CHAPTER 8: THE ELEMENTS OF ARF INVARIANT ONE
1. Introduction

One of the most important open problems in homotopy theory is whether or not

there exist elements ON € nSN+1 of Arf invariant one. These elements arose
2 -2
in the work of Kervaire {26] and Kervaire and Milnor [27] as obstructions in

surgery theory. Browder [14] showed that the nonvanishing of these

N+1
obstructions is equivalent to the elements h°> e B2 "®% = Ext2(z.,2)
N 2 72’ 2 N,

being infinite cylcles in the classical Adams spectral sequence for nf. Thus,

an element GN € nsm1 has Arf invariant one if and only if the secondary
2 -2

cohomology operation QN defined by the following Adem relation is nonzero in
the mapping cone of 9(

N 2H+1 2i 21
(8.1.1) 0 = } Sq® " sq

i=0
The first three elements of Arf invariant one are merely nz, vzand 02, The
next two elements of Arf invariant one, 94 € n§0 and 65 € "22’ have been shown
to exist using the classical Adams spectral sequence [37], [11]. It is not

known whether GN exists for N =z 6. The reader can find a more detailed

exposition of this problem in [12] and [13].

In Section 2 we show that the element A[30] ¢ nio has Arf invariant one by
calculating that the secondary operation @4 is nonzero in the mapping cone of
A[30]. In Section 3 we identify 85 as Al62,1] by showing that 92 = 0 using an
argument of Mahowald based upon a generalization of [34A,Theorem 18]. The
construction of Barratt, Jones and Mahowaidd [11] shows that 65 exists but does
not determine the order of 65. The argument of Section 3 shows that there are

choices of 95 of order two.
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N
In [35] Mahowald showed that the elements hh € Ez '2 of the Adams spectral

S
sequence are infinite cycles which are represented by the elementis nu € n .

2

In Section 2 we identify ns as A[32,1]. 1In Section 3, we identify nB

as B[64,1].

2. The Existence of 94

Recall from Theorem 5.3.10 that n§0 = Z,A[30] and A[30] = dlz(zmiz)_ We will

show that the secondary operation ®4 is nonzero in the mapping cone of A[30].
It follows that A[30] = 64 has Arf invariant one. We will assume the
definitions and basic properties of secondary cohomology operations and

functional cohomology operations [47].

(16)

Let f:8°%° —> BP be the attaching map of the cell represented in homology

by <M?>3, This map has image in the 16-skeleton becasause <M§>3 survives to

E®. Let 1:BP*® 5 BP''® pe the natural inclusion. Since d8(2<r<M:>3) =0,

there is a lifing F of 2¢f to BP''*:

BP(14)

v
st i
zof\ (16)
BP
FIGURE 8.2.1: Definition of F

The next step is to define a map G:Z7Cf — CF. We begin by defining

(8):27BP(8) —_ BP(B) as the composite of the projection map

G, = GIZ'BP
P:xBP'® — BP'®/ £BP® = 'S, 5™ followed by g \ * where the first
sphere is represented by <M§> in homology, the second sphere is represented by

M1g2 in homology and g is the attaching map of the cell represented by <Mj>2

in homology. Since <M‘:>2 survives to E° and d8(<Mi>2) = 20<M:>, the following

diagram commutes:
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Z7BP(8) N BP(B)

P P’

*
=P /57pp'® = 55, 815 2T v ", pp!® pp® = &P S°

FIGURE 8.2.2: Definition of G1

(18) (16)

P’ is the natural projection map above. Now define G2: £'BP —3 BP as

the composite of the projection map

{18) (18) (14)

pr:2'P'® s gBP"Y, 5TBPY = §% |, 3%

followed by (g A a)’y 3*. Here the first copy of s® is represented by <M‘:>3

in homology and «: (D8,57) —_— (BP(B),S) represents <M:>. Also,
(g N o)’ s As® 5 BP''® is an extension of
gha

515 A D8 BP(B)

(16)

£
A BP'® 5 BP"® | thinking of D® as the upper

hemisphere of 58. This extension to Sls smash the bottom hemisphere exisis as

)

a map into BP'® because 20° = 0 in :rf. The top square in Figure 8.2.3

commutes because G2 restricts to 20 on s’ of the cell C represented by <M:>2
in homology. Thus, the map G8 must exist making the bottom square commute.

Now G3 maps all cells into BP(“) except for the cell E7C, and G2 on this cell

is 20 A 1. In z7cf, cs’s™

this cell is 20 A f which, as in Figure 8.2.1, lifts to BP

is attached to this cell by £'f. Therefore G, on

U9 Thus G, lifts

to a map G.

