1. Introduction

One of the most important open problems in homotopy theory is whether or not there exist elements $\theta_N \in \pi_{2^{N+1}-2}^S$ of Arf invariant one. These elements arose in the work of Kervaire [26] and Kervaire and Milnor [27] as obstructions in surgery theory. Browder [14] showed that the nonvanishing of these obstructions is equivalent to the elements $h_N^2 \in E_2^{N+1}$ and E_2^{N+1} and E_2^{N+1} being infinite cylcles in the classical Adams spectral sequence for π_*^S . Thus, an element $\theta_N \in \pi_2^S$ has Arf invariant one if and only if the secondary cohomology operation Φ_N defined by the following Adem relation is nonzero in the mapping cone of θ_N :

$$(8.1.1) 0 = \sum_{i=0}^{N} \operatorname{Sq}^{2^{N+1}-2^{i}} \operatorname{Sq}^{2^{i}}.$$

The first three elements of Arf invariant one are merely η^2 , ν^2 and σ^2 . The next two elements of Arf invariant one, $\theta_4 \in \pi_{30}^S$ and $\theta_5 \in \pi_{62}^S$, have been shown to exist using the classical Adams spectral sequence [37], [11]. It is not known whether θ_N exists for $N \ge 6$. The reader can find a more detailed exposition of this problem in [12] and [13].

In Section 2 we show that the element A[30] $\in \pi_{30}^S$ has Arf invariant one by calculating that the secondary operation Φ_4 is nonzero in the mapping cone of A[30]. In Section 3 we identify θ_5 as A[62,1] by showing that $\theta_4^2 = 0$ using an argument of Mahowald based upon a generalization of [34A, Theorem 16]. The construction of Barratt, Jones and Mahowald [11] shows that θ_5 exists but does not determine the order of θ_5 . The argument of Section 3 shows that there are choices of θ_5 of order two.

In [35] Mahowald showed that the elements $h_1h_N\in E_2^{2^N,2}$ of the Adams spectral sequence are infinite cycles which are represented by the elements $\eta_N\in \pi_2^S$. In Section 2 we identify η_5 as A[32,1]. In Section 3, we identify η_6 as B[64,1].

2. The Existence of θ_{A}

Recall from Theorem 5.3.10 that $\pi_{30}^S = Z_2A[30]$ and $A[30] = d^{12}(2\sigma M_1^{12})$. We will show that the secondary operation Φ_4 is nonzero in the mapping cone of A[30]. It follows that $A[30] = \theta_4$ has Arf invariant one. We will assume the definitions and basic properties of secondary cohomology operations and functional cohomology operations [47].

Let $f: S^{23} \longrightarrow BP^{(16)}$ be the attaching map of the cell represented in homology by $\langle M_1^4 \rangle^3$. This map has image in the 16-skeleton becasause $\langle M_1^4 \rangle^3$ survives to E^8 . Let $i: BP^{(14)} \longrightarrow BP^{(16)}$ be the natural inclusion. Since $d^8(2\sigma \langle M_1^4 \rangle^3) = 0$, there is a lifting F of 2of to $BP^{(14)}$:

FIGURE 8.2.1: Definition of F

The next step is to define a map $G: \Sigma^7 C_f \longrightarrow C_F$. We begin by defining $G_1 = G|\Sigma^7 BP^{(8)}: \Sigma^7 BP^{(8)} \longrightarrow BP^{(8)}$ as the composite of the projection map $P: \Sigma^7 BP^{(8)} \longrightarrow \Sigma^7 BP^{(8)} / \Sigma^7 BP^{(6)} = S^{15} / S^{15}$ followed by g / V where the first sphere is represented by $\langle M_1^4 \rangle$ in homology, the second sphere is represented by $M_1 M_2$ in homology and g is the attaching map of the cell represented by $\langle M_1^4 \rangle^2$ in homology. Since $\langle M_1^4 \rangle^2$ survives to E^8 and $d^8 (\langle M_1^4 \rangle^2) = 2\sigma \langle M_1^4 \rangle$, the following diagram commutes:

