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NEW COHOMOLOGICAL RELATIONSHIPS AMONG

LOOPSPACES, SYMMETRIC PRODUCTS, AND EILENBERG

MACLANE SPACES

NICHOLAS J. KUHN

June 14, 1996

Abstract. Let T (j) be the dual of the jth Brown-Gitler spectrum (at the
prime 2) with top class in dimension j. Then it is known that T (j) is a retract
of a suspension spectrum, is dual to a stable summand of Ω2S3, and that
the homotopy colimit of a certain sequence T (j) → T (2j) → . . . is a wedge
of stable summands of K(V, 1)’s, where V denotes an elementary abelian 2
group. In particular, when one starts with T (1), one gets K(Z/2, 1) = RP∞

as one of the summands.
Refining a question posed by Doug Ravenel, I discuss a generalization of

this picture. I consider certain finite spectra T (n, j) for n, j ≥ 0 (with T (1, j) =
T (j)), dual to summands of Ωn+1SN , conjecture generalizations of all of the
above, and prove that all these conjectures are correct in cohomology. So, for
example, T (n, j) has unstable cohomology, and the cohomology of the colimit
of a certain sequence T (n, j) → T (n, 2j) → . . . agrees with the cohomology
of the wedge of stable summands of K(V, n)’s corresponding to the wedge
occurring in the n = 1 case above.

One can also map the T (n, j) to each other as n varies, and the coho-
mological calculations suggest conjectures related to symmetric products of
spheres.
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1. Introduction

With all spaces and spectra localized at 2, let T (j) be the (2j)th dual of the jth

stable summand of Ω2S3. These finite complexes have remarkable properties that
were explored in the 1970’s and 1980’s in work by M.Mahowald, E.Brown, S.Gitler,
F.Peterson, R.Cohen, G.Carlsson, H.Miller, J.Lannes, and P.Goerss, among oth-
ers. (Entries into the extensive literature include [Mah, BC, Ca, Mi2, L2, GLM].)
These properties played an essential role in a number of the major achievements in
homotopy theory during this time: Mahowald’s construction [Mah] of an infinite
family of 2-primary elements in πS∗ (S0) having Adams filtration 2; Goerss, Lannes,
and F.Morel’s work [GLM] on representing mod 2 homology by maps from (desus-
pensions of) the T (j)’s; and Miller’s proof of the Sullivan conjecture [Mi2], which
led to Lannes’ work on Map(BV,X) [L2].

[Mah] and [GLM] are reflections (and extensions) of the fact that T (j) is a dual
Brown-Gitler spectrum, and, as such, has unexpected “unstable” properties. For
example (following Miller in [Mi2]), T (j) is the projective cover of Sj in the category
in which the objects are wedge summands of suspension spectra, and “epis” are
maps inducing epimorphisms in mod 2 homology.

[Mi2] then reflects connections between the T (j) and the classifying spaces BV
of elementary abelian 2 groups V . For example, the homotopy colimit of certain
sequences

T (j) −→ T (2j) −→ T (4j) −→ · · ·

is always an infinite wedge of stable wedge summands of BV ’s. In particular, if one
starts with T (1), one gets B(Z/2) as a summand.

Refining a question posed by D.Ravenel, the goal of this paper is to show that,
at least on the level on cohomology, certain finite complexes T (n, j) arising from
Ωn+1SN appear to be unstable, and are related to the Eilenberg-MacLane spaces
K(V, n) in the same way that the T (j) are related to the spaces BV . Furthermore,
one can let “n go to ∞”, and obtain connections between these finite complexes
and symmetric powers of spheres.

What I can prove seems substantial, and involves, on one hand, some new ob-
servations about loopspace machinery and the Nishida relations, and, on the other,
much of what the author knows about the relationship between the category of
unstable modules over the Steenrod algebra and the “generic representation” cat-
egory of [K5, K6, K7]. What I can’t yet prove, but only conjecture, seems even
more intriguing, and seems to suggest that there is maybe a remarkable “naturally
occurring” infinite loopspace waiting to be discovered.

To explain our main results, we need to introduce our cast of characters. Recall
that [May], if X is path connected, there is a stable decomposition

Σ∞ΩnΣnX '
∨
j≥1

Σ∞Dn,jX,
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where Dn,jX = C(n, j)+∧ΣjX
[j]. Here C(n, j) is the configuration space of j tuples

of distinct ‘little cubes’ in In, a space acted on freely by the jth symmetric group
Σj , and X [j] denotes the j-fold smash product of X with itself.

For a given n and j, there is a natural number d and a natural equivalence

Dn,j(Σ
dX) ' ΣdjDn,jX,

thus allowing Dn,jX to be defined for a finite spectrum1.

Definition 1.1. For n ≥ 0, j ≥ 0, let T (n, j) be the S-dual of Dn+1,j(S
−n).

T (n, j) is a finite spectrum with top cell in dimension nj, and with bottom mod
2 homology in dimension nα(j), where α(j) denotes the number of 1’s in the 2-adic
expansion of j. As examples, we note that, for all j and n, T (0, j) = S0 = T (n, 0),
T (n, 1) = Sn, T (1, j) = T (j) as above, and T (n, 2) = cofiber {ΣnRPn−1

+ −→ Sn}.
This bigraded family of finite spectra has some extra structure we will need. The

H-space structure on loopspaces induces copairings

Ψ : T (n, k) −→
∨

i+j=k

T (n, i) ∧ T (n, j).

Evaluation on loopspaces induces maps

δ : T (n, j) −→ Σ−1T (n+ 1, j).

Finally, looping Hopf invariants, together with the above periodicity, induces “Frobe-
nious” maps

Φ : T (n, j) −→ T (n, 2j).

These three families of maps will be shown to be compatible in the expected ways.
In particular, δ and Φ commute up to homotopy.

Our first result is a description of H∗(T (n, j); Z/2) as a module over the mod 2
Steenrod algebra A. Following the lead of others in the n = 1 case [Ca, Mi2, LZ],
we describe the bigraded object H∗(T (n, ∗); Z/2), with the extra structure afforded
by Ψ∗ and Φ∗. We need first to define variants on the category U of unstable A
modules, and the category K of unstable A algebras.

Let Uρ be the category whose objects are pairs (M,ρ): M = M∗,∗ is an N×N[1
2 ]

graded Z/2 vector space2 whose columns M∗,j are unstable A modules, and ρ :
M −→ M is a collection of A linear maps ρ : M∗,2j −→ M∗,j. Morphisms in Uρ are
just maps f : M −→ N preserving all structure.

Let Kρ be the category of “restricted algebras in Uρ”, i.e. commutative, unital
algebras K in Uρ (a category with a tensor product) satisfying the “restriction
axiom”: Sq|x|x = (ρ(x))2 for all x ∈ K.

Let Uρ : Uρ −→ Kρ be the free functor, left adjoint to the forgetful functor.
Explicitly, Uρ(M,ρ) = S∗(M)/(Sq|x|x− (ρ(x))2).

If I = (i1, . . . , il), we set SqI = Sqi1 . . . Sqil , l(I) = l, and e(I) = (i1−2i2)+· · ·+
(il−1− 2il) + il. I is called admissible if is ≥ 2is+1 for all s. Define E(n), L(k) ⊂ A
by

E(n) = 〈SqI | I is admissible and e(I) > n〉

1There are more sophisticated ways to do this. See §2.
2Often N×N graded vector spaces will be considered N×N[ 1

2
] graded by setting M∗,j = {0}

for j 6∈ N.
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L(k) = 〈SqI | I is admissible and l(I) > k〉.
Both of these are known to be left Amodules [S, Prop.1.6.2], [Mi1] . Now let F (n, k)
be the unstable A module Σn(A/(E(n) + L(k))), and then let Fρ(n) ∈ Uρ be the
pair (

⊕
k≥0 F (n, k), ρ), where F (n, k) has second grading 2k, and ρ : F (n, k+1) −→

F (n, k) is the projection.

