CHAPTER 4: THE IMAGE OF J

1. Introduction

The study of the canonical map J:0 — F inducing Jy:n,0 —>s ng, called the
J-homomorphism, was initiated by Adams in a series of four papers [3], [4],
[8], [8]. He determined the image of J, modulo the "Adams conjecture”, and
the determination was completed with the solution of this conjecture by
Quillen [53]. Mahowald [34] has constructed a spectrum J and a map of
spectra j:S —— J such that the induced map j*:nf -3 M,J is a split
epimorphism. Moreover, j, is an isomorphsim from ImJ to m,J where ImJ equals

Image J, direct sum with an additional family of ZZS.

In Section 2, we collect the known facts about =m,J which we will use to
simplify our computation. In addition, we use the Adams spectral sequence to
derive several relations and Toda brackets involving elements in ImJ. The
relevance of ImJ to our computation is that all differentials in our spectral
sequence which originate on the 0 row land in ImJ ® H,BP. In Section 3, we
prove that this theorem is true through degree 66 which suffices for the
computation of the first 64 stable stems. In Section 4, we give the computer
printout of the computation of the cokernels of these differentials through
degree 70. This computation is one of the essential ingredients in our
inductive determination of the first 64 stable stems. The computer

program itself is discussed in Appendix 5.

2. ImJ and the Adams Spectral Sequence

Mahowald [34] defined the spectrum J as the fiber of a map bo — 24bsp. The
homotopy of J is periodic with period eight and is given by the table in

Figure 4.2.1.
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DEGREE m J

1 Zzao

8N+1 (N = 1) za, ©Z0,
8N+2 Zzn-ocN

8N+3 ZB, 4B, = nzan
8N+4 0

8N+5 0

8N+6 0

8N+7 ZC(N}’N

8N+8 Zzn-;;'N

FIGURE 4.2.1: The Homotopy of J

In the above table C(N) = 2€(N)

denotes the largest power of two which divides
16N+16. In each row of this table we take N =z O except in the second row
where N 2 1. These elements of n,J include the elements of Hopf invariant
one: M=, V= BO and o = ¥y We apologize for the new notation, but this

notation is very convenient. The following theorem describes the how m,J is

related to Image J,, and how j:S — J induces a split epimorphism j,.

THEOREM 4.2.1 (a) The map j:S —> J induces an isomorphsim j, from
Image [J,:m,0 —> nf] to the subgroup of n,J generated by
{a,no, B, | N =0},
(b) Let ;; = J*[(J*oj,)-l(yN)]. Then the map j:S — J induces an
isomorphism between n,J and

InJ = Image [J,:m,0 ~—> ni] ® 22{n2§§1 N = 0}.

(c) ImJ is a direct summand of nf.
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Let & = J,[(J,°3,)7(@)] and let B = J,[(J,ej,) ' (B)]1. From now on we
will abuse our notation by denoting &F by au, E; by BN and ;N by LA Thus,
the table in Figure 4.2.1 can be thought of as giving a description of ImJ.
Define CokJ as Kernel j,. Then we have the direct sum decomposition:

nf = ImJ, ® CokJ, {4.2.1]

Consider the classical mod two Admas spectral sequence [1]:

Y = Exty(2,.2) = 10 (4.2.2]
Here 4 denotes the mod two Steendrod algebra and 2n§ denotes nf modulo the
subgroup of all elements of odd degree. This spectral sequence has a
vanishing line [8], and directly below the vanishing line are the elements
depicted in Figure 4.2.2 which survive to ImJ as well as several
"self-destructing families", i.e. elements which are nonzero in E2 but only
zero survives from them to ES. Below these families is the self-destructing
wedge [38]. In this fiugre, vertical lines denote multiplication by ho, lines

of positive slope denote multiplication by h1 and lines of negative slope -r

denote d'-differentials.
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4N+3

4N+2

4N+1

4N

4N-1

4N-2

4N-3

4N-4

4N-5

4N-E(N)

4N-8

P d (N 2 4)
0O 0

8N-2 8N-1 8N 8N+1 8N+2 8N+3
sy s 2, N-2
In addition, ha =0, h B =0, hf =hP "d and hy = 0.
2 N 2 2N o © 2'N

2 2N+1

FIGURE 4.2.2: ImJ in the Adams Spectral Sequence (N z 2)

The following theorem gives the structure of ImJ as a module over the subring

of nf generated by 7, v and o.

THECREM 4.2.2 (a) va = 0;

(b) oo = knyn;
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(c) e, = 0;
(d) vBN =0 for N = 1;
(e) oB = 0;
(£) vy, = 0;
(g) 0Ty = 0 for N = 1.

PROOF. (a), (c), (d), (g) There are no possible nonzero elements of E  of
the Adams spectral sequence to represent any of these products with the
exception of szN which can only be the boundary hisz'ldo
(b} From Figure 4.2.2, we see that the only possibility for o, to be nonzero
is if it equals nyﬂ. Thus, ouN = knyn

{e)} From Figure 4.2.2, we see that the only possibility for oﬁN to be nonzero
. . _ . 2

is if it equals "“u+1‘ However, noBN = (0 while n “u+1 # 0.

