. We are therefore

reduced to proving the following:

(∗) Let X = (X,M) be a fibrant object of the category A of marked simplicial sets. Then the

counit map ηX : FGX → X is a weak equivalence in A.

Since X is fibrant, the simplicial set X is an∞-category and M is the collection of all equivalences

in X. Unwinding the definitions, we can identify FGX with the marked simplicial set (Y,N)

described as follows:

(a) An n-simplex of Y is a map of simplicial sets ∆n ×∆n → X, which carries every morphism

of {i} ×∆n to an equivalence in C, for 0 ≤ i ≤ n.

(b) An edge ∆1 → Y belongs to N if and only if the corresponding map ∆1 ×∆1 → X factors

through the projection onto the second factor.

In terms of this identification, the map ηX : (Y,N) → (X,M) is defined on n-simplices by

composing with the diagonal map ∆n → ∆n ×∆n.

Let N ′ denote the collection of all edges of Y which correspond to maps from (∆1 ×∆1)] into

X. The map ηX factors as a composition

(Y,N)
i→ (Y,N ′)

η′
X→ (X,M).

We claim that the map i is a weak equivalence of marked simplicial sets. To prove this, it will

suffice to show that for every edge α which belongs to N ′, there exists a 2-simplex σ :

y′

α′′

��
y

α′
@@

α // y′′

in Y , where α′ and α′′ belong to N . To see this, let us suppose that α classifies a commutative

diagram

A

p

��

q //

r

  

A′

p′

��
B

q′ // B′

in the ∞-category X. We wish to construct an appropriate 2-simplex σ in Y , corresponding to a

map σ̃ : ∆2×∆2 → X' (here X' denotes the largest Kan complex contained in X). Let T denote
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the full subcategory of ∆2 ×∆2 spanned by all vertices except for (0, 2), and let σ̃0 : T → X0 be

the map described by the diagram

A
id //

q
��

A

p
��

q // A′

id
��

A′
id // A′

id //

p′

��

A′

p′

��
B′

id // B′.

To prove that σ̃0 can be extended to a map σ̃ with the desired properties, it suffices to solve an

extension problem of the form

T
∐

∆{0,2} ∆2 //

��

X0

∆2 ×∆2.

99

This is possible because X0 is a Kan complex and the left vertical map is a weak homotopy

equivalence. This completes the proof that i is a weak equivalence. By the two-out-of-three

property, it will now suffice to show that η′
X

: (Y,N ′) → (X,M) is an equivalence of marked

simplicial sets.

We now define maps R≤, R≥ : ∆1 × Y → Y as follows. Consider a map g : ∆n → ∆1 × Y ,

corresponding to a partition [n] = [n]−∪[n]+ and a map g̃ : ∆n×∆n → X. We then define R≤◦g to

be the n-simplex of Y corresponding to the map g̃◦τ : ∆n×∆n → X, where τ : ∆n×∆n → ∆n×∆n

is defined on vertices by the formula

τ(i, j) =


(i, j) if i ≤ j
(i, j) if j ∈ [n]−

(i, i) otherwise.

Similarly, we let R≥ ◦ g correspond to the map g̃ ◦ τ ′, where τ ′ is given on vertices by the formula

τi,j =


(i, j) if i ≥ j
(i, j) if j ∈ [n]+

(i, I) otherwise.

The map R≤ defines a homotopy from idY to an idempotent map r≤ : Y → Y . Similarly, R≥ defines

a homotopy from an idempotent map r≥ : Y → Y to the identity map idY . Let Y≤, Y≥ ⊆ Y denote

the images of the maps r≤ and r≥, respectively. Let N ′≤ denote the collection of all edges of Y which

belong to N ′, and define N ′≥ similarly. The map R≤ determines a map (Y,N ′)× (∆1)] → (Y,N ′),

which exhibits (Y≤, N
′
≤) as a deformation retract of (Y,N ′) in the category of marked simplicial
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sets. Similarly, the map R≥ exhibits (Y≤ ∩ Y≥, N ′≤ ∩N ′≥) as a deformation retract of (Y≤, N
′
≤). It

will therefore suffice to show that the composite map

(Y≤ ∩ Y≥, N ′≤ ∩N ′≥) ⊆ (Y,N ′)→ (X,M)

is a weak equivalence of marked simplicial sets. We now complete the proof by observing that this

composite map is an isomorphism.

We are now ready to establish our main result.

Proof of Theorem A.7.1. Let G : Cat∞ → Fun(N(∆)op, S) be the functor described in Proposition

A.7.10. Since G is fully faithful, it will suffice to prove that the composite functor

θ : N(C). → Cat∞ → Fun(N(∆)op, S)

is a colimit diagram. Since colimits in Fun(N(∆)op, S) are computed pointwise, it will suffice to

show that θ determines a colimit diagram in S after evaluation at each object [n] ∈∆. Unwinding

the definitions, we see that this diagram is given by the formula

C 7→
∐

a0≤a1≤···≤an

SingA(U(C))[a0 ≤ . . . ≤ an].

Since the collection of colimit diagrams is stable under coproducts (Lemma HTT.5.5.2.3 ), it will

suffice to show that for every n-simplex ~a = (a0 ≤ . . . ≤ an) of N(A), the functor

θ~a : N(C). → S

given by the formula C 7→ SingA(U(C))[~a] is a colimit diagram in S.

We have an evident natural tranformation α : θ~a → θa0 . The functor θa0 is a colimit diagram in

S: this follows by applying Theorem A.3.1 to the stratum Xa. Proposition A.7.9 guarantees that

α is a Cartesian natural transformation. Since S is an ∞-topos, Theorem HTT.6.1.0.6 guarantees

that θ~a is also a colimit diagram, as desired.

A.8 Digression: Recollement

Let X be a topological space, let U be an open subset of X, and let Y = X − U . Let i : Y → X

and j : U → X denote the inclusion maps. If F is a sheaf (of sets, say) on X, then F determines

sheaves FY = i∗ F and FU = j∗ F on Y and U , respectively. Moreover, there is a canonical map

u : FY = i∗ F → i∗(j∗j
∗ F) = (i∗j∗)FU .
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We can recover F from the sheaves FY and FU , together with the map u: we have a pullback

diagram of sheaves

F //

��

i∗ FY

i∗(u)
��

j∗ FU // i∗i
∗j∗ FU .

In fact, something even stronger is true: we can reconstruct the category of sheaves on X from the

categories of sheaves on U and Y , respectively, together with the functor i∗j∗. In this section, we

will give a general account of this reconstruction procedure, which is particularly effective in the

setting of stable ∞-categories.

Our first step is to extract the essence of the above situation. If i : Y → X and j : U → X

are closed and open embeddings of topological spaces, respectively, then the pushforward functors

i∗ and j∗ are fully faithful. Moreover, these fully faithful functors admit left adjoints i∗ and j∗,

respectively, both of which are left exact.

Definition A.8.1. Let C be an ∞-category which admits finite limits, and let C0,C1 ⊆ C be full

subcategories. We will say that C is a recollement of C0 and C1 if the following conditions are

satisfied:

(a) The full subcategories C0 and C1 are stable under equivalence (that is, if X ∈ C is equivalent

to an object Y ∈ Ci, then X ∈ Ci).

(b) The inclusion functors C0 ↪→ C and C1 ↪→ C admit left adjoints L0 and L1. In particular, C0

and C1 are closed under limits in C, and therefore admit finite limits.

(c) The functors L0 and L1 are left exact.

(d) The functor L1 carries every object of C0 to the final object of C.

(e) If α is a morphism in C such that L0(α) and L1(α) are equivalences, then α is an equivalence.

In this case, we will also say that the localization functor L0 is complementary to the localization

functor L1.

Warning A.8.2. The notion of recollement is not symmetric: if C is a recollement of C0 and C1,

then it need not be a recollement of C1 and C0.

Remark A.8.3. There is an evident dual version of Definition A.8.1, which we will need in §A.9. If

C is an∞-category which admits finite colimits and we are given colocalization functors L0, L1 : C→
C, then we will say that L0 is complementary to L1 if the full subcategories L0 C

op is complementary

to L1 C
op in Cop, in the sense of Definition A.8.1.
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Example A.8.4. Let X be a topological space and suppose we are given a closed embedding

i : Y → X and an open embedding j : U → X. Let ShvSet(X) denote the nerve of the category

of sheaves of sets on X, and define ShvSet(U) and ShvSet(Y ) similarly. Let C0 ⊆ ShvSet(X) be the

essential image of the pushforward functor i∗, and let C1 ⊆ ShvSet(X) be the essential image of

the pushforward functor j∗. Then C0,C1 ⊆ ShvSet(X) automatically satisfy conditions (a), (b), and

(c) of Definition A.8.1. Condition (d) is satisfied if Y ∩ U = ∅, and the condition (e) is satisfied

if Y ∪ U = X. In particular, if Y = X − U , then ShvSet(X) is a recollement of ShvSet(Y ) and

ShvSet(U).

Remark A.8.5. Let C be an ∞-category which admits finite limits which is a recollement of

full subcategories C0,C1 ⊆ C, and let L0 and L1 denote left adjoints to the inclusions C0 ↪→ C,

C1 ↪→ C. Then C0 is the full subcategory of C spanned by those objects C such that L1(C) is a final

object of C. It follows from axiom (d) of Definition A.8.1 that every object of C0 has this property.

Conversely, suppose that C ∈ C is such that L1(C) is final. Let u : C → L0(C) be the unit map.

Then L0(u) is tautologically an equivalence, and L1(u) is an equivalence since it is a map between

final objects of C. It follows from (e) that u is an equivalence, so that C ' L0(C) belongs to C0.

Suppose now that the ∞-category C is pointed. Then, for every object C ∈ C, the unit map

v : C → L1(C) becomes an equivalence after applying L1, so that L1 fib(v) is a final object of C and

therefore fib(v) ∈ C0. It follows that the inclusion functor C0 ↪→ C admits a right adjoint, given by

C 7→ fib(C → L1(C)).

We next illustrate Definition A.8.1 by constructing a large class of examples.

Definition A.8.6. Let p : M → ∆1 be a correspondence from an ∞-category M0 = p−1{0} to

an ∞-category M1 = p−1{1}. We will say that p is a left exact correspondence if the following

conditions are satisfied:

(i) The ∞-categories M0 and M1 admit finite limits.

(ii) The map p is a Cartesian fibration.

(iii) The functor M1 →M0 determined by p is left exact.

Proposition A.8.7. Let p : M → ∆1 be a left exact correspondence, let C = Fun∆1(∆1,M) be

the ∞-category of sections of p. Let C0 ⊆ C be the full subcategory of C spanned by those sections

s : ∆1 → M such that s(1) is a final object of M1, and let C1 ⊆ C be the full subcategory of C

spanned by the p-Cartesian morphisms in M. Then C is a recollement of C0 and C1.

Proof. We will verify that C0 and C1 satisfy the conditions of Definition A.8.1. Condition (a) is

obvious. It follows from Proposition HTT.4.3.2.15 that the evaluation functors

C0
e0→M0 C1

e1→M1
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are equivalences of ∞-categories. Let e−1
0 and e−1

1 denote homotopy inverses to e0 and e1, respec-

tively. Then the composite functors

L0 : C→M0
e−1
0→ C0 L1 : C→M1

e−1
1→ C1

are left adjoints to the inclusion C0 ↪→ C←↩ C1, which are evidently left exact. This proves (b) and

(c). Assertion (d) follows from the description of L1 given above, together with the definition of

C0. Assertion (e) follows from the observation that a morphism in C is an equivalence if and only

if its images in M0 and M1 are equivalences.

Proposition A.8.7 implies that every left exact correspondence determines an ∞-category C

which is a recollement of full subcategories C0,C1 ⊆ C. Our next goal is to show that that every

instance of Definition A.8.1 arises in this way, for an essentially unique left exact correspondence.

The uniqueness is a consequence of the following:

Proposition A.8.8. Let p : M → ∆1 and q : N → ∆1 be left exact correspondences. Define

C ⊆ Fun∆1(∆1,M), D ⊆ Fun∆1(∆1,N) and full subcategories

C0,C1 ⊆ C D0,D1 ⊆ D

as in Proposition A.8.7, so that the ∞-categories C0 and C1 are the essential images of localization

functors L0, L1 : C → C and the ∞-categories D0 and D1 are the essential images of localization

functors L′0 and L′1. Then the canonical map Fun∆1(M,N)→ Fun(C,D) is a fully faithful embed-

ding, whose essential image is spanned by those functors F : C → D which carry L0 equivalences

to L′0 equivalences and L1-equivalences to L′1-equivalences.

Remark A.8.9. Proposition A.8.8 is valid under much weaker hypotheses than the ones we have

given: it is not necessary that p and q be left exact correspondences, only that p is a Cartesian

fibration and that M1 admits a final object.

Proof. Choose a right adjoint G to the evaluation functor C → M1. Then G determines a map

∆1×M1 →M, whose restriction to {0}×M1 is a functor φ : M1 →M0 associated to the Cartesian

fibration p. It follows from Let Fun′(C,D) be the full subcategory of Fun(C,D) spanned by those

functors which carry L1-equivalences in C to L′1-equivalence in D. We have a commutative diagram

σ :

Fun∆1(M,N) //

��

Fun(M0,N0)

��
Fun′(C,D) //

��

Fun(C,N0)

��
Fun(M1,D) // Fun(M1,N0).
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Proposition HTT.3.2.2.7 that the induced map M0
∐
{0}×M1

(∆1×M1)→ D is a categorical equiv-

alence of simplicial sets, so that the outer rectangle in the diagram σ is a homotopy Cartesian. We

claim that the lower square in σ is also homotopy Cartesian. To prove this, it suffices to show that

the canonical map

θ : Fun′(C,D)→ Fun(C,N0)×Fun(C1,N0) Fun(C1,D)

is a trivial Kan fibration, where C1 ⊆ C denotes the essential image of G. Let E denote the full

subcategory of C×∆1 spanned by those pairs (C, i), where C ∈ C1 if i = 1. Proposition HTT.3.2.2.7

implies that the inclusion C
∐

C1×{0}(C1×∆1) ↪→ E is a categorical equivalence, so that the map

Fun∆1(E,D)→ Fun(C,N0)×Fun(C1,N0) Fun(C1,D) is a trivial Kan fibration. It will therefore suffice

to show that the restriction map

θ′ : Fun′(C,D) ⊆ Fun∆1(C×∆1,D)→ FunD1(E,D)

is a trivial Kan fibration. Note that a functor F : C → D belongs to Fun′(C,D) if and only if the

induced map C×∆1 → D is a q-right Kan extension of its restriction to E. It now follows from

Proposition HTT.4.3.2.15 that θ′ is a trivial Kan fibration. This completes the proof that the lower

square in the diagram σ is homotopy Cartesian. It follows that the upper square is also homotopy

Cartesian.

Note that the evaluation map e0 : C→M0 admits a fully faithful right adjoint. It follows that

composition with e0 induces a fully faithful embedding Fun(M0,N0)→ Fun(C,N0), whose essential

image is the collection of functors which carry every L0-equivalence in C to an equivalence in N0.

Since the diagram

Fun∆1(M,N) //

��

Fun(M0,N0)

��
Fun′(C,D) // Fun(C,N0)

is homotopy Cartesian, we conclude that the functor Fun∆1(M,N) → Fun′(C,D) is fully faithful,

and its essential image is spanned by those functors F ∈ Fun′(C,D) which carry each L0-equivalence

in C to an L′0-equivalence in D.

Remark A.8.10. In the situation of Proposition A.8.8, a functor f : M→ N induces a left exact

functor F : C → D if and only if the underlying maps f0 : M0 → N0 and f1 : M1 → N1 are left

exact. In this case, F automatically carries C0 into D0. It carries C1 into D1 if and only if the

functor f preserves Cartesian edges.

We now prove a converse to Proposition A.8.7:

Proposition A.8.11. Let C be an ∞-category which admits finite limits, which is a recollement

of full subcategories C0,C1 ⊆ C. Then there exists a left exact correspondence p : M→ ∆1 and an

equivalence of ∞-categories C → Fun∆1(∆1,M), such that C0 and C1 are the essential images of

left adjoints to the induced localization functors C→M0 and C→M1.
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Proof. Let M0 = C0, and let M1 be the full subcategory of Fun(∆1,C) spanned by those morphisms

f : C → C ′ such that C ∈ C1 and f exhibits C ′ as a C0-localization of C. Evaluation at {1} ⊆ ∆1

determines a map M
op
1 → M

op
0 , which we can view as a functor θ : [1]→ Set∆. Let M = Nθ([1])op

denote the (opposite of the) nerve of the category [1] relative to θ (see Definition HTT.3.2.5.2 ), so

that we have a Cartesian fibration p : M→ ∆1 together with isomorphisms

M×∆1{0} 'M0 M×∆1{1} 'M1,

such that the associated functor M1 →M0 is given by the evaluation.

Unwinding the definitions, we see that D = Fun∆1(∆1,M) is isomorphic to the full subcategory

of Fun(Λ2
2,C) spanned by those diagrams C0 → C01

g← C1 satisfying the following conditions:

(i) The object C0 belongs to C0 and the object C1 belongs to C1.

(ii) The morphism g exhibits C01 as a C0-localization of C1.

Let D be the full subcategory of Fun(∆1 ×∆1,C) spanned by those diagrams τ :

C //

��

C1

g

��
C0

// C01

satisfying (i) and (ii) together with the following:

(iii) The diagram τ is a pullback square in C.

Using Proposition HTT.4.3.2.15 , we deduce that the evident restriction functor D→ D is a trivial

Kan fibration. We will need the following fact:

(∗) Evaluation at (0, 0) ∈ ∆1 ×∆1 induces a trivial Kan fibration e : D→ C.

To prove this, we let D
′ ⊆ D denote the full subcategory spanned by those diagrams τ which satisfy

the following additional conditions:

(iv) The map C → C0 exhibits C0 is a C0-localization of C.

(v) The map C → C1 exhibits C1 as a C1-localization of C.

Let D
′′

denote the full subcategory of Fun(∆1 ×∆1,C) spanned by those functors satisfying con-

ditions (i), (ii), (iv), and (v). Let C denote the full subcategory of C×∆1 ×∆1 spanned by those

objects (C, i, j) such that C ∈ C0 if i = 1 and C ∈ C1 if 0 = i < j = 1. Let q : C → ∆1 × ∆1

denote the projection map, and q0 : C ×∆1×∆1 ({0} ×∆1) → {0} ×∆1 the restriction of q. Note

that D
′′

can be identified with the ∞-category of functors F ∈ Fun∆1×∆1(∆1×∆1,C) such that F

is a q-left Kan extension of F0 = F |({0} ×∆1) and F0 is a q0-left Kan extension of F |{(0, 0)}. It
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follows from Proposition HTT.4.3.2.15 that the evaluation map D
′′ → C is a trivial Kan fibration.

We will prove (∗) by verifying that D = D
′
= D

′′
.

To prove that D
′
= D

′′
, consider a diagram σ :

C //

��

L1(C)

��
L0(C) // (L0L1)(C)

belonging to D
′′
. This diagram induces a map α : C → L0(C) ×(L0L1)(C) L1(C). To prove that

σ ∈ D
′
, we must show that α is an equivalence. For this, it suffices to show that both L0(α) and

L1(α) are equivalences. Since L0 and L1 are left exact, we are reduced to proving that the diagrams

L0(σ) and L1(σ) are pullback squares. This is clear: in the diagram L0(σ), the vertical maps are

both equivalences; in the diagram L1(σ), the horizontal maps are both equivalences.

To show that D = D
′
, consider an arbitrary diagram σ :

C //

��

C1

��
C0

// C01

satisfying conditions (i) through (iii). Since L0 is left exact, we obtain a pullback diagram

L0(C) //

��

L0(C1)

��
L0(C0) // L0(C01).

The right vertical map is an equivalence by assumption (ii), so the left vertical map is also an

equivalence. Since C0 ∈ C0 by (i), σ satisfies (iv). Similarly, since the functor L1 is left exact, we

have a pullback diagram

L1(C) //

��

L1(C1)

��
L1(C0) // L1(C01).

Since C0, C01 ∈ C0, the lower horizontal map is a morphism between final objects of C and therefore

an equivalence. It follows that the upper horizontal map is an equivalence. Since C1 ∈ C1, we

conclude that σ satisfies (v). This completes the proof of (∗).
Choose a section s : C → D of the projection map e, and let ψ denote the composite map

C
s→ D→ D, where s is a section of e. Then ψ is an equivalence of ∞-categories, which carries an

object C ∈ C to the diagram

L0(C)→ (L0 ◦ L1)(C)← L1(C).
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We claim that ψ has the desired properties. To verify this, consider full subcategories D0,D1 ⊆ D as

in Proposition A.8.7. We must show that C0 = ψ−1 D0 and C1 = ψ−1 D1. The equality C0 = ψ−1 D0

follows from the observation that C ∈ C0 if and only if L1(C) is a final object of C1 (Remark A.8.5).

To prove that C1 = ψ−1 D1, we must show that an object C ∈ C belongs to C1 if and only if the

map α : L0(C) → (L0 ◦ L1)(C) is an equivalence. The “only if” direction is obvious. Conversely,

suppose that α is satisfied. The proof of (∗) shows that the diagram

C
α′ //

��

L1(C)

��
L0(C)

α // (L0L1)(C)

is a pullback square, so that α′ is an equivalence and C ' L1(C) belongs to C1.

Remark A.8.12. Propositions A.8.7, A.8.8, and A.8.11 can be informally summarized by saying

that, for every pair of∞-categories C0 and C1 which admit finite limits, the following types of data

are equivalent:

(a) An ∞-category C which is a recollement of C0 and C1.

(b) A left exact functor from C1 to C0.

Corollary A.8.13. Let C be an ∞-category which admits finite limits, which is a recollement of

full subcategories C0,C1 ⊆ C. Let j∗ denote the inclusion of C1 into C, and let j∗ denote a left

adjoint to j∗. Suppose that the ∞-category C0 has an initial object. Then the functor j∗ admits a

fully faithful left adjoint j! : C1 → C.

Proof. By virtue of Proposition A.8.11, we may assume that there exists a left exact correspondence

q : M→ ∆1 such that C = Fun∆1(∆1,M), where C1 is the full subcategory spanned by the Cartesian

sections. Then we can identify j∗ with the evaluation functor C → M1. By assumption, M0 ' C0

has an initial object. Sine q is a Cartesian fibration, this object is also q-initial. It follows that

every map {1} → M1 admits a q-left Kan extension in Fun∆1(∆1,M), so that j∗ admits a left

adjoint j!. This functor is fully faithful by Proposition HTT.4.3.2.15 .

If an ∞-category C is a recollement of full subcategories C0,C1 ⊆ C, we can often reduce

questions about C to questions about C0 and C1. Our next result provides an example of this

phenomenon.

Proposition A.8.14. Let C and C′ be ∞-categories which admit finite limits. Suppose that we

are given inclusions of full subcategories

C0,C1 ⊆ C C′0,C
′
1 ⊆ C′

which admit left adjoints L0, L1, L′0, and L′1. Let F : C→ C′ be a functor satisfying the following

conditions:
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(1) The ∞-category C is a recollement of C0 and C1, and the ∞-category C′ is a recollement of

C′0 and C′1.

(2) The functor F restricts to equivalences C0 → C′0 and C1 → C′1.

(3) The functor F is left exact.

(4) Let C ∈ C1 and α : C → C ′ be a morphism in C which exhibits C ′ as a C0-localization of C.

Then F (α) exhibits F (C ′) ∈ C′0 as a C′0-localization of F (C) ∈ C′1 ⊆ C.

Then F is an equivalence of ∞-categories.

Proof. Let ψ : C → D be defined as in the proof of Proposition A.8.11 and let ψ′ : C′ → D′ be

defined similarly, so that we have a commutative diagram of ∞-categories

C
F //

ψ
��

C′

ψ′

��
D

F0 // D′ .

The proof of Proposition A.8.11 shows that ψ and ψ′ are equivalences of ∞-categories. It will

therefore suffice to show that F0 is an equivalence of ∞-categories. The map F0 extends to a map

of (homotopy) pullback diagrams

D //

��

Fun(∆1,C0)

��

D′ //

��

Fun(∆1,C′0)

��
M // Fun({0},C0) M′ // Fun({0},C′0),

where M is denotes the full subcategory of C spanned by those morphisms f : C1 → C01 such

that C1 ∈ C1 and f exhibits C01 as a C-colocalization of C1, and M′ is defined similarly. Since F

induces an equivalence C0 → C′0 by assumption, it suffices to show that the map M→M′ (which is

well-defined by virtue of (3)) is an equivalence of ∞-categories. This follows from the assumption

that F restricts to an equivalence C1 → C′1, since we have a commutative diagram

M //

��

M′

��
C1

// C′1

in which the vertical maps are trivial Kan fibrations.

We now consider an ∞-categorical analogue of Example A.8.4:



1452 APPENDIX A. CONSTRUCTIBLE SHEAVES AND EXIT PATHS

Proposition A.8.15. Let X be an ∞-category which admits finite limits, and suppose that X is

a recollement of full subcategories X0,X1 ⊆ X. Let L0 : X → X0 and L1 : X → X1 be left adjoints

to the inclusion. Then the following conditions are equivalent:

(1) The ∞-category X is an ∞-topos.

(2) The∞-categories X0 = L0 X and X1 = L1 X are∞-topoi, and the functor (L0|X1) : X1 → X0

is accessible.

If these conditions are satisfied, then there exists a (−1)-truncated object U ∈ X with the following

properties:

(i) A morphism f : X → Y in X is an L1-equivalence if and only if X × U → Y × U is an

equivalence (consequently, X1 is equivalent to the ∞-topos X/U ).

(ii) The ∞-category X0 is the closed subtopos X /U ⊆ X.

Remark A.8.16. Fix a pair of ∞-topoi U and Y. Suppose we are given an ∞-topos X equipped

with a (−1)-truncated object U ∈ X, together with equivalences of∞-topoi U ' X/U and Y ' X /U .

This data determines geometric morphisms of ∞-topoi

U
j∗→ X

i∗← Y,

so that i∗j∗ is an accessible left exact functor from U to Y. Proposition A.8.15 provides a converse:

a left exact accessible functor F : U→ Y determines an ∞-topos X which is “glued” from U and Y.

Moreover, the data of F is equivalent to the data of diagram of geometric morphisms U
j∗→ X

i∗← Y.

Proof of Proposition A.8.15. Suppose first that condition (1) is satisfied. Let ∅ denote an initial

object of X and 1 a final object of X, and set U = L0(∅). Since X is an ∞-topos, the morphism

∅ → 1 is (−1)-truncated. We will prove that U satisfies conditions (i) and (ii). It follows that

L0|X1 can be identified with the composition

X/U
j∗→ X

i∗→ X /U,

and is therefore an accessible functor.

Because L0 is left exact, we deduce that the canonical map U = L0(∅) → L0(1) ' 1 is (−1)-

truncated: that is, U is a (−1)-truncated object of X. Note that if X ∈ X is an object which admits

a morphism f : X → U , then

L0(X) ' L0(X)×L0(U) L0(∅) ' L0(X ×U ∅) ' L0(∅) = U

is an initial object of L0 X.

Let X be an object of X, and consider the map uX : X ×L0(X) U → X × U . Using condition

(d) of Definition A.8.1, we obtain L1(L0(X)) ' 1. Since L1 is left exact, we conclude that L1(uX)
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is an equivalence. Since both X ×L0(X) U and X ×U admit a map to U , L0(uX) is a map between

initial objects of L0 X and therefore an equivalence. Using condition (e) of Definition A.8.1, we

conclude that uX is an equivalence.

We now verify (i). Suppose that f : X → Y is a morphism in X such that f × idU is an

equivalence. Then the composition

L1(X) ' L1(X)× 1

' L1(X)× L1(U)

' L1(X × U)

→ L1(Y × U)

' L1(Y )× L1(U)

' L1(Y )× 1

' L1(Y )

is an equivalence. Conversely, suppose that L1(f) is an equivalence. Consider the diagram

X
f //

��

Y //

��

L1(Y )

��
L0(X) // L0(Y ) // (L0L1)(Y ).

The proof of Proposition A.8.11 shows that the outer rectangle and the right square are pullbacks,

so that the left square is also a pullback. It follows that the map X ×L0X Y → Y ×L0Y U is an

equivalence, so that by the above argument we conclude that X × U → Y × U is an equivalence.

This completes the proof of (i). Assertion (ii) now follows from Remark A.8.5 and the definition

of the ∞-topos X /U .

We now complete the proof by showing that (2) ⇒ (1). Assume that X0 and X1 are ∞-topoi

and that L0|X1 is an accessible functor from X1 to X0. We will prove that X is an ∞-topos. Using

Proposition A.8.11, we may assume without loss of generality that X is the∞-category of sections of

a left exact correspondence M→ ∆1 with M0 ' X0, M1 ' X1, associated to a left exact accessible

functor F : M1 → M0. Since the fibers of p admit small colimits, we deduce that X admits small

colimits (and is therefore a presentable ∞-category) and the evaluation functors e0 : X→M0 and

e1 : X→M1 preserve small colimits. Since F is left exact, finite limits in X are computed pointwise:

that is, the evaluation functors e0 and e1 are left exact. We now prove that X is an ∞-topos by

verifying the ∞-categorical versions of Giraud’s axioms (see Theorem HTT.6.1.0.6 ):

(i) The ∞-category X is presentable. Since X admits small limits, it will suffice to show that X

is accessible. This follows from Corollary HTT.5.4.7.17 , since M0 and M1 are both accessible

and the functor F is accessible.
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(ii) Colimits in X are universal. Suppose we are given a diagram {Xα} in X having a colimit X

and a morphism Y → X in X; we wish to show that the canonical map v : lim−→(Y ×XXα)→ Y

is an equivalence. For this, it suffices to show that ei(v) is an equivalence in Mi for i ∈ {0, 1}.
Since ei is left exact and commutes with small colimits, we can identify ei(v) with the map

lim−→ ei(Y ) ×ei(X) ei(Xα) → ei(Y ), which is an equivalence since colimits are universal in the

∞-topos Mi.