Theorem 1.2. Let n ≥ 1. With multiplication and restriction given by Ψ∗ and
Φ∗,

H∗(T (n, ∗); Z/2) ' Uρ(Fρ(n))

as objects in Kρ. In particular, H∗(T (n, j); Z/2) is an unstable A module.

This theorem suggests

Conjecture 1.3. T (n, j) is a stable wedge summand of a suspension spectrum.

This is known to be true when n = 1 [L1, Goe].
To discuss stablizing T (n, j) with respect to δ, we make the following definition.

Definition 1.4. T (∞, j) = hocolim { T (0, j)
δ−→ · · · δ−→ Σ−nT (n, j)

δ−→ · · · }.

Theorem 1.5.
(1) T (∞, j) ' ∗ unless j is a power of 2.
(2) H∗((T (∞, 2k); Z/2) ' A/L(k) as A modules.

The A module A/L(k) is already known to arise as the cohomology of a spec-

trum: it is the cohomology of SP 2k

∆ (S0), the cofiber of the diagonal map ∆ :

SP 2k−1

(S0) −→ SP 2k(S0) between symmetric products of the sphere spectrum S0

[MP]. Thus we have

Conjecture 1.6. T (∞, 2k) ' SP 2k

∆ (S0).

As will be discussed in §9, work by the author in [K2] and S. Mitchell and
S. Priddy in [MP] implies that this conjecture would follow formally from the
existence of certain pairings between the T (∞, 2k)’s. At any rate, Theorem 1.5
immediately implies

Corollary 1.7. hocolim
n,k−→∞

Σ−nT (n, 2k) = hocolim
k−→∞

T (∞, 2k) ' HZ/2.

We now turn our discussion to how T (n, j) stablizes with respect to Φ.

Definition 1.8. Φ−1T (n, j) = hocolim { T (n, j)
Φ−→ T (n, 2j)

Φ−→ T (n, 4j)
Φ−→ · · · }

Our third theorem identifies H∗(Φ−1T (n, j); Z/2) as the cohomology of an infi-
nite wedge of certain stable summands of the Eilenberg MacLane spaces K(V, n),
in a manner that is independent of n. In particular, just as H∗(K(Z/2, 1); Z/2)
was shown in [Ca] to be an A module direct summand of H∗(Φ−1T (1, 1); Z/2) , so
is H∗(K(Z/2, n); Z/2) an A module summand of H∗(Φ−1T (n, 1); Z/2).
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To be more precise, we need yet more notation. As in [K5, K6, K7], let F be
the category with objects the functors

F : finite dimensional Z/2 vector spaces −→ Z/2 vector spaces,

and with morphisms the natural transformations. For example, Sj and Sj , defined
by Sj(V ) = V ⊗j/Σj and Sj(V ) = (V ⊗j)Σj , are objects in F .

Let Λ be an indexing set for the simple objects in this abelian category: algebraic
group considerations suggest a number of Λ’s, e.g. the set of 2-regular partitions
[K6, Sections 5 and 6]. Given λ ∈ Λ, let Fλ ∈ F be the corresponding simple object,
Vλ a vector space large enough so that Fλ(Vλ) 6= 0, eλ ∈ Z2[End(Vλ)] an idem-
potent chosen so that Z/2[End(Vλ)]eλ is the projective cover of the Z/2[End(Vλ)]
module Fλ(Vλ), and K(λ, n) = eλΣ∞K(Vλ, n) the corresponding stable summand
of K(Vλ, n). Finally, given λ ∈ Λ and j = 0, 1, . . . , define a(λ, j) ∈ N by

a(λ, j) = dimZ/2 HomF (Fλ, S
2kj), for k >> 0.

Theorem 1.9. H∗(Φ−1T (n, j); Z/2) ' H∗(
∨
λ∈Λ

a(λ, j)K(λ, n); Z/2) as A mod-

ules.

(Here
∨
i biYi means that each Yi occurs in the wedge sum with multiplicity bi.)

We remark that these large A modules are nevertheless of finite type.

Conjecture 1.10. Φ−1T (n, j) '
∨
λ∈Λ

a(λ, j)K(λ, n).

Some form of the following has been known to the experts3 since the late 1980’s.

Proposition 1.11. This conjecture is true when n = 1. In particular, Φ−1T (1, 1)
has B(Z/2) as a stable summand.

The organization of the rest of the paper is as follows.
§2,§3, and §4 are devoted to the geometric constructions used to define the three

families of maps Ψ,Φ, δ on the T (n, j). In hopes that these will be useful in other
settings, we develop this material with perhaps more care than is traditional (at
one point, proving a lemma using ideas from “Goodwillie calculus”). Theorem 2.4
summarizes our main geometric results. In §5, properties of these constructions are
combined with standard formula [CLM] for the homology of iterated loopspaces to
give descriptions of H∗(T (n, j); Z/2),Ψ∗,Φ∗, and δ∗ in terms of Dyer-Lashof-like
operations. The standard Nishida relations then yield recursive formulae for how
χ(Sqi) acts on H∗(T (n, j); Z/2); we deduce more useful formulae for how Sqi acts
in §6. These should be of some independent interest. Theorem 1.2 and Theorem 1.5
are then deduced in §7.

The proof of Theorem 1.9 is rather different. Recall [K5] that there are adjoint
functors

U l−→←−r F ,

3By “experts” here I mean at least the authors of [LS], as well as myself.
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where r(F ) = HomF(S∗, F ), with the Steenrod operations acting on the right of
the Sj in the obvious way. Let Iλ ∈ F be the injective envelope of the simple
functor Fλ, and let Φ−1Sj ∈ F be defined by

Φ−1Sj = colim
{
Sj

Φ−→ S2j Φ−→ S4j Φ−→ S8j · · ·
}
,

where Φ : Sj −→ S2j is the squaring map.
The “Vanishing Theorem” of [K6] says that Φ−1Sj is an injective object in the

category Fω ⊂ F of locally finite functors. It follows formally that there is a
decomposition in F

Φ−1Sj '
⊕
λ∈Λ

a(λ, j)Iλ.

Precomposing this with the functor Sn, and then applying the functor r, yields a
decomposition in U

Φ−1r(Sj ◦ Sn) '
⊕
λ∈Λ

a(λ, j)r(Iλ ◦ Sn).

The classical description ofH∗(K(V, n); Z/2) reveals that r(Iλ◦Sn) = H∗(K(λ, n); Z/2),
so the righthand side of this last decomposition agrees with the righthand side of
the the isomophism in Theorem 1.9. Meanwhile, the lefthand side of the isomor-
phism of Theorem 1.9 is known by Theorem 1.2; this is then shown to agree with
Φ−1r(Sj ◦ Sn) by using a new result of ours [K8] that calculates r(Sj ◦ F ) as a
functor of r(F ).
§8 contains the details of this outline of the proof of Theorem 1.9. Finally in

§9, we comment on Proposition 1.11, as well as possible ways of attacking the
conjectures.

2. Geometric constructions

We begin by being a bit more specific about some notation introduced in the
introduction. A point c ∈ C(n, j) is a j tuple c = (c1, . . . cj) in which each ci :
In −→ In is a product of n linear embeddings from the unit interval I to itself, and
the interiors of the images of the ci are disjoint. Then the book of Gaunce Lewis,
et. al. [LMMS] shows that the functor

Dn,jX = C(n, j)+ ∧Σj X
[j]

is well defined in the category of spectra.
Standard properties of equivariant homotopy then allow us to write

T (n, j) = F (Dn,jS
−n, S0)

= F (C(n, j)+ ∧Σj S
−nj, S0)

= F (C(n, j)+, S
nj)Σj .

This gives an interesting alternative (and technically simpler) definition of the
spectra T (n, j), reminiscent of some of the constructions recently occurring in the
“Goodwillie Calculus” literature [AM] 4

4In work in progress, we are exploring this idea more thoroughly than is needed here.
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Definition 2.1. Let D̃n,jX = F (C(n, j)+,X
[j])Σj .

