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THE SECOND REAL JOHNSON-WILSON THEORY AND
NONIMMERSIONS OF RP n

NITU KITCHLOO and W. STEPHEN WILSON

(communicated by Donald M. Davis)

Abstract
Hu and Kriz construct the real Johnson-Wilson spectrum,

ER(n), which is 2n+2(2n − 1)-periodic, from the 2(2n − 1)-
periodic spectrum E(n). ER(1) is just KO(2) and E(1) is
just KU(2). We compute ER(n)∗(RP∞) and set up a Bock-
stein spectral sequence to compute ER(n)∗(−) from E(n)∗(−).
We combine these to compute ER(2)∗(RP 2n) and use this to
get new nonimmersions for real projective spaces. Our lowest
dimensional new example is an improvement of 2 for RP 48.

1. Introduction

We have three main goals in this paper. First, we want to introduce the second real
Johnson-Wilson cohomology, ER(2)∗(−), as a real problem-solving tool. Second, we
develop computational tools for ER(2)∗(−) and third, we apply ER(2)∗(−) and our
computational tools to prove some new families of nonimmersions for real projective
spaces. The lowest dimensional example is RP 48.

Our concern is with the real Johnson-Wilson cohomology, ER(n)∗(X), developed
in [HK01], [Hu01], [KW07b], and [KW07a]. It is 2n+2(2n − 1)-periodic and con-
structed from the 2(2n − 1)-periodic spectrum E(n). ER(1) is just KO(2) and E(1)
is just KU(2). Our long term goals are to develop and apply ER(2)∗(−) but much of
our preliminary work stands for ER(n)∗(−) in general.

The coefficient ring, E(n)∗(S0), is given by Z(2)[v1, v2, . . . , v
±1
n ] where the degree

of vk is −2(2k − 1). The theory, E(n), is complex orientable and as such it has a
formal group law with coefficients made up from the vk’s and a [2]-series,

[2](u) =
∑

k>0

akuk+1 =
n∑

k>0

F vku2k

. (1.1)

We prefer to grade our cohomologies over Z/(2n+2(2n − 1)). For E(n)∗(−) we just
set v2n+1

n = 1.
We start off with a theorem, proven later as Theorem 3.2, that goes back to the

equivariant roots of ER(n).
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Theorem 1.2. Let λ(n)= 22n+1 − 2n+2+1. Then there is a u ∈ ER(n)1−λ(n)(RP∞)
and

ER(n)∗(RP∞) ' ER(n)∗[[u]]/([2](u))

where the vk are replaced by v
ER(n)
k ∈ ER(n)(λ(n)−1)(2k−1)(S0).

In our special case of interest, ER(2), v
ER(2)
2 = 1 and we rename v

ER(2)
1 as α. Our

relation becomes
[2](u) = 2u +F αu2 +F u4 (1.3)

and it maps to the same relation in E(2)∗(RP∞) for our 48-periodic E(2). To do
this we have to replace the usual x2 ∈ E(2)2(RP∞) with the image of the u ∈
ER(2)−16(RP∞), which is v3

2x2, and replace v1 with the image of α ∈ ER(2)16, v5
2v1.

Since v2 is a unit, this is not a problem.
For our applications we need ER(2)∗(RP 2n), and the equivariant approach doesn’t

work here. The stable cofibration of [KW07a],

Σλ(n)ER(n)
x // ER(n) // E(n), (1.4)

gives us a long exact sequence:

ER(n)∗(X) x // ER(n)∗(X)

ρzzvvvvvvvv

E(n)∗(X)
∂

ddHHHHHHHH

(1.5)

where x lowers degree by λ(n) and ∂ raises degree by λ(n) + 1. This is a classic exact
couple and leads us directly to a Bockstein spectral sequence for x-torsion. We know
that x2n+1−1 = 0 so there can be only 2n+1 − 1 differentials. We set up this spectral
sequence and compute d1. In the case n = 1 it can be used to compute KO∗

(2)(X)
from KU∗

(2)(X). In this case there are only 3 differentials. For the case of interest
to us, n = 2, there are only 7 differentials and because for many of our spaces our
E1-term, E(2)∗(X), is even degree, we have only 4 differentials because the d2r are
odd degree.

We use the Bockstein spectral sequence to compute ER(2)∗(RP 2n) after setting
up the spectral sequence. This breaks up into 8 cases depending on n modulo 8. The
descriptions can get lengthy (times 8) but can be read off directly from the Bockstein
spectral sequence which is quite compact. Here we will be content to describe the
part of ER(2)∗(RP 2n) we are really interested in, namely ER(2)16∗(RP 2n).

We like to describe our groups, which are all modules over the 2-adics, with what
we call a 2-adic basis, i.e. a set of elements such that any element in our group can be
written uniquely as a finite sum of these elements with coefficients 0 or 1. We tend to
abuse the language by referring to a group as “represented by” or “given by” when
we mean “has a 2-adic basis”. If the group is infinite, it will have a topology on it
and we can use unique infinite sums. Usually we can compute 2 times an element by
using (1.3).

Keep in mind that, using this notation, the usual E(2)∗(RP 2n) has a 2-adic basis
given by αkuj , with 0 6 k and 0 < j 6 n and the 48-periodic version has basis given
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by vi
2α

kuj , with 0 6 i < 8. We always use reduced cohomology.
A simplified version of Theorem 13.4 is given by:

Theorem 1.6. A 2-adic basis for ER(2)16∗(RP 2n) consists of the elements αkuj,
with 0 6 k and 0 < j 6 n, and when

n ≡ 0 or 7 modulo 8, un+1 = 0;
n ≡ 1 or 6 modulo 8, αkun+1, with un+2 = 0;
n ≡ 2 or 5 modulo 8, αkun+1, and un+2, with un+3 = 0;
n ≡ 3 or 4 modulo 8, un+1, un+2, and un+3, with un+4 = 0;

and no others.

Our applications use the four cases, n ≡ 1, 2, 5 and 6, modulo 8, where we have
αkun+1. Here we have a purely algebraic, no topology implied or used, surjection

ER(2)16∗(RP 2n) −→ E(2)16∗(RP 2n+2), n ≡ 1, 2, 5, 6 mod 8.

This was the key to inspiring our nonimmersion results. We also need the isomorphism
given above for

ER(2)16∗(RP 2n) −→ E(2)16∗(RP 2n), n ≡ 0, 7 mod 8.

From [Jam63] we know that if there is an immersion of RP 2n into R2k then there is
an axial map:

RP 2n ×RP 2K−2k−2 −→ RP 2K−2n−2.

Don Davis, in [Dav84], shows that there is no such map when

n = m + α(m)− 1 and k = 2m− α(m),

where α(m) is the number of ones in the binary expansion of m. He does this by
showing that the image of u2K−1−n on the right side of

E(2)∗(RP 2n)⊗E(2)∗ E(2)∗(RP 2K−2k−2) E(2)∗(RP 2K−2n−2)oo (1.7)

is nonzero on the left. However, this power of u on the right is zero. He further needs
that the tensor product injects to E(2)∗(RP 2n ×RP 2K−2k−2).

This computation is actually a coproduct because it can first be carried out for
the map RP∞ ← RP∞ ×RP∞ and this has a Künneth isomorphism for both our
theories ER(2)∗(−) and E(2)∗(−). The first step,

ER(2)∗(RP∞)

²²

// ER(2)∗(RP∞)⊗̂ER(2)∗ER(2)∗(RP∞)

²²
E(2)∗(RP∞) // E(2)∗(RP∞)⊗̂E(2)∗E(2)∗(RP∞),

(1.8)

is an isomorphism from the top row to the bottom in degrees 16∗ by Corollar-
ies 8.3 and 17.3. Don Davis shows that the image of u2K−1−n maps nontrivially
to E(2)16∗(RP 2n ×RP 2K−2k−2). The obstruction can be written in terms of the 2-
adic basis for this. We show that the same elements exist and are basis elements for
ER(2)16∗(RP 2n ×RP 2K−2k−4) and so the obstruction must also be nonzero here.
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This argument and computation gives us an improvement of 2 in our nonimmer-
sions over previously known. The abelian group structure of the tensor product is
extremely complicated but by relying on [Dav84] we avoid ever having to consider
it.

We need to restrict our attention to the cases n ≡ 0 and 7 modulo 8 and −k − 2
equal to 1, 2, 5 or 6 modulo 8 in order to get our results. Our nonimmersion theorem
is:

Theorem 1.9. When the pair (m,α(m)) is, modulo 8, (2, 7), (7, 2), (6, 3), (3, 6),
(7, 1), (4, 4), (3, 5), or (0, 0), then

RP 2(m+α(m)−1) does not immerse (*) in R2(2m−α(m)+1).

When the pair (m,α(m)) is, modulo 8, (4, 3), (1, 6), (0, 7), or (5, 2), then

RP 2(m+α(m)) * R2(2m−α(m)+1).

Although we don’t have to deal with the abelian group structure that makes Don
Davis’s work so difficult, this theorem is not for free from his work. By looking at
the ER(2)∗ submodules of our groups generated by elements of degree 16∗ it is fairly
easy to show that our obstruction is nontrivial in the tensor product. The injection
of the tensor product,

E(2)∗(RP 2m)⊗E(2)∗ E(2)∗(RP 2n) −→ E(2)∗(RP 2m ∧RP 2n),

is ancient knowledge. We don’t have such a result for ER(2)∗(−). Where much of
our work comes in is to show that the relevant basis elements map independently to
ER(2)∗(−) of the product. We do not have to compute the entirety of the ER(2)
cohomology of the product but just enough to give us what we need.

Looking closely at our theorem to decide if we really have anything new or not, let’s
take the pair (m,α(m)) = (6, 3). Let m = 2 + 4 + 2i, i > 3, then 2n = 2(m + α(m)−
1) = 2(2 + 4 + 2i + 3− 1) = 16 + 2i+1 and 2(2m− α(m) + 1) = 2(4 + 8 + 2i+1 − 3 +
1) = 4 + 16 + 2i+2 = 20 + 2i+2. Our result, in this case, shows that RP 16+2i+1 *
R20+2i+2

. Looking at the best known results, compiled by Don Davis in [Dav],
we know that RP 16+2i+1 * R18+2i+2

but RP 16+2i+1 ⊆ R23+2i+2
. Furthermore, when

i = 4, 5 and 6 we get results for very low spaces:

RP 48 * R84; RP 80 * R148; RP 144 * R276.

Our claim is that this alone makes a good case for ER(2)∗(−) as a powerful tool.
There are only 8 projective spaces, RPn, with n 6 50, where the best possible results
are not yet known. For these 8 spaces there were a total of 26 gaps, now 24. Our
result is the first improvement in over 20 years for any RPn with n 6 50.

The pair (4, 4) gives

RP 62+2i

* R106+2i+1

where i > 5. The lowest cases here are

RP 126 * R234 RP 190 * R362.

These are nice because they get onto Don Davis’s tables, [Dav], just barely, but
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at least this way we know we have something new, which would be difficult to tell
otherwise.

From the second part of the theorem we only get an improvement of one dimension.
The pair (4, 3) gives m = 4 + 2i + 2j with 2 < i < j. We get

RP 14+2i+1+2j+1
* R12+2i+2+2j+2

.

With i = 3 we get

RP 30+2j+1
* R44+2j+2

with lowest examples

RP 62 * R108; RP 94 * R172; RP 158 * R300.

With i = 4 we get

RP 46+2j+1
* R76+2j+2

with lowest examples

RP 110 * R204; RP 174 * R332.

For the i = 3 and 4 cases above, there is now just a gap of 1 between known nonim-
mersions and immersions.

Don Davis, [Dav], keeps track of the best results for RP d+2i

for 0 6 d < 64. Of
these 64, 24 are best possible at this time. We have improved the results for 4 of the
40 remaining: d = 16, 30, 46 and 62. We conjecture that this machine can improve
results for d = 32, 48, 49, 54, 56 and 57, but these could be computationally intensive
and so don’t fit into this paper.

There is a bit of a saga associated with the RP 48 case. The theory tmf is clearly
stronger than ER(2) so the question arose as to why [BDM02] didn’t see this result.
When they looked again at their results, they realized that they had actually stated
a family that included this case but had overlooked it when converting to the tables
[Dav]. A closer look at [BDM02] revealed a simplification that had not been justified.
That allows us to technically slip in with this result before they managed to patch up
some of their theorems, which now include this. The theory tmf is very complicated
and because of this complexity it cannot approach our other results at present.

The paper begins by computing ER(n)∗(RP∞) using the equivariant approach.
We then set up the Bockstein spectral sequence for computing ER(n)∗(−) from
E(n)∗(−). We use the Bockstein spectral sequence to compute all of the (eight)
cases of ER(2)∗(RP 2n). When this is done, we extract, from the Bockstein spectral
sequence, just what we need about ER(2)∗(−) of products. Then we wrap things up
by producing our nonimmersion results.

The authors had worked with ER(n) with an emphasis on ER(2) before with an
eye to eventually attacking nonimmersion problems. This project really got underway
at the Bendersky-Davis 60th birthday conference at Newark, Delaware, April 2005,
where, over lunch, the second author was inspired to work on the problem by Jesus
González and Martin Bendersky who have continued to correspond with the authors
throughout the project. Don Davis then joined the group, and without his help and
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tables we would never even know if we had new results. Thanks to all three. Spe-
cial thanks are also in order for the referee’s careful reading and numerous helpful
comments.

At the end of the paper we have a short section explaining how to compute
ER(2)∗(RP 2n) using the Atiyah-Hirzebruch spectral sequence. This was how it was
first done and it required some interesting twists. Then it was thought that the Bock-
stein spectral sequence approach was unworkable. The Atiyah-Hirzebruch spectral
sequence approach broke down when it came to studying the products; things just
got too complicated. We then resurrected the Bockstein spectral sequence approach
which proved successful. One of the unexpected and unnecessarily complicating fac-
tors was our choice of product spaces to study first to learn about products. The
case RP 16 was essential for the study of ER(2)∗(RP 2n) for the Atiyah-Hirzebruch
spectral sequence approach and it is “nicer” than other RP 2n. So RP 16 ×RP 16 was
chosen on the grounds that it should be both elementary and educational. It turns out
that great simplification occurs when one space is bigger than the other, or, phrased
differently, complications occurred for RP 16 ×RP 16 that only occur when the spaces
are the same. Much time was lost on these irrelevant complications.

2. Equivariant results

Recall from [HK01] that there is a real spectrum E(n) corresponding to the
Johnson-Wilson spectra. In particular, E(n) consists of a bigraded family of Z/(2)-
spaces E(n)(a,b). We denote by ER(n)(a,b) the homotopy fixed point space of the Z/(2)
action on E(n)(a,b). The collection of spaces E(n)(k,0) form a (naive) Z/(2)-equivariant
omega spectrum, and we define the spectrum ER(n) as the corresponding homotopy
fixed point spectrum ER(n)(k,0). Furthermore, it is shown in [HK01] that the real
spectrum E(n) satisfies a strong completion theorem, in the sense that the canonical
map

ι : E(n)(a,b) −→ Map(EZ/(2)+,E(n)(a,b))

is a Z/(2)-equivalence, where EZ/(2) represents the free, contractible Z/(2)-complex.
For a space X with a Z/(2)-action, we may define bigraded cohomology groups
ER(n)a,b(X) [HK01] as the groups

ER(n)(a,b)(X) = π0 MapZ/(2)(X,E(n)(a,b)).

