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Introduction

The following thesis plays a central role in deformation theory:

(∗) If X is a moduli space over a field k of characteristic zero, then a formal neighborhood of any point
x ∈ X is controlled by a differential graded Lie algebra.

This idea was developed in unpublished work of Deligne, Drinfeld, and Feigin, and has powerfully influenced
subsequent contributions of Hinich, Kontsevich-Soibelman, Manetti, Pridham, and many others. One of our
main goals in this paper is to give a precise formulation (and proof) of (∗), using the language of higher
category theory.

The first step in formulating (∗) is to decide exactly what we mean by a moduli space. For simplicity,
let us work for now over the field C of complex numbers. We will adopt Grothendieck’s “functor of points”
philosophy, and identify an algebro-geometric object X (for example, a scheme) with the functor R 7→
X(R) = Hom(SpecR,X). This suggests a very general definition:

Definition 0.0.1. A classical moduli problem is a functor X : RingC → Set, where RingC denotes the
category of commutative C-algebras and Set denotes the category of sets.

Unfortunately, Definition 0.0.1 is not adequate for the needs of this paper. First of all, Definition 0.0.1
requires that the functor X take values in the category of sets. In many applications, we would like to consider
functors X which assign to each commutative ring R some collection of geometric objects parametrized by
the affine scheme SpecR. In such cases, it is important to keep track of automorphism groups.

Example 0.0.2. For every commutative C-algebra R, let X(R) denote the category of elliptic curves
E → SpecR (morphisms in the category X(R) are given by isomorphisms of elliptic curves). Then F
determines a functor from RingC to Gpd, where Gpd denotes the 2-category of groupoids. In this case, X
determines an underlying set-valued functor, which assigns to each commutative ring R the set π0X(R) of
isomorphism classes of elliptic curves over R. However, the groupoid-valued functor X : RingC → Gpd is
much better behaved than the set-valued functor π0X : RingC → Set. For example, the functor X satisfies
descent (with respect to the flat topology on the category of commutative rings), while the functor π0X does
not: two elliptic curves which are locally isomorphic need not be globally isomorphic.

Because the functor X of Example 0.0.2 is not Set-valued, it cannot be represented by a scheme. How-
ever, it is nevertheless a reasonable geometric object: it is representable by a Deligne-Mumford stack. To
accommodate Example 0.0.2, we would like to adjust Definition 0.0.1 to allow groupoid-valued functors.

Variant 0.0.3. Let C be an ∞-category. A C-valued classical moduli problem is a functor N(RingC) → C.
Here RingC denotes the category of commutative algebras over the field C of complex numbers.

Remark 0.0.4. We recover Definition 0.0.1 as a special case of Variant 0.0.3, by taking C to be (the nerve
of) the category of sets. In practice, we will be most interested in the special case where C is the∞-category
S of spaces.

The next step in formulating (∗) is to decide what we mean by a formal neighborhood of a point x in a
moduli space X. Suppose, for example, that X = SpecA is an affine algebraic variety over the field C of
complex numbers. Then a closed point x ∈ X is determined by a C-algebra homomorphism φ : A → C,
which is determined a choice of maximal ideal m = ker(φ) ⊆ A. One can define the formal completion of X
at the point x to be the functor X∧ : Ring→ Set given by the formula

X∧(R) = {f ∈ X(R) : f(SpecR) ⊆ {x} ⊆ SpecA}.

In other words, X∧(R) is the collection of commutative ring homomorphisms φ : A→ R having the property
that φ carries each element of m to a nilpotent element of R. Since m is finitely generated, this is equivalent
to the condition that φ annihilates mn for some integer n� 0, so that the image of φ is a quotient of A by
some m-primary ideal.
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Definition 0.0.5. Let R be a commutative algebra over the field C of complex numbers. We will say that
R is a local Artinian if it is finite dimensional as a C-vector space and has a unique maximal ideal mR. The
collection of local Artinian C-algebras forms a category, which we will denote by Ringart

C .

The above analysis shows that if X is an affine algebraic variety over C containing a point x, then the
formal completion X∧ can be recovered from its values on local Artinian C-algebras. This motivates the
following definition:

Definition 0.0.6. Let C be an ∞-category. A C-valued classical formal moduli problem is a functor
N(Ringart

C )→ C.

If X is a Set-valued classical moduli problem and we are given a point η ∈ X(C), we can define a
Set-valued classical formal moduli problem X∧ by the formula

X∧(R) = X(R)×X(R/mR) {η}.

We will refer to X∧ as the completion of X at the point η. If X is Gpd-valued, the same formula determines
a Gpd-valued classical formal moduli problem X∧ (here we take a homotopy fiber product of the relevant
groupoids).

Example 0.0.7. For every commutative C-algebra R, let X(R) denote the groupoid whose objects are
smooth proper R-schemes and whose morphisms are isomorphisms of R-schemes. Suppose we are given a
point η ∈ X(C), corresponding to smooth and proper algebraic variety Z over C. The formal completion
X∧ assigns to every local Artinian C-algebra R the groupoid X∧(R) of deformations over Z over R: that
is, smooth proper morphisms f : Z → SpecR which fit into a pullback diagram

Z //

��

Z

��
Spec C // SpecR.

Example 0.0.7 is a typical example of the kind of formal moduli problem we would like to study. Let us
summarize some well-known facts about the functor X∧:

(a) The functor X∧ carries the ring C[ε]/(ε2) to the groupoid of first-order deformations of the variety
Z. Every first order deformation of Z has an automorphism group which is canonically isomorphic to
H0(Z;TZ), where TZ denotes the tangent bundle of Z.

(b) The collection of isomorphism classes of first order deformations of Z can be canonically identified with
the cohomology group H1(Z;TZ).

(c) To every first order deformation η1 of Z, we can assign an obstruction class θ ∈ H2(Z;TZ) which
vanishes if and only if η1 extends to a second-order deformation η2 ∈ X∧(C[ε]/(ε3)).

Assertion (a) and (b) are very satisfying: they provide a concrete geometric interpretations of certain
cohomology groups, and (b) can be given a conceptual proof using the interpretation of H1 as classifying
torsors. By contrast, (c) is often proven by an ad-hoc argument which uses the local triviality of the first
order deformation to extend locally, and then realizes the obstruction as a cocycle representing the (possible)
inability to globalize this extension. This argument is computational rather than conceptual, and it does
not furnish a geometric interpretation of the entire cohomology group H2(Z;TZ).

Let us now sketch an explanation for (c) using the language of spectral algebraic geometry, which does
not share these defects. The key observation is that we can enlarge the category on which the functor X
is defined. If R is a connective E∞-algebra over C, we can define X(R) to be the underlying ∞-groupoid
of the ∞-category of spectral schemes which are proper and smooth over R. If R is equipped with an
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augmentation ε : R → C, we let X∧(R) denote the fiber product X(R) ×X(C) {η}, which we can think of
as a classifying space for deformations of Z over SpecR. In the special case where R is a discrete local
Artinian C-algebra, we recover the groupoid-valued functor described in Example 0.0.7. However, we can
obtain more information by evaluating the functor X∧ on E∞-algebras over C which are not discrete. For
example, let C[δ] denote the square-zero extension C⊕C[1]. One can show that there is a canonical bijection
H2(Z;TZ) ' π0X

∧(C[δ]). We can regard this as an analogue of (c): it gives a description of cohomology
group H2(Z;TZ) as the set of isomorphism classes of first order deformations of Z to the “nonclassical”
commutative ring C[δ].

The interpretation of obstructions as elements of H2(X,TX) can now be obtained as follows. The ordinary
commutative ring C[ε]/(ε3) is a square-zero extension of C[ε]/(ε2) by the ideal C ε2, and therefore fits into
a pullback diagram of E∞-rings

C[ε]/(ε3) //

��

C[ε]/(ε2)

��
C // C[δ].

In §IX.9, we saw that this pullback square determines a pullback square of spaces

X(C[ε]/(ε3)) //

��

X(C[ε]/(ε2))

��
X(C) // X(C[δ]),

and therefore a fiber sequence of spaces

X∧(C[ε]/(ε3))→ X∧(C[ε]/(ε2))→ X∧(C[δ]).

In particular, every first-order deformation η1 of Z determines an element of π0X
∧(C[δ]) ' H2(Z;TZ), which

vanishes precisely when η1 can be lifted to a second order deformation of Z.
The analysis that we have just provided in Example 0.0.7 cannot be carried out for an arbitrary classical

formal moduli problem (in the sense of Definition 0.0.6): it depends crucially on the fact that the functor
X∧ could be defined on E∞-rings which are not assumed to be discrete. This motivates another variant of
Definition 0.0.1:

Definition 0.0.8. Let CAlgsm
C denote the∞-category of small E∞-algebras over C (see Proposition 1.1.11).

A formal moduli problem over C is a functor X : CAlgsm
C → S which satisfies the following pair of conditions:

(1) The space X(C) is contractible.

(2) For every pullback diagram

R //

��

R0

��
R1

// R01

in CAlgsm
C for which the underlying maps π0R0 → π0R01 ← π0R1 are surjective, the diagram

X(R) //

��

X(R0)

��
X(R1) // X(R01)

is a pullback square.
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Remark 0.0.9. Let CAlgcn
C denote the ∞-category of connective E∞-algebras over the field C of complex

numbers, and let X : CAlgcn
C → S be a functor. Given a point x ∈ X(C), we define the formal completion

of X at the point x to be the functor X∧ : CAlgsm
C → S given by the formula X∧(R) = X(R) ×X(C) {x}.

The functor X∧ automatically satisfies condition (1) of Definition 0.0.8. Condition (2) is not automatic, but
holds whenever the functor X is defined in a sufficiently “geometric” way. To see this, let us imagine that
there exists some ∞-category of geometric objects C with the following properties:

(a) To every object A ∈ CAlgcn
C we can assign an object SpecA ∈ C, which is contravariantly functorial in

A.

(b) There exists an object X ∈ C which represents X, in the sense that X(A) ' HomC(SpecA,X) for every
small C-algebra A.

To verify that X∧ satisfies condition (2) of Definition 0.0.8, it suffices to show that when φ : R0 → R01 and
φ′ : R1 → R01 are maps of small E∞ algebras over C which induce surjections π0R0 → π0R01 ← π0R1, then
the diagram

SpecR01
//

��

SpecR1

��
SpecR0

// Spec(R1 ×R01 R0)

is a pushout square in C. This assumption expresses the idea that Spec(R0 ×R01
R1) should be obtained by

“gluing” SpecR0 and SpecR1 together along the common closed subobject SpecR01.

Example 0.0.10. Let C denote the ∞-category StkC of spectral Deligne-Mumford stacks over C. The
construction Specét : CAlgcn

C → C satisfies the gluing condition described in Remark 0.0.9 (Corollary IX.6.5).
It follows that every spectral Deligne-Mumford stack X over C equipped with a base point x : Specét C→ X
determines a formal moduli problem X∧ : CAlgsm

C → S, given by the formula

X∧(R) = MapStkC
(SpecétR,X)×MapStkC

(Specét C,X) {x}.

We refer to X∧ as the formal completion of X at the point x.

Remark 0.0.11. Let X : CAlgsm
C → S be a formal moduli problem. Then X determines a functor X :

hCAlgsm
C → Set between ordinary categories (here hCAlgsm

C denotes the homotopy category of CAlgsm
C ),

given by the formula X(A) = π0X(A). It follows from condition (2) of Definition 0.0.8 that if we are given
maps of small E∞-algebras A → B ← A′ which induce surjections π0A → π0B ← π0A

′, then the induced
map

X(A×B A′)→ X(A)×X(B) X(A′)

is a surjection of sets. There is a substantial literature on set-valued moduli functors of this type; see, for
example, [50] and [33].

Warning 0.0.12. If X is a formal moduli problem over C, then X determines a classical formal moduli
problem (with values in the∞-category S) simply by restricting the functor X to the subcategory of CAlgsm

C

consisting of ordinary local Artinian C-algebras (which are precisely the discrete objects of CAlgsm
C ).

If X = (X,O) is a spectral Deligne-Mumford stack over C equipped with a point η : Spec C→ X and X
is defined as in Example 0.0.10, then the restriction X0 = X|N(Ringart

C ) depends only on the pair (X, π0 O).
In particular, the functor X cannot be recovered from X0.

In general, if we are given a classical formal moduli problem X0 : N(Ringart
C )→ S, there may or may not

exist a formal moduli problem X such that X0 = X|N(Ringart
C ). Moreover, if X exists, then it need not be

unique. Nevertheless, classical formal moduli problems X0 which arise naturally are often equipped with a
natural extension X : CAlgsm

C → S (as in our elaboration of Example 0.0.7).
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Theorem 0.0.13. Let Moduli denote the full subcategory of Fun(CAlgsm
C , S) spanned by the formal moduli

problems, and let Liedg
C denote the category of differential graded Lie algebras over C (see §2.1). Then there

is a functor
θ : N(Liedg

C )→ Moduli

with the following universal property: for any ∞-category C, composition with θ induces a fully faithful
embedding Fun(Moduli,C) → Fun(N(Liedg

C ),C), whose essential image is the collection of all functors F :

N(Liedg
C )→ C which carry quasi-isomorphisms of differential graded Lie algebras to equivalences in C.

Remark 0.0.14. An equivalent version of Theorem 0.0.13 has been proven by Pridham; we refer the reader
to [54] for details.

Remark 0.0.15. Let W be the collection of all quasi-isomorphisms in the category Liedg
C , and let Liedg

C [W−1]

denote the ∞-category obtained from N(Liedg
C ) by formally inverting the morphisms in W . Theorem 0.0.13

asserts that there is an equivalence of ∞-categories Liedg
C [W−1] ' Moduli. In particular, every differential

graded Lie algebra over C determines a formal moduli problem, and two differential graded Lie algebras
g∗ and g′∗ determine equivalent formal moduli problems if and only if they can be joined by a chain of
quasi-isomorphisms.

Theorem 0.0.13 articulates a sense in which the theories of commutative algebras and Lie algebras are
closely related. In concrete terms, this relationship is controlled by the Chevalley-Eilenberg functor, which
associates to a differential graded Lie algebra g∗ a cochain complex of vector spaces C∗(g∗). The cohomol-
ogy of this cochain complex is the Lie algebra cohomology of the Lie algebra g∗, and is endowed with a
commutative multiplication. In fact, this multiplication is defined at the level of cochains: the construction
g∗ 7→ C∗(g∗) determines a functor C∗ from the (opposite of) the category Liedg

C of differential graded Lie

algebras over C to the category CAlgdg
C of commutative differential graded algebras over C. This functor

carries quasi-isomorphisms to quasi-isomorphisms, and therefore induces a functor between ∞-categories

φ : Liedg
C [W−1]op → CAlgdg

C [W ′−1],

where W is the collection of quasi-isomorphisms in Liedg
C (as in Remark 0.0.15) and W ′ is the collection of

quasi-isomorphisms in CAlgdg
C (here the ∞-category CAlgdg

C [W ′−1] can be identified CAlgC of E∞-algebras
over C: see Proposition A.7.1.4.11). Every differential graded Lie algebra g∗ admits a canonical map
g∗ → 0, so that its Chevalley-Eilenberg complex is equipped with an augmentation C∗(g∗) → C∗(0) ' C.

We may therefore refine φ to a functor Liedg
C [W−1]op → CAlgaug

C taking values in the ∞-category CAlgaug
C

of augmented E∞-algebras over C. We will see that this functor admits a left adjoint D : CAlgaug
C →

Liedg
C [W−1]op (Theorem 2.3.1). The functor θ : N(Liedg

C )→ Moduli appearing in the statement of Theorem
0.0.13 can then be defined by the formula

θ(g∗)(R) = MapLiedg
C [W−1](D(R), g∗).

In more abstract terms, the relationship between commutative algebras and Lie algebras suggested by
Theorem 0.0.13 is an avatar of Koszul duality. More specifically, Theorem 0.0.13 reflects the fact that the
commutative operad is Koszul dual to the Lie operad (see [29]). This indicates that should be many other
versions of Theorem 0.0.13, where we replace commutative and Lie algebras by algebras over some other
pair of Koszul dual operads. For example, the Koszul self-duality of the En-operads (see [17]) suggests an
analogue of Theorem 0.0.13 in the setting of “noncommutative” derived algebraic geometry, which we also
prove (see Theorems 3.0.4 and 4.0.8).

Let us now outline the contents of this paper. In §1, we will introduce the general notion of a deformation
theory: a functor of ∞-categories D : Υop → Ξ satisfying a suitable list of axioms (see Definitions 1.3.1 and
1.3.9). We will then prove an abstract version of Theorem 0.0.13: every deformation theory D determines
an equivalence Ξ ' ModuliΥ, where ModuliΥ is a suitably defined ∞-category of formal moduli problems
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(Theorem 1.3.12). This result is not very difficult in itself: it can be regarded as a distillation of the purely
formal ingredients needed for the proof of results like Theorem 0.0.13. In practice, the hard part is to
construct the functor D and to prove that it satisfies the axioms of Definitions 1.3.1 and 1.3.9. We will give
a detailed treatment of three special cases:

(a) In §2, we treat the case where Υ is the ∞-category CAlgaug
k of augmented E∞-algebras over a field k

of characteristic zero, and use Theorem 1.3.12 to prove a version of Theorem 0.0.13 (Theorem 2.0.2).

(b) In §3, we treat the case where Υ is the ∞-category Algaug
k of augmented E1-algebras over a field k

(of arbitrary characteristic), and use Theorem 1.3.12 to prove a noncommutative analogue of Theorem
0.0.13 (Theorem 3.0.4).

(c) In §4, we treat the case where Υ is the ∞-category Alg
(n),aug
k of augmented En-algebras over a field k

(again of arbitrary characteristic), and use Theorem 1.3.12 to prove a more general noncommutative
analogue of Theorem 0.0.13 (Theorem 4.0.8).

In each case, the relevant deformation functor D is given by some variant of Koszul duality, and our
main result gives an algebraic model for the ∞-category of formal moduli problems ModuliΥ. In §5, we
will use these results to study some concrete examples of formal moduli problems which arise naturally in
deformation theory.

Remark 0.0.16. The notion that differential graded Lie algebras should play an important role in the
description of moduli spaces goes back to Quillen’s work on rational homotopy theory ([73]), and was
developed further in unpublished work of Deligne, Drinfeld, and Feigin. Many other mathematicians have
subsequently taken up these ideas: see, for example, the book of Kontsevich and Soibelman ([33]).

Remark 0.0.17. The subject of deformation theory has a voluminous literature, some of which has substan-
tial overlap with the material discussed in this paper. Though we have tried to provide relevant references
in the body of the text, there are undoubtedly many sins of omission for which we apologize in advance.

Notation and Terminology

We will use the language of ∞-categories freely throughout this paper. We refer the reader to [40] for a
general introduction to the theory, and to [41] for a development of the theory of structured ring spectra
from the ∞-categorical point of view. For convenience, we will adopt the following reference conventions:

(T ) We will indicate references to [40] using the letter T.

(A) We will indicate references to [41] using the letter A.

(V ) We will indicate references to [42] using the Roman numeral V.

(V II) We will indicate references to [43] using the Roman numeral VII.

(V III) We will indicate references to [44] using the Roman numeral VIII.

(IX) We will indicate references to [45] using the Roman numeral IX.

For example, Theorem T.6.1.0.6 refers to Theorem 6.1.0.6 of [40].
If C is an ∞-category, we let C' denote the largest Kan complex contained in C: that is, the ∞-category

obtained from C by discarding all non-invertible morphisms.
We will say that a map of simplicial sets f : S → T is left cofinal if, for every right fibration X → T , the

induced map of simplicial sets FunT (T,X) → FunT (S,X) is a homotopy equivalence of Kan complexes (in
[40], we referred to a map with this property as cofinal). We will say that f is right cofinal if the induced
map Sop → T op is left cofinal: that is, if f induces a homotopy equivalence FunT (T,X) → FunT (S,X) for
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every left fibration X → T . If S and T are ∞-categories, then f is left cofinal if and only if for every object
t ∈ T , the fiber product S ×T Tt/ is weakly contractible (Theorem T.4.1.3.1).

Throughout this paper, we will generally use the letter k to denote a field (sometimes assumed to be
of characteristic zero). We let Modk denote the ∞-category of k-module spectra (more concretely, one can
think of the objects of Modk as given by chain complexes of vector spaces over k: see Remark 2.1.1). For
each M ∈ Modk, the homotopy groups π∗M constitute a graded vector space over k. We will say that M is
locally finite if each homotopy group πnM is finite-dimensional as a vector space over k.

For 0 ≤ n ≤ ∞, we let Alg
(n)
k denote the ∞-category of En-algebras over k (see Definition A.7.1.3.5).

In the special case n = 1, we will denote Alg
(n)
k by Algk; in the special case n = ∞ we will denote

Alg
(n)
k by CAlgk. If A ∈ Alg

(n)
k , then an augmentation on A is a map of En-algebras ε : A → k. We let

Alg
(n),aug
k = (Alg

(n)
k )/k denote the ∞-category of augmented En-algebras over k (when n = 1 we denote this

∞-category by Algaug
k , and when n = ∞ we denote it by CAlgaug

k ). If A ∈ Alg
(n),aug
k , then we will refer to

the fiber of the augmentation ε : A → k as the augmentation ideal of A, and often denote it by mA. Then
mA has the structure of a nonunital En-algebra over k. The construction A 7→ mA determines an equivalence

from the ∞-category Alg
(n),aug
k to the ∞-category of nonunital En-algebras over k (Proposition A.5.2.3.15).
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1 Deformation Theories: Axiomatic Approach

Our goal in this paper is to prove several variants of Theorem 0.0.13, which supply algebraic descriptions of
various ∞-categories of formal moduli problems. Here is a basic prototype for the kind of result we would
like to obtain:

(∗) Let Υ be an ∞-category of algebraic objects of some sort, let Υsm ⊆ Υ be a full subcategory spanned
by those objects which are small (i.e., Artinian), and let ModuliΥ ⊆ Fun(Υsm, S) be the ∞-category of
functors X : Υsm → S which satisfy a suitable gluing condition (as in Definition 0.0.8). Then there is
an equivalence of ∞-categories ModuliΥ ' Ξ, where Ξ is some other ∞-category of algebraic objects.

Our goal in this section is to flesh out assertion (∗). We begin in §1.1 by introducing the notion of a
deformation context (Definition 1.1.3). A deformation context is a presentable ∞-category Υ equipped with
some additional data (namely, a collection of spectrum objects Eα ∈ Stab(Υ)). Using this additional data,
we will explain how to define the full subcategory Υsm ⊆ Υ of small objects of Υ (Definition 1.1.8), and
the full subcategory ModuliΥ ⊆ Fun(Υsm, S) of formal moduli problems (Definition 1.1.14). Our definitions
are very general and therefore suitable for a wide variety of applications. Nevertheless, they are sufficiently
powerful to ensure that there is a reasonable differential theory of theory of formal moduli problems. In §1.2
we will explain how to associate to every formal moduli problem X a collection of spectra X(Eα), which
we call the tangent complex(es) of X. The construction is functorial: every map between formal moduli
problems u : X → Y can be differentiated to obtain maps of spectra X(Eα)→ Y (Eα). Moreover, if each of
these maps is a homotopy equivalence, then u is an equivalence (Proposition 1.2.10).

In §1.3, we will formulate a general version of (∗). For this, we will introduce the notion of a deformation
theory. A deformation theory is a functor D : Υop → Ξ satisfying a collection of axioms (see Definitions 1.3.1
and 1.3.9). Our main result (Theorem 1.3.12) can then be stated as follows: if D : Υop → Ξ is a deformation
theory, then D determines an equivalence of ∞-categories Ξ ' ModuliΥ. The proof of this result will be
given in §1.5, using an ∞-categorical variant of Quillen’s small object argument which we review in §1.4.
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Our work in this section should be regarded as providing a sort of formal outline for proving results
like Theorem 0.0.13. In practice, the main difficulty is not in proving Theorem 1.3.12 but in verifying its
hypotheses: that is, in constructing a functor D : Υop → Ξ which satisfies the axioms listed in Definitions
1.3.1 and 1.3.9. The later sections of this paper are devoted to carrying this out in special cases (we will
treat the case of commutative algebras in §2, associative algebras in §3, and En-algebras in §4).

1.1 Formal Moduli Problems

In this section, we introduce a general axiomatic paradigm for the study of deformation theory. Let us begin
by outlining the basic idea. We are ultimately interesting in studying some class of algebro-geometric objects
(such as schemes, or algebraic stacks, or their spectral analogues). Using the functor of points philosophy,
we will identify these geometric objects with functors X : Υ → S, where Υ denotes some ∞-category of
test objects. The main example of interest (which we will study in detail in §2) is the case where Υ to be
the ∞-category CAlgaug

k = (CAlgk)/k of augmented E∞-algebras over a field k of characteristic zero. In
any case, we will always assume that Υ contains a final object ∗; we can then define a point of a functor
X : Υ→ S to be a point of the space X(∗). Our goal is to introduce some techniques for studying a formal
neighborhood of X around a chosen point η ∈ X(∗). This formal neighborhood should encode information
about the homotopy fiber products X(A) ×X(∗) {η} for every object A ∈ Υ which is sufficiently “close” to
the final object ∗. In order to make this idea precise, we need to introduce some terminology.

Notation 1.1.1. If Υ is a presentable ∞-category, we let Υ∗ denote the ∞-category of pointed objects of
Υ (Definition T.7.2.2.1) and Stab(Υ) the stabilization of Υ (Definition A.1.4.4.1). Then Stab(Υ) can be
described as a homotopy limit of the tower of ∞-categories

· · · → Υ∗
Ω→ Υ∗

Ω→ Υ∗ → · · ·

In particular, we have forgetful functors Ω∞−n∗ : Stab(Υ) → Υ∗ for every integer n ∈ Z. We let Ω∞−n :
Stab(Υ)→ Υ denote the composition of Ω∞−n∗ with the forgetful functor Υ∗ → Υ.

Remark 1.1.2. We can describe Stab(Υ) explicitly as the ∞-category of strongly excisive functors from
Sfin
∗ to Υ, where Sfin

∗ is the ∞-category of pointed finite spaces (see Corollary A.1.4.4.14; we will return to
this description of Stab(Υ) in §1.2).

Definition 1.1.3. A deformation context is a pair (Υ, {Eα}α∈T ), where Υ is a presentable ∞-category and
{Eα}α∈T is a set of objects of the stabilization Stab(Υ).

Example 1.1.4. Let k be an E∞-ring, and let Υ = CAlgaug
k = (CAlgk)/k denote the ∞-category of

augmented E∞-algebras over k. Using Theorem A.7.3.5.14, we can identify Stab(Υ) with the ∞-category
Modk of k-module spectra. Let E ∈ Stab(Υ) be the object which corresponds to k ∈ Modk under this
identification, so that for every integer n we can identify Ω∞−nE with the square-zero extension k⊕ k[n] of
k. Then the pair (CAlgaug

k , {E}) is a deformation context.

Definition 1.1.5. Let (Υ, {Eα}α∈T ) be a deformation context. We will say that a morphism φ : A′ → A in
Υ is elementary if there exists an index α ∈ T , an integer n > 0, and a pullback diagram

A′

φ

��

// ∗

φ0

��
A // Ω∞−nEα.

Here φ0 corresponds the image Ω∞−n∗ Eα in the ∞-category of pointed objects Υ∗.

Example 1.1.6. Let k be a field and let (Υ, {E}) be the deformation context described in Example 1.1.4.
Suppose that φ : A′ → A is a map between connective objects of Υ = CAlgaug

k . Using Theorem A.7.4.1.26,
we deduce that φ is elementary if and only if the following conditions are satisfied:
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(a) There exists an integer n ≥ 0 and an equivalence fib(φ) ' k[n] in the ∞-category ModA′ (here we
regard k as an object of ModA′ via the augmentation map A′ → k).

(b) If n = 0, then the multiplication map π0 fib(φ)⊗ π0 fib(φ)→ φ0 fib(φ) vanishes.

If (a) is satisfied for n = 0, then we can choose a generator x for π0 fib(φ) having image x ∈ π0A
′. Condition

(b′) is automatic if x = 0. If a 6= 0, then the map π0 fib(φ)→ π0A
′ is injective, so condition (b) is equivalent

to the requirement that x2 = 0 in π0A
′.

Remark 1.1.7. Let (Υ, {Eα}α∈T ) be a deformation context, and suppose we are given an object A ∈ Υ.
Every elementary map A′ → A in Υ is given by the fiber of a map A → Ω∞−nEα for some n > 0 and
some α ∈ T . It follows that the collection of equivalence classes of elementary maps A′ → A is bounded in
cardinality.

Definition 1.1.8. Let (Υ, {Eα}α∈T ) be a deformation context. We will say that a morphism φ : A′ → A
in Υ is small if it can be written as a composition of finitely many elementary morphisms A′ ' A0 → A1 →
· · · → An ' A. We will say that an object A ∈ Υ is small if the map A→ ∗ (which is uniquely determined
up to homotopy) is small. We let Υsm denote the full subcategory of Υ spanned by the small objects.

Example 1.1.9. Let (Υ, {Eα}α∈T ) be a deformation context. For every integer n ≥ 0 and every index
α ∈ T , we have a pullback diagram

Ω∞−nEα //

��

∗

��
∗ // Ω∞−n−1Eα.

It follows that the left vertical map is elementary. In particular, Ω∞−nEα is a small object of Υ.

Remark 1.1.10. Let (Υ, {Eα}α∈T ) be a deformation context. It follows from Remark 1.1.7 that the
subcategory Υsm ⊆ Υ is essentially small.

Proposition 1.1.11. Let k be a field and let (Υ, {E}) be the deformation context of Example 1.1.4. Then
an object A ∈ Υ = CAlgaug

k is small (in the sense of Definition 1.1.8) if and only if the following conditions
are satisfied:

(1) The homotopy groups πnA vanish for n < 0 and n� 0.

(2) Each homotopy group πnA is finite-dimensional as a vector space over k.

(3) The commutative ring π0A is local with maximal ideal k, and the canonical map k → (π0A)/m is an
isomorphism.

Proof. Suppose first that A is small, so that there there exists a finite sequence of maps

A = A0 → A1 → · · · → An ' k

where each Ai is a square-zero extension of Ai+1 by k[mi], for some ni ≥ 0. We prove that each Ai satisfies
conditions (1), (2), and (3) using descending induction on i. The case i = n is obvious, so let us assume that
i < n and that Ai+1 is known to satisfy conditions (1), (2), and (3). We have a fiber sequence of k-module
spectra

k[mi]→ Ai → Ai+1

which immediately implies that Ai satisfies (1) and (2). The map φ : π0Ai → π0Ai+1 is surjective and
ker(φ)2 = 0, from which it follows immediately that π0Ai is local.
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Now suppose that A satisfies conditions (1), (2), and (3). We will prove that A is small by induction on
the dimension of the k-vector space π∗A. Let n be the largest integer for which πnA does not vanish. We first
treat the case n = 0. We will abuse notation by identifying A with the underlying commutative ring π0A.
Condition (3) implies that A is a local ring; let m denote its maximal ideal. Since A is a finite dimensional
algebra over k, we have mi+1 ' 0 for i� 0. Choose i as small as possible. If i = 0, then m ' 0 and A ' k,
in which case there is nothing to prove. Otherwise, we can choose a nonzero element x ∈ mi ⊆ m. Let A′

denote the quotient ring A/(x). It follows from Example 1.1.6 that the quotient map A→ A′ is elementary.
Since A′ is small by the inductive hypothesis, we conclude that A is small.

Now suppose that n > 0 and let M = πnA, so that M has the structure of a module over the ring π0A.
Let m ⊆ π0A be as above, and let i be the least integer such that mi+1M ' 0. Let x ∈ miM and let M ′ be
the quotient of M by x, so that we have an exact sequence

0→ k
x→M →M ′ → 0

of modules over π0A. We will abuse notation by viewing this sequence as a fiber sequence of A′′-modules,
where A′′ = τ≤n−1A. It follows from Theorem A.7.4.1.26 that there is a pullback diagram

A //

��

k

��
A′′ // k ⊕M [n+ 1].

Set A′ = A′′ ×k⊕M ′[n+1] k. Then A ' A′ ×k⊕k[n+1] k so we have an elementary map A → A′. Using the
inductive hypothesis we deduce that A′ is small, so that A is also small.

Remark 1.1.12. Let k be a field and suppose that A ∈ CAlgk satisfies conditions (1), (2), and (3) of
Proposition 1.1.11. Then the mapping space MapCAlgk

(A, k) is contractible. In particular, A can be promoted

(in an essentially unique way) to a small object of Υ = CAlgaug
k . Moreover, the forgetful functor CAlgaug

k →
CAlgk is fully faithful when restricted to the full subcategory Υsm ⊆ Υ. We will denote the essential image
of this restriction by CAlgsm

k . We refer to CAlgsm
k as the ∞-category of small E∞-algebras over k.

Remark 1.1.13. Let (Υ, {Eα}α∈T ) be a deformation context. Then the collection of small morphisms in
Υ is closed under composition. In particular, if φ : A′ → A is small and A is small, then A′ is also small. In
particular, if there exists a pullback diagram

B′ //

��

A′

φ

��
B // A

where B is small and φ is small, then B′ is also small.

We are now ready to introduce the main objects of study in this paper.

Definition 1.1.14. Let (Υ, {Eα}α∈T ) be a deformation context. A formal moduli problem is a functor
X : Υsm → S satisfying the following pair of conditions:

(a) The space X(∗) is contractible (here ∗ denotes a final object of Υ).

(b) Let σ :

A′

��

// B′

φ

��
A // B

be a diagram in Υsm. If σ is a pullback diagram and φ is small, then X(σ) is a pullback diagram in S.
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We let ModuliΥ denote the full subcategory of Fun(Υsm, S) spanned by the formal moduli problems. We
will refer to ModuliΥ as the ∞-category of formal moduli problems.

Condition (b) of Definition 1.1.14 has a number of equivalent formulations:

Proposition 1.1.15. Let (Υ, {Eα}α∈T ) be a deformation context, and let X : Υsm → S be a functor. The
following conditions are equivalent:

(1) Let σ :

A′

��

// B′

φ

��
A // B

be a diagram in Υsm. If σ is a pullback diagram and φ is small, then X(σ) is a pullback diagram in S.

(2) Let σ be as in (1). If σ is a pullback diagram and φ is elementary, then X(σ) is a pullback diagram in
S.

(3) Let σ be as in (1). If σ is a pullback diagram and φ is the base point morphism ∗ → Ω∞−nEα for some
α ∈ T and n > 0, then X(σ) is a pullback diagram in S.

Proof. The implications (a) ⇒ (b) ⇒ (c) are clear. The reverse implications follow from Lemma T.4.4.2.1.

Example 1.1.16. Let (Υ, {Eα}α∈T ) be a deformation context, and let A ∈ Υ be an object. Let Spec(A) :
Υsm → S be the functor corepresented byA, which is given on small objects of Υ by the formula Spec(A)(B) =
MapΥ(A,B). Then Spec(A) is a formal moduli problem. Moreover, the construction A 7→ Spec(A) deter-
mines a functor Spec : Υop → ModuliΥ.

Remark 1.1.17. Let (Υ, {Eα}α∈T ) be a deformation context. The∞-category Υsm ⊆ Υ is essentially small.
It follows from Lemmas T.5.5.4.19 and T.5.5.4.18 that the ∞-category ModuliΥ is an accessible localization
of the ∞-category Fun(Υsm, S); in particular, the ∞-category ModuliΥ is presentable.

Remark 1.1.18. Let (Υ, {Eα}α∈T ) be a deformation context, and let X : Υsm → S be a functor which
satisfies the equivalent conditions of Proposition 1.1.15. For every point η ∈ X(∗), define a functor Xη :
Υsm → S by the formula Xη(A) = X(A)×X(∗) {η}. Then Xη is a formal moduli problem. We may therefore
identify X as a family of formal moduli problems parametrized by the space X(∗). Consequently, condition
(a) of Definition 1.1.14 should be regarded as a harmless simplifying assumption.

In the special case where (Υ, {Eα}α∈T ) is the deformation context of Example 1.1.4, Definition 1.1.14
agrees with Definition 0.0.8. This is an immediate consequence of the following result:

Proposition 1.1.19. Let k be a field and let X : CAlgsm
k → S be a functor. Then conditions (1), (2), and

(3) of Proposition 1.1.15 are equivalent to the following:

(∗) For every pullback diagram

R //

��

R0

��
R1

// R01

in CAlgsm
C for which the underlying maps π0R0 → π0R01 ← π0R1 are surjective, the diagram

X(R) //

��

X(R0)

��
X(R1) // X(R01)
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is a pullback square.

The proof of Proposition 1.1.19 will require the following elaboration on Proposition 1.1.11:

Lemma 1.1.20. Let k be a field and let f : A → B be a morphism in CAlgsm
k . Then f is small (when

regarded as a morphism in CAlgaug
k ) if and only if it induces a surjection of commutative rings π0A→ π0B.

Proof. Let K be the fiber of f , regarded as an A-module. If π0A→ π0B is surjective, then K is connective.
We will prove that f is small by induction on the dimension of the graded vector space π∗K. If this dimension
is zero, then K ' 0 and f is an equivalence. Assume therefore that π∗K 6= 0, and let n be the smallest integer
such that πnK 6= 0. Let m denote the maximal ideal of π0A. Then m is nilpotent, so m(πnK) 6= πnK and we
can choose a map of π0A-modules φ : πnK → k. According to Theorem A.7.4.3.1, we have (2n+1)-connective
map K ⊗A B → LB/A[−1]. In particular, we have an isomorphism πn+1LB/A ' Torπ0A

0 (π0B, πnK) so that
φ determines a map LB/A → k[n + 1]. We can interpret this map as a derivation B → B ⊕ k[n + 1]; let
B′ = B ×B⊕k[n+1] k. Then f factors as a composition

A
f ′→ B′

f ′′→ B.

Since the map f ′′ is elementary, it will suffice to show that f ′ is small, which follows from the inductive
hypothesis.

Proof of Proposition 1.1.19. The implication (∗) ⇒ (3) is obvious, and the implication (1) ⇒ (∗) follows
from Lemma 1.1.20.

Remark 1.1.21. The proof of Proposition 1.1.19 shows that condition (∗) is equivalent to the stronger
condition that the diagram

R //

��

R0

��
R1

// R01

is a pullback square whenever one of the maps π0R0 → π0R01 or π0R1 → π0R01 is surjective.

1.2 The Tangent Complex

Let X be an algebraic variety over the field C of complex numbers, and let x : Spec C → X be a point of
X. A tangent vector to X at the point x is a dotted arrow rendering the diagram

Spec C
x //

��

X

��
Spec C[ε]/(ε2) //

77

Spec C

commutative. The collection of tangent vectors to X at x comprise a vector space TX,x, which we call the
Zariski tangent space of X at x. If OX,x denotes the local ring of X at the point x and m ⊆ OX,x its maximal
ideal, then there is a canonical isomorphism of vector spaces TX,η ' (m/m2)∨.

The tangent space TX,x is among the most basic and useful invariants one can use to study the local
structure of an algebraic variety X near a point x. Our goal in this section is to generalize the construction
of TX,x to the setting of an arbitrary formal moduli problem, in the sense of Definition 1.1.14. Let us
identify X with its functor of points, given by X(A) = Hom(SpecA,X) for every C-algebra A (here the
Hom is computed in the category of schemes over C). Then TX,x can be described as the fiber of the map
X(C[ε]/(ε2)) → X(C) over the point x ∈ X(C). Note that the commutative ring C[ε]/(ε2) is given by
Ω∞E, where E is the spectrum object of CAlgaug

C appearing in Example 1.1.4. This suggests a possible
generalization:
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Definition 1.2.1. Let (Υ, {Eα}α∈T ) be a deformation context, and let Y : Υsm → S be a formal moduli
problem. For each α ∈ T , the tangent space of Y at α is the space Y (Ω∞Eα).

There is a somewhat unfortunate aspect to the terminology of Definition 1.2.1. By definition, a formal
moduli problem Y is a S-valued functor, so the evaluation of X on any object A ∈ Υsm might be called a
“space”. The term “tangent space” in algebraic geometry has a different meaning: if X is a complex algebraic
variety with a base point x, then we refer to TX,x as the tangent space of X not because it is equipped with
a topology, but because it has the structure of a vector space over C. In particular, TX,x is equipped with
an addition which is commutative and associative. Our next goal is to prove that this phenomenon is quite
general: for any formal moduli problem Y : Υsm → S, each tangent space Y (Ω∞Eα) of Y is an infinite loop
space, and therefore equipped with a composition law which is commutative and associative up to coherent
homotopy.

We begin by recalling some definitions.

Notation 1.2.2. Let C be an ∞-category which admits finite colimits and D an ∞-category which admits
finite limits. We say that a functor F : C→ D is excisive if, for every pushout square

C01
//

��

C0

��
C1

// C

in C, the diagram

F (C01) //

��

F (C0)

��
F (C1) // F (C)

is a pullback square in D. We say that F is strongly excisive if it is excisive and carries initial objects of C
to final objects of D.

We let Sfin
∗ denote the ∞-category of finite pointed spaces. For any ∞-category D which admits finite

limits, we let Stab(D) denote the full subcategory of Fun(Sfin
∗ ,D) spanned by the pointed excisive functors.

We recall that Stab(D) is an explicit model for the stabilization of D; in particular, it is a stable∞-category
(see ∞-category, which is model for the stabilization of D (see Corollary A.1.4.4.14). In particular, we can
realize the∞-category Sp = Stab(S) of spectra as the full subcategory of Fun(Sfin

∗ , S) spanned by the strongly
excisive functors.

Proposition 1.2.3. Let (Υ, {Eα}α∈T ) be a deformation context. For each α ∈ T , we identify Eα ∈ Stab(Υ)
with the corresponding functor Sfin

∗ → Υ. Then:

(1) For every map f : K → K ′ of pointed finite spaces which induces a surjection π0K → π0K
′, the

induced map Eα(K)→ Eα(K ′) is a small morphism in Υ.

(2) For every pointed finite space K, the object Eα(K) ∈ Υ is small.

Proof. We will prove (1); assertion (2) follows by applying (1) to the constant map K → ∗. Note that f is
equivalent to a composition of maps

K = K0 → K1 → · · · → Kn = K ′,

where each Ki is obtained from Ki−1 by attaching a single cell of dimension ni. Since π0K surjects onto
π0K

′, we may assume that each ni is positive. It follows that we have pushout diagrams of finite pointed
spaces

Ki−1
//

��

Ki

��
∗ // Sni .
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Since Eα is excisive, we obtain a pullback square

Eα(Ki−1) //

��

Eα(Ki)

��
∗ // ΩniEα,

so that each of the maps Eα(Ki−1)→ Eα(Ki) is elementary.

It follows from Proposition 1.2.3 that if (Υ, {Eα}α∈T ) is a deformation context, then each Eα can be
regarded as a functor from Sfin

∗ to the full subcategory Υsm ⊆ Υ spanned by the small object. It therefore
makes sense to compose Eα with any formal moduli problem.

Proposition 1.2.4. Let (Υ, {Eα}α∈T ) be a deformation context and let Y : Υsm → S be a formal moduli
problem. For every α ∈ T , the composite functor

Sfin
∗

Eα→ Υsm Y→ S

is strongly excisive.

Proof. It is obvious that Y ◦Eα carries initial objects of Sfin
∗ to contractible spaces. Suppose we are given a

pushout diagram

K //

��

K ′

��
L // L′

of pointed finite spaces; we wish to show that the diagram σ :

Y (Eα(K)) //

��

Y (Eα(K ′))

��
Y (Eα(L)) // Y (Eα(L′))

is a pullback square in S. LetK ′+ denote the union of those connected components ofK ′ which meet the image
of the map K → K ′. There is a retraction of K ′ onto K ′+, which carries the other connected components of
K ′ to the base point. Define L′+ and the retraction L′ → L′+ similarly. We have a commutative diagram of
pointed finite spaces

K //

��

K ′ //

��

K ′+

��
L // L′ // L′+

where each square is a pushout, hence a diagram of spaces

Y (Eα(K)) //

��

Y (Eα(K ′))

��

// Y (Eα(K ′+))

��
Y (Eα(L)) // Y (Eα(L′)) // Y (Eα(L′+)).

To prove that the left square is a pullback diagrams, it will suffice to show that the right square and the
outer rectangle are pullback diagrams. We may therefore reduce to the case where the map π0K → π0K

′ is
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surjective. Then the map π0L → π0L
′ is surjective, so that Eα(L) → Eα(L′) is a small morphism in Υsm

(Proposition 1.2.3). Since Eα is excisive, the diagram

Eα(K) //

��

Eα(K ′)

��
Eα(L) // Eα(L′)

is a pullback square in Υ. Using the assumption that Y is a formal moduli problem, we deduce that σ is a
pullback square of spaces.

Definition 1.2.5. Let (Υ, {Eα}α∈T ) be a deformation context, and let Y : Υsm → S be a formal moduli
problem. For each α ∈ T , we let Y (Eα) denote the composite functor

Sfin
∗

Eα→ Υsm Y→ S .

We will view Y (Eα) as an object in the ∞-category Sp = Stab(S) of spectra, and refer to Y (Eα) as the
tangent complex to Y at α.

Remark 1.2.6. In the situation of Definition 1.2.5, suppose that T has a single element, so that {Eα}α∈T =
{E} for some E ∈ Stab(Υ) (this condition is satisfied in all of the main examples we will study in this paper).
In this case, we will omit mention of the index α and simply refer to Y (E) as the tangent complex to the
formal moduli problem Y .

Remark 1.2.7. Let Y : Υsm → S be as in Definition 1.2.5. For every index α, we can identify the tangent
space Y (Ω∞Eα) at α with the 0th space of the tangent complex Y (Eα). More generally, there are canonical
homotopy equivalences

Y (Ω∞−nEα) ' Ω∞−nY (Eα)

for n ≥ 0.

Example 1.2.8. Let X = SpecR be an affine algebraic variety over the field C of complex numbers, and
suppose we are given a point x of X (corresponding to an augmentation ε : R→ C of the C-algebra R). Then
X determines a formal moduli problem X∧ : CAlgsm

C → S, given by the formula X∧(A) = MapCAlgaug
C

(R,A)

(here we work in the deformation context (CAlgaug
C , {E}) of Example 1.1.4). Unwinding the definitions, we

see that the tangent complex X∧(E) can be identified with the spectrum MorModR(LR/C,C) classifying
maps from the cotangent complex LR/C into C (regarded as an R-module via the augmentation ε). In
particular, the homotopy groups of X∧(E) are given by

πiX
∧(E) ' (π−i(k ⊗R LR/C))∨.

It follows that πiX
∧(E) vanishes for i > 0, and that π0X

∧(E) is isomorphic to the Zariski tangent space
(m/m2)∨ of X at the point x. If X is smooth at the point x, then the negative homotopy groups of πiX

∧(E)
vanish. In general, the homotopy groups πiX

∧(E) encode information about the nature of the singularity
of X at the point x. One of our goals in this paper is to articulate a sense in which the tangent complex
X∧(E) encodes complete information about the local structure of X near the point x.

Warning 1.2.9. The terminology of Definition 1.2.5 is potentially misleading. For a general deformation
context (Υ, {Eα}α∈T ) and formal moduli problem Y : Υsm → S, the tangent complexes Y (Eα) are merely
spectra. If k is a field and (Υ, {Eα}α∈T ) = (CAlgaug

k , {E}) is the deformation context of Example 1.1.4, one
can show that the tangent complex Y (E) admits the structure of a k-module spectrum, and can therefore
be identified with a chain complex of vector spaces over k. This observation motivates our use of the term
“tangent complex.” In the general case, it might be more appropriate to refer to Y (Eα) as a “tangent
spectrum” to the formal moduli problem Y .
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The tangent complex of a formal moduli problem Y is a powerful invariant of Y . We close this section
with a simple illustration:

Proposition 1.2.10. Let (Υ, {Eα}α∈T ) be a deformation context and let u : X → Y be a map of formal
moduli problems. Suppose that u induces an equivalence of tangent complexes X(Eα) → Y (Eα) for each
α ∈ T . Then u is an equivalence.

Proof. Consider an arbitrary object A ∈ Υsm, so that there exists a sequence of elementary morphisms

A = A0 → A1 → · · · → An ' ∗

in Υ. We prove that the map u(Ai) : X(Ai)→ Y (Ai) is a homotopy equivalence using descending induction
on i, the case i = n being trivial. Assume therefore that i < n and that u(Ai+1) is a homotopy equivalence.
Since Ai → Ai+1 is elementary, we have a fiber sequence of maps

u(Ai)→ u(Ai+1)→ u(Ω∞−nEα)

for some n > 0 and α ∈ T . To prove that u(Ai) is a homotopy equivalence, it suffices to show that
u(Ω∞−nEα) is a homotopy equivalence, which follows immediately from our assumption that u induces an
equivalence X(Eα)→ Y (Eα).

1.3 Deformation Theories

Let (Υ, {Eα}α∈T ) be a deformation context. Our main goal in this paper is to obtain an algebraic description
of the ∞-category ModuliΥ ⊆ Fun(Υsm, S) of formal moduli problems. To this end, we would like to have
some sort of recognition criterion, which addresses the following question:

(Q) Given an ∞-category Ξ, when does there exist an equivalence ModuliΥ ' Ξ?

We take our first cue from Example 1.1.16. To every object A ∈ Υ, we can associate a formal moduli
problem SpecA ∈ ModuliΥ by the formula (SpecA)(R) = MapΥ(A,R). Combining this construction with
an equivalence ModuliΥ ' Ξ, we obtain a functor D : Υop → Ξ. We begin by axiomatizing the properties of
this functor:

Definition 1.3.1. Let (Υ, {Eα}α∈T ) be a deformation context. A weak deformation theory for (Υ, {Eα}α∈T )
is a functor D : Υop → Ξ satisfying the following axioms:

(D1) The ∞-category Ξ is presentable.

(D2) The functor D admits a left adjoint D′ : Ξ→ Υop.

(D3) There exists a full subcategory Ξ0 ⊆ Ξ satisfying the following conditions:

(a) For every object K ∈ Ξ0, the unit map K → DD′K is an equivalence.

(b) The full subcategory Ξ0 contains the initial object ∅ ∈ Ξ. It then follows from (a) that ∅ '
DD′∅ ' D(∗), where ∗ denotes the final object of Υ.

(c) For every index α ∈ T and every n ≥ 1, there exists an object Kα,n ∈ Ξ0 and an equivalence
Ω∞−nEα ' D′Kα,n. It follows that the base point of Ω∞−nEα determines a map

vα,n : Kα,n ' DD′Kα,n ' D(Ω∞−nEα)→ D(∗) ' ∅.

(d) For every pushout diagram

Kα,n
//

vα,n

��

K

��
∅ // K ′

where α ∈ T and n > 0, if K belongs to to Ξ0 then K ′ also belongs to Ξ0.
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Definition 1.3.1 might seem a bit complicated at a first glance. We can summarize axioms (D2) and
(D3) informally by saying that the functor D : Υop → Ξ is not far from being an equivalence. Axiom (D2)
requires that there exists an adjoint D′ to D, and axiom (D3) requires that D′ behave as a homotopy inverse
to D, at least on a subcategory Ξ0 ⊆ Ξ with good closure properties.

Example 1.3.2. Let k be a field of characteristic zero and let (CAlgaug
k , {E}) be the deformation context

described in Example 1.1.4. In §2, we will construct a weak deformation theory D : (CAlgaug
k )op → Liek,

where Lie denotes the ∞-category of differential graded Lie algebras over k (Definition 2.1.14). Here the
adjoint functor D′ : Liek → (CAlgaug

k )op assigns to each differential graded Lie algebra g∗ its cohomology
Chevalley-Eilenberg complex C∗(g∗) (see Construction 2.2.13). In fact, the functor D : (CAlgaug

k )op → Lie k
is even a deformation theory: it satisfies condition (D4) appearing in Definition 1.3.9 below.

Remark 1.3.3. In view of Corollary T.5.5.2.9 and Remark T.5.5.2.10, condition (D2) of Definition 1.3.1 is
equivalent to the requirement that the functor D preserves small limits.

Remark 1.3.4. In the situation of Definition 1.3.1, the objects Kα,n ∈ Ξ0 are determined up to canonical
equivalence: it follows from (a) that they are given by Kα,n ' DD′Kα,n ' D(Ω∞−nEα). In particular, the
objects Ω∞−nEα belong to Ξ0.

Our next result summarizes some of the basic features of weak deformation theories.

Proposition 1.3.5. Let (Υ, {Eα}α∈T ) be a deformation context and D : Υop → Ξ a weak deformation
theory. Let Ξ0 ⊆ Ξ be a full subcategory which is stable under equivalence and satisfies condition (3) of
Definition 1.3.1. Then:

(1) The functor D carries final objects of Υ to initial objects of Ξ.

(2) Let A ∈ Υ be an object having the form D′(K), where K ∈ Ξ0. Then the unit map A→ D′D(A) is an
equivalence in Υ.

(3) If A ∈ Υ is small, then D(A) ∈ Ξ0 and the unit map A→ D′DA is an equivalence in Υ.

(4) Suppose we are given a pullback diagram σ :

A′

��

// B′

φ

��
A // B

in Υ, where A and B are small and the morphism φ is small. Then D(σ) is a pushout diagram in Ξ.

Proof. Let ∅ denote an initial object of Ξ. Then ∅ ∈ Ξ0 so that the adjunction map ∅ → DD′∅ is an
equivalence. Since D′ : Ξ → Υop is left adjoint to D, it carries ∅ to a final object ∗ ∈ Υ. This proves (1).
To prove (2), suppose that A = D′(K) for K ∈ Ξ0. Then the unit map u : A→ D′DA has a left homotopy
inverse, given by applying D′ to the the map v : K → DD′K in Ξ. Since v is an equivalence (part (a) of
Definition 1.3.1), we conclude that u is an equivalence.

We now prove (3). Let A ∈ Υ be small, so that there exists a sequence of elementary morphisms

A = A0 → A1 → · · · → An ' ∗.

We will prove that DAi ∈ Ξ0 using descending induction on i. If i = n, the desired result follows from (1).
Assume therefore that i < n, so that the inductive hypothesis guarantees that D(Ai+1) ∈ Ξ0. Choose a
pullback diagram σ :

Ai //

��

∗

φ

��
Ai+1

ψ // Ω∞−nEα
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where n > 0, α ∈ T , and φ is the base point of Ω∞−nEα. Form a pushout diagram τ :

D(Ω∞−nEα)
Dψ //

Dφ

��

DAi+1

��
D(∗) // X

in Ξ. There is an evident transformation ξ : σ → D′(τ) of diagrams in Υ. Since both σ and D′(τ) are
pullback diagrams and the objects Ai+1, Ω∞−nEα, and ∗ belong to the essential image of D′|Ξ0, it follows
from assertion (2) that ξ is an equivalence, so that Ai ' D′(X). Assumption (d) of Definition 1.3.1 guarantees
that X ∈ Ξ0, so that Ai lies in the essential image of D′|Ξ0.

We now prove (4). The class of morphisms φ for which the conclusion holds (for an arbitrary map A→ B
between small objects of Υ) is evidently stable under composition. We may therefore reduce to the case
where φ is elementary, and further to the case where φ is the base point map ∗ → Ω∞−nEα for some α ∈ T
and some n > 0. Arguing as above, we deduce that the pullback diagram σ :

A′ //

��

∗

φ

��
A // Ω∞−nEα

is equivalent to D′(τ), where τ is a diagram in Ξ0 which is a pushout square in Ξ. Then D(σ) ' DD′(τ) ' τ
is a pushout diagram, by virtue of condition (a) of Definition 1.3.1.

Corollary 1.3.6. Let (Υ, {Eα}α∈T ) be a deformation context and D : Υop → Ξ a weak deformation theory.
Let j : Ξ→ Fun(Ξop, S) denote the Yoneda embedding. For every object K ∈ Ξ, the composition

Υsm ⊆ Υ
D−→ Ξop

j(K)−→ S

is a formal moduli problem. This construction determines a functor Ψ : Ξ→ ModuliΥ ⊆ Fun(Υsm, S).

Remark 1.3.7. Corollary 1.3.6 admits a converse. Let (Υ, {Eα}α∈T ) be a deformation context. The functor
Spec : Υop → Moduli of Example 1.1.16 satisfies conditions (D1), (D2) and (D3) of Definition 1.3.1, and
therefore defines a weak deformation theory (we can define the full subcategory Moduli0 ⊆ Moduli whose
existence is required by (D3) to be spanned by objects of the form Spec(A), where A ∈ Υsm).

Combining Corollary 1.3.6 with Proposition 1.2.4, we obtain the following result:

Corollary 1.3.8. Let (Υ, {Eα}α∈T ) be a deformation context and D : Υop → Ξ a weak deformation theory.
For each α ∈ T and each K ∈ Ξ, the composite map

Sfin
∗

Eα−→ Υ
D−→ Ξop

j(K)−→ S

is strongly excisive, and can therefore be identified with a spectrum which we will denote by eα(K). This
construction determines a functor eα : Ξ→ Sp = Stab(S) ⊆ Fun(Sfin

∗ , S).

Definition 1.3.9. Let (Υ, {Eα}α∈T ) be a deformation context. A deformation theory for (Υ, {Eα}α∈T ) is
a weak deformation theory D : Υop → Ξ which satisfies the following additional condition:

(D4) For each α ∈ T , let eα : Ξ → Sp be the functor described in Corollary 1.3.8. Then each eα preserves
small sifted colimits. Moreover, a morphism f in Ξ is an equivalence if and only if each eα(f) is an
equivalence of spectra.
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Warning 1.3.10. Let (Υ, {Xα}α∈T ) be a deformation context, and let Spec : Υop → ModuliΥ be given
by the Yoneda embedding (see Remark 1.3.7). The resulting functors eα : ModuliΥ → Sp are then given
by evaluation on the spectrum objects Eα ∈ Stab(Υ), and are therefore jointly conservative (Proposition
1.2.10) and preserve filtered colimits. However, it is not clear that Spec is a deformation theory, since the
tangent complex constructions X 7→ X(Eα) do not obviously commute with sifted colimits.

Remark 1.3.11. Let (Υ, {E}) be a deformation context, let D : Υop → Ξ be a deformation theory for Υ,
and let e : Ξ → Sp be as in Corollary 1.3.8. The functor e preserves small limits, and condition (D4) of
Definition 1.3.9 implies that e preserves sifted colimits. It follows that e admits a left adjoint F : Sp → Ξ.
The composite functor e ◦ F has the structure of a monad A on Sp. Since e is conservative and commutes
with sifted colimits, Theorem A.6.2.2.5 gives us an equivalence of ∞-categories Ξ ' LModA(Sp) with the
∞-category of algebras over the monad T . In other words, we can think of Ξ as an∞-category whose objects
are spectra which are equipped some additional structure (namely, a left action of the monad A).

More generally, if (Υ, {Eα}α∈T ) is a deformation context equipped with a deformation theory D : Υop →
Ξ, the same argument supplies an equivalence Ξ ' LModA(SpT ): that is, we can think of objects of Ξ as
determines by a collection of spectra (indexed by T ), together with some additional structure.

We can now formulate our main result:

Theorem 1.3.12. Let (Υ, {Eα}α∈T ) be a deformation context and let D : Υop → Ξ be a deformation theory.
Then the functor Ψ : Ξ→ ModuliΥ of Corollary 1.3.6 is an equivalence of ∞-categories.

The proof of Theorem 1.3.12 will be given in §1.5.

Remark 1.3.13. Let (Υ, {Eα}α∈T ) be a deformation context, let D : Υop → Ξ a deformation theory, and

consider the functor Ψ : Ξ→ Moduli of Corollary 1.3.6. The composite functor Υop D→ Ξ
Ψ→ ModuliΥ carries

an object A ∈ Υ to the formal moduli problem defined by the formula

B 7→ MapΞ(DB,DA) ' MapΥ(A,D′D(B)).

The unit maps B → D′DB determines a natural transformation of functors β : Spec→ Ψ ◦D, where Spec :
Υop → ModuliΥ is as in Example 1.1.16. It follows from Proposition 1.3.5 that the natural transformation β
is an equivalence. Combining this with Theorem 1.3.12, we conclude that D is equivalent to weak deformation
theory Spec : Υop → ModuliΥ of Remark 1.3.7.

We can summarize the situation as follows: a deformation context (Υ, {Eα}α∈T } admits a deformation
theory if and only if, for each α ∈ T , the construction X 7→ X(Eα) determines a functor ModuliΥ → Sp
which commutes with sifted colimits. If this condition is satisfied, then the deformation theory on Υ is
unique (up to canonical equivalence), given by the functor Spec : Υop → ModuliΥ.

1.4 Digression: The Small Object Argument

Let C be a category containing a collection of morphisms {fα : Cα → Dα}, and let g : X → Z be another
morphism in C. Under some mild hypotheses, Quillen’s small object argument can be used to produce a
factorization

X
g′→ Y

g′′→ Z

where g′ is “built from” the morphisms fα, and g′′ has the right lifting property with respect to the morphisms
fα (see §T.A.1.2 for a detailed discussion). The small object argument was originally used by Grothendieck to
prove that every Grothendieck abelian category has enough injective objects (see [25] or Corollary A.1.3.4.7).
It is now a basic tool in the theory of model categories.

Our goal in this section is to carry out an∞-categorical version of the small object argument (Proposition
1.4.7). We begin by introducing some terminology.
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Definition 1.4.1. Let C be an ∞-category. Let f : C → D and g : X → Y be morphisms in C. We will say
that g has the right lifting property with respect to f if every commutative diagram

C //

f

��

X

g

��
D // Y

can be extended to a 3-simplex of C, as depicted by the diagram

C //

f

��

X

g

��
D

>>

// Y.

In this case, we will also say that f has the left lifting property with respect to g.
More generally, if S is any set of morphisms in C, we will say that a morphism g has the right lifting

property with respect to S if it has the right lifting property with respect to every morphism in S, and that
a morphism f has the left lifting property with respect to S if f has the left lifting property with respect to
every morphism in S.

Definition 1.4.2. Let C be an ∞-category and let S be a collection of morphisms in C. We will say that
a morphism f in C is a transfinite pushout of morphisms in S if there exists an ordinal α and a diagram
F : N[α]→ C (here [α] denotes the linearly ordered set of ordinals {β : β ≤ α}) with the following properties:

(1) For every nonzero limit ordinal λ ≤ α, the restriction F |N[λ] is a colimit diagram in C.

(2) For every ordinal β < α, the morphism F (β)→ F (β + 1) is a pushout of a morphism in S.

(3) The morphism F (0)→ F (α) coincides with f .

Remark 1.4.3. Let C be an ∞-category, and let S and T be collections of morphisms in C. Suppose that
every morphism belonging to T is a transfinite pushout of morphisms in S. If f is a transfinite pushout of
morphisms in T , then f is a transfinite pushout of morphisms in S.

Definition 1.4.4. Let C be an ∞-category and let S be a collection of morphisms in C. We will say that S
is weakly saturated if it has the following properties:

(1) If f is a morphism in C which is a transfinite pushout of morphisms in S, then f ∈ S.

(2) The set S is closed under retracts. In other words, if we are given a commutative diagram

C

f

��

// C ′

f ′

��

// C

f

��
D // D′ // D

in which both horizontal compositions are the identity and f ′ belongs to S, then so does f .

Remark 1.4.5. If C is the nerve of an ordinary category (which admits small colimits), then Definition
1.4.4 reduces to Definition T.A.1.2.2.

Remark 1.4.6. Let S be a weakly saturated collection of morphisms in an ∞-category C. Any identity
map in C can be written as a transfinite composition of morphisms in S (take α = 0 in Definition 1.4.2).
Condition (2) of Definition 1.4.4 guarantees that the class of morphisms is stable under equivalence; it follows
that every equivalence in C belongs to S. Condition (1) of Definition 1.4.4 also implies that S is closed under
composition (take α = 2 in Definition 1.4.2).
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We can now formulate our main result, which we will prove at the end of this section.

Proposition 1.4.7 (Small Object Argument). Let C be a presentable ∞-category and let S be a small
collection of morphisms in C. Then every morphism f : X → Z admits a factorizaton

X
f ′→ Y

f ′′→ Z

where f ′ is a transfinite pushout of morphisms in S and f ′′ has the right lifting property with respect to S.

Warning 1.4.8. In contrast with the ordinary categorical setting (see Proposition T.A.1.2.5), the factor-
ization

X
f ′→ Y

f ′′→ Z

of Proposition 1.4.7 cannot generally be chosen to depend functorially on f .

To apply Proposition 1.4.7, the following observation is often useful:

Proposition 1.4.9. Let C be an ∞-category and let T be a collection of morphisms in C. Let S denote
the collection of all morphisms in C which have the left lifting property with respect to T . Then S is weakly
saturated.

Proof. Since the intersection of a collection of weakly saturated collections is weakly saturated, it will suffice
to treat the case where T consists of a single morphism g : X → Y . Note that a morphism f : C → D
has the left lifting property with respect to g if and only if, for every lifting of Y to Cf/, the induced map
θf : Cf/ /Y → CC/ /Y is surjective on objects which lie over g ∈ C/Y . Since θf is a left fibration, it is a
categorical fibration; it therefore suffices to show that object of CC/ /Y which lies over g is in the essential
image of θf . We begin by showing that S is stable under pushouts. Suppose we are given a pushout diagram
σ :

C ′
f ′ //

λ

��

D′

��
C

f // D

in C, where f ′ ∈ S. We wish to prove that f ∈ S. Consider a lifting of Y to Cf/ which we can lift further
to Cσ/. The map θf is equivalent to the left fibration Cσ/ /Y → Cλ/Y . Since σ is a pushout diagram, this is
equivalent to the map θ : Cf ′/ /Y ×CC′/ /Y Cλ/ /Y → Cλ/ /Y . It will therefore suffice to show that every lifting
of g to Cλ/ /Y lies in the essential image of θ, which follows from our assumption that every lifting of g to
CC′/ /Y lies in the essential image of θf ′ .

We now verify condition (1) of Definition 1.4.4. Fix an ordinary α and a diagram F : [α]→ C satisfying
the hypotheses of Definition 1.4.2, and let f : F (0)→ F (α) be the induced map. Choose a lifting of Y to Cf/
which we can lift further to CF/. Then θf is equivalent to the map θ : CF/ /Y → CF (0)/ /Y . It will therefore

suffice to show that every lift of g to an object of X ∈ CF (0)/ /Y lies in the image of θ. For each β < α,

we let Fβ = F |[β]; we will construct a compatible sequence of objects Xβ ∈ CFβ/ /Y by induction on β. If

β = 0, we take Xβ = X. If β is a nonzero limit ordinal, then our assumption that Fβ is a colimit diagram
guarantees that the map CFβ/ /Y → lim←−γ<β CFγ/ /Y is a trivial Kan fibration so that Xβ can be defined. It

remains to treat the case of a successor ordinal: let β < α and assume that Xβ has been defined; we wish to
show that the vertex Xβ lies in the image of the map θβ : CFβ+1/ /Y → CFβ/ /Y . Let u : F (β)→ F (β+ 1) be

the morphism determined by F , so that θβ is equivalent to the map θu. Since the image of Xβ in CF (β)/ /Y

lies over g, the existence of the desired lifting follows from our assumption that u ∈ S.
We now verify (2). Consider a diagram σ : ∆2 ×∆1 → C, given by

C

f

��

λ // C ′

f ′

��

// C

f

��
D // D′ // D.
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Assume that f ′ ∈ S; we wish to prove f ∈ S. Choose a lifting of Y to Cf/, and lift Y further to Cσ/ (here

we identify f with σ|({2}×∆1). Let X be a lifting of g to CC/ /Y ; we wish to show that X lies in the image

of θf . We can lift X further to an object X̃ ∈ Cσ0/ /Y , where σ0 = σ|(∆2 × {0}). Let σ′ = σ|(∆1 × ∆1).

The forgetful functor θ : Cσ′/ /Y → Cλ/ /Y is equivalent to θf ′ , so that the image of X̃ in Cλ/ /Y lies in the

image of θ. It follows immediately that X lies in the image of θf .

Corollary 1.4.10. Let C be a presentable ∞-category, let S be a small collection of morphisms of C, let T
be the collection of all morphisms in C which have the right lifting property with respect to every morphism
in S, and let S∨ be the collection of all morphisms in C which have the left lifting property with respect to
every morphism in T . Then S∨ is the smallest weakly saturated collection of morphisms which contains S.

Proof. Proposition 1.4.9 implies that S∨ is weakly saturated, and it is obvious that S∨ contains S. Suppose
that S is any weakly saturated collection of morphisms which contains S; we will show that S∨ ⊆ S. Let
f : X → Z be a morphism in S∨, and choose a factorization

X
f ′→ Y

f ′′→ Z

as in Proposition 1.4.7, so that f ′ ∈ S and f ′′ ∈ T . Since f ∈ S∨, the diagram

X

f

��

f ′ // Y

f ′′

����
Z

id // Z

can be extended to a 3-simplex

X

f

��

f ′ // Y

f ′′

��
Z

g
>>

id // Z.

We therefore obtain a commutative diagram

X

f

��

id // X

f ′

��

// X

f

��
Z

g // Y
f ′′ // Z

which shows that f is a retract of f ′ and therefore belongs to S as desired.