With this definition, we have T (n, j) = D̃n+1,jS
n, and, more generally, if X is a

finite spectrum, then D̃n,jX = S-dual (Dn,j(S-dual (X))).
In the usual way, the little cubes operad structure on the spaces C(n, j) induces

natural maps

µ : Dn,iX ∧Dn,jX −→ Dn,i+jX,

Θ : Dn,iDn,jX −→ Dn,ijX,

and dually, natural maps

Ψ : D̃n,i+jX −→ D̃n,iX ∧ D̃n,jX,

and

Γ : D̃n,ijX −→ D̃n,iD̃n,jX.

In particular, we obtain maps

Ψ : T (n, i+ j) −→ T (n, i)∧ T (n, j),

and

Γ : T (n, 2j) −→ D̃n+1,2T (n, j).

These two families of maps provide sufficient structure for the purposes of comput-
ing the mod 2 cohomology of the T (n, j).

We turn our attention to constructing the maps

δ : T (n, j) −→ Σ−1T (n+ 1, j).

In [K1] we noted that the evaluation map

ε : ΣΩn+1Σn+1X −→ ΩnΣn+1X

induces maps

ε : ΣDn+1,jX −→ Dn,jΣX.

We note that the same geometric construction also yields natural maps

δ : D̃n,jX −→ Σ−1D̃n+1,jΣX.

Both of these families are induced by explicit Σj equivariant maps

β : C(n+ 1, j)+ ∧ S1 −→ C(n, j)+ ∧ Sj,

defined as follows.
Given a linear embedding c : I −→ I, let c∗ : I −→ I be the associated “Thom-

Pontryagin collapse” map. Explicitly,

c∗(t) =


0 if t ≤ Im(c)

s if c(s) = t

1 if t ≥ Im(c).

Note that (c ◦ d)∗ = d∗ ◦ c∗.
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Given a little n+1 cube c : In+1 −→ In+1, we write c = c′×c′′, where c′ : In −→ In,
and c′′ : I −→ I. Regarding S1 as I/∂I, and Sj as (I/∂I)[j], we have the following
definition.

Definition 2.2. (Compare with [May, page 47].)

β(c1, . . . , cj, t) = (c′1, . . . , c
′
j , c
′′∗
1 (t), . . . , c′′∗j (t)).

A straightforward check of definitions yields the next proposition, which shows
how δ is related to the maps Ψ and Γ.

Proposition 2.3.

(1) The composite ΣD̃n,i+jX
δ−→ D̃n+1,i+jΣX

Ψ−→ D̃n+1,iΣX ∧ D̃n+1,jΣX is null
if i > 0 and j > 0.
(2) There are commutative diagrams:

ΣD̃n,ijX D̃n+1,ijX

ΣD̃n,iD̃n,jX D̃n+1,iΣD̃n,jX D̃n+1,iD̃n+1,jΣX.

-δ

?

ΣΓ

?

Γ

-δ -D̃n+1,iδ

Our last and most delicate construction is of the family

Φ : T (n, j) −→ T (n, 2j).

The next theorem summarizes the properties we need to know.

Theorem 2.4. There exist maps Φn,j : T (n, j) −→ T (n, 2j) such that the following
five properties hold.
(1) Φ0,j : T (0, j) = S0 −→ T (0, 2j) = S0 is multiplication by (2j)!/j!2j.
(2) There are commutative diagrams:

ΣT (n, j)
ΣΦn,j−−−−→ ΣT (n, 2j)yδ yδ

T (n+ 1, j)
Φn+1,j−−−−→ T (n+ 1, 2j).

(3) For n ≥ 1, there are commutative diagrams:

T (n, i+ j)
Φn,i+j−−−−→ T (n, 2(i+ j))yΨ

yΨ

T (n, i)∧ T (n, j)
Φn,i∧Φn,j−−−−−−→ T (n, 2i)∧ T (n, 2j).

(4) If n ≥ 1, i and j are odd, and i+ j = 2k, the composite

T (n, k)
Φn,k−−−→ T (n, 2k)

Ψ−→ T (n, i)∧ T (n, j)
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is null.
(5) For n ≥ 1, there are commutative diagrams:

T (n, 2j)
Φn,2j−−−−→ T (n, 4j)yΓ

yΓ

D̃n,2T (n, j)
D̃n,2Φn,j−−−−−−→ D̃n,2T (n, 2j).

Proof. Fix N ≥ 0, J ≥ 0. Let S(N, J) be the collection of sets of maps S =
{ Φn,j | n ≤ N, j ≤ J } such that properties (1) – (5) are true whenever the maps
Φn,j appearing in those statements are chosen from S. (In other words, S ∈ S(N, J)
makes true a finite number of the infinite lists of statements in (1) – (5).)

There are restriction maps S(N, J) −→ S(N − 1, J) and S(N, J) −→ S(N, J − 1).
The theorem amounts to saying that the inverse limit, limS(N, J), taken over all
N and J , is nonempty.

Since (1) and (2) determine Φ0,j and Φn,0, S(N, J) can be regarded as a subset

of
N∏
n=1

J∏
j=1

{T (n, j), T (n, 2j)}, which is finite, as each T (n, j) is a finite complex, and

each T (n, j) with n ≥ 1, j ≥ 2 is torsion. Since the inverse limit of nonempty finite
sets is nonempty5, the next theorem completes the proof of the theorem.

Theorem 2.5. S(N, J) is nonempty.

There are two ingredients in our construction of a set {Φn,j} ∈ S(N, J). The
first is the use of vector bundle trivializations to construct natural equivalences

ωn,j : Dn,j(Σ
dX) ' ΣdjDn,jX,

for n and j in any finite range, compatible with the structure maps (ε, µ,Θ). The
second is the use of Hopf invariants to construct maps, for d > n,

hdn,j : Dn+1,2jS
d−n −→ Dn+1,jS

2d−n

with appropriate properties.
The next two theorems, whose proofs occupy the next two sections, more pre-

cisely describe what we need.

Theorem 2.6. Fix N and J . Then there exists d > 0, and natural equivalences

ωn,j : Dn,j(Σ
dX) ' ΣdjDn,jX,

defined for 1 ≤ n ≤ N, 1 ≤ j ≤ J , such that the following diagrams commute:
(1) for all 1 ≤ n ≤ N − 1, 1 ≤ j ≤ J ,

ΣDn+1,j(Σ
dX)

ωn+1,j−−−−→ Σ1+djDn+1,j(X)yε y(−1)d(j−1)ε

Dn,j(Σ
d+1X)

ωn,j−−−−→ ΣdjDn,j(ΣX),

5A standard application of the Tychonoff Theorem.
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(2) for all 1 ≤ n ≤ N, i+ j ≤ J ,

Dn,i(Σ
dX) ∧Dn,j(Σ

dX)
ωn,i∧ωn,j−−−−−−→ ΣdiDn,i(X) ∧ ΣdjDn,j(X)yµ yµ

Dn,i+j(Σ
dX)

ωn,i+j−−−−→ Σd(i+j)Dn,i+j(X),

(3) for all 1 ≤ n ≤ N, ij ≤ J ,

Dn,iDn,j(Σ
dX) Dn,iΣ

djDn,j(X) ΣdijDn,iDn,j(X)

Dn,ij(Σ
dX) ΣdijDn,ij(X).

-Dn,iωn,j

?

Θ

-ωj
n,i

?

Θ

-ωn,ij

Theorem 2.7. For all 0 ≤ n < d and for all j, there exist maps

hdn,j : Dn+1,2jS
d−n −→ Dn+1,jS

2d−n

with the following properties.
(1) If d is even, hd0,j : D1,2jS

d = S2jd −→ D1,jS
2d = S2jd is multiplication by

(2j)!/j!2j.
(2) There are commutative diagrams:

ΣDn+1,2jS
d−n Σhdn,j−−−−→ ΣDn+1,jS

2d−nyε yε
Dn,2jS

d−n+1
hdn−1,j−−−−→ Dn,jS

2d−n+1.

(3)There are commutative diagrams:

Dn+1,2iS
d−n ∧Dn+1,2jS

d−n hdn,i∧hdn,j−−−−−−→ Dn+1,iS
2d−n ∧Dn+1,jS

2d−nyµ yµ
Dn+1,2(i+j)S

d−n hdn,i+j−−−−→ Dn+1,i+jS
2d−n.

