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ON THE ODD PRIMARY HOMOLOGY OF FREE

ALGEBRAS OVER THE SPECTRAL LIE OPERAD

JENS JAKOB KJAER

Abstract. The derivatives of the identity functor on spaces in Good-
willie calculus form an operad in spectra. Antolin-Camarena computed
the mod 2 homology of free algebras over this operad for 1-connected
spectra. In this present paper we carry out similar computations for
mod p homology for odd primes p, also for non-connected spectra.

Introduction

It is known from [CLM76] that if a spectrum is an algebra over an E∞

operad then it admits certain operations on its mod p homology, the Dyer-
Lashof operations. These have proven to be of great use in many compu-
tations. A different operad that is of interest to many topologists is the
spectral Lie operad, ∂∗, and it has been shown in [Beh11] that algebras over
this operad admit certain Dyer-Lashof-like operations, in this paper called
Lie power operations, on their mod 2 homology, as well as a Lie bracket.

A strategy for computing unstable homotopy groups is through the Good-
willie tower (as defined in [Goo03]) for the identity functor. This tower gives
a spectral sequence inputting π∗Dn(X) and converging to π∗X, for any 1-
connected pointed space X, where Dn(X) are some collection of infinite
loop spaces, Dn(X) = Ω∞Dn(X), whose homotopy we hope to be able to
compute. The fact that the spaces Dn(X) appear as 0th spaces of spectra
implies that we should be able to bring the full weight of stable computa-
tions to bear, hopefully allowing us to compute unstable homotopy groups
from stable homotopy groups. An example of this program was carried out
in [Beh12].

The spectra Dn(X) have the form (∂n ∧ X∧n)hΣn
, where ∂n is the n’th

spectrum of the spectral Lie operad, since ∂n is in fact the n’th Goodwillie
derivative of the identity functor. In [AM99] the homology of Dn(S

l) was
computed, and a basis was given in terms of unadmissable sequences of
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Dyer-Lashof operations. It was shown in [Beh11] that these unadmissable
sequences of Dyer-Lashof-like operations at the prime 2 are in a very precise
manner the same as the Lie power operations from above.

A different perspective on the symmetric sequence ∂∗ is given in [Chi05],
where the operadic structure was constructed. There it is shown that ∂∗ is
the Koszul dual of the commutative cooperad, which in fact gives its name of
spectral Lie operad, as the Koszul dual of the algebraic commutative operad
is the shifted algebraic Lie operad [GK+94]. These facts suggests that ∂∗ is
an essential operad, and hence worthy of more study.

In this paper we will study the odd primary homology of algebras over
the spectral Lie operad. The definition of the Lie power operations and Lie
bracket studied in this paper for the prime p = 2 was first given by Behrens in
[Beh11], and the computation of the homology of free algebras of 1-connected
spectra was carried out by Antolin-Camarena in [Ant15] (rewritten and ex-
panded as a paper [Ant16]). Much of what follows here mirrors the strategies
found in these references. A strengthening to computing homology of free
algebras of any spectrum is found in [Bra17].

We will discuss in section 1 the operadic structure of ∂∗, as well as give
two different cell structures to the spectra ∂n. The first is the arboreal cell
structure, and comes from the operadic structure in [Chi05]. The second is
the simplicial cell structure and was leveraged in the homology computations
of [AM99]. We will also briefly identify the first differential in a certain
spectral sequence that is of great use to us. In section 2 we will define
the Lie power operations and Lie bracket, prove that the bracket in fact
does deserve its name, as well as the fact that all power operations bracket
trivially with everything. We will then move on, in section 3, to give a basis
for the free algebra on an odd sphere using the computation in [AM99], and
will then leverage this basis, as well as the study of the EHP sequence in
[Beh12], to do the same for even spheres in positive dimensions, and then
use [Bra17] to extend it to negative dimensions as well. Thereafter we will
be ready to state and prove our main result in section 4. The result is a
basis for the homology of the free algebra over the spectral Lie operad on
any spectrum. We will finish by stating a conjecture: that the relations the
Lie power operations satisfy are the mixed Adem relations. This was shown
in [Beh12] for p = 2, unfortunately the techniques used there to determine
the relations are not known to generalize to odd primes.

1. Preliminaries

Throughout this article, let p be a fixed odd prime. All homology is
computed with Z/p coefficients. We will need a good symmetric monoidal
category of spectra, so take spectra to mean the category of symmetric spec-
tra as developed in [HSS00], and let HFp be the Eilenberg-Maclane spectra
for the finite field with p elements, Fp.
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1.1. The Spectral Lie Operad. We will let {∂∗} denote the symmetric
sequence of spectra of the derivatives of the identity Top∗ → Top∗. Recall
from [Chi05] that {∂∗} has an operadic structure with structure maps in
spectra:

ξn,k1,...,kn : ∂n ∧ ∂k1 ∧ . . . ∧ ∂kn → ∂k1+...+kn .

By abuse of notation we will drop the indices on all of these maps throughout.
As it is Koszul dual to the commutative cooperad in spectra, we will call {∂∗}
the spectral Lie operad.

Our main target of computation is the homology of the following

Definition 1.1. Let X be any spectrum. Then the free algebra over the
spectral Lie operad generated by X, P(X), is given by

∨

nDn(X), where
Dn(X) := (∂n ∧X∧n)hΣn

where Σn permutes the copies of X∧n.

Clearly the free algebra over the spectral Lie operad is in fact an algebra
over ∂∗.

