
K(1)-LOCAL E∞ RING SPECTRA

M. J. HOPKINS

1. Certain K(1)-local spectra

Let C be the topological model category of K(1)-local spectra.
Some useful examples of objects of C are p-adic K-theory, K, the
Adams “summand” B of K, and the sphere S. At the prime 2, the
spectrum B is KO, and is not a summand of K.

The group Z×p of p-adic units acts on K via the Adams op-
erations. If λ is a p-adic unit we will denote ψλ : K → K the
corresponding Adams operation. Let µ ⊂ Z×p be the maximal fi-
nite subgroup. When p is odd, µ is the group of (p− 1)st roots of
unity, and when p is 2 it is the group {±1}. The spectrum B is the
homotopy fixed point spectrum of the action of µ on K. The action
of the Adams operations on K restricts to an action of Z×p /µ ≈ Zp
on B.

2. Homotopy groups of K(1)-local spectra

Let g be a topological generator of Z×p /µ, and

ψg : B → B

the corresponding map. For any object X of C, there is a fibration

X → B ∧X (ψg−1)∧1−−−−−−→ B ∧X.
This makes it easy to compute the homotopy groups of X in terms
of the homotopy groups of B ∧X. Take for example X to be the
sphere spectrum. The action of ψg on π0B = Zp is trivial. This
means that the element 1 in the rightmost π0B comes around to
give a non-trivial element

ζ ∈ π−1S
0.
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We will see that ζ plays an important role in things to come.
Though not mentioned in the notation, the element ζ depends on
the choice of generator g.

Given an element f ∈ π0K ∧ K and λ ∈ Z×p , let f(λ) be the
element of π0K = Zp which is the image of f under the map
induced by the composite

K ∧K ψλ∧1−−−→ K ∧K → K.

Thinking of λ as a variable, this defines a map

π0K ∧K → Homcts(Z×p ,Zp).

Proposition 1. The above map is an isomorphism. It gives rise
to isomorphisms

π∗K ∧K ≈ Homcts(Z×p , π∗K)

π∗K ∧B ≈ Homcts(Z×p /µ, π∗K)

π∗B ∧B ≈ Homcts(Z×p /µ, π∗B).

With respect to the above isomorphism, the actions of ψg ∧ 1
and 1 ∧ ψg are given by

(ψq ∧ 1 f)(λ) = f(λg)

(1 ∧ ψq f)(λ) = ψqf(g−1λ).

Let

Mζ = S0 ∪
ζ
e0

be the mapping cone of ζ, and fix a generator g of Z×p /µ. By
definition, we have a diagram

S0 −−−−→ Mζ
δ−−−−→ S0

∥∥∥ ι

y
y1

S0 −−−−→ B −−−−→
ψg−1

B

The maps

1 ◦ δ, ι : Mζ → B
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form a basis of ho C(Mζ , B). From the above diagram it follows
that

ψgι = ι+ 1 ◦ δ.
This will be more useful when written in homology. Thus define

{a, b} ⊂ π0B ∧Mζ

by

〈ι, a〉 = 1
〈1 ◦ δ, a〉 = 0

〈ι, b〉 = 0
〈1 ◦ δ, b〉 = 1.

One easily checks that

Lemma 2. Under the map

π0B ∧Mζ → π0B ∧B → Homcts(Z×p /µ,Zp)

the element a goes to the constant function 1, and the element b
goes to the unique homomorphism sending g to 1.

3. The category of E∞ ring spectra

The topological model category of E∞ ring spectra in C will be
denoted CE∞ . The spectra K have unique E∞ structures, and the
Adams operations act by E∞ maps. This gives the spectrum B an
E∞ structure as well.

Let BΣp+ be the image in C of the unreduced suspension spec-
trum of the classifying space of Σp. There are two natural maps

BΣp+ → S0.

One is derived from the map Σp → {e} and will be denoted ε. The
other is the transfer map

BΣp+ → S0

and will be denoted Tr.

Lemma 3. The map

BΣp+
(ε,Tr)−−−→ S0 × S0

is a weak equivalence in C.
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Define maps in ho C
θ, ψ : S0 → BΣp+

by requiring

Tr(θ) = −1
(p−1)!