(4) If i and j are odd, and i+ j = 2k, the composite

Dn+1,iS
d−n ∧Dn+1,jS

d−n µ−→ Dn+1,2kS
d−n hdn,k−−−→ Dn+1,kS

2d−n

is null.
(5)There are commutative diagrams:

Dn,2Dn+1,2jS
d−n Dn,2h

d
n,j−−−−−−→ Dn,2Dn+1,jS

2d−nyΘ

yΘ

Dn+1,4jS
d−n hdn,2j−−−−→ Dn+1,2jS

2d−n.
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Assuming these two theorems, we note that Theorem 2.5 follows easily. First
choose d as in Theorem 2.6 (but with J replaced by 2J). We can also assume d is
even. Then, with hdn,j as in Theorem 2.7, we define Φn,j : T (n, j) −→ T (n, 2j) to be
the S-dual of the composite

Dn+1,2jS
−n ω−1

n,2j−−−→ Σ−2djDn+1,2jS
d−n hdn,j−−→ Σ−2djDn+1,jS

2d−n ω2
n,j−−−→ Dn+1,jS

−n.

Courtesy of Theorem 2.6, each statement in Theorem 2.7 translates immediately
into the corresponding statement in Theorem 2.4, proving Theorem 2.5.

3. Structured periodicity

In this section we prove Theorem 2.6, which asserts that given N and J , there
exists d > 0 and natural equivalences

ωn,j : Dn,j(Σ
dX) ' ΣdjDn,jX,

defined for 1 ≤ n ≤ N, 1 ≤ j ≤ J which are appropriately compatible with the
three families of structure maps

ε : ΣDn+1,jX −→ Dn,jΣX,

µ : Dn,iX ∧Dn,jX −→ Dn,i+jX, and

Θ : Dn,iDn,jX −→ Dn,ijX.

To put this theorem in context, recall that as an aid to constructing power
operations and studying Thom isomorphisms, the authors of [BMMS] defined the
notion of an Hd

∞–ring spectrum. For the sphere spectrum S0 to admit an Hd
∞

structure would be roughly equivalent to natural equivalences ωn,j as in the theorem
for all n <∞, j <∞. Though it is easy to see that this cannot be done, our theorem
says that it partially can be. If one defines the notion of an Hd

n structure in the
obvious way, we know of no reason why the following conjecture might not be true.

Conjecture 3.1. Localized at a prime p, for each n, S0 admits the structure of an
Hd
n–ring spectrum for some d > 0.

The origin of the natural equivalences is as follows.
Suppose ξ and ζ are two r dimensional vector bundle over a space B, respectively

classified by maps fξ, fζ : B −→ BO. Then a homotopy H : B × I −→ BO between
fξ and fζ induces an bundle isomorphism ωH : ξ −→ ζ and thus a homeomorphism
ωH : M(ξ) −→ M(ζ) of Thom spaces. In particular, given a map i : B −→ C to
a contractible space C, and an extension F : C −→ BO of fξ, there is an induced
homeomorphism of spaces

ωF : M(ξ) −→ Σr(B+).

Furthermore, given a second extension F ′ : C′ −→ BO, ωF and ωF ′ will be homo-
topic if the map

F ∪fξ F ′ : C ∪B C′ −→ BO

is null. This last map can be regarded an obstruction o(F, F ′) : ΣB −→ BO.
We apply these general remarks to the case of interest. Let ξn,j be the vector

bundle
C(n, j)×Σj Rj −→ B(n, j) = C(n, j)/Σj,
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with classifying map fn,j : B(n, j) −→ BO. This is easily seen to be a bundle of
finite order, and an extension F : CB(n, j) −→ BO of dfn,j to the cone on B(n, j)
induces a homeomorphism

ωF : C(n, j)+ ∧Σj S
dj −→ Σds(B(n, j)+),

and thus a Σj–equivariant homeomorphism

ωF : C(n, j)+ ∧ Sdj −→ Σds(C(n, j)+),

and finally a natural equivalence

ωF : Dn,j(Σ
dX) ' ΣdjDn,jX.

A straightforward check of definitions shows

Lemma 3.2. In this situation, if F : CB(n, j) −→ BO is the restriction of a map
F ′ : CB(n+ 1, j) −→ BO extending dfn+1,j then the following diagram commutes:

ΣDn+1,j(Σ
dX)

ωF ′−−−−→ Σ1+djDn+1,j(X)yε y(−1)d(j−1)ε

Dn,j(Σ
d+1X)

ωF−−−−→ ΣdjDn,j(ΣX).

Now fix N and J as in Theorem 2.6. Let d > 0 and let F = {Fj : CB(N, j) −→
BO | j = 1, . . . , J} be a collection of extensions of the maps dfN,j. We define the
obstruction set o(F) to be the following set of maps:

oµi,j(F) : Σ(B(N, i)×B(N, j)) −→ BO,

for i+ j = J , and

oΘ
i,j(F) : Σ(C(N, i)×Σi B(N, j)i) −→ BO,

for ij = J , where these maps are defined as follows.
For oµi,j(F), we regard Σ(B(N, i)×B(N, j)) as

C(B(N, i)×B(N, j)) ∪B(N,i)×B(N,j) CB(N, i)× CB(N, j),

and we let

oµi,j(F) =

{
Fi+j ◦ µ on C(B(N, i)×B(N, j)),

µBO ◦ (Fi × Fj) on CB(N, i)× CB(N, j).

Here µBO : BO ×BO −→ BO is the H-space structure map.
For oΘ

i,j(F), we regard Σ(C(N, i)×Σi B(N, j)i) as

C(C(N, i)×Σi B(N, j)i) ∪C(N,i)×Σi
B(N,j)i C(N, i)×Σi CB(N, j)i,

and we let

oΘ
i,j(F) =

{
Fij ◦Θ on C(C(N, i)×Σi B(N, j)i),

ΘBO ◦ (Id×Σi (Fj)
i) on C(N, i)×Σi CB(N, j)i.

Here ΘBO : C(n, i)×Σi BO
i −→ BO is the infinite loopspace structure map.

Theorem 2.6 will follow if we can show that there is a choice of d and F for
which o(F) is a set of null maps. Firstly, we note that there do exist collections



LOOPSPACES AND EILENBERG MACLANE SPACES 13

F as above: we just need to choose d equal to a common multiple of the orders of
the bundles ξN,1, . . . , ξN,J . By making d possibly bigger, we can even ensure that

F is the restriction of a similar family F̃ defined for the pair (N + 1, J), and the
obstruction set o(F) is the restriction of o(F̃).

Given a family F , let rF be the family with jth function equal to rFj . Note that
if Fj extends dfN,j, then rFj extends (rd)fN,j . It is easy to check

Lemma 3.3.
(1) oµi,j(rF) = roµi,j(F) ∈ K1(B(N, i)×B(N, j)).

(2) oΘ
i,j(rF) = roΘ

i,j(F) ∈ K1(C(N, i)×Σi B(N, j)i).

Proposition 3.4. Let X(N) be one of the spaces B(N, j), B(N, i) × B(N, j), or
C(n, i) ×Σi B(N, j)i. If x ∈ K∗(X(N)) is in the image of the restriction from
K∗(X(N + 1)), then x is torsion.

Postponing the proof of this proposition for the moment, we show that there is
a choice of d and F for which o(F) is a set of null maps. Start with any family
F (and associated d) as above. Let r be a common multiple of the orders of the
obstructions oµi,j(F) and oΘ

i,j(F). (Proposition 3.4 tells us that these elements do
have finite order.) Then the family rF has an obstruction set consisting only of
null maps, as needed.

It remains to prove Proposition 3.4. This will follow from three lemmas.

Lemma 3.5. Let f : X −→ Y be a map between finite complexes. If H∗(f ; Q) =
0, then Im{E∗(f) : E∗(Y ) −→ E∗(X)} is torsion for all generalized cohomology
theories E∗.

