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We compute the Adams–Novikov E2-term of a spectrum Q(2) constructed by M. 
Behrens. The homotopy groups of Q(2) are closely tied to the 3-primary stable 
homotopy groups of spheres; in particular, they are conjectured to detect the 
homotopy beta family of Greek letter elements at the prime 3. Our computation 
leverages techniques used by Behrens to compute the rational homotopy of Q(2), and 
leads to a conjecture that the Adams–Novikov E2-term for Q(2) detects the algebraic 
beta family in the BP-based Adams–Novikov E2-term for the 3-local sphere.
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1. Introduction

Among the central objects of study in stable homotopy theory are the p-local stable homotopy groups 
of spheres for a prime p, i.e., the homotopy groups of the p-local sphere S(p). The chromatic convergence 
theorem of Hopkins and Ravenel [1] says that further localizations of S(p) yield successive approximations 
of π∗S(p); more precisely, if Ln is localization with respect to the Johnson–Wilson spectrum E(n) at p [2], 
then

S(p) � holim(L0S(p) ← L1S(p) ← L2S(p) ← · · ·).

For each n, LnS(p) lies in a homotopy fracture square with LK(n)S(p) [3], where LK(n) is localization with 
respect to the nth Morava K-theory spectrum K(n) at p. This means the groups π∗LK(n)S(p) for n � 0 are 
building blocks for π∗S(p). The spectra LK(n)S(p) are the K(n)-local spheres and n is the chromatic level. 
The spectrum Q(2) that we study in this paper yields information at chromatic level 2.

Indeed, Behrens [4] constructs Q(2) in an effort to reinterpret previous groundbreaking work [5–7] on 
π∗LK(2)S(3)-groups which lie at the edge of what is accessible computationally, as very little is known about 
the homotopy of the K(n)-local sphere at any prime for n � 3. The spectrum Q(2) is an E∞ ring spectrum 
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with the property that

DLK(2)Q(2) Dη−−−→ LK(2)S(3)
η−→ LK(2)Q(2) (1)

is a cofiber sequence, where η is the K(2)-localized unit map of Q(2) and D is the K(2)-local Spanier–
Whitehead duality functor. The “2” in the notation reflects the fact that Q(2) is built using degree 2 
isogenies of elliptic curves (see Subsection 3.3) and is not a reference to the chromatic level n = 2. The 
sequence (1) implies that LK(2)S(3) is built from LK(2)Q(2) and DLK(2)Q(2) and that their respective 
homotopy groups lie in a long exact sequence. Behrens ([4], Section 1.4.2) observes that there is a spec-
tral sequence converging to π∗Q(2) whose input is the cohomology of the totalization of a double cochain 
complex C∗,∗:

Es,t
2 Q(2) := Hs,t(TotC∗,∗) ⇒ π2t−sQ(2). (2)

This is the Adams–Novikov spectral sequence for Q(2). In particular, the Adams–Novikov E2-term for Q(2)
is itself computable via a double complex spectral sequence.

In this paper we compute the double complex spectral sequence converging to the Adams–Novikov 
E2-term for Q(2), thereby obtaining explicit descriptions of the elements in this E2-term up to an am-
biguity in two torsion Z(3)-submodules which we denote U1,∗ ⊂ E1,∗

2 Q(2) and U2,∗ ⊂ E2,∗
2 Q(2). The double 

complex C∗,∗ is built from the cobar resolution of an elliptic curve Hopf algebroid (B, Γ) over Z(3) to be de-
fined in Section 3. Throughout this paper, Ext∗,∗ (or just Ext∗) will denote the Hopf algebroid cohomology 
of (B, Γ), i.e.,

Ext∗,∗ := Ext∗,∗Γ (B,B)

in the category of Γ-comodules, and νp(x) will denote the p-adic valuation of a (p-local) integer x. The 
following is our main theorem.

Theorem 1. The Adams–Novikov E2-term for Q(2) is given by

E0,t
2 Q(2) =

{
Z(3), t = 0,
0, t �= 0,

E1,t
2 Q(2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊕
n∈N

Z(3), t = 0,

Z/(3) ⊕ Z/(3), t = 4,
Z/(3ν3(3m)), t = 4m,m � 2,
U1,t, t = 4m + 2,m � 1,m ≡ 13 mod 27,
Z/(3ν3(6m+3)), t = 4m + 2,m � 1,m �≡ 13 mod 27,
0, otherwise,

E2,t
2 Q(2) = Ext2,t ⊕Ext1,t ⊕M

where

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊕
n∈N

Z/3ν3(6m+3), t = 4m + 2,m � −1,

U2,t ⊕
(⊕

n∈N

Z/3ν3(6m+3)

)
, t = 4m + 2,m � 1,m ≡ 13 mod 27,⊕

n∈N

Z/3ν3(6m+3), t = 4m + 2,m � 1,m �≡ 13 mod 27,

0, otherwise,

and Es,t
2 Q(2) = Exts,t ⊕ Exts−1,t for s � 3.
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The cohomology groups Ext∗ have been computed by Hopkins and Miller [8] and they appear as sum-
mands in the Adams–Novikov E2-term for Q(2) by virtue of how Q(2) is constructed (see Section 3).

In addition to being a concrete computational tool for accessing π∗Q(2), Theorem 1 also sheds light on 
a conjectured relationship between Q(2) and the beta family in the 3-primary stable stems, as follows. The 
spectrum Q(2) is a special case of a more general object Q(N), an E(2)-local ring spectrum at the prime 
p built from degree N isogenies, that exists as long as p does not divide N . Behrens ([9], Theorem 12.1) 
proves that for p > 3 and N a topological generator of Z×

p , nontrivial homotopy divided beta family elements 
βh
i/j,k ∈ π∗S(p) (which are seen in π∗L2S(p)) are detected by the homomorphism (ηE(2))∗ induced by the 

E(2)-localized unit map ηE(2) : L2S(p) → Q(N). Behrens conjectures that this holds for p = 3 and all 
corresponding N ([9], Section 1). The case p = 2 is addressed by Behrens and Ormsby in [10].

The algebraic divided beta family lives on the 2-line of the BP-based Adams–Novikov E2-term for the 
p-local sphere and comprises elements

βa
i/j,k ∈ Ext2,2i(p

2−1)−2j(p−1)
BP∗BP (BP∗,BP∗)

for certain i, j, k ∈ Z [11]. These elements also appear in the E2-term for L2S(p). Our computation yields 
evidence for an algebraic version of Behrens’ conjecture in the case p = 3 and N = 2.

Conjecture 1. The elements βa
i/j,k have nontrivial image under the map of Adams–Novikov E2-terms induced 

by ηE(2) : L2S(3) → Q(2).

Remark 1. The statement of Theorem 1 reveals that the undetermined submodules U1,∗ and U2,∗ together 
constitute a small sliver of the Adams–Novikov E2-term for Q(2). In particular, these submodules could not 
possibly contain all of the algebraic divided beta family.

In Section 2 we outline our main results that lead to Theorem 1. In Section 3 we recall the construction 
of Q(2) and the algebraic underpinnings of the double complex spectral sequence for C∗,∗. Sections 4, 5, 
and 6 are the technical heart of the paper, where we prove the results stated in Section 2. We conclude in 
Section 7 with evidence that Conjecture 1 holds.

2. Statement of main results

In this section we state the results that constitute our proof of Theorem 1 (largely suppressing the t-degree 
throughout for readability). Our approach is based on previous work of Behrens on π∗Q(2) ⊗Q [12].

The first of our results reduces the double complex spectral sequence for C∗,∗ to the cohomology of 
a singly-graded three-term cochain complex and the computation of one additional nontrivial differential. 
Recall from Section 1 that Ext∗ is the cohomology of the elliptic curve Hopf algebroid (B, Γ).

Proposition 1. In the double complex spectral sequence for C∗,∗, there are only two nontrivial E1-page 
differentials given by Z(3)-module maps

Ext0 Φ−−→ Ext0 ⊕B Ψ−−→ B, (3)

there is only one nontrivial E2-page differential

d̃ : Ext1 → coker Ψ,

and E3 = E∞. Moreover,
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Hs(TotC∗,∗) =

⎧⎪⎪⎨⎪⎪⎩
H0C∗,0, s = 0
H1C∗,0 ⊕ ker d̃, s = 1
coker d̃⊕ Ext2 ⊕Ext1, s = 2
Exts ⊕Exts−1, s � 3.

