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Preface

No podemos esperarnos que ningún aspecto de la realidad
cambie si seguimos usando los medios [. . .] de un lenguaje
que lleva el peso de toda la negatividad del pasado. El
lenguaje está ahí, pero tenemos que limpiarlo, revisarlo y,
sobre todo, debemos desconfiar de él.

J. Cortázar

What is co/end ‘calculus’. Coend calculus rules the behaviour of
suitable universal objects associated to functors of two variables T :
Cop × C → D.

The intuition behind the process of attaching a special invariant to
such a functor T can be motivated in many ways.

It is well-known that a measurable scalar function f : X → R from a
measurable space (X, Ω) can be integrated ‘against’ a measure µ defined
on Ω to yield a real number

ˆ

X

f(x)dµ

(for example, when X is a smooth space, the measure can be legitimately
thought to depend ‘contravariantly’ on x, as dµ is a volume form living in
the top-degree exterior algebra of X). In a similar fashion, the evaluation
map V ∨⊗V → k for a vector space V is a pairing 〈ζ, v〉 = ζ(v) between
a vector v and a co-vector ζ : V → k, that becomes the sum

∑
i ζivi

once a basis for V , and its dual basis, is chosen and the vector v has
coordinate (v1, . . . , vd), whereas ζ has coordinates (ζ1, . . . , ζd).

At the cost of pushing this analogy further than permitted, a functor
T : Cop × C → D can be thought as a generalised form of evaluation

i
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of an object of C against another; the ‘quantity’ T (C, C′) can then be
‘integrated’ to yield two distinct objects having dual universal properties:

c1) a coend, resulting by the symmetrisation along the diagonal of T ,
i.e. by modding out the coproduct

∐
C∈C T (C, C) by the equivalence

relation generated by the arrow functions T ( , C′) : Cop(X, Y ) →
D(T (X, C′), T (Y, C′)) and T (C, ) : C(X, Y )→ D(T (C, X), T (C, Y ));

c2) an end, i.e. an object
´

C
T (C, C) arising as an ‘object of invariants’

of ‘fixed points’ for the same action of T on arrows; by dualisation, if
a coend is a quotient of

∐
C∈C T (C, C), an end is a subobject of the

product
∏
C∈C T (C, C).

This also suggests a fruitful analogy with modules over a ring: if a functor
T : Cop×C → Set is a ‘bimodule’, that lets C act once on the left and once
on the right on the sets T (C, C′), the end

´

C
T (C, C) is the subspace of

invariants for the action of C, whereas the coend
´ C

T (C, C) is the space
of orbits (or “coinvariants”) of said action.

In fact, a rather common way to employ coends is the following: con-
sider a functor F : C → Set (a ‘left module’) and a functor G : Cop → Set
(a ‘right module’), and tensor them together into a functor (C, C′) 7→
GC ×FC′; the symmetrisation of F ×G yields a functor tensor product

of F, G as the set

F ⊠G :=
ˆ C

FC ×GC.

Note that in this light, the analogy is meaningful: if C is a single-object
category (so a monoid or a group G), such a pair of modules constitutes
a pair (X, Y ) of a left and a right G-set, and their functor tensor product
can be characterized as the product X×G Y obtained as the quotient of
X ×G for the equivalence relation (g.x, y) ∼ (x, g.y), so that X ×G Y is
the universal G-bilinear product of sets, in that the “scalar” g ∈ G can
pass left-to-right from (g.x, y) to (x, g.y) in the quotient. Of course, the
terminology works better when X, Y are vector spaces carrying a linear

representation of G.
Theorems involving ends and coends

´ C
T (C, C) and

´

C
T (C, C) can

now be proved by means of the universal properties that define them;
it is easily seen that given T : Cop × C → D there exist a category
C̄ and a functor T̄ : C̄ → D such that

´ C
T (C, C) ∼= colimC̄ T̄ and

´

C
T (C, C) ∼= limC̄ T̄ . In the example above, the tensor product of a left

G-module and a right G-module (here ‘module’ means ‘k-vector space’)
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can be characterized as the coequalizer

⊕
g∈G X ⊗k Y

α //

β
// X ⊗k Y // X ⊗G Y (0.1)

where α(g, (x, y)) = (g.x, y) and β(g, (x, y)) = (x, g.y).
So, all co/ends can be characterised as co/limits; but they provide a

richer set of computational rules than mere co/limits. Often, establishing
that an object has a certain universal property is a difficult task, because
a direct argument tangles the reader to use elements. A general tenet
of modern category theory is that cleaner, more conceptual arguments
shall be preferred against element-wise proofs that are evil in spirit, if
not in shape.

Co/end calculus provides such conceptualisation for many classical
arguments of category theory: it is in fact possible to prove that two
objects of a category, at least one of which is defined as a coend, are
isomorphic by means of a chain of ‘deduction rules’.

These rules are described in the first half of the book, but here we
glimpse at what they look like.1

In order to make clear what this paragraph is about, let us consider
the statement that right adjoints preserve limits; it is certainly possible
to prove it by hand. Nevertheless, using little more than the Yoneda
lemma it is possible to prove that if R : D → C is right adjoint to L :
C → D, there is a natural isomorphism of hom-sets C(C, R(limJ DJ)) ∼=
C(C, limJ RDJ) for every object C, and every diagram D : J → D by
arguing as follows:

C(C, R(limJ DJ))

C(LC, limJ DJ)

limJ C(LC, DJ)

limJ C(C, RDJ )

C(C, limJ RDJ)

1 The somewhat far-fetched conjecture that permeates all the book is that coend
calculus provides an higher-dimensional version of a deductive system, suited for
category theory (see [CW01] for some preliminary steps in this direction), having
deduction rules similar to those of Gentzen’s sequent calculus. We will never
attempt to turn this enticing conjecture into a theorem, or even to make a
precise claim; the interested reader is thus warned that their curiosity will not
get satisfaction –not in the present book, at least. We record that the idea that
coends categorify logical calculus comes from William Lawvere, and it was first
proposed in [Law73].
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where each step of this “deduction” is motivated either by the fact that
L ⊣ R are adjoint functors, or by the fact that all functors C(X, )
preserve limits. Once this is proved, Yoneda lemma (see A.5.3 for the
statement) entails that there is an isomorphism R(lim DJ) ∼= lim RDJ .

A similar argument is a standard way to prove that a certain object,
defined (say) as the left adjoint to a certain functor, must admit an
‘integral expansion’ to which it is canonically isomorphic. For example,
in the proof of what we called ninja Yoneda lemma in 2.2.1, we carry on
the following computation:

Set
(
´ C∈C

KC × C(X, C), Y
)

´

C∈C
Set
(
KC × C(X, C), Y

)

´

C∈C
Set(C(X, C), Set(KC, Y ))

[C, Set]
(
C(X, ), Set(K , Y )

)

Set(KX, Y )

where each step has to be interpreted as an application of a certain
deduction rule that interchanges coends with ends, places them in and
out of a hom functor, etc.

The reduction of proofs to a series of deduction steps embodies some
sort of ‘logical calculus’, whose introduction rules resemble formulas as

Cat(C,D)(F, G) 
ˆ

C

D(FC, GC)

where the object Cat(C,D)(F, G) is decomposed into an integral like
´

C D(FC, GC), and elimination rules look like
ˆ C

FC × C(C, X) FX

where an integral is packaged into the object FX (of course, the symmet-
ric nature of the canonical isomorphism relation makes all elimination
rules reversible into introductions, and vice versa). Altogether, this al-
lows to derive the validity of a canonical isomorphism as a result of a
chain of deductions, in a ‘categorified’ fashion.

The reader shall of course not concentrate now on the meaning of
these derivations at all; all notation will be duly introduced at the right
time; when the statement of our 2.2.1 will be introduced, the chain of
deductions above will look almost tautological, and rightly so.
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It is clear that done in this way, category theory acquires an alluring
algorithmic nature, and becomes (if not easy, at least) easier to under-

stand.

Thus, the ‘calculus’ arising from these theorems encodes many, if not
all, elementary constructions in category theory (we shall see that it sub-
sumes the theory of co/limits, it allows for a reformulation of the Yoneda
lemma, it provides an explicit formula to compute pointwise Kan exten-
sions, and it is a cornerstone of the ‘calculus of bimodules’, encoding
the compositional nature of profunctors, the natural categorification of
relational composition).

As it stands, co/end calculus describes pieces of abstract and universal
algebra [Cur12, GJ17], algebraic topology [MSS02, May72, Get09], repre-
sentation theory [LV12], logic, computer science [Kme18], as well as pure
category theory. The present book wishes to explore in detail such a
theory and its applications.

So far, the motivations for the topic of this book. What about the
motivation for the book itself ? It shall be noted that co/ends are not
absent from the already existing literature on category theory: the topic
is covered in [ML98], a statutory reading for every categorephile, and
Mac Lane himself used coends to characterise a construction in alge-
braic topology as a ‘tensor product’ operation between functors in his
[ML70]; coends are mentioned (but not used as widely as they deserve)
in Borceux’s Handbook (in its first two tomes [Bor94a, Bor94b]); however,
the topic lacks a treatment that it is at the same time systematic, easy
to read, and monographic.

As a result, co/end calculus still lies just beyond the grasp of many
people, and even of a few category theorists, because the literature that
could teach its simple rules is a vast constellation of scattered papers,
drawing from a large number of diverse disciplines.

This situation is all the more an issue because nowadays category the-
ory produces fruitful contamination with applied sciences: in the opin-
ion of the author, it is of the utmost importance to provide his grow-
ing community with a single reference that accounts for the simplicity
and unitary nature of category theory through co/end calculus, thereby
providing proof for the plethora of its different applications, and pop-
ularising this ‘secret weapon’ of category theorists, making it available
to novices and non-mathematicians. The present endeavour is but an
humble attempt to address this issue.
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A brief history of co/ends. Like many other pieces of mathematics,
co/end calculus was developed as a tool for homological algebra: the first
definition of co/end was given in a paper studying the Ext functors, and
the father of co/end calculus is none other than Nobuo Yoneda. In his
[Yon60] he singled out most of the definitions we will introduce along
the first five chapters of this book.

Having read Yoneda’s original paper to write the present introduction,
we find no better way than to quote the original text, untouched, just
occasionally adding a few details here and there to frame Yoneda’s words
in a modern perspective, (but also in order to adapt them to our choice
of notation).

This strategy has multiple purposes: [Yon60] is a mathematical gem,
an enticing prelude of all the theory developed in the subsequent decades,
and a perfect prelude to the story this book tries to tell; even more so,
in reporting Yoneda’s words we believe we are also doing a service to the
mathematical community, since the integral text of [Yon60] is somewhat
difficult to find.

Our sincere hope is that this introduction, together with the whole
book the readers are about to read, credits the visionary genius of
Yoneda: category theory has few theorems, and one of them is a lemma.
The Yoneda lemma, in its myriad of incarnations, is certainly a cor-
nerstone of structural thinking, way before than of category theory: if
anything more was needed to revere Nobuo Yoneda, let this be co/end
calculus.

The paper [Yon60] starts introducing co/ends in the following way:

Let C be a category. By a left C-group we mean a covariant functor M of
C with values in the category Ab of abelian groups and homomorphisms.
[. . .] Also by a C∗-group (or a right C-group) we mean a contravariant
functor K : C → Ab [. . .]. Functors of several variables with values in
Ab will accordingly be called B-C-groups, B∗-C-groups, etc.

Let H be a C∗-C-group, and G an additive group. By a balanced
homomorphism µ : G H we mean a system of homomorphisms
µ(C) : G → H(C, C) defined for all objects C ∈ C such that for ev-
ery map γ : C → C′ in C commutativity holds in the diagram

G

µ(C′)

��

µ(C) // H(C, C)

H(C,γ)

��
H(C′, C′)

H(γ,C′)

// H(C, C′).

Also by a balanced homomorphism λ : H G we mean a system of
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homomorphisms λ(C) : H(C, C)→ G defined for all objects C ∈ C such
that for every map γ : C → C′ in C commutativity holds in the diagram

H(C′, C)
H(C′,γ)//

H(γ,C)

��

H(C′, C′)

λ(C′)

��
H(C, C)

λ(C)
// G

Of course, here a left/right ‘C-group’ is merely an Ab-enriched presheaf
(covariant or contravariant) with domain C. The above paragraphs define
the fundamental notions we will use throughout the entire book, wedges

and cowedges. These are exactly natural maps from/to a constant, that
vary taking into account the fact that H(C, C) depends both covariantly
and contravariantly on C. There is a category of such co/wedges, and a
process dubbed co/integration picks the initial and terminal objects of
such categories:

An additive group I together with a balanced θ : H I is called integra-
tion of a C∗-C-group H if it is universal among balanced homomorphisms
from H , i.e. if for any other balanced homomorphism λ : H G there
is a unique morphism ζ : I → G such that ζ ◦ θ(C) = λ(C) for every
object C ∈ C.

[Integrations and cointegrations] are [. . .] given as follows: for a map
γ : C → C′ in C we put H(γ) = H(C′, C), H(γ∗) = H(C, C′), and
define homomorphisms

∂γ : H(γ)→ H(C, C)⊕H(C′, C
′)

δγ : H(C, C)⊕H(C′, C
′)→ H(γ∗)

by

∂γ(h′) = h
′
◦ γ ⊕ (−γ ◦ h

′)

δγ(h⊕ h
′′) = γ ◦ h− h

′′
◦ γ

Denote by Σ0 and Π0 the direct sum
∑

C∈C
H(C, C) and the direct

product
∏

C∈C
H(C, C) respectively. Also, denote by Σ1 and Π1 the

direct sum
∑

γ∈hom(C)
H(γ) and

∏
γ∈hom(C)

H(γ∗) respectively. Then

∂γ , δγ are extended to homomorphisms

∂ : Σ1 → Σ0 δCC′ : Π0
→ Π1

.

Now [Yon60] proves that the ‘integration’
´

C H and the ‘cointegration’
´ ∗

C H of a C∗-C-group are respectively given by the cokernel of ∂CC′ , and
by the kernel of δCC′ , for suitably defined maps ∂CC′ and δCC′ .

To avoid confusion, we stress that in this definition Yoneda employed
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the opposite choice of terminology that we will introduce later on: an inte-

gration for H is a coend
´ C

H(C, C), but Yoneda denotes it
´

C H(C, C);
a cointegration is an end

´

C H(C, C) but Yoneda denotes it
´ ∗

C H(C, C).
Always be careful if you consult [Yon60], or references from the same
age.

The coend
´ C

H of a functor H : Cop × C → D is a colimit (in the
particular case of Ab-enriched functors, a cokernel) built out of H , and
the end

´

C H is a limit; precisely the kernel of a certain group homo-
morphism. Once this terminology has been set up, given two functors
F, G : C → D, if we let H be the functor (C, C′) 7→ D(FC, GC′), a family
of arrows αC : FC → GC forms the components of a natural transfor-
mation α : F ⇒ G if and only if the components αC : FC → GC lie
in the kernel of a ‘differential’ δ̄ :

∏
C∈CH(C, C) →

∏
γ∈hom(C) H(γ∗),

obtained in the obvious way ‘gluing’ all the δCC′ together.

In dealing with functors of more variables, we shall often inscribe x (or
y, z) to indicate the two entries to be considered in the (co)integration,
namely we write

ˆ

X∈C

H(. . . , X, . . . , X, . . . ). (0.2)

This is based on the following fact: let H, H ′ be C-C∗-groups, and let
θ : H →

´

C
H , θ′ : H ′ →

´

C
H ′ be the integrations. Then a natural

transformation η : H ⇒ H ′ induces a unique homomorphism
´

C
η :

´

C
H →

´

C
H ′ such that

(
´

C
η
)
◦ θ(C) = θ′(C) ◦ η(C, C). Thus if H is a

B-C∗-C-group, then
´ (∗)

X∈C
H(B, X, X) is a B-group. On this account, for

an A-B∗-B-C-C∗-group H we have
ˆ

Y ∈B

ˆ

X∈C

H(A, Y, Y, X, X) =

ˆ

X∈C

ˆ

Y ∈B

H(A, Y, Y, X, X)

Here Yoneda introduces one of the pillars of coend calculus, the Fubini

rule, i.e. the fact that the result of a co/integration is the same irre-
gardless of the order of integration; this is ultimately just a consequence
of the functoriality of the assignment sending a C-C∗-group H into its
co/integration. Of course, there is nothing special about the codomain
of H being the category of abelian groups: any sufficiently co/complete
category D will do, as long as the co/integrations involved exist.

In modern terms, the Fubini rule can be obtained as a consequence of
a much deeper, and hopefully more enlightening, result: we prove it in
our 1.3.1.

Next for a B-group M and a C-group N , M ⊗ N : N(C) ⊗M(B) is a
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B-C-group, and hom(M, N) = hom(MB, NC) is a B∗-C-group. For an
A-group M and a B-C-C∗-group H we have:

ˆ

X∈C

MA⊗H(B, X, X) = MA⊗

ˆ

X∈C

H(B, X, X)

ˆ ∗

X∈C

hom(MA, H(B, X, X)) = hom

(
MA,

ˆ ∗

X∈C

H(B, X, X)

)

ˆ ∗

X∈C

hom(H(B, X, X), MA) = hom

(
ˆ ∗

X∈C

H(B, X, X), MA

)

As an immediate consequence of these statements we get another fun-
damental building-block of a coend ‘calculus’: given two functors M :
B → Ab and N : Bop → Ab, they can be tensored by the integration
M ⊠N :=

´

B∈B
N(B)⊗Z M(B).

A rather interesting perspective on this construction is the following:
the result remains true when the Ab-category B has a single object, so it
is merely a ring B: in such a case, a functor M : B → Ab is a left module,
and a functor N : Bop → Ab is a right module; the integration (or in
modern terms, the coend)

´ B
N ⊗Z M in this case is exactly the tensor

product of B-modules: it has the universal property of the cokernel of
the map ⊕

b∈B

M ⊗Z N
̺
−→M ⊗Z N

defined by ̺(b, m, n) = b.m− n.b.

As the reader might now suspect, few analogies of them are more
fruitful than the one between modules over which a monoid object acts,
and presheaves C → Set.

Structure of the book. We shall now briefly review the structure of
the book: in the first three chapters we outline the basic rules of co/end
calculus; after having defined a co/end as a universal object and having
proved that it can be characterised as a co/limit, we start denoting
such object as an integral

´

C T (C, C) or
´ C

T (C, C). This notation is
motivated by the fact that co/ends ‘behave like integrals’ in that a Fubini
rule of exchange holds: see 1.3.1.

Then we introduce the first rules of the calculus: the Yoneda lemma
A.5.3 can be restated in terms of a certain coend computation, and
pointwise Kan extensions can be computed by means of a co/end.

After this, we study the single case of left Kan extensions along the
Yoneda embedding: in some sense, the theory of such extensions alone
embodies “all” category theory.
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The subsequent chapter begins to introduce more modern topics de-
scribed by means of co/end calculus. The theory of weighted co/limits,
of profunctors and operads is a cornerstone of ‘formal’ approaches to
category theory. Weighted co/limits are the correct notion of co/limit in
an enriched or formal-categorical (see 2.4 and [Gra74]) setting; profunc-
tors are a bicategory where one can re-enact all category theory, and are
deeply linked to categorical algebra and representation; operads, initially
introduced as a technical mean to solve an open problem in homotopy
theory, constitute now the common ground where universal algebra and
algebraic topology meet. The final point of the chapter will be 6.4.7,
where we draw a tight link between profunctors and operads.

The subsequent chapter studies higher-dimensional analogues of co/-
ends; first, we study co/ends in 2-categories; then we move up to infinity
and study homotopy-coherent analogues of co/ends, in simplicial cat-
egories [Ber07], quasicategories [Lur09], model categories [Hov99] and
derivators.

Appendix A serves as a short introduction to category theory: it fixes
the notation we have employed in the previous chapters. Elementary
mathematics is a prerequisite to appreciate it, but we will introduce
most categorical jargon from scratch.

Each chapter has a short introduction to its content, in the form of
a small abstract; this allows the interested reader to get a glimpse into
the content and fundamental results of each chapter (often, one or two
main theorems). We believe this format is easier to consult than a com-
prehensive survey of each chapter given all at once in the introduction,
so we felt free to keep this short introductory paragraph on the content
of the book pretty terse.

Several exercises follow each chapter of the book; there are questions
of every level, sometimes easy, sometimes more difficult; some of them
make the reader rapidly acquainted with the computational approach to
category theory offered by co/end calculus; some others shed a new light
on old notions. In approaching them, we advise you to avoid element-wise
reasoning; instead, find either an abstract argument, or a ‘deduction-
style’ one.

Some of the exercises are marked with an symbol (eyes wide with
fear): this means they are more difficult and less well-posed questions
than the others. This can happen on purpose (and thus part of the
exercise is understanding what the question is) or not (and thus the
question and its answer are not completely clear even to the author). In
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this second case, it is likely that a complete answer might result in new
Mathematics that the solvers are encouraged to develop.

Other kinds of ‘small eyes’ are present along the book: the paragraphs
decorated with a contain material that can be skipped at first reading,
or material that deepens a prior topic in a not-so-interesting detour;
is used to signal key remarks and more generally important material
that we ask the reader to digest properly and analyse in full detail.

Notation. Having to deal with many different sources along the expo-
sition, the hope to maintain a coherent choice of notation throughout
the whole book is wishful thinking; however, the author did his best to
provide a coherent enough one, striving to make it at the same time
expressive and simple.

In general, 1-dimensional category-like structures will be denoted as
calligraphic letters C,D, . . . ; objects of C are denoted C, C′ · · · ∈ C. In-
stead, 2-categories are often denoted with a sans-serif case Cat, K, A, . . . ;
in this case, an object of the 2-category of small categories is denoted
C ∈ Cat, but an object of an abstract 2-category is denoted A ∈ K.

Functors between categories are denoted as capital Latin letters like
F, G, H, K and suchlike (although there can be little deviations to this
rule); the category of functors C → D between two categories is almost
always denoted as Cat(C,D) (or less often [C,D]; this will be done espe-
cially when [C,D] is regarded as the internal hom of the closed structure
in Cat, or when it is necessary to save some space); the symbols , are
used as placeholders for the “generic argument” of a functor or bifunctor
(they mark temporal precedence of saturation of a variable); morphisms
in the category Cat(C,D) (i.e. natural transformations between functors)
are often written in lowercase Greek, or lowercase Latin alphabet, and
collected in the set Cat(C,D)(F, G).

The simplex category ∆ is the topologist’s delta (opposed to the al-

gebraist’s delta ∆+ which has an additional initial object [−1] := ∅),
having objects nonempty finite ordinals [n] := {0 < 1 · · · < n}; we de-
note ∆[n] the representable presheaf on [n] ∈ ∆, i.e. the image of [n]
under the Yoneda embedding of ∆ in the category sSet = ∆̂ of simplicial
sets. More generally, we indicate the Yoneda embedding of a category C
into its presheaf category withよC –or simplyよ–, i.e. with the hiragana
symbol for “yo”.

Acknowledgments. Writing this book spanned the last five years of
my life; it would probably take five more years to do it in the form the
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Dinaturality and co/ends

Summary. Naturality of a family of morphisms αC : F C → GC
defines the correct notion of map between functors F, G; yet, it is not
capable to describe more subtle interactions that can occur between F
and G, for example when both functors have a product category like
C

op
× C as domain. A transformation that takes into account the fact

that F, G act on morphisms once covariantly and once contravariantly
is called dinatural.

As ill-behaved as it may seem (in general, dinatural transformations
can’t be composed), this notion leads to the definition of a co/wedge
and co/end for a functor T : Cop ×C → D: a dinatural transformation
having constant co/domain, and a suitable universal property. This
is in perfect analogy with the theory of co/limits: universal natural
transformations from/to a constant functor. Unlike colimits, however,
co/ends support a calculus, that is a set of inference rules allowing to
mechanically prove nontrivial statements as initial and terminal points
of a chain of deductions.

The purpose of this chapter, and indeed of the entire book, is to
familiarise its readers with the rules of calculus.

Los idealistas arguyen que las salas hexagonales son una
forma necesaria del espacio absoluto o, por lo menos, de
nuestra intuición del espacio.

J.L. Borges — La biblioteca de Babel

1.1 Supernaturality

We chose to let the name “supernaturality” describe the two sorts of gen-
eralisations of naturality for functors that we will investigate throughout
the book: dinaturality, in 1.1.1, and extranaturality, in 1.1.8.

2
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1.1.1 Dinaturality

This first section starts with a simple example. We denote Set the cate-
gory of sets and functions, considered with its natural cartesian closed
structure (see A.4.3.ad4): this means that we have a bijection of sets

Set(A×B, C) ∼= Set(A, CB) (1.1)

natural in all three arguments, if we let CB denote the set of functions
f : B → C. The bijection above is defined by the maps

(f : A×B → C) 7→ A
ηA,(B)
−−−−→ (A×B)B

fB

−−→ CB

(g : A→ CB) 7→ A×B
g×B
−−−→ CB ×B

ǫC,(B)
−−−−→ C

by means of suitable unit and counit maps η and ǫ (see A.4.1) wit-
nessing the adjunction. Let us concentrate on the counit map alone (a
dual reasoning will yield similar conclusions for the unit): it is a natural
transformations having components

{ǫX,(B) : XB ×B → X | X ∈ Set}. (1.2)

This family of functions sends a pair (f, b) ∈ XB × B to the element
fb ∈ X , and thus deserves the name of evaluation.

For the purpose of our discussion, we shall consider this family of
morphisms not only natural in X (as every counit morphism), but also
mutely depending on the variable B in its codomain. This means that
XB×B is the image of the pair (B, B) under the functor (U, V ) 7→ XU×

V , and X can be regarded similarly as the image of (B, B) under the
constant functor in X . Both functors have thus ‘type’ Setop×Set→ Set.

The evaluation maps ǫX,(B) however do not vary naturally in the vari-
able B; the most we can say is that for each function f ∈ Set(B, B′) the
following square is commutative:

XB′ ×B
Xf×B //

XB′×f
��

XB ×B

ǫ

��
XB′ ×B′ ǫ

// X.

(1.3)

This relation doesn’t remind naturality so much, but it can be easily
deduced from the request that the adjunction isomorphisms (1.1) are
natural in the variable B; in fact, such naturality imposes the commu-
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tativity of the square

Set(A, XB′)

Set(A,Xf )

��

// Set(A×B′, X)

Set(A×f,X)

��
Set(A, XB) // Set(A×B, X)

(1.4)

for an arrow f : B → B′ (the horizontal maps are the adjunction iso-
morphisms 7→ ǫ ◦ ( × B)), and this in turn entails that we have an
equation

ǫX,(B′) ◦ (u×B′) ◦ (A× f) = ǫX,(B) ◦ (Xf ◦ u)×B (1.5)

ǫX,(B′) ◦ (XB′ × f) ◦ (u×B) = ǫX,(B) ◦ (Xf ×B) ◦ (u×B) (1.6)

for every u : A → XB′ . But since this is an equality for every such u,
then the functions ǫX(B′) ◦ (XB′ × f) and ǫX(B) ◦ (Xf × B) must also
be equal.

So, it would seem that there’s no way to frame the diagram above in
the usual context of naturality for a transformation of functors. Fortu-
nately, a suitable generalisation of naturality (a ‘super-naturality’ con-
dition), encoding the above commutativity, is available to describe this
and other similar phenomena.

As already said, the correspondence (B, B′) 7→ CB × B′ is a functor
with domain Setop × Set; it turns out that these functors, where the do-
main is a product of a category with its opposite, supports a notion of
dinaturality besides the classical naturality; this notion is more suited to
capture the phenomenon we just described: in fact, most of the transfor-
mations that are canonical, depending on two variables (C, C′) ∈ Cop×C,
but not natural, can be seen as dinatural.

Definition 1.1.1 (Dinatural transformation). Let C,D be two cate-
gories. Given two functors P, Q : Cop×C → D a dinatural transformation

α : P Q consists of a family of arrows

αC : P (C, C)→ Q(C, C) (1.7)

indexed by the objects of C and such that for any f : C → C′ the
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following diagram commutes

P (C′, C)
P (f,C) //

P (C′,f)

��

P (C, C)
αC // Q(C, C)

Q(C,f)

��
P (C′, C′) αC′

// Q(C′, C′)
Q(f,C′)

// Q(C, C′).

(1.8)

Remark 1.1.2. The notion of dinaturality takes into account the fact
that a functor P : Cop × C → D maps at the same time two ‘terms’ of
the same ‘type’ C, once covariantly in the second component, and once
contravariantly in the first: on arrows f : C → C′ the functor P acts in
fact as follows:

P (C′, C)
P (C′,f)

&&▼▼
▼▼▼

▼▼▼
▼▼

P (C,f)

yyrrr
rrr

rrr
r

P (C, C) P (C′, C′)

(1.9)

Given two such functors, say P, Q : Cop × C → D, we can consider the
two diagrams (1.9) and

Q(C, C)

Q(C,f) %%▲▲
▲▲▲

▲▲▲
▲▲

Q(C′, C′)

Q(f,c)xxqqq
qqq

qqq
q

Q(C, C′)

(1.10)

In the same way a natural transformation F ⇒ G can be seen as a family
of maps that ‘fill the gap’ between F (f) and G(f) in a commutative
square, a dinatural one between P and Q can be seen as a way to close
the hexagonal diagram connecting the action on arrows of P to the
action on arrows of Q:

P (C′, C)
P (C′,f)

&&▼▼
▼▼▼

▼▼▼
▼▼

P (C,f)

yyrrr
rrr

rrr
r

P (C, C)

��

P (C′, C′)

��
Q(C, C)

Q(C,f) %%▲▲
▲▲▲

▲▲▲
▲▲

Q(C′, C′)

Q(f,C′)xxqqq
qqq

qqq
q

Q(C, C′)

(1.11)
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This is precisely the diagram drawn in (1.8).

Remark 1.1.3. If we let PC be the functor (U, V ) 7→ CU×V , the counit
components ǫC(B) : PC(B, B) → C of the cartesian closed adjunction
form a dinatural transformation ǫ : PC ∆C , where ∆C is the constant
functor at C.

Such dinatural transformations, having constant codomain, deserve a
special name:

Definition 1.1.4 (Co/wedge). Let P : Cop × C → D be a functor;

wc1) A wedge for P is a dinatural transformation ∆D P from the con-
stant functor on the object D ∈ D (we often denote such constant
functor simply by the name of the constant, D : Cop × C → D), de-
fined by the rules (C, C′) 7→ D, (f, f ′) 7→ idD.

wc2) Dually, a cowedge for P as above is a dinatural transformation P

∆D having codomain the constant functor on the object D ∈ D.

Remark 1.1.5. Wedges for a fixed functor P as above form the class of
objects of a category Wd(P ), where a morphism of wedges is a morphism
between their domains that makes an obvious triangle commute; given
two wedges α : D P and α′ : D′ P a morphism u : consists of an
arrow u : D → D′ such that the triangle

D
u //

αCC ##●
●●

●●
●●

●●
D′

α′CC{{✈✈
✈✈
✈✈
✈✈
✈

P (C, C)

(1.12)

is commutative for every component αCC and α′CC . (Note the role of
quantifiers: the same u makes (1.12) commute for every component of
the wedges.)

Dually, there is a category Cwd(P ) of cowedges for P , where mor-
phisms of cowedges are morphisms between codomains (of course there
is a relation between the two categories: cowedges for P coincide with
the opposite category of wedges for the opposite functor).

We now define the end of P as a terminal object in Wd(P ), and the
coend as an initial object in Cwd(P ).

Definition 1.1.6 (Co/end). Let P : Cop × C → D be a functor;

• The end of P consists of a terminal wedge ω : end(P ) P ; the object
end(P ) ∈ D itself is often called the end of the functor.
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• Dually, the coend of P as above consists of an initial cowedge α :
P coend(P ); similarly, the object coend(P ) itself is often called the
coend of P .

Spelled out explicitly, the universality requirement means that for any
other wedge β : D P the diagram

D

h

$$

βC

$$

βC′

$$

end(P )
ωC //

ωC′

��

P (C, C)

P (1,f)

��
P (C′, C′)

P (f,1)
// P (C, C′)

(1.13)

commutes for a unique arrow h : D → end(P ), for every arrow f : C →

C′. Note again the role of quantifiers: the arrow h is the same for every
component of the wedge. A dual diagram can be depicted for the coend
of P .

Remark 1.1.7 (Functoriality of ends). Given a natural transformation
η : P ⇒ P ′ between functors P, P ′ : Cop × C → D there is an induced
arrow end(η) : end(P )→ end(P ′) between their ends, as depicted in the
diagram

end(P ′)
ω′

C′ //

��

P ′(C′, C′)

P ′(f,C′)

��

end(P )

end(η) 88

ωC′ //

ωC

��

P (C′, C′)

��

ηC′C′

77♥♥♥♥♥♥♥

P ′(C, C) // P ′(C, C′)

P (C, C)
ηCC

88♣♣♣♣♣♣♣

P (C,f)
// P (C, C′)

ηCC′

77♥♥♥♥♥♥♥

(1.14)

When all ends exist, sending a functor P into its end end(P ) is a (co-
variant) functor end : Cat(Cop×C,D)→ D: the usual argument applies,
as the arrow end(η)◦ end(η′) must coincide with end(η ◦η′) in a suitable
pasting of cubes. Similarly, the unique arrow induced by idP : P ⇒ P

must be the identity of end(P ).
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1.1.2 Extranaturality

A slightly less general, but better behaved1 notion of super-naturality,
that allows again to define co/wedges and thus co/ends, is available: the
notion is called extra-naturality and it was introduced in [EK66b].

Definition 1.1.8 (Extranatural transformation). Let A,B, C,D be cat-
egories, and P, Q be functors

P : A× Bop × B → D,

Q : A× Cop × C → D.

An extranatural transformation α : P Q consist of a collection of
arrows

αABC : P (A, B, B) −→ Q(A, C, C) (1.15)

indexed by triples of object inA×B×C such that the following hexagonal
diagram commutes for every triple of arrows f : A → A′, g : B → B′,
h : C → C′, all taken in their suitable domains:

P (A, B′, B)
P (f,B′,g) //

P (A,g,B)

��

P (A′, B′, B′)
αA′B′C // Q(A′, C, C)

Q(A′,C,h)

��
P (A, B, B) αABC′

// Q(A, C′, C′)
Q(f,h,C′)

// Q(A′, C, C′);

(1.16)

Notice how this commutative hexagon can be equivalently described as
the juxtaposition of three distinguished commutative squares, depicted
in [EK66b]: the three can be obtained letting respectively f and h, f and
g, or g and h be identities in the former diagram, which thus collapses
to

P (A, B, B)
P (f,B,B) //

αABC

��

P (A′, B, B)

αA′BC

��
Q(A, C, C)

Q(f,C,C)
// Q(A′, C, C)

P (A, B′, B)
P (A,B′,g) //

P (A,g,B)

��

P (A, B′, B′)

αAB′C

��
P (A, B, B) αABC

// Q(A, C, C)

1 We say better behaved since extranaturality admits a graphical calculus
translating commutativity-checking into checking that certain string diagrams
can be deformed one into the other.
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P (A, B, B)
αABC //

αABC′

��

Q(A, C, C)

Q(A,C,h)

��
Q(A, C′, C′)

Q(A,h,C′)

// Q(A, C, C′)

(1.17)

Remark 1.1.9. We can again define co/wedges in this setting: if B = C
and in P (A, B, B) → Q(A, C, C) the functor P is the constant func-
tor on D ∈ D, and Q(A, C, C) = Q̄(C, C) is mute in A, we get a
wedge condition for D Q; dually we obtain a cowedge condition for
P (B, B)→ Q(A, B, B) ≡ D′ for all A, B, C.

It’s worth to mention that a extranatural transformation contains
more information than a dinatural, since in 1.1.8 we are given arrows

F (B, B)
αBB′−−−→ G(B′, B′) (1.18)

that are simultaneously a cowedge in B for each B′, and a wedge in B′

for all B, B′ ∈ B. We shall see in a while that extranaturality can be
obtained as special case of dinaturality.

Both dinatural and extranatural transformations give rise to the same
notion of co/end, defined as a universal co/wedge for a bifunctor F :
Cop × C → D. (More formally: the notion of dinatural co/wedge is in-
distinguishable from the notion of extranatural co/wedge, and thus the
two give rise to the same notion of co/end.)

We should prefer extranaturality for a variety of reasons:

• it is less general (see 1.1.12), but it still makes co/ends available;
• it gives rise to a fairly intuitive graphical calculus (see 1.1.10); more-

over, it behaves better under composition (see Exercise 1.4);
• extranaturality is the correct notion in the enriched setting (see 4.3.7

and the caveat right after).

Definition 1.1.10 ( Graphical calculus for extranaturality). The
graphical calculus for extranatural transformations depicts the compo-
nents αABC , and arrows f : A → A′, g : B → B′, h : C → C′, respec-
tively as planar diagrams like

G(A,

F (A

C, C)

B, B)

A′

A

B′

B

C′

C

f g h
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where wires are labeled by objects and must be thought oriented from
top to bottom. The commutative squares of (1.17) become, in this rep-
resentation, the following three string diagrams, whose equivalence is
graphically obvious (the labels f, g, h are allowed to ‘slide’ along the
wire they live in):

f

f

=
g g

=

h h

=

Remark 1.1.11. The notion of extranatural transformation can be spe-
cialised to encompass various other constructions: simple old naturality
arises when F, G are both constant in their co/wedge components, so
the cap and cup in αABC vanish:

The wedge and cowedge conditions arise when either F, G are constant,
so that the straight line and one among the cup and the cap in αABC
vanish:

All the others mixed situations (a wedge-cowedge condition, naturality
and a wedge, etc. that do not have a specified name) admit a graphical
representation of the same sort, and follow similar graphical rules of
juxtaposition, when the boundaries of their associated cells agree in
shape in the obvious sense.

All extranatural transformations can be obtained as particular cases of
dinatural; on the contrary, there are dinatural transformations which are
not extranatural: an example is given in Exercise 1.5.
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Proposition 1.1.12. Extranatural transformations are particular

kinds of dinatural transformations.

Proof (due to T. Trimble) Given functors F : Cop × C × C → D and
G : C × C ×Cop → D, set A = C ×Cop×Cop, and form two new functors
F ′, G′ : Aop ×A → D by taking the composites

F ′ = (Cop × C × C)× (C × Cop × Cop)
proj
−−→ Cop × C × C

F
−→ D

(X ′, Y ′, Z ′; X, Y, Z) 7−→ (X ′, X, Y ′) F
7→ F (X ′, X, Y ′)

G′ = (Cop × C × C)× (C × Cop × Cop)
proj′

−−−→ C × C × Cop G
−→ D

(X ′, Y ′, Z ′; X, Y, Z) 7→ (Y ′, Z ′, Z) G
7→ G(Y ′, Z ′, Z)

Now let’s put A′ = (X ′, Y ′, Z ′) and A = (X, Y, Z), considered as objects
in A. An arrow ϕ : A′ → A in A thus amounts to a triple of arrows
f : X ′ → X , g : Y → Y ′, h : Z → Z ′ all in C. Following the instructions
above, we have F ′(A′, A) = F (X ′, X, Y ′) and G(A′, A) = G(Y ′, Z ′, Z).
Now if we write down a dinaturality hexagon for α : F ′ G′, we get a
diagram of shape

F ′(A, A′)

F (ϕ,1)

��

F ′(1,ϕ) // F ′(A, A)
αA // G′(A, A)

G′(ϕ,1)

��
F ′(A′, A′)

αA′

// G′(A′, A′)
G′(1,ϕ)

// G(A′, A)

(1.19)

which translates to a hexagon of shape

F (X, X ′, Y )

F (f,1,g)

��

F (1,f,1) // F (X, X, Y ) // G(Y, Z, Z)

G(g,h,1)

��
F (X ′, X ′, Y ′) // G(Y ′, Z ′, Z ′)

G(1,h,1)
// G(Y ′, Z ′, Z)

(1.20)

where the unlabeled arrows are the extranatural components. This is the
extranaturality hexagon of 1.1.8.

1.1.3 The integral notation for co/ends

A suggestive notation for co/ends, alternative to the eponymous one
‘co/end(F )’, is due to N. Yoneda, which in [Yon60] introduces most of
the notions we are dealing with, in the setting of Ab-enriched functors
Cop × C → Ab:
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Notation 1.1.13. The integral notation denotes the end of a functor
F ∈ Cat(Cop × C,D) as a ‘subscripted-integral’

´

C F (C, C), and the

coend coend(F ) as the ‘superscripted-integral’
´ C

F (C, C).

From now on we will systematically adopt this notation to denote the
universal co/wedge co/end(F ) or, following a well-established abuse of
notation, the object itself; when the domain of F has to be made explicit,
we will also employ more pedantic variants of

´

C
F and

´ C
F like

ˆ

C∈C

F (C, C),
ˆ C∈C

F (C, C). (1.21)

Remark 1.1.14. In reading [Yon60], one should be aware that Yoneda
employs a reversed notation to denote ends and coends: he calls integra-

tion what we call a coend, which he denotes as
´

C∈C F (C, C), i.e. in the
way we denote an end; and he calls cointegrations our ends, which he
denotes

´ ∗

C∈C
F (C, C).

No trace of this ambiguity survived in the current literature, so we
will not mention the Yoneda convention ever again.

Functoriality of co/ends acquires a particularly suggestive flavor when
written in integral notation: the dream of every freshman learning calcu-
lus is that the integral of a product of functions is just the product of the
integrals of the two functions. In category theory this is true, provided
the integral of a function is the map induced between two co/ends, and
that product is composition of arrows.

Notation 1.1.15. The unique arrow end(η) induced by a natural trans-
formation η : F ⇒ G between F, G ∈ Cat(Cop × C,D) can be written
as
´

C
η :
´

C
F →

´

C
G, and uniqueness of this induced arrow entails

functoriality, i.e.
´

C
(η ◦ σ) =

´

C
η ◦
´

C
σ and

´

C
idF = id´ F .

A similar convention holds for coends.

Remark 1.1.16. As [ML98, IX.5] puts it,

[. . . ] the ‘variable of integration’ C [in
´

C
F ] appears twice under the

integral sign (once contravariant, once covariant) and is ‘bound’ by the
integral sign, in that the result no longer depends on C and so is un-
changed if C is replaced by any other letter standing for an object of
the category C.

This somehow motivates the integral notation for co/ends, and yet the
analogy between integral calculus and co/ends seems to be too elusive
to justify.
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There seems to be no chance to give a formal explanation of the simi-
larities between integrals and coends, but it is nevertheless very sugges-
tive to employ an informal justification for such an analogy to exist. See
Exercises 1.6 or 2.2.6, or even 1.4.5.

1.2 Co/ends as co/limits

A general tenet of elementary category theory is that universal objects
(i.e. objects having the property of being initial or terminal in some
category) can be equivalently characterized

u1) as limits (so the existence and uniqueness is simply translated in a
category of diagrams),

u2) as adjoints (so the uniqueness follows from uniqueness of adjoints, see
A.4.2),

u3) as the representing object of a certain functor (so the uniqueness fol-
lows from the fact that the Yoneda embedding よC is fully faithful,
A.5.4).

The language of co/ends makes no exception: the scope of the following
subsection is to characterise the co/end of a functor F : Cop × C → D

as a co/limit over a suitable diagram F̄ (obtained from a canonically
chosen correspondence F 7→ F̄ ), and (see A.3.8) consequently as the
co/equaliser of a single pair of arrows.

Remark 1.2.1. Given F : Cop × C → D and a wedge τ : D F , we
can build the following commutative diagram

F (C, C)
F (C,f) // F (C, C′)

F (C,g)

��

D

τC
77♥♥♥♥♥♥♥♥

τg◦f
00

τC′ //

τC′′

��

F (C′, C′)

��

F (f,C′)

66♥♥♥♥♥♥

F (C, C′′)

F (C′′, C′′)
F (g,C′′)

// F (C′, C′′)
F (f,C′′)

66♥♥♥♥♥♥

(1.22)

where C
f
−→ C′

g
−→ C′′ are morphisms in C. From this commutativity we

deduce the following relations:

τg◦f = F (g ◦ f, C′′) ◦ τC′′ = F (C, g ◦ f) ◦ τC
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= F (f, C′′) ◦ F (g, C′′) ◦ τC′′ = F (f, C′′) ◦ τg

= F (C, g) ◦ F (C, f) ◦ τC = F (C, g) ◦ τf .

where τf , τg are the common values F (f, C′) ◦ τC′ = F (C, f) ◦ τC and
F (C′, g) ◦ τC′ = F (g, C′′) ◦ τC′′ respectively, and τg◦f is the common
value F (C, g) ◦ τf = F (f, C′′) ◦ τg.

These relations imply that there is a link between co/wedges and co/-
cones, encoded in the following definition.

Definition 1.2.2 ( The twisted arrow category of C). For every cat-
egory C we define tw(C), the category of twisted arrows in C as follows:

• (tw(C))o = hom(C) (of course, this will not be

Ω

-small if C was only

Ω+-small);
• Given f : A → A′, g : B → B′ a morphism f → g is given by a pair

of arrows (h : B → A, k : A′ → B′), such that the square

A

f

��

B
hoo

g

��
A′

k
// B′

(1.23)

commutes (asking that the arrow between domains is reversed is not

a mistake), i.e. that g = k ◦ f ◦ h.

Endowed with the obvious rules for composition and identity, tw(C)
is easily seen to be a category, and now we can find a functor

Cat(Cop × C,D) // Cat(tw(C),D) (1.24)

defined sending F : Cop × C → D to the functor F̄ : tw(C) → D :[ C
↓
C′

]
7→ F (C, C′); it is extremely easy now to check that bifunctoriality

for F corresponds to functoriality for F̄ , but there is more to this remark.

Remark 1.2.3 (Co/ends are co/limits, I). The family of arrows

{τf | f ∈ hom(C)} (1.25)

constructed above is a cone for the functor F̄ , and conversely any such
cone determines a wedge for F , obtained setting {τC = τidc

}C∈C .
A morphism of cones maps to a morphism between the corresponding

wedges, and conversely every morphism between wedges induces a mor-
phism between the corresponding cones; these operations are mutually
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inverse and form an equivalence between the category Cn(F̄ ) of cones
for F̄ and the category Wd(F ) of wedges for F . (We leave this to the
reader to check and to properly dualise.)

Equivalences of categories obviously preserve initial and terminal ob-
jects, thus we have isomorphisms2

ˆ

C

F (C, C) ∼= limtw(C)F̄ ;
ˆ C

F (C, C) ∼= colimtw(Cop)op F̄ (1.26)

Remark 1.2.4. According to A.3.8, co/limits in a category exist
as soon as it has co/products and co/equalisers. So we would expect
a characterisation of co/ends in terms of these simpler pieces as well;
such a characterisation exists, and it turns out to be extremely useful in
explicit computations.

It is rather easy to extract from the bare universal property that there
must be an isomorphism

´

C F (C, C) ∼= eq

(
∏

C∈C

F (C, C)
F∗ //

F∗

//
∏

ϕ:C→C′

F (C, C′)


 (1.27)

where the product over morphisms C → C′ can be expressed as a dou-
ble product (over the objects C, C′ ∈ C, and over the arrows f be-
tween these two fixed objects), and the arrows F ∗, F∗ are easily ob-
tained from the arrows whose (f ; C, C′)-components are (respectively)
F (f, C′) and F (C, f). This is a consequence of the fact that an ‘element’
in
∏
C F (C, C), regarded as a family (xC | C ∈ C), shall equalise both

actions of F on arrows at the same time in order to belong to the end
´

C
F (C, C). The dual statement of 1.2.4, expressing

´ C
F (C, C) ∼= coeq

(
∐

C∈C

F (C, C) oo F∗

oo
F∗

∐

ϕ:C→C′

F (C′, C)


 (1.28)

is left as an exercise for the reader to formalise, in 1.9.

The following remark is elementary but extremely useful: it asserts
that the co/limit of a functor has the same universal property of the co/-
end of the same functor, when it is ‘promoted’ as mute in its remaining
variable.
2 Notice that the colimit is taken over the category twop(C), the opposite of

tw(Cop): an object of twop(C) is an arrow f : C′ → C in Cop, and a morphism
from f : C → C′ to g : D → D′ is a commutative square (u, v) such that vgu = f .
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Remark 1.2.5. Let F : C → D be a functor; we can always regard
it as a functor F ′ : Cop × C → D mute in its first variable: this means
that we can extend the action of F defining a new functor F ′ such that
F ′(C, C′) = FC′ for every C, C′ ∈ C, and F ′(C, f) = Ff , F ′(f, C′) =
idC′ for every f : C → C′; from this, and from 1.2.3 above, since all
mute functors can be regarded as arising this way, it follows that the
co/end of a functor that is mute in one of its variables coincides with its
co/limit.

Definition 1.2.6. There is an obvious definition of preservation of co/-
ends from their description as co/limits, which reduces to the preserva-
tion of the particular kind of co/limit involved in the definition of end(T )
and coend(T ): let F : D → E be a functor, and let T : Cop × C → D be
a functor; we say that

pr1) F preserves the end of T if the family of maps

F
(
´

C
T (C, C)

)
FωC // FT (C, C) (1.29)

exhibits the universal property of the end of the composed functor
Cop × C

T
−→ D

F
−→ E ;

pr2) F reflects the end of T if, whenever FωC is the end of the composition
F ◦ T , then ωC exhibits the end of F .

A dual definition defines the concept of preserving and reflecting co-
ends; since ends are limits, it is clear that a functor that preserves all
limits preserves all ends, and since limits are ends of mute functors, also
the converse is true; dually for coends.

An alternative, equivalent way to put this result is the following:

Theorem 1.2.7. Every co/continuous functor F : D → E preserves the

co/ends that exist in D:

• if T : Cop × C → D has an end
´

C
T (C, C), and F : D → E commutes

with all limits, then

F
(
´

C
T (C, C)

)
∼=
´

C
FT (C, C) (1.30)

meaning that the image of the terminal wedge of T under F is a ter-

minal wedge for the composite functor F ◦ T : Cop × C → E, and thus

the two terminal objects are canonically isomorphic;
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• Dually, if T : Cop × C → D has a coend
´ C

T (C, C), and F : D → E
commutes with all colimits, then

F
(
´ C

T (C, C)
)
∼=
´ C

FT (C, C) (1.31)

meaning that the image of the initial wedge of T under F is a initial

cowedge for the composite functor F ◦ T : Cop × C → E, and thus the

two initial objects are canonically isomorphic.

Similarly, a functor that reflects all co/limits reflects all co/ends.
As a capital example of a functor that preserves all ends, we have the

hom functors:

Corollary 1.2.8 (The hom functor commutes with integrals). From the

fact that the hom bifunctor C( , ) : Cop × C → Set is such that

C
(

colim F, C
)
∼= lim C

(
F, C

)

C
(
C, lim F

)
∼= lim C

(
C, F

)
(1.32)

and from (1.27), (1.28) we deduce that for every D ∈ D and every functor

F : Cop × C → D we have canonical isomorphisms

D
( ˆ C

F (C, C), D
)
∼=
ˆ

C

D(F (C, C), D)

D
(

D,

ˆ

C

F (C, C)
)
∼=
ˆ

C

D(D, F (C, C)) (1.33)

We close the section recording a notable but somewhat technical re-
sult.

Remark 1.2.9 ([ML98, IX.5.1] Co/ends are co/limits, II). Define
the subdivision graph (℘C)§ of a category C as the directed graph having
a vertex C§ for each object C ∈ C, and a vertex f § for each morphism
f : C → C′ in C, and edges all the arrows C§ → f § and C′§ → f §, as
f : C → C′ runs over morphisms of C.

The subdivision category C§ is obtained from (℘C)§ formally adding
identities and giving to the resulting category the trivial composition
law (composition is defined only if one of the arrows is the identity).

Every functor F : Cop×C → D induces a functor F § : C§ → D, whose
limit (provided it exists) is isomorphic to the end of F . More precisely,

Proposition 1.2.10. In the above notation,
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• There is a final functor ς from C§ to tw(C); thus, the limit of F̄

computed over tw(C) is the same as the limit of F̄ ◦ ς computed over

C§;

• There is a functor F § : C§ → D such that wedges for F correspond

bijectively to cones for F §;

the assignment F 7→ F § sets up an isomorphism of categories between

wedges for F and ones for F §, and thus the terminal wedge, i.e. the end

of F , must correspond to the terminal cone, the limit of F §. Dually,

• There is a cofinal functor ϑ from C§ to tw(Cop)op; thus, the colimit

of F̄ done over tw(Cop)op is the same as the colimit of F̄ ◦ ϑ done

over C§;

• There is a functor F § : C§ → D such that wedges for F correspond

bijectively to cocones for F §;

this assignment sets up an equivalence of categories between cowedges

for F and ones for F §, and thus the initial cowedge, i.e. the coend of F ,

must correspond to the initial cocone, the colimit of F §.

We just address the case of ends, leaving dualisation process to the
reader. Recall that a functor F : C → D is final if every comma category
(C ↓ F ) is nonempty and connected.

To sum up, given a functor F : Cop × C → D one can equivalently
compute the value of the end

´

C
F as

• The terminal wedge α :
´

C
F (C, C) F ;

• The terminal cone α§ : limC§ F § ⇒ F §;
• The terminal cone ᾱ : limtw(C) F̄ → F̄ .

Proof Let us first define the functor ς: on objects,

ς(C§) = idC ς(f §) = f (1.34)

while on morphisms f : C → C′

ς

[
C§

↓

f§

]
=

C = C

= ↓

C′ → C′
ς

[
C′§

↓

f§

]
=

C′ ← C

= ↓

C′ = C′
(1.35)

This easily shows how ς is surjective on objects, and thus each comma
category (f ↓ ς) is nonempty. The image of ς visibly contains very few
morphisms; yet it is still final, because the comma category (f ↓ ς) is
easily seen to be connected.

To prove the second point, we shall show that every functor F : Cop×
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C → D induces a functor F § : C§ → D from the subdivision category;
we can define

• an object function posing F §(C§) = F (C, C) and F §
[ C
↓
C′

]§
= F (C, C′);

• a morphism function, posing F §
[
C§

↓

f§

]
= F (C, f) and F §

[
C′§

↓

f§

]
=

F (f, C′).

Let now α : D ⇒ F § be a cone for F §; this means that for every
morphism of C§ one among the diagrams

D
αCC′

##❍
❍❍

❍❍
❍❍

❍❍
αC

{{✇✇
✇✇
✇✇
✇✇
✇

D
αCC′

##❍
❍❍

❍❍
❍❍

❍❍
αC′

zz✉✉
✉✉
✉✉
✉✉
✉

F (C, C)
F (1,f)

// F (C, C′) F (C′, C′)
F (f,1)

// F (C, C′)

(1.36)
(chosen accordingly to the shape of f §) is commutative. But then, the
restriction of α to its diagonal component forms a wedge for F with
domain D, because the square

D
αC //

αC′

��

F (C, C)

F (1,f)

��
F (C′, C′)

F (f,1)
// F (C, C′)

(1.37)

has αCC′ as diagonal. Vice versa, given a wedge α : D F the square
(1.37) defines the components of a cone α : D ⇒ F § by αCC′ =
F (1, f)◦αCC = F (f, 1)◦αC′C′ . It is evident that this sets up a bijection
between Wd(F ) and Cn(F §), and that this can in fact be promoted to
an isomorphism between the two categories.

From this it ultimately follows that both characterisations of co/ends
as co/limits, either as diagrams with domain C§, or with domain tw(C),
lead to the same theory.

1.3 The Fubini rule

An absolutely central theorem for coend calculus is the ‘exchange rule’
for integrals known as the Fubini rule: informally, it says that the result
of an integration on more than one variable does not depend on the
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order in which the operation is performed: in mathematical analysis, if
f : X × Y → R is a function such that

´

X×Y |f |dµX×Y exists finite, the
three integrals
ˆ

X

(
ˆ

Y

f(x, y) dy

)
dx =

ˆ

Y

(
ˆ

X

f(x, y) dx

)
dy =

ˆ

X×Y

f(x, y) d(x, y).

(1.38)
are equal. In category theory, if a functor F defined on Cop×C×Eop×E

admits a co/end, then so do the two functors obtained integrating over
C first and over E second, or in the opposite order.

Theorem 1.3.1 ( Fubini theorem for co/ends). Given a functor

F : Cop × C × Eop × E → D, (1.39)

we can form the end
´

C
F (C, C, , ) obtaining a functor Eop × E →

D whose end is
´

E

´

C F (C, C, E, E) ∈ D; we can also form the ends
´

C

´

E F (C, C, E, E) ∈ D and
´

(C,E) F (C, C, E, E) identifying Cop × C ×

Eop × E with (C × E)op × (C × E).
Then, there are canonical isomorphisms between the three objects:
ˆ

(C,E)

F (C, C, E, E) ∼=
ˆ

E

ˆ

C

F (C, C, E, E) ∼=
ˆ

C

ˆ

E

F (C, C, E, E)

(1.40)
Dually, there are canonical isomorphisms between the iterated coends
ˆ (C,E)

F (C, C, E, E) ∼=
ˆ Eˆ C

F (C, C, E, E) ∼=
ˆ Cˆ E

F (C, C, E, E)

(1.41)

As usual, this is an existence and uniqueness result: one of the three
objects above exists if and only if so do the other two, and there are
canonical isomorphisms between them.

We shall only prove the statement for ends, (1.41) for coends being
the exact dual statement.3

One possible strategy to prove Fubini theorem would be to find suit-
able canonical map between the end

´

(C,E) F (C, C, E, E) and (say) the
end
´

E

´

C
F (C, C, E, E) (the same argument will then produce a canoni-

cal map between the end
´

(C,E)
F (C, C, E, E) and the end

´

E

´

C
F (C, C, E, E)),

and then prove its invertibility. This is of course a viable option, but has
little conceptual content, and can result in a long, unenlightening proof.

3 The reader will have enough care to dualise properly the proof that follows: the

coend functor
´C : Cat(Cop × C,D)→ D will turn out to be a left adjoint, with

right adjoint HC , etc.
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Instead, we prefer to offer a more elegant argument, especially because
the strategy of our proof will be recycled in 7.3 when we prove the
Fubini rule for ∞-coends (the analogue of coends in (∞, 1)-category
theory, and more specifically in the setting of Joyal-Lurie quasicategories
[Joy, Lur09]).

Our strategy goes as follows: we assume that all ends exist. Thus, as
stated in 1.1.7, the correspondence T 7→

´

C T is a functor. We shall
show that

´

C has a left adjoint HC : D → Cat(Cop × C,D), and that
HC×E ∼= HC ◦ HE ∼= HE ◦ HC ; the Fubini rule then follows from the
uniqueness of adjoints (see A.4.2) because every such ‘interchange iso-
morphism’ between the left adjoints must induce a similar isomorphism
between the right adjoints.

Note that this argument yields for free that the isomorphisms witness-
ing the Fubini rule above are natural in F , i.e. that

´

(C,E),
´

C

´

E ,
´

E

´

C

are isomorphic as functors.
Let us then define the functor HC : D → Cat(Cop × C,D) as follows:

to the object D ∈ D we associate the functor homC ⊗D : (C, C′) 7→
C(C, C′)⊗D, where for a set X and an object D ∈ D we denote X ⊗D

the coproduct
∐
x∈X D of X copies of D, also called the copower or

tensor of D by X . See 2.2.3 for the whole definition; note that this
yields a chain of isomorphisms

D(X ⊗D, D′) ∼= D(D, X ⋔ D′) ∼= Set(X,D(D, D′)), (1.42)

where X ⋔ D is defined dually as
∏
x∈X D. We will freely employ (1.42)

when needed.
We shall prove that there is a bijection

Cat(Cop × C,D)(homC ⊗D, F ) ∼= D(D,
´

C
F ) (1.43)

If α : homC ⊗D ⇒ F is a natural transformation it has components

αCC′ : C(C, C′)⊗D → F (C, C′);

by (1.42), these maps mate to

α̃CC′ : D → C(C, C′) ⋔ F (C, C′)

It is easy to show that these mates form a wedge in the pair (C, C′), and
thus there is an induced morphism

α̂ : D →

ˆ

(C,C′)

C(C, C′) ⋔ F (C, C′). (1.44)
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Lemma 1.3.2. The latter integral
´

(C,C′) C(C, C′) ⋔ F (C, C′) is in fact

isomorphic to
´

C
F (C, C).

Proof of 1.3.2. We shall first find a candidate wedge

ω(CC′) :
ˆ

C

F (C, C)→ C(C, C′) ⋔ F (C, C′); (1.45)

for the sake of exposition, we treat the case D = Set; the core of the
argument is the same in the general case, using generalised elements.

Thanks to (1.27) we now know that an ‘element’ of
´

C F (C, C) is a
coherent sequence (aC | C ∈ C) in the product

∏
C F (C, C), such that

F (u, idC)(aC′) = F (idC′ , u)(aC) for every u : C → C′ in C. This means
that we can map a coherent sequence (aC | C ∈ C) into (say) a sequence
(F (u, C′)(aC′) | u : C → C′), and this sets up a map

ˆ

C

F (C, C)
̟(CC′)
−−−−−→ C(C, C′) ⋔ F (C, C′) =

∏

C,C′

∏

u:C→C′

F (C, C′)

(1.46)
This in turn defines a wedge in the pair (C, C′), thus inducing a unique
morphism

´

C
F (C, C) ¯̟ //

´

(C,C′)
C(C, C′) ⋔ F (C, C′) (1.47)

between the ends. Now that we put all notation in place, we leave as
an exercise for the reader to show that ̟(CC′) is a terminal wedge, and
thus that ¯̟ is in fact an isomorphism.

Proof of 1.3.1. A natural transformation α : homC ⊗D ⇒ F induces
an arrow like in (1.44), and this induces a unique arrow ¯̟−1 ◦ α̂ : D →
´

C F (C, C). The correspondence α 7→ ¯̟−1 ◦ α̂ sets up the desired ad-
junction like in (1.43).

Unwinding its definition, we easily see that the functor HC : D →
Cat(Cop × C,D) has the property that HC×E ∼= HC ◦ HE ∼= HE ◦ HC
(it easily follows from a commutativity of the involved coproducts: we
invite the reader to fill in the details). This, in turn, shows the Fubini rule,
since every isomorphism between left adjoint functors L ⇒ L′ induces
an isomorphism of right adjoint functors R′ ⇒ R.

Remark 1.3.3. From the binary case shown above an easy induction
shows that the iterated co/end of a functor F :

∏n
i=1 C

op
i × Ci → D

gives the same result with respect to their integration variables, taken
in whatever order. More formally, if σ : {1, . . . , n} → {1, . . . , n} is any
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permutation of an n elements set, then there is a canonical isomorphism
ˆ

Cσ1

. . .

ˆ

Cσn

F (C1, C1, . . . , Cn, Cn) ∼=
ˆ

(C1,...,Cn)

F (C1, C1, . . . , Cn, Cn)

(1.48)
and similarly for the coend of F .

1.4 First instances of co/ends

A basic example exploiting the whole machinery introduced so far is
the proof that the set of natural transformations between two functors
F, G : C → D can be characterised as an end:

Theorem 1.4.1. Given functors F, G : C → D whose domain is a small

category, and whose codomain is locally small, we have the canonical

isomorphism of sets

Cat(C,D)(F, G) ∼=
ˆ

C

D(FC, GC). (1.49)

Proof A wedge τC : Y → D(FC, GC) consists of a function y 7→ (τC,y :
FC → GC | C ∈ C), which is natural in C ∈ C (this is simply a
rephrasing of the wedge condition): the equation

G(f) ◦ τC,y = τC′,y ◦ F (f) (1.50)

valid for any f : C → C′, means that for a fixed y ∈ Y the arrows τC
form the components of a natural transformation F ⇒ G; thus, there
exists a unique way to close the diagram

Y
τC //

h
''

D(FC, GC)

Cat(C,D)(F, G)

OO
(1.51)

with a function sending y 7→ τ ,y ∈
∏
C∈C D(FC, GC), and where

Cat(C,D)(F, G)→ D(FC, GC) is the wedge sending a natural transfor-
mation to its c-component; the diagram commutes for a single h : Y →

Cat(C,D)(F, G), and this is precisely the desired universal property for
Cat(C,D)(F, G) to be

´

C
D(FC, GC).

Remark 1.4.2. A suggestive way to express naturality as a ‘closure’
condition is given in [Yon60, 4.1.1], where for an Ab-enriched functor
(see A.7.2) F : Cop×C → Ab from a complete Ab-category Cop×C, one
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can prove that natural transformations F ⇒ G form the kernel ker δ of
a map

δ :
⊕

Y ∈C

Ab(FY, GY )→
⊕

f :X→Y

Ab(FX, GY ). (1.52)

Remark 1.4.3. If we let F = G = idC in the isomorphism above, we get
that the end of the hom functor hom : Cop×C → Set is the monoid M(C)
of endo-natural transformations of the identity functor idC . This monoid
is of great importance in homological algebra and algebraic geometry, as
it constitutes a precious source of information on C (morally, M(C) can
be thought of as the 0-th term of a sequence of cohomology groups Hn(C)
associated to C). Similarly, the presence of a ‘nice’ functor F : C → Set
(for example, a faithful and conservative one) yields a fairly rich monoid
of endomorphisms M(F ) =

´

C
Set(FC, FC).

‘Reconstruction theory’ is the branch of category theory that asserts
that under suitable conditions on F , its domain is a category of M(F )-
modules, i.e. there is an equivalence (or a full embedding) between C
and Mod(M(F )).

The set of dinatural transformations between two functors can also
be characterised as an end, where the hom functor has been “completely
symmetrised”. The result was first proved in [DS70].

Example 1.4.4 (Dinatural transformations as an end). Let F, G : Cop×

C → D be two functors; define a new functor

Dd(F, G)[ , ] : Cop × C → Set (1.53)

• on objects, sending the pair (A, B) to the set D(F (B, A), G(A, B));

• on morphisms, sending a pair of arrows
[
A X
f↓ ↓g
B Y

]
to the diagonal of the

commutative square

Dd(F, G)[B, X ] //

��

Dd(F, G)[B, Y ]

��
Dd(F, G)[A, X ] // Dd(F, G)[A, Y ]

(1.54)

whose horizontal and vertical arrows are defined by the action of F, G

on morphisms: for example the left vertical arrow is defined as

D(F (X, B), G(B, X))→ D(F (X, A), G(A, X))

u 7→ G(f, 1) ◦ u ◦ F (1, f). (1.55)
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It is a natural question to wonder what is the end of Dd(F, G): [DS70]
was the first to observe that such end is in fact isomorphic to the set of
dinatural transformations α : F G.

In order to prove this, observe that if we consider the parallel mor-
phisms

∏

C∈C

D(F (C, C), G(C, C)) ⇒
∏

f :C→C′

D(F (C′, C), G(C, C′)) (1.56)

induced by the conjoint action of Dd(F, G) on morphism as in (1.27),
then u, v are defined sending a sequence (xC | C ∈ C) respectively in

{
(xC | C ∈ C) 7→ (G(1, f) ◦ xA ◦ F (f, 1) | f : A→ B)

(xC | C ∈ C) 7→ (G(f, 1) ◦ xB ◦ F (1, f) | f : A→ B)
(1.57)

The equaliser of this pair of maps is evidently selecting the set of “coher-
ent” sequences (xC) such that these two actions are equal, i.e. such that
the family xC : F (C, C)→ G(C, C) specifies a dinatural transformation
F G in the sense of 1.8.

Example 1.4.5 ( Stokes’ theorem is about co/ends). This remark
was first observed by [Cam] and it follows their exposition almost word-
by-word. Let N be the poset of natural numbers in the usual ordering,
and Mod(R) be the category of real vector spaces.

Fix a manifold X (or some other sort of smooth space). Then we have
functors

• C : Nop → Mod(R) where Cn is the vector space freely generated by
smooth maps Y → X where Y is a compact, n-dimensional, oriented
manifold with boundary, and the induced map ∂ : Cn+1 → Cn is the
boundary map. This is a chain complex, since ∂∂ = ∅.

• Ω : N → Mod(R) is the de Rham complex; Ωn = Ωn(X) is the space
of n-forms on X and the induced map d : Ωn → Ωn+1 is the exterior
derivative. This is the usual de Rham complex of X .

Consider the usual tensor product on Mod(R); taking the object-wise
tensor product of C nd Ω, we obtain a functor C⊗Ω : Nop×N→ Mod(R),
while there is also the constant functor R : Nop × N→ Mod(R)

Then Stokes’ theorem asserts that we have a cowedge

+ : C ⊗ Ω→ R

which, given a map Y → X and a differential form ω on X , pulls the
form back to Y and integrates it (returning 0 if it’s the wrong dimension):
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+n : Cn ⊗Ωn → R is defined by (
[
Y
↓
X

]
, ω) 7→

´

Y ϕ∗ω if ϕ : Y → X . (The

integral
´

Y
, here, is not a co/end).

In fact, the cowedge condition for + amounts to the commutativity of
the square

Cn+1 ⊗ Ωn
∂⊗id //

id⊗d

��

Cn ⊗ Ωn

+n

��
Cn+1 ⊗ Ωn+1

+n+1

// R

(1.58)

which according to the definition of + is like saying that
´

∂Y
ϕ|∗∂Y ω =

´

Y
ϕ∗dω. (1.59)

This is precisely Stokes’ theorem.
Exercise for the reader: what is the natural induced map

´ n∈N
Cn ⊗

Ωn → R? (hint: express the coequaliser defining
´ n∈N

Cn ⊗ Ωn as the
degree-zero cohomology of a suitable bicomplex (C• ⊗ Ω•, D)).

Exercises

1.1 Prove equations (1.5) and (1.6). Which commutative diagrams do
you need to derive them?

1.2 Show with an example that dinatural transformations α : P

Q, β : Q R cannot be composed in general. Nevertheless, there
exists a composition rule of a dinatural α : P Q with a natural
η : P ′ ⇒ P which is again dinatural P ′ Q, as well as a composition
P Q⇒ Q′ (hint: the appropriate diagram results as the pasting of
a dinaturality hexagon and two naturality squares).

1.3 What is the end of the constant functor ∆D : Cop × C → D at the
object D ∈ D? What is its coend?

1.4 Show that extranatural transformations compose accordingly to
these rules:

• (stalactites) Let F, G be functors of the form Cop×C → D. If αX,Y :
F (X, Y ) → G(X, Y ) is natural in X, Y and βX : G(X, X) → H is
extranatural in X (for some object H of D), then

βX ◦ αX,X : F (X, X)→ H

is extranatural in X .
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• (stalagmites) Let G, H be functors of the form Cop × C → D. If
αX : F → G(X, X) is extranatural in X (for some object F of D)
and βX,Y : G(X, Y )→ H(X, Y ) is natural in X, Y , then

βX,X ◦ αX : F → H(X, X)

is extranatural in X .
• (yanking) Let F, H be functors of the form C → D, and let G : C ×
Cop × C → D be a functor. If αX,Y : F (y)→ G(X, X, Y ) is natural
in y and extranatural in X , and if βX,Y : G(X, Y, Y ) → H(X) is
natural in X and extranatural in Y , then

βX,X ◦ αX,X : F (X)→ H(X)

is natural in X .

Express these laws as equalities between suitable string diagrams (ex-
plaining also the genesis of the names ‘stalactite’ and ‘stalagmite’).

1.5 Prove that dinaturality is strictly more general than extranatu-
rality, following this plot.

Let ∆[1] = {0 → 1} be the ‘generic arrow’ category, and S, T :
∆[1]op ×∆[1]→ Set the functors respectively defined by

{1}

S

c1 //

��

{1, 2}

σ

��

(0, 0) //

��

(0, 1)

��

{1} //

��
T

{1}

c2

��
{1} c2

// {1, 2} (1, 0) // (1, 1) {1} c2

// {1, 2}

where ci chooses element i ∈ {1, 2}, and σ permutes the two elements.
Show that there exists a dinatural transformation T S, whose
components are identities, which is not extranatural when in 1.1.8 we
choose A = ∗ and B = Cop = ∆[1].

1.6 If (X, Ω, µ) is a measure space, the integral of a vector function ~F :
X → Rn such that each Fi = πi ◦F : X → R is measurable and has fi-
nite integral, is the vector whose entries are

(
´

X F1dµ, · · · ,
´

X Fndµ
)

.

Prove that category theory possesses a similar formula, i.e. that if
F : Cop× C →

∏n
i=1Ai is a functor towards a product category, such

that

• each Ai has both an initial and a terminal object;
• each co/end

´

(πi ◦ F ) exists;

then the ‘vector’ of all these co/ends, as an object
( ´

F1, . . . ,
´

Fn
)
∈∏

Ai, is the (base of a universal co/wedge forming the) co/end of F .
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Where did you use the assumption that each Ai has an initial and a
terminal object?

1.7 Let D be a category. Show that the end of a functor T : ∆[1]op ×

∆[1]→ D is the pullback of the morphisms

T (0, 0)
T (0,d0)
−−−−−→ T (0, 1)

T (d0,1)
←−−−−− T (1, 1),

i.e. that the following square is a pullback in D:
´

i∈∆[1]
T (i, i)

❴✤
//

��

T (0, 0)

��
T (1, 1) // T (0, 1)

Dualise to the coend being a pushout.
1.8 Let G be a topological group, and Sub(G) the set of its subgroups

partially ordered by inclusion; let X be a G-space, i.e. a topological
space with a continuous action G×X → X (the product G×X has
the product topology).

We can define two functors Sub(G) → Spc, sending (H ≤ G) 7→
G/H (this is a covariant functor, and G/H has the induced quotient
topology as a space; there is no need for H to be normal) and (H ≤
G) 7→ XH (the subset of H-fixed points for the action; this is a
contravariant functor).

