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TATE BLUESHIFT AND VANISHING FOR REAL ORIENTED

COHOMOLOGY

GUCHUAN LI, VITALY LORMAN, AND J.D. QUIGLEY

Abstract. We study transchromatic phenomena for the Tate construction of Real ori-
ented cohomology theories. First, we show that after suitable completion, the Tate con-
struction with respect to a trivial Z/2-action on height n Real Johnson–Wilson theory
splits into a wedge of height n−1 Real Johnson–Wilson theories. This is the first example
of Tate blueshift at all chromatic heights outside of the complex oriented setting. Second,
we prove that the Tate construction with respect to a trivial finite group action on Real
Morava K-theory vanishes, refining a classical Tate vanishing result of Greenlees–Sadofsky.
In the course of proving these results, we develop some ideas in equivariant chromatic ho-
motopy theory (e.g., completions of module spectra over Real cobordism, C2-equivariant
chromatic Bousfield localizations) and apply the parametrized Tate construction.

Contents

1. Introduction 1
2. Real representations and Real oriented cohomology theories 9
3. Completion and Bousfield localization 12
4. Tate constructions 17
5. Blueshift for Real oriented cohomology theories 25
6. Tate vanishing 32
References 38

1. Introduction

1.1. History, motivation, and main results. Chromatic homotopy theory provides a
filtration of the stable homotopy category of finite p-local complexes. If X is a finite
p-local complex, then the Hopkins–Smith thick subcategory theorem [HS98] and Hopkins–
Ravenel chromatic convergence theorem [Rav92] provide a filtration of X whose n-th level
is given by the Bousfield localization LE(n)X of X with respect to the n-th Johnson–Wilson
theory E(n). On homotopy groups, these localizations decompose π∗(X) into periodic
families of elements of increasing periodicity [DHS88]. However, even for the simplest
finite complexes like the sphere, very little is known about π∗LE(n)X for n ≥ 3, cf. the
computations of Miller–Ravenel–Wilson [MRW77]. Because of the difficulties in analyzing
the stable homotopy category beyond filtration 2, it is desirable to find ways of comparing
information from different levels of the filtration; this is sometimes called transchromatic
homotopy theory.

The purpose of this paper is to study transchromatic phenomena for the Tate construction
of Real oriented cohomology theories. Let E be a cohomology theory equipped with an
action by a finite group Σ. The Σ-Tate construction of E, denoted EtΣ, is the cofiber of
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the additive norm map from the Σ-homotopy orbits EhΣ to the Σ-homotopy fixed points
EhΣ [GM95]. We discuss Real oriented cohomology theories further in Section 1.2.1.

Over the past four decades, the Tate construction has been observed to produce interest-
ing transchromatic phenomena when applied to chromatic cohomology theories equipped
with a trivial Σ-action. We mention several examples here1:

1984: In [DM84], Davis–Mahowald showed BP 〈1〉tΣ2 and kotΣ2 split into wedges of sus-
pensions of HZ2. Note that BP 〈1〉 and ko have chromatic height one and HZ2 has
chromatic height zero. This sort of decrease in chromatic height after applying the
Tate construction is referred to as Tate blueshift.

1986: In [DJK+86], Davis–Johnson–Klippenstein–Mahowald–Wegmann showed BP 〈2〉tΣ2

splits into a wedge of suspensions of BP 〈1〉 after p-completion. This was the first
example of Tate blueshift from height two to height one; it motivated the conjecture
that similar blueshift results hold at all chromatic heights.

1995: In [GM95], Greenlees–May proved the first non-connective Tate blueshift result,
showing that KU tΣ2 and KOtΣ2 split into wedges of suspensions of HQ.

1996: In [GS96], Greenlees–Sadofsky observed the first instance of Tate vanishing by show-
ing that K(n)tΣ ≃ ∗ for any finite group Σ.

1998: In [AMS98], Ando–Morava–Sadofsky proved the first instance of Tate blueshift at
all chromatic heights: after K(n − 1)-localization, E(n)tΣ2 splits into a wedge of
suspensions of E(n− 1).

2019: In [BR19], Bailey–Ricka showed that tmf tΣ2 splits into a wedge of suspensions of ko
after 2-completion. Note that tmf has chromatic height two and ko has chromatic
height one, and neither cohomology theory is complex orientable. This is the first
example of Tate blueshift where neither cohomology theory is complex orientable.

In particular, Tate blueshift and vanishing have been observed at all chromatic heights in the
complex oriented setting, but only at heights one and two outside of the complex oriented
setting (where computations tend to be far more difficult and much less is known). Our
main theorems provide the first examples of Tate blueshift and vanishing at all chromatic
heights for cohomology theories which are not complex orientable:

Theorem A (Real oriented Tate blueshift, Theorem 5.12). Let λn := 2n+2(2n−1 − 1) + 1
and let Σ2 act trivially on the n-th Real Johnson–Wilson theory ER(n) (see Section 2.3 for
a definition).

(1) For n ≥ 2 there is a map of spectra

lim
i

∨

j≤i

Σ(1−λn−1)jER(n− 1) −→ (ER(n)tΣ2)∧
În−1

that becomes an isomorphism on homotopy groups after completion at În−1, or

equivalently, afterK(n−1)-localization. Here, În−1 is the ideal Īn−1 = (p, v̄1, . . . , v̄n−2)
in E(n)⋆ shifted into integer degrees using the invertible class y ∈ πλ+σE(n). (See
Section 2.4 for more on ER(n), E(n), and their coefficients.)

(2) For n = 1, there is an equivalence of spectra

lim
i

∨

j≤i

Σ4jER(0) ≃ ER(1)tΣ2 ,

where ER(0) ≃ HQ and ER(1) ≃ KO(2).

1Our list of examples expands on the list appearing in the introduction to [BR19].
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Theorem B (Real oriented Tate vanishing, Theorem 6.14). Let Σ be a finite group and let
Σ act trivially on the n-th Real Morava K-theory KR(n) (see Section 2.3 for a definition).
Then

KR(n)tΣ ≃ ∗.

Before discussing these results in depth, we mention three applications:

Remark 1.1. The n = 1 case of Theorem A recovers Greenlees and May’s identification of
KOtΣ2 mentioned above. Unlike their proof, which relied on the Atiyah–Segal Completion
Theorem, our proof is purely homotopical.

Remark 1.2. Recent work of the first author with Shi, Wang, and Xu [LSWX19] suggests
that the Hurewicz image of ER(n) becomes increasingly large as n increases.2 Theorem A
therefore provides a means of analyzing the complicated Hurewicz image of ER(n) using
the simpler Hurewicz image of ER(n − 1).

Remark 1.3. The proof of [GS96, Cor. 1.2] holds with K = KR(n), so Theorem B implies
that the duality map induced by the transfer

KR(n) ∧BΣ+ → F (BΣ+,KR(n))

is an equivalence, i.e., BΣ+ is self-dual with respect to KR(n).

1.2. Overview of the main ideas. There are two key ideas going into the proofs of
Theorems A and B. The first is the use of Real oriented cohomology theories, which are
genuine C2-equivariant refinements of complex oriented cohomology theories. The second
is the parametrized Tate construction, a genuine C2-equivariant refinement of the ordinary
Tate construction, which we discuss further in Section 1.2.3.

1.2.1. Real oriented cohomology theories. Real oriented cohomology theories are genuine
C2-equivariant cohomology theories equipped with a choice of Thom class for Real vector
bundles. The primary examples are the K-theory of Real vector bundles KR [Ati66], Real
cobordism MR [Lan68], certain forms of topological modular forms with level structure
[HM17], and the two examples most relevant to this paper, Real Johnson–Wilson theory
E(n) and Real Morava K-theory K(n) [HK01]. The cohomology theories ER(n) and KR(n)
appearing above are the categorical fixed points of E(n) and K(n), respectively.

As their names suggest, E(n) and K(n) are genuine C2-equivariant lifts of classical
Johnson–Wilson theory E(n) and classical Morava K-theory K(n). We mentioned Tate
blueshift and vanishing results for these cohomology theories already:

• Ando–Morava–Sadofsky [AMS98] proved that there is a map of spectra

(1) lim
i

∨

j≤i

Σ2jE(n− 1) → (E(n)tΣ2)∧In−1

which induces an isomorphism on homotopy groups after completion at In−1, or
equivalently after Bousfield localization with respect to K(n− 1).

• Greenlees–Sadofsky [GS96] showed that

(2) K(n)tΣ ≃ ∗,

where Σ is any finite group acting trivially on K(n).

2For example, ER(n) detects the first n Hopf invariant one and Kervaire invariant one elements and the
first n− 1 κ̄-elements in the stable homotopy groups of spheres, if they are nontrivial.
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1.2.2. Sketch of Proof of Theorem B. It turns out that Theorem B follows fairly directly
from (2). Kitchloo–Wilson [KW07] have produced a cofiber sequence

ΣλKR(n)
y
→ KR(n) → K(n)

relating KR(n) to K(n). We prove Theorem B by using this cofiber sequence to bootstrap
the Greenlees–Sadofsky Tate vanishing result forK(n) (2) toKR(n). This requires a careful
analysis of the Real Morava K-theory of inverse limits.

1.2.3. The parametrized Tate construction. Surprisingly, Theorem A does not follow easily
from (1) in the same way that Theorem B follows from (2). Moreover, since the techniques
of [AMS98] rely heavily on the fact that E(n) is complex oriented (e.g., to use formal group
law computations in their arguments), the arguments of Ando–Morava–Sadofsky cannot be
applied mutatis mutandis with ER(n) in place of E(n). Therefore we need genuinely new
ideas to prove Theorem A.

We prove Theorem A by producing a genuine C2-equivariant refinement of the Ando–
Morava–Sadofsky equivalence (1) and then passing to categorical fixed points. The key to
producing this refinement is the parametrized Tate construction, denoted (−)tC2

Σ2 , which is
a genuine C2-equivariant refinement of the ordinary Tate construction (−)tΣ2 [QS21].3 The
parametrized Tate construction is obtained by replacing the universal space EΣ2 by the
C2-equivariant universal space EC2

Σ2 in the definition of the Tate construction; we discuss
the idea behind this replacement further in Section 1.3.2.

We now state our main equivariant theorem.

Theorem C (Parametrized blueshift, Theorem 5.11). Let Σ2 act trivially on E(n). There
is a map of genuine C2-spectra

lim
i

∨

j≤i

ΣρjE(n− 1) → (E(n)tC2
Σ2)∧In−1

which induces an isomorphism on C2-equivariant homotopy groups after completion at
In−1 = (p, v̄1, . . . , v̄n−2) or equivalently after K(n − 1)-localization. Here, ρ denotes the
regular representation of C2.

We defer an in-depth discussion of Theorem C and the parametrized Tate construction
until Section 1.3. However, we note that the parametrized Tate construction also fits into
a genuine C2-equivariant refinement of Theorem B:

Theorem D (Parametrized vanishing, Theorem 6.10). Let G be a finite abelian group and
let G act trivially on K(n). Then

K(n)tC2
G ≃ ∗.

Remark 1.4. We emphasize that Theorem D is not necessary for the proof of Theorem
B since we can use the Kitchloo–Wilson cofiber sequence to obtain a more direct proof.
However, Theorem D does have a concrete application in C2-equivariant homotopy the-
ory. By replacing the components in the proof of [GS96, Cor. 1.2] by their parametrized
counterparts, we find that the duality map induced by the transfer

K(n) ∧BC2
Σ+ → F (BC2

Σ+,K(n))

is an equivalence of C2-spectra, i.e., the C2-equivariant classifying space BC2
Σ+ is self-dual

with respect to K(n).

3This is the generalized Tate construction [GM95] for the family F of subgroupsH ⊆ Σ2⋊C2 withH∩Σ2 = 1.
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1.2.4. Sketch of Proof of Theorem A. The proof of Theorem A from Theorem C is not
immediate: the C2-fixed points of the parametrized Tate construction are not generally the
ordinary Tate construction of the C2-fixed points. In general, there is not even a comparison
map between these two constructions; however, we show that using certain homotopy limit
models for the Tate constructions (e.g., Corollary 4.15) and cofreeness (Definition 3.6) of
E(n), one can construct a comparison map for E(n).

Theorem E (Tate comparison, Theorem 5.8). The map

E(n)tΣ2 → E(n)tC2
Σ2

is a C2-equivariant weak equivalence.

We prove this comparison theorem by analyzing the RO(C2)-graded homotopy groups
of both sides. While the homotopy of the right-hand side follows from a fairly standard
formal group law argument (albeit adapted to the Real oriented setting), the homotopy of
the left-hand side is more subtle. In particular, we need to employ E(n)-orientability results
from [KW15, KLW18], properties of the coefficients of ER(n), and the ER(n)-cohomology
of stunted projective spectra. After deducing that the homotopy groups of both sides are
abstractly isomorphic, we use a cofinality argument to show that the two sides, viewed as
certain inverse limits, are equivalent.

Remark 1.5. Some results in this work apply to general Real oriented cohomology theo-
ries, such as Theorem F below. However, the combination of ingredients needed to prove
Theorem E mentioned above (cofreeness, orientability results, and understanding of the
coefficients) is at present known specifically only for E(n). Proving similar results for other
equivariant cohomology theories and their fixed points could be a first step towards expand-
ing our understanding our blueshift to more spectra.

1.3. Further discussion of Theorem C. To explain the proof of Theorem C, we first
recall in Section 1.3.1 the proof of the analogous classical result of Ando–Morava–Sadofsky.
Each step in their proof requires a novel construction or technique in equivariant homotopy
theory; we summarize these changes in Section 1.3.2.

1.3.1. The Ando–Morava–Sadofsky equivalence. If E is a complex oriented cohomology the-
ory equipped with a trivial Σ2-action, then there is an isomorphism

(3) π−∗(E
tΣ2) ∼= E∗((x))/[2](x)

with |x| = 2, where [2](x) is the 2-series of the formal group law associated to E. By
examining [2](x) for E(n), one produces an isomorphism

(4) π∗(E(n)tΣ2)∧In−1

∼= E(n− 1)∗((x))
∧
In−1

.

Next, one must produce the map (1). The map is constructed using the formula for trivial
Σ2-Tate constructions [GM95]

(5) XtΣ2 ≃ lim
i
(ΣX ∧ P∞

−i),

where P∞
−i = Th(−iγ → RP∞). The map (1) is obtained as the inverse limit of maps from

bounded below wedges to bounded below stunted projective spectra produced using special
properties of MU -module spectra. Finally, one identifies In−1-completion with K(n − 1)-
localization using the equivalence

(6) LK(j−1)M ≃ (v−1
j−1M)∧Ij−1
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which holds for any MU -module spectrum M .

