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En ring spectra and Dyer–Lashof operations

Tyler Lawson

1 Introduction

Cohomology operations are absolutely essential in making cohomology an ef-
fective tool for studying spaces. In particular, the mod-p cohomology groups
of a space X are enhanced with a binary cup product, a Bockstein deriva-
tion, and Steenrod’s reduced power operations; these satisfy relations such as
graded-commutativity, the Cartan formula, the Adem relations, and the insta-
bility relations [92]. The combined structure of these cohomology operations is
very effective in homotopy theory because of three critical properties.

These operations are natural. We can exclude the possibility of certain maps
between spaces because they would not respect these operations.

These operations are constrained. We can exclude the existence of certain
spaces because the cup product and power operations would be incompat-
ible with the relations that must hold.

These operations are complete. Because cohomology is representable, we
can determine all possible natural operations which take an n-tuple of
cohomology elements and produce a new one. All operations are built,
via composition, from these basic operations. All relations between these
operations are similarly built from these basic relations.

In particular, this last property makes the theory reversible: there are mech-
anisms which take cohomology as input and converge to essentially complete
information about homotopy theory in many useful cases, with the principal
examples being the stable and unstable Adams spectral sequences. The stable
Adams spectral sequence begins with the Ext-groups Ext(H∗(Y ), H∗(X)) in
the category of modules with Steenrod operations and converges to the stable
classes of maps from X to a p-completion of Y [1]. The unstable Adams spectral
sequence is similar, but it begins with nonabelian Ext-groups that are calculated
in the category of graded-commutative rings with Steenrod operations [20, 19].

Our goal is to discuss multiplicative homotopy theory: spaces, categories, or
spectra with extra multiplicative structure. In this situation, we will see that
the Dyer–Lashof operations play the role that the Steenrod operations did in
ordinary homotopy theory.

In ordinary algebra, commutativity is an extremely useful property possessed
by certain monoids and algebras. This is no longer the case in multiplicative ho-
motopy theory or category theory. In category theory, commutativity becomes
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structure: to give symmetry to a monoidal category C we must make a choice
of a natural twist isomorphism τ : A ⊗ B → B ⊗ A. Moreover, there are more
degrees of symmetry possible than in algebra because we can ask for weaker or
stronger identities on τ . By asking for basic identities to hold we obtain the
notion of a braided monoidal category, and by asking for very strong identities
to hold we obtain the notion of a symmetric monoidal category. In homotopy
theory and higher category theory we rarely have the luxury of imposing iden-
tities, and these become replaced by extra structure. One consequence is that
there are many degrees of commutativity, parametrized by operads.

The most classical such structures arose geometrically in the study of iterated
loop spaces. For a pointed space X , the n-fold loop space ΩnX has algebraic
operations parametrized by certain configuration spaces En(k), which assemble
into an En-operad ; moreover, there is a converse theorem due to Boardman–
Vogt and May that provides a recognition principle for what structure on Y
is needed to express it as an iterated loop space. As n grows, these spaces
possess more and more commutativity, reflected algebraically in extra Dyer–
Lashof operations on the homology H∗Y that are analogous to the Steenrod
operations.

In recent years there is an expanding library of examples of ring spectra
that only admit, or only naturally admit, these intermediate levels of structure
between associativity and commutativity. Our goal in this chapter is to give an
outline of the modern theory of highly structured ring spectra, particularly En

ring spectra, and to give a toolkit for their study. One of the things that we
would like to emphasize is how to usefully work in this setting, and so we will
discuss useful tools that are imparted by En ring structures, such as operations
on them that unify the study of Steenrod and Dyer–Lashof operations. We will
also introduce the next stage of structure in the form of secondary operations.
Throughout, we will make use of these operations to show that structured ring
spectra are heavily constrained, and that many examples do not admit this
structure; we will in particular discuss our proof in [48] that the 2-primary
Brown–Peterson spectrum does not admit the structure of an E∞ ring spectrum,
answering an old question of May [61]. At the close we will discuss some ongoing
directions of study.
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3 Operads and algebras

Throughout this section, we will let C be a fixed symmetric monoidal topological
category. For us, this means that C is enriched in the category S of spaces, that
there is a functor ⊗ : C×C→ C of enriched categories, and that the underlying
functor of ordinary categories is extended to a symmetric monoidal structure.
We will write MapC(X,Y ) for the mapping space between two objects, and
HomC(X,Y ) for the underlying set. Associated to C there is the (ordinary)
homotopy category hC, with morphisms [X,Y ] = π0 MapC(X,Y ).

3.1 Operads

Associated to any object X ∈ C there is an endomorphism operad EndC(X).
The k’th term is

MapC(X
⊗k, X),

with an operad structure given by composition of functors. For any operad
O, this allows us to discuss O-algebra structures on the objects of C, maps of
O-algebras, and further structure.

If O is the associative operad Assoc, then O-algebras are monoid objects
in the symmetric monoidal structure on C. If O is the commutative operad
Comm, then O-algebras are strictly commutative monoids in C. However, these
operads are highly rigid and do not take any space-level structure into account.
Mapping spaces allow us to encode many different levels of structure.

Example 3.1. There is a sequence of operads A1 → A2 → A3 → . . . built out
of the Stasheff associahedra [91]. An A2-algebra has a unital binary multipli-
cation; an A3-algebra has a chosen homotopy expressing associativity, and has
Massey products; an A4-algebra has a homotopy expressing a juggling formula
for Massey products; and so on. Moreover, each operad is simply built from the
previous: extension from an An−1-structure to an An-structure roughly asks to
extend a certain map Sn−3 ×Xn → X to a map Dn−2 ×Xn → X expressing
an n-fold coherence law for the multiplication [3]. This gives An a perturbative
property: if X → Y is a homotopy equivalence, then An-algebra structures on
one space can be transferred to the other.

Example 3.2. The colimit of the An-operads is called A∞, and it is equivalent
to the associative operad. It satisfies a rectification property. In a well-behaved
category like the category S of spaces or the category Sp of spectra, any A∞-
algebra is equivalent in the homotopy category of A∞-algebras to an associative
object.

Example 3.3. There is a sequence of operads E1 → E2 → E3 → . . . , where
the space En(k) is homotopy equivalent to the configuration space of ordered
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k-tuples of points in Rn. These have various models, such as the little cubes or
little discs operads. The E1-operad is equivalent to the associative operad, and
the E∞-operad is equivalent to the commutative operad. We refer to an algebra
over any operad equivalent to En as an En-algebra. These play an important role
in the recognition principle [64, 17]: given an En-algebra X we can construct an
n-fold classifying space BnX ; and if the binary multiplication makes π0(X) into
a group then X ≃ ΩnBnX . The relation between En-algebra structures and
iteration of the functor Ω is closely related to an additivity result of Dunn [26],
who showed that En+1-algebras are equivalent to E1-algebras in the category
of En-algebras.

Example 3.4. Associated to a topological monoid M , there is an operad OM

whose only nonempty space is OM (1) = M . An algebra over this operad is
precisely an object with M -action. This operad is usually not perturbative.
However, M can be resolved by a cellular topological monoid M̃ → M such
that O

M̃
-algebras are perturbative and can be rectified to OM -algebras. This

construction is a recasting of Cooke’s obstruction theory for lifting homotopy
actions of a group G to honest actions [25]; stronger versions of this were devel-
oped by Dwyer–Kan and Badzioch [27, 4].

Example 3.5. There is a free-forgetful adjunction between operads and sym-
metric sequences. Given any sequence of spaces Zn with Σn-actions, we can
construct an operad Free(Z) such that a Free(Z)-algebra structure is the same
as a collection of Σn-equivariant maps Zn → MapC(A

⊗n, A).
If, further, Z1 is equipped with a chosen point e, we can construct an operad

Free(Z, e) such that a Free(Z, e)-algebra structure is the same as a Free(Z)-
algebra structure such that e acts as the identity: Free(Z, e) is a pushout of a
diagram Free(Z)← Free({e})→ Free(∅) of operads.

Example 3.6. In the previous example, let Z2 be S1 with the antipodal action
of Σ2 and let all other Zn be empty, freely generating an operad Q1 that we
call the cup-1 operad. A Q1-algebra is an object A with a Σ2-equivariant map
S1 → MapC(A

⊗2, A). The Σ2-equivariant cell decomposition of S1 allows us
to describe Q1-algebras as objects with a binary multiplication m and a chosen
homotopy from the multiplication m to the multiplication in the opposite order
m ◦ σ. In particular, any homotopy-commutative multiplication lifts to a Q1-
algebra structure.

In the category Sp of spectra, one of the main applications of En-algebras is
that they have well-behaved categories of modules, whose homotopy categories
are triangulated categories.

Theorem 3.7 (Mandell [59]). An E1-algebra R in Sp has a category of left
modules LModR. An E2-algebra structure on R makes the homotopy categories
of left modules and right modules equivalent, and gives the homotopy category of
left modules a monoidal structure ⊗R. An E3-algebra structure on R extends this
monoidal structure to a braided monoidal structure. An E4-algebra structure on
R makes this braided monoidal structure into a symmetric monoidal structure.
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Theorem 3.8. An E1-algebra R in Sp has a monoidal category of bimodules.
An E∞-algebra R in Sp has a symmetric monoidal category of left modules.

3.2 Monads

If C is not just enriched, but is tensored over spaces, an O-algebra structure on
X is expressible in terms internal to C. An O-algebra structure is equivalent to
having action maps

γk : O(k) ⊗X
⊗k → X

that are invariant under the action of Σk and respect composition in the operad
O. If C has colimits, we can define extended power constructions

Symk
O(X) =

(
O(k) ⊗Σk

X⊗k
)
,

and an associated free O-algebra functor

FreeO(X) =
∐

k≥0

Symk
O(X).

An O-algebra structure on X is then determined by a single map FreeO(X)→
X . To say more, we need C to be compatible with enriched colimits in the sense
of [43, §3].

Definition 3.9. A symmetric monoidal category C is compatible with enriched
colimits if the monoidal structure on C preserves enriched colimits in each vari-
able separately.

Compatibility with enriched colimits is necessary to give composite action
maps

O(k) ⊗

(
k⊗

i=1

O(ni)⊗X
⊗ni

)
→ X⊗Σni

and make them assemble into a monad structure FreeO ◦FreeO → FreeO on
this free functor. In this case, O-algebras are equivalent to FreeO-algebras, and
Symk

O and FreeO are enriched functors.
When these functors are enriched functors, they also give rise to a monad

on the homotopy category hC. We refer to algebras over it as homotopy O-
algebras. This is strictly stronger than being an O-algebra in the homotopy
category; the latter asks for compatible maps π0O(n)→ [A⊗n, A], whereas the
former asks for compatible elements in [O(n) ⊗Σn

A⊗n, A] that use O before
passing to homotopy. In the case of the En-operads, such a structure in the
homotopy category is what is classically known as an Hn-algebra [21].

This type of structure can be slightly rigidified using pushouts of free alge-
bras. For any operad O with identity e ∈ O(1), we can construct a homotopy
coequalizer diagram

Free(Free(O, e), e) ⇒ Free(O, e)→ Oh

5



in the category of operads. An object A has an Oh-algebra structure if and
only if there are Σk-equivariant maps O(k) → MapC(A

⊗k, A) so that the as-
sociativity diagram homotopy commutes and so that e acts by the identity. In
particular, A has an Oh-algebra structure if and only if it has a homotopy O-
algebra structure; the Oh-structure has a chosen homotopy for the associativity
of composition. For example, there is an operad parametrizing objects with
a unital binary multiplication, a chosen associativity homotopy, and a chosen
commutativity homotopy.

3.3 Connective algebras

In the category of spectra, the Eilenberg–Mac Lane spectra HA are character-
ized by a useful mapping property. We refer to a spectrum as connective if it is
(−1)-connected. For any connective spectrum X , the natural map

MapSp(X,HA)→ HomAb(π0X,A)

is a weak equivalence.
This has a number of strong consequences. For example, we get an equiva-

lence of endomorphism operads EndSp(HA) → EndAb(A), obtained by taking
π0:

EndSp(HA)k = Map(HA⊗k, HA) ≃ EndAb(A)k = Hom(A⊗k, A).

Thus, an action of an operad O on HA is equivalent to an action of π0O on
A, and this equivalence is natural. This technique also generalizes, using the
equivalences

Hom(Hπ0R
⊗n, Hπ0R)

∼
−→ Map(R⊗n, Hπ0R).

Proposition 3.10. Suppose R is a connective spectrum and O is an operad
acting on R. Then the map R→ Hπ0(R) can be given, in a functorial way, the
structure of a map of O-algebras.

Example 3.11. If A is given the structure of a commutative ring, HA inherits
an essentially unique structure of an E∞-algebra. If R is a connective and
homotopy commutative ring spectrum, then it can be equipped with an action
of the cup-1 operad Q1 from 3.6. Any ring homomorphism π0R → A lifts to a
map of Q1-algebras R→ HA.

3.4 Example algebras

Example 3.12. There exist models for the category of spectra so that the
function spectrum

F (Σ∞
+X,A) = AX

is a lax monoidal functor Sop × Sp → Sp, with the homotopy groups of AX

being the unreduced A-cohomology groups of X . The diagonal ∆ makes any
space X into a commutative monoid in Sop. If A is an O-algebra in Sp, then
AX then becomes an O-algebra.
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Example 3.13. For any spectrum E, composition of functions naturally gives
the endomorphism algebra spectrum End(E) = F (E,E) the structure of anA∞-
algebra, and E is a left module over End(E). The homotopy groups of End(E)
are sometimes called the E-Steenrod algebra and they parametrize operations
on E-cohomology.

Example 3.14. The suspension spectrum functor

X 7→ Σ∞
+X = S[X ]

is strong symmetric monoidal. As a result, it takes O-algebras to O-algebras.
For example, any topological group G has an associated spherical group algebra
S[G].

Example 3.15. For any pointed space X , the n-fold loop space ΩnX is an
En-algebra in spaces, and S[ΩnX ] is an En-algebra. For any spectrum Y the
space Ω∞Y is an E∞-algebra in spaces, and S[Ω∞Y ] is an E∞-algebra.

Example 3.16. The Thom spectraMO andMU have E∞ ring structures [65].
At any prime p, MU decomposes into a sum of shifts of the Brown–Peterson
spectrum BP , which has the structure of an E4-ring spectrum [11].

Example 3.17. The smash product being symmetric monoidal implies that it
is also a strong symmetric monoidal functor Sp × Sp → Sp. If A and B are
O-algebras then so is A⊗B.

Example 3.18. For a map Q→ R of E∞ ring spectra, there is an adjunction

ModQ ⇄ ModR

between the extension of scalars functor M 7→ R ⊗Q M and the forgetful func-
tor. The left adjoint is strong symmetric monoidal and the right adjoint is lax
symmetric monoidal, and hence both functors preserve O-algebras.

This allows us to narrow our focus. For example, if E has an E∞-algebra
structure and we are interested in understanding operations on the E-homology
ofO-algebras, we can restrict our attention to those operations on the homotopy
groups of O-algebras in ModE rather than considering all possible operations
on the E-homology.

3.5 Multicategories

A multicategory (or colored operad) encodes the structure of a category where
functions have multiple input objects. They serve as a useful way to encode
many multilinear structures in stable homotopy theory: multiplications, module
structures, graded rings, and coherent structures on categories. In this section
we will give a quick introduction to them, and will return in §7.