Cell Structures and Trees. As the goal is to do computations in homology,
a good understanding of the cell structure of ∂n is needed. We will employ
two different such. The first one, called the arboreal cell structure, comes
from Ching’s description of the topological operadic bar construction, and is
therefore well-behaved with respect to the operadic structure maps. The sec-
ond, called the simplicial cell structure, comes from the cosimplicial filtration
of the operadic bar construction, this has proved valuable in the homology
computations carried out by Arone and Mahowald [AM99], but is not well
behaved with the operadic structure. In either case, the cells will be labelled
by certain trees.

When we write a general tree with labels in some finite set A, we will
always mean a rooted tree with the valence of the root and leaves being 1,
and a fixed bijection from A to the set of leaves. We will often suppress the
set A from the notation. An internal vertex is any vertex that is not a leaf or
the root. We will call it a tree if the valence of any internal vertex is greater
than 2. Given a general tree T , we will use E(T ) to denote the set of edges,
and V (T ) to denote the set of vertices. Given u, v ∈ V (T ) we say that v is
a descendant of u if there is an edge from u to v and u is closer to the root
than v.

Definition 1.2. A metric tree is a tree, T , together with a map
m : E(T ) → [0, 1] such that if e1, . . . , en is any path from the root to a
leaf then Σn

i=1m(ei) = 1.

Recall that [Chi05, Def. 4.1] defines pointed topological spaces ∂n, such
that the Spanier-Whitehead dual of ∂n is ∂n. A point of ∂n is either given
by a metric tree with labels {1, . . . , n}, or the base point, where we identify
a tree with an edge of metric 0 with the tree where we have collapsed this
edge, if it is an internal edge or with the basepoint if it is a root or leaf
edge. Ching defined the operadic structure in the language of metric trees.
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Ching’s arboreal construction of ∂n leads to a cell decomposition of ∂n,
where each cell is labelled by an isomorphism class of a labelled trees, with
labels {1, . . . , n}. The dimension of the cell represented by such a tree is
given by −k where k is the number of internal vertices. We will call this
cell decomposition the arboreal cell decomposition. The operadic structure
induces maps

ξ∗ : C
CW
∗ (∂n)⊗ CCW

∗ (∂k1)⊗ . . .⊗ CCW
∗ (∂kn) → CCW

∗ (∂k1+...+kn)

that take T ⊗ T (1) ⊗ . . . ⊗ T (n) to the cell labelled by the tree obtained by
identifying the root edge of T (i) with the edge attached to the leaf of T
labelled i (See the example in Figure 1).

∂2 ∂2 ∂3 ∂5
ξ∧ ∧

•

•

• •
1 2

⊗

•

•

• •
1 2

⊗

•

•

• ••
1 32

ξ∗

•

•

• •

• •
1 2

•• •
43 5

Figure 1. An example of the operadic structure on arboreal
cells. The dotted and dashed edges indicate the gluing.

Definition 1.3. A levelled tree is a general tree, T , together with a function
l : V (T ) → [0, 1] such that the root goes to 0, the leaves to 1, and if v is a
descendant of u then l(u) < l(v). The number of levels of a levelled tree is
|l(V (T ))| − 2, where | − | denotes cardinality.

We say that two levelled trees T and T ′ are isomorphic if there is an
isomorphism of the trees, and a strictly increasing function φ : [0, 1] → [0, 1]
making the obvious relations hold.

There is a different cell structure on ∂n where each cell is given by an
isomorphism class of levelled trees with labels {1, . . . , n}, as given in [Beh12].
The cell represented by the class of a levelled tree, T , is in dimension −k
where k is the number of levels, and the gluing data comes from collapsing
levels. We will call this cell-decomposition the simplicial cell decomposition.

Note that in both cell decompositions, ∂n has exactly one (−1)-cell, for
n > 1. The cell is given by the tree having exactly one internal vertex, we
call this tree Tn.

G-Cells. Recall that a naive G-CW complex is a naive G-spectrum X whose
underlying spectrum is a CW-spectrum, such that if X(k) is the k-th skeleta,
then X(k) is a naive G-spectrum, and X(k−1) →֒ X(k) is a G-map with G-
cofiber

∨

i(G/Hi)+ ∧ Sk, for some collection of subgroups {Hi} of G. For
each i we say that X has a (k,Hi)-cell.
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Goodwillie showed in [Goo03] that ∂n is a naive Σn spectrum. Clearly the
Σn action of trees with leaves labelled by {1, . . . , n} induces an action on the
cells of ∂n, making it into a naive Σn-CW complex. If G is any subgroup
of Σn, then clearly ∂n is a G-CW spectrum. If ΣT ⊂ Σn is the symmetry
group of the tree T labelled by {1, . . . , n}, let Σ′

T = G ∩ΣT . Then ∂n has a
(k,Σ′

T )-cell, where k is the number of internal vertices of T . Note that if T ′

is any tree such that there is g ∈ G such that g · T ′ = T , then T ′ represents
the same G-cell as T . This discussion works equally well with arboreal or
simplicial cells.

A Small Forest of Examples.

Definition 1.4. Let T j,i for 1 ≤ j ≤ i denote the labelled tree, with labels
{1, . . . , i}, depicted below

•

•

••

j

1 · · · ĵ · · · i
• · · · · · · •

· · ·

where ĵ denotes that the label j is omitted.
In the arboreal structure this represents a −2 cell.

Definition 1.5. Let Tn,k be a levelled tree with labels {1, . . . , nk}, where each
internal vertex has n-descendants, and k-levels.

In the simplicial cell structure this represents a (−k)-cell.

Note that Tn,1 = Tn.