1.3.2. Sketch of Proof of Theorem C. The technical core of this work is concerned with
proving Real oriented analogs of (3)-(6). Our first key observation is that an analog of (3)
holds for Real oriented cohomology theories if one replaces the (classical) Tate construction
by its C2-equivariant enrichment, the parametrized Tate construction.

Theorem F (Theorem 5.7). Let E be a Real oriented cohomology theory. Then there is
an RO(C2)-graded isomorphism

(3’) π−⋆E
tC2

Σ2 ∼= E⋆((x̄))/([2](x̄))

where |x̄| = ρ. Here, ρ is the regular representation of C2.

Remark 1.6. As we have mentioned above, the parametrized Tate construction is obtained
by replacing the universal space EΣ2 by the C2-equivariant universal space EC2

Σ2. With
this in mind, readers familiar with Real oriented homotopy theory may not be surprised
by Theorem F; C2-equivariant universal spaces already appear in conjunction with Real
oriented cohomology theories in the work of Hu–Kriz [HK01] and Kitchloo–Wilson [KW07].
Indeed, Theorem F follows from a result of Kitchloo–Wilson which can be stated in our
language using parametrized homotopy fixed points.

With this formula available, we adapt the formal group law computations of [AMS98] to
obtain an RO(C2)-graded isomorphism

(4’) π⋆(E(n)
tC2

Σ2)∧
Īn−1

∼= E(n− 1)⋆((x))
∧
Īn−1

.

These computations are fairly similar to their classical counterparts; the key point is that
we need to work with the parametrized Tate construction instead of the ordinary Tate
construction in order to bring formal group laws into the picture.

To construct a map of C2-spectra, we use a version of (5) for the parametrized Tate
construction from work Shah and the third author [QS21], which gives an equivalence of
genuine C2-spectra

(5’) XtC2
Σ2 ≃ lim

i
(ΣX ∧Q∞

−i)

where Q∞
−i = Th(−iγ → BC2

Σ2) is the Thom spectrum of the C2-equivariant classifying
space of Σ2.

We obtain the map in Theorem C using the formula (5’) along with several new results on
completions ofMR-modules which refine classical results of Greenlees–May forMU -modules
[GM97]. These results may be of independent interest.

Finally, we note that the last statement of Theorem C relies on the following identification
of certain equivariant Bousfield localizations and completions.

Theorem G (Localization and completion comparison, Theorem 3.12). Let E be any
MR(n) := v̄−1

n MR(2)-module spectrum such that the underlying canonical map E → E∧
Im

factors through LK(m)E and gives an equivalence LK(m)E ≃ E∧
Im

.

(a) The canonical equivariant map E → E∧
Īm

factors through LK(m)E and gives an

equivalence

(6’) LK(m)E ≃ E∧
Īm

.

(b) The canonical map ER → ER∧
Îm

factors through LK(m)ER and gives an equivalence

LK(m)ER ≃ ER∧
Îm

(where ER denotes the categorical fixed points of E).
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1.4. Future work. We conclude with some directions for future work.

1.4.1. Redshift for Mahowald invariants. In [MR93], Mahowald and Ravenel applied the
Davis–Mahowald Tate splitting for kotΣ2 to calculate the Mahowald invariants M(2i), i ≥ 1.
In particular, they showed that M(2i) is v1-periodic for all i ≥ 1. Work of the third au-
thor [Qui22] applies the Bailey–Ricka splitting for tmf tΣ2 towards calculating the iterated
Mahowald invariants M(M(2i)), and preliminary work along with the low-dimensional cal-
culations of Behrens [Beh07] suggest that M(M(2i)) is v2-periodic.

The Mahowald invariant has been conjectured by Mahowald and Ravenel to take vn-
periodic classes to vn-torsion classes (with some exceptions) [MR84], and empirical evidence
suggests that this redshift is closely intertwined with blueshift for the Tate construction.
The fixed point spectra ER(n) have been shown to detect interesting elements of height n
by the work of the first author with Shi, Wang, and Xu [LSWX19]. It would be interesting
to apply the Tate splitting for ER(n)tΣ2 above in order to calculate Mahowald invariants of
vn-periodic elements; a natural starting point would be M(κ̄) where κ̄ is the (v2-periodic)
generator of π20(S

0) which is first detected in the Hurewicz image of ER(2).

1.4.2. Tate blueshift for fixed points of Lubin-Tate theory. Ando, Morava, and Sadofsky
remark in [AMS98] that after appropriate completion, analogs of their blueshift results
hold for Lubin–Tate theory. Since Lubin–Tate theory is Real oriented [HS20], we expect
blueshift for the Tate construction of the C2-fixed points of Lubin-Tate theory. It would
also be interesting to investigate this question for fixed points of Lubin-Tate spectra with
respect to larger subgroups of the Morava stabilizer group.

1.4.3. Tate blueshift for larger group analogs of E(n). Recent work of Hahn–Shi [HS20]
and Beaudry–Hill–Shi–Zeng [BHSZ21] produces genuine C2m-spectra Em(n) (denoted as

BP ((C2m ))〈n〉 in [BHSZ21]) for all m ≥ 1 such that E1(m) = E(m). In other words, Em(n)
is an analog of Real Johnson–Wilson theory where C2 is replaced by C2m . We also note
that the chromatic height of Em(n) is n · 2m−1.

We expect that there is a map of genuine C2m-spectra between a wedge of RO(C2m)-

graded suspensions of Em(n − 1) and (Em(n)tC2m
Σ2)∧

Ĩn−1

which becomes an equivalence of

C2m-spectra after completion at an appropriate ideal Ĩn−1 obtained from Īn−1. Moreover,
we expect the C2m-fixed points of this equivalence to be a K(n · 2m−1)-local equivalence
between a wedge of suspensions of (Em(n− 1))C2m and (Em(n)C2m )tΣ2 .

1.4.4. Bounded below blueshift at higher heights. One may recover connective real K-theory
ko as the C2-fixed points of the slice cover of E(1). Slice covers do not generally interact
well with Tate constructions, but perhaps the Davis–Mahowald splitting for kotΣ2 can be
recovered from our results. This would lead to a new splitting for the Tate constructions of
connective covers of Real Johnson–Wilson theories.

1.4.5. K(n)-local Tate vanishing. Greenlees and Sadofsky’s Tate vanishing for Morava K-
theory [GS96] was used to show that the Tate construction vanishes K(n)-locally by Hovey
and Sadofsky in [HS96]. An analogous result should hold for the parametrized Tate con-
struction in the K(n)-local setting. As in the classical setting, this K(n)-local parametrized
Tate vanishing ought to be an example of parametrized ambidexterity [QS21, Sec. 4].
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1.5. Organization. In Section 2, we recall the results from Real oriented homotopy theory
necessary for later sections. In particular, we recall the theory of Real representations, Real
vector bundles, Real orientations, and the usual examples of Real oriented cohomology
theories. We then recall several important results about Real Johnson–Wilson theory E(n),
Real Morava K-theory K(n), and their C2-fixed point spectra ER(n) and KR(n).

In Section 3, we study certain completions of the Real Johnson–Wilson spectrum E(n)
and its fixed point spectrum ER(n). We then discuss Bousfield localizations with respect
to Real Morava K-theory K(n) and its fixed point spectrum KR(n). The constructions are
compared in Theorem G (Theorem 3.12), which is used in the statement of Theorems A
and C.

In Section 4, we discuss variations of the Tate construction. We begin with a rapid
review of the classical Tate construction and prove some useful results about its interaction
with completion. We then turn to the ordinary and parametrized Tate constructions in the
genuine equivariant setting.

In Section 5, we prove Theorems A, C, and E. We start with a quick outline of Ando,
Morava, and Sadofsky’s proof of Tate blueshift for (ordinary) Johnson–Wilson theories. We
then explain how certain key ingredients of their proof can be upgraded to the genuine
C2-equivariant setting and prove Theorem F (Theorem 5.7) and its analog for the ordinary
Tate construction (Theorem 5.6). This discussion culminates in the proof of Theorem E
(Theorem 5.8), which is another key ingredient in the proof of Theorems A and C. With all
of these ingredients in place, we then prove Theorems C (Theorem 5.11) and A (Theorem
5.12).

In Section 6, we turn to Tate vanishing. We begin by proving Theorem D (Theorem
6.10) by adapting the arguments of Greenlees–Sadofsky in the classical setting [GS96] to
the C2-equivariant setting. Our argument is quite similar in spirit to theirs, but we require
several new technical results. We then use the aforementioned results of Greenlees–Sadofsky
in conjunction with the Kitchloo–Wilson cofiber sequence [KW07] to prove Theorem B
(Theorem 6.14); this requires a careful analysis of certain inverse limits.

1.6. Notation. We will use bold face E to denote a C2-equivariant spectrum and ordinary
E to denote its underlying nonequivariant spectrum. We will use ER to denote its fixed
points ER = EC2 . The E-cohomology of a C2-space X is RO(C2)-graded, and we will use
a + bσ to denote the direct sum of a copies of the trivial representation with b copies of
the sign representation. We will use ρ to denote the regular representation, 1 + σ. Classes
in degrees kρ will generally have a bar over them, e.g. the classes vi ∈ π(2i−1)ρE(n) above.
Whenever a class in degree kρ is shifted into integer degree via multiplying by a power of
the (invertible) class y in degree λ+σ (defined in Section 2.4), it ends up in degree k(1−λ)
and the result will have a hat over it, e.g. the classes v̂i ∈ π(2i−1)(1−λ)E(n).

The ordinary G-Tate construction of a spectrum X equipped with a C2-action will be
denoted XtG. The C2-parametrized G-Tate construction of a C2-spectrumX equipped with
a G-action will be denoted XtC2

G.
All limits taken in the category of spectra should be interpreted as homotopy limits, and

the indexing category of lim
k

is always Nop.
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2. Real representations and Real oriented cohomology theories

In this section, we discuss Real oriented homotopy theory. In Section 2.1, we recall Real
representation theory and discuss a special class of examples. We recall some definitions
and results concerning Real oriented cohomology theories and especially the Real Johnson–
Wilson theories in Sections 2.2 - 2.5.

2.1. Real representations, spaces, and vector bundles. We begin by recalling the
theory of Real representations, Real spaces, and Real vector bundles.

Definition 2.1. [AS69][Fok14, Def. 2.2.1] A Real Lie group is a pair (G,σG) where G is
a Lie group and σG is a Lie group involution on it. A Real representation V of a Real
Lie group (G,σG) is a finite-dimensional complex representation of G equipped with an
anti-linear involution σV such that σV (gv) = σG(g)σV (v).

Example 2.2. If G is an abelian group, then inversion (−)−1 : G → G defines an involution
on G which equips G with the structure of a Real Lie group.

We will also need the notion of Real spaces and Real vector bundles when we discuss
Real orientations:

Definition 2.3. [Fok14, Def. 1.3.1] A Real space is a pair (X,σX ) where X is a topological
space equipped with an involutive homeomorphism σX .

A Real vector bundle over X is a complex vector bundle E over X which itself is also a
Real space with involutive homeomorphism σE satisfying

(1) σX ◦ p = p ◦ σE , where p : E → X is the projection map, and
(2) σE maps Ex to EσX(x) anti-linearly.

2.2. Real cobordism and Real orientations. We now recall the notion of Real orien-
tation from [HK01].

Definition 2.4. [HK01, Def. 2.2] A C2-spectrum E is said to be Real oriented if there is a
class x ∈ Eρ(CP∞) which restricts to 1 in Eρ(CP 1) = Eρ(Sρ) ∼= E0(S0).

The Real cobordism spectrum MR was first studied by Araki and Landweber; see [HK01,
Sec. 2] for references. If E is a C2-equivariant ring spectrum, Real orientability is equivalent
to the existence of a map of ring spectra MR −→ E.

A Real oriented theory E has Thom isomorphisms for Real vector bundles. We would
also like to record a general result from [HM17] that we will find useful for proving when
two C2-spectra are weakly equivalent:

Proposition 2.5. [HM17, Lem. 3.4] Let f : E −→ F be a natural transformation of C2-
equivariant homology theories with underlying theories E and F . Assume that f induces
isomorphisms Ekρ −→ Fkρ and E2k −→ F2k for all k ∈ Z. Assume further that Ekρ−1 −→
Fkρ−1 is mono for all k ∈ Z. Then f is a natural isomorphism.

We will always apply this proposition in the case where E and F satisfy the following:

(1) Both E and F are MR-modules,
(2) The forgetful maps Ekρ −→ E2k and Fkρ −→ F2k are isomorphisms, and
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(3) Ekρ−1 = Fkρ−1 = 0.

To apply the proposition to f : E → F, it then suffices to check that f induces an isomor-
phism on coefficients in degrees kρ.

2.3. Real Johnson–Wilson theories and Real Morava K-theories. We now recall the
C2-spectra which are the focus of this paper. In degrees kρ, the forgetful map πkρMR(2) −→
π2kMU(2) is an isomorphism [HK01]. It follows that there are C2-equivariant refinements
vk ∈ π(2k−1)ρMR(2) of the ordinary nonequivariant vk ∈ π2(2k−1)MU(2).

We let MR(n) denote the spectrum MR(2)[v
−1
n ]. It is a C2-equivariant commutative ring

spectrum [KLW18, Lemma 4.2].
The n-th Real Johnson–Wilson theory E(n) is constructed from MR(n) by killing the

ideal generated by vi for i > n. Its underlying spectrum is the n-th Johnson–Wilson theory
E(n) whose coefficients are π∗E(n) = Z(2)[v1, . . . , vn−1, v

±1
n ].

The n-th Real Morava K-theory K(n) is obtained from E(n) by further quotienting by
vi for 0 ≤ i ≤ n − 1. The underlying spectrum of K(n) is the n-th Morava K-theory K(n)
whose coefficients are π∗K(n) = F2[v

±1
n ].

2.3.1. Multiplicative structure. It is not known whether E(n) or K(n) are homotopy com-
mutative, associative, and unital ring spectra. In the case of E(n), Kitchloo, Wilson, and
the second author have shown in [KLW17] that it is homotopy commutative, associative,
and unital up to phantom maps. Moreover, E(n) represents a multiplicative cohomology
theory on the category of spaces valued in commutative rings. This turns out to be enough
structure for our purposes. We also note that the C2-fixed points ER(n) have an E∞-ring
structure after K(n)-localization by work of Hahn and Shi [HS20]. In situations where more
structure is needed, the spectrum MR(n) is a good replacement for E(n).