ε(θ) = 0
Tr(ψ) = 0
ε(ψ) = 1.

The map B{e} → BΣp gives rise to a map

e : S0 ≈ B{e}+ → BΣp+.

It follows from the definition that

ε ◦ e = 1,

and from the double coset formula that

Tr ◦ e = p!.

It follows that

e = ψ − pθ(4)

Let E ∈ CE∞ , and x ∈ π0E. The E∞ structure associates to x
a map

P (x) : BΣp+ → X

with the property that

P (x) ◦ e = xp.

We define operations

θ, ψ : π0E → E

by

θ(x) = P (x) ◦ θ ψ(x) = P (x) ◦ ψ.
In view of (4) we have

ψ(x)− xp = p θ(x).

Thus the operation ψ is determined by θ. One easily checks that
ψ is a ring homomorphism, and that θ does what it has to so that
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the above equation will remain true:

θ(x+ y) = θ(x) + θ(y)−
p−1∑

i=1

1
p

(
p

i

)
xiyp−i

θ(x y) = θ(x)θ(y) + θ(x)yp + θ(y)xp.

Since the Adams operations are E∞ maps, they commute with
the operations ψ and θ when acting on

π0K ∧R.

4. Some algebra

We now work in the category of p-complete abelian groups, and
we want to consider comutative algebras with operations θ and
ψ as described above. Let’s call them Frobenius algebras (even
though this collides with another use of the phrase). I think the
forgetful functor from Frobenius algebras to p-complete abelian has
a left adjoint. I should also check that the category of Frobenius
algebras has limits and colimits.

In any case, there is a free Frobenius algebra on one generator.
The underlying ring is

Zp[x, x1, x2, . . . ].

One defines θ by setting θ(xi) = xi+1 (θ(x) = x1), and extending it
to the whole ring by requiring that pθ(x) + xp be a ring homomor-
phism. One needs to check that this works, and it does. We’ll call
the free Frobenius algebra on one generator x, T{x}. The following
result plays an important role in everything we do.

Theorem 5 (McClure). For any K(1)-local E∞ ring spectrum E,
the natural map of Frobenius algebras

E∗ ⊗ T{x} → π∗E ∧ T{S0}
is an isomorphisms.

There is another, perhaps more useful description of this free
algebra. Let W = Zp[a0, a1, . . . ] be the p-completion of the Witt
Hopf algebra. The classical result says that if one defines elements
wi ∈W by

wn = ap
n

0 + pap
n−1

1 + · · ·+ pnan,
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then W has a unique Hopf algebra structure for which the wi are
primitive. One defines ψ by ψ(wi) = wi+1, and checks that this
extends uniquely to a Frobenius structure on W. This is the map
which co-represents the classical Frobenius map.

Define a ring homomorphism

Zp[w0, w1, . . . ] → Zp[x0, x0, . . . ]

by sending w0 to x = x0, and requiring that it be compatible with
the map ψ.

Lemma 6. The above map extends uniquely to an isomorphism of
Frobenius algebras

W→ Zp[x0, x1, . . . ].

The proof of the above lemma makes use of the following result
of Dwork:

Lemma 7. Let A be a ring with a ring homomorphism φ : A→ A
satisfying

φ(a) ≡ ap mod p

(thus if A is torsion free, then A is a Frobenius algebra). Let
w0, w1, . . . be a sequence of elements of A. In order that the system
of equations

a0 = w0

ap0 + pa1 = w1

ap
2

0 + pap1 + p2a2 = w2

ap
n

0 + · · ·+ pnan = wn

have a solution, it is necessary and sufficient that for each n

wn ≡ φ(wn−1) mod pn.

This gives the map. The isomorphism follows easily from the
fact that, modulo indecomposables,

wn = pnan

ψnx = pnxn.
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This gives the free Frobenius algebra on one generator the struc-
ture of a Hopf algebra. We knew it had one anyway, since it was
free.

5. Continuous functions on Zp
Another important example of a Frobenius algebra is the ring

C of continuous functions

Zp → Zp,
with ψ(f) = f . The point of this section is to describe a small
projective resolution of C.