Proof. For finite complexes Z, E∗(ZQ) ' E∗(Z) ⊗Q. H∗(f ; Q) = 0 implies that
fQ ' ∗, and thus that E∗(f)⊗Q = 0.

Lemma 3.6. If X(N) is as in Proposition 3.4, X(N) has the homotopy type of a
finite complex.

Proof. There are many ways to see this. The author’s favorite is to note that the
explicit cell decomposition forB(2, j) given by Fox and Neuwirth in [FN] generalizes
to B(n, j): B(n, j) has the homotopy type of an (n − 1)(j − 1) dimensional cell
complex with exactly nj−1 cells.

Lemma 3.7. With X(N) as in Proposition 3.4,

H∗(X(N); Q) −→ H∗(X(N + 1); Q)

is 0.

Proof. This follows from standard homology calculations [CLM].
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4. Hopf invariants

In this section we use Hopf invariants to define maps

hdn,j : Dn+1,2jS
d−n −→ Dn+1,jS

2d−n,

for 0 ≤ n < d, and then show that they have the properties listed in Theorem 2.7.
The maps are not hard to define. Let

HY : ΩΣY −→ ΩΣ(Y ∧ Y )

be the classic Hopf invariant. Replacing Y by ΣnX, and looping n times, defines
an unstable natural map

ΩnHΣnX : Ωn+1Σn+1X −→ Ωn+1Σn+1(ΣnX ∧X).

Now let DnX denote
∞∨
j=1

Dn,jX, and, for connected X, let

sn : DnX ' ΩnΣnX

be the natural stable Snaith equivalence as studied in [LMMS, Chapter VII]. Finally,

Hn(X) : Dn+1X −→ Dn+1(ΣnX ∧X)

will be the stable map given by the composite s−1
n+1 ◦ (ΩnHΣnX) ◦ sn+1.

Definition 4.1. For all 0 ≤ n < d, and for all j,

hdn,j : Dn+1,2jS
d−n −→ Dn+1,jS

2d−n

is defined to be the (2j, j)th component of Hn(Sd−n).

The first of the properties in Theorem 2.7 is easily checked. If d is even,
hd0,j : S2jd −→ S2jd is multiplication by (2j)!/j!2j, as cup product considerations

easily show that H : ΩSd+1 −→ S2d+1 induces multiplication by this number in
cohomology in dimension 2dj [H, p.294].

Property (2) of Theorem 2.7, the compatibility of hdn,j with the maps ε, follows
from the main result of [K1]: under the Snaith equivalence, the evaluation

ε : ΣΩn+1Σn+1X −→ ΩnΣn+1X

is carried to
∞∨
j=1

ε :
∞∨
j=1

ΣDn+1,jX −→
∞∨
j=1

Dn,jΣX.

The remaining three properties follow from the next two propositions.

Proposition 4.2. There is a commutative diagram:

DnDn+1X
DnHn(X)−−−−−−→ DnDn+1(ΣnX ∧X)yΘ

yΘ

Dn+1X
Hn(X)−−−−→ Dn+1(ΣnX ∧X).
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Here Θ : DnDn+1X −→ Dn+1X is the restriction of the structure map Θ : Dn+1Dn+1X −→
Dn+1X.

Proposition 4.3. The (i, j)th component of Hn(X) is null unless i ≤ 2j.

This tells us that Hn(X) can be regarded as an ”upper triangular matrix” of
maps. With this information fed into Proposition 4.2, the three last properties of
Theorem 2.7 can be read off immediately.

Proof of Proposition 4.3. The (i, j)th component of Hn(X) is a natural transfor-
mation

Dn+1,iX −→ Dn+1,j(Σ
nX ∧X).

In the terminology of [Goo], the domain is a homogeneous functor of degree i,
while the range is a functor of degree 2j. Thus there are no nontrivial natural
transformations from the former to the latter if i > 2j.

Remark 4.4. This proposition presumably has a direct proof, along the lines of the
proofs of similar results in [K4].

Proof of Proposition 4.2. This is a consequence of the fact that Hn(X) corresponds
to an n fold loop map. Let CnX denote the usual approximation to ΩnΣnX, with
monad structure map Θ : CnCn −→ Cn, and let Y denote ΣnX ∧X.

With this notation, we assert that there is a commutative digram:

DnDn+1X DnDn+1Y

DnCn+1X DnCn+1Y

CnCn+1X CnCn+1Y

Cn+1X Cn+1Y

Dn+1X Dn+1Y.

-DnHn(X)

Q
Q
Q
QQs

Dnsn+1

?

Θ

?

Θ

-Dn(ΩnH)

?

sn

�
�
�
��3Dns

−1
n+1

?

sn

-Cn(ΩnH)

?

Θ

?

Θ

-ΩnH

Q
Q
Q
QQs

s−1
n+1�

�
�
��3

sn+1

-Hn(X)

The lower central square commutes since ΩnH is a Cn–map. The upper square
commutes by naturality. Finally the argument in [K3, §4] shows that the two side
trapezoids commute.
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5. Cohomology calculations

We use the following notational conventions in the next three sections. H∗(X)
and H∗(X) will denote homology and cohomology with Z/2 coefficients. The bino-
mial coefficient

(
b
a

)
is defined, for all integers a and b, as the ath Taylor coefficient

of (x+ 1)b if a ≥ 0, and 0 otherwise. We will use, without further comment, that(
b
a

)
=
(
a−b−1
a

)
.

In this section we describe H∗(T (n, ∗)), and the maps Ψ∗, Φ∗, and δ∗, in terms
of “dual” Dyer-Lashof operations. We begin by remarking that since T (n, j) is the
S–dual of Dn+1,jS

−n, and H∗(Dn+1,jS
−n) embeds in H∗(D∞,jS−n), we will not

need to confront the Browder operations, and the “top” Dyer-Lashof operation will
be additive (as are the others).

As part of the general theory [CLM], the product maps µ induce a bigraded
product on H∗(Dn+1,∗S−n), and associated to the structure maps Θ, there are
Dyer-Lashof operations

Qs : Hq(Dn+1,jS
−n) −→ Hq+s(Dn+1,2jS

−n).

These are defined for s ≤ q + n, and are 0 for s < q. Furthermore, these sat-
isfy the Cartan formula, Adem relations, and restriction axiom: Q|x|x = x2.
H∗(Dn+1,∗S−n) is the free object with all this structure, generated by a class in
degree −n.

There is a canonical isomorphism Hq(T (n, j)) = Hq(Dn+1,jS
−n). Under this

isomorphism, Ψ∗ will correspond to µ∗, and will induce a bigraded product (occa-
sionally denoted “ ∗ ”) on H∗(T (n, ∗)). We define operations

Q̃s : Hq(T (n, j)) −→ Hq+s(T (n, 2j))

to correspond to

Q−s : H−q(Dn+1,jS
−n) −→ H−q−s(Dn+1,2jS

−n).

These are defined for s ≥ q − n, and are 0 for s > q. These satisfy the Cartan
formula,

Q̃t(x ∗ y) =
∑
r+s=t

Q̃rx ∗ Q̃sy,

Adem relations,

Q̃rQ̃sx =
∑
i

(
s− i− 1

r − 2i

)
Q̃r+s−iQ̃ix,

and restriction axiom,

Q̃|x|x = x2.

(We note that in the Adem relations, whenever the iterated operation on the left
is defined, so are those appearing with nonzero coefficient on the right, though not
conversely6.)

6The relation Q̃1Q̃2 = Q̃3Q̃0 illustrates this.
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Theorem 5.1. H∗(T (n, ∗)) is the free object with all this structure, generated by
a class xn in degree n. Explicitly, if

R̃n = 〈Q̃Ixn | I is admissible 〉/〈Q̃Ixn | I is admissible and e(I) > n〉,

H∗(T (n, ∗)) = S∗(R̃n)/(Q̃|x|x − x2). Thus, as a bigraded algebra, H∗(T (n, ∗))
is a polynomial algebra on the set {Q̃Ixn | I is admissible and e(I) < n}, with
Q̃Ixn ∈ H∗(T (n, 2l(I))).

