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A user’s guide: The Adams-Novikov E2-term for
Behrens’ spectrum Q(2) at the prime 3

Don Larson

2. Metaphors and imagery

In the mathematical neighborhood of π∗S, I like to imagine the elements of
the stable stems all living in a tall building at the center of town. Each lives
happily in its own apartment. There must be infinitely many units, then, so let’s
imagine infinitely many floors (I said tall, right?) and an infinitely long hallway
on each floor. In particular, just like Hilbert’s eponymous hotel, this building
always has vacancies! From that you might surmise it’s a warm and welcoming
place, where you can walk in and meet some of the tenants, get to know them,
find out what they’re about, and maybe make some friends. You would not be
totally wrong. Walk into the lobby on floor 0 and you find everyone is genuine
and forthcoming and glad to tell you about themselves. Someone invites you in
for a delicious dinner. Mmmmm. But higher up, things start to change. Folks on
floor 1 invite you in for wine and cheese, which is great, but they all have dinner
plans with some guy named Adams so you have to leave after the cheese. When
you’re seen roaming the hall on floor 2 some tenants kindly offer you directions
because you look lost. Directions...to the exit! Burn! No cheese for you, unless
you happen to be a high-powered homotopy theorist who used to hang out at
Princeton in the 1970s. On floor 3 the air is stuffier. The residents pay you no
mind because they are kind of a big deal; after all, several of them were featured
in a New York Times article back in 1976 [NYT]. Undaunted, but perhaps a little
hungry, you press on to floor 4. The elevator door opens and a huge bouncer
blocks your way. You crane your neck hoping merely for a glimpse of the hallway,
but no dice. You ask who lives on this floor: he says nobody. You ask how to get
to the higher floors: he says there are no higher floors, which is a lie. He then
says “you were never here” and next thing you know you wake up back in the
lobby, dazed and confused.

That escalated quickly. Floor 3 is indeed exclusive, and floors ≥ 4 are ba-
sically secret societies. Do not despair, however. It’s not you. For all practical
purposes, nobody from the outside has ever been allowed on the upper floors, not
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even the distinguished topologists who commissioned the building’s construction
in the first place. What happens up there is in large part a mystery.

2.1. Wine? Cheese? In this apartment building analogy, the tenants (a.k.a.
elements of π∗S) on floor n are those detected by K(n)-local sphere but not by
the K(n − 1)-local sphere, across all primes p. It is morally true, but not quite
precise, to say these are exactly the elements of π∗S represented by cohomology
classes on the n-line of the ANSS E2-page for the sphere across all primes p. And
as algebraic topologists push their way forward through each K(n)-localization,
or climb their way up the ladder of the ANSS, computational efforts work fine
at first but then promptly grind to a halt at about 4 steps in. As a result, most
concrete computations (like the one in my paper) take place on a lower floor.

Key Idea 2.1. The ANSS for the sphere and the Morava K-theories K(n)
(and therefore the organizational structure of our apartment analogy) are un-
derlain by the theory of formal group laws [Haz12]. The link between formal
group laws and stable homotopy originated in the work of Novikov and Quillen
[Qui69]. The increase in computational complexity as n increases can be tied
to an increasingly difficult sequence of group cohomology computations, where
the groups in question are automorphism groups of certain formal group laws of
increasing complexity (i.e., height—see Definition A2.2.7 in [Rav86]).

In my paper, I wander the 2nd floor of this apartment building hoping to learn
more about its 3-torsion residents. Amazingly, most of the 2nd floor inhabitants
are related to one another—that is, they are a family—that homotopy theorists
call the beta family. There is a conjectured link between the 3-torsion members
of this family and modular forms with certain properties. We are hopeful that
our computation may help elucidate this link in future work (at primes ≥ 5 this
link is known to exist). Even more amazingly, there are analogous families of
elements on floor 1 and on the higher floors with either proven or conjectured
links to certain number-theoretic objects. These ideas lie on the cutting edge
of homotopy theory. We’ll take a tour of the entire building (to the extent we
can) from the bottom up, with an eye toward this cutting-edge technology. This
should help put my paper in its proper context.

2.2. The lobby. The zeroth MoravaK-theoryK(0) is equivalent to rational
homology HQ. This means LK(0)S detects non-torsion, i.e., it detects π0S ∼= Z.
Therefore the lobby-level residents are the integers! No wonder they’re so friendly
and inviting.

2.3. The first floor. In [Ada66] Adams used K-theory to compute the
image of the stable J-homorphism

J : π∗(SO)→ π∗S

from the homotopy of the stable orthogonal group to the stable stems. The ele-
ments of the image of J all live on floor 1 and are generated by a family of related
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elements known as the alpha family, the first and most thoroughly understood of
the Greek letter families. The K(1)-local sphere (K(1) itself being a summand of
K-theory completed at p) zooms in on the alpha family elements. We will linger
on floor 1 for a bit to describe how the alpha family is organized, since the higher
Greek letter families have similar organizational structures. Might as well enjoy
some wine and cheese, too.