FIGURE 8.2.2: Definition of G

P' is the natural projection map above. Now define $G_2: \Sigma^7 BP^{(16)} \longrightarrow BP^{(16)}$ as the composite of the projection map

$$P'': \Sigma^7 BP^{(16)} \longrightarrow \Sigma^7 BP^{(16)} / \Sigma^7 BP^{(14)} = S^{23} / 3S^{23}$$

followed by $(g \wedge \alpha)' \vee 3^*$. Here the first copy of S^{23} is represented by $(M_1^4)^3$ in homology and $\alpha: (D^8, S^7) \longrightarrow (BP^{(8)}, S)$ represents (M_1^4) . Also,

 $(g \wedge \alpha)': S^{15} \wedge S^8 \longrightarrow BP^{(16)}$ is an extension of $S^{15} \wedge D^8 \xrightarrow{g \wedge \alpha} BP^{(8)} \wedge BP^{(8)} \xrightarrow{\varepsilon} BP^{(16)}$, thinking of D^8 as the upper hemisphere of S^8 . This extension to S^{15} smash the bottom hemisphere exists as a map into $BP^{(8)}$ because $2\sigma^2 = 0$ in π^S_* . The top square in Figure 8.2.3 commutes because G_2 restricts to 2σ on Σ^7 of the cell C represented by $(M_1^4)^2$ in homology. Thus, the map G_3 must exist making the bottom square commute. Now G_3 maps all cells into $BP^{(14)}$ except for the cell Σ^7C , and G_2 on this cell is $2\sigma \wedge 1$. In Σ^7C_f , $C\Sigma^7S^{23}$ is attached to this cell by Σ^7f . Therefore G_3 on this cell is $2\sigma \wedge f$ which, as in Figure 8.2.1, lifts to $BP^{(14)}$. Thus G_3 lifts to a map G.

FIGURE 8.2.3: Definition of G

In $\operatorname{H}^*(\operatorname{C}_G; \operatorname{Z}_2)$, let $\operatorname{u}(\operatorname{X})$ denote the element dual to $\operatorname{X} \in \operatorname{H}_*(\operatorname{C}_G; \operatorname{Z}_2)$. Let $\operatorname{Y} \in \operatorname{H}_{16}(\operatorname{C}_G; \operatorname{Z}_2)$ denote the element determined by the first sphere in Figure 8.2.2. By the definition of G_1 , Y represents a cell with the same attaching map as $\operatorname{cM}_1^{4} \operatorname{c}^2$. Therefore, $\operatorname{Sq}^{16} \operatorname{u}(1) = \operatorname{u}(\operatorname{Y})$. Thus, the functional secondary cohomology operation Sq_G^{16} is defined on $\operatorname{u}(1) \in \operatorname{H}^0(\operatorname{C}_F; \operatorname{Z}_2)$ and equals $\operatorname{S}^7 \operatorname{u} \operatorname{M}^4 \operatorname{c} \in \operatorname{H}^{15}(\operatorname{\Sigma}^7 \operatorname{C}; \operatorname{Z})$. By the Peterson-Stein formula: $\operatorname{G}^* \circ \Phi$ ($\operatorname{u}(1)$) = $\operatorname{Sq}^{31} \operatorname{Sq}_G^1(\operatorname{u}(1)) + \operatorname{Sq}^{30} \operatorname{Sq}_G^2(\operatorname{u}(1)) + \operatorname{Sq}^{28} \operatorname{Sq}_G^4(\operatorname{u}(1)) + \operatorname{Sq}^{24} \operatorname{Sq}_G^8(\operatorname{u}(1)) + \operatorname{Sq}^{16} \operatorname{Sq}_G^{16}(\operatorname{u}(1))$. Since $\operatorname{H}^k(\operatorname{\Sigma}^7 \operatorname{C}_F; \operatorname{Z}_2) = 0$ for k = 0, 1, 3, we must have $\operatorname{Sq}_G^1(\operatorname{u}(1)) = 0$, $\operatorname{Sq}_G^2(\operatorname{u}(1)) = 0$ and $\operatorname{Sq}_G^4(\operatorname{u}(1)) = 0$. Since $\operatorname{G}_1|\operatorname{\Sigma}^7 \operatorname{BP}^{(6)} = *$, $\operatorname{Sq}_G^8(\operatorname{u}(1))$ must be 0 not $\operatorname{S}^7 \operatorname{u}(1)$. Thus, $\operatorname{G}^* \circ \Phi_4(\operatorname{u}(1)) = \operatorname{Sq}^{16} \operatorname{Sq}_G^{16}(\operatorname{u}(1)) = \operatorname{Sq}^{16} (\operatorname{S}^7 \operatorname{u} \operatorname{M}_1^4 \operatorname{c}) = \operatorname{S}^7 \operatorname{u}(\operatorname{M}_1^4 \operatorname{c})^3) \neq 0$. Thus, $\operatorname{\Phi}_4(\operatorname{u}(1)) \neq 0$ in $\operatorname{H}^{31}(\operatorname{C}_F; \operatorname{Z}_2)$. Note that there is a unique top dimensional cell of degree 31 in C_F which determines a nononzero element $\operatorname{T} \in \operatorname{H}^{31}(\operatorname{C}_F; \operatorname{Z}_2)$. Hence $\operatorname{T} = \Phi_4(\operatorname{u}(1)) \neq 0$ Since $\operatorname{d}^{12}(\operatorname{2oM}_1^{12}) = \operatorname{A}[\operatorname{30}]$ and F represents the boundary of $\operatorname{2oM}_1^{12}$, the triangle in the following diagram must commute up to homotopy. Therefore, there is an induced map J making the square commute.

