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Chapter 1

The Language of co-Categories

A principal goal of algebraic topology is to understand topological spaces by means of 0001
algebraic and combinatorial invariants. Let us consider some elementary examples.

» To any topological space X, one can associate the set mo(X) of path components of X.
This is the quotient of X by an equivalence relation ~, where x ~ y if there exists a
continuous path p : [0,1] — X satisfying p(0) = = and p(1) = v.

o To any topological space X equipped with a base point x € X, one can associate the
fundamental group m (X, x). This is a group whose elements are homotopy classes of
continuous paths p : [0, 1] — X satisfying p(0) = z = p(1).

For many purposes, it is useful to combine the set 7y(X) and the fundamental groups
{m(X,z)}zex into a single mathematical object. To any topological space X, one can
associate an invariant w<;(X) called the fundamental groupoid of X. The fundamental
groupoid 7<1(X) is a category whose objects are the points of X, where a morphism from a
point € X to a point y € X is given by a homotopy class of continuous paths p : [0, 1] — X
satisfying p(0) = x and p(1) = y. The set of path components my(X) can then be recovered
as the set of isomorphism classes of objects of the category m<1(X), and each fundamental
group 71 (X, x) can be identified with the automorphism group of the point x as an object of
the category m<1(X). The formalism of category theory allows us to assemble information
about path components and fundamental groups into a single convenient package.

The fundamental groupoid 7<1(X) is a very important invariant of a topological space X,
but is far from being a complete invariant. In particular, it does not contain any information
about the higher homotopy groups {m,(X, z)},>2. We therefore ask the following:

Question 1.0.0.1. Let X be a topological space. Can one devise a “category-theoretic” |0002
invariant of X, in the spirit of the fundamental groupoid m<;(X), which contains information
about all the homotopy groups of X7
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We begin to address Question in by introducing the theory of simplicial sets.
A simplicial set S = S, is a collection of sets {.S),},>0, which are related by face operators
{d? : Sp — Sn—1}o<i<n and degeneracy operators {s}' : Sp, — Sn+1}o<i<n satisfying suitable
identities (see Definition and Proposition . Every topological space X
determines a simplicial set Sing,(X), called the singular simplicial set of X, with the
property that each Sing, (X) is the collection of continuous maps from the topological
n-simplex into X (Construction . Moreover, the homotopy groups of X can be
reconstructed from the simplicial set Sing,(X) by a simple combinatorial procedure (see
. Kan observed that this procedure can be applied more generally to any simplicial set
S satisfying the following Kan extension condition:

(¥) For 0 <1i <mn, every map og : A — S admits an extension o : A" — S.

Here A™ denotes a certain simplicial set called the standard n-simplex (Example ,
and A" denotes a certain simplicial subset of A™ called the ith horn (Construction [1.2.4.1)).
Simplicial sets satisfying condition () are called Kan complexes. Every simplicial set of
the form Sing,(X) is a Kan complex (Proposition [1.2.5.8)), and the converse is true up
to homotopy. More precisely, Milnor proved in [44] that the construction X — Sing,(X)
induces an equivalence from the (geometrically defined) homotopy theory of CW complexes
to the (combinatorially defined) homotopy theory of Kan complexes; we will discuss this
point in Chapter |3| (see Theorem .

The singular simplicial set Sing,(X) is a natural candidate for the sort of invariant
requested in Question it is a mathematical object of a purely combinatorial nature
which contains complete information about the homotopy groups of X and their interre-
lationship (from which we can even reconstruct X up to homotopy equivalence, provided
that X has the homotopy type of a CW complex). But in order to see that it qualifies as a
complete answer, we must address the following;:

Question 1.0.0.2. Let X be a topological space. To what extent does the simplicial set
Sing,(X) behave like a category? What is the relationship between Sing,(X) with the
fundamental groupoid of X?

Our answer to Question [[.0.0.2] begins with the observation that the theory of simplicial
sets is closely related to category theory. To every category C, one can associate a simplicial
set No(C), called the nerve of C (we will review the construction of Ne(C) in §1.3; see
Construction [1.3.1.1)). The construction C + Ng(C) is fully faithful (Proposition [1.3.3.1):
in particular, a category C is determined (up to canonical isomorphism) by the simplicial
set No(C). Throughout much of this book, we will abuse notation by not distinguishing
between a category C and its nerve No(C): that is, we will view a category as a special kind
of simplicial set. These special simplicial sets admit a simple characterization: according to
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Proposition [1.3.4.1] a simplicial set S has the form N(C) (for some category C) if and only
if it satisfies the following variant of the Kan extension condition (Proposition |1.3.4.1)):

(+") For 0 < i < n, every morphism o : A? — S admits a unique extension o : A™ — S.

The extension conditions (%) and () are closely related, but differ in two important
respects. The Kan extension condition requires that every map of simplicial sets o¢ : A} — S
admits an extension o : A™ — S. Condition (') requires the existence of an extension only
in the case 0 < i < n, but demands that the extension is unique. Neither of these conditions
implies the other: a simplicial set of the form N,(C) satisfies condition (x) if and only if the
category C is a groupoid (Proposition , and a simplicial set of the form Sing,(X)
satisfies condition (') if and only if every continuous path [0,1] — X is constant. However,
conditions (x) and (+') admit a common generalization. We will say that a simplicial set S
is an oo-category if it satisfies the following variant of (%) and (+'), known as the weak Kan
extension condition:

(") For 0 < i < n, every map og : A — S, admits an extension o : A™ — S,.

