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Cyclic homology and the Lie algebra homology of matrices 

JEAN-LouIs LODAY and DANIEL QUILLEN 

In this paper  we study a new homology theory for associative algebras called 
cyclic homology. We investigate its relations with Hochschild homology, de Rham 
cohomology and the homology of the Lie algebras of matrices. 

In [3] A. Connes introduced the dual version: cyclic cohomology. One of his 
basic theorems, when formulated in homology, says that there is a long exact 
sequence 

�9 �9 �9 , H . ( A , A )  , H C . ( A )  s , H C .  2 ( A )  , H . _ ~ ( A , A )  , ' ' '  

where S is a kind of periodicity operator  on the cyclic homology H C . ( A ) ,  and 
where H , ( A ,  A )  is Hochschild homology. This result was found independently by 
Tsygan [12] whose proof  shows that the periodicity comes from the degree two 
periodicity of the homology of cyclic groups. 

In this paper  we approach the subject of cyclic homology starting f rom a 
double complex suggested by Tsygan's  work. On one hand this allows us to 
simplify, or at least to explain, the proofs of some of Connes '  theorems using 
diagrams instead of cochain computations. On the other hand the double complex 
makes sense for an associative algebra over any commutat ive ground ring. One 
obtains a reasonable theory 'over  the integers' by defining the cyclic homology to 
be the (total) homology of this double complex. 

We note that the double complex appears in a more general context in 
Connes'  recent theory [4] on cyclic objects in a category, and that this theory 

works 'over  the integers'.  
The contents of the paper  are as follows. In the first section we construct the 

complex ~ ( A )  and use it to go between the cyclic quotient of the Hochschild 
complex and Connes '  double complex with the b and B operators.  We derive the 
long exact sequence and spectral sequence relating Hochschild and cyclic 

homology. 
In the second section we construct maps from cyclic homology to, essentially, 

de Rham cohomology. In the case of a smooth commutat ive  algebra over  k, 
where k is of characteristic zero, we prove an algebraic version of a formula of 
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= 0 / d O  ~HoR ~ [ )H D R  (~ . . . .  If the condition on the charac- Connes: H C .  " "-~ n-2 n--4 

teristic is dropped,  then we show that Connes '  formula gives at least the E2- term 
of the spectral sequence f rom Hochschild to cyclic homology. 

In the third section we exhibit a product  HC, ,@HCo-- - ->HC, ,§  on cyclic 
homology and show that it is compatible with a similar product defined by 
Deligne on differential forms. 

In the fourth section we develop a theory of reduced cyclic homology which is 
the cyclic homology of A relative to that of k. We show that the cyclic homology 

of a non unital algebra is the same as the reduced cyclic homology of the 
associated augmented algebra obtained by adjoining an identity. We also compute 
the cyclic homology for a ring of dual numbers.  

The fifth section contains the computat ion of the cyclic homology for a tensor 

algebra. 
The  last section is devoted to the homology of the Lie algebras of matrices 

gl(A), when the ground ring k is a field of characteristic zero. The  main result, 
announced in [9] and independently by Tsygan in [12] claims that cyclic homology 
is the primitive part  of the homology of the Lie algebra of matrices. A refinement 

of the technique gives stabilization results for the homology of gl,(A). This section 
ends up with another  spectral sequence converging to cyclic homology and 
deduced f rom the rank filtration on gl(A). 

1. Hochschild and cyclic homology 

Let A be an associative algebra (with identity) over  a commutat ive  ring k. We 
will use the abbreviation A "  for A | the n-fold tensor product  of A over  k, and 
write (a~ . . . . .  a~) for a l @ . . . @ a ~ .  Let  b and b ' : A " §  '~ denote the 
operators  given by the formulas 

n 1 

b(ao  . . . . .  a~) = ~ (-1)~(a0 . . . . .  a~a~§ . . . . .  an )+( -1 )" (o~a0  . . . . .  a ,_l)  
i = 0  

r t--1 

b ' (ao  . . . . .  an)=  ~ ( -1 ) ' ( ao  . . . . .  ~a/+l . . . . .  a . )  
i = O  

The chain complex 

b' A3 b' A2 b' > ) > A 

is the standard Hochschild resolution of A over  A @ A  ~ up to a dimension shift 
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[2]. I t  is acyclic because  of the  h o m o t o p y  o p e r a t o r  s : A "  --* A n+l, s (al  . . . . .  a . )  = 

(1, a l  . . . . .  an) which satisfies 

b' s + sb' = id. 

W e  shall  re fer  to the  complex  ( A  *§ b') as the  acyclic Hochschi ld  complex.  

U p o n  tensor ing  the  Hochsch i ld  reso lu t ion  (A **a, b') with A cons ide red  as a 

right m o d u l e  over  A |  ~ we ob ta in  the  chain complex  

b A 3  ~ A 2  b ) ) e 

which we call the  Hochschi ld  complex.  Its h o m o l o g y  is the  Hochsch i ld  h o m o l o g y  

H , ( A ,  A ) ,  which we wr i te  s imply H , ( A ) .  W h e n  A is flat over  k one  has  

H a ( A )  = Tor~| A ) .  

W e  def ine  an ac t ion of  the  cyclic g roup  7//n on A "  by le t t ing the  g e n e r a t o r  act 

as the  o p e r a t o r  

t ( a ,  . . . . .  a n )  = ( . . . .  ' 1) (a~, a l  . . . . .  a~- l ) .  

Le t  N = 1 + t + �9 �9 �9 + t ~ 1 d e n o t e  the  co r r e spond ing  no rm o p e r a t o r  on A " .  

W e  shall  d e n o t e  by  ~ ( A )  the  fol lowing doub le  chain complex  

l ? l 
A 2 1 - ,  A 2 ~ N A 2 I t 

A 1 - ,  A ~ N A t t  

in which the  even deg ree  co lumns  are  Hochsch i ld  complexes  and the odd  d e g r e e  

co lumns  are  acyclic Hochsch i ld  complexes  with the  sign of the  d i f ferent ia l  

changed.  In  the  hor i zon ta l  d i rec t ion  we have  the  s t a n d a r d  complexes  for  the  

h o m o l o g y  of 2[/n with coefficients in Am. The  di f ferent ia l  in the  assoc ia ted  to ta l  

complex  T o t  C~(A) is the  sum of the  hor izon ta l  and  ver t ical  d i f ferent ia ls  and  the  

fo l lowing l e m m a  shows tha t  d 2=  0. 

L E M M A  1.1 [3, 12]. One  has b ( 1 -  t ) =  ( 1 - t ) b '  and b ' N  = Nb. 

Proof. If j : A n+l - ' ~  A '~ is def ined  by j(ao . . . . .  a~) = ( -1 )n (anao ,  a l  . . . . .  o.1_0 
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then one has 

r t--1 

b= t']t -'-1 and b'= Y'. tiit -i-1 
i = 0  i = 0  

on A n+l. Using these formulas it is easy to check the lemma,  for example,  b'N 
and Nb are both equal to NjN. 

D E F I N I T I O N .  The  cyclic homology H C . ( A )  of the associative k-algebra A 
is the homology of Tot  C~(A). 