Now $\Phi_4(u(\iota)) \approx \Phi_4 \circ J^*(u(1)) = J^* \circ \Phi_4(u(1)) = J^*(\tau) \neq 0$. Thus, A[30] must have Arf invariant one. We have thus proved the following theorem.

THEOREM 8.2.1 A[30] has Arf invariant one.

We derive several Toda brackets involving elements related to θ_4 . The first Toda bracket below was proved by Hoffman [24]. We give a proof using our spectral sequence.

THEOREM 8.2.2 (a) $\theta_A = A[30] \in \langle \sigma, 2\sigma, 2\sigma, \sigma \rangle$

(b)
$$v\theta_{A} = vA[30] \in \langle C[18], \sigma, 2\sigma \rangle$$

(c)
$$\theta_4 = A[30] \in \langle \sigma, 2\sigma, \sigma^2, 2 \rangle = \langle \sigma^2, 2, \sigma^2, 2 \rangle$$

(d)
$$\eta \theta_{A} = \eta A[30] \in \langle A[16], 2, \sigma^{2} \rangle$$

PROOF. (a) Represent $\langle M_1^4 \rangle^2$ by μ_8 such that $\partial(\mu_8) = (\sigma \wedge 2\mu_4) \cup (B_{\sigma \sigma \sigma})$.

Since $2 \cdot \pi_{22}^{S} = 0$, $\sigma A[14] = 0$ and $\sigma \gamma_{1} = 0$, it follows that $\langle \sigma, 2\sigma, 2\sigma \rangle$

= $2 < \sigma, 2\sigma, \sigma > 0$. Thus, $2\sigma M_1^{12} \in E_{24.7}^{24}$ is represented by

 $\mathcal{M} = (\mu_{4} \wedge \sigma \wedge 2\mu_{8}) \cup (B_{\sigma^{2}2}^{\wedge} \mu_{8}) \cup (\mu_{4} \wedge B_{\sigma^{2}\sigma}^{\wedge} \wedge 2\mu_{4}) \cup (B_{\langle \sigma, \sigma^{2}, \sigma^{2} \rangle}^{\wedge} \wedge \mu_{4})$

 $\cup (\mu_4 \wedge B_{\langle \sigma 2, \sigma 2, \sigma \rangle})$

because $\partial M = (B_{\sigma^2 2}^{\Lambda} B_{\sigma 2\sigma}) \cup (B_{\sigma, \sigma 2, \sigma 2}^{\Lambda} A_{\sigma}) \cup (\sigma^{\Lambda} B_{\sigma 2, \sigma 2, \sigma 2}^{\Lambda})$. Since

 $d^{24}(2\sigma M_1^{12}) = A[30]$, ∂M represents A[30] and clearly $\partial M \in \langle \sigma, \sigma 2, \sigma 2, \sigma \rangle$.