By a slight abuse of notation, we will denote the cochain complex (3) by C∗ (so that C∗ = C∗,0). The 
following proposition describes a two-stage filtration that we use to compute H∗C∗.

Proposition 2. There is a filtration C∗ = F 0 ⊃ F 1 ⊃ F 2 of C∗ inducing a short exact sequence 0 → C ′ →
C∗ → C ′′ → 0, where

C ′ = (0 → B h−→ B), C ′′ = (Ext0 g−→ Ext0 → 0)

The resulting long exact sequence in cohomology is

0 → H0C∗ → ker g δ0−−→ kerh → H1C∗ → coker g δ1−−→ cokerh → H2C∗ → 0

so that H0C∗ = ker δ0, H2C∗ = coker δ1, and H1C∗ lies in the short exact sequence

0 → coker δ0 → H1C∗ → ker δ1 → 0. (4)

Proposition 2 shows that computing H∗C∗ via this two-stage filtration starts with the kernels and 
cokernels of the maps g : Ext0 → Ext0 and h : B → B. We compute these kernels and cokernels using 
judicious choices of bases for B and Ext0 as Z(3)-modules.

Proposition 3. As modules over Z(3), ker g = kerh =
⊕
n∈N

Z(3),

coker g =
(⊕

n∈N

Z(3)

)
⊕

⎛⎝ ⊕
x∈B �=0

MF

Z/(3ν3(deg x)+1)

⎞⎠
where B �=0

MF is a basis for the submodule of Ext0,∗ of elements of nonzero t-degree (see Definition 5), and

cokerh =
⊕

i<j∈Z

(
Z/(3ν3(i+j)+1) ⊕ Z/(3ν3(2i+2j+1)+1)

)
.

The following theorem describes H∗C∗. We prove this result by computing the connecting homomor-
phisms δ0 and δ1 from Proposition 2. As in Proposition 3, the proof is based on judicious choices of 
generators for the sources and targets.

Theorem 2.

(a) H0C∗ = Z(3)

(b) H1C∗ =
(⊕

n∈N

Z(3)

)
⊕
(⊕

m>0
Z/(3ν3(3m))

)⎛⎜⎝ ⊕
m>0

m�≡13 mod 27

Z/(3ν3(6m+3))

⎞⎟⎠⊕ U1

(c) H2C∗ =

⎛⎝⊕⊕
Z/(3ν3(6m+3))

⎞⎠⊕ U2
m�=0 n∈N
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Finally, we compute the differential d̃ described in Proposition 1.

Theorem 3. ker d̃ = Z/3, and coker d̃ = H2C∗
/(⊕

m∈3Z
Z/(3ν3(6m+3))

)
.

Our computation will reveal that generators of Z(3) summands in Es,t
2 Q(2) lie in t-degree 0, generators of 

Z/(3ν3(3m)) summands lie in t-degree 4m, and generators of Z/(3ν3(6m+3)) summands lie in t-degree 4m +2
(see, e.g., Remark 4). With this, Proposition 1 and Theorems 2 and 3 piece together to yield Theorem 1.

Remark 2. As we shall see in Section 5, the summand⊕
m>0

m�≡13 mod 27

Z/(3ν3(6m+3)) (5)

of E1,∗
2 Q(2) is a submodule of ker δ1. The source and target of (δ1)4m+2 (the restriction of δ1 to elements 

of t-degree 4m + 2 in coker g) are infinite direct sums of copies of Z/(3ν3(6m+3)). If m �≡ 13 mod 27 then 
Z/(3ν3(6m+3)) ∼= Z/(3), Z/(9), or Z/(27), making the kernel and cokernel of (δ1)4m+2 explicitly computable 
in those cases. This is not true for m ≡ 13 mod 27, for which ν3(6m +3) � 4. To demonstrate this, below we 
have the first few columns of matrix representations of (δ1)4m+2 for a general m �≡ 13 mod 27, and m = 13
(so that Z/(3ν3(6m+3)) ∼= Z/(81)), respectively:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

u0 ∗

0 u1
...

...
... 0

. . . ∗ 0
... uy 0 · · ·

0 0
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 78 31 39 0
8 21 17 72 0
80 5 79 6 0
0 62 56 19 27
0 0 44 72 0
0 0 0 26 54 · · ·
0 0 0 0 0
...

...
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(see Eq. (31) in Subsection 5.2). The entries u0, . . . , uy are units. The bolded zero column on the left yields 
the summand (5) and also makes the cokernel a direct sum of cyclic Z(3)-modules when m �≡ 13 mod 27. 
The corresponding column for m ≡ 13 mod 27 is always nonzero (see Lemma 12(a)), as in the m = 13
example shown above on the right. This causes complications, including relations in coker δ1 that we cannot 
compute in general. It is precisely these unknown parts of ker δ1 and coker δ1 that constitute U1 and U2, 
respectively (see Definition 10). In this m = 13 example, the ordered bases for the source and target are 
{D13

0 , D13
1 , D13

2 , . . .} and {B13
0 , B13

1 , B13
2 , . . .} (see Definitions 4 and 7), the kernel is Z/(81) generated by 

−27D13
3 + D13

4 , and the cokernel is(
Z/(81){B13

0 , B13
1 }/(B13

0 − 3B13
1 = 0)

)
⊕ Z/(81){B13

6 } ⊕ Z/(81){B13
7 , B13

9 , B13
11 , . . .}. (6)

This computation will follow from the proof of Proposition 9(e). Example 2 in Section 7 suggests that 
the algebraic beta family elements βa

9/9,1 and βa
7/1,1 (the former being related to the 3-primary Kervaire 

invariant problem) may be detected in the submodule (6).

3. The Adams–Novikov E2-term for Q(2)

The spectrum Q(2) is the homotopy inverse limit of a semi-cosimplicial diagram of the form

TMF ⇒ TMF ∨ TMF0(2) � TMF0(2), (7)
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where TMF and TMF0(2) are both 3-local variants of the spectrum of topological modular forms [13]. The 
diagram (7) can be viewed as a more efficient version of a tower of spectra used by the authors of [6] in their 
study of the 3-primary K(2)-local sphere. In this section, we describe the Adams–Novikov E2-term for Q(2)
in terms of the data in (7) and we set up the spectral sequence we will use to compute it. In particular, we 
will prove Propositions 1 and 2.

3.1. Setup of the double complex spectral sequence for C∗,∗

Our starting point is the definition of the elliptic curve Hopf algebroid (B, Γ) introduced in Section 1.

Definition 1. The graded Z(3)-algebras B and Γ are defined as follows:

B = Z(3)[q2, q4,Δ−1]/(Δ = q2
4(16q2

2 − 64q4))

with deg(q2) = 2 and deg(q4) = 4 (hence deg(Δ) = 12), and

Γ = B[r]/(r3 + q2r
2 + q4r)

with deg(r) = 2.

The groups Ext∗ are encoded as the cohomology groups of the cobar resolution C∗(Γ) for (B, Γ) ([14], 
A1.2.11), a cochain complex of the form

B d−→ Γ d−→ Γ ⊗ Γ d−→ Γ ⊗ Γ ⊗ Γ d−→ · · ·

where the differentials d are defined in terms of the structure maps of (B, Γ) (the coproduct, the right and 
left units, etc.). Formulas for these structure maps are given in [8].

