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1. Introduction

A 1982 Northwestern conference problem asked for a complete cal-
culation of the RO(G)-graded cohomology groups of a point for a non-
trivial finite group G (see [10] for definitions and [9] for background).
This question was quickly solved by Stong [12] for cyclic groups Z/p
with p prime. Partial calculations for groups Z/(pn) and (Z/p)n were
much more recently done in [3, 6, 4, 5, 8]. In a recent lecture, Peter
May [11] emphasized the fact that no case of a non-abelian group was
known to date.

The purpose of this brief note is to advance progress in this di-
rection by completely calculating the RO(G)-equivariant coefficients
of the homology of a point for G = Σ3, both with Burnside ring A
and constant Z coefficients. The constant coefficients Z are obtained
by taking the quotient of the Burnside ring Mackey functor A by its
augmentation ideal. Burnside ring coefficients are “universal” among
ordinary RO(G)-graded cohomology theories in the same sense as Z-
coefficients are non-equivariantly (see [2]), and thus were of primary
interest historically. However, for non-trivial groups, the Burnside ring
is not a regular ring, and because of that, passage from Burnside ring
to other coefficients is not immediate. In applications [7, 3], the use of
constant coefficients, which are simpler, prevailed so far.

The group Σ3 has two non-trivial irreducible real representation,
namely the 1-dimensional sign representation, which we denote by α,
and a 2-dimensional representation γ, obtained as the orthogonal com-
plement of the trivial subrepresentation in the standard permutation
module R3. While the reader will observe that the methods of this note
apply to more general groups, the number of irreducible representations
of finite groups grows rather quickly with the size of the group, and
because of that, any generalization to an infinite class of non-abelian
groups involves additional issues, and will thus be left to future work.

Kriz also acknowledges the support of a Simons Collaboration Grant.
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To state our results, we will state the calculation with constant Z
coefficients here, and postpone the statement with the Burnside ring
coefficients A till Section 3 below, since it essentially follows from the
constant coefficient case after some algebraic discussion of the Burnside
rings.

To discuss the Z-coefficient case, it is useful to recall the following
calculation [7]. Denote, for ` ≥ 0,

(1) B` = H̃
Σ3∗ (S`α,Z) = H̃

Z/2
∗ (S`α,Z),

(2) B` = H̃∗
Σ3

(S`α,Z) = H̃∗
Z/2(S

`α,Z).

Proposition 1. We have

B`,n =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z n = ` even
Z/2 0 ≤ n < ` even
0 else,

B`,n =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z n = ` even
Z/2 3 ≤ n ≤ ` odd
0 else.

◻

We also put

B`,n = B
−`,−n, B`,n = B−`,−n for ` < 0.

Then (1) and (2) extend to ` < 0 by Spanier-Whitehead duality.
Now define pAq and pAq by

(3) pAq = {
Z/3 when 2p < n < 2q − 1, n ≡ 3 mod 4,
0 else,

(4) pAq = {
Z/3 when 2p < n < 2q − 1, n ≡ 0 mod 4,
0 else.

A complete calculation of theRO(G)-graded (co)homology of a point
with coefficients in Z is given by the following

Theorem 2. For m > 0, we have

(5) H∗(Smγ+`α,Z) = `−1A`+m[−` + 1] ⊕B`+m[m],

(6) H∗(Smγ+`α,Z) = `A`+m[−` + 1] ⊕B`+m[m].
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Here [k] denotes shift up by k in homology or cohomology, whichever
groups we are considering. (Note that since it is often appropriate to
identify the cohomological grading with the negative of homological,
some authors prefer to define shifts in one grading only; in that case,
there would be a negative sign in the square brackets of one of the
formulas (5), (6).

Theorem 2 and Proposition 1 give a complete calculation of the
RO(G)-graded cohomology of a point with Z coefficients. We prove
Theorem 2 in Section 2 below, and give the discussion of Burnside ring
coefficients in Section 3 below.