Recall that if C is an ∞-category which admits finite limits and colimits, then every simplicial object X•
of C determines latching and matching objects Ln(X•),Mn(X•) for n ≥ 0 (see Remark T.A.2.9.16). The
following result will play an important role in our proof of Theorem 1.3.12:

Corollary 1.4.11. Let C be a presentable ∞-category and let S be a small collection of morphisms in C.
Let Y be any object of C, and let φ : C/Y → C be the forgetful functor. Then there exists a simplicial object
X• of C/Y with the following properties:

(1) For each n ≥ 0, let un : Ln(X•) → Xn be the canonical map. Then φ(un) is a transfinite pushout of
morphisms in S.

(2) For each n ≥ 0, let vn : Xn →Mn(X•) be the canonical map in C/Y . Then φ(vn) has the right lifting
property with respect to every morphism in S.
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Proof. We construct X• as the union of a compatible family of diagrams X
(n)
• : N(∆≤n)op → C/Y , which

we construct by induction on n. The case n = −1 is trivial (since ∆≤−1 is empty). Assume that n ≥ 0 and

that X
(n−1)
• has been constructed, so that the matching and latching objects Ln(X), Mn(X) are defined

and we have a map t : Ln(X)→ Mn(X). Using Proposition T.A.2.9.14, we see that it suffices to construct
a commutative diagram

Xn

vn

$$
Ln(X•)

un

;;

t // Mn(X•)

in C/Y . Since the map C/Y → C is a right fibration, this is equivalent to the problem of producing a
commutative diagram

Kn

%%
φ(Ln(X•))

u

99

φ(t) // φ(Mn(X•))

in the∞-category C. Proposition 1.4.7 guarantees that we are able to make these choices in such a way that
(1) and (2) are satisfied.

Remark 1.4.12. In the situation of Corollary 1.4.11, let ∅ denote the initial object of C. Then for each
n ≥ 0, the canonical map w : ∅ → φ(Xn) is a transfinite pushout of morphisms in S. To prove this, we let
P denote the full subcategory of ∆[n]/ spanned by the surjective maps [n] → [m]; we will regard P as a
partially ordered set. For each upward-closed subset P0 ⊆ P , we let Z(P0) denote a colimit of the induced
diagram

N(P0)op −→ N(∆)op
X•−→ C/Y

φ−→ C .

Then Z(∅) ' ∅ and Z(P ) ' φ(Xn). It will therefore suffice to show that if P1 ⊆ P is obtained from P0 by
adjoining a new element given by α : [n] → [m], then the induced map θ : Z(P0) → Z(P1) is a transfinite
pushout of morphisms in S. This follows from assertion (1) of Corollary 1.4.11, since θ is a pushout of the
map φ(un) : φ(Lm(X•))→ φ(Xm).

Proof of Proposition 1.4.7. Let S = {gi : Ci → Di}i∈I . Choose a regular cardinal κ such that each of the
objects Ci is κ-compact. We construct a diagram F : N[κ] → C/Z as the union of maps {Fα : N[α] →
C/Z}α≤κ; here [α] denotes the linearly ordered set of ordinals {β : β ≤ α}. The construction proceeds by
induction: we let F0 be the morphism f : X → Z, and for a nonzero limit ordinal λ ≤ κ we let Fλ be
a colimit of the diagram obtained by amalgamating themaps {Fα}α<λ. Assume that α < κ and that Fα
been constructed. Then Fα(α) corresponds to a map X ′ → Z. Let T (α) be a set of representantives for all
equivalence classes of diagrams equivalence classes of diagrams σt :

Ct //

gt

��

X ′

��
Dt

// Z,

where gt is a morphism belonging to S. Choose a pushout diagram∐
t∈T (α) Ct

//

��

X ′

��∐
t∈T (α)Dt

// X ′′
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in C/Z . We regard X ′′ as an object of CX′/ /Z . Since the map (C/Z)Fα/ → CX′/ /Z is a trivial Kan fibration,
we can lift X ′ to an object of (C/Z)Fα/, which determines the desired map Fα+1.

For each α ≤ κ, let fα : Yα → Z be the image F (α) ∈ C/Z . Let Y = Yκ and f ′′ = fκ. We claim that f ′′

has the right lifting property with respect to every morphism in S. In other words, we wish to show that for
each i ∈ I and every map Di → Z, the induced map

MapC/Z
(Di, Y )→ MapC/Z

(Ci, Y )

is surjective on connected components. Choose a point η ∈ MapC/Z
(Ci, Y ). Since Ci is κ-compact, the space

MapC/Z
(Ci, Y ) can be realized as the filtered colimit of mapping spaces lim−→α

MapC/Z
(Ci, Yα), so we may

assume that η is the image of a point ηα ∈ MapC/Z
(Ci, Yα) for some α < κ. The point ηα determines a

commutative diagram
Ci //

gi

��

Yα

��
Di

// Z

which is equivalent to σt for some t ∈ T (α). It follows that the image of ηα in MapC/Z
(Ci, Yα+1) extends to

Di, so that η lies in the image of the map MapC/Z
(Di, Yα+1)→ MapC/Z

(Ci, Y ).

The morphism F (0)→ F (κ) in C/Z induces a morphism f ′ : X → Y in C; we will complete the proof by
showing that f ′ is a transfinite pushout of morphisms in S. Using Remark 1.4.3, we are reduced to showing
that for each α < κ, the map Yα → Yα+1 is a transfinite pushout of morphisms in S. To prove this, choose
a well-ordering of T (α) having order type β. For γ < β, let tγ denote the corresponding element of T (α).
We define a functor G : N[β]→ C so that, for each β′ ≤ β, we have a pushout diagram∐

γ<β′ Ctγ

��

// Yα

��∐
γ<β′ Dtγ

// G(β′).

It is easy to see that G satisfies the conditions of Definition 1.4.2 and therefore exhibits Yα → Yα+1 as a
transfinite pushout of morphisms in S.

1.5 Smooth Hypercoverings

Let (Υ, {Eα}α∈T ) be a deformation context which admits a deformation theory D : Υop → Ξ. Our goal in
this section is to prove Theorem 1.3.12, which asserts that the construction K 7→ MapΞ(D(•),K) induces an
equivalence of ∞-categories Ψ : Ξ → ModuliΥ. The key step is to prove that every formal moduli problem
X admits a “smooth atlas” (Proposition 1.5.8).

We have seen that if X is an algebraic variety over the field C of complex numbers and x : Spec C→ X
is a point, then X determines a formal moduli problem X∧ : CAlgsm

C → S (Example 1.2.8). However,
Definition 1.1.14 is far more inclusive than this. For example, we can also obtain formal moduli problems
by extracting the formal completions of algebraic stacks.

Example 1.5.1. Let n ≥ 0 be an integer, and let A be a connective E∞-ring. We say that an A-module M
is projective of rank n if π0M is a projective module over π0A of rank n, and M is flat over A. Let X(A)
denote the subcategory of ModA whose objects are modules which are locally free of rank n, and whose
morphisms are equivalences of modules. It is not difficult to see that the ∞-category X(A) is an essentially
small Kan complex. Consequently, the construction A 7→ X(A) determines a functor X : CAlgcn → S.

Let η denote the point of X(C) corresponding to the complex vector space Cn. We define the formal
completion of X at η to be the functor X∧ : CAlgsm

C → S given by X∧(R) = X(R) ×X(C) {η}. More

25



informally, X∧(R) is a classifying space for projective R-modules M of rank n equipped with a trivialization
C⊗RM ' Cn. Then X∧ is a formal moduli problem (we will prove a more general statement to this effect
in §5.2).

If A is a local commutative ring, then every projective A-module of rank of n is isomorphic to An. If
X is the functor of Example 1.5.1, we deduce that X(A) can be identified with the classifying space for the
group GLn(A) of automorphisms of An as an A-module. For this reason, the functor X is often denoted
by BGLn. It can be described as the geometric realization (in the ∞-category of functors F : CAlgcn → S

which are sheaves with respect to the Zariski topology) of a simplicial functor F•, given by the formula
Fm(A) = GLn(A)m, where GLn(A) denotes the subspace of MapModA(An, An) spanned by the invertible
morphisms. Similarly, the formal completion X∧ can be described as the geometric realization of a simplicial
functor F∧• , given by F∧m(R) = fib(GLn(R)→ GLn(C)) for R ∈ CAlgsm

C (after passing to formal completions,
there is no need to sheafify with respect to the Zariski topology: if R ∈ CAlgsm

C , then π0R is a local Artin
ring, so that every projective R-module of rank n is automatically free).

Remark 1.5.2. Example 1.5.1 can be generalized. Suppose that X is an arbitrary Artin stack over C.
Then X can be presented by an atlas, which is a (smooth) groupoid object

· · · // //// U1
//// U0.

in the category of C-schemes. Let η0 : Spec C→ U0 be any point, so that η0 determines points ηn : Spec C→
Un for every integer n. We can then define formal moduli problems U∧n : CAlgsm

C → S by formally completing
each Un at the point ηn. This gives a simplicial object U∧• in the∞-category Fun(CAlgsm

C , S). The geometric
realization |U∧• | ∈ Fun(CAlgsm

C , S) is also a formal moduli problem which we will denote by X∧. One can
show that it is canonically independent (up to equivalence) of the atlas U• chosen.

Our first goal in this section is to formulate a converse to Remark 1.5.2. Roughly speaking, we would like
to assert that every formal moduli problem Y : CAlgsm

C → S admits a description that resembles the formal
completion of an algebraic stack. However, the precise context of Remark 1.5.2 is too restrictive in several
respects:

(a) We can associate formal completions not only to algebraic stacks, but also to higher algebraic stacks.
Consequently, rather than trying to realize Y as the geometric realization of a groupoid object Y• of
Moduli ⊆ Fun(CAlgsm

C , S), we will allow more general simplicial objects Y• of Moduli.

(b) We would like to exhibit Y as the geometric realization of a simplicial object Y• where each Ym
resembles the formal completion of a C-scheme near some point (which, without loss of generality, we
may take to be an affine scheme of the form SpecétR). Since the construction of the formal completion
makes sense not only for schemes but also for spectral Deligne-Mumford stacks (Example 0.0.10), we
should allow the possibility that R is a nondiscrete E∞-algebra over C.

(c) If R is an augmented E∞-algebra over C, then A determines a formal moduli problem SpecR :
CAlgsm

C → S given by the formula A 7→ MapCAlgaug
C

(R,A). This functor is perhaps better understood

(at least in the case where R is Noetherian) as the formal spectrum of R∧, where R∧ denotes the
completion of R along the augmentation ideal in π0R. To incorporate a wider class of examples, we
should allow arbitrary (possibly infinite-dimensional) affine formal schemes, not only those which arise
as the formal completions of actual schemes.

Let us now explain how to make these ideas more precise. We will work in the setting of an arbitrary
deformation context (Υ, {Eα}α∈T ).

Definition 1.5.3. Let (Υ, {Eα}α∈T ) be a deformation context. We let Pro(Υsm) denote the ∞-category of
pro-objects of Υsm: that is, the smallest full subcategory of Fun(Υsm, S)op which contains all corepresentable
functors and is closed under filtered colimits. We will say that a functor X : Υsm → S is prorepresentable if
it belongs to the full subcategory Pro(Υsm) ⊆ Fun(Υsm, S)op.
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Remark 1.5.4. Let (Υ, {Eα}α∈T ) be a deformation context. Since filtered colimits in S are left exact
(Example T.7.3.4.4), the full subcategory ModuliΥ is stable under filtered colimits in Fun(Υsm, S). Since
every corepresentable functor is a formal moduli problem (Example 1.1.16), we conclude that Pro(Υsm)op

is contained in ModuliΥ (as a full subcategory of Fun(Υsm, S)). That is, every prorepresentable functor
Υsm → S is a formal moduli problem.

Our next objective is to introduce a general notion of smooth morphism between two formal moduli
problems.

Proposition 1.5.5. Let (Υ, {Eα}α∈T ) be a deformation context, and let u : X → Y be a map of formal
moduli problems X,Y : Υsm → S. The following conditions are equivalent:

(1) For every small map φ : A → B in Υsm, u has the right lifting property with respect to Spec(φ) :
Spec(B)→ Spec(A).

(2) For every small map φ : A→ B in Υsm, the induced map X(A)→ X(B)×Y (B) Y (A) is surjective on
connected components.

(3) For every elementary map φ : A→ B in Υsm, the induced map X(A)→ X(B)×Y (B)Y (A) is surjective
on connected components.

(4) For every α ∈ T and every n > 0, the homotopy fiber of the map X(Ω∞−nEα)→ Y (Ω∞−nEα) (taken
over the point determined by the base point of Ω∞−nEα) is connected.

(5) For every α ∈ T , the map of spectra X(Eα) → Y (Eα) is connective (that is, it has a connective
homotopy fiber).

Proof. The equivalence (1) ⇔ (2) is tautological, and the implications (2) ⇒ (3) ⇒ (4) are evident. Let S
be the collection of all small morphisms A → B in Υsm for which the map X(A) → X(B) ×Y (B) Y (A) is
surjective on connected components. The implication (3)⇒ (2) follows from the observation that S is closed
under composition, and the implication (4)⇒ (3) from the observation that S is stable under the formation
of pullbacks. The equivalence (4)⇔ (5) follows from fact that a map of M →M ′ of spectra is connective if
and only if the induced map Ω∞−nM → Ω∞−nM ′ has connected homotopy fibers for each n > 0.

Definition 1.5.6. Let (Υ, {Eα}α∈T ) be a deformation context, and let u : X → Y be a map of formal
moduli problems. We will say that u is smooth if it satisfies the equivalent conditions of Proposition 1.5.5.
We will say that a formal moduli problem X is smooth if the map X → ∗ is smooth, where ∗ denotes the
final object of ModuliΥ (that is, the constant functor Υsm → S taking the value ∗ ∈ S).

Remark 1.5.7. We can regard condition (5) of Proposition 1.5.5 as providing a differential criterion for
smoothness: a map of formal moduli problems X → Y is smooth if and only if it induces a connective map
of tangent complexes X(Eα)→ Y (Eα). This should be regarded as an analogue of the condition that a map
of smooth algebraic varieties f : X → Y induce a surjective map of tangent sheaves TX → f∗TY .

Proposition 1.5.8. Let (Υ, {Eα}α∈T ) be a deformation context and let X : Υsm → S be a formal moduli
problem. Then there exists a simplicial object X• in ModuliΥ/X with the following properties:

(1) Each Xn is prorepresentable.

(2) For each n ≥ 0, let Mn(X•) denote the nth matching object of the simplicial object X• (computed in
the ∞-category ModuliΥ/X). Then the canonical map Xn →Mn(X•) is smooth.

In particular, X is equivalent to the geometric realization |X•| in Fun(Υsm, S).

The proof of Proposition 1.5.8 will use the following simple observation:
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Lemma 1.5.9. Let (Υ, {Eα}α∈T ) be a deformation context, and let S be the collection of all morphisms
in the ∞-category ModuliΥ of the form Spec(B) → Spec(A), where the underlying map A → B is a small
morphism in Υsm. Let f : X → Y be a morphism in Moduli, and suppose that f is a transfinite pushout of
morphisms in S. If X is prorepresentable, then Y is prorepresentable.

Proof. Since the collection of prorepresentable objects of ModuliΥ is closed under filtered colimits, it will
suffice to prove the following:

(∗) If φ : A→ B is a small morphism in ModuliΥ and we are given a pushout diagram

Spec(B) //

Spec(φ)

��

X

f

��
Spec(A) // Y

where X is prorepresentable, then Y is also prorepresentable.

To prove (∗), we note that X can be regarded as an object of Pro(Υsm)opSpec(B)/ ' Ind((Υsm
/B)op). In other

words, we have X ' lim−→β
Spec(Bβ) for some filtered diagram {Bβ} in Υsm

/B . Then

Y ' lim−→(Spec(Bβ)
∐

Spec(B)

Spec(A)).

For any formal moduli problem Z, we have

MapModuliΥ(Spec(Bβ)
∐

Spec(B)

Spec(A), Z) ' Z(Bβ)×Z(B) Z(A) ' Z(Bβ ×B A)

(since the map φ : A → B is small), so that Spec(Bβ)
∐

Spec(B) Spec(A) ' Spec(Bβ ×B A) is corepresented
by an object Bβ ×B A. It follows that Y is prorepresentable, as desired.

Proof of Proposition 1.5.8. Let X be an arbitrary formal moduli problem. Applying Corollary 1.4.11, we
can choose a simplicial object X• of ModuliΥ/X such that each of the maps Xn → Mn(X•) is smooth, and
each of the maps Ln(X•)→ Xn is a transfinite pushout of morphisms of the form SpecB → SpecA, where
A → B is an elementary morphism in Υsm. Using Remark 1.4.12 and Lemma 1.5.9, we conclude that each
Xn is prorepresentable. This proves (1) and (2). To prove that X ' |X•| in Fun(Υsm, S), it suffices to
observe that condition (2) implies that X•(A) is a hypercovering of X(A) for every A ∈ Υsm.

We now turn to the proof of Theorem 1.3.12 itself. We will need the following:

Lemma 1.5.10. Let (Υ, {Eα}α∈T ) be a deformation context and let D : Υop → Ξ be a deformation theory.
For every small object A ∈ Υsm, D(A) is a compact object of the ∞-category Ξ.

Proof. Since A is small, there exists a sequence of elementary morphisms

A = A0 → A1 → · · · → An ' ∗

in Υ. We will prove that D(Ai) is a compact object of Ξ by descending induction on i. When i = n, the desired
result follows from the observation that D carries final objects of Υ to initial objects of Ξ (Proposition 1.3.5).
Assume therefore that i < n and that D(Ai+1) ∈ Ξ is compact. Since the map Ai → Ai+1 is elementary, we
have a pullback diagram σ :

Ai //

��

∗

��
Ai+1

// Ω∞−nEα
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for some α ∈ T and some n > 0. It follows from Proposition 1.3.5 that D(σ) is a pushout square in Ξ.
Consequently, to show that D(Ai) is a compact object of Ξ, it will suffice to show that D(Ai+1), D(∗), and
D(Ω∞−nEα) are compact objects of Ξ. In the first two cases, this follows from the inductive hypothesis.
For the third, we note that the functor corepresented by D(Ω∞−nEα) is given by the composition

Ξ
eα−→ Sp

Ω∞−n−→ S,

where eα is the functor described in Corollary 1.3.8. Our assumption that D is a deformation theory
guarantees that eα commutes with sifted colimits. The functor Ω∞−n : Sp → S commutes with filtered
colimits, so the composite functor Ξ → S commutes with filtered colimits which implies that Ω∞−nEα is a
compact object of Ξ.

We are now ready to prove our main result.

Proof of Theorem 1.3.12. Let (Υ, {Eα}α∈T ) be a deformation context, let D : Υop → Ξ be a deformation
theory, and let Ψ : Ξ → ModuliΥ ⊆ Fun(Υsm, S) denote the functor given by the formula Ψ(K)(A) =
MapΞ(D(A),K). We wish to prove that Ψ is an equivalence of ∞-categories. It is clear that Ψ preserves
small limits. It follows from Lemma 1.5.10 that Ψ preserves filtered colimits and is therefore accessible.
Using Corollary T.5.5.2.9 we conclude that Ψ admits a left adjoint Φ. To prove that Ψ is an equivalence, it
will suffice to show:

(a) The functor Ψ is conservative.

(b) The unit transformation u : idModuli → Ψ ◦ Φ is an equivalence.

We begin with the proof of (a). Suppose we are given a morphism f : K → K ′ in Ξ have that Ψ(f) is an
equivalence. In particular, for each α ∈ T and each n ≥ 0, we have a homotopy equivalence

MapΞ(D(Ω∞−nEα),K) ' Ψ(K)(DΩ∞−nEα)→ Ψ(K ′)(DΩ∞−nEα) ' MapΞ(D(Ω∞−nEα),K ′).

It follows that eα(K) ' eα(K ′), where eα : Ξ → Sp is the functor described in Corollary 1.3.8. Since the
functors eα are jointly conservative (Definition 1.3.9), we conclude that f is an equivalence.

We now prove (b). Let X ∈ ModuliΥ be a formal moduli problem; we wish to show that u induces an
equivalence X → (Ψ ◦ Φ)(X). According to Proposition 1.2.10, it suffices to show that for each α ∈ T , the
induced map

θ : X(Eα)→ (Ψ ◦ Φ)(X)(Eα) ' eα(ΦX)

is an equivalence of spectra. To prove this, choose a simplicial object X• of ModuliΥ/X satisfying the re-
quirements of Proposition 1.5.8. For every object A ∈ Υsm, the simplicial space X•(A) is a hypercovering of
X(A) so that the induced map |X•(A)| → X(A) is a homotopy equivalence. It follows that X is a colimit
of the diagram X• in the ∞-category Fun(Υsm, S) and therefore also in the ∞-category ModuliΥ. Similarly,
X(Eα) is equivalent to the geometric realization |X•(Eα)| in the ∞-category Fun(Sfin

∗ , S) and therefore also
in the ∞-category of spectra. Since Φ preserves small colimits and eα preserves sifted colimits, we have

eα(Φ(X)) ' eα(Φ|X•|) ' |eα(ΦX•)|.

It follows that θ is a geometric realization of a simplicial morphism

θ• : X•(Eα)→ eα(ΦX•).

It will therefore suffice to prove that each θn is an equivalence, which is equivalent to the requirement that
u induces an equivalence Xn → (Ψ ◦Φ)(Xn). In other words, we may replace X by Xn, and thereby reduce
to the case where X is prorepresentable. Since the functors Φ and Ψ both commute with filtered colimits,
we may further reduce to the case where X = Spec(A) for some A ∈ Υsm. Since Φ(Spec(A)) = D(A), it
suffices to show that for each B ∈ Υsm, the map

MapΥ(A,B)→ MapΞ(D(B),D(A)) ' MapΥ(A,D′D(B))

is a homotopy equivalence, which follows immediately from Proposition 1.3.5.
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2 Moduli Problems for Commutative Algebras

Let k be a field of characteristic zero, fixed throughout this section. An E∞-algebra R ∈ CAlgk is small if it
satisfies the conditions of Proposition 1.1.11: that is, if R is connective, π∗R is a finite dimensional vector
space over k, and π0R is a local ring with residue field k. We let CAlgsm

k denote the full subcategory of
CAlgk spanned by the small E∞-algebra over k (we can also identify CAlgsm

k with a full subcategory of the
∞-category CAlgaug

k of augmented E∞-algebras over k: see Remark 1.1.12).
Recall that a functor X : CAlgsm

k → S is called a formal moduli problem if it satisfies the following pair
of conditions (see Proposition 1.1.19):

(a) The space X(k) is contractible.

(b) For every pullback diagram

R //

��

R0

��
R1

// R01

in CAlgsm
k , if both the maps π0R0 → π0R01 ← π0R1 are surjective, then the diagram of spaces

X(R) //

��

X(R0)

��
X(R1) // X(R01)

is also a pullback diagram.

In this section, we will study the full subcategory Modulik ⊆ Fun(CAlgsm
k , S) spanned by the formal moduli

problems.
We begin by applying the general formalism of §1.2. To every formal moduli problem X ∈ Modulik, we

can associate a spectrum TX ∈ Sp, which is given informally by the formula Ω∞−nTX = X(k ⊕ k[n]) for
n ≥ 0. In particular, we can identify the 0th space Ω∞TX with X(k[ε]/(ε2)), an analogue of the classical
Zariski tangent space. We refer to TX as the tangent complex of the formal moduli problem X.

The construction X 7→ TX commutes with finite limits. In particular, we have a homotopy equivalence
of spectra TX [−1] ' TΩX , where ΩX denotes the formal moduli problem given by the formula

(ΩX)(R) = ΩX(R)

(note that a choice of point η in the contractible space X(k) determines a base of each X(R), so the loop
space ΩX(R) is well-defined). The formal moduli problem ΩX is equipped with additional structure: it can
be regarded as a group object of Modulik. It is therefore natural to expect that the tangent complex TΩX

should behave somewhat like the tangent space to an algebraic group. We can formulate this idea more
precisely as follows:

(∗) Let X ∈ Modulik be a formal moduli problem. Then the shifted tangent complex TX [−1] ' TΩX can
be identified with the underlying spectrum of a differential graded Lie algebra over k.

Example 2.0.1. Suppose that A is a commutative k-algebra equipped with an augmentation ε : A → k.
Then R defines a formal moduli problem X over k, which carries a small E∞-algebra R over k to the mapping
space MapCAlgaug

k
(A,R). When k is of characteristic zero, the tangent complex TX can be identified with

the complex of Andre-Quillen cochains taking values in k. In this case, the existence of a natural differential
graded Lie algebra structure on TX [−1] is proven in [58].
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Assertion (∗) has a converse: every differential graded Lie algebra g∗ arises (up to quasi-isomorphism)
as the shifted tangent complex TX [−1] of some X ∈ Modulik. Moreover, the formal moduli problem X
is determined by g∗ up to equivalence. More precisely, we have the following stronger version of Theorem
0.0.13:

Theorem 2.0.2. Let k be a field of characteristic zero, and let Liek denote the ∞-category of differential
graded Lie algebras over k (that is, Liek is the ∞-category obtained from the ordinary category Liedg

k of
differential graded Lie algebras over k by formally inverting all quasi-isomorphisms; see Definition 2.1.14).
Then there is an equivalence of ∞-categories Ψ : Liek → Modulik. Moreover, the functor g∗ → TΨ(g∗)[−1]
is equivalent to the forgetful functor Liek → Sp (which carries a differential graded Lie algebra g∗ to the
generalized Eilenberg-MacLane spectrum determined by the underlying chain complex of g∗).

Our main goal in this section is to prove Theorem 2.0.2. The first step is to construct the functor
Ψ : Liek → Modulik. Let g∗ be a differential graded Lie algebra over k, and let R ∈ CAlgsm

k . Since k has
characteristic zero, we can identify R with an (augmented) commutative differential graded algebra over k;
let us denote its augmentation ideal by mR. The tensor product mR ⊗k g∗ then inherits the structure of
a differential graded Lie algebra over k. Roughly speaking, Ψ(g∗)(R) should be a suitably-defined space of
Maurer-Cartan elements of the differential graded Lie algebra mR⊗k g∗: that is, the space of solutions to the
Maurer-Cartan equation dx = [x, x]. There does not seem to be a homotopy-invariant definition for the space
MC(g∗) of Maurer-Cartan elements of an arbitrary differential graded Lie algebra over k: the well-definedness
of MC(mR ⊗k g∗) relies on the nilpotence properties of the tensor product mR ⊗k g∗ (which follow from our
assumption that R is small). Nevertheless, there is a well-defined bifunctor MC : CAlgaug

k ×Liek → S which
is given heuristically by (R, g∗) 7→ MC(mR⊗k g∗). This functor can be defined more precisely by the formula

MC(R, g∗) = MapLiek
(D(R), g∗),

where D : (CAlgaug
k )op → Liek is the Koszul duality functor that we will describe in §2.3. Roughly speaking,

the Koszul dual of an augmented E∞-algebra R is a differential graded Lie algebra D(R) ∈ Liek which
corepresents the functor g∗ 7→ MC(mR ⊗k g∗). However, it will be more convenient for us to describe D(R)
instead by the functor that represents. We will define D as the right adjoint to the functor C∗ : Liek →
(CAlgaug

k )op, which assigns to each differential graded Lie algebra g∗ the commutative differential graded
algebra C∗(g∗) of Lie algebra cochains on g∗ (see Construction 2.2.13).

Remark 2.0.3. For our purposes, the Maurer-Cartan equation dx = [x, x] (and the associated space MC(g∗)
of Maurer-Cartan elements of a differential graded Lie algebra g∗) are useful heuristics for understanding
the functor Ψ appearing in Theorem 2.0.2. They will play no further role in this paper. For a construction
of the functor Ψ which makes direct use of the Maurer-Cartan equation, we refer the reader to the work of
Hinich (see [26]). We also refer the reader to the work of Goldman and Millson ([22] and [23]).

Let us now outline the contents of this section. We begin in §2.1 with a brief overview of the theory of
differential graded Lie algebras and a definition of the∞-category Liek. In §2.2, we will review the homology
and cohomology theory of (differential graded) Lie algebras, which are computed by the Chevalley-Eilenberg
constructions

g∗ 7→ C∗(g∗) g∗ 7→ C∗(g∗).

The functor C∗ carries quasi-isomorphisms of differential graded Lie algebras to quasi-isomorphisms between
(augmented) commutative differential graded algebras, and therefore descends to a (contravariant) functor
from the ∞-category Liek to the ∞-category CAlgaug

k . We will show that this functor admits a left adjoint
D and study its properties. The main point is to show that D defines a deformation theory (in the sense of
Definition 1.3.9) on the deformation context (CAlgaug

k , {E}) of Example 1.1.4. We will use this fact in §2.3
to deduce Theorem 2.0.2 from Theorem 1.3.12.

If X : CAlgsm
k → S is a formal moduli problem, then we can introduce an∞-category QCoh(X) of quasi-

coherent sheaves onX. It follows from Theorem 2.0.2 thatX is completely determined by a differential graded
Lie algebra g∗ (which is well-defined up to quasi-isomorphism). In §2.4, we will show that QCoh(X) can
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be obtained as a full subcategory of the ∞-category of (differential graded) representations of g∗ (Theorem
2.4.1).

2.1 Differential Graded Lie Algebras

Let k be a field of characteristic zero. Theorem 2.0.2 asserts that the ∞-category Modulik of formal moduli
problems over k is equivalent to the ∞-category Liek of differential graded Lie algebras over k. Our goal
in this section is to explain the definition of Liek and establish some of its basic properties. We begin by
reviewing the definition of the ordinary category Liedg

k of differential graded Lie algebras over k and showing
that it admits the structure of a model category (Proposition 2.1.10). Along the way, we will introduce some
of the notation and constructions which will play a role in our proof of Theorem 2.0.2.

Notation 2.1.1. Let k be a field. We let Vectdg
k denote the category of differential graded vector spaces

over k: that is, the category whose objects are chain complexes

· · · → V1 → V0 → V−1 → · · ·

We will regard Vectdg
k as a symmetric monoidal category, whose tensor product is the usual tensor product

of chain complexes given by the formula

(V ⊗W )p =
⊕

p=p′+p′′

Vp′ ⊗k Wp′′ ,

and the symmetry isomorphism V ⊗W 'W ⊗ V is the sum of the isomorphisms Vp′ ⊗kWp′′ 'Wp′′ ⊗k Vp′ ,
multiplied by the factor (−1)p

′p′′ .

We recall that the category Vectdg
k admits a model structure, where:

(C) A map of chain complexes f : V∗ → W∗ is a cofibration it is degreewise monic: that is, each of the
induced maps Vn →Wn is injective.

(F ) A map of chain complexes f : V∗ →W∗ is a fibration it is degreewise epic: that is, each of the induced
maps Vn →Wn is surjective..

(W ) A map of chain complexes f : V∗ → W∗ is a weak equivalence if it is a quasi-isomorphism: that is, if
it induces an isomorphism on homology groups Hn(V )→ Hn(W ) for every integer n.

Moreover, the underlying ∞-category of Vectdg
k can be identified with the ∞-category Modk of k-module

spectra (see Remark A.7.1.1.16).

Notation 2.1.2. Let V be a graded vector space over k. We let V ∨ denote the graded dual of V , given by
(V ∨)p = Homk(V−p, k). For each integer n, we let V [n] denote the same vector space with grading shifted
by n, so that V [n]p = Vp−n.

Definition 2.1.3. We let Algdg
k denote the category of associative algebra objects of Vectdg

k , and CAlgdg
k

the category of commutative algebra objects of Vectdg
k . We will refer to objects of Algdg

k as differential

graded algebras over k and objects of CAlgdg
k as commutative differential graded algebras over k. According

to Propositions A.4.1.4.3 and A.4.4.4.6, Algdg
k and CAlgdg

k admit combinatorial model structures, where a
map f : A∗ → B∗ of (commutative) differential graded algebras is a weak equivalence or fibration if the
underlying map of chain complexes is a weak equivalence or fibration.

Remark 2.1.4. In more concrete terms, a differential graded algebra A is a chain complex (A∗, d) together
with a unit 1 ∈ A0 and a collection of k-bilinear multiplication maps Ap ×Aq → Ap+q satisfying

1x = x1 = x x(yz) = (xy)z d(xy) = dxy + (−1)pxdy

for x ∈ Ap, y ∈ Aq, and z ∈ Ar. The differential graded algebra A is commutative if xy = (−1)pqyx for
x ∈ Ap, y ∈ Aq.
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Definition 2.1.5. A differential graded Lie algebra over k is a chain complex (g∗, d) of k-vector spaces
equipped with a Lie bracket [, ] : gp ⊗k gq → gp+q satisfying the following conditions:

(1) For x ∈ gp and y ∈ gq, we have [x, y] + (−1)pq[y, x] = 0.

(2) For x ∈ gp, y ∈ gq, and z ∈ gr, we have

(−1)pr[x, [y, z]] + (−1)pq[y, [z, x]] + (−1)qr[z, [x, y]] = 0.

(3) The differential d is a derivation with respect to the Lie bracket. That is, for x ∈ gp and y ∈ gq, we
have

d[x, y] = [dx, y] + (−1)p[x, dy].

Given a pair of differential graded Lie algebras (g∗, d) and (g′∗, d
′), a map of differential graded Lie algebras

from (g∗, d) to (g′∗, d
′) is a map of chain complexes F : (g∗, d) → (g′∗, d

′) such that F ([x, y]) = [F (x), F (y)]
for x ∈ gp, y ∈ gq. The collection of all differential graded Lie algebras over k forms a category, which we

will denote by Liedg
k .

Example 2.1.6. Let A∗ be a (possibly nonunital) differential graded algebra over k. Then A∗ has the
structure of a differential graded Lie algebra, where the Lie bracket

[, ] : Ap ⊗k Aq → Ap+q

is given by [x, y] = xy − (−1)pqyx.

Remark 2.1.7. The construction of Example 2.1.6 determines a forgetful functor Algdg
k → Liedg

k . This

functor admits a left adjoint U : Liedg
k → Algdg

k , which assigns to every differential graded Lie algebra g∗
its universal enveloping algebra U(g∗). The universal enveloping algebra U(g∗) can be described as the
quotient of the tensor algebra

⊕
n≥0 g

⊗n
∗ by the two-sided ideal generated by all expressions of the form

(x⊗ y)− (−1)pq(y ⊗ x)− [x, y], where x ∈ gp and y ∈ gq. The collection of such expressions is stable under
the differential on

⊕
n≥0 g

⊗n
∗ , so that U(g∗) inherits the structure of a differential graded algebra.

The universal enveloping algebra U(g∗) admits a natural filtration

U(g∗)
≤0 ⊆ U(g∗)

≤1 ⊆ · · · ,

where U(g∗)
≤n is the image of

⊕
0≤i≤n g

⊗i
∗ in U(g∗). The associated graded algebra of U(g∗) is commutative

(in the graded sense), so that the canonical map g∗ → U(g)≤1 induces a map of differential graded algebras
θ : Sym∗ g∗ → grU(g∗). According to the Poincare-Birkhoff-Witt theorem, the map θ is an isomorphism
(see Theorem 2.3 of [73] for a proof in the setting of differential graded Lie algebras).

Remark 2.1.8. Let g∗ be a differential graded Lie algebra over k. For each integer n, we let ψ : g⊗n∗ → U(g∗)
denote the multiplication map. For every permutation σ of the set {1, 2, . . . , n}, let φσ denote the induced
automorphism of g⊗n∗ . The map 1

n!

∑
σ ψ ◦ φσ is invariant under precomposition with each of the maps φσ,

and therefore factors as a composition

g⊗n∗ → Symn(g∗)
Ψn→ U(g∗)

≤n ⊆ U(g∗).

We observe that the composite map

Symn(g∗)
Ψn→ U(g∗)

≤n → grn U(g∗)

coincides with the isomorphism of Remark 2.1.7. It follows that the direct sum of the maps Ψn determines
an isomorphism of chain complexes θ : Sym∗(g∗)→ U(g∗).
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Definition 2.1.9. Let f : g∗ → g′∗ be a map of differential graded Lie algebras over k. We will say that f is
a quasi-isomorphism if the underlying map of chain complexes is a quasi-isomorphism: that is, if F induces
an isomorphism on homology.

Proposition 2.1.10. Let k be a field of characteristic zero. Then the category Liedg
k of differential graded

Lie algebras over k has the structure of a left proper combinatorial model category, where:

(W ) A map of differential graded Lie algebras f : g∗ → g′∗ is a weak equivalence if and only if it is a
quasi-isomorphism (Definition 2.1.9).

(F ) A map of differential graded Lie algebras f : g∗ → g′∗ is a fibration if and only if it is a fibration of
chain complexes: that is, if and only if each of the induced maps gp → g′p is a surjective map of vector
spaces over k.

(C) A map of differential graded Lie algebras f : g∗ → g′∗ is a cofibration if and only if it has the left lifting
property with respect to every map of differential graded Lie algebras which is simultaneously a fibration
and a weak equivalence.

Lemma 2.1.11. Let f : g∗ → g′∗ be a map of differential graded Lie algebras over a field k of characteristic
zero. The following conditions are equivalent:

(1) The map f is a quasi-isomorphism.

(2) The induced map U(g∗)→ U(g′∗) is a quasi-isomorphism of differential graded algebras.

Proof. We note that if g : V∗ → W∗ is any map of chain complexes of k-vector spaces, then g is a quasi-
isomorphism if and only if g induces a quasi-isomorphism Sym∗(V∗) → Sym∗(W∗). The desired assertion
now follows immediately from Remark 2.1.8.

Proof of Proposition 2.1.10. The forgetful functor Liedg
k → Vectdg

k has a left adjoint (the free Lie algebra

functor), which we will denote by Free : Vectdg
k → Liedg

k . For every integer n, let E(n)∗ denote the acyclic
chain complex

· · · → 0→ 0→ k ' k → 0→ 0→ · · ·
which is nontrivial only in degrees n and (n − 1), and let ∂ E(n)∗ be the subcomplex of E(n)∗ which is

nontrivial only in degree (n−1). Let C0 be the collection of morphisms in Liedg
k of the form Free(∂ E(n)∗)→

Free(E(n)∗), and let W be the collection of all quasi-isomorphisms in Liedg
k . We claim that the collection of

morphisms C0 and W satisfy the hypotheses of Proposition T.A.2.6.13:

(1) The collection W of quasi-isomorphisms is perfect, in the sense of Definition T.A.2.6.10. This follows

immediately from Corollary T.A.2.6.12, applied to the forgetful functor Liedg
k → Vectdg

k .

(2) The collection of weak equivalences is stable under pushouts of morphisms in C0. In other words, if
f : g∗ → g′∗ is a quasi-isomorphism of differential graded Lie algebras over k and x ∈ gn−1 is a cycle
classifying a map Free(∂ E(n)∗)→ g∗, we must show that the induced map

g∗
∐

Free(∂ E(n)∗)

Free(E(n)∗)→ g′∗
∐

Free(∂ E(n)∗)

Free(E(n)∗)

is also a quasi-isomorphism of differential graded Lie algebras. Let A∗ = U(g∗), let A′∗ = U(g′∗), and
let F : A∗ → A′∗ be the map induced by f . We will abuse notation and identify x with its image in
An−1. Using Lemma 2.1.11, we see that F is a quasi-isomorphism, and we are reduced to showing that
F induces a quasi-isomorphism B∗ → B′∗, where B∗ is the differential graded algebra obtained from
A∗ by adjoining a class y in degree n with dy = x, and B′∗ is defined similarly. To prove this, we note
that B∗ admits an exhaustive filtration

A∗ ' B≤0
∗ ⊆ B≤1

∗ ⊆ B≤2
∗ ⊆ · · ·
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where B≤m is the subspace of B spanned by all expressions of the form a0ya1y · · · yak, where k ≤ m
and each ai belongs to the image of A∗ in B∗. Similarly, we have a filtration

A′∗ ' B′≤0
∗ ⊆ B′≤1

∗ ⊆ B′≤2
∗ ⊆ · · ·

of B′∗. Since the collection of quasi-isomorphisms is stable under filtered colimits, it will suffice to show

that for each m ≥ 0, the map of chain complexes B≤m∗ → B′≤m∗ is a quasi-isomorphism. The proof
proceeds by induction on m, the case m = 0 being true by assumption. If m > 0, we have a diagram
of short exact sequences of chain complexes

0 // B≤m−1
∗ //

��

B≤m∗ //

��

B≤n∗ /B≤m−1
∗ //

φ

��

0

0 // B′≤m−1
∗ // B′≤m∗ // B′≤m∗ /B′≤m−1

∗ // 0.

The inductive hypothesis implies that the left vertical map is a quasi-isomorphism. To complete
the inductive step, it will suffice to show that φ is a quasi-isomorphism. For this, we observe that
the construction a0 ⊗ · · · ⊗ an 7→ a0ya1y · · · yam determines an isomorphism of chain complexes
A⊗m+1
∗ → B≤m∗ /B≤m−1

∗ , and similarly we have an isomorphism A′⊗m+1
∗ → B′≤m∗ /B′≤m−1

∗ . Under
these isomorphisms, φ corresponds to the map A⊗m+1

∗ → A′⊗m+1
∗ given by the (m+ 1)st tensor power

of F , which is a quasi-isomorphism by assumption.

(3) Let f : g∗ → g′∗ be a map of differential graded Lie algebras which has the right lifting property with
respect to every morphism in C0. We claim that f is a quasi-isomorphism. To prove this, we must
show that f induces an isomorphism θn : Hn(g∗) → Hn(g′∗) for every integer n (here Hn(h∗) denotes
the homology of the underlying chain complex of h∗). We first show that θn is surjective. Choose a
class η ∈ Hn(g′∗), represented by a cycle x ∈ g′n. Then x determines a map u : Free(E(n)∗) → g′∗
which vanishes on Free(∂ E(n)∗). It follows that u = f ◦ v, where v : Free(E(n)∗) → g∗ is a map of
differential graded Lie algebras which vanishes on Free(∂ E(n − 1)∗). The map v is determined by a
cycle x ∈ gn which represents a homology class lifting η.

We now prove that θn is injective. Let η ∈ Hn(g∗) be a class whose image in Hn(g′∗) vanishes. Then
η is represented by a cycle x ∈ gn such that f(x) = dy, for some y ∈ g′n+1. Then y determines a map
of differential graded Lie algebras u : Free(E(n + 1)∗) → g′ such that u|Free(∂ E(n + 1)∗) lifts to g∗.
It follows that u = f ◦ v, for some map of differential graded Lie algebras Free(E(n + 1)∗) → g∗ such
that v|Free(∂ E(n+ 1)∗) classifies x. It follows that x is a boundary, so that η = 0.

It follows from Proposition T.A.2.6.13 that Liedg
k admits a left proper combinatorial model structure

having W as the class of weak equivalences and C0 as a class of generating cofibrations. To complete the
proof, it will suffice to show that a morphism u : g∗ → g′∗ in Liedg

k is a fibration if and only if it is degreewise
surjective. Suppose first that u is a fibration. For each integer n, let in : 0 → Free(E(n)∗) be the evident
map of differential graded Lie algebras. Then in factors as a composition

0→ 0
∐

Free(∂ E(n−1)∗)

Free(E(n− 1)∗) ' Free(∂ E(n)∗)→ Free(E(n)∗),

and is therefore a cofibration. The unit map k ' U(0) → U(Free(E(n)∗)) '
⊕

m≥0E(n)⊗m∗ is a quasi-

isomorphism (since E(n) is acyclic and therefore each E(n)⊗m∗ is acyclic for m > 0). It follows that in is a
trivial cofibration, so that u has the right lifting property with respect to in. Unwinding the definitions, we
conclude that the map gn → g′n is surjective.

Now suppose that u is degreewise surjective; we wish to show that u is a fibration. Let S be the collection
of all trivial cofibrations in Liedg

k which have the left lifting property with respect to u. Let f : h∗ → h′′∗ be
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a trivial cofibration in Liedg
k ; we will prove that f ∈ S. Note that f contains each of the trivial cofibrations

in : 0→ Free(E(n)∗) above. Using the small object argument, we can factor f as a composition

h∗
f ′→ h′∗

f ′′→ h′′∗

where f ′ ∈ S and f ′′ has the right lifting property with respect to each of the morphisms in: that is, f ′′ is
degreewise surjective. Since f and f ′ are quasi-isomorphisms, we conclude that f ′′ is a quasi-isomorphism.
It follows that f ′′ is a trivial fibration in the category of chain complexes and therefore a trivial fibration in
the category Liedg

k . Since f is a cofibration, the lifting problem

h∗
f ′ //

f

��

h′∗

f ′′

��
g′′∗

id //

??

g′′∗

admits a solution. We conclude that f is a retract of f ′, and therefore also belongs to S.

Remark 2.1.12. The forgetful functor Algdg
k → Liedg

k of Example 2.1.6 preserves fibrations and weak
equivalences, and is therefore a right Quillen functor. It follows that the universal enveloping algebra functor
U : Liedg

k → Algdg
k is a left Quillen functor.

Proposition 2.1.13. Let J be a small category such that N(J) is sifted. The forgetful functor

G : Liedg
k → Vectdg

k

preserves J-indexed homotopy colimits.

Proof. Let G′ : Algdg
k → Vectdg

k be the forgetful functor. It follows from Remark 2.1.8 that the functor G
is a retract of G′ ◦ U . It will therefore suffice to show that G′ ◦ U preserves J-indexed homotopy colimits.
The functor U is a left Quillen functor (Remark 2.1.12) and therefore preserves all homotopy colimits. We
are therefore reduced to showing that G′ preserves J-indexed homotopy colimits, which is a special case of
Lemma A.4.1.4.13.

Definition 2.1.14. Let k be a field of characteristic zero. We let Liek denote the underlying ∞-category
of the model category Liedg

k . More precisely, Liek denotes an ∞-category equipped with a functor u :

N(Liedg
k ) → Liek having the following universal property: for every ∞-category C, composition with u

induces an equivalence from Fun(Liek,C) to the full subcategory of Fun(N(Liedg
k ),C) spanned by those

functors F : Liedg
k → C which carry quasi-isomorphisms in Liedg

k to equivalences in C (see Definition A.1.3.3.2
and Remark A.1.3.3.3). We will refer to Liek as the ∞-category of differential graded Lie algebras over k.

Remark 2.1.15. Using Proposition A.7.1.1.15, we conclude that the underlying ∞-category of the model
category Vectdg

k can be identified with the∞-category Modk = Modk(Sp) of k-module spectra. The forgetful

functor Liedg
k → Vectdg

k preserves quasi-isomorphisms, and therefore induces a forgetful functor Liek → Modk.

Proposition 2.1.16. Let k be a field of characteristic zero. Then the ∞-category Liek is presentable, and
the forgetful functor θ : Liek → Modk of Remark 2.1.15 preserves small sifted colimits.

Proof. The first assertion follows from Proposition A.1.3.3.9. Using Propositions A.1.3.3.11, A.1.3.3.12, and
2.1.13, we conclude that θ preserves colimits indexed by small categories J such that N(J) is sifted. Since
any filtered ∞-category I admits a left cofinal map N(A) → I where A is a filtered partially ordered set
(Proposition T.5.3.1.16), we conclude that θ preserves small filtered colimits. Since θ also preserves geometric
realizations of simplicial objects, it preserves all small sifted colimits (Corollary T.5.5.8.17).

Remark 2.1.17. The forgetful functor θ : Liek → Modk is monadic: that is, θ admits a left adjoint
Free : Modk → Liek, and induces an equivalence of Liek with LModT (Modk), where T is the monad on
Modk given by the composition θ ◦ Free. This follows from Theorem A.6.2.0.6 and Proposition 2.1.16.
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2.2 Homology and Cohomology of Lie Algebras

Let g be a Lie algebra over a field k and let U(g) denote its universal enveloping algebra. We can regard
k as a (left or right) module over U(g), with each element of g acting trivially on k. The homology and
cohomology groups of g are defined by

Hn(g) = TorU(g)
n (k, k) Hn(g) = ExtnU(g)(k, k).

These groups can be described more explicitly as the homology groups of chain complexes C∗(g) and C∗(g),
called the (homological and cohomological) Chevalley-Eilenberg complexes of g. In this section, we will review
the definition of these chain complexes (in the more general setting of differential graded algebras) and
establish some of their basic properties. These constructions will play an important role in the construction
of the deformation theory D : (CAlgaug

k )op → Liek required for the proof of Theorem 2.0.2.
Suppose now that g is a Lie algebra. In order to compute the groups H∗(g) and H∗(g), we would like to

choose an explicit resolution of the ground field k as a (left) module over the universal enveoping algebra
U(g). We can obtain such a resolution by taking the universal enveloping algebra of an acyclic differential
graded Lie algebra which contains g.

Construction 2.2.1. Let g∗ be a differential graded Lie algebra over a field k. We define another differential
graded Lie algebra Cn(g)∗ as follows:

(1) For each n ∈ Z, the vector space Cn(g)∗ is given by gn⊕ gn−1. We will denote the elements of Cn(g)n
by x+ εy, where x ∈ gn and y ∈ gn−1.

(2) The differential on Cn(g)∗ is given by the formula d(x+ εy) = dx+ y − εdy.

(3) The Lie bracket on Cn(g)∗ is given by [x+ εy, x′+ εy′] = [x, x′] + ε([y, x′] + (−1)p[x, y′]), where x ∈ gp.

We will refer to Cn(g)∗ as the cone on g∗.

Remark 2.2.2. Let g∗ be a differential graded Lie algebra over a field k. Then the underlying chain complex
Cn(g)∗ can be identified with the mapping cone for the identity id : g∗ → g∗. It follows that Cn(g)∗ is a
contractible chain complex. In particular, the map 0→ Cn(g)∗ is a quasi-isomorphism of differential graded
Lie algebras.

Construction 2.2.3. Let g∗ be a differential graded Lie algebra over a field k. The zero map g∗ → 0
induces a map of differential graded algebras U(g)∗) → U(0) ' k. There is an evident map of differential
graded Lie algebras g∗ → Cn(g)∗. We let C∗(g∗) denote the chain complex given by the tensor product
U(Cn(g)∗)⊗U(g∗) k. We will refer to C∗(g∗) as the homological Chevalley-Eilenberg complex of g∗.

Remark 2.2.4. Let g∗ be a differential graded Lie algebra over a field k, and regard the shifted chain complex
g∗[1] as a graded Lie algebra with a vanishing Lie bracket. There is an evident map of graded Lie algebras
(without differential) g∗[1] → Cn(g)∗. This map induces a map of graded vector spaces Sym∗(g∗[1]) '
U(g∗[1]) → U(Cn(g)∗). Using the Poincare-Birkhoff-Witt theorem, we obtain an isomorphism of graded
right U(g∗)-modules

U(Cn(g)∗) ' Sym∗(g∗[1])⊗k U(g∗),

hence an isomorphism of graded vector spaces

φ : Sym∗(g∗[1])→ C∗(g∗).

We will often identify C∗(g∗) with the symmetric algebra Sym∗(g∗[1]) using the isomorphism φ. Note that
φ is not an isomorphism of differential graded vector spaces. Unwinding the definitions, we see that the
differential on C∗(g∗) is given by the formula

D(x1 . . . xn) =
∑

1≤i≤n

(−1)p1+···+pi−1x1 . . . xi−1dxixi+1 . . . xn +

∑
1≤i<j≤n

(−1)pi(pi+1+···+pj−1)x1 . . . xi−1xi+1 . . . xj−1[xi, xj ]xj+1 . . . xn.
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Remark 2.2.5. Let g∗ be a differential graded Lie algebra over a field k. The filtration of Sym∗(g∗) by the
subsets Sym≤n(g∗) '

⊕
i≤n Symi g∗ determines a filtration

k ' C≤0
∗ (g∗) ↪→ C≤1

∗ (g∗) ↪→ C≤2
∗ (g∗) ↪→ · · ·

Using the formula for the differential on C∗(g∗) given in Remark 2.2.4, we deduce the existence of canonical
isomorphisms

C≤n∗ (g∗)/C
≤n−1
∗ (g∗) ' Symn g∗

in the category of differential graded vector spaces over k.

Proposition 2.2.6. Let f : g∗ → g′∗ be a quasi-isomorphism between differential graded Lie algebras over
a field k of characteristic zero. Then the induced map C∗(g∗) → C∗(g

′
∗) is a quasi-isomorphism of chain

complexes.

Proof. Since the collection of quasi-isomorphisms is closed under filtered colimits, it will suffice to show that
the induced map θn : C≤n∗ (g∗)→ C≤n∗ (g′∗) is a quasi-isomorphism for each n ≥ 0. We proceed by induction
on n. When n = 0, the map θ is an isomorphism and there is nothing to prove. Assume therefore that
n > 0, so that we have a commutative diagram of short exact sequences

0 // C≤n−1
∗ (g∗) //

θn−1

��

C≤n∗ (g∗)

θn
��

// Symn(g∗[1]) //

φ

��

0

0 // C≤n−1
∗ (g′∗) // C≤n∗ (g′∗) // Symn(g′∗[1]) // 0

Using the inductive hypothesis, we are reduced to showing that the map φ is a quasi-isomorphism. Since k is
a field of characteristic zero, the map φ is a retract of the map g⊗n∗ [n]→ g′⊗n∗ [n], which is a quasi-isomorphism
by virtue of our assumption that f is a quasi-isomorphism.

If g∗ is a differential graded Lie algebra, we will refer to the homology groups of the chain complex C∗(g∗)
as the Lie algebra homology groups of g∗. Our next goal is to show that if g∗ is free, then the homology of
g∗ is easy to describe.

Proposition 2.2.7. Let V∗ be a differential graded vector spaces over a field k of characteristic zero and let
g∗ be free differential graded Lie algebra generated by V∗. Then the map

ξ : k ⊕ V∗[1]→ k ⊕ g∗[1] ' C≤1
∗ (g∗) ↪→ C∗(g∗)

is a quasi-isomorphism of chain complexes over k.

To prove Proposition 2.2.7, we will need a general observations about differential graded algebras and
their modules.

Lemma 2.2.8. Let A∗ be a differential graded algebra over a field k, and let f : M∗ → N∗ be a map of
differential graded right modules over A∗. Assume that:

(1) The differential graded module M∗ can be written as a union of submodules

0 = M(0)∗ ⊆M(1)∗ ⊆M(2)∗ ⊆ · · ·

where each successive quotient M(n)∗/M(n − 1)∗ is isomorphic (as a differential graded A∗-module)
to a free differential graded module of the form

⊕
αA∗[eα].

(2) The chain complex N∗ is acyclic.
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Then the map f is nullhomotopic. That is, there exists a map of graded A∗-modules h : M∗ → N∗+1

satisfying dh+ hd = f .

Proof. We construct a compatible family of nullhomotopies h(n) : M(n)∗ → N∗+1 for the maps f(n) =
f |M(n)∗. When n = 0, such a nullhomotopy exists and is unique (since M(0)∗ ' 0). Assume therefore that
n > 0 and that h(n − 1) has been constructed. Condition (1) guarantees that M(n)∗/M(n − 1)∗ is freely
generated (as an A∗-module) by generators xα ∈ (M(n)/M(n − 1))eα . Choose xα ∈ M(n)eα representing
xα. We compute

d(f(xα)− h(n− 1)dxα) = f(dxα)− d(h(n− 1)dxα) = h(n− 1)d2xα = 0.

Since N∗ is acyclic, we can choose yα ∈ Neα+1 with dyα = f(xα)− h(n− 1)dxα. We now define h(n) to be
the unique map of graded A∗-modules from M(n)∗ to N∗+1 which extends h(n− 1) and carries xα to yα; it
is easy to see that h(n) has the desired properties.

Lemma 2.2.9. Let A∗ be a differential graded algebra over a field k, and let M∗ be a chain complex of
differential graded right modules over A∗. Assume that M∗ is acyclic and satisfies condition (1) of Lemma
2.2.8. Then, for any differential graded left A∗-module N∗, the tensor product M∗ ⊗A∗ N∗ is acyclic.

Proof. It follows from Lemma 2.2.8 that identity map id : M∗ → M∗ is chain homotopic to zero: that is,
there exists a map h : M∗ →M∗+1 such that dh+ hd = id. Then h determines a contracting homotopy for
M∗ ⊗A∗ N∗, so that M∗ ⊗A∗ N∗ is also acyclic.

Proof of Proposition 2.2.7. Note that the universal enveloping algebra U(g∗) can be identified with the tensor
algebra T (V∗) '

⊕
n≥0 V

⊗n
∗ . Let M∗ ⊆ U(Cn(g)∗) be the right T (V∗)-submodule generated by k ⊕ V∗[1].

Unwinding the definitions, we see that M∗ is isomorphic (as a chain complex) to the direct sum k ⊕M ′∗,
where M ′∗ is isomorphic to mapping cone of the identity map from

⊕
n≥1 V

⊗n
∗ to itself. It follows that

the inclusion k ↪→ M∗ is a quasi-isomorphism. The composite inclusion k ↪→ M∗ → U(Cn(g)∗) is given
by applying the universal enveloping algebra functor U to the inclusion of differential graded Lie algebras
0 → Cn(g)∗, and is therefore a quasi-isomorphism by Remark 2.2.2 and Lemma 2.1.11. It follows that the
inclusion M∗ ⊆ U(Cn(g)∗) is a quasi-isomorphism, so that the quotient Q∗ = U(Cn(g)∗)/M∗ is acyclic. It
is not difficult to see that Q∗ satisfies hypothesis (1) of Lemma 2.2.8; in particular, Q∗ is free as a graded
A∗-module. It follows that we have an exact sequence of chain complexes

0→M∗ ⊗T (V∗) k
θ→ U(Cn(g)∗)⊗T (V∗) k → Q∗ ⊗T (V∗) k → 0.

Lemma 2.2.9 guarantees that Q∗ ⊗T (V∗) k is acyclic, so that θ determines a quasi-isomorphism k ⊕ V∗[1]→
C∗(g∗).

Notation 2.2.10. It follows from Proposition 2.2.6 that the Chevalley-Eilenberg construction C∗ : Liedg
k →

Vectdg
k induces a functor of ∞-categories Liek → Modk, which we will also denote by C∗. Note that C∗

carries the initial object 0 ∈ Liek to C∗(0) ' k, and therefore induces a functor Liek → (Modk)k/. We will
abuse notation by denoting this functor also by C∗.

Remark 2.2.11. Let g∗ be a differential graded Lie algebra over a field k of characteristic zero. Then
U(Cn(g)∗) can be regarded as a cofibrant replacement for k in the model category of differential graded right
modules over U(g∗). The tensor product functor M∗ 7→ M∗ ⊗U(g∗) k is a left Quillen functor. It follows
that C∗(g∗) is an explicit model for the left derived tensor product k ⊗LU(g∗)

k. Equivalently, the image of

C∗(g∗) in Modk can be identified with the ∞-categorical relative tensor product k ⊗A k, where A ∈ Algk is

the image of U(g∗) under the functor N(Algdg
k )→ Algk.

Proposition 2.2.12. Let k be a field of characteristic zero. Then the functor of ∞-categories C∗ : Liek →
(Modk)k/ preserves small colimits.
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Proof. In view of Corollary T.4.2.3.11 and Lemma A.1.3.2.9, it will suffice to show that C∗ preserves finite
coproducts and small sifted colimits. We begin by showing that C∗ preseres small sifted colimits. In view
of Lemma T.4.4.2.8 and Proposition T.4.3.1.5, it will suffice to show that the composite functor Liek →
(Modk)k/ → Modk preserves small sifted colimits. The proof of Proposition 2.2.6 shows that for each n ≥ 0,

the functor C≤n∗ preserves quasi-isomorphisms and therefore induces a functor of∞-categories Liek → Modk.
Since the collection of quasi-isomorphisms in Vectdg

k is closed under filtered colimits, every colimit diagram

in Vectdg
k indexed by a filtered category determines a homotopy colimit diagram in Vectdg

k and therefore a
colimit diagram in Modk (Proposition A.1.3.3.11). It follows that the functor C∗ : Liek → Modk is a colimit

of the functors C≤n∗ : Liek → Modk. Using Proposition T.5.5.2.3, we are reduced to proving that each of the
functors C≤n∗ preserves small sifted colimits. We proceed by induction on n, the case n < 0 being trivial.
Since the field k has characteristic zero, the construction V∗ 7→ Symn V∗ preserves quasi-isomorphisms and
therefore induces a functor Symn : Modk → Modk. Let θ : Liek → Modk be the forgetful functor. Using
Remark 2.2.5 and Corollary A.1.3.1.11, we obtain a fiber sequence of functors

C≤n−1
∗ → C≤n∗ → Symn ◦θ[1]

from Liek to Modk. Since C≤n−1
∗ preserves sifted colimits by the inductive hypothesis and θ[1] preserves

sifted colimits by Proposition 2.1.16, it will suffice to show that the functor Symn preserves sifted colimits.
Since the characteristic of k is zero, the functor Symn is a retract of the functor V∗ 7→ V ⊗n∗ , which evidently
preserves sifted colimits.

We now prove that C∗ : Liek → (Modk)k/ preserves finite coproducts. Since C∗ preserves initial objects
by construction, it will suffice to show that C∗ preserves pairwise coproducts. That is, we must show that
for every pair of differential graded Lie algebras g∗ and g′∗ having a coproduct g′′∗ in Liek, the diagram σ :

k //

��

C∗(g∗)

��
C∗(g

′
∗) // C∗(g′′∗)

is a pushout square in Modk.
Let Free : Modk → Liek be a left adjoint to the forgetful functor. Using Proposition A.6.2.2.11 and

Proposition 2.1.16, we deduce that g∗ can be obtained as the geometric realization of a simplicial object
(g∗)• of Liek, where each (g∗)n lies in the essential image of Free. Similarly, we can write g′∗ as the geometric
realization of a simplicial object (g′∗)•. Then (g′′∗)• is the geometric realization of a simplicial object (g′′∗)• of
Liek, given by [n] 7→ (g∗)n

∐
(g′∗)n. Since the functor C∗ commutes with geometric realization of simplicial

objects, it will suffice to show that the diagram

k //

��

C∗((g∗)n)

��
C∗((g

′
∗)n) // C∗((g′′∗)n)

is a pushout square in Modk, for each n ≥ 0. We may therefore reduce to the case where g∗ ' Free(V∗),
g′∗ ' Free(V ′∗) for some objects V∗, V

′
∗ ∈ Modk. Then g′′∗ ' Free(V∗ ⊕ V ′∗). Using Proposition 2.2.7, we can

identify σ with the diagram

k //

��

k ⊕ V∗[1]

��
k ⊕ V ′∗ [1] // k ⊕ V∗[1]⊕ V ′∗ [1],

which is evidently a pushout square in Modk.
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We now turn our attention to the cohomology of (differential graded) Lie algebras.

Construction 2.2.13. Let g∗ be a differential graded Lie algebra over k. We let C∗(g∗) denote the linear
dual of the chain complex dual to C∗(g∗). We will refer to C∗(g∗) as the cohomological Chevalley-Eilenberg
complex of g∗. We will identify elements λ ∈ Cn(g∗) with the dual space of the degree n part of the graded
vector space Sym∗(g∗[1]).

There is a natural multiplication on C∗(g∗), which carries λ ∈ Cp(g∗) and µ ∈ Cq(g∗) to the element
λµ ∈ Cp+q(g∗) characterized by the formula

(λµ)(x1 . . . xn) =
∑
S,S′

ε(S, S′)λ(xi1 . . . xim)µ(xj1 . . . xjn−m).

Here xi ∈ gri denotes a sequence of homogeneous elements of g∗, the sum is taken over all disjoint sets
S = {i1 < . . . < im} and S′ = {j1 < . . . < jn−m} range with S ∪ S′ = {1, . . . , n} and ri1 + · · · + rim = p,
and ε(S, S′) =

∏
i∈S′,j∈S,i<j(−1)rirj . With this multiplication, C∗(g∗) has the structure of a commutative

differential graded algebra.

Remark 2.2.14. Let g∗ be a differential graded Lie algebra over a field k of characteristic zero. Unwinding
the definitions, we can identify C∗(g∗) with the chain complex of right U(g∗)-linear maps from U(Cn(g)∗)
into k. Arguing as in Remark 2.2.11, we see that C∗(g∗) is a model for the right derived mapping complex
of right U(g∗)-module maps from k to itself.

Remark 2.2.15. Let k be a field of characteristic zero, let V∗ be a chain complex of vector spaces over k, and
let g∗ be the free differential graded Lie algebra generated by V∗. The quasi-isomorphism k⊕V∗[1]→ C∗(g∗)
of Proposition 2.2.7 induces a quasi-isomorphism of chain complexes

C∗(g∗)→ k ⊕ V ∨∗ [−1],

where V ∨∗ denote the dual of the chain complex V∗. In fact, this map is a quasi-isomorphism of commutative
differential graded algebras (where we regard k ⊕ V ∨∗ [−1] as a trivial square-zero extension of k).

Notation 2.2.16. Let k be a field of characteristic zero. It follows from Proposition 2.2.6 that the con-
struction g∗ 7→ C∗(g∗) carries quasi-isomorphisms of differential graded Lie algebras to quasi-isomorphisms
of commutative differential graded algebras. Consequently, we obtain a functor between ∞-categories
Liek → CAlgopk , which we will also denote by C∗.

Note that the functor C∗ carries the initial object 0 ∈ Liek to the final object k ∈ CAlgopk . We therefore
obtain a functor

Liek → (CAlgopk )k/ ' (CAlgaug
k )op,

where CAlgaug
k = (CAlgk)/k denotes the ∞-category of augmented E∞-algebras over k. We will abuse

notation by denoting this functor also by C∗.

Proposition 2.2.17. Let k be a field of characteristic zero. Then the functor C∗ : Liek → (CAlgaug
k )op

preserves small colimits.

Proof. Using Corollary A.3.2.2.5, we are reduced to proving that the composite functor

Liek
C∗−→ (CAlgaug

k )op −→ (Modopk )k/

preserves small colimits. We note that this composition can be identified with the functor

Liek
C∗−→ (Modk)k/

D−→ (Modopk )k/,

where D is induced by the k-linear duality functor V∗ 7→ V ∨∗ from Vectdg
k to itself. According to Proposition

2.2.12, it will suffice to show that D preserves small colimits. Using Propositions A.1.3.3.10, A.1.3.3.11, and
A.1.3.3.12, we are reduced to the problem of showing that the functor V∗ 7→ V ∨∗ carries homotopy colimits

in Vectdg
k to homotopy limits in Vectdg

k , which is obvious.

41



2.3 Koszul Duality for Differential Graded Lie Algebras

Let k be a field of characteristic zero, and let C∗ : Liek → (CAlgaug
k )op be the functor constructed in

Notation 2.2.16. Proposition 2.2.17 implies that C∗ preserves small colimits. Since the ∞-category Liek is
presentable (Proposition 2.1.16), Corollary T.5.5.2.9 (and Remark T.5.5.2.10) imply that C∗ admits a right
adjoint D : (CAlgaug

k )op → Liek. We will refer to the functor D as Koszul duality. The main goal of this
section is to prove the following result:

Theorem 2.3.1. Let k be a field of characteristic zero, and let (CAlgaug
k , {E}) be the deformation context

of Example 1.1.4. Then the Koszul duality functor D : (CAlgaug
k )op → Liek is a deformation theory (see

Definition 1.3.9).

We will then deduce Theorem 2.0.2 by combining Theorems 2.3.1 and 1.3.12.

Remark 2.3.2. Let us temporarily distinguish in notation between the cohomological Chevalley-Eilenberg
functor

C∗ : Liedg
k → (CAlgdg

k )op/k

of Construction 2.2.13 and the induced functor of ∞-categories Liek → (CAlgaug
k )op, denoting the latter

functor by F . We saw above that F admits a right adjoint, the Koszul duality functor D : (CAlgaug
k )op →

Liek. In particular, C∗ determines a functor from the homotopy category of Liedg
k to the homotopy category

of (CAlgdg
k )op/k which admits a right adjoint. However, the functor C∗ itself does not admit a right adjoint; in

particular, it is not a left Quillen functor. Consequently, it is not so easy to describe the functor D using the
formalism of differential graded Lie algebras. To obtain a more explicit construction of D, it is convenient
to work in the setting of L∞-algebras. Since we will not need this construction, we do not describe it here.

Remark 2.3.3. We will often abuse notation by identifying the Koszul duality functor D : (CAlgaug
k )op →

Liek with the induced functor between opposite ∞-categories CAlgaug
k → Lieopk .

The first step in our proof of Theorem 2.3.1 is to show that the Koszul duality functor D : (CAlgaug
k )op →

Liek is a weak deformation theory: that is, it satisfies axioms (D1), (D2), and (D3) of Definition 1.3.1.
Axioms (D1) and (D2) are easy: we have already seen that Liek is presentable (Proposition 2.1.16), and the
functor D admits a left adjoint by construction. To verify (D3), we will prove the following:

Proposition 2.3.4. Let k be a field of characteristic zero and let g∗ be a differential graded Lie algebra over
k. We will say that g∗ is good if it is cofibrant (with respect to the model structure on Liedg

k described in
Proposition 2.1.10) and there exists a graded vector subspace V∗ ⊆ g∗ satisfying the following conditions:

(i) For every integer n, the vector space Vn is finite dimensional.