27523 1 Sso
F
27f‘ 20f (14)
BP
- G /
}:7BP(18) 2 5 Bp(1:3)
4 G
7 3
ZCp Coor Cp
l;\
G

FIGURE 8.2.3: Definition of G
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*

In H (CG;Zz)’ let u(X) denote the element dual to X € H*(CG;Zz)' Let
Y € HIS(CG;ZZ) denote the element determined by the first sphere in

Figure 8.2.2. By the definition of G1’ Y represents a cell with the same
attaching map as <M:>2. Therefore, Sqlsu(l) = u(Y). Thus, the functional
secondary cohomology operation Sqé6 is defined on u{l) € HO(CF;ZZ) and equals
7 .4 15,7 *

SuM> e H(Z2'C ;2 ). By the Peterson-Stein formula: G ¢ (u(1))

3°Sq§(u( 1) )+Sq2‘*sq§(u( 1) )+Sq2“Sq§(u(1) )+Sq*53q;5(u( 1)).

= quzsqé(u(l))+8q
Since H(Z'C.;Z,) = 0 for k = 0,1,3, we must have Sq}(u(1)) =0, Sq:(u(1)) = O
4 . 7. (6) 8 7
and ch(u(l)) = 0. Since GIIZ BP = ¥, SqG(u(l)) must be O not S u(1l)
»*
Thus, G °#,(u(1)) = Squq;s(u(l)) = Sq16(57u<M:>) = s7u(<M‘:>3) # 0. Thus,
@4(u(1)} # 0 in Hal(CF;Zz). Note that there is a unique top dimensional cell

of degree 31 in C_ which determines a nononzero element t € Hal(CF;ZZ). Hence

F
T = quu(l}) 2 0 Since dXZ(ZGMiz) = A[30] and F represents the boundary of
ZoMiz, the triangle in the following diagram must commute up to homotopy.

Therefore, there is an induced map J making the square commute.

BP(14) C

— s F
V !
S30 J
A[so]\\N
S

(**3

> CAr301

Now @4(u(b)) = ¢40J*(u(1)) = J*o¢&(u(1)) = J*(r) # 0. Thus, A[30] must have

Arf invariant one. We have thus proved the following theorenm.
THECREM 8.2.1 AI30] has Arf invariant one.
We derive several Toda brackets involvimg elements related to 94. The first

Toda bracket below was proved by Hoffman [24]. We give a proof using our

spectral sequence.
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THEOREM 8.2.2 (a) 94 = A[30] € <e¢,20,20,0>
(b) ve, = vA[30] € <Cl18],0, 26>
(c) e, = AI30] e <¢,20,0%,2> = <62,2,0°%,2>
(d) me, = mA[30] e <Al161,2, 0%
4.2
= A
PROOF. (a) Represent <M>" by p_ such that 6(;18) (o 2;14) U (Bcrz(r)'

Since 2%22 = 0, oAl14] = 0 and oy, = 0, it follows that <g, 20, 20>

= 2<¢,20,0> = 0. Thus, ZUMIZ € Ezz , is represented by

- Ao A A A A A
M (“4 i 2“8) v (8022 ”8) Y (MA B0‘20' 2“4) v (B<0',02,02> “4)
A
v (u4 Bcaa,oz,co)
because 84 = (B _AB_ ) v (B Acg)ulocANB }. Since
2 o020 <0, 02,02> <02,02,0>

o2
d24(20'M12) = A[30], 8M represents A[30] and clearly 8M € <o,02,02,0>.

{b), (¢) The four-fold Toda bracket <o, 20, (72,2> is defined by

S

Theorem 2.2.7(a) because <o*,20',o-2> € "29 = 0 and <20‘,0'2,2> = 0'<2,0'2,2> + 2-1122

= 0‘(1)0‘2) = 0. Now vA[30] & v<e,20,20,0> c <<p,o, 20>, 20,0>

<cl181, 20, 0>.
Since CokJ, = 22v20[2o], vA[30]) e <C[18],0,20> ¢ <C[18], 07, 2>

= <<v,0',20“>,o'2,2> = v<<r,20',0'2,2>. Thus, <o-,2<r,02,2> contains A[30]. Note

that <02,2,o’2,2> is defined by Theorem 2.2.7(a) because <0~2,2,e‘2> € nig =0

and <2,o*2,2> = ncrz = 0. Now <02,2,o-2,2> c <0',20‘,0'2,2> = {A[301}.
(d) =nAl30] € n<2,o~2,20—,o—> c <<n,2,o-2>,2cr,o-> = <Al18],20,0> + <n71,zo~,o~>. Now
<n71,2cr,cr> > n<71,20-, o>. Since u<71,20',o‘> = <v,71,20'>0' = 0, <71,20’, o> can not

equal A[30] and must therefore equal zero. It follows that <n31,20', o>

= n71°n§5 + O"'?t§4 = n€ where v€ = 0. Thus, <nar1,20', o> = 0 and

nA[30] e <A[16],2¢0,0>.

