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À Manifold which does not admit any Differentiable Structure

by Michel A. Kervatre, New York (USA)

An example of a triangulable closed manifold Mo of dimension 10 will be

constructed. It will be shown that M0 does not admit any difiEerentiable struc¬
ture. Actually, Mo does not hâve the homotopy type of any differentiable
manifold.

Also, a 9-dimensional differentiable manifold Z9 is obtained. Z9 is homeo-
morphie but not diffeomorphic to the standard 9-sphere S9.

Use is made of a procédure for killing the homotopy groups of differentiable
manifolds studied by J. Mtlnor in [6]. I am indebted to J. Milnob. for sending
me a copy of the manuscript of his paper.

Although much of the constructions (in particular the construction of M0)

generalizes to higher dimensions, I did not succeed disproving the existence
of a differentiable structure on the higher dimensional analogues of Jf0. A

more gênerai case of some of the constructions below will be published in a

subséquent paper, with other applications.1)

§ 1. Construction of an invariant

Let M10 be a closed triangulable manifold. Assume that M10 is 4-connected.

(If10 is connected, and 7tt(M) 0 for 1 <^ i <£ 4.) It follows from PomcARÉ

duality and the universal coefficient theorem that Hq(M ; G) 0 for
5 < q < 10, and H5(M) is free abelian of even rank 2s, say. (If no coef¬

ficients are mentionned, integer coefficients are understood.)
Let Q QS* be the loop-space on the 6-sphere. It is well known that

H*(Q) Z, 2ïlo(.G) Z, and if n : Q x Q -> Q is the map given by the

product of loops, then

ex ® 1 + 1 ® ex, and

where e1} e2 are the generators of H5(Q) and H10(Q) respectively, and

H*(Q x Q) is identified with H* (Q) <g> H* (Q) by the Kûnneth formula.
(Compare R. Bott and H. Samelson [1], Theorem 3.l.B.)

Lemma 1.1. Let X H6 (M) be given. There exists a map f : M -> i2 such

that /*(«!) X.

1) This paper was presented at the International Colloquium on Differential Geometry and

Topology, Zurich, June 1960.
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Proof. Let K be a triangulation of M. Define / by stepwise extension on

the skeletons K{Q) using obstruction theory. / | K{A) is taken to be the con¬
stant map into a base point on Q. Let Xo be a représentative cocycle of X.
For every 5-dimensional simplex s6 of K, define f \sb to be a représentative
of Xo[s6]-times the generator of nh{Q) Ç£nB(8*) y2 Z. The obstruction co¬

cycle to extend / | Ki5) in dimension 6 is zéro. The next obstruction is in

dimension 10 with values in n9(Q) m n1Q{8^) 0. (See [9], § 41.) Thus the

lemma is proven.
Define a function <p0: Hh(M) -> Z2 by the following de vice. For every

XH5(M), takeamap /: M-> Q such that f*(e1) X. Then, <po{X)

/* (u2) [M], where u2 c H10{Q ; Z2) is the réduction modulo 2 of e2 c Hl0{Q),
and /* (u2) [M] is the value of the cohomology class /* {u%) on the generator
of H10(M";Z,).

Lemma 1.2. The function ç>0: H5(M) -> Z2 is well defined, i.e., q>Q(X)

does not dépend on the choice of the map f : M -> Q such that /* (ej X.

Proof. Let f,g: M-+Q be two maps such that /*{ex) gr*(ex). We

hâve to show that /* (u2) g* (u2). Let K again be a triangulation of M.
Since /*(e1) g*{e<ù 0, it follows that / and g are 5-homotopic. (See

S. T. Htj [2], Chap. VI.) Since m (M ; nq{Q)) 0 for 5 < q < 10, it follows
that / and g are 9-homotopic. Hence, we may assume that f\Ki9) g \ K{9).

Let eo10(/, g) e C10 (K ; nlo(Q)) be the différence cochain. Then,

for every 10-simplex s10, where h : nlo(Q) -> H10(Q) is the Hxjbewicz homo-
morphism. According to J. P. Serre, u2 [hoc] is the mod. 2 Hopf invariant
of the élément in nu(SB) represented by <x nlo(Q86). (Compare [8], Lemme
2.) Since no élément of odd Hopf invariant occurs in nn(86), it follows that
/* (u2) gr* (u2), and the proof is complète.