• Compute the coend

oG(X) =
ˆ H≤G

XH ×G/H

in the category Spc of spaces, if G = Z/2 has the discrete topology;
• Give a general rule for computing oG(X) when G = Z/nZ is cyclic

with n elements;
• Let instead Orb(G) be the orbit category of subgroups of G, whose

objects are subgroups but hom(H, K) contains G-equivariant maps
G/H → G/K. Let again X and G/ define the same functors,
now with different action on arrows. Prove that

ˆ H∈Orb(G)

XH ×G/H ∼= X

(Elmendorf reconstruction, [Elm83]).
• Let E|F be a field extension, and {H ≤ Gal(E|F )} the partially
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ordered set of subgroups of the Galois group of the extension. Com-
pute (in the category of rings) the coend

ˆ H

EH ×Gal(H |F )

1.9 Dualise the construction in 1.2, to obtain a characterisation for the
coend

´ C
F (C, C), characterised as the coequaliser of a pair (F ∗, F∗)

as in
∐

C→C′

F (C′, C)⇒
∐

C∈C

F (C, C)

1.10 Find an alternative proof that natural transformations can be writ-
ten as an end (see 1.4.1), using the characterisation of

´

C
D(FC, GC)

as an equaliser in 1.2.4: as a subset of
∏
C∈C D(FC, GC), is precisely

the subset of natural transformations {τC : FC → GC | Gf ◦ τC =
τC′ ◦ Ff, ∀f : C → C′}.

1.11 What is the co/end of the identity functor 1Cop×C : Cop × C →

Cop × C? Use the bare definition; use the characterisation of co/ends
as co/limits; feel free to invoke Exercise 1.6.

1.12 A set of objects S ⊂ C, regarded as a full subcategory, finitely

generates a category C if for each object X ∈ C and each arrow f :
S → C from S ∈ S there is a factorisation

S
g
−→

n∐

i=1

Si
hC−−→ C

where hC is an epimorphism and {S1, . . . , Sn} ⊂ S (n depends on C

and f).
Suppose T : Cop × C → Set is a functor, finitely continuous in

both variables, and C is finitely generated by S. Then if we denote
T |S : Sop × S → Set the restriction, we have an isomorphism

ˆ C∈S

T |S(C, C) ∼=
ˆ C∈C

T (C, C)

induced by a canonical arrow
´ C∈S

T ′(C, C)→
´ C∈C

T (C, C).
1.13 Let F ⊣ U : C ⇆ D be an adjunction, and G : Dop × C → E a

functor; then there is an isomorphism
ˆ C

G(FC, C) ∼=
ˆ D

G(D, UD).

Show that the converse of this result is true: if the above isomorphism
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is true for any G and natural therein, then there is an adjunction
F ⊣ U .

1.14 Give a different proof of Fubini theorem 1.3.1 as follows: define
again HC : D 7→ homC ⊗D, and find suitable unit and counit maps
(see A.4.1).

• The unit of the adjunction η : idD ⇒
´

C ◦HC is determined as a
morphism

ηD : D →

ˆ

C

(
C(C, C)⊗D

)

(parenthesisation is important:
´

C

(
C(C, C)⊗D

)
is not isomorphic

to
( ´

C
C(C, C)

)
⊗D) which in turn corresponds to a wedge

ηD,(u) : D →
∐

v:C→C

D

defined on the component u : C → C by the inclusion iu in the
coproduct.

• The counit of the adjunction ǫ : HC ◦
( ´

C
) ⇒ idCat(Cop×C,D) is

determined as a natural transformation having components

ǫCC′ :
∐

u:C→C′

ˆ

C

F (C, C)→ F (C, C′)

which in turn have components

ǫuCC′ :
ˆ

C

F (C, C)→ F (C, C′)

by the universal property of a coproduct, determined by sending a
coherent family (aC | C ∈ C) into F (C, u)(aC) (o equivalently by
the wedge condition, F (u, C′)(aC′)).

Show that these two definitions set up the desired adjunction (prove
the triangle identities for η and ǫ, as in A.4.5).

Hint: to show that ǫuCC′ is indeed natural in C, C′, take two arrows
C0

α ↓
C1

and
C′0
β ↓
C′1

and split the naturality square into the pasting of two
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smaller squares

∐
C1→C′0

´

C
F

ǫu
C1C′

0 //

◦β

��

F (C1, C′0)

F (1,β)

��∐
C1→C′1

´

C F
ǫu

C1C′
1 //

α◦

��

F (C1, C′1)

F (α,1)

��∐
C0→C′1

´

C
F

ǫu
C0C′

1

// F (C0, C′1)

each of which commutes by evident reasons.
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Yoneda and Kan

Summary. In this chapter we begin to learn the rules of co/-
end calculus. First, we re-enact the well known Yoneda lemma as an
isomorphism of co/ends. Yoneda lemma is one of the deepest results
that can be examined with the technology built so far: every functor
F : Cop

→ Set can be decomposed as a coend

F ∼=

ˆ C

F C × C( , C).

This isomorphism has plenty of consequences; it is in fact equivalent
to the assertion that every presheaf is a colimit of a certain diagram
D : C → [Cop, Set] of representables, and that there is a canonical
choice for such D. Then we move to investigate Kan extensions; the
famous tenet that ‘every thing is a Kan extension’ is, here, translated
into the more appealing (for us!) statement that every sufficiently nice
thing is a co/end. We then glimpse to formal category theory; this latter
part draws on [Gra74] and other classical sources of the Australian
school of category theory.

The reason why this technique is so fast is that you are
not trying to cut them; you are throwing your sword into
them.

sōke M. Hatsumi

Along the present chapter, an abstract 2-category will be denoted in
sans-serif, A, K . . . ; an object in K will be denoted in uppercase roman
A, B, C . . . ; an object of a 0-cell A ∈ Cat will be denoted in roman
lowercase a, b, a′, b′ . . .

This complies with the common notation for papers in 2-dimensional
algebra, and the different notation employed elsewhere should not cause
any confusion. Note in particular that we make the distinction between
the 1-category Cat (categories and functors) and the 2-category Cat

(categories, functors and natural transformations).

32
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2.1 The Yoneda lemma and Kan extensions

For the ease of exposition, we recall the statement of the Yoneda lemma:

Lemma. Let よ : C → Cat(Cop, Set) be the functor sending X ∈ C to

the presheaf associated to X; then, for every F ∈ Cat(Cop, Set), there

exists a bijection between the set of natural transformations よX ⇒ F

and the set FX. This bijection is moreover natural in the object X.

We carry on the proof in full detail in our A.5.3 to convince even the
most skeptical reader that this result is a tautology. Few tautologies are,
however, richer of meaning.

Remark 2.1.1 (The Yoneda-Grothendieck philosopy). Yoneda lemma
entails that there is a copy of a category C in its category of presheaves
Cat(Cop, Set); indeed, if we let F =よB to be representable (see A.5.2)
in the isomorphism above, we see that

Cat(Cop, Set)(よA,よB) ∼= C(A, B) (2.1)

This means precisely that the Yoneda embedding functor よC : C →
Cat(Cop, Set) is fully faithful. To all practical purposes then, every ques-
tion about C is a question about the copy of C inside its category of
presheaves; the latter category is, however, always very well-behaved un-
der certain aspects; for example, it is always complete and cocomplete
(see A.3.10) even when C isn’t.

Thus, every diagram in C, say D : J → C admits a limit in [Cop, Set],
as we can build the limit

limよ(DI) = lim homC( , DI). (2.2)

If this functor is representable, say by an object L, it is easy to see that L

realises the universal property of lim DI in C; in fact, this is a necessary
and sufficient condition: thus, a completeness request on C has a 1-1
translation in terms of a request of representability of certain functors.

The idea that properties of C can (and should) be translated into rep-
resentability properties, and more extensively that representability con-
ditions play a major role in category theory, algebra and geometry, was
first advocated by A. Grothendieck, and it makes heavy use of Yoneda
lemma; thus we colloquially refer to it as the Yoneda-Grothendieck phi-

losophy.

The next step of this introduction to the chapter is to single out certain
universal 2-cells in a 2-category, and the fundamental properties thereof.



34 Yoneda and Kan

Notation 2.1.2 (Extensions and lifts). Let f, g be 1-cells of a 2-category
K, respectively f : A → B (the extendable arrow) and g : A → C (the
extendant arrow). We say that a pair 〈u, η〉 exhibits the left extension
lang f of f along g if the 1-cell u : C → B and the 2-cell η : f ⇒ ug can
be arranged in a triangle

A
g

��❅
❅❅

❅❅
❅❅

η
⇒

f

��⑦⑦
⑦⑦
⑦⑦
⑦

B Cu
oo

(2.3)

initial among all such. This means that every pair 〈v, α〉 of a 1-cell
[
C
v↓
B

]

and a 2-cell α : f ⇒ vg factors uniquely through η as a composition
α = (ᾱ ∗ g) ◦ η (the cell ᾱ ∗ g is the whiskering of A.2.3).

Remark 2.1.3. The notion of left extension is subject to dualisation, in
a way that it is worth recording explicitly: it is useful to have a diagram
illustrating at once all these universal constructions. The diagram below
has to be parsed as follows: moving horizontally reverses the direction of
1-cells, but not of 2-cells; moving vertically but not horizontally reverses
the direction of 2-cells, but not of 1-cells. The universality request ac-

quires the same shape, and when we write (for example)
liftg f ⇒ h

f ⇒ gh
we mean that there is a bijection between 2-cells liftg f ⇒ h and 2-cells
f ⇒ gh.

A
⇒
η

g

��

f // B

C

lang f

;;

lang f ⇒ h

f ⇒ hg

liftg f ⇒ h

f ⇒ gh
C

g

��
B

f
//

liftg f

;;

A
⇒η

A

⇒ε
g

��

f // B

C

rang f

;;

hg ⇒ f

h⇒ rang f

h⇒ riftg f

gh⇒ f
C

g

��
B

f
//

riftg f

;;

A

⇒
ε

(2.4)

So, a right extension is a left extension in Kco, the 2-category where all
2-cells have been reversed; a left lifting is a left extension in Kop, the
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2-category where all 1-cells have been reversed; and a right lifting is a
left extension in Kcoop, where both 1- and 2-cells have been reversed.

Definition 2.1.4 (Pointwise and absolute extension). We say that a left
(resp., right) extension is pointwise if for every object C and k : X → C

the diagram obtained pasting at g the comma object (see A.2.14) (g/k)
(resp., (k/g)) is again a left extension [Str81, 5.2]; this means that in
every diagram of 2-cells

(g/k)
⇒

//

��

A
⇒

f //

g

��

B

X
k

// C

??⑧⑧⑧⑧⑧⑧⑧⑧
(2.5)

if the left triangle is a left extension and the square is a comma object,
then the whole pasting diagram is a left extension; dually (in Kco) for a
right extension.

We say that a left extension is absolute if it is preserved by all 1-cells,
in the same sense a functor preserves co/limits: in the left extension
diagram 〈k, η〉

A
⇒
f //

g

��

B
k // Y

C

h

??⑦⑦⑦⑦⑦⑦⑦⑦
(2.6)

the 1-cell k preserves the extension if the whiskering k ∗ η exhibits k ◦ h

as the left extension of k◦f along g: there is an isomorphism k(lang f) ∼=
lang(kf), canonically.

Of course, the same nomenclature applies to define pointwise and ab-
solute left and right liftings.

Remark 2.1.5. Later in the chapter we will see that extensions in
Cat exist, whenever sufficient co/limits exist in the codomain of the
extendable arrow, and they carry a very expressive theory (to the point
that Mac Lane states that ‘everything is a Kan extension’ in [ML98]).
Instead, few lifts (both left and right) do exist in Cat.

The deep reason why this is true is that the Yoneda lemma does not
hold in the category Catop, as the opposite of a functor is not a functor
in general.

In fact, one tenet of the present chapter is that left extensions in Cat

(where they are called Kan extensions, in honour of D.M. Kan (see 3.1.2):
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this justifies the notation as lan is a portmanteau for l(-eft)+(K-)an) can
be computed as certain explicit co/limits (if they are left extensions, they
are colimits; right extension, they are limits). More precisely, pointwise
Kan extensions can be expressed as co/ends.

It is not possible to do the same for lifts, due to the peculiar behavior
of the universality requests in 2.4; the reason is somewhat trivial — the

dual of a functor is generally not a functor any more.

Example 2.1.6. To see that there is no way to compute a lift as a co/-

limits, let us consider the following example: let us consider the discrete

category {0, 1}, and let δ0 : C → {0, 1}, δ1 : D → {0, 1} be the obvi-

ous constant functors (with disjoint images) from any two non-trivial

categories C,D.

Then there are no liftings of δ0 through δ1, no matter how complete

and cocomplete C and D are. In fact, for any functor F : C → D, there are

no natural transformations δ1◦F → δ0 nor δ0 → δ1◦F . The same is true,

if we substitute {0, 1} with its free cocompletion Cat({0, 1}op, Set) ∼=
Set/{0, 1}.

The deep reason why we do not have nice formulae for Kan liftings,

is that Catop lacks an internal concept of (co)end; in other words the

internal language of Catop is not expressive enough.

On the contrary, the theory of extensions behaves much better, and in

fact it is possible to give a neat characterisation of pointwise extensions:

Proposition 2.1.7. Let A,B, C be categories, f, g be functors as in the

triangle below. Then, the following conditions are equivalent:

• The triangle

A

⇒

f //

g

��

B

C

h

??⑧⑧⑧⑧⑧⑧⑧⑧
(2.7)

is a pointwise right Kan extension;

• The triangle is a right extension, and it is preserved by every repre-

sentable よ
∨

(B) = B(B, ) : B → Set, meaning that

rang homB(B, f) ∼= homB(B, rang f) (2.8)

Proof See [Leh14, 5.4].
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2.2 Yoneda lemma using co/ends

Tightly linked to the Yoneda lemma is the density theorem of A.5.7:
every presheaf F : Cop → Set is, canonically, the colimit of a diagram of
representables, i.e. functors lying in the image ofよC : C → Cat(Cop, Set);
we prove this result in full detail in A.5.3, without using coends; however,
the scope of the present chapter is to convince the reader that co/end
calculus allows to concisely and effectively rephrase both the Yoneda
lemma and this result.

In our chapter 4, thanks to the machinery of weighted co/limits, the
fact that every presheaf is a colimit of representables acquires the more
alluring form

Every presheaf is the weighted colimit of the Yoneda embedding, weighted
by the presheaf itself.

Proposition 2.2.1 (ninja Yoneda Lemma). For every functor K : Cop →

Set and H : C → Set, we have the following isomorphisms (natural equiv-

alences of functors):

K ∼=
ˆ C

KC × C( , C) (2.9)

K ∼=
ˆ

C

Set(C(C, ), KC) (2.10)

H ∼=
ˆ C

HC × C(C, ) (2.11)

H ∼=
ˆ

C

Set(C( , C), HC) (2.12)

where the functor C × Cop × Cop in (2.10) is defined by

λAXC.Set(C(A, X), KC),

and similarly for Set(C( , C), HC).

Remark 2.2.2. The name ninja Yoneda lemma is chosen to instill in
the reader the sense that this result is the Yoneda lemma in disguise;
the name comes from [Lei] where T. Leinster offers the same argument
we are about to give as a proof of 2.2.1:

Th[e above one is] often called the Density Formula, or (by Australian
ninja category theorists) simply the Yoneda Lemma. (but Australian
ninja category theorists call everything the Yoneda Lemma. . . ).

Note that the isomorphisms (2.10) and (2.12) follow directly from 1.4.1.
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We prove only isomorphism (2.9), as the remaining one can be easily
obtained by dualisation.

We put a particular emphasis on giving a detailed proof once, as it
is the first argument that truly exploits co/end calculus; it is a paradig-
matic example of the style of proofs we’re using from now on.

Proof Consider the chain of isomorphisms

Set
(ˆ C∈C

KC × C(X, C), Y
)
∼=
ˆ

C∈C

Set
(
KC × C(X, C), Y

)

∼=
ˆ

C∈C

Set(C(X, C), Set(KC, Y ))

∼= [C, Set]
(
C(X, ), Set(K , Y )

)

∼= Set(KX, Y )

where the first step is motivated by the coend-preservation property of
the hom functor 1.2.8, the second follows from the fact that Set is a
cartesian closed category, where

Set(A×B, C) ∼= Set(A, Set(B, C)) (2.13)

for all three sets A, B, C, naturally in all arguments, and where CB =
Set(B, C) is the set of all functions B → C, and the final step exploits
Theorem 1.4.1 and the classical Yoneda Lemma that says that the set
of natural transformations よ

∨
(C)⇒ F is in bijection with the set FC

for every presheaf F : C → Set. Here, F = Set(K , Y ).
Every step of this chain of isomorphisms is natural in the object Y ;

since the Yoneda embedding よC : Cop → [C, Set] is fully faithful, the
isomorphism of functors

Set
(
´ C

KC × C(X, C), Y
)
∼= Set(KX, Y ) (2.14)

ensures in turn that there exists an isomorphism between the represented
objects

´ C
KC × C(X, C) ∼= KX .

This is moreover natural in the object X . Accepting the validity of
(2.9) and re-doing each step backwards, we can get back the Yoneda
lemma in the form expressed in A.5.3.

From now one we will make frequent use of the notion of tensor and
cotensor in an enriched category; the definitions for a generic V-category
can be found for example in [Bor94b, Ch. 6], and in particular its Def-
inition 6.5.1: we have already introduced this definition in the proof of
our 1.3.1.
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Definition 2.2.3 (Tensor and cotensor in a V-category). Let C be a
V-enriched category (see [Bor94b, 6.2.1] or our A.7.1), the tensor ⊗ :
V × C → C (when it exists) is a functor (V, C) 7→ V ⊗C such that there
is the isomorphism

C(V ⊗ C, C′) ∼= V(V, C(C, C′)), (2.15)

natural in all components; dually, the cotensor in an enriched category
C (when it exists) is a functor (V, C) 7→ V ⋔ C (contravariant in V ) such
that there is the isomorphism

C(C′, V ⋔ C) ∼= V(V, C(C′, C)), (2.16)

natural in all components.

Example 2.2.4. Every co/complete, locally small category C is nat-
urally Set-co/tensored by choosing V ⋔ C ∼=

∏
v∈V C and V ⊗ C ∼=∐

v∈V C. We have employed this construction in the proof of 1.3.1.

Remark 2.2.5. The tensor, hom and cotensor functors are the proto-
type of what’s called a ‘two variable adjunction’ (see [Gra80, §1.1]); given
the hom-objects of a V-category C, the tensor

⊗ : V × C → C (2.17)

and the cotensor

⋔ : Vop × C → C (2.18)

can be characterised as adjoint functors to the hom functors, saturated
in their first or second component: usual co/continuity properties of the
co/tensor functors are implicitly derived from this characterisation.

Remark 2.2.6 ( , The Yoneda embedding is a Dirac delta). In func-
tional analysis, the Dirac delta appears in the following convenient abuse
of notation:

ˆ ∞

−∞

f(x)δ(x − y)dx = f(y) (2.19)

(the integral sign is not a co/end). Here δ(x−y) := δy(x) is the y-centered

delta distribution, and f : R → R is a continuous, compactly supported
function on R.

It is really tempting to draw a parallel between this relation and the
ninja Yoneda lemma, conveying the intuition that representable functors
on an object c ∈ C play the rôle of c-centered delta distributions.
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If the relation above is written as 〈f, δy〉 = f(y), interpreting inte-
gration as an inner product between functions (or more precisely as a
universal pairing between a space and its dual), then the ninja Yoneda
lemma says the same thing for categories: each presheaf F : Cop → Set,
can be paired with a distribution concentrated on the point C in an
‘inner product’ 〈よC , F 〉 =

´ X
よC(X) × FC; the latter object is now

isomorphic to FC, in the same way the integral of a smooth function f

against a y-centered delta equals f(y).

ˆ

x∈R

f(x) ◦ δ(x− y)dx = f(y)

ˆ X

F X × C(Y, X) ∼= F Y

The analogy between the pairing of a function and a delta distri-
bution, and the ninja Yoneda lemma.

2.3 Kan extensions using co/ends

In the following series of remarks, G : C → E and F : C → D are functors;
for the sake of exposition we assume that LanG F exists for all such F ’s;
we shall see in the future that a sufficient condition for this to be true
is that D is a cocomplete category (see A.3.10), thus we assume that all
colimits exist in D.

Remark 2.3.1. The correspondence F 7→ LanG F is a functor

Cat(C,D)→ Cat(E ,D); (2.20)

to every natural transformation α : F ⇒ F ′ is associated a natural
transformation LanG α : LanG F ⇒ LanG F ′ defined as the unique 2-cell
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ξ such that

C ⇒
η′

F

��
✤✤ ✤✤
�� α //

G
��

D

E
LanG F ′

??⑧⑧⑧⑧⑧⑧⑧⑧

=

C ⇒
η

F //

G
��

D

E

??⑧⑧⑧⑧⑧⑧⑧⑧

PP

LanG F ′

❄❄❄❄ �#
ξ (2.21)

Remark 2.3.2. The correspondence G 7→ LanG is a functor

Cat(C, E)op → Cat(Cat(C,D), Cat(E ,D)); (2.22)

this means that to every natural transformation α : G⇒ G′ is associated
a natural transformation Lanα : LanG′ ⇒ LanG, defined as the mate of
the composite 2-cell

F
ηF
⇒ LanG F ◦G

LanG F∗α
⇒ LanG F ◦G′. (2.23)

In order to show that the correspondence G 7→ LanG is a pseudofunctor,
we have to find suitable coherence isomorphisms LanGG′ ∼= LanG ◦LanG′
and Lanid

∼= id; this is the content of Exercise 2.5.

Remark 2.3.3. The functor LanG is (the unique up to isomorphism)
adjoint to the inverse image functor G∗ = ◦ G; this follows directly
from the characterisation of LanG F as the functor E → D such that

Cat(E ,D)(LanG F, H) ∼= Cat(C,D)(F, HG). (2.24)

Remark 2.3.4. Dually, the correspondence G 7→ RanG is a functor

Cat(C, E)op → Cat(Cat(C,D), Cat(E ,D)) (2.25)

that works as right adjoint to the precomposition functor ◦G, and it is
functorial, contravariant in the extendant component. Given α : G⇒ G′

the components of Ranα are the mates of

RanG′ F ◦G
RanG′ ∗α⇒ RanG′ F ◦G′

ǫ
⇒ F. (2.26)

Remark 2.3.5. From the universal property of LanG we can derive

the unit and the counit of the adjunctions LanG ηL

ǫL

G∗ and G∗
ηR

ǫR

RanG: we leave this as Exercise 2.2 for the reader to spell out explicitly.

Proposition 2.3.6. Let again G : C → E be a functor and F : C → D
is a functor whose domain is a cocomplete category. Since both the co/-

tensors (see 2.2.3) and the co/ends involved in the equations below exist,
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then the left/right Kan extensions of G : C → E along F : C → D exist

and there are isomorphisms (natural in F and G)

LanF G ∼=
ˆ C

D(FC, )⊗GC RanF G ∼=
ˆ

C

D( , FC) ⋔ GC.

(2.27)
These Kan extensions are pointwise in the sense of 2.1.4.

Since this is our first instance of derivation in co/end calculus, we
apply a certain pedantry to the explanation, duly recording the results
that allow each step. Such verbosity will be soon abandoned, to let each
reader profit from the instructive meditation following the chains of iso-
morphisms we write.

Proof The proof consists of a string of canonical isomorphisms, exploit-
ing simple remarks and the results established so far: the same argument
is offered in [ML98, X.4.1-2].

Cat(D, E)
( ˆ C

D(FC, )⊗GC, H
)
∼=
ˆ

X

D
( ˆ C

D(FC, X)⊗GC, HX
)

1.2.8 ∼=
ˆ

CX

D(D(FC, X) ⊗GC, HX)

(2.15) ∼=
ˆ

CX

Set(D(FC, X), E(GC, HX))

1.4.1 ∼=
ˆ

C

[D(FC, ), E(GC, H−)]

(2.12) ∼=
ˆ

C

E(GC, HFC) ∼= Cat(C, E)(G, HF ).

The case of RanF G is dually analogous and we leave it to the reader.

Corollary 2.3.7. Let D : A → B be a functor;

cc1) if D is a left adjoint, then D preserves all pointwise left Kan extensions

that exist in A; dually,

cc2) if D is a right adjoint, then D preserves all pointwise right Kan ex-

tensions that exist in A.

Proof Left adjoints commute with tensors, i.e. D(X⊗A) ∼= X⊗DA for
any (X, A) ∈ Set × C, and with colimits (see A.4.6). The result follows,
and can easily be dualised.

Example 2.3.8. Let T : C → C be a monad (see A.6.3) on C; the
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Kleisli category Kl(T ) of T is defined having the same objects of C and
morphisms Kl(T )(A, B) := C(A, T B).

Given any functor F : A → C, the right Kan extension TF = RanF F ,
when it exists, is a monad on C, that we call the codensity monad of
F ; using the end expression for RanF F we get that on objects TF is
defined as

TF (C) ∼=
ˆ

A

C(C, FA) ⋔ FA. (2.28)

(See 2.2.3 for the ⋔ operation.) Hom-sets in the Kleisli category Kl(TF )
can be characterised as

Kl(TF )(C, C′) ∼=
ˆ

A

Set(C(C′, FA), C(C, FA)). (2.29)

The multiplication and unit of TF can be found using the universal
property of TF :

• The multiplication is obtained as the mate of

RanF F ◦ RanF F ◦ F
RanF ∗ǫ∗F−−−−−−−→ RanF F ◦ F

ǫF−→ F (2.30)

under the adjunction isomorphism [C, C](H, RanF F ) ∼= [A, C](HF, F );
• the unit η : id⇒ RanF F is obtained as the component of the unit of

the adjunction F ∗ ⊣ RanF at the identity.

The difficult part is to show that the two maps µ : TF ◦ TF ⇒ TF and
η : idC ⇒ TF indeed form a monad; we relegate this proof to an exercise
in 2.9; the interested reader shall try to translate in coend calculus the
proof in [Dub70, pp. 67—71].

Remark 2.3.9. There is a dual theory of density comonads: given a
functor F : A → C the left Kan extension of F along itself, when it
exists, has the structure of a comonad SF (see A.6.17), where

• the co-multiplication is obtained as the mate of

F
ηF
−−→ LanF F ◦ F

LanF F∗ηF ∗F
−−−−−−−−−→ LanF F ◦ LanF F ◦ F (2.31)

under the adjunction isomorphism
• the counit σ : LanF F ⇒ id is obtained as the component of the counit

of the adjunction LanF ⊣ F ∗ at the identity.

Find a similar expression for the hom sets of the co-Kleisli category
coKl(SF ) (and see Exercise 2.10).
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Example 2.3.10 (Stalks of a sheaf ([GAV72, 6.8 and §7.1])). (Credits to
T. de Oliveira Santos) Let (X, τ) be a topological space, and ip : {p} →֒
X the inclusion of a singleton into X . From this, we get an induced
functor

O(ip) : O(X) // O({p})

U ✤ // i−1
p (U)

(2.32)

Considering now left Kan extensions along the opposite of O(ip),

O({p})op

LanO(ip)op F

��
O(X)op

O(ip)op
99rrrrrrrrrr

F
// Set,

⇒
(2.33)

we obtain a functor LanO(ip)op : Cat(τop, Set) → Cat({p}, Set) = Set,
whose image at F is written ⌈Fp⌉.

The restriction of this functor to the category of sheaves on X can be
identified with the stalk functor (−)p: we have O({p}) = {∅ ≤ {p}} and
computing the images of ∅ and {p} under ⌈Fp⌉ via the colimit formula
for left Kan extensions gives

⌈Fp⌉({p}) ∼= colim
((
O(⌈p⌉) ↓ {p}

)op

։ O(X)op F−→ Set
)

,

∼= colimU∋p(F(U)),
∼= Fp

⌈Fp⌉(∅) ∼= colim
(

(O(⌈p⌉) ↓ ∅)op
։ O(X)op F−→ Set

)
,

∼= colimU →֒∅(F(U)),
∼= F(∅).

Example 2.3.11 (Analytic functors). A functor F : Set → Set is said
to be analytic if it consists of the left Kan extension of a functor f :
B(N)→ Set (the ‘species’ of F ) along the functor j : B(N)→ Set; B(N)
is the category having objects natural numbers and such that B(N)(m, n)
are the bijective functions {1, . . . , m} → {1, . . . , n} (so this set is empty
if n 6= m).

In other words, B(N) is the groupoid arising as disjoint union of all
symmetric groups

∐
n≥0 Sym(n).

Representing the left Kan extension Lanj f as a coend we have

F (T ) ∼=
ˆ n

T n × f(n); (2.34)
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a functor is ‘analytic’ if it can be expressed as a Taylor series, and the
coend is in a suitable sense that Taylor series). The theory of analytic
functors, besides having an intrinsic interest, is capable to categorify
many phenomena in classical combinatorics. See for example the seminal
[Joy86], but also [AV08, GJ17].

2.3.1 Tannaka duality using coends

Example 2.3.12. Let V be a finite dimensional vector space over the
field K; let V ∨ denote the dual vector space of linear maps V → K.
Then there is a canonical isomorphism

ˆ V

V ∨ ⊗K V ∼= K. (2.35)

The fastest way to see this is to notice that
ˆ V

hom(V, )⊗ V ∼= Lanid(id) ∼= idMod(K) (2.36)

(compare this argument with any proof trying to explicitly evaluate the
coend from its bare definition).

Remark 2.3.13. Let again V be a finite dimensional vector space over
the field K. The universal cowedge hom(V, V ) αV−−→ K sends an endomor-
phism f : V → V to its trace τ(f) ∈ K (which in this way acquires a
universal property).

The above argument holds in fact in fair generality, adapting to the
case where V is an object of a compact closed monoidal category, and it
is linked to the theory of Tannaka reconstruction.

Let G be an internal group in a suitable category of spaces (it can be
a Lie group or an affine group, i.e. a group in the category of algebraic
varieties or schemes). The category Rep(G) of its finite dimensional rep-
resentations ̺ : G→ Mod(K) carries many important properties: it has
a monoidal structure and an involution ( )∨ turning it into a rigid mo-
noidal category (see [Sel10] for a glimpse on the vast zoology of monoidal
categories).

Tannaka theory tries to find sufficient conditions on a nice monoidal
category A ensuring that it is equivalent to Rep(G) for some space G,
and retrieves sufficient information to reconstruct such G (or equivalently
by Gel’fand duality, its algebra of functions) from A. Such algebra of
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functions is built out of A alone in a canonical fashion, as long as it
comes equipped with a nice functor A → Mod(K) for some ring K.

Remark 2.3.14. For the purposes of this remark, unveiling the
coend-y nature of the argument in [Sch13, 10.2.2],

• We fix a ground ring R, and we let K be a commutative R-algebra
and A an additive autonomous symmetric monoidal R-linear category;
this means that every object in A is dualisable.
• We let w : A → Mod(K) be a R-linear functor that is strong mono-

idal; since A is autonomous, this entails that the essential image of
w is contained in the subcategory of dualisable (i.e. finitely generated
projective) B-modules.
• We also assume that w is comonadic.

Under these assumptions, we can consider the density comonad of w,
i.e. the left Kan extension of w along itself (of course if w is comonadic,
and has a right adjoint r, then Lanw w ∼= w ◦ r because Lanw ∼= ◦ r):
according to 2.3.6, the left Kan extension in study can be computed as
the coend

M 7→

ˆ A∈A

Mod(K)(wA, M) ⊗ wA (2.37)

We now claim that the object H = Lanw w(K) carries a natural structure
of Hopf algebra in Mod(K): indeed H results as

Lanw w(K) ∼=
ˆ A

Mod(K)(wA, K)⊗ wA =
ˆ A

(wA)∨ ⊗ wA (2.38)

(this is exactly how the object H is introduced in [Sch13, Bak07, Ulb90]);
moreover, Lanw w is strong monoidal by doctrinal adjunction [Kel74]
and thus H = Lanw w(K) must carry a bi-algebra structure.

One form of the Tannaka reconstruction theorem now asserts that A
is monoidally equivalent to the category of representations of the space
Spec(H).

Here, we prove a slightly less sophisticated version of the theorem
using coends. The proof is obtained in various steps; we just sketch its
backbone to let the reader appreciate how, although there’s still a lot of
(non-formal) work left to do, the use of coends makes the essential idea
crystal-clear.

Theorem 2.3.15. Let K be a ring, F : A → mod(K) a K-linear,
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faithful, strong monoidal functor with domain a K-linear rigid mono-

idal category. The codomain mod(K) is the category of finitely-generated

projective K-modules.

Then there is a bialgebra B ∈ Mod(K) (now, not necessarily finitely

generated) such that A is monoidally equivalent to the category of B-

modules Mod(B).

Proof First, consider the codensity monad RanF F : Mod(K)→ Mod(K),
and the density comonad LanF F of F ; the image of K under the monad
is the object RanF F (K) and corresponds to the module

ˆ

A

homK(homK(k, FA), FA) =
ˆ

A

homK(FA, FA) (2.39)

i.e. to the monoid of endo-transformations Cat(A, Mod(K))(F, F ) (see
1.4.1; the monoid operation here is vertical composition, which is of
course bilinear). We claim this is the algebra B we are looking for. Indeed,
the object LanF F (K) is another K-module, and not very far from B:

LanFF (k) ∼=
ˆ A

homK(FA, k)⊗ FA

∼=
ˆ A

(FA)∗ ⊗ FA

∼=
ˆ A

(FA⊗ FA∗)∗

∼=

(
ˆ

A

FA⊗ FA∗
)∗

= B∗

Now, ‘every object of A is a B-module’ in the following sense: the uni-
versal wedge of the end

´

A homK(FA, FA) is made by maps

ǫA : B → homK(FA, FA) = End(FA) (2.40)

and this is a ring map giving FA a structure of B-module; a morphism
f : A→ A′ in A now fits in the commutative square

B //

��

homK(FA, FA)

Ff∗

��
homK(FA′, FA′)

Ff∗
// homK(FA, FA′)

(2.41)

which means that for every b ∈ B, Ff(b.x) = b.Ff(x) where b. = ǫ(b);
thus it is a homomorphism of B-modules.

This is enough to define a functor F̃ : A → Mod(B) (just corestrict
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F ) in such a way that it is an equivalence of categories; it is indeed full
and strictly surjective on objects, and strong monoidal and faithful by
the initial assumption.

Moreover, the multiplication of B given by vertical composition of
natural transformation is compatible with a comultiplication on B∗, and
precisely (if we shortly denote [F, F ] = Cat(A, Mod(K))(F, F ))

([F, F ] ⊗ [F, F ]→ [F, F ])∗

[F, F ]∗ ⊗ [F, F ]∗ ← [F, F ]∗
(2.42)

(and B ∼= B∗ because as B-module it is of course 1-dimensional).

2.4 A Yoneda structure on Cat

2.4.1 Formal category theory: a crash course

The language of category theory is built upon a certain number of fun-
damental notions: among these we find the universal characterisation of
co/limits, the definition of adjunction, (pointwise) Kan extension, and
the theory of monads.

It is often possible to ‘axiomatise’ these definitions, pretending that
they refer to the 1- and 2-cells of a generic 2-category other than Cat.

In some sense, category theory arises when the way in which abstract
patterns interact becomes itself an object of study, and when it is gen-
eralised to several different contexts. In a few words, the aim of formal

category theory is to provide a framework in which this process of con-
ceptualisation can be outlined mathematically. Quoting [Gra80],

The purpose of category theory is to try to describe certain general
aspects of the structure of mathematics. Since category theory is also
part of mathematics, this categorical type of description should apply
to it as well as to other parts of mathematics.

The basic idea is that the category of small categories, Cat, can be
promoted to a 2-category Cat with ‘formal’ properties in the same way
Set is a category with ‘formal’ properties (leading to the definition of a
topos). The aim of formal category theory is to outline these properties,
and the assumptions needed to ensure that a certain 2-category behaves
like Cat for all practical purposes.

Unfortunately, being too naïve when performing this process doesn’t
always give the ‘right’ answer (because it doesn’t always build an object
with the right universal property).
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This is ultimately due to the fact that, when moving to the setting
of V-enriched categories (which is the adjacent step of abstraction from
Cat, the category Set-Cat of Set-enriched categories) the theory ‘behaves
differently’ in various ways, and some of these differences prevent V-cate-
gories to be as expressive as one would have liked them to be (a paradig-
matic example of this minor expressiveness is the lack of a Grothendieck

construction for generic V-presheaves: studying the way in which the
Grothendieck construction of A.5.9 ultimately pertains to formal cate-
gory theory has been addressed in the early literature on formal category
theory (see [Str74, SW78, Str80]).

Formal category theory can be thought as a way to encode the same
amount of information carried from Cat in other contexts: even though
it is always possible to do some constructions by mimicking definitions
from Cat (adjunctions and adjoint equivalences, extensions by universal
2-cells, etc.), things get a little hairy when we want to provide the theory
with an analogue of the Yoneda lemma.

In the 2-category Cat, we can use the above mentioned Grothendieck
construction to ‘revert’ set-valued functors on an object B into arrows
‘over’ B;1 in the 2-category Cat the comma object of B : 1 → B to
idB : B → B together with its projection B/B → B is a good stand in
for the covariant functor represented by B (more generally, discrete left

fibrations over B stand in for general functors B → Set).
In the 2-category V-Cat, we care about V-valued V-functors and we

would like to do the same construction. But for an object B in a V-en-
riched category B, the comma B/B is more naturally an internal cate-
gory (whose object of objects is

∐
X∈B B(B, X)) rather than an enriched

one (whose objects are morphisms p : B → X in the underlying category
of B). The skewness between these two presentations of category, one ‘in-
side’ a universe, and the other ‘with respect to’ a universe, generates all
sorts of subtleties and problems.

Now, we are left with the question:

Which additional structure on a 2-category K allows to recognise arrows
of K playing the same rôle of discrete (op)fibrations in Cat, thus provid-
ing with a meaningful notion of (fibrational) Yoneda lemma internal to
K (see §A.5.3)?

1 We basically glue together a bunch of fibers
∐

B
EB projecting onto B, in the

same manner we build the étale space of a presheaf F : Bop → Set; the reader
might have noticed that this is secretly the same construction that gives the étale
space of a presheaf on a topological space (see 3.2.11).
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The axioms of Yoneda structure provide a possible answer to this ques-
tion.

Our aim here is to present them not for an arbitrary 2-category, as
they appear in [SW78] but for the 2-category Cat: we prove the validity
of each axiom as it appears in [SW78]; to do this, we will extensively use
the co/end calculus we know.

To start, we establish the following notation:

yd1) K is a 2-category, fixed once and for all;
yd2) Ads(A, B) ⊆ K(A, B) is a full subcategory of ‘admissible’ 1-cells, which

is moreover a right ideal, meaning that the composition map restricted
to admissible 1-cells restricts as a family of maps

cXAB|Ads : Ads(A, B) × K(X, A)→ Ads(X, B). (2.43)

This means that if
[
X
f↓
A

]
and

[
A
g↓
B

]
are 1-cells and g is admissible, then

g ◦ f is again admissible. We call admissible an object A such that
idA ∈ Ads(A, A).

Now we assume that the following structure can be found on K:

ys1) for each admissible object A ∈ K we can find an admissible 1-cell
よA : A→ P A called a Yoneda arrow;2

ys2) for each f : A→ B admissible 1-cell with admissible domain, we can
find a 2-cell

A

f

�� ✄✄✄✄}� χf

よA

!!❈
❈❈

❈❈
❈❈

❈

B
B(f,1)

// P A

(2.44)

We say that a 2-category K has a Yoneda structure if it is endowed with
the data above, and if the following axioms are satisfied.

Axiom 2.4.1. In (2.44), the pair 〈B(f, 1), χf 〉 exhibits lanfよA.

Proof The proof that this axiom holds in Cat consists of the following
derivation in coend calculus: let f : A → B be a functor, then

lanfよA(B) ∼=
ˆ A

B(fA, B)×よA(A)

2 It is desirable for the correspondence A 7→ P A to be a functor; it will be an
axiom. For the moment, the assignment P A is just any object depending on A.
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∼=
ˆ A

B(fA, B)×A( , A)

2.2.1 ∼= B(f , B).

Axiom 2.4.2. In (2.44), the pair 〈f, χf 〉 exhibits the absolute left lifting
LiftB(f,1)よA.

Proof The validity of this axiom in Cat is again a game of coend calcu-
lus: if we call Nf = lanfよA = B(f, 1) for short, we have liftNf

⊣ Nf,∗,
where Nf,∗ : g 7→ Nf ◦ g is the ‘direct image’ (or post/composition) func-
tor; then we have an isomorphism between sets of 2-cells

Cat(A, PA)
(
よA, Nf ◦ g

)
∼=
ˆ

A

[Aop, Set]
(
よAA, Nf ◦ g(A)

)

∼=
ˆ

A

[Aop, Set]
(
よAA,B(f , gA)

)

∼=
ˆ

A

B(fA, gA)

∼= Cat(A,B)(f, g)

We leave to the reader the proof that this lifting is preserved by every
functor; a terse equivalent formulation of this axiom is that there is a

relative adjunction (see Exercise 2.11) f
[よA]

B(f, 1) with relative unit

the Yoneda map よA.

Axiom 2.4.3. Given a pair of composable 1-cells A
f
−→ B

g
−→ C, the

pasting of 2-cells

A

⇒
χよB f

よA //

f

��

P A

B
⇒
χg

g

��

よB
// P X

Pf

<<①①①①①①①①

C

C(g,1)

==③③③③③③③③

(2.45)

exhibits the extension langfよA = C(gf, 1), and the pair 〈idPA, idよA
〉

exhibits lanよA
よA.

Remark 2.4.4. The hidden meaning of this axiom is that P is a pseudo-
functor Kcoop → K (whose domain is the sub-class of admissible objects).

Let’s make this evident: given a pair of composable 1-cells A
f
−→ B

g
−→
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C, the universal property of χgf entails that there is a unique 2-cell θgf

filling the diagram

A

✎✎✎✎��χgf

よA //

f

��

P A

B

g

��

P B

P f

OO

C

77♦♦♦♦♦♦♦♦♦♦♦♦♦

??⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦

❃❃❃❃ �#θ
gf

✴✴✴✴
��

よC

// P C

P g

OO (2.46)

Axiom 2.4.3 is equivalent to the request that this arrow is invertible
(exercise: draw the right diagram), and this yields that the above diagram
has the same universal property of the square

A
⇒

よA //

gf

��

P A

C
よC

// P C

P (gf)

OO

(2.47)

which in turn entails that there is a unique, and invertible, 2-cell P (gf)⇒
P f◦P g. This is of course half of the structure of pseudofunctor on P ; the
remaining structure is given by the request that 〈idPA, idよA

〉 exhibits
lanよA

よA, because this provides a unique, invertible 2-cell idPA ⇒

P (idA) for every admissible object A. This result has a variety of differ-
ent interpretation: it follows from the Yoneda lemma as stated in A.5.7,
and from the coend expression for the density comonad, or by a direct
check of the universal property in study.

All the remarks in 2.4.3 are evidently true in Cat, since the (pseudo)
functoriality of the correspondence A 7→ [Aop, Set] can be proved di-
rectly without great effort. Nevertheless, axiom 2.4.3 is still telling us
something about a ‘reduction rule’ for composition of Kan extensions:
indeed, it is possible to prove that (in the same notation of axiom 2.4.3)
that there is a (canonical!) isomorphism

θgf : langfよA ∼= lanよBfよA ◦ langよB. (2.48)

The proof of this statement is another game of coends, using 2.3.6: try
to do it as an exercise (hint: there will be many coends involved; fix an
explicative notation and maintain it clear).
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2.4.2 Addendum: co/ends inside a Yoneda structure

Warning 2.4.5. The present section relies on material presented in

chapter 4 and 5; it can (and should) be skipped at first reading, but can

be used as reference for additional examples of weighted co/limits coming

back from said chapters.

Along the following remark we fix a 2-category K and we assume that
K has all finite limits, that it is cartesian closed, and that the functor P

is quasi-representable, i.e. it arises as A 7→ [A∨, Ω] for some object Ω ∈ K

and a duality involution ( )∨ on K (see [Shu16]); it is possible to prove
that there is an isomorphism Ω ∼= P 1, where 1 is the terminal object of
K.

The purpose of this section is to establish how the Yoneda structure
having such P as presheaf construction possesses a formal analogue of
co/end calculus.

Remark 2.4.6. In a quasi-representable Yoneda structure P : Ads→

K, Yoneda embeddings are maps in K of the form A→ [A∨, P 1]; if the
product A∨ × A is admissible in the Yoneda structure generated by P

we can consider the admissible maps

hA : A∨ ×A→ P 1 (2.49)

as the mates of the Yoneda embeddingsよA. These maps play the rôle of
internal homs, so that admissible objects can be thought as canonically
P 1-enriched: in order to define co/ends we shall write them as certain
weighted co/limits using the maps hA as weights (see 4.1.13.wc3, co/-
ends are precisely hom-weighted co/limits).3

Let’s stick for a moment to the case where the ambient 2-category is
Cat; by definition of what is a weighted colimit in a Yoneda structure
[SW78, §4], the presence of an isomorphism

ˆ X

A(A, X)×A(X, A′) ∼= A(A, A′) (2.50)

valid for a category A and objects A, A′ ∈ A means that the left lifting of
よAop×A along P 1(hA, 1), is hA, and such lifting is absolute; this yields

a relative adjunction hA
[よAop×A]

P 1(hA, 1); this final request means

3 It is worth to remind that fr every small category A ∈ Cat the composition maps
are given by a family of functions cabc : A(a, b) ×A(b, c)→ A(a, c) such that
ca, ,c is a cowedge, and in fact an initial one.
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that the triangle

Aop ×A

χhA
⇒

よAop×A

ww♦♦♦
♦♦♦

♦♦♦
♦♦

hA

$$■
■■

■■
■■

■■

P (Aop ×A) P 1
P 1(hA,1)

oo

(2.51)

is an absolute left lifting; this is precisely axiom 2.4.2 applied to hA.
It is worth to investigate how far this formalisation of co/end calculus

can go:

Remark 2.4.7 (Co/ends in a Yoneda structure, ). The 1-cell P 1(hA, 1)
admits a left adjoint LanよA∨×A

hA; computing this Kan extension in Cat

we get

LanよAop×A
hA(F ) ∼=

ˆ (A,A′)

[Aop ×A, Set](よAop×A(A, A′), F )× hA(A, A′)

∼=
ˆ (A,A′)

F (A, A′)×A(A, A′)

∼=
ˆ a

F (A, A).

Thus, the adjunction LanよA∨×A
hA ⊣ P 1(hA, 1) is an abstract analogue

of the adjunction
´ A : [Aop × A, Set] ⇆ Set : hom ⋔ , where the left

adjoint
´ A takes the coend of a functor F : Aop × A → Set, and the

right adjoint is the hom-weighted limit functor hom ⋔ X : (A, A′) 7→
Xhom(A,A′), the same that helped prove the Fubini theorem in 1.3.1 (see
4.1.13.wc3 for the precise result).

It is now straightforward to go further: axiom 2.4.2 entails that in a
Yoneda structure an admissible object A for which A × Aop is still ad-
missible (this translates into the property that the domain of a relative
monad P : A→ K is closed under product and duality involution), thus
there are absolute left liftings

Aop ×A
よAop×A

ww♣♣♣
♣♣♣

♣♣♣
♣♣

hA

$$❍
❍❍

❍❍
❍❍

❍❍

P (Aop ×A)

❴❴❴❴ +3

P 1
P 1(hA,1)

oo

(2.52)

in which P 1(hA, 1) has a left adjoint, precisely LanよA∨×A
hA. Such a left

adjoint is the functor taking the ‘coend’ of an internal endo-profunctor
F : A∨ ×A→ P 1.
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2.5 Addendum: relative monads

Notation 2.5.1. Along the present section, categories of functors X →
Y are often denoted as [X ,Y]; this complies with the notation for carte-
sian closed categories and serves to avoid cumbersome accumulation of
symbols when iterated functor categories such as

Cat(Cat(Cat(Aop, Set)op
s , Set)op

s , Set) (2.53)

are considered. Context always allows to determine where the hom-cat-
egory [X ,Y] lies.

Another notational simplification is the following: every functor J :
X → Y induces a left extension functor LanJ = J! : [X ,Y] → [Y,Y].
This notation draws from algebraic geometry and it is chosen since we
have to iterate several left extensions and to iteratively apply the func-
tors J! ⊣ J∗ and compose their unit and counit maps.

In this subsection address a deeper study of the presheaf construction:
we shall prove that

• albeit not an endofunctor, the presheaf construction functor P of the
Yoneda structure on Cat is a relative monad on the category of func-
tors cat → Cat; this means that it is an internal monoid in the skew-
monoidal category of those functors; in simple terms, a skew-mono-
idal category (M, ⊳) is like a monoidal category, but the associator
αXY Z : (X ⊳ Y ) ⊳ Z → X ⊳ (Y ⊳ Z) and left and right unitors are not
invertible maps: thus, aggregations of objects

X0 ⊳ X1 ⊳ · · · ⊳ Xn (2.54)

are not well-defined without specifying their parenthesisation. We in-
troduce the notion in full generality, and we prove that, under suitable
cocompleteness assumptions on Y, the category Cat(X ,Y) becomes
skew-monoidal.
• We then prove that P is a particularly well-behaved relative monad,

that in [DLL19] is called a yosegi box. In simple terms, the action of
P on 1-cells is such that

yb1) every P !f fits into an adjunction P !f ⊣ P
∗f ;

yb2) P ! is a relative monad with respect to the inclusion j : cat ⊂ Cat;
yb3) the monad P ! is lax idempotent.

As shown in [DLL19], it turns out that these three properties charac-
terise uniquely the presheaf construction of a Yoneda structure.
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The upshot of the present section is thus the following: provided the
left extension along a given functor J : X → Y exists, the functor
category [X ,Y] becomes a skew-monoidal [Szl12] with respect to the
functor ⊳ : [X ,Y] × [X ,Y]→ [X ,Y] sending F, G to J!F ◦G.

In the present section we offer a characterisation of relative monads as
⊳-monoids: we can provide a formal analogue for a similar statement than
the one given for K = Cat in [ACU10]; while extremely useful a reference,
the proof in [ACU10] does apparently work only on Cat, whereas the
argument appearing here can be easily adapted to an abstract 2-category.

Although a relatively elementary argument, spelling out a complete
proof of this fact turns out to be a rather tedious task.

Definition 2.5.2. Let J : X → Y be a functor such that the left
extension along J exists, defining a functor J! : [X ,Y] → [Y,Y]; then
the category [X ,Y] becomes a left skew-monoidal category under the
skew multiplication defined by

(F, G) 7→ F ⊳ G = J!F ◦G; (2.55)

there are natural maps of association, left and right unit

(F ⊳ G) ⊳ H F ⊳ (G ⊳ H)

J ⊳ F F

F F ⊳ J

γF GH

λF

̺F

(2.56)

such that the following diagrams are commutative:

skm1) skew associativity:

((F ⊳ G) ⊳ H) ⊳ K (F ⊳ G) ⊳ (H ⊳ K)

(F ⊳ (G ⊳ H)) ⊳ K

F ⊳ ((G ⊳ H) ⊳ K) F ⊳ (G ⊳ (H ⊳ K))

γF G,H,K

γF,G,H⊳K

γF,G,HK

γF,GH,K

F⊳γG,H,K

(2.57)
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skm2) skew left and right unit:

(F ⊳ G) ⊳ J F ⊳ (G ⊳ J)

F ⊳ G F ⊳ G

(J ⊳ F ) ⊳ G J ⊳ (F ⊳ G)

γF,G,J

2r
̺F ⊳G

F⊳̺G

2l

γJ,F,G

λF ⊳G
λF ⊳G

(2.58)

skm3) zig-zag identity:

J ⊳ J

J J

λJ̺J (2.59)

skm4) interpolated zig-zag identity:

(F ⊳ J) ⊳ G F ⊳ (J ⊳ G)

F ⊳ G F ⊳ G

γF,J,G

F⊳λG̺F ⊳G
(2.60)

The natural maps γ, λ, ̺ are defined as follows in this specific case:

s1) Given F, G, H ∈ [X ,Y], the cell γF,G,H is defined by γ̃F,G ∗H , where
γ̃F,G is obtained as the mate of J!F ∗ηG under the adjunction J! η

ǫ
J∗:

the arrow

J!F ◦G
J!F∗ηG
−−−−−→ J!F ◦ J∗J!G = J∗(J!F ◦ J!G) (2.61)

mates to a map J!(J!F ◦G) −→ J!F ◦ J!G.
s2) Given F ∈ [X ,Y], the cell λF : J ⊳F ⇒ F is defined by the whiskering

σ ∗ F , where σ = σidY is the counit of the density comonad of J ;
s3) Given G ∈ [X ,Y], the cell ̺G : G→ G ⊳ J is the G-component ηG of

the unit of the adjunction J! ⊣ J∗

Remark 2.5.3. A complete proof of 2.5.2 appears as Theorem 3.1 in
[ACU10]; the main argument is however heavily relying on the assump-
tion that K = Cat; it was our desire to produce a formal proof ex novo,
while explicitly recording some useful equations satisfied by the skew mo-
noidal structure in study; as a rule of thumb, the structure maps of this
skew monoidal structure are entirely induced by the J! ε

η
J∗ adjunction

and from (the equations satisfied by) the unit and counit thereof.
Until the end of the section, we adopt the following notation, and

employ the following equations wherever needed:
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e1) we denote •̟ : J!U → V the mate of ̟ : U → J∗V under the
adjunction J! ε

η
J∗; similarly, we denote χ• : U → J∗V the mate of

χ : J!U → V ; in this notation, the bijection

[X ,Y](U, J∗V ) ∼= [Y,Y](J!U, V ) (2.62)

reads as (•̟)• = ̟ and •(χ•) = χ.
e2) the first zig-zag identity for the adjunction J! ε

η
J∗ is (εB ∗J)◦ηBJ =

idBJ ; in particular, if B = idY we have (σ ∗ J) ◦ ηJ = idJ ;
e3) the second zig-zag identity for the adjunction J! ε

η
J∗ is εJ!F ◦J!(ηF ) =

idJ!F ;
e4) an irreducible expansion for the associator, expliciting all its compo-

nents, is

γFGH =
(
εJ!F◦J!G ◦ J!(J!F ∗ ηG)

)
∗H (2.63)

e5) the density comonad of J , whose comultiplication ν and counit σ

satisfy the comonad axioms is defined by the maps

σ = εidB
: J!(J)→ 1

ν : J!(J)
J!(ηJ )
−−−−→ J!(J!(J) ◦ J)

γ̃JJ
−−→ J!(J) ◦ J!(J) (2.64)

in particular, the comultiplication and the associator of the skew-mo-
noidal structure determine each other.

Proof First of all, axiom skm3 is one of the two triangle identities of the
adjunction J! ⊣ J∗. It remains to prove the other coherence conditions.

skm1) It is easy to see that one can prove commutativity before precomposing
with K; one has then to prove the commutativity of the diagram

J!(J!(J!F ◦G) ◦H) J!(J!F ◦G) ◦ J!H

J!(J!F ◦ (J!G ◦H))

J!F ◦ J!(J!G ◦H) J!F ◦ J!G ◦ J!H

γ̃F ⊳G,H

J!(γ̃F G∗H)

γ̃F G∗J!H

γ̃F,G⊳H

c1

c2

J!F∗γ̃GH

(2.65)
note that the dashed arrow exists: it is the mate •α of α = (J!F ◦

J!G) ∗ ηH ; the plan is to prove that the two sub-diagrams in which
this arrow splits the whole diagram commute separately. In order to
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do this, we start from the square diagram c1: recall that e2 entails
that one of the squares

J!A X A J∗X

J!B Y J!B J∗Y

J!f

•a

g f

a

J∗g

•b b

(2.66)

commutes if and only if the other does. Hence, if we denote f =
γ̃FG ∗ H, g = γ̃FG ∗ J!H, a = (J!F ◦ G) ∗ ηH , b = α, c1 commutes if
and only if the square

J!F ◦G ◦H J!(J!F ◦G) ◦ J!H ◦ J

J!F ◦ J!G ◦H J!F ◦ J!G ◦ J!H ◦ J

•(J!F∗ηG)∗H

(J!F◦G)∗ηH

•(J!F∗ηG)∗(J!H◦J)

(J!F◦J!G)∗ηH

(2.67)
commutes. It does, since their common value at the diagonal is simply
the horizontal composition •(J!F ∗ ηG) ηH .

A similar argument shows that c2 commutes: we have to establish
the commutativity of

J!(J!F ◦ J!G ◦H) J!F ◦ J!G ◦ J!H

J!F ◦ J!(J!G ◦H)

•(J!F∗ηG⊳H)

•(J!F∗J!G∗ηH)

J!F∗
•(J!G∗ηH)

(2.68)
a diagram that can be ‘straightened’ to the left one below:

A A A A

A A A A

•(J!F∗ηG⊳H )

J!F∗
•(J!G∗ηH)

J!F∗ηG⊳H

J!F∗
•(J!G∗ηH)∗J

•(J!F∗J!G∗ηH) J!F∗J!G∗ηH

(2.69)
but now, the left diagram commutes if and only if the right one does;
and the latter commutativity follows from the definition of γ̃.

skm2) A separate argument works for diagrams 2r and 2l: unwinding the
definitions, the commutativity of 2r amounts to the commutativity
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of

J!(J!F ◦G) ◦ J J!F ◦ J!G ◦ J

J!F ◦G J!F ◦ J!G ◦ J.

γF GJ

ηJ!F◦G

J!F∗ηG

(2.70)

If we denote for short J!F ∗ ηG = ̟, this commutativity is equivalent
to the fact that J∗(•̟)◦ηJ!F◦G = ̟, which is true since the left hand
side of this equation is (•̟)•. For axiom 2l, the commutativity of

J!(J) ◦ F J∗J!F

J!(J) ◦ F J!(J) ◦ J∗J!FJ!F∗ηF

ε∗J!F (2.71)

follows from the fact that the upper horizontal row coincides with the
horizontal composition σ ηF = ηF ◦ (σ ∗ F ); this means that 2l is
true if and only if the square

F J∗J!F

J!J ◦ F J!J ◦ J∗J!F

ηF

σ∗F

J!F∗ηF

ε∗J!F (2.72)

commutes; this is obvious by the naturality property of η.
skm4) Unwinding the definition, axiom skm4 asks the diagram

J!F ◦ J!(J) J!F

J!(J!F ◦ J) J!F

J!F∗σ

γF J

J!(ηF )

(2.73)

to commute. In order to see that it does, we observe that the chain of
equivalences

(J!F ∗ σ) ◦ εJ!F◦J!J ◦ J!(J!F ∗ ηJ ) = εJ!F ◦ J!(J!F ∗ σ ∗ J) ◦ J!(J!F ∗ ηJ )

= εJ!F ◦ J!

(
J!F ∗ ((σ ∗ J) ◦ ηJ )

)

= εJ!F ◦ idJ!F◦J

holds, where the last step is motivated by e2. So, the composition
(J!F ∗ σ) ◦ γ̃FJ equals εJ!F ; this, together with e3, concludes.

Remark 2.5.4 (A nice J gives a nice structure). In favourable cases
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the skew monoidal structure simplifies until it collapses to a straight
monoidal structure:

• if J is fully faithful, the unit ηF : F → J!F ◦ J is invertible for every
F , so that F ∼= F ⊳ J ;

• if J is dense, the density comonad σ is isomorphic to the identity
functor, so λF : F ∼= J ⊳ F is an isomorphism;

• if each extension J!F is absolute, then each γ̃F,G is invertible.

Remark 2.5.5. The bifunctoriality of composition has been implicitly
employed in the above proof; we spell it out explicitly for future refer-
ence.

In order to prove such bifunctoriality, we have to show the commuta-
tivity of the square

F ⊳ G F ⊳ K

H ⊳ G H ⊳ K

F⊳g

f⊳G f⊳K

H⊳g

(2.74)

given f : F → H and g : G → K. In fact, unwinding the definition it’s
easy to realize that this diagram commutes since its diagonal coincides
with the horizontal composition J!f g.

Remark 2.5.6 (A note on ⊳-whiskering). This begs the question of how
the whiskering of a 1-cell F with a 2-cell α works, on the left and on
the right; given the shape of the ⊳-skew-monoidal structure, it turns out
that

α ⊳ F := J!α ∗ F

F ⊳ α := J!F ∗ α (2.75)

Definition 2.5.7 (Monads need not be endofunctors, but are always
skew monoids). We will be interested in the notion of a J-relative mo-

nad, or simply a relative monad when J is understood from the context;
J-relative monads are defined as internal monoids in the skew-monoidal
category ([X ,Y], ⊳), thus they come equipped with a unit η : J ⇒ T and
a multiplication µ : T ⊳ T ⇒ T . However, since the monoidal structure
⊳ satisfies pretty asymmetrical coherence conditions, the commutativ-
ity conditions satisfied by a relative monad get altered accordingly. In
particular,
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rm1) the unit axiom amounts to the commutativity of

J ⊳ T T ⊳ T T ⊳ J

T

η⊳T

λ
µ

T⊳η

̺
(2.76)

where the right triangle ‘commutes’ in the sense that the composition
µ ◦ (T ⊳ η) ◦ ̺ makes the identity of T .

rm2) the multiplication µ is ‘skew associative’:

(T ⊳ T ) ⊳ T T ⊳ (T ⊳ T ) T ⊳ T

T ⊳ T T

µ⊳T

γ T⊳µ

µ

µ

(2.77)

We are particularly interested in lax idempotent monads, i.e. as those
that satisfy one of the following equivalent properties:

Definition 2.5.8. Let T : A → B be a 2-monad between 2-categories;
we say that T is lax idempotent if one of the following equivalent condi-
tions is satisfied:

l1) for every pair of T -algebras (a, A), (b, B) and morphism f : A → B,
the square

T A T B

A B

a
⇒

T f

b

f

is filled by a unique 2-cell f̄ : b ◦ T f ⇒ f ◦ a which is a lax morphism
of algebras;

l2) there exists an adjunction a ⊣ ηA with invertible counit;

l3) there exists an adjunction µ ⊣ η ∗ T with invertible counit;

l4) there is a modification ∆ : T ∗ η ⇒ η ∗ T such that ∆ ∗ η = 1 and
µ ∗∆ = 1.

The conditions for colax algebras are of course obtained replacing lax
algebra morphisms with colax ones.
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cx1) for every pair of T -algebras a, b and morphism f : A→ B, the square

T A T B

A B

a ⇒

T f

b

f

is filled by a unique 2-cell f̄ : f ◦a⇒ b◦Tf which is a colax morphism
of algebras;

cx2) there exists an adjunction ηA ⊣ a with invertible unit;
cx3) there exists an adjunction η ∗ T ⊣ µ with invertible unit;
cx4) there is a modification Υ : η ∗ T ⇒ T ∗ η such that Υ ∗ η = 1 and

µ ∗Υ = 1.

The scope of the next section is to prove that the presheaf construction
satisfies the axioms of a lax idempotent monad.

2.5.1 Relative monads and presheaves

Warning 2.5.9. Throughout the section we will often blur the distinc-

tion between two choices of notation: if the typeface for a 2-category is A,

objects, i.e. 0-cells in A, are denoted as Roman letters A, B, . . . , X, Y, . . . ,

1-cell are lowercase Roman f, g, . . . this applies in particular to the case

of Cat and its objects, categories A, B, C, . . . ; we invite the reader to

keep in mind this small clash of notation when comparing the section

with the rest of the book; a similar choice has been made -without fur-

ther mention- discussing particular shapes of 2-limits in chapter 4 (see

4.2.7 and 4.2.8).

In the present section we study the pair (Cat, P ), where P : cat →

Cat is the presheaf construction sending A 7→ [Aop, Set]; this is defined
having domain the category cat of small categories, and codomain the
locally small ones; the embedding of cat into Cat will always be denoted
as j : cat ⊂ Cat: it is an inclusion at the level of all cells.

We fix a notation that can be easily generalized to the case of a pair
(K, P ), where P : A → K is the presheaf construction of a Yoneda
structure on K.

Notation 2.5.10 (Presheaves). We consider the functor P : A 7→

[Aop, Set] as a covariant correspondence on functors and natural transfor-
mations; more formally, P acts as a correspondence cat → Cat sending
functors f : A → B to adjoint pairs P !f : P A ⇆ P B : P

∗f , and its
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action on 2-cells is determined by our desire to privilege the left adjoint,
inducing a 2-cell α! : P !f ⇒ P !g for each α : f ⇒ g. Given f : A → B,
the functor P

∗f := P B(よB ◦ f, 1) acts as pre-composition with f ,
whereas P !f is the operation of left extension along f . The situation is
conveniently depicted in the diagram

A B

P A P B

f

よA よB

P !f

P
∗f

(2.78)

Such diagram is filled by an isomorphism when it is closed by the 1-cell
P !f and by the cell χよB◦f when it is closed by P

∗f .

Definition 2.5.11 (Small functor and small presheaf). Let X be a
category; we call a functor F : Xop → Set a small presheaf if it results
as a small colimit of representables; equivalently, F is small if it exist a
small subcategory i : A ⊂ X and a legitimate presheaf F̄ : Aop → Set of
which the functor F is the left Kan extension along i.

Remark 2.5.12. The same definition applies, of course, to a functor
F : X → Y between two large categories.

Notation 2.5.13 (Small presheaves). It turns out that the category of
small presheaves on X is legitimate in the same universe of X (while the
category of all functors Xop → Set isn’t). Given a locally small category
there is a Yoneda embedding X → [Xop, Set]s, having the universal
property of free cocompletion of X (see [AR20, §3]). We explicitly record
how the functor [ op, Set]s : Cat → Cat acts on 1- and 2-cells: the
universal property of [ op, Set]s proved in [AR20] implies that in the
square

A B

[Aop, Set]s [Bop, Set]s

f

よA よB (2.79)

the dotted arrow exists (it is the Yoneda extension of よB ◦ f). The
action of [ op, Set]s on 2-cells is uniquely determined as a consequence
of this definition.

Lemma 2.5.14. Let j : cat ⊂ Cat be the embedding of small categories

in locally small ones. For every large category X there is a natural iso-

morphism [Xop, Set]s ∼= Lanj P (X) (a convenient shorthand is to denote
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the left extension of P along j as j!P ; this is compatible with the notation

in 2.5 and we will adopt it without further mention). More in particular,

there is a canonical isomorphism between P ⊳ P = j!P ◦P and the func-

tor [(P )op, Set]s, where for a large category X, the category [Xop, Set]s
designates small presheaves Xop → Set.

Proof To show that the universal property of the Kan extension is
fulfilled by [Xop, Set]s we employ a density argument: given a functor
H : Cat → Cat, every natural transformation α : P ⇒ H ◦ j can be
extended to a natural transformation ᾱ from small presheaves to H ,
using the fact that each F ∈ [Xop, Set]s can be presented as a small
colimit of representables: the components of ᾱX are defined, if F ∼=
i!F̃ ∈ [Xop, Set]s for i : A→ X , as

[Xop, Set]s
i∗

−→ [Aop, Set]s = [Aop, Set]
αA−−→ HjA = HA

Hi
−−→ HX

Corollary 2.5.15. From this it follows that there is a canonical isomor-

phism

[Xop, Set]s ∼=
ˆ A∈cat

[X, A]op × [A, Set] (2.80)

(in particular, this specific coend exists even if it is indexed over a non-

small category); this will turn out to be useful in the proof of 2.5.17.

Remark 2.5.16. It is reasonable to expect j!P to be the small-presheaf
construction; this construction is the legitimate version of the Yoneda
embedding associated to a (possibly large) category X . It is important
to stress our desire to exploit the results in [FGHW16], but minding that
P has additional structure (their approach qualifies P as a monad, but
only in the sense that it is a j-pointed functor, endowed with a unit
η : j → P and with a ‘Kleisli extension’ map –instead of a monad
multiplication– sending each f : jA → P B to f⋆ : P A → P B); in
view of 2.5.2, now we would like to say that [cat, Cat] is a skew-monoidal
category with skew unit j, and composition (F, G) 7→ j!F ◦G: this would
yield ‘iterated presheaf constructions’ P ⊳P , P ⊳(P ⊳P ), (P ⊳P )⊳P , . . . ,
all seen as functors cat→ Cat. Unfortunately, given a functor F : cat→

Cat it is impossible to ensure that j!F exists in general (cat is a

Ω+-
category, and Cat can’t be

Ω+-cocomplete), thus –if anything– the skew-
monoidal structure of 2.5.2 does not exist globally. Fortunately some left
extensions –precisely those we need– exist, so we can still employ the
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‘local’ existence of j!P and its iterates to work as if it was part of a full
monoidal structure.

It also turns out (and this is by no means immediate, see 2.5.18) that
the unitors λP : j ⊳ P → P and ̺P : P → P ⊳ j and the associator
γP : (P ⊳ P ) ⊳ P → P ⊳ (P ⊳ P ) are all invertible.

The preliminary results in this section legitimate the practice to naï-
vely consider iterated presheaf constructions: once we consider small
functors, the category [Xop, Set]s lives in the same universe of X , and
so do all categories [[Aop, Set]op, Set]s, [[[Aop, Set]op, Set]s

op
, Set]s.

Lemma 2.5.17 (j!P preserves itself). There is a canonical isomorphism

γ̃P P : j!(j!P ◦ P ) ∼= j!P ◦ j!P . (2.81)

Proof Relying on the previous lemma, we compute the coend

j!(j!P ◦ P ) ∼=
ˆ A∈cat

[A, X ]× [(P A)op, Set]s (2.82)

which is now isomorphic to [[Xop, Set]op
s , Set]s in view of the Yoneda

reduction and of 2.5.14 (note that the definition of λA.P A and λA.j!P A

entail that λA.[P Aop, Set] is covariant in A).

Lemma 2.5.18. There are canonical isomorphisms λP : j ⊳ P ∼= P ,

̺P : P ∼= P ⊳ j and γP P P : (P ⊳ P ) ⊳ P ∼= P ⊳ (P ⊳ P ), determined as

in s1–s3.

Proof The isomorphisms come from the unit and associativity con-
straints of s1-s3; as noted in 2.5.4, ̺ is invertible in every component
because j is fully faithful, and similarly λ is invertible in every compo-
nent if we show that j is a dense functor. Once we have shown this,
2.5.17 above will conclude, since from (2.63) the associator γP P P coin-
cides with the composition γ̃P P ∗ P .

Now, the functor j is dense, because the full subcategory of Cat on
the generic commutative triangle [2] = {0 → 1 → 2} is dense. So cat,
being a full supercategory of a dense category, is dense.

Remark 2.5.19. We often write ηP , P η, µP . . . to denote what should
be written as η ⊳ P , P ⊳ η, µ ⊳ P . . . Keeping in mind 2.5.6, that clarifies
what is the formal definition for ⊳-whiskerings, there is non chance of
confusion: η ⊳ P = j!η ∗P , P ⊳ η = j!P ∗ η, and similarly for every other
whiskering.

Proposition 2.5.20. The presheaf construction P = [ op, Set] is a lax

idempotent j-relative monad.
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In simple terms, a relative monad T : X → Y is the formal equivalent
of a monad in the skew-monoidal structure ([X ,Y], ⊳); on [cat, Cat], such
structure exists ‘locally’ in the components we need allowing us to work
as if P really was a ⊳-monoid. As already said, [FGHW16] does not
assume the existence of a multiplication map µ : P ⊳ P → P , replacing
it with coherently assigned ‘Kleisli extensions’ to maps f : jA→ P B.

A relative monad is now lax idempotent (or a KZ-doctrine) if it satisfies
the 2-dimensional analogue of the notion of idempotency; in short, when
the algebra structure on an object A is unique up to isomorphism as soon
as it exists. Following [GL12, 2.2], P -algebras as cocomplete categories,
thus, when an object is a P -algebra it is so in a unique way (this is of
course a behaviour of all formal cocompletion monads).

Proposition 2.5.21. P is a j-relative monad, if we denote j : cat ⊂ Cat

the obvious inclusion.

Proof As already noted, the relevant left extensions involved in this
proof exist; now, the diagrams we have to check the commutativity of
are the following, once we define the Yoneda embedding よA : A→ P A

as unit, and P
∗
よA : P P A → P A as multiplication of the desired

monad.

[[(P A)op, Set]op
s , Set]s [(P A)op, Set]s

[(P A)op, Set]s P A

P !µA

µP A

µA

µA

(2.83)

P A [(P A)opop
, Set] P A

P A

よP A

µA

P !よA

(2.84)

In order to show that they commute, we will exploit the adjunctions
P !よA ⊣ P

∗
よA and P !µA ⊣ P

∗µA (the functor P
∗µA exists because it

must coincide with the Yoneda embedding of [P Aop, Set]s into the iter-
ated presheaf category [[P Aop, Set]s

op
, Set]s; it must act as the Yoneda

embedding Q 7→ [P Aop, Set]s( , Q), and this evidently lands into the
category of small presheaves on [P Aop, Set]s when restricted to small
functors).

For what concerns the unit axiom, the commutativity of the left tri-
angle can be deduced from the chain of isomorphisms

µA ◦よPA
∼= LanよP AよA

(よA) ◦よPA
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∼= LanよP A
(LanよA

(よA)) ◦よPA

(よPA is f.f.) ∼= LanよA
(よA)

(よA is dense) ∼= idPA.

The right triangle corresponds to the composition

[Aop, Set] [[Aop, Set]op
, Set]s [Aop, Set]

P (Q 7→ [Q, P ]) (a 7→ [よA(a), P ] ∼= P a)

which is again isomorphic to the identity of P A thanks to the Yoneda
lemma.

In order to show that the multiplication is associative, we prove that
P !µA ∼= µPA as a consequence of the fact that there is an adjunction
µP

1
P µ, having moreover invertible counit. The argument will be fairly

explicit, building unit and counit from suitable universal properties of
the presheaf construction and from the definition for P

∗µA and µPA:

• P
∗µA sends ζ : P Aop → Set into [P Aop, Set]s( , ζ) (it plays the

exact same rôle of a large Yoneda embedding; this will entail that the
counit of the adjunction µP ⊣ P

∗µ is invertible);
• µPA acts sending λF.Θ(F ) ∈ [[P Aop, Set]s

op
, Set]s to λa.Θ(hom( , a)).

With these definitions, the composition µPA◦P
∗µA is in fact isomorphic

to the identity of [P Aop, Set]s; we not find the unit map: we refrain from
showing the zig-zag identities as they follow right away from the explicit
description of the co/unit.

