
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 185. November 1973

HOMOLOGY OF THE CLASSICAL GROUPS OVER THE DYER-
LASHOF ALGEBRAO 2)

BY

STANLEY O. KOCHMAN

ABSTRACT. The action of the Dyer-Lashof algebra is computed on the homology of

the infinite classical groups (including Spin), their classifying spaces, their homogeneous

spaces, Im J, B Im J and BBSO. Some applications are given while applications by other

authors appear elsewhere.

1. Introduction. In §2, we will show that the Dyer-Lashof algebra <tf acts on

the homology of the infinite classical groups (including Spin), their classifying

spaces, their homogeneous spaces, Im J, B Im J and BBSO. In Theorem 1 of

that section we will also list the basic properties of the Dyer-Lashof operations

which will be used extensively in the sequel.

In §3, we state Theorems 5, 6 and 7 which describe the action of the Dyer-

Lashof algebra on H*(BU) and on H*(BU). From these three theorems we

compute that <=/?-algebra indécomposables of H^(BU), the algebra of 3i^/?-Hopf

algebra endomorphisms of H+(BU) and the action of y? on H^(BUxZ)

= H*(Ü2BU) in §3. We postpone the proofs of Theorems 5, 6 and 7 to §8. The

proof of Theorem 7 contains an algorithm for computing the action of the Dyer-

Lashof algebra on Ht(BU) (see Theorem 97) which we apply in the mod 2 case

to compute this action in dimensions less than or equal to twenty.

In §§4, 5 and 6 we show that the results of §3 imply similar results for the

action of <=/? on the homology of the remaining classifying spaces of the classical

groups, the classical groups and the homogeneous spaces of the classical groups,

respectively. §6 also contains a discussion of the action of c/?on //«(Spin) and

Ht(B Spin). In §7, we use the results of the preceding sections to investigate the

action of ^on //«(Im J), //»(F Im /) and H,(BBSO).

The results of this paper have several applications. By T. torn Dieck [6,

Theorem 17.2] the knowledge of the faction on H+(BO;Z2) can be used to

determine the normal characteristic numbers of the quadratic construction on a
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closed differentiable manifold M in terms of the normal characteristic numbers

of M. In J. P. May [19], I. Madsen [14] and A. Tsuchiya [26] the knowledge of

the <=/?-action on Ht(0) and H+(BO) is used together with the maps 7* : H+(0)

-* Ht(F) and (BJ)* : H*(BO) -* Ht(BF) as part of their computation of H*(F)

and H*(BF). M. Herrero [10] has computed homology operations on the

homology of BU X Z and BO X Z with //-space structure induced by the tensor

product of bundles. Her results use the ^-action on the homology of these

spaces with //-space structure induced by the Whitney sum of bundles, i.e. the

theorems of §§3, 4 and 8.

Throughout this paper //«(A") denotes the homology of A* with Zp-coefficients

for p any prime. If a statement differs for p odd and p = 2 then the result for p

odd will be stated, followed by the analogous statement for p — 2 in square

brackets.

We will assume a familiarity with the structure of the homology and cohomol-

ogy of the infinite classical groups, their classifying spaces and their homoge-

neous spaces as Hopf algebras over the Steenrod algebra. Three excellent

references for these results are Séminaire Henri Cartan [4], A. Liulevicius [13] and

E. Dyer and R. Lashof [8]. We will also use many elementary properties of the

Steenrod algebra 21 with no references. All such properties can be found in N.

Steenrod and D. Epstein [24].

I am very grateful to I. Madsen and James Stasheff for their interest and

assistance in the writing of this paper. I am especially indebted to J. Peter May

for his stimulating courses, expert advice and helpful correspondence.

2. The underlying geometry of the action of the Dyer-Lashof algebra on the

homology of the classical groups. The results of the following sections are

predicated on Theorems 1 through 4 which assert that the Dyer-Lashof algebra

acts on the homology of the infinite classical groups, their classifying spaces and

their homogeneous spaces with the product in homology induced by Whitney

sum. These homology operations satisfy the usual properties and commute with

the homomorphisms induced in homology by the structure maps of the two Bott

spectra (see E. Dyer and R. Lashof [8]):

Bt» = BU x Z,      Bj„+X = U;

CSn = BOX Z,   C8B+1 = U/O,   Q^ = Sp/t/,   Cm = Sp,

C^+4 - BSp X Z,   Cm = fy/Sp,   Cg,+6 = 0/U,   C^ = O.

There are two ways of obtaining this information. First, the Bott spectra show

that all the spaces that we are interested in are infinite loop spaces, and hence the

Foo-operad Cx acts on these spaces (see Theorem 2). On the other hand, there is

an Ex-operad X which acts on these spaces such that J: O -* F and BJ: BO
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-* BF are maps of £ -spaces (see Theorem 3). By Theorem 1, the Dyer-Lashof

algebra acts on the homology of C -spaces for F^-operads C. Theorem 3 will also

state that we obtain the same action of the Dyer-Lashof algebra from both of the

above points of view. We will now define an F^-operad and explain the

statements of Theorems 1 through 4.

The endomorphism operad £x [17, Definition 1.2] consists of the spaces £X(J)

of based maps XJ -> X,j > 1, and £x(0) = * where XJ is the/-fold Cartesian

product of X with itself. The structure of £x which makes it an operad consists of:

(1) The map y: £x(k) X £,(/,) X • • • X £x(Jk) -» £x{ji + •■• • +Jk) defined by

y(/;¿?i» • • • >£*) = /(gi * • • • * £*)• Note that y satisfies an associativity formula.

(2) \x G £x{\) satisfies y(1*; g) = gandy(/; \kx) =/forallg G £x{j)tmàa\\

/ e £x(k).
(3) The symmetric group 2, acts on £x{j) by

(go)(x\, ...,xj)= g(jc,-i(i),..., -Vio-))-

With the appropriate conventions, the map y becomes equivariant in each of its

two variables.

In general, an operad £?[17, Definition 1.1] consists of nonempty spaces C(J)

which have the same formal structure (1), (2) and (3) as the endomorphism

operad. An operad is called 2-free if 2, acts freely on C(j) for/ > 1. A 6-space

(X,0) consists of 2,-equivariant maps Oy. C(j) -» £x(j) which commute with y.

A map /: (X,0) -» (X',9') of ¿-spaces is a based map /: X -» X' such that

/o 9j(c) = 0'j(c) op for all c G C(J) and all/ > 1. Note that any c G C{2)

defines an //-space structure 92{c): X X X -» X on a ¿?-space X which by J. P.

May [17, Lemma 1.9] is independent of c up to homotopy if all the C(j) are

connected,/ > 2.

An Foj-operad C is a 2-free operad C such that each C{J) is contractible. By

the preceding remarks, if A- a ¿?-space for an Fw-operad C then //»(A") has a

unique product induced by B2(c) for any c G (2(2). In addition, Hm(X;Zp) has

Dyer-Lashof operations for all primes p because there are 2,-equivariant maps

C(p) x Xp -► X and <2(p)f2p = K(2P, 1). More precisely, we state J. P. May [18,

Theorem 1.1]:

Theorem 1. Let C be an E^-operad, and let p be a prime number. The homology

of aC-space has Dyer-Lashof operations Q", n > 0, of degree 2n(p — 1) [of degree

n] which satisfy the following properties:

(1) The ß" are natural with respect to the maps induced in homology by C-maps.

(2) The Q" are linear.

(3)G°(<Í>) = <t>andQ"(<j>) = Oifn > 0 where </> G Hq(X) is the identity element

for the multiplication in //»(A").

(4) CM - jc' i/deg x = 2n [//deg x = n).
(5) ß" » 5, = j, » Ö" where o« : ///«(A") —* Z/«(ßA") is the suspension map.
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(6) (multiplicative Carian formula) Q'(xy) = 2!-o Q'(x)Q'~i(y).

(7) (comultiplicative Cartan formula)

$ o Qf(x) =22 Q'(x') ® Q/-'(x")   where   xb(x) = 2 *' ® x".
/-o

(8) X ° Qr — Q! ° X where x is the conjugation on H,(X).

(9) (Adem relations) If a > pb then

Ö" ° Q" = 2 (-l)a+'(Fi - a,a - (/> - l)ft - / - l)^*"' ° ß"

wAere (jj) = (/ +j)\/i\j\ ifi>0 andj > 0 while (ij) = 0 if i < 0 or y' < 0.

(10) (Nishida relations)

m » Ô' = 2 H)'+*(* - /»,/■(/> - 1) -/»*+pi)*?-*' • mí

where <P¿: H+(X) -* H*(X) of degree -2s(p - 1) [of degree - s] is dual to <P' in

the action ofW* on H*(X).

The above properties of the Dyer-Lashof operations are proved by showing

that the general algebraic considerations of J. P. May [16] are applicable to the

homology of ¿-spaces for C an Fœ-operad. Many of these basic properties of

Dyer-Lashof operations were first proved in S. Araki and T. Kudo [3], E. Dyer

and R. Lashof [9] and G. Nishida [21].

Recall that an infinite loop space B0 is the first space in a sequence {Bn\ n > 0}

where B„ = ß5n+1 for n > 0. An infinite loop map f0: B0-+ C0 between two

infinite loop spaces is the first map in a sequence of maps {f„ : Bn -» Cn | n > 0}

such thatJÜ = Qf„+\, n > 0. By J. P. May [15], these definitions are equivalent to

the concepts of an fl-spectrum and a map of fl-spectra where homotopies replace

the equalities. The first method of defining homology operations on the homology

of the infinite classical groups, their classifying spaces, their homogeneous spaces

Spin, ¿Spin, BBSO, Im J and B Im J is to use the Bott spectra to show that all

the spaces in question are infinite loop spaces and that all the canonical maps

and the Bott maps are infinite loop maps. The desired conclusions then follow

from Theorem 1 and the following theorem.

Theorem 2. There is an En-operad Cx such that all infinite loop spaces are C&-

spaces and all infinite loop maps are maps of C^-spaces.

For a proof and discussion of this theorem see J. P. May [17, §§4 and 5].

Our second approach to defining homology operations on the homology of the

spaces under consideration is based upon Theorem 1 and the following theorem.

Theorem 3. There is an E^-operad X such that all of the classical groups

(including Spin), their classifying spaces, their homogeneous spaces, Fand BF are Jl-

spaces. All of the canonical maps, including J: O -* F, BJ: BO -» BF, and the Bott
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maps are maps of X-spaces. Furthermore, the induced homology operations are the

same as those induced by the Ex-operad Cx via Theorem 2.

For the definition of X and the proof of Theorem 3, see J. P. May [18, §6].

To define BBSO as an X -space we need to deloop BSO. That is we need the

following result from J. P. May [17, §14].

Theorem 4. Let übe an Ex-operad, and let X be a connected C-space. Then (up to

weak homotopy equivalence) X is an infinite loop space such that Ht (X ) has the same

homology operations induced by C and by ¿?œ (the operad of Theorem 2 which acts on

infinite loop spaces).

The Dyer-Lashof algebra oR is defined to be the quotient algebra F/J where F

is the free associative algebra generated by {Q',ßQr+x \ r > 0} [generated by

{Qr I r > 0}] and J is the ideal in F consisting of all elements of F which

annihilate every element of every infinite loop space.

If ¿? acts on H*(X) then ¿?°p acts on H*(X). We let QÍ : H*(X) -» H*(X)

denote the operation of degree —2r(p - 1) [of degree -r] which is dual to Q'.

3. BU, BSU and BUxZ . Recall that H*(BU) = P{cn \ n > 1} as algebras

with c0 = 1 and \¡{c„) = 2"=o c¡ ® «W cn is called the «th Chern class and has

degree 2n. If we let a„ = (cx)* and pn = c* in the basis dual to the basis of

H*(BU) which consists of monomials in the Chern classes, then H*(BU)

= P{a„ \ n > 1} as algebras with \p(a„) = 2í,=o a¡ ® an-¡< afld the primitive

elements of H*(BU), PH*(BU), have a Zp-basis ft>„ | n > 1}. The three basic

theorems whose proofs we postpone to §8 are:

Theorem 5. In H.(BU)for r > 0 and n > 1,

er(i„) = (-i)>-u-«)t)n+r,H)

[ß^fo.)-(»-!,>•-«)*>.+,].

Theorem 6. In H*(BU)for r > 0 and n > 1,

Q'fan) = (-l),+"+1("> r — n — l)an+r(i_,)   modulo decomposables

[Q^ifln) = (n,r — n — \)an+r   modulo decomposables].

Theorem 7. In H*(BU)for r > 0 and n > 1,

Q'ÁCn) = H)r+> - r(p - 1) - \,pr - n)cn_r(p_x)

[<g(cn) = (n-r-\,2r-n)cn_,).

In §11, as part of the proof of Theorem 6, we will produce an algorithm for

computing Qr(a„) inductively. We cannot produce a formula for Q'(an). Howev-
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er, we can say the following about which monomials im the aks can appear in

Q'(an).

Theorem 8. In H*(BU) for r > n > 1, Qr(aH) [Q^iaJ] has no monomial

summand of product filtration degree greater than (r - n)(p — 1) + p and the only

summand of Q'(a„) [ß^ia,,)] of product filtration degree (r — n)(p — 1) + p is

a^a\r~"^P~^. Furthermore if aa^ • • -an¡ with 0 # a G Zp is a summand of Q'(a„)

io^O*«)] then some n¡ > n.

Proof. We prove this theorem by induction on n > 1. The assertion for n = 1

is clearly valid. Assume that n > 2 and that the theorem is valid for Q'(am)

[Q2s(am)] if m < n. Among the monomials in the aks which appear with a

nonzero coefficient in Q'(a„) [Q2'^)] choose M of highest product filtration

degree containing the largest power of a{. Write M = aa% •••a%a{ with nx

> «,_, > 1, e¡ > 1, t > 0, s > 0 and 0 # a G Zp. Note that t > 1 by Theorem

7 since otherwise ß»(c,) [ß^fo)] would contain monomials in the Chern classes

other than c„. Then aan¡_. • • •<_, ® a'<+ •+"+J appears on the left-hand side of

the equation

* ° Qr(aH) = 22 ß'(a,) ® Q'->(an_j)

(1) ÄrAB
fo - ß2^,) =22 ß2^,) ® Ö*-*^)].

,=0 j=0

This term is matched by a term on the right-hand side of (1) which by the

induction hypothesis must originate from ß""'(a«-i) ® ßr""~'(ai) [ß2"-2^«-!)

® ß2""2""2^,)]. Hence e¡ + ■ ■ ■ + e, + r = (p - l)(r - n) + p,

M = a*a['-"Ki-0 and a = 1. If there are other monomial summands of ßr(a„)

[ß^OO] of product filtration degree (r - n)(p - \) + p, then choose the one

N # M which has the largest power of ax. Write AT = ya^ • • -a^a" with

m, > ot,_, > 1, /¡ > 0, m > 1, v > 0 and 0 ^ y e Zp. Then ya^-i • • -^".-i
® a,/l+ •+/"+" is a summand of \p ° Q'(an) [\j/ ° ß^ia,)]. Hence by our induction

hypothesis applied to (1) we see that/ + • • • + fu + v = (r - «)(/> — Ï) + p and

AT = M, a contradiction. Thus, a,f a<r-',X/>-i) is the only monomial summand of

Q'(a„) [Q^iün)] of product filtration degree (s - n)(p - \)k + p. Let Xakl • • • akl

with kx > • • • > k, and 0 ¥= X G Zp be the monomial summand of ff(a„)

[ß2r(aB)]» for which (£],...,&,) is least in the lexicographical order. Hence

Xak^\ • • ■ a*,-! ® a[ is a summand of i// ° ßr(a„) [»// ° Q^ia,,)]. By our induction

hypothesis applied to (1) we deduce that kt - 1 > n - 1 and hence /q > n. This

proves the last assertion of the theorem.

We now define and compute the indecomposable elements of Hm(BU) over the

Dyer-Lashof algebra.

Definition 9. Let e: S -» K and e': M -* K be augmented algebras over a field

K. IS = Kernel e and IM = Kernel e' are called the augmentation ideals of S
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and M respectively. Assume that M is a left S-module. We define the indecom-

posable elements of AÍ over S by

QSM = IM/[(IS)(IM) + (IM)2].

Theorem 10. (a) Q^Ht(BU;Z2) = {ar \ n > 0).

(b) For p an odd prime, a Zp-basis for Q^H* (BU; Zp) is {anp. \ n ¥= 0 mod p,

n = s(p - \) + r,\ < r < p - \ and if s ¥= 0 then s = 2*=oS¡P'> 0 < s¡ < p

— 1, with r > í0 > • • • > sk > 1}.

Proof, (a) By Theorem 6, there is an <=/?-indecomposable in degree 2n if and

only if (k, n - 2k - 1) = 0 for all k > 1. It is easy to see that all such n are the

powers of two.

(b) ap.„ is ^-decomposable if s0 = 0 or r < s0 since, by Theorem 6, Qp's(arp>)

= aa„p, modulo decomposables with 0 ¥" a E Zp.lî k > 1, s0 ^ 0, r > sQ and

there is an s, which is either zero or less than sj+x (assume j is least with this

property) then

e2,Vi,,y+'(w(P-D2/.o^) = Yív

modulo decomposables for some 0 ¥= y E Zp. Thus the claim for Q^H^(BU)

contains Q^H9(BU). It remains to show that a^. is c^-indecomposable if s = 0

or if r > s0 > • ■ • > sk > 1. That is, we must show that ß'(an,«-,(p-i)) is

decomposable for all / > 1 which by Theorem 6 is equivalent to showing that

(npe — t(p — \),pt — np' - 1) = 0 mod p for all t > 1. This is clear if pe < t, so

assume t = p'u. Let u = 2*=o "¡P'> 0 < m, < p - 1 and u_x = r. It can be

shown by induction on / that if (np' — t(p — \),pt — np' — 1) = (r + u(p — 1),

pu + s - r - 1)#0 mod p then

(0 s, < t¡ = p'u¡.
(ii) If í < n and

Ô, = 0       if «,_, > u¡

=  1 if H,_, < U,

then

(«,• - 5,. + (p - 1)/ 2+| UjpJ-'^y _21 ('j - PUjW-'-1 - w, + 5, - l)

^ 0 mod p.