Here, if I = (i1, . . . , il), Q̃
I = Q̃i1 . . . Q̃il , and e(I), l(I) , and admissible mean

what they did in §1. There is a little wrinkle here however: as Q̃0 is not the identity,
an admissible sequence can end with 0’s.

The geometric results of §2 allow us to quickly deduce the behavior of δ∗ and
Φ∗.

Proposition 5.2. δ∗ : H∗+1(T (n+ 1, j)) −→ H∗(T (n, ∗)) is determined by
(1) δ∗(Q̃Ixn+1) = Q̃Ixn, and
(2) δ∗ is 0 on decomposables.

Proof. This follows from Proposition 2.3, and the fact that Dyer–Lashof operations
commute with the evaluation [CLM, p.6, p.218].

Proposition 5.3. Φ∗ : H∗(T (n, ∗)) −→ H∗(T (n, ∗)) is determined by
(1) When n = 0, Φ∗(x2j

0 ) = xj0.
(2) Φ∗(Q̃sx) = Q̃s(Φ∗x) if s > |x| − n.
(3) Whenever the iterated operation Q̃Ixn is defined, Φ∗(Q̃Ixn) = Q̃I

′
xn if I =

(I ′, 0), and is 0 otherwise.
(4) When n ≥ 1, Φ∗ is an algebra map (with the second grading in the domain of
Φ∗ doubled).

Proof. This follows from Theorem 2.4 and the last proposition. As (2j)!/j!2j is
always odd, statement (1) of Theorem 2.4 implies that statement (1) here is true.
Statement (2) here is implied by statement (5) of Theorem 2.4. To see that state-
ment (3) is true, we first prove this in the special case when I consists only of 0’s.
Note that (1) includes the n = 0 subcase of this special case, and then the state-
ment for general n follows by combining the last proposition, with statement (2)
of Theorem 2.4 (which implies that Φ∗ and δ∗ commute). Now use (2) to deduce
(3) for general I from the special case already established. Finally, (4) follows from
statements (3) and (4) of Theorem 2.4.

Note that as a corollary of Proposition 5.2, we have partially proved Theorem 1.5.

Corollary 5.4.
(1) T (∞, j) ' ∗ unless j is a power of 2.
(2) H∗((T (∞, 2k)) = R̃[k], where R̃[k] = 〈Q̃Ix0 | I is admissible and l(I) = k〉.
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6. New Nishida relations

In the last section, we determined H∗(T (n, ∗)) in terms of dual Dyer–Lashof
operations. Here we describe the Steenrod algebra action.

The standard Nishida relations [CLM, p.6, p.214] tell us how (Sqr)∗ commutes
with Qs in H∗(Dn+1,∗S−n). Since χ(Sqr)7 acting on H∗(T (n, ∗)) corresponds to
(Sqr)∗ acting on H−∗(Dn+1,∗S−n), we immediately have the following formula.

Lemma 6.1.

χ(Sqr)Q̃sx =
∑
i

(
−r − s
r − 2i

)
Q̃r+s−iχ(Sqi)x.

Though this does completely specify the Amodule structure on H∗(T (n, ∗)), it is
in a form completely unsuitable for proving theorems like those in the introduction.
The point of this section is to prove

Theorem 6.2.

SqrQ̃sx =
∑
i

(
s− i− 1

r − 2i

)
Q̃r+s−iSqix.

The reader may find it amusing to compare this formula to the Adem relation
of the last section,

Q̃rQ̃sx =
∑
i

(
s− i− 1

r − 2i

)
Q̃r+s−iQ̃ix,

the Adem relations in A,

SqrSqsx =
∑
i

(
s− i− 1

r − 2i

)
Sqr+s−iSqix,

and the formula defining the “Singer construction” [Si]8

Sqr(ts−1 ⊗ x) =
∑
i

(
s− i− 1

r − 2i

)
tr+s−i−1 ⊗ Sqix.

Proof of Theorem 6.2. With Sq denoting the total square 1 + Sq1 + Sq2 + . . . ,
to verify the formula, it suffices to check that it is consistent with the identity
Sq(χ(Sq)) = 1 and Lemma 6.1 above. Fixing n and s, we compute

∑
r

Sqn−rχ(Sqr)Q̃sx =
∑
r

Sqn−r

[∑
i

(
−r − s
r − 2i

)
Q̃r+s−iχ(Sqi)x

]

=
∑
i,j

[∑
r

(
r + s− i− j − 1

n− r − 2j

)(−r − s
r − 2i

)]
Q̃n+s−i−jSqjχ(Sqi)x

=
∑
i,j

[∑
p

(
i+ s− j − 1 + p

n− 2i− 2j − p

)(
−2i− s− p

p

)]
Q̃n+s−i−jSqjχ(Sqi)x

7χ is the antiautomorphism of the connected Hopf algebra A.
8Yet another provocative loose end we are investigating.
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(letting p = r − 2i)

=
∑
i,j

(
−(i+ j)

n− 2(i+ j)

)
Q̃n+s−(i+j)Sqjχ(Sqi)x

(using J. Adem’s formula [A, (25.3)]:
∑
p

(
b+p
c−p
)(
a−p
p

)
≡
(
a+b+1
c

)
mod 2)

=
∑
k

(
−k

n− 2k

)
Q̃n+s−k

[∑
i

Sqk−iχ(Sqi)x

]

=

(
0

n

)
Q̃n+sx =

{
Q̃sx if n = 0

0 otherwise.

Remark 6.3. Our method of proof also shows that the analogues of the formula in
Lemma 6.1,

χ(Sqr)Sqsx =
∑
i

(
−r − s
r − 2i

)
Sqr+s−iχ(Sqi)x,

and

χ(Sqr)(ts−1 ⊗ x) =
∑
i

(
−r − s
r − 2i

)
tr+s−i−1 ⊗ Sqix,

respectively hold in the Steenrod algebra and Singer construction. The formula in
A already appears in the literature as [BaMi, (4.4)], where it is given a proof in the
style of Bullett and MacDonald [BuMacD].

7. The proofs of Theorem 1.2 and Theorem 1.5

To prove Theorem 1.2, first recall the description of H∗(T (n, ∗)) given in Theo-
rem 5.1:

H∗(T (n, ∗)) = S∗(R̃n)/(Q̃|x|x− x2),

where

R̃n = 〈Q̃Ixn | I is admissible 〉/〈Q̃Ixn | I is admissible and e(I) > n〉.

Note that R̃n is closed under both the action of A and Φ∗, thanks to our Nishida
relations and Proposition 5.3, i.e. (R̃n,Φ

∗) is an object in Uρ. Thus Theorem 1.2
will follow from the next two proposition.

Proposition 7.1. (R̃n,Φ
∗) ' Fρ(n) as objects in Uρ.

Proposition 7.2. Let n ≥ 1. In S∗(R̃n), the ideal generated by elements of the
form Q̃|x|x−x2 equals the ideal generated by elements of the form Sq|y|y− (Φ∗y)2.

Both propositions will follow from the next result.

Theorem 7.3. SqIQ̃Jxn = (Φ∗)l(I)(Q̃IQ̃Jxn), whenever the iterated operation
Q̃IQ̃Jxn is defined.

Proposition 7.1 then follows from
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Corollary 7.4. If I is admissible, SqI(Q̃0)kxn =

{
Q̃I(Q̃0)k−l(I) if l(I) ≤ k,

0 if l(I) > k.

This same corollary, together with Corollary 5.4 proves Theorem 1.5.

Proof of Proposition 7.2. Let F (x) = Q̃|x|x − x2 and G(x) = Sq|x|x − (Φ∗x)2.
Using the fact that R̃n is unstable, it is easy to deduce that the two ideals in
question are generated by elements of the form F (x) and G(x) respectively, where
x ∈ R̃n. We claim that the sets of such elements are the same; more precisely,
F (Q̃Ixn) = G(Q̃IQ̃0xn) and G(Q̃Ixn) = F (Φ∗(Q̃Ixn)).