Example 1.6. The tree T3,2 is:

•

•

•• •

• • • • • • •••
1 2 3 4 5 6 987

where the dashed horizontal lines indicate levels.
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1.2. Computational Methods. In this paper we will often need to cal-
culate the homology groups H∗(∂n ∧hG X) for some G ⊂ Σn where X is a
G-spectrum. We will use the following spectral sequence.

Lemma 1.7. There is a spectral sequence coming from the arboreal cell de-
compostion of ∂n with

E1
k,∗ :=

⊕

T

H∗(Σ
−kXhΣ′

T
) ⇒ H∗(∂n ∧hG X)

where the direct sum is over G equivalence classes of trees T with k internal
vertices, and Σ′

T := G ∩ ΣT , and differentials dr : E
r
k,n → Er

k−r,∗−1.

The spectral sequence arising from the G-CW filtration of ∂n induces a
filtration of ∂n ∧hG X, and we apply homology to this filtration to obtain
the spectral sequence.

The following lemma allows us to identify the d1-differentials:

Lemma 1.8. Let G be a subgroup of Σn, and X be a G-spectrum. In the
spectral sequence computing H∗(∂n ∧hG X), from the G-equivariant arboreal
cell decomposition of ∂n, we have that d1 is a sum of transfers and trivial
maps.

Proof. Recall that d1 is given by
⊕

T

H∗(S
−s ∧XhΣ′

T
)

δ
→ H∗−1(∂

(−s−1)
n ∧hG X) →

⊕

T ′

H∗−1(S
−s−1 ∧XhΣ′

T ′
)

where the first direct sum is over (−s)-G-cells of ∂n, labelled by orbits of
trees T under the G action, and the second is over (−s−1) cells, labelled by

orbits of trees T ′ under the G action, and ∂
(−s−1)
n is the (−s− 1)-skeleton of

∂n. Then δ comes from the cofiber sequence

∂
(−s−1)
n

// ∂−s
n

//
∨

T S−s δ // Σ∂
(−s−1)
n ,

and Σ′
T ,Σ

′
T ′ ⊂ G are as above. Let T be a tree obtained from T ′ be collapsing

an edge, and assume that T ′ has s + 1 internal vertices (and hence T has
s). Note that this further implies that ΣT ′ ⊂ ΣT . Therefore our goal is now
showing that the restriction

H∗(S
−s ∧XhΣ′

T
)

d̄1→ H∗−1(S
−s−1 ∧XhΣ′

T ′
)

is in fact the transfer map. If we run the spectral sequence computing
H∗(∂n ∧ X) from the cells of ∂n then the analogous map H∗(S

−s ∧ X) →
H∗−1(S

−s−1∧X), coming from the attaching map between T and T ′, would
be the identity. Note for all σ ∈ G, the cell represented by σ · T is obtained
from σ · T ′ by collapsing an edge. Note that we can think of d̄1 as induced
by applying (−)hG to

∨

σ∈G/Σ′
T

X →
∨

σ∈G/Σ′
T ′

X
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which is equivalent to applying (−)hΣ′
T

to

X →
∨

σ∈Σ′
T
/Σ′

T ′

X,

which is exactly the definition of the transfer. �

2. Homology Operations

In this section we will define and prove certain relations for the Lie power
operations, as well as a Lie bracket. Let L be an algebra over the operad ∂∗,
with structure maps ξn : ∂n ∧ L∧n → L. We will again drop all indices, and
thus use ξ for structure maps for both the operad itself and its algebras.

2.1. Power Operations. We wish to define Lie power operations

βǫQi : H∗(L) → H∗+2(p−1)i−ǫ−1(L).

Recall from [CLM76, Thm I.1.1] that for any spectrum X, i ∈ N0, and
ǫ equal to 0 or 1 we have maps qi,ǫ : H∗(X) → H∗+2(p−1)i−ǫ(X

∧p
hΣp

), taking

x 7→ βǫQi(x). This map comes from a study of CCW
∗ (EΣp), which has certain

elements ek of degree k, such that when k = (p − 1)j − ǫ and x ∈ C∗(X)
is a cycle then so is ek ⊗ x⊗p ∈ CCW

∗ (EΣp) ⊗Σp C∗(X)⊗p, when j has the

same parity as |x|. This cycle represents the class βǫQ
j+|x|

2 (x) ∈ H∗(X
∧p
hΣp

).

Ideally, one would wish to recreate this construction by picking out explicit
cycles in the chain complex for ∂p∧hΣp

L∧p, unfortunately this turns out not
to be feasible, and we will instead attack the problem somewhat indirectly.

Given an element x ∈ H∗(L) we wish to define an element Tp ⊗ βǫQi(x)
in the homology group H∗+2(p−1)i−ǫ−1(∂p ∧hΣp

L∧p), given by the cell repre-
sented by the tree Tp in either cell description of ∂p.

Lemma 2.1. Let ι ∈ H∗(S
j) be the generator. The element σ−1βǫQi(ι)

in H∗(Σ
−1(Sj)∧phΣTp

) survives the spectral sequence from Lemma 1.7 used to

compute H∗(∂p ∧hΣp
(Sj)∧p).

Proof. Assume that T is a tree representing a −k 6= −1 cell of ∂p. Then

T 6= Tp, and clearly p ∤ |ΣT |. We can compute H∗(Σ
−k(Sj)∧phΣT

) by the usual

homotopy orbits spectral sequence with E2 page E2
s,t = Hs(ΣT ;Ht((S

j)∧p)).

