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On the K-theory of local fields
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Introduction

In this paper we establish a connection between the Quillen K-theory of
certain local fields and the de Rham-Witt complex of their rings of integers
with logarithmic poles at the maximal ideal. The fields K we consider are
complete discrete valuation fields of characteristic zero with perfect residue
field k of characteristic p > 2. When K contains the p¥-th roots of unity, the
relationship between the K-theory with Z/p’-coefficients and the de Rham-
Witt complex can be described by a sequence

C = K (K Lp") = W i an @S () 5 Wiy ary @S (pe) 5 -+
which is exact in degrees > 1. Here A = Ok is the valuation ring and W wz‘ AM)
is the de Rham-Witt complex of A with log poles at the maximal ideal. The
factor Sz /p (ppv) is the symmetric algebra of yi,» considered as a Z/p®-module
located in degree two. Using this sequence, we evaluate the K-theory with
Z/p®-coefficients of K. The result, which is valid also if K does not con-
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tain the pY-th roots of unity, verifies the Lichtenbaum-Quillen conjecture for
K, [26], [38]:

THEOREM A. There are natural isomorphisms for s > 1,
KQS(K, Z/p’u) — HO(K, ME}S) @ HQ(K, M‘%}(S-i-l))’
Ko (K, Z/p") = H'K,py).

The Galois cohomology on the right can be effectively calculated when k
is finite, or equivalently, when K is a finite extension of Q,, [42]. For m prime
to p,

by Gabber-Suslin, [44], and for k finite, the K-groups on the right are known
by Quillen, [36].

For any linear category with cofibrations and weak equivalences in the
sense of [48], one has the cyclotomic trace

tr: K(C) — TC(C; p)

from K-theory to topological cyclic homology, [7]. It coincides in the case of
the exact category of finitely generated projective modules over a ring with
the original definition in [3]. The exact sequence above and Theorem A are
based upon calculations of TC,(C;p,Z/p") for certain categories associated
with the field K. Let A = Ok be the valuation ring in K, and let P4 be
the category of finitely generated projective A-modules. We consider three
categories with cofibrations and weak equivalences: the category C%(P4) of
bounded complexes in P4 with homology isomorphisms as weak equivalences,
the subcategory with cofibrations and weak equivalences C%(P4)? of complexes
whose homology is torsion, and the category C’g (P4) of bounded complexes in
‘P4 with rational homology isomorphisms as weak equivalences. One then has
a cofibration sequence of K-theory spectra

K(CE(Pa)?) - K (CE(Pa)) - K(CE(Pa)) -5 SK(CE(PA)),

and by Waldhausen’s approximation theorem, the terms in this sequence may
be identified with the K-theory of the exact categories Px, P4 and Pg. The
associated long-exact sequence of homotopy groups is the localization sequence

of [37], 4
= Ki(k) -5 Ki(A) 25 Ki(K) -2 Koy (k) — ...

The map 0 is a split surjection by [15]. We show in Section 1.5 below that one
has a similar cofibration sequence of topological cyclic homology spectra

TC(CE(PA)T; p) - TC(CE(PA); p) —1> TC(CE(PA);p) 2 S TC(CE(PA); p),
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and again Waldhausen’s approximation theorem allows us to identify the first
two terms on the left with the topological cyclic homology of the exact cate-
gories Py and P4. But the third term is different from the topological cyclic
homology of Pr. We write

TC(A|K;p) = TC(CL(Pa);p),
and we then have a map of cofibration sequences

Kk 5 KA = KK % SK®k)

ltr ltr ltr J, tr

TC(k;p) - TC(4;p) Lo TCA|K;p) & STC(k;p).

By [19, Th. D], the first two vertical maps from the left induce isomorphisms
of homotopy groups with Z/p"-coefficients in degrees > 0. It follows that the
remaining two vertical maps induce isomorphisms of homotopy groups with
Z/p’-coefficients in degrees > 1,

tr: K;(K,Z/p") — TCi(A|K;p,Z/p"), i>1.

It is the right-hand side we evaluate.

The spectrum TC(C;p) is defined as the homotopy fixed points of an
operator called Frobenius on another spectrum TR(C; p); so there is a natural
cofibration sequence

TC(C; p) — TR(C; p) =5 TR(C; p) — S TC(C;p).

The spectrum TR(C;p), in turn, is the homotopy limit of a pro-spectrum
TR’ (C; p), its homotopy groups given by the Milnor sequence

0 — lim' TR, (C; p) — TR4(C;p) — ImTR;(C;p) — 0,
R R
and there are maps of pro-spectra
F:TR™(C;p) — TR (C;p),
V:TR"1(C;p) — TR™(C;p).

The spectrum TRY(C; p) is the topological Hochschild homology T'(C). It has
an action by the circle group T and the higher levels in the pro-system by
definition are the fixed sets of the cyclic subgroups of T of p-power order,

TR™(C;p) = T(C)r".

The map F' is the obvious inclusion and V' is the accompanying transfer. The
structure map R in the pro-system is harder to define and uses the so-called
cyclotomic structure of T'(C); see Section 1.1 below.



4 LARS HESSELHOLT AND IB MADSEN

The homotopy groups TR, (A|K;p) of this pro-spectrum with its various
operators have a rich algebraic structure which we now describe. The descrip-
tion involves the notion of a log differential graded ring from [24]. A log ring
(R, M) is a ring R with a pre-log structure, defined as a map of monoids

aM — (R, ),

and a log differential graded ring (E*, M) is a differential graded ring E*, a
pre-log structure a: M — E° and a map of monoids dlog: M — (E', +) which
satisfies d o dlog = 0 and da(a) = a(a)dloga for all @ € M. There is a
universal log differential graded ring with underlying log ring (R, M): the de
Rham complex with log poles wig, 5/)-

The groups TRL(A|K;p) form a log differential graded ring whose under-
lying log ring is A = Ok with the canonical pre-log structure given by the
inclusion

a:M=ANK* — A.

We show that the canonical map
wiaa — TRL(A|K; p)

is an isomorphism in degrees < 2 and that the left-hand side is uniquely di-
visible in degrees > 2. We do not know a natural description of the higher
homotopy groups, but we do for the homotopy groups with Z/p-coefficients.
The Bockstein

TRy (A|K;p, Z/p) = yTRI(A|K; p)

is an isomorphism, and we let x be the element on the left which corresponds to
the class dlog(—p) on the right. The abstract structure of the groups TR. (A;p)
was determined in [27]. We use this calculation in Section 2 below to show:

THEOREM B. There is a natural isomorphism of log differential graded
Tings
Wiann ©z Sk, {k} — TRL(A|K;p, Z/p),

where dk = kdlog(—p).

The higher levels TR} (A|K;p) are also log differential graded rings. The
underlying log ring is the ring of Witt vectors W,,(A) with the pre-log structure

M % A — W, (A),

where the right-hand map is the multiplicative section a,, = (a,0,...,0). The
maps R, F and V extend the restriction, Frobenius and Verschiebung of Witt
vectors. Moreover,

F:TRY(A|K;p) — TRy (A|K;p)
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is a map of pro-log graded rings, which satisfies
Fdlog, a = dlog,,_, a, forallae M =ANKX*,
Fda, = " \da, ,, forallac A,
and V' is a map of pro-graded modules over the pro-graded ring TR, (A|K;p),
V:F*TR" Y(A|K;p) — TR™(A|K;p).
Finally,
FdV =d, FV =p.

The algebraic structure described here makes sense for any log ring (R, M),
and we show that there exists a universal example: the de Rham-Witt pro-
complex with log poles W. wE*R7 M) For log rings of characteristic p > 0, a
different construction has been given by Hyodo-Kato, [23].

We show in Section 3 below that the canonical map

W.wiaary — TRL(A|K; p)

is an isomorphism in degrees < 2 and that the left-hand side is uniquely divis-
ible in degrees > 2. Suppose that p,» C K. We then have a map

Sz (ppr) — TR (A|K; p, Z/p")

which takes ¢ € pu,» to the associated Bott element defined as the unique
element with image dlog. ¢ under the Bockstein

TR (A|K;p, Z/p") — p TR (A|K; p).
The following is the main theorem of this paper.
THEOREM C. Suppose that py,» C K. Then the canonical map
W. wiy apy ®z Sz/pe (pr) — TRI(A|K;p, Z/p")
s a pro-isomorphism.

We explain the structure of the groups in the theorem for v = 1; the
structure for v > 1 is unknown. Let E7 stand for either side of the statement
above. The group E! has a natural descending filtration of length n given by

Fil* B! =V*E, _ +dV°E;"L\ C E!, 0<s<n.

There is a natural k-vector space structure on E', and for all 0 < s < n and
all 1 > 0,

dimy, gr® E), = ek,

the absolute ramification index of K. In particular, the domain and range of
the map in the statement are abstractly isomorphic.
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The main theorem implies that for s > 0,

TCost1(A|K;p,Z/p") = Hl(K,uﬁ(””),

and thus, in turn, Theorem A.
It is also easy to see that the canonical map

K.(K,Z/p") — K&(K,Z/p")

is an isomorphism in degrees > 1. Here the right-hand side is the Dwyer-
Friedlander étale K-theory of K with Z/p"-coefficients. This may be defined
as the homotopy groups with Z/p"-coefficients of the spectrum

K®(K) = holim H" (G, K(L)),
LK

where the homotopy colimit runs over the finite Galois extensions L/K con-
tained in an algebraic closure K /K, and where the spectrum H" (G, K (L))
is the group cohomology spectrum or homotopy fixed point spectrum of G
acting on K (L). There is a spectral sequence

E?, = H(K, i) = K& (K, Z/p"),

pU

where the identification of the E?-term is a consequence of the celebrated
theorem of Suslin, [43], that

KK, Z/p") = .

For K a finite extension of Q,, the p-adic homotopy type of the K¢(K) is
known by [45] and [8]. Let F'¥" be the homotopy fiber

FU" — Z x BU X=% BU.
It follows from this calculation and from the isomorphism above that:
THEOREM D. If K is a finite extension of Qp, then after p-completion
7 x BGL(K)t =~ Fu9" " x BFoo" 5 gIKOl,

where d = (p — 1)/|K (pp) : K|, a = max{v | e C K(pp)}, and where g € Z,;
s a topological generator.

The proof of theorem C is given in Section 6 below. It is based on the
calculation in Section 5 of the Tate spectra for the cyclic groups Cp» acting
on the topological Hochschild spectrum T'(A|K): Given a finite group G and
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G-spectrum X, one has the Tate spectrum H(G, X) of [11], [12]. Its homotopy
groups are approximated by a spectral sequence

E, = H*(G,mX) = 1, (G, X),

which converges conditionally in the sense of [1]. In Section 4 below we give a
slightly different construction of this spectral sequence which is better suited
for studying multiplicative properties. The cyclotomic structure of T'(A|K)
gives rise to a map

f‘K: TR"(A|K;p) — H(Cpn, T(A|K)),

and we show in Section 5 that this map induces an isomorphism of homo-
topy groups with Z/p¥-coefficients in degrees > 0. We then evaluate the Tate
spectral sequence for the right-hand side.

Throughout this paper, A will be a complete discrete valuation ring with
field of fractions K of characteristic zero and perfect residue field k of char-
acteristic p > 2. All rings are assumed commutative and unital without fur-
ther notice. Occasionally, we will write 7.(—) for homotopy groups with Z/p-
coeflicients.

This paper has been long underway, and we would like to acknowledge
the financial support and hospitality of the many institutions we have visited
while working on this project: Max Planck Institut fiir Mathematik in Bonn,
The American Institute of Mathematics at Stanford, Princeton University,
The University of Chicago, Stanford University, the SFB 478 at Universitat
Miinster, and the SFB 343 at Universitat Bielefeld. It is also a pleasure to
thank Mike Hopkins and Marcel Bokstedt for valuable help and comments.
We are particularly indebted to Mike Mandell for a conversation which was
instrumental in arriving at the definition of the spectrum T'(A|K) as well as
for help at various other points. Finally, we thank an unnamed referee for
valuable suggestions on improving the exposition.

1. Topological Hochschild homology and localization

1.1. This section contains the construction of TR"(A|K;p). The main
result is the localization sequence of Theorem 1.5.6, which relates this spec-
trum to TR™(A;p) and TR"(k;p). We make extensive use of the machinery
developed by Waldhausen in [48] and some familiarity with this material is
assumed.

The stable homotopy category is a triangulated category and a closed sym-
metric monoidal category, and the two structures are compatible; see e.g. [22,
Appendix]. By a spectrum we will mean an object in this category, and by a
ring spectrum we will mean a monoid in this category. The purpose of this sec-
tion is to produce the following. Let C be a linear category with cofibrations
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and weak equivalences in the sense of [48, §1.2]. We define a pro-spectrum
TR (C; p) together with maps of pro-spectra

F:TR"(C;p) — TR"'(C;p),
V:TR"!(C;p) — TR"(C;p),
p: S ATR™C;p) — TR™(C;p).

The spectrum TRY(C;p) is the topological Hochschild spectrum of C. The
cyclotomic trace is a map of pro-spectra

tr: K(C) — TR'(C; p),

where the algebraic K-theory spectrum on the left is regarded as a constant
pro-spectrum.

Suppose that the category C has a strict symmetric monoidal structure
such that the tensor product is bi-exact. Then there is a natural product on
TR (C; p) which makes it a commutative pro-ring spectrum. Similarly, K (C)
is naturally a commutative ring spectrum and the maps F’ and tr are maps of
ring-spectra.

The pro-spectrum TR (C; p) has a preferred homotopy limit TR(C; p), and
there are preferred lifts to the homotopy limit of the maps F', V and u. Its
homotopy groups are related to those of the pro-system by the Milnor sequence

0 — LIim'TR;;(C;p) — TRs(C;p) — imTR;(C;p) — 0.
R R

There is a natural cofibration sequence
TC(C;p) — TR(C; p) ——— TR(C;p) — BTC(C; p),

where TC(C; p) is the topological cyclic homology spectrum of C. The cyclo-
tomic trace has a preferred lift to a map

tr: K(C) — TC(C; p),

and in the case where C has a bi-exact strict symmetric monoidal product,
the natural product on TR’(C;p) have preferred lifts to natural products on
TR(C;p) and TC(C;p), and the maps F' and tr are ring maps.

Let G be a compact Lie group. One then has the G-stable category which
is a triangulated category with a compatible closed symmetric monoidal struc-
ture. The objects of this category are called G-spectra, and the monoids for
the smash product are called ring G-spectra. Let H C G be a closed subgroup
and let Wy G = NgH/H be the Weyl group. There is a forgetful functor which
to a G-spectrum X assigns the underlying H-spectrum UgX. We also write
| X| for Uy X. Tt comes with a natural map of spectra

px: G A X] — | X].
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One also has the H-fixed point functor which to a G-spectrum X assigns the
WrG-spectrum X, If H C K C G are two closed subgroups, there is a map
of spectra

K K H
v | X — [ X
and if |K: H| is finite, a map in the opposite direction
K H K
If X is a ring G-spectrum then Uy X is a ring H-spectrum and X is a ring
Wa H-spectrum.

Let T be the circle group, and let C,. C T be the cyclic subgroup of order r.
We then have the canonical isomorphism of groups

pr: T == T/C, = WrC,

given by the r-th root. It induces an isomorphism of the T/C,-stable cat-
egory and of the T-stable category by assigning to a T/C,-spectrum Y the

T-spectrum p;Y. Moreover, there is a transitive system of natural isomor-

phisms of spectra
oot o}Y| = Y,
and the following diagram commutes
T AlyY] 5 oY
lepr lwr
T/Cry AY] £ Y.
We will define a T-spectrum 7'(C) such that
TR™(C;p) = g T(C) 5|
with the maps F' and V given by the composites
F = ot s 1o TO | = | 2T(C) 2,

_ C n-1 * C e * C e
V = gy et e T g T

pn—2

and the map p given by

* C n— * C n—
:u‘ = :u‘p* 1T(C)Cpn71 : T+ /\ |pp"_1T(C) P ! | - |ppn_1T(C) P ! |
p"T

There is a natural map
K(C) —T(C)",
and the cyclotomic trace is then the composite of this map and 4,0;”1_1%17”71.

The definition of the structure maps in the pro-system TR’ (C;p) is more com-
plicated and uses the cyclotomic structure on T'(C) which we now explain.
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There is a cofibration sequence of T-CW-complexes
E,— 8" FE—-YXE,,

where F is a free contractible T-space, and where the left-hand map collapses
E to the nonbase point of S°. It induces, upon smashing with a T-spectrum T,
a cofibration sequence of T-spectra

E.NT —-T—EANT —XE, AT,
and hence the following basic cofibration sequence of spectra
P (B ATYO | — g T | = |5 (B A T)O | = S|t (B4 AT,

natural in 7. The left-hand term is written H.(Cp»,T") and called the group
homology spectrum or Borel spectrum. Its homotopy groups are approximated
by a strongly convergent first quadrant homology type spectral sequence

Eg,t == Hs(cpn) 7TtT) = 7T5+t]H[.(Cpn,T),

The cyclotomic structure on T(C) means that there is a natural map of
T-spectra
riph(EAT(C))r — T(C)

such that Ug,, r is an isomorphism of C)s-spectra, for all s > 0. More generally,
since
* (T n * * (T C
Py (EAT(C)P" = phu-s(pp(E AT(C) )

the map r induces a map of T-spectra
Pt P (B AT(C))5 = py T(C)C
such that Uc,;7n41 1s an isomorphism of Cps-spectra, for all s > 0. The map
R:TR™(C;p) — TR"(C; p)

is then defined as the composite

105 a T(C) Y = [fs (B AT(C) | 22 |0 T(C) 2,

~

where the left-hand map is the middle map in the cofibration sequence above.
We thus have a natural cofibration sequence of spectra

H.(Cpor, T(C)) - TR™(C; p) - TR™(C; p) - SH.(Cpums, T(C)).

When C has a bi-exact strict symmetric monoidal product, the map r is a
map of ring T-spectra, and hence R is a map of ring spectra. The cofibration
sequence above is a sequence of TR"(C; p)-module spectra and maps.

For any T-spectrum X, one has the function spectrum F(Ey, X), and the
projection E, — S° defines a natural map

v: X — F(E., X).
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This map induces an isomorphism of group homology spectra. One defines the
group cohomology spectrum and the Tate spectrum,

H'(Cpn, X) = |ppnF(Ey, X)),

M (Cp,X) = |pj(ENF(Ey, X))
Their homotopy groups are approximated by homology type spectral sequences

E2, = H *(Cpr,mX) = morH (Cpr, X),

EAit = E[ﬁs(cpn, TI'tX) = 7T5+tH (Cpn7 X),
both of which converge conditionally in the sense of [1, Def. 5.10]. The latter
sequence, called the Tate spectral sequence, will be considered in great detail
in Section 4 below. Taking 7' = F(E;, X) in the basic cofibration sequence
above, we get the Tate cofibration sequence of spectra

Nh . Rh A~ 8h
H.(Cpn,X) — H (Cpn,X) I H(Cpn,X) — EH.(Cpn,X)
Finally, if X = T(C), the map
Y T(C) = F(E4.T(C))

induces a map of cofibration sequences

H.(Cp, 7€) % TR™NCp) &  TR'Cp) -> SH.(Cpm,T(C))

I I

N Rh ~ ah

H.(Cpn,T(©) 5 H (G, T(C)) = H(Cp,T(C) = SH.(Cp,T(C)),

in which all maps commute with the action maps . Moreover, if C is strict
symmetric monoidal with bi-exact tensor product, the four spectra in the mid-
dle square are all ring spectra and R, R", T" and I are maps of ring spectra.
In this case, the diagram is a diagram of TR™(C; p)-module spectra, [19, pp.
71-72].

1.2. In order to construct the T-spectrum 7T'(C) we need a model cate-
gory for the T-stable category. The model category we use is the category of
symmetric spectra of orthogonal T-spectra, see [31] and [21, Th. 5.10]. We
first recall the topological Hochschild space THH(C). See [7], [10] and [19] for
more details.

A linear category C is naturally enriched over the symmetric monoidal
category of symmetric spectra. The symmetric spectrum of maps from c¢
to d, Hom,(c,d), is the Eilenberg-MacLane spectrum for the abelian group
Homge (¢, d) concentrated in degree zero. In more detail, if X is a pointed
simplicial set, then

Z(X) = Z{X}/Z{x0}
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is a simplicial abelian group whose homology is the reduced singular homology
of X. Here Z{X} denotes the degree-wise free abelian group generated by X.
Let S° be the i-fold smash product of the standard simplicial circle S =
A[1]/0A[1]. Then the spaces {|Z(S%)|}i>0 is a symmetric ring spectrum with
the homotopy type of an Eilenberg-MacLane spectrum for Z concentrated in
degree zero, and we define

Home(c,d); = |Home(c, d) @ Z(S°)|.
Let I be the category with objects the finite sets
1=41,2,...,i}, i>1,

and the empty set 0, and morphisms all injective maps. It is a strict monoidal
category under concatenation of sets and maps. There is a functor Vj(C; X)
from I*t! to the category of pointed spaces which on objects is given by

Ve(C; X)(io,---vik) = \/  Home(co, cr)ig A - .. AHome (¢, cr—t)iy A X.
cQ,...,ck€0bC

It induces a functor G(C; X) from I**! to pointed spaces with
Gr(C; X)(ig, - - - ik) = F(S™ A ... AS™,Vi(C; X)(io, - - -+ ik)),

and we define
THH,(C) = holim G (C; S°).

Ik+1

This is naturally the space of k-simplices in a cyclic space and, by definition,
THH(C) = |[k] — THHg(C)|.

It is a T-space by Connes’ theory of cyclic spaces, [28, 7.1.9].

More generally, let (n) be the finite ordered set {1,2,...,n} and let (0) be
the empty set. The product category I is a strict monoidal category under
component-wise concatenation of sets and maps. Concatenation of sets and
maps according to the ordering of (n) also defines a functor

Up: T™ — T,

but this does not preserve the monoidal structure. By convention I is the
category with one object and one morphism, and Lly includes this category as
the full subcategory on the object 0. We let Gg@) (C; X) be the functor from
(I(M)k+1 6 the category of pointed spaces given by

GG X) = Gi(C X) o (L),

and define

THH™(C; X) = holim G (C; X).
(1)
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In particular, THH,(CO) (C; X) = NY(C) A X, where

N (C) = \/ Home(co, cx) A ... A Home(ck, cx—1)

CQyeersCLEOD C

is the cyclic bar construction of C. Again this is the space of k-simplices in a
cyclic space, and hence we have the X, x T-space

THH™(C; X) = |[k] — THH"(C; X)|.
There is a natural product
THH™ (C; X) ATHH™ (D;Y) — THH™ ™ (C @ D; X AY),

which is ¥, x 3, x T-equivariant if T acts diagonally on the left. Here the
category C ® D has as objects all pairs (¢, d) with ¢ € obC and d € D, and

Homegp((c,d), (¢, d')) = Home(c, ') @ Homp(d, d').

For any category C, the nerve category IN.C is the simplicial category with
k-simplicies the functor category

N,C =¥,

where the partially ordered set [k] = {0,1,...,k} is viewed as a category. An
order-preserving map 6: [k] — [I] may be viewed as a functor and hence induces
a functor

0*: NZC — NkC

The objects of N.C comprise the nerve of C, N.C. Clearly, the nerve category
is a functor from categories to simplicial categories.

Suppose now that C is a category with cofibrations and weak equivalences
in the sense of [48, §1.2]. We then define

NYC c N.C
to be the full simplicial subcategory with
obN¥C = N.wC.

There is a natural structure of simplicial categories with cofibrations and weak
equivalences on N¥C: coN¥C and wN¥C are the simplicial subcategories
which contain all objects but where morphisms are natural transformations
through cofibrations and weak equivalences in C, respectively. With these
definitions there is a natural isomorphism of bi-simplicial categories with cofi-
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brations and weak equivalences
(1.2.1) N.S.C = S.N.C,

where S.C is Waldhausen’s construction, [48, §1.3].
Let V' be a finite-dimensional orthogonal T-representation. We define the
(n, V)-th space in the symmetric orthogonal T-spectrum 7'(C) by

(1.2.2) T(C)ny = | THH™ (N¥S™¢; SV

There are two T-actions on this space: one which comes from the topological
Hochschild space, and another induced from the T-action on SY. We give
T(C)n,v the diagonal T-action. There are also two X,-actions: one which
comes from the X,-action on the topological Hochschild space, and another
induced from the permutation of the simplicial directions in the n-simplicial
category S,(n)C; compare [10, 6.1]. We also give T'(C),, v the diagonal ¥,-action.
In particular, the (0,0)-th space is the cyclic bar construction

T(C)oo = [N (NYC)|.
In general, the T-fixed set of the realization of a cyclic space X. is given by
1X.|F = {z € Xo|s0(x) = tis0(x)},
and hence, we have a canonical map
lobN¥S™e A SV | = (T(C)ny)T.

The space on the left is the (n, V")-th space of a symmetric orthogonal spec-
trum, which represents the spectrum K(C) in the stable homotopy category,
and the map above defines the cyclotomic trace. Moreover, by a construction
similar to that of [19, §2], there are T-equivariant maps

P;(T(C)n,V)Cp - T(C)n,p;évcpv

and one can prove that for fixed n, the object of the T-stable category defined

by the orthogonal spectrum V' +— T'(C),, v has a cyclotomic structure.
Suppose that C is a strict symmetric monoidal category and that the tensor

product is bi-exact. There is then an induced 3, x ¥,-equivariant product

s™e g sWe s gmtre
and hence
TC)my ANTClnw — T(C)minvew-
This product makes T'(C) a monoid in the symmetric monoidal category of

symmetric orthogonal T-spectra.

1.3.  We need to recall some of the properties of this construction. It is
convenient to work in a more general setting.
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Let ® be a functor from a category of categories with cofibrations and weak
equivalences to the category of pointed spaces. If C. is a simplicial category
with cofibrations and weak equivalences, we define

O(C.) = |[n] — @(Cp)|.
We shall assume that ® satisfies the following axioms:

(i) The trivial category with cofibrations and weak equivalences is mapped
to a one-point space.

(ii) For any pair C and D of categories with cofibrations and weak equiva-
lences, the canonical map

®(C x D) — @(C) x ®(D)
is a weak equivalence.

(iii) If f.:C. — D. is a map of simplicial categories with cofibrations and
weak equivalences, and if for all n, ®(f,): ®(C,) — ®(D,) is a weak
equivalence, then

O(f.):®(C.) — ®(D.)

is a weak equivalence.

In [48], ® is the functor which to a category assigns the set of objects.
Here our main concern is the functor THH and variations thereof.
We next recall some generalities. Let

f,g9:C. — D.

be two exact simplicial functors. An ezact simplicial homotopy from f to ¢ is
an exact simplicial functor

h: A[1]. x C. — D.

such that ho (d' x id) = f and ho (d° x id) = g. Here A[n]. is viewed
as a discrete simplicial category with its unique structure of a simplicial cat-
egory with cofibrations and weak equivalences. An exact simplicial functor
f:C. — D. is an exact simplicial homotopy equivalence if there exists an ex-
act simplicial functor g: D. — C. and exact simplicial homotopies of the two
composites to the respective identity simplicial functors.

LEMMA 1.3.1.  An ezact simplicial homotopy A[l]. x C. — D. induces a
homotopy
All] x ®(C.) — ®(D.).

Hence ® takes exact simplicial homotopy equivalences to homotopy equiva-
lences.
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Proof. There is a natural transformation
All]e x ©(C) — @(A[1]i; x Cp)-

Indeed, A[1]x x ®(Ck) and A[1]x x Ci, are coproducts in the category of spaces
and the category of categories with cofibrations and weak equivalences, respec-
tively, indexed by the set A[1l];. The map exists by the universal property of
coproducts. O

LEMMA 1.3.2.  An ezact functor of categories with cofibrations and weak
equivalences f:C — D induces an exact simplicial functor N¥ f: N¥C — N¥D.
A natural transformation through weak equivalences of D between two such
functors f and g induces an exact simplicial homotopy between N¥ f and N¥g.

Proof. The first statement is clear. We view the partially ordered set [1]
as a category with cofibrations and weak equivalences where the nonidentity
map is a weak equivalence but not a cofibration. Then the natural transfor-
mation defines an exact functor [1] x C — D, and the required exact simplicial
homotopy is given by the composite

A[l]. x N¥C — N¥[1] x N¥C — NY([1] x C) — N¥D,
where the first and the middle arrow are the canonical simplicial functors, and

the last is induced from the natural transformation. (Note that N¥[n] is not
a discrete category.) O

LEMMA 1.3.3 ([48, Lemma 1.4.1]). Let f,g:C — D be a pair of exact
functors of categories with cofibrations. A natural isomorphism from f to g
induces an exact simplicial homotopy

A[l]. x S.C — 8.D
from S.f to S.g.