This implies that s < t, a contradiction. Hence (np' - t(p - \),pt - np' - 1)

= 0 mod/»for all t > 1.
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We now determine the algebra of 2t,=/?-Hopf algebra endomorphisms of

Ht(BU; Zp), first for/? = 2 and then for odd primes p. The following terminology

will prove useful.

Definition 11. Let A be a connected Hopf algebra over Zp with/: A -* A a map

of Hopf algebras. / is said to be locally nilpotent if for all a G IA there is a

natural number n(a) with f^{a) = 0 where/° = \A,f = /and/* = /o/*-'

for k > 2. When / is locally nilpotent, every element of the power series ring

2p[[/]] is a well-defined Hopf algebra endomorphism of A. Addition in Z^/]] is

given by Whitney sum, i.e. g + h = <J>°g®/i°v//.

Let F = y « a be the composite of the canonical maps BU^B Sp ^BU. In Z2

homology, F«(a2*+i) = 0 and F»(a2t) = a\. Hence F« is locally nilpotent and

Z2KF«]] is a well-defined algebra of 2I,=/?-Hopf algebra endomorphisms of

H,{BU;Z2).

If p is a prime number, let Qp — Z[\/q \ q is prime, q # p] as a subring of the

rational numbers ß. By J. F. Adams [1, Lecture 4], complex A'-theory with Qp

coefficients is a representable cohomology theory, and we denote the infinite loop

space which represents this theory by BUQp. Observe that Ht(BUQp;Zp)
= H*(BU;Z,).

Theorem 12. (a) Z2[[F»]] is the algebra of all W-Hopf algebra endomorphisms of

H,(BU;Z2).

(b) Z2[[F«]] is the algebra of all %J?-Hopf algebra endomorphisms of H*{BU; Z2).

(c) Every element ofZ2[[Ft ]] is induced by an infinite loop endomorphism of BUQ2.

(d) The elements of Z2[[F*]] are induced by the stable KUQ2-theory operations

z2[tt + r1]l

Proof, (a) Let g be an 3t-Hopf algebra endomorphism of H+(BU; Z2). Then g*

is an 9t-Hopf algebra endomorphism of H*(BU; Z2). Let k¡ be the coefficient of

c2' in g*(c2,). We will prove that g* = '2°i0kiF*1. It is well known that

Q%H*(BU;Z2) = {c2r | n > 0). Thus, it suffices to show that g*(c2»)

= (2"o k¡F*')(c2»), which we prove by induction on n > 0. The case n = 0 is

immediate from the definition of kQ. Assume now that g(c2,) = (2"o k¡F*')(c2i)

if 0 < r < n. Then g(cs) = (2,1o k,F9')(cs) if 1 < 5 < 2". Hence g(c2,)

— (2"o k¡F*')(c2n) is primitive and therefore is zero by the definition of kn.

(b) Every 9t^?-Hopf algebra endomorphism of H*(BU;Z2) is an 2i-Hopf

algebra endomorphism and every element of Z2[[F»]] is a map of ^-modules.

Hence (a) implies (b).

(c) and (d). \p + \p~] induces F: BU -* BU. Hence each element

i^ + f1)1'
1=0

induces an infinite loop endomorphism of BUQ2 which induces 2i"o^/-f7' m

homology.
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Corollary 13. (a) H*(BU; Z2) is an indecomposable %-Hopf algebra.

(b) /// is an %-Hopf algebra endomorphism of H+(BU;Z2) then f is a

homomorphism of <=R-modules.

We now want to prove the analogues of Theorem 12 and Corollary 13 for odd

primes. Thus for the remainder of the discussion of BU, p will denote an odd

prime and all homology will be understood to have Zp-coefficients for p an odd

prime. By J. F. Adams [1, Lecture 4], BUQP = YlfZo BUpi as infinite loop spaces.

Let E¡: BUQp -* BUpi and J¡: BUpi -* BUQP denote the canonical projections

and injections respectively, 0 < i < p - 2. H*(BUP¿) is a polynomial algebra

with indecomposable elements in all positive degrees 2n for which n = i mod

p — 1. We will construct specific algebra generators in Lemma 17. First, however,

we state the theorem and corollary which we are striving to prove.

Theorem 14. Let p be an odd prime, and let 0 < i < p - 2. Then there are

locally nilpotent %J?-Hopf algebra endomorphisms F¡ of H*(BUpi) such that:

(a) Zp[[F¿]] is the algebra of all %-Hopf algebra endomorphisms of H^(BUp4).

(b) Zp[[/^]] is the algebra of all %<=%-Hopf algebra endomorphisms of H+(BUpJ).

(c) FAe map /-»F0.°/%» + --" + Ep_2* ° / ° Jp-2* 's an isomorphism be-

tween UfzlZ^Fi]] and
(i) the algebra of all %-Hopf algebra endomorphisms of Hm(BU),

(ii) the algebra of all %J?-Hopf algebra endomorphisms of Ht(BU).

Corollary 15. (a) H*(BUpi) is an indecomposable %-Hopf algebra.

(b) If fis an 31- Hopf algebra endomorphism of Hm(BU) or of H^(BUp4) then fis

a homomorphism of ^-modules.

We begin our proof of Theorem 14 by defining the F¡.

Lemma 16. Define an algebra endomorphism F of Hn(BU) by F(apk) = al and

F(an) = 0 if n is not divisible by p. Let F¡ = E¡* ° f ° J¡*, 0 < i < p — 2, be the

corresponding algebra endomorphism of the H*(BUPti). Then F and all the F¡ are

locally nilpotent morphisms of %^R-Hopf algebras.

Proof. F and all the F¡ are clearly locally nilpotent, and it thus suffices to show

that F is a map of 3l<=/?-Hopf algebras. F is a map of coalgebras because both

F® F ° \p(an) and \p ° F(a„) equal 2f=o af ® a'-i if « = pk, and they both equal
zero if n is not divisible by p. We now recall that the action of 2Iop on Ht(BU) is

given by ÇR?(ak) = (n, k - pr^a^^^y Hence F is a homomorphism of 3t-

modules because both iTJ" ° F(ak) and F ° &!?(ak) are equal to (n,k - np)a¡Ln if

n + k = pt, while they both equal zero if k + n is not divisible by p.

We digress to show that the Hopf algebra endomorphism F* of H*(BU) is

given by F*(cpk) = c£ and F*(c„) = 0 if n is not divisible by p. The second

assertion and the first assertion for k = 1 are clearly true. Now assume that

k > 1 and that F*(cph) - c¡ if 1 < h < k. Then F*(cpk) - eg = a»^ since F*
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is a map of coalgebras where a G Zp and ppk is the basis element of F//2** (Ft/).

Hence F(apk) contains aafk as a summand, so « = 0 since k > 1.

We now verify that F* is a homomorphism of .^-modules by using Theorem

7. One finds that Ql ° F(ck) and F ° Qi(ck) are both equal to (-1)*+B

• (k - n(p - 1) - \,pn - k)cf if k + n = pt, while they both equal zero iî k + n

is not divisible by p.

The following lemma describes the algebraic structure of Ht(BUpi).

Lemma 17. There are elements ae<r G H^^BU^) if 0 < /' < p - 2, e > 0,

r > 1, r ¥" 0 mod p and r = i mod p - 1 such that:

(a) Ht(BUpJ) = P{a„ \ r = / mod/» - 1} as algebras.

(b) y*(a0/) = P, ¡/r = / mod p - 1.

(c) Ffao,/-) = 0 ""i/ F(tfe,r) — <*£•!• if e > \ and r = /' mod /? - 1.

Proof. We show that there are indecomposable elements aer in HyXBU^

satisfying (b) and (c) by induction on p'r. Let a0/ — F;.(pr) if r > 1, r & 0

mod/» and r = /' modp — 1. Clearly a0>r is indecomposable, J¡»(a0r) = fr and

F^ûq/) = 0. If e > 1 then we define a„ as follows: Let a'ej be any indecomposa-

ble element of H2^r(BUpJ). Then

where 0 # a G Zr a}, G Zp,fj¡ > 0 and t¡ > 2 for all/ Now define

atr = a-xa'„ - a~x 2 a,-a/,*. „ • • • a/*" , •

Clearly aer is indecomposable and F(t7ir) = ai-ir

Proof of Theorem 14. (a) Let g be an 9I-Hopf algebra endomorphism of

H,(BUPti), and let k, be the coefficient of aft- in g(ar/) where V = i if i # 0 and

/' = /» - 1 if /' = 0. Reasoning as in the proof of Theorem 12(a), we see that

g -2ï.oM7.
(b) The assertion follows from (a) and the fact that F¡ is a homomorphism of

«^-modules.

(c) The assertion follows from (a), (b) and the observation that if / is a Hopf

algebra endomorphism of H,(BU) then E¡, ° f ° J¡, = 0 if 0 < i,j < p - 2 and

/ #/. If this last statement were false then choose x G H%(BUP¿) of least degree

with Ej. « / o J¡» (x) ¥" 0. Note that x must be indecomposable and E}» » /

» J¡*(x) must be primitive. Hence i = deg x = deg Fy. o/o J¡.(x) = j mod/»

— 1, a contradiction.

We now turn our attention to BSU. Recall that the map y': BSU -» BU induces

a monomorphism in homology and an epimorphism in cohomology. More

specifically, H*(BSU) is the quotient Hopf algebra of H*(BU) modulo the ideal

generated by ct. Hence Theorem 7 with the added condition c, = 0 describes the
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action of ^op on H*(BSU). Let H*(BSU;ZP) = P{a'n \ n > 2} as algebras

where deg a'n = 2« and j*(a'„) = a„ modulo decomposables if n is not a power of

P-

Theorem 18. In H*(BSU)for r>0,n>2andk> 1:

Q'(a'„) = (—l)r+"+1(«,r - n - lX,+r(p-i) modulo decomposables if n is not a

power afp;

[Q^fa'n) — (n,r — n — l)a'„+r modulo decomposables ifn is not a power of 2] and

Q'fa'pt) is decomposable.

Proof. Q'(a'n), for n not a power of/», is evaluated by using Theorem 6 and the

naturality of <J? with respect toy». Let p'¡, fy be basis elements for PH2i(BSU),

i > 2, and PH2I(BU), i > 1, respectively withy'*(ti,) = # if / is not a power of

p and j *($,*) = 0. Then ßr(a^) [ß^öi*)] is decomposable if and only if

(2;(f>+Kp-,)) = 0 [ßi'^+r) = 0]. If f + r(p - 1) is not a power of/» then

ô;(i5>+r(^o) =7*e;(VMp-o) = °

tÔÎ'teO =J*QÏ(h'+r)  = 0]

because;*^) = 0. If/»* + r(/» - 1) = /»' then Q't(P'Pk+r(p_x)) - ßW) = 0

Ißfttf.) = GäW) = 0].
Theorem 19. (a) Q^H*(BSU; Z2) = {4»+2. | m > 0 andn > 0}.

(b) For p an odd prime, a Zp-basis for Q^H„ (BSU; Zp) is given by [a'„ \ an

S Q^Hm(BU;Zp)andn > 2} U {a>Wp-1)+I) \ e > 0, s > 0, (e,s) # (0,0)}.

Proof, (a) By Theorem 18, if k = 2* + 2C + 2'A with 0 < b < c < e and

A > 1 then ß2**'*^»^«) = a'k modulo decomposables while Q2i(a'2b+2Ll) is

always decomposable.

(b) By the proof of Theorem 10(b), it suffices to show that Q'(a'^^^^^)

is decomposable for all t > 0. This, however, follows easily from Theorem 18.

Observe that for p an odd prime BSUQP = uto BSUP¡¡ with BSUpJ = BUp4

for 1 </</»- 2. Let F' be the composite of the canonical maps BSU -» 550

->ÄSi/.

Theorem 20. (a) FAe vector space of %-Hopf algebra maps from Ht(BSU) to

Ht(BU) consists entirely of\=R-module homomorphisms and is equal to the free left

module with basis {./*} over the ring of %-Hopf álgebra endomorphisms of H%(BU).

(b) Conjugation by j* induces an isomorphism between the %-Hopf algebra

endomorphisms of H*(BU) and H*(BSU).

(c) Conjugation by j* induces an isomorphism between the %<J?-Hopf algebra

endomorphisms of H*(BU) and H*(BSU).

(d) Z2[[Fi]] is the algebra of'ä^-Hopf algebra endomorphisms ofH+(BSU; Z2).

(e) The vector space of %-Hopf algebra maps from H+(BSU) to Hm(BU) is the

free right module with basis {y,} over the ring of U-Hopf algebra endomorphisms of

H,(BSU).
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Proof, (a) Use the same idea as in the proofs of Theorems 12(a) and 14(a).

(b) Observe from Theorems 12(a) and 14(a) that if / is an 2t-Hopf algebra

endomorphism of H*(BU) then/* o foj*~l is a well-defined 3t-Hopf algebra

endomorphism of H*(BSU). Conjugation by/* is clearly a monomorphism. This

map is onto by (a) since if g is an 2I-Hopf algebra endomorphism of H*(BSU)

then g o/*: H*(BU) -* H*(BSU) is a map of 9l-Hopf algebras, and hence

g ° j* — j* °/for some 2I-Hopf algebra endomorphism/of H*(BU).

Corollary 21. (a) H*(BSU;Z2) and H*(BSUpy,Zp) for p an odd prime are

indecomposable H-Hopf algebras.

(b) Every 31-Hopf algebra endomorphism of H*(BSU) is a homomorphism of'•=/?-

modules.

We next consider BUx Z = Q,U = ti2BU. H,(BUxZ) = Hn(BU)

® ZP(Z) as Hopf algebras where Zp(Z) is the group algebra over Zp of the

additive groups of integers. Elements of Hm(BUxZ) are written as sums of

x ® [i] where x G H*(BU) and [/] G Z C Zp(Z). The canonical map BU

-* BUx Z induces the map x -* x ® [0] in homology. The action of 9lop on

H+(BU) is given in terms of the action of 3lop on H+(BU) by the equation

<p;(x ® [/]) = a$(x) ® [/].

The action of the Dyer-Lashof algebra on //»(Bi/X Z) will be determined

from our knowledge of the Dyer-Lashof operations on H+(BU) as soon as we

compute ß"(l ® [1]) for all n > 0. This observation follows from the multiplica-

tive Cartan formula, the fact that Dyer-Lashof operations commute with the

conjugation x and the equations

x ® [k] = x ® [0](1 ® [1])*,       x ® [-k] = x ® [0]x{l ® [1]*}

for* G H*(BU) and k > 0.

Theorem 22. In H,(BU xZ)forn>0,

CO • [ID = Y»(Vi) • M

[ß^(l ® [1]) = a„ ® [2]]

wftere Y„(t>p_i) is (c^_i)* i« the dual basis of the basis of monomials in the Chern

classes.

Proof. We prove this theorem by induction on n. ß°(l ® [1]) = (1 ® [1])'

= 1 ® [/»]. By the comultiplicative Cartan formula, ß'(l ® [1]) [ß2(l ® [1])] is

primitive so for some a G Zp,

(1) ß1U®M) = «Vi®L>]       [ß2(l ® [1]) = oa, ® [2]].

Recall that H*(U) = E{fn \ n > 1} as Hopf algebras with deg/ = 2n — 1.

Since BUx Z — QU, there is a suspension map a«: IH*(BUx Z) -* //«(£/)
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which is given by

o*(afl®[fc])=/B+.   if«>0

and

o,(l ®[k]-\® [0]) = kfx   Uk*0.

Applying a* to equation (1) we see that

(2) ß'(/i) = afp      (ß2(/i) = «¿I-

The universal [/-bundle induces a suspension map 0%: ///»(t/) -» H+(BU)

which is given by a^(fn) = (-l)n+1bB. Now we apply ajf to (2) and obtain

Qx(ax) = aaxp       [Q2(ax) = aa2x].

Hence a = 1, and the theorem is true for n = 0 and n = 1.

Now assume that n > 2 and that the theorem is true in dimensions less than

2«. Write « = mp' with m not divisible by /». By the comultiplicative Carian

formula,

ß"(l ® [1]) - Y.(tV-i) ® [p] = MVp-i> ® [p]
(3)

[ß^l ® [1]) - a„ ® [2] = X)p„ ® [2]]

for some A E Zp.

Case 1. Assume that e = 0. As in the case n = 1, apply a» ° o» to (3) to obtain

Qn(ax) - (-ir+,ön(j)_1)+I - nXp<p_x)+x

IWöi) + tWi -MWi].

Hence A = 0 by Theorem 5.

To prove the two remaining cases of Theorem 22 we will use the following

lemma.

Lemma 23. The monomial summands of<Pr(c„) [iP^O] have product filtration

degree less than or equal to p.

Proof. For/? — 2, this lemma is an immediate consequence of the Wu formula.

For odd primes /> we prove this lemma by induction on r + n. If r = 0 or « = 1

then the assertion of the lemma is clearly true. Now assume that the lemma is

true for <P!(cm) if s + m < r + n, and assume that r + n > 2. If <P'(c„) ^ 0

then choose a summand ac'¡ • • • c'*cxh of íP'(cn) with k > 0, A > 0, z) > iJ+x > 1

and 0 ¥* a E Zp as follows: Choose such a monomial with ex + • • • + ek + A

maximal and among all such monomials select the one with
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e\ ek

(/(, . ..,/],. . ,,ik,.. .,ik)

largest in the lexicographical order. By the Cartan formula,

* ° 0>'(O =22 <pv(cu) ® <P'-"{cn-u).
u=0 v=0

atf-t • • • c?*_i ® cf+"+'*+A is a summand of \p ° £Pr(c„). If Jt > 1 then by the

induction hypothesis et + • • • + ek + h < p. U k = 0 then ack+r(p~V is a sum-

mand of (P'(c„). Hence ap„ is a summand of ^'(iin+^p-i)) when ^P*(an+r(p_x)) is

written in terms of the dual basis of the basis of monomials in the Chern classes.

However, by considering the map CP°° -» BU one can show that iPj(ak)

= (i,k - /»0a*-/(/^i). Thus n = r = 1, which is a contradiction to n + r > 2.