Now if j is odd then H∗((S
j)∧p) is the sign representation and hence

H∗(Σ
−k(Sj)∧phΣT

) is trivial by [Wei95, Cor. 6.5.9]. Therefore the spectral
sequence from Lemma 1.7 collapses and the result holds.

If j is even, then H∗((S
j)∧p) is the trivial representation and hence we

see that H∗(Σ
−k(Sj)∧phΣT

) is concentrated in degree jp− k. If T represents a

(−2)-cell then by Lemma 1.8 we know that

d1 : H∗Σ
−1(Sj)∧phΣTp

→ H∗−1Σ
−2(Sj)∧phΣT
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is induced by the transfer coming from ΣT ⊂ ΣTp = Σp. Since p divides
[Σp : ΣT ] we know that the transfer is trivial, since the inclusion,

H∗(ΣT ) → H∗(Σp),

composed with the transfer induces the map multiplication by [ΣT : Σp], and
we know the inclusion is non trivial. If T represents a (−k− 1)-cell, then by
studying the spectral sequence we see by induction that

dk : H∗Σ
−1(Sj)∧phΣTp

→ Ek
k+1,∗−1.

Here the target is concentrated in degree jp−k−2, since H∗−1Σ
−k−1(Sj)∧phΣT

is, but clearly the source is concentrated in higher degrees, and hence the
map is trivial, and therefore we are done. �

Given x ∈ Hi(L), we can represent it by a map Si → HFp ∧ L, which
corresponds to a map out of the free HFp-module ΣiHFp, which by abuse
of notation we are also going to call x, so x : ΣiHFp → HFp ∧L. This gives
us a map

x⊗p : (ΣiHFp)
⊗HFpp → (HFp ∧ L)⊗HFpp

by smashing with ∂p, and taking homotopy orbits we get a map

x̃ : H∗(∂p ∧hΣp
Spi) → H∗(∂p ∧hΣp

L∧p).

We can now define an element Tp⊗βǫQi(x) in H∗(∂p∧hΣp
L∧p) by x̃(σ−1βǫQi(ι)).

Definition 2.2. For x ∈ H∗(L), and ξ : ∂p ∧hΣp
L∧p → L define:

βǫQi(x) := ξ∗(Tp ⊗ βǫQi(x)) ∈ H∗+2(p−1)i−ǫ−1(L).

It is easy to see that if 2n − 1 ≤ |x|, then both βQi(x) and Qj(x) are

trivial for i, j < n. Since the same is true of βQiι and Qjι in H∗(S
kp
hΣp

),

where k = |x|. Furthermore the quotient on to the top cell, Tp, ∂p → S−1

induces a map H∗(∂p ∧hΣp
X∧p) → H∗(Σ

−1X∧p
hΣp

), which maps Tp⊗βǫQi(x)

to σ−1βǫQix, where σ−1 refers to the desuspension.

2.2. The Bracket. We can also define a Lie bracket on the algebra by the
map ξ : ∂2 ∧ L ∧ L → L

Definition 2.3. For x ∈ Hi(L), and y ∈ Hj(L), define [x, y] ∈ Hi+j−1(L)
by [x, y] := ξ∗(T2 ⊗ x⊗ y).

Remark 2.4. Note this construction works equally well on stable homotopy
groups but studying these, and their possible connection with the Whitehead
bracket, is beyond the scope of this paper.

Proposition 2.5. The bracket satisfies the following relations for x, y, z ∈
H∗(L):

• [x, y] = (−1)|x||y|[y, x] (Graded Commutativity)
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• (−1)|x||z|[x, [y, z]] + (−1)|y||z|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0 (The
Graded Jacobi Identity)

Remark 2.6. Note that our Lie bracket does not satisfy the usual conven-
tions for either the graded Lie bracket (due to dimension) or the shifted graded
Lie bracket (due to sign conventions, see for example [KM95] for a different
sign convention). We will later see in Corollary 3.7 that for p = 3 the usual
axiom [x, [x, x]] = 0 still holds.

Proof of Prop. 2.5. We clearly see that [x, y] = (−1)|x||y|[y, x] since ∂2 ≃ S−1

with the trivial Σ2 action. Since L is an algebra over ∂∗, the following
diagram commutes:

∂2 ∧ L ∧ (∂2 ∧ L ∧ L)
1∧ξ //

≃
��

∂2 ∧ L ∧ L
ξ // L

∂2 ∧ (∂1 ∧ L) ∧ (∂2 ∧ L ∧ L)

σ

��
∂2 ∧ ∂1 ∧ ∂2 ∧ L ∧ L ∧ L

��
∂3 ∧ L ∧ L ∧ L

ξ

DD

Pick x, y, z ∈ H∗(L) and apply homology to the diagram. If we start with
T2⊗x⊗(T2⊗y⊗z) in the upper left corner, we get [x, [y, z]] in the upper right
corner. In the lower left corner we get by the operadic structure T 1,3 ⊗ x⊗
y⊗z. Using the permutation action we see that (−1)|x||y|+|x||z|T 2,3⊗x⊗y⊗z
maps to [y, [z, x]] since the diagram above is Σ3-equivariant, and in the same

manner (−1)|z||y|+|x||z|T 2,3⊗x⊗y⊗z. Now, by abuse of notation, let the trees
T3 and T i,3 i = 1, 2, 3 be the cells of ∂3 in the arboreal cell decomposition.
Then the chain differential is d(T3) = T 1,3+T 2,3+T 3,3, so if we let x, y, z also
denote cycles in the singular chain complex for L then the following boundary
d((−1)|x||z|T3⊗x⊗y⊗z) in the chain complex computing H∗(∂3∧L∧L∧L)
enforces the relation:

(−1)|x||z|[x, [y, z]] + (−1)|y||z|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0.

