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Preface1

Originally this manuscript was prepared for my talk at the workshop on Sequences,
Curves and Codes in Antalya, 25–29 September 2009. Later I had given a talk with
the same title on October 5, 2009 at the conference on Positivity, Valuations, and
Quadratic Forms in Konstanz.

In the discussion after the talk I learned that there may be an error in Arf’s paper
and perhaps his main theorem has to be modified. I am indebted to Karim Johannes
Becher for this comment. Indeed, after another check I found the error in the proof of
one of Arf’s lemmas. Accordingly the manuscript had to be corrected, taking care of
the situation and clarifying the scope of Arf’s theorems after the correction.

For the convenience of the reader I have included in an appendix a counterexample
and also a proof of the corrected version of Arf’s theorem. This appendix has been
prepared jointly with Falko Lorenz.

1 Introduction

In January 2009 I received a letter from the organizers of that workshop in Antalya
with a friendly invitation to participate. The letter was accompanied by a bank note
of 10 Turkish Lira. Reading the letter I found out that this was not meant as an ad-
vance honorarium for my talk, but it was to tell me that the note carried the portrait of
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Fig. 1 Cahit Arf and its invariant

the Turkish mathematician Cahit Arf (1910–1997). Besides the portrait there appears
some mathematical text pointing to Arf’s discovery of what today is called the Arf
invariant. Accordingly the organizers in their letter suggested that perhaps I would
want to talk about the Arf invariant of quadratic forms.

It was my pleasure to follow this suggestion. Cahit Arf had been a Ph.D. student
of Helmut Hasse in 1937/38. Arf’s thesis [2] has become widely known, where he
had obtained a generalization of a former theorem of Hasse about the ramification
behavior of abelian number fields; today this is known as the “Hasse-Arf theorem”.2

His next paper, after his thesis, contains the “Arf invariant” which is our concern to-
day. This work too was inspired by a suggestion of Hasse. So the present report about
the Arf invariant fits into my general project to investigate the mathematical contacts
of Hasse with various other mathematicians, including Emil Artin, Emmy Noether,
Richard Brauer and others, and now with Cahit Arf.

2 Arf’s first letter

Much of what I know in this respect is based upon the letters between Hasse and
his correspondence partners. Those letters are kept in the Handschriftenabteilung of
the Göttingen University Library, they contain a rich source for those who are in-
terested in the development of algebraic number theory in the 20th century. Among
those documents there are preserved about 65 letters between Arf and Hasse from
1939 until 1975.3 We can see from them that in the course of time there developed
a heartfelt friendship between the two.

The first ten letters are concerned with Arf’s work on quadratic forms in character-
istic 2. But where are the earlier letters, those about Arf’s thesis? The answer is easy:
There were no earlier letters, for during his graduate studies while composing his the-
sis, Arf worked at Göttingen University where Hasse was teaching. And people at the
same university usually don’t write letters but talk to each other.

2 This generalization had been asked for by Artin in a letter to Hasse. For details from the historic
perspective see, e. g., Sect. 6 of [22].
3 In addition there are about 90 letters between Hasse and Arf’s wife Halide, mostly in Turkish language,
in which Hasse tried to practice and improve his mastery of the Turkish language.
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Fortunately for us, when Arf worked on quadratic forms in characteristic 2 he was
back in Istanbul, and therefore the communication with his former academic teacher
travelled by means of letters which are preserved. On October 12, 1939 Arf wrote to
Hasse:4

Sehr geehrter Herr Professor,
Ich habe Ihren Brief vom 29. 9. 39 mit grosser Freude erhalten . . . Ich habe
jetzt eine unschöne Arbeit über quadratische Formen fast fertig geschrieben.
Diese Arbeit wollte ich Ihnen vorlegen. Ich glaube aber, dass Sie jetzt wenig Zeit
haben. Es handelt sich kurz um folgendes:
Sie hatten einmal den Wunsch geäußert, die Geschlechtsinvarianten einer
quadratischen Form mit Hilfe der Algebrentheorie begründet zu sehen. Ich habe
versucht dies zu tun. Da die Aufstellung dieser Invarianten für p �= 2 fast trivial
ist, habe ich gedacht, dass es nützlich sein würde wenn man zunächst die Theo-
rie in Körpern von der Charakteristik 2 zu übertragen versucht. In der genannten
Arbeit übertrage ich die Ergebnisse von Witt durch passende Änderungen in
den Körpern von der Charakteristik 2 und ich gebe dann die vollständigen In-
variantensysteme für arithmetische Äquivalenz der ternären und quaternären
Formen in einem Potenzreihenkörper k((t)) , wobei der Koeffizientenkörper k
die Charakteristik 2 hat und vollkommen ist . . .

Dear Professor,
I am very glad to have received your letter of September 29, 1939 . . . I have al-
most completed the draft of a paper on quadratic forms. I had intended to submit
it to you. But I believe that now you will not have much time for it. In short, the
situation is as follows:
You had once expressed your wish to see the genus invariants of a quadratic
form be established with the help of the theory of algebras. This I have tried
to do. Since the compilation of those invariants is almost trivial in characteris-
tic �= 2 I thought it would be useful at first to try to transfer the theory to fields
of characteristic 2. In the above mentioned paper I transfer the results of Witt by
suitable modifications to fields of characteristic 2. And then I give a complete
system of invariants for the arithmetic equivalence of ternary and quaternary
forms in a power series field k((t))5 where the field of coefficients k is perfect of
characteristic 2 . . .

From this we learn that it had been Hasse who had suggested the topic of Ar-
f’s investigation. Hasse’s interest in quadratic forms stems from the time of his own
thesis, 1923/24, when he had proved the Local-Global Principle for quadratic forms
over number fields [10, 11]. Later he had established the Local-Global Principle
for central simple algebras over number fields, in cooperation with Emmy Noether
and Richard Brauer [6]. There arose the question as to the mutual interrelation be-

4 Observe the date of this letter. On September 1, 1939 World War II had started. Perhaps this was the
reason why Arf believed that Hasse would not be able to devote much time to deal with Arf’s paper since
in war time Hasse may have been assigned other duties.
5 I will use throughout my own notation and do not always follow the various notations in the original
letters and papers.
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tween the theory of quadratic forms and the theory of algebras. Perhaps it would
be possible to deduce the Local-Global Principle for quadratic forms from that for
algebras?

This question (and more) had been answered beautifully in Witt’s seminal pa-
per [31]. At that time Witt held the position as assistant professor in Göttingen, and
he was the leading member of the Arbeitsgemeinschaft in cooperation with Hasse. In
his paper Witt associates to every quadratic form f a central simple algebra S( f ) of
2-power index, called the Hasse algebra which, together with the dimension and the
discriminant of the form, makes a complete set of invariants at least over global and
local function fields.

Witt’s paper represents a watershed in the theory of quadratic forms and it was
the basis of the subsequent enormous expansion of the theory of quadratic forms.
His biographer Ina Kersten says that this paper “ranks as one of his most famous
works” [15]. However, Witt’s theory covered only forms over a field of character-
istic �= 2. This is the point where Arf’s paper comes in. He extended Witt’s theory
to fields of characteristic 2. In particular this applies to the case of local and global
function fields of characteristic 2.

The desire to extend Witt’s result to characteristic 2 had also been expressed by
A. A. Albert in a paper which had just appeared in 1938 in the Annals of Mathemat-
ics [1]. There had been some letters exchanged between Albert and Hasse during the
years 1931–1935 and we know that Albert’s interest in the theory of quadratic forms
over global fields had been encouraged by Hasse.6 The above mentioned paper by Al-
bert shows that this interest continued. His paper is a kind of follow-up on Witt’s [31]
on quadratic forms: Albert first reproves, in his own way, some of Witt’s results for
global function fields and then shows that these hold also in the characteristic 2 case:
namely that every quadratic form in 5 or more variables is isotropic. And then, in
a footnote, he says about Witt’s general theory:

The results of Witt on quadratic forms on a field of characteristic not two may
probably be obtained for the characteristic two case only for forms with cross
product terms.7 It would be very interesting to study the analogues of Witt’s
results for our characteristic two case but the author has not yet done so.

We see that Arf did just what was proposed here. I do not know whether Arf knew
about Albert’s paper and its footnote. In his own paper he cites Witt only and says in
the introduction:

Die Anregung zu dieser Arbeit verdanke ich H. Hasse.

I owe to H. Hasse the suggestion for this work.

As we learn from Arf’s letter, there was a second part in his manuscript where he
investigates quadratic forms over rings of power series and their arithmetic invari-
ants, at least for quadratic forms of low dimension. Again, the motivation for this
comes from number theory. Due to his results in this second part Arf can be regarded

6 See Chap. 8 in [23].
7 It appears that Albert means quadratic forms which are “completely regular” in Arf’s terminology. See
Sect. 4.
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as a forerunner of the general theory of quadratic forms over rings, not necessar-
ily fields. This is evident when we look at the book by Knus who gives a survey
on quadratic forms over rings [16] where the notion of Arf invariant over rings is
systematically treated.8

But in the end it turned out that Parts 1 and 2 were published separately. Part 1 ap-
peared in Crelle’s Journal where Hasse was editor [3]. Hasse would have liked to get
also Part 2 for Crelle’s Journal but it seems that there arose difficulties with the print-
ing due to paper shortage in war times and so the second part appeared in the journal
of the University of Istanbul.9

Here I will discuss only the first paper of Arf [3] where he introduces his Arf in-
variant. As already said in the preface, there is an error in Arf’s paper which in turn
reduces the scope of his main result. We shall discuss this in due course.