Proof of Theorem 22 (continued).

Case 2. Assume that n = p' and that e > 1.

We first show that if p" < k < /7*+1 then

ß*(l ® [1]) = Yi(V!) ® [/>] + Aft&Y^Vi) ® M

[ß*(l ® [1]) = a* ® [2] + Xa¡'ak.2. ® [2]].

If (4) is not true then let k be the smallest integer for which it fails. By the

comultiplicative Cartan formula,

ß*(l ® [1]) + %(>,_.) ® [/»] - \p£, Y*y(Vi) ® [P\ = /*«^i)

[e*(l ® [1]) + ak ® [2] + \«r«*-* ® [2] = &k]

for some 0 ¥= n G Zp. Write A: = /»'c with c not divisible by p. The application

of o» to (5) shows that e > / > 0. Now apply iPf' to (5), use the Nishida

relations and the fact iP{'(pk) = ü$(pc)"' = cp*.,/^,) to obtain

-(pl,k(p - 1) -/»/+')ß*-p/(l ® [1]) + £P/(y*(Vi)) ® [/»]

(6) - Ap£i <P/(y*-„.(Vi )) ® I/»l = ^k-pt(p-x) ® [/»]

[0 - <?ri ° ß2*U ® [1]) + &r\ak) ® [2] - ,tcp,_2/® [2]].

Thus, if p = 2 then /ic = 0, a contradiction. If /> is odd then by Lemma 23 and

the induction hypothesis the left-hand side of (6) contains no power of ax as a

summand. However, the right-hand side of (6) contains ¡œa^'P'^V as a sum-

mand. Therefore pc = 0, a contradiction. Hence equation (4) is valid for all A:

between p' and />'+1.
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Consider the following Adem relation:

(7)

Q^HP-W o QP"^ ® [1])

- "2~'  (-l)'+,(/«- - 2/»**' + p',p*x - i - Oß2^'-' o ß'(i ® [i])

[ß3-2-'oo2-.(l0[1])

- 2    (2/-3-2e,2'+'-i-l)e2*+3-2,°ß2,(l®[l])].
I-3-2«-'

By Theorems 5 and 8 the left-hand side of (7) contains Aa/^1^" ® [p2] as a

summand while by our induction hypothesis and (4) no such summand appears

on the right-hand side of (7). Hence A = 0.

Case 3. Assume that e > 1 and that m > 2.

Apply <P/ to (3) and obtain by the Nishida relations

(m - 1)0-^(1 ® [1]) - iP/(7„(V«)) ® [P] = W(Wo ® MX

i.e.

(m - lh^Vi) ® [p\ - ^/(y»(fp-i)) ® IP] = -X»«Wx;.-i) ® [p]
(8)

[0 = 0- <Pr\an) ® [2] - X<Pr\Pn) ® [2] = Mw ® [2]].

Hence A = 0 if p = 2. If /> is odd then by Lemma 23 the left-hand side of (8) has

no nonzero multiple of a\"~p'^p~x) as a summand while the right-hand side of (8)

has —Xma\"-p,'Hi^x) as a summand. Thus, A = 0.

4. BSp, 5Sp X Z, BO, BSO, and 50 x Z. We will use the results of the

previous section on BU, BSU and BU X Z to prove analogous theorems about

the classifying spaces of the other infinite classical groups.

We begin by introducing some notation. Let a: BU -* BSp, y: BSp -* BU,

it: BU -* BO and v: BO -* BU be the canonical maps. Define b„ E H^BSp)

by b„ = a+fafr) for n > 0, and note that a^a^+i) = 0 for n > 0. Then

Hm(BSp) = P{bn | n > 1} as algebras and ^bn) = 2,"-o b, ® />„_,. Define k„

E H*"(BSp) by kn = (-l)V(ca,) for « > 0, and note that ■/"fon+i) = 0 for

« > 0. Then //*(£Sp) = P{k„ \n> 1} as algebras with \fikj = 2,"«o *.• ® *»-<•

Use the dual basis of the basis of monomials in the k„ to define to„ = k* for

« > 1, and note that (kx)* = b„ for n > 1. Then {p„\ n > 1} is a basis for

P//.(BSp) and y*0Ü = HVK for « > 1.
For Zp coefficients with p an odd prime, we now make the same definitions in

H*(BO) and H*(BO). Thus, define dn E H^(BO) by d„ = ft»^) for n > 0,
and note that it»(a2n+i) = 0 for n > 0. Then H*(BO) = P{d„ \ n > 1} as

algebras  with  \p(d„) = 2"-o 4 ® d„-¡.   Define  the  nth  Pontryagin  class  P„
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G H*»(BO) by Pn = (-l)"«'*(c2n) for n > 0, and note that »'♦(c^,) = 0 for

n > 0. Then //»(.SO) = F{F, | n > 1} as algebras with \¡a[P„) = 2?-o ^ ® K-i-

Using the dual basis of the basis of monomials in the Pontryagin classes, we

observe that (F")* = d„ for n > 1, and we define p„ = P* for n > 1. Then

{p„ | « > 1} is a basis of PH^BO) and p,(p„) = (-OX for all n > 1.

Theorems 24 through 32 will be stated for the homology and cohomology of

BSp with Z^-coefficients for all primes /». These theorems and their proofs for />

an odd prime are also valid for the homology and cohomology of BO if b„ is

replaced by d„, k„ is replaced by Pn, a is replaced by ¡i and y is replaced by v.

Theorem 24. In H*(BSp)for r > 0 and n > 1,

QfM = (-iy'/WP+i)(2n - r(p -\)-\,rp- 2«)fcB-<1/2W,-1)

[Qi'(kn) = (n - r - i,2r - n)k„.r).

Proof. This theorem results from combining Theorem 7 with the definition

K = (-1)V(C2J.

Theorem 25. In H,(BSp)for r > 0 and n > 1,

ß'OO = (-l)(1/2)^,)(2« - \,r - 2«)pn+(1/2W^1)
(a)

[Q*'(.K) = (n-lr-n)pn+r]

Q'(bn) = (— l)r+1(2/i,r — 2/j — l)è„+(i/2)r(p-i)   modulo decomposables

(°)
[ß4'(6„) = (n,r — n — X)bn+r   modulo indécomposables].

Proof. This theorem is proved by combining Theorems 5 and 6 with the facts

y*(Pn) = (-lypa. and a^a^) = b„ for « > 1.

Theorem 26. In H.(BSp) for r > 2n > 2 [r > n > I], Q'(bn) [Q*'(b„)] has no

monomial summand of product filtration degree greater than p + \(r — 2n)(p — 1)

[r — n + 2], ant/ ¿At? oh/v monomial summand of Q'(b„) of product filtration degree

p + \(r- 2n)(p - 1) [r - n + 2] » ¿>>¿,0/2Xr-2»X/>-i) [¿»2ôp"]. Furthermore, if

Xbny bni is a summand of Q'(bn) [Q^(b„)] with w, > • • • > n, and 0 ¥= X G Zp

then nt > n.

Proof. This theorem follows from Theorem 24 in the same way that Theorem

8 follows from Theorem 7.

Theorem 27. ß^//»(FSp) has Zp-basis {bnp. \ n & 0 mod/»,« = s(/> - 1) 4- r,

1 < r < p - 1 and if s ^ 0 then s = 2£=o ii/>'> 0 < s, < /» - 1, tw/A r > s0

> • • • > s, > 1} [ß^//*(5Sp; Z2) = {¿>2, | n > 0}].

Proof. This theorem follows from Theorem 10 and the fact that a^ia^) = b„

for n > 0.
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Let G = a o y: BSp -* BSp. In homology with Z2-coefficients, G»(A2n) = Z»2

and (/«(A^-i) = 0 for n > 1. Hence G» is locally nilpotent and Z2 [[(?»]] is an

algebra of 2k=/?-Hopf algebra endomorphisms of H+(BSp; Z2).

Theorem 28. (a) Z2 [[(?»]] is the algebra of all 'ä-Hopf algebra endomorphisms of

/7»(BSp;Z2).

(b) Z2[[G»]] is the algebra of all %<=%-Hopf algebra endomorphisms of H*(BSp;

Z2).

(c) Fi'ery element of Z2[[Gt]] is induced by an infinite loop endomorphism of

BSpQ2.

Proof, (a) and (b) are proved in the same manner as Theorem 12.

(c) 2™o h¡G¿ — [y ° g ° a ffi A0 lflspßj* where g is an infinite loop endomor-

phism of BUQ2 which induces 2<" i A,/»'-1 in homology and © denotes Whitney

sum.

Corollary 29. (a) //»(BSp; Z2) is an indecomposable %-Hopf algebra.

(b) // g is an %-Hopf algebra endomorphism of //»(BSp;Z2) then g is a

homomorphism of ^-modules.

Theorem 30. Letp be an odd prime. There are sub-H^R-Hopf algebras //»(BSp),,,

of //»(BSp) for 0 < i < \(p - 3) such that:
(a)//.(BSp) - ®E#"^/UBSpV
(b) a»: Ht(BUpai) at H,(BSp)pi as %<J?-Hopf algebras for 0 < i < \(p - 3).
(c) Z;)[[F2,]] is isomorphic under conjugation by a* to

(i)   FAe algebra of %-Hopf algebra endomorphisms of //» (BSp)w.

(ii) FAe algebra of (Si<=f?-Hopf algebra endomorphisms of H+(BSp)p4.

(d) n(£Q3)/2Z/,[[F2(]] is isomorphic under conjugation by a» to

(i)   FAe algebra of %-Hopf algebra endomorphisms of //» (BSp).

(ii) The algebra of %<zR-Hopf algebra endomorphisms of //»(BSp).

Proof, (a) and (b). Define //»(BSp),,, = a.(H*(BUp¡2i)) for 0 < i < ±(p - 3).

(c) and (d). Combine (a) and (b) of this theorem with Theorem 14.

Corollary 31. (a) //»(BSpL,, is an indecomposable %-Hopf algebra if 0 < i

< \(P - 3).
(b) //»(BSp) is an indecomposable W-Hopf algebra if p = 3.

(c) If g is an %-Hopf algebra endomorphism o//7»(BSp) or ofH*(BSp)pifor some

0 < i < j(/» — 3) then f is a homomorphism of ^-modules.

Theorem 32. (a) FAe vector space of J^-Hopf algebra maps from //»(BÍ7) to

//»(BSp) are all ^-module homomorphisms and are equal to:

(i) FAe free left module with basis {a»} over the ring of %-Hopf algebra

endomorphisms of H*(BSp).

(ii) A cyclic right module over the ring of SH-Hopf algebra endomorphisms of

Ht(BU) with generator a». If p = 2 then this module is free while if p is odd then

this module is a» ° Tlfo3)/2 Zp[[F2¡]].
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(b) The vector space of'ä-Hopf algebra maps from //«(.BSp) to H*(BU) are all

<zR-module homomorphisms and are equal to:

(i) A cyclic left module over the ring of ä-Hopf algebra endomorphisms of

H+(BU) with generator y«. Ifp = 2 then this module is free, while ifp is odd then

this module is Tl^/2 Zp[[Fu\] « y».

(ii) FA«? free right module with basis (y«} over the ring of ä-Hopf algebra

endomorphisms of Ht(BU).

Proof, (a) Let/: H„{BU) -> //«(BSp) be a map of ä-Hopf algebras. If p = 2,

let f(a2n) have A„f>2"~' as a summand for n > 2 and h„ G Z2. Then /

= (2f-i hnGS~x) ° a* = a, o (2"_, A,/?-'). If P is odd then / restricted to

H*(BUPJ) is zero when i is odd. Our assertions now follow from Theorem 30(b).

(b) (i) The left module in question is isomorphic to the right module of 3t-Hopf

algebra maps from H*(BU) to //*(BSp) over the ring of 2l-Hopf algebra

endomorphisms of H*(BU). Since y*^) = (-\)"k„ and y*(c2B_)) = 0 for

n > 1, the reasoning of the proof of (a)(i) applies to this case too.

(ii) Dualize the problem as above and then apply the reasoning of the proof of

(a)(ii).

We now consider BSp X Z = fl(t//Sp). With the notation of Theorem 22,

//«(BSp X Z) = //«(BSp) ®Zp(Z) and the natural map BSp -» BSp X Z in-

duces x -» x ® [0] in homology. As in the case of BU x Z, we will know the <=/?-

action on //«(BSp X Z) as soon as we evaluate ß"(l ® [1]) for n > 0. Similarly,

there is BOX Z = Q(U/0). //«(BO X Z) = H*(BO) ® Zp(Z) and the natural

map BO -* BO X Z induces x -» x ® [0] in homology. As above, we need to

calculate ß"(l ® [1]) for n > 0 to know the action of the Dyer-Lashof algebra

on//«(BO XZ).

Theorem 33. (a) In //«(BSp xZ)forn>0,

Qn{\®[\]) = ryn(pW2)(p_l))®[p]

[Q*"(l ® [1]) = bH ® [2]].

(b) In H»(BO X Z)for n > 0 ,

ß"(l ® [1]) = y„(f(i/2Xp-o) ® [P\

[ß"(l ® [1]) = e„ ® [2]].

Proof, (a) Let â: BU X Z -* B Sp X Z be the loops of the canonical projection

I/-» U/Sp . Then â = a X 1. For p an odd prime a«(y„(p2Jr)) = 2"y„(pJC).

Hence (a) follows from Theorem 22.

(b) Let p.: BU xZ-> BO X Z be the loops of the canonical projection

U -* U/O. Then /t(x, n) = (ji(x),2n) for all x G BU and n G Z. Hence, as in (a),
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it follows from Theorem 22 that

G"(l®[2]) = 2nyn(p(,_1)/2)®[2/>]

[ß*(l ® [2]) = e2 ® [4]].

Thus,    2"yn(x>(p-m) ® [2p] = ß-(l ® [2]) = 2/+y-„ CO ® [1]) • QJ(l ® [1]),
and by induction on n we see that ö"(l ® [1]) = ■cB(f(p-i)/2) ® [p\- [Thus,

Q"(\ ® [l])2 = 0^(1 ® [2]) = e2 ® [4] = (en ® [2])2, and hence Qn(\ ® [1])

= en® [2].]

Recall that

//*(BO;Z2) = P{wJ«> 1}

as algebras with uHw«) — 2?-owi® wn-¡ where w„ E H„(BO;Z2) is the nth

Stiefel-Whitney class. Define e„ = (wx)* and p„ = w* in the dual basis of the

basis of monomials in the Stiefel-Whitney classes. Then /7»(BO;Z2) = P{en \ n

> 1} as algebras with ^(en) = 2!U e¡ ® e„-¡ and PHt(BO; Z2) = fa, | « > 1).
"*(cii) = w« an(l f**(«n) == ̂ 2 are the values of the canonical maps. Let H

= fi o v, so //»(e^) = <?ü and //»(e^-i) = 0, n > 1. Observe that H*(BSO; Z2)

= P{w„ | n > 2} as a quotient Hopf algebra of H*(BO; Z2) and that H,(BSO;

Z2) is a sub-a^-Hopf algebra of /7*(BO; Z2). We write H^(BSO; Z2) = F{e„ | n

> 2} as algebras with deg e'„ = n. j: BSO -* BO, ¡i': BSU -* BSO, v': BSO

-» BSU and //' = /t' « v' will denote the canonical maps.

Theorem 34. In H*(BO; Z2)for r > 0 and n > 1,

Q,(wn) = (n - r - \,2r - n)wn.r.

This equation is also valid in H*(BSO;Z2) if r ¥= n - 1 since Q5Tx(w„) — 0 in

H*(BSO;Z2).

Proof. By Theorem 7, Q^(wn)2 = p* ° Qi(cn) = (n - r - \,2r - n)w2_r

H*(BO; Z2) is a polynomial algebra over Z2, and hence has unique square roots

of squares. Thus, Q*(w„) = (n — r — \,2r — n)wn_r.

Corollary 35. In H*(BO; Z2)for r > 0 andn > 1,

QriPn) = {n- l,r-n)pr+„.

Proof. This corollary is proved by dualizing Theorem 34.

Theorem 36. In H*(BO; Z2)for r > 0 and n > 1,

Q'(e„) = (n,r — n — l)er+„   modulo decomposables,

while in H„(BSO; Z2)forr>0 and n > 2,
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Qr(e'„) = (n,r- n- \)e'r+„   modulo

decomposables if n is not a power of two, and Qr(e2n) is always decomposable .

Proof. Combine the map /t« (an) = e2 with Theorem 6 and argue as in the proof

of Theorem 34.

Theorem 37. In H9(BO;Z2) for r > 0 and n > 1, Q'(en) has no monomial

summand of product filtration degree greater than r — n + 2 and the only monomial

summand of Q'(en) of product filtration degree r - n + 2 is e\e\~n. Furthermore, if

£», * ' ' en, with «i > • • • > n, is a summand of Qr(en) then nx > n.

Proof. This theorem results from combining Theorem 8 with the fact ju»(a„)

= e2 for n > 1.

Theorem 38. (a) ß^//«(BO; Z2) = {e2. | n > 0}.

(b) ß^//»(B50) = {e2-+2. | m > 0 and n > 0).

Proof. This theorem follows from Theorems 10 and 19 and the facts /t«(aB)

= e2, n > 1, and /i'«(a¿) = e'2, n > 1.

Theorem 39. (a) Z2 [[//«]] is the algebra of ä-Hopf algebra endomorphisms of

Ht(BO; Z2 ), and every element of Z2 [[//« ]] is a homomorphism of ^-modules.

(b) FAe vector space of ä-Hopf algebra maps from //«(B/7; Z2) to H*(BO; Z2) are

all ^-module homomorphisms and are equal to:

(i) The free left module with basis {/t«} over the ring of ä-Hopf algebra

endomorphisms of H¿(BO; Z2).

(ii) FAe free right module with basis (/i«} over the ring of ä-Hopf algebra

endomorphisms o///«(BC/; Z2).

(c) The vector space of ä-Hopf algebra maps from Hm(BO\ Z2) to H*(BU; Z2) are

all ^-module homomorphisms and are equal to:

(i) The free left module with basis {»>,} over the ring of ä-Hopf algebra

endomorphisms ofHt(BU; Z2).