The theory of co-categories can be viewed as a simultaneous generalization of homotopy
theory and category theory. Every Kan complex is an co-category, and every category
C determines an oo-category (given by the nerve No(C)). In particular, the notion of co-
category answers the first part of Question simplicial sets of the form Sing,(X)
are almost never (the nerves of) categories, but are always oco-categories. At this point,
the reader might reasonably object that this is terminological legerdemain: to address the
spirit of Question we must demonstrate that simplicial sets of the form Sing,(X)
(or, more generally, all simplicial sets satisfying condition (x”)) really behave like categories.
We begin in by explaining how to extend various elementary category-theoretic ideas
to the setting of oo-categories. For example we can associate to each oco-category S = S, a
collection of objects (these are the elements of the set Sy), a collection of morphisms (these
are the elements of the set S7), and a composition law on morphisms. In particular, we show
that any oco-category S determines an ordinary category hS, called the homotopy category
of S (Proposition . The construction of the homotopy category allows us to answer
the second part of Question [I.0.0.2} for every topological space X, the singular simplicial
set Sing,(X) is an oo-category, whose homotopy category hSing,(X) is the fundamental
groupoid m<1(X) (see Example [1.4.5.5)).

Roughly speaking, the difference between an co-category S and its homotopy category
hS is that the former can contain nontrivial homotopy-theoretic information (encoded by
simplices of dimension n > 2, which can be loosely understood as “n-morphisms”) which is
lost upon passage to the homotopy category hS. We can summarize the situation informally
with the heuristic equation

{Categories} + {Homotopy Theory} = {oo-Categories},
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or more precisely with the diagram

{Categories} Ne, {oo-Categories} ) {Kan Complexes}
n Sing,
{Simplicial Sets} {Topological Spaces}

1.1 Simplicial Sets

0004 In this section we provide an introduction to the theory of simplicial sets, which will

play an essential role throughout this book. We begin with some preliminaries.

0009/ Notation 1.1.0.1. For every nonnegative integer n, we let [n] denote the linearly ordered
set {0<1<2<---<n—1<n}.

0004 Definition 1.1.0.2 (The Simplex Category). We define a category A as follows:
o The objects of A are linearly ordered sets of the form [n] for n > 0.

o A morphism from [m] to [n] in the category A is a function « : [m| — [n] which is
nondecreasing: that is, for each 0 < i < j < m, we have 0 < a(i) < a(j n.

We will refer to A as the simplex category.

000B| Remark 1.1.0.3. The category A is equivalent to the category of all nonempty finite linearly
ordered sets, with morphisms given by nondecreasing maps. In fact, we can say something
better: for every nonempty finite linearly ordered set I, there is a unique nondecreasing
bijection I ~ [n], for some n > 0.

000C| Definition 1.1.0.4. Let C be a category. A simplicial object of C is a functor A°® — C. A
cosimplicial object of C is a functor A — C.

000D Notation 1.1.0.5. We will often use an expression like Cy to denote a simplicial object of a
category C. In this case, we write C,, for the value of the functor C, on the object [n] € A.
Similarly, we often use an expression like C*® to indicate a cosimplicial object of C, and C™
for its value on [n] € A.

We will be primarily interested in the following special case of Definition [1.1.0.4

000H Definition 1.1.0.6. Let Set denote the category of sets. A simplicial set is a simplicial
object of Set: that is, a functor A°P — Set.
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Notation 1.1.0.7. We let Setpo = Fun(A°P, Set) denote the category of functors from A°P
to Set. We refer to Seta as the category of simplicial sets.

Remark 1.1.0.8. Since the category of sets has all (small) limits and colimits, the category
of simplicial sets also has all (small) limits and colimits. Moreover, these limits and colimits
are computed levelwise: for any functor

Se:C—Seta  (C€C)— Su(C),

and any nonnegative integer n, we have canonical bijections

(limg S(C))n =~ I (S,(€)) (i S(C))o = him(S0(C).

ceC ceC cec Ce

aQ

Example 1.1.0.9 (The Standard Simplex). Let n > 0 be an integer. We let A™ denote the
functor
AP — Set [m] — Homa ([m], [n]).

Then A" is a simplicial set, which we will refer to as the standard n-simplex. By convention,
we extend this construction to the case n = —1 by setting A~! = .

Example 1.1.0.10. The standard 0-simplex A is a final object of the category of simplicial
sets: that is, it carries each [n] € A°P to a set having a single element.

Definition 1.1.0.11. Let S, be a simplicial set and let n be a nonnegative integer. An
n-simplex of Se is an element of the set 5,,. We will also refer to elements of Sy as vertices
of Se, and to elements of S; as edges of S,. We often write v € S, to indicate that v is a
vertex of S,.

Proposition 1.1.0.12. Let n be a nonnegative integer and regard the identity map idp,) :
[n] — [n] as an n-simplex of A". For every simplicial set Se, evaluation on idy, induces a
bijection

HOIIlSe'EA (An, S.) — Sh f — f(ld[n])

Proof. This is a special case of Yoneda’s lemma. O

Notation 1.1.0.13. Let S, be a simplicial set and let ¢ € S,, be an n-simplex of C. By
virtue of Proposition [1.1.0.12] there is a unique morphism f, : A" — S, in the category
of simplicial sets which satisfies f,(id},)) = 0. In practice, we will often abuse notation by
identifying the n-simplex ¢ with the morphism f,.

Remark 1.1.0.14 (Simplicial Subsets). Let So be a simplicial set. Suppose that:

e For every integer n > 0, we are given a subset T;, C Sy,

0475

000J

0476

000M

04z7

0478

0479

000P
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o For every morphism « : [m] — [n] in the simplex category A, the associated map
S, — Sy, carries T,, into T},.

Then we the construction [n] — T;, determines another simplicial set T,. In this case, we
will say that T, is a simplicial subset of S and write Ty C S,.

