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TATE COHOMOLOGY AND PERIODIC LOCALIZATION

OF POLYNOMIAL FUNCTORS

NICHOLAS J. KUHN

Abstract. In this paper, we show that Goodwillie calculus, as applied
to functors from stable homotopy to itself, interacts in striking ways
with chromatic aspects of the stable category.

Localized at a fixed prime p, let T (n) be the telescope of a vn self
map of a finite S–module of type n. The Periodicity Theorem of Hopkins
and Smith implies that the Bousfield localization functor associated to
T (n)∗ is independent of choices.

Goodwillie’s general theory says that to any homotopy functor F

from S–modules to S–modules, there is an associated tower under F ,
{PdF}, such that F → PdF is the universal arrow to a d–excisive func-
tor.

Our first main theorem says that PdF → Pd−1F always admits a
homotopy section after localization with respect to T (n)∗ (and so also
after localization with respect to Morava K–theory K(n)∗). Thus, after
periodic localization, polynomial functors split as the product of their
homogeneous factors.

This theorem follows from our second main theorem which is equiva-
lent to the following: for any finite group G, the Tate spectrum tG(T (n))
is weakly contractible. This strengthens and extends previous theorems
of Greenlees–Sadofsky, Hovey–Sadofsky, and Mahowald–Shick. The Pe-
riodicity Theorem is used in an essential way in our proof.

The connection between the two theorems is via a reformulation of a
result of McCarthy on dual calculus.

1. Introduction and main results

Over the past twenty years, beginning with the Nilpotence and Periodic-
ity Theorems of E. Devanitz, M. Hopkins, and J. Smith [DHS, HopSm, R2],
there has been a steady deepening of our understanding of stable homotopy
as organized by the chromatic, or periodic, point of view. During this same
period, there have been many new results in homotopical algebra, many fol-
lowing the conceptual model offered by T. Goodwillies’s calculus of functors
[G1, G2, G3].
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2 KUHN

Here, and in a previous paper [Ku2], I prove theorems illustrating a beau-
tiful interaction between these two strands of homotopy theory. These re-
sults say that certain homotopy functors, stratified via Goodwillie calculus,
decompose into their homogeneous strata, after periodic localization. The
first paper concerned a highly stuctured splitting of the important functor
Σ∞Ω∞. Ignoring the extra structure, one is left with an illustration of the
main result here: after Bousfield localization with respect to a periodic ho-
mology theory, all polynomial endofunctors of stable homotopy split into a
product of their homogeneous components.

We now explain our main results in more detail.
The periodic homology theories we consider are K(n)∗, the nth Morava

K–theory at a fixed prime p and with n > 0, and the ‘telescopic’ variants
T (n)∗, where T (n) denotes the telescope of a vn–self map of a finite complex
of type n. A consequence of the Periodicity Theorem is that the associated
Bousfield class 〈T (n)〉 is independent of the choice of both the complex and
self map. Also, we recall that T (n)∗–acyclics are K(n)∗–acyclic

1; thus the
associated localization functors are related by LK(n) ≃ LK(n)LT (n).

Our use of concepts from Goodwillie calculus and localization theory re-
quire that we work within a good model category with homotopy category
equivalent to the standard stable homotopy category. Thus we work within
the category S, the category of S–modules of [EKMM].

Goodwillie’s general theory then says that a homotopy functor F : S → S
admits a universal tower of fibrations under F ,

...

��
P2F (X)

p2
��

P1F (X)

p1
��

F (X)
e0 //

e1
44jjjjjjjjjjjjjjjjjjj

e2

::tttttttttttttttttttttttt

P0F (X),

such that

(1) PdF is d–excisive, and

(2) ed : F → PdF is the universal natural transformation to a d-excisive
functor.

1The Telescope Conjecture asserts the converse, and, these days, is considered unlikely
to hold for n ≥ 2.
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Our splitting theorem then is as follows.

Theorem 1.1. Let F : S → S be any homotopy functor. For all primes p,
n ≥ 1, and d ≥ 1, the natural map

pd(X) : PdF (X)→ Pd−1F (X)

admits a natural homotopy section after applying LT (n).

The theorem can be reformulated as follows. Let DdF (X) be the fiber
of pd(X) : PdF (X) → Pd−1F (X). Then DdF is both d–excisive and homo-
geneous: Pd−1DdF ≃ ∗. The theorem is equivalent to the statement that
there is a natural weak equivalence of filtered spectra

LT (n)PdF (X) ≃

d∏

c=0

LT (n)DcF (X).

Example 1.2. Here is the simplest example illustrating our theorem. Let
p = 2. For k ∈ Z, let RP∞

k be the Thom spectrum of k copies of the
canonical line bundle over RP∞. [Ku1, Ex.5.7] implies that the cofibration
sequence

(1.1) RP∞
−1 → RP∞

0 → S0

splits after K(n)–localization, for all n, even though the connecting map
δ : S0 → ΣRP∞

−1 is nonzero in mod 2 homology.
As was, in essence, observed in a 1983 paper by J.Jones and S.Wegmann

[JW], (1.1) is the suspension of the special case X = S−1 of a natural
cofibration sequence of functors

(1.2) (X ∧X)hZ/2 → P2(X)→ X.

One can also construct this sequence using Goodwillie calculus: see §3.
Theorem 1.1 says that (1.2) splits after applying LT (n) for all n and X,

even though the connecting map

δ : X → Σ(X ∧X)hZ/2

is often nontrivial before localization.

Remark 1.3. There are various sorts of polynomial functors studied in the lit-
erature differing slightly from Goodwillie’s d–excisive functors: R.McCarthy
has studied d–additive functors [McC], and his student A.Mauer–Oats [MO]
has studied an infinite family interpolating between additive and excisive.
As will be explained more fully in §6, the analogue of Theorem 1.1 holds in
all these generalized settings.
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Remark 1.4. Theorem 1.1 and Corollary 1.7 below also has consequences
for using the tower {PdF (X)} to understand E∗

n(F (X)), where En is the
usual p-complete integral height n complex oriented commutative S–algebra.
Since it is known [H] that K(n)∗(X) = 0 if and only if E∗

n(X) = 0, our the-
orem says that the spectral sequence associated to the tower will collapse at
E1.

Theorem 1.1 is deduced from a rather different result in equivariant stable
homotopy theory that we now describe.

If G is a finite group, let G–S denote the category of S–modules with G–
action: the category of so–called ‘naive G–spectra’. Note that any S–module
can be considered as an object in G–S by giving it trivial G–action.