The Hopf algebroid (B, Γ) is connected to TMF via elliptic curves. Any Hopf algebroid co-represents 
the objects and morphisms of a groupoid; in the case of (B, Γ), the corresponding groupoid is that of 
non-singular elliptic curves with Weierstrass equation

y2 = 4x(x2 + q2x + q4) (8)

and isomorphisms x �→ x + r that preserve this Weierstrass form. If M is the moduli stack of such elliptic 
curves over Z(3), the Goerss–Hopkins–Miller theorem [15] gives a sheaf Oell of E∞ ring spectra on M, and 
TMF is defined as the global sections of this sheaf, i.e., TMF = Oell(M). As a result, there is a spectral 
sequence

E∗,∗
2 = Ext∗,∗ = Ext∗,∗Γ (B,B) ⇒ π∗TMF

whose E2-term is the cohomology of (B, Γ). This the Adams–Novikov spectral sequence for TMF .
To recover TMF0(2), consider the groupoid whose objects are elliptic curves as in (8) but with the 

additional datum of a Γ0(2) structure (i.e., a choice of order 2 subgroup). There are no nontrivial structure-
preserving isomorphisms x �→ x +r in this case, so the underlying Hopf algebroid is the trivial Hopf algebroid 
(B, B). If M0(2) is the moduli stack of such elliptic curves over Z(3), the Goerss–Hopkins–Miller theorem 
once again gives a sheaf of E∞ ring spectra lying over it, and we obtain TMF0(2) by taking global sections. 
The Adams–Novikov E2-term for TMF0(2) is therefore Ext∗B(B, B) = B. The spectral sequence collapes at 
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E2 and yields

π2kTMF0(2) = Bk

where Bk denotes the elements of B of degree k.
The following proposition gives the Adams–Novikov spectral sequence converging to π∗Q(2), whose 

E2-term is stitched together from the Adams–Novikov E2-terms for TMF and TMF0(2) according to the 
maps in (7).

Proposition 4. (See [4, Section 1.4.2].) The Adams–Novikov E2-term for Q(2) is the cohomology of the 
totalization of the double complex C∗,∗ given by

C∗(Γ) Φ−−→ C∗(Γ) ⊕B Ψ−−→ B → 0 (9)

where C∗(Γ) is obtained from C∗(Γ) by multiplying its differentials by −1, B is viewed as a cochain complex 
concentrated in Ext-degree 0, and the cochain complex maps Φ, Ψ are induced by the corresponding maps of 
spectra in (7).

3.2. Algebraic properties of B and Ext0

In this subsection we lay the algebraic groundwork for our computation by examining the ring B and 
the subring Ext0 ⊂ B. The latter is called the ring of invariants of the Hopf algebroid (B, Γ); it is the set 
of elements that are fixed by the right unit structure map ηR : B → Γ.

Following [12], we begin by defining a new element μ ∈ B:

μ := 16q2
2 − 64q4,

an element of degree 4. For computational convenience, we will replace q4 and μ by scalar multiples of 
themselves, namely

s := 8q4,

t := μ/8, (10)

thus deg(s) = deg(t) = 4. [Note: While we also use s and t to refer to the bidegrees (s, t) in E∗,∗
2 Q(2), we 

believe their meanings will always be clear from the context.]

Lemma 1. As a Z(3)-algebra,

B = Z(3)[q2, q4, q−1
4 , μ−1]/(μ = 16q2

2 − 64q4)

and thus {sitjqε2 : i, j ∈ Z, ε = 0 or 1} is a basis for B as a Z(3)-module.

Proof. Since Δ = q2
4μ, inverting Δ is equivalent to inverting q4 and μ, which proves the first statement. 

The second statement follows from (10) and the relation q2
2 = (μ + 64q4)/16. �

Lemma 2. B0 = Z(3)[jB , j−1
B ], where

jB := s/t. (11)
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Proof. The only elements sitjqε2 in B0 are those with i = −j and ε = 0. �
Definition 2. Given i � j ∈ Z and ε = 0 or 1, define submodules

Vi,j,ε := Z(3){sitjqε2, sjtiqε2} ⊂ B

free of rank 1 if i = j, and free of rank 2 otherwise.

Lemma 3. As a Z(3)-module, B =
⊕

i�j, ε=0,1
Vi,j,ε.

Proof. This follows from Lemma 1. �
We will see in Subsection 4.3 that the following elements form a basis of eigenvectors for B with respect 

to the map h : B → B from Proposition 2.

Definition 3. For i < j ∈ Z,

ai,j := sitj − sjti, ai,j := sitj + sjti, bi,j := ai,jq2, bi,j := ai,jq2

and for ε = 0 or 1, cεi := sitiqε2.

The elements {ai,j} and {bi,j} from Definition 3 will be key in Section 5 when we compute the connecting 
homomorphisms in the long exact sequence from Proposition 2. The following definition gives a convenient 
enumeration of these elements for our study of δ1 in Subsection 5.2.

Definition 4. For 0 � v ∈ Z and m ∈ Z,

Am
v := a⌊m−1

2
⌋
−v,
⌈
m+1

2
⌉
+v, Bm

v := b⌊m−1
2
⌋
−v,
⌈
m+1

2
⌉
+v.

Hereafter we denote the ring of invariants Ext0 by MF . The following proposition is an explicit description 
of MF proven in [16].

Proposition 5. If

c4 := μ + 16q4 = 2s + 8t,

c6 := 4q2(8q4 − μ) = 4q2(s− 8t), (12)

then

MF = Z(3)[c4, c6,Δ,Δ−1]/(1728Δ = c34 − c26)

where Δ = q2
4μ = s2t/8 as before, deg(c4) = 4, and deg(c6) = 6.

Remark 3. The notation “MF” stands for “modular forms.” Indeed, the ring MF ⊗C is the ring of modular 
forms over C for the full modular group SL(2, Z). Note also that B ⊗ C is the ring of modular forms over 
C for the congruence subgroup Γ0(2) ⊂ SL(2, Z).

In the following definition we identify bases for MF and some of its Z(3)-submodules that will prove 
useful for our computations in Sections 4 and 5. Note that B �=0

MF defined below appears in Proposition 3 (see 
Section 1).
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Definition 5. Let

BMF := {cn4 cε6Δ� : n � 0, � ∈ Z, ε = 0 or 1},
B �=0

MF := {x ∈ BMF : deg(x) �= 0} ⊂ BMF

and, for any m ∈ Z and ε = 0 or 1,

Bε,m
MF := {cn4 cε6Δ� : n + 3� + ε = m} ⊂ BMF .

Lemma 4. The set BMF is a basis for MF as a Z(3)-module.

Proof. This follows from the relation c26 = c34 − 1728Δ in MF . �
Lemma 5. MF0 = Z(3)[jMF ], where

jMF := c34/Δ (13)

is the j-invariant ([17], Section III.1).

Proof. First note that c34 − c26 is irreducible in MF . To see this, we temporarily put X = c4 and Y = c6, in 
which case it suffices to show that Y 2 −X3 = −(c34 − c26) is irreducible. Suppose not. Then we may write

Y 2 −X3 = (Y + f(X))(Y + g(X))

where f and g are polynomials in X, f(X)g(X) = −X3 and f(X) = −g(X). In particular, [g(X)]2 = X3, 
which is impossible.

Since c34−c26 is irreducible, the only basis elements cn4 cε6Δ� in MF0 are those with 3� = −n and ε = 0. �
We now give notation for the submodules of MF spanned by the sets Bε,m

MF in Definition 5.

Definition 6. Given m ∈ Z and ε = 0 or 1, define submodules

Wε,m := Z(3){Bε,m
MF} ⊂ MF .

Lemma 6. As a Z(3)-module,

MF = W0,0 ⊕

⎛⎜⎜⎝ ⊕
m∈Z,ε=0,1,
(ε,m) �=(0,0)

Wε,m

⎞⎟⎟⎠ .

Proof. By degree counting, MF0 = W0,0. The result then follows from Lemmas 4 and 5 and the union 
decomposition

B �=0
MF =

⋃
m∈Z,ε=0,1,
(ε,m) �=(0,0)

Bε,m
MF . �

For an element cn4Δ� ∈ B0,m
MF , the largest possible value of � is

�m0 :=
⌊m⌋

,
3
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while for cn4 c6Δ� ∈ B1,m
MF it is

�m1 :=
⌊
m− 1

3

⌋
.

This allows us to give the following enumeration of the elements in B �=0
MF , convenient for our study of δ1 in 

Subsection 5.2.

Definition 7. For 0 � v ∈ Z and m ∈ Z,

Cm
v := c

m−3�m0 +3v
4 Δ�m0 −v, Dm

v := c
m−3�m1 −1+3v
4 c6Δ�m1 −v

so that B0,m
MF = {Cm

0 , Cm
1 , Cm

2 , . . .} and B1,m
MF = {Dm

0 , Dm
1 , Dm

2 , . . .}.