Example 1.1.0.15. Let S, be a simplicial set and let v be a vertex of S,. Then v can be
identified with a map of simplicial sets A% — S,. This map is automatically a monomorphism
(note that A® has only a single n-simplex for every n > 0), whose image is a simplicial subset
of Se. It will often be convenient to denote this simplicial subset by {v}. For example, we
can identify vertices of the standard n-simplex A™ with integers ¢ satisfying 0 < i < n; every
such integer ¢ determines a simplicial subset {i} C A™ (whose k-simplices are the constant
maps [k] — [n] taking the value 7).

Our first goal in this section is to make Definition [I[.1.0.6) more concrete. To a first degree
of approximation, a simplicial set Se can be viewed as a collection of sets {5y, },>0. However,
this collection is endowed with additional structure, arising from morphisms in the simplex
category A. For example, let n be a positive integer. For each 0 < ¢ < n, there is a unique
order-preserving bijection [n — 1] ~ [n] \ {¢} C [n]. This induces a function d} : S, — Sp—_1
which we will refer to as a face operator for the simplicial set S, (Construction . For
n>2and 0 <i < j <n,itis not difficult to show that these face operators satisfy the
identity

di = (d}(0)) = dj=(d}(0)) (L.1)

(see Remark [1.1.1.7]). In §1.1.1} we prove a partial converse: a collection of sets {S,} and
face operators {d}' : S, — S,—_1} which satisfy , we can uniquely reconstruct the data
of a semisimplicial set: that is, a (contravariant) set-valued functor on the subcategory
Ajyj C A whose morphisms are strictly increasing functions (see Proposition .

To fully recover the structure of a simplicial set S,, it is not enough to remember

the face operators alone: one also needs to encode the data supplied by non-injective
maps in the simplex category A. For every pair of integers 0 < i < n, there is a unique
nondecreasing surjection [n+ 1] — [n] which is constant on the subset {i,7+1}. This induces
a function s : S,, = Sp41, which we refer to as the ith degeneracy operator (Construction
. In we show that a simplicial set Se can be reconstructed from its face and
degeneracy operators, which are required only to satisfy a handful of compatibility conditions
(Proposition [1.1.2.14)).

Let S, be a simplicial set. We say that an n-simplex o € S,, is degenerate if it belongs to
the image of some degeneracy operator s?_l : Sp—1 — Sy, (Definition . We say that
Se has dimension < k if every n-simplex of S, is degenerate for n > k (Definition .
Simplicial sets of low dimension are easy to describe:
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o A simplicial set of dimension < 0 is essentially just an ordinary set. More precisely, in
§1.1.5| we show that a simplicial set S, has dimension < 0 if and only if it is isomorphic
to a constant functor A°? — Set (Proposition [1.1.5.14)); in this case, we will say that

Se is discrete (Definition [1.1.5.10)).

o A simplicial set of dimension < 1 is essentially a directed graph. More precisely, in
§1.1.6| we construct a functor from the category of simplicial sets to the category of
directed graphs, and show that it is an equivalence when restricted to simplicial sets

of dimension < 1 (Proposition [1.1.6.9)).

Let S be an arbitrary simplicial set. For every integer k, there is a largest simplicial
subset of S which has dimension < k. We will denote this simplicial subset by sk (S) and
refer to it as the k-skeleton of S (Construction [1.1.4.1)). Allowing k to vary, we can realize S

as the union of an increasing sequence
0 =sk_1(S) C sko(S) C skq(S) Csko(S) C ---

which we refer to as the skeletal filtration. In we analyze the transition maps which
appear in the skeletal filtration. Our main result is that each of the inclusions sky_1(S) —
sk (.S) is a pushout of coproducts of the inclusion map OAF < AF (Proposition .
Here AF = skj_;(A*) denotes the boundary of the standard simplex A* (Construction
[1.1.4.10). Stated more informally, the k-skeleton sk;(S) can be obtained from the (k — 1)-
skeleton ski_1(S) by attaching cells of dimension k.

1.1.1 Face Operators

For some applications, it is useful to work with variant of Definition

Notation 1.1.1.1. Let Aj,; denote the category whose objects are linearly ordered sets of
the form [n] ={0 <1 < --- < n} (where n is a nonnegative integer) and whose morphisms
are strictly increasing functions « : [m] < [n].

Definition 1.1.1.2. Let C be a category. A semisimplicial object of C is a functor A — C.

inj

We typically use the notation C4 to indicate a semisimplicial object of C, whose value on an
object [n] € AR we denote by Cy,. A semisimplicial set is a semisimplicial object of the

category of sets.

Remark 1.1.1.3. The category Aj,; of Notation [1.1.1.1| can be regarded as a (non-full)
subcategory of the simplex category A of Definition [I.1.0.2] Consequently, any simplicial
object C4 of a category C has an underlying semisimplicial object, given by the composition

AP < AP o0

inj
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We will often abuse notation by identifying a simplicial object of C with its underlying
semisimplicial object.

The goal of this section is to make Definition [1.1.1.2| more concrete.

Construction 1.1.1.4 (Face Operators). Let n be a positive integer. For 0 < ¢ < n, we
let 8¢ : [n — 1] — [n] denote the unique strictly increasing function whose image does not
contain the element 4, given concretely by the formula

. j if j <
%O)—{

j+1 i j >

If Co is a (semi)simplicial object of a category C, then we can evaluate Co on the
morphism 5; to obtain a morphism from C,, to C,_1. We will denote this morphism by
di : Cp, — Cp—1 and refer to it as the ith face operator.

Example 1.1.1.5. Let n be a positive integer and let S, be a simplicial set. For 0 < i < n,
the face operator d}' of Construction [1.1.1.4] carries each n-simplex o of S, to an (n — 1)-
simplex d’ (o), which we will refer to as the ith face of o.