(iii) Coproducts in X are disjoint. Suppose we are given objects X,Y ∈ X; we wish to show that

the fiber product X ×X∐
Y Y is an initial object of X. For this, it suffices to show that

ei(X ×X∐
Y Y ) is an initial object of Mi for i ∈ {0, 1}. Since ei is left exact and commutes

with coproducts, we are reduced to proving that ei(X)×ei(X)
∐
ei(Y ) ei(Y ) is an initial object

of Mi, which follows from the fact that coproducts are disjoint in the ∞-topos Mi.

(iv) Every groupoid object of X is effective. Let X• be a groupoid object of X having geometric

realization X ∈ X. We wish to show that the canonical map w : X1 → X0 ×X X0 is an

equivalence in X. For this, it suffices to show that ei(w) is an equivalence for i ∈ {0, 1}.
Since ei is left exact and commutes with geometric realizaiton, we are reduced to proving

that ei(X1) → ei(X0) ×|ei(X•)| ei(X0) is an equivalence. Since ei is left exact, ei(X•) is a

groupoid object of Mi, which is effective by virtue of the fact that Mi is an ∞-topos.

We now turn our attention to the case of stable ∞-categories. We have the following analogue

of Proposition A.8.15:

Proposition A.8.17. Let C be an ∞-category which admits finite limits, and suppose that C is a

recollement of full subcategories C0,C1 ⊆ X. Let L0 : C → C0 and L1 : C → C1 be left adjoints to

the inclusion. Then the following conditions are equivalent:

(1) The ∞-category C is stable.

(2) The ∞-categories C0 and C1 are stable, and the functor L0|C1 is exact.

Proof. The implication (2) ⇒ (1) follows from Proposition A.8.11. Conversely, suppose that (1)

is satisfied. Since L0 and L1 are exact functors from C to itself, their essential images C0,C1 ⊆ C

are closed under suspension and therefore (since they are also closed under finite limits) are stable

subcategories of C. It follows that C0 and C1 are stable ∞-categories. Since L0 is left exact, the

restriction L0|C1 is exact.

Remark A.8.18. Let C0 and C1 be stable ∞-categories. Using Propositions A.8.8, A.8.11, and

A.8.17, we see that the following types of data are equivalent:

(a) Stable ∞-categories C which are recollement of C0 and C1.
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(b) Exact functors from C1 to C0.

Remark A.8.19. Let C be a stable∞-category which is a recollement of full subcategories C0 and

C1. Let i∗ : C0 → C and j∗ : C1 → C denote the inclusion functors, so that i∗ and j∗ admit left

adjoints i∗ and j∗. It follows from Remark A.8.5 and Corollary A.8.13 that the functor i∗ admits

a right adjoint i!, and the functor j∗ admits a fully faithful left adjoint j!. We can summarize the

situation with the following diagram:

C0
i∗ // Ci∗oo

i!oo j! //

j∗ //
C1

j∗oo

We conclude this section by establishing a converse to Remark A.8.19:

Proposition A.8.20. Let C be a stable ∞-category and let C0 ⊆ C be a full subcategory which is

closed under equivalence. The following conditions are equivalent:

(1) The inclusion functor i∗ : C0 ↪→ C admits left and right adjoints.

(2) There exists a full subcategory C1 ⊆ C such that C is a recollement of C0 and C1.

Moreover, if these conditions are satisfied, then we can identify C1 with the full subcategory C⊥0 ⊆ C

spanned by those objects Y such that the mapping space MapC(X,Y ) is contractible for each

X ∈ C0.

Proof. Suppose first that there exists a full subcategory C1 ⊆ C such that C is a recollement of C0

and C1. Let j∗ : C1 ↪→ C be the inclusion map, and j∗ : C→ C1 its left adjoint. Then j∗ annihilates

C0, so that C1 ⊆ C⊥0 . Conversely, suppose that Y ∈ C⊥0 , and let u : Y → j∗j
∗Y denote the unit map.

Then j∗ fib(u) ' 0. It follows that the canonical map α : fib(u)→ i∗i
∗ fib(u) is an equivalence after

applying j. Since i∗α is an equivalence, we conclude that α is an equivalence: that is, fib(u) ∈ C0.

Since the domain and codomain of u belong to C⊥0 , we have fib(u) ∈ C⊥0 , so that fib(u) ' 0. It

follows that u is an equivalence, so that Y ' j∗j∗Y ∈ C1. This proves that C1 = C⊥0 . The existence

of a right adjoint to i∗ follows from Remark A.8.5, which proves (1).

Now suppose that (1) is satisfied. We will show that C is a recollement of C0 and C⊥0 by verifying

the requirements of Definition A.8.1:

(a) The full subcategory C0 ⊆ C is closed under equivalence by assumption, and C⊥0 ⊆ C is clearly

closed under equivalence.

(b) By assumption, the inclusion functor i∗ : C0 → C admits a left adjoint i∗ and a right adjoint

i!. We wish to show that the inclusion j∗ : C⊥0 → C admits a left adjoint. Fix an object

C ∈ C; we wish to show that there exists a C⊥0 -localization of C. Let v : i∗i
!C → C be the

counit map. We claim that cofib(v) is a C⊥0 -localization of C. To prove this, we first show
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that cofib(v) ∈ C⊥0 : that is, for every object X ∈ C0, the mapping space MapC(X, cofib(v)) is

contractible. We have a fiber sequence of spaces

MapC(X, cofib(v))→ MapC(X,Σi∗i
!C)

β→ MapC(X,ΣC)

We have

MapC(X,Σi∗i
!C) ' MapC0

(i∗X,Σi!C) ' MapC(i∗i
∗X,ΣC),

so that β is a homotopy equivalence by virtue of the fact that the unit map X → i∗i
∗X is an

equivalence (since X ∈ C0).

We now claim that for every object Y ∈ C⊥0 , the canonical map MapC(cofib(v), Y ) →
MapC(C, Y ) is a homotopy equivalence. For this, it suffices to show that MapC(i∗i

!C, Y )

is contractible, which follows immediately from our assumption that Y ∈ C⊥0 .

(c) Let j∗ denote a left adjoint to j∗. Then j∗ is left exact and j∗ is right exact. Since the

∞-categories C and C⊥0 are stable, j∗ and j∗ are exact, so that the localization functor L1 =

j∗j
∗ : C→ C is exact. Similarly, the functor L0 = i∗i

∗ : C→ C is exact.

(d) Fix an object C ∈ C0; we wish to prove that j∗C ' 0. The proof of (b) shows that j∗C can be

identified with the cofiber of the counit map i∗i
!C → C. Since the functor i∗ is fully faithful,

this follows from our assumption that C belongs to the essential image of i∗.

(e) Let α be a morphism in C such that i∗(α) and j∗(α) are equivalences; we wish to show that

α is an equivalence. Let C = fib(α); we wish to prove that C = 0. We have j∗(C) ' 0, so

that the counit map i∗i
!C → C is an equivalence. It follows that C belongs to the essential

image of i∗, so that the unit map C → i∗i
∗C is an equivalence. Since i∗C ' 0, we conclude

that C ' 0.

A.9 Exit Paths and Constructible Sheaves

Let A be a partially ordered set and let X be a space equipped with an A-stratificatin f : X → A.

Our goal in this section is to prove that, if X is sufficiently well-behaved, then the ∞-category

of A-constructible objects of Shv(X) can be identified with the ∞-category Fun(SingA(X), S),

where SingA(X) is the ∞-category of exit paths defined in §A.6. In fact, we will give an explicit

construction of this equivalence, generalizing the analysis we carried out for locally constant sheaves

in §A.4. First, we need to establish a bit of terminology.

Notation A.9.1. Let A be a partially ordered set and let X be a paracompact A-stratified space.

We let AX denote the category (Set∆)/SingA(X), which we regard as endowed with the covariant
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model structure described in §HTT.2.1.4 . Let B(X) denote the partially ordered collection of all

open Fσ subsets of X. We let Shv(X) denote the full subcategory of P(B(X)) spanned by those

objects which are sheaves with respect to the natural Grothendieck topology on B(X).

Proposition HTT.4.2.4.4 and Theorem HTT.2.2.1.2 furnish a chain of equivalences of ∞-

categories

Fun(SingA(X), S)← N((Set
C[SingA(X)]
∆ )o)→ N(Ao

X).

Construction A.9.2. We define a functor θ : B(X)op ×AX → Set∆ by the formula

θ(U, Y ) = FunSingA(X)(SingA(U), Y ).

Note that if Y ∈ AX is fibrant, then Y → SingA(X) is a left fibration so that each of the simplicial

sets θ(U, Y ) is a Kan complex. Passing to the nerve, θ induces a map of∞-categories N(B(X)op)×
N(Ao

X)→ S, which we will identify with a map of ∞-categories

ΨX : N(Ao
X)→ P(B(X)).

We are now ready to state the main result of this section.

Theorem A.9.3. Let X be a paracompact topological space which is locally of singular shape

and is equipped with a conical A-stratification, where A is a partially ordered set satisfying the

ascending chain condition. Then the functor ΨX induces an equivalence N(Ao
X)→ ShvA(X).

The proof of Theorem A.9.3 will be given at the end of this section, after we have developed a

number of preliminary ideas. For later use, we record the following easy consequence of Theorem

A.9.3:

Corollary A.9.4. Let X be a paracompact topological space which is locally of singular shape

and is equipped with a conical A-stratification, where A is a partially ordered set satisfying the

ascending chain condition. Then the inclusion i : SingA(X) ↪→ Sing(X) is a weak homotopy

equivalence of simplicial sets.

Proof. Let X ′ denote the topological space X equipped with the trivial stratification. The inclusion

i induces a pullback functor i∗ : N(A′oX)→ N(Ao
X), and we have an evident natural transformation

α : ΨX ◦ i∗ → ΨX′ from N(A′oX) to Shv(X). We claim that α is an equivalence. Since both

functors take values in the full subcategory of hypercomplete objects of Shv(X) (Lemma A.9.10

and Proposition A.5.9), it suffices to show that α(Y ) is ∞-connective for each Y ∈ N(A′oX). For

this, it suffices to show that x∗α(Y ) is an equivalence for every point x ∈ X (Lemma A.3.9). Using

Proposition A.9.16, we can reduce to the case X = {x} where the result is obvious. Applying the

functor of global sections to α, we deduce that for every Kan fibration Y → Sing(X) the restriction

map

FunSing(X)(Sing(X), Y )→ FunSing(X)(SingA(X), Y )
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is a homotopy equivalence of Kan complexes, which is equivalent to the assertion that i is a weak

homotopy equivalence.

We now turn to the proof of Theorem A.9.3 itself. Our first objective is to show that the functor

ΨX takes values in the the full subcategory Shv(X) ⊆ P(B(X)).

Lemma A.9.5. Let A be a partially ordered set, letX be a paracompact topological space equipped

with a conical A-stratification. The functor ΨX : N(Ao
X) → P(B(X)) factors through the full

subcategory Shv(X) ⊆ P(B(X)).

Proof. Let U ∈ B(X), and let S ⊆ B(U) be a covering sieve on U . In view of Theorem HTT.4.2.4.1 ,

it will suffice to show that for every left fibration Y → SingA(X), the canonical map

FunSingA(X)(SingA(U), Y )→ lim←−
V ∈S

FunSingA(X)(SingA(V ), Y )

exhibits the Kan complexes FunSingA(X)(SingA(U), Y ) as a homotopy limit of the diagram of Kan

complexes {FunSingA(X)(SingA(V ), Y )}V ∈S . For this, it suffices to show that SingA(U) is a ho-

motopy colimit of the simplicial sets {SingA(V )}V ∈S in the category (Set∆)/ SingA(X), endowed

with the covariant model structure. This follows from the observation that the covariant model

structure on (Set∆)/ SingA(X) is a localization of the Joyal model structure, and SingA(U) is a ho-

motopy colimit of {SingA(V )}V ∈S with respect to the Joyal model structure (by Theorems A.7.1

and HTT.4.2.4.1 ).

Remark A.9.6. Let X be a paracompact space equipped with an A-stratification. For each open

Fσ subset U of X, the composition of ΨX : N(Ao)→ Shv(X) with the evaluation functor F 7→ F(U)

from Shv(X) to S is equivalent to the functor N(Ao
X)→ S corepresented by (a fibrant replacement

for) the object SingA(U) ∈ AX . It follows that ΨX preserves small limits.

Remark A.9.7. Combining Remark A.9.6 with Proposition HTT.5.5.6.16 , we deduce that the

functor

ΨX : Fun(SingA(X), S) ' N(Ao
X)→ Shv(X)

preserves n-truncated objects for each n ≥ −1. Since every object F ∈ Fun(SingA(X), S) equivalent

to a limit of truncated objects (since Postnikov towers in S are convergent), we deduce from Remark

A.9.6 that ΨX(F ) is also equivalent to a limit of truncated objects, and therefore hypercomplete.

We now discuss the functorial behavior of the map ΨX . Let f : X ′ → X be a continuous

map of paracompact spaces. Let A be a partially ordered set such that X is endowed with an

A-stratification. Then X ′ inherits an A-stratification. The map f determines a morphism of

simplicial sets SingA(X ′) → SingA(X); let r : AX → AX′ be the associated pullback functor and

R : N(Ao
X) → N(A′oX) the induced map of ∞-categories. For each U ∈ B(X), we have f−1U ∈

B(X ′). The canonical map SingA(f−1U)→ SingA(U) induces a map θX(U, Y )→ θX′(f
−1U, r(Y )).
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These maps together determine a natural transformation of functors ΨX → f∗ΨX′R from N(Ao
X)

to Shv(X). We let φX′,X : f∗ΨX → ΨX′R denote the adjoint transformation (which is well-defined

up to homotopy).

Example A.9.8. IfX ′ is an open Fσ subset ofX, then the pullback functor f∗ : Shv(X)→ Shv(X ′)

can be described as the restriction along the inclusion of partially ordered sets B(X ′) ⊆ B(X). In

this case, the natural transformation φX′,X can be chosen to be an isomorphism of simplicial sets,

since the maps θX(U, Y )→ θX′(U, r(Y )) are isomorphisms for U ⊆ X ′.

Lemma A.9.9. Let X be a paracompact topological space equipped with an A-stratification. Let

a ∈ A, let X ′ = Xa, and let f : X ′ → X denote the inclusion map. Assume that Xa is paracompact.

Then the natural transformation φX′,X defined above is an equivalence.

Proof. Fix a left fibration M → SingA(X), and let M ′ = M ×SingA(X) Sing(Xa). We wish to

show that φX′,X induces an equivalence of sheaves f∗ΨX(M) → ΨXa(M ′). This assertion is local

on Xa. We may therefore use Lemma A.5.16 (and Example A.9.8) to reduce to the case where

X has the form Z × C(Y ), where Y is an A>a-stratified space. Corollary HTT.7.1.5.6 implies

that the left hand side can be identified with the (filtered) colimit lim−→V
(ΨX(Y ))(V ), where V

ranges over the collection of all open neighborhoods of Z in Z × C(Y ). In view of Lemma A.5.12,

it suffices to take the same limit indexed by those open neighborhoods of the form Vg, where

g : Z → (0,∞) is a continuous function. It will therefore suffice to show that each of the maps

ΨX(Y )(Vg)→ ΨXa(Y ′)(Z) is a homotopy equivalence. This map is given by the restriction

FunSingA(X)(SingA(Vg), Y )→ FunSingA(X)(Sing(Z), Y ).

To show that this map is a homotopy equivalence, it suffices to show that the inclusion i : Sing(Z) ↪→
SingA(Vg) is a covariant equivalence in SingA(X). We will show that i is left anodyne. Let

h : C(Y )× [0, 1]→ C(Y ) be the map which carries points(y, s, t) ∈ Y × (0,∞)× (0, 1] to (y, st) ∈
Y × (0,∞), and every other point to the cone point of C(Y ). Then h induces a homotopy H :

Vg × [0, 1] → Vg from the projection Vg → Z ⊆ Vg to the identity map on Vg. The homotopy H

determines a natural transformation from the projection SingA(Vg)→ Sing(Z) to the identity map

from SingA(Vg) to itself, which exhibits the map i as a retract of the left anodyne inclusion

(Sing(Z)×∆1)
∐

Sing(Z)×{0}

(SingA(Vg)× {0}) ⊆ SingA(Vg)×∆1.

Lemma A.9.10. Let X be a paracompact topological space which is locally of singular shape

and is equipped with a conical A-stratification. Then the functor ΨX : N(Ao
X) → Shv(X) factors

through the full subcategory ShvA(X) ⊆ Shv(X) spanned by the A-constructible sheaves on X.
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Proof. Choose a left fibration Y → SingA(X) and an element a ∈ A; we wish to prove that

(ΨX(Y )|Xa) ∈ Shv(Xa) is locally constant. The assertion is local on X, so we may assume without

loss of generality that X has the form Z × C(Y ) (Lemma A.5.16), so that Xa ' Z is locally of

singular shape (Remark A.5.18). Using Lemma A.9.9, we can replace X by Z, and thereby reduce

to the case where X consists of only one stratum. In this case, the desired result follows from

Theorem A.4.19.

Lemma A.9.11. Let X be a paracompact topological space of the form Z × C(Y ), and let π :

X → Z denote the projection map. Then the pullback functor π∗ : Shv(Z) → Shv(X) is fully

faithful.

Proof. Fix an object F ∈ Shv(Z); we will show that the unit map F → π∗π
∗ F is an equivalence.

In view of Corollary HTT.7.1.4.4 , we may suppose that there exists a map of topological spaces

Z ′ → Z such that F is given by the formula U 7→ MapTop/Z
(U,Z ′). Using the results of §HTT.7.1.5 ,

we may suppose also that π∗ F is given by the formula V 7→ MapTop/X
(V,Z ′ ×Z X). It will suffice

to show that the induced map F(U)→ (π∗ F)(π−1U) is a homotopy equivalence for each U ∈ B(Z).

Replacing Z by U , we may assume that U = Z. In other words, we are reduced to proving that

the map

MapTop/Z
(Z,Z ′)→ MapTop/Z

(X,Z ′)

is a homotopy equivalence of Kan complexes. This follows from the observation that there is a

deformation retraction from X onto Z (in the category Top/Z of topological spaces over Z).

Lemma A.9.12. Let X be a paracompact space of the form Z ×C(Y ), let π : X → Z denote the

projection map, and let i : Z → X be the inclusion. Let F ∈ Shv(X) be a sheaf whose restriction

to Z × Y × (0,∞) is foliated. Then the canonical map π∗ F → i∗ F is an equivalence.

Proof. It will suffice to show that for every U ∈ B(Z), the induced map F(π−1(U))→ (i∗ F)(U) is a

homotopy equivalence. Replacing Z by U , we can assume U = Z. Using Corollary HTT.7.1.5.6 , we

can identify (i∗ F)(Z) with the filtered colimit lim−→V
F(V ), where V ranges over all open neighbor-

hoods of Z in X. In view of Lemma A.5.12, it suffices to take the colimit over the cofinal collection

of open sets of the form Vf , where f : Z → (0,∞) is a continuous map. To prove this, it suffices to

show that each of the restriction maps θ : F(X)→ F(Vf ) is an equivalence. Let W ⊆ Z×Y ×(0,∞)

be the set of triples (z, y, t) such that t > f(z)
2 , so that we have a pullback diagram

F(X)
θ //

��

F(Vf )

��
F(W )

θ′ // F(W ∩ Vf ).
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To prove that θ is a homotopy equivalence, it suffices to show that θ′ is a homotopy equivalence.

The map θ′ fits into a commutative diagram

F(W )
θ′ //

''

F(W ∩ Vf )

vv
(s∗ F)(Z × Y ),

where s : Z × Y →W ∩ Vf is the section given by the continuous map 3
4f : Z → (0,∞). Since F is

foliated, Proposition A.2.5 and Lemma A.2.9 guarantee that the vertical maps in this diagram are

both equivalences, so that θ′ is an equivalence as well.

Lemma A.9.13. Let A be a partially ordered set containing an element a. Let X be a paracompact

A≥a-stratified topological space of the form Z × C(Y ), where Y is an A>a-stratified space. Let

C = ShvA(X). Let j : Z × Y × (0,∞)→ X denote the inclusion and let C0 denote the intersection

of C with the essential image of the left adjoint j! : Shv(Z × Y × (0,∞))→ Shv(X) to the pullback

functor j∗. Let π : X → Z be the projection map, and let C1 denote the intersection of C with the

essential image of π∗ (which is fully faithful by Lemma A.9.11). Then:

(1) The inclusion functors C0 ⊆ C and C1 ⊆ C admit right adjoints L0 and L1.

(2) The functor L0 is complementary to L1.

Proof. Let i : Z → X be the inclusion map. The functor L0 is given by the composition j!j
∗, and

the functor L1 is given by the composition π∗π∗ (which is equivalent to π∗i∗ by Lemma A.9.12, and

therefore preserves constructibility and pushout diagrams). Since the composition i∗j! is equivalent

to the constant functor Shv(Z × Y × (0,∞))→ Shv(Z) (taking value equal to the initial object of

Shv(Z)), the functor L1 carries every morphism in C0 to an equivalence. Finally, suppose that α is

a morphism in C such that L0(α) and L1(α) are equivalences. Since j! and π∗ are fully faithful, we

conclude that j∗(α) and i∗(α) are equivalences, so that α is an equivalence (Corollary A.5.11).

Lemma A.9.14. Let X be a paracompact topological space which is locally of singular shape and

is equipped with a conical A-stratification. Then the full subcategory ShvA(X) ⊆ Shv(X) is stable

under finite colimits in Shv(X).

Proof. Let F ∈ Shv(X) be a finite colimit of A-constructible sheaves; we wish to show that F |Xa is

constructible for each a ∈ A. The assertion is local; we may therefore assume that X has the form

Z × C(Y ) (Lemma A.5.16). Then Xa ' Z is paracompact and locally of singular shape (Remark

A.5.18) so the desired result follows from Corollary A.1.16.

Lemma A.9.15. Let X be a paracompact topological space which is locally of singular shape and

equipped with a conical A-stratification, where A satisfies the ascending chain condition. Then the

functor ΨX : N(Ao
X)→ Shv(X) preserves finite colimits.
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Proof. Fix a diagram p : K → N(Ao
X) having a colimit Y , where K is finite. We wish to prove

that the induced map α : lim−→(ΨX ◦ p) → ΨX(Y ) is an equivalence. Lemma A.9.10 implies that

ΨX(Y ) ∈ ShvA(X), and is therefore hypercomplete (Proposition A.5.9). Similarly, lim−→(ΨX ◦ p) is

a finite colimit in Shv(X) of A-constructible sheaves, hence A-constructible (Lemma A.9.14) and

therefore hypercomplete. Consequently, to prove that α is an equivalence, it will suffice to show

that α is ∞-connective. This condition can be tested pointwise (Lemma A.3.9); we may therefore

reduce to the problem of showing that α is an equivalence when restricted to each stratum Xa.

Shrinking X if necessary, we may suppose that X has the form Z ×C(Y ) (Lemma A.5.16) so that

Xa ' Z is paracompact and locally of singular shape (Remark A.5.18). Using Lemma A.9.9 we

can replace X by Xa and thereby reduce to the case of a trivial stratification. In this case, the

functor ΨX is a fully faithful embedding (Theorem A.4.19) those essential image is stable under

finite colimits (Corollary A.1.16), and therefore preserves finite colimits.

We can use the same argument to prove a sharpened version of Lemma A.9.9 (at least in case

where A satisfies the ascending chain condition):

Proposition A.9.16. Let A be a partially ordered set which satisfies the ascending chain condition,

and let f : X ′ → X be a continuous map between paracompact topological spaces which are locally

of singular shape. Suppose that X is endowed with a conical A-stratification, and that the induced

A-stratification of X ′ is also conical. Then the natural transformation φX′,X is an equivalence of

functors from N(Ao
X) to Shv(X ′).

Lemma A.9.17. Let X be a topological space of singular shape. For every point x ∈ X, there

exists an open neighborhood U of x such that the inclusion of Kan complexes Sing(U)→ Sing(X)

is nullhomotopic.

Proof. Let K = Sing(X) ∈ S, and let π : X → ∗ denote the projection map. Since X is of singular

shape, there exists a morphism 1→ π∗K in Shv(X) The geometric realization | Sing(X)| is a CW

complex. Since X is of singular shape, composition with the counit map v : | Sing(X)| → X induces

a homotopy equivalence of Kan complexes MapTop(X, | Sing(X)|)→ MapTop(| Sing(X)|, | Sing(X)|).
In particular, there exists a continuous map s : X → |Sing(X)| such that s ◦ v is homotopic to the

identity. Choose a contractible open subset V ⊆ | Sing(X)| containing s(x), and let U = s−1(V ).

We claim that the inclusion i : Sing(U) → Sing(X) is nullhomotopic. To prove this, it suffices to

show that |i| : |Sing(U)| → |Sing(X)| is nullhomotopic. This map is homotopic to the composition

s ◦ v ◦ |i|, which factors through the contractible open subset V ⊆ |Sing(X)|.

Lemma A.9.18. Let p : M→ ∆1 be a correspondence between ∞-categories. Assume that there

exists a retraction r from M onto the full subcategory M1. Let A be an ∞-category which admits

finite limits, and let C = Fun(M,A). We define full subcategories C0,C1 ⊆ C as follows:

(a) A functor f : M→ A belongs to C0 if f is a right Kan extension of f |M0 (that is, if f(M) is

a final object of A, for each M ∈M1).
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(b) A functor f : M→ A belongs to C1 if f(α) is an equivalence, for every p-Cartesian morphism

in M.

Then C is a recollement of C0 and C1 (see Definition A.8.1).

Proof. We verify that C0 and C1 satisfy the requirements of Definition A.8.1. Condition (a) is

obvious. We next prove that the inclusions C0 ⊆ C, C1 ⊆ C admit left adjoints, by explicit con-

struction. The functor L0 is given by composing the restriction functor Fun(M,A)→ Fun(M0,A)

with a section of the trivial Kan fibration C0 → Fun(M0,A). The functor L1 is given by composing

the restriction functor Fun(M,A) → Fun(M1,A) with the retraction r : M → M1. This verifies

condition (b) of Definition A.8.1. It is clear that the ∞-category C admits finite limits (which are

computed pointwise), and the explicit construction given above shows that L0 and L1 are left exact,

so that (c) is satisfied.

The restriction L1|C0 factors through Fun(M1,A
′), where A′ ⊆ A is the contractible Kan

complex spanned by the final objects of A, which implies (d). To prove (e), we note that if α is a

morphism in C such that L0(α) and L1(α) are both equivalences, then α is a natural transformation

of functors from M to A which induces an equivalence after evaluation at every object M1 and

every object of M0. Since every object of M belongs to M0 or M1, we conclude that α is an

equivalence.

Proof of Proposition A.9.16. Let Y ∈ N(Ao
X), and let Y ′ = Y ×SingA(X) SingA(X ′). We wish

to prove that the map α : f∗ΨX(Y ) → ΨX′(Y
′) is an equivalence in Shv(X ′). Lemma A.9.10

implies that ΨX(Y ) ∈ ShvA(X), so that f∗ΨX(Y ) ∈ ShvA(X ′). Similarly, ΨX′(Y
′) ∈ ShvA(X ′),

so that both f∗ΨX(Y ) and ΨX′(Y
′) are hypercomplete (Proposition A.5.9). To prove that α is

an equivalence, it will suffice to show that α is ∞-connective. Since this condition can be tested

pointwise, it will suffice to show that α induces an equivalence after restricting to each stratum X ′a
of X ′. Using Lemma A.5.16 and Remark A.5.18, we can shrink X and X ′ so that Xa and X ′a are

again paracompact and locally of singular shape. Applying Lemma A.9.9, we can reduce to the

case where X = Xa and X ′ = X ′a. Shrinking X further (using Lemma A.9.17), we may assume

that Y ' Sing(X) ×K for some Kan complex K ∈ S. In this case, Example A.4.18 allows us to

identify ΨX(Y ) with the pullback π∗K and ΨX′(Y
′) with π′∗K, where π : X → ∗ and π′ : X ′ → ∗

denote the projection maps. Under these identifications, the natural transformation φX′,X(Y ) is

induced by the canonical equivalence f∗ ◦ π∗ ' (π ◦ f)∗ = π′∗.

Proof of Theorem A.9.3. We will prove more generally that for every U ∈ B(X), the functor ΨU :

N(Ao
U ) → ShvA(U) is an equivalence of ∞-categories. The proof proceeds by induction on rk(U),

where the rank functor rk is defined in Remark A.5.17.

Let S denote the partially ordered set of all open sets V ∈ B(U) which are homeomorphic to a

product Z ×C(Y ), where Y is an A>a-stratified space, and Z ×C(Y ) is endowed with the induced

A≥a-stratification. For every such open set V , let χV ∈ Shv(X) be the sheaf determined by the
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formula

χV (W ) =

{
∗ if W ⊆ V
∅ otherwise.

