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Abstract
We prove that for any prime p and height n ≥ 1, the telescopic Picard group Pic(SpT (n))

contains a subgroup of the form Zp × Z/ap(pn − 1), where ap = 1 if p = 2 and ap = 2 if p
is odd. Using Kummer theory, we obtain an (F×

pn ⋊ Z/n)-Galois extension of ST (n), obtaining
the first example of a lift of a non-Abelian Galois extension of the K(n)-local sphere to the
telescopic world, at arbitrary positive height and prime.

Our proof proceeds by setting up a higher categorical framework for the periodicity theorem,
utilizing the symmetries of this framework to construct Picard elements.

Figure 1: Patrick Stewart and Margot Rose in Star Trek: The Next Generation (1987)
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1 Introduction

Throughout this paper, we use the term category to mean an (∞, 1)-category. Similarly we use the
term n-category to mean an (∞, n)-category.

1.1 Background and overview

Chromatic homotopy theory

Chromatic homotopy theory is the study of the category Sp(p) of p-local spectra using the “height
filtration” inherent in the category of compact objects. Two main approaches are taken for the
extension of the filtration from compacts to the entire category, resulting in associated graded
categories known as “monochromatic layers”.
The first approach filters the category according to its relationship with formal groups, using the
Lubin–Tate spectrum or Morava E-theory, which pertains to formal group deformations. This
yields the categories SpK(n) of K(n)-local spectra for the monochromatic layers. This approach
is more amenable to computations due to its correspondence with algebraic geometry, Dieudonné
modules and Galois descent.
The second strategy, known as the telescopic approach, extends the filtration by colimits from the
category of compact spectra to the category of all spectra. The monochromatic layers in this case
are the categories SpT (n) of T (n)-local spectra.
The two approaches are related by the relation SpK(n) ⊆ SpT (n), which is known to be an equivalence
for n = 0, 1 as shown by Miller [Mil81] and Mahowald [Mah81]. However, a recent work of Burkland,
Hahn, Levy and Schlank [BHLS23] proved that the inclusion is strict for n ≥ 2 and any prime.

The Picard group

The Picard group of a symmetric monoidal category C is the group of ⊗-invertible elements in
C up to isomorphism. This invariant has been extensively studied, particularly in the context of
modules over a ring and, more generally, quasicoherent sheaves over a scheme.
The K(n)-local Picard group Pic(SpK(n)) has been the subject of extensive research, initiated by
Hopkins–Mahowald–Sadofsky [HMS94], and continuing through numerous contributions, includ-
ing [GHMR14, Hea15, Pst18, BBG+22, Mor23, BLL+24] leading to its complete classification for
sufficiently large primes and classification up to torsion for all primes in [BSSW24]. In particular,
Pic(SpK(n)) admits a subgroup of the form

Zn = Zn,p := lim
k

Z/(pk(2pn − 2)),

topologically generated by ΣSK(n). Note that Zn
∼= Zp ×Z/(ap(pn − 1)) where ap = 1 if p = 2 and

ap = 2 if p is odd. Moreover, when n ≥ 2, Pic(SpK(n)) is of rank 2 over Zp.
In contrast, much less is known about Pic(SpT (n)). In [CSY21b], Carmeli, Schlank and Yanovski
show that Pic(SpT (n)) contains a subgroup isomorphic to Z/(p − 1). Our first main theorem is the
following extension:

Theorem A (Theorem 5.2.1). The group Pic(SpT (n)) admits a subgroup isomorphic to Zn, topo-
logically generated by ΣST (n).
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In particular, it lifts the corresponding subgroup of Pic(SpK(n)).