Example 1.1.1.6. Let S, be a simplicial set and let e € S, be an edge of S,. Then s = d%(e)
is a vertex of S, which we refer to as the source of e, and t = d(l)(e) is a vertex of Se which
we refer to as the target of e. We will sometimes write e : © — y to indicate that e is an
edge of S, having source vertex x and target vertex y.

Remark 1.1.1.7 (Relations Among Face Operators). Let n > 2 be an integer. For every
pair of integers 0 < i < 5 < n, the diagram of linearly ordered sets

n—2 — 1]
51 o
n—1]— o]

is commutative: both the clockwise and counterclockwise compositions can be identified
with the unique order-preserving bijection [n — 2] ~ [n] \ {i < j}. It follows that, if C, is
a semisimplicial object of a category C, then the face operators of Cy satisfy the following
condition:

(%) For 0 <i < j <n, we have d?‘l odj = d?__ll od? (as morphisms from C), to Cj,_2).
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Example 1.1.1.8. Let S, be a simplicial set and let ¢ be a 2-simplex of S,. Then ¢ has 04ZH
three faces: the edges f = d3(0), g = d3(0), and h = d?(o). In this case, Remark [1.1.1.7
asserts the following:

o The edges f and h have the same source vertex x € S,.
e The edges g and h have the same target vertex z € S,.
o The target of f and the source of g are the same vertex y € S,.

These relationships can be encoded visually in the diagram

T zZ.

Remark [I.1.1.7] admits the following converse:

Proposition 1.1.1.9. Let C be a category and let {Cp}n>0 be a sequence of objects of C. 04FQ
Then a system of morphisms {d} : Cy, = Cp_1}o<i<nn>0 arise as the face operators of a
semisimplicial object Co of C if and only if they satisfy condition (x) of Remark|1.1.1.7.

Moreover, if this condition is satisfied, then Co is uniquely determined.

Proof. Let Kinj denote the category which is freely generated by a collection of objects
{[n]}n>0 and a collection of morphisms {d}, : [n — 1] = [n]}n>0,0<i<n- Let Ajy; denote the
quotient of Aj,; obtained by imposing the relation

0 odl_y = dLod} (1.2) 04FR
for every integer n > 2 and every pair 0 < i < j < n. Using Remark we see that
there is a unique functor Fi; : Kinj — Ajy; which carries each object [n] € Kinj to itself, and
each generating morphism 0’ to the monomorphism &7 : [n—1] < [n] of Construction
To prove Proposition [[.T.1.9} it will suffice to show that the functor Fi,j is an isomorphism
of categories.

Fix integers 0 < m < n, and set b = n —m — 1. In the category Kinj, every morphism
3 : [m] — [n] admits a unique factorization 8 = 60 o gf}_l 0---0 giffb, where the superscripts
are nonnegative integers satisfying 0 < i, <n —a for 0 < a <b. Let us say that g is in
standard form if, in addition, the integers i, satisfy the inequalities iy > i1 > i9 > - -+ > 1.
Note that, by repeatedly applying the relation , we can convert any morphism of Zinj
to a morphism which is in standard form. More precisely, every morphism 3 : [m] — [n] in

Ajy,j can be lifted to a morphism § : [m] — [n] which is in standard form.
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By construction, the functor Fj,; is bijective on objects. To complete the proof, it
will suffice to show that for every morphism « : [m] < [n], there is a unique morphism
B:[m] — [n] in Ay satisfying Fipj(8) = a.. By virtue of the preceding discussion, it will
suffice to show that o can be lifted uniquely to a morphism 3 : [m] — [n] in the category Ay;
which is in standard form. We now observe that g = gzo o 5;171 0---0 gff_b is characterized by
the requirement that {i, < ip—1 < --- < ip} C [n] is the complement of the image of a. [

1.1.2 Degeneracy Operators

Let S, be a simplicial set. By virtue of Proposition [I.1.1.9] the underlying semisimplicial
set is determined by the sequence of sets {5y },>0 together with the face operators {d} :
Sp — Sn—1}o<i<n. To recover S, as a simplicial set, we need more information.

Construction 1.1.2.1 (Degeneracy Operators). For every pair of integers 0 < i < n we let
i

On

: [n + 1] — [n] denote the nondecreasing function given by the formula

o) =7 HIET
" j—1 ifj>i.

If C, is a simplicial object of a category C, then we can evaluate Cy on the morphism o? to
obtain a morphism from C), to Cy4i. We will denote this map by s} : C,, = Cp41 and refer
to it as the ¢th degeneracy operator.

Notation 1.1.2.2. Let S, be a simplicial set. Then the degeneracy operator s§ : Sy — Sy
carries each vertex x to an edge of S, which we will denote by id,. Note that the vertex z is
both the source and target of the edge id, (see Exercise [1.1.2.7)).

Definition 1.1.2.3. Let S, be a simplicial set. We say that an n-simplex o of S, is
?_1 : Sp—1 — S, for some

integer 0 < ¢ < n. We say that o is nondegenerate if it is not degenerate. In particular,

degenerate if it belongs to the image of the degeneracy operator s

every 0-simplex of S, is nondegenerate.

Example 1.1.2.4 (Degenerate Edges). Let S, be a simplicial set and let e be an edge of
Se. Then e is degenerate if and only if it has the form id,, for some vertex = € S,. If this
condition is satisfied, then the vertex x is uniquely determined (since it is both the source
and target of the edge e).

Remark 1.1.2.5. Let f : S¢ — To be a map of simplicial sets. If ¢ is a degenerate n-simplex
of S,, then f(o) is a degenerate n-simplex of T,. The converse holds if f is a monomorphism
of simplicial sets (for example, if S, is a simplicial subset of Ty).
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Remark 1.1.2.6. Let f :.S¢ — T, be a morphism of simplicial sets. If every nondegenerate 04ZN
simplex of T, belongs to the image of f, then f is an epimorphism: that is, it induces a
surjection S, —» T, for each n > 0.