Each p-adic number λ can be written uniquely in the form

λ =
∑

i≥0

αip
i

with each αi = αi(λ) equal to 0 or a (p − 1)st root of unity. The
αi are continuous functions from Zp to Zp, and satisfy

αpi = αi.

For i < n, the αi can be regarded as functions from Z/pn → Zp.

Proposition 8. For each m,n, the map

Z/pn[α0, α1, . . . , αm−1]/(α
p
i − αi) → Homcts(Z/pm,Z/pn)

is an isomorphism.

Corollary 9. The map

Zp[α0, α1, . . . ]/(α
p
i − αi) → Homcts(Zp,Zp)

is an isomorphism.

Proof of Proposition 8: When m = 1 the injectivity follows from
the linear independence of characters (of µp−1), and surjectivity
follows from the fact that both groups are finite of the same order.
For the general case, note that for finite (discrete) sets S, and T ,
the natural map

Homcts(S,Z/pn)⊗Homcts(T,Z/pn) → Homcts(S × T,Z/pn)
is an isomorphism. Apply this to the (set-theoretic) isomorphism

Z/pm
Q
αi−−−→

∏
({0} ∪ µp−1) .
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Lemma 10. Under the map of Frobenius algebras

ι :W→ Homcts(Zp,Zp)

sending a0 to the identity map, one has

ι(ai) ≡ αi mod p.

Proof: This map sends each wi to the identity function. To work
out the values of ai mod p we work by induction on i. Suppose
we have proved the result for i < n. The inductive step is provided
by the congruence

wn = ap
n

0 + pap
n−1

1 + · · ·+ pnan mod pn+1.

Since for i < n, we have

ai ≡ αi mod p

it follows that

ap
i

i ≡ αp
i

i = αi mod pi+1,

and so

pn−iap
i

i ≡ pn−iαi mod pn+1.

Solving for an then gives the result.

Map

T{x} → C

by sending x to the identity map Zp. The element ψ(x) − x then
goes to zero.

Lemma 11. The commutative diagram

T{y} y 7→0−−−−→ Zp

y 7→ψ(x)−x
y

y
T{x} −−−−→ C

is a pushout square in the category of Frobenius algebras. The left
vertical map is étale. .
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6. Structure of B

Define Tζ by the pushout (in K(1)-local E∞ ring spectra)

TS−1 ∗−−−−→ S0

ζ

y
y

S0 −−−−→ Tζ.

By definition of ζ and the fact that B is E∞, there is a canonical
map

Tζ → B.

Since B ∧ ζ is null, we have

π0B ∧ Tζ = T{b},
where b was defined earlier. The same thing holds with B replace
by K, only in that case, the odd homotopy groups are zero. Under
the map of Frobenius algebras

π0K ∧ Tζ = T{b} → π0K ∧B = Homcts(Z×p /µ,Zp)

the element b goes to the unique abelian group homomorphism
sending g to 1. Let’s use this homomorphism to identify Z×p /µ
with Zp and hence π0K ∧B with Homcts(Zp,Zp) After doing this,
we find that b maps to the identity map of Zp.

Now consider the element ψ(b)− b. This is fixed under ψg, since

ψg(ψ(b)− b)) = ψgψ(b)− ψg(b)

= ψψg(b)− ψg(b)

= ψ(b+ 1)− (b+ 1) = ψ(b)− b.

Lemma 12. The maps

π∗K ∧ Tζ (ψg−1)∧1−−−−−−→ π∗K ∧ Tζ
π∗B ∧ Tζ (ψg−1)∧1−−−−−−→ π∗B ∧ Tζ

are surjective. The map

π∗Tζ → π∗B ∧ Tζ
is therefore a monomorphism, with image the invariats under ψg.
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We therefore have a unique element f in π0Tζ whose image in
π0B ∧ Tζ ≈ π0K ∧ Tζ is ψ(b)− b. This leads to the diagram

TS0 ∗−−−−→ S0

f

y
y

Tζ −−−−→ B.

Our main result is

Proposition 13. The map K∗f is étale. The above diagram is a
pushout in CE∞ .