(ii) For every nonnegative integer n, the vector space Vn is trivial.

(iii) The graded vector space V∗ freely generates g∗ as a graded Lie algebra.

Let C be the full subcategory of Liek spanned by those objects which can be represented by good objects of
Liedg

k . Then C satisfies conditions (a), (b), (c), and (d) of Definition 1.3.1.

The main ingredient in the proof of Proposition 2.3.4 is the following lemma, whose proof we will defer
until the end of this section.

Lemma 2.3.5. Let g∗ be a differential graded Lie algebra over a field k of characteristic zero. Assume that:

(a) For every integer n, the vector space gn is finite dimensional.

(b) The vector space gn is trivial for n ≥ 0.

Then the unit map u : g∗ → DC∗(g) is an equivalence in Liek.
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Proof of Proposition 2.3.4. We verify each condition in turn:

(a) Let g∗ ∈ C; we wish to prove that the unit map g∗ → DC∗(g) is an equivalence in Liek. We may
assume without loss of generality that g∗ is good, so there is a graded subspace V∗ ⊆ g∗ satisfying
conditions (i), (ii), and (iii). As a graded vector space, g∗ is isomorphic to a direct summand of the
augmentation ideal in U(g) '

⊕
n≥0 V

⊗n
∗ . It follows that each gn is finite dimensional, and that gn ' 0

for n ≥ 0. The desired result now follows from Lemma 2.3.5.

(b) The initial object 0 ∈ Liek obviously belongs to C.

(c) We must show that for each n ≥ 0, the square-zero algebra k ⊕ k[n] ∈ CAlgaug
k is equivalent to C∗(g)

for some object g∗ ∈ C. In fact, we can take g∗ to be the differential graded Lie algebra freely generated
by the complex k[−n− 1] (see Remark 2.2.15).

(d) Suppose that n ≤ −2 and that we are given a pushout diagram

Free(k[n])
α //

v

��

g∗

��
0 // g′∗

in the ∞-category Liek. Here Free : Modk → Liek denotes the left adjoint to the forgetful functor.
We wish to show that if g∗ ∈ C, then g′∗ ∈ C. We may assume without loss of generality that g∗ is

good. Since Free(k[n]) is a cofibrant object of Liedg
k and g∗ is fibrant, we can assume that α is given

by a morphism Free(k[n])→ g∗ in the category Liedg
k (determined by a cycle x ∈ gn). The morphism

v in Lie k is represented by the cofibration of differential graded Lie algebras j : Free(∂ E(n+ 1)∗) ↪→
Free(E(n+ 1)∗) (see the proof of Proposition 2.1.10). Form a pushout diagram σ :

Free(∂ E(n)∗) //

j

��

g∗

j′

��
Free(E(n+ 1)∗) // h∗.

Since j is a cofibration and g∗ is cofibrant, σ is a homotopy pushout diagram in Liedg
k , so that h∗

and g′∗ are equivalent in Liek (Proposition A.1.3.3.11). It will therefore suffice to show that the object

h∗ ∈ Liedg
k is good.

The differential graded Lie algebra h∗ is cofibrant by construction. Let V∗ ⊆ g be a subspace satisfying
conditions (i), (ii), and (iii), and let y ∈ hn+1 be the image of a generator of E(n+ 1)n+1. Let V ′∗ be
the graded subspace of h∗ generated by V∗ and y. It is trivial to verify that V ′∗ satisfies conditions (i),
(ii), and (iii).

Proof of Theorem 2.3.1. Proposition 2.3.4 shows that the functor D : (CAlgaug
k )op → Liek is a weak defor-

mation theory. We will show that it satisfies axiom (D4) of Definition 1.3.9. Let E ∈ Stab(CAlgaug
k ) be the

spectrum object of Example 1.1.4, so that Ω∞−nE ' k ⊕ k[n]. The proof of Proposition 2.3.4 shows that
D(E) is given by the infinite loop object {Free(k[−n − 1])}n≥0 in Lieopk ; here Free : Modk → Liek denotes
a left adjoint to the forgetful functor θ : Liek → Modk. It follows that the functor e : Liek → Sp appearing
in Definition 1.3.9 is given by (F ◦ θ)[1], where F : Modk = Modk(Sp) → Sp and θ : Liek → Modk are the
forgetful functors. Since F is conservative and commutes with all colimits, it will suffice to observe that θ is
conservative (which is obvious) and preserves sifted colimits (Proposition 2.1.16).

We are now ready to prove our main result:
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Proof of Theorem 2.0.2. Let k be a field of characteristic zero, and let Ψ : Liek → Fun(CAlgsm
k , S) denote

the functor given on objects by the formula

Ψ(g∗)(R) = MapLiek
(D(R), g∗).

Combining Theorems 2.3.1 and 1.3.12, we deduce that Ψ is a fully faithful embedding whose essential
image is the full subcategory Modulik ⊆ Fun(CAlgsm

k , S) spanned by the formal moduli problems. Let
X 7→ TX denote tangent complex functor Modulik → Sp, given by evaluation on the spectrum object
E ∈ Stab(CAlgsm

k ) appearing in Example 1.1.4. Then the functor g∗ 7→ TΨ(g∗)[−1] coincides with the
functor e[−1], where e : Liek → Sp is the functor appearing in Definition 1.3.9. The proof of Theorem 2.3.1
supplies an equivalence of e[−1] with the forgetful functor

Liek → Modk = Modk(Sp)→ Sp .

Corollary 2.3.6. Let k be a field of characteristic zero and let X : CAlgsm
k → S be a formal moduli problem.

Then following conditions are equivalent:

(1) The formal moduli problem X is prorepresentable (see Definition 1.5.3).

(2) Let TX denote the tangent complex of X. Then πiTX ' 0 for i > 0.

Proof. Suppose first that X is prorepresentable; we wish to show that the homotopy groups πiTX vanish
for i > 0. The construction X 7→ πiTX commutes with filtered colimits. It will therefore suffice to show
that πiTX ' 0 when X = SpecA is the the functor corepresented by an object A ∈ CAlgsm

k . This is clear:
the homotopy group πiTX ' πi MapCAlgaug

k
(A, k[ε]/(ε2)) vanishes because A is connective and k[ε]/(ε2) is

discrete.
We now prove the converse. Let X be a formal moduli problem such that πiTX ' 0 for i > 0; we wish to

prove that X is prorepresentable. Let Ψ : Liek → Modulik be the equivalence of ∞-categories of Theorem
2.0.2. Then we can assume that X = Ψ(g∗) for some differential graded Lie algebra g∗ satisfying Hi(g∗) ' 0
for i ≥ 0 (here we let Hi(g∗) denote the ith homology group of the underlying chain complex of g∗, rather
than the Lie algebra homology of g∗ computed by the Chevalley-Eilenberg complex C∗(g∗) of §2.2).

We now construct a sequence of differential graded Lie algebras

0 = g(0)∗ → g(1)∗ → g(2)∗ → · · ·

equipped with maps φ(i) : g(i)∗ → g∗. For every integer n, choose a graded subspace Vn ⊆ gn consisting of
cycles which maps isomorphically onto the homology Hn(g∗). Then we can regard V∗ as a differential graded
vector space with trivial differential. Let g(1)∗ denote the free differential graded Lie algebra generated by
V∗, and φ(1) : g(1)∗ → g∗ the canonical map. Assume now that i ≥ 1 and that we have constructed a
map φ(i) : g(i)∗ → g∗ extending φ(1). Then φ(i) induces a surjection θ : Hn(g(i)∗) → H∗(g∗). Choose a
collection of cycles xα ∈ g(i)nα whose images form a basis for ker(θ). Then we can write φ(i)(xα) = dyα for
some yα ∈ gnα+1. Let g(i+ 1)∗ be the differential graded Lie algebra obtained from g(i)∗ by freely adjoining
elements Yα (in degrees nα + 1) satisfying dYα = xα. We let φ(i + 1) : g(i + 1)∗ → g∗ denote the unique
extension of φ(i) satisfying φ(i+ 1)(Yα) = yα.

We now prove the following assertion for each integer i ≥ 1:

(∗i) The inclusion V−1 ↪→ g(i)−1 induces an isomorphism V−1 → H−1(g(i)∗), and the groups g(i)n vanish
for n ≥ 0.

Assertion (∗i) is easy when i = 1. Let us assume that (∗i) holds, and let θ be defined as above. Then θ
is an isomorphism in degrees ≥ −1, so that g(i + 1)∗ is obtained from g(i)∗ by freely adjoining generators
Yα in degrees ≤ −1. It follows immediately that g(i + 1)n ' 0 for n ≥ 0. Moreover, we can write
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g(i+ 1)−1 ' g(i)−1 ⊕W , where W is the subspace spanned by elements of the form Yα where nα = −2. By
construction, the differential on g(i+ 1)∗ carries W injectively into

g(i)−2/dg(i)−1 ⊆ g(i+ 1)−2/dg(i)−1,

so that the Lie algebras g(i+ 1)∗ and g(i)∗ have the same homology in degree −1.
Let g′∗ denote the colimit of the sequence {g(i)∗}i≥0. The evident map g′∗ → g∗ is surjective on homology

(since the map g(1)∗ → g∗ is surjective on homology). If η ∈ ker(H∗(g
′
∗)→ H∗(g∗), then η is represented by

a class η ∈ ker(H∗(g(i)∗) → H∗(g∗)) for i � 0. By construction, the image of η vanishes in H∗(g(i + 1)∗),
so that η = 0. It follows that the map g′∗ → g∗ is a quasi-isomorphism. Since the collection of quasi-

isomorphisms in Liedg
k is closed under filtered colimits, we conclude that g∗ is a homotopy colimit of the

sequence {g(i)∗}i≥0 in the model category Liedg
k , and therefore a colimit of {g(i)∗}i≥0 in the∞-category Liek.

Setting X(i) = Ψ(g(i)∗) ∈ Modulik, we deduce that X ' lim−→X(i). To prove that X is prorepresentable, it
will suffice to show that each X(i) is prorepresentable.

We now proceed by induction on i, the case i = 0 being trivial. To carry out the inductive step, we note
that each of the Lie algebras g(i+ 1)∗ is obtained from g(i)∗ by freely adjoining a set of generators {Yα}α∈A
of degrees nα + 1 ≤ −1, satisfying dYα = xα ∈ g(i)nα (this is obvious when i = 0, and follows from (∗i)
when i > 0). Choose a well-ordering of the set A. For each α ∈ A, we let g<α∗ denote the Lie subalgebra of

g(i+ 1)∗ generated by g(i)∗ and the elements Yβ for β < α, and let g≤α∗ be defined similarly. Set

X<α = Ψ(g<α∗ ) X≤α = Ψ(g≤α∗ ).

For each α ∈ A, we have a homotopy pushout diagram of differential graded Lie algebras

Free(∂ E(nα + 1)∗) //

��

Free(E(nα + 1)∗)

��
g<α∗ // g≤α∗ ,

hence a pushout diagram of formal moduli problems

Spec(k ⊕ k[nα + 1]) //

��

Spec(k)

��
X<α // X≤α.

It follows that the map X(i)→ X(i+1) satisfies the criterion of Lemma 1.5.9. Since X(i) is prorepresentable,
we conclude that X(i+ 1) is prorepresentable.

The remainder of this section is devoted to the proof of Lemma 2.3.5. We will need a few preliminaries.

Notation 2.3.7. Let F : (Vectdg
k )op → Vectdg

k be the functor between ordinary categories which carries each
chain complex (V∗, d) to the dual chain complex (V ∨∗ , d

∨), where V ∨n = Homk(V−n, k) and the differential d∨

is characterized by the formula d∨(λ)(v) + (−1)nλ(dv) = 0 for λ ∈ V ∨n . The construction V∗ 7→ V ∨∗ preserves
quasi-isomorphisms and therefore induces a functor Modopk → Modk, which we will denote by V 7→ V ∨. We
will refer to this functor as k-linear duality.

Remark 2.3.8. For every pair of k-module spectra V,W ∈ Modk, we have canonical homotopy equivalences

MapModk
(V,W∨) ' MapModk

(V ⊗W,k) ' MapModk
(W,V ∨).

It follows that k-linear duality, when regarded as a functor Modk → Modopk , is canonically equivalent to the
left adjoint of the k-linear duality functor Modopk → Modk.
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Let us now study the composite functor

(CAlgaug
k )op

D→ Liek
θ→ Modk,

where θ denotes the forgetful functor. This composition admits a left adjoint

Modk
Free−→ Liek

C∗−→ (CAlgaug
k )op,

which is in turn induced by the map of ordinary categories Vectdg
k → CAlgdg

k given by V∗ 7→ C∗(Free(V∗)).
Remark 2.2.15 supplies a (functorial) quasi-isomorphism of commutative differential graded algebras

C∗(Free(V∗))→ k ⊕ V ∨∗ [−1].

It follows that the underlying functor of ∞-categories Modk → (CAlgaug
k )op is given by composing the k-

linear duality functor Modk → Modopk with the functor Modopk → (CAlgaug
k )op given by the formation of

square-zero extensions M 7→ k ⊕M [−1]. Both of these functors admit left adjoints: in the first case, the
left adjoint is given by k-linear duality (Remark 2.3.8), and in the second it is given by the formation of the
relative cotangent complex A 7→ (LA/k ⊗A k)[−1] ' Lk/A respectively. We have proven:

Proposition 2.3.9. Let k be a field of characteristic zero and let θ : Liek → Modk be the forgetful functor.
Then the composite functor

(CAlgaug
k )op

D−→ Liek
θ−→ Modk

is given on objects by A 7→ L∨k/A.

To prove Lemma 2.3.5, we need to analyze the unit map g∗ → DC∗(g∗) associated to a differential graded
Lie algebra g∗. We begin with a few preliminary remarks regarding explicit models for the cotangent fiber
of a commutative differential graded algebra.

Definition 2.3.10. Let A∗ be a commutative differential graded algebra over k equipped with an augmenta-
tion u : A∗ → k. The kernel of u is an ideal mA ⊆ A∗. We let Indec(A)∗ denote the quotient mA/m

2
A, which

we regard as a complex of k-vector spaces. We will refer to Indec(A)∗ as the chain complex of indecomposables
in A∗.

Remark 2.3.11. The construction V∗ 7→ k⊕V∗ determines a right Quillen functor from Vectdg
k to (CAlgdg

k )/k,
whose left adjoint is given by A∗ 7→ Indec(A)∗. It follows that the functor Indec(A)∗ preserves weak

equivalences between cofibrant objects of (CAlgdg
k )/k, and induces a functor of ∞-categories CAlgaug

k →
Modk. This functor is evidently left adjoint to the formation of trivial square-zero extensions, and is therefore
given by A 7→ LA/k⊗A k ' Lk/A[−1]. It follows that for every cofibrant augmented commutative differential
graded algebra A∗, the canonical map A∗ → k⊕Indec(A)∗ induces an equivalence Lk/A∗ [−1] ' LA∗/k⊗A∗k →
Indec(A)∗ in Modk (here we abuse notation by identifying A∗ with its image in the ∞-category CAlgaug

k ).

Proof of Lemma 2.3.5. Let g∗ be a differential graded Lie algebra satisfying hypotheses (a) and (b); we wish
to show that the unit map g∗ → DC∗(g) is an equivalence in the ∞-category Liek. Since the forgetful
functor Liek → Modk is conservative, it will suffice to show that u induces an equivalence g∗ → D0Lk/C∗(g∗)
in Modk (see Proposition 2.3.9). This map has a predual, given by the map

u : LC∗(g∗)/k ⊗C∗(g) k → g∨∗ [−1].

We will prove that u is an equivalence.
Consider the isomorphism of graded vector spaces

C∗(g∗) '
∏
n≥0

(Symn g∗[1])∨.
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Choose a basis {y1, . . . , yp} for the vector space g−1, and let {x1, . . . , xp} be the dual basis for g∨1 , so that
C0(g∗) can be identified with the power series ring k[[x1, . . . , xp]]. Let A∗ =

⊕
n≥0(Symn(g∗[1]))∨, and

regard A∗ as a graded subalgebra of C∗(g∗). It is easy to see that A∗ is a differential graded subalgebra of
C∗(g∗), and that A0 contains the polynomial ring k[x1, . . . , xp]. Using (a) and (b), we deduce that A∗ is a
graded polynomial ring generated by g∨∗ [−1], and that the natural map

A∗ ⊗k[x1,...,xp] k[[x1, . . . , xp]]→ C∗(g∗)

is an isomorphism of commutative differential graded algebras. Since k[[x1, . . . , xp]] is flat over k[x1, . . . , xp],
it follows that for each n ∈ Z we have an isomorphism in homology

Hn(A∗)⊗k[x1,...,xp] k[[x1, . . . , xp]]→ Hn(C∗(g∗)),

so that the diagram

k[x1, . . . , xp] //

��

k[[x1, . . . , xp]]

��
A∗ // C∗(g∗)

is a pushout square in the ∞-category CAlgk. We therefore obtain equivalences

LC∗(g∗)/A∗ ⊗C∗(g∗) k ' Lk[[x1,...,xp]]/k[x1,...,xp] ⊗k[[x1,...,xp]] k ' LR/k ' 0.

where R denotes the tensor product k[[x1, . . . , xp]]⊗k[x1,...,xp] k ' k. It follows that u can be identified with
the map LA∗/k ⊗A∗ k → g∨∗ [−1] which classifies the morphism A∗ → k ⊕ g∨∗ [−1] ' k ⊕ Indec(A)∗. Since A∗
is a cofibrant differential graded algebra, Remark 2.3.11 implies that u is an equivalence in Modk.

2.4 Quasi-Coherent Sheaves

Let k be a field and let X : CAlgsm
k → S be a formal moduli problem over k. Following the ideas introduced

in §VIII.2.7, we can define a symmetric monoidal ∞-category QCoh(X) of quasi-coherent sheaves on X.
Roughly speaking, a quasi-coherent sheaf F on X is a rule which assigns to each point η ∈ X(R) an R-
module η∗ F ∈ ModR, which is functorial in the following sense: if φ : R → R′ is a morphism in CAlgsm

k

and η′ denotes the image of η in X(R′), then there is an equivalence η′∗ F ' R′ ⊗R η∗ F in the ∞-category
ModR′ .

If the field k has characteristic zero, Theorem 2.0.2 provides an equivalence of ∞-categories Ψ : Liek →
Modulik. In particular, every formal moduli problem X is equivalent to Ψ(g∗), for some differential graded
Lie algebra g∗ which is well-defined up to quasi-isomorphism. In this section, we will explore the relationship
between g∗ and the ∞-category QCoh(X). Our main result is the following:

Theorem 2.4.1. Let k be a field of characteristic zero, let g∗ be a differential graded Lie algebra over k, and
let X = Ψ(g∗) be the associated formal moduli problem. Then there is a fully faithful symmetric monoidal
embedding QCoh(X) ↪→ Repg∗ , where Repg∗ denotes the ∞-category of representations of g∗ (see Notation
2.4.6).

Remark 2.4.2. It follows from Theorem 2.4.1 that the ∞-category Repg∗ can be regarded as a (symmetric
monoidal) enlargement of the∞-category QCoh(X) of quasi-coherent sheaves on the formal moduli problem
determined by g∗. This enlargement can be described geometrically as the ∞-category of Ind-coherent
sheaves on X. We refer the reader to §3.4 for a discussion of Ind-coherent sheaves in the noncommutative
setting, and to §3.5 for a noncommutative analogue of Theorem 2.4.1.

We begin with a discussion of representations of differential graded Lie algebras.
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Definition 2.4.3. Let k be a field and let g∗ be a differential graded Lie algebra over k. A representation
of g∗ is a differential graded vector space V∗ equipped with a map

g∗ ⊗k V∗ → V∗

satisfying the identities
[x, y]v = x(yv) + (−1)pqy(xv)

for x ∈ gp, y ∈ gq. The representations of g∗ comprise a category which we will denote by Repdg
g∗ .

Example 2.4.4. For every differential graded vector space V∗, the zero map

g∗ ⊗k V∗ → V∗

exhibits V∗ as a representation of g∗. In particular, taking V∗ = k (regarded as a graded vector space
concentrated in degree zero), we obtain a representation of g∗ on k which we call the trivial representation.

Note that a representation of a differential graded Lie algebra g∗ is the same data as a (left) module over
the universal enveloping algebra U(g∗). Using Proposition A.4.3.3.15, we deduce the following:

Proposition 2.4.5. Let g∗ be a differential graded Lie algebra over a field k. Then the category Repdg
g∗ of

representations of g∗ admits a combinatorial model structure, where:

(W ) A map f : V∗ → W∗ of representations of g∗ is a weak equivalence if and only if it induces an
isomorphism on homology.

(F ) A map f : V∗ →W∗ of representations of g∗ is a fibration if and only if it is degreewise surjective.

Notation 2.4.6. If g∗ is a differential graded Lie algebra over a field k, we let Wg∗ denote the collection of

all weak equivalences in Repdg
g∗ , and we let

Repg∗ = Repdg
g∗ [W

−1
g∗ ]

denote the ∞-category obtained from Repdg
g∗ by formally inverting all quasi-isomorphisms: that is, the

underlying ∞-category of the model category described in Proposition 2.4.5.
It follows from Theorem A.4.3.3.17 that we can identify Repg∗ with the ∞-category LModU(g∗) of left

modules over the universal enveloping algebra U(g∗) (which we regard as an E1-ring). In particular, Repg∗
is a stable ∞-category.

Construction 2.4.7. Let g∗ be a differential graded Lie algebra over a field k and let V∗ be a representation
of g∗. We let C∗(g∗;V∗) denote the differential graded vector space of U(g∗)-module maps from U(Cn(g)∗)
into V∗. We will refer to C∗(g∗;V∗) as the cohomological Chevalley-Eilenberg complex of g∗ with coefficients
in V∗.

Remark 2.4.8. Unwinding the definitions, we see that the graded pieces Cn(g∗;V∗) can be identified with
the set of graded vector space maps Sym∗(g∗[1])→ V∗[−n].

We note that C∗(g∗;V∗) has the structure of a module over the differential graded algebra C∗(g∗). The
action is given by k-bilinear maps

Cp(g∗)× Cq(g∗;V∗)→ Cp+q(g∗;V∗),

which carries a class λ ∈ Cp(g∗) and µ ∈ Cq(g∗;V∗) to the element λµ ∈ Cp+q(g∗;V∗) given by

(λµ)(x1 . . . xn) =
∑
S,S′

ε(S, S′)λ(xi1 . . . xim)µ(xj1 . . . xjn−m),

as in Construction 2.2.13.
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Remark 2.4.9. It follows from general nonsense that the (differential graded) endomorphism ring of

the functor C∗(g∗; •) : Repdg
g∗ → Moddg

k is isomorphic to the (differential graded) endomorphism ring of
U(Cn(g)∗) (regarded as a representation of g∗). In particular, the action of C∗(g∗) on C∗(g∗; •) arises
from an action of C∗(g∗) on U(Cn(g)∗), which commutes with the left action of U(g∗). For an alternative
description of this action, we refer the reader to the proof of Proposition 3.3.7.

Proposition 2.4.10. Let g∗ be a differential graded Lie algebra over a field k of characteristic zero. Then
the functor V∗ 7→ C∗(g∗;V∗) preserves quasi-isomorphisms.

Proof. For each n ≥ 0 and each V∗ ∈ Repdg
g∗ , we let Fn(V∗) denote the quotient of C∗(g∗;V∗) given by maps

from Sym≤n(g∗[1]) into V∗. Then C∗(g∗;V∗) is given by the inverse limit of a tower of fibrations

· · · → F2(V∗)→ F1(V∗)→ F0(V∗).

It will therefore suffice to show that each of the functors Fn preserves quasi-isomorphisms. We proceed by
induction on n. If n = 0, then Fn is the identity functor and the result is obvious. Assume therefore that
n > 0. Let K : Repdg

g∗ → Moddg
k be the functor given by the kernel of the surjection Fn → Fn−1, so that we

have a short exact sequence of functors

0→ K → Fn → Fn−1 → 0.

It will therefore suffice to show that the functor K preserves quasi-isomorphisms. Unwinding the definitions,
we see that K carries a representation V∗ to the chain complex of Σn-equivariant maps from (g∗[1])⊗n into

V∗, regarded as objects of Moddg
k . Since k has characteristic zero, the functor K is a direct summand of the

functor K ′ : Repdg
g∗ → Moddg

k , which carries V∗ to the chain complex of maps from (g∗[1])⊗n into V∗. This
functor evidently preserves quasi-isomorphisms.

Remark 2.4.11. Let g∗ be a differential graded Lie algebra over a field k of characteristic zero, and let
Moddg

C∗(g∗)
denote the category of differential graded modules over C∗(g∗). The functor

C∗(g∗; •) : Repdg
g∗ → Moddg

C∗(g∗)

preserves weak equivalences and fibrations. Moreover, it has a left adjoint F , given by

M∗ 7→ U(Cn(g)∗)⊗C∗(g∗) M∗

(see Remark 2.4.9). It follows that C∗(g∗; •) is a right Quillen functor, which induces a map between the
underlying ∞-categories Repg∗ → ModC∗(g∗). We will generally abuse notation by denoting this functor
also by C∗(g∗; •). It admits a left adjoint f : ModC∗(g∗) → Repg∗ (given by the left derived functor of F ).

Proposition 2.4.12. Let k be a field of characteristic zero and let g∗ be a differential graded Lie algebra over
k. Assume that the underlying graded Lie algebra is freely generated by a finite sequence of homogeneous
elements x1, . . . , xn such that each dxi belongs to the Lie subalgebra of g∗ generated by x1, . . . , xi−1. Let
f : ModC∗(g∗) → Repg∗ denote the left adjoint to the functor C∗(g∗; •) (see Remark 2.4.11). Then f is a
fully faithful embedding.

Lemma 2.4.13. Let k be a field and let A∗ be an augmented differential graded algebra over k; we will abuse
notation by identifying A∗ with its image in Modk. Assume that A∗ is freely generated (as a graded algebra)
by a finite sequence of homogeneous elements x1, . . . , xn, such that each dxi lies in the subalgebra generated
by x1, . . . , xi−1. Then the field k is a compact object of the stable ∞-category LModA∗ .

Proof. Adding scalars to the elements xi if necessary, we may assume that the augmentation A∗ → k
annihilates each xi. For 0 ≤ i ≤ n, let M(i)∗ denote the quotient of A∗ by the left ideal generated by the
elements x1, . . . , xi. We will prove that each M(i)∗ is perfect as a left A∗-module; taking i = n, this will
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imply the desired result. The proof proceeds by induction on i. If i = 0, then M(i)∗ ' A∗ and the result
is obvious. If i > 0, then the image of xi in M(i − 1)∗ is a cycle. It follows that right multiplication by xi
induces a map of left A∗-modules A∗ →M(i− 1)∗, fitting into an exact sequence

0→ A∗
xi→M(i− 1)∗ →M(i)∗ → 0.

Since M(i− 1)∗ is perfect by the inductive hypothesis, we deduce that M(i)∗ is perfect.

Proof of Proposition 2.4.12. We first show that f is fully faithful when restricted to the full subcategory
Modperf

C∗(g∗)
⊆ ModC∗(g∗) spanned by the perfect C∗(g∗)-modules. Let M and N be perfect C∗(g∗)-modules.

We wish to show that f induces an isomorphism

θ : Ext∗C∗(g∗)(M,N)→ Ext∗U(g∗)(fM, fN).

Regard M as fixed. The collection of those modules N for which θ is an isomorphism is closed under retracts,
shifts, and extensions. To prove that θ is an isomorphism for each N ∈ Modperf

C∗(g∗)
, it will suffice to prove that

θ is an isomorphism for N = C∗(g∗). By the same reasoning, we can reduce to the case where M = C∗(g∗).
Then fM ' U(Cn(g)∗) and fN ' U(Cn(g∗) ' k, so that Ext∗U(g∗)(fM, fN) ' Ext∗U(g∗)(U(Cn(g)∗), k) is
canonically isomorphic to the Lie algebra cohomology of g∗. Under this isomorphism, θ corresponds to the
identity map.

We now prove that f is fully faithful in general. Since ModC∗(g∗) ' Ind(Modperf
C∗(g∗)

) and the functor f

preserves filtered colimits, it will suffice to show that f carries objects Modperf
C∗(g∗)

to perfect U(g∗)-modules.

The collection of those M ∈ ModC∗(g∗) for which fM is perfect is closed under extensions, shifts, and
retracts. It will therefore suffice to show that fC∗(g∗) ' k is perfect as a U(g∗)-module, which follows from
Lemma 2.4.13.

Lemma 2.4.14. Let k be a field and let A be a coconnective E1-algebra over k, equipped with an augmentation
ε : A → k. Let C ⊆ LModA be a full subcategory which contains k (regarded as a left A-module via the
augmentation ε) and is closed under colimits and extensions. Then C contains every left A-module whose
underlying spectrum is connective.

Proof. Let M be a left A-module whose underlying spectrum is connective. We will construct a sequence of
objects

0 = M(0)→M(1)→M(2)→ · · ·
in C and a compatible family of maps θ(i) : M(i)→M with the following property:

(∗) The groups πjM(i) vanish unless 0 ≤ j < i, and the maps πjM(j) → πjM are isomorphisms for
0 ≤ j < i.

Assume that i ≥ 0 and that we have already constructed a map θ(i) satisfying (∗). Let M ′ = fib(θ(i)),
so that πjM

′ ' 0 for j < i − 1. Using Proposition VIII.4.1.9, we can construct a map of left A-modules
N →M ′ which induces an isomorphism πi−1N → πi−1M

′, with πjN ' 0 for j 6= i− 1. Let M(i+ 1) denote
the cofiber of the composite map N → M ′ → M(i). There is an evident map θ(i + 1) : M(i + 1) → M
satisfying (∗). We will complete the proof by showing that M(i+ 1) ∈ C. We have a fiber sequence

M(i)→M(i+ 1)→ N [1].

Lemma VIII.4.3.16 implies that N [1] is equivalent to a direct sum of copies of k[i]. Since C contains k and is
closed under colimits, we conclude that N [1] ∈ C. The module M(i) belong to C by the inductive hypothesis.
Since C is closed under extensions, we deduce that M(i+ 1) ∈ C.

Notation 2.4.15. Let g∗ be a differential graded Lie algebra and let V∗ be a representation of g∗. We will
say that V∗ is connective if its image in Modk is connective: that is, if the homology groups of the chain
complex V∗ are concentrated in non-negative degrees. We let Modcn

g∗ denote the full subcategory of Repg∗
spanned by the connective g∗-modules.
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Proposition 2.4.16. Let g∗ be as in the statement of Proposition 2.4.12, and assume that each of the
generators xi of g∗ has negative homological degree. Then the fully faithful embedding f : ModC∗(g∗) → Repg∗
induces an equivalence of ∞-categories

Modcn
C∗(g∗) → Modcn

g∗ .

Proof. Since C∗(g∗) is connective, we can characterize as the smallest full subcategory of Modcn
C∗(g∗) which

contains C∗(g∗) and is closed under colimits and extensions. It follows that f induces an equivalence from
Modcn

C∗(g∗) to the smallest full subcategory of Modcn
g∗ which contains fC∗(g∗) ' k and is closed under colimits

and extensions. It is clear that this full subcategory is contained in Modcn
g∗ , and the reverse inclusion follows

from Lemma 2.4.14.

We next observe that the category Repdg
g∗ of representations of a differential graded Lie algebra g∗ is

symmetric monoidal. If V∗ and W∗ are representations of g∗, then the tensor product V∗ ⊗k W∗ can be
regarded as a representation of g∗, with action given by the formula

x(v ⊗ w) = (xv)⊗ w + (−1)pqv ⊗ (xw)

for homogeneous elements x ∈ gp, v ∈ Vq, and w ∈ Wr. For fixed V∗ ∈ Repdg
g∗ , the construction W∗ 7→

V∗⊗kW∗ preserves quasi-isomorphisms. It follows from Proposition A.4.1.3.4 that the underlying∞-category
Repg∗ = Repdg

g∗ [W
−1
g∗ ] inherits a symmetric monoidal structure.

Remark 2.4.17. Let g∗ be a differential graded Lie algebra over a field k. Then the diagram

Repg∗ ×Repg∗

⊗ //

��

Repg∗

��
Modk ×Modk

⊗ // Modk

commutes up to equivalence. It follows that the tensor product functor ⊗ : Repg∗ ×Repg∗ → Repg∗ preserves
small colimits separately in each variable.

We now wish to study the behavior of the functor C∗(g∗; •) with respect to the symmetric monoidal
structure defined above. It will be convenient for us to simultaneously study the behavior of this functor
with respect to change of differential graded Lie algebra g∗.

Construction 2.4.18. Let k be a field. We define a category Rep⊗dg

⊗
as follows:

(1) An object of Rep⊗dg

⊗
is a tuple (g∗, V

1
∗ , . . . , V

n
∗ ), where g∗ is a differential graded Lie algebra over k

and each V i∗ is a representation of g∗.

(2) Given a pair of objects (g∗, V
1
∗ , . . . , V

m
∗ ), (h∗,W

1
∗ , . . . ,W

n
∗ ) ∈ Rep⊗dg

⊗
, a morphism

(g∗, V
1
∗ , . . . , V

m
∗ )→ (h∗,W

1
∗ , . . . ,W

n
∗ )

is given by a map α : 〈m〉 → 〈n〉 of pointed finite sets, a morphism φ : h∗ → g∗ of differential graded
Lie algebras, and, for each 1 ≤ j ≤ n, a map

⊗
α(i)=j V

i
∗ → W j

∗ of representations of h∗ (here we

regard each V i∗ as a representation of h∗ via the morphism φ).

The category Rep⊗dg

⊗
is equipped with an evident forgetful functor Rep⊗dg

⊗ → (Liedg
k )op × Fin∗, which

induces a coCartesian fibration N(Rep⊗dg

⊗
)→ N(Liedg

k )op ×N(Fin∗).

For our applications of Construction 2.4.18, we will need the following general result:
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Proposition 2.4.19. Let p : C→ D be a coCartesian fibration of ∞-categories. Suppose that we are given,
for each D ∈ D, a collection of morphisms WD in the fiber CD. Suppose further that for each morphism
D → D′ in D, the induced functor CD → CD′ carries WD into WD′ . Let W =

⋃
D∈DWD. Since p carries

each morphism of W to an equivalence in D, it factors as a composition

C
θ→ C[W−1]

q→ D .

Replacing C[W−1] by an equivalent ∞-category if necessary, we may assume that q is a categorical fibration.
Then:

(1) The map q is a coCartesian fibration.

(2) The functor θ carries p-coCartesian morphisms in C to q-coCartesian morphisms in C[W−1].

(3) For each D ∈ D, the map θ induces an equivalence C[W−1
D ]→ (C[W−1])D.

Proof. Let χ : D→ Cat∞ classify the Cartesian fibration p. For each D ∈ D, we have a canonical equivalence
χ(D) ' CD; let W ′D denote the collection of morphisms in χ(D) whose in CD are equivalent to morphisms
belonging to WD. Then the construction D 7→ (χ(D),W ) determines a functor χW : D → WCat∞, where
WCat∞ is defined as in Construction A.4.1.3.1. Composing with the left adjoint to the inclusion Cat∞ →
WCat∞, we obtain a new functor χ′ : D → Cat∞, given on objects by χ′(D) = χ(D)[W ′−1

D ] ' CD[W−1
D ].

The functor χ′ classifies a coCartesian fibration p′ : C′ → D. We have an evident natural transformation
χ→ χ′, which determines a functor φ ∈ FunD(C,C′) which carries p-coCartesian morphisms to p′-coCartesian
morphisms. To complete the proof, it will suffice to show that φ induces an equivalence C[W−1] → C′.
Equivalently, we must show that for any∞-category E, composition with φ induces a fully faithful embedding
v : Fun(C′,E)' → Fun(C,E)' whose essential image consists of those functors F : C → E which carry each
morphism of W to an equivalence in E.

Evaluation at the vertex 0 ∈ ∆1 induces a Cartesian fibration Fun(∆1,D) → D. We define a new
simplicial set E′ with a map r : E′ → D so that the following universal property is satisfied: for every map
of simplicial sets K → D, we have a canonical bijection

Hom(Set∆)/D
(K,E′) = HomSet∆

(K ×Fun({0},D) Fun(∆1,D),E).

Using Corollary T.3.2.2.12, we deduce that the map r : E′ → D is a coCartesian fibration. The diagonal in-
clusion D→ Fun(∆1,D) induces a map K → K×Fun({0},D) Fun(∆1,D) for every map K → D. Composition
with these maps gives a functor u : E′ → E. We claim:

(∗) Let Fun′D(C,E′) denote the full subcategory of FunD(C,E′) spanned by those functors which carry
p-coCartesian morphisms to r-coCartesian morphisms. Then composition with u induces a trivial Kan
fibration Fun′D(C,E′)→ Fun(C,E)

To prove (∗), we note that FunD(C,E′) can be identified with the ∞-category

Fun(C×Fun({0},D) Fun(∆1,D),E).

Under this isomorphism, Fun′D(C,E′) can be identified with the full subcategory spanned by those functors
F which are right Kan extensions of their restrictions to C ↪→ C×Fun({0},D) Fun(∆1,D). Assertion (∗) now
follows from Proposition T.4.3.2.15. A similar argument gives:

(∗) Let Fun′D(C′,E′) denote the full subcategory of FunD(C′,E′) spanned by those functors which carry
p′-coCartesian morphisms to r-coCartesian morphisms. Then composition with u induces a trivial Kan
fibration Fun′D(C′,E′)→ Fun(C′,E)
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It follows that we can identify v with the map

Fun′D(C′,E′)' → Fun′D(C,E′)'.

Let ν : D→ Cat∞ classify the coCartesian fibration r, so that v is given by the map MapFun(D,Cat∞)(χ
′, ν)→

MapFun(D,Cat∞)(χ, ν) given by composition with the natural transformation α. The desired result now follows
from the construction of the natural transformation χ′.

Corollary 2.4.20. Let k be a field and let W be the collection of all morphisms in Rep⊗dg

⊗
of the form

α : (g∗, V
1
∗ , . . . , V

n
∗ )→ (g∗, V

′1
∗ , . . . , V

′n
∗ )

where the image of α in both Liedg
k and Fin∗ is an identity map, and α induces a quasi-isomorphism V i∗ → V ′i∗

for 1 ≤ i ≤ n. Then we have a coCartesian fibration Rep⊗dg

⊗
[W−1] → N(Liedg

k )op × N(Fin∗). For every

differential graded Lie algebra g∗ over k, we can identify the fiber Rep⊗dg

⊗
[W−1]g∗ = Rep⊗dg

⊗
[W−1]×N(Liedg

k )op

{g∗} with the symmetric monoidal ∞-category Rep⊗g∗ .

The Chevalley-Eilenberg construction V∗ 7→ C∗(g∗;V∗) is a lax symmetric monoidal functor. For every
pair of representations V∗,W∗ ∈ Repdg

g∗ , there is a canonical map

C∗(g∗;V∗)⊗k C∗(g∗;W∗)→ C∗(g∗;V∗ ⊗k W∗),

which classifies bilinear maps

Cp(g∗;V∗)× Cq(g∗;W∗)→ Cp+q(g∗;V∗ ⊗k W∗),

which carries a class λ ∈ Cp(g∗;V∗) and µ ∈ Cq(g∗;W∗) to the element λµ ∈ Cp+q(g∗;V∗ ⊗k W∗) given by

(λµ)(x1 . . . xn) =
∑
S,S′

ε(S, S′)λ(xi1 . . . xim)⊗ µ(xj1 . . . xjn−m).

Remark 2.4.21. Taking V∗ and W∗ to be the trivial representation of g∗, we recover the multiplication on
C∗(g∗) described in Construction 2.2.13. Taking V∗ to be the trivial representation, we recover the action of
C∗(g∗) on C∗(g∗;W∗) described in Remark 2.4.8. It follows from general nonsense that the multiplication
maps

C∗(g∗;V∗)⊗k C∗(g∗;W∗)→ C∗(g∗;V∗ ⊗k W∗)

are C∗(g∗)-bilinear, and therefore descend to give maps

C∗(g∗;V∗)⊗C∗(g∗) C
∗(g∗;W∗)→ C∗(g∗;V∗ ⊗k W∗).

Notation 2.4.22. Let C be a symmetric monoidal ∞-category. We let Mod(C)⊗ = ModComm(C)⊗ be as
in Definition A.3.3.3.8: more informally, the objects of Mod(C)⊗ are given by tuples (A,M1, . . . ,Mn) where
A ∈ CAlg(C) and each Mi is a module over A. If C = N(C0) is isomorphic to the nerve of a symmetric
monoidal category C0, then Mod(C)⊗ is also isomorphic to the nerve of a category, which we will denote by
Mod(C0)⊗.

The lax symmetric monoidal structure on the functor C∗(g∗; •), and its dependence on g∗, are encoded
by a map of categories

Rep⊗dg

⊗ → Mod(Moddg
k )⊗,

given on objects by
(g∗, V

1
∗ , . . . , V

n
∗ ) 7→ (C∗(g∗), C

∗(g∗;V
1
∗ ), . . . , C∗(g∗;V

n
∗ )).
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Composing this with the map of symmetric monoidal functor N(Moddg
k ) → Modk, we obtain a map

N(Rep⊗dg

⊗
)→ Mod(Modk)⊗. If the field k has characteristic zero, then Proposition 2.4.10 implies that this

functor carries morphisms of W (where W is defined as in Corollary 2.4.20) to equivalences in Mod(Modk)⊗,
and therefore induces a lax symmetric monoidal functor

G : N(Rep⊗dg

⊗
)[W−1]→ N(Liedg

k )op ×CAlgk Mod(Modk)⊗.

Proposition 2.4.23. Let k be a field of characteristic zero, and consider the commutative diagram

N(Rep⊗dg

⊗
)[W−1]

p

))

G // N(Liedg
k )op ×CAlgk Mod(Modk)⊗

q

tt
N(Liedg

k )op ×N(Fin∗).

Then:

(1) The functor G admits a left adjoint F relative to N(Liedg
k )op ×N(Fin∗) (see Definition A.7.3.2.2).

(2) The functor F carries q-coCartesian morphisms to p-coCartesian morphisms.

Remark 2.4.24. We can summarize Proposition 2.4.23 more informally as follows. For every differential
graded Lie algebra g∗ over k, the construction V∗ 7→ C∗(g∗;V∗) determines a lax symmetric monoidal functor
from Repg∗ to ModC∗(g∗). This functor admits a symmetric monoidal left adjoint f : ModC∗(g∗) → Repg∗ .
Moreover, the functor f depends functorially on the differential graded Lie algebra g∗.

Proof of Proposition 2.4.23. We will prove the existence of F ; it will then follow from the fact that F admits
a right adjoint relative to N(Liedg

k )op × N(Fin∗) that F carries q-coCartesian morphisms to p-coCartesian
morphisms (see Proposition A.7.3.2.6). To prove the existence of F , we will check that G satisfies the
criterion of Proposition A.7.3.2.11. For each differential graded Lie algebra g∗ and each 〈n〉 ∈ N(Fin∗), the
induced functor

Gg∗,〈n〉 : Rep⊗dg

⊗
[W−1]g∗,〈n〉 → (ModC∗(g∗))

⊗
〈n〉

is equivalent to a product of n copies of the functor C∗(g∗; •) : Repg∗ → ModC∗(g∗), and therefore admits
a left adjoint fg∗ by Remark 2.4.11. Unwinding the definitions, we are reduced to proving that for every
finite sequence of C∗(g∗)-modules M1, . . . ,Mn, and every map of differential graded Lie algebras h∗ → g∗,
the canonical map

fh∗(C
∗(h∗)⊗C∗(g∗) M1 ⊗C∗(g∗) · · · ⊗C∗(g∗) Mn)→ fg∗(M1)⊗k · · · ⊗k fg∗(Mn)

is an equivalence. We observe that both sides are compatible with colimits in each Mi (see Remark 2.4.17).
Since ModC∗(g∗) is generated under small colimits by the modules C∗(g∗)[k] for k ∈ Z, we can reduce to the
case where Mi = C∗(g∗) for 1 ≤ i ≤ n. In this case, the result is obvious.

Construction 2.4.25. Let k be a field. The coCartesian fibration Mod(Modk)⊗ → CAlgk ×N(Fin∗) is

classified by a map χ : CAlgk → MonComm(Ĉat∞) ' CAlg(Ĉat∞), which carries an E∞-algebra A over k
to ModA, regarded as a symmetric monoidal ∞-category. Let χsm denote the restriction of χ to the full
subcategory CAlgsm

k ⊆ CAlgk spanned by the small E∞-algebras over k. Applying Theorem T.5.1.5.6, we
deduce that χsm admits an essentially unique factorization as a composition

CAlgsm
k

j→ Fun(CAlgsm
k , S)op

QCoh−→ CAlg(Ĉat∞),

where the functor QCoh preserves small limits. For every functorX : CAlgsm
k → S, we will regard QCoh(X) ∈

CAlg(Ĉat∞) as a symmetric monoidal ∞-category, which we call the ∞-category of quasi-coherent sheaves
on X.
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Remark 2.4.26. Let PrL ⊆ Ĉat∞ denote the subcategory whose objects are presentable ∞-categories and
whose morphisms are colimit preserving functors, and regard PrL as a symmetric monoidal ∞-category
as explained in §A.6.3.1. Note that the functor χ of Construction 2.4.25 factors through CAlg(PrL) ⊆
CAlg(Ĉat∞). Since this inclusion preserves small limits, we deduce that the functor

QCoh : Fun(CAlgsm
k , S)op → CAlg(Ĉat∞)

also factors through CAlg(PrL). In other words:

(a) For every functor X : CAlgsm
k → S, the ∞-category QCoh(X) is presentable.

(b) For every functor X : CAlgsm
k → S, the tensor product ⊗ : QCoh(X)×QCoh(X)→ QCoh(X) preserves

small colimits separately in each variable.

(c) For every natural transformation f : X → Y of functors X,Y : CAlgsm
k → S, the induced functor

f∗ : QCoh(Y )→ QCoh(X) preserves small colimits.

Remark 2.4.27. Let k be a field and let X : CAlgsm
k → S be a functor which classifies a right fi-

bration X → CAlgsm
k . Then QCoh(X) ∞-categories of coCartesian sections of the coCartesian fibration

X×CAlgk Mod(Modk)→ X. More informally, an object F ∈ QCoh(X) is a rule which assigns to every point
η ∈ X(A) an A-module Fη, and to every morphism f : A → A′ carrying η to η′ ∈ X(A′) an equivalence
Fη′ ' A′ ⊗A Fη.

Construction 2.4.28. Let k be a field of characteristic zero. The coCartesian fibration Rep⊗dg

⊗
[W−1] →

N(Liedg
k )op×N(Fin∗) of Corollary 2.4.20 classifies a functor χ0 : N(Liedg

k )op → CAlg(Ĉat∞), given on objects
by g∗ 7→ Repg∗ . If φ : h∗ → g∗ is a quasi-isomorphism of differential graded Lie algebras, then the induced
map U(h∗)→ U(g∗) is an equivalence in Algk, so that the forgetful functor Repg∗ → Reph∗ is an equivalence

of ∞-categories. It follows that χ0 induces a functor χ : Lieopk → CAlg(Ĉat∞).

We let χsm
! : CAlgsm

k → CAlg(Ĉat∞) denote the composition of χ with the Koszul duality functor
D : (CAlgsm

k )op → Liek studied in §2.3. Applying Theorem T.5.1.5.6, we deduce that χsm
! admits an

essentially unique factorization as a composition

CAlgsm
k

j→ Fun(CAlgsm
k , S)op

QCoh!

−→ CAlg(Ĉat∞),

where j denotes the Yoneda embedding and the functor QCoh! preserves small limits.

Remark 2.4.29. If f : X → Y is a natural transformation between functors X,Y : CAlgsm
k → S, we will

denote the induced functor QCoh!(Y )→ QCoh!(X) by f !.

The functor χsm
! appearing in Construction 2.4.28 factors through subcategory CAlg(PrL) ⊆ CAlg(Ĉat∞).

As in Remark 2.4.26, we deduce that the functor QCoh! factors through CAlg(PrL). That is, each of the
∞-categories QCoh!(X) is presentable, each of the functors f ! : QCoh!(Y ) → QCoh!(X) preserves small
colimits, and the tensor product functors QCoh!(X) × QCoh!(X) → QCoh!(X) preserve small colimits
separately in each variable.

Remark 2.4.30. For A ∈ Algsm
k , the biduality map A → C∗(D(A)) is an equivalence. It follows that the

functor χsm of Construction 2.4.25 is given by the composition

CAlgsm
k

D→ Lieopk
C∗→ CAlgaug

k → CAlgk
χ→ CAlg(Ĉat∞).

The functor F of Proposition 2.4.23 induces a natural transformation χsm → χsm
! , and therefore a natural

transformation QCoh→ QCoh! of functors Fun(CAlgsm
k , S)op → CAlg(PrL).

Let A ∈ CAlgsm
k and let g∗ = D(A) be its Koszul dual. Since A is small, there exists a sequence of maps

A = An → An−1 → · · · → A0 = k
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where each Ai is a square-zero extension of Ai−1 by k[ni] for some ni ≥ 0. We therefore have a sequence of
differential graded Lie algebras

0 = D(A0)→ D(A1)→ · · · → D(An) ' g∗,

where each D(Ai) is obtained from D(Ai−1) by adjoining a cell in dimension −ni − 1. It follows that, up
to quasi-isomorphism, g∗ satisfies the hypotheses of Proposition 2.4.12 and Proposition 2.4.16. We conclude
that the natural transformation χsm → χsm

! induces a (symmetric monoidal) fully faithful embedding

χsm(A) ' ModA ' ModC∗(g∗) → Repg∗ ' χ
sm
! (A),

which restricts to an equivalence of∞-categories Modcn
A → Repcn

g∗ . It follows that the natural transformation

QCoh → QCoh! determines a (symmetric monoidal) fully faithful embedding QCoh(X) → QCoh!(X) for
each X ∈ Fun(CAlgsm

k , S).

We now turn to the proof of Theorem 2.4.1. Let k be a field of characteristic zero and let X : CAlgsm
k → S

be a formal moduli problem, given by Ψ(g∗) for some differential graded Lie algebra g∗. Remark 2.4.30
supplies a symmetric monoidal fully faithful embedding QCoh(X) ↪→ QCoh!(X). To prove Theorem 2.4.1,
it will suffice to prove the following:

Proposition 2.4.31. Let k be a field of characteristic zero, let g∗ be a differential graded Lie algebra over
k and let X = Ψ(g∗) be the formal moduli problem given by X(R) = MapLiek

(D(R), g∗). Then there is a

canonical equivalence of symmetric monoidal ∞-categories QCoh!(X) ' Repg∗ .

Lemma 2.4.32. Let k be a field and let ν : Algopk → Ĉat∞ classify the Cartesian fibration LMod(Modk)→
Algk (so that ν is given by the formula ν(A) = LModA). Then ν preserves K-indexed limits for every weakly
contractible simplicial set K.

Proof. Let PrR denote the subcategory of Ĉat∞ whose objects are presentable ∞-categories and whose

morphisms are functors which admit left adjoints, and define PrL ⊆ Ĉat∞ similarly. Note that the functor

ν factors through PrR, and that the inclusion PrR ⊆ Ĉat∞ preserves small limits (Theorem T.5.5.3.18). It
will therefore suffice to show that if K is weakly contractible, then ν carries K-indexed limits in Algopk to
K-indexed limits in PrR. Using the equivalence PrL ' (PrR)op of Corollary T.5.5.3.4, we can identify ν with
a functor µ : Algk → PrL (the functor µ classifies the coCartesian fibration LMod(Modk)→ Algk). Theorem
A.6.3.5.10 implies that the functor Algk ' (Algk)k/ → (PrL)Modk / admits a right adjoint, and therefore
preserves all small colimits. It therefore suffices to verify that the forgetful functor (PrL)Modk / → PrL

preserves K-indexed colimits, which follows from Proposition T.4.4.2.9.

Lemma 2.4.33. Let k be a field of characteristic zero, and let χ : Lieopk → Ĉat∞ be as in Construction
2.4.28. Then χ preserves K-indexed limits for every weakly contractible simplicial set K.

Proof. The functor χ factors as a composition Lieopk
U→ Algopk

ν→ Ĉat∞, where ν preserves K-indexed limits
by Lemma 2.4.32, and U preserves all small limits (since it is right adjoint to the forgetful functor Algopk →
Lieopk ).

Proof of Proposition 2.4.1. Let Ψ : Liek → Modulik be the equivalence of ∞-categories appearing in Theo-
rem 2.0.2, and let Ψ−1 denote a homotopy inverse to Ψ. Let L : Fun(CAlgsm

k , S)→ Modulik denote a left ad-

joint to the inclusion functor Modulik ⊆ Fun(CAlgsm
k , S) (see Remark 1.1.17), and let D̂ : Fun(CAlgsm

k , S)→
Algaug

k be the composition Ψ−1 ◦ L. The functor D̂ preserves small colimits, and the composition of D̂
with the Yoneda embedding (CAlgsm

k )op → Fun(CAlgsm
k , S) can be identified with the Koszul duality functor

D : (Algsm
k )op → Algaug

k . Let χ : Lieopk → CAlg(Ĉat∞) be as in Construction 2.4.28 (given on objects by

χ(g∗) = Repg∗), and let F : Fun(CAlgsm
k , S)op → CAlg(Ĉat∞) denote the composite functor

Fun(CAlgsm
k , S)op

D̂−→ Lieopk
χ→ CAlg(Ĉat∞).
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Let C denote the full subcategory of Fun(CAlgsm
k , S) spanned by the corepresentable functors. By construc-

tion, the functors F and QCoh! agree on the ∞-category C, and by construction QCoh! is a right Kan
extension of its restriction to C. We therefore have a canonical natural transformation α : F → QCoh!. We
will prove the following:

(∗) If X : CAlgsm
k → S is a formal moduli problem, then α induces an equivalence of ∞-categories

F (X)→ QCoh!(X)).

Taking X = Ψ(g∗) for A ∈ Algaug
k , we see that (∗) guarantees an equivalence of symmetric monoidal

∞-categories ∞-categories Repg∗ ' F (X)→ QCoh!(X).
It remains to prove (∗). Let E ⊆ Fun(CAlgsm

k , S) be the full subcategory spanned by those functors
X for which α induces an equivalence of ∞-categories F (X) → QCoh!(X). The localization functor L :
Fun(CAlgsm

k , S) → Modulik, the equivalence Ψ−1 : Modulik → Liek both preserve small colimits. It follows

from Lemma 2.4.33 that the functor χ : Lieopk → Ĉat∞ preserves sifted limits, so that F preserves sifted

limits. Since the functor QCoh! preserves small limits, the ∞-category E is closed under sifted colimits in
Fun(CAlgsm

k , S). Since E contains all corepresentable functors and is closed under filtered colimits, it contains
it contains all prorepresentable formal moduli problems (see Definition 1.5.3). Proposition 1.5.8 implies that
every formal moduli problem X can be obtained as the geometric realization of a simplicial object X•
of Fun(CAlgsm

k , S), where each Xn is prorepresentable. Since E is closed under geometric realizations in
Fun(CAlgsm

k , S), we conclude that X ∈ E as desired.

We conclude this section with a simple observation about connectivity conditions. Let X : CAlgsm
k → S

be a formal moduli problem and let F ∈ QCoh(X) be a quasi-coherent sheaf on X, so that F determines an
A-module Fη for every η ∈ X(A) (see Remark 2.4.27). We will say that F is connective if each Fη ∈ ModA is
connective. We let QCoh(X)cn denote the full subcategory of QCoh(X) spanned by the connective objects.
It is easy to see that QCoh(X)cn is a presentable ∞-category which is closed under colimits and extensions
in QCoh(X), and therefore determines an accessible t-structure on QCoh(X) (see Proposition A.1.4.5.11).

Proposition 2.4.34. Let k be a field of characteristic zero, let g∗ be a differential graded Lie algebra
over k and let X = Ψ(g∗) be the associated formal moduli problem. Then the fully faithful embedding
θ : QCoh(X)→ Repg∗ induces an equivalence of ∞-categories QCoh(X)cn → Repcn

g∗ .

Proof. If φ : h∗ → g∗ is a map of differential graded Lie algebras over k inducing a map of formal moduli
problems Y → X, then the diagram

QCoh(X) //

��

Repg∗

��
QCoh(Y ) // Repg∗

commutes up to canonical homotopy. Taking h∗ = 0, we deduce that the composite functor QCoh(X) →
Repg∗ → Modk is given by evaluation at the base point η0 ∈ X(k). In particular, we deduce that θ carries
QCoh(X)cn into

Repcn
g∗ = Repg∗ ×Modk Modcn

k .

To complete the proof, it will suffice to show that if V ∈ Modcn
g∗ , then V∗ belongs to the essential image

of θ. To prove this, it suffices to show that for every point η ∈ X(A) classified by a map of differential
graded Lie algebras D(A) → g∗, the image of V in RepD(A) belongs to the essential image of the functor
QCoh(SpecA) → RepD(A). Since V is connective, this follows from Proposition 2.4.16 (note that D(A)
satisfies the hypotheses of Propositions 2.4.12 and 2.4.16; see Remark 2.4.30.
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3 Moduli Problems for Associative Algebras

Let A be a connective E∞-ring. We say that an A-module spectrum M is projective of rank n if the following
conditions are satisfied:

(1) The group π0M is a projective π0A-module of rank n.

(2) For every integer n, the canonical map

Torπ0A
0 (πnA, π0M)→ πnM

is an isomorphism (that is, M is flat over A).

Let X(A) denote the subcategory of ModA whose objects are A-modules which are projective of rank n,
and whose morphisms are equivalences. Then X(A) is an essentially small Kan complex. The construction
A 7→ X(A) determines a functor X : CAlgcn → S. Let us fix a field k and a point η ∈ X(k), corresponding
to a vector space V of dimension n over k. The formal completion of X (at the point η) is the functor
X∧ : CAlgsm

k → S given by
X∧(R) = X(R)×X(k) {η}.

More informally, X∧(R) is a classifying space for pairs (M,α), where M is a projective R-module of rank
n and α : k ⊗R M ' V is an isomorphism of k-vector spaces. It is not difficult to see that the functor
X∧ : CAlgsm

k → S is a formal moduli problem (we will give a proof of a stronger assertion in §5.2).
Assume now that k is a field of characteristic zero. According to Theorem 2.0.2, the functor X∧ :

CAlgsm
k → S is determined (up to equivalence) by a differential graded Lie algebra g∗. Let TX∧ denote the

tangent complex of X∧, so that TX∧ [−1] can be identified with the spectrum underlying the chain complex
of vector spaces g∗. Then the space Ω∞TX∧ ' X∧(k[ε]/(ε2)) can be identified with a classifying space for
the groupoid of order deformations of the vector space V : that is, projective k[ε]/(ε2)-modules M equipped
with an isomorphism M/εM ' V . Since any basis of V can be lifted to a basis for M , this groupoid has only
one isomorphism class of objects (which is represented by the module V [ε]/ε2V ). We conclude that Ω∞TX∧

is homotopy equivalent to the classifying space BG, where G is the group of automorphisms of V [ε]/ε2V
which reduce to the identity automorphism modulo ε. Every such automorphism can be written uniquely
1 + εM , where M ∈ End(V ) is an endomorphism of V . From this we deduce that the homology of the
chain complex g∗ is isomorphic to End(V ) in degree zero and vanishes in positive degrees. It also vanishes
in negative degrees: this follows from the observation that each of the spaces X∧(k ⊕ k[n]) is connected
(any basis for V can be lifted to a basis for any (k ⊕ k[n])-module deforming V ). It follows that g∗ is
quasi-isomorphic to an ordinary Lie algebra g over k (concentrated in degree zero), whose underlying abelian
group is isomorphic to End(V ). With a bit more effort, we can show that the isomorphism g ' End(V ) is
an isomorphism of Lie algebras: that is, the Lie bracket on g can be identified with the usual commutator
bracket [A,B] = AB −BA of k-linear endomorphisms of V (see Example 5.2.9).

However, there is more to the story. If R ∈ CAlgsm
k , then any connective R-module M equipped with an

equivalence k ⊗R M ' V is automatically projective of rank n. We can therefore identify X∧(R) with the
fiber product

LModcn
R ×LModcn

k
{V }.

This description of X∧(R) makes no reference to the commutativity of R. We can therefore extend X∧ to
a functor X∧+ : Algsm

k → S, where Algsm
k denotes the ∞-category of small E1-algebras over k (see Definition

3.0.1 below). The existence of the extension X∧+ is a special property enjoyed by the formal moduli problem
X∧. Since X∧ is completely determined by the Lie algebra End(V ), we should expect that the existence
of X∧+ reflects a special property of End(V ). In fact, there is something special about End(V ): it is the
underlying Lie algebra of an associative algebra. We will see that this is a general phenomenon: if g∗ is a
differential graded Lie algebra and Y : CAlgsm

k → S is the associated formal moduli problem for E∞-algebras
over k, then Y extends to a formal moduli problem Y+ : Algsm

k → S for E1-algebras over k if and only if g∗ is
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quasi-isomorphic to the underlying Lie algebra of a (nonunital) differential graded algebra A∗ (see Example
2.1.6).

Our main goal in this section is to prove an analogue of Theorem 2.0.2 in the setting of noncommutative
geometry. Before we can state our result, we need to introduce a bit of terminology.

Definition 3.0.1. Let k be a field. We let Algk denote the ∞-category of E1-algebras over k, and Algaug
k =

(Algk)/k the ∞-category of augmented E1-algebras over k. We will say that an object A ∈ Algk is small if
it satisfies the following conditions:

(a) The algebra A is connective: that is, πiA ' 0 for i < 0.

(b) The algebra A is truncated: that is, we have πiA ' 0 for i� 0.

(c) Each of the homotopy groups πiA is finite dimensional when regarded as a vector space over field k.

(d) Let n denote the radical of the ring π0A (which is a finite-dimensional associative algebra over k).
Then the canonical map k → (π0A)/n is an isomorphism.

We let Algsm
k denote the full subcategory of Algk spanned by the small k-algebras.

Remark 3.0.2. Let k be a field and let A ∈ Algsm
k . It follows from conditions (a) and (d) of Definition 3.0.1

that the mapping space MapAlgk
(A, k) is contractible: that is, A admits an essentially unique augmentation.

Consequently, the projection map
Algsm

k ×Algk Algaug
k → Algsm

k

is an equivalence of ∞-categories. Because of this, we will often abuse notation by identifying Algsm
k with

its inverse image in Algaug
k .

Definition 3.0.3. Let k be a field and let X : Algsm
k → S be a functor. We will say that X is a formal E1

moduli problem if it satisfies the following conditions:

(1) The space X(k) is contractible.

(2) For every pullback diagram

R //

��

R0

��
R1

// R01

in Algsm
k for which the underlying maps π0R0 → π0R01 ← π0R1 are surjective, the diagram

X(R) //

��

X(R0)

��
X(R1) // X(R01)

is a pullback square.

We let Moduli
(1)
k denote the full subcategory of Fun(Algsm

k , S) spanned by the formal E1 moduli problems.

We can now state our main result:

Theorem 3.0.4. Let k be a field. Then there is an equivalence of ∞-categories Ψ : Algaug
k → Moduli

(1)
k .

Remark 3.0.5. Unlike Theorem 2.0.2, Theorem 3.0.4 does not require any assumptions on the characteristic
of the field k.
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Like Theorem 2.0.2, Theorem 3.0.4 is a reflection of Koszul duality: this time in the setting of associative
algebras. In §3.1, we will introduce the Koszul duality functor

D(1) : (Algaug
k )op → Algaug

k .

Roughly speaking, if ε : A → k is an augmented E1-algebra over k, then the Koszul dual D(1)(A) is the
(derived) endomorphism algebra of k as a (left) A-module. In §3.2, we will show that D(1) is a deformation
theory (in the sense of Definition 1.3.9). We will then deduce Theorem 3.0.4 from Theorem 1.3.12, using the

functor Ψ : Algaug
k → Moduli

(1)
k given by

Ψ(A)(R) = MapAlgaug
k

(D(1)(R), A).

For every field k, there is an evident forgetful functor CAlgsm
k → Algsm

k . Composition with this forgetful

functor determines a map θ : Moduli
(1)
k → Modulik. In §3.3, we will show that if the characteristic of k is

zero, then θ fits into a commutative diagram of ∞-categories

Algaug
k

θ′

��

// Moduli
(1)
k

θ

��
Liek // Modulik,

where the upper horizontal map is the equivalence of Theorem 3.0.4 and the lower horizontal map is the
equivalence of Theorem 2.0.2. Here θ′ is a functor which assigns to each augmented E1-algebra ε : A → k
its augmentation ideal mA = fib(ε) (Proposition 3.3.2).

If X is a formal E1-moduli problem over k, then we can associate to X a pair of∞-categories QCohL(X)
and QCohR(X), which we call the ∞-categories of (left and right) quasi-coherent sheaves on X. Roughly
speaking, an object F ∈ QCohL(X) is a rule which assigns to each point η ∈ X(A) a left A-module Fη,
depending functorially on η (and QCohR(X) is defined similarly, using right modules in place of left). In
§3.4, we will construct fully faithful embeddings

QCohL(X) ↪→ QCoh!
L(X) QCohR(X) ↪→ QCoh!

R(X).

In §3.5, we will use these constructions to formulate and prove a noncommutative analogue of Theorem 2.4.1:
if X = Ψ(A) is the formal moduli problem associated to an augmented E1-algebra A over k, then there are
canonical equivalences of ∞-categories

QCoh!
L(X) ' RModA QCoh!

R(X) ' LModA

(Theorem 3.5.1). In particular, this gives fully faithful embeddings

QCohL(X) ↪→ RModA QCohR(X) ↪→ LModA,

which are equivalences when restricted to connective objects (Proposition 3.5.8).

3.1 Koszul Duality for Associative Algebras

Let k be a field, let A be an associative algebra over k, and let M be a left A-module. The commutant B
of A in Endk(M) is defined to be the set of A-linear endomorphisms of M . Then B can be regarded as
an associative algebra over k, and M admits the structure of a bimodule over A and B: that is, an action
of the tensor product A ⊗k B. In many cases, one can show that the relationship between A and B is
symmetric. For example, if A is a finite dimensional central simple algebra over k and M is nonzero and of
finite dimension over k, then we can recover A as the commutant of B in Endk(M).
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In this section, we will discuss the operation of Koszul duality in the setting of (augmented) E1-algebras
over a field k. Roughly speaking, Koszul duality can be regarded as a derived version of the formation of
commutants. Suppose that A is an E1-algebra over k equipped with an augmentation ε : A → k. Then ε
determines an action of A on the k-module M = k. The Koszul dual of A is an E1-algebra B over k which
classifies A-linear maps from M to itself. We have commuting actions of A and B on M , which can be
encoded by a map µ : A⊗k B → k extending the augmentation ε. This suggests the following definition:

(∗) Let A be an augmented E1-algebra over a field k. Then the Koszul dual of A is universal among
E1-algebras B equipped with an augmentation µ : A⊗k B → k extending the augmentation on A.

Our first goal in this section is to make (∗) more precise, and show that it determines a (contravariant)
functor D(1) from the ∞-category Algaug

k of augmented E1-algebras over k to itself. Every augmentation
µ : A⊗k B → k restricts to augmentations on A and B, and is classified by a map of augmented E1-algebras
α : B → D(1)(A). We will say that µ exhibits B as a Koszul dual of A if the map α is an equivalence. The
main results of this section establish some basic formal properties of Koszul duality:

(a) Let µ : A ⊗k B → k be an augmentation which exhibits B as the Koszul dual of A. Under some
mild hypotheses, there is a close relationship between the ∞-categories LModA and LModB of (left)
modules over A and B, respectively (Theorem 3.1.14).

(b) Let µ : A⊗k B → k be an augmentation which exhibits B as the Koszul dual of A. Under some mild
hypotheses, it follows that µ also exhibits A as a Koszul dual of B (Corollary 3.1.15). In other words,
the double commutant map A→ D(1)D(1)(A) is often an isomorphism.

We begin by introducing some terminology.

Definition 3.1.1. A pairing of ∞-categories is a triple (C,D, λ : M → C×D), where C and D are ∞-
categories and µ is a right fibration of ∞-categories.

We will generally abuse notation by denoting a pairing of ∞-categories simply by λ.

Definition 3.1.2. Let λ : M → C×D be a pairing of ∞-categories, and let M ∈ M be an object having
image (C,D) ∈ C×D). We will say that M is left universal if it is a final object of M×C{C}, and right
universal if it is a final object of M×D{D}. We let ML and MR denote the full subcategories of M spanned
by the left universal and right universal objects, respectively. We say that λ is left representable if, for
each object C ∈ C, there exists a left universal object M ∈ M lying over C. We will say that λ is right
representable if, for each object D ∈ D, there exists a right universal object M ∈M lying over D.