Exercise 1.1.2.7 (Relations Between Face and Degeneracy Operators). Let Co be a 04FV
simplicial object of a category C. Show that the face and degeneracy operators of C satisfy
the following relations:

(+) For 0 <i<nand 0<j<n+1, we have an equality

silodt if j <
di o st = {ide, ifj=iorj=i+1

st hodt | ifj>i+1

(2

(as morphisms from C,, to Cy,).

Example 1.1.2.8 (Degenerate 2-Simplices). Let S, be a simplicial set and let o be a 04ZP
2-simplex of S,. We say that o is left-degenerate if it has the form sj(e), for some edge
e:x — y of Se. In this case, the faces of o are depicted in the diagram

We will say that o is right-degenerate if it has the form si(e), for some edge e : * — y of Ss;
in this case, the faces of o are depicted in the diagram

Y
/ idy
e
Note that o is degenerate if and only if it is either left-degenerate or right-degenerate.

Exercise 1.1.2.9. Let S, be a simplicial set and let o be a 2-simplex of S,. Show that o is 04ZQ
both left-degenerate and right-degenerate if and only if it is constant: that is, it factors as a
composition A? — A® < S, (for a more general statement, see Proposition [1.1.3.8)).

Proposition 1.1.2.10. Let S, be a simplicial set and let T € Sy, be an n-simplex of Se for 0011
some n > 0, which we will identify with a map of simplicial sets T : A™ — So. The following
conditions are equivalent:

(1) The simplex T belongs to the image of the degeneracy operator s?_l : Sp—1 — Sy for

some 0 <1i <n (see Construction|1.1.2.1]).
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(2) The map T factors as a composition A" i) A1 S, where f corresponds to a
surjective map of linearly ordered sets [n] — [n — 1].

(3) The map T factors as a composition A" i> A™ — S,, where m < n and f corresponds
to a surjective map of linearly ordered sets [n] — [m].

(4) The map T factors as a composition A™ — A™ — S, where m < n.

(5) The map T factors as a composition A" T A™ — S,, where 7' is not injective on

vertices.

Proof. The implications (1) < (2) = (3) = (4) = (5) are immediate. We will complete
the proof by showing that (5) implies (1). Assume that 7 factors as a composition A" -,

A™ g/—> Se, where 7/ is not injective on vertices. Then there exists some integer 0 < i < n
satisfying 7/(i) = 7/(i + 1). It follows that 7/ factors through the map of_; : A" — A"~! of
Construction [1.1.2.1} so that 7 belongs to the image of the degeneracy operator 8?_1. O
Remark 1.1.2.11 (Relations Among Degeneracy Operators). For every triple of integers
0 <i < j < n, the diagram of linearly ordered sets

i

n+ 2] [n+1]
41— )

is commutative. It follows that, if C, is a simplicial object of a category C, then the
degeneracy operators of C, satisfy the following condition:

1 n+1

n __ n 3
os? = s} osf (as morphisms from C,

(+") For 0 <i < j < n, we have an equality s;” f

to C”H—Q)'

We close this section by showing that a simplicial object Cy of a category C can be
recovered from the sequence of objects {Cy,}n>0, together with the face and degeneracy
operators given by Constructions [1.1.1.4] and [1.1.2.1] (Proposition [I.1.2.14)). We begin by
proving a simpler result, which involves only the degeneracy operators.

Notation 1.1.2.12. Let Ay denote the category whose objects are the linearly ordered
sets [n] = {0 <1< --- <n} for n >0, and whose morphisms are nondecreasing surjective
functions [m]| — [n].
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Proposition 1.1.2.13. Let C be a category and let {Cp}n>0 be a sequence of objects of
C. Then a system of morphisms {s}' : Cp, = Cp41}o<i<n can be obtained from a functor

C, : Aggrj — C if and only if they satisfy condition (¥") of Remark|1.1.2.11| In this case,
the functor Cy is uniquely determined.

Proof. We proceed as in the proof of Proposition [1.1.1.9] Let Xsurj denote the category
which is freely generated by a collection of objects {[n]},>0 and a collection of morphisms
{68 : [n+ 1] = [n]}o<i<n. Let Agyj denote the quotient of Agyj obtained by imposing the
relation

~j o~ =i ~j+l
07, 00,41 = 0,005, (1.3)

for every triple of integers 0 < i < j < n. Using Remark we see that there is a
unique functor Fyuyj : Aguj — Agurj which carries each object [n] € Agyyj to itself, and each
generating morphism &/, to the epimorphism o? : [n + 1] — [n] of Construction To
prove Proposition [[.T.2.13] it will suffice to show that the functor Fyu;j is an isomorphism of
categories.

Fix integers 0 < m < n, and set b =n —m + 1. In the category Ksurj, every morphism
A where the superscripts

B : [n] = [m] admits a unique factorization 8 = 5% 05"} L1000,

are nonnegative integers satisfying 0 < i, < m+a for 0 < a <b. Let us say that g is in

standard form if, in addition, the integers i, satisfy the inequalities ig < i1 < iy < -+ < 4.

Note that, by repeatedly applying the relation , we can convert any morphism of Ksurj
to a morphism which is in standard form. More precisely, every morphism 3 : [n] — [m] in
Agyrj can be lifted to a morphism 3 : [m] — [n] which is in standard form.