The unit will have as components morphisms Θ ⇒ P
∗µA(µPA(Θ))

natural in Θ ∈ [[P Aop, Set]s
op

, Set]s: given one of these components, its
codomain can be rewritten as the coend

P
∗µA(µPA(Θ)) = λχ.[P Aop, Set]s(χ, µPA(Θ))

∼= λχ.

ˆ

F∈PA

Set(χ(F ), µPA(Θ)(F ))

∼= λχ.

ˆ

F∈PA

Set(χ(F ), Θ(P A( , F )))

← λχ.Θ(χ)

and we obtain the candidate morphism in the last line as follows: its
component at χ ∈ [P Aop, Set]s must be an arrow

Θ(χ) −→
ˆ

F∈PA

Set(χ(F ), Θ(P A( , F ))) (2.85)
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which is induced by a wedge

Θ(χ)→ Set(χ(F ), Θ(P A( , F ))); (2.86)

such wedge comes from (the mate of) Θar, Θ’s function on arrows: the
Yoneda lemma now entails that such action induces a map

χ(F ) ∼= [P Aop, Set]s(P A( , F ), χ) Θar

−−−→ Set(Θ(χ), Θ(P A( , F )))
(2.87)

that by cartesian closure can be reported to

Θ(χ) −→ Set(χ(F ), Θ(P A( , F ))) (2.88)

Of course, this is a wedge in F , and we conclude.

Proposition 2.5.22. The monad P is lax idempotent in the sense of

2.5.8: there exist an adjunction µA
1

ηPA.

Proof The existence of an adjunction µA
1

ηPA. will imply all the
equivalent conditions in 2.5.8, that we nevertheless recall in 2.5.23 below
for the convenience of the reader. From the definition of these maps,
there is a natural candidate to be the counit, and this will be invertible
as a consequence of the Yoneda lemma. Indeed, the isomorphism 1 ∼=
µA ◦ ηPA corresponds to the map

λa.Fa 7→ λG. hom(G, F ) 7→ λa. hom(A( , a), F ) ∼= Fa. (2.89)

The unit is instead given by the action of a certain functor on arrows,
in a similar way as above: given χ ∈ [P Aop, Set]s, there is a canonical
map

χ(F )→ P A(F, λa.χ(hom( , a)))

∼=
ˆ

a∈A

Set(Fa, χ(hom( , a)))

coming from (the mate of) a wedge

Fa ∼= P A(hom( , a), F )→ Set(χ(F ), χ(hom( , a))) (2.90)

defined by the action on arrows of χ.

The following remark, which is a particular case of 2.5.8, characterizes
P -algebras as categories whose Yoneda embeddingよA has a left adjoint
α. These are the cocomplete categories [GL12, §2]; it is rather easy to see
that one of the axioms of P -algebras asserts that α(A( , a)) ∼= a, and
since α is a left adjoint it is uniquely determined by sending a colimit
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of representables into the colimit in A of representing objects (all such
colimits, in particular, exist).

Remark 2.5.23. It turns out from the general theory of lax idempotent
monads that P satisfies the following equivalent conditions:

pl1) for every pair of P -algebras a, b and morphism f : A→ B, the square

P A P B

A B

a

P f

b

f

(2.91)

pl2) if α : P A → A is a P -algebra, there is an adjunction α ⊣ ηA with
invertible counit;

pl3) there is an adjunction µA ⊣ ηPA with invertible counit.

In particular, we have shown condition pl3; since pl2 holds, there is
only a possible choice up to isomorphism for a P -algebra structure on
an object A, namely the arrow playing the rôle of left adjoint to the
Yoneda embedding.

Exercises

2.1 Show that the mate of (2.23) (with the same notation therein) is a
natural transformation

Lanα F : LanG′ F ⇒ LanG F

which is the component at F of a transformation Lanα : LanG′ ⇒
LanG; in other words show that the square

LanG′ F

Lanα F

��

LanG′ τ+3 LanG′ H

Lanα H

��
LanG F

LanG τ
+3 LanG H

commutes for every natural transformation τ : F ⇒ H .

2.2 Write explicitly the unit and the counit of the adjunctions LanG ηL

ǫL

G∗ and G∗
ηR

ǫR

RanG.



Exercises 71

2.3 Show that presheaf categories are cartesian closed, via coends: if
Cat(Cop, Set) is the category of presheaves on a small C, then there
exists an adjunction

Cat(Cop, Set)(P ×Q, R) ∼= Cat(Cop, Set)(P, RQ)

by showing that RQ(c) = Cat(Cop, Set)(よc ×Q, R) does the job (use
the ninja Yoneda lemma, as well as 1.4.1).

2.4 Let K be a 2-category, and e : X → X an endo-1-cell; show that the
following conditions are equivalent:

• e is the identity 1-cell of X ;
• for every f : X → A there is a triangle

X
f

  ❅
❅❅

❅❅
❅❅

❅

X
f

//

e

>>⑥⑥⑥⑥⑥⑥⑥⑥
A

that exhibits f as the right extension of itself along e.

How can this statement be dualised?
2.5 Use equations (2.27) and the ninja Yoneda lemma that Lanid and

Ranid are the identity functors, as expected. Use again (2.27) and
the ninja Yoneda lemma to complete the proof that F 7→ LanF is a
pseudofunctor, by showing that for A F

−→ B, A G
−→ C

H
−→ D there is a

uniquely determined laxity cell for composition

LanH(LanG(F )) ∼= LanHG(F )

(hint: play with the coend LanH(LanG(F ))D until you get
ˆ XY

(D(HX, D)× C(GY, X))⊗ FY ;

now use the ninja Yoneda lemma plus co-continuity of the tensor, as
suggested in Remark 2.2.5).

2.6 Show that the unit η : F ⇒ LanG F ◦G is a wedge in the component
G; dually, the counit ǫ : LanG(H ◦ G) ⇒ H of the same adjunction
is a cowedge. Are the two dinatural transformations the end and the
coend of the respective functors?

2.7 Let C be a small compact closed monoidal category [Day77]; Show
that the functor Y 7→

´X
X∨⊗Y ⊗X carries the structure of a monad

on C.
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2.8 Use coend calculus to prove that if a functor G is fully faithful,
then so is LanG( ). Use coend calculus to prove that if a functor
i : C → D has small domain and is dense, then the left Kan extension
of the Yoneda embedding よC along i is a fully faithful functor D →
[Cop, Set]. Chapter 3 will extensively study this kind of phenomena.

2.9 Show that if TF = RanF F ∈ Cat(D,D) is the codensity monad of a
functor F : C → D, the two maps µ : TF ◦TF ⇒ TF and η : idC ⇒ TF
indeed form a monad, according to A.6.3.

2.10 Use the end expression in (2.29) for the hom set in the Kleisli
category of the codensity monad of F : A → C, and define the Kleisli

composition in Kl(TF ) by means of the universal property of (2.29).
You shall obtain that the Kleisli composition of f : A → TFB and
g : B → TFC is

µC ◦ T g ◦ f : A→ T C

Do the same for the co-Kleisli composition in coKl(SF ), the density
comonad of F .

2.11 The following exercise draws a piece of the theory of relative
adjunctions: we recall that if J : A → C, F : A → B, and G : B → C
are functors, an adjunction between F and G, relative to J , consists
of a family of natural isomorphisms

B(FA, B) ∼= C(JA, GB).

If this is the case, we say that G has a J-relative left adjoint. This is

denoted F
[J]

G Dually, (in the same notation) we say that G has a
J-relative right adjoint F if there exists a natural isomorphism

C(GB, JA) ∼= B(B, FA).

This is denoted G
[J]

F .

• Show that F
[J]

G if F ∼= liftG J and this lifting is absolute; the
unit η : J ⇒ G ◦ liftG J = GF is the relative unit of the adjunction;
dually, G

[J]
F if F ∼= riftG J and this lifting is absolute; the counit

ǫ : G ◦ riftG J = GF ⇒ J is the relative counit of the adjunction.

Note in particular that if F
[J]

G there is no counit, and if F
[J]

G

there is no unit.
• Is this criterion also necessary? Namely, is it true that if F

[J]
G

then F ∼= liftG J is absolute? If not, does this mean that there can

be two non-isomorphic G, G′ such that F
[J]

G, G′? What is the

structure, if any, of the class of functors {G | F
[J]

G}?
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• Assume that

F G

[J1]

1
and F

[J2]
G2

are relative adjunctions; it is then possible to build a 2-cell

J1G2
η∗G2
⇒ G1FG2

G1∗ǫ⇒ G1J2

pasting the relative unit of F
[J1]

G1 with the relative counit of
F

[J2]
G2. Under which conditions is this 2-cell an isomorphism?

• What does the invertibility of the relative unit η : J ⇒ GF of a

relative adjunction F
[J]

G imply for G, F (F is ‘relatively fully
faithful’: what does it mean?). Dual question for the relative counit
of F

[J]
G.

2.12 Let R be a ring regarded as a one-object category enriched over
Ab. A presheaf on R is a right R-module; let A be a cocomplete
Ab-enriched category and X : R→ A an enriched functor;

• Show that the class of such functors X corresponds to the class of
objects of A with an action of R;
• compute the left Yoneda extension X ⊗ of M : R → Ab and its

right adjoint; why the notation X ⊗ ?

2.13 Let F : C → D be a functor, and let C⊲ be the category C with
an additional terminal object adjoined (see A.3.4 for the precise no-
tation). There is an obvious embedding functor C →֒ C⊲: show that
the triangle

C

F

��❄
❄❄

❄❄
❄❄

~~⑥⑥
⑥⑥
⑥⑥
⑥

C⊲
F̄

// D

is a right extension; who is the 2-cell η : F̄ ⇒ F ◦ ι? Why?
2.14 Prove that in the Yoneda structure on Cat the following additional

axiom holds:

Let B

B(f,1)
((

g

88
✤✤ ✤✤
�� σ P A be a 2-cell; if it has the property that the pasting

A
⇒

よA //

f

��

P A

B

==④④④④④④④④

OO

g

❀❀❀❀ �!
σ
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exhibits liftgよA, then σ is invertible.

2.15 Prove that the 2-cell

A

⇒

f //

よA

��

B

よB

��
P A P B

P foo

witnesses the fact that there is a lax dinatural transformation よ :
id P . Take the occasion to define the notion of lax dinaturality;
don’t despair if you can’t: wait for 7.1.1. What is the definition of
lax dinaturality in the 2-category Cat? How is the cell υ : よA ⇒

P f ◦よB ◦ f defined in the canonical Yoneda structure on Cat?



3

Nerves and realisations

Summary. The present chapter studies a single kind of Kan exten-
sions: the ones where the extendant functor is the Yoneda embedding
よC : C → [Cop, Set]. Far from being too narrow, the resulting theory
of Yoneda extensions is astoundingly rich and pervasive; the central
object of study of the whole chapter are extensions of the form

Lanよ F ⊣ LanF よ

induced by a functor F : C → D; these are called nerve-realisation
adjunctions. Exploiting the results of the previous chapter, many the-
orems turn out to be purely formal consequences of the basic rules of
coend calculus.

In order to motivate such pervasivity, we propose a collection of
examples of nerve-realisation adjunctions drawing from algebra, topol-
ogy, geometry, logic, and more category theory.

Form itself is Void and Void itself is Form.
Form is not other than Void and Void is not other than Form.
The same is true of Feelings, Perceptions, Mind, and
Consciousness.

Heart sūtra

3.1 The classical nerve and realisation

3.1.1 Overture: the universal property of [Cop, Set]

The case in which a Kan extension is done along the Yoneda embedding
acquires particular significance in the general theory of Kan extensions:
since in a cocomplete category D all tensors and colimits in (2.27) exist,
every functor F : C → D having small domain and cocomplete codomain
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has an extension to the category of presheaves on C, in a diagram

C

F

��❃
❃❃

❃❃
❃❃

❃
よC

{{✇✇
✇✇
✇✇
✇✇
✇

[Cop, Set]
F̄

//

❴❴❴❴ +3
η

D

(3.1)

filled by an invertible 2-cell η. The scope of this introductory section is
to outline this as a universal property. The rest of the chapter is devoted
to show how pervasive and expressive the theory of ‘Yoneda extensions’
is.

Let C be a small category, D a cocomplete category; then, precom-
position with the Yoneda embedding よC : C → [Cop, Set] determines a
functor

Cat([Cop, Set],D)
◦よC−−−−→ Cat(C,D), (3.2)

that restricts a functor G : [Cop, Set] → D to act only on representable
functors, confused with objects of C, thanks to the fact that よC is fully
faithful. We then have that

Theorem 3.1.1.

ye1) The universal property of the category [Cop, Set] amounts to the ex-

istence of a left adjoint LanよC to precomposition, that has invertible

unit (so, the left adjoint is fully faithful).

This means that Cat(C,D) is a full subcategory of Cat([Cop, Set],D).
Moreover

yi1) The essential image of LanよC consists of those F : [Cop, Set] → D
that preserve all colimits.

yi2) If D = [Eop, Set], this essential image is equivalent to the subcategory

of left adjoints F : [Cop, Set]→ [Eop, Set].

Proof The first claim asserts that the following are equivalent:

• every F : C → D extends uniquely to F̂ : [Cop, Set]→ D (this in turn
means that there is such an F̂ and that if F̂ ′, F̂ both extend F , they
are canonically isomorphic);
• there exist an adjunction LanよC id

ǫ
◦よC that has invertible unit.

Proving these claims amounts more or less to playing with definitions,
and to notice that that since F̂ is unique up to isomorphism, the corre-
spondence F 7→ F̂ is a functor determined up to isomorphism. Given the
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universal property of F̂ = Lanよ F , the counit of the adjunction is deter-

mined by the fact that there is a unique ǫ : Ĝ ◦よ = Lanよ(Gよ) → G

induced by the pasting diagram of 2-cells

C
よC

{{✇✇
✇✇
✇✇
✇✇
✇

Gy

��❃
❃❃

❃❃
❃❃

❃

[Cop, Set] // 99

G

✤✤ ✤✤
��

❴❴❴❴ +3
η

A
(3.3)

half of the triangle identities is simply the fact that the above triangle
factors the identity of G ◦よC . The unit of the adjunction is invertible,
as a consequence of a general fact: if the extendant arrow y is a fully
faithful functor, then there is a canonical isomorphism Lany(F ) ◦ y ∼= F

(in case y = よ is the Yoneda embedding, there’s an easy coend proof
for this: find it using the ninja Yoneda lemma).

Now, we shall prove that the counit ǫG : LanよC(G ◦よC)⇒ G of the
above adjunction is invertible if and only if the functor G is cocontinuous.

Let G be cocontinuous; then since the counit is obtained as the canon-
ical map

Lanよ(Gよ)(P ) ∼=
ˆ X

P X ×G(hom( , X))

→ G

(
ˆ X

P X × hom( , X)

)

∼= GP

it’s easy to see that G is cocontinuous if this is an isomorphism. Vice
versa, if the counit gives an isomorphism G ∼= Lanよ(Gよ) then

G(colimJ Pj) ∼=
ˆ X

colimJ PjX ×G(hom( , X))

∼= colimJ

ˆ X

PjX ×G(hom( , X))

∼= colimJ G(Pj)

(this is in fact a consequence of a more general result: every functor that
is of the form Lanよ F is cocontinuous; prove this more general fact using
the commutation of coends and colimits).

To complete the proof, we just observe that a cocontinuous functor
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L : [Cop, Set]→ [Eop, Set] between presheaf categories has a right adjoint
given by the coend

ˆ C∈C

[Eop, Set](LC, X)⊗ C, (3.4)

where ⊗ is a tensor in the sense of 2.2.3.

3.1.2 Realisations of simplicial sets

We start the present section running two examples in parallel. This way,
it will seem evident how they are particular instances of the same general
construction. Consider the category ∆ made of finite nonempty ordinals
and monotone functions, and let us consider the Yoneda embedding
よ∆ : ∆ → [∆op, Set]; the presheaf category over ∆ is usually called
the category sSet of simplicial sets; if Spc now denotes a nice category
of topological spaces1 we can define two functors ρ : ∆ → Spc and i :
∆→ Cat which ‘represent’ every object [n] ∈∆ either as a topological
space or as a small category:

• The category i[n] is obtained regarding a totally ordered set {0 ≤ 1 ≤
· · · ≤ n} as a category (every poset is a category, in the usual sense:
a morphism x → y between the elements of a poset is the judgment
that x ≤ y);

• The topological space ρ[n] is defined as the geometric n-simplex ∆n

embedded in Rn+1 as the subset

{
(x0, . . . , xn) ∈ R

n+1 | 0 ≤ xi ≤ 1,
∑n
i=0 xi = 1

}
. (3.5)

endowed with the subspace topology. (What is the affine function
∆f : ∆m → ∆n induced by a monotone function f : [m] → [n]?
Draw pictures of ρ[n] for small values of n and define the face maps
∆n → ∆n−1 and degeneracy maps ∆n → ∆n+1.

1 Everyone having their hands a bit dirty of algebraic topology will understand
what we mean by ‘nice’ here; the rest of our readers shall take for granted that
the whole category of all topological spaces is not nice; it is in fact full of
pathological objects we don’t want to consider. We shall then restrict to a
smaller subcategory Spc ⊂ Top, like the one of compactly generated spaces or the
one of spaces with the homotopy type of a CW-complex.
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Looking for the left Kan extension of these two functors along the Yoneda
embedding, we are in the situation depicted by the following diagrams:

∆
i //

よ∆

��

Cat

sSet
L

<< ∆
ρ //

よ∆

��

Spc

sSet
L′

<<
(3.6)

We want to consider the left extensions L, L′ of the two functors i, ρ

along the Yoneda embedding よ∆ : ∆ → sSet; according to our 3.1.1
above these extensions are left adjoints.

We denote the adjunctions so determined as

Lanよ i ⊣ Ni and Lanよ ρ ⊣ Nρ; (3.7)

the two right adjoint functors are called the nerves associated to functors
i and ρ respectively, and are defined as follows:

• the categorical nerve sends a category C to the simplicial set Ni(C) :
[n] 7→ Cat(i[n], C); the set of n-simplices Ni(C)n coincides with the set
of composable tuples of arrows

C0
f1
←− C1

f2
←− C2 ← · · · ← Cn−1

fn
←− Cn. (3.8)

In particular, N(C)0 is the set of objects of C, and N(C)1 its set of
morphisms. Thus the category C can be reconstructed from its nerve.
• the geometric nerve sends a topological space to the simplicial set

Nρ(X) : [n] 7→ Spc(ρ[n], X) = Spc(∆n, X) (the singular complex of a
space X).2

The left adjoints to Nρ and Ni must be thought as ‘realisations’ of a
simplicial set as an object of Spc or Cat:

• The left Kan extension Lanよ ρ is called the geometric realisation |X•|
of a simplicial set X•, and it can be characterised as the coend

ˆ n∈∆

∆n ×Xn (3.9)

which in turn coincides to a suitable coequaliser in Spc in view of
our 1.2 and 1.2.4 (and their duals). The product ∆n ×Xn is indeed
a product of topological spaces when Xn is thought as discrete: it is

2 The name is motivated by the fact that if we consider the free-abelian group on
Nρ(X)n, the various Cn = Z ·Nρ(X)n =

∐
Nρ(X)n

Z organise as a chain

complex where differentials are determined as alternating sums of face maps, and
whose homology is precisely the singular homology of X.
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the space
∐
s∈Xn

∆n ⊆ Rn+1 with the subspace topology on a disjoint
union.

The shape of this object is determined in light of our description of
the coend as a suitable coequaliser (in 1.2 and 1.2.4 –and their duals),
i.e. as a quotient space of

∐
n ∆n × Xn and it agrees with the more

classical description presented in almost all books in algebraic topol-
ogy: the topological space |X•| is obtained choosing a n-dimensional
disk ∆n for each n-simplex x ∈ Xn and gluing these disks along the
boundaries ∂∆n according to the degeneracy maps of X•.

The resulting space is, almost by definition, a CW-complex, because
each standard n-simplex is homeomorphic to a closed disk: this means
that |X•| has the topology induced by a sequential colimit of pushouts
of spaces X(0) → X(1) → . . . all obtained starting from a discrete
space of 0-simplices X(0)

∼= ∆0 ×X0 (∆0 ⊂ R is a single point).
• The left Kan extension Lanよ i is the categorical realisation τ1(X•) of

a simplicial set X•, resulting as the coend
ˆ n∈∆

i[n]×Xn. (3.10)

The Set-tensor i[n] × Xn is interpreted as a product in Cat, where
the set Xn is thought as a discrete category; faces and degeneracies of
X prescribe how the set

∐
s∈Xn

{0→ 1 · · · → n} glue together in the
quotient

(∐
n∈∆

i[n]×Xn

)
/≃.

Note that τ1(X•) realises X• in the sense that the set of objects
(resp., of morphisms) of tau1(X•) is precisely the set of 0-simplices
(resp., of 1-simplices) of X•. This is the category whose objects are
0-simplices of X•, arrows are 1-simplices, and where composition is
defined asking that f, g ∈ X1 compose if there exists a 2-simplex σ

having 0-th face g and 2-nd face f ; identities are witnessed by degen-
erate simplices.

In modern terms (like the ones in [JT07, Joy02, Lur09]), when X•
is an ∞-category, we call τ1(X•) the homotopy category of X•.

Remark 3.1.2. It should now sound as a reasonable conjecture that
these examples arise as particular instances of a general theorem. This
is indeed the case: the general pattern unifying both these constructions,
that we will call it the ‘nerve and realisation paradigm’, was first sug-
gested by D.M. Kan’s works in algebraic topology, and in particular on
the eponymous Dold-Kan correspondence; in this perspective we can re-
cover the classical/singular nerve as particular instance of the paradigm,
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and many more examples embodied from time to time in different set-
tings; describing this pattern by means of co/end calculus is the scope
of the following sections.

3.2 Abstract realisations and nerves

The upshot of the present section is that whenever F : C → D has small
domain and cocomplete codomain, the universal property of the Yoneda
embedding in 3.1.1 determines a functor Lanよ F ; this functor is always
a left adjoint (compare this to the axioms of a Yoneda structure in 2.4.1,
2.4.2).

Algebraic topology, representation theory, geometry and logic consti-
tute natural factories for examples of ‘nerve and realisations’; more or
less everywhere there is an interesting cocomplete category D, there
lies an interesting example of nerve-realisation adjunction, induced by a
functor F : C → D with small domain.

We now want to lay down the foundations and the terminology allow-
ing to collect a series of readable and enlightening examples.

Definition 3.2.1 (Nerve and realisation contexts). Any functor F :
C → D from a small category C to a (locally small) cocomplete category
D is called a nerve-realisation context (a NR context for short).

Given a NR context F , we can prove the following result:

Proposition 3.2.2 (Nerve-realisation paradigm). The left Kan exten-

sion of F along the Yoneda embeddingよ : C → [Cop, Set], i.e. the functor

LF = Lanよ F : [Cop, Set]→ D (3.11)

is a left adjoint, LF ⊣ NF . LF is called the D-realisation functor or the

Yoneda extension of F , and its right adjoint the D-coherent nerve.

Proof The cocomplete category D is Set-tensored, and hence Lanよ F

can be written as the coend in (2.27); so the claim follows from the chain
of isomorphisms

D
(

Lanよ F (P ), D
)
∼= D

( ˆ C

[Cop, Set](よC , P )⊗ FC, D
)

∼=
ˆ

C

D
(
[Cop, Set](よC , P )⊗ FC, D

)

∼=
ˆ

C

Set
(
[Cop, Set](よC , P ),D(FC, D)

)
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∼=
ˆ

C

Set
(
P C,D(FC, D)

)
.

If we define NF (D) to be C 7→ D(FC, D), this last set becomes canoni-
cally isomorphic to [Cop, Set](P, NF (D)).

It is straightforward to recognise the choice of F leading to the nerves
Nρ and Ni. Also, in light of 3.1.1 the previous result can be rewritten
as follows:

Remark 3.2.3. There is an equivalence of categories, induced by the
universal property of the Yoneda embedding よC : C → [Cop, Set],

◦よC : Cat(C,D) ∼= Cat!(Cat(Cop, Set),D) (3.12)

whenever C is small and D is cocomplete locally small. The left hand
side is the category of cocontinuous functors [Cop, Set]→ D.

Remark 3.2.4. It is well-known to algebraic topologists that the geo-
metric realisation functor Lρ = | | : sSet → Spc commutes with finite
products: coend calculus simplifies this result a lot reducing it to a di-
rect check on representables; it is unfortunately not powerful enough to
provide an additional simplification.

In fact, we can only define a bijection between the sets |∆[n]×∆[m]| ∼=
∆n×∆m; after that, a certain amount of dirty work is necessary to show
that this bijection is also a homeomorphism with respect to the natural
topologies on the two sets. The formal proof that Lρ commutes with
finite products is left as an exercise at the end of the chapter.

3.2.1 Examples of nerves and realisations

A natural factory of NR contexts is homotopical algebra, as such nerve
and realisation functors are often used to build Quillen equivalences
between model categories. The existence of such Quillen equivalences is
somewhat related to the fact that ‘transfer theorem’ for model structures
often apply to well-behaved nerve functor: if D is a model category and
F : C → D is a NR functor, oftentimes there is a Quillen adjunction
Set ⇆ D, and sometimes a Quillen equivalence induced by the right
adjoint NF .

Quillen adjunctions between model categories are certainly not the
only examples of NR paradigms. The following list attempts to gather
other important examples from different areas of algebra, geometry and
logic: for the sake of completeness, we repeat the description of the two
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above-mentioned examples of the topological and categorical realisations.

Example 3.2.5 (Categorical nerve and realisation). If our NR context
is i : ∆→ Cat, we obtain the classical nerve Ni of a (small) category C,
whose left adjoint is the categorical realisation (the fundamental category

τ1X of X described in [Joy02]). The NR adjunction

τ1 : sSet⇆ Cat : Ni (3.13)

gives a Quillen adjunction between the Joyal model structure on sSet
(see [Joy02]) and the folk model structure on Cat. This adjunction yields
a Quillen adjunction between the category Cat and the category of sim-
plicial sets; the fibrant objects in sSet, ∞-categories, constitute a model
to study category theory in a homotopy coherent fashion.

Example 3.2.6 (Geometric nerve and realisation). If our NR context
is ρ : ∆ → Spc is the realisation of a representable [n] in the standard
topological simplex, we obtain the adjunction between the geometric

realisation |X•| of a simplicial set X• and the singular complex of a
topological space Y , i.e. the simplicial set Y• having as set of n-simplices
the continuous functions ∆n → Y .

If we apply object-wise the free abelian group functor Z[ ] : Set →
Ab to this simplicial set we obtain the simplicial abelian group ZY•,
which under the Dold-Kan correspondence 3.2.10 gives rise to a (positive
degree) chain complex, the singular complex of Y . The homology of this
chain complex coincides with the singular homology of Y .

Example 3.2.7 (sSet-coherent nerve and realisation). Let F : ∆ →

Cat∆ be the functor that realises every simplex [n] as a simplicial cate-
gory having objects the same set [n] = {0, 1, . . . , n} and as hom(i, j) the
simplicial set obtained as the nerve of the poset P (i, j) of subsets of the
interval [i, j] which contain both i and j.3

This sets up a NR context, and if we consider Lanよ F we obtain the
(Cordier) simplicially coherent nerve and realisation, defined as follows:

• the left adjoint sends a simplicial set into the simplicial category
ˆ n

F [n]×Xn (3.14)

obtained in a similar fashion of τ1(X•) by taking simplicial categories

3 In particular if i > j then P (i, j) is empty and hence so its nerve is the constant
simplicial set on ∅.
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F [n] as shapes and the simplices s ∈ Xn as gluing instructions. Of
course, colimits of (enriched) categories tend to be wildly complicated,
but it is an instructive exercise to try to understand how the functor
X• 7→ ‖X•‖ behave on simple examples. We address the reader to
[DS11, Rie].
• the right adjoint N∆ : Cat∆ → sSet sends a simplicial category C

into a simplicial set constructed remembering that C carries a sim-
plicial structure. Intuitively, simplicial functors F [n] → C carry more
information than plain set-enriched functors [n]→ C.

This adjunction establishes another Quillen adjunction sSet ⇆ Cat∆

which restricts to an equivalence between quasicategories (fibrant ob-
jects in the Joyal model structure on sSet [Joy08]) and fibrant simpli-
cial categories (with respect to the Bergner model structure on Cat∆

[Ber07]).

Example 3.2.8 (Moerdijk generalised intervals). The construction giv-
ing the topological realisation of ∆[n] extends to the case of any ‘inter-
val’ in the sense of [Moe95, §III.1], i.e. any ordered topological space J

having ‘endpoints’ 0, 1; indeed every such space J defines a generalised
topological n-simplex ∆n(J) as follows:

∆n(J) := {(x1, . . . , xn) | xi ∈ J, x0 ≤ · · · ≤ xn} ⊆ Jn+1 (3.15)

endowed with the subspace and product topology. These data assemble
into a NR context ∆•(J) : ∆ → Spc that gives rise to an adjunction
Lanよ∆•(J) ⊣ N∆•(J). Instead of going deep into the technicalities, we
address the reader to [Moe95, §III.1] for more information.

Example 3.2.9 (Toposophic nerve and realisation). The correspon-
dence D : [n] 7→ Sh(∆n) defines a cosimplicial topos, i.e. a functor
from ∆ to the category of (spatial) toposes, which serves as a NR con-
text. Some geometric properties of this nerve/realisation are studied in
[Moe95, §III]: we outline an instance of a problem where this adjunction
naturally arises: let X = Sh(X),Y = Sh(Y ) be the categories of sheaves
over topological spaces X, Y .

Let X ⋆Y be the join (see A.3.12) of the two toposes seen as categories:
this blatantly fails to be a topos, but there is a canonical ‘replacement’
procedure

Cat× Cat ⋆ // Cat
Ni // sSet

LanよD // Topos

(X ,Y) ✤ // X ⋆ Y ✤ // Cat(∆•,X ⋆ Y) ✤ // X ⊙ Y
(3.16)
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that builds a topos out of X and Y; various questions about this con-
struction are left as an exercise in 3.7

Example 3.2.10 (The Dold-Kan correspondence). The Dold-Kan cor-
respondence [Dol58] asserts that there is an equivalence of categories be-
tween simplicial abelian groups [∆op, Ab] and chain complexes Ch+(Ab)
concentrated in positive degree, and it can be seen as an instance of the
NR paradigm.

In this case, the functor dk : ∆→ Ch+(Ab) sending [n] to Z∆[n] (the
free abelian group on ∆[n]) and then to the Moore complex M(Z∆[n])
determined by any simplicial group A ∈ [∆op, Ab] as in [GJ99] is the
NR context. The resulting adjunction

Lanよ(dk) = DK : [∆op, Ab]⇆ Ch+(Ab) : Ndk (3.17)

sets up an equivalence of categories.

Example 3.2.11 (Étale spaces as Kan extensions). (The present ex-
ample reworks [Bre97, 1.5]) Let X be a topological space, and o(X) its
poset of open subsets; let Spc/X be the slice category of morphisms with
codomain X and commutative triangles as morphisms.

There exists a tautological functor

ι : o(X)→ Spc/X (3.18)

sending U ⊆ X to itself, regarded as an object
[
U
↓
X

]
; this works as a NR

context, yielding a pair of adjoint functors

Lanよ ι ⊣ Nι (3.19)

where NA is defined taking the (pre)sheaf of sections of p ∈ Spc/X .
The resulting left adjoint is precisely the functor sending a presheaf
F : o(X) → Set to the disjoint union of stalks F̃ =

∐
x∈X Fx, endowed

with the final topology that makes continuous all maps of the form
s̃ : U → F̃ sending x ∈ X to the equivalence class [s]x ∈ Fx.

In order to see this, let’s unpack the definition of the left Kan extension
in study: we have to compute the coequaliser

∐
V⊆U FU ⊗

[
V
↓
X

] lUV //

rUV

//
∐
U∈o(X) FU ⊗

[
U
↓
X

]
// Lany ι(F ) (3.20)

where the parallel maps are defined on components by lV U (s, V ) =
(s|V , V ) and rV U (s, V ) = (s, U), and ⊗ is the canonical Set-tensor of
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Spc/X . Such coequaliser imposes on
∐
U∈o(X) FU⊗

[
U
↓
X

]
a relation iden-

tifying (s, U) with all its restrictions (s|V , V ) to smaller open sets.
This means that in the equivalence relation generated by these pairs,

a section (s ∈ FU) is identified with a section (t ∈ FV ) if they coincide
on at least an open W ⊆ U ∩ V . This is very near to the universal
property defining the set of all germs

∐
x∈X Fx, and in fact it is exactly

what is needed to define a natural map qU : FU ⊗
[
U
↓
X

]
→
∐
x∈X Fx

for each U ∈ o(X) (the cocone condition for these qU entails that they
are “defined on germs of sections”, in a precise sense that can be easily
spelled out).

In fact, qU : FU ⊗
[
U
↓
X

]
→
∐
x∈X Fx corresponds, by the universal

property of the tensor functor on Spc/X , to a natural family of functions

q̄U : FU → Spc/X(ι[U ],
∐
x Fx). (3.21)

This is to say, every abstract section s ∈ FU shall give rise to a “true
section” ṡ : U →

∐
x Fx.

A routine argument now shows that the family (qU | U ∈ o(X)) is also

initial: every other cocone for the same diagram, say ζU : FU⊗
[
U
↓
X

]
→ Z

for some space Z, must determine a unique map ζ̄ :
∐
x Fx → Z, whose

components are ζ̄x : Fx → Z, sending [s]x ∈ Fx to ζu(s) for some (the
cocone condition makes this choice well-defined) (s, U) ∈ FU × U [x]
(U [x] is the filter of neighbourhoods of x ∈ X) having germ [s]x at x.

This adjunction restricts to an equivalence of categories between the
subcategory Sh(X) of sheaves on X and the subcategory Ét(X) of étale

spaces over X , giving a formal method to prove [MLM92, II.6.2].

Example 3.2.12 (The tensor product of modules as a coend). Any ring
R can be regarded as an Ab-enriched category (see A.7.1) having a single
object, whose set of endomorphisms is the ring R itself; once noticed this,
we obtain natural identifications for the categories of modules over R as
covariant and contravariant enriched presheaves on R:

ModR ∼= Cat(Rop, Ab)

RMod ∼= Cat(R, Ab). (3.22)

Given A ∈ ModR, B ∈ RMod, we can define a functor TAB : Rop×R→

Ab which sends the unique object to the tensor product of abelian groups
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A⊗Z B. The coend of this functor can be computed as the coequaliser

coker
( ∐

r∈R A⊗Z B
r⊗1 //

1⊗r
// A⊗Z B

)
, (3.23)

that quotients the object A ⊗Z B for the submodule generated by the
sums ra ⊗ b− a⊗ rb.

In other words, there is a canonical isomorphism
ˆ ∗∈R

TAB ∼= A⊗RB.

Remark 3.2.13. The previous construction is in fact part of a richer
structure: we can define a bicategory Mod (see A.7.11) having

• 0-cells the rings R, S, . . . ;
• 1-cells R→ S the modules RMS, regarded as functors M : R×Sop →

Ab;
• 2-cells f : RMS ⇒ RNS are the module homomorphisms f : M → N .

This bicategory Mod has a fairly rich structure induced by the one of
RModS : for example, bifunctoriality of the tensor product ⊗ amounts
to the interchange law in the bicategory Mod.

Chapter 5 on profunctors will extensively generalise this point of view,
extending it to the case of multi-object categories, enriched over a generic
base.

Remark 3.2.14. The previous point of view on tensor products can
be generalised further (see [ML98, §IX.6], but more on this has been
written in [Yon60, §4]): given functors F, G : Cop, C → V having values
in a cocomplete (see A.3.10) monoidal category, we can define the tensor

product of F, G as the coend

F ⊠C G :=
ˆ C

FC ⊗V GC. (3.24)

Chapter 4 will generalise in some ways this point of view, regarding this
example as an instance of a weighted colimit of F with weight G, in case
C is a V-enriched category.

To appreciate the next example we need to recall the following

Proposition 3.2.15. The following properties for a functor F : C → Set
are equivalent:

fl1) F commutes with finite limits;

fl2) Lanよ F commutes with finite limits;



88 Nerves and realisations

fl3) The category of elements C
´

F of F (see Def. A.5.9 and Prop. 4.1.11)

is cofiltered.

Proof We provide a proof using as much coend calculus as we can:
first of all, from A.5.7 we know that every presheaf is the colimit of the
Yoneda embedding over its own category of elements, thus if F commutes
with finite limits its category of elements C

´

F has the property that

colimC´ F lim
J
よ(A)(Di) ∼= lim

J
colimC´ F よ(A)(Di) (3.25)

for every object X ∈ C and diagram D : J → C with finite domain. This
is true only if C

´

F is filtered.
Condition fl2 now implies condition fl1 because Lanよ F ◦よ ∼= F

and the left hand side is a composition of finitely continuous functors.
Last, condition fl3 implies condition fl2, because

Lanよ F (P ) ∼=
ˆ C

P C ⊗ FC

∼=
ˆ C

P C ⊗
(

colimJよ(Dj)C
)

∼=
ˆ C

colimJ

(
P C ⊗よ(Dj)C

)

∼= colimJ

ˆ C (
P C ⊗よ(Dj)C

)

∼= colimJ P (Dj)

Now, assume P results as a finite limit limA∈A PA; the category J is
filtered, thus we can complete the step as

Lanよ F (limA PA) ∼= colimJ limA PA(Dj)
∼= limA colimJ PA(Dj)
∼= limA Lanよ F (PA).

Example 3.2.16 (Giraud theorem using coends). Giraud theorem as-
serts that every Grothendieck topos is equivalent to a left exact localisa-
tions of a presheaf category [Cop, Set] (a Grothendieck topos is a category
of sheaves Sh(C, j) with respect to a Grothendieck topology j).

Such a classical ‘representation’ theorem is deeply intertwined with the
theory of locally presentable categories (see [AR94, CV06]), is contained
at the end of [MLM92].

We now try to outline an argument that employs coend calculus and
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Yoneda extensions; we will realise a Grothendieck topos E as a full sub-
category of [Cop, Set] for C = E<ω ⊂ E the subcategory of compact (or
finitely presentable) objects of E .4 A finite limit of finitely presentable
objects is again finitely presentable, and thus the inclusion ι : E<ω ⊆ E
preserves finite limits.

The full embedding ι : C ⊂ E works as a NR context as in 3.2.1, and
moreover it is a dense functor; this enables us to use coend calculus to
prove that

(i) The ι-nerve Nι is full and faithful; it will turn out to be the inclusion
of sheaves into presheaves [Cop, Set];

(ii) Lanよ ι is a (left exact, thanks to 3.2.15 and to the fact that ι is left
exact) reflection of [Cop, Set] onto E .

Hence, the NR adjunction has the following form:

Lanよ(ι) : [Cop, Set]
//
E : Nιoo (3.26)

As said, since ι is dense, the nerve Nι is fully faithful (see Exercise
3.5): it only remains to prove that the functor Lanよ(ι) behaves like
sheafification. In view of the shape of unit and counit of Lanよ(ι) η

ǫ
Nι

(see exercise 3.3) means that we have to manipulate the following chain
of (iso)morphisms:

Lanよ(ι)(P )(C) ∼=E(ιC, Lanよ ι(P ))

∼=E
(
ιC,

ˆ A

P A× ιA
)

←

ˆ A

E
(
ιC, P A × ιA

)

∼=
ˆ A

P A× E
(
ιC, ιA

)

∼=
ˆ A

P A× C
(
C, A

)

∼=P C

This gives an arrow P C → LP C which is easily seen to be the component
of a natural transformation, and in fact of a reflection (to show that

4 Recall that an object X ∈ E is compact or finitely presentable if the functor
hom(X, ) commutes with filtered colimits. This essentially means that X can
be presented with finitely many generators and relations in the ‘theory’ of E.
Also, an object is finitely generated if it commutes with filtered colimits of
monomorphisms.
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ηP has the correct universal property, it suffices to show that every
morphism P ⇒ F where F is an object in E uniquely extends to LP ⇒

F ).
It remains to prove that this functor is left exact. To do this we in-

voke 3.2.15, since E<ω is closed under finite limit. It also remains to
characterise sheaves as those P such that ηP is invertible, but this is an
equivalent characterisation of orthogonal classes, addressed in Exercise
A.11.

Example 3.2.17 (Simplicial subdivision functor). Let again ∆ be the
category of nonempty finite ordinals. The Kan Ex∞ functor is an end-
ofunctor of sSet turning every simplicial set X• into a Kan complex.5

This construction is of fundamental importance in simplicial homotopy
theory, and we now want to re-enact the classical argument given by
Kan in the modern terms of a NR paradigm on ∆, following [GJ99].

First of all, we note from [GJ99] that the non-degenerate m-simplices
of ∆[n] are in bijective correspondence with the subsets of {0, . . . , n} of
cardinality m + 1; this entails that the set of non-degenerate simplices
of ∆[n] becomes a poset s[n] ordered by inclusion.

We can then consider the nerve Nρ(s[n]) ∈ sSet (see Example 3.2.6).
This organises into a functor sd : ∆ → sSet, that works as a NR
paradigm: using 3.2.2 we obtain the adjunction

sSet
Ex //
⊤ sSet
Sd

oo (3.27)

where Ex is the nerve Nsd associated to the NR paradigm sd (so a right
adjoint to Sd = Lanよ sd): the set of m-simplices Ex(X)n is sSet(sd(∆[n]), X).

There is a canonical map sd(∆[n]) → ∆[n] which by precomposition

and by the Yoneda lemma, induces a map Xn = sSet(∆[n], X)
j∗

−→

sSet(sd(∆[n]), X) = Ex(X)n, natural in X ∈ sSet. This gives to Ex( )
the structure of a pointed functor, and in fact a well-pointed functor in
the sense of [Kel80]; this, finally, means that we can define

Ex∞(X) ∼= colim
(

X
η
−→ Ex(X)

η∗Ex
−−−→ Ex2(X)

η∗Ex2

−−−−→ · · ·
)

(3.28)

as an endofunctor on sSet. The functor Ex∞ enjoys a great deal of formal
properties useful in the study of simplicial homotopy theory (the most
important of which is that Ex∞(X) is a Kan complex for each X ∈

5 A Kan complex is a simplicial set Y such that the functor hom( , X) turns each
horn inclusion Λk[n]→ ∆[n] (see [GJ99]) into an epimorphism.
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sSet, see [GJ99]). A more intrinsic characterisation of this construction
is contained in [EP08], and defines not only Sd = Lanよ sd as a Left Kan
extension, but also sd: the authors consider the diagram of 2-cells

∆×∆

✒✒✒✒� η⊕

��

よ∆×よ∆ // sSet× sSet
× // sSet

∆

よ∆

��

sd

77

✒✒✒✒� η′

sSet
Sd

AA

(3.29)

where⊕ : ∆×∆→∆ is the ordinal sum defined by [m]⊕[n] = [m+n+1].
Exercise 3.9 expands on this. In the notation of our Chapter 6, the
functor sd is the convolution よ∆ ∗よ∆.

Example 3.2.18 (Isbell duality). Let V be a co/complete symmetric
monoidal category V (this will be called a Bénabou cosmos in the subse-
quent sections), and C ∈ V-Cat a V-enriched category (see A.7.1); then,
we have an adjunction

V-Cat(C,V)op
⊥

O //
V-Cat(Cop,V)

Spec
oo (3.30)

This means that we find a bijection of hom-sets

V-Cat(C,V)op
(
O(X), Y

)
= V-Cat(C,V)

(
Y, O(X)

)

∼= V-Cat(Cop,V)(X, Spec(Y )) (3.31)

induced by the functors

O : X 7→
(

C 7→ V-Cat(C,V)
(
X,よCop(C)

))
,

Spec : Y 7→
(

C 7→ V-Cat(C,V)op
(
よCop(C), Y

))
.

The adjunction property is a simple derivation in coend calculus:

V-Cat(C,V)
(
Y, O(X)

)
=
ˆ

D

V
(

Y D,

ˆ

A

V(XA, C(A, D))
)

∼=
ˆ

DA

V
(
Y D,V(XA, C(A, D))

)

∼=
ˆ

A

V
(

XA,

ˆ

D

V(Y D, C(A, D))
)

= V-Cat(Cop,V)
(
X, Spec(Y )

)
.
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Exercises

3.1 Use coend calculus to show that the geometric realisation Lρ com-
mutes with finite products of simplicial sets, assuming that it does
commute with finite products of representables.

3.2 Compute the J-realisation (see Example 3.2.8) of X ∈ sSet in the
case J is the Sierpiński space {0 < 1} with topology {∅, J, {1}}. (hint:
the colimit

´ n ∆n(J)×Xn stops after two steps.)
3.3 Let F : C → D be a NR context. Write explicitly the unit and counit

of the nerve and realisation adjunction LanよF ⊣ NF .
3.4 Show that the nerve functor NF is canonically isomorphic to

LanF よ, so that there is an adjunction

Lanよ F ⊣ LanF よ,

without using coend calculus.
3.5 Show that the following two conditions are equivalent, for a NR

context F : C → D:

• The nerve NF : D → Cat(Cop, Set) is fully faithful;
• The functor F is dense, i.e. the density comonad LanF F is the

identity functor of D.

3.6 A tensor-hom-cotensor situation (thc situation for short) con-
sists of a triple (⊗,∧, [ , ]) of functors between three categories
S,A,B, whose covariance type is defined by the adjunctions

B(S ⊗A, B) ∼= S(S, [A, B]) ∼= A(A, S ∧B).

More precisely, if ⊗ : S × A → B, then ∧ : Sop × B → A, and
[ , ] : Aop×B → S. The aim of this exercise is to show that given a
thc situation (⊗,∧, [ , ]), we can induce a new one (⊠,f, 〈 , 〉),
on the categories SI

op×J ,AI ,BJ , for any I, J ∈ Cat;

• Define F ⊠G ∈ BJ out of F ∈ SI
op×J , G ∈ AI , as the coend

ˆ i

F (i, )⊗Gi

and show that there is an adjunction

BJ(F ⊠G, H) ∼= SI
op×J(F, 〈G, H〉) ∼= AI(G, F fH)

for suitable functors 〈 , 〉 and f , developing BJ(F ⊠G, H) =
. . . in two ways, with coend calculus.
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• Assuming that the relevant structure exists, is it true that com-
position of the 2-category Cat is the ⊗ functor of a thc situation
⊗ : Cat(B, C) × Cat(A,B) → Cat(A, C)? What are the parametric
adjoints of ◦ F and G ◦ ?

3.7 Example 3.2.9 can be expanded and studied more deeply:

• Is ⊙ a monoidal structure on Topos?
• Under which conditions on X, Y is X ⊙ Y equivalent to a topos of

sheaves on a topological space X ⊙ Y ?
• What are the properties of the bifunctor (X, Y ) 7→ X ⊙ Y ? Does

this operation resemble or extend the topological join?

3.8 In this exercise Spc is a nice category for algebraic topology.
Define the category Γ having objects the power-sets of finite sets,
and morphisms the functions f : 2n → 2m preserving unions and
set-theoretical differences.

(a) Show that there is a functor ∆ →֒ Γ, sending the chain {0 < 1 <

· · · < n} in ∆ to {∅ ⊂ {0} ⊂ · · · ⊂ {0, . . . , n}} in Γ.
(b) The category of presheaves of spaces A : Γop → Spc is called the

category of Γ-spaces; a Γ-space is said to satisfy the Segal condition

(or to be Segal) if it turns pushout in Γ into homotopy pullback in
Spc. Describe pushouts in Γ; show that a Γ-space is Segal if and only
if the following two conditions are satisfied: (i) A(0) is contractible;
(ii) the canonical map A(n)→

∏n
i=1 A(1) is a homotopy equivalence

in Spc.
(c) Let X ∈ Spc and A : Γop → Spc; define X ⊗A to be the coend (in

Spc)
ˆ n∈Γ

Xn ×A(n)

Show that this defines a bifunctor Γop×Γ→ Spc. Find a canonical
map connecting the tensor product of S1 and A with the geometric
realisation of the simplicial space ∆op → Γop A

−→ Spc.
(d) Let C : Γop → Spc-Cat; let X ⊗Γ C be the coend (in the category

of topological categories)
ˆ n∈Γ

Xn × C(n).

Show that X ⊗Γ ( ) : Spc-Cat → Cat commutes with finite prod-
ucts, namely if C,D are topological categories, then

X ⊗Γ (C × D) ∼= (X ⊗Γ C)× (X ⊗Γ D).
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3.9 Write suitable coends for the Kan extensions that define sd and Sd
in (3.29), and for their right adjoints.

3.10 Generalise the NR paradigm to the setting of separately cocontinu-

ous (also called multi-linear) functors. Given F : C1 × · · · × Cn → D,
where each Ci is small and D is cocomplete, show that there exists an
equivalence of categories

Cat(C1 × · · · × Cn,D) ∼= Mult([Cop
1 , Set]× · · · × [Cop

n , Set],D)

where Mult( , ) is the category of all functors that are cocontinuous
in each variable once all the others have been fixed (hint: show it ‘by
induction’ composing multiple Kan extensions). Given θ ∈ Cat(C1 ×

· · · × Cn,D), describe the right adjoint of each θ(i) : [Cop
i , Set] → D

(it fixes all components on objects Cj ∈ Cj for j 6= i, and the ith

component runs free). All these functors assemble to a ‘vector-nerve’
N : D → [Cop

1 , Set]× · · · × [Cop
n , Set].

3.11 Let よC : C → [Cop, Set] be the Yoneda embedding, and

よ

C :
Cop → Cat(C, Set) its contravariant counterpart. Show that in Ex-
ample 3.2.18 we can characterise O as LanよC(

よ

C).
3.12 Regard a combinatorial species f : B(N) → Set as a NR context.

Show that there is an isomorphism

Lanよ f(Nf(X)) ∼= Lanj f(X)

in the notation of 2.3.11, if j : B(N) → Set is the natural functor.
What can you say about the composition

Nf ◦ Lanj f : Set→ Set→ [B(N)op, Set]

for the same species f?
3.13 Make the world a better place by providing it with a deeper

study of Isbell duality:

• An object of a category A is called Isbell autodual if it is a fixed
point of the comonad O ◦ Spec; is there a general way to character-
ize all Isbell autodual objects? (Hint: start simple: what if A is a
monoid?)
• The Isbell envelope of a category A consists of the category having

– Objects the triples (A ∈ A, ξ : hom ⇒ P ×Q where P : Aop →

Set, Q : A → Set and ξ is a natural transformation with compo-
nents ξA : hom(A, A′)→ P A×QA′;

– morphisms (α, β) : (A, ξ) → (A′, η) the pairs α : P ⇒ P ′ and
β : Q′ ⇒ Q such that (Q ∗ α) ◦ ξ = (β ∗ P ′) ◦ η.
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What are the properties of this category? Does it have an initial
object? A terminal object? Is there a functor between I(A) and the
category Ak ⊂ A of Isbell autoduals?
• Explicitly determine the unit and counit of the Isbell adjunction in

3.2.18.
• Let Γ ⊂ cat be a subcategory of cat; let Cat(Aop, Set)Γ ⊂ Cat(Aop, Set)

be the subcategory of presheaves commuting with limits of functors
having domain in Γ; does the O functor land in the subcategory
Cat(A, Set)op

Γ ? A particular case of this is whenA is a Grothendieck
site, and we want to know whether O(F ) is a sheaf if F is.
• What does Isbell duality look like, when Cat(Aop, Set) is identified

with the category of discrete opfibrations over A, using A.5.14?



4

Weighted co/limits

Summary. The present chapter introduces the theory of weighted
co/limits. Such universal objects constitute a cornerstone of enriched
category theory, that can be easily formulated and understood in terms
of co/end calculus.

After having introduced the main definition of weighted limit and
colimit, we show that in presence of co/tensors in a V-category C the
limit limW F of F : J → C weighted by a functor W : J → V can be
written as an end

ˆ

J

W J ⋔ F J

and dually the colimit colimW F is a coend
ˆ J

W J ⊗ F J

for W : J op
→ V. This allows to re-read many of the results we already

know (for example, Kan extension are weighted co/limits), and to find
that many constructions in category theory (comma objects, laxified
version of co/limits,. . . ) can all be expressed as weighted co/limits for
suitable weights W . It turns out that weighted co/limits are the correct
notion of such universal object in enriched category theory: thus, we
conclude the section discussing the theory of enriched co/ends.

No, Time, thou shalt not boast that I do change:
Thy pyramids built up with newer might
To me are nothing novel, nothing strange.

W. Shakespeare — Sonnet CXXIII

We recall the fundamentals of enriched category theory in a section of
our Appendix, A.7.1, but the material therein is by no means sufficient
to provide a self-contained introduction to the topic; instead, the reader
unfamiliar with the basic notions can (and should) consult classical ref-
erences as [Kel82, EK66a] or [Bor94b, §6.2].

96
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Limits and colimits constitute a cornerstone of elementary category
theory, because of their ubiquity in describing universal construction.
Nevertheless, the notion soon becomes too strict when one moves to the
world of enriched categories; the ‘conical’ shape of a classical co/limit
is not general enough to encompass the fairly rich variety of shapes in
which universal objects in V-categories arise.

This feature of the enriched-categorical world can be justified in many
ways: naïvely speaking, the notion of cone for a functor F : J → C is
based on the notion of constant functor; yet, in many cases, there is
no such a thing as a ‘constant’ V-enriched functor F : J → C (we
shall notice in 4.3.8 that for the exact same reason V-enriched categories
do not support a sensible notion of dinaturality). Weighted co/limits
circumvent this issue by declaring that a limit depends on two argu-
ments: the diagram F of which we want to compute the co/limit, and a
functor W ∈ Cat(J ,V) along which we ‘weight’ the co/limit: the span

V
W
←− J

F
−→ C gives rise to an object of W -shaped F -diagrams, and

the terminal such diagram constitutes the W -weighted limit of F (and
dually, the initial object is the W -weighted colimit of F ).

In presence of a terminal functor (for example, when V = Set), conical

co/limits arise when we choose W : J → V to be the terminal presheaf,
that sends every object of J to the singleton of Set (and every morphism
to the identity function of the singleton).

The theory of weighted co/limits is fairly rich and spans through sev-
eral chapters of category theory. We cannot touch but the surface of this
intricate topic: the interested reader can consult [Kel89], a presentation
of unmatched clarity filled with enlightening examples.

Remark. As a consequence of the vastness of the topic, our approach
is a compromise between full generality and usability, for we are more
interested in translating the fundamentals about weighted co/limits into
results about suitable co/ends, than in drawing a fully general theory.
The focus is not on proofs; a few arguments, not directly linked to our
main topic, are only briefly sketched. The underlying structure of the
present chapters draws a lot from [Rie14, II.7]. Quite often, the choice
of notation appears to be similar.

Notation. Throughout this section, a weight is a V-enriched functor W :
J → V , or more generally W : I×J op → V ; we call ordinary a category
which is enriched over Set with its obvious cartesian closed structure.
All bases of enrichment V are Bénabou cosmoi, i.e. symmetric monoidal
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closed, complete and cocomplete categories. These are the ‘good places’
to do enriched category theory.

Throughout the section we make heavy use of the category of elements

of a weight W : Cop → Set; the reader is invited to follow the present
section having thoroughly meditated on A.5.11 and A.5.13.

4.1 Weighted limits and colimits

Remark 4.1.1 (A sophisticated look at classical co/limits). Let F :
J → C be a functor between small ordinary categories.

• The limit lim F of F can be characterised as the representing object
of a suitable presheaf: to define lim F up to isomorphism we have the
natural isomorphism

C(C, lim F ) ∼= Cat(J , Set)(1, C(C, F )) (4.1)

where 1 is a shorthand to denote the terminal functor C → Set : C 7→ 1
sending every object to the singleton set, and C(C, F ) is the functor
J → Set sending J to J (C, FJ).
• Dually, the colimit colim F of F : J → C can be characterised, in the

same notation, as the representing object in the natural isomorphism

C(colim F, C) ∼= Cat(J op, Set)(1,J (F , C)). (4.2)

So, Cat(J op, Set)(1, C(F , C)) is a set (of natural transformations),
for every C, J (F , C) : J op → Set is a presheaf, as well as C 7→

Cat(J op, Set)(1,J (F , C)) : C → Set; if each functor of this sort is rep-
resentable, we say that F admits a limit, precisely the representing object
for Cat(J , Set)(1,J (F, )): clearly, this is nothing but an instance of
the Yoneda-Grothendieck philosophy introduced in 2.1.1.

The leading idea behind the definition of weighted co/limit is to gener-
alise this construction to admit shapes other than the terminal presheaf
for the domain functor in 1 → J (F , C). We can package this rough
idea in the following definition:

Definition 4.1.2 (Weighted limit and colimit). Given a diagram of
functors

C J
Foo W // Set (4.3)

we define the weighted limit of F by W (or, equally often, the limit of F ,
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weighted by W ) as a representing object for the presheaf sending C ∈ C

to Cat(J , Set)(W, C(C, F )).
In other words the weighted limit of F by W is an object limWF ∈ C

such that the isomorphism

C
(
C, limWF

)
∼= Cat(J , Set)(W, C(C, F )) (4.4)

holds naturally in C ∈ C. Dually we define the colimit of F : J → C
weighted by W : J op → Set to be an object colimWF ∈ C such that the
natural isomorphism

C
(
colimWF, C

)
∼= Cat(J op, Set)(W, C(F , C)) (4.5)

holds naturally in C ∈ C.

Notation 4.1.3. A common alternative notation for the object limWF

is {W, F}; a common alternative notation for colimWF is W ⊗ F ; this

is meant to evoke a THC situation, through the isomorphisms

C
(
C, {W, F}

)
∼= Cat(J , Set)(W, C(C, F )) (4.6)

C
(
W ⊗ F, C

)
∼= Cat(J op, Set)(W, C(F , C)) (4.7)

although this is not properly the same arrangement of functors of 3.6,

the intuition is fruitful.

Example 4.1.4. Let [1] be the “generic arrow” category {0→ 1}, and
let ⌈f⌉ : [1]→ C be the functor choosing an arrow f : X → Y in C, and
W : [1] → Set the functor choosing the arrow W 0 = {0, 1} → {0} =
W 1; then a natural transformation W ⇒ C(C, f) consists of arrows
W 0 → C(C, X), W1 → C(C, Y ), namely on the choice of two arrows
h, k : C → X such that fh = fk: the universal property for limW f

implies that this is the kernel pair of the arrow f , namely that h, k fill
in the pullback

C h

!!

k

$$

""
limW f //

��

X

f

��
X

f
// Y

(4.8)

of the arrow f along itself. (The reader is invited to compute the colimit
of the same diagram as a preparatory exercise.)
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In order to characterize weighted co/limits as co/ends, we employ the
same notation of 4.1.2:

Proposition 4.1.5 (Weighted limits as ends). When the end below and

the Set-cotensor (see 2.2.3) (X, A) 7→ X ⋔ A exist, we can express the

weighted limit limWF for F : J → C as an end, as follows from the

chain of computations

Cat(J , Set)(W, C(C, F )) ∼=
ˆ

J∈J

Set(WJ, C(C, FJ))

∼=
ˆ

J∈J

C
(
C, WJ ⋔ FJ

)

∼= C
(

C,

ˆ

J∈J

WJ ⋔ FJ
)

.

The above derivation implies that there is a canonical isomorphism

limWF ∼=
ˆ

J∈J

WJ ⋔ FJ. (4.9)

The reader might have noticed that we didn’t provide a dual statement
to 4.1.5; this dualisation process is left as an easy exercise, spelled out
explicitly in 4.1: the weighted colimit of F by W is a coend, precisely

colimWF ∼=
ˆ J∈J

WJ ⊗ FJ. (4.10)

Example 4.1.6. Consider the particular case of two parallel functors
W, F : C → Set; then we can easily see that limWF coincides with the
set of natural transformations W ⇒ F , since the cotensor WC ⋔ FC is
precisely the set Set(WC, FC). So: the limit of a presheaf F weighted
by a parallel presheaf W is the set of natural transformations W ⇒ F .

Example 4.1.7 (Kan extensions). The ninja Yoneda lemma 2.2.1, rewrit-
ten in this notation, says that limC(C, )F ∼= FC (or, in case F is con-
travariant, limC( ,C)F ∼= FC).

A short slogan to remember this fact is that

Representably-weighted co/limits are evaluations on the representing
object.

(this hides a slightly more general fact: the category of element A.5.9 of
W has a terminal object if and only if the weight W is representable,
say よA ∼= W ; then, limWF ∼= FA. See also our 2.2.6 about repre-
sentables playing the role of Dirac delta functions) and suggests that
Kan extensions can be expressed as suitable weighted co/limits, and
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more precisely that they can be characterised as those weighted co/lim-
its where the weight is a representable functor (possibly “twisted” by a
functor K : C → D):

RanK F ∼=
ˆ

C∈C

D( , KC) ⋔ FC ∼= limD( ,K )F (4.11)

LanK F ∼=
ˆ C∈C

D(KC, )⊗ FC ∼= colimD(K , )F. (4.12)

More precisely, D( , K ) : Dop × C → Set is a functor, and for every
D ∈ D the functor WD = D(C, K ) : C → Set works as a weight; the
weighted limit of F along WD is the value of RanK F on the object D.

Note that if K is the identity functor, we obtain the various forms of
ninja Yoneda lemma 2.9–2.12 as special cases.

Example 4.1.8. Ends themselves can be computed as weighted
limits: given T : Cop × C → D we can take the hom functor C( , ) :
Cop × C → Set as a weight, and if the weighted limit exists, we have the
chain of isomorphisms

limC( , )T ∼=
ˆ

(C,C′)

C(C, C′) ⋔ T (C, C′)

∼=
ˆ

C

( ˆ

C′
C(C, C′) ⋔ T (C, C′)

)

2.2.1 ∼=
ˆ

C

T (C, C).

Remark 4.1.9. It is particularly instructive to unwind the statement
above and directly compute the end of T : Cop×C → D as the equaliser
of a pair of maps

∏
C,C′∈C C(C, C′) ⋔ T (C, C′)

�� ��∏
(f,g):(C,C′)→(C′′,C′′′) C(C, C′) ⋔ T (C′′, C′′′)

(4.13)

determined by the action of T on arrows. In fact, this is exactly what
we did in 1.3.2 to prove the Fubini rule 1.3.1.

The following Remark and Proposition constitute a central observa-
tion.

Remark 4.1.10 ( The Grothendieck construction absorbs weights).
Our 4.1.2 can be extended to the case F : J → C is a V-enriched functor
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between V-categories, and W : J → V is a V-presheaf; this is the setting
where the notion of a weighted limit proves itself to be the correct one
over the ‘conical’ one (where the weight is the terminal presheaf). When
V = Set, indeed, the Grothendieck construction sending a presheaf into
its category of elements turns out to simplify the theory of Set-weighted
limits, reducing every weighted limit to a conical one.

The last statement is clarified by the following proposition: recall from
A.5.9 the definition of the category of elements of a functor W : J → Set.

Proposition 4.1.11 (Set-weighted limits are limits). As shown in A.5.13,

the category of elements J
´

W comes equipped with a discrete fibration

Σ : J
´

W → J ; such a fibration is universal, in the sense that for any

functor F : J → C one has

limWF ∼= lim
J
´

W

(
J
´

W
Σ
−→ J

F
−→ C

)
. (4.14)

Proof Using 4.1.8, the characterisation of the end
´

J∈J WJ ⋔ FJ as
an equaliser (as in 1.2.4), and the characterisation of Set-cotensors as
iterated products, we can see that
ˆ

J∈J

WJ ⋔ FJ ∼= eq
( ∏

J∈J

WJ ⋔ FJ ⇒
∏

J→J′

FWJ ⋔ J ′
)

∼= eq
( ∏

J∈J

∏

x∈WJ

FJ ⇒
∏

J→J′

∏

x∈WJ

FJ ′
)

(⋆) ∼= eq
( ∏

(J,x)∈J
´

W

FJ ⇒
∏

(J,x)→(J′,x′)∈J
´

W

FJ ′
)

∼= lim
(J,x)∈J

´

W
F ◦ Σ

(step (⋆) is motivated by the fact that, thanks to the discrete fibration
property for Σ, every arrow f : Σ(J, x) → J ′ has a unique lift (J, x) →
(J ′, x′) since W (f)(x) = x′).

Remark 4.1.12. If the weight has the form W = D(D, K ) for an
object D ∈ D, and a functor K : J → D, then the category of elements
J
´

W is precisely the comma category (D ↓ K): thus the right Kan
extension of F along K can be computed as the conical limit of the
functor F ◦ Σ, where Σ : (D ↓ K)→ J is the obvious forgetful functor.
We just rediscovered (4.11) and (4.12).
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When every weighted limit exists in C, we can prove that the corre-
spondence (W, F ) 7→ limWF is a bifunctor:

lim( ) ( ) : Cat(J , Set)op × Cat(J , C)→ C. (4.15)

From this, it follows at once that

• Functoriality in the W component of limWF entails that the termi-
nal morphism W ⇒ 1 induces a comparison arrow between the W -
weighted limit of any F : J → C and the classical (conical) limit:
every weighted limit is a “fattened up” version of the conical limit,
and there is a comparison arrow lim F → limWF . This intuition has
some connection with homotopy theory: it will become clearer in 4.2.5.

As an example, consider that the conical limit of the functor f :
[1]→ C described in Example 4.1.4 consists of the object src(f); hence
the comparison arrow consists of the unique factorisation of two copies
of the identity of src(f) along the kernel pair of f .

• Using 4.1.8 one can prove that the functor lim( )F is continuous, i.e.
the isomorphism

lim
(

colimIWi

)
F ∼= limI

(
limWi F

)
, (4.16)

holds for every small diagram of weights I → Cat(C, Set) : i 7→ Wi.
Indeed, for a generic object X ∈ C we have

C
(

X, lim
(

colimIWi

)
F
)
∼= C

(
X,
´

A

(
colimIWiA

)
⋔ FA

)

∼= C
(

X,
´

A limI(WiA ⋔ FA)
)

∼= C(X, limI limWi F )

so the two objects lim
(

colimIWi

)
F and limI

(
limWi F

)
must be canon-

ically isomorphic.

The above observation will turn out to be useful during our discussion
of simplicially coherent co/ends in 7.2.11.

Weighted colimits can be obtained as a straightforward dualisation of
the above arguments. The boring technicalities are left to the reader to
expand in Exercise 4.1; for the record, we state the proper dualisation
in a separate remark:

Remark 4.1.13.
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wc1) (weighted colimits as coends) Let

C J
Foo W // Set (4.17)

be two functors; if C admits the coend below, we can express the
weighted colimit colimWF as

colimWF ∼=
ˆ J∈J

WJ ⊗ FJ (4.18)

where we used, like we always do, the Set-tensoring structure of C.

wc2) (left Kan extensions as weighted colimits) Let F : J → C and K :
J → D be functors; then

LanK F ∼=
ˆ J∈J

D(KJ, )⊗ FJ ∼= colimD(K , )F (4.19)

wc3) (coends as hom-weighted colimits) The coend of T : Cop×C → D can
be written as colimC( , )T , regarding homC : Cop × C → Set as a
weight:

ˆ C

T (C, C) ∼=
ˆ C,C′

C(C, C′)⊗ T (C, C′) (4.20)

wc4) If the weight W is Set-valued, the colimit of F : J → C weighted by
W : J op → Set can be written as a conical colimit over J op´ W using
Σ : J op´ W → J op:

colimWF ∼= colim(J,x)∈(J op
´

W )op (F ◦ Σop) (4.21)

wc5) (functoriality) If the W -colimit of F : J → C always exists, then the
correspondence (W, F ) 7→ colimWF is a functor, cocontinuous in its
first variable:

colim( )(=) : Cat(J op, Set)× Cat(J , C)→ C,

colim
(

colimIWi

)
F ∼= colimI

(
colimWi F

)
(4.22)

wc6) (comparison) There is a canonical natural transformation W → 1,
inducing a canonical comparison arrow from the W -colimit of any
F : J → C to the conical colimit.

From the description 4.1.8 and 4.1.13.wc1 above of limWF and colimWF

as co/ends, it is immediate that hom functors preserve weighted limits:
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Remark 4.1.14. For every C ∈ C, every functor F : J → C and weight
W : J op → V we have a canonical isomorphism

C
(

colimWF, C
)
∼= limW C(F, C). (4.23)

Dually, for every functor F : J → C and weight W : J → V we have a
canonical isomorphism

C
(

C, limWF
)
∼= limW C(C, F ). (4.24)

As an immediate consequence, every functor that preserves co/ends
preserves weighted co/limits; for example, a left adjoint must preserve all
weighted colimits, and a right adjoint must preserve all weighted limits.

4.2 Examples of weighted colimits

Due to their deep connections with enriched category theory, homologi-
cal algebra and algebraic topology are a natural factory of examples of
weighted colimits:

Example 4.2.1 (The cone construction as a weighted colimit). Let K

be a ring, and V = Ch(K) the category of chain complexes of K-modules.
Considering V as self-enriched, suitably defining the chain complex of
maps C∗ → D∗, we aim to prove that the mapping cone C(f) = X∗[1]⊕
Y∗ of a chain map f : X∗ → Y∗ [Wei94, 1.5.1] in V can be characterised
as colimW f , where f : [1]→ V is the arrow f , and W : [1]op → V is the
functor which chooses the map S1(K)∗ → D2(K)∗, where Sn(K)∗ =
K[n]∗ is the chain complex with the only nonzero term K concentrated
in degree −n, and Dn(K)∗ is the complex

· · · // 0 // K K // 0 // · · · ,

where the first nonzero term is in degree −n. There is an obvious inclu-
sion Sn∗ →֒ Dn+1

∗ :

· · · // 0 // 0

��

// K // 0 // · · ·

· · · // 0 // K K // 0 // · · · .

We now aim to prove that

C(f) ∼=
ˆ i

W (i)⊗ f(i). (4.25)
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In view of (the dual of) Exercise 1.7, it is enough to show that there is
a pushout square

W (1)⊗ f(0)

p

//

��

W (1)⊗ f(1)

��
W (0)⊗ f(0) // C(f)

This is a rather simple exercise in universality, given the maps

B
( 0

1 )
// C(f) A⊕A[1].

(
0 1
f 0

)
oo (4.26)

The following example is more juicy. In addition to those of A.5.11
there is a fourth characterisation for the category of elements of a presheaf
as a suitable coend over Cat.

Example 4.2.2 ( The category of elements of a presheaf). The cat-
egory of elements of a functor F : C → Set introduced in A.5.9 can be
characterised as a Cat-weighted colimit: it results as the colimit

C
´

W ∼=
ˆ C∈C

C/C ×WC (4.27)

where WC is a set, regarded as a discrete category; it is, in other words,
isomorphic to the weighted colimit colimSW , where S : Cop → Cat (S as
“slice”) is the functor C 7→ C/C (the ‘coslice’ category of arrows C → X

and commutative triangles under C).
To prove this statement, we verify that C

´

W has the universal prop-
erty of the coequaliser of the pair

∐

f :A→B

B/C ×WA
α //

β
//
∐

C∈C

C/C ×WC (4.28)

where α has components αf : B/C × WA
1×Ff
−−−−→ B/C × WB send-

ing
([

B
↓
X

]
, u
)
7→
([

B
↓
X

]
, F (f)u

)
and β has components βf : B/C ×

WA
f∗×WA
−−−−−→ A/C × WA sending

([
B
↓
X

]
, u
)
7→

([
A

f
−→ B
↓
X

]
, u

)
. Of

course, these maps are composed with the suitable coproduct injections.
It’s rather easy now to define a functor

θ :
∐

A∈C

A/C ×WA→ C
´

W (4.29)
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having components θA : A/C ×WA→ C
´

W defined by
([

A
f↓
B

]
, u ∈ FA

)
7→ (b, F (f)(u) ∈ Fb) , (4.30)

which coequalises α and β. This functor θ has the universal property of
the coequaliser: given any other ζ :

∐
A∈C A/C×WA→ K we can define

a functor ζ : C
´

W → K such that

ζ(A, u ∈ FA) = ζ(idA, u). (4.31)

Now notice that every map ζ′ that coequalises (α, β) has the property
that

ζ′
([

B
↓
X

]
, F (f)u

)
= ζ′

([
A

f
−→ B
↓
X

]
, u

)
(4.32)

It is now a routine verification to see that ζ ◦ θA = ζA, and every other
functor with this property must coincide with our ζ. This concludes the
proof.

Remark 4.2.3 (Again an alternative characterisation of the category
of elements). The reader may have noticed that all the above discussion
gives a fifth presentation for the category of elements C

´

W , as the
image of W under the Kan extension Lanよ J : in the language of 3,
S : Cop → Cat is the NR context of the paradigm

C
´

: Cat(C, Cat)
//
Cat : NSoo (4.33)

where NS : Cat → Cat(C, Cat) is the ‘nerve’ functor sending D to the
functor C 7→ Cat(C/C,D).

Remark 4.2.4. An alternative approach to characterise C
´

W is the
following: the category C

´

W is precisely the lax limit of W regarded as
a Cat-valued presheaf [Kel89, §4], [Gra74, Str76].

We can express the Bousfield-Kan construction for the homotopy co/-
limit functor using co/end calculus (see 7.2.1 for a crash course on what’s
an homotopy co/limit). We condense Bousfield-Kan construction in the
following series of examples.

Theorem 4.2.5 ( The Bousfield-Kan formula for homotopy co/lim-
its). Let F : J → M be a diagram in a model category M; let more-

over M be equipped with a thc situation (see 3.6) by functors ⋔ :
sSetop ×M → M, [ , ] : Mop ×M → sSet (so, in particular, M is

sSet-enriched), and ⊗ : sSet×M→M.

Let us consider the nerve functor of 3.2.5: N : Cat → sSet sends a
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category C to the simplicial set of its n-tuples of composable arrows, for

each [n] ∈ ∆.

Then the homotopy limit hlim F of F can be computed as the end
ˆ

J

N(J /J) ⋔ FJ, (4.34)

and the homotopy colimit hcolim F of F can be computed as the coend

ˆ J

N(J/J )⊗ FJ. (4.35)

Remark 4.2.6. These two universal objects are weighted co/limits in
an evident way: it is possible to rewrite hlim F ∼= limN(J/ )F and
hcolim F ∼= colimN( /J)F .