Let α denote the canonical map lim−→V
χV → χU . For each point x ∈ U , the stalk of the colimit

lim−→V
χV at x is homotopy equivalent to the nerve of the partially ordered set Sx = {V ∈ S : x ∈

V }. It follows from Lemma A.5.16 that the partially ordered set Sopx is filtered, so that |Sx| is

contractible: consequently, the map α is ∞-connective. Consequently, α induces an equivalence

lim−→V
χV → χU in the hypercomplete ∞-topos Shv(X)hyp. Applying Theorem HTT.6.1.3.9 to the

∞-topos Shv(X)hyp, we conclude that Shv(U)hyp ' Shv(X)hyp
/χU

is equivalent to the homotopy limit

of the diagram of ∞-categories {Shv(V )hyp ' Shv(X)hyp
/χV
}V ∈S . Proposition A.5.9 guarantees that

ShvA(U) ⊆ Shv(U)hyp (and similarly ShvA(V ) ⊆ Shv(V )hyp) for each V ∈ S). Since the property

of being constructible can be tested locally, we obtain an equivalence

ShvA(U) ' lim←−{ShvA(V )}V ∈S .

We next show that the restriction maps N(Ao
U )→ N(Ao

V ) exhibit N(Ao
U ) as the homotopy limit

of the diagram of ∞-categories {N(Ao
V )}V ∈S . In view of the natural equivalences

Fun(SingA(V ), S)← N((Set
C[SingA(V )]
∆ )o)→ N(Ao

V ),

it will suffice to show that the canonical map

Fun(SingA(U), S)→ lim←−{Fun(SingA(V ), S)}V ∈S

is an equivalence. This follows immediately from Theorem A.7.1.

We have a commutative diagram

N(Ao
U ) //

��

lim←−V ∈S N(Ao
V )

��
ShvA(U) // lim←−V ∈S ShvA(V )

where the vertical maps are equivalences. Consequently, to prove that ΨU is an equivalence, it will

suffice to show that ΨV is an equivalence for each V ∈ S. Replacing U by V , we can assume that

U has the form Z ×C(Y ). We will also assume that Z is nonempty (otherwise there is nothing to

prove).

Let U ′ = Z × Y × (0,∞), which we regard as an open subset of U . Let C0 ⊆ N(Ao
U ) be the

full subcategory spanned by the left fibrations Y → SingA(U) which factor through SingA(U ′), and

let C1 ⊆ N(Ao
U ) be the full subcategory spanned by the Kan fibrations Y → SingA(U). Under the

equivalence N(Ao
U ) ' Fun(SingA(U), S), these correspond to the full subcategories described in the
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dual of Lemma A.9.18 (where A = S and p : SingA(U)→ ∆1 is characterized by the requirements

that p−1{0} = Sing(Ua) and p−1{1} = SingA(U ′)). It follows that the inclusions C0,C1 ⊆ N(Ao
U )

admit right adjoints L0 and L1, and that L0 is complementary to L1. Let C′0,C
′
1 ⊆ ShvA(U)

be defined as in Lemma A.9.13, so that we again have right adjoints L′0 : ShvA(U) → C′0 and

L′1 : ShvA(U)→ C′1 which are complementary. We will prove that the functor ΨU is an equivalence

of ∞-categories by verifying the hypotheses of (the dual version of) Proposition A.8.14:

(2) The functor ΨU restricts to an equivalence C0 → C′0. Let Y → SingA(U ′) be an object of C0.

Then (ΨU (Y ))(W ) is empty if W is not contained in U ′, so that ΨU (Y ) ∈ C′0. Moreover, the

composition of ΨU |C0 with the equivalence C′0 ' ShvA(U ′) coincides with the functor ΨU ′ .

Since the strata U ′b are empty unless b > a, while Ua is nonempty (since Z 6= ∅), we have

rk(U ′) < rk(U) so that ΨU ′ is an equivalence of ∞-categories by the inductive hypothesis.

(2′) We must show that the functor ΨU restricts to an equivalence C1 → C′1. Let π : U → Z

denote the projection. We have a diagram of ∞-categories

N(Ao
Z) //

ΨZ
��

N(Ao
U )

ΨU
��

Shv(Z)
π∗ // Shv(U)

which commutes up to homotopy (Proposition A.9.16). The upper horizontal arrow is fully

faithful, and its essential image is precisely the ∞-category C1. Consequently, it suffices to

show that the composite map π∗ΨZ is a fully faithful embedding whose essential image is

precisely C′1. Theorem A.4.19 implies that ΨZ is fully faithful, and that its essential image is

the full subcategory of Shv(Z) spanned by the locally constant sheaves. The desired result

now follows from the definition of C′1.

(3) The functor ΨU preserves pushouts. This follows from Lemma A.9.15.

(4) If α : Y0 → Y is a morphism which exhibits Y0 ∈ C0 as a C0-colocalization of Y ∈ C1, then

ΨU (α) exhibits ΨU (Y0) as a C′0-localization of ΨU (Y1). Unwinding the definitions, α induces

an equivalence of left fibrations Y0 → Y ×SingA(U) SingA(U ′), and we must show that for each

W ∈ B(U ′) that the induced map FunSingA(U)(SingA(W ), Y0)→ FunSingA(U)(SingA(W ), Y ) is

a homotopy equivalence. This is clear, since the condition that W ⊆ U ′ guarantees that any

map SingA(W )→ Y factors uniquely through the fiber product Y ×SingA(U) SingA(U ′).



Appendix B

Categorical Patterns

Let S be a simplicial set, and let (Set+∆)/S denote the category of marked simplicial sets X = (X,M)

equipped with a map X → S. According to Proposition HTT.3.1.3.7 , there is a simplicial model

structure on the category (Set+∆)/S (the coCartesian model structure) whose fibrant objects can be

identified with coCartesian fibrations of simplicial sets X → S. In practice, there are a variety of

related conditions that a map p : X → S might be required to satisfy:

(a) A coCartesian fibration p : X → S is classified by a functor χ : S → Cat∞. In various contexts

it is natural to demand that the functor χ carry certain diagrams in S to limit diagrams in

Cat∞.

(b) If p : X → S is a locally coCartesian fibration, then every edge φ : s→ s′ in S determines a

functor φ! : Xs → Xs′ . If we are given a 2-simplex σ :

s′

ψ

��
s

φ
@@

θ // s′′

then we obtain a natural transformation uσ : θ! → ψ! ◦ φ!. Moreover, p is a coCartesian

fibration if and only if each of these natural transformations is an equivalence (Remark

HTT.2.4.2.9 ). In general, we might demand that uσ be an equivalence only for some specified

collection of 2-simplices σ of S.

(c) Let p : X → S be an inner fibration of simplicial sets. Then p is a locally coCartesian

fibration if and only if, for every edge e : s → s′ and every vertex x ∈ Xs, there exists a

locally coCartesian edge e : x→ x′ with p(e) = e. In general, we might demand that e exists

only for a specific class of edges e of S.

In specific situations, we might be interested in studying maps p : X → S which satisfy some

combination of the conditions suggested in (a), (b) and (c). For example, the notion of ∞-operad
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introduced in Chapter 2 can be described in this way (see Definition 2.1.1.10). Our goal in this

appendix is to develop a variant of the coCartesian model structure on (Set+∆)/S , which is adapted

to these types of applications. We begin by introducing some terminology.

Definition B.0.19. Let S be a simplicial set. A categorical pattern on S is a triple (MS , T, {pα :

K/
α → S′}α∈A), where MS is a collection of edges of S which contains all degenerate edges, T is a

collection of 2-simplices of S which contains all degenerate 2-simplices, and {pα : K/
α → S}α∈A is

a collection of maps of simplicial sets which carry each edge of K/
α into MS and each 2-simplex of

K/
α into T .

Suppose we are given a categorical pattern P = (MS , T, {pα : K/
α → S}α∈A) on S. A marked

simplicial set over P is a marked simplicial set X = (X,M) equipped with a map f : X → S

satisfying the following condition: for every edge e of X which belongs to M , f(e) belongs to MS .

We let (Set+∆)/P denote the category of marked simplicial sets over P.

We will say that an object X ∈ (Set+∆)/P is P-fibered if the following conditions are satisfied:

(1) The underlying map of simplicial sets f : X → S is an inner fibration.

(2) For each edge ∆1 → S belonging to MS , the induced map f ′ : X×S∆1 → ∆1 is a coCartesian

fibration.

(3) An edge e of X belongs to M if and only if f(e) belongs to MS and e is an f ′-coCartesian

edge of X ×S ∆1.

(4) Given a commutative diagram

∆{0,1}

��

e // X

��
∆2 σ // S,

if e ∈ M and σ ∈ T , then e determines an f ′-coCartesian edge of X ×S ∆2, where f ′ :

X ×S ∆2 → ∆2 denotes the projection map.

(5) For every index α ∈ A, the induced coCartesian fibration fα : X ×S K/
α → K/

α is classified by

a limit diagram K/
α → Cat∞.

(6) For every index α ∈ A and every coCartesian section s of the map fα, s is an f -limit diagram

in X.

We can now state the main result of this appendix:

Theorem B.0.20. Let P be a categorical pattern on a simplicial set S. Then there exists a left

proper combinatorial simplicial model structure on (Set+∆)/P, which is uniquely characterized by

the following properties:
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(C) A morphism f : X → Y in (Set+∆)/P is a cofibration if and only if f induces a monomorphism

between the underlying simplicial sets.

(F ) An object X ∈ (Set+∆)/P is fibrant if and only if X is P-fibered.

Example B.0.21. Let S be a simplicial set. The canonical categorical pattern on S is the categor-

ical pattern P = (MS , T, ∅), where MS consists of all edges of S and T consists of all 2-simplices of

S. Then (Set+∆)/P admits a unique model structure satisfying the conditions of Theorem B.0.20:

the coCartesian model structure described in §HTT.3.1.3 .

We will give the proof of Theorem B.0.20 in §B.2. Our proof will rely on the construction of a

large class of trivial cofibrations in (Set+∆)/P, which we carry out in §B.1. In §B.4, we will prove

that the model structure on (Set+∆)/P is functorial with respect to the categorical pattern in P in

a very robust way (Theorem B.4.2). The exact formulation of this functoriality result depends on

the notion of a flat inner fibration between simplicial sets, which we explain in §B.3.

Warning B.0.22. Our notion of categorical pattern is of a somewhat ad-hoc nature. More general

results along the lines of Theorem B.0.20 are possible, and there are less general results that would

suffice for the applications in this book. Moreover, the proofs of the results presented here are

somewhat dry and technical. We recommend that most of this appendix be treated as a “black

box” by most readers of this book. The exception is §B.3, which can be read independently of

the other sections: the notion of flat inner fibration is of some independent interest, and plays an

important role in the main part of the book.

We close this introduction with a few simple observations about Definition B.0.19 and Theorem

B.0.20.

Remark B.0.23. Let P be a categorical pattern on a simplicial set S. We will sometimes abuse

terminology by saying that a map of simplicial sets X → S is P-fibered if there exists a collection

of edges M in X such that X = (X,M) is a P-fibered object of (Set+∆)/P. In this case, the set M

is uniquely determined (requirement (3) of Definition B.0.19).

Remark B.0.24. In the situation of Definition B.0.19, conditions (5) and (6) are automatic when-

ever the simplicial set Kα is weakly contractible and the diagram pα is constant.

Remark B.0.25. Let P be a categorical pattern on a simplicial set S. For every pair of objects

X,Y ∈ (Set+∆)/P, there exists a simplicial set Map]S(X,Y ) with the following universal property:

for every simplicial set K, we have a canonical bijection

HomSet∆
(K,Map]S(X,Y )) ' Hom(Set+∆)/P

(K] ×X,Y ).

This definition of mapping spaces endows (Set+∆)/P with the structure of a simplicial category.
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Remark B.0.26. Let P = (MS , T, {pα : K/
α → S′}α∈A) be a categorical pattern on a simplicial

set S and let X = (X,M) be an object of Set+
∆ satisfying conditions (1) through (4) of Definition

B.0.19. For each index α ∈ A, let Xα = X ×S K/
α. Then the projection map q : Xα → K/

α

is a coCartesian fibration, classified by a functor χ : K/
α → Cat∞. According to Proposition

HTT.3.3.3.1 , the map χ is a limit diagram if and only if the restriction functor r : Z → Z0 is an

equivalence of ∞-categories, where Z denotes the ∞-category of coCartesian sections of q and Z0

the ∞-category of coCartesian sections of the restriction X ×S Kα → Kα.

Now suppose that X also satisfies condition (6) of Definition B.0.19. In this case, every co-

Cartesian section s of q is a q-limit diagram, so that the map MapZ(s′, s) → MapZ0
(s′|K, s|K) is

a homotopy equivalence for any s′ ∈ Z (in fact, the analogous statement is true for any section

of q). It follows that the functor r is automatically fully faithful. Now r is an equivalence of ∞-

categories if and only if it is essentially surjective, which (since r is evidently a categorical fibration)

is equivalent to the requirement that r be surjective on vertices. Consequently, in the definition of

a P-fibered object of (Set+∆)/P, we are free to replace assumption (5) by the following apparently

weaker condition:

(5′) For each α ∈ A and every coCartesian section s0 of the projection X ×S Kα → Kα, there

exists a coCartesian section s of X ×S K/
α → K/

α extending s0.

Remark B.0.27. Let P = (MS , T, {pα : K/
α → S}α∈A) be a categorical pattern on a simplicial set

S, and suppose we are given a P-fibered object X = (X,M) ∈ (Set+∆)/P. Let π : X → S denote

the underlying map of simplicial sets. We can define a categorical pattern π∗P = (M,T ′, {qβ :

K/
β → X}β∈B) on X as follows:

(1) The set M is the collection of marked edges of X (in other words, the collection of locally

π-coCartesian edges e of X such that π(e) ∈MS).

(2) The set T ′ = π−1T is the collection of all 2-simplices of X whose images in S belong to T .

(3) We let {qβ : K/
β → X}β∈B be the collection of those diagrams q : K/ → X such that q carries

each edge of K/ into M , and π ◦ q belongs to {pα : K/
α → S}α∈A.

Remark B.0.28. Let S be a simplicial set, and suppose we are given a categorical pattern P =

(MS , T, {pα : K/
α → S}α∈A), where MS consists of all edges of S, T consists of all 2-simplices of S,

each of the simplicial sets Kα is weakly contractible and each of the maps pα is constant. Then the

model structure on (Set+∆)/P described by Theorem B.0.20 coincides with the coCartesian model

structure of Example B.0.21: this follows immediately from Remark B.0.24.

B.1 P-Anodyne Morphisms

Let P be a categorical pattern on a simplicial set S. The main step in proving Theorem B.0.20 is

to show that there is a sufficiently large supply of trivial cofibrations in (Set+∆)/P. To this end, we
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introduce the following definition:

Definition B.1.1. Let P = (MS , T, {pα : K/
α → S}α∈A) be a categorical pattern on a simplicial

set S. The collection of P-anodyne morphisms in (Set+∆)/P is the smallest weakly saturated (see

Definition HTT.A.1.2.2 ) class of morphisms which contain all morphisms of the following types:

(A0) The inclusion (Λ2
1)]

∐
(Λ2

1)[(∆
2)[ ⊆ (∆2)], for every map ∆2 → S belonging to T which carries

every edge into MS .

(A1) The inclusion Q[ ⊆ Q], where Q = ∆0
∐

∆{0,2} ∆3
∐

∆{1,3} ∆0 and the map Q → S carries

every edge of Q into MS and every 2-simplex of Q into T .

(B0) The inclusion {0}] ⊆ (∆1)] lying over an edge of MS .

(B1) For each α ∈ A, the inclusion K]
α ⊆ (K/

α)] (where K/
α maps to S via pα).

(C0) The inclusion

(Λn0 )[
∐

(∆{0,1})[

(∆{0,1})] ⊆ (∆n)[
∐

(∆{0,1})[

(∆{0,1})],

for every n > 1 and every map ∆n → S whose restriction to ∆{0,1,n} belongs to T .

(C1) The inclusion (Λni )[ ⊆ (∆n)[, for every 0 < i < n and every map ∆n → S.

(C2) For each n ≥ 1, α ∈ A, and map f : ∆n ?Kα → S extending pα : {n} ?Kα → S, the inclusion

(∂∆n ? Kα)[
∐

({n}?Kα)[

({n} ? Kα)] ⊆ (∆n ? Kα)[
∐

({n}?Kα)[

({n} ? Kα)]).

Example B.1.2. Let P be a categorical pattern on a simplicial set S, and suppose we are given

maps of simplicial sets A
i→ B → S. If i is inner anodyne, then the induced map A[ → B[ is a

P-anodyne morphism in (Set+∆)/P.

Example B.1.3. Let P be a categorical pattern on a simplicial set S, and let e : ∆1 → S be a

marked edge of S. For every simplicial set A, let A
/

denote the marked simplicial set (A/,MA),

where MA is the collection of all edges of A/ which are either degenerate or contain the cone point.

We regard A
/

as an object of (Set+∆)/P via the map A/ → (∆0)/ ' ∆1 e→ S. For any cofibration

of simplicial sets i : A→ B, the induced map j : A
/ → B

/
is P-anodyne. To prove this, it suffices

to treat the basic case where B = ∆n and A = ∂∆n, in which case the map j is a generating

P-anodyne map which is either of type (B0) (if n = 0) or (C0) (if n > 0).

Example B.1.4. Let P = (MS , T, {pα : K/
α → S}α∈A) be a categorical pattern on a simplicial set

S. Let B0 ⊆ B be a simplicial sets containing a vertex b, and let f : B ? Kα → S be a map whose
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restriction to {b} ?Kα ' K/
α is given by pα. Suppose that every simplex of B either belongs to B0

or contains b as a final vertex. Then the inclusion

(B0 ? Kα)[
∐

({b}?Kα)[

({b} ? Kα)] ⊆ (B ? Kα)[
∐

({b}?Kα)[

({b} ? Kα)])

is P-anodyne, because it can be obtained as an iterated pushout of P-anodyne inclusions of type

(C2).

Remark B.1.5. Let P = (MS , T, {pα : K/
α → S}α∈A) be a categorical pattern on a simplicial

set S, and let X = (X,M) be an object of (Set+∆)/P. Let T ′ denote the inverse image of T in

HomSet∆
(∆2, X), and let B denote the set of pairs β = (α, pβ) where α ∈ A and pβ : K/

α → X

is a map lifting pα. Then PX = (M,T ′, {pβ}β∈B) is a categorical pattern on X. Unwinding the

definitions, we deduce that a morphism in (Set+∆)/PX is PX -anodyne if and only if it is P-anodyne.

Our next result highlights the relevance of Definition B.1.1 to the proof of Theorem B.0.20:

Proposition B.1.6. Let P be a categorical pattern on a simplicial set S, and let X ∈ (Set+∆)/P.

The following conditions are equivalent:

(1) The object X has the extension property with respect to every P-anodyne morphism in

(Set+∆)/P.

(2) The object X is P-fibered.

The proof of Proposition B.1.6 will require the following preliminary result:

Lemma B.1.7. Let n ≥ 2, and let p : X → ∆n be an inner fibration of simplicial sets. Consider a

commutative diagram

Λn0
f0 //

� _

��

X

p

��
∆n id //

f
==

∆n,

where f0 carries ∆{0,1} ⊆ Λn0 to a locally p′-coCartesian edge of X ×∆n ∆{0,1,n}, where p′ denotes

the projection X ×∆n ∆{0,1,n} → ∆{0,1,n}. Then there exists a map f : ∆n → X as indicated,

rendering the diagram commutative.

Proof. To prove the assertion, it will suffice to show that f0 extends to an n-simplex of X (the

compatibility with the projection p is automatic, since Λn0 contains every vertex of ∆n). Choose

a categorical equivalence X → N(C), where C is a topological category (for example, we could

take C = |C[X]|). Note that the projection p factors (uniquely) through some projection map

N(C) → ∆n. Since p is an inner fibration, the simplicial set X is an ∞-category, and therefore

fibrant with respect to the Joyal model structure. Consequently, it will suffice to prove the existence
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of the desired extension after replacing X by N(C). We may therefore assume that X is the nerve

of a topological category C.

The functor f0 determines the following data in the topological category C:

(1) A collection of objects Ci = f0({i}).

(2) A morphism α : C0 → C1 in C, given by evaluating f0 on the edge ∆{0,1} ⊆ Λn0 . Let

q : MapC(C1, Cn) → MapC(C0, Cn) be the map induced by composition with α. Since α

is locally p-coCartesian, it is coCartesian with respect to the projection X ×∆n ∆{0,1,n} →
∆{0,1,n}, so that q is a weak homotopy equivalence.

(3) A continuous map g0 : ∂[0, 1]n−2 → MapC(C1, Cn), given by evaluating f0 on ∂∆{1,2,...,n}.

(4) Another continuous map

H0 : ((∂[0, 1]n−2)× [0, 1])
∐

∂[0,1]n−2×{0}

([0, 1]n−2 × {0})→ MapC(C0, Cn)

such that the restriction H0|(∂[0, 1]n−2 × {1}) coincides with the composition

∂[0, 1]n−2 g0→ MapC(C1, Cn)
q→ MapC(C0, Cn).

Let h1 = H0|([0, 1]n−2×{0}). We can regard the restriction H0|(∂[0, 1]n−2×[0, 1]) as a homotopy

from q ◦g0 to h1| ∂[0, 1]n−2. Unwinding the definitions, we see that producing the desired extension

f is equivalent to extending H0 to a homotopy from q ◦ g to h1, for some continuous map g :

[0, 1]n−2 → MapC(C1, Cn). The existence of H (and g) now follows easily from the fact that q is a

weak homotopy equivalence.

Proof of Proposition B.1.6. Let P = (MS , T, {pα : K/
α → S}α∈A) be a categorical pattern on the

simplicial set S, and let X be an object of (Set+∆)/P. We wish to show that X is P-fibered if

and only if it has the extension property with respect to every P-anodyne morphism. We begin

by proving the “if” direction. Let X = (X,M), and let q : X → S denote the underlying map

of simplicial sets. We will show that X satisfies conditions (1), (2), (3), (4) and (6) of Definition

B.0.19, together with condition (5′) of Remark B.0.26:

(1) We must show that q : X → S is an inner fibration. This is equivalent to our assumption that

X has the unique extension property with respect to every morphism of type (C1) appearing

in Definition B.1.1.

(2) Let e : ∆1 → S belong to MS , let X ′ = X ×S ∆1, and let q′ : X ′ → ∆1 denote the projection

map. We wish to prove that q′ is a coCartesian fibration. Let M ′ denote the collection

of edges in X ′ whose image in X belongs to M . Since X has the extension property with
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respect to morphisms of the type (C0) appearing in Definition B.1.1, we deduce that every

edge of M ′ is q′-coCartesian. The existence of a sufficient supply of such edges follows from

the assumption that q has the extension property with respect to morphisms of type (B0).

(3) Let e, X ′, and q′ be as in (2). We claim that an edge e : x→ y of X ′ lifting e is q′-coCartesian

if and only if e ∈ M ′. The “if” direction follows from the above arguments. To prove the

converse, we first treat the case where the edge e is degenerate, corresponding to a vertex

s ∈ S. Let Xs denote the ∞-category X ×S {s}, so that e is an equivalence in Xs and

therefore belongs to X's . Let Q = ∆0
∐

∆{0,2} ∆3
∐

∆{1,3} ∆0, and let Q′ denote the image of

∆{1,2} ⊆ ∆3 in K. The inclusion Q′ ⊆ Q is a weak homotopy equivalence. Consequently,

the map Q′ → Y determined by the edge e extends to a map Q → X's . Since X has the

extension property with respect to morphisms of type (A1) appearing in Definition B.1.1, we

deduce that the induced map Q→ X carries each edge of Q into M , so that e ∈M .

We now treat the general case where e is not assumed to be degenerate. Using the extension

property with respect to morphisms of type (B0), we can choose an edge e′ : x → y′ in M ′

which lies over e. Since e′ is q′-coCartesian, we can choose a 2-simplex

y′

e′′

��
x

e′
@@

e // y

lying over the edge e in S′, where e′′ is an edge of the fiber X ′q′(y). Since e is also q′-coCartesian,

we deduce that e′′ is an equivalence in X ′q′(y), so that e′′ ∈M by the above argument. Invoking

our assumption that X has the extension property with respect to morphisms of the type

(A0), we deduce that e ∈M ′, as desired.

(4) Let ∆2 → S be a 2-simplex which belongs to T , let X ′ = X×S ∆2, and let e be an edge of X ′

lying over ∆{0,1} whose image in X belongs to M . We wish to prove that e is q′-coCartesian,

where q′ denotes the projection map X ′ → ∆2. This follows immediately from our assumption

that X has the extension property with respect to morphisms of the type (C0).

(5′) Fix an index α ∈ A. Let qα : X ×S K/
α → K/

α denote the projection map, and let q0
α :

K ×S Kα → Kα its restriction. We must show that every coCartesian section of q0
α can be

extended to a coCartesian section of qα. In view of (3), this is equivalent to the requirement

that X have the extension property with respect to morphisms of type (B1) in Definition

B.1.1.

(6) Let α and qα be as in (4′); we must show that every coCartesian section of qα is a q-limit

diagram. In view of (3), this is equivalent the requirement that X has the extension property

with respect to all morphisms of type (C2) appearing in Definition B.1.1.
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We now prove the “only if” direction. Assume that X is P-fibered. We will show that X has

the extension property with respect to every P-anodyne morphism f : A → B in (Set+∆)/P. It

will suffice to treat the case where f is one of the generating P-anodyne morphisms appearing in

Definition B.1.1. For morphisms of the types (B1), (C1), and (C2), the relevant assertion follows

from the arguments given above in cases (5′), (1), and (6), respectively. There are several more

cases to consider:

(A0) The map f is an inclusion (Λ2
1)]

∐
(Λ2

1)[(∆
2)[ ⊆ (∆2)], for some 2-simplex ∆2 → S belonging

to T . Let X ′ = X ×S ∆2, and let q′ : X ′ → ∆2 denote the projection. To prove that X has

the extension property with respect to f , we must show that if we are given a 2-simplex

y
g′′

��
x

g′
??

g // z

in X ′ such that g′ and g′′ are locally q′-coCartesian, then g is locally q′-coCartesian. We ob-

serve that g′′ is automatically q′-coCartesian, and the hypothesis that X is P-fibered guaran-

tees that g′ is q′-coCartesian. It follows from Proposition HTT.2.4.1.7 that g is q′-coCartesian.

(A1) The map f is an inclusion Q[ ⊆ Q], where Q = ∆0
∐

∆{0,2} ∆3
∐

∆{1,3} ∆0, and the map

Q → S carries each edge of Q into MS and each 2-simplex of Q into T . Let X ′ = X ×S Q
and let q′ : X ′ → Q denote the projection map. It follows from Corollary HTT.2.4.2.10 that

q′ is a coCartesian fibration, classified by some functor χ : Q → Cat∞. Since the projection

Q → ∆0 is a categorical equivalence, the functor χ is equivalent to a constant functor; it

follows that X ′ is equivalent to a product Q × C, for some ∞-category C. To show that X

has the extension property with respect to f , it suffices to show that every section of q′ is

coCartesian. Replacing X ′ by Q × C, we are reduced to proving that every diagram Q → C

carries each edge of Q to an equivalence in C, which follows from a simple diagram chase.

(B0) The map f is an inclusion {0}] ⊆ (∆1)] lying over an edge of MS . Since the induced map

X ×S ∆1 → ∆1 is a coCartesian fibration, the object X has the extension property with

respect to f .

(C0) The map f is an inclusion

(Λn0 )[
∐

(∆{0,1})[

(∆{0,1})] ⊆ (∆n)[
∐

(∆{0,1})[

(∆{0,1})],

for every n > 1 and every map ∆n → S which carries ∆{0,1,n} into S′. The desired result in

this case is a reformulation of Lemma B.1.7.
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We next show that the class of P-anodyne morphisms behaves well with respect to products.

For a more precise statement, we need to introduce a bit of notation.

Definition B.1.8. Let S and S′ be simplicial sets, and let P = (MS , T, {pα : K/
α → S}α∈A) and

P′ = (M ′S′ , T
′, {qβ : L/β → S′}β∈B) be categorical patterns on S and S′, respectively. We let P×P′

denote the categorical pattern

(MS ×M ′S′ , T × T ′, {K/
α
pα→ S × {s′} → S × S′}α∈A,s′∈S′ ∪ {L/β

qβ→ {s} × S′ → S × S′}s∈S,β∈B)

on the product S × S′.

Proposition B.1.9. Let P and P′ be categorical patterns on simplicial sets S and S′. Let f :

X → Y be a cofibration in (Set+∆)/P, and let f ′ : X
′ → Y

′
be a cofibration in (Set+∆)/P′ . If f is

P-anodyne or f ′ is P′-anodyne, then the induced map

f ∧ f ′ : (Y ×X ′)
∐
X×X′

(X × Y ′)→ Y × Y ′

is P×P′-anodyne.

Lemma B.1.10. Let P = (MS , T, {K/
α → S}α∈A) be a categorical pattern on a simplicial set S.

Let B0 ⊆ B be an inclusion of simplicial sets, and let f : ∆1 ×B → S be a map with the following

properties:

• For every simplex σ : ∆n → B which does not belong to B0, let τ be the 2-simplex of ∆1×∆n

spanned by (0, 0), (1, 0) and (1, n). Then the induced map

∆2 τ→ ∆1 ×∆n σ→ ∆1 ×B f→ S

belongs to T .

• For every vertex b of B, the map f carries ∆1 × {b} into MS .

Then the inclusion

((∆1)] ×B[
0)

∐
{0}]×B[0

({0}] ×B[) ⊆ (∆1)] ×B[

is P-anodyne.