For Y ∈ G–S, we let YhG and Y hG respectively denote associated homo-
topy orbit and homotopy fixed point S–modules. There are various con-
structions in the literature, more [GM] or less [ACD, AK, Kl1, WW1] so-
phisticated, of a natural ‘Norm’ map

N(Y ) : YhG → Y hG

satisfying the key property that N(Y ) is an equivalence if Y is a finite free
G–CW spectrum. Let the Tate spectrum tG(Y ) be defined as the cofiber of
N(Y ). As recently observed by J.Klein [Kl2], up to weak equivalence, these
constructions are unique: see §2.

We prove the following vanishing theorem.

Theorem 1.5. For all finite groups G, primes p, and n ≥ 1,

LT (n)tG(LT (n)S) ≃ ∗.

This theorem will turn out to be equivalent to the following corollary.

Corollary 1.6. If T (n) is the telescope of any vn–self map of a type n com-
plex, then tG(T (n)) ≃ ∗.

Besides implying Theorem 1.1, Theorem 1.5 also leads to the following
splitting result.

Corollary 1.7. For any Y ∈ G–S, the fundamental cofibration sequence

YhG
N(Y )
−−−→ Y hG → tG(Y )

splits after applying LT (n) for any n.

One also immediately deduces results similar to [HSt, Cor.8.7].
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Corollary 1.8. For all finite groups G, the norm map induces an isomor-
phism

T (n)∗(BG)
∼
−→ T (n)−∗(BG).

Similarly, LT (n)(Σ
∞BG+) is self dual in the category of T (n)–local spectra.

Our two theorems are supported by three propositions.
The first of these is a slight variant of results of R. McCarthy in [McC],

and establishes the connection between our two theorems.
We need to recall Goodwillie’s classification of homogeneous polynomial

functors [G3]. Let Σd denote the d
th symmetric group. If our original functor

F is finitary (terminology from [G3]), i.e. commutes with directed homotopy
colimits, then DdF (X) is weakly equivalent to a homotopy orbit spectrum
of the form

(CF (d) ∧X∧d)hΣd
,

where CF (d) ∈ Σd–S is determined naturally by F . Important to us is that,
even without the finitary hypothesis, there is a natural weak equivalence of
the form

DdF (X) ≃ (∆dF (X))hΣd
,

where ∆dF is a functor determined naturally by F , taking values in the
category Σd–S.

Proposition 1.9. Let F : S → S be any homotopy functor. For all d ≥ 1,
there is a homotopy pullback diagram

PdF (X)

pd

��

// (∆dF (X))hΣd

��
Pd−1F (X) // tΣd

(∆dF (X)).

This diagram is natural in both X and F .

Our other two propositions together imply Theorem 1.5. The first is a
new very general observation about Tate spectra.

Proposition 1.10. Let R be a ring spectrum and E∗ a homology theory. If
tZ/p(R) is E∗–acyclic for all primes p, then so is tG(M) for all R–modules
M and for all finite groups G.

We remark that, by standard arguments, tZ/p(R) ≃ ∗, and thus is cer-
tainly E∗–acyclic, for all primes p such that R∗ is uniquely p–divisible. In
particular, to apply the proposition to the pair (R,E∗) = (LT (n)S, T (n)∗),
one need to only look at the single prime involved in the periodic theory.



6 KUHN

It is in proving our last proposition that deep results in periodic stable
homotopy will be used.

Proposition 1.11. For all primes p and n ≥ 1, LT (n)tZ/p(LT (n)S) ≃ ∗.

At this point we need to comment on results like Theorem 1.5 in the
literature.

The main theorem of the 1988 article by M.Mahowald and P.Shick [MS]
can be restated as

(1.3) tZ/2(T (n)) ≃ ∗.

A proof along their lines can presumably be done at odd primes as well. We
will see that the generalization of their theorem to all primes is equivalent
to Proposition 1.11, yielding one possible proof of that result. We will offer
a rather different proof, using the telescopic functors of Bousfield and the
author [B1, Ku1, B2].

The main theorem of the 1996 article by J.Greenlees and H.Sadofsky [GS]
reads

(1.4) tG(K(n)) ≃ ∗.

Their proof is elementary (in the sense that consequences of the Nilpotence
Theorem are not needed), but heavily uses two special facts aboutK(n): it is
complex oriented, and K(n)∗(BZ/p) is a finitely generated K(n)∗–module.
Note that neither of these two facts is available when considering T (n)∗.
For readers interested in the simplest proof of (1.4), it is hard to imagine
improving upon the clever argument given in [GS, Lemma 2.1] showing
that tZ/p(K(n)) ≃ ∗ , but our Proposition 1.10 offers an alternative way to
proceed starting from this.

The most substantial part of the main theorem of [HSa] says that

(1.5) LK(n)tG(LK(n)S) ≃ ∗.

Note that, were the Telescope Conjecture true, then (1.5) and Theorem 1.5
would be equivalent; at any rate, the latter implies the former. The authors
prove their theorem by starting from (1.4), and then using the Periodicity
Theorem, together with the technical heart of Hopkins and D. Ravenel’s
proof [R2] that LE(n) is a smashing localization. Our proof of Theorem 1.5
bypasses the need for the Hopkins–Ravenel argument.

The rest of the paper is organized as follows. In §2, we review properties
of the norm map and tG, leading to a proof of Proposition 1.10. In §3,
supported by the appendix, we first discuss models for LEtZ/p(LES) for
a general spectrum E, and then use telescopic functors to show that the
model is contractible when E = T (n). The results of the previous two
sections are combined in §4 yielding a proof of Theorem 1.5. Also in this
section is a discussion of the equivalence of Theorem 1.5 and Corollary 1.6,
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with arguments similar in spirit to ones in [MS, HSa]. In §5, we review
what we need to about d–excisive functors, and prove Proposition 1.9 with
arguments similar to those in [McC]. In §6, we prove our splitting results,
Theorem 1.1 and Corollary 1.7.

As is already evident, if E is an S–module, we let LE denote Bousfield
localization with respect to the associated homology theory E∗. Through-
out we also use the following conventions regarding functors taking values

in S. We write F
f
−→
∼

G if f(X) : F (X) → G(X) is a weak equivalence for

all X. By a weak natural transformation f : F → G we mean a pair of

natural tranformations of the form F
g
←−
∼

H
h
−→ G or F

h
−→ H

g
←−
∼

G. Finally,

we say that a diagram of weak natural transformations commutes if, after
evaluation on any object X, the associated diagram commutes in the stable
homotopy category.