The strong completion theorem has a few useful consequences:

Proposition 2.1. Let X be a pointed space with the trivial Z/(2) action. Then the
map ι above induces an isomorphism:

ER(n)(k,0)(X) −→ ER(n)k(X).

The proof of the above proposition follows directly from the strong completion
theorem, and is left to the reader. Another useful consequence of the strong completion
theorem is the following:

Proposition 2.2. Let X and Y be pointed Z/(2)-spaces. Assume that f : X → Y is
a Z/(2)-equivariant map that is a homotopy equivalence (non equivariantly). Then f
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induces an isomorphism:

f∗ : ER(n)(a,b)(Y ) −→ ER(n)(a,b)(X).

Proof. By the strong completion theorem, we may write the groups ER(n)(a,b)(Z) as
π0 MapZ/(2)(EZ/(2)+ ∧ Z,E(n)(a,b)), for an arbitrary Z/(2)-space Z. Now consider
the map

Id ∧ f : EZ/(2)+ ∧X −→ EZ/(2)+ ∧ Y.

Since the spaces EZ/(2)+ ∧X and EZ/(2)+ ∧ Y are free Z/(2)-spaces, the map Id ∧ f
is a Z/(2)-homotopy equivalence. It follows from the above previous observation that
f∗ is an isomorphism.

3. Cohomology of projective spaces

We shall use the above propositions to describe the ER(n) cohomology of the
infinite projective space. To this end, we need to consider the complex projective
space CP∞, with the action of Z/(2) given by complex conjugation. The space CP∞

supports the Z/(2)-equivariant tautological complex line bundle γ. Moreover, γ is
real-oriented, in the sense that it admits a real Thom class t ∈ ER(n)(1,1)(Th(γ)).
Let u ∈ ER(n)(1,1)(CP∞) denote the Euler class of γ. The standard argument using
the Atiyah-Hirzebruch spectral sequence may be invoked in the real setting to show
that ER(n)(∗,∗)(CP∞) ' ER(n)(∗,∗)[[u]], as a bigraded ring [HK01].

Now consider the real bundle γ⊗2. The Euler class of γ⊗2 is simply [2](u). Let
˜RP∞ denote the unit sphere bundle of γ⊗2. Notice that ˜RP∞ may be identified with

the space of (real) lines in C∞ and as such, it supports a nontrivial Z/(2)-action
given by complex conjugation. Let f : RP∞ → ˜RP∞ denote the inclusion induced by
the R∞ ⊂ C∞. Notice that f is a Z/(2)-equivariant map with RP∞ having a trivial
Z/(2)-action. Moreover f is a (non equivariant) homotopy equivalence. It follows from
the previous proposition that:

Lemma 3.1. The map f : RP∞ → ˜RP∞ induces an isomorphism

f∗ : ER(n)(a,b)( ˜RP∞) −→ ER(n)(a,b)(RP∞).

We may calculate the cohomology of ˜RP∞ using the Gysin sequence, [LMS86,
Chapter X, Section 5] for the bundle γ⊗2:

· · · −→ ER(n)(a−1,b−1)(CP∞)
[2](u)−→ ER(n)(a,b)(CP∞) −→

ER(n)(a,b)( ˜RP∞) −→ ER(n)(a,b−1)(CP∞) −→ · · · .
Since [2](u) is clearly not a zero divisor in ER(n)(∗,∗)(CP∞), we conclude that
ER(n)(∗,∗)(RP∞) ' ER(n)(∗,∗)[[u]]/[2](u).

At this point, let us recall the invertible class y(n) ∈ ER(n)(−λ(n),−1) [KW07a,
Claim 4.1], where λ(n) = 22n+1 − 2n+2 + 1. We have the v

ER(n)
k ∈ ER(n)(−2k+1,−2k+1)

and get elements y(n)−2k+1v
ER(n)
k = v

ER(n)
k ∈ ER(2k−1)(λ(n)−1)(S0). We may normal-

ize u to be in degree (1− λ(n), 0) by redefining u as u y(n). Using the first proposition,
we get:
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Theorem 3.2. Let λ(n) = 22n+1 − 2n+2 + 1. Then ER(n)∗(RP∞) is isomorphic to
ER(n)∗[[u]]/([2](u)) where u ∈ ER(n)1−λ(n)(RP∞) and the vk are replaced by v

ER(n)
k

∈ ER(n)(λ(n)−1)(2k−1)(S0).

We may also calculate the ER(n) cohomology of spaces of the form X ∧RP∞

using similar ideas. Let X be a space with a trivial Z/2-action. As before, we may
show that ER(n)(∗,∗)(X ∧ CP∞) ' ER(n)(∗,∗)(X)[[u]]. Again, we consider the real
bundle 0× γ⊗2 over X ∧ CP∞ with Euler class [2](u). We have the Gysin sequence
for this bundle:

−→ ER(n)(a−1,b−1)(X)[[u]]
[2](u)−→ ER(n)(a,b)(X)[[u]] −→

ER(n)(a,b)(X ∧ ˜RP∞) −→ ER(n)(a,b−1)(X)[[u]] −→ · · · .
Since we know that ER(n)(a,b)(X ∧ ˜RP∞) is isomorphic to ER(n)(a,b)(X ∧RP∞)
from an earlier proposition, we would be done provided we knew that [2](u) was
not a zero divisor in ER(n)(∗,∗)(X)[[u]]. For this we require an algebraic lemma (let
v0 = 2):

Lemma 3.3. Let M be a ER(n)(∗,∗)-module such that M has no infinitely I-divisible
elements, where I is the ideal (v0, v

ER(n)
1 , . . . , v

ER(n)
n−1 ); i.e.

⋂

k

IkM = 0.

Then [2](u) is not a zero divisor in M [[u]].

Proof. Filter M by submodules 0 = ∩Mk · · · ⊂M2 ⊂M1 ⊂M0 = M , where Mk =
IkM . Notice that v

ER(n)
i Mk ⊂Mk+1 for i < n. Now let f(u) ∈M [[u]] be a power

series with the property f(u)[2](u) = 0, then working in M/M1[[u]], this equality
reduces to v

ER(n)
n f(u)u2n

= 0, which implies that f(u) belongs to M1[[u]]. Continuing
with M1/M2[[u]] and so forth, we conclude that f(u) ∈ ∩kMk[[u]] = 0.

It follows from the above lemma and the Gysin sequence that

Theorem 3.4. Let X be a space with the property that ER(n)∗(X) has no infinitely
v

ER(n)
i -divisible elements for i < n, (e.g. X is finite or X = RP∞). Let u be the class

defined earlier; then we have an isomorphism:

ER(n)∗(X ∧RP∞) ' ER(n)∗(X)[[u]]/([2](u)).

The proof, of course, is insignificantly different from Landweber’s proof for MU
in [Lan70].

4. The Bockstein spectral sequence

We begin with the stable cofibration (1.4) of [KW07a],

Σλ(n)ER(n)
x // ER(n) // E(n), (4.1)

where x ∈ ER(n)−λ(n) and λ(n) = 22n+1 − 2n+2 + 1.
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The fibration gives us the long exact sequence (1.5). Our long exact sequence is
an exact couple and so gives rise to a spectral sequence whose differentials give us
the x-torsion. We have that x2n+1−1 = 0, [HK01], so there are a finite number of
differentials.

Most of the details of the spectral sequence are fairly straightforward but since we
will make extensive use of it we want to be careful about its basics, so we collect them
in a theorem. We will need complex conjugation. Since E(n) is a complex orientable
theory, it has a complex conjugation map on it that we denote by c. We always use
reduced cohomology. We know that 2x = 0, a simple fact that isn’t necessary in the
spectral sequence but should be kept in mind.

Theorem 4.2 (The Bockstein Spectral Sequence for ER(n)∗(X)).

(i) The exact couple of (1.5) gives a spectral sequence, Er, of ER(n)∗-modules,
starting with

E1 ' E(n)∗(X).

(ii) E2n+1
= 0.

(iii) The targets of the differentials, dr, represent the xr-torsion generators of
ER(n)∗(X) as described below.

(iv) The degree of dr is rλ(n) + 1.

(v) Filter ER(n)∗(X) by Ki, the kernel of xi. Then

{0} = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ K2n+1−1 = ER(n)∗(X).

(vi) Filter M = ER(n)∗(X)/xER(n)∗(X) by Mi the image of Ki so

{0} = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂M2n+1−1 = M.

M/Mr−1 −→ Er, r > 1 injects and Mr/Mr−1 ' image dr.

(vii) dr(ab) = dr(a)b + c(a)dr(b).

(viii) d1(z) = v−(2n−1)
n (1− c)(z) where c(vi) = −vi.

(ix) If c(z) = z ∈ E1, then d1(z) = 0.

If c(z) = z ∈ Er, then dr(z2) = 0.

(x) The following are all vector spaces over Z/(2):

Kj/Ki, Mj/Mi, j > i > 0, and Er, r > 1.

Most of the theorem follows immediately from the basic properties of an exact
couple and the fact that x2n+1−1 = 0. We defer those proofs we need until Section 6
after we have worked some simple examples.

Remark 4.3. Note that the image of ER(n)∗(X)→ E(n)∗(X) gives the set of ele-
ments that are targets of differentials and therefore always have all the differentials
trivial on them. Note also that anything in the image is invariant under the action
of c.
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Remark 4.4. Since ER(n)∗(−) is 2n+2(2n − 1)-periodic, we will consider it as graded
over Z/(2n+2(2n − 1)). We have to do the same then with E(n)∗(−) and we can
accomplish this by setting the unit v2n+1

n = 1 in the homotopy of E(n).

Remark 4.5. Recall that KO(2) = ER(1). For a very simple warmup exercise we can
compute the coefficient ring, ER(1)∗(S0), using the spectral sequence. Our E1-term
is E(1)∗(S0) made 8-periodic where E(1) = KU(0) so E1 is just Z(2) on generators
vi
1, 0 6 i < 4. We have that c(v1) = −v1 so

d1(v1) = v−1
1 (1− c)v1 = v−1

1 (v1 + v1) = 2.

Similarly, d1(v3
1) = 2v2

1 . Since c(v2
1) = v2

1 , we have d1(v2
1) = 0. We have the Z(2)-free

submodule generated by 2 and 2v2
1 giving us our x1-torsion. Give the element of

ER(1)∗(S0) that maps to 2v2
1 the name β. All that is left for our E2-term is the

Z/(2) vector space generated by 1 and v2
1 . They have degree 0 and 4 respectively.

The only differentials we have left are d2, which is odd degree so we don’t have
it, and d3 which has degree 4. Since we know 1 is in the image from ER(1)∗(S0),
the differential must be d3(v2

1) = 1. We have recovered the well known homotopy of
KO(0). Our x is really η and we have η3 = 0 on 1. We have 2η = 0 = ηβ and we have
β2 = 4. All of this read off from our spectral sequence for η torsion.

5. The spectral sequence for ER(2)∗(−)

In [KW07b] we describe the homotopy of ER(2) in more detail than we need here.
Our coefficient ring, ER(2)∗(S0), graded over Z/(48), is generated by elements, x, w,
α, α1, α2, and α3 of degrees −17, −8, −32, −12, −24, and −36 respectively. Some
relations are given by 0 = 2x = x7 = x3w = x3α = xαi and w2 = α2. As a module
over Z(2)[α], the homotopy can be described as having generators

1, w, α1, α3, and α2

with one relation,
αα2 = 2w,

copies of Z/(2)[α] on generators

x, x2, xw, x2w,

and copies of Z/(2) on
x3, x4, x5, x6.

The focus of our important computations which will rely on the spectral sequence
will be for the theory ER(2)∗(−). The homotopy of ER(2) is non-trivial and taking
a look at it from the perspective of the spectral sequence is well worth the effort, plus
it helps us compute differentials in the future.

Our spectral sequence begins with E1 = E(2)∗(S0), which is just a free Z(2)[v1]-
module on a basis given by vi

2 for 0 6 i < 8. We know our d1. We get:

d1(v2s+1
2 ) = v−3

2 (1− c)(v2s+1
2 ) = v−3

2 2v2s+1
2 = 2v2s−2

2 .

Similarly, d1(v2s
2 ) = 0. This seems like a good start but if we multiply v2s+1

2 by v1,
the differential suddenly becomes zero because c(v1v

2s+1
2 ) = v1v

2s+1
2 . Complicating
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matters even more, if we were to multiply by v2
1 we would be back to our multipli-

cation by 2v−3
2 . This is a problem that would persist in all of our computations for

ER(2)∗(X). We need a better way to deal with this.
Our solution to this problem is to introduce the element α discussed for (1.3). The

image of α is v1v
5
2 ∈ E(2)−32(S0) from [KW07a] and [KW07b]. (We’ll discuss α

more in the next section.) Because v2 is a unit, this is a good substitute for our plain
v1. Furthermore, it is invariant under c because it is in the image of the map from
ER(2)∗(S0), or, we could just compute that v1v

5
2 is invariant because it has an even

number of v’s. We now rewrite the homotopy of E(2) as Z(2)[α, v±1
2 ] but again set

v8
2 = 1.

We can go back to our computation of d1 on v2s+1
2 where E1 is now a free Z(2)[α]-

module on vi
2, 0 6 i < 8. Now we could compute

d1(αkv2s+1
2 ) = d1(αk)v2s+1

2 + c(αk)d1(v2s+1
2 ) = 0 + αk2v2s−2

2 ,

but this really follows automatically from the fact that the spectral sequence is a
spectral sequence of ER(2)∗-modules.

After the d1 in our spectral sequence for ER(2)∗(S0), all we have left for E2 is the
free Z/(2)[α]-module with basis given by {1, v2

2 , v4
2 , v6

2}. We give names to the elements
of ER(2)∗(S0) that must be x1-torsion and map to 2v2s

2 . Let αi ∈ ER(2)−12i(S0)
map to 2v2i

2 where α0 = 2. In ER(2)∗(S0), these elements generate a free x1-torsion
submodule over Z(2)[α].

Since all our remaining elements in E2 are in even degrees, we can only have odd
differentials since the even ones have odd degrees. Our choices are d3, d5, and d7. The
degree of d5 is 38. If we look at our E2 in degrees modulo 16, we find that we only
have elements in degrees 0, 4, 8, and 12. The mod 16 degree of d5 is 6 and so must
be zero. Note also that we must have two non-trivial differentials because v4

2 = (v2
2)2

and we can apply our Theorem 4.2 to show that our first new differential must be
trivial on this.