Proof. Working simplex-by-simplex, we can reduce to the case where B = ∆n and B0 = ∂∆n. The

simplicial set ∆1 ×∆n admits a filtration

({0} ×∆n)
∐

{0}×∂∆n

(∆1 × ∂∆n) = Z0 ⊂ Z1 ⊂ . . . ⊂ Zn ⊆ Zn+1 = ∆1 ×∆n,
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where each Zi+1 is obtained from Zi by adjoining the (n+ 1)-simplex of ∆1×∆n corresponding to

the map

σi : [n+ 1]→ [1]× [n]

σi(j) =

{
(0, j) if j ≤ n− i
(1, j − 1) if j > n− i.

Let Zi = (Zi,Mi) denote the marked simplicial set whose marked edges are precisely those edges

which are marked in (∆1)] × (∆1)[. We wish to show that the inclusion Z0 ⊆ Zn+1 is P-anodyne.

For this, it will suffice to show that each of the inclusions hi : Zi ⊆ Zi+1 is P-anodyne. If i = n = 0,

then hi is a generating P-anodyne morphism of type (B0). If 0 ≤ i < n, then hi is a pushout of a

generating P-anodyne morphism of type (C1). If If i = n > 0, then hi is a pushout of a generating

P-anodyne morphism of type (C0).

Proof of Proposition B.1.9. Let P = (MS , T, {pα : K/
α → S}α∈A) and P′ = (M ′S′ , T

′, {qβ : L/β →
S′}β∈B) be categorical patterns on simplicial sets S and S′, respectively. Let f : X → Y be a

P-anodyne morphism in (Set+∆)/P, and let f ′ : X
′ → Y

′
be an arbitrary cofibration in (Set+∆)/P′ .

We wish to show that f ∧ f ′ is P×P′-anodyne. Without loss of generality, we may assume that

f ′ is a generator for the class of cofibrations in (Set+∆)/P′ , having either the form (∆1)[ ⊆ (∆1)] or

(∂∆m)[ ⊆ (∆m)[. Similarly, we may assume that f is one of the generating P-anodyne morphisms

described in Definition B.1.1. There are fourteen cases to consider:

(A0) The map f is an inclusion (Λ2
1)]

∐
(Λ2

1)[(∆
2)[ ⊆ (∆2)] where ∆2 → S belongs to T and carries

every edge into MS , and f ′ is an inclusion (∆1)[ ⊆ (∆1)]. In this case, f ∧ f ′ can be obtained

as a composition of two morphisms, each of which is a pushout of a morphism having type

(A0).

(A1) The map f is an inclusion Q[ ⊆ Q], where Q = ∆0
∐

∆{0,2} ∆3
∐

∆{1,3} ∆0 and the map

Q → S carries every edge of Q into MS and every 2-simplex of Q into T , and f ′ is an

inclusion (∆1)[ ⊆ (∆1)]. In this case, f ∧ f ′ can be obtained as a successive pushout of two

morphisms of type (A0).

(B0) The map f is an inclusion {0}] ⊆ (∆1)], for some edge ∆1 → S belonging to MS , and f ′

is an inclusion (∆1)[ ⊆ (∆1)]. In this case, f ∧ f ′ can be obtained as a composition of two

morphisms which are pushouts of maps of type (A0) and the P-anodyne morphism of Lemma

B.1.11.

(B1) For some α ∈ A, the map f is an inclusion K]
α ⊆ (K/

α)] (where K/
α maps to S via pα), and f ′

is an inclusion (∆1)[ ⊆ (∆1)]. We can factor the morphism f ∧ f ′ as a composition

(K/
α ×∆1,M)

g→ (K/
α ×∆1,M ′)

g′→ (K/
α ×∆1)],
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where M ′ is the collection of all edges of K/
α ×∆1 except for {v} ×∆1, where v is the cone

point of K/
α, and M ⊆ M ′ is the collection of all those edges which do not join (v, 0) to a

vertex of K/
α×{1}. We begin by observing that g is a pushout of a coproduct of morphisms of

type (A0), indexed by the collection of vertices of Kα. It will therefore suffice to show that g′

is (P×P′)-anodyne, which follows from the observation that g′ is a pushout of a morphism

of the type described in Lemma B.1.12.

(C) The map f is a generating P-anodyne morphism of one of the types (C0), (C1), or (C2)

described in Definition B.1.1, and f ′ is an inclusion (∆1)[ ⊆ (∆1)]. In this case, f ∧ f ′ is an

isomorphism and there is nothing to prove.

(A′0) The map f is an inclusion (Λ2
1)]

∐
(Λ2

1)[(∆
2)[ ⊆ (∆2)] where ∆2 → S belongs to T and

carries every edge into MS , and f ′ is an inclusion (∂∆m)[ ⊆ (∆m)[. If m = 0, then f ∧f ′ is a

generating (P×P′)-anodyne morphism of type (A0). If m > 0, then f∧f ′ is an isomorphism.

(A′1) The map f is an inclusion Q[ ⊆ Q], where Q = ∆0
∐

∆{0,2} ∆3
∐

∆{1,3} ∆0 and the map

Q → S carries every edge of Q into MS and every 2-simplex of S into T , and f ′ is an

inclusion (∂∆m)[ ⊆ (∆m)[. If m = 0 then f ∧ f ′ is a generating (P×P′)-anodyne morphism

of type (A1), and if m > 0 then f ∧ f ′ is an isomorphism.

(B′0) The map f is an inclusion {0}] ⊆ (∆1)], for some edge ∆1 → S belonging to MS , and f ′ is an

inclusion (∂∆m)[ ⊆ (∆m)[. If m = 0, then f ∧f ′ is a generating (P×P′)-anodyne morphism

of type (B0). Let us assume therefore that m > 0. For 0 ≤ k ≤ m, let σk : ∆m+1 → ∆1×∆m

denote the simplex determined by the map of partially ordered sets [m+ 1]→ [1]× [m] given

by the formula

j 7→

{
(0, j) if j ≤ m− k
(1, j − 1) otherwise.

We have a sequence of simplicial sets

Z0 ⊆ Z1 ⊆ . . . ⊆ Zm+1 = ∆1 ×∆m

where Zi is the simplicial subset of ∆1 × ∆m generated by ∆1 × (∂∆m), {0} × ∆m, and

{σj}j<i. Let M denote the collection of edges of ∆1×∆m whose image in ∆m is degenerate,

and let Zi = (Zi,M). To prove that f ∧ f ′ is (P×P′)-anodyne, it will suffice to show that

each of the inclusions gi : Zi ⊆ Zi+1 is P-anodyne. For 0 ≤ i < m, we observe that gi is a

pushout of a generating (P×P′)-anodyne morphism of type (C1). For i = m, we note that

gi is a pushout of a generating (P×P′)-anodyme morphism of type (C0).

(B′1) For some α ∈ A, the map f is an inclusion K]
α ⊆ (K/

α)] (where K/
α maps to S via pα), and

f ′ is an inclusion (∂∆m)[ ⊆ (∆m)[. If m = 0, then f ∧ f ′ is a generating P×P′-anodyne



1478 APPENDIX B. CATEGORICAL PATTERNS

morphism of type (B1) and there is nothing to prove. Let us assume therefore that m > 0.

Let v denote the cone point of K/
α. We define a filtration

Z0 ⊆ Z1 ⊆ . . . ⊆ Zm ⊆ Zm+1 = K/
α ×∆m

as follows. For each i ≤ m, let Zi denote the simplicial subset of K/
α × ∆m generated by

those simplices σ such that either σ ∩ ({v} ×∆m) ⊆ {v} ×∆{0,...,i−1} or the projection map

σ → ∆m is not surjective. Let Zi denote the marked simplicial set (Zi,Mi), where Mi is

the collection of those edges of Zi whose image in ∆m is degenerate. The map f ∧ f ′ can be

identified with the inclusion Z0 ⊆ Zm+1. It will therefore suffice to show that each of the

inclusions gi : Zi ⊆ Zi+1 is (P×P′)-anodyne. If i < m, then gi is a pushout of the inclusion

B[ ⊆ (∆i ? (Kα ×∆m−i)[, where B denotes the pushout

(∂∆i ? (Kα ×∆m−i)
∐

∂∆i?(Kα×Λm−i0 )

(∆i ? (Kα ×∆m−i)).

In view of Example B.1.2, it will suffice to show that the inclusion of simplicial sets B ⊆
∆i?(Kα×∆m−i) is inner anodyne. This follows from Lemma HTT.2.1.2.3 , since the inclusion

Kα × Λm−i0 ⊆ Kα ×∆m−i is left anodyne (Corollary HTT.2.1.2.7 ).

In the case i = m, we observe that gi is a pushout of the inclusion

((∂∆m) ? Kα)[
∐

({m}?Kα)[

({m} ? Kα)] ⊆ (∆m ? Kα)[
∐

({m}?Kα)[

({m} ? Kα)],

which is a (P×P′)-anodyne morphism of type (C2).

(C ′0) The map f is an inclusion

(Λn0 )[
∐

(∆{0,1})[

(∆{0,1})] ⊆ (∆n)[
∐

(∆{0,1})[

(∆{0,1})],

for some n > 1 such that the map ∆n → S carries ∆{0,1,n} to a 2-simplex belonging to T , and

f ′ is an inclusion (∂∆m)[ ⊆ (∆m)[. If m = 0, then f ∧ f ′ is a (P×P′)-anodyne morphism of

type (C0). We may therefore assume without loss of generality that m > 0. We define maps

∆n s→ ∆1 ×∆n r→ ∆n

by the formulae

s(i) = (1, i)

r(i, j) =

{
0 if i = 0, j = 1

j otherwise.
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These maps exhibit f as a retract of the inclusion

g : ((∆1)] × (Λn0 )[)
∐

{0}]×(Λn0 )[

({0}] × (∆n)[) ⊆ (∆1)] × (∆n)[.

We regard (∆1)] × (∆n)[ as an object of (Set+∆)/P via the composition

∆1 ×∆n r→ ∆n → S.

Since f is a retract of g, it will suffice to show that g ∧ f ′ is (P×P′)-anodyne, which follows

immediately from Lemma B.1.10.

(C ′1) The map f is an inclusion (Λni )[ ⊆ (∆n)[, for where 0 < i < n, and f ′ is an inclusion

(∂∆m)[ ⊆ (∆m)[. In this case, f ∧f ′ is a morphism of the form B[
0 ⊆ B[, where B0 ⊆ B is an

inner anodyne inclusion of simplicial sets (Corollary HTT.2.3.2.4 ). It follows from Example

B.1.2 that f ∧ f ′ is (P×P′)-anodyne.

(C ′2) The map f has the form

(∂∆n ? Kα)[
∐

({n}?Kα)[

({n} ? Kα)] ⊆ (∆n ? Kα)[
∐

({n}?Kα)[

({n} ? Kα)])

for some α ∈ A and n > 0, where ∆n ?Kα → S extends pα, and f ′ is an inclusion of the form

(∂∆m)[ ⊆ (∆m)[. The treatment of this case is similar to that of (B′1). If m = 0, then f ∧ f ′

is a generating P×P′-anodyne morphism of type (C2) and there is nothing to prove. Let us

assume therefore that m > 0. We define a filtration

Z0 ⊆ Z1 ⊆ . . . ⊆ Zm ⊆ Zm+1 = (∆n ? Kα)×∆m

as follows. For each i ≤ m, let Zi denote the simplicial subset of (∆n ? Kα)×∆m generated

by those simplices σ such that either σ∩ (∆n×∆m) ⊆ ∆n×∆{0,...,i−1} or the projection map

σ → ∆m is not surjective. Let Zi denote the marked simplicial set (Zi,Mi), where Mi is the

collection of those edges of Zi which are marked in the product

((∆n ? Kα)[
∐

({n}?Kα)[

({n} ? Kα)]))× (∆m)[.

The map f ∧ f ′ can be identified with the inclusion Z0 ⊆ Zm+1. It will therefore suffice to

show that each of the inclusions gi : Zi ⊆ Zi+1 is (P×P′)-anodyne. If i < m, then gi is a

pushout of the inclusion B[ ⊆ ((∆n ×∆i) ? (Kα ×∆m−i)[, where B denotes the pushout

(∂(∆n ×∆i) ? (Kα ×∆m−i)
∐

∂(∆n×∆i)?(Kα×Λm−i0 )

((∆n ×∆i) ? (Kα ×∆m−i)).
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In view of Example B.1.2, it will suffice to show that the inclusion of simplicial sets B ⊆
(∆n×∆i) ? (Kα×∆m−i) is inner anodyne. This follows from Lemma HTT.2.1.2.3 , since the

inclusion Kα × Λm−i0 ⊆ Kα ×∆m−i is left anodyne (Corollary HTT.2.1.2.7 ).

In the case i = m, we observe that gi is a pushout of the inclusion

(∂(∆n×∆m)?Kα)[
∐

({(n,m)}?Kα)[

({(n,m)}?Kα)] ⊆ ((∆n×∆m)?Kα)[
∐

({(n,m)}?Kα)[

({(n,m)}?Kα)],

which is (P×P′)-anodyne (Example B.1.4).

Lemma B.1.11. Let P = (MS , T, {pα : K/
α → S}α∈A) be a categorical pattern on a simplicial set

S, and let ∆2 → S be a 2-simplex which belongs to T . Then the inclusion i : (Λ2
0)]

∐
(Λ2

0)[(∆
2)[ ⊆

(∆2)] is a P-anodyne morphism in (Set+∆)/P.

Proof. We must show that i has the left lifting property with respect to every morphism morphism

f : X → Y in (Set+∆)/P, provided that f has the right lifting property with respect to every

P-anodyne morphism in (Set+∆)/P. Replacing P by PY (and invoking Remark B.1.5), we are

reduced to showing that X has the extension property with respect to i, provided that X has the

extension property with respect to every P-anodyne morphism. In view of Proposition B.1.6, we

may assume that X is P-fibered. The desired result is now an immediate consequence of Proposition

HTT.2.4.1.7 .

Lemma B.1.12. Let P = (MS , T, {pα : K/
α → S}α∈A) be a categorical pattern on a simplicial set

S. Fix α ∈ A, let M be the collection of all edges of ∆1?Kα except for the initial edge ∆1 ⊆ ∆1?Kα.

Let f : ∆1 ? Kα → S be a map such which carries each edge into MS , each 2-simplex into T , and

such that f |({1} ? Kα) agrees with pα. Then the inclusion i : (∆1 ? Kα,M) ⊆ (∆1 ? Kα)] is a

P-anodyne morphism in (Set+∆)/P.

Proof. Let g : X → Y be a morphism in (Set+∆)/P which has the right lifting property with respect

to every P-anodyne morphism; we will show that g has the right lifting property with respect to

i. Replacing P by PY (and invoking Remark B.1.5), we may assume that Y is a final object of

(Set+∆)/P. Proposition B.1.6 now guarantees that X is P-fibered. Let X ′ denote the fiber product

X×S (∆1?Kα), so that the projection map q : X ′ → (∆1?Kα) is a coCartesian fibration. Unwinding

the definitions, we must show the following:

(∗) Let s be a section of q. If s carries each edge of M to a q-coCartesian edge of X ′, then s

carries every edge of ∆1 ? Kα to a q-coCartesian edge of X ′.

To prove (∗), let us write rewrite the domain of s as {x} ? {z} ? Kα. Choose a q-coCartesian edge

e : s(x)→ y in X ′ covering the initial edge ∆1 ⊆ ∆1 ?Kα. Since e is q-coCartesian, we can extend



B.1. P-ANODYNE MORPHISMS 1481

s to a map s′ : {x} ? {y} ? {z} ? Kα → X ′ carrying {x} ? {y} to e. It follows from Proposition

HTT.2.4.1.7 that, for every vertex k of Kα, s′ carries the edge {y} ? {k} to a q-coCartesian edge

of X ′. Using the fact that X is P-fibered, we deduce that s′|{y} ? Kα and s′|{z} ? Kα are q-limit

diagrams, so that s′ carries {y} ? {z} to an equivalence in X ′y. It follows that s carries the edge

{x} ? {z} into a composition of q-coCartesian edges s′({x} ? {y}) and s′({y} ? {z}), which is again

a q-coCartesian edge (Proposition HTT.2.4.1.7 ).

We conclude this section with a few miscellaneous results concerning P-anodyne morphisms

which will be needed later.

Lemma B.1.13. Let P0 denote the categorical pattern (∆0,HomSet∆
(∆1,∆0),HomSet∆

(∆2,∆0), ∅),
so that (Set+∆)/P0

is equivalent to Set+
∆. For every left anodyne inclusion of simplicial sets A ⊆ B,

the induced map j : A] ⊆ B] is P0-anodyne.

Proof. Without loss of generality, we may assume that B = ∆n and A = Λni , for some 0 ≤ i < n,

where n > 0. Suppose first that n > 2. If 0 < i < n, then j is a pushout of the inclusion

j0 : (Λni )[ → (∆n)[, and therefore P0-anodyne (case (C1) of Definition B.1.1). If i = 0, then j is a

pushout of the inclusion

j0 : (Λn0 )[
∐

(∆{0,1})[

(∆{0,1})] → (∆n)[
∐

(∆{0,1})[

(∆{0,1})]

which is P0-anodyne (case (C0) of Definition B.1.1).

Now suppose that n = 2. We observe that j can be obtained as a composite j′′ ◦ j′, where j′ is a

pushout of the morphism j0 considered above, and j′′ is either a generating P-anodyne morphism

of type (A0) or the P-anodyne morphism described in Lemma B.1.11.

Finally, in the case n = 1, j is itself a morphism of type (B0) appearing in Definition B.1.1.

Proposition B.1.14. Let P be a categorical pattern on a simplicial set S. Let f : X → Y be a

cofibration in (Set+∆)/P, and let Z be a P-fibered object of (Set+∆)/P. Then the induced map

q : Map]S(Y , Z)→ Map]S(X,Z)

is a Kan fibration between Kan complexes. If f is P0-anodyne (where P0 is defined as in Lemma

B.1.13), then q is a trivial Kan fibration.

Proof. We first show that q is a left fibration by showing that q has the right lifting property with

respect to every left anodyne inclusion of simplicial sets A ⊆ B (or every inclusion of simplicial sets,

in the case where f is P-anodyne). Unwinding the definitions, this is equivalent to the assertion

that Z has the extension property with respect to the induced inclusion

f ′ : (B] ×X)
∐
A]×X

(A] × Y )→ B] × Y .
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It follows from Proposition B.1.9 and Lemma B.1.13 that f ′ is P-anodyne, so that the desired

result is a consequence of Proposition B.1.6.

Applying the above result to the inclusion ∅ ⊆ X, we deduce that the projection map

Map]S(X,Z)→ ∆0 is a left fibration, so that Map]S(X,Z) is a Kan complex. It follows that q is a

Kan fibration as desired (Lemma HTT.2.1.3.3 ).

B.2 The Model Structure on (Set+∆)/P

Our first main goal in this section is to prove Theorem B.0.20. Fix a categorical pattern P on a

simplicial set S. We wish to construct a model structure on the category (Set+∆)/P such that the

fibrant objects are precisely the P-fibered objects of (Set+∆)/P. Our first step will be to describe

the class of weak equivalences in (Set+∆)/P.

Definition B.2.1. Let P be a categorical pattern on a simplicial set S. We will say that a

morphism f : X → Y in (Set+∆)/P is a P-equivalence if, for every P-fibered object Z ∈ (Set+∆)/P,

the induced map

Map]S(Y , Z)→ Map]S(X,Z)

is a homotopy equivalence of Kan complexes.

Example B.2.2. Any P-anodyne morphism is a P-equivalence; this follows immediately from

Proposition B.1.14.

We now establish some properties of P-equivalences.

Lemma B.2.3. Let P be a categorical pattern on a simplicial set S, and suppose we are given a

pushout diagram

X
f //

��

Y

��

X
′ f ′ // Y

′

in (Set+∆)/P. Assume that the vertical maps are cofibrations. If f is a P-equivalence, then f ′ is a

P-equivalence.

Proof. Let Z ∈ (Set+∆)/P be P-fibered. We have a pullback diagram of simplicial sets

Map]S(X,Z) Map]S(Y , Z)oo

Map]S(X
′
, Z)

OO

Map]S(Y
′
, Z)oo

OO
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Proposition B.1.14 implies that the vertical maps are Kan fibrations, so that the diagram is also

a homotopy pullback square. Since f is a P-equivalence, the upper horizontal maps is a homo-

topy equivalence of Kan complexes. It follows that the lower horizontal map is also a homotopy

equivalence of Kan complexes, as desired.

Lemma B.2.4. Let P = (MS , T, {pα : K/
α → S}α∈A) be a categorical pattern on a simplicial set

S, and let f : X → Y be a map between P-fibered objects X = (X,M), Y = (Y,M ′) of (Set+∆)/P.

The following conditions are equivalent:

(1) The map f is a P-equivalence.

(2) The map f admits a homotopy inverse; that is, there exists a map g : Y → X in (Set+∆)/P
and homotopies

h : (∆1)] ×X → X h′ : (∆1)] × Y → Y

connecting g ◦ f and f ◦ g to idX and idY , respectively.

(3) For every edge ∆1 → S, the induced map X ×S ∆1 → Y ×S ∆1 is an equivalence of ∞-

categories.

If every edge of S belongs to MS , then (3) can be replaced by the following apparently weaker

condition:

(3′) For every vertex s ∈ S, the induced map Xs → Ys is an equivalence of ∞-categories.

Proof. The equivalence of (1) and (2) is formal, and the implications (2)⇒ (3)⇒ (3′) are clear. If

every edge of S belongs to MS , then the implication (3′)⇒ (3) follows from Corollary HTT.2.4.4.4 .

To complete the proof, let us suppose that f satisfies (3). We will say that an objectW = (W,M ′′) ∈
(Set+∆)/P is good if composition with f induces a homotopy equivalence

Map]S(W,X)→ Map]S(W,Y ).

Our goal is to prove that every object W ∈ (Set+∆)/P is good. The proof proceeds in several steps:

(a) We have a commutative diagram

Map]S(W,X) //

��

Map]S(W,Y )

��

Map]S(W [, X) //Map]S(W [, Y ).

The left vertical map exhibits Map]S(W,X) as the full simplicial subset of Map]S(W [, X)

spanned by those maps W → X which carry every edge in M ′′ to a locally p-coCartesian
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edge of X, where p : X → S denotes the projection, and the right vertical map admits

a similar description in terms of the projection q : Y → S. Assumption (3) implies that

an edge of X is locally p-coCartesian if and only if its image in Y is locally q-coCartesian.

Consequently, to prove that W is good, it will suffice to show that W [ is good.

(b) Suppose given a pushout diagram

V //

��

V ′

��
W //W ′

in the category of simplicial sets over S, where the vertical maps are cofibrations. We then

obtain pullback diagram

Map]S(V [, X) Map]S(V ′[, X)oo Map]S(V [, Y ) Map]S(V ′[, Y )oo

Map]S(W [, X)

OO

Map]S(W ′[, X)

OO

oo Map]S(W [, Y )

OO

Map]S(W ′[, Y )

OO

oo

Proposition B.1.14 implies that the vertical maps are Kan fibrations, so both diagrams are

homotopy pullback squares. It follows that if V [, V ′[, and W [ are good, then W ′[ is good.

(c) Let ∆n → S be a map; then (∆n)[ is good for n ≤ 1; this follows immediately from (3).

(d) For any map ∆n → S, the object (∆{0,1}
∐
{0} . . .

∐
{n−1}∆{n−1,n})[ ∈ (Set+∆)/P is good; this

follows from (b) and (c).

(e) Let u : W →W
′

be a P-equivalence (for example, any P-anodyne map). Then W is good if

and only if W
′

is good.

(f) For any map ∆n → S, the resulting object (∆n)[ ∈ (Set+∆)/P is good. This follows from

(e) and (d), since the inclusion (∆{0,1}
∐
{0} . . .

∐
{n−1}∆{n−1,n})[ ⊆ (∆n)[ is P-anodyne

(Example B.2.2).

(g) The collection of good objects in (Set+∆)/P is closed under coproducts (since a product of

homotopy equivalences between Kan complexes is again a homotopy equivalence).

(h) If the simplicial set W is finite-dimensional, then W [ ∈ (Set+∆)/P is good. The proof goes by

induction on the dimension n ≥ 0 of W . If W is empty, then the result is obvious. Otherwise,

let K denote the set of nondegenerate n-simplices of W , and let W ′ denote the (n−1)-skeleton

of W . We have a pushout diagram

K × ∂∆n //

��

W ′

��
K ×∆n //W.
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The inductive hypothesis guarantees that (K × ∂∆n)[ and W ′[ are good, and (K ×∆n)[ is

good by virtue of (g) and (f). It follows from (b) that W [ is good.

(i) Suppose that W is obtained as the direct limit of a sequence of inclusions

W (0)→W (1)→W (2)→ . . .

Then Map]S(W [, X) can be obtained as the homotopy inverse limit of the tower {Map]S(W (n)[, X)}n≥0,

and Map]S(W [, Y ) can be described similarly. It follows that if each W (n)[ is good, then W [

is good.

(j) For every map of simplicial sets W → S, the object W [ ∈ (Set+∆)/P is good. This follows

from (h) and (i), if we take W (n) to be the n-skeleton of W .

We now come to the proof of our main result:

Proof of Theorem B.0.20. Let P = (MS , T, {pα : K/
α → S}α∈A) be a categorical pattern on a

simplicial set S. We wish to prove that the category (Set+∆)/P admits a combinatorial simplicial

model structure in which the cofibrations are given by monomorphisms and the fibrant objects are

precisely the P-fibered objects. Assume for the moment that each of the simplicial sets Kα is finite.

It follows from the small object argument that there exists a functor E : (Set+∆)/P → (Set+∆)/P and

a natural transformation α : id→ T with the following properties:

(a) The functor E commutes with filtered colimits.

(b) For every object X ∈ (Set+∆)/P, the object EX ∈ (Set+∆)/P has the extension property with

respect to every P-anodyne map (and is therefore P-fibered, by virtue of Proposition B.1.6.

(c) For every object X ∈ (Set+∆)/P, the map X → EX is P-anodyne.

Let f : X → Y be a morphism in (Set+∆)/P. It follows from (c) and Example B.2.2 that f is a

P-equivalence if and only if E(f) is a P-equivalence. Using (b) and Lemma B.2.4, we deduce that

f is an equivalence if and only if for each edge e : ∆1 → S, the map E(f) induces a categorical

equivalence of simplicial sets after pulling back along e. Using (a) and Corollary HTT.A.2.6.14 ,

we deduce that the collection of P-equivalences in (Set+∆)/P is perfect, in the sense of Definition

HTT.A.2.6.12 .

We now wish to deduce the existence of a left proper, combinatorial model structure on

(Set+∆)/P such that the cofibrations are the monomorphisms and the weak equivalences are given

by the P-equivalences. It will suffice to show that (Set+∆)/P satisfies the hypotheses of Proposition

HTT.A.2.6.15 :
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(1) The collection of P-equivalences is perfect: this follows from the above arguments.

(2) The collection of P-equivalences is stable under pushouts by cofibrations: this follows from

Lemma B.2.3.

(3) Let f : X → Y be a morphism in (Set+∆)/P which has the right lifting property with respect

to every cofibration; we wish to show that f is a P-equivalence. To prove this, it suffices to

observe that f admits a section s and that the composition s ◦ f : X → X is homotopic to

the identity (that is, there exists a homotopy h : X × (∆1)] → X from idX to s ◦ f in the

category (Set+∆)/P).

We next claim that the simplicial structure on (Set+∆)/P is compatible with its model structure.

In view of Proposition HTT.A.3.1.7 , it will suffice to prove that for every object X ∈ (Set+∆)/P and

each n ≥ 0, the projection map p : X×(∆n)] → X is a P-equivalence. The inclusion i : {0}] ⊆ (∆n)]

determines a section s of p; it will therefore suffice to show that s is a P-equivalence. Lemma B.1.13

implies that i is P0-anodyne (where P0 is defined as in the statement of Lemma B.1.13). Using

Proposition B.1.9, we conclude that s is P-anodyne, so that s is a P-equivalence by Example B.2.2.

We now discuss the case of a general categorical pattern P = (MS , T, {pα : K/
α → S′}α∈A)

on S. Let P′ = (MS , T, ∅). We have already shown that (Set+∆)/P′ has the structure of a left

proper combinatorial simplicial model category. We may therefore define a model structure on the

category (Set+∆)/P to be the localization of (Set+∆)/P with respect to the generating P-anodyne

maps appearing in Definition B.1.1. It follows from Proposition HTT.A.3.7.3 that (Set+∆)/P is

again a left proper combinatorial simplicial model category.

To complete the proof, it will suffice to show that an object X ∈ (Set+∆)/P is fibrant if and

only if it is P-fibered. It follows from Proposition HTT.A.3.7.3 that X is fibrant if and only if the

following conditions are satisfied:

(i) The object X is fibrant in (Set+∆)/P′ : that is, X has the extension property with respect to

every cofibration f : Y → Y
′

which is a P′-equivalence.

(ii) For every generating P-anodyne map f : Y → Y
′
, the induced map q : Map]S(Y

′
, X) →

Map]S(Y ,X) is a homotopy equivalence of Kan complexes.

Suppose that X satisfies (ii). Note that for every P-anodyne map f , the map q is a Kan fibration

(Proposition B.1.14), and therefore a trivial Kan fibration. It follows that q is surjective on vertices,

so that X has the extension property with respect to every P-anodyne map and is therefore P-

fibered by virtue of Proposition B.1.6.