To see that these hold, we let d = |I|+ n and compute:

F (Q̃Ixn) = Q̃dQ̃Ixn − (Q̃Ixn)2

= SqdQ̃IQ̃0xn − (Φ∗(Q̃IQ̃0xn))2,

using Theorem 7.3 and Proposition 5.3,

= G(Q̃IQ̃0xn).

Similarly,

G(Q̃Ixn) = SqdQ̃Ixn − (Φ∗(Q̃Ixn))2

= Φ∗(Q̃dQ̃Ixn)− (Φ∗(Q̃IQ̃0xn))2,

using Theorem 7.3 and Proposition 5.3,

= Q̃dΦ∗(Q̃Ixn)− (Φ∗(Q̃IQ̃0xn))2,

using part (2) of Proposition 5.3 (since n ≥ 1),

= F (Φ∗(Q̃Ixn)).

It remains to prove Theorem 7.3. This will follow from a couple of lemmas.

Lemma 7.5. SqrQ̃JQ̃0xn = Q̃rQ̃Jxn, whenever the iterated operation Q̃rQ̃Jxn is
defined.

Proof. This is proved by induction on l(J). The induction is started by using the
Nishida relations to verify that SqrQ̃0xn = Q̃rxn.

For the inductive step, suppose J = (j, J ′). Then

SqrQ̃JQ̃0xn = SqrQ̃jQ̃J
′
Q̃0xn

=
∑
i

(
r − j − 1

r − 2i

)
Q̃r+j−iSqiQ̃J

′
Q̃0xn (using the Nishida relations)

=
∑
i

(
r − j − 1

r − 2i

)
Q̃r+j−iQ̃iQ̃J

′
xn (by induction)

= Q̃rQ̃jQ̃J
′
xn (using the Adem relations)

= Q̃rQ̃Jxn.
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Lemma 7.6. SqIQ̃J(Q̃0)l(I)xn = Q̃IQ̃Jxn, whenever the iterated operation Q̃IQ̃Jxn
is defined.

Proof. This is proved by induction on l(I), and the last lemma is the case l(I) = 1.
Let I = (I ′, i). Then

SqIQ̃J(Q̃0)l(I)xn = SqI
′
SqiQ̃J(Q̃0)l(I)xn

= SqI
′
Q̃iQ̃J(Q̃0)l(I)−1xn (by the case l(I) = 1)

= Q̃I
′
Q̃iQ̃Jxn (by induction)

= Q̃IQ̃Jxn.

Proof of Theorem 7.3. Applying (Φ∗)l(I) to the formula in the previous lemma
yields

(Φ∗)l(I)(SqIQ̃J(Q̃0)l(I)xn) = (Φ∗)l(I)(Q̃IQ̃Jxn).

As it has a topological origin, (Φ∗)l(I) commutes with Steenrod operations. By
Proposition 5.3, (Φ∗)l(I)(Q̃J (Q̃0)l(I)xn) = Q̃Jxn. The theorem follows.

8. The proof of Theorem 1.9

This sections contains the details of the proof of Theorem 1.9, which was outlined
at the end of §1.

As in [K5], F ∈ F is said to be finite if it has a finite length composition series
with simple subquotients, and is said to be locally finite (written F ∈ Fω) if it is
the union of its finite subfunctors. Recall that Iλ ∈ F is the injective envelope of
the simple functor Fλ. The Iλ are locally finite [K5]. Then the general theory of
locally Noetherian abelian categories [S, p.92] [P, Theorem 5.8.11] implies that, if
J ∈ Fω is any injective, then there is a decomposition in F

J '
⊕
λ∈Λ

a(λ, J)Iλ,

where a(λ, J) = dimZ/2 HomF (Fλ, J).
Applying this to the case J = Φ−1Sj , and noting [KK] that

dimZ/2 HomF (Fλ,Φ
−1Sj) = dimZ/2 HomF(Fλ, S

2kj), for k >> 0,

we deduce that
Φ−1Sj '

⊕
λ∈Λ

a(λ, j)Iλ,

with a(λ, j) as in the introduction.
Recall that r : F −→ U is defined by letting r(F )j = HomF (Sj , F ). The fact that

Sj is finite implies that r will commute with filtered direct limits. In particular, we
can deduce the decomposition in U

Φ−1r(Sj ◦ Sn) '
⊕
λ∈Λ

a(λ, j)r(Iλ ◦ Sn).
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Proposition 8.1. r(Iλ ◦ Sn) ' H∗(K(λ, n); Z/2) as A modules.

Momentarily postponing the proof of this, to prove Theorem 1.9, we need to
show

H∗(Φ−1T (n, j); Z/2) ' Φ−1r(Sj ◦ Sn) as A modules.

Note that this asserts that a certain inverse limit of finite dimensional modules is
isomorphic to a certain direct limit of nilclosed modules (i.e. modules of the form
r(F )).

To show this, observe that Φ−1r(S∗ ◦ Sn) is N × N[1
2 ] graded. It is even an

object in Kρ, using Φ−1 : Φ−1r(S2j ◦ Sn) −→ Φ−1r(Sj ◦ Sn) as the restriction.

Theorem 8.2. H∗(Φ−1T (n, ∗); Z/2) ' Φ−1r(S∗ ◦ Sn) as objects in Kρ.

Returning to the proof of Proposition 8.1, we first note that H∗(K(λ, n); Z/2) =
H∗(K(Vλ, n); Z/2)eλ and r(Iλ ◦Sn) = r(IVλ ◦Sn)eλ, where IW ∈ F is the injective
defined by IW (V ) = (Z/2)Hom(V,W ). Thus we need just show that

r(IW ◦ Sn) = H∗(K(W,n); Z/2).

Now one has the classic calculation [S, p.184] H∗(K(Z/2, n); Z/2) = U(F (n)),
where F (n) = A/E(n) is the free unstable module on an n dimensional class, and
where U : U −→ K is the free functor, left adjoint to the forgetful functor. Explicitly,
U(M) = S∗(M)/(Sq|x|x − x2). Similarly, H∗(K(W,n); Z/2) = UW (F (n)) where
UW : U −→ K is given by UW (M) = U(M ⊗W ∗).

A simple calculation reveals that F (n) = r(Sn)9 (see e.g. [K7, Prop.8.1]), so the
proof of Proposition 8.1 is completed with

Lemma 8.3. [K8] There are natural isomorphisms UW (r(F )) ' r(IW ◦F ), for all
F ∈ Fω.

Sketch proof. It is easy to reduce to the case when W = Z/2. Let I = IZ/2. By
filtering U(M) one then verifies that if M is nilclosed, so is U(M). Thus to identify
U(r(F )) with r(I ◦F ), it suffices to check that l(U(r(F ))) = I ◦F , where l : U −→ F
is left adjoint to r. The functor l is exact, preserves tensor products, and can be
regarded as localization away from nilpotent modules [HLS, K5]. Thus it carries

S∗(r(F ))/(Sq|x|x− x2)

to the functor that sends V to

S∗(l(r(F ))(V ))/(x− x2).

Since l(r(F )) = F , and I(V ) = S∗(V )/(x− x2) [K5], this functor is just I ◦ F .

To prove Theorem 8.2, we need to use the main result of [K8].
As in [K7], let U2 be the category of N×N graded modules over the bigraded

algebra A ⊗ A, unstable in each grading. For M ∈ U2, there are natural maps
Φ1 : Mm,∗ −→M2m,∗ and Φ2 : M∗,n −→M∗,2n10, and we let K2 denote the category
of commutative algebras M in U2 satisfying the “restriction” axiom: for all x ∈

9This is false at odd primes: F (n) is not nilclosed in the odd prime case.
10These are the Steenrod squares in the right degree
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M, (Φ1 ⊗ Φ2)(x) = x2. Let U2 : U2 −→ K2 be left adjoint to the forgetful functor:
explicitly, U2(M) = S∗(M)/((Φ1 ⊗ Φ2)(x) − x2).