2. Proof of the main theorem

Our main tool is constructing an explicit Σ3-equivariant CW struc-
ture on S(mγ), and its associated equivariant chain complex. This
structure is obtained by “subdividing” the cells of the standard Z/3-
equivariant cell structure on S(mγ). Identifying S(mγ) with the unit
sphere in Cm on which Z/3 = {1, ζ, ζ2} ⊂ S1 (where ζ = ζ3) acts by mul-
tiplication, all the Z/3-equivariant cells are free, and can be written as
Z/3 times the following non-equivariant cells:

(7) {(z1, . . . , zk,0 . . . ,0) ∈ S(mγ) ∣ zk ∈ [0,1]},

(8) {(z1, . . . , zk,0, . . . ,0) ∈ S(mγ) ∣ zk ∈ [0,1] ⋅ eλi, 2π/3 ≤ λ ≤ 4π/3},

1 ≤ k ≤ m. Now we may let Σ3 act on this space by identifying Σ3

with the group generated by the above model of Z/3, and complex
conjugation, which we will denote by τ . The reason of our choice of (8)
is that both (7), (8) are in fact stable under the action of τ . However,
they cannot be called “cells”, since τ acts non-trivially on them. In
fact, they can be identified with unit disks of the representations

(9) (k − 1)α + (k − 1), kα + (k − 1),

respectively. This gives a guide on how to subdivide them into Σ3-
equivariant cells. Concretely, (7) subdivides into Σ3-equivariant cells
generated by
(10)

{(z1, . . . , zk,0 . . . ,0) ∈ S(mγ) ∣ zk ∈ [0,1], z`+1, . . . , zk−1 ∈ [−1,1],
Im(z`) ≥ 0 if ` > 0},

We denote these Σ3-cells by

ak,`, 0 ≤ ` ≤ k − 1, 1 ≤ k ≤m.
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The cell ak,` is of dimension k + `− 1 and has isotropy Z/2{τ} for ` = 0,
and {e} otherwise. The Z/3-cell generated by (8) subdivides into Σ3-
equivariant cells generated by
(11)

{(z1, . . . , zk,0 . . . ,0) ∈ S(mγ) ∣ zk ∈ [−1,0], z`+1, . . . , zk−1 ∈ [−1,1],
Im(z`) ≥ 0 if ` > 0},

which we denote by

bk,`, 0 ≤ ` < k, 1 ≤ k ≤m,

and

(12) {(z1, . . . , zk) ∈ S(mγ) ∣ zk ∈ [0,1] ⋅ eiλ, 0 ≤ λ ≤ π/3},

which we denote by
ck, 1 ≤ k ≤m.

The Σ3-cell bk,` is of dimension k + ` − 1 and has isotropy Z/2{τ} for
` = 0 and {e} otherwise. The cell ck is of dimension 2k − 1 and has
isotropy {e}.

Lemma 3. With respect to this CW-structure just described, choosing
orientation suitably, the Σ3-equivariant cell chain complex of S(mγ) in
the sense of Bredon [1] has differential
dak,0 = ak−1,0 − bk−1,0

dbk,0 = ak−1,0 − bk−1,0

dak,1 = ak−1,1 − bk−1,1 + (−1)k−1ak,0
dbk,1 = ak−1,1 − bk−1,1 + (−1)k−1bk,0
dak,` = ak−1,` − bk−1,` + (−1)k−`ak,`−1 + (−1)k−1τak,`−1 1 < ` < k − 1
dbk,` = ak−1,` − bk−1,` + (−1)k−`bk,`−1 + (−1)k−1τbk,`−1 1 < ` < k − 1
dak,k−1 = −ak,k−2 + (−1)k−1τak,k−2 − ck−1 − ζck−1 + (−1)k−2ζτck−1

dbk,k−1 = −bk,k−2 + (−1)k−1τbk,k−2 − ck−1 − ζck−1 + (−1)k−2ζτck−1

dck = −ak,k−1 + (−1)kτak,k−1 + ζ2bk,k−1 + (−1)k−1ζ2τbk,k−1 for k > 1,
dc1 = b1,0 − a1,0.

Proof. A direct inspection. ◻

Thus, we can calculate the Σ3-equivariant homology and cohomology
of S(mγ) simply directly algebraically as Bredon (co)homology. It is
useful, however, to make the following observation: There is a cellular
filtration on S(mγ) by the Z/3-equivariant cells generated by (7), (8)
of dimension ≤ p. As observed in (9), topologically, we have

(13) FpS(mγ)/Fp−1S(mγ) ≅

⎧⎪⎪
⎨
⎪⎪⎩

Σk−1S(k−1)α for p = 2k − 1

Σk−1Skα for p = 2k.
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Algebraically, in the associated graded complex of the cellular chain
complex, the filtration degree p part is generated by bk,`, ck for p = 2k−1,
and by ak+1,` for p = 2k, 1 ≤ k ≤ m. Thus, in the spectral sequence
for homology with coefficients Z associated with this filtration, the
filtration degree p part of the E1-term is

(14)
Bk−1[k − 1] for p = 2k − 1, 1 ≤ k ≤m,

Bk[k − 1] for p = 2k, 1 ≤ k ≤m.