Remark 4. The enumerations in Definitions 4 and 7 are analogous in terms of how the integer m compares 
with the polynomial degree. Specifically,

deg(Am
v ) = deg(Cm

v ) = 4m, deg(Bm
v ) = deg(Dm

v ) = 4m + 2. (14)

3.3. Maps of the double complex

In this subsection we describe four Hopf algebroid maps, denoted ψd, φf , φq, and ψ[2], that assemble to 
give Φ and Ψ as follows:

Φ = (ψ[2] ⊕ φq) − (1Γ ⊕ φf ),

Ψ = ψd − φf + 1B . (15)

This yields the diagram

Γ Φ−−→ Γ ⊕B Ψ−−→ B → 0

of Z(3)-modules inducing the double cochain complex (9) in Proposition 4.
Each of ψd, φf , φq, and ψ[2] corresponds to a maneuver with elliptic curves (see Remark 5 below) and 

is defined by the effect of the maneuver on Weierstrass equations, as computed in Section 1.5 of [4] (where 
they are denoted ψ∗

d, φ∗
f , φ∗

q , and ψ∗
[2], respectively). We briefly summarize those computations here. Since 

each map is a Hopf algebroid morphism, those with source (B, B) are determined by their values on q2
and q4, while those with source (B, Γ) are determined by their values on q2, q4, and r.

Given an elliptic curve C over Z(3) with Weierstrass equation as in (8) and an order 2 subgroup H, 
ψd : (B, B) → (B, B) records the effect on q2 and q4 when C is replaced by its quotient C/H, or equivalently, 
when the degree 2 isogeny C → C/H is replaced by its dual isogeny C/H → C. The effect is

ψd : q2 �→ −2q2,

q4 �→ q2
2 − 4q4.

If C is an elliptic curve as before, then φf : (B, Γ) → (B, B) forgets the choice of order 2 subgroup 
H ⊂ C. Simply forgetting this extra structure does not impact the coefficients q2 and q4 but it does impact 
which elliptic curve morphisms are allowed. Since there are no transformations x �→ x + r that preserve H, 
φf is given by
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φf : q2 �→ q2,

q4 �→ q4,

r �→ 0.

For φq : (B, Γ) → (B, B), the relation φq = ψd ◦ φf imposed by the semi-cosimplicial structure of (7)
implies

φq : q2 �→ −2q2,

q4 �→ q2
2 − 4q4,

r �→ 0.

The map ψ[2] can be viewed either as a self-map of (B, Γ) or as a self-map of (B, B) ([4], Section 1.1). 
In either case, ψ[2] corresponds to taking the quotient of C by its subgroup C[2] of points of order 2. The 
standard elliptic curve addition formulas show that, on the level of Weierstrass equations, this corresponds 
to replacing q2 by 22q2 and q4 by 24q4. Moreover, the allowable transformations in this case are of the form 
x �→ x + 22r. Thus, as a self-map of (B, Γ),

ψ[2] : q2 �→ 4q2,

q4 �→ 16q4,

r �→ 4r

and restriction yields the corresponding self-map of (B, B).
Combined with (15) the above formulas yield

Φ : q2 �→ (3q2,−3q2),

q4 �→ (15q4, q2
2 − 5q4),

r �→ (3r, 0) (16)

and Ψ : (x, y) �→ ψd(y) − φf (x) + y for (x, y) ∈ Γ ⊕B.

Remark 5. The semi-cosimplicial diagram (7) underlying Q(2) is the topological realization of a semi-
simplicial diagram of stacks

M ⇐ M
∐

M0(2) � M0(2). (17)

The stacks M and M0(2) are categories fibered in groupoids over the category of Z(3)-affine schemes. 
Given a Z(3)-algebra T , the groupoid lying over Spec(T ) in M is the one co-represented by (B, Γ), while 
the groupoid lying over Spec(T ) in M0(2) is the one co-represented by (B, B). The Hopf algebroid maps 
defined in this subsection correspond to the morphisms of stacks in (17), and the elliptic curve maneuvers 
can be interpreted as descriptions of what these stack morphisms do on the level of T -points.

3.4. Proof of Proposition 1

Recall from Section 3.1 that the Adams–Novikov E2-term for Q(2) is the target of the double complex 
spectral sequence for C∗,∗, which is a first quadrant double complex of the form
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C∗(Γ) Φ
C∗(Γ) ⊕B

Ψ
B 0

C0,∗ C1,∗ C2,∗ C3,∗

The vertical differentials are induced by the cobar complex differentials for (B, Γ) and are formally the 
d0-differentials of the double complex spectral sequence; the horizontal maps Φ and Ψ were defined in the 
previous section and will induce the d1-differentials.

Expanding the three nontrivial columns of C∗,∗ gives

...
Γ ⊗ Γ Φ

...
Γ ⊗ Γ

...
0

Γ Φ

d

Γ

−d

0

B
Φ

d

B ⊕B
Ψ

−d⊕0

B

(18)

and turning to the E1-page yields the following result.

Lemma 7. Taking cohomology with respect to the vertical differentials in (18) gives

...
Ext2 0

...
Ext2

...
0

Ext1 0 Ext1 0

MF Φ MF ⊕B
Ψ

B

(19)

Proof. We know Ext0 = MF by Proposition 5. The computation of the homotopy groups of TMF by Hopkins 
and Miller [8] shows that Extn is entirely 3-torsion for n � 1. Eq. (16) therefore implies Φ : Extn → Extn

must be identically zero for n � 1. �
Lemma 7 shows that the double complex spectral sequence for C∗,∗ has only two potentially nontrivial 

differentials on its E1-page: Φ and Ψ. By sparseness, the only potentially nontrivial differential on the 
E2-page is a map Ext1 → coker Ψ (denoted d̃ in Proposition 1) and E3 = E∞. Therefore, to obtain the 
E∞-page from (19) we need only replace the 0th row by

H0C∗ → H1C∗ → coker d̃

and replace Ext1 in the 0th column by ker d̃. This completes the proof of Proposition 1.
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3.5. Proof of Proposition 2

In this subsection we define the two-stage filtration of C∗ we shall use to compute H∗C∗ and we prove 
Proposition 2. For ease of notation, we will henceforth denote by 1 the maps 1B, 1Γ, and any maps they 
induce; the meaning should be clear from the context.

If F 0 = C∗, F 1 = (MF ψ[2]−1−−−−−→ MF → 0), and F 2 is the trivial complex, then F 0 ⊃ F 1 ⊃ F 2 is our 
filtration. It induces a short exact sequence

0 → C ′ → C∗ → C ′′ → 0 (20)

of chain complexes, given by

C ′ : 0 B
ψd+1

B

C∗ : MF Φ
B ⊕ MF Ψ

B

C ′′ : MF
ψ[2]−1

MF 0

Definition 8. g := ψ[2] − 1 : MF → MF , h := ψd + 1 : B → B.

Proposition 2 follows from standard homological algebra (see, e.g., Section 1.3 of [18]). The map δ0 is 
the restriction of φq − φf to ker g, while the map δ1 is the map induced by −φf on coker g.

4. Computation of the maps g and h

In this section we initiate our computation of the Adams–Novikov E2-term for Q(2) by computing the 
kernel and cokernel of the maps g : MF → MF and h : B → B defined in Section 3.

4.1. A 3-divisibility result

The following result in 3-adic analysis is one we shall leverage numerous times throughout the remainder 
of this paper.

Lemma 8.

(a) If n is a nonzero even integer, then

ν3(4n − 1) = ν3(n) + 1.

(b) If n is an odd integer, then

ν3(2n + 1) = ν3(n) + 1.

Proof. Let | · | denote 3-adic absolute value. Fix an even integer n > 1 (the case n < −1 will follow 
immediately), and let

f(x) = (1 + x)n − 1.
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Recall that the (3-adic) functions ex and log(1 + x) converge for |x| � |3|. Moreover, | log(1 + x)| = |x|, 
|ex| = 1, and |1 − ex| = |x| for any |x| � |3|. But since

f(x) = (1 + x)n − 1 = en log(1+x) − 1

this implies that for |x| � |3|,

|f(x)| = |en log(1+x) − 1| = |n log(1 + x)| = |n|| log(1 + x)| = |n||x|.