(f) From Figure 4.2.2, we see that the only possibility for vy to be

e s s . 2
nonzero is if it equals ne - However, wy, = 0 while 5 L # O.I

We will use the following theorem to identify certain Toda brackets in the

Adams spectral sequence (*).

THEOREM 4.2.3 (a) Let A’, B’, C’ be an element of Ez of the Admas spectral
sequence (*) which converges to A, B, C, respectively. Assume that <A,B,C> is
defined in nf and <A’,B’,C’> is defined in E where r = 2. lLet (p,q), (s,t)

T

be the bidegree of the product A'B’, B’C’, respectively. Assume that the only

s,t+N

Noret’ N=1, u>= N+ r, is zero. Then there is an
+r—

d -boundary in EZ%N and E
u N+r
element X of <A’,B’,C’> in Er of (*) which is an infinite cycle and represents

an element of <A,B,C>.

(b) Let A’, B, C, D’ be an element of E2 of the Adams spectral sequence (*)
which convereges to A, B, C, D, respectively. Assume that <A,B,C,D> is

defined in nf, and <A’ ,B’,C’,D'> is defined in Er where r =z 2. Let (pl,ql),
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(pz’qz)’ fps,qs), (p4,q4), (ps,qs) be the bidegree of A’B’, B'C’, C'D’,

<A’ ,B’,C’>, <B’,C’,D’>, respectively. Asume that
+
pi'qi N

N+r

(i) E =0, N=21, if 4 =1 =5 and

p, q +
(i1) the only d -boundary in Exi' ' Nz21, uzN+r, is zero if 1 =i = 3.
r

Then there is an element X of <A’,B’,C’,D’'> in E of (*) which is an infinite
r

cycle and represents an element of <A,B,C,D>.

The first part of this theorem is due to Moss [47]. (Our technical hypothesis
is equivalent to his, i.e. there are no "crossing differentials”.) The second
part of this theorem is a variation of Lawrence’s generalization [33] of
Moss’s theorem. However, we do not assume that <A,B,C,D> is strictly defined,
and we replace two of the five cases of the technical hypothesis of no
crossing differentials by the more stringent hypothesis that the target groups
of such differentials are zero. Part (b) of this theorem can be proved either

by the methods of Moss and Lawrence or by using bordism chains as in [28].

Observe that the conclusion in {a) or (b) does not preclude the possibility
that X is zero in E:’b and is the projection into E00 of a nonzero element § of

the Toda bracket which lies in Fb*lns. However, if E:’C
a

= 0 for all ¢ > b
then X = 0 implies that 0 is an elements of the Toda bracket. This explains

why we require the stronger hypothesis in (b} when i equals 4 or 5.

THEOREM 4.2.4 (a) <n,v,aN> contains O for N = 1;
(b) <n,v,BN> contains O for N = 1;

(c) <v,n,BN> contains O for N = 1;

(d) <n,v,7N> contains O;

(e) <v,n,n27N> contains 0;

529 <v,n,BN,n> contains O when N is odd, 2, 4, or 6;
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(g} <V,1},7}23'N,n> contains O;

(h) <n,v,a,v> contains 0 for N = 1;
(1) <7),V,BN,U> contains O for N = 1;
(3) <n,v,7,,v> contains 0 for N = 1;
(k) <n,f3N,0'> contains 0;

(1) <n,1723*",<r> contains O for N = 1.

PROOF. (a), (c¢), (d), (e), (k), (1) From Figure 4.2.2, we see that

Theorem 4.2.3(a) with r = 2 applies to show that each of these Toda brackets

. . 8N+6,4N+2 8N+8, 4N+2
has an element which projects to zero in Em s Em ’ ,
8N+12,4N-E(N) +5 8N+14,4N+5 8N+12,4N+2 B8N+18, 4N+S
E_ ’ R Em ’ , Em* . E_ 8 in case (a), (c),

(d), (e), (k), (1), respectively. With two exceptions, E_is zero in each of
these degrees in higher filtration degrees. The first exception is that
possibly mrN“ might be an element of <u,n,BN>. However, nza'ml # 0 and
n<w,m,B, > = <mv,wB, = v°B,, =0. It follows that each of these Toda
brackets contains 0. The second exception is that mxmz might be an element
of <n,n27N,0‘>. However, nocmz is in the indeterminacy of <n,nzyn,0'>. Thus,

0 e <n,n23ru,¢r> in all cases.

(b) Since hzﬁzml = 0 in Ez’ the preceeding argument applies to <n,v,82m1>
which is defined in Ez’ It shows that 0 e <73,v,82m1>. However,

thzn = hiPN-zdo which is a d3—boundary. Now the apalogue of the preceeding
argument with r = 3 applies to <n,v,32N> to show that it contains zero.