(b), (c) The four-fold Toda bracket $\langle \sigma, 2\sigma, \sigma^2, 2 \rangle$ is defined by

Theorem 2.2.7(a) because $\langle \sigma, 2\sigma, \sigma^2 \rangle \in \pi_{29}^S = 0$ and $\langle 2\sigma, \sigma^2, 2 \rangle = \sigma \langle 2, \sigma^2, 2 \rangle + 2 \cdot \pi_{22}^S$

 $= \sigma(\eta \sigma^2) = 0. \quad \text{Now } \nu A[30] \in \nu \langle \sigma, 2\sigma, 2\sigma, \sigma \rangle \subset \langle \langle \nu, \sigma, 2\sigma \rangle, 2\sigma, \sigma \rangle = \langle C[18], 2\sigma, \sigma \rangle.$

Since $CokJ_{26} = Z_2 v^2 C[20]$, $vA[30] \in \langle C[18], \sigma, 2\sigma \rangle \in \langle C[18], \sigma^2, 2 \rangle$

= $\langle \langle v, \sigma, 2\sigma \rangle, \sigma^2, 2 \rangle$ = $v \langle \sigma, 2\sigma, \sigma^2, 2 \rangle$. Thus, $\langle \sigma, 2\sigma, \sigma^2, 2 \rangle$ contains A[30]. Note

that $\langle \sigma^2, 2, \sigma^2, 2 \rangle$ is defined by Theorem 2.2.7(a) because $\langle \sigma^2, 2, \sigma^2 \rangle \in \pi_{29}^S = 0$

and $\langle 2, \sigma^2, 2 \rangle = \eta \sigma^2 = 0$. Now $\langle \sigma^2, 2, \sigma^2, 2 \rangle \in \langle \sigma, 2\sigma, \sigma^2, 2 \rangle = \{A[30]\}.$

(d) $\eta A[30] \in \eta < 2, \sigma^2, 2\sigma, \sigma > c << \eta, 2, \sigma^2 >, 2\sigma, \sigma > = < A[16], 2\sigma, \sigma > + < \eta \gamma_1, 2\sigma, \sigma >.$ Now

 $\langle \eta \gamma_1, 2\sigma, \sigma \rangle > \eta \langle \gamma_1, 2\sigma, \sigma \rangle$. Since $\nu \langle \gamma_1, 2\sigma, \sigma \rangle = \langle \nu, \gamma_1, 2\sigma \rangle \sigma = 0$, $\langle \gamma_1, 2\sigma, \sigma \rangle$ can not

equal A[30] and must therefore equal zero. It follows that $\langle \eta \gamma_1, 2\sigma, \sigma \rangle$

= $\eta \gamma_1 \cdot \pi_{15}^S + \sigma \cdot \pi_{24}^S = \eta \xi$ where $\nu \xi = 0$. Thus, $\langle \eta \gamma_1, 2\sigma, \sigma \rangle = 0$ and

 η A[30] \in <A[16],2 σ , σ >.

We conclude this section by identifying the Mahowald element $\eta_5 \in \pi_{32}^S$ as A[32,1].

THEOREM 8.2.3 Let η_5 be <u>any</u> element of π_{32}^S which projects to h_1h_5 in $E_{\infty}^{32,2}$ of the Adams spectral sequence. Then η_5 projects to A[32,1] in $E_{0,32}^{24}$ of the Atiyah-Hirzebruch spectral sequence.