Given M ∈ U , M ⊗F (1) is an object in U2. F (1) can be regarded as the module

〈x1, . . . , x
2k , . . . 〉, with x2k having bidegree (1, 2k). Now define

HomF (S∗, F )⊗ F (1) −→ HomF (S∗, S
∗ ◦ F )

by sending (Si
α−→ F )⊗x2k to the composite Si

α−→ F −→ S2k◦F. Since HomF (S∗, S∗◦
F ) is easily checked to be in K2, this map extends to a natural map in K2:

ΘF : U2(HomF (S∗, F )⊗ F (1)) −→ HomF(S∗, S
∗ ◦ F ).

Theorem 8.4. [K8] For all F ∈ Fω, ΘF is an isomorphism.

This is proved in a manner similar to the way Lemma 8.3 is proved.

Corollary 8.5. r(S∗ ◦ Sn) ' U2(F (n)⊗ F (1)), as objects in K2.

Corollary 8.6. Φ−1r(S∗ ◦ Sn) ' Uρ(F (n) ⊗ Φ−1F (1)), as objects in Kρ.

Here Φ−1F (1) = 〈x2k | k ∈ Z〉, with the restriction map (part of the Kρ struc-

ture), taking x2k to x2k−1

.
By Theorem 1.2, H∗(Φ−1T (n, ∗); Z/2) ' Uρ(Fρ(n)Φ̂) as objects in Kρ, where

Fρ(n)Φ̂ denotes the inverse limit

Fρ(n)
ρ←− Fρ(n)

ρ←− Fρ(n)
ρ←− . . . .

The following observation completes the proof of Theorem 8.2, and thus the proof
of Theorem 1.9.

Lemma 8.7. Fρ(n)Φ̂ = F (n)⊗ Φ−1F (1), as objects in Uρ.

9. Remarks and questions

In this section we outline some possible approaches to the conjectures of the
introduction, and discuss the possible “meaning” of the main theorems.

Before launching into heuristics, we start with a rigorous proof of Proposi-
tion 1.11.

Proof of Proposition 1.11. Let X(j) =
∨
λ∈Λ

a(λ, j)K(λ, 1), and recall that we wish

to topologically realize an A module isomorphism:

H∗(Φ−1T (j); Z/2) ' H∗(X(j); Z/2).

Here T (j) = T (1, j) is an appropriate dual of the jth Brown–Gitler spectrum, and as
such has the remarkable property that, if X is any wedge summand of a suspension
spectrum, then any A module map H∗(X; Z/2) −→ H∗(T (j); Z/2) can be realized
by a map T (j) −→ X.

Fixing j, let S(k) ⊂ {T (2kj),X(j)} be the set of maps realizing the natural
projection

H∗(X(j); Z/2) ' H∗(Φ−1T (j); Z/2) −→ H∗(T (2kj); Z/2).
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This is a finite, nonempty set, and Φ : T (2kj) −→ T (2k+1j) induces a restriction
map S(k + 1) −→ S(k). Then an element in the nonempty inverse limit lim

k
S(k) is

a family of maps T (2kj) −→ X(j), compatible under Φ. Such a family then yields a
map Φ−1T (j) −→ X(j) realizing the cohomology isomorphism.

Thus far, we have been unable to find any way in which this proof, or the related
proofs of Conjecture 1.3 [L1, Goe] in the n = 1 case, could generalize to prove
the n > 1 cases of the conjectures. These proofs rely on magical properties of the
spectra T (j), which, in turn, are (partly) due to the fact that H∗(T (j); Z/2) is
injective in U .

Question 9.1. For n > 1, do H∗(T (n, j); Z/2) and H∗(K(Z/2, n); Z/2) have any
sort of injectivity properties in some well chosen subcategory of U?

We now turn to Conjecture 1.6, which we feel is our most accessible conjecture.
Our reason for feeling this is that our work in [K2], together with Mitchell and
Priddy’s work in [MP], lead to various criteria for showing that a sequence of (2
complete, connective) spectra

Z0
Φ−→ Z1

Φ−→ Z2
Φ−→ . . .(9.1)

is equivalent to the sequence

SP 1
∆(S0) −→ SP 2

∆(S0) −→ SP 4
∆(S0) −→ . . .(9.2)

when they agree in cohomology. (One should, of course, be thinking of the case
Zk = T (∞, 2k).)

Theorem 9.2. If (9.1) and (9.2) agree in mod 2 cohomology, then any of the
following suffice to ensure that the sequences are equivalent.
(1) Σ−k(Zk/Zk−1) is a wedge summand of a suspension spectrum.
(2) Z(1) ' SP 2

∆(S0), and there exist pairings Zk ∧ Zl −→ Zk+l, compatible with Φ,
and nonzero in degree 0.
(3) There exist maps Σ−kZk −→ B(Z/2)k+ that in cohomology are injective when
restricted to M(k), the Steinberg idempotent stable summand [MP] of B(Z/2)k+.

Sketch proof. (1) is proved in [K2]. The method of proof in [MP] shows that
(2) implies (1). Finally, if (3) holds, we claim that the composite Σ−kZk−1 −→
Σ−kZk−1 −→ B(Z/2)k+ is null, thus the maps induce composites Σ−k(Zk/Zk−1) −→
B(Z/2)k+ −→ M(k) which are equivalences, establishing (1). To prove this claim,

inductively one can assume that Zk−1 = SP 2k−1

∆ (S0). The next lemma finishs the
proof.

Lemma 9.3. {Σ−lSP 2k−1

∆ (S0), BV+} = 0 if l ≥ k.

Sketch proof. One proves this by induction on k. It reduces to the statement that
{Σ−lM(k), BV+} = 0 if l > 0, which is a consequence of the Segal conjecture.

Remark 9.4. It strikes the author that the geometry of the situation may make it
possible to check condition (3) when Zk = T (∞, 2k).
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Finally we discuss Conjectures 1.3 and 1.10. The key is to rearrange the untidy
right side of the isomorphism

H∗(Φ−1T (n, j); Z/2) ' H∗(
∨
λ∈Λ

a(λ, j)K(λ, n); Z/2).

We know that this module corresponds to the functor (Φ−1Sj)◦Sn ∈ F . The proof
in [K7] that Φ−1Sj is injective in Fω reveals that

Φ−1Sj ' lim
s−→∞

I(F2s )∗ [j],

where (F2s)
∗ is the F2 linear dual of the finite field F2s , and I(F2s )∗ [j] is the

jth eigenspace of I(F2s )∗ under the action of F×2s . Furthermore, if we extend the
scalars to the algebraic closure F̄2, this isomorphism is well behaved with respect
to pairings (between various j’s).

It follows that

H∗(Φ−1T (n, ∗); F̄2) ' H∗cont(K(F̄2, n); F̄2)[∗]

as N[1
2 ] graded algebras in U , where we write

H∗cont(K(F̄2, n); F̄2) = lim
s−→∞

H∗(K(F2s , n); F̄2).

Nowadays, one has learned to call an E∞ ring spectrum an S–module. Similarly,
one can discuss SW (F̄2)–modules, where W (F̄2) are the Witt vectors of F̄2.

Question 9.5. Let Λ denote a divided power algebra over Z2. Does there exist an

N–graded commutative S–algebra structure on T =
∨
j≥0

T (0, j) =
∨
j≥0

S0 such that

(1) π0(T ) = Λ,
(2) Φ : T −→ T is a map of S–algebras, and
(3) Φ−1T∧SSW (F̄2) ' Σ∞((F̄2)∗)+∧SSW (F̄2), as N[1

2 ] graded SW (F̄2)–algebras?

An affirmative answer to this formidable question would presumably yield a proof
of Conjecture 1.10 upon applying the “bar construction” to the equivalence of (3),
n times.

We end with a question about the most straightforward way to try to get at
these sorts of things.

Question 9.6. Does there exist a “naturally occurring” spectrum E, with a group
action, such that the group action can be used to establish a splitting

ΣEn '
∨
j

T1(n, j),

where En is the nth infinite loop space of the spectrum E, and T1(n, j) is a desus-
pension of ΣT (n, j)?

When n = 1, this would be consistent with [GLM]. We note that, sinceH∗(En; Z/2)
would be a locally finite A module for each n, a reasonable E would satisfy the
perhaps unreasonable condition Ẽ∗(BZ/2) = 0.
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