(£), (g), (h), (i), (j) Note that by Theorem 2.2.7(g) all of the four-fold
Toda brackets in this theorem are defined: In (h)}, n<v,au,v>= <n,v,ocN>v which
contains 0. Since n<v,ocN,v> is a singleton, it must equal {0}. Thus, ny,, can
not be an element of <v,¢xN,v> because n27N # 0. From Figure 4.2.2, we see
that there is now no possibility for <v,oLN,v> to contain a nonzero element.

i < > = = j
In (i), 7 u,BN,u <n,v,,8”>v {0} while n{mxml) # 0. Hence na, . can not

be an element of <v,BN,v>. Thus, we see from Figure 4.2.2 that there is now
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no possibility for <v,8u,v> to contain a nonzero element. All the other
triple products in (f) - (j) contain zero by (a) ~ (e) or must equal zero by
Theorem 4.2.3(a) and Figure 4.2.2.

Assume that N is odd in case (f). Let r = 2 in cases (f), (g), {J) and in
case {i) when N is odd. Let r = 3 in case (h) and in case (i) when N is even.

From Figure 4.2.2, we see that Theorem 4.2.3(b) applies to show that each of

. . . 8N+10,4N+2

these Toda brackets has an element which projects to zero in Em ' ,
8N+16,4N+1 8N+10, 4N 8N+12, 4N+2 8N+12,4N 8N+16,4N-BG(N)+1 |

Em ’ ) Eoo T, E00 ' R E00 2, Em ’ in case (f),

(g}, (h), (i) with N odd, (i) with N even, (j), respectively. With four
exceptions, Euo is zero in each of these degrees in higher filtration degrees:

. . 2
< > < >
nmN+1 could be in u,n,BN,n ) n7N§1 could be in <v,m,m 7N,n s naN+1 could be

in <m,v,a ,v> a ould be i < >. wever o o
n <mv, o, nd My © ul in <mv,y,v Howe s M N

nyu*l is in the indeterminacy of <v,n,BN,n>, <u,n,n27N,n>, <n,v,au,v>,

<n,v,7n,u>, respectively. Thus, each of these Toda brackets contains O.

Now consider (f) when N is 2, 4 or 8. We shall see that there are only two
elements of nie, nfz and "ga that are not contained in {w,v), and {(n,v) is
contained in the indetermincacy of <v,n,BZN,n>. The two exceptions are Cl42]
and 2C{42]. Thus, <v,n,82,n> and <v,n,38,n> contain 0. Now

’

2<v,n,84,n> < <v,n,<B4,n,2>> = <y, 7,0> because <B4,n,2> € n§7

. S
< = = = =
n B4,n,2> B4<n,2,n> 2u[34 0, v<B4,n,2> 2<u,B4,n> and only O in ", has
these properties. Thus, 2<v,n,8§,n> = {v) which does not contain 2C[42] or

4C{42]1. Therefore, <v,n,34,n> contains 0.

The reader should not worry that we may get involved in circular reasoning
when we use the facts that <n,v,BZ,v>, <n,v,B4,v> and <n,v,BB,v> contain O.
We will only use these facts to show that no leader XV can be of one of the
following forms:

(1) X e CokJ_, VeH BPand XV is in the image of a'®,
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(ii) X e CokJ33, Ve H BP and XV is in the image of d°%

(111) X € CokJ,., V € H_BP and XV is in the image of a>°.
The only leader with such a bidegree is vA[BO]M?. Since twice dlz(vA[SO]Mf)
equals o?A[BOI = 4C[44] = O, vA[SO]MT can not bound. Therefore, we have an

alternate proof that there is no leader XV as in (i), (ii) or (iii).
3. Differentials Originating on the 0 Row - Theory

The material in this section is divided into two parts. First, we study the
map of Atiyah-Hirzebruch spectral sequences induced by j. We deduce that j

R . R . o
induces an isomorphism j on E
223

*,0

Second, we prove that jr induces an

isomorphism on E;O for r 2 1 and N = 66. That is, all differentials on the

0 row of our spectral sequence land in ImJ e H,BP. Consider the
Atiyah-Hirzebruch spectral sequence:

'E° =HBP e mJ —> J BP [4.3.1]
N, t N t N+t

The map of spectra j:S — J induces a map of spectral sequences
r

J:E

— 5 ’E , 2=r = o f4.3.2]
r N,t N

b

Moreover, jZ:H*BP ® nf —> HBP ® n,J equals 1 ® j,. Since HNBP is zero when

N is odd, we have the following result:

r

E , = 0 if N is odd,
d" =0 if r is odd and
E2r+1 = E2r+2 for r = 1.

The following simple theorem is the basis for many of the results of this

section.

THEOREM 4.3.3 (a) If j2° d®(X) # 0 modulo CokJ then X is an element of

M, aM, naM, ¥y M, my M} ® B<2> which reduces to a nonzero element
(2) 1 N 1 N 1 N1 N 1

modulo (2).