The idea behind this characterisation is to replace the terminal weight
with an homotopy equivalent, but fibrant one (in the case of limits;
cofibrant, in the case of colimits).

Bousfield-Kan formula arises precisely when we replace the terminal
weight with a fibrant one: for every object J , both N(J/J ) and N(J /J)
are contractible categories, and they are linked to N(1) by an homotopy
equivalence induced by the terminal functor.

Then, the categories N(J/ ), N( /J) must be thought as proper
replacements for the co/limit functor that correct its failure to preserve
weak equivalences (see [Str11, Ch. 6] for an extremely hands-on account
of the theory of homotopy co/limits in algebraic topology, and [Hov99]
for a standard, easy reference on model categories).

A fairly large class of interesting examples of weighted co/limits comes
from the theory of 2-categories; many 2-dimensional constructions are
captured by the above formalism. Moreover, co/end calculus expresses
very concretely the shape of the universal object limWF , as well as its 1-
and 2-dimensional universal properties. Like in the previous section, we
do not seek utter generality, but instead clarity of exposition. Thus, we
restrict our attention to the 2-category Cat of categories, strict functors
and natural transformations, avoiding to study the case of pseudofunc-
tors, pseudonatural transformations, etc.

We first study a simple example of Cat-enriched limit, and its dual; the
description of other shapes of weighted co/limits is way more instructive
when it is left as an exercise for the reader (see [Kel89]). Recall Warning
2.5.9.

Example 4.2.7 ( Inserters in Cat). Let C be a 2-category, and f, g :
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X ⇒ Y two parallel 1-cells in C; the inserter I(f, g) is a pair (p, λ) where
p : I(f, g) → X is a 1-cell and λ : fp ⇒ gp is a 2-cell, universal with
respect to the property of connecting fp, gp: this means that the pair
(p, λ) enjoys

in1) A 1-dimensional universal property: given a diagram

X
f

$$■
■■

■■
■

B

::✉✉✉✉✉✉

$$■
■■

■■
■

✤✤ ✤✤
�� µ Y

X
g

::✉✉✉✉✉✉

(4.36)

this can be split as the whiskering

X
f

##●●
●●●

●●

B
h

//

++

33

I(f, g)

p
88rrrrrrr

p &&▲▲
▲▲▲

▲▲

✤✤ ✤✤
�� λ Y

X
g

;;✇✇✇✇✇✇

(4.37)

for a unique 1-cell h : b→ I(f, g) in C: this means, again, that ph = q

and λ ∗ h = µ.
in2) A 2-dimensional universal property: given parallel 1-cells h, k : A →

I(f, g) and a 2-cell β : ph⇒ pk such that

A

k

��

h //

✠✠✠✠�� β

I(f, g)

p

��
I(f, g)

p //

p

��
✡✡✡✡�	 λ

B

f

��
B g

// C

=

A

h

��

k // I(f, g)

p

��
I(f, g) p

//

p

��

B

✠✠✠✠
@Hβ

g

��
B

f
// C

✡✡✡✡
AIλ

(4.38)

there is a unique β̄ : h⇒ k such that

I(f, g)

##●●
●●●

●
I(f, g)

##●●
●●●

●

A
✤✤ ✤✤
�� β

;;✇✇✇✇✇✇

##●●
●●

●●
B = A

✤✤ ✤✤
�� β̄

;;✇✇✇✇✇✇

##●●
●●

●●
B

I(f, g)

;;✇✇✇✇✇✇
I(f, g)

;;✇✇✇✇✇✇

(4.39)
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Now, if J is the category {0⇒ 1} with two objects and two parallel non-
identity arrows, the inserter I(f, g) is the limit of the functor F : J → C
choosing the two 1-cells f, g, weighted by the weight W : J → Cat
choosing the parallel ‘source’ and ‘target’ functors s, t : [0]⇒ [1].

We shall deduce the shape of the inserter when C = Cat is the 2-
category of categories. In such case, the end

ˆ

J∈J

WJ ⋔ FJ (4.40)

that according to 4.1.2 defines the weighted limit boils down to the
object of Cat-natural transformations W ⇒ F (see also 1.4.1): it is
indeed the case that such a natural transformation is determined as a
pair (b, u : c → c′) ∈ B × C [1] such that u : fb→ gb. In fact, naturality
corresponds to the commutativity of the following two squares:

[0] b //

s

��

B

f

��

[0] b //

t

��

B

g

��
[1] u

// C [1] u
// C

(4.41)

and this means precisely that u has fb as domain, and gb as codomain.
Let’s show that this object, as a subobject p : (B ×C [1])◦ ⊆ B ×C [1]

has the desired universal property: first of all, (B × C [1])◦ clearly is a
subcategory of the product category B×C [1]. There is an obvious natural
transformation λ : fp ⇒ gp defined on components as λ(b,u) : fb

u
−→ gb.

We leave to the reader to check that this is indeed the component of a
natural transformation.

in1) Every α : fq ⇒ gq with components αa : fqa → gqa is such that
(qa, αa) ∈ (B ×C [1])◦, and the map h : A→ (B ×C [1])◦ that sends a

into (qa, αa) is a functor because α was natural.

in2) A similar argument shows that every β : ph ⇒ pk satisfying (4.38)
factors through (B × C [1])◦.

Altogether, these two properties shows that there is a unique isomor-
phism between (B × C [1])◦ and I(f, g). This concludes the proof.

Example 4.2.8 (Comma objects). Let C be a 2-category, and f, g a
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cospan of 1-cells like

C

g

��
B

f
// X

(4.42)

This can be regarded as the image of a functor F : Λ2
2 → C, where

Λ2
1 is the “generic cospan” {0 → 2 ← 1}. Let us consider the weight

W : Λ2
2 → Cat whose image is

W
[

1
↓

0 → 2

]
=

[0]

d1

��
[0]

d0

// [1]

(4.43)

where di : {i} → {0→ 1} chooses the object i. Let us prove that the limit
of F weighted by W is the comma object of f, g; evidently, in the special
case of C = Cat, the limit limWF is the comma category of A.2.14.

Let us fix an object A of C; a natural transformation W ⇒ C(A, F )
consists of the following data:

c1) A 1-cell u : A→ B;

c2) A 1-cell v : A→ C;

c3) A 2-cell λ : [1] → C(A, X), whose source is forced by the naturality
condition to be fu, and whose target is gv.

More explicitly, natural transformations W ⇒ C(A, F ) correspond to
squares

A
v //

u

��

C

g

��
B

f
// X

����
<Dλ

(4.44)

filled by a 2-cell λ : fu⇒ gv. The terminal such 2-cell is then limWF .

One can now routinely dualise the above construction to define co-

comma objects: the following example freely uses some notions from the
subsequent chapter.

Example 4.2.9 (Cocomma objects). Let C be a 2-category, and f, g a
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span of 1-cells like

X
g //

f

��

C

B

(4.45)

This can be regarded as the image of a functor F : Λ2
0 → C, where Λ2

0

is the “generic span” {0 → 2 ← 1}. Let us consider again the weight
W : (Λ2

0)op ∼= Λ2
2 → Cat whose image is again

[0]

d1

��
[0]

d0

// [1]

(4.46)

where di : {i} → {0→ 1} chooses the object i. The colimit of F weighted
by W is the cocomma object of the pair (f, g).

Exercise 5.6 provides you with another proof that the cocomma object
in Cat of two functors f, g : B ← X → A can be described as the category[
f
g

]
having objects those of B ⊔ C, and morphisms x → y defined as

follows:

• B(b, b′) if b = x, b′ = y are both objects of B;
• C(c, c′) is c = x, c′ = y are both objects of C;
• if b = x ∈ Bo and c = y ∈ Co, the set of morphisms in

[
f
g

]
(b, c) is the

coend
ˆ x

C(gx, c)×B(b, fx); (4.47)

• otherwise, the hom set is empty.

We shall now present a proof of the universality of
[
f
g

]
based solely on

the construction of the coend that defines
[
f
g

]
(b, c).

The intuition that shall guide the reader is that
[
f
g

]
(b, c) is a set of

“fake arrows”, i.e. of triples

b
ϕ
−→ fa

(ξ)
99K ga

ψ
−→ c (4.48)

where the arrow (ξ) : fa 99K ga is in some suitable sense freely adjoined
in the disjoint union B ⊔ C.

Inside the coend, we identify two fake arrows b
ϕ
−→ fa

(ξ)
99K ga

ψ
−→ c
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and b
ϕ
−→ fa′

(ξ′)
99K ga′

ψ
−→ c precisely when there is a “hammock” diagram

between a, a′ of the following form:

fa
(ξ) // ga

ψ

��✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴

fa1
//

OO

��

ga1

OO

��
��❄

❄❄
❄❄

❄❄

b

ϕ

GG✎✎✎✎✎✎✎✎✎✎✎✎✎

ϕ′

��✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴

??⑧⑧⑧⑧⑧⑧⑧

��❄
❄❄

❄❄
❄❄

...
... c

fan //

OO

��

gan

OO

��

??⑧⑧⑧⑧⑧⑧⑧⑧

fa′
(ξ′)

// ga′

ψ′

GG✎✎✎✎✎✎✎✎✎✎✎✎✎

(4.49)

Now we have enough material to discover the universal property of such
an object: first of all, there are canonical functors iB : B →

[
f
g

]
and iC :

C →
[
f
g

]
, and a canonical natural transformation ζ : iBf ⇒ iCg comes

from taking equivalence class of identity arrows (1ga, 1fa) ∈ Y (ga, ga)×
X(fa, fa) under the composition

hom(ga, ga)× hom(fa, fa)

��

∋ (1ga, 1fa)❴

��

∐
a∈A hom(c, ga)× hom(fa, b)

��[
f
g

]
(fa, ga) ∋ [(1ga, 1fa)]

(4.50)

as a natural candidate for ζa : fa→ ga.
Now, suppose we are given a commutative square

X
g //

f

��

C

v

��
B w

// Y

����
<Dθ (4.51)

filled by a 2-cell θ : wf ⇒ vg. Then define a unique functor u :
[
f
g

]
→ Y

on objects and true arrows in B or C acting as v : C → Y, w : B → Y ;
the action of u on a fake arrow

b
ϕ
−→ fa

(ξ)
99K ga

ψ
−→ c
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is induced by the composition

wb
w∗ϕ
−−−→ wfa

θa−→ vga
v∗ψ
−−→ vc

(all arrows exist now!). At this point, all remaining checks are pure rou-
tine: u is unique due to the tautological definition of ζ; the cell ζ has a
2-dimensional universal property as well; ζ ◦ reflects isomorphisms.

Once this is done, the willing reader can embark on all sort of in-
structive computations: exchanging the rôle of B, C in the above con-
struction, one obtains a 2-cell in the opposite direction; in the terminol-
ogy of the next chapter (see 5.2 and (5.4)),

[
f
g

]
is the category of ele-

ments of the composite profunctor B
pf
 X

pg

 C regarded as a presheaf
Bop × C → Set; what if the functor f or g is the identity?

4.3 Enriched co/ends

4.3.1 Preliminaries on enriched categories

In the setting of enriched category theory, the property of being complete
is stated in terms of an existence result for every weighted limit limWF :
in short, the reason for this choice is that the categories admitting only
co/limits weighted by terminal presheaves contain too few objects and
shall not be considered complete by the internal language of V-Cat.

This can be made precise in the following way: there is a canonical
choice of a Yoneda structure (see 2.4) on the 2-category of V-enriched
categories, where Yoneda maps are given by V-enriched Yoneda embed-
dings; every 2-category with a Yoneda structure has a notion of a co-

complete object, and in that Yoneda structure co/completeness coincides
with having all weighted co/limits (see [SW78]).

The present section serves the purpose to introduce a sensible defini-
tion of enriched co/end in 4.3.9, 4.3.10: in short, using 4.1.13.wc3, given
a V-functor H : Cop ⊠ C → V we can define the end

´

C
H(C, C) to be

the limit of H weighted by the enriched hom V-functor Cop⊠C → V (we
will introduce the ⊠ product in 4.3.3 below).

In case all co/ends exist and the codomain category of functors T :
Cop × C → A has co/tensors, we can moreover easily characterise the
co/end functor as an adjoint to a ‘co/tensor with hom’ functor.

Lemma 4.3.1. Let C be a tensored and cotensored V-category and W

a functor to be treated as a weight; then
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wa1) if W : J → V, the limW functor has a left adjoint, given by tensor-

ing with the weight W ; in other words, there is an adjunction

C ⊥

W⊗ //
Cat(J , C)

limW
oo (4.52)

where W ⊗ C : λJ.WJ ⊗ C.

wa2) Dually, if W : J op → V, the colimW functor has a right adjoint,

given by cotensoring with the weight W ; in other words, there is an

adjunction

Cat(J , C) ⊥

colimW
//
C

W⋔

oo (4.53)

where W ⋔ C : λJ.WJ ⋔ C.

Proof Both arguments consist of an easy computation in coend calcu-
lus:

C(C, limWF ) ∼= C
(

C,

ˆ

J

WJ ⋔ FJ
)

∼=
ˆ

J

C(WJ ⊗ C, FJ)

∼= Cat(J , C)(W ⊗X, F ).

Dually, we have

C(colimWF, C) ∼= C
(ˆ J

WJ ⊗ FJ, C
)

∼=
ˆ

J

C(WJ ⊗ FJ, C)

∼=
ˆ

J

C(FJ, WJ ⋔ C)

∼= Cat(J , C)(F, W ⋔ X).

Remark 4.3.2. This finally sheds a light on our proof of Fubini theorem
in 1.3.1: given that co/ends are hom-weighted co/limits (see 4.1.13.wc3),
the co/end functor has a right/left adjoint given by tensoring with the
weight hom: this is exactly the way in which we proved that

´ A :
Cat(Cop × C,D) had a right adjoint, only without explicitly mention-
ing the technology of weighted co/limits.



116 Weighted co/limits

4.3.2 The theory of enriched co/ends

A fundamental step in laying the foundation of weighted limit theory is
the natural isomorphism

C
(
C, limWF

)
∼= V-Cat(J ,V)(W, C(C, F )) (4.54)

valid for functors

C J
Foo W // Set. (4.55)

In order to export this isomorphism to the enriched setting, we shall
make (4.54) take place in the base cosmos V ; in short, this means that
we have to find a way to promote the category V-Cat(J ,V) of V-functors
and V-natural transformations as an enriched category V-Cat(C,V): this
means that every V-Cat(J ,V)(F, G), for functors F, G, must become an
object of enriched natural transformations in V .

To do this, we will endow V-Cat with a closed symmetric monoidal
structure, such that the natural isomorphism

V-Cat(C ⊠ E ,D) ∼= V-Cat(E ,V-Cat(C,D)) (4.56)

holds for V-categories C,D, E . The V-category V-Cat(C,D) will thus be
the internal hom for the closed monoidal structure given by ⊠.

Definition 4.3.3 (Tensor product of V-categories). Given two V-cate-
gories C,D we define the V-category C ⊠D having

• as objects the set C × D, and
• as V-object of arrows (C, D)→ (C′, D′) the object

C(C, C′)⊗D(D, D′) ∈ V . (4.57)

The free V-category I associated to the terminal category, having a
single object ∗ and where I(∗, ∗) = I, the monoidal unit of V , is the unit
object for this monoidal structure.

Various checks are now in order:

• C ⊠D really is a V-category;
• ⊠ : V-Cat × V-Cat → V-Cat is a bifunctor, hat endows V-Cat

with a monoidal structure.

None of these constitutes a conceptual challenge.

Proposition 4.3.4. The monoidal category (V-Cat,⊠) can be promoted

to a closed monoidal category, with internal hom denoted V-Cat( , ) :
V-Catop × V-Cat→ V-Cat.
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Proof Given C,D ∈ V-Cat we define a V-category whose objects are
V-functors F, G : C → D and where (with a little abstraction from 1.4.1
to the enriched setting) the V-object of natural transformations F ⇒ G

is defined via the end

V-Cat(C,D)(F, G) :=
ˆ

C∈C

D(FC, GC). (4.58)

In the unenriched case, the end was better understood as the equaliser
of a pair of arrows:

ˆ

C∈C

D(FC, GC) ∼= eq
( ∏

C∈C

D(FC, GC)⇒
∏

C,C′

∏

c→c′

D(FC, GC′)
)

(4.59)
In the enriched case, we can consider the same symbol, and re-interpret
the product

∏
C(C,C′) as a suitable power in V :

ˆ

C∈C

D(FC, GC) ∼= eq
( ∏

C∈C

D(FC, GC)⇒
∏

C,C′

C(C, C′) ⋔ D(FC, GC′)
)

(4.60)
(see [Gra80, §2.3] for more on this definition). It is now a matter of
unwinding the definition to show that a V-natural transformation corre-
sponds to a generalised element of

´

C∈C
D(FC, GC); we leave the proof

to the reader in Exercise 4.5
It remains to prove, now, that the isomorphism (4.56) holds: this is

rather easy, since in the above notations, any functor F : C⊠ E → D de-
fines a unique functor F̂ : E → V-Cat(C,D): for any two objects E, E′ ∈

E , the collection of arrows E(E, E′)→ V(C(C, C′),D(F (C, E), F (C′, E′)) =
C(C, C′) ⋔ D(F (C, E), F (C′, E′) given by the action of F on hom-
objects is a wedge in the pair (C, C′). Thus, since

ˆ

CC′
C(C, C′) ⋔ D(F (C, E), F (C′, E′) ∼=

ˆ

C

D(F (C, E), F (C, E′)

(4.61)
by 4.1.8, we get a correspondence on objects F̂ : E 7→ (λC.F (C, E)), and
a correspondence on hom-objects in the form of maps F̂E,E′ : E(E, E′)→
´

C
D(F̂E(C), F̂ E′(C)) = V-Cat(C,D)(F̂ E, F̂E′). The fact that each

F̂ (E) is a V-functor C → D, and that F̂ , so defined, is a V-functor
E → V-Cat(C,D), are both necessary but tedious checks. As a proof of
why we choose the word “tedious” to describe the process, let us show
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the reader the argument proving that the triangle

I

ι′

((PP
PPP

PPP
PPP

PPP

ι

||①①
①①
①①
①①
①

1

E(E, E)
F̂E,E

//
´

C D(F (C, E), F (C, E))

(4.62)

commutes, so that F̂ preserves the identity arrows ι : I → E(E; E)
and ι′ : I →

´

C D(F (C, E), F (C, E)). First, we have to define ι′: the
component at (C, E) is obtained from the universal property of the end
at codomain, starting from the wedge induced by F . Second, it is evident
that diagram (4.62) commutes if and only if the whiskered diagram

I

ι′

))❙❙❙
❙❙❙

❙❙❙
❙❙❙❙

❙❙❙
❙

ι

||①①
①①
①①
①①
①

E(E, E)
F̂E,E

//
´

C D(F (C, E), F (C, E))

ωCC′

��
C(C, C′) ⋔ D(F (C, E), F (C′, E′)

(4.63)

commutes for every choice of C, C′ ∈ C (we implicitly use (4.61) to
describe conveniently the universal wedge). In order to show this last
commutativity, consider the diagram

C(C, C′) ⋔
(
C(C, C′)⊗ E(E, E)

)
C(C,C′)⋔FCC′;EE

##
I

1
ιE

}}④④
④④
④④
④④
④

ηI //
ι′
F (C,E)

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗ C(C, C′) ⋔

(
C(C, C′) ⊗ I

)
2

3

1⋔(1⊗ιE )

OO

C(C, C′) ⋔ D(F (C, E), F (C′, E))

E(E, E)

ηE(E,E)
33

F̂E,E

// ´
C
D(F (C, E), F (C, E))

ωCC′

88

(4.64)

The sub-diagrams 2 and 3 commute, respectively because the unit of
the adjunction C(C, C) ⊗ ⊣ C(C, C) ⋔ is natural, and because we
assumed F was a V-functor. From this, we deduce the desired commu-
tativity.

The fact that F̂ preserves composition translates into the commuta-
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tivity of the square

E(E, E′)⊗ E(E′, E′′)

��

cE // E(E, E′′)

F̂E,E′′

��
´

A
D(F AE, F AE′)⊗

´

B
D(F BE′, F BE′′)

k
// ´

C
D(F CE, F CE′′)

(4.65)

where the lower horizontal map k arises from the composition of maps
´

A
D(FAE, FAE′)⊗

´

B
D(FBE′, FBE′′)

ω⊗ω

��
D(FAE, FAE′)⊗D(FAE′, FAE′′)

γ

��
´

A
D(FAE, FAE′′)

(4.66)

(The last map is the unique induced by the composition law of D.) The
proof that diagram (4.65) commutes is relegated to an exercise in 4.10.

The given definition for the enriched end allows us to state an elegant
form of the V-enriched Yoneda lemma:

Remark 4.3.5 (V-Yoneda lemma). Let D be a small V-category, D ∈ D

an object, and F : D → V a V-functor. Then the canonical map

FD → V-Cat(D,V)(D(D, ), F ) (4.67)

induced by the universal property of the involved end1 is a V-isomor-
phism.

Enriched co/ends can now be defined in the setting of enriched cate-
gories, by re-inventing all the initial definitions given in our Chapter 1,
and adapting them to the enriched setting. The present section is noth-
ing more than a graphical embellishment of [Dub70], where we make a
few blanket assumptions for the sake of simplicity of exposition.

The interested reader is warmly invited to look at said text for more
information and more general statements.

1 Notice that this is an alternative point of view on the proof of the ninja Yoneda
lemma 2.2.1: the morphism in (4.67) is induced by a wedge
F D→ V(D(D, D′), F D′) in D′, whose members are the mates of the various
D(D, D′)→ V(F D, F D′) giving the action of F on arrows.
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Notation 4.3.6. Our blanket assumption throughout the section is
the following: categories are V-cotensored (see [Dub70]: in the absence
of cotensors, the enriched counterpart of a co/end is not well-behaved
enough to be interesting; in such cases, one loses the equivalent descrip-
tion of a co/end as weighted co/limit, because our 4.3.1 fails to be true).

Moreover, we sometimes blur the distinction between (di)natural fam-
ilies D → T (C, C), for a V-functor T : Cop ⊠ C → D and V-arrows
I → D(D, T (C, C)). We do this quite liberally especially when drawing
commutative diagrams or referring to components of V-natural transfor-
mations.

The enriched analogue of extranaturality can be defined as follows:

Definition 4.3.7 (Enriched extranaturality). Let P : A⊠Bop⊠B → E

and Q : A⊠ Cop ⊠ C → E be V-functors; an extranatural transformation

αP Q consists of a family of morphisms

αABC : P (A, B, B)→ Q(A, C, C) (4.68)

in E , indexed by the objects of A,B, C, such that the following three
diagrams made by the action on morphisms of P, Q commute:

A(A, A′)

Q( ,C,C)

��

P ( ,B,B) // E(P (A, B, B), P (A′, B, B))

E(1,αA′BC )

��
E(Q(A, C, C), Q(A′, C, C))

E(αABC ,1)
// E(P (A, B, B), Q(A′, C, C))

B(B, B′)

P (A, ,B)

��

P (A,B′, ) // E(P (A, B′, B), P (A, B′, B′))

E(1,αAB′C)

��
E(P (A, B′, B), P (A, B, B))

E(1,αABC)
// E(P (A, B′, B), Q(A, C, C))

(4.69)

C(C, C′)

Q(A, ,C′)

��

A(A,C, ) // E(Q(A, C, C), Q(A, C, C′))

E(αABC ,1)

��
E(Q(A, C′, C′), Q(A, C, C′))

E(αABC′ ,1)
// E(P (A, B, B), Q(A, C, C′))

(A, A′, B, B′, C, C′ are objects of the respective categories, and E(u, 1) is
the image of u under the functor E( , E) : Eop → V as E runs over the
objects of E).
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We collect the V-extranatural transformations α : D T into the
object

V-Cate(C
op ⊠ C,D)(∆D, T ). (4.70)

Remark 4.3.8. Enriched dinaturality does not seem to appear in the
literature. The scope of the present remark is to show why such a notion
is almost often useless. In short, for a generic base of enrichment there
is no notion of ‘constant’ V-functor, and thus there is no way to define
co/wedges as dinatural transformations to/from a constant.

First, we define the enriched end of a functor taking value in the base
of enrichment.

Definition 4.3.9. [Dub70, I.3.1] Given a V-category C and a V-functor
: Cop⊠C → V , the end of T is an object of V , denoted

´

C
T (C, C), and a

V-natural family of morphisms {
´

C
T (C, C)

pC
−−→ T (C, C) | C ∈ C} such

that given any other V-natural family {uC : V → T (C, C) | C ∈ C} there
exists a unique V →

´

C
T (C, C) such that pC ◦ ū = uC in the diagram

V
ū //

uC
""❋

❋❋
❋❋

❋❋
❋❋

´

C T (C, C)

pC
xxqqq

qqq
qqq

q

T (C, C)

(4.71)

The definition of end for a generic codomain is now given representably,
following the enriched version of Yoneda-Grothendieck philosophy (see
2.1.1). The enriched Yoneda lemma 4.3.5 draws the connection between
the two: we now define

Definition 4.3.10. Let T : Cop⊠C → D be a V-functor; the end of T is
an object

´

C
T (C, C) ofD endowed with a V-natural family of morphisms

{
´

C
T (C, C)

pC−−→ T (C, C) | C ∈ C} such that given any D ∈ D the family
of arrows

D(D,
´

C T (C, C))
D(D,pC) // D(D, T (C, C)) (4.72)

exhibits the end of D(D, T ( , )) : Cop ⊠ C → D → V .

Remark 4.3.11. Equivalent to the universal property above is the fact
that there is a natural bijection between the V-wedges D

uC−−→ T (C, C)
and the underlying set of D(D,

´

C
T (C, C)):

V-Cate(C
op ⊠ C,D)(∆D, T ) ∼= V

(
I,D

(
D,

ˆ

C

T (C, C)
))

(4.73)
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Definition 4.3.12. Let T : Cop ⊠ C → D be a V-functor; the universal
property of

´

C T (C, C) yields a unique morphism G
( ´

C T (C, C)
)
→

´

C GT (C, C) for every V-functor G : D → E ; this is the unique morphism
closing the diagram

G
( ´

C
T (C, C)

)

GpC ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖

ζ //
´

C
GT (C, C)

p′Cww♣♣♣
♣♣♣

♣♣♣
♣♣

GT (C, C)

(4.74)

to a commutative one, where p′C is the terminal wedge of GT . We say
that G preserves the end of T if whenever

´

C
T exists, so does

´

C
GT ,

and the above comparison morphism ζG is invertible.

Remark 4.3.13 (Parametric ends of V-functors). Let T : Cop⊠C⊠E →

D be a V-functor; the monoidal closed structure of V-Cat gives T a mate
T̂ : Cop⊠C → [E ,D]. The parametric end of T , provided it exists, consists
of the end of T̂ , promoted to a V-functor E → D.

More in detail, this means that the parametric end of T exists if for
every E ∈ E the end of T ( , ; E) : Cop ⊠ C → D exists and there is a
unique morphism

E(E, E′)→ D
(
´

C
T (C, C; E),

´

C
T (C, C; E′)

)
(4.75)

giving to
´

C
T (C, C; ) the structure of a V-functor E → D, in such a

way that p(C),E :
´

C
T (C, C; E)→ T (C, C; E) is a V-wedge for T ( , ; E),

and it is V-natural in E.

The above remark is based on the fact that if D is a complete V-
category, namely a V-category such that every limit of F : J → E

weighted by W : J → V exists, then [E ,D] is complete as well, because
limits can be computed pointwise: spelled out precisely, this means that
given a V-functor F : J → [E ,D], the correspondence

E 7→

ˆ

J

WJ ⋔ F (J, E) (4.76)

defines a V-functor, and such V -functor has the universal property of
the limit limWF .

This statement follows at once from a simple computation with the
involved end: it just remains to see that the above definition gives a
well-defined V -functor.
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Let now E = Bop ⊠ B; then an enriched Fubini rule holds for functors

T : Cop ⊠ C ⊠ Bop ⊠ B → E .

Theorem 4.3.14 (Enriched Fubini rule). Whenever both inner para-

metric ends
ˆ

C

ˆ

B

T (C, C; B, B)
ˆ

B

ˆ

C

T (C, C; B, B) (4.77)

exist as functors TB : Bop ⊠ B → D and TC : Cop ⊠ C → D, the outer

ends exist if and only if either one of them exists, and they are canoni-

cally isomorphic objects, in turn isomorphic to the end of the rearranged

functor (B ⊠ C)op ⊠ (B ⊠ C)→ D.

Exercises

4.1 Prove all the statements in 4.1.13.

4.2 This is a corollary to 4.3.1, where we take the tensored and coten-
sored V-category A = V . Prove that the adjunction reduces to the
adjunction Lany W ⊣ NW of 3.2.2; do it in two ways: first, through
coend calculus, and then exhibiting unit and counit of an adjunction
W ⊗ ⊣ V(W , ) : [C,V ]⇆ V .

4.3 [Kel89] Mimic the argument in 4.2.7 to give a characterisation based
on coend calculus of the following weighted co/limits:

(a) the equifier of a pair of functors f, g : B ⇒ C and two natural
transformations α, β : f ⇒ g; it is defined as the weighted limit
limWF where W : J → Cat sends the 2-category

J = 0
""
<<

✤✤ ✤✤
��

✤✤ ✤✤
�� 1

to the diagram of 2-cells [0]

s

''

t

77
✤✤ ✤✤
�� δ0

✤✤ ✤✤
�� δ1 [1] and F : J → Cat

sends J to the diagram of 2-cells B

f

&&

g

88
✤✤ ✤✤
�� α

✤✤ ✤✤
�� β C and enjoys the

following universal property (see [Kel89, 4.5]): there is a universal
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diagram

limWF
p // B

f

&&

g

88
✤✤ ✤✤
�� α

✤✤ ✤✤
�� β C

such that α ∗ p = β ∗ p and given any other q : A → B such that
α ∗ q = β ∗ q there is a unique q̄ : A→ limWF such that q = p ◦ q̄

in the diagram

limWF
p // B

f

&&

g

88
✤✤ ✤✤
�� α

✤✤ ✤✤
�� β C

A

q̄

OO

q

;;✇✇✇✇✇✇✇✇✇✇

Moreover, given h, k : A→ limWF and a 2-cell µ : ph ⇒ pk, there
is a unique 2-cell µ̄ such that p ∗ µ̄ = µ.

(b) the coequifier of a pair of functors f, g : A⇒ B; it is defined as the
weighted colimit colimWF for the same W, F above, and enjoys the
dual universal property (write it down in detail).

(c) the lax limit of a functor f : A → B; it is defined as the weighted

limit limWF where W : {0 < 1} → Cat chooses the functor {0} 0
−→

{0 → 1} and F : J → Cat chooses the functor f : B → C. The
object limWF has the following universal property: there exists a
pair (u, v) of 1-cells and a 2-cell λ : fu⇒ v in a diagram

limWF

❴❴❴❴ +3λ v

##❋
❋❋

❋❋
❋❋

❋❋
u

{{①①
①①
①①
①①
①

B
f

// C

terminal with respect to this property (write down the universal
property in detail).

(d) the pseudo-limit of a functor f : A → B, where J , F are the
same, and W is instead the embedding of the domain in the generic
isomorphism, i.e. the functor {0} 0

−→ {0 ∼= 1}.

4.4 Let J = {0⇒ 1}, let [n] denote the category {0 < 1 < · · · < n} and

W : J → Cat : {0⇒ 1} 7−→ {[1]
d0

⇒
d2

[2]}
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F : J → Cat : {0⇒ 1} 7−→ {B
f

⇒
g

C}

where di : [n]→ [n + 1] avoids the ith element. What is the universal
property of limWF?

4.5 Complete the proof of 4.3.4.

4.6 Let W : S0 →֒ D1 be the canonical inclusion of the endpoints {0, 1}
into the interval [0, 1] ⊂ R with the usual topology; prove that the
mapping cone of a continuous map f : X → Y regarded as a functor
to the category Spc is precisely the weighted colimit colimW f .

4.7 Show that there are canonical isomorphisms limWFJ ∼= limLanJ WF ,
in the diagram

A

W
��

J // B
F //

LanJ W��⑧⑧
⑧⑧
⑧⑧
⑧⑧

C

V

and dually colimWJF ∼= colimW LanJ F , in the diagram

A

F
��

J // B
W //

LanJ F��⑧⑧
⑧⑧
⑧⑧
⑧⑧

V

C

4.8 Is there a Fubini rule for weighted co/limits?

4.9 Use the universal property of 4.3.10 to show that every V-natu-
ral transformation α : T ⇒ T ′ : Cop ⊠ C → D induces an arrow
´

C
α :
´

C
T (C, C)→

´

C
T ′(C, C). Show that if α is a component-wise

monomorphism2 in D, then so is
´

C
α.

4.10 Prove that the V-category of V-functors C → D is indeed a V-
category, in the sense that the axioms of A.7.1 hold. More precisely,
the claim here is that given V-functors F, G : C → D, the V-category
with hom-objects

´

C D(FC, GC) is well-defined and indeed a V-category.
Verifying the axioms once and for all is instructive, but things get a
little bit hairy.

For example, this is the commutative diagram witnessing that com-

2 We say that u : D→ D′ is a V-monomorphism if the image of u under the
enriched Yoneda embedding よ(u) :よD ⇒よD′ is a monomorphism in
V-Cat(Dop,V).
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position has a right identity induced by ιGX : I → D(GX, GX):

( ´
C D(FC, GC)

)
⊗ I

ωF G
C ⊗I

��

1⊗ιG //
´

C D(FC, GC) ⊗
´

B D(GB, GB)

ωF G
C ⊗ωGG

C

��
D(FC, GC) ⊗ I

∼= ..

1⊗ιGC

// D(FC, GC) ⊗D(GC, GC)

comp

��
D(FC, GC)

where ιG is the unique map such that ωGGC ◦ ιG = ιGC ; associativity
gets a bit worse, but the appropriate diagram can be reshaped and
broken according to the following scheme:

1⊗γ

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖

��ω⊗ω⊗1

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎

//

''

1⊗ω⊗ω

77♦♦♦♦♦♦♦♦♦♦♦♦♦

��

//

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

ω⊗ω

���� ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖

��❄
❄❄

❄❄
❄❄

❄ //

��❄
❄❄

❄❄
❄❄

❄

γ⊗1
��❄

❄❄
❄❄

❄❄
❄

��❄
❄❄

❄❄
❄❄

❄
γ⊗1

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

1⊗γ //

γ

��

??⑧⑧⑧⑧⑧⑧⑧⑧
ω⊗ω

//
γ

//

where γ are suitable composition maps, ω are suitable cowedge maps,
and the dotted arrows are induced as canonical maps, say,

(ˆ

C

D(FC, GC)
)
⊗X →

ˆ

C

(
D(FC, GC) ⊗X

)
. (4.78)

Starting from this, prove that diagram 4.65 commutes.
4.11 Prove 4.3.14 with the aid of [Dub70, I.3.4].
4.12 Prove the following: if T : Cop ⊠ C ⊠ E → D is a V-functor, we

consider T (C, C; ) : E → D as a V-functor, and we let W : C → V
be a weight; then

ˆ

C

limWT (C, C; E) ∼= limW

ˆ

C

T (C, C; E).

Dualise for coends.
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Profunctors

5.1 The 2-category of profunctors

Summary. The present chapter introduces the theory of profunc-
tors; regarded as a generalisation of presheaves and modules over rings,
profunctors have a pride of place in 2-dimensional algebra. We explore
the main features of the bicategory Prof that they form, heavily em-
ploying coend calculus as a mean to handle computations.

The bicategory of profunctors has plenty of nice features: for exam-
ple, it is monoidal biclosed, and in fact also compact closed. There
are canonical embeddings of the strict 2-category Cat in the bicate-
gory Prof , that in a suitable sense ‘preserve’ the expressiveness of the
category theory done in both environments.

The theory of profunctors has several applications in algebra [GJ17],
algebraic geometry [KL14] algebraic topology, representation theory
[T+06, PS08] and computer science [Kme18].

On peut regarder une pièce d’un puzzle pendant trois
jours et croire tout savoir de sa configuration et de sa
couleur sans avoir le moins du monde avancé : seule
compte la possibilité de relier cette pièce à d’autres pièces

G. Perec — La vie, mode d’emploi

The lucid presentation in the notes [Béer] and in [CP08, §4], [Bor94b]
are standard references to follow this chapter. Co/end calculus provides
a deeper glance and a unified description for the material appearing in
[Béer]; here some arguments become neater, some other are made more
explicit or computationally evident.

First, recall from 3.2.12 and 3.2.13 that we can define tensor product
of modules as a coend:

Example (The tensor product of modules as a coend). Any ring R can
be regarded as an Ab-enriched category having a single object: under this

127
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identification, the category of left modules over R is but the category
of functors R → Ab, and dually, the category of right R-modules is the
category of contravariant functors, Rop → Ab

ModR ∼= Cat(Rop, Ab)

RMod ∼= Cat(R, Ab). (5.1)

Moreover, given functors A : Rop → Ab, B : R → Ab, there is a canon-
ical isomorphism between the functor tensor product A ⊗ B defined as
the coend of A⊗ZB, and A⊗RB: in short, there is a coequaliser diagram

⊕
r∈R A⊗Z B

1⊗r
//

r⊗1 //
A⊗Z B // A⊗R B (5.2)

Remark 5.1.1. We can define a bicategory (see A.7.11) Mod having

• 0-cells the rings R, S, . . . ;
• 1-cells R→ S the modules RMS, regarded as functors M : R×Sop →

Ab;
• 2-cells f : RMS ⇒ RNS are the module homomorphisms f : M → N .

The notion of profunctor arises from a massive, but fairly natural,
generalisation of this construction.

The parallel here is motivated by the fact that categories are certain
monoid objects, and the features of such monoids are captured by their
categories of action: in this perspective a (left) action of a category on a
set is merely a functor C → Set. The analogy with a group action is once
again evident: in fact, a (left) group action of G on a set X is merely a
presheaf G→ Set, when G is regarded as a category.

This allows to state the following definition:

Definition 5.1.2 (The bicategory of profunctors). There exists a bicat-
egory Prof having

• 0-cells are (small) categories A,B, . . . ;
• 1-cells p, q . . . , denoted as arrows p : A B, are functors

Aop × B → Set; (5.3)

• 2-cells α : p⇒ q are natural transformations.

Given two contiguous 1-cells A
p
 B

q
 C we define their composition

q ⋄ p as the coend

q ⋄ p(A, C) :=
ˆ B∈B

p(A, B)× q(B, C). (5.4)
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Definition 5.1.3. This definition works well also with Set replaced by
an arbitrary Bénabou cosmos V , i.e. in any symmetric monoidal closed,
complete and cocomplete category: in this case we speak of V-profunctors
in the bicategory Prof(V).

Remark 5.1.4 (Naming a category). Since their first introduction, pro-
functors have been called many other names, depending on the leading
perspective that guided their definition:

pn1) the 1-cells of Prof are called profunctors, because they generalise func-
tors: we will see that some profunctors are representable; they are the
ones of the form B(B, FA) or B(B, FA) for some functor F : A → B
between categories. A profunctor thus works ‘on behalf’ of a functor
(this is one of the meanings of the prefix pro-).

pn2) In the same vein, relations are generalised functions too: this is why
some people (among which, A. Joyal) prefer to call the 1-cells of Prof

relators: just as a func-tion is a special kind of rela-tion, a func-tor
is a special kind of rela-tor. This analogy is deeper than it seems: we
will see in 5.1.5 that there is a bicategory of relations, and this is a
Prof(V) for a certain V .

pn3) Following the idea that distributions are generalised functions in func-
tional analysis, the 1-cells of Prof are also called distributors, when we
follow the intuition that functions are to functors as distributions are
to distributors. As the nLab says,

Jean Bénabou, who invented the term and originally used “profunc-
tor”, now prefers “distributor”, which is supposed to carry the intu-
ition that a distributor generalises a functor in a similar way to how
a distribution generalises a function.

Again, this intuition is deeper that it seems: in [Law07] Lawvere de-
fined a notion of ‘distribution between toposes’, in such a way that the
points of a topos p : Set → E behave like Dirac delta functions, and
such that distributions between presheaf toposes are exactly profunc-
tors. We discuss the analogy between Dirac deltas and representable
functors in 2.2.6.

pn4) The 1-cells of Prof are sometimes called correspondences: consider the
case when V = {0, 1} i.e. where A,B are sets regarded as discrete
categories, and see 5.1.5 below.

pn5) Drawing from 3.2.13, the 1-cells of Prof are sometimes called bimod-

ules: indeed, the bicategory Mod is precisely the subcategory of Prof(Ab)
made by one-object Ab-categories. See [KL14] for applications in alge-
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braic geometry, ad [Gen15] for applications of bimodules in homologi-
cal algebra.

Category theorists know well that an elephant can have different names
according to the angle it is observed from; we accept this situation, and
we tacitly stick to call ‘profunctor’ the 1-cells of Prof without making
further mention of this variety of names. However, we invite the reader
to maintain clear the intuition conveyed by all these names, in order
to appreciate the variety of contexts in which the notion of profunctor
naturally arises.

Example 5.1.5 (Profunctors as generalised relations). We consider cat-
egories enriched over the monoidal category V = {0 < 1}.

By definition, a profunctor between {0, 1}-categories is a function be-
tween sets Aop×B → {0, 1}, or more precisely a function A×B → {0, 1}
(a {0, 1}-enriched is merely a set, and dualisation on a discrete category
has no effect), that is to say a relation regarded as a subset R ⊆ A×B.

The standpoint regarding profunctors as generalised relations is what
Lawvere [Law73, §4,5] calls generalised logic, and it regards the coend in
5.1.2, as well as the product p(A, X)× q(X, B) therein, as a generalised

existential quantification and a generalised conjunction respectively, giv-
ing a composition rule for generalised relations: the coend stands on the
same ground of the composition rule for relations (even more: the two
constructions have the same universal property), in such a way that the
composition of relations R ⊆ Y × Z, S ⊆ X × Y is given by the rule

(x, z) ∈ R ◦ S ⇐⇒ ∃y ∈ Y :
(
(x, y) ∈ S

)
∧
(
(y, z) ∈ R

)
. (5.5)

(x, z) ∈ S ◦ R ⇐⇒ ∃y ∈ Y
(
(x, y) ∈ S

)
∧

(
(y, z) ∈ R

)

(q ⋄ p)(X, Z) =

ˆ Y ∈Y

p(Y, Z) × q(X, Y )

The analogy between the composition of profunctors between cat-
egories and the composition of relations between sets gives rise to
what Lawvere calls generalised logic.
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Example 5.1.6. Let again A, B be sets, considered as discrete cate-
gories. A profunctor p : A  B is then simply a collection of sets Pab,
one for each a ∈ A, b ∈ B. Profunctor composition then results in a
‘categorified’ matrix multiplication, since the coend in (5.4) boils down
to be a mere coproduct of sets: given p : A→ B, q : B → C we have

(p ⋄ q)ac =
∐

b∈B

Pab ×Qbc (5.6)

if Pab = p(A, B) and Qbc = q(b, c).

Remark 5.1.7. There is an alternative, but equivalent definition for
the composite profunctor q ⋄ p which exploits the universal property of
Cat(Cop, Set) as a free cocompletion: by definition, the category of pro-
functors p : A B and natural transformations fits into an isomorphism
of categories

Cat(Aop × B, Set) ∼= Cat(B, Cat(Aop, Set)); (5.7)

under this isomorphism, p corresponds to a functor p̂ : B → Cat(Aop, Set)
obtained as B 7→ p( , B).

We can thus define the composition A
p
 B

q
 C to be Lanよ p̂ ◦ q̂ (◦

is the usual composition of functors):

B

よ

��

p̂ // Cat(Aop, Set)

C
q̂

// Cat(Bop, Set) Lanよ p̂

::

(5.8)

Note that this is in line with the fact that given a category C, presheaves
on C correspond to profunctors C  1; covariant functors C → Set in-
stead correspond to profunctors 1 C, where 1 is the terminal category.

Equation (5.8) above is equivalent to the previous definition of profunc-
tor composition, in view of the characterisation of a left Kan extension
as a coend in Cat(Aop, Set) that we have given in 2.27:

Lanよ p̂ ∼=
ˆ B

Cat(Bop, Set)(よ(B), )⊗ p̂(B). (5.9)

We have

Lanよ p̂(q̂(C)) ∼=
ˆ B

Cat(Bop, Set)(よ(B), q̂(C)) ⊗ p̂(B)
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∼=
ˆ B

q̂(C)(B) ⊗ p̂(B)

∼=
ˆ B

p( , B)× q(B, C).

Remark 5.1.8 (Prof is a bicategory). The properties of (strong) asso-
ciativity and unitality for the composition of profunctors follow directly
from the associativity of cartesian product, its co-continuity as a functor
of a fixed variable, and from the ninja Yoneda lemma 2.2.1, as shown by
the following computations:

• Composition of profunctors is associative up to isomorphism: given
three profunctors B r

 X
q
 Y

p
 A, giving the associator of a bicat-

egory structure:

p ⋄ (q ⋄ r) =
ˆ Y

p(Y, A)× (q ⋄ r)(B, Y )

=
ˆ Y

p(Y, A)×
(ˆ X

q(X, Y )× r(B, X)
)

∼=
ˆ XY

p(Y, A)×
(
q(X, Y )× r(B, X)

)

(p ⋄ q) ⋄ r =
ˆ X

(p ⋄ q)(X, A)× r(B, X)

∼=
ˆ XY (

p(Y, A)× q(X, Y )
)
× r(B, X)

(we freely employ most of the rules of co/end calculus we learned to
far, mostly the Fubini rule 1.3.1) these results are clearly isomorphic,
and naturally so.
• Every object A has an identity arrow, given by the hom profunctor
A( , ) : Aop × A → Set: the fact that p ⋄ hom ∼= p, hom ⋄ q ∼= q

simply rewrites the ninja Yoneda lemma 2.2.1.

Remark 5.1.9. The isomorphism above is part of the data turning Prof

into a bicategory; the associator realises the identification between differ-
ent parenthesisations of 1-cells, and the unitor realises the identification
between p ⋄ hom ∼= p.

In order to get a bicategory, some coherence conditions have to be
imposed, precisely those of A.7.11.

It’s immediate to observe that the validity of the pentagon identity in
the case of the cartesian monoidal structure of Set, and the naturality
thereof, ensure that the associator (whose components are) (p ⋄ q) ⋄ r⇒
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p ⋄ (q ⋄ r) satisfies the pentagon identity; a similar argument shows that
the unitor satisfies similar (left and right) triangular identities, as a
consequence of the naturality of the ninja Yoneda lemma 2.2.1.

The reader might find instructive the exercise of showing by means
of the bare universal property of the product that the isomorphisms
A× (B×C) ∼= (A×B)×C in a cartesian category satisfy the pentagon
equation.

Notation 5.1.10 (Einstein notation). The reader might have noticed,

at this point, that computations with coends might become rather heavy-

handed, and that sometimes multiple indices have to be considered at the

same time; we shall introduce here a useful notation to shorten them

a bit, which is particularly evocative when dealing with profunctors; we

choose to call it Einstein convention for evident reasons.1

Let p : A  B, q : B  C be two composable profunctors. If we

adopt the notation pAB, qBC to denote the images p(A, B), q(B, C) ∈ Set
(keeping track that superscripts are contravariant and subscripts are co-

variant components), then composition of profunctors acquires the form

of a product of tensor components:

p ⋄ q(A, C) =
´ B

pAB × qBC =
´ B

pABq
B
C . (5.10)

The convention is then defined as follows: we denote as super- and sub-

scripts the objects a bifunctor depends on; whenever an object B ∈ B

appears once covariantly, say in pXB and once contravariantly, say in qBY ,

the result can be integrated with a co/end into an object
´ B

pXB qBY or
´

B
pXB qBY .

From now on, we freely employ the Einstein summation convention

when typesetting long computations.

5.2 Embeddings and adjoints

In the present section we shall define two canonical identity-on-objects
embeddings Cat → Prof: the covariant one reverses the direction of 1-
cells, but maintains the direction of 2-cells; the contravariant one does

1 To the knowledge of the author, this notation has first been adopted also in
[RV14], a valuable reading in itself for more than one reason. Last but not least,
the fact that it provides a description of ‘Reedy calculus’ in homotopical algebra
that heavily –albeit without too an explicit mention– employs coends.
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the opposite.2 The two correspondences are pictorially represented by
the assignments

C
Catop→Prof

G

��

F

��

❴❴❴❴ +3α

C C

G

��

F

��

❴❴❴❴ +3α

Catco→Prof
C

pG

��

pF

��

❴❴❴❴ks
pα

D D

pF

GG

pG

WW

❴❴❴❴ +3
pα

D D

(5.11)

and they will be usually nameless 2-functors along the discussion, just
called “the embedding” of Cat in Prof.

Given a functor F : A → B, we define

e1) pF to be the profunctor B(1, F ) : B  A defined sending (B, A) 7→
B(B, FA);

e2) pF to be the profunctor B(F, 1) : A  B defined sending (A, B) 7→
B(FA, B).

The 1-cells pF , pF will usually be called representable profunctors in-
duced by F : A → B. If the context forces us to distinguish between
pF and pF we call the first the corepresentable one (mnemonic: sending
F to its corepresentable profunctor is a 2-functor Catco → Prof); this
is however uncommon, and which of the two “representable profunctor
induced by F” is usually clear from the context.

Both choices define (pseudo) functors of the appropriate variance,
since the isomorphisms

• pFG ∼= pF ⋄ pG, and pFG ∼= pG ⋄ pF and
• pidA = pidA = A( , )

can be easily established using elementary coend calculus, and they hold
for every composable pair of functors F, G and every category A: for
example,

(pF ⋄ pG)(C, A) ∼=
ˆ B

B(B, FA)× C(C, GB)

∼= C(C, GFA) = pFG(C, A)

by the ninja Yoneda lemma.
Natural transformations α : F ⇒ G are obviously sent to 2-cells in

2 Recall from chapter 2 that given a 2-category K there is a 2-category Kop, where
1-cells are reversed and 2-cells are untouched, and a 2-category Kco, where 2-cells
are reversed and 1-cells are untouched; of course, Kcoop = (Kop)co = (Kco)op.
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Prof, and the covariance of this assignment is evident from the definition
of pF and pF .

Finally, the Yoneda lemma entails that both functors F 7→ pF and
F 7→ pF are locally fully faithful: this means that there are bijections

Cat(A,B)(F, G) ∼= Prof(B,A)(pF , pG) (5.12)

for every F, G : A → B. If pF ∼= pG, it means we have a natural bi-
jection B(FA, B) ∼= B(GA, B), that entails the existence of a natural
isomorphism α : F ⇒ G.

The most important fact about representable and corepresentable pro-
functors associated to the same functor is that they are adjoint 1-cells
in Prof:

Remark 5.2.1. There is a tight link between the 1-cells pF , pF : they are
adjoint 1-cells in the bicategory Prof. Indeed, for every F ∈ Cat(A,B)
we can define 2-cells

ǫF : pF ⋄ pF +3 B( , )

ηF : A( , ) +3 pF ⋄ pF
(5.13)

(counit and unit of the adjunction), satisfying the zig-zag identities:
we choose a very explicit, set-theoretic proof for this statement, leaving
to the reader the task to generalise the argument to a generic base of
enrichment.

• The components of the counit ǫ are determined by inspecting the
coend pF ⋄ pF as the quotient set
ˆ X

B(A, FX)× B(FX, B) =
( ∐

x∈A

B(A, FX)× B(FX, B)
)

/≃

(5.14)
where ≃ is the equivalence relation generated by

(
A

u
−→ FX, FX

v
−→

B
)
≃
(
A

u′
−→ FY, FY

v′
−→ B

)
if there is t : X → Y such that v′ = Ft◦v

e Ft◦u = u′. This can be visualised as the commutativity of the square

FX

Ft

��

v

''◆◆
◆◆◆

◆

A

u′
''◆◆

◆◆◆
◆

u 77♣♣♣♣♣♣
B

FY v′

77♣♣♣♣♣♣

(5.15)

Now it’s easily seen that sending
(
A

u
−→ FX, FX

v
−→ B

)
in the compo-

sition v ◦ u descend to the quotient with respect to ≃, hence there is
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a well defined map ǫ : pF ⋄ pF → B( , ). All boils down to the fact
that the composition

c : B(A, FX)× B(FX, B)→ B(A, B) (5.16)

defines a cowedge in the variable X .

• The components of the unit η are determined as functions

η : A(A, B) +3 pF ⋄ pF (A, B). (5.17)

Since pF ⋄ pF (A, B) =
´ X
B(FA, X)×B(X, FB) ∼= B(FA, FB) (as a

consequence of the ninja Yoneda lemma), these are simply determined
by the action of F on arrows, A(A, B)→ B(FA, FB).

We now have to verify that the triangle identities (see [Bor94a, Thm.3.1.5.(2)])
hold:

(pF ⋄ ǫ) ◦ (η ⋄ pF ) = idpF

(ǫ ⋄ pF ) ◦ (pF ⋄ η) = idpF

As for the first, we must verify that the diagram

pF
∼ // B( , ) ⋄ pF

η⋄pF

// (pF ⋄ pF ) ⋄ pF

∼=

��
pF pF ⋄ B( , )∼

oo pF ⋄ (pF ⋄ pF )
pF ⋄ǫ

oo

(5.18)

commutes. One has to send h ∈ pF (u, v) = B(Fu, v) in the class [(idu, h)] ∈
´X
B(U, X)×B(FX, V ), which must go under η⋄pF in the class [(F (idu), h)] ∈

´XY
B(FA, X)×B(X, FY )×B(FY, B), canonically identified with

´ Y
B(FA, FY )×

B(FY, B). Now pF ⋄ ǫ acts composing the two arrows, and one obtains
F (idA) ◦ h = h back.

Similarly, to prove the second identity, the diagram

pF
∼ // pF ⋄ B( , )

pF ⋄η // pF ⋄ (pF ⋄ pF )

∼=

��
pF B( , ) ⋄ pF∼

oo (pF ⋄ pF ) ⋄ pFǫ⋄pF

oo

(5.19)

must commute (all the unlabeled isomorphisms are the canonical ones).
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This translates into
(

a
u
−→ FB

)
✤ // (u, idB)∼

✤ // (u, F (idB)) ✤ // u ◦ F (idB) = u,

(5.20)
which is what we want; hence pF ⊣ pF .

Remark 5.2.2. Two functors F : A⇆ B : G are adjoints if and only if
pF ∼= pG (and therewith G ⊣ F ) or pG ∼= pF (and therewith F ⊣ G).

The covariant embedding of Cat in Prof gives every 1-cell F : A → B
a left adjoint. It turns out that many properties of functors can be trans-
lated into properties of the associated representable profunctor. As an
elementary example, we take the fact that a functor is full and faithful:

Remark 5.2.3. It is a well-known fact (see [Bor94a, dual of Prop. 3.4.1])
that if F ⊣ G, then F is fully faithful if and only if the unit of the
adjunction η : 1→ GF is an isomorphism.

This criterion can be extended also to functors which do not admit
a ‘real’ right adjoint, once noticed that F is fully faithful if and only if
A(A, B) ∼= B(FA, FB) for any two A, B ∈ A, i.e. if and only if the unit
η : homA ⇒ pF ⋄ pF is an isomorphism in the bicategory Prof.

It is possible to define an action of profunctors on functors; more
precisely,

Definition 5.2.4. Given a profunctor p : A B and a functor F : B →
D we can define p ⊗ F to be the functor A → D given by Lanよ F ◦ p̂,
where p̂ : B → Cat(Aop, Set) is the mate of p, as in (5.8).

More explicitly,

p⊗ F (A) =
ˆ B

[よB, p( , A)]⊗ FB ∼=
ˆ B

pBA ⊗ FB (5.21)

Note that a conceptual definition for this operation is the following: p⊗F ,
evaluated on A ∈ A, is the weighted colimit colimpAF . Exploiting this
definition, it is possible to prove using coend calculus that this operation
can be rightly called a left action Prof(A,B)× Cat(B,D)→ Cat(A,D).

• homB ⊗F ∼= F as a consequence of the ninja Yoneda lemma;
• If C

q
 A

p
 B

F
−→ X , then (p ⋄ q)⊗ F ∼= q⊗ (p⊗ F ): indeed

[(p ⋄ q)⊗ F ] =
ˆ B

(p ⋄ q)B × FB

∼=
ˆ BX

pBX × qX × FB



138 Profunctors

∼=
ˆ X

qX ×
(ˆ B

pBX × FB

)

∼=
ˆ X

qX × (F ⊗ p)X = [q ⊗ (p⊗ F )]

The composition of profunctors is a ‘closed structure’ in the following
sense: both functors p ⋄ and ⋄ q have right adjoints, respectively
given by a right lifting and a right extension operation (see 2.1.3).

Example 5.2.5 (Kan extensions in Prof). Every profunctor p has a right
Kan extension Ranp in the sense that the notion has in any bicategory,
where composition of functors or natural transformations is replaced by
composition of 1- or 2-cells.

One has the following chain of isomorphisms in Prof:

Prof(g ⋄ p, r) ∼=
ˆ

AB

Set
(
(g ⋄ p)(A, B), r(A, B)

)

∼=
ˆ

AB

Set
(ˆ X

g(A, X)× p(X, B), r(A, B)
)

∼=
ˆ

ABX

Set
(
g(A, X), Set(p(X, B), r(A, B))

)

∼=
ˆ

AX

Set
(
g(A, X),

ˆ

B

Set(p(X, B), r(A, B))
)

∼=
ˆ

AX

Set
(
g(A, X), 〈p/r〉(A, X)

)

∼= Prof(g, 〈p/r〉)

when we define 〈p/r〉(A, X) to be the set of natural transformations
p(X, )⇒ r(A, ). This yields that 〈p/r〉 has the universal property of
the right extension of r along p.

Similarly, we can prove that a suitable end 〈g\r〉 defines the right
lifting of r along g. This is the content of Exercise 5.2.

5.3 The structure of Prof

The bicategory of profunctors has an extremely rich structure; we briefly
account about its main properties, drawing from [CW96].

As 5.1.5 shows, a relation R ⊆ A×B, regarded as a function A×B →

{0, 1}, is a 1-cell of Prof({0, 1}); but what are domain and codomain of
such a R? It is evident that the symmetry of the product σAB : A×B ∼=
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B ×A induces an identity-on-objects identification

Prof({0, 1}) ∼= Prof({0, 1})op (5.22)

(see 5.1.3 for the notation Prof(V)) sending a relation R ⊆ A× B, seen
as a 1-cell R : A  B to the relation σAB ◦ R ⊆ B × A, regarded as a
1-cell R : B  A.

This is a general phenomenon: every Prof(V) admits a ‘tautological’
bi-equivalence with Prof(V)op, determined as follows (see [CW96]):

Proposition 5.3.1 (The canonical dualiser of Prof). The identification

Cat(Aop×B, Set) ∼= Cat(B×Aop, Set) determines an equivalence ( )◦ :
Profop → Prof determined by the following correspondences:

• On objects, a 0-cell A of Prof goes to A◦ = Aop;

• The 1-cell p : A  B goes to ‘itself’, p◦ : Bop  Aop, under the

identification (isomorphism of categories)

Prof(A,B) = Cat(Aop×B, Set) ∼= Cat(B×Aop, Set) = Prof(Bop,Aop)
(5.23)

• The 2-cell α : p⇒ q goes to ‘itself’, again under the identification

Prof(A,B)(p, q) ∼= Prof(Bop,Aop)(pop, qop) (5.24)

We pair the existence of a dualiser on Prof with the following result:

Proposition 5.3.2. [CW96, 4.3.7] The bifunctor

× : Prof × Prof → Prof (5.25)

defined as the product functor in each dimension, i.e. the correspondence

sending

• two 0-cells A,B ∈ Prof into the product category A× B;

• two 1-cells p : A B, q : C  D to

p× q : A× C  B ×D : (A, C; B, D) 7→ p(A, B)× q(C, D), (5.26)

• two 2-cells α : p⇒ q and β : l⇒ r to their product components

(α× β)A,C;B,D : p× l(A, C; B, D)⇒ q× r(A, C; B, D) (5.27)

equips Prof with a monoidal structure.

Remark 5.3.3. ([CW96, 4.3.3]) A somewhat odd feature of Prof is that
(pseudo-)products and (pseudo-)coproducts both exist, they coincide on
objects, and exchange each other’s place on 1-cells:
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• the span

A
pA
 A
∐
B
pB
 B (5.28)

exhibits the universal property of the pseudo-product A&B of A and
B in Prof, if the ‘projection’ maps are defined as

[
homA

∅

]
: (Aop×A)∐

(Bop ×A)→ Set and
[

∅

homB

]
: (Aop × B)∐ (Bop × B)→ Set;

• the cospan

A
iA
 A

∐
B

iB
 B (5.29)

exhibits the universal property of the pseudo-coproduct A ⊕ B of A
and B in Prof, if the ‘injection’ maps are defined as

[
homA

∅

]
: (Aop ×

A) ∐ (Aop × B)→ Set and
[

∅

homB

]
: (Bop ×A) ∐ (Bop × B)→ Set;

Note in particular that the monoidal structure in 5.3.2 is not the carte-
sian one. Since the empty diagram carries no information on 1- and
2-cells, it is thus possible to use this construction to show that Prof has
a pseudo-zero object, namely the initial category ∅. This appears as
[CW96, 4.3.5].

Remark 5.3.4. Taken together, these results allow to prove that the
bicategory Prof is compact closed: given that the monoidal unit for the
structure in 5.3.2 is the terminal category, we shall find suitable profunc-
tors

η : 1 Aop ×A ǫ : A×Aop  1 (5.30)

such that the following two yanking equations are satisfied:

A ∼= A× I
A×η
−−−→ A× (A◦ ×A) ∼= (A×A◦)×A ǫ×A

−−−→ I ×A ∼= A
(5.31)

A◦ ∼= I ×A◦
η×A◦

−−−−→ (A◦ ×A)×A◦ ∼= A◦ × (A×A◦) A
◦×ǫ
−−−→ A◦ × I ∼= A◦

(5.32)

It is evident that suitable hom functors (in fact, the same hom-functor
of A and its dualised copy hom◦) do the job.

Remark 5.3.5. The coend operation
´ C : Cat(Cop×C, Set) endows Prof

with a traced structure: this means that the category Prof is monoidal
with respect to the product defined in 5.3.2, and that there exists a
family of functions

trCA,B : Prof(A× C,B × C)→ Prof(A,B) (5.33)
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satisfying suitable coherence conditions, expressed in [JSV96]: we record
these condition in Exercise 5.12 and leave the proof to the reader.

The map trCA,B is defined as the composition

Cat((A× C)op × B × C, Set) ∼= Cat(Aop × B, Cat(Cop × C, Set))
´

C

−−→ Cat(Aop × B, Set) (5.34)

(a few completely straightforward identifications have been omitted).

5.4 A more abstract look at Prof

Remark 5.4.1. The bicategory of profunctors can be promoted to a
multi-bicategory in the sense of [CKS03, 1.4]; this means that we ex-
ploit the composition operation to specify a class of multi-morphisms
η : p1, . . . , pn  q, depicted as diagrams

X0

✤
q

CC
✤p1 // X1

✤p2 // . . . ✤pn // Xn

η
�� (5.35)

whose composition, associativity, and unitality follow at once from past-
ing laws for 2-cells in 2-categories [Kel82] (try to outline them explicitly
as a straightforward exercise). More generally, the bicategory of profunc-
tors is a toy example of a fc-multicategory [Lei99] or, in more modern
terms, a virtual double category (vdc) [CS10].

A vdc C as defined in [CS10] is a category-like structure whose ‘cells’
α have the form

X0

��

✤p1 //

⇓α

X1
✤p2 // · · · ✤pn // Xn

��
Y0

✤
q

// Y1

(5.36)

where the vertical arrows are the morphisms of a category Cv called the
vertical category of the vdc, and the cell α has a n-tuple (for n ≥ 0, the
non-negative integer n is called the arity of the cell) of horizontal mor-
phisms (p1, p2, . . . , pn) as horizontal domain, and a single q as horizontal
codomain.

These cells are subject to certain straightforward coherence conditions
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of associativity: first of all, vertical morphisms compose like they do in
a category; second, the cells can be grafted as follows: every

✤p11 //

⇓α1

��

· · · ✤p1n1 // ···

��

✤pm1 //

��
⇓αm

· · · ✤pm,nm //

��

��

✤
q1

//

⇓β

···
✤
qm

//

��✤
r

//

(5.37)

can be composed into a single cell

✤p11 //

��

⇓β⊙(α1,...,αm)

· · · ✤p1n1 // ···
✤pm1 // · · · ✤pm,nm //

��✤
r

//

(5.38)

so that this operation is compatible with the rest of the data. The 0-ary

cells are determined by diagrams like
X

!!❇
❇

}}⑤⑤
Y0

✤ // Y1

.

The standard choice to make Prof(V) a vdc is to take

• as objects the small categories;
• as vertical category the category Cat;
• as n-ary cells α : (p1, . . . , pn)⇒ q having vertical domain F : X0 → Y0

and vertical codomain G : Xn → Y1 the natural transformations

α : pG ⋄ pn ⋄ · · · ⋄ p1 ⇒ q ⋄ pF (5.39)

The reader will routinely check that all coherences stated in [CS10] hold.
Of course, whenever we consider composable profunctors, every n-ary

cell can be reduced to a 1-ary cell by composing the n-tuple of horizon-
tal arrows that form its horizontal domain; but in situations where the
composition does not exist, for example for categories enriched in a non-
cocomplete base, it is still possible to define the vdc of these generalised
profunctors.

The notion of vdc can thus be considered as the ‘correct’ generalisation
of categories Prof(V) enriched over a generic base, and exhibits many of
its nice features even without horizontal compositions. Examples of vdcs
abund inside and outside category theory: the reader is invited to consult
[CS10].
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The following definition is modeled on the behavior of the canonical
embedding of Cat into Prof: it appears in [Woo82].

Definition 5.4.2 (Proarrow equipment). Let p∗ : A → M be a 2-
functor between bicategories; p∗ is said to equip A with proarrows, or to
be a proarrow equipment for A if

pe1) p∗ is locally fully faithful;
pe2) for every arrow f ∈ A, p∗f has a right adjoint in M.

It is clear how the embedding Catop → Prof equips Cat with proarrows
(see (5.11); our choice for the direction of 1-cells in Prof forces us to treat
the embedding as contravariant).3

Remark 5.4.3 ( Exact squares and profunctors). Let us consider
Cat as a 2-category; a square

A
T //

S

��
⇒α

Y

V

��
X

U
// B

(5.40)

filled by a 2-cell α will be called a carré (see [Gui80]). Any carré induces
a 2-cell

A

⇒
α♭❴pS

��

Y✤pT

oo

❴pV

��
X B✤

pU

oo

(5.41)

defined by the universal property of profunctor composition via the
cowedge

α♭(A),XY : X (X, SA)× Y(T A, Y ) −−−→ B(UX, V Y ) (5.42)

sending the pair (f, g) =
([

X
↓
SA

]
,
[
TA
↓
Y

])
into V g ◦ αA ◦ Uf .

We say that a carré is exact if α♭ is invertible, i.e. if
´ A
X (X, SA) ×

Y(T A, Y ) ∼= B(UX, V Y ).
[Gui80] observes that there is a criterion for a carré to be exact that

3 A rather unexpected tight connection between vdcs and proarrow equipments is
the following: equipments arise precisely as those vdcs where horizontal arrows
can all be composed, and have local horizontal identities for every object. This is
[CS10, §7] and in particular its Definition 7.6.
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does not involve profunctors: let us consider a square as above, and the
induced diagram

A

!!

%%

W

##●
●●

●●
●●

●●

(U ↓ V )
d1 //

⇒ad0

��

Y

V

��
X

U
// B

(5.43)

where (U ↓ V ) is the comma category of the cospan X U
−→ B

V
←− Y and

W is the unique induced functor to (U ↓ V ). For each pair of functors

X
P
−→ Z

Q
←− Y we have the following identifications of sets:

Cat(U ↓ V,Z)(P d0, Qd1) // Cat(A,Z)(P S, QT )

Prof(Y,X )(pd0 ⋄ p
d1 , pP ⋄ pQ)

Prof(Y,X )(pU ⋄ pV , pP ⋄ pQ) // Prof(Y,X )(pA ⋄ pT , pP ⋄ pQ)
(5.44)

where the horizontal arrows are induced by whiskering. The carré is
exact if and only if for each P, Q there is a bijection

Cat(A,Z)(P S, QT ) ∼= Cat(U ↓ V,Z)(P d0, Qd1). (5.45)

Remark 5.4.4 (Displayed category). The bicategory of profunctors ap-
pears in a generalised form of Grothendieck construction, as described
in of A.5.14. There, we draw an equivalence of categories

p : DFib(C)⇆ Cat(Cop, Set) : C
´

(5.46)

between discrete opfibrations over C and presheaves over C (see A.5.12).
In recent years it has become popular to call the pair of adjuncts that re-
alises this equivalence respectively ‘straightening’ and ‘unstraightening’.

It is a good question to ask, if there’s some kind of un/straightening for
generic functors q : E → C over a base, that do not satisfy A.5.12. Sure,
since the fibration condition on p : E → C is meant exactly to ensure that
each morphism C → C′ in the base induces a function/functor between
the fibers p←C′ → p←C, for a generic functor q : E → C the straightened
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Γq : Cop → K won’t be strictly functorial, nor it will ensure functorial
correspondences among the fibers.

We can however show precisely how much regularity is lost when pass-
ing from discrete fibrations over C to generic categories lying over C,
proving the following result (to the best of the author’s knowledge, this
was first observed by J. Bénabou [Béer]).

Theorem 5.4.5. There is an equivalence of categories

Π( ) : Catl,1(C, Prof)→ Cat/C : Γ (5.47)

where Catl,1(X ,Y) denotes the category of normal lax functors (see

A.7.6) between bicategories X ,Y. The correspondence is defined by a

‘generalised Grothendieck construction’, in that the correspondence Π is

defined sending F ∈ Catl,1(Cop, Prof) to the (strict) pullback

Π(F ) //

��

❴
✤

Prof∗

U

��
C

F
// Prof

(5.48)

where U : Prof∗ → Prof is the forgetful functor from pointed profunctors
that forgets the basepoint.4

Notation 5.4.6. The category Π(F ) corresponding to a normal lax func-

tor F : C → Prof is not any more fibered; we call it a displayed category.

Proof As for the Π correspondence, there is nothing to check apart its
functoriality; this is easy: given a 2-cell α : F ⇒ G : C → Prof between
normal lax functors we can easily induce a morphism Π(F ) → Π(G) of
categories over C using the defining universal property of Π.

We shall now define the functor Γ and prove that it lands on the
declared domain: we shall define

• A correspondence on objects, p : E → C, that sends such p’s into
normal lax functors C → Prof;

gp1) an object C goes to the category p←(C) =
[

X∈E : pX=C,
f :C→C′ : pf=idC

]
, i.e. to

the fiber of p over C ∈ C;
gp2) a morphism f : C → C′ goes to a profunctor Γp(f) : p←(C)op ×

p←(C′)→ Set, defined sending the pair (X, Y ) ∈ p←(C)op×p←(C′)
to the set of all u : X → Y such that pu = f .

4 A pointed profunctor p : (C, C) (D, D) of pointed categories is a functor
p : (Cop ×D, (C, D))→ Set with a specified element of p(C, D). The functor U
forgets this specified element and keeps only the functor.
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• A correspondence on morphisms over C, that sends a functor h : E →
E ′ of categories over C, i.e. such that p′ ◦ h = p for projections p, p′,
into a morphism of normal lax functors

Γh : C

Γp **

Γp′

44
✤✤ ✤✤
�� Prof. (5.49)

It is evident how a functor h as above induces a morphism of this kind
simply because it respects the fibers of p and p′ over the same object.

Now, we shall show that Γp : C → Prof is indeed a normal lax functor:
for the moment we have nothing but the bare definition.

It is however quite easy to prove that the correspondence Γp(f) if
functorial and contravariant in the first component: if α : X → X ′,
there is an obvious function Γp(X ′, Y ) → Γp(X, Y ). Similarly, Γp(f) is
covariant in the second component.

We shall now show that Γp( ) is a normal lax functor: in order to do
so we shall show the following.

• The functor is indeed normal: by definition Γp(idC) is a functor p←(C)op×

p←(C) → Set, that sends a pair (X, Y ) into the set of all u : X → Y

such that pu = idC ; but this is no less than the set of all morphisms
X → Y in the fiber p←(C), so that Γp(idC) is the hom functor of the
fiber of p over C, i.e. the identity profunctor p←(C) p←(C).

• Given a pair of composable morphisms C
g
−→ C′

f
−→ C′′, we shall find

a 2-cell filling the diagram

p←(C′)
✓❙

❙❙ Γp(f)

))❙❙❙

p←(C) ✤
Γp(fg)

//

✤✤ ✤✤
��

✱❧❧❧
Γp(g) 55❧❧❧

p←(C′′)
(5.50)

The correspondences Γp(f) and Γp(g) are respectively defined by

p←(C′)op × p←(C′′)
Γp(f)
−−−→ Set

(X, Y )
Γp(f)
7−→ {u : X → Y | pu = f};

p←(C)op × p←(C′)
Γp(g)
−−−→ Set

(Z, X)
Γp(g)
7−→ {v : Z → X | pu = g}.

Composition in the categories p←(C), p←(C′), p←(C′′) now forms a
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cowedge that induces a unique morphism

´ X∈p←(C′) Γp(g)(Z, X)× Γp(f)(X, Y )

c

��
Γp(fg)(Z, Y ) = {w : Z → Y | pw = fg}

(5.51)

by the universal property of the coend involved in the definition of
Γp(f)⋄Γp(g). We leave to the reader the routine verification that this
is indeed part of the laxity constraint of a lax functor Γp : C → Prof.