We need the differentials on the coefficients because we will use them regularly
in our other computations. We also want to demonstrate how much information can
be extracted from the spectral sequence without much input. In our present case all
we have done is replace v1 with the invariant α = v1v

5
2 . Proceeding, we must have

a d3 and it must be non-trivial on v2
2 and v6

2 . The degree of d3 is 4, (remember, we
are graded over Z/(48)), so d3(v2

2) = α3k+1v4
2 for some k for degree reasons. Multiply

by v4
2 to get d3(v6

2) = α3k+11. Unfortunately, we don’t know k. However, if we keep
going, we can compute our E4 = E7. It is just αi1 and αiv4

2 for 0 6 i 6 3k. Since we
know that αi1 is in the image, it must be the target of differentials and all that is
left is d7(αiv4

2) = αi1. Since E8 must be zero, this is forced.
At this stage we have to introduce a fact, namely that x3α = 0 [KW07b]. That

forces our k above to be zero and our d7 to just be d7(v4
2) = 1. Name the element

that maps to αv4
2 , w ∈ ER(2)−8(S0). Our x3-torsion elements are given by αk and

wαk. Finally, our only x7-torsion element is 1.
In order to do this computation the only thing we had to use that didn’t come

directly from the spectral sequence was the fact that x3α = 0. We can recover most,
if not all, of the ring structure by looking at the image of ER(2)∗(S0) in E(2)∗(S0)
(for example, α2

2 = 4 and α2α = 2w).
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We want another relation. Note that in our spectral sequence we have

w2 = (αv4
2)2 = α2v8

2 = α2.

This is only modulo x but this is in degree −16. The degree of x is −17 and there
are no elements at all in degree 1, so there is no z such that we could possibly have
xz + w2 = α2, so this relation, w2 = α2 must be true on the nose.

From our theorem and our computation:

Proposition 5.1. In the Bockstein spectral sequence for ER(2)∗(X), the map d1 is
an ER(2)∗/(x)-module map. The differentials d2 and d3 are Z/(2)[α, w]/(w2 = α2)-
module maps but d4, d5, d6, and d7 are only Z/(2)-module maps.

Proof. Of course all of these differentials are really still ER(2)∗-module maps but
some of the elements of ER(2)∗ are zero in Er. For example, the αi and 2 are all zero
in E2. All that is left then is Z/(2)[α, w]/(w2 = α2) but w and α go to zero in E4

leaving only Z/(2).

Our Bockstein spectral sequences will be modules over ER(2)∗. We collect some
of the facts we will use repeatedly:

Proposition 5.2.

d1(v2s+1
2 ) = 2v2s−2

2 ; d3(v4s−2
2 ) = αv4s

2 ; d7(v4
2) = 1;

d1(v2s
2 ) = 0; d2(v2s

2 ) = 0;

dr(v4s
2 ) = 0; 3 6 r < 7.

6. Proof of Theorem 4.2

The spectral sequence obtained from (1.5) is a classic example of an exact couple.
Everything but the facts about the differentials is automatic. Even the product rule
for dr follows if we know it for d1. It is as if Bill Massey consulted us about what
we needed before he wrote [Mas54]. We have complex conjugation for our involution
on E(n)∗(X) and the trivial involution, i.e. the identity, on ER(n)∗(X). Our situa-
tion then fits [Mas54] exactly. Assuming our formula for d1 we confirm the product
formula for it:

d1(ab) = v−(2n−1)
n (1− c)(ab) = v−(2n−1)

n (ab− c(ab)) = v−(2n−1)
n (ab− c(a)c(b))

= v−(2n−1)
n ((a− c(a))b + c(a)(b− c(b))) = d1(a)b + c(a)d1(b).

We prove the part that assumes c(z) = z:

d1(z) = v−(2n−1)
n (1− c)(z) = v−(2n−1)

n (z − z) = 0.

For the second case, d1(z2) = 0 because z2 is invariant under c. For r > 1,

dr(z2) = dr(z)z + c(z)dr(z) = dr(z)z + zdr(z) = 2zdr(z),

which is zero since we are working modulo 2 for r > 1.
All that remains is to get our formula for d1 and prove our statements about

mod 2 vector spaces. Let’s continue to assume our formula for d1 and show our Z/(2)
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vector spaces. First, we note that 2x = 0 so 2ER(n)∗(X) ⊂ K1. This is all we need
to show that

Kj/Ki, and Mj/Mi, j > i > 0

are Z/(2) vector spaces. To show that Er, r > 1, is a Z/(2) vector space, it is enough
to show it for E2. We start with an arbitrary element y ∈ E1 with 2y 6= 0. Obviously,
if d1(y) 6= 0 this situation does not persist to E2 so we can assume that d1(y) = 0.
First we need

d1(v2n−1
n ) = v−(2n−1)

n (1− c)v2n−1
n = v−(2n−1)

n (v2n−1
n + v2n−1

n ) = 2

(which, by the way, shows 2x = 0). Consider the element v2n−1
2 y. We have:

d1(v2n−1
2 y) = d1(v2n−1

2 )y + c(v2n−1
2 )d1(y) = 2y + 0.

Thus no multiplication by 2 survives to E2, which concludes our proof.
We have only one thing left to do, and that is to prove the formula d1 =

v
−(2n−1)
n (1− c). We’ve put this off till last because it requires a review of the source

of our fibration. This also gives us a chance to describe some of the general properties
of ER(n)∗(X). In [KW07a] we have bigraded spaces, E(n)a,b with b = 0 giving our
standard Ω spectrum for E(n). Likewise we have ER(n)a,b with b = 0 giving our Ω
spectrum for ER(n).

There is ample opportunity for confusion here. Before we proceed, let’s do a little
review of all the elements named vk. Our unadorned element is

vk ∈ E(n)−2(2k−1)(S0) = E(n)−2(2k−1),0(S0),

where E(n) is the bigraded equivariant spectrum with complex conjugation, c, acting
on it. The element

v
E(n)
k ∈ E(n)−(2k−1),−(2k−1)(S0)

is invariant under the action of c and gives rise to

v
ER(n)
k ∈ ER(n)−(2k−1),−(2k−1)(S0).

We have an element
σ ∈ π0(E(n)1,−1)

with a non-trivial Z/(2) action on it. However, the element σ2n+1
lifts to a unit in

π0(ER(n)2n+1,−2n+1) = ER(n)2
n+1,−2n+1

(S0).
The first thing we want to show is how the invariant v

E(n)
k ∈ E(n)−2k+1,−2k+1(S0)

is connected to our vk ∈ E(n)−2(2k−1),0(S0) ≡ E(n)−2(2k−1)(S0). We have

vk = v
E(n)
k σ−2k+1.

Since there are an odd number of σ’s, we get our c(vk) = −vk.
In [KW07a, Claim 4.1] we produced an invertible homotopy element

y(n) = (vER(n)
n )2

n−1σ−2n+1(2n−1−1) ∈ ER(n)−λ(n),−1(S0),

and multiplication by it gives an isomorphism

ER(n)a+1+λ(n),b(X) ' ER(n)a+1,b−1(X).
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Note that

y(n)−1 = (vER(n)
n )−(2n−1)σ2n+1(2n−1−1) = (vER(n)

n σ−(2n−1))−(2n−1)σ−1,

which reduces to v
−(2n−1)
n σ−1 in E(n)λ(n),+1(S0).

We get a new element

v
ER(n)
k = v

ER(n)
k y(n)−2k+1 ∈ ER(n)(λ(n)−1)(2k−1)(S0),

which reduces, in E(n)(λ(n)−1)(2k−1)(S0), to vkv
−(2n−1)(2k−1)
n .

In order for the map of ER(n) to E(n) to work nicely we would replace the element
vk ∈ E(n)∗(S0) with vkv

−(2n−1)(2k−1)
n . In particular, when k = 1 and n = 2, we did

this in the last section when we renamed this element α.
The element v

ER(n)
n is a unit and so is σ2n+1

. Consequently, so is

(vER(n)
n )2

n+1
σ−2n+1(2n−1) = (vER(n)

n σ−(2n−1))2
n+1

,

and this is the periodicity element for ER(n)∗(−) ≡ ER(n)∗,0(−) and it maps to
v2n+1

n in E(n)∗(S0).
In [KW07a] the fibration actually proven is

ER(n)a,b−1 −→ ER(n)a,b −→ E(n)a,b.

The map, ∂,

E(n)a,b −→ ER(n)a+1,b−1 −→ E(n)a+1,b−1 (6.1)

is evaluated in [KW07a, Proposition 1.6] as 1− c with the understanding that the
two ends are homeomorphic because they are both just loops on E(n)a+1,b with dif-
ferent Z/(2) actions. Multiplication by our σ gives this homeomorphism. So, implicit
in [KW07a, Proposition 1.6] is

σ−1∂ = 1− c.

This map corresponds somewhat to our first differential. However, we work with
the spectra ER(n) and E(n). Our boundary map, i.e. d1, is

E(n)a −→ ER(n)a+λ(n)+1 −→ E(n)a+λ(n)+1.

To finish off our d1 we need the diagram:

E(n)a,0(X) ' //

²²

1−c

''

∂

&&

E(n)a(X)

²²
d1

xx

ER(n)a+1,−1(X)

²²

y(n)−1

'
// ER(n)a+1+λ(n)(X)

²²
E(n)a+1,−1(X)

σ−1'
²²

v−(2n−1)
n σ−1

'
// E(n)a+1+λ(n)(X)

'
²²

E(n)a,0(X) '
v−(2n−1)

n // E(n)a+1+λ(n)(X).
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σ−1∂ = (1− c), so

d1 = (v−(2n−1)
n σ−1)∂ = v−(2n−1)

n (σ−1∂) = v−(2n−1)
n (1− c).

This concludes our proof.

7. Notational conventions

Our descriptions of groups are usually by giving a “2-adic basis;” i.e. a set of
elements such that any element in our group is written as a unique finite sum of
these elements with coefficients 0 or 1. For example, if we have Z/(2n) generated by
u with the relation 2u = u2, our 2-adic basis would be uj , 0 < j 6 n. In the case of
infinite dimensional spaces we can have infinite sums but care must be taken about
the topology.

We frequently write our list of elements as efficiently as possible by using notation
such as x{1,2} and x{0–2} to indicate the obvious list of elements; x and x2 in the
first case and 1, x, and x2 in the second case. This notation will be used in both
superscripts and subscripts.

Whenever we use ε, we mean it can be either 0 or 1.
Whenever we give names to new elements, the subscript given as part of the name

is also the degree of the element.

8. The Bockstein spectral sequence for ER(2)∗(RP ∞)

We begin by computing ER(2)∗(RP∞) using the Bockstein spectral sequence. In
principle, we already know this from Theorem 3.2. Note that until we start our work
with products, many of our Bockstein spectral sequences are of even degree. Our
even differentials, d2r, are odd degree so they are all zero. This leaves us with only
d{1,3,5,7}.

We remind the reader that the image of our u ∈ ER(2)−16(RP∞) is an element we
also call u ∈ E(2)−16(RP∞), which is really v3

2x2 where x2 is our usual 2-dimensional
generator and v2 is invertible of degree −6. Likewise we replace the usual v1 ∈
E(2)−2 with v5

2v1 = α ∈ E(2)−32 which comes from α ∈ ER(2)−32. The element w ∈
ER(2)−8 maps to αv4

2 = v2v1 ∈ E(2)−8. These changes are necessary because x2 and
v1 are not in the image but elements that differ only by a unit are.

Theorem 8.1 (The Bockstein spectral sequence for ER(2)∗(RP∞)).
E1 = E(2)∗(RP∞) has 2-adic basis

vi
2α

kuj , 0 6 i < 8, 0 6 k, 1 6 j;

d1(v2s−5
2 αkuj) = 2v2s

2 αkuj ≡ v2s
2 αk+1uj+1

modulo higher powers of u.
E2 = E3 is given by:

v2s
2 αku; v2s

2 uj , 2 6 j, 0 6 s < 4, 0 6 k;

d3(v4s−2
2 αku) = v4s

2 αk+1u;
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and for 2 6 j,
d3(v4s−2

2 uj) = v4s
2 αuj ≡ v4s

2 uj+2

modulo higher powers of u.
E4 = E5 = E6 = E7 is given by

v4
2u{1–3} and u{1–3};

d7(v4
2u{1–3}) = u{1–3}.

The x1-torsion generators are given by:

αiα
kuj , 0 6 i, 0 6 k, 1 6 j

where α0 = 2.
The x3-torsion generators are given by:

wεαku, ε + k > 0; wuj , 1 < j; and uj , 3 < j.

The only x7-torsion generators are

u{1–3}.

Remark 8.2. This is consistent with the description in Theorem 3.2. Because 2x = 0,
x times the relation 0 = 2u +F αu2 +F u4 gives us 0 = x(αu2 +F u4). This explains
why no αu2 shows up in our description. From the point of view of x-torsion it can be
replaced with u4 plus other terms. Likewise, if we multiply by x3 and use the relation
x3α = 0 we end up with x3u4 = 0.

Proof. The proof is straightforward. Since u ∈ E(2)∗(RP∞) is in the image from
ER(2)∗(RP∞), our differentials commute with multiplication by u (from the product
formula). They also commute with multiplication by α. We also have, from our com-
putation of the spectral sequence for ER(2)∗(S0) the differentials of Proposition 5.2.
The d1 differential creates a relation coming from our relation 0 = 2u +F αu2 +F u4

when 2u is set to zero. So, in E2, we have αu2 ≡ u4 modulo higher powers of u. This
explains some of our d3. All of our differentials follow.

We use the map ER(2)∗(S0)→ E(2)∗(S0) which takes αi → 2v2i
2 and w → v4

2α to
identify the xr-torsion generators.

Corollary 8.3. The map ER(2)∗(−)→ E(2)∗(−) induces an isomorphism

ER(2)16∗(RP∞) −→ E(2)16∗(RP∞).

Both have 2-adic bases given by αkuj.

Proof. We have, for E(2)16∗(RP∞), a 2-adic basis, αiuj . Since α and u both come
from ER(2)∗(RP∞), we have a surjection. From the Bockstein spectral sequence for
ER(2)∗(RP∞) we can just read off all of the elements in degree 16∗. From the x1-
torsion we have α0α

kuj where α0 = 2. These elements are, modulo higher filtration,
αk+1uj+1. From the x3-torsion we have αku and uj for k > 0 and j > 3. There are
elements in degree 8 mod 16 but with the degree of x equal to −17 they do not give
rise to any more degree 16∗ elements. Likewise for the x7-torsion where we pick up
only u{1–3}. Altogether we have αiuj , the same as for E(2)16∗(RP∞).
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Remark 8.4. In the next paper we will need the slightly more delicate fact that
ER(2)16∗+8(RP∞) injects into E(2)16∗+8(RP∞).