By construction, the functor Fi,; is bijective on objects. To complete the proof, it will
suffice to show that for every morphism « : [n] — [m] in Agyyj, there is a unique morphism
B [n] = [m] in Agyj satisfying Fui(8) = a. By virtue of the preceding discussion, it
will suffice to show that a can be lifted uniquely to a morphism 5 : [n] — [m] in the

category Agyrj which is in standard form. We now observe that 3 = 70 o Oy 00 fopid

m+b
is characterized by the requirement that {ip < i1 < --- < ip} is the collection of integers
0 < j < n satisfying a(j) = a(j + 1). O

Proposition 1.1.2.14. Let C be a category containing a sequence of objects {Cp}n>0. Then
morphisms
{d}" : Cp = Cn—ito<i<nmn>o {81 Cn = Cpti}o<i<n

are the face and degeneracy operators for a simplicial object Co of C if and only if they

satisfy condition (%) of Remark condition (") of Exercise and condition (x")
of Remark[1.1.2.11. In this case, the simplicial object C, is uniquely determined.

Proof. We proceed as in the proofs of Propositions |1.1.1.9| and |1.1.2.13l Let A denote
the category which is freely generated by a collection of objects {[n]}n>0 together with

O4FT

04FU
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morphisms {0 : [n — 1] — [n]}ns00<i<n and {G% : [n 4+ 1] = [n]}o<i<n. Let A denote the
quotient of A obtained by imposing the relations and , together with the following:
ohogl Tt ifi<
5 obhy = {idy ifi=jori=j+1 (1.4)
oitog! | ifi>j41.
for every triple of integers 0 < 4,j < n. There is a unique functor F : A — A which carries
each object [n] € A to itself and satisfies F'(8%) = 6% and F(5%,) = o'.. To prove Proposition
it will suffice to show that the functor F' is an isomorphism of categories.

Let Kinj and Ksurj be the categories appearing in the proofs of Proposition and
Proposition respectively. Let us identify Kinj and Ksurj with (non-full) subcategories
of A. We will say that a morphism 3 : [m] — [n] of A is weakly standard if it factors as
a composition [m)] LN [k] Pini, [n], where fin; belongs to Kinj and [surj belongs to Ksurj.
In this case, the morphisms fSinj and By are uniquely determined. We will say that 3 is
in standard form if it is weakly standard and, in addition, the morphisms Biy; and Beur

are in standard form (as in the proofs of Propositions|1.1.1.9[and [1.1.2.13]). Note that, by

repeatedly applying the relation , we can convert any morphism of A into a morphism
(£ which is weakly standard. Using the relations and , we can further arrange that
(3 is in standard form. It follows that every morphism 3 : [m] — [n] in A can be lifted to a
morphism 3 : [m] — [n] of A which is in standard form.

By construction, the functor F' is bijective on objects. To complete the proof, it will
suffice to show that for every morphism « : [m| — [n] in A, there is a unique morphism
B : [m] — [n] in A satisfying F(3) = a. Let F denote the composite functor A — A LA
By virtue of the preceding discussion, it will suffice to show that there is a unique morphism
B :[m] — [n] in A which is in standard form and satisfies F(3) = o. In the simplex category
A, the morphism o factors uniquely as a composition [m] —% [k] 2 [n], where Qinj 18
an injection and gy is a surjection. If B : [m] — [n] is a weakly standard morphism of A,
then the identity F(8) = « holds if and only if F(Binj) = ainj and F(Beurj) = surj- We are
therefore reduced to proving that ainj and ogyrj can be lifted uniquely to morphisms of Kinj
and Ksurj which are in standard form, which was established in the proofs of Proposition
1.1.1.9] and Proposition [1.1.2.13 O

1.1.3 Dimensions of Simplicial Sets

We now introduce an important complexity measure for simplicial sets.

Definition 1.1.3.1. Let S be a simplicial set and let k& be an integer. We will say that S
has dimension < k if every n-simplex of S is degenerate for n > k. If £ > 0, we say that S
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has dimension k if it has dimension < k but does not have dimension < k — 1. We say that
S is finite-dimensional if it has dimension < k for some k > 0.

Example 1.1.3.2. For each n > 0, the standard simplex A™ has dimension n.

Remark 1.1.3.3. Let S be the coproduct of a collection of simplicial sets {S(a)}qca. Then
S has dimension < k if and only if each S(a) has dimension < k.

Remark 1.1.3.4. Let f:S — T be an epimorphism of simplicial sets. If S has dimension
< n, then T has dimension < n.

Remark 1.1.3.5. Let k be an integer. If a simplicial set S has dimension < k, then every
simplicial subset of S has dimension < k (see Remark [1.1.2.5)).

04ZT

04ZU

04ZV

04ZW

Proposition 1.1.3.6. Let S~ and ST be simplicial sets having dimensions < k_ and < k,, 012R

respectively. Then the product S~ x ST has dimension < k_ + k.

Proof. Let 0 = (0_,04) be a nondegenerate n-simplex of the product S~ x S*. Using
Proposition [1.1.3.8] we see that o_ and o4 admit factorizations

A" 2 A Ty g A 25 A T gt

where 7_ and 7 are nondegenerate, so that n_ < k_ and ny < k. It follows that o factors

as a composition
a_,o T XT. _
AP 20Dy Ane o Ane TXTE o gt

The nondegeneracy of o guarantees that the map of partially ordered sets [n] M

[n_] X [n4] is a monomorphism, so that n <n_ +ny < k_ + ky. O

Exercise 1.1.3.7. Show that the inequality of Proposition [1.1.3.6| is sharp. That is, if 0128

S~ and ST are nonempty simplicial sets of dimensions k_ and k., respectively, then the
product S~ x ST has dimension k_ + k.

We next show that, if .S is a simplicial set of dimension < k, then it can be recovered from
its n-simplices for n < k (Proposition [1.1.3.11)). Our proof will make use of the following:

Proposition 1.1.3.8. Let o : A™ — S be a morphism of simplicial sets. Then o can be
factored as a composition
A" S A LS

where a corresponds to a surjective map of linearly ordered sets [n] — [m] and T is a
nondegenerate m-simplex of S. Moreover, this factorization is unique.