But before going into details let us familiarize a little with the people involved and
with the time of the game.

3 Some personal data

Cahit Arf was born in 1910 in the town of Selanik which today is Thessaloniki. At
that time it belonged to the Ottoman empire. But in the course of the Balkan war
1912 his home town was affected and the family escaped to Istanbul, later in 1919 to
Ankara and finally moved to Izmir.10

Cahit Arf’s childhood encompassed the Balkan wars, the World War I, the grand
war at Gallipoli, the Greek invasion of western Anatolia and the invasion of Is-
tanbul by the Allied Powers. When finally Turkey emerged as a new independent
parliamentary republic in 1923 Cahit Arf was 13 years old. It was the beginning
of a new era. The new Republic was hopeful, determined and full of invincible
self confidence. These traits were also deeply trenched in young Arf. This would
shape his attitude towards mathematics in the future.

In public school Arf’s ease in mathematics was soon to be noticed by his teachers. In
1926 his father sent him to France to finish his secondary education at the prestigious
St. Louis Lycée. Because of his extraordinary grades in mathematics he graduated in
two years instead of the expected three years. Then he obtained a state scholarship to
continue his studies at the École Normale Supérieur, again in France.

After his return to Turkey in 1932 Arf taught at high school and since 1933 he
worked as instructor at Istanbul University.

It did not take him long to realize that he needed graduate study in mathematics.
In 1937 he arrived at Göttingen University to study with Helmut Hasse.

8 However we do not find Arf’s Part 2 [4] cited in the bibliography of Knus’ book.
9 See [4]. The paper is usually cited for the year 1943 but at the end of the paper we read that it has been
received on May 15, 1944.
10 The following citations are taken from the Arf biography written by Ali Sinan Sertöz [27]. There one
can find more interesting information about the life, the work and the personality of Cahit Arf.
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Fig. 2 Cahit Arf 198111

At that time Arf was 27 years of age. I do not know why he had chosen Göttingen
as his place of graduate study. Although Göttingen used to be an excellent mathe-
matical center which was attractive to students throughout the world, that period had
ended in 1933 when the new Nazi government decided to discharge the Jewish and
the non-conformist professors; this had disastrous effects to the mathematical scene
in Göttingen. It seems improbable that Arf had not heard about the political situ-
ation in Germany and its consequences for the academic life in Göttingen. Perhaps his
mathematical interests at that time leaned towards algebra and arithmetics and he had
found out (maybe someone had advised him) that in Göttingen there was Hasse who
was known as an outstanding mathematician in those fields. In fact, measured by the
high standard of Arf’s thesis which he completed within one year after his appearance
in Göttingen, it seems that already in Istanbul he had acquired a profound knowledge
in the basics of modern algebra and algebraic number theory, and accordingly he may
have chosen Göttingen because of Hasse’s presence there.

Helmut Hasse was 38 years of age when in 1937 Arf arrived in Göttingen. Hasse
was known as a leading figure in the development of algebraic number theory, in par-
ticular of class field theory. Just one year earlier in 1936 he had been chosen as an
invited speaker at the International Congress of Mathematicians in Oslo. There he re-
ported on his proof of the Riemann hypothesis for elliptic function fields over finite
fields of constants; this proof had appeared in three parts in the 1936 issue of Crelle’s
Journal [12–14]. I would say that in those years Hasse was at the height of his math-

11 Professor Ali Sinan Sertöz has kindly informed me that there is a photo showing Cahit Arf in
Göttingen 1939, available at the address: http://www.mam.gov.tr/kutuphane/cahit_arf/index.html.
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Fig. 3 Hasse lecturing in Göttingen

ematical power (notwithstanding a certain peak of his mathematical activities in the
years after World War II). In 1934 Hasse had decided to leave the University of Mar-
burg and to accept an offer to Göttingen. Hasse was not a Nazi but he described his
political position as being patriotic. He strongly disagreed with the policy of expelling
so many scientists from Germany; he considered this as a tragic loss of intellectual
power in Germany. And he tried to do what he could to counteract this. When he de-
cided to move from Marburg to Göttingen he did this with the expressed intention to
restore, at least to a certain extent, the glory of Göttingen as an international place
for mathematics. Although he spent a lot of time and energy on this, he could not be
successful in the political situation.12

However, on a relatively small scale Hasse’s activity in Göttingen had remarkable
success. He managed to attract a number of highly motivated students to his seminar
and the Arbeitsgemeinschaft. The latter was organized by Witt but Hasse participated
at the meetings and led the mathematical direction of the work.

The high scientific level of the work in the Arbeitsgemeinschaft is documented in
a number of publications in Crelle’s Journal and other mathematical journals. Here
we only mention volume 176 of Crelle’s Journal which appeared just in 1937 when
Arf came to Göttingen. A whole part of this volume13 contains papers which arose in
the Arbeitsgemeinschaft and in the Seminar, of which Witt’s famous paper on the so-
called Witt vectors is to be regarded as a highlight. In the same volume (but in another
part) appeared Witt’s paper on quadratic forms [31] which, as said earlier already, has
decisively influenced Arf’s paper on his invariant [3].

Ernst Witt was 26 when he met Arf, hence one year younger. He had studied
in Göttingen since 1930. He had received the topic of his Ph.D. thesis from Emmy
Noether but since she had been dismissed she could not act as his thesis referee.14 The
thesis was concerned with central simple algebras over function fields in the course

12 For more facts from Hasse’s biography see, e. g., Frei’s biography [9], as well as Frei’s recollections
about Hasse in [8]. Hasse’s involvement with the Nazi regime is discussed, e. g., in [25].
13 Each volume of Crelle’s Journal appeared in 4 parts (4 Hefte).
14 This was Herglotz with whom Witt maintained close relationship.
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Fig. 4 Ernst Witt18

of which he proved the Riemann–Roch theorem for algebras, a ground breaking pa-
per which nowadays attracts new interest in the setting of non-commutative algebraic
geometry [30].15 When Hasse came to Göttingen in 1934 he accepted Witt as his assis-
tant on the recommendation of Emmy Noether. Witt has not many publications when
compared to other mathematicians but every one is of high level and witnesses a pro-
found insight into matematical structure. We have already mentioned his 1937 paper
where he introduces “Witt vectors” [32].16 Earlier the same year there had appeared his
paper on quadratic forms [31] which actually constituted his Habilitation thesis.17

It seems fortunate that Arf in Göttingen had the chance to join the inspiring and
motivated group of young mathematicians around Hasse, and among them Witt.
There arose a friendship between the two which lasted for many years. It is without
doubt that Arf’s paper on quadratic forms in characteristic 2 has been influenced by
Witt’s in characteristic �= 2.

4 Quadratic spaces

Let K be a field.
Classically, a quadratic form over K is given by an expression

q(x) =
∑

1≤i≤ j≤n

aij xixj with aij ∈ K . (1)

Two quadratic forms are said to be equivalent if one is obtained from the other by
a non-degenerate K -linear transformation of the variables x = (x1, . . . , xn). An in-

15 It is said that Witt completed the manuscript of his thesis within one week.
16 It should not be forgotten that Witt vectors had been discovered somewhat earlier already by Hermann
Ludwig Schmid [24] who also was in the Göttingen group around Hasse at that time. H. L. Schmid however
worked with the main vector components only (“Hauptkomponenten”) where the formulas for addition and
multiplication are quite cumbersome. It was Witt who observed that the structural operations for Witt vec-
tors can be described quite easily in terms of the ghost components (“Nebenkomponenten”). In this way he
made the calculus of Witt vectors widely applicable.
17 More biographic information about Witt can be obtained from Ina Kersten’s biography [15] and the
articles cited there.
18 Source: [15]
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variant is a mathematical entity attached to quadratic forms which does not change if
a form is replaced by an equivalent form.

Witt had replaced the above notion of quadratic form by the notion of quadratic
space which was adapted to the “Modern Algebra” of the time. A quadratic space
over K is a vector space V equipped with a function q : V → K and a bilinear func-
tion β : V × V → K subject to the following conditions:

q(λx)= λ2q(x)

q(x + y)= q(x)+q(y)+β(x, y)

}
for λ ∈ K , x, y ∈ V . (2)

We assume V to be of finite dimension n. If u1, . . . , un is a basis of V then any x ∈ V
may be written as x = x1u1 +· · · xnun with xi ∈ K and then q(x) appears in the form
Eq. 1 with aij = β(ui, uj) for i < j and aii = q(ui). In Witt’s setup the notion of “in-
variant” now refers to isomorphisms of quadratic spaces instead of equivalences of
quadratic forms.