PROOF. From the computation of E_2 of the Adams spectral sequence by Tangora [59], it follows from the fact that h_1h_5 is an infinite cycle that $h_1^3h_5$ is a nonbounding infinite cycle. Thus, if η_5 is any element that projects to h_1h_5 then $\eta^2\eta_5\neq 0$. Since $\eta^2\cdot\pi_{32}^S=Z_2\eta^2A[32,1]$ for any choice of A[32,1] modulo $Z_2A[32,2]\oplus Z_2A[32,3]\oplus Z_2\eta\gamma_3$, it follows that $\eta_5\in A[32,1]+(Z_2A[32,2]\oplus Z_2A[32,3]\oplus Z_2\eta\gamma_3)$. Now the theorem follows from the observation that $Z_2A[32,2]\oplus Z_2A[32,3]\oplus Z_2\eta\gamma_3$ projects to zero in $E_{0,32}^{24}$ of the Atiyah-Hirzebruch spectral sequence.

3. The Existence of θ_{g}

In this section we show that A[62,1] has Arf invariant one and is thus entitled to be denoted as θ_5 . We also identify the Mahowald element η_6 as B[64,1]. In addition, we derive a few miscellaneous results which are relevant to the Arf invariant problem. We begin with the following well known lemma which can be proved from a computation of $\operatorname{Ext}_{\P}(Z_2,Z_2)$ as the homology of the Λ -algebra.

LEMMA 8.3.1 The following elements are nonzero in $\operatorname{Ext}_{\mathfrak{A}}(Z_2,Z_2)$:

- (a) $h_{\mathbf{N}}$ and $h_{\mathbf{N}}^{2}$ for $\mathbf{N} \ge 0$;
- (b) h_N^2 and h_N for $N \ge 3$;
- (c) $h_1 h_N^2$ for $N \ge 4$;
- (d) $h_1^2 h_N^2$ for $N \ge 5$.

Adams's proof [2] of the nonexistence of elements of Hopf invariant one in degrees $2^{N}-1$, $N \ge 4$, is equivalent to the following differentials in the Adams spectral sequence. The elements listed in Lemma 8.3.1 and the differentials

of Theorem 8.3.2 for $N \ge 4$ are depicted in Figure 8.3.1. Note that there are other elements in the bidegrees of that figure which are not depicted.

THEOREM 8.3.2 $d^{2}(h_{N}) = h_{0}h_{N-1}^{2}$ for $N \ge 4$.

FIGURE 8.3.1: Part of E^2 of the Adams Spectral Sequence (N \geq 6)

The following lemmas will be used to identify θ_5 as A[62,1]. The entire argument is based upon ideas of Mahowald [34A] and is a rewording of a detailed proof which he sent to me.

LEMMA 8.3.3 $<\sigma^2, 2, A[30]> \subset Z_2(\eta C[44]) \oplus Z_2(8D[45])$ PROOF. Note that $\eta^2 < \sigma^2, 2, A[30]> = \sigma^2 < 2, A[30], \eta^2 > \subset \sigma^2 \cdot \pi_{33}^S = 0$. Also, $\nu^2 < \sigma^2, 2, A[30]> = \sigma^2 < 2, A[30], \nu^2 > \subset \sigma^2 \cdot \pi_{37}^S = \sigma(4C[44]) = 0$. In addition, $2 < \sigma^2, 2, A[30]> = \sigma^2 < 2, A[30], 2> = 0$. The only elements of π_{45}^S which satisfy these three conditions are $Z_2(\eta C[44]) \oplus Z_2(8D[45])$.