(b) If j, «d”(X) # 0 and r = 2 then X ¢ Ey
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PROOF. (a) By Theorem 3.2.3, E2 = [22 ® Zle] ® nf ® B<2> and d2 is the
homomorphsim of nf ® B<2> - modules given by d°(1) = 0 and d2(M1) = n. Hence
if dz(X) # 0 then X = €M1B where £ € nf, B € B<2> and n§ # 0. Thus, if
jzodz(X) # 0 then n€ is a nonzero element of ImJ. This part of the theorenm
now follows from the table in Figure 4.2.1.

(b} By Thecrem 3.2.3:

y 4 — 2
E [Zzax ® 24BN ® ZGBNMI ® ZC(N)’N @ ZC(N)/Z”NMI ® 221) 'INMII
Kz 1, N = 0] @ B<2>.
Thus, E; s =0 forall N, r=2andt>0. Therefore for all r = 4,
arEF — 'EX is zero if t = 0. That is, for r = 4 the only
2N, 2t 2N-2r,2t+2r~1

nonzero differentials in ’EI2P originate on the 0 row. Thus, if 0O # jZFOdZP(X)

= dzrejzr(X) then jzr{x) and hence X must be on the O POW..

We deduce that all the elements of ImJ/(m-ImJ) are hit by nonzero

transgressions originating on the 0 row.

2 .

CORCLLARY 4.3.4 All of the o BR, yN, BxMz and 7 yan are hit by
differentials which originate on the 0 row.

PROOF. All of the elements listed in this corollary are nonzero in E4 and map
to a nonzero element of 'E4. 0Of course, they are zero in Ew and thus must be

hit by differentials. By Theorem 4.3.3(b), they can only be hit by

differentials which originate on the 0 row.J}

The next theorem specifies bounds on when the nonzero differentials must occur
on the 0 row to turn E2 = H,BP into E° = n,BP. Let U =V /2, Nz 1, be
*,0 *,0 N N

polynomial generators of H/BP.
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THEOREM 4.3.5 Let Ft denote the 2(2)-submodu1e of H,BP generated by all

U ---U with q < t.
N N

1 q
4t . 8t+4
(a} No element of 22U ---U + F survives to E .
N N 4t41 *,0
1 441
4t+1
(b) No element of 2 U -..u + F or of
N N at+2
1 At +2
442 . 8L+6
2 y ---U + F survives to E .
N N 4t+3 *,0
1 4t43
4t-1 . 8t+2
{c) No element of 2 U ---u + F  survives to E .
n1 N4t 4t *,0

PROOF. We use induction on t to prove that there is some Xt € Ft such that:

(1) no element of zt'IUN U+ F, survives to the E: o specified above;
1 t !
(1) a7+ X)) =« if t = Akl

(iii) d”(z"lui + %)

(iv) d2"2(2’“"‘u§ + X)) = 4BM if t = 4ke3;

it

ZBk if t = 4k+2;

t-1. ¢t

v) a2 Ul + X)) = (CK)/2)y, if t=4k+d.

When t = 1, we know that dz(Ul) = al and that no UN survives to E: o Assume
that the above five conditions are true for t < T. Llet ¢ =2 if T = 3 mod 4

and let ¢ = 0 otherwise. Note that 2qUN ---UN = VH ---VN € m,BP and is thus
1 q 1 q
PP . . . 2T-£ 3
an infinite cycle. By the induction hypothesis, Ezr o = 2(2)(2 U1 + X}

modulo naTBP for some X € FT and some k = T. It follows from Corollary 4.3.4

2T-¢, T-1, T T-k~

that k = T-1 and d (2 la + 2 1X) is a, 2Bk, 4BkM1, (C(k)/Z)’(rk if T is

4k+1, 4k+2, 4k+3, 4k+4, respectively. This proves whichever of conditions

(ii) - (v) is relevant. Now assume that Y = ZPAUN---LQ + f for some f € FT
1 T

survives to E, . Let I =2A + oo+ 24 . Then N +---+N_ > T and
,0 N -1 N -1 1 T

degree r > 0. Observe that UN = MN modulo 2. Thus in EiT;C, PI(Y)

= ZT%Lf + £’ for some f’ € FT + (ZT). Thus rledzpe{Y} # 0 and Y does not
R 2T~E+2 s . . s cas .
survive to Eg 0o = @ contradiction. This verifies condition (i} and

s

completes the proof of the induction step.l
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We can now specify the elements on the O row which transgress to hit the

elements of ImJ/(n-ImJ).

COROLLARY 4.3.6 (a) For all t = 0, there is At € 17‘4“1 such that

4t Aat+1 8t+2 8t+2, 4t at+1
2 M + A survives to E O and d (2™ A ) = .
1 t 4t+2,0 1 t t

(b) For ali t = 0, there are B and C in F such that
t t 4tz

4t 4te2 4t A4t+3 . 8+ Bt+d, 4t 4t+2
2°°M + B and 2 M + C survive to E, , d 2™ + B} = B
1 t 1 t ,0 1 t t
Bt+4 .. 4t A4L+3
and d (

2"M " v ) = 3B M.