(ii) FAe free right module with basis {V,} over the ring of ä-Hopf algebra

endomorphisms ofH+(BO; Z2).

(d) FAe vector space of ä-Hopf algebra maps from //« (BSO; Z2) to //« (BO; Z2)

are all ^-module homomorphisms and are equal to:

(i) FAe free left module with basis {/»} over the ring of ä-Hopf algebra

endomorphisms of Hm(BO; Z2).

(ii) FAe free right module with basis {y«} over the ring of ä-Hopf algebra

endomorphisms of H*(BSO;Z2).

(e) Z2[[//'«]] is the algebra of ä-Hopf algebra endomorphisms of H*(BSO; Z2),

and every element o/Z2 [[//'«]] is a homomorphism of ^-modules.

Proof. This theorem is proved in the same way as Theorems 20, 28 and 32.

Corollary 40. H*(BSO;Z2) and H^(BO;Z2) are both indecomposable ä-Hopf

algebras.
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5. U, SU, Sp, O, SO, Spin and B Spin. We will use the results of §§3 and 4

together with various suspension maps to study the action of the Dyer-Lashof

algebra on the homology of the infinite classical groups, the infinite spinor group

and its classifying space.

We begin by considering i/and SU. The Bott map from BU -* Q(SU) induces

an isomorphism in homology. Thus, there is a suspension map o»: H„(BU)

-> Hn+x(SU) for n > 2. Define/n+1 - o*(an) for n > 1. Then H+(SU) = E{f„ \

n > 2} as Hopf algebras and./': SU -» U induces a monomorphism in homology.

For n > 1, let o» : H„(U) -* H„+X(BU) denote the suspension map induced by

the universal i/-bundle. Then a»7 restricted to HX(U) is monic, and define

/, E HX(U) by a<¿(fx) = ax. For n > 1, o%(fn) = (-l)n+1t)fl. Then //»(£/)

= E{f„ | n > 1} as Hopf algebras, and H*(U) = E{f*„ \ n > 1} as Hopf alge-

bras using the dual basis of the basis of monomials in the f„. H*(SU)

= E{f* | n > 2} as a quotient Hopf algebra of H*(U).

Theorem41.InH*(U)forr > Oandn > l,orinH,(SU)forr > Oandn > 2,

QU) = (-W+"(n-lr-n)fnMp_x)

[Q^ifn) = (n - \,r - «)jU.

Proof. The Dyer-Lashof operations send primitive elements to primitive

elements, commute with suspension, and o»(/,) = (-i)n+xp„. Hence this theorem

follows from Theorem 5.

Corollary 42. In H*(U)for r > 0 and n > 1,

Q'ÁPn) = (-l),+> - r(p - 1) - \,pr - n)f*_r{p_x)

[QÏU*n) = {n-r-\,2r-n)ft,].

The same result is valid in H*(SU) if n ¥= 1 + r(p - 1) since ß»(/f+r(p_i)) = 0

[Qï(f*+i) = 0] in H*(SU).

Theorem 43. (a) Q^H,(U; Z2) = {/,}.

(b) ß^//»(SC/;Z2) = {/2»+1 | n > 0}.

(c) For odd primes p, a Zp-basis for Q^H„(SU;Zp) is given by {j£«n+i | A > 1,

A ̂  0 mod/», A = s(p - 1) + r, 1 < r < p - 1, s = 2"=o*./>'> 0 < i, < p

- 1, íwk/ //í ¥= 0 /Ae« r > s0 > • • • > sn > 1).

(d) For odd primes p, a Zp-basis for Q¿?H,(U; Zp) is given by {/,} U {fp.h+x \ h

> 1, A # 0 mod/», A = s(p - 1) + r, 1 < r < /» - 2, and if s ¥= 0 then s

= 2"-o ■*./>' w/<A 0 < i, < /> - 1 a/ja1 r > í0 > • • • > s„ > 1}.

Proof.(a)ß2«(/I)=/n+1forn> 1.

(b), (c). The map o»: IHt(BU) -* Ht(SU) induces an isomorphism on indé-

composables. Hence f„ E Q^H^SU) if and only if an_x E Q¿?H*(BU). Thus,

(b) and (c) follow from Theorem 10.
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(d) ß"(/i) = (-íy'/íp-D+i for n > 1. Furthermore, if k # 0 mod/» - 1

thenji+1 G Q¿?H,(U;ZP) if and only if/*+, G Q^H%(SU;ZP). Thus, (d) follows

from (c).

If /» is an odd prime and 0 < i < /» - 2, then define //«(i/)p,/ = F{/+1 | n

> 0 and n = i mod/? - 1} and H,(SU)pJ = F{/+1 | n > 1 and « = í mod/»
-1}-

Theorem 44. (a) FAe algebra of ä-Hopf algebra endomorphisms of Hn(U;Z2) is

isomorphic to Z2 X Z2.

(b) FAe identity and zero maps are the only ä<J?-Hopf algebra endomorphisms of

//«(i/;Z2).

(c) FAe identity and zero maps are the only ä-Hopf algebra endomorphisms of

//«(Sf/;Z2).

(d) Forp an odd prime, the algebra of ä-Hopf algebra endomorphisms o///»(£/)/y

is isomorphic to Zpif 1 < i < p — 2 and is isomorphic to Zp X Zp if i = 0.

(e) For p an odd prime, the algebra of ä-Hopf algebra endomorphisms of

//»(i/; Zp) is isomorphic to TJf-i Zp.

(f) Forp an odd prime, the algebra of ä-Hopf algebra endomorphisms of H*(SU)pi

is isomorphic to Zpfor 0 < i < p — 2.

(g) For p an odd prime, the algebra of ä-Hopf algebra endomorphisms ofH+(SU)

is isomorphic to YlfZ\ Zp.

(h) For p an odd prime, the algebra of ä^R-Hopf algebra endomorphisms of

H„(U)pj or of H,(SU)Pj is isomorphic to Zp.

(i) For p an odd prime, the algebra of ä<zR-Hopf algebra endomorphisms of

//,({/; Zp) or ofH,(SU; Zp) is isomorphic to Ufz\ Zp.

Proof, (a) We identify the 3t-Hopf algebra endomorphisms g of H*(U; Z2) with

Z2 X Z2 by mapping g to (a,y) where g(/*J = af*x and g(f*2) = yf*2. We prove

by induction on n thatg(/*,) = yf* for n > 2. ßa H*(BU) = {c2„ \ k > 0}, and

hence ßaH*(U) = {/** | k > 0). Thus, it suffices to show inductively that

g(/r) = Y/*» for n > 1. However iP2(/*») =/*-+, for n > 1 and £P4(/?._,)

= /2»+1 for n > 2 from which our assertion follows.

(b) Since Q2n(f\) = f„ for all n > 1, an 2i<=/?-Hopf algebra endomorphism of

//»(t/) is determined by its value on/,.

(d) This assertion is proved in the same way as (a) using the following

observations. First, a Z,,-basis of ßa H*(U) is given by {/*,» | 1 < i < p - 1 and

n > 0). Secondly,

^'(/.VW = dp"-1 - i)/,>+/,2-2,+.

if 1 < / < /» - 1, n > 2 or 2 < i < p — 1, n = 1 while

^/-l(//>) = /,*,-+pJ-2p+i   if 1 </</»- 1 and « > 1.



HOMOLOGY OF THE CLASSICAL GROUPS 105

(h) Since Qn(fx) - (-1)b+'/h(p-i)+i for n > 1, an 91^-Hopf algebra endomor-

phism of Hm(U)PtX is determined by its value on/,.

Corollary 45. (a) H0(U; Z2) s H*(SU; Z2) ® Z2fx as %-Hopf algebras.

(b) //»(£/; Z2) is an indecomposable ̂ <J?-Hopf algebra and H*(SU;Z2) is an

indecomposable %-Hopf algebra.

(c) If p is an odd prime, then

//»({/;Zp) at g!H*(U)p4 ® H*(SU)pfi ® Zpfx,

H,(SU;Zp)=*®H.(SU)pj
i—0

are decompositions of H+(U;ZP) and H+(SU;Zp) into indecomposable W-Hopf

algebras.

(d) If p is an odd prime then H.(U;ZP) - ®^Ht(U)p4 and Hm(SU;Zp)
= <S>,Co Ht(SU)Pii are decompositions o///»(£/; Zp) and //»(Si/; Zp) into indecom-

posable %<=R-Hopf algebras.

We will now consider the action of the Dyer-Lashof algebra on the homology

of Sp with Zp coefficients for all primes p and on the homology of SO with Zp

coefficients for odd primes p. Let y: Sp -* U and a: U -* Sp be the canonical

maps, y induces a monomorphism in homology and we define g„ E H4n_x(Sp) for

n > 1 by g„ = yil(f2n)- Then //»(Sp) = E{gn | n > 1} as Hopf algebras, and

H*(Sp) — E{g*„ \n > 1} as Hopf algebras where we use the dual basis of the

basis of //»(Sp) given by monomials in the gn. Note that a»(/,) = 2gn/2 if n is

even and/» is odd, while a^(fn) = 0 if « is odd or/» = 2. We now let/» be an odd

prime, and we observe that the same situation occurs for Ht(SO;Zp). Let

¡i: U -* SO and v: SO -* U be the canonical maps. Define A„ e H4n_x(SO;Zp)

by A„ = v7x(f2n) for n > 1. Then Ht(SO; Zp) = E{h„ | n > 1} and //*(SO; Zp)

— E{h*„ | « > 1} as Hopf algebras. Furthermore, fi»(/2n) = 2A„ and fi»^-,)

= 0for« > 1.

Theorems 46 through 51 will be stated for //»(Sp; Zp) and H*(Sp; Zp) for all

primes p. However, these theorems and their proofs for /» an odd prime are also

valid for /7»(50; Zp) and H*(SO; Zp) if g„, a and y are replaced by A„, ¡i and i>

respectively.

Theorem 46. In //»(Sp)/or r > 0 andn > 1,

CU.) = (-l)'(2n - l,r - 2«)gB+(1/2)r(;,_1)

[ß*(&,)-(»"I.'-«)&»,}•

Proof. This theorem follows from Theorem 41 and the facts that y» is a

monomorphism and y»(g„) «■ f2„ for m > 1.
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Corollary 47. In H *(Sp) for r > 0 and n > 1,

QUg*n) - (-\Y(2n - r(p - 1) - \,pr - 2n)g*_m>(p_x)

[Qï(g*n) = (n - r - \,2r - n)g*-r\

Theorem 48. (a) ß^/^iSp; Z2) = {g,}.

(b) For/» a« odd prime, a Zp-basis for ß^Z/«(Sp,Zp) is giren by (g„ | 2« — 1

= p'h,h ^ 0 mod/»,A = s(p — 1) + r, I < r < p - 2, and if s ¥= 0 then s

= 2íU S¡P' w'th 0 < s¡ < p - 1 ant/ r > s0 > • • • > s„ > 1}.

Proof. y«(gj =/2n for n > 1. Hence g„ G ß^//,(Sp;Zp) if and only if

Izn G Q¿?H*(U). Thus, this theorem follows from Theorem 43.

If p is an odd prime and 0 < i < \(p - 3) then define //«(SpL,,, = F{g„ | «

> 1 and n = i mod \(p - 3)}. Clearly y« induces an isomorphism of 2l<=¿?-Hopf

algebras from //«(Sp)Pi, to H*(U)Pt2i+i.

Theorem 49. (a) FAe algebra of ä-Hopf algebra endomorphisms o///«(Sp; Z2) is

isomorphic to Z2 X Z2.

(b) FAe identity and zero maps are the only ä<zR-Hopf algebra endomorphisms of

//«(Sp;Z2).

(c) Ifp is an odd prime and 0 < i < \(p - 3) then the algebra of ä-Hopf algebra

endomorphisms of Ht(Sp)pi is isomorphic to Zp.

(d) If p is an odd prime then the algebra of ä-Hopf algebra endomorphisms of

//«(Sp; Zp) is isomorphic to ïl^l*^ Zp-

Proof, (a) Observe that ßa //*(Sp; Z2) = {g*. | n > 0}. If n > 2 then iP4(gf.)

= g*»+i and iP8(g2»-i) = g*"+i- Furthermore, iPr(g*) = 0 for all r > 0. Hence

an 3l-Hopf algebra endomorphism of //*(Sp; Z2) is determined by its action on

g, and g2.

(b) ß4"(gi) = g„+\ for all n > 1. Hence an 3I<=/?-Hopf algebra endomorphism

of //«(Sp; Z2) is determined by its action on gt.

(c), (d). These statements follow from Theorem 44 and the fact that //«(Sp)p>/

=s //»(t/)Pf2/+1 as 31^-Hopf algebras for 0 < i < \(p - 3).

Corollary 50. (a) //»(Sp; Z2) a Z2g! ® F{gfl | n > 2} as ä-Hopf algebras.

(b) //«(Sp; Z2) is a« indecomposable ä^R-Hopf algebra.

(c) ///» is an odd prime then //«(Sp)^,, 0 < i < \(p — 3), ana* //«(Sp;Z3) are

indecomposable ä-Hopf algebras.

(d) ///» is an odd prime and f is an ä-Hopf algebra endomorphism o///«(Sp;Zp)

or of //«(Sp)P)f, 0 < i < |(/» — 3), then f is a homomorphism of ^-modules.

Theorem 51. (a) 7Vie vector space of ä-Hopf algebra maps from //«(i/) ro //*(Sp)

are all ^-module homomorphisms and are equal to:

(i) FAe free right module with basis {a«} over the ring of ä-Hopf algebra

endomorphisms of <g)ÍL/2)(p"3)Z/«(í/)Pi2f+1 [i%(SU)].
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(ii) The free left module with basis {a»} over the ring of 'ä-Hopf algebra

endomorphisms o///»(Sp).

(b) The vector space of%-Hopfálgebra maps from //»(Sp; Z2) to //»(I/; Z2) is the

free right module with basis {y»} over the ring of Vi-Hopf algebra endomorphisms of

//»(Sp;Z2).

(c) y» and 0 are the only %<zR-Hopf algebra maps from //»(Sp; Z2) to H„(U; Z2).

(d) If p is an odd prime then the vector space of %-Hopf algebra maps from

//»(Sp; Zp) to Ht(U; Zp) are all'^-module homomorphisms and are equal to:

(i) The free right module with basis (y»} over the ring of %-Hopf algebra

endomorphisms o//7»(Sp; Zp).

(ii) FAe free left module with basis {y»} over the ring of %-Hopf algebra

endomorphisms of Oi^""3^^ Wi-

Observe that /: //»(Sp;Z2) -* //»(i/;Z2), defined by f(gx) = 0 and f(gn)

= /^ if n > 2, is a map of 2I-Hopf algebras. However, / cannot be written as y»

followed by an Sl-Hopf algebra endomorphism of //»(t/; Z2).

We now consider /7»(SO; Z2) where the action of the Dyer-Lashof algebra is

more complicated than on the homology of the other classical groups. Define

/„ G H2n~x(SO;Z2) for n > 1 by in = o|0(w„+1) where oJ0: IH*(BSO;Z2)

-» H*(SO; Z2) is the suspension map induced from the universal SO-bundle.

Then H*(SO; Z2) = P{in \ n > 1} as Hopf algebras. Recall that there are

indecomposable elements u„ G Hn(SO; Z2), n > 1, with uq = 1 and i^m„)

= 2?-o "/ ® «/!-<• Then H,(SO; Z2) = E{un \n> 1} as algebras, and PH*(SO;

Zi) = fan I « ^ 1} where ti„ = 2£o utuin-t-\ aeLS degree 2r — 1. Note that

% : H,(SO; Z2) -* Hm(U; Z2) is the zero map and /i» : H0(U; Z2) -> //»(SO; Z2)

is given by ^(fn) = p., n > 1.

Theorem 52. /« H*(SO; Z2)for r> \andn> 1,

Ö?(Ü = («-r-l,2r- «)/„_,

oiu/

ßri0n) = («-^,2r-n-l)«7'

wAeTt? n - r — 2'~x (2s — 1).

Proof. This theorem follows from Theorem 34 and the observations that

°so(w2n) = 'n and o$0(w2t(2n_x)+x) = in2*.

Theorem 53. In //»(SO; Z2)/or r > 0 and n > 1,

(a) O*fa,) -(»- Lr - «)»w
(b) ßr(w„) = (n,r - n - l)«,+n modulo decomposables.

Proof, (a) This assertion is the dual statement of Theorem 52.

(b) This result follows from Corollary 35 and the fact o«°(Mn) = pn+x for

n > 1.
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In Theorem 56 we will use Theorem 53(b), the comultiplicative Cartan formula

and various identities on binomial coefficients (see Lemma 55) to calculate the

monomial summands of Q'(u„) of product filtration degree two and three. Then

we will show that Q'(u„) has no monomial summands of product filtration degree

greater than three.

Notation 54. Recall J. Adem's identities for binomial coefficients [2, Appendix].

For any integers a and b, define (I) as the coefficient of xb in the Taylor

expansion of (1 + xf. Note that (%) = 0 if b < 0 and if a > 0, b > 0 then

(?) = (b,a - b) = a\/b\ (a — b)\. J. Adem has proved the following relations:

o    ,ir;-T:-7')-m»-
for all integers a, b and c.

(2) (J)- <-<-,-')   —,

for /» any prime, a < 0 and b any integer.

(3) 2 \)\   _   ) = \ )   for all integers a, o and c.

For example, (3) follows from the fact that the coefficient of xc in (1 + x)a

■ (1 + x)b equals the coefficient of xc in (1 + x)a*b.

Lemma 55. For integers a, b and c the following identities are valid modulo 2:

Proof. (A) 2?=o (tl)(t¡1) = 2?=o CDW) by (2) - 2f-o (tOCT)
= 2?=o CT'iCT1) by (2) = (T') by (1).

(B) 2U (T'X*^1) = Silo (^')0 where / = í - a = 2Po (%+:)
• CAÇ1) = 2;:ô (2r)(fl;-^') by (2) = 2):ao (-T')(0^') = («) by (2)

and (1).
(C) This identity follows from (1).