COROLLARY 1.3.4. Let C be a category with cofibrations, and let iC be
the subcategory of isomorphisms. Then the map induced from the degeneracies
i the nerve direction induces a weak equivalence

P(S.C) = d(NS.C).

Proof. For each k, the iterated degeneracy functor
5:C = N{C — NiC,

has the retraction
0*:N;.C — C,

where 6:[0] — [k] is given by #(0) = 0. Moreover, there is a natural isomor-
phism id — 6*, and hence by Lemma 1.3.3,
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S.s:5.C — S.NiC =NiS.C

is an exact simplicial homotopy equivalence. The corollary follows from
Lemma 1.3.1 and from property (iii) above. O

Let A, B and C be categories with cofibrations and weak equivalences and
suppose that A and B are subcategories of C and that the inclusion functors are
exact. Following [48, p. 335], let E(A,C,B) be the category with cofibrations
and weak equivalences given by the pull-back diagram

EA,C,B) M AxcxB

| !

e \dd) oo

In other words, F(A,C,B) is the category of cofibration sequences in C of the
form

A—-C—-B, AeA BebB.

The exact functors s, t and ¢ take this sequence to A, C and B, respectively.
The extension of the additivity theorem to the present situation is due to
McCarthy, [34]. Indeed, the proof given there for ® the cyclic nerve functor
generalizes mutatis mutandis to prove the statement (1) below. The equiva-
lence of the four statements follows from [48, Prop. 1.3.2].

THEOREM 1.3.5 (Additivity theorem). The following equivalent asser-
tions hold:

(1) The ezact functors s and q induce a weak equivalence
O(NYS.E(A,C,B)) — ®(NVS.A) x ®(N¥S.B).
(2) The exact functors s and q induce a weak equivalence
®(N¥S.E(C,C,C)) = ®(NYVS.C) x ®(N¥S.C).
(3) The functors t and sV q induce homotopic maps
®(NYS.E(C,C,C)) — P(NYS.C).

(4) Let F' — F — F" be a cofibration sequence of exact functors C — D.
Then the ezact functors F and F'V F" induce homotopic maps

B(NYS.C) — B(NVS.D).
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Let f:C — D be an exact functor and let S.(f:C — D) be Waldhausen’s
relative construction, [48, Def. 1.5.4]. Then the commutative square
O(N¥S.C) —— P(NWS.S.(id:C — ())
(1.3.6) l l
O(N¥S.D) —— P(N¥S.S.(f:C — D))

is homotopy cartesian, and there is a canonical contraction of the upper right-
hand term. In particular, if we let D be the category with one object and one
morphism, this shows that the canonical map

P(NVS.C) — QP(NYVS.S.C)
is a weak equivalence.

Definition 1.3.7. A map f: X — Y of T-spaces is called an F-equivalence
if for all 7 > 1 the induced map of C,-fixed points is a weak equivalence of
spaces.

PRrROPOSITION 1.3.8.  Let C be a linear category with cofibrations and weak
equivalences, and let T'(C) be the topological Hochschild spectrum. Then for all
orthogonal T-representations W and V', the spectrum structure maps

T(C)nv — F(S™ NSV, T(C)minwav)
are F-equivalences, provided that n > 1.
Proof. We factor the map in the statement as
T(C)ny — F(S™, T(Cmny) — F(S™ F(SV, T(Chmrnwaev))-

Since S™ is C,-fixed the map of C,-fixed sets induced from the first map may
be identified with the map

(T(C)ny)" = Q™ (T(Chmtny) "
and by definition, this is the map
THH®™ (NS ¢; §V)C — @ THH™ ) (Nv s e, V)0,

By the approximation lemma, [2, Th. 1.6] or [30, Lemma 2.3.7], we can replace
the functor THH®*)(—; —) by the common functor THH(—; —), and the claim
now follows from (1.3.6) applied to the functor

®(C) = THH(C; SV)°".
Finally, it follows from the proof of [19, Prop. 2.4] that
(T(C)m-i-n,V)Cr - F(Sva(C)m+n,W®V))CT

is a weak equivalence. O
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We next extend Waldhausen’s fibration theorem to the present situation.
We follow the original proof in [48, §1.6], where also the notion of a cylinder
functor is defined.

LEMMA 1.3.9. Suppose that C has a cylinder functor, and that wC satis-
fies the cylinder axziom and the saturation aziom. Then

O(NYC) = ®(N¥C)
18 a weak equivalence. Here wC = wC NcoC.

Proof. The proof is analogous to the proof of [48, Lemma 1.6.3], but we
need the proof of [37, Th. A] and not just the statement. We consider the
bi-simplicial category T(C) whose category of (p, q)-simplices has, as objects,
pairs of diagrams in C of the form

(AqH...;)AU’AO*)BO*)...HBP)7
and morphisms, all natural transformations of such pairs of diagrams. We let
T™(C) C T(C)

be the full subcategory with objects the pairs of diagrams with the left-hand
diagram in wC and the right-hand diagram in wC. There are bi-simplicial
functors

N7 (CP)R £~ T (C) 22 N¥Y(C)L,

where for a simplicial object X, the bi-simplicial objects X L and X R are ob-
tained by precomposing X with projections pr; and pry from A x A to A,
respectively. Applying ® in each bi-simplicial degree, we get corresponding
maps of bi-simplicial spaces. We show that both maps induce weak equiva-
lences after realization.

For fixed ¢, the simplicial functor

p1: TP (C) — NP (CP)

is a simplicial homotopy equivalence, and hence induces a homotopy equiva-
lence upon realization. It follows that

©(p1): (T™*(C)) — S(NT(CP))

is a weak equivalence of spaces.
Similarly, we claim that for fixed p, the simplicial functor

pa TEY(C) — N (C)
is a simplicial homotopy equivalence. The homotopy inverse ¢ maps

(BO—>~--—>BP)»—>(BOL...LBO,B()&BO—M--HBP).
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Following the proof of [48, Lemma 1.6.3] we consider the simplicial functor
t: T;”i’,w C) — TZ’,w(C)
which maps

(Ag — - — Ap,Ag — By — ... By)
— (T'(Aqg — By) — -+ = T(Ao — By),T(Ao — Bo) i>B()—>---—>Bp),

where T is the cylinder functor. There are exact simplicial homotopies from
0 o pg to t and from the identity functor to t. Hence

O (p2): (T™*(C)) — (N"(C))

is a weak equivalence of spaces.
Finally, consider the diagram of bi-simplicial categories

N?(CP)R 2 Towie) 2, N¥C)L
| 7 H
N¥(CP)R 22— Tww(e) —25 NvY(C)L,

where ¢’ is the obvious inclusion functor. Applying ®, we see that the horizontal
functors all induce weak equivalences. The lemma follows. O

Let C be a category with cofibrations and two categories of weak equiva-
lences vC and wC, and write

N"¥C = NY(N*C) = N¥(N’C).

This is a bi-simplicial category with cofibrations which again has two categories
of weak equivalences.

LEMMA 1.3.10 (Swallowing lemma). If vC C wC then
O(NYC) = ¢((NYC)R) = ®(N"™()
18 a homotopy equivalence with a canonical homotopy inverse.
Proof. We claim that for fixed m, the iterated degeneracy in the v-direction,
NYC — NY(N;.C),

is an exact simplicial homotopy equivalence. Given this, the lemma follows
from Lemma 1.3.1 and from property (iii). The iterated degeneracy above is
induced from the (exact) iterated degeneracy map C — N} .C in the simpli-
cial category NYC. This map has a retraction given by the (exact) iterated
face map which takes ¢¢ — -+ — ¢n to cg. The other composite takes
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cg — -+ — ¢y, to the appropriate sequence of identity maps on c¢y. There
is a natural transformation from this functor to the identity functor, given by

o — o . Co
lid lfl lfmo...ofl
co L Cc1 f2 . fm Cm-

The natural transformation is through arrows in vC, and hence in wC. The
claim now follows from Lemma 1.3.2. O

The proof of [48, Th. 1.6.4] now gives:

THEOREM 1.3.11 (Fibration theorem). Let C be a category with cofibra-
tions equipped and two categories of weak equivalences vC C wC, and let C* be
the subcategory with cofibrations of C given by the objects A such that x — A is
in wC. Suppose that C has a cylinder functor, and that wC satisfies the cylinder
ariom, the saturation axiom, and the extension axiom. Then

B(NVS.CY) —— B(NWS.CY)

| |

B(NYS.C) ——  B(N¥S.C)

1§ a homotopy cartesian square of pointed spaces, and there is a canonical
contraction of the upper right-hand term.

1.4. Let A be an abelian category. We view A as a category with cofibra-
tions and weak equivalences by choosing a null-object and taking the monomor-
phisms as the cofibrations and the isomorphisms as the weak equivalences. Let
£ be an additive category embedded as a full subcategory of A, and assume
that for every exact sequence in A,

0—-A —-A4—-A" =0,

if A’ and A” are in £ then A isin &, and if A and A” are in £ then A’ is in £.
We then view & as a subcategory with cofibrations and weak equivalences of
A in the sense of [48, §1.1].

The category C?(A) of bounded complexes in A is a category with cofi-
brations and weak equivalences, where the cofibrations are the degree-wise
monomorphisms and the weak equivalences 2C®(A) are the quasi-isomorphisms.
We view the category C?(&) of bounded complexes in & as a subcategory with
cofibrations and weak equivalences of C®(A). The inclusion & — C*(€) of € as
the subcategory of complexes concentrated in degree zero, is an exact functor.
The assumptions of the fibration Theorem 1.3.11 are satisfied for C®(&).

THEOREM 1.4.1.  With £ as above, the inclusion induces an equivalence
B(N?S.E) =5 B(N?S.CP(E)).
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Proof. We follow the proof of [46, Th. 1.11.7]. Since the category C?(&)
has a cylinder functor which satisfies the cylinder axiom with respect to quasi-
isomorphisms, the fibration theorem shows that the right-hand square in the
diagram

D(NIS.E) —— B(NIS.CP(E)F) —— B(NZS.CE(E)?)

| | |

P(NIS.E) —— O(NIS.CP(E)) —— O(NZS.CYE))

is homotopy cartesian. Moreover, the composite of the maps in the lower row
is equal to the map of the statement, and the upper left-hand and upper right-
hand terms are contractible. Hence the theorem is equivalent to the statement
that the left-hand square, and thus the outer square, are homotopy cartesian.
Let C° be the full subcategory of C®(€) consisting of the complexes E,
with E; = 0 for i > b and i < a. Then C°(€) is the colimit of the categories C
as a and b tend to —oo and +o0, respectively. We consider C? as a subcategory
with cofibrations of C?(£). We first show that there is a weak equivalence

d(NIS.CY) — [[ ®(NiS.E),  E.w (Eyp Eyr,...,Ea).

a<s<b
The map is an isomorphism for b = a. If b > a, the functor
e:Cq — E(C,Co.Catn),
which takes F, to the extension
0<albs — By — 054E,,

is an exact equivalence of categories. Here o<, F, is the brutal truncation, [49,
1.2.7]. The inverse, given by the total-object functor, is also exact. Hence, the
induced map

d(NIS.CL) = ®(NLS.E(CE,Ch,Ch. ),

is a homotopy equivalence by Lemma 1.3.2. The additivity Theorem 1.3.5 then
shows that

(5,9): ®(NLS. E(CF, Cq, Cayp)) — @(NLS.CE) x ®(NLS.Coyy);

a

thus, we have a weak equivalence
B(NIS.Cq) = P(NIS.E) x D(NLS.Cory), By (Bay 050 By).

It now follows by easy induction that the map in question is a weak equivalence.
Next, we claim that the map

d(Nis.ct) — [ ®(NiS.€), E.w (By_1,Bp-2,...,Ba),

a<s<b
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where B; C E; are the boundaries, is a weak equivalence. Note that the
exactness of the functors F, — B; uses the fact that the complex F, is acyclic.
If a = b — 1 the functor E, — B_1 is an equivalence of categories with exact
inverse functor. Therefore, in this case, the claim follows from Lemma 1.3.2.
If b—1 > a, we consider the functor

Chr — E(Cf?,.clr,e17),

a

which takes the acyclic complex E, to the extension
T>p- 1B — By — 7 1 Ex,

where 7>, E, is the good truncation, [49, 1.2.7]. The functor is exact, since
we only consider acyclic complexes, and it is an equivalence of categories with
exact inverse given by the total-object functor. Hence the induced map

B(NIS.CH) =5 (NS EB(CY?,, ¢, clb—1)=))

is a homotopy equivalence by Lemma 1.3.2. The additivity theorem now shows
that

O(NLS.CY) = B(NIS.E) x B(NIS.CYTY),  Ev— (By1,7<p1EW),

is a weak equivalence, and the claim follows by induction.
Statement (4) of the additivity theorem shows that there is a homotopy
commutative diagram

O(NIS.C) ——  Tlacscy P(NIS.E)

| |

D(NIS.C) ——  [lacscy P(NIS.E)

where the horizontal maps are the equivalences established above, and where
the right-hand vertical map takes (zs) to (x5 + xs—1). It follows that the
diagram

P(NiS.CY*) —— P®(NIS.CH)

B(NIS.CO) —— B(NIS.CY)),

where the maps are induced by the canonical inclusions, is homotopy cartesian.
Indeed, the map of horizontal homotopy fibers may be identified with the map

[ ee(Nis.&) - [ QeNs.e),
a<s<b a<s<b,s#0
which takes (z5) to (zs + xs—1), and this, clearly, is a homotopy equivalence.
Taking the homotopy colimit over a and b, we see that the left-hand square in
the diagram at the beginning of the proof is homotopy cartesian. O
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1.5. In the remainder of this section, A will be a discrete valuation ring
with quotient field K and residue field k. The main result is Theorem 1.5.2
below. It seems unlikely that this result is valid in the generality of the pre-
vious section. Indeed, the proof of the corresponding result for K-theory uses
the approximation theorem [48, Th. 1.6.7], and this fails for general ®, topo-
logical Hochschild homology included. Our proof of Theorem 1.5.2 uses the
equivalence criterion of Dundas-McCarthy for topological Hochschild homol-
ogy, which we now recall.

If C is a category and n > 0 an integer, we let End,,(C) be the category
where an object is a tuple (¢;v1, ..., v,) with ¢ an object of C and vy, . . ., v, en-
domorphisms of ¢, and where a morphism from (¢; vy, ..., v,) to (d;wy, ..., wy)
is a morphism f:c — d in C such that fv; = w;f, for 1 <7 < n. We note that
Endo (C) =C.

PRrOPOSITION 1.5.1 ([7, Prop. 2.3.3]). Let F:C — D be an ezact functor
of linear categories with cofibrations and weak equivalences, and suppose that
for alln > 0, the map |ob N¥S.End,,(F)| is an equivalence. Then

F,: THH(NY¥S.C) — THH(NYS.D)
is an F-equivalence (see Def. 1.3.7).

Let M4 be the category of finitely generated A-modules. We consider
two categories with cofibrations and weak equivalences, C%(M 4) and C’;’(M A),
both of which have the category of bounded complexes in M 4 with degree-
wise monomorphisms as their underlying category with cofibrations. The weak
equivalences are the categories 2C*(M 4) of quasi-isomorphisms and ¢C®(M 4)
of chain maps which become quasi-isomorphisms in C®(M ), respectively. We
note that C*(M?%) and C®(M 4)4 are the categories of bounded complexes of
finitely generated torsion A-modules and bounded complexes of finitely gener-
ated A-modules with torsion homology, respectively.

THEOREM 1.5.2.  The inclusion functor induces an F-equivalence

THH(NZS.C* (M%) — THH(NZS.C* (M )9).

Proof. We show that the assumptions of Proposition 1.5.1 are satisfied.
The proof relies on Waldhausen’s approximation theorem, [48, Th. 1.6.7], but
in a formulation due to Thomason, [46, Th. 1.9.8], which is particularly well
suited to the situation at hand.

For n > 0, let A,, be the ring of polynomials in n noncommuting variables
with coefficients in A, and let M4, C My, be the category of A,-modules
which are finitely generated as A-modules. Then the category End,,(C?(My))
(resp. End,,(C*(M 4))?, resp. End,(C*(M?Y%))) is canonically isomorphic to
the category C*(M.a ) (resp. C*(Man)?, resp. Cb(M‘im)). Here C*(Ma )7 C
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C®(M 4,,) is the full subcategory of complexes whose image under the forgetful
functor C*(Ma,,) — CP(Ma) lies in C®(M4)?, and similarly for My, We

must show that the inclusion functor induces a weak equivalence
|obNZS8.CO(MY,,)| = |obNZS.CO (M),

for which we use [46, Th. 1.9.8]. The categories C*(M? ) and C*(M )9
are both complicial bi-Waldhausen categories in the sense of [46, 1.2.4], which
are closed under the formation of canonical homotopy pushouts and homotopy
pullbacks in the sense of [46, 1.9.6]. The inclusion functor

F:CP(MY ) — CP (M)

is a complicial exact functor in the sense of [46, 1.2.16]. We must verify the
conditions [46, 1.9.7.0-1.9.7.3]. These conditions are easily verified with the
exception of condition 1.9.7.1 which reads: for every object B of C®(M4,),
there exist an object A of C®(MY ) and a map FA > B in 2C°(M,,)7.
This follows from Lemma 1.5.3 below. O

LEMMA 1.5.3. Let A be a commutative noetherian ring, and let B be
a not necessarily commutative A-algebra. Let C, be a bounded complex of
left B-modules which as A-modules are finitely generated and suppose that the
homology of Cy is annihilated by some power of an ideal I C A. Then there
exists a quasi-isomorphism

C*L)D*

with Dy a bounded complex of left B-modules which as A-modules are finitely
generated and annihilated by some power of I.

Proof. Let n be an integer such that for all ¢ > n, C; is annihilated by
some power of I. We construct a quasi-isomorphism C' — C” to a bounded
complex C” of left B-modules which as A-modules are finitely generated and
such that for all ¢ > n — 1, C/ is annihilated by some power of I. The lemma
follows by easy induction. To begin we note that the exact sequences

O_>Zn_>Cni>Bn—1_>07
0—By1—2Zy1—Hy1—0,

show that Z,,_; is annihilated by some power of I, say, by I". As an A-module
Zp—1 is finitely generated because C,,_1 is a finitely generated A-module and
because A is noetherian. Hence, by the Artin-Rees lemma, [32, Th. 8.5], we
can find s > 1 such that Z,_1 NI°C,_1 C I"Z,,—1 = 0. We now define C” to
be the complex with C/ = C;, if # n—1,n — 2, with C}/_; = C,,—1/I°Cy_1,
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and with C//_, given by the pushout square

d
Cho1 —— Cnoo

Lo |

" "
n—1 Cn—2'

There is a unique differential on C” such that the canonical projection C — C”
is a map of complexes. The kernel complex C” is concentrated in degrees n — 1
and n — 2. The differential C/,_; — CJ _, is injective, since Z,_1 N I°Cy_1
is zero, and surjective, since the square is a pushout. Hence, the homology
sequence associated with the short exact sequence of complexes

0—-C' —-C—-C"-0

shows that C' — C” is a quasi-isomorphism. And by construction, some power
of I annihilates C/, if i > n — 1. a

We thank Thomas Geisser and Stefan Schwede for help with the argument
above.

Let C2(P4) and C5(P4) be the category of bounded complexes of finitely
generated projective A-modules considered as a subcategory with cofibrations
and weak equivalences of C2(M4) and C5(M ), respectively.

PROPOSITION 1.5.4.  The inclusion functor induces an F-equivalence

THH(N?S.C?(P4)?) =5 THH(N?S.C?(M4)?).

Proof. Let A, and M4, be as in the proof of Theorem 1.5.2, and let
Pan be the full subcategory of My, consisting of the A,-modules which
as A-modules are finitely generated projective. Then End, (C?(My4))? and
End,,(C®(P4))? are canonically isomorphic to C*(M 4 )9 and C®(Pa )4, re-
spectively, and we must show that the inclusion functor induces a weak equiv-
alence

|ob NZS.C%(Pan)1| = |obNZS.C(M ).

Again, we use [46, Th. 1.9.8], where the nontrivial thing to check is condi-
tion 1.9.7.1: for every object Cy of C®(M4,,)?, there exists an object P of
C®(Pan)? and a map P, — C, in 2C%(Ma,)?. But this follows from [5,
Chap. XVII, Prop. 1.2]. Indeed, let e: P, , — C be a projective resolution of
C, regarded as a complex of A-modules. We may assume that each P;; is a
finitely generated A-module, and since A is regular, that P; ; is zero for all but
finitely many (4,7). Furthermore, it is proved in loc.cit. that there exists an
Ap-module structure on P, , such that e is A,-linear. Hence, the total com-
plex P, = Tot(P, ) is in C®(Pa ) and Tot(e): Py — Cy is in 2C°(M ). It
follows that P, is in Cb(PAm)q as desired. O
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Definition 1.5.5.  We define ring T-spectra
T(A|K) = T(Cy(Pa)), T(A)=T(C2Pa)), T(k)=T(CLPa)?)
and let TR"(A|K;p), TR"(A;p), and TR"(k;p) be the associated Cpn-1-fixed

point ring spectra.

We show that the definition of the spectra TR"(A; p) and TR"(k; p) given
here agrees with the usual definition. By Morita invariance, [7, Prop. 2.1.5], it
suffices to show that there are canonical isomorphisms of spectra

TR™(A;p) ~ TR"(Pa;p), TR"(k;p) ~ TR"(Py;p),

compatible with the maps R, F', V, and u. Here the exact category Pgr is
considered a category with cofibrations and weak equivalences in the usual
way. It follows from Theorem 1.4.1, applied to the functor ®(C) = THH(C)",
and Proposition 1.3.8 that the map induced by the inclusion functor

T(Pa) — T(CUPa)) = T(A)

is an F-equivalence. This gives the first of the stated isomorphisms of spectra.
A similar argument shows that the inclusion functor induces an F-equivalence

T(Pr) = T(My) — T(C2My)).
By devisage, [6, Th. 1], the same is true for
T(C2My)) — T(C2MY)).

Finally, Theorem 1.5.2 and Proposition 1.5.4 show that the maps induced from
the inclusion functors

T(CHM%)) =5 T(CUMA)T) < T(CL(Pa)?) = T(k)

are both F-equivalences. This establishes the second of the stated isomor-
phisms of spectra. Let

iv: TR™(A;p) — TR (k;p)
be the map induced from the reduction.

THEOREM 1.5.6.  For all n > 1, there is a natural cofibration sequence of
spectra

TR"(k; p) —— TR"(A; p) 25 TR(A|K; p) —2 S TR"(k; p),

and all maps in the sequence commute with the maps R, F', V., and p. The
map js is a map of ring spectra, and the mapsi' and & are maps of TR"(A; p)-
module spectra. Here TR™(k;p) is considered a TR™(A;p)-module spectrum
via the map i.. Moreover, the preferred homotopy limits form a cofibration
sequence of spectra.
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Proof. We have a commutative square of symmetric orthogonal T-spectra

T(C2(Pa)) T(Cq(Pa)?)
T(C2(Pa)) T(Cy(Pa)),

and the fibration Theorem 1.3.11 applied to the functor ®(C) = THH(C)®"
shows that the corresponding square of C,.-fixed point spectra is homotopy
cartesian. It follows that there is natural cofibration sequence of spectra

TR (k;p) = TR"(4;p) L TR"(A|K;p) % S TR" (ks ),
compatible with R, F'; V and p. It is clear that this is a sequence of TR"(A4; p)-
module spectra. O

ADDENDUM 1.5.7.  There is a natural map of cofibration sequences

K(k) — KA) 2 KK —2 SK(k)

ltr ltr Jtr ltr
TC(k; p) —— TC(A;p) —L— TC(A|K;p) —2— STC(k;p)
and the vertical maps are all maps of ring spectra.

Remark 1.5.8. Let X be a regular affine scheme and let i:Y — X be a
closed subscheme with open complement j: U — X. Then, more generally, the
proof of Theorem 1.5.6 gives a cofibration sequence of spectra

TR™(Y;p) - TR™(X;p) 25 TR(X|U;p) -5 S TR™ (Y p),

where the three terms are as in Definition 1.5.5 with P4 replaced by the cate-
gory Px of locally free Ox-modules of finite rank. The weak equivalences are
the quasi-isomorphisms, sz(PX), and the chain maps which become quasi-
isomorphisms after restriction to U, qC?(Px), respectively. Similarly, the ar-
gument following Definition 1.5.5 gives canonical isomorphisms of spectra

TR™(X;p) ~ TR"(Px;p), TR™(Y;p) =~ TR"(My;p),

where My is the category of coherent Oy-modules. Moreover, if Y is regular,
the resolution theorem, [7, prop. 2.2.3], shows that TR"(My;p) is canonically
isomorphic to TR™(Py;p).

2. The homotopy groups of T(A|K)

2.1. In this section we evaluate the homotopy groups with Z/p-coefficients
of the topological Hochschild spectrum T'(A|K). We first fix some conventions.
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Let G be a finite group and let k be a commutative ring. The category
of chain complexes of left kG-modules and chain homotopy classes of chain
maps is a triangulated category and a closed symmetric monoidal category,
and the two structures are compatible. The same is true for the category of
G-CW-spectra and homotopy classes of cellular maps. We fix our choices for
the triangulated and closed symmetric monoidal structures in such a way that
the cellular chain functor preserves our choices.

We first consider complexes. If f: X — Y is a chain map, we define the
mapping cone Cy to be the complex

(Cf)n = Yn 2] anlv d(ya .T) = (dy - f({L‘), —d'I)v

and the suspension XX to be the cokernel of the inclusion 1:Y — C of the
first summand. More explicitly,

(BX)n = Xp-1, dsux(v) = —dx(v).

Then, by definition, a sequence X Ty 47 " vyXisa triangle or a

cofibration sequence if it isomorphic to the distinguished triangle
x Ly Lo 2oex,

where 0 is the canonical projection. If X Ty 9. Zis a short exact
sequence of complexes then the projection p:Cy — Z, p(y,x) = g(y), is a
quasi-isomorphism and the composite

H,Z &= H,C; 2% H,SX = Hy 1 X

is equal to the connecting homomorphism.
Let X and Y be two complexes. We define the tensor product complex
by
(X@Y)h= P X0V dazoy) =dioy+(-1)"zedy,
s+t=n
and the complex of (k-linear) homomorphisms by
Hom(X,Y), = [[ Hom(Xy, Yurs);  d(f(2)) = (df) (@) + (~1)VIf (da).
SEZ
We note that Zp Hom(X,Y') is equal to the set of chain maps from X to Y
and that Hy Hom(X,Y) is equal to the set of chain homotopy classes of chain
maps from X to Y. The adjunction and twist isomorphisms are given by
¢ Hom(X 8V, Z) — Hom(X, Hom(Y, 2)),  6()(2)(y) = f(z @ ).
1 XY -Y X, ~aoy) =)y
The triangulated and closed symmetric monoidal structures are compatible in

the sense that
YXeY)=EX)Y
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and that if W is a complex and X Ty 97 M vXisa triangle, then so
is
Xow!Zyeow 2 zew " vx o w.

Indeed, the isomorphism
p:Cr@W = Craw,  p(y,2) @w) = (y @ w,z @ w),

and the identity map of X @ W, Y @ W, and ¥X ® W define an isomorphism
of the appropriate distinguished triangles.
We define the homology of X with Z/m-coefficients by

H.(X,Z/m)= H.(M,, ® X),
where M, is the Moore complex given by the distinguished triangle
k- k-5 My, -2 Sk,

Suppose that X is m-torsion free such that X % X 25 X /mX is a short-
exact sequence of complexes. Then the composite

Ho(X/mX) &= Hy(Cp) £ Hy(My @ X) -5 Hy(SX) = Hyor(X)

is equal to the connecting homomorphism.

We next consider the category of G-CW-spectra and homotopy classes of
cellular maps, see [25, Chap. I, §5]. This category, we recall, is equivalent to
the G-stable category. In one direction, the equivalence associates to a G-CW-
spectrum X the underlying G-spectrum U X. In the other direction, we choose
a functorial G-CW-replacement I'’X such that UT X — X.

If X and Y are two G-CW-spectra, the smash product UX A UY has
a canonical G-CW-structure. But the function spectrum F(UX,UY') usually
does not. Instead we consider 'F(UX,UY"). This defines the closed symmetric
monoidal structure.