9. ER(2)∗(RP 2)

To start our computation of ER(2)∗(RP 2) we revert to the Atiyah-Hirzebruch
spectral sequence. Recall the homotopy of ER(2) from the beginning of Section 5.
The Atiyah-Hirzebruch spectral sequence has elements only in filtrations 1 and 2. In
filtration 1 we have wεαkx{1,2}x1 and x{3–6}x1. In filtration 2 we have wεαkx{0,1,2}x2,
x{3−6}x2, α{1,3}αkx2 and α2x2. Since all differentials increase filtration by at least 2,
the spectral sequence collapses. As ER(2)∗-modules this is generated by elements we
call z−16 represented by xx1 (recall that the degree of x is −17) and z2 represented
by x2. Remember, of course, that we are working in degrees indexed by Z/(48) for
ER(2)∗(−) and E(2)∗(−).

There is a surprising amount of detail to be had in ER(2)∗(RP 2). We distill what
we need down to:

Theorem 9.1. We have elements z2 and z−16 = u ∈ ER(2)∗(RP 2). A 2-adic basis
for ER(2)∗(RP 2) is given by x{0–2}wεαkz−16, x{3–6}z−16, x{0–2}wεαkz2, and
x{3–6}z2 where 2wεαkz−16 = x2wεαk+1z2, u2 = x2z2, u3 = 0 = uz2, x6z−16 = α2z2,
x2αk+1z−16 = α3α

kz2, and x2wαkz−16 = α1α
kz2.

Proof. We consider the commuting diagram:

ER(2)∗(RP∞) //

²²

E(2)∗(RP∞)

²²
ER(2)∗(RP 2) // E(2)∗(RP 2).

We know that the u ∈ ER(2)−16(RP∞) factors through E(2)−16(RP∞) to u ∈
E(2)−16(RP 2) and so we must have 0 6= u ∈ ER(2)−16(RP 2) as well. The only ele-
ment that could represent this u is xx1 = z−16. That means u2 is represented by
(xx1)2 = x2x2. We have u3 and uz2 in filtration 3, which is zero. Recalling our
relation, we have 0 = 2u +F αu2 +F u4. This simplifies because u4 would have to
be in at least the 4th filtration but everything above the 2nd filtration is zero.
Thus our relation is 0 = 2u +F αu2, but since 2u2 must be in filtration 3 or higher
this is only 0 = 2u + αu2 and since filtration 2 is all modulo (2) we can just as
well use 2u = αu2. From this, of course, we get 2wεαku = wεαk+1u2, or, really,
2wεαkz−16 = x2wεαk+1z2.

We still don’t know all we want to yet. The ER(2) cohomology of this simple
Moore space is unnecessarily complex. We can solve the next level of problem by
looking at the long exact sequence:

ER(2)∗(RP 2) x // ER(2)∗(RP 2)

ρyyrrrrrrrrr

E(2)∗(RP 2).
∂

eeLLLLLLLLL

(9.2)
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E(2)∗(RP 2) is given by vi
2α

ku and is a Z/(2) vector space. We know that αi →
2v2i

2 so αiz2 must map to zero. That means these elements are divisible by x. The
only candidates, mainly for degree reasons, are x6z−16 = α2z2, x2αz−16 = α3z2 and
x2wz−16 = α1z2.

The long exact sequence (9.2) gives the Bockstein spectral sequence, so as long as
we are using it, we may as well do it using the Bockstein spectral sequence directly.
We will be working with the Bockstein spectral sequence in general and we need to
set this up for our future calculations.

E1 ' E(2)∗(RP 2) for the Bockstein spectral sequence for ER(2)∗(RP 2) where we
are working with our usual 48-periodic E(2). This E1 is: vi

2α
ku 0 6 i < 8 which is

a vector space over Z/(2). We know, from the Atiyah-Hirzebruch spectral sequence,
that we have two ER(2)∗ generators, z−16 and z2, that must map nontrivially to
E(2)∗(RP 2).

We also know that z−16 → u. Thus all differentials must be trivial on u. We use
the product formula and the fact that d1 times even powers of v2 is zero and d1 on
odd powers of v2 gives 2 times an even power which is also zero since we are working
modulo 2. So

d1(vs
2u) = d1(vs

2)u + c(vs
2)d

1(u) = 0 + 0.

d1 is trivial in our spectral sequence. The differential d2 is trivial because it is odd
degree.

Again we can use the product rule and d3(v{2,6}
2 ) = αv

{4,0}
2 to get

d3(v{2,6}
2 αku) = αk+1v

{4,0}
2 u.

We need to worry about the elements v2s+1
2 u.

For purely degree reasons the image of z2 must go to a finite sum of α3kv5
2u

elements. All differentials must be trivial on this image element, in particular, d3.
Since there is no α torsion and d3 commutes with α, this implies that d3(v5

2u) = 0.
As before,

d3(v{2,6}
2 αkv5

2u) = v
{4,0}
2 αk+1v5

2u,

and the image of z2 must be v5
2u (we may have to alter our choice of z2 a bit for this)

with αkz2 → v5
2αku and wαkz2 → v2α

k+1u (recall that w → v4
2α).

Our E4-term is quite small, just

v
{0,1,4,5}
2 u.

Because v
{0,5}
2 u are both in the image, degree reasons force us to have no d4, d5, or

d6, but we see that d7(v4
2u) = u and d7(v2u) = v5

2u.
From the Bockstein spectral sequence perspective we have no x1-torsion generators.

Our x3-torsion generators are given by wεαkz{2,−16} with ε + k > 0 and, finally, our
x7-torsion generators are z2 and z−16, or, as we write for efficiency’s sake, z{2,−16}.
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We can solve our Atiyah-Hirzebruch spectral sequence extension problems yet
again using this approach. We now know we must have x6z−16 6= 0. The only pos-
sibility is for x6z−16 = α2z2. Likewise, we know that x2 must be nonzero on all the
wεαkz−16 when ε + k > 0. Since they only have x times them nonzero in filtration 1
of the Atiyah-Hirzebruch spectral sequence, these elements must all be in filtration 2
and we get the answer we have already obtained from the long exact sequence.

The Moore space will be our basic building block.

Corollary 9.3. Consider the cofibration:

S1 // RP 2 // S2.

The long exact sequence

ER(2)∗(S1)

∂ $$JJJJJJJJJ
ER(2)∗(RP 2)ιoo

ER(2)∗(S2)

ρ

99sssssssss

(9.4)

is given by ∂(ι1) = 2ι2, ρ(ι2) = z2, and ι∗(u) = xι1.

10. The spectral sequence for ER(2)∗(RP 2n/RP 2n−2)

For our computation we need the Bockstein spectral sequence in detail. Stating
the complete Bockstein spectral sequence for even a simple space is highly technical.
We need to give the Er-terms for r from 1 to 7, compute the differentials and find
corresponding xr-torsion generators in ER(2)∗(X) that map to the image of dr. After
this is done, we have to solve extension problems and locate any special elements of
interest to us. Normally we won’t need to do all of this, but as these spaces are our
basic building blocks we need to know them quite well.

We have already done the case of ER(2)∗(RP 2) and we know that

Σ2n−2ER(2)∗(RP 2) ' ER(2)∗(RP 2n/RP 2n−2),

so we can just write down the answer. Note, in particular, that the right hand side
inherits a multiplication by u from the left hand side.

Theorem 10.1. We have elements z2n−18 and z2n ∈ ER(2)∗(RP 2n/RP 2n−2). A
2-adic basis for ER(2)∗(RP 2n/RP 2n−2) is given by elements x{0–2}wεαkz2n−18,
x{3–6}z2n−18, x{0–2}wεαkz2n, and x{3–6}z2n where 2wεαkz2n−18 = x2wεαk+1z2n.
Furthermore, uz2n−18 = x2z2n, u2z2n−18 = 0 = uz2n, x2αk+1z2n−18 = α3α

kz2n,
x2wαkz2n−18 = α1α

kz2n, and x6z2n−18 = α2z2n.
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This follows automatically from the suspension isomorphism but we want to care-
fully write down the differentials and representations.

E1 = E2 = E3 ' vi
2α

kun, 0 6 i < 8, 0 6 k.

d3(v6
2αkv5n

2 un) = αk+1v5n
2 un αk+1z2n;oo

d3(v2
2αkv5n

2 un) = v4
2αk+1v5n

2 un wαkz2n;oo

d3(v6
2αkv5n+3

2 un) = αk+1v5n+3
2 un αk+1z2n−18;oo

d3(v2
2αkv5n+3

2 un) = v4
2αk+1v5n+3

2 un wαkz2n−18;oo

E4 = E5 = E6 = E7 ' v
{0,3,4,7}
2 v5n

2 un.

d7(v4
2v5n

2 un) = v5n
2 un z2n;oo

d7(v7
2v5n

2 un) = v3
2v5n

2 un z2n−18.oo

11. The spectral sequence for ER(2)∗(RP ∞/RP 16K)

We need ER(2)∗(RP∞/RP 16K) for our applications in this paper. It is essentially
the same computation as for ER(2)∗(RP∞) but the proof requires more care.

Theorem 11.1 (The Bockstein spectral sequence for ER(2)∗(RP∞/RP 16K)).
E1 = E(2)∗(RP∞/RP 16K) ⊂ E(2)∗(RP∞) has 2-adic basis

vi
2α

kuj , 0 6 i < 8, 0 6 k, 8K < j;

d1(v2s−5
2 αkuj) = 2v2s

2 αkuj ≡ v2s
2 αk+1uj+1

modulo higher powers of u.
E2 = E3 is given by:

v2s
2 αku8K+1, v2s

2 uj , 8K + 2 6 j, 0 6 s < 4, 0 6 k;

d3(v4s−2
2 αku8K+1) = v4s

2 αk+1u8K+1,

and for 8K + 2 6 j,
d3(v4s−2

2 uj) = v4s
2 αuj ≡ v4s

2 uj+2

modulo higher powers of u.
E4 = E5 = E6 = E7 is given by

v4
2u8K+{1–3} and u8K+{1–3};

d7(v4
2u8K+{1–3}) = u8K+{1–3}.

There is an element z16K−16 ∈ ER(2)∗(RP∞/RP 16K) that maps to u8K+1 ∈
ER(2)∗(RP∞).

The x1-torsion generators are given by:

αiα
kz16K−16u

j , 0 6 i < 4, 0 6 k, 0 6 j,

where α0 = 2.
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The x3-torsion generators are given by:

wεαkz16K−16, ε + k > 0, wz16K−16u
j , 0 < j, and z16K−16u

j , 3 6 j.

The only x7-torsion generators are

z16K−16u
{0–2}.

Proof. The E1-term of the spectral sequence injects to the E1-term for ER(2)∗(RP∞)
so d1 is induced. The differential d3 is a trickier issue. We look at the element in E3 we
have named u8K+1. If we have d3(u8K+1) = v2

2z 6= 0, then v2
2z must map to zero in E3

for ER(2)∗(RP∞). Since we had an injection on E1, v2
2z must go to 2y for some y. The

only such elements are v2
22αku8K ≡ v2

2αk+1u8K+1 modulo higher powers of u. Now we
use the map RP 16K+2/RP 16K → RP∞/RP 16K where u8K+1 goes to z16K−16 in the
spectral sequence. In the Bockstein spectral sequence for ER(2)∗(RP 16K+2/RP 16K),
z16K−16 has d3 trivial but v2

2αk+1z16K−16 is nonzero, so our d3 must be zero on
u8K+1. The differential d3 then follows from d3(v2

2) = αv4
2 . Likewise, our d7 follows

by comparison with RP 16K+2/RP 16K .

The same argument gives quite a different result when m 6= 8K.

12. The Bockstein spectral sequence for ER(2)∗(RP 6)

Before we proceed to ER(2)∗(RP 2n) we need to do the equivalent of starting an
induction. This will be a little different from what we have done before and will show
some of what is to come. We need just a simple fact about ER(2)∗(RP 6).

Proposition 12.1. In ER(2)∗(RP 6) the elements u1–3 are x7-torsion and d7 takes
v4
2u1–3 to them in the Bockstein spectral sequence.

Proof. We begin by computing d1 in our spectral sequence where E1 is represented
by vi

2α
kuj for 1 6 j 6 3. Our E2 = E3-term is something new:

v2s
2 αku, v2s

2 u{2,3}, and v2s+1
2 αku3.

Comparing our spectral sequence with those for RP 6/RP 4 and RP∞ we can compute
our d3 to get E4 = E5:

v
{0,4}
2 u{1–3}; v

{2,6}
2 u{2,3}; v

{3,7}
2 u3.

For purely degree reasons, there are no d5 differentials. Since u must be a target for
d7, the d7 differential is what we stated. The d7 on the rest is solved by comparison
again with RP 6/RP 4 but we don’t need that in the statement of the theorem.

13. The Bockstein spectral sequence for ER(2)∗(RP 2n)

We want to compute the Bockstein spectral sequence for ER(2)∗(RP 2n). It isn’t
really that hard to do except that it breaks up into 8 distinct cases depending on n
modulo 8. For now we want to assume that n > 3. Keep in mind that we have an
even degree spectral sequence so all d2r are zero because they are odd degree. We
only have d{1,3,5,7} to consider. We have already computed n = 1 and n = 3 (n = 2



244 NITU KITCHLOO and W. STEPHEN WILSON

isn’t hard). The differential d1 does not depend on n. (Keep in mind that we always
represent our groups with our 2-adic basis.)

E1 ' vi
2α

kuj , 0 6 i < 8, 0 6 k, 0 < j 6 n;

d1(v2s−5
2 αkuj) = 2v2s

2 αkuj

for j < n. These elements represent the x1-torsion elements αsα
kuj , j < n. We know

that 2αkuj ≡ αk+1uj+1 modulo higher powers of u so we have, for E2 = E3:

v2s
2 αku, v2s

2 uj , v2s+1
2 αkun, 0 6 k, 1 < j 6 n, 0 6 s < 4.

We know that αku and uj are infinite cycles because they are in the image from
ER(2)∗(RP∞) so we can compute d3 on the first two terms just using d3(v{2,6}

2 ) =
αv

{4,0}
2 . We use the fact that E3 is a vector space over Z/(2). That reduces our

relation to 0 = αu2 +F u4. Modulo higher powers of u, this is just αu2 ≡ u4. So,
modulo higher powers of u we have:

d3(v{6,2}
2 αku) = v

{0,4}
2 αk+1u;

d3(v{6,2}
2 uj) = v

{0,4}
2 αuj ≡ v

{0,4}
2 uj+2, 1 < j 6 n− 2.

The E1 of the Bockstein spectral sequence for ER(2)∗(RP 2n/RP 2n−2), i.e. E(2)∗

(RP 2n/RP 2n−2), injects to that for ER(2)∗(RP 2n). The map is given by:

z2n = z16K+2j −→ v5j
2 u8K+j ;

z2n−18 = z16K+2j−18 −→ v5j+3
2 u8K+j ,

(13.1)

where 0 < j 6 8. In particular, when j = 3, 4, 7 or 8, either v7
2 or v3

2 times u8K+j is in
the image and can therefore have no differential. The usual d3(v2

2) = αv4
2 determines

the differentials:

d3(v{2,6}
2 v7

2u8K+j) = v
{4,0}
2 v7

2αu8K+j .