Construction 3.1.3. Let λ : M → C×D be a pairing of ∞-categories. λ is classified by a functor
χ : Cop×Dop → S. Note that λ is left representable if and only if, for each object C ∈ C, the induced
map χC : χ|({C} × Dop) → S is representable by an object D ∈ D. In this case, χ determines a functor
Cop → Fun(Dop, S) which is given by the composition

Cop
Dλ−→ D

j−→ Fun(Dop, S)

for some essentially unique functor Dλ : Cop → D (here j : D→ Fun(Dop, S) denotes the Yoneda embedding).
We will refer to Dλ as the duality functor associated to λ; it carries each object C ∈ C to an object Dλ(C)
which represents the functor χC . Similarly, if λ is right representable, then it determines a duality functor
D′λ : Dop → C, which we will also refer to as the duality functor associated to λ. If λ is both left and right
representable, then Dλ : Cop → D is right adjoint to the duality functor D′

op
λ : D→ Cop.

We now specialize to the main example of interest.
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Construction 3.1.4. Let k be a field, and let Algk = Alg(Modk) denote the ∞-category of associative
algebra objects of Modk, and let Algaug

k = (Algk)/k denote the∞-category of augmented associative algebra
objects of Modk. We will regard Algk as a symmetric monoidal ∞-category (where the tensor product
operation is given objectwise). Let m : Algk ×Algk → Algk denote the tensor product functor, and let
p0, p1 : Algk ×Algk → Algk denote the projection onto the first and second factor, respectively. Since the

unit object of Algk is an initial object, we have natural transformations p0
α0→ m

α1← p1, which determine a

map Algk ×Algk → Fun(Λ2
2,Algk). We let M(1) denote the fiber product

(Algk ×Algk)×Fun(Λ2
2,Algk) Fun(Λ2

2,Algaug
k ).

More informally, the objects of M(1) can be identified with triples (A,B, λ), where A and B are E1-algebras
over k, and ε : A ⊗k B → k is an augmentation on the tensor product A ⊗k B (which then induces
augmentations on A and B, respectively). Note that evaluation on the vertices 0, 1 ∈ Λ2

2 induces a right

fibration λ : M(1) → Algaug
k ×Algaug

k .

Proposition 3.1.5. Let k be a field and let λ : M(1) → Algaug
k ×Algaug

k be the pairing of ∞-categories
described in Construction 3.1.4. Then λ is both left and right representable.

Proof. We will prove that λ is left representable; the proof of right representability is similar. Fix an object
A ∈ Algaug

k , and let F : (Algaug
k )op → S be the functor given by

F (B) = fib(MapAlgk
(A⊗k B, k)→ MapAlgk

(A, k)×MapAlgk
(B, k)).

We wish to show that the functor F is representable by an object of Algk. Define F ′ : Algopk → S by the
formula

F ′(B) = fib(MapAlgk
(A⊗k B, k)→ MapAlgk

(A, k)).

Corollary A.6.1.4.13 implies that the functor F ′ is corepresented by an object B0 ∈ Algk, given by a
centralizer of the augmentation ε : A → k. In particular, we have a point of η ∈ F ′(B0), which determines
an augmentation µ : A⊗kB0 → k. Let us regard B0 as an augmented algebra object via the composite map

B0 → A⊗k B0
µ→ k, so that η lifts to a point η ∈ F (B0). To complete the proof, it will suffice to show that

for each B ∈ Algaug
k , evaluation on η induces a homotopy equivalence θ : MapAlgaug

k
(B,B0) → F (B). This

map fits into a map of fiber sequences

MapAlgaug
k

(B,B0) //

��

MapAlgk
(B,B0) //

θ′

��

MapAlgk
(B, k)

θ′′

��
F (B) // F ′(B) // MapAlgk

(B, k),

where θ′ and θ′′ are homotopy equivalences (in the first case, this follows from our assumption that η exhibits
F ′ as the functor represented by B0).

Definition 3.1.6. Let k be a field. We let D(1) : (Algaug
k )op → Algaug

k denote the functor obtained by

applying Construction 3.1.3 to the left representable pairing λ : M(1) → Algaug
k ×Algaug

k of Construction
3.1.4. We will refer to the functor D(1) as Koszul duality.

Remark 3.1.7. Since the pairing λ : M(1) → Algaug
k ×Algaug

k of Construction 3.1.4 is both left and right
representable, it determines two functors (Algaug

k )op → Algaug
k . It follows by symmetry considerations that

these functors are (canonically) equivalent to one another; hence there is no risk of confusion if we denote
them both by D(1) : (Algaug

k )op → Algaug
k . It follows from Construction 3.1.3 that D(1) is adjoint to itself:

more precisely, the functor D(1) : (Algaug
k )op → Algaug

k is right adjoint to the induced map between opposite
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∞-categories Algaug
k → (Algaug

k )op. More concretely, for any pair of objects A,B ∈ Algaug
k we have a canonical

homotopy equivalence
MapAlgaug

k
(A,D(1)(B)) ' MapAlgaug

k
(B,D(1)(A)).

In fact, both of these spaces can be identified with the homotopy fiber of the canonical map

MapAlgk
(A⊗k B, k)→ MapAlgk

(A, k)×MapAlgk
(B, k).

Remark 3.1.8. Let k be a field and let µ : A⊗k B → k be a morphism in Algk, which we can identify with

an object of the∞-category M(1) of Construction 3.1.4. We say that µ exhibits B as a Koszul dual of A if it
is left universal in the sense of Definition 3.1.2: that is, if it induces an equivalence B → D(1)(A). Similarly,
we say that µ exhibits A as a Koszul dual of B if it is right universal: that is, if it induces an equivalence
A→ D(1)(B).

Construction 3.1.9. Let k be a field and let µ : A ⊗k B → k be a morphism in Algk. Then µ induces a
tensor product functor

LModA×LModB → LModk ' Modk .

We let LPairµ denote the fiber product (LModA×LModB)×Modk (Modk)/k. We can think of the objects of
LPairµ as triples (M,N, ε), where M is a left module over A, N is a left module over B, and ε : M ⊗kN → k
is a map of left modules over A⊗k B. The projection map

λ : LPairµ → LModA×LModB

is a right fibration of ∞-categories, so that we can regard LPairµ as a pairing of ∞-categories.

Proposition 3.1.10. Let k be a field, let µ : A ⊗k B → k be a morphism in Algk, and let λ : LPairµ →
LModA×LModB be the pairing of ∞-categories of Construction 3.1.9. Then λ is both left and right repre-
sentable.

Proof. We will prove that λ is left representable; the proof of right representability is similar. Fix an object
M ∈ LModA; we wish to show that that the functor N 7→ MapLModA⊗kB

(M ⊗k N, k) is representable by

an object of LModB . Let us denote this functor by F . According to Proposition T.5.5.2.2, it will suffice to
show that the functor F carries colimits in LModB to limits in S. This follows from the observation that
the construction N 7→ M ⊗k N determines a functor LModB → LModA⊗kB which commutes with small
colimits.

Notation 3.1.11. Let k be a field and let µ : A⊗k B → k be a morphism in Algk. Combining Proposition
3.1.10 with Construction 3.1.3, we obtain duality functors

LModopA
Dµ→ LModB

LModopB
D′µ→ LModA .

By construction, we have canonical homotopy equivalences

MapLModA(M,D′µN) ' MapLModA⊗kB
(M ⊗k N, k) ' MapLModB (N,DµM).

Remark 3.1.12. Let k be a field and let µ : A ⊗k B → k be a morphism in Algk. The proof of Theorem
A.6.1.4.12 shows that µ exhibits B as a Koszul dual of A if and only if it µ exhibits B as a classifying
object for morphisms from A to k in ModAss

A (Modk) ' ABModA(Modk) (here we regard ABModA(Modk) as
left-tensored over the∞-category Modk). This is equivalent to the condition that ε exhibit B as a classifying
object for morphisms from k ' A ⊗A k to itself in ABModk(Modk) ' LModA: that is, that µ induces an
equivalence of left B-modules B → D′µDµ(B) ' Dµ(k). Similarly, µ exhibits A as a Koszul dual of B if and
only if it induces an equivalence A→ D′µ(k) of left A-modules.
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We would like to use Remark 3.1.12 to verify (in good cases) that the relation of Koszul duality is
symmetric. For this, we need to understand the linear duality functors Dµ and D′µ associated to a pairing
µ : A⊗k B → k.

Definition 3.1.13. Let k be a field. An object A ∈ Algk is coconnective if the unit map k → A exhibits
k as a connective cover A. Equivalently, A is coconnective if π0A is a 1-dimensional vector space over k
generated by the unit element, and πnA ' 0 for n > 0.

If M ∈ Modk, we will say that M is locally finite if each of the homotopy groups πnM is finite dimensional
as a vector space over k. We will say that an object A ∈ Algk is locally finite if it is locally finite when
regarded as an object of Modk.

Our analysis of the Koszul duality functor rests on the following result:

Theorem 3.1.14. Let k be a field and let µ : A ⊗k B → k be a morphism in Algk. Assume that A is
coconnective and that µ exhibits B as a Koszul dual of A. Then:

(1) Let M be a left A-module such that πnM ' 0 for n > 0. Then πnDµ(M) ' 0 for n < 0.

(2) The E1-algebra B is connective.

(3) Let N be a connective B-module. Then πnD
′
µ(N) ' 0 for n > 0.

(4) Let M be as in (1) and assume that M is locally finite. Then the canonical map M → D′µDµM is an
equivalence in LModA.

Corollary 3.1.15. Let k be a field, and let A ∈ Algaug
k be coconnective and locally finite. Then the canonical

map A→ D(1)D(1)(A) is an equivalence. In other words, if µ : A⊗k B → k exhibits B as a Koszul dual of
A, then µ also exhibits A as a Koszul dual of B.

Proof. Let µ : A ⊗k B → k be a map which exhibits B as a Koszul dual of A. We wish to prove that µ
exhibits A as the Koszul dual of B. According to Remark 3.1.12, it will suffice to show that the unit map
A → D′µDµ(A) is an equivalence of left A-modules. Since A is coconnective and locally finite, this follows
from Theorem 3.1.14.

The proof of Theorem 3.1.14 will require some preliminaries. We begin with a variation on Proposition
VIII.4.1.9.

Lemma 3.1.16. Let A be a coconnective E1-algebra over a field k such that π−1A ' 0, and let M be a
left A-module such that πiM ' 0 for i > 0. Assume that A and M are locally finite. Then there exists a
sequence of left A-modules

0 = M(0)→M(1)→M(2)→ · · ·

with the following properties:

(1) For each n > 0, there exists a locally finite object V (n) ∈ (Modk)≤−n and a cofiber sequence

A⊗k V (n)→M(n− 1)→M(n)

(2) There exists an equivalence θ : lim−→M(n) 'M .

Proof. We construct M(n) using induction on n, beginning with the case n = 0 where we set M(0) = 0.
Assume that M(n − 1) ∈ (LModA)/M has been constructed, and let V (n) denote the underlying k-module
of the fiber of the map M(n − 1) → M . We then define M(n) to be the cofiber of the induced map
A⊗k V (n)→M(n− 1). This construction produces a sequence of objects

M(0)→M(1)→ · · ·
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in (LModA)/M , hence a map θ : lim−→M(n) → M . We claim that θ is an equivalence of left A-modules. To
prove this, it suffices to show that θ is an equivalence in Modk. As an object of Modk, we can identify
lim−→M(n) with the direct limit of the sequence

M(0)→M(0)/V (1)→M(1)→M(1)/V (2)→ · · ·

It therefore suffices to show that the map lim−→M(i)/V (i+ 1)→M is an equivalence in Modk, which is clear
(since each cofiber M(i)/V (i + 1) is equivalent to M). This proves (2). We next prove the following by a
simultaneous induction on n:

(an) The map M(n)→M induces an isomorphism πiM(n)→ πiM for i > −n and an injection for i = −n.

(bn) Each M(n) is locally finite.

(a′n) The k-module V (n+ 1) belongs to (Modk)≤−n−1.

(b′n) The k-module V (n+ 1) is locally finite.

Assertions (a0) and (b0) are obvious, and the equivalences (an) ⇔ (a′n) and (bn) ⇔ (b′n) follow from the
existence of a long exact sequence

· · · → πiV (n+ 1)→ πiM(n)→ πiM → πi−1V (n+ 1)→ · · ·

We will complete the proof by showing that (a′n) and (b′n) imply (a′n+1) and (bn+1). Assertion (bn+1) follows
from (b′n) by virtue of the existence of an exact sequence

· · · → πi(A⊗k V (n+ 1))→ πiM(n)→ πiM(n+ 1)→ πi−1(A⊗k V (n+ 1))→ · · ·

To prove (an+1), we note that the identification M 'M(n)/V (n) gives a fiber sequence

(A/k)⊗k V (n)→M
λ→M(n+ 1)

in Modk, where λ is a right inverse to the A-module map M(n+ 1)→M . We therefore have an equivalence
M(n + 1) ' M ⊕ ((A/k) ⊗k V (n))[1] in Modk so that V (n + 1) ' (A/k)[1] ⊗k V (n). Since πiA/k ' 0 for
i ≥ −1, it follows immediately that (a′n)⇒ (a′n+1).

Lemma 3.1.17. Let A be a connective E1-algebra over a field k. Let M and N be left A-modules such that
πmM ' 0 for m > 0 and πmN ' 0 for m < 0. Then the canonical map θ : Ext0

A(M,N)→ Homk(π0M,π0N)
is surjective.

Proof. We have an evident map of k-module spectra π0M →M , which determines a map of left A-modules
A⊗k (π0M)→M . Let K denote the fiber of this map, so that we have a fiber sequence of spaces

MapLModA(M,N)
φ→ MapModk

(π0M,N)→ MapLModA(K,N).

Since πmK ' 0 for m ≥ 0, Proposition VIII.4.1.14 implies that the mapping space MapLModA(K,N) is
connected. It follows that φ induces a surjection

Ext0
A(M,N)→ Ext0

A(π0M,N) ' Homk(π0M,π0N).

Lemma 3.1.18. Let A be a connective E1-algebra over a field k, and let M be a left A-module such that
πmM ' 0 for m 6= 0. Suppose we are given a map of E1-algebras A → k. Then M lies in the essential
image of the forgetful functor θ : Modk ' LModk → LModA.
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Proof. Let V = π0M , and regard V as a discrete k-module spectrum. Lemma 3.1.17 implies that the evident
isomorphism π0θ(V ) ' π0M can be lifted to a map of left A-modules θ(V ) → M , which is evidently an
equivalence.

Proof of Theorem 3.1.14. We first prove (1). Let M ∈ LModA be such that πmM ' 0 for m < 0. Using
Proposition VIII.4.1.9 and Remark VIII.4.1.10, we can write M as the colimit of a sequence of A-modules

0 = M(0)→M(1)→M(2)→ · · · ,

where each M(n) fits into a cofiber sequence A⊗k V (n)→M(n)→M(n+ 1) for V (n) ∈ (Modk)≤−1. Then
Dµ(M) is a limit of the tower {Dµ(M(n))}n≥0. It will therefore suffice to prove that πmDµ(M(n)) ' 0 for
m < 0 and that each of the maps π0Dµ(M(n))→ π0Dµ(M(n− 1)) is surjective. We have a fiber sequence

Dµ(M(n))→ Dµ(M(n− 1))→ Dµ(A⊗k V (n)).

It will therefore suffice to show that πmDµ(A⊗k V (n)) ' 0 for m ≤ 0. Unwinding the definitions, we must
show that if m ≤ 0, then any map of A⊗kB-modules from (A⊗k V (n))⊗kB[m] to k is nullhomotopic. This
is equivalent to the assertion that every map of k-module spectra from V (n)[m] into k is nullhomotopic.
Since k is a field, this follows from the observation that π0V (n)[m] ' πmV (n) ' 0.

Since µ : A⊗k B → k exhibits B as a Koszul dual of A, the augmentation on B gives a map k⊗k B → k
which induces an equvialence B → Dµ(k). Assertion (2) now follows immediately from assertion (1). We
next prove (3). Let C be the full subcategory of LModB spanned by those objects N for which πnD

′
µ(N) ' 0

for n > 0. Since D′µ : LModopB → LModA preserves small limits, the ∞-category C is stable under small
colimits in LModB . To prove that C contains all connective left B-modules, it will suffice to show that B ∈ C.
This is clear, since D′µ(B) ' k.

We now prove (4). Let M ∈ LModA be locally finite and assume that πnM ' 0 for n > 0. Let KM

denote the fiber of the unit map uM : M → D′µDµ(M). Condition (1) implies that D(M) is connective, so
that πnD

′
µDµ(M) ' 0 for n > 0 by (3). It follows that πnKM ' 0 for n > 0. We prove that πnKM ' 0 for

all n, using descending induction on n. Using Proposition VIII.4.1.9, we can choose a map of left A-modules
u : M ′ → M which induces an isomorphism πmM

′ → πmM for m < 0 and satisfies πmM
′ ' 0 for m ≥ 0.

Let M ′′ denote the cofiber of u, so that πmM
′′ ' 0 for m 6= 0 and therefore Lemma 3.1.18 guarantees that

M ′′ is a direct sum of (finitely many) copies of k. The condition that ε exhibits B as a Koszul dual of A
guarantees that B ' Dµ(k) and therefore the unit map uk : k ' D′µ(B) → D′µDµ(k) is an equivalence. It
follows that uM ′′ is an equivalence. The cofiber sequence

M →M ′′ →M ′[1]

induces an equivalence KM ' KM ′[1][−1]. The inductive hypothesis implies that πn+1KM ′[1] ' 0, so that
πnKM ' 0 as desired.

In §4, we will need the following stronger version of Corollary 3.1.15:

Proposition 3.1.19. Let k be a field and suppose given a finite collection of maps{µi : Ai⊗kBi → k}1≤i≤m
in Algk. Assume that each Ai is coconnective and locally finite and that each µi exhibits Bi as a Koszul dual
of Ai. Let A =

⊗
iAi, B =

⊗
iBi, and let µ : A ⊗k B → k be the tensor product of the maps µi. Then µ

exhibits A as the Koszul dual of B.

Warning 3.1.20. In the situation of Proposition 3.1.19, it is not necessarily true that µ exhibits B as
the Koszul dual of A. For example, suppose that m = 2 and that A1 = A2 = k ⊕ k[−1], endowed with
the square-zero algebra structure. In this case, the Koszul dual of A1 can be identified with the power
series ring k[[x1]], regarded as a discrete E1-algebra. Similarly, the Koszul dual of A2 can be identified with
k[[x2]], and the Koszul dual of the tensor product A1 ⊗k A2 is given by k[[x1, x2]]. The canonical map
θ : k[[x1]] ⊗k k[[x2]] → k[[x1, x2]] is not an isomorphism: however, Proposition 3.1.19 guarantees that θ
induces an equivalence after applying the Koszul duality functor.
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Proof. For 1 ≤ i ≤ m, let Di : LModopAi → LModBi be the duality functor determined by µi, and let

D′µ : LModopB → LModA be the duality functor associated to µ. For every sequence of objects ~M = {Mi ∈
LModAi}, we have a canonical map u ~M : M1 ⊗k · · · ⊗kMm → D′µ(D1M1 ⊗k · · · ⊗k DmMm). We will prove
the following:

(∗) If ~M = {Mi}1≤i≤m ∈
∏
i LModAi is such that the homotopy groups πnMi ' 0 vanish for i > 0 and

each Mi is locally finite, then u ~M is an equivalence.

Fix 0 ≤ m′ ≤ m. We will show that assertion (∗) holds under the additional assumption that Mi ' k for
i > m′. The proof proceeds by induction on m′. If m′ = 0, then each Mi ' k and the desired result follows
immediately from our assumption that each µi exhibits Bi as a Koszul dual of Ai. Let us therefore assume
that m′ > 0 and that condition (∗) holds whenever Mi ' k for i < m′.

Note that if ~M satisfies the hypotheses of (∗), then Theorem 3.1.14 guarantees that each Di(Mi) is
connective and therefore that πnD

′
µ(D1M1 ⊗k · · · ⊗k DmMm) ' 0 for n > 0. Let K ~M denote the fiber of

u ~M , so that πnK ~M ' 0 for n > 0. We prove that πnK ~M ' 0 for all n, using descending induction on
n. Using Proposition VIII.4.1.9, we can choose a map of left A-modules v : M ′ → Mm′ which induces an
isomorphism πpM

′ → πpMm′ for p < 0 and satisfies πpM
′ ' 0 for p ≥ 0. Let M ′′ denote the cofiber of v, so

that πpM
′′ ' 0 for p 6= 0 and therefore Lemma 3.1.18 guarantees that M ′′ is a direct sum of (finitely many)

copies of k. Let ~M ′′ be the sequence of modules obtained from ~M by replacing Mm′ with M ′′, and let ~N be
the sequence of modules obtained from ~M by replacing Mm′ with M ′[1]. The inductive hypothesis implies
that K ~M ′′ ' 0. Using the cofiber sequence

Mm′ →M ′′ →M ′[1],

we obtain an equivalence K ~M ' K ~N [−1], so that πnK ~M ' πn+1K ~N is trivial by the other inductive
hypothesis.

3.2 Formal Moduli Problems for Associative Algebras

Let k be a field. In this section, we will use the Koszul duality functor D(1) : (Algaug
k )op → Algaug

k to

construct an equivalence of ∞-categories Algaug
k ' Moduli

(1)
k , and thereby obtain a proof of Theorem 3.0.4.

The main point is to show that D(1) is a deformation theory (in the sense of Definition 1.3.9). We begin by
introducing a variation on Example 1.1.4:

Construction 3.2.1. Let k be a field. Theorem A.7.3.5.14 gives an equivalence of the stabilization
Stab(Algaug

k ) with the ∞-category kBModk(Modk) ' Modk of k-module spectra. Let E ∈ Stab(Algaug
k )

correspond to the unit object k ∈ Modk under this identification (so we have Ω∞−nE ' k ⊕ k[n] for every
integer n). We regard (Algaug

k , {E}) as a deformation context (see Definition 1.1.3).

Our first goal in this section is to show that the deformation context (Algaug
k , {E}) of Construction 3.2.1

allows us to recover the notion of small k-algebra and formal E1 moduli problem via the general formalism
laid out in §1.1.

Proposition 3.2.2. Let k be a field and let (Algaug
k , {E}) be the deformation context of Construction 3.2.1.

Then an object A ∈ Algaug
k is small (in the sense of Definition 1.1.8) if and only if its image in Algk is small

(in the sense of Definition 3.0.1). That is, A is small if and only if it satisfies the following conditions:

(a) The algebra A is connective: that is, πiA ' 0 for i < 0.

(b) The algebra A is truncated: that is, we have πiA ' 0 for i� 0.

(c) Each of the homotopy groups πiA is finite dimensional when regarded as a vector space over field k.

(d) Let n denote the radical of the ring π0A (which is a finite-dimensional associative algebra over k).
Then the canonical map k → (π0A)/n is an isomorphism.
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Proof. Suppose first that there there exists a finite sequence of maps

A = A0 → A1 → · · · → An ' k

where each Ai is a square-zero extension of Ai+1 by k[ni], for some ni ≥ 0. We prove that each Ai satisfies
conditions (a) through (d) using descending induction on i. The case i = n is obvious, so let us assume that
i < n and that Ai+1 is known to satisfy conditions (a) through (d). We have a fiber sequence of k-module
spectra

k[ni]→ Ai → Ai+1

which immediately implies that Ai satisfies (a), (b), and (c). To prove (d), we note that the map φ : π0Ai →
π0Ai+1 is surjective and ker(φ)2 = 0, so that the quotient of π0Ai by its radical agrees with the quotient of
π0Ai+1 by its radical.

Now suppose that A satisfies conditions (a) through (d). We will prove that A is small by induction on
the dimension of the k-vector space π∗A. Let n be the largest integer for which πnA does not vanish. We
first treat the case n = 0. We will abuse notation by identifying A with the underlying associative ring π0A.
Let n denote the radical of A. If n = 0, then condition (d) implies that A ' k so there is nothing to prove.
Otherwise, we can view n as a nonzero module over the associative algebra A⊗k Aop. It follows that there
exists a nonzero element x ∈ n which is annihilated by n⊗k n. Using (d) again, we deduce that the subspace
kx ⊆ A is a two-sided ideal of A. Let A′ denote the quotient ring A/kx. Theorem A.7.4.1.23 implies that
A is a square-zero extension of A′ by k. The inductive hypothesis implies that A′ is small, so that A is also
small.

Now suppose that n > 0 and let M = πnA. Then M is a nonzero bimodule over the finite dimensional
k-algebra π0A. It follows that there is a nonzero element x ∈M which is annihilated (on both sides) by the
action of the radical n ⊆ π0A. Let M ′ denote the quotient of M by the bimodule generated by x (which, by
virtue of (d), coincides with kx), and let A′′ = τ≤n−1A. It follows from Theorem A.7.4.1.23 that there is a
pullback diagram

A //

��

k

��
A′′ // k ⊕M [n+ 1].

Set A′ = A′′ ×k⊕M ′[n+1] k. Then A ' A′ ×k⊕k[n+1] k so we have an elementary map A → A′. Using the
inductive hypothesis we deduce that A′ is small, so that A is also small.

We will also need a noncommutative analogue of Lemma 1.1.20:

Proposition 3.2.3. Let k be a field and let f : A → B be a morphism in Algsm
k . Then f is small (when

regarded as a morphism in Algaug
k ) if and only if it induces a surjection of associative rings π0A→ π0B.

Proof. The “only if” direction is obvious. For the converse, suppose that π0A → π0B is surjective, so that
the fiber I = fib(f) is connective. We will prove that f is small by induction on the dimension of the graded
vector space π∗I. If this dimension is zero, then I ' 0 and f is an equivalence. Assume therefore that
π∗I 6= 0, and let n be the smallest integer such that πnI 6= 0. Let LB/A denote the relative cotangent
complex of B over A in the setting of E1-algebras, regarded as an object of BBModB(Modk). Remark
A.7.4.1.12 supplies a fiber sequence

LB/A → B ⊗A B → B.

In the ∞-category LModB , this sequence splits; we therefore obtain an equivalence of left B-modules

LB/A ' cofib(B → B ⊗A B) ' B ⊗A cofib(A→ B) ' B ⊗A I[1].

The kernel of the map π0A → π0B is contained in the radical of π0A and is therefore a nilpotent ideal.
It follows that πn+1LB/A ' Torπ0B

0 (π0A, πnI) is a nonzero quotient of of πnI. Let us regard πn+1LB/A
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as a bimodule over π0B, and let n be the radical of π0B. Since n is nilpotent, the two-sided submodule
n(πn+1LB/A) + (πn+1LB/A)n does not coincide with πn+1LB/A. It follows that there exists a map of π0B-
bimodules πn+1LB/A → k, which determines a map LB/A → k[n + 1] in the ∞-category BBModB(Modk).
We can interpret this map as a derivation B → B ⊕ k[n + 1]. Let B′ = B ×B⊕k[n+1] k be the associated
square-zero extension of B by k[n]. Then f factors as a composition

A
f ′→ B′

f ′′→ B.

Since the map f ′′ is elementary, it will suffice to show that f ′ is small, which follows from the inductive
hypothesis.

Corollary 3.2.4. Let k be a field and let X : Algsm
k → S be a functor. Then X belongs to the full subcategory

Moduli
(1)
k of Definition 3.0.3 if and only if it is a formal moduli problem in the sense of Definition 1.1.14.

Proof. The “if” direction follows immediately from Proposition 3.2.3. For the converse, suppose that X
satisfies the conditions of Definition 3.0.3; we wish to show that X is a formal moduli problem. According
to Proposition 1.1.15, it will suffice to show that for every pullback diagram in Algsm

k

A //

��

B

��
k // k ⊕ k[n]

satisfying n > 0, the associated diagram of spaces

X(A) //

��

X(B)

��
X(k) // X(k ⊕ k[n])

is also a pullback square. This follows immediately from condition (2) of Definition 3.0.3.

We can now state the main result of this section:

Theorem 3.2.5. Let k be a field. Then the Koszul duality functor

D(1) : (Algaug
k )op → Algaug

k

is a deformation theory (on the deformation context (Algaug
k , {E}) of Construction 3.2.1).

Proof of Theorem 3.0.4. Let k be a field of characteristic zero, and let Ψ : Algaug
k → Fun(Algsm

k , S) be the
functor given on objects by the formula Ψ(A)(R) = MapAlgaug

k
(D(1)(R), A). Combining Theorems 3.2.5

and 1.3.12, we deduce that Ψ is a fully faithful embedding whose essential image is the full subcategory

Moduli
(1)
k ⊆ Fun(Algsm

k , S) spanned by the formal E1 moduli problems.

Proof of Theorem 3.2.5. The ∞-category Algaug
k is presentable by Corollary A.3.2.3.5, and D(1) admits a

left adjoint by Remark 3.1.7. Let Ξ0 ⊆ Algaug
k be the full subcategory spanned by those algebras which

are coconnective and locally finite (see Definition 3.1.13). We will complete the proof that D(1) is a weak
deformation theory by showing that the subcategory Ξ0 satisfies conditions (a) thorugh (d) of Definition
1.3.1:

(a) For every object A ∈ Ξ0, the unit map A→ D(1)D(1)(A) is an equivalence. This follows from Corollary
3.1.15.
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(b) The full subcategory Ξ0 contains the initial object k ∈ Algaug
k . This is clear from the definitions.

(c) For each n ≥ 1, there exists an object Kn ∈ Ξ0 and an equivalence k ⊕ k[n] ' D(1)(Kn). In fact, we
can take Kn to be the free algebra

⊕
m≥0 V

⊗m generated by V = k[−n− 1] (this is a consequence of
Proposition 4.5.6, but is also not difficult to verify by direct calculation).

(d) Let n ≥ 1 and suppose we are given a pushout diagram σ :

Kn
//

φ

��

k

��
A // A′

in Algaug
k , where Kn is as in (c). We must show that if A ∈ Ξ0, then A′ ∈ Ξ0. Note that σ is also a

pushout diagram in Algk. We will make use of the fact that Algk is the underlying ∞-category of the

model category Algdg
k of differential graded algebras over k (for a different argument which does not use

the theory of model categories, we refer the reader to the proof of Theorem 4.5.5). Choose a cofibrant
differential graded algebra A∗ representing A, and let B∗ denote the free differential graded algebra
generated by a class x in degree (−n−1). Since B∗ is cofibrant and A∗ is fibrant, the map φ : Kn → A
can be represented by a map φ0 : B∗ → A∗ of differential graded algebras, which is determined by
the element x′ = φ0(x) ∈ A−n−1. Let B′∗ denote the free differential graded algebra generated by the
chain complex E(−n)∗ (see the proof of Proposition 2.1.10): in other words, B′∗ is obtained from B∗
by freely adjoining an element y ∈ B′−n satisfying dy = x. Then B′∗ is quasi-isomorphic to the ground
field k. Let ψ0 : B∗ → B′∗ be the evident inclusion, and form a pushout diagram σ0 :

B∗
ψ0 //

φ0

��

B′∗

��
A∗ // A′∗

in the category Algdg
k . Since A∗ is cofibrant and ψ0 is a cofibration, the diagram σ0 is also a homotopy

pushout square, so that the image of σ0 in Algk is equivalent to the diagram σ. It follows that the
differential graded algebra A′∗ represents A′. We can describe A′∗ explicitly as the differential graded
algebra obtained from A∗ by adjoining an element y′ in degree −n satisfying dy′ = x′. As a chain
complex, A′∗ can be written as a union of an increasing family of subcomplexes

A∗ = A′0∗ ⊆ A′1∗ ⊆ A′2∗ ⊆ · · · ,

where A′m∗ denote the graded subspace of A′∗ generated by products of the form a0ya1y · · · am1
yam.

The successive quotients for this filtration are given by A′m∗ /A
′m−1
∗ ' A⊗m+1

∗ [−nm]. It follows that the
homology groups of A′∗/A∗ can be computed by means of a (convergent) spectral sequence {Ep,qr , dr}r≥2

with

Ep,q2 '

{
0 if p ≤ 0

(H∗(A∗)
⊗p+1)q+p+np if p ≥ 1.

Since A is coconnective and n > 0, the groups Ep,q2 vanish unless p + q ≤ −np < 0. It follows that
each homology group Hm(A′∗/A∗) admits a finite filtration by subquotients of the vector spaces Ep,q2

with p + q = m, each of which is finite dimensional (since A is locally finite), and that the groups
Hm(A′∗/A∗) vanish for m ≥ 0. Using the long exact seuqence

· · · → Hm(A∗)→ Hm(A′∗)→ Hm(A′∗/A∗)→ Hm−1(A∗)→ · · · ,

we deduce that Hm(A′∗) is finite dimensional for all m and isomorphic to Hm(A∗) for m ≥ 0, from
which it follows immediately that A′ ∈ Ξ0.
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We now complete the proof by showing that the weak deformation theory D(1) satisfies axiom (D4) of
Definition 1.3.9. For n ≥ 1, and A ∈ Algaug

k , we have a canonical homotopy equivalence

Ψ(A)(Ω∞−n(E)) = MapAlgaug
k

(D(1)(k ⊕ k[n]), A) ' MapAlgaug
k

(Kn, A) ' Ω∞−n−1 fib(A→ k).

These maps determine an equivalence from the functor e : Algaug
k → Sp with I[1], where I : Algaug

k → Sp
denotes the functor which assigns to each augmented algebra ε : A → k its augmentation ideal fib(ε). This
functor is evidently conservative, and preserves sifted colimits by Proposition A.3.2.3.1.

Remark 3.2.6. Let k be a field, let ε : A→ k be an object of Algaug
k , and let X = Ψ(A) denote the formal

E1 moduli problem associated to A via the equivalence of Theorem 3.0.4. The proof of Theorem 3.2.5 shows
that the shifted tangent complex X(E)[−1] ∈ Sp can be identified with the augmentation ideal fib(ε) of A.

We close this section by proving a noncommutative analogue of Corollary 2.3.6.

Proposition 3.2.7. Let k be a field and let X : Algsm
k → S be a formal E1 moduli problem over k. The

following conditions are equivalent:

(1) The functor X is prorepresentable (see Definition 1.5.3).

(2) Let X(E) denote the tangent complex of X. Then πiX(E) ' 0 for i > 0.

(3) The functor X has the form Ψ(A), where A ∈ Algaug
k is coconnective and Ψ : Algaug

k → Moduli
(1)
k is

the equivalence of Theorem 3.0.4.

Proof. The equivalence of (2) and (3) follows from Remark 3.2.6. We next prove that (1) ⇒ (2). Since the
construction X 7→ X(E) commutes with filtered colimits, it will suffice to show that πiX(E) ' 0 for i > 0
in the case when X = SpecR is representable by an object R ∈ Algsm

k . In this case, we can write X = Ψ(A)
where A = D(1)(R) belongs to the full subcategory Ξ0 ⊆ Algaug

k appearing in the proof of Theorem 3.2.5. In
particular, A is coconnective, so that X satisfies condition (3) (and therefore also condition (2)).

We now complete the proof by showing that (3) ⇒ (1). Let A ∈ Algaug
k be coconnective. Choose a

representative of A by a cofibrant differential graded algebra A∗ ∈ Algdg
k . Since A∗ is cofibrant, we may

assume that the augmentation of A is determined by an augmentation of A∗. We now construct a sequence
of differential graded algebras

k = A(−1)∗ → A(0)∗ → A(1)∗ → A(2)∗ → · · ·

equipped with maps φ(i) : A(i)∗ → A∗. For each n < 0, choose a graded subspace Vn ⊆ An consisting
of cycles which maps isomorphically onto the homology Hn(A∗). We regard V∗ as a differential graded
vector space with trivial differential (which vanishes in nonnegative degrees). Let A(0)∗ denote the free
differential graded Lie algebra generated by V∗, and φ(0) : A(0)∗ → A∗ the evident map. Assume now
that we have constructed a map φ(i) : A(i)∗ → A∗ extending φ(1). Since A is coconnective, the map
θ : Hn(A(i)∗) → H∗(A∗) is surjective. Choose a collection of cycles xα ∈ A(i)nα whose images form a basis
for ker(θ). Then we can write φ(i)(xα) = dyα for some yα ∈ Anα+1. Let A(i+ 1)∗ be the differential graded
algebra obtained from A(i)∗ by freely adjoining elements Yα (in degrees nα + 1) satisfying dYα = xα. We
let φ(i+ 1) : A(i+ 1)∗ → A∗ denote the unique extension of φ(i) satisfying φ(i+ 1)(Yα) = yα.

We now prove the following assertion for each integer i ≥ 0:

(∗i) The inclusion V−1 ↪→ A(i)−1 induces an isomorphism V−1 → H−1(A(i)∗), the unit map k → A(i)0 is
an isomorphism, and A(i)j ' 0 for j > 0.

Assertion (∗i) is obvious when i = 0. Let us assume that (∗i) holds, and let θ be defined as above. Then
θ is an isomorphism in degrees ≥ −1, so that A(i+ 1)∗ is obtained from A(i)∗ by freely adjoining generators
Yα in degrees ≤ −1. It follows immediately that A(i+1)j ' 0 for j > 0 and that the unit map k → A(i+1)0

is an isomorphism. Moreover, we can write A(i+ 1)−1 ' A(i)−1 ⊕W , where W is the subspace spanned by
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elements of the form Yα where nα = −2. By construction, the differential on A(i+ 1)∗ carries W injectively
into

A(i)−2/dA(i)−1 ⊆ A(i+ 1)−2/dA(i)−1,

so that the differential graded algebras A(i+ 1)∗ and A(i)∗ have the same homology in degree −1.
Let A′∗ denote the colimit of the sequence {A(i)∗}i≥0. The evident map g′∗ → g∗ is surjective on

homology (since the map A(0)∗ → g∗ is surjective on homology). If η ∈ ker(H∗(A
′
∗) → H∗(A∗), then η is

represented by a class η ∈ ker(H∗(A(i)∗)→ H∗(A∗)) for i� 0. By construction, the image of η vanishes in
H∗(A(i+ 1)∗), so that η = 0. It follows that the map A′∗ → A∗ is a quasi-isomorphism. Since the collection

of quasi-isomorphisms in Algdg
k is closed under filtered colimits, we conclude that A∗ is a homotopy colimit

of the sequence {A(i)∗}i≥0 in the model category Algdg
k . Let A(i) ∈ Algaug

k be the image of the differential
graded algebra A(i)∗ (equipped with the augmentation determined by the map φ(i) : A(i)∗ → A∗), so that

A ' lim−→A(i) in Algaug
k . Setting X(i) = Ψ(A(i)∗) ∈ Moduli

(1)
k , we deduce that X ' lim−→X(i). To prove that

X is prorepresentable, it will suffice to show that each X(i) is prorepresentable.
We now proceed by induction on i, the case i = −1 being trivial. To carry out the inductive step, we

note that each of the Lie algebras A(i + 1)∗ is obtained from A(i)∗ by freely adjoining a set of generators
{Yα}α∈S of degrees nα + 1 ≤ −1, satisfying dYα = xα ∈ A(i)nα . Choose a well-ordering of the set S. For
each α ∈ S, we let A<α∗ denote the Lie subalgebra of A(i+ 1)∗ generated by A(i)∗ and the elements Yβ for

β < α, and let A≤α∗ be defined similarly. Set

X<α = Ψ(A<α∗ ) X≤α = Ψ(A≤α∗ ).

For each integer n, let B(n)∗ be the free differential graded algebra generated by a class x in degree n and
B′(n)∗ the free differential graded algebra generated by a class x in degree n and a class y in degree n + 1
satisfying dy = x. For each α ∈ S, we have a homotopy pushout diagram of differential graded algebras

B(n)∗ //

��

B′(n)∗

��
A<α∗ // A≤α∗ ,

hence a pushout diagram diagram of formal E1 moduli problems

Spec(k ⊕ k[nα + 1]) //

��

Spec(k)

��
X<α // X≤α.

It follows that the map X(i)→ X(i+1) satisfies the criterion of Lemma 1.5.9. Since X(i) is prorepresentable,
we conclude that X(i+ 1) is prorepresentable.

3.3 Comparison of Commutative and Associative Deformation Theories

Let k be a field of characteristic zero and let X : Algsm
k → S be a formal E1-moduli problem. The forgetful

functor CAlgk → Algk carries small E∞-algebras over k to small E1-algebras over k, and therefore induces
a forgetful functor θ : CAlgsm

k → Algsm
k . The composite functor (X ◦ θ) : CAlgsm

k → S is a formal moduli

problem over k. Consequently, composition with θ determines a functor φ : Moduli
(1)
k → Modulik. Theorems

3.0.4 and 2.0.2 supply equivalences of ∞-categories

Algaug
k ' Moduli

(1)
k Liek ' Modulik,

so that we can identify φ with a functor φ′ : Algaug
k → Liek. Our goal in this section is to give an explicit

description of the functor φ′.
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Recall that the ∞-category Algk of E1-algebras over k can be identified with the underlying ∞-category

of the model category Algdg
k of differential graded algebras over k (Proposition A.7.1.4.6). Let (Algdg

k )/k
denote the the category of augmented differential graded algebras over k. Then (Algdg

k )/k inherits a model

structure, and (because k ∈ Algdg
k is fibrant) the underlying ∞-category of (Algdg

k )/k can be identified with

Algaug
k . For every object ε : A∗ → k of (Algdg

k )/k, we let mA∗ = ker(ε) denote the augmentation ideal of A∗.
Then mA∗ inherits the structure of a nonunital differential graded algebra over k. In particular, we can view
mA∗ as a differential graded Lie algebra over k (see Example 2.1.6). The construction A∗ 7→ mA∗ determines

a functor (Algdg
k )/k → Liedg

k , which carries quasi-isomorphisms to quasi-isomorphisms. We therefore obtain
an induced functor of∞-categories ψ : Algaug

k → Lie k. We will prove that the functors ψ, φ′ : Algaug
k → Liek

are equivalent to one another. We can state this result more precisely as follows:

Theorem 3.3.1. Let k be a field of characteristic zero. The diagram of ∞-categories

Algaug
k

ψ //

��

Liek

��
Moduli

(1)
k

φ // Modulik

commutes (up to canonical homotopy). Here φ and ψ are the functors described above, and the vertical maps
are the equivalences provided by Theorems 2.0.2 and 3.0.4.

To prove Theorem 3.3.1, we need to construct a homotopy between two functors Algaug
k → Modulik ⊆

Fun(CAlgsm
k , S). Equivalently, we must construct a homotopy between the functors

F, F ′ : Algaug
k ×CAlgsm

k → S

given by
F (A,R) = MapLiek

(D(R), ψ(A)) F ′(A,R) = MapAlgaug
k

(D(1)(R), A).

Composing the Koszul duality functor D : (CAlgaug
k )op → Liek with the equivalence of ∞-categories

Liek ' Modulik, we obtain the functor Spec : (CAlgaug
k )op → Modulik of Example 1.1.16. It follows from

Yoneda’s lemma that this functor is fully faithful when restricted to (CAlgsm
k )op, so that D induces an

equivalence from (CAlgaug
k )op onto its essential image C ⊆ Liek. The inverse of this equivalence is given by

g∗ 7→ C∗(g∗). It follows that we can identify F and F ′ with functors G,G′ : Algaug
k ×Cop → S, given by the

formulas
G(A, g∗) = MapLiek

(g∗, ψ(A)) G′(A, g∗) = MapAlgaug
k

(D(1)C∗(g∗), A).

Note that the forgetful functor (Algdg
k )/k → Liedg

k is a right Quillen functor, with left adjoint given by
the universal enveloping algebra construction g∗ 7→ U(g∗) of Remark 2.1.7. It follows that the functor ψ
admits a left adjoint Liek → Algaug

k , which we will also denote by U . Then the functor G : Algaug
k ×Cop → S

can be described by the formula G(A, g∗) = MapAlgaug
k

(U(g∗), A). Theorem 3.3.1 is therefore a consequence
of the following assertion:

Proposition 3.3.2. Let k be a field of characteristic zero. Then the diagram of ∞-categories

(Liek)op
C∗ //

U

��

CAlgaug
k

��
(Algaug

k )op
D(1)

// Algaug
k

commutes up to canonical homotopy.
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The proof of Proposition 3.3.2 will require a brief digression.

Definition 3.3.3. Let λ : M → C×D and λ′ : M′ → C′×D′ be pairings of ∞-categories. A morphism of
pairings from λ to λ′ is a triple of maps

α : M→M′ β : C→ C′ γ : D→ D′

such that the diagram

M

λ

��

α // M′

λ′

��
C×D

(β,γ) // C′×D′

commutes up to homotopy. Assume that λ and λ′ are left representable. We will say that a morphism of
pairings (α, β, γ) is left representable if it carries left universal objects of M to left universal objects of M′.

Proposition 3.3.4. Let λ : M→ C×D and λ′ : M′ → C′×D′ be left representable pairings of∞-categories,
which induce functors Dλ : Cop → D and Dλ′ : C′op → D′. Let (α, β, γ) from λ to λ′. Then the diagram

Cop
Dλ //

β
��

D

γ

��
C′op

Dλ′ // D′

commutes up to canonical homotopy.

Proof. The right fibrations λ and λ′ are classified by functors

Cop×Dop → S C′op×D′op → S,

which we can identify with maps χ : Cop → Fun(Dop, S) and χ′ : C′op → Fun(D′op, S). Let G : Fun(D′op, S)→
Fun(C′op, S) be the functor given by composition with β. Then α induces a natural transformation χ →
G ◦ χ′ ◦ β. Let F denote a left adjoint to G, so that we obtain a natural transformation u : F ◦ χ → χ′ ◦ β
of functors from Cop to Fun(D′op, S). Let jD : D → Fun(Dop, S) and jD′ : D′ → Fun(D′op, S) denote the
Yoneda embeddings. Then χ ' jD ◦Dλ and χ′ ' jD′ ◦Dλ′ , and Proposition T.5.2.6.3 gives an equivalence
F ◦ jD ' jD′ ◦ γ. Then u determines a natural transformation

jD′ ◦ γ ◦Dλ ' F ◦ jD ◦Dλ ' F ◦ χ
u→ χ′ ◦ β ' jD′ ◦Dλ′ ◦ β.

Since jD′ is fully faithful, this is the image of the a natural transformation of functors γ ◦ Dλ → Dλ′ ◦ β.
Our assumption that α carries left universal objects of M to left universal objects of M′ implies that this
natural transformation is an equivalence.

Construction 3.3.5. Let C be a category. We define a new category TwArr(C) as follows:

(a) An object of TwArr(C) is given by a triple (C,D, φ), where C ∈ C, D ∈ D, and φ : C → D is a
morphism in C.

(b) Given a pair of objects (C,D, φ), (C ′, D′, φ′) ∈ TwArr(C), a morphism from (C,D, φ) to (C ′, D′, φ′)
consists of a pair of morphisms α : C → C ′, β : D′ → D for which the diagram

C
φ //

α

��

D

C ′
φ′ // D′

β

OO

commutes.
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(c) Given a pair of morphisms

(C,D, φ)
(α,β)−→ (C ′, D′, φ′)

(α′,β′)−→ (C ′′, D′′, φ′′)

in TwArr(C), the composition of (α′, β′) with (α, β) is given by (α′ ◦ α, β ◦ β′).

We will refer to TwArr(C) as the twisted arrow category of C. The construction (C,D, φ) 7→ (C,D)
determines a forgetful functor λ : TwArr(C) → C×Cop which exhibits TwArr(C) as fibered in sets over
C×Cop (the fiber of λ over an object (C,D) ∈ C×Cop can be identified with the set HomC(C,D)). It follows
that the induced map

λ : N(TwArr(C))→ N(C)×N(C)op

is a pairing of ∞-categories. This pairing is both left and right representable, and the associated duality
functors

Dλ : N(C)op → N(C)op D′λ : N(C)→ N(C)

are equivalent to the identity.

Remark 3.3.6. We will discuss an ∞-categorical version of Construction 3.3.5 in §4.2.

We will deduce Proposition 3.3.2 from the following:

Proposition 3.3.7. Let k be a field of characteristic zero and let M(1) → Algaug
k ×Algaug

k be the pairing of
∞-categories of Construction 3.1.4. There exists a left representable map of pairings

N(TwArr(Liedg
k ))T OO

λ

��

M(1)

��
N(Liedg

k )×N(Liedg
k )op

U×C∗ // Algaug
k ×Algaug

k .

Here U and C∗ denote the (covariant and contravariant) functors from N(Liedg
k ) to Algaug

k induced by the
universal enveloping algebra and cohomological Chevalley-Eilenberg constructions, respectively.

Proof of Proposition 3.3.2. As noted in Construction 3.3.5, the pairing of ∞-categories N(TwArr(Liedg
k ))→

N(Liedg
k ) × N(Liedg

k )op induces the identity functor id : N(Liedg
k )op → N(Liedg

k )op. Applying Proposition
3.3.4 to the morphism of pairings T of Proposition 3.3.7, we obtain an equivalence between the functors
C∗ ◦ id,D(1) ◦ U : N(Liedg

k )op → Algaug
k . Since the canonical map

Fun(Lieopk ,Algopk )→ Fun(N(Liedg
k )op,Algaug

k )

is fully faithful, we obtain an equivalence between the functors C∗,D(1) ◦ U : Lieopk → Algaug
k .

Proof of Proposition 3.3.7. Let g∗ be a differential graded Lie algebra and let Cn(g)∗ be as in Construction
2.2.1. The universal enveloping algebra U(Cn(g)∗) has the structure of a (differential graded) Hopf algebra,
where the comultiplication is determined by the requirement that the image of Cn(g)∗ consists of primitive
elements. In particular, we have a counit map ε : Cn(g)∗ → k. Let End(U Cn(g)∗) denote the chain complex
of U(Cn(g)∗)-comodule maps from U(Cn(g)∗) to itself. Since U(Cn(g)∗) is cofree as a comodule over itself,
composition with the counit map ε : U(Cn(g)∗) → k induces an isomorphism θ from End(U Cn(g)∗) to the
k-linear dual of U Cn(g)∗. We regard End(U Cn(g)∗) as endowed with the opposite of the evident differential
graded Lie algebra structure, so that U Cn(g)∗ has the structure of a right module over End(U Cn(g)∗). Let
Endg(U Cn(g)∗) denote the subcomplex of End(U Cn(g)∗) consisting of right U(g∗)-module maps, so that θ
restricts to an isomorphism from Endg(U Cn(g)∗) to the k-linear dual C∗(g∗) of C∗(g∗) ' U Cn(g)∗⊗U(g∗) k.
It is not difficult to verify that this isomorphism is compatible with the multiplication on C∗(g) described in
Construction 2.2.13. It follows that U Cn(g)∗ is equipped with a right action of C∗(g∗), which is compatible
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with the right action of U(g∗) on U Cn(g)∗. Let M∗(g∗) denote the k-linear dual of U Cn(g)∗. Then M∗
is a contravariant functor, which carries a differential graded Lie algebra g∗ to a chain complex equipped
with commuting right actions of U(g∗) and C∗(g∗). Moreover, the unit map k → UE(g∗) determines a
quasi-isomorphism εg∗ : M∗(g∗)→ k.

Note that the initial object k ∈ Alg
(1)
k can be identified with a classifying object for endomorphisms of

the unit object k ∈ Modk. Using Theorem A.6.1.2.34 and Proposition A.6.1.2.39, we can identify Algaug
k

with the fiber product LMod(Modk)×Modk {k}. Let X ⊆ (Modk)/k denote the full subcategory spanned by
the final objects, so that we have an equivalence of ∞-categories

α : M(1) ' (Algk ×Algk)×Algk LMod(Modk)×Modk X .

We define a more rigid analogue of M(1) as follows: let Y ⊆ (Vectdg
k )k/ be the full subcategory spanned by

the quasi-isomorphisms of chain complexes V∗ → k and let C denote the category

Algdg
k ×Algdg

k ×Algdg
k

LMod(Vectdg
k )×Vectdg

k
Y,

so that α determines a functor T ′′ : N(C)→M(1). We will define T as a composition

TwArr(N(Liedg
k ))

T ′→ N(C)
T ′′→ M(1) .

Here the functor T ′ assigns to each map γ : h∗ → g∗ of differential graded Lie algebras the object of C

given by (U(h∗), C
∗(g∗),M∗(g∗), εg∗), where M∗(g∗) is regarded as a left module over U(h∗) ⊗k C∗(g∗) by

combining the commuting left actions of U(g∗) and C∗(g∗) on M∗(g∗) (and composing with the map γ).
We now claim that the diagram σ :

N(TwArr(Liedg
k ))

T //

λ

��

M(1)

��
N(Liedg

k )×N(Liedg
k )op

U×C∗ // Algaug
k ×Algaug

k

commutes up to canonical homotopy. Consider first the composition of T with the map M(1) → Algaug
k

given by projection onto the first factor. Unwinding the definitions, we see that this map is given by the
composing the equivalence ξ : LMod(Modk) ×Modk X ' Algaug

k with the functor T ′0 : N(TwArr(Liedg
k )) →

LMod(Modk)×Modk X given by

T ′0(γ : h∗ → g∗) = (U(h∗),M∗(g∗), εg∗).

The counit map U(g∗) → k determines a quasi-isomorphism of U(h∗)-modules k → M∗(g∗), so that T ′0 is

equivalent to the functor T
′
0 given by T

′
0(γ : h∗ → g∗) = (U(h∗), k, idk), which (after composing with ξ)

can be identified with the map N(TwArr(Liedg
k )) → N(Liedg

k )
U→ Algaug

k . Now consider the composition

of T with the map M(1) → Algaug
k given by projection onto the second factor. This functor is given by

composing the equivalence ξ with the functor T ′1 : N(TwArr(Liedg
k )) → LMod(Modk) ×Modk X given by

T ′1(γ : h∗ → g∗) = (C∗(g),M∗(g∗), εg∗). Note that εg is a map of C∗(g)-modules and therefore determines

an equivalence of T ′1 with the functor T
′
1 given by T

′
1(γ : h∗ → g∗) = (C∗(g), k, idk). It follows that the

composition of T ′1 with ξ can be identified with the composition

N(TwArr(Liedg
k ))→ N(Liedg

k )op
C∗→ Algaug

k .

This proves the homotopy commutativity of the diagram σ. After replacing T by an equivalent functor, we
can assume that the diagram σ is commutative.
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It remains to show that σ determines a left representable map between pairings of ∞-categories. Let g∗
be a differential graded Lie algebra, and let End(M∗(g∗)) denote the differential graded algebra of endomor-
phisms of the chain complex M∗(g∗). Since M∗(g∗) is quasi-isomorphic to k, the unit map k → End(M∗(g∗))
is a quasi-isomorphism of differential graded algebras. Unwinding the definitions, we must show that the
map θ : U(g∗)⊗kC∗(g∗)→ End(M∗(g)) exhibits C∗(g∗) as Koszul dual (as an E1-algebra) to U(g∗). Let A∗
denote the differential graded algebra of endomorphisms of U Cn(g)∗ (as a chain complex). Then θ factors
as a composition

U(g∗)⊗k C∗(g∗)
θ′→ A∗

θ′′→ End(M∗(g∗))

where θ′′ is a quasi-isomorphism. It will therefore suffice to show that θ′ exhibits C∗(g∗) as Koszul dual
to U(g∗). Since UE∗(g∗) is a free U(g∗)-module, this is equivalent to the requirement that θ′ induces a
quasi-isomorphism φ : C∗(g∗) → W∗, where W∗ is the differential graded algebra of right U(g∗)-module
maps from U Cn(g)∗ to itself. This is clear, since φ admits a left inverse given by composition with the
quasi-isomorphism U Cn(g)∗ → k.

3.4 Quasi-Coherent and Ind-Coherent Sheaves

Let k be a field and let X : CAlgsm
k → S be a formal moduli problem. In §2.4, we introduced a symmetric

monoidal∞-category QCoh(X) of quasi-coherent sheaves on X. Our goal in this section is to study analogous
definitions in the noncommutative setting. In this case, there is no symmetric monoidal structure and it
is important to distinguish between left and right modules. Consequently, if X : Algsm

k → S is a formal
E1-moduli problem, then there are two natural analogues of the∞-category QCoh(X). We will denote these
∞-categories by QCohL(X) and QCohR(X), and refer to them as the∞-categories of (left and right) quasi-
coherent sheaves on X. We will also study noncommutative counterparts of the fully faithful embedding
QCoh(X)→ QCoh!(X) of Remark 2.4.30.

We will devote most of our attention to the case where X = SpecA is corepresented by a small E1-algebra
A over k. At the end of this section, we will explain how to extrapolate our discussion to the general case
(Construction 3.4.20).

Definition 3.4.1. Let k be a field. We will say that an object M ∈ Modk is small if it is perfect as a
k-module: that is, if π∗M has finite dimension over k. If R is an E1-algebra over k and M is a right or
left module over R, we will say that M is small if it is small when regarded as an object of Modk. We let
LModsm

R denote the full subcategory of LModR spanned by the small left R-modules, and RModsm
R the full

subcategory of RModR spanned by the small right R-modules.

Remark 3.4.2. Let k be a field, let R be an augmented E1-algebra over k. Assume that R is connective
and that the kernel I of the augmentation map π0R → k is a nilpotent ideal in π0R. Then an object
M ∈ LModR is small if and only if it belongs to the the smallest stable full subcategory C ⊆ LModR
which contains k ' (π0R)/I and is closed under equivalence. The “if” direction is obvious (and requires
no assumptions on R), since the full subcategory LModsm

R ⊆ LModR is stable, closed under retracts, and
contains k. For the converse, suppose that M is small; we prove that M ∈ C using induction on the dimension
of the k-vector space π∗M . If M ' 0 there is nothing to prove. Otherwise, there exists some largest integer n
such that πnM is nonzero. Since I is nilpotent, there exists a nonzero element x ∈ πnM which is annihilated
by I. Then multiplication by x determines a map of discrete R-modules k → πnM , which in turn determines
a fiber sequence of R-modules

k[n]→M →M ′.

The inductive hypothesis guarantees that M ′ ∈ C and it is clear that k[n] ∈ C, so that M ∈ C as desired.

We first show that if R is an E1-algebra over a field k, then k-linear duality determines a contravariant
equivalence between the ∞-categories LModsm

R and RModsm
R .

Lemma 3.4.3. Let k be a field and let R be an E1-algebra over k. Define a functor λ : RModopR ×LModopR →
S by the formula λ(M,N) = MapModk

(M ⊗R N, k). Then:
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(1) For every right R-module M , let λM : LModopR → S be the restriction of λ to {M} × LModopR . Then
λM is a representable functor.

(1′) Let µ : RModopR → Fun(LModopR , S) be given by µ(M)(N) = λ(M,N). Then µ is homotopic to a
composition

RModopR
µ0→ LModR

j→ Fun(LModopR , S),

where j denotes the Yoneda embedding.

(2) For every left R-module M , let λN : RModopR → S be the restriction of λ to RModopR ×{N}. Then λN
is a representable functor.

(2′) Let µ′ : LModopR → Fun(RModopR , S) be given by µ′(N)(M) = λ(M,N). Then µ′ is homotopic to a
composition

LModopR
µ′0→ RModR

j→ Fun(RModopR , S),

where j denotes the Yoneda embedding.

(3) The functors µ0 and µ′0 determine mutually inverse equivalences between the ∞-categories RModsm
R

and (LModsm
R )op.

Proof. We first note that (1′) and (2′) are reformulations of (1) and (2). We will prove (1); the proof of (2) is
similar. Let M ∈ RModR; we wish to show that λM is a representable functor. Since LModR is a presentable
∞-category, it will suffice to show that the functor λM preserves small limits (Proposition T.5.5.2.2). This
is clear, since the functor N 7→M ⊗R N preserves small colimits.

Let µ0 : RModopR → LModR and µ′0 : LModopR → RModR be as in (1′) and (2′). We note that µ′0
can be identified with the right adjoint to µop0 . Let M ∈ RModR. For every integer n, we have canonical
isomorphisms

πnµ0(M) ' π0 MapRModR(R[n], µ0(M)) ' π0 MapModk
(M ⊗R R[n], k) ' (π−nM)∨,

where (πnM)∨ denotes the k-linear dual of the vector space π−nM . It follows that µ0 carries (RModsm
R )op

into LModsm
R . Similarly, µ′0 carries (LModsm

R )op into RModsm
R . To prove (3), it will suffice to show that for

every pair of objects M ∈ RModsm
R , N ∈ LModsm

R , the unit maps

M → µ′0µ0(M) N → µ0µ
′
0(N)

are equivalences in RModR and LModR, respectively. Passing to homotopy groups, we are reduced to proving
that the double duality maps

πnM → ((πnM)∨)∨ πnN → ((πnN)∨)∨

are isomorphisms for every integer n. This follows from the finite-dimensionality of the vector spaces πnM
and πnN .

Definition 3.4.4. Let k be a field and let R ∈ Algsm
k be a small E1-algebra over k. We let LMod!

R denote
the full subcategory of Fun(RModsm

R , S) spanned by the left exact functors, and RMod!
R the full subcategory

of Fun(LModsm
R , S) spanned by the left exact functors. We will refer to LMod!

R as the ∞-category of Ind-
coherent left R-modules, and RMod!

R as the ∞-category of Ind-coherent right R-modules.

Remark 3.4.5. Using the equivalence RModsm
R ' (LModsm

R )op of Lemma 3.4.3, we obtain equivalences of
∞-categories

LMod!
R ' Ind(LModsm

R ) RMod!
R ' Ind(RModsm

R ).

Our next goal is to explain the dependence of the ∞-categories LMod!
R and RMod!

R on the choice of
algebra R ∈ Algsm

k . This will require a bit of a digression.
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Construction 3.4.6. Let p : X → S be a map of simplicial sets. We define a new simplicial set Dl(p)
equipped with a map Dl(p) → S so that the following universal property is satisfied: for every map of
simplicial sets K → S, we have a bijection

Hom(Set∆)/Sop (K,Dl(p)) ' HomSet∆
(K ×S X, S).

Note that for each vertex s ∈ S, the fiber Dl(p)s = Dl(p) ×S {s} is canonically isomorphic to the presheaf
∞-category Fun(Xs, S).

Assume that p is an inner fibration. We let Dl0(p) the full simplicial subset of Dl(p) spanned by those
vertices which correspond to corepresentable functors Xs → S, for some s ∈ S. If each of the ∞-categories
Xs admits finite limits, we let Dllex(p) denote the full simplicial subset of Dl(p) spanned by those vertices
which correspond to left exact functors Xs → S, for some vertex s ∈ S,

Remark 3.4.7. Let p : X → S be an inner fibration and assume that each of the fibers Xs is an∞-category
which admits finite limits. Then for each vertex s ∈ S, we have a canonical isomorphism Dllex(p)s '
Ind(Xop

s ).

Proposition 3.4.8. Let p : X → S be a map of simplicial sets. Then:

(1) If p is a Cartesian fibration, then the map Dl(p) → S is a coCartesian fibration. Moreover, for every
edge e : s→ s′ in S, the induced functor

Fun(Xs, S) ' Dl(p)s → Dl(p)s′ ' Fun(Xs′ , S)

is given by composition with the pullback functor e∗ : Xs′ → Xs determined by p.

(2) If p is a coCartesian fibration, then the map Dl(p) → S is a Cartesian fibration. Moreover, for every
edge e : s→ s′ in S, the induced functor

Fun(Xs′ , S) ' Dl(p)s′ → Dl(p)s ' Fun(Xs, S)

is given by composition with the functor e! : Xs → Xs′ determined by p.

(3) Suppose p is a Cartesian fibration, that each fiber Xs of p admits finite limits and that for every edge
e : s → s′ in S, the pullback functor e∗ : Xs′ → Xs is left exact. Then the map Dllex(p) → S is a
coCartesian fibration. Moreover, for every edge e : s→ s′ in S, the induced functor

Ind(Xop
s ) ' Dllex(p)s → Dllex(p)s′ ' Ind(Xop

s′ )

is given by composition with the pullback functor e∗.

(4) If p is a coCartesian fibration, then the canonical map q : Dl(p)→ S is a coCartesian fibration, which
restricts to a coCartesian fibration Dl0(p) → S. If each fiber Xs admits finite limits, then q also
restricts to a coCartesian fibration Dllex(p)→ S.

Proof. Assertion (1) and (3) follow from Corollary T.3.2.2.12. The implication (1)⇒ (2) is immediate. We
now prove (4). Assume that p is a coCartesian fibration. Then (2) implies that Dl(p) → S is a Cartesian
fibration, and that each edge e : s → s′ induces a pullback functor Dl(p)s′ → Dl(p)s which preserves small
limits and filteredcolimits Using Corollary T.5.5.2.9, we deduce that this pullback functor admits a left
adjoint Fun(Xs, S) → Fun(Xs′ , S), which is given by left Kan extension along the functor e! : Xs → Xs′ .
Corollary T.5.2.2.5 implies that the forgetful functor q : Dl(p)→ S is also a coCartesian fibration. Since the
operation of left Kan extension carries corepresentable functors to corepresentable functors, we conclude that
q restricts to a coCartesian fibration q0 : Dl0(p)→ S (and that a morphism in Dl0(p) is q0-coCartesian if and
only if it is q-coCartesian). Now suppose that each fiber Xs of p admits finite limits. For each s ∈ S, the ∞-
category Dllex(p)s = Ind(Xop

s ) can be identified with the full subcategory of Dl(p)s = P(Xop
s ) generated by

Dl0(p)s under filtered colimits. If e : s→ s′ is an edge of S, then the functor e! : Dl(p)s → Dl(p)s′ preserves
small filtered colimits and carries Dl0(p)s into Dl0(p)s′ , and therefore carries Dllex(p)s into Dllex(p)s′ . It
follows that q restricts to a coCartesian fibration Dllex(p)→ S.
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Remark 3.4.9. Let p : X → S be a coCartesian fibration of simplicial sets. For each s ∈ S, the fiber Dl0(p)s
is isomorphic to the essential image of the Yoneda embedding Xop

s → Fun(Xs, S), and therefore equivalent
to Xop

s . In fact, we can be more precise: if p is classified by a map χ : S → Cat∞, then the coCartesian
fibration Dl0(p) → S is classified by the functor e ◦ χ, where e is the equivalence of Cat∞ with itself which
carries each ∞-category to its opposite.

Proposition 3.4.10. Let p : X → S be a coCartesian fibration of simplicial sets. Assume that:

(a) For each s ∈ S, the fiber Xs is compactly generated.

(b) For every morphism edge e : s→ s′ in S, the induced functor Xs → Xs′ preserves compact objects and
small colimits.

Let Xc denote the full simplicial subset of X spanned by those vertices which are compact objects of Xs

for some s ∈ S. Let pop : Xop → Sop be the induced map between opposite simplicial sets, and let popc :
(Xc)op → Sop be the restriction of pop. Then the restriction map φ : Dl0(pop) ⊆ Dllex(pop) → Dllex(popc ) is
an equivalence of coCartesian fibrations over Sop.

Proof. It follows from (a) and (b) that each of the functors e! : Xs → Xs′ admits a right adjoint e∗, so that p
is a Cartesian fibration and therefore pop is a coCartesian fibration. Applying Proposition 3.4.8, we conclude
that the projection map q : Dl0(pop)→ Sop is a coCartesian fibration. It follows from (b) that the projection
Xc → S is a coCartesian fibration whose fibers admit finite colimits, and that for every edge e : s → s′

in S the induced functor Xc
s → Xc

s′ preserves finite colimits. Applying Proposition 3.4.8 again, we deduce

that the map q′ : Dllex(popc ) → Sop is a coCartesian fibration. We next claim that φ carries q-coCartesian
morphisms to q′-coCartesian morphisms. Unwinding the definitions, this amounts to the following claim: if
e : x → x′ is a p-Cartesian edge lifting e : s → s′, then e induces an equivalence hx′ ◦ e! → hx of functors
Xop
s → S, where hx : Xop

s → S is the functor represented by x and hx′ : Xop
s′ → S is the functor represented

by x′. This is an immediate consequence of the definitions.
To complete the proof, it will suffice to show that for every vertex s ∈ S, the functor φ induces an

equivalence of ∞-categories Dl0(pop)s → Dllex(popc ). That is, we must show that the composite functor

ψ : Xs → Fun(Xop
s , S)→ Fun((Xc

s)op, S) = Ind(Xc
s)

is an equivalence of ∞-categories. This is clear, since ψ is right adjoint to the canonical map Ind(Xc
s)→ Xs

(which is an equivalence by virtue of our assumption that Xs is compactly generated).

Construction 3.4.11. Let k be a field and let LMod(Modk) and RMod(Modk) denote the ∞-categories of
left and right module objects of the symmetric monoidal∞-category Modk. That is, LModk is an∞-category
whose objects are pairs (R,M), where R ∈ Algk and M is a left R-module, and RModk is an ∞-category
whose objects are pairs (R,M) where R ∈ Algk and M is a left R-module. We let LModsm(Modk) denote
the full subcategory of LMod(Modk) spanned by those pairs (R,M) where R ∈ Algsm

k and M ∈ LModsm
R ,

and define RModsm(Modk) ⊆ RMod(Modk) similarly. We have evident forgetful functors

LModsm(Modk)
q→ Algsm

k
q′← RModsm(Modk).

We set
RMod!(Modk) = Dllex(q) LMod!(Modk) = Dllex(q′),

so that we have evident forgetful functors

RMod!(Modk)→ Algsm
k ← LMod!(Modk).

Remark 3.4.12. It follows from Proposition 3.4.8 that the forgetful functors

LMod!(Modk)→ Algsm
k ← RMod!(Modk)
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are coCartesian fibrations. For every object R ∈ Algsm
k , we can identify the fiber RMod!(Modk)×Algsm

k
{R}

with the∞-category RMod!
R of Definition 3.4.4, and LMod!(Modk)×Algsm

k
{R} with the∞-category LMod!