Even less is known about the multiplicative structure of Real Morava K-theory. It is
not known if K(n) is a homotopy commutative and associative ring spectrum, but we do
know that the homotopy groups of its fixed points π∗KR(n) cannot support a ring structure
which is compatible with the inclusion of fixed points map π∗KR(n) −→ π∗K(n). Indeed,
this is visible even when n = 1, i.e. for mod 2 real K-theory. One can check that there is
a class in π2(KO/2) which maps to v1 ∈ π2(KU/2). This class must cube to zero in the
source since π6(KO/2) = 0, yet v31 6= 0 in π6(KU/2). We thank Steve Wilson for pointing
this out to us. We do however know that K(n) is a module spectrum over MR(n), which is
all that we will require.

2.3.2. Freeness and cofreeness. As a C2-spectrum, E(n) has some nice properties. The
natural maps EC2+ ∧ E(n) −→ E(n) and E(n) −→ F (EC2+,E(n)) are both equivariant
equivalences, making E(n) C2-free and cofree (Definition 3.6), respectively [HK01, Com-
ment (4) on p. 349]. These properties will be important to our computation of the Tate
construction.

2.4. The coefficients of ER(n). The homotopy of E(n) may be computed by a homotopy
fixed point spectral sequence, a Bockstein spectral sequence, or a slice spectral sequence
([KW07, Section 4], [KW15, Theorem 3.1], and [HHR16, Theorem 9.9], respectively). In
degrees multiples of the regular representation, the forgetful map gives an isomorphism
πkρE(n) −→ π2kE(n). Outside of these degrees, the coefficients are considerably more
interesting and contain some 2-torsion. The reader may consult [KW15, Section 3] for a
full description.
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For our purposes, it will suffice to describe some distinguished classes in π⋆E(n) and
πkE(n) = πkER(n) for n ≥ 1. Let λ denote the positive integer 2n+2(2n−1 − 1) + 1.

(1) There are equivariant refinements vi ∈ π(2i−1)ρE(n) of the classical nonequivariant

vi in π2(2i−1)E(n).

(2) There is an invertible class v2
n+1

n ∈ π2n+1(2n−1)E(n) which makes the fixed-point

theory 2n+1(2n − 1)-periodic. When n = 1, this gives the 8-periodicity of KO, and
when n = 2, we get the 48-periodicity of ER(2).

(3) There is an invertible class y ∈ πλ+σE(n). By multiplying by a power of y, we
may move any class into integer grading. In particular, given a class in degree a
multiple of the regular representation z ∈ πkρE(n), we may multiply by y−k to

obtain ẑ := zy−k ∈ π(1−λ)kER(n).
(4) There is a class x ∈ πλER(n) which is 2-torsion (and generates all of the 2-torsion

in the coefficients). We have x2
n+1−1 = 0. When n = 1, this class is η ∈ π1KO(2).

Finally, we note that pieces of the Hurewicz image of ER(n) can be computed using
knowledge of the stable stems. Work of Shi, Wang, Xu, and the first author [LSWX19,
Thm. 1.8] says that if the i-th Hopf invariant one element, the i-th Kervaire invariant
one element, or the j-th κ̄-element survives in the Adams spectral sequence for the sphere,
then its image under the Hurewicz map π∗(S

0) → π∗(ER(n)) is nontrivial when i ≤ n or
j ≤ n− 1.

2.5. The Kitchloo–Wilson fibration. Let n ≥ 1. In [KW07], Kitchloo and Wilson show
that multiplication by the class x ∈ πλER(n) yields a fibration of spectra

ΣλER(n) → ER(n) → E(n).

In fact, for any C2-spectrum E, one can take the equivariant cofibration C2+ → S0 → Sσ

and derive from it the fibration

(Σ−σE)C2 = F (Sσ ,E)C2 → ER = EC2 → F (C2+ ,E)
C2 = E

in which the first map is multiplication by aσ. If the spectrum E is further an MR(n)-
module spectrum, then the results of [KW07] show that the invertible class y described in
the previous section is in fact an invertible class in πλ+σMR(n). Multiplication by this class
gives an equivariant equivalence that allows one to shift the suspension in the first term
into integer grading, yielding the Kitchloo–Wilson fibration

ΣλER → ER → E

for any MR(n)-module spectrum E. We will use this extensively when we study Bousfield
localizations of E(n), ER(n), and related spectra in Section 3.

2.6. ER(n) orientations. When identifying the Tate construction for ER(n) in Section
5, we will require the following result concerning when real vector bundles are ER(n)-
orientable:

Theorem 2.6. [KLW18, Theorem 6.1], [KW15, Theorem 1.4] For any real vector bundle ξ,
the bundle 2n+1ξ is orientable (and thus has a Thom class) with respect to ER(n). There is
a corresponding E(n)-orientation such that the ER(n)-based Euler class for 2n+1ξ is sent
under the forgetful map to a unit (in the cohomology of the base) multiple of the E(n)-based
Euler class.
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We note in passing that while the exponent of 2 in this result cannot be improved (it is
shown in [KLW18] that there exists a bundle such that 2n times it is not ER(n)-orientable),
this result is certainly not optimal. For n = 1, it states that 4ξ is KO(2)-orientable for any
ξ; however, the stronger statement that Spin bundles are KO(2)-orientable is known. It
remains an interesting open problem to identify criteria under which a bundle possesses an
ER(n)-orientation.

3. Completion and Bousfield localization

In this section, we collect some results concerning completions and Bousfield localizations
of E(n) and its fixed points that we will use in later sections. Some may be of independent
interest.

3.1. Completion of E(n). We begin by defining completion for MR-module spectra and
describing its effect on homotopy groups.

Definition 3.1. (Compare with [GM97]) Let a ∈ πC2
⋆ MR and let M be an MR-module.

We define the completion M∧
a by

M∧
a := lim

k
Cak,

where Cak is the cofiber of the composite (where we suppress suspensions)

M ≃ S0 ∧M
unit∧idM−−−−−−→ MR ∧M

ak∧idM−−−−−→ MR ∧M → M.

Let I be an ideal in πC2
⋆ MR generated by (a1, · · · , ak). We define M∧

I by setting

M∧
I := ((M∧

a1
)∧a2 · · · )

∧
ak
.

Remark 3.2. It is straightforward to verify that

(M∧
a )

∧
b ≃ (M∧

b )
∧
a .

Lemma 3.3. Let a and M be as in Definition 3.1. If there exists an N > 0 such that no

nontrivial element in ker(πC2
⋆ M

·a
−→ πC2

⋆ M) is aN -divisible, then

πC2

⋆ (M∧
a ) = (πC2

⋆ M)∧a .

Proof. By the Milnor exact sequence for homotopy groups, the left-hand side

πC2

⋆ (M∧
a ) = πC2

⋆ (lim
k
Cak)

fits into a short exact sequence

0 → lim1πC2

⋆+1(Cak) → πC2

⋆ (M∧
a ) → lim

k
πC2

⋆ (Cak) → 0.

Consider the diagram

0 πC2

⋆+1M/ak+1πC2

⋆+1M πC2

⋆+1(Cak+1) ker(πC2
⋆ M

·ak+1

−−−→ πC2
⋆ M) 0

0 πC2

⋆+1M/akπC2

⋆+1M πC2

⋆+1(Cak) ker(πC2
⋆ M

·ak
−−→ πC2

⋆ M) 0.

·a
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The left vertical map is always surjective, so by [Sta19, Tag 0598], we have a short exact
sequence

0 → lim
k
πC2

⋆+1M/akπC2

⋆+1M → lim
k
πC2

⋆+1(Cak) → lim
k

ker(πC2

⋆ M
·ak
−−→ πC2

⋆ M) → 0.

Note that

lim
k
πC2

⋆+1M/akπC2

⋆+1M = (πC2

⋆+1M)∧a

and

lim
k

ker(πC2

⋆ M
·ak
−−→ πC2

⋆ M) = 0

by the assumption that πC2
⋆ M has no infinitely a-divisible element. Hence, we have

lim
k
πC2

⋆ (Cak) = (πC2

⋆+1M)∧a .

The diagram also shows that {πC2
⋆ (Cak)} is Mittag-Leffler, so we only need to show the

right-hand inverse system is Mittag-Leffler. In fact, the stable image is 0. Indeed, for all

nontrivial elements x ∈ ker(πC2
⋆ (M)

·ak
−−→ πC2

⋆ (M)), there is no y ∈ ker(πC2
⋆ M

·ak+N

−−−−→ πC2
⋆ M)

satisfying x = aNy by assumption, so x is not in the image of ker(πC2
⋆ M

·ak+n

−−−→ πC2
⋆ M) for

n > N . �

Now consider the ideal Īn := (v0, v1, . . . , vn−1). We have that the homotopy groups of
the spectrum E(n)∧

Īn
are exactly the Īn-adic completion of π⋆E(n). We use this to prove a

C2-equivariant analog of a proposition of Ando, Morava, and Sadofsky [AMS98, Section 3]

Proposition 3.4. There is a C2-equivalence

(v̄−1
n−1BPR)∧

Īn−1
≃

(
∨

R∈R

Σ|σR|E(n− 1)

)∧

Īn−1

.

In particular, (v̄−1
n−1BPR)∧

Īn−1
is a module spectrum over E(n− 1).

Proof. Nonequivariantly (v−1
n−1BP )∧In−1

is an E(n − 1)-module. As in [AMS98] (p = 2),

the module structure is given as follows. Let R = (r1, r2, · · · ) range over multi-indices of
nonnegative integers (with only finitely many positive coordinates) and let

|R| = 2(r1(2− 1) + r2(2
2 − 1) + · · · ).

Let R be the set of multi-indices with the first n− 2 indices 0, and set

σR = (2n−1rn−1, 2
n−1rn, · · · ).

Let q be the BP∗-module quotient map corresponding to

BP∗BP = BP∗[t1, t2, · · · ] → BP∗[t
2n−1

1 , t2
n−1

2 , · · · ].

Then the composite BP -module map

(7) BP
ηR−→ BP ∧BP

∼
−→

∨

R∈R

Σ|R|BP
q
−→

∨

R∈R

Σ|σR|BP
θ
−→

∨

R∈R

Σ|σR|BP 〈n− 1〉

https://stacks.math.columbia.edu/tag/0598
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is a homotopy equivalence after inverting vn−1 and completing at In−1. The right-hand side
becomes (

∨

R∈R

Σ|σR|E(n− 1)

)∧

In−1

,

which admits an E(n− 1)-module structure. Hence (v−1
n−1BP )∧In−1

is an E(n− 1)-module.

From [HK01, Thm. 4.11], we have a C2-equivariant lift of the map (7), in which

|R| = (r1(2− 1) + r2(2
2 − 1) + · · · )ρ

now lies in in RO(C2). After applying v̄n−1(−/Īkn), both sides are strongly even and the
underlying map is a homotopy equivalence, so it is a C2-equivalence by Proposition 2.5.
From here, the C2-equivariant case proceeds as in the nonequivariant setting. �

Remark 3.5. Proposition 3.4 states that afterK(n)-localization, v̄−1
n BPR splits as a wedge

of RO(C2)-graded suspensions of E(n). It is an interesting open question whether an anal-
ogous splitting holds for cyclic groups of order 2m, where E(n) is replaced by a certain
genuine C2m-spectrum constructed by Beaudry–Hill–Shi–Zeng in [BHSZ21].

3.2. Bousfield localization of E(n). We will be interested both in the C2-equivariant
Bousfield localization LK(m)E(n) as well as the Bousfield localization involving the fixed
points LKR(m)ER(n). We refer the reader to [Bou79] for Bousfield localization, [Rav84] for
chromatic Bousfield localizations, and [Hov07] for Bousfield localization in model categories.

We begin by reviewing free and cofree spectra.

Definition 3.6. A C2-spectrum E is C2-free if the natural map EC2+ ∧ E → E is a C2-
equivariant equivalence. We say E is C2-cofree if the natural map E → F (EC2+,E) is a
C2-equivariant equivalence.

Lemma 3.7. If f : X → Y is an equivariant map which is an underlying equivalence, then

(1) if E is C2-free, then E ∧X → E ∧ Y is an equivariant equivalence, and
(2) if E is C2-cofree, then F (Y,E) → F (X,E) is an equivariant equivalence.

Proof. Since X −→ Y is a C2-equivariant map which is an underlying nonequivariant equiv-
alence, the induced map

X ∧EC2+ −→ Y ∧ EC2+

is a C2-equivariant equivalence. Smashing with E and mapping into E, respectively, yield
maps

X ∧ EC2+ ∧ E −→ Y ∧EC2+ ∧ E,

F (Y, F (EC2+,E)) ≃ F (Y ∧EC2+,E) −→ F (Y ∧ EC2+,E) ≃ F (Y, F (EC2+,E))

which are also C2-equivariant equivalences. If E is free, the canonical map EC2+∧E −→ E is
an equivalence. If E is cofree, then the canonical map E −→ F (EC2+,E) is an equivalence.

�

Recall that E(n) and K(n) are both free and cofree. This has the following consequence.

Corollary 3.8. An equivariant map X → Y is a K(m)- (resp. E(m))-equivalence if and
only if the underlying nonequivariant map is a K(m)- (resp. E(m)-) equivalence. An equi-
variant spectrum X is K(m)- (resp. E(m))-acyclic if and only if its underlying nonequiv-
ariant spectrum is K(m)- (resp. E(m)-)acyclic.
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We state one more lemma, which is true in both the equivariant and nonequivariant
category:

Lemma 3.9. If

ΣVA
a
−→ A → B

is a cofiber sequence of spectra in which the map a is nilpotent, then A and B have the same
homological and cohomological Bousfield classes: 〈A〉 = 〈B〉 and 〈A∗〉 = 〈B∗〉.

Proof. If C ∈ 〈A〉, then C ∧A ≃ ∗. The cofiber sequence

C ∧A
idC∧a
−−−−→ C ∧A → C ∧B

implies that C ∧B ≃ ∗ and C ∈ 〈B〉.
If C ∈ 〈B〉, then C ∧B ≃ ∗. The cofiber sequence

C ∧A
idC∧a
−−−−→ C ∧A → C ∧B

implies that the self map idC ∧a is a weak equivalence. Because a is nilpotent, so is idC ∧a.
Therefore, C ∧A ≃ ∗ and C ∈ 〈A〉.