We conclude this section by identifying the Mahowald element n, € "gz
as A[32,1].
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THEOREM 8.2.3 Let m_ be any element of ni which projects to hh_ in E o

of
the Adams spectral sequence. Then g projects to A[32,1] in Ei?az of the
Atiyah-Hirzebruch spectral sequence.

PROOF. From the computation of E2 of the Adams spectral sequence by

Tangora [538], it follows from the fact that hlhs is an infinite cycle that
hfhs is a nonbounding infinite cycle. Thus, if 7w  is any element that
projects to h1hs then nzns # 0. Since nz-niz = ZZnZA[BZ,ll for any choice of
Al32,1] modulo ZZA[32,2] ® ZZA[32,3] <) Zznys, it follows that

ng € A[32,1]1 + (ZZA[32,2] ® 22A[32,3] ® 22n73}. Now the theorem follows fronm
the observation that ZZAISZ,Z] ® ZZA[32,3] ® 227)73 projects to zero in g

0,32
of the Atiyah-Hirzebruch spectral sequence.l

3. The Existence of 93

In this section we show that A[62,1] has Arf invariant one and is thus
entitled to be denoted as 95. We also identify the Mahowald element nB as
BI64,1]1. 1In addition, we derive a few miscellaneous results which are
relevant to the Arf invariant problem. We begin with the following well known
lemma which can be proved from a computation of EXtM(Zz’Zz) as the homology of

the A-algebra.

LEMMA 8.3.1 The following elements are nonzero in Ext”(zz,zz}:

(a) h_ and h® for N = 0;
N N

(b) hh®and hh for N = 3;
oN 1N

(¢) hh® for N = 4;
1N

(d) 1°h® for N = 5.
1N

Adams’s proof [2] of the nonexistence of elements of Hopf invariant one in
degrees 2N~1, N =z 4, is equivalent to the following differentials in the Adams

spectral sequence. The elements listed in Lemma 8.3.1 and the differentials
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of Theorem 8.3.2 for N = 4 are depicted in Figure 8.3.1. Note that there are

other elements in the bidegrees of that figure which are not depicted.

THEOREM 8.3.2 d°(h) = hh® for N = 4.
N 0 N-1

2"-2 2" 2 2N 2Me2

FIGURE 8.3.1: Part of E° of the Adams Spectral Sequence (N = 6)

The following lemmas will be used to identify 95 as A[62,1]. The entire
argument is based upon ideas of Mahowald [34A] and is a rewording of a

detailed proof which he sent to me.

LEMMA 8.3.3 <o°,2,A[30]> ¢ Z,(nCl44]) o Z (8D[45])

PROOF. Note that n2<¢2,2,A[30]1> = ¢°<2,A[30],7> < cg'nis = 0. Also,

vZ<o?,2,A130]> = 0%<2,A[30],v>> c a?-n§7 = o(4C[44]) = 0. In addition,

2<0®,2,A[30]> = 0°<2,A[30},2> = 0. The only elements of nfs which satisfy

these three conditions are Z (nC[44]) e 22(8D[4S]).l

LEMMA 8.3.4 If € € no and £A[36] = O then

£Cl44) € <n&,MA[30],v,0>.
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PROOF. By Theorem 2.4.6(a), if <n,nAl[30],v,0> were defined then it would
contain C[44]. Now <nAl30],v,0> > A[30l<n,v,0> = 0, nA[BO]-n?1 = 0 and U‘His
= 0. Thus, <nAl30},v,0> = 0. However, A[3B] € <7,nA[30],v>. Since

EA[38] = 0, <n&,nmAl30},v,0> is defined by Theorem 2.2.7(b). Thus,

£C[44) e <n€,nAl301,v,0>. ]

LEMMA 8.3.5 (a) A[16]1A[38] = O.
{b} =wAl18]A[301 = O.

{c) Al18]C[44] = 0.

PROOF. (a) A[16]A[36] e A[361<n,2,0°> = <A[36],n,2>0° € o?-n§8 = 0.
2 2 2 S
(b) mA[1B8]1A[30) € nA[30])<n,2,0™> ¢ <0,2,0™> = ¢ = 0.