�

We have further the following interaction of the bracket and the Lie power
operations:

Proposition 2.7. For all x, y ∈ H∗L, k ∈ N0, and ǫ = 0, 1, we have

[x, βǫQky] = 0.

Proof. This is the odd primary version of Lemma 6.5 in [Ant15], and we will
start out similar.
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Let x : ΣiHFp → HFp ∧ L and y : ΣjHFp → HFp ∧ L represent x and y.
By studying the arboreal cell structure we see that:

ξ∗ : C
CW
∗ (∂2 ∧ ∂1 ∧ ∂p) → CCW

∗ (∂1+p)

T2 ⊗ T1 ⊗ Tp 7→ T 1,1+p

and hence we get the following commutative 1× Σp equivariant diagram of

CCW
∗ (∂2)⊗ C∗(S

i)⊗CCW
∗ (∂p)⊗ C∗(S

j)⊗p

��

// CCW
∗ (∂2)⊗ C∗(L)⊗ CCW

∗ (∂p)⊗ C∗(L)
⊗p

��
CCW
∗ (∂1+p)⊗ C∗(S

i)⊗ C∗(S
j)⊗p // CCW

∗ (∂1+p)⊗ C∗(L)⊗ C∗(L)
⊗p

��
C∗(L)

If we start with T2⊗x⊗Tp⊗ y⊗p in the upper left corner, then it is mapped

to a class that represents [x, βǫQky] in H∗(L). By taking Borel homology,
with respect to 1×Σp, everywhere we get that it is enough to show that the
image of T 1,1+p⊗x⊗y in H∗(∂1+p∧Si∧ (Sj)∧p)h1×Σp

is trivial. Now we are
going to diverge from the proof of Lemma 6.5 in [Ant15], as we are not going
to compute the homology groups in their entirety. We will need the spectral
sequence coming from the arboreal (1×Σp)-cell decomposition of ∂1+p (see
Figure 2 for the example p = 3, with T 1,4 in bold), and its d1-differentials.

Dimension Cells

−1
•
•

• •••
1

Σ3

−2
•
•

• •
•• •

1

Σ3

•
•

• •
•• •

1

Σ2

•
•

•• •
••

1

Σ2

•
•

•• •
••
1

Σ2

−3

•
•

• •
• •

••
1

Σ2

•
•

• •
• •

••
1

Σ2

•
•

• •
• •

••
1

1
•
•

• •
•• ••
1

Σ2

Figure 2. The (1×Σ3)-equivariant arboreal cells of ∂4 with
symmetry groups.

There is exactly one (−1)-cell of ∂1+p corresponding to T1+p, which has
symmetry group (1 × Σp), as for −2-cells, there are T 1,1+p with symme-
try group 1 × Σp, and cells with symmetry groups isomorphic to G where
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G ⊂ 1 × Σp, with p ∤ |G|. So the d1 in this spectral sequence goes from

H∗(S
−1
h1×Σp

) → H∗(ΣS
−2
h1×Σp

)
⊕

{other cells}. Its image is entirely contained

in H∗(ΣS
−2
h1×Σp

), which is representing the cell T 1,1+p, by an argument sim-

ilar to the one given in the proof of Lemma 2.1, since the other cells have
trivial homology except in one degree, but the map is trivial onto that degree.
So we need to study the map

H∗(S
−1
h1×Σp

) → H∗−1(ΣS
−2
h1×Σp

).

We know from Lemma 1.8 that this map is induced by the transfer
1 × Σp ⊂ 1 × Σp, and is therefore an isomorphism. Therefore we can now
conclude that the cell T 1,1+p does not represent anything non-trivial in the
homology of ∂1+p ∧h1×Σp

∧Si+pj, and hence we are done. �

3. The Computation for the Spheres

As our goal is a computation of the free algebra over ∂∗, the first case
will be the algebras generated by a sphere. We will proceed by parity, in
the sense that we will compute H∗Dn(X) first in the case when X is an odd
sphere, and then in the case when X is an even sphere.

Computing H∗P(X), for X a sphere, will allow us to leverage standard
homology tricks, in our main result, Theorem 4.2 below, to compute H∗P(X)
for any spectrum, X.

3.1. The Odd Dimensional Case. In [AM99, Thm. 3.16] there is the
following result:

Theorem 3.1 (Arone-Mahowald, [AM99]). H∗(Dpk(S
2l+1)) is the free graded

Fp vector space on generators
{

[βǫ1Qs1 ≀ · · · ≀ βǫkQskι]
∣

∣sk ≥ l, si > psi+1 − ǫi+1 ∀i
}

,

where as usual si ∈ N0 and ǫi = 0, 1, and ι is a generator of H2l+1S
2l+1.

With
∣

∣[βǫ1Qs1 ≀· · · ≀βǫkQskι]
∣

∣ = 2l+1+2(p−1)(s1+. . .+sk)−ǫ1−. . .−ǫk−k.

If i 6= pk for any k then H∗Di(S
2l+1) = 0.