The mapping cone of a celluar map f: X — Y is defined by

Cr =Y Ux ([0,1] A X),

where we use 1 as the base point for the smash product. The interval is given
the usual CW-structure with a single 1-cell oriented from 0 to 1, and the
mapping cone is given the induced G-CW-structure. Collapsing the image of
the canonical inclusion i: Y — (' to the base point defines the map

9:Cy — S'AX = %X,

where S1 = [0,1]/9[0, 1] with the induced CW-structure. We then define the
distinguished triangles to be sequences of the form

x Lyt 2 ex
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Again, the triangulated and the closed symmetric monoidal structures are com-
patible. Indeed, the associativity isomorphism, which is part of the monoical
structure, gives rise to canonical isomorphisms

wN(XAW) = (EX)AW,  p:Cr AW 5 Craw.

The choices made above are preserved by the cellular chain functor. To
be more precise, if X (resp. f: X — Y) is a G-CW-spectrum (resp. a cellular
map), then the suspension isomorphism gives rise to a canonical isomorphism
of complexes ©C,(X; k) — C.(EX; k) (resp. C+(Cy; k) — Cf,). Under these
identifications, the cellular chain functor carries the distinguished triangles of
G-CW-spectra to the distinguished triangles of complexes of left kG-modules.
Similarly, if X and Y are two G-CW-complexes, then the Kiinneth isomor-
phism gives a canonical isomorphism Cy(X;k) ® Ci(Y; k) — Co(X AY; k).

We define the homotopy groups of X with Z/m-coefficients by

(X, Z/m) = m (M N X),
where M, is the Moore spectrum given by the distinguished triangle
CUSINCUNES Ve
and the homotopy groups with Z,-coefficients by
(X, Zp) = m(holim(Mp» A X)).

v
The latter are related to the former by the Milnor sequence

0— <li_m17rq+1(X, L[p*) — mg(X, Zp) — hﬂ mq(X,Z/p") — 0.

v v

We shall often abbreviate mq(X,Z/p) and write 7,(X). Let HZ/m be the
Eilenberg-MacLane spectrum for Z/m. It is a ring spectrum, and we let € €
m(HZ/m,Z/m) be the unique element such that F(¢) = 1. Then for left
H?Z /m-module spectra X, we have a natural sum-diagram

uAid BAid
(2.1.1) X — M, N X —— ¥X,

T S

where s is the composite

SUAX N A AHZm A X S M A X,
and where 7 is determined by the requirement that r o+ =id and r o s = 0.
We recall Connes’ operator. Let T be the space S(C) of complex numbers
of length 1 considered as a group under multiplication. We give T the ori-
entation induced from the standard orientation of the complex plane, and let
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[T] € Hi(T) be the corresponding fundamental class. The reduced homology
of a T-space X has a natural differential given by the composite
~ (1] =~ ~
d: Hy(X) == Hy1(Ty A X) =5 Hypa (X),
where the left-hand map is given by the Kiinneth isomorphism and the right-
hand map is induced by the action map. There is a sum-diagram

h

Z)2-n=r7(8%) == 7{(T,) == Hy(T) =% [T]
C g
where h is the Hurewitz homomorphism, e is induced from the map S° — T
which takes the nonbase-point of S° to 1 € T, ¢ is induced from the map
T, — SY which collapses T to the nonbase-point of SY, and ¢ is determined
by ho =id and co = 0. Let T be a T-spectrum. Then Connes’ operator is the
map

(2.1.2) dmg(T) 7 r i (T AT) 2T 1t (T).
If T'= HH(A) is the Hochschild spectrum of a ring A, then this definition agrees
with Connes’ original definition, [16, Prop. 1.4.6]. We recall from op. cit.,
Lemma 1.4.2, that, in general, dd = dn = nd. Hence, d is a differential,
provided that multiplication by 7 is trivial on 7.(7T). This is the case, for
instance, if multiplication by 2 on 7, (7) is an isomorphism.

2.2. We next recall the notion of differentials with logarithmic poles.
The standard reference for this material is [24]. A pre-log structure on a ring
R is a map of monoids

a:M — R,

where R is considered a monoid under multiplication. By a log ring we mean
a ring with a pre-log structure. A derivation of a log ring (R, M) into an
R-module FE is a pair of maps

(D, Dlog): (R, M) — E,

where D: R — FE is a derivation and Dlog: M — E a map of monoids, such
that for all a € M,
a(a)Dloga = Da(a).

A log differential graded ring (E*, M) consists of a differential graded ring E*,
a pre-log structure a: M — E°, and a derivation (D, Dlog): (E°, M) — E!
such that D is equal to the differential d: E° — E' and such that do Dlog = 0.

There is a universal example of a derivation of a log ring (R, M) given by
the R-module

Wi = (2 ® (R @z M®))/(da(a) — a(a) @ a | a € M),
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where M®P is the group completion (or Grothendieck group) of M and (...)
denotes the submodule generated by the indicated elements. The structure
maps are

d:R—

w(lRM), da = da @0,
dlog: M — w(lR

M) dloga=0® (1® a).
The exterior algebra
C‘12}::,1\4) = A}k%(w(lR,M))

endowed with the usual differential is the universal log differential graded ring
whose underlying log ring is (R, M). We stress that here and throughout we
use QF to mean the absolute differentials.

Let A be a complete discrete valuation ring with quotient field K and
perfect residue field k of mixed characteristic (0, p). We recall the structure of

A from [40, §5, Th. 4]. Let W (k) be the ring of Witt vectors in k, and let K
be the quotient field of W (k). There is a unique ring homomorphism

FW(k)— A

such that the induced map of residue fields is the identity homomorphism. We
will always view A as an algebra over W (k) via the map f. Moreover, if mx is
a generator of the maximal ideal mg C A, then

(2.2.1) A =W(k)[rk]/(¢x (TK)),

and the minimal polynomial takes the form
¢ () = 2 + Ok (2),

where ey = | K : Ko| is the ramification index and where 05 (x) is a polynomial
of degree less that e such that 0 (0) is a unit in W (k). It follows that 0 (7x)

is a unit and that

—p = Wﬁ{K@K(TrK)fl.

We will use this formula on numerous occasions in the following. The valuation
ring A has a canonical pre-log structure given by the inclusion

a:M=ANK* — A.
Let vg: K* — Z be the valuation.
PROPOSITION 2.2.2. There is a natural short exact sequence
res

0—>Q}4—>w(1A7M)—>k—>O,

where res(adlogb) = avk (b) + mg.
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Proof. If a € AN K* then avgk(a) € mg, and hence, the composition of
the two maps in the statement is zero. Only the exactness in the middle needs
proof. Let adlogb be an element of w(lA M) and write b = W%u with u € A*.
Then

adlogb = iadlog Tx + au™du.

Suppose that res(adlogb) = ia + mg is trivial. Then ia € mg, which implies
that i(L?TI_(l € A, and hence, iadlogmg = iaﬂl_{ldm(. O

We define the module of relative differentials

w(lA’M)/W(k) = (Qil/W(k) ®(A®z KX)>/<da—a®a ac AﬁKX>.

Again, there is a natural exact sequence

0 — Qywwy = Wannwr — k= 0.

LEMMA 2.2.3. Let g € A be a uniformizer with minimal polynomial
oK (). Then the element dlog Tk generates the A-module w(lA M)W (k) and
its annihilator is the ideal generated by ¢y (mx)mr. This ideal contains p.

Proof. Since every element of K* can be written as a product m%-u with
1 € Z and u € A%, the formula

dlog(mhu) = idlog g + u ™ tdu
shows that w(l AM) /W (k) is generated by dlog mg. The relation identifies
P (mx)mrdlog T = d(¢r (1K) = 0,
so the annihilator ideal is generated ¢/ (7 )Tk . O
LEMMA 2.2.4. For all i > 0, there is a natural exact sequence
A®ww) Uy = Wiann = “anwi = 0
and the left-hand group is uniquely divisible.

Proof. The stated sequence for ¢ = 1 follows from the diagram

l l H

0 — Qyww — “lamyww —— k —— 0

with horizontal exact sequences and from the standard exact sequence
A®w @ Ny — L — Layw — 0.

We show that the group Q%/V(k) — HH; (W (k)) is a uniquely divisible group
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or, more generally, that HH;(W (k)) is uniquely divisible, for all ¢ > 0. Since
W (k) is torsion-free and since W (k)/p = k, the coefficient sequence takes the
form

- — HH; 41 (k) — HH; (W (k)) -2 HH,; (W (k)) — HH; (k) — - - -

But HH; (k) = 0, for ¢ > 0, since k is perfect, [19, Lemma 5.5]. This proves the
lemma for ¢ = 1. In particular, the maximal divisible sub-A-module of w(l AM)

is equal to the image of A @y (1) Q‘I,V(k), and w(lA M) is the sum of this divisible
module D and the cyclic torsion A-module w(l AM) W (k) It follows that for
1> 1, w%A’M) = A% D, and this in turn is the image of the left-hand map of
the statement. 0O

COROLLARY 2.2.5. The p-torsion submodule of w(lA M) 18
pwiann = A/p- dlog(—p).

Proof. It follows from Lemma 2.2.4 that the canonical map

pw(lA,M) — pw(lA,M)/W(lc)

is an isomorphism. Let 7k be a uniformizer with minimal polynomial ¢ (z).
Then by Lemma 2.2.3,

W ww = A/ (Tr ¢k (Ti)) - dlog Tk

We write ¢ (x) = 2% + plk (z) such that —p = 7350 (7x)~1. Hence, on the
one hand, we have

T (TK) = ex gk + prgb(ni) = (ex — TrOk (1K )0k (mr) )7L,

and on the other hand,

dlog(—p) = dlog(n5X Ok (mx) ") = (ex — 0k (7K )0k (7)) )dlog k.
The claim follows. O

Let L be a finite extension of K, let B be the integral closure of A in L,
and let ey /g = er/ex be the ramification index of L/K. Then the following
diagram commutes

res
Wanrywe — o A/mi

J{Z* J/SL/K"L'
resp

WpMp)ywky — B/mL.

Recall that B®AQ}4/W(,€) — Q}B/W(k) is an isomorphism if and only if ey /i = 1.



36 LARS HESSELHOLT AND IB MADSEN

LEMMA 2.2.6. The canonical map

B®a w(lA:MA)/W(k) - w%Bme/W(k)

is an isomorphism if and only if p does not divide ey, .

Proof. Suppose that p does not divide er k. If er /g = 1 the lemma
follows from the natural exact sequence

0 = D wry = Wamnwew = A/mr =0

and from the isomorphism mentioned before the lemma. Thus, replacing K
by the maximal subfield of L which is unramified over K, we may assume that
the extension is totally ramified. Then there exists mx € A such that

L=K <7r}(/eL/K> .

Indeed, if mx and 77, are uniformizers of A and B over W(k), then nx =
quL/ X where u € B* is a unit. But the sequence
1-U)— B 5k =1

is split by the composition of the Teichmiiller character 7:k* — W (k)* and
the inclusion W (k)X < BX. Therefore, replacing mr by 7(r(u)) ‘nx, we
can assume that the unit u lies in the subgroup U} of units in B which are
congruent to 1 mod my. But every element of Uj has an ey, /k-th root, so
replacing 77, by ut LKy we may assume that v = 1.

Let mx and 77 be uniformizers of A and B over W (k) such that mx =

sz/ ¥ and let ¢x(x) be the minimal polynomial of 7. Then

¢r(x) = o (z°H/)
is the minimal polynomial of wy. The A-module w(l A M)W () is generated by

dlog g with annihilator (¢ (7x )7k ), and similarly, the B-module w(lB M)W (k)
is generated by dlogm, with annihilator (¢ (7z)7r). But

dlogmg = dlog(wiL/K) =er/kdlogmy,
and
¢'L(7TL)7TL = ¢}<(7TLL/K) ‘ €L/KTFLL/K = €L/K¢/K(7TK)77K;

so the claim follows since er,/x is a unit. It is also clear from this argument
that the map of the statement cannot be an isomorphism if the extension L/K
is wildly ramified. O

2.3. In this section we show that the homotopy groups (m,.T(A|K), M)
form a log differential graded ring. In effect, we prove the more general state-
ment:
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PROPOSITION 2.3.1.  The homotopy groups (TR} (A|K;p), M) form a log
differential graded ring, if p is odd orn = 1.

The homotopy groups TR} (A|K; p) form a graded-commutative differen-
tial graded ring with the differential given by Connes’ operator (2.1.2), [16,
§1]. It remains to define the maps

(2.3.2) an: M — TRy (A|K;p),  dlog,: M — TR} (A|K;p)

and to verify the relation ay,(a)dlog, a = doy,(a). We define «,, as the com-
posite of the inclusion M = AN K* — A and the multiplicative map

_niA— TR{(A|K; p).

This, we recall, is the map of components induced from the composite
A [N (NIC)| —PoBe, |NP(NIC) ™ = TR™(A|K poo,

where C = C2(Py4) of Definition 1.5.5, i(a) is the O-simplex A < A, and
r = p"~ 1. We refer the reader to [3, §1] for the definition of the maps A,
and D,..

In general, if C is a category with cofibrations and weak equivalences and
if X is an object of C, there is a natural map in the stable category

det: ©®°B Aut(X) — K(C),

where Aut(X) is the monoid of endomorphisms of X in the category wC of
weak equivalences. The inclusion of Aut(X) as a full subcategory of wC induces

B Aut(X) = |N. Aut(X)| — [N.wC| = K(C)o,

but this map does not preserve the basepoint (unless X is the chosen null
object). However, we still get a map of symmetric spectra

det: X°B Aut(X)4+ — K(C).

To get the map a&, we use the fact that for every pointed space B, there is a
natural isomorphism SV ¥*°B == ¥ B in the stable category. The inverse
is induced from the map which collapses B to the nonbase point in S° and the
map which identifies the extra base point with the base point in B.

We again let C = Cg (P4) and view A as a complex concentrated in degree
zero. Then Aut(A) = AN K* = M such that we have a map of monoids

M — mBM %% 1 K(0),

and we define dlog,, to be the composite of this map and the cyclotomic trace.
Spelling out the definition, we see that dlog,, is given by the composite

SHEUAM, 2N S AT, A M, U ST A NS (NYC))

A
Dredr, SEAIN(NIC)|O 2 TR™(A|K; )i,
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where the map j, when restricted to T x {a}, traces out the loop in the real-
ization given by the 1-simplex (in the diagonal simplicial set):

A A 54
A A1 aA
LEMMA 2.3.3. For all a € M, doy,(a) = ap(a)dlog, a.

Proof. Spelling out the definitions, one readily recognizes that it will suf-
fice to show that the following diagram homotopy-commutes:

To A My —922 A M A My O NS (N9C)| A NS (NC))|

lid N luo,o

Ty AN (NIC)] - [N (NIC).

Since M is discrete, we may check this separately for each a € M. The com-
posite of the upper horizontal maps and the right-hand vertical map, when re-
stricted to T x {a}, traces out the loop in the realization given by the 1-simplex
(in the diagonal simplicial set) on the left below. Similarly, the composite of
the left-hand vertical map and the lower horizontal map, when restricted to
T x {a}, traces out the loop given by the 1-simplex on the right below:

A% 4154 A1 A4-% 4
la la J{a 5 J{l ll J{l
A4 -t.a A1 42,

Note that both loops are based at the vertex A —— A. We must show that
the two loops are homotopic through loops based at A —— A. To this end, we
consider the 2-simplices

/Ny R R SN A-Ltoa- 1,4 2,9
K R E R | R OO
Y/ AN/ N R S [ S L SR S|
| R T | LR R
A-L1oa2 4 L4 A4 4 LA

The 2-simplex on the left gives a homotopy through loops based at A - A
between the loop given by the left-hand 1-simplex above and the loop given
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by the 1-simplex
A% 414

oo e
Ao A A
Similarly, the 2-simplex on the right gives a homotopy through loops based

at A — A between this loop and the loop given by the right-hand 1-simplex
above. O

ProprosITION 2.3.4. The canonical map
W?A,M) — m,T(A|K)
18 an tsomorphism, for ¢ < 2, and a rational isomorphism, for all ¢ > 0.

Proof. We consider the long exact sequence of homotopy groups associated
with the sequence of Theorem 1.5.6,

T(k) -5 T(A) 25 T(AIK) -2 ST(k),

and note that i': 7, T'(k) — m,T(A) is zero, if ¢ = 0, 1. Indeed, for ¢ = 0 this is
a map from a torsion group to a torsion-free group, and for ¢ = 1 the domain
is isomorphic to the group Q,lg which vanishes since k is a perfect, [19, Lemma
5.5]. This proves the statement for ¢ = 0. It also shows that the top sequence
in the following diagram of A-modules and A-linear maps,

0——mT(A) LN mT(A|K) N w0l (k) —— 0

| I |

0o— Q) —— w(lAM) —5 k —0,

is exact. The lower sequence is the exact sequence of Proposition 2.2.2 and
the vertical maps are the canonical maps. The left-hand square commutes
since j, preserves the differential. The commutativity of the right-hand square
is equivalent to the statement that d.(dlogx) = vi(x), for all z € M. But
this follows from the definition of the map dlog in (2.3.2) and from the com-
mutativity of the right-hand square in Addendum 1.5.7. Since the left- and
right-hand vertical maps in the diagram are isomorphisms, so is the middle
vertical map. This proves the statement for ¢ = 1.

We next argue that the map of the statement is a rational isomorphism,
for all ¢ > 0. Since 7. T'(k) is torsion the long exact sequence associated with
the cofibration sequence above shows that

JemT(A)@Q = mT(AIK)®Q
is an isomorphism. Moreover, the linearization map induces an isomorphism

mT(A)®Q ~> HH,(A) @ Q,
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and the right-hand side is canonically isomorphic to HH,(K). It thus remains
to prove that the canonical map Qj — HH,(K) is an isomorphism. This in
turn follows from [20] and the fact that K can be written as a filtered colimit
of smooth Q-algebras, [13, IV.17.5.1].

It remains to show that moT(A|K) is uniquely divisible. The structure of
the p-adic homotopy groups m,(T'(A),Z,) is known from [27, Th. 5.1]. (The
assumption that the residue field is finite is not needed. For op. cit., Propo-
sitions 5.3 and 5.4 and [1, Th. 7.1] show that the Bockstein spectral sequence
converges strongly.) The result is that for m > 0, o, (T'(A), Z,) vanishes and
Tom—1(T(A), Zy) is isomorphic to A/(m¢ (7x)). The latter is a torsion group
of bounded exponent. It follows that for m > 0, 79, T(A) is a uniquely di-
visible group and 7,17 (A) is the sum of a uniquely divisible group and the
torsion group mom—1(T'(A),Zy). Since m T (k) is trivial, we see that moT'(A|K)
is uniquely divisible as stated. O

2.4. It follows from Proposition 2.3.1 that the homotopy groups with
Z]p-coefficients 7, T(A|K) form a log differential graded k-algebra. We now
evaluate this log differential graded k-algebra and prove Theorem B of the
introduction.

The proof of Theorem B is based on the calculation in [27, Ths. 4.4,
4.6] of the graded k-algebra 7, T(A) = m(T(A),Z/p). The result, which we
now recall, depends on whether p divides ex or not. We consider the graded
k-algebra

B=A/p® Ao} ® S{as}

with the generators in the indicated degrees. Let C' C B be the subalgebra
generated by all elements aajaj® for which a € mg/pA or e = 1 or p divides
m, and let I C C' be the ideal generated by all elements aalazm_l for which

exg—1

a € m¥ " /pA and m is prime to p. Then as graded k-algebras,

T T(A) = { B, if p divides ek,

C/I, if p does not divide eg.

We note that, in the former case, the dimension of the k-vector space 7,T'(A)

is equal to ek, for all ¢ > 0. In the latter case, this dimension is equal to ey, if

q is congruent to either —1 or 0 modulo 2p, and is equal to ex — 1, otherwise.
We also recall from [19, Th. 5.2, Cor. 5.5] that as a graded k-algebra,

7. T(k) = AMe} ® S{o),

with the generators € and o characterized as follows: the Bockstein takes e
to 1 and Connes’ operator (2.1.2) takes ¢ to o. It follows from the proof of [27,
Ths. 4.4, 4.6] that the reduction map

iy T(A) — 7.T(k)
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is induced from a k-algebra map B — 7. T'(k), which in degree zero is given
by the reduction A/p — k, and which takes the generators a; and s to zero
and a unit times o, respectively.

Since the group mT'(A|K) is uniquely divisible, by Proposition 2.3.4, the
integral Bockstein induces an isomorphism

B: s T(A|K) == ,mT(A|K).

We define k € mT(A|K) to be the class which corresponds to the generator
dlog(—p) on the right. (Note that k € TT(Zy|Q)p).) We now prove Theorem B
of the introduction:

THEOREM 2.4.1.  There is a natural isomorphism of log differential graded
TIngs
wia ) @z Szpplr} — TT(AK),

where dk = kdlog(—p).

Proof. 1t is clear that there is a map of graded k-algebras as stated. We
show that this is an isomorphism.

Suppose first that p divides ex. We know from Proposition 2.3.4 that the
map of the statement is an isomorphism in degrees ¢ < 1. So it suffices to
show that multiplication by s induces an isomorphism

ki T(A|K) = Tgp2T(A|K).

To this end, we consider the long-exact sequence associated with the cofibration
sequence of Theorem 1.5.6,

7 T(k) 5 7, T(A) 25 7, T(AK) -2 7g 1 T(k) — -

This is a sequence of graded 7,7 (A)-modules, where 7. T(A|K) (resp. . T (k))
is viewed as a graded 7T (A)-module via the map j, (resp. ix). We claim that
the map j, is an isomorphism for ¢ = 2. Granting this for the moment, there
exists & € mT(A) such that kK = j.(%£). And since T (A) and mT'(A|K) are
both free A/p-modules of rank one, the class % is necessarily a generator. It
follows that in the diagram

s wm Tk - 7 T(A) LS 7 TAIK) L m  T(k) — -
s FqraT (k) = TgpaT(A) L5 FgraT(AIK) <5 g T(R) — -+,

two out of three of the vertical maps are isomorphisms. Hence, so are the
remaining vertical maps. To prove the claim, we consider the diagram of
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A/p-modules
moT'(A) _,i"_) pmT(A)  ——— Q)

B B |5

nTAK) —2= mTAK) —— P, 00)-

The left-hand horizontal maps are isomorphisms since moT'(A) and moT(A|K)
are (uniquely) divisible. It follows from Proposition 2.3.4 that the right-hand
horizontal maps are isomorphisms and that the right-hand vertical map is a
monomorphism. But the domain and range of the latter are both k-vector
spaces of dimension ey . Hence, this map is an isomorphism. This proves the
claim.

Suppose now that p does not divide ex. Let L/K be a totally ramified
extension such that p divides ey /i, and let B be the integral closure of A in L.
Then we have a commutative diagram

wE‘AMA)@S{/Q} — ™I (A|K)

l l

Wip ap) © S{K} —— ®T(B|L),

and the lower horizontal map is an isomorphism. It is easy to see that there
exists L/K for which the left-hand vertical map is a monomorphism. For
example, one can take [ = K[ry]/(m;""* + 7k (7, + 1)). Hence, the upper
horizontal map is a monomorphism. The domain and range of this map are
graded k-vector spaces concentrated in nonnegative degrees. The dimension of
the domain is equal to ex in each degree. Hence the dimension of the range is
at least ex in each degree. We can estimate the dimension of the range further
by means of the exact sequence of k-vector spaces
7 T(k) — 7, T(A) 2 7, T(AIK) -2 7g 1 T(R) — -+
The dimension of 7,7'(A) is equal to ek, if ¢ = —1,0 (mod 2p), and is equal
to ex — 1, otherwise. The dimension of 7,T'(k) is equal to one, for all ¢ > 0.
It follows that the dimension of 7,T(A|K) is equal to either ex or ex + 1, if
g = —1,0 (mod 2p), and is equal to ex otherwise. We argue that for ¢ = —1, 0,
the dimension of 7,T(A|K) is equal to ex. This happens if and only if for all
s > 0, the map
i!Z ﬁ'zpsflT(k:) — 7_'('2p3,1T(A)

is nonzero. We show that the class wfé"_lalags_l on the right is in the image

of i, or equivalently, that it maps to zero under j,. If ex > 1, we can write

ex—1 ps—1 _  _ex—2 ps—1
Tr 10y =Tg a1 - TKOY .
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The image of this class under j, is equal to a unit in A/p times the class
K dlog g - mreRPS L
But this class is in the image of the ring homomorphism

wianr @z Szpint — T (AlK)

and the product is equal to zero on the left. Hence j*(ﬂff_lalags_l) is equal

to zero. Finally, in the unramified case we choose a totally ramified extension
K /Ky such that p does not divide ex and consider the diagram

!

Tops 1T (k) —— Tops 1 T(W(K))

[l l

77'2p3,1T(k‘) - ﬁgpsflT(A).
We have just proved that the lower horizontal map is a monomorphism, for all
s > 0. And the left-hand vertical map is an isomorphism since ex is prime to
p. Hence the top horizontal map is a monomorphism. We have proved that
the map of the statement is an isomorphism of graded k-algebras for all K. In
particular, the class dx on the right is the image of an element on the left. To
determine this element, we may assume that K = Q,. In the diagram

_ d _
T3 (Zp|Qp) —— mT(Fp)
K K
_ 0 _
T (Zp|Qp) —— mT(Fp)
the horizontal maps and the right-hand vertical map are isomorphisms. Hence

also the left-hand vertical map is an isomorphism. This shows that dx =
ukdlog(—p) with u € F\. We show in remark 5.3.3 below that in fact u = 1. O

Remark 2.4.2.  An argument similar to [27, §5] shows that for m > 0,
there exists a noncanonical isomorphism

Tom-1(T(A|K), Zy) = A/ (mmg ¢ (7))

and that mo,, (T'(A|K), Z,) vanishes. It would be interesting to give a functorial
description of the left-hand group analogous to Proposition 2.3.4.

Let L/K be a Galois extension with Galois group Gp k. The descent
problem for topological Hochschild homology asks under what conditions the
canonical map

T(AlK) — H .(GL/Ka T(B|L))

is a weak equivalence. It is not hard to see from Theorem 2.4.1 that this is false
in general, e.g. for a cyclotomic extension Qp(ppn)/Qp with n > 1. However:
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THEOREM 2.4.3. Let L/K be a finite and tamely ramified Galois exten-
ston. Then the canonical map induces an isomorphism

7. T(AIK) =5 7. H " (Gx, T(B| L)).

Proof. Tt will suffice to show that for all t > 0, the G’/ g-module 7, 7'(B| L)
is isomorphic to B/p. Indeed, a classical theorem of Noether, [9, 1.3, Th. 3],
states that B is isomorphic to A[G,k] as a G, g-module, if and only if L/K
is tamely ramified. Hence, the spectral sequence

E?, = H *(Gpx, T (B|L)) = #tss:H (Gp i, T(B| L))

collapses to yield the isomorphism of the statement.
We use Theorem 2.4.1 to get the natural isomorphisms

kLT T(B| L) =5 gy T(B| L).

Hence, we only need to consider 7g7T'(B|L) and 7 T(B|L). The former is
naturally isomorphic to B/p regardless of whether L/K is tamely ramified
or not, and the latter is naturally isomorphic to w(lB M) /p. We have from
Lemma 2.2.3 that

w(lAMA)/p =A/p-dlogrg,

and since L/K is tamely ramified, Lemma 2.2.6 shows that

w(lByMB)/p = B/p-dlogmk.

Hence, also w(lB7MB)/p is is isomorphic to B/p as a G1/r-module. O

3. The de Rham-Witt complex and TR, (A|K;p)

3.1. In this paragraph, we evaluate the integral homotopy groups TR; (A|K; p),
for i < 2. We first consider Witt vectors, see e.g. [35, Appendix].

The ring W, (R) of Witt vectors of length n in R is the set of n-tuples
in R but with a new ring structure characterized by the requirement that the
“ghost” map

w: Wy(R) — R",

which to the vector (ao, ,...,a,—1) associates the sequence (wo, ..., w,_1) with
s s—1
ws =ah +pd) 4+ +pas,

be a natural transformation of functors from rings to rings. If R has no p-
torsion then the ghost map is injective. If, in addition, there exists a ring
endomorphism ¢: R — R such that a? = ¢(a) (mod pR), then a sequence
(wg, ..., wp—_1) is in the image if and only if ws = ¢(ws—1) (mod p*R), for all
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0 < s <n. If R=Z[X,], the ring homomorphism which maps X, to X? is
such an endomorphism. Let

i R— Wy(R)
be the multiplicative section given by a,, = (a,0,...,0).
LEMMA 3.1.1.  If p is odd then V(1) = —p and =1, = —1 modulo

pWn(R).
Proof. By naturality, we may assume that R = Z. Now,
w(p, + V(1) =p1,1+pP~ L1+ pP 1477,
and therefore it is enough to show that the sequence
(L1+p7 L1+ 147 Y

is in the image of the ghost map. The identity ¢: Z — 7Z has the property that
aP = ¢(a) (mod pZ). Hence, this sequence is in the image of the ghost map if
and only if for all 1 < s < n,

1+pP 1= 1—}—]95‘7571_1 (mod p*).