R

of Definition 3.4.4. If f : R→ R′ is a morphism in Algsm
k , then f induces functors

RMod!
R → RMod!

R′ LMod!
R → LMod!

R′ ,

both of which we will denote by f !.

We next explain how to regard the∞-categories RMod!
R and LMod!

R as enlargements of the∞-categories

LModR and RModR, respectively. Let LModperf
R and RModperf

R denote the full subcategories of LModR and
RModR spanned by the perfect R-modules. If R is small, we have evident inclusions

RModperf
R ⊆ RModsm

R LModperf
R ⊆ LModsm

R .

The first inclusion induces a fully faithful embedding

ΦR : RModR ' Ind(RModperf
R ) ↪→ Ind(RModsm

R ) ' RMod!
R .

However, the functors ΦR are badly behaved in some respects. For example, if f : R→ R′ is a morphism in
Algsm

k , then the diagram of ∞-categories

RModR
f∗ //

ΦR
��

RModR′

ΦR′
��

RMod!
R

f !

// RMod!
R′

generally does not commute up to homotopy (here f∗ denotes the base change functor M 7→M ⊗R R′). In
what follows, we will instead consider the fully faithful embeddings ΨR : RModR → RMod!

R given by

RModR ' Ind(RModperf
R ) ' Ind((LModperf

R )op) ↪→ Ind((LModsm
R )op) ' Ind(RModsm

R ) ' RMod!
R .

Our next goal is to give a description of this functor which is manifestly compatible with base change in the
algebra R ∈ Algsm

k .

Construction 3.4.13. Let k be a field, and let λ : RMod(Modk)×Algk LModsm(Modk)→ S be the functor
given by

λ(M,R,N) = MapModk
(k,M ⊗R N).

If we fix M and R, then the functor N 7→ MapModk
(k,M ⊗RN) is left exact. It follows that λ is determines

a functor Ψ : RMod(Modk)×Algk Algsm
k → RMod!(Modk).

Proposition 3.4.14. Let k be a field, and consider the diagram

RMod(Modk)×Algk Algsm
k

Ψ //

p

((

RMod!(Modk)

q
xx

Algsm
k

where p and q are the forgetful functors and Ψ is defined as in Construction 3.4.13. Then:

(1) The functor Ψ carries p-coCartesian morphisms to q-coCartesian morphisms.

(2) For every object R ∈ Algsm
k , the induced functor ΨR : RModR → RMod!

R preserves small colimits.
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(3) The functor Ψ is fully faithful.

Proof. We first prove (1). Let α : (M,R) → (M ′, R′) be a p-coCartesian morphism in RMod(Modk). We
wish to prove that Ψ(α) is q-coCartesian. Unwinding the definitions, we must show that for every small
R′-module N , the canonical map

MapModk
(k,M ⊗R N)→ MapModk

(k,M ′ ⊗R′ N)

is an equivalence. This is clear, since the map M ⊗R N →M ′ ⊗R′ N is an equivalence.
We now prove (2). Fix an object R ∈ Algsm

k . For every N ∈ LModsm
R , the functor M 7→ MapModk

(k,M⊗R
N) commutes with filtered colimits and finite limits. It follows that ΨR commutes with filtered colimits and
finite limits. Since ΨR is a left exact functor between stable∞-categories, it is also right exact. We conclude
that ΨR commutes with filtered colimits and finite colimits, and therefore with all small colimits.

We now prove (3). By virtue of (1), it will suffice to prove that for R ∈ Algsm
k the functor ΨR : RModR →

RMod!
R is fully faithful. Using (2) and Proposition T.5.3.5.11, we are reduced to proving that the restriction

ΨR|RModperf
R is fully faithful. Note that if M be a perfect right R-module and M∨ its R-linear dual (regarded

as a perfect left R-module), then ΨR(M) is the functor corepresented by M∨ ∈ LModperf
R ⊆ LModsm

R . We

can therefore identify ΨR|RModperf
R with the composition of fully faithful embeddings

RModperf
R ' (LModperf

R )op ⊆ (LModsm
R )op

j
↪→ RMod!

R,

(here j denotes the Yoneda embedding).

Remark 3.4.15. Construction 3.4.13 and Proposition 3.4.14 have evident dual versions, which give a fully
faithful embedding LMod(Modk)×Algk Algsm

k → LMod!(Modk).

Our next goal is to say something about the essential image of the functor ΨR : RModR → RMod!
R of

Proposition 3.4.14.

Definition 3.4.16. Let R be a small E1-algebra over a field k, and let ε : R→ k be the augmentation. We
will say that an object M ∈ RMod!

R is connective if ε!M is a connective object of Modk ' Mod!
k. We let

RMod!,cn
R denote the full subcategory of RMod!

R spanned by the connective objects. Similarly, we define a

full subcategory LMod!,cn
R ⊆ LMod!

R.

Remark 3.4.17. Let R be a small E1-algebra over a field k. It follows from Proposition T.5.4.6.6 that
RMod!,cn

R is an accessible subcategory of RMod!
R, which is evidently closed under small colimits and exten-

sions. Applying Proposition A.1.4.5.11, we conclude that there exists a t-structure on the stable∞-category
RMod!

R with (RMod!
R)≥0 = RMod!,cn

R .

Proposition 3.4.18. Let k be a field, let R ∈ Algsm
k . Then the fully faithful embedding ΨR : RModR →

RMod!
R of Proposition 3.4.14 restricts to an equivalence of ∞-categories RModcn

R ↪→ RMod!,cn
R .

Proof. Let ε : R→ k be the augmentation map and let M ∈ RMod!
R. We wish to show that ε!M is connective

if and only if M ' ΨR(M ′) for some M ′ ∈ RModcn
R . The “if” direction is clear: if M ' ΨR(M ′), we have

equivalences
ε!M ' ε!ΨR(M ′) ' Ψk(ε∗M ′) ' k ⊗RM ′.

For the converse, assume that ε!M is connective. Let C ⊆ RMod!
R denote the essential image of ΨR|RModcn

R ;
we wish to prove that M ∈ C. It follows from Proposition 3.4.14 that C is closed under colimits and extensions
in RMod!

R.
We begin by constructing a sequence of objects

0 = M(0)→M(1)→M(2)→ · · ·

in C and a compatible family of maps θ(i) : M(i)→M with the following property:
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(∗) The groups πjε
!M(i) vanish unless 0 ≤ j < i, and the maps πjε

!M(j) → πjε
!M are isomorphisms for

0 ≤ j < i.

Assume that i ≥ 0 and that we have already constructed a map θ(i) satisfying (∗). Let M ′ = cofib(θ(i)),
so that πjε

!M ′ ' 0 for j < i. Let us regard M ′ as a functor LModsm
R → S, so that M ′(k[m]) is (m + i)-

connective for every integer i. It follows by induction that for every m-connective object N ∈ LModsm
R , the

space M ′(N) is (m + i)-connective. In particular, M ′(N) is connected when N denotes the cofiber of the
map R[−i]→ k[−i]. Using the fiber sequence

M ′(R[−i])→M ′(k[−i])→M ′(cofib(R[−i]→ k[−i])),

we deduce that the map π0M
′(R[−i]) → π0M

′(k[−i]) is surjective. Let K = ΨR(R) ∈ RMod!
R. Then

K[i] = ΨR(R[i]) can be identifed with the functor corepresented by R[−i]. We have proven the following:

(∗′) For every point η ∈ πiε!M ′ ' π0M
′(k′[−i]), there exists a map K[i] → M such that η belongs to the

image of the induced map k ' πiε!K[i]→ πiε
!M ′.

Choose a basis {vα}α∈S for the k-vector space πiε
!M ′ ' πiε

!M . Applying (∗′) repeatedly, we obtain a
map v :

⊕
α∈S K[i] → M ′. Let M ′′ = cofib(v) and let M(i + 1) denote the fiber of the composite map

M →M ′ →M ′′. We have a fiber sequence

M(i)→M(i+ 1)→
⊕
α∈S

K[i].

Since C is closed under colimits and extensions (and contains K[i] ' ΨRR[i]), we conclude that M(i+1) ∈ C.
Using the long exact sequence of homotopy groups

πjε
!M(i)→ πjε

!M(i+ 1)→ πjε
!
⊕
α∈S

K[i]→ πj−1ε
!M(i),

we deduce that the canonical map M(i+ 1)→M satisfies condition (∗).
Let M(∞) = lim−→M(i). Since C is closed under colimits, we deduce that M(∞) ∈ C. Using (∗) (and

the vanishing of the groups πjε
!M for j < 0), we deduce that w induces an equivalence e∗M(∞) → e∗M .

Identifying M and M(∞) with left exact functors LModsm
R → S, we conclude that w induces a homotopy

equivalence M(∞)(k[j])→M(k[j]) for every integer j. Since M and M(∞) are left exact, the collection of
those objects N ∈ LModsm

R for which M(∞)(N) → M(N) is a homotopy equivalence is closed under finite
limits. Using Lemma 3.4.2, we deduce that every object N ∈ LModsm

R has this property, so that w is an
equivalence and M 'M(∞) ∈ C as desired.

Remark 3.4.19. Let R be a small E1-algebra over a field k. The natural t-structure on the ∞-category
RModR is right complete. It follows from Proposition 3.4.18 that the fully faithful embedding ΨR : RModR →
RMod!

R induces an equivalence from RModR to the right completion of RMod!
R.

Construction 3.4.20. Let k be a field. The coCartesian fibrations

RMod(Modk)×Algk Algsm
k

pR→ Algsm
k

qR← RMod!(Modk)

are classified by functors χ, χ! : Algsm
k → Ĉat∞. Since Ĉat∞ admits small limits, Theorem T.5.1.5.6 implies

that χ and χ! admit (essentially unique) factorizations as compositions

Algsm
k

j→ Fun(Algsm
k , S)op

QCohR−→ Ĉat∞

Algsm
k

j→ Fun(Algsm
k , S)op

QCoh!
R−→ Ĉat∞

83



where j denotes the Yoneda embedding and the functors QCohR and QCoh!
R preserve small limits. Similarly,

the coCartesian fibrations

LMod(Modk)×Algk Algsm
k →Algsm

k → LMod!(Modk)

are classified by maps χ′, χ′! : Algsm
k → Ĉat∞, which admit factorizations

Algsm
k

j→ Fun(Algsm
k , S)op

QCohL−→ Ĉat∞

Algsm
k

j→ Fun(Algsm
k , S)op

QCoh!
L−→ Ĉat∞.

For each functor X : Algsm
k → S, we will refer to QCohL(X) and QCohR(X) as the∞-categories of (left and

right) quasi-coherent sheaves on X. Similarly, we will refer to QCoh!
L(X) and QCoh!

R(X) as the∞-categories
of (left and right) Ind-coherent sheaves on X.

Remark 3.4.21. For every functor X : Algsm
k → S, the ∞-categories QCohL(X), QCohR(X), QCoh!

L(X),
and QCoh!

R(X) are presentable and stable.

Remark 3.4.22. Let k be a field, let X : Algsm
k → S be a functor which classifies a right fibration X→ Algsm

k .
Then QCohR(X) and QCoh!

R(X) can be identified with the ∞-categories of coCartesian sections of the
coCartesian fibrations

X×Algk RMod(Modk)→ X← X×Algsm
k

RMod!(Modk).

More informally, an object F ∈ QCohR(X) is a rule which assigns to every point η ∈ X(A) a right A-module
Fη, and to every morphism f : A → A′ carrying η to η′ ∈ X(A′) an equivalence Fη′ ' Fη ⊗AA′. Similarly,

an object of G ∈ QCoh!
R(X) is a rule which assigns to every point η ∈ X(A) an Ind-coherent right R-module

Gη ∈ RMod!
A, and to every morphism f : A → A′ carrying η to η′ ∈ X(R′) an equivalence Gη′ ' f ! Gη.

The∞-categories QCohL(X) and QCoh!
L(X) admit similar descriptions, using left modules in place of right

modules.

Notation 3.4.23. By construction, the ∞-categories QCohR(X), QCohL(X), QCoh!
R(X), and QCoh!

L(X)
depend contravariantly on the object X ∈ Fun(Algsm

k , S). If α : X → Y is a natural transformation, we will
denote the resulting functors by

α∗ : QCohR(Y )→ QCohR(X) α! : QCoh!
R(Y )→ QCoh!

R(X)

α∗ : QCohL(Y )→ QCohL(X) α! : QCoh!
L(Y )→ QCoh!

L(X).

Remark 3.4.24. Let k be a field. The fully faithful embedding Ψ of Proposition 3.4.14 induces a natural

transformation QCohR → QCoh!
R of functors Fun(Algsm

k , S) → Ĉat∞. For every functor X : Algsm
k → S,

we obtain a fully faithful embedding QCohR(X)→ QCoh!
R(X) which preserves small colimits. Moreover, if

α : X → Y is a natural transformation of functors, we obtain a diagram of ∞-categories

QCohR(Y ) //

α∗

��

QCoh!
R(Y )

α!

��
QCohR(X) // QCoh!

R(X)

which commutes up to canonical homotopy. Similarly, we have fully faithful embedding QCohL(X) →
QCoh!

L(X), which depend functorially on X in the same sense.
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Notation 3.4.25. Let k be a field and let X : Algsm
k → S be a functor. We will say that an object

F ∈ QCohR(X) is connective if Fη ∈ RModA is connective for every point η ∈ X(A) (see Notation 3.4.22).
We let QCohR(X)cn denote the full subcategory of QCohR(X) spanned by the connective right quasi-coherent
sheaves, and define a full subcategory QCohL(X)cn ⊆ QCohL(X) similarly.

We will say that an object G ∈ QCoh!
R is connective if, for every point η ∈ X(k), the object Gη ∈

RMod!
k ' Modk is connective. We let QCoh!

R(X)cn denote the full subcategory of QCoh!
R(X) spanned by

the connective objects, and define QCoh!
L(X)cn ⊆ QCoh!

L(X) similarly.

Remark 3.4.26. Let X : Algsm
k → S be a functor. The full subcategories

QCohL(X)cn ⊆ QCohL(X) QCohR(X)cn ⊆ QCohR(X)

QCoh!
L(X)cn ⊆ QCoh!

L(X) QCoh!
R(X)cn ⊆ QCoh!

R(X)

of Notation 3.4.25 are presentable and closed under extensions and small colimits. It follows from Proposition
A.1.4.5.11 that they determine t-structures on QCohL(X), QCohR(X), QCoh!

L(X), and QCoh!
R(X).

Using Proposition 3.4.18, we immediately deduce the following:

Proposition 3.4.27. Let k be a field and let X : Algsm
k → S be a functor. Then the fully faithful embeddings

QCohL(X) ↪→ QCoh!
L(X) QCohR(X) ↪→ QCoh!

R(X)

of Remark 3.4.24 induce equivalences of ∞-categories

QCohL(X)cn ' QCoh!
L(X)cn QCohR(X)cn ' QCoh!

R(X)cn.

3.5 Koszul Duality for Modules

Our goal in this section is to prove the following non-commutative analogue of Theorem 2.4.1:

Theorem 3.5.1. Let k be a field, let A ∈ Algaug
k , and let X : Algsm

k → S be the formal E1 moduli problem
associated to A (see Theorem 3.0.4). Then there are canonical equivalences of ∞-categories

QCoh!
L(X) ' RModA QCoh!

R(X) ' LModA .

In particular, we have fully faithful embeddings

QCohL(X) ↪→ RModA QCohR(X) ↪→ LModA .

The main ingredient in the proof of Theorem 3.5.1 is the following result.

Proposition 3.5.2. Let k be a field, and let χ! : Algsm
k → Ĉat∞ be as in Construction 3.4.20 (given

on objects by χ!(R) = RMod!
R), and let χ′ : Algopk be the functor which classifies the Cartesian fibration

LMod(Modk)→ Algk (given by the formula χ′(A) = LModA). Then χ! is homotopic to the composition

Algsm
k → Algaug

k
D(1)

−→ (Algaug
k )op → Algopk

χ′→ Ĉat∞.

In particular, for every R ∈ Algsm
k , there is a canonical equivalence of ∞-categories RMod!

R ' LModD(1)(R).

Before giving the proof of Proposition 3.5.2, let us explain how it leads to a proof of Theorem 3.5.1.

Proof of Theorem 3.5.1. We will construct the equivalence QCoh!
R(X) ' LModA; the construction of the

equivalence QCoh!
L(X) ' RModA is similar. Let k be a field and let QCoh!

R : Fun(Algsm
k , S)op → Ĉat∞ be as

in Construction 3.4.20. Let Ψ : Algaug
k → Moduli

(1)
k be the equivalence of∞-categories provided by Theorem

3.0.4, and let Ψ−1 denote a homotopy inverse to Ψ. Let L : Fun(Algsm
k , S)→ Moduli

(1)
k denote a left adjoint to
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the inclusion functor Moduli
(1)
k ⊆ Fun(Algsm

k , S) (see Remark 1.1.17), and let D̂(1) : Fun(Algsm
k , S)→ Algaug

k

be the composition of Ψ−1 ◦ L. The functor D̂(1) preserves small colimits, and the composition of D̂(1)

with the Yoneda embedding (Algsm
k )op → Fun(Algsm

k , S) can be identified with the Koszul duality functor

D(1) : (Algsm
k )op → Algaug

k . Let χ′ : Algopk → Ĉat∞ be as in Proposition 3.5.2 (given on objects by

χ′(A) = LModA), and let F : Fun(Algsm
k , S)op → Ĉat∞ denote the composite functor

Fun(Algsm
k , S)op

D̂(1)

−→ (Algaug
k )op → Algopk

χ′→ Ĉat∞.

Let C denote the full subcategory of Fun(Algsm
k , S) spanned by the corepresentable functors. Proposition

3.5.2 implies that there is an equivalence of functors α0 : F |Cop → QCoh!
R |C

op. Since QCoh!
R is a right Kan

extension of its restriction to Cop, the equivalence α0 extends to a natural transformation F → QCoh!
R. We

will prove:

(∗) If X : Algsm
k → S is a formal E1 moduli problem, then α induces an equivalence of ∞-categories

F (X)→ QCoh!
R(X).

Taking X = Ψ(A) for A ∈ Algaug
k , we see that (∗) guarantees an equivalence of ∞-categories

βA : LModA ' χ′(Ψ−1Ψ(A)) ' F (Ψ(A))→ QCoh!
R(X).

It remains to prove (∗). Let E ⊆ Fun(Algsm
k , S) be the full subcategory spanned by those functors X

for which α induces an equivalence of ∞-categories F (X) → QCoh!
R(X). The localization functor L :

Fun(Algsm
k , S) → Moduli

(1)
k , the equivalence Ψ−1 : Moduli

(1)
k → Algaug

k , and the forgetful functor Algaug
k →

Algk preserve small colimits. Lemma 2.4.32 implies that the functor χ′ : Algopk → Ĉat∞ preserves sifted

limits. It follows that the functor F preserves sifted limits. Since QCoh!
R preserves small limits, the ∞-

category E is closed under sifted colimits in Fun(Algsm
k , S). Since E contains all corepresentable functors

and is closed under filtered colimits, it contains it contains all prorepresentable formal moduli problems (see
Definition 1.5.3). Proposition 1.5.8 implies that every formal E1 moduli problem X can be obtained as the
geometric realization of a simplicial object X• of Fun(Algsm

k , S), where each Xn is prorepresentable. Since E

is closed under geometric realizations in Fun(Algsm
k , S), we conclude that X ∈ E as desired.

We now turn to the proof of Proposition 3.5.2. Consider first the functor χ′ : Algopk → Ĉat∞ classifying
the Cartesian fibration p : LMod(Modk) → Algk. Using Remark 3.4.9, we see that χ′ also classifies the
coCartesian fibration Dl0(pop) → Algopk . Let LModperf(Modk) denote the full subcategory of LMod(Modk)
spanned by those pairs (A,M), where A ∈ Algk and M is a perfect left module over A. Let pperf denote

the restriction of p to LMod(Modk). Proposition 3.4.10 supplies an equivalence of Dl0(pop) ' Dllex(popperf) of

coCartesian fibrations over Algopk . By construction, χ! : Algsm
k → Ĉat∞ classifies the coCartesian fibration

RMod!(Modk) = Dllex(q) → Algsm
k , where q denotes the Cartesian fibration LModsm(Modk) → Algsm

k .
Consequently, Proposition 3.5.2 is a consequence of the following:

Proposition 3.5.3. Let k be a field and let D : Algsm
k → Algopk denote the composition

Algsm
k ↪→ Algaug

k
D(1)

−→ (Algaug
k )op → Algopk ,

where D(1) denotes the Koszul duality functor of Definition 3.1.6. Then there is a pullback diagram of
∞-categories

LModsm(Modk)

��

D′ // LModperf(Modk)op

��
Algsm

k
D // Algopk .
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We now proceed to construct the diagram appearing in the statement of Proposition 3.5.3.

Construction 3.5.4. Fix a field k. We let M(1) → Algaug
k ×Algaug

k be the pairing of∞-categories defined in

Construction 3.1.4. The objects of M(1) are given by triple (A,B, ε), where A,B ∈ Algk and ε : A⊗k B → k
is an augmentation on A⊗k B (which then determines augmentations on A and B). Set

M = LMod(Modk)×Algk M
(1)×Algk LMod(Modk),

so that M is an ∞-category whose objects can be identified with quintuples (A,B, ε,M,N), where A,B ∈
Algk, ε : A ⊗k B → k is an augmentation, M ∈ LModA, and N ∈ LModB . There is an evident functor

χ : M
op → S, given on objects by the formula

χ(A,B, ε,M,N) = MapLModA⊗kB
(M ⊗k N, k)

Then χ classifies a right fibration MLM →M. Let LModaug(Modk) denote the ∞-category

LMod(Modk)×Algk Algaug
k ,

so that the forgetful functor MLM → LModaug(Modk) × LModaug(Modk) is a right fibration and therefore
determines a pairing of LModaug(Modk) with itself.

Proposition 3.5.5. Let k be a field, let λ : M(1) → Algaug
k ×Algaug

k be the pairing of Construction 3.1.4

and λ′ : MLM → LModaug(Modk)× LModaug(Modk) the pairing of Construction 3.5.4. Then λ′ is both left

and right representable. Moreover, the forgetful functor MLM →M(1) is both left and right representable.

Proof. We will show that λ′ is left representable and MLM → M(1) is left representable; the corresponding
assertions for right representability will follow by symmetry. Fix an object A ∈ Algaug

k and a left A-module
M . Let B = D(1)(A) be the Koszul dual of A and ε : A ⊗k B → k the canonical map. Proposition 3.1.10
implies that ε determines a duality functor Dε : LModopA → LModB . We let N = Dε(M), so that there is a
canonical map of left A ⊗k B-modules µ : M ⊗k N → k. The quintuple (A,B, ε,M,N) is an object of the
∞-category M of Construction 3.5.4, and µ determines a lifting to an object X ∈ MLM. We complete the
proof by observing that X is left universal and has left universal image in M(1).

It follows from Proposition 3.5.5 that the pairing MLM → LModaug(Modk)×LModaug(Modk) determines
a duality functor DLM : LModaug(Modk)→ LModaug(Modk)op. Let D′ denote the composite map

LModsm(Modk)→ LModaug(Modk)
DLM

−→ LModaug(Modk)op → LMod(Modk)op.

By construction, we have a commutative diagram σ :

LModsm(Modk)

p

��

D′ // LMod(Modk)op

q

��
Algsm

k
D // Algopk .

We next claim that the functor D′ carries p-Cartesian morphisms to q-Cartesian morphisms. Unwinding
the definitions, we must show that if f : R → R′ is a morphism in Algsm

k and M is a small left R′-module,
then the canonical map

θM : D(1)(R)⊗D(1)(R′) Dµ′(M)→ Dµ(M)

is an equivalence, where Dµ : LModopR → LModD(1)(R) and Dµ′ : LModopR → LModD(1)(R) are the duality

functors determined by the pairings µ : R ⊗k D(1)(R) → k and µ′ : R′ ⊗k D(1)(R′) → k. The modules

87



M ∈ LModR′ for which θM is an equivalence span a stable subcategory of LModR′ which includes k, and
therefore contains all small R′-modules (Lemma 3.4.2).

To complete the proof of Proposition 3.5.3, it suffices to show that the functor D′ carries LModsm(Modk)
into LModperf(Modk)op and induces an equivalence of ∞-categories

LModsm(Modk)→ LModperf(Modk)op ×Algopk
Algsm

k .

Using Corollary T.2.4.4.4, we are reduced to proving that D′ induces an equivalence of ∞-categories

LModsm
R → (LModperf

D(1)(R)
)op

for every R ∈ Algsm
k . This is a consequence of Remark 3.4.2 together with the following more general

assertion:

Proposition 3.5.6. Let k be a field and let µ : A⊗k B → k be a map of E1-algebras over k which exhibits
B as a Koszul dual of A. Then the duality functor Dµ : LModopA → LModB restricts to an equivalence

C → LModperf
B , where C denotes the smallest stable subcategory of LModA which contains k (regarded as a

left A-module via the augmentation A→ A⊗k B
µ→ k) and is closed under retracts.

Proof. Let D′µ : LModopB → LModA be as in Notation 3.1.11, and let D denote the full subcategory of
LModA spanned by those objects M for which the unit map M → D′µDµ(M) is an equivalence in LModA.
It is clear that D is a stable subcategory of LModA which is closed under retracts. Since µ exhibits B as
a Koszul dual of A, the subcategory D contains k so that C ⊆ D. It follows that the functor Dµ|C is fully
faithful. Moreover, the essential image of Dµ|C is the smallest stable full subcategory of LModB which

contains Dµ(k) ' B and is closed under retracts: this is the full subcategory LModperf
B ⊆ LModB .

Remark 3.5.7. Let k be a field of characteristic zero and let θ : CAlgsm
k → Algsm

k denote the forgetful
functor. Let X : Algsm

k → S be a formal E1 moduli problem over k, so that X ◦ θ is a formal moduli problem
over k. For each R ∈ CAlgsm

k , we have a canonical equivalence of ∞-categories ModR ' RModθ(R). Passing
to the inverse limit over points η ∈ X(θ(R)), we obtain a functor QCohR(X) → QCoh(X ◦ θ). According
to Theorem 3.0.4, there exists an augmented E1-algebra A over k such that X is given by the formula
X(R) = MapAlgaug

k
(D(1)(R), A). Let mA denote the augmentation ideal of A. Regard mA as an object of

Liek, so that X ◦ θ is given by the formula

(X ◦ θ)(R) = MapLiek
(D(R),mA)

(see Theorem 3.3.1). Theorems 2.4.1 and 3.5.1 determine fully faithful embeddings

QCohR(X) ↪→ LModA QCoh(X ◦ θ) ↪→ RepmA .

We have an evident map of E1-algebras U(mA) → A, which determines a forgetful functor LModA →
LModU(mA) ' RepmA . With some additional effort, one can show that the diagram

QCohR(X) //

��

LModA

��
QCoh(X ◦ θ) // RepmA

commutes up to canonical homotopy. That is, the algebraic models for quasi-coherent sheaves provided by
Theorems 2.4.1 and 3.5.1 in the commutative and noncommutative settings are compatible with one another.

We conclude this section with a discussion of the exactness properties of equivalences

QCoh!
L(X) ' RModA QCoh!

R(X) ' LModA
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appearing in Theorem 3.5.1. Let RModcn
A and LModcn

A denote the full subcategories spanned by those right
and left A-modules whose underlying spectra are connective. Note that the equivalences of Theorem 3.5.1
depend functorially on A, and when A = k they are equivalent to the identity functor from the ∞-category

Modk to itself. Let ∗ denote the final object of Moduli
(1)
k , so that we have a canonical map of formal moduli

problems ∗ → X (induced by the map of augmented E1-algebras k → A). It follows that Theorem 3.5.1
gives an equivalence

QCoh!
L(X)cn ' QCoh!

L(X)×QCoh!
L(∗) QCoh!

L(∗)cn

' RModA×RModk RModcn
k

' RModcn
A

and, by symmetry, an equivalence QCoh!
R(X)cn ' LModcn

A . Combining this observation with Proposition
3.4.27, we obtain the following result:

Proposition 3.5.8. Let k be a field, let A ∈ Algaug
k , and let X : Algsm

k → S be the formal E1 moduli problem
associated to A (see Theorem 3.0.4). Then the fully faithful embeddings

QCohL(X) ↪→ RModA QCohR(X) ↪→ LModA .

of Theorem 3.5.1 restrict to equivalences of ∞-categories

QCohL(X)cn ' RModcn
A QCohR(X)cn ' LModcn

A .

Warning 3.5.9. If A is an arbitrary E1-ring, then the full subcategories

LModcn
A = LModA×Sp Spcn ⊆ LModA RModcn

A = RModA×Sp Spcn ⊆ RModA

are presentable, closed under small colimits, and closed under extensions. It follows from Proposition
A.1.4.5.11 that LModA and RModA admit t-structures with

(LModA)≥0 = LModcn
A (RModA)≥0 = RModcn

A .

However, it is often difficult to describe the subcategories (LModA)≤0 ⊆ LModA and (RModA)≤0 ⊆ RModA.
In particular, they generally do not coincide with the subcategories

LModA×Sp Sp≤0 ⊆ LModA RModA×Sp Sp≤0 ⊆ RModA

unless the E1-ring A is connective.

4 Moduli Problems for En-Algebras

Let k be a field. In §2 and §3 we studied the∞-categories Modulik and Moduli
(1)
k consisting of formal moduli

problems defined for commutative and associative algebras over k, respectively. In the∞-categorical context,
there is a whole hierarchy of algebraic notions in between these two extremes. Recall that the commutative
∞-operad can be identified with the colimit of a sequence

Ass⊗ ' E⊗1 → E⊗2 → E⊗3 → · · · ,

where E⊗n denotes the Boardman-Vogt ∞-operad of little n-cubes (see Corollary A.5.1.1.5). Consequently,
the ∞-category CAlgk of E∞-algebras over k can be identified with the limit of a tower of ∞-categories

· · · → Alg
(3)
k → Alg

(2)
k → Alg

(1)
k ' Algk,

where Alg
(n)
k denotes the∞-category of En-algebras over k. Our goal in this section is to prove a generaliza-

tion of Theorem 3.0.4 in the setting of En-algebras, for an arbitrary integer n ≥ 0. To formulate our result,
we need a bit of terminology.
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Definition 4.0.1. Let k be a field, let n ≥ 1, and let A be an En-algebra over k. We will say that A is small

if its image in Algk is small, in the sense of Definition 3.0.1. We let Alg
(n),sm
k denote the full subcategory of

Algsm
k spanned by the small En-algebras over k.

Remark 4.0.2. Let n ≥ 1 and let A be an En-algebra over k. Then A is small if and only if it is connective,
π∗A is finite-dimensional over k, and the unit map k → (π0A)/m is an isomorphism, where m denotes the
radical of π0A.

Remark 4.0.3. Let k be a field and let A be an En-algebra over k, for n ≥ 0. An augmentation on A is

a map of En-algebras ε : A → k. We let Alg
(n),aug
k = (Alg

(n)
k )/k denote the ∞-category of augmented En-

algebras over k. Note that if n ≥ 1 and A ∈ Alg
(n)
k is small, then the space Map

Alg
(n)
k

(A, k) of augmentations

on A is contractible. It follows that the projection map

Alg
(n),aug
k ×

Alg
(n)
k

Alg
(n),sm
k → Alg

(n),sm
k

is an equivalence of∞-categories. We will henceforth abuse notation by identifying Alg
(n),sm
k with its inverse

image in Alg
(n),aug
k .

Remark 4.0.4. It will be convenient to have a version of Definition 3.0.1 also in the case n = 0. We
therefore adopt the following convention: we will say that an augmented E0-algebra A over k is small if A is

connective and π∗A is a finite dimensional vector space over k. We let Alg
(0),sm
k denote the full subcategory

of Alg
(0),aug
k spanned by the small augmented E0-algebras over k.

Notation 4.0.5. Let k be a field, let n ≥ 0, and let ε : A→ k be an augmented En-algebra over k. We let
mA denote the fiber of the map ε in the stable ∞-category Modk. We will refer to mA as the augmentation
ideal of A. The construction (ε : A→ k) 7→ mA determines a functor

m : Alg
(n),aug
k → Modk .

In the case n = 0, this functor is an equivalence of ∞-categories.

Definition 4.0.6. Let k be a field, let n ≥ 0 be an integer and let X : Alg
(n),sm
k → S be a functor. We will

say that X is a formal En moduli problem if it satisfies the following conditions:

(1) The space X(k) is contractible.

(2) For every pullback diagram

R //

��

R0

��
R1

// R01

in Algsm
k for which the underlying maps π0R0 → π0R01 ← π0R1 are surjective, the diagram

X(R) //

��

X(R0)

��
X(R1) // X(R01)

is a pullback square.

We let Moduli
(n)
k denote the full subcategory of Fun(Alg

(n),sm
k , S) spanned by the formal En moduli problems.
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Example 4.0.7. It is not difficult to show that a functor X : Alg
(0),sm
k → S is a formal E0 moduli problem if

and only if it is strongly excisive (see Definition A.1.4.4.4): that is, if and only if X carries the initial object

of Alg
(0),sm
k to a final object of S, and carries pushout squares to pullback squares.

We are now ready to formulate our main result.

Theorem 4.0.8. Let k be a field and let n ≥ 0 be an integer. Then there is an equivalence of ∞-categories

Ψ : Alg
(n),aug
k → Moduli

(n)
k . Moreover, the diagram

Alg
(n),aug
k

Ψ //

m

��

Moduli
(n)
k

T [−n]

��
Modk // Sp

commutes up to homotopy, where T : Moduli
(n)
k → Sp denotes the tangent complex functor (so that

Ω∞−mTX ' X(k ⊕ k[m]) for m ≥ 0) and m : Alg
(n),aug
k → Modk is the augmentation ideal functor of

Notation 4.0.5.

Example 4.0.9. When n = 1, Theorem 4.0.8 follows from Theorem 3.0.4 and Remark 3.2.6.

Remark 4.0.10. Suppose that k is a field of characteristic zero. For each n ≥ 0, there is an evident

forgetful functor CAlgsm
k → Alg

(n),sm
k , which induces a forgetful functor θ : Moduli

(n)
k → Modulik. Using the

equivalences

Liek ' Modulik Moduli
(n)
k ' Alg

(n),aug
k

of Theorems 2.0.2 and 4.0.8, we can identify θ with a map Alg
(n),aug
k → Liek. We can summarize the situation

informally as follows: if A is an augmented En-algebra over k, then the shifted augmentation ideal mA[n−1]
inherits the structure of a differential graded Lie algebra over k. In particular, at the level of homotopy
groups we obtain a Lie bracket operation

[, ] : πpmA × πqmA → πp+q+n−1mA.

One can show that this Lie bracket is given by the Browder operation on mA. If Free : Modk → Alg
(n)
k denotes

the free algebra functor (left adjoint to the forgetful functor Alg
(n)
k → Modk), then the Browder operation

is universally represented by the the map φ appearing in the cofiber sequence of augmented En-algebras

Free(k[p+ q + n− 1])
φ→ Free(k[p]⊕ k[q])→ Free(k[p])⊗k Free(k[q])

supplied by Theorem A.5.1.5.1.

The appearance of the theory of En-algebras on both sides of the equivalence

Alg
(n),aug
k ' Moduli

(n)
k ⊆ Fun(Alg

(n),sm
k , S)

is somewhat striking: it is a reflection of the Koszul self-duality of the little cubes operads E⊗n (see [17]). In
particular, there is a Koszul duality functor

D(n) : (Alg
(n),aug
k )op → Alg

(n),aug
k .

This functor is not difficult to define directly : if A is an augmented En-algebra over k, then D(n)(A)
is universal among En-algebras over k such that the tensor product A ⊗k D(n)(A) is equipped with an
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augmentation extending the augmentation on A. The equivalence Ψ appearing in the statement of Theorem
4.0.8 carries an augmented En-algebra A to the functor X given by the formula

X(R) = Map
Alg

(n),aug
k

(D(n)(R), A).

In §4.5, we will prove that the Koszul duality functor D(n) is a deformation theory (in the sense of
Definition 1.3.9), so that Theorem 4.0.8 is a consequence of Theorem 1.3.12. The main point is to produce a

full subcategory Ξ0 ⊆ Alg
(n),aug
k which satisfies axiom (D3) of Definition 1.3.1. We will define Ξ0 to be the

full subcategory of Alg
(n),aug
k spanned by those augmented En algebras A which satisfy suitable finiteness

and coconnectivity conditions. We will then need to prove two things:

(a) The full subcategory Ξ0 ⊆ Alg
(n),aug
k has good closure properties.

(b) For every object A ∈ Ξ0, the biduality map A→ D(n)D(n)(A) is an equivalence.

The verification of (a) comes down to connectivity properties of free algebras over the En-operad. We will
establish these properties in §4.1, using topological properties of configuration spaces of points in Euclidean
space.

The proof of (b) is more involved, and requires us to have a good understanding of the Koszul duality
functor D(n). Let us begin with the case n = 1, which we have already studied in §3.1. Let A be an
E1-algebra over a field k. Then the Koszul dual D(1)(A) can be described as a classifying object for A-linear
maps from k to itself, or equivalently as the k-linear dual of the object k ⊗A k. In §4.3, we will show that
the algebra structure on D(1)(A) can be obtained by dualizing a coalgebra structure on Bar(A) = k⊗A k: in
particular, we have a comultiplication given by

Bar(A) = k ⊗A k ' k ⊗A A⊗A k → k ⊗A k ⊗A k ' Bar(A)⊗k Bar(A).

The proof will require an∞-categorical generalization of the twisted arrow category introduced in Construc-
tion 3.3.5, which we will study in §4.2.

The bar construction A 7→ Bar(A) = k ⊗A k is in some ways better behaved than the Koszul duality
functor D(1): for example, it is a symmetric monoidal functor, while D(1) is not (see Warning 3.1.20). In
§4.4, we will use this observation to analyze the Koszul duality functor D(n) for a general integer n, using

induction on n. Using Theorem A.5.1.2.2, we can identify the ∞-category Alg
(n+1)
k with Alg(Alg

(n)
k ), the

∞-category of associative algebra objects of Alg
(n)
k . If A is an augmented En+1-algebra, then we can apply

the bar construction to obtain a coalgebra object of Alg
(n),aug
k . It is not difficult to show that the Koszul

duality functor

D(n−1) : (Alg
(n),aug
k )op → Alg

(n),aug
k

is lax monoidal. We will show that the composite map

(Alg
(n+1),aug
k )op ' Alg(Alg

(n),aug
k )op

Bar→ Alg((Alg
(n),aug
k )op)

D(n)

→ Alg(Alg
(n),aug
k )

' Alg
(n+1),aug
k

can be identified with the Koszul duality functor D(n+1). This will allow us to deduce results about the
Koszul duality functors D(n) from analogous facts about the Koszul duality functor D(1), and in particular
to deduce (a) from Corollary 3.1.15 (see Theorem 4.4.5).

Remark 4.0.11. Let X : Alg
(n),sm
k → S be a formal En-moduli problem for n ≥ 1. Using the ideas

introduced in §3.4, we can define∞-categories QCohL(X) and QCoh!
L(X) of quasi-coherent and Ind-coherent

sheaves on X, respectively. According to Theorem 4.0.8, the functor X is given by the formula

X(R) = Map
Alg

(n),aug
k

(D(n)(R), A)
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for some (essentially unique) augmented En-algebra A over k. Since the bar construction B 7→ Bar(B) is
symmetric monoidal, it carries augmented Em-algebras over k to augmented Em−1-algebras over k. It follows
that the iterated bar construction Barn−1(A) admits the structure of an E1-algebra. In this context, we have
the following version of Theorem 2.4.1: there is an equivalence of∞-categories QCoh!

L(X) ' RModBarn−1(A)

(and therefore also a fully faithful embedding QCohL(X) ↪→ RModBarn−1(A)). Moreover, one can show that
this is an equivalence of En−1-monoidal ∞-categories (here the En−1-monoidal structure on RModBarn−1(A)

arises from the fact that Barn−1(A) can be regarded as an En−1-algebra object of Algopk ).

4.1 Coconnective En-Algebras

Let k be a field and let n ≥ 0 be an integer. Our goal in this section is to study some finiteness and
coconnectivity conditions on En-algebras over k which will play a role in our proof of Theorem 4.0.8.

Definition 4.1.1. Let k be a field and let A be an E0-algebra over k: that is, a k-module equipped with
a unit map e : k → A. Let m be an integer. We will say that A is m-coconnective if the homotopy groups
πi cofib(e) vanish for i > −m.

More generally, if A is an En-ring equipped with a map of En-rings k → A, we will say that A is m-
coconnective if it is m-coconnective when regarded as an E0-algebra over k (here we do not require that A
is an En-algebra over k, though this will always be satisfied in cases of interest to us).

Remark 4.1.2. If A is an E1-algebra over a field k, then A is coconnective (in the sense of Definition 3.1.13)
if and only if it is 1-coconnective (in the sense of Definition 4.1.1).

Remark 4.1.3. If m > 0, then an En-algebra A over k is m-coconnective if and only if the unit map k → A
induces an isomorphism k → π0A, and the homotopy groups πiA vanish for i > 0 and −m < i < 0.

Notation 4.1.4. Let k be a field and let n ≥ 0 be an integer. We let Free(n) : Modk → Alg
(n)
k denote a left

adjoint to the forgetful functor Alg
(n)
k → Modk. For any object V ∈ Modk, the free algebra Free(n)(V ) is

equipped with a canonical augmentation ε : Free(n)(V )→ k, corresponding to the zero morphism. V → k in
Modk.

Our main result can be stated as follows:

Theorem 4.1.5. Let k be a field, let A be an En-algebra over k, and let m ≥ n be an integer. Suppose we
are given a map φ : V → A in Modk, where πiV ' 0 for i ≥ −m, and form a pushout diagram

Free(n)(V )
φ′ //

ε

��

A

��
k // A′

where φ′ is the map of En-algebras determined by φ and ε is the augmentation of Notation 4.1.4. If A is
m-coconnective, then A′ is also m-coconnective.

Our proof of Theorem 4.1.5 is somewhat indirect. We will first show that the conclusion of Theorem 4.1.5
is valid under an additional hypothesis on A (Proposition 4.1.13). We will then use this variant of Theorem
4.1.5 to show that the additional hypothesis is automatically satisfied (Proposition 4.1.14). First, we need
to introduce a bit of terminology.

Notation 4.1.6. Let k be a field and let A be an En-algebra over k. We let ModEn
A = ModEn

A (Modk)

denote the ∞-category of En-modules over A (see §A.3.3.3). Note that ModEn
A is a presentable ∞-category

(Theorem A.3.4.4.2) and the forgetful functor θ : ModEn
A → Modk is conservative and preserves small limits
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and colimits (Corollaries A.3.4.3.3, A.3.4.3.6, and A.3.4.4.6). It follows that ModEn
A is a stable ∞-category.

The composite functor

ModEn
A

θ→ Modk → Sp
Ω∞→ S

preserves small limits and filtered colimits, and is therefore corepresentable by an object M ∈ ModEn
A

(Proposition T.5.5.2.7). Since θ is conservative, the object M generates ModEn
A in the following sense: an

object N ∈ ModEn
A vanishes if and only if the abelian groups Extn

ModEn
A

(M,N) vanish for every integer n.

Applying Theorem A.7.1.2.1 (and its proof), we see that there exists an E1-ring
∫
A and an equivalence of

∞-categories LMod∫
A ' ModEn

A carrying
∫
A to the module M (this latter condition is equivalent to the

requirement that the composition

LMod∫
A ' ModEn

A → Modk → Sp

is equivalent to the forgetful functor LMod∫
A → Sp). The E1-ring A can be characterized (up to equivalence)

as the E1-ring of endomorphisms of M in the stable ∞-category ModEn
A .

Remark 4.1.7. In the situation of Notation 4.1.6, let ModEn denote the∞-category of pairs (A,M), where

A is an En-algebra over k and M is an En-module over A. We have a presentable fibration ModEn → Alg
(n)
k ,

classified by a functor χ : Alg
(n)
k → PrL; here PrL denotes the ∞-category whose objects are presentable

∞-categories and whose morphisms are functors which preserve small colimits. Since each ModEn
A is stable,

the functor χ factors as a composition

Alg
(n)
k

χ′→ ModSp(PrL)→ PrL

(see Proposition A.6.3.2.13). Since χ carries the inital object k ∈ Alg
(n)
k to Modk (see Proposition A.3.4.2.1),

the canonical map Sp → Modk allows us to factor χ through a functor χ′′ : Alg
(n)
k → ModSp(PrL)Sp /.

According to Theorem A.6.3.5.5, the construction B 7→ LModB determines a fully faithful embedding
Alg(Sp) → ModSp(PrL)Sp /, and Notation 4.1.6 implies that the functor χ′′ factors through the essen-
tial image of this embedding. It follows that we can regard the construction A 7→

∫
A as a functor∫

: Alg
(n)
k → Alg(Sp).

Remark 4.1.8. Let k be a field, and regard k as an En-algebra over itself. Then the forgetful functor
ModEn

k → Modk is an equivalence of ∞-categories (Proposition A.3.4.2.1), so that we have a canonical
equivalence of E1-rings k '

∫
k. For any En-algebra A over k, the unit map k → A is a map of En-algebras,

and therefore induces a map of E1-rings k '
∫
k →

∫
A. In particular, the homotopy groups π∗A can be

regarded as vector spaces over the field k.
With more effort, one can show that the map k →

∫
A is central: that is,

∫
A can be regarded as an

E1-algebra over k. We will not need this fact.

Example 4.1.9. If n = 0 and A is an En-algebra over k, then the forgetful functor ModEn
A → Modk is an

equivalence Proposition A.3.3.3.19). It follows that the map k →
∫
A of Remark 4.1.8 is an equivalence.

That is,
∫

: Alg
(0)
k → Alg(1) can be identified with the constant functor taking the value k.

Example 4.1.10. If n = 1 and A ∈ Alg
(n)
k , then there is a canonical equivalence of ∞-categories ModE1

A '
ABModA(Modk) (Theorem A.4.3.4.28). Using Corollary A.6.3.6.12, we obtain a canonical equivalence of
E1-rings

∫
A ' A⊗k Arev, where Arev denotes the E1-algebra A equipped with the opposite multiplication.

More generally, for any integer n ≥ 1, the inclusion of∞-operads E⊗1 → E⊗n determines a forgetful functor
AlgEn

A → AlgE1

A which induces a map of E1-rings A⊗k Arev →
∫
A. We may therefore regard

∫
A as an A-A

bimodule object of Modk.

Remark 4.1.11. Let k be a field and let A be an En-algebra over k. One can show that the E1-ring
∫
A

is given by the topological chiral homology
∫
Rn−{0}A defined in §A.5.3.2). We will make no use of this

description in what follows.
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Remark 4.1.12. Let A be an En-algebra over a field k. Theorem A.7.3.6.1 supplies a fiber sequence of
En-modules over A

LA/k[n− 1]→
∫
A→ A,

where LA/k denotes the relative cotangent complex of A over k in the setting of En-algebras. If A is
connective, then LA/k is also connective. For n ≥ 1, it follows that

∫
A is also connective (this is also true

for n = 0; see Example 4.1.9), so that the ∞-category ModEn
A (Modk) ' Mod∫

A inherits a t-structure from

the t-structure on Modk. For n ≥ 2, we deduce also that the map π0

∫
A→ π0A is an isomorphism, so that the

forgetful functor ModEn
A (Modk) → LModA induces an equivalence of abelian categories ModEn

A (Modk)♥ '
LMod♥A.

Theorem 4.1.5 is an immediate consequence of the following pair of results:

Proposition 4.1.13. Let k be a field, let A be an En-algebra over k, and let m ≥ n be an integer. Suppose
we are given a map φ : V → A in Modk, where πiV ' 0 for i ≥ −m, and form a pushout diagram

Free(n)(V )
φ′ //

ε

��

A

��
k // A′

where φ′ is the map of En-algebras determined by φ and ε is the augmentation of Notation 4.1.4. Assume
that A is m-coconnective and that

∫
A is (m+ 1− n)-coconnective. Then A′ is m-coconnective, and

∫
A′ is

(m+ 1− n)-coconnective. Moreover, if A and
∫
A are locally finite, then A′ and

∫
A′ are locally finite.

Proposition 4.1.14. Let A be an En-algebra over a field k, and assume that A is m-coconnective for m ≥ n.
Then the E1-ring

∫
A is (m+ 1− n)-coconnective.

The proof of Propositions 4.1.13 and 4.1.14 rely on having a good understanding of the free algebra functor

Free(n) : Modk → Alg
(n)
k . Recall that for V ∈ Modk, the underlying k-module spectrum of Free(n)(V ) is

given by ⊕
m≥0

Symm
En(V ),

where Symm
En(V ) is the colimit of a diagram indexed by the full subcategory Km,n ⊆ (E⊗n )/〈1〉 spanned by the

active morphisms 〈m〉 → 〈1〉 in the ∞-operad E⊗n (see Proposition A.3.1.3.11). We will need the following
geometric fact, which will be proven at the end of this section:

Lemma 4.1.15. Let m and n be positive integers. Then the Kan complex Km,n defined above is homotopy
equivalent to Sing(X), where X is a finite CW complex of dimension ≤ (m− 1)(n− 1).

Lemma 4.1.16. Let A be a coconnective E1-algebra over a field k such that π−1A ' 0. Let M be a left
A-module, let N be a right A-module. Suppose that A, M , and N are locally finite, and that πiM ' πiN ' 0
for i > 0. Then N ⊗AM is locally finite.

Proof. Let {M(n)}n≥0 be as in Lemma 3.1.16. Then πi(N ⊗AM) ' lim−→πi(N ⊗AM(n)). We have cofiber
sequences

A⊗k V (n)→M(n− 1)→M(n)

where V (n) ∈ (Modk)≤−n, whence a cofiber sequences

N ⊗k V (n)→ N ⊗AM(n− 1)→ N ⊗AM(n)

in Modk. Since each πiV (n) is finite-dimensional, the homotopy groups of N ⊗k V (n) are finite-dimensional.
It follows by induction on n that N ⊗A M(n) is locally finite. Since πi(N ⊗k V (n)) ' 0 for i > −n, the
maps πi(N ⊗A M(n − 1)) → πi(N ⊗A M(n)) are bijective for i > −n + 1. It follows that πi(N ⊗A M) '
lim−→πi(N ⊗AM(n)) is also a finite dimensional vector space over k.
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Lemma 4.1.17. Let k be a field and let n ≥ 0. The functor
∫

: Alg
(n)
k → Alg(1) preserves small sifted

colimits.

Proof. Let Θ : Alg(1) → ModSp(PrL)Sp / be the fully faithful embedding B 7→ LModB of Theorem A.6.3.5.5.
To prove that the functor

∫
preseves small sifted colimits, it will suffice to show that the composite functor

Θ ◦
∫

preserves small sifted colimits. Since every sifted simplicial set is contractible, it suffices to show

that the induced map Alg
(n)
k → ModSp(PrL) preserves small sifted colimits (Proposition T.4.4.2.9). Using

Theorem A.7.3.5.14, we see that this functor classifies the stable envelope of the Cartesian fibration θ :

Fun(∆1,Alg
(n)
k ) → Fun({1},Alg

(n)
k ), classified by the functor ξ : Alg

(n)
k → PrL given informally by A 7→

(Alg
(n)
k )/A. It will therefore suffice to show that ξ preserves small sifted colimits. Using Theorem T.5.5.3.18,

we are reduced to showing that the composite functor Alg
(n)
k

ξ→ PrL ' PrRop → Ĉat
op

∞ preserves small
sifted colimits. This functor also classifies the forgetful functor θ (this time as a Cartesian fibration). Fix a

sifted ∞-category K and a colimit diagram f : K. → Alg
(n)
k ; we wish to show that the Cartesian fibration

θ′ : Fun(∆1,Alg
(n)
k )×

Fun({1},Alg
(n)
k )

K. is classified by limit diagram (K.)op → Ĉat∞. Let A ∈ Alg
(n)
k denote

the image under f of the cone point of K., and for each vertex v ∈ K let Av = f(v). According to Lemma
VII.5.17, it will suffice to verify the following:

(a) The pullback functors qv : (Alg
(n)
k )/A → (Alg

(n)
k )/Av , given by B 7→ Av ×A B, are jointly conservative.

Since K is nonempty, it will suffice to show that for each v ∈ K, the pullback qv is conservative. To

this end, suppose we are given a map α : B → B′ in (Alg
(n)
k )/A such that qv(α) is an equivalence.

Since the fiber of α (as a map of spectra) is equivalent to the fiber of qv(α) (by virtue of Corollary
A.3.2.2.5), we conclude that α is an equivalence as well.

(b) Let h ∈ Fun
Alg

(n)
k

(K,Fun(∆1,Alg
(n)
k )) be a map which carries each edge ofK to a θ-Cartesian morphism

in the∞-category Fun(∆1,Alg
(n)
k ), corresponding to a natural transformation {Bv → Av}v∈K , and let

h ∈ Fun
Alg

(n)
k

(K.,Alg
(n)
k ) be an θ-colimit diagram extending h; we wish to show that h carries each

edge of K. to a θ-Cartesian morphism in Fun(∆1,Alg
(n)
k ). Unwinding the definitions, we must show

that if B = lim−→Bv, then for each v ∈ K the diagram σ :

Bv //

��

B

��
Av // A

is a pullback square in Alg
(n)
k . For each v ∈ K, let Iv denote the fiber of the map Bv → Av in Modk,

and let I be the fiber of the map B → A; we wish to show that each of the canonical maps Iv → I is
an equivalence in Modk. Our assumption on h guarantees that the diagram v 7→ Iv carries each edge
of K to an equivalence in Modk. It will therefore suffice to show that the canonical map lim−→ Ik → I is
an equivalence in Modk. Since Modk is stable, the formation of fibers commutes with colimits; it will
therefore suffice to show that A and B are colimits of the diagrams {Av}v∈K and {Bv}v∈K in Modk,

respectively. Since K is sifted, this follows from the fact that the forgetful functor Alg
(n)
k → Modk

preserves sifted colimits (Proposition A.3.2.3.1).

Remark 4.1.18. Let C be a presentable ∞-category equipped with an En-monoidal structure, and if n > 0
assume that the tensor product on C preserves coproducts separately in each variable. Let Km,n be as in
the statement of Lemma 4.1.15, and let Km,n(S) denote the fiber product Km,n ×N(J) N(J(S)). According
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to Proposition A.3.1.3.11, the free algebra functor Free(n) : C → Alg/En(C) carries an object X ∈ C to the

coproduct
∐
m≥0 Sym

(n)
En (X), where Sym

(n)
En (X) denotes the colimit of a diagram φX : Km,n → C.

Suppose now that X ∈ C is a coproduct of objects {Xs}s∈S . Let J be the subcategory of Fin∗ consisting of
the object 〈m〉 and its automorphisms. Let J(S) be the category whose objects are maps of sets {1, . . . ,m} →
S, and whose morphisms are given by commutative diagrams

{1, . . . ,m}

$$

ν // {1, . . . ,m}

zz
S

where ν is bijective. There is an evident forgetful functor q : J(S)→ J. Then φX can be identified with the
left Kan extension (along q) of a functor φ{Xs}s∈S : J(S)→ J, where β carries an operation γ : 〈m〉 → 〈1〉 in
E⊗n and a map α : 〈m〉◦ → S to the object γ!(Xα(1), . . . , Xα(m)) ∈ C (here γ! : Cm → C denotes the functor
determined by the En-monoidal structure on C).

For every map µ : S → Z≥0 satisfying
∑
s∈S µ(s) = m < ∞, let J(S, µ) denote the full subcategory of

J(S) spanned by those maps α : 〈m〉◦ → S such that α−1{s} has cardinality µ(s), and let Km,n(S, µ) denote
the fiber product Km,n(S) ×N(J(S)) N(J(S, µ)). Then Km,n(S) is a disjoint union of the Kan complexes

Km,n(S, µ). It follows that Symm
En(X) is a coproduct

∐
µ lim−→β|Km,n(µ). Note that if T ⊆ S and µ(s) = 0

for s /∈ T , then there is a canonical equivalence

φ{Xs}s∈S |Km,n(S, µ) ' φ{Xs}s∈T |Km,n(T, µ|T ).

It follows that if the cardinality of S is larger than m, then Symm
En(X) can be written as a coproduct of

objects, each of which is a summand of Symm
En(

∐
t∈S−{s}Xt) for some s ∈ S.

Proof of Proposition 4.1.13. We will assume n > 0 (otherwise the result is trivial). Let φ′0 : Free(n)(V )→ A
be the map of En-algebras induced by the zero map V → A, so that A′ can be identified with the colimit of
the coequalizer diagram

Free(n)(V )
φ′ //
φ′0

// A.

given by a map u0 : N(∆s,≤1)op → Alg
(n)
k . Let u : N(∆)op → Alg

(n)
k be a left Kan extension of u0 along

the inclusion N(∆s,≤1)op ↪→ N(∆)op, so that u determines a simplicial object A• in Alg
(n)
k with A′ ' |A•|

and Ap ' A
∐

Free(V p) for all p ≥ 0. Let R =
∫
A so that LModR ' ModEn

A (Modk) is equipped with an
En-monoidal structure, where the tensor product is given by the relative tensor product over A. We will
need the following estimate:

(∗) For each integer a > 0, the iterated tensor product R⊗a belongs to (Modk)≤0. Moreover, if A and
∫
A

are locally finite, then R⊗a is locally finite.

Suppose first that n = 1, so that R ' A ⊗k Arev (Example 4.1.10). Then R⊗a can be identified with
an iterated tensor product A⊗k A⊗k · · · ⊗k A and assertion (∗) is obvious. We may therefore assume that
n ≥ 2. In this case, A is m ≥ n ≥ 2-coconnective, so the desired result follows from Corollary VIII.4.1.11
and Lemma 4.1.16.

Let V ′ = R ⊗k V denote the image of V in ModEn
A . For each p ≥ 0, Corollary A.3.4.1.5 allows us

to identify Ap with the free En-algebra generated by V ′ in the En-monoidal ∞-category ModEn
A . Using

Proposition A.3.1.3.11, we obtain an equivalence

Ap '
⊕
a≥0

Syma
En V

′p
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(where the symmetric powers are computed in ModEn
A ). Let Q denote the cofiber of the map A→ A′ in the

stable ∞-category ModEn
A (Modk), so that Q is given by the geometric realization of a simplicial object Q•

with Qp '
⊕

a>0 Syma
En V

′p. To show that A′ is m-coconnective, it will suffice to show that πiQ ' 0 for
i > −m.

Using Remark A.1.2.4.5, we obtain a spectral sequence {Ep,qr }r≥1 converging to πp+qQ, where E∗,q1 is
the normalized chain complex associated to the simplicial k-vector space

[p] 7→
⊕
a>0

πq Syma
En(V ′p).

It follows from Remark 4.1.18 that the summand πq Syma
En(V ′p) lies in the image of the degeneracy maps

of this simplicial vector space whenever p > a.
Note that Syma

En(V ′p) is the colimit of a diagram φV ′ : Ka,n → ModEn
A (Modk) whose value on each

vertex is given by (V ′p)⊗a, where Ka,n is the Kan complex appearing in the statement of Lemma 4.1.15.
Since πiV ' 0 for i > −m− 1, condition (∗) guarantees that πi(V

′p)⊗a ' 0 for i > (−m− 1)a, and that the
homotopy groups of (V ′p)⊗a are finitely generated vector spaces over k provided that A and R are locally
finite. Combining this with Lemma 4.1.15, we deduce that if a > 0, then πq Syma

En(V ′p) vanishes for

q > (a− 1)(n− 1) + (−m− 1)a = 1− 2a−m+ (n−m)(a− 1)

and thus for q > 1− 2a−m.
If the vector space Ep,q1 is nonzero, there must be an integer a > 0 such that p ≤ a and q ≤ 1− 2a−m,

so that p+ q ≤ 1− a−m ≤ −m. This proves that πiQ ' 0 for i > p+ q, so that A′ is m-coconnective. For
any integer i, the inequality i = p+ q ≤ 1− a−m implies that a is bounded above by 1−m− i, so that πiQ
admits a finite filtration whose associated graded vector space consists of subquotients of πi−p Syma

En V
′p

where a ≤ 1−m− i and p ≤ a. It follows that if A and R are locally finite, then Q is also locally finite, so
that A′ is locally finite.

To complete the proof, we must show that
∫
A′ is (1+m−n)-coconnective, and that

∫
A′ is locally finite if

A and
∫
A are locally finite. According to Lemma 4.1.17,

∫
A′ can be identified with the geometric realization

of the simplicial E1-ring
∫
A•. Let B be an arbitrary En-ring, let W ∈ Modk and let W ′ = (

∫
B)⊗kW denote

the image of W in ModEn
B ' LMod∫

B . Then the coproduct B
∐

Free(n)(W ) can be identified with the free

En-algebra in ModEn
B generated by W ′, which is given by

⊕
a≥0 Syma

En(W ′). If we let Z(W ) denote the

cofiber in Modk of the map B → B
∐

Free(n)(W ), then we obtain an equivalence
∫
B ' lim−→b 7→∞ΩbZ(Σbk).

Taking B = Ap, we obtain an equivalence∫
Ap ' lim−→

b7→∞
Ωb(

⊕
a≥0

Syma
En(V ′p ⊕ Σbk))/(

⊕
a≥0

Syma
En(V ′p)).

Remark 4.1.18 gives a canonical decomposition

Syma
En(V ′p ⊕ Σbk) '

⊕
a=a′+a′′

Fa′,a′′(V
′p,Σbk).

Note that Fa−1,1 is an exact functor of the second variable, and that if a′′ ≥ 2, then the colimit

lim−→ΩbFa′,a′′(V
′p,Σbk)

vanishes. We therefore obtain an equivalence
∫
Ap '

⊕
a>0 Fa−1,1(V ′p, k). Unwinding the definitions, we

see that Fa−1,1(X,Y ) is given by the colimit of a diagram K̃a,n → ModEn
A (Modk), which carries each vertex

to the iterated tensor product (V ′p)⊗a−1 ⊗A R, here K̃a,n is a finite-sheeted covering space of Km,n and
therefore equivalent to the singular complex of a finite CW complex of dimension ≤ (a− 1)(n− 1) (Lemma
4.1.15). Since condition (∗) implies that πi(V

′p)⊗a−1 ⊗A R vanishes for i > (−m − 1)(a − 1), we conclude
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that πqFa−1,1(V ′p, k) ' 0 for q > (−m − 1)(a − 1) + (n − 1)(a − 1) = (n − m − 2)(a − 1) and therefore
for q > 2 − 2a. Moreover, if A and

∫
A are locally finite, then each πqFa−1,1(V ′p, k) is a finite dimensional

vector space over k.
Let Q′ denote the spectrum given by the cofiber of the map

∫
A →

∫
A′, so that Q′ is the geometric

realization of a simplicial spectrum Q′• given by

Q′p '
⊕
a≥2

Fa−1,1(V ′p, k).

Using Remark A.1.2.4.5, we obtain a spectral sequence {E′p,qr }r≥1 converging to πp+qQ
′, where E′∗,q1 is the

normalized chain complex associated to the simplicial k-vector space

[p] 7→
⊕
a≥2

πqFa−1,1(V ′p, k).

Arguing as above, we deduce that the summand πqFa−1,1(V ′p, k) lies in the image of the degeneracy maps
of this vector space whenever p ≥ a. It follows that if E′p,q1 is nonzero, then there exists an integer a ≥ 2
such that p < a and q ≤ 2− 2a, so that p+ q < 2− a ≤ 0. It follows that πiQ

′ ' 0 for i ≥ 0, from which we
immediately conclude that

∫
A′ is 1-coconnective. For any integer i, the inequality i = p+ q ≤ 2− a implies

that a is bounded above by 2− i, so that πiQ
′ admits a finite filtration whose associated graded vector space

consists of subquotients of πi−pFa−1,1(V ′p, k) where 2 ≤ a ≤ 2− i and p < a. If A and
∫
A are locally finite,

then these subquotients are necessarily finite dimensional, so that each πiQ
′ is a finite dimensional vector

space. It then follows that
∫
A′ is locally finite as desired.

Proof of Proposition 4.1.14. Let A be an En-algebra over a field k, and assume that A is m-coconnective for
m ≥ n. We wish to show that

∫
A is (m−n+ 1)-coconnective. The result is trivial if n = 0 (Example 4.1.9);

we will therefore assume that n ≥ 1. We construct a sequence of maps A(0)→ A(1)→ · · · in (Alg
(n)
k )/A by

induction. Let A(0) = k. Assuming that A(i) has already been defined, we let V (i) denote the fiber of the
map A(i)→ A (in Modk) and define A(i+ 1) so that there is a pushout square

Free(n)(V (i))
φ′ //

ε

��

A(i)

��
k // A(i+ 1)

as in the statement of Proposition 4.1.13. We prove the following statements by induction on i:

(ai) The En-algebra A(i) is m-coconnective.

(bi) The map π−mA(i)→ π−mA is injective.

(ci) The E1-algebra
∫
A is (m+ 1− n)-coconnective.

(di) We have πjV (i) ' 0 for j ≥ −m.

It is clear that conditions (a0), (b0), and (c0) are satisfied. Note that (ai) and (bi) imply (di) and
that (ai), (ci) and (di) imply (ai+1) and (ci+1) by Proposition 4.1.13. It will therefore suffice to show
that (ai), (bi), (ci), and (di) imply condition (bi+1). As in the proof of Proposition 4.1.13, we can identify

A(i+ 1) with the geometric realization of a simplicial object A• of Alg
(n)
k , with Ap ' A(i)

∐
Free(n)(V (i)p).

Let Q denote the cofiber of the map A(i) → A(i+ 1) (as an object of ModEn
Ai

(k)) we have a canonical map
φ : Q→ cofib(A(i)→ A) ' V (i)[1]. We wish to prove that φ induces an injection π−nQ→ π−n−1V (i), which
follows immediately by inspecting the spectral sequence {Ep,qr }r≥1 appearing in the proof of Proposition
4.1.13.
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We now claim that the canonical map θ : lim−→A(i)→ A is an equivalence. Combining this with assertions

(ci) and Lemma 4.1.17, we conclude that
∫
A ' lim−→

∫
A(i) is (m + 1 − n)-connective as desired. To prove

that θ is an equivalence, we note that the image of A(i) in Modk can be identified with the colimit of the
sequence

k ' A(0)→ A(0)/V (0)→ A(1)→ A(1)/V (1)→ · · · ,
where each cofiber A(i)/V (i) is equivalent to A.

We complete this section by giving the proof of Lemma 4.1.15.

Lemma 4.1.19. Fix an integer b ≥ 0, and let Qb denote the set of sequences (I1, . . . , Ib), where each
Ij ⊆ (−1, 1) is a closed interval, and we have x < y whenever x ∈ Ii, y ∈ Ij, and i < j. We regard Q as
a partially ordered set, where (I1, . . . , Ib) ≤ (I ′1, . . . , I

′
b) if Ij ⊆ I ′j for 1 ≤ i ≤ j. Then the nerve N(Qb) is

weakly contractible.

Proof. The proof proceeds by induction on b. If b = 0, then Qb has a single element and there is nothing to
prove. Otherwise, we observe that “forgetting” the last coordinate induces a Cartesian fibration q : N(Qb)→
N(Qb−1). We will prove that the fibers of q are weakly contractible, so q is left cofinal (Lemma T.4.1.3.2)
and therefore a weak homotopy equivalence. Fix an element x = ([t1, t

′
1], [t2, t

′
2], . . . , [tb−1.t

′
b−1]) ∈ Qb−1.

Then q−1{x} can be identified with the nerve of the partially ordered set Q′ = {(tb, t′b) : t′b−1 < tb < t′b < 1},
where (tb, t

′
b) ≤ (sb, s

′
b) if tb ≥ sb and t′b ≤ s′b.

The map (tb, t
′
b) 7→ t′b is a monotone map from Q′ to the open interval (t′b−1, 1). This map determines

a coCartesian fibration q′ : N(Q′) → N(t′b−1, 1). The fiber of q′ over a point s can be identified with the
opposite of the nerve of the interval (t′b−1, s), and is therefore weakly contractible. It follows that q′ is a weak
homotopy equivalence, so that N(Q′) is weakly contractible as desired.

Proof of Lemma 4.1.15. For every topological space X, let Symm(X) denote the quotient of Xm by the
action of the symmetric group Σm, and let Confm(X) denote the subspace of Symm(X) corresponding to
m-tuples of distinct points in X. Let 2n = (−1, 1)n denote an open cube of dimension n. Using a variant of
Lemma A.5.1.1.3, we obtain a homotopy equivalence Km,n ' Sing(Confm(2n)). It will therefore suffice to
show that the configuration space Confm(2n) is homotopy equivalent to a finite CW complex of dimension
≤ (m−1)(n−1). If n = 1, then Confm(2n) is contractible and there is nothing to prove. We prove the result
in general by induction on n. Let us therefore assume that Km′,n−1 is equivalent to the singular complex of
a CW complex of dimension ≤ (m′ − 1)(n− 2) for every integer m′ ≥ 1.