By Lemma 3, we see that the effect of the differential

d1 ∶ F2k+1/F2k → F2k/F2k−1,1 ≤ k <m

of our spectral sequence wipes out all of (14) except when there is a
Z in the target (which is supported by ck, k even, which then turns
into Z/3. The exception is filtration degree 2m, where there is no
differential with that target, and filtration degree 0, where there is no
differential with that source. There is no room for higher differentials
for dimensional reasons. In cohomology, the story is precisely mirrored,
with all subscripts turned into superscripts and also arrows turned
around, so the cocycle supported by ck become the source, rather than
the target of the differential 3 ∶ Z → Z. Thus, we have proved the
following

Proposition 4. For m > 0, we have

HΣ3∗ (S(mγ),Z) = Z⊕ 0Am ⊕Bm[m − 1],

H∗
Σ3

(S(mγ),Z) = Z⊕ 0Am ⊕Bm[m − 1].

◻

It may be tempting to try to use the same method for calculating the
reduced Σ3-equivariant (co)homology of Σ`α ∧ S(mγ)+ for ` ∈ Z, but
there are two difficulties. First, for ` > 0, the chain complex we obtain
by smashing the CW-complexes cell-wise grows with `. More impor-
tantly, for ` < 0, the method actually fails: the Bredon chain complex is
not an equivariantly stable object, and actually does not exist for spec-
tra obtained by desuspending by non-trivial representations. There is,
of course, a concept of an equivariant CW-spectrum [9], but any chain
complex in this stable context has to be built directly on the Mackey
functor level.

However, there is a more direct method. The space-level filtration
of S(mγ) can certainly be suspended by `α. In other words, we may
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consider the filtration
Σ`αFpS(mγ)+

of Σ`αS(mγ)+, and just as for ` = 0, it leads to a spectral sequence in
Σ3-equivariant (co)homology, whose d1 (resp. d1) is determined by the
Σ`α-suspension of the connecting map of the cofibration sequence

(15) F2kS(mγ)/F2k−1S(mγ) → F2k+1S(mγ)/F2k−1S(mγ) → F2k+1S(mγ)/F2kS(mγ).

This connecting map, stably, of course does not depend on `, and
desuspending by (k + `)α, is a stable Σ3-equivariant map

(16) Σ3/(Z/2)+ → Σ3/(Z/2)+.

Now by adjunction, stable maps (16) are the same thing as Z/2-equivariant
stable maps

S0 → Σ3/Z/2+,
where Z/2-equivariantly, the target is S0 ∨ Z/2+. From this point of
view, then, maps (16) are classified by elements of

(17) A[Z/2] ⊕Z{t}

where t is the transfer. Now to see which map arises as the connecting
map of (15), we must carefully note that we are dealing with an un-
based equivariant CW-complex, and therefore the connecting map will
be visible as the canonical map from the cell ak+1,k to the unreduced
suspension of ck (an equivariant version of the canonical map from a
sphere to the unreduced suspension of its boundary), which, in the
nomenclature (17), has the name

(18) (1, t).

In particular, we see that the connecting map, thought of as a stable
Σ3-equivariant map (16), does not in fact depend on k, either. Thus,
all the connecting maps of the `α-suspensions of the cofiber sequence
(15) already arise in the CW-complex S(mγ)+ and its dual, and thus
we know their effect in (co)-homology, with the exception, curiously, of
the case k + ` = 0, in which case, however, it is easy to verify directly
that the relevant map Z → Z is 3. Thus, we know the d1 (resp. d1) of
the spectral sequence for the (co)homology of Σ`αS(mγ)+ for all m > 0
and all ` ∈ Z, and again, there is no room for higher differentials for
dimensional reasons. Thus, we have proved the following

Proposition 5. For m > 0, we have

HΣ3∗ (Σ`αS(mγ)+,Z) = B` ⊕B`+m[m − 1] ⊕ `A`+m[−`],

H∗
Σ3

(Σ`αS(mγ)+,Z) = B` ⊕B`+m[m − 1] ⊕ `A`+m[−`].
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Proof of Theorem 2: We have a cofibration sequence

(19) Σ`αS(mγ)+ → S`α → S`α+mγ.

We use the long exact sequence in (co)homology associated with the
cofibration sequence (19). In homology, this corresponds to finding the
map

B` → B`

given by the induction

H
Z/2
∗ (S`α,Z) →HΣ3∗ (S`α,Z),

coming from the attaching map of the bottom two Z/3-cells (here
we consider S`α as a spectrum, so no “reduced homology” symbol is
needed). This is multiplication by 3, so the map is an isomoprhism
except in the top dimension, where it is injective with cokernel Z/3
when ` is even. This gives (5).