This is true, if p is odd, but fails for p = 2 and s = 2. The second congruence
of the statement is proved in a similar manner. O

In general, (z +y) and z,+y, arenot equivalent modulo pWy(A). How-

ever, we have the following:

LEMMA 3.1.2. For all x,y € R,

(@ +y)?!=(z, +y,) =af +y
modulo pW,(R).

Proof. The right-hand congruence is valid in any ring. To prove the left-
hand congruence, we place ourselves in the universal case R = Z[z,y|. The
ghost map

w: Wyp(R) — R"

is an injection and maps the vector zf, + yP — (x+ yn)p to the sequence
@+ 9P = (@ +y)P, .. a” + 7 — (@ +y)?).

As an element of R™ this is divisible by p. We must show that the quotient is
in the image of the ghost map. By the criterion recalled above, we must show
that

+1
("

s+1 s+1

+y? = @+ y?))/p (mod p?),

P @y = (a?
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or equivalently, that
(z + y)p5+1 = (2 + yp)ps (mod ps—i-l)'
But this follows from
(z+yP =2 +y” (mod p)

and from the fact, valid in any commutative ring, that a = b (mod p) implies
a?” = b”° (mod p**'). Indeed, one easily sees that a = b (mod p*) implies
that a”? = b” (mod p**'), and the desired formula then follows by simple
induction. O

Now, from Lemma 3.1.2, for every ring R, the map
R — Wy(R) = Wyo(R)/p,

which takes x to the class of 22, is a ring homomorphism. Let A be a complete
discrete valuation ring with quotient field K and perfect residue field k& of
mixed characteristic (0,p). We recall from (2.2.1) that there is a unique ring
homomorphism f: W (k) — A such that the induced map of residue fields is
the identity homomorphism. Hence, we have a ring homomorphism

(3.1.3) pn:k — Wy(A)

which to z assigns f(mAl//P) P+pW,(A). Here 21/ € W (k) is any element whose
residue class modulo p is the unique p-th root of x. We will always view W,,(A)
as a k-algebra via the map p,. We note that

R(pn(z)) = pna(x),  Flpn(2)) = pn1(2”).

Let m = mx be a uniformizer with minimal polynomial x°% + pOg(x). We
introduce the modified Verschiebung

(3.1.4) Ve Wy 1(A) = Wy (A), Vi(a) =0k (x,)V(a),
where 0 (x,,) is the image of fx (x) under the k-algebra map klz] — W, (A)

which to x assigns the class of m,,. The composite F'V; is zero modulo p.

PROPOSITION 3.1.5.  Suppose that p is odd. Then the k-algebra W, (A)
is generated by the elements V2 (x®) with 0 < s < n and i > 0 subject to the
relations

o i , Vi ), if0=s<t<n,
Vila') Vi(@') = {o,( ) i§0<s§t<n,

Vi@t = v,

Proof. The k-vector space W, (A) is generated by V*(x?) with 0 < s <n
and i > 0. Indeed, write a € A as a = xqn? + - - - + 2o with z; € W (k). Then

Ve(a) = V¥ (zar?) + -+ V(@0) = V3 (pn—s(@a)x?) + - + V*(pn—s(Z0))
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modulo VW, (A), and
Vs(pn—s(-fi)ﬂi) = pn(il/ps)vs(f).

Since Ok () is a unit, we instead can use the elements V,*(x?) as generators.
In general, for s <t,

Vi(x') - Via!) = VHF'VE (') - o))

™

from which the first relation follows. Next, Lemmas 3.1.1 and 3.1.2 show that

% = —p-Ok(m) =V(1)lk(r) = V((0x(7))")

= VP (x?)) = V(1) (x) = Vi (1),

where Hg) () denotes the image of 0k (x) under the automorphism of k[x] in-

duced by the Frobenius of k. The second relation is an immediate consequence.
It remains to prove that there are no further relations. The sequences

0— A/p L5 Win(A) 25 Wili(A) — 0

are exact, since W, (A) is torsion-free, and show that W,(A) is an neg-
dimensional k-vector space. The relations of the statement imply that

gt Wa(4) = b{V2(a') [0 < i < exc},

which is an eg-dimensional k-vector space. Thus there can be no further
relations among the V.5 (x?). O

3.2. A pre-log structure a: M — R on a ring R induces one on W, (R)
upon composition with the multiplicative section _,: R — W, (R). We write
(Wn(R), M) for this log ring. We now assume that p is odd and that R is a
Zy)-algebra.

Definition 3.2.1. A log Witt complex over (R, M) consists of:

(i) a pro-log differential graded ring (EI, Mp) together with a map of
pro-log rings A: (W.(R), M) — (E°, Mg);

(ii) a map of pro-log graded rings
F:E; —E' |,
such that AF' = F\ and such that

Fdlog,a = dlog,_;a, for all a € M,
Fda, = Qf;lldgn,l, for all a € R;

n
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(iii) a map of pro-graded modules over the pro-graded ring E¥,
V:F*E; — E; .,

such that AV =V, FV =p and FdV =d.
A map of log Witt complexes over (R, M) is a map of pro-log differential
graded rings which commutes with the maps A, F and V.

The following relations are valid in any log Witt complex:
dF =pFd, Vd=pdV, V(xdy)=V(x)dV(y).
Indeed, V(zdy) = V(zFdV (y)) = V(x)dV (y), and

dF(z) = FdVF(z)=Fd(V(1)z) = FdV(1)F(z) + FV(1)F(dx)
d(1)F(x )+de( ) =pFd(z )
Vd(z) = V(1)dV(z)=d(V(1)V(z)) —dV(1)V(z)

= dV(zFV(1) = V(2d(1))) = pdV (z).

PROPOSITION 3.2.2.  The category of log Witt complexes over (R, M) has
an initial object W. wEkR M) Moreover, the canonical map is surjective:

A U.)EkW. (R),M) — W. wEkR,M)

Proof. This is a fairly straightforward application of the Freyd adjoint
functor theorem, [29, p. 116]. For a detailed proof, we refer the reader to
[17, §1]. O

We note that W. w?R My = W.(R). For we may consider (W.(R),M) a
log Witt complex concentrated in degree zero. Moreover, from [17, Th. D] we
have:

ADDENDUM 3.2.3. The canonical map is an isomorphism:

The filtration of a log Witt complex by the differential graded ideals
Fil* B! = V°E!_ +dV*E."L c E!
is called the standard filtration. It satisfies
F(Fi*E!) c Fi*! Ei
V(FiIE,) C FiFt'EL ),
but in general is not multiplicative.
LEMMA 3.2.4. The restriction map induces an isomorphism

W wig ary/ FI Wo wig ary — Ws (g ar)-
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Proof. For a fixed value of n — s, the filtration quotients

form a log Witt complex over (R, M). We show that it has the universal
property. Let (E¥, Mg) be a log Witt complex over (R, M). Then there exists
a map of log Witt complexes over (R, M):

W wipar) = B
Indeed, the standard filtration is natural, so we have maps
Wi wig s/ Fil* Wy w{g ary — B,/ Fil* By, — EL,

where the right-hand map is induced from the restriction maps in E¥. We
must show that this map of log Witt complexes is unique. To prove this, it
will suffice to show that the canonical map

i

Wiy = W wigan

is surjective. But this follows from the commutativity of the diagram

v, pan " Wnwlna

l l

Wy — Wswlpa

since the top horizontal and right-hand vertical maps are surjective. O

We define a map F"~1d: W, (R) — w(lR’M) by the formula

Fld(a) = agnil_ldag + alfn%_ldal + -+ dap_1,

where a = (ag,...,a,_1). One easily verifies that F"~'d is a derivation of
Why(R) into the W, (R)-module (F”_l)*w(lR’M) and that the following relation
holds:

an—l — pn—an—ld.

It follows immediately from the derivation property that the formula
a- (wi,wz) = (F" a)wy, F" Y a)wy — F" da - wy)

defines a W, (R)-module structure on wéé}M) @wé gy~ And the relation shows
that

(F" D g = Wigan ®Wlran, = 0" w, —dw),

is a map of W, (R)-modules. We let ,W, wéR M) be the quotient W, (R)-
module. This definition is motivated by Lemma 3.3.3 below.
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LEMMA 3.2.5.  There is a natural ezact sequence of Wy (R)-modules

(Fn*l)*p"—lwéz_%,lM) - (F" ) wlran)
1

s W Wawlgary > (F™ ) (wiphy /") — 0.

Proof. Indeed, as an abelian group, ,W, wé R.M) is equal to the push out

€

(R) iR

[ Jo

i1 1 i
(R,M) W wig )

€

so the underlying sequence of abelian groups is exact. One readily verifies that
the various maps are W, (R)-linear. O

PROPOSITION 3.2.6.  For any log ring (R, M), there is a natural exact
sequence of Wy (R)-modules,

hWWh WER,M) R nwéR,M) £, nfleR,M) — 0,
where N(wi,ws) = dV™" I A\ (wr) + V" I\ (w2).
Proof. Tt follows immediately from Definition 3.2.1 that for all a € W,,(R),
MEF" Yda) = F*1d\(a),

and hence N is W,,(R)-linear. Since the image of N is equal to Fil"~ ' W, wéR M)

the statement follows from Lemma 3.2.4. O

COROLLARY 3.2.7. Let A be a complete discrete valuation ring of mized
characteristic (0,p) with perfect residue field, and let a: M — A be the canon-

%

ical log structure. Then for alln > 1 and i > 2, W, Wia, ) 1$ a uniquely
divisible group.

Proof. Lemma 2.2.4 shows that wé AM) is uniquely divisible, if ¢ > 2. It fol-
lows that , W, wé AM) is uniquely divisible, if ¢ > 3, and an induction argument
based on Proposition 3.2.6 shows that so is W, wZA,M)' The group , W, w(QAM)
is a direct sum of a uniquely divisible group and the group w(l AM) /p" 1. Hence

Wi, w(2 AM) is a direct sum of a uniquely divisible group and a finitely gener-
ated torsion W (k)-module. It is therefore enough to show that the modulo p
reduction W, w(2 AM) is trivial. Inductively, it suffices to show that the map
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is trivial. The map is k-linear, and the domain is generated as a k-vector space
by the elements W%dlog mr with 0 <7 < eg. Now the relation

T+ Ok (m,)V (1),

valid in W,(A), shows that V" !(njdlogmx) = V" Hn)dlog, 7k is either
trivial or contained in the span of elements of the form indlogn Tr. But
these elements have vanishing differential. O

3.3.  We refer the reader to [17, §2] for a fuller discussion of the following
result.

PROPOSITION 3.3.1.  The homotopy groups TR, (A|K;p) form a log Witt
complex over (A, M), provided that p is odd. In particular, there is a canonical
map

W.wiy ary — TRI(AIK; p).

Proof. We recall from Proposition 2.3.1 above that for all n > 1, the homo-
topy groups TR} (A|K; p) form a log differential graded ring whose underlying
log ring is (W, (R), M). The relation that for all a € M,

Fdlog, a = dlog,_; a,

is immediate from the definition of the maps F' and dlog,,, and the remaining
relations are proved in [19, Lemma 3.3] and [16, Lemmas 1.5.1 and 1.5.6]. O

The homotopy groups of the homotopy orbit spectra,
W TRY(A|K; p) = m(H. (Cpn—r, T(A[K))),

are differential graded modules over TR (A|K; p), and there are TR} (A|K; p)-
linear maps

F:, TR (A|K;p) — F*(, TR} (A|K; p)),
V:F*(, TR Y(A|K;p)) — n TR (A|K; p),

which satisfy that F'dV = d and F'V = p. Moreover, there is a natural spectral
sequence of W, (A)-modules,

(3.3.2) EZ, = Hy(Cpur, (F" 1) mT(A|K)) = , TRY,(A|K; p).
The reader is referred to [16, §1] and [19, §5] for proofs of these statements.

LEMMA 3.3.3.  Let L:W%AVM) — mT(A|K) be the canonical map. Then
the map

Wawiaay — #TRI(AIKp),
(wi,ws) +— dV"_lL(wl)—i—V"_lL(wg),
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is a map of Wy (A)-modules. It is an isomorphism for i < 1, and for i = 2,
there is an eract sequence

(F" 1 (A/p" ™) = aWawls ) — ' TRE(A|K;p) — 0,

where the map on the left takes a to (da,0).

Proof. If a € Wp(A), w1 € w’Z}M) and wy € WEA,M)’ then
a-dV"h(w) = da- V" l(w)) —da- VP l(wy)
= AV HEF" o (wr)) = VVHEFY Na - o(wy))
= AV (F" e wy) - VP L(EY - wy)),
a- V'™ (w) = VPHE a - i(we))
= V"L (F" - w),
which shows that the map of the statement is indeed a map of W, (A)-modules.

The map ¢ is an isomorphism for ¢ < 2. So the spectral sequence gives an
isomorphism of W,,(A)-modules

to: (F"~1)"A = , TR (A K:p)
and a natural exact sequence of W,,(A)-modules
0 — (F" ) wigan — nTRY(A|K;p) — (F" )" (A/p"™1) — 0.

The sequence of Lemma 3.2.5 maps to the sequence above, and the map of the
left-hand terms is an isomorphism. It remains to show that the same holds for
the map of the right-hand terms. This map is induced from the composite

A=y Wawlaany — n TRY(A|K;p) — A/p"!
which in turn may be identified with the map
HO(Cpnfl 5 A) — Hl(Cpnfl 5 A)

given by multiplication by the fundamental class [T/Cyn-1]. This map is an
epimorphism with kernel p"~!'A, and the lemma follows for i = 1. The state-
ment for ¢ = 2 is proved in a similar manner, using the spectral sequence in
total degree < 3 and Proposition 4.4.3 below. O

Remark 3.3.4. For i <1, the proof above does not use the fact that A is
a discrete valuation ring beyond the definition of T'(A|K). In effect, the same
proof gives an isomorphism

Wi Q — mH.(Cpu-r, T(R)),

for any Z,)-algebra R.
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Since w(2 AM) is a uniquely divisible group, by Lemma 2.2.4, the spectral
sequence (3.3.2) gives an exact sequence of Wy, (A)-modules

(F" 1) (A/p" ™) == (F" ) (wlaan/P" ") = ' TRE(A|K;p, Zy) = 0,

and d is W,,(A)-linear since dF™~! = pn~LF"=1d. If mx is a uniformizer, then
dlog wx represents a class in the cokernel. We denote this class by [dlog mg]y,.

LEMMA 3.3.5.  The map of W,,(A)-modules
F:, TRY(A|K;p, Z,) — n TREYA|K;p, Z,)
is a surjection whose kernel is generated by p"~2[dlog Tk ]n.

Proof. The exact sequence above shows that the map of the statement is
a surjection and that the kernel is a quotient of the cokernel of the following
map:

ANk n— - d Nk n— _

(Fr= ("2 A" A) == (F" ) (0" Pwlaan /P wiaan)-
Hence, it suffices to show that this cokernel is generated by p"~2[dlog 7 |,. We
consider the polynomial ring P = W (k)[x] with the pre-log structure a: Ny —
P given by a(i) = z'. The map of W (k)-algebras e: P — A, e(z) = 7k,
preserves the pre-log structure and induces a surjection w(lp No) w(l AM)"
It follows that the map piw(lRNO) — piw(lAM) is a surjection for ¢ > 0, and

therefore it will be enough to show that the cokernel of the map

_ _ _ d _ _ _
(Fn 1)*(pn QP/pn 1P) N (Fn 1)*(pn 2w(1P7NO)/pn 1w(1P,N0))
is generated as a W, (P)-module by the canonical image of p"~2dlog z. Now as
a P-module, the quotient p”_2w(1p NO)/p”_lw(lp o) is generated by p"~2dlog x,
and hence the W, (P)-module (F"fl)*(p”*Qw(lp NO)/p"*l(,u(lp 1) 18 generated
by the elements p"2dlogz and p”*2a:pidlog z, 0 <17 < n—1. But the last
n — 1 generators are all in the image of the map d:
P2t dlogx = p"_Q_id(a:pi).
Hence the cokernel of d is generated by p"~2dlog x, and the lemma follows. [
PROPOSITION 3.3.6. The sequences
0 — 4R (A|K:p) - TR (A|K; p) = TR} (A|K;p) — 0
are ezxact for i <1, and TRY(A|K;p) is uniquely divisible.
Proof. The statement for i = 0 is [19, Prop. 3.3] and for i = 1 is equivalent
to the statement that the norm map is injective. The corresponding sequence

of maximal uniquely divisible subgroups is exact, since F~ o N is injective on
this part. Hence, it suffices to show that TR’QL_I(A]K ;p) is uniquely divisible.
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We show by induction on m > 1 that TR (A|K;p) is uniquely divisible,
or equivalently, that TR5'(A|K; p, Z,) vanishes. The basic case m = 1 follows
from Proposition 2.3.4 and Lemma 2.2.4. In the induction step, we show that

Orcm: TRYY(A|K; p,Z,) — 1, TRY(A|K; p, Zp)

is surjective. We first consider the case m = 2. In the diagram of W5(A)-

modules
K,2

0
TRi(A|K;p,Z,) —— ,TR3(A|K;p,Z,)
|5 |5
TR (k; p) % L TR2(k;p),

the lower horizontal map and the left-hand vertical map are both surjections.
Indeed, for the former, this was proved in [19, Th. 5.5], and for the latter, it
follows from the fact, proved in [27], that TR}(A; p,Z,) is trivial. The upper
right-hand group @ is a quotient of the Wy(A)-module M = F*(w(lA’M)/p).
We claim that M is annihilated by the ideal I = VW5(A) + pWa(A). Indeed,
as an abelian group M is p-torsion and FV = p. It follows that also @ is
annihilated by I, and we can therefore view it as a module over the quotient
ring Wa(A)/I. This ring is isomorphic to A/p, the isomorphism given by

Wa(A)/T = A/p, a+ I+ R(a)+ pA,

and we let g: A/p — W3(A)/I denote the inverse. The A/p-module ¢*Q is
generated by the class [dlogmk]e. The image of this class under the right-
hand vertical map is a generator ¢; of the Wa(A)-module ;, TR3(k; p), which is
isomorphic to k. We now pick a € TR3(A|K;p, Z,) such that §(Ox 2(a)) = 1.
The difference 5 = 0k 2(c) — [dlog k]2 is in the kernel of §, and therefore,

B = glemr) - [dlog mk]o,
for some = € A/p. We then have
g(1+ z7k) - [dlog k|2 = Ok 2(),
and since (1 + z7g) € (A/p)*,
[dlogmx]e = (9(1 +2mk) ™) - Ox2().
We would like to know that the map of units
Wa(A)* — (Wa(A)/1)*

is a surjection. This will follow if we know that the I-adic topology on W (A)
is complete and separated. But the formula

V(z) - V(y) =V (FV(z)y) = V(pzy) = pV (zy)
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implies that the I-adic and p-adic topologies on W5(A) coincide, and the p-adic
topology is complete and separated. So we can find a unit u € Wa(A)* such
that w4+ I = g(1 + zmk). Since Ok 2 is Wa(A)-linear,

1

[dlog ]2 = u™ 'Ok 2(er) = Ok 2(u™" ),

which concludes the proof for m = 2.
We now proceed inductively, and consider the diagram

m— OK,m m N m
TRy Y (A|K;p. Z,) — TR} (A|K;p,Z,) — TR (A|K;p,Zp)

L# L * [»

TRY (A p,Z,) 202 W TRE VA p,2,) 5 TRY™(AIK;p, Z,).
Inductively, the map Ok y,—1 is surjective, and the left-hand vertical map F is
surjective by Lemma 5.6.1. Moreover, the kernel of the middle vertical map
is generated as a W,,(A)-module by the class p™ 2[dlog mk]m. It therefore
suffices to show that this class is in the image of O, in the top row, and
this in turn will follow if we show that the class [dlog 7k], is in the image of
Ox.m- To see this, we pick o € TRY ' (A|K; p), Z,) such that x _1(F(a)) =
[dlog Tk |m—1. Then 8 = Or m(a) — [d1log Tk ]m is in the kernel of the middle
vertical map, so we can write 3 = x - p™ 2dlog 7, for some x € W,,(A). But
then

(1+ pm_Qx)[d log T ]m = Ok,m (),
and hence
[dlog m]m = (14 ™ 22) " O m() = Ogm((1 +p™ ) ),

where the inverse exists since the p-adic topology on W,,(A) is complete and
separated. O

ADDENDUM 3.3.7.  The group TR (A;p) is uniquely divisible for all n.

Proof. 1t suffices to show that TR%(A;p,Z,) is trivial. We prove this by
induction, and refer to the proof of Proposition 2.3.4 for the case n = 1. Since
TR5(A|K; p, Z,) vanishes, there is an exact sequence

TR} (A|K:p, Z,) < TR (kip) — TR (4;p, Z,) — 0,
and we must prove that the map 6, is surjective. We consider the diagram
On,
TR3(A|K;p, Zy)  ——  TR3(k;p)

L L

TR VA|K; p, Z,) =% TRZ(k;p).
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The map 6,1 is surjective by induction, and the left-hand vertical map is
surjective by Lemma 5.6.1. Moreover, it was proved in [19, Th. 5.5] that the
right-hand vertical map F' is a surjection whose kernel is equal to the image of
the map

VTR ™! (k; p) — TRE (k; p).

Since the square

TRINAIK:p,Z,) = TR (k;p)

|v [v
n 571 n
TR3(A|K;p, Zy) —— TR5(k;p)

commutes and the top horizontal map is a surjection, the proof of the induction
step is complete. O

THEOREM 3.3.8. The canonical map

W, ng,M) — TRZ(A|K;p)

is an isomorphism, for ¢ < 2, and a rational isomorphism, for all ¢ > 0.

Proof. The proof is by induction on n starting from Proposition 2.3.4. In
the induction step, we use the exact sequences of Lemma 3.2.6 and Proposi-
tion 3.3.6,

WWh w?A’M) — W, ngM) How,, w?A,M) — 0

| | I~

0 — TRy(A|K;p) = TRp(A[K;p) —& TRy '(AK:ip) — O,
where the lower sequence is exact, for ¢ < 1, and exact modulo torsion, for all q.
If ¢ < 1, the left-hand vertical map is an isomorphism by Lemma 3.3.3, and
hence the statement follows in this case. When ¢ = 2, the left-hand vertical
map is an epimorphism with torsion kernel. Since the domain and range of the
middle and right-hand vertical maps are both divisible groups, the statement
follows. O]

In the proof of Proposition 3.3.6, Addendum 3.3.7, and Theorem 3.3.8
above for n > 3 we have used Lemma 5.6.1 below. However, the lemma is not
needed to prove these statements for n < 3. In particular, the proof of the
following result does not use Lemma 5.6.1.

ADDENDUM 3.3.9. The connecting homomorphism
0: TRy(A|K;p, Z/p) — wTRI(A|K; p, Z/p)
maps k to dV (1) — V(dlog(—p)).



ON THE K-THEORY OF LOCAL FIELDS 57

Proof. To prove the statement, we apply Lemma 3.3.10 below to the 3 x 3-
diagram obtained from the smash product of the coefficient cofibration se-
quence

§0 2,50 L, gt
and the fundamental cofibration sequence
WTR™(A|K; p) = TR™(A|K; p) =5 TR™(A|K; p) =5 S(TR"(A|K p).

Since TR2(A|K;p) is uniquely divisible and TRo(A|K;p) torsion-free, the
lemma shows that the connecting homomorphism of the statement is equal
to the opposite of the connecting homomorphism associated with the diagram

0 — ATR}AK;p) -5 TRIAIK;p) % TRI(A|K;p) — 0

s J» J»

0 — AnTR}A|K;p) 5 TRIAIK;p) & TRI(A|K;p) — O

And by Theorem 3.3.8, this diagram is canonically isomorphic to the diagram

0 — hWQW(lAyM) , WQW(IA,M) - Wlw(lA:M) — 0

J» J» J»

0 — hW2W(1A7M) Ll WQw(lA,M) L Wlw(lAyM) — 0

The Bockstein maps x to dlog(—p) € W1 w(l AM) which is the image by the

restriction of dlogy(—p) € Wy w(lA M) To evaluate pdlog,(—p) we use the
formula

—(=p), + V(1) = p(1 + P2V (1)),

which one readily verifies using the ghost map. Differentiating, we find

—d(=p), +dV(1) =2V (1) =0,

and if we multiply by dlog,(—p), we get

—d(=p), + V(dlog(—p)) = pdlogs(—p) + p" >V (dlog(—p)) = pdlogy(—p).

This shows that pdlogy(—p) = V(dlog(—p)) — dV (1) as desired. O
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LEMMA 3.3.10.

Eyy u, Ey9
J/gll lgl?

Es 2 By
l921 1922

By I By
Jon [

YEn =, YFEo

f12

—— ki3
Lo
fo2
——  FEb3
lg%
fa2

——— k33

l933

e, YFEi3

f13

—

fas
—_—

(=1

-2 f13
—_—

Given a 3 X 3-diagram of cofibration sequences

YEn

lzgn

Y By

lz.‘hl

Y B3

l—zgu

Y2F,

and classes ej; € m, E;; such that g33(ess) = X fi2(e12) and f33(es3) = Xga1(ear).
Then the sum fa1(e21) + gi2(e12) is in the image of meE11 — mFaa.

3.4. The k-algebra W,,(A) was evaluated in Proposition 3.1.5 above. We
now evaluate the differential graded k-algebra W, w{ AM) Let m = g be a
uniformizer. Then the modified Verschiebung from (3.1.4) satisfies

FdVy(a) = 0k (m)Pda.

Let r =r(i,ex) = vp(i — pex/(p — 1)).

PROPOSITION 3.4.1.

is concentrated in degrees 0 and 1 and satisfies:

The differential graded k-algebra E* = W, wE‘A M)

(i) A k-basis for E! is given by the elements V.2 (z'dlog ), where 0 < i <
ex and 0 < s <7, and dV3(z?), where 0 < i < ex and r < s < n. Moreover,
V3(ridlog w) vanishes, if s > r, dV,(z') vanishes, if s < r, and

(ii) The ES-module structure on E} is given by

AV (P — iV (xP 1+ dlog 7)

V3 (x')dVi(x?) =

V;(f)\@f(ﬂjdlog )= V*

—iVi(0k ()"
V7 (O ()"

™

0

1
= “Vai+r" i dlog )
Vﬁ(ﬂ?titfd logm) ifs=0,
(P Idlogm) ift=0,
otherwise.

tfs(Ps+1*1

dvy(z') = p~" (i — per/(p — 1)) - Vy (z'dlog ).

if 0 =5 <t,

p1 _1)Ept_s”jdlog ) if0<s<t,

if s > t,

Proof. 1t follows from Propositions 3.1.5 and 3.2.2 that E is generated,
as a graded k-vector space, by the monomials in the variables V(%) dV.5(x?),
V(ridlogm), and dV?(m'dlogn) with 0 < s < n and i > 0. Theorem 3.3.8
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and Corollary 3.2.7 show that EJ vanishes, for ¢ > 2. In particular, the latter
generators, which are of degree two, must vanish.

We verify the relations in (i). If s < r then p~*(i+pex(p®*—1)/(p—1)) is
an integer, and iterated use of the second relation in Proposition 3.1.5 shows
that

. —s(: p°—1
Vi(al) =P e

It follows that dV,5(z’) vanishes, if s < r, and that dV(z*) and V" (x'dlog )
are related as stated. And since Vd is the zero homomorphism, this also shows
that for s > r, V*(xldlog ) = V5"V (x'dlog ) vanishes.

The formulas in (ii) are readily obtained by differentiating the first set of
relations in Proposition 3.1.5. If, for instance, 0 < s < t < n, we find that

Vi(r)avi(a?) = —dVi(z')\Vix!) = -VE(F'dV;(z')x?)
—s ps+17 —8: s
= —iViOx(@) T g dlog ),

and the remaining formulas are verified in a similar manner. It remains to
prove that this gives all relations in E!. This is the case if and only if E} is
an neg-dimensional k-vector space. We prove in Proposition 6.1.1 below that
this is indeed the case, and hence there can be no further relations. O

4. Tate cohomology and the Tate spectrum

4.1. Let G be a finite group and let k£ be a commutative ring. The norm
element Ng € kG is defined as the sum of all the elements of G. If M is a left
kG-module, multiplication by Ng defines a map

Ng: Mg — M€
from the coinvariants Mg = k Qe M to the invariants ME = Homygg (k, M).
We note that for left kG-modules M and N, there are canonical isomorphisms
(M ®N)g=c*M &g N, Hom(M,N)® = Homye(M,N),
where ¢*M denotes the right kG-module with m - g = g~ 'm.

