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Introduction

Suppose C is a category with a symmetric monoidal structure, which we will
refer to as the smash product. Then the Picard category is the full subcategory
of objects which have an inverse under the smash product in C, and the Picard
group Pic(C) is the collection of isomorphism classes of such invertible objects. The
Picard group need not be a set in general, but if it is then it is an abelian group
canonically associated with C.

There are many examples of symmetric monoidal categories in stable homotopy
theory. In particular, one could take the whole stable homotopy category S. In this
case, it was proved by Hopkins that the Picard group is just Z, where a represen-
tative for n can be taken to be simply the n-sphere Sn [HMS94, Str92]. It is more
interesting to consider Picard groups of the E-local category, for various spectra
E (all of which will be p-local for some fixed prime p in this paper). Here the
smash product of two E-local spectra need not be E-local, so one must relocalize
the result by applying the Bousfield localization functor LE . The most well-known
case is E = K(n), the nth Morava K-theory, considered in [HMS94].

In this paper we study the case E = E(n), where E(n) is the Johnson-Wilson
spectrum. In this case the E-localization functor is universally denoted Ln, and we
denote the category of E-local spectra by L. Our main theorem is the following
result.

Theorem A. Suppose 2p− 2 > n2 + n. Then Pic(L) ∼= Z.

In order to prove this theorem, we need several results which are of some inde-
pendent interest. In particular, recall that Ravenel [Rav84, p. 353] asked whether
E(n) is a summand in v−1

n BP after applying some completion functor. Baker and
Würgler proved that the Artinian completion of v−1

n BP is a product of copies of
LK(n)E(n) in [BW89].

Theorem B. We have isomorphisms of spectra

LK(n)BP ∼= LK(n)(
∨

I

Σr(I)E(n)) ∼= LK(n)(
∨

I

Σr(I)LK(n)E(n))

where I runs through all sequences of nonnegative integers (i1, i2, . . . ) all but finitely
many of which are 0, and where r(I) =

∑
k 2pnik(pk − 1).

Note that the K(n)-localization of BP is the completion of v−1
n BP at the ideal

In = (p, v1, . . . , vn−1), as is proved in [Hov95]. Theorem B was originally proved as
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part of work on [AMS]. It is included here since [AMS] has not yet been published.
That such a splitting should exist was conjectured by the first author in [Hov94,
Conjecture 2.3.5]. Note that LK(n) does not commute with coproducts, so LK(n)BP
is not the obvious wedge of suspensions of LK(n)E(n). For our purposes here we
need a similar splitting for the K(n)-localization of E(m) when m ≥ n.

We use Theorem B to give a simple proof of a generalization of the Miller-
Ravenel change of rings theorem [MR77]. We also present another proof of this
change of rings theorem using an algebraic result of Hopkins that deserves to be
more widely known. We prove that every spectrum in L is E(n)-nilpotent. These
facts give us some control over the E2-term of the E(n)-based Adams spectral
sequence (Theorem 5.1) and its convergence (Theorem 5.3) respectively. These
properties are used in [Dev96].

We also investigate what happens when p = 2 and n = 1, the first case not
covered by Theorem A. We find Pic(L) ∼= Z⊕ Z/2 in this case.

We would like to thank Mike Hopkins, Haynes Miller, Neil Strickland and Steve
Wilson for helpful conversations concerning the material in this paper. We also
thank the referee for several useful comments.

1. Basic results

We begin with some recollections about the category L. Fix a prime p. All
spectra we consider will be p-local. The ring spectrum E(n) was first studied in
[JW75]. It is characterized by its homotopy ring E(n)∗ = Z(p)[v1, . . . , vn−1, vn, v

−1
n ]

and the isomorphism

E(n)∗X ∼= E(n)∗ ⊗BP∗ BP∗X

where BP is of course the Brown-Peterson spectrum, and the vi denote, for con-
creteness, the Hazewinkel generators.

The category L is the full subcategory of the stable homotopy category S con-
sisting of E(n)-local spectra. A spectrum X is E(n)-local if and only if [W,X] = 0
for all spectra W such that E(n)∗W = 0. There is a Bousfield localization functor
Ln : S −→ L [Bou79] adjoint to the inclusion functor L −→ S.

By the smashing theorem of Hopkins-Ravenel [Rav92, Chapter 8], LnX ∼= LnS
0∧

X. Thus L is closed under the smash product in S. Furthermore, in the terminology
of [HPS95], L is a monogenic Brown category. That is, L has almost all of the same
formal properties as the ordinary stable homotopy category S, where the unit of
the smash product is no longer S0 but LnS

0.

Definition 1.1. A spectrum X in L is invertible if there is a spectrum Y in L

such that X ∧Y ∼= LnS
0. The Picard group of L, Pic(L), is the set of isomorphism

classes of invertible spectra in L, given a group structure by the smash product.

Implicit in this definition is the claim that Pic(L) is a set. Because L is such a
well-behaved category, this is automatic from the results of [HPS95], as we will see
after the following definition. One can also verify this by using generalized Adams
spectral sequence arguments following the similar result about Picn in [HMS94].

Recall that a full subcategory in a triangulated category such as L is called thick
if it is closed under suspensions, retracts, and the operation of taking the cofiber of
a map. A thick subcategory is called localizing if it is also closed under arbitrary
coproducts.
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Definition 1.2. A spectrum X in L is finite if it is in the thick subcategory of L

generated by LnS
0.

Note that if X is a finite spectrum in the usual sense, then LnX is finite in L.
There may, however, be other spectra that are finite in L.

Lemma 1.3. Suppose X is finite in L. Then X is a retract of LnY for some
ordinary finite spectrum Y .

Proof. The proof of this lemma relies rather heavily on [HPS95]. We write X as
a minimal weak colimit in S of Λ(X), the ordinary finite spectra mapping to X,
as in [HPS95, Theorem 4.2.4]. It follows from [HPS95, Proposition 2.2.3(e)] that
X = LnS

0 ∧ X is the minimal weak colimit in S of LnΛ(X). The minimal weak
colimit taken in L is the same. Since X is finite in L, the functor that takes Y to
[X,Y ] is a homology functor on L. Thus, since homology functors commute with
minimal weak colimits, we have [X, X] = lim−→ Y ∈Λ(X)[X, LnY ]. Thus the identity
map 1X ∈ [X, X] factors through LnY for some finite Y , so X is a retract of
LnY .

We do not know of an explicit finite X in L that is not actually equal to LnY
for an ordinary finite spectrum Y .

Proposition 1.4. Any spectrum in Pic(L) is finite in L. In particular, Pic(L) is
a set.

Proof. This is immediate from [HPS95, Proposition A.2.8], [HPS95, Theorem 2.1.3],
and [HPS95, Corollary 2.3.6].

Of course, LnS
m is obviously in Pic(L) for all integers m. This observation leads

to the following lemma.

Lemma 1.5. There is a natural splitting Pic(L) ' Z× Pic(L)0.