Lemma 1.3. Let X, Y *Hh(M) be two integer cohomology classes of M.
Then,

Y) - <po(X) + n{Y) + x-y

where xy is the value on the generator of H10(M10; Z2) of the cup-product
x ^y. (x,y are the mod. 2 réductions of X and Y respectively.)

Proof. Let /, g : M -+Q be maps such that /*(ex) X and g*(et) T.

By définition, <po(X) f*(u%)[M], and <po(Y) g*(u2)[M].
Let fxg:MxM->QxQ be the product of / and g. (I.e., /X<?(m, v)

(/ M > 0 M) ) Let D : M -> Jf x if be the diagonal map. Define F :
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by F 7zo(fxg)oD, where n: Q x Q ->Q is given by the multiplica¬
tion of loops. Since D* maps the tensor produet of cohomology classes into
their cup-product, we hâve F*^) D*(X®l + l®r) Z+ Y. There-
fore,

<po(X+Y) F*(u2)[M].
On the other hand,

F*(u2) D*(/*(^2) ®1 + 1® g*{ut) + /*(%) ® jr*(iO)
/*(*,) + g* (*t) + /*(%) - <7*(%)

(% is the réduction modulo 2 of e^) This proves Lemma 1.3.
The function ç>0: H5(M) -> Z2 induces a function ç? : H5(M; Z2) -> Z2

satisfying ç>(a; + t/) ç?(x) + y (y) + a;-2/. Indeed, if X is an integer class

whose réduction modulo 2 yields x H6(M; Z2), we define <p(z)

It follows from
(2 F) (7) + (^) + yy h o,

that ç?(o;) c Z2 dépends only on x cH5(M; Z2).
The function 99 : l/5 (M ; Z2) -> Z2 is then used to construct the number

0(M) as follows. A basis xl9..., x8i yl9..., y9 of H5(M; Z2) as a vector

space over Z2 will be called symplectic if x{ xi 2/i 2/^ 0, and #,. ^ ôti

for ail i, y 1,..., s. Clearly, symplectic bases always exist. Moreover, it
is well known that since the function <p

: H5(M; Z2) -» Z2 satisfies the équa¬
tion

(p(x + y) q>(x) + <p(y) + x-y

the remainder modulo 2

is independent of the symplectic basis xx,..., xs, yx,..., y8.

The rest of the paper is devoted to investigating the properties of the

invariant 0.
Clearly, 0 is an invariant of the homotopy type of 4-connected closed

manifolds of dimension 10.

Our objective is the proof of the following theorems.

Theorem 1. // M10 has the homotopy type of a C^differentiable à-connected
closed manifold, then 0(M) 0.

(It can be shown that the converse of this theorem would follow from the

conjecture that the cohomology ring JÎ*(Jf) and 0(M) are a complète set

of invariants of the homotopy type of the triangulable 4-connected closed

manifold M of dimension 10.)
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Theorem 2. There existe a closed 4-connected comhinatorial manifold Mo of

dimension 10 for which &(M0) 1.

(In fact a spécifie example will be construeted.)
In § 2, the proof of Theorem 1 will be earried out taking Lemmas 4.2 and

5.1 for granted. (Lemma 4.2 is used in the proof of Lemma 2.2, and Lemma
5.1 is used to deduee Theorem 1 from Lemma 2.4.) The Lemmas 4.2 and

5.1 are proved at the end of the paper, in § 4 and § 5. Theorem 2 will be

proved in § 3.

§ 2. Proof of Theorem 1

Let M10 be a closed C1-differentiable manifold which is 4-connected.

Lemma 2.1. M10 is a n-manifold.

Proof. Let M10 c R"*10 be an imbedding with n large. We hâve to

show that the normal bundle v is trivial. This is done by eonstructing
a field of normal n-frames fn. Let K be a triangulation of M10. Since

nA(SOn) 0, and if10 is 4-connected, it follows that H*+l (M;nq(SOJ) 0

for 0 ^g<9. Thus, there is only one possibly non-vanishing obstruction
o(v, fn) c H10(M; 7i9(SOn)) Sa n9(SOn) to the construction of the field fn of

normal w-frames. By Lemma 1 of [7], o(v, fn) is in the kernel of the Hopf-
Whitehead homomorphism J9 : nB(SOn) -*an+9(8n). But J9 is a mono-
morphism. (Compare proof of Lemma 1.2 of [4].) Hence, o(v, fn) 0, and

the lemma is proved. (Recall that the proof of the assertion : J9 is a mono-
morphism, was based on Corollary 2.6 of J. F. Adams paper On the structure
and applications of the Steenrod algebra, Comm. Math. Helv. 32 (1958),

180-214. This statement also follows from the portion of the Postntkov de-

composition mod. 2 of Sn given below in § 5.)