In order to show this definition agrees when k contains Q with the one used in 
[3, 7, 9], we note that there is an augmentation map 

Tot  q~(A) ~ C . ( A )  = (A*+I/(1 - t), b) 

to the quotient of the Hochschild complex obtained by taking the coinvariants for 
the actions of the various cyclic groups. The augmentat ion induces an edge 
homomorphism for the spectral sequence 

' - Hp(2V/(q + 1), A q+~) =~ H C . ( A )  E p a -  

associated to the double complex. In characteristic zero the group homology 
vanishes in positive degrees, and the spectral sequence collapses, proving the 
following. 

P R O P O S I T I O N  1.2. I f  k contains Q the above augmentation map is a 
quasi-isomorphism (i.e., it induces an isomorphism on homology): 

H C . ( A )  = H . (A*+a/ (1 -  t), b). 

Remark. From the spectral sequence it is easily seen that in order to have an 

isomorphism in degree n it is sufficient to assume that n! is invertible. 

The  double complex ~ ( A )  can be simplified in two ways up to quasi- 
isomorphism. First of all the odd degree columns can be eliminated as they are 
acyclic. This leads to the double complex of Connes [3] with the differentials 
b and B, which we denote  9] (A). Secondly the Hochschild complexes can be 

normalized. 
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The  doub le  complex ~ ( A )  will be  drawn in a somewhat  unor thodox  way 

A 2 A 2 A ~ 

A A A 

in order  to show its relat ion to C~(A). It consists of the even degree columns of 

~ ( A ) ,  where  B is given by the composi t ion  

an+l (1-' An+~ 

A " ~  N A "  

More precisely ~ ( A ) ~  = A  q+l if p is even 9 0  and  q ~ 0 ;  it is undef ined  if p is 

odd. O n e  has 

B 2 = (1 - t)sN(1 - t )sN = 0 (1.3) 

bB + Bb = b(1 - t ) sN+ (1 - t)sNb 

= (1 - t)(b's + sb ')N = (1 - t )N = 0, (1.4) 

so To t  N (A)  is a chain complex for the differential d = b + B. 

P R O P O S I T I O N  1.5. The complexes Tot  N ( A )  and Tot C~(A) are quasi- 

isomorphic. 

Proof, W e  define a map  from N = N ( A )  to c~ = ~ ( A )  by sending x in N~ ,  p 

even, to (x, sNx) in c~0~v_1 , ,+1 .  This is a map of complexes because 

d(x  + sNx)  = (bx, Nx  + ( -b ' ) sNx ,  ( t  - t)sNx) 

= (bx, sb'Nx, Bx)  

= (bx, sNbx + sNBx, Bx).  

Next we consider  the increasing filtration of ~ and  N by columns:  

p ~ - n  p ~ n  
p e v e n  
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Since the odd degree columns of qg are acyclic it is easily seen that the induced 
map on the associated graded complexes is a quasi-isomorphism. The proposition 
then follows by a standard induction. 

Remark .  It is clear from the above proof  that one is not working in the 
category of double complexes, but rather  with filtered complexes. Thus N (A) is a 
filtered subcomplex of q~ (A). 

At this point we can easily prove the following basic results relating cyclic and 
Hochschild homology. 

T H E O R E M  1.6. For any associative k-algebra A there is a long exact sequ- 

ence 

�9 . .  > H, , (A)  ~ > HC, , (A )  s , HC,,_2(A) B > H, ,_ , (A)  , . . .  

It  is clear from the picture of N ( A )  that one has an exact sequence of 
complexes 

0 ~ (A *§ b) ~ Tot  N ( A )  --, Tot  ~3 ( A ) [ - 2 ]  ~ 0 

where [ - 2 ]  indicates that the degrees are shifted by - 2 :  (Tot ff3[--2])n = Tot  N,-2.  
Taking the associated long exact sequence in homology, we obtain the theorem 
from Proposition 1.5. 

C O R O L L A R Y  1.7. Cyclic homology is Morita invariant. 

Proof. This follows from the long exact sequence (1.6) and the Morita  invari- 
ance of Hochschild homology (Cf. [14], theorem 3.7). 

In order to simplify some further computat ions we change the indexing of the 
bicomplex ~ ( A )  and put 

(~(A) ' ) rn  = ~(A)2p. .-p = A "-p+~. (1.8) 

In this setting the maps B go horizontally. 
The  increasing filtration of the bicomplex ~ ( A ) '  by columns gives the 

following. 

1 _ T H E O R E M  1.9. There is a spectral sequence abutting to H C . ( A )  with E ~ -  

Hq_p(A)  and with d 1 : Hq_p(A) --~ Hq_p+l(A) induced by Connes'  operator B. 
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This theorem can also be obta ined  f rom T h e o r e m  1.6. by interpreting the long 

exact sequence  as an exact couple.  

(1.10) Next  we show that  the complex ~ ( A ) '  can be simplified fur ther  by 
replacing the Hochschi ld  complexes  by their normalizations.  We  recall that  the 
Hochschi ld  complex (A *§ b) is the chain complex associated to a simplicial 
abelian group.  Hence  it contains a degenera te  subcomplex D . ,  where  Dn c A "§ 

is spanned by the elements  (a0 . . . . .  an) such that  a~ = 1 for some i with 1 <~ i ~< n. 
Upon  dividing out  by it we obtain the normalized Hochschild complex A"+~/D~ = 

A |  where  A = A/k ,  whose differential we deno te  again by b since it is given 
by the same formula.  T he  degenera te  subcomplex is known to be  acyclic, so the 

project ion (A *+~, b)--~ (A|  b) is a quasi- isomorphism. 
We  now normalize each column of  ~J(A)' and obtain a double  complex 

+(A)~ +t 
A |  ( B 

i 
A| ,,s 

A 

A @ f i -  < s  A 

A 

P R O P O S I T I O N  1.11. The projection of Tot  N ( A )  onto Tot  N ( A )  . . . .  is a 

quasi-isomorphism. The operator B : A @ A "  --~ A ~ . + 1  is given by 

B(ao, al  . . . . .  an) = ~ ( -1 ) ' " (1 ,  a i , . . . ,  a,, ao . . . . .  o , -0 .  
i = 0  

Proof. We must  check that  the opera to r  B = (1 - t )sN : A n~ 1 __~ A,+2 passes to 
the quotient .  Now  the image of ts lies in Dn+l, so B = sN  f rom A "+1 to A |  ~+1. 
This gives the above  formula,  which can be used to show that B is well-defined on 

A@fi~". The  rest is clear as the projec t ion is columnwise a quasi- isomorphism. 
Example  1. If A = k, then ~J(A),o,~ reduces to copies of  k in the diagonal 

hence H C , ( k ) =  k for  n even t>0 and H C , ( k ) =  0 for  n odd. 
Example  2. Recall  that  if A is commuta t ive  the module  of K~ihler differentials 

1 1 ~ A  = 12A/k is by  definition the A - m o d u l e  genera ted  by symbols  dx for  x ~ A with 
the relat ions d(xy)  = x dy + y dx, d(x + y) = dx + dy and d(k)  = 0. It is easy to see 

that, when A is commuta t ive ,  H C I ( A ) =  .Q~A/dA and H C o ( A ) =  A.  
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2. Relation to de Rham cohomology 

Connes  has calculated the cont inuous  cyclic cohomology  of the ring of smooth  

functions on a manifold in terms of currents.  If we make  the obvious  translation 
to the algebraic setting of this paper ,  we obtain  a formula  for the cyclic homology  

of a smooth  commuta t ive  algebra in characterist ic zero  in terms of algebraic 
differential forms. W e  are going to review the p roof  of this formula  to see what  

can be said wi thout  assuming characterist ic zero. 