Definition 3.19. A multicategory M consists of the following data:

1. a collection Ob(M) of objects;
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2. a set MulM(x1, . . . ,xd;y) of multimorphisms for any objects xi and y of
M, or more generally a set MulM({xs}s∈S ;y) for any finite set S and
objects xs, y;

3. composition operations

◦ : MulM({yt}t∈T ; z)×
∏

t∈T

MulM({xs}s∈f−1(t);yt)→ MulM({xs}s∈S ; z)

for any map f : S → T of finite sets and objects xs, yt, and z of M; and

4. identity morphisms idX ∈ MulM(x;x) for any object x.

These are required to satisfy two conditions:

1. unitality: idy ◦ g = g ◦ (idxs
) = g for any g ∈MulM({xs}s∈S;Y); and

2. associativity: h ◦ (gu ◦ (ft)) = (h ◦ (gu)) ◦ ft for any S → T → U of finite
sets.

The underlying ordinary category of M is the category with the same objects
as M and HomM(x,y) = MulM(x;y).

If the sets of multimorphisms are given topologies so that composition is
continuous, we refer to M as a topological multicategory.

A (topological) multifunctor F : M → N is a map F : Ob(M) → Ob(N) on
the level of objects, together with (continuous) maps

MulM(x1, . . . ,xd;y)→ MulM(Fx1, . . . , Fxd;Fy)

that preserve identity morphisms and composition.

Example 3.20. An operad is equivalent to a single-object multicategory. For
any object x in a multicategory M, the full sub-multicategory spanned by x is
an operad called the endomorphism operad of x.

Example 3.21. A symmetric monoidal topological categoryM can be regarded
as a multicategory by defining

MulM(X1, . . . , Xd;Y ) = MapM(X1 ⊗ · · · ⊗Xd, Y ).

This recovers the definition of the endomorphism operad of an object X .

The notion of an algebra over a multicategory will extend the notion of an
algebra over an operad.

Definition 3.22. For (topological) multicategories M and C, the category
AlgM(C) of M-algebras in C is the category of (topological) multifunctors
M→ C and natural transformations.

For any object x ∈M, the evaluation functor evx : AlgM(C)→ C sends an
algebra A to the value A(x).

8



Example 3.23. The multicategory Mod parametrizing “ring-module pairs”
has two objects, a and m, and

MulMod(x1, . . . ,xd;y) =





∗ if y = a and all xi are a,

∗ if y = m and exactly one xi is m,

∅ otherwise.

A multifunctor Mod → C is equivalent to a pair (A,M) of a commutative
monoid A of C and an object M with an action of A.

Example 3.24. A commutative monoid Γ can be regarded as a symmetric
monoidal category with no non-identity morphisms, and in the associated mul-
ticategory we have

MulΓ(g1, . . . , gd; g) =

{
∗ if

∑
gs = g,

∅ otherwise.

A multifunctor Γ→ C determines objects Xg of C, a map from the unit to X0,
and multiplication maps Xg1 ⊗ · · · ⊗ Xgd → Xg1+···+gd : these multiplications
are collectively unital, symmetric, and associative. We refer to such an object
as a Γ-graded commutative monoid.

Example 3.25. The addition of natural numbers makes the partially ordered
set (N,≥) into a symmetric monoidal category. In the associated multicategory
we have

MulN(n1, . . . , nd;m) =

{
∗ if

∑
ni ≥ m,

∅ otherwise.

A multifunctor Γ→ C determines a sequence of objects

· · · → X2 → X1 → X0

of C and multiplication maps Xn1
⊗ · · · ⊗ Xnd

→ Xn1+···+nd
: these multi-

plications are collectively unital, symmetric, and associative, as well as being
compatible with the inverse system. We refer to such an object strongly filtered
commutative monoid in C.

Remark 3.26. If M1 and M2 are multicategories, there is a product multi-
category M1 ×M2, obtained by taking products of objects and products of
multimorphism spaces. Products allow us to extend the above constructions.
For example, taking the product of an operad O with the multicategories of the
previous examples, we construct multicategories that parametrize: pairs (A,M)
of an O-algebra and an O-module; Γ-graded O-algebras; and strongly filtered
O-algebras.

Example 3.27. Let M be the multicategory whose objects are integers, and
define MulM(m1, . . . ,md;n) to be the set of natural transformations

θ : Hm1(X)× · · · ×Hmd(X)→ Hn(X)

9



of contravariant functors on the category S of spaces; composition is composi-
tion of natural transformations. The category M is a category of multivariate
cohomology operations. Any fixed space X determines an evaluation multifunc-
tor evX : M→ Sets, sending n to Hn(X); any homotopy class of map X → Y
of spaces determines a natural transformation of multifunctors in the opposite
direction. Stated concisely, this is a functor

hSop → AlgM(Sets)

that takes a space to an encoding of its cohomology groups and cohomology
operations.

More generally, a category D with a chosen set of functors D→ Sets deter-
mines a multicategory M spanned by them: we can define Mul(F1, . . . , Fd;G)
to be the set of natural transformations

∏
Fi → G, so long as there is always a

set (rather than a proper class) of natural transformations. If we view a functor
F as assigning an invariant to each object of D, a multimorphism

∏
Fi → G is a

natural operation of several variables on such invariants. Evaluation on objects
of D takes the form of a functor

D→ AlgM(Sets),

encoding both the invariants assigned by these functors and the natural opera-
tions on them. These are examples of multi-sorted algebraic theory in the sense
of Bergner [14], closely related to the work of [18, 89]. We will return to the
discussion of this structure in §4.4.

Just as with ordinary operads, there are often free-forgetful adjunctions be-
tween objects of C and algebras over a multicategory.

Proposition 3.28. Suppose that M is a small topological multicategory and
that C is a symmetric monoidal topological category with compatible colimits in
the sense of Definition 3.9.

1. For objects x and y of M, there are extended power functors

Symk
M,x→y

: Cx → Cy,

given by

Symk
M,x→y

(X) = MulM(x,x, . . . ,x︸ ︷︷ ︸
k

;y) ⊗Σk
X⊗k.

2. The evaluation functor evx : AlgM(C)→ C has a left adjoint

FreeM,x : C→ AlgM(C).

The value of FreeM,x(X) on any object y of M is

evy(FreeM,x(X)) =
∐

k≥0

Symk
M,x→y

(X).
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Remark 3.29. These generalize the constructions of extended powers and free
algebras from §3.2. If M has a single object x, encoding an operad O, then
Symk

M,x→x
= Symk

O and FreeM,x encodes FreeO.

Example 3.30. The free Z-graded commutative monoid on an object X in
degree n 6= 0 is equal to the symmetric product Symk(X) in degree kn for
k ≥ 0. All other gradings are the initial object.

Example 3.31. The free strongly filtered commutative monoid on an object
X1 in degree 1 is a filtered object of the form

· · · →
∐

k≥2

SymkX1 →
∐

k≥1

SymkX1 →
∐

k≥0

SymkX1.

If we have a strongly filtered commutative algebra · · · → X2 → X1 → X0, then
this gives action maps SymkX1 → Xk. More generally, there are action maps
SymkXn → Xkn that are compatible in n.

4 Operations

In this section we will fix a spectrum E, viewed as a coefficient object.

4.1 E-homology and E-modules

We can study O-algebras through their E-homology.

Definition 4.1. Given a spectrum E, an E-homology operation for O-algebras
is a natural transformation of functors θ : Em(−) → Em+d(−) of functors on
the homotopy category of O-algebras.

Such operations can be difficult to classify in general. However, if E has a
commutative ring structure then we can do more. In this case, any O-algebra A
has an E-homology object E⊗A which is an O-algebra in ModE , and any space
X has an E-cohomology object EX which is an E∞-algebra object in ModE .
By definition, we have

Em(A) = [Sm, E ⊗A]Sp

and
Em(X) = [S−m, EX ]Sp.

Therefore, we can construct natural operations on the E-homology ofO-algebras
or the E-cohomology of spaces by finding natural operations on the homotopy
groups of O-algebras in ModE .

Example 4.2. If X is an O-algebra in spaces, then E[X ] = E ⊗ Σ∞
+X is an

O-algebra in ModE .
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4.2 Multiplicative operations

In this section we will construct our first operations on the homotopy groups of
O-algebras over a fixed commutative ring spectrum E.

The functor π∗ from the homotopy category of spectra to graded abelian
groups is lax symmetric monoidal under the Koszul sign rule. The induced
functor π∗ from AlgO(Sp) or AlgO(ModE) to graded abelian groups naturally
takes values in the category of graded abelian groups, or graded E∗-modules,
with an action of the operad π0O in sets.

Example 4.3. In the case of an En-operad, π0O is isomorphic to the associative
operad when n = 1 and the commutative operad when n ≥ 2. The E-homology
groups of an En-algebra in Sp form a graded E∗-algebra. If n ≥ 2, this algebra
is graded-commutative.

By applying E∗ to the action maps in the operad, we stronger information.

Proposition 4.4. The homology groups E∗O(k) form an operad E∗O in graded
E∗-modules, and the functor π∗ from AlgO(ModE) to graded abelian groups has
a natural lift to the category of graded E∗O-modules.

Example 4.5. The homotopy groups of En-algebras have a natural bilinear
Browder bracket

[−,−] : πq(A) ⊗ πr(A)→ πq+(n−1)+r(A).

This satisfies the following formulas.

Antisymmetry: [α, β] = −(−1)(|α|+n−1)(|β|+n−1)[β, α].

Leibniz rule: [α, βγ] = [α, β]γ + (−1)|β|(|α|+n−1)α[β, γ].

Graded Jacobi identity:

0 = (−1)(|α|+n−1)(|γ|+n−1)[α, [β, γ]]

+ (−1)(|β|+n−1)(|α|+n−1)[β, [γ, α]]

+ (−1)(|γ|+n−1)(|β|+n−1)[γ, [α, β]].

In the case of E1-algebras, this reduces to the ordinary bracket

[α, β] = αβ − (−1)|α||β|βα

in the graded ring π∗(A).
The Browder bracket is defined, just as it was defined in homology [24], using

the image of the generating class λ ∈ πn−1En(2) ∼= πn−1S
n−1 coming from the

little cubes operad. The antisymmetry and Jacobi identities are obtained by
verifying identities in the graded operad π∗(Σ

∞
+ En). For example, if σ is the

2-cycle in Σ2 we have
λ ◦ σ = (−1)nλ,
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and if τ is a 3-cycle in Σ3 we have

λ ◦ (1⊗ λ) ◦ (1 + τ + τ2) = 0.

However, the signs indicate that there is some care to be taken. In particular,
the Browder bracket of elements α ∈ πq(A) and β ∈ πr(A) is defined to be the
following composite:

Sq ⊗ Sn−1 ⊗ Sr → A⊗ Σ∞
+ En(2)⊗A

→ Σ∞
+ En(2)⊗A⊗A

→ A

This order is chosen because it is more consistent with writing the Browder
bracket as an inline binary operation [x, y] than with writing it as an operator
λ(x, y) on the left. The subscript on the range πq+(n−1)+r(A) reflects this choice
(cf. [74]). This gives us the definition

[α, β] = (−1)(n−1)|α|γ(λ⊗ α⊗ β),

where γ is the action map of the operad π∗(Σ
∞
+ En) on π∗A. Both the verification

of the identities on λ in the stable homotopy groups of configuration spaces, and
the verification of the consequent antisymmetry, Leibniz, and Jacobi identities,
are reasonable but error-prone exercises from this point; compare [23].

4.3 Representability

We will ultimately be interested in natural operations on homotopy and homol-
ogy groups. However, it is handy to use a more general definition that replaces
Sm by a general object. This accounts for the possibility of operations of several
variables, and can also help reduce difficulties involving naturality in the input
Sm.

Definition 4.6. For spectra M and X , we define the M -indexed homotopy of
X to be

πM (X) = [M,X ]Sp ∼= [E ⊗M,X ]ModE
.

For spectra M , X , and E we define the M -indexed E-homology of X to be

EM (X) = πM (E ⊗X).

If M is Sm, we instead use the more standard notation πm(−) for πSm(−) or
Em(−) for ESm(−).

Definition 4.7. Let E be a commutative ring spectrum. A homotopy operation
for O-algebras over E is a natural transformation

θ : πM → πN

of functors on the homotopy category of AlgO(ModE). When O and E are un-
derstood, we just refer to such natural transformations as homotopy operations.

We refer to the resulting operation EM (−) → EN (−) on the E-homology
groups of O-algebras as the induced E-homology operation.
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As in Example 3.27, we can assemble operations with varying numbers of
inputs into an algebraic structure.

Definition 4.8. Fix an operad O and a commutative ring spectrum E. The
multicategory OpEO of operations for O-algebras in ModE has, as objects, spec-
tra N . For any M1, . . . ,Md and N , the group of multimorphisms

OpEO(M1, . . . ,Md;N)

is the group of natural transformations
∏
πMi
→ πN of functors hAlgO(ModE)→

Sets. If E or O are understood, we drop them from the notation.
In the unary case, we write OpEO(M ;N) for the set of homotopy operations

πM → πN for O-algebras in ModE .

The free-forgetful adjunction between spectra and O-algebras in ModE al-
lows us to exhibit the functor πM as representable.

Proposition 4.9. Suppose that E is a commutative ring spectrum, O is an
operad with associated free algebra monad FreeO. Then there is a natural iso-
morphism

πM (A) ∼= [E ⊗ FreeO(M), A]AlgO(ModE)

for A in the homotopy category of AlgO(ModE). In particular, the object E ⊗
FreeO(M) is a representing object for the functor πM .

Proof. The forgetful functor AlgO(ModE)→ Sp can be expressed as a compos-
ite AlgO(ModE)→ AlgO(Sp)→ Sp, and as such has a composite left adjoint
M 7→ FreeO(M) 7→ E ⊗ FreeO(M); this adjunction passes to the homotopy
category. Therefore, applying this adjunction we find

πM (A) ∼= [FreeO(M), A]AlgO(Sp)

∼= [E ⊗ FreeO(M), A]AlgO(ModE)

as desired.

Remark 4.10. It is possible to index more generally. Given an E-module L,
we also have functors πE

L (−) = [L,−]ModE
; the free O-algebra FreeO(L) in the

category of E-modules is then a representing object for πE
L in AlgO(ModE).

We recover the above case by setting L = E ⊗M .

The Yoneda lemma now gives the following.

Corollary 4.11. Let F be a functor from hAlgO(ModE) to the category of sets.
Natural transformations of functors πM → F are in bijective correspondence
with F (E ⊗ FreeO(M)).

In particular, there is an isomorphism

OpEO(M1, . . . ,Md;N) ∼= EN (FreeO(⊕Mi))

from the group of natural transformations
∏
πMi
→ πN to the E-homology group

of the free algebra.
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The canonical decomposition of §3.2 for the monad FreeO into extended
powers gives us a canonical decomposition of operations.

Definition 4.12. For k ≥ 0, the group of operations of weight k is the subgroup

OpEO(M1, . . . ,Md;N)〈k〉 = EN (Symk
O(⊕Mi))

of OpEO(M1, . . . ,Md;N) ∼= EN (FreeO(⊕Mi)).
A power operation of weight k is a unary operation of weight k: an element

of the subgroup
OpEO(M,N)〈k〉 ∼= EN (Symk

O(M))

of OpEO(M,N).

Remark 4.13. Composition multiplies weight. Furthermore, if the object N is
dualizable, the group of all operations is a direct sum: every operation decom-
poses canonically as a sum of operations of varying weights.

4.4 Structure on operations

Even when restricted to ordinary homotopy groups, these operations between
the homotopy groups of O-algebras in ModE form a rather rich algebraic struc-
ture [14], whose characteristics should be discussed; we learned most of this
from Rezk [78, 77]. Recall

Op(m1, . . . ,md;n) = OpEO(m1, . . . ,md;n) ∼= πn(E ⊗ FreeO(⊕S
mi)).