Let e: P — k be a projective resolution and let P be the mapping cone of

e such that there is a distinguished triangle (see §2.1 above)
Pk-5p-Lyp

Definition 4.1.1. Let M be a left kG-module. The Tate cohomology of

G with coefficients in M is given by

H*(G, M) = H_.((P ® Hom(P, M))%).
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It is clear that the Tate cohomology groups are well-defined up to canonical
isomorphism. We show that the definition given here agrees with the usual
definition in terms of complete resolutions, [5, Chap. XII, §3].

LEMMA 4.1.2. The following maps are quasi-isomorphisms:

(Pe M)e 25 (Pe M) M2 (P Hom(P, M))C.

Proof. We first show that the norm map is an isomorphism of complexes.
It will suffice to show that the norm map

(kG @ Mg 2L (kG @ M)©

is an isomorphism, for both sides commute with the formation of arbitrary
direct sums. Let n: k — kG and e: kG — k be the unit and co-unit of the Hopf
algebra kG, respectively. Then we have an isomorphism of left kG-modules

ERGReEN M S kG M, ((g®x)=g® g

The left-hand side is isomorphic to a direct sum indexed by the elements of
G of copies of M, and G acts by permuting the summands. Hence N is an
isomorphism.

In order to show that the right-hand map of the statement is a quasi-
isomorphism, we filter the double complex on the right after the first tensor
factor. This gives, by [1, Th. 6.1], a strongly convergent fourth quadrant
spectral sequence

E}, = Hy((Py ® Hom(P, M))“) = Hy4((P ® Hom(P, M))%),
and hence, it suffices to show that for all s > 0, the map
(P, ® M) 12 (P, @ Hom(P, M))®

is a quasi-isomorphism. Since both sides commute with filtered colimits in the
first tensor factor, we can further assume that the projective kG-module P; is
finitely generated. In this case, the dual DPs = Hom(Ps, k) again is a (finitely
generated) projective kG-module, and there is a commutative diagram

(P, M)G M€ (P, @ Hom(P, M))¢
Hom(DP,, M)¢ 2% Hom(P® DP,, M)C,
with the vertical maps isomorphisms. The map

e®id: P® DPy; — DP;



ON THE K-THEORY OF LOCAL FIELDS 61

is a quasi-isomorphism between bounded below complexes of projective kG-
modules. Therefore, it is a chain homotopy equivalence, and hence, so is the
lower horizontal map in the diagram above. The lemma follows. O

Remark 4.1.4. The triangle preceding Definition 4.1.1 and Lemma 4.1.2
gives rise to natural isomorphisms

; ~ ) HY(G,M) if i >1
(G, M) = { Hoo oG, M) ifi < —1

and to a natural exact sequence
0— HY(G, M) -2 Hy(G, M) X HOG, M) - HY(G, M) — 0.

Hence, the definition of Tate cohomology given here agrees with the original
one in terms of complete resolutions, [5, Chap. XII, §3]. This can also be seen
more directly as follows. Let e: P — k be a complete resolution in the sense of
loc. cit., and let P and P~ be the complexes whose nonzero terms are P; = ]51',
if ¢ >0, and P, = B, ifi <0, respectively. Then e: P — k is a resolution
of k by finitely generated projective left kG-modules and there is a canonical
triangle
P~ PP %P,

An argument similar to the proof of Lemma 4.1.2 shows that the canonical
maps

Hom(P, M)% = (P @ Hom(P, M))¢ = (P ® Hom(P, M))¢
are quasi-isomorphisms.

Definition 4.1.5. The cup product
H*(G,M)® H(G,M') — H*(G,M @ M")
is the map on homology induced by the composite
(P @ Hom(P,M))® @ (P Hom(P,M'))°
— (P® P®Hom(P® P,M® M')¢
— (P ®Hom(P,M @ M),
where the first map is the canonical map, and the second map is induced from

a choice of chain maps P — P ® P and P ® P — P compatible with the
canonical isomorphisms k£ — k ® k and k ® k — k, respectively.

It is well-known that the chain map P — P ® P exists and is “unique up to
chain homotopy. The analogous statement for the map PQ P — P is proved in
a similar manner. Hence, the cup product is well-defined. It makes H (G, k)
a graded commutative graded ring and H *(G, M) a graded module over this
ring.
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4.2. Let C be a cyclic group of order r and let ¢ € C' be a generator.
We let e: W — k be the standard resolution which in degree s > 0 is a free
kC-module on a single generator x5 with differential

de — Nz q, s even,
] (9—1xs_1, s odd,

and with augmentation (z¢) = 1. Then W is the complex which in degree
s> 0 is a free kC-module on the generator ys = (0,25—1) and in degree s = 0
is a trivial kC-module on the generator yp = (1,0). The differential is

—(g — 1)ys—1, s even,
dys =< —Nys_1, s> 1 odd,

—Yo s=1.

The dual of x4 is the element 2% € DWy = Hom(Wj, k) given by z*(g'zs) =
8;0- Note that ¢' - 2} = (¢'w,)* and that the map (¢°)*: DWs; — DW, maps
x¥ — g7'z¥. Thus

dx* = (g_l - 1)1’:+1, § even,
s Nzi,q, s odd.

LEMMA 4.2.1. Suppose that the order of C is odd and congruent to zero
i k. Then as a graded k-algebra

H*(C, k) = Mu} ® S{t*1}

where t and u are the classes of yo@ Nz5 and yo @ Nx7, respectively. Moreover,
the classes 1, ut™ and t=% are represented by the elements yo @ Nxj, —Ny, ®
Nz and Ny @ Nxj, respectively.

Proof. We first evaluate the homology of the complex
(W @ Hom(W, k))¢ = (W @ DW)°.

This is the total complex of a double complex, and the filtration after the first
tensor factor gives rise to a fourth quadrant homology type spectral sequence
which converges strongly to the homology of the total complex, [1, Th. 6.1].
We have

E;,t = Hs+t(Ws ® DW)C — s+t(Hom(W, WS)C)’

which vanishes if both s and ¢ are nonzero. Hence Eit = EJ5 and it is easy to
see that if either s or t is zero, this is a free k-module of rank one generated
by the classes of yo ® Na*, and Nys ® Nz, respectively. We note that these
elements are also cycles in the total complex.

To evaluate the multiplicative structure, we choose liftings

W -weW,
PWOW — W
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of the canonical maps k — k ® k and k ® kK — k, respectively:

Z g’ @ g?z,, m and n odd

o ( 5o ) o s<p<g<s
mal\g Tmtn) = gsp @ gy, m odd, n even
Gy @ ¢ Ty, m even
and
> ¢°Ymin, mandn odd
D q _ ) p<s<q<p
Ponn(0Ym ® 9"Yn) =\ 5 Pymin,  m odd, n even
0p,q9" Ymtn; m even,

where in the first line the sum ranges over the g° between ¢g” and ¢g?~!, both
included, in the cyclic ordering of C specified by the generator g. The sum is
zero if and only if p = ¢. The map ¥ induces a product map on the dual DW
given by the composite

U*: DW @ DW % D(W @ W) 2% Dw,

or
— Z g %y, 1, m and n odd
* —p, ¥ —q N p<s<g<p
Vo n (g P o, @ g7 0ay,) = Opg+19 T ) m odd, n even
Op,q9 Py s m even.
We find that
r(r—1) .
(yo® Nat) - (@ Na) =4~ g 0@ NTmyn, mandnodd
Yo ® Nzy, 1y otherwise
and
r(r—1) .
(Nym @ Nai) - (Nyp @ Nzi) =4 — 3 NYmin @ Nz, m and n odd
NYmin @ Nz otherwise.

Moreover, the product
(yo ® Nz3) - (Ny2 ® Nag) = Ny» ® Naj

is homologous to yp ® Nz{, which represents the multiplicative unit in the
cohomology ring. Indeed, with A(N) =325, 9° ® ¢°

d(A(N)(y1 ® 25) + A(N)(y2 @ 27)) = —yo ® Nzg + Ny @ Naj.
Hence Ny, ® Nz represents the class t 1. Finally, for any element o € kC,
(1® a)A(N) = (a®1)A(N),
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where @ = ¢(«) is the antipode. Therefore, if a € kC' is such that (¢ — 1)a =
r — N (for example o = 1 +2g + --- 4+ r¢g"~! is such an element), then

d((a ® 1)A(N)(y2 ® )
= —((g-1) @ D(a@ A(N)(y1 ® zp)
—(1®(g—-1))1®@&)AN)(y2 ® 1)
= Ny1 ® Nzj+ Nys @ Na] — rA(N)(y1 @ x5 + y2 @ 27),

and hence, Ny; ® Nz} represents the class —ut~! in the cohomology ring. [

ADDENDUM 4.2.2.  The boundary map 8: H-*(C,k) — Ho(C,k) takes
ut™! to the class of —1.

Proof. The boundary map, by definition, is induced by the composite

(W ® Hom(W, k))¢ 224 (SW © Hom(W, k)¢ &2 (W @ k)©

L (W @ k)e 22 Ske.

The class ut ™! is represented by the element —Ny; ® Nz} whose image under
0 ®id is —Nzp ® Nzj. This element is equal to (id ®e*)(—Nzo ® 1) and
—Nzp®1 = N(—z9 ® 1). Finally (¢ ® id)(—z9 ® 1) is equal to the class
of —1. O

4.3. We recall that for spectra X and Y, there are natural maps

N X @mY — mept (X AY),

4.3.1
(4.3.1) Vst F(X,Y) — Hom(m_s X, 1Y),

where A is the external product and V is the adjoint of the composite
TortF(X,Y) @ m_s X 25 m(F(X,Y) A X) <5 1Y,

Let X be a G-CW-spectrum with an increasing filtration { X} by sub-G-CW-
spectra. Then the exact couple

7 7 16)
Ds—l,t+1 — Ds,t — Es,t — Ds—l,t

with

D¢ (X)

= 7Ts+t((XS)G)
Es,t(X) =T

s+t((Xs/Xsfl)G)

gives rise to a spectral sequence which abuts the homotopy groups of X&. The
spectral sequence converges conditionally in the sense of [1, Def. 5.10], provided
that U X, = X and holim._ (X,)% is contractible.

(4.3.2)
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If X and X’ are two G-CW-spectra with such filtrations, we give the
smash product X A X’ the usual product filtration

(XAX)= |J XonXl.
s+s'=n
with filtration quotients
(XAX )/ (XAX o1 =\ Xo/Xemd N Xy )Xoy
s+s'=n

The external product (4.3.1) and the inclusions

XsANXL — (XAX)guo,
Xs/Xsfl/\X;//X;/_l — (X/\X/).SH’S//(X/\X/)S#’S/fl

then give rise to pairings

D (X)® Dy /(X') = Dgygrpiv (X AN X'),
E57t(X) & E5/7t/ (X/) — Es-l—s’,t—‘rt’ (X A X/)

These, in turn, give rise to an external pairing of the associated spectral se-
quences, that is, pairings

T(X) ® Bl (X') = Bl (X A X)),
for all » > 1, which satisfies the Leibnitz rule
d'(zz') = d"za’ + (—1)1*lzd" 2.

Here |z| is the total degree of x. A filtration-preserving product map X A X —
X induces a map of the associated spectral sequences which, pre-composed by
the external product, give an internal product on the spectral sequence E*(X).
The differentials act as derivations for this product, and if the product on X
is associative, commutative or unital, the same holds for the internal product
in the spectral sequence. Commutativity in the spectral sequence is up to the
usual sign.

Let G be a finite group and let E be a free contractible G-CW-complex.
Let E be the mapping cone of the projection pr: E, — S° which collapses E to
the nonbase point of SY. The associated suspension-G-CW-spectra (we make
no change in notation) form a distinguished triangle

E+£>SO—>E~‘i>EE+

Let P and P be the cellular complexes of E, and E with coefficients in a
commutative ring k. We then have a distinguished triangle

P2 P yP

in the category of chain complexes.
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The Tate spectrum of a G-spectrum 7' is defined by
H(G,T) = (E ATF(E4,T))C,

where TX - X is a functorial G-CW-substitute. If T and T’ are two
G-spectra, we define a pairing

(4.3.3) H(G, T) NH(G,T') — H(G, T AT")

as follows. By elementary obstruction theory, there are cellular G-homotopy
equivalences E, — E, A Ey and E A E — E compatible with the canonical
isomorphisms SY — SO A S? and SO A SO — SO respectively, and any two such
equivalences are G-homotopic. The pairing then is given by

(EATF(Ey,T)Y A (EATF(E.,T))Y - (EANEANTF(Ey ANEy, T AT"))®
— (EATF(E,, T ANT")C,

where the first map is the canonical map and the second is induced from the
chosen G-equivalences. If T is a G-ring spectrum, the composition of the
external product with the map of Tate spectra induced from the product map
on T, makes H(G,T ) a ring spectrum. This ring spectrum is associative,
commutative or unital if the G-ring spectrum 7' is associative, commutative or
unital, respectively.

The CW-filtrations of E and E give rise to a double filtration of the Tate
spectrum. In more detail, we define

X,s=E.ANTF(E/E_, 1,T),
Yys=E./Ery A\TF(E/E_s_1,T),
Zys=FE, N\TF(E_,/E_,1,T)),

Wys = By /B,—1 A\TF(E_g/E_s_1,T)).

To get an honest filtration by sub-G-CW-spectra, we let

Xrs = holim X,/ ,

where the homotopy colimit runs over all 0 < 7/ < r and s’ < s < 0. There
is a canonical homotopy equivalence X,nys - X, s and Xr,s is a sub-G-CW-
spectrum of the G-CW-spectrum X = Xoo,O- We also let

Vs =X o/ Xr 18

Zrs=Xrs/Xrs1

Wis = Xrs/Xr—15U X 51
and define

X.= | XX

r+s<n
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The exact couple (4.3.2) associated with the filtration {X,} gives rise to a
conditionally convergent spectral sequence

E*(G,T) = E*(X) = m(H(G,T)).
LEMMA 4.3.4. There is a canonical isomorphism of complezes
E},(G,T) = (P @ Hom(P,mT))"
and hence Eit(G',T) ~ H5(Q, m,T).

Proof. The inclusions X, s — X, induce an isomorphism

\/ Wrs - Xn/anl

b
r+s=n

such that the boundary map
Xo/Xn1— XX 1 — 2(Xn1/Xn2)

maps the summand Wns to the summands ZWT_LS and EWT,,S_l by the maps

0 Wy — SVt — Sy,

O Wyg = X215 — XWy_1,
respectively. We identify

Trpstt(Wrs)9) = (P @ Hom(P-y, mT))<

as follows: If X and Y are two G-spectra, we have the canonical map

T (X AY)Y) = (m (X AY))C.

This is an isomorphism, for example, if X is a wedge of free G-cells. The desired
isomorphism is the composition of the inverse of this map with X = E,/E,_;
and Y =T'F(E_s/E_s_1,T) and the map of G-fixed sets induced by

'/T'r—l-s—l—t(Er/Er—l A FF(E—S/E—S—L T))
% WT(ET/ET—I) & 7Ts+tFF(E—s/E—s—1; T)
— WT(ET/EN‘Tfl) X 7Ts+tF(Efs/Efsfly T)

h ~ ~
—% Hy(Ey/Er—1) ® Hom(r_s(E_s/E_s_1),mT)

1@h* 5

<2 H(Ey/Ey—1) @ Hom(H_(E_s/E_s—1), mT).
Here h is the Hurewitz homomorphism. One readily shows that under this
identification, 7, (9") and m.(9”) correspond to the differentials in the algebraic
double complex. O
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The pairing (4.3.3) induces a pairing X (T)AX (T") — X (T AT’), and since
the equivalences E; — E, A E. and E A E — E were chosen to be cellular,
this pairing preserves the filtration by the sub-CW-spectra {X,}. Hence, we
get an induced pairing of the associated spectral sequences.

PROPOSITION 4.3.5. Let T and T' be two G-spectra. Then the pairing of
Tate spectra (4.3.3) induces a pairing of the associated spectral sequences. On
E2-terms, this pairing corresponds to the pairing on Tate cohomology

H*(G,7.T) ® H (G, mT") — H*(G, (T ANT"))

under the isomorphism of Lemma 4.3.4. In particular, if T is an associative
G-ring spectrum, then E* = H*(G, 7. T) as a bi-graded ring.

Proof. The equivalences E, — E, A E, and E A E — E induces chain
maps P — P® P and P® P — P which lift the canonical maps k — k®k and
k®k — k, respectively. Now suppose T and T” are two G-spectra and consider
the spectral sequences corresponding to the filtrations {(X (7)) A X (T")),} and
{X(T AT"),}. An argument analogous to the proof of Lemma 4.3.4 identifies
the E'-terms of the associated spectral sequences with the complexes

(P ® Hom(P, 7,T) ® P ® Hom(P, 7, T"))%

and
(P @ Hom(P, m.(T AT")))C,

respectively. We claim that under these identifications, the pairing
X(T)ANX(T) — X(T AT

corresponds to the composition

(P ® Hom(P,n,T))% ® (P ® Hom(P,n, T"))%
— (P® P®Hom(P ® P,m.T @ mT1"))% — (P ® Hom(P,m,(T ®T")))%,

where the first map is the canonical map of chain complexes (which involves
sign changes) and the second map is induced from the maps P — P ® P and
P ® P — P and from the exterior product (4.3.1). This is straightforward to
check. Similarly, under the isomorphism of Lemma 4.3.4 and the analogous
isomorphism above, the external pairing corresponds to the canonical map (no
sign changes)

(P @ Hom(P, 7, T))¢ ® (P ® Hom(P,w,T"))¢
— (P ® Hom(P, 7. T) ® P ® Hom(P, ., T"))".

But this was our definition of the pairing in Tate cohomology; see (4.1.5). O
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Remark 4.3.6. 'We show that the spectral sequence E*(G, T') considered
here is canonically isomorphic to the spectral sequence obtained from Green-
lees’ Z-graded ‘filtration’ of E, [11], [12]. This is the sequence of G-CW-spectra,

=B —E,— E. g — -,

where, for r > 0, E, is the suspension G-spectrum of the r-skeleton of E, and
for 7 < 0, E, is the dual D(E_,) = TF(E_,,S%). In particular, Ey = S° is
the sphere G-spectrum. The maps E,_; — E, are induced from the canonical
inclusions, and for » = 0, from the canonical map D(S°) = S°. In the
definition of the G-CW-spectra Xr,s and X,,, we now may vary r over all
integers. Let X/, and X, denote the G-CW-spectra so obtained. Then, for

r > 0, the canonical inclusion XT,S = XAS is a homotopy equivalence. We
have maps of filtrations

{(Xutner = { X} nez — {X;‘,O}T’E/%

and the filtration on the right is Greenlees’ filtration. We show that both maps
induce isomorphisms of the E?-terms of the associated spectral sequences. In
order to identify the E'-terms, let e: P — k be the complete resolution, where

(SP), = Hy(E, UCE,_1;k)
with differential
Hy(E,UCE 1) 2 Hy(SE 1) <P H, \(Es_1) > Hy 1(Es-1UCE, )
and with structure map
e: Py = Hy(Ey UCEy) 2 Hi(SEy) <™ Ho(Eo) = k.

The map of distinguished triangles
P = k¥ — P — ¥P

N |

P — P~ — YP — P

defines a quasi-isomorphism of the mapping cones of the two middle vertical
maps. (See remark 4.1.4 for the definition of the lower triangle.) Now an
argument similar to the proof of Lemma 4.3.4 identifies the maps of E'-terms
induced from the above maps of filtrations with the canonical maps

(P ® Hom(P, M))¢ — (P ® Hom(P, M))¢ «— (P @ Hom(k, M))“.

Finally, an argument similar to the proof of Lemma 4.1.2 shows that both
maps are quasi-isomorphisms.
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4.4. Again let C be a cyclic group of order r and let g be a generator.
As our model for E, we choose the unit sphere

E = 5(C™),

where the generator g acts on C by multiplication by ¢2™/". We give E the
usual C-CW-structure with one free cell in each dimension. The skeletons are

£ S(Cd) n=2d—1
"] S(CHx(C-1) n=2d,

where in the latter case, we identify the join with its image under the canonical
homeomorphism S(C") % S(C) = S(C" & C). The attaching maps

oan: D" xC — E,
are defined in even dimensions by the composite

D¥ x ¢ -5 D(C?) x ¢ = S(CY) « (C - 1),

s

where £(z,9%) = (¢° - z,¢°) and 7 is the canonical projection. We define

al(a;’gs) _ gs . eﬂi(m—l—l)/r

and let aggy1 be the composite
D* x D' x ¢ -5 D(C%) x D! x ¢ 2% D(C?) x S(C) = S(C%) « S(C).

We give D(C?) the complex orientation and D! = D(R) = [~1,1] the
standard orientation from —1 to 1. We may then identify the cellular complex
of E with the standard complex W by the isomorphism

W = C.(E; k)

which maps the generator z, € W, to the image of the fundamental class
under the composite

H,(D",5" 1) X% H, (D" x C,5" ' x C) *% H,(E,, E,_1).

Here 1g: D™ — D™ x C' maps z to (z,1).
The C-CW-structure on E induces one on E and the isomorphism above
induces an isomorphism of chain complexes

We identify E with S by the homeomorphism
CS(C>®),USY =5 D(C™>)/S(C>)

which maps ¢t A z — tz. Note that under this homeomorphism, the orientation
of the cells in E corresponds to the complex orientation of S . In particular,
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the composite
Ho(S%) < Ho(B) 2% Hy(Bo, By) < W,

maps the fundamental class [S©] to the class Nys.

Let C C T be the subgroup of order r. We give T the C-CW-structure
of S(C) = Ej. Then the multiplication is cellular, and hence, the cellular
complex

A = C,(T; k)

is naturally a differential graded Hopf algebra with unit 1 = xg. The differential
maps x1 to (¢ — 1) - g, x1 is primitive, the coproduct on g is g ® g, and the
antipode is given by ¢(x1) = —z1. We note that x; represents the fundamental
class [T]. The C-action on E = S(C*) naturally extends to a T-action, and
the action map

wTxbE—FE

is cellular. The induced action on E,
~ C ~
T ANE =Ty ACy -2 Cryppr —= Cpr = E,

again is cellular. The induced left A-module structures on the cellular com-
plexes W and W are given by

o Ts+1 S even . ] 0 s even
L Y sodd ’ 1 Ys = —ystr1 s odd.

Let T be a T-spectrum and let X = X (T') be the filtered T-CW-spectrum,
which gives rise to the spectral sequence E*(C’, T). We give T/C the skeleton
filtration such that Ac = C.(T/C;k). Then the T-actions on F, E, and T
induce a filtration-preserving map

w:T/Cy AN XY — XC©.

An argument similar to the proof of Lemma 4.3.4 identifies the induced map
of E'-terms of the associated spectral sequences with the map

Ac ® (W @ Hom(W, m,.T))¢ — (W @ Hom(W, 7,T))¢
given by the composite
Ac ® (W @ Hom(W,m,T))¢ Y29 A€ @ (W @ Hom(W, .T))C
— (A ® W @ Hom(W, 7,T))¢ 25 (W @ Hom(W, 7,.T))°.

PROPOSITION 4.4.1.  Let T be a T-spectrum. Then E*(C,T) is a spectral
sequence of left Ac-modules. Moreover, if the class a € W*(H(C, T)) is repre-
sented by the infinite cycle z € E;’t, and if x1-z € E;—l—l,t is nonzero, then x1-z
is an infinite cycle and represents the class of da € W*(]I:H(C, T)).
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Let k be a perfect field of odd characteristic p and let T'(k) be the topo-
logical Hochschild spectrum of k. Then as a differential graded k-algebra,

m(T(k), Z/p) = Me} @ S{o}

with the classes ¢ € m(T'(k),Z/p) and o € m(T'(k),Z/p) characterized by
B(e) =1 and d(¢) = 0. The Tate spectral sequence takes the form

E2(Cp, My AT () = Mu, e} @ S{t*h, 0} = m.(H(C,, T(K)), Z/p),

where u; = u and ¢ are the generators of ﬁ*(Cp, k) from Lemma 4.2.1. The
nonzero differentials are multiplicatively generated from d?(¢) = to.

COROLLARY 4.4.2.  The image of the classes € and o under the map
induced from

Ty: T(k) — H(C,, T(K))
are represented by the infinite cycles ut™' and t=1, respectively.

Proof. We recall from Section 1.1 that T'; is defined as the composite
T(k) & pt, (B AT)C — piy (B A F(Es, ).

Both maps are T-equivariant, so I' commutes with Connes’ operator. It also
commutes with the Bockstein operator. Hence, it suffices to show that ut ' ®1
represents the unique class whose Bockstein is the multiplicative unit 1, and
that t ! ® 1 represents the image under Connes’ operator of this class. To this
end, we recall from Lemma 4.2.1 that the classes 1, ut~ and ¢! in H* (Cp, Fp)
are represented by the elements yo ® Nzj, —Ny;1 ® Nzj and Ny ® Nz,
respectively. We recall from Section 2.1 above that the Bockstein

B I:I*(Cw Fp) — ﬁ*ﬂ(cpa 7)
is equal to the connecting homomorphism associated with the exact sequence
0 — (WeHom(W,Z))% 2 (WeHom(W,Z))% 25 (WeHom(W, F,))“ — 0.
This takes —Ny; ® N to yo ® Naj, and hence B(ut™!) = 1. Next,
1+ (=Ny1 ® Naj) = —=N(z1-y1) @ Nag + Ny1 @ N(z1 - z) = Ny2 ® Nxg,

and so by Proposition 4.4.1, the image under Connes’ operator of the class
represented by ut~! ® 1 is represented by ¢t~ @ 1. O

Finally, for a T-spectrum 7', we will also consider the T-Tate spectrum
H(TaT) = (E N FF(E-HT))Ya

where again F = S(C*). The filtration of E by the odd skeletons Foq_1,
d > 1, and the associated filtration of F both are preserved by the T-action.
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The induced filtration of the Tate spectrum gives a conditionally convergent
spectral sequence

E2(T,T) = S{t*"} @ m.(T) = =, (H(T,T)),

with the generator ¢ in bi-degree (—2,0). Let C' C T be a subgroup. Then the
canonical inclusion H(T,T) — H(C,T) induces a map of spectral sequences

E*(T,T) — E*(C,T).

If the order of C' is odd and annihilates 7, (T") then, on E?-terms, this map is
the canonical inclusion which maps ¢ to the generator ¢ of Lemma 4.2.1. This
is the case, for instance, if T'= M, AT(A|K) and C = Cpn.

PROPOSITION 4.4.3. Let T be a T-spectrum and let C C T be a subgroup
whose order r is odd and annihilates 7.(T). Then the d*-differential in

E2(C,T) = H*(C,Z/r) ® m.(T) = m.(H(C, T))
is given by d*(y ® T) = vt ® dr, where d is Connes’ operator.

Proof. Tt was proved in [16, Lemma 1.4.2] that in the T-Tate spectral
sequence, the d?-differential is given by the formula of the statement. Moreover,
every C-spectrum 7T is a module C-spectrum over the sphere C-spectrum SY.
Hence, it suffices to show that the class u is a d?-cycle in the spectral sequence
E*(C,SY). But m(S°,Z/r) vanishes since r is odd. O

5. The Tate spectral sequence for T(A|K)

5.1. The Tate spectral sequence E*(Cpn, M, NT(A|K)) is a spectral se-
quence of bi-graded k-algebras in a canonical way, which we now explain. (We
will abuse notation and write E*(Cpn, T(A|K)) for this spectral sequence.)

For every Cyn-ring spectrum T, H(Cpn,T) is a T¢"-algebra spectrum, and
the Tate spectral sequence is one of bi-graded 7, (TP )-algebras,

EQ(Cpn,T) = ﬁ_*<cp”7Fn*7_T*(T)) = 7_I-*<H(Cpn7T))’

where F™: T%" — T is the natural inclusion. Here F™* 7, T denotes the graded
ring 7, T = 7.(T, Z/p) considered as a 7, (T“»" )-algebra via the ring homomor-
phism induced by F™. In the case at hand, we consider this a spectral sequence
of bi-graded k-algebras via the ring homomorphism (3.1.3),

Pk — Wip1(A) = (T (A K)%).