The Thom construction associâtes with every framed manifold (M ; fn),

where M c Bn+dimM, an élément »(M; fn) e nn+àlmM(Sn). We say that
(Jf10; fn) is homotopic to zéro if the corresponding élément oc (M ; fn) is the

neutral élément of ^n+

Lemma 2.2. // (M10; fn) is homotopic to zéro, where M10 is é-connected,

then 0(M) 0.

Proof. The assumption that (M ; fn) is homotopic to zéro implies the

existence of a framed manifold (Fn;fn) with boundary Jf10. (Compare
R. Thom [10].) We may assume that F is connected, and hence has a trivial
tangent bundle. We can therefore apply to F Jf the procédure for killing
the homotopy groupa of a differentiable manifold studied by J. Mxlnor.
Specifically, using Theorem 3 of [6], we obtain a new 11-dimensional differen-
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tiable manifold with boundary M10 which is also 4-connected. This new 4-
connected manifold will again be denoted by F11. We can now forget about
the fields of normal frames.

We proceed to compute 0 (M). Consider the cohomology exact séquence
of the pair (F, M) with coefficients in Z2,

Using relative Poincaré-Lefschetz duality (over Z2), and the formula

u ^ dx[V9 M] i*(u) ^ x[M]

where UH5(V), XH5(M) and [F, if], [if] are the generators of

Hlt(V,M; Z2) and H10(M;Z2) respectively, it follows that H5(M;Z2)
has a symplectic basis xx,..., x9, y1,..., y8 say, such that xl9..., x9 is

a vector basis of Ker <5. Consequently, in order to prove 0(M) 0, it is

sufficient to show that <p(x) 0 for every x Ker à.

Let X e H5(M) be an integer class whose réduction modulo 2 is x, and let
/ : if10 -> Q Q8« be a map such that f*(ex) X. We hâve to show that
f*(u2) 0, where u2 générâtes H10(Q; Z2). Let i2* be the space obtained
from Q by attaching a cell of dimension 6 by a map S5 -> Û of degree 2.

By Lemma 4.2 in § 4, below, for every map g : S10 -> i3*, one has 0* (w2) 0,
where we dénote by u2 H10(Q*; Z2) again the class corresponding to the
old u2H10(Q; Z2) underthecanonicalisomorphism H10(Q; Z2) mH10(Q*; Z2).

We attempt to extend / : M -> fi* to a map of F into fi*. Let (Jf, L)
be a triangulation of (F, M). The stepwise extension of / on the skeletons

KW^L leads to obstructions in the groups JÏ«+1(Z, L; nq(Q*)). For
q < 5, jrg(fi*) 0. We meet a first obstruction for q 5 in H*{K, L; Z2).

By the Hopf theorem, this obstruction is ôx. (See S. T. Hu [2].) Since ôx 0,

it is possible to extend /on K(»^L. Using H^X(K, L\ G) 0 for
5 < q < 10 (since F is 4-connected), it follows that there exists a map
F : K t -> fi*, where t is some 11-dimensional simplex in K L, such
that F\L f. Let S10 dénote the boundary of r, and let g : S10 -> Q* be

the restriction of jF on S10. Since 3(j£ r) £ S10, and g*(u2) 0,
it follows that /*(w2) 0. The proof of Lemma 2.2 is complète.

Corollary 2.3. // two é-connected framed manifolds (M; fn) and {M1 ; /£)

of dimension 10 define the same élément oc oc (M; fn) =<%(if'; fn) by the

Thom construction, then &(M) 0(Mf).
This is obtained by observing that 0 is additive with respect to the connected

sum of manifolds.
It follows that 0 provides a homomorphism from a subgroup of ^n+
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into Z2. We dénote this homomorphism by 0 again. Actually, 0 is defined
on every élément of 7in+10(Sn). Indeed, using spherical modifications [6], it
is easy to see that every élément oc e nn+10(8n) is obtainable from a 4-con-
nected framed manifold by the Thom construction. This remark will not be

used in the présent paper.
It follows from Corollary 2.3 that Theorem 1 is équivalent to the statement

that 0(<x) 0 for every oc nn+10(Sn), provided 0(oc) is defined.
Since 0(oc) is obviously zéro for every élément oc of odd order, and by