Theorem 56. In H*(SO; Z2)for r > 0 and n > 1,

Q/(u„) =      2      («-a,r-n-¿>- l)MaM6«c.
a,fc,c>0

a+b+c=r+n
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Proof. We prove this theorem by induction on r + n and for fixed r + nby

induction on r. The cases r = 0 are trivial. Now assume the induction hypothesis.

Let \.,, be the coefficient of «,, •••«<, in Q'(un) if 1 < ix < • • • < i, and

2i-i i, = r + n.
We begin by calculating A,r+n_, for 1 < t <[\(r + n)] which the theorem

asserts is (n,r — t — n - 1) + (n,t — 2n — 1) + (n — t,r — n — 1). Consider the

coefficient of u, ® wr+n_, in the equation

(*) * ° Q'M =22 Q'(uj) ® ß'-'(«B_,).

A,,f+„_, + (n,r-n-l) = 2Sl('"U",)(''.' " 2/ - 1)(* -i,r + 2i-t-n- 1).
Hence

w,-(»,-»-.)+i('-ri)c+::r1)+c-r')
+ (/i,f-2n - 1)

[♦ic-í-r.--.-') —]
= (n,r - t - n - 1) + (n,t - 2n - 1) + (n - t,r - n - 1)

by(C),(B).
We next calculate Kjs+n-a-b f°r 1 < a <.b <.r + n — a-o<r + /i — 2

which the theorem asserts is (« - o, r - a - « — 1) + (n — a, r — b — n — 1)

+ (n — a, a + b — 2n - 1). Consider the coefficient of urHMh.b ® ua ub in (*)

above.

"■aJ>S+n-a-b + A-aj+n-a "*" "éy+n-6

min(n-l/+/i-a-l>-l)

= 2 (i,r + n-a-b-2i- 1)
/-i

• [(n - /,Z» + 2i - 2« - 1) + (n - i,a + 2i - 2« - 1)

+ (n - a - i,a + b + 2/ - 2n - 1)].

Thus,     \^h~-> - W. + W» + 2r-o (H*V^r)(*tr ) + («, è - 2«
- 1) + (n, r - n - a - b - 1) [+ 2?-o C+M7*w-I)(41SrI)      if      " > ¿>]
[+2;-,+B-a-6('+B-7fr-,-,)r^rl) if «>r + «-a-*] +2r-o(,+"-a7*-M)

• ("-£!-') + (*,a - 2« - 1) + (n,r - n - a - b - 1) [+ 2ÏÏ C*"*")
W)  if  » > «]    Í+ 2"-,+n-a-6 (^-«7»-'-')(«-^-')  if  „ > r + „ - a - b]

+ 2":0 r-V^-'XW) + (»-«,a + 6-2«-i)[+ 274 r"-':*-'-')
• (W) if n > b]  - A^^ + Ai/+/1_t + CT1) + (n,b - 2n - 1) + ('TD
+ (£2) + ('r') + M - 2n - 1) + CT*") + (SE) + ('^') + (« - a,a
+ 6 - 2« - 1) + CÄ«) by (C), (A), (B), (C), (A), (B), (C), (A)



110 S. O. KOCHMAN

= (n — b,r - a — n - l) + (n - a,r — b — n - 1)

+(« - a,a + b- 2n- 1)       if a + b < r

= (n - a,a + b - 2n - 1)       if a + b > r

= (n — b,r - a - n - l) + (n — a,r - b - n - l) + (n — a,a + b — 2n — 1).

We finally calculate that AaA<v.+n-a-o-<: = OforO<a<A<c<r + #i-a

— A-c<r + n-3. It is clear that our inductive method of calculation will

then imply that A,.,v = 0 if 1 < i. < • • • < i„ 25=i /,"■/" + h and t > 4.

Consider the coefficient of ur+n-a-b-c ® ua ub uc in (*) above.

**ajb¿s+n~a—b—c   '   "-aj>f+n—a—b   '   '^a.cf+n—a—c   •   "b,cf+n—6—c

min(n- lz+n-a-o-c-1)

= 2 (i,r + n-a- b - c - 2i - 1)
/-i

■ [(n - b - i,b + c + 2i - 2n - I) + (n - a - i,a + c - 2n + 2i - 1)

+ (n - a - i,a + b - 2n + 2i - 1)].

Thus,

^flAv+n-û*ft-c "wj>,r+n-a-b   '   **a,cs+n—a—c ~*~ "A,c^+/i—b—c

"¿ï/r + n-a-b-c-i- l\/c- n + i- 1 \

+ (n- b,b + c- 2n- 1)

[+S('HK""*"î"e"'",)C--î-'71)*-*-]

"-"/r + n-a-A-c-i- 1 \/c - rt + / - 1 \

i-o\ » )\   n-a-i   )

+ (n - a, a + c - 2n — 1)

H(rt-*t'-i-,)(,;::i<1)^']

L     /«-r+n-a-fr—c \ ' /
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"-" (r + n - a - b - c - i - 1 \/b - n + i - 1 \

+ ,?o( I X    n-a-i    )

+ (n - a, a + b - 2n - 1)

[+|(——»—'-«X»;::!:')»^*]
F y       Sr + n- a- b-c- i- l\/b- n + i- l\

L+ ¡-r+h-b-c \ ' )\   n-a-i   )

if r < b + c\

(r-a-b- 1\

+ (« - A, A + c - 2n - 1) + (j ~ an ~_ °c ~ l J

(r — a — b — l\     , -       ...
n-a       ) + (n-a,a + c-2n-l)

(r-b-c-\\     (c-n-\\

+ {       n-c       ) + {b + c-r)

+ (r ~ an Z ca ~l ) + (» - a>a +b -2n - o

*(,-i:r,)+(i;:=;)
by (C), (A), (C), (A), (B), (C), (A), (B)

= 0       if r> b + c

(c + n — r\     /c + n — r\

n.b   ) + {b + c-r) = °

if r < b + c by (2) since c > n > A.

Theorem 57. ß^//«(SO;Z2) = {ti2. | n > 0}.

Proof, o«50^) = p*+1 for fc > 1. Hence uk G Q^H^SO; Z2) if and only if

ß*(w*+1) = 0 for all 0 < i < k, i.e. if and only if (k - i,2/ - fc - 1) = 0 for all

0 < i < k. This occurs if and only if A: is a power of two.

Theorem 58. (a) FAe algebra of ä-Hopf algebra endomorphisms of //«(SO; Z2) is

isomorphic to Z2 X Z2.
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(b) The identity and zero maps are the only %.cR-Hopf algebra endomorphisms of

Hm(SO;Z2).

Proof. This theorem follows from Theorem 44(a) and the fact that fi*(in) = f*

for n > 1.

Corollary 59. (a) H*(SO;Z2) = F{/,} ® H*(Spin;Z2) is a decomposition of

H*(SO; Z2) into indecomposable %-Hopf algebras.

(b) Ht(SO; Z2) is an indecomposable %cR-Hopf algebra.

Theorem 60. (a) FAe vector space of %-Hopf algebra maps from H*(U;Z2) to

H+(SO; Z2) is equal to:

(i) The free right module with basis {ju»} over the ring of %-Hopf algebra

endomorphisms o///»(i/; Z2).

(ii) FAe free left module with basis {/i,} over the ring of %-Hopf algebra

endomorphisms of H%(SO; Z2).

(b) jtt» and the zero map are the only maps of %^R-Hopf algebras from H+(U;Z2)

toH*(SO;Z2).

(c) FAe zero map is the only map of Hopf algebras from H*(SO; Z2) to //»(i/; Z2).

Recall that //»(O; Zp) = //»(O; Zp) ® Zp(Z2) as Hopf algebras where Zp(Z2)

is the group algebra of Z2 over Zp. For x G Hm(SO), we write x and x ® [—1] to

designate elements in the homology of the two components of O where we

identify H*(SO) with its image in //»(O) under the canonical map. Since

x ® [-1] = x • (1 ® [-1]) for x G Ht(SO; Zp), we will know the action of the

Dyer-Lashof algebra on //»(O; Zp) from Theorems 46, 56 and the multiplicative

Cartan formula as soon as we compute Q"(\ ® [—1]) for n > 0.

Theorem 61. In //»(O; Zp)for n > 1,

ß°(l ® [-1]) = 1 ® [-1]   and   Ö"(l ® [-1]) = 0

[ß°(l ® hi] = 1    and   0"(1 ® [-1]) = «„].

Proof. We compute Q"(\ ® [-1]) by induction on n > 0. ß°(l ® [-1])

= (1 ® [-1])'' = (1 ® [-1] [0°(1 ® hi]) = (1 ® [-1])2 = 1. If « > 1 then
the induction hypothesis and the comultiplicative Cartan formula imply that

ß"(l ® [-1] - 1) = XhW2Hp_x) ® [-1] [ß"(l ® [-1] - 1) - u„ = XpW2){n+x)]

for some X E Zp [with the convention that X = 0 if n is even]. Now applying ©2

to this equation, we see that A = 0 [by Corollary 35] since

0-2(1 ® [-1] - 1) = 0 [o2(l ® [-1] - 1) = e,]

&ndol(hmHp_x)) = (-\)W2Hp-l)+lPW2Hp-X) [o8(p.) = Pi.andoSK) = pfl+1].
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Corollary 62. (a) ß^//»(0;Z2) = {1 ® [-1]}.

(b) If p is an odd prime then

Q^H,(0;Zp) - Q^H.(SO;Zp) U {1 ® [-1]}.

Let ij: Spin -* SO be the universal covering projection which induces Btj:

B Spin -» BSO. In homology with Zp-coefficients for/» an odd prime, n» and Btj»

are isomorphisms of 2I<=/?-Hopf algebras, and hence Theorems 24 through 32 and

46 through 49 describe the action of the Dyer-Lashof algebra in this case. In

cohomology with Z2-coefficients, n* and Bi\* axe epimorphisms. Thus, write

//»(Spin; Z2) = P{i„ | « > 2} and H*(B Spin; Z2) = P{wn | « > A,n * 2* + 1}

as quotient Hopf algebras of H*(SO; Z2) and H*(BSO; Z2) respectively. We can

write //»(Spin;Z2) = E{u'„ | n > 3 and n # 2*, k > 2} and /7»(B Spin;Z2)

= F{e'; | n > 4, « # 2* + 1} as algebras where tj»(«;) = k„ and (Brj)»(e';) = e'„

modulo decomposables if n # 2" + 2b, 0 < a < b.

Theorem 63. (a) In #*(Spin; Z2)for n > r + 1 > 1,

Qiifn) = (« - r - l,2r - «)i„_r   am/   er-'(/„) = (n - r,2r - n - \)i}'

where n — r = 2'"'(2.s - 1) and ix — 0.

(b) In H*(B Spin; Z2)for n> r + 3 > 3 and n * 2k + I,

QÍM - (« - r - l,2r - n)wn_f

wz'/A /Ae convention that w2t+x = 0/or A: > 2.

Proof, ij* and (Btj)* are epimorphisms, so this theorem follows Theorems 34

and 52.

Theorem 64. (a) In //»(Spin; Z2)forn>3 and r > 0,

Qr(.u'n) = (n,r — n - l)u'n+,   modulo decomposables .

(b) In //»(B Spin; Z2)for n > 4, n * 2* + 1 andr > 0,

Qr(e"n) = (n,r - n - l)e¡¡+,   modulo decomposables

if n is not a power of two or a sum of two powers of two, for in that case, Qf(e"n) is

always decomposable.

Proof. If n = 2k+x or n = 2" + 2", 0 < a < b, and k > 1, and r > 0 then

Q*(Pn+r) = 0 and hence Qf(e"n) is decomposable where {ton+r} = PHH+'(B Spin;

Z2). V*(u'n) = «» modulo decomposables for n > 4 and (Bn»)(e'n) = e¡, modulo

decomposables if n * 2*+l, n # 2" + 2* for all 0 < a < 6 and Jt > 1. Hence

this theorem follows from Theorems 36 and 53.



114 S. O. KOCHMAN

Theorem 65. (a) ß^//,(Spin; Z2) = {«2«+2. | 0 < m < «}.

(b) ß^.//»(B Spin; Z2) = {e2.+2t+2e | 0 < a < b < c}.

Proof, (a) From Theorem 64 we see that if k — 2m + 2" A with 0 < m < n and

A odd then ß*_2"_2"(M2»+2») = u'k modulo decomposables. Hence {u2m+2» | 0 < m

< «} generates //«(Spin; Z2) as an c/?-algebra. By Theorem 64, it is easy to see

that u2m+2n is <=/?-indecomposable for 0 < m + n.

(b) If n = 2'-1 2"' with t > 4 then ß2"'«-2»>) = e"n modulo decomposables.

Hence {e2«+2»+2<- | 0 < a < b < c) generates //«(B Spin; Z2) as an B-algebra. By

Theorem 64 we see that e2«+2i+2e is F-indecomposable for all 0 < a < b < c.

Let F'* be the locally nilpotent endomorphism of H*(B Spin; Z2) defined by

F"*(w2k) = wl and F"*^^.,.!) = 0 for k > 2 with the usual conventions. Thus,

Z2[[F"*]] is a ring of 2l.=/?-Hopf algebra endomorphisms of //»(B Spin; Z2).

Theorem 66. (a) FAe identity and zero maps are the only ä-Hopf algebra

endomorphisms o///«(Spin;Z2).

(b) 77ie natural inclusion ij« and the zero map are the only ä-Hopf algebra maps

from //«(Spin; Z2) to //«(SO; Z2).

(c) FAe algebra of ä-Hopf algebra endomorphisms of //«(B Spin; Z2) are all

homomorphisms of ^-modules, and this algebra is isomorphic to Z2[[F'¿ ]].

(d) 77ie vector space of ä-Hopf algebra maps from //«(B Spin; Z2) to

HjßSO; Z2) are all homomorphisms of ¿¿¡-modules, and this vector space is isomor-

phic to:

(i) FAe free right module with basis {Bt/«} over the ring of ä-Hopf algebra

endomorphisms of //« (BSO; Z2).

(ii) 77ie free left module with basis {Btj«) ofer fAe ring of ä-Hopf algebra

endomorphisms of Ht(B Spin; Z2).

Proof, (a), (b). These assertions follow from Theorems 58 and 59.

(c), (d). As in the proof of Theorem 20, one first proves (d)(i). It then follows

that conjugation by Btj* is a well-defined isomorphism from the algebra of 21-

Hopf algebra endomorphisms of H*(BSO; Z2) to the algebra of 2I-Hopf algebra

endomorphisms of H*(B Spin; Z2). Thus, (c) follows from Theorem 39(e). Now

(d)(ii) is clear.

Corollary 67. //«(Spin;Z2) and //«(B Spin;Z2) are indecomposable ä-Hopf

algebras.

6. Homogeneous spaces of the classical groups. We will use the results of the

preceding sections to compute the action of the Dyer-Lashof algebra on the

homology of U/Sp, SU/Sp, U/O, U/SO, SU/SO, Sp/O, Sp/SO, Sp/U, Sp/SU,
SO/U, SO/SU, O/SU, O/U, SO/Sp and O/Sp. As applications we compute the

<=/?-algebra indécomposables and the algebra of 2tc/?-Hopf algebra endomor-

phisms of the homology of each of these spaces. If H is a closed subgroup of a
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topological space G then we will let tr(G,H) denote the canonical projection from

G to homogeneous space of left cosets G/H.

Definei, G H^U/Sp) for n > 1 by/, = ^t/.Sp)»^.,). Then //»(t//Sp)
= E{jn | n > 1} as Hopf algebras and //»(Si//Sp) =s F{j>, | n > 2} as Hopf

algebras. If p is an odd prime, define y), G H^,.3(U/0; Zp) by

jK = -n(U,0\ (/,,_,).

Then //»(i//0;Z„) a. H+(U/SO;Zp) at £{./, | n > 1} as Hopf algebras and

H+(SU/SO;Zp) ss £{/„ | « > 2} as Hopf algebras. We will state and prove

Theorems 69 through 70 for //»(£//Sp; Zp) and //,(Sl//Sp; Zp) with/» any prime.

However, if p is an odd prime, these theorems are also valid for H^(U/0;Zp)

at //»(J7/SO; Zp) at //»(i//Sp; Zp) as 21^-Hopf algebras and for H,(SU/SO; Zp)
ss H*(SU/Sp; Zp) as SM'-Hopf algebras.

Theorem 68. In //»(t//Sp) /or /i > 1, r > 0 an</ in Hm(SU/Sp) for n>2,

r> 0,

ß'Ü.) = (-l)r+,(2n - 2,r - 2n + l)j„+W2Hp-»

[Q^Un) = (n - l,r - n)jn+r].

Proof. This theorem follows from Theorem 41 and the definition

j„ = Ht/.Sp),^.,).

Theorem 69. (a) ßrf//»(i//Sp; Z2) = {/,}.

(b) QMSU/Sp;Z2) = {/2.+1 | n > 0}.
(c) For /> a/j odd prime, a Zp-basis for Q^Ht(U/Sp; Zp) is given by [jn\ n > 2,

2« - 2 = p'h, A # 0 mod />, A = s(p - 1) + r, 2 < r < /> - 1 a«</ if s ¥^ 0

then s = 2*-o ■*,/>'> 0 < sf < /> - 1 with r > s0 > • • • > sk > 1} U {/,}.

(d) Forp an odd prime, a Zp-basisfor Q^Ht(SU/Sp; Zp) is given by {jn\ n > 2,

2« - 2 = p'h, A # 0 mod />, A = s(p - 1) + r, 1 < r < /> - 1, and if s ¥= 0

íAen j = 2*-o siPi> 0 < 5, < p — 1 tw'fA r > j0 > • • • > sk > 1}.

Proof. Clearly 0^//»(i//Sp) = w(i/,Sp)»(Ô^//»(i/)) and Q^H^(SU/Sp)
= w(SC/,Sp)»(ô^//a.(Sf/)). Hence this theorem follows from Theorem 43.

Theorem 70. (a) FAe algebra of %-Hopf algebra endomorphisms o//7»(i//Sp; Z2)

is isomorphic to Z2 X Z2.