Let us identify 2n with a product 2n−1 × (−1, 1), and let p0 : 2n → 2n−1 and p1 : 2n → (−1, 1) be
the projection maps. If I ⊆ (−1, 1) is a disjoint union of finitely many closed intervals (with nonempty
interiors), we let [t] ∈ π0I denote the connected component containing t for each t ∈ I. Then π0I inherits
a linear ordering, with [t] < [t′] if and only if t < t′ and [t] 6= [t′]. Let P denote the partially ordered set
of triples (I,∼, µ), where I ⊆ (−1, 1) is a nonempty disjoint union of finitely many closed intervals, ∼ is an
equivalence relation on π0I such that x < y < z and x ∼ z implies x ∼ y ∼ z, and µ : π0I → Z>0 is a
positive integer-valued function such that

∑
x∈π0I

µ(x) = m. We regard (I,∼, µ) as a partially ordered set,
with (I,∼, µ) ≤ (I ′,∼′, µ′) if I ⊆ I ′, µ′(x) =

∑
y µ(y) where the sum is taken over all y ∈ π0I contained in

x, and [s] ∼′ [t] implies [s] ∼ [t] for all s, t ∈ I. For every pair (I,∼, µ) ∈ P , we let Z(I,∼, µ) be the open
subset of Confm(2n) consisting of subsets S ⊆ 2n which are contained in 2n−1 × Io (here Io denotes the
interior of I), have the property that if s, s′ ∈ S and [p1(s)] ∼ [p1(s′)], then either s = s′ or p0(s) 6= p0(s′),
and satisfy µ(x) = |{s ∈ S : p1(s) ∈ x}| for x ∈ π0I.

We next claim:

(∗) The Kan complex Sing(Confm(2n)) is a homotopy colimit of the diagram of simplicial sets

{Sing(Z(I,∼, µ))}(I,∼,µ)∈P .

To prove this, it will suffice (by Theorem A.A.3.1) to show that for each point S ∈ Confm(2n), the partially
ordered set PS = {(I,∼, µ) ∈ P : S ∈ Z(I,∼, µ)} has weakly contractible nerve. Let Q denote the collection
of all equivalence relations ∼ on S with the following properties:
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(i) If p1(s) ≤ p1(s′) ≤ p1(s′′) and s ∼ s′′, then s ∼ s′ ∼ s′′.

(ii) If s ∼ s′, then either s = s′ or p0(s) 6= p0(s′).

We regard Q as a partially ordered set with respect to refinement. Pullback of equivalence relations de-
termines a forgetful functor φ : N(PS) → N(Q)op. It is easy to see that µ is a Cartesian fibration. The
simplicial set N(Q) is weakly contractible, since Q has a smallest element (given by the equivalence relation
where s ∼ s′ if and only if s = s′). We will complete the proof of (∗) by showing that the fibers of φ are
weakly contractible, so that φ is left cofinal (Lemma T.4.1.3.2) and therefore a weak homotopy equivalence.

Fix an equivalence relation ∼∈ Q. Unwinding the definitions, we see that φ−1{∼} can be identified
with the nerve of the partially ordered set R consisting of those subsets I ⊆ (−1, 1) satisfying the following
conditions:

(a) The set I is a disjoint union of closed intervals in (−1, 1).

(b) The set I contains p1(S), and p1 induces a surjection S → π0I.

(c) If p1(s) and p1(s′) belong to the same connected component of I, then s ∼ s′.

To see that N(R) is contractible, it suffices to observe that the partially ordered set Rop is filtered: it has a
cofinal subset given by sets of the form

⋃
s∈S [p1(s)− ε, p1(s) + ε] for ε > 0. This completes the proof of (∗).

We define a category J as follows:

• An object of J is a triple ([a],∼, µ) where [a] ∈∆, ∼ is an equivalence relation on [a] such that i < j < k
and i ∼ k implies that i ∼ j ∼ k, and µ : [a]→ Z>0 is a function satisfying m =

∑
0≤i≤a µ(i).

• A morphism from ([a],∼, µ) to ([a′],∼′, µ′) in J is a nondecreasing map α : [a] → [a′] such that
α(j) ∼ α(j′) implies j ∼ j′ and µ′(j) =

∑
α(i)=j µ(i).

There is an evident forgetful functor q : P → J, which carries a pair (I,∼, µ) to (π0I,∼, µ) where we
abuse notation by identifying π0I with the linearly ordered set [a] for some a ≥ 0. Let Z ′ : J → Set∆ be a
homotopy left Kan extension of Z along q. For each object ([a],∼, µ) ∈ J, we can identify Z ′([a],∼, µ) with
the homotopy colimit of the diagram Z|P[a],∼,µ, where P[a],∼,µ denotes the partially ordered set of quadruples
(I, λ,∼′, µ′) where I ⊆ (−1, 1) is a disjoint union of closed intervals, λ : π0I → [a] is nondecreasing surjection,
∼′ is an equivalence relation on π0I such that λ([t]) ∼ λ([t′]) implies [t] ∼′ [t′], and µ′ : π0I → Z>0 is a
map satisfying µ(i) =

∑
λ(x)=i µ

′(x) for 0 ≤ i ≤ a. Let P ′[a],∼,µ be the subset of P[a],∼,µ consisting of

those quadruples (I, λ,∼′, µ′) where λ is a bijection and ∼′ is the pullback of ∼ along λ. The inclusion
N(P ′[a],∼,µ) → N(P[a],∼,µ) admits a left adjoint and is therefore left cofinal. It follows that Z ′([a],∼, µ) can

be identified with a homotopy colimit of the diagram Z|P ′[a],∼,µ. Note that Z carries each morphism in P ′[a],∼,µ
to a homotopy equivalence of Kan complexes. Since P ′[a],∼ is weakly contractible (Lemma 4.1.19), we conclude

that the map Z(I,∼′, µ′)→ Z ′([a],∼, µ) is a weak homotopy equivalence for any (I, λ,∼′, µ′) ∈ P ′[a],∼,µ.

It follows from condition (∗) that Sing(Km,n) can be identified with a homotopy colimit of the diagram
Z ′. We may assume without loss of generality that Z ′ takes values in Kan complexes, so that Z ′ determines
a map of ∞-categories N(J) → S. We will abuse notation by denoting this map also by Z ′. Note that if
([a],∼, µ) ∈ J, then m =

∑
0≤i≤a µ(i) ≥ a + 1. For each object ([a],∼, µ) ∈ J, we define the complexity

d([a],∼, µ) to be the sum |[a]/ ∼ | +
∑

0≤i≤a(µ(i) − 1). Since [a]/ ∼ has at least one element, d([a],∼, µ)
is bounded below by 1 and bounded above by |[a]| +

∑
0≤i≤a µ(i) − 1 =

∑
0≤i≤a µ(i) = m. Note that for

every nonidentity morphism J → J ′ in J, we have d(J) < d(J ′). It follows that every nondegenerate simplex
in N(J), corresponding to a sequence of nonidentity morphisms J0 → · · · → Jb in J, is bounded in length
by b ≤ m − 1. It follows immediately that the simplicial set N(J) has only finitely many nondegenerate
simplices. We will prove that for every finite simplicial subset A ⊆ N(J), the colimit of the diagram Z ′|A
is homotopy equivalent to the singular complex of finite CW complex of dimension ≤ (n− 1)(m− 1). This
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is obvious when A = ∅, and when A = N(J) it implies the desired result. To carry out the inductive step,
assume that A is nonempty so that there is a pushout diagram

∂∆b //

��

∆b

σ

��
A0

// A

for some smaller simplicial subset A0 ⊆ N(J). The simplex σ carries the initial vertex 0 ∈ ∆b to an object
([a],∼, µ) ∈ J, and we have a pushout diagram

Z ′([a],∼, µ)× ∂∆b //

��

Z ′([a],∼, µ)×∆b

��
lim−→(Z ′|A0) // lim−→(Z ′|A)

where lim−→(Z ′|A0) is homotopy equivalent to the singular complex of a finite CW complex of dimension
≤ (n − 1)(m − 1). Let I ⊆ (−1, 1) be a finite union of a + 1 closed intervals and identify π0I with [a],
so that Z ′([a],∼, µ) ' Z(I,∼, µ) is homotopy equivalent to the product

∏
x∈[a]/∼Confµx(2n−1), where

µx =
∑
i∈x µ(i). Using the inductive hypothesis, we deduce that Z ′([a],∼, µ) is homotopy equivalent to the

nerve of a CW complex of dimension (m − d)(n − 2), where d is the cardinality of the quotient [a]/ ∼. It
follows that lim−→(Z ′|A) is homotopy equivalent to the singular complex of a CW complex having dimension
at most the maximum of (m− 1)(n− 1) and (m− d)(n− 2) + b ≤ (m− 1)(n− 2) + (m− 1) = (m− 1)(n− 1),
as desired.

4.2 Twisted Arrow ∞-Categories

Let C be an ∞-category. Recall that a functor X : Cop → S is representable if there exists an object C ∈ C

and a point η ∈ F (C) such that evaluation on η induces a homotopy equivalence MapC(C ′, C)→ F (C ′) for
each C ′ ∈ C′. An ∞-categorical version of Yoneda’s lemma asserts that there is a fully faithful embedding
j : C → Fun(Cop, S) (Proposition T.5.1.3.1), whose essential image is the full subcategory of Fun(Cop, S)
spanned by the representable functors. The functor j classifies a map µ : Cop×C → S, given informally by
the formula (C,D) 7→ MapC(C,D). In [40], we gave an explicit construction of µ by choosing an equivalence
of C with the nerve of a fibrant simplicial cateogry (see §T.5.1.3).

Our goal in this section is to give another construction of µ, which does not rely on the theory of simplicial
categories. For this, we will need an ∞-categorical version of Construction 3.3.5: to any ∞-category C, we
will associate a new∞-category TwArr(C), called the twisted arrow ∞-category of C. Roughly speaking, the
objects of TwArr(C) are morphisms f : C → D in C, and morphisms in TwArr(C) are given by commutative
diagrams

C
f //

��

D

C ′
f ′ // D.

OO

We will give a precise definition of TwArr(C) below (Construction 4.2.1) and prove that the construction
(f : C → D) 7→ (C,D) determines a right fibration λ : TwArr(C) → C×Cop (Proposition 4.2.3). The right
fibration λ is classified by a functor µ : Cop×C→ S, which we can view in turn as a functor C→ Fun(Cop, S).
We will show that this functor is equivalent to the Yoneda embedding (Proposition 4.2.5); in particular, it
is fully faithful and its essential image is the collection of representable functors F : Cop → S.

The twisted arrow∞-category TwArr(C) will play an important role when we discuss the bar construction
in §4.3. For our applications, it is important to know that the construction C 7→ TwArr(C) is functorial
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and commutes with small limits. To prove this, it will be convenient to describe TwArr(C) by means of a
universal property. We will discuss two such descriptions at the end of this section (see Corollary 4.2.11).

Construction 4.2.1. If I is a linearly ordered set, we let Iop denote the same set with the opposite ordering.
If I and J are linearly ordered sets, we let I ?J denote the coproduct I

∐
J , equipped with the unique linear

ordering which restricts to the given linear orderings of I and J , and satisfies i ≤ j for i ∈ I and j ∈ J .
Let ∆ denote the category of combinatorial simplices: that is, the category whose objects sets of the form
[n] = {0, 1, . . . , n} for n ≥ 0, and whose morphisms are nondecreasing maps between such sets. Then ∆ is
equivalent to the larger category consisting of all nonempty finite linearly ordered sets. The construction
I 7→ I ? Iop determines a functor Q from the category ∆ to itself, given on objects by [n] 7→ [2n+ 1]. If C is
a simplicial set (regarded as a functor ∆op → S), we let TwArr(C) denote the simplicial set given by

[n] 7→ C(Q[n]) = C([2n+ 1]).

Let C be an ∞-category. By construction, the vertices of TwArr(C) are edges f : C → D in C. More
generally, the n-simplices of TwArr(C) are given by (2n+1)-simplices of C, which it may be helpful to depict
as diagrams

C0
//

��

C1
//

��

· · · // Cn

��
D0 D1
oo · · ·oo Dn.oo

Example 4.2.2. Let C be an ordinary category, and let TwArr(C) be the twisted arrow category of C

introduced in Construction 3.3.5. Then there is a canonical isomorphism of simplicial sets

N(TwArr(C)) ' TwArr(N(C)).

Consequently, we can think of Construction 4.2.1 as a generalization of Construction 3.3.5 to the ∞-
categorical context.

Let C be an arbitrary simplicial set. For any linearly ordered set I, we have canonical inclusions

I ↪→ I ? Iop ←↩ Iop.

Composition with these inclusions determines maps of simplicial sets

C← TwArr(C)→ Cop .

Proposition 4.2.3. Let C be an ∞-category. Then the canonical map λ : TwArr(C) → C×Cop is a right
fibration of simplicial sets. In particular, TwArr(C) is also an ∞-category.

Proof. We must show that the map λ has the right lifting property with respect to the inclusion of simplicial
sets Λni ↪→ ∆n for 0 < i ≤ n. Unwinding the definitions, we must show that every lifting problem of the
form

K

��

// C

��
∆2n+1 //

;;

∆0

admits a solution, where K denotes the simplicial subset of ∆2n+1 consisting of those faces σ which satisfy
one of the following three conditions:

• The vertices of σ are contained in the set {0, . . . , n}.

• The vertices of σ are contained in the set {n+ 1, . . . , 2n+ 1}.
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• There exists an integer j 6= i such that 0 ≤ j ≤ n and neither j nor 2n+ 1− j is a vertex of σ.

Since C is an ∞-category, it will suffice to show that the inclusion K ↪→ ∆2n+1 is an inner anodyne map of
simplicial sets.

Let us say that a face σ of ∆2n+1 is primary if it does not belong to K and does not contain any vertex
in the set {0, 1, . . . , i − 1}, and secondary if it does not belong to K and does contain a vertex in the set
{0, 1, . . . , i−1}. Let S be the collection of all simplices of ∆2n+1 which are either primary and do not contain
the vertex i, or secondary and do not contain the vertex 2n + 1 − i. If σ ∈ S, we let σ′ denote the face
obtained from σ by adding the vertex 2n+ 1− i if σ is primary, and by adding the vertex i if σ is secondary.
Note that every face of ∆2n+1 either belongs to K, belongs to S, or has the form σ′ for a unique σ ∈ S.

Choose an ordering {σ1, σ2, σ3, . . . , σm} of S with the following properties:

• If p ≤ q, then the dimension of σp is less than or equal to the dimension of σq.

• If p ≤ q, the simplices σp and σq have the same dimension, and σq is primary, then σp is also primary.

For 0 ≤ q ≤ m, let Kq denote the simplicial subset of ∆2n+1 obtained from K by adjoining the simplices σp
and σ′p for 1 ≤ p ≤ q. We have a sequence of inclusions

K = K0 ↪→ K1 ↪→ · · · ↪→ Km = ∆2n+1.

It will therefore suffice to show that each of the maps Kq−1 ↪→ Kq is inner anodyne. Let d denote the
dimension of the simplex σ′q. It now suffices to observe that there is a pushout diagram of simplicial sets

Λdj

��

// Kq−1

��
∆d

σq // Kq,

where 0 < j < d.

It follows from Proposition 4.2.3 that we can view the map λ : TwArr(C) → C×Cop as a pairing of
∞-categories, in the sense of Definition 3.1.1.

Proposition 4.2.4. Let C be an ∞-category. Then the pairing λ : TwArr(C) → C×Cop is both left and
right representable. Moreover, the following conditions on an object M ∈ TwArr(C) are equivalent:

(a) The object M is left universal (in the sense of Definition 3.1.2).

(b) The object M is right universal (in the sense of Definition 3.1.2).

(c) When viewed as a morphism in the ∞-category C, the object M is an equivalence.

Proof. We will prove that (c) ⇒ (b). Then for every object C ∈ C, the identity morphism idC is a right
universal object of TwArr(C) lying over C ∈ Cop, which proves that λ is right representable. Since a right
universal object of TwArr(C) lying over C ∈ Cop is determined uniquely up to equivalence, we may also
conclude that (b) ⇒ (c). By symmetry, we can also conclude that (a) ⇔ (c) and that the pairing λ is left
representable.

Fix an object D ∈ Cop, and let TwArr(C)D denote the fiber product TwArr(C) ×Cop {D}. Then λ
induces a right fibration of simplicial sets λD : TwArr(C)D → C. We wish to prove that if M is an object of
TwArr(C)D given by an equivalence f : C → D in C, then M represents the right fibration λD.

For every linearly ordered set I, there is an evident map of linearly ordered sets I ?Iop → I ?∗, depending
functorially on I. Composing with these maps, we obtain a functor ψ : C/D → TwArr(C)D. This map is
bijective on vertices (vertices of both C/D and TwArr(C)D can be identified with edges f : C → D of the
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simplicial set C). Since the right fibration C/D → C is representable by any equivalence f : C → D (see the
proof of Proposition T.4.4.4.5), it will suffice to show that the ψ is an equivalence of ∞-categories.

We now define an auxiliary simplicial set M as follows. For every [n] ∈ ∆, we let M([n]) denote the
subset of C([n] ? [0] ? [n]op) consisting of those (2n + 2)-simplices of C whose restriction to [0] ? [n]op is the
constant (n+ 1)-simplex at the vertex D. The inclusions of linearly ordered sets

[n] ? [0] ↪→ [n] ? [0] ? [n]op ←↩ [n] ? [n]op

induce maps of simplicial sets

C/D
φ←M

φ′→ TwArr(C)D.

The map ψ : C/D → TwArr(C) can be obtained by composing φ′ with a section of φ. To prove that ψ is a
categorical equivalence, it will suffice to show that φ and φ′ are categorical equivalences. We will complete
the proof by showing that φ and φ′ are trivial Kan fibrations.

We first show that φ is a trivial Kan fibration: that is, that φ has the right lifting property with respect
to every inclusion ∂∆n ↪→ ∆n. Unwinding the definitions, we are reduced to solving a lifting problem of the
form

K //

��

C

��
∆n ?∆0 ?∆n //

88

∆0

where K denotes the simplicial subset of ∆n ? ∆0 ? ∆n ' ∆2n+2 spanned by ∆n ? ∆0, ∆0 ? ∆n, and
∆I ? ∆0 ? ∆Iop for every proper subset I ( [n]. Since C is an ∞-category, it suffices to show that the
inclusion K ↪→ ∆n ?∆0 ?∆n is a categorical equivalence.

Lemma T.5.4.5.10 implies that the composite map

(∆n ?∆0)
∐
∆0

(∆0 ?∆n)
i
↪→ K → ∆n ?∆0 ?∆n

is a categorical equivalence. It will therefore suffice to show that the map i is a categorical equivalence. Let
K0 denote the simplicial subset of K spanned by those faces of the form ∆I ?∆0 ?∆Iop , where I is a proper
subset of [n]. We have a pushout diagram of simplicial sets

(∂∆n ?∆0)
∐

∆0(∆0 ? ∂∆n)i0 OO

��

K0

��
(∆n ?∆0)

∐
∆0(∆0 ?∆n)

i

OO

K.

Since the Joyal model structure is left proper, we are reduced to proving that the map i0 is a categorical
equivalence. We can write i0 as a homotopy colimit of morphisms of the form

(∆I ?∆0)
∐
∆0

(∆0 ?∆Iop)→ ∆I ?∆0 ?∆Iop ,

where I ranges over all proper subsets of [n]. Since each of these maps is a categorical equivalence (Lemma
T.5.4.5.10), we conclude that i0 is a categorical equivalence as desired.

We now prove that φ′ is a trivial Kan fibration. We must show that φ′ has the right lifting property
with respect to every inclusion of simplicial sets ∂∆n ↪→ ∆n. To prove this, we must show that every lifting
problem of the form

L //

f0

��

C

��
∆n ?∆0 ?∆n //

88

∆0
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has a solution, where L denotes the simplicial subset of ∆n ?∆0 ?∆n ' ∆2n+2 given by the union of ∆0 ?∆n,
∆n ?∆n, and K0, and f0 is a map whose restriction to ∆0 ?∆n is constant.

Let σ be a face of ∆2n+2 which does not belong to L. Let i(σ) denote the first vertex of ∆2n+2 which
belongs to σ. Since σ does not belong to ∆0 ?∆n ⊆ L, we must have i(σ) ≤ n. For j < i(σ), we have j /∈ σ.
Since σ is not contained in K0, we conclude that 2n + 2 − j ∈ σ. Let us say that σ is large if it contains
the vertex 2n + 2 − i(σ), and small if it does not contain the vertex 2n + 2 − i(σ). Let S be the collection
of small faces of ∆2n+2 (which are not contained in L). For each σ ∈ S, we let σ′ denote the face obtained
from σ by adding the vertex 2n + 2 − i(σ). Choose an ordering of S = {σ1, σ2, . . . , σm} with the following
properties:

(a) If p ≤ q, then the dimension of σp is less than or equal to the dimension of σq.

(b) If p ≤ q and the simplices σp and σq have the same dimension, then i(σq) ≤ i(σp).

For 0 ≤ q ≤ m, let Lq denote the simplicial subset of ∆2n+2 obtained from L by adding the faces σp and σ′p
for p ≤ q. We have a sequence of inclusions

L = L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ Lm = ∆2n+2.

To complete the proof, it will suffice to show that the map f0 : L0 → C can be extended to a compatible
sequence of maps {fq : Lq → C}0≤q≤m. We proceed by induction. Assume that q > 0 and that fq−1 :
Lq−1 → C has already been constructed. Let d be the dimension of σ′q, and observe that there is a pushout
diagram of simplicial sets

Λdd−i(σq)
//

��

Lq−1

��
∆d // Lq.

Consequently, to prove the existence of fq, it will suffice to show that the map fq−1|Λdd−i(σq) can be extended

to a d-simplex of C. Since d > i(σq), the existence of such an extension follows from the assumption that C is
an∞-category provided that i(σq) > 0. In the special case i(σ) = 0, it suffices to show that the map fq−1|Λdd
carries the final edge of Λdd to an equivalence in C. This follows from our assumption that f0|(∆0 ?∆n) is a
constant map (note that σ′q automatically contains the vertices n + 1 and 2n + 2, so that the final edge of
σ′q is contained in ∆0 ?∆n ⊆ ∆n ?∆0 ?∆n ' ∆2n+2).

Proposition 4.2.5. Let C be an ∞-category, and let χ : Cop×C → S classify the right fibration λ :
TwArr(C) → C×Cop. The map C → Fun(Cop, S) determined by χ is homotopic to the Yoneda embedding
(see §T.5.1.3).

Remark 4.2.6. Let C be an ∞-category and let λ : TwArr(C) → C×Cop be the pairing of Proposition
4.2.3. Proposition 4.2.4 implies that λ is right and left representable, so that Construction 3.1.3 yields a pair
of adjoint functors

Dop
λ : C→ C D′λ : C→ C .

Proposition 4.2.5 asserts that these functors are homotopic to the identity.

Proof. We begin by recalling the construction of the Yoneda embedding j : C → Fun(Cop, S). Choose
a fibrant simplicial category D and an equivalence of ∞-categories ψ : C → N(D). The construction
(D,D′) 7→ MapD(D,D′) determines a simplicial functor F : Dop×D → Kan, where Kan denote the
(simplicial) category of Kan complexes. Passing to nerves, we obtain a functor

µ : C×Cop → N(D)×N(D)op ' N(D×Dop)→ N(Kan) = S

which we can identify with Yoneda embedding C → Fun(Cop, S). We are therefore reduced to proving that
the functor µ classifies the right fibration TwArr(C)→ C×Cop.
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Let φ : C[C×Cop]→ D×Dop be the equivalence of simplicial categories determined by ψ, and let

Unφ : SetD
op×D

∆ → (Set∆)/C×Cop

denote the unstraightening functor defined in §T.2.2.1. To complete the proof, it will suffice to construct an
equivalence β : TwArr(C)→ Unφ(F) of right fibrations over C×Cop.

We begin by constructing the map β. Let E be the simplicial category obtained from D×Dop by adjoining
a new element v, with mapping spaces given by

MapE(v, (D,D′)) = ∅ MapE((D,D′), v) = MapD(D,D′).

Unwinding the definitions, we see that giving the map β is equivalent to constructing a map γ : TwArr(C). →
N(E) carrying the cone point of TwArr(C). to v and such that γ|TwArr(C) is given by the composition

TwArr(C)→ C×Cop → N(D×Dop) ↪→ N(E).

To describe the map γ, it suffices to define the composite map

γσ : ∆n+1 σ.→ TwArr(C).
γ→ N(E)

for every n-simplex σ : ∆n → TwArr(C). Let C : Set∆ → Cat∆ denote the left adjoint to the simplicial nerve
functor. We will define γσ as the adjoint of a map of simplicial categories C[∆n+1] → E, carrying the final
vertex of ∆n+1 to v and given on C[∆n] by the composite map

C[∆n]
σ×σop−→ C[C]× C[C]op → D×Dop ⊆ E .

We can identify σ with a map ∆2n+1 → C, which induces a functor of simplicial categories

νσ : C[∆2n+1]→ C(C)→ D .

To complete the definition of γσ, it suffices to describe the induced maps

MapC[∆n+1](i, n+ 1)→ MapE(γσ(i), v) = MapD(νσ(i), νσ(2n+ 1− i))

for 0 ≤ i ≤ n. These maps will be given by a composition

MapC[∆n+1](i, n+ 1)
α→ MapC[∆2n+1](i, 2n+ 1− i) νσ→ MapD(νσ(i), νσ(2n+ 1− i)).

Recall that for 0 ≤ j ≤ k ≤ m, the mapping space MapC[∆m](j, k) can be identified with the nerve of the
partially ordered collection of subsets of [m] having infimum j and supremum k (see Definition T.1.1.5.1).
Under this identification, α corresponds to the map of partially ordered sets given by

S ∪ {n+ 1} 7→ S ∪ {2n+ 1− j : j ∈ S}.

It is not difficult to see that these maps determine a simplicial functor C[∆n+1] → E, giving a map of
simplicial sets γσ : ∆n+1 → N(E). The construction is functorial in σ, and therefore arises from the desired
map γ : TwArr(C). → N(E).

It remains to prove that β is a homotopy equivalence. Since the maps

TwArr(C)→ C×Cop ← Unφ(F)

are right fibrations, it will suffice to prove that β induces a homotopy equivalence

βC,C′ : TwArr(C)×C×Cop {(C,C ′)} → (Unφ F)×C×C′ {(C,C ′)}
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for every pair of objects C,C ′ ∈ C. Consider the map

u : C/C′ → TwArr(C)×Cop {C ′}

appearing in the proof of Proposition 4.2.4. Since u induces a homotopy equivalence

HomR
C(C,C ′) = {C} ×C C/C′ → TwArr(C)×C×Cop {(C,C ′)},

we are reduced to proving that the composite map

HomR
C(C,C ′)→ TwArr(C)×C×Cop {(C,C ′)} → (Unφ F)×C×C′ {(C,C ′)}

is a homotopy equivalence. This follows from Proposition T.2.2.4.1.

Our next goal is to characterize the twisted arrow∞-category TwArr(C) by a universal property. In fact,
we will give two such universal properties.

Construction 4.2.7. Let λ : M → C×D and λ′ : M′ → C′×D′ be pairings of ∞-categories. We define
a simplicial set MapCPair∆

(λ, λ′) so that the following universal property is satisfied: for every simplicial
set K, there is a canonical bijection between HomSet∆(K,MapCPair∆

(λ, λ′)) and the set of triples (α, β, γ)
where α : K × C → C′ is a map of simplicial sets carrying each edge of K to an equivalence in Fun(C,C′),
β : K ×D → D′ is a map of simplicial sets carrying each edge of K to an equivalence in Fun(D,D′), and
γ : K ×M→M′ is a map fitting into a commutative diagram

K ×M
γ //

λ

��

M′

λ′

��
K ×K × C×D

α×β // C′×D′

(it then follows automatically that γ carries each edge of K to an equivalence in Fun(M,M′)).
We let CPair∆ be the simplicial category whose objects are pairings of∞-categories λ : M→ C×D, with

morphism spaces given as above. Then CPair∆ is a fibrant simplicial category (see Lemma 4.2.15 below);
we let CPair = N(CPair∆) denote the associated ∞-category. We will refer to CPair as the ∞-category of
pairings of ∞-categories.

Let CPairR denote the subcategory of CPair whose objects are right representable pairings of∞-categories
λ : M → C×D and whose morphisms are right representable morphisms between pairings (see Definition
3.3.3). We will refer to CPairR as the ∞-category of right representable pairings of ∞-categories.

Remark 4.2.8. If λ : M→ C×D and λ′ : M′ → C′×D′ are pairings of ∞-categories, then giving an edge
α : λ→ λ′ in the ∞-category CPair is equivalent to giving a morphism of pairings from λ to λ′, in the sense
of Definition 3.3.3.

Remark 4.2.9. It follows from Proposition T.4.2.4.4 that CPair is equivalent to the full subcategory of
Fun(Λ2

0,Cat∞) spanned by those diagrams C←M→ D for which the induced map M→ C×D is equivalent
to a right fibration. This subcategory is a localization of Fun(Λ2

0,Cat∞); in particular, we can identify CPair
with a full subcategory of Fun(Λ2

0,Cat∞) which is closed under small limits.

Proposition 4.2.10. Let C be an ∞-category and let λ : TwArr(C)→ C×Cop be the pairing of Proposition
4.2.3. Let µ : M→ D×E be an arbitrary right representable pairing of ∞-categories. Then the evident maps

MapCPairR(λ, µ)→ MapCat∞(Cop,E) MapCPairR(µ, λ)→ MapCat∞(D,C)

are homotopy equivalences.

Before giving the proof of Proposition 4.2.10, let us describe some of its consequences.
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Corollary 4.2.11. Let φ, ψ : CPairR → Cat∞ be the forgetful functors given on objects by the formulas

φ(λ : M→ C×D) = C ψ(λ : M→ C×D) = D .

Then:

(1) The functor φ admits a right adjoint, given at the level of objects by C 7→ TwArr(C).

(2) The functor ψ admits a left adjoint, given at the level of objects by D 7→ TwArr(Dop).

Proof. Combine Propositions 4.2.10 and T.5.2.4.2.

Remark 4.2.12. Let us say that a pairing of ∞-categories is perfect if it is equivalent (in the ∞-category
CPair) to a pairing of the form TwArr(C) → C×Cop, for some ∞-category C. We let CPairperf denote
the subcategory of CPair whose objects are perfect pairings of ∞-categories and whose morphisms are
right representable morphisms of pairings (note that if λ and λ′ are perfect pairings of ∞-categories, then
Proposition 4.2.4 implies that a morphism of pairings from λ to λ′ is left representable if and only if it is
right representable). It follows from Corollary 4.2.11 that the full subcategory CPairperf ⊆ CPairR is both a
localization and a colocalization of CPairR. Moreover, the forgetful functors φ, ψ : CPairR → Cat∞ restrict
to equivalences CPairperf → Cat∞. Composing these equivalences, we obtain an equivalence of ∞-categories
from Cat∞ to itself, given at the level of objects by C 7→ Cop.

Remark 4.2.13. Let µ : M → C×D be a right representable pairing of ∞-categories, and let λ :
TwArr(C) → C×Cop be the pairing of Proposition 4.2.3. Using Proposition 4.2.10, we can lift the iden-
tity functor idC to a right representable morphism of pairings (α, β, γ) : µ → λ. For every object D ∈ D,
the induced map

γD : M×D{D} → TwArr(C)×Cop {β(D)}
is a map between representable right fibrations over C which preserves final objects, and therefore an equiv-
alence of ∞-categories. It follows that the diagram

M
γ //

��

TwArr(C)

��
D

β // Cop

is homotopy Cartesian (note that the vertical maps are Cartesian fibrations, so that this condition can be
tested fiberwise).

Corollary 4.2.14. Let µ : M→ C×D be a pairing of∞-categories. The following conditions are equivalent:

(1) The pairing µ is perfect.

(2) The pairing µ is both left and right representable, and an object of M is left universal if and only if it
is right universal.

(3) The pairing µ is both left and right representable, and the adjoint functors

Dop
µ : C→ Dop D′µ : Dop → C

of Construction 3.1.3 are mutually inverse equivalences.

Proof. We first prove that conditions (2) and (3) are equivalent. Assume that µ is both left and right
representable. Let C ∈ C, and choose a left universal object M ∈ M lying over C. Let D = Dµ(C) be the
image of M in D, and choose a right universal object N ∈ M lying over D. Then N is a final object of
M×D{D}, so there is a canonical map u0 : M → N in M. Unwinding the definitions, we see that the image
of u0 in C can be identified with the unit map u : C → D′µD

op
µ (C). Since µ is a right fibration and the image

of u0 in D is an equivalence, we conclude that u is an equivalence if and only if u0 is an equivalence. That
is, u is an equivalence if and only if M is also a right universal object of M. This proves the following:

109



(∗) The unit map idC → D′µ ◦Dop
µ is an equivalence if and only if every left universal object of M is also

right universal.

The same argument proves:

(∗′) The counit map Dop
µ ◦D′µ → idDop is an equivalence if and only if every right universal object of M is

also left universal.

Combining (∗) and (∗′), we deduce that conditions (2) and (3) are equivalent.
The implication (1) ⇒ (2) follows from Proposition 4.2.4. We will complete the proof by showing that

(3) ⇒ (1). Let λ : TwArr(C) → C×Cop be the pairing of Proposition 4.2.3. Since λ is right representable,
the identity functor idC can be lifted to a right representable morphism of pairings (idC, β, γ) : µ → λ. We
wish to prove that β and γ are equivalences. Since the diagram

M
γ //

��

TwArr(C)

��
D

β // Cop

is homotopy Cartesian (Remark 4.2.13), it will suffice to show that β is an equivalence of ∞-categories.
Using Remark 4.2.6 and Proposition 3.3.4, we see that the diagram of ∞-categories

Dop D′λ //

β

��

C

id
��

C
id // C

commutes up to homotopy. It follows that β is homotopic to D′λ, which is an equivalence by virtue of
assumption (3).

We now turn to the proof of Proposition 4.2.10. We begin with a general discussion of the mapping
spaces in the ∞-category CPair. Suppose we are given pairings of ∞-categories

λ : M→ C×D λ′ : M′ → C′×D′ .

We have an evident map of simplicial sets

θ : MapCPair∆
(λ, λ′)→ Fun(C,C′)' × Fun(D,D′)'.

Lemma 4.2.15. In the situation described above, the map θ is a Kan fibration. In particular, the mapping
space MapCPair∆

(λ, λ′) is a Kan complex.

Proof. Since Fun(C,C′)' × Fun(D,D′)' is a Kan complex, it will suffice to show that the map θ is a right
fibration (Lemma T.2.1.3.3). We will prove that θ has the right lifting property with respect to every right
anodyne map of simplicial sets i : A→ B. Fix a map B → Fun(C,C′)'×Fun(D,D′)', and let N denote the
fiber product (C×D×B)×C′×D′M

′. Unwinding the definitions, we are reduced to solving a lifting problem
of the form

A×M
i′ //

��

N

q

��
B ×M //

88

B × C×D .

Since q is a pullback of λ′, it is a right fibration. It will therefore suffice to show i′ is right anodyne, which
follows from Corollary T.2.1.2.7.
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Our next step is to analyze the fibers of Kan fibration θ : MapCPair∆
(λ, λ′)→ Fun(C,C′)'×Fun(D,D′)'.

Fix a pair of functors α : C → C′ and β : D → D′. Unwinding the definitions, we see that the fiber
θ−1{(α, β)} is the ∞-category FunC′×D′(M,M′). Let χ : Cop×Dop → S classify the right fibration λ, and
let χ′ : C′op×D′op → S classify the right fibration λ′. Then FunC′×D′(M,M′) is homotopy equivalent to
the mapping space MapFun(Cop×Dop,S)(χ, χ

′ ◦ (α × β)). Let P(C) = Fun(Cop, S) and define P(C′) similarly,

so that χ and χ′ can be identified with maps ν : Dop → P(C) and ν′ : D′op → P(C′). We then have

MapFun(Cop×Dop,S)(χ, χ
′ ◦ (α× β)) ' MapFun(Dop,P(C))(ν,G ◦ ν′ ◦ β),

where G : P(C′) → P(C) is the map given by composition with α. Note that G admits a left adjoint
α : P(C)→ P(C′), which fits into a commutative diagram

C //

α

��

P(C)

α

��
D // P(D),

where the horizontal maps are given by the Yoneda embeddings (see Proposition T.5.2.6.3). Combining this
observation with the analysis above, we obtain a homotopy equivalence

θ−1{(α, β)} = MapFun(Dop,P(C′))(α ◦ ν, ν′ ◦ β).

Let us now specialize to the case where the pairings λ : M → C×D and λ′ : M′ → C′×D′ are right
representable. In this case, the functors ν and ν′ admit factorizations

Dop D′λ→ C→ P(C)

D′op
D′
λ′→ C′ → P(C′)

(see Construction 3.1.3). We may therefore identify θ−1{(α, β)} with the mapping space

MapFun(Dop,C′)(α ◦D′λ,D′λ′ ◦ β).

Under this identification, the subspace

MapCPairR(λ, λ′)×Fun(C,C′)'×Fun(D,D′)' {(α, β)}

corresponds the summand of MapFun(Dop,C′)(α ◦D′λ,D′λ′ ◦ β) spanned by the equivalences α ◦D′λ ' D′λ′ ◦ β
(see Proposition 3.3.4 and its proof).

Proof of Proposition 4.2.10. Let C be an ∞-category, let λ : TwArr(C)→ C×Cop be the pairing of Proposi-
tion 4.2.3, and let µ : M→ D×E be an arbitrary right representable pairing of ∞-categories. We first show
that the forgetful functor

MapCPairR(λ, µ)→ MapCat∞(Cop,E)

is a homotopy equivalence. Let MapCPairR∆
(λ, µ) denote the full simplicial subset of MapCPair∆

(λ, µ) spanned
by the right representable morphisms of pairings. It follows from Lemma 4.2.15 that the map of simplicial
sets

φ : MapCPairR∆
(λ, µ)→ Fun(Cop,E)'

is a Kan fibration. It will therefore suffice to show that the fibers of φ are contractible. Fix a functor
β : Cop → E, so that we have a Kan fibration of simplicial sets u : φ−1{β} → Fun(C,D)'. Combining
Remark 4.2.6 with the analysis given above, we see that the fiber of u over a functor α : C → D can be
identified with the summand of MapFun(C,D)(α,D

′
µ ◦ β) spanned by the equivalences. It follows that u is
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a right fibration represented by the object D′µ ◦ β ∈ Fun(C,D), so that the fiber φ−1{β} is equivalent to
Fun(C,D)'/(D′µ◦β) and therefore contractible.

We now show that the forgetful functor MapCPairR(µ, λ) → MapCat∞(D,C) is a homotopy equivalence.
For this, it suffices to show that the Kan fibration of simplicial sets ψ : MapCPairR∆

(µ, λ)→ Fun(D,C)' has

contractible fibers. Fix a functor α : D → C, so that we have a Kan fibration v : ψ−1{α} → Fun(E,Cop)'.
Using Remark 4.2.6 and the above analysis, we see that the fiber of v over a map β : E → Cop can be
identified with the summand of the mapping space MapFun(Eop,C)(α◦D′µ, β). It follows that v is a left fibration

represented by the object α ◦D′µ ∈ Fun(Eop,C), so that the fiber ψ−1{α} is equivalent to Fun(Eop,C)'α◦D′µ/
and therefore contractible.

4.3 The Bar Construction

Let C be a monoidal ∞-category, let A ∈ Alg(C) be an algebra object of C, and let ε : A→ 1 be an augmen-
tation on the algebra A. If C admits geometric realizations of simplicial objects, then the bar construction
on A is defined to be the relative tensor product 1⊗A 1 (here we regard 1 as both a right and left module
over A, by means of the augmentation ε): that is, the geometric realization of the simplicial object

· · ·
// ////// A⊗A

////// A //// 1.

We will denote this geometric realization by BarA. Our goal in this section is to study some of the properties
of the construction A 7→ BarA.

(a) Consider the composition

BarA = 1⊗A 1

' 1⊗A A⊗A 1

→ 1⊗A 1⊗A 1

' 1⊗A 1⊗1 1⊗A 1
α→ (1⊗A 1)⊗ (1⊗A 1)

= BarA⊗ BarA.

(here the map α is an equivalence if we assume that the tensor product functor ⊗ : C×C → C

preserves geometric realizations of simplicial objects). We can view this composite map as giving a
comultiplication ∆ : BarA → BarA ⊗ BarA. We will show that this comultiplication is coherently
associative: that is, it exhibits BarA as an associative algebra object in the monoidal ∞-category Cop.
Moreover, this algebra object is equipped with a canonical augmentation, given by the morphism

1 ' 1⊗ 1→ 1⊗A 1 = BarA

in C. We may therefore identify the construction A 7→ BarA with a functor

Bar : Algaug(C)op → Algaug(Cop).

(b) Assume that C admits totalizations of cosimplicial objects. Then Cop admits geometric realizations of
simplicial objects, so that we can apply the bar construction to augmented associative algebra objects
of Cop. We therefore obtain a functor

CoBar : Algaug(Cop)→ Algaug(C)op,

which we will refer to as the cobar construction. If C is an augmented algebra object of Cop (which
we can think of as a augmented coalgebra object of C), then CoBarC is given by the totalization of a
cosimplicial diagram

1 //// C
////// C ⊗ C

//////// · · ·
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We will show that the functor CoBar : Algaug(Cop) → Algaug(C)op is adjoint to the bar construction
Bar : Algaug(C)op → Algaug(Cop).

To simplify the discussion, we note that there is no harm in assuming that the unit object 1 ∈ C is both
initial and final. This can always be achieved by replacing C by C1/ /1 (which inherits a monoidal structure:
see §A.2.2.2). We have canonical equivalences

Alg(C1/ /1) ' Algaug(C) Alg(Cop1/ /1) ' Algaug(Cop),

which allows us to ignore augmentations in the discussion below.
Let us now describe the adjunction appearing in assertion (b) more explicitly. Suppose we are given an

algebra object A ∈ Algaug(C) and a coalgebra object C ∈ Algaug(Cop). According to (b), we should have a
canonical homotopy equivalence

MapAlg(C)(A,CoBarC) ' MapAlg(Cop)(C,BarA).

We will prove this by identifying both sides with a classifying space for liftings of the pair (A,C) ∈
Alg(C×Cop) to an algebra object of the twisted arrow ∞-category TwArr(C).

Theorem 4.3.1. Let C be a monoidal ∞-category, so that Cop and TwArr(C) inherit the structure of
monoidal ∞-categories (see Example 4.3.6). Assume that the unit object 1 ∈ C is both initial and final.
Then:

(1) The induced map λ : Alg(TwArr(C))→ Alg(C)×Alg(Cop) is a pairing of ∞-categories.

(2) Assume that the unit object 1 ∈ C is final (so that every algebra object of C is equipped with a canonical
augmentation) and that C admits geometric realizations of simplicial objects. Then the pairing λ is left
representable, and therefore determines a functor Dλ : Alg(C)op → Alg(Cop). The composite functor

Alg(C)op
Dλ→ Alg(Cop)→ Cop

is given by A 7→ BarA.

(3) Assume that the unit object 1 is initial (so that every coalgebra object of C is equipped with a canonical
augmentation) and that C admits totalizations of cosimplicial objects. Then the pairing λ is right
representable, and therefore determined a functor D′λ : Alg(Cop)op → Alg(C). The composite functor

Alg(Cop)op
D′λ→ Alg(C)→ C

is given by A 7→ CoBarA.

Remark 4.3.2. Assertion (3) of Theorem 4.3.1 follows from assertion (2), applied to the opposite∞-category
Cop.

Remark 4.3.3. In the situation of Theorem 4.3.1, suppose that the unit object 1 is both initial and final,
and that C admits both geometric realizations of simplicial objects and totalizations of cosimplicial objects.
Then the pairing λ : Alg(TwArr(C))→ Alg(C)×Alg(Cop) is both left and right representable. We therefore
obtain adjoint functors

Alg(C)
Dop
λ //cAlg(C),

D′λ

oo

given by the bar and cobar constructions, where cAlg(C) = Alg(Cop)op is the∞-category of coalgebra objects
of C.

More generally, if C is an arbitrary monoidal∞-category which admits geometric realizations of simplicial
objects and totalizations of cosimplicial objects, then by applying Theorem 4.3.1 to the ∞-category C1/ /1

we obtain an adjunction

Algaug(C)
Bar //cAlgaug(C).

CoBar
oo
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The proof of Theorem 4.3.1 will require some general remarks about pairings between monoidal ∞-
categories.

Definition 4.3.4. Let O⊗ be an ∞-operad. A pairing of O-monoidal ∞-categories is a triple

(p : C⊗ → O⊗, q : D⊗ → O⊗, λ⊗ : M⊗ → C⊗×O⊗ D⊗)

where p and q exhibit C⊗ and D⊗ as O-monoidal ∞-categories and λ⊗ : M⊗ → C⊗×O⊗ D⊗ is a O-monoidal
functor which is a categorical fibration and which induces a right fibration λX : MX → CX ×DX after taking
the fiber over any object X ∈ O.

Remark 4.3.5. In the situation of Definition 4.3.4, we will generally abuse terminology by simply referring
to the O-monoidal functor λ⊗ : M⊗ → C⊗×O⊗ D⊗ as a pairing of monoidal ∞-categories. In the special
case where O⊗ = Ass⊗ is the associative ∞-operad, we will refer to λ⊗ simply as a pairing of monoidal
∞-categories. If O⊗ = Comm⊗ is the commutative ∞-operad, we will refer to λ⊗ as a pairing of symmetric
monoidal ∞-categories.

Example 4.3.6. Recall that the forgetful functor

(λ : M→ C×D) 7→ C

induces an equivalence CPairperf → Cat∞, whose homotopy inverse is given on objects by C 7→ (λ :
TwArr(C)→ C×Cop) (see Remark 4.2.12). Let O⊗ be an ∞-operad and let C be a O-monoidal ∞-category,
which we can identify with a O-monoid object in the∞-category Cat∞. It follows that TwArr(C) admits the
structure of a O-monoid object of CPairperf , which we can identify with a pairing of O-monoidal∞-categories

TwArr(C)⊗ → C⊗×O⊗(Cop)⊗.

Remark 4.3.7. Let λ⊗ : M⊗ → C⊗×O⊗ D⊗ be a pairing of O-monoidal ∞-categories. Then the induced
map Alg/O(M) → Alg/O(C) × Alg/O(D) is a pairing of ∞-categories. This follows immediately from
Corollary A.3.2.2.3.

In particular, if λ⊗ is a pairing of monoidal ∞-categories, then it induces a pairing

Alg(λ) : Alg(M)→ Alg(C)×Alg(D).

The key step in the proof of Theorem 4.3.1 is to establish a criterion for verifying that Alg(λ) is left (or
right) representable.

Proposition 4.3.8. Let λ⊗ : M⊗ → C⊗×Ass⊗ D⊗ be a pairing of monoidal ∞-categories. Assume that:

(1) If 1 denotes the unit object of D, then the right fibration M×D{1} → C is a categorical equivalence.

(2) The underlying pairing λ : M→ C×D is left representable.

(3) The ∞-category D admits totalizations of cosimplicial objects.

Then the induced pairing Alg(λ) : Alg(M)→ Alg(C)×Alg(D) is left representable.

The proof of Proposition 4.3.8 will occupy our attention for most of this section. We begin by treating
an easy special case.

Proposition 4.3.9. Let λ⊗ : M⊗ → C⊗×Ass⊗ D⊗ be a pairing between monodial ∞-categories, and assume
that the underlying pairing of ∞-categories λ : M→ C×D is left representable. Let A ∈ Alg(C) be a trivial
algebra object of C (see §A.3.2.1). Then:

(1) There exists a left universal object of Alg(M) lying over A ∈ Alg(C).
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(2) An object M ∈ Alg(M) lying over A ∈ Alg(C) is left universal if and only if the image of M in M is
left universal (with respect to the pairing λ : M→ C×D).

Proof. We can identify Alg(M) ×Alg(C) {A} with Alg(N), where N⊗ denotes the monoidal ∞-category

M⊗×C⊗ Ass⊗. An object of Alg(M)×Alg(C) {A} is left universal if and only if it is a final object of Alg(N).
Since λ is left representable, N has a final object. Assertions (1) and (2) are therefore immediate consequences
of Corollary A.3.2.2.5.

To prove Proposition 4.3.8 in general, we must show that an arbitrary algebra object A ∈ Alg(C) can
be lifted to a left universal object of Alg(M). This object is not as easy to find: for example, its image
in M is generally not left universal for the underlying pairing λ : M → C×D. In order to construct it,
we would like to reduce to the situation where A is a trivial algebra object of C. We will accomplish
this by replacing C by another monoidal ∞-category having A as the unit object: namely, the ∞-category
ModAss

A (C) ' ABModA(C) (see Theorem A.4.3.4.28).

Lemma 4.3.10. Let λ⊗ : M⊗ → C⊗×Ass⊗ D⊗ be a pairing of monoidal ∞-categories, and let M ∈ Alg(M)
have image (A,B) ∈ Alg(C)×Alg(D). Then the induced map

MBModM (M)
⊗ → ABModA(C)

⊗ ×Ass⊗ BBModB(D)
⊗

is also a pairing of monoidal ∞-categories.

Proof. It will suffice to show that the map MBModM (M)→ ABModA(C)×BBModB(D) is a right fibration.
This map is a pullback of the categorical fibration

θ : BMod(M)→ (BMod(C)× BMod(D))×Alg(C)×Alg(D) Alg(M).

It will therefore suffice to show that θ is a right fibration. Let

θ′ : (BMod(C)× BMod(D))×Alg(C)2×Alg(D)2 Alg(M)2 → BMod(C)× BMod(D)

be the projection map. Since θ is a categorical fibration, it will suffice to show that θ′ and θ′ ◦ θ are right
fibrations. The map θ′ is a pullback of the forgetful functor Alg(λ) : Alg(M) → Alg(C) × Alg(D). It will
therefore suffice to show that Alg(λ) and θ′ ◦θ are right fibrations, which follows immediately from Corollary
A.3.2.2.3.

Proposition 4.3.11. Let λ⊗ : M⊗ → C⊗×Ass⊗ D⊗ be a pairing of monoidal∞-categories. Let M ∈ Alg(M)
have image (A,B) ∈ Alg(C) × Alg(D), and identify A and B with their images in C and D, respec-
tively. Assume that B is a trivial algebra object of D and that, for every object C ∈ C, the Kan complex
λ−1{(C,B)} ⊆ M is contractible. Then the forgetful functor Alg(MBModM (M)) → Alg(M) carries left
universal objects of Alg(MBModM (M)) to left universal objects of Alg(M).

Proof. It will suffice to show that for every A′ ∈ Alg(ABModA(C)) ' Alg(C)A/ having image A′0 ∈ Alg(C),
the left fibration Alg(MBModM (M))×Alg(ABModA(C)) {A′} → Alg(M)×Alg(C) {A′0} is an equivalence of ∞-
categories (and therefore carries final objects to final objects). Since B is a trivial algebra object of D, the
forgetful functor Alg(BBModB(D))→ Alg(D) is an equivalence of ∞-categories. It will therefore suffice to
show that for each B′ ∈ Alg(BBModB(D)) having image B′0 in Alg(BBModB(D)), the induced map

Alg(MBModM (M))×Alg(ABModA(C))×Alg(BBModB(D)) {(A′, B′)} → Alg(M)×Alg(C)×Alg(D) {(A′0, B′0)}

is a homotopy equivalence of Kan complexes. For this, it suffices to show that M ∈ Alg(M) is a p-initial
object, where p : Alg(M) → Alg(C)× Alg(D) denotes the projection. Since p is a right fibration, it suffices
to verify that M is an initial object of Alg(M) ×Alg(C)×Alg(D) {(A,B)}. This ∞-category is is given by a

homotopy fiber of the map φ : Alg(N) → Alg(C), where N⊗ = M⊗×⊗D Ass⊗. We now observe that φ is a
categorical equivalence, since the monoidal functor N→ C is a categorical equivalence (by virtue of the fact
that it is a right fibration whose fibers are contractible Kan complexes).
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Notation 4.3.12. Let λ⊗ : M⊗ → C⊗×Ass⊗ D⊗ be a pairing of monoidal ∞-categories. If M ∈ Alg(M)
has image (A,B) ∈ Alg(C)×Alg(D), we let λM denote the induced pairing MBModM (M)→ ABModA(C)×
BBModB(D).

Lemma 4.3.13. Let λ⊗ : M⊗ → C⊗×Ass⊗ D⊗ be a pairing of monoidal ∞-categories, and let M ∈ Alg(M)
be an object having image (A,B) ∈ Alg(C)×Alg(D), where B is a trivial algebra object of D. Let F : M→
MBModM (M) be a left adjoint to the forgetful functor, given by V 7→ M ⊗ V ⊗M (Corollary A.4.3.3.14).
Then F carries left universal objects of M (with respect to the pairing λ : M → C×D) to left universal
objects of MBModM (M) (with respect to the pairing λM : MBModM (M)→ ABModA(C)× BBModB(D)).

Proof. Let F ′ : C → ABModA(C) and F ′′ : D → BBModB(D) be left adjoints to the forgetful functors
G′ : ABModA(C) → C and G′′ : BBModB(D) → D. We may assume without loss of generality that the
diagram

M
F //

��

MBModM (M)

��
C×D

F ′×F ′′//
ABModA(C)× BBModB(D)

is commutative. For each C ∈ C, F induces a functor

f : M×C{C} → MBModM (M)×
ABModA(C) {F ′(C)}.

We note that f has a right adjoint g, given by composing the forgetful functor MBModM (M) ×
ABModA(C)

{F ′(C)} →M×C{(G′◦F ′)(C)} with the pullback functor M×C{(G′◦F ′(C)} →M×C{C} associated to the
unit map C → (G′◦F ′)(C). To show that f preserves final objects, it will suffice to show that g is a homotopy
inverse to f . Let u : id→ g ◦ f be the unit map. For every object V ∈M×C{C} having image D ∈ D, the
unit map uV : V → (g ◦f)(V ) has image in D equivalent to the unit map D → (G′′ ◦F ′′)(D) ' B⊗D⊗B in
D. Since B is a trivial algebra, we conclude that the image of uV in D is an equivalence. Because the map
M×C{C} → D is a right fibration, we conclude that uV is an equivalence. A similar argument shows that
the counit map v : f ◦ g → id is an equivalence of functors, so that g is homotopy inverse to f as desired.

Lemma 4.3.14. Let f : C → C be a right fibration of ∞-categories, classified by a map χ : Cop → S and
suppose we are given a diagram p : K. → C. The following conditions are equivalent:

(1) For every commutative diagram σ :

K

��

q // C

f

��
K. p //

q

>>

C

there exists an extension q as indicated, which is an f -colimit diagram.

(2) The restriction χ|(K.)op is a limit diagram in S.

If p is a colimit diagram in C, then these conditions are equivalent to the following:

(3) For every diagram σ as in (1), the diagram q : K → C can be extended to a colimit diagram in C, whose
image in C is also a colimit diagram.

Proof. The equivalence of (1) and (2) follows from Lemma VII.5.17, and the equivalence of (1) and (3) from
Proposition T.4.3.1.5.

We will need the following refinement of Corollary A.4.2.3.5:
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Lemma 4.3.15. Let M be an ∞-category which is left-tensored over a monoidal ∞-category C, let A be an
algebra object of C, and let θ : LModA(M) → M denote the forgetful functor. Let p : K → LModA(M) be a
diagram and let p0 = θ ◦ p. Suppose that p0 can be extended to an operadic colimit diagram p0 : K/ → M

(in other words, p0 has the property that for every object C ∈ C, the composite map

K. p0→M
C⊗→ M

is also a colimit diagram in M). Then:

(1) The diagram p extends to a colimit diagram p : K/ → LModA(M).

(2) Let p : K/ → LModA(M) be an arbitrary extension of p. Then p is a colimit diagram if and only if
θ ◦ p is a colimit diagram.

Proof. Let q : M� → C� be the locally coCartesian fibration defined in Notation A.4.2.2.16. The algebra
object A determines a map N(∆)op → C�. Let X denote the fiber product N(∆)op ×C� M� and let
LModA(M)→ ∆LModA(M) ⊆ FunN(∆)op(N(∆)op,X) be the equivalence of Corollary A.4.2.2.15. It follows
from Lemma A.3.2.2.9 that the composite map K → LModA(M) → ∆LModA(M) can be extended to a
colimit diagram in FunN(∆)op(N(∆)op,X), that this diagram factors through ∆LModA(M), and that its
image in M is a colimit diagram. This proves (1) and the “only if” direction of (2). To prove the “if”
direction of (2), let us suppose we are given an arbitrary extension p : K/ → LModA(M), carrying the cone
point to a left A-module M . Then p determines a map α : lim−→(p)→M . If the image of p in M is a colimit
diagram, then the image of α in M is a colimit diagram. Since the forgetful functor LModA(M) → M is
conservative (Corollary A.4.2.3.2), we deduce that α is an equivalence. It follows that p is a colimit diagram
as desired.

Example 4.3.16. Let M be an ∞-category which is left tensored over a monoidal ∞-category C⊗, let
A ∈ Alg(C), and θ : LModA(M) → M denote the forgetful functor. If M• is a θ-split simplicial object of
LModA(M), then the underlying map N(∆)op → LModA(M) satisfies the hypothesis of Lemma 4.3.15. It
follows that M• admits a geometric realization in LModA(M) which is preserved by the forgetful functor θ.

Example 4.3.17. Let M be an∞-category which is bitensored over the a pair of monoidal∞-categories C⊗

and D⊗, and suppose we are given algebra objects A ∈ Alg(C) and B ∈ Alg(D). Let θ : RModB(M) → M

denote the forgetful functor, and regard RModB(M) as an ∞-category left-tensored over C (see §A.4.3.2).
Let µ : ABModB(M) ' LModA(RModB(M)) → RModB(M) be the forgetful functor, and let M• be a
simplicial object of ABModB(M). Assume that M• is θ ◦ µ-split. Then µ(M•) is a θ-split simplicial object
of RModB(M). It follows from Example 4.3.16 that µ(M•) admits a geometric realization in RModB(M).
For every object C ∈ C, the diagram

RModB(M)
C⊗ //

θ

��

RModB(M)

θ

��
M

C⊗ // M

commutes up to homotopy. It follows that the formation of the geometric realization of µ(M•) is preserved
by operation of tensor product with C. Applying Lemma 4.3.15, we deduce that M• admits a geometric
realization in ABModB(M), which is preserved by the forgetful functor µ. This proves the following:

(∗) Let M• be ν-split simplicial object of ABModB(M), where ν = θ ◦ µ : ABModB(M) → M is the
forgetful functor. Then M• admits a geometric realization in ABModB(M), which is preserved by the
functor ν.

Remark 4.3.18. In the situation of Example 4.3.17, the forgetful functor ν : ABModB(M)→M is conser-
vative (since the functors θ and µ are conservative, by Corollary A.4.2.3.2). Applying Theorem A.6.2.2.5, we
deduce that the functor ν is monadic: that is, it exhibits ABModB(M) as the ∞-category of representations
of a monad T on the ∞-category M. The underlying functor of T is given on objects by M 7→ A⊗M ⊗B.
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Remark 4.3.19. Let G : C→ D be any monadic functor between ∞-categories, so that C ' ModT (D) for
some monad T on D. Let F be a left adjoint to G. Every object C ∈ C can be (canonically) realized as
the geometric realization of a G-split simplicial object C• of C, where each Cn ' F ◦ Tn ◦ G(C) lies in the
essential image of F .

Lemma 4.3.20. Let f : C→ C be a right fibration of ∞-categories and let C• be a simplicial object of C. If
f(C•) is a split simplicial object of C, then C• is a split simplicial object of C•.

Proof. This is an immediate consequence of the characterization of split simplicial objects given in Corollary
A.6.2.1.7.

Lemma 4.3.21. Let λ⊗ : M⊗ → C⊗×Ass⊗ D⊗ be a pairing of monoidal ∞-categories, and let M ∈ Alg(M)
be an object having image (A,B) ∈ Alg(C)×Alg(D). Assume that:

(1) The object B ∈ Alg(D) is a trivial algebra in D.

(2) The pairing λ : M→ C×D is left representable.

(3) The ∞-category D admits totalizations of cosimplicial objects.

Then the induced pairing λM : MBModM (M)→ ABModA(C)× BBModB(D) is left representable.

Proof. Fix an object C ∈ ABModA(C); we wish to show that C can be lifted to a left universal object of

MBModM (M). Let p′ : ABModA(C)→ C denote the forgetful functor. Using Example 4.3.17, we deduce that
there is a p′-split simplicial object C• of ABModA(C) having colimit C, where each Cn lies in the essential
image of the left adjoint to p′.

Fix an object D ∈ D, let MD denote the fiber product M×D{D}, and consider the induced right
fibration θ : MD → C. Condition (1) implies that D lifts uniquely to an object D ∈ BBModB(D). Set
N = MBModM (M) ×

BBModB(D) {D′}, so that the projection map N → ABModA(C) is a right fibration
classified by a map χD : ABModA(C)

op → S. We claim that the canonical map χD(C) → lim−→χD(C•) is a
homotopy equivalence. To prove this, it will suffice (Lemma 4.3.14) to show that for every simplicial object
N• of N lifting C•, there exists a geometric realization |N•| which is preserved by the forgetful functor
q : N → ABModA(C). Let p : N →MD denote the forgetful functor. Since q′ : MD → C is a right fibration,
it follows from Lemma 4.3.20 that p(N•) is a split simplicial object of MD. Since N can be identified with
an ∞-category of bimodule objects of MD, Example 4.3.17 implies that N• has a colimit N in N such that
p(N) ' |p(N•)|. Since p(N•) is split, we conclude that the colimit of N• is preserved by q′ ◦ p ' p′ ◦ q. Using
Lemma 4.3.20 again, we conclude that the colimit of N• is preserved by q.

The pairing λM is classified by a functor χ′ : ABModA(C)
op → Fun(BBModB(D)

op
, S). It follows from

the above arguments that χ′(C) ' lim←−χ
′(C•). We wish to prove that χ′(C) is representable. Using condition

(3), we are reduced to proving that each χ′(Cn) is a representable functor. This follows immediately from
(2) and Lemma 4.3.13.

Proof of Proposition 4.3.8. Let A ∈ Alg(C); we wish to show that there is a left universal object of Alg(M)
lying over A. Let B be a trivial algebra object of D, so that condition (1) implies that the right fibration
M×D{B} → C is an equivalence of (monoidal) ∞-categories. It follows that the pair (A,B) can be lifted
to an object M ∈ Alg(M) in an essentially unique way. Using Proposition 4.3.11, we are reduced to proving
that there exists a left universal object of Alg(MBModM (M)) lying over A ∈ Alg(ABModA(C)). Since A is
the unit object of ABModA(C), it suffices to lift A to a left universal object of MBModM (M) (Proposition
4.3.9). The existence of such a lift now follows from Lemma 4.3.21.

Remark 4.3.22. Let λ⊗ : M⊗ → C⊗×Ass⊗ D⊗ be a pairing of monoidal ∞-categories satisfying the
hypotheses of Proposition 4.3.8. Then Alg(λ) : Alg(M) → Alg(C) × Alg(D) is a left representable pairing,
and therefore induces a duality functor DAlg(λ) : Alg(C)op → Alg(D). By unravelling the proof, we can
obtain a more explicit description of this functor. Namely, let B be a trivial algebra object of D and lift the
pair (A,B) to an algebra object M ∈ Alg(M). Then, as an object of D, we can identify DAlg(λ)(A) with
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DλM (A). To compute the latter, we need to resolve A ∈ ABModA(C) by free bimodules. The equivalence
A ' A⊗A A gives a simplicial resolution A• of A by free bimodules Am ' A⊗ (A⊗m)⊗A. Then

DAlg(λ)(A) ' DλM (A) ' lim←−DλM (A•) ' lim←−
[m]∈∆

Dλ(A⊗m),

where the last equivalence follows from Proposition 4.3.11.

Proof of Theorem 4.3.1. Let C be a monoidal ∞-category and let Alg(λ) : Alg(TwArr(C)) → Alg(C) ×
Alg(Cop) be the canonical map. Assertion (1) of the Theorem follows from Remark 4.3.7, which asserts that
λ is a pairing of ∞-categories. To complete the proof, it will suffice to verify assertion (2) (Remark 4.3.2).
Assume that the unit object 1 ∈ C is final and that C admits geometric realizations of simplicial objects.
Then the pairing λ : TwArr(C) → C×Cop satisfies the hypotheses of Proposition 4.3.8, so that λ is left
representable. In particular, we have a duality functor DAlg(λ) : Alg(C)op → Alg(Cop).

Note that the underlying pairing of ∞-categories λ : TwArr(C) → C×Cop induces the identity map
Dλ : Cop → Cop (Remark 4.2.6). Let A ∈ Alg(C) be arbitrary and let M ∈ Alg(TwArr(C)) be as in the proof
of Proposition 4.3.8. Then the duality functor

DλM : ABModA(C)
op → Cop

is right adjoint to the forgetful functor ABModA(C)
op → Cop, and therefore given by the two-sided bar

construction C 7→ 1⊗A C ⊗A 1. In particular, we see that DAlg(λ) carries A to the object

1⊗A A⊗A 1 ' 1⊗A 1 ∈ C .

4.4 Koszul Duality for En-Algebras

Our goal in this section is to study the operation of Koszul duality in the setting of augmented En-algebras
over a field k. More precisely, we will construct a self-adjoint functor

D(n) : (Alg
(n),aug
k )op → Alg

(n),aug
k .

Our main result asserts that for large class of augmented En-algebras A, the unit map A → D(n)D(n)A is
an equivalence (Theorem 4.4.5).

We begin with the definition of the Koszul duality functor D(n). Let A be an En-algebra over a field k.
An augmentation on A is a map of En-algebras A→ k. We let Aug(A) = Map

Alg
(n)
k

(A, k) denote the space

of augmentations on A. If we are given a pair of augmented En-algebras ε : A → k and ε′ : B → k, we let
Pair(A,B) denote the homotopy fiber of the map Aug(A⊗k B)→ Aug(A)× Aug(B), taken over the point
(ε, ε′). More informally, we can describe Pair(A,B) as the space of augmentations on A⊗k B which extend
the given augmentations on A and B. We will refer to the points of Pair(A,B) as pairings of A with B. The
starting point for the theory of Koszul duality is the following fact:

Proposition 4.4.1. Let k be a field, n ≥ 0 an integer, and A be an augmented En-algebra over k. Then the

construction B 7→ Pair(A,B) determines a representable functor from (Alg
(n),aug
k )op into S. That is, there

exists an augmented En-algebra D(n)(A) and a pairing ν : A ⊗k D(n)(A) → k with the following universal
property: for every augmented En-algebra B, composition with ν induces a homotopy equivalence

Map
Alg

(n),aug
k

(B,D(n)(A))→ Pair(A,B).

In the situation of Proposition, we will refer to D(n)(A) as the Koszul dual of A. The construction

A 7→ D(n)(A) determines a functor D(n) : (Alg
(n),aug
k )op → Alg

(n),aug
k , which we will refer to as Koszul

duality.

119



Example 4.4.2. Suppose that n = 0. Then the construction V 7→ k ⊕ V defines an equivalence from the
∞-category Modk of k-module spectra to the ∞-category Alg(n)

aug. If V and W are objects of Modk, then a
pairing of V with W is a k-linear map

φ : (k ⊕ V )⊗k (k ⊕W ) ' k ⊕ V ⊕W ⊕ (V ⊗k W )→ k

equipped with homotopies φ|k ' id, φ|V ' 0 ' φ|W . It follows that we can identify Pair(k⊕V, k⊕W ) with
the space MapModk

(V ⊗kW,k). It follows that the Koszul duality functor D(0) is given by k⊕V 7→ k⊕V ∨,
where V ∨ is the k-linear dual of V (with homotopy groups given by πiV

∨ ' Homk(π−iV, k)).

Example 4.4.3. When n = 1, the Koszul duality functor D(1) : (Algaug
k )op → Algaug

k agrees with the functor
studied in §3.1.

Remark 4.4.4. The construction A,B 7→ Pair(A,B) is symmetric in A and B. Consequently, for any pair
of augmented En-algebras A and B, we have homotopy equivalences

Hom
Alg

(n),aug
k

(B,D(n)(A)) ' Pair(A,B) ' Pair(B,A) ' Hom
Alg

(n),aug
k

(A,mathfrakD(n)(B)).

In particular, the tautological pairing A⊗k D(n)(A)→ k can be identified with a point of Pair(D(n)(A), A),
which is classified by a biduality map uA : A → D(n)D(n)(A). Our main goal in this section is to study
conditions which guarantee that uA is an equivalence.

We can now state the main result of this section:

Theorem 4.4.5. Let n ≥ 0 and let A be an augmented En-algebra over a field k. If A is n-coconnective
and locally finite, then the biduality map uA : A→ D(n)D(n)(A) is an equivalence of augmented En-algebras
over k.