This concludes the proof, up to some fine details that we leave to the
reader (Additional exercise: try to find sufficient conditions fror the laxity
cell Γp(f) ⋄ Γp(g)⇒ Γp(fg) to be invertible).

5.5 Addendum: Fourier theory

According to our §5.3, the bicategory Prof is monoidal with respect to the
pseudo-cartesian structure (similarly, every Prof(V) inherits a symmetric
monoidal structure from a symmetric monoidal structure on V-Cat).

This means that we can consider internal monoids in Prof: objects
endowed with maps

M×M ✤m //M 1 ✤i //M (5.52)

in Prof that witness the fact that M is an internal (pseudo)monoid.
Such internal monoids take the name of promonoidal categories.
Informally speaking, a promonoidal category is what we obtain if we

replace every occurrence of the word functor with the word profunctor

in the definition of monoidal category (of course, taking care of the
coherence conditions imposed by the weak 2-category structure of Prof).

More precisely, we can give the following definition:

Definition 5.5.1 (Promonoidal structure). Let C be a category. A
promonoidal structure consists of a tuple

P = (C, P, J, α, λ, ρ) (5.53)

where

pm1) C is a category endowed with
pm2) a bi-profunctor P : C × C  C (the monoidal multiplication) and
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pm3) a profunctor J : 1  C (the monoidal unit), such that the following
two diagrams

C × C × C

✒✒✒✒� α❴hom×P

��

✤P×hom // C × C

❴P
��

C × C ✤
P

// C

C

✏✏✏✏�� ρ

hom

✤J×hom // C × C

❴P
��

C✤hom×Joo

homC

✳✳✳✳
��λ

are filled by the indicated 2-cells,
pm4) 2-cells, respectively called the associator

α : P ⋄ (P × hom) ∼= P ⋄ (hom×P ) (5.54)

and the left and right unitors

λ : P ⋄ (hom×J) ∼= hom ρ : P ⋄ (J × hom) ∼= hom (5.55)

Remark 5.5.2. Coend calculus allows to turn (5.54) and (5.55) into
diagrammatic relations:

• The associator amounts to an isomorphism linking the two sets below
(note that each component αABCD has four arguments, three contravari-
ant and one covariant, whereas P has components PAB

C = P (A, B; C)
as a functor Cop × Cop × C → Set).

(P ⋄ (hom×P ))ABC;D =
ˆ XY

PXY
D HX

A PBC
Y

∼=
ˆ Y

Z
(ˆ X

PXY
D HX

A

)
PBC
Y

∼=
ˆ Z

PAY
D PBC

Y

(P ⋄ (P × hom))ABC;D
∼=
ˆ XY

PXY
D HC

Y PAB
X

∼=
ˆ Z

PAB
X PXC

D .

• The left unit axiom is equivalent to the isomorphism between the
functor

(A, B) 7→
ˆ Y Z

JZHA
Y PY Z

B

∼=
ˆ Z

JZ

(ˆ Y

HA
Y PY Z

B

)
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∼=
ˆ Z

JZPAZ
B

and the hom functor (A, B) 7→ C(A, B).

The most interesting feature of promonoidal structure in categories is
that they correspond bijectively with monoidal structures on the cate-
gory of functors Cat(C, Set), framing the construction of Day convolution

give in 6.2.1 in its maximal generality.

Proposition 5.5.3. Let P = (P, J, α, ρ, λ) be a promonoidal structure

on the category C; then we can define a P-convolution monoidal structure

on the category Cat(C, Set), via

[F ∗P G]C =
ˆ AB

P (A, B; C) × FA×GB (5.56)

JP = J (5.57)

and this turns out to be a monoidal structure on Cat(C, Set). We denote

the monoidal structure (Cat(C, Set), ∗P, JP) shortly as [C, Set]P.

Remark 5.5.4. The same definition, changing the cartesian structure
with the monoidal structure of V , yields a notion of P-convolution on
V-Cat(C,V) for a V-category C.

Definition 5.5.5. A functor Φ : [A, Set]P → [B, Set]Q is said to pre-

serve the convolution product if the obvious isomorphisms hold in [B, Set]Q:

• Φ(F ∗P G) ∼= Φ(F ) ∗Q Φ(G);
• Φ(JP) = JQ;

in other words Φ is a strong monoidal functor with respect to convolu-
tion product. When Φ is a colimit-preserving functor, this condition is
equivalent to the request that Φ defines a multiplicative kernel between
A,B regarded as objects of Prof.

Remark 5.5.6. It is observed in [IK86] that for a monoidal A the cat-
egory of presheaves [Aop,V ] endowed with the convolution monoidal
structure is the free monoidal cocompletion of A, having in Mon (monoi-
dal categories, monoidal functors and monoidal natural transformations)
the same universal property that [Aop,V ] has in Cat.

There is a bijection between the promonoidal structures on C, and
monoidal structure on Cat(C, Set); this is the content of Exercise 5.14.
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5.5.1 Fourier transforms via coends

For the rest of the section, V is assumed to be a complete and cocomplete
*-autonomous category.

Definition 5.5.7. Let A, C be two promonoidal categories (thus implic-
itly regarded as objects of Prof) with promonoidal structures P and Q

respectively; a multiplicative kernel from A to C consists of a profunctor
K : A C endowed with two natural isomorphisms

ˆ Y Z

KA
Y KB

Z PY Z
X
∼=
ˆ C

KC
XPAB

C (5.58)

ˆ C

KC
XJC ∼= JX (5.59)

These isomorphisms say that K mimics the behaviour of the hom functor
(in fact, the hom functor homA is the identity multiplicative kernel A 
A: the isomorphisms above follow from 2.2.1).

We define a multiplicative natural transformation α : K → H between
two kernels as a 2-cell in Prof commuting with the structural isomor-
phisms given in 5.5.7. This, together with the fact that multiplicative
kernels compose, yields a category of kernels ker(A, C).

Definition 5.5.8. Let K : A  C be a multiplicative kernel between
promonoidal categories; we define the K-Fourier transform f 7→ K̂(f) :
C → Set, obtained as the image of f : A → Set under the left Kan
extension LanよK : [A, Set]→ [C, Set]. Explicitly, this is the coend

FK(f) : X 7→

ˆ A

K(A, X)⊗ fA. (5.60)

We can also define the dual Fourier transform:

F∨(g) : Y 7→

ˆ

A

[K(A, X), gA] (5.61)

and find the relation F∨K(g) ∼= FK(g∗)∗.
The following results are easily proved using standard co/end calculus:

Proposition 5.5.9. Let K : A X be a multiplicative kernel, and let

A be a promonoidal category; then

mk1) FK preserves the upper PA-convolution of presheaves f, g, defined as

f ∗ g =
ˆ AA′

fA⊗ gA′ ⊗ P (A, A′, ); (5.62)

dually,
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mk2) F∨K preserves the lower PA-convolution of presheaves f, g, defined as

f ∗ g =
ˆ

AA′

(
fA∗ ⊗ (gA′)∗ ⊗ P (A, A′, )

)∗
; (5.63)

Observe that (as stated in [Day11]), both the upper and lower convo-
lution product yield associative and unital monoidal structures on the
functor category V-Cat(A,V); the upper product preserves V-colimits in
each variable, while the lower product preserves V-limits in each variable.

The lower and upper convolution transform into each other under the
equivalence of V-categories

V-Cat(A,V)op ∼= V-Cat(Aop,Vop); (5.64)

this means that under the above equivalence (f ∗ g)∗ ∼= f∗ ∗ g∗.

Theorem 5.5.10. Let V be a *-autonomous monoidal base; then we can

define the pairing V-Cat(A,V) × V-Cat(A,V) → V as the twisted form

of functor tensor product (as defined in 3.2.14)

〈f, g〉 =
ˆ A

fA∗ ⊗ gA (5.65)

If K is a kernel such that the Fourier transform LanよK is fully faithful,

we have an analogue of Parseval formula:

〈f, g〉 ∼= 〈FK(f),FK(g)〉. (5.66)

Fourier theory is linked to the theory of Joyal’s combinatorial species

(see 2.3.11): let E : A  X be a multiplicative kernel; if we write
E(A, X) := XA (without any reference to a tensor operation between
A and X), the E-Fourier transform can be expressed as an A-indexed
formal power series as follows:

FE(f) =
ˆ A

fA⊗XA

∼=
∑

A∈A

fA⊗A XA (5.67)

(it is understood that f : A → V is a fixed combinatorial species.) This
can be made precise as follows: let A be the (free V-category on the)
permutation category of 6.1.1; then E(n, X) := X⊗n = X ⊗ · · · ⊗X is
a multiplicative kernel and an E-analytic functor results as the left Kan
extension

FX =
ˆ n

f(n)⊗X⊗n
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∼=
∑

n∈P

f(n)⊗Sym(n) X⊗n. (5.68)

Given two combinatorial species f, g : A → V and the associated analytic
functors F, G, the convolution F ∗ G is again an analytic functor, and
its generating combinatorial species is the upper convolution product of
f, g (with respect to the implicit promonoidal structure of A):

F ∗G(X) ∼=
ˆ AB

FA⊗GB ⊗ p(A, B; X)

∼=
ˆ ABUV

fU ⊗ E(U, A)⊗ gV ⊗ E(V, B)⊗ p(A, B; X)

∼=
ˆ UV C

fU ⊗ gV ⊗ p(U, V ; C)⊗ E(C, X) (k)

∼=
ˆ C

(f ∗ g)(C)⊗ E(C, X). (5.69)

(note that in (k) we used the fact that E is a multiplicative kernel.)

5.6 Addendum: Tambara theory

Definition 5.6.1. Let C be a monoidal category with monoidal unit I.
A (left) Tambara module on C consists of:

• a profunctor P : Cop × C → Set;
• a family of functions τA(X, Y ) : P (X, Y ) −→ P (A⊗X, A⊗Y ) natural

in X, Y and a wedge in A, satisfying the two equations:

P (X, Y )
τI(X,Y ) //

▲▲▲
▲▲▲

▲▲▲
▲

▲▲▲
▲▲▲

▲▲▲
▲

P (I ⊗X, I ⊗ Y )

P (l−1
X
,lY )ww♥♥♥

♥♥♥
♥♥♥

♥♥♥

P (X, Y )

P (X, Y )
τA′ (X,Y ) //

τA⊗A′(X,Y ) ))❙❙❙
❙❙❙❙

❙❙❙❙
❙❙❙❙

P (A′ ⊗X, A′ ⊗ Y )

τA(A′⊗X,A′⊗Y )tt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐

P (A⊗ A′ ⊗X, A⊗A′ ⊗ Y )

(5.70)

The notion of right Tambara module is given in a similar fashion, using
maps νA(X, Y ) : P (X, Y ) −→ P (X ⊗A, Y ⊗A) satisfying the relations
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lt1) P (rX , r−1
X ) ◦ νA(X, Y ) = idP (X,Y );

lt2) νA(X ⊗A′, Y ⊗A′) ◦ νA′(X, Y ) = νA′⊗A(X, Y ).

The definition can be given for profunctors enriched over any other mo-
noidal base different from Set; for example, in the original work by Tam-
bara, [T+06], categories are assumed to be enriched over vector spaces.
In the paper [PS08] the enrichment base is completely arbitrary (i.e. it
is just a symmetric monoidal closed category).

Definition 5.6.2. Define the category Tamb(C) whose:

• objects are Tambara modules (P, τ) consisting of a profunctor P :
Cop × C → Set and Tambara structures τA(X, Y ).

• morphisms (P, τ) → (Q, σ) are natural transformations γ : P ⇒ Q

such that for all A, X, Y the following diagram commutes:

P (X, Y )
τA(X,Y ) //

γ(X,Y )

��

P (A⊗X, A⊗ Y )

γ(A⊗X,A⊗Y )

��
Q(X, Y )

σA(X,Y )
// Q(A⊗X, A⊗ Y )

(5.71)

There is a functor to the category of endo-profunctors on C,

ι : Tamb(C) −→ Prof(C, C) (5.72)

which forgets the Tambara structure.

The codomain of ι is monoidal with respect to composition of 1-cells,
as every hom-category of endomorphisms: it turns out that Tambara
modules can be composed, and that ι is strong monoidal with respect
to this monoidal structure.

Remark 5.6.3. The category Tamb(C) has a monoidal structure whose:

• unit is the hom-functor homC : Cop×C → Set which has a canonically
associated Tambara structure:

C(X, Y ) −→ C(A⊗X, A⊗ Y ) (5.73)

• The profunctor composition of (P, τ) and (Q, σ) given by the coend

(P ⋄Q)(X, Y ) =
ˆ Z

P (X, Z)×Q(Z, Y ) (5.74)
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has a Tambara structure (P ⋄ Q)(X, Y ) → (P ⋄ Q)(A ⊗ X, A ⊗ Y )
induced by the maps

τA × σA : P (X, Z)×Q(Z, Y )→ P (A⊗X, A⊗Z)×Q(A⊗Z, A⊗ Y )
(5.75)

using the universal property of the coend.

This makes the functor ι : Tamb(C)→ Prof(C, C) strong monoidal.

Proposition 5.6.4. The forgetful functor ι : Tamb(C) → Prof(C, C)
forms part of an adjoint triple:

Tamb(C) ι // Prof(C, C)
ϕ

oo

θoo
(5.76)

• The left adjoint ϕ : Prof(C, C)→ Tamb(C) constructs the free Tambara

module from a profunctor. This is given by the formula

ϕP (X, Y ) =
ˆ C,U,V

C(X, C ⊗ U)× C(C ⊗ V, Y )× P (U, V ) (5.77)

with Tambara module structure given by

C(X, C ⊗ U)× C(C ⊗ V, Y )× P (U, V )

��
C(A⊗X, A⊗ C ⊗ U)× C(A⊗ C ⊗ V, A⊗ Y )× P (U, V )

(5.78)

together with the coprojection qA⊗C , using the universal property of
the coend.
• The right adjoint θ : Prof(C, C) → Tamb(C) constructs the cofree

Tambara module from a profunctor. This is given by the formula

θP (X, Y ) =
ˆ

C

P (C ⊗X, C ⊗ Y ) (5.79)

with Tambara module structure given by θP (X, Y )→ θP (A⊗X, A⊗Y )
is induced by the projection functions,

pC⊗A :
ˆ

C

P (C ⊗X, C ⊗ Y )→ P (C ⊗A⊗X, C ⊗A⊗ Y )

pC :
ˆ

C

P (C ⊗A⊗X, C ⊗A⊗ Y )→ P (C ⊗A⊗X, C ⊗A⊗ Y )

(5.80)

using the universal property of the end.
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The proof of the following proposition (a ‘recognition principle’ for Tam-
bara modules) goes by inspection using the definition of coalgebra: such
a map is determined by

• An object P of Prof(C, C) given by P : Cop × C → Set;
• A structure map given by a natural transformation τ : P ⇒ θP in

Prof(C, C)(P, θP ) whose components τ(X, Y ) : P (X, Y ) → θP (X, Y )
are given by:

τ(X, Y ) : P (X, Y ) −→
ˆ

A

P (A⊗X, A⊗ Y ) (5.81)

• By the universal property of the end at codomain, the structure map
is determined by a wedge in A,

τA(X, Y ) : P (X, Y ) −→ P (A⊗X, A⊗ Y ) (5.82)

that is moreover natural in X, Y .

Proposition 5.6.5. The adjunction ι ⊣ θ yields a comonad

Θ : Prof(C, C)→ Prof(C, C) (5.83)

whose category of coalgebras is isomorphic to Tamb(C). Dually, the ad-

junction ϕ ⊣ ι yields a monad Φ : Prof(C, C)→ Prof(C, C) whose category

of algebras is isomorphic to Tamb(C). Moreover, there is an adjunction

Prof(C, C)
Φ //
⊥ Prof(C, C)
Θ

oo (5.84)

between the resulting monad Φ = ι ◦ϕ and comonad Θ = ι ◦ θ on [Cop ×

C, Set].

ProfunctorsA B can equivalently be described as left adjoints Cat(Bop, Set)→
Cat(Aop, Set); thus we obtain that

Corollary 5.6.6. The left adjoint

Φ : Cat(Cop × C, Set)→ Cat(Cop × C, Set) (5.85)

is equivalent to the endo-profunctor Φ̌ : Cop×C  Cop×C whose action

on objects is given by the coend:

Φ̌(X, Y, U, V ) =
ˆ C

C(X, C ⊗ U)× C(C ⊗ V, Y ) (5.86)
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This endo-profunctor Φ̌ : Cop × C  Cop × C actually underlies a
promonad (see Exercise 5.10) in the bicategory Prof. From the formal
theory of monads [Str72] it is known that the bicategory Prof admits
the Kleisli construction for promonads, so we can ask what is the Kleisli
category of Φ̌: such category is called the (left) double of the monoidal
category C and it is denoted Db(C); it has the same objects as Cop × C,
and hom-sets defined by the coend

Db(C)
(
(X, Y ), (U, V )

)
=
ˆ C

C(X, C ⊗ U)× C(C ⊗ V, Y ) (5.87)

This formula provides the foundation for all of profunctor optics (see [Mil,

CEG+, PGW17]). [PS08] proves that there is an equivalence of categories:

Tamb(C) ≃ Cat(Db(C), Set). (5.88)

Exercises

5.1 Describe the bicategory of profunctors between monoids, regarded as
one-object categories; describe the bicategory of profunctors between
posets regarded as thin categories; similarly, the bicategory Mod of
modules.

5.2 Dualise 5.2.5: given r : D  A and l : E  A we can define

l⋊ r : E  D : (D, E) 7→
ˆ

A

[r(D, A), l(E, A)].

Show that this second operation is a right Kan lifting (we spell out
explicitly the definition that can be evinced from 2.1.3): given 1-cells
p : B → C, f : A→ C in a 2-category K, a right Kan lift of f through
p, denoted Riftp f , is a 1-cell Riftp(f) : A→ B equipped with a 2-cell

ε : p ◦Riftp(f)⇒ f

satisfying the following universal property: given any pair (g : A →

B, α : p ◦ g ⇒ f), there exists a unique 2-cell

ζ : g ⇒ Riftp(f)

such that the following diagram of 2-cells commutes for a unique
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ζ : g ⇒ Riftp(f)

B
p

��❅
❅❅

❅❅
❅❅

❅

A

g ..

f
// C

α
��

= B
p

��❅
❅❅

❅❅
❅❅

❅

A

g ++

Riftp(f)
⑦⑦⑦

??⑦⑦⑦

f
// C

ǫ
��

ζ

�#

i.e. there is a unique factorisation ε ◦ (p ∗ ζ) = α.

5.3 Show that the structure on Prof given by ⋄ is biclosed (i.e., ⋄ is a
bifunctor Prof(A,B)×Prof(B, C)→ Prof(A, C) and each p⋄ , as well
as each ⋄ q have right adjoints).

5.4 The collage of two categories A,B along a profunctor p : A  B is
defined as the category A ⊎p B with the same objects as A ∐ B and
morphisms given by the rule

A ⊎p B(X, Y ) =





A(X, Y ) if X, Y ∈ A

B(X, Y ) if X, Y ∈ B

p(X, Y ) if X ∈ A, Y ∈ B

and empty in every other case. Show that A ⊎p B has the universal
property of the category of elements of p, regarded as a presheaf. Find
an isomorphism between the categoryA⊎pB so defined and the coend

ˆ (A,B)

(Aop × B)/(A, B)⊗ p(A, B)

of 4.2.2 (⊗ is the Set-tensor of Cat).

5.5 Show that the composition laws p(A, B) × B(B, B′) → p(A, B′),
A(A, A′) × p(A′, B) → p(A, B) of arrows in the collage A ⊎p B are
universal cowedges of a coend.

5.6 The cocomma object [ FG ] of two functors X F
←− A

G
−→ Y is defined to

be the pushout of

A∐A

��

// A× [1]

X ∐ Y

in Cat, where the horizontal arrow is the ‘cylinder’ embedding when
A∐A is identified with A{0,1} = Cat({0, 1},A). Show that [ FG ] is the
collage of X and Y along the profunctor pG ⋄ pF : X  Y.



158 Profunctors

5.7 Given profunctors A
p
 B

q
 C consider the categories A ⊎p B and

B ⊎q C. Describe the pushout

B //

��

A ⊎p B

��
B ⊎q C // H

p

in Cat. Is there a relation between H and the collage A ⊎ C along
q ⋄ p?

5.8 Isbell duality (3.2.18) can be regarded as an adjunction between the
categories

Prof(1, C)op ⇆ Prof(C, 1).

where 1 is the terminal category. Is it possible to extend this result to
an adjunction Prof(D, C)op ⇆ Prof(C,D)? (hint: yes; use right Kan
extensions in Prof).

5.9 Show that there is a canonical isomorphism

Cat(X ,Y)(FG, HK) ∼= Prof(W ,Z)(pG ⋄ pK , pF ⋄ pH)

for each square

X
G //

K

��

⇒
α

Z

F

��
W

H
// Y

filled by a 2-cell α. This map sends α to a 2-cell α♯ in Prof. Does this
equivalence restrict to strongly commutative squares, giving strongly
commutative squares in Prof?

5.10 A promonad is a monad T : A  A over an object o Prof; this
means that there are maps T ⋄ T ⇒ T and hom ⇒ T fitting in
diagrams similar to A.6.3.

pm1) Regard a set A as a discrete category; show that every promonad
T : A  A determines and is determined by a category structure
for A, i.e. that a promonad on a discrete category amounts exactly
as a category having A as set of objects.

pm2) Show a similar result for nondiscrete categories: more precisely,
observe that a promonad on A in Prof corresponds to a monad
on Cat(Aop, Set) whose underlying endofunctor preserves colimits.
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Show that every category B that admits an identity-on-objects func-
tor F : A → B induces such a monad; show that every colimit
preserving monad between presheaf categories induces an identity-
on-object functor A → B.

5.11 Show that the equivalence

LAdj(Cat(X op, Set), Cat(X op, Set)) ∼= Prof(X ,X )

of 3.1.1 is monoidal, i.e. colimit-preserving monads T on Cat(X op, Set)
go to promonads τT : X  X .

5.12 Gather from Chapter 1 the results you need to prove that the trace
operator trUXY in 5.3.5 really define a traced monoidal structure:

tm1) naturality in X and Y : for every f : X⊗U → Y ⊗U and g : X ′ → X ,

trUX′,Y (f ◦ (g ⊗ idU )) = trUX,Y (f) ◦ g,

and for every f : X ⊗ U → Y ⊗ U and g : Y → Y ′,

trUX,Y ′((g ⊗ idU ) ◦ f) = g ◦ trUX,Y (f)

tm2) dinaturality in U : for every f : X ⊗ U → Y ⊗ U ′ and g : U ′ → U

trUX,Y ((idY ⊗g) ◦ f) = trU
′

X,Y (f ◦ (idX ⊗g))

tm3) two vanishing conditions: for every f : X ⊗ I → Y ⊗ I, (with
ρX : X ⊗ I ∼= X being the right unitor),

trIX,Y (f) = ρY ◦ f ◦ ρ−1
X ,

and for every f : X ⊗ U ⊗ V → Y ⊗ U ⊗ V

trUX,Y (trVX⊗U,Y⊗U (f)) = trU⊗VX,Y (f)

tm4) superposing: for every f : X ⊗ U → Y ⊗ U and g : W → Z,

g ⊗ trUX,Y (f) = trUW⊗X,Z⊗Y (g ⊗ f)

tm5) yanking: trXX,X(γX,X) = idX (where γ is the symmetry of the mo-
noidal category).

5.13 Prove equations 5.5.3 using associativity and unitality for P.
5.14 Let ∗ : Cat(C, Set)×Cat(C, Set)→ Cat(C, Set) be a monoidal struc-

ture with monoidal unit u : C → Set; show that the assignment

P (A, B; C) := (

よ

(A) ∗

よ

(B))(C) JA := uA (5.89)

is a promonoidal structure on C, regarded as an object of Prof. An
elegant result of Day shows that this sets up a bijection between the
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ways in which Cat(C, Set) is a (pseudo)monoid in Cat, and the ways
in which C is a (pseudo)monoid in Prof: prove it.

5.15 Outline the promonoidal structure P giving the Day convolution
described in 6.2.1. If C is any small category, we define P (A, B; C) =
C(A, C)×C(B, C) and J to be the terminal functor C → Set. Outline
the convolution product on Cat(C, Set), called the Cauchy convolution,
obtained from this promonoidal structure.

5.16 Is the composition of two kernels (see 5.5.7) again a kernel? Define
the category of multiplicative kernels ker(A, C) ⊂ Prof(A, C).

5.17 Show that a profunctor K : A C is a multiplicative kernel if and
only if the cocontinuous functor LanよK = K̂ : [A, Set] → [C, Set]
corresponding to K̄ : A → V-Cat(C,V) under the construction in
5.1.7 is monoidal with respect to the convolution monoidal structure
on both [A, Set]P and [C, Set]Q.

Describe the isomorphisms k1, k2 when P is Day convolution.
5.18 Show that a functor F : (A,⊗A, I) → (C,⊗C, J) between monoi-

dal categories is strong monoidal if and only if pF = hom(F, 1) is a
multiplicative kernel.

Dually, show that for A, C promonoidal, F : C → A preserves con-
volution on [A, Set]P, [C, Set]Q precisely if pF = hom(1, F ) is a multi-
plicative kernel.

5.19 Show the following properties of the K-Fourier transform:

• There is the canonical isomorphism

K̂(f) ∼=
ˆ A

K(A, )× f(A)

• K̂ preserves the convolution monoidal structure (this is the Parse-

val identity for the Fourier transform);
• K̂ has a right adjoint defined by

Ǩ(g) ∼=
ˆ

x

[K( , X), g(X)].

5.20 Prove the following statements:

• There is a monad S̃ on the category of profunctors, such that the
following square is commutative:

Cat
S //

��

Cat

��
Prof

S̃

// Prof
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where S sends a category A to the free monoidal category on A and
Cat → Prof is the canonical embedding of 5.2 (on which cells it is
contravariant?).
• Prove that A S̃-algebra is the same thing as a monad in the bicat-

egory of S̃-profunctors
• Show that the following conditions are equivalent, for a profunctor
p : A B between promonoidal categories (A,P, JA), (B,Q, JB):

pa1) p is a pseudo-S̃-algebra morphism;
pa2) The cocontinuous left adjoint associated to p, p̂ : [Bop, Set] →

[Aop, Set] is strong monoidal with respect to the convolution mo-
noidal product on presheaf categories;

pa3) p is endowed with arrows

pA1

B1
× pA2

B2
×QB1B2

B

γ //
´ A

PA1A2

A × pAB

(pop)B1

A1
× (pop)B2

A2
×PA1A2

A
σ //
´ B(pop)BA ×QB1B2

B

pAB × JAA
δ // JBB

or more precisely, σB1B2[A1A2];A, σB1B2[A1A2];A, δ[A]B, exhibiting
universal cowedges in the bracketed variables (i.e., the maps in-
duced on coends are isomorphisms), and natural in the others.

• Assume the promonoidal structures P,Q on A,B are representable;
then, the conditions above are in turn equivalent to the following:
both mates p⊳ : A → [Bop, Set] che p⊲ : B → [A, Set]op are strong
monoidal with respect to convolution on their codomains.
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Operads

Summary. We introduce the theory of operads employing co/end
calculus; the material is entirely classical and draws from [Kel05] and
equally classical sources. A (symmetric) operad is a collection O(n)
of objects of a monoidal category whose objects are natural numbers,
and endowed with maps

O(n1)⊗ · · · ⊗O(nk)⊗O(k)→ O
(∑

ni

)

satisfying suitable axioms of associativity and compatibility with a
natural action of the symmetric group on each component; each O(n)
models a set of generalised n-ary operations serving to describe in a
neat and intrinsic way the equipment of a ‘set’ with ‘structure’. The
notion of operad lies at the very core of modern approaches to universal
and categorical algebra.

Operads are monoid objects in the presheaf category of represen-
tations of the groupoid of natural numbers; drawing from [Cur12] we
provide a standard characterisation of operads as the coKleisli cate-
gory of a comonad on the bicategory Prof ; more precisely, an operad
is an object in the coKleisli category of a comonad generated by the
presheaf construction P and by the ‘free symmetric monoidal cate-
gory’ functor S; this allows for plenty of generalisations to other kinds
of operads, by changing the role of S in the same formal argument.

The sixth [is] the method of returning the letters to their
prime-material state and giving them form in accordance
with the power of wisdom that confers form. [. . .]
Regarding this method, it is stated in the Sefer Yetz. irah:
‘Twenty-two cardinal letters; He engraved them and
hewed them and weighed them and permuted and
combined them and formed by their means the souls of
all formed beings.’

A. Abulafia — Oz.ar Eden Ganuz, quoted in [Ide89]
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6.1 Introduction

Operads are mathematical structures of manifold nature: they appear in
algebra, topology, algebraic geometry, logic, and in each of these settings
they model the notion of ‘set endowed with operations’ providing an
extremely powerful conceptual tool to categorise the old discipline known
as universal algebra.

Operads were introduced by P. May in his [May72] in order to solve
a purely algebraic-topological problem: topologists are often interested
to classify spaces Y which are homotopy equivalent to a loop space ΩX ;
every such space carries the structure of a group up to homotopy. But
they are much more interested in spaces Y ≃ ΩnX for higher n, as such
spaces carry a structure of n-fold commutative group. All the way up to
infinity, there are spaces Y that arise as infinitely many looped X ’s, i.e.
spaces Y such that Y ≃ ΩX for an X which is ΩX ′, for an X ′ which
is ΩX ′′. . . : these are called infinite loop spaces, and they behave like
abelian groups.

The notion of operad, introduced in [May72], offers a way to recognise
infinite loop spaces among all spaces, as they are algebras for a suitable
operad. The reader is invited to consult [Ada78] for more information;
Adams’ book is one of the nicest introductions to the topic.

Shortly put, an operad is a family of spaces O(n), one for each natural
number n, subject to suitable axioms; one of which is that for every
k ∈ N, and every k-tuple of numbers n1, . . . , nk, there is a map

γk,~n : O(k)×O(n1)× · · · × O(nk)→ O(n1 + · · ·+ nk). (6.1)

Since their very introduction it has been clear that operads are monoid-

like objects in some category of functors, and that the maps above behave
like multiplications of some sort: this is the reason why they can natu-
rally act on other objects, and why the algebras for an operad are so
important;1 making this analogy a precise statement, using the power of
co/end calculus, is the content of a seminal paper by Max Kelly [Kel05],
that the present chapter follows extremely closely.

Co/end calculus is a perfect bookkeeping tool in otherwise extremely
involved combinatorial arguments involving quotients of sets of n-tuples
by the action of a symmetric group.

Unfortunately, a thorough introduction to the theory of operads ex-

1 This principle echoes Mt 7:20: Wherefore by their fruits ye shall know them: the
subject of the sentence are, of course, monoids; and the fruits are the monoid
actions other object can carry.
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ceeds the aims of the present chapter: beginners (the author of the
present note is undoubtedly among them) may feel rather disoriented
when approaching any book on the subject, because algebraists might
feel baffled by a geometric approach, and geometers might feel the same
way reading about algebraic operads. So, it’s extremely difficult to ad-
vise a single, comprehensive reference. Among classical textbooks, we
can’t help but mention [May72], and more recent monographies like
[LV12, MSS02] written respectively from the algebraist’s and topolo-
gist’s/geometer’s point of view. Among less classical and yet extremely
valid points of view, the author profited a lot from a lucid, and unfortu-
nately still unfinished, online draft [Tri] written by T. Trimble.

We shall provide a glance on the use of operads in algebra in §6.4
below; the exposition is terse, and maybe somewhat hasty, but keeps to
a minimum the cognitive overload and tries to employ ideas and notation
from the previous section.

6.1.1 Local conventions

• We will denote P the groupoid of natural numbers, i.e. the category
having objects the nonempty sets {1, . . . , n} (denoted as n for short,
assuming that 0 = ∅) where P(m, n) = ∅ if n 6= m and Sn (the group
of bijections of n-element sets) if n = m. It is evident that the groupoid
P is the disjoint union of symmetric groups

∐
n≥0 Aut(n) =

∐
n≥0 Sn.2

• like elsewhere, V is a fixed (symmetric) monoidal closed category, hav-
ing all (weighted) co/limits needed to cast the relevant co/ends.
• We make a moderate use of λ-notation: a function x 7→ Fx will be

denoted as λx.Fx as if it were a λ-term; the usual rules of α-conversion
and β-reduction straightforwardly apply.
• When needed, we freely employ the ‘Einstein notation’ defined in

5.1.10; this will allow to maintain in a single line a few involved com-
putations.

Remark 6.1.1. A fundamental rule of Einstein convention is the fol-
lowing, really akin to the one for tensor operations: variables over which
we integrate are always subscript-superscript pairs. Moreover, monoidal

2 A subtlety that will never be mentioned in the discussion is that we blur the

distinction between P and the free V-category P
V

on P, defined having the same
objects, and where the hom-object between nand m is the P(n, m)-fold tensor of
the monoidal unit I ∈ V ; to motivate the name ‘free’, think of the case when
V = Ab is the category of abelian groups. Exercise 6.1 gives the proper definition.
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structures symbols ⊗ are suppressed when this does not create ambigu-
ity; thus, for example, the convolution (6.3) of two presheaves in Einstein
notation has the following form:

F ∗G = λX.

ˆ CC′

CC⊗C
′

X FCGC′ .

Remark. We record that P has a natural choice of symmetric monoidal
structure, with tensor the sum of natural numbers

(n, m) 7→ n + m = n ⊔m; (6.2)

the action on arrows is given by (σ, τ) 7→ σ + τ defined acting as σ

on the set {1, . . . , m} and as τ on the set {m + 1, . . . , m + n} (these
permutations are called shuffles).

6.2 The convolution product

The convolution product can be thought as a categorification of the
convolution of regular functions: let G be a topological group, and C(G)
the set of ‘regular’, i.e. continuous, complex-valued functions f : G→ C.
Then, the set C(G) can be endowed with a convolution product, given by
the integral (f, g)(x) =

´

G
f(xy−1)g(y)dy (not a coend!), once a suitable

left-invariant measure has been chosen on G.
In a similar fashion, if C is a monoidal category, we can endow the

category of functors F : C → V with a monoidal structure, which is
in general different from the pointwise one. This is called convolution

product of functors.

Proposition 6.2.1 (Day convolution). Let C be a symmetric monoidal

V-category with monoidal product ⊕; the functor category V-Cat(C,V)
is itself a symmetric monoidal category, (and in fact a cosmos if V is

such) with respect to the monoidal structure given by Day convolution:

given F, G ∈ V-Cat(C,V) we define

F ∗G :=
ˆ CC′

C(C ⊕ C′, ) · FC ⊗GC′ (6.3)

where we recall (see 2.2.3) that X ·V for X ∈ Set, V ∈ V is the copower
(or tensor) X · V such that

V(X · V, W ) ∼= Set(X,V(V, W )). (6.4)



166 Operads

Proof We have to show that this really defines a monoidal structure:

• Associativity follows from the associativity of the tensor product on
C and the ninja Yoneda lemma 2.2.1:3

F ∗ (G ∗H) = λX.

ˆ AB

CA⊕BX FA(G ∗H)B

∼= λX.

ˆ AB

CA⊕BX

ˆ CD

CC⊕DB FAGCHD

∼= λX.

ˆ ABCD

CA⊕BX CC⊕DB FAGCHD

∼= λX.

ˆ ACD

C
A⊕(C⊕D)
X FAGCHD

A similar computation shows that

(F ∗G) ∗H ∼= λX.

ˆ ACD

C
(A⊕C)⊕D
X FAGCHD. (6.5)

• (Right) unitality : we show that J = よ0 = C(0, ) plays the role of
monoidal unit for the convolution ∗, if 0 is the monoidal unit for ⊕:
again, the ninja Yoneda lemma yields

F ∗ J ∼= λX.

ˆ CD

CC⊕DX FCJD

∼= λX.

ˆ CD

CC⊕DX C0
DFC

∼= λX.

ˆ C

CC⊕0
X FC ∼= F.

Similarly, we obtain left unitality.

Example 6.2.2 (Subdivision and joins as convolutions). Compare Ex-
ample 3.2.17 and the definition of join of augmented4 simplicial sets

3 See 6.1.1 above for the way in which we employ Einstein notation; here and
elsewhere, it is also harmless to suppress the distinction between monoidal
products in V and V-tensors, since once the infix symbol has been removed to
become mere juxtaposition, the two operations behave similarly; in all cases it
can be easily devised which operation is which with a ‘dimensionality check’.

4 The category ∆ would have ordinal sum as monoidal structure, but it lacks an
initial object [−1] = ∅ as monoidal unit; if we add such an object, we get a
category ∆+, and an augmented simplicial set is a presheaf on ∆+; the category
of augmented simplicial sets is denoted sSet+. There is a triple of adjoints
induced by the inclusion i : ∆ ⊂∆+ and linking the categories of simplicial and
augmented simplicial sets.
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given in [Joy08]: given X, Y ∈ sSet+ we define

X ⋆ Y =
ˆ p,q

Xp × Yq ×∆( , p⊕ q) (6.6)

where ⊕ is the ordinal sum operation.

Proposition 6.2.3. The convolution product of F, G : C → V has the

universal property of the following left Kan extension:

C × C

⊕

��

F×G // V × V
⊗ // V

C F∗G

==
(6.7)

Proof Just recognise that the coend expression given in (6.3) coincides
with the coend formula for Lan⊕(F ×G) given in 2.27.

Finding an explicit expression for the unit η of this left extension is
the scope of exercise 6.2

Remark 6.2.4. The category V-Cat(C,V) is left and right closed: the
internal hom JG, HK (or rather the functor JG, K which is right adjoint
to ∗G) is given by

JG, HK := λX.

ˆ

C

[GC, H(C ⊕X)] (6.8)

where [ , ] is the internal hom in V .

(When C is not symmetric monoidal, we shall distinguish between a
right internal hom and a left internal hom.)

Proof We can compute directly:

V-Cat(C,V)(F ∗G, H) ∼=
ˆ

C

V
(
(F ∗G)C, HC

)

∼=
ˆ

C

V

(
ˆ AB

CA⊕BC FAGB, HC

)

∼=
ˆ

ABC

V
(
CA⊕BC FAGB, HC

)

∼=
ˆ

ABC

V
(
FA, [CA⊕BC GB, HC ]

)

∼=
ˆ

ABC

V
(
FA,

[
GB , [CA⊕BC , HC ]

])
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∼=
ˆ

AB

V
(
FA,

[
GB,

ˆ

C

[CA⊕BC , HC ]
])

∼=
ˆ

AB

V
(
FA, [GB , HA⊕B]

)

∼=
ˆ

A

V

(
FA,

ˆ

B

[GB , HA⊕B]
)

∼=
ˆ

A

V(FA, JG, HKA)

∼= V-Cat(C,V)
(
F, JG, HK

)
.

Remark 6.2.5. We shall now specialise the above result to the partic-
ular case when C = P with the sum monoidal structure of 6.1.1; this
means that V-Cat(P ,V) is monoidal closed if we define

(F ∗G)k :=
ˆ mn

P(m + n, k) · Fm ⊗Gn

JF, GKk :=
ˆ

n

[Fn, Gn+k]

In particular, we have a formula for the iterated convolution of F1, . . . , Fn ∈

[C,V ], which we will make frequent use of:

F1 ∗ · · · ∗ Fn =
ˆ k1,...,kn

P
(∑

ki,
)
· F1k1 ⊗ · · · ⊗ Fnkn. (6.9)

Representing the tuple k1, . . . , kn as a vector ~k, we can also write (6.9)
in a more compact fashion as

F1 ∗ · · · ∗ Fn =
ˆ ~k

P(
∑

~k, ) · F~k.

6.3 Substitution product and operads

The gist of the definition of a V-operad relies on the possibility to endow
V-Cat(P ,V) with an additional monoidal structure, defined by means of
the Day convolution: this is called the substitution product.

Definition 6.3.1 (Substitution product on V-Cat(P ,V)). Let F, G ∈

V-Cat(P ,V). Define

F ⊙G :=
ˆ m

Fm⊗G∗m, (6.10)

where G∗m := G ∗ · · · ∗G is the iterated convolution.
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Associativity exploits the following

Lemma 6.3.2. There exists a natural equivalence (F⊙G)∗m ∼= F ∗m⊙G.

Proof It’s a formal manipulation based on (6.9) and the Yoneda lemma:
the vector ~n denotes the m-tuple of integers (n1, . . . , nm) so that (6.9)

becomes ∗ni=1 Fi ∼=
´ ~k
P
(∑

ki,
)
·
⊗n

i=1 Fiki.

(F ⊙G)∗m =
ˆ ~n

P
(∑

ni,
)
· (F ⊙G)n1 ⊗ · · · ⊗ (F ⊙G)nm

∼=
ˆ ~n,~k

P
(∑

ni,
)
· Fk1 ⊗G∗k1 n1 ⊗ · · · ⊗ Fkm ⊗G∗km nm

∼=
ˆ ~n,~k

Fk1 ⊗ · · · ⊗ Fkm ⊗ P
(∑

ni,
)
·G∗k1 n1 ⊗ · · · ⊗G∗km nm

∼=
ˆ ~k

Fk1 ⊗ · · · ⊗ Fkm ⊗
(
G∗k1 ∗ · · · ∗G∗km

)

∼=
ˆ ~k

Fk1 ⊗ · · · ⊗ Fkm ⊗G∗
∑

ki

2.2.1 ∼=
ˆ ~k,r

P
(∑

ki, r
)
⊗ Fk1 ⊗ · · · ⊗ Fkm ⊗G∗r

∼=
ˆ r

F ∗mr ∗G∗r = F ∗m ⊙G

(Yoneda Lemma is used in the form

G∗n ∼=
ˆ r

P(n, t) ·Gt = P(n, )⊙G, (6.11)

because (n, G) 7→ G∗n is easily seen to be a bifunctor P × [P ,V ] →
[P ,V ]).

Associativity of the substitution product now follows at once: we have

F ⊙ (G⊙H) = λk.

ˆ m

Fm⊗ (G⊙H)∗mk

∼= λk.

ˆ m

Fm⊗ (G∗m ⊙H)k

∼= λk.

ˆ m,l

Fm⊗G∗ml⊗H∗lk

∼= λk.

ˆ l

(F ⊙G)l ⊗H∗lk
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= (F ⊙G)⊙H.

A unit object for the ⊙-product is J = P(1, ) · I; indeed J(1) = I,
J(n) = ∅V for any n 6= 1 and the ninja Yoneda lemma applies on both
sides to show unitality rules:

• On the left one has

J ⊙ F =
ˆ m

Jm⊗ F ∗m =
ˆ m

P(1, m) · F ∗m ∼= F ∗1 = F. (6.12)

• On the right, G⊙ J ∼= G once noticed that J∗m ∼= P(m, ) · I since

J∗m =
ˆ ~n

P
(∑

ni,
)
· P(1, n1) · · · · · P(1, nm) · I

2.2.1 ∼= P(1 + · · ·+ 1, ) · I

= P(m, ) · I

because of Fubini rule 1.3.1 and the Yoneda lemma, which says

ˆ ~n

P (n1 + · · ·+ nm, ) · P(1, ni) ∼=

∼= P(n1 + · · ·+ ni−1 + 1 + ni+1 + · · ·+ nm, ), (6.13)

for any 1 ≤ i ≤ m. One has then

G⊙ J =
ˆ m

Gm⊗ J∗m ∼=
ˆ m

Gm⊗ P(m, ) · I ∼= G. (6.14)

The substitution product is highly non commutative; as an example take
two representable presheaves and compose them in different order with
respect to ⊙. It is however closed on one side:

Theorem 6.3.3. The ⊙-monoidal structure is left closed in the sense

that each ⊙G has a right adjoint, but not right closed: not each F ⊙

has a right adjoint.

Proof To prove left closure, we compute:

V-Cat(C,V)(F ⊙G, H) ∼= V-Cat(C,V)
( ˆ m

Fm⊗G∗m, H
)

∼=
ˆ

k

V
(ˆ m

Fm⊗G∗m, H
)

∼=
ˆ

km

V(Fm, [G∗mk, Hk])

∼=
ˆ

m

V(Fm,

ˆ

k

[G∗mk, Hk])
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= V-Cat(F, {G, H})

if we define {G, H}m =
´

k
[G∗mk, Hk]. Hence the functor ( ) ⊙ G has

a right adjoint for any G.
The functor F ⊙ ( ) can’t have such an adjoint (Incidentally, this

shows also that the substitution product can’t come from a convolution
product with respect to a promonoidal structure in the sense of 5.5.3).
We leave the reader to find a counterexample (find a colimit that is not
preserved by F ⊙ ).

Definition 6.3.4. An operad in V consists of a ⊙-monoid object in
V-Cat(P ,V).

In more explicit terms, an operad is a functor T ∈ V-Cat(P ,V) en-
dowed with a natural transformation called multiplication, µ : T⊙T → T

and a unit η : J → T such that

T ⊙ T ⊙ T

µ⊙T

��

T⊙µ // T ⊙ T

µ

��

J ⊙ T

∼=
$$❏❏

❏❏
❏❏

❏❏
❏❏
η⊙T // T ⊙ T

µ

��

T ⊙ J
T⊙ηoo

∼=
zzttt

tt
tt
tt
t

T ⊙ T µ
// T T

(6.15)
are commutative diagrams.

Remark 6.3.5. Unraveling 6.3.4, we can notice that an operad in V
consists of

• a natural transformation η : J ⇒ T that amounts to a map η1 : I →

T (1), since J(1) = I, J(n) = ∅ for n 6= 1;
• a natural transformation µ : T ⊙T ⇒ T that, in view of the universal

property of the two coends involved, amounts to a cowedge

T m⊗ P(~n, k) · T n1 ⊗ · · · ⊗ T nm
τ // T k (6.16)

for any m, n1, . . . , nm, k ∈ N, natural in k and the ni and such that
the following diagram commutes:

T m⊗ P(
∑

ni, k) · T⊗~n
σ∗ //

σ∗

��

T m⊗ P(
∑

nσi, k) · T⊗~n

��
T m⊗ P(

∑
ni, k) · T⊗σ~n // T k

(6.17)
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(the notation is self-evident) for every morphism σ ∈ P . This is equiv-
alent to a transformation

T m⊗ T n1 ⊗ · · · ⊗ T nm
τ̂ // [P(

∑
ni, ), T ( )] (6.18)

(considering the ni fixed and the first functor constant in k) i.e., by the
Yoneda Lemma a natural transformation from T m⊗T n1⊗· · ·⊗T nm
to T (

∑
ni).

Example 6.3.6 (Examples of operads).

eo1) For any F ∈ V-Cat(P ,V) the object {F, F} is an operad whose multi-
plication is the adjunct of the arrow

{F, F} ⊙ {F, F} ⊙ F
{F,F}⊙ǫ // {F, F} ⊙ F

ev // F

(6.19)
(ǫ is the counit of the ⊙ F ⊣ {F, } adjunction) and whose unit
is the adjunct of the isomorphism J ⊙ F ∼= F . This is called the
endomorphism operad.

eo2) (see [Lei04, 2.2.11]) Let T : Set→ Set be a monad; then, the collection
(T n | n ∈ Set) (i.e. the restriction of T on finite sets) defines an operad
if we take

• the unit η1 : 1 → T 1 to be the component of the unit of T at the
singleton set;
• the multiplication maps (see 6.3.5 above)

γm,~n : T m× T n1 × · · · × T nm → T
(∑

ni

)
(6.20)

via the following rule: let n =
∑

ni, and let us consider the image
under T of the coproduct inclusion ui : ni → n = n1 ⊔ · · · ⊔ nm,
i.e. the map T ui : T ni → T n; this defines a map

∏m
i=1 T ni →∏m

i=1 T n = (T n)m = Set(m, T n), that can be post-composed with
the action of T on arrows, and with the multiplication of the monad,
obtaining

T n1×· · ·×T nm → Set(m, T n)→ Set(T m, T T n)
Set(Tm,µn)
−−−−−−−→ Set(T m, T n);

(6.21)
the transpose of this map is the desired γm,~n.
As a motivation for this, we recall that in an algebraic theory the
free algebra T (A) is the set of all terms (inductively) built apply-
ing the operations of the theory T to the ‘variables’ in A; in this
interpretation, there is a substitution map γm,~n defined by sending
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a term t ∈ T m in the variables x1, . . . , xm, and m terms g1, . . . , gm
in the variables (xj1, . . . , xjnj

) with j = 1, . . . , m; γm,~n(t; g1, . . . , gm)
is then defined as t[xj := gj] (a moderate amount of knowledge of
λ-calculus will allow to appreciate the notation).

eo3) As a particular case, the monad ‘free commutative k-algebra’ yields
that the family of polynomial algebras (k[X1, . . . , Xn] | n ∈ N) defines
an operad if the unit k → k[X ] chooses the multiplicative identity,
and the multiplication (if n =

∑
ni)

k[T1, . . . , Tm]⊗k[X1
1 , . . . , X1

n1
]⊗· · ·⊗k[Xm

1 , . . . , Xm
nm

]→ k[X1, . . . , Xn]
(6.22)

is defined by the rule

(q; g1, . . . , gm) 7→ q(g1, . . . , gm) (6.23)

(evaluation of a m-variable polynomial into an m-tuple of polynomials
in n1, n2, . . . , nm variables each). This is evidently an associative and
unital composition law, compatible with the action of the permutation
group on n elements.

As already said, every attempt to propose a self-contained treatment
of operads in a single chapter would turn into a complete failure: the
theory is too large to be reduced to a bunch of not-too-technical con-
cepts. In some sense, this is to be expected: an operad is nothing but
a multicategory (see [Lei04]) with a single object; the resulting theory
must then be at least as expressive as the theory of categories.

Thus, we contempt ourselves to record a few of the less-than-elemen-
tary results (not without a certain dose of cherry-picking towards the
ones that can be easily expressed using co/end calculus); this should be
sufficient to clarify how operads are a fundamental tool to describe ‘stuff
endowed with n-ary operations’ that are coherent with the environment.

6.3.1 Substitution and algebraic theories

Once one familiarises with their definition, they might find that operad-
like structures are way more common than expected. The scope of the
present subsection is to convey an intuitive explanation for their ubiq-
uity, while at the same time showing, as it should be, that most of the
gadgets devised to axiomatise “structures borne by operations and prop-
erties thereof” form equivalent categories. The nontrivial connection be-
tween combinatorics and the theory of structures defined by operations
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and equations is still far from being perfectly understood, despite the
enormous effort spent in studying its main features.

The subsection builds on various classical presentations of the subject,
such as [Law63, HP07, LR11], and contains nothing essentially new.

Let Fin be the category of finite sets and functions; as we have al-
ready seen, the opposite category Finop exhibits the universal property
of the free category with products generated by the point; namely, if C is
any category with finite products, the subcategory of product-preserving
functors F : Finop → C is equivalent to C:

C ∼= Cat(∗, C) ∼= Cat×(Finop, C). (6.24)

In more concrete terms, this means that a product-preserving functor
p : Finop → C is uniquely determined by the image of [1] ∈ Fin, because
it must send every other [n] to p[n] = p[1]n.

An identity on objects functor (“idonob” functor, for short) is just a
functor F : C → D whose function on objects Fo : Co → Do is the
identity of the set/class Co = Do.

Definition 6.3.7. We call a Lawvere theory an idonob functor p :
Finop → L, that strictly preserves products.

The category Law of Lawvere theories is thus defined as having objects
the pairs (p,L) as above, and morphisms (p,L) → (p′,L′) the functors
h : L → L′ such that h◦p = p′; note that this says that also h is bijective
on objects and product preserving.

When regarded as subcategory of the coslice Finop/Cat, the category
of Lawvere theory seems to be a 2-category; the request that a Lawvere
theory is bijective on objects, however, forces a natural transformation
α : h ⇒ h′ to be the identity, thus proving that Law is a 2-discrete

2-category.

Definition 6.3.8 (Finitary monad). A monad (see A.6.3) on Set is
finitary if it preserves colimits over a filtered category (see A.9.1); finitary
monads form a full subcategory of the category of monads, where a
morphism of monads has been defined in A.6.15.

Definition 6.3.9. Let us consider the category Cat(Fin, Set) of all func-
tors F : Fin → Set, endowed with its cartesian monoidal structure; by
mimicking the construction of operads in 6.3.1 and 6.3.4, we can de-
fine a substitution monoidal structure on Cat(Fin, Set) as follows (evi-
dently, Fin(n, m) is a much larger set of morphisms than P(n, m), so
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the equaliser defining the following coend performs a much smaller quo-
tient):

F ⊙G : n 7→

ˆ m

Fm×Gmn (6.25)

where the mth power of G, Gmn = Gn× · · · ×Gn, is the product of Gn

with itself repeated m times, and it coincides with the m-fold convolution
of G with itself, when both Fin and Set are given their cartesian monoidal
structure.

The monoids with respect to this monoidal structure are called carte-

sian operads or clones in [Cur12] and in our 6.4.5 below.
When the obvious notion of homomorphism of internal monoids is

specialised to this particular case, we obtain a category Clo of clones.

Lemma 6.3.10. There is an equivalence between the category of func-

tors Fin → Set and the category Catω(Set, Set) of finitary (see A.9.2)

endofunctors of Set; this equivalence is monoidal, when Cat(Fin, Set) is

endowed with the substitution product defined above.

Proof The equivalence Cat(Fin, Set) ∼= Catω(Set, Set) is induced by
the adjunction LanJ ⊣ J∗, if J : Fin ⊂ Set, and the category of finitary
endofunctors of Set is clearly monoidal with respect to composition.

It is a general fact that given an equivalence of categories F : C ⇆
D : G, if (D,⊗, I) is monoidal we can define a monoidal structure on C
that turns the adjunction (F, G) into a monoidal equivalence, by setting
C ⋄ C′ := G(FC ⊗ FC′) and J := GI.

It remains to show that the composition on Catω(Set, Set), when trans-
ported to Cat(Fin, Set) along the equivalence, coincides with the substi-
tution product, i.e. that

LanJ F ◦ LanJ G ∼= LanJ(F ⊙G) (6.26)

for every F, G : Fin→ Set if J : Fin ⊂ Set is the inclusion, and vice-versa
that

UJ ⊙ V J ∼= U ◦ V ◦ J (6.27)

if U, V : Set→ Set are finitary endofunctors.
We can easily show both these equations using coend calculus:

LanJ (F ⊙G)A ∼=
ˆ n

Set(n, A)× (F ⊙G)(n)

∼=
ˆ n

Set(n, A)×
ˆ m

Fm×Gmn
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∼=
ˆ nm

Set(n, A)× Fm×Gmn

∼=
ˆ m

Fm× Set(m, LanJ GA)

∼= LanJF (LanJ GA),

where the last passage is motivated by the isomorphism
ˆ n

Set(n, A)×Gmn ∼= LanJ (Set(m, G ))(A) ∼= Set(m, LanJ GA);

(6.28)
conversely,

(UJ ⊙ V J)n ∼=
ˆ m

UJm× (V n)m

∼=
ˆ m

UJm× Set(m, V n)

∼=
ˆ m

Um× Set(Jm, V n)

∼= LanJ(UJ)(V n) = UV Jn;

This concludes the proof.

Corollary 6.3.11. There is an equivalence between the category of fini-

tary monads T : Set→ Set and the category Clo of clones.

Definition 6.3.12. Let T : Cat(Fin, Set)→ Cat(Fin, Set) be a monad;
we call it a cmc functor if it preserves colimits and finite products (which,
in this case, coincide with Day convolution as already said). We denote
CMC(Fin, Set) the category of cmc monads on Cat(Fin, Set) and monad
morphisms (see A.6.15).

The reader can find a more detailed account of this definition in 6.4.3
below.

Definition 6.3.13. Recall that the category Prof(Finop, Finop) is mo-
noidal with respect to composition of profunctors; a monoid internal to
it is a promonad, i.e. a profunctor t : Finop

 Finop that in addition is
a monoid with respect to profunctor composition.

All these seemingly diverse structures turn out, instead, to be the
same:
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Theorem 6.3.14. There is an equivalence between the categories of

6.3.7, 6.3.8, 6.3.9, 6.3.12, 6.3.13.

The equivalence between 6.3.8 and 6.3.9 follows from 6.3.10 and in
particular from the fact that the equivalence is monoidal: it has been
already said in 6.3.11.

The equivalence between 6.3.12 and 6.3.13 follows from the fact that
the equivalence in 6.3.10 can be promoted to a monoidal equivalence
as well, when both hom-categories are endowed with the composition
monoidal structure; in our case, this boils down to the statement that
a promonad t correspond to a cocontinuous monad T on Cat(Fin, Set)
under the equivalence of 6.3.10 and it is the content of Exercise 5.11.

The remaining implications need an intricate series of definitions and
preliminary results, thus their proof occupies the following two subsec-
tions.

Algebraic theories are finitary monads

We will prove the equivalence between 6.3.7 and 6.3.8 building mutu-
ally functors in opposite directions between the category Law and the
category of finitary monads on Set.

Remark 6.3.15. A preliminary remark is in order: the notion of Law-
vere theory abstracts the notion of algebraic theory in the sense that one
can define a category LM with the following properties:

• LM has objects the natural numbers [0], [1], . . . , and the operation
[n], [m] 7→ [n + m] is a functor LM × LM → LM endowing LM with
(strictly associative) finite products.
• LM contains morphisms µ : [2]→ [1], η : [0]→ [1] subject to equations

given by the commutative diagrams

[2 + 1] = [1 + 2]
1+µ //

µ+1

��

[2]

µ

��

[0 + 1] = [1 + 0]

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖

1+η //

η+1

��

[1 + 1]

µ

��
[2] µ

// [1] [1 + 1] µ
// [1]

(6.29)
• LM has a category of models, i.e. functors F : LM → Set such that

F [n] = F [1]n, and thus the functions Fµ : A2 → A, Fη : A0 = ∗ → A

endow the set A = F [1] with an associative, unital binary operation;
in short, A is a monoid. A natural transformation between models
turns out to be just a homomorphism between the monoids.
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LM can thus be thought as the “theory” whose models F : LM → Set are
monoids; it is a category harbouring the most abstract shape a monoid
can possibly have, and a concrete realisation of such an abstraction inside
set theory turns out to be just a functor F : LM → Set.

Remark 6.3.16. At this point, the reader might want to embark in an
easy exercise: are natural transformations F ⇒ G : LM → Set of models
really in bijection with monoid homomorphisms? Meaning: shouldn’t we
ask for a natural transformation to preserve the cartesian product itself?
It turns out that this is not needed, in that such an α : F ⇒ G must

preserve products, in the sense that the map α[n] : F [1]n → G[1]n must
be αn[1].

Given a general Lawvere theory p : Finop → L we can form the
category of its models as the functors

F : L → Set (6.30)

that preserve products; such models are uniquely determined by their
action on the object [1] ∈ L, in the sense that if F is such a model, F [n] ∼=
F [1]n for every [n] ∈ Finop, so we can characterise the subcategory
Mod(p,L) ⊂ Cat(L, Set) as the upper left corner in the pullback

Mod(p,L)
❴✤

U

��

j // Cat(L, Set)

p∗

��
Set

NJ

// Cat(Finop, Set)

(6.31)

where NJ : A 7→ (λn.Set(n, A)) is the nerve (see 3.2.2) associated to
the functor J : Fin ⊂ Set, and U the functor that evaluates a model
F : L → Set on the object [1].

Remark 6.3.17. The functor U commutes with all limits and with
filtered colimits.

Proof Every limit of a diagram (Fi) of product-preserving functors is
still product-preserving, since limits commute with limits.5 Now, the

5 More formally: if [ n
m ] is the functor {0, 1} → C choosing two objects n, m ∈ L,

then [m]× [n] ∼= lim{0,1} [ n
m ] and then one has

limI lim{0,1} Fi [ n
m ] ∼= lim{0,1} limI Fi [ n

m ] ,

by virtue of the Fubini rule for limits.
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“evaluation at [1]” functor U is easily seen to be isomorphic to the functor

F 7→ Cat(L, Set)(よ[1], F ) (6.32)

by virtue of the Yoneda lemma; thus, it preserves all limits (because
every covariant representable C(X, ) does), and all filtered colimits,
since the representables are finitely presentable (see A.9.2) objects of
Mod(p,L).

The functor U does not, however, preserve all colimits: for example,
it doesn’t always preserve coproducts or initial objects (consider, for
example, the category of monoids Mod(LM )).6

Lemma 6.3.18. The functor U admits a left adjoint.

Proof Given a set A, consider the functor NJ(A) : Finop → Set, and
the functor p : Finop → L defining the theory; we shall prove that
A 7→ Lanp(NJ(A)) in the diagram

Fin
p

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤ NJA

""❉
❉❉

❉❉
❉❉

❉

L
Lanp NJA

// Set

(6.33)

defines a functor that is a left adjoint to U : to do this, we call FpA :=
´ n
L(m, n)×An and prove that there is an adjunction Mod(p,L)(FpA, H) ∼=

Set(A, H [1]) for every model H of p. In order to see that, one can expand
the definition of the left hand side:

Mod(p,L)(FpA, H) ∼=
ˆ

n

Set(FpAn, Hn)

∼=
ˆ

n

Set
(
ˆ m

L(n, m)×Am, Hn

)

∼=
ˆ

nm

Set (L(n, m)×Am, Hn)

∼=
ˆ

nm

Set(Am, Set(L(n, m), Hn))

∼=
ˆ

m

Set(Am, H [1]m) ∼= Set(A, H [1])

where in the last steps we used the ninja Yoneda lemma twice.

6 More formally, the representable object y[1] on [1] is tiny (i.e. hom(y[1], ) is
cocontinuous) as an object of Cat(L, Set) by virtue of the Yoneda lemma, but not
as an object of Mod(p,L), as there are colimits in Mod(p,L) that are constructed
differently from the way they are constructed in Cat(L, Set).
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So, given a Lawvere theory (p,L) we can associate a monad to it,
precisely the monad induced by the adjunction Fp ⊣ U , i.e. to the functor
UFp : Set→ Set.

Proposition 6.3.19. The monad obtained in this way is finitary.

Proof The functor U commutes with finitely filtered colimits, and Fp
commutes with all colimits because it is a left adjoint; thus, the compo-
sition UFp is finitary.

Finally, let’s see that the adjunction Fp ⊣ U is monadic in the sense
of A.6.10: this means that the category of UFp-algebras coincides up to
equivalence with the category of (p,L)-modules.

It is rather easy to prove that U is conservative having in mind the
pullback in (6.31); it remains to show that U creates the coequalisers
of U -split pairs, in order to fulfil all the requests of A.6.12; this can be
checked directly, and in fact it is a general result about pulling back
a monadic functor along another functor; we leave the details as an
exercise in 6.10; note that it is not possible to remove the assumption
that the lower horizontal functor in the pullback (6.31) is fully faithful.

We now construct a correspondence in the opposite direction: given a
finitary monad T on Set we consider the composition

Fin J // Set FT
// Alg(T ) (6.34)

where the functor FT is the free functor of A.6.7, and its factorisation
as an idonob functor p : Fin → Lop followed by a fully faithful functor
Lop → Alg(T ). The functor p now is a Lawvere theory, and its category
of models coincides with the category of T -algebras (see A.6.5).

These two correspondences in opposite directions extend to functors
as follows. On the category of finitary monads we take only restrained

morphisms in the sense of A.6.16.

• Given a morphism of Lawvere theories h : (p,L) → (q,M), i.e. a
commutative triangle

Finop

q

##❋
❋❋

❋❋
❋❋

❋❋
p

||②②
②②
②②
②②
②

L
h

//M

(6.35)

Let’s say p gives rise to the monad UF and q to the monad U ′F ′; then,



6.3 Substitution product and operads 181

we define a natural transformation

λ : UF
UF∗η′

−−−−→ UFU ′F ′ → UFUk̄F ′
U∗ǫ∗k̄F ′
−−−−−→ Uk̄F ′ = U ′F ′ (6.36)

using the unit of F ′ ⊣ U ′, the counit of F ⊣ U and the functor
h̄ : Mod(q,M) → Mod(p,L) obtained from the universal property of
the pullback, from k∗ : Cat(M, Set)→ Cat(L, Set).

It is now a matter of using the zig-zag identities of the two adjunc-
tions, to show that λ satisfies the axioms of A.6.15; we leave this as
an unenlightening exercise for the reader.
• Given finitary monads T, S on Set, and a restrained morphism of

monads λ : S ⇒ T , we shall obtain a morphism of factorisations to
fill in the center of the diagram

Fin

q
##❍

❍❍
❍❍

❍❍
❍❍

J
��

Fin

p
{{✇✇✇

✇✇
✇✇
✇✇
✇

J
��

Set

FS

��

M

{{✇✇
✇✇
✇✇
✇✇
✇

L

##❋
❋❋

❋❋
❋❋

❋❋
Set

FT

��
Alg(S)

λ♯

// Alg(T ).

(6.37)

It is evident that λ induces a morphism between T - and S-algebras

λ♯ : Alg(S)→ Alg(T ) (6.38)

defined sending a T -algebra
[
TA
↓
A

]
into SA

λA−−→ T A→ A; the axioms

satisfied by a monad morphism now entail that this composition is a
S-algebra. However, the outer rectangle in (6.37) does not commute,
because λ♯ does not restrict to a morphisms of free algebras; in fact,
the triangle

Set
FT

##●
●●

●●
●●

●●
FS

{{✇✇
✇✇
✇✇
✇✇
✇

Alg(S)
λ♯

// Alg(T )

(6.39)

has no reason to commute.
Instead, if λ♯ had a left adjoint λ!, it would be true that λ! ◦FT =

FS , and we could use it to define a morphism between the factorisa-
tions L,M in (6.37) above, and thus a morphism of theories.

It turns out that λ♯ is indeed a right adjoint: both Alg(S), Alg(T )
are complete and accessible categories, λ♯ commutes with limits and
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filtered colimits because S, T are finitary monads, and thus for the
adjoint functor theorem [AR94, 2.45] it must admit a left adjoint λ!.
An explicit description of such left adjoint as a sequential colimit that
exploits finite accessibility of Alg(S), Alg(T ) is left as Exercise 6.15.

Substitution monoids are cocontinuous monads

To conclude the section, we prove the equivalence between 6.3.9 and
6.3.12. This is a sensibly slicker argument, thanks to coend calculus!

Let T be an ⊙-monoid; it is a general fact that tensoring with an inter-
nal monoid in a monoidal category gives a monad ⊙T : Cat(Fin, Set)→
Cat(Fin, Set); this gives a way to construct a monad out of T ; this corre-
spondence is of course functorial, as ⊙ is a bifunctor. The resulting mo-
nad is furthermore cocontinuous, since the substitution monoidal struc-
ture is left closed (see 6.2.4). We leave to the reader the proof that the
monad is convolution preserving.

On the other hand, given a cocontinuous monad S on Cat(Fin, Set),
we evaluate S on the representable J = y[1], i.e. on the substitution
monoidal unit, and it is now a matter of coend calculus to show that

S(A) ∼= A⊙ SJ, (6.40)

so that every cocontinuous monad arises this way:

(A⊙ SJ) =
ˆ m

Am× Sy[1]m

∼=
ˆ m

Am× Set(m, S(y[1]) )

∼=
ˆ m

S (Am× Set(m, y[1] ))

∼= S

(
ˆ m

Am× Set(m, )
)

= (SA)n.

This concludes the proof of the equivalence between cmc monads and
substitution monoids.

6.4 Some more advanced results

We expand a little bit more on the theory of operads, also putting in
a broader perspective the results we have already encountered in the
previous section (notably, the notion of cartesian operad or clone).
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We begin with a theorem linking operads and monads: every V-operad
induces a monad on V .

Theorem 6.4.1. Let T : P → V be an operad; then we can define a

monad on V by the rule

MT : A 7→

ˆ n∈P

T n⊗An. (6.41)

Proof We shall first define unit and multiplication:

• To define the unit, we employ Exercise 6.6: there is a functor Ψ : V →
V-Cat(P ,V), precisely the left adjoint to evaluation at 0 ∈ P , that
acts as follows: Ψ(A) is the functor that sends 0 to A, and all other
n ≥ 1 to the initial object of V . Unwinding this definition, we see that
A ∼= V(I, )⊙ΨA and that T ⊙ΨA = MTA. This means that we can
define the components of the unit as

C ∼= V(I, )⊙ΨC
η⊙ΨC
−−−−→ T ⊙ΨC = MT (C) (6.42)

• To define the multiplication, let us follow the string of equivalences
ˆ m

T m⊗ (MT (C))m ∼=
ˆ m

T m⊗

[
ˆ n

T n⊗ Cn

]m

∼=
ˆ m

T m⊗

ˆ ~n

T n1 ⊗ · · · ⊗ T nm ⊗ Cn1+···+nm

∼=
ˆ m,~n

T m⊗ T n1 ⊗ · · · ⊗ T nm ⊗ Cn1+···+nm

Now, using the multiplication of the operad we get that this object
maps canonically to

´ k
T k ⊗ Ck.

With a certain amount of work, associativity and unitality for T now
prove the associativity and unitality for the endofunctor MT , thus show-
ing that it is a monad (see A.6.3).

Remark 6.4.2. The correspondence described in 6.3.6.eo2 can be pro-
moted to a functor from the category of monads to the category of
Set-operads; it pairs with the correspondence described above, yielding
an adjunction between the category of monads and the category of op-
erads. This functor is however not an equivalence, because there are
non-isomorphic operads that generate the same monad (see [Lei06]).

Our analysis continues with the main theorem in [Cur12]:
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There exist 2-comonads on the bicategory Prof [author: see our 5.1.2]
whose coKleisli category has objects respectively operads, symmetric
operads and clones.

We begin by introducing a special class of operads of particular interest
in universal algebra, called clones. In short, a clone is an operad with
respect to a cartesian monoidal structure.

Definition 6.4.3. A category C is called cartesian monoidally cocom-
plete (cmc for short) if it admits finite products, all colimits, and each
functor A× : C → C preserves these colimits.

Recall from Exercise A.17 that we denote Fin∗ the category 1/Set<ω
of pointed finite sets; in the following, Fin will denote the category of
unpointed finite sets.

Proposition 6.4.4. Let C be a cmc category; then are equivalences of

categories

C ∼= Cat×(Finop, C) ∼= Cat×,!(Cat(Fin, Set), C) (6.43)

of C with the category of product preserving functors Fin→ C, and with

the category of colimit- and product-preserving functors Fin → Set (we

call them cmc functors for short: see 6.4.3 for the motivation behind this

notation), induced by evaluation at the inclusion functor Fin ⊂ Set (this

is obviously colimit- and product-preserving).

Proof The second equivalence is just the universal property of the
Yoneda embedding described in 3.1.1 and specialised to this context.

As for the first equivalence, an object C ∈ C goes to the functor
W : [n] 7→ Cn. Each such functor is uniquely determined by its action
on [1], since [n] ∼= [1]×· · ·×[1] in Finop (or equivalently, [n] = [1]⊔· · ·⊔[1]
in Fin).

We can actually trace the image of an object C into the category of
cmc functors: C goes first to the functor [n] 7→ Cn, and then to the
functor that sends F : Fin→ Set to its W -weighted colimit

ˆ [n]∈Fin

Fn⊗ Cn (6.44)

where ⊗ is the usual tensor of a cocomplete category over Set (see 2.2.3).
An immediate corollary of our 6.4.4 is that we have an equivalence of

categories

Cat×,!(Cat(Fin, Set), Cat(Fin, Set)) ∼= Cat(Fin, Set) (6.45)
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between the cmc-endofunctors of Cat(Fin, Set) and itself. In fact, some-
thing more general is true (see [Tri]): the monoidal product on endofunc-
tors given by composition transfers across the equivalence to a monoidal
product on Cat(Fin, Set), and this monoidal product is exactly the non-
symmetric substitution

F ⊙G =
ˆ [n]∈Fin

Fn⊗Gn (6.46)

where Gn = G× · · · ×G.
As a consequence, we can define clones:

Definition 6.4.5. A cartesian operad, also called a clone, is a monoid
object in (Cat(Fin, Set),⊙).

Now, the main theorem in [Cur12] that characterizes operads as the
coKleisli category of a certain comonad on Prof involves the choice of a
monad on Cat, among a set of three:

• the free monoidal category M(A): given a category A, the free strict
monoidal category M(A) has objects the finite sequences of objects of
A, and the hom-set between two tuples A, A′ is defined to be

M(A)(A, A′) =

{∏n
i=1A(Ai, A′i) if ℓ(A) = ℓ(A′)

∅ otherwise
(6.47)

where ℓ : M(A)o =
∐
n≥0A

n
o → N sends a tuple A = (A1, . . . , An) to

its length n.
• the free symmetric monoidal category S(A): given a category A, the

objects of S(A) are finite tuples ~A = (A1, . . . , An) of objects of A;
morphisms between two tuples ~A and ~b exist only if the tuples have
the same length; the monoidal product ⊎ is given by juxtaposition of
tuples. Morphisms f ⊎ g are defined accordingly.

The category S(A) thus splits as a disjoint union of categories Sn(A)
whose objects are n-tuples of objects ~A = (A1, . . . , An) and the hom-
objects are

Sn(A)( ~X, ~Y ) :=
⊔

σ∈Sn

A(X1, Yσ1)× · · · × A(Xn, Yσn). (6.48)

The symmetry of the monoidal structure has components ~X ⊎ ~Y →
~Y ⊎ ~X, the shuffle permutation swapping the first m-elements of the
first sequence with the last n-elements of the second. The unit is the
empty sequence () and S0(A) = {()} is the terminal category. The
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inclusion functor A →֒ S(A) takes an object x to the one-element
sequence (x) ∈ S1(A).

• the free cartesian category K(A), defined adjoining to a category A
all finite products; of course, K is a ‘sub-monad’ of S, in that every
cartesian category is (nonstrictly) symmetric monoidal.

each functor T ∈ {M, S, K} induces a monad P ◦ T , and by self-duality
a comonad, on the bicategory of profunctors, whose coKleisli category is

• the category of operads, if T = M ;

• the category of symmetric operads, if T = S;

• the category of clones, as defined in 6.4.5, if T = K.