(b) FAe identity and zero maps are the only li^-Hopf algebra endomorphisms of

H.(U/Sp;Z2).
(c) FAe identity and zero maps are the only %,-Hopf algebra endomorphisms of

//»(S£//5p;Z2).

(d) If p is an odd prime then the algebra of %-Hopf algebra endomorphisms of

//» (U/Sp; Zp) is isomorphic to ni^oKp-l) zr
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(e) If p is an odd prime then the algebra of ä^R-Hopf algebra endomorphisms of

//,(£//Sp; Zp) is isomorphic to JX^2*'"0 Zp.

(f) // /» is an odd prime then the algebra of ä-Hopf algebra endomorphisms of

//« (SU/Sp; Zp) is all ^-module homomorphisms and is isomorphic to ITí¥o)(',-3) %r

Proof, (a) From Theorem 44(a), it is clear that the vector space of 9t-Hopf

algebra maps from //«((/;Z2) to Z/«(i//5p;Z2) is isomorphic to Z2xZ2. This

vector space is clearly the free module with basis {n(U, Sp)«} over the ring of 91-

Hopf algebra endomorphisms of //«(i//Sp; Z2).

(b) ß^O'i) =/,+) for n > 1. Hence an ä^R-Kopf algebra endomorphism of

Z/«(l//Sp; Z2) is determined by its value on/.

(c) This assertion follows from (a).

(d), (e), (f). tt(U, Sp)« induces an isomorphism of 2I.=/?-Hopf algebras from

QfM-p-VH+(U)pj to //«(t//Sp; Zp) while it(SU,Sp), induces an isomorphism of

2W?-Hopf algebras from ®,<L/2)(''_1)fl*(St/)/,,1 to //,(St//Sp; Zp). Hence our

assertions follow from Theorem 44.

Corollary 71. (a) //»(i//Sp;Z2) s //«(St//Sp;Z2) ® ZJ¡ as ä-Hopf algebras,

and Z/«(Si//Sp; Z2) is an indecomposable ä-Hopf algebra.

(b) //«([//Sp; Z2) is an indecomposable ä^R-Hopf algebra.

(c) If p is an odd prime, then

(1/2XP-3)

H^U/SpiZ^^Zpj^H^SU)^®     ®    //«(Í/U

and

(1/2XP-3)

//«(St//Sp;Z,)s     <g>    //«(Si/),>2l
r—0

as decompositions o///«(i//Sp; Zp) ana* //,(Sl//5p; Zp) info indecomposable ä-Hopf

algebras.

(d) // /» is an oatf prime then H+(U/Sp;Zp) s ®íl/gK'-3)//,(C/)M ató

//«(SiZ/SpsZp) s ®}ii2,x'-3)ÄL.(SO)A2i «* decompositions of H,(U/Sp;Zp) and

//«(Si//Sp; Zp) into indecomposable ä^R-Hopf algebras.

Let X: U/O -* BO be the canonical map. Then X induces a monomorphism in

homology with Z2-coefficients. Define A:, G //2„_1(í//0;Z2) by k„ = Ai,(p2B-i)

for n > 1. Then //«(Í//0; Z2) = Pfo | n > 1} as Hopf algebras, //«(///SO; Z2)

= P{i3/2,it„ | n > 2}® E{x) as Hopf algebras and//« (SU/SO;Z2)^P{kyi,kn |

n > 2} as Hopf algebras where fc3/2 = A«-,(t>2)> V: U/SO-+ BSO and x

= w(C/,SO),(/,) G //,(í//SO;Z2).

Theorem 72. /n //«(l//0;Z2) i/ r > 0, n> 1 ana" in //«(i//0;Z2) or

Hn(SU/SO; Z2)ifr>0,n> 1,

ß'(M = (' + l)*.2'   «**   ß'(A:J = (n-l,r-n)A:2'



HOMOLOGY OF THE CLASSICAL GROUPS 117

wAere r + 2« - 1 = 2'(2t - 1) in H,(U/0; Z2) or if t > 1, and r + 2n - 1

_ 2*+^ t = 3/2 otherwise. In Ht(U/SO;Z2) all Dyer-Lashof operations on x are

zero.

Proof. This theorem for /7*(f//0; Z2) and Ht(SU/SO; Z2) follows from Corol-

lary 35 and the fact that A», A'» are monomorphisms. Since H+(SU/SO; Z2)

-» //»(Í//SO; Z2) is a monomorphism, Qr(k„) is as claimed in //»(C//SO; Z2). For

r > 0, 0/(x) is primitive and in the kernel of X'». Hence ß'(x) = 0.

Theorem 73. (a) ß^//»(i//0;Z2) = {*,}.

(b) Q*H*(U/SO;Z2) « {*2.+, | n > 0} U {*3/2,x}.

(c) Q^Hm(SU/SO;Z2) = {fc2.+1 | n > 0} U {*3/2}.

Proof, (a) ß2"(A:1) = k„+x for n > 1. Hence kx generates //»(Í//0; Z2) as an ¿?-

algebra.

(b),(c). A'»-1 o ol° induces an isomorphism from Q^H+(SO;Z2) to

Q^H*(SU/SO;Z2). Thus, (c) follows from Theorem 57. Clearly ß^//»(i//SO;

Z2) = Q^H,(SU/SO;Z2) U {x}.

Theorem 74. (a) FAe identity and zero maps are the only W-Hopf algebra

endomorphisms of //»(Í//0; Z2) and of //» (SU/SO; Z2).

(b) FAe algebra of 'SL-Hopf algebra endomorphisms of //» (U/SO; Z2) are all «=/?-

module homomorphisms and this algebra is isomorphic to Z2 X Z2.

Proof, (a) A» is an isomorphism of 9l-Hopf algebras from //»(i//0;Z2) to

PH,(BO;Z2). If /is an St-Hopf algebra endomorphism of //»(i//0;Z2) then

f*(kn) is primitive and hence equals either k„ or zero. Hence the algebra of 21-

Hopf algebra endomorphisms of //»(t//0; Z2) is a product of Z2's, one factor for

each k„ which is annihilated by /9lop. However, such fc„'s correspond under A»

and dualization to elements of odd degree in Q%H*(BO;Z2) = {w2* | k > 0}.

Now make this same argument with BO replaced by BSO to show that the

algebra of 2l-Hopf algebra endomorphisms of H*(SU/SO; Z2) is a product of Z2's

one factor for each element of degree two or of odd degree in Q%H*(BSO; Z2)

= W I k > 1}.
(b) H,(U/SO;Z2) is clearly isomorphic to H,(SU/SO;Z2) ® E{x) as %<#-

Hopf algebras.

Corollary 75. (a) //«(Í//0; Z2) and H^SUfSO; Z2) are indecomposable %-Hopf

algebras,

(b) //»(Í//SO; Z2) =* H,(SU/SO; Z2) ® F{x} as ft^R-Hopf algebras.

The preceding considerations also apply to //»(Sp/O; Z2) and //»(Sp/SO; Z2).

Let A: Sp/O -» BO and A': Sp/SO -* BSO be the canonical maps. ThenÄ» is a
monomorphism, and let a, = Kl()p2i_x), i > 1, and y, = Â»'(y2(t)2,_1)), i > 1.
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Then Z/«(Sp/0;Z2) = F[o¡,y/|/ > 1] as algebras with the a, primitive and

<Ky,) = y, ® 1 + a, ® a, + 1 ® y,. Similarly, if y = w(Sp,SO)«(g,) then

//«(Sp/SO;Z2) = PW,,Yhe^/2,Y}/2\i > 2] ® E[y] withy, a', primitive and «Kyi)
= y] ® 1 + a'i ® a'¡ + I ® y'¡. Then by Corollary 35,

Qf(a„) = (2n-2,r-2n+ l)a2' and ß'(y„) = (2n - 2,r - 2n + l)y/'

for r > 1, n > 1 and r + 2« - 1 = 2'(2s - 1). The above formulas also hold

for Q'(a'„) and Qf(y'n) if n > 1 with the conventions that (a\)2 =■ a'y2 and

(y'i)2 = 73/2- Also, note that^ = w(Sp, SO)« (g,), and hence Qr(y) = 0 for all

r > 0.

Let £: Sp/U -» BÍ/ be the canonical map. Then C is a monomorphism in

homology. Define n, G Hm_2(Sp/U; Z2) for i > 1 by n, = &"'0>2/-i). Then

//«(Sp/i/; Z2) = P{n, | i > 1} as Hopf algebras, and //«(Sp/SÍ/; Z2) = P{n3,2,n¡ \

i > 2} as Hopf algebras.

Theorems 76 through 79 are proved in exactly the same way as Theorems 72

through 75.

Theorem 76. In Z/,(Sp/i/;Z2) if r > 0 and k > 1 and in //«(Sp/St/;Z2) if
r > 0, k > 2,

Q2r{n3/2) = (r+ \)n2',

Q^(nk) = (k - \,r - k)n2'

where r + 2k - 1 = 2*(2i - 1) in //«(Sp/i/; Z2) or if t > 1, and r + 2k - 1

= 2i+1, f = 3/2 otherwise.

Theorem 77. (a) ß^,//«(Sp/C/; Z2) = {n,}.

(b) ß^//«(Sp/St/;Z2) = {n2,+1 | i > 0} U {n3/2}.

Theorem 78. FAe identity and zero maps are the only ä-Hopf algebra endomor-

phisms of //,(Sp/U; Z2) and of //« (Sp/SU; Z2).

Corollary 79. //« (Sp/U;Z2) and //«(Sp/St/;Z2) are indecomposable ä-Hopf

algebras.

If p is an odd prime then £: Sp/U -» BÍ7 induces a monomorphism in

homology with Zp coefficients. Define mk G //4Jt_2(Sp/t/; Zp) by induction on k.

Let w, = ar'tei) and wA+1 = ¿«-'(a^+i ~ S,*-i »^aifc-fl+l)- Then //«(Sp/i/;Zp)
= Pf/n* | A: > 1} as algebras. £* is an epimorphism, and H*(Sp/U; Zp)

= H*(BU)/I where / is the ideal generated by {2?=o(-1)'CiC2«-í I « > 0-

Hence H*(Sp/U; Zp) is generated as an algebra by the images of the odd Chern

classes, so we know the action of J?*9 on H*(Sp/U; Zp) by Theorem 7. Recall

that //«(Sp/SC/; Zp) ^ P{mk \ k > 2} as algebras and H*(Sp/SU; Zp) is isomor-

phic to the quotient algebra of H*(Sp/U; Zp) by the ideal generated by the first

Chern class. Thus, we also know the action of <=/?op on H*(Sp/SU; Zp). For/» still
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an odd prime, H*(SO/U;Zp) at //«(Sp/U;ZP) as 2l<=/?-Hopf algebras and

H*(SO/SU;Zp) a¡ //» (Sp/St/; Zp) as 9I^?-Hopf algebras. Hence the preceding

remarks apply to //«(SO/i/; Zp) and H^SO/SU; Zp) as well.

Theorem 80. Let p be an odd prime. In H^(Sp/U;Zp) at /7»(SO/U; Zp) for

r>0,k>land in //»(Sp/Stf; Zp) at Hn(SO/SU; Zp)for r > 0, k > 2,

Q^(mk) = (2k — l,4r — 2k)mk+r   modulo decomposables.

Proof. |» induces a monomorphism on indécomposables. Hence this theorem

follows from Theorem 6.

Theorem 81. Let p be an odd prime.

(a) A Zp-basis for Q^H*(Sp/U;Zp) at Q^H,(SO/U;Zp) is given by {mk \

2k - 1 = hp', A & 0 mod/», A = s(p - 1) + r, 1 < r < p - 1 , and if s =¿ 0
then s = 2"=o S¡P'> 0 < s, < /> - 1 with r > s0 > ■ • ■ > sn > \).

(b) A Zp-basis for Q^H,(Sp/SU; Zp) at Q^H.(SO/SU; Zp) is given by [mk \
mk G Q^Ht(Sp/U;Zp) and k > 2} U {»yW/)_1)+I] \ e > 0, s > 0, (e,s) * (0,
0)}.

Proof. This theorem follows from Theorems 10 and 19.

Recall from Theorem 14 that for /» an odd prime H*(BU;ZP)

= ®ËqH*(BUp/,Zp) as 2lc>?-Hopf algebras, and / is the ideal generated by the

image of a*: H*(B Sp; Zp) -* H*(BU; Zp). That is, / is the ideal generated by

®(xl^)H*(BUpii;Zp). Hence H*(Sp/U;Zp) at ^l^H^BU^^Z,,) as
3L=>?-Hopf algebras. We thus have deduced the following theorem from Theorem

14.

Theorem 82. Let p be an odd prime. Every W-Hopf algebra endomorphism of

//»(Sp/t/; Zp) =s //»(SO/Í7; Zp) or of //»(Sp/Si/; Zp) at Ht(SO/SU; Zp) is a ho-
momorphism of <J?-modules and this algebra is isomorphic in both cases to

Zp[[F,, F3,...,Fp_4, F„_2]].

ir(SO,U)*: H*(SO/U;Z2) -» H*(SO;Z2) is a monomorphism. Define s,

E H4'~2(SO/U;Z2) by s, = ir(SO, U)*~x(i2). Then H*(SO/U;Z2) = P{s, \ t

> 1} as Hopf algebras. Let V, = M.SO,^)^^) E H2l(SO/U;Z2). Then

Ht(SO/U;Z2) = £{i;| / > 1} as algebras and V(*/) = 2,'-o *y® K-j- Also,

recallthatH*(SO/SU;Z2)atP{ix,s, \ t > 2)and//»(SO/SU;Z2)atE{ux,u2,Vt\

t > 2} as algebras with «, primitive, t^«2) = u2 ® 1 + ux ® «, + 1 ® u2 and

4iK) = 2j=o */ ® V,-j- Note that for « > 1,

w(so,Sf7)»K) = i¿, Hso.staK-i) - K-.«,

with the convention that Vx = u2.

Theorem 83. In H*(SO/U;Z2) for r > 0, t > I and in H*(SO/SU;Z2) for
r>0,t>2,

Qt(s.) = (t-r-l,2r- t)s,_r   and   Q?+2(s,) = (t - r - \,2r - / + l)jf
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wheret + r = 2*"'(2n - 1).

Proof. This theorem follows from Theorem 52 since n(SO, U)* and m(SO,

SU)* are monomorphisms.

Theorem 84. (a) In //«(SO/i/; Z2)for r > 0, t > 1,

Q2rW=      2      (t - a,r - t - b - \)VaVbVe.
a+6+c=r+/

(b) In H*(SO/SU; Z2)for r > 0, t > 1,

ß2'(^)=      2      (t - a,r - t - b - \)VaVbVe,
B+6+c-r+»

<+r-3

Ö^'W«   2        2      [(t-j-\,r-t-b)
j=\   a+6=f+r-/

+ (t-b,r-t -j -l) + (t-b,r-t- a)]VaVbVjUl,

ß*+,(«.) - O" + O    2     VaVb   and   Q2'(ul)=   2   £*£«.
a+6=r+l a+i=r

wi'/A fAe convention Vx = u2.

Proof. This theorem follows from Theorem 56 since it(SO, C/)« and ir(SO, Si/),

are onto.

Theorem 85. (a) ß^//«(SO/C/; Z2) = {V2, \ n > 0}.

(b) Q^Ht(SO/SU;Z2) = {V2, \ n > 1} U {«,,«,}.

Proof. Clearly ß^//«(SO/£/;Z2) = tr(SO, t/)«(ß^//«(SO;Z2)) and

Q^Ht(SO/SU;Z2) = ir(SO,SU)^(Q^Ht(SO;Z2)). Hence this theorem is a

consequence of Theorem 57.

Theorem 86. (a) FAe identity and zero maps are the only ä-Hopf algebra

endomorphisms o///,(SO/C/; Z2).

(b) FAe algebra of ä-Hopf algebra endomorphisms of H*(SO/SU; Z2) is isomor-

phic to Z2 X Z2.

(c) FAe identity and zero maps are the only ä<zR-Hopf algebra endomorphisms of

//,(SO/i/;Z2).

Proof. This theorem can be derived from Theorem 58.

Corollary 87. (a) Ht(SO/U; Z2) is an indecomposable ä-Hopf algebra.

(b) H*(SO/SU; Z2) at F{/,} ® P{V,\ t > 2} is a decomposition ofH*(SO/SU;
Z2) into indecomposable ä-Hopf algebras.

(c) H+(SO/SU; Z2) is an indecomposable ä^R-Hopf algebra.

Note that Hm(0/U) =s //«(SO/C/) ® Zp(Z2) and H,(0/SU) =s H*(SO/SU)
® ZP(Z2) as Hopf algebras, where ZP(Z2) is the group algebra of Z2 over Zp. For

x an element of H%(0/U) or //«(O/Sí/) let x and x ® [-1] designate elements
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in the homology of the two components. We will have complete information

about the action of the Dyer-Lashof algebra on the homology of these two spaces

as soon as we know ßr(l ® [-1]) for r > 0.

Theorem 88. In //«(O/t/) or Hn(0/SU)for n>\, ß°(l ® [-1]) = 1 ® [-1]

and ß"(l ® [-1]) = Olß^O ®[-l]) =VHand

ß^-'O ® [-1]) = 0   in H.(0/U;Z2)

while ß^l ® [-1]) =Vnand ß^-'O ® [-1]) - K_xux in H*(0/SU;Z2) with
the convention Vx = u2].

Proof. ir(0, i/),(l ® [-1]) = 1 ® [-1] and w(0,St/)«(l ® [-1]) = 1 ® [-1].

Hence this theorem follows from Theorem 61.

The preceding considerations also apply to //«(SO/Sp; Z2) and //«(O/Sp; Z2).

Note that it(SO, Sp), is an epimorphism. Let u'„ = w(SO,Sp),(i<B). Then

//«(SO/Sp; Z2) = F[«;|n > 1 and n # 3 mod 4] as algebras with itf.u'n)

= 2"-o u'i ® u'n-i using the convention «^+3 = 0, k > 0.