In this section the algebra A is assumed to be commutat ive .  In this case the 
Hochschi ld  complex  is the chain complex associated to a simplicial commuta t ive  

ring, and so it has a product ,  the so-called shuffle product, given by 

(a, a l  . . . . .  % ) .  (a ' ,  %+1 . . . . .  ao+q) = ~ sgn ((r)(aa', a,. '1 . . . . .  a,~ % ~q)) 

(2.1) 
where  the sum is over  all permuta t ions  tr of {1, 2 , . . . ,  19 + q} such that  t r l  < .  �9 �9 < 

op  and cr(19 + 1) <"  �9 �9 < tr(19 + q). In this way both  the Hochschi ld  and normalized 
Hochschi ld  complexes  b e c o m e  differential graded strictly an t i -commuta t ive  A -  
algebras, where  strict means  that the square of  any odd  degree  e lement  is zero. 

Hence  the Hochschi ld  homology  H , ( A )  is a graded strictly an t i -commuta t ive  
algebra over  A.  

Since 

H ~ ( A  ) = A @ f i . /b(A @ A 2) 

= A @fi~/{(zx, y) - (z, xy) + (yz, x)} 

it is easily seen that  there  is an i somorphism 

V : 01A ~ H i ( A )  

obta ined  by sending a dx to  the class of  (a, x). Because  of the multiplicative 

s tructure the map  3, extends to an A - a l g e b r a  map  

. _ n ' ~ H . ( A ) .  

P R O P O S I T I O N  2.2. One  has a commutat ive  square 

12~ " , H , ( A )  

1 o 
O.A§ v , H, ,+I(A) 

where d is the exterior derivative on forms. 
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Proof. Given a generator w = aodal  �9 �9 �9 da ,  for 122, 3'(w) is the class of 

(ao,  a , ) .  (1,  a2)" �9 �9 (1,  a . )  = ~ sgn  (tr)(ao,  a , .  '1 . . . . .  a , . - , . )  
t r E ~  

(2.3) 

in A@fi ," ,  where v is the group of permutat ions of {1 . . . . .  n}. Similarly 
3~(dw) = 3,(dao " " da , )  is represented by 

(1,  a o ) ' ' "  (1,  a~) = Y. sgn  (0 ) (1 ,  a .  ,o . . . . .  a o , , , )  (2 .4 )  
Oe~.+l 

where -Y,+I denotes the permutat ions of {0, 1 . . . . .  n}. By the formula of Proposi- 
tion 1.11 B carries the shuffle product of (2.3) into 

sgn ((r)Y'. sgn (1-)(1, a,. 'T 'o, a,~ ,.  '1 . . . . .  a,. ,~ ,,) 
~ T 

(2.5) 

where "r ranges over  the cyclic subgroup of "~n+l generated by t : i ~-* i + 1. Since 
-Y,+I is the product  of ,~, and this cyclic subgroup, the expressions (2.4) and (2.5) 
are equal. Thus B T ( w ) =  7 ( d w )  as required. 

Now suppose that A is smooth over  k in the sense of Grothendieck,  for 
example,  A is the ring of algebraic functions on a nonsingular variety over  the 
perfect field k. Then it is known that the map from /2* to H . ( A )  is an 
isomorphism [5]. In effect, the ideal of the diagonal in A |  is locally generated 
by a regular sequence, so 

H . ( A )  = Tor~ |  A)  

can be computed  using a Koszul sequence and shown to be an exterior algebra. 
Consequently,  in the spectral sequence of Theorem 1.9 the Hochschild homol-  

ogy can be identified with differential forms, and the differential d 1 can be 
identified with the exterior derivative by the proposition above. Hence  we obtain 
the first part  of the following. 

T H E O R E M  2.6. I f  A is smooth over k, then the spectral sequence o f  Theorem 

1.9 becomes 

q q - - 1  = ~ I2a /dOa  , 

R e m a r k .  We do not know if the spectral sequence stops at E 2 when the 
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charac te r i s t i c  is d i f ferent  f rom zero.  T h e  first poss ib i l i ty  for  a non tr ivial  d i f feren-  

t ial  w o u l d  be  a na tu ra l  m a p  d2:H~R(A)-- -> H n~3rA~ D R  k ~  1 .  

In  the  charac te r i s t i c  ze ro  case t he re  is def ined  a m a p  tz : A @ A * - - > g / *  by 

~t(ao . . . . .  o,1) = (1/n !)aodal �9 �9 �9 do.,. W e  leave  to the  r e a d e r  to ver i fy  the  ident i t ies  

/zb : 0 and  d~z =/.LB. (2.7) 

ol 
,1~ 2 < 

oi 

ol 
/20 

T h e s e  iden t i t i es  show tha t  ~ induces  a m a p  f rom ~(A) .o~m to  the  fol lowing 

d o u b l e  complex  ~ ( A ) .  

01 01 
a /21~ a /1o 

oi 

T h e  to ta l  comp lex  of  ~ ( A )  is the  d i rec t  sum of the  t r unca t ed  de  R h a m  

complexes  

l - ~ i  :g~i ~__/2i-1 <__ . . . <__/2o<__ 0 ~__ . . . 

su i tably  shi f ted:  To t  ~ ( A ) =  @ / ~ [ i ] .  

T H E O R E M  2.8. I f  k contains C~, for any commutat ive  k-algebra A ,  the map Ix 

induces homomorphisms  

HDR (A) ,  for  l ~ i ~ n / 2 ,  ~ , i  :HCn(A) - ->  .-2i 

and  

n n - - 1  tZ , . o :HC, (A)  --> ~A/d~(~A 

Proof. These  h o m o m o r p h i s m s  a re  o b t a i n e d  by c o m p o s i n g  /x wi th  the  p ro jec -  

t ion on the  t r unca t ed  de  R h a m  complex  and  then  t ak ing  homology .  

T H E O R E M  2.9. I f  k contains ~ and if  A is smooth over k, then there is a 
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canonical isomorphism 

(~ /x,,,i : H C . ( A ) =  " .... l . -2  n-4 l'~A/d[]a (~HDR (A)(])HDR ( A ) ~ "  �9 . 
i 

Proof. It is clear that  /x induces on homology a map inverse to % hence  Ix is a 

quas i - i somorphism.  Therefore  the spectral sequence  of T h e o r e m  2.6. is the 

spectral sequence  of the double  complex ~ ( A ) ,  which proves the assertion. 

3. Product structure 

In this section we study a product  HC~(A)| for a 

commuta t ive  k -a lgebra  A. We  could as well define a product  H C . ( A ) ( ~  

HCp(A' ) - -~  HC,§ for not  necessarily commuta t ive  algebras, bu t  we 

take A = A '  for simplicity. 

First we invest igate the propert ies  of the map B defined on A |  (cf. 1.11) 

with respect to the shuffle product .  

L E M M A  3.1. B(x.  B(y)) = B(x). B(y).  