The remainder of this section is devoted to the proofs of Proposition 4.4.1 and Theorem 4.4.5. We begin
with Proposition 4.4.1. If A is an augmented En-algebra over a field k, it is easy to deduce the existence of
the Koszul dual D(n)(A) from the general formalism developed in §A.6.1.4: we can describe D(n)(A) as a
centralizer of the augmentation map ε : A→ k (see Example A.6.1.4.14). We will give a somewhat different
proof here, one which suggests methods of calculating with the Koszul duality functor D(n) (which will be
needed in the proof of Theorem 4.4.5). Our first step is to translate the definition of Koszul duality into the
language of pairings of monoidal ∞-categories, developed in §4.3.

Construction 4.4.6. Fix a field k. We let Alg
(0)
k ' (Modk)k/ denote the ∞-category whose objects

are k-module spectra A equipped with a unit map k → A. We will identify k with the initial object of

Alg
(0)
k , and let Alg

(0),aug
k denote the∞-category (Alg

(0)
k )/k. There is a canonical equivalence of∞-categories

Modk → Alg
(0),aug
k , given by V 7→ k ⊕ V .

The symmetric monoidal structure on Modk endows Alg
(0)
k with a symmetric monoidal structure (see

§A.2.2.2). Let m : Alg
(0)
k ×Alg

(0)
k → Alg

(0)
k be the tensor product functor, and let p0, p1 : Alg

(0)
k ×Alg

(0)
k →

Alg
(0)
k be the projection maps onto the first and second factor, respectively. Since the unit object of Alg

(0)
k is

initial, there are natural transformations p0
α0→ m

α1← p1, given by a map Alg
(0)
k ×Alg

(0)
k → Fun(Λ2

2,Alg
(0)
k ).

We let M denote the fiber product

(Alg
(0)
k ×Alg

(0)
k )×

Fun(Λ2
2,Alg

(0)
k )

Fun(Λ2
2,Alg

(0),aug
k ).

There is an evident pair of forgetful functors

Alg
(0),aug
k ←M→ Alg

(0),aug
k

which determine a right fibration λ : M→ Alg
(0),aug
k ×Alg

(0),aug
k .
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The symmetric monoidal structure on Modk induces a symmetric monoidal structure on the∞-categories

Alg
(0)
k , Alg

(0),aug
k , and M. The forgetful functor λ promotes to a symmetric monoidal functor

λ⊗ : M⊗ → (Alg
(0),aug
k )⊗ ×N(Fin∗) (Alg

(0),aug
k )⊗.

For every integer n ≥ 0, we let M(n) = AlgEn(M). Theorem A.5.1.2.2 gives a canonical equivalence

AlgEn(Alg
(0)
k ) ' Alg

(n)
k , which in turn induces an equivalence of∞-categories AlgEn(Alg

(0),aug
k ) ' Alg

(n),aug
k .

It follows that λ induces a right fibration λ(n) : M(n) → Alg
(n),aug
k ×Alg

(n),aug
k (see Example 4.3.6).

Remark 4.4.7. In the special case n = 1, the right fibration

λ(n) : M(n) → Alg
(n),aug
k ×Alg

(n),aug
k

agrees with the pairing of Construction 3.1.4.

It is not difficult to see that right fibration λ(n) : M(n) → Alg
(n),aug
k ×Alg

(n),aug
k is classified by the

functor Pr : (Alg
(n),aug
k )op × (Alg

(n),aug
k )op → S introduced at the beginning of this section. We may

therefore reformulate Proposition 4.4.1 as follows:

Proposition 4.4.8. Let k be a field and let n ≥ 0 be an integer. Then the pairing λ(n) : M(n) →
Alg

(n),aug
k ×Alg

(n),aug
k of Construction 4.4.6 is both right and left representable.

Proof. We will show that λ(n) is left representable; the proof of right representability is identical. We
proceed by induction on n, the case n = 0 being trivial (see Example 4.4.2). To carry out the inductive
step, let us assume that λ(n) is left representable; we wish to prove that λ(n+1) is left representable. Let

M→ Alg
(0),aug
k ×Alg

(0),aug
k be as in Construction 4.4.6. The symmetric monoidal structure on Modk induces

a symmetric monoidal structure on M and Alg
(0),aug
k , hence (symmetric) monoidal structures on M(n) and

Alg
(n),aug
k . It follows that λ(n) can be regarded as a pairing of monoidal ∞-categories

λ(n),⊗ : M(n),⊗ → (Alg
(n),aug
k )⊗ × (Alg

(n),aug
k )⊗.

Using Theorem A.5.1.2.2, we can identify λ(n+1) with the induced pairing

Alg(λ(n)) : Alg(M(n))→ Alg(Alg
(n),aug
k )×Alg(Alg

(n),aug
k ).

We will prove that this pairing is left representable by verifying the hypotheses of Proposition 4.3.8:

(1) The right fibration M(n)×
Alg

(n),aug
k

{k} → Alg
(n),aug
k is a categorical equivalence. Unwinding the def-

initions, we must show that the Koszul dual D(n)(k) is equivalent to the final object k ∈ Alg
(n),aug
k ,

which follows immediately from the definitions.

(2) The pairing λ(n) is left representable: this follows from the inductive hypothesis.

(3) The ∞-category Alg
(n),aug
k admits totalizations of cosimplicial objects. In fact, Alg

(n),aug
k is a pre-

sentable ∞-category, and therefore admits all limits and colimits.

Let us now outline our strategy for proving Theorem 4.4.5. Our proof will proceed by induction on
n. The main idea is to understand the Koszul duality functor D(n+1) as a mixture of Koszul duality for
D(n) and the bar construction studied in §4.3. For this, we would like to compare the pairing of monoidal
∞-categories

λ(n),⊗ : M(n),⊗ → (Alg
(n),aug
k )⊗ × (Alg

(n),aug
k )⊗
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appearing in the proof of Proposition 4.4.8 with the pairing of monoidal ∞-categories

TwArr(Alg
(n),aug
k )⊗ → (Alg

(n),aug
k )⊗ × (Alg

(n),aug
k )op,⊗

of Example 4.3.6. We will do so by constructing a morphism of monoidal pairings

TwArr(Alg
(n),aug
k )⊗ //

��

M(n),⊗

��
(Alg

(n),aug
k )⊗ × (Alg

(n),aug
k )⊗

id×D(n)

// (Alg
(n),aug
k )⊗ × (Alg

(n),aug
k )op,⊗.

If we ignore the monoidal structures, this morphism of pairings can be obtained by invoking the universal

property of TwArr(Alg
(n),aug
k ) (Proposition 4.2.10). However, we will need to work harder, because the

horizontal maps appearing in the above diagram are not monoidal functors (recall that the Koszul duality
functor D(n) does not commute with tensor products in general; see Warning 3.1.20). To carry out the
construction, we will need a relative version of the twisted arrow construction C 7→ TwArr(C) introduced in
§4.2.

Construction 4.4.9. Let λ : M → C×D, be a pairing of ∞-categories, classified by a functor χ : Dop →
Fun(Cop, S) = P(C). Let j : C→ P(C) be the Yoneda embedding, and set

Cλ = C×Fun({0}×Cop,S) Fun(∆1 × Cop, S)×Fun({1}×Cop,S) D
op .

Let e0 : Cλ → C and e1 : Cλ → Dop be the two projection maps, so that we have a natural transformation
α : (j ◦ e0) → (χ ◦ e1) of functors Cλ → Fun(Cop, S). The functor j ◦ e0 classifies a right fibration µ :
TwArrλ(C) → C×C

op
λ , which we regard as a pairing of ∞-categories. We will refer to TwArrλ(C) as the

∞-category of twisted arrows of C relative to λ.
Note that α classifies a map γ : TwArrλ(C) → M×D C

op
λ of right fibrations over C×C

op
λ . We therefore

obtain a morphism of pairings

TwArrλ(C)
γ //

µ

��

M

λ

��
C×C

op
λ

id×e1 // C×D .

Example 4.4.10. In the setting of Construction 4.4.9, suppose that D = ∆0 and that λ is the identity
map from C to itself. In this case, the evaluation map e0 : Cλ → C is an equivalence, and the right fibration
TwArrλ(C)→ C×C

op
λ classifies the Yoneda pairing

Cop×Cλ ' Cop×C→ S .

Applying Proposition 4.2.5, we deduce that the pairing TwArrλ(C) → C×C
op
λ is equivalent to the pairing

TwArr(C)→ C×Cop of Construction 4.2.3 (this can also be deduced by comparing the universal properties
of TwArr(C) and TwArrλ(C) given by Proposition 4.2.10 and 4.4.11, respectively).

Proposition 4.4.11. Let λ : M → C×D be a pairing of ∞-categories, let µ : TwArrλ(C) → C×C
op
λ be as

in Construction 4.4.9. Then:

(1) The pairing µ is right representable.

(2) Let λ′ : M′ → C′×D′ be an arbitrary right representable pairing of ∞-categories. Then composition
with the canonical morphism µ→ λ induces a homotopy equivalence

θ : MapCPairR(λ′, µ)→ MapCPair(λ, µ).
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Corollary 4.4.12. The inclusion functor CPairR ↪→ CPair admits a right adjoint, given on objects by the
construction

(λ : M→ C×D) 7→ (TwArrλ(C)→ C×C
op
λ ).

Proof of Proposition 4.4.11. We have a commutative diagram

MapCPairR(λ′, µ)
θ //

q

**

MapCPair(λ
′, λ)

p

tt
Fun(C′,C)' × Fun(D′,D)'.

To prove that θ is a homotopy equivalence, it will suffice to show that θ induces a homotopy equivalence of
homotopy fibers over any pair of functors (F : C′ → C, G : D′ → D). It now suffice to observe that both
homotopy fibers can be identified with the mapping space MapFun(C′op×D′op,S)(χ

′, χ ◦ (F ×G)), where χ and
χ′ classify the right fibrations λ and λ′, respectively.

Remark 4.4.13. Let λ : M→ C×D be a pairing of ∞-categories and let µ : TwArrλ(C)→ C×C
op
λ be the

pairing of Construction 4.4.9. Assume that λ is left representable, so that the duality functor Dλ : Cop → D

is defined. Unwinding the definitions, we see that C
op
λ is equivalent to the ∞-category Cop×D Fun(∆1,D)

whose objects are triples (C,D, φ) where C ∈ Cop, D ∈ D, and φ : D → Dλ(C) is a morphism in D. In
particular, the forgetful functor C

op
λ → Cop admits a fully faithful left adjoint L, whose essential image is

spanned by those triples (C,D, φ) where φ : D → Dλ(C) is an equivalence in D. We will denote this essential
image by (C0

λ)op, and we let TwArr0
λ(C) denote the inverse image of C×(C0

λ)op in TwArrλ(C).
Note that (C0

λ)op is a localization of Copλ . Moreover, if f is a morphsim in C
op
λ , then Lf is an equivalence

if and only if the image of f in Cop is an equivalence.

Remark 4.4.14. Suppose we are given a morphism of pairings

M

λ

��

// M′

λ′

��
C×D // C×D′ .

We then obtain an induced right representable morphism of pairings

TwArrλ(C) //

��

TwArrλ′(C)

��
C×C

op
λ

// C×C
op
λ′ .

Taking D′ = ∆0 and M′ = C, we obtain a morphism of pairings

TwArrλ(C) //

��

TwArr(C)

��
C×C

op
λ

// C×Cop

(see Example 4.4.10). If λ is left representable, this morphism restricts to an equivalence

TwArr0
λ(C) //

��

TwArr(C)

��
C×(C0

λ)op // C×Cop,
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where the pairing on the left is defined as in Remark 4.4.13.

Construction 4.4.15. Suppose we are given a pairing of symmetric monoidal ∞-categories

λ⊗ : M⊗ → C⊗×N(Fin∗) D
⊗,

which we can identify with a commtuative monoid object of the ∞-category CPairR. Applying the right
adjoint to the inclusion CPairR ↪→ CPair, we see that the pairing TwArrλ(C) → C×C

op
λ of Construction

4.4.9 can be promoted to a commutative monoid object of CPairR, corresponding to another pairing of
symmetric monoidal ∞-categories

µ⊗ : TwArrλ(C)⊗ → C⊗×(Copλ )⊗.

We obtain a commutative diagram

TwArr(C)⊗

��

TwArrλ(C)⊗
γ //

��

oo M⊗

��
C⊗×N(Fin∗)(C

op)⊗ C⊗×N(Fin∗)(C
op
λ )⊗oo // C⊗×N(Fin∗) D

⊗

where the horizontal maps are symmetric monoidal functors.
Now suppose that λ is left representable. The localization functor L appearing in Remark 4.4.13 is

compatible with the symmetric monoidal structure on C
op
λ (in the sense of Definition A.2.2.1.6), so that the

full subcategory C0
λ)op ⊆ (C0

λ)op inherits a symmetric monoidal structure. Moreover, since the projection map
C
op
λ → Cop carries L-equivalences to equivalences, it induces a symmetric monoidal functor β : (C0

λ)op,⊗ →
(Cop)⊗. Since the underlying functor (C0

λ)op → Cop is an equivalence, we conclude that β is an equivalence.
Let TwArr0

λ(C)⊗ denote the fiber product

TwArrλ(C)×(Copλ )⊗ (C0
λ)op,⊗,

so that we have an equivalence of symmetric monoidal pairings

TwArr(C)⊗

��

TwArr0
λ(C)⊗oo

��
C⊗×N(Fin∗)(C

op)⊗ C⊗×N(Fin∗)(C
0
λ)op,⊗oo

Composing a homotopy inverse of this equivalence with γ, we obtain a commutative diagram

TwArr(C)⊗ //

��

M⊗

��
C⊗×N(Fin∗)(C

op)⊗ // C⊗×N(Fin∗) D
⊗ .

Note that the horizontal maps in this diagram are merely lax symmetric monoidal functors in general.

Remark 4.4.16. We can informally summarize the conclusion of Construction 4.4.15 as follows: if we given
a pairing of symmetric monoidal ∞-categories

λ⊗ : M⊗ → C⊗×Ass⊗ D⊗

for which the underlying pairing λ : M → C×D is left dualizable, then the duality map Dλ : Cop → D of
Construction 3.1.3 has the structure of a lax symmetric monoidal functor.
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Remark 4.4.17. Let C⊗ be a symmetric monoidal ∞-category. Assume that the unit object 1 ∈ C is final
and that C admits geometric realizations of simplicial objects. Let λ⊗ : TwArr(C)⊗ → C⊗×Comm⊗(Cop)⊗ be
the induced pairing of symmetric monoidal∞-categories (see Example 4.3.6), so that λ⊗ determines a duality
functor DAlg(λ) : Alg(C)op → Alg(Cop) (Proposition 4.3.8). Note that λ⊗ induces a pairing of symmetric
monoidal ∞-categories. Alg(λ)⊗ : Alg(TwArr(C))⊗ → Alg(C)⊗ ×Alg(Cop)⊗. It follows from Remark 4.4.16
that we can identify DAlg(λ) with a lax symmetric monoidal functor from Alg(C)op to Alg(C)op. Concretely,
this structure arises from the observation that for every pair of algebra objects A,B ∈ Alg(C) ' Algaug(C),
there is a canonical equivalence

α : BarA(1,1)• ⊗ BarB(1,1)• → BarA⊗B(1,1)•

of simplicial objects of C. If we assume that the tensor product ⊗ : C×C→ C preserves geometric realizations
of simplicial objects, then α induces an equivalence Bar(A)⊗Bar(B)→ Bar(A⊗B), so that the lax symmetric
monoidal functor DAlg(λ) : Alg(C)op → Alg(Cop) is actually symmetric monoidal.

In the situation of Construction 4.4.15, we obtain an induced morphism of pairings between algebra
objects τ :

Alg(TwArr(C))
β //

��

Alg(M)

��
Alg(C)×Alg(Cop) // Alg(C)×Alg(D).

Proposition 4.3.8 supplies conditions which guarantee that the vertical maps in this diagram are left repre-
sentable pairings. For applications to Theorem 4.4.5, we also need a criterion which will guarantee that the
map β preserves left universal objects. For this, we have the following somewhat technical result:

Proposition 4.4.18. Suppose we are given pairings of monoidal ∞-categories

λ⊗ : M⊗ → C⊗×Ass⊗ D⊗ λ′
⊗

: M′
⊗ → C⊗×Ass⊗D

′⊗.

Let α : C⊗ → C′
⊗

, β : D⊗ → D′
⊗

and γ : M⊗ → M′
⊗

be maps of planar ∞-operads which render the
diagram

M⊗
γ //

λ⊗

��

M′
⊗

λ′⊗

��
C⊗×Ass⊗ D⊗

α×β // C′
⊗ ×Ass⊗ D′

⊗

commutes. Assume that:

(1) If 1D and 1D′ are the unit objects of D and D′, respectively, then the right fibrations M×D{1D} → C

and M′×D′{1D′} → C′ are categorical equivalences.

(2) The pairings λ : M→ C×D and λ′ : M′ → C′×D′ are left representable.

(3) The ∞-categories D and D′ admit totalizations of cosimplicial objects.

(4) The map of planar ∞-operads α is monoidal, and the map β preserves unit objects.

(5) The underlying functor D→ D′ preserves totalizations of cosimplicial objects.

(6) The underlying morphism of pairings

M //

λ

��

M′

λ′

��
C×D // C′×D′
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is left representable: that is, γ carries left universal objects of M to left universal objects of M′.

Then the induced morphism of pairings

Alg(M) //

Alg(λ)

��

Alg(M′)

Alg(λ′)

��
Alg(C)×Alg(D) // Alg(C′)×Alg(D′)

is left representable. In particular, the diagram

Alg(C)op //

DAlg(λ)

��

Alg(C′)op

DAlg(λ′)

��
Alg(D) // Alg(D′)

commutes up to canonical homotopy (see Proposition 3.3.4).

Example 4.4.19. Let F : C⊗ → C′⊗ be a monoidal functor between monoidal ∞-categories. Assume that
the underlying ∞-categories C and C′ admit geometric realizations, that the underlying functor C → C′

preserves geometric realizations, and that the unit objects of C and C′ are final. Then F induces a morphism
between pairings of monoidal ∞-categories

TwArr(C)⊗

λ⊗

��

// TwArr(C′)⊗

λ′⊗

��
C⊗×(Cop)⊗ // C′⊗×(C′op)⊗

and therefore a morphism of pairings

Alg(TwArr(C)) //

Alg(λ)

��

Alg(TwArr(C′))

��
Alg(C)×Alg(Cop) // Alg(C′)×Alg(C′op).

Theorem 4.3.1 shows that the pairings Alg(λ) and Alg(λ′) are left representable, and Proposition 4.4.18 shows
that the functor Alg(TwArr(C))→ Alg(TwArr(C′)) preserves left universal objects. Using Proposition 3.3.4
we see that the diagram

Alg(C)op
DAlg(λ) //

��

Alg(Cop)

��
Alg(C′)op

DAlg(λ′)//// Alg(C′op)

commutes up to canonical homotopy.
If we assume that C and C′ admit totalizations of cosimplicial objects, that the underlying functor C→ C′

preserves totalizations of cosimplicial objects, and that the unit objects of C and C′ are initial, then the same
arguments show that the diagram

Alg(Cop)
D′Alg(λ) //

��

Alg(C)op

��
Alg(C′op)

D′
Alg(λ′)//// Alg(C′)op

commutes up to canonical homotopy.
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Example 4.4.20. Let λ⊗ : M⊗ → C⊗×N(Fin∗) D
⊗ be a pairing of symmetric monoidal ∞-categories.

Assume that the underlying pairing λ : M→ C×D is left representable, and consider the diagram σ :

TwArr(C)⊗ //

µ⊗

��

M⊗

λ⊗

��
C⊗×Ass⊗(Cop)⊗ // C⊗×Ass⊗ D⊗

of Construction 4.4.15. The underlying map of pairings

TwArr(C) //

µ

��

M

λ

��
C×Cop // C×D

is left represntable by construction. Assume that the following further conditions are satisfied:

(i) The ∞-category C admits geometric realizations of simplicial objects.

(ii) The ∞-category D admits totalizations of cosimplicial objects.

(iii) The duality functor Dλ : Cop → D preserves totalizations of cosimplicial objects.

(iv) Let 1C and 1D be the unit objects of C and D, respectively. Then 1C and 1D are final objects of C
and D, and the right fibrations M×C{1C} → D and M×D{1D} → C are categorical equivalences.

It follows from (iv) that the duality functor Dλ carries the unit object of C to the unit object of D, so that
the hypotheses of Proposition 4.4.18 are satisfied. It follows that the morphism of pairings

Alg(TwArr(C)) //

Alg(µ)

��

Alg(M)

Alg(λ)

��
Alg(C)×Alg(Cop) // Alg(C)×Alg(D)

is left representable. In particular, the duality functor DAlg(λ) : Alg(C)op → Alg(D) is given by the compo-
sition

Alg(C)op
DAlg(µ)−→ Alg(Cop)

φ→ Alg(D)

where DAlg(µ) is given by the bar construction of §4.3, and φ is given by composition with the lax symmetric

monoidal functor (Cop)⊗ → D⊗ of Remark 4.4.16 (given on objects C 7→ Dλ(C)).

Proof of Proposition 4.4.18. We wish to show that the functor Alg(M)→ Alg(M′) determined by γ carries
left universal objects to left universal objects. Let A ∈ Alg(C), let B ∈ Alg(D) be a trivial algebra so that (by
(1)) the pair (A,B) can be lifted to an object M ∈ Alg(M) in an essentially unique way. Let A′ ∈ Alg(C′),
B′ ∈ Alg(D′), and M ′ ∈ Alg(M′) be the images of A, B, and M ; condition (4) guarantees that B′ is a trivial
algebra object of D′. Using Propositions 4.3.9 and 4.3.11, we see that it suffices to show that the induced
functor MBModM (M)→ M ′BModM ′(M

′) preserves left universal objects. In other words, we must show that
for C ∈ ABModA(C) having image C ′ ∈ A′BModA′(C

′), the canonical map uC : β(DλM (C))→ Dλ′
M′

(C ′) is

an equivalence in D′. Let θ : ABModA(C)→ C be the forgetful functor and choose a θ-split simplicial object
C• with C ' |C•| such that each Cn belongs to the essential image of the left adjoint of θ. Let C ′• be the
image of C• in A′BModA′(C

′) and let θ′ : A′BModA′(C
′)→ C′ be the forgetful functor. The simplicial object

θ′(C ′•) = α(θ(C•)) is split with colimit θ′(C ′) ' α(θ(C)). It follows from Example 4.3.17 that the canonical
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map |C ′•| → C ′ is an equivalence. Moreover, assumption (4) implies that each C ′n lies in the essential image
of the left adjoint to θ′. Arguing as in proof of Lemma 4.3.21, we conclude that the maps

DλMC → lim←−DλMC• Dλ′
M′
C ′ → lim←−Dλ′

M′
C ′•

are equivalences. Combining this with (5), we conclude that uC is the totalization of the diagram [n] 7→ uCn .
It will therefore suffice to prove that uCn is an equivalence for each n ≥ 0. We may therefore replace C
by Cn and thereby reduce to the case where C = φ(C), where φ : C → ABModA(C) is a left adjoint to θ.

Let φ′ : C′ → A′BModA′(C
′) be a left adjoint to θ′, so that condition (4) implies that C ′ ' φ′(C

′
) where

C
′

= α(C). Using Lemma 4.3.13, we are reduced to showing that the induced map β(Dλ(C))→ Dλ′(C
′
) is

an equivalence, which follows immediately from (6).

We now return to the proof of Theorem 4.4.5. Let A be an augmented En-algebra over a field k; we wish
to prove that (under suitable assumptions) the biduality map A → D(n)D(n)(A) is an equivalence. This is
equivalent to the requirement that, for every augmented En-algebra B over k, the canonical map

Map
Alg

(n),aug
k

(B,A)→ Map
Alg

(n),aug
k

(B,D(n)D(n)(A)) ' Map
Alg

(n),aug
k

(D(n)(A),D(n)(B))

is a homotopy equivalence. Our strategy is to prove this using induction on n. To make the induction work,
we will need to prove the following slightly stronger assertion (which immediately implies Theorem 4.4.5):

Proposition 4.4.21. Let k be a field, let n ≥ 0 be an integer, and suppose we are given a finite collection
{A1, . . . , Am} of augmented En-algebras over k. Let B be an arbitrary augmented En-algebra over k. If each
Ai is n-coconnective and locally finite, then the canonical map

Map
Alg

(n),aug
k

(B,A1 ⊗k · · · ⊗k Am)→ Map
Alg

(n),aug
k

(D(n)A1 ⊗k · · · ⊗k D(n)Am,D
(n)B)

is a homotopy equivalence.

Remark 4.4.22. The statement Proposition 4.4.21 can be reformulated as saying that the canonical map

A1 ⊗k · · · ⊗k Am → D(n)(D(n)A1 ⊗k · · · ⊗k D(n)Am)

is an equivalence of augmented En-algebras over k.

Warning 4.4.23. In the situation of Proposition 4.4.21, the tensor product A = A1 ⊗k · · · ⊗k Am is also
a locally finite n-coconnective augmented En-algebra over k, so that (by Theorem 4.4.5) the biduality map
A→ D(n)D(n)A is an equivalence. It follows that the map

A1 ⊗k · · · ⊗k Am → D(n)(D(n)A1 ⊗k · · · ⊗k D(n)Am)

can be identified with the Koszul dual of a map

θ : D(n)A1 ⊗k · · · ⊗k D(n)Am → D(n)(A).

With some further assumptions, one can show that θ is an equivalence (and thereby deduce Proposition
4.4.21 from Theorem 4.4.5). For example, θ is an equivalence if each Ai is (n+ 1)-coconnective. However, θ
is not an equivalence in general.

The proof of Proposition 4.4.21 relies on the following general observation.

Lemma 4.4.24. Let F : C⊗ → D⊗ be a lax symmetric monoidal functor between symmetric monoidal ∞-
categories p : C⊗ → N(Fin∗) and q : D⊗ → N(Fin∗). Let C0 be a full subcategory of C satisfying the following
condition:

128



(∗) For every sequence of objects {Ci}1≤i≤m of C0 and every object C ′ ∈ C, the canonical map

MapC(
⊗
i

Ci, C
′)→ MapD(

⊗
i

F (Ci), F (C ′))

is a homotopy equivalence.

Let O⊗ be an ∞-operad, and suppose we are given a sequence of algebra objects {Ai ∈ AlgO(C)}1≤i≤n such
that, for each X ∈ O and 1 ≤ i ≤ n, we have Ai(X) ∈ C0. Then for every object B ∈ AlgO(C), the canonical
map Then F induces a homotopy equivalence

MapAlgO(C)(
⊗
i

Ai, B)→ MapAlgO(D)(
⊗
i

F (Ai), F (B)).

Proof. Let ∆1 → N(Fin∗) classify the unique active morphism 〈n〉 → 〈1〉, and let C = FunN(Fin∗)(∆
1,C⊗).

In what follows, we will abuse notation by identifying C⊗〈n〉 with Cn. The ∞-category C inherits a symmetric

monoidal structure from C, and we have symmetric monoidal forgetful functors (Cn)⊗ ← C
⊗ → C⊗. The

sequence (A1, . . . , An) can be identified with a O-algebra object of Cn, and B determines a map O⊗ → C⊗.

We let C′⊗ = C
⊗ ×(Cn)⊗×C⊗ O⊗, so that we have a fibration of ∞-operads C′⊗ → O⊗ and Alg/O(C′) can

be identified with the mapping space MapAlgO(C)(
⊗

iAi, B). We define a fibration of ∞-operads D′⊗ →
O⊗ similarly, so that MapAlgO(D)(

⊗
i F (Ai), F (B)) ' Alg/O(D′). We wish to show that F induces a

homotopy equivalence of Kan complexes Alg/O(C′) → Alg/O(D′). For this, it suffices to show that for

every map of simplicial sets K → O⊗, the induced map θ : FunO⊗(K,C′⊗)→ FunO⊗(K,D′⊗) is a homotopy
equivalence of Kan complexes. Working simplex-by-simplex, we can assume that K = ∆p. Then the inclusion
K ′ = ∆{0,1}

∐
{1} · · ·

∐
{p−1}∆{p−1,p} ↪→ K is a categorical equivalence; we may therefore replace K by K ′.

Working simplex-by-simplex again, we can assume that K = ∆p for p = 0 or p = 1. When p = 0, the
desired result follows immediately from (∗). In the case p = 1, the map ∆p → O⊗ determines a morphism
α : X → Y in O⊗. Let α : 〈m〉 → 〈m′〉 be the image of α in N(Fin∗), so that X '

⊕
j∈〈m〉◦ Xj and

Y =
⊕

j′∈〈m′〉◦ Yj′ for some objects Xj , Yj′ ∈ O. Unwinding the definitions, we see that FunO⊗(∆p,C′⊗) is
given by the homotopy limit of the diagram ∏

j′∈〈m′〉◦ MapC(
⊗

1≤i≤nAi(Yj′), B(Yj′))

��∏
j∈〈m〉◦ MapC(

⊗
1≤i≤nAi(Xj), B(Xj)) // ∏

j′∈〈m′〉◦ MapC(
⊗

1≤i≤n,α(j)=j′ Ai(Xj), B(Yj′)).

Similarly, FunO⊗(∆p,D′⊗) can be identified with the homotopy limit of the diagram∏
j′∈〈m′〉◦ MapD(

⊗
1≤i≤n FAi(Yj′), FB(Yj′))

��∏
j∈〈m〉◦ MapD(

⊗
1≤i≤n FAi(Xj), FB(Xj)) // ∏

j′∈〈m′〉◦ MapD(
⊗

1≤i≤n,α(j)=j′ FAi(Xj), FB(Yj′)).

It now follows from (∗) that θ is a homotopy equivalence as desired.

Proof of Proposition 4.4.21. We proceed by induction on n. Assume first that n = 0. For every vector

space V over k, let V ∨ = Homk(V, k) denote the dual vector space. For any object A ∈ Alg
(0),aug
k , we have

canonical isomorphisms πpD
(0)(A) ' (π−pA)∨ (see Example 4.4.2). Using Remark 4.4.22, we are reduced to
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proving that if {Ai}1≤i≤m is a finite collection of locally finite 0-connective objects of Alg
(0),aug
k the canonical

map ⊕
p=p1+···+pm

⊗
i

(πpiAi)→ (
⊕

p=p1+···+pm

(
⊗
i

(πpiAi)
∨))∨

is an isomorphism for every integer p. Since πpiAi ' 0 for pi > 0, each of the direct sums is essentially finite,
and the desired result follows immediately from the fact that each πpiAi is a finite dimensional vector space
over k.

The case n = 1 follows from Proposition 3.1.19. Let us now suppose that n ≥ 1 and that Proposition
4.4.21 is valid for En-algebras; we prove that it is also valid for En+1-algebras. Arguing as in the proof of

Proposition 4.4.8, we see that the right fibration λ(n) : M(n) → Alg
(n),aug
k ×Alg

(n),aug
k can be promoted to a

pairing of symmetric monoidal ∞-categories

(λ(n))⊗ : (M(n))⊗ → (Alg
(n),aug
k )⊗ ×N(Fin∗) (Alg

(n),aug
k )⊗,

and Theorem A.5.1.2.2 allows us to identify λ(n+1) with the induced pairing

Alg(M(n))→ Alg(Alg
(n),aug
k )×Alg(Alg

(n),aug
k ).

Remark 4.4.16 allows us to regard D(n) as a lax symmetric monoidal functor. Moreover, Example 4.4.20
shows that D(n+1) is equivalent to the composition

Alg(Alg
(n),aug
k )op

G→ Alg((Alg
(n),aug
k )op)

G′→ Alg(Alg
(n),aug
k )

where G is given by the bar construction of §4.3 and G′ is induced by D(n). Note that G is given on objects
by the formula G(A) = k ⊗A k.

Assume that A is (n + 1)-connective and locally finite. We have a cofiber sequence of A-modules A →
k → Q where πiQ ' 0 for i > −n. Using Corollary VIII.4.1.11, we deduce that πi(k ⊗A Q) ' 0 for i > −n
so that G(A) is n-coconnective. Moreover, Lemma 4.1.16 shows that G(A) is locally finite (here we use our
assumption that n ≥ 1).

Using the inductive hypothesis together with Lemma 4.4.24, we deduce that for any sequence {Ai}1≤i≤m
of (n + 1)-connective, locally finite objects of Alg

(n+1),aug
k and any object C ∈ Alg((Alg

(n),aug
k )op), the

canonical map

Map
Alg((Alg

(n),aug
k )op)

(G(A1)⊗ · · ·G(Am), C)→ Map
Alg(Alg

(n),aug
k )

((G′G)(A1)⊗ · · · ⊗ (G′G)(Am), G′(C))

is a homotopy equivalence. Consequently, it will suffice to show that for B ∈ Alg(Alg
(n),aug
k ), the functor G

induces a homotopy equivalence

Map
Alg(Alg

(n),aug
k )

(B,A1 ⊗ · · · ⊗Am)→ Map
Alg((Alg

(n),aug
k )op)

(G(A1)⊗ · · · ⊗G(Am), G(B)).

The formula G(A) ' k⊗A k shows that G is a monoidal functor, so that G(A1)⊗ · · · ⊗G(Am) ' G(A) with
A ' A1 ⊗ · · · ⊗ Am. Note that A is locally finite and (n + 1)-coconnective. Let F denote a left adjoint to
G (given by the cobar construction). Using Remark 4.4.22, we are reduced to proving that the counit map

(F ◦G)(A)→ A is an equivalence in Alg(Alg
(n),aug
k )op.

The monoidal ∞-category Alg
(0),aug
k admits geometric realizations and totalizations and the unit object

is a zero object, so the cobar and bar constructions yield a pair of adjoint functors

Alg((Alg
(0),aug
k )op)

F0 //Alg(Alg
(0),aug
k )op

G0

oo .

Let φ : Alg
(n),aug
k → Alg

(0),aug
k denote the forgetful functor. Then φ is a (symmetric) monoidal functor which

preserves geometric realizations of simplicial objects and totalizations of cosimplicial objects, so that φ is
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compatible with the bar and cobar constructions (Example 4.4.19). It will therefore suffice to show that the

counit map (F0 ◦ G0)(φA) → φ(A) is an equivalence in Alg(Alg
(0),aug
k )op. Equivalently, it suffices to show

that for each R ∈ Alg(Alg
(0),aug
k ), the canonical map

Map
Alg(Alg

(0),aug
k )

(R,φA)→ Map
Alg((Alg

(0),aug
k )op)

(G0(φA), G0(R))

is a homotopy equivalence. Let G′0 : Alg((Alg
(0),aug
k )op)→ Alg(Alg

(0),aug
k ) be the functor given by composi-

tion with the lax monoidal functor D(0). Using the inductive hypothesis and Lemma 4.4.24, we deduce that
G′0 induces a homotopy equivalence

Map
Alg((Alg

(0),aug
k )op)

(G0(φA), G0(R))→ Map
Alg(Alg

(0),aug
k )

((G′0G0)(φA), (G′0G0)(R)).

It will therefore suffice to show that the composite map

Map
Alg(Alg

(0),aug
k )

(R,φA) → Map
Alg(Alg

(0),aug
k )

((G′0G0)(φA), (G′0G0)(R))

' Map
Alg

(1),aug
k

(D(1)(φA),D(1)(R))

is a homotopy equivalence. Since n ≥ 1, this follows from our inductive hypothesis.

4.5 Deformation Theory of En-Algebras

Let k be a field. Our goal in this section is to prove Theorem 4.0.8, which asserts that the ∞-category

Moduli
(n)
k of formal En moduli problems over k is equivalent to the ∞-category Alg

(n),aug
k of augmented

En-algebras over k. We first introduce a suitable deformation context, and show that our discussion fits
into the general paradigm described in §1.1. We will then prove that the Koszul duality functor D(n) :

(Alg
(n),aug
k )op → Alg

(n),aug
k of §4.4 is a deformation theory, in the sense of Definition 1.3.9 (Theorem 4.5.5).

We will then use this result to deduce Theorem 4.0.8 from Theorem 1.3.12.
We begin by introducing the relevant deformation context. Let k be a field and let n ≥ 0 be an integer.

Using Theorem A.7.3.5.14 and Proposition A.3.4.2.1, we obtain equivalences of ∞-categories

Stab(Alg
(n),aug
k ) ' ModEn

k (Modk) ' Modk .

In particular, we can identify the unit object k ∈ Modk with a spectrum object E ∈ Stab(Alg
(n),aug
k ), given

informally by Ω∞−mE = k ⊕ k[m]. We regard the pair (Alg
(n),aug
k , {E}) as a deformation context.

We will need the following generalization of Proposition 3.2.2:

Proposition 4.5.1. Let k be a field, let n ≥ 1, and let (Alg
(n) aug
k , {E}) be the deformation context defined

above. Then an object A ∈ Alg
(n),aug
k is small (in the sense of Definition 1.1.8) if and only if its image in

Alg
(n)
k is small (in the sense of Definition 3.0.1). That is, A is small if and only if it satisfies the following

conditions:

(a) The algebra A is connective: that is, πiA ' 0 for i < 0.

(b) The algebra A is truncated: that is, we have πiA ' 0 for i� 0.

(c) Each of the homotopy groups πiA is finite dimensional when regarded as a vector space over field k.

(d) Let n denote the radical of the ring π0A (which is a finite-dimensional associative algebra over k).
Then the canonical map k → (π0A)/n is an isomorphism.

Remark 4.5.2. Proposition 4.5.1 is also valid in the case n = 0, provided that we adopt the convention of

Remark 4.0.4. That is, an object A ∈ Alg
(0),aug
k is small (in the sense of Definition 1.1.8) if and only if it

connective and π∗A is a finite-dimensional vector space over k.
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Proof. The “only if” direction follows from Proposition 3.2.2 (note that if A is small as an augmented En-

algebra, then its image in Alg
(n),aug
k is also small). To prove the converse, suppose that A ∈ Alg

(n),aug
k

satisfies conditions (a) through (d). We wish to prove that there exists a finite sequence of maps

A = A0 → A1 → · · · → Ad ' k

where each Ai is a square-zero extension of Ai+1 by k[mi], for some mi ≥ 0. If n = 1, this follows from
Proposition 3.2.2. Let us therefore assume that n ≥ 2. We proceed by induction on the dimension of the
k-vector space π∗A.

Let m be the largest integer for which πmA does not vanish. We first treat the case m = 0. We will
abuse notation by identifying A with the underlying commutative ring π0A. Let n denote the radical of A.
If n = 0, then condition (d) implies that A ' k so there is nothing to prove. Otherwise, we can view n as a
nonzero module over the commutative ring A. It follows that there exists a nonzero element x ∈ n which is
annihilated by n. Using (d) again, we deduce that the subspace kx ⊆ A is an ideal of A. Let A′ denote the
quotient ring A/kx. Theorem A.7.4.1.26 implies that A is a square-zero extension of A′ by k. The inductive
hypothesis implies that A′ is small, so that A is also small.

Now suppose that m > 0 and let M = πmA. Then M is a nonzero module over the finite dimensional
k-algebra π0A. It follows that there is a nonzero element x ∈ M which is annihilated by the action of the
radical n ⊆ π0A. Let M ′ denote the quotient of M by the submodule generated by x (which, by virtue of
(d), coincides with kx), and let A′′ = τ≤n−1A. It follows from Theorem A.7.4.1.26 that there is a pullback
diagram

A //

��

k

��
A′′ // k ⊕M [m+ 1].

Set A′ = A′′ ×k⊕M ′[m+1] k. Then A ' A′ ×k⊕k[m+1] k, so we have an elementary map A → A′. Using the
inductive hypothesis we deduce that A′ is small, so that A is also small.

Proposition 4.5.3. Let k be a field and let f : A→ B be a morphism in Alg
(n),sm
k . Then f is small (when

regarded as a morphism in Alg
(n),aug
k ) if and only if it induces a surjection π0A→ π0B.

Proof. If n = 1, the desired result follows from Proposition 3.2.3. We will assume that n ≥ 2, and leave the
case n = 0 to the reader. The “only if” direction follows from Proposition 3.2.3 (note that if f is small,
then the induced map between the underlying E1-algebras is also small). We first treat the case where
B ' A ⊕M [j], for some M ∈ ModEn

A (Modk)♥ and some j ≥ 1. According to Remark 4.1.12, the abelian

category ModEn
A (Modk)♥ is equivalent to the category of modules over the commutative ring π0B. Since M

is finite dimensional as a vector space over k, it admits a finite filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mm = M,

where each of the successive quotients Mi/Mi−1 is isomorphic to k. This filtration determines a factorization
of f as a composition

A ' A⊕M0[j]→ A⊕M1[j]→ · · · → A⊕Mm[j] = B.

Each of the maps A⊕Mi[j]→ A⊕Mi+1[j] is elementary, so that f is small.
We now treat the general case. Note that the map π0A×π0BB → B is a pullback of the map π0A→ π0B,

and therefore a small extension (the map π0A → π0B is even a small extension of E∞-algebras over k, by
Lemma 1.1.20). It will therefore suffice to show that the map A → π0A ×π0B B is a small extension. We
will prove that each of the maps

τ≤jA×τ≤jB B → π0A×π0B B
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is a small extension; taking j � 0 we will obtain the desired result. The proof proceeds by induction on j,
the case j = 0 being trivial. Assume that j > 0; by the inductive hypothesis, we are reduced to proving that
the map

θ : τ≤jA×τ≤jB B → τ≤j−1A×τ≤j−1B B

is small.
We can factor θ as a composition

τ≤jA×τ≤jB B
θ′→ τ≤jA×τ≤j−1B B

θ′′→ τ≤j−1A×τ≤j−1B B.

The map θ′′ is a pullback of the truncation map u : τ≤jA → τ≤j−1A. It follows from Corollary A.7.4.1.28
that u exhibits τ≤jA as a square-zero extension of τ≤j−1A, so that we have a pullback square

τ≤jA
u //

��

τ≤j−1A

��
τ≤j−1A

u0// (τ≤j−1A)⊕ (πjA)[j + 1].

Here the map u0 is small by the argument given above, so that u is small and therefore θ′′ is small. We will
complete the proof by showing that θ′ is small. Note that θ′ is a pullback of the diagonal map

δ : τ≤jB → τ≤jB ×τ≤j−1B τ≤jB.

Since τ≤jB is a square-zero extension of τ≤j−1B by (πjB)[j] (Corollary A.7.4.1.28), the truncation map
τ≤jB → τ≤j−1B is a pullback of the canonical map τ≤j−1B → τ≤j−1B ⊕ (πjB)[j + 1]. It follows that δ′ is
a pullback of the map

δ′ : τ≤j−1B → τ≤j−1B ×τ≤j−1B⊕(πjB)[j+1] τ≤j−1B ' τ≤j−1B ⊕ (πjB)[j].

Since j ≥ 1, the first part of the proof shows that δ′ is small.

Corollary 4.5.4. Let k be a field, let n ≥ 0 be an integer, and let and let X : Alg
(n),sm
k → S be a functor.

Then X belongs to the full subcategory Moduli
(n)
k of Definition 4.0.6 if and only if it is a formal moduli

problem in the sense of Definition 1.1.14.

Proof. The “if” direction follows immediately from Proposition 4.5.3. For the converse, suppose that X
satisfies the conditions of Definition 4.0.6; we wish to show that X is a formal moduli problem. According

to Proposition 1.1.15, it will suffice to show that for every pullback diagram in Alg
(n),sm
k

A //

��

B

��
k // k ⊕ k[m]

satisfying m > 0, the associated diagram of spaces

X(A) //

��

X(B)

��
X(k) // X(k ⊕ k[m])

is also a pullback square. This follows immediately from condition (2) of Definition 4.0.6.
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The main result of this section is the following:

Theorem 4.5.5. Let k be a field and let n ≥ 0 be an integer. Then the Koszul duality functor

D(n) : (Alg
(n),aug
k )op → Alg

(n),aug
k

is a deformation theory (in the sense of Definition 1.3.9).

We will give the proof of Theorem 4.5.5 at the end of this section. It relies on the following property of
the Koszul duality functor:

Proposition 4.5.6. Let k be a field, and let Free(n) : Modk → Alg
(n)
k be a left adjoint to the forgetful functor

(so that Free(n) assigns to every k-module spectrum V the free En-algebra
⊕

n≥0 Symn
Ek(V )). Note that

Free(n)(0) ' k, so that Free(n) determines a functor Freeaug : Modk ' (Modk)/0 → (Alg
(n)
k )/k ' Alg

(n),aug
k .

Let D(n) : (Alg
(n),aug
k )op → Alg

(n),aug
k be the Koszul duality functor. Then the composition D(n) ◦ Freeaug is

equivalent to the functor Modopk → Alg
(n),aug
k given by V 7→ k⊕V ∨[−n], where V ∨ denotes the k-linear dual

of V .

Proof. The functor D(n) ◦ Freeaug admits a left adjoint and is therefore left exact. Since Modk is stable,
Proposition A.1.4.4.10 implies that D(n) ◦ Free(n) factors as a composition

Modopk
T→ Stab(Alg

(n),aug
k )

Ω∞→ Alg
(n),aug
k .

Note that the stabilization Stab(Alg
(n),aug
k ) is equivalent to Modk, and that under this equivalence the functor

Ω∞ : Stab(Alg
(n),aug
k )→ Alg

(n),aug
k is given by the formation of square-zero extensions V 7→ k⊕V (Theorem

A.7.3.5.7). It follows that we can identify T with the functor Modopk → Modk given by the composition

Modopk
Free(n)

→ (Alg
(n),aug
k )op

D(n)

→ Alg
(n),aug
k

I→ Modk,

where I denotes the functor which carries each augmented En-algebra A to its augmentation ideal. The
composition I ◦D(n) assigns to each augmented En-algebra B its shifted tangent fiber MorModEn

B
(LB/k[n], k)

(see Example A.7.3.6.7), so that the composition I ◦D(n) ◦ Free(n) is given by V 7→ V [n]∨ ' V ∨[−n].

Proof of Theorem 4.0.8. Let k be a field and let n ≥ 0 be an integer. Define a functor Ψ : Alg
(n),aug
k →

Fun(Alg
(n),sm
k , S) by the formula

Ψ(A)(R) = Map
Alg

(n),aug
k

(D(n)(R), A).

Combining Theorem 4.5.5, Theorem 1.3.12, and Corollary 4.5.4, we deduce that Ψ is a fully faithful em-

bedding whose essential image is the full subcategory Moduli
(n)
k ⊆ Fun(Alg

(n),sm
k , S) spanned by the formal

moduli problems. If m ≥ 0, then Proposition 4.1.13 implies that Freeaug(k[−m− n]) is n-coconnective and
locally finite, so the the biduality map

Freeaug(k[−m− n])→ D(n)D(n) Freeaug(k[−m− n])

is an equivalence (Theorem 4.4.5). Using Proposition 4.5.6, we obtain canonical homotopy equivalences

Ψ(A)(k ⊕ k[m]) ' Ψ(A)(D(n) Freeaug(k[−m− n]))

→ Map
Alg

(n),aug
k

(D(n)D(n) Freeaug(k[−m− n]), A)

→ Map
Alg

(n),aug
k

(Freeaug(k[−m− n]), A)

' Ω∞−m−nmA,

where mA denotes the augmentation ideal of A. These equivalences are natural in m, and therefore give rise
to an equivalence of spectra TΨ(A) ' mA[n] (depending functorially on A).
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Example 4.5.7. Suppose that n = 0 in the situation of Theorem 4.0.8. Then the Koszul duality functor

D(n) : (Alg
(0),aug
k )op 7→ Alg

(0),aug
k is given by k⊕V 7→ k⊕V ∨ (see Example 4.4.2). It follows that the functor

Ψ : Alg
(0),aug
k → Moduli

(0)
k is given by

Ψk⊕W (k ⊕ V ) = Map
Alg

(0),aug
k

(k ⊕ V ∨, k ⊕W ) ' MapModk
(V ∨,W ) ' Ω∞(V ⊗k W ).

Here the last equivalence depends on the fact that V is a dualizable object of Modk (since V is a perfect
k-module).

We may summarize the situation as follows: every object W ∈ Modk determines a formal E0 moduli
problem, given by the formula k ⊕ V 7→ Ω∞(V ⊗k W ). Moreoever, every formal E0 moduli problem arises
in this way, up to equivalence.

Proof of Theorem 4.5.5. Let k be a field and let n ≥ 0. We wish to prove that the Koszul duality functor

D(n) : D(n) : (Alg
(n),aug
k )op → Alg

(n),aug
k satisfies axioms (D1) through (D4) of Definitions 1.3.1 and 1.3.9:

(D1) The ∞-category Alg
(n),aug
k is presentable: this follows from Corollary A.3.2.3.5.

(D2) The functor D(n) admits a left adjoint. In fact, this left adjoint is given by the opposite of D(n) (see
Remark 4.4.4).

(D3) Let Ξ0 ⊆ Alg
(n),aug
k be the full subcategory spanned by those augmented En-algebras A over k, where

A is coconnective and both A and
∫
A are locally finite. We will verify that this subcategory satisfies

the requirements of Definition 1.3.1:

(a) For every object A ∈ Ξ0, the biduality map A → D(n)D(n)(A) is an equivalence. This follows
from Theorem 4.4.5.

(b) The subcategory Ξ0 contains the initial object k ∈ Alg
(n),aug
k .

(c) For each m ≥ 1, there exists an object Km ∈ Ξ0 and an equivalence α : k ⊕ k[m] ' D(n)Km. In
fact, we can take Km to be the free En-algebra generated by k[−m − n]. This belongs to Ξ0 by
virtue of Proposition 4.1.13, and Proposition 4.5.6 supplies the equivalence α.

(d) For every pushout diagram

Km
//

ε

��

A

��
k // A′,

where A ∈ Ξ0 and ε is the canonical augmentation on Km, the object A′ also belongs to Ξ0. This
follows immediately from Propositions 4.1.14 and 4.1.13.

(D4) Arguing as in the proof of Theorem 4.0.8, we see that the functor e : Alg
(n),aug
k → Sp appearing in

Definition 1.3.9 is given by A 7→ mA[n], where mA denotes the augmentation ideal of A. This functor
is obviously conservative, and preserves sifted colimits by Proposition A.3.2.3.1.

We close this section by proving a generalization of Proposition 3.2.7:

Proposition 4.5.8. Let k be a field and let X : Alg
(n),sm
k → S be a formal En moduli problem over k. The

following conditions are equivalent:

(1) The functor X is prorepresentable (see Definition 1.5.3).

(2) Let X(E) denote the tangent complex of X. Then πiX(E) ' 0 for i > 0.
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(3) The functor X has the form Ψ(A), where A ∈ Alg
(n),aug
k is n-coconnective coconnective and Ψ :

Alg
(n),aug
k → Moduli

(n)
k is the equivalence of Theorem 4.0.8.

Lemma 4.5.9. Let A be an augmented En-algebra over a field k. If A is connective, then the Koszul dual
D(n)(A) is n-coconnective.

Proof. Let ModEn
A denote the∞-category of En-modules over A in the∞-category Modk, and regard ModEn

A

as tensored over Modk. As an object of Modk, we can identify D(n)(A) as a classifying object (in Modk)
for morphisms from A to k in ModEn

A (see Example A.6.1.4.14 and Theorem A.6.1.4.27). Theorem A.7.3.6.1
supplies fiber sequence ∫

A→ A→ LA/k[n]

n ModEn
A , where LA/k denote the relative cotangent complex of A over k as an En-algebra. We therefore

obtain a fiber sequence
Mor(LA/k[n], k)→ D(n)(A)

εA→ k

in Modk. The map εA depends functorially on A and is an equivalence in the case A = k, and can therefore
be identified with the augmentation on D(n)(A). We may therefore identify the augmentation ideal mD(n)(A)

with a classifying object for morphisms from LA/k[n] to k in ModEn
A . To prove that D(n) is n-coconnective,

it suffices to show that the mapping space

MapModEn
k

(LA/k, k) ' Map
Alg

(n),aug
k

(A, k[ε]/(ε2))

is discrete. This is clear, since A is connective and k[ε]/(ε2) is discrete.

Proof of Proposition 4.5.8. The equivalence of (2) and (3) follows from the observation that for X = Ψ(A),
we have πiX(E) ' πi−nmA, where mA is the augmentation ideal of A. We next prove that (1)⇒ (2). Since
the construction X 7→ X(E) commutes with filtered colimits, we may reduce to the case where X = SpecR

is representable by an object R ∈ Alg
(n),sm
k . Then R is connective and the desired result follows from Lemma

4.5.9.
We now complete the proof by showing that (3)⇒ (1). Let A ∈ Alg

(n),aug
k be n-coconnective, and choose

a sequence of maps
k = A(0)→ A(1)→ A(2)→ · · ·

as in the proof of Proposition 4.1.14. Then A = lim−→A(i), so that X ' lim−→X(i) with X(i) = Ψ(A(i)). To
prove that X is prorepresentable, it will suffice to show that each X(i) is prorepresentable. We proceed by
induction on i, the case i = 0 being trivial.

Assume that X(i) is prorepresentable. By construction, we have a pushout diagram

Free(n)(V ) //

��

A(i)

��
k // A(i+ 1)

where πjV ' 0 for j ≥ −n. For m ≥ n, form a pushout diagram

Free(n)(τ≥−mV ) //

��

A(i)

��
k // A(i,m),
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so that A(i + 1) ' lim−→m
A(i,m). Then X(i + 1) ' lim−→m

Ψ(A(i,m)), so we are reduced to proving that

each Ψ(A(i,m)) is prorepresentable. We proceed by induction on m. If m = n, then A(i,m) ' A(i) and
the desired result follows from our inductive hypothesis. Assume that m > n and that Ψ(A(i,m − 1)) is
prorepresentable. Let W = π−mV , so that we have a pushout diagram

Free(n)(W [−m]) //

��

A(i,m− 1)

��
k // A(i,m).

Write W as a union of its finite-dimensional subspaces {Wα}. For every finite dimensional subspace Wα ⊆W ,
form a pushout diagram

Free(n)(Wα[−m]) //

��

A(i,m− 1)

��
k // A(i,Wα).

Then Ψ(A(i,m)) is a filtered colimit of the objects Ψ(A(i,Wα)). It will therefore suffice to show that each
Ψ(A(i,Wα)) is prorepresentable. We proceed by induction on the dimension of Wα; if that dimension is
zero, then A(i,Wα) ' A(i,m− 1) and the result is clear. If Wα has positive dimension, then we can choose
a subspace W ′α of codimension 1. Then we have a pushout diagram

Free(n)(k[−m]) //

��

A(i,W ′α)

��
k // A(i,Wα),

hence a pushout diagram of formal moduli problems

Spec(k ⊕ k[m− n]) //

��

A(i,W ′α)

��
Spec(k) // Ψ(A(i,Wα)).

We conclude by invoking Lemma 1.5.9.

5 Examples of Moduli Problems

Let k be a field, and let C be a k-linear ∞-category (that is, a presentable ∞-category equipped with an
action of the monoidal∞-category Modk of k-module spectra: see Definition VII.6.2). To C we can associate
a variety of deformation problems associated to C:

(a) Fix an object C ∈ C, and let R ∈ CAlgsm
k be a small E∞-algebra over k. A deformation of C over

R is an object CR ∈ ModR(C), together with an equivalence C ' k ⊗R CR. Let X(R) denote the
∞-category ModR(C)×C {C} of deformations of C over R.

(b) For R ∈ CAlgsm
k , a deformation of C over R is an R-linear∞-category CR equipped with an equivalence

C ' Modk ⊗ModR CR. Let Y (R) = LinCatR×LinCatk{C} denote a classifying space for R-linear ∞-
categories.
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Our goal in this section is to analyze the deformation functors X and Y using the theory of formal moduli
problems developed earlier in this paper. However, we immediately encounter an obstacle: the functors X
and Y need not satisfy the axioms described in Proposition 1.1.19. Suppose, for example, that we are given
a pullback diagram σ :

R //

��

R0

��
R1

// R01

in CAlgsm
k , where the maps π0R0 → π0R01 ← π0R1 are surjective. If C ∈ C and CR is a deformation of C

over R, then CR is uniquely determined by the objects CR0
= R0 ⊗R CR, CR1

= R1 ⊗R CR1
, together with

the evident equivalence
R01 ⊗R0 CR0 ' R01 ⊗R CR ' R01 ⊗R1 CR1

(see Proposition 5.2.2). More precisely, the functor X described in (a) determines a fully faithful embedding
(of Kan complexes)

X(R)→ X(R0)×X(R01) X(R1).

The functor Y described in (b) is even more problematic: the map

Y (R)→ Y (R0)×Y (R01) Y (R1)

need not be fully faithful in general, but always has discrete homotopy fibers (Proposition 5.3.3): that is,
we can regard Y (R) as a covering space of Y (R0) ×Y (R01) Y (R1). To accommodate these examples, it is
useful to introduce a weaker version of the axiomatics developed in §1. For every integer n ≥ 0, we will
define the notion of a n-proximate formal moduli problem (Definition 5.1.5). When n = 0, we recover the
notion of formal moduli problem introduced in Definition 1.1.14. The requirement that a functor Z be an
n-proximate formal moduli problem becomes increasingly weak as n grows. Nonetheless, we will show that
an n-proximate formal moduli problem Z is not far from being a formal moduli problem: namely, there
exists an (essentially unique) formal moduli problem Z∧ and a natural transformation Z → Z∧ such that,
for every test algebra R, the map of spaces Z(R)→ Z∧(R) has (n−1)-truncated homotopy fibers (Theorem
5.1.9).

In §5.2, we will turn our attention to the functor X described above, which classifies the deformations of a
fixed object C ∈ C. We begin by observing that the definition of X(R) does not require the assumption that
R is commutative. Rather, the functor X is naturally defined on the ∞-category Algsm

k of small E1-algebras
over k. We may therefore regard the construction R 7→ X(R) as a functor X : Algsm

k → S, which we will
prove is a 1-proximate formal moduli problem (Corollary 5.2.5). Using Theorem 5.1.9, we can choose an
embedding of X into a formal moduli problem X∧ : Algsm

k → S. According to Theorem 3.0.4 (and its proof),
the functor X∧ is given by X∧(R) = MapAlgaug

k
(D(1)(R), A), for some augmented E1-algebra A over k. Our

main result (Theorem 5.2.8) characterizes this algebra: the augmentation ideal mA can be identified (as a
nonunital E1-algebra) with the endomorphism algebra of the object C ∈ C.

Remark 5.0.1. Efimov, Lunts, and Orlov have made an extensive study of a variant of the deformation
functor X described above. We refer the reader to [10], [11], and [12] for details. The global structure of
moduli spaces of objects of (well-behaved) differential graded categories is treated in [67].

In §5.3, we will study the functor Y which classifies deformations of∞-category C itself. Once again, the
definition of the space Y (R) does not require the assumption that R is commutative. To define Y (R), we
only need to be able to define the notion of an R-linear ∞-category. This requires a monoidal structure
on the ∞-category LModR of left R-modules, and such a monoidal structure exists for every E2-algebra R

over k. We may therefore regard the construction R 7→ Y (R) as a functor Y : Alg
(2),sm
k → S, which we

will prove to be a 2-proximate formal moduli problem (Corollary 5.3.8). Using Theorem 5.1.9, we deduce

the existence of a formal moduli problem Y ∧ : Alg
(2),sm
k → S and a natural transformation Y → Y ∧ which
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induces a covering map Y (R)→ Y ∧(R) for each R ∈ Alg
(2),sm
k . According to Theorem 4.0.8 (and its proof),

the functor Y ∧ is given by Y ∧(R) = Map
Alg

(2),aug
k

(D(2)(R), A) for some augmented E2-algebra A over k.

Once again, our main result gives an explicit description of the algebra A: its augmentation ideal mA can
be identified (as a nonunital E2-algebra) with the Hochschild cochain complex HC∗(C) of the ∞-category C

(Theorem 5.3.16).

Remark 5.0.2. For a more extensive discussion of the deformation theory of differential graded categories,
we refer the reader to [30]. See also [37] and [38].

Remark 5.0.3. It is possible to treat the functors X and Y introduced above simultaneously. Let Υ denote
the ∞-category whose objects are pairs (A1, A2), where A2 is an augmented E2-algebra over k and A1 is
an E1-algebra over A2 equipped with a map A1 → k of E1-algebras over A2. We have spectrum objects
E1, E2 ∈ Stab(Υ), given by

Ω∞−nE1 = (k ⊕ k[n], k) Ω∞−nE2 = (k, k ⊕ k[n]).

Let us regard (Υ, {E1, E2}) as a deformation context (in the sense of Definition 1.1.3).
Let C be a k-linear ∞-category and let C ∈ C be an object. Given a pair (R1, R2) ∈ Υ, we let Z(R1, R2)

denote a classifying space for pairs (C1,C2), where C2 is an R2-linear ∞-category deforming C, and C1 ∈
LModR1(C2) is an object deforming C. The construction (R1, R2) 7→ Z(R1, R2) determines a 2-proximate
formal moduli problem. Using Theorem 5.1.9 we can complete Z to a formal moduli problem Z∧ : Υsm → S.

Using a generalization of the techniques studied in §3 and §4, one can combine the Koszul duality functors

D(1) : (Algaug
k )op → Algaug

k D(2) : (Alg
(2),aug
k )op → Alg

(2),aug
k

to obtain a deformation theory D : (Υ)op → Υ. Using Theorem 1.3.12, we see that the formal moduli
problem Z∧ is determined by an object (A1, A2) ∈ Υ. One can show that the augmentation ideals mA1

and mA2
are given by the endomorphism algebra End(C) and the Hochschild cochain complex HC∗(C) of C,

respectively (note that HC∗(C) acts centrally on End(C)).
At the cost of a bit of information, we can be much more concrete. The construction R 7→ Z∧(R,R)

determines a formal E2 moduli problem F : Alg
(2),aug
k → S; for each R ∈ Alg

(2),sm
k we have a fiber sequence

X∧(R)→ F (R)→ Y ∧(R),

where X∧ and Y ∧ are the formal E1 and E2 moduli problems described above. Applying Theorem 4.0.8,
we deduce that F is given by the formula F (R) = Map

Alg
(2),aug
k

(D(2)(R), A) for some augmented E2-algebra

A over k. Then the augmentation ideal mA can be identified with the fiber of the natural map HC∗(C) →
End(C).

5.1 Approximations to Formal Moduli Problems

The notion of formal moduli problem introduced in Definition 1.1.14 is a very general one, which includes
(as a special case) the formal completion of any reasonable algebro-geometric object at a point (see Example
0.0.10). However, there are also many functors X : CAlgcn

k → S which are of interest in deformation theory,
which do not quite satisfy the requirements of being a formal moduli problem. The deformation functors
that we will study in §5.2 and §5.3 are of this nature. In this section, we will introduce a generalization of
the notion of formal moduli problem (see Definition 5.1.5) which incorporates these examples as well.

We begin by reviewing some general terminology.

Definition 5.1.1. Let n ≥ −2 be an integer. We will say that a diagram of spaces

X ′ //

��

Y ′

��
X // Y

139



is n-Cartesian if the induced map φ : X ′ → X ×Y Y ′ is n-truncated (that is, the homotopy fibers of φ are
n-truncated).

Example 5.1.2. If n = −2, then a commutative diagram of spaces is n-Cartesian if and only if it is a
pullback square.

The following lemma summarizes some of the basic transitivity properties of Definition 5.1.1:

Lemma 5.1.3. Let n ≥ −2 be an integer, and suppose we are given a commutative diagram

X ′ //

��

Y ′

��

// Z ′

��
X // Y // Z

in S. If the right square is n-Cartesian, then the outer square is n-Cartesian if and only if the left square is
n-Cartesian.

Using Lemma 5.1.3, we immediately deduce the following generalization of Proposition 1.1.15.

Proposition 5.1.4. Let (Υ, {Eα}α∈T ) be a deformation context, and let X : Υsm → S be a functor. Let
n ≥ 0 be an integer. The following conditions are equivalent:

(1) Let σ :

A′

��

// B′

φ

��
A // B

be a diagram in Υsm. If σ is a pullback diagram and φ is small, then X(σ) is an (n − 2)-Cartesian
diagram in S. pullback diagram in S.

(2) Let σ be as in (1). If σ is a pullback diagram and φ is elementary, then X(σ) is an (n− 2)-Cartesian
diagram in S.

(3) Let σ be as in (1). If σ is a pullback diagram and φ is the base point morphism ∗ → Ω∞−mEα for
some α ∈ T and m > 0, then X(σ) is an (n− 2)-Cartesian diagram in S.

Definition 5.1.5. Let (Υ, {Eα}α∈T ) be a deformation context and let n ≥ 0 be an integer. We will say
that a functor X : Υsm → S is a n-proximate formal moduli problem if X(∗) is contractible and X satisfies
the equivalent conditions of Proposition 5.1.4.

Example 5.1.6. A functor X : Υsm → S is a 0-proximate formal moduli problem if and only if it is a formal
moduli problem, in the sense of Definition 1.1.14.

Remark 5.1.7. Let (Υ, {Eα}α∈T ) be a deformation context, and suppose we are given a pullback diagram

X ′ //

��

Y ′

��
X // Y

in Fun(Υsm, S). If X and Y are n-proximate formal moduli problems and Y is an (n+ 1)-proximate formal
moduli problem, then X ′ is an n-proximate formal moduli problem.
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Definition 5.1.8. Let (Υ, {Eα}α∈T ) be a deformation context and let f : X → Y be a natural transforma-
tion between functors X,Y : Υsm → S. We will say that f is n-truncated if the induced map X(A)→ Y (A)
is n-truncated, for each A ∈ Art.

We can now state the main result of this section:

Theorem 5.1.9. Let (Υ, {Eα}α∈T ) be a deformation context which admits a deformation theory, and let
X : Υsm → S be a functor such that X(∗) is contractible (here ∗ denotes the final object of Υ). The following
conditions are equivalent:

(1) The functor X is an n-proximate formal moduli problem.

(2) There exists an (n− 2)-truncated map f : X → Y , where Y is an n-proximate formal moduli problem.

(3) Let L denote a left adjoint to the inclusion ModuliΥ ⊆ Fun(Υsm, S) (see Remark 1.1.17). Then the
unit map X → LX is (n− 2)-truncated.

The proof of Theorem 5.1.9 will require some preliminaries. Let us identify Sp = Stab(S) with the
∞-category of strongly excisive functors Sfin

∗ → S. Let L0 : Fun(Sfin
∗ , S) → Sp denote a left adjoint to the

inclusion. If X : Υsm → S is a functor, then the composition X ◦ Eα determines a functor Sfin
∗ → S, and

therefore a spectrum L0(X ◦ Eα).

Remark 5.1.10. Suppose that F : Sfin
∗ → S is a functor which preserves final objects. Using the results of

§A.1.5.2, we see that L0F ∈ Sp is described by the formula

(L0F )(K) = lim−→
n

ΩnL0(ΣnK).

In particular, the functor L0 is left exact when restricted to the full subcategory Fun∗(S
fin
∗ , S) ⊆ Fun(Sfin

∗ , S)
spanned by those functors which preserve final objects.

Remark 5.1.11. Let (Υ, {Eα}α∈T ) be a deformation context which admits a deformation theory, and let
X : Υsm → S be an n-proximate formal moduli problem. It follows from Theorem 5.1.9 that there exists
an (n− 2)-truncated natural transformation α : X → Y , where Y is a formal moduli problem. In fact, the
formal moduli problem Y (and the natural transformation α) are uniquely deterined up to equivalence. To
prove this, we note that α factors as a composition

X
β→ LX

γ→ Y,

where β is (n − 2)-truncated and γ is a map between formal moduli problems. For each α ∈ T and each
m ≥ 0, we have homotopy equivalences

ΩnX(Ω∞−m−nEα) ' ΩnLX(Ω∞−m−nEα) ' LX(Ω∞−mEα)

ΩnX(Ω∞−m−nEα) ' ΩnY (Ω∞−m−nEα) ' Y (Ω∞−mEα).

From this it follows that γ induces an equivalence LX(Ω∞−mEα) → Y (Ω∞−mEα). Since LX and Y are
formal moduli problems, we conclude that γ is an equivalence.

The main ingredient in the proof of Theorem 5.1.9 is the following lemma:

Lemma 5.1.12. Let (Υ, {Eα}α∈T ) be a deformation context which admits a deformation theory and let L
denote a left adjoint to the inclusion functor ModuliΥ ⊆ Fun(Υsm, S). Suppose that X : Υsm → S is an
n-proximate formal moduli problem for some n ≥ 0.

For each α ∈ T , the canonical map X(Eα)→ (LX)(Eα) induces an equivalence of spectra L0(X ◦Eα)→
(LX) ◦ Eα.
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Proof. The proof proceeds by induction on n. In this case n = 0, X ' LX and X ◦Eα is a spectrum, so there
is nothing to prove. Assume therefore that n > 0. Let C be the full subcategory of Fun(Υsm, S) spanned by the
(n−1)-proximate formal moduli problems, and let C/X denote the fiber product C×Fun(Υsm,S) Fun(Υsm, S)/X .
By the inductive hypothesis, the map L0(Y ◦Eα)→ (LY )◦Eα is an equivalence of spectra for each Y ∈ C/X .
It will therefore suffice to prove the following assertions (for each α ∈ T ):

(a) The spectrum L0(X ◦ Eα) is a colimit of the diagram {L0(Y ◦ Eα)}Y ∈C/X in the ∞-category Sp.