Here are some characteristics of this algebraic theory.

1. We think of the elements in these groups as operators, in the sense that
they can act. Given α ∈ Op(m1, . . . ,md;n), an O-algebra R in ModE

and xi ∈ πmi
R, we can apply α to get a natural element

α ∝ (x1, . . . , xd) ∈ πnR.

This action is associative with respect to composition, but only distributes
over addition on the left.

2. For each 1 ≤ k ≤ d, there is a fundamental generator ιk ∈ Op(m1, . . . ,md;mk)
that acts by projecting:

ιk ∝ (x1, . . . , xd) = xk.

3. These operators can compose: given α ∈ Op(m1, . . . ,md;n) and βi ∈
Op(ℓ1, . . . , ℓc;mi), there is a composite operator

α ∝ (β1, . . . , βd) ∈ Op(ℓ1, . . . , ℓc;n).

Composition is unital. It is also associative, both with itself and with
acting on elements. Again, it only distributes over addition on the left.
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4. Composition respects weight: if α is in weight a and βi are in weights bi,
then α ∝ (βi) is in weight a · (

∑
bi).

Example 4.14. Take E = HR for a commutative ring R and let O to be the
associative operad. Then the graded group

Op(m1, . . . ,md; ∗) = ⊕n Op(m1, . . . ,md;n) ∼= H∗(FreeO(⊕S
mi ;R))

is the free associative graded R-algebra on the fundamental generators ι1 . . . ιd
with ιi in degree mi, and the composition operations are substitution. For ex-
ample, the element ι1+ι2 ∈ Op(n, n;n) acts by the binary addition operation in
degree n; the elements ι1ι2 and ι2ι1 in Op(n1, n2;n1+n2) represent binary mul-
tiplication in either order; the element (ι1)

2 ∈ Op(n; 2n) represents the squaring
operation; for r ∈ R the element rι1 ∈ Op(n;n) represents scalar multiplication
by r; combinations of these operations are represented by identities such as

ι21 ∝ (ι1 + ι2) = ι21 + ι1ι2 + ι2ι1 + ι22.

In this structure, each monomial has constant weight equal to its degree.

Example 4.15. Take O to be an En-operad. Then, for any p and q, the
Browder bracket is a natural transformation πp × πq → πp+(n−1)+q, and it is
realized by an element [ι1, ι2] in Op(p, q; p + (n − 1) + q) of weight two. Rela-
tions between the product and the Browder bracket are expressed universally
by relations between compositions: for example, antisymmetry is expressed by
an identity

[ι1, ι2] = −(−1)
(p+n−1)(q+n−1)[ι2, ι1].

Remark 4.16. Inside the collection of all unary operations, there is a subgroup
of additive operations: those operations f that satisfy

f ∝ (ι1 + ι2) = f ∝ ι1 + f ∝ ι2.

Composition of such operations is bilinear, and so the collection of objects and
additive operations form a category enriched in abelian groups. In some cases,
the additive operations can be used to determine the general structure [78].

4.5 Power operations

We will begin to narrow our study of power operations and focus on unary
operations, of fixed weight, between integer gradings.

Definition 4.17. Fix an operad O and a commutative ring spectrum E. The
group of power operations of weight k on degree m for O-algebras in ModE is
the graded abelian group

PowE
O(m, k) = π∗(F (S

m, E ⊗ Symk
O(S

m))) ∼=
⊕

r∈Z

OpEO(m,m+ r)〈k〉.

If O or E are understood, we drop them from the notation.
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An element of Pow(m, k) in grading r represents a weight-k natural trans-
formation πm → πm+r on the homotopy category of O-algebras in ModE , and
induces a natural transformation Em → Em+r on the homotopy category of O-
algebras. (While we index these group by integers, they depend on a choice of
representing object and in particular on an orientation of Sm; making implicit
identifications will result in sign issues.)

Remark 4.18. These operations, and the relations between them, are still
possessed by homotopy O-algebras in the sense of §3.2.

Remark 4.19. Suppose that Σk acts freely and properly discontinuously on
O(k). Let V ⊂ Rk be the subspace of elements which sum to 0, with associated
vector bundle ρ → BΣk of dimension k − 1. For any m there is an associated
virtual bundle Rm ⊗ ρ. If we define

P (k) = O(k)/Σk,

then there is a virtual bundle mρ on P (k). The Thom spectrum P (k)mρ of
this virtual bundle is canonically equivalent to the spectrum Σ−mΣ∞

+O(k)⊗Σk

(Sm)⊗k that appears in the definition of Pow(m, k).
This allows us to give a more concise expression

Pow(m, k) = E∗(P (k)
mρ),

which is particularly useful in cases where we can apply a Thom isomorphism
for E-homology.

Example 4.20. Consider the case of operations of weight 2 for En-algebras.
The space P (2) = Cn(2)/Σ2 is homotopy equivalent to the real projective space
RP

n−1, the line bundle ρ = σ is associated to the sign representation of Σ2, and
the Thom spectrum (RPn−1)mσ is commonly known as the stunted projective
space RPm+n−1

m which has a cell decomposition with one cell in each dimension
betweenm andm+n−1. (When m ≥ 0 this is literally the suspension spectrum
of RPm+n−1/RPm−1.) Therefore, the operations of weight 2 on degree m are
parametrized by the E-homology group

OpEm(2) = E∗(RP
m+n−1
m ).

Example 4.21. When E = HF2, we find H∗(RP
m+n−1
m ) is F2 in degrees m

through (m + n − 1), and so we obtain unique Dyer–Lashof operations Qr for
m ≤ r ≤ m+ n− 1 that send elements in πm to elements in πm+r.

Example 4.22. Consider the cup-1 operad Q1 defined in Example 3.6. Then
the weight-2 operations on the E-homology of Q1-algebras are parametrized by
E∗(RP

m+1
m ). This stunted projective space is the Thom spectrum of m times

the Möbius line bundle over S1.
For example, we can take E to be the sphere spectrum. If m = 2k there is

a splitting
RP2k+1

2k ≃ S2k ⊕ S2k+1.
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Chosen generators in π2k(S
2k ⊕S2k+1) and π2k+1(S

2k⊕S2k+1) give operations
that increase degree by 2k and 2k+1, respectively. A choice of splitting S2k+1 →
RP2k+1

2k determines an operation Sq1 : π2k(−) → π4k+1(−) called the cup-1
square. It satisfies 2 Sq1(a) = [a, a].

In the case that we have an E∞ ring spectrum, this has been studied in [21,
§V] and [13], and can be chosen in such a way that it satisfies the following
addition and multiplication identities on even-degree homotopy elements:

2 Sq1(a) = 0

Sq1(a+ b) = Sq1(a) + Sq1(b) + ( |a|2 + 1)abη

Sq1(ab) = a2 Sq1(b) + Sq1(a)b
2 + |ab|

4 a2b2η.

For example, Sq1(n) =
(
n
2

)
η for n ∈ Z. In the absence of higher commutativity,

these identities should have correction terms involving the Browder bracket.

4.6 Stability

In this section we will consider compatibility relations between operations on
different homotopy degrees.

Recall from §3.2 that the monad FreeO decomposed into the homogeneous
functors defined by

Symk
O(X) = Σ∞

+ O(k)⊗Σk
X⊗k.

In particular, these functors are continuous : they induce functions

Map(X,Y )→ Map(Symk
O(X), Symk

O(Y ))

between mapping spaces, and for k > 0 they have the property that they are
pointed : Symk

O(∗) = ∗ and hence the functor Symk
O induces continuous maps of

pointed mapping spaces.

Definition 4.23. For any spectrum M , any pointed space Z, and any k > 0,
the assembly map

Symk
O(M)⊗ Σ∞Z → Symk

O(M ⊗ Σ∞Z)

is adjoint to the composite map of pointed spaces

Z → MapSp(S
0,Σ∞Z)

→ MapSp(M,M ⊗ Σ∞Z)

→ MapSp(Sym
k
O(M), Symk

O(M ⊗ Σ∞Z)).

The suspension map

σn : Pow(m, k)→ Pow(m+ n, k)

is induced by the composite map of function spectra

F (Sm, E ⊗ Symk
O(S

m))→ F (Sm ⊗ Sn, E ⊗ Symk
O(S

m)⊗ Sn)

→ F (Sm ⊗ Sn, E ⊗ Symk
O(S

m ⊗ Sn)).
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Remark 4.24. The operation σ = σ1 has a concrete meaning: it is designed
for compatibility with the Mayer–Vietoris sequence. To illustrate this, first recall
that for a homotopy commutative diagram

A //

��

B

��

C // D

of spectra, we have natural maps A → P ← Σ−1D where P is the homotopy
pullback.

Now suppose that we are given a diagram of O-algebras as above which is a
homotopy pullback, inducing a boundary map ∂ : Σ−1D → P ≃ A. Given maps
θ : N → E ⊗ Symk

O(M) and α : ΣM → D, we can map in a trivial homotopy
pullback diagram to the above, then apply action maps and naturality of the
connecting homomorphisms. We get a commuting diagram:

N
θ

//

∼

��

E ⊗ Symk
OM

∂α
//

��

A

∼

��

Σ−1ΣN // P ′ // P

Σ−1ΣN

∼

OO

σθ
// Σ−1E ⊗ Symk

O(ΣM)

OO

Σ−1α

// Σ−1D

∂

OO

Therefore, for an operation θ : [M,−] → [N,−] for O-algebras in ModE , we
find that

∂ ◦ σθ ∼ θ ◦ ∂.

This description makes implicit choices about the orientation of the circle that
appears in the operation Ω when taking homotopy pullbacks, and this can result
in sign headaches.

Proposition 4.25. For k, r > 0, the suspension σr : Pow(m, k) → Pow(m +
r, k) is the map

E∗(P (k)
mρ)→ E∗(P (k)

(m+r)ρ)

on E-homology induced by the inclusion of virtual bundles mρ→ mρ⊕ rρ.

Proof. The assembly map Symk
O(S

m)⊗ Sn → Symk
O(S

m+n) is the map

(Σ∞
+ O(k)⊗Σk

Smρ)⊗ Sn → (Σ∞
+ O(k)⊗Σk

S(m+n)ρ),

which is the map
P (k)mρ ⊗ Sr → P (k)(m+r)ρ

induced by the direct sum inclusion mρ⊕ r → (mρ⊕ r)⊕ rρ of virtual bundles.
The map σr is obtained by desuspending both sides (m+ r) times, which gives
the map induced by the direct sum inclusion mρ→ mρ⊕ rρ of virtual bundles.
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Example 4.26. The Dyer–Lashof operations for En-algebras are explicitly un-
stable. For example, in weight two the n-fold suspension maps RP

m+n−1
m →

RP
(m+n)+n−1
m+n are trivial, and so the map OpEm(2)→ OpEm+n(2) is trivial. This

recovers the well-known fact that all Dyer–Lashof operations for En-algebras
map to zero under n-fold suspension.

By contrast, the Dyer–Lashof operations for E∞-algebras are stable: the
maps H∗RP

∞
m → H∗RP

∞
m+1 are surjections, and so the quadratic operations all

lift to elements in the homotopy of

lim
m

(H ⊗ RP
∞
m ).

By [33, 16.1], this is the desuspended Tate spectrum (Σ−1H)tΣ2 .

Remark 4.27. More generally, the fully stable operations of prime weight p on
the homotopy of E∞ E-algebras are detected by the p-localized Tate spectrum

(Σ−1E(p))
tΣp .

See [21, II.5.3] and [31].

4.7 Pro-representability

Suppose that E = colimEα is an expression of E as a filtered colimit of finite
spectra. Then there is an identification

EmA = colim
α

[Sm, Eα ⊗A] = colim
α

[Sm ⊗DEα, A],

where D is the Spanier–Whitehead dual. We cannot move the colimit inside,
but we can view {Sm ⊗DEα} as a pro-object in the category of spectra. This
makes the functor Em representable by embedding the category of spectra into
the category of pro-spectra.

For algebras over an operad O, we can go even further and find that

Em(A) = [{FreeO(S
m ⊗DEα)}, A]pro-O

is now a representable functor in the homotopy category of pro-O-algebras, and
in this category we can determine all the natural operations Em → En:

Natpro-O(Em(−), En(−)) = [{FreeO(S
n ⊗DEα)}, {FreeO(S

m ⊗DEβ)}]pro-O

= π0 lim
β

colim
α

MapO(FreeO(S
n ⊗DEα),FreeO(S

m ⊗DEβ))

= π0 lim
β

colim
α

MapSp(S
n ⊗DEα,FreeO(S

m ⊗DEβ))

= π0 lim
β

MapSp(S
n, E ⊗ FreeO(S

m ⊗DEβ))

= πn lim
β
E ⊗ (FreeO(S

m ⊗DEβ)).
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The algebra of natural transformations has natural maps in from the group

[Sm ⊗ E, Sn ⊗ E]

of cohomology operations (and these maps are isomorphisms if O is trivial), and
it has a natural map to the limit

lim
β
En(FreeO(S

n ⊗DEβ)).

This map to the limit is an isomorphism if no higher derived functors intrude.
We can think of this as the algebra of continuous operations on E-homology.

5 Classical operations

5.1 En Dyer–Lashof operations at p = 2

We will now specialize to the case of ordinary mod-2 homology. When we
do so, we have Thom isomorphisms for many bundles and we have explicit
computations of the homology of configuration spaces due to Cohen [24]. Similar
results with more complicated identities hold at odd primes.

Proposition 5.1. Let H = HF2 be the mod-2 Eilenberg–Mac Lane spectrum.
Then the group OpHm(2) of weight-2 operations for En-algebras has exactly one
nonzero operation in each degree between m and m+ n− 1, and no others.

Proof. By Remark 4.19, this is a calculation H∗(RP
n+m−1
m ) of the mod-2 ho-

mology of stunted projective spaces.

Theorem 5.2 ([21, III.3.1, III.3.2, III.3.3]). Let H = HF2 be the mod-2
Eilenberg–Mac Lane spectrum. Then En-algebras in ModH have Dyer–Lashof
operations

Qi : πm → π2m+i

for 0 ≤ i ≤ n− 1. These satisfy the following formulas.

Additivity: Qr(x+ y) = Qr(x) +Qr(y) for r < n− 1.

Squaring: Q0x = x2.

Unit: Qj1 = 0 for j > 0.

Cartan formula: Qr(xy) =
∑

p+q=r Qp(x)Qq(y) for r < n− 1.

Adem relations: QrQs(x) =
∑(

j−s−1
2j−r−s

)
Qr+2s−2jQj(x) for r > s.

Stability: σQ0 = 0, and σQr = Qr−1 for r > 0.

Extension: If an En-algebra structure extends to an En+1-algebra
structure, the operations Qr for En+1-algebras coincide with the
operations Qr for En-algebras.
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There is also a bilinear Browder bracket

[−,−] : πr ⊗ πs → πr+(n−1)+s

satisfying the following formulas.

Antisymmetry: [x, y] = [y, x] and [x, x] = 0.

Unit: [x, 1] = 0.

Leibniz rule: [x, yz] = [x, y]z + y[x, z].

Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Dyer–Lashof vanishing: [x,Qry] = 0 for r < n− 1.

Top additivity: Qn−1(x+ y) = Qn−1x+Qn−1y + [x, y].

Top Cartan formula: Qn−1(xy) =
∑

p+q=n−1Qp(x)Qq(y)+x[x, y]y.

Adjoint identity: [x,Qn−1y] = [y, [y, x]].