It is common to interpret q(x) as the “length” of the vector x ∈ V , more pre-
cisely as the square of its length. In fact, Witt and also Arf write |x|2 instead of q(x).
Similarly β(x, y) is interpreted as the “inner product” of the vectors x and y and
accordingly Arf writes x · y for it. Witt however writes x · y for 1

2β(x, y) which is pos-
sible in characteristic �= 2 and corresponds more to our geometric intuition, for then
one has x · x = |x|2. In characteristic 2 however this is not possible and so we have
x · x = 2|x|2 = 0. In other words, in characteristic 2 we have to live with the fact that
every vector is orthogonal to itself.

This has consequences. The first observation is that the process of diagonalization
is not generally possible in characteristic 2. Recall that in characteristic �= 2 every
quadratic form admits an equivalent “diagonal” form:

q(x) =
∑

1≤i≤n

ai x
2
i with ai ∈ K . (3)

In Witt’s terminology this means that every quadratic space V admits an orthogonal
basis u1, . . . , un , where q(ui) = ai . Thus V splits as an orthogonal direct sum of one-
dimensional subspaces:

V = ⊥
∑

1≤i≤n

〈ui〉 in char. �= 2 . (4)

But in characteristic 2 this is not always possible. Arf observed that one has to
admit also two-dimensional subspaces:

V = ⊥
∑

1≤i≤r

〈ui, vi〉+⊥
∑

1≤ j≤s

〈wj〉 in char. 2 , (5)

where ui and vi are not orthogonal to each other, i. e., β(ui, vi) �= 0. After suitable
normalization we may assume that

β(ui, vi) = 1.19

19 Arf however does not assume this and he admits for β(ui , vi ) any non-zero element in K . Therefore
his formulas for the Arf invariant look a little more complicated than ours.
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The dimension n of V is n = 2r + s. Thus in characteristic 2 any quadratic form ad-
mits an equivalent form as follows:

q(x) =
∑

1≤i≤r

(
aix

2
i + xi yi +bi y

2
i

)+
∑

1≤ j≤s

cj z
2
j (6)

for x =
∑

1≤i≤r

(xiui + yivi)+
∑

1≤ j≤s

zjwj

where we have put

ai = q(ui) , bi = q(vi) , cj = q(wj) .

Arf speaks of “quasi-diagonalization” since only the second sum in Eq. 6 is in pure
“diagonal form” whereas the matrix of the first sum splits into 2 ×2 submatrices
along the diagonal. Note that in characteristic 2 the square operator is additive; ac-
cordingly the second sum in Eq. 6 is called the quasi-linear part of q. The second sum
in Eq. 5 consists of all z ∈ V which are orthogonal to V ; therefore it is denoted by V⊥.

A quadratic form is called regular if it has no equivalent form which can be written
in fewer that n variables. This is equivalent to saying that the coefficients cj appearing
in the quasi-linear part of Eq. 6 should be linearly independent modulo the subfield
K2 of K . We also say that the corresponding quadratic space V is regular; this means
that V⊥ does not contain any vector z �= 0 with q(z) = 0.

If V⊥ = 0 then the quadratic space V is called completely regular.20 We also say
that the quadratic form is completely regular; this means that there is no quasi-linear
part. The dimension of a completely regular space is even.

We see that in characteristic 2 we have two notions of regularity: Besides the ordi-
nary notion there is the stronger notion of complete regularity. This is a phenomenon
which does not appear in characteristic �= 2. There, a quadratic form is regular if in
the diagonal form Eq. 3 all coefficients ai are non-zero.21

5 Clifford algebras

The Clifford algebra C(V ) of a quadratic space V is defined as an associative K -
algebra (not necessarily commutative) generated by the K -module V and with the
defining relations:

x2 = q(x) for x ∈ V . (7)

In view of Eq. 2 this implies

xy + yx = β(x, y) for x, y ∈ V . (8)

20 In German “vollregulär”.
21 Warning: Sometimes in the literature, in characteristic 2 the terminology “regular” or “nonsingular” is
used instead of Arf’s “completely regular”, while Arf’s “regular” is called “semi-regular”. This should
be kept in mind in order to avoid misunderstandings.
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If u1, . . . , un is a K -basis of V then a K -basis of C(V ) is given by the products
ui1ui2 · · · uik with i1 < i2 < · · · < ik and 0 ≤ k ≤ n. The K -dimension of C(V ) is 2n .

In view of its definition C(V ) is an invariant of V . So is the subalgebra C0(V ) ⊂
C(V ) which is generated by the products ui1 ui2 · · · uik with an even number k of fac-
tors. The invariance of C0(V ) is a consequence of the fact that the defining relations
Eq. 7 are of degree 2. The dimension of C0(V ) is 2n−1.

If K is of characteristic 2 then we have the following rule:

If V = V1 ⊥ V2 then C(V ) = C(V1)⊗C(V2) . (9)

Here I have written V1 ⊥ V2 to indicate the orthogonal direct sum of V1 and V2. The
tensor product is taken over K as the base field. The validity of Eq. 9 is immediate if
we observe that any x ∈ V1 and y ∈ V2 are orthogonal to each other, i. e., β(x, y) = 0.
Hence from Eq. 8 we conclude that xy = −yx = yx showing that C(V1) and C(V2)

are elementwise commutable. At the same time we see that in characteristic �= 2 this
is not the case since the appearing minus sign cannot be disregarded.

In view of the decomposition Eq. 4 we obtain for characteristic 2 that the Clifford
algebra C(V ) decomposes into the tensor product of r factors C(〈ui , vi〉) of dimen-
sion 4, and the factor C(V⊥) of dimension 2s. The latter is the center of C(V ) and
does not appear if V is completely regular.

6 Binary quadratic spaces

First Arf investigates the Clifford algebra of a binary space V = 〈u, v〉 which is as-
sumed to be completely regular:

q(u) = a , q(v) = b , β(u, v) = 1 (10)

The Clifford algebra C(V ) is given by the defining relations

u2 = a , v2 = b , uv+vu = 1 . (11)

This is a central simple algebra of dimension 4 over K , i. e., a quaternion algebra,
with the K -basis 1, u, v, uv.

The even subalgebra C0(V ) is of dimension 2 and has the basis elements 1 and uv

with the relation:

(uv)2 +uv = uv(vu +1)+uv = u2v2 = ab .

Putting w = uv and introducing the Artin–Schreier operator ℘(X) = X2 + X we may
write this as:

C0(V ) = K(w) with ℘(w) = ab . (12)

For simplicity, suppose first that ab /∈ ℘(K). Then K(w) is a separable quadratic field
extension. According to the Artin–Schreier theory this field is uniquely determined
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by the residue class of ab modulo ℘(K). The nontrivial automorphism of K(w) is
given by conjugation with u:

u−1wu = vu = w+1 . (13)

Since u2 = a we see that C(V ) is a cyclic crossed product of the separable quadratic
field K(w), whose factor system is determined by the element a ∈ K× modulo the
norm group from K(w)×.

The original quadratic form q(x, y) can be rediscovered (up to equivalence) from
these data by the norm function N : K(w) → K as follows:

a · N(x + yw) = a · (x + yw)(x + y(w+1))

= ax2 + x(ay)+b(ay)2

= q(x, ay) . (14)

Although this is not the original quadratic form q(x, y), it is equivalent to it.
The case ab = ℘(c) ∈ ℘(K) is somewhat exceptional since in this case K(w) is

not a field but a commutative separable K -algebra which decomposes into the direct
product of two copies of K . Putting e1 = w+c and e2 = e1 +1, these are idempotents
and e1e2 = 0, hence K(w) = Ke1 ⊕ Ke2. By suitable choice of the basis u, v of V one
can achieve that u2 = a �= 0; then u admits an inverse in A and conjugation with u
induces an automorphism of K(w) which permutes e1 and e2. Hence again22, C(V )

is a crossed product of K(w), determined by the element a ∈ K modulo norms from
K(w)×. But every a ∈ K is a norm from K(w) in this case, and therefore C(V ) splits,
i. e., it is a full matrix algebra over K . The formula Eq. 14 is still valid. In this way the
case ab ∈ ℘(K) appears quite analogous to the case ab /∈ ℘(K).

But there is one essential difference. If ab /∈ ℘(K) then the quadratic form q(x, y)
is anisotropic, i. e., q(x, y) = 0 only for x = y = 0. This we see from Eq. 14 since
the norm function N(z) �= 0 if z �= 0. But if ab ∈ ℘(K) then q(x, y) is isotropic since
N(e1) = N(e2) = 0. In this case it turns out that the quadratic form is equivalent to
xy. The corresponding quadratic space V is called the hyperbolic plane and denoted
by H . In any case, the residue class of ab modulo ℘(K) is an invariant of V since it is
determined by K(w) = C0(V ). Arf defines:23

Arf(V ) :≡ ab mod ℘(K) . (15)

This is the Arf invariant of V in the binary case. And the above discussion leads to
the following

22 K(w) is a commutative separable algebra over K with an automorphism group G of order 2 (the group
interchanging the two copies Ke1 and Ke2 of K). Thus K(w) is a quadratic “Galois algebra”. The theory
of crossed products of Galois algebras can be developed in complete analogy to the theory of crossed
products for Galois field extensions. The first who had done this explicitely seems to be Teichmüller in
his paper [29]. His terminology was “Normalring” for what today is called “Galois algebra”. – Quite
generally, for cyclic algebras we refer the reader to [23] and to [20].
23 Arf in his paper writes Δ(V ).