{c) For all t = 1, there is Dt € F&t such that (ZM/C(‘C))M;Lt + D, survives to

t
st 8t, .4t 4t _

Est,o and d ((2 /C(t))M1 + Dt) =7,

(d) For all t = 1, there is G e F,  such that zu’lm‘:m + G, survives to
8t+2 and d8t+4(24t-1M4t+2 + G ) - 7727 M.

8t+4,0 1 t t-1 1

PROOF. Parts (a), (b) and (c) follow from the proof of Theorem 4.3.5. Note

that we can choose C in F because F n EBtM = Br+d .
t 4t +2 4142 8t+6,0 4t+3 8t+6,0
Also observe that r, (M‘;“s) = (4t+3)M‘:“2 and therefore ds“'*(z‘“M‘:“3 +C)
1
is either 38M or 78 M. Define B, so that de“‘(z‘*‘Mjm +C) = 36. By

Corollary 4.3.4, nz'a't_lMl must bound from the O row. Thus the reasoning used

to prove Theorem 4.3.5 also applies to prove (d)..
As a consequence of our theorem we have another proof of the famous theorem of
Adams [2] of the nonexistence of elements of Hopf invariant one in degrees

2.1 for k = 4.

COROLLARY 4.3.7 If £ en . has Hopf invariant one then either

PROOF. Recall that £ has Hopf invariant one if and only if Sq2 is nonzero in

the mapping cone C€ of €. In that case there must be an element
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N

Xe2Z IM,...,M 1 such that the coefficient of M in X is odd and
{(2) 1 N-1 2N 1

X transgresses to £. By Corollary 4.3.8{c), N must be 0, 1 or 2.}

COROLLARY 4.3.8 The following Hurewicz homomorphisms have the same image:
Image [h:w,BP —> H,BP] = Image [h:J,BP —> H,BP].

PROOF. Recall that for a generalized homology theory F and a spectrum X, the

image of the Hurewicz homomorphism h is given by E:,o of the Atiyah-Hirzebruch

spectral sequence for F,X. Moreover, the Hurewicz homomorphism for BP is a

monomorphism, and thus Ef.o in the spectral sequence for n,BP equals m,BP.

The proof of Theorem 4.3.5 is valid in the Atiyah-Hirzebruch spectral sequence

for J,BP. In that context it says that in the spectral sequence for J,BP, the

intersection of the kernels of all differentials from the 0O row that land in

q . . s
n,J ® H,BP, equals 2(2){2 UNl U 1 0=qgand 1= N = =< Nq)
q

= z‘z)wul--- qu l0=qgand 1 =N = .- = Nq} = h(n,BP).
By Theorem 4.3.5, if none of the differentials in our spectral sequence have
image in Cok.J ® H,BP then there would be enough image to these differentials
so that E:,o’ the intersection of their kernels, would be n,BP. It remains to
show that this is indeed the case A differential which originates on the

0 row and lands in CokJ ® H,BP is what we called in Definition 1.3.7 a hidden
differential originating on the O row. The proof of the following theorem can
only be understood after reading Chapters 5, 6 and 7. There is no circular
reasoning: we compute ni for N = 64 assuming Theorem 4.3.9 is true. The
proof of Theorem 4.3.9 demonstrates that considering the leaders that occurred
in the computation, no error could have been made through the assumption that

Theorem 4.3.9 is true.
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THEOREM 4.3.8 All differentials on E;o have image in ImJ ® H,BP when N = 66.
PROOF. Assume that d'(V) = XU is a hidden differential originating on the O
row where U € HanP’ V e H2NBP and X € CokJ. Applying Landweber-Novikov
operations shows that XU must be a leader. As a consequence of this

hidden differential there is an element {W, { € ImJ and W € H,BP which we
incorrectly thought was hit by V, but in fact can not bound. Note that:

W= 1 lest ¢ would nonzero in Em;

4

W= M1 lest ¢ # 0 in nf while 7¢ = 0 in n,ImJ, contradicting Theorem 4.2.2;

it

W= Mf lest v{ # 0 in nf while v{ = 0 in n,ImJ, contradicting Theorem 4.2.2;

W # M2 lest 0 ¢ <v,m, &> in nf while 0 € <v,7,&> in n,ImJ,
contradicting Theorem 4.2.4(c), (e);
W= M2 lest 0 € <n,v,{> in ng while 0 € <9,v,L> in n,ImJ,

contradicting Theorem 4.2.4{a), (b), {d);
W= M: lest o # 0 in nf while o¢ = 0 in n,ImJ, contradicting Theorem 4.2.2