It is easiest to first fix a prime p and discuss the p-torsion of the alpha family,

so let’s do it. Then in the ANSS there is a collection of elements {αalgi } indexed
by integers i ≥ 1, where

αalgi ∈ Ext1,2pi−2iBP∗BP
(BP∗, BP∗)

so these elements live on the 1-line. In the chromatic spectral sequence (CSS),
which is an SS converging to the ANSS E2-page that we will treat like a black

box in this discussion, αalgi is born out of a “fraction” of the form

vi1
p

and so the subscript i determines the power on v1. Because you can go from
one member of the collection to the next by multiplying by v1 in the CSS, this
collection is called a v1-periodic family (think of Bott periodicity). They are all
non-trivial elements of the ANSS E2-page; in fact, they all have order p.

The ANSS is such an algebraic jungle, that the existence of this infinite yet
intimately connected network of nontrivial elements is miraculous. But it gets

better. It turns out each αalgi survives the ANSS and yields a homotopy element

αi ∈ π2pi−2i−1S. So the alpha family at p, i.e., the collection {αalgi }, yields a
corresponding collection {αi} ⊂ π∗S⊗Z(p). Taking the union of these latter sets
over all primes yields the family of wine and cheese enthusiasts that occupies
most of floor 1 of the building.

Recall that if
x

ex − 1
=

∞∑
n=0

Bn
xn

n!

then Bn is the n-th Bernoulli number. The sequence {Bn} is significant in number
theory, from summing up the m-th powers of the first k integers to Fermat’s Last
Theorem, and many things in between. There turns out to be a close relationship
between the alpha family at odd primes (the situation at p = 2 is muddier) and
Bernoulli numbers.

Key Idea 2.2. Let p be any prime.

(1) Each member of the alpha family at p yields a non-trivial element of π∗S
of order p, and they collectively generate the image of J at p (although
if p = 2, neither of these assertions is 100% true).

(2) The alpha family element αalgi is divisible by j − 1 powers of p, where j
is 1 plus the number of powers of p dividing i.
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(3) If p is odd, there is a correspondence between the alpha family at p and

Bernoulli numbers, in the sense that the order pj of αalgi /pj−1 is the
p-factor of the denominator of Bt/t where t = pi− i and Bt is the t-th
Bernoulli number.

2.4. The second floor. For a fixed p, the beta family at p {βalgi } lives on
the 2-line of the ANSS. The provenance of the beta family is analogous to what

occurred one floor below with the alpha family, since βalgi comes from a “fraction”

vi2
v1 · p

in the CSS. The beta family is therefore a v2-periodic family.

Ideally, the beta family {βalgi } across all primes would consist entirely of non-
trivial elements that survive the ANSS and yield non-trivial homotopy elements
{βi} ⊂ π∗S. But these are the same βis that couldn’t wait to boot you out the
door! We know they’re a tad dodgy, and therefore unlikely to exhibit behavior
as consistent as the alpha family. This intuition is sound. In fact, at the very
first prime (p = 2), the very first beta element

βalg1 ∈ Ext2,4BP∗BP
(BP∗, BP∗)

is zero! To guarantee all beta elements in the ANSS are non-trivial, p must be
at least 3, and to guarantee they all yield non-trivial homotopy elements p must
be at least 5.

Recall that a modular form over Z is a function f : h→ C on the upper half
plane h = {z ∈ C : im(z) > 0} satisfying

f(γz) = (cz + d)kf(z)

for γ =

(
a b
c d

)
∈ SL(2,Z), as well as a growth condition at i∞. The “over

Z” part means that the Fourier expansion obtained from the nice periodicity
property f(z + 1) = f(z), namely

f(q) =

∞∑
i=0

anq
n

where q = e2πiz, has integer coefficients. Modular forms must satisfy so many
symmetries simultaneously that their existence is miraculous, but they’re out
there. And, like Bernoulli numbers, the Fourier coefficients of modular forms
encode a lot of number-theoretic information. It turns out that modular forms
are to the beta family what Bernoulli numbers are to the alpha family.

Key Idea 2.3. (1) If p ≥ 5, each member of the beta family at p yields
a non-trivial element in π∗S of order p.

(2) Certain beta elements βalgi have representatives in the CSS that can be
further divided by v1 and p, and if p ≥ 5, there is a 1-1 correspondence



USER’S GUIDE: Q(2) AT THE PRIME 3 5

between these “divided” beta family elements and modular forms over Z
up to certain congruences depending on p.

(3) In my paper I give evidence that π∗Q(2) detects “divided” beta family
elements at the prime 3 by finding candidate detecting elements on the
level of Adams-Novikov E2-terms. My hope is that this will eventually
lead to a 3-primary version of the aforementioned 1-1 correspondence.