In particular, setting x = 3 yields |f(3)| = |4n − 1| = |n||3|, which proves (a).
To prove (b), we need only slightly alter the above argument. Fix an odd integer n > 0. Replacing x by 

−x in the definition of f(x) yields a new function

g(x) = (1 − x)n − 1 = en log(1−x) − 1

and a similar analysis shows that if |x| � |3|, then |g(x)| = |n||x|. Setting x = 3 as before yields |g(3)| =
|(−2)n − 1| = |n||3|. But since n is odd, this implies |2n + 1| = |n||3|. �
4.2. Kernel and cokernel of g : MF → MF

If x ∈ MF , the formulas for ψ[2] in Subsection 3.3 imply

g(x) = (2deg(x) − 1)x. (21)

Since 2deg(x) − 1 = 0 if and only if deg(x) = 0, Lemma 5 implies

ker g = MF0 = Z(3)[jMF ] =
⊕
n∈N

Z(3).

Now suppose x ∈ B �=0
MF . The degree of x must be even, say deg(x) = 2k. By (21), g(x) = (2deg(x) − 1)x, 

and Lemma 8(a) implies

ν3(2deg(x) − 1) = ν3(4k − 1) = ν3(k) + 1 = ν3(deg(x)) + 1.

Thus

im g =
⊕

x∈B �=0
MF

3ν3(deg(x))+1Z(3)

and the result for coker g in Proposition 3 follows.

4.3. Kernel and cokernel of h : B → B

We begin by studying h on the submodules Vi,j,ε ⊂ B from Definition 2.

Proposition 6. Each Vi,j,ε is invariant under h, and h
∣∣
Vi,j,ε

has a matrix representation with respect to 

{sitjqε2, sjtiqε2} depending on i, j, ε as follows:
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(a) If i < j and ε = 0,

h
∣∣
Vi,j,ε

=
[

1 4i+j

4i+j 1

]

with eigenvectors ai,j, ai,j (see Definition 3) and corresponding eigenvalues

λi,j := 1 + 4i+j ∈ Z×
(3), λi,j := 1 − 4i+j /∈ Z×

(3).

(b) If i < j and ε = 1,

h
∣∣
Vi,j,ε

=
[

1 −22i+2j+1

−22i+2j+1 1

]

with eigenvectors bi,j, bi,j (see Definition 3) and corresponding eigenvalues

ρi,j := 1 + 22i+2j+1 /∈ Z×
(3), ρi,j := 1 − 22i+2j+1 ∈ Z×

(3).

(c) h
∣∣
Vi,i,ε

is multiplication by 16i(−2)ε + 1 ∈ Z×
(3).

Proof. The formulas for ψd in Section 3.3 imply that

h(sitjqε2) = 4i+j(−2)εsjtiqε2 + sitjqε2 (22)

which proves invariance and gives the matrix for h
∣∣
Vi,j,ε

in all three cases (the matrix in case (c) being 

1 × 1). The eigenvectors and eigenvalues can be found by a direct computation. The eigenvalues λi,j , ρi,j , 
and 16i(−2)ε + 1 are congruent to 2 modulo 3 and therefore are invertible in Z(3). Lemma 8(a) implies λi,j

is 3-divisible, and Lemma 8(b) implies ρi,j is 3-divisible. �
Lemma 3 and Proposition 6 show that the set

{ai,j ; ai,j ; bi,j ; bi,j ; cεi : i < j ∈ Z, ε = 0, 1}

is a Z(3)-basis of eigenvectors for B relative to h. The generators ai,j , bi,j , and cεi all map to unit multiples 
of themselves under h by Proposition 6, and hence are not contained in the kernel. Since ρi,j �= 0 for all 
i < j ∈ Z, the generators bi,j are also not in the kernel. Finally, since λi,j = 0 if and only if i = −j, the 
only generators of the form ai,j that lie in the kernel of h are {a−i,i : i � 1}. Thus

kerh = Z(3){a−i,i : i � 1} =
⊕
n∈N

Z(3).

Lemma 8(a) implies

ν3(λi,j) = ν3(1 − 4i+j) = ν3(i + j) + 1

and similarly, Lemma 8(b) implies

ν3(ρi,j) = ν3(1 + 22i+2j+1) = ν3(2i + 2j + 1) + 1.
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These results, together with Proposition 6, imply that

im h =

⎛⎝ ⊕
x∈{ai,j ;bi,j ;cεi}

Z(3)

⎞⎠⊕

⎛⎝ ⊕
i<j∈Z

(
3ν3(i+j)+1Z(3) ⊕ 3ν3(2i+2j+1)+1Z(3)

)⎞⎠ .

The result for cokerh in Proposition 3 follows if we take m = i +j. This completes the proof of Proposition 3.

5. Computation of the connecting homomorphisms δ0 and δ1

In this section we compute the kernel and cokernel of δ0 and δ1. Using these computations, we prove 
Theorem 2.

5.1. The kernel and cokernel of δ0 : ker g → kerh

From the results of Section 4,

δ0 = φq − φf : Z(3)[jMF ] → Z(3){a−i,i : i � 1}.

Proposition 7. ker δ0 = Z(3){1MF} and coker δ0 = Z(3){a−i,i : i � 1, odd}.

Proof. The map δ0 is completely determined by where it sends nonnegative powers of jMF . The formula 
for φq in Section 3.3 implies

φq : q4 �→ μ/16,

μ �→ 256q4. (23)

Combining (23) with the formula for φf , the formulas (10) for s and t, and Definition 3, yields

δ0(jkMF) = (φq − φf )(c3k4 Δ−k)

= (256q4 + μ)3kμ−2kq−k
4 − (μ + 16q4)3kq−2k

4 μ−k

= 26k(4s + t)3k

t2ksk
− 26k(4t + s)3k

s2ktk

=
3k∑
r=0

(
3k
r

)
212k−2r(s2k−rtr−2k − sr−2kt2k−r)

=
3k∑
r=0

(
3k
r

)
212k−2ra2k−r,r−2k

= 28k
k∑(( 3k

2k + v

)
4−v −

(
3k

2k − v

)
4v
)
a−v,v − 28k

2k∑ (
3k

2k − v

)
4va−v,v. (24)
v=1 v=k+1
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Thus, with respect to {1, jMF , j2
MF , . . .} and {a−1,1, a−2,2, . . .},

δ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗ ∗ ∗
... u1 ∗ ∗

0 ∗ ∗
... u2 ∗

0 ∗
... u3

0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

where uk = −212k ∈ Z×
(3) for k � 1. �

5.2. The connecting map δ1 : coker g → cokerh

From the results of Section 4,

δ1 = −φf :

⎛⎝ ⊕
x∈B �=0

MF

Z/(3ν3(deg(x))+1)

⎞⎠⊕ Z(3)[jMF ] →
⊕

i<j∈Z

(
Z/(3μ3(3i+3j)) ⊕ Z/(3μ3(6i+6j+3))

)

where Z/(3μ3(3i+3j)) is generated by ai,j and Z/(3μ3(6i+6j+3)) is generated by bi,j . In particular, δ1 is 
completely determined by where it sends nonnegative powers of jMF and the elements of B �=0

MF .

Lemma 9. For all i < j ∈ Z, sitj = ai,j/2 and sitjq2 = bi,j/2 in cokerh.

Proof. From Definition 3,

sitj = ai,j + ai,j
2 , sitjq2 = bi,j + bi,j

2

and ai,j = bi,j = 0 in cokerh. �
Proposition 8. ker

(
δ1
∣∣
Z(3)[jMF ]

)
= Z(3){1MF} and coker

(
δ1
∣∣
Z(3)[jMF ]

)
= Z(3){a−i,i : i � 1, odd}.