J. P. Sebre's results 7tn+10(8n) contains no élément of infinité order, it is

sufficient to show that 0 annihilâtes the 2-component of the group nn+lQ (8n).
By Lemma 5.1 in § 5 below, every élément oc in the 2-component of nn+10(Sn)
is representable in the form

oc f}orj

where rj e nn+10(Sn+9) is the generator of the stable 1-stem, and /? nn+9(Sn).
Hence, Theorem 1 will follow from the

Lemma 2.4. Every élément oc7tn+io(8n) of the form oc fior}y with

rj e nn+1o(8n+9), and /? *3Tn+9($n) is obtainable by the Thom construction from
a framed manifold (Z10; fn), where Z10 has the homotopy type of the 10-sphere
S10.

Proof. We first show that (5 nn+%{Sn) is obtainable by the Thom construc¬
tion from a framed manifold (2J9 ; fn), where Z* has the homotopy type of

the 9-sphere.
It is well known that fi is obtainable by the Thom construction from some

framed manifold (M9 ; fn). We hâve to show that (M9 ; fn) is homotopic
to a framed manifold {E9 ; fn), where Z9 is a homotopy sphère. This is done

by simplifying M9 by a séries of spherical modifications. (See J. Mtlnor [6].)

Assuming by induction that M9 is (p l)-connected (0 ^ p ^ 4), we

hâve to prove that (M ; fn) is homotopic to a p-connected framed manifold
(M' ; ffn). Recall that a spherical modification of type (p + 1, q + 1) applied
to a class A 7tp(M9) consists of the following construction. Represent A by
an imbedding

f:8* X D«+l->M9

with p + q + 1 9. (This is possible for p <£ 4 since M9 is a jr-manifold
and the normal bundle of any imbedding 8P -> M9 is stable in this range of

dimensions.) The manifold M is then replaced by

Mf (M - f(Sp x D«+1)) v (D»+l x S«)

under identification of f(8* X 8q) regarded as the boundary of f(8pxD9+1)
with 8P x 8q regarded as the boundary of D**1 x 8*. By Theorem 2 of
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[6], the manifolds M and M' bound a 10-dimensional differentiable manifold
co m (M, /), and / : 8P X D*+1 -> M9 can be chosen such that the field fn

(over M) is extendable over co as a field of normal ?i-frames. (We can think
of a) as imbedded in Rn+10 with M c Rn+9 x (0) and M' c Rn+9 X (1)

since n can be taken as large as we please.) Hence spherical modifications of

type (p + 1, q + 1) with 0 <^ p ^ 4 can be performed so as to carry
(M ; fn) into a homotopic framed manifold. It is known (Theorem 3 of [6])
that for p < 4, spherical modifications simplify the manifold. More precisely
np(M') is isomorphic to the quotient of nv(M) by the subgroup generated
by A, and n^M) y2 n{(Mr) 0 for i <p. Hence, it is easy, using [6], to

obtain a 3-connected framed manifold homotopic to (M9; fn). The case

p 4 requires spécial care. If A n±(M9) is the class we want to kill, there
exists an imbedding /:S4xD5-> M9 such that / | S* X (0) represents A.

Let M' %(M, /) be the 9-dimensional manifold obtained from M and /

by spherical modification. (/ is supposed to be chosen so that (M' ; f^) with
some fn is homotopic to (M; fn).) In gênerai, however, / | x0 X (bdry D5)

represents a non-zero élément of n^{M'). Thus, it is not clear a priori that a

séries of spherical modifications of type (5, 5) will carry M into a 4-connected

manifold, and hence a homotopy sphère.
If A is a generator of the free part of n^(M) ¥2 HA(M), there exists by

Poincabé duality a class fi e HQ(M) whose intersection coefficient with A

(or A A rather, where h is the Hurewicz homomorphism) is 1. It foliows that
in this case the cycle given by / | x0 x (bdry D*) is homologous to zéro in

M -/(/84X D5), and hence in M'. Thus HA(M') ^tz^M1) has strictly
smaller rank than H^M) ¥2 jr4(ilf), and the torsion subgroup is unchanged.