Acknowledgements I would like to thank various people who have helped
me with this project. Randy McCarthy and Greg Arone have helped me
learn about Goodwillie towers. Obviously Randy’s paper [McC] has been
important to my thinking, and Greg suggested the compelling reformulation
of Randy’s results given in Proposition 1.9. Neil Strickland alerted me to
the fact a conjecture of mine, that (1.5) was true, was already a theorem
in the literature, and Hal Sadofsky similarly told me about Mahowald and
Shick’s theorem (1.3). Our main results have been reported on in various
seminars and conferences, e.g. at the A.M.S. meetings in January, 2003, and
in Oberwolfach in March, 2003.

2. Tate spectra and Proposition 1.10

2.1. Homotopy orbit and fixed point spectra. For G a fixed finite
group, and Y ∈ G–S, the S–modules YhG and Y hG are defined in the usual
way:

YhG = (EG+ ∧ Y )/G, and Y hG = (MapS(EG+, Y ))G.

Both of these functors take weak equivalences and cofibration sequences
in G–S to weak equivalences and cofibration sequences in S. (See [GM, Part
I] for these sorts of facts.)

YhG has an important additional property not shared with Y hG: it com-
mutes with filtered homotopy colimits.

We record the following well known facts, which are fundamental when
one considers the behavior of YhG and Y hG under Bousfield localization.

Lemma 2.1. If f : Y → Z is a map in G–S that is an E∗–isomorphism,
then fhG : YhG → ZhG is also an E∗–isomorphism.

Lemma 2.2. If Y ∈ G–S is E–local, so is Y hG.
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2.2. A characterization of the norm map. A recent paper by Klein
[Kl2] exploring axioms for generalized Farrell–Tate cohomology leads to a
nice characterization of norm maps, and thus Tate spectra.

Proposition 2.3. Let NG(Y ), N ′
G(Y ) : YhG → Y hG be natural transfor-

mations such that both NG(Σ
∞G+) and N ′

G(Σ
∞G+) are weak equivalences.

Then there is a unique weak natural equivalence f(Y ) : YhG
∼
−→ YhG such

that the diagram

YhG

f(Y ) ""F
F

F
F

F
FF

F

NG(Y )// Y hG

YhG

N ′

G
(Y )

OO

commutes. It follows that the cofibers of NG(Y ) and N ′
G(Y ) are naturally

weakly equivalent.

We sketch the proof, using the sorts of arguments in [Kl2].
Call a homotopy functor H : G–S → S homological if it preserves homo-

topy pushout squares and filtered homotopy colimits. Then Klein, in the
spirit of [WW2], observes that any homotopy functor F : G–S → S admits
a universal left approximation by a homological functor, i.e. there exists
homological functor F hom, and a natural transformation F hom(Y )→ F (Y )
satisfying the expected universal property.

Applying this to the case F (Y ) = Y hG, and observing that YhG is homo-
logical, shows that there is a unique weak natural transformation g : YhG →
Y hG,hom yielding a commutative diagram of weak natural transformations

YhG

g(Y ) %%JJJJJJJJJ

NG(Y ) // Y hG

Y hG,hom.

OO

The right upward map is certainly an equivalence for Y = Σ∞G+, and, by
assumption, so is the top map. Thus g is a weak natural transformation
between homological functors that is an equivalence when Y = Σ∞G+. It
follows that g is weak equivalence.

Applying this same argument to N ′
G yields the proposition.

2.3. Tate spectra. We refer to any natural transformation NG as in the
last proposition as a norm map. The cofiber of NG(Y ) is the associated
Tate spectrum, denoted tG(Y ). Both NG and tG are unique in the sense of
Proposition 2.3; their existence is shown in the various references cited in
the introduction.

It is immediate that tG preserves weak equivalences and cofibration se-
quences.
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From [GM, Prop. I.3.5], we deduce

Lemma 2.4. If R is a (homotopy) ring spectrum with trivial G action, and
M is an R–module, then tG(R) is a ring spectrum, and tG(M) is a tG(R)–
module. Furthermore, RhG → tG(R) is a map of R–algebra spectra.

Fix Y ∈ G–S. For each subgroup H of G, Y can be regarded as being in
H–S by restriction. From [GM, pp.28–29], one deduces

Lemma 2.5. The assignment G/H 7−→ tH(Y ) defines a Mackey functor
to the stable homotopy category. Furthermore, Y hH → tH(Y ) is a map of
Mackey functors.

In §5, we will use the following familiar property of the norm map. In
the literature, this explicitly appears, with a short axiomatic proof, as [AK,
Prop.2.10].

Lemma 2.6. If K is a finite free G–CW complex, then for all Y ∈ G–S,
tG(MapS(K,Y )) ≃ ∗.

2.4. Proof of Proposition 1.10. Recall that R is a ring spectrum, and
we are assuming that tZ/p(R) is E∗–acyclic. We wish to show that tG(M) is
also E∗ acyclic, for all R–modules M , and for all G.

We first note that we can assume M = R. For tG(M) is a tG(R)–module,
and thus the former will be E∗–acyclic if the latter is.

Next we show that we can reduce to the case when G is a p–group. For
each prime p dividing the order of G, let Gp < G be a p–Sylow subgroup.
Then we have

Lemma 2.7. Given Y ∈ G–S and E∗ a generalized homology theory, tG(Y )
will be E∗–acyclic if tGp(Y ) is E∗–acyclic for all p dividing the order of G.

Proof. We recall that the completion of the Burnside ring A(H) is denoted

Â(H). The assignment G/H 7−→ Y hH is then an Â–module Mackey functor
in the sense of [MM]. Thus so is G/H 7−→ tH(Y ), and then also G/H 7−→
E∗(tH(Y )). Now [MM, Cor.4] implies the lemma.

�

Having reduced Proposition 1.10 to the case when G is a p–group, and is
thus solvable, the next lemma implies the proposition.

Lemma 2.8. Let K be a normal subgroup of G, Q = G/K, R a ring
spectrum, and E∗ a homology theory. If tK(R) and tQ(R) are both E∗–
acyclic, so is tG(R).
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Proof. For Y ∈ G–S, consider the composite

YhG ≃ (YhK)hQ
NK(Y )hQ
−−−−−−→ (Y hK)hQ

NQ(Y hK)
−−−−−−→ (Y hK)hQ ≃ Y hG.