Proof. By Lemma 9 and the formula for φf from Section 3.3, a computation similar to (24) in Proposition 7
gives

δ1(jkMF) = 28k−1
k∑

v=1

((
3k

2k + v

)
4−v −

(
3k

2k − v

)
4v
)
a−v,v − 28k−1

2k∑
v=k+1

(
3k

2k − v

)
4va−v,v

= 1
2δ

0(jkMF) (26)

so ker
(
δ1
∣∣
Z(3)[jMF ]

)
= ker δ0 and coker

(
δ1
∣∣
Z(3)[jMF ]

)
= coker δ0. �

We now study δ1
∣∣
Wε,m

for m ∈ Z and ε = 0 or 1 by finding matrix representations, as we did with δ0 in 

(25). The set Bε,m
MF is an ordered basis for the source. Degree counting shows that an ordered basis for the 

target is given by {Am
0 , Am

1 , Am
2 , . . .} if ε = 0, and {Bm

0 , Bm
1 , Bm

2 , . . .} if ε = 1.
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By Lemma 9 and the formula for φf ,

δ1(cn4Δ�) = −φf (cn4Δ�) = −(μ + 16q4)n(q2
4μ)�

= −s2�t�(2s + 8t)n

8� = −8n−�
n∑

r=0

(
n

r

)
4−rs2�+rtn+�−r

= −23n−3�−1
n∑

r=0

(
n

r

)
4−ra2�+r,n+�−r (27)

and

δ1(cn4 c6Δ�) = −φf (cn4 c6Δ�) = −(μ + 16q4)n(q2
4μ)�(4q2(8q4 − μ))

= −q2s
2�t�(2s + 8t)n(s− 8t)

23�−2

= −42n−2�+1
n∑

r=0

(
n

r

)
4−rq2

(
s2�+r+1tn+�−r − 8s2�+rtn+�−r+1)

= −24n−4�+1
n∑

r=0

(
n

r

)
4−r (b2�+r+1,n+�−r − 8b2�+r,n+�−r+1) . (28)

Remark 6. To obtain matrix representations of δ1
∣∣
Wε,m

, the right-hand sums of (27) (resp. (28)) must be 

put solely in terms of the generators ai,j (resp. bi,j) with i < j, because of the identities

ai,j = −aj,i, bi,j = −bj,i. (29)

Note that this was done implicitly in the proofs of Propositions 7 and 8.

Proposition 9.

(a) ker
(
δ1
∣∣
W0,m

)
=
{ 0, m < 0,
Z/(3ν3(m)+1), m > 0.

(b) For all 0 �= m ∈ Z, coker
(
δ1∣∣

W0,m

)
=
⊕
n∈N

Z/(3ν3(m)+1).

(c) For m � 0, ker
(
δ1
∣∣
W1,m

)
= 0 and coker

(
δ1∣∣

W1,m

)
=
⊕
n∈N

Z/(3ν3(2m+1)+1).

(d) For m > 0 and m �≡ 13 mod 27, ker
(
δ1
∣∣
W1,m

)
= Z/(3ν3(2m+1)+1) and

coker
(
δ1∣∣

W1,m

)
=
⊕
n∈N

Z/(3ν3(2m+1)+1).

(e) For m > 0 and m ≡ 13 mod 27, coker
(
δ1
∣∣
W1,m

)
has, as a direct summand, 

⊕
n∈N

Z/(3ν3(2m+1)+1).

We now establish the following convenient notational conventions.

Definition 9.

(a) If cn4Δ� ∈ B0,m
MF (resp. cn4 c6Δ� ∈ B1,m

MF ), the ai,m−i term of δ1(cn4Δ�) (resp. the bi,m−i term of δ1(cn4 c6Δ�)) 
with the least first subscript i will be denoted the leading term, and the remaining terms will be denoted 
higher order terms.
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(b) The symbol .= will denote equality up to multiplication by a unit in Z(3).
(c) If M is a matrix with columns M1, . . . , Mv and N is a matrix with (possibly infinitely many) columns 

N1, N2, . . ., then M � N will denote the matrix with columns M1, . . . , Mv, N1, N2, . . . .

To prove Proposition 9, we will need the following four lemmas.

Lemma 10. If � �= 0,

δ1(cn4Δ�) .=
{
a�,n+2� + higher order terms, � > 0
a2�,n+� + higher order terms, � < 0.

Proof. We use (27) and (29) as in the proof of the previous lemma. For −� � n,

δ1(cn4Δ�) = −23n−�−1
2�+n∑
r=2�

(
n

r − 2�

)
4−rar,n+3�−r

with leading term −23n−5�−1a2�,n+�. For � � n,

δ1(cn4Δ�) = 2n−5�−1
�+n∑
r=�

(
n

n + �− r

)
4rar,n+3�−r

with leading term 2n−3�−1a�,n+2�. For |�| < n,

δ1(cn4Δ�) = 2n−5�−1

⌊
n+3�−1

2

⌋∑
r=�

(
n

n + �− r

)
4rar,n+3�−r − 23n+�−1

⌊
n+3�−1

2

⌋∑
r=2�

(
n

r − 2�

)
4−rar,n+3�−r

with leading term 2n−3�−1a�,n+2� if � > 0 and −23n−3�−1a2�,n+� if � < 0. �
Lemma 11. When � = 0,

δ1(cn4 c6)
.= 4

⌊
n
2
⌋∑

r=1

(
n

r − 1

)
4−rbr,n+1−r − 4−n

⌊
n
2
⌋∑

r=0

(
n

r

)
4rbr,n+1−r

− 8

⌊
n
2
⌋∑

r=0

(
n

r

)
4−rbr,n+1−r + 2−2n+1

⌊
n
2
⌋∑

r=1

(
n

r − 1

)
4rbr,n+1−r

and the leading term (−4−n − 8)b0,n+1 is zero in cokerh.

Proof. The formula is obtained from (28) by setting � = 0. Each br,n+1−r generates a copy of Z/(3ν3(2n+3)+1)
in cokerh, and since Lemma 8(b) implies

ν3(−4−n − 8) = ν3(2−2n−3 + 1) = ν3(−2n− 3) + 1,

the leading term does indeed vanish. �
Lemma 12.

(a) δ1(cn4 ) = 0 for n � 1.
(b) δ1(cn4 c6) = 0 except when n +1 ≡ 13 mod 27. In these exceptional cases, the b1,n term is always nonzero.
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Proof. We begin with (a). By (27) and (29),

−21−3nδ1(cn4 ) =
n∑

r=0

(
n

r

)
4−rar,n−r =

⌊
n−1

2
⌋∑

r=0

(
n

r

)(
4−r − 4r−n

)
ar,n−r

and since ar,n−r generates Z/(3μ3(n)+1) in cokerh, it suffices to show that the coefficient of ar,n−r is divisible 
by 3n for all n. But Lemma 8(a) implies

4−r − 4r−n = 1 − 42r−n

4r

is a multiple of 3n − 6r, so it is enough to show that 
(
n
r

)
(n − 2r) is divisible by n. This is clear if r = 0. For 

0 < r � �(n − 1)/2�, (
n

r

)
(n− 2r) = n

r

(
n− 1
r − 1

)
(n− 2r)

= n

(
(n− 1)(n− 2) · · · (n− r + 1)

(r − 1)!

)(
n− r

r
− 1
)

= n

((
n− 1
r

)
−
(
n− 1
r − 1

))
.

Next, we prove (b). Let m = n +1. Collecting terms in the formula from Lemma 11 (see Remark 6) yields

δ1(cm−1
4 c6)

.=

⌊
m−1

2
⌋∑

r=1

41−r

r

(
m− 1
r − 1

)
(3r(1 + 24r−2m) − 2m(1 + 24r−2m−1))br,m−r.

Suppose first that m �≡ 13 mod 27. Let f(r, m) be the coefficient on br,m−r in the above formula. Each 
br,m−r generates a copy of Z/(3ν3(2m+1)+1) = Z(3)/(6m + 3) in cokerh, and the condition on m implies 
ν3(6m + 3) � 3. Thus, to prove the first claim it will suffice to show that each f(r, m) is a multiple of 33

modulo 6m + 3. This is true for r = 1 since

f(1,m) = 3(1 + 24−2m) −m(2 + 24−2m)

= 3(1 + 32 · 2−2m−1) −m(2 + 32 · 2−2m−1)

≡ 3(1 − 32) −m(2 − 32)

≡ −4 · 33 mod (6m + 3).

For r > 1,

4r−1f(r,m) =
(
m− 1
r − 1

)
(3(1 + 24r−2m)) −

(
m

r

)
(2 + 24r−2m)

≡
(
m− 1
r − 1

)
(3(1 − 24r+1)) −

(
m

r

)
(2 − 24r+1)

≡
(
m− 1
r − 1

)(
3(1 − 24r+1) + 1 − 24r

r

)
mod (6m + 3).

Let A(r) = 3(1 −24r+1) +(1 −24r)/r. If 3 does not divide r, then A(r) is divisible by 33, and so f(r, m)br,m−r =
0 in those cases. If 3 divides r, then A(r) is only divisible by 32, and this is sufficient to annihilate br,m−r
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except when m ≡ 4 or 22 mod 27. However in those cases the binomial coefficient 
(
m−1
r−1
)

contributes the 
additional power of 3 that is needed.