Conversely, suppose that X is P-fibered; we wish to show that X satisfies conditions (i) and

(ii). To prove (i), consider the map q : Map]S(Y
′
, X)→ Map]S(Y ,X). This map is a Kan fibration

(Proposition B.1.14) and a homotopy equivalence by virtue of our assumption that f is a P′-

equivalence (since X is P′-fibered). It follows that q is a trivial Kan fibration and therefore
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surjective on vertices, which proves (i). To prove (ii), it will suffice to show that q is a trivial

Kan fibration whenever f is P-anodyne. To see that q has the right lifting property with respect

to the inclusion ∂∆n ⊆ ∆n, we need to show that X has the extension property with respect to

the induced inclusion

f ′ = (Y × (∆n)])
∐

Y×(∂∆n)]

(Y
′ × (∂∆n)]) ⊆ Y ′ × (∆n)].

This follows from Proposition B.1.6, since f ′ is P-anodyne by virtue of Proposition B.1.9.

Remark B.2.5. Let P and P′ be categorical patterns, and let P×P′ be defined as in Definition

B.1.8. The formation of Cartesian products induces a functor

F : (Set+∆)/P × (Set+∆)/P′ → (Set+∆)/P×P′ .

With respect to the model structures of Theorem B.0.20, the map F is a left Quillen bifunctor.

To prove this, we must show that if f : X → X
′

is a cofibration in (Set+∆)/P and g : Y → Y
′

is a

cofibration in (Set+∆)/P′ , then the induced map

f ∧ g : (X
′ × Y )

∐
X×Y

(X × Y ′)→ X
′ × Y ′

is a cofibration, which is trivial if either f or g is trivial. The first claim is obvious, and the second

is equivalent to the requirement that the diagram

X × Y

��

i // X
′ × Y

��

X × Y ′ j // X
′ × Y ′

is a homotopy pushout square. For this, it suffices to show that the horizontal maps are weak

equivalences. We will prove that i is a weak equivalence; the proof that j is a weak equivalence

is similar. Choose a P-anodyne map f ′ : X
′ → X

′′
, where X

′′
is P-fibered. Proposition B.1.9

guarantees that the map X
′×Y → X

′′ → Y is (P×P′)-anodyne. It therefore suffices to show that

the composite map X × Y → X
′′ × Y is a (P×P′)-equivalence. We may therefore replace X

′
by

X
′′

and thereby reduce to the case where X
′

is P-fibered. By a similar argument, we can assume

that the map X → X
′

has the right lifting property with respect to all P-anodyne morphisms,

so that X is P-fibered as well. The P-equivalence f now admits a homotopy inverse, so that the

induced map X × Y → X
′ × Y admits a homotopy inverse as well.

Remark B.2.6. Let P be a categorical pattern, and let (Set+∆)/P be endowed with the model struc-

ture of Theorem B.0.20. Then the weak equivalences in (Set+∆)/P are precisely the P-equivalences.
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Let P be a categorical pattern on a simplicial set S, and regard (Set+∆)/P as endowed with the

model structure of Theorem B.0.20. An object of (Set+∆)/P is fibrant if and only if it is P-fibered.

Under some mild assumptions on P, we can explicitly describe all fibrations between fibrant objects

of (Set+∆)/P:

Proposition B.2.7. Let P = (MS , T, {pα : K/
α → S}α∈A) be a categorical pattern on an ∞-

category S. Suppose that MS contains all equivalences in S and that T contains all 2-simplices

∆2 → S whose restriction to ∆{0,1} in an equivalence in S. Let Y = (Y,MY ) be a P-fibered object

of (Set+∆)/P, and let π : Y → S denote the underlying map of simplicial sets. Let X = (X,MX)

be another object of (Set+∆)/P, and let f : X → Y be a morphism. The following conditions are

equivalent:

(a) The map p is a fibration in (Set+∆)/P.

(b) The object X is P-fibered, and the underlying map of simplicial sets X → Y is a categorical

fibration.

(c) The map p exhibits X as a π∗P-fibered object of (Set+∆)/π∗P.

The proof of Proposition B.2.7 will require some preliminaries. We begin with some remarks

on the functoriality of the construction P 7→ (Set+∆)/P (for a generalization, see Theorem B.4.2).

Definition B.2.8. Let f : S → S′ be a map of simplicial sets. Suppose we are given categorical

patterns P = (MS , T, {pα : K/
α → S}α∈A) and P′ = (M ′S , T

′, {p′α : K ′α
/ → S′}α∈A′) on S and S′,

respectively. We will say that f is compatible with P and P′ if the following conditions are satisfied:

• The map f carries MS into MS′ .

• The map f carries T into T ′.

• For each α ∈ A, the composition

K/
α
pα→ S

f→ S′

belongs to {p′α : K ′α
/ → S′}α∈A′).

Proposition B.2.9. Let f : S → S′ be a map of simplicial sets, and suppose that f is compatible

with categorical patterns P and P′ on S and S′, respectively. Then composition with f induces a

left Quillen functor f! : (Set+∆)/P → (Set+∆)/P′ .

Proof. It is clear that f! preserves cofibrations. It also admits a right adjoint, given by the pullback

functor f∗ described by the formula f∗X ' X ×(S′,MS′ )
(S,MS). To complete the proof, it will

suffice to show that f! preserves P-equivalences. Let X,Y ∈ (Set+∆)/P, and let α : X → Y be a
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P-equivalence. We wish to show that f!(α) is a P′-equivalence. For this, it suffices to show that

for every P′-fibered object Z ∈ (Set+∆)/P′ , the induced map

Map]S′(f!Y , Z)→ Map]S′(f!X,Z)

is a homotopy equivalence. The left hand side can be identified with Map]S(Y , f∗Z), and the right

hand side with Map]S(X, f∗Z). The desired result now follows from the assumption that α is a

P-equivalence, and the observation that f∗Z is P-fibered.

Example B.2.10. For any categorical pattern P = (MS , T, {pα : K/
α → S}α∈A) on any simplicial

set S, the forgetful functor (Set+∆)/P → Set+
∆ is a left Quillen functor, where we endow Set+

∆ with the

model structure determined by Theorem B.0.20 for the categorical pattern P0 = (M0, T0, {K/
α →

∆0}α∈A) on ∆0 (here M0 and T0 consist of all edges and 2-simplices of ∆0, respectively). If each of

the simplicial sets Kα is contractible, then this coincides with the usual model structure on Set+
∆

(Remark B.0.28).

Lemma B.2.11. Let P = (MS , T, {pα : K/
α → S}α∈A) be a categorical pattern on an ∞-category

S, and let X = (X,M) ∈ (Set+∆)/P be P-fibered. Assume that MS is the collection of all equiva-

lences in S and that T contains all 2-simplices ∆2 → S whose restriction to ∆{0,1} in an equivalence

in S. Then M is the collection of all equivalences in X.

Proof. Let p : X → S denote the underlying map of simplicial sets. The set M consists of all locally

p-coCartesian morphisms f in X such that p(f) is an equivalence in S. In view of Proposition

HTT.2.4.1.5 , it will suffice to show that every such morphism is p-coCartesian. This follows from

Lemma B.1.7 together with our assumption on the set of 2-simplices T .

Proof of Proposition B.2.7. Fix a categorical pattern P = (MS , T, {pα : K/
α → S}α∈A) on an ∞-

category S, where MS contains all equivalences in S and T contains all 2-simplices ∆2 → S whose

restriction to ∆{0,1} in an equivalence in S. Let p : X → Y be a morphism in (Set+∆)/P, where Y

is P-fibered. We wish to prove that conditions (a), (b) and (c) of Proposition B.2.7 are equivalent.

We first prove that (a)⇒ (b). Assume that p is a fibration in (Set+∆)/P: we wish to prove that

X is P-fibered and that the underlying map of simplicial sets X → Y is a categorical fibration.

The first assertion is obvious; to prove the second, we must show that every lifting problem of the

form

A[ //

i
��

X

��
B[ //

>>

Y

admits a solution, provided that the underlying map of simplicial sets A→ B is a trivial cofibration

with respect to the Joyal model structure. To prove this, it will suffice to show that the map i

is a P-equivalence. By virtue of Proposition B.2.9, it will suffice to prove this after replacing P



1490 APPENDIX B. CATEGORICAL PATTERNS

by the categorical pattern P′ = (M ′S , T, ∅), where M ′S is the collection of all equivalences in S.

We must now show that for every P-fibered object Z = (Z,M) ∈ (Set+∆)/P, the induced map

θ : Map]S(B[, Z) → Map]S(A[, Z) is a weak homotopy equivalence. We observe that Z is an ∞-

category and MZ can be identified with the collection of all equivalences in Z (Lemma B.2.11). For

every simplicial set K and every ∞-category C, we have a commutative diagram

Map]S(B[, Z) //

θ
��

Fun(B,Z)' //

θ′

��

Fun(B,S)0

θ′′

��
Map]S(A[, Z) // Fun(A,Z)0 // Fun(A,S)'.

where the rows are homotopy fiber sequences. Consequently, to prove that θ is a homotopy equiva-

lence, it suffices to show that θ′ and θ′′ are homotopy equivalences. This follows from the observation

that the maps

Fun(B,Z)→ Fun(A,Z) Fun(B,S)→ Fun(A,S)

are categorical equivalences (in fact, trivial Kan fibrations), since A → B is a trivial cofibration

and the simplicial sets S and Z are fibrant (with respect to the Joyal model structure).

We now show that (b)⇒ (a). Assume that X is P-fibered and that the underlying map X → Y

is a categorical fibration; we wish to show that p : X → Y is a fibration in (Set+∆)/P. We must

prove that every lifting problem of the form

A
f0 //

i
��

X

p
��

B
g //

??

Y

admits a solution, provided that i is a monomorphism and a P-equivalence. Since X is P-fibered,

the lifting problem

A
f0 //

i
��

X

��
B //

f ′
;;

(S,MS).

admits a solution. The map g′ = p ◦ f ′ does not necessarily coincide with g. However, g and g′

agree on A and therefore determine a map

G0 : (A× (∆1)])
∐

A×(∂∆1)]

(B × (∂∆1)])→ Y .
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Consider the diagram

(A× (∆1)])
∐
A×(∂∆1)](B × (∂∆1)])

G0 //

j

��

Y

��
B × (∆1)] //

G

33

B
π◦g // (S,MS).

Since the map j is a P-equivalence (Proposition B.1.9) and X is P-fibered, there exists a map G

rendering this diagram commutative. We regard G as an equivalence from g to p ◦ f ′ in Fun(B, Y ).

Since p is a categorical fibration, it induces a fibration X\ → Y \ in the category of marked simplicial

sets; here X\ = (X,EX) where EX is the collection of all equivalences in X and Y \ is defined

similarly. It follows that the lifting problem

(A[ × (∆1)])
∐
A[×{1}](B

[ × {1}]) //

��

A[
f ′ // X\

��
B[ × (∆1)]

G //

F

33

Y \

admits a solution. We can regard F as an equivalence from f to f ′ in Fun(B,X), where f is an

extension of f0 lifting g. Since f is equivalent to f ′, it carries marked edges of A to marked edges

of X, and therefore constitutes a solution to the original lifting problem.

We next show that (a) ⇒ (c). Assume that f is a fibration in (Set+∆)/P. We must prove that

every lifting problem of the form

A
f0 //

i
��

X

p
��

B
g //

??

Y

admits a solution, provided that i is a trivial cofibration in (Set+∆)/π∗P; here π denotes the projection

Y → S. Since p is assumed to be a fibration in (Set+∆)/P, it suffices to show that i is a trivial

cofibration in (Set+∆)/P, which follows from Proposition B.2.9.

Finally, we show that (c) ⇒ (b). Assume that X is (π∗P)-fibrered. Replacing P by π∗P

and invoking the implication (a) ⇒ (b), we deduce that X → Y is a categorical fibration. It will

therefore suffice to show that X is P-fibered. We will show that X satisfies conditions (1), (2), (3),

(4), and (6) of Definition B.0.19, together with condition (5′) of Remark B.0.26:

(1) The underlying map of simplicial sets q : X → S is an inner fibration. This is clear, since

q = π ◦ p, where both π and p are inner fibrations.

(2) For each edge ∆1 → S belonging to MS , the induced map q∆1 : X ×S ∆1 → ∆1 is a

coCartesian fibration. In other words, we must show that for every object x ∈ X and every
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edge e : q(x) → s belonging to MS , there exists a locally q-coCartesian edge e : x → s with

q(e) = e. Since Y is P-fibered, we can choose a locally π-coCartesian edge ẽ : p(x)→ s̃ with

π(ẽ) = e. Moreover, the edge ẽ belongs to MY , so we can choose a locally p-coCartesian edge

e with p(e) = ẽ (note that e belongs to MX). To complete the proof, it will suffice to show

that e is locally q-coCartesian: in other words, that it determines a q∆1-coCartesian edge e′

of X ×S ∆1. We note that q∆1 factors as a composition

X ×S ∆1
q′
∆1−→ Y ×S ∆1 π∆1→ ∆1,

and that q′∆1(e′) is π∆1-coCartesian by construction. In view of Proposition HTT.2.4.1.3 , it

suffices to show that e′ is q′∆1-coCartesian. This follows from Lemma B.1.7, since the image

of every 2-simplex σ of X ×S ∆1 in Y is a thin 2-simplex with respect to π∗P (since the

image of σ in S is degenerate).

(3) An edge e : x → x′ of X belongs to MX if and only if e = q(e) belongs to MS and e locally

q-coCartesian. The “if” direction follows from the proof of (2). For the converse, we observe

that if e ∈ MS then we can apply the construction of (2) to produce a locally q-coCartesian

edge e′ : x → x′′ of X covering e, where e′ ∈ MX . If e is also locally q-coCartesian, then e

and e′ are equivalent, so e also belongs to MX .

(4) Given a commutative diagram

∆{0,1}

��

e // X

��
∆2 σ // S,

if e ∈ MX and σ ∈ T , then e determines an q∆2-coCartesian edge of X ×S ∆2, where

q∆2 : X×S∆2 → ∆2 denotes the projection map. To prove this, we factor q∆2 as a composition

X ×S ∆2 p∆2−→ Y ×S ∆2 π∆2−→ ∆2.

Since Y is P-fibered and p(e) ∈ MY , we conclude that the image of e in Y ×S ∆2 is π∆2-

coCartesian. In view of Proposition HTT.2.4.1.3 , it will suffice to show that e determines

a p∆2-coCartesian edge of X ×S ∆2. This follows from Lemma B.1.7, since e determines a

locally p∆2-coCartesian edge of X ×S ∆2 and the image of every 2-simplex of X ×S ∆2 in Y

is thin with respect to π∗P.

(5′) For each α ∈ A, every lifting problem of the form

K]
α

//

��

X

��
(K/

α)]
pα //

::

(S,MS)
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admits a solution. We first invoke the fact that Y is P-fibered to solve the induced lifting

problem

K]
α

//

��

Y

��
(K/

α)]
pα //

f

::

(S,MS).

We then invoke the assumption that X is π∗P fibered to solve the lifting problem

K]
α

//

��

X

��
(K/

α)]
f //

==

Y .

(6) For every index α ∈ A, every map pα : (K/
α)] → X lifting pα : (K/

α)] → (X,S) is a q-limit

diagram. Invoking the assumption that Y is P-fibered, we deduce that p̃α = p◦pα is a π-limit

diagram in Y . Moreover, p̃α is one of the diagrams defining the categorical pattern π∗P, so

our assumption that X is P-fibered ensures that pα is a p-limit diagram. Since q = π ◦ p, the

desired result now follows from Proposition HTT.4.3.1.5 .

B.3 Flat Inner Fibrations

Let C and D be categories. A distributor from C to D is a functor M : Cop×D → Set. Any

functor F : C → D determines a distributor MF from C to D, given by the formula MF (C,D) =

HomD(FC,D). Consequently, we can think of a distributor as a kind of generalized functor. As with

ordinary functors, distributors can be composed: if we are given distributors M : Cop×D → Set

and N : Dop×E→ Set, then the composition N ◦M : Cop×E→ Set is given by the formula

(N ◦M)(C,E) =

∫
D∈D

M(C,D)×N(D,E),

(the right hand side indicates the coend of the functor M(C, •)×N(•, E) along D).

The above ideas can be reformulated using the language of correspondences. Recall that a

correspondence from a category C to another category D is a category category M containing C

and D as full subcategories, equipped with a functor p : M → [1] such that C = p−1{0} and

D = p−1{1}. Every correspondence M from C to D determines a distributor M , given by the

formula M(C,D) = HomM(C,D). Conversely, if we are given a distributor M , we can construct a

correspondence M as follows:

• An object of M is either an object of C or an object of D.
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• Morphisms in M are given by the formula

HomM(X,Y ) =


HomC(X,Y ) if X,Y ∈ C

HomD(X,Y ) if X,Y ∈ D

M(X,Y ) if X ∈ C, Y ∈ D

∅ if X ∈ D, Y ∈ C .

We can summarize the above discussion informally as follows: given a pair of categories C and D,

giving a distributor from C to D is equivalent to giving a correspondence from C to D.

The composition of distributors has a natural interpretation in the language of correspondences.

To see this, suppose we are given categories C, D, and E. Consider the problem of constructing

a category X equipped with a functor p : X → [2] such that C = p−1{0}, D = p−1{1}, and

E = p−1{2}. Any such category X determines distributors M : Cop×D→ Set, N : Dop×E→ Set,

and P : Cop×E→ Set, given by the formulas

M(C,D) = HomX(C,D) N(D,E) = HomX(D,E) P (C,E) = HomX(C,E).

The composition law on X determines (and is determined by) a natural transformation of distrib-

utors (N ◦M)→ P , where N ◦M is defined as above.

Now suppose that we are not given X: instead, we are given a correspondence M from C to D and

another correspondence N from D to E. Then M and N determine distributors M : Cop×D→ Set

and N : Dop×E→ Set. From the above analysis, we see that the following data are equivalent:

(a) A category X equipped with a functor p : X → [2] such that p−1{0 < 1} = M and p−1{1 <
2} = N.

(b) A distributor P : Cop×E→ Set together with a natural transformation α : (N ◦M)→ P .

Neither type of data is uniquely determined by M and N, even up to isomorphism. However, there

is always a canonical choice for the data of type (b): namely, we can take P = N ◦M and α to be

the identity map. The equivalence between (b) and (a) then shows that there is a canonical choice

for the category X. We will refer to this canonical choice as the composition of the correspondences

M and N. Concretely, it can be described as the pushout M
∐

DN.

Our goal in this section is to explain how some of the above ideas can be carried over to the

∞-categorical setting. Motivated by the preceding discussion, we introduce the following definition:

Definition B.3.1. Suppose we are given a functor of ∞-categories p : X → ∆2. We will say that

p is flat if the inclusion X×∆2Λ2
1 ↪→ X is a categorical equivalence.
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In other words, a functor p : X→ ∆2 is flat if the diagram

X×∆2{1} //

��

X×∆2∆{0,1}

��
X×∆2∆{1,2} // X

is a homotopy pushout diagram (with respect to the Joyal model structure). More informally,

p is flat if it exhibits the correspondence X×∆2∆{0,2} as the composition of the correspondences

X×∆2∆{0,1} and X×∆2∆{1,2}.

Our first goal in this section is to establish the following recognition criterion for flat maps:

Proposition B.3.2. Let X be an∞-category equipped with a functor p : X→ ∆2. Let C = p−1{0},
let D = p−1{1}, and let E = p−1{2}. The following conditions are equivalent:

(1) The map p is flat.

(2) For every morphism f : C → E in X from an object C ∈ C to an object E ∈ E, the∞-category

DC/ /E = D×XXC/ /E is weakly contractible.

Remark B.3.3. Criterion (2) of Proposition B.3.2 can be regarded as a version of the formula

(N ◦M)(C,E) =

∫
D∈D

M(C,D)×N(D,E)

describing the composition of a pair of distributors.

Example B.3.4. Let p : X → ∆2 be an inner fibration of simplicial sets. Let C = p−1{0},
D = p−1{1}, and E = p−1{2}. Suppose that for every object C ∈ C, there exists a p-coCartesian

morphism f : C → D, where D ∈ D. Then p is flat.

To prove this, consider an arbitrary morphism g : C → E in M, where C ∈ C and E ∈ E.

Choose a p-coCartesian morphism f : C → D in M for D ∈ D. Using the assumption that f is

p-coCartesian, we can find a commutative diagram

D
h

  
C

f
>>

g // E

which we can identify with an object D ∈ DC/ /E lifting D. To show that DC/ /E is weakly

contractible, it suffices to show that D is an initial object of DC/ /E . In view of Proposition

HTT.1.2.13.8 , it will suffice to show that D is an initial object of DC/, which is equivalent to the

assertion that f is locally p-coCartesian.
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Example B.3.5. Let p : X → ∆2 be an inner fibration of simplicial sets. Let C = p−1{0},
D = p−1{1}, and E = p−1{2}. Suppose that for every object E ∈ E, there exists a p-Cartesian

morphism f : D → E, where D ∈ D. Then p is flat. The proof is identical to that of Example

B.3.4.

The proof of Proposition B.3.2 will require some preliminaries.

Lemma B.3.6. Let C be a simplicial category equipped with a functor C→ [1], where [1] denotes

the (discrete) category {0 < 1}. Suppose that the inclusion C0 ↪→ C is a cofibration of simplicial

categories. Then, for every object D ∈ C1, the functor C 7→ MapC(C,D) is a projectively cofibrant

object of F ∈ (Set∆)C
op
0 .

Proof. We must show that every trivial projective fibration α : G→ G′ in (Set∆)C
op
0 has the right

lifting property with respect to F . Define a new simplicial category C[G] as follows:

(i) The objects of C[G] are the objects of C.

(ii) For C,C ′ ∈ C, we have

MapC[G](C,C
′) =


∅ if C ∈ C1, C

′ ∈ C0

MapC(C,C ′)×G(C)MapC(C′,D) if C ∈ C0, C
′ ∈ C1

MapC(C,C ′) otherwise

Let C[G′] be defined similarly. Unwinding the definitions, we see that α has the right lifting property

with respect to F if and only if the induced map α : C[G] → C[G′] has the right lifting property

with respect to the inclusion i : C0 ⊆ C. Since i is a cofibration, this follows from the observation

that α is a trivial fibration of simplicial categories.

Lemma B.3.7. Suppose we are given an inner fibration of simplicial sets p : X → Λ2
1. Let C be an

initial object of M = p−1∆{0,1}, let E be a final object of N = p−1∆{1,2}, let D = M∩N = p−1{1},
and let f : X → M be a categorical equivalence from X to an ∞-category M. Then there is a

canonical isomorphism MapM(f(C), f(E)) ' [D] in the homotopy category H of spaces.

Proof. We can identify MapM(f(C), f(E)) with the simplicial set MapC[X](C,E). Let F : C[D]→
Set∆ be the functor given by the formula F (D) = MapC[M](C,D), and let G : C[D]op → Set∆

be given by the formula G(D) = MapC[N](D,E). Since C[X] is isomorphic to the pushout

C[M]
∐

C[D] C[N], the simplicial set MapC[X](C,E) can be computed as the coend∫
D∈C[D]

F (D)×G(D).

Lemma B.3.6 guarantees that the functor G is projectively cofibrant, so the construction

H 7→
∫
D∈C[D]

H(D)×G(D)
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carries weak equivalences between injectively cofibrant objects of (Set∆)C[D] to weak homotopy

equivalences of simplicial sets (Remark HTT.A.2.9.27 ). Since C is an initial object of M, the

canonical map F → F0 is a weak equivalence, where F0 : C[D] → Set∆ is the constant functor

taking the value ∆0. It follows that α induces a homotopy equivalence

MapC[X](C,E)→ lim−→G.

Since E ∈ N is final, we also have a weak equivalence G→ G0, where G0 : C[D]op → Set∆ denotes

the constant functor taking the value 0. It follows that G is a cofibrant replacement for G0 with

respect to the projective model structure on (Set∆)C[D]op , so we can identify lim−→G with a homotopy

colimit of the diagram G0. Applying Theorem HTT.4.2.4.1 , we can identify this homotopy colimit

with a colimit of the constant diagram Dop → S taking the value ∆0. This colimit is represented

by the simplicial set D in the homotopy category H (Corollary HTT.3.3.4.6 ).

Proof of Proposition B.3.2. Let X = X×∆2Λ2
1. Using the small object argument, we can factor

the inclusion X ↪→ X as a composition

X
i
↪→ X′

q→ X

where i is inner anodyne, the map q is an inner fibration, and i induces an isomorphism X →
X′×∆2Λ2

1. We will abuse notation by identifying X (and therefore also the ∞-categories C,D,E ⊆
X) with a simplicial subset of X′ via the map i.

Condition (1) is equivalent to the assertion that q is an equivalence of ∞-categories. Since q

is bijective on vertices, this is equivalent to the assertion that q induces a homotopy equivalence

θ : MapX′(C,E)→ MapX(C,E) for every pair of objects C,E ∈ X′. This condition is obvious unless

C ∈ C and E ∈ E. In the latter case, it is equivalent to the requirement that for every morphism

f : C → E in X, the homotopy fiber of the map θ (taken over the point f ∈ MapX(C,E)) is

contractible. It will therefore suffice to prove the equivalence of the following conditions:

(1′) The homotopy fiber of θ over {f} is contractible.

(2′) The ∞-category DC/ /E is weakly contractible.

Suppose we are given a right fibration X→ X, and that we can lift f to a morphism f : C → E

in X. Let X
′
= X′×XX; it follows from Proposition HTT.3.3.1.3 that the inclusion X×∆2 Λ2

1 ↪→ X
′

remains a categorical equivalence. Using Proposition HTT.2.4.4.2 , we deduce the existence of a

homotopy pullback diagram

Map
X
′(C,E)

θ //

��

MapX(C,E)

��
MapX′(C,E)

θ //MapX(C,E).
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It follows that (1′) is satisfied by the morphism f of X if and only if it is satisfied by the morphism

f over X. Proposition HTT.2.1.2.5 guarantees that the map XC/ /E → XC/ /E is a trivial Kan

fibration, so that (2′) is satisfied by f if and only if it is satisfied by f . It follows that we are free

to replace M by X = X/E , and thereby reduce to the case where E is a final object of X. A similar

argument shows that we can assume that C is an initial object of X. In this special case, the space

MapX(C,E) is contractible, so we can reformulate (1′) as follows:

(1′′) The space MapX′(C,E) is contractible.

If C is an initial object of X, then XC/ → X is a trivial Kan fibration. Moreover, if E is a final object

of X then it is a final object of XC/ (Proposition HTT.1.2.13.8 ), so the projection XC/ /E → XC/

is also a trivial Kan fibration. We therefore obtain the following reformulation of condition (2′):

(2′′) The ∞-category D is weakly contractible.

The equivalence of (1′′) and (2′′) now follows from Lemma B.3.7.

For many applications, it is useful to generalize Definition B.3.1 to the case of an arbitrary base

simplicial set S.

Definition B.3.8. Let p : X → S be an inner fibration of simplicial sets, and let σ be a 2-simplex

of S. We will say that p is flat over σ if the induced inner fibration X ×S ∆2 → ∆2 is flat, in the

sense of Definition B.3.1. We will say that p is flat if it is flat over every 2-simplex of S.

Remark B.3.9. Let p : X → S be an inner fibration of simplicial sets. Using Proposition B.3.2,

we see that p is flat if and only if, for every 2-simplex

s′

��
s

f //

@@

s′′

in S and every edge f : x → y in X lifting f , the ∞-category Xx/ /y ×Ss/ /s′′ {s
′} is weakly

contractible.

Example B.3.10. Let p : X → S be an inner fibration of simplicial sets. Then p is flat over any

degenerate 2-simplex of S, since the induced functor X ×S ∆2 → ∆2 satisfies the hypotheses of

either Example B.3.4 or Example B.3.5. It follows that an inner fibration p : X → ∆2 is flat in the

sense of Definition B.3.8 if and only if it is flat in the sense of Definition B.3.1.

Example B.3.11. Let p : X → S be a coCartesian fibration of simplicial sets. Then p is a

flat categorical fibration: this is an immediate consequence of Example B.3.4. Similarly, if p is a

Cartesian fibration, then p is flat.
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Remark B.3.12. Suppose given a pullback diagram of simplicial sets

X ′
q //

p′

��

X

p

��
S′ // S.

If p is a flat inner fibration, then so is p′.

Proposition B.3.13. Let q : X → S be a flat inner fibration of simplicial sets, and let x ∈ X be

a vertex. Then the induced map Xx/ → Sq(x)/ is a flat inner fibration.

Proof. Fix a 2-simplex

s′

��
s

f //

@@

s′′

in Sq(x)/, and let f : y → z be an edge of Xx/ lifting f . We wish to prove that the ∞-category

C = (Xx/)y/ /z ×(Sq(x)/)s/ /s′′
{s′}

is weakly contractible. Let p : Xx/ → X be the projection map; then p induces a trivial Kan

fibration

C→ C0 = Xp(y)/ /p(z) ×Sqp(y)/ /qp(z)
∆0.

Since q is flat, the∞-category C0 is weakly contractible, so that C is weakly contractible as desired.

Proposition B.3.2 admits the following generalization:

Proposition B.3.14. Let p : X → S be an inner fibration of simplicial sets. The following

conditions are equivalent:

(1) For every inner anodyne map A ↪→ B of simplicial sets and every map B → S, the induced

map X ×S A→ X ×S B is a categorical equivalence.

(2) The inner fibration p is flat.

The remainder of this section is devoted to the proof of Proposition B.3.14. We begin by noting

some of its consequences.