We will know that this composite can be considered a norm map if we check
that each of these maps is an equivalence when Y = Σ∞G+.

As there is an equivalence of S–modules with K–action

Σ∞G+ ≃
∨

gK∈Q

Σ∞K+,

it follows that NK(Σ∞G+), and thus NK(Σ∞G+)hQ, is an equivalence.
As there are equivalences of S–modules with Q–action

(Σ∞G+)
hK NK(Σ∞G+)
←−−−−−−−−

∼
(Σ∞G+)hK −→

∼
Σ∞Q+,

it follows that NQ((Σ
∞G+)

hK) is an equivalence.

We conclude from this discussion that if both NK(R)hQ and NQ(R
hK)

are E∗–isomorphisms, then NG(R) will also be an E∗–isomorphism, and thus
tG(R) will be E∗–acyclic.

By assumption, tK(R) is E∗–acyclic. Thus NK(R) is an E∗–isomorphism.
By Lemma 2.1, NK(R)hQ is also.

By assumption, tQ(R) is E∗–acyclic. As tQ(R
hK) is a tQ(R)–module,

we conclude that tQ(R
hK) is also E∗–acyclic, so that NQ(R

hK) is an E∗–
isomorphism. �

3. Telescopic functors and Proposition 1.11

The goal of this section is to prove that LT (n)tZ/pLT (n)S ≃ ∗. We will
prove this by establishing that the localized unit map

LT (n)S → LT (n)tZ/pLT (n)S

is null.
In outline our argument showing this is as follows. It is well known that

tZ/pS can be written as certain inverse limit of Thom spectra. Starting from
this, we will show that the unit map S → tZ/pS factors though an inverse
limit of ‘connecting maps’ associated to the Goodwillie tower of the functor
Σ∞Ω∞ applied to spheres in negative dimensions. We warn the reader of
technical complications: odd primes are less pleasant than p = 2, we use the
theorems of W.H.Lin and J.Gunawardena establishing the Segal conjecture
for Z/p, and a key homological calculation is deferred to an appendix.

It will follow that the localized unit will factor through the inverse limit of
the localized connecting maps. That this inverse limit is null will then be an
easy consequence of constructions of Bousfield and the author [B1, Ku1, B2]
showing that LT (n) factors through Ω∞. These ‘telescopic’ constructions
heavily use the Periodicity Theorem of Hopkins and Smith [HopSm], and
thus are also heavily dependent on the Nilpotence Theorem of [DHS].
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3.1. Models for LEtZ/pLEY and LEtΣpLEY . If α is an orthogonal real
representation of a finite group G, we let S(α) and Sα respectively denote
the associated unit sphere and one point compactified sphere. Thus S(α)
has an unbased G–action while the G–action on Sα is based, and there is a
cofibration sequence of based G–spaces

S(α)+ → S0 → Sα.

Fix a prime p, and let ρ denote Σp acting on R
p/∆(R) in the usual way.

The action of Z/p < Σp on S(ρ) is free, and one concludes that the infinite
join S(∞ρ) is a model for EZ/p. This quickly leads to the following well
known description of tZ/p.

Lemma 3.1. (Compare with [GM, Thm.16.1].) For Y ∈ G–S, there is a
natural weak equivalence

tZ/pY ≃ holim
k

ΣMapS(S
kρ, Y )hZ/p.

We need a generalization of this.

Lemma 3.2. For Y ∈ G–S, there is a natural weak equivalence

LEtZ/pLEY ≃ holim
k

ΣLE(MapS(S
kρ, Y )hZ/p).

If (p− 1)! acts invertibly on E∗, e.g. if E is p–local, there is a natural weak
equivalence

LEtΣpLEY ≃ holim
k

ΣLE(MapS(S
kρ, Y )hΣp

).

These equivalences are also natural with respect to the partially ordered set
of Bousfield classes 〈E〉, and there are commutative diagrams

LEtΣpLEY

��

∼ // holimk ΣLE(MapS(S
kρ, Y )hΣp

)

��
LEtZ/pLEY

∼ // holimk ΣLE(MapS(S
kρ, Y )hZ/p).

Proof. By definition, LEtZ/pLEY is the cofiber of

LENZ/p(LEY ) : LE(LEY )hZ/p → LE(LEY )hZ/p.

The domain of this map can be simplified:

LEYhZ/p → LE(LEY )hZ/p
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is an equivalence. Meanwhile, the range of this map rewritten via the fol-
lowing chain of natural weak equivalences:

LE(LEY )hZ/p
∼
←− (LEY )hZ/p

∼
−→ MapS(S(∞ρ)+, LEY )hZ/p

∼
−→ holim

k
MapS(S(kρ)+, LEY )hZ/p

∼
−→ holim

k
LE MapS(S(kρ)+, LEY )hZ/p

∼
←− holim

k
LE MapS(S(kρ)+, LEY )hZ/p

∼
←− holim

k
LE MapS(S(kρ)+, Y )hZ/p.

The crucial second to last equivalence here is induced by norm maps which
are equivalences since Z/p acts freely on S(kρ).

Thus LEtZ/pLEY has been identified:

LEtZ/pLEY
∼
−→ holim

k
cofiber {LEYhZ/p → LE MapS(S(kρ)+, Y )hZ/p}

∼
−→ holim

k
ΣLE MapS(S

kρ, Y )hZ/p.

The proof of the statements for tΣp are similar, noting that, under the
hypothesis that (p− 1)! acts invertibly on E∗, the norm maps

MapS(S(kρ)+, LEY )hΣp
→ MapS(S(kρ)+, LEY )hΣp

will still be equivalences. �

For r ≥ 0, and X an S–module, we let DrX = (X∧r)hΣr
, and we recall

that there are natural transformations ΣDrX → DrΣX. Specializing to
r = p, a quick check of definitions verifies the next lemma.

Lemma 3.3. There is a natural weak equivalence

ΣkDpΣ
−kX ≃ MapS(S

kρ,X∧p)hΣp
,

and thus there is a p–local equivalence

tΣpS ≃ holim
k

Σk+1DpS
−k.

Define dk : S → Σk+1DpS
−k to be be the composite

S
unit
−−→ tΣpS −→ Σk+1DpS

−k.

As the restriction map tΣpS → tZ/pS is unital, our various observations
combine to yield the following proposition.

Proposition 3.4. If E is p–local, LEtZ/pLES ≃ ∗ if and only if

holim
k

LEdk : LES → holim
k

LEΣ
k+1DpS

−k
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is null.