Proof. Suppose that X ∈ Pic(L), say X ∧ Y = LnS
0. Then HQ∗X ⊗ HQ∗Y '

HQ∗LnS0 = Q, so that HQ∗X must be concentrated in a single degree d(X). It
is clear that d : Pic(L) −→ Z is a homomorphism, and that k 7→ LnSk is a splitting.
Thus Pic(L) ' Z× Pic(L)0, where Pic(L)0 = ker(d).

2. Certain E(n)∗E(n)-comodules

In this section, we investigate the structure of E(n)∗X, when X is in Pic(L).
We will use the fact that E(n) is Landweber exact. Recall from [Lan76] that
this means that the functor F that takes a BP∗BP -comodule M to the E(n)∗-
module E(n)∗⊗BP∗ M is exact. We also need to recall that F (M) in fact admits a
natural structure as an E(n)∗E(n)-comodule. Indeed, Landweber exactness gives
an isomorphism E(n)∗E(n) ∼= E(n)∗ ⊗BP∗ BP∗BP ⊗BP∗ E(n)∗. Thus we have the
structure map

E(n)∗ ⊗BP∗ M
1⊗ψ−−−→ E(n)∗ ⊗BP∗ BP∗BP ⊗BP∗ M

→ (E(n)∗ ⊗BP∗ BP∗BP ⊗BP∗ E(n)∗)⊗E(n)∗ (E(n)∗ ⊗BP∗ M).

It also follows from these considerations that E(n)∗E(n) is flat over E(n)∗ (see
[MR77, Remark 3.7]).
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Now, let C denote the category of all E(n)∗E(n)-comodules, which is abelian
since E(n)∗E(n) is flat over E(n)∗, and let C0 denote the full subcategory of co-
modules which are finitely generated as E(n)∗-modules. Because E(n)∗ is Noether-
ian, C0 is an abelian subcategory of C. Finally, define D to be the full subcategory
of C0 consisting of all M which can be written as F (N) for some bounded below
BP∗BP -comodule N .

We will prove a Landweber filtration theorem for objects of D. To do so, recall
that Ij , for 0 ≤ j ≤ ∞, usually denotes the ideal of BP∗ generated by p, v1, . . . , vj−1.
We will use this notation, but will also use Ij to refer to the analogous ideal of E(n)∗.
The ideals Ij are invariant, so there is a natural comodule structure on BP∗/Ij ,
and we have F (BP∗/Ij) = E(n)∗/Ij . Of course, E(n)∗/Ij = 0 for j > n.

Theorem 2.1. Any object M ∈ D has a finite filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mk = M

by subcomodules Mi such that each filtration quotient Mi/Mi+1 is isomorphic as a
comodule to a suspension of E(n)∗/Ij for some j depending on i.

Proof. Write M = F (N) for some bounded below BP∗BP -comodule N . We can
assume that N has no vn-torsion, since in any case the vn-torsion forms a subco-
module, so we can divide out by it. If N 6= 0, choose a non-zero element x of lowest
degree in N . Then x is primitive. We follow an inductive procedure, as follows. If
x is p-torsion, multiply x by p until the resulting primitive x1 is killed by p. If x1

is v1-torsion, mutiply x1 by v1 until the result x2 is killed by v1. The class x2 is
still primitive since v1 is primitive mod p. Continue in this fashion until we reach
a primitive xr that is killed by p, v1, . . . , vr−1 but is not vr-torsion. Since N has no
vn-torsion, we have r ≤ n.

The annihilator I of xr is then precisely Ir. Indeed, I is an invariant ideal
containing Ir. If I properly contains Ir, any nonzero element of I not in Ir of
lowest possible dimension is a primitive in I/Ir ⊆ BP∗/Ir. But the primitives in
BP∗/Ir are well-known to be Fp[vr] [Rav86, Theorem 4.3.2]. Thus if I properly
contains Ir, then vkr ∈ I for some k, so xr is vr-torsion. This contradiction implies
that I = Ir.

We thus find an inclusion of comodules ΣlBP∗/Ir
i−→ N for some l and some

r ≤ n. Let P 1 denote the cokernel of i, and let N1 denote the quotient of P 1 by the
subcomodule of vn-torsion elements. Iterating our construction, we find a sequence
of surjections of comodules

N −→ P 1 −→ N1 −→ P 2 −→ N2 −→ . . .

Of course, this sequence may stop at some finite stage because Nk = 0 for some k.
In that case we let N i = P i = 0 for all i ≥ k. Let Pi denote the kernel of N −→ P i,
and let Ni denote the kernel of N −→ N i. Then we have Pi ⊆ Ni ⊆ Pi+1 ⊆ N , and
Ni/Pi is vn-torsion, whereas Pi+1/Ni is isomorphic to a suspension of BP∗/Ij for
some 0 ≤ j ≤ n depending on i (or Pi+1/Ni = 0 if the sequence stops at k and
i ≥ k).

Now we apply the exact functor F . Let Mi = F (Ni) ⊆ M . Since Ni/Pi is
vn-torsion, Mi = F (Pi) as well. Thus the quotient Mi+1/Mi is isomorphic to a
suspension of F (BP∗/Ij) = E(n)∗/Ij for some 0 ≤ j ≤ n depending on i. Since
M is a finitely generated module over the Noetherian ring E(n)∗, there is a k such
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that Ml = Mk for all l ≥ k. Thus F (Pk+1/Nk) = 0 for all i ≥ k, so Pk+1/Nk = 0,
and thus P k+1 = Nk. This can only happen if Nk = 0, and hence Mk = M .

In order to apply the filtration theorem, we need to know when E(n)∗X ∈ D.

Lemma 2.2. Suppose X is in L and E(n)∗X is a finitely generated E(n)∗-module.
This will hold in particular if X is finite in L. Then E(n)∗X ∈ D.

Proof. Because E(n)∗ is Noetherian, the full subcategory of all X such that E(n)∗X
is finitely generated is thick. Since it contains LnS

0 it also contains X for all finite X
in L. Now suppose X is in L and E(n)∗X is finitely generated. Then (p−1E(n))∗X
is finitely generated over p−1E(n)∗. Since (p−1E(n))∗X ∼= HQ∗X ⊗Q p−1E(n)∗,
it follows that HQ∗X is a finite-dimensional vector space. In particular, there is
an N such that πiX ⊗Q = 0 for i < N . Let Y = X[N, . . . ,∞] be the Postnikov
cover of X starting in degree N . Then there is a cofiber sequence Y −→ X −→ Z,
where Z is bounded above and has no rational homotopy. Any such Z is the direct
limit of spectra with finite homotopy, as one can see from its Postnikov tower, so
E(n)∗(Z) = 0. Hence E(n)∗X ∼= E(n)∗Y . Since Y is bounded below, we have
E(n)∗Y ∈ D.

Now we consider the Landweber exact spectrum En [HMS94], which we will just
denote by E. Recall E∗ = W (Fpn)[[u1, . . . , un−1]][u, u−1], where W (Fpn) denotes
the Witt vectors of Fpn , the degree of ui is 0 and the degree of u is −2. The
ring E∗ is flat over E(n)∗ via the map that takes vi to u1−pi

ui if i < n and takes
vn to u1−pn

. When considering K(n)-local questions, it is convenient to consider
Kn,∗(X) = π∗LK(n)(E ∧ X), a sort of completion of E∗X known as the Morava
module of X, considered in [HMS94].