1 3



On the Arf invariant in historical perspective 85

Theorem: Let V = 〈u, v〉 be a two-dimensional completely regular quadratic
space, so that Eq. 10 holds. The Clifford algebra C(V ) together with the Arf in-
variant Arf(V ) completely determine V up to isomorphism. V is isotropic if and
only if Arf(V ) ≡ 0 mod ℘(K), and then V is a hyperbolic plane.

Remark 1 Central simple algebras in every characteristic p > 0 with defining rela-
tions

u p = a , ℘(w) = c , uw = (w+1)u (16)

had been systematically studied earlier, in particular by Teichmüller in his pa-
per [28]. Such an algebra is called p-algebra. Teichmüller denotes it by (a, c].24 In
the case p = 2 we obtain a quaternion algebra A. In view of the above consider-
ations we see that A = (a, c] is the Clifford algebra C(V ) of the binary quadratic
space V = 〈u, v〉 with Eq. 10 for b = a−1c. Whereas the relations Eq. 11 repre-
sent the description of A as the Clifford algebra of the given quadratic space V ,
the relations Eq. 16 put into evidence the description of A as a crossed product
of some separable quadratic extension K(w) of K with ℘(w) = c. The connection
between the two is given by the fact that c is the Arf invariant of the space V ,
while the quadratic form of V is given by the norm form of K(w) multiplied by a;
see Eq. 14.

The paper of Teichmüller mentioned above appeared in 1936, one year before Arf
came to Göttingen. In this paper Teichmüller studies, among other things, the con-
ditions for two such p-algebras (a, c] and (a, c′] to be isomorphic. If p = 2 then
this result has some bearing on Arf’s investigations. It would have been desirable
that Arf cites Teichmüller’s paper and points out the connection between his and
Teichmüller’s investigation. However Arf did not do this. Why not? Did he not know
Teichmüller’s paper?

Teichmüller had been a very active member of the Göttingen Arbeitsgemeinschaft
but he had left for Berlin in early 1937. Hence Arf had probably not met Teichmüller.
But certainly Teichmüller’s results were known and valued in Göttingen and Arf must
have heard about it. I find an explanation for Arf’s silence about Teichmüller’s work
in a certain character trait of Arf which is mentioned in the biography of Sertöz [27]:25

Arf was in the habit of encouraging young mathematicians to discover mathe-
matics by themselves rather than to learn it from others. To support his cause he
would tell how in his university years, i. e., his École Normale years in Paris, he
would never attend classes . . . but proceed to develop that theory himself.

It seems that during his stay in Göttingen Arf had proceeded similarly, for Sertöz
reports in his biography:

24 Apparently this notation had been chosen to signalize the fact that the symbol (a, c] is not symmetric
in a and c. Compare it with the notation (a, b) for a quaternion algebra in characteristic �= 2, given by
the defining relations Eq. 18 below. That symbol is symmetric in the sense that (a, b) = (b, a).
25 The story has been confirmed to me by several Turkish colleagues who had known Cahit Arf
personally.
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Years later in Silivri, Turkey, Hasse would recall that after taking his problem26

Arf had disappeared from the scene for a few months only to come back with the
solution.

This suggests to me that when Arf in 1939 was back in Istanbul and worked on
quadratic forms then again he had proceeded similarly, i. e., discovering the solution
of his problem by himself and not consulting other people or papers. In fact, in his
paper [3] Arf cites only one paper explicitly, namely Witt’s on quadratic forms [31]. –

The above Theorem holds in characteristic 2. Let us briefly compare it with the
similar situation in Witt’s paper for characteristic �= 2: In this case a binary quadratic
space is of the form V = 〈u, v〉 with mutually orthogonal vectors u and v and instead
of Eq. 10, Eq. 11 we have

q(u) = a , q(v) = b , β(u, v) = 0 (17)

The Clifford algebra C(V ) is now given by the defining relations

u2 = a , v2 = b , uv = −vu . (18)

Again, this is a quaternion algebra. In the theory of algebras it is often denoted by
(a, b). The even subalgebra C0(V ) is of dimension 2 and has the basis 1, uv but this
time with the relation:

(uv)2 = −uv(vu) = −u2v2 = −ab = d .

where d is the discriminant of V . Thus

C0(V ) = K(
√

d) .

If d /∈ K×2 then27 this is a quadratic field extension whose non-trivial automorphism
is given by transformation with u. And again, we conclude that C(V ) is a crossed
product of K(

√
d) which splits if and only if a is a norm from L.

If d ∈ K×2 then K(uv) is not a field but the direct product of two copies of K . In
this case and only in this case the quadratic space is isotropic, and it turns out that in
this case the corrsponding quadratic form is equivalent to q(x, y) = xy, the hyperbolic
plane.

So we see that for binary quadratic spaces Arf’s situation in characteristic 2 is quite
similar to Witt’s situation in characteristic �= 2, the only difference being quite nat-
ural, namely that the quadratic splitting field of C(V ) is generated by

√−ab in the
case of characteristic �= 2, whereas in characteristic 2 it is generated by a root of the
Artin–Schreier equation ℘(x) = ab. And we see already here in the binary case:

In characteristic 2 the Arf invariant Arf(V ) ∈ K/℘(K) is the analogue of the
discriminant d(V ) ∈ K×/K×2 in characteristic �= 2.

This was the guiding idea of Arf when he wrote his paper.

26 Namely the problem for his Ph.D. thesis.
27 K× denotes the multiplicative group of the field K and K×2 is the group of squares.
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7 Higher dimensional quadratic spaces

Now let V be an arbitrary completely regular quadratic space. From Eq. 5 we know
that V decomposes into an orthogonal direct sum of two-dimensional spaces:

V = ⊥
∑

1≤i≤r

Vi where Vi = 〈ui, vi〉 (19)

and

q(ui) = ai , q(vi) = bi , β(ui, vi) = 1 (1 ≤ i ≤ r) (20)

Definition of Arf invariant:

Arf(V ) ≡
∑

1≤i≤r

Arf(Vi) mod ℘(K) . (21)

Recall that by definition Arf(Vi) ≡ aibi mod ℘(K) so that this definition can also be
written as:

Arf(V ) ≡
∑

1≤i≤r

q(ui)q(vi) mod ℘(K) . (22)

This formula is printed on the 10-Lira note where, however, the underlying field is
restricted to be K = F2, the prime field in characteristic 2. In that case ℘(F2) = 0
by Fermat’s theorem and hence the congruence sign ≡ in Eq. 22 can be replaced by
equality.

If r > 1 then it is not clear a priori that Arf(V ) is an invariant of V . For, the defi-
nition Eq. 22 depends on how V is decomposed into orthogonal subspaces Vi in the
form Eq. 19. One has to show that for every two such decompositions the correspond-
ing sums in Eq. 21 are in the same class modulo ℘(K). Arf does it in his paper but the
proof requires some cumbersome computations. In later years Witt [33] and Klingen-
berg [17] have given simplified descriptions of Arf(V ) from which one can see more
directly its invariance. In the comments to Witt’s paper in [34] the editor Ina Kersten
reports:

It was Witt’s concern in the fifties to eliminate the assumption that the charac-
teristic of the ground field is different from 2.

Thus we see that Witt had carefully read Arf’s paper and tried not only to simplify
Arf’s proof but also to extend it in such a way that it leads to a unified theory of
quadratic forms, independent of the characteristic. In particular Kersten mentions
Witt’s cancellation theorem (see Sect. 8 below) and his attempts to investigate in de-
tail the geometric situation which guarantees its validity.

Today we would verify the invariance of Arf(V ) by investigating in more detail
the structure of the Clifford algebra C(V ). We have already said in Sect. 5 that C(V )

contains a subalgebra C0(V ) which is canonically defined by V , namely: C0(V ) is
generated by the products with an even number k of factors in V . And in Sect. 6 we
have seen that in the binary case, C0(Vi) = K(wi) is a quadratic extension defined by
the relation w2

i +wi = aibi which shows, using Artin–Schreier theory, that the class
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Arf(Vi) of aibi is an invariant of C0(Vi), hence of Vi . But Arf did not consider the
subalgebra C0(V ), probably he was not aware at that time that C0(V ) was canonically
defined by the quadratic space V . Therefore he had to use somewhat cumbersome
explicit computations.

But using the invariance of C0(V ), the following statement immediately shows that
Arf(V ) is an invariant:28

Proposition: Let V be a completely regular quadratic space, represented as an
orthogonal sum of two-dimensional spaces as in Eq. 19, Eq. 20. For each i let
C0(Vi) = K(wi) with ℘(wi) = aibi . Put w = ∑

i wi , so that ℘(w) = ∑
i aibi .