(if ¢ = oy and ox = My then aNMT must bound because it transgresses

8
0,8N+8

to oo = My, which is zero in E J;
W= Mlﬁz lest O ¢ <v, 1, ¢, 7 in HE while 0 € <v, 0, {,»> in n,Imd,
contradicting Theorem 4.2.4(f), (g);
W MM lest 0 ¢ <n,v,&v> in 7> while 0 € <n,v,&,v> in m,InJ,
contradicting Theorem 4.2.4(h), (i), (j);
MS . S . .
W= X lest 0 ¢ <n,¢,0> in m, while 0 € <9, &, 0> in w,ImJ,
contradicting Theorem 4.2.4(k), (1).
If we incorrectly assumed that this hidden differential d (V) = XU did not
occur then we would have drawn one of the following types of false
conclusions:
2M . S
(a) d7(XU) = £ is a nonzero element of T, 5 or
(b) dZQ(Y) = XU where we had correctly proved that XU must be a bounding

leader but we had incorrectly thought that Y was the only possible leader

that could hit XU,
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From the above observations it follows that 2M = degree U 2 14. Checking the

leaders of odd degree we see that the only possibilities for such an XU are
v 4= . 14 2

nA[3O]M1 X and oC[443M1M2. Since d (nA[3O]M1M2) = C{44] and 4C[44]

= °A[30] # 0, WA[30IM M2 can not bound. If oC[44]M}M_ transgresses then

d"*(oC[441MM,) = B(64] and 2BI64] = n'BI62,1] # 0. Thus, oC[44]MM, can not

bound. Therefore in degrees less than 67, there is no leader XU as

in (a) or (b), and there is no possibility for a hidden differential

originating on the 0 row.|j

4. Differentials which Originate on the 0 Row - Computation

In this section we reproduce the computer printout of the "cokernels” of the
differentials which originate on the zero row. We can not actually compute
the cokernels at this point. We do know E* of the spectral sequence but for
each element £ € Iszw‘1 of order k we do not know which differentials dzi
rzs z 2, originate from elements with representatives in zkg ® H,BP. By
Theorem 4.3.9, the only differentials dzs, s = 2, which can hit an element
with a representative in zkg ® H,BP must originate on the O row. Therefore,

{X e Eira~1| X has a representative in ZkE ® H,BP} is a subgroup of
(Zki ® H,BP)/{Image d%). Let m :E° —> E" denote the canonical projection.
r

Then Cokernel [dzr:E2r — 1 {ImJ ® H,BP)] is a subgroup of
* 0 2r 2r-1

n (ImJ_ _ ® HBP) / Image [d°:E°" —» E>°_ ]. We thus make the following
1 2r-1 *,0 *,2r-1

definition.

DEFINITION 4.4.1 Let "Cokernel [d®:E°T — 5 E°" "
*,0 *,2r-1

2r 2r
=mn(ImJ,  © H,BP) / Image [d

er
—— E 1.
*,0 *,2r-1

:E
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We order the data in this section by rows for convenience. The computer

program which produced this data is disgcussed in Appendix 5. We will use the

following notation.

1.

When the range of the differentials is a 22~subspace of 22€ ® H,BP then
3 13 2 -y R S

an entry "a b c d" on the list means that £ M: M2 M3 M4 is an

element of the 22—basis of the "cokernel" of the differential.

The following will be used to denote a direct summand

7 (Me(1,1)§e(1,2)§e(1,s)ﬁet1,4) P +”f(N,1)ge(ﬁ,z)ﬁb(N,S)ﬁb(N,&)):
k1 2 3 4 1 2 3 4

Z, e(1,1)  e(1,2) e(1,3) e(1,4)

e(N, 1) e(N,2) e(N,3) e(N, 4).

The following will be used to denote a direct summand

Zk(Al-Mt;(l,l)Me(1,2)Me(1,3)§e(1,4)* ..

e(N,l)'b(N,Z)’b(N,3)_b(N,4))_
2 3 4 :

© +A M M M M
N1 2 3 4

Zk A1 /  e(1,1) e(1,2) e(1,3) el(l,4)

AN /  e(N,1) e(N,2) e(N, 3) e(N,4).

We begin by listing the "cokernels" of the d10~differentials from the 0 row to

the 9 row. Note that E: 6 = [Zzoc1 ® Zznzo M1] ® B<2>. Thus, the monomials

below with an odd power of M1 have coefficient nza and the monomials with an

even power of M1 have coefficient af

(4.4.2) "COKERNEL [a'%:E,° — E,° 1"
DEGREE BASIS DEGREE  BASIS DEGREE BASIS
(18,9) 6100 (20,9) 7100 (22,9) 11000

(24,9) 5010 9100 (28,9) 7200



(38,9)

(42,9)

(44,9)

13

11

15

11

11

21

(28,9)
(30,9)
(32,9)
(34,9)

(38,9)

(40,9)

(48,9)

(54,9)

88

11

15

13

11

11

15

14

14

11

14

22

11

15

27

(48,9)

(50,9)

(52,9)

13

11

15

13

23

11
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5011 6030 6700
14210 (56,9) 11120 3610
13500 15210 5320
21010 256100 7030

7201 7T7T00 3111
12310 6510 65011

(58,8) 5301 17180 23200

7011 7510 51360
11101 118600 13310
15020 14500 22010

6320 (60,9) 13120 1S001
15500 5111 21300
230610 27100 5610

7320 3401 32360

8700 11410 14310

6130 65301

Next we list the elements in the "cokernels" of the d'°-differentials from the
0 row to the 11 row. Recall that E: 1 = [2431 ® ZBBlMll ® B<2>. Thus, all
the monomials below have coefficient By