The correspondence with modular forms is due to Behrens [Beh09], and is
one of my main motivations for studying Q(2) at the prime 3. Moreover, in the
course of proving this 1-1 correspondence Behrens shows that the divided alpha
and beta families at p ≥ 5 are detected by the E(2)-localized unit map

π∗LE(2)S → π∗Q(`)

for appropriate values of ` depending on p. We would like to know whether
something analogous is true at p = 2 and p = 3.

As I mentioned above, modular forms actually exist, and now is a great time
to exhibit one. For a positive integer t consider the q-expansion

Et(q) = 1− 2t

Bt

∞∑
n=1

σt−1(n)qn

where σt−1(n) is the sum of the (t−1)-st powers of the divisors of n. If t ≥ 4 then
Et(q) is in fact a modular form of weight t called the Eisenstein series of weight
t. If p ≥ 5 then the Eisenstein series Ep−1 (called the Hasse invariant) has the
property that Ep−1 ∼= 1 mod p, which means multiplication by Ep−1 (modular
forms have a ring structure—they can be added and multiplied) takes you from
weight k modular forms to weight k + p − 1 modular forms without changing
the q-expansion modulo p. This of course produces congruences between the q-
expansions of modular forms, and turns out to be a key ingredient of Behrens’
proof in [Beh09]. Unfortunately the q-expansion Ep−1 doesn’t quite accomplish
this if p is 2 or 3. For example, while E2 can be regarded as a modular form
in a certain sense (different from the sense discussed here) it does not have the
requisite properties to help produce congruences. The hope is that Q(2) can
come to the rescue, at least the prime 3.

2.5. The third floor and higher. The pattern of the Greek letter family

construction might now be clear. The gamma family {γalgi } at p lives on the 3-

line of the ANSS and is a v3-periodic family, as each γalgi originates as a fractional
element

vi3
v2 · v1 · p

in the CSS. The somewhat-unpredictable behavior exhibited by the beta family
continues here; for example, at the prime 2 the element

γalg1 ∈ Ext3,∗BP∗BP
(BP∗, BP∗)
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is zero (more on γalg1 very soon—stay tuned), and γalg3 does not survive the ANSS
at the prime 5 because it is the source of a nontrivial differential on the 33rd page.
However, things once again stabilize if the prime is large enough.

Key Idea 2.4. (1) If p ≥ 7, each member of the gamma family at p
yields a non-trivial element in π∗S of order p.

(2) The behavior of the Greek letter families we’ve discussed becomes more
regular as the prime increases because of sparseness. The larger the
prime, the more spread out the elements of the ANSS are, which in turn
means less action with the differentials and more predictable results.

The element γ1 (say, at any p ≥ 7 to be safe) may go down in mathematical
history as the biggest troublemaker in the entire apartment buliding. Why?
Because γ1 caused (intentionally, no doubt) significant confusion in the homotopy
theory community in the early 1970s. At that time, Shichiro Oka and Hiroshi
Toda announced that γ1 ∈ π∗S is zero at a conference in Japan. Also at that
time, Emery Thomas and Raphael Zahler announced that γ1 6= 0 in a paper in the
Journal of Pure and Applied Algebra [TZ74]. Outstanding mathematicians, the
four of them, and γ1 remained elusive, like a celebrity outsmarting the paparazzi.
And if that wasn’t bad enough, journalists from Science [Sci] and The New York
Times [NYT] took this snafu in homotopy theory as an opportunity to declare
that the decline of mathematics was inevitable! (Slow news cycle?)

Eventually, with the help of Frank Adams, the situation was sorted out and
γ1 is indeed nontrivial in homotopy for p ≥ 7. But there are still way more
questions than there are answers on floor 3. For example, what number-theoretic
objects (if any) do the gamma family elements naturally pair up with? And
then there are the higher floors, too. What is true about the deltas on floor 4?
The epsilons on floor 5? The zetas on floor 6? I don’t believe I’ve ever seen the
latter two families even mentioned in print, though I’m sure my colleagues will
correct me if I’m wrong. Oh, and what are their number-theoretic counterparts,
by the way? And what happens when Greek alphabet is exhausted? Well, almost
nothing is known about these higher families or about the K(n)-local sphere for
n ≥ 4, whether at small primes or large ones. Nonetheless, homotopy theorists
work around the finiteness of the Greek alphabet by letting α(n) denote the n-th
Greek letter, so we’re covered either way.

A glimmer of hope appears in a recent manuscript by Behrens and Law-
son [BL10] in which they construct topological automorphic forms (or TAF for
short), a higher analog of topological modular forms. According to their the-
ory, gaining access to the higher floors of the building requires replacing elliptic
curves with higher-genus objects called Shimura varieties; it requires replacing
modular forms with more general objects called automorphic forms; and analogs
of Q(2) are conjectured to exist as well. The amount of information required to
just define TAF is daunting, so while progress in this direction is possible and
exciting to think about, it is likely to be slow.
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What do you suppose is happening, geometrically or algebraically or in any
other respect, with the omicron family (floor 15) at the prime 691? Or, how
about the 25th floor, where the Greek letters run out? Or the seven millionth
floor? The mind reels.
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