Corollary 2.3. If X is a finite object of L, then the natural map E(n)∗X −→ E∗X
is injective. Furthermore, the natural map E∗X −→ Kn,∗(X) is an isomorphism.

Proof. It is clear that the map E(n)∗/Ij −→ E∗/Ij is injective for all 0 ≤ j ≤ n.
We now use flatness, Theorem 2.1, and induction to conclude that the map M −→
E∗ ⊗E(n)∗ M is injective for all M ∈ D.

It was pointed out in [HMS94, Section 7] that the natural map E∗X −→ Kn,∗(X)
is an isomorphism for all finite X. Since every finite Y in L is a retract of LnY for
some ordinary finite X by Lemma 1.3, this map is an isomorphism for such Y as
well.

The next theorem puts considerable restrictions on objects of Pic(L).

Theorem 2.4. Suppose X is in Pic0(L). Then E(n)∗X ∼= E(n)∗ as an E(n)∗E(n)-
comodule.

Proof. Suppose X ∈ Pic(L). Then that LK(n)X ∈ Picn. Recall from [HMS94] that
this means Kn,∗(X) ∼= E∗ as an E∗-module. Since X is finite, this means E∗X ∼= E∗
as an E∗-module. Since E(n)∗X ⊆ E∗X, we find that E(n)∗X is torsion-free.

Consider a Landweber filtration M1 ⊆ M2 ⊆ · · · ⊆ Mk = E(n)∗X given by
Theorem 2.1. Here we have Mj/Mj−1

∼= ΣsE(n)∗/Ir for some r and s depending
on j. We will show that Mj

∼= ΣtE(n)∗ for some t by induction on j. This is
obvious when j = 1 since E(n)∗X is torsion-free. Now suppose Mj−1

∼= ΣtE(n)∗
on a primitive generator α1, and Mj/Mj−1 is non-zero. Write α1 = pvβ for some
β in Mj ⊆ E∗ which is not divisible by p. Then β must also be primitive in Mj ,
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since Mj is torsion-free. The class β then defines an injective map of comodules
ΣtE(n)∗ −→ Mj . We will show this map is an isomorphism.

To see this, note that Mj/Mj−1 cannot be torsion-free, for then Mj would be
a rank 2 free submodule of E(n)∗X. Then Mj ⊗E(n)∗ E∗ would be a rank 2 free
submodule of E∗X ∼= E∗, which is impossible. Denote a preimage in Mj of a
generator of Mj/Mj−1 by α2. By the above remarks, we have

pα2 = xα1 = xpvβ

for some x ∈ E(n)∗. This is an equation in the ring E∗ since Mj ⊆ E(n)∗X ⊆ E∗.
If v = 0, then we must have x = py for some y in E∗ (and hence in E(n)∗) since
(p) is a prime ideal of E∗. Since E∗ is torsion-free, this implies that α2 = yα1,
contradicting the fact that Mj/Mj−1 is non-zero. Thus we must have v > 0, from
which we deduce that α2 = xpv−1β. Therefore the injective map ΣtE(n)∗ −→ Mj

defined by β is also surjective, as required.

Theorem 2.4 is critical to the proof of our main application, Theorem 5.4.
The converse of this theorem is true under the additional hypothesis that X is

finite in L, and can be proved in a similar fashion to [HMS94, Theorem 1.3]. We
do not know if the finiteness hypothesis is necessary.

Recall that there is a homomorphism α : Picn −→ H1(Sn; E×
0 ) known as algebraic

approximation [HMS94, Section 7]. The kernel of α is sometimes denoted κn.

Corollary 2.5. The image of Pic0(L) in Picn lies in κn.

Proof. By the above theorem, if X ∈ Pic(L), the E∗E comodule structure on E∗X
is the same as that on the sphere. Since the Sn action is derived from this comodule
structure, it too is the same as the action on the sphere.

3. A change of rings theorem

We saw above that if X ∈ Pic0(L), then E(n)∗X ∼= E(n)∗ as a comodule over
E(n)∗E(n). This suggests considering the Adams spectral sequence based on E(n)-
homology. The E2 term of this spectral sequence is Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗X)
[Ada74], since E(n)∗E(n) is flat over E(n)∗. The differential dr follows the usual
Adams pattern, lowering the t− s degree by 1 and raising the filtration s by r.

In order to understand this E2-term, we prove the following generalization of the
Miller-Ravenel change of rings theorem [MR77].

Theorem 3.1. Suppose M is a BP∗BP -comodule, on which vj acts isomorphi-
cally, and n ≥ j. Then the map

Ext∗,∗BP∗BP (BP∗, M) −→ Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗ ⊗BP∗ M)

is an isomorphism.

Note that if n = j we recover the Miller-Ravenel change of rings theorem. We
will offer two different proofs of this theorem, one using a general change of rings
theorem for Hopf algebroids and a standard fact about formal group laws, and the
other using a splitting of LK(n)BP and the Adams spectral sequence. Both of these
methods rely on the following lemma.

Lemma 3.2. Suppose that the map

Ext∗,∗BP∗BP (BP∗, M) −→ Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗ ⊗BP∗ M)

is an isomorphism for either



INVERTIBLE SPECTRA 7

(a) M = v−1
j BP∗/Ij; or

(b) M = v−1
j BP∗/I for a collection of ideals I of the form (pi0 , vi11 , . . . , v

ij−1
j−1 )

with each ik > 0 and whose intersection is empty.

Then Theorem 3.1 holds.

Proof. We fist prove that (b) ⇒ (a). Indeed, given (b), we can take direct limits to
show that the change of rings map is an isomorphism for the module

v−1
j BP∗/(p∞, v∞1 , . . . , v∞j−1).

We can then use short exact sequences to deduce the isomorphism for the module
v−1
j BP∗/(p, v∞1 , . . . , v∞j−1) as it is the kernel of the comodule map p on M . The

map v1 is then a comodule map, so we deduce the isomorphism for its kernel
v−1
j BP∗/(p, v1, v

∞
2 , . . . , v∞j−1). Continue in this fashion to v−1

j BP∗/Ij .
The proof that (a) imples Theorem 3.1 is just like the analogous argument

in [MR77, Theorem 3.10].

We now give our first proof of the change-of-rings theorem, relying on the results
of the next section.

First proof of Theorem 3.1. It is proved in the next section (Theorems 4.1 and 4.7)
that there is a K(j)-equivalence from BP to a wedge of suspensions of E(j) and
a similar K(j)-equivalence from E(n) to a different wedge of suspensions of E(j)
when n ≥ j. Let X be a type j finite spectrum with vj-self map v, as in [Rav92]. It
follows that there is a K(j)-equivalence from BP ∧v−1X to a wedge of suspensions
of E(j) ∧ v−1X and a similar K(j)-equivalence from E(n) ∧ v−1X to a wedge of
suspensions of E(j) ∧ v−1X. These maps must actually be isomorphisms, since
smashing with v−1X makes any BP -module K(j)-local. It follows easily from this
that the canonical BP or E(n) Adams resolution of v−1X is also an E(j)-Adams
resolution, though not the canonical one, in the sense of [Rav86, Definition 2.2.1].
Indeed, in the notation of Ravenel, Ks is obviously a retract of E(j)∧Ks, since Ks

is an E(j)-module spectrum. To see that E(j) ∧Xs is a retract of E(j) ∧Ks, we
use the fact that the map Xs −→ Ks is induced by the unit of BP or E(n), and that
the splitting preserves the unit. Since the E2-term of the Adams spectral sequence
is independent of the Adams resolution, we find isomorphisms

Ext∗,∗BP∗BP (BP∗, BP∗(v−1X)) ∼= Ext∗,∗E(j)∗E(j)(E(j)∗, E(j)∗(v−1X))

and

Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗(v−1X)) ∼= Ext∗,∗E(j)∗E(j)(E(j)∗, E(j)∗(v−1X)).