Similarly when j = 1, 2, 5 or 6, we have v5
2 or v2 times u8K+j in the image and we get

d3(v{2,6}
2 v5

2u8K+j) = v
{4,0}
2 v5

2αu8K+j .

Combining all of our computations for d3 we have E4 = E5

v
{0,4}
2 u{1–3}; v

{6,2}
2 u{n−1,n}; v

{2s+1,2s+5}
2 un;

where s = 0 if n ≡ 1, 2, 5 or 6 mod 8, and s = 1 if n ≡ 3, 4, 7 or 8 mod 8.
We have computed ER(2)∗(RP 6) and shown that the elements u{1–3} are all x7 tor-

sion and d7(v4
2u{1–3}) = u{1–3}. By naturality, the elements u{1–3} ∈ ER(2)∗(RP 2n)

must also be x7 torsion with the same differential. The only elements we have left to
worry about in our spectral sequence are:

v
{6,2}
2 u{n−1,n}; v

{2s+1,2s+5}
2 un ;

where s = 0 or 1 as above.
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We collect what we know so far in the following preliminary result:

Theorem 13.2. Let n > 3. The Bockstein spectral sequence for ER(2)∗(RP 2n) be-
gins as follows (with differentials modulo higher powers of u):

E1 = E(2)∗(RP 2n) is represented by

vi
2α

kuj , 0 6 i < 8, 0 6 k, 0 < j 6 n;

d1(v2s−5
2 αkuj) = 2v2s

2 αkuj ≡ v2s
2 αk+1uj+1, j < n.

E2 = E3 is given by

v2s
2 αku, 0 6 k; v2s

2 uj , 1 < j 6 n; v2s+1
2 αkun, 0 6 k;

d3(v{6,2}
2 αku) = v

{0,4}
2 αk+1u;

d3(v{6,2}
2 uj) = v

{0,4}
2 αuj ≡ v

{0,4}
2 uj+2, 1 < j 6 n− 2;

d3(v{2s+1,2s+5}
2 αkun) = v

{2s+3,2s+7}
2 αk+1un;

where s = 0 for n ≡ 3, 4, 7 and 8 modulo 8 and s = 1 for n ≡ 1, 2, 5 and 6 modulo 8.
E4 = E5 is given by

v
{0,4}
2 u{1–3}; v

{6,2}
2 u{n−1,n}; v

{2s+1,2s+5}
2 un ;

where s = 0 if n ≡ 1, 2, 5 or 6 mod 8, and s = 1 if n ≡ 3, 4, 7 or 8 mod 8.

d7(v4
2u{1–3}) = u{1–3}.

The only remaining undetermined part of the Bockstein spectral sequence is in E5:

v
{6,2}
2 u{n−1,n}; v

{2s+1,2s+5}
2 un ;

where s is 0 or 1 as above.

We now have to start working our way through the 8 cases. There can be significant
variation on what happens. We only have 6 elements here in our basis and we must
kill them all off with d5 and d7. For purely degree reasons, if there is a d5 it must be
d5(v{6,2}

2 un−1) = v
{5,1}
2 un. Of course, if those last elements aren’t there, d5 must be

zero.
We collect the remaining differentials for all 8 cases in one place:

Theorem 13.3. The remaining differentials for the Bockstein spectral sequence for
ER(2)∗(RP 2n), n > 3, together with a little of the map

q∗ : ER(2)∗(RP 2n/RP 2n−2)→ ER(2)∗(RP 2n),

are as follows:
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ER(2)∗(RP 16K+2)

v1
2u8K+1

v2
2u8K

d5 44hhhhhhhhhhhh u // v2
2u8K+1

d7

~~

v5
2u8K+1 z16K+2

q∗oo

v6
2u8K

d5 44hhhhhhhhhhhh u // v6
2u8K+1

ER(2)∗(RP 16K+4)

v1
2u8K+2

v2
2u8K+1

d5 33hhhhhhhhhhhh u // v2
2u8K+2 z16K+4

q∗oo

v5
2u8K+2 z16K−14

q∗oo

v6
2u8K+1

d5 33hhhhhhhhhhhh u // v6
2u8K+2

d7

``

ER(2)∗(RP 16K+6)

v2
2u8K+2 u // v2

2u8K+3 z16K−12
q∗oo

v3
2u8K+3

d7

~~

v6
2u8K+2

d7

>>

u // v6
2u8K+3

d7

>>

v7
2u8K+3 z16K+6

q∗oo

ER(2)∗(RP 16K+8)

v2
2u8K+3 u // v2

2u8K+4

v3
2u8K+4

d7

~~

v6
2u8K+3

d7

>>

u // v6
2u8K+4

d7

>>

v7
2u8K+4 z16K−8

q∗oo
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ER(2)∗(RP 16K+10)

v1
2u8K+5 z16K+10

q∗oo

v2
2u8K+4

d5 33hhhhhhhhhhhh u // v2
2u8K+5

v5
2u8K+5

v6
2u8K+4

d5 33hhhhhhhhhhhh u // v6
2u8K+5

d7

``

ER(2)∗(RP 16K+12)

v1
2u8K+6 z16K−6

q∗oo

v2
2u8K+5

d5 33hhhhhhhhhhhh u // v2
2u8K+6

d7

~~

v5
2u8K+6

v6
2u8K+5

d5 33hhhhhhhhhhhh u // v6
2u8K+6 z16K+12

q∗oo

ER(2)∗(RP 16K+14)

v2
2u8K+6

d7

ÃÃ

u // v2
2u8K+7

d7

ÃÃ

v3
2u8K+7 z16K+14

q∗oo

v6
2u8K+6 u // v6

2u8K+7 z16K−4
q∗oo

v7
2u8K+7

d7

``

ER(2)∗(RP 16K+16)

v2
2u8K+7

d7

ÃÃ

u // v2
2u8K+8

d7

ÃÃ

v3
2u8K+8 z16K−2

q∗oo

v6
2u8K+7 u // v6

2u8K+8

v7
2u8K+8

d7

``
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Proof. As already discussed, for degree reasons, there can be no d5 for the Bockstein
spectral sequence for ER(2)∗(RP 2n) when n ≡ 3, 4, 7 or 8 mod 8. The two d7 differen-
tials for n ≡ 3 and 7 mod 8 follow from the map RP 2n → RP 2n/RP 2n−2. One of the
d7 differentials for n ≡ 4 and 8 mod 8 follows from the map RP 2n → RP 2n/RP 2n−2

and the other follows from the map RP 2n−2 → RP 2n. This completes the four cases
n ≡ 3, 4, 7 and 8 mod 8.

The other four cases all have a non-trivial d5.
We begin by looking at the n ≡ 2 mod 8 case. The map to the n ≡ 3 mod 8 case

takes care of d7(v6
2u8K+2) = d7(v2

2u8K+2). If there is no d5, it would also give the
d7 on v6

2u8K+1 and we would have a generator, represented by v2
2u8K+1, that was

not in the image of the n ≡ 3 mod 8 case. We now use the cofibration RP 2n−2 →
RP 2n → RP 2n/RP 2n−2 where n ≡ 3 mod 8. We have a complete description of
ER(2)∗(RP 2n/RP 2n−2). All of the elements associated with z2n inject, i.e. x{0–6}z2n

and x{0–2}wεαkz2n. We also have x{0–6}z2n−18 and wεαkz2n−18 injecting. The only
possible elements left for the kernel are x{1,2}wεαkz2n−18, where ε + k > 0. Thus the
boundary on the element represented by v2

2u8K+1 must hit one of these elements. The
boundary homomorphism increases degree by 1 so, modulo 8, the degree of the image
is −3. However, the degrees, modulo 8, of the elements x{1,2}wεαkz2n−18 are −5 and
−6 (remember, n ≡ 3 mod 8 here). There must be a d5 to prevent this impossibility.
A similar argument works for n ≡ 6 mod 8 comparing it with n ≡ 7 mod 8.

We work on the n ≡ 1 mod 8 case now using the cofibration RP 2n−2 → RP 2n →
RP 2n/RP 2n−2 for n ≡ 2 mod 8. Here, all of the elements associated with z2n−18

inject, with the possible exception of x{5,6}z2n−18. The other possible elements in
the kernel are x{1,2}wεαkz2n, ε + k > 0. If there is no d5, then d7(v2

2u8K) = v6
2u8K

is determined by comparison with the n ≡ 0 mod 8 case. The element representing
v6
2u8K is not in the image and so must have boundary non-trivial in the above cofibra-

tion for n ≡ 2 mod 8. The degree of the boundary of this element is 16K − 35. Using
the n ≡ 2 mod 8 cofibration the degrees of x{1,2}wεαkz2n mod 8 are −5 and −6. The
degrees of x{5,6}z2n−18 are −5× 17 + 16K + 4− 18 = 16K − 3 and 16K − 4. There
is nowhere for our element to go so there must be a d5.

We still have to deal with the d7 because it is not induced by any of our maps. One
of v

{2,6}
2 u8K+1 must have a non-trivial boundary homomorphism on it. The degree of

the boundary image will be 16K − 16− 12 + 1 = 16K − 27 (for v2
2u8K+1) or 16K − 3

(for v6
2u8K+1). Thus we must have d7(v2

2u8K+1) = v6
2u8K+1 and the boundary of

v6
2u8K+1 must hit x5z2n−18, a fact sure to be useful sometime.

A similar argument works for n ≡ 5 mod 8 comparing it to n ≡ 6 mod 8.

For our applications, what we really need to know is ER(2)16∗(RP 2n) and how
these elements sit in ER(2)∗(RP 2n). The simple version of this is stated in the Intro-
duction as Theorem 1.6.

Theorem 13.4. For all n there is a short exact sequence:

ER(2)16∗(RP 2n−2) ER(2)16∗(RP 2n)oo ER(2)16∗(RP 2n/RP 2n−2).oo

(13.5)
We have elements αkuj ∈ ER(2)16∗(RP 2n), 0 6 k, 0 < j 6 n that reduce to elements
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of the same name in E(2)16∗(RP 2n). Depending on n modulo 8 there are other ele-
ments in ER(2)16∗(RP 2n).

For n = 8K + 8 and 8K + 7 there are no other elements and un+1 = 0.
For n = 8K + 6 there is an x5-torsion element, z16K−30, that reduces to v5

2u8K+6

in the Bockstein spectral sequence such that

x2αkz16K−30 = αku8K+7

and un+2 = 0.
For n = 8K + 5 there is an x5-torsion element, z16K−14, that reduces to v5

2u8K+5

in the Bockstein spectral sequence such that

x2αkz16K−14 = αku8K+6

and an x7-torsion element, z16K+4 that reduces to v2
2u8K+5 in the Bockstein spectral

sequence such that

x2uz16K−14 = x4z16K+4 = u8K+7

and un+3 = 0.
For n = 8K + 4 there are x7-torsion elements, z16K−12, and z16K−10 that reduce

to v2
2u8K+3 and v7

2u8K+4 respectively in the Bockstein spectral sequence such that

x4z16K−12 = u8K+5,

x4uz16K−12 = u8K+6,

and

x4u2z16K−12 = x6z16K−10 = u8K+7

and un+4 = 0.
For n = 8K + 3 there are x7-torsion elements, z16K+4, and z16K−42 that reduce to

v2
2u8K+2 and v7

2u8K+3 respectively in the Bockstein spectral sequence such that

x4z16K+4 = u8K+4,

x4uz16K+4 = u8K+5,

and

x4u2z16K+4 = x6z16K−42 = u8K+6

and un+4 = 0.
For n = 8K + 2 there is an x5-torsion element, z16K−14, that reduces to v5

2u8K+2

in the Bockstein spectral sequence such that

x2αkz16K−14 = αku8K+3

and an x7-torsion element, z16K+4 that reduces to v2
2u8K+2 in the Bockstein spectral

sequence such that

x2uz16K−14 = x4z16K+4 = u8K+4

and un+3 = 0.
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For n = 8K + 1 there is an x5-torsion element, z16K+2, that reduces to v5
2u8K+1

in the Bockstein spectral sequence such that

x2αkz16K+2 = αku8K+2

and un+2 = 0.

Proof. We have computed the Bockstein spectral sequence for all of the spaces
RP 2n−2, RP 2n, and RP 2n/RP 2n−2. From this we can just read off the elements
in degree 16∗. In every case the x1-torsion elements α0α

kuj for j < n− 1 correspond
using the map induced by RP 2n−2 → RP 2n. Likewise for the elements αku, u{1–3},
and uj , j < n so we will ignore these elements.

First note that α0α
kun−1 = 2αkun−1 = αk+1un.

For n ≡ 8 mod 8, there is nothing else in ER(2)16∗(RP 2n−2). All that is left
of (13.5) is αkz2n → αkun.

From Theorem 10.1 we know uz2n = 0 and, from above, this maps to un+1 so it
is zero. Because z2n maps to un, we see that u8K+8 = 0 for n = 8K + 7, 8K + 6,
8K + 5, and 8K + 4.

For n ≡ 7 mod 8, ER(2)16∗(RP 2n/RP 2n−2) = 0. We must have that αkun →
x2αkun−1v5

2 . (Technically, we need to worry that perhaps un goes to x2α3kun−1v5
2

for some k. If this is the case, then the boundary homomorphism on x2un−1v5
2 must

be non-trivial but we can check that there is nowhere for it to go. Consequently we
will ignore this kind of possibility in the rest of this proof.)

For n ≡ 6 mod 8, things are a little more complicated. The only elements in
ER(2)16∗(RP 2n/RP 2n−2) are x2wαkz2n−18 and we can compute directly that they
go to x2αk+1unv5

2 . The element αkun must go to x2αkun−1v5
2 . The only possibility

left is for x2unv5
2 to go to x4un−1v2

2 . Recall from above that this last element is un+1.
For n ≡ 5 mod 8, we compute the map to ER(2)16∗(RP 2n) directly and we have

wαkz2n−18 −→ αk+1un;

x2wαkz2n −→ x2αk+1unv5
2 .

Keep in mind that this last represents αk+1un+1. We then have un+1 = x2unv5
2 maps

to x4un−1v2
2 . We must have un map to x4un−2v2

2 and x4unv2
2 (which represents un+2)

map to x6un−1v7
2 .

For n ≡ 4 mod 8 we compute x6z2n−18 → x6unv7
2 = un+3 and wαkz2n → αk+1un.

That leaves un → x4un−2v2
2 , x4un−1v2

2 = un+1 → x4un−1v2
2 , and x4unv2

2 = un+2 →
x6un−1v7

2 .
Because un+3 is in the image above, it must go to zero for the next case below.
For n ≡ 3 mod 8 we compute x4z2n−18 → x4unv2

2 = un+2 and x6z2n → x6unv7
2 =

un+3. That leaves x4un−1v2
2 = un+1 → x4un−1v2

2 and αkun → x2αkun−1v5
2 .