By Theorem 56, for r > 0 and n > 1,

Qr(Wn)=      2      (n-a,r-n-b-l)u'au'„u'c.
aj>,c>0

a+fr+c—r+n

Observe that /Z«(0/Sp;Z2) = //«(SO/Sp; Z2) ® Z2(Z2) and ßr(l ® [-1]) = «;

for r > 0 by Theorem 61.

7. Im J, BlmJ and BBSO. We will calculate the action of the Dyer-Lashof

algebra on //« (Im /; Zp) and //, (B Im /; Zp) for p an odd prime and on

H*(BBSO;Zp) for all primes />. In particular, J. Stasheff [22] showed that

H*(B Im /; Zp) s H*(BO)pfi ® H*(SU)pfi and //*(Im /; Zp) = H*(BO)pfi

® H*(SO)PtP-2 as Hopf algebras over the subalgebra 31' of 31 generated by

{<Pn I n > 0}. We will show that these decompositions are also valid over the

subalgebra .=/?' of <=/? generated by {ß" | n > 0}.

Recall from J. Stasheff [22] that there is a fibration BUQP -» B Im JQp

% BBUQp and BBUQP » SUQp where B Im / = J7, prime B Im JQp,
H*(B Im /; Zp) = H*(B Im /ßp; Zp) and

^*(BIm/ßp;Zp) = 0

if q is prime, q¥=p.ln both H*(BU; Zp) and //*(B Im /; Zp) there are defined

Wu classes qn of degree 2n(p - 1) for n > 1. If / > n and

*,: //'(Bt/(/);Zp) -» H'+2'(MU(t);Zp)

is the Thom isomorphism given by *,(jc) = *i/, then a„ = $,"' o rp" o $,(1). We

have that (B/)*(a„) = o„ for n > 1 and

//*(B Im /; Zp) = P{qn I n > 1} ® E{ßq„ \ n > 1}
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as algebras with ^qn) = 2"-o Q¡ ® 9n-t and q0 = 1. Let x„ = BF*(/;(i_1)+1) for

n > 1, so the x„ are primitive. Then H*(B Im J; Zp) = P{q„ \ n > 1} ® £{xn | n

> 1} which is StashefPs splitting of H*(B Im7;Z,,) as Hopf algebras over 31'

since BJ*: P{qn \n> 1} at H*(BO)P>0 and BT*: H*(SU)pfi ai E{xn \ n > 1}.

We begin our investigation with the following useful lemma.

Lemma 89. In the basis of H*(BU; Zp) which is dual to the basis of monomials in

the ak, qn = (a^)* for » > 1.

Proof. Observe that if y G H2n(BU;Zp) and n m 0 mod/» - 1 then ¡f(y)

= 4(y)-y®l-l®yE H*(BUPtQ ; Zp) ® H*(BUpfi ; Zp) implies that y

G H2n(BU)pfi. Hence (a^i)* and qn are in H*(BU)pfi for n > 1 because

a*L, = pp_, = ?, G H^P-^BUp^Zp). The last fact follows from <P,(o,)

= £P'(t/.) = Uxp = $>,«') = '*i(Vi)- Thus> H*(BUpfi;Zp) = F{o„ \n > 1}
= F{(a^_!)* | « > 1} as algebras. Define a Hopf algebra automorphism S of

H*(BUpfS;Zp) by S(o„) = (a^)* for n > 1. We will show below that S is a

homomorphism of 9l-modules. Hence S is the identity map by Theorem 30:

S = 1 + F*0 G because S is an invertible element in Zp[[F$]]. However, if G ¥= 0

then S(qpt) contains Xcf^x) for some / > 1 and 0 ¥= X G Zp when S(qp¡) is

written out in the basis of H*(BU; Zp) consisting of monomials in the Chern

classes. This is clearly absurd since S(qpl) = (ag-X)*- Thus, S is the identity map

and q„ = (<£_,)*.

It remains to show that S is a homomorphism of 2l-modules. Let / be large and

assume that r < (p — l)n. Then as in J. Milnor [20, p. 56] we see that

<P'(q„)U, = &'(qnU,) - 2 SP'iqJíP'-'ÍU,)

= £Pr ° £P"(ÍÍ) - 2 £P'(on)or.,í/,
i=0

lr/p]
= 2 (~\y+J(r -PJÁP -l)n~r+j- l)<P'+»-J(qjU,)

"2 Vtinkr-tU,
;=o

[r/p] r+n-j

= 22   (-\)r+J(r - PJÁP -l)n-r+j- l)iP*(o,)of+n_,_t U,
7=0   k-0

-Z&'ÜnÜr-iU,.
¿=0

From this equation it is easy to prove by induction on n + r that for n > 2,

iP'(q„) when written as a polynomial in the qk does not contain a nonzero

multiple of q"+r as a summand. Hence if n > 2 then neither S ° £Pr(o„) nor

£Pr((a£-i)*) when written as a polynomial in the Chern classes contains a

nonzero multiple of c{r+")(',~1) as a summand. Now we can prove that S ° <P'(q„)
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= <pr o S(q„) for n > 1 and r > 0 by induction on r + n. The assertion is

clearly true if n = 1 or r = 0. If n > 1 and r > 0 then by the induction

hypothesis $ ° S ° £Pr(a„) = ^ o rpr o s(fl/i), and hence S ° <P'(q„) - &>r

o S(<7n) = ap^+^^D for some a G Zp. However, t>(,+,,x/>-i) contains c['+"Xp-D as

a summand so by the above remarks a = 0. Thus, S is a homomorphism of 31-

modules.

Theorem 90. For p an odd prime,

H*(B Im/;Zp) s H*(BUpfí;Zp) ® H*(SU)pfi

as ä'cR'-Hopf algebras. In particular for r > 0 and n > 1,

(1) «(«,) = ((« - /•)(/> - O - hpr - n(p - l))a„_f.

(2) ß;(*„) = (-l)r+1((« - r)(p - \),pr - n(p - 1) - \)xn.r if r < n and

QIM = 0.
Proof. The value of ß*(x„) follows from Corollary 42 and the definition

5F*(/*o,)+1) = x„. We next show that in H*(B Im /; Zp), Qi(qn) is a polyno-

mial in the qk. This will prove that StashefFs splitting is a splitting as <iR'-Yiopf

algebras. We prove our assertion by induction on n and for fixed n by induction

on r. If n = 1 or r = 0 then ß«(a„) = 0. By our induction hypothesis and the

comultiplicative Cartan formula, «^ ° Q'*(q„) is a sum of tensor products of

polynomials in the qk. Hence Q*(qn) is also a polynomial in the qk because all

primitive elements in Hm(B Im J;ZP) for m =■ 0 mod/» - 1 are in P{q„ | n

> 1}. We now see that if (1) is valid in H*(BU; Zp) then this equation is also

valid in H*(B Im /; Zp). We prove (1) in H*(BU; Zp) by induction on n and for

fixed n by induction on r. If n = 1 or r = 0 then ß«(?„) = 0, while QSTx(q„)

= (p — 2,n — p)q{ by Theorem 7 since #„ = (-l)"+1e„(;)_i) modulo decomposa-

bles. Now assume that n - 1 > r > 1. By the induction hypothesis and the

comultiplicative Cartan formula,

Qi(a„) - ((n - r)(/» - 1) - 1,/v - n(/» - l))9n_r = aX>(n-rtp-\)

for some a G Zp. *>(n-iXp-i) = a(*-iXp-0 and> by Lemma 89, q„ = (a^.,)* and

q„-, = (a^Z'i)*. Hence ßr(a(B_pXp_,)) contains aap_i as a summand in Ht(BU; Zp).

Thus, a = 0 by Theorem 8 since (n — r)(/> - 1) > p — 1.

The following is a summary of J. StashefFs computation of //*(Im /; Zp) for

odd primes /> (see [22]). The following diagram commutes and the columns are

fibrations.

U -^     Im/ -£» B£/

PBU        -»    Plm/        ->        FBBC/

BU    -AL*     BlmJ   -***      BBU^SU
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The Eilenberg-Moore spectral sequences which converge to the cohomology of

the fibers of the above fibrations collapse. Thus, H*(lmJ;Zp) = P{r„ | n > 1)

® E{s„ | n > 1} as algebras where r„ E //^^''(Im J; Zp) is defined by rn

= T*(qn) and s„ G //^'»"'(Im/;Zp) is defined by sn = ax*mJ(qn). Hence the

s„ are primitive, and yph) — 2?=o r¡ ® tt-i for « > 1. Clearly, J*(r„) = 0 and

J*(sn) = f*(p-\) f°r " ^ 1. As a consequence of all this, we have that

H*(lmJ;Zp) at H*(BUpfi;Zp) ® H*(U)P^2

as 3l'-Hopf algebras.

Theorem 91. For p an odd prime,

H*(lm J;Zp) ai H*(BUpfi;Zp) ® H*(U)hP.2

as W^R'-Hopf algebras. In particular, for k > Oandn > 1,

Gífe) = (0 - k)(p - 1) - l,pk - n(p - l))rn_k

and

QÍ(sn) - (-l)*((/7 - *)(/» - 1) - \,pk - n(p - 1)K_*.

Proof. We compute Q%(rn) by Theorem 90 and the definition r„ = T*(q„) for

n > 1. j„ is primitive, so ß»(i„) is also primitive, and hence ß»(sB) is a Zp-

multiple of s„_k. Thus, ß»(i„) is determined by applying /* and then using

Corollary 42.

We will now compute the action of the Dyer-Lashof algebra on H*(BBSO).

If p is an odd prime then H*(BBSO;Zp) ai H*(SU/SO;Zp) as 21^-Hopf

algebras, and hence Theorems 68 through 71 are applicable to H*(BBSO;Zp).

We recall some of the work of R. Clough [5] and J. Stasheff [23], on

H,(BBSO; Z2). There is a fibration

SU -** BBSO -*-> B Spin .

Define en E H"(BBSO; Z2) for n > 4 and n ¥= 2k + 1 by en = y*(w„). Clearly

$(en) — 2/Í4 e¡ ® e„_, with the convention e2*+I =0 for k > 2. Define y*

G H2"+x(BBSO;Z2) for n > 1 by requiring that y» be primitive and that

a*(y*n)=/2*-.+,.Then

H*(BBSO; Z2) = E{en \ n > 4,n # 2* + 1} ® E{y* | n > 1}

as algebras and <Pu(y*x) = y*„ for n > 2 where /„ = (2B-1,2''-2,... ,4,2).
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Theorem 92. In H*(BBSO; Z2) for r > 0, n > 4, n ¥* 2* + 1 and m > 1,

ß*(.y*i) = 0 and ß«(e„) = (n — r — \,2r — n)e„_, wi'fA fAe convention ex = 0,

<?2*+i =0fork > 0.

Proof. By induction on m, the Nishida relations and the fact that (PIm(y*)

= y* for m > 2, it is easy to show that ß«(.y*,) = 0 for r > 0 and m > 1.

ß,(eB) is computed by using Theorem 63 and the definition e„ = y*(w„).

Define y„ G H2.+i(BBSO;Z2) for n > 1 by yn = a«(/2»-i+1). Let Zk be the

unique primitive element of Hk(BBSO; Z2) for k odd or k — 2" + 2, k > 4 and

« > 1. Then

H.(BBSO;Z2) = E{y„\n> 1}

® P{Zk | k odd,A: > 4,A: * 2" + 1, or * = 2" + 2,n > 1}

as Hopf algebras.

Theorem 93. In H*(BBSO;Z2) for r > 0, n > 1, k odd, k # 2" + 1, or
k = 2n + 2andk> A,ff(yn) = 0 and ßr(Z*) = (k - \,r - k)Z]- where r + k

= 2''A', A' odd; A = A' and t = r' i/ A' # 2" + 1 /or all n>\ and A' # 1;
A = 2h!andt = i' - 1 i/A' = 2" + Iforsomen > 1; andA = 4andf = r' - 2

i/A' = 1.

Proof. This theorem is obtained by dualizing Theorem 92.

Theorem 94. Q^H^(BBSO;Z2) = [y„\ n > 1} U {Z2.+26+1|0 < a < A}.

Proof. This theorem follows from Theorem 65(b) and 93.

Corollary 95. H,(BBSO; Z2) is an indecomposable ä-Hopf algebra.

Proof. &>'"(y*) = y* for n > 2 and <Pl(y*x) = e4. Furthermore, F{e„ | n

> 4,n # 2* + 1} is an indecomposable 3i-Hopf algebra because H*(B Spin; Z2)

is an indecomposable 3t-Hopf algebra by Corollary 67. Thus, the 3t-Hopf algebra

H*(BBSO; Z2) cannot be decomposed.

8. Proofs of Theorems 5, 6 and 7. The preceding sections have been based on

Theorems 5, 6 and 7 which describe the action of the Dyer-Lashof algebra on

//,(Bt/) and H*(BU). We will prove these theorems in this section. We will give

a second proof of Theorems 5 and 6 in the case /> = 2 which is based on

cobordism theory. As part of our proof of Theorem 7 we will produce an

algorithm for calculating the action of the Dyer-Lashof algebra on H*(BU) (see

Theorem 97). In conclusion, we illustrate this algorithm by computing Q2r(a„) in

//,(B[/; Z2) for r + n < 10. We begin by recalling the action of St0" on P//«(Bt/)

which we then use in proving Theorem 5.
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Lemma 96. In H,(BU)for r > 0 and n > 1,

Öi'fa.) = (r,n-pr- l)V,(^i)

[<P?(pn) = (r,n - 2r - l)vn_r].

Proof. Note that &£(ak) = aax with 0 ¥= a E Zp if and only if k = p and

r = 1 [k = 2 and r = 2] because <Px(cx) = c,p and £P'(c,) = 0 if r > 2

[<P2(cx) = c,2 and <P'(cx) = 0 if r > 2]. Now for all k > 1, of is a summand of

to* and the only monomial summand of p„ that can hit a^~'^lx under ö»r is

(r,n-pr)n/[n - r(p - l)]^-^. Clearly

(r,/i - pr)n/[n - r(p - 1)] = (r,n - pr - 1) mod/».

Proof of Theorem 5. Define Ar,„ G Zp by ßr(to„) = Ar„ *>,,+,(,_„ [ß^ipj

= AfBp„+f] if r and n are positive integers, and let Ar_„ = 0 if r and n are rational

numbers which are not positive integers. There is the Nishida relation

<pi o g'+i = rQ'       [£P»2 o ß*-+* = rQ2r].

Let r = f mod /» with 1 < f < p. Iterate the above Nishida relation p — f times

(r+p-r- l)!/(r - 1)! Q' = i?,1 o • • • o <p¿ o o/+p-'

[rß2' = £P,2 o ß*+*].

Evaluate this identity on to„ to obtain

K^nMP-D = (r - OVfr +F - r - 1)1 W*.^1 • ■ • • • £#(W*-rx*-i))

[^b^ = Ar+1>fliP»2(bn+f+1)].

By Lemma 96,

A,^, - (r - 1.« +/> - F- l)/(« - l,r + /> - f - l)Xr+p.rjl
(*)

[\yi — nK+2-rjil

Let n = « mod /» with 1 < « < /» and write n + p — ñ = rip' with n'#0

mod /». We now show that if 5 > 1 and p divides s then

(**) K* = K/it* •

Let B, the Bott map, be given as the composite map

H^BU) -*» HniQSU) -»* /WSl/) -*• /Wt/) -*> H^BU)

for fc > 1. Recall that B(aJ = (-l)"pB+„ and hence B(p„) = -npn+1. Since
Q' o B = B o Q',
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(-ir'(n +/» - ñ - l)!/(n - l)!XMton+j(p-1)+p-B

■i.í(^Wd)
= B o ... o Bß'(p„)       [B » ... o B o ß2'(p„)]

= (- ir1 (n + /» - ñ - l)!/(n - 1)! ß'(p„+,_,,)       [ß2'(pB+2_„-)]

= (-l)R+,(n + p - ñ - l)!/(n - \)\X¡Mp_nt>n+Áp_l)+p_n.

Thus, Xw = XJfB+p_Ä = \î/p)v since n+p-ñ = p'n' and p„y = p£'. Thus, (**)

has been proved. We combine (*) and (**) to prove Theorem 5 by induction on

r + n. The case r = n = 1 is clear. Assume that Theorem 5 is valid for ß' (p„<)

if r' + ri < r + n. (*) reduces the computation of \f)B to the computation of

Ar+P_r„. However, (**) is applicable to Xf+P_^, and hence we know \+p-r¡H by the

induction hypothesis. Thus,

x (-iy-»>-*(r-l)\(n+p--r-l)\
r*      (n - \)\(n + p - ñ - 1)! (r - f - n + ñ)! '

If f = n then this equation becomes Xr¡n = (-1)' "(n - l,r - n). If r > n then

A,„ = (-iy-'+B-H(n - l,r - n) "ff' (r - n - i)/u (n + p - ñ + i)
1-0 ' 1=1

= (-ir>-l,r-n)

since for 0 < i < f - n - 1, r - n - i = -(n + p - ñ — (r - ñ — i)) mod/».

If f < ñ then ß'(pB) = C o a o ... o 5(aB.s) = B » ... o B ° ß'(aB_s) = 0

since deg ßr(a„_B) = -2f mod/> [Q2'*1^) = ß^+Hf2) = 0]. Furthermore, if

r < ñ then (n — l,r - n) = 0 mod p. This completes the induction proof of

Theorem 5.

I am grateful to I. Madsen for noticing that the inductive procedure for

calculating the X,j, which is given by (*) and (**) leads to binomial coefficients.

Proof of Theorem 6. Let Q'(a„) = ar,Ban+r(p-i) + decomposables [ß^aj

= arjlan+r + decomposables] for some a,iB G Zp. Then

«„H)"W-iHi = B o ß'(a„) [B o Q»(an)] = (-l)"ß'(pB+1)

[ß^OWi)] = (-irV' - n - l)pB+r(p-1)+1.

Hence a,,„ = (- l)r+n+l (n, r - n - 1).

Alternate proof of Theorems 5 and 6 when p = 2. By T. torn Dieck [6, Theorem

17.2], 9(P(r,n)) is the coefficient of w' in

f 2 wkQk+n o 9(RPn)\ fl + 2 a,"']
-r-i
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where 9: 9Î* -» H+(BO;Z2) is the normal characteristic number map, w is an

indeterminate of degree 1 and P(r,ri) is the Dold manifold defined to be a

suitable quotient of Sr X CF". Thus,

9(P(r,n)) = Qr+K o b\RP") + decomposables.