Combining these and taking X to be a generalized Moore space of type j, so that
BP∗(v−1X) ∼= v−1

j BP∗/(pi0 , vi11 , . . . , v
ij−1
j−1 ), we find that condition (b) of Lemma 3.2

holds, completing the proof of Theorem 3.1.

We now give the algebraic proof of the change-of-rings theorem. In [Hop95],
Hopkins considers the following general situation. Suppose (A, Γ) is a Hopf alge-
broid over a commutative ring K such that Γ is flat as a left (and hence also as
a right) A-module. Let f : A −→ B be a map of K-algebras. Then we define ΓB
to be B ⊗A Γ ⊗A B, where we have used the A-bimodule structure on Γ coming
from the left and right units ηL, ηR : A −→ Γ to form the tensor product. There
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is a natural Hopf algebroid structure on (B, ΓB) and a map of Hopf algebroids

(A, Γ) −→ (B, ΓB). The map Γ
f−→ ΓB sends x to 1⊗ x⊗ 1.

Hopkins proves the following theorem.

Theorem 3.3 ([Hop95]). Suppose (A, Γ) is a Hopf algebroid over a ring K, and
suppose f : A −→ B is a map of K-algebras. Form the Hopf algebroid (B, ΓB) as
above. Suppose we have a diagram of K-algebras

A
1⊗ηR−−−→ B ⊗A Γ

g−→ C

such that g ◦ (1⊗ ηR) is a faithfully flat extension of A. Then the induced map

Ext∗Γ(A, A) −→ Ext∗ΓB
(B, B)

is an isomorphism.

In the statement of Theorem 3.3, the map denoted 1⊗ ηR takes x to 1⊗ ηR(x).
The proof we give makes it clear that we could use the map 1 ⊗ h : A −→ B ⊗ D
for any commutative A-bimodule algebra D and right A-algebra map h : A −→ D
instead of 1⊗ ηR.

We will prove this theorem for the reader’s convenience. Our proof is a trans-
lation of the scheme-theoretic proof in [Hop95] into more conventional homological
algebra language.

Proof. Suppose M is a left Γ-comodule. Then we can form the cosimplicial A-
module N(A, Γ)⊗M , whose k-simplices are Γ⊗k ⊗M . Here the tensor product is
always taken over A unless notated otherwise, and we use the bimodule structure
on Γ in forming it. The ring Γ⊗0 is to be interpreted as A. The coface map d0 is
induced by ηR, the coface maps di are induced by the diagonal in the ith tensor
factor, and the coface map dn+1 is induced by the coaction of M . The codegeneracy
map si is induced by the counit of the ith tensor factor of Γ. There is an associated
cochain complex obtained by taking the alternating sum of the coface maps, which
we also denote N(A,Γ) ⊗ M . Then one can see by flatness that a short exact
sequence of comodules induces a short exact sequence of the associated cochain
complexes, and hence a long exact sequence in cohomology. Since H0(N(A,Γ) ⊗
M) ∼= HomΓ(A,M), it follows that H∗(N(A,Γ) ⊗ M) ∼= Ext∗Γ(A, M). We could
have done this with a right Γ-comodule as well, forming the simplicial A-module
M ⊗N(A, Γ) instead. Similar remarks hold for (B, ΓB), though of course we must
tensor over B instead of A.

The plan of the proof is to form a double complex which interpolates between
N(A, Γ) and N(B, ΓB). The double complex in question is associated to the bi-
cosimplicial ring R, where Rm,n = Γ⊗m+1 ⊗ Γ⊗Bn

B , where we interpret Γ⊗B0
B = B.

We refer to the cosimplicial structure maps that change the first coordinate but not
the second as horizontal structure maps, and the other ones as vertical structure
maps. The horizontal coface map d0

H is induced by the right unit, and the horizon-
tal coface maps diH for 1 ≤ i ≤ m+1 are induced by the diagonal on the ith tensor
factor. The 0th vertical coface map d0

V is induced by taking the diagonal on the
last tensor factor of Γ and then applying the map f : Γ −→ ΓB to the resulting last
factor of Γ. The vertical coface maps diV for 1 ≤ i ≤ n are induced by the diagonal
on the ith tensor factor of ΓB . The last vertical coface map dn+1

V is induced by
the left unit of ΓB . The vertical and horizontal codegeneracy maps are induced by
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the counit. We leave it to the reader to check that this does define a bicosimplicial
ring, and hence an associated double complex.

There are then two different spectral sequences associated to this double complex,
both converging to the total cohomology. The E2 term of one of them first takes
the horizontal cohomology and then the vertical cohomology of the result, whereas
the E2 term of the other reverses the order. We will show that both these spectral
sequences collapse, so their E2 terms must be isomorphic.

Consider first the horizontal cohomology, so that we fix n and consider the
complex R∗,n. This complex is isomorphic to the complex N(A, Γ) ⊗ (Γ ⊗ Γ⊗Bn

B ).
Since Γ⊗ Γ⊗Bn

B is an injective comodule, we find that HsR∗,n ∼= Γ⊗Bn
B when s = 0

and is 0 for positive s. Hence the E2 term of the associated spectral sequence is
ExtΓB

(B, B) concentrated in filtration 0. The spectral sequence then must collapse
as claimed.

Now we consider the vertical cohomology, so that we fix m and consider the
complex Rm,∗. We have an isomorphism of complexes

Rm,∗ ∼= (Γ⊗m ⊗ Γ⊗B)⊗B N(B, ΓB)

where we give Γ ⊗ B the right ΓB-comodule structure induced by the diagonal of
Γ. That is, the comodule structure takes x⊗ b to

∑
(x′i ⊗ 1)⊗B (1⊗ x′′i ⊗ b) with

the usual notation for the diagonal. We would like to show that the map

Γ⊗m
g−→ Rm,∗

induced by including the first m copies of Γ is a cohomology isomorphism. We can
easily show this after tensoring on the left with B ⊗ Γ. Indeed, we have

B ⊗ Γ⊗Rm,∗ ∼= (B ⊗ Γ⊗m+1 ⊗ Γ⊗B)⊗B N(B, ΓB)
∼= (Γ⊗m+1 ⊗B ⊗ Γ⊗B)⊗B N(B, ΓB)
∼= ((Γ⊗m+1 ⊗B)⊗B ΓB)⊗B N(B, ΓB)

For the second step, even though the bimodule tensor product is not in general
commutative, it is for symmetric bimodules such as B; we have an isomorphism of
A-bimodules Γ⊗B → B ⊗ Γ by x⊗ b 7→ b⊗ χ(x). Hence we have

H0(B ⊗ Γ⊗Rm,∗) ∼= B ⊗ Γ⊗ Γ⊗m

and the higher cohomology is 0. In particular, the map B⊗Γ⊗g is an isomorphism.
By tensoring over B ⊗ Γ with C, we find that C ⊗ g is also an isomorphism. Since
C is faithfully flat, we conclude that g must have been an isomorphism.