LEMMA 8.3.4 If
$$\xi \in \pi_*^S$$
 and $\xi A[36] = 0$ then
$$\xi C[44] \in \langle \eta \xi, \eta A[30], \nu, \sigma \rangle.$$

PROOF. By Theorem 2.4.6(a), if $\langle \eta, \eta A[30], \nu, \sigma \rangle$ were defined then it would contain C[44]. Now $\langle \eta A[30], \nu, \sigma \rangle \supset A[30] \langle \eta, \nu, \sigma \rangle = 0$, $\eta A[30] \cdot \pi_{11}^S = 0$ and $\sigma \cdot \pi_{3S}^S = 0$. Thus, $\langle \eta A[30], \nu, \sigma \rangle = 0$. However, $A[36] \in \langle \eta, \eta A[30], \nu \rangle$. Since $\xi A[36] = 0$, $\langle \eta \xi, \eta A[30], \nu, \sigma \rangle$ is defined by Theorem 2.2.7(b). Thus, $\xi C[44] \in \langle \eta \xi, \eta A[30], \nu, \sigma \rangle$.

LEMMA 8.3.5 (a) A[16]A[36] = 0.

- (b) $\eta A[16]A[30] = 0$.
- (c) A[16]C[44] = 0.

PROOF. (a) A[16]A[36] \in A[36] $<\eta$, 2, $\sigma^2> = <$ A[36], η , 2> $\sigma^2 \in \sigma^2 \cdot \pi_{38}^S = 0$.

- (b) $\eta A[16]A[30] \in \eta A[30] < \eta, 2, \sigma^2 > c < 0, 2, \sigma^2 > = \sigma^2 \cdot \pi_{33}^S = 0.$
- (c) Since A[16]A[36] = 0, A[16]C[44] $\in \langle \eta A[16], \eta A[30], \nu, \sigma \rangle$

 $= <\alpha_{_{\rm F}}, \nu, \sigma> +\eta\gamma_{_{\rm S}}<\eta, \nu, \sigma> +<\eta {\rm A[16]}, \eta {\rm C[20]}, 0> +{\rm A[16]A[32,3]}<\eta, \nu, \sigma> +{\rm A[16]}<\eta, \beta_{_{\rm A}}, \sigma> +{\rm A[16]}<\eta, \beta_{_{\rm A}}, \sigma> +{\rm A[16]A[32,3]}<\eta, \nu, \sigma> +{\rm A[16]A[32,3]}<\eta, \sigma$

= $\langle \alpha_6, \nu, \sigma \rangle$. By Theorem 4.2.3 and Figure 4.2.2, it follows that $\langle \alpha_6, \nu, \sigma \rangle$ projects to an element of filtration degree at least 26 in the Adams spectral sequence. The only such element is $h_0^2 P^5 g = d^2 (h_0 P^4 k)$. Thus, $0 = \langle \alpha_6, \nu, \sigma \rangle$ = A[16]C[44].

LEMMA 8.3.6 $A[30]^2 = 0$

PROOF. A[30]² \in A[30]<2, σ^2 , 2, σ^2 > \in <<A[30], 2, σ^2 >, 2, σ^2 > \in <\quad <\partial (30), 2, σ^2 >, 2, σ^2 > \in <\quad <\quad (44), 2, σ^2 > + <8D[45], 2, σ^2 > + <2\sigma B[38], 2, σ^2 > + <2\sigma B[38] + 0. Since π A[36] = 0, A[30]² \in π C[44] + π A[30], + A

$$\begin{split} &= <\eta^2, \text{A[30]}, 0> = \eta^2 \cdot \pi_{58}^{\text{S}} = 0. \quad \text{Thus, A[30]}^2 \in <\nu, \sigma, \gamma_1> \cdot \pi_{34}^{\text{S}} \in \{\nu^2\text{C[20]}, \eta\alpha_3\} \cdot \pi_{34}^{\text{S}} \\ &= \eta\alpha_3 \text{A[14]C[20]} = \eta \text{A[14]C[20]} < 8\sigma, 2, \alpha_2> = \eta \text{A[14]}\alpha_2 < \text{C[20]}, 8\sigma, 2> \in (\eta \cdot \pi_{31}^{\text{S}}) \cdot \pi_{28}^{\text{S}} \\ &= (\eta\gamma_3)(\text{A[8]C[20]}) = 0. \end{split}$$

THEOREM 8.3.7 A[62,1] + Span {A[62,2],A[62,3],A[62,4],B[62], η^2 B[60]} are all the elements of π_{62}^S of Arf invariant one. In particular, there are choices of θ_5 of order two.