Extension: If an En-algebra structure extends to an En+1-algebra
structure, the bracket is identically zero.

E1-bracket: [x, y] = xy + yx if n = 1.

Remark 5.3. There are two common indexing conventions for the Dyer–Lashof
operations. This lower-indexing convention is designed to emphasize the range
where the operations are defined, and is especially useful for En-algebras. The
upper-indexing convention defines Qsx = Qs−|x|x so that Qs is always a natural
transformation πm → πs+m, with the understanding that Qsx = 0 for s < |x|.

Example 5.4. Suppose that X is an n-fold loop space, so that H [X ] is an En-
algebra in left H-modules. Then we recover the classical Dyer–Lashof operations

Qr : Hn(X)→ H2n+r(X)

in the homology of iterated loop spaces.

Theorem 5.5 ([21, IX.2.1], [24, III.3.1]). For any spectrum X and any 1 ≤ n ≤
∞, H∗(FreeEn

(X)) is the free object QEn
(H∗X) in the category of graded F2-

algebras with Dyer–Lashof operations and Browder bracket satisfying the iden-
tities of Theorem 5.2.

Remark 5.6. This theorem is the analogue of the calculation of the cohomology
of Eilenberg–Mac Lane spaces as free algebras in a category of algebras with
Steenrod operations. As such, it means that we have a complete theory of
homotopy operations for En-algebras over H .

Example 5.7. In the case n <∞ we can give a straightforward description of
QEn

V if V has a basis with a single generator e. In this case, the antisymmetry,
unit, and Dyer–Lashof vanishing axioms can be used to show that the free
algebra has trivial Browder bracket, and so the free algebra QEn

(V ) is a graded
polynomial algebra

F2[QJe]

as we range over generators QJe = (Q1)
j1(Q2)

j2 . . . (Qn−1)
jn−1e.
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5.2 E
∞

Dyer–Lashof operations at p = 2

When n = ∞, the results of the previous section become significantly simpler,
and it is worth expressing using the upper indexing for Dyer–Lashof operations.

Theorem 5.8 ([21, III.1.1]). Let H = HF2 be the mod-2 Eilenberg–Mac Lane
spectrum. Then E∞-algebras in ModH have Dyer–Lashof operations

Qr : πm → πm+r

for r ∈ Z. These satisfy the following formulas.

Additivity: Qr(x+ y) = Qr(x) +Qr(y).

Instability: Qrx = 0 if r < |x|.

Squaring: Qrx = x2 if r = |x|.

Unit: Qr1 = 0 for r 6= 0.

Cartan formula: Qr(xy) =
∑

p+q=r Q
p(x)Qq(y).

Adem relations: QrQs =
∑(

i−s−1
2i−r

)
Qs+r−iQi for r > 2s.

Stability: σQr = Qr.

Example 5.9. For any space X , HX is an E∞-algebra in the category of left
H-modules, and hence it has Dyer–Lashof operations

Qi : Hn(X)→ Hn−i(X).

It turns out that these are precisely the Steenrod operations :

Sqi = Q−i.

From this point of view, the identity Q0x = x is not obvious. In fact, Mandell
has shown that this identity is characteristic of algebras that come from spaces:
the functor X 7→ (HFp)

X from spaces to E∞-algebras over the Eilenberg–Mac
Lane spectrum HFp is fully faithful, and the essential image is detected in
terms of the coefficient ring being generated by classes that are annihilated by
the analogue at arbitrary primes of the identity (Q0 − 1) [58].

Example 5.10. In the case n =∞ there is always a straightforward basis for
the free algebra. If {ei} is a basis of a graded vector space V over F2, then the
free algebra QE∞

(V ) is a graded polynomial algebra

F2[Q
Jei]

as we range over generators QJei = Qj1 . . . Qjpei such that ji ≤ 2ji+1 and
j1 − j2 − · · · − jp > |ei|.
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5.3 Iterated loop spaces

The following is an unpointed group-completion theorem for En-spaces.

Theorem 5.11 ([24, III.3.3]). For any space X and any 1 ≤ n ≤ ∞, the map
X → ΩnΣnX+ induces a map FreeEn

(X) → ΩnΣnX+, and the resulting ring
map

QEn
(H∗X) = H∗(FreeEn

(X))→ H∗(Ω
nΣnX+)

is a localization which inverts the images of π0(X).

Remark 5.12. A pointed version of the group-completion theorem, involving
ΩnΣnX , is much more standard and implies this one. This theorem holds for
ΩnΣn if we replace FreeEn

with a version that takes the basepoint to a unit

and we replace QEn
(H∗X) with either QEn

(H̃∗X) a reduced version Q̃En
that

sends a chosen element to the unit. However, we wanted to give a version that
de-emphasizes implicit basepoints for comparison with §8.2.

Proposition 5.13. Suppose Y is a pointed space. Then the suspension map

σ : H̃∗(Ω
nY )→ H̃∗+1(Ω

n−1Y ),

induced by the map ΣΩnY → Ωn−1Y , is compatible with the Dyer–Lashof oper-
ations and the Browder bracket:

σ(Qrx) = Qr(σx)

σ[x, y] = [σx, σy]

In particular, in the bar spectral sequence

TorH∗Ω
nY

∗∗ (F2,F2)⇒ H∗Ω
n−1Y,

the operations on the image H̃∗Ω
nY ։ TorH∗Ω

nY
1 (F2,F2) are representatives

for the operations on H∗Ω
n−1Y .

This provides some degree of conceptual interpretation for the bracket and
the Dyer–Lashof operations. Since H∗Ω

2Y is commutative, the Tor-algebra is
also commutative even though it is converging to the possibly noncommutative
ring H∗ΩY , and so the noncommutativity is tracked by multiplicative exten-
sions in the spectral sequence [74]. The Browder bracket in H∗Ω

nY exists to
remember that, after n−1 deloopings, there are commutators xy±yx in H∗ΩY .

Similarly, elements in positive filtration in the Tor-algebra of a commutative
ring always satisfy x2 = 0, even though this may not be the case in H∗Ω

n−1Y .
The element Q0x is x2; the elements Q1x,Q2x, . . . , Qn−1x determine the line
of succession for the property of being x2 as the delooping process is iterated.

Remark 5.14. The group-completion theorem allows us to relate the homology
of a delooping to certain nonabelian derived functors [69]. Similar spectral
sequences computing En-homology of chain complexes have been studied by
Richter and Ziegenhagen [79].
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Associated to the n-fold loop space ΩnY of an (n−1)-connected space, which
is an En-algebra (or an infinite loop space Ω∞Y associated to a connective
spectrum), we can construct three augmented simplicial objects:

· · ·FreeEn
FreeEn

FreeEn
ΩnY ⇛ FreeEn

FreeEn
ΩnY ⇒ FreeEn

ΩnY → ΩnY

· · ·ΩnΣn
+ FreeEn

FreeEn
ΩnY ⇛ ΩnΣn

+ FreeEn
ΩnY ⇒ ΩnΣn

+Ω
nY → ΩnY

· · ·Σn
+ FreeEn

FreeEn
ΩnY ⇛ Σn

+ FreeEn
ΩnY ⇒ Σn

+Ω
nY → Y

These are, respectively, two-sided bar constructions: B(FreeEn
,FreeEn

,ΩnY ),
B(ΩnΣn

+,FreeEn
,ΩnY ), and B(Σn

+,FreeEn
,ΩnY ).

The first augmented bar construction B(FreeEn
,FreeEn

,ΩnY ) has an extra
degeneracy, and so its geometric realization is homotopy equivalent to ΩnY as
En-spaces. Therefore, it is a group-complete En-space.

There is a natural map

B(FreeEn
,FreeEn

,ΩnY )→ B(ΩnΣn
+,FreeEn

,ΩnY )

which is, levelwise, a group-completion map [30, Appendix Q], [67], and in-
duces a group-completion map on geometric realization. However, the source is
already group-complete, and so this map is an equivalence on geometric real-
izations. Thus, the augmentation |B(ΩnΣn

+,FreeEn
,ΩnY )| → ΩnY is an equiv-

alence.
The bar construction B(Σn

+,FreeEn
,ΩnY ) is a simplicial diagram of (n−1)-

connected pointed spaces, and so by a theorem of May [64] we can commute Ωn

across geometric realization. The natural augmentation

Ωn|B(Σn
+,FreeEn

,ΩnY )| → |B(ΩnΣn
+,FreeEn

,ΩnY )| → ΩnY

is an equivalence. By assumption, Y is (n−1)-connected and so |B(Σn
+,FreeEn

,ΩnY )| →
Y is also an equivalence. Therefore, the simplicial object B(Σn

+,FreeEn
,ΩnY )

can be used to compute H∗Y .
Let A = H∗(Ω

nY ). The reduced homology of B(Σn
+,FreeEn

,ΩnY ) is

· · ·ΣnQEn
QEn

A⇛ ΣnQEn
A⇒ ΣnA,

which is a bar complex ΣnB(Q,QEn
, A) computing nonabelian derived functors.

These are specifically the derived functors of an indecomposables functor Q,
which takes an augmented QEn

-algebra A→ F2 and returns the quotient of the
augmentation ideal by all products, brackets, and Dyer–Lashof operations. The
result is a Miller spectral sequence that begins with nonabelian derived functors
of Q on H∗(Ω

nY ) and converges to H̃∗Y .

5.4 Classical groups

The Dyer–Lashof operations on the homology of the spaces BO and BU , and
hence on the homology of the Thom spectra MO and MU , was determined by
work of Kochman [44]; here we will state a form due to Priddy [75].
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Theorem 5.15. The ring H∗MO ∼= H∗BO is a polynomial algebra on classes
ai in degree i. The Dyer–Lashof operations are determined by the identities of
formal series

∑

j

Qjak =

(
∞∑

n=k

k∑

u=0

(
n− k + u− 1

u

)
an+uak−u

)(
∞∑

n=0

an

)−1

,

where a0 = 1 by convention. In particular, Qnak ≡
(
n−1
k

)
an+k mod decompos-

able elements.
The ring H∗MU ∼= H∗BU is a polynomial algebra on classes bi in degree 2i,

The Dyer–Lashof operations are determined by the identities of formal series

∑

j

Qjbk =

(
∞∑

n=k

k∑

u=0

(
n− k + u− 1

u

)
bn+ubk−u

)(
∞∑

n=0

bn

)−1

,

where b0 = 1 by convention. In particular, Q2nbk ≡
(
n−1
k

)
bn+k mod decompos-

able elements, and Q2n+1bk = 0.

Remark 5.16. Implicit in this calculation is the fact that the Thom isomor-
phisms H∗MO ∼= H∗BO and H∗MU ∼= H∗BU preserve Dyer–Lashof opera-
tions. Lewis showed that, for an En-map f : X → BGL1(S), the Thom isomor-
phism H∗X ∼= H∗Mf lifts to an equivalence of En ring spectra

H [X ]→ H ⊗Mf

called the Thom diagonal [50, 7.4]. As a result, the Thom isomorphism is
automatically compatible with Dyer–Lashof operations for H-algebras.

Example 5.17. We have explicit calculations of the first few Dyer–Lashof op-
erations in H∗MO:

Q2a1 = a21

Q4a1 = a3 + a1a2 + a31

Q6a1 = a41

Q8a1 = a5 + a1a4 + a2a3 + a21a3 + a1a
2
2 + a31a2 + a51

Q6a2 = a5 + a1a4 + a2a3 + a1a
2
2

These same formulas hold for the bi in H∗MU .

5.5 The Nishida relations and the dual Steenrod algebra

Recall that, if R is an En-algebra in Sp, H ⊗ R is an En-algebra in ModH

whose homotopy groups are the homology groups of R. As a result, there are
two types of operations on H∗R:
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• The En-algebra structure givesH∗(R) Dyer–Lashof operationsQ0, . . . , Qn−1

and a Browder bracket.

• The property of being homology givesH∗(R) Steenrod operations Pd : HmR→
Hm−dR. To make these dual to the Steenrod operations Sqd in cohomol-
ogy, Pd(x) is defined as a composite

Sm−d Σ−dx
−−−→ (Σ−dH)⊗R

χSqd

−−−→ H ⊗R.

This implicitly reverses multiplication order: for example, the Adem rela-
tion Sq3 = Sq1Sq2 becomes P3 = P2P1.

The Nishida relations express how these structures interact.

Theorem 5.18 ([21, III.1.1, III.3.2]). Suppose that R is an En-algebra in Sp.
Then the Steenrod operations in homology satisfy relations as follows.

Cartan formula: Pr(xy) =
∑

p+q=r Pp(x)Pq(y).

Browder Cartan formula: Pr[x, y] =
∑

p+q=r [Ppx, Pqy].

Nishida relations: PrQ
s =

∑(
s−r
r−2i

)
Qs−r+iPi if s < n− 1.

Top Nishida relation:

PrQ
n−1(x) =

∑(
n− 1− r

r − 2i

)
Qn−1−r+iPi+

∑

p+q=r,p<q

[Ppx, Pqx].

Remark 5.19. By contrast with the Adem relations, the Nishida relations
behave very differently if we use lower indexing. We find

PrQs(x) =
∑(

|x|+ s− r

r − 2i

)
Qs−r+iPi(x).

In particular, the lower-indexed Nishida relations depend on the degree of x
[22].

Remark 5.20. If we use the pro-representability of homology as in §4.7, we
can obtain a combined algebraic object that encodes both the Qr and the Pd

together with the Nishida relations.

5.6 Eilenberg–Mac Lane objects

If the homology H∗R is easily described a module over the Steenrod algebra,
the Nishida relations can completely determine the Dyer–Lashof operations.
This was applied by Steinberger to compute the Dyer–Lashof operations in the
dual Steenrod algebra explicitly. (Conversely, Baker showed that the Nishida
relations themselves are completely determined by the Dyer–Lashof operation
structure of the dual Steenrod algebra [5].)
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Theorem 5.21 ([21, III.2.2, III.2.4]). Let A∗ be the dual Steenrod algebra

F2[ξ1, ξ2, . . . ]

where |ξi| = 2i − 1, with conjugate generators ξi (here ξi is denoted by ζi in
[71]). Then the Dyer–Lashof operations on the generators are determined by
the following formulas.

1. There is an identity of formal series

(1 + ξ1 +Q1ξ1 +Q2ξ1 +Q3ξ1 + . . . ) = (1 + ξ1 + ξ2 + ξ3 + . . . )−1.

2. For any i, we have

Qsξi =

{
Qs+2i−2ξ1 if s ≡ 0,−1 mod 2i,

0 otherwise.

3. In particular, Q2i−2ξ1 = ξi, and Q1ξi = ξi+1.

Remark 5.22. This allows us to say that the dual Steenrod algebra can be
re-expressed as follows:

A∗
∼= F2[x,Q1x, (Q1)

2x, . . . ]

This is the same as the homology of Ω2S3: both are identified with the homology
of the free E2-algebra on a generator x = ξ1 in degree 1. Mahowald showed that
it was possible to realize this isomorphism of graded algebras: he constructed
a Thom spectrum over Ω2S3 such that the Thom isomorphism realizes the
isomorphism A∗

∼= H∗Ω
2S3 [56]. This has a rather remarkable interpretation:

there exists a construction of the Eilenberg–Mac Lane spectrum H as the free
E2-algebra R such that the unit map S→ R has a chosen nullhomotopy of the
image of 2. This result has been extended to odd primes by Blumberg–Cohen–
Schlichtkrull [15].