0014
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Proof. Let m be the smallest nonnegative integer for which o can be factored as a composition
A" & A™ 5 S Tt follows from the minimality of m that o must induce a surjection of
linearly ordered sets [n] — [m] (otherwise, we could replace [m] by the image of o) and that
the m-simplex 7 is nondegenerate. This proves the existence of the desired factorization.

We now establish uniqueness. Suppose we are given another factorization of ¢ as a
composition A" NNy S , and assume that o’ induces a surjection [n] — [m']. We
first claim that, for any pair of integers 0 < i < j < n satisfying o/(i) = &/(j), we also have
a(i) = a(j). Assume otherwise. Then a admits a section § : A™ — A™ whose images
include 7 and j. We then have

T=ToaofB=co0f=70dop.

Our assumption that /(i) = o/(j) guarantees that the map (a/ o 8) : A™ — A™ is not
injective on vertices, contradicting our assumption that 7 is nondegenerate.
It follows from the preceding argument that o factors uniquely as a composition A" *»
a//

A™ 2 A" for some morphism o : A™ — A™ (which is also surjective on vertices). Let
B’ be a section of o/, and note that we have

T'=70dof =copf =70a0f =70d"0d’ 0 =10d".

Consequently, if the simplex 7/ is nondegenerate, then o must also be injective on vertices.
It follows that m’ = m and «” is the identity map, so that « = o’ and 7 = 7. O

Construction 1.1.3.9 (The Category of Simplices). Let Se be a simplicial set. We define
a category Ag as follows:

o The objects of Ag are pairs ([n], o), where [n] is an object of A and o is an n-simplex
of S.

o A morphism from ([n],o) to ([n],0’) in the category Ag is a nondecreasing function
f i [n] = [n/] with the property that the induced map S, — S, carries ¢’ to o.

We will refer to Ag as the category of simplices of S. If k is an integer, we let Ag < denote
the full subcategory of Ag spanned by those objects ([n], o) satisfying n < k.

Remark 1.1.3.10. Passage from a simplicial set S to the category of simplices Ag is a
special case of the category of elements construction (see Variant [5.2.6.2), which we will
return to in §5.2.6|

Proposition 1.1.3.11. Let k be an integer and let S be a simplicial set. The following
conditions are equivalent:

(1) The simplicial set S has dimension < k.
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(2) The simplicial set S can be realized as the colimit of a diagram lim |~ S(J), where each
S(J) has dimension < k.

(3) The simplicial set S can be realized as the colimit of a diagram hﬂl}ej S(J), where each
S(J) is a standard simplezx of dimension < k.

(4) The tautological map
lim A" — S
([n},U)GAsygk

is an isomorphism of simplicial sets.

Proof. The implication (4) = (3) is trivial, the implication (3) = (2) follows from Example
and the implication (2) = (1) follows from Remarks [1.1.3.3| and [1.1.3.4] It will
therefore suffice to show that (1) implies (4). Assume that S has dimension < k, and let T°
denote the colimit h_n>q ( A"™; we wish to show that the tautological map f: T — S

[n],0)€As <k
is an isomorphism of simplicial sets. Since S has dimension < k, it follows immediately from

the construction that the image of f contains every nondegenerate simplex of S. Applying
Remark we deduce that f is an epimorphism of simplicial sets. We will complete the
proof by showing that f is injective. Let 7 and 7’ be ¢-simplices of T satisfying f(7) = f(7');
we wish to show that 7 = 7/. Choose an object ([n],0) € Ag <) and a lift of 7 to an ¢-simplex
7 of A", which we can identify with a nondecreasing function from [¢] to [n]. Note that 7

factors uniquely as a composition [¢] = [m] LN [n], where « is surjective and f is injective.

Replacing n by m and o by the associated ¢-simplex of S, we can reduce to the case where
T : [{] — [n] is a surjection. Using Proposition |1.1.3.8] we can factor ¢ as a composition

A" L AP L g

where 7 is surjective and p is a nondegerate p-simplex of S,. Replacing ([n],o) by ([p], p)
and 7 by the composition v o 7, we can further assume that ¢ is a nondegenerate n-simplex
of S,. Similarly, we may assume that 7 lifts to an m-simplex 7 of A™, for some object
([n'],0") of Ag <k where ¢’ is nondegenerate and 7’ : [m] — [n/] is surjective. We then have
an equality

coT=f(r)=f(r')=0 o7

The uniqueness assertion of Proposition [1.1.3.8| then implies that ([n],o) = ([n],¢’) and
7 =7 so that 7 and 7/ are the same m-simplex of T O

Remark 1.1.3.12. Proposition |1.1.3.11] can be reformulated using the language of Kan
extensions (see Definition [7.3.0.1)): it asserts that a simplicial set S : A°® — Set has
dimension < k if and only if it is left Kan extended from the full subcategory of A°P spanned
by the objects {[n]},<k-

04ZY
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Remark 1.1.3.13. It follows from the proof of Proposition [1.1.3.11| that every simplicial
set .S can be recovered as the colimit hgq (nlo)eAs A™. In fact, this is a general feature of
presheaf categories: see Theorem [8.4.2.1] for an oco-categorical counterpart.

Corollary 1.1.3.14. Let k be an integer and let fo : Se — 1o be a morphism between
simplicial sets having dimension < k. Suppose that, for every nonnegative integer n < k, the
map of sets frn 1 Sn — Ty is a bijection. Then f is an isomorphism of simplicial sets.

1.1.4 The Skeletal Filtration

Roughly speaking, one can think of the simplicial sets A™ of Example[1.1.0.9]as elementary
building blocks out of which more complicated simplicial sets can be constructed. In this
section, we make this idea more precise by introducing the skeletal filtration of a simplicial
set. This filtration allows us to write every simplicial set S as the union of an increasing
sequence of simplicial subsets

sko(S) C Sk1<5) - SkQ(S) - sk3(S) C--,

where each sk, (5) is obtained from sk,_1(S) by attaching copies of A" (see Proposition

1.1.4.12| below for a precise statement).