The whole proof boils down to the existence of a (pseudo)7distributive
law (see A.6.14) γ : T ◦P ⇒ P ◦T , whose definition and well-posedness
can be proved by means of co/end calculus.

Lemma 6.4.6. Let T be any one of the three monads M, S, K; then

there is a distributive law γ : T ◦P ⇒ P ◦T between T and the presheaf

construction P .

Proof We define γ on components, as [Cur12, §9] does: let T be for
example the monad M and let us take V = Set (in all other cases, a
similar discussion can be carried over almost unchanged). We define the
A-component of γ to be

γA : M(PA)→ P (MA)

(F1, . . . , Fn) 7−→
ˆ A

F1Ai × · · · × FnAn ×M(A)( , A) (6.49)

where A = A1, . . . , An (recall that by its very definition γ must turn
‘tuples of presheaves’ into ‘presheaves over tuples’ in each degree n ≥ 0).

We shall now show that the constraints listed in our A.6.14 hold, thus
defining a distributive law.

7 We decide to hide the coherence constraints of the presheaf construction functor
P : A 7→ Cat(Aop, Set), like [Cur12] does; this is a hairy matter that we have no
room or reason to expand as it would deserve; the interested reader can consult
[FGHW16]. We also set aside the problem given by the fact that strictly speaking,
P is not an endofunctor: [FGHW16] addresses this matter in the best possible
way. See also [ACU10, DLL19].
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• the unit constraint of A.6.14 means that the triangle

MP
γ // P M

P

P η(M)

<<③③③③③③③③η(M)
P

bb❉❉❉❉❉❉❉❉
(6.50)

commutes; this is evident, as the composition γ ◦ η(M)
P sends a

presheaf F ∈ PA into
´ A

FA ×M(A)( , A), i.e. into the left Kan
extension of F along the unit η

(M)
A : A → MA, i.e. exactly into the

image of F along P η(M).
• the second constraint of A.6.14 involves the diagram

MMP
Mγ //

µ(M)
P

��

MP M
γM // P MM

Pµ(M)

��
MP γ

// P M

(6.51)

Establishing its commutativity is a bit harder: following [Cur12, §9]
very closely, we will keep track of the position of the diagram we are
in, as the coend computation proceeds.

First, let’s fix a component A: the generic element of upper left
corner of (6.51) is thus a tuple of tuples of presheaves, and has the
form

λC.

ˆ D1,...,Dn

F 1
1 D1

1×· · ·×F in
n Din

n ×M(A)
(

C, (D1, . . . , Dn)
)

(6.52)

where the tuple of tuples F 1
1 D1

1×· · ·×F in
n Din

n has not been flattened,
and the tuple of tuples D = (D1, . . . , Dn) has been flattened to a long
tuple D using the multiplication of the monad; this is sent to the lower
left corner, to an identically written object where said tuple has been
flattened by µ(M) (formally, we consider the product F 1

1 D1
1 × · · · ×

F in
n Din

n parenthesized in two different, but equivalent, ways). Thus,
the object

λC.

ˆ D1,...,Dn

F 1
1 D1

1×· · ·×F in
n Din

n ×M(A)
(

C, (D1, . . . , Dn)
)

lies in the lower left corner of the diagram. Applying the distributive
law γ now yields the functor

λC.

ˆ A1,...,An
ˆ D1,...,Dn

F 1
1 D1

1 × · · · × F in
n Din

n ×
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×MM(A)(A, D)×M(A)(C, (A1
1, . . . , Akp

p )) (6.53)

We shall now transport the object of (6.52) to the upper right corner,
by application of γM ◦Mγ: the result is equal to

λ(A1, . . . , Ap).
ˆ B1,...,Bn

ˆ D1,...,Dn

F 1
1 D1

1 × · · · × F in
n Din

n ×

×M(A)(B1, D1)× · · · ×M(A)(Bn, Dn)×MM(A)(A, B)

This is in turn equal to

λ(A1, . . . , Ap).
ˆ D1,...,Dn

F 1
1 D1

1 × · · · × F in
n Din

n ×

×

ˆ B1,...,Bn

M(A)(B1, D1)×· · ·×M(A)(Bn, Dn)×MM(A)(A, B)

and by application of the ninja Yoneda lemma 2.2.1 this is equal to

λ(A1, . . . , Ap).
ˆ D1,...,Dn

F 1
1 D1

1×· · ·×F in
n Din

n ×MM(A)(A, D)

Flattening, i.e. applying the functor P µ(M), falls in the lower right
corner, and results in the same functor as in (6.53).

This concludes the proof.

Theorem 6.4.7. The monad P ◦ T can be turned into a comonad un-

der the equivalence Prof ∼= Profop, and the coKleisli category of such a

comonad corresponds to the category of operads if T = M , the category

of symmetric operads if T = S, and the category of clones if T = K.

This means, more in detail, that

• a functor F : C → V is a free (P ◦M)-coalgebra if and only if it is
an operad (and similarly for symmetric operads, and clones if V is
cartesian);
• the composition in the coKleisli category of P ◦ T coincides with the

substitution product for T = M , with the symmetric substitution for
T = S, and with the cartesian substitution if T = K.

Exercises

6.1 Let A be an ordinary (i.e., Set-enriched) category, and let V be a

cosmos; define the free V-category A
V

on A as the V-category with
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the same objects of A, and where

A
V

(A, A′) := A(A, A′) · I

is a A(A, A′)-fold tensor of the monoidal unit I of V (i.e., a coproduct
of as many copies of I as there are elements in A(A, A′)).

• Prove that there is an isomorphism of categories (A× B)
V ∼= A

V
×

B
V

; deduce that if A is a monoidal category, A
V

is a monoidal
V-category.

• Does the ‘free’ V-category A
V

deserve its name? Is is true that
V-enriched functors

F : A
V
→ C

to a V-category C correspond to unenriched functors

F0 : A → |C|

to the underlying ordinary category of C?

6.2 Show that the convolution product on [C,V ] results as the following
left Kan extension:

C × C

⊙

��

F×G // V × V
⊗V // V

C

==

6.3 Show that the Isbell duality

V-Cat(C,V)op ⊥

O //
V-Cat(Cop,V)

Spec
oo

of 3.2.18 is a pair of adjoint strong monoidal functors, when (the
category C is monoidal and) their domains are endowed with the
convolution product.

6.4 Let Set∗ be the category of pointed sets; such category is monoidal
with respect to the smash product, where a pointed set (X, x0) and
a pointed set (Y, y0) are smashed in the set X ∧ Y defined as the
pushout

1
x0 //

y0

��

X

��
Y // X ∧ Y
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Let Seq be the discrete category whose objects are natural numbers
{0, 1, 2, . . .}. Endow the category Cat(Seq, Set∗) with the convolution
product, and show that

F ∗G = λn.
∐

i+j=n

Fi ∧Gj

6.5 Describe the convolution product in the category Cat(N, Set∗), where
N = {0 < 1 < 2 < . . . }, and in the category Cat(N , Set∗), where N
is the monoid (N, ·) regarded as a category with a single object (the
category of pointed sets is always endowed with the smash product).
Compare the latter with the convolution product on the category
Cat(N , Set) (cartesian monoidal structure).

6.6 Define two functors

Φ : V-Cat(P ,V)→ V (evaluation at 0)

Ψ : V → V-Cat(P ,V) (the left adjoint to Φ)

Prove that Ψ(A⊕B) ∼= ΨA⊗ΨB and Φ◦Ψ ∼= 1; finally, for every object
V ∈ V , ifよV is the representable functor on V , then V-Cat(P ,V)(V ∗
F, G) ∼= V(V, [F, G]), where

[F, G] :=
ˆ

n

V(Fn, Gn)

has been defined in 4.3.3.
6.7 Fill in the details of the proof that (6.41) defines a monad, by sowing

that the associativity and unitality of an operad yield associativity
and unitality of the monad MT .

6.8 Let A,B be small categories; an S-profunctor P : A S
 B is a pro-

functor P : A  SB, i.e. a functor P : SBop ×A → Set, where S is
the free symmetric monoidal category functor; given F : X S

 Y and

G : Y S
 Z, we define the composition G ◦ F : X S

 Z as the coend

(G ◦ F )[Z ; X ] =
ˆ ~Y

Ge[Z; ~Y ]⊗ F [~Y ; X ]

where

Ge[Z; ~Y ] :=
ˆ Z1,...,Zn

G[Z1, Y1]×. . . G[Zn, Yn]×S(Z)(Y , Z1⊎· · ·⊎Zn)

where ⊎ is concatenation.
Show that this is indeed an associative composition rule for a bi-

category of S-profunctors; find the identity 1-cell of an object A.
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6.9 Fill in the details in the proof of 6.4.7, and in particular prove that
the composition in the coKleisli category of P ◦ T coincides with
substitution products.

• Show that the monad P ◦ T , for T ∈ {M, S, K} induces a monad
T̂ on Prof, and thus a comonad W by posing WA := T (Aop)op.
(Hint: use the self-duality of 5.3.1).
• Show that T̂ has the following expression on 1-cells: given p : A 
B,

T̂p : (A, B′) 7→
ˆ B

p(A1, B1)× · · · × p(An, Bn)× T (B)(B, B′)

• Show that given a 2-comonad W on Prof, if we denote ProfW its
coKleisli bicategory, the coKleisli composition is defined as soon as
every map has a coKleisli lifting: the composition g•f = g◦Wf ◦σC
of f : T C → C′ and g : T C′ → C′′ equals the composition g ◦R(f)
in the diagram

✆✆✆✆~�

T C′
g //

ǫC′

��

C′′

T C

Rf
22

f
// C′

where Rf is the right lifting of f along ǫC′ : T C′ → C′.
• Use this, and Exercise 5.2, to prove that the coKleisli composition

coincides with the substitution product.

6.10 Let

A

U ′

��

F ′ // B

U

��
C

F
// D

be a strict pullback square of categories and functors, and assume
that F is fully faithful; prove that if U is monadic, and U ′ has a left
adjoint, then U ′ is monadic too.

6.11 Show that if F : E → A is a discrete fibration (see A.5.12) which
is moreover a strong monoidal functor, then the associated presheaf
F̂ : Aop → Set is a monoid with respect to the Day convolution
product (see 6.2.1) on Cat(Aop, Set). Show that this sets up a bijection
under the equivalence of A.5.14.
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6.12 Let Cat(Set, Set)s be the category of small functors8 F : Set→
Set and let F, G be two comonads; show that the Day convolution
F ∗G is itself a comonad. (hint: there is a neat argument that involves
the theory of duoidal categories, see [GF16, §8.1])

6.13 Is it possible to dualise the Day convolution of 6.2.1 to define a
Day involution operation on Cat(Aop, Set)? For a suitable operation
A, B 7→ 〈A, B〉 and presheaves F, G : Aop → Set we shall define

⌈F, F ⌋ :=
ˆ

A

A( , 〈A, B〉) ⋔ [FA, GB]

How does this operation behave?
6.14 Prove that the operad associated to a monad on Set (see 6.3.6.eo2)

really is an operad, by showing the commutativity of the following di-
agrams:

T m× T 1× · · · × T 1
γ // T m T 1× T 1

γ // T 1

T m× 1× · · · × 1 ∼
//

Tm×η×···×η

OO

T m 1× T 1

η×T1

OO

∼
// T 1

where the lower horizontal isomorphism comes from the unitor of the
cartesian monoidal structure on Set. (Hint: you might want to recall
the commutativities given by naturality of the monad structure, A.6.3,
as well as naturality of the counit ǫ of the cartesian closed structure
of Set, A.4.3.ad4, as well as the fact that ǫ is a cowedge.)

Good luck proving associativity: the axiom is stated as follows.
Given a positive integer m, positive integers p1, . . . , pm, and a ma-

trix of positive integers

[ q1,1 ... q1,p1

...
. ..

...
qm,1 ... qm,pm

]
, consider the diagram

T m× T ~p× T~q1 × · · · × T~qm

id×γp1,~q1
×···×γpm,~qm

��

γm,~p×idoo

T m× T
(∑p1

j=1 q1,j

)
× · · · × T

(∑pm

j=1 qm,j

)
γ

m,~~q

oo

T (
∑m

i=1 pi)

γΣpi,~q

��

T
(∑m

i=1

∑pi

j=1 qi,j

)

(there is an implicit identification between reshuffled copies of the

8 An endofunctor of Set is called small if it results as the left Kan extension of a
functor A → Set, where A ⊆ Set is a small subcategory, along said inclusion.
This restriction is needed in order for Cat(Set, Set) to (exist and to) form a
locally small category.
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factors in the upper left cartesian product, and we shorten the product
T qj,1×· · ·×T qj,pj as T~qj.) The associativity axiom for γ , amounts
to the request that this diagram commutes.

6.15 (the small object argument at work) Let λ : T ⇒ S be a morphism
S → T between two finitary monads (see A.9.2) on the category of
sets; let λ♯ : Alg(S) → Alg(T ) be the functor defined sending a S-
algebra (A, a : SA→ A) into the T -algebra (A, a ◦ λA).

Show that λ♯ has a left adjoint λ!:

• Define the arrow (m0, t0) as the pushout

T A
λA //

a

��

SA

m0

��
A

t0
// P0

and by induction, define (mi+1, ti+1) to be the pushout of the pair
of arrows Sti and mi:

T A

❴✤

λA //

a

��

SA

❴✤
m0

��

St0 // SP0

❴✤
m1

��

St1 // SP1

��

St2 // . . . // Q

α=m∞

��
A

t0
// P0 t1

// P1 t2
// P2 t3

// . . . // P∞

and let α : Q→ P∞ be its colimit.
• Show that SP∞ ∼= Q; show that α endows P∞ with the structure

of a S-algebra.
• Show that λ!, defined sending (A, a) to (SP∞, αa) is a functor. Show

that there is an adjunction λ! ⊣ λ♯.

6.16 Read [CG13] and take it as an outstandingly useful mental
exercise to generalise the topics of this section.
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Higher dimensional co/ends

Summary. The present chapter studies co/end calculus in higher
category theory; the basic theory of 2-dimensional co/end calculus is
introduced and explored in fair completeness, as well as ‘homotopy
coherent’ versions of co/ends (in model categories), (∞, 1)-categorical
co/ends, and co/ends inside a Groth(endieck) derivator [Gro13]. The
focus is on showing how co/end calculus is a paradigm that can be
exported in whatever formal context to do category theory, instead
than a mere set of theorems.

I Pitagorici raccontano che l’uso di insegnare geometria
iniziò così: a uno dei membri della setta, perdute le
proprie sostanze in un disastro, fu fatta la concessione di
trarre guadagno dall’insegnamento della geometria.

M. Timpanaro Cardini — Vite dei Pitagorici

We progressively raise the dimension we work in, starting with the the-
ory of co/ends in 2-categories. We begin the next section by recalling
the bare minimum of 2-dimensional category theory needed to appreci-
ate the discussion; the definition of bicategory and 2-category (=strict
bicategory) is understood as in A.7.11.

Notation 7.0.1. We freely employ the theory sketched in §A.7 and in

particular A.7.6: as always when dealing with higher dimensional cells

and their compositions, there are several ‘flavours’ in which one can

weaken strict commutativity. Besides this strictness (where every dia-

gram commutes with an implicit identity 2-cell filling it), there is a no-

tion of strong commutativity and universality, where filling 2-cells are

requested to be invertible, and lax commutativity/universality, where 2-

cells are possibly non-invertible.

194
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7.1 2-dimensional coends

A lax functor F : C 99K D between two 2-categories C,D behaves like
a functor, up to the fact that there is a non-invertible 2-cell linking the
composition of the images Ff, Fg and the image of a composition F (gf)
(see A.7.12 for the precise definition).

A lax natural transformation α : F ⇒l G is a family of 1-cells αC :
FC → GC coupled with 2-cells αf , filling the diagrams

FC

αC

��

Ff //

✝✝✝✝�� αf

FC′

αC′

��
GC

Gf
// GC′.

(7.1)

these 2-cells are subject to suitable coherence conditions linking αf , αg

and αgf for composable 1-cells C
f
−→ C′

g
−→ C′′ and characterizing αidC

.
In the setting of 2-categories, co/end calculus has a rather natural

interpretation in terms of enriched category theory;1 even though we
strive for clarity, the following discussion has little hope to be a self-
contained exposition, and instead heavily relies on the existing literature
(see for example [Kel82, Dub70]).

The definition of lax co/end of a 2-functor S is given in terms of
the notion of a lax wedge ω : B S, and it is the most general and
less symmetric one can give: asking for the diagrams to be filled by
isomorphisms, it specialises to the notion of strong co/end, and strict
co/end (of course, we can also define oplax co/ends by reversing all 2-
cells); the present subsection is designed in such a way to reduce to the
strong and strict cases as particular examples.

This said, we shall warn the reader that 2-category theory exists in
many dialects and follows slightly different notational conventions (mi-
nor differences that appear innocuous to the expert, but they can become
annoying when studying a part of category theory still lacking a truly
comprehensive monograph).

We try to follow an auto-explicative notation based on our appendix A
and on canonical references like [KS05, Kel89], but we feel free to diverge
from it from time to time.

The material on co/lax co/ends in the rest of the present section

1 See [KS74, Kel89], for invaluably complete surveys on the matter; the reader
should however be aware that 2-category theory is not completely subsumed by
the theory of Cat-enriched categories.
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comes in its entirety from [Boz80]: the original paper, as well as Boza-
palides’ PhD thesis [Boz76], are very difficult to retrieve, and together
they provide useful references and a starting point to develop 2-dimen-
sional coend calculus. We hope this survey can provide a useful and more
accessible reference in the future, for a piece of elegant mathematics that
is sorely lacking from the mainstream literature.

As usual in our Appendix on basic category theory, we denote Ao the
class of objects of a category, or 2-category A.

Definition 7.1.1 (Lax wedge). Let

S : Aop ×A → B (7.2)

be a strict 2-functor between strict 2-categories A,B. A lax wedge ω for
S consists of

• a triple {B, ωo, ωh}, where B ∈ Bo is an object (called the tip of the
wedge);
• collections of 1-cells

{
ωA : B → S(A, A)

}
, one for each A ∈ Ao;

• 2-cells
{

ωf : S(A, f) ◦ ωA ⇒ S(f, A′) ◦ ωA′
}

, in a diagram

B

✏✏✏✏�� ωf

ωA //

ωA′

��

S(A, A)

S(A,f)

��
S(A′, A′)

S(f,A′)

// S(A, A′)

(7.3)

These data must fit together in such a way that the coherence axioms
listed below, expressed by the commutativity of the following diagrams
of 2-cells, are satisfied:

lw1) The diagram of 2-cells having faces

B

✏✏✏✏�� ωf

ωA //

ωA′

��

S(A, A)

S(A,f)

��

B

✏✏✏✏��ωf′

ωA //

ωA′

��

S(A, A)

S(A,f)

��
S(A,f ′)

��
❴❴❴❴ks

S(A′, A′)
S(f ′,A′) ,,

S(f,A)

22
✤✤ ✤✤
�� S(A, A′) S(A′, A′)

S(f,A′)

// S(A, A′)

(7.4)
is commutative for any λ : f ⇒ f ′, i.e. the equation

ωf ′ ◦ (S(A, λ) ∗ ωA) = (S(λ, A′) ∗ ωA′) ◦ ωf

holds.
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lw2) For each pair A
f
−→ A′

f ′

−→ A′′ of composable arrows in A, the diagram
of 2-cells

B

⇒ωf′

⇒
ωf

ωA

((PP
PPP

PPωA′′

vv♠♠♠♠
♠♠♠

♠

ωA′

��

B

❴❴❴❴ks
ωf′f

ωA

((PP
PPP

PPωA′′

vv♠♠♠♠
♠♠♠

♠

S(A′′, A′′)

S(f ′,A′′)

��

S(A, A)

=

��

S(A′′, A′′)

S(f ′f,A′′)

✻✻
✻✻

✻✻
✻✻

✻✻

��✻
✻✻
✻✻
✻

��

S(A, A)

S(A,f ′f)

��✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠

S(A,f)

��

S(A′, A′)

=

''❖❖
❖❖❖

❖
vv♥♥♥

♥♥♥

S(A′, A′′)

S(f,A′′) ((PP
PPP

P
S(A, A′)

S(A,f ′)ww♦♦♦
♦♦♦

S(A′, A′′)

S(f,A′′) ((PP
PPP

P
S(A, A′)

S(A,f ′)ww♦♦♦
♦♦♦

S(A, A′′) S(A, A′′)
(7.5)

is commutative, i.e. the equation

(S(f, A′′) ∗ ωf ′) ◦ (S(A, f ′) ∗ ωf ) = ωf ′f

holds.
lw3) For each object A ∈ A, ωidA = idωA .

Notation 7.1.2. We use the compact notation ω : B S for a lax

wedge with domain constant at the object B; this is evidently reminiscent

of our 1.1.8.

Definition 7.1.3 (Modification). A modification Θ : ω ⇛ σ between
two lax wedges ω, σ : B S for S : Aop×A→ B consists of a collection
of 2-cells ΘA : ωA ⇒ σA indexed by the objects of A such that the
diagram of 2-cells

B

✠✠✠✠�� ωf

ωA′ //

ωA

��

σA

��

❴❴❴❴ks
ΘA

S(A′, A′)

S(f,A′)

��

B

✠✠✠✠�� σf

ωA′ ,,

σA′

22
✤✤ ✤✤
�� ΘA′

σA

��

S(A′, A′)

S(f,A′)

��
S(A, A)

S(A,f)
// S(A, A′) S(A, A)

S(A,f)
// S(A, A′)

(7.6)
is commutative, i.e.

(S(A, f) ∗ΘA) ◦ ωf = σf ◦ (S(f, A′) ∗ ωA′)

The above definition of a modification is modeled on the definition of
modification between (lax) natural transformations of functors.
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Remark 7.1.4. There is a more general definition for a modification
Θ : ω ⇛ σ between lax wedges having different domains, say {B, ω} and
{B′, σ}: it consists of a morphism ϕ : B → B′ and a 2-cell λA : σA ◦ϕ⇒

ωA such that

(σf ∗ ϕ) ◦ (S(A, f) ∗mA) = (S(f, A′) ∗mA′) ◦ ωf (7.7)

(draw the corresponding diagram of 2-cells). We are not interested in
this alternative definition, and this will not be investigated further. We
thus take 7.1.3 as our working definition without further mention.

Such definition entails that the set LWd(B, S) of lax wedges B S

is a category having morphisms precisely the modifications Θ : ω ⇛ σ

with the same tip, and the correspondence βS : B 7→ LWd(B, S) is
functorial. The definition of lax end for S relies on the representability
of this 2-functor.

Definition 7.1.5 (Lax end of S). Let S : Aop ×A → B be a 2-functor;
an object of B is called the lax end of S, and denoted

›

A
S(A, A), if there

is a terminal lax wedge
›

A
S(A, A) S, i.e. such that for any other lax

wedge σ : B′ → S there exists a unique 1-cell u : B′ → B between the
tips of the wedges such that

ωA ◦ u = σA, ωf ∗ u = σf . (7.8)

(This pair of equations is conveniently depicted by the diagram of 2-cells

B′ σA

!!
✕✕✕✕�� idu

$$■
■■

■■
■■

■■
■

&&

σA′

✉✉✉✉v~
id

B′

☛☛☛☛�	 σf

σA

  

σA′

&&

B

☞☞☞☞�
 ωf

ωA //

ωA′

��

S(A, A)
=

S(A,f)

��

S(A, A)

S(A,f)

��
S(A′, A′)

S(f,A′)

// S(A, A′) S(A′, A′)
S(f,A′)

// S(A, A′)

(7.9)
that we require to commute). Moreover, every modification Θ : σ ⇛ σ′

induces a unique 2-cell λ : u⇒ u′ (u′ is the arrow induced by σ′) in such
a way that λ ∗ ωA = ΘA.

This equivalence sets up an isomorphism of categories between lax
wedges with tip B and the category B(B,

›

A
S(A, A)) (if needed, this

can be relaxed to an equivalence of categories).



7.1 2-dimensional coends 199

Remark 7.1.6. We denote the lax end of S as a ‘squared integral’
“

A

S(A, A). (7.10)

This notation has a meaning: in the world of n-categories, the n-co/-
end operation should be depicted by an integral symbol (with suitable
super- or subscripts) overlapped by an 2n-agon; in this way, the polygon
for a 2-end has the correct number of edges since it is denoted as a
‘square-over-integral’ symbol

›

, and the circle being a polygon with an
infinite number of sides, the notation is consistent for ∞-co/ends (see
7.3.3, where we denoted the co/end as an

¸

symbol).

Remark 7.1.7. Reversing the direction of 1-cells yields the notion of
lax coend; but be careful! There is an additional dimension that can be
reversed, i.e. the direction of 2-cells. Doing so, we obtain the notion of
oplax end and coend. We will rarely need to invoke oplax cells; of course
every statement involving a lax widget can be properly dualised to get
an oplax one.

In compliance with the above 7.1.6, we denote the lax end of S as a
squared integral with a superscript,

“ A

S(A, A). (7.11)

Imposing stronger conditions on the 2-cells filling diagrams (7.3)–(7.9)
we obtain the notion of strong coend (if each component ωf of a wedge
is an isomorphism for every arrow f : A→ A′) and strict coend (if each
ωf is the identity). Of course, a similar terminology applies to those
cases, as well as the co/end calculus we are going to develop in the next
section.

7.1.1 Lax co/end calculus

Co/end calculus and its rules remain true and expressive in the lax
setting: several results proved in the previous chapters can be suitably
‘laxified’, justifying the intuition of lax co/ends as the right 2-categorical
generalisation of strict co/ends.

We collect the most notable examples of this phenomenon in the rest
of the section; the content of 7.1.2 surely deserves a special mention, as
well as other remarks chosen to convey a sense of continuity and analogy.
In 7.1.2 we prove that the lax counterpart of the ninja Yoneda lemma
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2.2.1 provides a reflection (using coends) and a reflection (using ends) of
the category of strong presheaves into the category of lax presheaves.

Example 7.1.8. The comma objects (f/g) [Gra80] of a 2-category B
can be identified with the lax end of functors [1]op × [1] → B choosing
the two 1-cells f, g; this is a perfect analogy with Exercise 1.7, also in
view of the characterisation of the comma object (f/g) as a lax limit.

Example 7.1.9. If F, G : A → B are 2-functors, then the lax end of
the functor

B(F, G) : Aop ×A → Cat (7.12)

characterises lax natural transformations between lax functors F, G :
A → B:

“

A

B(FA, GA) ∼= 2-Catl(A,B)(F, G) (7.13)

(see [Gra80] for more information).

Proof We abbreviate 2-Catl(A,B)(F, G) as hom(F, G). The reader will
notice that the argument is fairly elementary and echoes our proof of
1.4.1.

A lax wedge τ for the 2-functor (A, A′) 7→ hom(FA, GA′) amounts to
a diagram

E
τA //

τA′

��
✒✒✒✒� τf

hom(FA, GA)

Gf◦

��
hom(FA′, GA′)

◦Ff
// hom(FA, GA′)

(7.14)

filled by a 2-cell τf : Gf ◦ τA ⇒ τA′ ◦ Ff . Similarly to what happens
in 1.4.1, each of the functors τA : E → hom(FA, GA) sends an object
E ∈ E into an object τA(E) : FA→ GA such that

G(f) ◦ τA(E)
τf,E=⇒ τA′(E) ◦ F (f) (7.15)

is a 2-cell filling the square above. This is precisely the lax naturality
condition needed to show that the correspondence E 7→ {τAE}A∈A fac-
tors through 2-Catl(A,B)(F, G) (a moderate amount of work is needed
to check that the correct coherence properties hold for τf,E , but we leave
such minor chore to the willing reader).

Lax natural transformations η : F 99K G, described as the lax end
above, can also be characterised as lax limits in the enriched sense: this
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motivates the search for a more general description of lax co/ends as lax
co/limits, analogue to our 1.2, where instead of strict co/equalisers we
use [Kel89]’s notion of co/inserter (see 4.2.7).

Definition 7.1.10 (Lax co/limit). Let F : A → B be a 2-functor; a
lax limit for F consists of a family of 1-cells pA : llim F → FA from
an object llim F , together with 2-cells πf : Ff ◦ pA ⇒ pA′ for every
f : A→ A′, such that the pair of families (pA, πf ) is terminal with this
property.

This means that every other family of 1-cells uA : X → FA and 2-cells
υf : Ff ◦ uA ⇒ uA′ factors uniquely through a 1-cell ū : X → llim F , as
in the diagram

FA

Ff

��

X

uA ,,

uA′
11

ū // llim F
⇒
πf

pA

::✈✈✈✈✈✈✈✈✈

pA′ $$❍
❍❍

❍❍
❍❍

❍❍

FA′

= υf (7.16)

(this takes into account the 1-dimensional universal property of llim F )
and moreover, given a 2-cell µ : pAū ⇒ pAv̄, there is a unique 2-cell µ̄

such that

llim F
pA

$$❏❏
❏❏❏

❏

X
✤✤ ✤✤
�� µ

ū
::✈✈✈✈✈✈

v̄ $$❍
❍❍

❍❍
FA

llim F
pA

::tttttt

= pA ∗ µ̄ (7.17)

Reversing the direction of 1-cells yields the notion of lax colimit; but
be careful! There is an additional dimension that can be reversed, i.e.
the direction of 2-cells. Doing so, we obtain the notion of oplax limit
and colimit. Again, we employ without further mention each of these
names whenever needed.

Proposition 7.1.11 (Co/ends of mute functors). Suppose that the 2-

functor S : Aop ×A → B is mute in the contravariant variable, i.e. that

there is a factorisation S = S′ ◦ p : Aop × A
p
−→ A

S′
−→ B; then the lax

end of S exists if and only if the lax limit of S does; moreover, the two
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objects are canonically isomorphic, sharing the same universal property:
“

A

S(A, A) ∼= llim S′ (7.18)

This means that every lax co/limit is a degenerate form of lax co/end.

Example 7.1.12. As a particularly simple example of this, if A is lo-
cally discrete (informally, this means that it can be identified with a
1-category) and if the functor cB : A → B is constant on a single ob-
ject B, i.e. cB(A) ≡ B for each A ∈ A, and cB(f) ≡ idB, then

›

A
cB

is canonically identified with the cotensor of B by A and is denoted
A ⋔ B.

Proof It is easily seen that a lax wedge B′ →
›

cB corresponds to a
family of maps B′ → B indexed by the objects of A; the wedge condition
now entails that the correspondence A 7→ fA : B′ → B can be lifted to
a functor A → B(B′, B). This concludes the proof of an isomorphism

Cat(A,B(B′, B)) ∼= B
(

B′,

“

B

cB

)
(7.19)

Theorem 7.1.13 (Parametric lax ends). Whenever we have a functor

F : Aop×A×B → C, and the lax end
›

A
F (B, A, A) exists for every object

B ∈ B, then B 7→
›

A
F (B, A, A) extends to a 2-functor B → C which

has the universal property of the lax end of its mate F̂ : Aop ×A → CB

under an obvious cartesian closed adjunction.

We omit the proof (one way to proceed is to show how a functor
F : Aop × A × B → C transposes to F̂ : B → 2-Cat(Aop × A, C) once
the functoriality of

›

: 2-Cat(Aop × A, C) → C has been proved); we
leave the reader enjoy this exercise, letting them discover how strict the
resulting functor

›

A F ( , A, A) shall be.
We also offer without proof the statement the 2-dimensional analogue

of Fubini theorem in 1.3.1. This is a much more daunting exercise, but
the challenge is merely notational, not conceptual.

Theorem 7.1.14 (Fubini rule for lax co/ends). If one among the follow-

ing lax ends exists, then so does the others, and the three are canonically

isomorphic:
“

B,C

T (B, C, B, C) ∼=
“

B

(
“

C

T (B, C, B, C)
)
∼=
“

C

(
“

B

T (B, C, B, C)
)

(7.20)
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In a similar fashion,

“ B,C

T (B, C, B, C) ∼=
“ B

(
“ C

T (B, C, B, C)

)
∼=
“ C

(
“ B

T (B, C, B, C)

)

(7.21)

Corollary 7.1.15 (Fubini rule for lax co/limits). Let T : B×C → D be

a 2-functor; then

lc1) lax limits commute: we have canonical isomorphisms in D

llim
B∈B

llim
C∈C

T (B, C) ∼= llim
C∈C

llim
B∈B

T (B, C); (7.22)

lc2) lax colimits commute: we have canonical isomorphisms in D

lcolim
B∈B

lcolim
C∈C

T (B, C) ∼= lcolim
C∈C

lcolim
B∈B

T (B, C). (7.23)

The hom functor must preserve lax ends:

Theorem 7.1.16. Let S : A → B be a 2-functor such that
›

A S(A, A)
exists in B; then we have a canonical isomorphism of categories

B
(

B,

“

A

S(A, A)
)
∼=
“

A

B(B, S(A, A)). (7.24)

A completely dual statement involves the lax coend of S : A → B: there

is a canonical isomorphism of categories

B
(“ A

S(A, A), B
)
∼=
“

A

B(S(A, A), B). (7.25)

This can be seen also as an alternative definition: the lax co/end of

S exists if and only if for every object B ∈ B the functor Aop × A
S
−→

B
homB−−−−→ Cat (homB is understood here as a covariant or contravariant

representable over B ∈ B) has a lax co/end; indeed if this is the case,
there is the isomorphism above.

7.1.2 The lax ninja Yoneda lemma

In the world of 2-categories and lax morphisms, the ninja Yoneda lemma
2.2.1 acquires a peculiar flavour, since it is equivalent to the co/re-
flectivity of strict presheaves F : Cop → Cat inside lax presheaves
F ′ : Cop 99K Cat.
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More precisely, there is a diagram of adjoint 2-functors

Cat(Cop, Cat) // Catl(Cop, Cat)
( )♭

oo

( )♯

oo
(7.26)

where the central arrow is the inclusion. This means that for each strict
2-functor H ∈ 2-Cat(Cop, Cat) there are two natural isomorphisms

2-Cat(Cop, Cat)(H, F ♭) ∼= 2-Catl(Cop, Cat)(H, F ),

2-Cat(Cop, Cat)(F ♯, H) ∼= 2-Catl(Cop, Cat)(F, H). (7.27)

The proof is completely formal. To prove the isomorphism, we will show
that the functors F ♭ and F ♯ defined by means of the lax coends

F ♯ ∼=
“ A

C( , A)× FA F ♭ ∼=
“

A

C(A, ) ⋔ FA. (7.28)

have the above property.

Proof The proof exploits 7.1.9 as well as the evident fact that strict co/-
ends are particular cases of lax co/ends, and (as a consequence) the fact
that any number of co/ends and lax co/ends commute with each other
by virtue of the lax Fubini rule, plus the preservation of lax co/ends by
the hom functor 7.1.16, and the strict ninja Yoneda lemma 2.2.1.

Now, let us denote F ♭ =
›

A C(A, ) ⋔ FA; we have that

Cat(Cop, Cat)(H, F ♭) =
ˆ

C

Cat(HC, F ♭C)

=
ˆ

C

Cat
(

HC,

“

A

Cat(C(A, C), FA)
)

∼=
ˆ

C

“

A

Cat(HC, Cat(C(A, C), FA))

∼=
“

A

ˆ

C

Cat(HC × C(A, C), FA)

∼=
“

A

Cat

(
ˆ C

HC × C(A, C), FA

)

∼=
“

A

Cat(HA, FA)

(7.13) = 2-Catl(Cop, Cat)(H, F ).

The proof that Cat(Cop, Cat)(F ♯, H) ∼= 2-Catl(Cop, Cat)(F, H) is simi-
larly formal, thus we leave it to the reader.
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Lax coend defining F ♯ can take as argument a very simple functor,
and spit out a not-so-simple one: an instructive example is given by the
( )♯ of the terminal functor:

Example 7.1.17. Let I : Cop → Cat be the constant functor sending
C ∈ C into the terminal category, regarded as a lax functor. Then the
strict functor I♯ : Cop → Cat is the lax coend

I♯C ∼=
“ A

IA× C(A, C) ∼=
“ A

C(A, C). (7.29)

Hence the category
› A
C(A, C) coincides with the lax colimit of the strict

presheaf Cop → Cat, A 7→ C(A, C), which is [Str76, p. 171] the lax slice

category C//C of commutative diagrams of 2-cells

A
h //

u
��❄

❄❄
❄❄

❄❄
❄

✏✏✏✏�� α

A′

u′~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

C

(7.30)

Another striking instance of this phenomenon, by which quite complex
shapes can arise as lax co/limits of simpler diagrams, is given by the
twisted arrow category of A, whose opposite category is isomorphic to
the lax colimit of the ‘slice category’ diagram.

Proposition 7.1.18 (The twisted arrow category as a lax colimit). Let

A be a category; then it is possible to characterise the (opposite of the)

twisted arrow category of A, as defined in 1.2.2, as the lax colimit of the

diagram A → Cat : A 7→ A/A, i.e. as the lax coend
› A
A/A.

Proof In order to prove the statement, we shall first find a good candi-
date for a universal cocone. Such cocone q : A/ → tw(A)op is defined
on objects sending every f : X → A into itself, and a morphism

X
u //

f ��❅
❅❅

❅❅
❅❅

❅ X ′′

f ′~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

A

(7.31)

again into itself, regarding the triangle as a square with identity bottom:

X
u //

f

��

X ′

f ′

��
A A

(7.32)
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(as an aside comment, this definition makes obvious that the functor we
are defining is conservative; we shall however get an indirect proof of
invertibility).

Let us denote t∗ : A/A→ A/A′ the functor induced by t : A→ A′ by
post-composition. Then, we get a tautological laxity cell qt : qA ⇒ qA′◦t∗,
having components

X

f

��

X

f��
A

t��
A

t
// A′

(7.33)

These components glue together defining a lax cocone q : A/ →

tw(A).
We shall now prove that this is universal: in order to do so, we have

to verify that the diagram

A/A

t∗

��

qA

''❖❖
❖❖❖

❖❖❖

qA

  
tw(A)op u //⇒

qt K

A/A′
qA′

77♦♦♦♦♦♦♦

qA′

>> (7.34)

satisfies the (dual of the) conditions in 7.1.10.

• Each time we are given a lax cocone h : A/ → tw(A)op, there is a
unique induced 1-cell u : tw(A)op → K such that u ∗ p = h.
• Every 2-cell σ : u⇒ u′ such that the horizontal composition σ qt in

A/A

t∗

��

qA

((❘❘
❘❘❘

❘❘❘
❘

tw(A)op
⇒
qt

u

((

u′

66
✤✤ ✤✤
�� σ K

A/A′
qA′

66❧❧❧❧❧❧❧❧❧

(7.35)

is invertible for every t : A→ A′, is itself invertible.

Given h as above, since for every t : A→ A′ we have

hA′(t ◦ f) = hA(f) (7.36)
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we can define u : tw(A)op → K sending the object f : X → A and the
morphism (s, t) : f → f ′ respectively to

• u
[
X
↓
A

]
= hA

[
X
↓
A

]
∈ K;

• u

[
X

s
← Y

↓ ↓
A →

t
B

]
= hA

[
X
↓
A

]
← hB

[
Y
↓
B

]
obtained as the composition

hB(t) = hB(tfs)→ hA(fs)→ hAf (7.37)

where in the first step we use the laxity cell ht : hB(tfs) → hA(fs)
and in the second we apply hA to the morphism f → fs in A/A.

Using these definitions, it is rather easy to see that u ∗ p = h as compo-
nents of suitable modifications, since

u(qt) = u

[
X = X
↓ ↓
A →

t
A′

]
(7.38)

or in other words to the action of the laxity cell qt : u(tf) → u(f)
composed with qidA

: qA(f)→ qA(f).
It is equally easy to see that every morphism in tw(A)op can be

expressed as a morphism in the image of some qA, and as a consequence,
u is uniquely determined by the properties we just checked.

It remains to check the last condition; however, thanks to the defini-
tion of qt, if the diagram (7.35) satisfies the property that the horizontal
composition σ qt is invertible for a 2-cell σ : u ⇒ u′, and each com-
ponent of the composition σ qidA

is invertible, then each component

σ(X→A) : u
[
X
↓
A

]
→ u′

[
X
↓
A

]
is invertible as well.

The following result is a partial analogue of 4.1.8: in order to charac-
terize a lax co/end as a weighted co/limit, we have to ‘twist’ the hom
functor using the ♯ construction of 7.1.2.

Proposition 7.1.19. [Boz80, §2] There is a canonical isomorphism be-

tween the lax end of a 2-functor T : Cop × C → B and the limit of T

weighted by the bifunctor C(( )♯, ), i.e.

limC(( )♯, )T ∼=
“

A

T (A, A) (7.39)

where C(( )♯, ) : (C, C′) 7→ C( , C′)♯(C) =
› A
C(C, A) × C(A, C′). A

dual statement holds for lax coends.
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Proof The proof is completely formal, by virtue of the results estab-
lished so far: we can compute

B
(

B, limC(( )♯, )T
)

= limC(( )♯, )B(B, T ) (see 4.1.14)

(4.1.5) ∼=
ˆ

C,D

B(B, T (C, D))C(C♯,D)

=
ˆ

C,D

B(B, T (C, D))
›A C(C,A)×C(A,D)

∼=
“

A

ˆ

C,D

(
B(B, T (C, D))C(A,D)

)C(C,A)

(7.1.14) ∼=
“

A

ˆ

C

Cat
(
C(C, A),

ˆ

D

B(B, T (C, D))C(A,D)

)

∼=
“

A

ˆ

C

Cat (C(C, A),B(B, T (C, A)))

∼=
“

A

B(B, T (A, A)) = B
(

B,

“

A

T (A, A)
)

.

Let S : Aop → Cat, T : A → B be two functors and suppose B has Cat-
tensors; then the lax coend of the 2-functor Aop×A

S×T
−−−→ Cat×B ⊗−→ B

is the tensor product of S and T , denoted

S⊗T =:
“ A

Sa⊗ T a. (7.40)

7.1.3 2-profunctors, lax Kan extensions

The present section is intended to provide an analogue of profunctor
theory for lax co/ends; it can be safely skipped at first reading.

The proof of 7.1.19 above suggests that C(( )♯, ) is the lax compo-

sition of two representable profunctors. The intuition that the theory
of Chapter 5 can be suitably adapted to the lax context is correct (un-
fortunately though, we have few applications in mind for such a theory:
exercise 7.1 below tries to suggests a few lines of investigation).

Shortly, a 2-profunctor p : A  B is a 2-functor p : Bop × A → Cat.
Lax coends provide a weak composition rule for 2-profunctors: more
precisely, let

A
p
 B

q
 C (7.41)

be a couple of composable 2-profunctors, namely two 2-functors p : Bop×

A → Cat and q : Cop × B → Cat; then the composition q ⋄ p is defined
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by the coend

q ⋄l p(C, A) =
“ B

p(B, A)× q(C, B) (7.42)

The compatibility between lax colimits and products ensures that the
expected associativity holds up to a canonical identification:

(r ⋄l q) ⋄l p ∼= r ⋄l (q ⋄l p) (7.43)

for any three A
p
 B

q
 C

r
 D.

A much more useful laxification involves Kan extensions: let T : A →
B and F : A → C be two 2-functors.

Definition 7.1.20. We call left lax Kan extension of F along T a 2-
functor lLanT F : B → C endowed with a lax natural transformation
η : F ⇒l lLanT F ◦T (a unit) such that, for every pair S : B → C and λ :
F ⇒l S ◦ T (respectively, a 2-functor and a lax natural transformation)
there exists a unique ζ : lLanT F ⇒l S such that

(ζ ∗ T ) ◦ α = λ (7.44)

and moreover, if Σ : λ ⇛ λ′ is a modification between lax natural
transformations, there is a unique modification Ω : ζ ⇛ ζ′ (where ζ is
induced by λ, and ζ′ by λ′) between Cat-natural transformations such
that (Ω ∗ T ) ◦ α = Σ.

This entire list of conditions can be expressed by means of the isomor-
phism

2-Cat(A, C)
(
F, S ◦ T

)
∼= 2-Cat(B, C)

(
lLanT F, S

)
(7.45)

which is natural in S.

Example 7.1.21. Let 1 be the terminal 2-category. Then the left lax
Kan extension of a 2-functor F : A → C along the terminal 2-functor
A → 1 is the lax colimit of F .

Remark 7.1.22. We can obtain different flavours of lax Kan extension
by reversing the directions of α, λ, ζ . . . and imposing invertibility. The
example above, as well as the following theorem, shows that the choice
of Cat-natural transformations instead of lax natural transformations is
the right choice (see also [Boz80] for a dual statement):

Theorem 7.1.23. In the same notation as above, assume C admits
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tensors for hom categories B(T A, B)⊗FA′ for each A, A′ ∈ A, and that

the lax coend
“ A

B(T A, B)⊗ FA (7.46)

exists; then the lax Kan extension of F along T exists too, and it is

canonically isomorphic to the coend above.

We can mimic also Exercise 2.3 to obtain a lax analogue of it:

Proposition 7.1.24. Let 2-Catl(C, Cat)(U, V ) denote the category of

lax natural transformations between two 2-functors U, V : C → Cat. Then

2-Catl(C, Cat)(F ×G, H) ∼= 2-Catl(C, Cat)(F, HG), (7.47)

where HG(x) = 2-Catl(C, Cat)(よ(A) × G, H) =
›

Y Set(hom(Y, X) ×
GY, HY )

Proof Every step can be motivated by results in the present section:

2-Catl(C, Cat)(F, HG) =
“

X

Set(FX, 2-Catl(C, Cat)(よ(A)×G, H))

∼=
“

X

“

Y

Set(FX, Set(C(Y, X)×GY, HY ))

∼=
“

Y

Set
((“ X

FX × C(Y, X)
)
×GY, HY

)

∼=
“

Y

Set
(
FY ×GY, HY

)

= 2-Catl(C, Cat)(F ×G, H).

7.2 Coends in homotopy theory

Higher category theory is nowadays living a Renaissance, thanks to a
massive collaboration of several people drawing from various fields of
research, and cooperating to re-analyze every feature of category theory
inside, or in terms of, the topos of simplicial sets.

The purpose of the present section is to study what this ‘homotopifi-
cation’ process does to co/end calculus.

The urge to keep this chapter self-contained, force us to take for
granted a certain acquaintance with model categories, simplicial cat-
egories, ∞-categories à la Joyal-Lurie, dg-categories. . . Each of these
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theories is vast and constitutes enough material for a dedicated mono-
graph. Nonetheless, we strive to offer the best intuition we can, in the
little space we have.

We start by presenting the theory of homotopy co/ends 7.2.1 in model
category theory; the coend functor

´ C : Cat(Cop × C,D) → D admits a
‘derived’ counterpart

´ C

L
(see [Isa09]) that preserves weak equivalences,

in the same sense the colimit functor does.
Subsequently, in 7.3, we will explore the theory of quasicategorical

co/end calculus (providing a proof of the Fubini rule for ∞-coends: this
is not strictly new material, but brings together the pieces present in
[HGN17]).

Subsequently, in 7.2.2, we address the study of simplicially coherent

co/ends (i.e. enriched co/ends in sSet-categories), and the definition of
a co/end in a derivator (this is nothing more than a paragraph; some
additional results are presented as exercises 7.11, 7.13, and 7.14).

The discussion closes the circle about co/end calculus in each of the
most common models for higher category theory (model categories, sim-
plicially enriched categories, simplicial sets, derivators). The reader will
notice that most of these flavours of co/end calculus is far from being a
full-fledged theory. This testifies how much work there is still to be done
in the field!

As authors, we hope to have convinced our reader that the endeavor
to complete the theory is worth trying. Given its utility, co/end calculus
shall reach a status of well-understood and standardised tool for category
theorists, in such a way all its users, no matter what is their origin or
purpose, can profit from its conceptual simplicity.

The age to set up and use a full-fledged homotopy coherent co/end

calculus is of our readers.

Remark 7.2.1. We set aside a rather important question, that is model

dependence: the models to study the theory of (∞, 1)-categories form
a complicated web of equivalences. Uniqueness results [BSP11, Toë05]
or even synthetic approaches [RV15, RV17a, RV17b] are nowadays very
trendy as they offer extremely powerful inter-model comparison theo-
rems, but things can become rather hairy in explicitly proving that (say)
an homotopy co/end corresponds to the same notion of an ∞-co/end, if
we move from one model to the other.

This is a subtle issue, derailing us from our primary objective; we thus
choose to bluntly put it aside, but we maintain at least an agnostic point
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of view towards the matter: as no model is privileged, we shall glance at
them all.

7.2.1 Coends in model categories

A model category is a category C having all small co/limits (or, in the
original definition of Quillen, all finite co/limits), which is endowed with
three distinguished classes of morphisms, the weak equivalences, the fi-

brations and the cofibrations, interacting in such a way that the following
properties are satisfied:

• The initial category C[wk−1] where all weak equivalences become in-
vertible admits a presentation as a category with the same objects,
which is a hom-wise quotient of C: more precisely, there is an equiv-
alence relation RXY on each C(X, Y ) such that C[wk−1](X, Y ) ∼=
C(X, Y )/RXY ; we call C[wk−1] the homotopy category of C with re-
spect to wk.
• The pairs (wk∩cof, fib) and (cof, wk∩fib) form two weak factori-

sation systems on C (simply put, this means that there is a way to
factor every f :→ Y in C as a composition X

cof
−−→ E

wk∩fib
−−−−→ Y and

as a composition X
wk∩cof
−−−−−→ E′

fib
−−→ Y ).

Definition. Let C be a model category; we say that an object A ∈ C is
cofibrant if its initial arrow ∅ → A is a cofibration. Dually, we say that
an object X is fibrant if its terminal arrow X → ∗ is a fibration.

One of the most important parts of model category theory is the study
of homotopy co/limits. To put it shortly, the vastness of homotopy the-
ory and homological algebra arises from the fact that the colimit functor
colim is rather ill-behaved in terms of its interaction with weak equiva-
lences. The story goes as follows.

It turns out that many common functors between model categories do
not send weak equivalences to weak equivalences; so their behaviour must
be corrected, either restricting their domain to subcategories of suitably
nice objects, or by changing the shape of the functors themselves; an
illustrious example of such common but ill-behaved functor is the colimit
colimJ : CJ → C over a diagram of shape J : given a class of weak
equivalences W then every diagram category CJ acquires an analogous
structureWJ , where η : F ⇒ G is in WJ if and only if each component
ηj : Fj → Gj is itself a weak equivalence.

It turns out that the image of such a natural transformation η : F ⇒ G
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under the colimit functor, colim η : colim F → colim G is rarely a weak
equivalence in C.2

One of the main tenets of homotopy theory is, nevertheless, that it
doesn’t matter if we replace an object of a model category with another,
as soon as the two become (controllably) isomorphic in the homotopy
category. There is a spark of hope, then, that the category of functors
CJ contains a better-behaved representative for the functor colim, and
that the two are linked by some sort of natural weak equivalence.

That’s what homotopy colimits are: they provide deformations hcolim
of colim that preserves pointwise weak equivalences, and are linked by
object-wise weak equivalence hcolim⇒ colim.

Remark 7.2.2. Let ⊠ : A×B → C be the ‘tensor’ part of a thc situation
(see Exercise 3.6), and let us assume that it is a left Quillen functor (see
[Hov99, 1.3.1]); let J be a Reedy category ([Hov99, 5.2.1]). Then the
coend functor

ˆ J

: Cat(J op,A)× Cat(J ,B)→ C (7.48)

is a left Quillen bifunctor if we regard the functor categories Cat(J op,A)
and Cat(J ,B) endowed with the Reedy model structure.

The coend functor remains left Quillen even if J is not Reedy, but we
have to assume the categories A,B, C are all combinatorial,3 and we put
the projective model structure on Cat(J ,B), and the injective model
structure on Cat(J op,A).4

In the following, C will be a small category, and F : C → D, G :
Cop → Set will be functors; when needed, we freely employ the notation
of Chapter 4 on weighted co/limits. The category D will admit the co/-
limits allowing the object we define to exist.

2 A minimal example of this goes as follows: take J to be the generic span
1← 0→ 2 and the functor F : J → Spc sending it to {∗} ← Sn−1 → {∗} (Sk is
the k-dimensional sphere); the colimit of F is the one-point space {∗}. We can

replace F with the diagram F̃ : D2 ← Sn−1 → D2, and since disks are
contractible there is a homotopy equivalence F̃ ⇒ F ; unfortunately, the induced
arrow colim F̃ = S2 → ∗ is not a weak equivalence (because S2 is not
contractible).

3 A model category is combinatorial if it is locally presentable [AR94, 1.17] and
cofibrantly generated, i.e. if the cofibrations are generated as the weak
orthogonal (see A.9.2) of a small set I.

4 It’s not worth to enter the details, but see [Hov99, Hir03] for more information:
the projective model structure on Cat(J , C) is determined by the fibrations of C,
and the injective model structure is determined by cofibrations of C, in a suitable
sense.
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Definition 7.2.3 (Bar and cobar complexes).

• The bar complex of a pair of functors F, G is the simplicial object in
D B(G, C, F )• whose set of n-simplices is

B(G, C, F )n :=
∐

C0,...,Cn

(N(C)n ×GCn)⊗ FC0 (7.49)

where ⊗ : Set×D → D is the tensor functor of 2.2.3. More explicitly,
B(G, C, F )n is the disjoint union over (n + 1)-tuples of objects of C of
sets

(
GCn × C(C0, C1)× · · · × C(Cn−1, Cn)

)
⊗ FCn. (7.50)

Dually,
• the cobar complex of a pair of functors F, G is the cosimplicial object

in D C(G, C, F )• whose set of n-simplices is

Cn(G, C, F ) :=
∏

C0,...,Cn

(N(C)n ×GCn) ⋔ FC0 (7.51)

where ⋔: Setop ×D → D is the cotensor functor of 2.2.3. More explic-
itly, C(G, C, F )n is the product over (n + 1)-tuples of objects of C of
sets

(
GCn × C(C0, C1)× · · · × C(Cn−1, Cn)

)
⋔ FCn. (7.52)

We leave as Exercise 7.4 the check of some elementary properties
of these objects; in particular, we will constantly exploit the fact that
B(G, C, F ) and C(G, C, F ) are functorial in F, G (with appropriate vari-
ance).

The proof of the following statement is conducted in the cited refer-
ence. The bar and cobar constructions allow to reduce the computation
of every (weighted) co/limit to the computation of a certain (weighted)
co/limit over the simplex category ∆ (these colimits and limits are called
diagonalisation and totalisation respectively, and will return in 7.2.7 and
7.2.8 to define simplicially coherent co/ends).

Theorem 7.2.4 ([Rie14, 4.4.2]). Let F : J → D be a functor, and W :
J → Set be a weight (covariant, if we compute a limit; contravariant,

if we compute a colimit in the formula below). Then we have canonical

isomorphisms

limWF ∼= colim∆ B(G,J , F )•

∼=
ˆ n∈∆

B(G,J , F )n (7.53)
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colimWF ∼= lim
∆

C(G,J , F )•

∼=
ˆ

n∈∆

C(G,J , F )n. (7.54)

The same result holds (and it is much more interesting) over most
(but not all: the proof relies on the presence of an enriched Grothendieck

construction) bases of enrichment; the most important instance of such
an enrichment base is that of simplicial sets.

Moreover, the bar and cobar constructions provide replacement func-
tors for colim and lim respectively, and as a consequence they provide
models for the homotopy colimit and limit functors: in the following,
if F : J → D is a functor and D is a simplicial model category, we
denote B(J ,J , F )• the simplicial set [n] 7→ B(よJ,J , F )n, and dually
C(J ,J , F )n is the cosimplicial set [n] 7→ C(

よ

J,J , F )n. (The state-
ment found in [Rie14] is more general than the one we introduce here;
its essence is, however, unchanged.)

Theorem 7.2.5 ([Rie14, 5.1.3]). The left derived functor of colim :
Cat(J ,D) → D and the right derived functor of lim : Cat(J ,D) → D
are computed respectively as

L colim F ∼= d
(
B(J ,J , F̃ )

)
R lim F ∼= t

(
C(J ,J , F̂ )

)
(7.55)

where F̃ is a cofibrant replacement, and F̂ is a fibrant replacement for

the diagram F , in suitable model structures on the diagram category

Cat(J ,D) i.e. as the co/ends

L colim F ∼=
ˆ n

∆( , [n])⊗B(∆[n],J , F̃ )

R lim F ∼=
ˆ

n

∆( , [n]) ⋔ C(∆[n],J , F̂ ) (7.56)

The other way to compute homotopy co/limits involves a resolution of
the weight: the equivalence between the two approaches was fist proved
in [Gam10].

Recall 4.2.5: we can express the Bousfield-Kan construction ([BK72])
for the homotopy co/limit functor using co/end calculus.

Theorem. Let F : J → C be a diagram in a model category (C, wk, cof, fib)
which is tensored and cotensored (see 2.2.3) over simplicial sets. Then

the homotopy limit hlim F of F can be computed as the end
ˆ

J

N(J /J) ⋔ F (J), (7.57)
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where N is the categorical nerve of 3.2.5; in the same notation, the

homotopy colimit hcolim F of F can be computed as the coend

ˆ J

N(J /J)⊗ F (J). (7.58)

Remark 7.2.6. These two universal objects are the weighted co/limit
of F with the nerve of a slice category as weight; the idea behind this
characterisation is that colim is a weighted colimit over the terminal
weight. The problem is that usually the constant terminal weight won’t
be a cofibrant object in Cat(J , sSet); thus, when we want to pass to the
homotopy correct version of colim we shall replace the weight W with a
homotopy equivalent, but cofibrant, diagram W̃ .

The Bousfield-Kan formula arises precisely in this process: N(J/J )
and N(J /J) are both contractible categories, and they are linked to
N(∗) (the nerve of the terminal category) by an homotopy equivalence in-
duced by the terminal functor. The simplicial presheaves N(J / ), N( /J )
can thus be thought as proper replacements for the terminal functor.

7.2.2 Simplicially coherent co/ends

All the material in the following subsection comes from [CP97]. We begin
the exposition establishing a convenient notation and a series of useful
short-hands to adapt the discussion to our choice of notation.

We strive to keep this introduction equally self-contained and simple,
but the reader shall be warned that

• there is a sheer amount of unavoidable sins of omissions in the exposi-
tion, essentially due to our inability to master the topic in its entirety;
moreover, the price we pay to obtain a self-contained exposition is
that we deliberately ignore most of the subtleties of the combinatorics
of simplicial sets. The blame is on us if the reader feels that our expo-
sition is gawky or incomplete.
• Since the times when [CP97] was published, newer and more system-

atic approaches to a similar topic were developed; among many, the
reader shall take the exceptionally clear [Rie14, Shu06]. These refer-
ences reduce the construction of a simplicially coherent co/end to an
application of the ‘unreasonably effective’ co/bar construction [Rie14,
4], and it can be proved using [Shu06, 21.4] that the coherent co/-
end of T (see 7.2.11) results as a suitable derived weighted co/limit

of the functor T . This last remark is important, in particular in light
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of the fact that it can be exported to define an homotopy coherent
co/end calculus in every 2-category V-Cat of categories enriched over
a monoidal model category (see [Hov99, Ch. 4] and [BM13]).5

It is our sincere hope that this does not affect the outreach of this elegant
and neglected piece of Mathematics, and our clumsy attempt to popu-
larise an account of [CP97] has to be seen as a reverent act of outreach
of the branch of algebraic topology called categorical homotopy theory.

Local notation. All categories A,B, . . . appearing in the present sub-
section are enriched over the category sSet = Cat(∆op, Set). All such
categories possess the co/tensors (see 2.2.3) needed to state definitions
and perform computations.

Moreover, the tensor, internal hom, and cotensor functors assemble
into a thc situation (see 3.6) (⊗, hom,⋔) where ⊗ : sSet × A → B

determines the variance of the other two functors. A useful shorthand
to denote the functor ⋔ (K, A) = K ⋔ A is AK . We feel free to employ
such exponential notation when needed (especially when it is necessary
to save space or invoke its behaviour, similar to the one of an internal
hom). Let B be a simplicially enriched category. A simplicial-cosimplicial

object in B is a functor Y : ∆op ×∆→ B.

Definition 7.2.7 (Totalisation). Given such a simplicial-cosimplicial
object, we define its totalisation t(Y ) as the end

ˆ

n∈∆

∆[n] ⋔ Yn (7.59)

(note that it is a cosimplicial object m 7→
´

n∈∆
∆[n] ⋔ Y n

m). The totali-
sation of Y is also denoted with the shorthand ∆• ⋔ Y or similar.

Dually, a bisimplicial object in B is a functor X : ∆op ×∆op → B.

Definition 7.2.8 (Diagonalisation). Given a bisimplicial object X :
∆op × ∆op → B we define the diagonalisation d(X) of X to be the

5 This remark deserves better expansion, and yet hanc marginis exiguitas non
caperet: in short, the category V-Cat(Cop ×D,V) can be endowed with a model
structure that allows to compute cofibrant resolutions δ hom for the identity
profunctor homC when C = D; the coherent co/end of an endo-profunctor
T : C  C is then computed as the homotopy co/limit of T weighted by the
resolved weight δ hom, in the exact same way as the incoherent co/end is the
co/limit weighted by hom (see 4.1.8). At the moment of writing this book, this
appears to be an interesting subject of further investigation.
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coend
ˆ n∈∆

∆[n]⊗Xn (7.60)

(note that it is a simplicial object m 7→
´ n∈∆

∆[n]⊗Xm
n ) The diagonal-

isation of X is also denoted with the shorthand ∆• ⊗X or similar.

Note that as a consequence of the ninja Yoneda lemma 2.2.1, the
diagonalisation ∆• ⊗X is the simplicial object n 7→ Xn

n (often denoted
simply Xnn).

Notation 7.2.9 (Chain co/product). Let A ∈ Cat∆; we shall denote

as ~Xn = (X0, . . . , Xn) the ‘generic n-tuple of objects’ in A; given two

other objects A, B ∈ A, we define a bisimplicial set ∐A[A| ~X•|B]• whose

simplicial set of n-simplices is

∐A[A| ~Xn|B]• :=
∐

X0,...,Xn∈A

A(A, X0)•×A(X0, X1)•×· · ·×A(Xn, B)•.6

(7.61)
Faces and degeneracies are induced, respectively, by composition and

identity-insertion (see Exercise 7.5).

Finally we define the simplicial set δA(A, B) to be the diagonalisation

d(∐A[A| ~X•|B]•) = n 7→ ∐A[A| ~Xn|B]n. (7.62)

Couched as a coend, the object δA(A, B) is written

δA(A, B) ∼=
ˆ n∈∆

∆[n]×∐A[A| ~Xn|B]

=
ˆ n∈∆

∆[n]×
∐

X0,...,Xn∈A

A(A, X0)×A(X0, X1)× · · · × A(Xn, B)

∼=
ˆ n∈∆ ∐

X0,...,Xn∈A

∆[n]×A(A, X0)×A(X0, X1)× · · · × A(Xn, B)

Example 7.2.10. If we consider A to be trivially enriched over sSet
(i.e. as a discrete simplicial category, where each A(A, A′) is a discrete
simplicial set), then the object A[A| ~Xn|B]• coincides with the nerve of
the ‘double slice’ category A/A/B of arrows ‘under A and above B’.

6 It is useful to extend this notation in a straightforward way: A[A| ~X|B] denotes

the product A(A, X0)×A(X0, X1)× · · · × A(Xn, B), and ΠA[A| ~X|B], A[ ~X ],

ΠA[ ~X], ∐A[ ~X] are defined similarly. Note that ∐A[A| ~Xn|B]• does not depend

on ~Xn since the coproduct is quantified over all such ~Xn’s.
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Definition 7.2.11 (Simplicially coherent co/end). Let T : Aop×A → B

be a sSet-functor. We define
˛

A

T (A, A) :=
ˆ

A′,A′′
δA(A′, A′′) ⋔ T (A′, A′′)

˛ A

T (A, A) :=
ˆ A′,A′′

δA(A′, A′′)⊗ T (A′, A′′) (7.63)

to be respectively the simplicially coherent end and coend of T .

Expanding these definitions, we see that
˛

A

T (A, A) ∼=
ˆ

A′,A′′,n

∆[n]×∐A[A| ~Xn|B] ⋔ T (A′, A′′)

˛ A

T (A, A) ∼=
ˆ A′,A′′,n

∆[n]×∐A[A| ~Xn|B]⊗ T (A′, A′′)

(At this point, the reader will surely understand why performing even
elementary computations with this sort of objects compels us to establish
a compact notation.)

Remark 7.2.12. In a few words, the definition of a simplicially co-
herent co/end mimics the classical construction, and in particular the
characterisation of a co/end as a hom weighted co/limit (see 4.1.8 and
4.1.13.wc3), replacing hom with co/tensors for a ‘fattened up’ mapping
space A[A| ~X |B]. The ‘deformation’ perspective is very useful, since we
write that

¸

A T corresponds to the end
ˆ

(A′,A′′)∈Aop×A

hom(A′, A′′) ⋔ T (A′, A′′) (7.64)

where we applied a suitable ‘deformation’ (or ‘resolution’, or ‘replace-
ment’) functor δ to the hom functor A( , ), seen as the identity pro-
functor (Remark 5.1.8). This point of view is rather fruitfully explored
in [Gen15], in the particular case of dg-Cat (see 7.2.2 below to draw a
connection between simplicially enriched and dg-categories, and for a
precise definition of dg-category).

This perspective is of great importance to encompass coherent co/-
ends into a general theory ‘compatible’ with a model structure on V-Cat,
for some monoidal model V and the Bousfield-Kan model structure on
V-Cat.

We now embark in the study of what shall be called simplicially co-

herent coend calculus. Classical co/end calculus consists of the triptych
Fubini - Yoneda - Kan; we shall now reproduce these steps in full detail.
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The authors of [CP97] succeed in the quite ambitious task to rewrite
the most important pieces of classical category theory in this coherent
model describing co/limits, mapping spaces, the Yoneda lemma, and
Kan extensions. The aim of the rest of this subsection is to sketch some
of these original definitions, hopefully helping one of the alternative ap-
proaches to (∞, 1)-category theory to escape oblivion.

Definition 7.2.13 (The functors Y and W ). Let T : Aop ×A → B be
a functor; we define Y (T )• to be the cosimplicial object (in B)

Y (T )n :=
∏

~Xn=(X0,...,Xn)

A[ ~Xn] ⋔ T (X0, Xn) (7.65)

where A[ ~Xn] = A(X0, X1)× · · · × A(Xn−1, Xn).
Dually, given the same T , we define W (T )n to be the simplicial object

(in B)

W (T )n :=
∐

~Xn=(X0,...,Xn)

A[ ~Xn]⊗ T (X0, Xn). (7.66)

Proposition 7.2.14. Let T : Aop × A → B be a sSet-functor. Then

there is a canonical isomorphism
˛

A

T (A, A) ∼= t(Y (T )•) (7.67)

Proof We make heavy use of the ninja Yoneda lemma 2.2.1 in its en-
riched form, i.e. of the fact that given a sSet-functor F : A → sSet we
have a canonical isomorphism

ˆ

X

A(X, B) ⋔ F (X) ∼= F (B) (7.68)

and the fact that K ⋔ (H ⋔ A) ∼= (K ⊗ H) ⋔ A, naturally in all
arguments.

Now, let ~Xn = (X0, . . . , Xn) be a generic tuple of objects of A: to
save some space we employ the exponential notation AK to denote the
cotensor K ⋔ A.
˛

A

T (A, A) :=
ˆ

A′,A′′
T (A′, A′′)δA(A′,A′′)

∼=
ˆ

A′,A′′
T (A′, A′′)

´

n
∆[n]×∐A[A′| ~X|A′′]

∼=
ˆ

A′,A′′,n

T (A′, A′′)∆[n]×∐A[A′| ~X|A′′]
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∼=
ˆ

A′,A′′,n

(
T (A′, A′′)A(Xn,A

′′)
)∆[n]×∐A[A′| ~X]

∼=
ˆ

A′,A′′,n

∏

X0,...,Xn

(
T (A′, A′′)A(Xn,A

′′)
)∆[n]×A[A′| ~X]

∼=
ˆ

A′,n

∏

X0,...,Xn

(
ˆ

A′′
T (A′, A′′)A(Xn,A

′′)

)∆[n]×A[A′| ~X]

∼=
ˆ

A′,n

∏

X0,...,Xn

T (A′, Xn)∆[n]×A[A′| ~X]

∼=
ˆ

n

∏

X0,...,Xn

(
ˆ

A′
T (A′, Xn)A(A′,X0)

)∆[n]×A[ ~X]

∼=
ˆ

n

( ∏

X0,...,Xn

T (X0, Xn)A[ ~Xn]
)∆[n]

∼= t(Y (T )).

For the sake of completeness, we notice that the universal wedge tes-
tifying that

¸

A
T (A, A) ∼= t(Y (T )) is induced by the morphisms

˛

A

T (A, A) =
ˆ

A′,A′′
δA(A′, A′′) ⋔ T (A′, A′′)

≀��
ˆ

A′,A′′,n

(
∆[n]×∐A[A′| ~X|A′′]

)
⋔ T (A′, A′′)

��
∆[n] ⋔ Y (T )n.

(7.69)

Prove the dual statement as an exercise (it is of vital importance that
you establish a good notation):

Proposition 7.2.15. Let T : Aop × A → B be a sSet-functor. Then

there is a canonical isomorphism

˛ A

T (A, A) ∼= d(W (T )•) (7.70)

Remark 7.2.16. The homotopy coherent co/ends admit ‘comparison’
maps to the classical co/ends, induced by the fact that the ‘fattened hom’
δA( , ) has canonical maps to/from the plain hom A( , ); this is
part of a general tenet, where homotopically correct objects result as a
deformation of classical ones, and the deformations maps in/out of the
plain object.
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The comparison map
¸

T (A, A)→
´

T (A, A) arises, here, as an homo-
topy equivalence between the simplicial set A(A, B) (seen as bisimpli-
cial, and constant in one direction) and the bisimplicial set δA(A, B) =
dA[A| • |B]•: this is [CP97, p. 15].

Note that it is possible to write an explicit contracting homotopy
between the two objects. The map

d0 :
∐
X0
A(A, X0)×A(X0, B)→ A(A, B) (7.71)

given by composition has an homotopy inverse given by

s−1 : A(A, B)→ A(A, A)×A(A, B) : g 7→ (idA, g). (7.72)

Indeed, the composition d0s−1 is the identity on A(A, B), whereas the
composition s−1d0 admits is homotopic to the identity on δA(A, B)
(we use the same name for the maps d0, s−1 and the induced maps
d̄0 : δA(A, B) → A(A, B), induced by the universal property, and
s̄−1 : A(A, B)→ δA(A, B)).

There is an important difference between these two maps, though:
while d0 is natural in both arguments, s1 is natural in B but not in A.
This has an immediate drawback: while d0 can be obtained canonically,
as the universal arrow associated to a certain natural isomorphism (see
(7.76) below), s−1 can’t (the best we can do is to characterise the natural
argument of s−1 via [CP97, Example 2, p. 16]).

Simplicially coherent natural transformations

As we have seen in 1.4.1, the set of natural transformations between two
functors F, G : C → D coincides with the end

´

X
D(FX, GX), and (see

7.1.9) the category of lax natural transformations between two 2-func-
tors coincides with the lax end

›

X
D(FX, GX). It comes as no surprise,

then, that the following characterisation of homotopy coherent natural
transformations between two simplicial functors hold:

Definition 7.2.17 (Coherent natural transformations). Let F, G : C →
D be two simplicial functors; then the simplicial set of coherent trans-

formations between F and G is defined as

Cat∆(C,D)((F, G)) :=
˛

A

D(FA, GA). (7.73)

We define the following operations of coherent tensoring and coten-

soring a simplicial functor with a representable:
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Definition 7.2.18 (Mean tensor and cotensor). Let F : A → B, G :
A → sSet, H : Aop → sSet. We define G⋔F , H ⊗F respectively as

G⋔F :=
˛

A

GA ⋔ FA H ⊗F :=
˛ A

HA⊗ FA. (7.74)

This yields the notion of standard resolution of a simplicial functor:

Definition 7.2.19 (Standard resolutions). Let F : A → B be a simpli-
cial functor; we define

FA := A(A, )⋔F =
˛

X

A(A, X) ⋔ FX

FA := A( , A)⊗F =
˛ X

A(X, A)⊗ FX.

Example 7.2.20. We specialise the above definition to compute the
functors hom(A, ) and hom(A, ): in particular we concentrate on the
second case, since the first is completely dual.

hom(A, B) =
˛ A

A(A, X)×A(X, B)

∼=
ˆ XY

δA(X, Y )×A(A, X)×A(Y, B)

∼=
ˆ XY

A(A, X)× δA(X, Y )×A(Y, B)

∼=
ˆ XY n

A[A|X̃n|B]×∆[n] ∼= δA(A, B).

We leave as an easy exercise in co/end calculus the proof of the follow-
ing result (see Exercise 7.7), which shows that the standard resolutions
F , F of F ‘absorb the coherence’:

Proposition 7.2.21. Let F, G : C → D be two simplicial functors; then

there are canonical isomorphisms

[F, G] ∼= Cat∆(C,D)((F, G)) ∼= [F , G]. (7.75)

This result has a number of pleasant consequences: the simplicially
coherent setting is powerful enough to retrieve several classical construc-
tions.

• Example 7.2.20 above shows that hom(A, )(b) ∼= δA(A, B); this en-
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tails that there is an isomorphism

Cat∆(A, sSet)(δA(A, ),A(A, )) ∼= Cat∆(A, sSet)((A(A, ),A(A, )))
(7.76)

and it is a matter of verifying some additional nonsense to see that
the sSet-natural transformation corresponding to the identity coherent
transformation is precisely d0.

• The map d0 defines additional universal maps ηF , ηF which ‘resolve’ a
functor F : A → B whenever F , F exist (it is sufficient that B admits
all the relevant co/limits to perform the construction of F, F ). From
the chain of isomorphisms

ηF : FB =
˛

A

A(B, A) ⋔ FA

∼=
ˆ

A′,A′′
δA(A′, A′′) ⋔ A(B, A′′) ⋔ FA′

←

ˆ

A′,A′′
A(A′, A′′) ⋔ A(B, A′′) ⋔ FA′

(2.2.1) ∼= FB;

ηF : FB =
˛ A

FA⊗A(A, B)

∼=
ˆ A′,A′′

FA′ ⊗A(A′′, B)δA(A′, A′′)

→

ˆ A′,A′′

FA′ ⊗A(A′′, B)A(A′, A′′)

∼= FB;

we obtain natural transformations corresponding to suitable coherent
identities under the isomorphism of 7.2.21.