Because both un+2 and un+3 are in the image above, they must both go to zero
in the next case, which gives us that u8K+5 = 0 for n = 8K + 2.

For n ≡ 2 mod 8 we compute x2αkz2n−18 → x2αkunv5
2 = αkun+1 and x4z2n →

x4unv2
2 = un+2. All that is left is αkun → x2αkun−1v5

2 .
Because both un+1 and un+2 are in the image above, they must both go to zero

in the next case, which gives us that u8K+3 = 0 for n = 8K + 1.
The n ≡ 1 mod 8 case is simple again with αkz2n−18 → αkun and x2αkz2n →

x2αkunv5
2 = αkun+1.
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14. Beginning with products

For use with our Bockstein spectral sequence we need descriptions of E(2)∗(−) for
various products. We always use reduced cohomology. We start with a result proven
by modifying techniques of [JW85]:

Theorem 14.1 ([GW]). Let m < n; then

BP ∗(RP 2m ∧RP 2n) ' BP ∗(RP 2m)⊗BP∗ BP ∗(RP 2n)⊕ Σ2n−1BP ∗(RP 2m).

Remark 14.2. It is important to note, because we use it later, that this is natural in
the obvious way for the RP 2m when m < n.

It is enough to prove this using BP 〈2〉, where BP 〈2〉∗ ' Z(2)[v1, v2], because v2

multiplication is injective and so it determines the Brown-Peterson cohomology. We
can now invert v2 to get E(2)∗(−) and the same theorem holds. Because there is no v2-
torsion, BP 〈2〉∗(RP 2m ∧RP 2n) injects into E(2)∗(RP 2m ∧RP 2n). This is important
because we rely on Don Davis’s computations. He does his in BP 〈2〉∗(−) but this
shows they could just as well have been done in E(2)∗(−).

We do not use the standard notation because we need to be compatible with
ER(2)∗(−). Above, the bottom class in the suspension is Σ2n−1x2. We shift this
using the unit v3

2 raised to the n-th power, i.e. we shift the suspension down by −18n
so our bottom class is now Σ−16n−1x2 but we also replace x2 with our u = v3

2x2. Our
bottom class is now in degree −16n− 1 + 2− 18 = −16n− 17. We give it the name
z−16n−17. The result for our 48-periodic theory that we use is as follows where we
also include the more detailed description from [GW]. Much of this is well known.

Theorem 14.3. Let m < n, then

E(2)∗(RP 2m∧RP 2n) ' E(2)∗(RP 2m)⊗E(2)∗E(2)∗(RP 2n)⊕ Σ−16n−1E(2)∗(RP 2m)

has a 2-adic basis

vs
2α

kui
1u2, 0 6 k, 0 < i 6 m, 0 6 s < 8;

vs
2u

i
1u

j
2, 0 < i 6 m, 1 < j 6 n, 0 6 s < 8;

and

vs
2α

kujz−16n−17, 0 6 k, 0 6 j < m, 0 6 s < 8.

E(2)∗(RP 2n ∧RP∞) ' E(2)∗(RP 2n)⊗E(2)∗ E(2)∗(RP∞)

has a 2-adic basis

vs
2α

kui
1u2, 0 6 k, 0 < i 6 n, 0 6 s < 8

and

vs
2u

i
1u

j
2, 0 < i 6 n, 1 < j, 0 6 s < 8.

E(2)∗(RP 2n ∧RP∞/RP 2m) ' E(2)∗(RP 2n)⊗E(2)∗ E(2)∗(RP∞/RP 2m)



252 NITU KITCHLOO and W. STEPHEN WILSON

has a 2-adic basis

vs
2α

kui
1u

m+1
2 , 0 6 k, 0 < i 6 n, 0 6 s < 8;

vs
2u

i
1u

j
2, 0 < i 6 n, m + 1 < j, 0 6 s < 8.

15. A review of our relation

We need a bit more detail about our relation

0 = [2](u) =
∑

s>0

asu
s+1 = 2u +F αu2 +F u4.

The degree of our as is 16s and the degree of the relation is −16.

Lemma 15.1.

0 = 2u +F αu2 +F u4 = 2u + αu2 + u4 + 2u3za(u) + αu6zb(u).

Proof. The proof follows immediately from the fact that F (y, 0) = y. The za(u) and
zb(u) are power series in u and are not determined uniquely because many elements
are divisible by both 2 and α.

Definition 15.2. We need a filtration on our elements αkui
1u2 and ui

1u
j
2 in the tensor

product part of our description of E(2)∗(RP 2m ∧RP 2n). We say ua
1ub

2 is of higher
filtration than ui

1u
j
2 if a + b > i + j or, if a + b = i + j and we have a > i.

Remark 15.3 (The Algorithm). We use no elements with a 2 or an αu2
2 in our tensor

product description of E(2)∗(RP 2m ∧RP 2n) with m < n. We need an algorithm that
shows how any element can be reduced to those in our description, i.e. αkui

1u2 and
ui

1u
j
2, j > 1. It is enough if our algorithm increases filtration as that will eventually

lead to terms in our description. If we have a 2, we use our relation

2ui
1u

j
2 = (2u1)ui−1

1 uj
2 = −(

∑

k>0

akuk+1
1 )ui−1

1 uj
2.

All of these terms have higher filtration. If 2 does not divide and if j = 1, then we
are done. So, we are left with the case where αu2

2 divides our element. In this case,
modulo higher filtrations, we have:

αui
1u

j
2 = ui

1u
j−2
2 (αu2

2) ≡ ui
1u

j−2
2 (−2u2) = −2ui

1u
j−1
2 .

and we use the first reduction on this to get, modulo higher filtration, αui+1
1 uj−1

2 .
Even this term is of higher filtration than we need. If neither 2 nor α is present,
then we are done. However, there is one last step. Since we are using our 2-adic
representation for everything, we only want 0 and 1 for coefficients. Whenever we
have −z, we can replace it by z − 2z and use the algorithm on −2z. This shows that
−z ≡ z modulo higher filtration.

The algorithm ends after a finite number of steps when the power of u1 is greater
than m, the power of u2 is greater than n, or the power of u2 = 1 and there are no
more 2’s left.
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Lemma 15.4. There is an element z with filtration greater than u1u
2
2 such that

2(u1u
2
2 + z) ≡ u2

1u
4
2

modulo filtrations higher than that of u2
1u

4
2.

Proof. We compute with

2(u1u
2
2 − u2

1u2 − u2
1u

3
2za(u2) + u3

1za(u1)u2
2) =

− (α + 2u1za(u1) + u2
1 + αu4

1zb(u1))u2
1u

2
2

+ (α + 2u1za(u1) + u2
1 + αu4

1zb(u1))u3
1u2

− 2u2
1u

3
2za(u2) + 2u3

1za(u1)u2
2.

The very first term, −αu2
1u

2
2, is, using the algorithm and ignoring higher terms:

−αu3
1u2 − u5

1u2 − 2u4
1za(u1)u2 + u2

1u
4
2 + 2u2

1u
3
2za(u2).

Most terms now cancel out and we are left with, modulo the higher filtration terms,
u2

1u
4
2.

We are getting nearer to what we really need.

Lemma 15.5. For ui
1u

j
2 with j > 1 there is a z in E(2)∗(RP 2m ∧RP 2n) with m < n

having higher filtration than ui
1u

j
2 such that

2(ui
1u

j
2 + z) ≡ ui+1

1 uj+2
2

modulo the terms αkuc
1u2 with c > i + j + 2, uc

1u
2
2 with c > i + j + 1 and uc

1u
3
2 with

c > i + j.

Proof. We do this by downward induction on the filtration of the target term. There
is nothing to prove if i + 1 + j + 2 > m + n + 3 because both ui

1u
j
2 and the target are

zero. Assume we know this for all elements in higher filtration than ui+1
1 uj+2

2 . We
know, from the previous lemma, that

2(ui
1u

j
2 + ui−1

1 zuj−2
2 ) ≡ ui+1

1 uj+2
2

modulo elements of higher filtration. By our induction we can take care of all of the
elements of higher filtration except those listed modulo which we are working. We
can only handle elements with the power of u2 greater than or equal to 4.

This lemma is one of our goals in this section and we get our other goal as an
immediate corollary.

Corollary 15.6. If n > m, there is an element

b1,n−1 = u1u
n−1
2 + u2

1z with 2b1,n−1 = 0

and the filtration of u2
1z is higher than that of u1u

n−1
2 .

Proof. From the lemma there is a z′ of higher filtration than u1u
n−1
2 such that

2(u1u
n−1
2 + z′) = u2

1u
n+1
2 = 0. Since 2u1u

n
2 = 0, we need not have any un

2 in any part
of z′. So, to have higher filtration than u1u

n−1
2 we must have u2

1 dividing z′.
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Remark 15.7. A tactical mistake was made while trying to understand these compu-
tations. The “simple” test case that was studied at length was RP 16 ×RP 16. This
“easiest” case turned out to be significantly harder because 2b1,7 = u8

1u
3
2. The shift

to m < n simplified things a lot.

16. The spectral sequence for ER(2)∗(RP 2n ∧ RP ∞)

ER(2)∗(RP 2n ∧RP∞) depends on n, but, as with ER(2)∗(RP 2n), d1 doesn’t.
Everything is still even degree so we only have to worry about the 4 odd differentials.

Theorem 16.1. In the Bockstein spectral sequence for ER(2)∗(RP 2n ∧RP∞) where
3 < n we have (with differentials all modulo higher filtrations):

E1 is

vs
2α

kui
1u2, 0 6 s < 8, 0 6 k, 0 < i 6 n;

and

vs
2u

i
1u

j
2, 0 6 s < 8, 0 < i 6 n, 1 < j;

d1(v2s−5
2 αkui

1u2) ≡ v2s
2 αk+1ui+1

1 u2 for 0 6 i < n;

d1(v2s−5
2 ui

1u
j
2) ≡ v2s

2 ui+1
1 uj+2

2 ;

for 0 < i < n and 1 < j.
E2 = E3 is:

v2s
2 αku1u2, k > 0;

v2s
2 ui

1u
{1,2,3}
2 , 1 < i 6 n;

v2s
2 u1u

j
2, 1 < j;

v2s+1
2 αkun

1u2;

v2s+1
2 un

1uj
2, 1 < j;

d3(v{2,6}
2 αku1u2) = v

{4,0}
2 αk+1u1u2;

d3(v{2,6}
2 ui

1u
{1,2,3}
2 ) ≡ v

{4,0}
2 ui+2

1 u
{1,2,3}
2 , 1 < i < n− 1;

d3(v{2,6}
2 u1u

j
2) ≡ v

{4,0}
2 u1u

j+2
2 .

For n ≡ 1, 2, 5 or 6 mod 8:

d3(v{3,7}
2 αkun

1u2) = v
{5,1}
2 αk+1un

1u2;

d3(v{3,7}
2 un

1uj
2) ≡ v

{5,1}
2 un

1uj+2
2 , 1 < j.

For n ≡ 3, 4, 7 or 8 mod 8:

d3(v{1,5}
2 αkun

1u2) = v
{3,7}
2 αk+1un

1u2;

d3(v{1,5}
2 un

1uj
2) ≡ v

{3,7}
2 un

1uj+2
2 , 1 < j.
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E4 = E5 is:

v
{0,4}
2 ui

1u
j
2, 0 < i < 4, 0 < j < 4;

v
{2,6}
2 u

{n−1,n}
1 u

{1,2,3}
2 .

For n ≡ 1, 2, 5 or 6 mod 8:

v
{5,1}
2 un

1u
{1,2,3}
2 .

For n ≡ 3, 4, 7 or 8 mod 8:

v
{3,7}
2 un

1u
{1,2,3}
2 .

For n ≡ 1, 2, 5 or 6 mod 8:

d5(v{2,6}
2 un−1

1 u
{1,2,3}
2 ) = v

{1,5}
2 un

1u
{1,2,3}
2 .

For n ≡ 1, 2, 5 or 6 mod 8:
E6 = E7 is:

v
{0,4}
2 ui

1u
j
2, 0 < i < 4, 0 < j < 4;

v
{2,6}
2 un

1u
{1,2,3}
2 ;

d7(v4
2ui

1u
j
2) = ui

1u
j
2.

For n ≡ 1 or 6 modulo 8:

d7(v2
2un

1u
{1,2,3}
2 ) = v6

2un
1u
{1,2,3}
2 ,

and for n ≡ 2 or 5 modulo 8:

d7(v6
2un

1u
{1,2,3}
2 ) = v2

2un
1u
{1,2,3}
2 .

For n ≡ 3, 4, 7 or 8 mod 8:
E5 = E6 = E7;

d7(v4
2ui

1u
j
2) = ui

1u
j
2.

For n ≡ 3 or 4 mod 8

d7(v6
2u
{n−1,n}
1 u

{1,2,3}
2 ) = v2

2u
{n−1,n}
1 u

{1,2,3}
2 ;

d7(v3
2un

1u
{1,2,3}
2 ) = v7

2unu
{1,2,3}
2 .

For n ≡ 7 or 8 mod 8

d7(v2
2u
{n−1,n}
1 u

{1,2,3}
2 ) = v6

2u
{n−1,n}
1 u

{1,2,3}
2 ;

d7(v7
2un

1u
{1,2,3}
2 ) = v3

2un
1u
{1,2,3}
2 .

Proof. The computation of d1 is made possible by Lemma 15.5. The higher differen-
tials all come from products where the differential on RP 2n is the one used.

Corollary 16.2. Let m = 8K and 3 < n. In the Bockstein spectral sequence for
ER(2)∗(RP 2n ∧RP∞/RP 2m) we have the same result as above; just multiply every-
thing by um

2 .



256 NITU KITCHLOO and W. STEPHEN WILSON

17. The Bockstein spectral sequence for ER(2)∗(RP ∞∧RP ∞)

We know from Theorem 3.4 that

ER(2)∗(RP∞ ∧RP∞) ' ER(2)∗(RP∞)⊗̂ER(2)∗ER(2)∗(RP∞).

We can write down the entire Bockstein spectral sequence for this as a Corollary
to the previous section just by letting n go off to infinity. We also want to see the
elements which represent things in our spectral sequence.

Theorem 17.1. In the Bockstein spectral sequence for ER(2)∗(RP∞ ∧RP∞) we
have, where everything is modulo higher filtrations:
E1 is

vs
2α

kui
1u2, 0 6 s < 8, 0 6 k, 0 < i;

vs
2u

i
1u

j
2, 0 6 s < 8, 0 < i, 1 < j;

d1(v2s−5
2 αkui

1u2) = 2v2s
2 αkui

1u2 ≡ v2s
2 αk+1ui+1

1 u2;

d1(v2s−5
2 ui

1u
j
2) = 2v2s

2 ui
1u

j
2 ≡ v2s

2 ui+1
1 uj+2

2 , 0 < i, 1 < j.