PROOF. Since $\theta_A = A[30]$ exists, $2\theta_A = 0$ and $\theta_A^2 = 0$, it follows from

[12, Theorem 2.1] that $\theta_{\rm S}$ exists and has order two. From Figure 8.3.1, we see that any element $\theta_{\rm S}$ of Arf invariant one satisfies $\eta^2\theta_{\rm S}\neq 0$. Since $\eta^2\cdot\pi_{62}^{\rm S}=Z_2\eta^2{\rm A}[62,1]\otimes Z_2\eta^2{\rm A}[62,4]$, Span {A[62,2],A[62,3],B[62], $\eta^2{\rm B}[60]$ } has Adams filtration at least three. Since A[62,4] = ${\rm d}^{12}(\eta{\rm A}[50,2]{\rm M}_1^3{\rm M}_2)$ = ${\rm d}^{12}(\nu^2{\rm A}[45,1]{\rm M}_1^3{\rm M}_2)$ and C[20] = ${\rm d}^{12}(\nu^3{\rm M}_1^3{\rm M}_2)$, $\nu{\rm A}[62,4]$ = C[20]A[45,1]. From Figure 8.3.1, $\nu\theta_{\rm S}$ is nonzero and is represented in the Adams spectral sequence by ${\rm h}_2{\rm h}_5^2$ in filtration degree three while C[20]A[45,1] has Adams filtration at least nine. Thus, A[62,4] has Adams filtration at least three. Now all the elements of Span {A[62,2],A[62,3],A[62,4],B[62], $\eta^2{\rm B}[60]$ } have Adams filtration at least three. Therefore, all the elements of A[62,1]+Span {A[62,2],A[62,3],A[62,4],B[62], $\eta^2{\rm B}[60]$ } have Arf invariant one.

Next we identify the Mahowald element η_6 in terms of the Atiyah-Hirzebruch spectral sequence. Recall that η_6 denotes any element of π_{64}^S which projects to h_1h_6 in $E_{\infty}^{64,2}$ of the Adams spectral sequence.

THEOREM 8.3.8 (a) Any choice of η_6 projects to B[64,1] in $E_{0,64}^{54}$ of the Atiyah-Hirzebruch spectral sequence.

- (b) All the choices of η_6 are ${\sf B[64,1]} + ({\sf Z_2A[64,1]} \oplus {\sf Z_2A[64,2]} \oplus {\sf Z_2A[64,3]} \oplus {\sf Z_4B[64,2]} \oplus {\sf Z_2} \eta^2 {\sf A[62,1]} \oplus {\sf Z_2} \eta \gamma_6).$
- (c) All the values of $2\eta_6$ are $\eta^2\theta_5 + Z_2\eta^2A[62,4]$, and $4\eta_6 = 0$.
- (d) There are choices of η_5 and η_6 such that $\eta_5^2 = 2\eta_6$. PROOF. Since A[64,1], A[64,2], A[64,3], B[64,2], η^2 A[62,1] and $\eta\gamma_7$ project to zero in $E_2^{64,2}$ of the Adams spectral sequence, all the choices for η_6 are $\eta_6 = B[64,1] + pA[64,1] + qA[64,2] + rA[64,3] + sB[64,2] + t\eta^2$ A[62,1] + $u\eta\gamma_7$. All of these elements project to B[64,1] in $E_{0,64}^{54}$. Moreover, $2\eta_6 = 2B[64,1] + 2sB[64,2] = \eta^2$ A[62,1] + $s\eta^2$ A[62,4] = $\eta^2\theta_5 + s\eta^2$ A[62,4] and $4\eta_6 = 0$. Note that η_5^2 projects to $h_1^2h_5^2$ in the Adams spectral sequence. Thus, η_5^2 is not zero, and by Mahowald [36] there are choices of η_5 and η_6 such that $2\eta_6 = \eta_5^2$.