We recall that F™ o p,11 = p1 o ¢", where ¢:k — k is the Frobenius. The
latter is an automorphism, by our assumption that k is perfect, and hence

E*(Cyp, T(A|K)) = Mun, dlog mic} @ S{mic, 5,6}/ (755,
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where u,, and ¢ are the canonical generators from Lemma 4.2.1. The differential
structure of this spectral sequence is evaluated in this section. We briefly
outline the argument.

The d?-differential in E*(Cyn, T(A|K)) is given by Proposition 4.4.3 in
terms of Connes’ operator (2.1.2) on 7.7 (A|K). Hence, by Theorem 2.4.1,

g =tdlogng -7,  d*k = tdlog(—p) - K,

and we can use the equation —p = 7550k (mx) " to express dlog(—p) as a
polynomial in mx times dlogmg. In Section 5.2, we replace £ by a new gen-
erator a, defined as a certain linear combination of the elements 77}(/& with
0 <i < eg, which satisfies that dax = exdlog 7k - ax. In particular, ag is a
d?-cycle, if p divides er. We also replace ¢ by a new generator 7x defined in a
similar manner.

The key results that make it possible to completely evaluate the spectral
sequence are consequences of the map

e T(AJK) 0 — H(Cpr, T(A|K)),
and of the unit map of the ring spectrum on the right,
:S° — H(Cpn, T(A|K)).

We show in Section 5.3 that for n < vy,(ex), 7T‘?{n and —Tx o are infinite cycles
which represent the classes I’ Ak (Tx,,) and r Ak (TR /P"), respectively. We
also show that —7xaf; is always an infinite cycle which represents the image
by the unit map of the canonical generator vy € T2,—2(S?). Given these infinite
cycles together with the value of the differentials on the p-powers of mx, which
we examine by a universal example in Section 5.5, one can evaluate the spectral
sequence, if n < vy(ex). The final part of the argument consists of a somewhat
complicated induction argument, which we present at the end of Section 5.5.
The key for this part is naturality, going back and forth between T'(A|K) and
T(B|L) for suitable ramified extensions L/K.

The handling of the spectral sequences is algebraically somewhat com-
plex. To ease the presentation we first consider in Section 5.4 the case of
E*(CP,T(A|K)). This section also contains the proof that the map f‘A|K in-
duces an isomorphism of homotopy groups with Z/p-coefficients in nonnegative
degrees.

5.2. Let L be a finite and totally ramified extension of K, and let B be
the integral closure of A in L. Then B is a complete discrete valuation ring
with quotient field L and residue field k. Let mx and 7, be uniformizers of A
and B, respectively. The minimal polynomial of 77, over K has the form

bk () = /K + 1RO 1 (),
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where 07k (z) is a polynomial over A of degree < ey i and 0/ (0) € A*.
Moreover, the canonical map

AlrL) /(¢ k(7L)) — B

is an isomorphism. When K = Kj is the quotient field of W (k), we will always
use T, = p and write 01 (x) instead of 0,k (z).

LEMMA 5.2.1.  Suppose that p1, C K. Then a choice of a generator ¢ € p,
and a uniformizer g € A determines a polynomial ug (x) € W (k)[z| of degree
< ef such that ug (mx)P~! = Ok (7). Moreover, in w(lA M)

ex/(p—1)

dlog( = —my ug () " dlog(—p).

Proof. Consider the power series f(z) = pxr + 2P and g(z) = (1 +z)P — 1
and recall from [39, §3, Prop. 3] that there exists a unique power series (z)
such that f(p(z)) = ¢(g(z)) and ¢(z) = z modulo (x2). Hence, if ¢ € uy is a
generator then ¢(¢ — 1) is a (p — 1)st root of —p. We define ug (x) to be the
unique polynomial of degree < ex such that

wre(mc) = mi P (¢ - 1)
To prove the second statement, we first note that
dp(¢=1) = (¢ —1)dlogp(¢—1)
—_ W;{K/(P*I)UK(,R_K)—I . (p* 1)_1d10g(*p)
= =m0 V()7 - dlog(—p),

where the last equality uses that dlog(—p) is p-torsion. Hence, it suffices to
show that dp(¢ — 1) = dlog(. We may assume that K = Qp(u,), where as
a uniformizer, we take mg = ¢ — 1. Then w(l AM) is annihilated by 77%71, and
since dp(¢ — 1) = ¢'(¢ — 1)¢dlog (, it remains to show that ¢'(x) = (1 +z)~!
modulo (zP~1), or equivalently, that ¢(z) = log(1 + z) modulo (2P). But this
follows from the uniqueness of ¢(x) and from the calculation in Zp[z]/(z?):

log(1+ g(z)) = log((1 + x)?) = plog(1 + x) = f(log(1 + z)). O

ADDENDUM 5.2.2.  Let L/K be a finite and totally ramified extension.
Then the inclusion of valuation rings, 1: A — B, maps

ur (k) = (=01 (1)) =</ P Vug ().

Proof. We can write the «(p(¢ —1)) = (¢ —1) as

L(Wff/(p_l)u;((m()_l) _ WEL/(p_l)uL(,,rl)—l'
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Since (1) = QL/K(WL)_ITI'ZL/K, the left-hand side also is equal to

1/ yerc/ (p-1)

(—=0r/K(7L) Wug (Tg) ).

The formula follows since ey, xex = ey, and since 7y, is a nonzero divisor. [

Suppose that p, C K. We choose a generator ¢ € p, and a uniformizer

ik € A and let uk () be the polynomial from Lemma 5.2.1. Let k € mT(A|K)

be the unique class with 3(k) = dlog(—p) and define ax = ug (1K) k.

PROPOSITION 5.2.3.  As a differential graded k-algebra
T (AK) = AMdlogmr} @ S{ak, mrk}/(75)
with dng = tgdlog i and dax = egaxdlog Ty .

Proof. Tt follows from Theorem 2.4.1 and Lemma 2.2.3 that as a differen-
tial graded k-algebra

TT(A|K) = Mdlog i} @ S{r, mr}/(75E)

with the differential given by dng = mxdlog mx and dk = kdlog(—p). More-
over, differentiating the equation —p = w550k (7x) !, we find

dlog(—p) = (exdlogmr — dlog Ok (k).

Finally, Ok (k) = ug (75 )P~1, and hence

dag) = —ug(rg) 'dlogur (i) -k + ur(rk) ™" - kdlog(—p)
= —agdloguk(ri) + akg(exdlognk — (p— 1)dloguk (1K))
= exagdlogny
as stated. O

We recall the Bott element. Since p is odd, the Bockstein is an isomor-

phism,
728 Bhpt) — pm1 (S Btps) «— fip,

and by definition, the Bott element b = b¢ is the class on the left which
corresponds to the chosen generator ¢ on the right. The spectrum X B, is
aring spectrum and the (p—1)st power b~ !, which is independent of the choice
of generator, is the image by the unit map of a generator v; in ﬁgp,Q(SO). If
tp C K, we have the maps of ring spectra

2% By, 5 K(K) -5 T(A|K) %,

and let b, = b, ¢ be the image of the Bott element in To(T(A|K) 1), We
note that 8(b,) = dlog,, ¢ and that since 7o (T (A|K )"~} is uniquely divisible,
this equation characterizes b,,. In particular, the calculation

B(br) = dlog ¢ = —m5/ P Nug (mre) " dlog(—p) = B~ P Vag)
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shows that
(5.2.4) by = —wK/ P Vg

The elements b, for n > 1, however, are not well understood.
Let L/K be a finite and totally ramified extension, and let t: A — B be
the inclusion of valuation rings. Then the map

(5.2.5) L T (A|K) — 7, T(B|L)
is given by
Llmk) = =0 (rp) oK,
t(dlogr) = epjgdlogny —dlogfrk(rr),
wlax) = (=0 (m))</ @ Day.

The first two equalities follow immediately from the definition of 8y (1),
and the last equality follows from Addendum 5.2.2.

Let f(x) € k[z] and let n be an integer. We write £ (z) for the image
of f(x) under the automorphism ¢"[x]: k[z] — k[x], which applies ¢" to the
coefficients of a polynomial. If R is a k-algebra and if # € R then, as usual,
f(7) denotes the image of f(z) by the unique k-algebra homomorphism k[z] —
R which takes x to 7. We note that f(=)(7) € ¢"*R and f(n) € R is the
same element.

Suppose either u, C K or K = Ky. In the former case, let mx be a
uniformizer, let ¢ € p, be a generator and let ug (z) be the polynomial from
Lemma 5.2.1. In the latter case, let ux,(z) = 1. Then as a bi-graded k-algebra,

(5.2.6) E2(Cpn, T(A|K)) = Mup, dlog T} @ S{mx, cue, T}/ (1K),

with the new generators given by

ag = ug;n) (mr) v, T = ug;n)(ﬂ'K)p t.
We note the relations Txax = H;n)(ﬂK)tn and TKO/I’( = tKP.
It will be important to know how these new generators behave under

extensions. For integers a,r,d with 0 < r < ex and d > 0, we define

{a7 Ty d}K = (pa - d)eK/(p - 1) + 7.

If pp C K then p — 1 divides ex such that {a,r,d}k is an integer. Let L/K
be a finite and totally ramified extension, and let «: A — B be the inclusion of
valuation rings. Then {a, e k7, d}L = e x{a,r, d}x and

(5.2.7) be: E2(Cpn, T(A|K)) — E*(Cypn, T(BJ|L)),
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is given by
wriemicate) = (=0 R (o)) Tl o,
9(7n)/(7TL)7TL
t(dlogmi) = (epyic— —m——)dlog .
0Lk (L)

5.3. In this section, we produce a number of infinite cycles in the spec-
tral sequence E*(Cpn,T(A|K)). This uses the maps of differential graded k-
algebras

7 T(A|K) <& 7,7(A) 25 7,T(A/p),

where the right-hand map is induced from the reduction. We evaluate these
maps assuming that v,(ex) > 0. The left map may be identified with the map
of graded k-algebras

Jur Mdri} ® S{R,mc} /(w55 — Mdlog i} ® S, mich/ (w5,

which takes mg to 7, drg to mrgdlogmi and K to k. (See the discussion
preceding Theorem 2.4.1.) The group meT(A) is uniquely divisible so the
Bockstein induces an isomorphism :7oT(A) — ,mT(A) and the class &
corresponds to the generator

dlog(—p) = —((ex /p)TiE " + Ok (7k))0k (m) dmic

on the right. The differential graded k-algebra 7. T'(A/p) is evaluated in Propo-
sition A.1.4 of the appendix. We refer to loc. cit. for the notation.

PROPOSITION 5.3.1.  Ifvy(ex) > 0 the map py: 7T (A) — /T (A/p) may
be identified with the inclusion of differential graded k-algebras

ps: Mdrg} ® S{mp, 7}/ (mif) — Mdrg, e} @ S{o, 7}/ (7)) @ T{e2}
which takes i to T and K to the class
0 — Ok () tey — e - ((exc /p)TE ™ + 05 (i) Orc (Txc) k.
Proof. Only the formula for p. (%) requires proof. Consider the diagram

T(A) —2- T4 — M ATA) 2 2T(A)

|76 |76 | MoATG) |57
— i B8
T(Afp) 2= T(Afp) == M,AT(Afp) == IT(4/p).

with horizontal triangles, the lower triangle split by the maps r and s of Sec-
tion 2.1 above. It shows that

px(R) =€ - (BT (p))x 0 Bi)(R) + (ix 0 7 0 (My AT (p))4) ().
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The value of the first summand is easily determined from the diagram

m(My AT(A) 2 m(ET(4) < m(T(4) S a)
| o). | =T, [ 760)- |-
(M NT(Afp) 2 mo(ST(Afp) <2 m(T(Afp) < Q)

and the formula for the Bockstein of & above:

(T(p)e 0 B)(R) = = ((ex /PR + O (7)) O (7)™ e

It remains to show that
(r o (My ANT(p)):)(R) = 0 — Ok (7)™ 2.

We first show that the linearization l.: 7. T(A/p) — m. HH(A/p) takes this
class to —0 (7 )~ 'é. The following diagram

m(MyAT(4) L5 m(M,AT(Afp) ~= mT(Afp)

I Ju i

(M, NHH(A)) 25 7 (M, NHH(A/p)) > 7 HH(A/p)
commutes and the composite of the lower horizontal maps is an isomorphism.
Let cl,c[zd] € m(M, N HH(A)) be the classes which correspond to 61,6[2‘1] €

7« HH(A/p) under this isomorphism. We claim that co = —0g(nx)k. The
diagram

m(M, AT(4)  —2 mT(4)

o e

my(M, AHH(A))  —2—  ,m HH(A),

where all maps are isomorphisms, shows that to prove this, it will suffice to
show that the lower Bockstein takes ¢ to ((e/p)mek ™! + 04 (mx))drg. This
Bockstein, in turn, may be identified with the connecting homomorphism in
the diagram

0 — A-c 2, Ay LN A/p‘EQ — 0
| ¢ |6k |k Fro=0
0 — A-c L, Ay SN A/p~52 — 0

and the claim follows; compare Section A.1 below. We consider again the
diagram from the beginning of the proof. This may be further refined to a
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diagram of horizontal triangles
T(AA) 2 T(A:4) -5 MATAA) -2 S7(4;4)
lT(A;p) JT(A;p) lMp/\T(A;p) lZT(A;p)
T Afp) 2o T(AAp) == MyAT(A:Afp) == ST(A5A/p)

JT(p;A/p) JT(p;A/p) lMpAT(p;A/p) lET(p;A/p)

T(A/p: Alp) =2 T(A/pi Afp) == M, AT(A/p: Alp) == ST(A/p: Afp).

r

where for an A- A-bimodule M, T'(A; M) is the topological Hochschild spectrum
of A with coefficients in M. It shows that

(rv o (Mp AT (p))«)(R) = (T(p; A/p)« 0 7« 0 (My AT(A; p))s) ().

The map T'(p; A/p)« is equal to the edge homomorphism of the spectral se-
quence

EZ, = n,T(A/p, Tor(A/p, A/p)) = e T(A; A/p)

considered in [27]. Hence, loc.cit., Proposition 4.3, shows that there is a unique
class in the image of

T(p; A/p)s: T (A; A/p) — mT(A/p; A/p) = moT(A/p)

whose image under l,: moT(A/p) — mo HH(A/p) is —0 (T )" '¢a and that this
class has the form \-o — 0 (7 )12, where A € (Z/p)* is a unit. Finally, the
following lemma shows that A = 1 (or equivalently, that the class o of loc.cit.
agrees with our class o). O

LEMMA 5.3.2.  The reduction i.: 7. T(A) — 7T (k) maps i to o.

Proof. We proved in Addendum 3.3.9 that in the diagram

7T (A|K) g 7oT(A) R 7T (k)

[oae Jos |

MH.(Cp, T(A|K)) <= #H.(C,, T(A) - #H.(Cy, T(k))

the left-hand vertical map takes x to dV (1) — V(dlog(—p)). It follows that
the middle vertical map takes & to dV (1) — V(dlog(—p)) + aV (x5 'dmy) for
some a € A. Since Q,lC vanishes, we conclude that the right-hand vertical map
takes i (k) to dV (1), and since moT'(k) is a one-dimensional k-vector space, it
thus suffices to show also that dx(0) = dV(1). To this end, we consider the
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diagram
mT(k)  — ATk T ARG, Tk))
la,c (—1) lak lafi
MH.(Cp, T(k) —2— FH.(Cp, T(k)) =——= moH.(Cp, T(k)),

where the left-hand square anti-commutes by our conventions from Section 2.1
above. The class o, by definition, is the image of € under the top differential,
and the bottom differential takes V(1) to dV(1). Hence, it suffices to show
that dy(c) = —V(1). We recall from corollary 4.4.2 that the class I'(¢) is
represented in the spectral sequence E’*(Cp, T(k)) by the infinite cycle uit 1.
Hence, Addendum 4.2.2 shows that the image of this class by the right-hand
vertical map is —V'(1). O

Remark 5.3.3. It follows from Propositions 5.3.1 and A.1.4 that in 7,7 (A),
dik = *QIK(TFK)QK(TFK)_Idﬂ'K - K.
This implies that dx = rkdlog(—p) in 7T, T(A|K) as stated in Theorem 2.4.1.

We construct a number of infinite cycles. Recall the map of ring spectra
Pt T(AIK) = — H(Cpn, T(A|K)).

PROPOSITION 5.3.4.  For all K, the element dlognye € E*(Cpn, T(A|K))
is an infinite cycle and represents the homotopy class Iy (dlog, Tk ).

Proof. We consider the diagram

T(AK)% L 7A|K)S

lFAU( J/f‘A|K

H'(Cpr, T(AIK)) — H(Cp, T(AK)).

In the spectral sequence

E?(Cpn, T(AIK)) = Muy,dlogng} @ S{mx,t,x}/(755)
= T(H(Cpn, T(A[K))),

the element dlog 7 is an infinite cycle and represents I' g i (dlog,, 1 7k ). In-
deed, if we compose I'y g and the edge-homomorphism of this spectral se-
quence, we get the map F™: 7, T(A|K)%" — 7, T(A|K) which takes dlog,, , | T
to dlog mg. The map R" induces the obvious inclusion on E2-terms. Hence,
the element dlogmx of E*(Cyn,T(A|K)) is an infinite cycle and, since it is
not a boundary, represents Rh(I‘A|K(d log, 1 7K)) = fA‘K(R(dlognH TK)) =
fA|K(d10gnﬂK)- O
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Let gy = ug(_n)(m()*lfi and 74 = ug(_n)(m()pt such that j.(aa) = ax

and j.(74) = Tk.
LEMMA 5.3.5.  Suppose that p, C K and let n < vp(ex). Then the

elements 7TK and —Taaa of E? (Cpn, T(A)) are infinite cycles and represent
the homotopy classes FA(ﬂ'K ) and FA(WKEK/?’ ), respectively.

Proof. We consider the diagram

F(T(A)1) AL 2 ([(Cp, T(A)))

Lo Jo
L (T(Afp)Smt) =22 7 (B(Cyn, T(A))),

with the vertical maps induced from the reduction p: A — A/p. The lower
horizontal map is studied in the appendix. By Addendum A.1.6,

E2(Cpn,T(A/p)) Ay, drg, e} @ S{tH g, o}/ (m3F) @ I'{ea},
E*(Cyp, T(A/p)) = Mug, dric} @ S{t™", 7}/ (m38) @ T{ea},
and E?’(cpn, T(A/p)) = E®(Cyn, T(A/p)). We compare this to

E2(Cpn, T(A)) = AMuy, dﬂ'[(} @ S{Tit aq, mr )/ (755),
EH(Cy T(A)) = Mun, 78 drich © S{7E) i, wie ) (255).
The map pi: T T(A) — 7. T(A/p) was evaluated above. The induced map
E3(Cyn, T(A)) — E3(Cpn, T(A/p))

is the monomorphism which takes 744 to —té. Indeed, the map of E2-terms
takes the element Tqaq to —tés + Ok (mx)to — te - O (T )drk, and the last
two summands are equal to the image by the d?-differential of € - O (7x ). For
0 < s <1, we have the diagram

,5 S(Cp ?T(A)) - Eis S(Cpan(A/p))

| [~

—5 S(CP 7T(A>) - Ei’; s(CP"7T(A/p))

and we conclude that the lower horizontal map is a monomorphism. We show
in Proposition A.1.7 that the classes fA/p(Kn) and fA/p(KZK/pn) are repre-
sented in the spectral sequence E*(Cyn, T(A/p)) by the infinite cycles 771[0: and
tCa, respectively. It follows immediately that r A(Tf_}(n) is represented by ﬂf(n
as stated. To conclude that T’ A(WKZK /pn) is represented by —74a4 we must

rule out that an element of E2 s(Cpn, T(A)) with 0 < s < 1 represent this
class. But this follows from the injectivity of the lower horizontal map in the
diagram above. O
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PROPOSITION 5.3.6.  Suppose that p, C K and let n < vp(ex). Then the
elements wh- and —TKOK of E?(Cyn, T(A|K)) are illﬁm'te cycles and represent
the homotopy classes I' g\ (Tk, ) and FA|K(@ZK/p ), respectively.

Proof. The map j.: E2(Cyn, T(A)) — E*(Cpn, T(A|K)) takes the infinite
cycle 7T§: (resp. —Taa4) to the element 71'1;: (resp. —Tr ) which therefore is
an infinite cycle. It follows WI;: (resp. —Ti k) either represents T Ak (T ,)
(resp. T AR (TESE /7)) or else it is a boundary. The element Wf: cannot be a
boundary, but we must check that —7xax is not a d*-boundary. To this end
we consider the diagram

A~ d3 A~
E}o(Con, T(AIK)) ——  E255(Cpn, T(A|K))

NTJ* NT]*
3 d? 73
El,O(CP"7 T(A)) - E72,2(Cp"a T(A))

with vertical isomorphisms. The right-hand vertical map takes —7t4 04 to
—TKaK, and since —T4a 4 is not a d3—boundary, neither is —7g oK. O

Let £: SO — H(Cpn, T(A|K)) be the unit map and let vy € To(,_1)(S°) be
the canonical generator. If p, C K, then ¢, (vi) = fA‘K(bn)p_l

ADDENDUM 5.3.7.  The elements —trP and (—tx)?" of E*(Cpn, T(A|K))
are infinite cycles which, if not boundaries, represent the homotopy classes
li(v1) and V (1), respectively.

Proof. The elements —txP and (—tx)P" are in the image of
1o B2 (o, T(W (1) Ko)) — B2(Cpr, T(AK)

and so the statement, if valid for some K, is valid for all K. Now, suppose that
tp C K and that vy(ex) > n. We may argue as in the proof of Proposition 5.3.4

;é(/(p_l)oz;(. Indeed, b, =

that fA‘K(bn) is represented by the infinite cycle —7
R(bn+1) and F™(by41) = by and from (5.2.4) we know that b; = —W;K/(p_l)aK.

Now

_ﬂ;{x/(p—l)aK _ _(W%")EK/p"(p—l)OéK7
and it follows from Proposition 5.3.6 that 75" /®=1) is an infinite cycle and

represents I A (T SE / pn(pfl)). Hence, also ak is an infinite cycle, and since
it is not a boundary, represents a homotopy class, say, . Since the classes
N N (1) ~ ;

L 4 (bn) and —FA|K(7T_KZK/1° (P=1))a are represented in the spectral sequence
by the same element so are their (p — 1)st powers. We know from Proposi-
tion 5.3.6 that

ek/p")

eK/p"(p—l))p—l _ fA|K(WK

Tk (K
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is represented by —7Tgak. And ol ! if not a boundary, represents 6/}”;1. It
follows that —7x o/, if not a boundary, represents I' 4 (B571) = £y (v1).
We recall from Lemmas 3.1.1 and 3.1.2 that in the Witt ring W,,(4),
V(1) = Ok (mk,) " mr K,
and hence, in fr*]I:]I(Cpn,T(A|K)),
V(1) = V(fA|K(1)) = fA\K(V(l)) = f‘A|K(9K(7T_Kn)_17r_KzK)

= TaxOx(rk,)) ™" Dappe(mgcs/P )"

It follows that the infinite cycle

n

_n)(wK)flTKaK)pn = (—tr)P",

Oxc (nf )™ (~rrcar )" = (0
if not a boundary, represents V(1) as stated. O

5.4. In this section we evaluate the spectral sequence E*(Cp, T(A|K)).

LEMMA 5.4.1. Let k be a field of characteristic p > 0, let f(x) be a power
series over k with nonzero constant term, and let

f'(@)x
f(x)

be the logarithmic derivative. Then ay; = at, for all i > 1.

:alx—l—aga:Q—i—...

Proof. We may assume that f(x) is a polynomial with f(0) € k*. More-
over, replacing k by a splitting field for f(z), we can assume that f(x) splits as
a product of linear factors. And since the logarithmic derivative takes products
of power series to sums, we are reduced to the case of a linear polyonomial.
The result in this case is readily verified by computation. O

PROPOSITION 5.4.2.  Suppose either u, C K or K = Ko. Then, up to
a unit, the nonzero differentials in the spectral sequence E*(Cy,, T(A|K)) are
generated from

d2(7j‘”<7r§<oc§l() = 71rdlogmk - T;l(ﬂ'TKOé%, if vpla,r,d}x =0,

d2p+1(’u,1) = (TKOéK)pTK

and from the fact that dlog g is an infinite cycle.

Proof. The d?-differential follows from Proposition 4.4.3. If K = K, we
have
E3(Cyp, T(W (k)| K0)) = Mur, dlog(—p)} ® S{t™, w7},
and for degree reasons, the first possible differential is d?**!. The canonical

map
E2FL(T, T(W (k)| Ko)) < E**1(C,, T(W (k)| Ko))
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may be identified with the inclusion of the subalgebra generated by ¢, <P, and
dlog(—p). The d? *!-differential on these elements in the left-hand spectral
sequence are zero for degree reasons. Hence, the d?’*!-differential on these
classes in the right-hand spectral sequence are zero as well. We claim that, up

to a unit,
d2p+1u1 — ptlgp

For if not, tkP would survive the spectral sequence and represent the ho-
motopy class —v; - 1. But ]I:]I(C'p,T(W|K0)) is a module spectrum over the
generalized Eilenberg-MacLane spectrum T'(W), and therefore, is itself a
generalized Eilenberg-MacLane spectrum. Hence, multiplication by v; on
ﬁ*H:]I(Cp,T(W]KO)) is identically zero. All further differentials must vanish
for degree reasons.

If p, C K and vy(eg) > 1,

E*(Cp, T(A|K)) = Mui, dlog mi} @ S{ml, are, mic '}/ (7).

and by Proposition 5.3.6, mh- and 7ok are infinite cycles. From the previous
case, we know that ¢ is an infinite cycle, and hence, so is 7 = ug (7h.)t. It
follows that ax also is an infinite cycle. Hence, the remaining nonzero differ-
entials are generated from the differential on u;. Again all further differentials
vanish for degree reasons.

Finally suppose that p, C K, but with no restriction on v,(ex). Then

E¥(Cy, T(AIK)) = Aur, dlog mic} ® k{riemia | vp{a.r,d}x > 1),

and we need to show that the elements T&75-a% with vy{a,r,d}x > 1 are
di-cycles, for 3 < ¢ < 2p+ 1. To this end, we let L/K be a totally ramified
extension such that v,(er) > 1 and consider

12 B1(C,, T(A|K)) — E(C,, T(B|L)).
We have from (5.2.7) and Lemma 5.4.1 that

(thmial) = (Opx(ah))terdh/pra g,
0 e (mh )l
JENTL)TY,
te(dlogmrg) = (e — —4————— " )dlogmy,
(@og i) = (ensic— g )

where in the first line, vy{a,r, d}x > 1. We know from the previous case that
the d?-differential on L*(Tf(w%a}l() vanishes, and hence, it will suffice to show
that we can find L/K for which the map ¢, is injective.

If vy(er/x) > 1 and 01/ (x) = v — 1 then, up to a unit,

e r+p
(U T ok dlog T ) = uSTim N P al dlog T,

and hence, for ¢ to be injective, we need that ey, /r+p < er. Since r < ex—1
and ef, = ey /e, this is equivalent to the requirement that ey ;- > p. We also
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need vy(er) > 1. The extension L with e,/ = p? and 01k (7) = x—1 satisfies
both requirements. It follows that the d?-differentials vanish, if 3 < q < 2p,
and that the nonzero d?’*1-differentials are generated from the differential on
uy. All further differentials vanish for degree reasons. O

THEOREM 5.4.3.  For all K, and for i > 0, the map
[y 7T (A|K) = 7 H(Cp, T(A|K))
1 an isomorphism.

Proof. 1f we let L = K(p,), then in the diagram

Fax

7 T(BIL)Swx 2 & J(C,, T(B|L))SHx,

the vertical maps are isomorphisms. Indeed, this follows from Theorem 2.4.3
and from the Tate spectral sequence, since the order of G is prime to p.
Hence, we can assume that p, C K.