3.2. The Goodwillie tower of Σ∞Ω∞. Recall that Σ∞Z denotes the sus-
pension spectrum of a space Z, and that Σ∞ has right adjoint Ω∞, where
Ω∞X is the zeroth space of a spectrum X.

Let Pr(X) denote the rth functor in the Goodwillie tower of the functor

Σ∞Ω∞ : S → S.

Thus this Goodwillie tower has the form

...

��
P3(X)

p3(X)
��

P2(X)

p2(X)
��

Σ∞Ω∞X
e1(X) //

e2(X)
44iiiiiiiiiiiiiiiiiii

e3(X)

99sssssssssssssssssssssssss

P1(X).

This tower has the following fundamental properties.

(1) If X is 0–connected, then Σ∞Ω∞X → holimr Pr(X) is an equivalence.

(2) The fiber of pr(X) : Pr(X)→ Pr−1(X) is naturally weakly equivalent to
Dr(X).

(3) There are equivalences D1X ≃ P1X ≃ X, and via the second of these,
e1(X) : Σ∞Ω∞X → P1X can be identified the with evaluation map ǫ(X) :
Σ∞Ω∞X → X.

All of these properties can be deduced from Goodwillie’s general theory.
For an explicit discussion of these (and more) see [AK] or [Ku2].

3.3. Telescopic functors. Bousfield and the author have deduced the the
following consequence of the Periodicity Theorem.

Theorem 3.5. There exists a functor Φn : Spaces → S–modules and a
natural weak equivalence ΦnΩ

∞X ≃ LT (n)X.

With the result stated at the level of homotopy categories, and with
K(n) replacing T (n), this is the main theorem of [Ku1]. However the sorts
of constructions given there, and in [B1] (for n = 1), yield the theorem as
stated: see [B2].

This has the following immediate corollary [Ku1, Ku2].
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Corollary 3.6. There is a natural factorization by weak S–module maps

LT (n)Σ
∞Ω∞X

LT (n)ǫ(X)

''OOOOOOOOOOO

LT (n)X

ηn(X)
77ooooooooooo

LT (n)X.

To use this, we recall an observation about reduced homotopy functors,
functors F : S → S such that F (X) is contractible whenever X is. Good-
willie observes that then there is an induced weak natural transformation

ΣF (X) −→ F (ΣX).

The naturality is with respect to both X and F . For example, if F = Dr,
this natural transformation agrees with the one discussed previously.

In particular, we can apply this construction to both the domain and
range of the natural transformation

LT (n)Pp → LT (n)P1,

evaluated on Σ−kX for all k ≥ 0. Recalling that LT (n) commutes with
suspension and P1(X) ≃ X, we obtain maps

holim
k

ΣkLT (n)Pp(Σ
−kX)→ LT (n)X.

Theorem 3.7. holim
k

ΣkLT (n)Pp(Σ
−kX)→ LT (n)X admits a homotopy sec-

tion.

Proof. A section is given by holim
k

Σk(LT (n)ep(Σ
−kX) ◦ ηn(Σ

−kX)). �

3.4. Specialization to odd spheres. Standard homology calculations as
in [CLM, BMMS] imply the next lemma.

Lemma 3.8. Localized at an odd prime p, DrS
k ≃ ∗ for odd k ∈ Z, and for

2 ≤ r ≤ p− 1. Thus (for all primes p) the natural map

holim
k

ΣkPp−1(S
−k)→ S

is a p–local equivalence.

Continuing the cofibration sequence DpX → Pp(X)→ Pp−1(X) one step
to the right defines a natural transformation

δ(X) : Pp−1(X)→ ΣDpX.

Localized at p, define δk : S → Σk+1DpS
−k to be the composite

S
∼
←− ΣkPp−1(S

−k)
Σkδ(S−k)
−−−−−−→ Σk+1DpS

−k.

Proposition 3.9. holim
k

LT (n)δk : LT (n)S → holim
k

LT (n)Σ
k+1DpS

−k is

null.
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Proof. Localized at p, there is a cofibration sequence

holim
k

LT (n)Σ
kPpS

−k → LT (n)S → holim
k

LT (n)Σ
k+1DpS

−k.

Theorem 3.7 says that the first map has a section. Thus the second map is
null. �

3.5. Proof of Proposition 1.11. A comparison of Proposition 3.4 with
Proposition 3.9 shows that we will have proved Proposition 1.11 once we
check the following lemma.

Lemma 3.10. holim
k

dk : S → holim
k

Σk+1DpS
−k factors through

holim
k

δk : S → holim
k

Σk+1DpS
−k.

Proof. W.H.Lin’s theorem [L], when p = 2, and J.Gunawardena’s theorem
[Gun, AGM], when p is odd, can be stated in the following way:

holim
k

dk : S → holim
k

Σk+1DpS
−k

is p–adic completion. It follows that we need to check that holim
k

δk ∈

π0(holim
k

Σk+1DpS
−k) ≃ Zp is a topological generator. As topological gen-

erators of Zp are detected mod p, the next lemma, whose proof is deferred
to the appendix, completes our argument. �

Lemma 3.11. δ(S−1) : Pp−1(S
−1)→ ΣDpS

−1 is nonzero in mod p homol-
ogy.

4. The proofs of Theorem 1.5 and Corollary 1.6

We begin this section by noting how Proposition 1.11 and Proposition 1.10
together imply Theorem 1.5. Proposition 1.11 can be restated as saying
that tZ/pLT (n)S is T (n)∗–acyclic. Recalling that the localization of a ring
spectrum (e.g. S) is again a ring spectrum, Proposition 1.10 can then be
applied to the pair (R,E∗) = (LT (n)S, T (n)∗), to conclude that tGLT (n)S is
T (n)∗–acyclic for all G. This is a restatement of Theorem 1.5.

Now we turn to showing how Corollary 1.6 can be deduced from Theo-
rem 1.5, and vice versa.

We need to review some of the fine points of the Periodicity Theorem.
(A good reference for this is [R2].) We fix a prime p, and work with p–local
spectra. A finite spectrum F is of type n if K(n)∗(F ) 6= 0, butK(i)∗(F ) = 0
for i < n. Let Cn = {finite F | F has type at least n}. Then every F ∈ Cn
admits a vn self map: a map f : ΣdF → F such that K(n)∗(f) is an
isomorphism, butK(i)∗(f) = 0 for all i 6= n. If n > 0, then d will necessarily
be positive. In all cases, f is unique and natural up to iteration. Thus there
is a well defined functor from Cn to spectra sending F to v−1

n F , the telescope
of any vn self map of F . We note that vn preserves both cofibration sequences
and retracts.
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The Thick Subcategory Theorem says that any thick subcategory of the
category of p–local spectra, i.e. any collection of p–local finite spectra closed
under cofibration sequences and retracts, is Cn for some n ≥ 0.