Then the quadratic extension K(w) equals the center of C0(V ), and hence by
Artin–Schreier theory the class of

∑
i aibi is an invariant of V .29

The essential part of the proof goes by verifying w to commute with every elem-
ent in C0(V ). I recommend to verify this for r = 2, i. e., two factors (and then using
induction). One has to use that

C0(V ) = C0(V1)⊗C0(V2)+C1(V1)⊗C1(V2)

= K(w1, w2)+ V1 ⊗ V2

where C1(Vi) denotes the K -space generated by all products of an odd number of
elements in Vi , hence C1(Vi) = Vi . Show that w = w1 +w2 commutes with w1, with
w2 and with every product x1x2 with xi ∈ Vi . (Use the fact that wi xi = xiwi + xi .)

Let us mention that in Witt’s situation of characteristic �= 2 there arises a problem
with the Clifford algebra C(V ). For, in general this is not a central simple algebra and
it is not a product of quaternion algebras. For this reason in characteristic �= 2 Witt
replaced the Clifford algebra C(V ) by another algebra S(V ) which Witt has called
“Hasse algebra”; this is defined as follows: First recall the notation (a, b) for the
quaternion algebra defined by the relations Eq. 18. Now consider the coefficients ai

appearing in the diagonal form Eq. 3 and put di = a1a2 · · · ai . Then the Hasse algebra
is defined as the n-fold tensor product

S(V ) = ⊗
∏

1≤i≤n

(di, ai) ∼ ⊗
∏

1≤i≤ j≤n

(ai, aj)
30 (23)

This is a central simple K -algebra and plays a role in Witt’s theory of quadratic forms
in characteristic �= 2, analoguous to the Clifford algebra in characteristic 2. But its
definition Eq. 23 depends on the coefficients ai in the diagonal form Eq. 3. In order
to show that it is an invariant, it is necessary to study the transformation from one
diagonal form to an equivalent one. Witt’s computations for this are similar to Arf’s

28 I have found this in the book by Knus [16].
29 If ℘(w) ≡ 0 mod ℘(K) then K(w) is not a field but the direct sum of two fields isomorphic to K . We
have discussed this situation already in the case of two-dimensional quadratic spaces.
30 Quite generally we write A ∼ B if A, B are central simple K-algebras which determine the same
element in the Brauer group Br(K).
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computations for the invariance of Arf(V ) in characteristic 2. It seems to me that Arf
had modelled his invariance proof for Arf(V ) after Witt’s invariance proof for S(V ).31

8 Witt equivalence

For any type of mathematical structures, the quest for invariants is motivated by the
hope to be able to characterize the structures by their invariants (up to isomorphisms),
and thus to obtain a classification of the structures under investigation. Here we are
concerned with quadratic spaces V in characteristic 2 and in particular with com-
pletely regular spaces. We now know three invariants:

1. the dimension dim(V ),
2. The Clifford algebra C(V ),
3. the Arf invariant Arf(V ).

For arbitrary fields we cannot expect that these three invariants characterize V up
to isomorphisms. But Arf wished to show that for special fields K this is indeed
possible. Although, as we shall explain, his proof of the main theorem cannot be up-
held in its full generality, it turns out that the theorem is valid, e. g., over global and
local fields K in characteristic 2. In order to approach this problem, Arf follows Witt
who had discovered the “Witt ring” by introducing a certain equivalence relation. As
follows:

Recall that a quadratic space V is called “isotropic” if there exists a vector
0 �= x ∈ V with q(x) = 0. The prototype of an isotropic completely regular space is
the hyperbolic plane H already introduced in Sect. 6. The corresponding quadratic
form is q(x, y) = xy. The Arf invariant of H is Arf(H) ≡ 0 mod ℘(K), and the Clif-
ford algebra is C(H) ∼ 1, which means that C(H) splits. Arf proves the following

Theorem: (i) If the regular quadratic space V is isotropic then V = H ⊥ V ′
where V ′ is uniquely determined by V (up to isomorphisms).
(ii) Consequently, every regular quadratic space V can be decomposed into an
orthogonal sum of a number of spaces isomorphic to H and a space V ∗ which is
anisotropic, and V ∗ is uniquely determined by V (up to isomorphisms).

The space V ∗ is called the anisotropic kernel of V . Its quadratic form is called the
kernel form32 of V .

As a consequence of this result Arf proves the general

Cancellation Theorem: Suppose the quadratic space W is completely regular.
If there exist regular quadratic spaces V1, V2 such that W ⊥ V1

∼= W ⊥ V2 then
V1 ∼= V2.

31 We follow a suggestion of the referee and remark that the Hasse algebra S(V ) in characteristic �= 2 is
not an invariant of the class of V in the Witt ring WQ(K) – contrary to the situation in characteristic 2
with the Clifford algebra (see the next section).
32 In German: Grundform.

1 3



90 F. Lorenz and P. Roquette

In characteristic �= 2 this famous cancellation theorem was contained in Witt’s paper.
Arf has observed that it holds also in characteristic 2, but only if W is assumed to
be completely regular. On the other hand, there is no such restriction necessary for
V1, V2; they may be arbitrary regular quadratic spaces not necessary completely regu-
lar. Consequently the definition below of Witt equivalence applies to arbitrary regular
spaces.

So Arf had obtained a new invariant of V , its kernel V ∗. The original space V is
obtained from V ∗ by adding an orthogonal sum of a number of hyperbolic planes, as
many as the dimension of V requires. We note that

C(V ) ∼ C(V ∗) and Arf(V ) ≡ Arf(V ∗) mod ℘(K) (24)

since C(H) ∼ 1 and Arf(H) ≡ 0 mod ℘(K). We conclude:

In order to classify the quadratic spaces it is sufficient to classify the anisotropic
spaces.

It is useful to work with the following

Definition of Witt equivalence: Two regular quadratic spaces (or quadratic
forms) are Witt equivalent if they have isomorphic kernels. Notation: V ∼ W .

This is indeed an equivalence relation for quadratic spaces. For completely regu-
lar spaces it blends with the orthogonal sum, i. e., if V1 ∼ W1 and V2 ∼ W2 then
V1 ⊥ V2 ∼ W1 ⊥ W2.33 The Witt classes of completely regular quadratic spaces with
the operation ⊥ form a group which we denote by WQ(K). We have V ⊥ V ∼ 0, i. e.,
the elements of this group are of order 2.

9 Arf’s Theorems

Now we are able to state the main result of Arf’s paper. For a special class of fields
he wished to prove that the above invariants completely characterize the quadratic
spaces.

Arf introduced the class of fields with the following property concerning the
Brauer group. This property which we call (Q), refers to quaternion algebras:

(Q): The quaternion algebras over K form a group within the Brauer group
Br(K). In other words: If A and B are quaternion algebras then A ⊗ B ∼ C
where C is a quaternion algebra again.

As I said earlier, Arf’s main interest was directed to global and local fields of
characteristic 2, i. e., power series fields and function fields over a finite field of con-
stants, and also, more generally, over an arbitrary perfect constant field. Indeed, these
fields were of particular interest to Hasse when he had suggested to Arf to work on
quadratic forms in characteristic 2. It is not difficult to show that in characteristic 2

33 If V and W are regular but not completely regular then V ⊥ W need not be regular. Arf considers also
this situation but then the relation V ⊥ V ∼ 0 does not hold generally.
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these fields have the property (Q). But it seems that Hasse had not seen it immediately
and so he asked Arf about it, who replied in a letter of March 29, 1940:

Wenn A und B normale einfache Algebren vom Grade 2 sind, so ist A ⊗ B
höchstens vom Index 4. Da aber [K

1
2 : K ] = 2 so enthalten A und B Teilkörper

die zu K
1
2 isomorph sind. A und B enthalten also Elemente u, v mit u2 = v2 ∈ K

die nicht zu K gehören. Es gilt daher

(u −v)2 = 0 ohne, dass u −v = 0 gilt.

A ⊗ B enthält also ein nilpotentes Element. Der Index von A ⊗ B ist daher
höchstens 2.

If A and B are central34 simple algebras of degree 2 then the index of A ⊗ B
is at most 4. But since [K

1
2 : K ] = 2, both A and B contain subfields which are

isomorphic to K
1
2 . Hence A and B contain elements u and v respectively with

u2 = v2 ∈ K, and u, v do not belong to K. Hence we have

(u −v)2 = 0 but not u −v = 0 .

Thus A ⊗ B contains a nilpotent element. Therefore the index of A ⊗ B is at
most 2.

This settled Hasse’s question but at the same time it showed that property (Q) holds

for all fields with [K
1
2 : K ] = 2.

Arf stated his main results in the form of two theorems.

Arf’s Theorem 1: Assume that the field K of characteristic 2 satisfies prop-
erty (Q). Then any completely regular quadratic space V of dimension > 4 is
isotropic. Consequently, its anisotropic kernel V ∗ is of dimension ≤ 4.35

Arf’s Theorem 2: Assume that the field K of characteristic 2 has the prop-
erty that every completely regular quadratic space of dimension > 4 is isotropic.
Then every completely regular quadratic space over K is uniquely determined,
up to isomorphism, by its Clifford algebra and its Arf invariant.