Galois theory

The interplay between formal group theory and SpK(n) leads to the construction of the Lubin–
Tate commutative ring spectrum En = En(Fp) ([GH04, Lur18]) which is a faithful and relatively
computable multiplicative (co)homology theory for K(n)-local spectra.
Conceptually, by the works of [DH04], [Rog05], [BR08], and [Mat16], En can be viewed as the
Galois-closure of the K(n)-local sphere SK(n) in SpK(n), with Galois group the Morava stabilizer
group Gn = Aut(Γ)⋊Ẑ, where Γ is a formal group law of height n over Fp. Using [Mat16, Section 9],
the G-Galois extensions of SK(n) are completely classified by continuous homomorphisms Gn ! G.
This naturally raises the question of lifing Galois extensions from the K(n)-local category to the
T (n)-loca category. Carmeli, Schlank and Yanovski [CSY21b] have shown shown that any Abelian
Galois extension of SK(n) lifts. We present the first lift of a non-Abelian Galois extension from
SK(n) to ST (n): Aut(Γ) can be explicitly described as the group of units O×

n of the order

On = W(Fpn) ⟨S|Sn = p, Sw = wφS ∀w ∈ Wn⟩ ,

where φ is a lift of the Frobenius to W(Fpn). The map sending S to 0 provides a map π : O×
n !! F×

pn .
Let Yn be the pro-Galois extension classified by the group homomorphism

Gn = O×
n ⋊ Ẑ (det ⊕π)⋊id−−−−−−−−!! (Z×

p ⊕F×
p
F×

pn) ⋊ Ẑ,

where Ẑ acts on Z×
p ⊕F×

p
F×

pn via conjugation by S, i.e. it acts trivially on Zp and it acts as the
Frobenius on F×

pn (in particular n acts trivially). The group Z×
p ⊕F×

p
F×

pn appearing here is the
abelianization of the special Morava stabilizer group Sn = Aut(Γ).

Theorem B (Theorem 6.3.1). There exists a ((Z×
p ⊕F×

p
F×

pn)⋊Ẑ)-pro-Galois extension Y f
n of ST (n),

lifting Yn.

Remark. During the writing of this project, Robert Burklund, Dustin Clausen, and Ishan Levy
announced that they lifted all finite Galois extensions from SK(n) to ST (n), and that the Galois
closure of ST (n) is En, using different methods from ours.

1.2 Methods

Asymptotically defined endomorphisms of the identity

One of the fundamental theorems in chromatic homotopy theory is Hopkins and Smith’s periodicity
theorem [HS98, Theorem 9]. This states that any compact spectrum of type ≥ n admits a vn-self-
map, which is asymptotically unique.
We set a categorical framework for asymptotically defined maps, and moreover showing that cat-
egories of asymptotically defined maps admit an asymptotically defined natural transformation
id ⇒ id.
Let D be a quotient subgroup of Ẑ, and write it as a sequential limit of surjections D = limdi Z/di.
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Definition (Definition 3.4.4, Remark 3.4.7). Let C ∈ Catperf . A D-asymptotically defined endo-
morphism of the identity α on C is the data of an exhausting filtration of C

C1
F1−! C2

F2−! · · ·! C ,

equipped with natural transformations αi : Σdi ⇒ idCi
and isomorphisms Fiα

di+1/di

i ≃ αi+1Fi in
Nat(Σdi+1Fi, Fi).
We say that α is a D-asymptotically defined isomorphism of the identity if αi is an isomorphism
for all i.

Categories with asymptotically defined endomorphisms and isomorphisms of the identity assemble
to 2-categories CatD-end

perf and CatD-iso
perf . There is an underlying category functor U : CatD-end

perf !
Catperf sending (C1 ! C2 ! · · · ) to the colimit colimi Ci.

We show (Proposition 3.2.8) that U admits a right adjoint (−)h⃗N[D], taking C to the system with
Ci = C h⃗N[di] — the category all self maps in C of degree di. The inclusion CatD-iso

perf ↪! CatD-end
perf

admits a left adjoint L (Corollary 3.3.10), inverting αi at each degree.
We summarize these adjunctions in the following diagram:

CatD-iso
perf CatD-end

perf Catperf

L

U

(−)h⃗N[D]

⊤

⊤

.

Going back to our case of interest, we let D = Zn = Zp × Z/(ap(pn − 1)). We then construct a
category with an asymptotically defined endomorphism Spω

vn
⊆ Sph⃗N[Zn], by letting Spω

vn,k be the
full subcategory of Sph⃗N[pk|vn|] consisting of vn-self-maps. The periodicity theorem can then be
reformulated as follows:

Theorem C (Theorem 4.2.5). The category with asymptotically defined endomorphism of the
identity (Spω

vn
, vn) ∈ CatZn-end

perf satisfies:

(1) The underlying category of Spω
vn

is Spω
≥n;

(2) The underlying category of L(Spω
vn

) is Spω
T (n).