We recall that LT (n) denotes Lv−1
n F for any F of type n. From the facts

stated above, it is easily verified that this is independent of choice of F , and
that for all F ∈ Cn, LT (n)(F ) = v−1

n F . Finally we note that if F has type n

and F ′ has type i 6= n, then v−1
n F ∧ v−1

i F ′ ≃ ∗.

Lemma 4.1. Fix a finite group G. The following conditions are equivalent.

(1) tG(LT (n)S) is T (n)∗–acyclic.

(2) For all F ∈ Cn, tG(v
−1
n F ) ≃ ∗.

(3) For all type n complexes F , tG(v
−1
n F ) ≃ ∗.

(4) There exists a type n complex F such that tG(v
−1
n F ) ≃ ∗.

Note that statement (1) is the conclusion of Theorem 1.5 and (3) is the
conclusion of Corollary 1.6.

Clearly (2) implies (3), which in turn implies (4). To see that (4) implies
(2), note that the collection of F ∈ Cn such that tG(v

−1
n F ) ≃ ∗ forms a thick

subcategory contained in Cn. Such a thick subcategory will equal all of Cn
if it contains any type n finite. (This type of reasoning appears in [MS].)

Now suppose (1) holds. Since v−1
n F ≃ LT (n)F , it is an LT (n)S–module,

and we see that tG(v
−1
n F ) is (v−1

n F )∗–acyclic for all finite F of type n. It is
easy to find a type n finite F that is a ring spectrum; thus so is R = v−1

n F .
But then tG(R) will be an R∗–acyclic R–module, and thus contractible, i.e.
statement (4) holds.

It remains to show that (2) implies (1). We reason as in [HSa].
Define finite spectra F (0), . . . , F (n) by first setting F (0) = S, and then

recursively defining F (i+ 1) to be the cofiber of a vi self map of F (i).
Ravenel [R1] observes that if f : ΣdX → X is a self map with cofiber C

and telescope T , then 〈X〉 = 〈C ∨ T 〉. Applying this n times leads to an
equality of Bousfield classes

〈S〉 = 〈F (n) ∨
n−1∨

i=0

v−1
i F (i)〉.

Smashing this with tG(LT (n)S), and noting that

tG(LT (n)S) ∧ F (n) ≃ tG(LT (n)F (n)) ≃ tG(v
−1
n F (n)),
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leads to

〈tG(LT (n)S)〉 = 〈tG(v
−1
n F (n)) ∨

n−1∨

i=0

tG(LT (n)S) ∧ v−1
i F (i)〉.

Smashing this with T (n), and noting that T (n) ∧ v−1
i F (i) ≃ ∗ if i < n,

leads to

〈T (n) ∧ tG(LT (n)S)〉 = 〈T (n) ∧ tG(v
−1
n F (n))〉.

If (2) holds, then the right side of this last equation is the Bousfield class of
a contactible spectrum. Thus so is the left, i.e. (1) holds.

5. Polynomial functors and Tate cohomology

In this section we sketch a proof of Proposition 1.9. As I hope will be
clear, this proposition is just a variant of [McC, Prop.4], and our proof uses
precisely the same ideas that McCarthy does.

5.1. Review of Goodwillie calculus. In the series of papers [G1, G2,
G3], Tom Goodwillie has developed his theory of polynomial resolutions of
homotopy functors. We need to summarize some aspects of Goodwillie’s
work as they apply to functors from S–modules to S–modules. Throughout
we cite the version of [G3] of June, 2002.

In [G2], Goodwillie begins by defining and studying the total homotopy
fiber of a cubical diagram. For example the total homotopy fiber of a square

X0

��

// X1

��
X2

// X12

is the homotopy fiber of the evident map from X0 to the homotopy pullback
of the square withX0 omitted. A cubical diagram is then homotopy cartesian
if its total fiber is weakly contractible. Dual constructions similarly define
total homotopy cofibers and homotopy cocartesion cubes. We note that in
a stable model category like S, a cubical diagram is homotopy cartesian
exactly when it is homotopy cocartesion.

A cubical diagram is strongly homotopy cocartesion if each of its 2 dimen-
sional faces is homotopy cocartesion. A functor is then said to be d–excisive
if it takes strongly homotopy cocartesion (d+1)–cubical diagrams to homo-
topy cartesian cubical diagrams.

In [G3], given a functor F , Goodwillie proves the existence of a tower
{PdF} under F so that F → PdF is the universal arrow to a d–excisive
functor, up to weak equivalence.

For functors with range in a stable model category, Goodwillie [G3] gives
a description of how DdF (X), the fiber of PdF (X) → Pd−1F (X), can be
computed by means of cross effects. We describe how this goes in our setting.
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Let F : S → S be a functor. Let d = {1, 2, . . . , d}. In [G3, §3], crdF , the
dth cross effect of F , is defined to the the functor of d variables given as the
total homotopy fiber

(crdF )(X1, . . . ,Xd) = TotFib
T⊂d

F (
∨

i∈d−T

Xi).

A d–variable homotopy functor H : Sd → S is reduced if H(X1, . . . ,Xd)
is contractible whenever any of the Xi are. Given such a functor, its multi-
linearization L(H) : Sd → S is defined by the formula

(5.1) L(H)(X1, . . . ,Xd) = hocolim
ni→∞

Ωn1+···+ndH(Σn1X1, . . . ,Σ
ndXd).

This will be 1-excisive in each variable.
Now define ∆dF : S → Σd–S by the formula

∆dF (X) = L(crdF )(X, . . . ,X).

Then [G3, Theorems 3.5, 6.1] says that there is a natural weak equivalence

(5.2) DdF (X) ≃ (∆dF )(X)hΣd
.

We need to explain some of the ideas behind this formula.
Firstly, ∆d(F ) → ∆d(PdF ) is always an equivalence, and it follows that

one can assume the original functor F is d–excisive.
If F is d–excisive then crdF is already 1–excisive in each variable [G3,

Prop.3.3], and so ∆dF (X) can be identified with (crdF )(X, . . . ,X). In this
case, the natural map

DdF (X)→ PdF (X)

identifies with the natural transformation

αd(X) : (∆dF )(X)hΣd
→ F (X)

defined to be the composite

(∆dF )(X)hΣd
→ F (

d∨

i=1

X)hΣd
→ F (X).