Since mapping into a cofiber sequence of spectra also gives a long exact sequence, the
corresponding result for cohomological Bousfield classes follows along the same lines. �

Proposition 3.10. If F is any spectrum on which aσ ∈ πσS acts nilpotently, then F and
F (C2+ ,F) have the same homological and cohomological Bousfield classes. If we further
have that F is an MR(n)-module spectrum (for instance if F is E(m) or K(m)), then F and
FR have the same (homological and cohomological) Bousfield classes.

Proof. Applying the previous lemma to the cofiber sequence

Σ−σF
aσ // F // F (C2+ ,F)

proves the first statement. For the second statement, note that the coefficients of MR(2)

contain the invertible class y. Multiplying by a power of this class to shift the σ-suspension
into integer degree and taking fixed points yields the cofiber sequence

ΣλFR
x // FR // F .

Applying the previous lemma to this cofiber sequence yields the second statement. �

Corollary 3.11. Let X be a C2-spectrum on which aσ acts nilpotently. For any C2-spectrum
F, if X is F -local, then X if F-local. If we further have that X is an MR(n)-module spectrum,
then if X is F -local, then XR is F -local.

Proof. Let Y be F-acyclic. Then for underlying spectra, we have that Y is F -acyclic. By
the previous proposition, X and F (C2+ ,X) have the same cohomological Bousfield class, so

it suffices to show that F (Y, F (C2+ ,X))
C2 ≃ ∗. But we have

F (Y, F (C2+ ,X))
C2 ≃ F (C2+ , F (Y,X))C2 ≃ F (Y,X)

and the right hand side is contractible since Y is F -acyclic and X is F -local. �
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3.3. Comparing completion and Bousfield localization. Recall that we have ideals

Im = (2, v1, . . . , vm−1) of π⋆MR(m) and Îm = (2, v̂1, . . . , v̂m−1) of π∗MR(m). Note that

if we view π∗MR(m) as a subring of π⋆MR(m), the inclusion of the ideal Îm generates
the ideal Im. In this section, we show for a class of spectra that includes E(n) as well
as the parametrized Tate construction E(n)tC2

Σ2 (to be defined in the next section) that
In-completion and K(n)-localization are equivalent. Similarly, we show that for a class of
spectra that includes the fixed points ER(n), as well as the Tate construction on the fixed

points ER(n)tΣ2 , that În-completion and K(n)-localization are equivalent.

Theorem 3.12. Let E be any MR(m)-module spectrum such that the underlying canonical
map E → E∧

Im
factors through LK(m)E and gives an equivalence LK(m)E ≃ E∧

Im
.

(1) The canonical equivariant map E → E∧
Im

factors through LK(m)E and gives an equiv-

alence LK(m)E ≃ E∧
Im

.

(2) The canonical map ER → ER∧
Îm

factors through LK(m)ER and gives an equivalence

LK(m)ER ≃ ER∧
Îm

.

Proof. (1) Since on underlying spectra we have E∧
Im

≃ LK(m)E, we have by Corollary
3.11 that E∧

Im
is K(m)-local. Thus, E∧

Im
≃ LK(m)(E

∧
Im

). Since the underlying

nonequivariant map E → E∧
Im

≃ LK(m)E is a K(m)-equivalence, it follows that the
equivariant map E → E∧

Im
is a K(m)-equivalence. Thus, we have

E∧
Im

≃ LK(m)(E
∧
Im

) ≃ LK(m)E.

(2) Again, we first apply Corollary 3.11 to conclude that ER∧
Îm

is K(m)-local.

Now, denote the cofiber of ER → ER∧
Îm

by CER and the cofiber of E → E∧
Îm

by

CE. Because completion and taking cofibers preserves cofiber sequences, the cofiber
sequence (which exists for any MR(m)-module spectrum E)

ΣλER
x
−→ ER → E

gives a cofiber sequence

ΣλCER
x
−→ CER → CE .

Lemma 3.9 applies to this cofiber sequence, so we have 〈CER〉 = 〈CE〉. We know
E∧

Îm
= E∧

Im
= LK(m)E so CE is K(m)-acyclic. Hence, K(m) ∈ 〈CE〉 = 〈CER〉.

The cofiber CER is K(m)-acyclic, so the map LK(m)ER → LK(m)ER∧
Îm

is a K(m)-

equivalence. From the above lemmas, we have

ER∧
Îm

≃ LK(m)ER∧
Îm

≃ LK(m)ER.

�

Corollary 3.13. Let E = E(n). We have equivalences

LK(m)E ≃ (v̄−1
m E)∧

Im
,

LK(m)ER ≃ (v̂−1
m ER)∧

Îm
.
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In particular, when m = n we have

LK(n)E(n) ≃ E(n)∧
In
,

LK(n)ER(n) ≃ ER(n)∧
În
.

Note also that Proposition 3.10 tells us that KR(m) and K(m) have the same Bousfield
class. It follows that LK(m)(−) = LKR(m)(−).

4. Tate constructions

In this section, we recall three variations of the Tate construction. Each will be defined
as the cofiber of a norm map between homotopy fixed points and homotopy orbits which
depend on the category of the input and the C2-action on the relevant universal spaces.

• EtΣ2 , the classical Tate construction for a nonequivariant spectrum E equipped with
a trivial Σ2-action. This will be defined using the universal space EΣ2 and may be
identified with

EtΣ2 ≃ lim
n

RP∞
−n ∧ ΣE.

We discuss this further in Section 4.1.
• EtΣ2 , the classical Tate construction for a C2-equivariant spectrum E equipped with
a trivial Σ2-action. This will be defined using the universal space EΣ2 equipped
with a trivial C2-action, so C2 will only act nontrivially on the spectrum E. It can
also be identified with

EtΣ2 ≃ lim
n

RP∞
−n ∧ ΣE

with C2 acting trivially on RP∞
−n. The resulting Tate construction will be a C2-

equivariant spectrum. We discuss this further in Section 4.2.
• EtC2

Σ2 , the parametrized Tate construction for a C2-equivariant spectrum E equipped
with a trivial Σ2-action. This will be defined using a C2-equivariant universal space
EC2

Σ2 which has a nontrivial C2-action, so C2 will act nontrivially on on the uni-
versal space and on the spectrum. This may be identified with

EtC2
Σ2 := lim

n
Q∞

−n ∧ ΣE.

Here Q∞
−n is nonequivariantly equivalent to RP∞

−n but it carries a nontrivial C2-
action. We discuss this further in Sections 4.4 and 4.5.

We discuss the interaction between the Tate construction and completions in Section 4.3,
and we compare the ordinary and parametrized Tate constructions in Section 4.6.

4.1. The classical Tate construction. Let E be a nonequivariant spectrum. Let U be a
complete Σ2 universe and let i : UΣ2 −→ U be the inclusion of fixed points.

Let EΣ2 denote the free contractible Σ2-space and let ẼΣ2 denote the cofiber in the
sequence

EΣ2+ −→ S0 −→ ẼΣ2.

Then we have the Σ2-Tate diagram:

EΣ2+ ∧ i∗E //

≃

��

i∗E //

��

ẼΣ2 ∧ i∗E

��

EΣ2+ ∧ F (EΣ2+, i∗E) // F (EΣ2+, i∗E) // ẼΣ2 ∧ F (EΣ2+, i∗E)
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Definition 4.1. We define the Σ2-Tate construction for a nonequivariant spectrum E to
be the lower right corner of this diagram. That is,

EtΣ2 := ẼΣ2 ∧ F (EΣ2+, i∗E).

This may be identified with a homotopy limit:

Proposition 4.2. [GM95, Thm. 16.1] There is an equivalence of spectra

EtΣ2 ≃ lim
n

RP∞
−n ∧ ΣE.

In the definition of the Tate construction, we may write the space ẼΣ2 as a colimit and
this is useful for computations. More precisely, let V denote the Σ2 sign representation.

Then ẼΣ2 = colimn S
nV .

Let e : S0 −→ SV be the natural inclusion, and let αV ∈ EV (S0) be the image of the
identity element under this map. Let c(E) := F (EΣ2+, i∗E). When E is a (homotopy)
ring spectrum, the homotopy groups of the Tate construction may be identified with a
localization of c(E) away from αV :

Proposition 4.3. [GM95, Cor. 16.3] Let E be a ring spectrum (which we view as a Σ2-
spectrum with trivial action). Then π∗E

tΣ2 is the localization of π∗c(E) = π∗E
hΣ2 away

from αV .

When the bundle associated to the representation V is orientable with respect to E, the
above proposition may be simplified further. We will return to this point when we discuss
the Tate construction for E(n) in Section 5.

4.2. The classical Tate construction for a C2-equivariant spectrum. Now we take
E to be a C2-spectrum. We let U denote a complete Σ2 ⋊ C2 universe. Then UΣ2 is a
complete C2 universe and we let i : UΣ2 −→ U be the inclusion.

Definition 4.4. We define the Σ2-Tate construction of E to be the C2-spectrum

EtΣ2 := ẼΣ2 ∧ F (EΣ2+, i∗E).

The results concerning the ordinary Tate construction in the previous section carry over
mutatis mutandis. In particular, we have the same Tate diagram, now in the category of
(Σ2 ⋊C2)-spectra. Moreover, we may calculate the Σ2-Tate construction of a C2-spectrum
via homotopy inverse limit. This follows from observing that each equivalence in the proof of
[GM95, Thm. 16.1] may be promoted to an equivalence of C2-spaces or genuine C2-spectra
when we assume that C2 acts trivially on EG and V .

Proposition 4.5. Let E be a genuine C2-spectrum equipped with a trivial Σ2-action. There
is an equivalence of genuine C2-spectra

EtΣ2 ≃ lim
n

RP∞
−n ∧ ΣE.

We can identify the C2-fixed points of the classical Σ2-Tate construction of E with the
classical Tate construction of the fixed points of E.

Proposition 4.6. For any C2-spectrum E (e.g. for E = E(n)) we have
(
EtΣ2

)C2
= ERtΣ2 .
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Proof. We write the Tate construction as a homotopy limit and take fixed points:

(
EtΣ2

)C2
=

(
lim
k
E ∧RP∞

−k

)C2

= lim
k
(E ∧RP∞

−k)
C2 .

The claim will follow after we show that for any space X with trivial C2-action (or integral
suspension thereof) that (E ∧X)C2 = ER ∧X. Indeed, compare the top rows of the Tate
diagrams:

(EC2+ ∧ E ∧X)C2 // (E ∧X)C2 // (ẼC2 ∧ E ∧X)C2

(EC2+ ∧ E)C2 ∧X

OO

// EC2 ∧X

OO

// (ẼC2 ∧ E)C2 ∧X.

OO

Identifying the terms in the right column with geometric fixed points, we see that the right-
hand map is an equivalence since geometric fixed points commute with smash products. To
see the left-hand map is an equivalence, we apply the Adams isomorphism and note that
(EC2+ ∧ E ∧X)/C2 = (EC2+ ∧ E)/C2 ∧X since X has trivial action. It follows that the
middle map is an equivalence. �

4.3. Tate construction and completion. We show that under certain conditions, com-
pletion and the Tate construction commute. This will help us deduce blueshift for E∧(n)tΣ2

from blueshift for E(n)tΣ2 .

Lemma 4.7. Let R be a commutative ring, A be an R-algebra, r ∈ R. Then

A∧
r /(x)

∼= (A/(x))∧r .

Proof. Let Kk = ker(A/rk
x
−→ A/rk), Ak = A/(rk,Kk), Bk = A/rk and Ck = A/(rk, x).

The exact sequences

0 → Kk → Bk
x
−→ Bk → Ck → 0,

split into short exact sequences

0 → Kk → Bk
x
−→ Ak → 0,

0 → Ak → Bk → Ck → 0.

The map Ak+1 → Ak is surjective since the quotient maps Bk+1 → Bk are surjective, and
surjectivity of the map Kk+1 → Kk follows by definition. Therefore {Kk} and {Ak} satisfies
the Mittag-Leffler condition and we have an exact sequence

0 → limKk → limBk
x
−→ limBk → limCk → 0.

This implies that
A∧

r /(x) = (limBk)/(x) = limCk = (A/x)∧r .

�

Proposition 4.8. (1) Let a be an element of π∗MU , and X be a MU -algebra equipped
with trivial Σ2 action. Assume that there exists N > 0 such that no element in the
kernel of

a∗ : X∗ −→ X∗,

or the kernel of
a∗ : π∗(X

tΣ2) −→ π∗(X
tΣ2),

is aN -divisible. Then
(XtΣ2)∧a = (X∧

a )
tΣ2 .
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(2) Let α be an element of π⋆MR, and X be a MR-algebra equipped with trivial Σ2

action. Assume that there exists N > 0 such that no element in the kernel of

α⋆ : X⋆ −→ X⋆,

or the kernel of

α⋆ : π⋆(X
tΣ2) −→ π⋆(X

tΣ2),

is αN -divisible. Then

(XtΣ2)∧α = (X∧
α)

tΣ2 .

Proof. We prove (1); the proof of (2) is similar. We will construct a map f from (X∧
a )

tΣ2

to (XtΣ2)∧a and show that the induced map f∗ on homotopy groups is an isomorphism.
Smashing the qoutient maps

qk : X
∧
a −→ X/ak

with RP∞
−i , we have maps

fi,k ∧ id : X∧
α ∧RP∞

−i → X/ak ∧RP∞
−i ≃ (X ∧RP∞

−i)/a
k.

Therefore, there exists

fi : X
∧
a ∧RP∞

−i → lim(X ∧RP∞
−i)/a

k = (X ∧RP∞
−i)

∧
a .

These maps induce a map

f : lim(X∧
a ∧RP∞

−i) → lim((X ∧RP∞
−i)

∧
a ).

By definition, the completion is a composition of a finite colimit followed by a limit. The
category of spectra is stable and finite colimits are also finite limits. In particular, the
completion commutes with all limits. Therefore, we have

lim((X ∧RP∞
−i)

∧
a ) = (lim(X ∧RP∞

−i))
∧
a = (XtΣ2)∧a .

Now we have

f : (X∧
a )

tΣ2 −→ (XtΣ2)∧a .

By the assumption, we can apply Lemma 3.3 and have

π∗(X
∧
a ) = (π∗X)∧a .

Note that the MU -module structure gives a formal group F over π∗X. This allows us to
compute that

π∗(X
∧
a )

tΣ2 = π∗(X
∧
a )((x))/[2]F (x) = (π∗X)∧a ((x))/[2]F (x).