Proof. For  x =(ao ,  a l  . . . . .  %) and  y =(%+1 . . . . .  ap+q) we have x .  B ( y ) =  

Y~ sgn (o-)(a0, ao- , l  . . . . .  a~ ,(p+q)) where the sum is over all pe rmuta t ions  r of 

{1 . . . . .  p + q} satisfying crl < .  �9 - < oV and ork < .  �9 �9 < o'(p + q) < cr(p + 1) <"  �9 �9 < 

o'(k + 1) for some k e {p + 1 . . . . .  p + q}. Therefore  B (x �9 B (y)) = 

52 sgn (~-)(1, a ,  '0 . . . . .  aT ,(p+q)) where  the sum is over  all pe rmuta t ions  ~- such that  

there exist i e {0 . . . . .  p} and /" ~ {p + 1 . . . . .  19 + q} for which ~-i < -  �9 �9 < ~-p < TO < 

" . .  < I - ( i - 1 )  and  l - j < . . .  < , r ( p + q ) < - r ( p + l ) < . .  �9 < ~ - ( j -  1). This  last sum is 

easily seen to be equal  to B(x). B(y),  whence  the lemma.  

We  define a product  on the total complex of @ ( A ) , o ~  by the following 

formula.  Let x ~ ( ~ ( A )  . . . .  )z~ = A |  f i ~  z and y c ( ~ ( A ) , o ~ ) ~  = A |  ~ 

0 " B ( Y )  when  r = 0 ,  l 
x * y = when  r ~ 0  / e ( ~ ( A )  . . . .  )[ . . . .  +s+l. (3.2) 

Then  this formula  is ex tended  to Tot  9~(A) . . . .  |  N(A)no,~, by l ineari ty.  For  

x c A @ . A  i the degree of x is i and is deno ted  Ixl; it is also the degree mod  2 of x 

considered as an e l emen t  in Tot  N(A),orm. 

T H E O R E M  3.3. The *-product defined above induces a degree 1 map of 
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complexes  

Tot  ~ (A)no~m@Tot ~ (A)norm--~ Tot  ~ (A)no~ 

w h i c h  is associative.  A s  a consequence  it def ines an  associat ive  product  

* : H C n ( A ) @ H C p ( A )  ~ H C n § 2 4 7  

Proof.  We recall that the boundary 8 of Tot  93 (A)no~ is given by 

~ ( B + b ) ( x )  if l~=0} 
6 ( x )  = l b ( x )  if l for x c ( B ( A )  . . . .  ) | m "  

We will prove  the formula 

6 ( x  * y) -- 8(x) * y + (-1)lxl+lx * 6(y) 

using (1.3), (1.4) and (3.1). 
If r~:0 and 1 then both sides are equal to 0. If r = l ,  then x , y = 0  and 

8 x - y = 0 .  One  has x * ~ y = x * ( B ( y ) + b ( y ) ) = x .  B B ( y ) = 0 .  If r = 0 ,  then there 
are two cases. If l:/: 0, then 

6 ( x , y )  = 8(x �9 B(y))  = B ( x .  B ( y ) ) + b ( x  �9 B(y)) 
= B x  �9 B y  + bx �9 B y +  (-1)l~l*~x �9 bBy.  

On the other hand we have 

8x * y + ( -  1)l~l§ * 8y = ( B x  + bx) * y + ( -  1)L~tx * by 
= B x  �9 B y  + bx �9 B y  + (-1)l~lx �9 Bby.  

The equality follows f rom B b  + b B  = O. 

If r = l =  0, then 

~ ( x * y ) =  ~(x �9 B y ) =  b(x  �9 B y ) =  bx �9 By+(-1) l~ lx  �9 bBy.  

On the other  hand we have 

8x* y + (-1)i~t+~x* 8y = b x *  y + (-1)l~l§ by = bx �9 B y  + (-1)t~l+lx �9 B b y  

and the proof  of the first assertion is completed. 
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Associativity is proved in a similar way. 

Example. For n = p = 0 the product is given by A ~ A  ~ O~/dA ,  a *b = adb 

P R O P O S I T I O N  3.4. H,(A) is an H C . ( A ) - m o d u l e  and the map I:H,(A) 
H C . ( A )  is an H C . ( A ) - m a p .  

Proof. The  normalized Hochschild complex is a subcomplex of Tot ~ ( A ) . o ~  

and it is easily seen that for yc3~(A).orm the operation x~--~x*y sends this 
subcomplex into itself. The formulas proved in (3.3) finish the proof. 

(3.5) There is a similar product on the sum of the truncated de Rham 

complexes. In terms of the double complex ~ ( A )  (see section 2) this product is 
given by 

{ ; A d y  when r = 0 ~  for x e ( ~ ( A ) ) , , . = g ] ~ . - '  
x* y = otherwise l and y e (~(A)),~ = g2k -r. 

Deligne has remarked that this product is associative and homotopy graded 

commutative provided that one puts deg ((Tot 20(A)).) = n + 1 (unpublished notes 

by S. Bloch). The homotopy is given by h(x@ y )=  ( -1)  t~i+ ~x/x y. Therefore there 

is a graded commutative product on the homology. 
When k contains Q it is immediately seen that the map tx is compatible with 

the products. This proves the following: 

P R O P O S I T I O N  3.6. The homomorphism 

t~ tx.,~:HC.---~ " . I . -2 n 4 0 /dO ~ H o n  ~ H o R  ~ "  �9 �9 
i 

commutes with the products. 

We now investigate the product on the complex C . ( A )  = (A**I/(1 - t), b). It is 

defined by the same kind of formula: 

x * y  = x �9 B(y), 

where 

B(ao, al . . . . .  a .)  = ~ (-1) '"(1,  a~ . . . . .  an, a0 . . . . .  a~_l) 
i=0 

and where the dot means shuffle product. 
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P R O P O S I T I O N  3.7. Provided that we put deg (C, (A) )  = n + 1, the product * 
induces on C , ( A )  a structure of commutative differential graded algebra. 

Proof. The derivation property of b and associativity are proved like in (3.3). 
Graded commutativity follows from the fact that x �9 B(y) - ( -1)  de* x aeg ~y. B(x)  is 

in the image of ( 1 -  t). To prove this we remark that x �9 B(y) (resp. y �9 B(x)) is the 

sum of (p+q)! /p!  q! terms (where p = [xl and q = [Yl) and that for any such term 
there is a unique power of t which converts it into a term in y �9 B(x).  

C O R O L L A R Y  3.8. I f  k contains C~ the *-product on H C , ( A )  verifies 

x*y=( -1 ) ( "§176  for x c H C , ( A )  and y c H C p ( A ) .  

Remark 3.9. The iterated *-product (a0 . . . . .  a n ) ~ " ~  a o * ' " * a ,  from A '~+' 

to HCn(A)  factors through " " - '  ' OA/dOa  and defines a map Oa/dg2A ~ HC, d A )  
whose composition with ix,.0 is, in view of (3.6), the identity. 