We call integer sequences of the form (ǫ1, s1, . . . , ǫk, sk; l) completely unad-
missable if sk ≥ l, and si > psi+1− ǫi+1 for all i. Recall that this description
was found since there is a surjective homomorphism

Σ−kH∗((S
2l+1)∧p

k

hΣ≀k
p

) → H∗(Dpk(S
2l+1))

βǫ1Qs1 ≀ · · · ≀ βǫkQskι 7→ [βǫ1Qs1 ≀ · · · ≀ βǫkQskι]

coming from the spectral sequence arising from the simplicial filtration of
∂∗, see for example [Beh12, pf of thm. 1.5.1]. They arise since in the (−k)-
cell labelled by Tp,k the element βǫ1Qs1 ≀ · · · ≀ βǫkQskι is always a cycle, and
we therefore get a group theoretical map. We are going to name this map
Tp,k, as it comes from the cell represented by the tree Tp,k in the simplicial
filtration.
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Note that for X a spectrum, we have that
∨

iDi(X) is an algebra over ∂∗,
and hence we can think of the Lie power operations as being:

βǫQi : H∗(Dpk(X)) → H∗+2(p−1)i−ǫ−1(Dpk+1(X)).

Proposition 3.2. We have in H∗(Dpk(S
2l+1)) that

[βǫ1Qs1 ≀ · · · ≀ βǫkQskι] = βǫ1Qs1 · · · βǫkQskι,

where ι ∈ H2l+1S
2l+1 is a generator, for any completely unadmissable se-

quences (ǫ1, s1, . . . , ǫk, sk; l).

Proof. We prove this by induction by relating our Lie power operations to
the computation in [AM99]. For ease of notation let X = S2l+1. For the
induction base case let i ≥ l and ǫ = 0, 1. Then the following diagram
commutes

H∗+1(X)
βǫQi

// H∗+2(p−1)i−ǫ(Dp(X))

Σ−1H∗(X)
qi,ǫ // Σ−1H∗+2(p−1)i−ǫ(X

∧p
hΣp

)

Tp

OO

by how we defined βǫQi by the cell Tp, and by the fact that Tp in both of the
cellular filtrations of ∂p is the only (−1)-cell. This shows that the element

called [βǫQiι] is equal to βǫQi(ι) for ι a generator of H2l+1(X).
By converting levelled trees to metric trees, then grafting, and converting

back to levelled trees, we can see that under the map ∂p∧∂
∧p
pk

ξ
→ ∂pk+1 we have

in simplicial cells that Tp ⊗ T⊗p
p,k 7→ Tp,k+1. Pick I = (ǫ, i, ǫk, ik, . . . ǫ1, i1, l)

to be a completely unadmissable sequence and study the following diagram:

H∗+1Dpk(X)
βǫQi

// H∗(∂p ∧hΣp
Dpk(X))

ξ // H∗Dpk+1(X)

Σ−1H∗(Σ
−kX∧pk

hΣ≀k
p

)∧phΣp

Tp∧(Tp,k)
∧p

OO

Σ−k−1H∗X
∧pk

hΣ≀k
p

Tp,k

OOOO

qi,ǫ // Σ−1Σ−kH∗(X
∧pk

hΣ≀k
p

)∧phΣp

τ

OO

// Σ−k−1H∗X
∧pk+1

hΣ≀k+1
p

Tp,k+1

OOOO

where τ sends an element βǫk+1Qik+1 ≀ βǫkQik ≀ . . . ≀ βǫk+1Qik+1 to the ele-
ment βǫk+1Qik+1 ≀ σ−k

(

βǫkQik ≀ . . . ≀ βǫk+1Qik+1

)

, and where σ−k is the k-fold
desuspension. By the argument above this diagram commutes. Further, if
we start in the lower left corner with the element βǫ1Qi1 ≀ · · · ≀ βǫkQikι, then

chasing through the upper left corner gives us βǫQi
(

βǫ1Qi1(· · · βǫkQik(ι) . . .
)

in the upper right corner by the induction hypothesis, and chasing through
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the lower right corner gives us [βǫ1Qi1 ≀ · · · ≀ βǫkQikι] in the upper right cor-
ner. �

3.2. The Even Dimensional Case. The direct computation in the odd
dimensional case in [AM99, Thm. 3.16] does not extend to the case of even
spheres. We will therefore rely on the following result of the EHP sequence
in functor calculus.

From [Beh12, Cor. 2.1.4] we know that the EHP sequence induces the
following result:

Proposition 3.3 (Behrens, [Beh12]). For n ≥ 1 the following are fiber
sequences of spectra:

D2m(Sn)
E
→Σ−1D2m(Sn+1)

H
→ Dm(S2n+1)(1)

D2m−1(S
n)

E
→Σ−1D2m−1(S

n+1)
H
→ ∗(2)

Let F : Top∗ → Top∗ be a finitary homotopy functor, and let ∂∗(F )
denote its derivatives. Then as modules over ∂∗ we have from [AC11, Ex.
19.4] the following identification ∂m(ΩΣ) ≃ Σ−1∂m ∧ Sm, so the suspension
natural transformation E : X → ΩΣX induces a map E : ∂m → Σ−1∂m∧Sm

compatible with the ∂∗-module structure. Therefore we get, for any spectrum
X and m ∈ N0, natural maps E : Dm(X) → Σ−1Dm(ΣX) such that if

x ∈ H∗Dm(X), then E : Dpm(X) → Σ−1Dpm(ΣX) satisfies E(βǫQi(x)) =

βǫQi(E(x)). Similarly, the map H preserves Lie power operations.
For some time it was unknown how to extend these relations between the

odd dimensional and even dimensional cases to the negative spheres. This
was solved by Brantner in his thesis [Bra17, Section 4.1.3, Free Lie algebras
on nonconnective spectra] from which we have the following result:

Lemma 3.4 (Brantner, [Bra17]). For any n we get long exact sequences:

. . . → H∗D2m(Sn)
E
→H∗Σ

−1D2m(Sn+1)
H
→ H∗Dm(S2n+1) → . . .

and isomorphisms E : H∗D2m−1(S
n)

∼=
→ H∗Σ

−1D2m−1(S
n+1).