Here the second map is induced by the fold map
∨d

i=1 X → X.
Goodwillie proves (5.2) by verifying that crd(αd) is an equivalence, so that

Dd(αd) is an equivalence. Enroute to this, he shows that there is a natural
equivariant weak equivalence

crd(∆dF ) ≃ Σd+ ∧ crdF.
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5.2. Dual constructions. In [McC], McCarthy investigates ‘dual calculus’.
In this spirit, replacing wedges by products, fibers by cofibers, etc., leads to
constructions dual to the above. In particular, given F : S → S, we define
crdF : Sd → S by the formula

(crdF )(X1, . . . ,Xd) = TotCofib
T⊂d

F (
∏

i∈T

Xi),

and then we define ∆dF : S → Σd–S by

∆dF (X) = L(crdF )(X, . . . ,X).

Because both the domain and range of F is a stable model category, one
sees that each of the natural transormations

crdF → crdF

and

∆dF → ∆dF

are weak equivalences.
If F is d–excisive then ∆dF (X) can be identified with (crdF )(X, . . . ,X).

In this case, we define the weak natural transformation

αd(X) : F (X)→ (∆dF )(X)hΣd

to be the zig–zag composite

F (X)→ F (Xd)hΣd → (∆dF )(X)hΣd
∼
←− (∆dF )(X)hΣd .

Here the first map is induced by the diagonal X → Xd.
Arguments dual to Goodwillie’s show that the next lemma holds.

Lemma 5.1. (Compare with [McC, Lemmas 3.7,3.8].) Let F : S → S be
d–excisive.

(1) crd(αd), and thus Dd(α
d), is an equivalence.

(2) There is a natural equivariant weak equivalence

crd(∆dF ) ≃ MapS(Σ+, cr
dF ).

5.3. Proof of Proposition 1.9. Proposition 1.9 is a formal consequence
of Lemma 5.1. First of all, we observe the following.

Lemma 5.2. (Compare with [McC, proof of Prop.4].) Let F be d–excisive.
Then tΣd

(∆dF ) is (d− 1)–excisive. Thus the cofibration sequence

Dd((∆dF )hΣd)→ Pd(∆dF )hΣd → Pd−1((∆dF )hΣd)

identifies with the norm sequence

(∆dF )hΣd
→ (∆dF )hΣd → tΣd

(∆dF ).
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Proof. For the first statement, we check that crd(tΣd
(∆dF )) ≃ ∗:

crd(tΣd
(∆dF )) ≃ tΣd

(crd(∆dF )) ≃ tΣd
(MapS(Σ+, cr

dF )) ≃ ∗.

Here we have used Lemma 5.1(2) and Lemma 2.6.
As (∆dF )hΣd

is d–excisive and homogeneous, the second statement fol-
lows. �

Now we turn to the proof of Proposition 1.9. We can assume that F
is d–excisive. Assuming this, the last lemma implies that the weak natu-
ral tranformation αd(X) : F (X) → (∆dF (X))hΣd induces a commutative
diagram of weak natural transformations

DdF (X)

��

// (∆dF (X))hΣd

��
PdF (X)

��

// (∆dF (X))hΣd

��
Pd−1F (X) // tΣd

(∆dF (X)).

In this diagram each of the vertical columns is a homotopy fibration sequence
of S–modules. The top map is a weak equivalence thanks to Lemma 5.1(1).
Thus the bottom square is a homotopy pullback diagram.

5.4. Polynomial functor variants. McCarthy and his student Mauer–
Oats [MO] have explored various different notions of what it might mean to
say a functor F : A → B is polynomial of degree at most d, with d–excisive
and d–additive as two special cases. In these variants B should surely be a
reasonable model category, but A can often be a category with much less
structure. As a hint of why this might be true, note that the definition of
cross effects only uses the existence of finite coproducts in A.

If B is any stable model category admitting norm maps, and A is also
appropriately stable, then the evident analogue of Proposition 1.9 still holds.
The discussion above goes through with one little change: the formula (5.1)
for the (multi)linearization process L needs to be adjusted to reflect the
notion of degree 1 functor at hand. Note that our proof of Proposition 1.9
didn’t use this formula (nor did McCarthy’s arguments in [McC]).

Of relevance to the next section, we note that these variants of L are still
homotopy colimits, and thus preserve E∗–isomorphisms.

6. Localization and the proofs of Theorem 1.1 and

Corollary 1.7

In this section, we show how our vanishing Tate cohomology result, The-
orem 1.5, leads to the splitting results Theorem 1.1 and Corollary 1.7. To
simplify notation, we let L = LT (n).
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Proof of Corollary 1.7. Let Y be an S–module with G action. We wish to
show that the norm sequence

YhG
N(Y )
−−−→ Y hG → tG(Y )

splits after applying L. Thus we need to construct a left homotopy inverse
to L(N(Y )).

The localization map Y → LY induces a commutative diagram

YhG

��

N(Y )
// Y hG

��
(LY )hG

N(LY ) // (LY )hG.

Applying L to this yields the diagram

L(YhG)

≀

��

L(N(Y )) // L(Y hG)

L(ηhG)
��

L((LY )hG)
L(N(LY ))

∼
// L((LY )hG).

Here the left vertical map is an equivalence, as homology isomorphisms
are preserved by taking homotopy orbits (Lemma 2.1). The lower map,
L(N(LY )), is an equivalence by Theorem 1.5: its cofiber, L(tG(LY )), is a
module over L(tG(LS)), and is thus contractible.

Our desired left homotopy inverse is now obtained by composing the right
vertical map of the diagram with the inverses of the two indicated equiva-
lences. �

Proof of Theorem 1.1. We are given a functor F : S → S and wish to prove
that

DdF (X)→ PdF (X)→ Pd−1F (X)

splits after applying L. Thus we need to construct a left homotopy inverse
to LDdF (X)→ LPdF (X).

We need a lemma that plays the role that Lemma 2.1 played in the pre-
vious proof. Call a natural transformation F → G an E∗–isomorphism, if
F (X)→ G(X) is an E∗–isomorphism for all X.

Formula (5.2) says that Dd is the composition of constructions each of
which preserve E∗–isomorphisms, and thus we have

Lemma 6.1. If F → G is an E∗–isomorphism, then so is DdF → DdG.