4. Reduced cyclic homology 

In this section we suppose that the homomorphism k--~ A given by the 

identity of A is injective. At  the end of the first section we pointed out that the 

Hochschild homology of A can be computed using the normalized Hochschild 

complex. We now define the reduced Hochschild complex (A@/~*,  b)rcd tO be 
the quotient of the normalized Hochschild complex by the subcomplex given by 
the normalized Hochschild complex for the algebra k. As the latter complex 

consists of k in degree zero, we have an exact sequence 

0 --> k[O] --> (A | b) --> (A | b)~d ---> 0 

and the reduced Hoschild complex is the same as the Hochschild complex except 

that the A in degree zero is replaced by fi~. The homology of this reduced 

complex will be called the reduced Hochschild homology and denoted /-In(A). 

From the above exact sequence one obtains an exact sequence 

0 ---> H , ( A )  --> f t , ( A )  --> k --> Ho(A)  ---> FIo(A) --> 0 

and IsI,~(A)=I-I,(A) for n~>2. 

In a similar fashion we define the reduced cyclic homology ISIC,(A) to be the 
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homology of the double complex ~(A)red defined by an exact sequence 

0 ~ ~ ( k )  . . . .  ~ ~ ( A ) . o ~ . - ~  ~ ( A ) ~ . ~ - - - ,  0 

where N (A)no~ is the normalized version of Connes '  double complex described in 
1.10. This reduced Connes '  complex is the same as N(A),o~m except that the 
diagonal of A ' s  is replaced by fi~'s. 

P R O P O S I T I O N  4.1. One has long exact sequences 

- - ,  H C , ( k )  ---, H C , ( A )  - - ,  ~C.  (A) + HC._l(k) - - ,  

--, R , ( A )  ---, f i C , ( A )  ---, R C , _ 2 ( A )  ---, R , _ I ( A )  ~ .  

The first follows from the exact sequence defining ~(A)red and the fact that 
the homology of N ( A )  . . . .  is HC,(A) .  The second exact sequence can be derived 
as Theorem 1.6. but using the double complex ~(A)re d- 

The reduced theory is a natural thing to consider when dealing with aug- 
mented algebras. We recall that an augmented algebra A is of the form 
A = k ~ l  where I is the augmentation ideal, and that A is isomorphic to the 
algebra with identity obtained by adjoining an identity to the non-unital ring L In 
fact the categories of augmented algebras and non-unital algebras are equivalent 

in this way. 
For an augmented algebra the first exact sequence in the above proposition 

splits yielding the isomorphism 

H C , ( A )  = H C , ( k ) O F I C , ( A )  

At this point one might define the cyclic homology of non-unital algebra to be the 

reduced cyclic homology of the corresponding augmented algebra. On the other 
hand inspection of the arrows in the double complex Cg(A) of the first section 
shows that it makes  sense for non-unital rings, hence we can make the definition 
HC,(I)  = H , ( T o t  cg (I)). The following shows that these two definitions agree. 

P R O P O S I T I O N  4.2. If A = k O I  is an augmented ring, then the complexes 
cg(1) and ~(A)red a r e  isomorphic, hence HC, ( I )=  I7-IC,(A). 

Proof. We define an isomorphism from cg(I) to N(A)r~d by 

C ~ ( I ) p n l ~ ( I ) p + l , r t _  1 = I " * ' G I "  ~ A |  = (~i~ (A)reO)p,n+~ 

where the isomorphism in the middle sends (xo . . . . .  x.) in I "+1 and (xl . . . . .  x.) 
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in I "  to (Xo . . . . .  x . )  and l @ ( x l  . . . . .  x.) = (1, xl . . . . .  x~) in A|  respectively. 
By the formulas  

Tl--1 

b(1, x~ . . . . .  x,,) = (xl . . . . .  x . ) +  ~ ( - 1 ) ' ( 1  . . . . .  x~xi+l . . . .  ) 
i = l  

+ (-1)"(x~,  xl . . . . .  x~-l) 

= ( 1 -  t)(xl . . . . .  x . ) -  l~b' (x~ . . . . .  4 )  

B(1, xl . . . . .  x ~ ) = 0  

B(xo . . . . .  x~) = s ( -1) i"(1 ,  2q . . . . .  x~, x0 . . . . .  Jq-0  = l |  . . . . .  x,) 
/ = 0  

the i somorphism respects the  differentials. 

(4.3) Example .  Suppose  A = k( t ) I  is a ring of dual numbers ,  that  is, xy = 0 for 
x, y in I. Then  the b and b'  opera tors  in cd(I) are all zero,  hence  we have 

I2IC.(A) = HC. ( I )=  d)  H._.,(~_lm + 1, I"+1). 
r n = O  

In characterist ic zero  this becomes  simply f f lC.(A) = 1"+1/(1 - t). 

The  remainder  of  this section will be devo ted  to proving  the analogue for 
reduced  cyclic homology  of Proposi t ion  1.2. Put  Ca = fi,"*~/(1 - t). As  one has an 

exact sequence  

I |  ~ A"+I/(1 - t) --~ C. --~ 0 

and b(1, a l  . . . . .  a~)- - - - (1- t ) (a l  . . . . .  an) m o d  I @ A  ~-1, it follows that  b induces a 
differential on  C , .  

P R O P O S I T I O N  4.4. Assume that k contains Q and that k is a direct sum- 
mand of A as a k-submodule. Then the complexes C ,  and Tot  N(A)red are 
quasi-isomorphic, hence one has an isomorphism 

IY-IC,(A) = H,( ,~*+1/(1  - t), b). 

Proof. Put  ~ = Nt(A)rea and recall that  

3 |  q-p q - p > O  

= q - p  = 0  

q - p < O  
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with horizontal differential B and vertical differential b. We define a map of 
complexes E :Tot I~ ~ I~" by letting e : ~ 0 ,  = A @ A "  ~ A " §  t) be the obvi- 
ous surjection, and e ( 9 ~ ) = 0  for p > 0 .  We define a filtration o f / ~  by 

{ ~ m  q - p < ~ n  

F . ~ =  I @ A  "§ q - p = n + l  

0 q - p > n + l  

where 1 @ A "+ 1 denotes the k-submodule  of A @ fi~ "+ 1 spanned by the elements 
(1, a0 . . . . .  a~). As B ( A ( ~ f i ~ " ) c  l@fi~ "+l by 1.11, F , ~  is a subcomplex of ~ .  
Moreover  e ( F , ~ ) c  F,12, where F, C c C coincides with C in degree less than n 
and is zero elsewhere. 

As k is assumed to be a direct summand of A, we have l(~fi~ "+1 ~A"+~.  One 
can now verify easily that F,~/Fn_~B is isomorphic to the double complex 

~ n + l  

/ ~ n + l  

~ n + l  '( N 

I 1 - t  

�9 N ~ k n +  l 

(compare the formulas in the proof  of 4.2). In characteristic zero, this is a 

resolution of C,  = F,C/F,_IC. So the map e induces quasi-isomorphisms on the 
quotients of the filtration, hence it is a quasi-isomorphism, proving the proposi-  
tion. 

Remark. When k is a field of characteristic zero, Proposition 4.4 can be 
derived using the interpretation of the cyclic homology in terms of the homology 

of the Lie algebra 91(A) (cf. Remark  6.8). 