Hence the cohomology of Rm,∗ is isomorphic to Γ⊗m in degree 0 and is 0 in
higher degree. The horizontal cohomology of this is of course Ext∗Γ(A,A). This is
the E2 term of the other spectral sequence, and it too is concentrated in filtration
0, so the spectral sequence must collapse. Since the E∞ terms of our two collapsing
spectral sequences are isomorphic, the E2 terms must be as well, completing the
proof of the theorem.

To prove our change of rings theorem, we apply Theorem 3.3 to the case

(A,Γ) = (v−1
j BP∗/Ij , v

−1
j BP∗BP/Ij)

and B = v−1
j E(n)∗/Ij , with f being the obvious map. To do so, we need the

following theorem, proved (though not explicitly) by Lazard in [Laz55, pp. 269–
271] and pointed out to us by Neil Strickland.
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Theorem 3.4. Suppose F, G are two p-typical formal group laws over a ring R
classified by θF , θG : BP∗ −→ R. Suppose θF (vi) = θG(vi) = 0 for all i < j, and
suppose θF (vj) = θG(vj) = u is a unit in R. We say that F and G have strict
height j. Then there is a faithfully flat extension of R over which F and G become
strictly isomorphic.

Lazard is working in a separably closed field, so he can solve equations necessary
to construct a strict isomorphism. One works inductively, and finds that one must
solve an equation of the form

tp
r

k − tka = b

where a is a unit. If instead we introduce a root to this equation, we are making
a finite free extension, which is faithfully flat. Taking the direct limit of these
extensions, we find the required faithfully flat extension.

We can now give our second proof of Theorem 3.1.

Second proof of Theorem 3.1. By a slight extension of [MR77, Proposition 1.3], we
have isomorphisms

Ext∗,∗BP∗BP (BP∗, v−1
j BP∗/Ij) −→ Ext∗,∗

v−1
j BP∗BP/Ij

(v−1
j BP∗/Ij , v

−1
j BP∗/Ij)

and

Ext∗,∗E(n)∗E(n)(E(n)∗, v−1
j E(n)∗/Ij) −→

Ext∗,∗
v−1

j E(n)∗E(n)/Ij
(v−1
j E(n)∗/Ij , v

−1
j E(n)∗/Ij).

Now take A = v−1
j BP∗/Ij , Γ = v−1

j BP∗BP/Ij and B = v−1
j E(n)∗/Ij , with the

evident ring homomorphism f : A −→ B. The ring A has a p-typical formal group
law F of strict height j over it coming from the evident homomorphism BP∗ −→ A.
This is in fact the universal p-typical formal group law of strict height j. Similarly,
B has a formal group law G of strict height j over it, which is the pushforward of
F through the map f . We are looking for a diagram of the form

A
1⊗ηR−−−→ B ⊗A Γ h−→ R

where A −→ R is faithfully flat. A map B ⊗A Γ h−→ R is the same thing as a
strict isomorphism ϕ of strict height j formal group laws over R whose source is a
pushforward of G. The composite h ◦ (1⊗ ηR) is the classifying map of the target
of ϕ.

Consider first the ring C = A⊗Fp[vj ,v
−1
j ] B. The obvious ring map A −→ C which

sends x to x⊗1 classifies a formal group law of strict height j over C, which we will
also call F . Similarly, the obvious ring map B −→ C which sends x to 1⊗x classifies
a formal group law of strict height j over C which we also call G. Furthermore,
we have θF (vj) = θG(vj). Thus there is a faithfully flat extension C −→ R and a
strict isomorphism whose source is the pushforward of G and whose target is the
pushforward of F . This defines a map B ⊗A Γ −→ R such that the composite

A
1⊗ηR−−−→ B ⊗A Γ −→ R

is the classifying map of the pushforward of F , which is the composite A −→ C −→ R.
Since R is faithfully flat over C and C is obviously faithfully flat over A, R is
faithfully flat over A. Theorem 3.3 and part (a) of Lemma 3.2 completes the
proof.
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4. The K(j)-localization of BP and E(n)

We still owe the reader a proof of the splitting of the K(j)-localizations of BP
and E(n), used in our first proof of the change of rings theorem 3.1. The results in
this section were first proved as part of [AMS].

Suppose R is a BP -algebra spectrum, so that there is a map BP −→ R of ring
spectra. We will always denote the unit of a ring spectrum R by η : S0 −→ R. Then
there is a natural isomorphism BP ∧R ∼= R[t1, t2, . . . ]. We explain this as follows.
We have a natural isomorphism R∗BP ∼= R∗[t1, t2, . . . ] as in [Rav86, Lemma 4.1.7].
Adapting notation from [JW75] when E = (e1, e2, . . . ) is a sequence of nonnegative
integers, all but finitely many of which are zero, we let tE = te11 te22 · · · and likewise
for vE . We let |E| = |tE | =

∑
2ei(pi − 1). Then the class tE ∈ R∗BP gives rise

to a map S|E| −→ BP ∧R. By smashing with R and using the multiplication of R,
we get a map Σ|E|R −→ BP ∧R. Putting these maps together gives us the desired
isomorphism

R[t1, t2, . . . ] =
∨

E

Σ|E|R ∼= BP ∧R

If we take R = BP , the map

BP
η∧1−−→ BP ∧BP −→ Σ|E|BP

induced by this splitting is the Landweber-Novikov operation rE studied in [JW75].
On homotopy, rE(x) is the coefficient of tE in ηR(x), the right unit of x.

Given j > 0, let E denote the set of exponent sequences E such that ei = 0 for
all i < j. Give an E ∈ E, let σE be the sequence (pjej , pjej+1, . . . ). Let q denote
the composite

BP
η∧1−−→ BP ∧BP

p−→
∨

E∈E

Σ|σE|BP −→
∨

E∈E

Σ|σE|BP 〈j〉

Here the map p is the projection map onto only some of the summands, and the
last map is induced by the canonical ring spectrum map BP −→ BP 〈j〉 . Recall
that BP 〈j〉∗ ∼= Z(p)[v1, . . . , vj ]. On homotopy, q first takes the right unit of x, then

projects onto BP∗[t
pj

1 , tp
j

2 , . . . ], then reduces mod vi for i > j.

Theorem 4.1. Let Z be a type j finite spectrum, with vj-self map v, as in [Rav92].
Then the map

v−1Z ∧ q : v−1Z ∧BP −→ v−1Z ∧
∨

E∈E

Σ|σE|BP 〈j〉 ∼=
∨

E∈E

Σ|σE|Z ∧ E(j)

is an homotopy equivalence. In particular, q induces an isomorphism on K(j)-
homology.