• The maps ηF , ηF behave like resolutions: [CP97, 3.4] shows that they
are level-wise homotopy equivalences (meaning that ηF : FA → FA

induces homotopy equivalences of simplicial sets B(B, FA)
(ηF )∗
−−−→

B(B, FA) for each B, naturally in B).7

7 We decide to skip the proof of this proposition, as it is quite long, technical, and
even though it relies on co/end calculus it doesn’t add much to the present
discussion.
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Simplicially coherent Kan extensions

The universal property of a Kan extension is inherently 2-dimensional:
uniqueness is stated at the level of 2-cells, and any sensible generalisation
of it to the higher world involves a ‘space’ of 2-cells between 1-cells.

This entails that any reasonable definition of a (left or right) Kan
extension ultimately relies on a nice definition for a space of coherent
natural transformations between functors, which has been the subject
of the previous subsection.

There are, nevertheless, several subtleties as there are many choices
available for a definition: in the words of [CP97],

Clearly one can replace natural transformations by coherent ones [in the
definition of a Kan extension], but should isomorphism be replaced by
homotopy equivalence, should they be natural, in which direction should
this go. . . ?

Solving this problem can be tricky; one of the reasons is that simplicial
combinatorics captures really well the behaviour of (∞, 1)-categories,
whereas any satisfactory model for homotopy coherent Kan extensions
shall speak about (∞, 2)-categories.

In order to define coherent Kan extensions for B G
←− A

F
−→ C we ask

the isomorphisms

Cat∆(B, C)((H, hoRanG F )) ∼= Cat∆(A, C)((HG, F )) (7.77)

Cat∆(B, C)((hoLanG F, K)) ∼= Cat∆(A, C)((F, KG)) (7.78)

to hold at the level of coherent transformations. This can be achieved as
follows:

Definition 7.2.22 (Coherent Kan extensions). Let F : A → C and
G : A → B be a span of simplicial functors; we define

hoRanG F ( ) =
˛

A

B( , GA) ⋔ FA

hoLanG F ( ) =
˛ A

B(GA, )⊗ FA

Proving that the isomorphisms (7.77) and (7.78) hold follows from an
easy computation with the explicit form of the coherent co/ends above.
We leave to the reader to either solve this as an exercise in 7.8, or to
consult [CP97].
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A glance at dg-coends The Dold-Kan correspondence (see 3.2.10) es-
tablishes an equivalence of categories between Ch≥(Z), chain complexes
of abelian groups concentrated in positive degree, and simplicial objects
in the category of abelian groups, i.e. functors G : ∆op → Mod(Z). The
equivalence of categories is generated by a cosimplicial object

DK : ∆→ Ch≥(Z) (7.79)

and the universal property of the Yoneda embedding now yields an ad-
junction

Lanよ(DK) : sSet⇆ Ch≥(Z) : LanDKよ (7.80)

It turns out that this is an equivalence of categories.
(This result can be restated in fair more generality, but in this para-

graph we stick to the R-linear case.)
Dold-Kan equivalence induces an equivalence of 2-categories between

simplicial-abelian-group enriched categories on one side, and categories
enriched in (positive) chain complexes on the other, or suitable dg-cate-

gories (i.e. categories enriched in chain complexes) for short.
The theory of dg-categories is deeply rooted in homological algebra

and finds applications in algebraic geometry [KL14, Gen15]: in order to
study nicer versions of derived categories, one can attach a derived dg-cat-

egory D(X) to a space/scheme/abelian category, and such a category is
way better behaved than the ‘incoherent’ derived category D(X) (where
the cone construction of 4.2.1 is not functorial).

There is of course a link between the two objects; the incoherent cate-
gory can be recovered as the homotopy category of D(X) as follows: each
cohomology functor Hn extend degree-wise to functors Hn : dg-Cat →
Ab-Cat (=categories enriched on abelian groups, also called preadditive),
and there is an isomorphism D(X) = H0(D(X)).

In order to approach derived algebraic geometry with the tools of
enriched category theory, it might be interesting to restrict coherent
co/end calculus to [∆op, Ab]-categories, and think about the result as
dg-categories using the Dold-Kan equivalence.

This is an enticing application of co/end calculus in an homotopi-
cal/homological setting, and many questions arise naturally from the
expressive power of co/end calculus. For example: if A is any dg-cate-
gory its identity profunctor A  A is a functor Aop ⊠ A → Ch(Z), so
that the coherent end

˛

A

A(A, A) (7.81)
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i.e. the object of derived natural transformations of the identity functor
idA, recovers the Hochschild complex of A. Then, if A is an associative
algebra regarded as a one-object dg-category concentrated in degree zero,
the object Hn(

´

∗A) is the Hochschild cohomology of A, understood in
the classical sense of, say, [Pie82, Ch. 11].

We don’t have enough space to expand on this interesting topic, but
one can find that the bicategory of dg-profunctors, and in particular of
the endoprofunctors of a single object X gives rise to plenty of derived
invariants of a dg-category, but we leave to the interested reader the
endeavor of re-reading the paper [KL14] wearing appropriate co/end-
goggles (among many, that paper seems the most liable to a co/end-
theoretic reformulation).

The same approach can be carried over in the more general setting of
a category enriched over a monoidal model category; a perfect starting
point accounting for the state of the art on the matter is Shulman’s
[Shu06].

7.3 Co/ends in quasicategories

As a rule of thumb, the translation procedure from category to ∞-cate-
gory theory is based on the following meta-principle: first you rephrase
the old definition in a ‘simplicially meaningful’ way, so that the ∞-cat-
egorical definition specialises to the old one for quasicategories N(C)
which arise as nerves of categories. Then you forget about the original
gadget and keep the simplicial one; this turns out to be the right defini-
tion.

The first victim of this procedure is the twisted arrow category 1.2.2
of an ∞-category.

Definition 7.3.1 (Twisted arrow ∞-category). Let ε : ∆ → ∆ be the
functor [n] 7→ [n] ⋆ [n]op, where ⋆ is the join of simplicial sets [Joy08,

EP08], and the opposite of a simplicial set is defined in [Rez17, §6.19].
Let C be a ∞-category; the twisted arrow category tw(C) is defined
to be the simplicial set ε∗C, where ε∗ = ◦ εop : sSet → sSet is the
induced precomposition functor. More explicitly, and consequently, the
n-simplices of tw(C) are characterised by the relation

tw(C)n ∼= sSet(∆[n], tw(C)) ∼= sSet(∆[n] ⋆ ∆[n]op, C). (7.82)

The most important feature of the twisted arrow category is that it
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admits a fibration over Cop × C (part of its essential properties can be
deduced from this); the machinery of left and right fibrations exposed
in [Lur09, 2.0.0.3] gives that

• There is a canonical simplicial map Σ : tw(C)→ Cop×C (induced by
the two join inclusions ∆[ ], ∆[ ]op →∆[ ] ⋆ ∆[ ]op);

• This ∞-functor is a right fibration in the sense of [Lur09, 2.0.0.3].

Remark 7.3.2. It is rather easy to see that the above definition is
reasonable: a 0-simplex in tw(C) is an edge f : ∆[1] → C, and a 1-
simplex of tw(C) is a 3-simplex thereof, that we can depict as a pair of
edges (u, v), such that the square having twisted edges

f

��

uoo

f ′

��
v

//

(7.83)

commutes. This suggest (as it must be) that the definition of tw(C)
for a ∞-category specialises to the 1-dimensional one and adds higher-
dimensional information to it.

Definition 7.3.3. Let C,D be two ∞-categories; the ∞-co/end of a
simplicial map F : Cop × C → D is the co/limit

¸

F of the composition

tw(C) Σ
−→ Cop × C

F
−→ D (7.84)

The main interest of the authors in [HGN17] is to formulate an analogue
of A.5.13, which characterises the Grothendieck construction of a Cat-
valued functor as a particular weighted colimit (see 4.2.2).

It is rather easy to formulate such an analogue definition: this appears
as [HGN17, 2.8].

Definition 7.3.4 (op/lax colimit of F ). Let F : C → Cat∞ be a functor
between ∞-categories. We define

• the slice fibration for C ∈ QCat to be the functor of quasicategories
χC : C → QCat sending C ∈ C to C/C, and dually the coslice fibration

to be χC : C → QCat : C 7→ C/C;

• the lax colimit of F to be the coend
˛ C

C/C × FC; (7.85)
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• the oplax colimit of F to be the coend
˛ C

C/C × FC. (7.86)

The Grothendieck construction associated to F , discussed in [Lur09]
with the formalism of un/straightening functors results precisely as the
oplax colimit of F . This is concordant with our 4.2.2 and 4.2.3.

A Fubini rule for ∞-coends

The following section establishes the analogue of 1.3.1 for∞-coends; the
present proof, as it stands, currently appears as [Lor18].

We freely employ the terminology on ∞-category theory recalled in
§A.8. In particular we denote Kan the category of Kan complexes i.e.
simplicial sets that lie in the orthogonal of all horn inclusions Λnk →֒
∆[n], for 0 ≤ k ≤ n and n ≥ 0; the nerve functor N : Cat → sSet
establishes a Quillen equivalence between the category of categories and
the category of simplicial sets; fibrant objects in the latter category are
the ∞-categories of [Lur09].

Lemma 7.3.5. Let C be a small ∞-category, and D be a presentable ∞-

category; then D is tensored and cotensored over S = N(Kan) (the ∞-
category of spaces). This entails that there is a two-variable adjunction

Dop ×D
MapD−−−−→ S S ×D

⊗
−→ D Sop ×D

⋔
−→ D (7.87)

such that

D(X ⊗D, D′) ∼= S(X, MapD(D, D′)) ∼= D(D, X ⋔ D′) (7.88)

From the existence of these isomorphisms it is clear that

V ⊗ (W ⊗D) ∼= W ⊗ (V ⊗D) ∼= (V ×W )⊗D (7.89)

V ⋔ (W ⋔ D) ∼= W ⋔ (V ⋔ D) ∼= (V ×W ) ⋔ D (7.90)

Lemma 7.3.6. Let F : Cop × C → D be a ∞-functor and C,D ∞-

categories as in the assumptions of 7.3.5. Then

• F 7→
´ C

F is functorial, and it is a left adjoint;

• F 7→
´

C
F is functorial, and it is a right adjoint.

Proof We only prove the first statement for coends; the other one is
dual.
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Since
´ C

F = colimtw(C)(F ◦ Σ) = colimtw(C) ◦Σ∗(F ) results as a
composition of ∞-functors, it is clearly functorial; then

´ C : [Cop × C,D]
Σ∗ //

[tw(C),D]
RanΣ

oo ⊥

colimtw(C) //
D

c
oo ⊥ (7.91)

is a left adjoint because it is a composition of left adjoints (c = t∗ is the
constant functor inverse image of the terminal map tw(C)→ ∗).

Dually, the left adjoint to
´

C
is given by LanΣ ◦c(D).

Now, the Fubini rule asserts that when the domain of a functor F :
Aop ×A → D is of the form (C × E)op × (C × E), then the co/ends of F

can be computed as ‘iterated integrals’

ˆ (C,E)

F ∼=
ˆ CE

F ∼=
ˆ EC

F (7.92)
ˆ

(C,E)

F ∼=
ˆ

CE

F ∼=
ˆ

EC

F (7.93)

These identifications hide a slight abuse of notation, that is worth to
make explicit in order to avoid confusion: thanks to 7.3.6 the three ob-
jects of (7.92) can be thought as images of F along certain functors, and
the Fubini rule asserts that they are linked by canonical isomorphisms;
we can easily turn these functors into having the same type by means of
the cartesian closed structure of sSet (somewhat sloppily, we denote the
internal hom of E ,D as [E ,D]):

[Cop × C × Eop × E ,D] [Cop × C × Eop × E ,D] [Cop × C × Eop × E ,D]

[Cop × C, [Eop × E ,D]]

[Cop×C,
´E ]

��

[Eop × E , [Cop × C,D]]

[Eop×E,
´C ]

��

[(C × E)op × (C × E),D]

´ (C,E)

��

[Cop × C,D]
´

C

��

[Eop × E ,D]
´

E

��
D D D

(7.94)
(of course, we can provide similar definitions for the iterated end functor).

Once that this has been clarified, we can deduce the isomorphisms
(7.92) and (7.93) from the fact that the three functors

´ CE
,
´ EC

,
´ (C,E)
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have right adjoints isomorphic to each other, and hence they must be
isomorphic themselves.

This argument evidently mimics the one given in 1.3.1.

Proposition 7.3.7. The functor R = RanΣ(c(_)) acts ‘cotensoring

with mapping space’:

D 7→
(

(C, C′) 7→ MapC(C, C′) ⋔ D
)

(7.95)

Dually, the functor L = LanΣ(c(_)) acts ‘tensoring with mapping space’:

D 7→
(

(C, C′) 7→ MapC(C, C′)⊗D
)

(7.96)

Proof We only prove the first statement about R; the other one is dual.
It turns out that the statement relies on very well-known features of

simplicial categories: we move to that setting, lacking an equally simple
and conceptual quasicategorical proof.

Recall from 7.2.11 that translating this result into the simplicially-
enriched setting, we get the coherent end of a simplicial functor F :
A → B of Kan-tensored and cotensored simplicial categories as the end

˛ A

F (A, A) :=
ˆ A′,A′′

δA[A′|A′′]⊗ F (A′, A′′) (7.97)

defined in 7.2.11; the object δA[X |Y ] is a cofibrant resolution of the hom
functor, regarded as the identity hom : A A. In view of this, and since
the weighted colimit functor

⊗ : [X op, Kan]× [X ,B]→ B : (G, F ) 7→ colimGF (7.98)

is functorial in its F argument, is also a left adjoint with right adjoint
the cotensoring with the weight:

D(W ⊗ F, D) ∼= [X ,D](F, W ⋔ D). (7.99)

Since
¸ A

F (A, A) ∼= δA⊗F is the weighted colimit with δA as a weight,
it turns out that there is an adjunction

¸ A ∼= δA⊗ ⊣ λD.λXY.δA[X |Y ] ⋔ D (7.100)

and by the uniqueness of adjoint functors (of course valid also in this
setting) we obtain that RanΣ ◦c(D) ∼= δA ⋔ D.
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The Fubini rule now follows from uniqueness of adjoints: in diagram

λF.
´ C´ E

F ✤ λD.λCC′.λEE′.Map(C, C′) ⋔
(

Map(E, E′) ⋔ D
)

≀

λF.
´ E´ C

F
✤
λD.λEE′.λCC′.Map(E, E′) ⋔

(
Map(C, C′) ⋔ D

)

≀

λF.
´ (C,E)

F
✤
λD.λCEC′E′

(
Map(C, C′)×Map(E, E′)

)
⋔ D

≀

Map
(
(C, E), (C′, E′)

)
⋔ D

(7.101)
the vertical isomorphisms on the right are justified by (7.90). A com-
pletely analogous argument, using (7.89) instead, and the left adjoints
given by tensoring with the derived mapping space, gives the Fubini rule
for (7.93).

7.4 Co/ends in a derivator

The theory of derivators provides a purely 2-categorical model for higher
category theory, where all the coherence information is encoded in con-
ditions that are imposed on suitable diagrams of 2-cells.

The theory was invented by A. Grothendieck in order to address the
many shortcomings of triangulated categories, a categorical structure
naturally arising in stable homotopy theory.

Here we only sketch some of the basic definitions needed to pave the
way to 7.4.4 below.

Definition 7.4.1 (The 2-category of prederivators). We define a 2-
category PDer such that

• an object of PDer, called prederivator, is a strict 2-functor D : catop →

Cat;
• a morphism of prederivators is a pseudonatural transformation be-

tween pseudofunctors, η : D⇒ D′;
• a 2-cell between morphisms of prederivators is a modification (see

7.1.3) Θ : η ⇛ η′ between pseudonatural transformations.

Notation 7.4.2. Along this paragraph we employ a local notation
which is specific of the literature in derivator theory: the terminal cat-
egory is often denoted e (perhaps French for ‘ensemble avec un seul
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élément’); small categories are in Roman uppercase I, J, K . . . and func-
tors are in Roman lowecase u : I → J . If u : I → J , then its image
along a prederivator D is denoted u∗ : D(J) → D(I). A morphism of
prederivators has components FI : D(I) → D′(I) and it is specified by
families of invertible 2-cells γu : FI ◦ u∗ ⇒ u∗ ◦ FJ subject to suitable
coherence conditions.

The notion of derivator is a refinement of 7.4.1, originally motivated
by the desire to provide a satisfactory axiomatisation for triangulated
categories –and more generally, homotopy categories of model categories–
that only appeals to 2-categorical language.

A derivator is then a prederivator that satisfies the following addi-
tional conditions (we adopt the same labeling convention of [Gro13]):

Der1) The functor D(I ⊔ J) → D(I) × D(J) obtained from the canonical
inclusions iI : I → I ⊔ J ← J : iJ is an equivalence.

Der2) Each object j : e → J induces a family of functors D(J)
j∗

−→ D(e);
we ask that this family jointly reflects isomorphisms, i.e. a morphism
f ∈ D(J) is invertible if and only if each j∗f is invertible in D(e).

Der3) Each functor u∗ : D(J) → D(I) induced by u : I → J admits both
a left adjoint u! and a right adjoint u∗. These functors are called,
respectively, the homotopy left Kan extension and homotopy right Kan

extension along u.
Der4) Given a functor u : J → K, and the two squares in the left column be-

low, there exist two squares in Cat, in the right column below, induced
by the colax pullbacks defining the slice and coslice categories:

J/k
t //

p

��

e

k

��
J u

// K

✁✁✁✁
<D̟

 

D(J/k)
t∗ // D(e)

✻✻✻✻W_
̟∗

D(J)

p∗

OO

u∗
// D(K)

k∗

OO

Jk/

✂✂✂✂}� ̟′

t //

p

��

e

k

��
J u

// K

 

D(Jk/)
t! // D(e)

D(J)

✺✺✺✺
��
̟!p∗

OO

u!

// D(K).

k∗

OO

We ask that these squares are filled by invertible 2-cells ̟′! : t!p
∗ ⇒

k∗u!, and ̟∗ : k∗u∗ ⇒ t∗p
∗.

Remark 7.4.3. Taken all together, the axioms of derivator are meant
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to ensure that we can build a theory which is expressive enough for
applications: te fundamental idea is that we can do category theory
‘over cat’ as a family of large categories D(J) contravariantly depending
on functors u : I → J .

Let’s take a deeper look at the axioms: (Der1) asks D to act inde-
pendently on different (finite) connected components; (Der2) asks that
being an isomorphism in D(J) is a ‘local’ notion; the other two axioms
are meant to express the fact that we can compute left and right Kan
extensions for every functor u : I → J (Der3), and that these exten-
sions are pointwise (Der4). More precisely, axiom (Der4) (see [Gro13,
1.10]) states that these Kan extensions can always be computed with a
pointwise formula; since, according to our 4.1.7, Kan extensions can be
identified with weighted co/limits on representable weights, and more
precisely because all the following concepts are equivalent:

• the left Kan extension of F : A → C along G : A → B computed in B;

• the weighted colimit of F with respect to the representable hom(G , B);
• the conical co/limit of F over the category of elements of hom(G , B);

• the conical colimit of the diagram (G/B)→ A F
−→ B over the comma

category of G and B.

we can try to express co/end calculus using pointwise Kan extensions in
a derivator. We exploit two basic facts: first, according to 1.2.3 co/ends
are colimits over twisted arrow categories (or suitable opposite thereof);
second, co/limits are Kan extensions along terminal arrows p : K → ∗.

With these remarks in mind, let tw(K) be the twisted arrow category
of K (see 1.2.2) or equivalently the category of elements (see A.5.9) of
homK , for a small category K; then there exists a functor ΣK = (t, s) :
tw(K)→ Kop ×K (see A.5.13).

Definition 7.4.4 (Homotopy coend in a derivator). Let D be a deriva-
tor, and K ∈ cat a category. The homotopy coend

˛ K

: D(J ×Kop ×K)→ D(J) (7.102)

is defined as the pseudonatural transformation with components ob-
tained from the composition

˛ K,[J]

: D(J ×Kop ×K)
Σ∗K−−→ D(J × tw(K))

p!−→ D(J) (7.103)
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Remark 7.4.5. If we rephrase the above definition in terms of the
shifted derivator D(J | ) : catop → Cat of D, i.e. the functor I

×J
7−→

I × J
D( )
7→ D(I × J), the homotopy coend

¸ K defines a morphism be-
tween the shifted derivators D(Kop ×K| )→ D. (Pseudonaturality fol-
lows from a simple pasting rule between pseudonatural transformations:
filling in the details is straightforward.)

Remark 7.4.6 (Homotopy ends as homotopy limits). We can state
the dual notion of homotopy end in D: it is enough to replace p! with
the right adjoint p∗ computing limits instead of colimits in the definition
above (the twisted arrow category shall be replace by a suitable opposite
thereof): in components,
ˆ

K,[J]

: D(J ×Kop ×K)
J×Σ∗K−−−−→ D(J × tw(K))

p∗
−→ D(J) (7.104)

Lemma 7.4.7. If F : D → D′ is a morphism of derivators, there is a

canonical ‘comparison’ morphism

ς :
´ K
◦F → F ◦

´ K (7.105)

obtained as the composition

D(J ×K ×Kop) p!◦FJ×L×tw(K)◦(t,s)
∗ //

p!◦(t,s)
∗◦FJ×L×Kop×K

%%

FJ×L◦p!◦(t,s)
∗

99✤✤ ✤✤
�� ≀

✤✤ ✤✤
�� ≀

D′(J) (7.106)

where the second morphism results from the pasting of 2-cells:

D′(e)
✞✞✞✞�� ǫ

D′(J)oo

✞✞✞✞��

D(J)oo

✝✝✝✝�� η

D′(e)

OO

D(e)oo

OO

D(J)oo

(7.107)

Proof The morphism F : D → D′ has components FI : D(I) → D′(I)
and there is a 2-cell filling the central square in (7.107). This allows for
(7.106) to be a well-posed definition. The rest is an easy check of pseudo-
naturality conditions, following from conditions on the data defining
ς.
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A derivator morphism F preserves homotopy coends (i.e. the above
2-cell is invertible) if (and only if? Think about it: is it still possible to
describe a co/limit as a certain co/end) it preserves colimits, or more
generally left homotopy Kan extensions. Dually, F preserves homotopy

ends if (and only if?) it preserves right homotopy Kan extensions.

Exercises

7.1 Study the category of 2-profunctors with the composition of 1-cells
given by the lax coend

p ⋄ q(A, C) =
“ B

p(A, B)× q(B, C)

• the 3-category 2-Cat can be embedded into 2-Prof in various ways,
using F 7→ hom(F, 1), F 7→ hom(F ♯, 1), etc.; what is the strictest
of these embeddings? Are they fully faithful in a suitable sense?
• Is there an adjunction hom(F, 1) ⊣ hom(1, F )? Or rather an ad-

junction hom(F ♯, 1) ⊣ hom(1, F ♭)?
• Does 2-Prof have a dualiser in the sense of 5.3.1? Does it have

products, coproducts?

7.2 A lax colimit for a diagram F : J → K in a 2-category K is an
object L with a lax cocone {FJ → L | J ∈ J } satisfying a suitable
universal property (state it, mimicking –the dual of– 7.1.1).

7.3 Dualise 7.1.1: state the definition of lax cowedge S d for a 2-
functor S : Aop × A → B; state the definition of lax coend for S

as an initial cowedge, the representing object of the functor d 7→

LCwd(S, d).
7.4 Prove that the bar and cobar complexes define functors

B( , C, F ) B(G, C, ) C( , C, F ) C(G, C, ).

Deduce that there exists a canonical morphism B(G, C, F ) → NC in
the category of simplicial sets.

Prove that if F, G : C → Set are parallel functors, there is an
isomorphism

B(G, C, F )op
•
∼= B(F, Cop, G)•.

Prove that the bar complex is isomorphic to the nerve of a certain
category of elements (see A.5.9). Can you provide an intuition about
this identification? Dualise this statement.
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7.5 Define co/face and co/degeneracy maps for the co/simplicial objects
Y (T ) and W (T ) of 7.2.13 (hint: there is an isomorphism

τ : T (X0, Xn)ΠA[ ~X] ∼=
(

T (X0, Xn)A(X0,X1)
)A[X1|~Y |Xn]n−1

,

and you want to assemble a map Y (T )n−1 → Y (T )n from its compo-
nents ΠA[ ~X ] ⋔ T (X1, Xn)→ Y (T )n; this defines d0. The map dn is
defined via an isomorphism σ and a similar argument).

7.6 Prove the Fubini theorem for simplicially coherent co/ends: given
a functor T : Aop ×A× Bop × B → C, then

˛ A
(
˛ B

T (A, A, B, B)

)
∼=
˛ (A,B)∈A×B

T (A, B, A, B)

∼=
˛ B

(
˛ A

T (A, A, B, B)

)

(hint: it is a simple theorem about the relation between δ(A×B) and
δA× δB and about 1.3.1).

7.7 Prove that [F, G] ∼= Cat∆((F, G)) ∼= [F , G], using 7.2.11 and a formal
argument.

7.8 Prove that the isomorphisms (7.77) and (7.78) hold, and thus define
coherent Kan extensions for simplicial functors.

7.9 Prove that the standard resolutions of 7.2.19 ‘absorb coherence’ in
coherent Kan extensions, showing that

RanG F ∼= hoRanG F LanG F ∼= hoLanG F.

(a preliminary lemma: prove that F ( ) ∼=
´

A FAδA( ,A)).

7.10 Find an expression for hoRanH F , given a cospan of functors Cat∆(C, sSet) H
←−

A
F
−→ Cat∆(B, sSet).

7.11 Prove that
´ K : D(Kop × K|−) → D defines a morphism of

derivators (you can either prove that a functor u : K → L induces a
morphism between the shifted derivators D(L|−)→ D(J |−), or prefer
an explicit argument –both ways are considerably long).

7.12 Prove that ‘coends in a derivator are pointwise’, i.e. that given
an arrow j : e → J there is a canonical isomorphism j∗

( ´ K
X
)
∼=

´K
j∗X for each X ∈ D(J ×Kop ×K).

7.13 State and prove the Fubini theorem for homotopy coends in D: the
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diagram

D(J ×Koo × Loo)
(J×ΣK×L

oo)∗ //

ΣK×L

%%❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏

✑✑✑✑�� α

✑✑✑✑�� β

Σ∗L
��

D(J × tw(K)× Loo)

pK
!

��
D(J ×Koo × tw(L))

pL
!

��

D(J × Loo)

Σ∗L
��

D(J ×Koo)

Σ∗K
��

D(J × tw(L))

pL
!

��
D(J × tw(K))

pK
!

// D(J)

commutes for canonically determined 2-cells α and β.
7.14 We define a bimorphism between three derivators to be a family of

functors

BIJ : D(I)× E(J)→ F(I × J)

in Cat endowed with 2-cells γu1,u2 filling the diagrams

D(J1)× E(J2)

✏✏✏✏�� γ

//

��

F(J1 × J2)

��
D(I1)× E(I2) // F(I1 × I2)

These γu1,u2 are subject to certain coherence conditions: for every
pair (α1, α2) of natural transformation αǫ : uǫ ⇒ vǫ : Iǫ → Jǫ and
ǫ = 1, 2 we have that the two diagrams

(u1 × u2)∗ ◦ (v1 × v2)∗ ◦B
γ //

γ ,,

(u1 × u2)∗ ◦B ◦ (v∗1 × v∗2)

γ

��
B ◦ (u∗1 × u∗2) ◦ (v∗1 × v∗2)

(u1 × u2)∗ ◦B //

γ

��

(u′1 × u′2)∗ ◦B

γ

��
B ◦ (u∗1 × u∗2) // B ◦ (u′∗1 × u′∗2 )

commute. Write suitable diagrams of 2-cells expressing these commu-
tativities less tersely. Show that there is a category Derb((D,E),F) of
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bimorphisms of derivators, and that there is an equivalence

Derb((D,E),F) ∼= Der(D× E,F)

Is there a way to prove this result using the fact that the right side
is a pseudo-end?

7.15 Let DSet be the discrete derivator sending a small category J

into the functor category SetJ = Cat(J, Set). State a definition and
an existence theorem for weighted colimits in a derivator D: given a
small category I ∈ cat and a bimorphism ⊞ : (DSet,D)→ D(−|I), we
define the colimit of X ∈ D(J), weighted by W ∈ DSet(Jop) as the
coend (in D)

´ J
W ⊞ X , i.e. as the image of the pair (W, X) under

the composition

D
Set(Jop)× D(J)

⊞Jop,J
−−−−→ D(Jop × J |I)

´

J,[I]

−−−→ D(I).



Appendix A

Review of category theory

Summary. The scope of the present appendix is to recall the
bare minimum of category theory that we employ along the book.
This is also meant to fix our notation beyond what is already done
in the introduction. Even though we assume the typical reader of this
book is already acquainted with basic category theory, we will still
indulge in a certain desire of self-containment: as a rule of thumb,
capital results like A.5.3 or A.5.7 are proved in full detail; most of
the other proofs are barely sketched, and some of the marginal results
are not proved. It is in fact unrealistic to aim at such a big target as
providing a complete account of basic category theory in this appendix;
the reader not feeling at ease while consulting the present section is
warmly invited to parallel it with more classical references as [ML98,
Rie17, Lei14, Sim11].

A major explanation for the cognitive advantages of
diagrams is computational offloading: They shift some of
the processing burden from the cognitive system to the
perceptual system, which is faster and frees up scarce
cognitive resources for other tasks.

Daniel L. Moody — [Moo09]

A.1 Categories and functors

In simple terms, a category is a structure capable to abstract a number
of working assumptions of everyday mathematics:

• All objects of a given ‘kind’ can be collected in a class;

• such objects form coherent conglomerates, allowing for relations be-
tween structures to form;

240
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• far from being rare, these relational conglomerates are pretty common
and arise at every corner of pure and applied mathematics.

Of course, it is not trivial at all to define what is the ‘kind’ of a structure;
nor it is easy to define properly what is the process leading to the forma-
tion of ‘homomorphisms’, understood as a map preserving the structure
(why a ‘homomorphism of topological spaces’ is a continuous function
and not an open map?). As always, only experience gives the right an-
swer to such questions; but category theory is of great help in building
and strengthening some sort of sixth sense for which Mathematics among
the many is ‘the right one’.

Lacking the sufficient authority to break the unspoken rule that a
mathematician should talk about explicit theorems or concrete exam-
ples, and not about speculations, we shall refrain from this kind of ram-
blings into philosophy of Mathematics. The problem of what is category
theory, and what’s it for, and what’s there to do in it, has however been
addressed to some extent. A much better informed opinion than ours
can be found in [Krö07, MZ10]:1 we warmly invite the interested reader
to refer to these sources, but it is our humble opinion that a too deep
study of the philosophical ground that made category theory possible
quickly turns out to be counterproductive, when is not backed up by at
least an elementary knowledge of his techniques.

Definition A.1.1 (Category). A (locally small) category C consists of
the following data:

c1) A class Co whose elements are termed objects, usually denoted with
Latin letters like A, B, . . . ;

c2) A collection of sets C(A, B), indexed by the pairs A, B ∈ Co, whose ele-
ments are termed morphisms or arrows (see A.1.3 below) with domain

A and codomain B;

1 This shows how category theory fits into a solid track of prior philosophical and
mathematical research; in a certain sense it is the pinnacle of such research, and
the result of its declination in the field of pure mathematics: category theory is
what structuralism becomes when it is merged with mathematical craftmanship.
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c3) An associative2 composition law

◦ = ◦C,ABC : C(B, C)× C(A, B)→ C(A, C) : (g, f) 7→ g ◦ f (A.1)

defined for any triple of objects A, B, C. The composition ◦(g, f) is
always denoted as an infix operator, g ◦ f := ◦(g, f);

c4) for every object A ∈ Co there is an arrow idA ∈ C(A, A) such that for
every A, B ∈ Co and f : A→ B we have f ◦ idA = f = idB ◦f .

Remark A.1.2 (On composition). From time to time, the composition
g ◦ f in a category may be denoted by similar ‘monoid-like’ infix opera-
tions as g · f or g • f , or even mere juxtaposition gf . What will never

happen is that we denote function application and morphism composi-
tion with an infix semicolon as in f ; g.

Remark A.1.3 (On arrows). The fact that for every f ∈ C(A, B) we call
A the domain of f and B the codomain of f suggests how a morphism
can be pictorially represented as an arrow f : A → B ‘traveling’, so to
speak, from the domain to the codomain. Alternative notation for the
set of arrows A→ B are: homC(A, B), hom(A, B) (when the category C
is understood from the context), or more rarely [A, B].

Remark A.1.4 (On morphism application). There are few illustrious
exceptions to the tradition of accumulating function symbols to the left,
when denoting the composition

fn ◦ fn−1 ◦ · · · ◦ f1 (A.2)

of a tuple of morphisms Ci−1
fi
−→ Ci. We stick to the most common

notation that function application is on the left, without further mention;

in this sense, a composition A
f
−→ B

g
−→ C is written g ◦ f .

The fact that composition is associative in a category C makes every
such tuple of compositions well-defined, and we will refer to the arrow
fn ◦ · · · ◦ f1, where the fi are composed according to an arbitrary paren-
thesisation, as the composition of the tuple (fn, . . . , f1).

Definition A.1.5 (Functor). Let C and D be two categories; we define
a functor F : C → D as a pair (F0, F1) consisting of the following data:

2 If C is a class of sets, we say that a family of functions {fXY Z : X × Y → Z}
indexed by the elements X, Y, Z ∈ C is associative if

fW ZU (w, fXY Z(x, y)) = fZY U (fW XZ (w, x), y)

for every tuple X, Y, Z, U, W and elements for which this is meaningful. When
fXY Z = ◦ is the composition map of a category this translates, of course, into
the familiar associativity property u ◦ (v ◦ w) = (u ◦ v) ◦ w.
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f1) F0 is a function Co → Do sending an object C ∈ Co to an object
FC ∈ Do;

f2) F1 is a family of functions FAB : C(A, B)→ D(FA, FB), one for each
pair of objects A, B ∈ Co, sending each arrow f : A→ B into an arrow
Ff : FA→ FB, and such that:

• FAA(idA) = idFA;
• FAC(g ◦C f) = FBC(g) ◦D FAB(f).

Remark A.1.6. Every family of arrows FAB like in A.1.5.f1,f2 will
be said to satisfy a functoriality property; from now on, we will always
denote both the action on objects and on arrows of F with the same
symbol F : so, F sends an object A into FA and an arrow f : A → B

into an arrow Ff : FA→ FB.

Definition A.1.7 (Subcategory). Let C be a category. A subcategory S

of C is a category defined by the following conditions

sc1) The objects of S form a sub-class of the class of objects of C;
sc2) For every A, B ∈ So there is an injective function S(A, B) ⊆ C(A, B).

If in the second condition above the inclusion is in fact an equality, or a
bijection, the subcategory is called full.

Definition A.1.8 (Isomorphism). Let C be a category, and f : A→ B

one of its morphisms. We say that f is an isomorphism (or an invertible

morphism) if there exists a morphism g : B → A going in the opposite
direction, such that f ◦ g = idB and g ◦ f = idA. When A = B we
call an arrow f : A → A an endomorphism, and an invertible arrow an
automorphism of A.

Remark A.1.9. As it happens for groups, if an inverse of f : A → B

exists, then it is unique: if there are two such inverses,

g = g ◦ id = g ◦ f ◦ g′ = g′

using associativity of the composition and the definition of inverses.3 We
can thus call an inverse of f the inverse f−1.

Example A.1.10 (Examples of categories).

c1) Let’s rule out all edge examples in a single item: the empty category,
having no objects and morphisms, satisfies all axioms of A.1.1. So does

3 Note that this is actually showing something stronger: if f has a left inverse g,
and a right inverse g′, then f is invertible, and g = g′.
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the singleton category, having a single object ∗ and a single morphism,
its identity id∗. Every set A can be regarded as a category Aδ, having
as objects the elements of A, and where Aδ(x, y) = ∅ if x 6= y, and
where there is a unique arrow x→ x, which must be the identity idx.
This is called the discrete category on the set A. In a dual fashion,
every set A can be regarded as a category Aχ, having as objects the
elements of A, and where Aχ(x, y) has exactly one element for each
pair (x, y) ∈ A×A; this is called the chaotic category on the set A.

c2) The collection of sets, and functions between sets is a category Set.
The set Set(A, B) is the set of all functions f : A → B, seen as the
subset of the power-set of A×B of those relations that are functions
(i.e. such that for every a ∈ A such that (a, b) ∈ f there is a unique
such b ∈ B).

c3) The above category contains as (nonfull) subcategories those of struc-

tured sets, having objects the sets endowed with operations like groups,
rings, vector spaces, and morphisms the homomorphisms of these
structures (homomorphisms of groups, rings, linear maps of vector
spaces, . . . ). These categories are denoted with evocative terms like
Grp (groups and their homomorphisms), Ab (abelian groups and their
homomorphisms), Mod(K) (vector spaces and linear maps), or more
generally Mod(R), Gph (graphs4 and their homomorphisms). . .

c4) Moreover, there is a category of topological spaces, whose objects are
pairs (X, τ) (τ is a topology on the set X) and the morphisms f :
X → Y are continuous functions.

c5) Every partially ordered set (poset) P endowed with a relation ‘≤’ can
be seen as a category P . Indeed, the objects of P are its elements, and
there is an arrow x → y if and only if x ≤ y in P (in all other cases,
the set P (x, y) is empty).

c6) Every monoid M can be regarded as a categoryM with a single object
∗M , and where the set of arrows m : ∗M → ∗M is the set of elements
of M ; indeed, in this case, the monoid axioms and the axioms in A.1.1
translate perfectly into each other. The group of invertible elements
of M identifies to the automorphism group of the unique object ∗M .
Given this, every group G can be regarded as a category with a single
object, such that every morphism is invertible.

4 A graph consists of a pair of sets E, V (edges and vertices) such that E ⊆ V × V ;
a graph homomorphism is a pair of functions fE , fV between the sets of edges
and vertices of two graphs. A graph G = (E, V ) is directed if each element
(e0, e1) in E is an ordered pair; in this case e0 is the source or domain of the
edge and e1 is its target or codomain. Of course, a category can be regarded as a
(possibly

Ω+-)graph of a particular kind.
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c7) Given a directed graph Γ, we can consider the free category generated
by the graph: its class of objects is the same collection of vertices of
Γ; given two vertices U, V the set of morphisms f : U → V is the
set of paths U → W1 → · · · → Wn → V of length n; composition
of morphisms is concatenation of paths; the identity morphism is the
(unique) empty path of length 0.

Definition A.1.11. Let C be a category; we say that an arrow f : X →

Y is

me1) a monomorphism if every two parallel arrows u, v : A⇒ X such that
f ◦ u = f ◦ v are equal;

me2) an epimorphism if every two parallel arrows u, v : Y ⇒ B such that
u ◦ f = v ◦ f are equal.

These conditions are in turn respectively equivalent to the following ones,
stated in terms of the hom-sets of C: the arrow f : X → Y is

em1) a monomorphism if for every object A the function C(A, f) : C(A, X)→
C(A, Y ) : u 7→ f ◦ u is injective;

em2) an epimorphism if for every object B the function C(f, B) : C(Y, B)→
C(X, B) : u 7→ u ◦ f is injective.

Arrangements of objects and arrows in a category are called diagrams;
to some extent, category theory is the art of making diagrams commute,
i.e. the art of proving that two paths X → A1 → A2 → · · · → An → Y

and X → B1 → · · · → Bm → Y result in the same arrow when they are
fully composed.

We attempt at the difficult task of providing a precise formalisation
of what is a commutative diagram; it is with a certain surprise that we
noticed how even reliable sources as [ML98, AHS90] fail to provide more
than a bland intuition for such a fundamental notion.

We begin recording an easy and informal remark.

Remark A.1.12 (Diagrams and their commutation). Depicting mor-
phisms as arrows allows to draw regions of a given category C as parts of
a (possibly non planar) graph; we call a diagram such a region in C, the
graph whose vertices are objects of C and whose edges are morphisms
of suitable domains and codomains. For example, we can consider the
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diagram

X2

v

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗

X1

g
!!❇

❇❇
❇❇

❇❇
❇

u

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
h

// X3

X0

q

FF✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌
p

// X4

k

==⑤⑤⑤⑤⑤⑤⑤⑤

(A.3)

The presence of a composition rule in C entails that we can meaningfully
compose paths [u0, . . . , un] of morphisms of C. In particular, we can
consider diagrams having distinct paths between a fixed source and a
fixed ‘sink’ (say, in the diagram above, we can consider two different
paths P = [k, p, g] and Q = [v, u]); both paths go from X1 to X3, and
we can ask the two compositions ◦[k, p, g] = k ◦ p ◦ g and v ◦ u to be the
same arrow X1 → X3; we say that a diagram commutes at P,Q if this
is the case; we say that a diagram commutes (without mention of P,Q)
if it commutes for every choice of paths for which this is meaningful.

Searching a formalisation of this intuitive pictorial idea leads to the
following:

Definition A.1.13. A diagram is a map of directed graphs (‘digraphs’)
D : J → C where J is a digraph and C is the digraph underlying a
category.5 Such a diagram D commutes if for every pair of parallel edges
f, g : i⇒ j in J one has Df = Dg.

Definition A.1.14 (Full, faithful, conservative functors). Let F : C →
D be a functor between two categories.

ffc1) F is called full if each FXY : C(X, Y ) → D(FX, FY ) in A.1.5.f2 is
surjective;

ffc2) F is called faithful if each FXY : C(X, Y ) → D(FX, FY ) in A.1.5.f2

is injective;
ffc3) F is called fully faithful if it is full and faithful;
ffc4) F is called conservative if whenever an arrow Fv is an isomorphism

in D, then the arrow v is already an isomorphism in C.6

5 Every small category has an underlying graph, obtained keeping objects and
arrows and forgetting all compositions; there is of course a category of graphs,
and regarding a category as a graph is another example of forgetful functor. Of
course, making this precise means that the collection of categories and functors
form a category on its own right.

6 Note that the fact that F preserves invertibility of v is a consequence of the
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Remark A.1.15. A subcategory S ⊆ C is full if and only if the inclusion
functor S →֒ C is full in the sense of A.1.14.ffc1 above.

A.2 Natural transformations

Category theory was born in order to find the correct definition of a
natural transformation.

The original motivation for this search lied in algebraic topology: there
are two well-known ways to attach an homotopy invariant algebraic struc-
ture to a topological space X :

• the homotopy groups πn(X, x), obtained as homotopy classes of pointed
maps Sn → X ; these are abelian groups if n ≥ 2, and they are noto-
riously from-difficult-to-impossible to compute;
• the homology groups Hn(X,Z) with integer coefficients, a family of

abelian groups way easier to compute, and very well-behaved, but not
as expressive and comprehensively descriptive as homotopy groups.

The two constructions are tightly linked: the homology group Hn(X,Z)
is obtained as the n-th homology of the chain complex whose groups of n-
simplices are free on the set of all continuous functions sn : Dn → X (Dn

is the n-dimensional ball, identified up to an obvious homeomorphism
with the topological n-simplex of 3.1.2); since Hn(Sn,Z) ∼= Z〈u〉, the ho-
motopy a continuous function f : Sn → X determines a unique element
f∗(u) := Hn(f)(u) ∈ Hn(X), and this defines a function πn(X, x) →
Hn(X,Z) by sending f to f∗u.

Now, a capital observation is in order: this construction is compatible
with the functoriality of πn, Hn in the following sense. If g : X → Y is a
continuous function of spaces, then the square

πn(X) h //

g∗

��

Hn(X)

g∗

��
πn(Y )

h
// Hn(Y )

(A.4)

is commutative, so that the maps hX : πn(X, x)→ H(X,Z) ‘coherently’
or ‘naturally’ vary according to the action of πn, Hn on morphisms (since

functoriality conditions in A.1.5; one also often says that a functor F is
conservative if, besides preserving them, it reflects isomorphisms. A conservative
functor is thus such that v is invertible if and only if F v is invertible.
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a category is just a bunch of objects linked by morphisms, it is ‘natural’
to ask functors to preserve composition, and to families of morphisms
αX : FX → GX between two functors to vary accordingly, in the same
sense of (A.4)).

This leads directly to the notion of natural transformation.

Definition A.2.1 (Natural transformation). Let F, G : C ⇒ D be func-
tors between two categories; a natural transformation τ : F ⇒ G consists
of a family of morphisms τX : FX → GX , one for each object X ∈ Co,
called the components of the transformation, such that for every mor-
phism f : X → Y the diagram

FX
F (f) //

τX

��

FY

τY

��
GX

G(f)
// GY

(A.5)

commutes, i.e. we have the equation τY ◦ F (f) = G(f) ◦ τX .

Definition A.2.2 (Natural equivalence). Let F, G : C ⇒ D be two
parallel functors. A natural transformation τ : F ⇒ G such that every
component is an isomorphism in D is called a natural equivalence or (less
often) an isomorphism of functors, or a functorial isomorphism.

Note that if τ : F ⇒ G is a natural transformation, and each compo-
nent τC : FC → GC is an isomorphism in D, then the family of maps
τ−1
C is also natural.

Definition A.2.3 (Whiskering). Let τ : F ⇒ G be a natural transfor-
mation between functors F, G : C ⇒ D; given a third functor H : H → C,
we define the natural transformations

τ ∗H : FH ⇒ GH : (τ ∗H)C = τHC : FHC → GHC (A.6)

Similarly, given a functor K : D → K we can define the natural trans-
formation

K ∗ τ : KF ⇒ KG : (K ∗ τ)C = K(τC) : KFC → KGC (A.7)

It is clear that the two equations

(τ ∗H) ∗H ′ = τ ∗ (H ◦H ′) (A.8)

K ′ ∗ (K ∗ τ) = (K ′ ◦K) ∗ τ (A.9)

hold true for every τ, H, H ′, K, K ′ that make them meaningful. It is
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equally obvious that (K ∗ τ) ∗H = K ∗ (τ ∗H). This operation is called
whiskering, since it acts ‘drawing whiskers’ on the left and on the right
of τ :

H
H // C

F
&&

G

88
✤✤ ✤✤
�� τ D

K // K (A.10)

Finally, we make precise the idea that categories and functors form a
category in their own right:

Remark A.2.4 (The category of functors). Let C,D be two small cat-
egories; then the functors F : C → D form the object class of a category,
whose morphisms α : F ⇒ G are the natural transformations. Two
natural transformations can be joined component-wise, in such a way

that if F
α
⇒ G

β
⇒ H , we have that the components of the composite

transformation β ◦ α are

(β ◦ α)C = βC ◦ αC . (A.11)

The naturality square is of course

FC
αC //

Ff

��

GC
βC //

Gf

��

HC

Hf

��
FC′

αC′

// GC′
βC′

// HC′

(A.12)

The identity in Cat(C,D)(F, F ) is the natural transformation having
object-wise identity components. This is called the vertical composition
of natural transformations, because α, β can be arranged in a diagram

C

F

��
✤✤ ✤✤
�� α //

EE

H

✤✤ ✤✤
�� β
D (A.13)

and the natural transformation β ◦ α is the result of stacking α, β one
on top of the other.

Now, we shall show that there is another way to compose the natural
transformations β and α called horizontal composition: let A,B, C be
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three categories, and F, G, H, K functors arranged as follows:

A

F
%%

G

99
✤✤ ✤✤
�� α B

H
%%

K

99
✤✤ ✤✤
�� β C (A.14)

Definition A.2.5. Given categories A,B, C, functors F, G : A → B
and H, K : B → C we can define the horizontal composition of natural
transformations α : F ⇒ G and β : H → K to be the natural trans-
formation β α, whose components are defined thanks to the fact that
(β ∗G) ◦ (H ∗ α) = (K ∗ α) ◦ (β ∗ F ) (as it is easy to check):

(α β)X = βGX ◦H(αX) = K(αX) ◦ βFX . (A.15)

Applying the definition, we can show that the horizontal composition
is (well defined and) associative, in the sense of A.1.1.(3).

Definition A.2.6 (Categorical equivalence). Let C,D be two categories.
An equivalence of categories (F, G, ξ, η) between C and D consists of two
functors F : C → D, G : D → C endowed with two natural equivalences
ξ : F ◦ G → idC e η : G ◦ F ⇒ idD between the two compositions of F

and G and the respective identity functors of C and D (see A.1.5.f1). If
this is the case, the categories C and D are called equivalent; we write
C ∼= D.

Remark A.2.7. It is quite common to denote an equivalence with the
only functor F : C → D, and to say that it is an equivalence if there
exists a functor G in the opposite direction, and natural transformations
ξ, η such that the tuple (F, G, ξ, η) is an equivalence; this is customary
and harmless since (as we will observe in A.4.2) such a G is unique up
to natural isomorphism, provided it exists.

The richness of category theory is to some extent due to the fact
that the correct way to assert ‘sameness’ for two categories is the above
definition of equivalence, and not the stricter notion of isomorphism:

Definition A.2.8 (Isomorphism of categories). We call two categories
C,D isomorphic if there is an invertible functor (called an isomorphism

between the two categories) F : C → D; this means that there exists
G : D → C with the property that F ◦G = idD and G ◦ F = idC .

In a certain deep sense, equivalences and isomorphisms of categories
stand in the same relation as homotopy equivalences and homeomor-

phisms of topological spaces (this path leads directly to higher category
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theory. Another example is the following: observe that in A.2.7 we are
saying that the ‘space’ of inverses to F : C → D is either empty or
contractible).

Proposition A.2.9. Let C,D two categories and F : C → D a functor.

Then, F is (part of) an equivalence of categories if and only if it is fully

faithful and essentially surjective, i.e. if every object in D is isomorphic

to some FC lying in the image of F .

A.2.1 Duality and slices

As for every other algebraic structure, there is plenty of ways we can
obtain new categories out of given ones.

• First of all, we observe that the shape of the axioms in A.1.1 entails
that the structure obtained taking the same object of a category C,
but where ‘all arrows have been reversed’ remains a category Cop. This
is called the dual, or opposite category of C.
• Then, we notice how given an object C of C, the class of all arrows

with fixed co/domain C becomes a category, called the co/slice of C.
• Finally, as for every other algebraic structure, two categories can be

arranged in a cartesian product and a disjoint union: these last two
examples will appear as part of a fairly more general theory of co/-

limits in A.3.

The first procedure we introduce is dualisation: the dual, or opposite cat-
egory of C is made by the same objects, and the same class of arrows, but
we have interchanged domain and codomain. If an arrow is represented
pictorially, as f : A→ B, then its namesake in Cop is fop : B → A.

To be more precise, there exists a functorial correspondence of Cat
into itself called duality involution and denoted ( )op : Cat→ Cat that
has the following properties: it is the identity on objects, and it is the
‘swapping’ involution on arrows, as soon as morphisms f : A → B are
identified with triples (A, B, f);

A
f //

g◦f ��❅
❅❅

❅❅
❅❅

❅ B

g

��
C

( )op

7−→

A B
fop

oo

C

gop

OO

fop◦opg
op

__❅❅❅❅❅❅❅❅
(A.16)

Remark A.2.10. A commutative triangle in C as in the left diagram
gets modified as in the right diagram by the duality involution; the object
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Cop thus defined satisfies all the axioms of a category, as stated in A.1.1.
The reason why this construction is interesting is that every assertion
made in C has a ‘companion’ in Cop: in the words of [AHS90],

The concept of category is well balanced, which allows an economical
and useful duality. Thus in category theory the ‘two for the price of one’
principle holds: every concept is two concepts, and every result is two
results.

In short, the situation goes as follows: in order to define a category,
axioms regarding certain indefinite notions (object, morphism, domain,
codomain. . . ); now, every statement ϕ made in the language of category
theory, involving solely relations between objects of C and the notions of
object, arrow, domain, codomain, identity, composition is valid in said
language if and only if the statement ϕop obtained from ϕ substituting
each occurrence of ‘g◦f ’ with ‘fop◦gop’, and every occurrence of domain

(resp., codomain) with codomain (resp. domain).

Of course, this does not mean that a statement ϕ about a commutative
diagram is true in C if and only if ϕop is true in C! Exercise A.4 will show
that (for example) the opposite category of Set is not equivalent to Set,
exhibiting a property that Setop does enjoy, while Set does not.

Definition A.2.11 (Contravariant Functor). Let C,D be two categories.
A contravariant functor is a functor F : Cop → D (in the sense of A.1.5);
more explciitly, a contravariant functor amounts to the same data of
A.1.5, where the second condition in f2 is replaced by F (g◦f) = Ff ◦Fg,
for every pair of composable morphisms f, g.

Functors in the sense of A.1.5 are called covariant.

Remark A.2.12. If we call (−)op : C 7→ Cop the duality involution, its
functoriality amounts to say that every functor F : C → D induces a
functor F op : Cop → Dop (so a contravariant functor F : C → Dop):

F op(g ◦ f) = F ((g ◦ f)op) = F (gop ◦ fop) = F opf ◦ F opg (A.17)

Similarly, to every natural transformation τ : F ⇒ G is associated a nat-
ural transformation τop : Gop ⇒ F op (write down the relevant diagram
and check that the components of τ are indeed reversed).

Definition A.2.13 (Slice categories). Let C be a category and C ∈ C

be an object of C; we define

• the ‘slice’ category C/C of arrows over C having class of objects the
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arrows with codomain C, and morphisms between f : C′ → C and
g : C′′ → C the arrows h : C′ → C′′ such that g ◦ h = f .

• the ‘co-slice’ category C/C of arrows under C having class of objects
the arrows with domain C, and morphisms between f : C → C′ and
g : C → C′′ the arrows h : C′ → C′′ such that h ◦ f = g.

Note that C/C ∼= (Cop/C)op and similarly C/C = (C/Cop)op.

Definition A.2.14 (Comma categories). The comma category of a dia-

gram S F
−→ C

G
←− T of functors is the category having objects the tuples

(S ∈ S, T ∈ T , ϕ ∈ C(FS, GT )), and morphisms the pairs (u : S →

S′, v : T → T ′) such that the square

FS
Fu //

ϕ

��

FS′

ϕ′

��
GT

Gv
// GT ′

(A.18)

commutes. This category is denoted (F ↓ G) or (F/G).

The reader is invited to study a few properties of the comma category
(F/G) in Exercise A.5; we now turn our attention to the product and
coproduct of categories.

Definition A.2.15 (Product of categories). Let C,D be two categories;
we define the product category C × D to be the following structure:

• it has objects the product of the classes of objects Co ×Do;
• it has as set of morphisms (C, D) → (C′, D′) the cartesian product
C(C, C′)×D(D, D′).

All the axioms of a category are satisfied, as compositions and identities
are defined factor-wise and thus act independently one from the other.
Of course, the definition inductively extends to the product of any finite
number of categories C1 × · · · × Cn.

Dually, we can define

Definition A.2.16 (Coproduct of categories). Let C,D be two cate-
gories; we define the coproduct category C

∐
D to be the following struc-

ture:

• it has objects the set-theoretical disjoint union of the classes of objects
Co ×Do;
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• it has as set of morphisms X → Y the set C(X, Y ) if X, Y ∈ C,D(X, Y )
if X, Y ∈ D, and the empty set otherwise.

All the axioms of a category are satisfied, as compositions and identities
are defined summand-wise and thus act independently one from the
other. Of course, the definition inductively extends to the coproduct of
any finite number of categories C1 ∐ · · · ∐ Cn.

Observe tat the following property holds true for the product C × D:

Let E be a category and C
F
←− E

G
−→ D be two functors; then there exists

a unique functor E → C×D such that the compositions E → C×D
P
−→ C

and E → C ×D
Q
−→ D with the projections on the factors of the product

correspond respectively to F and G.

Observe that C
∐
D enjoys the same property in the dual category Catop,

or rather, the dual property in Cat:

Let E be a category and C
F
−→ E

G
←− D be two functors; then there exists a

unique functor C
∐
D → E such that the compositions C → C

∐
D → E

and D → C
∐
D → E with the embeddings into the coproduct corre-

spond respectively to F and G.

The scope of the following section is to formalise the intuition that these
two construction are ‘universal’ and ‘dual’ to each other.

A.3 Limits and colimits

Right after having introduced the definition of an algebraic structure,
it is often shown that given one or more such structures one can build
others from it; one can for example assemble the product of two groups,
sets or topological spaces.

More than often the objects that are built in this way are characterised
by some sort of uniqueness; for example, there is only one way to assem-
ble two vector spaces V, W into a third space V ⊕W that contains ‘no
more than V, W ’; this vector space is made by pairs of vectors (v, w), and
the vector sum (v, w) + (v′, w′), as well as scalar multiplication α(v, w),
are done component-wise. Moreover, there is a diagram

V
iV // V ⊕W W

iWoo (A.19)

such that every other similar diagram V
f
−→ U

g
←− W factors through

the first: there is a unique [f//g] : V ⊕ W → U that coincides with
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f, g when restricted to the summands, i.e. such that [f//g] ◦ iV = f and
[f//g] ◦ iW = g.

Category theory provides a very neat way to organise these data and
explain what are the essential features of this phenomenon, through the
theory of co/limits.

We assume that our reader is already familiar with elementary alge-
bra, and in particular that they are familiar with the simple idea that
algebraic structures of a same kind (e.g., groups or vector spaces) can
be assembled together.

Definition A.3.1 (Initial and terminal objects). Let C be a category.

• An object ∅ ∈ Co is called initial if for every other object C ∈ Co
there is a single morphism iC : ∅→ C.

• Dually, an object 1 is called final o terminal if for every object C ∈ Co
there is a unique morphism tC : C → 1.

(Note the substantial difference between ‘there is at most one morphism’
and ‘there is exactly one morphism’!)

Remark A.3.2. As a consequence of the definition, if ∅ is an initial
object in C, then there is a single arrow i∅ : ∅ → ∅, the identity of ∅.
Similarly, if 1 is terminal, there is a unique arrow t1 : 1→ 1, the identity
of 1; if C has both an initial and a terminal object, then there is a unique
arrow z : ∅→ 1; we say that C has a zero object if z is an isomorphism.

The simple proof of the following statement will enlighten the nature
of the notion of universal property. An initial object ∅ ∈ C enjoys what
is called a universal property:

Remark A.3.3. Let C be a category with an initial object ∅. If ∅′ is
another initial object, then there is a unique isomorphism ∅ ∼= ∅′.

Proof Assume that there are two initial objects ∅,∅′; then, by the
respective universal properties of ∅ and ∅′, there is a unique arrow
u : ∅→ ∅′, and similarly a unique arrow v : ∅′ → ∅. The compositions
v ◦ u and u ◦ v must be the identities of ∅ and ∅′ respectively, thus
showing that u, v are mutually inverse isomorphisms.

The notion of universal property arises to generalise this phenomenon;
if J is a category, a functor D : J → D can be thought as a diagram
(‘of shape J ’) representing the category J in its codomain; for example
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if J is the category having three objects 0, 1, 2 and whose nonidentity
morphisms are

0

��❃
❃❃

❃❃
❃❃

����
��
��
�

1 2

(A.20)

then a diagram of shape J is simply a triple of objects D0, D1, D2 linked
by similar morphisms D0 → D1, D0 → D2. The key observation of
the theory of co/limits is that to each diagram D one can associate
a category of cones (and dually, a category of cocones), obtained as
suitable extensions of D to a ‘cone category’ J̃ ⊃ J , adding to J a new
initial (or terminal) object.

Extensions of this kind can be organised in categories J ⊲ if we add
a terminal object, and J⊳ if we add an initial object, of co/cones over
J .7

This terse procedure directly leads to the following

Definition. The limit of a diagram D is (whenever it exists) the ter-

minal object in the category of its cones, and dually the colimit of D is
the initial object in its category of cocones.

Of course, we will not leave the reader alone deciphering this mysteri-
ous axiomatics; let us start to make this construction precise by defining
the

Definition A.3.4 (Cone completions of J ). Let J be a small category;
we denote J⊲ the category obtained adding to J a single terminal object
∞; more in detail, J ⊲ has objects Jo ∪ {∞}, where ∞ /∈ J , and it is
defined by

J ⊲(J, J ′) = J (J, J ′)

J⊲(J,∞) = {∗}

and it is empty otherwise. This category is called the right cone of J .
Dually, we define a category J⊳, the left cone of J , as the cate-

gory obtained adding to J a single initial object −∞; this means that
J ⊳(J, J ′) = J (J, J ′), J⊳(−∞, J) = {∗}, and it is empty otherwise.

Definition A.3.5 (Cone of a diagram). Let J be a small category, C

7 The reader will surely appreciate the origin of the name: if X is a topological
space, the cone of X is the space obtained adding a distinguished point ∞,
disconnected from X and then adding a path from ∞ to each point of X.
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a category, and D : J → C a functor; all along this section, an idiosyn-
cratic way to refer to D will be as a diagram of shape J . We call a cone

for D any extension of the diagram D to the left cone category of J
defined in A.3.4, so that the diagram

J
D //

i⊳
��

C

J ⊳

D̄

>>

(A.21)

commutes.

Every such extension is thus forced to coincide with D on all objects
in J ⊆ J⊳; the value of D̄ on −∞ is called the base of the cone; dually,
the value of an extension of D to J⊲ coincides with D on J ⊆ J ⊲, and
D̄(∞) is called the tip of the cone.

There is of course a similar definition of a cocone for D: it is an
extension of the diagram D to the right cone category of J so that the
diagram

J
D //

i⊲
��

C

J ⊲

D̄

>>

(A.22)

commutes.

Remark A.3.6.

• The class of cones for D forms a category Cn(D), whose morphisms
are the natural transformations α : D′ ⇒ D′′ : J → C such that the
right whiskering of α with i : J → J⊳ coincides with the identity
natural transformation of D; this means that a morphism α of this
sort is a natural transformation such that

J

i

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ D

��❃
❃❃

❃❃
❃❃

❃

J ⊳

D′

))

D′′

55
✤✤ ✤✤
�� α C

= idD (A.23)

as a 2-cell D ⇒ D.
• Dually, the class of cocones for D forms a category Ccn(D), whose

morphisms are the natural transformations α : D′ ⇒ D′′ : J → C
such that the right whiskering of α with i : J → J ⊲ coincides with
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the identity natural transformation of D; this means that a morphism
α of this sort is a natural transformation such that

J

i

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ D

��❃
❃❃

❃❃
❃❃

❃

J ⊲

D′

))

D′′

55
✤✤ ✤✤
�� α C

= idD (A.24)

as a 2-cell D ⇒ D.

Definition A.3.7 (Colimit, limit). The limit of a diagram D : J → C
is the terminal object denoted ‘limJ D’ in the category of cones for D;
dually, the colimit of D is the initial object denoted ‘colimJ D’ in the
category of cocones for D.

Proposition A.3.8. Let C be a category; the following conditions are

equivalent:

l1) C has all limits of shape J ;

l2) C has products indexed by every set J , and equalisers;

l3) C has a terminal object, and pullback of every co-span X → Z ← Y .

Dually, the following conditions are equivalent:

c1) C has all colimits of shape J ;

c2) C has coproducts indexed by every set J , and coequalisers;

c3) C has an initial object, and pushout of every span X ← Z → Y .

Proof See [Bor94a, 2.8.2] (and a suitable dual statement). We only
record that the limit of a diagram D has the same universal property of
the equaliser of the pair

u, v :
∏

A

DA⇒
∏

f :A→B

DB (A.25)

where the arrows (u, v) are defined as

π(f :A→B) ◦ u = πB

π(f :A→B) ◦ v = (Df)πA

if πX :
∏
A DA → DX denotes the projection at X coordinate. The

terminal cone exhibiting lim D is of course the composition lim D →∏
A DA→ DA.



A.3 Limits and colimits 259

Dually, the coequaliser of

(u′, v′) :
∐

f :A→B

DA⇒
∐

A

DA (A.26)

for a similar pair of arrows (u′, v′) has the same universal property of
colim D.

Definition A.3.9 (Preservation of co/limits). Let J , C,D be categories,
J small, D : J → C be a diagram, and F : C → D a functor. Assume
that the limit limJ D exists in C; then, applying the functor F to the
terminal cone λ : J⊳ → C of D, we get a cone F ∗ λ for the composed
diagram J D

−→ C
F
−→ D. We say that F preserves the limit of D if F ∗ λ

is the limit of F ◦D, i.e. if

limJ (F ◦D) ∼= F (limJ D). (A.27)

Definition A.3.10 (Co/complete category). A category C has all limits

of shape J if every diagram D : J → C has a limit; dually, we define a
category having all colimits of shape J . A category is said to have all

κ-co/limits if it has co/limits of shape J for every category J with less
than κ objects. A category is said to have all small co/limits, or simply
all co/limits (but the implicit smallness request on J is needed!) if every
diagram D : J → C with small domain has a co/limit.8

In view of A.3.8 above, a category C has κ-co/limits if and only if it
has co/equalisers and co/products of every family of less than κ objects.

Proposition A.3.11. The category Cat of small categories and functors

has all small limits and colimits.

Definition A.3.12. Let C,D be two categories; we define the join of C
and D to be the category having objects the disjoint union Co

∐
Do of

Co and Do, and where morphisms from X to Y are defined as follows:




C(X, Y ) if X, Y ∈ C

D(X, Y ) if X, Y ∈ D

{∗} if X ∈ C, Y ∈ D

(A.28)

where {∗} is a singleton set. In every other case, there are no morphisms
X → Y .
8 Every category admitting ‘too large’ co/limits must be a (large) poset; this is a

theorem by P. Freyd, and constitutes the main reason why the smallness
assumption on J can not be dropped.
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Remark A.3.13. The join operation gives the category Cat a mono-
idal structure, having the empty category as monoidal unit; we shall
observe that the associator is easily determined, but the structure is
highly nonsymmetric.

As already observed, in the terminology of Exercise 5.4 the join of
C and D coincides with the collage of C and D along the terminal pro-
functor ∗ : C  D, i.e. with the category of elements of the functor
∗ : Cop ×D → Set constant in the singleton set. The join operation can
thus be regarded as a particular case of an operation in the bicategory
of profunctors.

Definition A.3.14 ([Rie17, 3.3] Creation of co/limits). Let F : C → D
be a functor; we say that F creates the co/limit of a diagram D : J → C
if for every co/limit co/cone for FD in D there exists a co/limit co/cone
for D in C, and every co/cone for D that is sent to a co/limit co/cone
by F is itself a co/limit co/cone.

The above definition admits a simple restriction in case D is the empty
diagram: a functor F : C → D

• preserves the initial object if F (∅C) is an initial object in D;
• reflects the initial object if the fact that F (A) is initial in D entails

that A is initial in C;
• creates the initial object if the existence of an initial object in D of

the form FA entails the existence of an initial object in C, and every
object such that FA = ∅ is itself initial.

Of course, the word ‘initial’ can be replaced with ‘terminal’, obtaining
preservation, reflection and creation of terminal objects.

The notion of preserving, reflecting and creating an initial object is
sufficient to capture A.3.14 by virtue of the same argument in A.4.6:
F creates the colimit of D if and only if the functor F∗ : Ccn(D) →
Ccn(FD) creates the initial object. A simple dualisation yields that F

creates the limit of D if and only if the functor F∗ : Cn(D) → Cn(FD)
creates the terminal object.

A.4 Adjunctions

The notion of adjunction lies at the very core of category theory.

Definition A.4.1 (Adjunction). Let C,D be two categories. We define
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an adjunction between C,D to be a pair of functors F : C → D, G : D →
C endowed with a collection of bijections ϕCD,

ϕCD : D(FC, D) ∼= C(C, GD) (A.29)

one for each C ∈ Co, D ∈ Do, natural in both arguments C, D.

We denote the presence of an adjunction (F, G) between C and D
writing

F : C ⇆ D : G (A.30)

and we say that F is a left adjoint to G, or that G is a right adjoint to
F , or that (F, G) is an adjoint pair, or that F, G are mutually adjoint,
etc.

Given an adjunction as in A.4.1, we write F ⊣ G to shortly denote
this (highly nonsymmetric) relation among F and G. Once we will have
introduced the Yoneda lemma in A.5.3, we will be able to instantly
deduce the following uniqueness result:

Proposition A.4.2. If a functor F : C → D has a left adjoint G : D →
C, such adjoint is unique up to a unique natural isomorphism; in other

words, if we have adjunctions F ⊣ G and F ⊣ G′ then there exists a

unique natural isomorphism τ : G ∼= G′.

Of course, a similar result holds for the uniqueness of a left adjoint F .

Example A.4.3 (Examples of adjunctions).

ad1) Let f : M → N be a morphism of monoids; according to A.1.10.c6

we can regard it as a functor between one-object categories; it is easy
to see that such a functor has a left adjoint g : N →M if and only if
it has a right adjoint, if and only if it is an equivalence of categories,
if and only if it is an isomorphism of monoids.

ad2) Let P be a poset regarded as a category: an adjunction f : P ⇆ Q : g

consists of a pair of monotone functions f, g such that fp ≤ q if and
only if p ≤ gq; these pairs of monotone mappings are called Galois

connections (the name is motivated by exercise A.9).
ad3) More generally, let i : S →֒ C be the embedding of a full subcategory.

We say that S is reflective into C, or a reflective subcategory of C, if i

admits a left adjoint L : C → S. Almost all familiar subcategories of
algebraic structures (magmas, semigroups, monoids, groups, abelian
groups, R-modules, . . . ) fit into an adjunction with the category of
sets, but almost none of these categories is reflective; this is because
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the forgetful functor U : C → Set is rarely full. (Difficult exercise:
generalise the construction of unit and counit maps to an abstract
algebraic structure.)

ad4) Given three sets A, B, C there exists a bijection between the set Set(A×
B, C) of functions f : A×B → C and the set Set(A, CB) of functions
from A to Set(B, C); given f : A×B → C, we can define a transposed

(or curried) function f̂ : A → CB sending a ∈ A into the function
fa = f(a, ) : B → C. Currying a function f into f̂ is a bijection,
and the inverse sends a function g : A→ CB into g̃ : A× B → C via
an uncurrying operation.

If for every B ∈ Set we define ( )×B : Set→ Set : A 7→ A×B and
( )B : Set→ Set : C 7→ CB we get two functors (defined accordingly
on arrows) that form an adjunction ×B ⊣ ( )B .

Every category C having finite products and exhibiting the same
adjunction

C(A×B, C) ∼= C(A, CB) ∼= C(B, CA) (A.31)

is called cartesian closed; the category of sets, and the category of
categories are both cartesian closed; no category with a zero object
can be cartesian closed without being the terminal category ∗; the
category of all topological spaces and continuous maps is notoriously
not cartesian closed, but many subcategories of ‘nice’ spaces are.

ad5) Let C be a category; then C has a terminal object (see A.3.1) if and
only if the unique functor tC : C → ∗ has a right adjoint; dually, C has
an initial object if and only if tC has a left adjoint.

A.4.1 Unit and counit, triangle identities

From every adjoint pair (F, G) we can obtain a pair of natural transfor-
mations, the unit and the counit of the adjunction: if in (A.29) we put
D = FC we have

ϕCFC : D(FC, FC)→ C(C, GFC) (A.32)

Now, the domain D(FC, FC) is nonempty (by A.1.1 it must contain at
least the identity of FC) thus ϕ is not the empty function, and it is well
defined the image ηC = ϕCFC(idFC) of the identity under ϕ; ηC is the
component at C of a natural transformation η : idC → G ◦ F called the
unit of the adjunction. Indeed, given h : C′ → C we have that

GF (h) ◦ ηC′ = GF (h) ◦ ϕC′FC′(idFC′)
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= ϕ ◦ F (h) ◦ idFC′

= ϕC′FC ◦ idFC ◦F (h)

= ϕCFC(idFC) ◦ h

= ηC ◦ h. (A.33)

This is equivalent to the joint commutativity of both parts in the diagram

D(FC′, FC)
D(FC′,F (h)) //

ϕC′F C′

��

D(FC′, FC)

ϕC′F C

��

D(FC, FC)

ϕCF C

��

D(F (h),FC)oo

C(C′, GFC′)
C(C′,G(F (h)))

// C(C′, G(FC)) C(C, GFC)
C(h,GFC)

oo

(A.34)
Dually, if in A.29 we put C = GD we have

ϕGDD : D(FGD, D)→ C(GD, GD) (A.35)

(or equivalently ϕ−1
GDD : C(GD, GD)→ D(F (GD), D)). Again, C(GD, GD)

is nonempty, thus we can define ǫD = ϕ−1
GDD(idGD); this arrow is the

component at D of a natural transformation ǫ : F ◦G→ idD called the
counit of the adjunction, in such a way that for every k : D → D′ the
diagram

F (GD)

F (G(k))

��

ǫD // D

k

��
F (G(D′)) ǫD′

// D′

(A.36)

commutes.

Notation A.4.4. A compact way to denote all the information of an
adjunction is

F : C η
ǫ
D : G (A.37)

(to be parsed as ‘there is an adjunction between the functors F and
G, F : C → D and G : D → C, with counit ǫ and unit η’): one of
the first important results about adjunctions is that we can characterise
them solely through their unit and counit instead of using the adjunction
isomorphisms in A.4.1.

Proposition A.4.5 (Zig-zag identities). Let F : C ⇆ D : G be an
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adjunction, having η and ǫ as unit and counit; using the whiskering op-

eration of A.2.3 we have

(G ∗ ǫ) ◦ (η ∗G) = idG

(ǫ ∗ F ) ◦ (F ∗ η) = idF (A.38)

(idF denotes, here, the identity natural transformation of F into itself,

and similarly for idG).

Proposition A.4.6 (Adjoint preserve co/limits). Let F ⊣ G be an

adjunction, and let F : C → D be the left adjoint. Then

• F preserves all colimits that exist in C, in the sense of A.3.9;

• dually, the right adjoint G preserves all limits that exist in D, in the

sense of (the dual) of A.3.9.