7. K(1)-local E∞-elliptic spectra

We first recall the geometric interpretation of the operation ψ.
In general, an E∞ structure on a complex oriented cohomology
theory E gives the following structure. Given a map

f : π0E → R

and a closed finite subgroup H ⊂ f∗G, one gets a new map

ψH : π0E → R

and an isogeny f∗G → ψ∗G with kernel H. When the formal
group is isomorphic, locally in the flat topology, to the formal mul-
tiplicative group, one can take f to be the identity map, and H
the “canonical subgroup” of order p. Since it is so canonical, it is
invariant under all automorphisms of G, and one doesn’t even need
a formal group in this case.

An elliptic spectrum is a ring spectrum E with πoddE = 0, and
for which there exists a unit in π2E, (hence E is complex orientable
and we get a canonical formal group G over π0E), together with
an elliptic curve over π0E and an isomorphism of the formal com-
pletion of this elliptic curve with the formal group G.

An E∞ elliptic spectrum is an E∞ spectrum E which is elliptic,
and for which the isogenies described above come equipped with
extensions to isogenies of the elliptic curve.

Suppose that E is a K(1)-local E∞ elliptic spectrum with

π1K ∧ E = 0
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(this is automatic if π0E is torsion free). Then the sequence

π0E → π0B ∧ E (ψg−1)∧1−−−−−−→ π0B ∧ E
is short exact. There is therefore an element b in π0B ∧ E with
ψgb = b + 1. Such a b is well-defined up to translation by an
element in the image of π0E. Here is another description. Choose
an extension of the unit to a map

ι : Mζ → E.

The map ι is unique up to translation by an element in π0E. Now
look at the image of the element b ∈ π0K ∧Mζ in π0K ∧ E. This
class, which we shall also call b is well-defined up to translation by
an element in the image of π0E. The fact that it satisfies ψgb = b+1
follows from the commutative diagram

π0B ∧Mζ
(ψg−1)∧1−−−−−−→ π0B ∧Mζy

y
π0B ∧ E −−−−−−→

(ψg−1)∧1
π0B ∧ E.

Suppose we have chosen such a b. Since ψ and ψg commute (ψg
is an E∞ map) one easily checks that ψ(b) is another such element.
It follows that ψ(b)− b lies in

π0E ⊂ π0B ∧ E.
We are interested in choosing such a b as canonically as possible,

and looking at the element ψ(b) − b. This will be the obstruction
to making an E∞ map from B to E, but it also tells us quite a bit
about the E∞ structure of E. Since the map

π0B ∧ E → π0K ∧ E
is an isomorphism, it suffices to make this calculation in π0K ∧E.

Let’s first do this at the prime 2. Let c4 ∈ π8E be the normalized
modular form of weight 4. The q-expansion of c4 is given by

c4 = 1 + 240
∑

n≥1

σ3(n)qn,

where

σ3(n) =
∑

d|n
d3.
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Let g ∈ Z×2 be an element which projects to a topological generator
of Z×2 /{±1}. Let u ∈ π2K be the Bott class. We have

g4 ≡ 1 mod 16,

and checking the q-expansion gives

u4 ≡ c4 mod 16.

Now consider the element

b = − log(c4/u4)
log g4

,

where

log(1 + x) =
∑

n≥0

(−1)n
xn+1

n+ 1

is regarded as a 2-adic analytic function. Then, since ψgc4 = c4 (it
is in the image of π8E), and ψgu4 = g4u4, we have

ψgb = − log(c4/g4u4)
log g4

= − log(c4/u4)
log g4

+
log g4

log g4

= b+ 1,

so b is an Artin-Schrier element.
Now let f = ψ(b) − b. The element f is a a modular function

(since ψgf = f), and so is an element of

Z2[j−1],

where j = c34
∆ is the modular function.

Lemma 14. The map

Z2[f ] → Z2[j−1]

is an isomorphism.