Corollary B.3.15. Let p : C→ D be a flat categorical fibration between ∞-categories. Then, for

every categorical equivalence of simplicial sets A→ B and every diagram B → D, the induced map

θ : A×D C→ B ×D C is an equivalence of ∞-categories.
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Proof. Every map f : B → D factors as a composition

B
f ′→ B′

f ′′→ D,

where f ′ is inner anodyne and f ′′ is an inner fibration (so that B′ is an ∞-category). We obtain a

commutative diagram

A×D C
β //

θ

&&

B′ ×D C

B ×D C .

α
88

Proposition B.3.14 implies that α is a categorical equivalence. By the two-out-of-three property, it

suffices to show that β is a categorical equivalence. We may therefore replace B by B′ and thereby

reduce to the case where B is an ∞-category.

The map g : A→ B factors as a composition

A
g′→ A′

g′′→ B

where g′ is inner anodyne and g′′ is an inner fibration (so that A′ is an ∞-category). We obtain a

commutative diagram

A×D C
θ //

γ

&&

B ×D C

A′ ×D C .

δ
88

Proposition B.3.14 implies that γ is a categorical equivalence. Using the two-out-of-three property,

we are reduced to proving that δ is a categorical equivalence. We may therefore replace A by A′

and thereby reduce to the case where A is an ∞-category.

Consider the pullback diagram

A×D C
θ //

��

B ×D C

��
A

g // B.

Since the vertical maps in this diagram are categorical fibrations and the simplicial sets A and B

are ∞-categories, Proposition HTT.A.2.4.4 guarantees that this diagram is homotopy Cartesian

(with respect to the Joyal model structure). Since the g is a categorical equivalence, it follows that

θ is a categorical equivalence as well.

Corollary B.3.16. Let f : C → D and g : D → E be flat categorical fibrations between ∞-

categories. Then g ◦ f is a flat categorical fibration.
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Proof. Since g ◦f is evidently a categorical fibration, it will suffice to show that g ◦f is flat. Choose

a 2-simplex σ : ∆2 → E; we wish to show that the inclusion C×EΛ2
1 ⊆ C×E∆2 is a categorical

equivalence. Let D′ = D×E∆2 and D′′ = D×EΛ2
1. Since g is flat, the inclusion D′′ ⊆ D′ is a

categorical equivalence. Since f is flat, Corollary B.3.15 guarantees that the inclusion

C×EΛ2
1 ' C×DD′′ ⊆ C×DD′ ' C×E∆2

is a categorical equivalence, as desired.

The proof of Proposition B.3.14 will require some preliminaries.

Proposition B.3.17. Let p : M → ∆1 be a correspondence from an ∞-category C = M×∆1{0}
to D = M×∆1{1}. Let X = Map∆1(∆1,M) be the ∞-category of sections of the map p. Then the

canonical map

C
∐

X×{0}

(X×∆1)
∐

X×{1}

D→M

is a categorical equivalence.

Proof. For every ∞-category A, we let A\ denote the marked simplicial set (A,MA), where A

is the collection of all equivalences in A. Since the category of marked simplicial sets is Quillen

equivalent to the category of simplicial sets (with the Joyal model structure), it will suffice to prove

the following:

(A) The diagram

X\×(∂∆{1,2})[ //

��

C\×D\

��
X\×(∆{1,2})[ //M\

is a homotopy pushout square of marked simplicial sets.

To prove this, we let Y denote the full subcategory of Fun(∆1,M) × ∆3 spanned by those pairs

(f : A→ A′, i) satisfying one of the following conditions:

• We have i = 0 and f is an equivalence in C.

• We have i = 1 or i = 2 and f belongs to X.

• We have i = 3 and f is an equivalence in D.

For each simplicial subset K ⊆ ∆3, we let YK = Y×∆3K, and let YK denote the marked simplicial

set (YK ,MK), where MK is the collection of all edges α : (f, i) → (f ′, i′) in YK satisfying one of

the following three conditions:
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• The map α is an equivalence in Y.

• We have i = 0, i′ = 1, and α corresponds to a commutative diagram

C

f
��

g // C ′′

f ′

��
C ′ // D

for which g is an equivalence.

• We have i = 2, i′ = 3, and α corresponds to a commutative diagram

C

f
��

// D

f ′

��
D′′

g // D′

for which g is an equivalence.

We observe that there is a retraction r of Y onto the full subcategory Y∆{0,2,3} , which carries

an object f : C → D of Y{1} to the object idC ∈ Y{0}. This retraction is equipped with a natural

transformation r → idY, which determines a map of marked simplicial sets Y∆3 × (∆1)] → Y∆3 .

Using this deformation retraction, we deduce the following:

(∗) Let S be a subset of {0, 2, 3} containing {0}. Then the inclusion Y∆S ⊆ Y∆S∪{1} is a weak

equivalence of marked simplicial sets.

A similar argument proves:

(∗′) Let S be a subset of {0, 1, 3} containing {3}. Then the inclusion Y∆S ⊆ Y∆S∪{2} is a weak

equivalence of marked simplicial sets.

Let φ : ∆3 → ∆1 be the map characterized by φ−1{0} = ∆{0,1} ⊆ ∆3, and consider the map

θ : Y ⊆ Fun(∆1,M)×∆3 id×φ−→ Fun(∆1,M)×∆1 →M .

Consider the diagram

C\ //

id
((

Y{0} // Y∆{0,1}

θ0
��

C\ .

Using (∗) and the observation that the diagonal inclusion C → Y{0} is an equivalence of ∞-

categories, we deduce that θ0 is a weak equivalence of marked simplicial sets. A similar argu-

ment gives an equivalence of marked simplicial sets Y∆{2,3} → D\. Using this observation, we can

reformulate (A) as follows:
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(B) The diagram

Y{1}
∐

Y{2} //

��

Y∆{0,1}
∐

Y∆{2,3}

��
Y∆{1,2}

//M\

is a homotopy pushout square of marked simplicial sets.

We have a commutative diagram of marked simplicial sets

Y∆{0,3}

β1

��

β0

""
Y∆3 //M\

YK

β2

OO

β3

<<

where K = ∆{0,1}
∐
{1}∆{1,2}

∐
{2}∆{2,3} ⊆ ∆3. We wish to prove that β3 is a weak equivalence

of marked simplicial sets. Since β0 is an isomorphism of marked simplicial sets, it suffices to show

that β1 and β2 are weak equivalences of marked simplicial sets.

To prove that β1 is a weak equivalence, we factor β1 as a composition

Y∆{0,3}
β′1−→ Y∆{0,1,3}

β′′1−→ Y∆3 .

Assertion (∗) implies that β′1 is a weak equivalence, and assertion (∗′) implies that β′′1 is a weak

equivalence.

To prove that β2 is a weak equivalence, we factor β2 as a composition

YK
β′2−→ Y∆{0,1,2}

∐
{2}∆{2,3}

β′′2−→ Y∆{0,1,2}
∐

∆{1,2} ∆{1,2,3}
β′′′2−→ Y∆3 .

The map β′2 is a pushout of the inclusion

Y
\

∆{0,1}

∐
Y
\
{1}

Y
\

∆{1,2}
→ Y

\

∆{0,1,2}
.

Consequently, to prove β′2 it suffices to show that the map Y∆{0,1,2} → ∆{0,1,2} is a flat inner fibration,

which follows from Example B.3.5. The same argument shows that β′′2 is a weak equivalence. The

map β′′′2 is a pushout of the inclusion

Y
\

∆{0,1,2}
∐

∆{1,2} ∆{1,2,3}
→ Y\ .
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To complete the proof, it will suffice to show that this map is a weak equivalence of marked simplicial

sets, which is equivalent to the requirement that the composite map

Y→ ∆3 φ′→ ∆2

is a flat inner fibration (here φ′ is the map characterized by the property that φ′−1{1} = ∆{1,2} ⊆
∆3).

In view of Proposition B.3.2, we must show that for every object C : C → C ′ of Fun(∆1,C) '
Y{0} and every object D : D → D′ of Fun(∆1,D) ' Y{3}, the simplicial set YC/ /D ×∆3∆{1,2} is

weakly contractible. This simplicial set can be identified with the product ∆1 × E, where E =

Fun(∆1,M)C/ /D ×Fun(∆1,M) X. To complete the proof, we will show that the ∞-category E is

weakly contractible.

We observe that an object of E can be identified with a commutative diagram

C

C
��

γ // C ′′

��

// D

D
��

C ′ // D′′
γ′ // D′

in M, where C ′′ ∈ C and D′′ ∈ D. Let E0 denote the full subcategory of E spanned by those objects

for which γ is an equivalence. The inclusion E0 ⊆ E admits a right adjoint, and is therefore a

weak homotopy equivalence. It will therefore suffice to show that E0 is weakly contractible. Let E1

denote the full subcategory of E0 spanned by those diagrams for which γ′ is an equivalence. The

inclusion E1 ⊆ E0 admits a left adjoint, and is therefore a weak homotopy equivalence. It therefore

suffices to show that E1 is weakly contractible. We complete the proof by observing that E1 is a

contractible Kan complex.

Lemma B.3.18. Let p : M → ∆3 be a flat inner fibration. Let f : C → D be a morphism in M,

where C ∈M0 and D ∈M3. Then the ∞-category N = MC/ /D ×∆3∆{1,2} is weakly contractible.

Proof. Let X denote the ∞-category Fun∆{1,2}(∆
{1,2},N). According to Proposition B.3.17, we

have a categorical equivalence

N1

∐
X×{1}

(X×∆1)
∐

X×{2}

N2 → N .

Since N1 and N2 are weakly contractible (by virtue of the assumption that p is flat over ∆{0,1,3}

and ∆{0,2,3}), it will suffice to show that X is weakly contractible. Let q : X → N2 be the map

given by evaluation at {2}. Using Corollary HTT.2.4.7.12 , we deduce that q is a coCartesian

fibration. Since N2 is weakly contractible, it will suffice to show that the fiber q−1E is weakly

contractible, for each E ∈ N2 (Lemma HTT.4.1.3.2 ). This fiber can be identified with the fiber

product {1}×∆3 (MC/ /D)/E , which is categorically equivalent to {1}×∆3 (MC/ /D)/E (Proposition
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HTT.4.2.1.5 ). Let E0 denote the image of E in M. We have a trivial Kan fibration (MC/ /D)/E →
MC/ /E0

. It therefore suffices to show that {1} ×∆3 MC/ /E0
is weakly contractible, which follows

from the assumption that p is flat over the 2-simplex ∆{0,1,2}.

Lemma B.3.19. Let p : M → ∆n be a flat inner fibration, and let q : ∆n → ∆m be a map of

simplices which is surjective on vertices. Then the composite map q ◦ p is a flat inner fibration.

Proof. If n−m > 1, then we can factor q as a composition

∆n q′→ ∆n−1 q′′→ ∆m

where q′ and q′′ are surjective on vertices. Using descending induction on n −m, we can assume

that n − m ≤ 1. If n = m there is nothing to prove, so we may suppose that n = m + 1. To

prove that q ◦ p is flat, it suffices to show that it is flat over every nondegenerate 2-simplex of ∆m.

Replacing M by the pullback M×∆m∆2, we can reduce to the case where m = 2 and n = 3.

Fix objects C ∈ (q ◦ p)−1{0} and D ∈ (q ◦ p)−1{2} and a morphism f : C → D in M; we wish

to prove that the ∞-category MC/ /D ×∆2{1} is weakly contractible. Let i ∈ [2] be the unique

integer such that q−1{i} is a 1-simplex of ∆3. If i = 0, then the weak contractibility follows from

the assumption that p is flat over ∆{0,2,3} ⊆ ∆3. If i = 2, then the weak contractibility follows

from our assumption that p is flat over ∆{0,1,3} ⊆ ∆3. If i = 1, then the desired result follows from

Lemma B.3.18.

Lemma B.3.20. Let p : M → ∆n be a flat inner fibration. Let f : C → D be a morphism in

M, where C ∈ M0 and D ∈ Mn. Then the ∞-category N = MC/ /D ×∆n∆{1,...,n−1} is weakly

contractible.

Proof. Apply Lemma B.3.19 to the map q : ∆n → ∆2 characterized by the requirement that

q−1{1} = {1, . . . , n− 1}.

Lemma B.3.21. Let p : M→ ∆n×∆m be a flat inner fibration. Then the induced map p′ : M→
∆m is a flat inner fibration.

Proof. It suffices to show that p′ is flat over every nondegenerate 2-simplex of ∆m. Replacing M by

M×∆m∆2, we can reduce to the case m = 2. Fix a morphism f : C → D in M, where C ∈ p′−1{0}
and D ∈ p′−1{2}; we wish to show that the ∞-category MC/ /D ×∆2{1} is weakly contractible. Let

i and j denote the images of C and D in ∆n, and let φ : ∆2+j−i → ∆n ×∆2 be the map given on

vertices by the formula

φ(k) =


(i, 0) if k = 0

(i+ k − 1, 1) if 0 < k < 2 + j − i
(j, 2) if k = 2 + j − i.
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The desired result now follows after applying Lemma B.3.20 to the flat inner fibration M×∆n×∆2∆2+j−i →
∆2+j−i.

Proof of Proposition B.3.14. Fix an inner fibration of simplicial sets p : X → S. By definition, the

map p is flat if it induces a categorical equivalence X ×S Λ2
1 → X ×S ∆2, for every 2-simplex of

S. This proves the implication (2) ⇒ (1). For the converse, let us say that a monomorphism of

simplicial sets A→ B is good if it satisfies the following condition:

(∗) For every map of simplicial sets B → S, the induced map X ×S A→ X ×S B is a categorical

equivalence.

Since the collection of trivial cofibrations with respect to the Joyal model structure is weakly

saturated (in the sense of Definition HTT.A.1.2.2 ), we deduce that the collection of good morphisms

in Set∆ is also weakly saturated. We wish to prove that every inner anodyne morphism is good. In

view of Proposition HTT.2.3.2.1 , it will suffice to show that for every monomorphism of simplicial

sets A→ B having only finitely many nondegenerate simplices, the induced map

(A×∆2)
∐
A×Λ2

1

(B × Λ2
1)→ B ×∆2

is good. In other words, we must show that for every map B ×∆2 → S, the induced diagram

X ×S (A× Λ2
1) //

��

X ×S (B × Λ2
1)

��
X ×S (A×∆2) // X ×S (B ×∆2)

is a homotopy pushout square (with respect to the Joyal model structure). To prove this, it suffices

to show that the vertical maps are categorical equivalences. In other words, we are reduced to

proving that the following assertion holds, for every simplicial set K having only finitely many

nondegenerate simplices:

(∗′) For every map K ×∆2 → S, the inclusion X ×S (K ×Λ2
1)→ X ×S (K ×∆2) is a categorical

equivalence.

We now prove (∗′) by induction on the dimension n of K and the number of nondegenerate n-

simplices of K. If K is empty, there is nothing to prove. Otherwise, we have a pushout diagram

∂∆n //

��

∆n

��
K ′ // K.

Using the left properness of the Joyal model structure, we see that K will satisfy (∗′) provided that

K ′, ∂∆n, and ∆n satisfy (∗′). In the first two cases, this follows from the inductive hypothesis. We
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are therefore reduced to the case K = ∆n. Fix a map ∆n ×∆2 → S, and consider the flat inner

fibration q : X ×S (∆n ×∆2) → ∆n ×∆2. To prove that (∗′) is satisfied, we must show that the

composition

X ×S (∆n ×∆2)
q→ ∆n ×∆2 → ∆2

is flat, which follows from Lemma B.3.21.

B.4 Functoriality

Proposition B.2.9 can be interpreted roughly as saying that the model structure of Theorem B.0.20

defines a covariant functor of the underlying categorical pattern P. The remainder of this section

is devoted to studying the behavior of this model structure as a contravariant functor of P. Our

main result can be stated as follows:

Proposition B.4.1. Suppose we are given categorical patterns P = (MS , T, {pα : K/
α → S}α∈A)

and P′ = (MS′ , T
′, {p′α : K ′α

/ → S′}α∈A′) on ∞-categories S and S′. Let π : S′ → S be a map

satisfying the following conditions:

(i) For every vertex s′ ∈ S′ and every morphism f : s → π(s′) in S which belongs to MS , there

exists a locally π-Cartesian morphism f : s→ s′ in S′ such that π(f) = f .

(ii) The map π is a flat categorical fibration.

(iii) The map π carries MS′ into MS .

(iv) The collections of morphisms MS and MS′ contain all equivalences and are stable under

composition (and are therefore stable under equivalence).

(v) Suppose given a commutative diagram

s′

g

��
s

f
@@

h // s′′

in S′, where g is locally π-Cartesian, π(g) ∈MS , and π(f) is an equivalence. Then f ∈MS′ if

and only if h ∈MS′ . In particular (taking f = ids), we deduce that every locally π-Cartesian

morphism g such that π(g) ∈MS belongs to MS′ .

(vi) The set of 2-simplices T ′ contains π−1(T ), and T contains all 2-simplices ∆2 → S whose

restriction to ∆{0,1} is an equivalence in S.

(vii) Each of the simplicial sets Kα is an∞-category, and each of the induced maps πα : K/
α×SS′ →

K/
α is a coCartesian fibration.
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(viii) Suppose we are given α ∈ A and a commutative diagram

s′

g

��
s

f
@@

h // s′′

in K/
α ×S S′, where f is πα-coCartesian and πα(g) is an equivalence. Then the image of g in

S′ belongs to MS′ if and only if the image of h in S′ belongs to MS′ . In particular, the image

in S′ of any πα-coCartesian morphism of K/
α belongs to MS′ .

(ix) Let α ∈ A, and suppose we are given a map pα : K/
α → S′ lifting pα, such that the corre-

sponding section of πα is πα-coCartesian. Then pα ' p′β for some β ∈ A′.

Let π∗ : (Set+∆)/P → (Set+∆)/P′ denote the functor X 7→ X ×(S,MS) (S′,MS′). Then π∗ is a left

Quillen functor (with respect to the model structures described in Theorem B.0.20).

Using Propositions B.4.1 and B.2.9 in combination, we can obtain even more functoriality:

Theorem B.4.2. Suppose we are given categorical patterns P = (MC, T, {pα : K/
α → C}α∈A) and

P′ = (MC′ , T
′, {p′α : K ′α

/ → C′}α∈A′) on ∞-categories C and C′. Suppose we are given a diagram of

marked simplicial sets

(C,MC)
π← (K,M)

π′→ (C′,MC′).

Then the construction X 7→ X ×(C,MC) (K,M) determines a left Quillen functor from (Set+∆)/P to

(Set+∆)/P′ provided that the following conditions are satisfied:

(1) The map π : K→ C is a flat categorical fibration.

(2) The collections of morphisms MC and M contain all equivalences in C and K, respectively,

and are closed under composition.

(3) For every 2-simplex σ of K such that π(σ) ∈ T , we have π′(σ) ∈ T ′. Moreover, T contains all

2-simplices ∆2 → C whose restriction to ∆{0,1} is an equivalence in C.

(4) For every edge ∆1 → C belonging to MC, the induced map K×C∆1 → ∆1 is a Cartesian

fibration.

(5) Each of the simplicial sets Kα is an∞-category, and each of the induced maps πα : K/
α×CK→

K/
α is a coCartesian fibration.

(6) For α ∈ A and every coCartesian section s of πα, the composite map

K/
α → K/

α ×C K→ K
π′→ C′

can be identified with p′β, for some β ∈ A′.
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(7) Suppose we are given a commutative diagram

Y
g

��
X

f
>>

h // Z

in K, where g is locally π-Cartesian, π(g) ∈ MC, and π(f) is an equivalence. Then f ∈ M if

and only if h ∈M . In particular, a locally π-Cartesian morphism g of K belongs to M if and

only if π(g) ∈MC.

(8) Suppose we are given α ∈ A and a commutative diagram

Y
g

��
X

f
>>

h // Z

in K/
α ×C K, where f is πα-coCartesian and πα(g) is an equivalence. Then the image of g in

K belongs to M if and only if the image of h in K belongs to M .

Remark B.4.3. In the situation of Theorem B.4.2, suppose that MC is the collection of all equiv-

alences in C, that A is empty, and that T and T ′ are the collections of all simplices in C and

C′, respectively. Then conditions (3), (5), (6), and (8) are automatic; condition (4) follows from

(1), and condition (7) follows from (2) (if g is locally π-Cartesian and π(g) ∈ MC, then g is an

equivalence so that f and h are equivalent). It therefore suffices to verify conditions (1) and (2).

Proof of Theorem B.4.2. Consider the categorical pattern P′′ = (M,π−1(T ), {p′′α,s : K/
α →

K}(α,s)∈A′′) on K, where A′′ consists of all pairs (α, s) such α ∈ A and s is a coCartesian section

of πα, and p′′α,s is the composition

K/
α

s→ K×CK
/
α → K .

The functor in question admits a factorization

(Set+∆)/P
π∗→ (Set+∆)/P′′

π′!→ (Set+∆)/P,

where π∗ and π′! are left Quillen functors by virtue of Propositions B.4.1 and B.2.9.

The proof of Proposition B.4.1 will require a long digression.

Notation B.4.4. Suppose we are given maps of simplicial sets X
φ→ Y

π→ Z. We let π∗(X) denote

a simplicial set equipped with a map π∗X → Z with the following universal property: for every

map of simplicial sets K → Z, we have a canonical bijection

HomZ(K,π∗(X)) ' HomY (K ×Z Y,X).
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In the situation of Notation B.4.4, suppose that π is a Cartesian fibration and the map φ is

a coCartesian fibration. Corollary HTT.3.2.2.12 implies that the map π∗X → Z is a coCartesian

fibration. We will need some refinements of this result.

Proposition B.4.5. Let π : Y → Z be a flat categorical fibration of simplicial sets. Then the

functor π∗ : (Set∆)/Y → (Set∆)/Z is a right Quillen functor (with respect to the Joyal model

structures). In particular, if X → Y is a categorical fibration, then the induced map π∗X → Z is

a categorical fibration.

Proof. The functor π∗ admits a left adjoint π∗, given by the formula π∗A = A×Z Y . To prove that

π∗ is a right Quillen functor, it suffices to show that π∗ preserves cofibrations and weak equivalences.

The case of cofibrations is clear, and the case of weak equivalences follows from Corollary B.3.15.

Example B.4.6. Suppose we are given a diagram of simplicial sets X
φ→ Y

π→ Z. We observe

that there is a canonical map θ : X → π∗X. If the map π is a trivial Kan fibration, then θ is a

categorical equivalence. To prove this, we first choose a section s : Z → Y of π. Composition with

s yields a map r : π∗X → X such that r ◦ θ = idX . Moreover, since s ◦ π is homotopic (over Z)

to the map idY . It follows that there exists a contractible Kan complex K containing a pair of

distinct points x and y and a map h : K ×Y → Y compatible with the projection map π such that

h|({x} × Y ) = idY and h|({y} × Y ) = s ◦ π. The map h induces a map h′ : K × π∗X → π∗X such

that h|({x}×π∗X) = idπ∗X and h|({y}×π∗X) = θ ◦r. It follows that r is a right homotopy inverse

to θ (as well as being a strict left inverse) with respect to the Joyal model structure, so that θ is a

categorical equivalence as desired.

Remark B.4.7. Suppose we are given a diagram of simplicial sets X
φ→ Y

π→ Z, where φ is a

categorical fibration and π is a flat categorical fibration. Let ψ : Y ′ → Y be a trivial Kan fibration,

let π′ = π ◦ ψ, and let X ′ = X ×Y Y ′. Then the canonical map f : π∗X → π′∗X
′ is a categorical

equivalence. To prove this, we observe that π′∗X
′ ' π∗ψ∗X

′, and f is induced by applying π∗ to a

map g : X → ψ∗X
′. Example B.4.6 shows that g is a categorical equivalence. Since π∗ is a right

Quillen functor (Proposition B.4.5), it preserves categorical equivalences between fibrant objects of

(Set∆)/Y , so f is a categorical equivalence.

Lemma B.4.8. Let q : C → ∆n and p : D → E be categorical fibrations of ∞-categories, where

n ≥ 2. Let C0 be a full subcategory of C with the following properties:

(i) The subcategory C0×∆n∆{n−1,n} is a cosieve on C: that is, for every morphism f : x→ y in

C×∆n∆{n−1,n}, if x ∈ C0, then y ∈ C0.

(ii) For every object y ∈ C0×∆n{n− 1} and each i < n− 1, there exists an object x ∈ C0×∆n{i}
and a q-Cartesian morphism x→ y in C.
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Suppose we are given a lifting problem

(C×∆nΛnn)
∐

C0×∆nΛnn
C0 f0 //

��

D

p

��
C

g //

f

66

E .

Let X = (C×∆n{n})
∐

C0×∆n{n}(C
0×∆n∆{n−1,n}); condition (i) guarantees that X can be identi-

fied with a full subcategory of C. Assume further that

(iii) The functor f0|(C×∆n∆{n−1,n}) is a p-right Kan extension of f0|X.

Then there exists a dotted arrow f rendering the diagram commutative.

Proof. Let C1 denote the simplicial subset of C consisting of all those simplices σ satisfying one of

the following conditions:

• The image of σ in ∆n does not contain ∆{0,1,...,n−1}.

• The intersection of σ with C×∆n{n− 1} is contained in C0.

We first extend f0 to a map f1 : C1 → D. Let A be the collection of simplices σ : ∆m → X. For

each σ ∈ A, let d(σ) denote the dimension of the simplex σ. Choose a well-ordering of A such

that if d(σ) < d(τ), then σ < τ . For every nondegenerate simplex σ : ∆m → C1, we let r(σ)

denote the induced map ∆m×∆n ∆{n−1,n} → X. Let α be the order type of A, so that we have an

order-preserving bijection β 7→ σβ where β ranges over the set of ordinals {β : β < α}. For each

β ≤ α, we let C1
β denote the simplicial subset of C1 given by the union of C0, C×∆nΛnn, and those

simplices σ such that r(σ) = σγ for some γ < β. Then f0 can be identified with a map F0 : C1
0 → D.

We will show that F0 can be extended to a compatible family of maps

Fβ : C1
β → D

such that p ◦ Fβ = g|C1
β. Taking β = α, we will obtain the desired extension f1 : C1 → D of f0.

The construction of Fβ proceeds by induction on β. If β is a nonzero limit ordinal, we set

Fβ =
⋃
γ<β Fγ . To handle successor stages, let us assume that Fβ has already been defined for

some β < α, and let σ = σβ : ∆m → X be the corresponding simplex. There are two cases to

consider. Assume first that σ is nondegenerate. Let A = C/σ ×∆n∆{0,...,n−2}. For every simplicial

subset K ⊆ ∆{0,...,n−2}, we let AK denote the simplicial subset of A given by the union of A×C C
0

and A×∆{0,...,n−2}K, Let A∂ denote A∂∆{0,...,n−2} . We have a diagram

(A∂ ?∆
m)

∐
A∂ ? ∂∆m(A ? ∂∆m) //

��

C1
β

��
A ?∆m // C1

β+1 .
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Since σ is nondegenerate, this diagram is a pushout square. The existence of Fβ+1 is therefore

equivalent to the solubility of the lifting problem

(A∂ ?∆
m)

∐
A∂ ? ∂∆m(A ? ∂∆m) //

i
��

D

p

��
A ?∆m

55

// E .

Since p is a categorical fibration, it will suffice to show that the map i is inner anodyne. By virtue

of Lemma HTT.2.1.2.3 , it will suffice to show that the inclusion i′ : A∂ → A is right anodyne. In

fact, we prove the following more general claim:

(∗) For every simplex τ ⊆ ∆{0,...,n−2} and every simplicial subset K ⊆ τ , the inclusion AK ⊆ Aτ

is right anodyne.

The proof proceeds by induction on the dimension of τ , and on the number of nondegenerate

simplices of K. If K = τ there is nothing to prove. If K 6= τ is nonempty, then we can write K as

a pushout K ′
∐
∂ τ ′ τ

′, where τ ′ is a simplex of small dimension than τ . The inductive hypothesis

shows that the inclusion AK′ ⊆ Aτ is right anodyne. By virtue of Proposition HTT.4.1.1.3 , it will

suffice to show that the inclusion AK′ ⊆ AK is right anodyne. For this, we consider the pushout

diagram

A∂ τ ′
//

��

Aτ ′

��
AK′

// AK .

Since the upper horizontal map is right anodyne by the inductive hypothesis, the lower horizontal

map is right anodyne as well.

It remains to consider the case K = ∅. In this case, the inclusion AK ⊆ Aτ is a pushout of the

inclusion

i′′ : C0×C C/σ ×∆nτ ⊆ C/σ ×∆nτ.

It will therefore suffice to show that i′′ is right anodyne, which is equivalent (Proposition

HTT.4.1.1.3 ) to the assertion that i′′ is left cofinal. Using Proposition HTT.4.1.1.3 again, we see

that it suffices to produce an object x ∈ C0×C C/σ ×∆nτ such that the corresponding maps

C0×C C/σ ×∆nτ ←↩ ∆0 ↪→ C/σ ×∆nτ

are both left cofinal. In other words, it suffices to guarantee that the object x is final in C/σ ×∆nτ .

The existence of such an object follows from assumption (ii) (applied to the object y ∈ C×∆n{n−1}
given by the initial vertex of σ). This completes the construction of Fβ+1 in the case where σ = σβ
is nondegenerate.
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Now suppose that σ = σβ : ∆m → X is a degenerate simplex. We wish to show that the lifting

problem

C1
β

Fβ //

j

��

D

p

��
C1
β+1

//

>>

E

admits a solution. Since p is a categorical fibration, it will suffice to show that j is a categorical

equivalence. Let A and A∂ be defined as above. Let A1 denote the simplicial subset of A spanned

by those simplices τ : ∆k → A such that the induced map ∆k ?∆m → C factors through ∆k ?∆m′

for some surjective map ∆m → ∆m′ with m′ < m. Let A1
∂ = A1 ∩A∂ , and let A′ = A1 ∐

A1
∂
A∂ .