I claim that if A en^M) is a torsion élément, the homology class of the

cycle / | x0 x (bdry D5) is of infinité order for any f representing A. Hence,

one more spherical modification will lead to a manifold with 4-dimensional

homology group of not bigger rank than HA (M) and with a strictly smaller
torsion subgroup. (Le., a séries of spherical modifications will lead to a 4-
connected framed manifold homotopic to (M9 ; fn). By Poincaré duality,
a closed 4-connected manifold of dimension 9 has the homotopy type of S9.)

Since the Betti numbers p4, p'A of M and M1 (in dimension 4) differ at most

by 1, and differ indeed by 1 if and only if A; (represented by / | x0 x (bdry D5))
in M' is of infinité order, it is sufficient to show that p^ + pA 1 mod. 2.

Since p\ p{ for 0 ^ i ^ 3, this is équivalent to showing that the semi-
characteristics E*(M) and E*(M' of M and M1 (over the rationals, say)

satisfy E*(Mf) + E*(M) 1 mod. 2. We use the formula

E*{M') + E*(M) =E(co) + r mod. 2,
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where E(co) is the Etjler characteristicof the manifold co with boundary to

Mf M, and r is the rank of the bilinear form on H5 co, co ; Q) defined by the

eup-produet. (Compare M. A. Kervaire [3], § 8, formula (8.9).) It is easily
seen that E(co) 1, up to sign, and since u u 0 for every u c H* (co, co ; Q),
the rank r must be even: r 0 (mod. 2). Hence, JE* (if') + E*(M) 1

mod. 2.

Summarizing, we hâve proved so far that every /8 rcn+9($n) is obtainable
by the Thom construction from a framed manifold (Z9; fn), where the

manifold Z9 has the homotopy type of S9.

Taking a représentative /: Sn+10-> Sn+9 of rj such that /-1(#n+9 x0)

is diffeomorphic to S1 X ($n+9 a?0), we obtain that et f} orj is obtainable
by the Thom construction from (/S1 x i79 ; fn).

It remains to show that (S1 x E9 ; fw) is homotopic to a framed manifold
(2710; fn), where Z10 is a homotopy sphère.

Apply once more the spherical modification theorems (Theorems 2 and 3

of [6]), this time to the class X ctz^S1 x U9) represented by S1 X (z0). The

resulting framed manifold is homotopic to (S1 X X9 ; fn) and has the homo¬

topy type of the 10-sphere. This complètes the proof of Lemma 2.4.
To complète the proof of Theorem 1 it remains to prove the Lemmas 4.2,

and 5.1. This is done in § 4 and § 5.

§ 3. Construction of Mo

This section relies on J. Milnor's paper [5]. Let f0 : 8* -> SO^ be a

differentiable map whose homotopy class (/0) satisfies

i* (/o) dh >

where 3: tz5(8b) ->7z4(SO6) is taken from the homotopy exact séquence of

SOç/SOs, and i : SO^-^ SO6 is the usual inclusion. Define fx /2 i o /0.

Using /1? /2 : /S4 -> SO6, a diffeomorphism f : 8* X S* -> 8à x 8A is given
by /(#> y) (^'» y')> where y' fx(x)-y, and # fi(y')*xf. Let M(flt /2)

be the Mzlnor manifold obtained from the disjoint union of D5 x /S4 and
/S4 x D5 by identifying each point (x, y) in the boundary of D5 x S41 with

f(x,y), considered as a point on the boundary of S* x D6. By Lemma 1 of

[5], together with the remark at the bottom of page 963 in the proof of Lemma 1

in [5], it follows that the differentiable manifold M(fl9 /2) is homeomorphic
to the 9-sphere. It will follow from Theorem 1 in this paper, that M(fly /2)

is not diffeomorphic to the standard 89. Let W10 be the differentiable mani-
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fold with boundary M (ft, /2) obtained using the construction on page 964 of

[5], W can alternately be described as follows. Let U be a tubular neighbor-
liood of the diagonal A in S5 X 8S. It is well known that U is the space of

the fibre bundle p : U -> S5 with fibre D5 associated with the tangent bundle
of S5. The differentiable manifold W is obtained by straightening the angles
of the quotient space of the disjoint union of two copies Ur and U" of U

under an identification of p'~x(V) with p"~1(F) such that the images of
A' and A" in W hâve intersection number 1. (F is an imbedded 5-dise on
S5, and p'-1^) ï£DBx Ds is identified with p'-^F) §g 2>5 x D* under
(u, v) «-> (v, w), u, v D5.)