In fact this holds even if we replace HFp with any complex oriented coho-
mology theory. The proof comes from the fact that if E is complex oriented,
and V is any complex G-representation then E ∧ SV and E ∧ SdimV are
equivalent as naive G-spectra. So in particular if n ≥ 0 then Σ2mnHFp ∧
∂m∧(S−n)∧m, where Σm acts trivially on Σmn, and by permuting the coordi-
nates (S−n)∧m, is equivalent as a naive Σm-spectrum to HFp∧∂m∧ (Sn)∧m,
which gives the result.

Lemma 3.5. H∗D2(S
2l) is generated by the element [ι, ι], where ι ∈ H∗D1(S

2l) ∼=
H∗(S

2l) is a generator.

Proof. Note that ∂2 consists of a single Σ2-fixed (−1)-cell labelled by T2,
the same cell that carries the bracket operation. A routine calculation shows
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that when l is positive D2(S
21) ≃ Σ2l−1(RP∞/RP 2l−1), which has homology

concentrated in dimension 4l−1. Furthermore it is easy to see that the map

∂2 ∧ S2l ∧ S2l = ∂2 ∧ D1(S
2l) ∧ D1(S

2l) → D2(S
2l)

is a homology isomorphism taking the generator T2 ⊗ ι⊗ ι to [ι, ι].
Using the argument in lemma 3.4 we can easily extend this to negative l’s

as well. �

We are now ready to give the full case for the even dimensional sphere:

Corollary 3.6. As a Fp vector space, H∗Dm(S2l) has a basis

•
{

βǫ1Qs1 · · · βǫkQskι
∣

∣sk ≥ l, si > psi+1 − ǫi+1 ∀i
}

when m = pk for
some k,

•
{

βǫ1Qs1 · · · βǫkQsk [ι, ι]
∣

∣sk ≥ 2l, si > psi+1 − ǫi+1 ∀i
}

when m = 2pk

for some k, and
• ∅ when m 6= 2pk, or m 6= pk for any k.

where ι ∈ H∗D1(S
2l) = H∗(S

2l) is a generator.

Proof. This clearly follows from Proposition 3.3, Lemma 3.4 and 3.5, Theo-
rem 3.1 and 3.2. �

Note that for p 6= 3, both the Jacobi identity and Proposition 3.3 give us
that [ι2l, [ι2l, ι2l]] is trivial in H∗(D3(S

2l)). For p = 3 however we need to
check this by hand (note this is similar to the fact that in characteristic 3,
there are two different notions of Lie algebras dependent on whether or not
to include the axiom [x, [x, x]] = 0).

Corollary 3.7. Let p = 3. In H∗(D3(S
2l)) the element [ι2l, [ι2l, ι2l]] is trivial.

Proof. In dimension 6l − 3, H∗D3(S
2l−1) has one generator βQlι2l−1. Un-

der the isomorphism H∗D3(S
2l−1) ≃ H∗Σ

−1D3(S
2l) this element maps to

σ−1βQlι2l under the identification, where σ−1 is the desuspension. We there-

fore just need to show that [ι2l, [ι2l, ι2l]] is not a non-trivial multiple of βQlι2l.

Tracing through the definitions we see that βQlι2l is carried by the cell la-
belled by the tree T3, and [ι2l, [ι2l, ι2l]] is carried by the cell labelled by the
Σ3 orbit of T 1,3. The spectral sequence of Lemma 1.7 computing H∗D3(S

2l)
has only two lines, so therefore we get a long exact sequence

. . . → H6l−2(Σ
−2S2l)∧3hΣ

T1,3
→ H6l−2D3(S

2l) → H6l−2(Σ
−1S2l)∧3hΣT3

d1→ . . .

Clearly

H6l−2D3(S
2l) // H6l−2(Σ

−1S2l)∧3hΣT3

βQlι2l
✤ // σ−1βQlι2l

by definition, where σ−1 denotes the desuspension, and ΣT3
≃ Σ3. Hence the

element σ−2ι2l ⋆ ι2l ⋆ ι2l ∈ H6l−2(Σ
−2S2l)∧3hΣ

T1,3
, which maps to [ι2l, [ι2l, ι2l]]
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in H6l−2D3(S
2l), must map to the trivial element, since ΣT 1,3 ≃ Σ2, and ⋆

denotes the Pontryagin product. This concludes the proof. �

4. Main Result

Before stating our main result, we will need a bit of terminology:

Definition 4.1. If M∗ is a graded Fp vector space with basis B, then define
A(M∗) to be the graded vector space with basis

B ∪
⋃

k≥2

{

[a1, [a2, [. . . , [ak−1, ak] . . .]]
∣

∣ai ∈ B
}

where |[x, y]| = |x|+ |y| − 1. Define the free shifted Lie algebra sL(M∗) to be
A∗ modulo the relations for all x, y, z ∈ A(M∗)

• [x, y] + [x, z] = [x, y + z] (Linearity)

• [x, y] = (−1)|x||y|[y, x] (Graded Commutativity)

• (−1)|x||z|[x, [y, z]] + (−1)|y||z|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0 (The
Graded Jacobi Identity)

• For p = 3 [x, [x, x]] = 0

We define the free shifted Lie algebra with Power operations, sLP(M∗) to
be

⋃

k≥0

{

βǫ1Qs1 · · · βǫkQskx
∣

∣x ∈ sL(M∗), sk ≥
|x|

2
, si > psi+1 − ǫi+1∀i

}

subject to linearity of the power operations.