Proof: It clearly suffices to do this modulo 2.
Working mod 2 we have

b ≡
∑

n≥1

σ3(n)qn mod 2
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Writing

n = 2m0pm1
1 . . . pmk

k

One easily checks that the number of divisors of n is

(1 +m0)× · · · × (1 +mk),

and that the number of odd divisors of n is

(1 +m1)× · · · × (1 +mk).

It follows that σ3(n) is even unless n is the product of a power of
2 and an odd square. This gives

b ≡
∑

m,d≥0

q2
m(2d+1)2 mod 2,

and so

ψ(b)− b ≡
∑

d≥0

q(2d+1)2

= q
∑

d≥0

q8(d(d+1)/2)

since the operation ψ is given in terms of q-expansions by

ψ(q) = q2.

As for j−1 we have

j−1 =
∆
c34
≡ ∆ mod 2,

and

∆ = q
∏

(1− qn)24 ≡ q
∏

(1− q8n)3 mod 2.

The congruence

ψ(b)− b ≡ j−1 mod 2

is then a consequence of the following special case of the Jacobi
triple product identity

∑

d≥0

(−1)d(2d+ 1)zd(d+1)/2 =
∏

k≥0

(1− zk)3.
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At the prime 3 we can attempt the analogous thing with c6
(which represents v3

1)

c6 = 1− 504
∑

n≥1

σ5(n)qn.

It seems as if the following identity holds
log c6

9
≡ j−1 mod 3.

I have checked out to the q = 300 term. Oddly, the analogous
result for p > 3 seems not to hold, though I’m not really sure what
“analogous” means.

Remark 1. Fred Diamond and someone else (whose name I didn’t
catch) have told me that the mod 3 result is also true, and that
both follow from known congruences for the Ramanujan τ function
as described in Serre’s course in arithmetic.

In fact there is a better approach which will give us more infor-
mation. Note that

b = − log(c4/u4)
log g4

≡ −
∑

n≥1

σ3(n)qn mod 8,

and so

ψb− b ≡
∑

n≥1

(σ3(n)− σ3(n/2))qn mod 8,

where we adopt the convention that σ3(n) = 0 if n is not an integer.
Now it’s easy to check that

σ3(2n) ≡ σ3(n) mod 8,

so that

ψb− b ≡
∑

nodd

(σ3(n))qn mod 8.

On the other hand,
1
j

=
∆
c34
≡ q

∏

n≥1

(1− qn)24 ≡
∑

τ(n)qn mod 8.

It follows from a congruence of Ramanujan (see [1, page 4]) that

τ(n) ≡
{

0 mod 8 if n is even
σ3(n) mod 8 if n is odd.

K(1)-LOCAL E∞ RING SPECTRA 15

This means that we have the congruence

ψb− b ≡ j−1 mod 8.

Returning to the prime 2 we will now build a canonical K(1)-
local E∞ ring spectrum mapping to any K(1)-local elliptic spec-
trum. Since ψg and θ commute, the element

θ(f) ∈ π0E

is a modular function, and hence is can be written as a 2-adically
convergent power series in j−1. By lemma 14 there is a 2-adically
convergent power series h with

θ(f) = h(f).

This gives a universal relation in the homotopy groups of any K(1)-
local E∞ ring spectrum.

Returning to Tζ and continuing our horrible practice of not
choosing good notation, let b ∈ π0B ∧ Tζ once again denote the
universal “b,” let f ∈ π0Tζ be the unique element whose image in
π0B ∧ Tζ is

f = ψ(b)− b,

and, finally, set

y = θ(f)− h(f) ∈ π0Tζ .

This gives the vertical map in the following diagram. The require-
ment that it be a pushout defines the K(1)-local E∞ ring spectrum
M .

TS0 ∗−−−−→ S0

y

y
y

Tζ −−−−→ M.

by construction it is clear that there is a pretty canonical map from
M to any K(1)-local E∞-ring spectrum.

Proposition 15. The map

K∗y : K∗TS0 → K∗Tζ
is smooth of relative dimension 1 (it is also flat, but I suppose that
is a consequence of smoothness). Therefore

K∗M = K∗Tζ ⊗
K∗TS0,y

Z2
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and

π∗M = KO∗[j−1].