Unwinding the definitions, we have a pushout diagram of simplicial sets

(A ? ∂∆m)
∐

A′ ? ∂∆m(A′ ?∆m) //

j′

��

C1
β

j

��
A ?∆m // Cβ+1 .

It will therefore suffice to show that j′ is a categorical equivalence: that is, that the diagram

A′ ? ∂∆m //

��

A ?∆m

��
A′ ? ∂∆m // A ?∆m

is a homotopy pushout square (with respect to the Joyal model structure). In fact, we show that

the vertical maps in this diagram are categorical equivalences. For this, it suffices to show that the

inclusion A′ ↪→ A is a categorical equivalence: that is, that the diagram

A1
∂

//

��

A∂

��
A1 // A

is a homotopy pushout square. We will prove that the horizontal maps are categorical equivalences.

Set A0 = A×C C
0. For every simplicial subset K ⊆ ∆{0,...,n−2}, let BK = A×∆nK and

A0
K = A0×∆nK, so we have an isomorphism AK ' A0 ∐

A0
K
BK . Let

A01 = A0 ∩A1 A01
K = A0

K ∩A1 B1
K = BK ∩A1 .

Consider the map uK : A01 ∐
A01
K
B1
K → A0 ∐

A0
K
BK . We wish to prove that this map is an

equivalence when K = ∆{0,...,n−2} or K = ∂∆{0,...,n−2}. For this, it will suffice to prove the

following trio of assertions, for every K ⊆ ∆{0,...,n−2}.
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(a) The inclusion A01 ↪→ A0 is a categorical equivalence.

(b) The inclusion A01
K ↪→ A0

K is a categorical equivalence.

(c) The inclusion B1
K ↪→ BK is a categorical equivalence.

Note that (a) is a special case of (b) (namely, the special case where K = ∆{0,...,n−2}). We will prove

(c); assertion (b) will follow from the same argument, replacing C by the full subcategory spanned

by X and C0. Note that the constructions K 7→ BK and K 7→ B1
K commute with homotopy

pushouts; we may therefore reduce to the case where K is the image of a simplex ∆k → ∆{0,...,n−2}.

Replacing C by the pullback C×∆n(∆k ? ∆{n−1,n}), we may reduce to the case K = ∆{0,...,n−2}.

That is, we are reduced to proving that the inclusion A1 ↪→ A is a categorical equivalence.

Let J be the category whose objects are commutative diagrams

∆m

σ

  

ε // ∆m′

τ
}}

C

where ε is surjective and m′ < m; we will abuse notation by identifying the objects of J with

simplices τ : ∆m′ → C. Unwinding the definitions, we see that A0 can be identified with the colimit

of the cofibrant diagram θ : Jop → Set∆ given by τ 7→ ∆{0,1,...,n−2}×∆n C/τ . It will therefore suffice

to show that A is a homotopy colimit of the diagram θ. Our assumption that σ is degenerate

implies that J has a final object (given by the factorization of σ as ∆m ε→ ∆m′ τ→ C where τ

is nondegenerate), it will suffice to show that the diagram θ is weakly equivalent to the constant

diagram with value A. In other words, we must show that for each τ ∈ J, the canonical map

θ(τ)→ A is a categorical equivalence. This follows from the two-out-of-three property, since both

of the vertical maps in the diagram

∆{0,...,n−2} ×∆n C/τ //

))

∆{0,...,n−2} ×∆n C/σ

uu
∆{0,...,n−2} ×∆n C0

/C

are trivial Kan fibrations, where C = τ(0) = σ(0) ∈ C. This completes the construction of Fβ+1 in

the case where σ is degenerate, and the construction of the map f1 : C1 → D extending f0.

We now show that f1 can be extended to the desired map f : C → D. Let Y denote the full

subcategory of C spanned by those vertices which do not belong to X. Let A′ be the collection of

all simplices σ′ : ∆m → Y which are not contained in the intersection Y ∩(C×∆n ∂∆{0,...,n−1}). For

each σ′ ∈ A′, let d(σ′) denote the dimension of the simplex σ′. Choose a well-ordering of A′ such

that if d(σ′) < d(τ ′), then σ′ < τ ′. For every nondegenerate simplex σ′ : ∆m → C which does not
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belong to C1, we let r′(σ′) ∈ A′ denote the simplex of Y given by ∆m ×∆n Y → X. Let α′ be the

order type of A′, so that we have an order-preserving bijection β 7→ σ′β where β ranges over the set

of ordinals {β : β < α′}. For each β ≤ α′, we let Cβ denote the simplicial subset of C given by the

union of C1 with those simplices σ′ such that r′(σ′) = σ′γ for some γ < β. Then f1 defined a map

F ′0 : C0 → D. We will show that F ′0 can be extended to a compatible family of maps F ′β : Cβ → D

satisfying p ◦ F ′β = g|Cβ. Taking β = α′, we will obtain the desired extension f : C→ D of f0.

The construction of the maps F ′β proceeds by induction on β. If β is a nonzero limit ordinal,

we set F ′β =
⋃
γ<β F

′
γ . To handle successor stages, let us assume that F ′β has already been defined

for some β < α′, and let σ′ = σ′β : ∆m → Y be the corresponding simplex. We first treat the case

where σ′ is nondegenerate. Let Xσ′/ denote the fiber product X×CCσ′/. Since σ′ is nondegenerate,

we have a pushout diagram

∂∆m ? Xσ′/
//

��

Cβ

��
∆m ? Xσ′/

// Cβ+1 .

To construct F ′β+1, it suffices to solve the lifting problem depicted in the diagram

∂∆m ? Xσ′/
h //

��

D

p

��
∆m ? Xσ′/

// E .

Let v denote the final vertex of σ′. It will suffice to show that h induces a p-limit diagram h′ :

{v} ?Xσ′/ → D. Since the projection map Xσ′/ → X ×C Cv/ is a trivial Kan fibration, it suffices to

show that h exhibits h(v) as a p-limit of the diagram X×CCv/ → D, which follows from assumption

(iii).

We now treat the case where σ′ = σ′β is a degenerate simplex of Y . Let X ′σ′/ denote the

simplicial subset of Xσ′/ spanned by those simplices τ : ∆k → Xσ′/ such that the induced map

∆m ? ∆k → C factors through ∆m′ ? ∆k, for some surjective map ∆m → ∆m′ with m′ < m. We

have a pushout diagram of simplicial sets

(∂∆m ? Xσ′/) ?∂∆m?X′
σ′/

(∆m ? X ′σ′/)
//

��

Cβ

��
∆m ? Xσ′/

//

44

Cβ+1 .
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Consequently, to prove the existence of Fβ+1, it suffices to solve a lifting problem of the form

(∂∆m ? Xσ′/) ?∂∆m?X′
σ′/

(∆m ? X ′σ′/)
//

j′

��

D

p

��
∆m ? Xσ′/

//

55

E .

Since p is a categorical fibration, this lifting problem will admit a solution provided that j′ is a

categorical equivalence. We are therefore reduced to proving that the diagram

∂∆m ? X ′σ′/
//

��

∂∆m ? Xσ′/

��
∆m ? X ′σ′/

// ∆m ? Xσ′/.

is a homotopy pushout square (with respect to the Joyal model structure). In fact, we claim that

the horizontal maps in this diagram are categorical equivalences. To prove this, it suffices to show

that the inclusion X ′σ′/ ↪→ Xσ′/ is a categorical equivalence.

Let I be the category whose objects are commutative diagrams

∆m

σ′

  

ε // ∆m′

τ
}}

C

where ε is surjective and m′ < m; we will abuse notation by identifying the objects of I with the

underlying simplices τ : ∆m′ → C. Unwinding the definitions, we see that X ′σ′/ can be identified

with the colimit of the cofibrant diagram θ′ : Iop → Set∆ given by τ 7→ X ×C Cτ/. It will therefore

suffice to show that Xσ′/ is a homotopy colimit of the diagram θ′. Our assumption that σ is

degenerate implies that I has a final object (given by the factorization of σ as ∆M ε→ ∆m′ τ→ C

where τ is nondegenerate), it will suffice to show that the diagram θ′ is weakly equivalent to the

constant diagram with value X ′σ′/. In other words, we must show that for each τ ∈ I, the canonical

map

X ×C Cτ/ → Xσ′/

is a categorical equivalence. This follows from the two-out-of-three property, since we have a

commutative diagram

X ×C Cτ/ //

&&

Xσ′/

yy
X ×C CD/

where D = σ′(m) ∈ C, and the vertical maps are trivial Kan fibrations.
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Proposition B.4.9. Suppose we are given a diagram of ∞-categories X
φ→ Y

π→ Z where φ is a

categorical fibration and π is a flat categorical fibration. Let Y ′ ⊆ Y be a full subcategory. Let

X ′ = Y ′ ×Y X, let π′ = π|Y ′, and let ψ : π∗X → π′∗X
′ denote the restriction map. Let K be

another ∞-category, let p : K/ → π∗X be a diagram, and suppose that the following conditions

are satisfied:

(i) The full subcategory Y ′ ×Z K/ ⊆ Y ×Z K/ is a cosieve on Y ×Z K/.

(ii) For every object y ∈ Y ′ and every morphism f : z → π(y) in Z, there exists a π-Cartesian

morphism f : z → y in Y ′ with π(f) = f .

(iii) The map F : K/ ×Z Y → X classified by p is a φ-right Kan extension of

F = F |((K ×Z Y )
∐

K×ZY ′
(K/ ×Z Y ′)).

Then p is a ψ-limit diagram.

Proof. We must show that for n ≥ 2, every lifting problem of the form

∂∆n−1 ? K
f0 //

��

π∗X

ψ
��

∆n−1 ? K //

99

π′∗X
′

admits a solution, provided that f0|{n − 1} ? K coincides with p. Let C = (∆n−1 ? K) ×Z Y , and

observe that C is equipped with a map C→ ∆n. Let C0 = C×Y Y ′. Unwinding the definitions, we

see that it suffices to solve a lifting problem of the form

(C×∆nΛnn)
∐

C0×∆nΛnn
C0 //

��

Y

φ

��
C //

66

Z.

The desired result now follows from Lemma B.4.8 and our hypothesis on F .

We will typically apply Proposition B.4.9 in the special case where Y ′ = ∅, so that π′∗X
′ ' Z.

In this cases, conditions (i) and (ii) are automatic.

Proposition B.4.10. Suppose we are given a diagram of categorical fibrations X
φ→ Y

π→ Z where

π is a Cartesian fibration and φ is a categorical fibration. Suppose that the following condition is

satisfied:
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(∗) For every vertex x of X and every π-Cartesian edge f : φ(x) → y in Y , there exists a

φ-coCartesian edge f : x→ y such that f = φ(f).

Then:

(1) The map ψ : π∗X → Z is a coCartesian fibration.

(2) Let e be an edge of π∗X lying over an edge e : z → z′ in Z, corresponding to a map

F : ∆1×Z Y → X. Then e is ψ-coCartesian if and only if the following condition is satisfied:

(a) For every π-Cartesian edge ẽ of Y lying over e, the image F (e) is a φ-coCartesian edge

of X.

Proof. We use the same strategy as in the proof of Proposition HTT.3.2.2.12 . Proposition B.4.5

guarantees that ψ is a categorical fibration, and in particular an inner fibration. Let us say that

an edge of π∗X is special if it satisfies condition (a). We will prove:

(i) For every vertex A ∈ π∗X and every edge e : ψ(A) → z in Z, there exists a special edge

e : A→ z in π∗X such that ψ(e) = e.

(ii) Every special edge of π∗X is ψ-coCartesian.

This will prove (1) and the “if” direction of (2). To prove the “only if” direction, we consider an

arbitrary ψ-coCartesian edge e : A→ B in π∗X covering an edge e : z → z′ in Z. Using (i), we can

choose a special edge e′ : A→ C in π∗X covering e. Using the assumption that e is ψ-coCartesian,

we can choose a 2-simplex

B
e′′

  
A

e′
??

e // C

whose image in Z is degenerate. Since e′ and e are both ψ-coCartesian (by (ii)), we conclude that

e′′ is an equivalence in the∞-category (π∗X)z′ . Since e′ satisfies (a), we deduce that e satisfies (a),

as desired.

We now prove (i). Without loss of generality, we may replace X and Y by their pullbacks along

the edge e : ∆1 → Z, and thereby reduce to the case Z = ∆1. We can identify A with a section

of the projection map X0 → Y0. To produce an edge e : A→ z as in (i), we must solve the lifting

problem depicted in the diagram

Y0

��

A // X

φ
��

Y //

A′

Y.

Moreover, e is special if and only if the map A′ carries π-Cartesian morphisms of Y to φ-coCartesian

morphisms in X. Using Proposition HTT.3.2.2.7 , we can choose a functor χ : X1 → X0 and a
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quasi-equivalence M(φ)→ X. Using Propositions HTT.A.2.3.1 , we may reduce to the problem of

providing a dotted arrow in the diagram

X0� _

��

// X

φ

��
M(φ)

<<

// Y

which carries the marked edges of M \(φ) to φ-coCartesian edges of X. This follows from the

fact that φX1 : Fun(X1, X) → Fun(X1, Y ) is a coCartesian fibration and the description of the

φX1-coCartesian morphisms (Proposition HTT.3.1.2.1 ).

The proof of (ii) is similar. We wish to prove that every lifting problem

Λn0
//

� _

��

π∗X

ψ
��

∆n //

<<

Z

has a solution provided that n ≥ 2 and the upper horizontal map carries ∆{0,1} ⊆ Λn0 to a special

edge of π∗X. Replacing X and Y by their pullbacks along ∆n → Z, we can assume that the lower

horizontal map is an isomorphism. Unwinding the definitions, we are reduced to solving the lifting

problem

Y ×∆n Λn0
//

� _

��

X

φ
��

Y //

::

Y.

Using Proposition HTT.3.2.2.7 , we can choose a composable sequence of morphisms

χ : Y0 ← · · · ← Yn

and a quasi-equivalence M(χ) → Y . Invoking Propositions HTT.A.2.3.1 , we may reduce to the

associated mapping problem

M(ψ)×∆n Λn0
//

��

X

φ

��
M(ψ) //

99

Y.

This is equivalent to the mapping problem

Xn × Λni
//

� _

��

X

φ

��
Xn ×∆n // Y.

which admits a solution by virtue of Proposition HTT.3.1.2.1 .
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Corollary B.4.11. Suppose we are given a diagram of categorical fibrations X
φ→ Y

π→ Z. Let M

be a collection of edges of Z containing all degenerate edges and T a collection of 2-simplices of Z

containing all degenerate 2-simplices. Suppose that the following conditions are satisfied:

(a) The categorical fibration π is flat.

(b) For every vertex y ∈ Y and every edge f : z → π(y) of Z which belongs to M , there exists a

locally π-Cartesian edge f : z → y such that π(f) = f .

(c) For every vertex x of X and every locally π-Cartesian edge f : φ(x) → y in Y such that

π(f) ∈M , there exists a locally φ-coCartesian edge f : x→ y such that f = φ(f).

(d) Let f be a locally φ-coCartesian edge of X such that f = φ(f) is locally π-Cartesian and

π(f) ∈ M , and suppose that f : ∆{0,1} → Y is extended to a 2-simplex σ : ∆2 → Y

such that π(σ) ∈ T . Then f determines a φ′-coCartesian morphism of X ×Y ∆2, where

φ′ : X ×Y ∆2 → ∆2 denotes the projection.

Then:

(1) The map ψ : π∗X → Z is a categorical fibration.

(2) For every vertex x ∈ π∗X and edge morphism f : ψ(x)→ z of Z which belongs to M , there

exists a locally ψ-coCartesian edge f : x→ z of π∗X with ψ(f) = f .

(3) Let f be an edge of π∗X lying over an edge ψ(f) = f : z → z′ which belongs to M ,

corresponding to a map F : ∆1×Z Y → X. Then f is locally ψ-coCartesian if and only if the

following condition is satisfied:

(∗) For every locally π-Cartesian edge f̃ of Y lying over f , the image F (f̃) is a locally

φ-coCartesian edge of X.

(4) Let σ : ∆2 → Z be 2-simplex belonging to T such that the edge f = σ|∆{0,1} belongs to

M , and let f be a locally ψ-coCartesian edge of π∗X lying over f . Then f determines a

ψ′-coCartesian edge of π∗X ×Z ∆2, where ψ′ denotes the projection π∗ ×Z ∆2 → ∆2.

Proof. Assertion (1) follows from Proposition B.4.5, and assertions (2) and (3) follow by applying

Proposition B.4.10 to the diagram X×Z ∆1 → Y ×Z ∆1 → ∆1. To prove (4), we are free to replace

Z by ∆2 and thereby reduce to the case where σ is an isomorphism. Let f be a locally ψ-coCartesian

edge of π∗X lying over ∆{0,1}, which we can identify with a functor F : Y ×∆2∆{0,1} → X×∆2∆{0,1}.

We wish to show that f is ψ-coCartesian. By virtue of (the dual of) Proposition B.4.9, it will suffice

to show that the functor F is a ψ-left Kan extension of F |Y0, where Y0 = Y ×∆2 {0}. Unwinding

the definitions, we must show that for each object y ∈ Y ×∆2 {1}, the map F induces a φ-colimit

diagram

θ : (Y0 ×Y Y/y). → (Y ×∆2 ∆{0,1})./y → Y ×∆2 ∆{0,1}
F→ X.
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Condition (b) guarantees that the projection Y ×∆2 ∆{0,1} → ∆{0,1} is a Cartesian fibration, so the

∞-category Y0 ×Y Y/y has a final object, given by a locally π-Cartesian morphism f : y′ → y. It

follows that θ is a φ-colimit diagram if and only if F (f) is a φ-coCartesian morphism in X. Criterion

(3) guarantees that F (f) is locally ψ-coCartesian, which implies that F (f) is ψ-coCartesian by

virtue of assumption (d).

Proposition B.4.12. Suppose we are given a diagram of ∞-categories X
φ→ Y

π→ Z where π is a

flat categorical fibration and φ is a categorical fibration. Let ψ : π∗X → Z denote the projection,

let K be an ∞-category, let p0 : K/ → Z be a diagram, and assume that the induced map

π′ : K/×Z Y → K/ is a coCartesian fibration. Let v denote the cone point of K/, let C = π′−1{v},
and choose a map K/ × C → K/ ×Z Y which is the identity on {v} × C and carries e × {C} to a

π′-coCartesian edge of K/ ×Z Y , for each edge e of K/ and each object C of C. Then:

(1) Let p : K/ → π∗X be a map lifting p0, and suppose that for each C ∈ C the induced map

K/ × {C} ↪→ K/ × C→ K/ ×Z Y → X

is a φ-limit diagram. Then p is a ψ-limit diagram.

(2) Suppose that p : K/ → π∗X is a map lifting p0 = p0|K, and suppose that for each C ∈ C the

induced map

K × {C} ↪→ K × C→ K ×Z Y → X

admits a ψ-limit diagram lifting the map

K/ × {C} ↪→ K/ × C→ K/ ×Z Y → Y.

Then there exists an extension p : K/ → π∗X of p lifting p0 which satisfies condition (1).

Proof. Let p : K/ → π∗X satisfy the condition described in (1). We can identify p with a map

F : K/ ×Z Y → X. In view of Proposition B.4.9, it will suffice to show that F is a φ-right Kan

extension of F |K ×Z Y . Pick an object C ∈ C; we wish to show that F is a φ-right Kan extension

of F at C. In other words, we wish to show that the map

(K ×Z Y )/C/ → K/ ×Z Y
F→ X

is a φ-limit diagram. Since p satisfies (1), it suffices to show that the map

s : K × {C} → (K ×Z Y )C/

is right cofinal. It follows from Proposition HTT.2.4.3.2 that the projection q : (K/×Z Y )C/ → K/

is a coCartesian fibration, and that s is a coCartesian section of q. To show that s is right cofinal,

it will suffice to show that s admits right adjoint (this follows from Corollary HTT.4.1.3.1 ). In
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fact, we will show that the identity map idK/ → q ◦ s exhibits q as a right adjoint to s. For this,

we must show that for every object a ∈ (K ×Z Y )C/ and every object b ∈ K, the map

Map(K×ZY )C/
(s(b), a)→ MapK(b, q(a))

is a homotopy equivalence. Let c = idC denote the initial object of (K/ ×Z Y )C/, and let η denote

the unique map from the cone point v ∈ K/ to b in K/. Using Proposition HTT.2.4.4.3 , we obtain

a homotopy pullback diagram

Map(K/×ZY )C/
(s(b), a)

��

//Map(K/×ZY )C/
(c, a)

θ

��
MapK/(b, q(a)) //MapK/(v, q(a)).

It therefore suffices to show that the θ is a homotopy equivalence, which is clear (both the domain

and the codomain of θ are contractible). This completes the proof of (1).

We now prove (2). The diagram p gives rise to a map F : K×ZY → X fitting into a commutative

diagram

K ×Z Y F //

��

X

φ
��

K/ ×Z Y //

F

::

Y.

The above argument shows that a dotted arrow F as indicated will correspond to a map p : K/ →
π∗X satisfying (1) if and only if F is a φ-right Kan extension of F . In view of Lemma HTT.4.3.2.13 ,

the existence of such an extension is equivalent to the requirement that for each C ∈ C, the diagram

(K ×Z Y )C/ → K ×Z Y
F→ X

can be extended to a φ-limit diagram lifting the map

(K ×Z Y )/C/ → K/ ×Z Y → Y.

This follows from the hypothesis of part (2) together with the fact (established above) that s is

right cofinal.

Proof of Proposition B.4.1. The functor π∗ admits a right adjoint π∗, given by the formula

π∗(X
′,M ′) = (X,M), where:

(a) The simplicial set X is the full simplicial subset of π∗X
′ spanned by those vertices lying over

objects s ∈ S which classify maps S′s → X ′s which carry edges of MS′ (which belong to S′s)

into M ′.
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(b) An edge e of X belongs to M if and only if its image in S belongs to MS , and e classifies a

map S′ ×S ∆1 → X ′ which carries the inverse image of MS′ in S′ ×S ∆1 into M ′.

We wish to prove that the adjoint functors (π∗, π∗) give a Quillen adjunction between (Set+∆)/P
and (Set+∆)/P′ . To prove this, it will suffice to show that π∗ preserves cofibrations and weak

equivalences. The case of cofibrations is obvious. To prove that π∗ preserves weak equivalences,

consider an arbitrary P-equivalence Y → Z. We wish to prove that for every P-fibered object

X ∈ (Set+∆)/P′ , the induced map

Map′]S(π∗Z,X
′
)→ Map′]S(π∗Y ,X)

is a homotopy equivalence. We can identify this with the canonical map

Map]S(Z, π∗X
′
)→ Map]S(Y , π∗X

′
).

It will therefore suffice to show that π∗X
′

is P-fibered.

Write X
′
= (X ′,M ′), and let π∗X

′
= (X,M) where (X,M) is described by (a) and (b), and let

p : X ′ → S′ denote the projection. Set W = π∗X
′, so that X can be identified with a full simplicial

subset of W . Let MW denote the collection of edges e : ∆1 →W satisfying the following condition:

(∗) The image of e in S belongs to MS , and the edge e classifies a map S′ ×S ∆1 → X ′ which

carries π∆1-Cartesian edges of S′ ×S ∆1 into M ′, where π∆1 : S′ ×S ∆1 → ∆1 denotes the

projection.

We claim that M is the inverse image of MW in X. To see that M is contained in this inverse

image, it suffices to observe that every locally π-Cartesian edge of π−1MS belongs to MS′ , which

follows from (v). Conversely, suppose that e : x→ x′ is an edge of X belonging to MW , and let e

classify a map E : S′×S ∆1 → X ′. We wish to prove that if f is an edge of S′×S ∆1 whose image in

S′ belongs to MS′ , then E(f) ∈M ′. If the composite map ∆1 f→ S′×S ∆1 → ∆1 is not the identity,

then the inclusion E(f) ∈M ′ follows from the assumption that the vertices x and x′ belong to X.

Otherwise, we can factor f as a composition f ′ ◦ f ′′, where f ′′ is a morphism in S′ ×S {0} and f ′

is π∆1-Cartesian. Using (v), we see that the image of f ′′ in S′ belongs to MS′ , so that E(f ′′) ∈M ′

by virtue of our assumption that x ∈ X. Condition (∗) guarantees that E(f ′) ∈ M ′. Using the

assumption that X
′

is P′-fibered, we deduce that E(f) ∈M ′ as desired.

We wish to prove that the pair (X,M) is P-fibered. For this, we will verify that the map

q : X → S satisfies conditions (1), (2), (3), (4), and (6) of Definition B.0.19, together with condition

(5′) of Remark B.0.26.

(1) We must show that the map q : X → S is an inner fibration. It follows from Proposition B.2.7

(together with conditions (iv) and (vi)) that X ′ → S′ is a categorical fibration. Proposition

B.4.5 and assumption (ii) guarantee that the map q′ : W → S is a categorical fibration, and

therefore an inner fibration. Since X is a full simplicial subset of W , it follows also that

X → S is an inner fibration.
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(2) For each edge ∆1 → S belonging to MS , the induced map q∆1 : X ×S ∆1 → ∆1 is a

coCartesian fibration. It follows from Corollary B.4.11 that the map q′∆1 : W ×S ∆1 → ∆1

is a coCartesian fibration, and that an edge of W ×S ∆1 is q′∆1-coCartesian if and only if its

image in W belongs to MW . To complete the proof, it will suffice to show that if f : x→ y is

a q′∆1-coCartesian morphism in W ×S ∆1 with nondegenerate image in ∆1 and x ∈ X×S {0},
then y ∈ X ×S {1}. We can identify f with a map F : S′ ×S ∆1 → X ′. To prove that

y ∈ X ×S {1}, we must show that for every morphism α : t→ t′ in S′ ×S {1} whose image in

S′ belongs to MS′ , we have F (α) ∈M ′. Form a commutative diagram

s
β //

α′
��

γ

��

t

α
��

s′
β′ // t′

in S′ ×S ∆1, where s, s′ ∈ S′ ×S {0} and the horizontal maps are π∆1-Cartesian. Condition

(v) guarantees that the images of β and β′ in S′ belong to MS′ . Invoking (iv), we deduce

that the image of γ in S′ belongs to MS′ . Invoking (v) again, the image of α′ in S belongs

to MS′ . Since the image of f in Y belongs to MW , and x ∈ X ×S {0}, we conclude that F

carries α′, β, and β′ into M ′.

Let σ : ∆2 → X ′ be the 2-simplex

F (t)
F (α)

##
F (s)

F (β)
<<

F (γ) // F (t′).

Note that since (X ′,M ′) is P′-fibered and F (α′), F (β′) ∈ M ′, we have F (γ) ∈ M ′. Since

the image of this 2-simplex in S is degenerate, condition (vi) guarantees that its image

in S′ belongs to T ′. Because (X ′,M ′) is P′-fibered, we conclude that the induced map

p′ : X ′ ×S′ ∆2 → ∆2 is a coCartesian fibration. To prove that F (α) ∈ M ′, it suffices to

show that F (α) is locally p-coCartesian, which is equivalent to the requirement that it is

p′-coCartesian when regarded as a morphism of X ′ ×S′ ∆2. This follows from Proposition

HTT.2.4.1.7 , since F (β), F (γ) ∈ M ′ implies that F (β) and F (γ) determine p′-coCartesian

morphisms in X ′ ×S′ ∆2.

(3) A morphism f of X belongs to M if and only if q(f) belongs to MS and f is locally q-

coCartesian. This follows from the proof of (2), since both conditions are equivalent to the

requirement that f ∈MW .
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(4) Given a commutative diagram

∆{0,1}

��

f // X

q

��
∆2 σ // S,

if f ∈ M and σ ∈ T , then f determines an q∆2-coCartesian edge of X ×S ∆2, where q∆2 :

X ×S ∆2 → ∆2 denotes the projection map. In fact, f determines a q′∆2-coCartesian edge of

W ×S ∆2, where q′∆2 : W ×S ∆2 → ∆2 denotes the projection: this follows from Corollary

B.4.11.

(6) For every index α ∈ A and every coCartesian section s of the map qα : X ×S K/
α → K/

α, the

map s is a q-limit diagram in X. To prove this, it will suffice to show that s is a q′-limit

diagram in W . We will prove this by applying Proposition B.4.12. Let s classify a map

F : K/
α ×S S′ → X ′, and note that the map F carries the inverse image of MS′ into M ′. Let

C denote the fiber of the map π : S′ → S over the image of the cone point of K/
α. Choose a

map C×K/
α → K/

α ×S S′ → X ′ as in the statement of Proposition B.4.12. We wish to show

that, for each C ∈ C, the induced map

θ : K/
α × {C}

θ0
↪→ K/

α × C
θ1→ K/

α ×S S′
F→ X ′

is a p-limit diagram in X ′. Let πα : K/
α ×S S′ → S′ denote the restriction of π. Since θ1 ◦ θ0

can be identified with a πα-coCartesian section of πα, condition (viii) and the fact that F

carries the inverse image of MS′ into M ′ guarantee that θ carries every edge of K/
α into M ′.

Using the assumption that (X ′,M ′) is P-fibered and condition (ix), we conclude that θ is a

p-limit diagram as desired.

(5′) For each α ∈ A and every coCartesian section s0 of the projection X ×S Kα → Kα, there

exists a coCartesian section s of X×SK/
α → K/

α extending s0. The construction of s amounts

to solving a lifting problem

S′ ×S Kα
F //

��

X ′

p

��
S′ ×S K/

α
//

F

::

S′.