Similarly, we have

π∗((X
tΣ2)∧a ) = (π∗(X

tΣ2))∧a = (π∗X((x))/[2]F (x))
∧
a .

By the Lemma 4.7, we have

f∗ : (π∗X((x))/[2]F (x))
∧
a −→ (π∗X)∧a ((x))/[2]F (x)

is an isomorphism. This completes the proof. �
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4.4. The parametrized Tate construction. We now recall some facts about the parametrized
Tate construction. Let (G,σG) be a Real Lie group. Then σG is the image of the generator
σ ∈ C2 under some group homomorphism τ : C2 → Aut(G), and τ defines a semidirect
product G⋊ C2.

Definition 4.9. Let Fτ denote the family of all closed subgroups H ⊆ G ⋊ C2 satisfying
H ∩ G = {e}. Let Eτ

C2
G := EFτ denote the unique G ⋊ C2-equivariant homotopy type

satisfying

(Eτ
C2
G)H ≃

{
∗ if H ∈ Fτ ,

∅ if H /∈ Fτ .

Let Bτ
C2
G := (Eτ

C2
G)/G. We say that Bτ

C2
G is the C2-equivariant classifying space of G.

Convention 4.10. Note that the G ⋊ C2-equivariant homotopy type of Eτ
C2
G depends on

a choice of group homomorphism τ : C2 → Aut(G), so we ought to always write Eτ
C2
G.

However, we are primarily interested in the case where G is an abelian group, in which case
we always take τ : C2 → Aut(G) to be the inversion involution. We will therefore suppress
τ from the notation unless we specify a different involution.

Example 4.11. There is an equivalence of O(2)-spaces

EC2
S1 ≃ S(C⊕∞),

where the O(2) = S1 ⋊C2-action on the right-hand side is determined by letting C2 act on
C by complex conjugation and S1 act by rotation. Consequently, there is an equivalence of
C2-spaces

BC2
S1 ≃ CP∞,

where C2 acts on the right-hand side by complex conjugation. Compare with [HK01, Def.
2.1].

Similarly, there is an equivalence of D4-spaces

EC2
Σ2 ≃ S(C⊕∞),

where the D4 = Σ2 × C2-action on the right-hand side is obtained by restriction of the
O(2)-action above. This induces an equivalence of C2-spaces

BC2
Σ2 ≃ RP∞,

where RP∞ is the space of real lines in C⊕∞ and C2 acts by complex conjugation. Compare
with [KW08, Sec. 3].

We make the following definition in view of several results of the third author with Shah:
[QS21, Def. 1.6], [QS21, Obs. 1.9], [QS21, Obs. 1.10], and [QS21, Thm. C]. Alternatively,
the following definition specializes [GM95, Sec. 17] to the family of graph subgroups of C2

in G, cf. [QS21, Rmk. 3.17].

Definition 4.12. Let X be a C2-spectrum with G-action. The parametrized G-homotopy
orbits of X are defined by

XhC2
G := (F (EC2

G+,X) ∧EC2
G+)

G

and the parametrized G-homotopy fixed points of X are defined by

XhC2
G := F (EC2

G+,X)G.
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There is a cofiber sequence

EC2
G+ → S0 → ẼC2

G

which gives rise to a cofiber sequence of spectra

XhC2
G → XhC2

G → (F (EC2
G+,X) ∧ ẼC2

G)G.

We define the cofiber to be the parametrized G-Tate construction XtC2
G.

When the extension G⋊C2 determined by τ : C2 → Aut(G) satisfies a certain representation-
theoretic hypothesis, the parametrized G-Tate construction for a C2-spectrum equipped
with a trivial G-action may be identified with an inverse limit. We obtain the following as
a specialization of [QS21, Thm. B], which generalizes [GM95, Thm. 16.1] to families:

Theorem 4.13. [QS21, Thm. B] Let τ : C2 → Aut(G) and suppose that there exists a
G ⋊ C2-representation V with V H = 0 for H /∈ Fτ and V H 6= 0 for H ∈ Fτ . Let U be a
complete G⋊ C2-universe and let i : UG → U be the inclusion of the G-fixed universe. Let
X be a C2-spectrum. There is an equivalence of C2-spectra

(i∗X)tC2
G ≃ lim

n
(Th((−nV ) → Bτ

C2
G) ∧ ΣX),

where i∗(−) is the functor which associates a genuine G ⋊ C2-spectrum to an F(C2, G)-
spectrum indexed on the complete C2-universe UG.

Definition 4.14. [Qui21, Def. A.19] When G = Σ2, we will let Q
∞
−n := Th(−nγ → BC2

Σ2)
denote the C2-equivariant Thom spectrum appearing in the previous theorem.

In particular, we obtain the following formula for the parametrized Tate construction as
an inverse limit:

Corollary 4.15. Let U be a complete Σ2⋊C2-universe and let i : UΣ2 → U be the inclusion
of the Σ2-fixed universe. Let X be a C2-spectrum. Then there is an equivalence of C2-spectra

(i∗X)tC2
Σ2 ≃ lim

i
(Q∞

−i ∧ ΣX).

4.5. The parametrized Σ2-Tate construction. The following discussion adapts some
results from [GM95, Sec. 3] to the C2-equivariant setting; many similar ideas appear in
[QS21].

Definition 4.16. Let X be a Σ2 ⋊ C2-spectrum. We define the Σ2-free Σ2 ⋊ C2-spectrum
associated to X by

fp(X) := X ∧ EC2
Σ2+.

The parametrized geometric completion of X is defined by

cp(X) := F (EC2
Σ2+,X).

The parametrized Σ2-Tate Σ2 ⋊ C2-spectrum associated to X is defined by

tp(X) := F (EC2
Σ2+,X) ∧ ẼC2

Σ2.

The diagonal map of EC2
Σ2+ and the C2-equivariant equivalences

EC2
Σ2+ ∧EC2

Σ2+ ≃ EC2
Σ2+ and ẼC2

Σ2 ∧ ẼC2
Σ2 ≃ ẼC2

Σ2



TATE BLUESHIFT AND VANISHING FOR REAL ORIENTED COHOMOLOGY 23

give rise to a commutative diagram of associative and commutative natural pairings, called
the parametrized norm pairing diagram:

fp(X) ∧ fp(X
′) cp(X) ∧ cp(X

′) tp(X) ∧ tp(X
′)

fp(X ∧X ′) cp(X ∧X ′) tp(X ∧X ′).

This implies the following analog of [GM95, Prop. 3.5].

Proposition 4.17. If X is a ring Σ2⋊C2-spectrum, then cp(X) and tp(X) are ring Σ2⋊C2-
spectra and the following parametrized of the norm-restriction diagram (cf. [GM95, Eqn.
D, Sec. 17]) is a commutative diagram of ring Σ2 ⋊ C2-spectra:

X X ∧ ẼC2
Σ2

cp(X) tp(X).

If X is commutative, then so are cp(X) and tp(X). If M is an X-module Σ2⋊C2-spectrum,
then cp(M) is a cp(X)-module Σ2 ⋊ C2-spectrum and tp(M) is a tp(M)-module Σ2 ⋊ C2-
spectrum.

By ring Σ2⋊C2-spectrum, we mean a Σ2⋊C2-spectrum with unit and multiplication for
which the usual monoid diagrams hold in the homotopy category.

4.6. Comparison between classical and parametrized Tate constructions. Let E
be a C2-spectrum. If U ∼= C∞ is a complete Σ2 ⋊ C2-universe (where C2 acts by complex
conjugation), the inclusion of fixed points UC2 ∼= R∞ →֒ C∞ ∼= U induces a map of universal
spaces

EΣ2 −→ EC2
Σ2.

We may view this as a Σ2 ⋊C2-equivariant map with trivial C2 action on the source. This
map gives a Σ2-equivariant equivalence upon forgetting the C2-action. Taking orbits under
the Σ2-action, we get a C2-equivariant map of classifying spaces (with trivial C2-action on
the source)

BΣ2 −→ BC2
Σ2

which is an underlying nonequivariant equivalence.
We obtain some useful equivalences if we assume that the C2-spectrum E is either free

or cofree.

Lemma 4.18. (1) If E is C2-free, then we have C2-equivariant equivalences

EΣ2+ ∧ E −→ EC2
Σ2+ ∧ E,

BΣ2+ ∧ E −→ BC2
Σ2+ ∧ E.

(2) If E is C2-cofree, then we have C2-equivariant equivalences

F (EC2
Σ2+,E) −→ F (EΣ2+,E),

F (BC2
Σ2+,E) −→ F (BΣ2+,E).
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Proof. This is an immediate consequence of Lemma 3.7 and the fact that the (equivariant)
inclusions BΣ2 → BC2

Σ2 and EΣ2 → EC2
Σ2 are underlying nonequivariant equivalences.

�

We have the following commutative square of Σ2⋊C2-spectra which relates the ordinary
and parametrized Tate constructions:

ẼΣ2 ∧ F (EΣ2+,E) // ẼC2
Σ2 ∧ F (EΣ2+,E)

ẼΣ2 ∧ F (EC2
Σ2+,E)

//

OO

ẼC2
Σ2 ∧ F (EC2

Σ2+,E).

OO

Applying Σ2-fixed points to each corner, the left-top corner becomes EtΣ2 and the bottom-
right corner becomes EtC2

Σ2 . We therefore have a zigzag relating EtΣ2 and EtC2
Σ2 .

In the case that E is C2-cofree, the vertical maps are C2-equivariant equivalences. How-
ever, to obtain a map EtΣ2 → EtC2

Σ2 , one of the vertical maps must actually be a Σ2 ⋊C2-
equivariant equivalence.

Lemma 4.19. If E is C2-cofree with trivial Σ2-action, then there is a Σ2 ⋊C2-equivalence

F (EC2
Σ2+,E) → F (EΣ2+,E).

Proof. The map is a C2-equivalence by Lemma 4.18 since E is C2-cofree. It remains to
check that the map is an equivalence after taking fixed points with respect to ∆, Σ2, and
Σ2 ⋊ C2 (where ∆ is the diagonal subgroup of Σ2 ⋊ C2).

We first check that

F (EC2
Σ2+,E)

∆ → F (EΣ2+,E)
∆

is an equivalence. We have a sequence of Σ2 ⋊ C2-equivalences

F (EC2
Σ2+,E)

∆ ≃ F (EC2
Σ2+, F (EC2+,E))

∆ ≃ F ((EC2
Σ2 × EC2)+,E)

∆

which follow from adjunction along with the fact that F (EC2+,E) → E is a Σ2 ⋊ C2-
equivalence if E is cofree with trivial Σ2-action. Now, we observe that the projection

EC2
Σ2 × EΣ2 → EΣ2

is an F(C2,Σ2)-equivalence of Σ2⋊C2-spaces. Therefore the source and target are equivalent
after taking ∆ fixed points.

A similar argument works for fixed points with respect to Σ2 and Σ2 ⋊ C2. We may
replace F (EΣ2+,E) by F ((EΣ2 × EC2)+,E), and the projection map EΣ2 × EC2 → EΣ2

is an equivalence of spaces on Σ2- and Σ2 ⋊ C2-fixed points. �

Therefore when E is C2-cofree with trivial Σ2-action, the right-hand vertical map is an
equivalence on Σ2-fixed points and we obtain a map

EtΣ2 → EtC2
Σ2 .

This map is not generally an equivalence, but in the next section, we will show that it is an
equivalence under further orientability assumptions for E.
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5. Blueshift for Real oriented cohomology theories

Our first main results, blueshift for the Tate constructions of Real Johnson–Wilson the-
ories, are proven in this section. In Section 5.1, we summarize the proof of a splitting for
LK(n−1)(E(n)tΣ2) given by Ando, Morava, and Sadofsky in [AMS98]. We modify their proof
in Section 5.3 to prove splittings of the parametrized Tate construction of Real Johnson–
Wilson theories and the ordinary Tate construction of their fixed points.

5.1. The classical Tate construction of E(n). In [AMS98], Ando, Morava, and Sad-
ofsky analyze the K(n − 1)-localization of the Tate construction E(n)tCp using complex
orientations and formal group laws. Recall that if E is a complex oriented cohomology
theory, then there is an isomorphism

E∗(CP∞) ∼= E∗[[x]]

where |x| = 2. The map CP∞ × CP∞ → CP∞ which classifies the tensor product of
complex line bundles induces a map

E∗[[z]] ∼= E∗(CP∞) → E∗(CP∞)⊗ E∗(CP∞) ∼= E∗[[x, y]]

which determines a formal group law over E∗. There is then an isomorphism

E∗(BΣ2) ∼= E∗[[x]]/([2](x))

where [2](x) is the 2-series of the formal group law associated to E.
The starting point of the work of Ando–Morava–Sadofsky was the following identification.

Lemma 5.1. [AMS98, Lem. 2.1] Suppose that E is a complex oriented spectrum and that
its 2-series [2](x) is not a 0 divisor in E∗[[x]]. Then there is an isomorphism of rings

π−∗(E
tΣ2) ∼= E∗((x))/([2](x)).

This allows them to analyze EtΣ2 using more algebraic methods. Using formal group law
calculations, they prove the following.

Proposition 5.2. [AMS98, Prop. 2.11] There is an isomorphism

(π∗E(n)tΣ2)∧In−1
→ E(n− 1)∗((x))

∧
In−1

where |x| = −2.

Remark 5.3. We use E∗ = E−∗ and change the degree of x from 2 to −2 to write

π−∗(E
tΣ2) ∼= E∗((x))/([2](x))

as

π∗(E
tΣ2) ∼= E∗((x))/([2](x)).

They lift this isomorphism to an equivalence of K(n − 1)-local spectra in [AMS98, Sec.
3]. This equivalence relies on several ideas from chromatic homotopy theory, including
explicit formulas for Bousfield localization with respect to K(n) and certain MU -module
structures. It also relies on understanding the relationship between the In−1-adic filtration of
π∗(E(n)tΣ2) and the “x-adic” filtration which arises from the identification EtΣ2 ≃ lim

n
(E∧

ΣRP∞
−n) and the cellular filtration of RP∞

−n. In the end, they prove
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Theorem 5.4. [AMS98, Thm. 3.10] There is a map of spectra

lim
i

∨

j≤−i

Σ2iE(n − 1) → (E(n)tΣ2)∧In−1

that becomes an isomorphism on homotopy groups after completion at In−1, or equivalently
after Bousfield localization with respect to K(n− 1).