Proof: The map TS0 → Tζ comes about as the composite

TS0 θ(x)−h(x)−−−−−−→ TS0 f−→ Tζ .

Since K∗f is etale (Lemma 11) it suffices to show that the map
K∗(θ(x)− h(x)) is smooth of relative dimension 1. If we write out
the rings, we are looking at the map of F -algebras

Z2[y0, y1, . . . ] → Z2[x0, x1, . . . ]

y0 7→ x1 − h(x0).

It is easy to check that h(x0) = x2
0 + . . . , so that our map is of the

form

yn 7→ xn+1 mod decomposables.

This probably shows that the map

Z2[y0, y1, . . . ][x0] → Z2[x0, x1, . . . ]

y0 7→ x1 − h(x0) . . .
x0 7→ x0

is an isomorphism. I’ve checked out to the q100 term and found
that h(x0) ≡ 0 mod 8. If this is true, then it also shows that the
above map is isomorphism.

I suppose that the smartest thing to do is to consider the in-
creasing filtration by the xi. One easily checks that the map is of
the form

yi 7→ xi+1 + t(x0, . . . , xi),

which gives an easy inductive proof of surjectivity. Injectivity fol-
lows from “iso mod indecomposables” since the intersection of the
powers of the “augmentation ideal” is zero.
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8. Homotopy groups of Tζ

Recall that g ∈ Z×p is chosen so that g projects to a topological
generator of Z×p /µ. Define h ∈ Zp by

1 + h =

{
gp−1 p > 2
g2 p = 2.

Then for p odd, h ≡ 0 mod p and for p = 2, h ≡ mod 8. In both
cases

(1 + h)(−b) =
∑(−b

n

)
hn.

defines an element of Zp[b] (recall that this ring is p-complete.
Define a multiplicative map

i : B∗ → B∗Tζ = B∗ ⊗ T{b},
by

i(v1) = v1g
(p−1)(−b) = v1(1 + h)(−b),

for p odd, and

i(2v2
1) = 2v2

2g
2(−b)

= 2v2
1(1 + h)(−b)

i(v4
1) = v4

1g
4(−b)

= v4
1(1 + h)(−2b).

At the prime 2, the image of the element η ∈ π1KO is forced, since
it is in the image of the homotopy groups of spheres. Note that in
all cases, i(v) ≡ v mod 2. This makes it easy to check that the
map at the prime 2 is multiplicative (where one needs, perhaps, to
worry about the elements in dimension 8k + 1 and 8k + 2, since
they are in the image of the homotopy groups of spheres).

We have a surjective map

B∗Tζ → B∗B

of F -algebras with an action of Z×p . We are going to define an
additive section which is compatible with the action of Z×p . For
this we need to refer to the “big Witt vectors.”

Consider the algebra

A = Z[a1, a2, . . . ]
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and define, for each n ≥ 1

wBn =
∑

d|n
da
n/d
d .

The algebra has a unique Hopf algebra structure for which the wBn
are primitive. In fact, the group functor represented by A is the
functor

R 7→ (1 + xR[[x]])×.

The universal series in A is the series

a(x) =
∏

(1− anx
n),

and one easily checks that

xd log a(x) = −
∑

wBnx
n.

There is the following an analogue of Dwork’s lemma for the big
Witt vectors.

It is helpful to write a = (a1, . . . ) and define

(1− x)a = a(x).

The “group law” is then defined so that

(1− x)a+b = (1− x)a(1− x)b.

Lemma 16. Suppose that A is a ring with endomorphisms

φp : A→ A p prime

satisfying

φp(a) ≡ ap mod p.

Then, given a sequence wB1, w
B

2, · · · ∈ A, one can find a sequence
a1, a2, · · · ∈ A if an only if for each prime p, each k ≥ 1, and each
(m, p) = 1, one has

wBpk m ≡ φp(wBm) mod pk.

If A is torsion free then such a solution is unique.

The proof is very similar to the p-typical one.
One application of this is that there is a unique map from the

ring of big Witt vectors to the ring of functions from Z to Z sending
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each wBn to the identity map. One easily checks that this maps
sends the series (1− x)a to the map

n 7→ (1− x)n.