The telescopic Picard group

When C is presentable, sending X to the functor X ⊗− defines an isomorphism from Pic(C ) to the
group of C -linear automorphisms of C . Specializing to C = SpT (n), we note that any automorphism
of SpT (n) is SpT (n)-linear. As SpT (n) is compactly generated we deduce that Pic(C ) = π0 Aut(Spω

T (n)).
Therefore we can construct Picard elements by constructing automorphisms of Spω

T (n).
One advantage of our categorified setting, is that it gives rise to E1 group actions on categories
admitting an asymptotically defined natural isomorphism. More precisely, categories with an au-
tomorphism Σd ∼−! id admit a ΩS1/d-action given by suspension. Heading towards the colimit of
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such categories, we prove that these actions are compatible when varying d. We define the space

S2
D := lim

i
Σ(S1/di)

and compute its second homotopy group (Lemma 3.4.13)

π2(S2
D) ∼= D.

Proposition (Corollary 3.4.12). The E1-group Ω2S2
D acts on any C in CatD-end

perf . The topological
generator 1 ∈ D ∼= π0Ω2S2

D acts by suspension.

In particular, Spω
vn

[v−1
n ] has a Ω2S2

Zn
-action, and therefore so does its underlying category Spω

T (n).
We get a group homomorphism on homotopy groups

Zn = π0(Ω2S2
Zn

)! Pic(SpT (n)).

To prove Theorem A it is left to show that it is injective. Recall that Zn = Zp × Z/(ap(pn − 1)).
We prove it separately for each component:

• For Zp, we tensor with En remembering only the action of Zp ⊆ Z×
p ⊆ Gn. It is simple to

show that the composition

Zp ! Pic(SpT (n))
En⊗−−−−−! Pic(ModEn(SpBZp

T (n)))

is injective.

• For Z/(ap(pn − 1)), we compute with K(n)-homology, landing in invertible K(n)∗-graded
modules, which are exactly K(n)∗, K(n)∗−1, . . . , K(n)∗−(2(pn−1)−1). The composition sends
d to K(n)∗−d if p is odd and to K(n)∗−2d is p = 2, showing that it is injective in both cases.

Kummer theory

To construct Galois extensions, we shall make use of the ∞-categorical Kummer theory, developed
by Carmeli-Schlank-Yanovski, which we now briefly recall.
Any Picard element X is in particular dualizable and therefore has a dimension dim(X) ∈ π01

×.
By [CSY21b, Corollary3.21], dim(X)2 = 1.

Definition ([CSY21b, Definition3.22]). Define the even Picard group as the subgroup of even
Picard elements:

Picev(C ) := {X ∈ Pic(C ) | dim(X) = 1}.

Theorem (Kummer theory [CSY21b, Proposition 3.23]). Let C be an additive presentably sym-
metric monoidal category with a choice of a primitive m-th root of unity ([CSY21b, Definition 3.3]).
Then there is a split short exact sequence of Abelian groups

0! (π01
×)/(π01

×)m
! π0 CAlgZ/m-Gal(C )! Picev(C )[m]! 0.
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This enables us to lift torsion even Picard elements to Galois extensions assuming the existence of
a root of unity. First, consider the T (n)-localization of the spherical Witt vector of Fpn , denoted
SWf

n := LT (n) SW(Fpn), which is a faithful Z/n-Galois extension of ST (n), admitting a (pn − 1)-st
root of unity. Theorem A together with Kummer theory thus give an F×

pn -Galois extension of SWf
n,

which corresponds to an (F×
pn ⋊ Z/n)-Galois extension of ST (n).

Similarly, adding higher roots of unity to our Galois extension as in [CSY21b] (equivalently, re-
placing SWf

n with LT (n)(SW(Fp))[ω(n)
p∞ ] in the construction) gives a ((Z×

p ⊕F×
p
F×

pn) ⋊ Ẑ)-Galois
extension.
To prove Theorem B it remains to show that its K(n)-localization is represented by said character.
This is established by a uniqueness arguments.