Proposition 5.23. Let Hk be the Eilenberg–Mac Lane spectrum for an algebra
k over F2. Then there is an isomorphism

H∗HF ∼= A∗ ⊗ k

of graded rings, and under this identification the Dyer–Lashof operation Qr on
H∗Hk is given by Qr ⊗ ϕ, where ϕ is the Frobenius on k.

Proof. For any H-module N , the action H ⊗ N → N induces an isomorphism
H∗H ⊗ π∗N → H∗N . We already know Q0(1 ⊗ α) = 1 ⊗ α2, and so by the
Cartan formula it suffices to show that Qs(1 ⊗ α) = 0 for s > 0.

We now proceed inductively by applying the Nishida relations. If we know
Qt(1⊗ α) = 0 for 0 < t < s, we find that for all r > 0 we have

PrQ
s(1⊗ α) =

∑(
s− r

r − 2i

)
Qs−r+iPi(1⊗ α)

=

(
s− r

r

)
Qs−r(1⊗ α).
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By the inductive hypothesis, this vanishes unless s = r, but in the case s = r
the binomial coefficient vanishes. However, the only elements in H∗Hk that are
acted on trivially by all the Steenrod operations are the elements in the image
of π∗Hk, and those are concentrated in degree zero. Thus Qs(1 ⊗ α) = 0.

Remark 5.24. The same proof can be used to show that the Browder bracket
is trivial on H∗Hk.

Example 5.25. The composite map MU →MO → H , on homology, is given
in terms of the generators of Theorem 5.15 by b1 7→ a21 7→ ξ21 and b2 7→ 0. The
image of H∗MU in A∗ is F2[ξ

2
1 , ξ

2
2 , . . . ], the homology of the Brown–Peterson

spectrum BP .
In H∗MU , Example 5.17 implies we have the identities

Q6b2 = b5 + b1b4 + b2b3 + b1b
2
2 = Q8b1 + b21Q

4(b1).

By contrast, in the dual Steenrod algebra we have the identity 0 = Q8(ξ21) +
ξ41Q

4(ξ21). Even though the map H∗MU → H∗BP splits as a map of algebras,
and the target is closed under the Dyer–Lashof operations, we have

Q8b1 + b21Q
4(b1) = Q6(b1) + b21Q2(b1) 6= 0

but its image is zero. This implies that the map H∗MU → H∗BP does not
have a splitting that respects the Dyer–Lashof operations for E7-algebras. As
a result, there exists no map BP →MU(2) of E7-algebras. This result, and its
analogue at odd primes, is due to Hu–Kriz–May [40].

5.7 Nonexistence results

The tremendous amount of structure present in the homology of a ring spectrum
allows us to produce a rather large number of nonexistence results. The following
is a generalization of the classical result that the mod-2 Moore spectrum does not
admit a multiplication due to the existence of a nontrivial Steenrod operation
Sq2 in its cohomology; we learned this line of argument from Charles Rezk.

Proposition 5.26. Suppose that R is a homotopy associative ring spectrum
containing an element u in nonzero degree such that Pk(u) vanishes either in
the range k > |u| or in the range 0 < k < |u|. Then either P|u|(u) is nilpotent
or H∗R is nonzero in infinitely many degrees.

Proof. We find, by the Cartan formula, that

Pd|u|(u
d) = (P|u|u)

d.

Therefore, either the elements ud are nonzero for all d or the element P|u|u is
nilpotent.

Corollary 5.27. Suppose that R is a connective homotopy associative ring
spectrum such that H0(R) = π0(R)/2 has no nilpotent elements. If any nonzero
element in H0(R) is in the image of the Steenrod operations, then H∗R must be
nonzero in infinitely many degrees.

29



Corollary 5.28. Suppose that R is a homotopy associative ring spectrum and
that some Hopf invariant element 2, η, ν, or σ maps to zero under the unit map
S→ R. Then either H∗R = 0 or H∗R is infinite-dimensional.

Proof. Writing h for Hopf invariant element in degree 2k− 1 with trivial image,
the unit S → R extends to a map f : C(h) → R from the mapping cone. The
homology of C(h) has a basis of elements 1 and v with one nontrivial Steenrod
operation acting via P2kv = 1, and u = f∗(v) has the desired properties.

Recall from §3.3 that, for R connective, a map π0R → A of commutative
rings automatically extends to a map R→ HA compatible with the multiplica-
tive structure that exists on R; e.g., if R is homotopy commutative then the
map R→ HA has the structure of a map of Q1-algebras. This has the following
consequence.

Proposition 5.29. Suppose that R is a connective ring spectrum with a ring
homomorphism π0R→ k where k is an F2-algebra (equivalently, a map H0R→
k). Then there is a map R→ Hk which induces a homology map H∗R→ A∗⊗k
with the following properties.

1. The map H∗R → A∗ ⊗ k is a map of rings which is surjective in degree
zero.

2. If R is homotopy commutative, then there is an operation Q1 on H∗R that
is compatible with the operation Q1 on A∗ ⊗ k.

3. If R has an En-algebra structure, the map R → Hk is a map of En-
algebras and so H∗R → A∗ ⊗ k is compatible with the Dyer–Lashof oper-
ations Q0, . . . , Qn−1.

In particular, the image of H∗R in A∗⊗k is a subalgebra B∗ ⊂ A∗ closed under
multiplication and some number of Dyer–Lashof operations.

Example 5.30. For n > 0 there are connective Morava K-theories k(n), with
coefficient ring F2[vn], that have homology

F2[ξ1, . . . , ξn, ξ
2

n+1, ξn+2, . . . ]

as a subalgebra of the dual Steenrod algebra. This subring is not closed under
the Dyer–Lashof operation Q1 unless n = 0, and so the connective Morava K-
theories are not homotopy–commutative. (By convention we often define the
connective Morava K-theory k(0) to be HZ2, which is commutative.)

Similarly, for n > 0 the integral connective Morava K-theories kZ(n), with
coefficient ring Z2[vn], have homology

F2[ξ
2

1, ξ2, . . . , ξn, ξ
2

n+1, ξn+2, . . . ]

as a subalgebra of the dual Steenrod algebra. This subring is not closed under
the Dyer–Lashof operation Q1 unless n = 1, and so the only possible homotopy-
commutative integral Morava K-theory is kZ(1)—the connective complex K-
theory spectrum.
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There are obstruction-theoretic proofs which show that all of these have A∞

structures [3, 49].

Example 5.31. The Dyer–Lashof operations satisfy Q2(ξ
2

i ) = ξ
2

i+1, and so

the smallest possible subring of A∗ that contains ξ21 = ξ
2

1 and is closed under

Q2 is an infinite polynomial algebra F2[ξ
2

i ] = F2[ξ
2
i ]. If R is a connective ring

spectrum with a quotient map π0R → F such that the Hopf element η ∈ π1(S)
maps to zero in π∗R, then there is a commutative diagram

C(η) //

��

R

��

HZ/2 // HF.

We conclude that ξ21 is in the image of the map H∗R→ H∗HF.
The spectra X(n) appearing in the nilpotence and periodicity theorems of

Devinatz–Hopkins–Smith fit into a sequence

X(1)→ X(2)→ X(3)→ . . .

of Thom spectra on the spaces ΩSU(n). They have E2-ring structures, and
each ring H∗X(n) is a polynomial algebra F2[x1, . . . , xn−1] on finitely many
generators. For n = 2 the map H∗X(2) → A∗ is the map F2[ξ

2
1 ] → A∗, and

this implies that each X(n) has ξ21 in the image of its homology. As H∗X(n) is
finitely generated as an algebra, its image in the dual Steenrod algebra is too
small to be closed under the operation Q2. This excludes the possibility that
X(n) has an E3-structure.

5.8 Ring spaces

Associated to an E∞ ring spectrum E, there is a sequence of infinite loop spaces
{En}n∈Z in an Ω-spectrum representing E. These spaces are extremely strongly
structured: they inherit both additive structure from the spectrum structure on
E, and multiplicative structure from the E∞ ring structure. In the case of the
sphere spectrum, these operations were investigated in-depth in relationship to
surgery theory [68, 55, 63]. Ravenel and Wilson discussed the structure coming
from a ring spectrum E extensively in [76], encoding it in the structure of a
Hopf ring, and the interaction between additive and multiplicative operations
is developed in-depth in [24, §II]. These structures are very tightly wound.

1. Because the En are spaces, the diagonals En → En × En gives rise to a
coproduct

∆: H∗(En)→ H∗(En)⊗H∗(En),

For an element x we write
∑
x′ ⊗ x′′ for its coproduct. The path compo-

nents En = π0En also give rise to elements [α] ∈ H0En.
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2. The homology groups H∗En have Steenrod operations Pr.

3. The suspension maps ΣEn → En+1 in the spectrum structure give stabi-
lization maps

Hm(En)→ Hm+1(En+1).

4. The infinite loop space structure on En gives H∗En an additive Pontrjagin
product

#: H∗(En)⊗H∗(En)→ H∗(En)

making it into a Hopf algebra, and it has additive Dyer–Lashof operations

Qr : Hm(En)→ Hm+r(En).

5. If E has a ring spectrum structure, the multiplication E ⊗ E → E gives
multiplicative Pontrjagin products

◦ : H∗(En)⊗H∗(Em)→ H∗(En+m).

These are appropriately unital, associative, or graded-commutative if E
has these properties.

6. If E has an E∞ ring spectrum structure, there are multiplicative Dyer–
Lashof operations

Q̃r : Hm(E0)→ Hm+r(E0)

on the homology of the 0’th space. In general, we cannot say more. If
E has further structure—an Hd

∞-structure—there are also multiplicative
Dyer–Lashof operations outside degree zero [48, §4.1].

These are subject to a large number of identities discussed in [76, 1.12, 1.14],
[24, II.1.5, II.1.6, II.2.5], and [46, 1.5]. Here are the most fundamental identities:

Distributive rule: (x# y) ◦ z =
∑

(x ◦ z′) # (y ◦ z′′)

Projection formula: x ◦Qsy =
∑
Qs+k(Pkx ◦ y)

Mixed Cartan formula:

Q̃n(x# y) =
∑

p+q+r=n

Q̃p(x′) #Qq(x′′ ◦ y′) # Q̃r(y′′)

Mixed Adem relations:

Q̃rQsx =
∑

i+j+k+l=r+s

(
r − i− 2l− 1

j + s− i− l

)
QiQ̃jx′ #QkQ̃lx′′

Example 5.32. There is an identity

Q1[a] # [−2a] = η · a
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which allows us to determine information about the multiplication-by-η map
π0R→ π1R→ H1Ω

∞R from the additive Dyer–Lashof structure. Similarly Q̃1

determines information about its multiplicative version ηm : π0(R) → π1(R).
For example, the mixed Cartan formula implies that

ηm(x+ y) = ηm(x) + ηm(y) + η · xy

in H1(R). In particular, Q̃1[n] =
(
n
2

)
η # [n2] for n ∈ Z (cf. Example 3.11).

6 Higher-order structure

6.1 Secondary composites

Secondary operations, at their core, arise when there are relations between re-

lations. Suppose that we are a sequence X0
f
−→ X1

g
−→ X2

h
−→ X3 of maps

such that the double composites are nullhomotopic. Then hgf is nullhomo-
topic for two reasons. Choosing nullhomotopies of gf and hg, we can glue the
nullhomotopies together to determine a loop in the space of maps X → W : a
value of the associated secondary operation. Because we must make choices of
nullhomotopy, there is some natural indeterminacy in this construction, and so
it typically takes a set of values 〈h, g, f〉. To construct secondary operations,
we minimally need to work in a category C with mapping spaces; we also need
canonical basepoints of the spaces MapC(Xi, Xj) for j ≥ i+2 that are preserved
under composition [48, §2].

Example 6.1. Suppose that A is a subspace of X and α ∈ Hn(X,A) is a
cohomology element that restricts to zero in Hn(X). Then the long exact
sequence in cohomology implies that we can lift α to an element in Hn−1(A),
but there are multiple choices of lift. This can be represented by a sequence of
maps

A→ X → X/A→ K(Z, n)

where the double composites are nullhomotopic; the secondary operation is then
a map A→ ΩK(Z, n) = K(Z, n− 1).

Secondary operations enrich the homotopy category hC with extra structure.

1. Every test object T ∈ C represents a functor [T,−] = π0 MapC(T,−) on
hC, and if T has an augmentation T → 0 to an initial object then this
functor has a canonical null element. If the values of [T,−] differ on X
and Y , X and Y cannot be equivalent in hC.

2. Every map of test objects Θ: S → T determines an operation: a natural
transformation of functors θ : [T,−] → [S,−] on hC. If S and T are
augmented and the map Θ is compatible with the augmentations, then θ
preserves the null element. If θ has different behaviour for X and Y , X
and Y cannot be equivalent.
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3. Given an augmented map Φ: R → S and a map Θ: S → T such that
the double composite ΘΦ: R → T is trivial, we get an identity ϕθ =
0 of associated operations. There is an associated secondary operation
〈−,Θ,Φ〉. It is only defined on those elements α ∈ [T,X ] with θ(α) = 0; it
takes values in π1 MapC(R,X); it is only well-defined up to indeterminacy.

4. We can also associate information to maps in the same way. Suppose
we have an augmented map Θ: S → T of test objects representing an
operation θ. Given any map f : X → Y , there is an associated functional
operation 〈f,−,Θ〉. It is only defined on those elements α ∈ [T,X ] such
that f(α) = 0 and θ(α) = 0; it takes values in π1 MapC(S, Y ); it is only
well-defined up to indeterminacy.

Applying this to the test objects Sn in the category of pointed spaces, we get
Toda’s bracket construction that enriches the homotopy groups of spaces with
secondary composites. Applying this to the test objects K(A, n) in the opposite
of the category of spaces, we get Adams’ secondary operations that enrich the
cohomology groups of spaces with secondary cohomology operations.

6.2 Secondary operations for algebras

We recall from §4.3 that, for a spectrum M and an O-algebra in ModE , we
have

πM (A) = [M,A]Sp ∼= [E ⊗ FreeO(M), A]AlgO(ModE).

Using free algebras as our test objects, we already used this representability
of homotopy groups to classify the natural operations on the homotopy groups
of O-algebras in ModE . The space of maps now means that we can construct
secondary operations.

Proposition 6.2. Suppose that we have zero-preserving operations θ : πM →
πN and ϕ : πN → πP on the homotopy category of O-algebras in ModE, and
that there is a relation ϕ ◦ θ = 0. Then there exists a secondary operation

〈−,Θ,Φ〉 : πM (A) ⊃ ker θ → πP+1(A)/Im(σϕ),

where σ(ϕ) is a suspended operation (see §4.6).

Such a secondary operation is constructed from a sequence

E ⊗ FreeO(P )
Φ
−→ E ⊗ FreeO(N)

Θ
−→ E ⊗ FreeO(M)→ A

where the double composites are null; the nullhomotopy of Θ ◦Φ is chosen once
and for all, while the second nullhomotopy is allowed to vary. This produces
elements in

π1 MapAlgO(ModE)(E ⊗ FreeO(P ), A) ∼= π1 MapSp(P,A)
∼= [ΣP,A].
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Example 6.3. Every Adem relation between Dyer–Lashof operations produces
a secondary Dyer–Lashof operation. For example, the relation Q2n+2Qn +
Q2n+1Qn+1 = 0 produces a natural transformation

πm(A) ⊃ ker(Qn, Qn+1)→ πm+2n+3(A)/Im(Q2n+2, Q2n+1)

on the homotopy of H-algebras.