Since TF is a 10-dimensional manifold whose boundary M(fly /2) is homeo-
morphic to $9, the union of W with the cône over the boundary is a 10-dimen¬
sional closed manifold Mo. Since M(fl9 /2) is combinatorially équivalent to S9,

it follows that M0 possesses a combinatorial structure. (Compare J. Milnor, On

the relationship between differentiable manifolds and combinatorial manifolds,
mimeographed notes 1956, § 4.)

It is easily seen that Mo is 4-connected.
We proceed to compute 0 (Mo). Let x> y H5 (Mo ; Z2) be the cohomology

classes dual to the homology classes of the imbedded sphères j', j" : S5 -> Mo

given by the images in W of the diagonals A1 and A" in V and U" respec-
tively. Clearly, x, y is a symplectic basis of H5 (Mo ; Z2) .(Le., x # y y 0,
and #!/ 1.) To show that <p(x) cp{y) 1, observe that the normal
bundles of f and j" (regarded as imbeddings of #5 in the differentiable mani¬
fold W) are non-trivial. Thèse bundles are isomorphic to p: U ->$5. Let
K be the Thom complex of this bundle. (Le., the space obtained by collapsing
the boundary of U to a point.) It is well known that K admits a cell décompo¬
sition S5 ^ e10, where the attaching map $9 -> /S5 is a représentative of the
Whitehead product [i5, f6]. On the other hand, the Thom construction pro¬
vides a map /0 : Mo -> K such that /* (ex) X, the dual class of f : $5-> Jf0,
and /o(w2)[Jfo] 1, where ex générâtes H5(K;Z) and w2 générâtes
H10(K ; Z2). A map / : M0 -> i2$6 is obtained by composition of f0 with the
usual inclusion S5 ^ e10 ->!2$6. (Recall that Q8* has a cell décomposition
£?56 S5 ^ e10 ^ e16 ^ e20 ^ where the attaching map of e10 represents
fo.tj.) Then, /:ifo->i2/S6 has the properties /*(6X) X, /*(w2) l,
showing that ç?(a:) 1. The same construction applied to Y, the dual class

of f : S5-+M0 yields ç>(y) 1. Hence <P(Jf0) <p(x)-(p(y) 1.

If -M"(/x,/2), with the differentiable structure induced by TF (of which

-"(/u /a) is the boundary) were diffeomorphic to aS9 with the standard diffe¬
rentiable structure, the differentiable structure on W could be extended to
a differentiable structure over the cône CM(f1,f2), providing a differentiable

19 CMH vol. 34
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structure on Jf0. However, &(MQ) 1 and Theorem 1 show that a differ-
entiable structure on Jf0 does not exist. Hence, M(ft,f2), homeomorphic
to S9, is not diffeomorphic to S9.

§ 4. The auxiliary space Q*

Let F Ss ^ 2t6
e6 ^e ^e space obtained by attaching a 6-cell to S5 by

a map SB -> Ss of degree 2.

Lemma 4.1. Let <% nh(Y) yz Z2 be the generator, then [<x, <x] ^ 0 n%{Y).

Proof. We identify F with the Stiefel manifold F7>2. Consider the exact

séquence

Since 7t10(Se) 0, and [i&,i5] is non-zero in ^9(aS5), it follows that

** [*s
> H] [»* (H) > ** (h)] [«, <*] ^ 0.

Let F* F ^ e10 be the space obtained from Y by attaching a 10-cell
e10 using a représentative / : /S9 -> Y of [#, <%]. Since Y is 4-connected, the

characteristic map /: (Dl0,S9) -»(F*, Y) of e10 induces an isomorphism

(Compare J. H. C. Whitehead [12], Theorem 1.) Thus the relative Hube-
wicz homomorphism Hr: ^0(^*5 Y) ->H10(Y* F) ^ Z is an isomorphism.
Consider the homotopy-homology ladder of F*, F) :

...-?0 -> H10(Y*)^H10(Y*,Y)-+0->...

Since 3 sends the generator of nlo(Y*, Y) into [«,a]^0, and 2[a, a] 0,

it follows that every élément in Im {h : nl0 (F*) -> #10 F*)} can be halved.

It follows that for every map g0 : S10 -> F *, the induced homomorphism
gt : H F* ; Z2) -> H1» (S10 ; Z2) is zéro.