Remark 6.2. This lemma holds for the variants on the notion of d–excisive,
as discussed above in §5.4.
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Armed with this lemma, Theorem 1.1 is proved as follows.
The localization natural transformation F → LF , together with Proposi-

tion 1.9, induce a commutative diagram

DdF

��

// Dd(LF )

��

∼ // ∆d(LF )hΣd

��
PdF // Pd(LF ) // ∆d(LF )hΣd .

Applying L to this, gives the diagram

LDdF

��

∼ // LDd(LF )

��

∼ // L(∆d(LF )hΣd
)

≀

��
LPdF // LPd(LF ) // L(∆d(LF )hΣd).

Here the top left natural transformation is an equivalence by the lemma
just stated. The right vertical natural transformation is an equivalence by
Theorem 1.5, as its cofiber, L(tΣd

(∆d(LF )), is an L(tG(LS))–module, when
evaluated on any X. (Though not necessarily local, due to the hocolimit
construction L, ∆d(LF )(X) is nevertheless an LS–module.)

Our desired left homotopy inverse is now obtained by composing the nat-
ural transformation along the bottom of this diagram with the inverses of
the three indicated equivalences. �

Appendix A. Proof of Lemma 3.11

We begin with some needed notation.
Recall that Pr denotes the rth Goodwillie approximation to the functor

Σ∞Ω∞. We let
δ(X) : Pr−1(X)→ ΣDrX

denote the connecting map for the cofibration sequence

DrX → Pr(X)→ Pr−1(X).

Given any reduced homotopy functor F : S → S, we let

∆(X) : ΣF (X)→ F (ΣX)

denote the canonical natural map.
Fixing a prime p, all homology will be with Z/p coefficients. The Steenrod

operations act on H∗(X) as operations lowering dimensions. To unify the
‘even’ prime and odd prime cases, we let P1 = Sq2, when p = 2. Thus, for
all primes p, P1 lowers degree by 2p − 2.

The goal of this appendix is to prove Lemma 3.11, which we restate more
precisely.

Lemma A.1. δ∗ : H−1(Pp−1(S
−1)) → H−1(ΣDp(S

−1)) is an isomorphism
of one dimensional Z/p–modules.
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Recall that H∗(DrX) is a known functor of H∗(X), both additively, and
as a module over the Steenrod algebra. Furthermore, the behavior of ∆∗ :
H∗(ΣDrX)→ H∗(DrΣX) is known. See [CLM, BMMS].

Naturality implies that there is a commutative diagram:

H−1(Pp−1(S
−1))

≀

��

δ∗ // H−1(ΣDp(S
−1))

≀

��
H−1(Pp−1(Σ

−1HZ))
δ∗ // H−1(ΣDp(Σ

−1HZ))

H2p−3(Pp−1(Σ
−1HZ))

P1
∗

OO

∆∗

��

δ∗ // H2p−3(ΣDp(Σ
−1HZ))

≀ P1
∗

OO

≀ ∆∗

��
H2p−3(Σ

−2Pp−1(ΣHZ))
Σ−2δ∗ // H2p−3(Σ

−1Dp(ΣHZ)),

where the top vertical maps are induced by the inclusion S−1 → Σ−1HZ.
The top square is a square of homology groups of lowest degree. That
the indicated maps are isomorphisms, all between one dimensional vector
spaces, is an easy consequence of facts from [CLM, BMMS]. For example,
the middle right map is an isomorphism due to the Nishida relation

P1
∗βQ

1x = βQ0x ∈ H−2(Dp(Σ
−1HZ)),

for x ∈ H−1(Σ
−1HZ).

Using this diagram, to show that the top map is nonzero, and thus an
isomorphism, it suffices to show that the lower left map and the bottom map
are each isomorphisms. We state each of these as a separate lemma (one in
dual form).

Lemma A.2. ∆∗ : H2p−3(Pp−1(Σ
−1HZ))→ H2p−3(Σ

−2Pp−1(ΣHZ)) is an
isomorphism of one dimensional Z/p–modules.

Proof. When p = 2, ∆ is an equivalence, and so ∆∗ is an isomorphism.
When p is odd, the situation is more complicated, and we proceed as

follows. We have a commutative diagram

H2p−3(Pp−1(Σ
−1HZ))

≀

��

∆∗ // H2p−3(Σ
−2Pp−1(ΣHZ))

≀

��

H2p−3(P2(Σ
−1HZ))

��
H2p−3(Σ

−1HZ)
∆∗

∼
// H2p−3(Σ

−1HZ)
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with indicated isomorphisms. Thus, to show the top map is an isomorphism,
we need to check that the lower left map is an isomorphism. Equivalently,
we need to check that

δ∗ : H2p−3(Σ
−1HZ)→ H2p−3(ΣD2Σ

−1HZ)

is zero. The map δ : Σ−1HZ→ ΣD2Σ
−1HZ factors through

∆ : Σ2D2Σ
−2HZ→ ΣD2Σ

−1HZ,

and this map is zero on H2p−3: the range is one dimensional, spanned by the
suspension of a ∗–decomposable of the form x ∗ y, with x ∈ H−1(Σ

−1HZ)
and y ∈ H2p−3(Σ

−1HZ). But nonzero ∗–decomposables are never in the
image of ∆∗ : H∗(ΣD2(X))→ H∗(D2(ΣX)). �

With our final lemma, we have reached the heart of the matter.

Lemma A.3. δ∗ : H2p−1(ΣDp(ΣHZ)) → H2p−1(Pp−1(ΣHZ)) is an iso-
morphism of one dimensional Z/p–modules.

Proof. Since ΣHZ is 0–connected, the Goodwillie tower Pr(ΣHZ) converges
strongly to Σ∞Ω∞(ΣHZ) = Σ∞S1. Thus the associated 2nd quadrant
spectral sequence converges strongly to H∗(S1). For this to happen, P1(x)
must be in the image of δ∗, where x ∈ H1(Pp−1(ΣHZ)) is a nonzero element,
for otherwise P1(x) 6= 0 ∈ H2p−1(S1).

Thus δ∗ is nonzero, and is thus an isomorphism. �

Remark A.4. In work in progress, the author is studying the spectral se-
quence converging to H∗(Ω∞X) with E−r,∗+r

1 = H∗(DrX). The sort of
argument just given generalizes to show that the first interesting differential
is dp−1 : H∗−1(DpX) → H∗(X). This differential is determined by H∗(X)
as a module over the Steenrod algebra, and has image imposing the unstable
condition on H∗(X).
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