If p1p C K and vp(ex) > 1 or if K = K, then

B (Cy T(AK)) = Mdlogmic} ® S{rh, are, 7E}/ (e, o),

and by Proposition 5.3.6, there is a multiplicative extension (7['%)6/ P = —rrag
in the passage to the actual homotopy groups. Hence, as a k-algebra

7 J(Cp, T(A|K)) = MT ajxc (dlog mx )} ® S{Ta i (i), 7o'}/ (D apie (7)),

where the class Tx is a lifting of 7x. It follows that 7. 7'(A|K) and the nonneg-
atively graded part of 7, H(C,, T'(A|K)) are abstractly isomorphic k-algebras,
and that the map I'y x is an isomorphism for ¢ = 0 and i = 1. To show that

r Ak is an isomorphism, for ¢ > 0, it will therefore suffice to show that
Dy (1ot T2 T (W |Ko) — T2l(Cy, T(W|Ko))
is an isomorphism. To this end, we consider the diagram

7T (W|Ko) N T T(W|Kp)

lf‘W(k)\Ko Nlf‘W(k)\Ko
7H(C,, TW|Ko) —2  mH(C,, T(W|Ky)),

where the upper horizontal map and right-hand vertical maps are isomor-
phisms. Since all groups in the diagram are one-dimensional k-vector spaces,
the left-hand vertical map and lower horizontal map must also be isomor-
phisms. This shows that the map of the statement is an isomorphism if p, C K
and vp(ex) > 1 or if K = K.
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If p, C K, but there are no restrictions on vy(ex),
E®(C,, T(A|K)) = Mdlog g} @ k{r¢ntad |vp{a, 7, d}k > 1, d < p},

where 0 <r < ek, d € Ngand a € Z. Again, the domain and range of f‘A|K are
abstractly isomorphic k-vector spaces. We choose an extension L/K such that
vp(er) > 1 and such that v: 7, T(A|K) — 7,/ T(B|L) is a monomorphism. Since
r B|L 1s an isomorphism in nonnegative degrees, r A|K 18 a monomorphism, and
hence an isomorphism, in nonnegative degrees. O

ADDENDUM 5.4.4. For all K, for all n,v > 1, and for all i > 0, the maps

L mi(T(AIK) S 2 )pY)

(H(CP"7 T(A‘K))v Z/pv),
Do mi(T(AIK)S", Z/p) = m(H

u
mi(H " (Cpr, T(A|K)), Z/p"),
are isomorphisms.

Proof. If v = 1 this follows from Theorem 5.4.3 and the main theorem

of [47], and the general case follows by easy induction based on the Bockstein
sequence. O

5.5. We now evaluate the spectral sequences E*(Cyn, T(A|K)).

THEOREM 5.5.1.  Suppose either p, C K or K = Ky. Then the nonzero
differentials in the spectral sequence

E*(Cpn, T(AIK)) = Muy,dlogmic} ® S{mw, axc, 7'}/ (w5)

= T (H(Cpn, T(A|K)))

are multiplicatively generated from

p'u+1_1 pv+1_1

) (remalk) = M- (rrak) T g dlog my - imicalk,
(pn+1_1)71 pn+1_17
d> v (up) = p-(Tkak) U Tk,

and from dlog T being an infinite cycle. Here X\ and p are units in A/p and
in the first line v = vp{a,r,d}k, where {a,r,d}xk = (pa —d)ex/(p— 1) + 1.

Remark 5.5.2.  We show that the units A and p above are given by

n

)\ = _)\’U . p_v{avr’ d}K . ugfn)(ﬂ_p'”)_p’ n= Uy - UK(W?{ )_p7
where A\, and p,, are units in F,, independent of K.

The proof of Theorem 5.5.1 is similar to the proof of Proposition 5.4.2
above, but the individual steps are more involved. It will be necessary to know
the structure of the E"-terms, given the differential structure.
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LEMMA 5.5.3.  Suppose pu, C K or K = Ky, and assume that Theo-
rem 5.5.1 is true for K. Let E1 = E9(Cyn, T(A|K)). Then for 0 < s <n and
200° = 1)/(p—1) <q <2(0°"' = 1)/(p - 1),

@A{un} ® /C{TKWKaKdlogﬂ'K |vpla,rd}g=v, d < pu+1 1 1}
v=1

® Aun, dlogmic} @ k{riemical | vp{a,r, d}x > s},

n—1

E>® = @A{un} @ k{rirhabdlogmk | vpla,r,d}x = v, d < p -1}
v=1

® Mdlog g} @ k{rinlad | v{a,r,dy g >n, d < p i 1 —1},

v4+1_ 1

where 0 < r < ek, d € Ny and a € Z.

Proof. When we assume the result for s < n — 1, Theorem 5.5.1 implies
that

s+2_ s+1_
2(p 1 1

) _ EQ( )+1

and inductively, F Az(%) is given by the statement of the lemma. Indeed, this
is clear in the basic case s = 0. The differential ¢ ~1)/(p=1) only affects the
last summand on the right-hand side of the statement and does not involve
the tensor factor A{uy}. If we rewrite

A{d log WK} ® k’{T?(ﬂ';(Oé;l( | vp{a, T, d}K > S}

= k{ricmical | vpla, 7, d} = s}

@ k{rinicakdlog ni|vpla, r,d}x = s, d > pS;_ll_l -1}

@ k{rintcakdlog ng|vpla,r,d}x = s, d < pS;_ll_l -1}

@® Mdlog i} @ k{rinha%|v{a,r d} x> s+ 1},

the differential d2(°"" ~1/(P=1) vanishes on the last two summands and maps
the first summand isomorphically onto the second. Indeed,

s+1

{a—l—pp . ,ral—i—pé+1 1—1}K—{ard}K+p

Assuming that Theorem 5.5.1 holds for K, we have

FAESHHL _ (i) - 1

and the common value has already been determined. Up to a unit,

Pty A
P )y, = =
p Un (TKQK) p TK-
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If we rewrite

Mup, dlog g} © k{r§mial |vp{a,r,d}x > n}

= Mdlog i} @ k{rinlad v {a,r,d}x > n, d > pn;_ll_l -1}

@ Mdlog i} @ k{uptikriead | vpla, r,d}x > n}

& Mdlogmich @ b{rimieak |vp{a,r,db > n, d < 227 — 1),

the differential 2" —1/(p-1)-1 maps the second summand isomorphically
onto the first summand and leaves the last summand unchanged. O

PROPOSITION 5.5.4. Let T =T (W (k)|Ko). In the spectral sequence
Ez(cpna T) = A{UTM dlog(—p)} ® S{tjj? H} = ﬁ*(H(CP"? T)):

the higher differentials are multiplicatively generated from

’L}+171 Y 'U+171_ v—

2= )(tp 1) = M- (tk) »1 1tallog(—p) - tP 1, 1<wv<n,
n+1l_q n+1l_4

P T ) ) = e (t8) T,

where Ay, iy, € Fp, are units, and from txP and dlog(—p) being infinite cy-
cles. Moreover, the infinite cycles (—t/@)psﬂdlog(—p), 1 < s < n, represent
dV™5(1).

Proof. The proof is by induction on n and is similar to the proof in [4]
of the differential structure of the spectral sequences E*(Cpn, T(W (k))). The
basic case n = 1 was proved in Proposition 5.4.2. So assume the statement for
n— 1.

We first argue that in ﬁ*(H(Cpn,T )), the class " is nonzero if and only
ifm< (p"—1)/(p—1). By Addendum 5.4.4, the maps

g ro_ r _ .

Te(H(Cpr, T)) = (T 1) = 7o(H(Cpu1, T))
are isomorphisms in nonnegative degrees, and hence, we may instead consider
the class v" in 7, (H " (Cpn-1,T)). To this end, we use the spectral sequence

E*(Cpn-1,T) = Muy—1,dlog(—p)} ® S{t,k} = m(H " (Cpu-1,T))

whose differential structure is determined by the statement for n — 1. We
evaluate the E"-term by an argument similar to the proof of Lemma 5.5.3. To
state the result, let P(a,d,v) be the statement

« pv+1_1

p—1

pv+ 1_ 1

or d < =

a <

— 1, or both”.
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Then for 0 <s<n-—1,
P51 s—1
25 = @ Mup—1} ® k’{ta/{dd log(—p) | vp(pa — d) = v and P(a, d,v)}
v=0

@ Mup—1,dlog(—p)} ® k{t“nd | vp(pa — d) > s},

n—2
E> = @ AMup—1} ® k{tanddlog(—p) | vp(pa — d) = v and P(a,d,v)}
v=0

@ AMdlog(—p)} @ k{t"sx? | vy(pa — d) > n —1 and P(a,d,n — 1)}

We know from Addendum 5.3.7 that the infinite cycle (—tx”)™, if not a bound-
ary, represents the class v]". The smallest power mg such that (—txP)™0 is a
boundary is mg = (p" — 1)/(p — 1), (—tkP)™0 = d*m0~1(u,_1kP"). Hence, v}
is nonzero, if m < myg, and v]" ;%(p—l)mo—s
with s < —2myp. But these groups are all zero, and therefore, so is v]™.

We next show that in E*(Cyn,T), (—tk)P dlog(—p), 1 < s < n—1,
represents dV" (1), and that (—tx)P" dlog(—p), if not a boundary, represents
dV (1). The latter follows from Proposition 5.3.4 and Addendum 5.3.7, since,

by Lemma 3.1.1,
dV(1) = d(=p,) = —p, dlog,(—p) = V(1)dlog,(—p).

To prove the former, we consider the map

is represented by an element of E

F: 71 (H(Cpr, T)) — 71 (H(Cpn1,T)),
which, by Lemma 3.3.3 and Proposition 3.4.1, is a surjection whose kernel
is generated by dV (1). Moreover, it takes dV" (1) to dV"~175(1) and the
induced map of spectral sequences

F:E*(Cpn,T) — E*(Cpn-1,T)

takes (—tk)?"" dlog(—p) to (—tx)?"" dlog(—p). The claim follows, inductively,
since the generator dV (1) of the kernel of F' is represented by an element of
E;z,l—m(cp”a T) with m < —2p™.

We now begin the proof of the statement of the proposition for n. Suppose
first that 2 < r < 2(p" —1)/(p — 1). The statement for n — 1 implies that in

the spectral sequence
E*(T,T) = A{dlog(~p)} ® S{t*, n} = = H(T, T),

the d"-differential is multiplicatively generated from the stated differentials
on t*'~" and from dlog(—p) and txP being infinite cycles. Indeed, one shows
inductively that the canonical map induces an isomorphism

Yn—1: A{un_l} & EAW(T, T) = EA’r(Cpnfl , T)
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We claim that for r in the stated range, d"(uy) is zero. To see this, we

consider the map of spectral sequences induced from V:'ﬁ'*(H(Cpn—l,T)) —

T (H(Cpr, T)),
V:E"(Cpu1,T) — E"(Cpn, T).

The map of E?-terms is given by the transfer map in Tate cohomology. It
follows that u, = V(u,—1), and hence, d"(u,) = V(d"(un—1)), which is zero
for r in the stated range. We now conclude, by induction on r, that

Yn: Mup} @ E(T,T) =5 E"(Cpn, T)

is an isomorphism and that the d"-differential is as stated. Before we proceed,
we note that in £*(T, T), and hence in E*(Cpn,T), the elements t'x7d log(—p)
are infinite cycles. This follows, by arguments similar to [19, §5.3], from the
fact that the homotopy groups of T' with Z,-coefficients are concentrated in
degree zero and in odd positive degree.

If r =2(p™ —1)/(p — 1), the possible nonzero differentials are generated
from

n
2 n—2

) = Aot (t6)7T Ltdlog(—p) - £,
d" (up) = vy - (tm)ppi:llfltd log(—p) - un,

dr ("

where \,_1,v,, € F,. We first show that \,_; is a unit. If n = 2, the k-vector

space ﬁl(H:H(sz,T)) is generated by the classes dlogs(—p) and dV'(1). The for-
mer is represented by dlog(—p) and the latter by an element of £y, _,,,(Cp2, T)
with m < —2p%. Hence, the infinite cycle (tx)Pdlog(—p) must be hit by a
differential, and this can happen only if Ay is a unit. If n > 2, we con-
sider dV2(1) € 7y (H(Cpn,T)) which is represented by (—tr)P" " dlog(—p).
We know that v%pnikl)/(p*l) annihilates 1 € ﬁ*(H(Cpnf%T)) and hence also
dV?(1) € 71 (H(Cpn, T)). Therefore,

n—1_

(—twP) "D/ ()" dlog(—p) = (—tk) P T ‘tdlog(—p) -t P

n—2

must be hit by a differential, and this can happen only if A,,_1 is a unit.
We next show that v, is zero. If not, then d’"(untpn_%) = 0, for some
0 < ¢ < p, and for degree reasons, the next possible nonzero differential is

n_ n—1_
PO g "Ry g ()T T ),

("~ '=1)/(p=1)+p" 2

But this must be zero, or else vy “ would be zero. For degree

reasons, the next possible nonzero differential is @2E"T =D/ (=1 particular,

-1)/(p=1)

no differential can hit v%p " . So we must have v, = 0.

The next possible differential is the stated one on u,,, and since vip "-1/(e-1)
is zero, u, must be a unit. For degree reasons, all further differentials van-

ish. O
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We next prove Theorem 5.5.1, when g, C K and n < vy(ex).

PROPOSITION 5.5.5.  If p, C K and if n < vp(ek), the nonzero differ-
entials in the spectral sequence E*(Cpn, T(A|K)) are multiplicatively generated
from

p'u+1_1 v+l_1

5= )(771;;) = —/\U‘(m)pﬁfl 71tdlog7rK'7r§;, 0<wv<n,
n+l_q n+l_4
e e (T B )

and from Tk, ag, and dlog Tk being infinite cycles.

Proof. Since n < wy(ex), Proposition 5.3.6 and Addendum 5.3.7 show
that Trax and TKO/IJ( are infinite cycles. Hence if d"aj is nontrivial then so is
d" (o) contradicting the fact that d” is a derivation. It follows that both a
and Tx are infinite cycles, and dlog 7k is an infinite cycle by Proposition 5.3.4.
Hence, Theorem 5.5.1 amounts to the statement above.

Suppose first that u-(0) is a unit. We prove the stated formula for d” (ng )
by induction on 0 < v < n. The basic case v = 0 follows from Proposition 4.4.3.
Now, assume that the d"-differential is as stated, for 2 <r < 2(p*—1)/(p—1),
and consider 2(p” — 1)/(p — 1) < r < 2(p*™1—1)/(p — 1). We note that
i (tkP) dlog g is equal to zero in E7(Cyn, T(A|K)), if v,y(i) = s < v and
i> - 1)/(p-1).

By definition, 7 = u's™ (mx)Pt, so that

T G
and since Tk is an infinite cycle, we find

v—l) _ 7u%_n)’(7r§;)
ufe ")

v—1 v

" dr ().

dr (P

The first factor on the right is a unit in E", for r in the stated range, and

hence, we can evaluate dT(Tr’;;) from the value of d"(t*" '), which is

known by Proposition 5.5.4. It follows that dr(ﬂ'g) is equal to zero, if r <

200" = 1)/(p—1). Itr=2(p"""~1)/(p - 1),
pto1

) = A ()T Mtdlog(—p) - P

_ o

(—=n) (7TK)

(v=n)r,_p°y_p° o+1_

= Ay~ Ui (T )T (tn)pp—l 1_ltallog i tP
ufd ™ ()

v—1 v—1

d’(t?
v+1_171 v—1

(tk) »=T tdlogmg - tP

u

The second equation uses —p = 550 (1x) ! and Ok (1) = ug (7 )P, and

the third follows from Lemma 5.4.1 since, as noted above, 7k (txP)7d log 7 is
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equal to zero in E7(Cyn, T(A|K)), if v,(i) = s <v and j > (p°'=1)/(p — 1).
The stated formula for d” (ﬂ?; ) follows. Similarly, we see that dr(ﬂﬁ’: ) is equal
to zero, if r < 2(p"*t!—1)/(p — 1), and the differential on u, follows from
Proposition 5.5.4. For degree reasons, all further differentials are zero.

To treat the general case, let IT be the pointed monoid {0, 1,7, 72, ...} with
base point 0. The choice of uniformizer mx determines a map of T-spectra

pic: T(W (k) | Ko) A NS (ID)| — T(A|K),

which is multiplicative with component-wise multiplication on the left; com-
pare Section A.1 below. As a differential graded k-algebra,

7 (T(W (k)| Ko) A NS (ID)]) = A{dlog(~p), dr} © S{r, )},

and the map of homotopy groups with Z/p-coefficients induced from pg is the
unique map of differential graded k-algebras that is 7. T'(W (k)| Kp)-linear and
takes m to m. We claim that in the spectral sequence

E*(I1) = E*(Cpn, T(W (k)| Ko) A [N (D)),

the nonzero differentials are generated multiplicatively from

v+171 v v+171_ v
PUFT ) (7Y = =N, - (tr) T 7P 0<v<n,

from the differentials on the tpvil, 1 < v < n, and the differential on wu,, given
by Proposition 5.5.4, and from tx?, dlog(—p), 7" and 7P" ~'dr being infinite
cycles. This proves the proposition since E*(Cpn, T(A|K)) is a module spectral
sequence over E*(II).

To prove the claim, we choose a totally ramified extension K/K, with
pp C K such that n < vp(ex) and u}(0) is a unit. The proposition already
has been established for E*(Cpn, T(A|K)). As cyclic sets

NY(I) = \/ N7 (I ),

s>0

where the s-th summand has n-simplices (7%, ..., 7)) with ig+...i, = s, and
the spectral sequence E*(II) decomposes accordingly. It will suffice to show
that for 0 < v < n, the differentials in the p”-th summand spectral sequence,

E2(ILp°) = Mup, dlog(—p)} @ S{tF', k} @ k{x?" a?"~ldr}
= 7 (H(Cp, T(W ()| Ko) A [N (T, p)]),

are multiplicatively generated from the stated differentials on 7?", the differ-
entials on the p-powers of t, and the differential on u,, and from dlog(—p)
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and 7" ~ldr being infinite cycles. We note that the map pK*:EQ(H,pU) —
E%*(Cpn, T(A|K)) is a monomorphism. Indeed, 75 and

(=n);
u TR)T
dlog(—p) = K(_n() K)

Kdlogm(
ui (TK)

are nonzero, since p¥ < ex and since u/,(0) is a unit, respectively. It follows, by
induction on r, that pg.: E" (I, p’) — E7(Cyn, T(A|K)) is a monomorphism
and that the d"-differential is as stated. For instance, 7P’ ~ldr is an infinite
cycle because pg (7P ~ldn) = W?dlog T is. O

Proof of Theorem 5.5.1. Let n > 1 and K be given. We prove by induction
on ¢ that the d9-differential in E*(Cyn, T(A|K)) is as stated. The basic case
q = 2 follows from Propositions 4.4.3 and 5.2.3. So assume the statement for
q — 1 and suppose first that 2(p*—1)/(p — 1) < ¢ < 2(p*t1—1)/(p — 1) with
s < n. We recall from Lemma 5.5.3 that E9 = E9(Cyn, T(A|K)) is given by

s—1
E1 = @A{un} ® k{Tf‘”(ﬂ%a?{dlog K | vpla,rdigk=v,d < p:r_lfl - 1}
v=1

® Mup,dlogmr} ® ]{3{’7'?(77';((1?( | vpla,r,d} g > 5}.

Since the elements T&75-a?dlog mx are infinite cycles, and since d?(uy,) is zero
by Proposition 5.5.4, it suffices to evaluate d?(r&7h-ad.) with vy{a,r, d}x > s.
To this end, we find a totally ramified extension

L= K[r]/(x]"" + 7bpx(nL))
such that n < v,(er,) and such that the map
1o: B (G, T(AIK)) — B9, (Cye, T(BL))

is a monomorphism, for ¢ > g — 1. Since the differential structure of the
right-hand spectral sequence is known from Proposition 5.5.5, this allows us to

evaluate the d?-differential in the spectral sequence on the left. We consider the

n+1

extension L/K with ey g = p"*" and 0k (z) = 2 — 1, and recall from (5.2.7)

that the map of E?-terms is given by
L(rfriad) = (1—mp) gt o
te(dlogmg) = mp(1— WL)_ldlong.
Hence, the induced map of E9-terms takes 7&7%-a% with v,{a,r,d}x > s to

(1 B Wgs)_p_s{amd}K 'TET‘-ZL/KTO[%,
and T&7h-ad-dlog mx with vy{a,r,d}x > sand d > (p*°—1)/(p—1) — 1 to

S, _,—s s CI e r
(1—7b)P {am,d}Kﬂlz (1—nb) 1, TEWLL/K oledlogﬂL,
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where the latter statement uses Lemma 5.4.1 and that 71'2 ~Tg7rzL/Kra%dlog T,
is equal to zero in EY(Cyn, T(B|L)), if v,(i) < s. It is clear that this map is a
monomorphism in the stated range. Indeed, r < e —1 and ef, = er/kek, and
therefore, er,/xr +p* <ep — p" T 4 p® <er — 1. Tt follows immediately from
Proposition 5.5.5 that d?(u. (7% %)) vanishes, if ¢ < 2(p**1—1)/(p — 1),
and a straightforward calculation shows that
s+1
A (Temh %)) = La(=Ns - p*{a, 7, d} i - (tn)%_ltdlog T - TEmhad),

if ¢ =2(p*t1—1)/(p — 1). Since ¢, is a monomorphism, we conclude that

s+1_1
dq(Tf(era%) = —Xs'p Ha,rd}g - (tm)pP*I 71tdlog T - Tf(WTKa}l(
= —Ap{ardbg ul " ()

s+1_1

C(trag) T rgdlog Ty - TR T 0%k
as desired. Finally, an analogous argument shows that d?(r&m%-a% ) is equal
to zero, if 2(p"—1)/(p—1) < ¢ < 2(p"*'1—1)/(p—1), and the stated differential
on u, follows from Proposition 5.5.4. All further differentials vanish for degree

reasons. 0

5.6. We conclude this section with a proof of the following result, which
was used in the proof of Proposition 3.3.6 above for n > 3.

LEMMA 5.6.1. For all i > 0, the Frobenius induces a surjection,

F: TRgiJrl(A’K?p) - TRgi111(A‘K;P)-

Proof. For i > 0, the group TR} (A|K;p) is a sum of a uniquely divisible
group and a p-torsion group of bounded height. Indeed, this is true when
n = 1, and the general case follows inductively from the cofibration sequence

WTR"(A|K;p) = TR"(A|K:p) = TR (A|K:p)

and the spectral sequence (3.3.2). Since F'V = p, the Frobenius induces a
surjection of uniquely divisible summands. Hence, it suffices to prove that the
statement of the lemma holds after p-completion. And, by Addendum 5.4.4,
we may instead show that the canonical map

Yn: i1 (H (T, T(A|K)), Zy) — i1 (H (G, T(A|K)), Zyp)
is surjective. To this end, we consider the spectral sequences
EZ(T) = H*(BS', m(T(A|K),Zp)) = more(H (T, T(A|K)), Zp),
E(Cpr) = H™*(BCyn, m(T(A|K), Zp)) = msit(H(Cpr, T(A|K)), Zy),

both of which are strongly convergent second quadrant spectral sequences.
This means that the filtration of m,(H"(G,T(A|K)),Z,) associated with the
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spectral sequence E*(G) is complete and separated and that there is a canonical
isomorphism

gr’ ms 1 (H (G, T(A|K)), Zp) = Eg4(G).
It will therefore suffice to show that
gr®(yn): gr® moi1 (H (T, T(A|K)), Zp) — gr® mai1 (B (Cpn, T(A|K)), Zyp)

is a surjection for all s < 0 and ¢ > 0. The induced map of E2-terms is
given by the map on cohomology induced from the inclusion C,» — T, and
hence, is surjective for s even. Moreover, by Remark 2.4.2, 7, (T'(A|K), Zy) is
concentrated in odd degrees with the exception of mo(T'(A|K ), Zy), and hence,
the nonzero differentials in the spectral sequence E"(T) must originate on the
line t = 0. It follows that for s even and t > 0, the map

Tnx: Eg,t(T) - Eg,t(cp”)

is surjective for all 2 < r < oo. (Since these groups do not support nonzero
differentials, they are stable for r > s.) Since only the groups E ;(Cyr) with s
even and ¢ > 0 can contribute to mg; 41 (H " (Cpn, T(A|K)), Z,), this shows that
the map gr®(+y,) is indeed surjective. O

6. The pro-system TR;(A|K;p,Z/p")

6.1. In this section, we prove the main theorem of this work. Suppose
that p,» C K such that we have the maps

2% By, 2% K(K) 5 TR(A|K; p).

Since p is odd, the Bockstein gives an isomorphism
m2(2% Bppot, Z/p") — pom1 (B By, L/p®) < pypr,
and hence, these maps induce
ppe — Ko(K,Z/p") = TRY(A|K: p, Z/p") = mo( TR™(A|K;p), Z/p").
It follows that there is a canonical map of log Witt complexes
W.wiann © Sz/pe (pr) — TRL(A|K;p, Z/p"),

where on the second tensor factor on the left, the maps R, ' and V act as the
identity and the differential d acts as zero. We recall from Theorem 3.3.8 that
this map is an isomorphism in degrees 0 and 1.

By Addendum 5.4.4 the map

[ ujxc: TRI(A|K; p, Z/p") — mo(H(Cpe, T(A|K)), Z/p")
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is an isomorphism in nonnegative degrees. The groups on the right, for v =1,
are given by the spectral sequence E* = E*(Cyn, T(A|K)), which we evaluated
in Theorem 5.5.1 above. The result is that

n—1

E* - @k{uiﬁ“{ﬁ;{a%dlogﬂl("Up{aﬂ"a digk =v,d< pv;fl - 1}
v=1

n+1 1

® k{rimicak (dlogmi)® ]vp{a rd}x >n, d< P 1)
where a € Z, d € Ny, € € {0,1}, and 0 < r < ef, and where
{a,r,d}k = (pa — d)ex/(p—1) + 1.
We call the basis of E® as a k-vector space exhibited here the standard basis.

PROPOSITION 6.1.1.  If up, C K or if K = Ko then TRy (A|K;p,Z/p) is
an neg-dimensional k-vector space, for all ¢ > 0.

Proof. We fix a total degree ¢ and evaluate the cardinality of the standard
basis of E°°(Cpn, T(A|K)). An element of the standard basis is in total degree
q =2m + ¢ if and only if d — a = m. We let v = v,{a,r,d} k and note that

{a,r,d}k = deg +r —pegm/(p—1).

Hence, the elements of the standard basis of EOO(Cpn, T(A|K)) in total degree
q are indexed by integers 1 <v <n,0<r <egandd>0 such that either 1 <

v < nandv,(deg+r—pexgm/(p—1)) =vand 0 < deg+r < ( ;1 — 1)ex or

v=mnand vy(deg +1r—pexgm/(p—1)) > vand 0 < deg +1 < ( np+ 1_1 —1ek.

But these requirements are equivalent to the requirement that for all 1 < v < n,
deg + r is congruent to pegm/(p — 1) modulo p¥ and

(B — ek < deg +7 < (Bt = Deg = (B — ek + pexc.

It is clear that for each value of 1 < v < n, there are ex pairs (d,r) which
satisfy this requirement. Hence, the dimension is equal to neg as stated. O

LEMMA 6.1.2.  Suppose that the class € € m.(H(Cpn, T(A|K))) is repre-

sented in E®(Cyn, T(A|K)) by the element u TKﬂKozK(dlog 7). Then the
e ata’__r! d+a +1

product by - & is represented by FfuiTi ® wal (dlogmx)®, where
r+ex/(p—1)=dex+7r and 0 <71’ < eg.
Proof. We show that the map induced from multiplication by b,
bz E(Cypn, T(A|K)) — E*(Cpn, T(A|K)),
is given by the stated formula. It suffices to consider the case n = 1. Indeed,
F" 1 B3 ((Cyn, T(AIK)) — E34(Cp, T(A|K)),
V'L EL(Cp T(AIK)) — E3y(Cpn, T(AIK)),
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are isomorphisms for s even and odd, respectively, and commute with multipli-
cation by the Bott element, since F"~1(b,,) = by. Suppose first that v,(ex) > 1
such that

EX(Cy T(AIK)) = Mur, dlog mich © S{rEd, whe, ac b/ (n55).

It will suffice to prove that by - 7} is equal to :ETKWKQ?(H. This follows
from the “multiplicative extension” nX = —7gak. More precisely, Propo-

sition 5.3.6 shows that the elements w% and —7Txai represent the classes

Dk (rr) and T (n5E7?)

the element — KK /(= 1)aK represents the Bott element b;. But ag survives

, respectively. We also recall from (5.2.4) that

the spectral sequence and represents a homotopy class, say, ax. Hence,
_ex/(p—1) _T ex /p(p—1), _

T ak also represents the class —I'y i k(g Jag. The claim fol
lows, if vp(ex) > 1. In general, we pick a totally ramified extension L/K such

that vp(er) > 1 and such that the map
e (G T(AIK)) — E¥(Cy T(BIL)
is a monomorphism. O
We note that multiplication by b,, preserves the symbol

{a,r,d}k = {a+d 7", d+ad + 1}k,

and that the class bZ is represented by =+77 }I(OeK/ (r=1) QT with ¢ =

a(p—1)4+qgand 0< gy <p-—1.

LEMMA 6.1.3.  An element of the standard basis of EOO(C’pn,T(A|K))
represents a homotopy class in the image of the composite

W wiaar ® Sz/p(ttp) — TRI(A|K; p, Z/p) — 7. H(Cpn, T(A|K))
if and only if {a,r,d}x > 0.