Since s0 is a coCartesian section, we have F (e) ∈ M ′ for every edge e of S′ ×S Kα whose

image in S′ belongs to MS′ . As in the proof of (6), we let C denote the fiber of the map π over

the image of the cone point of K/
α, and choose a map C×K/

α → S′×SK/ as in the statement

of Proposition B.4.12. Using condition (ix), the assumption that (X ′,M ′) is P′-fibered, and

Proposition B.4.12, we conclude that there exists an extension F of F such that for each

C ∈ C, the composite map

FC : {C} ×K/
α ↪→ C×K/ → S′ ×S K/

α
F→ X ′
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is a p-limit diagram. Invoking again our assumption that (X ′,M ′) is P-fibered (and that FC
carries each edge of {C} ×Kα into M ′, by virtue of (viii)), we deduce that FC carries each

edge of K/
α into M ′. The map F corresponds to a section s of the projection X ×SK/

α → K/
α

extending s0. To complete the verification of (6′), it will suffice to show that s is a coCartesian:

in other words, we must show that F (e) ∈M ′ whenever e : x→ y is an morphism of S′×SK/
α

whose image in S′ belongs to MS′ .

If x /∈ C, then e is a morphism of S′ ×S Kα so that F (e) = F (e) ∈ M ′ as desired. We

may therefore assume that x ∈ C. Suppose for the moment that y /∈ C, so that the image

of y in K/
α is a vertex y0 ∈ Kα. We can factor e as a composition e′ ◦ e′′, where e′′ is a

πα-coCartesian morphism lying in the image of the map {x} ×K/
α → S′ ×S K/

α and e′ is a

morphism in the fiber {y0} ×S S′. Invoking assumption (viii), we deduce that e′ ∈ MS′ , so

that F (e′) = F (e′) ∈M ′. Since F (e′′) lies in the image of F x, we conclude that F (e′′) ∈M ′.
Using the fact that (X ′,M ′) is P-fibered, we conclude that F (e) ∈M ′, as desired.

We now treat the case where x, y ∈ C. Let ψ denote the projection map X ′×SK/
α → S′×SK/

α.

Applying F to e yields a morphism e : x → y of X ′ ×S K/
α with ψ(e) = e. Since the image

in S′ of e belongs to MS′ , we can factor e as a composition e′ ◦ e′′, where e′′ is locally ψ-

coCartesian and e′ is a morphism belonging to ψ−1{x}. Using assumption (vi) and Lemma

B.1.7, we deduce that every locally ψ-coCartesian morphism is ψ-coCartesian provided that

its image in S′ belongs to MS′ ; in particular, e′′ is ψ-coCartesian. We wish to prove that e is

locally ψ-coCartesian, which is equivalent to the assertion that e′ is an equivalence. Choose a

πα-coCartesian section θ of the projection πα which carries the cone point of K/
α to y. Since

(X ′,M ′) is P-fibered, the coCartesian fibration

X ′ ×S′ K/
α → K/

α

is classified by a limit diagram χ : K/
α → Cat∞, so that e′ is an equivalence if and only if γ!e

′

is an equivalence in ψ−1{y′} for every morphism γ : y → y′ lying in the image of θ. We have

a commutative diagram in X ′ ×S K/
α

x
e′ //

e

��

z //

e
��

z′

γ!e
′

��
y // y′

where the horizontal maps are ψ-coCartesian. Moreover, the argument of the preceding

paragraph shows that the map x→ y′ is ψ-coCartesian. Applying Proposition HTT.2.4.1.7 ,

we deduce that γ!e
′ is locally ψ-coCartesian, and therefore an equivalence because it belongs

to a fiber of ψ.
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General Index

S-cube, 742

Cartesian, 742

strongly coCartesian, 742

Ek-ring

quasi-commutative, 1019

∞-category, 10

O-monoidal, 140

bitensored, 375

differentiable, 743

enriched, 354

monadic, 491

monoidal, 329

of endomorphisms, 472

of exit paths, 1061

of left modules, 525

of pairings, 588

of right modules, 525

pointed, 14

presentable, 11

semiadditive, 780

sifted-complete, 709

stable, 16

symmetric monoidal, 130, 141

tensored over a monoidal∞-category, 352

underlying a model category, 90

weak enrichment of, 351

∞-operad, 134

∞-category of, 145

approximation, 185, 466

assembly of, 184

associative, 328

bifunctor of, 169

coCartesian, 208

coCartesian fibration of, 140

coherent, 269, 271

commutative, 136

coproduct of, 159

corepresentable, 813

correspondence of, 232

differentiable, 814

envelope of, 162

family of, 180

fibration of, 139

full subcategory of, 149

generalized, 177

local family, 815

morphism of, 139

of little cubes, 547

overcategory of, 154

planar, 328

reduced, 192

stabilizaton of, 814

stable, 814

tensor product of, 169

trivial, 136

undercategory of, 154

unital, 173

unitalization of, 175

weak approximation, 185

wreath product of, 213

∞-operad correspondence, 833

∞-preoperad, 145

model structure on, 146

n-excisive functor, 742

n-homogeneous functor, 749

n-reduced functor, 749

abelian category, 18

Grothendieck, 94

abstract simplicial complex, 1065

locally finite, 1065

active, 137

additive category, 17
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adjoint functor

relative, 950

adjoint representation, 653

Alexander-Whitney map, 50

algebra object, 142

associative, 327

augmented, 595, 691, 967

colimit of, 259

free, 242, 245

in an ∞-category of modules, 287

limit of, 253

nonunital, 688

opposite of, 328

proper, 455

smooth, 458

trivial, 252

almost compact, 932

almost finite presentation, 937

almost perfect module, 932

approximation, 185, 466

weak, 185

assembly of ∞-operads, 184

associative

∞-operad, 328

associative algebra, 327

nonunital, 680

quasi-unital, 681

rectification of, 341

associative operad, 327

augmentation, 595

augmentation ideal, 967

augmented algebra object, 595, 691, 967

augmented simplicial object, 485

split, 485

Baez-Dolan stabilization hypothesis, 554

balanced bimodule, 1024, 1025

bar construction, 403, 580, 595

k-fold, 609

cyclic, 461

Barr-Beck theorem, 464, 491

Beck-Chevalley condition, 501

biCartesian equivalence, 499

biCartesian fibration, 498

biCartesian model structure, 500

bifunctor of ∞-operads, 169

bimodule

Serre, 456, 458

bimodule object, 374

balanced, 1024, 1025

colimit of, 385

duality of, 438

free, 386

limit of, 383

rectification of, 388

tensor product of, 394, 402, 404

binary operations, 659

bitensored ∞-category, 375

blob homology, 708

bounded t-structure, 35

braided monoidal category, 555

Brown representability theorem, 104

calculus of functors, 739

Cartesian

cube, 742

symmetric monoidal structure, 197

Cartesian structure, 198

lax, 198

weak, 198

categorical pattern, 1091

category

abelian, 18

additive, 17

braided monoidal, 555

differential graded, 63

symmetric monoidal, 127

triangulated, 18
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center

Drinfeld, 645

center of an object, 642

centralizer, 640

existence of, 644

of a morphism, 641

chain complex, 43, 52

differential graded category of, 69

normalized, 45

unnormalized, 45

chain homotopy, 69

chain rule, 792, 830

chiral homology, 708

classifying space, 765

closed, 330

cobar construction, 599

k-fold, 609

coCartesian

∞-operad, 208

symmetric monoidal structure, 197

coCartesian family

of O-monoidal ∞-categories, 520

of tensored ∞-categories, 522

coCartesian fibration

of ∞-operads, 140

cocentric morphism, 1030

coderivative, 832

coevaluation module, 446

cofiber, 16

cofiber sequence, 15

cofinal

left, 12

right, 12

cogroup object, 104

coherent

E1-ring, 934

ring, 933

coherent ∞-operad, 269, 271

cohomology theory, 105

colimit

of algebras, 259

of bimodules, 385

sequential, 42

colored operad, 132

simplicial, 133

commutative

∞-operad, 136

commutative algebra object, 142

coproduct of, 264

rectification of, 427

commutativity datum, 668

compact

almost, 932

complementary localization, 1073

completion

left, 35

right, 35

complex, 38

configuration space, 549

conical stratification, 1056

connected, 11

connective, 11

Ek-algebra, 896

Ek-ring, 884

cover, 896

module spectrum, 884

connective cover, 896

constant sheaf, 1044

constructible sheaf, 1056

on the Ran space, 705

coproduct

of commutative algebras, 264

coreduction, 803

corepresentable ∞-operad, 813

correspondence, 1112

left exact, 1073
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of ∞-operads, 232, 833

tangent, 987

cosheaf, 717

cotangent complex, 956

of an Ek-algebra, 975

cross effect, 763

cross-effect

symmetric, 766

cube, 742

Cartesian, 742

strongly coCartesian, 742

cut, 332

cyclic bar construction, 461

∆-monoidal ∞-category, 466

∆-planar ∞-operad, 466

Day convolution product, 511

decomposition, 816

right exact, 823

stable, 823

Deligne’s conjecture, 640

dendroidal set, 131

derivation, 941, 990

derivative, 785

nth, 829

derived ∞-category

of an abelian category, 70

universal property of, 79

derived category

filtered, 42

of modules over a ring, 887

descent datum, 504

differentiable, 743

∞-operad, 814

differentiable fibration, 794

differential, 802

differential graded algebra, 898

commutative, 900

model structure on, 899

differential graded category, 63

differential graded functor, 67

differential graded nerve, 64

discrete, 11

Ek-algebra, 897

distinguished triangle, 18, 21

distributor, 1112

composition of, 1112

Dold-Kan correspondence, 44, 45, 52

∞-categorical version, 53

Drinfeld center, 645

dual

Koszul, 632

dual Serre bimodule, 458

duality datum, 434, 436

duality functor

associated to pairing, 584

duality pairing, 624

Dunn additivity theorem, 554

Ek-algebra, 895

quasi-unital, 689

Ek-ring, 882

étalemorphism of, 1018

almost of finite presentation, 937

connective, 884

discrete, 897

locally of finite presentation, 937

of finite presentation, 937

Postnikov tower of, 898

Ek-space, 632

embedding

rectilinear, 546

endomorphism ∞-category, 472

algebra object of, 481

monoidal structure on, 480

endomorphism monad, 490

endomorphism object, 471

universal property of, 484
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enriched ∞-category, 354

enriched n-string, 472

enriched morphism, 471

equivalence

biCartesian, 499

equivariant object, 777

étalemap

of Ek-rings, 1018

of commutative rings, 1018

of quasi-commutative E1-rings, 1020

étalemorphism

classification of, 1036

compactness of, 1036

evaluation module, 446

exact

functor, 27

excisive, 109, 757

exit path ∞-category, 1061

of a simplicial complex, 1066

exponential object, 354

extended derivation, 990

external tensor product, 445

factorizable cosheaves, 718

family of ∞-operads, 180

thin, 848

fiber, 16

total, 851

fiber sequence, 15

fibrant

simplicial colored operad, 136

fibration

biCartesian, 498

filtered derived category, 42

filtered object

of a stable ∞-category, 42

finite groupoid, 780

finite presentation, 937

flat, 1113, 1115

module spectrum, 913

fold map, 446

foliated sheaf, 1047

free

left module, 368

module over a ring spectrum, 911

free algebra, 242, 245

associative, 329

free bimodule, 386

free resolution, 904

freely powered, 427

Frobenius algebra, 460

symmetric, 461

functor

C-linear, 439

O-monoidal, 143

n-excisive, 742

n-homogeneous, 749

n-reduced, 749

differential graded, 67

exact, 27

excisive, 109, 757

homogeneous, 759

left derived, 77

left t-exact, 76

multi-additive, 49

multilinear, 759

reduced, 109, 759

representable, 104

right t-exact, 76

symmetric n-ary, 765

generalized ∞-operad, 177

reduced, 192

Goodwillie calculus, 739

Grothendieck abelian category, 94

grouplike, 633

Ek-monoid, 634
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heart, 32

Hilbert basis theorem, 938

Hochschild cohomology, 640

Hochschild homology, 716

homogeneous, 759

homology theory, 116

I decomposition

I-decomposition, 816

idempotent object, 515

inert, 134, 178, 466

infinite suspension, 806

invariance of domain, 671

invertible object, 331

K-theory

of an ∞-category, 39

Kähler differentials, 941

Kan extension

operadic, 232

Kister-Mazur theorem, 672

Koszul dual, 632

Koszul duality, 642, 977

latching object, 905

Lazard’s Theorem, 914

left action, 356

left adjointable diagram, 501

left bounded, 35

left closed, 330

left cofinal, 12

left coherent

E1-ring, 934

ring, 933

left completion, 35

left derived functor, 77

left dual, 434

of a bimodule, 438

left dualizable, 436

bimodule, 438

left exact correspondence, 1073

left module, 349, 359

colimit of, 367

free, 368

in an ∞-category, 351

limit of, 364

nonunital, 681

over an E1-ring, 883

left Ore condition, 919

left representable, 584, 589

left unit, 680

left universal, 584

limit

of algebra objects, 253

of bimodules, 383

of module objects, 303

linear functor, 439

little cubes ∞-operad, 547

local family of ∞-operads, 815

local finite presentation, 937

localization

compatible with a O-monoidal structure,

151

complementary, 1073

of a stable ∞-category, 30

locally constant sheaf, 1041, 1044

locally differentiable fibration, 794

locally of singular shape, 1055

loop functor, 19

loop space, 545

MacLane coherence theorem, 341

manifold, 671

matching object, 905

model category

of algebras, 340

underlying ∞-category of, 90

model structure

∞-operadic, 146
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biCartesian, 500

generalized ∞-operadic, 179

on a category of algebras, 340

on commutative algebras, 428

module

finitely generated, 911

free, 911

projective, 912

module object

almost perfect, 932

colimit of, 367

flat, 913

free, 368

left, 349, 351, 359

limit of, 303, 364

over a coherent ∞-operad, 279

over a trivial algebra, 300

perfect, 929

right, 355

module spectrum, 883

S-complete, 925

S-local, 924

S-nilpotent, 921

monad, 464

endomorphism, 490

monadic ∞-category, 491

monoid axiom, 340

monoid object, 205, 332

grouplike, 633

of an ∞-category, 331

of an ordinary category, 331

monoidal ∞-category, 329

closed, 330

invertible object of, 331

underlying a monoidal model category,

337, 338

monoidal envelope, 162

monoidal model category

simplicial, 337

monoidal structure

weakly compatible with a simplicial struc-

ture, 337

Morita ∞-category, 531

morphism

cocentric, 1030

enriched, 471

of pairings, 588

zero, 15

morphism object, 354

multi-additive functor, 49

multilinear functor, 759

nerve

differential graded, 64

operadic, 136

nonabelian Poincare duality, 729

nondegenerate, 460

nonunital associative algebra, 680

nonunital left module object, 681

norm map, 778, 779, 781

normalized chain complex, 45

null, 267

nullhomotopy, 16

O-algebra object, 142

O-monoid object, 205

O-monoidal

functor, 143

O-monoidal ∞-category, 140

associated to an ∞-operad fibration, 162

presentable, 314

stable, 966

object

invertible, 331

zero, 14

octahedral axiom, 19, 24

operad, 133
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∞-categorical version of, 134

associative, 327

operadic colimit diagram, 223

in an ∞-category of modules, 314

weak, 223

operadic left Kan extension, 232

transitivity of, 247

operadic nerve, 136

operation

binary, 659

opposite algebra, 328

P-anodyne, 1094

P-equivalence, 1103

P-fibered, 1092

pairing

morphism of, 588

pairing of ∞-categories, 584

O-monoidal, 600

∞-category of, 588

duality functor of, 584

left representable, 584

reduced, 615

right representable, 584

weakly reduced, 615

pentagon axiom, 130

perfect module, 929

perfect pairing, 931

planar ∞-operad, 328

nonunital, 680

pointed ∞-category, 14

polarization, 765

polynomial functor, 740

Postnikov tower of an Ek-algebra, 898

power cofibrant, 427

power cofibration, 427

predifferential, 867

presentable, 11

presentable O-monoidal ∞-category, 314

product

of categorical patterns, 1097

projective

module, 912

projective object, 70

proper, 455

pseudo-enriched, 353

quasi-central, 1021

quasi-commutative E1-ring, 1019

quasi-free, 910

quasi-unit, 681

of an Ek-algebra, 689

quasi-unital

left module, 681

quasi-unital Ek-algebra, 689

quasi-unital commutative algebra, 690

Ran space, 702, 703

contractibility of, 703

recollement, 1072

rectification

of associative algebras, 341

rectilinear embedding, 546

reduced, 109, 759

differentiable fibration, 794

generalized ∞-operad, 192

reduced ∞-operad, 192

reduced pairing of ∞-categories, 615

reduction, 762

of a symmetric functor, 766

relative adjunction, 950

relative cofiber sequence, 957

relative cotangent complex, 957

connectivity of, 1007

finiteness of, 1015

relative tensor product, 402, 404

representable

morphism of pairings, 589
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representable functor, 104

reversal, 444

reverse, 328

right adjointable diagram, 501

right bounded, 35

right closed, 330

right cofinal, 12

right dual, 434

of a bimodule, 438

right dualizable, 436

bimodule, 438

right exact

decomposition, 823

right module, 355

right representable, 584, 589

right t-exact, 76

right unit, 680

right universal, 584

S-complete module, 925

S-free object

S-free object, 905

S-hypercovering, 905

S-local module, 924

S-nilpotent module, 921

Schwede-Shipley theorem, 888

Seifert-van Kampen Theorem, 1049

for exit paths, 1067

semi-inert, 267

semiadditive ∞-category, 780

sequential colimit, 42

Serre automorphism, 460

Serre bimodule, 456, 458

shape, 1041, 1044

constant, 1042

singular, 1054

shape equivalence, 1053

of topological spaces, 1054

sheaf

constant, 1044

foliated, 1047

locally constant, 1041, 1044

shift functor, 20

sifted-complete ∞-category, 709

simplicial category

underlying a differential graded category,

66

simplicial complex

abstract, 1065

simplicial homotopy, 906

simplicial monoidal model category, 337

simplicial object

G-split, 485

augmented, 485

split, 485

singular shape, 1054

local, 1055

small extension

of E1-algebras, 994

of Ek-algebras, 996

smash product, 514, 520

smooth, 458

space, 11

n-connective, 11

n-truncated, 11

connected, 11

discrete, 11

finite, 109

space of binary operations, 659

space of units, 653

Spanier-Whitehead dual, 850

spectral sequence, 39, 910

convergence of, 42

of a simplicial object, 54

spectrum, 116

spectrum object, 109

split augmented simplicial object, 485
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spray, 847

square-zero extension, 972, 991

stabilization, 797, 817

of an ∞-operad, 814

of an ∞-category of algebras, 968

stabilization hypothesis, 554

stable

∞-operad, 814

decomposition, 823

stable ∞-category, 16

stable envelope, 943

stable subcategory, 25

stratification, 1056

conical, 1056

strongly coCartesian cube, 742

subcategory

stable, 25

surjective

map of module spectra, 911

suspension

infinite, 806

suspension functor, 19

symmetric n-ary functor, 765

symmetric cross-effect, 766

symmetric Frobenius algebra, 461

symmetric monoidal

Cartesian, 197

coCartesian, 197

functor, 143

symmetric monoidal ∞-category, 130, 141

∞-category of, 147

of ∞-categories, 509

of spectra, 520

symmetric monoidal category, 127

symmetric sequence, 830

symmetric spectra, 341

t-structure, 30

accessible, 123

bounded, 35

compatibility with filtered colimits, 100

generators for, 122

left bounded, 35

left complete, 35

on D−(A), 72

right bounded, 35

right complete, 35

tangent bundle, 946

to an ∞-category of algebras, 973

tangent correspondence, 987

Tate construction, 782

tensor product

associativity of, 411

comparison of, 564, 573

external, 445

of Ind-objects, 511

of ∞-categories, 509

of ∞-operads, 169

of ∞-topoi, 514

of Ek-algebras, 660

of algebra objects, 262

of bimodules, 402, 404

of presentable ∞-categories, 512

of presheaves, 511

of right modules, 573

of spectra, 514, 520

over a commutative algebra, 421

unitality of, 411

tensored ∞-category, 352

thin

∆2-family of ∞-operads, 848

topological André-Quillen homology, 943

topological chiral homology, 709

and Hochschild homology, 716

as a topological field theory, 722

of a covering space, 715

of a tensor product, 715
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Tor-amplitude, 936

total fiber, 851

triangle, 15

distinguished, 18, 21

triangulated category, 18

trivial

∞-operad, 136

algebra object, 252

truncated, 11

Ek-algebra, 896

truncation functor, 31

twisted arrow ∞-category, 582

relative, 593

unit

object, 251

of an Ek-algebra, 653

unital

∞-operad, 173

∞-operad family, 209

unitalization, 175

universal, 584

unnormalized chain complex, 45

Verdier duality, 723

Verdier’s axioms, 18

Waldhausen K-theory, 39

Wall finiteness obstruction, 109

weak operadic colimit diagram, 223

weakly enriched ∞-category, 351

weakly reduced pairing of ∞-categories, 615

wreath product, 213

Yoneda embedding, 581

zero

morphism, 15

object, 14
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Notation Index

MG, 777

M rev, 444

MG, 777

SA, 456

TA, 458

BarB(M,N)•, 403

Bar(A), 595

Morita(C), 531

TwArr(C), 582

ML, 584

MR, 584

D′λ, 584

Dλ, 584

a, 350

a+, 374

a−, 374

Ao, 11

Aη, 991

Alg/O(C), 142

Alg
(1),ét
A/ , 1021

(Alg
(1)
R )ét

A//C , 1032

Algaug(C), 595

Alg(C), 522

Algnu
Ek(C), 689

Algqu
Ek(C), 689

Algqu
EM (C), 700

∆Alg(C), 335
∆Alg

nu
(C), 680

∆Alg
qu

(C), 681

Alg(k), 882

Alg(k),cn, 884

Alg
(k),cn
R , 896

Alg
(k),disc
R , 897

Alg
(k)
R , 895

(Alg
(k)
R )ét

A//C , 1036

Algnu
O (C), 689

AlgO(C), 142

AlgO′ /O(C), 142

AlgO′ /O′′(C)⊗, 262
pAlg/O(C), 278

AlgS(C), 392

A⊕M , 972

Arev, 328

Assoc⊗nu, 680

Assoc, 327

Assoc⊗, 328

AW, 50

Bar(k), 609

∂ F , 785
~∂F , 785

BG, 765

BiFunc(O⊗,O′⊗;C⊗), 169

ABModB(M), 374

BMod(M), 374

Bin(O), 659

BM⊗, 374

BTop(k)⊗, 676

CAlg, 882

CAlg(C), 142

CAlgnu(C), 690

CAlgqu(C), 690

Cq, 207

C∗(A), 45

CatAlg
∞ , 521

Catdg k, 67

Cat∞(K), 508

CatEx
∞ , 27

Cat⊗∞, 147

Cat?∞, 793

Cat?,Ex
∞ , 793
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CatMod
∞ (K), 524

Cb, 35

CbSC, 742

C�, 359

C∆, 66

CAlgdg
( R), 900

C+[M ]�, 481

C[M ], 472

C[M ]�, 480

C≥n, 30

Ch(A), 43, 69

Ch(A)≥n, 43

Ch(A)≤n, 43

Ĉ, 35

C♥, 32

C≤n, 30

C−, 35

coAlg(C), 600

Cobar, 599

Cobar(n), 609

cofib(f), 16

Comm⊗, 136

Comm⊗u , 680

Conf(I;M), 549

cored(F ), 803

C⊗, 127

C⊗�D⊗, 159

CPairred, 616

CPairwred, 616

C+, 35

cr(n)(F ), 766

crn(F ), 763

cr~n(F ), 763

C', 11

C×, 199

C⊗rev, 328

2k, 546

Cut, 332

C[W−1], 84, 336

C⊗ oD⊗, 213

CX//Y , 11

∂∗(F ), 832

∂n(F ), 829

∆+, 485

∆−∞, 485

Der+, 1000

Der(C), 990

D̃er(C), 991

DF , 802

Algdg
( R), 898

D(M), 710

Disk(()M), 698

DK•(A), 44

D−(A), 70

D(C), 624

DDat(C), 436

E⊗0 , 136

E⊗B, 678

EG, 765

E⊗∞, 550

E⊗k , 547
tE⊗k , 547

Emb(M,N)), 672

E⊗M , 697

End(M), 470, 471

EnvO(C)⊗, 162

Ep,qr , 39

Equiv+(I), 850

Equiv(I), 850

Exc(C,D), 109

Exc∗(
∏
s∈S Cs,D), 759

Exc∗(C,D), 109

Excn∗ , 749

Excnc (C,D), 772

Excn(C,D), 742
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Exc~n(C,D), 757

Exc?, 791

ExtnC(X,Y ), 24

Ext(f), 267, 268

ExtiR(M,N), 885

Ext(σ, S), 268

Fact(M)⊗, 718

fib(f), 16

Fini , 745

Fini≤ n, 745

Fin∗, 128

Fun∗(
∏
s∈S Cs,D), 759

Fun∗(C,D), 109

Funn−con(∆1,Alg(C)), 994

FunLAd(S,Cat∞), 501

LFun(C,D), 12

Funlin(
∏

Ci,D), 759

FunRAd(S,Cat∞), 501

RFun(C,D), 12

FunRex(C,D), 109

Funn−sm(∆1,Alg(C)), 994

Funn−sm(∆1,Alg(k)(C)), 996

Fun?, 791

Γc(U ;E), 728

ΓK(M ;E), 732

Γ(U ;E), 728

Gap(I,C), 38

Germ(S,M), 672

Homeo(M,N), 672

Homogn, 749

I∗, 128∫
M A, 709

KO, 271

L, 956

Lat, 51

LB/A, 957

LCut, 357

LinFunC(M,N), 439

LModA, 883

LModaperf
R , 932

LModA(M), 351

LModA(M), 523
∆LModA(M), 359
∆LMod(M), 359
∆LMod

nu
(M), 681

LMod(M), 351, 522

LModnu(M), 681

LMod
Cpl(S)
R , 925

LMod≥0
R , 885

LMod≤0
R , 885

LMod
Loc(S)
R , 924

LModS−nilR , 924

LModperf
R , 929

LModqf
R , 910

LM⊗, 351

LMon(C), 357

Ln(X), 905

m, 350

Man(k), 710

M�, 359

Mod
O

(C)⊗, 277

Mn(X), 905

ModA(C), 416

ModA(C)⊗, 416

Mod(C), 416

Mod(C)⊗, 416

ModO
A(O)⊗, 278

ModO(C)⊗, 278

MonK
Assoc(Cat∞), 521

Mon(C), 331

MonE(C), 333

Mongp(C), 633

MonO(C), 206
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M ⊗B N , 404

MT (C), 987

M tG, 782

N∗(A), 45

N∗(K), 45

〈n〉, 128

Ndg(C), 64

Nmf , 778, 779, 781

〈n〉◦, 128

N⊗(O), 136

�, 169

Ω∞+n, 113

Opgn
∞ , 179

Op∞, 145

Op(∞)⊗, 171

O⊗, 134, 136

O⊗act, 223

Pr, 376

CPair, 588

CPairL, 589

CPairR, 589

CPair∆, 588

P, 1091

Pc(C), 773

π∗R, 884

P≤n(C), 773

PnF , 747

POp∞, 145

PSt∗(p), 793

PSt(p), 793

P(S), 742

P(S)>i, 742

P(S)≤i, 742

Ran≤n(M), 704

Ran(M), 702, 703

Rann(M), 704

Ran({Ui}), 703

Rect, 546

Red(F ), 762

ρi, 128

Ringét
A/, 1021

RModA(M), 355

RMod(M), 355

RM⊗, 355

(Set++
∆ )/S , 498

Σ, 20

Σ∞+ , 120, 806

SingA(X), 1061

S−1M , 920

S(I), 170

Sp, 116

Sfin
∗ , 109

Sfin, 109

Sp(C), 109

Spcn, 884

St(p), 793

Step, 391

StrM, 476

StrMen, 476

StrMen
[1], 471

StrMen
[n], 472

SX , 850

SymFunn∗ (C,D), 765

SymFunn(C,D), 765

Symn(C), 765

Symn
O,Y , 244

SSeq(C,D), 830

τ≥k, 31

τ≤k, 31

TC, 946

Tens⊗, 390

Tens⊗S , 392

Tens⊗� , 401
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tfib, 851

Θ, 524

Top(k), 672

TorRi (M,N), 904

Triv⊗, 136

TwArr0
λ(C), 594

TwArrλ(C), 593

∧, 168

∧n(f), 427

Ω, 20

ΩA, 941

X ⊕ Y , 26

X[n], 20

X∨, 434

Z(f), 641

Z(M), 642
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[158] Verdier, J-L. Dualité dans la cohomologie des espaces localement compacts. Seminaire Bour-

baki Exp. 300 (196566).

[159] Verity, D. Weak complicial sets, a simplicial weak omega-category theory. Part I: basic homo-

topy theory.

[160] Verity, D. Weak complicial sets, a simplicial weak omega-category theory. Part II: nerves of

complicial Gray-categories.

[161] Wall, C.T.C. Finiteness conditions for CW-complexes. Ann. Math. 81, 1965, 56–69.

[162] Weibel, C. An Introduction to Homological Algebra. Cambridge University Press, 1995.

[163] Weiss, M. Calculus of Embedddings. Bull. Amer. Math. Soc. 33 (1996), 177-187.
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