12 .12 12

(4.4.3) "COKERNEL [d'*:E,° —— E,° 1":

DEGREE GROUP GENERATOR DEGREE GROUP GENERATOR DEGREE GROUP GENERATOR

(20,11) 22 10000 (22,11) 24 8100 (24,11) 22 9100
22 3/ 8200 (26,11) Z2 1/ 6010 Z4 10100
2710100
(28,11) 22 2711100 2; 2711100 %3 11100
1/ 4110 3/ 14000
3714000



{30,11) 2
4

(34,11)

(36,11)

(42,11)

(44,11)

z
2

3/
2/

3/
2/

3/
1/
3/
2/

2/
3/
2/
2/
3/

2/
2/
1/
1/
1/
1/

1/
3/
1/
1/
3/

2/
1/
2/
2/

11
13

14

11

12

14

12
14
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s
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N e oW
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oo @o
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Qo w
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w OO O
o000

- 0w
e OO
[eReReNa

-

o O > G
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C o

<

(38,11}
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2/
1/

2/
3/
1/

2/
37
3/
1/

3/
2/
2/

2/
2/
3/
1/

2/
2/
3/
2/

3/
2/
2/

12

11

14

12

N e W
O = O
[eNoReNe)

ot OO W NoOWw ON —

- W

o0
[oR*Nol

Ll
o000

land onNn - O

[}

R e R ol

oo 0o

O OO

O O

(o]

(32,11)

(40,11)

z
2

[3v]

2/
3/

1/
2/
2/
3/
1/
2/

3/
1/

14

185
12

11

4
10

13

=W
—

wN

N WO WN
e e O

(w)

[ w]

[eNuNoNeoR*Ne]

Q
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Z2 3/ 4410
3/ 68120

3713110
1/ 4410

2

(46,11) Z

1710210 14 300

v 68120

3/ 14300

2/ 8500
2/ 14300

4410

7310

6120

Qo
— O
<t m
<+

2.3/ 9500
1/ 4220
2/ 6101

2

22 3/ 7120
2/ 89500

o 3/ 7120
2/ 9500

(48,11) Z

2715300

1711210

3/ 66800
2714110

1/ 4220

1/ 6101

3/18300

3/ 4220

2/ 8310

1/ 6101

3710020

1/ 6600
3/ 8310

2714110

Z 2/ 68101
1/ 6600
2/ 8310

22/ 68101

2 3/ 4220

Z2 3/ 4220
2/ 6101

1/ 66800
2714110

1/ 8600
2/ 8310

2/ 14110

3710020

8310

15300

—
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68410

2/ 8120

110500

1712210

15110

6410

4700

o 1/ 8700
311500

z

o 17 9120
2/ 11500

z

34 5700
17 7410

2

(52,11) Z

2/ 13210 1713210

3/ 11500

vy 2301 3/ 2301

3/ 4011

2/ 4011

3/ 4510

1/ 4510

2/ 4510 37 8101

1/ 6220

1/ 26 000

2/ 6220

3/ 8101

1/ 14 400

3726 000
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Z2 2/11500
2/ 132160

- o
e
o w
o

N
RN

o i/ 2301
2/ 4011

z

3/ 62280 2/ 2301

2/ 4510

1/ 6220
1714400

3726 000

1/ 6220
i/ 8101

1726000

26 000

z

2/ 26000

2301

Z

45160

Z

oo
— N
0N
< w0

N
N

13210

z

11500

z

10310

z

Qo
=
0 m
N«

NN
- m

o i/ 5858160
1/ 2610

V4

3/ 58510
1/ 9101

2

(54,11) 2

1

v 620

i/ 87080
2712500

i/ 4320
2/ 68030
2/ 68201

3/ 87086

171012 0

2714210

2724100 3712500

3/ 8700

i/714210

1710120

3720010

3712500

324100

1720010

1724100

C o
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24
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QD
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24100

14210
320010
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14210

24100

24100

113180

24 100

Z

Qo
Qo
[~ =
0

Z2 3/ 7030
3/ 7700

22 3/ 13500
2/152 10

3/ 532¢0
1/ 7030

2

(86,11) 2

2728100 2711120

i 11120
2/ 13500

37182160

2/ 06710

2/ 4301 1725100

315210

2/ 68510 3 0710

1725100

1/ 413¢ 2/ 10101 2/ 4130

1/ 12310
2/ 22200

2/ 6011

2/ 106 00

2/ 68510

2/14020

3/22200
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2 2/ 77080

o 1/25 100
2/ 0710

z

o 17 7030
2/ T700

z

17 0710
2/ 41360

2/ 4301

2/11120

2/ 6011 i/ 4301

2725100

2/ 6510 1/ 8510

3/ 0710

2/ 106 00 1710101

1/ 68510

2712310 27106 00

3108600

2/ 14020 3712310

3712310

2714020
2/ 22200

3/22200

22 2711120
2/ 6011

22/ 0710

2.2/ 7T700

Z2 2/ 7700
2711120

2/ 4301 2/ 123160

3 0710

171086800 17140260

1/ 41360

2712310

1/ 6011

2/ 140620 Z_ 2/ 6710

2710101

22/ 4301

2/ 106 00

2710101

1712310

2/ 12310

1714020

3/22200

3/ 22200
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2/ 8320

22 2/ 7510
2/ 8700

(58,11) 2

2/ 8700
1720 3 0 0

3710410

27 4111

171458500

2712120

1720300 2/ 22010

171400 1

1726100 3/26 100

1714500

Z 2/ 5301
22711101

Z2 2/ 7510
2711101

- o
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3/203060

2/ 22010

2/ 14500
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1726100
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Next we list the elements of the "cokernels” of the d'°-differentials from the

