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1. Introduction

Let s£lif denote the dual of the mod two Steenrod algebra. In [5] an algebraic
filtration B^(n) of HJ^BO; Z2) was constructed such that each B^(n) is a bipolynomial
sub Hopf algebra and sub .s/^-comodule of H#(J?0;Z2). In Lemma 3.1 we prove that
the Thorn isomorphism determines a corresponding filtration of H^(MO;Z2) by
polynomial subalgebras and sub .s/^-comodules M^(ri). Let s/(n) denote the subalgebra
of si2 generated by Sq2*, 0 S k < n, and let stfj^ri) be its dual, a quotient Hopf algebra of
stf2if. I

n Section 3 we construct a polynomial algebra and ^(nj-comodule R(ri) such that
MJji)~j^2^sf.(n) R(n) a s algebras and «a/2!(.-comodules. Here • denotes the cotensor
product defined in [9, §2]. Dually it will follow that M*(n) has a sub s/(n)-modu\e and
subcoalgebra T(n) such that M*(n)~j^2^)^in)T(n) a s coalgebras and .s/2-modules. We
also show that MJ^ri) can not be realised as the homology of a spectrum for n^4. Of
course MJO) = ff JMO; Z2), M!)!(l) = H]|t(MSO;Z2), M#(2) = H]|1(MSpin;Z2) and
M_(3) = H,(MO<8>;Z2). Moreover, it follows from [4; Thm. 2.10, Cor. 2.11] that
MJn) = Image[H!)t(MO<(/)(n)>; Z2)-^H^(M0; Z2)] and M*{n) m Image [H*(M0; Z2)->
H*(M0<(/>(n)>;Z2)]. Here MO(1C) id the Thorn spectrum of BO<k>, the (fe- l)-connected
covering of BO, and 4>(ri) = 8s + 2' where n = 4s + t, 0 ^ t g 3 . In Section 4 we sketch
the odd primary analogue—a filtration ^MJ^n) of H^(MUp0;Zp) for p an odd prime.
MUP 0 is the Thorn spectrum of the (2p-3)-connected factor of the Adams splitting [2]
ofBU(p,

Our structure theorems of Sections 3 and 4 follow from a general algebraic structure
theorem which we prove in Section 2. That theorem generalizes the technique of
Pengelley [10], [11] where he proved the special cases of our structure theorems for

2. A structure theorem for comodule algebras

The theorem below will be used in Sections 3 and 4 to determine the structure of
MJ^ri) and pM^(ri). This theorem generalises the arguments of Pengelley [11] which in
turn generalises the argument of Liulevicius [7].

*This research was partially supported by a grant from the Natural Sciences and Engineering Research
Council of Canada.
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Theorem 2.1. Let H be a connected Hopf algebra of finite type over a field F. Let M
be a connected F-algebra of finite type and a left H-comodule with coaction \j/ sich that i//
is an algebra homomorphism. Let Ho be a commutative normal sub Hopf algebra of H.
Assume that HocM is a sub-algebra of the centre of M and that M is a free H0-module.
Assume that \j/\H0 = &\H0 where A is the coproduct of H. Then there is an F-algebra and
left H//H0-comodule N whose coaction \j/' is an algebra homomorphism such that
M — H\ZiH//H0N cis algebras and H-comodules. Here H\Zln//HoN has coaction AQ1-

Proof. Let J be the ideal in M generated by the augmentation ideal of Ho, and let
N = M/J as an algebra. Then the i/-coaction ^ on M induces a H//H0-coaction \j/' on N.
Clearly \j/' is an algebra homomorphism. Let n:M^N be the canonical map. Consider
the following diagram.

s
\

\

N o t e t h a t <f> ex i s t s b e c a u s e ( A ® 1 —1 ®il/')(i.®it)ij/ = (l® l®n)(A®l — I®tj/)\J/=O. <f> is
a map of algebras and /f-comodules because (\®n)^/ is and HQH/IHoN is a subalgebra
and sub if-comodule of H®N. Let xeM. Write x = ^ = 1x(/i, with hteH0, x($J and
deg X; ^ deg x, + 1 for all i. This is possible because Ho is contained in the centre of M.
Assume that x and all the ht are nonzero and that {xu...,x,} is linearly independent.
Then (l®n)i//(x) contains h,®x, as a nonzero summand. Thus (1 ®7r)i/'(x)^0 and </> is
one-to-one. By (9), HczH0®H//Ho as right ////H0-comodules.