5.2. The ordinary and parametrized Σ2-Tate constructions for E(n). The Real
Johnson–Wilson theory E(n) is free and cofree, and so by Lemma 4.18, we have a comparison
map between the ordinary and parametrized Σ2-Tate constructions

E(n)tΣ2 −→ E(n)tC2
Σ2

In this section, we will show this map is an equivalence. Along the way, we will calculate
the homotopy groups of both sides.

We begin with the observation that the values of E(n)-cohomology on the parametrized
and ordinary classifying spaces BC2

Σ2 and BΣ2 agree by Lemma 4.18, since E(n) is cofree.
These are given by the following Lemma from [KW08]:4

Lemma 5.5. [KW08, Lemma 3.1] Let E be a Real oriented cohomology theory in which
[2](x) is not a zero divisor. Then there is an RO(C2)-graded isomorphism

E⋆(BC2
Σ2) ∼= E⋆[[x]]/([2](x))

where |x| = ρ and [2](x) is the 2-series of the formal group law associated to E.

The two Tate constructions E(n)tΣ2 and E(n)tC2
Σ2 are homotopy limits of E(n) smashed

with Thom spectra of bundles over BΣ2 and BC2
Σ2, respectively. We now describe them

more explicitly:

(1) Let ξV be the line bundle over BΣ2 associated to the Σ2 sign representation, V .
Note that Σ2 acts freely on the unit sphere in this representation. The total space
of ξV is given by EΣ2 ×Σ2

V .
(2) Let ξW be the bundle over BC2

Σ2 associated to the Σ2⋊C2 representation W := C,
where C2 acts by complex conjugation and Σ2 acts by rotation. The unit sphere
S(W ) is a F(C2,Σ2) space.

If we forget the C2-action, then W is just 2V as a Σ2-representation. While C2 does not
act on BΣ2, it still acts fiberwise on the pullback of ξW along BΣ2 → BC2

Σ2. Using the
inclusion of ξV as the C2-fixed points of the pullback of ξW , we have maps of Thom spectra

BΣkξV
2 → BC2

ΣkξW
2

which are C2-equivariant, provided we take trivial C2-action on the source.
We can compute the homotopy groups of each Tate construction by rewriting them as

colimits. We start with the ordinary Tate construction. Note that ẼΣ2 = colimn S
nV , and

let c(E) := F (EΣ2+, i∗E).

Theorem 5.6. There is an isomorphism

π−∗(E(n)
tΣ2) ∼= E(n)⋆((û))/([2](û))

where |û| = 1− λ.

4Kitchloo and Wilson prove the lemma for E = E(n), but their proof works equally well for any Real oriented
cohomology theory in which [2](x) is not a zero divisor.



TATE BLUESHIFT AND VANISHING FOR REAL ORIENTED COHOMOLOGY 27

Proof. By the definition of the Tate construction, we have that

π⋆(E(n)
tΣ2) = π⋆(c(E(n)) ∧ ẼΣ2)

Σ2 .

We identify the right hand as colimk π⋆(c(E(n)∧SkV )Σ2 . Since i∗E(n) is a split Σ2-spectrum
and EΣ2+ is Σ2-free, there is an isomorphism

π⋆(c(i∗E(n)) ∧ SkV )Σ2 ∼= π⋆F (S−kV ∧Σ2
EΣ2+, i∗E(n)).

Now S−kV ∧Σ2
EΣ2+ is exactly the Thom spectrum BΣ−kξV

2 , so we get

π−⋆(E(n)
tΣ2) ∼= colimE(n)⋆(BΣ−kξV

2 ).

Now we identify the right-hand side. Recall from Theorem 2.6 that vector bundles that are
multiples of 2n+1 are E(n)-orientable. We choose a cofinal subsequence in the above colimit
given by k = 2n+2j (note that we give ourselves an extra factor of 2 to work with). Then
there is a Thom isomorphism

E(n)∗(BΣ−2n+2jξV
2 ) ∼= E(n)∗+2n+2j(BΣ2)

Now we need to identify the maps in this colimit. The map BΣ
−2n+2(j+1)ξV
2 −→ BΣ−2n+2jξV

2
induces a map

E(n)∗+2n+2j(BΣ2) −→ E(n)∗+2n+2(j+1)(BΣ2)

which raises degree by 2n+2 and is given by multiplication by the Euler class of 2n+2ξV . It
remains to identify this Euler class.

Recall that in integer degrees, we have E(n)⋆(BΣ2) = E(n)⋆[[û]]/([2](û)), where û is
obtained from u ∈ E(n)ρ(BΣ2) by multiplying by y, and the image of û in (ordinary,
nonequivariant) E(n)-cohomology is v2

n−1
n u, where u is the first Chern class of the tauto-

logical (complex) line bundle in degree 2. By Theorem 2.6, we have that the Euler class of
2n+2ξV in ER(n)-cohomology maps under the forgetful map to a unit power series multiple

of the E(n)-Euler class of 2n+2ξV , which is given by u2
n+1

.
We claim that ER(n)∗(BΣ2) injects into E(n)∗(BΣ2) in degrees that are multiples of

2n+1. Since ER(n)∗(BΣ2) is multiplicatively generated by a single class û in degree divisible
by 2n+1, the claim follows from the corresponding fact about the coefficients. The kernel of
the map from ER(n)∗ to E(n)∗ is generated by the class x, and injectivity in degrees 2n+1

follows from the description of the coefficients of ER(n), e.g. in [KW15, Theorem 3.1]

Thus, we identify the ER(n) Euler class with a unit multiple of v
−2n+1(2n−1)
n û2

n+1

since
the map to E(n)-cohomology sends this to the E(n)-Euler class and we are in degrees in
which the map from ER(n) cohomology to E(n)-cohomology is injective.5

It follows that the maps in the direct limit are multiplication by a unit multiple of û2
n+1

.
This has the effect of inverting û in the colimit and this completes the computation. �

We now calculate the homotopy groups of the parametrized Tate construction. By mim-
icking the above calculations for the bundle ξW over BC2

Σ2, we have an isomorphism

π−⋆E(n)
tC2

Σ2 ∼= colimk E(n)
⋆(BC2

Σ−kξW
2 ).

As in the ordinary Tate construction, we must identify the right-hand side. More generally,
we have the following calculation for any Real oriented cohomology theory.

5Choosing the cofinal subsequence k = 2n+1j at the beginning of the proof would have still given us Thom
isomorphisms, but the ER(n)-Euler class would not have the nice form that it does when we give ourselves
an extra factor of 2 to work with.
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Theorem 5.7. Let E be a Real oriented cohomology theory. Then there is an RO(C2)-
graded isomorphism

π−⋆E
tC2

Σ2 ∼= E⋆((u))/([2](u))

where |u| = ρ.

Proof. Recall that ξW has twice the (real) dimension of ξV . The bundle ξW itself (not just
a 2n multiple of it) is orientable with respect to E, so we have a Thom isomorphism

E⋆(BC2
Σ−kξW
2 ) ∼= E⋆+k(1+σ)(BC2

Σ2)

The map BC2
Σ
−(k+1)ξW
2 → BC2

Σ−kξW
2 induces in E-cohomology the map

E⋆+k(1+σ)(BC2
Σ2) −→ E⋆+(k+1)(1+σ)(BC2

Σ2)

which is multiplication by the Euler class of ξW , given by u ∈ E1+σ(BC2
Σ2). (This is the

first Chern class of the tautological Real bundle over RP∞, which pulls back from the Real
bundle over CP∞).

Since we know that
E⋆(BC2

Σ2) ∼= E⋆[[u]]/([2](u))

it follows that in the colimit, the class u is inverted and we get

π−⋆E
tC2

Σ2 ∼= E⋆((u))/([2](u))

�

We conclude this section by comparing the two Tate constructions.

Theorem 5.8. The map

E(n)tΣ2 −→ E(n)tC2
Σ2

is a C2-equivariant weak equivalence.

Proof. Going back to the cofinal subsequence k = 2n+2j for both ξV and ξW , this boils
down to identifying the map

E(n)⋆(BΣ2) ∼= E(n)⋆−2n+2j(BΣ−2n+2jξV
2 ) −→E(n)⋆−2n+2j(BC2

Σ−2n+2jξW
2 )

∼= E(n)⋆+2n+2jσ(BC2
Σ2) ∼= E(n)⋆−2n+2jλ(BC2

Σ2)

where the last map is given by multiplying by y2
n+2j to shift into integer degrees. This is

a map of E(n)⋆(BC2
Σ2) = E(n)⋆(BΣ2)-modules, and so it suffices to calculate the image of

1. In integer degrees that are multiples of 2n+2, we have that E(n)⋆(BΣ2) ∼= E(n)⋆(BC2
Σ2)

injects under the forgetful map into E(n)∗(BΣ2) ∼= E(n)∗(BC2
Σ2). Since the target of

1 ∈ E(n)0(BΣ2) will be in E(n)−2n+1λ(BC2
Σ2), we may calculate its image by forgetting to

E(n)-cohomology.
Nonequivariantly, the corresponding composite is given by

E(n)∗(BΣ2) ∼= E(n)∗−2n+2j(BΣ−2n+2jξV
2 ) −→E(n)∗−2n+2j(BC2

Σ−2n+2jξW
2 )

∼= E(n)∗+2n+2j(BC2
Σ2) ∼= E(n)∗−2n+2jλ(BC2

Σ2)

where the last map is multiplication by v
2n+2j(2n−1)
n (which underlies multiplication by

y2
n+2j).
Non-equivariantly, the map BΣ2 −→ BC2

Σ2 is an equivalence, and the bundle ξW may
be identified with 2ξV . It follows that the image of 1 under the above composite is given by
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the Euler class of 2n+2jξV . We have already seen that the underlying nonequivariant Euler

class of 2n+2jξV is given by a unit multiple of u2
n+1j .

It follows that equivariantly, the map we are interested in sends 1 to a unit multiple of

u2
n+1

. Thus, from the computation of both Tate constructions, it follows that in the inverse
limit, this induces an isomorphism. �

5.3. C2-equivariant blueshift for E(n). Now that we know the ordinary and parametrized
Tate constructions of E(n) agree and we know their homotopy groups, we want to identify
the homotopy type of the Tate construction after a certain completion. We begin by proving
a splitting in completed C2-equivariant homotopy groups, first for BPR〈n〉, and then for
E(n). Since the analogous computations in [AMS98, Sec. 2] only depend on formal group
law calculations, they carry over easily to the C2-equivariant setting. In particular, all of
the computations there are valid after replacing vk by v̄k.

Proposition 5.9. There is an isomorphism

πC2

⋆ (BPR〈n〉tC2
Σ2) ∼= BPR〈n〉⋆((x))/([p](x))

∼=
∏

k∈Z

ΣρkBPR〈n− 1〉∧p,⋆ (∗)

∼= BPR〈n− 1〉∧p,⋆((x)).

Proof. We begin with the identification πC2
⋆ (BPR〈n〉tC2

Σ2) ∼= BPR〈n〉⋆((u))/([2](u)) from
Theorem 5.7. The RO(C2)-graded homotopy groups BPR〈n〉⋆ can be found in [Hu02].
The formal group law over BPR〈n〉∗ρ associated to BPR〈n〉 is isomorphic to the formal
group law over BP 〈n〉∗ associated to BP 〈n〉, with isomorphism given by v̄k 7→ vk. The
proof of [AMS98, Prop. 2.3] depends only on computations with the formal group law over
BP 〈n〉∗ associated to BP 〈n〉, so the proof carries over to the C2-equivariant setting to
give an isomorphism πC2

∗ρ (BPR〈n〉tC2
Σ2) ≃ BPR〈n − 1〉∧p,∗ρ((x)). We note that under this

isomorphism, x 7→ x, v̄k 7→ v̄k for k < n, and v̄n maps to a certain power series in x over
BPR〈n− 1〉∗ρ.

We can extend the isomorphism to RO(C2)-grading by sending u2σ 7→ u2σ and aσ 7→ aσ.
Indeed, surjectivity is clear. To see the map is injective, we just need to check that the
image of v̄n in BPR〈n− 1〉⋆ is a2

n−1
σ -torsion. This follows from the fact that the image is

a power series with coefficients in Īn, and every element of Īn is a2
n−1

σ -torsion. �

The next proposition follows from a similar modification of the proof of [AMS98, Prop.
2.11].

Proposition 5.10. The map (∗) above extends to an isomorphism

E(n)⋆((x))/([2](x))
∧
Īn−1

∼= E(n− 1)⋆((x))
∧
Īn−1

where

πC2

⋆ ((v̄−1
n BPR〈n〉)tC2

Σ2)∧
Īn−1

∼= πC2

⋆ (E(n)tC2
Σ2)∧

Īn−1

∼= E(n)⋆((x))/([2](x))
∧
Īn−1

and

E(n− 1)⋆((x))
∧
Īn−1

∼= (v̄−1
n−1BPR〈n− 1〉)((x))∧

Īn−1
.

We now turn to proving the spectrum-level result, which is the main result of this section.
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Theorem 5.11. There is a map of spectra

lim
i

∨

j≤i

ΣρjE(n− 1) → (E(n)tC2
Σ2)∧

Īn−1

that becomes an isomorphism on homotopy groups after completion at Īn−1 or equivalently
after localization at K(n− 1).

Our argument follows [AMS98, Sec. 3], with the caveat that we must make sense of
certain constructions C2-equivariantly. In Section 3.1, we described X∧

In−1

for an MR(n)-

module and showed that πC2
⋆ (X∧

In−1

) ∼= (πC2
⋆ X)∧

In−1

. In Proposition 3.4, we showed that

(E(n)tC2
Σ2)∧

In−1

has an E(n − 1)-module structure. We will use certain generators of

πC2
⋆ (E(n)tC2

Σ2)∧
In−1

as a πC2
⋆ E(n − 1)-module, then use them to construct a map which

will induce an isomorphism in homotopy groups after completion at In−1.

Proof of 5.11. We construct the C2-equivariant map whose underlying map is the map in
[AMS98, Thm. 3.10] using a similar approach to Ando–Morava–Sadofsky. Because both
side are strongly even and the underlying map is a nonequivariant weak equivalence, this
map will be a C2-equivariant weak equivalence by [HM17, Lem. 3.4].

Since E(n) is aBPR-module and v̄n−1 is invertible in E(n)tC2
Σ2 , we see that (E(n)tC2

Σ2)∧
In−1

is a (v̄−1
n−1BPR)∧

Īn−1
-module. By Proposition 3.4, (E(n)tC2

Σ2)∧
In−1

is thus an E(n−1)-module.