Example 6.4. Relations involving operations other than composition and addi-
tion can also produce secondary operations, and the canonical examples of these
are Massey products. An A2-algebra R has a binary multiplication operation
R ⊗ R → R, and if R is an A3-algebra it has a chosen associativity homotopy.
As a result, if we have elements x, y, and z in π∗R such that xy = yz = 0, then
we can glue together two nullhomotopies of xyz to obtain a bracket 〈x, y, z〉 that
specializes to definitions of Massey products or Toda brackets.

In trying to express nonlinear relations as secondary operations, however, we
rapidly find that we want to move into a relative situation. A Massey product is
defined on the kernel of the map πp×πq×πr → πp+q×πq+r sending (x, y, z) to
(xy, yz). However, the relation x(yz) = (xy)z is not expressible solely as some
operation on xy and yz: we need to remember x and z as well, but we do not
want to enforce that they are zero.

We find that the needed expression is homotopy commutativity of the fol-
lowing diagram:

FreeA3
(Sp ⊕ Sp+q+r ⊕ Sr)

Φ
//

��

FreeA3
(Sp ⊕ Sp+q ⊕ Sq+r ⊕ Sr)

Θ

��

FreeA3
(Sp ⊕ Sr) // FreeA3

(Sp ⊕ Sq ⊕ Sr)

The right-hand map classifies the operation θ(x, y, z) = (x, xy, yz, z), and the
top map classifies the operation ϕ(x, u, v, z) = (x, xv − uz, z). The bottom-left
object is not the initial object in the category of A3-algebras, so we enforce this
by switching to the category C of A3-algebras under FreeA3

(Sp ⊕ Sr). In this
category, we genuinely have augmented objects with a nullhomotopic double
composite

FreeC(S
p+q+r)→ FreeC(S

p+q ⊕ Sq+r)→ FreeC(S
q)

that defines a Massey product.

6.3 Juggling

Secondary operations are part of the homotopy theory ofC, and there is typically
no method to determine secondary operations purely in terms of the homotopy
category. However, there are many composition-theoretic tools that use one
secondary operation to determine information about another: typically, one
starts with a 4-fold composite

X
f
−→ Y

g
−→ Z

h
−→ U

k
−→ V,
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with some assortment of double-composites being nullhomotopic, and relates
various associated secondary operations. This process is called juggling, and
learning to juggle secondary operations is one of the main steps in applying
them. For instance, one of the main juggling formulas—the Peterson–Stein
formula—asserts that the sets 〈k, h, g〉f and k〈h, g, f〉 are inverse in π1 when
both sides make sense.

Example 6.5. The Adem relationsQ2n+1Qn andQ4n+3Q2n+1 give rise to a sec-
ondary operation 〈Qn,Q2n+1,Q4n+3〉, an element of π7n+5+m(H⊗FreeE∞

(Sm))
representing an operation that increases degree by 7n+5. The juggling formula
says that, for any element α ∈ πm(A) with Qn(A) = 0, we have

Q4n+3〈α,Qn,Q2n+1〉 = 〈Qn,Q2n+1,Q4n+3〉(α).

In other words, this secondary composite of operations gives a universal formula
for how to apply Q4n+3 to this secondary operation.

6.4 Application to the Brown–Peterson spectrum

In this section we will give a brief account of the main result of [48], which uses
secondary operatons to show that the 2-primary Brown–Peterson spectrum BP
does not admit the structure of an E12 ring spectrum. These results have been
generalized by Senger to show that, at the prime p, BP does not have an E2p2+4

ring structure [87].
As in §3.3, if the Brown–Peterson spectrum has an En-algebra structure

then the map
BP → HZ(2) → H

can be given the structure of a map of En-algebras. On homology, this would
then induce a monomorphism

F2[ξ
2
1 , ξ

2
2 , . . . ]→ F2[ξ1, ξ2, . . . ]

of algebras equipped with En Dyer–Lashof operations and secondary Dyer–
Lashof operations. The dual Steenrod algebra, on the right, has operations that
are completely forced. Therefore, if we can calculate enough to show that the
subalgebra H∗BP is not closed under secondary operations for En-algebras, we
arrive at an obstruction to giving BP the structure of En ring spectrum.

The calculation of secondary operations in H∗H is accomplished with judi-
cious use of juggling formulas, ultimately reducing questions about secondary
operations to questions about primary ones.

• There is a pushout diagram of E∞ ring spectra

H ⊗MU
i

//

��

H ⊗H

j

��

H // H ⊗MU H.
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This makes H ⊗MU into an augmented H-algebra, and gives a nullho-
motopy of the composite H ⊗MU → H ⊗H → H ⊗MU H . The elements
α in H∗MU that map to zero in H∗H are then candidates for secondary
operations: we can construct 〈j, i, α〉 in the MU -dual Steenrod algebra
π∗(H ⊗MU H).

• These elements are concretely detected: they have explicit representatives
on the 1-line of a two-sided bar spectral sequence

TorH∗MU (H∗H,F2)⇒ π∗(H ⊗MU H).

• If we can determine primary operations θ(〈i, j, α〉) in the MU -dual Steen-
rod algebra, the juggling formulas of §6.3 tell us about functional opera-
tions 〈j, α,Θ〉 in the ordinary dual Steenrod algebra.

• Steinberger’s calculations of primary operations ϕ in the dual Steenrod
algebra then allow us to determine the values of ϕ〈j, α,Θ〉, and juggling
formulas again allow us to determine information about secondary opera-
tions 〈α,Θ,Φ〉 in the dual Steenrod algebra.

This method, then, reduces us to carrying out some key computations.
We must determine primary operations in the MU -dual Steenrod algebra.

Some of these, by work of Tilson [94], are determined by Kochman’s calculations
from Theorem 5.15: the Künneth spectral sequence

Torπ∗MU (F2,F2)⇒ π∗(H ⊗MU H)

calculating the MU -dual Steenrod algebra is compatible with Dyer–Lashof op-
erations. However, there are remaining extension problems in the Tor, and these
turn out to be precisely what we are interested in when juggling.

The MU -dual Steenrod algebra is an exterior algebra, whose generators
correspond to the indecomposables in π∗MU . The extension problems in the
Tor spectral sequence arise because some generators in π∗MU have nontrivial
image in H∗MU and are detected by Tor1, while others have trivial image in
H∗MU and are detected by Tor0. The solution is to find an algebra R mapping
to MU that does not have this problem. If we can find one so that the map
π∗R → π∗MU is surjective, the map from the R-dual Steenrod algebra to the
MU -dual Steenrod algebra is surjective. If the generators of π∗R have nontrivial
image in H∗R, then the spectral sequence

TorH∗R(H∗H,F2)⇒ π∗(H ⊗R H)

detects all needed classes with Tor1 and hence eliminates the extension problem.
For this purpose, we used the spherical group algebra S[SL1(MU)]. The

Dyer–Lashof operations in H∗SL1(MU) are derived from the multiplicative

Dyer–Lashof operations Q̃n in Ω∞MU . This is a lengthy calculation of power
operations in the Hopf ring, and it is ultimately determined by calculations of
Johnson–Noel of power operations in the formal group theory of MU [41].
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Finally, we must determine a candidate secondary operation in H∗H to
which we can apply this procedure—there are many candidate operations and
many dead ends. The secondary operation is rather large: it was found using a
calculation in Goerss–Hopkins obstruction theory that is detailed at length in
[47].

7 Coherent structures

In §3 we discussed algebras over an operad in a general topological category,
or more generally algebras over a multicategory M, including extended power
and free algebra functors. The definitions we used made heavy use of a strict
symmetric monoidal structure on the category of spectra.

In this section we will discuss the coherent viewpoint on these constructions
that makes use of the machinery of Lurie [54], and with the goal of connecting
different strata in the literature. To begin, we should point some of the problems
that this discussion is meant to solve.

We would like to demonstrate that our constructions are model-independent.
There are several different symmetric monoidal categories of spectra [28, 39, 83]
with several different model structures, and there is a nontrivial amount of
work involved in showing that an equivalence between two different categories
of spectra gives an equivalence between categories of algebras [85]. These issues
are compounded when we attempt to relate notions of commutative algebras in
different categories, even if they have equivalent homotopy theory [95].

We would also like to allow weaker structure than a symmetric monoidal
structure. For example, given a fixed En-algebra R we will use this to discuss
the classification of power operations on En-algebras under R. Our natural home
for this discussion will be the category of En R-modules (as in Example 6.4).

7.1 Structured categories

As discussed in §1, classical symmetric monoidal categories are analogues of com-
mutative monoids with the difference that they require natural isomorphisms
to express associativity, commutativity, and the like. We can express this struc-
ture using simplicial operads. For any categories C and D, there is a groupoid
Fun(C,D)≃ of functors and natural isomorphisms. Taking the nerve, we get a
simplicially enriched category Cat, and it makes sense to ask whether C has the
structure of an algebra over a simplicial operad O.

Example 7.1. A symmetric monoidal category can be expressed as an algebra
over the Barratt–Eccles operad [6].

Example 7.2. In classical category theory, a braided monoidal category in the
sense of [42] can be encoded by a sequence of maps

NPn → Fun(Cn,C)
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from the nerves of the pure braid groups to the categories of functors Cn → C.
The required compatibilities between these maps can be concisely expressed
by noting that these nerves assemble into an E2-operad, and that a braided
monoidal category is an algebra over this operad.

We would like to discuss En-analogues of these structures in the context of
categories with morphism spaces. We will give some definitions in this section,
on the point-set level, with the purpose of interpolating the older and newer
definitions. We would like to say that an O-monoidal category is an algebra over
the operad O in Cat, but this requires us to be clever enough to have a well-
behaved definition of a space of functors between two enriched categories; the
failure of enriched categories to have a well-behaved enriched functor category
is a principal motivation for the use of quasicategories.

Until further notice, all categories and multicategories are assumed to be
enriched in spaces and all functors are functors of enriched categories.

Definition 7.3. Suppose that p : C → M is a multifunctor, and write Cx for
the category p−1(x). Given objects Xi ∈ Cxi

and a map

α : A→ MulM(x1, . . . ,xd;y)

of spaces, an α-twisted product is an object Y ∈ Cy and a mapA→ MulC(X1, . . . , Xd;Y )
such that, for any Z ∈ C with p(Z) = z, the diagram

MapC(Y, Z) //

��

Map(A,MulC(X1, . . . , Xd;Z))

��

MapM(y, z) // Map(A,MulM(x1, . . . ,xd; z))

is a pullback. If it exists, we denote it by A⋉α (X1, . . . , Xd).

Definition 7.4. An weakly M-monoidal category is a multifunctor p : C→M

that has α-twisted product for any inclusion

α : {f} ⊂ MulM(x1, . . . ,xd;y).

A strongly M-monoidal category is a category that has α-twisted products for
all α.

Remark 7.5. In particular, for any point f ∈ MulM(x1, . . . ,xd;y), this uni-
versal property can be used to produce a functor

{f}⋉ (−) : Cx1
× · · · × Cxd

→ Cy,

and these are compatible with composition (up to natural isomorphism). A
weakly M-monoidal category determines, up to natural equivalence, a multi-
functor M→ Cat.
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Example 7.6. Every multicategory C has a multifunctor to the one-object
multicategory Comm associated to the commutative operad. The multicategory
is Comm-monoidal if and only if multimorphisms (X1, . . . , Xd)→ Y are always
representable by an object X1 ⊗ · · · ⊗ Xd, which is precisely when C comes
from a symmetric monoidal category. It is strongly Comm-monoidal only if it
is also tensored over spaces in a way compatible with the monoidal structure as
in Definition 3.9.

Example 7.7. Associated to a monoidal category C we can build a multicate-
gory: multimorphisms (X1, . . . , Xd)→ Y are pairs of a permutation σ ∈ Σd and
a map f : Xσ(1) ⊗ · · · ⊗Xσ(d) → Y . There is a multifunctor from this category
to the multicategory Assoc corresponding to the associative operad: it sends
all objects to the unique object, and sends each multimorphism (σ, f) as above
to the permutation σ. Conversely, an Assoc-monoidal category comes from a
monoidal category.

Example 7.8. Suppose that A is a commutative ring and B is an A-algebra.
Then there is a multicategory C as follows.

1. An object of C is either an A-module or a right B-module.

2. The set MulC(M1, . . . ,Md;N) of multimorphisms is





HomA(M1 ⊗A · · · ⊗A Md, N) if N and all Mi are A-modules,

HomB(M1 ⊗A · · · ⊗A Md, N) if N and exactly one Mi are B-modules,

∅ otherwise.

This comes equipped with a functor from C to the multicategory Mod from
Example 3.23 that parametrizes ring-module pairs: any A-module is sent to a

and any B-module is sent to m. This makes C into a Mod-monoidal category,
expressing the fact that ModA has a tensor product and that objects of RModB

can be tensored with objects of ModA. This makes RModB left-tensored over
ModA.

Example 7.9. Fiberwise homotopy theory studies the category S/B of spaces
overB. LetO be an operad and B be a space with the structure of an O-algebra.
Then S/B has the structure of a strongly O-monoidal category in the following
way. For spaces X1, . . . , Xd and Y over B, the space of multimorphisms is the
pullback

Mul/B(X1, . . . , Xd;Y ) //

��

Map(X1 × · · · ×Xd, Y )

��

O(d) // Map(Bd, B) // Map(X1 × · · · ×Xd, B).

That is, a multimorphism consists of a point f ∈ O(d) and a commutative
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diagram
X1 × · · · ×Xd

//

��

Y

��

Bd

f
// B.

With this definition, it is straightforward to verify that for α : A → O(d), the
α-twisted product A⋉α (X1, . . . , Xd) is the following space over B:

A×X1 × · · · ×Xd → O(d)×B
d → B.

In general, this should not be expected to be part of a symmetric monoidal
structure on the category of spaces over B, even up to equivalence.

Example 7.10. Let L be the category of universes : an object is a countably
infinite dimensional inner product space U . These objects have an associated
multicategory: the space MulL(U1, . . . , Ud;V ) of multimorphisms is the (con-
tractible) space of linear isometric embeddings U1⊕· · ·⊕Ud →֒V . Over L, there
is a category SpL of indexed spectra. An object is a pair (U,X) of a universe U
and a spectrum X (in the Lewis–May–Steinberger sense [50]) indexed on U ; a
multimorphism ((U1, X1), . . . , (Ud, Xd))→ (V, Y ) is a pair of a linear isometric
embedding i : U1 ⊕ · · · ⊕ Ud → V and a map i∗(X1 ∧ · · · ∧Xd)→ Y of spectra
indexed on V .

This does not describe the topology on the multimorphisms in this category.
Given a map A → L(U1, . . . , Ud;V ) and spectra Xi indexed on Ui, there is a
twisted half-smash product A⋉ (X1, . . . , Xd) indexed on V [50, §VI], equivalent
to the smash product A+ ∧ X1 ∧ · · · ∧ Xd. There exists a topology on the
multimorphisms so that a continuous map in from A is equivalent to a map
A→ L(U1, . . . , Ud;V ) and a map A⋉ (X1, . . . , Xd)→ Y . By design, then, the
projection SpL → L makes the category of indexed spectra strongly L-monoidal.

Example 7.11. Fix an En-algebra A in Sp, and consider the category of En-
algebras R with a factorization A → R → A of the identity map. This has an
associated stable category, serving as the natural target for Goodwillie’s calculus
of functors: the category of En A-modules [29]. This category should also not
be expected to have a symmetric monoidal structure, but the tensor product
over R does give it the structure of an En-monoidal category. For example, for
an associative algebra A in Sp, the tensor product over A gives the category of
A-bimodules a monoidal structure.