Clearly given any spectrum X we have a map sLP(H∗(X)) → H∗P(X).
We are now ready to state our main theorem:

Theorem 4.2. If X is a spectra, then the map sLP(H∗(X)) → H∗P(X) is
an isomorphism of Fp vector spaces.

The proof follows from the results above and arguments completely anal-
ogous to the proof of Theorem 7.1 in [Ant15], which I will summarize here.

Proof. Step one is showing that the homology of P(X) depends only on the
homology of X. In fact Antolin-Camarena shows that this is true for any
operad in spectra. From here we need to prove the theorem in increasing
generality. The first case is taken care of by noting that we have already
proved the theorem in the case where X is a sphere. From here we can use a
result of Arone and Kankaanrinta [AK98, Thm. 0.1] to extend the result to
when X is a finite wedge of spheres, and then we note that this also gives us
the case for arbitrary wedges of spheres, writing it as a filtered colimit of finite
wedges of spheres, and recall that homology and free constructions commute
with filtered colimits. The last case is for a general X. We simply pick a
basis for H∗(X), {xi}, and then use the following homology isomorphism:

H∗(
∨

i

S|xi|) → H∗(X)
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given by the sum of the xi’s and that gives the full result. �

One could have hoped for a description of the relations the power op-
erations satisfy, as was done for the p = 2 case in [Beh12, Thm. 1.5.1].
The argument there relies on a good understanding of the homology of the
James-Hopf map (see [Kuh83]), which due to combinatorics appears harder
to obtain for odd primes.

Conjecture 4.3. The Lie power operations satisfy the mixed Adem relations,
see [CLM76] II.3 for a statement of these.

Remark 4.4. Note that to prove Conjecture 4.3 for positive homology classes,
it will suffice to prove the following:

The transfer H∗(Σp2) → H∗(Σp ≀ Σp) is given by

βǫQiQj 7→ βǫQiQj + Mixed Adem Relations.

The conjecture then follows from the fact that the kernel of the surjection

Σ−2H∗(S
2l+1)p

2

hΣp≀Σp
→ H∗Dp2(S

2l+1) from [AM99, Thm. 3.16] is given by

the image of the transfer H∗(S
2l+1)p

2

hΣ
p2

→ H∗(S
2l+1)p

2

hΣp≀Σp
.

Note that Conjecture 4.3 and Remark 4.4 hold for p = 2.

References

[AC11] Gregory Arone and Michael Ching, Operads and chain rules for the calculus of
functors, Société mathématique de France, 2011.

[AK98] Greg Arone and Marja Kankaanrinta, The homology of certain subgroups of the
symmetric group with coefficients in lie (n), Journal of Pure and Applied Algebra
127 (1998), no. 1, 1–14.

[AM99] Greg Arone and Mark Mahowald, The Goodwillie tower of the identity functor
and the unstable periodic homotopy of spheres, Inventiones mathematicae 135

(1999), no. 3, 743–788.
[Ant15] Omar Antolín Camarena, The mod 2 homology of free spectral lie algebras, Ph.D.

thesis, 2015.
[Ant16] , The mod 2 homology of free spectral Lie algebras, ArXiv e-prints (2016).
[Beh11] Mark Behrens, The Goodwillie tower for S1 and Kuhn’s theorem, Algebraic &

Geometric Topology 11 (2011), no. 4, 2453–2475.
[Beh12] , The Goodwillie tower and the EHP sequence, vol. 218, American Math-

ematical Society, 2012.
[Bra17] Lukas Brantner, The Lubin-Tate theory of spectral lie algebras, Ph.D. thesis, 2017.
[Chi05] Michael Ching, Bar constructions for topological operads and the Goodwillie

derivatives of the identity, Geometry & Topology 9 (2005), no. 2, 833–934.
[CLM76] Frederick Ronald Cohen, Thomas Joseph Lada, and Peter J May, The homology

of iterated loop spaces.
[GK+94] Victor Ginzburg, Mikhail Kapranov, et al., Koszul duality for operads, Duke

mathematical journal 76 (1994), no. 1, 203–272.
[Goo03] Thomas G Goodwillie, Calculus III: Taylor series, Geometry & Topology 7

(2003), 645–711.
[HSS00] Mark Hovey, Brooke Shipley, and Jeff Smith, Symmetric spectra, Journal of the

American Mathematical Society 13 (2000), no. 1, 149–208.



HOMOLOGY OF ALGEBRAS OVER THE SPECTRAL LIE OPERAD 17

[KM95] Igor Kriz and J Peter May, Operads, algebras, modules and motives, Société math-
ématique de France, 1995.

[Kuh83] Nicholas J Kuhn, The homology of the James-Hopf maps, Illinois Journal of
Mathematics 27 (1983), no. 2, 315–333.

[Wei95] Charles A. Weibel, An introduction to homological algebra, no. 38, Cambridge
university press, 1995.

Department of Mathematics, 255 Hurley, Notre Dame, IN 46556


	Introduction
	1. Preliminaries
	1.1. The Spectral Lie Operad
	1.2. Computational Methods

	2. Homology Operations
	2.1. Power Operations
	2.2. The Bracket

	3. The Computation for the Spheres
	3.1. The Odd Dimensional Case
	3.2. The Even Dimensional Case

	4. Main Result
	References