Proof. The map of the statement is an isomorphism in degrees 0 and 1 by
Theorem 3.3.8 and Addendum 5.4.4. Indeed, in these dimensions {a,r,d}k is
automatically nonnegative since a = d. We must thus show that for all ¢ > 0
and € = 0,1, the map

@ S,e—8 Cp 7T A‘K @ 32q+s s Cpan(A|K))

s<0 s<0

induced by multiplication by the g-th power of the Bott element is a sur-
jection onto the stated subspace. Suppose for example that a homotopy
class is represented in the spectral sequence by the element T?(ﬂ;(a?;rq and

write 7 — gex/(p — 1) = —apex + ro with 0 < r9 < eg. The requirement
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{a,r,a 4+ q}x > 0 is then equivalent to ap < a, and by Lemma 6.1.2

bl T a0 = :tTj“ﬂr;(a?rq.
The other elements of the standard basis are treated similarly. O

THEOREM 6.1.4.  Suppose K contains the p-th roots of unity. Then the
canonical map 1s a pro-isomorphism:

w. w?AvM) ® SZ/p(:“p) — TR, (A|K;p,Z/p).

Proof. Let E¥ denote the pro-system on either side of the map in the
statement. The standard filtration, given by

Fil* Ef = V°E!_, + dV°E?

n—1»

is a descending filtration with s > 0. The filtration has length n in level n, i.e.
Fil" E¥ is trivial. The map of the statement clearly preserves the filtration.
We show that for all ¢ > 0, there exists N > 1 such that for all n > 1 and
0 < s<n— N, the canonical map

gr®(Wy W?A,M) ® SZ/p(“p))i — gr® TR (A|K; p, Z/p)

is an isomorphism when 0 < s < n — N. Since the structure maps in the
pro-systems preserve the standard filtration, the theorem follows.

We have already proved that the map of the statement is an isomorphism
in degrees 0 and 1. Hence, it suffices to show that for all ¢ > 0, there exists
N > 1 such that foralln >1,0<s <n— N and ¢ = 0, 1, multiplication by
the ¢-th power of the Bott element induces an isomorphism

gr* TRZ(A|K;p, Z/p) — gr* TR, (A|K;p,Z/p).

We claim that any N > 1 with p(q + 1)ex/(p — 1) < pv will do.

For surjectivity we use Lemma 6.1.3. Consider an element of the standard
basis in degree 2¢q + ¢ with symbol {a,r,d}x. Since d > 0 and d = a + ¢, we
have a > —¢q, and hence

{a,r,d}k = aex —qex/(p—1)+r
> —pger/(p—1)+1>—p".

Therefore, if vy{a,r,d}x > N we have {a,r,d}x > 0. It follows that mul-
tiplication by the g-th power of the Bott element induces a surjection of all
summands in E%°(Cyn, T(A|K)) except for the summands with v < N. But
these summands all represent homotopy classes of filtration greater than or
equal to n — N. Indeed, by Proposition 4.4.1

\%4 (Un,ST?‘(ﬂ';(Oé?(d logmg) = uan(ﬂ';(Og(d log 7,

du,rémhakdlogry) = tirhabdlogmy.
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Thus elements of the standard basis with {a,r,d}x < N are either in the
image of V"~ or of dV" V.

To prove injectivity, we first note that for an element of the standard basis
of E®(Cpn, T(A|K)) in total degree 2q + ¢, the requirement that

v+1 1
0<d<? =1
p—1
is equivalent to the requirement that
e e v+1 1
r—pQKg{a,r,d}K<—pQK+er +7r—exk.
—1 p—1 p—1

We show that vy{a,r,d}x = v > N and {a,r,d}x < ex(p*™* —1)/(p — 1)
implies that
pgeK P -1
d}g < ——— — —ex.

{G,T’, }K p_1+eK p—l +7r eK
Indeed, the largest integer which is both congruent to zero modulo p" and
smaller that ey (p°™t —1)/(p — 1) is exp?™/(p — 1) — p¥. Thus {a,r,d}x <
exp’™/(p—1) — p¥, and it suffices to check that

e -1
—pq—K—Feri—l-T—eK.
p—1 P

But this is equivalent to the inequality

exp’ ™ /(p—1) —p¥ <

o> pla+Vex
p—1

which is satisfied for n < N. This shows that the map induced by multipli-

cation by the ¢-th power of the Bott element induces a monomorphism of all

summands in E%°(Cyn, T(A|K)) except for the summands with v < N. The

theorem follows. O

)

Proof of Theorem C. The proof is by induction on v; the basic case v =1
is Theorem 6.1.4. In the induction step, we write ¢ = 2s+ e with 0 <e <1
and consider the diagram of pro-abelian groups

w. wa,M) & /.Lff_l — WL wa,M) & ,u;%s — WL w(aA,M) X /.Lg)s

[~ | [~

TRy (A|IK;p, Z/p"™") — TRy (A|K;p,Z/p") — TR (A|K;p,Z/p),

where, inductively, the right- and left-hand vertical maps are pro-isomorphisms.
The lower sequence is exact at the middle. Hence, it will suffice to show that
the upper horizontal sequence is a short-exact sequence of pro-abelian groups.
Clearly, we can assume that s = 0. If ¢ = 0, the sequence is exact since W,,(A)
is torsion free, for all n > 1. (This does not use the fact that p, C K.) If
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€ = 1, only the injectivity of the left-hand map requires proof. To this end, we
consider the diagram

W(A)@py — — Wewlin QL' — Wowiy ) @Z/pY
TRY(A|K;p, Z/p) > TRY(AIK:p,Z/p"™") — TRi(A|K;p,Z/p"),

where the left-hand and middle vertical maps are pro-isomorphisms by induc-
tion, and where the lower sequence is exact. It will suffice to show that the
upper left-hand horizontal map is zero. But this map takes z ® ( to zdlog. (,
and since ¢ has a p*~!st root, dlog. ¢ is divisible by p*~!. O

Remark 6.1.5. It follows from Theorem C that if p,» C K, the map
W-(A) ® /,va l} p'uW- (.U(lA’M),

which takes x ® ¢ to xzdlog. (, is a pro-isomorphism. It would be desirable to
have an algebraic proof of this fact.

THEOREM 6.1.6. There are natural isomorphisms, for s > 0:
TCQS(A|K7p, Z/p) & HO(K7MI®J®S) @HQ(K’ M?(S-‘rl))’
TCosi1(A|K;p, Z/p) HY (K, u26+0).

12

Proof. Since the extension K (u,)/K is tamely ramified, we may assume
that p, C K. Indeed, Theorem 2.4.3 shows that the canonical map

TC,(A|K; p, Z/p) = TC.(A(p) K (1p); p, Z/p) S K l2)/ O

is an isomorphism, and the analogous statement holds for H*(K, M?S)- If
tp C K, Theorem 6.1.4 shows that for s > 0 and 0 < e < 1, the canonical map

~

TC:(A|K;p,Z/p) ® ,uf?s — TCoas+e(A|K;p, Z/p)

is an isomorphism, and hence, it suffices to prove the statement in degrees 0
and 1.
In degree one, the cyclotomic trace induces an isomorphism

KX/KXP - KI(K7Z/p) ;) TCI(A’K7p7 Z/p)7

and by Kummer theory, the left-hand side is H* (K, 1), [40, p. 155]. In degree
zero, we use the fact that Addendum 1.5.7 gives an exact sequence

0 — TCo(A;p, Z/p) — TCo(A|K;p,Z/p) — TC_1(k;p,Z/p) — 0.

The left-hand term is naturally isomorphic to Z/p = Ko(A,Z/p) by
[19, Th. D], and the left-hand map has a natural retraction given by

TCo(A|K;p,Z/p) — TRo(A|K;p, Z/p)" = Z/p.
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It remains to show that the right-hand term in the sequence is naturally iso-
morphic to H%(K, u,). We recall from [40, p. 186] the natural short exact
sequence

0 — H*(k,pp) — H*(K,pp) — H'(k,Z/p) — 0.

Since k is perfect, the left-hand term vanishes, [40, p. 157]. Let k be an
algebraic closure of k. The normal basis theorem shows that H'(k, k) vanishes
for ¢ > 0, and hence the cohomology sequence associated with the sequence

O—>Z/p—>l§:ga;1>l;:—>0

gives a natural isomorphism k, — H'(k,Z/p). Finally, since k is perfect, the
restriction induces a natural isomorphism

TC_1(k;p, Z/p) = W(k)p /pW (k)F — k. O

Remark 6.1.7. If u, C K, we can also give the following noncanonical
description of the groups TC.(A|K;p,Z/p). Let ( € p, be a generator, let
b = b¢ be the corresponding Bott element, and let 7 = mx € A be a uniformizer.
Then for s > 0,

TCos(A|K;p,Z/p) = Z/p-b°®k,-0(dlogm-b°),
TCos1(AlK;p, Z/p) = Z/p-b°dlog.m &k, - O(b™) @ koK,

where k, is the cokernel of 1 — ¢:k — k, e is the ramification index, and 0
is the boundary homomorphism in the long-exact sequence

o — 0
2 TCY(AIK; p, Z/p) — TRG(A|K; p, Z/p) =5 TR (A|K;p, Z/p) - ...

The summand k°X in the second line maps injectively to the kernel of 1 — F',

the inclusion
ex—1

n: keK = @ k — TR25+1<A‘K;p7 Z/p)
i=0
given, on the i-th summand, by

ni(a) =Y N Vg () PAVE () - b + 3" FU(aug (x) Pd(x?)) - b

v>0 v>0

The sum on the right is finite and the sum on the left converges.

We shall need a special case of the Thomason-Godement construction of
the hyper-cohomology spectrum associated with a presheaf of spectra on a site,
[10, §3]. Suppose that F' is a functor which to every finite subextension L/K
in an algebraic closure K /K assigns a spectrum F(L). For the purpose of this
paper, we write

(6.1.8) F(K) = holim H' (G F(L)).

L/K
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There is a natural strongly convergent spectral sequence
(6.1.9) E2, = H (K, limmF(L)) = me F(K),
L/K
which is obtained by passing to the limit from the spectral sequences for the

group cohomology spectra

E}, = H *(Gpx, mF(L)) = me " (Gp i, F(L)).

S

Indeed, filtered colimits are exact so we get a spectral sequence with abutment

im0 (G, F(L)) — m.F(K),

L/K

and the identification of the E?-term follows from the isomorphism

~

lim H*(Gpyp, m F(L)) > lim H* (G, (lim 7 F(N))9*)

L/K L/K N/L
= H*(K, lim 7, F(N)).
N/K

This isomorphism, which can be found in [41, §2 Prop. 8], is a special case of
the general fact that on a site with enough points, the Godement construction
of a presheaf calculates the sheaf cohomology of the associated sheaf.

THEOREM 6.1.10. The canonical map is an isomorphism in degrees > 1:

i Ko (K, Z[p") — K&(K,Z/p").

Proof. 1t suffices to consider the case v = 1. In the diagram
K(K) SEILSEN K%(K)

ltr ltr
TC(A|K;p) —%— TC%(A|K;p),

the left-hand vertical map induces an isomorphism on homotopy groups with
Z/p-coefficients in degrees > 1. This follows from Addendum 1.5.7 and [19,
Th. D]. We use Theorem 6.1.6 to prove that the right-hand vertical map in-
duces an isomorphism on homotopy groups with Z/p-coefficients and that the
lower horizontal map induces an isomorphism on homotopy groups with Z/p-
coefficients in degrees > 0.

We first prove the statement for the map induced from the cyclotomic
trace

K(K) — TC*(A|K;p).
The spectral sequence (6.1.9) for K-theory with Z/p-coefficients takes the form
E?,t = H_S(Ka M%{)(tﬂ)) = K;}fi-t(K7 Z/p)
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Indeed, since K-theory commutes with filtered colimits, this follows from
Ky(K,Z/p) = pg ",

which is proved in Suslin’s celebrated paper [43] or follows from Theorem 6.1.6
above. Similarly, it follows also from Theorem 6.1.6 that the spectral se-
quence (6.1.9) for topological cyclic homology takes the form

B2, = H*(K, 157 = TCE (A|K;p, Z/p).

Finally, it is clear that the cyclotomic trace induces an isomorphism of
E?-terms.
It remains to show that the map

vi: TCi(A|K; p, Z/p) — TCS (A|K;p, Z/p)

is an isomorphism for ¢ > 0. The domain and range of i are abstractly
isomorphic by Theorem 6.1.6. We must show that yx is an isomorphism for
t > 0. By theorem 2.4.3 we may assume that p, C K and that the residue
field £ is algebraically closed. When i, C K, we have a commutative square

o
TC.(A|K;p, Z/p) ® p&* K25 TCA|IK; p, Z/p) © p&*

id 4
TCosye(A|K;p, Z/p) =25 TCSL, (A|K;p,Z/p),

and the vertical maps are isomorphisms for s > 0 and 0 < ¢ < 1. Hence, it
suffices to show that g is an isomorphism in degrees 0 and 1. And for k alge-
braically closed, the term H?(K,u,) — H'(k,Z/p) in degree zero vanishes.
Thus the edge homomorphism of the spectral sequence (6.1.9),

ex: TCG (A|K; p, Z/p) — H°(K,Z/p),
is an isomorphism, and since the composite
TCo(A|K;p, Z/p) * TCG'(A|K;p, Z/p) ~ H(K,Z/pZ)

is an isomorphism, then so is yx. In degree one, we use the spectral se-
quence (6.1.9) for topological cyclic homology with Q,/Z,-coefficients. As a
G g-module

limTCy (B L; p, Qp/Zyp) — lim Ky (L, Qp/Zp) — Kl(K7Qp/Zp) = Hpoos

L/K L/K

and the composite
TC(A|K; p, Qp/Zy) 5 TCT(A|K; p, Qp/Zp) 5 HO(K, )

is an isomorphism. It follows that yx is an isomorphism in degree one. O
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Appendix A. Truncated polynomial algebras

A.l. Let m = mg € A be a uniformizer and let e = ex be the ramification
index. Then A/pA = k[r]/(n®). The structure of the topological Hochschild
spectrum of this k-algebra was examined in [18]. We recall the result.

Let IT = II. be the pointed monoid {0,1,7,...,7°"1} with base-point
0 and with 7¢ = 0 such that A/p is the pointed monoid algebra k(II) =
E[I1]/k{0}. Then we have from [19, Th. 7.1] a natural F-equivalence of
T-spectra

T(k) A N (I1)] = T(k(IT))

defined as follows: Let Cb(Pk(H)) be the category of bounded complexes of
finitely generated projective k(II)-modules and consider IT as a category with
a single object and endomorphisms II. The functor II — Cb(Pk(H)), which
takes the unique object to k(II) viewed as a complex concentrated in degree
zero and which takes 7! € II (resp. 0 € IT) to multiplication by 7 € k(II) (resp.
0 € k(II)), induces

INZ ()] — [N (C*(Prany))| = T(K(IT))o,
and then the desired map is given as the composite
T(k) AN (D] — T(k(I1) AT(k(IT)) - T (k(IT)).

Since k and II are commutative, the equivalence is multiplicative with com-
ponent-wise multiplication on the left. In particular, the induced map on
homotopy groups is an isomorphism of differential graded k-algebras

m(T(k) A INF (ID)]) = mT(k(I1)),

where the differential is given by Connes’ operator (2.1.2). We give the re-
alization |N.;¥(II)| the usual CW-structure, [33, Th. 14.1] (with the simplices
A™ and the disks D" identified through a compatible family of orientation-
preserving homeomorphisms). Then the skeleton filtration gives a spectral
sequence of differential graded k-algebras

EZ, = mT (k) ® Hy(INY (D)) k) = more(T(k) A NP (IT)]).

S

The same statements are true for ordinary Hochschild homology. If k is a
perfect field of characteristic p > 0, m, HH(k) = k concentrated in degree zero
(see e.g. [19, Lemma 5.5]). Hence, the spectral sequence collapses and the
edge homomorphism gives an isomorphism of differential graded k-algebras

(A.1.1) T (HH(E) A NP (1)) = H. (N (ID)]; k).

The spectral sequence also collapses for T'(k). Indeed, the inclusion of the zero-
skeleton gives a map of ring spectra H (k) — T'(k) from the Eilenberg-MacLane
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spectrum for k, so we have a multiplicative map
(A.1.2) . T(k) ® HL(INY ()]s k) < . (T(k) A [N (1))

given as the composite of the external product

. T (k) ® m(H (k) A N2 (T)]) = m(T(k) A H(k) A [N (IT)])

and the map induced from p:T'(k) A H(k) — T'(k). It follows that the spectral
sequence collapses and that this map is an isomorphism of graded k-algebras.
However, the map H (k) — T'(k) is not equivariant, so this isomorphism does
not preserve the differential.

Let N, (k(IT)) be the normalized standard complex, [5, Chap. IX, §7]. The
Kiinneth isomorphism determines an isomorphism of complexes

k(ID) @pqnye Ne(k(ID)) — Cu(INZ ()] k),
and since N, (k(II)) - k(II) is a resolution of k(II) by free k(II)¢-modules, we
have a canonical isomorphism of graded k-algebras
Tors ™" (k(I1), k(I1)) > AL (NY D) k).
To evaluate this, we consider instead the resolution R, (k(II)) — k(IT) of [14],
R.(k(Il)) = k()@ A{c1} @ T{ea},

‘R1-1Qn° [d—1]
() = m®1-1 skt == :
(e1) e @m @)= T Ter A2

where I'{¢y} is a divided power algebra and cgd] the d-th divided power of cs.

An augmentation-preserving chain map g¢: R, (k(II)) — N, (k(II)) is given by
gy = Yiederefe.. ered
gadhy = Yieredvie.. ored

where both sums run over tuples (ko, ..., kq) with kg +---+ kg = d(e—1) and
0 < k; < e. (The summands with some k; = 0, for 0 < i < d, are zero.) Hence,
if e annihilates k, we have an isomorphism of differential graded k-algebras

(A.1.3) k() @ A{ei1} @ T{ep} = HL(INZ(I)]; k),
where dm = ¢ and dc[Qd] = 0. The value of the differential is readily verified

using the standard formula, [16, Prop. 1.4.6].

PROPOSITION A.1.4. Let k be a perfect field of characteristic p > 0 and
suppose p divides e. Then there is a canonical isomorphism of differential
graded k-algebras

S{o} @ k(Il) ® A{c1} @ T'{ea} — T (k(IL)),

d+1 d
o1 5.

where dm = ¢1 and d(c ) = —(e/p)ﬂeflclc
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Proof. The map of the statement is given by the maps (A.1.2) and (A.1.3).
Since both are isomorphisms of graded k-algebras, it remains only to verify the
differential structure. The formula for dr is clear since the edge homomorphism

mo(T(k) A N (I)]) — Hy (N ()] k)

is an isomorphism for ¢ < 1 and commutes with the differential. But the proof
of the formula for dcgd] is more involved and uses the calculation in [18, Th. B]
of the homotopy type of the T-CW-complex [N (IT)|. As cyclic sets

(A.1.5) N (I) = \/ NY(1L; s),
s>0
where the s-th summand has n-simplices (7%, ..., 7)) with ig+...i, = s, and

the realization decomposes accordingly. If we write s = de +r with 0 <r <e
then under the isomorphism of the statement

S{o} ® k{ﬂrcgd],ﬂ’“_lclcgd}}, if0<r<e,
S{o}® k{ﬂe_lclcgd},cngrH}, if r=e.

The formula we wish to prove involves the case r = e. In this case, [18, Th. B]

o (T(k) AN INZ (11 5)|) = {

gives a canonical triangle of T-CW-complexes
T/Crasnys ASY 25 T/Coy ASYE L [NY(T; 5)| R ST/Clariys A S*4,

where V; = C(1) @ ... ® C(d). If we form the smash product with 7T'(k) and
take homotopy groups, the triangle gives rise to a long-exact sequence, which
we now describe. Let z¢ (resp. yo) be the class of the 0-cycle Cy1/Cy41 (resp.
Cs/Cs) and let x1 (resp. yi, resp. za4) be the fundamental class of T/Cyyq

(resp. T/Cy, resp. S¥4). Then
S{(T} & k’{iL‘ong ZCled} ifn=d+1
(T (k) ANT/Cpy A SV) = ’ T ’
Tl A G 25T { S{o} ® blyza oz} it n—s

and the differential is 7. 7'(k)-linear and maps
d(yoz2q) = (d + 1)y1 224, d(y1224) = 0,
d(x0224) = ST1224, d(x1294) = 0.

The induced maps in the long-exact sequence of homotopy groups associated
with the triangle above all are 7, T'(k)-linear and

pr, (Yoz2d) = To22d, pr, (y1224) = ex1224,
. . 1 [d
ix(0224) = 0, i (T1294) = T° 1610[2 !
_ d d+1
Oy (€ 1d7r-c[2]): 0, 6*((:[2+ ]): — Y1294

The statements for the maps pr, and ¢, are clear from the construction of the
triangle in [18]. We verify the statement for the map 0,. To this end we first
choose a cellular homotopy equivalence

a:Cpy — [N (I s)|
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such that we have a map of triangles from the distinguished triangle given
by the map pr to the triangle above. Since the cellular chain functor carries
distinguished triangles of CW-complexes to distinguished triangles of chain
complexes, we have

Ou(ax((0,y1224))) = w1224,

ax((z1224,0)) = We_lclc[;l].

Hence, it suffices to show that .((0,y1224)) is homologous to —C[Qd—H}. To do
this, we consider the diagram

r] C 6 r ] C
Hoqo(|INY (1L 5)[; Z/p) =  Hag1(|NZ (115 5)|; Z)

- 8 -
H2d+2(cpr§ Z/p) — H2d+1(cpr§ Z)

with injective horizontal maps. A straightforward calculation shows that (on
the level of chains) the top Bockstein takes c[QdH] to (e/p)ﬂe_lclc[;l] and the
bottom Bockstein takes (0, y1224) to —(e/p)x1224. We have already noted that

the right-hand vertical map takes (x1224,0) to We_lclc[gd}. This completes the
proof of the stated formula for 0.
We now prove the formula for d(c[Qd}). First note that we can write

d(cShy = di (5T + da(c5T),

where d; (resp. dz) is defined in same way as d but with T acting in the first
(resp. second) smash factor of T'(k) A [N (II; s)| only. Since the differential dy
commutes with the isomorphism

mT (k) © Ho(INY (I 5)|; k) = m(T(k) A [N (I 5))),
we find that dQ(C[Qd}) = 0. Hence, we can ignore the T-action on |N:¥(II; s)|.
We have a map of triangles of (nonequivariant) CW-complexes

I Lo Jo

2d+1 2d+41, _2d+1
G2d+1 T2etle g2d+1  EETT s0dtd M, 8 §24+2,

such that f, (resp. g.) maps x1z94 (resp. y1294) to the fundamental class of
S%d+1 Hence, it suffices to show that the image of —h.((0,y1224)) = 1-susp(e)
under

d: wogra(T (k) A 2T IM,) — mogy3(T (k) A B2H1M,)
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is equal to —(e/p)o - susp(l) = —(e/p)h+«((z1224,0)). To this end, we consider
the diagram

71 (Mo AT(K)) =20 g0 (B2 M, AT (k)) =2 oo (T () A S2HLM,)

PR Ja Ja

To(Me AT (k) =25 mroq 5 (RS20 M AT (k) 22 7rog5(T(k) A £24H101,),
which commutes up to the indicated sign. By the definition of the class o, the
left-hand vertical map takes € - 1 to (e/p)1 - 0. Hence, the right-hand vertical
map takes 1 -susp(e) to —(e/p)o - susp(1l). The stated formula for d(c[QdH])
follows. O

ADDENDUM A.1.6. The nonzero differentials in the spectral sequence

B2(Cpr TD)) = Afumcr,e} © S{EE 0,7} /() © T{e)
= Tu(H(Cpn, T(K(ID))))
2. _ 2. _ 2 ld+1] _ e—1,. .
are generated from d°e = to, d°m = tcy, and d°cy = —(e/p)tw® cicy 0.

Proof. The d?-differential is given by Propositions 4.4.3 and A.1.4. It
remains only to show that the higher differentials d", » > 3, vanish. The
decomposition of cyclic sets (A.1.5) induces one of spectral sequences. And if
we write s = de + r with 0 < r < e, then the E3-term of the s-th summand is
concentrated on the lines Ef,d and Ef7d+1, if 0 < r < e, and on the lines Ef,dJrl
and Ef’d 1o, if 7 = €. In either case, all further differentials must be zero for
degree reasons. O

PROPOSITION A.1.7.  Let n < wvy(e). The images of w, and Ei/pn by the
map
B 7 (T(R(ID) 1) — 7, (FL(Copn, T(R(IT))))
are represented in the spectral sequence E*(Cyn, T(k(I))) by the infinite cycles

7" and tes, if vp(e) > n, and by ™" and —(e/p")urm¢ ey, if vy(e) = n.

Proof. The statement only involves the summand [N (I, e)|. We con-
sider the map of spectral sequences induced from the linearization map,

Le: E*(Con, T(k) AN INZ (T, €)|) — E*(Cpn, HH(K) A NP (I, €)]).

In the left-hand spectral sequence, E3 = E*°, and in the right-hand spectral
sequence, F? = E*. The induced map of E>®-terms may be identified with
the canonical inclusion

Mun} ® S{t'Y @ k{7 et c0 + € (e/p)m*er}
s AMun, e} ® S{t1} @ k{n°Ley, o).
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Since the map is injective, it suffices to show that l*(f(ﬂf/ p n)) is represented in
the sequence on the right by —u,m ey, if v,(e) = n, and by tea, if v,(e) > n.
In the proof of this, we shall use the notation and results of Sections 4.2 and 4.3
above.

We have from [3, §1] the T-equivariant homeomorphism

D: [sdyn N (IL, )| < [N(IL, ),

where on the left, the action by the subgroup Cp» C T is induced from a
simplicial Cpn-action. It follows that this space has a canonical Cpn-CW-
structure, and the homeomorphism D then defines a Cpn-CW-structure on
|NY(I, e)|. We fix, as in the proof of Proposition A.1.4, a cellular homotopy
equivalence

a:Cpy — [N (11 e)|

with the Cpn-CW-structure on Cf, induced from the Cpn-CW-structure of T =
S(C) = E; given in Section 4.4 above. The cellular complex C, = Cy(Cpy; k)
is canonically identified with the complex

K[Cpn] - (0,21) 2 k- (21,0) @ K[Cpn] - (0, 20) 2 k- (0, 0),

where 6((0,z1)) = —(e/p™)(z1,0)—(9—1)(0, zp), 6((z1,0)) = 0, and §((0, zo)) =
—(z0,0). One shows as in the proof of Proposition A.1.4 that the cycles

as((71,0)) and (N (0, 1)) represent the classes 7~ !¢y and —cg, respectively.

We now turn to the spectral sequence E* = E*(Cyn, HH(E) A Cy). There
are canonical isomorphisms of complexes

B}, = (P @ Hom(P, 7, (HH(k) A Cyy))) 9" = (P ® Hom(P, Hy(C.)))%"

with the left-hand isomorphism given by Lemma 4.3.4 and the right-hand
isomorphism by (A.1.1). We claim that in fact

(A.1.8) 7o (H(Cyn, HH(E) A Cpr)) = H.((P @ Hom(P, C,))C%")

and that the spectral sequence E* is canonically isomorphic to the one asso-
ciated with the double complex on the right. To see this, we filter M), E, E,
and Cf,; by the skeletons. We get, as in Section 4.3, a conditionally convergent
spectral sequence

EZ, = H((P ® Hom(P, m HH(k) © C,))" ) = Tose(H(Cpn, HH(K) A Cpr)),

which collapses since m; HH(k) vanishes for ¢ > 0. The edge homomorphism
gives the desired isomorphism. Moreover, under this isomorphism, the filtra-
tion of E and FE, which gives rise to the spectral sequence E*, corresponds
to the filtration of the complexes P and P. Tracing through the defini-
tions, one readily sees that the class l*(f(ﬁ/ b n)) is represented by the ele-
ment yo @ Nz ® (x0,0) € E(%,o' To finish the proof, we note that in the total
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complex (A.1.8),

6(N(y0 ® .TT ® (07$1) — Yo ® 953 ® (07 .%'0)))
=yo @ Nzj @ (20,0) + yo ® Nay @ N(0,21) + (e/p")yo ® Na] & (x1,0),

and in the lower line, the first summand represents l*(f‘(ﬂz/ P n)), the second

—tcg, and the third (e/p™)u,7¢ lc;. The statement follows, since —tco and

u,m¢ ey are not boundaries. O
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