5. Cyclic homology of a tensor algebra 

Let A be a tensor algebra T ( V ) =  Om~o V "~, where V is a module over  k. 
We first compute  the Hochschild homology of A starting f rom the well-known 

L E M M A  5.1. One has an exact sequence 

b' b' 
0 > A ( ~ V ( ~ A  > A @ A  > A > O. 
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Proof. In degree  m for the tensor  grading the three terms of this sequence are 
respectively m, m + 1, and one  copy of V"L The  l emma can then be proved  by 

checking the arrows. Alternat ively one  can use the general  fact that  the kernel  I 
of  the multiplication b ' : A @ A - - ~  A is the module  of  noncommuta t ive  differen- 
tials of  A,  i.e., it represents  derivations of A with values in A-b imodules .  Since a 

derivation of the tensor  algebra is specified by its restriction to V, it follows that 
I = A |  V |  whence  the lemma.  

As  the above  sequence  of  A - b i m o d u l e s  splits as a sequence of right A -  

modules ,  one  gets a long exact  sequence  in Hochschi ld  homology:  

0 > H i ( A )  �9 A |  b �9 A 

H , ( A ) = 0  for n~>2. 

, H o ( A )  , o 

Here  

b(vl  . . . . .  v , ,_O| = (vl . . . . .  vm)-(v ,~ ,  v l , .  . . ,  vm-1) 

= (1 - tr)(vl . . . . .  vm), 

where  o- is the cyclic pe rmuta t ion  of  V m (without the sign). Thus  we obtain 

L E M M A  5.2. The Hochschild homology of  A = T(  V)  is 

H o ( A ) =  (~  V ~ / ( 1 - ~ r ) ,  H t ( A ) =  (~) (Vm) '- 
m ~ 0  m ~ l  

H ~ ( A ) = 0  for n>~2. 

Next  we look at the spectral sequence going f rom Hochschi ld  to cyclic 
homology  and note  that  it stops at E 2 because  there  are only two nonzero  rows. 

This gives ~ICo(A)=I2Io(A) ,  f I C ~ ( A ) = K e r B  for n even > 0 ,  and I2"IC,,(A) = 

Coker  B for n odd > 0, where B :/2/0(A) --~/2/l(A) is induced by B : fi~ ~ A @fi~, 

B ( a )  = l |  

L E M M A  5.3. With respect to the formulas of  L e m m a  5.2 the map B : /~0(A) 
ISII(A) in degree m is given by the norm map  

m - - 1  

o-~: w / ( 1 L  o -) ~ ( v ~ )  ~. 
i .=O 

Proof. Modulo  b ( A  @.~2) we have (al ,  a2a3)  ~ (ala2, a3) + (a3al ,  a2) in A |  
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So if a = v l " ' ' v m  with vi in V, then 

B ( v l  " �9 �9 vm) = (1, Vl �9 �9 �9 vm) 

= ( / A I '  /A2"  " " / A m ) - b  (1)2  " ' "  '/Am, 1)1) 

= (1 )11 )2 ,  I ) 3 "  " " 1 )m)  -t- ( 1 ) 3 "  " " 1)m1)1,  1)2) -t- ( 1 ) 2 "  " " /Am, 1")1) 

= ~.. ( v i + l " ' ' v m v t " ' v i - l ,  vi) in A |  
i = l  

Upon identifying the degree rn part  of A @ V with V m the lemma follows. 

P R O P O S I T I O N  5.4. One has / - tCn(T(V))= t~m>0 Hn(7//m, V m) where the 
cyclic group acts on V "  via o'. 

This follows by assembling the above lemmas and using the fact that the 
kernel and cokernel of the norm map gives the homology of a cyclic group. 

In characteristic zero the proposition says that 

f I C o ( T ( V ) )  = T ( V ) / [ T ( V ) ,  T(V)]  = (t) Vm/(1 - tr) 
m > 0  

and that ISIC,,(T(V))=O for n > 0 .  If one uses the interpretation of cyclic 
homology in terms of the Lie algebra homology of gl(A) proved in section 6, then 
this formula for the cyclic homology of T(V) was proved by W.-c. Hsiang and R. 
E. Staffeldt in [6]. 

6. Homology of Lie algebras of matrices 

In this section k is a field of characteristic zero and A is an associative 
k-algebra (with identity) over  k. 

For any Lie algebra g over  k the homology of g with coefficients in k is defined 
by H , ( f l ) = T o r ~ ( k ,  k) where U(g) is the universal enveloping algebra of fl (cf. 
[2, 8]). There  is a standard complex (Anti, d) which computes this homology, 
where A"fl is the nth exterior product  of fl over  k and where 

d ( x l / x " "  A x . ) =  ~ (--1)i+J[Xi, X i ] / X X , / X ' ' ' A ~ , / X ' ' ' / x 2 q A ' ' ' / x X ~ .  
1 ~-~i<j~-n 

Equipped with the Lie bracket  [x, y ] = x y - y x ,  the k-algebra ~g~(A) of r x r  
matrices becomes a Lie algebra over  k denoted glr(A). The  inclusions gl,(A) 
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gl,+~(A) define g l (A)- - l imgl , (A) .  We recall f rom section 1 
(A*+~/(1- t), b). - - - "  

L E M M A  6.1. The map )t :A*+lgI (A)-*  C,(d4(A))  defined by 

)t(Xo A. �9 �9 = ( -1 ) "  ~ sgn (cr)(Xo, x,,1 . . . . .  xo~), 

that C . ( A )  = 

where the sum is over all permutations of {1, 2 . . . . .  n}, is a map of complexes. 

Proof. We first remark  that )t is well defined thanks to the cyclic permutat ion 
relation. To prove that bA = )td one verifies easily that both composites applied to 

x0/x. �9 "AXn give ~ sgn (tr)(x,~ox~,l, x,,2 . . . . .  x,,~) in C,(J,i(A)). 
The trace map T r : ~ ( A )  " ~ A " ,  given by T r ( x , y  . . . . .  z)=Y, (xi,~2, 

Y~2~ . . . . . .  zt~), where the sum is over  all possible sets of indices (il . . . . .  i,), is 
compatible with b and with t. It induces the isomorphism T r . : H C . ( ~ ( A ) )  
H C , ( A )  (Morita invariance). 

The  homology of the Lie algebra ill(A) is a Hopf  algebra. The multiplication is 
induced by the direct sum (t) and the comultiplication by the diagonal A. An 
element  x in a Hopf  algebra is called primitive if A ( x ) = x |  Primitive 
elements form a graded Lie algebra. In the case of H.(gl(A))  the primitive part  
is a commutat ive  graded Lie algebra. 

T H E O R E M  6.2. Let k be a field of characteristic zero and A an associative 
k-algebra. The restriction of Tr , )~ ,  to the primitive part of the homology of gl(A) is 
an isomorphism 

Tr .~ t ,  :Pr im H.(gI(A))  �9 HC._x(A) .  

The proof  involves invariant theory and a kind of "plus"  construction (6.4) for 
algebraic complexes.  We will use the abbreviation 9" for g| the n-fold tensor 
product  of g over  k. 