(b) The spectrum (LX) ◦ Eα is a colimit of the diagram {(LY ) ◦ Eα}Y ∈C/X in the ∞-category Sp.

To prove (a), we note that L0 preserves colimits (being a left adjoint) and that the construction Y 7→
Y (Eα) carries colimit diagrams in Fun∗(Υ

sm, S) to colimit diagrams in Fun∗(S
fin
∗ , S), where Fun∗(Υ

sm, S)
denotes the full subcategory of Fun(Υsm, S) spanned by those functors which preserve final objects and
Fun∗(S

fin
∗ , S) is defined similarly. It will therefore suffice to show that X is a colimit of the diagram C/X →

Fun(Υsm, S). (and therefore also of the underlying functor C/X → Fun∗(Υ
sm, S)). We prove a more general

assertion: namely, that the identity functor from Fun(Υsm, S) to itself is a left Kan extension of the inclusion
C → Fun(Υsm, S). This follows from Proposition T.4.3.2.8 and Lemma T.5.1.5.3, since C contains the
corepresentable functor SpecR for each R ∈ Υsm.

We now prove (b). Fix an index α ∈ T , and let F : C/X → Sp be the functor given by Y 7→ (LY ) ◦ Eα.
Let ∗ denote the final object of Υ and let X0 = Spec(∗) denote the functor corepresented by ∗, so that X0

is an initial object of Fun∗(Υ
sm, S). Let X• denote the Čech nerve of the map X0 → X, and let C0

/X denote
the full subcategory of C/X spanned by those maps Y → X which factor through X0. We first prove:

(∗) The functors L|C/X : C/X → ModuliΥ and F : C/X → Sp are left Kan extensions of L|C0
/X and

F |C0
/X .

To prove (∗), choose an object Y ∈ C/X , and let C0
/Y be the full subcategory of C/Y spanned by those

morphisms Z → Y which factor through Y0 = X0 ×X Y . We wish to prove that LY ∈ ModuliΥ and
FY ∈ Sp are colimits of the diagrams L|C0

/Y and F |C0
/Y , respectively. Let Y• denote the simplicial object

of C0
/Y given by the Cech nerve of the map Y0 → Y , so that Yn ' Xn ×X Y . The construction [n] 7→ Yn

determines a left cofinal map N(∆)op → C0
/Y ; it will therefore suffice to show that the canonical maps

u : |LY•| → LY v : |FY•| → FY

are equivalences. Using Theorem 1.3.12 and condition (4) of Definition 1.3.9, we deduce that the construction
Z 7→ Z ◦ Eα determines a functor ModuliΥ → Sp which commutes with sifted colimits. Consequently, to
prove that u is an equivalence, it will suffice to show that v is an equivalence for every choice of index
α ∈ T . It follows from Remark 5.1.7 that each Ym is an (n − 1)-proximate formal moduli problem. Using
the inductive hypothesis, we are reduced to showing that the canonical map θ : |L0(Y• ◦Eα)| → L0(Y (Eα))
is an equivalence of spectra. Note that Y• ◦ Eα is the Čech nerve of the natural transformation

Y0 ◦ Eα → Y ◦ Eα

in the ∞-category Fun∗(S
fin
∗ , S). Since the functor L0 is left exact when restricted to Fun∗(S

fin
∗ , S) (Remark

5.1.10), we conclude that L0(Y•(Eα)) is a Čech nerve of the map L0(Y0 ◦Eα)→ L0(Y ◦Eα)), so that θ is an
equivalence as desired.

To prove (b), we must show that (LX)◦Eα is a colimit of the diagram F . Since F is a left Kan extension
of F |C0

/X , it will suffice to show that (LX) ◦ Eα) is a colimit of the diagram F |C0
/X (Lemma T.4.3.2.7).

The simplicial object X• determines a left cofinal map N(∆)op → C0
/X . We are therefore reduced to proving

that the map |(LX•) ◦ Eα| → (LX) ◦ Eα is an equivalence of spectra. Since the construction Z 7→ Z ◦ Eα
determines a functor ModuliΥ → Sp which preserves sifted colimits, it will suffice to show that |LX•| ' LX
in ModuliΥ. This is equivalent to the assertion that LX is a colimit of the diagram L|C0

/X . Using (∗) and
Lemma T.4.3.2.7, we are reduced to proving that LX is a colimit of the diagram L|C/X . Since L preserves
small colimits, this follows from the fact that X is a colimit of the inclusion functor C/X ↪→ Fun(Υsm, S).
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Lemma 5.1.13. Let (Υ, {Eα}α∈T ) be a deformation context and let X : Υsm → S be an n-proximate formal
moduli problem. For each α ∈ T and each m ≥ 0, the canonical map θ : X(Ω∞−mEα)→ Ω∞−mL0(X ◦Eα))
is (n− 2)-truncated.

Proof. We observe that θ is a filtered colimit of a sequence of morphisms

θm′ : X(Ω∞−mEα)→ Ωm
′
X(Ω∞−m−m

′
Eα).

It will therefore suffice to show that each θm′ is (n− 2)-truncated. Each θm′ is given by a composition of a
finite sequence of morphisms X(Ω∞−pEα)→ ΩX(Ω∞−p−1Eα), which is (n− 2)-truncated by virtue of our
assumption that X is an n-proximate formal moduli problem.

Lemma 5.1.14. Let (Υ, {Eα}α∈T ) be a deformation context and let f : X → Y be a natural transformation
between n-proximate formal moduli problems X,Y : Υsm → S. Assume that, for every index α ∈ T and each
m ≥ 0, the map of spaces X(Ω∞−mEα)→ Y (Ω∞−mEα) is (n− 2)-truncated. Then, for each A ∈ Υsm, the
map X(A)→ Y (A) is (n− 2)-truncated.

Proof. Since A is small we can choose a sequence of elementary morphisms

A = A0 → A1 → · · · → Ap ' ∗.

We will prove that the map θi : X(Ai)→ Y (Ai) is (n− 2)-truncated by descending induction on i. The case
i = p is clear (since θ is a morphism between contractible spaces and therefore a homotopy equivalence).
Assume therefore that i < p and that θi+1 is (n− 2)-truncated. Since the map Ai → Ai+1 is elementary, we
have a fiber sequence

Ai → Ai+1 → Ω∞−mEα

in Υsm. Let F be the homotopy fiber of the map X(Ai+1) → X(Ω∞−mEα), and let F ′ be the homotopy
fiber of the map Y (Ai+1)→ Y (Ω∞−mEα). We have a map of fiber sequences

F //

ψ

��

X(Ai+1)

θi+1

��

// X(Ω∞−mEα

φ

��
F ′ // Y (Ai+1) // Y (Ω∞−mEα).

Since φ is (n − 2)-truncated by assumption and θi+1 is (n − 2)-truncated by the inductive hypothesis, we
conclude that ψ is (n− 2)-truncated. The map θi factors as a composition

X(Ai)
θ′i→ Y (Ai)×F ′ F

θ′′i→ Y (Ai),

where θ′′i is a pullback of ψ and therefore (n−2)-truncated. It will therefore suffice to show that θ′i is (n−2)-
truncated. Since Y is an n-proximate formal moduli problem, the map Y (Ai)→ F ′ is (n− 2)-truncated, so
the projection Y (Ai) ×F ′ F → F is (n − 2)-truncated. It will therefore suffice to show that the composite
map

X(Ai)
θ′i→ Y (Ai)×F ′ F → F

is (n−2)-truncated, which follows from our assumption that X is an n-proximate formal moduli problem.

Proof of Theorem 5.1.9. The implication (3)⇒ (2) is obvious. We next show that (2)⇒ (1). Assume that
X(∗) is contractible and that there exists an (n− 2)-truncated map f : X → Y , where Y is an n-proximate
formal moduli problem. We wish to show that X is an n-proximate formal moduli problem. Choose a
pullback diagram

A′ //

��

A

φ

��
B′ // B
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in Υsm where φ is small; we wish to show that left square in the diagram of spaces

X(A′) //

��

X(A)

��

// Y (A)

��
X(B′) // X(B) // Y (B)

is (n− 2)-Cartesian. Our assumption that f is (n− 2)-truncated guarantees that the right square is (n− 2)-
Cartesian; it will therefore suffice to show that the outer square is (n− 2)-Cartesian (Lemma 5.1.3). Using
Lemma 5.1.3 again, we are reduced to showing that both the left and right squares in the diagram

X(A′) //

��

Y (A′)

��

// Y (A)

��
X(B′) // Y (B′) // Y (B)

are n-Cartesian. For the left square, this follows from our assumption that f is (n − 2)-truncated; for the
right square, it follows from our assumption that Y is an n-proximate formal moduli problem.

We now complete the proof by showing that (1)⇒ (3). Assume that X is an n-proximate formal moduli
problem; we wish to show that the map X → LX is (n− 2)-truncated. According to Lemma 5.1.14, it will
suffice to show that the map φ : X(Ω∞−mEα)→ LX(Ω∞−mEα) is (n−2)-truncated for each α ∈ T and each
m ≥ 0. Using Lemma 5.1.12, we can identify φ with the canonical map X(Ω∞−mEα)→ Ω∞−mL0(X ◦Eα)),
which is (n− 2)-truncated by Lemma 5.1.13.

5.2 Deformations of Objects

Let X be an algebraic variety defined over a field k, and let E be an algebraic vector bundle on X. A
first order deformation of E is an algebraic vector bundle E over the scheme X = X ×Spec k Spec k[ε]/(ε2),
together with an isomorphism i∗E→ E (where i denotes the closed immersion X ↪→ X). Standard arguments
in deformation theory show that the collection of isomorphism classes of first-order deformations can be
identified with the cohomology group H1(X; End(E)), while the automorphism of each first order deformation
of E is given by H0(X; End(E)).

Our goal in this section is to place the above observations into a more general context.

(a) In the definition above, we can replace the ring of dual numbers k[ε]/(ε2) by an arbitrary R ∈ CAlgsm
k

to obtain a notion of a deformation of E over R. Let ObjDefE(R) denote a classifying space for
deformations of E over R. Then ObjDefE can be regarded as a functor CAlgsm

k → S. We will see below
that this functor is a formal moduli problem.

(b) The isomorphisms

H0(X; End(E)) ' π1 ObjDefE(k[ε]/(ε2)) H1(X; End(E)) ' π0 ObjDefE(k[ε]/(ε2))

follow from an identification of the cochain complex C∗(X; End(E)) with the (shifted) tangent complex
TObjDefE [−1].

(c) The definition of ObjDefE(R) does not require the commutativity of R. Consequently, we can extend
the domain of definition of ObjDefE to Algsm

k , and thereby regard ObjDefE as a formal E1-moduli prob-
lem (see Definition 3.0.3). We will see that the identification C∗(X; End(E)) ' TObjDefE [−1] is multi-
plicative: that is, it can be regarded as an equivalence of nonunital E1-algebras (where TObjDefE [−1]
is equipped with the nonunital E1-algebra structure given by Remark 3.2.6).
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(d) The definition of the formal moduli problem ObjDefE depends only on the algebraic vector bundle E

as an object of the stable ∞-category QCoh(X) of quasi-coherent sheaves on X. We will therefore
consider the more general problem of deforming an object M of an arbitrary k-linear ∞-category C.

We begin by introducing some notation.

Construction 5.2.1. Let k be a field, let C be a k-linear ∞-category, and let M ∈ C be an object. We
let RMod(C) denote the ∞-category of pairs (A,MA) where A ∈ Algk and MA is a right A-module object
of C. The forgetful functor q : RMod(C) → Algk is a coCartesian fibration. We let RModcoCart(C) denote
the subcategory of RMod(C) spanned by the q-coCartesian morphisms, so that q restricts to a left fibration
RModcoCart(C) → Algk. We will abuse notation by identifying M with an object of RModcoCart(C) (via
the equivalence RModk(C) → C). We let Defor[M ] = RModcoCart(C)/M . We will refer to Defor[M ] as the
∞-category of deformations of M .

There is an evident forgetful functor θ : Defor[M ]→ Algaug
k . The fiber of θ over an augmented k-algebra

A can be identified with the ∞-category of pairs (MA, µ), where MA ∈ RModA(C) and µ : MA ⊗A k → M

is an equivalence in C. The map θ is a left fibration, classified by a functor χ : Algaug
k → Ŝ; here Ŝ denotes

the ∞-category of spaces which are not necessarily small.

Let C be as in Construction 5.2.1. Proposition IX.7.4 implies that for every pullback diagram

A′ //

��

A

��
B′ // B

in Algk, the induced functor RModA′(C)→ RModA(C)×RModB(C) RModB′(C) is fully faithful. This imme-
diately implies the following:

Proposition 5.2.2. Let k be a field, C a k-linear ∞-category, M ∈ C an object, and let χ : Algaug
k → Ŝ be

as in Construction 5.2.1. Then, for every pullback diagram

A′ //

��

A

��
B′ // B

in Algaug
k , the induced map χ(A′) → χ(A) ×χ(B) χ(B′) induces a homotopy equivalent from χ(A′) to a

summand of χ(A)×χ(B) χ(B′).

Corollary 5.2.3. Let k be a field, C a k-linear ∞-category, M ∈ C an object, and let χ : Algaug
k → Ŝ be as

in Construction 5.2.1. Then:

(1) The space χ(k) is contractible.

(2) Let V ∈ Modk. Then the space χ(k ⊕ V ) is essentially small.

(3) Let A ∈ Algaug
k be small. Then the space χ(A) is essentially small.

Proof. Assertion (1) is immediate from the definitions. To prove (2), we note that for each A ∈ Algaug
k , the

space χ(A) is locally small (when regarded as an ∞-category). We have a pullback diagram

k ⊕ V //

��

k

��
k // k ⊕ V [1]
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so that Proposition 5.2.2 guarantees that χ(k ⊕ V ) is a summand of Ωχ(k ⊕ V [1]), and therefore essentially
small. We now prove (3). Assume that A is small, so that there exists a finite sequence of maps

A ' A0 → A1 → · · · → An ' k

and pullback diagrams
Ai //

��

k

��
Ai+1

// k ⊕ k[mi].

Using (1), (2), and Proposition 5.2.2, we deduce that each χ(Ai) is essentially small by descending induction
on i.

Notation 5.2.4. Let k be a field, C a k-linear ∞-category, and M ∈ C an object. Let χ : Algaug
k → Ŝ be

the functor classifying the left fibration Defor[M ]→ Algaug
k of Construction 5.2.1. We let ObjDefM denote

the restriction of χ to the full subcategory Algsm
k ⊆ Algaug

k spanned by the small E1-algebras over k. Using
Corollary 5.2.3, we can identify ObjDefM with a functor from Algsm

k to S.

More informally: the functor ObjDefM assigns to each R ∈ Algsm
k a classifying space for pairs (MR, µ),

where MR ∈ RModR(C) and µ : MR ⊗R k →M is an equivalence in C.
Combining Corollary 5.2.3 and Proposition 5.2.2, we obtain the following:

Corollary 5.2.5. Let k be a field, C a k-linear ∞-category, and M ∈ C an object. Then the functor
ObjDefM : Algsm

k → S is a 1-proximate formal moduli problem (see Definition 5.1.5).

Notation 5.2.6. Let k be a field, and let L : Fun(Algsm
k , S)→ Moduli

(1)
k denote a left adjoint to the inclusion.

If C is a k-linear ∞-category and M ∈ C is an object, we let ObjDef∧M denote the formal E1-moduli problem
L(ObjDefM ). By construction, we have a natural transformation ObjDefM → ObjDef∧M . It follows from
Theorem 5.1.9 that this natural transformation exhibits ObjDefM (R) as a summand of ObjDef∧M (R), for
each R ∈ Algsm

k . Moreover, ObjDef∧M is characterized up to equivalence by this property: see Remark 5.1.11.

Notation 5.2.7. Let k be a field, let C be a k-linear∞-category, and let M ∈ C be an object. We let End(M)
denote a classifying object for endomorphisms of M . That is, End(M) is an object of Modk equipped with
a map a : M ⊗ End(M) → M in C having the following universal property: for every object V ∈ Modk,
composition with a induces a homotopy equivalence

MapModk
(V,End(M)) ' MapC(M ⊗ V,M).

The existence of the object End(M) follows from Proposition A.4.2.1.33. Moreover, it follows from the
results of §A.6.1.2 show that we can regard End(M) as an E1-algebra over k, and M as a right module over
End(M). In what follows, it will be more convenient to view End(M) as a nonunital E1-algebra over k,
which can be identified with the augmentation ideal in the augmented E1-algebra k ⊕ End(M).

We can now formulate the main result of this section.

Theorem 5.2.8. Let k be a field, let C be a k-linear∞-category, let M ∈ C be an object, and let Ψ : Algaug
k →

Moduli
(1)
k be the equivalence of ∞-categories of Theorem 3.0.4. Then there is a canonical equivalence Ψ(k⊕

End(M)) ' ObjDef∧M .

Example 5.2.9. Let k be a field and regard Modk as a k-linear ∞-category. Let V be a finite-dimensional
vector space over k, and define ObjDefV as above. We will see below that ObjDefV is a formal E1 moduli
problem (Proposition 5.2.14), so that ObjDefV |CAlgsm

k is a formal moduli problem over k. Assume now
that k has characteristic zero, and let Φ : Liek → Modulik be the equivalence of Theorem 2.0.2. Combining
Theorems 5.2.8 and 3.3.1, we deduce that ObjDefV |CAlgsm

k corresponds, under the equivalence Φ, to the
matrix algebra End(V ) (equipped with its usual Lie bracket).
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Remark 5.2.10. Let k be a field, let C be a k-linear ∞-category, and let M ∈ C be an object. For each
R ∈ Algsm

k , Theorem A.6.3.4.1 yields a canonical homotopy equivalence

ObjDefM (R) = RModR(C)×C {M} ' MapLinCatk
(LModR,C)×C' {M}.

It follows that ObjDefM (R) depends only on the k-linear∞-category LModR, together with the distinguished
object k ∈ LModR (given by the augmentation R → k), so that the construction R 7→ ObjDefM (R) enjoys
some extra functoriality. This special feature of ObjDefM (R) is reflected in the structure of the associated
formal E1 moduli problem ObjDef∧M (R): according to Theorem 5.2.8, ObjDef∧M (R) has the form Ψ(A),
where A ∈ Algaug

k is an augmented E1-algebra over k whose augmentation ideal mA ' End(M) is itself
unital.

Theorem 5.2.8 is a consequence of a more precise assertion (Proposition 5.3.16) which describes the
equivalence Ψ(k ⊕ End(M)) ' ObjDef∧M explicitly. Before we can formulate it, we need to introduce a bit
more notation.

Construction 5.2.11. Let k be a field, let C be a k-linear ∞-category, and let M ∈ C be an object. We let
λ : M(1) → Algaug

k ×Algaug
k be the pairing of Construction 4.4.6, so that we can identify objects of M(1) with

triples (A,B, ε) where A,B ∈ Algk and ε : A⊗kB → k is an augmentation. Given an object (A,B, ε) ∈M(1)

and an object (A,MA, µ) ∈ Defor[M ], we regard MA ⊗k B as an object of BBModA⊗kB(C), so that

(M ⊗k B)⊗A⊗kB k

can be identified with an object of LModB(C) whose image in C is given by MA⊗Ak 'M . This construction
determines a functor

Defor[M ]×Algaug
k

M(1) → LMod(C)×C {M}

(see Corollary A.6.1.2.40). Let LModaug(C) denote the fiber product Algaug
k ×Algk LMod(C). The induced

map Defor[M ]×Algaug
k

M(1) → Defor[M ]× (LModaug(C)×C {M}) factors as a composition

Defor[M ]×Algaug
k

M(1) i→ M̃
(1) λ′→ Defor[M ]× (LModaug(C)×C {M})

where i is an equivalence of ∞-categories and λ′ is a categorical fibration. It is not difficult to see that λ′ is
a left representable pairing of ∞-categories, which induces a duality functor

D
(1)
M : Defor[M ]op → LModaug(C)×C {M}.

Concretely, the functor D
(1)
M assigns to each object (A,MA, µ) ∈ Defor[M ]op the object (D(1)(A),M), where

we regard M as a left D(1)-module object of C via the equivalence

M 'MA ⊗A k ' (M ⊗k D(1)(A))⊗A⊗kD(1)(A) k.

Using Corollary A.6.1.2.40, we have a canonical equivalence of ∞-categories η : LMod(C) ×C {M} '
(Algk)/End(M). Then η induces an equivalence

LModaug(C)×C {M} ' (Algaug
k )/(k⊕End(M)).

Combining this equivalence with Construction 5.2.11, we obtain a diagram of ∞-categories

Defor[M ]op //

��

(Algaug
k )/k⊕End(M)

��
(Algaug

k )op // Algaug
k

which commutes up to canonical homotopy, where the vertical maps are right fibrations. This diagram
determines a natural transformation β : ObjDefM → X, where X : Art(1) → S is the functor given by the
formula X(A) = MapAlgaug

k
(D(1)(A), k ⊕ End(M)) ' MapAlgk

(D(1)(A),End(M)).
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Theorem 5.2.8 is a consequence of Remark 5.1.11 together with the following result:

Proposition 5.2.12. Let k be a field, C a k-linear ∞-category, and M ∈ C an object. Then the natural
transformation β : ObjDefM → X of Construction 5.2.11 exhibits ObjDefM (R) as a summand of X(R) for
each R ∈ Algsm

k .

Proposition 5.2.12 asserts that β induces an equivalence of formal moduli problems β : ObjDef∧M → X.
According to Proposition 1.2.10, it suffices to show that β induces an equivalence of tangent complexes.
Using the description of the tangent complex of ObjDef∧M supplied by Lemma 5.1.12, we are reduced to
proving the following special case of Proposition 5.2.12:

Proposition 5.2.13. Let k be a field, C a k-linear ∞-category, and let M ∈ C be an object. For each m ≥ 0,
the natural transformation β : ObjDefM → X of Construction 5.2.11 induces a (−1)-truncated map

ObjDefM (k ⊕ k[m])→ MapAlgaug
k

(D(1)(k ⊕ k[m]), k ⊕ End(M)) ' MapAlgk
(D(1)(k ⊕ k[m]),End(M)).

Proof. We have a commutative diagram

ObjDefM (k ⊕ k[m]) //

��

MapAlgk
(D(1)(k ⊕ k[m]),End(M))

��
Ω ObjDefM (k ⊕ k[m+ 1])

θ // Ω MapAlgk
(D(1)(k ⊕ k[m+ 1]),End(M)),

where the left vertical map is (−1)-truncated by Corollary 5.2.5 and the right vertical map is a homotopy
equivalence. It will therefore suffice to show that θ is a homotopy equivalence. Let A = k ⊕ k[m + 1] and
let MA = M ⊗k A ∈ RModA(C). We can identify the domain of θ with the homotopy fiber of the map
ξ : MapRModA(C)(MA,MA)→ MapC)(M,M). We have a fiber sequence

M [m+ 1]→MA →M

in RModA(C), where A acts on M via the augmentation map A→ k. It follows that the homotopy fiber of
ξ is given by

MapRModA(C)(MA,M [m+ 1]) ' MapC(MA ⊗A k,M [m+ 1])

' MapC(M,M [m+ 1])

' MapModk
(k[−m− 1],End(M))

The map θ is induced by a morphism ν : k[−m−1]→ D(1)(k⊕k[m]) in Modk. Let Free(1) : Modk → Algk be

a left adjoint to the forgetful functor, so that ν determines an augmentation (k⊕k[m])⊗kFree(1)(k[−m−1])→
k. This pairing exhibits k ⊕ k[m] as a Koszul dual of Free(1)(k[−m − 1]), and therefore also exhibits

Free(1)(k[−m − 1]) as a Koszul dual of k ⊕ k[m] (Theorem 3.1.14). It follows immediately that θ is a
homotopy equivalence.

We conclude this section with a few observations concerning the discrepancy between the deformation
functor ObjDefM and the associated formal moduli problem ObjDef∧M introduced in Notation 5.2.6. Under
favorable circumstances, one can show that these two functors are equivalent:

Proposition 5.2.14. Let k be a field, let C be a k-linear ∞-category, and let M be an object. Assume that
C admits a left complete t-structure and that M is connective. Then the functor ObjDefM : Algsm

k → S of
Notation 5.2.4 is a formal moduli problem.
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Proof. Let A ∈ Algsm
k . We first show that if (M,µ) ∈ ObjDefM (A), then M ∈ RModA(C)≥0. Since A is

small, we can choose a finite sequence of maps

A ' A0 → A1 → · · · → An ' k

and pullback diagrams
Ai //

��

k

��
Ai+1

// k ⊕ k[mi]

for some integers mi > 0. We prove by descending induction on i that M ⊗A Ai belongs to RModAi(C)≥0.
In this case i = n, this follows from our assumption that Mn is connective. If i < n, it follows from the
inductive hypothesis since we have a fiber sequence

M [mi − 1]→M ⊗A Ai →M ⊗A Ai+1

in C.
Proposition IX.7.6 implies that if

A′ //

��

A

f

��
B′

g // B

is a pullback diagram in Algsm
k where the maps f and g induce surjections π0A → π0B ← π0B

′, then the
functor

RModA′(C)≥0 → RModA(C)≥0 ×RModB(C)≥0
RModB′(C)≥0

is an equivalence of ∞-categories. It follows immediately that

ObjDefM (A′) //

��

ObjDefM (A)

��
ObjDefM (B′) // ObjDefM (B)

is a pullback diagram in S.

Corollary 5.2.15. Let k be a field, let C be a k-linear ∞-category which admits a left complete t-structure,
and let M ∈ C≥0. Then the natural transformation β : ObjDefM → X of Construction 5.2.11 is an
equivalence. In other words, ObjDefM : Algsm

k → S is the formal moduli problem which corresponds, under
the equivalence of Theorem 3.0.4, to the augmented algebra k ⊕ End(M).

Proof. Combine Theorem 5.2.8, Corollary 5.2.5, and Theorem 5.1.9.

Remark 5.2.16. Let k be a field. For R ∈ Algsm
k , let RMod!

R denote the ∞-category of Ind-coherent
right R-modules over R (see §3.4). One can show that RMod!

R has the structure of a k-linear ∞-category
(depending functorially on R). For any k-linear ∞-category C, let RMod!

R(C) denote the relative tensor
product C⊗Modk RMod!

R. The equivalence RMod!
R ' LModD(1)(R) of Proposition 3.5.2 is k-linear, and

(combined with Theorem A.6.3.4.6) determines an equivalence RMod!
R(C) ' LModD(1)(R)(C). Let M ∈ C

and let X : Algsm
k → S be the formal moduli problem described in Construction 5.2.11. Then X is given by

the formula

X(R) = MapAlgaug
k

(D(1)(R), k ⊕ End(M))

' MapAlgk
(D(1)(R),End(M))

' LModD(1)(R)(C)×C {M}

' RMod!
R(C)×C {M}.
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In other words, the formal moduli problem X assigns to each R ∈ Algsm
k a classifying space for pairs (M,α),

where M ∈ RMod!
R(C) and α is an equivalence of M with the image of M ⊗R k of M in the ∞-category C.

The (−1)-truncated map ObjDefM ↪→ ObjDef∧M ' X is induced by fully faithful embedding RModR(C) ↪→
RMod!

R(C), which are in turn determined by the fully faithful embeddings RModR ↪→ RMod!
R of Proposition

3.4.14. From this point of view, we can view Proposition 5.2.14 as a generalization of Proposition 3.4.18:
it asserts that the fully faithful embedding RModR(C) ↪→ RMod!

R(C) induces an equivalence on connective
objects (where we declare an object of RMod!

R(C) to be connective if its image in C is connective).

5.3 Deformations of Categories

Let k be a field and let C be a k-linear ∞-category. In §5.2, we studied the problem of deforming a fixed
object M ∈ C. In this section, we will study the deformation theory of the ∞-category C itself. For every
small E2-algebra R over k, we will define a classifying space CatDefC(R) for R-linear ∞-categoriers CR
equipped with an equivalence C ' Modk ⊗ModR CR. We will show that, modulo size issues, the construction
R 7→ CatDefC(R) is a 2-proximate formal moduli problem (Corollary 5.3.8; in good cases, we can say
even more: see Proposition 5.3.21 and Theorem 5.3.33). Using Theorem 5.1.9, we deduce that there is a
0-truncated natural transformation CatDefC → CatDef∧C, where CatDef∧C is a formal E2 moduli problem
(which is uniquely determined up to equivalence: see Remark 5.1.11). According to Theorem 4.0.8, the formal
moduli problem CatDef∧C is given by R 7→ Map

Alg
(2),aug
k

(D(2)(R), A) for an essentially unique augmented E2-

algebra A over k. The main result of this section identifies the augmentation ideal mA (as a nonunital
E2-algebra) with the k-linear center of the ∞-category C (Theorem 5.3.16): in other words, with the chain
complex of Hochschild cochains on C.

We begin with a more precise description of the deformation functor CatDefC.

Notation 5.3.1. Let k be an E∞-ring. We let LinCatk ' ModModk(PrL) denote the ∞-category of k-linear
∞-categories, which we regard as as a symmetric monoidal ∞-category. According to Theorem A.6.3.5.14,
the construction A 7→ LModA(Modk) determines a symmetric monoidal functor Algk → LinCatk. Passing

to algebra objects, we obtain a functor Alg
(2)
k ' Alg(Algk)→ Alg(LinCatk). We set

LCat(k) = Alg
(2)
k ×Alg(LinCatk) LMod(LinCatk)

RCat(k) = Alg
(2)
k ×Alg(LinCatk) RMod(LinCatk).

The objects of LCat(k) are pairs (A,C) where A is an E2-algebra over k and C is an A-linear ∞-category
(that is, an ∞-category left-tensored over LModA). Similarly, the objects of RCat(k) are pairs (B,C) where
B is an E2-algebra over k and C is an ∞-category right-tensored over LModB .

Construction 5.3.2. Let k be a field, and let q : LCat(k) → Alg
(2)
k be the evident coCartesian fibration.

We let LCat(k)coCart denote the subcategory of LCat(k) spanned by the q-coCartesian morphisms, so that

q restricts to a left fibration LCat(k)coCart → Alg
(2)
k .

Let C be a k-linear ∞-category and regard (k,C) as an object of LCat(k). We let Defor[C] denote the
∞-category LCat(k)coCart

/(k,C) . We will refer to Defor[C] as the ∞-category of deformations of C. There is an

evident forgetful functor θ : Defor[C] → Alg
(2),aug
k . The fiber of θ over an augmented k-algebra A can be

identified with the ∞-category of pairs (CA, µ), where CA is an A-linear ∞-category and µ is a k-linear
equivalence

LModk(CA) ' Modk ⊗LModA CA → C .

The map θ is a left fibration, classified by a functor χ : Alg
(2),aug
k → Ŝ; here Ŝ denotes the ∞-category of

spaces which are not necessarily small. We let CatDefC denote the composition of the functor χ with the

fully faithful embedding Alg
(2),sm
k → Alg

(2),aug
k .
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Let us now fix a k-linear ∞-category C and study the properties of the functor χ : Alg
(2),aug
k → Ŝ

introduced in Construction 5.3.2. We begin with a simple observation. Let A be an E2-ring and let CA
be an A-linear ∞-category. For every map of E2-rings A → B, let CB = LModB ⊗LModA C ' LModB(C).
Proposition IX.7.4 implies that if we are given a pullback diagram σ : E2-rings

A //

��

A′

��
B // B′,

of E2-rings then the induced map
CA → CA′ ×CB′ CB

is fully faithful. Let DA be another A-linear ∞-category. For every map of E2-rings A → B, we let DB '
LModB(D) be defined as above, and FunB(DB ,CB) denote the ∞-category of LModB-linear functors from
CB to DB which preserve small colimits, so there is a canonical equivalence FunB(DB ,CB) ' FunA(DA,CB).
It follows that if σ is a pullback diagram as above, then it induces a fully faithful functor

FunA(DA,CA)→ FunA′(DA′ ,CA′)×FunB′ (DB′ ,CB′ )
FunB(DB ,CB).

This immediately implies the following result:

Proposition 5.3.3. Let k be a field, let C be a k-linear ∞-category, and let χ : Alg
(2),aug
k → Ŝ be as in

Construction 5.3.2. Then for every pullback diagram

A //

��

A′

��
B // B′

in Alg
(2),aug
k , the induced map θ : χ(A) → χ(A′) ×χ(B′) χ(B) is 0-truncated (in other words, the homotopy

fibers of θ are discrete, up to homotopy).

Variant 5.3.4. Let k be a field, C a k-linear∞-category, and κ a regular cardinal such that C is κ-compactly

generated. For each A ∈ Alg
(2),aug
k , we let χκ(A) denote the summand of χ(A) spanned by those pairs (CA, µ)

where CA is κ-compactly generated. We can regard χκ as a functor Alg
(2),aug
k → Ŝ. It follows immediately

from Proposition 5.3.3 that for each pullback diagram

A //

��

A′

��
B // B′

in Alg
(2),aug
k , the induced map

χκ(A)→ χκ(A′)×χκ(B′) χκ(B)

has discrete homotopy fibers. We claim that each of these homotopy fibers is essentially small. Unwinding
the definitions, we must show that for every compatible triple of κ-compactly generated ∞-categories CA′ ∈
LinCatA′ , CB′ ∈ LinCatB′ , and CB ∈ LinCatB , there is only a bounded number of equivalence classes of full
A-linear subcategories CA ⊆ CA′ ×CB′ CB which are κ-compactly generated and induce equivalences

CA′ ' LModA′(CA) CB ' LModB(CA).

For in this case, CA must be generated generated (under κ-filtered colimits) by some subcategory of the
essentially small ∞-category CκA′ ×Cκ

B′
CκB , where CκA′ denotes the full subcategory of CA′ spanned by the

κ-compact objects, and CκB′ and CκB are defined similarly.
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Corollary 5.3.5. Let k be a field, let C be a k-linear ∞-category, and let χ : Alg
(2),aug
k → Ŝ be as in

Construction 5.3.2. Then:

(1) The space χ(k) is contractible.

(2) Let V ∈ Modk. Then χ(k ⊕ V ) is locally small, when regarded an ∞-category. In other words, each
path component of χ(k ⊕ V ) is essentially small.

(3) Let A ∈ Alg
(2),aug
k be small. Then the space χ(A) is locally small.

Proof. Assertion (1) is immediate from the definitions. To prove (2), we note that for each A ∈ Alg
(2),aug
k

and every point η ∈ χ(A) corresponding to a pair (CA, µ), the space Ω2(χ(A), η) can be identified with the
homotopy fiber of the restriction map

MapFunA(CA,CA)(id, id)→ MapFunk(C,C)(id, id)

and is therefore essentially small. We have pullback diagrams

k ⊕ V //

��

k

��

k ⊕ V [1] //

��

k

��
k // k ⊕ V [1] k // k ⊕ V [2]

so that Proposition 5.3.3 guarantees that the map χ(k ⊕ V )→ Ω2χ(k ⊕ V [2]) has discrete homotopy fibers.
It follows that each path component of χ(k⊕ V ) is a connected covering space of the essentially small space
Ω2χ(k ⊕ V [2]), and is therefore essentially small.

We now prove (3). Assume that A is small, so that there exists a finite sequence of maps

A ' A0 → A1 → · · · → An ' k

and pullback diagrams
Ai //

��

k

��
Ai+1

// k ⊕ k[mi].

We prove that χ(Ai) is locally small using descending induction on i. Using (1), (2), and the inductive
hypothesis, we deduce that X = χ(k) ×χ(k⊕k[mi]) χ(Ai+1) is locally small. Proposition 5.3.3 implies that
the map χ(Ai+1) → X has discrete homotopy fibers. It follows that every path component of χ(Ai+1) is a
connected covering space of a path component of X, and therefore essentially small.

Variant 5.3.6. Let k be a field, C a k-linear∞-category, and κ a regular cardinal such that C is κ-compactly

generated. Let χκ : Alg
(2),aug
k → Ŝ be as in Variation 5.3.4. The proof of Corollary 5.3.5 yields the following

results:

(1′) The space χκ(k) is contractible.

(2′) Let V ∈ Modk. Then χκ(k ⊕ V ) is essentially small.

(3′) Let A ∈ Alg
(2),aug
k be small. Then the space χ(A) is essentially small.

Notation 5.3.7. Let k be a field and C a k-linear∞-category. We let χ : Alg
(2),aug
k → Ŝ be as in Construction

5.3.2, and let CatDefC : Alg
(2),sm
k → Ŝ denote the composition of χ with the fully faithful embedding

ν : Alg
(2),sm
k ↪→ Alg

(2),aug
k . If κ is a regular cardinal such that C is κ-compactly generated, we let CatDefC,κ

denote the composition χκ ◦ ν, where χκ is as in Variation 5.3.4. It follows from Variation 5.3.6 that we can

identify CatDefC,κ with a functor Alg
(2),sm
k → S (and the functor CatDefC is given by the filtered colimit of

the transfinite sequence of functors {CatDefC,κ}, where κ ranges over all small regular cardinals).
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Corollary 5.3.8. Let k be a field and C a k-linear ∞-category. Then there exists a formal moduli problem

CatDef∧C : Alg
(2),sm
k → S and a natural transformation α : CatDefC → CatDef∧C which is 0-truncated. In

particular, we can regard CatDefC : Alg
(2),sm
k → Ŝ as a 2-proximate formal moduli problem after a change of

universe (see Theorem 5.1.9).

Proof. Combining Corollary 5.3.5, Proposition 5.3.3, and Theorem 5.1.9, we deduce the existence of a formal

moduli problem CatDef∧C : Alg
(2),sm
k → Ŝ and a 0-truncated natural transformation α : CatDefC → CatDef∧C.

For each m ≥ 0, we see that the space

CatDef∧C(k ⊕ k[m]) ' Ω2 CatDef∧C(k ⊕ k[m+ 2]) ' Ω2 CatDefC(k ⊕ k[m+ 2])

is essentially small (see the proof of Corollary 5.3.5). For an arbitrary object A ∈ Alg
(2),sm
k , we can choose

a finite sequence of maps A = A0 → A1 → · · · → An ' k and pullback diagrams

Ai //

��

k

��
Ai+1

// k ⊕ k[mi].

Using the fact that CatDef∧C is a formal moduli problem, we deduce that each CatDef∧C(Ai) is essentially
small by descending induction on i, so that CatDef∧C(A) is essentially small.

Remark 5.3.9. In the situation of Corollary 5.3.8, let κ be a regular cardinal such that C is κ-compactly
generated. Then the composite map

CatDefC,κ → CatDefC → CatDef∧C

is 0-truncated, so that CatDefC,κ is a 2-proximate formal moduli problem by Theorem 5.1.9.

Our next goal is to describe the formal E2-moduli problem CatDef∧C more explicitly. Using Theorem
4.0.8 (and its proof), we see that the functor CatDef∧C is given by

CatDef∧C(R) = Map
Alg

(2),aug
k

(D(2)(R), k ⊕m),

for some nonunital E2-algebra m over k. We would like to make the dependence of m on C more explicit.

Definition 5.3.10. Let k be an E∞-ring and let C be a k-linear ∞-category. We let RCat(k)C denote the
fiber product RCat(k) ×LinCatk {C}. We will say that an object (B,C) ∈ RCat(k)C of RCat(k)C exhibits B
as the k-linear center of C if (B,C) is a final object of RCat(k)C.

Remark 5.3.11. In the situation of Definition 5.3.10 Corollary A.6.1.2.42 implies that the forgetful functor
RMod(LinCatk) ×LinCatk {C} → Alg(LinCatk) is a right fibration. It follows that the map q : RCat(k)C →
Alg

(2)
k is a right fibration, so that an object (B,C) ∈ RCat(k)C is final if and only if the right fibration q is

represented by the object B ∈ Alg
(2)
k . In other words, the k-linear center B of C can be characterized by

the following universal property: for every A ∈ Alg
(2)
k , the space Map

Alg
(2)
k

(A,B) can be identified with the

space RModLModA(PrL)×LinCatk {C} of k-linear right actions of LModA on C.

Proposition 5.3.12. Let k be an E∞-ring and let C be a k-linear ∞-category. Then there exists an object
(B,C) ∈ RCat(k)C which exhibits B as a k-linear center of C.

Proof. Let E be an endomorphism object of C in LinCatk: that is, E is the ∞-category of k-linear functors
from C to itself. We regard E as a monoidal ∞-category via order-reversed composition, so that C is
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a right E-module object of LinCatk. According to Theorem A.6.3.5.10, the symmetric monoidal functor
Algk → (LinCatk)Modk / admits a right adjoint G. It follows that G induces a right adjoint G′ to the functor

Alg
(2)
k ' Alg(Algk)→ Alg((LinCatk)Modk /) ' Alg(LinCatk),

and we can define B = G′(E).

Remark 5.3.13. Let k be an E∞-ring and C a k-linear ∞-category The proofs of Proposition 5.3.12 and
Theorem A.6.3.5.10 furnish a somewhat explicit description of the k-linear center B of C, at least as an
E1-algebra over k: it can be described as the endomorphism ring of the identity functor idE ∈ E, where E is
the ∞-category of k-linear functors from C to itself.

Example 5.3.14. Let k be an E∞-ring, let R ∈ Algk be an E1-algebra over k, and let Z(R) = ZE1
(R) ∈

Alg
(2)
k be a center of R (see Definition A.6.1.4.10). Then Z(R) is a k-linear center of the ∞-category

RModR(Modk).

Remark 5.3.15. Let k be an E∞-ring, C a k-linear ∞-category, and A ∈ Alg
(2)
k a k-linear center of C.

The homotopy groups πnA are often called the Hochschild cohomology groups of C. In the special case
where C = LModR(Modk) for some R ∈ Algk, Example 5.3.14 allows us to identify πnA with the group
Ext−n

RBModR(Modk)(R,R).

We are now ready to formulate the main result of this section.

Theorem 5.3.16. Let k be a field and let C be a k-linear ∞-category. Then the functor ObjDef∧C :

Alg
(2),sm
k → S is given by

ObjDef∧C(R) = Map
Alg

(2),aug
k

(D(2)(R), k ⊕ Z(C)) ' Map
Alg

(2)
k

(D(2)(R),Z(C)).

where Z(C) denotes a k-linear center of C.

Using Remark 5.1.11, we see that Theorem 5.3.16 is equivalent to the following:

Proposition 5.3.17. Let k be a field, let C be a k-linear ∞-category, and let Z(C) ∈ Alg
(2)
k denote a k-linear

center of C. Let X : Alg
(2),sm
k → S be the functor given by the formula X(R) = Map

Alg
(2)
k

(D(2)(R), B). Then

there exists a 0-truncated natural transformation β : CatDefC → X.

The first step in our proof of Proposition 5.3.17 is to construct the natural transformation CatDefC → X.

Construction 5.3.18. Let k be a field and let C be a k-linear ∞-category. We let λ(2) : M(2) →
Alg

(2),aug
k ×Alg

(2),aug
k be the pairing of Construction 4.4.6, so that we can identify objects of M(2) with triples

(A,B, ε) where A,B ∈ Alg
(2)
k and ε : A⊗k B → k is an augmentation. Given an object (A,B, ε) ∈M(2) and

an object (A,CA, µ) ∈ Defor[C], we regard CA⊗LModB as an object of

LModA⊗LModBBModLModB (LinCatk),

so that
Modk ⊗LModA⊗LModB (CA⊗LModB)

can be identified with an object of RModLModB (Modk) whose image in LinCatk is given by

Modk ⊗LModA CA ' C .

This construction determines a functor

Defor[C]×
Alg

(2),aug
k

M(2) → RMod(LinCatk)×LinCatk {C}.
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The induced map

Defor[C]×
Alg

(2),aug
k

M(2) → Defor[C]× (Alg
(2),aug
k ×Alg(LinCatk) RMod(LinCatk)×LinCatk {C})

factors as a composition

Defor[C]×Algaug
k

M(2) i→ M̃
(2) λ′→ Defor[C]× (Alg

(2),aug
k ×Alg(LinCatk) RMod(LinCatk)×LinCatk {C})

where i is an equivalence of ∞-categories and λ′ is a categorical fibration. It is not difficult to see that λ′ is
a left representable pairing of ∞-categories, which induces a duality functor

D
(2)
C : Defor[C]op → Alg

(2),aug
k ×Alg(LinCatk) RMod(LinCatk)×LinCatk {C}.

Concretely, the functor D
(2)
C assigns to each object (A,CA, α) ∈ Defor[C]op the object (D(2)(A),C), where we

regard C as right-tensored over LModD(2)(A) via the k-linear equivalence

C ' Modk ⊗LModA⊗LModB (CA⊗LModB).

Let k be a field and let C be a k-linear ∞-category. We let Z(C) denote a k-linear center of C (Definition
5.3.10), so that we have a canonical equivalence of ∞-categories

η : Alg
(2)
k ×Alg(LinCatk) RMod(LinCatk)×LinCatk C ' (Alg

(2)
k )/Z(C).

Composing η with the functor D
(2)
C , we obtain a diagram of ∞-categories

Defor[C]op //

��

(Alg
(2),aug
k )/(k⊕Z(C))

��
(Alg

(2),aug
k )op

D(2)
// Alg

(2),aug
k

which commutes up to canonical homotopy, where the vertical maps are right fibrations. This diagram

determines a natural transformation β : ObjDefC → X, where X : Alg
(2),sm
k → S is the functor given by the

formula X(R) = Map
Alg

(2)
k

(D(2)(A),Z(C)).

We will prove Proposition 5.3.17 (and therefore also Theorem 5.3.16) by showing that the natural trans-
formation β of Construction 5.3.18 is 0-truncated. Since the functor X is a formal E2-moduli problem, β
induces a natural transformation β : CatDef∧C → X. We wish to prove that β is an equivalence (which implies
Proposition 5.3.17, by virtue of Theorem 5.1.9). According to Proposition 1.2.10, it suffices to show that
β induces an equivalence of tangent complexes. Using the description of the tangent complex of CatDef∧C
supplied by Lemma 5.1.12, we are reduced to proving the following special case of Proposition 5.3.17:

Proposition 5.3.19. Let k be a field and C a k-linear ∞-category. For each m ≥ 0, the natural transfor-
mation β : ObjDefC → X of Construction 5.3.18 induces a 0-truncated map

ObjDefC(k ⊕ k[m])→ Map
Alg

(2)
k

(D(2)(k ⊕ k[m]),Z(C)).

Proof. We have a commutative diagram

ObjDefC(k ⊕ k[m]) //

��

Map
Alg

(2)
k

(D(2)(k ⊕ k[m]),Z(C))

��
Ω2 ObjDefC(k ⊕ k[m+ 2])

θ // Ω2 Map
Alg

(2)
k

(D(2)(k ⊕ k[m+ 2]),Z(C)),
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where the left vertical map is 0-truncated by Corollary 5.3.8 and the right vertical map is a homotopy
equivalence. It will therefore suffice to show that θ is a homotopy equivalence. Let A = k ⊕ k[m + 2],
let CA = LModA⊗C ' RModA(C), let E be the ∞-category of k-linear functors from C to itself, and let
EA be the ∞-category of LModA-linear functors from CA to itself, so that there is a canonical equivalence
γ : EA ' LModA(E). Let id ∈ E denote the identity functor from C to itself. Under the equivalence γ, the
identity functor from CA to itself can be identified with the free module A⊗ id ∈ LModA(E). Unwinding the
definitions, we see that the domain of θ can be identified with the homotopy fiber of the map

ξ : MapEA
(A⊗ id, A⊗ id) ' MapE(id, A⊗ id)→ MapE)(id, id).

We have a canonical fiber sequence
id[m+ 2]→ A⊗ id→ id

in E, so that the homotopy fiber of ξ is given by

MapE(id, id[m+ 2]) ' MapModk
(k[−m− 2],Z(C)).

The map θ is induced by a morphism ν : k[−m−2]→ D(2)(k⊕k[m]) in Modk. Let Free(2) : Modk → Alg
(2)
k be

a left adjoint to the forgetful functor, so that ν determines an augmentation (k⊕k[m])⊗kFree(2)(k[−m−2])→
k. The proof of Proposition 4.5.6 shows that this pairing exhibits Free(2)(k[−m− 2]) as the Koszul dual of
k ⊕ k[m], from which it immediately follows that θ is a homotopy equivalence.

Our goal, for the remainder of this section, is to describe the formal moduli problem CatDef∧C more
explicitly in terms of the ∞-category C. Assume that C is compactly generated. Let ω denote the first
infinite cardinal and let CatDefC,ω be the deformation functor of Notation 5.3.7 (so that CatDefC,ω classifies
compactly generated deformations of C). Our main result (Theorem 5.3.33) asserts that, under some rather
restrictive assumptions, the composite map

CatDefC,ω → CatDefC → CatDef∧C

is an equivalence of functors. Since the natural transformation CatDefC,ω → CatDef∧C is 0-truncated, this
is equivalent to the assertion that CatDefC,ω is itself a formal moduli problem (see Remark 5.1.11). The
functor CatDefC,ω is automatically a 2-proximate formal moduli problem (Remark 5.3.9). Our first step is
to obtain a criterion which guarantees that CatDefC,ω is a 1-proximate formal moduli problem. First, we
need to introduce a bit of terminology.

Definition 5.3.20. Let C be a presentable stable ∞-category. We let Cc denote the full subcategory of C
spanned by the compact objects of C. We will say that C is tamely compactly generated if it satisfies the
following conditions:

(a) The ∞-category C is compactly generated (that is, C ' Ind(Cc)).

(b) For every pair of compact objects C,D ∈ C, the groups ExtnC(C,D) vanish for n� 0.

Proposition 5.3.21. Let k be a field, let C be a k-linear ∞-category which is tamely compactly generated,

and let CatDefC,ω : Alg
(2),sm
k → S be as in Notation 5.3.7. Then CatDefC,ω is a 1-proximate formal moduli

problem.

The proof of Proposition 5.3.21 will require some preliminaries.

Notation 5.3.22. Let R be an E2-ring and let C be an R-linear ∞-category. For every pair of objects
C,D ∈ C, we let MorC(C,D) ∈ LModR be a classifying object for morphisms from C to D. This object is
characterized (up to canonical equivalence) by the requirement that there exists a map e : MorC(C,D)⊗C →
D such that, for every M ∈ LModR, the composite map

MapLModR(M,MorC(C,D))→ MapC(M ⊗ C,MorC(C,D)⊗ C)
e◦→ MapC(M ⊗ C,D)

is a homotopy equivalence.
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Lemma 5.3.23. Let R be an E2-ring and let C be an R-linear ∞-category. If C ∈ C is compact, then the
construction D 7→ MorC(C,D) determines a colimit-preserving functor C→ LModR.

Proof. It is clear that the construction D 7→ MorC(C,D) commutes with limits and is therefore an exact
functor. To prove that it preserves colimits, it suffices to show that it preserves filtered colimits. For this, it
suffices to show that the construction D 7→ Ω∞MorC(C,D) preserves filtered colimits (as a functor from C

to S), which is equivalent to the requirement that C is compact.

Let R and C be as in Notation 5.3.22. Given an object N ∈ LModR, the induced map

N ⊗MorC(C,D)⊗ C idN ⊗e−→ N ⊗D

is classified by a map λ : N ⊗MorC(C,D)→ MorC(C,N ⊗D).

Lemma 5.3.24. Let R be an E2-ring and let C be an R-linear∞-category. Let C,D ∈ C and let N ∈ LModR.
If C is a compact object of C, then the map λ : N ⊗MorC(C,D)→ MorC(C,N ⊗D) is an equivalence.

Proof. Using Lemma 5.3.23, we deduce that the functor N 7→ MorC(C,N ⊗D) preserves small colimits. It
follows that the collection of objects N ∈ LModR such that λ is an equivalence is closed under colimits in
LModR. We may therefore suppose that N ' R[n] for some integer n, in which case the result is obvious.

Lemma 5.3.25. Suppose we are given a map of E2-rings R→ R′, let C be an R-linear ∞-category, and let
C′ = LModR′ ⊗LModR C ' LModR′(C). Let F : C→ C′ be a left adjoint to the forgetful functor G : C′ → C, so
that F is given by given by C 7→ R′ ⊗C. For every pair of objects C,D ∈ C, the map MorC(C,D)⊗C → D
induces a map

(R′ ⊗R MorC(C,D))⊗ F (C) ' F (MorC(C,D)⊗ C)→ F (D),

which is classified by a map α : R′ ⊗R MorC(C,D) → MorC′(F (C), F (D)). If C ∈ C is compact, then α is
an equivalence.

Proof. The image of α under the forgetful functor LModR′ → LModR coincides with the equivalence R′ ⊗R
MorC(C,D)→ MorC(C,R′ ⊗D) of Lemma 5.3.24.

Lemma 5.3.26. Suppose given a pullback diagram

A //

��

B

��
A′ // B′

of E2-rings. Let CA be an A-linear ∞-category, let CB = LModB ⊗LModA CA ' LModB(CA), and define CA′

and CB′ similarly. An object C ∈ CA is compact if and only if its images in CB and CA′ are compact.

Proof. The “only if” direction is obvious, since the forgetful functors CB → CA ← CA′ preserve filtered
colimits. For the converse, suppose that C ∈ CA has compact images CB ∈ CB and CA′ ∈ CA′ . Then the
image of C in CB ×CB′ CA′ is compact. Since the natural map CA → CB ×CB′ CA′ is fully faithful (Proposition
IX.7.4) and preserves filtered colimits, we conclude that C is compact.

Lemma 5.3.27. Let f : A → B be a map of connective E2-rings, and let CA be an A-linear ∞-category
which is tamely compactly generated. Then CB = LModB(C) is tamely compactly generated.

Proof. We note that CB is compactly generated: in fact, CB is generated under small colimits by the essential

image of the composite functor map CcA ↪→ CA
F→ CB , which consists of compact objects (since F is left

adjoint to a forgetful functor). It follows that the ∞-category CcB is the smallest stable full subcategory of
CB which contains F (CcA) and is closed under retracts. Let X ⊆ CB be the full subcategory spanned by those
objects C such that for every D ∈ CcB , we have ExtnCB (C,D) ' 0 for n� 0. It is easy to see that X is stable
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and closed under retracts. Consequently, to show that CcB ⊆ X, it will suffice to show that F (C0) ∈ X for
each C0 ∈ CcA. Let us regard C0 as fixed, and let Y be the full subcategory of CB spanned by those objects
D for which the groups ExtnCB (F (C0), D) vanish for n � 0. Since Y is stable and closed under retracts, it
will suffice to show that F (D0) ∈ Y for each D0 ∈ CcA. In other words, we are reduced to proving that the
homotopy groups π−n MorCB (F (C0), F (D0)) vanish for n � 0. Using Lemma 5.3.25, we must show that
π−n(B⊗AMorCA(C0, D0)) vanishes for n� 0. Since A and B are connective, this follows from the fact that
π−n MorCA(C0, D0) ' 0 for n� 0 (since CA is tamely compactly generated).

Lemma 5.3.28. Let A be a connective E2-ring and let CA be an A-linear ∞-category which is tamely com-
pactly generated. For every map of E2-rings A→ R, we let CR denote the ∞-category LModR⊗LModA CA '
LModR(CA). Suppose we are given a pullback diagram

A //

��

B

��
A′ // B′

of connective E2-rings which induces surjective maps π0B → π0B
′ and π0A

′ → π0B
′. Then the induced map

θc : CcA → CcB ×Cc
B′

CcA′ is an equivalence of ∞-categories.

Proof. The functor θc is given by the restriction of a functor θ : CA → CB ×CB′ CA′ , which is fully faithful by
Proposition IX.7.4; this proves that θc is fully faithful. We will show that θ is essentially surjective. We can
identify objects of CB ×CB′ CA′ with triples (CB , CA′ , η) where CB ∈ CcB , CA′ ∈ CcA′ , and η is an equivalence
B′ ⊗B CB ' B′ ⊗A′ CA′ . In this case, we will denote B′ ⊗B CB ' B′ ⊗A′ CA′ by CB′ . Note that θ admits
a right adjoint G, given by (CB , CA′ , η) 7→ CB ×CB′ CA′ . In view of Lemma 5.3.26, it will suffice to show
that the counit transformation v : θ ◦ G → id is an equivalence when restricted to objects of CcB ×Cc

B′
CcA′ .

Choose such an object (CB , CA′ , η) (so that CB and CA′ are compact) and let CA = CB ×CB′ CA′ ; we wish
to show that the canonical maps

φ : B ⊗A CA → CB φ′ : A′ ⊗A CACA′

are equivalences. We will show that φ is an equivalence; the argument that φ′ is an equivalence is similar.
Let X ⊆ CB be the full subcategory spanned by those objects DB ∈ CB such that φ induces an equivalence
φ0 : MorCB (DB , B ⊗A CA) → MorCB (DB , CB). We wish to show that X = CB . Since X is closed under
small colimits, it will suffice to show that X contains B ⊗ADA for every compact object DA ∈ CA. Let DA′

and DB′ be the images of DA in CA′ and CB′ , respectively. Using Lemma 5.3.24, we can identify φ0 with
the canonical map B ⊗A MorCA(DA, CA)→ MorCB (DB , CB). Note that we have a pullback diagram

MorCA(DA, CA) //

��

MorCB (DB , CB)

��
MorCA′ (DA′ , CA′) // MorCB′ (DB′ , CB′)

and that Lemma 5.3.24 guarantees that the underlying maps

B′ ⊗A′ MorCA′ (DA′ , CA′)→ MorCB′ (DB′ , CB′)← B′ ⊗B MorCB (DB , CB)

are equivalences. It will therefore suffice to show that there exists an integer n such that MorCB (DB , CB) and
MorCA′ (DA′ , CA′) belong to (LModB)≥n and (LModA′)≥n, respectively (Proposition IX.7.6). This follows
immediately from Lemma 5.3.27.

Notation 5.3.29. Let LinCattcg be the subcategory of LinCat whose objects are pairs (A,C), where A is a
connective E2-ring and C is a tamely compactly generated A-linear ∞-category, and whose morphisms are

158



maps (A,C) → (A′,C′) such that the underlying functor C → C′ carries compact objects of C to compact

objects of C′. It follows from Lemma 5.3.27 that the forgetful functor LinCattcg → Alg(2),cn is a coCartesian

fibration. This coCartesian fibration is classified by a functor χtcg : Alg(2),cn → Ĉat∞.

Lemma 5.3.30. Let χtcg : Alg(2),cn → Ĉat∞ be as in Notation 5.3.29. Suppose we are given a pullback
diagram

A //

��

B

��
A′ // B′

of connective E2-rings which induces surjective maps π0B → π0B
′ and π0A

′ → π0B
′. Then the induced map

F : χtcg(A)→ χtcg(B)×χtcg(B′) χ
tcg(A′) is fully faithful.

Proof. We can identify objects of the fiber product χtcg(B)×χtcg(B′) χ
tcg(A′) with triples (CB ,CA′ , η) where

CB ∈ LinCattcg
B , CA′ ∈ LinCattcg

A , and η is an equivalence LModB′(CB) ' LModB′(CA). Given such an
object, we let CB′ denote the ∞-category LModB′(CB) ' LModB′(CA). The functor F admits a right
adjoint G, which carries a triple (CB ,CA′ , η) to the full subcategory of CB ×CB′ CA′ generated under small
colimits by CcB ×Cc

B′
CcA′ . We wish to show that the unit map u : id→ G◦F is an equivalence. In other words,

we wish to show that if (CB ,CA′ , η) = F (CA) for some tamely compactly generated A-linear ∞-category
CA, then the canonical map CA → CB ×CB′ CA′ is fully faithful and its essential image is the subcategory
generated by CcB ×Cc

B′
CcA under small colimits. This follows immediately from Lemma 5.3.28.

Lemma 5.3.31. Let k be a field and let A ∈ Alg
(2),sm
k be a small E2-algebra over k. Let CA be a com-

pactly generated A-linear ∞-category. Then CA is tamely compactly generated if and only if LModk(CA) '
LModk ⊗LModA CA is tamely compactly generated.

Proof. The “only if” direction follows from Lemma 5.3.27. For the converse, suppose that LModk(CA) is
tamely compactly generated. Let X ⊆ CA be the full subcategory spanned by those objects D such that, for
each C ∈ CcA, the groups ExtnCA(C,D) vanish for n� 0. Note that if C,D ∈ CcA, then

ExtnCA(C, k ⊗D) ' ExtnLModk(CA)(k ⊗ C, k ⊗D)

vanishes for n � 0. It follows that X contains k ⊗ D for each D ∈ CcA. Since A is small, we can choose a
finite sequence

A = A0 → · · · → An

and pullback diagrams
Ai //

��

k

��
Ai+1

// k ⊕ k[mi].

In particular, we have fiber sequences of A-modules

Ai → Ai+1 → k[mi].

It follows by descending induction on i that Ai ⊗ D ∈ X for each D ∈ CcA. Taking i = 0, we deduce that
CcA ⊆ X as desired.

Proof of Proposition 5.3.21. Combine Variation 5.3.6 with Lemmas 5.3.30 and 5.3.31.

We can improve further on Proposition 5.3.21 if we are willing to to impose some stronger conditions on
the k-linear ∞-category C.
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Definition 5.3.32. Let C be a presentable stable ∞-category. We will say that an object C ∈ C is unob-
structible if C is compact and the groups ExtnC(C,C) vanish for n ≥ 2.

Theorem 5.3.33. Let k be a field and let C be a k-linear ∞-category. Assume that C is tamely compactly
generated and that there exists a collection of unobstructible objects {Cα} which generates C under small

colimits. Then the functor CatDefC,ω : Alg
(2),sm
k → S of Proposition 5.3.21 is a formal E2 moduli problem.

Corollary 5.3.34. Let k be a field and let C be a k-linear ∞-category. Assume that C is tamely compactly
generated and that there exists a collection of unobstructible objects {Cα} which generates C under small
colimits. Then the composite map

CatDefC,ω → CatDefC → CatDef∧C

is an equivalence. Consequently, the functor CatDefC,ω is given by

CatDefC,ω(R) = Map
Alg

(2)
k

(D(2)(R),Z(C)),

where Z(C) denotes the k-linear center of C.

Proof. Combine Theorems 5.3.33 and 5.3.16 with Remarks 5.3.9 and 5.1.11.

The proof of Theorem 5.3.33 will require some preliminaries. Our first lemma gives an explanation for
the terminology of Definition 5.3.32.

Lemma 5.3.35. Let k be a field, let f : A → A′ be a small morphism between augmented E2-algebras
over k. Let CA be a tamely compactly generated A-linear ∞-category, let CA′ = LModA′(CA), and let
C = LModk(CA). Suppose that C ∈ CA′ is a compact object whose image in C is unobstructible. Then there
exists a compact object CA ∈ CA and an equivalence CA′ ' A⊗ CA in CA′ .

Proof. Let C ∈ C denote the image of CA′ . Since f is small, we can choose a finite sequence of morphisms

A = A0 → · · · → An ' A′

and pullback diagrams
Ai //

��

k

��
Ai+1

// k ⊕ k[mi]

in Alg
(2),aug
k , where each mi ≥ 1. We prove by descending induction on i that CA′ can be lifted to a

compact object Ci ∈ LModAi(CA), the case i = n being trivial. Assume that Ci+1 has been constructed.
Let C′ = LModk⊕k[mi](C). According to Lemma 5.3.28, we have an equivalence of ∞-categories

Cci → Cci+1×C′c C
c .

Consequently, to show that Ci+1 can be lifted to an object Ci ∈ Cci , it will suffice to show that Ci+1 and C
have the same image in C′

c
. This is a special case of the following assertion:

(∗) Let X,Y ∈ C′ be objects having image C ∈ C. Then there is an equivalence X ' Y in C′.

To prove (∗), we let ObjDefC : Art(1) → S be defined as in Notation 5.2.4; we wish to prove that any two
points of the space ObjDefC(k ⊕ k[mi]) belong to the same path component. According to Proposition
5.2.13, ObjDefC(k ⊕ k[mi]) can be identified with a summand of the mapping space Map

Alg
(1)
k

(D(1)(k ⊕
k[mi]),End(C)). Since the Koszul dual D(1)(k⊕k[mi]) is the free associative algebra generated by k[−mi−1],
we have a canonical isomorphism

π0 Map
Alg

(1)
k

(D(1)(k ⊕ k[mi]),End(C)) ' π−mi−1 End(C) ' Extmi+1
C (C,C).

These groups vanish by virtue of our assumption that C is unobstructible.
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Remark 5.3.36. In the situation of Lemma 5.3.35, if we assume that Ext1
C(C,C) vanishes, then lifting of

CA′ to CA is unique up to equivalence: that is, C is undeformable.

Lemma 5.3.37. Let k be a field, let f : A ∈ Alg
(2),aug
k be a small augmented E2-algebra over k, let CA

be a tamely compactly generated A-linear ∞-category, and let C = LModk(CA). Let {Cα} be a collection
of objects of C which generates C under small colimits, and let {Cα} be a collection of objects of CA with
Cα ' k ⊗ Cα. Then the collection {Cα} generates CA under small colimits.

Proof. Let X be the full subcategory of CA generated by {Cα} under small colimits. Then X contains M⊗Cα
for each M ∈ LModA. Taking M = k, we deduce that X contains the images of the objects {Cα} under the
forgetful functor θ : C→ CA. Since θ preserves small colimits, it follows that X contains the essential image
of θ. In particular, k ⊕ C ∈ X for each C ∈ CA. Since A is small, we can choose a finite sequence

A = A0 → · · · → An

and pullback diagrams
Ai //

��

k

��
Ai+1

// k ⊕ k[mi].

It follows by descending induction on i that X contains Ai ⊗ C for each C ∈ CA. Taking i = 0, we deduce
that X = CA.

Proof of Theorem 5.3.33. Proposition 5.3.21 implies that CatDefC,ω is a 1-proximate formal moduli problem.
Suppose we are given a pullback diagram

A //

��

B

��
A′ // B′

in Alg
(2),sm
k which induces surjective maps π0B → π0B

′ and π0A
′ → π0B

′. Then the map

θ : CatDefC,ω(A)→ CatDefC,ω(B)×CatDefC,ω(B′) CatDefC,ω(A′)

is (−1)-truncated, and we wish to show that it is a homotopy equivalence. Fix a point of the fiber product
CatDefC,ω(B)×CatDefC,ω(B′) CatDefC,ω(A′), which determines a pair (CA′ ,CB , η) where CA′ is a compactly
generated A′-linear ∞-category, CB is a compactly generated B-linear ∞-category, η is an equivalence
LModB′(CA′) ' LModB′(CB), and let CB′ denote the ∞-category LModB′(CA′) ' LModB′(CB). Let CA
denote the full subcategory of CB ×CB′ CA′ generated under small colimits by CcB ×Cc

B′
CcA′ . We will show

that θ(CA) ' (CB ,CA′ , η). Unwinding the definitions, it suffices to show that the canonical maps q :
LModB(CA) → CB and q′ : LModA′(CA) → CA′ are categorical equivalences. We will show that q is an
equivalence; the proof for q′ is similar.

We first claim that q is fully faithful. It will suffice to show that q is fully faithful when restricted
to compact objects. Since the collection of compact objects of LModB(CA) is generated, under retracts
and finite colimits, by the essential image of the free functor F : CA → LModB(CA), it will suffice
to show that for every pair of compact objects C,D ∈ CA, q induces an equivalence of left B-modules
ξ : MorLModB(CA)(F (C), F (D)) → MorCB (qF (C), qF (D)). We can identify CcA with the fiber product
CcA ' CcB ×Cc

B′
CcA′ , so that C and D correspond to triples (CB , CA′ , γ) and (DB , DA′ , δ). Let CB′ de-

note the image of C in CB′ and let DB′ be defined similarly. Using Lemma 5.3.25, we can identify
ξ with the map B ⊗ MorCA(C,D) → MorCB (CB , DB). Here we have an equivalence MorCA(C,D) '
MorCB (CB , DB) ×MorC

B′
(CB′ ,DB′ )

MorCA′ (CA′ , DA′). Using Lemma 5.3.25 and Proposition IX.7.4, we are

reduced to proving that MorCB (CB , DB) and MorCA′ (CA′ , DA′) are n-connective for some integer n. This
follows from the fact that CB and CA′ are tamely compactly generated (Lemma 5.3.31).
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It remains to prove that q is essentially surjective. Note that the essential image of is closed under small
colimits. Using Lemma 5.3.35, it will suffice to show that the essential image of q contains every object
CB ∈ CcB whose image in C is unobstructible. Let CB′ be the image of CB ∈ CcB . To prove that CB can be
lifted to CcA, it will suffice to show that CB′ can be lifted to CcA′ . The existence of the desired lifting follows
from Lemma 5.3.35.

Remark 5.3.38. The hypotheses of Theorem 5.3.33 are rather restrictive: many k-linear ∞-categories of
interest (such as the ∞-categories of quasi-coherent sheaves on most algebraic varieties of dimension ≥ 2)
cannot be generated by unobstructible objects. In these cases, the functor CatDefC,ω → CatDef∧C need not
be an equivalence. In these cases, it seems natural to ask if there is some explicit deformation-theoretic
description of the formal moduli problem CatDef∧C, analogous to the explicit description of ObjDef∧M for an
object M ∈ C given in Remark 5.2.16. To obtain a satisfactory answer, it is presumably necessary to allow
curved deformations of the ∞-category C.
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