By R. Thorn [25, Chapitre IV, §7], e(RPu) = e^ + decomposables, and by A.

Dold [7], 0(P(2r,2ri)) = (n,r — n — l)e2lI+2r +decomposables. Applying pm:

Hm(BO; Z2) -» //»(BÍ/; Z2) we see that modulo decomposables,

(n,r - n - \)aH+, = v,((n,r -n- De^) = r, o 0(p(2r,2«))

= v, » ß2^2" » »(BF2") = ß2"*2" o ^(ej,) = Q2r*2"(an).

This proves Theorem 6, and the above proof that Theorem 5 implies Theorem 6

can be reinterpreted to show that Theorem 6 implies Theorem 5.

We next produce an algorithm for computing Q'(an) [ß2^«)] by induction on

n + r(p — 1) and for fixed n + r(p — 1) by induction onn. In this procedure, the

coefficients of the monomial summands of Q!(aH) are determined by induction

on their product filtration degree. Theorem 5 gives us the leading coefficient, the

comultiplicative Cartan formula and the induction hypothesis gives us the

coefficient of any decomposable monomial except for those of the form at4,

e > I, d > I. The coefficients of such monomials can be determined by an

appropriate Nishida relation and the induction hypothesis. This algorithm will

employ eight properties of the <=/?-action on //»(Bt/). This observation will be

exploited to prove Theorem 7.

Theorem 97. FAere is an algorithm for computing Qf(an) [ß2^,,)] by induction

on n + r(p — 1) and for fixed n + r(p — 1) by induction on n which uses the

following properties that the ß' satisfy on Hm(BU).

(a) Q': HU(BU) -> H^^BU) [O2". HU(BU) -» Hu+2r(BU)] are linear

maps for r > 0, n > 0.

(b) Qf(a„) = 0 [Q-»(aH) = 0] if n > r > 0.
(c) FAe Qf satisfy the multiplicative Cartan formula on H+(BU).

(d) FAe Qf satisfy the comultiplicative Cartan formula on //»(BÍ/).

(e) Qr(an) - ap [Q^aJ = a2]for n>\.
(f) FAe Q' satisfy the Nishida relations on //»(Bi/).

(g) ß'(*>„) = H)r+> - \.r - n)pn+r{p_x) [ß^(pn) - (n - ï,r - n)tin+r]for r

> Oandn > 1.

(h) Qr(an) = (-l)'+n+l(n,r-n- \)anMp_x) modulo decomposables [ß*(«J

= (n, r - n - l)an+r modulo decomposables] for r > 0 and n > 1.

Notes. (1) By the proofs of Theorems 5 and 6, this theorem is valid if conditions

(g) and (h) are replaced by (g ') Qr ° B = B o Q for all r > 0.

(2) The theorems of §§3 through 8 are valid for any homology operations Qf,

r > 0, which are defined on the spaces under consideration in those theorems

and
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(i) satisfy (a) through (h) (or (a) through (f) and (g')) above,

(ii) are natural with respect to the suspension maps defined on the homology

of the classical groups, and

(iii) are natural with respect to the canonical maps between the homology of

the various spaces discussed in these theorems.

Proof. By (d), ß'iai) = af [Q2(ax) = a2]. Now assume our induction hypoth-

esis for computing Q!(an) [ß>„)]. Write Q'(an) = 2j* ^M [ß^(aB)

= 2m tfflM] where ¿Jj") G Zp and the sum is taken over all monomials M in

a¡ of degree 2n + 2r(/> - 1). Let n + r(p - 1) = e/»* with d > 0, e > 1 and

e # 0 mod p. There are six cases for determining the {j¡J">.

Case 1. M is arbitrary and n = 1.

a, = p, so ß'(a,) = (-ir't)r(p_I)+1 [ß>,) = p,+1] by (g).

Case 2. M = a^^ and n is arbitrary.

By (h), €fc"> = (-l)r+n+i(n,r - n - 1) in this case.

Case 3. M = aepd-f', 1 < / < d and if / = d then e cannot be written as

c/»'+1 + 2i-o (P - OF1 for any 1 < c < p - 1 and t > -1.

Let pg be the smallest power of p whose coefficient is not p — 1 in the /»-adic

expansion of ep^¡. In particular, p* = 1 if / < d. Now £üj"> can be found by

considering the coefficient of aep¿-/_pl(p_|) in the Nishida relation

vr1 ° ör(aj = 2 H)i+r(/>*+/ - /">(/> -1) - pí+/+' + po

•(/.n-pOß'-^'^ip-i))

[£7,2'+/+' » (¿»fa) = 2 (2*+> - 2i,r - 2*+'+1 + 2i)

• (i,n - 2«)ß2-2'+'+,+2<(aB_,)].

Case 4. M is arbitrary and if d > 0 then e cannot be written as c¡f+x

+ 2i-o (/> - IV for any 1 < e < /» - 1 and / > -1.
We calculate ijjj"* by induction on the product filtration degree of M, written

PFD(Af). In Case 2 we computed í%*> when PFD(M) = 1. Now assume that

PFD(M) > 1 and that ££•"> is known if ?FD(N ) < PFD(M). If M = a^/'for

some 1 < / < d then we found £j¡J*> in Case 3. If M # aepd-f' for all 1 < / < d

then i/^M) contains a summand M' ® M" with deg M' > 0, deg M" > 0 and

PFD(M') + PFD(M") = PFD(M). We can now evaluate £J>n> by considering

the coefficient of M' ® M" in the comultiplicative Cartan formula applied to

Qr(an) [ß2^,,)]. We obtain

2 2 Q'(aj) ® 0'-'(<v,) = 2 iWMM)
1=0 j-0 M

[2 2 &(aj) ® Q2"»^) = 2 Îfc-'MOI.
L<=oy=o m A

Case 5. M is arbitrary and d > 0, e = c/»'+l + 2,'-o (P ~ IV witn ! ^ c

< /» - 1 and t > 0.
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Define a ZD-basis B of H2/H.2r(p-i)(BU) to consist of X>f = N0 and all the

monomials in the a, of degree 2« + 2r(p - 1) except af. Let Q'(a„)

— 2jv6S ftv^ [ß2^,,) = 2jvefl /%#] where /iy G Zp. Use the method of Case

4 to find all of the fiN except for ¡iNo. Let (« + r — /»^H/* - 1) = gph with A > 1,

g > 1 and g ^ 0 mod/». Then we can determine ¡iN(¡ by considering the

coefficient of af in the Nishida relation

V? ° Q\an) = 2 HX+V - Pi,r(p - 1) - /+1 + F«)

■ (i,n -p^Q'-^^-np-x))

[<p2^ 0 ß2,(iJn) = 2 (2rf _ 2/,r - 2d+x + 2i)(i,n - 21)0^-^ ^(a^)].

Case 6. M is arbitrary and d > 0, 1 < e < /».

The £j£n) for A/ not equal to M0 — af can be found by the method of Case 4.

Let /»* be the largest power of /» that divides r. Use the methods of Cases 1

through 5 to determine è,%+ph/i) for all M = ak^ • • • a'¿f such that 1 < e,

< p - 1, d > d¡ > 0, k¡ > 1 and all the ordered triples (di,e¡k¡) are distinct.

Observing that (ph,r(p - 1) — /»*) ̂  0 mod /», we find £fo0n) by considering the

coefficient of af in the Nishida relation

<pf o Q"p\an) = -(/»*, r(p - I) - p")Q'(an) + Q'^1 (an.^Hp_x))

W* ° ö*+2*>.) = ß>J + ß2^2^*-.)]

where the second summand is omitted if A = 0.

Proof of Theorem 7. Define Z,-linear maps B£ : H2n(BU) -* //^«'-»(Bt/)

for n > 0 and s > 0 by B¿(e„) = (-1)î+"(/»j - «,» - s(p - 1) - lK-^p-i) if
($,«) =^ (0,0) and Bj(l) = 1. Extend the domain of definition of these opera-

tions to all of H*(BU) by requiring that the B£ satisfy the multiplicative Cartan

formula. Let Rs = Hom(Bi,l) for s > 0. We will show that R' = Q' [Rs

= ß2j] as operations acting on //»(BÍ/) by proving that the R' satisfy properties

(a) through (h) of Theorem 97. This will prove Theorem 7. (a), (b), (d) and (g)

are immediate consequences of the definition of the R'.

(c) To prove that the comultiplicative Cartan formula is valid for the B¡ it

suffices to show that for ps > n > 1,

* ° *i(0 = 22 RUcj) ® Br'fo-y)-
,=o >=o

That is, we must show that

n-s(p-\)

2    (ps-n,n-s(p-l)-l)ch®c„_s(   xh.h

= 2 î(pi-j,j-i(p-D-\)
¿=0 y=0

• (ps -pi- n +j, n -j -(s- i)(p - 1) - 1)

" CJ-i(p-\) ® Cn-j-('-i*p-\)-
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This follows from the following computation:

2     ((pi -JJ - i(p - OK/« -pi-n +j,n -j - (s - i)(p -0-0
j-i{p-\)-h

- % 0 - 1)G» '-".-", V „)   ™-g Notation * 0)

-irr')e;,--/-v) —*-<-»

*=P£n+i \       A:       )\  ps-n-k   )

by Notation 54 (2)

-<-«>-■( V."")
by Notation 54 (3) and the definition (%) = 0 if A < 0

= (-1)**"(>* - n,n - s(p - 1) - 1)   by Notation 54 (2).

(e) We prove that R"(an) = a% by induction on n > 1. Clearly F'(a,) = a,p

since ai = p! and a/" = pp. F"(aB) = a¡¡ + apv for some a G Zp by the comul-

tiplicative Cartan formula and the induction hypothesis. By definition, a„

= (c")* and pBp = c*r Hence a = 0 since, for n > 1, /{¡¡(c^) does not contain

a nonzero multiple of c" as a summand.

(f) We show by induction on n > 1 that the B¡ satisfy the Nishida relations

when these relations are evaluated on c„. This assertion implies (f) by the

multiplicative Cartan formula. The Nishida relations are clearly true modulo

decomposables because the B¡ and the QX are equal modulo decomposables.

Since the Nishida relations do not raise degree in cohomology, there are no

nontrivial Nishida relations on c„ for 1 < n < p - 1. If n - (s - k)(p — 1) = 1

then

Ri » <pk(Cn) = (-\r\k,n -k- l)c, = (-\)k(k,s(p - 1) - pk)RS*(cn)

[Rl o çp*(c) = (k,n-k- 0c, = (A:, s - 2k)R2'-2k(cK)].

lfn=p then the only nontrivial Nishida relation on cp which is not of the above

form is

B.«' o çpP(Cp) = cf = íP1 o B«(c,)

[R2 o cp*(c2) = c? = <P2 » F2(c2)].
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Now assume that n > p and that all Nishida relations are valid on cm for m < n.

By the induction hypothesis and the comultiplicative Cartan formula, if s > k

then

/?« o cpk(cn) - 2 (-\)k+i(k-pi,s(p - l)-pk+pi)<P< o F«-*+'(cn)

= «Pn-(a-kXp-l)

[Ri o £P2*(cJ - 2 (A: - 2i,s - 2A: + 2i)<P» ° ÄF*+*(c) = apn+k.s]

for some a G Zp.lî n - (s — k)(p — 1) is not divisible by p then p^^t^^i) is

indecomposable, and hence o = 0 in this case. If n — (s — k)(p — 1) > /> then

a = 0 by Lemma 23 since ap,,.^^,) has ac¡'~(,"*X''~,) as a summand. If

n — (s - k)(p — 1) = p then by the reasoning of the preceding cases, all the

Nishida relations are valid when they are evaluated on cn+i for 1 < / < /» - 2, or

for i = /» — 1 if « + /» — 1 — (s — A:)(/> — 1) ¥= p. Hence

ÍW o çp*(c„+,) - 2 (-i)k+i(k-pi,(s + i)(/» - i) -p(k - 0)3»

o Ri-k+í+1(cn+p)}

= acf ® c, + ac. ® c(

\${R?X ° S*2*^) - 2 (A - 2/,s + 1 - 2k + 2i)<Pv ° R¡Tk+i+l(cH+2)}

= ac2 ® Ci + acx ® c2].

Thus for some y G Zp,

/?¡+1 ° 0»*(<W) - 2 (-0*+,(A: -/»«,(s + 1)(/» - 1) -/»(A: - i))<P<

o Rïk+<+*(cn+p)

= acf+1 + yp^,

[ÄJ+1 o <P2*(cn+2) - 2 (k - 2i,s +l-2k + 2i)<P* o Rrk+i+l(cn+2)

= ac\ + yp3].

However, y = 0 because pp+1 is indecomposable. Hence a — 0 by Lemma 23

since pp+i has c{*x as a summand. Of course, for p = 2 use of the Wu formula

simplifies this proof,

(h) We prove the following which is equivalent to (h):

(*) RK^p-v+n) - (-0n+I+W - n - l)p„.

Our proof is by induction on n > 1 and for fixed n by induction on r > 0. If

0 < r < n then both sides of (*) equal zero. Now assume the induction

hypothesis, and assume that r > n. If n ^ 0 mod/» then p„ = (-l)n*lncn
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modulo decomposables. Hence (») follows from the definition of BJ in this case.

If « - 0 and s # 1 mod/» then B. o !Px(bnH¡_x){p_x))=(s - l)Rïx(p^,.,^,,)

[Ri o <P2(rw,) - B»-'(tW.)]. Hence

-(s - \)Ri(p„Mp-x)) = (-irs(s - 1)0,5 - « - 2)p„.

Thus since j - 1 = i - n - 1 mod/», BíQv^,,) - (-l)"*'+l(n,s -n- l))pm

and (*) is correct in this case. If n = 0 and 5 = 1 mod /> then

ÄiÖW<,-i)) = (* - Mí* + P - 2)! AT*-1 • *>'.&l(Pn+*p-i))

[= *Í+I « íP2(f„+í)]

= JtT'-'GWr-iX,-.)) - (-irn+,(«.5 +F - « - 2)P„

= (-l)"+,+1

(n,s - n - \)x>„   by the induction hypothesis

since X>nMf^p-\\p-\) = P'-Kz+ix^i) for « = F"' and í = ps' + 1 and (n',s' - ri)

= (n,s - n + 1). This completes the proof of (*).

We have two methods for computing the Dyer-Lashof operations on the a„ in

//»(Bl/). We know how these operations act on the basis of Ht(BU) which

consists of the dual basis of the monomials in the Chern classes. Then we can

pass to the basis of monomials in the a„ by using the techniques of R. Van de

Velde [27]. This procedure, however, is prohibitively difficult. An alternative

method for calculating the Q'(an) is given by Theorem 97. It is an easy algorithm

to use. In using either of these two methods, Theorem 8 reduces the work

involved substantially. The following is a list of Q2r(a„) in H+(BU;Z2) for

1 < n < r and n + r < 10. Note that this list translates readily into a computa-

tion of Q*'(bn) in //»(BSp;Z2) and of ß'(en) in H%(BO;Z2) for 1 < n < r and

n + r < 10. More generally, the two methods of computation described above

also apply to //»(BSp) and to /7,(BO).

Q2(ax) = a2

Q*(ax) = a3 + a2ax + a?

Q*(a2) » a\

&(ax) = af

Q6(a2) — a5 + a4ax + a3a2 + a\ax

Qs(ax) — as + a4ax + a3a2 + a3af + a\ax + a2a\ + a\

Q*(a3) - a\

Qs(a2) — a6 + a5ax + a4a2 + aAax + a3a2ax + a\ + a\a2
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Qw(ax) = a23 + a22a2 + af

ß8(a3) = a-, + a6a] + a5a2 + a4a3 + a\ax

ß'°(a2) = asa2 + a4ax3 + a3a2a2 + a\a\

Qn(ax) = a7 + a6ax + asa2 + a4a3 + a5a2 + a\ax + a3a\ + a4a\

+ a3a2a\ + a\ax + a3af + a2a\ + aj

Q\a4) = a\

ß10(a3) = a5a3 + a6a2 + asa2ax + a4a3ax + a\a2 + a\a\

Qn(a2) = asa3 + asa2ax + a4a3ax + a\a2 + asaf + a4a2a2

+ a\ + a4af + a3a2af + a\a2 + a\af

ß'4(a,) = af

ß10(a4) = a9 + a%ax + a-,a2 + a6a3 + a5a4 + a\ax

Q}2(a3) — a6a3 + a6a2ax + asa3ax + asa\ + a4a3a2 + a\

+ a6af + asa2a2 + a4a3a\ + ajaf

ß,4(a2) = ag + asax + a7a2 + a6a3 + a5a4 + a*,a\ + a\ax

+ a4a\ax + a3a\ + asaf + a\ax + a4a\ + a3a2af + a\a\

Ql6(ax) = a9 + atax + a7a2 + a6a3 + asa4 + a7a} + asa\ + a\ax

+ a| + aba\ + a5a2af + a4a3a\ + a4a\ax + a3a\ + a\a2ax

+ a5af + a\ax + a3a2af + a4a\ + a3af + a\a\ + a2ä[ + a\

ß'°(a5) = ai

Qn(a4) = ax0 + a9ax + asa2 + a6a4 + asa2 + a7a2ax + a6a3ax

+ a5a4ax + a\a2 + a\a2

ß14(a3) = asa3a\ + a\a\ + a6af + asa2a\ + a4a3a\ + a\a2a\ + ajaf

ß16(a2) = a10 + a9ax + a%a2 + a6a4 + ataf + a7a2ax + a6a\ + a6a3ax

+ asa4ax + a\a2 + aia3ax2 + asa\ax + a\a\ + a4a\

+ a5a2ax3 + a4a3a\ + a4a\a\ + a\a2a\ + a3a\ax + a\

+ asaf + a4a2af + ajafa3a2lax3 + aja2 + a4af + a3a2axs + a\ax6

Qn(ax) = ax\ + aja} + a\a\ + a|af + a\a\ + a\a\ + a\°.
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