Note that Theorem B is follows immediately from Theorem 4.1, since LK(n)(q)
is then an isomorphism.

Proof. Note that the second statement follows from the first and the Kunneth
theorem for K(n)-homology. For the first statement, it suffices to verify it for any
specific finite type j spectrum by the thick subcategory theorem. So take Z to be
a generalized Moore space M(I), where I = (pi0 , vi11 , . . . , v

ij−1
j−1 ). Recall that such

Z exist by iterating the nilpotence theorem, and we have

BP∗(v−1Z) ∼= v−1
j BP∗/I.
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We must therefore show that the map

q∗ : v−1
j BP∗/I −→ E(j)∗/I[tp

j

1 , tp
j

2 , . . . ]

induced by the right unit and projection is an isomorphism for

I = (pi0 , vi11 , . . . , v
ij−1
j−1 ).

We first show this for I = Ij = (p, v1, . . . , vj−1), though of course M(Ij) probably
does not exist. We will actually show that the map

BP∗/Ij
ηR−−→ Fp[vj ][t

pj

1 , tp
j

2 , . . . ]

induced by the right unit is an injection with cokernel which is vj-torsion. Inverting
vj then gives the desired isomorphism.

Since vj is invariant mod Ij , the map ηR is an Fp[vj ]-module map. Furthermore,
we have the formula, for E ∈ E,

ηR(vE) ≡ vmj tσE(4.1)

modulo Ij and terms of strictly lower t-degree [JW75, Corollary 1.8]. Here m is the
sum of the ei in E.

Then ηR is obviously injective from this formula. Let 1E denote the generator of
Σ|σE|Fp[vj ], corresponding to tE . We will show that vrj1E is hit by ηR for some r
by induction on |E|. If |E| = 0, then E = 0, and ηR1 = 1E . Now suppose |E| > 0.
By induction, there is an s such that vsj1F is in the image of ηR for all F ∈ E of
lower degree. Then the Johnson-Wilson formula (4.1) shows that vs+mj 1E is in the
image of ηR as well, completing the proof that q∗ is an isomorphism when I = Ij .

Now, if I = (pi0 , vi11 , . . . , v
ij−1
j−1 ), then v−1

j BP∗/I is related to v−1
j BP∗/I by a

collection of exact sequences of comodules. Since q∗ is a natural transformation
of exact functors on comodules (this is easy to see directly for the comodules we
are interested in, but it also follows from Landweber exactness), it must also be an
isomorphism for any I of this form.

Note that the splitting of LK(j)BP given above is compatible with the unit of
BP and E(j), though it is not a splitting of ring spectra.

Remark 4.2. Given an ideal I = (pi0 , vi11 , . . . , v
ij−1
j−1 ), one can form the spectrum

v−1
j BP/I even when there is no finite spectrum M(I) with BP∗M(I) ∼= BP∗/I. In

this case, it is still possible to prove that v−1
j BP/I splits as a wedge of suspensions

of E(j)/I using the methods of [JW75] and [Wür76]. If I = In, this is the result
in [Wür76] that B(n) splits additively into a wedge of suspensions of K(n).

We would like to prove an analogous splitting for LK(n)E(n) when n ≥ j. We
begin with the spectrum BP 〈n〉. Let En denote the exponent sequences with ei = 0
for i < j and ei = 0 for i > n. Then σEn consists of exponent sequences with ei = 0
for i > n− j and each ei divisible by pj . We let qn denote the composite

BP 〈n〉 η∧1−−→ BP ∧BP 〈n〉 p−→
∨

E∈En

Σ|σE|BP 〈n〉 −→
∨

E∈En

Σ|σE|BP 〈j〉

where p is the projection map and the last map is induced by the canonical map of
ring spectra BP 〈n〉 −→ BP 〈j〉.
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Theorem 4.3. Suppose Z is a type j finite spectrum, with vj-self map v, and
n ≥ j. Then the map

v−1Z ∧ qn : v−1Z ∧BP 〈n〉 −→
∨

E∈En

Σ|σE|Z ∧ E(j)

is an isomorphism. In particular, qn induces an isomorphism on K(j)-homology,
and thus we have an isomorphism

LK(j)BP 〈n〉 ∼= LK(j)

∨

E∈En

Σ|σE|E(j)

Proof. The proof is the same as that of Theorem 4.1. Indeed, there is a commutative
diagram

BP
q−−−−→ BP 〈j〉[tpj

1 , tp
j

2 , . . . ]y p

y
BP 〈n〉 qn−−−−→ BP 〈j〉[tpj

1 , . . . , tp
j

n−j ]

where p is the obvious projection map. Using the evident section BP 〈n〉∗ −→ BP∗,
we find that the effect of qn on homotopy is also to take the right unit and then
project off onto certain terms. The Johnson-Wilson formula (4.1) still applies: one
just has fewer exponent sequences to keep track of. One cannot use Landweber
exactness anymore to deduce that proving it for I = Ij is enough, but these ideals
are so simple that we can see directly that tensoring with E(j)∗ preserves exactness
for them.

Note that the splitting of LK(j)BP 〈n〉 given above is also compatible with the
units of BP 〈n〉 and E(j), though again it is not multiplicative.

We would like to deduce from this an analogous splitting for LK(j)E(n) when
n ≥ j. The crucial fact that allows us to do this is the following corollary.

Corollary 4.4. Suppose n ≥ j. Then the map

vn : Σ|vn|LK(j)BP 〈n〉 −→ LK(j)BP 〈n〉
is a split monomorphism of spectra.

Proof. The cofiber of vn is the map LK(j)BP 〈n〉 −→ LK(j)BP 〈n−1〉. Applying the
compatible isomorphisms LK(j)qn and LK(j)qn−1, we find that this map is a split
epimorphism, as required.

The spectrum E(n) is of course the telescope of the self-map vn of BP 〈n〉. The
functor LK(j) does not commute with taking the telescope of a map, but we do
have the following lemma.

Lemma 4.5. Suppose R and X are spectra, and v : ΣdX −→ X is a self-map of X.
Then we have an isomorphism LRv−1LRX ∼= LR(v−1X).

Proof. Recall that v−1X is the sequential colimit of the Σ−mdX under the self-map
v, so that we have a sequence of compatible maps Σ−mdX −→ v−1X. These induce
a sequence of compatible maps Σ−mdLRX −→ LR(v−1X), and so a not necessarily
unique map v−1LRX −→ LR(v−1X). This map is an isomorphism on R-homology,
since

R∗(v−1LRX) ∼= (R∗v)−1R∗X ∼= R∗(LRv−1X)



14 M. HOVEY AND H. SADOFSKY

Hence we get the required isomorphism LRv−1LRX ∼= LR(v−1X).

Lemma 4.5 reduces us to considering v−1
n LK(j)BP 〈n〉, and then relocalizing it.

For this case, we have the following lemma.