E2 = E3 is

v2s
2 αku1u2, 0 6 k; v2s

2 ui
1u
{1,2,3}
2 , 1 < i; v2s

2 u1u
j
2, 1 < j;

d3(v{2,6}
2 αku1u2) = v

{4,0}
2 αk+1u1u2;

d3(v{2,6}
2 ui

1u
{1,2,3}
2 ) ≡ v

{4,0}
2 ui+2

1 u
{1,2,3}
2 , 1 < i;

d3(v{2,6}
2 u1u

j
2) ≡ v

{4,0}
2 u1u

j+2
2 , 1 < j.

E4 = E5 = E6 = E7 is

v
{0,4}
2 ui

1u
j
2, 0 < i < 4, 0 < j < 4;

d7(v4
2ui

1u
j
2) = ui

1u
j
2.

The x1-torsion is given by

αsα
kui

1u2 −→ 2v2s
2 αkui

1u2 ≡ v2s
2 αk+1ui+1

1 u2;

αsu
i
1u

j
2 −→ 2v2s

2 ui
1u

j
2 ≡ v2s

2 ui+1
1 uj+2

2 , 0 < i, 1 < j.

The x3-torsion is given by

αku1u2 −→ αku1u2, 0 < k;

wαku1u2 −→ v4
2αk+1u1u2, 0 6 k;

ui+2
1 u

{1,2,3}
2 −→ ui+2

1 u
{1,2,3}
2 , 1 < i;

wui
1u
{1,2,3}
2 −→ v4

2ui+2
1 u2, 1 < i;

u1u
j
2 −→ u1u

j
2, 3 < j;

wu1u
j
2 −→ v4

2u1u
j+2
2 , 1 < j.

The x7-torsion is given by

ui
1u

j
2 −→ ui

1u
j
2, i < 4, j < 4.
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Proof. The differentials follow from the previous section. The elements described in
ER(2)∗(RP∞ ∧RP∞) have the appropriate torsion and map to the correct elements
in E(2)∗(RP∞ ∧RP∞).

Remark 17.2. Note that we have no elements divisible by wu2
1u

4
2. The element u4

2 can
be replaced using (1.3) and this can be rewritten in terms of other elements.

Corollary 17.3. The map ER(2)∗(−)→ E(2)∗(−) induces an isomorphism

ER(2)16∗(RP∞ ∧RP∞) −→ E(2)16∗(RP∞ ∧RP∞).

Proof. E(2)16∗(RP∞ ∧RP∞) has, for a 2-adic basis, αiui
1u2 and ui

1u
j
2 for j > 1.

Since α, u1 and u2 all come from ER(2)∗(RP∞ ∧RP∞), we have a surjection. From
the Bockstein spectral sequence for ER(2)∗(RP∞ ∧RP∞) we can just read off all of
the elements in degree 16∗. From the x1-torsion we have, modulo higher filtrations,

α0α
kui

1u2 ≡ αk+1ui+1
1 u2;

α0u
i
1u

j
2 ≡ ui+1

1 uj+2
2 , 0 < i, 1 < j.

From the x3-torsion we have

αku1u2, 0 < k; ui+2
1 u

{1,2,3}
2 , 1 < i; u1u

j
2, 3 < j.

Finally, from the x7-torsion we have

ui
1u

j
2, i < 4, j < 4.

Combining all of these elements we get exactly what we need. In particular, there
are no elements divisible by x in degrees 16∗.
Remark 17.4. In the next paper, we will need the slightly more delicate fact that
ER(2)16∗+8(RP∞ ∧RP∞) injects into E(2)16∗+8(RP∞ ∧RP∞).

18. A special element

To extract the information we need from the Bockstein spectral sequence for
ER(2)∗(RP 2n ∧RP 2m) we need to deal with odd degree elements for the first time.
Our approach to this will be to use the long exact sequence coming from:

RP 2n ∧RP 2m −→ RP 2n ∧RP∞ −→ RP 2n ∧RP∞/RP 2m.

From Section 16 we know ER(2)∗(−) for the two terms on the right (when 2m =
16K) and we will compute a special element in the kernel. Many thanks to Jesus
González for his work with the second author on BP ∗(RP 2n ∧RP 2m). Ideas from
there translated nicely to this situation and saved us from many a contorted filtration.

Recall
[2](u) =

∑

k>0

akuk+1

in degree −16.

Definition 18.1. Let ε(n) be 0 for n ≡ 7 or 0 mod 8, 1 for n ≡ 1 or 6 mod 8, 2 for
n ≡ 2 or 5 mod 8, and 3 for n ≡ 3 or 4 mod 8. These are just the numbers such that
0 6= un+ε(n) ∈ ER(2)∗(RP 2n) and 0 = un+ε(n)+1.
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Theorem 18.2. Let m = 8K, and m < n. Define the degree −16(n + 1) element

g0 =
m−1∑

i=0

un−m+1+i
1

∞∑

k=i+1

akum−i+k
2 .

The element u
ε(n)
1 g0 is in the kernel of the map

ER(2)∗(RP 2n ∧RP∞/RP 2m) −→ ER(2)∗(RP 2n ∧RP∞).

The elements ui
1g0, 0 6 i < m, are nonzero, not divisible by x and x2ui

1g0 6= 0. For
n ≡ 1, 2, 5 and 6 mod 8, αkum

1 g0 6= 0. For n ≡ 2, 3, 4 and 5 mod 8, u
m−1+ε(n)
1 g0 6= 0.

Proof. The map to ER(2)∗(RP 2n ∧RP∞) takes g0 to an element with the same
notation. To see that u

ε(n)
1 g0 is in the kernel we will add 0 to it in the form of u

ε(n)
1

times

g1 =
m−1∑

i=0

un−m+1+i
1

i∑

k=0

akum−i+k
2 .

Fix q = m− i + k, 0 < q 6 m. Then i = m− q + k and we look at the coefficient of
uq

2 in u
ε(n)
1 g1:

m−1∑

k=0

aku
n+1−q+k+ε(n)
1 .

This is zero because it is the relation in ER(2)∗(RP 2n). Adding, we have

g0 + g1 =
m−1∑

i=0

un−m+1+i
1

∞∑

k=0

akum−i+k
2 ,

where the sum
∞∑

k=0

akum−i+k
2 = 0.

This shows that u
ε(n)
1 g0 is in the kernel. Although the image of g0, when added to g1

is zero, g1 isn’t zero until it has been multiplied by u
ε(n)
1 so g0 is not in the kernel

until it too has been multiplied by u
ε(n)
1 .

Multiply g0 by um−1
1 to get

um−1
1 g0 =

m−1∑

i=0

un+i
1

∞∑

k=i+1

akum−i+k
2 .

Since un+1
1 is divisible by x, if we reduce modulo x all we have left is:

um−1
1 g0 ≡ un

1

∞∑

k=1

akum+k
2 .

We need to show that this element is not divisible by x and that x2 times it is
nonzero. We use the algorithm in Remark 15.3. The first term in the sum, a1u

n
1um+1

2 =
αun

1um+1
2 , represents an x1-torsion generator in the spectral sequence of Corol-
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lary 16.2. The element a3u
n
1um+3

2 is an x3-torsion element. Any ak divisible by 2,
such as a2, has that 2 applied to un

1 and the element becomes divisible by x. All we
have left to consider are elements ak that are powers of α. In this case we know that
k > 3. Since we can work mod 2, the algorithm just uses αu2

2 ≡ u4
2 modulo higher

powers of u2. All such elements end up as un
1uj

2 with j > 3 and as such are x1-torsion
elements. We can conclude that our element is not divisible by x and that x2 times
it is nonzero.

Next we deal with the n ≡ 3 and 4 mod 8 cases when we know un+3
1 6= 0. Multiply

g0 by um+2
1 to get

um+2
1 g0 = un+3

1

∞∑

k=1

akum+k
2 .

We know that un+3
1 is divisible by x6 so both 2 and α times it are zero. The only

ak without a 2 or an α is a3 so this reduces to un+3
1 um+3

2 . This is represented by
x6v7

2un
1um+3

2 in the spectral sequence and is nonzero.

For all other n, un+3
1 is zero.

Let n ≡ 2 or 5 mod 8. We know that un+2
1 is nonzero and is x4 times the element

in the Bockstein spectral sequence for ER(2)∗(RP 2n) represented by v2
2un

1 . We also
know that un+3

1 = 0. Now multiply g0 by um+1
1 to get

um+1
1 g0 = un+2

1

∞∑

k=1

akum+k
2 .

Since our un+2
1 ∈ ER(2)∗(RP 2n) is divisible by x4, both 2 and α times un+2

1 give
zero. Recall also that every ak has a 2 or α in it except for a3. Our formula is now
just:

um+1
1 g0 = un+2

1 um+3
2 .

In the Bockstein spectral sequence for ER(2)∗(RP 2n ∧RP∞/RP 2m) the element
representing un+2

1 um+3
2 is x4 times v2

2un
1um+3

2 which is the target of a d7 so this is
nonzero.

We want to do a bit more for um
1 g0 because we want αjum

1 g0 when n ≡ 1, 2, 5 and
6 mod 8. We know that un+2

1 is divisible by x4 if it is nonzero so α will kill it. So, for
j > 0, αjum

1 g0 is:

αjun+1
1

∞∑

k=1

akum+k
2 .

Any 2 in ak will raise the power of u1 and give us x4 killing the α, so, as in the previous
cases, we are left with αum+1

2 + um+3
2 and higher powers of u2. Since we have an α,

the um+3
2 also goes away and we are left with αj+1un+1

1 um+1
2 . These elements are

represented by x2v5
2αj+1un

1um+1
2 in the spectral sequence and are all nonzero.
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19. Starting the spectral sequence for ER(2)∗(RP 2n∧ RP 2m)

In the previous section we found a special element

g0 ∈ ER(2)−16(n+1)(RP 2n ∧RP∞/RP 2m),

where m = 8K, such that u
ε(n)
1 g0 went to zero in ER(2)∗(RP 2n ∧RP∞). From the

long exact sequence for the cofibration,

RP 2n ∧RP 2m −→ RP 2n ∧RP∞ −→ RP 2n ∧RP∞/RP 2m, (19.1)

we must have an element ĝ0(n) ∈ ER(2)−16(n+ε(n))−17(RP 2n ∧RP 2m) such that
∂(ĝ0(n)) = u

ε(n)
1 g0. Because ui

1g0 is not divisible by x for 0 6 i < m, the same must
be true of u

i−ε(n)
1 ĝ0(n) and that means these elements must reduce non-trivially to

E(2)∗(RP 2n ∧RP 2m). The only elements in degree −1 mod 16 are αkui
1z−16n−17,

with 0 6 i < m. The only elements in exactly degree −16(n + ε(n))− 17 with these
u

i−ε(n)
1 nonzero are α3ku

ε(n)
1 z−16n−17 and so ĝ0(n) must reduce to some combination

of these elements.

Theorem 19.2. The Bockstein spectral sequence for ER(2)∗(RP 2m ∧RP 2n) when
m 6 8K < n:

E1:

E(2)∗(RP 2m∧RP 2n) ' E(2)∗(RP 2m)⊗E(2)∗ E(2)∗(RP 2n)⊕ Σ−16n−1E(2)∗(RP 2m)

has a 2-adic basis

vs
2α

kui
1u2, 0 6 k, 0 < i 6 m, s < 8;

vs
2u

i
1u

j
2, 0 < i 6 m, 1 < j 6 n, s < 8;

and

vs
2α

kui
1z−16n−17, 0 6 k, 0 6 i < m, s < 8.

There is an element

ĝ0(n) ∈ ER(2)−16(n+ε(n))−17(RP 2m∧RP 2n) ' ER(2)−16(n+ε(n))−17(RP 2n∧RP 2m)

with

0 6= ∂(ĝ0(n)) ∈ ER(2)−16(n+ε(n))−16(RP 2n ∧RP∞/RP 2m)

such that ĝ0(n) reduces to

u
ε(n)
1 z−16n−17 ∈ E(2)−16n−17(RP 2m ∧RP 2n)

and the ĝ0(n) are compatible with the maps RP 2(m−1) → RP 2m.
Modulo terms of higher filtration, d1 is

d1(v2s−5
2 αkui

1u2) ≡ v2s
2 αk+1ui+1

1 u2, 0 < i < m;

d1(v2s−5
2 ui

1u
j
2) ≡ v2s

2 ui+1
1 uj+2

2 , 0 < i < m, 1 < j < n− 1;

d1(v2s−5
2 αkui

1z−16n−17) ≡ v2s
2 αk+1ui+1

1 z−16n−17, 0 6 i < m− 1.



THE SECOND REAL JOHNSON-WILSON THEORY AND NONIMMERSIONS OF RP n 261

E2 is:

v2s
2 αku1u2, 0 6 k;

v2s
2 ui

1u
{1,2,3}
2 , 1 < i < m;

v2s
2 u1u

j
2, 1 < j 6 n;

v2s+1
2 αkum

1 u2, 0 < k;

v2s+1
2 um

1 uj
2, 0 < j 6 n;

v2s+1
2 ui

1u
n
2 , 0 < i < m;

v2s+1
2 ui

1b1,n−1, 0 6 i < m− 1;

v2s
2 αkz−16n−17;

v2s
2 ui

1z−16n−17, 0 < i < m;

v2s+1
2 αkum−1

1 z−16n−17.

Proof. There are a couple of things to prove here. We must evaluate d1 and get E2

and then we must verify the reduction of ĝ0(n) and prove its naturality.
The differential, d1, is even degree so it acts independently on the even and odd

degree parts of E1. On the even degree part, d1 is induced from RP∞ ∧RP∞. It
is only the third line, the differential on the odd degree elements, that we need to
prove. If we can show that d1(z−16n−17) = 0, then the differential will follow from its
behavior on the coefficients vs

2.
The cofibration (19.1) gives a long exact sequence in E(2)∗(−). The two terms

with RP∞ and RP∞/RP 2m are in even degrees so all of the even degree elements
of E(2)∗(RP 2n ∧RP 2m) come from E(2)∗(RP 2n ∧RP∞) and all of the odd degree
elements have boundary non-trivial and inject into E(2)∗(RP 2n ∧RP∞/RP 2m). The
boundary is induced by the map

RP 2n ∧RP∞/RP 2m −→ RP 2n ∧ ΣRP 2m.

The image of z−16n−17 is in degree 0 mod 16 and so its representation must have a
v0
2 . All of d1 for RP 2n ∧RP∞/RP 2m is on odd powers of v2 so since we have the odd

degree elements injecting and d1 on the image of z−16n−17 equal to zero, we must
have d1(z−16n−17) = 0. The result for d1 follows as described above.