Thus as F-vector spaces we have

* (Ho ® H//Ho) nH,,H0N ^Ho® (H//HonH/IHoN) ^H

The last isomorphism holds because M is a free H0-module. Thus the range and domain
of (f> have the same dimension in each degree and <j> is an isomorphism.

3. The structure of M^(n) and A/*(n)

We begin by establishing that the MJn) and M*(n) have the algebraic structure we
wish to study.

Lemma 3.1. The MJji) are polynomial subalgebras and sub $4lif-comodules of
HJ^MO; Z2). The M*(n) are quotient coalgebras and quotient stf2-modules of H*(MO; Z2).

Proof. We prove that the M*(n) are quotient ja^-modules of H*{MO;Z2). The
remaining assertions will then follow from the properties of the BJji), B*(n), the Thom
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isomorphism and duality. Write B*(n) = H*(BO;Z2)/In where /„ is an ideal and s42-
submodule of H*(BO;Z2). (See [5, Theorem 2.1].) Let xeln, let 0 e ^ 2 and let <D denote
the Thorn isomorphism. Then 0<D(x)=£i!<&[9'i{x)®~i(9"®(l))'] where A(0) = X,- ̂ ® î'-
Hence 6<b(x) e <!>(/„) and thus <!>(/„) is an ,s/2-submodule of H*(MO;Z2). Therefore
M*(«) = H*(M0;Z2)/O(Jn) is a quotient j^-module of H*(MO; Z2).

By [12], H^(MO;Z2) contains the dual of the Steenrod algebra s42if =
Z2[<L •••,£„,•••]• It follows from [8] that [^2/ /^(")]* is the sub Hopf algebra S(ri) =
Z2il¥ ,122~1,... ,ll,Zn + i,Zn + 2,.. ] of si2if where lk denotes the conjugate of £k. Thus
s/*(n) is the truncated polynomial algebra given as a quotient Hopf algebra of s# 2* as
having generators £k, l^fe^n, with £t truncated at height 2"~k + 1.

Lemma 3.2 MJji) => S(ri).

Proof. By [3] we can take ?fc e H^MO; Z2) to be €»(^2*_i) where
^V -1 G ^^2* _ i(BO; Z2). By [5, Corollary 2.4] B^/c — 1) has a unique nonzero primitive
element in degree 2*- l which must be ^ 2 *- i - If fc^n then 0>f*~*ileBJji) by [5,
Theorem 4.2]. Hence f , 6 M » for fc^n + 1 and ^ " " ' e M J n ) for n^fe^ l . Thus
S ( n ) c M » .

We now apply the structure theorem of Section 2 to M^n). If k = 2kl + ... + 2k' with
0 ^ fci <. . . < k, then write L(fc) = t and M(fc) = /q.

Theorem 3.3 T/iere is o te/£ jrf Jji)-comodule and Z2-algebra

R(n) = Z2[Xk<n\L(k) + M(k)>n,kj=2Llk)-l, and k2L(k)-n-1 ±2Uk)-1]

such t/iat degree Xkn = k and M^(n)^s?2t),\3J*,(n)R{n) as Z2-algebras and stf 2if-comodules.

Proof. We apply Theorem 2.1 with H = s^%, H0 = S(n) and M = M^(n). Now the
polynomial generators of S(n) are a partial set of polynomial generators for M^.(n). Thus
MJji) is a free S(n)-module. The remaining hypotheses of Theorem 2.1 are easily seen to
hold. Thus our theorem holds with R{n) = MJji)IJ{n) and J(n) the ideal in M^(n)
generated by the augmentation ideal of S(ri). By [5, Corollary 2.4] R(n) must be
polynomial algebra with generators in the degrees asserted above.