Certainly, Arf regarded his second theorem as the highlight of his paper. He had
been able to accomplish his aim, namely to characterize quadratic forms by their in-
variants. His first theorem was to give a sufficient criterion for the field K over which
the classification could be done. However, as I have mentioned already, there is an
error in the proof of Arf’s first theorem and, in fact, there do exist counterexamples
in the sense that his method of proof does not work under the hypothesis (Q). Hence
Arf’s Theorem 1 has to be corrected. It turns out that it holds for fields of imperfect-
ness degree ≤ 1. Recall that the degree of imperfectness e = e(K) of a field K of

34 Arf used the terminology “normal” but nowadays it is usually said “central” to indicate that the center
of the algebra equals the base field. – The K-dimension of a central simple K-algebra A is a square n2.
The number n is called the “degree” of A. The “index” of A is defined to be the degree of the division
algebra D ∼ A.
35 Arf also considered quadratic spaces V which are regular but not completely regular. For those he
claimed that any completely regular part of V ∗ is of dimension ≤ 2.
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characteristic p > 0 is defined by

[K : K p] = p e.

e = 0 means that K is perfect. The condition e = 1 appeared in the letter of Arf to
Hasse of March 29, 1940 which we have cited above already. There, Arf pointed out
that the condition e = 1 implies condition (Q). Our correction of the theorem reads as
follows:

Correction to Theorem 1. If e(K) = 1 then every quadratic space over K of di-
mension > 4 is isotropic. If e(K) = 0, i. e., if K is perfect, then isotropy holds for
every quadratic space of dimension > 2.

For details of the corrected version I refer to the appendix. By the way, if the
conclusion of Theorem 1 holds, i. e., if every quadratic space of dimension > 4 is
isotropic then condition (Q) is satisfied. (See the appendix.)

If K is a function field of one variable over a perfect field of constants then
e(K) = 1. This classical result was also observed by Albert in his paper [1] which
we have cited above already. On this basis Albert proved that quadratic forms of 5
variables over such function fields are isotropic. Thus in this sense one can state that
Albert essentially had a proof of Arf’s first theorem (in its corrected form) although
he did not explicitely say so. Perhaps it is more correct to say that Arf had a proof of
Albert’s theorem since Albert had been first.

Apparently Arf did not know Albert’s paper. When O.F.G. Schilling reviewed
Arf’s paper in the “Mathematical Reviews” he wrote: “The author is unaware of
the work of A.A. Albert”. We observe that Schilling did say this as a statement, not
as a guess. Schilling had been a student of Emmy Noether in Göttingen and after
Noether’s emigration got his Ph.D. with Helmut Hasse in Marburg. Later he went
to the USA.36 At the time when he wrote this review he held a position at the Uni-
versity of Chicago with Albert. He had kept contact to Hasse by mail, and on this
occasions he had asked for information about the results in Hasse’s Göttingen math-
ematical circle. It seems likely that he had been informed by Hasse or by someone
else from Göttingen about Arf and his results; this enabled him to state that Arf “was
not aware” of Albert’s work and not adding “apparently” or something like this.
Certainly Schilling himself knew Albert’s papers.

Arf’s (erroneous) proof of theorem 1 is not easy or straightforward but it is well
arranged. It seems to me that Arf’s style in his paper was much influenced by the
suggestions and the advice of his academic teacher Hasse. For. in Arf’s paper I have
found a footnote which Hasse, being the editor of Crelle’s Journal, had placed at the
end of the introduction:

Anmerkung des Herausgebers: Im Einverständnis mit dem Verfasser habe ich
dessen ursprüngliches Ms. überarbeitet.

Note by the editor: With the consent of the author I have revised his original
manuscript.

36 He first stayed at the Institute for Advanced Study in Princeton where he had been accepted on the
recommendation of Hasse who had written a letter to Hermann Weyl.
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We see that Hasse did with Arf’s manuscript what he always did as an editor of Crelle’s
Journal, namely checking manuscripts carefully. As Rohrbach reports in [21]:

With his [Hasse’s] characteristic conscientiousness, he meticulously read and
checked the manuscripts word by word and formula by formula. Thus he very of-
ten was able to give all kinds of suggestions to the authors, concerning contents
as well as form . . .

So he did with Arf’s paper. In the Hasse–Arf correspondence we read several times
that Arf responds to changes suggested by Hasse, both approvingly and critically.
Finally on February 8, 1941 Arf returned the final version to Hasse and wrote:

Mit gleicher Post schicke ich Ihnen die Korrekturbogen und das Manu-
skript der Arbeit über quadratische Formen zurück. Die Änderungen an drei
Stellen die Sie vorgenommen haben scheinen mir unrichtig. Meine Gründe habe
ich am Rand des Manuskripts geschrieben.

At the same time I am returning the galley proofs and the manuscript on
quadratic forms. At three instances your proposed changes seem not to be cor-
rect. I have explained my reasons at the margin of the manuscript.37

The paper appeared in the same year 1941.
It seems curious that Hasse had not detected Arf’s error although he was quite

interested in the subject and had closely examined Arf’s paper. This is even more
curious since the error is of the same kind which many years ago, in 1927, Emmy
Noether had committed in a similar situation and there resulted a close correspon-
dence between Hasse and Emmy Noether about it. This correspondence finally led to
their renowned theorem about cyclicity of algebras over number fields. It appears that
in 1940 Hasse had forgotten that incident.

The situation back in 1927 had been as follows:38 Emmy Noether, in a letter to
Richard Brauer of March 28, 1927, wrote to him that every minimal splitting field
of a division algebra can be embedded into the algebra. Brauer knew that this was
not the case and provided her with a counterexample. But this example seemed un-
necessarily complicated to Emmy Noether; moreover she wished to know whether
the counterexamples have bounded degree or not. So she wrote to Hasse, in a post-
card of October 4, 1927 asking whether he could construct such counterexamples
for quaternions. Hasse did so: He constructed cyclic fields of arbitrary high degree
(overQ) which were splitting fields of the classical quaternions but no proper sub-
field had this splitting property. Thus Noether as well as Hasse learned that one has
to distinguish between minimal splitting fields and splitting fields of minimal degree;
the latter indeed can be embedded into the algebra.

Now, in Arf’s proof in the year 1940, a situation ocurred which was quite simi-
lar to the earlier one in 1927. On page 164, in the second paragraph of the proof
of his “Satz 11”, Arf considered two quaternion algebras A1, A2 (i. e., Clifford al-
gebras of binary quadratic spaces V1, V2). He took quadratic extensions K1, K2 of

37 I do not know which changes Hasse had proposed in those instances.
38 I have told this story in detail in [23].
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K which were splitting fields of A1 and A2 respectively, and he assumed K1 �= K2.
Then A1 ⊗ A2 is split by the compositum K1 K2 which has degree 4 over K , its Galois
group being Klein’s 4-group. In view of his hypothesis (Q) Arf knew that A1 ⊗ A2 is
similar to some quaternion algebra, hence it admits a splitting field of degree 2. And
he argued that “necessarily” such splitting field can be found within K1 K2. But this
is not “necessarily” the case. In other words: K1 K2 may be a minimal splitting field
although it is not a splitting field of minimal degree.

Although Hasse’s example of 1927 had referred to quaternions over Q we have
here in characteristic 2 a similar situation. Why had Hasse not seen this error? We will
never know. We know that in 1940 it was wartime and Hasse was drafted to the Navy.
He worked at a Navy research institute in Berlin and could attend to his activities as
an editor of Crelle’s Journal in the evenings and on weekends only. So it seems that he
did not check Arf’s paper as thoroughly as he was used to in earlier times with other
papers for Crelle’s Journal.

10 Perfect base fields

If K is perfect then, according to Arf’s first theorem, every quadratic space V of di-
mension > 2 is isotropic. Consequently its anisotropic kernel V ∗ is of dimension ≤ 2.
If V and hence V ∗ is completely regular and V ∗ is not trivial then dim V ∗ = 2 and
C(V ∗) is a quaternion algebra. But over a perfect field of characteristic 2 there exists
only one quaternion algebra, namely the splitting one. Hence we conclude from Arf’s
second theorem that the Arf invariant alone is sufficient to characterize V ∗. Thus the
completely regular quadratic spaces over K of given dimension correspond 1−1 to
the classes of K/℘(K). If K is finite then ℘(K) is an additive subgroup of index 2 in
K and hence there is essentially one anisotropic quadratic space. Its quadratic form is
q(x, y) = x2 + xy+by2 where b /∈ ℘(K). If K = F2 then b = 1.

In the literature Arf’s Theorem is often reduced to this case. For instance, in the
“Wikipedia”39 we read the following:

In mathematics, the Arf invariant of a nonsingular quadratic form over the 2-
element field F2 is the element of F2 which occurs most often among the values
of the form. Two nonsingular40 quadratic forms over F2 are isomorphic if and
only if they have the same Arf invariant. The invariant was essentially known to
Dickson (1901) and rediscovered by Cahit Arf (1941).

Certainly, this is all true. But does it provide an idea about the main discovery of Arf?
In Arf’s paper the field F2 is not mentioned at all, nor are finite fields. In a small re-
mark, covering 4 lines only, Arf mentions how his theory applies in the case of perfect
fields of characteristic 2. The main motivation and the main results of Arf are con-

39 English version, August 20, 2009. A similar text, also restricted to the base field F2, appears in the
“Encyclopedia of Mathematics”.
40 Here, “nonsingular” means “completely regular” in Arf’s terminology. It seems that the author tacitly
assumes that both these quadratic forms have the same number of variables.
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cerned with the description of quadratic forms by means of central simple algebras.
This aspect is not even scratched in this article of Wikipedia.