Let Q be the space of loops over /S6. Up to homotopy type
Q S5 ^ c10 w eu ^ with e10 attached by a map of class [i5, i6]. Let
Q* Q ^ eB, where e6 is attached by a map of degree 2 on S5 <z Q. There
is a natural inclusion F* -> fi* which induces an isomorphism on cohomology

groups in dimension 10. Hence, we hâve the

Lemma 4.2. Let g: S10-*Q* be a map, and let u2 be the generator of

H10(Q*;Z2) m Z2. Then, g*(uz) 0.
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§ 5. A lemma on homotopy groups of sphères

Lemma 5.1. The map 7tn+9(8n) ->rcn+io(£n)> for n^\2, defined by com¬

position with the generator rj of nn+io{Sn+9) is surjective on the 2-component.
This lemma was communicated to me without proof by H. Toda who has

also proved that the 2-component of nn+10(Sn) is Z2. (See H. Toda [11],
Corollary to Proposition 4.10.)

We give a sketch of proof by computation of the Postntkov décomposition
modulo 2 of 8n for large n, up to dimension n + 10.

We begin with a remark which will yield Lemma 5.1 whenever a long
enough portion of the Postnikov décomposition of 8n is obtained. Let X

K(Z2, n + 9) x kK(Z2,n + 10) be the space of the fibration over K(Z2,n -f- 9)

associated with the A-invariant A Hn+11(Z2i n + 9 ; Z2). Let / : 8n+* -> X
be a map representing the generator of nn+9(X) ¥2 Z2. Then, the composition

for}: 8n+10 -> X, where rj : 8n+10 -> Sn+»

represents the generator of rcn+io(£n+9), is essential if and only if k 8q2(e),
where e is the fundamental class of Hn+9(Z2i n + 9 ; Z2).

Since Sq2(e) générâtes Hn+11(Z2,n + 9; Z2), it follows that A ^Sq*(e)
implies A 0. Hence, for] is inessential if k ^ 8q2(e).

If A Sq2(e), let f : 8n+» ^ nen+11 ->X^fo ^e^11 be the map induced
by /. Let s e Hn+9(8n+9 ^ ^en+n; Z2) be the generator. We identify
Hn+»(X ^ e*+n ; Z2) and Hn+»(X ; Z2) with Hn+*(Z2, n + 9 ; Z2). Since

/*(£) s, and Sq2(s) ^ 0, it follows that 8q2(e) ^ 0 in iïw+11(X^cw+11; Z2).
To show that / o rj is essential, it is therefore sufficient to show that Sq2(e)

0 in Hn+X1 (X ; Z2). This follows from the commutativity of the diagram

; Z2) <- Hn+*(Z2,n + 9; Z2) ^- 0

w
| Sq2

Z2)+-H"+"(Z2,n + 9; Z2) l~H"+"(Z2,n + 10; Z2)

where the rows are taken from the exact séquence of the fibration defining X
(in the stable range), and r is the transgression.

Let F10 -> 79 -> -^ Y{ -+ Y m ->...-> 70 K(Z, n) be the mo¬
dulo 2 Postnikov décomposition of 8n. (Le., p{: Y{ -> Y^x is a fibration
with fibre Ft K{nii n -f i), where n{ is the 2-component of the stable

group nn+i(8n), and jET*(ri;Z2) contains Z2 in dimension 0 and n,

H^(Yi\ Z2) 0 for 0 < q < n, and Jîw+fc(Ft.; Z2) 0 for 0 < k < i + 2.)
By the (£-theory with (£ the class of finite groups whose order is prime to
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2, a map 8n -> Tt inducing an isomorphism Hn(Yt\ Z2) îû Hn(8n\ Z2) in¬

duces an isomorphism of the 2-component of nn+k(Sn) with nn+k{Yi) for
k ^ i. (Compare J. P. Serbe [8].) We hâve n9 <£ Z2 + Z2 + Z2 and

n10 ^ Z2 as will be seen below, thus

F9 JC(Zt, n + 9) x JT(Z2, n + 9) x #(Z2, n + 9)

and Lemma 5.1 follows by showing that the restriction of the fibration
Y10 ~> Y9 over one of the faetors of F9 is K(Z2, n + 9) x kK(Z2, n + 10)

with k 8q2. This is équivalent to showing that Hn+11(Y9; Z2)^Z2 isge-
nerated by a class Ug such that i*(u9) 8q2(e9), where e9 is one of the

fondamental classes of H9(F9; Z2), and i9 : F9 -> Y9 is the inclusion.
In a similar way, it can be read off from the tables below that com¬

position with rj provides injective maps 7tn+1{8n) ® Z2 ->nn+%(8n) and

nn+8(8n) -> 7tn+9(Sn) in the stable range. Using n7(SOn) m Z, ns(SOn) m Z2,

and n9(SOn) yz Z2, this implies that J9: 7t9(SOn) ->^n+9($w) is a mono-
morphism.