1.3 Organization

Section 2 provides a brief overview of (∞, n) categories and lax limits. In this section, we explicitly
compute the lax limits along the directed circle S⃗1 = BN and the directed 2-sphere S⃗2, and examine
their interrelations. Readers may skip this section on a first read, trusting the results that will be
applied in later sections.
We use the constructions and interrelations of Section 2 in Section 3 in order to construct CatD-end

perf ,
CatD-iso

perf and all the adjunctions described.
In Section 4, we build on the previous section to construct the lift Spω

vn
and prove Theorem C.

In Section 5, we leverage this lift and the natural group action on CatD-iso
perf to prove Theorem A.

Finally, in Section 6, we use Kummer theory to lift the Galois extension from SK(n) to ST (n),
proving Theorem B.

1.4 Conventions

We use the following terminology and notation:

(1) The category of stable categories and exact functors is denoted Catst, and the full subcategory
of idempotent complete stable categories is denoted by Catperf . The idempotent completion
functor is denoted by (−)idem : Catst ! Catperf .

(2) The category of spaces (or animae, or groupoids) is denoted by S.

(3) We denote by C ≃ ⊆ C the maximal subgroupoid of a category C .

(4) We denote the space of morphisms between two obejcts X, Y in a category C by MapC (X, Y )
and omit C when it is clear from context. If C is stable we denote the mapping spectrum of
X, Y by homC (X, Y ) or by hom(X, Y ) if C is clear from context.

(5) The category of presentable categories with colimit-preserving functors is denoted by PrL.

(6) For C ∈ CAlg(PrL) and D , E ∈ ModC (PrL) we denote the space of C -linear functors from D
to E by MapC (−, −). Similarly we denote the space of C -linear endomoprhisms and C -linear
automorphisms by EndC and AutC respectively.
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(7) For a category C we denote its full subcategory of compact objects by C ω.

(8) For a symmetric monoidal category C we denote its space of dualizable objects by C dbl.

(9) We denote lax limits by −!lim and oplax limits by  −lim. Similarly, we will denote lax operations
with an arrow.

(10) For two n-categories C , D , we denote by Funlax(C , D) the n-categories of functors from C
to D and lax natural transformations. We similarly denote Funoplax(C , D) the n-category of
functors and oplax natural transformations.

(11) For an n-category C and X, Y ∈ C we denote by MAPC (X, Y ) the mapping (n − 1)-
cateogry. Similarly we denote the (n − 1)-category of endomorphisms of X by ENDC (X) :=
MAPC (X, X). We omit C when it is clear from context.

(12) For the remainder of the paper we fix a height n > 0 and a prime p.
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ideas. I would like to thank the entire Seminarak group, especially Shay Ben-Moshe and Shaul
Ragomiv for useful comments on previous drafts of the paper. I would like to thank Lior Yanovski,
Shaul Barkan, Anish Chedalavada, Shaul Ragimov, Shay Ben-Moshe and Leor Neuhauser, for useful
discussions.
I would like to express my gratitude to the University of Chicago and to the “Spectral Methods
in Algebra, Geometry, and Topology” trimester program at the Hausdorff Research Institute for
Mathematics, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC-2047/1 - 390685813. Parts of this work were
completed during my time as their guest.
This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant agreement No. 3012006831).

2 Higher categories and lax limits
This section is devoted for the introduction of our chosen framework of n-categories, lax limits, and
their computation in two special cases:

(1) The lax limit along the walking 1-endomorphism

S⃗1 = BN = • ,

(2) The lax limit along the walking 2-endomorphism of the identity

S⃗2 = • = ⋆ ⋆

id⋆

id⋆

.

7



We use these computations in Section 3, either choosing C ∈ Catperf and Σd as an endomorphism,
or choosing Catperf ∈ Ĉat2 with Σd as the endomorphism of idCatperf .

2.1 Higher categories and lax natural transformations

We will model n-categories by Rezk’s complete Segal Θn spaces [Rez10], [BSP11, § 13], [Lou24, § 2],
as we now briefly recall. We call a classical (1,1)-category a strict category and define inductively
strict n-categories as strict categories enriched in strict (n − 1)-categories. An important class
of strict n-categories are the k-cells Dk (also known as the walking k-morphisms, k-disks or k-
globes) and their “sums”, which are finite connected colimits along inclusions of smaller cells in the
boundary, corresponding to composable higher arrows. The k-cells for k ≤ 3 are

D0 = pt = • D1 = [1] = • • D2 = • •

D3 = • •

.

and some examples of their cellular sums are

• • • • • • •

• • • • • • •

.