The Wikipedia article seems to be written in view of the application of Arf’s the-
ory in topology. For, several of those applications are mentioned in the article. And
indeed in topology one has to compute cohomology and other functors with coeffi-
cients modulo 2 which means that the base field is F2. An overview of the application
of Arf invariants in topology is given by Turgut Önder in the appendix of the Col-
lected Papers of Cahit Arf [5]. But this is not representative of Arf’s work which is
meant to exhibit the connection of quadratic forms in characteristic 2 with the theory
of algebras.

By the way, in the 1901 book of Dickson on linear groups [7] which is mentioned
in the Wikipedia article, also the case of an arbitrary finite base field of characteris-
tic 2 is treated, not only F2. The fact that Arf did not cite this book may have one of
two reasons: either he knew Dickson’s book and found it is of no relevance for his
investigation (which would be understandable), or he did not know it (which is more
probable in view of his particular character trait which we have mentioned in Sect. 6).
In any case, the statement that Arf has “rediscovered” what Dickson had known is
misleading. Arf discussed a quite different theorem, and in a very special case this
implies the statement of Dickson.

11 Epilog

After my conference talk I was asked about Arf’s biography for the years after his pa-
per on quadratic forms. I will not repeat here what is said in his biographies contained
in [5, 27]. Let me only mention that he became a prominent member of the Turkish
scientific community (which is documented by the fact that his portrait decorates an
official banknote) – but he also was a dedicated teacher. Many younger mathemati-
cians in Turkey had been introduced by him into mathematics, he had encouraged
them and showed them understandingly the way into our science. He is widely re-
membered in the mathematical community of Turkey. Robert Langlands, in his article
about his impressions in Turkey, remembers warmly his discussions with Arf [19].
In particular Arf had directed Langlands’ attention to a paper by Hasse on the local
decomposition of the ε-factors; these factors appear in the functional equation of
Artin’s L-series. As Langlands says (English translation):

“I had rapid advance in my research having read Hasse’s paper . . . ” and: “ . . .

thanks to Cahit bey, I solved this problem during my stay in Ankara and proved
the existence of the local ε-factor.”

I was also asked to report more extensively on the correspondence between Arf
and Hasse, in particular the letters after 1941. I plan to do this some time in the future.
Let me only mention that these letters, although they do not discuss anymore math-
ematics proper, show a growing friendship between the two. Hasse visited Turkey
several times between 1957 and 1975. The last two preserved letters, dated March
1975, concern the proposal to have an international colloquium on the structure of
absolute Galois groups. This colloquium was planned by Arf jointly with M. Ikeda
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(who had earlier got a position in Turkey on the recommendation of Hasse). This
conference took place in September 1975 in Silivri, a small village on the beach of
the Marmara sea. I had the chance to participate in this conference and was able
to observe the close friendly relationship between the two mathematicians, Arf and
Hasse.

Appendix: Proofs

Arf’s first theorem

K denotes a field of characteristic 2. The degree of imperfectness e = e(K) is defined
by the formula

[K : K2] = 2e .

If e = 0 then K is perfect and every quaternion algebra over K splits. If e = 1 then the
quaternion algebras over K form a subgroup of the Brauer group, as Arf had stated
and proved in a letter to Hasse (see Sect. 9). If K is a function field or a power series
field with perfect field of constants then e = 1.

Arf’s theorem 1 (corrected). If K is of imperfectness degree e = 1 then every
quadratic form of dimension > 4 is isotropic. If K is perfect then isotropy occurs
for every quadratic form of dimension > 2.

Today the so-called u-invariant u = u(K) of a field K is defined as the maximal
dimension of anisotropic quadratic spaces over K . Thus Arf’s first theorem says that
u ≤ 2 if e = 0 and u ≤ 4 if e = 1. These are special cases of the following general

Proposition 1 Let K be a field of characteristic 2. Then its u-invariant satisfies u ≤
2e+1 where e is the degree of imperfectness of K.

Proof Let V be a quadratic space of dimension n > 2e+1. We are going to exhibit
an element 0 �= z ∈ V with q(z) = 0. To this end we decompose V in quasi-diagonal
form as in Eq. 5:

V = ⊥
∑

1≤i≤r

〈ui , vi〉 +⊥
∑

1≤ j≤s

〈wj〉 (25)

The number of subspaces appearing in this decomposition is r + s while the di-
mension of V is n = 2r + s. From each subspace we take an element �= 0, say the
ui (1 ≤ i ≤ r) and the wj (1 ≤ j ≤ s). The r + s elements q(ui) and q(wj) in K are
linearly dependent over K2. For, their number is

r + s = n − r ≥ n − n

2
= n

2
>

2e+1

2
= 2e = [K : K2] .

(Observe that r ≤ n
2 .) Hence there is a nontrivial relation of the form

∑

i

λ2
i q(ui)+

∑

j

μ2
j q(wj) = 0 with λi, μj ∈ K .
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Putting

z =
∑

i

λi ui +
∑

j

μj wj ∈ V

we have z �= 0 and q(z) = 0. ��

Arf’s second theorem

The theorem reads as follows:

Arf’s theorem 2. Suppose that the field K of characteristic 2 has the follow-
ing property: Every completely regular quadratic space of dimension > 4 is
isotropic. Then every completely regular quadratic space V is uniquely deter-
mined (up to isomorphism) by its dimension, the Brauer class of its Clifford
algebra and its Arf invariant.

In particular the theorem holds for fields with e(K) = 0 or 1, according to Arf’s
theorem 1 in its corrected form. The following proof is essentially the same as in
Arf’s paper. We repeat it here for the convenience of the reader.

Proof The Arf invariant yields an additive homomorphism V �→ Arf(V ) of the adi-
tive group WQ(K) of Witt classes of completely regular spaces, into the ℘-factor
group K/℘(K). The Clifford algebra yields an additive homomorphism V �→ C(V )

of WQ(K) into the Brauer group Br(K). First we claim:
If V is completely regular then its Witt class is uniquely determined by the Brauer

class of C(V ) and the ℘-class of Arf(V ).
To this end we have to show: If C(V ) ∼ 1 in Br(K) and Arf(V ) ≡ 0 mod ℘(K)

then V ∼ 0 in WQ(K). We may assume that V is anisotropic. Then dim V ≤ 4 by
hypothesis. Since V is completely regular we have dim V = 0, 2 or 4. The case
dim V = 2 is not possible since Arf(V ) ≡ 0 mod ℘(K) implies V = H , the hyperbolic
plane, hence V would not be anisotropic. Suppose dim V = 4 and write V = V1 ⊥ V2

as the orthogonal sum of binary spaces. Since C(V ) ∼ 1 we have C(V1) ∼ C(V2).
Since both algebras have the same dimension it follows that they are isomorphic:
C(V1) = C(V2). Also, since Arf(V ) ≡ 0 mod ℘(K) we have Arf(V1) ≡ Arf(V2) mod
℘(K). We have seen in Sect. 6 that a binary completely regular space is uniquely
determined by its Clifford algebra and its Arf invariant. It follows V1 = V2 hence
V = V1 ⊥ V1 ∼ 0, so again V would not be anisotropic.

Now let V be an arbitrary completely regular space, not necessarily anisotropic.
Its Witt class contains a unique anisotropic space V ∗. We have seen that V ∗ is de-
termined by the Arf invariant Arf(V ) and the Brauer class of the Clifford algebra
C(V ). In particular the dimension n∗ of V ∗ is determined by those invariants. Now,
if dim V = n then V is obtained from V ∗ by adding n−n∗

2 copies of the hyperbolic
plane H . Hence V , and not only its Witt class, is determined by considering the di-
mension n in addition to the invariants Arf(V ) and C(V ). ��
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A counterexample

A counterexample to Arf’s first theorem would be a field K of characteristic 2 which
admits an anisotropic quadratic space of dimension > 4 and at the same time satis-
fies condition (Q). Now, such fields are difficult to construct. But the situation can be
discussed on a more elementary level as follows.

The basic idea of the (erroneous) proof of Arf’s first theorem had been as fol-
lows: Consider two binary completely regular quadratic spaces V1, V2 and the product
C(V1)⊗C(V2) of their Clifford algebras. Using the fact that the product C(V1)⊗
C(V2) is similar to a quaternion algebra, Arf proceeds to show that the 5-dimensional
quadratic space V1 ⊥ V2 ⊥ K is isotropic. (Here, K is regarded as a quadratic space
by putting q(z) = z2 for z ∈ K .) No other quaternion algebra appears in Arf’s argu-
ments, i. e., the condition (Q) is not fully used but only for the quaternion algebras
C(V1) and C(V2). Therefore, the following yields a counterexample to his proof:

We shall construct a field K of characteristic 2 and two completely regular bi-
nary quadratic spaces V1, V2 over K with the following properties:

1. V1 ⊥ V2 ⊥ K is anisotropic.
2. C(V1)⊗C(V2) is similar to a quaternion algebra. Equivalently, C(V1) and

C(V2) admit a common quadratic splitting field.