Lemma 4.6. Suppose v : ΣdX −→ X is a self-map that is also a split monomor-
phism of spectra. Let X −→ Y denote the cofiber of v with splitting i : Y −→ X.
Then there is an isomorphism

X ∨
∨
m

Σ−mdY
f−→∼= v−1X

Proof. The map f is induced by the canonical map X −→ v−1X and the composite
Σ−mdY i−→ Σ−mdX −→ v−1X. One can see by an easy induction that the map

X ∨
∨

k≤m
Σ−kdY

fm−−→ Σ−mdX

is an isomorphism. Since every homotopy class in v−1X is in the image of the
homotopy of Σ−mdX for some m, it follows that f is surjective on homotopy.
Conversely, every element in π∗(X ∨ ∨

m Σ−mdY ) lies in the homotopy of some
finite wedge, and so in the homotopy of Σ−mdX for some m. Since v is a split
monomorphism, the induced map π∗Σ−mdX −→ π∗(v−1X) is injective. Thus π∗f
is injective as well, completing the proof.

Combining Theorem 4.3, Corollary 4.4, Lemma 4.5, and Lemma 4.6 gives the
following theorem.

Theorem 4.7. Suppose n ≥ j. Then we have an isomorphism

LK(j)E(n) ∼= LK(j)(BP 〈n〉 ∨
∨
m

Σ−m|vn|BP 〈n− 1〉)

which is in turn isomorphic to the K(j)-localization of a wedge of suspensions of
E(j).

Note that this splitting is compatible with the unit as well.

5. The E(n) Adams spectral sequence

In this section we apply the change of rings theorem 3.1 to the calculation of the
E2-term of the E(n) Adams spectral sequence. We also prove that this spectral
sequence converges to the homotopy of LnX for all X. This allows us to prove
Theorem A.

Recall that the change of rings theorem is about comodules on which vj acts iso-
morphically for some j. We must therefore relate a general comodule to such comod-
ules. The standard tool for doing this is the chromatic spectral sequence [Rav86,
Chapter 5]. For 0 ≤ s ≤ n, let Ms denote the E(n)∗E(n)-comodule

v−1
s E(n)∗/(p∞, v∞1 , . . . , v∞s−1).

If s = 0, we interpret this to mean M0 = E(n)∗ ⊗ Q. Then we have an exact
sequence of E(n)∗E(n)-comodules

E(n)∗ −→ M0 −→ M1 −→ . . . −→ Mn −→ 0.
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Associated to this exact sequence, we have the chromatic spectral sequence much
as in [Rav86, Chapter 5]. The E1 term of the chromatic spectral sequence is

Es,r,∗
1

∼= Extr,∗E(n)∗E(n)(E(n)∗, Ms),

and the spectral sequence converges to Extr+s,∗E(n)∗E(n)(E(n)∗, E(n)∗).
Since vs acts invertibly on Ms, the change of rings theorem implies the following

theorem.

Theorem 5.1. In the chromatic spectral sequence for Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗),
we have

Es,r,∗
1

∼=
{

Extr,∗E(s)∗E(s)(E(s)∗, E(s)∗/(p∞, . . . , v∞s−1)) s ≤ n

0 s > n.

In particular, if p − 1 does not divide s, we have Es,r,∗
1 = 0 for r > s2. Thus, if

p > n + 1,

Exts,∗E(n)∗E(n)(E(n)∗, E(n)∗) = 0

for s > n2 + n.

Proof. Apply the change of rings theorem 3.1 to the BP∗BP -comodule

v−1
s BP∗/(p∞, . . . , v∞s−1)

with j = s and j = n. Now if p− 1 does not divide s, we have

Extr,∗E(s)∗E(s)(E(s)∗, E(s)∗/(p, v1, . . . , vs−1)) = 0

for r > s2 by Morava’s vanishing theorem [Rav86, Theorem 6.2.10]. It follows using
standard exact sequences that

Extr,∗E(s)∗E(s)(E(s)∗, E(s)∗/(p, . . . , vs−2, v
k
s−1)) = 0

for r > s2, and hence taking direct limits that

Extr,∗E(s)∗E(s)(E(s)∗, E(s)∗/(p, . . . , vs−2, v
∞
s−1)) = 0

for r > s2. Repeating this same process for vs−2, vs−3 and so on, we find

Extr,∗E(s)∗E(s)(E(s)∗, E(s)∗/(p∞, . . . , v∞s−1)) = 0

for r > s2 as well.

Remark 5.2. Note that Theorem 5.1 shows precisely that the chromatic spectral
sequence converging to Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗) is the truncation at E1 of the
chromatic spectral sequence converging to Ext∗,∗BP∗BP (BP∗, BP∗) obtained by set-
ting Es,r,∗

1 = 0 when s > n.

We now turn our attention to the convergence of the E(n) Adams spectral se-
quence. Our proof of convergence is very similar to the proof of the smashing
conjecture in [Rav92, Chapter 8]. Recall Hopkins and Ravenel construct a finite
spectrum X whose integral homology is torsion-free and such that

Exts,∗BP∗BP (v−1
m BP∗/Im, BP∗X) = 0

for all s > s0 and 0 ≤ m ≤ n.



16 M. HOVEY AND H. SADOFSKY

Theorem 5.3. The spectrum X above is E(n)-prenilpotent. Thus, every spectrum
is E(n)-prenilpotent, and the E(n) Adams spectral sequence converges to π∗LnX
for all X.

Proof. The proof is very similar to that of [Rav92, Lemma 8.3.1]. First note that
it suffices to show MmX is E(n)-nilpotent for all m ≤ n, where MmX is the fiber
of the natural map LmX −→ Lm−1X. By Bousfield’s convergence criterion [Bou79],
stated in [Rav92, Corollary 8.2.7], it suffices to show that

Exts,∗E(n)∗E(n)(E(n)∗, E(n)∗(MmX ∧ Y )) = 0

for all s > s0 and all finite spectra Y . Now we have

BP∗(MmX ∧ Y ) = MmBP∗(X ∧ Y )

by the localization theorem [Rav92, Theorem 7.5.2]. Now MmBP is a BP -module
spectrum on which vm acts invertibly, in the sense that the map

Σ2(pm−1)MmBP
×vm−−−→ MmBP

is an isomorphism. Thus vm acts invertibly on MmBP∗(X ∧ Y ) as well. Hence our
change of rings theorem 3.1 applies, and we have

Exts,∗E(n)∗E(n)(E(n)∗, E(n)∗(MmX ∧ Y )) = Exts,∗BP∗BP (BP∗, BP∗(MmX ∧ Y ))

Then Lemma 8.3.1 of [Rav92] shows that this latter group is 0 for s > s0. Thus
X is E(n)-prenilpotent. Since the full subcategory of E(n)-prenilpotent finite
spectra is thick, it follows from the thick subcategory theorem that S0 is E(n)-
prenilpotent. Just as in [Rav92, Chapter 8], we then find that every spectrum is
E(n)-prenilpotent, so by Bousfield’s criterion again [Bou79], we find that the E(n)
based Adams spectral sequence converges to π∗LnX for all X.

We now restate our main application and prove it.

Theorem 5.4. Pic0(L) = 0 when 2p− 1 > n2 + n.