We proceed to a partial description of the modulo 2 cohomology of the

spaces F7.

H*(Y0) is given by J. P. Serre in [9]. This resuit of J. P. Serre and the

Adem relations between the Steenrod squares are the essential tools in com-
puting H*(Yk; Z2) for k > 0. Since we stay in the stable range, the spectral

séquences of pk : Yk -> Yk_1 reduce to exact séquences

<ïï pÏ
<- jff"+« (Fk) <- Hn+* Yk) <- Hn+* Yk_x) <- .

It is therefore sufficient to détermine at each step the kernel and the image
of the transgression t Since the cohomology of Yk is independent of k up to

dimension n, we omit to mention the non-vanishing cohomology groups in

dimension ^ n. The direct sum of the subgroups of jET* Yk ; Z2) in dimen¬
sions > n is denoted H+ Yk).

The symbol qk stands for the composition pt o p2 o - -. o pk, and ek de-
notes the fondamental class of Hn+k(G, n + k; G).

I omit Fx and Y% whose cohomology is straightforward, but has to be

computed up to dimension n + 17 and n + 16 respectively. f?n+4(F2; Z2)

is generated by qt(8q*e0), and JEfw+5(r2; Z2) by a class u2 such that

rc + S), with t(c3) qt(Sç^e0) and T(/3e3) u2, where /3

is the Bookstbin operator associated with the séquence of coefficients
0 -*¦ Zt -*¦ Z19 ->¦ ZB -*¦ 0, and e'8 is the mod. 2 réduction of e3.
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H + Y3) has a basis consisting of

u3 in dimension n + 7, such that i*(u3) 8qls'9;
SqHu3), qï(Sq»e0); Sq*(u3), v3 such that »*(t>,) Sq*Pe3; 8q*(u3);
8q*(u3) ; Sq*(u3), Sq*Sqi(u3), qt(Sqe0) ; Sq*(u3), 8q*Sq*(u3), Sq*(v3);

Sq*(u3), Sq'SqHuJ, Sq*Sq*(u3), Sq*(v3),

F4= F6= Y3. (w4 », (>.)

F9 K(Z%, n + 6) with r(e6)
S+ F6) Aos a ôflwî's consisting of

ï£o);PÎPÎPÏ(v!>), «« such that <f(«,)
; nothing in dimension n-\- 11; #*

(^Î4«3)> Sq*(ut), v6 such that i*(v6)
qî(Sq«e0), Sq*(Ui); q*t(Sq"e0), p*tM(8q>v,),
(and possibly other classes of dimension n + 1

n + 1) with r(^ <Z*(<Sg%) and T(j8;fi7)
where /}' is the Bockstein operator of 0 -> Z2 -> Z32 -> Z16 -> 0, and ef7

is the réduction modulo 2 of e7.

H + F7) Aa« a basis consisting of

u1 in dimension n -\- 9, such that i*(w7) ^S^2(7),
*1uQ), v7 such that i*(v?) := Sq2fife7;ri.), (Sq*(v7) 0.)

F8 Z(Z2 + Z2, n + 8) with r(ej) uly t(<) p*(w6), where 4 and

eg are the two fundamental classes in Hn+S(F8 ; Z2).

H+(YB) has a basis consisting of

t ^8, v8, where t*(v8) >Sfg2(4) and t*(t;8) Sq*(e'6');

8q*(uB),8q*(vB),...

FQ Z(Z2 + Z2 + Z2, n + 9) with fundamental classes e9, cj> 4' which
are send by transgression on p* (v7), u8, v8 respectively.

H*+*(T9; Z%) & Z%(u9) where <*(u9) 8q*(e9)

We hâve seen that this statement implies Lemma 5.1, hence the proof is

complète.

Institute of Mathematical Sciences, New York University
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