Recall that
E(n)tC2

Σ2 ≃ lim
i
(Q∞

−i ∧ ΣE(n)).

Now, we take xj ∈ πjρ((E(n)tC2
Σ2)∧

In−1

) and use the E(n − 1)-structure to construct a

sequence of maps ∨

j≤i

ΣjρE(n− 1)∧
In−1

→ (E(n)tC2
Σ2)∧

In−1
.

We then make a map µ−i by composing this map with the map

(E(n)tC2
Σ2)∧

In−1
→
(
Q∞

−i−1 ∧ ΣE(n)
)∧
In−1

given by Corollary 4.15.
Taking inverse limits of the maps µ−i gives a map

lim
i


∨

j≤i

ΣjρE(n− 1)∧
In−1

)


 f

→
(
E(n)tC2

Σ2
)∧
In−1

.

Note that in the target, the parametrized Tate construction has been commuted with Īn−1

completion; this is possible using the same argument as in the proof of Proposition 4.8.
Denote the completion of f with respect to In−1 by f∧. Then the underlying map is the

map f in the proof of [AMS98, Thm. 3.10] after completion, which is a weak equivalence.
Because both sides are strongly even, the map is a C2-equivariant equivalence.

Since the left and right hand sides both satisfy the conditions of Theorem 3.12, we have
that their In−1-completions and their K(n− 1)-localizations are equivalent. �

Using Theorem 5.8 together with a key fact about the coefficients of E(n), the splitting
of Theorem 5.11 can be extended to a splitting of the classical Tate construction on the
fixed points ER(n) := E(n)C2 .
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Recall from Section 2.4 that we may multiply by an appropriate power of invertible class
y ∈ πλ+σE(n) to shift any class in π⋆E(n) into integer degree. In particular, when we do
this to the v̄i ∈ π(2i−1)ρE(n), we get the class v̂i ∈ π(2i−1)(1−λ)ER(n). Define the ideal

În−1 := (2, v̂1, . . . , v̂n−2). As an ideal of π⋆E(n), it is the same as In−1 = (2, v̄1, . . . , v̄n−2).

Theorem 5.12.

(1) For n ≥ 2 there is a map of spectra

lim
i

∨

j≤i

Σ(1−λn−1)jER(n− 1) −→ (ER(n)tΣ2)∧
În−1

that becomes an isomorphism on homotopy groups after competion at În−1 or equiv-
alently after K(n− 1)-localization.

(2) For n = 1, we have an equivalence

lim
i

∨

j≤i

Σ4jER(0) ≃ ER(1)tΣ2 ,

where ER(0) ≃ HQ and ER(1) ≃ KO(2).

Proof. We begin with the case n ≥ 2. Let λ = λn−1 and y = y(n− 1) ∈ π1−λE(n− 1). We
may view y−k as a class in πk(1−λ)(Σ

kρE(n− 1)). The multiplication by y−k map

Σk(1−λ)E(n− 1) −→ ΣkρE(n− 1)

is an equivalence since y is invertible. Applying this to each wedge summand (where we use
different powers of y for each suspension), we have an equivalence

lim
i

∨

j≤i

Σk(1−λ)E(n− 1) ≃ lim
i

∨

j≤i

ΣρjER(n− 1).

Putting this together with the map of Theorem 5.11 and the equivalence with the classical
Tate construction of Theorem 5.8 and taking fixed points (applying Proposition 4.6), we
have a map

lim
i

∨

j≤i

Σ(1−λ)jER(n− 1) −→ (ER(n)tΣ2)∧
În−1

which yields an isomorphism on homotopy groups after completion as desired. As in the
parametrized case, the corresponding statement for K(n − 1) localization (or equivalently
KR(n− 1)-localization) follows from Theorem 3.12.

We now prove the case n = 1. We claim that

lim

i

∨

j≤i

ΣρjE(0)




C2

≃ lim
i

∨

j≤i

Σ4jHQ.

By [KW07, Sec. 4], there is an isomorphism

πC2

⋆ (E(0)) ∼= Z(2)[2
±1, u±1

2σ ]
∼= Q[u±1

2σ ]

with |u2σ | = 2− 2σ. Therefore in integer-grading we have

πC2

∗ (ΣρjE(0)) ∼=

{
Q if j = 2k and ∗ = −4k,

0 if otherwise.
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It follows that (Σ(2k+1)ρE(0))C2 ≃ ∗ and (Σ2kρE(0))C2 ≃ Σ−4kHQ. This proves the claim.
�

6. Tate vanishing

Our second main result, vanishing for the parametrized Tate construction of Real Morava
K-theory, is proven in this section. Let G be any finite group and let G act trivially on the
nth Morava K-theory K(n). Greenlees and Sadofsky proved the following vanishing result:

Theorem 6.1. [GS96, Thm. 1.1] The Tate construction of Morava K-theory vanishes, i.e.
K(n)tG ≃ ∗.

Their proof proceeds in two steps:

(1) They show that the result holds for cyclic groups using the inverse limit formula for
the Tate construction. Note that this inverse limit formula does not hold for the
Tate construction of a general group.

(2) To prove vanishing for general groups, they apply an inductive argument. The key
point is that if the Tate constructions for the proper subgroups of G vanish, then
there is an understandable model for the Tate construction [GS96, Prop. 3.2].

Our proof for vanishing of the parametrized Tate construction follows a very similar line
of reasoning. In Section 6.1, we show that K(n)tC2

G ≃ ∗ for all finite cyclic groups G. In
Section 6.2, we extend this vanishing result to all finite groups. Along the way, we prove
finite generation for the Real Morava K-theory of C2-equivariant classifying spaces; this
result may be of independent interest.

6.1. Parametrized Tate vanishing for cyclic groups. Throughout this section, we
assume that G is a finite group.

Lemma 6.2. Let ξ be a positive dimensional Real vector bundle over BC2
G and let K be a

Real oriented cohomology theory with K⋆(BC2
G) finitely generated over E⋆ (where K is an

E-module spectrum). Then

lim
s
(K ∧BC2

G(−sξ)) ≃ ∗.

Proof. By [GS96, Lem. 2.1], the composites of the underlying maps of the structure maps
in the inverse limit are eventually null for dimension reasons. Therefore it suffices to show
that the geometric fixed points of the composites of the structure maps in the inverse limit
are eventually null. We do so by following Greenlees and Sadofsky’s proof of [GS96, Lem.
2.1].

The assumption that K⋆(BC2
G) is finitely generated over E⋆ implies that each generator

of K⋆(BC2
G) is supported on some finite skeleton of BC2

G, say BC2
G〈r〉. Recall that the

geometric fixed points of a Thom spectrum may be computed by taking the fixed points of
each (suspension of a) Thom space in the spectrum [Man04]. More precisely, we have

ΦC2(Th(−sξ → BC2
G〈r〉)) ≃ Th((−sξ|(BC2

G〈r〉)C2 )
C2 → (BC2

G〈r〉)C2).

Let λ be the complex dimension of −sξ. Then (−sξ)C2 has real dimension λ. On the
other hand, the real dimension d of (BC2

G)C2 satisfies 0 ≤ d ≤ r. Indeed, this follows
from the facts that BC2

G admits a C2-CW structure for any discrete group G [Lüc05] and
the C2-fixed points of an r-dimensional C2-CW complex consist of the cells of the form
C2/C2×Dk. In particular, the dimension does not increase after taking fixed points. Given
these constraints on dimension, a staightforward modification of the dimension argument
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appearing in the proof of [GS96, Lem. 2.1] shows that the geometric fixed points of the
composite

K ∧ (BC2
G〈r〉)(−(s+j)ξ) → K ∧BC2

G(−(s+j)ξ) → K ∧BC2
G(−sξ)

are null for j sufficiently large. �

Remark 6.3. It may be possible to obtain tighter dimension bounds using concrete geo-
metric models for BC2

G, but we only needed rough bounds to apply the argument from
[GS96].

Lemma 6.4. Let V be some finite, positive dimensional Real representation of G. Let K
be a Real oriented cohomology theory such that K⋆(BC2

H) is finitely generated over K⋆ for
all H ≤ G. Then the G⋊ C2-spectrum

F (S∞V , i∗K ∧ EC2
G+)

is equivariantly contractible.

Proof. We modify the proof of [GS96, Lem. 2.2]. For any spectrum K,

F (S∞V , i∗K ∧ EC2
G+) ≃ lim

r
F (SrV , i∗K ∧ EC2

G+) ≃ lim
r
i∗K ∧ EC2

G+ ∧ S−rV .

If H ≤ G, then V is also a Real representation of H, and EC2
G is a model for EC2

H. So

(8) (i∗K ∧ EC2
G+ ∧ S−rV )H ≃ K ∧BC2

H(−rξ)

where ξ is the Real bundle over BC2
H induced by the Real H-representation V and

BC2
H(−rξ) is the C2-equivariant Thom spectrum. The equivalence 8 follows from the proof

of [QS21, Thm. B]. We see then that

F (S∞V , i∗K ∧EC2
G+)

H ≃ lim
r
K ∧BC2

H(−rξ).

The right-hand side is contractible for all H ≤ G by Lemma 6.2, so the left-hand side is
equivariantly contractible. �

Lemma 6.5. The group K(n)⋆(BC2
G) is finitely generated over E(n)⋆. Dually, K(n)⋆(BC2

G)
is finitely generated over E(n)⋆.

Proof. First suppose n ≥ 1. Since both K(n) and E(n) are (λ + σ)-periodic, it suffices to
show the statement for the integer-graded part. For any MR(n)-module spectrum E, we
have a Kitchloo–Wilson fibration (Section 2.5)

ΣλEC2
x // EC2 // E.

We plug in the MR(n)-module spectrum E := K(n) ∧ BC2
G. Nonequivariantly, we have

that BC2
G and K(n) are equivalent to BG and K(n), respectively. Thus, the underlying

nonequivariant spectrum of K(n) ∧ BC2
G is K(n) ∧ BG. We therefore have a fibration of

spectra

Σλ(K(n) ∧BC2
G)C2

x // (K(n) ∧BC2
G)C2 // K(n) ∧BG .

Applying homotopy groups gives a long exact sequence of modules over E(n)∗. Note that
E(n)∗ is finitely generated (with two generators) over ER(n)∗, so it suffices to show that
π∗(K(n) ∧BC2

G)C2 = K(n)∗(BC2
G) is finitely generated over E(n)∗.

Denote the kernel (resp. cokernel) of x∗ : K(n)∗(BC2
G)

x∗→ K(n)∗(BC2
G) by ker(x∗) (resp.

coker(x∗)). Then we have (we omit the grading shifts)

0 → ker(x∗) → K(n)∗(BG) → coker(x∗) → 0.
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Because K(n)∗(BG) is finitely generated over K(n)∗ [Rav82], it is finitely generated over
E(n)∗. Since E(n)∗ is Noetherian, this implies that both ker(x∗) and coker(x∗) are finitely
generated over E(n)∗. Note that ker(x2∗)/ ker(x∗) is a submodule of coker(x∗). Hence the
short exact sequence of E(n)∗-modules

0 → ker(x∗) → ker(x2∗) → ker(x2∗)/ ker(x∗) → 0

implies that ker(x2∗) is finitely generated over E(n)∗. Inductively, we know ker(xk∗) is finitely
generated for all positive integers k. Because x is nilpotent, K(n)∗(BC2

G) equals ker(xL∗ ) for
L large enough and it is finitely generated over E(n)∗. Thus, K(n)∗(BC2

G) is finitely gen-
erated over ER(n)∗, and so K(n)⋆(BC2

G) is finitely generated over E(n)⋆, which completes
the proof.

The proof of finite-generation of cohomology is completely analogous (one simply maps
BC2

G into the Kitchloo–Wilson fibration rather than smashing with it).
In the case n = 0, we use the (unshifted) fibration

(ΣσBC2
G ∧K(0))C2

aσ // (BC2
G ∧K(0))C2 // BG ∧K(0)

and note that since mulitplication by aσ is null-homotopic on K(0), it follows that the
homotopy of the middle term injects into the homotopy of the right hand term. Since
K(0)∗(BG) is finitely generated over E(0)∗ = Q, it follows that π∗((BC2

G ∧K(0))C2) is as
well.

�

Corollary 6.6. If G is a finite cyclic group, then

(i∗K(n))tC2
G ≃ ∗.

Proof. The proof is similar to the proof of [GS96, Cor. 2.3]. Let (V, (−)) be the Real
representation of G described in part (2) of Example 2.2 and let ξ be the corresponding Real
line bundle over BC2

G. Then there are G⋊C2-equivariant equivalences EC2
G+ ≃ S(∞V )+

and ẼC2
G ≃ S∞V . We have

(i∗K(n))tC2
G ≃ F (S∞V , i∗K(n) ∧ ΣS(∞V )+),

and the right-hand side is equivariantly contractible by Lemma 6.4. �

Remark 6.7. A similar proof can be given if G is any finite abelian group, but we omit
this since we will give a proof for all finite groups below.

6.2. Parametrized Tate vanishing for all finite groups. Suppose that G is a finite
group. The proofs of the following two propositions are similar to the proofs of [GS96, Prop.
3.1-3.2].

Proposition 6.8. If K is a Real oriented cohomology theory with K⋆(BC2
G+) finitely gen-

erated over K⋆ for all finite groups G, then (i∗K)tC2
G ≃ ∗ for all finite groups G.

Proposition 6.9. If W is a non-zero, finite dimensional Real G-representation with WG =
0, and K is a G⋊C2-spectrum such that for every proper subgroup H < G one has KtC2

H ≃
∗, then

F (S∞W ,ΣK ∧ EC2
G+) ≃ KtC2

G.
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Proof of Prop. 6.8. This follows from the chain of equivariant equivalences

(i∗K)tC2
G ≃ F (S∞W ,Σi∗K ∧ EC2

G+) ≃ ∗

where the first equivalence is Proposition 6.9 and the second equivalence is Lemma 6.4.
Proposition 6.9 applies by induction up the subgroup lattice of G, where the base case of a
cyclic subgroup was proven in Corollary 6.6. �

Proof of Prop. 6.9. By hypothesis, for any proper subgroup H < G, we have

KtC2
H ≃ F (ẼC2

G,ΣK ∧ EC2
G+)

H ≃ ∗

(note that EC2
G is a model for EC2

H by definition). We also have F (S∞W ,ΣK∧EC2
G+)

H ≃
∗ since if WH = 0 we can apply Proposition 6.9 inductively and if WH 6= 0 then S∞W ≃ ∗.