One useful consequence of this is that if we define elements ck ∈ A
ck = (−1)kak + monomials in ai, i < k

by writing

(1− x)a =
∑

ck(−x)k,
then under the map described above, ck is sent to the binomial
function

n 7→
(
n

k

)
.

In fact, the image of A in the ring of functions on Z is the ring of
“numerical polynomials,” and has basis these binomial functions.

The section we are describing results from lifting the “Pascal’s
triangle” identity (

n+ 1
k

)
=

(
n

k

)
+

(
n

k − 1

)

to A.

Lemma 17. There is a unique map of Hopf algebras

T : A→ A

with the property that for all n,

TwBn = wBn + 1.

With respect to the map to the ring of functions on Z, we have

Tf(n) = f(n+ 1).

Finally, the following “Pascal’s triangle” identity holds:

Tck = ck + ck−1.

Proof: Let’s define the elements Tan by writing

(1− x)(1− x)a =
∏

(1− Tan x
n).

The effect of T on the wi is easily checked by taking the log of both
sides. The rest of the lemma also follows easily.
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We now map the ring A to the ring W.

Lemma 18. There is a unique map of Hopf algebras

f : A→W

with

f(wBpk m) = wk (m, p) = 1.

This map is compatible with the action of T on W and on A.

Proof: We define ring homomorphisms

φl :W→W l prime,

by setting φl = 0 if l 6= p, and by setting

φpan = apn.

The result then follows easiy from Dwork’s lemma. The compati-
bility with T follows easily from the effect on primitives.

The entire point of all of this was to define the binomial classes
in the Witt world. We abuse the heck out of the notation to do
this.

Definition 19. Let cn ∈ W be the image of the classes cn ∈ A
under the map defined above.

We can finally define our ψg-equivariant section.

Lemma 20. The map

s : Homcts(Z×p /µ,Zp) → π0B ∧ Tζ
defined by

Homcts(Z×p /µ,Zp) −−−−→ π0B ∧ Tζ
g

y
y≈

Homcts(Zp,Zp)
(n

k)7→ck−−−−−→ W.

is ψg equivariant.
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Proof: This follows from the above when one notes that under
the vertical isomorphisms in the diagram, the map ψg is sent to
T .

Finally, we can return to our computation of the homotopy
groups of Tζ . We have defined a ring homomorphism

i : π∗B ⊗ T{f} → π∗B ∧ Tζ
which is compatible with the action of ψ, and whose image is fixed
under the action of ψg.

Lemma 21. The sequence

0 → π∗B ⊗ T{f} → π∗B ∧ Tζ ψg−1−−−→ π∗B ∧ Tζ → 0

is exact.

Proof: Consider the additive map

Homcts(Z×p /µ,Zp)⊗ π∗B ⊗ T{f} µ◦s⊗i−−−−→ π∗B ∧ Tζ .(22)

We will see below that it is an isomorphism. Granting this, the
lemma then reduces to showing that the sequence

0 → Zp
constants−−−−−−→ Homcts(Z×p /µ,Zp)

ψg−1−−−→ Homcts(Z×p /µ,Zp) → 0

is exact. But this is easy to check. Just use the basis of binomial
functions, and write down the map.

We have used

Lemma 23. The map (22) is an isomorphism.

This really belongs with the discussion on Homcts(Zp,Zp).

Proof: This is the standard Milnor–Moore argument. We have
an exact sequence of (p-compolete) Hopf-algebras

T{y} ψ(b)−b−−−−→ T{b} −→ Homcts(Zp,Zp)

and a section

s : Homcts(Zp,Zp) → T{b},
which is a map of co-algebras. It is formal to check that the maps

s⊗ ι : Homcts(Zp,Zp)⊗ T{y} → T{b}
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and

T{b} coproduct−−−−−−→ T{b} ⊗ T{b}

Remark 2. The binomial functions have the “Cartan” coproduct.
This makes the section a map of co-algebras. This is needed for
the above proof (which I’d better write out to make sure.) In the
Milnor-Moore argument their hypothesis of “connected-graded”
makes this automatic.

Gee though, I don’t think it needs to be this hard.
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