The fact that a common quadratic splitting field implies the product to be similar to
a quaternion algebra, is well known and finds its expression in the formulas

(a1, c](a2, c] ∼ (a1a2, c] and (a, c1](a, c2] ∼ (a, c1 + c2]
for the crossed products.41 But the converse is also valid. For characteristic 2 this does
not seem to be well known and therefore let us quickly present a proof:

Lemma 1 Let A, B be quaternion algebras over K. Then A ⊗ B is similar to
a quaternion algebra if and only if A, B have a common quadratic splitting field.

Proof We assume that A, B have no common quadratic splitting field and have to
show that A⊗ B is a division algebra. In particular our assumption implies that A and
B are division algebras.

For any a ∈ A let K(a) denote the commutative subfield of A generated by a. If
a /∈ K then K(a) is a splitting field of A. We have to show: If K(a)⊗ B is a division
algebra for every a ∈ A, and similarly A ⊗ K(b) is a division algebra for every b ∈ B
then A ⊗ B is a division algebra, i. e., every non-vanishing z ∈ A ⊗ B has an inverse.

Let L = K(w) denote a separable quadratic subfield of A. There exists u ∈ A
whose inner automorphism induces in L the nontrivial automorphism σ , i. e.,

wσ = u−1wu .

41 The first formula concerns quaternion algebras with the common separable splitting field K(w) with
℘(w) = c, and it is well known from Noether’s general theory of crossed products. The second formula
concerns quaternion algebras with the common inseparable splitting field K(u) with u2 = a; it has been
proved by Teichmüller [28] in the framework of his theory of p-algebras in characteristic p > 0. Another
proof is contained in Serre’s book [26]. (Serre writes [c, a) where we write (a, c].)
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(Compare Eq. 13.) Every z ∈ A has a unique representation in the form

z = x + yu

with x, y ∈ K(w). If z ∈ A ⊗ B then again, z has a unique representation of this form
but now with x, y ∈ K(w)⊗ B. If y = 0 then z = x ∈ K(w)⊗ B has an inverse. So as-
sume y �= 0. After multiplying with y−1 and changing notation we may assume that
z = x +u with x ∈ K(w)⊗ B.

We write x = a +wb with a, b ∈ B. Then x +u ∈ A ⊗ K(a, b). If a, b commute
then K(a, b) is a commutative subfield of B and we conclude that x +u has an in-
verse. So we may assume that a, b do not commute.

We write xu = u−1xu and compute

(x +u)(xu −u) = xxu −u2 .

(Note that uxu = xu.) Here, xxu ∈ K(w)⊗ B and u2 ∈ K , and therefore (x + u)

(xu −u) ∈ K(w)⊗ B. If xxu −u2 �= 0 we conclude that (x +u)(xu −u) has an in-
verse, and so does x +u. It remains to show that xxu �= u2.

We have xu = a +wσb and compute

xxu = (a +wb)(a +wσb)

= a2 +wwσb2 +wσab +wba

= a2 +wwσb2 + (w+wσ)ab +w(ba −ab) .

Here, wwσ and w+wσ are in K , being the norm and the trace of the quadratic
element w. Consequently the first three terms are contained in B. The last term is con-
tained in wB and it does not vanish since a, b are supposed not to commute. Since
B and wB are linearly disjoint over K we conclude that xxu /∈ B and in particular
xxu /∈ K , hence xxu �= u2. ��
Remark 2 1. For fields of characteristic �= 2 we have found this lemma in the book by
Lam [18] who traces it back to Albert. Note that our proof works in any characteristic.

2. In characteristic 2 there are two kinds of quadratic splitting fields, separable and
inseparable fields. Note that in the following construction, the common splitting fields
are separable ones.

Our construction will be based on the following well known result.
Suppose that K carries a discrete valuation with residue field K and prime elem-

ent t. Consider a quadratic form q over K which we write as

q(x) =
∑

1≤i≤ j≤n

aij xi xj with aij ∈ K , (26)

not all coefficients vanishing. We lift each coefficient aij to an element aij ∈ K . We
obtain a quadratic form over K , in the same number n of variables:

q(x) =
∑

1≤i≤ j≤n

aij xixj with aij ∈ K . (27)
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The aij are in the valuation ring, not all in its maximal ideal. q is called a “lift” of q,
and q is the “reduction” of q.

Lemma 2 In the situation explained above, if K admits an anisotropic quadratic
form q of dimension n then K admits an anisotropic form of dimension 2n. In fact,
if q is a lift of q then the form q + tq (t being a prime element) is anisotropic over K.

Proof If there would be a nontrivial relation q(x)+ tq(y) = 0 with the coordinates
of (x, y) = (x1, . . . , xn, y1, . . . , yn) in K then, after multiplying (x, y) with a suit-
able common factor we may assume that the xi, yj are in the valuation ring and not
all divisible by t. If there is one xi �= 0 then reduction modulo t gives a nontrivial re-
lation q(x) = 0 in K which is impossible because q is anisotropic. Hence all the xi

are divisible by t whereas there is one yj not divisible by t. Writing x = tx ′ we ob-
tain t2q(x ′)+ tq(y) = 0. Dividing by t and reducing modulo t we obtain a nontrivial
relation q(y) = 0, again a contradiction. ��

Construction of the counterexample: We start with a field K0 and require that
K0 admits a separable quadratic extension field L0. The norm form L0 → K0 is
anisotropic. Let us denote it by q. Its Clifford algebra is the split crossed product of
L0|K0; the usual notation42 is (1, L0|K0) where 1 represents the factor system of the
split crossed product of L0|K0.

Now let K1 = K0(t1) be the rational function field in one variable t1, equipped with
the valuation belonging to the specialization t1 �→ 0, so that t1 is a prime element.
Let L1 = L0(t1); this is an unramified separable quadratic extension of K1. Its norm
form L1 → K1 is a lift of the norm form L0 → K0, let us denote it also by q. Accord-
ing to the lemma the 4-dimensional form q + t1q is anisotropic over K1. This is the
orthogonal sum of the binary form q and its scaled form t1q. The corresponding Clif-
ford algebras are (1, L1|K1) and (t1, L1|K1). So they both admit the same quadratic
splitting field L1|K1.

Now we repeat this process: Let K2 = K1(t2) be a rational function field, equipped
with the valuation belonging to the specialization t2 �→ 0. Let L2 = L1(t2). This is
an unramified separable quadratic extension of K2. The norm form L2 → K2 is a lift
of the norm form L1 → K1, let us again denote it by q. Again, the lemma shows
that the 8-dimensional form (q + t1q)+ t2(q + t1q) is anisotropic. It is the orthogonal
sum of the four binary forms whose Clifford algebras are (1, L2|K2), (t1, L2|K2),
(t2, L2|K2), (t1t2, L2|K2).

Thus all four have the same quadratic splitting field L2|K2.
Denote the corresponding binary quadratic spaces by V, V1, V2, V12. Thus V ⊥

V1 ⊥ V2 ⊥ V12 is anisotropic. So is every quadratic subspace. Note that, by construc-
tion, V belongs to a norm form and hence there exists z ∈ V with q(z) = 1. The
one-dimensional space Kz is isomorphic to K (as quadratic spaces). Now we obtain
the subspace K ⊥ V1 ⊥ V2 as the required counterexample. ��
Remarks 1. The field K0 may be chosen to be perfect. Then the rational function
field K2 = K0(t1, t2) is of imperfectness degree e(K2) = 2. Our construction yields an
anisotropic quadratic space of dimension 8. Since the construction can be iterated we

42 in any characteristic
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obtain for every e a field Ke of imperfectness degree e with an anisotropic quadratic
space of dimension 2e+1. This shows that the bound given by Proposition 1 is best
possible.

2. Instead of rational function fields one can use power series fields.
3. Our construction works in every characteristic. For characteristic �= 2 we have

found Lemma 3 in the book by Lam [18].
4. If every quadratic space of dimension > 4 over K is isotropic then the quater-

nion algebras over K form a subgroup of the Brauer group.

Proof Let A, B be two non-split quaternion algebras over K . We write A = C(V ),
B = C(W) where V, W are binary completely regular quadratic spaces. We have
V ⊂ C(V ) = A. Similary W ⊂ B, hence V + W + K ⊂ A ⊗ B. Here, V + W + K is
a 5-dimensional vector space which can be turned into a quadratic space by squar-
ing within A ⊗ B, i. e., q(x) = x2 for x ∈ V + W + K . Since 5-dimensional quadratic
spaces are isotropic by hypothesis, there exists 0 �= x ∈ V + W + K with x2 = 0,
hence A ⊗ B is not a division algebra. This implies A ⊗ B is similar to some quater-
nion algebra, split or not. ��

By the way, a function field K = K0(t1, t2) in two variables over an algebraically
closed field K0 is a C2-field, hence every quadratic space of dimension > 4 is
isotropic. It follows from Remark 4 that the quaternion algebras over K0(t1, t2) form
a subgroup of the Brauer group. But we do not know whether the same is ever true for
a field K0 which is not algebraically closed.
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