7.2 Multi-object algebras

Just as we cannot make sense of a commutative monoid in a nonsymmetric
monoidal category, we need relationships between an operad O and any multi-
plicative structure on a category C before O can act on objects.
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Definition 7.12. Suppose p : C → N and M → N are multifunctors. An
M-algebra in C is a lift in the diagram

C

p

��

M

>>

// N

of multifunctors. We write AlgM/N(C) for this category of M-algebras.

Example 7.13. If C andM are arbitrary multicategories, then using the unique
maps from C and M to the terminal multicategory Comm we recover the defi-
nition of AlgM(C), the category of M-algebras in C from Definition 3.22.

Example 7.14. Let the space B be an algebra over an operad O and consider
the fiberwise category S/B of spaces over B with the strongly O-monoidal struc-
ture from Example 7.9. An O-algebra in S/B is an O-algebra X with a map of
O-algebras X → B.

Example 7.15. Consider the category of indexed spectra SpL from Exam-
ple 7.10. The fact that the external smash product (X1 ∧ · · · ∧Xn) is naturally
indexed on the direct sum of the associated universes obstructed making the
category of spectra indexed on any individual universe Sp strictly symmetric
monoidal, and so we cannot ask about commutative monoids in SpL—but the
structure available is still enough to do multiplicative homotopy theory. An
L-algebra in SpL recovers the classical definition of an E∞ ring spectrum from
[65]. Similarly we can define O-algebras for any operad O with an augmentation
to L [50, VII.2.1].

Proposition 7.16. Suppose that C is strongly N-monoidal and that M→ N is
a map of multicategories. In addition, suppose that C has enriched colimits and
that formation of α-twisted products preserves enriched colimits in each variable.

1. For objects x and y of M, there are extended power functors

Symk
M,x→y

: Cx → Cy,

given by

Symk
M,x→y

(X) = MulM(x,x, . . . ,x︸ ︷︷ ︸
k

;y)⋉ (X,X, . . . , X)/Σk.

2. The evaluation functor evx : AlgM(C)→ Cx has a left adjoint

FreeM,x : Cx → AlgM(C).

The value of FreeM,x(X) on any object y of M is

evy(FreeM,x(X)) =
∐

k≥0

Symk
M,x→y

(X).
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Example 7.17. Let B be a space with an action of an operad O, and let X a
space over B. Then the extended powers are

Symk
O(X) =

(
O(k)×Σk

Xk → O(k)×Σk
Bk → B

)
.

Example 7.18. Suppose that Γ is a commutative monoid and that X is a
Γ-graded E∞ ring spectrum, as in Example 3.24. Then there are action maps
SymkXg → Xkg. These give rise to Dyer–Lashof operations Qi : H∗Xg →
H∗+i(X2g).

Example 7.19. Suppose that · · · → X2 → X1 → X0 is a strongly filtered E∞

ring spectrum, as in Example 3.25. Then there are action maps SymkXn → Xkn

that are compatible. These give rise to power operationsQi : H∗Xn → H∗+iX2n

that are compatible as n varies, and there are induced power operations on the
associated spectral sequence.

Example 7.20. Given a spectrum X indexed on a universe U as in Exam-
ple 7.10, the extended powers are modeled by twisted half-smash products:

Symk
U→U (X) ≃ EΣk ⋉Σk

(X∧k)

This recovers the machinery that was put to effective use in the 1970s and 1980s
for studying E∞ ring spectra and H∞-ring spectra, before the development of
strictly monoidal categories of spectra.

7.3 ∞-operads

The point-set discussion of the previous sections provides a library of exam-
ples. As the basis for a theory it relies on the existence of rigid models and
preservation of colimits.

Example 7.21. Consider the fiberwise category of spaces over a fixed base
space B. This category has a symmetric monoidal fiber product X ×B Y .
The fiber product typically needs fibrant input to represent the homotopy fiber
product; the fiber product typically does not produce cofibrant output. This
makes it difficult to use the standard machinery to study algebras and modules in
this category. These problems have received significant attention in the setting
of parametrized stable homotopy theory [62, 52, 53].

Example 7.22. The category of nonnegatively graded chain complexes over a
commutative ring R is equivalent to the category of simplicial R-modules via
the Dold–Kan correspondence. This correspondence is lax symmetric monoidal
in one direction, but only lax monoidal in the other. Moreover, while both sides
have morphism spaces, the Dold–Kan correspondence only preserves these up
to weak equivalence, even for fibrant-cofibrant objects.

Example 7.23. In the standard models of equivariant stable homotopy theory
the notion of strict G-commutativity is equivalent to one encoded by equivariant
operads rather than ordinary ones [57, 36, 16]. This means that an E∞-algebra
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A (in the sense of an ordinary E∞ operad) may not have a strictly commuta-
tive model [66, 35], and this makes it more difficult to construct a symmetric
monoidal model for the category of A-modules.

The framework of ∞-operads [54] (or, alternatively, that of dendroidal sets
[72]) is one method to express coherent multiplicative structures. Here are some
of the salient points.

• This generalization takes place in the theory of ∞-categories (specifically
quasicategories), equivalent to the study of categories enriched in spaces.
Every category enriched in spaces gives rise to an ∞-category; every ∞-
category has morphism spaces between its objects.

• In this framework, for ∞-categories C and D there is a space Fun(C,D)
encoding the structure of functors and natural equivalences.

• In an∞-category, homotopy limits and colimits are intrinsic notions rather
than arising from a particular construction. Many common constructions
produce presentable ∞-categories, which have all homotopy limits and
colimits.

• Multicategories generalize to so-called ∞-operads. These have an under-
lying ∞-category, and there are spaces of multimorphisms to an object
from a tuple of objects. Every topological multicategory gives rise to an
∞-operad; every ∞-operad can be realized by a topological multicate-
gory. The precise definitions are similar in spirit to Segal’s encoding of
E∞-spaces [86].

• An ∞-operad O has an associated notion of an O-monoidal ∞-category.
An O-monoidal ∞-category is expressed in terms of maps C → O of ∞-
operads with properties analogous to that from Definition 7.4, with the
main difference that spaces of morphisms are respected. An O-monoidal
∞-category is also equivalent to a functor from O to a category of cat-
egories: each object x of O has an associated category Cx, and one can
associate a map

MulO(x1, . . . ,xd;y)→ Fun(Cx1
, . . . ,Cxd

;Cy)

of spaces.

• We can discuss algebras and modules in terms of sections, just as in Defi-
nition 7.12.

All of this structure is systematically invariant under equivalence. Equivalent
∞-operads give rise to equivalent notions of an O-algebra structure on C; ∞-
categories equivalent to C have equivalent notions of O-algebra structures to
those on C; equivalent O-monoidal ∞-categories have equivalent categories of
M-algebras for any map M→ O of ∞-operads.
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Example 7.24. An En-operad has an associated ∞-operad O, and as a result
we can define an En-monoidal ∞-category C to be an O-monoidal ∞-category.
When n = 1, 2, or∞ we can recover monoidal, braided monoidal, and symmetric
monoidal structures.

7.4 Modules

Mandell’s theorem (3.7), which is about structure on the homotopy category
of left modules over an En-algebra, is a reflection of higher structure on the
category of left modules itself.

Theorem 7.25 ([54, 5.1.2.6, 5.1.2.8]). Suppose that C is an Ek-monoidal ∞-
category which has geometric realization of simplicial objects, and such that the
tensor product preserves such geometric realizations in each variable separately.
Then the category of left modules over an Ek-algebra A is Ek−1-monoidal, and
has all colimits that exist in C.

As previously discussed, the category of left modules over an associative
algebra R is not made monoidal under the tensor product over R, but the
category of bimodules is. The generalization of this result to En-algebras is the
following.

Theorem 7.26 ([54, 3.4.4.2]). Suppose C is an En-monoidal presentable ∞-
category such that the monoidal structure preserves homotopy colimits in each
variable separately. Then for any En-algebra R in C, there is a category ModEn

R (C)
of En R-modules. This is a presentable En-monoidal ∞-category whose under-
lying monoidal operation is the tensor product over R.

In particular, if C is a presentable ∞-category with a symmetric monoidal
structure that preserves colimits in each variable, and R is an En-algebra in C,
the category of En R-modules in C has an En-monoidal structure that preserves
colimits in each variable.

Roughly, an En R-module M has multiplication operations R⊗k ⊗M →M
parametrized by (k+1)-tuples of points of configuration space, where one point
is marked by M and the rest by R. This has the more precise description of
En-modules as left modules.

Theorem 7.27 ([54, 5.5.4.16], [29]). Suppose that C is a symmetric monoidal
∞-category and that the monoidal product preserves colimits in each variable
separately. For an En-algebra R in C, the factorization homology

∫
Dn\0R has

the structure of an E1-algebra, and the category of En R-modules is equivalent
to the category of left modules over

∫
Dn\0R.

Remark 7.28. In the category of spectra, this could be regarded as a con-
sequence of the Schwede–Shipley theorem [84] or its generalizations. There
is a free-forgetful adjunction between En R-modules and Sp, and the image
FreeEn-R(S) of the sphere spectrum under the left adjoint is a compact genera-
tor for the category of En R-modules. Therefore, En R-modules are equivalent
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to the category of modules over the endomorphism ring

FEn-R(FreeEn-R(S),FreeEn-R(S)) ≃ FreeEn-R(S).

This theorem, then, is an identification of the free En R-module.

Example 7.29. When n = 1, the category of E1 R-modules is the category of
left modules over R ⊗ Rop. When n = 2, the category of E2-R-modules is the
category of left modules over the topological Hochschild homology THH(R).

7.5 Coherent powers

In the classical case, we described an O-algebra structure on A in terms of action
maps

Symk
O(A) = O(k)⊗Σk

A⊗k → A

from extended power constructions to A, and gave a formula

FreeO(X) =
∐

k≥0

Symk
O(A)

for the free O-algebra on an object in the case where the monoidal structure is
compatible with enriched colimits; we also discussed the multi-object analogue
in §7.2. The analogous constructions for ∞-operads are carried out in [54,
§3.1.3], and we will sketch these results here.

Fix an ∞-operad O. For any objects x1, . . . ,xd,y of O, we can construct a
space

MulO(x1, . . . ,xd;y)

of multimorphisms in O; if the xi are equal, this further can be given a natural
action of the symmetric group.

Let C be an O-monoidal ∞-category C. In particular, C encodes categories
Cx parametrized by the objects x of O, and functors f : Cx1

× · · · ×Cxd
→ Cy

parametrized by the multimorphisms f : (x1, . . . ,xd) → y of O. Suppose that
the categories Cx have homotopy colimits and the functors preserve homotopy
colimits in each variable. Then there exist extended power functors

Symk
O,x→y

: Cx → Cy,

whose value on X ∈ Cu is a homotopy colimit
(

hocolim
α∈MulO(x,...,x;y)

α(X ⊕ · · · ⊕X)

)

hΣk

.

These extended powers have the property that an O-algebra A has natural
maps Symk

O,x→y
(A(x)) → A(y). Moreover, there is a free-forgetful adjunction

between O-algebras and Cx, and the free object FreeO,x(X) on X ∈ CU has the
property that its value on y is exhibited as the coproduct

evy(FreeO,x(X)) ≃
∐

k≥0

Symk
O,x→y

(X).
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Remark 7.30. Composing with the diagonalCx →
∏

Cx gives a Σk-equivariant
map

MulO(x, . . . ,x︸ ︷︷ ︸
k

;y)→ Fun(Cx × · · · × Cx,Cy)→ Fun(Cx,Cy)

that factors through the homotopy orbit space

P (k) = MulO(x, . . . ,x;y)hΣk
.

This space P (k) then serves as a parameter space for tensor-power functors
Cx → Cy.

In the case of an ordinary single-object ∞-operad O such as an En-operad,
we can rephrase in terms of P (k). Such an ∞-operad O is equivalent to an
ordinary operad in spaces and an O-monoidal ∞-category is equivalent to an
∞-category C with a map O → End(C). We recover a formula

FreeO(X) ≃
∐

k≥0

hocolim
α∈P (k)

α(X, . . . , X)

for the free algebra on X . When X = Sm, this is the Thom spectrum
∐

k≥0

P (k)mρ,

closely related to Remark 4.19.
When O is an En-operad, the space P (k) is equivalent to the space Cn(k)/Σk,

a model for the space of unordered configurations of k points in Rn. When
n =∞ the space P (k) is a model for BΣk, and we find that the we recover the
ordinary homotopy symmetric power:

Symk
E∞

(X) ≃ (X⊗k)hΣk
.

Example 7.31. Fix a space B and consider the fiberwise category S/B. The

homotopy fiber productX×h
BY gives this the structure of a symmetric monoidal

∞-category, breaking up independently over the components of B. If B is path-
connected, then the extended power and free functors on (X → B) are those
obtained by applying the extended power and free functors to the fiber.

Example 7.32. Given an En R-module M , the free En R-algebra on an En

R-module M is ∐

k≥0

hocolim
α∈Cn(k)/Σk

M⊗αk,

where each point α of configuration space determines a functor M⊗αk ≃M ⊗R

· · · ⊗R M .
More can be said under the identification between En-modules and modules

over factorization homology. If M is the free En R-module on Sm, then we
obtain an identification of the free En-algebra under R on Sm:

R ∐En FreeEn
(Sm) ≃

∐

k≥0

(∫

Rk\{p1,...,pk}

R

)
⊗Σk

Smρk .

47



Remark 7.33. The interaction between connective objects and their Postnikov
truncations from §3.3 generalizes to the case where we have an O-monoidal ∞-
category C with a compatible t-structure in the sense of [54, 2.2.1.3]. This means
that the categories Cx indexed by the objects x of O all have t-structures, and
the functors induced by the morphisms in O are all additive with respect to
connectivity. Then [54, 2.2.1.8] implies that connective O-algebras have Post-
nikov towers: the collection of truncation functors τ≤n is compatible with the
O-monoidal structure on C≥0.

8 Further invariants

8.1 Units and Picard spaces

Definition 8.1. For an En-monoidal ∞-category C with unit I, the Picard
space Pic(C) is the full subgroupoid of C spanned by the invertible objects :
objects X for which there exists an object Y such that Y ⊗X ≃ X ⊗ Y ≃ I.

Remark 8.2. The classical Picard group of the homotopy category hC is the
set π0 Pic(C) of path components.

In particular, Pic(C) is closed under the En-monoidal structure on C, giv-
ing it a canonical En-space structure. Moreover, by construction π0 Pic(C) =
(π0C)

× is a group, and so Pic(C) is an n-fold loop space. The loop space
ΩPic(C) is the space of homotopy self-equivalences of the unit I; in the case
of the category LModR of left modules, it is homotopy equivalent to the unit
group GL1(R) of R.

Proposition 8.3 ([2, §7]). If R is an En ring spectrum, then the space GL1(R)
of homotopy self-equivalences of the left module R has an n-fold delooping. If
n ≥ 2, the space Pic(R) = Pic(LModR) has an (n− 1)-fold delooping.

8.2 Topological André–Quillen cohomology

Topological André-Quillen homology and cohomology are invariants of ring
spectra developed by Kriz and Basterra [45, 8]. For a fixed map of E∞ ring
spectra A → B, we can define a topological André–Quillen homology object
TAQ(A → R → B) for any object R in the category of E∞ rings between A
and B. This is characterized by the following properties [9]:

1. It naturally takes values in the category of B-modules.

2. It takes homotopy colimits of E∞ ring spectra between A and B to ho-
motopy colimits of B-modules.

3. There is a natural map B ⊗A (R/A)→ TAQ(A→ R→ B).

4. For a left A-module X with a map X → B, the composite natural map

B ⊗A X → B ⊗A FreeAE∞
(X)→ TAQ(A→ FreeAE∞

(X)→ B)
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of B-modules is an equivalence.