Proof. First note that 2p − 2 > n2 + n implies p > n + 1. Theorem 2.4 and
Theorem 5.1 then show that the E2 term of the E(n) based Adams spectral sequence
is zero in filtration > n2 + n. Since the usual sparseness holds, the only possible
nonzero differentials raise filtration by a multiple of 2p− 1. Thus there is no room
for any differentials, or, again by sparseness, any extensions. Thus the class in the
E2 term corresponding to the primitive 1 survives to give a map S0 −→ LnX which
is an isomorphism on E(n) homology. Thus LnS

0 ∼= LnX.

6. An example

In this section, we will compute the group Pic(L) for n = 1 and p = 2. Notice
that this is the first case not covered by Theorem 5.4.

Our goal is to prove the following theorem.

Theorem 6.1. If p = 2 and n = 1, the Picard group Pic0(L) is isomorphic to Z/2,
generated by L1QM , where QM is the question mark complex.

Recall that QM fits into a cofiber sequence

S−1 f−→ Σ−3M(2) −→ QM −→ S0
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where the composite S−1 f−→ Σ−3M(2) −→ S−2 is the Hopf map η, also denoted
α1. This does not uniquely determine the attaching map, but either choice gives
an isomorphic complex QM . To see why QM is called the question mark, draw the
action of the Steenrod algebra on its cohomology. It is well-known [Hop86, Corollary
7.7] that QM ∧DQM ∼= S0 ∨ Z, where H∗(Z,F2) is isomorphic to A1 as an A1-
module. It follows that K(0)∗Z = K(1)∗Z = 0. Hence L1(QM ∧DQM) ∼= L1S

0,
and QM is indeed in Pic0(L1).

Before we can prove Theorem 6.1, we need to explicitly recall the computation
of π∗L1S

0 at p = 2. This computation, in the form we need it, is due to Ravenel.
The results of the computation are given in [Rav84, Theorem 8.15]. Ravenel does
not write down Ext∗,∗E(1)∗E(1)(E(1)∗, E(1)∗), but it can be calculated easily from the
results of [Rav86, Chapter 5]. Before writing down this algebra, we describe it in
terms of the usual Adams spectral sequence picture, where an element in bidegree
(s, t) is thought of as in the t−s-stem and of filtration s. In every even stem except
0 and −2 we have a Z/2 in every positive even filtration. In the 0-stem, we also
have a Z(2) in filtration 0, and in the −2-stem we also have a Q/Z(2) in filtration
2. In every odd stem we have a Z/2 in every positive odd filtration except 1. In
filtration 1, we have a Z/2 in the 4s + 1-stem, a Z/8 in the 8s + 3-stem, and, when
s 6= 0, a Z/16s in the 8s − 1-stem. Note that there is a small typo in [Rav86,
Theorem 5.3.6], from which this picture can be read off. The class denoted v−1

1 t1/2
in that theorem is equal to the class denoted j(v−1

1 h0).
Of course, this picture does not specify the multiplicative structure. The suffi-

ciently careful reader can verify that the multiplicative structure is given by

Ext∗,∗E(1)∗E(1)(E(1)∗, E(1)∗) ∼= Z(2)[ρ2t+1, x−2,i : t 6= −1, i > 0]/(R)

where ρ2t+1 is in bidegree (1, 2t+2), x−2,i is in bidegree (2, 0), and R is an ideal of
relations. To describe these relations, let x denote ρ7ρ−7 in bidegree (2, 2). Then
R is generated by the following relations:

• 2ρ4t+1 = 0 ;
• 8ρ8t+3 = 0;
• 16tρ8t−1 = 0 for all t 6= 0;
• 2x−2,i = x−2,i−1 for i > 0 and 2x−2,1 = 0;
• ρ2s+1ρ2t+1 = ρ1ρ2(s+t)+1 except in the following cases:

– ρ8s+1ρ8t+7 = x when s + t = −1;
– ρ8s+5ρ8t+3 = x when s + t = −1;
– ρ8s+3ρ8t+7 = 0 ;
– ρ8s+7ρ8t+7 = 0 when s + t 6= −2;
– ρ8s+7ρ8t+7 = x−2,k when s + t = −2, where 2k is the order of ρ8s+7

(which is also the order of ρ8t+7);
– ρ8s+3ρ8t+3 = 0 when s + t 6= −1; and
– ρ8s+3ρ8t+3 = x−2,3 when s + t = −1.

Now the first possible nonzero differential in the E(1)-based Adams spectral se-
quence converging to π∗L1S

0 is d3. The behavior of d3 is determined by d3(1) =
d3(ρ8s+1) = d3(ρ8s+7) = 0 and d3(ρ3) = ρ2

1x, d3ρ8s+3 = ρ3
1ρ8s−1 when s 6= 0, and

d3(ρ8s+5) = ρ3
1ρ8s+1. The resulting E4 term is concentrated in filtrations less than

4, so no further differentials are possible and E4 = E∞. There is a nontrivial exten-
sion: we have 4(2ρ8s+3) = ρ2

1ρ8s+1. Of course, the homotopy element corresponding
to ρ8s+1 is often denoted α4s+1, and the homotopy element corresponding to 2ρ8s+3
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is often denoted α4s+2/2. The reader will note that there are some mistakes in the
statement of [Rav84, Theorem 8.15]. Indeed, πiL1S

0 = Z/16s if i = 8s − 1, not
Z/2s. Also, the multiplication map π8s+3 ⊗ π−8s−5 has kernel Z/4, not Z/2.

Armed with this calculation, we can now prove Theorem 6.1.

Proof of Theorem 6.1. Suppose Z ∈ Pic0(L1). Then the E2-term of the E(1)-based
Adams spectral sequence converging to π∗Z is a free module over the E2-term for
L1S

0, generated by some class y, by Theorem 2.4. If d3y = 0, then the differential
d3 is precisely the same as it is in the spectral sequence for L1S

0. Thus the spectral
sequence collapses at E4, and the class y corresponds to a homotopy class L1S

0 −→ Z
inducing an E(1)-equivalence. Thus Z ∼= L1S

0.
We may therefore assume d3y 6= 0. Then we must have d3y = ρ2

1ρ−3. This
then determines d3, and we find once again that there are no elements in E4 above
filtration 3, so E4 = E∞. We can then read off the homotopy groups of Z, and we
find π0Z ∼= Z(2), π1Z = π2Z = 0, and π3Z ∼= Z/8. Thus an element Y of Pic0(L)
is trivial if and only if π0Y ∼= Z/2⊕ Z ∼= π0L1S

0.
Our strategy is to apply this criterion to Z ∧ L1QM . Smashing the defining

cofiber sequence of QM with Z, we find an exact sequence

π1Z −→ π0(Z ∧ Σ−3M(2)) −→ π0(Z ∧QM) −→ π0Z −→ π−1(Z ∧ Σ−3M(2))

From our calculation above, we find π0(Z ∧ Σ−3M(2)) ∼= Z/2 and π−1(Z ∧
Σ−3M(2)) = 0. Hence π0(Z ∧ QM) ∼= Z/2 ⊕ Z. Thus Z ∧ QM ∼= L1S

0, so
Z ∼= L1DQM . By taking Z = QM , we find L1DQM ∼= L1QM , so the theorem is
proved.

We point out that the 2-completion of L1QM is the Brown-Comenetz dual of
M1S

0.
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