Therefore it suffices by the G-Whitehead theorem to produce a map

F (S∞W ,ΣK ∧ EC2
G+) → F (ẼC2

G,ΣK ∧ EC2
G+)

which is an equivalence on G-fixed points. Smash S∞W with the cofibration

(9) EC2
G+ → S0 → ẼC2

G.

The G⋊C2-spectrum S∞W ∧EC2
G+ is equivariantly contractible. Therefore by smashing

with 9 we have a G⋊ C2-equivalence

(10) S∞W → S∞W ∧ ẼC2
G.

Now, we have (S∞W )G ≃ S0 as spaces, so

(S∞W/S0)G ≃ ∗

and therefore (S∞W/S0) can be built from G-cells of the form (G/H)+ ∧En where H < G
is a proper subgroup. Using equivalences from the proof of [QS21, Thm. B] gives

F (G/H+ ∧ Sn ∧ ẼC2
G,ΣK ∧ EC2

G+) ≃ F (Sn ∧ ẼC2
G,ΣK ∧ EC2

G+)
H ≃ Σ−nKtC2

H ≃ ∗.

Taking the limit over skeleta of S∞W /S0 gives

F ((S∞W /S0) ∧ ẼC2
G,ΣK ∧ EC2

G+)
G ≃ ∗.

The desired map is then given by

F (S∞W ,ΣK ∧ EC2
G+) ≃ F (S∞W ∧ ẼC2

G,ΣK ∧ EC2
G+)

→ F (S0 ∧ ẼC2
G,ΣK ∧EC2

G+) ≃ F (ẼC2
G,ΣK ∧EC2

G+).

�

Putting all of this together, we have the following:

Theorem 6.10. Suppose G is a finite abelian group and K = i∗K(n). Then

KtC2
G ≃ ∗.

Definition 6.11. We will say that a C2-spectrum K is an integral Real Morava K-theory
if K is Real oriented, has no torsion in its homotopy groups, and reduces to K(n) modulo
p.

Corollary 6.12. If E = i∗K, where K is a p-local integral Real Morava K-theory, then
EtC2

G is rational.
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Proof. The proof is similar to the proof of [GS96, Cor. 1.4]. �

Remark 6.13. (1) In [GS96, Sec. 4], Greenlees and Sadofsky observed that the same
proof holds for integral theories. This is true in the Real oriented case as well; for
example, we see that KRtC2

G is rational.
(2) Greenlees and Sadofsky also showed that an analogous statement holds for KO

using the Wood cofiber sequence

ΣKO
η
→ KO → KU

and the fact that η is nilpotent classically. Although there is a C2-equivariant analog
of the Wood cofiber sequence (involving the spectrum KOC2

, see e.g. [GHIR19, Sec.
10]), the same argument does not work since η is not nilpotent C2-equivariantly.

We will now prove the real (i.e. fixed point) version of the Tate vanishing result.

Theorem 6.14. For a finite cyclic group G, KR(n)tG ≃ ∗ where G acts trivially on KR(n).
In particular, KR(n)tG = (KR(n)tG)C2 ≃ ∗.

Proof. In the case that n = 0, we have KR(0) = HQ and Tate vanishing is the same as the
nonequivariant result. Suppose n ≥ 1. We will show that the RO(C2)-graded homotopy
groups of KR(n)tG vanish. Because KR(n) is λ+ σ-periodic, it is enough to compute the
integer part πC2

∗ KR(n)tG = 0. We will show that

πC2

∗ KR(n)tG = π∗(KR(n)tG)C2 = π∗(KR(n))tG = 0.

We write (KR(n))tG as lim
n

(KR(n) ∧ ΣRP∞
−n). The cofiber sequence [KW07]

ΣλKR(n)
y
−→ KR(n) → K(n)

gives cofiber sequences (we omit suspensions)

ΣλKR(n) ∧BG∞
−k

fk−→ KR(n) ∧BG∞
−k → K(n) ∧BG∞

−k.

Denote the cokernel of (fk)∗ : πl−λ(KR(n)∧BG∞
−k) → πl(KR(n)∧BG∞

−k) by Ak,l, the kernel
of (fk)∗ : πl−λ−1(KR(n) ∧ BG∞

−k) → πl−1(KR(n) ∧ BG∞
−k) by Ck,l, and πl(K(n) ∧ BG∞

−k)
by Bk,l. The associated long exact sequence in homotopy groups

· · · πl−λ(KR(n)∧BG∞
−k)

(fk)∗
−−−→ πl(KR(n)∧BG∞

−k) → πl(K(n)∧BG∞
−k)

∂l−→ πl−1−λ(KR(n)∧BG∞
−k) · · ·

breaks into short exact sequences

0 → Ak,l → Bk,l → Ck,l → 0.

We omit l from the index. We have an exact sequence

(11) 0 → lim
k
Ak → lim

k
Bk → lim

k
Ck → lim1Ak → lim1Bk → lim1Ck → 0

On the other hand, we have

(12) 0 → lim1Bk → π∗(K(n)tG) → lim
k
Bk → 0.

Classical Tate vanishing [GS96, Prop. 3.1] implies that in the short exact sequence 12 we
have lim1Bk = lim

k
Bk = 0. In the exact sequence 11, we have

lim
k
Ak = lim1Ck = 0.
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The maps
(fk)∗ : πl−λ(KR(n) ∧BG∞

−k) → πl(KR(n) ∧BG∞
−k)

induces maps

lim f∗ : lim
k
πl−λ(KR(n) ∧BG∞

−k) → lim
k
πl(KR(n) ∧BG∞

−k);

lim1f∗ : lim
1
k πl−λ(KR(n) ∧BG∞

−k) → lim1
k πl(KR(n) ∧BG∞

−k).

Denote the map KR(n)tG → KR(n)tG from fk by f . Then f is nilpotent because it is
induced by multiplication by an element of π∗MR(n).

Recall that Ak is the cokernel of (fk)∗ : πl−λ(KR(n)∧BG∞
−k) → πl(KR(n)∧BG∞

−k) and
Ck is the kernel of (fk)∗ : πl−λ−1(KR(n)∧BG∞

−k) → πl−1(KR(n)∧BG∞
−k). The short exact

sequence

0 → lim1π∗+1(KR(n) ∧BG∞
−k) → π∗(KR(n)tG → lim

k
π∗(KR(n) ∧BG∞

−k) → 0

has a self map (lim1(fk)∗, f∗, lim(fk)∗). Because f∗ is nilpotent, both lim1(fk)∗ and lim(fk)∗
are nilpotent.

The exact sequence

0 → Ck → π∗(KR(n) ∧BG∞
−k)

(fk)∗
−−−→ π∗(KR(n) ∧BG∞

−k) → Ak → 0

splits into two short exact sequences

0 → Ck → π∗(KR(n) ∧BG∞
−k)

(fk)∗
−−−→ im(fk)∗ → 0,

0 → im(fk)∗ → π∗(KR(n) ∧BG∞
−k) → Ak → 0.

We then have exact sequences

0 lim
k
Ck lim

k
π∗(KR(n) ∧BG∞

−k) lim
k
im(fk)∗

lim1Ck lim1π∗(KR(n) ∧BG∞
−k) lim1im(fk)∗ 0,

0 lim
k
im(fk)∗ lim

k
π∗(KR(n) ∧BG∞

−k) lim
k
Ak

lim1im(fk)∗ lim1π∗(KR(n) ∧BG∞
−k) lim1Ak 0.

Because lim1Ck = 0, the map lim1π∗(KR(n)∧BG∞
−k) → lim1im(fk)∗ is injective (in fact,

it is an isomorphism). Because lim
k
Ak = 0, the map lim1im(fk)∗ → lim1π∗(KR(n)∧BG∞

−k)

is injective. Therefore, the composition

lim1(fk)∗ : lim
1π∗(KR(n) ∧BG∞

−k) → lim1π∗(KR(n) ∧BG∞
−k)

is injective. We have shown lim1(fk)∗ is nilpotent and so lim1π∗(KR(n) ∧ BG∞
−k) = 0.

With a similar argument, lim
k
(fk)∗ is surjective and nilpotent, which forces lim

k
π∗(KR(n)∧

BG∞
−k) = 0. Then π∗KR(n)tG = 0 and this completes the proof. �

We may now apply [GS96, Props. 3.1 and 3.2] to obtain Tate vanishing for general finite
groups.

Corollary 6.15. For a finite group G, KR(n)tG ≃ ∗ where G acts trivially on KR(n). In
particular, KR(n)tG ≃ (KR(n)tG)C2 ≃ ∗.



38 GUCHUAN LI, VITALY LORMAN, AND J.D. QUIGLEY

References

[AMS98] Matthew Ando, Jack Morava, and Hal Sadofsky. Completions of Z/p-Tate cohomology of periodic
spectra. Geometry and Topology, 2(145):174, 1998.

[AS69] Michael F Atiyah and Graeme B Segal. Equivariant K-theory and completion. J. Differential
Geometry, 3(1-18):9, 1969.

[Ati66] Michael Francis Atiyah. K-theory and reality. The Quarterly Journal of Mathematics, 17(1):367–
386, 1966.

[Beh07] Mark Behrens. Some root invariants at the prime 2. Geometry & Topology Monographs, 10(1):1–
40, 2007.

[BHSZ21] Agnès Beaudry, Michael A. Hill, XiaoLin Danny Shi, and Mingcong Zeng. Models of Lubin-Tate
spectra via real bordism theory. Adv. Math., 392:Paper No. 108020, 58, 2021.

[Bou79] Aldridge K Bousfield. The localization of spectra with respect to homology. Topology, 18(4):257–
281, 1979.

[BR19] Scott M Bailey and Nicolas Ricka. On the Tate spectrum of tmf at the prime 2. Mathematische
Zeitschrift, 291(3-4):821–829, 2019.

[DHS88] Ethan S Devinatz, Michael J Hopkins, and Jeffrey H Smith. Nilpotence and stable homotopy
theory I. Annals of Mathematics, 128(2):207–241, 1988.

[DJK+86] Donald M Davis, David C Johnson, John Klippenstein, Mark Mahowald, and Steven Wegmann.
The spectrum (P ∧ BP 〈2〉)−∞. Transactions of the American Mathematical Society, 296(1):95–
110, 1986.

[DM84] Donald M Davis and Mark Mahowald. The spectrum (P ∧ bo)∞. In Mathematical Proceedings
of the Cambridge Philosophical Society, volume 96, pages 85–93. Cambridge Univ Press, 1984.

[Fok14] Chi-Kwong Fok. The Real K-theory of compact Lie groups. Symmetry, Integrability and Geom-
etry: Methods and Applications, 10(0):22–26, 2014.

[GHIR19] Bertrand J Guillou, Michael A Hill, Daniel C Isaksen, and Douglas C Ravenel. The cohomology
of C2-equivariant A(1) and the homotopy of koC2

. Tunisian Journal of Mathematics, to appear,
2019.

[GM95] John Patrick Campbell Greenlees and J Peter May. Generalized Tate cohomology, volume 543.
American Mathematical Soc., 1995.

[GM97] John PC Greenlees and J Peter May. Localization and completion theorems for MU-module
spectra. Annals of Mathematics, pages 509–544, 1997.

[GS96] John PC Greenlees and Hal Sadofsky. The Tate spectrum of vn-periodic complex oriented theo-
ries. Mathematische Zeitschrift, 222(3):391–405, 1996.

[HHR16] Michael A Hill, Michael J Hopkins, and Douglas C Ravenel. On the nonexistence of elements of
Kervaire invariant one. Annals of Mathematics, pages 1–262, 2016.

[HK01] Po Hu and Igor Kriz. Real-oriented homotopy theory and an analogue of the Adams–Novikov
spectral sequence. Topology, 40(2):317–399, 2001.

[HM17] Michael Hill and Lennart Meier. The C2-spectrum Tmf1(3) and its invertible modules. Algebraic
& Geometric Topology, 17(4):1953–2011, 2017.

[Hov07] Mark Hovey. Model categories. Number 63. American Mathematical Soc., 2007.
[HS96] Mark Hovey and Hal Sadofsky. Tate cohomology lowers chromatic Bousfield classes. Proceedings

of the American Mathematical Society, 124(11):3579–3585, 1996.
[HS98] Michael J. Hopkins and Jeffrey H. Smith. Nilpotence and stable homotopy theory. II. Ann. of

Math. (2), 148(1):1–49, 1998.
[HS20] Jeremy Hahn and XiaoLin Danny Shi. Real orientations of Lubin-Tate spectra. Invent. Math.,

221(3):731–776, 2020.
[Hu02] Po Hu. On Real-oriented Johnson-Wilson cohomology. Algebr. Geom. Topol., 2:937–947, 2002.
[KLW17] Nitu Kitchloo, Vitaly Lorman, and W Stephen Wilson. Landweber flat real pairs and ER(n)-

cohomology. Advances in Mathematics, 322:60–82, 2017.
[KLW18] Nitu Kitchloo, Vitaly Lorman, and W. Stephen Wilson. Multiplicative structure on real Johnson-

Wilson theory. In New directions in homotopy theory, volume 707 of Contemp. Math., pages
31–44. Amer. Math. Soc., Providence, RI, 2018.

[KW07] Nitu Kitchloo and W Stephen Wilson. On fibrations related to real spectra. Proceedings of the
Nishida fest (Kinosaki 2003), 10:237–244, 2007.



TATE BLUESHIFT AND VANISHING FOR REAL ORIENTED COHOMOLOGY 39

[KW08] Nitu Kitchloo and W Stephen Wilson. The second real Johnson-Wilson theory and nonimmer-
sions of RPn. Homology, Homotopy and Applications, 10(3):223–268, 2008.

[KW15] Nitu Kitchloo andW StephenWilson. The ER(n)-cohomology of BO(q) and real Johnson-Wilson
orientations for vector bundles. Bulletin of the London Mathematical Society, 47(5):835–847,
2015.

[Lan68] Peter S. Landweber. Conjugations on complex manifolds and equivariant homotopy of MU . Bull.
Amer. Math. Soc., 74:271–274, 1968.

[LSWX19] Guchuan Li, XiaoLin Danny Shi, GuozhenWang, and Zhouli Xu. Hurewicz images of real bordism
theory and real Johnson-Wilson theories. Advances in Mathematics, 342:67–115, 2019.
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