Construction 1.1.4.1. Let S = S, be a simplicial set and let k be an integer. For every
integer n, we let sk (.5),, denote the subset of S,, consisting of those n-simplices o : A™ — §
which satisfy the following condition:

() In the category of simplicial sets, o admits a factorizaton
A" - A" 5 S
where m < k.

It follows immediately from the definitions that the collection of subsets {sk(S)n C Sy }n>0
is stable under the face and degeneracy operators for the simplicial set S,, and therefore
defines a simplicial subset sk (S) C S. We will refer to ski(S) as the k-skeleton of S.

Example 1.1.4.2. For every simplicial set S, the k-skeleton sky(S) is empty for k& < 0.

Remark 1.1.4.3. Let m and n be integers with m < n. Then, for every simplicial set 5,
the m-skeleton sk, (.S) is contained in the n-skeleton sk, ().

Remark 1.1.4.4. Let S be a simplicial set and let k be an integer. If n < k, then sky(5)
contains every n-simplex of S. In particular, the union |J sk (.5) is equal to S.

Remark 1.1.4.5. Let S be a simplicial set and let o be a nondegenerate n-simplex of S.
Then o is contained in the k-skeleton sk (.S) if and only if n < k (see Proposition [1.1.2.10]).
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Proposition 1.1.4.6. Let S be a simplicial set and let k be an integer. Then:
(a) The simplicial set sky(S) has dimension < k.

(b) For every simplicial set T of dimension < k, composition with the inclusion map
sk (S) — S induces a bijection

Homgey , (7', skg(S)) — Homget, (T',.5).
In other words, the image of any map T — S is contained in sk (S).

Proof. Assertion (a) follows from Remark To prove (b), suppose that f: T — S is a
map of simplicial sets, where T has dimension < k. We wish to show that f carries every
n-simplex o of T' to an n-simplex of sk (S). Using Proposition we can reduce to the
case where o is a nondegenerate n-simplex of 1. In this case, our assumption that T has
dimension < k guarantees that n < k, so that f(o) belongs to sk (.S) by virtue of Remark

L14.4 O

Corollary 1.1.4.7. Let S be a simplicial set. For every integer k, the k-skeleton sky(S) is
the largest simplicial subset of S of dimension < k.

Corollary 1.1.4.8. Let k be an integer, let S be a simplicial set, and let Aék denote
the category of simplices of S having dimension < k (see Construction . Then the
tautological map
li_n)) A" — S
(In].o)eag"

is a monomorphism, whose image is the k-skeleton ski(S) C S.

Proof. By virtue of Remark |1.1.4.4] replacing S by the k-skeleton sk (.S) does not change
the category A%k. We may therefore assume without loss of generality that S has dimension
< k, in which case the desired result follows from Proposition [1.1.3.11 O

Corollary 1.1.4.9. For every integer k, the skeleton functor sky : Seta — Seta preserves
small colimits.

Proof. Let S : J — Seta be a diagram of simplicial sets; we wish to show that the comparison
map
0 : lim skr(S(J)) — skk(li_rrg S(J))
Jeg Jeg

is an isomorphism of simplicial sets. Using Propositions [1.1.4.6] and [1.1.3.11} we see that

the source and target of 6 are simplicial sets of dimension < k. It will therefore suffice to
show that 6 induces a bijection on n-simplices for n < k (Corollary [1.1.3.14)), which follows

immediately from Remark |1.1.4.4] (and Remark [1.1.0.8]). O
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Construction 1.1.4.10 (The Boundary of A™). Let n > 0 be an integer and let A"
denote the standard n-simplex (Example [1.1.0.9). We let JA™ denote the (n — 1)-skeleton
of A™. We will refer to 0A™ as the boundary of A™. More explicitly, the simplicial set
(OA™) : A°P — Set is defined by the formula

(0A™)([m]) = {& € Homa ([m], [n]) : « is not surjective}.
Example 1.1.4.11. The simplicial set A is empty.

Let S be a simplicial set. For each k > 0, we let S,‘gd denote the collection of all
nondegenerate k-simplices of S. Every element o € S,‘Sd determines a map of simplicial sets
AF — sk, (S). Since the boundary AAF C AF has dimension < k — 1, this map carries A*

into the (k — 1)-skeleton skj_1(S) (Proposition [1.1.4.6)).

Proposition 1.1.4.12. Let S be a simplicial set and let k > 0. Then the construction
outlined above determines a pushout square

I 0AF I A*

oespd ocespd

skp_1(S) ————ski(9)
in the category Seta of simplicial sets.
Proof. Unwinding the definitions, we must prove the following:

(%) Let 7 be an n-simplex of ski(S) which is not contained in sky_1(S). Then 7 factors
uniquely as a composition
A" 5 AR5 8,
where ¢ is a nondegenerate simplex of S and « does not factor through the boundary
AAF (in other words, a is surjective on vertices).

Proposition implies that any n-simplex of S admits a unique factorization A" %
A™ 2 S| where « is surjective on vertices and o is nondegenerate. Our assumption that 7
belongs to the ski(S) guarantees that m < k, and our assumption that 7 does not belong to
sk_1(S) guarantees that m > k. O

We close this section by analyzing the simplicial sets A™ of Construction|1.1.4.10/in a bit
more detail. Note that, for every pair of integers 0 < k < n, the morphism 6% : A"~1 — A"
of Construction |1.1.1.4] factors through the boundary dA™.
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Proposition 1.1.4.13. Let n be a positive integer. For every simplicial s