MathSciNet Mathematical Reviews on the Web

Previous Up Next Article

MR0139172 (25 #2608) 57.10 Kervaire, Michel A.

A manifold which does not admit any differentiable structure.

Comment. Math. Helv. 34 1960 257-270

In this paper the author presents the first example of a triangulable manifold which admits no differentiable structure. His example may be described as follows: Let $p: E \to S^5$ be the tangent disc bundle over S^5 , and let $D_5 \subset S^5$ be the upper hemisphere of S^5 . Choose a trivialization $f: D^5 \times D^5 \to p^{-1}(D^5)$ of the bundle over D^5 . Now in the disjoint union of E with itself identify $f(u, v) \in p^{-1}(D^5)$ in the first copy, with the point $f(v, u) \in p^{-1}(D^5)$ in the second copy to obtain a space W. After a straightening of the edges, W becomes a triangulable manifold with boundary, ∂W , which turns out to be homeomorphic to S^9 . The union of W with the cone over ∂W is the desired 10-dimensional manifold M_0 . (This construction goes back to J. Milnor [Amer. J. Math. **81** (1959), 962–972; MR0110107 (22 #990)].)

The proof that M_0 carries no differentiable structure involves the following steps. Let Ω be the loop space of S^6 and let $e_1 \in H^5(\Omega; \mathbf{Z})$, $e_2 \in H^{10}(\Omega; \mathbf{Z})$ be generators. If M is any 4connected triangulable 10-manifold, and $x \in H^5(M; \mathbf{Z})$, the author first shows that there exists a map $f_x: M_{10} \to \Omega$ so that $f_x^* e_1 = x$. He then defines $\varphi: H^5(M; \mathbf{Z}_2) \to \mathbf{Z}_2$ as follows: Let $y \in$ $H^5(M; \mathbf{Z}_2)$. Then there exists an $x \in H^5(M; \mathbf{Z})$ such that $x \equiv y \mod 2$, by Poincaré duality. Choose f_x and evaluate $f_x^* \overline{e}_2$ on M_{10} , where e_2 is the mod 2 class determined by e_2 . The resulting element of \mathbf{Z}_2 turns out to be independent of x and f_x and is defined to be the value of φ at y. The author now sets $\Phi(M) = \sum \varphi(x_i)\varphi(y_i)$, where $x_1, \dots, x_n, y_1, \dots, y_n$ is a symplectic base for $H^5(M; \mathbf{Z}_2)$ (with respect to the cupproduct) and proves that the invariant $\Phi(M)$ must vanish if M admits a differentiable structure.

This basic theorem depends on geometric considerations as well as on detailed information concerning the stable homotopy group $\pi_{10+n}(S^n)$. Finally, the author computes $\Phi(M_0)$ and finds that $\Phi(M_0) = 1$, thereby establishing the result.

Reviewed by R. Bott

© Copyright American Mathematical Society 1963, 2009