(6.3) Invariant theory. Let ~n be the symmetric group of order n and let k[X,] 
be its group algebra over  k. Suppose V is a vector  space over  k of dimension r and 
g = H o m  (V, V) is the Lie algebra of endomorphisms of V. The homomorphism 
k[~ ; , ] - -~Hom (V | V | =g"  sends a permutat ion tr to the endomorphism of 
V | which permutes  the variables according to tr. This endomorphism is invariant 
under the adjoint action of g and the classical invariant theory of H. Weyl [13] 
asserts that k[I ; , ] - -~ (g")~ is surjective. When r ~ n this homomorph i sm is clearly 
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injective and therefore bijective. By duality and using the natural isomorphism 
g * = g  (the star is for dual) one deduces an isomorphism from k[X.]  = k[Z, ]*  to 
the module of coinvariants (g")g, where .X, acts by conjugation on k[X,]  and by 
permutat ion of the variables on g". 

P R O P O S I T I O N  6.4. Let fl' be a Lie algebra over k and g a sub-Lie algebra of 
g'. Suppose that A"g' is semi-simple as a g-module for all n. Then taking the 
coinvariants with respect to fl gives a morphism of complexes 

A*g' --~ (A*g')~ 

which is a quasi-isomorphism. 

Proof. There  is a direct sum decomposition of complexes A " g ' =  (A"g')g(~L. 
where Ln is made of simple modules on which g does not act trivially. As g acts 
trivially on the homology of 9' the complex L ,  has to be acyclic and the 
proposition is proved. 

(6.5) The important  consequence of taking the coinvariants in the case of 

g = gl(k) and g' = gl(A) (with inclusion induced by x ~ x �9 1) is that the direct sum 
becomes an associative operation.  As a consequence ((A*gl(A))~(k), d) is a 

differential graded Hopf  algebra. 

P R O P O S I T I O N  6.6. The primitive pan of ((A*gl(A))~(k), d) is the complex 
C,_I (A) .  

Proof. The k-vector space of rank 1 on which 2~. acts by the signature will be 
denoted (sgn). Let  g =  gl(k) and fl(~A = gl(A). There  is a sequence of isomorph- 
isms (see 6.3 for the last one): 

(A" (g|  A)) .  = ((g@A) ~ | = ((g" |  ~) (~x.(sgn)). 

= ((g~)q|174 = (k[X.]@A")|  

It  is important  to remark  that in the last term ~n acts on k [ ~ , ]  by conjugation. 
This ~ , - m o d u l e  splits into a direct sum of modules: one for each conjugacy class 
of ~, .  Let  U, denote  the conjugacy class of the cyclic permutat ions (i.e. with only 
one cycle). Now we will prove that the primitive part  of (k[~n]~An)~z~.(sgn)  is 
(k[U,~]~A")~z~.(sgn). Let x = [ g ] ~ ( a l  . . . . .  a , ) ,  ~r ~ , ,  ai c A .  Then 

a ( x )  = Y ' . ( [ ~ , ] |  . . . .  a, . . . .  ) ) | 1 7 4  . . . .  a j  . . . .  )) ,  
l ,J 
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where the sum is over  all partitions (/, J) of {1 . . . . .  n} such that ~r(I)= I and 
tr(J) = J. In the formula trt (resp. o'j) denotes the restriction of tr to I (resp. J) and 
i~  I (resp. j e J). We deduce f rom this formula that x is primitive if and only if 
o ' c U  n. 

Any element of U~ is of the form o-zo --~ where 1- = (12- �9 �9 n) and t r e  2~,. As a 
,~,-set U, is isomorphic to .Z,/(7//nZ) where ,~, acts by left multiplication. 
Explicitly one has o-ro--~,--~(class of or). From this we deduce the following 
sequence of isomorphisms 

(Prim (A*(g(~A)g)n = (k[U~](~An)(~:~.(sgn) 

= (k[~,,,/(7//nZ)]@A ~) ~ . ( s g n )  

= A ~ / , z ( s g n )  = C ,  1(A) 

because k[X,J(7]/nT])] is induced f rom the trivial 7//nT]-module k by the inclusion 
of 7]/n7/ in X, sending the canonical generator  to "r. 

To  compute  the t ransformation of the differential d by this composition 
Ill  0"2 of isomorphisms we remark  that the image of ( E 1 2 A E 2 3 A "  �9 "/xEna"l) is 

(--1)" l(a 1 . . . . .  a ,) ,  where Ei~ denotes the matrix with exactly one non zero 
Il I am entry a in the ij-position. One  easily shows that the image of d(EtEA.. . /xE,~I)  

by the sequence of isomorphisms is exactly b(a~ . . . . .  a,) .  This ends the proof  
of Proposition 6.6. 

We now come back to the proof  of Theorem 6.2. The primitive part  of 
H.((A*flI(A))~) is the homology of Pr im (A*flI(A)), that is, in view of Proposition 
6.6, the homology of C._I(A),  because we are in characteristic zero. The  
isomorphism of the theorem follows now from Proposition 6.4. 

a l  
The computat ion Tr ;t(E12/x- �9 " /xE,~ l )=( -1)n-~(a l  . . . . .  a~) finishes the 

proof. 

We now give some immediate  consequences of Theorem 6.2. Let  d (A)  be the 
Lie algebra of matrices of trace zero (the trace being evaluated in A/[A, A]). This 
Lie algebra is perfect,  i.e. d ( A ) =  [d(A),  d (A) ] ,  and so it has a universal central 

extension denoted ~t(A) (cf. [7]). 

C O R O L L A R Y  6.7. In the characteristic zero case there are isomorphisms 

HE(~I(A)) = HCI(A) and H3(~t(A)) = HCE(A). 

Proof. The exact sequence 0- -~d(A)- -~gI(A)- -~  H C o ( A ) ~  0 gives rise to a 
spectral sequence in homology f rom which one deduces the isomorphism 
H2(d(A)) -- Prim H2(flI(A)). And  so the first isomorphism follows f rom 6.2. 
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The exact sequence 0 ---> H2(d(A)) ---> ~t(A) ~ d(A)  ---> 0 which characterizes 
the universal central extension gives rise to another spectral sequence in homol- 

ogy. These two spectral sequences together with the vanishing of the groups 

HI(~t(A)) and H2(~t(A)) (cf. [7]) gives an isomorphism H3(~t(A))= 
Prim H3(gI(A)). And so the second isomorphism follows from 2.2. 

Remark. The first isomorphism is true without any hypothesis on the charac- 
teristic of k. It was first proved in [1] for the commutative case and in [7] in 
general. 

Remark  6.8. According to J.-L. Koszul [8] one has a spectral sequence 

E~ = HA~. 9)| (g) a H,§ 

for any Lie algebra ~ and sub-Lie algebra g such that ~ is semi-simple as a 

g-module. We apply this to 91(k) c---~fll(A). On the primitive parts the spectral 
sequence reduces to a long exact sequence involving (when we apply Theorem 

6.2) H C , ( k ) ,  H C , ( A )  and the homology of (.A*§ t), b). As a consequence 
we get another proof of Proposition 4.4 in characteristic zero: H,(fi~*+~/(1 - 

t), b) = H C , ( A ) / H C , ( k ) .  

The following result gives informations on the stability of the homology of 
gI,(A) and was announced in [9]. 