{c} Since A[18]A[38] 0, Al181CI44] € <nAl16]1,nAl30],v,0>

> <qnA[181A[30),n,v,0> = <0, w,v,0>. (Note that <nal[1B8]A[{301,n,v,0> is defined

by Theorem 2.2.7(b) because 0 € <nA[16]A[30),7n,v> and 0 = <qn,v,0>.) Since

s _ S S s
o, = 0, Al181C[44] € <n49,v,a> + nAl16] L + <nA[16],n35,c>

<as,v,c>+<n275,v,c>+<nA{183,nA[14}C[20],o>+<nA[1S},vA[32,3},0>+<nA[18],34,0>

<u6,v,c>+n75<n,u,¢>+<nA[16],nC[20],0>+A[16]A[32,3]<n,v,0>+A{16]<n,B4,¢>

<a6,v,v>. By Theorem 4.2.3 and Figure 4.2.2, it follows that <a8,v,o>
projects to an element of filtration degree at least 26 in the Adams spectral
sequence. The only such element is hiPSg = d2(hOP4k). Thus, 0 = <a8,v,o>

= Al16]C(44].

LEMMA 8.3.6 A[301° =0
PROOF. AI301% € A[30]1<2,06°,2,0%> c <<A[30],2,0>,2,0°>
c <nCl44],2,0°> + <8D[451,2,0°> > Cl44]<n,2,0°> + <20B[38],2,0°>
> Cl[441A[18] + o<2B[38],2,a?> c 0-n§3 = (0. Since MAl[36] = O,
2

2 S S S _ 2
Al30]1° € nCi4a4} LI 8D[45] LI ot = nw1C[44] € 71<n ,mAl[30]1,v,0>

c <n2,nA(301,<v.6,71>> > <n2,k[30],n<v,v»71>> = <n2,A(3OI,<n,v,0971>
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S
<n2,A{3O],O> = nz-us = 0. Thus, A[30]2 € <v,a,yl>-n§4 < {VQC[ZOJ,naa}‘n34

S8
naaA[14]C[201 = nA[14]C[20]<8¢,2,a2> = nA[14]a2<C[20],80,2> € (n'H§1)'n§B

(ny_) (AI8ICI20]) = 0.

THEOREM 8.3.7 Al[62,1] + Span {A(82,2},A[82,3],A[SZ,&],B[BZ},nZB[SOI}

are all the elements of "?2 of Arf invariant one. In particular, there are
choices of 95 of order two.

PROOF. Since 94 = A[30] exists, 294 = 0 and Bi =0, it follows from
[12,Theorem 2.1] that GS exists and has order two. From Figure 8.3.1, we see
that any element 85 of Arf invariant one satisfies n295 # 0. Since

n°-m. = Zn°Al62,1] o Z n°Al62,4], Span {A[62,21,A[62,3],B[62], 1 B[60]}

has Adams filtration at least three. Since A[62,4] = dlz(nA[SD,Z]M?QZ)

= a'®(v°A145,11MM,) and C[20] = a"°(»"MM ), vA[E2,4] = C[20]A[45,1]. Fron
Figure 8.3.1, ves is nonzero and is represented in the Adams spectral sequence
by hzh: in filtration degree three while C[20]A[45,1] has Adams filtration at
least nine. Thus, A[B62,4] has Adams filtration at least three. Now all the
elements of Span {A[62,2],A[62,3],A[82,4},B[621,n28[801} have Adams filtration
at least three. Therefore, all the elements of

A[B2, 11+Span {A[82,2],A[82,3],A[62,4},8[62],n2B[BO}} have Arf invariant one.l

Next we identify the Mahowald element g in terms of the Atiyah-Hirzebruch
spectral sequence. Recall that ns denotes any element of n§4 which projects

to h1hs in E24’2 of the Adams spectral sequence.
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THEOREM 8.3.8 (a) Any choice of m_ projects to BI64,1] in Ei‘f& of the
Atiyah-Hirzebruch spectral sequence.

(b) All the choices of n are

B[(64,1] + (ZzA[64,1]@ZZA[64,2]@22A[64,3]@Z4B[84,2]@22n2A[62,1]@22n76).

(c) All the values of 2n_are n°0, + Zn°Al62,4], and 4n, = O.

(d) There are choices of g and n, such that n: = 2n6.
PROOF. Since AlB4,11, Al64,2], Al64,3]1, Bl64,2], nzA[BZ,II and n., project to
zero in E2L2 of the Adams spectral sequence, all the choices for n, are

n, = BI64,1] + pA[64,1] + gA[64,2] + rAl64,3] + sBI64,2] + tnoAlB2,1] + uny,,.
All of these elements project to B[64,1] in Eiiﬂ. Moreover, Zns =

2B[64,1] + 2sBI64,2] = n°A[62,1] + sn’A[62,4] = 7°0_ + sn’Al62,4] and 4n_ = O.

Note that nz projects to h?hz in the Adams spectral sequence. Thus, nz is not

zero, and by Mahowald [3B] there are choices of ns and na such that 2n6 = n:.l