Finally, if m ≡ 13 mod 27, then ν3(6m + 3) > 3, so the calculation of f(1, m) above shows that 
f(1, m)b1,m−1 �= 0 in Z(3)/(6m + 3). Hence δ1(cm−1

4 c6) is nonzero in cokerh. �
Lemma 13. If � �= 0,

δ1(cn4 c6Δ�) .=
{
b�,n+2�+1 + higher order terms, � > 0
b2�,n+�+1 + higher order terms, � < 0.

Proof. Assume � �= 0 throughout. For −� � n + 1,

−2−4n+4�−1δ1(cn4 c6Δ�) = 24�+2
n+2�+1∑
r=2�+1

(
n

r − 2�− 1

)
4−rbr,n+3�+1−r

− 24�+3
n+2�∑
r=2�

(
n

r − 2�

)
4−rbr,n+3�+1−r

with leading term −8b2�,n+�+1. For � � n + 1,

−2−4n+4�−1δ1(cn4 c6Δ�) = −2−2n−2�
n+�∑
r=�

(
n

r − �

)
4rbr,n+3�+1−r

+ 2−2n−2�+1
n+�+1∑
r=�+1

(
n

r − �− 1

)
4rbr,n+3�+1−r

with leading term −2−2nb�,n+2�+1.
For |�| < n + 1,

−2−4n+4�−1δ1(cn4 c6Δ�) = 24�+2

⌈
n+3�−1

2

⌉∑
r=2�+1

(
n

r − 2�− 1

)
4−rbr,n+3�+1−r

− 2−2n−2�

⌈
n+3�−1

2

⌉∑
r=�

(
n

r − �

)
4rbr,n+3�+1−r

− 24�+3

⌈
n+3�−1

2

⌉∑
r=2�

(
n

r − 2�

)
4−rbr,n+3�+1−r

+ 2−2n−2�+1

⌈
n+3�−1

2

⌉∑
r=�+1

(
n

r − �− 1

)
4rbr,n+3�+1−r

with leading term −2−2nb�,n+2�+1 if � > 0 and −8b2�,n+�+1 if � < 0. �
Proof of Proposition 9. Suppose first that ε = 0. If m < 0, then �m0 < 0, and

δ1(Cm
v ) .= Am⌊

m−1
2
⌋
−2�m0 +2v + higher order terms

for v � 0, by Lemma 10. Thus,
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δ1∣∣
W0,m

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

u0 ∗

0 ∗
...

... u1 ∗
0 ∗
... u2

0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(30)

where u0, u1, u2, . . . ∈ Z×
(3) and u0 is in the row corresponding to Am⌊

m−1
2
⌋
−2�m0

. By (30), δ1
∣∣
W0,m

has trivial 
kernel, and has cokernel generated by{

Am
0 , . . . , Am⌊

m−1
2
⌋
−2�m0 −1

}
∪
{
Am⌊

m−1
2
⌋
−2�m0 +i

: i � 1, odd
}
.

Each Am
v generates Z/(3ν3(m)+1) in cokerh. This proves parts (a) and (b) for m < 0.

If m > 0, then �m0 � 0. By Lemmas 10 and 12(a),

δ1(Cm
v ) .=

⎧⎪⎨⎪⎩
Am⌊

m−1
2
⌋
−�m0 +v

+ higher order terms, 0 � v < �m0
0, v = �m0
Am⌊

m−1
2
⌋
−2�m0 +2v + higher order terms, v > �m0 .

Thus,

δ1∣∣
W0,m

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

u0 ∗

0 u1
...

...
... 0

. . . ∗ 0
... uy 0

0 0
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

uy+1 ∗

0 ∗
...

... uy+2 ∗
0 ∗
... uy+3

0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(31)

where the ui are units in Z(3). Here, u0 is in the row corresponding to Am⌊
m−1

2
⌋
−�m0

, uy is in the row 

corresponding to Am⌊
m−1

2
⌋
−1, uy+1 is in the row corresponding to Am⌊

m−1
2
⌋
+2, and the zero column in bold 

corresponds to Cm
�m0

. By (31), δ1
∣∣
W0,m

has kernel generated by Cm
�m0

, and has cokernel generated by

{
Am

0 , Am
1 , . . . , Am⌊

m−1
2
⌋
−�m0 −1

}
∪
{
Am⌊

m−1
2
⌋} ∪ {Am⌊

m−1
2
⌋
+i

: i � 1, odd
}
.

Since Cm
v generates Z/(3ν3(m)+1) in coker g and Am

v generates Z/(3ν3(m)+1) in cokerh, this proves parts (a) 
and (b) for m > 0.

Suppose next that ε = 1. If m � 0, then �m1 < 0. By Lemma 13,

δ1(Dm
v ) .= Bm⌊

m−1
2
⌋
−2�m1 +2v + higher order terms

for v � 0. Thus, δ1
∣∣
W1,m

is represented by a matrix of the form identical to (30), where in this case the 

unit u0 appears in the row corresponding to Bm⌊
m−1 ⌋ m . Thus δ1

∣∣ has trivial kernel, and its cokernel

2 −2�1 W1,m
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is generated by {
Bm

0 , . . . , Bm⌊
m−1

2
⌋
−2�m1 −1

}
∪
{
Bm⌊

m−1
2
⌋
−2�m1 +i

: i � 1, odd
}
.

Since each Bm
v generates Z/(3μ3(2m+1)+1) in cokerh, this proves part (c).

If m > 0, then �m1 � 0. As long as m �≡ 13 mod 27,

δ1(Dm
v ) .=

⎧⎪⎨⎪⎩
Bm⌊

m−1
2
⌋
−�m1 +v

+ higher order terms, 0 � v < �m1
0, v = �m1
Bm⌊

m−1
2
⌋
−2�m0 +2v + higher order terms, v > �m1

by Lemmas 12(b) and 13. The matrix representation in this case is of the form identical to (31) above, where 
in this case u0 is in the row corresponding to Bm⌊

m−1
2
⌋
−�m1

, uy is in the row corresponding to Bm⌊
m−1

2
⌋
−1, and 

uy+1 is in the row corresponding to Bm⌊
m−1

2
⌋
+2. Thus δ1

∣∣
W1,m

has kernel generated by Dm
�m1

, and has cokernel 
generated by {

Bm
0 , Bm

1 , . . . , Bm⌊
m−1

2
⌋
−�m1 −1

}
∪
{
Bm⌊

m−1
2
⌋} ∪ {Bm⌊

m−1
2
⌋
+i

: i � 1, odd
}
.

Since each Dm
v generates Z/(3μ3(2m+1)+1) in coker g and each Bm

v generates Z/(3μ3(2m+1)+1) in cokerh, 
this proves part (d).

If m > 0 and m ≡ 13 mod 27, Lemma 12(b) implies δ1
∣∣
W1,m

has matrix representation identical in form 

to (31) except for the column in bold; it is not a column of zeros in this case. Rather, it has at least one 
nonzero entry in and above the row containing uy by Lemma 12(a). This makes the kernel and cokernel 
less straightforward to compute (see Remark 2). What we can conclude, however, is that the cokernel of 
δ1
∣∣
W1,m

contains copies of Z/(3μ3(2m+1)+1) generated by

{
Bm⌊

m−1
2
⌋} ∪ {Bm⌊

m−1
2
⌋
+i

: i � 1, odd
}

which proves part (e). �
Definition 10. Let

U1 := ker

⎛⎜⎜⎝δ1
∣∣∣∣ ⊕
0<m≡13 mod 27

W1,m

⎞⎟⎟⎠
and define U2 via the direct sum decomposition

coker

⎛⎜⎜⎝δ1
∣∣∣∣ ⊕
0<m≡13 mod 27

W1,m

⎞⎟⎟⎠ =
⊕
n∈N

( ⊕
0<m≡13 mod 27

Z/(3ν3(6m+3))
)

⊕ U2.