T H E O R E M  6.9. Let k be a field of characteristic zero and A an associative 
k-algebra with 1. The stabilization homomorphism s~ :H~(fll~ ~(A)) ~/-/~(fll,(A)) is 

an isomorphism for i < n -  1 and an epimorphism for i = n -  1. 
Moreover, if A is commutative s,_~ is also an isomorphism and there is an exact 

sequence 

s 
n n - - 1  n - - 2  H.(91. ,(A)) > H.(gI . (A))  > ]'~a /d~(~A > O. 

Proof. We put g, =91,(k). By Proposition 6.4 the homology of g , ~ A  can be 

computed using the complex L ,  = (A*(g, ~ A ) ) ~  = ((9*)8,, |  (sgn). We will 
compute the n first terms of the relative homology groups of the pair ( 9 , ~ A ,  
g , - l ~ A )  which are the homology groups of the quotient complex L , / L ' , ,  where 

L~, is the similar complex corresponding to n - 1. By invariant theory (cf. 6.3) the 

map (g~-l)~, ,---> (9~)a~ is an isomorphism when i ~  < n -  1. Therefore LJL~ = 0 and 
Hi(fll ,(A), 91,_1(A)) = 0 for i <~ n - 1. It follows from the homology exact sequence 

that si is an isomorphism for i < n - 1 and an epimorphism for i = n - 1. 
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We will now compute the middle term of the homology exact sequence 

S n P 
H.(gl ._I(A))  > H. ( f l I . (A) )  ~ H , , ( L . / L ' . )  

�9 H,~_I(fll,_I(A)) , H,_I(flI , ,(A)) �9 0 

If V is a vector space of dimension n - 1 ,  then the kernel of the surjective 
homomorphism k[~,,]--~ Horn (V | V| ~ is of dimension 1 and generated by 
~ ,  (sgn tr)tr. By duality we deduce a short exact sequence 

Therefore  we have L , ] L ' =  ( k @ A " ) @ : ~ . ( s g n ) = A " A .  To determine the bound- 
aries of A " A  it is sufficient to compute the image of the composite 

d 
g n +  1 ) /_~ ,�9 A " A .  

We have seen in the proof of 6.6 that the restriction of the differential d to the 
primitive part is b. Thus the image in A"A is generated by the elements 

11--1 

f i ( a 0 , . . . ,  a~)= )-', (-1) '§ "Ao~ch§ "" .Aa , )  
i = o  

--(--1)"(a,  a 0 A . . -  A a~_l). 

Suppose now that A is commutative. Then the following formula proves that 
A " A / I m  b is isomorphic to 0~-~/d12~,-2: 

( a o a l A a 2 - - a o A a ~ a 2 + a o a 2 A a l ) A a 3 A .  �9 . A C t  n 

= 1 / ( n -  1)[ ~ sgn (o')b(a0, a~L , . . . ,  ao~), 

where the sum is over all permutations tr of {1 . . . . .  n} such that t r - l (1 )< t r - l (2 ) .  
Therefore  H , , ( L , / L ' , )  = A " A / I m  b = ,,-1 ,,-2 $2A ~dOn . To prove that the map p of 

the homology exact sequence is surjective it is sufficient to remark that the 
element ( l / n ! ) ~ , ~ , , s g n  ( o r ) o t t O ( a 1  . . . . .  a ~ ) |  of L~ is a cycle in L .  and maps 
to a l d a ~ " "  da ,  in 122~-a/d12~ -2. Thus the second assertion follows from the 

homology exact sequence. 
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Remark 6.10. The composition 

HC.(A) 
p 

> H . + , ( f l I ( A ) ) = H , ~ + I ( ~ I , ~ + I ( A ) )  �9 ~"2~/d1"2~ -1 is (-1)"t~.,o. 

Remark 6.11. Let  GL(A) be the general linear group I i m G L , ( A ) .  The 
homology H,(GL(A),  Q) of this discrete group is a Hopf  algebra and its primitive 
part  is rational algebraic K- theory  K , ( A ) @ Q  (cf. [10]). By analogy Prim 
H,(flI(A), k) should be called additive algebraic K-theory. Many results in alge- 
braic K- theory  have their counterpart  in the additive framework.  For instance the 
role of Milnor's K- theory  is played by O*/dO* ~ and Theorem 6.9 is analogous 
to a theorem of A. Suslin. 

(6.12) We now analyse a filtration on cyclic homology induced by the rank 
filtration on gI(A). For i<~n, (gT) ~ is the 2-sided ideal F"  i of (g~)g-=k[~, ] .  
For instance F " =  0, F"  1 is of dimension 1 generated by X sgn (o-)~r, F 1 is the 
augmentat ion ideal and F ~  k[X,].  By duality we obtain a filtration on (fl,~)~ = 
k[Z.]* = k[Z.]: 

0 = F o C  E l  C ' ' '  c F n _ l  c Err = k [~ r t ] ,  

where now F1 is of dimension 1 generated by ~ or and F,_~ is the kernel of the 
signature homomorphism.  

The  modules G can be interpreted in terms of irreducible representat ions of 
Xn that is in terms of Young diagrams with less than i rows. 

The filtration F .  determines a filtration of the submodule k[U,] and therefore 
a filtration of C . _ I ( A  ) = (k([U,](~A")(~x,(sgn)), that we denote by F.(C, I(A)). 
In particular GC,(A)=C,(A)  as soon as i>n. 

This filtration of C.(A) comes from the filtration of gl by the gl~. Thus, in view 
of Proposition 6.6 and using the fact that the boundary d preserves the rank 
filtration, it is immediately seen that the boundary operator  b of C.(A) respect 
the filtration. As an immediate consequence we have: 

P R O P O S I T I O N  6.13. There exists a first quadrant spectral sequence 

E ~  = Hp(Fp+qC,/Fp+q 1C,) ~ HCp+q. 

As a corollary of Theorem 6.9 one can compute 1 _ E p o  - .(]P/d~(] p-1 and the edge 

homomorphism is the map (-1)~tx~,0 (cf. 2.8). 
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Consider ing  the rank  filtration in algebraic K - t h e o r y  (cf. 6.11) C. Soul6 has 

con jec tured  the vanishing of some K-groups  [11, w Similarly in the addit ive 

f ramework  it is na tura l  to conjec ture  the vanishing of H n ( G I ~ ( A ) ) N  

Prim H , ( G L ( A ) ) = G H C , _ t ( A )  for 2 i ~ n .  Trans la ted  in terms of symmetr ic  

groups this is equ iva len t  to the following s ta tement .  

6.14. The filtration F ,  on k[Un] is such that 

Fik[U2i+x ] = 0 and Gk[U2, ]  = 0. 

Moreover  it is expected that  Fi+~k[U2~+l] is of d imens ion  1 and genera ted  by 

Xa(~r)o- where the sum is over  U?~+~, a (c r )=  sgn (g) and  g is such that  gcrg ' =  

( 1 2 - ' '  2 i +  1). 
These  assert ions were stated as conjec tures  in the first draft  of this paper.  But  C. 

Procesi  in formed  us that  the  first one  follows f rom a result  of J. Levitzki  on 

polynomial  identi t ies and  that  the second one  follows from the Ami t su r -Lev i t zk i  

fo rmula  for matrices.  

As a consequence  the rank  filtration on HC2n and  HC2n+I is of length n + 1, 

which is the same as the length of the fil tration deduced  from the fil tration of 

ff3(A)' by columns.  Proofs of these reults will appear  elsewhere.  
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