5. Under the above equivalence, the natural map

TAQ(A→ FreeAE∞
FreeAE∞

(X)→ B)→ TAQ(A→ FreeAE∞
(X)→ B)

is equivalent to the map

B ⊗A FreeAE∞
(X)→ B ⊗A X

that collapses B ⊗A (∐Symk(X)) to the factor with k = 1.

Topological André-Quillen homology measures how difficult it is to build R
as an A-algebra: any description of R as an iterated pushout along maps of free
of E∞-algebras, starting from A, determines a description of the topological
André–Quillen cohomology of R as an iterated pushout of B-modules. Basterra
showed that TAQ-cohomology groups

TAQn(R;M) = [TAQ(S→ R→ R),ΣnM ]ModR

plays the role for Postnikov towers of E∞ ring spectra that ordinary cohomology
does for spectra.

From this point of view, TAQ also has natural generalizations to TAQO for
algebras over an arbitrary operad [9, 34], although there may be a choice of
target category that takes more work to describe. In particular, for En-algebras
these are related to an iterated bar construction [10].

Topological André–Quillen homology also enjoys the following properties,
proved in [8, 9].

Base-change: For a map B → C, we have a natural equivalence

C ⊗B TAQ(A→ R→ B) ≃ TAQ(A→ R→ C).

In particular, if we define ΩR/A = TAQ(A→ R→ R), then

TAQ(A→ R→ B) = B ⊗R ΩR/A.

Transitivity: For a composite A→ R→ S → B, there is a natural
cofiber sequence

TAQ(A→ R→ B)→ TAQ(A→ S → B)→ TAQ(R→ S → B).

In particular, for A→ R→ S we have cofiber sequences

S ⊗R ΩR/A → ΩS/A → ΩS/R.

Representability: Suppose that there is a functor h∗ from the cat-
egory of pairs (R→ S) of E∞ ring spectra between A and B to
the category of graded abelian groups. Suppose that this is a
cohomology theory on the category of E∞ ring spectra between
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A and B: it satisfies homotopy invariance, has a long exact se-
quence, satisfies excision for homotopy pushouts of pairs, and
takes coproducts to products. Then there is a B-module M
with a natural isomorphism

hn(S,R) ∼= TAQn(S,R;M)

= [TAQ(R→ S → B),ΣnM ]ModB

of abelian groups.

For any E∞ ring spectrum B, algebras mapping to B have TAQ-homology
TAQ(S → R → B), valued in the category of B-modules. The square-zero
algebras

B ⊕M

are representing objects for TAQ-cohomology TAQ∗(R;M).
Representability allows us to construct and classify operations in TAQ-

cohomology by B-algebra maps between such square-zero extensions.

Proposition 8.4. Any element in [Σ Sym2M,N ]ModB
has a naturally associ-

ated map B ⊕M → B ⊕ N of augmented commutative B-algebras and hence
gives rise to a natural TAQ-cohomology operation TAQ(−;M) → TAQ(−;N)
for commutative algebras mapping to B.

Proof. By viewing B as concentrated in grading 0 and M as concentrated in
grading 1, we can give a Z-graded construction (as in Example 3.24) of B ⊕M
as an iterated sequence of pushouts along maps of free algebras. The first such
pushout is

FreeBE∞
(M)← FreeBE∞

(Sym2M)→ B

Further pushouts only alter gradings 3 and higher.
We now view B ⊕ N as graded by putting N in grading 2. We find that

homotopy classes of maps of graded algebras B ⊕M → B ⊕ N are equivalent
to maps ΣSym2M → N .

Example 8.5. Letting M = B ⊗ Sm, we have

ΣSym2(M) ≃ B ⊗ Σm+1RP
∞
m .

Therefore, we get a map from the B-cohomology Bn(Σm+1RP∞
m ) of stunted pro-

jective spaces to the group of natural cohomology operations TAQm(−;B) →
TAQn(−;B).

Remark 8.6. The fact that elements in the B-homology of stunted projective
spaces produce homotopy operations while elements in their B-cohomology pro-
duce TAQ-cohomology operations with a shift is a reflection of Koszul duality.

Example 8.7. Letting M = (B ⊗ Sq)⊕ (B ⊗ Sr), and using the projection

ΣSym2(B ⊗ (Sq ⊕ Sr)) ≃ ΣSym2(B ⊗ Sq)⊕ ΣSym2(B ⊗ Sr)⊕ Σ(B ⊗ Sq ⊗ Sr)

→ B ⊗ Sq+1+r,
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we get a binary operation

[−,−] : TAQq(−;B)× TAQr(−;B)→ TAQq+1+r(−;B)

that (up to a normalization factor) we call the TAQ-bracket.

Example 8.8. If B = HF2, then there are TAQ-cohomology operations

Ra : TAQm(−;HF2)→ TAQm+a(−;HF2)

for a ≥ m+ 1, and a bracket

TAQq(−;HF2)× TAQr(−;HF2)→ TAQq+1+r(−;HF2).

In this form, the operation Ra+1 is Koszul dual to Qa, in the sense that non-
trivial values of Ra+1 in TAQ-cohomology detect relations on the operator Qa

in homology. Similarly, the bracket in TAQ is Koszul dual to the multiplication.

The operations were constructed by to Basterra–Mandell [11]. In further
unpublished work, they showed that these operations (and their odd-primary
analogues) generate all the natural operations on TAQ-cohomology with values
in HFp and determined the relations between them. In particular, the opera-
tions Ra above satisfy the same Adem relations that the Steenrod operations
Sqa do; the TAQ-bracket has the structure of a shifted restricted Lie bracket,
whose restriction is the bottommost defined operation Ra.

Basterra–Mandell’s proof uses a variant of the Miller spectral sequence from
[69]. We will close out this section with a sketch of how such spectral sequences
are constructed, parallel to the delooping spectral sequence from Remark 5.14.

Proposition 8.9. Suppose that R is an E∞ ring spectrum with a chosen map
R→ HFp. Then there is a Miller spectral sequence

AQDL
∗ (π∗(HFp ⊗R))⇒ TAQ∗(S→ R→ HFp),

where the left-hand side are the nonabelian derived functors of an indecompos-
ables functor Q that sends an augmented graded-commutative Fp-algebra with
Dyer–Lashof operations to the quotient of the augmentation ideal by all products
and Dyer–Lashof operations.

Proof. We construct an augmented simplicial object:

· · ·FreeE∞
FreeE∞

FreeE∞
R⇛ FreeE∞

FreeE∞
R⇒ FreeE∞

R→ R.

If U is the forgetful functor, from commutative ring spectra mapping to HFp to
spectra mapping toHFp, this is the bar construction B(FreeE∞

, U FreeE∞
, UR).

The underlying simplicial spectrum B(U FreeE∞
, U FreeE∞

, UR) has an extra
degeneracy, so its geometric realization is equivalent to R. Moreover, the for-
getful functor from E∞ rings to spectra preserves sifted homotopy colimits, and
hence geometric realization because the simplicial indexing category is sifted.
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Therefore, applying the homotopy colimit preserving functor TAQ = TAQ(S→
(−)→ HFp) and the natural equivalence TAQ ◦FreeE∞

(R) ≃ HFp⊗R, we get
an equivalence

|B(HFp ⊗ (−), U FreeE∞
, UR)| ≃ TAQ(R).

However, this bar construction is a simplicial object of the form

· · ·HFp ⊗ FreeE∞
FreeE∞

R ⇛ HFp ⊗ FreeE∞
R⇒ HFp ⊗R.

Taking homotopy groups, we get a simplicial object

QE∞
QE∞

H∗R ⇛ QE∞
H∗R⇒ H∗R.

Moreover, the structure maps make this the bar construction

B(Q,QE∞
, H∗R)

that computes derived functors of Q on graded-commutative algebras with
Dyer–Lashof operations. Therefore, the spectral sequence associated to the
geometric realization computes TAQ∗(S → R → HFp) and has the desired
E2-term.

Remark 8.10. We can also apply cohomology rather than homology and get
a spectral sequence computing topological André–Quillen cohomology.

This leaves open a hard algebraic part of Basterra–Mandell’s work: actually
calculating these derived functors, and in particular finding relations amongst
the operations Ra and the bracket [−,−] that give a complete description of
TAQ-cohomology operations.

9 Further questions

We will close this paper with some problems that we think are useful directions
for future investigation.

Problem 9.1. Develop useful obstruction theories which can determine the
existence of or maps between En-algebras in a wide variety of contexts.

The obstruction theory due to Goerss–Hopkins [32] is the prototype for these
results. In unpublished work [88], Senger has given a development of this theory
for E∞-algebras where the obstructions occur in nonabelian Ext-groups calcu-
lated in the category of graded-commutative rings with Dyer–Lashof operations
and Steenrod operations satisfying the Nishida relations, and provided tools for
calculating with them. This played a critical role in [48, 47].

In closely related situations, the tools available remain rudimentary. For
example, there is essentially no workable obstruction theory for the construction
of commutative rings of any type in equivariant stable theory. Tools arising
from the Steenrod algebra have been essential in most of the deep results in
homotopy theory, such as the Segal conjecture [51] and the Sullivan conjecture
[70]. Without the analogues, there is a limit to how much structure can be
revealed.
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Problem 9.2. Give a modern redevelopment of homology operations for E∞

ring spaces and En ring spaces.

The observant reader may have noticed that, despite the rich structure
present, the principal material that we have referenced for E∞ ring spaces is
several decades old. Several major advances have happened in multiplicative
stable homotopy theory since then, and the author feels that there is still a
great deal to be mined. Having this material accessible to modern toolkits
would be extremely useful.

For one example, the theory of E∞ ring spaces from the point of view of sym-
metric spectra has been studied in detail by Sagave and Schlichtkrull [82, 80, 81].
For another, the previous emphasis on E∞ ring spaces should be tempered by
the variety of examples that we now know only admit A∞ or En ring structures.

Problem 9.3. Give a unified theory of graded Hopf algebras and Hopf rings,
capable of encoding some combination of non-integer gradings, power operations,
group-completion theorems, and the interaction with the unit.

Ravenel–Wilson’s theory of Hopf rings is integer-graded. We now know many
examples—motivic homotopy theory, equivariant homotopy theory, K(n)-local
theory, modules over En ring spectra—that may have natural gradings of a
much wider variety than this, such as a Picard group. Moreover, multiplicative
theory should involve much more structure: we should have a sequence of spaces
graded not just by a Picard group, but by the Picard space that also encodes
structure nontrivial higher interaction between gradings and the unit group.

Problem 9.4. Give a precise general description of the Koszul duality rela-
tionship between homotopy operations and TAQ-cohomology operations. Give
a complete construction of the algebra of operations on TAQ-cohomology for
En-algebras with coefficients in Hk, for k a commutative ring. Give complete
descriptions of the TAQ-cohomology for a large library of Eilenberg–Mac Lane
spectra Hk and Morava’s forms of K-theory.

Because TAQ-cohomology governs the construction of ring spectra via their
Postnikov tower, essentially any information that we can provide about these
objects is extremely useful.

Problem 9.5. Determine an algebro-geometric expression for power operations
and their relationship to the Steenrod operations. Do the same for the operations
which appear in the Hopf ring associated to an E∞ ring space.

At the prime 2, it has been known for some time that the action of the
Steenrod algebra can be concisely packaged as a coaction of the dual Steenrod
algebra, a Hopf algebra corresponding to the group scheme of automorphisms
of the additive formal group over F2. The Dyer–Lashof operations on infinite
loop spaces generate an algebra analogous to the Steenrod algebra, and its dual
was described by Madsen [55]; the result is closely related to Dickson invari-
ants. However, the full action of the Dyer–Lashof operations or the interaction
between the Dyer–Lashof algebra and the Steenrod algebra does not yet have a
geometric packaging.
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Conjecture 9.6. For Lubin–Tate cohomology theories E and F of height n,
there is a natural algebraic structure parametrizing operations from continuous
E-homology to continuous F -homology for certain E∞ ring spectra, expressed
in terms of the algebraic geometry of isogenies of formal groups.

This is complete: there is an obstruction theory for the construction of and
mapping between K(n)-local E∞ ring spectra whose algebraic input is completed
E-homology equipped with these operations.

In this paper we have not really touched on the extensive study of power
operations in chromatic homotopy theory (cf. [90, 7]). Given Lubin–Tate coho-
mology theories E and F associated to formal groups of height n at the prime
p, we have both cohomology operations and power operations. In [38] the alge-
bra of cohomology operations is expressed in terms of isomorphisms of formal
groups. Extensive work of Ando, Strickland, and Rezk has shown that power
operations are expressed in terms of quotient operations for subgroups of the
formal groups. It has been known for multiple decades [93, §28] that the natu-
ral home combining these two types of operations is the theory of isogenies of
formal groups. However, there are important details about formal topologies
which have never been resolved.1

Problem 9.7. Determine the natural instability relations for operations in un-
stable elliptic cohomology and in unstable Lubin–Tate cohomology.

Strickland states that isogenies are a natural interpretation for unstable co-
homology operations in E-theory. However, isogenies encode the analogue of the
cohomological Steenrod operations, the multiplicative Dyer–Lashof operations,
and the Nishida relations between them. They do not encode any analogue of
the instability relation Sqn = Q−n that we see in the cohomology of spaces.

In chromatic theory, our only accessible example so far is K-theory. For
p-completed K-theory, the cohomology operations are generated by the Adams
operations ψk for k ∈ Z×

p . For torsion-free algebras, the power operations are
controlled by the operation ψp and its congruences [37, 78]. The unstable opera-
tions in the K-theory of spaces, by contrast, arise from the algebra of symmetric
polynomials and are essentially governed by the ψn for n ∈ N; the fact that the
other ψk are determined by these enforces some form of continuity. This is also
closely tied to the question of whether there are geometric interpretations of
some type for elliptic cohomology theories or Lubin–Tate cohomology theories.2

Problem 9.8. Determine a useful way to encode secondary operation structures
on E∞ or En rings.

In the case of secondary Steenrod operations, there is a useful formulation
due to Baues of an extension of the Steenrod algebra that can be used to encode
all of the secondary operation structure [12, 73]. No such systematic descriptions

1The reader should be advised that, even at height 1, there are difficult issues with E-theory

here involving left-derived functors of completion.
2One possible viewpoint is that we could interpret N as the monoid of endomorphisms of

the multiplicative monoid M1, which contains the unit group GL1.
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are known for secondary Dyer–Lashof operations, especially since the Dyer–
Lashof operations are expressed in a more complicated way than the action of
an algebra on a module.

Problem 9.9. Determine useful relationships between the homotopy types of
an En ring spectrum, the unit group GL1(R) and the Picard space Pic(R), and
the spaces BGLn(R).

This is closely tied to orientation theory, algebraic K-theory, and the study
of spaces involved in surgery theory.

Investigations in these directions due to Mathew–Stojanoska revealed that
there is a nontrivial relationship between the k-invariants for R and the unit
spectrum gl1(R) at the edge of the stable range at the prime 2 [60], and forth-
coming work of Hess has shown that this relation can be recovered from the
mixed Cartan formula. The odd-primary analogues of this are not yet known.

Problem 9.10. Find an odd-primary formula for the mixed Adem relations
similar to the Kuhn–Tsuchiya formula.

There is a description of the mixed Adem relations [24], valid at any prime,
but it is difficult to apply in concrete examples. The 2-primary formula described
in §5.8 is much more direct; it was originally stated by Tsuchiya and proven by
Kuhn [46]. There is no known odd-primary analogue of this formula.
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