Proof of Theorem 2. By Propositions 2 and 7, H0C∗ = Z(3). Proposition 7 also implies coker δ0 =
⊕

N
Z(3)

concentrated in degree zero. By Proposition 8, the degree zero part of ker δ1 is a copy of Z(3) generated 
by 1MF . Thus, the short exact sequence (4) in Proposition 2 implies that H1C∗ is a countable direct sum 
of copies of Z(3) in degree zero, and is isomorphic to ker δ1 in positive degrees. The result for H1C∗ then 
follows from Proposition 9. The result for H2C∗ follows from Propositions 2 and 9 and Definition 10. �
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6. Differential on the E2-page

In this section we compute d̃ : Ext1 → cokerΨ and prove Theorem 3. The computation of d̃ amounts to 
a diagram chase with the maps

Γ Φ Γ

B ⊕B
Ψ

−d⊕0

B

of C∗,∗. Since

Ext1 = Z(3){Δkα : k ∈ Z} =
⊕
k∈Z

Z/(3)

where α is represented by r ∈ Γ [8], it suffices to compute d̃(Δkα) for all k ∈ Z.
Consider first the case k = 0. The element r ∈ Γ is mapped to 3r under Φ, which in turn must be hit by 

some element y ∈ B ⊕B under −d ⊕ 0; in fact y = (−q2, q2) works. Since

Ψ(y) = (ψd + 1)(−q2) − φf (q2) = q2 − q2 = 0,

d̃(α) = 0.
Next, suppose k > 0. The element Δkα ∈ Ext1 is represented by Δkr ∈ Γ. Under Φ, Δkr maps to 

(212k+2 − 1)Δkr, which in turn is the image of an element in B ⊕B under −d ⊕ 0, namely

(−d⊕ 0)
(

1 − 212k+2

3 Δkq2, 0
)

= (212k+2 − 1)Δkr.

By Lemma 8(b), (1 − 212k+2)/3 ∈ Z×
(3). Thus, applying Ψ yields

Ψ
(

1 − 212k+2

3 Δkq2, 0
)

= −φf

(
1 − 212k+2

3 Δkq2

)
= 212k+2 − 1

3 q2k
4 μkq2

.= bk,2k − bk,2k

and bk,2k − bk,2k represents the class bk,2k = B3k⌊
3k−1

2

⌋
−k

∈ coker Ψ. Thus

d̃(Δkα) .= B3k⌊
3k−1

2

⌋
−k

.

This class is nontrivial by Proposition 9.
If k < 0, a similar argument shows

d̃(Δkα) .= B3k⌊
3k−1

2

⌋
−2k

,

also nontrivial by Proposition 9.
The preceding arguments show that

ker d̃ = Z/(3)
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generated by α, and that im d̃ is generated by{
B3k⌊

3k−1
2

⌋
−k

: k > 0
}
∪
{
B3k⌊

3k−1
2

⌋
−2k

: k < 0
}
.

Since each Bm
v generates Z/(3ν3(6m+3)) in coker Ψ, this proves Theorem 3.

7. Detection of Greek letter elements

In this section we use Theorem 1 to give evidence for Conjecture 1. We set up the discussion by first 
considering the algebraic alpha family element

α1 := αa
1/1 ∈ Ext1,4BP∗BP(BP∗,BP∗)

of order 3 [14].

Proposition 10. α1 is detected by α = r ∈ ker d̃.

Proof. Note first that α is in the correct bidegree. Since the double complex bidegree of any element in ker d̃
is (0, 1) and deg(r) = 2 in Γ, the bidegree of α in the Adams–Novikov E2-term for Q(2) is (s, t) = (0 +1, 2). 
But recall that the E2-term for Q(2) is indexed so that Es,t

2 ⇒ π2t−sQ(2) (see Eq. (2)), so the corresponding 
bidegree in Ext∗,∗BP∗BP(BP∗, BP∗) is (s, 2t) = (1, 4).

In fact we know α must detect α1 because α1 is detected by TMF by this same element α = r ∈ Γ [8], 
and the diagram of E2-terms induced by

Q(2) TMF

L2S(3)

(32)

commutes. �
Although we do not conjecture that the Adams–Novikov E2-term for Q(2) detects the entire algebraic 

divided alpha family

{αa
i/j ∈ Ext1,4iBP∗BP(BP∗,BP∗) : 0 < i ∈ Z, j = ν3(i) + 1}

(where αa
i/j has additive order 3j), it does contain elements of the appropriate bidegrees and additive orders 

that could collectively detect it. These elements (other than α discussed above) live not in ker d̃, but rather 
in H1C∗. For example, α2 := αa

2/1 could be detected by the class C1
0 = c4 ∈ H1C∗, an element of order 3 

in bidegree (s, t) = (1, 4). Another example is αa
3/2, which could be detected by D1

0 = c6 ∈ H1C∗, a class in 
bidegree (s, t) = (1, 6) of order 9. In general, the candidate element for detecting αa

i/j is given by

⎧⎪⎨⎪⎩
C

i/2
�
i/2
0

, if i even,

D
(i−1)/2
�
(i−1)/2
1

, if i odd.

We now turn to the algebraic divided beta family. Since this family lives in Ext2,∗BP∗BP(BP∗, BP∗), can-
didate elements for detecting them in Es,t

2 Q(2) must be contained in either Ext2 (with double complex 
bidegree (0, 2)), Ext1 (with double complex bidegree (1, 1)), or coker d̃.
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Consider first the element

β1 := βa
1/1,1 ∈ Ext2,12BP∗BP(BP∗,BP∗)

of order 3. Like α1, we know this element has a nontrivial target in the Adams–Novikov E2-term for Q(2).

Proposition 11. β1 is detected by β := r2 ⊗ r − r ⊗ r2 ∈ Ext2.

Proof. As β1 is on the 2-line, β must live in Ext2 with double complex bidegree (0, 2). Using the fact 
that deg(r2 ⊗ r − r ⊗ r2) = 6 in Γ ⊗ Γ, an argument analogous to the proof of Proposition 10 yields the 
result [8]. �

We now offer three further examples of beta elements and candidate elements for detecting them in the 
Adams–Novikov E2-term for Q(2).

Example 1. The algebraic beta element

β6/3 := βa
6/3,1 ∈ Ext2,84BP∗BP(BP∗,BP∗),

itself an element of order 3, is known to be a permanent cycle and represents a nontrivial homotopy 
element βh

6/3,1 ∈ π82S(3). Any nontrivial target in the Adams–Novikov E2-term for Q(2) must be in bidegree 

(s, t) = (2, 42). While there are no such elements in Ext1, the element

Δ3β ∈ Ext2

does have both the required bidegree and additive order to detect β6/3. By the proof of Proposition 9(d), 
the other possible targets for this element in the E2-term for Q(2) are the classes

3B10
0 ; 3B10

4 ; 3B10
5 , 3B10

7 , 3B10
9 , . . . ∈ coker d̃.

Each B10
v is multiplied by 3 because it generates Z/(3ν3(6·10+3)) = Z/(9).

Example 2. The Kervaire invariant problem at the prime 3 asks whether the classes

θj := β3j−1/3j−1,1 ∈ Ext2,4·3
j

BP∗BP(BP∗,BP∗), j � 1,

the so-called Kervaire classes, are permanent cycles. For j = 3, the corresponding Kervaire class is θ3 = β9/9,1
in bidegree (2, 108), and living in this same bidegree is β7 := β7/1,1 (itself not a Kervaire class). As in 
Example 1, there are no elements in Ext1 to detect either of these classes. But there is a candidate element 
in Ext2; in this case it is Δ4β. Potential detecting elements in coker d̃ for θ3 and β7 were identified in 
Remark 2 from Section 1: namely, any element in

(
Z/(81){B13

0 , B13
1 }/(B13

0 − 3B13
1 = 0)

)
⊕ Z/(81){B13

6 }

⊕ Z/(81){B13
7 , B13

9 , B13
11 , . . .}

suitably multiplied by a power of 3 so as to obtain an element of order 3. Along with Δ4β, these are the 
only elements in E2,54

2 Q(2).
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Example 3. In our final example we consider the algebraic beta element

βa
9/3,2 ∈ Ext2,132BP∗BP(BP∗,BP∗),

an element of order 9. It is the beta element βa
i/j,k of lowest topological degree (which in this case is 

t − s = 130) with k > 1. Since there are no elements in Ext2 or Ext1 capable of detecting βa
9/3,2 for degree 

reasons, we look in coker d̃. By Proposition 9(d) there are indeed candidate detecting elements in coker d̃
given by

B16
0 ;B16

1 ;B16
7 ;B16

8 , B16
10 , B

16
12 , . . . ,

themselves classes of order 9 in E2,66
2 Q(2).
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