We already know the reduction of ĝ0(n) is of the form α3ku
ε(n)
1 z−16n−17 so all

we need to do is show that k = 0. Since we have computed d1 already, we know
that α3kum−1

1 z−16n−17 is in the image of d1 for k > 0. The class α3kum−1
1 z−16n−17

represents the element u
m−1−ε(n)
1 ĝ0(n) and we know this has x2 on it nonzero. We

just showed that all of these elements with k > 0 are x1-torsion so we must have k = 0
and ĝ0(n) maps to u

ε(n)
1 z−16n−17, with, if necessary, a little redefinition of z−16n−17

to avoid a sum.
Consider the diagram:

ER(2)∗(RP 2m ∧RP 2n)
²²

// E(2)∗(RP 2m ∧RP 2n)
²²

ER(2)∗(RP 2m−2 ∧RP 2n) // E(2)∗(RP 2m−2 ∧RP 2n).
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By naturality, Remark 14.2, in E(2)∗(−), z−16n−17 maps to the element of the same
name on the right hand map. The element ĝ0(n) in the upper left corner must factor
through a ĝ0(n) in the lower left corner. It isn’t obvious that ∂(ĝ0(n)) must be nonzero
though. If it were zero, then ĝ0(n) would have to come from

ER(2)−16(n+ε(n))−17(RP 2n ∧RP∞).

We know that in here any odd degree elements are divisible by x but we also know
that ĝ0(n) is not divisible by x because it reduces to z−16n−17.

It is an instructive exercise to apply the algorithm to see how the element g0

behaves under the map induced by RP 8K−8 → RP 8K .
Our goal with products all along has been to prove:

Proposition 19.3. When n ≡ 1, 2, 5 or 6 modulo 8, m 6 8K, and 8K + 8 < n, the
element um

1 un+1
2 ∈ ER(2)∗(RP 2m ∧RP 2n) is nonzero.

Proof. un+1
2 ∈ ER(2)∗(RP 2n) is represented by x2 times the element represented in

the spectral sequence by v5
2un

2 . So um
1 un+1

2 is x2z where z reduces to um
1 un

2 v5
2 in

the Bockstein spectral sequence. The element um
1 un

2 v5
2 survives to E2. For z to have

x2z 6= 0 it is enough that um
1 un

2 v5
2 survives to E3, i.e. that it is not hit by a d2. (It

cannot be the source of any differential because it is the product of the elements
represented by um

1 and un
2 v5

2 .)
The differential d2 has degree 35 ≡ −13. Our element um

1 un
2 v5

2 has degree −16(m +
n)− 30 so the source that would have to hit it would have to have degree −16(m +
n)− 17; in particular, it must be odd degree. The odd degree elements in the E2-term
of our Bockstein spectral sequence are

v2s
2 αkz−16n−17;

v2s
2 ui

1z−16n−17 0 < i < m;

and v2s+1
2 αkum−1

1 z−16n−17.

The only elements with degree equal to −1 modulo 16 are

αkz−16n−17;

and ui
1z−16n−17, 0 < i < m.

Since our differentials commute with multiplication by α and u1, if such a differential
exists it has to be non-trivial on z−16n−17. Because u

ε(n)
1 z−16n−17 is in the image

of ĝ0(n), it must have all differentials on it trivial. Thus the target, d2(z−16n−17)
must be killed by u

ε(n)
1 , i.e. u

ε(n)
1 d2(z−16n−17) = d2(uε(n)

1 z−16n−17) = 0. If we do have
a non-trivial d2 differential on our z−16n−17 for m = 8K + 8, we can read off all the
possible targets from Theorem 19.2, keeping in mind what the degree must be and
that u

ε(n)
1 must kill it. This requires an odd power of v2 and a high power of u1.

Because of the high power of u1, all such possible targets will, by naturality of the
spectral sequence, Remark 14.2, go to zero in m = 8K and so our differential must
be trivial there.
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Corollary 19.4. In ER(2)∗(RP 2m ∧RP 2n), m 6 8K, 8K + 8 < n, n ≡ 1, 2, 5 and
6 modulo 8, the following elements are nonzero and independent in our 2-adic repre-
sentation:

αkui
1u2, k > 0, i 6 m;

and
ui

1u
j
2, i 6 m, j 6 n + 1.

Furthermore, ui
1u

n+2
2 = 0 when i > 4, n > 8K + 8.

Proof. The elements αkui
1u2, ui

1u
j
2, i 6 m, j 6 n, reduce to E(2)∗(RP 2m ∧RP 2n).

All we have left to worry about are the elements ui
1u

n+1
2 , i 6 m. We know un+1

2 = x2z,
z → un

2 v5
2 so ui

1u
n+1
2 = x2ui

1z with ui
1z → ui

1u
n
2 v5

2 . From Proposition 19.3 we know
that um

1 un+1
2 6= 0 and so ui

1u
n+1
2 must also be nonzero.

The element un+2
2 is zero when n ≡ 1, 6, 7 or 8 mod 8. Otherwise it is divisible by

x4 and by Remark 8.2 we have x3u4
1 = 0.

20. Nonimmersions

In this section we finish off the proofs of our nonimmersion results. We start with
the first part of Theorem 1.9.

Our goal is to show that the axial map

RP 2n ×RP 2K−2k−4 −→ RP 2K−2n−2

does not exist for certain n and k. If n ≡ 0 or 7 mod 8,

0 = u2K−1−n ∈ ER(2)∗(RP 2K−2n−2).

If we show that the image of this element in ER(2)∗(RP 2n ×RP 2K−2k−4) is nonzero,
then the axial map does not exist and RP 2n does not immerse in R2k+2.

This computation is actually a coproduct because it can first be carried out for
the map RP∞ ← RP∞ ×RP∞ and this last space has a Künneth isomorphism for
both our theories ER(2)∗(−) and E(2)∗(−). As in the introduction,

ER(2)∗(RP∞)

²²

// ER(2)∗(RP∞)⊗̂ER(2)∗ER(2)∗(RP∞)

²²
E(2)∗(RP∞) // E(2)∗(RP∞)⊗̂E(2)∗E(2)∗(RP∞)

is an isomorphism from the top row to the bottom in degrees 16∗ by Corollaries 8.3
and 17.3. The coproduct is therefore the same in both cases and comes from

u −→ m∗(u) = u1 +F u2 = u1 + u2 + u1u2G

where G is a power series. We are looking at m∗(u)2
K−1−n. If we write this out in our

2-adic basis, it is ∑
ak,iα

kui
1u2 +

∑
bi,ju

i
1u

j
2,

with j > 1 and the ak,i and bi,j either 0 or 1. This is the same formula for either
ER(2)∗(−) or E(2)∗(−). The way we do this reduction is to use our algorithm, 15.3.
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Our algorithm never lowers the sum of powers of u1 and u2, so i + j > 2K−1 − n
for example. The 2-adic basis is the same in both cases and the relations and the
reductions are also the same.

We continue the above map to

E(2)∗(RP∞) //

²²

E(2)∗(RP∞)⊗̂E(2)∗E(2)∗(RP∞)

²²

E(2)∗(RP 2K−2n−2) // E(2)∗(RP 2n)⊗̂E(2)∗E(2)∗(RP 2K−2k−2)
Ä _

²²
E(2)∗(RP 2n ×RP 2K−2k−2).

For the E(2)∗(−) case, Don Davis, in [Dav84], showed that 0 = u2K−1−n mapped to
nonzero when

n = m + α(m)− 1 and k = 2m− α(m).

The top map on the right going down takes basis elements to zero or to basis elements.
Since un+1

1 = 0 = u2K−1−k
2 , our coproduct reduces to
∑

i6n

ak,iα
kui

1u2 +
∑

i 6 n

1 < j 6 2K−1 − k − 1

bi,ju
i
1u

j
2

and [Dav84] shows that this must be nonzero. We can simplify this further though.
We already know that i + j > 2K−1 − n and that n is very small compared with 2K−1.
Thus the first sum above, involving αkui

1u2, is not there. The only basis elements that
matter are the ui

1u
j
2 with i + j big, i 6 n and j 6 2K−1 − k − 1. For the maximal j =

2K−1 − k − 1, we can see, using i + j > 2K−1 − n, that i > k + 1− n. This number
is always bigger than 4 in our applications.

We now do the same thing with ER(2)∗(−). We use the diagram, which includes
our hypothetical axial map:

ER(2)∗(RP∞) //

²²

ER(2)∗(RP∞)⊗̂ER(2)∗ER(2)∗(RP∞)

²²

ER(2)∗(RP 2K−2n−2) // ER(2)∗(RP 2n)⊗̂ER(2)∗ER(2)∗(RP 2K−2k−4)

²²
ER(2)∗(RP 2n ×RP 2K−2k−4).

We assume that n ≡ 0 or 7 mod 8, which gives us un+1
1 = 0 = u2K−1−n, and −k − 2 ≡

1, 2, 5 or 6 mod 8.
Our coproduct, in either case, is contained in the 16∗ degree part generated by u1

and u2 with ui
1u

j
2 having big i + j. Furthermore, and this is important, in both cases

we have un+1
1 uj

2 = 0 and u4
1u

2K−k
2 = 0. We have the same 2-adic basis for this in both
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cases by Corollary 19.4, i.e. for

E(2)∗(RP 2n ×RP 2K−2k−2) and ER(2)∗(RP 2n ×RP 2K−2k−4).

Consequently, our obstruction is exactly the same linear combination for ER(2)∗(−)
as it was for E(2)∗(−) and since our obstruction is nonzero in one place it must be
nonzero in our new situation.

As a result of the above discussion, Don Davis’s obstructions work for us as well
but with an improvement, in our special cases, of 2. To meet our conditions we must
have (from Theorem 13.4)

−k − 2 ≡ {1, 2, 5, 6} mod 8

and, from [Dav84], k = 2m− α(m) and also

n = m + α(m)− 1 ≡ {0, 7} mod 8.

(from both [Dav84] and Theorem 13.4). Our result in the Introduction follows once
we get our pairs (m,α(m)) from these equations. Our first is:

−2m + α(m)− 2 ≡ {1, 2, 5, 6} mod 8;
−2m + α(m) ≡ {3, 4, 7, 0} mod 8;
2m− α(m) ≡ {5, 4, 1, 0} mod 8.

The second:

m + α(m)− 1 ≡ {0, 7} mod 8;
m + α(m) ≡ {1, 0} mod 8.

Adding the two equations we get

3m ≡ {6, 5, 2, 1} or {5, 4, 1, 0} mod 8.

Multiply by 3 (mod 8) to get

m ≡ {2, 7, 6, 3} or {7, 4, 3, 0} mod 8.

Substituting this into
α(m) ≡ −m + {1, 0} mod 8,

we get
α(m) = {7, 2, 3, 6} or {1, 4, 5, 0}.

So our result is as stated in the Theorem 1.9.
For the second part of Theorem 1.9 we begin again with the main theorem of

[Dav84], for
n = m + α(m)− 1; k = 2m− α(m);

there does not exist an axial map

RP 2K−2k−2 ×RP 2n −→ RP 2K−2n−2,

and so RP 2n * R2k. This is proven by using the equivalent of E(2)∗(−) and showing
that the u2K−1−n = 0 on the right would have to go to a nonzero element on the left.



266 NITU KITCHLOO and W. STEPHEN WILSON

That same element would prevent the existence of an axial map,

RP 2K−2k−2 ×RP 2n+2 −→ RP 2K−2n−2,

and likewise

RP 2K−2k−2 ×RP 2n+2 −→ RP 2K−2n−4.

Furthermore, if u2K−1−n went to nonzero then we must also have u2K−1−n−1 =
0 also going to a nonzero element. If n + 1 ≡ 7 mod 8, then u2K−1−n−1 = 0 for
ER(2)∗(RP 2K−2n−4) and, if −k − 2 ≡ {1, 2, 5, 6} mod 8 this must factor through
the ER(2)∗(−) cohomology of

RP 2K−2k−4 ×RP 2n+2 −→ RP 2K−2n−4

as above and we have that RP 2n+2 * R2k+2, or,

RP 2(m+α(m)) * R2(2m−α(m)+1).

We have to untangle some equations to get our (m,α(m)) pairs for this. We have

n + 1 = m + α(m) ≡ 7 mod 8

and

−k − 2 ≡ −2m + α(m)− 2 ≡ {1, 2, 5, 6} mod 8.

The equation for k is the same as before so we have

2m− α(m) ≡ {5, 4, 1, 0} mod 8.

The equation for n gives

m + α(m) ≡ 7 mod 8.

Adding, we have

3m ≡ {4, 3, 0, 7} mod 8.

Multiply by 3 to get

m ≡ {4, 1, 0, 5} mod 8.

Substituting into

α(m) ≡ −m + 7 mod 8,

we get

α(m) = {3, 6, 7, 2}
and our pairs are as in our Theorem 1.9.

Remark 20.1. Don Davis does his work with the theory BP 〈2〉∗(−) with BP 〈2〉∗ '
Z(2)[v1, v2]. For these spaces there is no v2 torsion so when v2 is inverted to create
E(2)∗(−), everything injects. The normal E(2) is 6-periodic but we can consider it 48-
periodic just as well, it doesn’t change anything. Davis does all of his computations
with the standard 2-dimensional class, x2, but the computations all hold if this is
adjusted by a unit so we can use our u in degree −16.
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21. The Atiyah-Hirzebruch spectral sequence approach

The original computation of ER(2)∗(RP 2n) was carried out using the Atiyah-
Hirzebruch spectral sequence and we give a brief description of how that was done
here. To begin we use the long exact sequence:

ER(2)∗(X) x // ER(2)∗(X)

ρ{{vvvvvvvv

E(2)∗(X)
∂

ccHHHHHHHH

(21.1)

for X = RP 16 and X = RP∞. Since we know E(2)∗(RP 16), we can just look at the
Atiyah-Hirzebruch spectral sequence for ER(2)∗(RP 16) and see that what is there
in the E2-term for ER(2)16∗(RP 16) must map isomorphically to E(2)16∗(RP 16) and
so must also be E∞ and cannot have any differentials entering or leaving. Using this
isomorphism and the fact that E(2)∗(RP 16) is even degree, the long exact sequence
gives us ER(2)16∗+1(RP 16) = 0 as it is trapped in:

0 ' E(2)16∗−1(RP 16)→ ER(2)16∗+17(RP 16)→ ER(2)16∗(RP 16) ' E(2)16∗(RP 16).

It then follows that ER(2)16∗+2(RP 16) = 0, from

ER(2)16∗(RP 16) ' E(2)16∗(RP 16) −→

ER(2)16∗+18(RP 16) −→ ER(2)16∗+1(RP 16) = 0.

We get one more, i.e. ER(2)16∗+3(RP 16) = 0 from

0 ' E(2)16∗−15(RP 16) −→ ER(2)16∗+3(RP 16) −→ ER(2)16∗+2(RP 16) = 0.

In order for the Atiyah-Hirzebruch spectral sequence for ER(2)∗(RP 16) to end up
with zero in these degrees we must have differentials, none of which can start (or end)
on ER(2)16∗(RP 16). There is only one way for this to happen and it shows us what the
dr are for r = 2, 3, 4, 5, 6 and 7. These differentials then work for all ER(2)∗(RP 2n).
Elements can be identified using ER(2)∗(RP∞) and the map to E(2)∗(RP∞).

This works quite well but breaks down when attempting products.
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