O row to the 15 row. Note that E, = [Z_y, e 2 (2yM)] e B<2>. Thus,

all the monomials below have coefficient 7{

(4.4.4)

"COKERNEL [d'®:E

16
*.0

»

DEGREE GROUP GENERATOR

DEGREE GROUP GENERATOR

DEGREE GROUP GENERATOR

(22,15) Z2
(28, 15) Z2 10/
14/
Z4 26/
16/
30/
Z8 18/
2/

(36, 15) 22 227/
20/
18/

Z16 14/
10/
4/

32

2 22/
12/
26/
30/

8
11
14
15
12
13

10

11
15
12
15

12

13

10
14

N = = O
O e O

oo

O 0O - S o

oQCo

oo
oo

[eRaRele]

(24,15) Z4

Z
16

Z
32

(34, 15) Z2 g9/
1/
8/

Z 10/
1/
19/

(38,15) 22 2/
257/

10/

3/

(40,15) 22 30/
22/
127
26/
30/

Z
16

12000
14000
12100

8300

10010
14100
15100
8110
12200
13200
6210
10 300
12010
11300

13010

8400
10110
14200
10110
14 200

(28,15} 28

(30, 13) 22

(32,15) 2

z

z

4

32

16

16

24/
157
287

18/
3/

26/
26/
8/
4/

12/
29/
20/
30/

10100
15000
8010
121060
131060
100200
10001
14100
8110
13200
6210
10300
12010
13010
8400
10110
14200
101180
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2

(44,18) 2
2

i8

(46,15) 2
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(48,158) Z
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8/
18/
14/
8/
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6500
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140160

12300

133060
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10400
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11400
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4410
8001
8500
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14300

10210
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12400
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(54,18) z_ 4/
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22/
14/
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16/
28/
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7/
22/
20/

9/

Z 16/
18/
22/
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18/

Z
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Next we list the "cokernels" of the d'°-differentials from the O row to the
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17 row. Note that E,
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= [Za o 2 nz'y M1 & B<2>. Thus, the monomials
272 2 ‘11

oNeo
[wille B o)

st
o]

below with an odd power of M1 have coefficient WQWI and the monomials with an

even power of M1 have coefficient a,.

18

i8

(4.4.5) "COKERNEL [dls:E*,G — B
DEGREE BASIS DEGREE BASIS DEGREE BASIS
(34,17) 14100 (36,17) 15100 (38,17) 1800
(40,17) 17100 (42,17) 15200 14 0 1
(44,17) 19100 15010 (46,17) 23 00O
13110 14300 (48,17) 2110
15300 14110 (50,17) 1511
19200 12210 (52,17) 2310
13210 17300 19 0 1
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Next we list the elements of the "cokernels" of the dzo-differentials from the

0 row to the 19 row. Recall that E: = [2B ® ZB M1 ® B<2>. Thus, all
,19 4 2 821

the monomials below have coefficient 82.

20 20 20 g,

E —> E

(4.4.8) "COKERNEL [d™:E. 1

DEGREE GROUP GENERATOR DEGREE GROUP GENERATOR DEGREE GROUP GENERATOR

(38, 138) Z2 18000 (38, 19) Z4 16 100 (40,19} Z2 17100

(42,18) Z2 14010 Z4 18100 (44,19} 22 2718100

3/22000

28 18100 (46, 19) Z2 3/ 143080 Z4 201 00
2720100

(48,18) Z2 3721100 Z2 27141160 Z 14110
2714110 1718 2 0 0

2718200

(50,19) Z2 1715110 Z2 18010 Z4 16 3 0 0
2722100 221080

Z4 221060

Next we list the elements of the “cokernels" of the d- -differentials from the
0 row to the 23 row. Note that Ei _ contains [Z_7_ o Z (27 M)] @ B<2> as a
,23 16°2 g ‘21

direct summand. Thus, all the monomials below have coefficient 75

(4.4.7) "COKERNEL [d**:E}® — EJ% 1"

DEGREE GROUP GENERATOR DEGREE GROUP GENERATOR DEGREE GROUP GENERATOR

(40, 23} Zz 20000 (42,23) Zé 18100 (44,23) 28 22 000

z 20100

(46,23) 2, 2/ 23 0
2 1 16

The dr—differentials, r > 24, which originate on the 0 row have zero

"cokernels" in degrees less than 70.