Theorem A.4.7. Let C be a category, F : C ⊣ D : G a pair of adjoint

functors. Then, the following conditions are equivalent:

eq1) F, G are both fully faithful (see A.1.14.ffc3);

eq2) Te unit η and the counit ǫ of the adjunction are both natural equiva-

lences (see A.2.2);

eq3) F is an equivalence of categories between C,D, whose inverse is G (see

A.2.6).

If one of these conditions holds true, then there is also an adjunction

G : D
ǫ−1

η−1

C : F. (A.39)

A.5 The Yoneda lemma

A.5.1 Presheaves

Definition A.5.1 (Category of presheaves). A presheaf is a functor
F : Cop → Set; the category of presheaves has morphisms the natural
transformations between functors, as defined in A.2.1, i.e. the families
of maps {αA : FA→ GA} such that the square of functions

FA
αA // GA

FB

Ff

OO

αB

// GB

Gf

OO

(A.40)

commutes for every arrow f : A→ B in C.
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Definition A.5.2 (Representable presheaf). Every object X ∈ C defines
a presheaf obtained sending A ∈ C into the set of morphisms u : A→ X

in C. This defines a functor, called the presheaf associated to X , thanks
to the associative property of composition in C: the action of C( , X) on
morphisms is given by the function that sends f : X → Y in the natural
transformation C( , X)⇒ C( , Y ) having components

f∗,A : C(A, X)→ C(A, Y ) : u 7→ f ◦ u (A.41)

A completely analogous definition can be given for a functor X 7→

C(X, ), only in this case the functor is contravariant. We call a presheaf
F representable if it is isomorphic to C( , X) or C(X, ) (depending on
its variance), for some object X ∈ C.

A.5.2 The Yoneda lemma

Yoneda lemma is one of the tautologies on which our understanding of
reality is built.

Lemma A.5.3 (Yoneda lemma). Let よ = よC : C → Cat(Cop, Set)
be the functor sending X ∈ C to the presheaf associated to X; then,

for every F ∈ Cat(Cop, Set), there exists a bijection between the set of

natural transformations よX ⇒ F and the set FX. This bijection is

moreover natural in the object X.

Proof The proof is elementary, in the algebraic sense of the word: we
do the only possible thing with the data we have, and it works.

We define a function of sets

Y : [Cop, Set](よX, F )→ FX (A.42)

and we show that it is a bijection. Given a natural transformation α :
よX ⇒ F we can consider its X-component αX : C(X, X) → FX ; as
such, it is a function of sets, and it is not equal to the empty function
(because C(X, X) contains at least one element called idX , thanks to
axiom c4 of A.1.1).

Thus we can define Y (α) := αX(idX) ∈ FX . We shall show that

• Y is injective. Assume that αX(idX) = βX(idX) for a pair of natural
transformations α, β : よX ⇒ F . The naturality request then entails
that for every u : A→ X one has

αA(u) = αA(idX ◦u)

= Fu ◦ αX(idX)
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= Fu ◦ βX(idX)

= βA(u)

(if there are no maps u : A → X , then αA, βA coincide vacuously, as
they both are the unique empty function ∅→ FX).
• Y is surjective. Given an element x ∈ FX we can define, for every A ∈

C and every u : A→ X the function αxA : C(A, X)→ FA : u 7→ Fu(x);
this is well-defined, because Fu is a function FX → FA, given that
F is contravariant. Now, we shall show that this is the A-component
of a natural transformationよX ⇒ F (once this has been proved, the
fact that Y (αx) = x is obvious in view of the definition of αx).

The naturality of this correspondence follows from the fact that

Ff ◦ αxB(v) = αxA(v ◦ f) (A.43)

for every f : A → B, i.e. from the fact that Ff(Fv(x)) = F (vf)(x),
true because F is a contravariant functor.

This concludes the proof.

There are many ways to read this result.

• A natural transformation よX → F is uniquely determined by the
value that its X-component αX : C(X, X)→ FX takes on idX .
• The identity arrow idX can be thought as the universal element wit-

nessing the representability of a functor; thanks to the Yoneda lemma
every element t ∈ FX induces a unique natural transformation t̂X :
よX ⇒ F , and we call t a universal element if t̂X is invertible. The
Yoneda lemma can thus be thought as the statement that idX ∈
C(X, X) is a universal element.

This leads to an immediate corollary:

Corollary A.5.4. The Yoneda map is a fully faithful functor よ : C →
Cat(Cop, Set).

As a consequence, we callよ the Yoneda embedding of C in Cat(Cop, Set).

Proof We can apply A.5.3 to the special case of a representable F : if
F = hom( , A) for an object A ∈ C, we have

Cat(Cop, Set)(よX,よA) ∼=よAX = C(X, A) (A.44)

According to the way in which the bijection Y is defined above, in this
case it coincides with the action of the functor よ on arrows, and this
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allows to conclude. The proof that YX defines the X-component of a
natural transformationよ⇒ F is an easy exercise for the reader stated
in A.12.

Remark A.5.5. There is of course an analogue of the Yoneda lemma
for covariant functors G : C → Set; given such G, there is a natural
bijection

Cat(C, Set)(

よ

CA, G) ∼= GA (A.45)

given by evaluating at the universal element idA for the representable

よ

CA = C(A, ); a similar argument as the one in A.5.4 yields that

よ

C : Cop → Cat(C, Set) is fully faithful. The same happens for the
next result, that can be seen as another capital result of basic category
theory: the essential image of よC generates all the category [Cop, Set]
under colimits.

Lemma A.5.6. The natural transformation t̂X is the X-component of

a cocone for the diagram

F
´

C
Σ
−→ C

よ
−→ Cat(Cop, Set) (A.46)

This means that for every f ∈ C(X, Y ) which is a morphism in F
´

C

between objects (X, x ∈ FX) and (Y, y ∈ FY ), i.e. such that Ff(y) = x,

the diagram

F

よX
f∗

//

x̂

==④④④④④④④④
よY

ŷ

aa❇❇❇❇❇❇❇❇ (A.47)

commutes.

Theorem A.5.7 (Density of the Yoneda embedding). Let F : Cop → Set
be a presheaf; then F is canonically isomorphic to the colimit of the

diagram

C
´

F
ΣF−−→ C

よ
−→ Cat(Cop, Set) (A.48)

or in other words, the presheaf F is isomorphic to colim(X,x)∈C
´

F よX.

Remark A.5.8. The density theorem can be rephrased using coend
calculus, as we know from 4: every presheaf is isomorphic to the weighted
colimit of the Yoneda embedding, and it is its own weight. Alternatively,
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the ninja Yoneda lemma of chapter 2 constitutes an elegant rewriting of
the density theorem: the isomorphism given by the coend

ˆ A

FA× C( , A) ∼= F ( ) (A.49)

describes explicitly the way in which the presheaf F is a colimit of all
representable presheaves C( , A).

A.5.3 Alternative looks on the Yoneda lemma

Definition A.5.9. Let C be an ordinary category, and let W : C → Set
be a functor; the category of elements C

´

W of W is the category having
objects the pairs (C ∈ C, u ∈ WC), and morphisms (C, u) → (C′, v)
those f ∈ C(C, C′) such that W (f)(u) = v.

Notation A.5.10. The notation ‘C
´

W ’ for the category of elements of

W is borrowed from [Gra74]. Other references call it
´

W (it is obvious

why we can’t stick to this more compact notation) or El(W ).

Proposition A.5.11. The category C
´

W defined in A.5.9 can be equiv-

alently characterised as each of the following objects:

i) The category which results from the pullback

C
´

W //

��

❴
✤

Set∗

U

��
C

W
// Set

(A.50)

where U : Set∗ → Set is the forgetful functor which sends a pointed

set to its underlying set;

ii) The comma category (∗ ↓ W ) of the cospan {∗} → Set W
←− C, where

{∗} → Set chooses the terminal object of Set;
iii) The opposite of the comma category (

よ

C ↓ ⌈W ⌉), where ⌈W ⌉ : {∗} →
[C, Set] is the name of the functor W , i.e. the unique functor choosing

the presheaf W ∈ [C, Set]:

(C
´

W )op

��

//

✍✍✍✍��

∗

⌈W⌉

��
Cop

よ

C

// Cat(C, Set)

(A.51)
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Proof The proof that these categories are all canonically isomorphic to
C
´

W is an exercise in Yoneda lemma and universal properties that we
leave to the reader.

Definition A.5.12 (Discrete opfibration). A discrete opfibration of cat-
egories is a functor G : E → C with the property that for every object
E ∈ E and every arrow p : C → GE in C there is a unique q : E′ → E

‘over p’, i.e. such that Gq = p.

With a straightforward definition of morphism between discrete op-
fibrations, we can define the category DFib(C) of discrete opfibrations
over C. The nomenclature here comes from the fact that there exists a
dual notion of discrete fibration: it is a functor G : E → C such that for
every E ∈ E and p : GE → C, there exists a unique q : E → E′ such
that Gq = p. Of course, there is a category of discrete opfibrations over
C. As we will see later on, discrete opfibrations determine contravariant
functors, while fibrations determine covariant ones out of C.

Proposition A.5.13. The category of elements C
´

W of a functor

W : C → Set comes equipped with a canonical discrete fibration to the

domain of W , which we denote Σ : C
´

W → C, defined forgetting the

distinguished element u ∈Wc.

Now, let S be any set; it is well-known (see for example [MLM92]) that
the category of functors S → Set (viewing the set S as a discrete cate-
gory) is equivalent to the category Set/S of functions over S; this seem-
ingly innocuous result is a particular instance of what is called Grothen-

dieck construction. If possible, the Grothendieck construction is equally
important than the Yoneda lemma, as it clarifies the way in which cat-
egories are intrinsically geometric entities; a presheaf F : Cop → Set is
equivalent to some sort of generalised space ‘lying over’ the category C, in
a similar way the total space of a fiber bundle lies over its base. Now, we
can consider the category of elements A.5.9 of a presheaf F : Cop → Set;
this sets up a functor from Cat(Cop, Set) to the category of discrete op-
fibrations over C: the Grothendieck construction asserts that this is an
equivalence of categories, as defined in A.2.6.

Theorem A.5.14. There is an equivalence of categories

Cat(Cop, Set)→ DFib(C) (A.52)

defined by the correspondence sending F ∈ Cat(Cop, Set) to its fibration
of elements ΣF : C

´

F → C.
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Proof First of all, let’s show that ΣF is a discrete opfibration; then,
we shall show that there is a correspondence in the opposite direction
assigning to a discrete opfibration G : E → C a presheaf of sets pG :
Cop → Set. To this end, given a functor G having codomain C, we define
a correspondence that sends an object X ∈ C into the category G←X ,
where the notion of fiber is understood as follows: we take the objects
E ∈ E such that GE = X , and morphisms E → E′ such that Gf = idX .

It is easy to notice that the fiber of G over X is a discrete category if
G is a discrete opfibration; this means that each fiber of G over X can be
regarded as a set (incidentally, this motivates the discrete in the name);
it is equally easy to see that a morphism f : X → X ′ induces a function
of sets between the fibers G←X ′ and G←X (see Figure A.1 below); this
allows us to show that the correspondence with domain DFib(C) that
sends G into pG : X 7→ G←X ; the above argument entails that pG is a
presheaf of sets on C (the discrete opfibration condition entails that it is
a contravariant functor).

It is a straightforward check that the composition of the two corre-
spondences is the identity in both directions:

• Given a discrete opfibration G : E → C, the category C
´

pG receives
a natural morphism of fibrations from G, in a commutative triangle

C
´

pG

Σ
pG

!!❉
❉❉

❉❉
❉❉

❉
EηG

oo

G
��✂✂
✂✂
✂✂
✂✂

C

(A.53)

this is the unit of an adjunction ( )G ⊣ C
´

, and it is quite easy
to show that ηG is an isomorphism over C (i.e. an isomorphism of
categories over C).
• given a presheaf F , and given the definition of pC

´

F , the identity maps
work as components of a natural transformation pC

´

F ⇒ F .

With A.5.14 in our hand, we shall now attempt to answer the very
natural question: what does the Yoneda lemma become, if a presheaf
F : Cop → Set is regarded as a discrete opfibration over C? First of
all, the proof of the following result is an immediate consequence of the
definition of C

´

C( , C):

Lemma A.5.15. The fibration of elements ΣC( ,C) = ΣC of a repre-

sentable presheaf coincides with the slice category C/C of arrows over C,
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X

X ′

G←X

G←X ′

E

E′

A discrete opfibration G : E → C induces a presheaf, sending
X ∈ C to the fiber G←X : a morphism f : X → X ′ induces a
function of sets pGX ′ → pGX sending E ∈ pGX ′ to the unique E′

such that GE′ = X .

defined in A.2.13; the functor ΣC coincide with the ‘src’ functor sending

u : A→ C into A.

We are now ready to investigate the form of A.5.3 in terms of fibra-
tions:

Proposition A.5.16 (Yoneda lemma, the geometric way). Let G : E →
C be a discrete opfibration over a small category C; let X ∈ C an object;

then, there is a bijection between the set of functors H : C/X → E such

that G ◦ H = src, i.e. of discrete opfibration maps from the element

opfibration of よX and G, and the set G←X.

Proof The opfibration of elements of a representable functorよX is the
category C/X of arrows having codomain X ; the functor src : C/X →

C being the opfibration ΣC in the notation of A.5.15. A morphism of
discrete opfibrations is a functor H : C/X → C such that GH(idX) = X ,
so H 7→ H(idX) defines a function DFib(C) → G←X . This assignment
determines the desired bijection, as it is easy to see using a similar
argument of A.5.3.
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A.6 Monoidal categories and monads

Definition A.6.1 (Monoid in a monoidal category). Let C be a monoi-
dal category with monoidal structure ⊗ and monoidal unit I; we define
a monoid in C to be an object M endowed with maps m : M ⊗M →M

and u : I →M such that the diagrams

M ⊗M ⊗M
M⊗m //

m⊗M

��

M ⊗M

m

��

M ⊗ I

❑❑
❑❑

❑❑
❑❑

❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
M⊗u // M ⊗M

m

��

I ⊗M
u⊗Moo

ss
ss
ss
ss
ss

ss
ss
ss
ss
ss

M ⊗M m
// M M

(A.54)
commute; these testify the associativity and unitality property of (m, u).

Remark A.6.2. The category [C, C] of endofunctors of a category C has
a natural choice of a monoidal structure given by composition, whose
monoidal unit is the identity functor idC ; it is a very useful exercise
to verify the axioms of monoidal category one by one; all coherence
morphisms are in fact identity, so this is an example of a strict monoidal
structure (the composition of functors is strictly associative, and idC is a
strict unit). Of course, this monoidal structure is highly nonsymmetric.

Definition A.6.3 (Monad). Let C be a category; a monad on C consists
of an endofunctor T : C → C endowed with two natural transformations

• µ : T ◦ T ⇒ T , the multiplication of the monad, and

• η : idC ⇒ T , the unit of the monad,

such that the following axioms are satisfied:

• the multiplication is associative, i.e. the diagram

T ◦ T ◦ T
T∗µ //

µ∗T

��

T ◦ T

µ

��
T ◦ T

µ
// T

(A.55)

is commutative, i.e. the equality of natural transformations µ◦(µ∗T ) =
µ ◦ (T ∗ µ) holds;
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• the multiplication has the transformation η as unit, i.e. the diagram

T
η∗T //

❊❊
❊❊

❊❊
❊❊

❊

❊❊
❊❊

❊❊
❊❊

❊ T ◦ T

µ

��

T
T∗ηoo

②②
②②
②②
②②
②

②②
②②
②②
②②
②

T

(A.56)

is commutative, i.e. the equality of natural transformations µ◦(η∗T ) =
µ ◦ (T ∗ η) = idT holds.

Proposition A.6.4. Let F η
ǫ

G be an adjunction between two cate-

gories; say F : C → D; then the composition GF is the endofunctor

of a monad on C; the multiplication map is given by the whiskering

G ∗ ǫ ∗ F : GFGF ⇒ GF , and the unit of the monad coincides with

the unit of the adjunction, η : idC ⇒ GF .

The correspondence sending an adjunction F η
ǫ

G into a monad
(T, G∗ ǫ∗F, η) is a functor towards a suitable category of monads; but it
is predictably highly nonbijective, and in fact there is an entire category

Spli(T ) of adjunctions inducing the same monad. The category Spli(T )
is in general quite difficult to describe; we know, however, that it always
has a terminal and an initial object.

Definition A.6.5. Let T : C → C be a monad; we define a T -algebra as
a pair (A, a), where A ∈ C and a : T A→ A is a morphism (the algebra

map) in C, such that the following properties hold

• compatibility with the multiplication, namely the equation a ◦ T a =
a ◦ µA;

• compatibility with the unit, namely the equation a ◦ ηA = idA.

A morphism of T -algebras is a morphism f : A → B that commutes
with the algebra maps a, b of the objects A, B, namely such that the
square

T A

a

��

Tf // T B

b
��

A
f

// B

(A.57)

commutes.

Proposition A.6.6. The category of T -algebras, so defined, has the

universal property of a terminal object in Spli(T ).
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Definition A.6.7. Every pair (T X, µX) is, trivially, a T -algebra; these
objects define a (full) subcategory of free T -algebras.

Proposition A.6.8. The category of free T -algebras has the universal

property of an initial object in Spli(T ).

The universal properties A.6.6 and A.6.8 of Kl(T ) and Alg(T ) yields
a unique functor Kl(T ) → Alg(T ), corresponding to the inclusion of
free algebras into all algebras. Exercise A.13 makes this characterisation
precise.

More in general, the universal property of Alg(T ) as a terminal object
yields a unique functor for every other adjunction F ⊣ G splitting a
given monad:

Definition A.6.9. Given a pair of adjoint functors (F ⊣ G) in Spli(T )
we call comparison functor associated to the adjunction the functor K

fitting in the diagram

C

FT ""❊
❊❊

❊❊
❊❊

❊❊
F

����
��
��
��

D
G

@@��������
K

// Alg(T )

GT

bb❊❊❊❊❊❊❊❊❊ (A.58)

Definition A.6.10. An adjunction (F ⊣ G) is monadic if the associated
comparison functor K is an equivalence.

Beck’s theorem gives a necessary and sufficient condition to recognise
if a functor is the right adjoint of a monadic adjunction.

Definition A.6.11. Let U : C → D be a functor; we say that a diagram

X
g

//
f //

Y
h // Z (A.59)

is a split coequaliser if there exist a fourth and a fifth arrows s : Z → Y

and t : Y → X such that h ◦ s = idZ , g ◦ t = s ◦ h and f ◦ t = 1Y .

Note that if a diagram like the one above is a split coequaliser, then
h is forced to be the coequaliser of the pair f, g, so that h is uniquely
determined up to isomorphism by the pair f, g; note also that every
functor F : D → E sends a split coequaliser in D into a split coequaliser
in E .

We say that a pair of arrows f, g in C extends to a split coequaliser if
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there is an h such that the diagram X
f

⇒
g

Y
h
−→ Z is a split coequaliser;

given the above remark, this is a well-defined notion.

Definition A.6.12. Let U : C → D be a functor; then U is monadic if
and only if admits a left adjoint and

mf1) U is conservative (i.e. Uf is an isomorphism if and only if f is);

mf2) D has, and U preserves, the coequalisers of U -split pairs, i.e. those
parallel pairs of morphisms in C,

X
g

//
f //

Y (A.60)

such that the pair Uf, Ug has a split coequaliser in D.

Definition A.6.13. An idempotent monad is a monad (T, µ, η) such
that the multiplication µ : T T ⇒ T is an isomorphism. If T is an
idempotent monad, each of these properties is true (and equivalent to
the request of idempotency):

im1) the natural transformations T ∗ η and η ∗T are (invertible and) equal;

im2) If A is a T -algebra, then there is a unique algebra map T A→ A, and
it is invertible;

im3) The category of T -algebras embeds into the category C via its forgetful
functor U : Alg(T )→ C, which is thus full and faithful;

im4) Every adjunction (F, G) ∈ Spli(T ) has invertible counit.

Being endofunctors of C, any two monads T, S on C can be composed,
but the composition ST is often not a monad. In order for such functor to
have a multiplication µ : ST ST ⇒ ST we must provide an ‘intertwining’
operator λ : T S ⇒ ST .

Definition A.6.14. A distributive law between two monads consists of
a 2-cell λ : T S ⇒ ST such that the following commutativities hold:

dl1) λ ◦ (η(T ) ∗ S) = S ∗ η(T );

dl2) (S ∗ µ(T )) ◦ (λ ∗ T ) ◦ (T ∗ λ) = λ ◦ (µ(T ) ∗ S).

dr1) λ ◦ (T ∗ η(S)) = η(S) ∗ T ;

dr2) λ ◦ (T ∗ µ(S)) = (µ(S) ∗ T ) ◦ (S ∗ λ) ◦ (λ ∗ S).
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These conditions are expressed by the commutativity of diagrams

T S
λ // ST T T S

Tλ //

µ(T )S
��

T ST
λT // ST T

Sµ(T )

��
S

Sη(T )

>>⑤⑤⑤⑤⑤⑤⑤⑤η(T )S

``❇❇❇❇❇❇❇❇
T S

λ
// ST

(A.61)

T S
λ // ST T SS

λS //

Tµ(S)

��

ST S
Sλ // SST

µ(S)T
��

T
η(S)T

>>⑤⑤⑤⑤⑤⑤⑤⑤Tη(S)

``❇❇❇❇❇❇❇❇
T S

λ
// ST

(A.62)

Remark A.6.15. The notion of distributive law can be seen as just
a particular instance of a monad morphism: in particular, as a certain
kind of endomorphism (S, λ) of the monad T ; we now provide the reader
with the precise definition of such notion. Let S, T be two monads, re-
spectively S : C → C and T : D → D; a monad morphism (X, λ) : S → T

consists of a pair X : C → D and λ : T X ⇒ XS such that the following
diagrams are commutative:

X
Xη(T )

!!❈
❈❈

❈❈
❈❈

❈
η(S)X

}}④④
④④
④④
④④

SSX
Sλ //

µ(S)X
��

SXT
λT // XT T

Xµ(T )

��
SX

λ
// XT SX

λ
// XT

(A.63)
Moreover, a 2-cell between two parallel monad morphisms (X, λ), (Y, σ) :
(S, C)→ (T,D) consists of a natural transformation ν : X ⇒ Y such that
the square

SX

λ
��

Sν // SY

σ

��
XT

νT
// Y T

(A.64)

is commutative.
Now, let C be a 2-category. A distributive law between two monads

can be characterised as a monad in the 2-category of monads on C,
monad morphisms and monad 2-cells (the reader is invited to make this
statement precise as an exercise: how do monad morphisms compose?
What is the object on which a distributive law is a monad on?).
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Remark A.6.16. Some authors prefer to restrict to a more rigid defi-
nition of monad morphism, where the endofunctor X of A.6.15 above is
the identity: we call such special monad morphisms restrained.

Remark A.6.17. There is a dual theory of comonads, these are como-
noids in the monoidal category of endofunctors [C, C]; outlining the basic
definitions is left as an exercise in A.15.

A.7 2-categories

Definition A.7.1. A category enriched over the monoidal base V , or
briefly a V-category A, consists of

mc1) a class of objects Ao;

mc2) an object A[A, B] ∈ V for each pair of objects A, B ∈ A0;

mc3) a family of composition maps cABC : A[A, B] ⊗ A[B, C] → A[A, C],
one for each triple of objects A, B, C ∈ Ao;

mc4) a family of identity arrows iA : I → A[A, A], one for each object
A ∈ Ao.

These data satisfy the following axioms:

a1) Composition is associative, where associativity is defined via the asso-
ciator of V : the diagram

(
A(C, D) ⊗A(B, C)

)
⊗A(A, B)

cBCD⊗1

��

a // A(C, D) ⊗
(
A(B, C)⊗A(A, B)

)

1⊗cBCD

��
A(B, D)⊗A(A, B)

cABD ))❙❙❙
❙❙❙❙

❙❙❙❙
❙❙❙❙

A(C, D)⊗A(A, C)

cACDuu❦❦❦❦
❦❦❦❦

❦❦❦❦
❦❦❦

A(A, D)
(A.65)

is commutative.

a2) Composition has the identities iA as neutral elements, i.e. the two
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diagrams

A(B, B)⊗A(A, B)
cABB // A(A, B) A(A, B)⊗A(A, A)

cAABoo

I ⊗A(A, B)

iB⊗1

OO 55❦❦❦❦❦❦❦❦❦❦❦❦❦❦
A(A, B)⊗ I

1⊗iA

OOii❙❙❙❙❙❙❙❙❙❙❙❙❙❙

(A.66)
commute.

Definition A.7.2 (V-functor and V-natural transformation). If A and
B are two V-categories, a V-functor F : A → B consists of

• A function Fo : Ao → Bo;
• A family of V-morphisms FAA′ : A(A, A′) → B(FA, FA′), one for

each pair A, A′ ∈ Ao;

These data are such that the following diagrams commute:

A(A, A′)⊗A(A′, A′′)

c

��

FAA′⊗FA′A′′ // B(FA, FA′)⊗ B(FA′, FA′′)

c

��
A(A, A′′)

FAA′′

// B(FA, FA′′)

B(FA, FA) Ioo

��
A(A, A)

ff▼▼▼▼▼▼▼▼▼▼
(A.67)

A V-natural transformation α between two V-functor F, G : A → B
consists of a family of maps αA : I → B(FA, GA) such that the following
diagrams commute:

A(A, A′)

ρ≀

��

λ
∼

oo

A(A, A′)⊗ I

GAA′⊗αA

��
B(GA, GA′)⊗ B(FA, GA)c

oo

I ⊗A(A, A′)

αA′⊗FAA′

��
B(FA′, GA′)⊗ B(FA, FA′)

c

��
B(FA, GA′)

(A.68)

These diagrams express the fact that α is ‘natural’ in the sense that
αA ◦ Ff = Gf ◦ αA′ for every f : A → A′; of course, there is no such
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thing as f : A → A′ here, because A(A, A′) does not have ‘elements’
strictu senso.

Definition A.7.3. A 2-category is a Cat-enriched category, with the
tensor product given by the product of categories and the terminal cat-
egory as unit. Similarly, a 2-functor is a Cat-functor, and a 2-natural
transformation is a Cat-natural transformation. We explicitly spell out
the definition of a 2-category, leaving the definition of functor to the
reader, once they will have understood how to (easily) argue by analogy.

Spelling out the definition above, a 2-category C consist of

ma1) a class of objects Co,
ma2) for any pair X, Y ∈ C a small category C(X, Y ),
ma3) for any triple X, Y, Z ∈ C a functor µ : C(X, Y ) × C(Y, Z)→ C(X, Z)

called composition law,
ma4) a unit functor I → C(X, X), that is to say an object idX ∈ C(X, X)

for every object X ∈ C.

Furthermore, these data are subject to the following conditions

ma1) for every X ∈ C, the functors

µ( , idY ) : C(X, Y )→ C(X, Y )

µ(idX , ) : C(X, Y )→ C(X, Y )

are the identity functors,
ma2) for every X, Y, Z, W ∈ C, the diagram

C(X, Y )× C(Y, Z)× C(Z, W )
µ×id //

id×µ

��

C(X, Z)× C(Z, W )

µ

��
C(X, Y )× C(Y, W ) µ

// C(X, W )

(A.69)

commutes.

The objects of C are called 0-cells, the objects of C(X, Y ) are called 1-
cells and the morphisms of C(X, Y ) are called 2-cells. The notations are
the same as for categories, functors and natural transformations in Cat,
which is the prototypical example of 2-category.

Remark A.7.4. The vertical composition of 2-cells is defined by means
of the composition law of the hom-categories, while the functor µ recov-
ers the composition of 1-cells and the horizontal composition of 2-cells.
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Moreover, the functoriality of µ can be used to prove the interchange
law for 2-cells.

Definition A.7.5. A 1-cell f : X → Y inside a 2-category C is said to
be an equivalence if there exists another 1-cell g : Y → X together with
two invertible 2-cells 1X ⇒ gf and fg ⇒ 1Y .

Naturally, the next step is to describe how the notion of enriched
functor specialises to this case.

Remark A.7.6. The previous is also known as strict 2-functor, to dis-
tinguish it from other weak versions of 2-functors between 2-categories.
Indeed, a 2-functor sends identities to identities and respect composi-
tions, just as an ordinary functor does, with an extra action on 2-cells.
Nevertheless, it makes sense to ask for a weak version of the coherences,
whose diagrams commute only up to a 2-cell. If these 2-cells are invert-
ible we get a pseudofunctor, otherwise we have a lax or colax functor

(depending on the direction of the 2-cell). Further details can be found
in [Bor94a, §7.5], and in A.7.12 below. We say that a co/lax functor is
normal if it preserves identities strictly.

Example A.7.7. The simplest example of 2-functors is the 2-dimen-
sional analogue of an hom-functor. For instance, the correspondence
C(X, ) : C → Cat, for a fixed X ∈ Co defines a 2-functor. The action of
this functor is really simple:

(i) it sends every 0-cell Y to the small category C(X, Y ),
(ii) it maps every 1-cell f : Y → Z to the functor

f ◦ : C(X, Y )→ C(X, Z)

g 7→ f ◦ g

(γ : g ⇒ g′) 7→ 1f ∗ γ

where ∗ is the horizontal composition of 2-cells.
(iii) and finally it sends every 2-cell α : f ⇒ g to the horizontal post-

composition α ∗ .

The contravariant case C( , Y ) : Cop → Cat is completely analogous.

Definition A.7.8. Let F, G : C → D be 2-functors between 2-categories.
A 2-natural transformation α : F ⇒ G is the datum of a 1-cell

αC : FC → GC (A.70)
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for every C ∈ C, in such a way that the following diagram

C(C, C′)

GCC′

��

FCC′ // D(FC, FC′)

αC′◦

��
D(GC, GC′)

◦αC

// D(FC, GC′)

(A.71)

commutes.

In Remark A.7.6 we said that 2-functors have weaker counterparts, namely
pseudofunctors and lax functors. So it happens for 2-natural transforma-
tions, which in turn can be weakened into pseudonatural transformations

and lax natural transformations. For the sake of simplicity, we prefer to
give the definitions in the strict case. An explicit definition can be found,
again, in [Bor94a, §7.5].

Definition A.7.9. Let F, G : C → D be 2-functors and α, β : F ⇒ G

2-natural transformations. A modification Ξ: α⇛ β is a family of 2-cells

ΞC : αC ⇒ βC (A.72)

such that for any two 1-cells f, g : C ⇒ C′ and any 2-cell γ : f ⇒ g, we
have that

ΞC′ ∗ Fγ = Gγ ∗ ΞC (A.73)

The definition above applies, basically unchanged, also to pseudonatu-
ral and lax natural transformations. By its very definition, a modification
is a kind of ‘morphism in dimension 3’.

Theorem A.7.10. Let C be a 2-category, F : Cop → Cat a 2-functor

and C a 0-cell in C, then there exist an isomorphism of categories

[Cop, Cat](C(C, ), F ) ∼= FC (A.74)

where [Cop, Cat](C(C, ), F ) is the category whose objects are the 2-nat-

ural transformations C(C, ) ⇒ F and with the modifications between

those 2-natural transformations as morphisms.

Definition A.7.11 (Bicategory). A (locally small) bicategory B consists
of the following data:

bc1) A class Bo of objects, denoted with Latin letters like A, B, . . . ;
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bc2) A collection of (small) categories B(A, B), one for each A, B ∈ Bo,
whose objects are called 1-cells or arrows with domain A and codo-

main B, and whose morphisms α : f ⇒ g are called 2-cells or trans-

formations with domain f and codomain g; the composition law ◦ in
B(A, B) is called vertical composition of 2-cells;

bc3) A horizontal composition of 2-cells

B,ABC : B(B, C)× B(A, B)→ B(A, C) : (g, f) 7→ g f (A.75)

defined for any triple of objects A, B, C. This is a family of functors
between hom-categories;

bc4) for every object A ∈ Bo there is an arrow idA ∈ B(A, A) such that for
every A, B ∈ Co and f : A→ B we have f idA = f = idB f .

To this basic structure we add

bs1) a family of invertible maps αfgh : (f g) h ∼= f (g h) natural
in all its arguments f, g, h, that taken together form the associator

isomorphisms;
bs2) a family of invertible maps λf : idB f ∼= f and ̺f : f idA ∼= f

natural in its component f : A→ B, that taken together form the left

unitor and right unitor isomorphisms.

And these data are subject to the following axioms:

ba1) For every quadruple of 1-cells f, g, h, k we have that the diagram

((f g) h) k

αf,g,h k

��

αfg,h,k// (f g) (h k)
αf,g,hk// f (g (h k))

(f (g h)) k αf,gh,k

// f ((g h) k)

f αg,h,k

OO

(A.76)
commutes.

ba2) For every pair of composable 1-cells f, g,

(f idA) g

̺f g &&▲▲
▲▲▲

▲▲▲
▲▲

aA,idA,g // f (idA g)

f λgyyrrr
rrr

rrr
r

f g

(A.77)

commutes.
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Definition A.7.12 (Pseudofunctor, co/lax functor). Let B, C be two
bicategories; a pseudofunctor consists of

pf1) A function Fo : Bo → Co;
pf2) A family of functors FAB : B(A, B)→ C(FA, FB);

pf3) An invertible 2-cell µfg : Ff ◦ Fg ⇒ F (fg) for each A
g
−→ B

f
−→ C,

natural in f (with respect to vertical composition) and an invertible
2-cell η : ηf : idFA ⇒ F (idA), also natural in f .

These data are subject to the following commutativity conditions for
every 1-cell A→ B:

Ff ◦ idA
̺F f //

Ff∗η

��

Ff

F (̺f )

��

idB ◦Ff

η∗Ff

��

λF f // Ff

F (λf )

��
Ff ◦ F (idA) µf,idA

// F (f ◦ idA) F (idB) ◦ Ff µidB ,f

// F (idB ◦f)

(Ff ◦ Fg) ◦ Fh
αF f,F g,F h //

µfg∗Fh

��

Ff ◦ (Fg ◦ Fh)

Ff∗µgh

��
F (fg) ◦ Fh

µfg∗Fh

��

Ff ◦ F (gh)

µf,gh

��
F ((fg)h)

Fαfgh

// F (f(gh))

(A.78)
(we denote invariably α, λ, ̺ the associator and unitor of B, C).

A lax functor is defined by the same data, but both the 2-cells µ :
Ff ◦Fg ⇒ F (fg) and η : idFA ⇒ F (idA) can be noninvertible; the same
coherence diagrams (A.78) hold. A colax functor reverses the direction
of the cells µ, η, and the commutativity of (A.78) changes accordingly.

A.8 Higher categories

Definition A.8.1 (The simplex category). The simplex category, de-
noted ∆, is defined as the category having

• objects the nonempty finite sets that are totally ordered: the typical
object of ∆ is denoted [n] = {0 < · · · < n}, in this way, [0] is the
terminal object of ∆;
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• morphisms [n]→ [m] are the order preserving functions.

Remark A.8.2. If in ∆ we consider

• the n + 1 injective functions δn,k : [n]→ [n + 1] whose image misses k

(called co-faces);
• the n + 1 surjective functions σn,k : [n] → [n − 1] assuming the value

k twice (called co-degeneracies);

we obtain that every f : [m]→ [n] can be written as a composition

f = δn1,k1 ◦ · · · ◦ δnr,kr ◦ σm1,h1 ◦ · · · ◦ σms,hs (A.79)

for some indices ni, mj and 0 ≤ ki ≤ ni, 0 ≤ hj ≤ mj .

Remark A.8.3. The functions δn,k and σn,k satisfy the cosimplicial

identities, namely they fit into commutative diagrams

[n− 1]

i<j

δi //

δj−1

��

[n]

δj

��
[n]

δi

// [n + 1]

[n− 1]

i<j

δi //

σj

��

[n]

σj

��
[n− 2]

δi

// [n− 1]

[n− 1]
δj //

δj+1

��

[n]

σj

��
[n] σj

// [n− 1]

[n− 1]

i>j+1

δi //

σj

��

[n]

σj

��
[n− 2]

δi−1

// [n− 1]

[n + 1]

i≤j

σi //

σi

��

[n]

σj

��
[n] σj+1

// [n− 1]

(A.80)

Along the discussion, we consider ∆ as a full subcategory of Cat, via
the identification

{0 < · · · < n} = {0→ 1→ · · · → n}. (A.81)

This secretly defines an identity-on-objects functor ι : ∆→ Cat.

Definition A.8.4 (The category of simplicial sets). The category of
simplicial sets is defined as the category [∆op, Set] of presheaves on ∆.

A simplicial set can equivalently be specified by a collection of sets (a
graded set) {Xn | n ≥ 0} with maps

dn,i : Xn → Xn−1 sn,j : Xn → Xn+1, 0 ≤ i, j ≤ n (A.82)

(respectively called the faces and degeneracies of X) satisfying the dual
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identities of (A.8.3), called the simplicial identities




didj = dj−1di i < j

disj = sj−1di i < j

djsj = id = dj+1sj

disj = sjdi−1 i > j + 1

sisj = sj+1si i ≤ j

(A.83)

In the following discussion, we will freely employ, and without further
mention, this identification. The elements of Xn are called n-simplices

of X .
The Yoneda embedding よ∆ : ∆ → sSet sends every object ∆ in

the representable simplicial set よ[n] = ∆( , [n]), acting on objects and
morphisms of ∆ in the expectable way. The usual notation for the rep-
resentable よ[n] on [n] is ∆[n].

• Show that the m-simplices of ∆[n] are in bijection with the tuples
(a0, . . . , am) of elements of {0, . . . , n}, such that a0 ≤ a1 ≤ · · · ≤ am;
• Given a simplicial set X and one of its n-simplices x ∈ Xn is called

non degenerate if it can’t be expressed as degeneracy of some lower
dimensional simplex y ∈ Xk. Show that the non degenerate m-sim-
plices of ∆[n] are in bijection with the subsets of {0, . . . , n} having
cardinality m + 1.

Definition A.8.5 (Boundaries and horns). We define the boundary of
∆[n] as the union

∂∆[n] =
n⋃

i=0

dn,i(∆[n− 1]), (A.84)

and we define the kth n-dimensional horn as the union

Λk[n] =
⋃

i6=k

dn,i(∆[n− 1]). (A.85)

A.9 Miscellaneous definitions

The already hard endeavour to write a self-contained introduction to
category theory is made harder by the vastness of the subject. As a con-
sequence, we must necessarily leave out important fragments of theory
that often constitute research areas in their own right; these sub-theories
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are here only touched in one or two lines of the book, in so tiny space
that it is impossible to do them justice.

While referring the interested reader to the customary sources, we
employ this last section of the book to give a rapid glance to the category
theory we left out of it.

For us, an ordinal number will be any well-ordered set, and a cardinal

number is any ordinal which is not in bijection with a smaller ordinal.
Every set X has a unique cardinality, i.e. a cardinal κ with a bijection
κ ∼= X such that there are no bijections from a smaller ordinal. We
freely employ results that depend on the axiom of choice when needed.
A cardinal κ is regular if no set of cardinality κ is the union of fewer than
κ sets of cardinality less than κ; all cardinals in the following subsection
are assumed regular without further mention.

Definition A.9.1 (Filtered category). Let κ be a cardinal; we say that
a category A is κ-filtered if for every category J ∈ Cat<κ with less than
κ objects, A is injective with respect to the cone completion J → J ⊲;
this means that every diagram

J

��

D // A

J⊲

D̄

>>

(A.86)

has a dotted filler D̄ : J⊲ → A.

We say that a category C admits filtered colimits if for every filtered
category A and every diagram D : A → C, the colimit colim D exists
as an object of C. Of course, whenever an ordinal α is regarded as a
category, it is a filtered category, so a category that admits all κ-filtered
colimits admits all colimits of chains

C0 → C1 → · · · → Cα → · · · (A.87)

with less than κ terms. A useful, completely elementary result is that the
existence of colimits over all ordinals less than κ implies the existence
of κ-filtered colimits; this relies on the fact that every filtered category
A admits a cofinal functor from an ordinal αA.

Definition A.9.2. Let C be a category;

• We say that C is κ-accessible if it admits κ-filtered colimits, and if
it has a small subcategory S ⊂ A of κ-presentable objects such that
every A ∈ A is a κ-filtered colimit of objects in S.
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• We say that C is (locally) κ-presentable if it is accessible and cocom-
plete.

There is a 2-category whose objects are κ-accessible categories, whose
morphisms are functors that preserve κ-filtered colimits (also called κ-
ary functors, or functors of rank κ), and all natural transformations
between these. In particular we call finitary the functors of rank ω.

The theory of presentable and accessible categories is a cornerstone of
categorical logic, i.e. of the translation of model theory into the language
of category theory.

Accessible and presentable categories admit representation theorems:

• A category C is accessible if and only if it is equivalent to the ind-
completion Indκ(S) of a small category, i.e. to the completion of a
small category S under κ-filtered colimits;

• A category C is presentable if and only if it is a full reflective subcat-
egory of a category of presheaves i : C → Cat(Sop, Set), such that the
embedding functor i commutes with κ-filtered colimts.

All categories of usual algebraic structures are (finitely) accessible, and
they are locally (finitely) presentable as soon as they are cocomplete; an
example of a category which is ℵ1-presentable but not ℵ0-presentable:
the category of metric spaces and short maps.

We now glance at topos theory:

Definition A.9.3. An elementary topos is a category E

• which is cartesian closed, i.e. each functor × A has a right adjoint
[A, ];

• having a subobject classifier, i.e. an object Ω ∈ E such that the functor
Sub : Eop → Set sending A into the set of isomorphism classes of

monomorphisms
[
U
↓
A

]
is representable by the object Ω.

The natural bijection E(A, Ω) ∼= Sub(A) is obtained pulling back the
monomorphism U ⊆ A along a universal arrow t : 1 → Ω, as in the
diagram

U

❴
✤

//

��

1

t

��
A χU

// Ω

(A.88)

so, the bijection is induced by the map
[
U
↓
A

]
7→ χU .
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Definition A.9.4. A Grothendieck topos is an elementary topos that,
in addition, is locally finitely presentable.

Whenever we spoke about sheaves on a topological space or a Gro-
thendieck site, we wer secretly talking about topos theory; the notion of
Grothendieck topos is intimately connected with co/end calculus, as we
have seen all along chapter 3, and especially in 3.2.16.

In fact, Giraud theorem gives a proof for the difficult implication of
the following recognition principle for Grothendieck toposes:

Theorem A.9.5. Let E be a category; then E is a Grothendieck topos

if and only if it is a left exact reflection of a category Cat(Aop, Set) of

presheaves on a small category A.

(recall that a left exact reflection of C is a reflective subcategory
R →֒ C such that the reflector r : C → R preserves finite limits. It
is a reasonably easy exercise to prove that a left exact reflection of a
Grothendieck topos is again a Grothendieck topos; Giraud proved that
all Grothendieck toposes arise this way.)

Next, we mention the existence of abelian categories.
Albeit tangential to the co/end calculus exposed in this book, the no-

tion of abelian category is historically relevant: the definition of co/inte-
gration was given by Yoneda [Yon60] in the setting of module categories,
and these constitute the main motivating example for the abstract defi-
nition of abelian category.

Definition A.9.6. A category A is called abelian if it satisfies the fol-
lowing list of axioms:

a1) it is enriched A.7.1 over abelian groups, i.e. every A(A, A′) is an
abelian group and the composition operation is Z-bilinear, thus can be
represented as an abelian group homomorphismA(A, A′)⊗A(A′, A′′)→
A(A, A′′);

a2) A has all finite limits and all finite colimits;
a3) in A, every monomorphism is a kernel, and every epimorphism is a

cokernel (this means that if m : A → B is a monomorphism, then

it appears in an equaliser diagram A
m
−→ B

f

⇒
0

C, and dually, if e :

B → C is an epimorphism, then it appears in a coequaliser diagram

A
g

⇒
0

B
e
−→ C).

Remark A.9.7. The notion of abelian category admits many equivalent
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definitions; so, A.9.6 above is not the only possible way to define it. An
alternative presentation of the axioms disassembles a2 into

a21) A has finite products and finite coproducts;

a22) Every morphism f : A→ B in A has a kernel and a cokernel.

A category satisfying only a1 is called preadditive (note that this entails
that A has a zero object if and only if it has an initial object, if and only
if it has a terminal object); a category satisfying a1 and a21 is called
additive; a category satisfying a1, a21 and a22 is called preabelian.

A merit of A.9.6 above is that all axioms are visibly auto-dual, i.e. A
satisfies a1–a3 if and only if the opposite category Aop satisfies a1–a3.

Along this book, there are few explicit mentions of abelian categories:
see for example 3.2.10, or the discussion in 7.2.2; derived categories ap-
pearing in 7.2.2 are seldom abelian, because they lack finite co/limits.

Exercises

A.1 Show that for every fixed cardinal number κ, there exists an abelian
group of cardinality κ. If κ is infinite, is it true that there is a field of
cardinality κ (of course, it’s false if κ is finite and not a power pn of
a prime number p)?

A.2 Let C be a category admitting an initial and a terminal object; prove
that the initial object is the colimit of the unique empty diagram
∅ → C from the empty category, using A.3.7, and dually that a
terminal object is the limit of the same empty diagram.

A.3 Prove that a category C has a terminal object if and only if the
unique functor C → ∗ to the terminal category has a right adjoint;
dually, a category C has an initial object if and only if the unique
functor C → ∗ to the terminal category has a left adjoint.

A.4 Prove that the category Setop, i.e. the opposite category of sets and
functions, is not equivalent to Set.

A.5 Consider the comma category of A.2.14;

• Let idC be the identity functor: characterise the category (idC /G);
let C be the functor J → C assuming the value C constantly:
characterise the category (C/ idC).

• What is the relation between (F/G) and (G/F )?
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• The iso-comma category of the functors F and G is given by a sim-
ilar definition of A.2.14; the only difference is that we only consider
arrows Fs→ Gt that are invertible; we denote it as [F/G]. What is
the relation, now, between [F/G] and [G/F ]? Are they isomorphic?
• Show that there are two functors S

pS
←− (F/G)

pT
−−→ T such that the

square

(F/G)
pS //

pT

��

S

F

��
T

G
// C

commutes.
• Consider the functor J1 : (F/G)

pS
−→ S

F
−→ C. Determine the cate-

gory (J1/G). Does the composition of the projections above in the
triangle ⋆ equals the projection (J1/G)→ T (in other words, does
the triangle commute)?

(J1/G)
q(F/G) //

qT

%%❏❏
❏❏

❏❏
❏❏

❏❏
(F/G)

⋆
pT

��

pS // S

F

��
T

G
// C

• Does the category (F/G) have a universal property?

A.6 Let Ś be the Sierpiński space, where a two-point set J = {a, b} has
topology {∅, {a}, J}. Let Cbe the codiscrete space, where {a, b} has
trivial topology {∅, J}, and Dthe discrete space where J has discrete
topology {∅, {a}, {b}, J}. Show that

• the functor O : Spcop → Set that sends a topological space into its
set of open subsets is representable, and that Ś is its representing
object;
• the functor D : Spcop → Set that sends a topological space X

into its set of disconnections, i.e. the set of pairs (U, V ) such that
U ∪ V = X and U ∩ V = ∅, is representable by the discrete space
D.
• the functor S : Spcop → Set that sends a topological space into its

set of subspaces is representable by the codiscrete space C.

Show that the set of natural transformations [Spcop, Set](O, S) has
exactly four elements.
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A.7 Show that a cocone D̄ : J⊲ → C for a diagram D : J → C is exactly
a cone D̄op : J ⊳ → Cop for the opposite functor Dop : J op → Cop.
Prove it directly, but then notice that A.3.4 and in particular (A.21)
give a slick argument to conclude.

A.8 Let f : [n] → [m] be a map in ∆ (see A.8.1). We regard ∆ as a
subcategory of Cat in the obvious way. Show that

• A morphism f : [n] → [m] in ∆ has a left adjoint if and only if
f(n) = m; in such a situation the adjoint fL sends i into fL(i) =
min{j ∈ [n] | f(j) ≥ i}.
• Dually, a morphism f : [n] → [m] in ∆ has a right adjoint if and

only if f(0) = 0; in such a situation, the adjoint fR sends i into
fR(i) = max{j ∈ [n] | f(j) ≤ i}.

Deduce that for every j ∈ [n] the function σn,j has both a left and a
right adjoint, and in particular

δn,j+1 ⊣ σn−1,j ⊣ δn,j : [n] σn−1,j // [n− 1]
oo

oo

A.9 Let F →֒ E be a homomorphism of rings between fields; it is thus
a monomorphism. We define

Fix(E|F ) = {σ : E
∼
−→ E | σ|F = idF }

as the set of automorphisms of E that become the identity map when
restricted to F , and

Ext(E|F ) = {K | F ≤ K ≤ E}

the set of intermediate extensions between F and E. We define two
functions i : Fix(E|F ) → Ext(E|F ) and j : Ext(E|F ) → Fix(E|F )
sending respectively σ ∈ Fix(E|F ) in the intermediate field {a ∈
E | σ(a) = a} and the intermediate field F ≤ K ≤ E in the group
of those E-automorphisms that become the identity when restricted
to K. Show that i, j set up an adjunction (thus the name Galois

connections for these adjunctions) when the posets Fix(E|F ) and
Ext(E|F ) are regarded as categories; who is the right adjoint, and
who is the left adjoint? Who is the unit, and who is the counit?

A.10 Show that the limit of a constant diagram ∆JA : J → A is a prod-
uct of copies of A indexed by the set π0J of connected components
of the domain J : prove that there is a bijection

Cn(X, A) ∼= Set(π0J ,A(X, A))

and conclude, using (2.16).
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A.11 Show that the following conditions are equivalent in a category C
with a terminal object:

• The terminal arrow
[
X
↓
1

]
is right orthogonal to f : A→ B;

• The functor C( , X) sends f to an isomorphism;

• Every arrow A→ X in C has a unique extension to B → X along
f .

A.12 Show that in the same notation of (A.42), YX is the X-component
of a natural transformation Cat(Cop, Set)(よ, F )⇒ F , that is natural
in both its arguments; in other words, show that for every arrow
X → X ′ the square

Cat(Cop, Set)(よX, F ) Y // FX

Cat(Cop, Set)(よ(X ′), F )

[Cop,Set](よ(f),F )

OO

Y
// FX ′

Ff

OO

is commutative.

Similarly, for every natural transformation τ : F ⇒ G the square

Cat(Cop, Set)(よX, F )

Cat(Cop,Set)(よX,τ)

��

Y // FX

τX

��
Cat(Cop, Set)(よX, G)

Y
// GX

is commutative.

A.13 Denote CT the category defined in A.6.7. Define the category Kl(T )
as follows: it has the same objects of C, and Kl(T )(X, Y ) := C(X, T Y ).

Composition of X
f
−→ T Y with Y

g
−→ T Z is defined by the rule

g •T f :=
(
X

f
−→ T Y

Tg
−−→ T T Z

µZ
−−→ T Z

)

• Prove that this really defines a category, if the identity map of an
object A is the unit ηA : A → T A (prove that the composition is
associative and that ηB •T f = f = f •T ηA for every f : A→ T B).

• Defines a functor W : Kl(T ) → CT that acts as T on objects, and
such that Wf = µB ◦T f . Prove that W , so defined, is fully faithful,
and that its essential image is made by free T -algebras.
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A.14 Show that each square

[n + 1]

i≤j

σi //

σi

��

[n]

σj

��
[n] σj+1

// [n− 1]

is an absolute pushout, and that every square

[n− 1]

i<j

δi //

δj−1

��

[n]

δj

��
[n]

δi

// [n + 1]

is an absolute pullback.
A.15 A comonoid in a monoidal category is an object M ∈ C endowed

with maps c : M → M ⊗M and e : M → I such that the following
diagrams commute

M ⊗M ⊗M ooM⊗c
OO

c⊗M

M ⊗MOO

c

M ⊗ I

❑❑
❑❑

❑❑
❑❑

❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
oo M⊗e M ⊗MOO

m

I ⊗M//e⊗M

ss
ss
ss
ss
ss

ss
ss
ss
ss
ss

M ⊗M oo
c M M

witnessing coassociativity and counitality properties for (c, e). A co-

monad on a category C is now a functor S : C → C which is a comonoid
with respect to the monoidal structure ([C, C], ◦); a

• Write down the axioms of coassociativity ad counitality for S;
• Show that if F η

ǫ
G is an adjunction then S = FG is a comonad

with comultiplication F ∗ η ∗G and counit ǫ;
• Define a category of coalgebras for S, and of free coalgebras for S;

show that they enjoy suitable universal properties.

A.16 Let

C F // D

L
oo

Roo

be a triple of adjoint functors, meaning that L ⊣ F and F ⊣ R; show
that L is a fully faithful functor if and only if R is a fully faithful
functor.
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A.17 [Seg74] Given a monoidal category (V ,⊗), show that there exists
a category V⊗ defined as follows:

• the objects of V⊗ are n-tuples of objects in V , denoted [C1, . . . , Cn]
(this follows the convention that if n = 0, the tuple is empty);
• morphisms [C1, . . . , Cn]→ [D1, . . . , Dm] are defined as pairs (α, {fj})

where α is a partial function [n]→ [m] having domain Sα and
{

fj :
⊗
{i|α(i)=j} Ci → Dj | 1 ≤ j ≤ m

}

is a family of morphisms in V .
• Define the composition law of two morphisms (α, f), (β, g).
• Let Fin∗ be the category ∗/Set<ω of pointed finite sets. Show that

there is a functor p : V⊗ → Fin∗ sending [C1, . . . , Cn] into [n]∗; show
that p is an opfibration: for every object C = [C1, . . . , Cn] ∈ V⊗

and every arrow f : p(C)→ [m]∗ in Fin∗ there is an arrow (θf , f̄) :
C → D = [D1, . . . , Dm] such that p(θf , f̄) = f , and such that the
composition with f̄ induces a bijection for every E = [E1, . . . , Ed],
as follows:

V⊗(D, E) ∼= V⊗(C, E)×Fin∗([n]∗,[d]∗) Fin∗([m]∗, [d]∗). (A.89)

• Show that if we denote V⊗n the fiber of [n]∗ along p, then the functor
p induces a functor V⊗m → V

⊗
n among the fibers, for every f : [m]∗ →

[n]∗ in Fin∗.
• Show that V⊗0 ∼= {0}, V

⊗
1
∼= V , and that more in general V⊗n ∼=

V × · · · × V (n times).
• Show that the correspondence sending V into V⊗ is functorial in V ;

are strong monoidal functors enough?
• Show that Fin∗ ∼= {0}⊗ with respect to the unique monoidal struc-

ture that exists on the terminal category {0}; show that p is the
functor induced by the unique functor V → {0}.
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Table of notable integrals

Fubini rule

ˆ C ˆ D

T (C, D, C, D) ∼=
ˆ D ˆ C

T (C, D, C, D) ∼=
ˆ (C,D)

T (C, C, D, D)

∀n ≥ 2, σ ∈ Sym(n),
ˆ Cσ1

. . .

ˆ Cσn

T ∼=
ˆ (C1,...,Cn)

T

Natural transformations Cat(C,D)(F, G) ∼=
ˆ

C

D(FC, GC)

Tensor product of functors G⊠ F =
ˆ C

GC ⊗ FC

Yoneda lemma

FX ∼=
ˆ A

[X, A]× FA FX ∼=
ˆ

A

Set([A, X ], FA)

GX ∼=
ˆ A

[A, X ]×GA GX ∼=
ˆ

A

Set([X, A], GA)
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Table of notable integrals

Kan extensions: C G
←− A

F
−→ B

LanG F (C) ∼=
ˆ A

C(GA, C)⊗ FA

RanG F (A) ∼=
ˆ

A

C(C, GA) ⋔ FA

density comonad: TF ∼=
ˆ

A

C( , FA) ⋔ FA

codensity monad: SF ∼=
ˆ A

C(FA, )⊗ FA

Weighted co/limits

colimWF ∼=
ˆ A

WA⊗ FA

limWF ∼=
ˆ

A

WA ⋔ FA

Profunctor theory

p • q =
ˆ X

p( , X)⊗ q(X, )

Ranp q =
ˆ

A

hom(pA, qA) Riftp q =
ˆ

A

hom(rA, pA)
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Table of notable integrals

Operads

F ∗G :=
ˆ XY

C(X ⊕ Y, )⊗ FX ⊗GY

F ⊙G :=
ˆ m

Fm⊗G∗m G∗m=G∗···∗G
m times

F ⋄G→ H

F → {G, H}
{G, H}m =

ˆ

k

[G∗mk, Hk]

Simplicial coends

˛

A

T (A, A) :=
ˆ

A′,A′′
δA(A′, A′′) ⋔ T (A′, A′′)

˛ A

T (A, A) :=
ˆ A′,A′′

δA(A′, A′′)⊗ T (A′, A′′)

δA(A′, A′′) =
ˆ n∈∆ ∐

X0,...,Xn∈A

∆[n]×A(A, X0)× · · · × A(Xn, B)

Promonoidal structures

[F ∗P G]C =
ˆ AB

P (A, B; C)× FA×GB

ˆ Z

PAY
D PBC

Y
∼=
ˆ Z

PAB
X PXC

D

ˆ Y Z

JZHA
Y PY Z

B

ˆ z

JZ
(ˆ Y

HA
Y PY Z

B

)
∼=
ˆ Z

JZPAZ
B
∼= hom(A, B)

Tambara module: ϕP (X, Y ) =
ˆ C,U,V

C(X, C ⊗ U)× C(C ⊗ V, Y )× P (U, V )
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[LR11] S. Lack and . Rosickỳ, Notions of Lawvere theory, Applied Cate-
gorical Structures 19 (2011), no. 1, 363–391.

https://hackage.haskell.org/package/lens-4.16
https://mathoverflow.net/q/20451
http://arxiv.org/abs/math/9903004


304 Bibliography

[Lur09] J. Lurie, Higher Topos Theory, Annals of Mathematics Studies, vol.
170, Princeton University Press, Princeton, NJ, 2009.

[LV12] J.-L. Loday and B. Vallette, Algebraic operads, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences], vol. 346, Springer, Heidelberg, 2012.

[May72] J.P. May, The geometry of iterated loop spaces, Springer-Verlag,
Berlin-New York, 1972, Lectures Notes in Mathematics, Vol. 271.

[Mil] B. Milewski, Profunctor optics: The categorical view,
https://bartoszmilewski.com/2017/07/07/profunctor-optics-the-categorical-view/

blog post.
[ML70] S. Mac Lane, The Milgram bar construction as a tensor product of

functors, The Steenrod Algebra and its Applications (Proc. Conf.
to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial
Inst., Columbus, Ohio,1970), Lecture Notes in Mathematics, Vol.
168, Springer, Berlin, 1970, pp. 135–152.

[ML98] , Categories for the working mathematician, second ed.,
Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York,
1998.

[MLM92] S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic: A
first introduction to topos theory, Springer, 1992.

[Moe95] I. Moerdijk, Classifying spaces and classifying topoi, Lecture Notes
in Mathematics, vol. 1616, Springer-Verlag, Berlin, 1995.

[Moo09] D. Moody, The “physics” of notations: toward a scientific basis for
constructing visual notations in software engineering, IEEE Trans-
actions on software engineering 35 (2009), no. 6, 756–779.

[MSS02] M. Markl, S. Shnider, and J. Stasheff, Operads in algebra, topol-
ogy and physics, Mathematical Surveys and Monographs, vol. 96,
American Mathematical Society, Providence, RI, 2002.

[MZ10] J.-P. Marquis and E.N. Zalta, What is category theory, What is
category theory, 2010, pp. 221–255.

[PGW17] M. Pickering, J. Gibbons, and N. Wu, Profunctor optics: Modular
data accessors. the art, Science, and Engineering of Programming
1 (2017), no. 2.

[Pie82] R.S. Pierce, Associative algebras, volume 88 of, Graduate texts in
mathematics (1982).

[PS08] C. Pastro and R. Street, Doubles for monoidal categories, Theory
and applications of categories 21 (2008), no. 4, 61–75.

[Rez17] Charles Rezk, Stuff about quasicategories, Unpublished notes,
http://www. math. illinois. edu/rezk/595-fal16/quasicats. pdf
(2017).

[Rie] E. Riehl, Understanding the homotopy coherent nerve, blog post.
[Rie14] , Categorical homotopy theory, New Mathematical Mono-

graphs, vol. 24, Cambridge University Press, Cambridge, 2014.
[Rie17] , Category theory in context, Courier Dover Publications,

2017.
[RV14] E. Riehl and D. Verity, The theory and practice of Reedy categories,

Theory Appl. Categ. 29 (2014), 256–301.

https://bartoszmilewski.com/2017/07/07/profunctor-optics-the-categorical-view/
https://golem.ph.utexas.edu/category/2010/04/understanding_the_homotopy_coh.html


Bibliography 305

[RV15] , The 2-category theory of quasi-categories, Advances in
Mathematics 280 (2015), 549–642.

[RV17a] , Fibrations and Yoneda lemma in an ∞-cosmos, Journal
of Pure and Applied Algebra 221 (2017), no. 3, 499–564.

[RV17b] , Kan extensions and the calculus of modules for ∞-
categories, 2017, pp. 189–271.

[Sch13] D. Schäppi, The formal theory of Tannaka duality, Astérisque
(2013), no. 357.

[Seg74] G. Segal, Categories and cohomology theories, Topology 13 (1974),
293–312.

[Sel10] P. Selinger, A survey of graphical languages for monoidal categories,
New structures for physics, Springer, 2010, pp. 289–355.

[Shu06] M. Shulman, Homotopy limits and colimits and enriched homotopy
theory, preprint arXiv:math/0610194 (2006).

[Shu16] , Contravariance through enrichment, Theory Appl. Categ.
(2016).

[Sim11] H. Simmons, An introduction to category theory, Cambridge Uni-
versity Press, 2011.

[Str72] R. Street, The formal theory of monads, J. Pure Appl. Algebra 2

(1972), no. 2, 149–168.

[Str74] , Fibrations and Yoneda lemma in a 2-category, Proceed-
ings Sydney Category Theory Seminar 1972/1973 (G.M. Kelly,
ed.), Lecture Notes in Mathematics, vol. 420, Springer, 1974,
pp. 104–133.

[Str76] , Limits indexed by category-valued 2-functors, Journal of
Pure and Applied Algebra 8 (1976), no. 2, 149 – 181.

[Str80] , Fibrations in bicategories, Cahiers de topologie et
géométrie différentielle catégoriques 21 (1980), no. 2, 111–160.

[Str81] , Conspectus of variable categories, Journal of Pure and Ap-
plied Algebra 21 (1981), no. 3, 307–338.

[Str11] J. Strom, Modern classical homotopy theory, vol. 127, American
Mathematical Society Providence, RI, USA, 2011.

[SW78] R. Street and R. Walters, Yoneda structures on 2-categories, J.
Algebra 50 (1978), no. 2, 350–379.

[Szl12] K. Szlachányi, Skew-monoidal categories and bialgebroids, Ad-
vances in Mathematics 231 (2012), no. 3-4, 1694–1730.

[T+06] D. Tambara et al., Distributors on a tensor category, Hokkaido
mathematical journal 35 (2006), no. 2, 379–425.

[Toë05] Bertrand Toën, Vers une axiomatisation de la théorie des caté-
gories supérieures, K-Theory 34 (2005), no. 3, 233–263.

[Tri] T. Trimble, Towards a doctrine of operads. nLab page.

[Ulb90] K.-H. Ulbrich, On Hopf algebras and rigid monoidal categories, Is-
rael Journal of Mathematics 72 (1990), no. 1-2, 252–256.

[Wei94] C.A. Weibel, An introduction to homological algebra, Cambridge
Studies in Advanced Mathematics, vol. 38, Cambridge University
Press, Cambridge, 1994.

http://arxiv.org/abs/math/0610194
http://ncatlab.org:8080/toddtrimble/published/Towards+a+doctrine+of+operads


306 Bibliography

[Woo82] R.J. Wood, Abstract proarrows I, Cahiers de topologie et géometrie
différentielle categoriques 23 (1982), no. 3, 279–290.

[Yon60] N. Yoneda, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo
Sect. I 8 (1960), 507–576 (1960).



Index

Alg(T ), 271

∐A[a | | B]•, 217

C/C, 250

Cat, 247

Catl, 194

Catl,1, 144

C
´

F , 101, 105, 267

DFib(C), 266, 267

Ex∞, 89

Fin, 183, 291

Γ-space, 92

J⊳,J⊲, 254

Kl(T ), 271

N , 78, 82

P, 163

P , 49, 62

Prof, 127–129, 132, 139, 140

W , 218

Y , 218

∗, 148, 164

, 247, 279
⊠C , 86

⊣, 258

∆, 77, 79, 281, 288

d, 216

( )♯, 202

( )♭, 202

, 4

Γ, 144

hom, 240
´

, 11, 28
¸

, 217, 219, 220, 230

⊙, 167

⊗, 38

⋔, 21, 38

sd[n], 89

s[n], 89

t, 216

よ, 93, 158, 214, 263, 264

よ

, 93, 158, 214, 263, 264

Abelian category, 285

Accessible category, 284

Additive category, 286

Adjunction, 258

Dold-Kan equivalence, 84

relative —, 50, 71

triangle identities, 261

unit and counit, 3, 260

Algebraic theory, 172

Associator

monoidal —, 257, 279

promonoidal —, 147

Bar construction, 212

Bicategory, 86, 127, 140, 279, 280

— of profunctors, 127

Bimodule, see Profunctor
Bousfield-Kan construction, 106

Cardinal number, 283
Carré exact, see Exact square

Cartesian closed category, 284

Category, 239

— of elements, 97, 143, 265–267

— of sets, 242

— of structured sets, 242

— theory and structuralism, 239

2-category, 276

abelian —, 285

accessible —, 284

additive —, 286

bicategory, 279

cartesian closed —, 284

307



308 Index

closed —, 169, 260

co/complete —, 257

comma —, 109, 250, 266, 287

compact closed —, 139

coproduct —, 251

displayed —, 143

dual, see opposite

Eilenberg-Moore —, 271

elementary topos, 284

empty —, 241

enriched —, 274

filtered —, 283

formal — theory, 47

full sub—, 244

Join of two —s, 257

Kleisli —, 41, 271, 289

monoidal —, 164, 167

monoids as —s, 241

opposite —, 249

posets as —s, 242

preabelian —, 286

Preadditive —, 286

presentable —, 284

product —, 251

promonoidal —, 146, 158, 159, 170

reflective sub—, 259

ring as —, 72

simplex —, 77, 79, 82, 281, 288

slice —, 250, 287

sub—, 241

Traced —, 139

twisted arrows ∞- —, 226

twisted arrows —, 14

virtual double —, 140

Category of elements, 97, 265–267

Chain co/product, 217

Chain complex, 104

Clone, 174, 175, 183, 185

cmc functor, 175

cmc monad, 175

Co/complete category, 257

Co/end, 6

∞- —, 226, 227

— as weighted co/limit, 100

— in a derivator, 231

—s as colimits, 13

functoriality of —, 12

homotopy —, 209

lax —, 197

natural transformations as —s, 23,
199, 221

simplicially coherent —, 215, 217
Stokes’ theorem using —s, 25

Co/limit
creation of —s, 257

Co/tensors, 38, 99, 107
Co/wedge, 6

Lax —, 195
Cobar construction, see Bar

construction
Cocomma object, see Comma object
Colimit

homotopy —, 106
op/lax —, 227
weighted —, 97, 107

Combinatorial species, 43, 150
Comma category, 109, 250, 266, 287
Comma object, 109

Compact closed category, 139
Cone

completion, 254
mapping, 104

Convolution, 164
— product, 150

Day —, 164
upper and lower —, 150

Convolution product, 148, 158, 159, 164
Coproduct of categories, 251
Correspondence, see Profunctor
Cosmos, 128

Counit
— of ×A ⊣ ( )A, 3
— of pF ⊣ pF , 134
— of an adjunction, 260, 261

Currying, 259

Diagonalisation, 216
Diagram, 244

Cone of a —, 254
Dinaturality

enriched —, 120
Discrete fibration, 266
Displayed category, 143
Distributive law, 273
Distributor, see Profunctor
Dual space, 44

Einstein notation, 132, 164
Elementary topos, 284
Empty category, 241

Equivalence
— of functors, 246
— of categories, 248

Exact square, 142



Index 309

Extranaturality

enriched —, 119

Filtered category, 283
Finitary monad, 173

Formal category theory, 47

Fourier transform, 149, 150
Fubini rule

— for ∞-coends, 227

— for coends, 19

— for lax co/ends, 201
Full subcategory, 244

Functor, 240, 250

adjoint —s, 41, 258
cmc —, 175

contravariant —, 250

enriched —, 275

finitary —, 173
full, faithful, conservative, 244

identity on objects —, 173

Kan extension —, 40
lax —, 144, 280

pseudo—, 280

representable, 38

tensor product of —, 86
Wedge for a —, 6

Galois connection, 259, 288

Γ-space, 92

Giraud theorem, 87
Grothendieck

construction, 101, 265

Horizontal composition, 247, 279

Inserter, 107

Isbell duality, 90, 93

— envelope, 93
Isomorphism of categories, 248

Join operation, 257

Kan extension, 40

— as weighted co/limit, 99

— in Prof, 137
simplicially coherent —, 223

Kleisli category, 41

Lawvere, 128, 129, 173

— theory, 173
Lawvere theory, 176

Lax functor, 144

Limit, 252

Co/complete category, 257
preservation of —, 256

Limit and colimit, 255

Modification, 196, 278

Module, 86, 127

bicategory of —s, 86, 127

Monad, 173, 270, 273, 274

— from an operad, 182

— in Prof, 157

—s as monoids, 269

—s from adjunctions, 270

algebra for a —, 271

cmc —, 175

co—, 274

distributive law, 273

finitary —, 173, 176

free algebra for a —, 271

idempotent, 272

morphism of —s, 273

relative —, 53, 55

Monoid

internal —, 269

Monoidal category, 291

Morphism, 239

— of monads, 273

epimorphism, 242

isomorphism, 241

monomorphism, 242

Multiplicative kernel, see Fourier
transform

Natural equivalence, 246

Natural transformation

—s as ends, 23, 199, 221

composition of —s, 247, 248, 279

simplicially coherent —, 221

Nerve

— context, 80

examples of —, 82–86

simplicial —, 78, 82

simplicially coherent —, 82

Object, 239

initial and terminal, 252, 254, 260,
270

monoid —, 269

Operad, 167, 170

— from a monad, 171

Opposite category, 249

Ordinal number, 283

Ordinal sum, 166

Parseval formula, see Fourier transform

Parseval identity, 159

Preabelian category, 286

Preadditive category, 286
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Presentable category, 284

Proarrow equipment, 142
Product

convolution —, 164

substitution —, 167
tensor —, 85, 126

Product of categories, 251

Profunctor, 151
composition of —s, 127, 130

Promonad, see Monad

Promonoidal category, 146, 158, 159

Reflective subcategory, 259
Relative adjunction, 50, 71

Relative monad, 53, 55

Relator, see Profunctor
Ring, 129

Sierpiński space, 91, 287

Simplex category, 77, 79, 82
Simplicial

— horns and boundaries, 282

— identities, 281

— nerve, 82
— set, 82, 281

— subdivision, 89, 165

Singular complex, 78
Slice category, see Category, 250

Stokes’ theorem, 25

Straightening, 143
Subcategory, 241

Subobject classifier, 284

Substitution product, 167

Tambara module, 151
Tannaka theory, 44–47

thc situation, 91

Topos, 284
Grothendieck —, 83, 87, 92, 128, 285

Totalisation, 216

Traced category, 139
Transformation

dinatural —, 4

extranatural —, 8
lax dinatural —, 73

natural —, 245

Twisted arrow category, 14

Uncurrying, see Currying
Unit

— of pF ⊣ pF , 134

— of a monad, 170, 270
— of an adjunction, 260, 261

Unstraightening, see Straightening

Virtual double category, 140

W. Lawvere, see Lawvere
Wedge, 26, 27
Weighted co/limit, 97

inserter, 107
Whiskering, 246

Yoneda
— embedding, 264
— structure, 47
—’s notation for co/ends, 11
density of the — embedding, 265

Yoneda lemma, 262–264
enriched —, 118
geometric —, 269
lax —, 202
ninja —, 36, 132


	Preface
	1 Dinaturality and co/ends
	1.1 Supernaturality
	1.2 Co/ends as co/limits
	1.3 The Fubini rule
	1.4 First instances of co/ends
	Exercises

	2 Yoneda and Kan
	2.1 The Yoneda lemma and Kan extensions
	2.2 Yoneda lemma using co/ends
	2.3 Kan extensions using co/ends
	2.4 A Yoneda structure on Cat
	2.5 Addendum: relative monads
	Exercises

	3 Nerves and realisations
	3.1 The classical nerve and realisation
	3.2 Abstract realisations and nerves
	Exercises

	4 Weighted co/limits
	4.1 Weighted limits and colimits
	4.2 Examples of weighted colimits
	4.3 Enriched co/ends
	Exercises

	5 Profunctors
	5.1 The 2-category of profunctors
	5.2 Embeddings and adjoints
	5.3 The structure of Prof
	5.4 A more abstract look at Prof
	5.5 Addendum: Fourier theory
	5.6 Addendum: Tambara theory
	Exercises

	6 Operads
	6.1 Introduction
	6.2 The convolution product
	6.3 Substitution product and operads
	6.4 Some more advanced results
	Exercises

	7 Higher dimensional co/ends
	7.1 2-dimensional coends
	7.2 Coends in homotopy theory
	7.3 Co/ends in quasicategories
	7.4 Co/ends in a derivator
	Exercises

	to 1.15Appendix AReview of category theory
	A.1 Categories and functors
	A.2 Natural transformations
	A.3 Limits and colimits
	A.4 Adjunctions
	A.5 The Yoneda lemma
	A.6 Monoidal categories and monads
	A.7 2-categories
	A.8 Higher categories
	A.9 Miscellaneous definitions
	Exercises

	to 1.15Appendix B
	Bibliography
	Index