In cohomology, the first map (19) leads to the restriction map

H∗
Σ3

(S`α,Z) →H∗
Z/2(S

`α,Z)

which is always an isomorphism, thus giving (6) (and, in particular,
explaining the somewhat different behavior in the bottom dimension).
◻

3. Burnside ring coefficients

To calculate the RO(G)-graded coefficients of Σ3-equivariant (co)-
homology with coefficients in A, we just need to repeat the above pro-
cedure with Burnside ring coefficients, and keep track of what changes.
The changes are somewhat minor due to the fact that most of the cells
of S(mγ) are free. It is useful to introduce the notation A[Z/2] =

Z{1, t2}, A[Z/3] = Z{1, t3}, A[Σ3] = Z{1, t2, t3, t6} where ti denotes the
orbit of cardinality i.

We start with an analogue of Proposition 1, which is proved analo-
gously. Denote, for ` ≥ 0,

(20) B` = H̃
Z/2
∗ (S`α,A),

(21) B` = H̃∗
Z/2(S

`α,A).

Denote by IZ/2 the kernel of the restriction A[Z/2] → A[{e}] (i.e.,
the augmentation ideal), and by JZ/2 the cokernel of the induction
A[{e}] → A[Z/2]. Both IZ/2 and JZ/2 are, of course, isomorphic to Z.
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Proposition 6. We have

B`,n =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

JZ/2 n=0
Z n = ` even
Z/2 0 < n < ` even
0 else,

B`,n =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

IZ/2 n=0
Z n = ` even
Z/2 3 ≤ n ≤ ` odd
0 else.

◻

We also put

B`,n = B−`,−n, B`,n = B−`,−n for ` < 0.

Then (20) and (21) extend to ` < 0 by Spanier-Whitehead duality.
Using Lemma 3, we then immediately get analogously to Proposition

4 the following

Proposition 7. For m > 0, we have

HΣ3∗ (S(mγ),A) = A[Z/2] ⊕ 0Am ⊕Bm[m − 1],

H∗
Σ3

(S(mγ),A) = A[Z/2] ⊕ 0Am ⊕Bm[m − 1].

◻

To suspend by `α, we need to additionally observe what the attaching
map of Z/3-cells (16) induces on A. Using the notation (18), we find
that this map

A[Z/2] → A[Z/2]

sends

1↦ 1 + t2,

t2 ↦ 3t2.

Thus, it is injective, and its cokernel is Z/3, just as with Z coefficients.

Proposition 8. For m > 0, we have

HΣ3∗ (Σ`αS(mγ)+,A) = B` ⊕B`+m[m − 1] ⊕ `A`+m[−`],

H∗
Σ3

(Σ`αS(mγ)+,A) = B` ⊕B`+m[m − 1] ⊕ `A`+m[−`].
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◻

Similarly as in the case of constant coefficients, to get to the (co)homology
of S`α+mγ, we need to use the cofibration sequence (19). To this end,
we need to calculate

(22) C` = H̃
Σ3∗ (S`α,A),

(23) C ` = H̃∗
Σ3

(S`α,A).

The key point here is that the Weyl group Z/2 of Z/2 ⊂ Σ3 acts trivially

on the Burnside ring A[Z/3]. It also helps to denote by J
Z/3
Σ3

the cok-

ernel of the induction A[Z/3] → A[Σ3], and by I
Z/3
Σ3

the kernel of the
restriction A[Σ3] → A[Z/3]. Of course, induction sends 1↦ t2, t3 ↦ t6,

so both I
Z/3
Σ3

and J
Z/3
Σ3

are, as groups, isomorphic to Z ⊕ Z. Therefore,
we have

Proposition 9. We have

C`,n =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

J
Z/3
Σ3

n=0
A[Z/3] n = ` even
A[Z/3]/2 0 < n < ` even
0 else,

C `,n =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

I
Z/3
Σ3

n=0
A[Z/3] n = ` even
A[Z/3]/2 3 ≤ n < ` odd
0 else.

◻

We also put

C`,n = C −`,−n, C `,n = C−`,−n for ` < 0.

Note that then we have short exact sequences

0→B` → C` →B` → 0

where the first map is induction from Z/2 to Σ3, and

0→B` → C ` →B` → 0

where the second map is restriction from Σ3 to Z/2. Therefore, we have

Theorem 10. For m > 0, we have

(24) H∗(Smγ+`α,A) = B` ⊕ `−1A`+m[−` + 1] ⊕B`+m[m],

(25) H∗(Smγ+`α,A) = B` ⊕ `A
`+m[−` + 1] ⊕B`+m[m].
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◻
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