Corollary 3.4 There is a subcoalgebra and sub s/(n)-module T(ri) of M*(ri) such that
M*(n)^ja?2®ja,(n)T(n) as coalgebras and ^/-modules.

Proof. Set T(n) = [M!(:(n)/J(n)]* in the notation of the proof of Theorem 3.3.

Corollary 3.5. s/2//stf(n) is a direct summand of M*(ri) simultaneously as a coalgebra
and si\-module.

Proof. T(n) = Z2®T{n)+ so ( (

Now ^ 2 ® ^ ( n ) Z 2 = s/2//s/(n).
We conclude by showing that the MJ^n) can not be realised geometrically for n ̂  4.
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Theorem 3.6. For n ^ 4 there is no spectrum X whose Z2-homology is isomorphic to
MJn) as stf 2it-comodules.

Proof. Assume that such a spectrum X exists Then Sq2"(l)=^O in H2"(X;Z2) and
Hk(X;Z2) = 0 for 0<fc<2". By [1], Sq2" factors using secondary operations for n^4, a
contradiction.

4. An algebraic filtration of H+(MUPy0; Zp), p ODD

Let p be a fixed odd prime. By Adams [2] BC/(p) = nfr0
2 BUpi where BUp0 is (2p-3)-

connected and hence MU(p) = YlPZl MUpi. Of course each MUpJ splits into
suspensions of Brown-Peterson spectra. In [5, Section 6] we defined an algebraic
filtration of H^(BUP 0; Zp) by bipolynomial sub Hopf algebras and sub j/p+-comodules
pBJji). Arguing as in Lemma 3.1 we see that HJ^MUp O;ZP) is filtered by polynomial
subalgebras and sub ,s/*-coinodules pM+(ri). The duals pM*(n) are quotient coalgebras
and quotient j/p-modules of H*(MUPt 0; Zp).

Let &4p(n) denote the subalgebra of s4'p generated by &pk, 0^k<n, where s4'p = s>4pl{$)
is the Hopf algebra of reduced mod p Steenrod operations. Then [^p//^p(«)]* is
the sub Hopf algebra Sp(n) = ZpR?"', g""1,..., l"n, fn + 1, fn + 2)...] of < , = Z P [^ , . . . ,
ft , . . .] . As in Lemma 3.2, Sp(n)<= pMJn). Write fc(p-l) = fc1p

ei + ... + fctp
e' with

0 ^ e x < . . . < e r and l^k^p-L Define L(fc) = (fe1 + ...+fet)/(p-l) and M(k) = el. Then
Theorem 2.1 applies to pMjji) with H = s4'pif, H0 = Sp(ri) and M = pM!l.(n) to produce
the following theorem.

Theorem 4.1. 77iere is a left stfpt(n)-comodule and Zp-algebra

- \ and fc^-l)/**'--1

suc/i t/iat degYt n=2fe(p-l) and p M j n J ^ j / ^ D ^ ^ p W a$ Zp-algebras and sfpif-
comodules.

Corollary 4.2. There is a subcoalgebra and sub stfp(ri)-module Tp(n) of pM*(n) such
that pM*(ri)^s^'p®^ (n)Tp(n) as coalgebras and si'p-modules-.

Corollary 4.3. s/'p//jtfp(ri) is a direct summand of pM*(n) simultaneously as a coalgebra
and stfp-module.

Theorem 4.4 For n ̂  1 there is no spectrum X whose Zp-homology is isomorphic to
pMJiji) as s&'pit-comodules.

Proof. Assume that such a spectrum X exists. Then ^"""(1)^0 in H2p"ip~l)(X;Zp)
and Hk(X;Zp) = 0 for 0 < fc < 2p"(p -1) . By [6], 0>P" factors using secondary operations
for «^2, a contradiction. Let « = 1. Observe that H*X is p-torsion-free because
Hodd(X;Zp) = 0. Thus Kane's argument with BP operations [4, p. 6] applies to
produce a contradiction.
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