The collection of all cellular sums forms a (strict) category Θn. The category Θn can be formally
constructed inductively as the wreath product ∆ ≀ Θn−1. The category Catn of n-categories is
defined to be the full subcategory of PSh(Θn) on those presheaves satisfying Segal and completion
conditions. There is an embedding Θn ↪! Catn representing the corresponding n-categories. The
image of a ∈ Θn represents the evaluation at a functor:

MapCatn
(a, C ) ≃ Ca.

For an n-category C ∈ Catn, we define its space of k-morphisms to be Map(Dk, C ).
The category of ∞-categories Cat∞ = limn Catn was long conjectured to have a monoidal structure
called the Gray tensor product which we think of as a lax cartesian product and denote ×lax.
The Gray tensor product, originally defined in [Gra06] for strict 2-categories and developed further
in many works such as [JFS17, GR19, GHL21, Mae21, CM23, Lou24]. In [Cam23a], Campion
have constructed a simple universal property for the Gray tensor product and have constructed
a model satisfying it. Alas, not all models have been shown to satisfy it. We will use Lubaton’s
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model [Lou24, Construction 2.3.1.17], that was shown to have some computational properties we
will employ.
For a typical example, the Gray tensor product of the arrow category [1] with itself is the lax square

• •

• •

.

Sometimes, wanting to stay in the realm of n-categories, we will denote also by ×lax the truncated
Gray tensor product

Catn × Catn
×lax

−−−! Cat2n
τ≤n−−! Catn.

For C ∈ Catn, the functors

C ×lax − : Catn ! Catn, − ×lax C : Catn ! Catn

admit right adjoints denoted by

Funlax(C , −) : Catn ! Catn, Funoplax(C , −) : Catn ! Catn

which are the n-categories of functors and (op)lax natural transformations (see [Lou24, Definition
4.1.4.1]). They are described as sheaves on Θn as follows:

Funlax(C , D)a ≃ Map(a, Funlax(C , D)) ≃ Map(C ×lax a, D),
Funoplax(C , D)a ≃ Map(a, Funoplax(C , D)) ≃ Map(a ×lax C , D).

In particular, k-morphisms in Funlax(C , D) are functors C ×lax Dk ! D . Thus objects are just
functors C ! D and morphisms are lax natural transformations, which informally, are a collection
of morphisms αX : FX ! GX for every X ∈ C and a 2-morphism

FX FY

GX GY

F f

αX αY

αf

Gf

for every f : X ! Y ∈ C .
These constructions satisfy certain useful properties:

Lemma 2.1.1. For D ∈ Catn the functor Funlax(−, D) : Catop
n ! Catn preserves limits (that is

Funlax(−, D) sends colimits in Catn to limits in Catn).

Proof. Let C(−) : I ! Catn be a diagram and D ∈ Catn. Using that the Gray tensor product
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commutes with colimits in each variable ([Lou24, Construction 2.3.1.17]), we get for every E ∈ Catn:

Map(E , Funlax(colim
i

Ci, D)) ≃ Map((colim
i

Ci) ×lax E , D)

≃ Map(colim
i

(Ci ×lax E ), D)

≃ lim
i

Map(Ci ×lax E , D)

≃ lim
i

Map(E , Funlax(Ci, D))

≃ Map(E , lim
i

Funlax(Ci, D)).

As this is a natural isomorphism the result follows by Yoneda lemma.

Lemma 2.1.2. Let I, J , D ∈ Θn. Then

Funlax(J , Funlax(I, D)) ≃ Funlax(I ×lax J , D).

Proof. Let E ∈ Catn. Then we compute:

Map(E , Funlax(J , Funlax(I, D))) ≃ Map(J ×lax E , Funlax(I, D))
≃ Map(I ×lax J ×lax E , D)
≃ Map(E , Funlax(I ×lax J , D)).

The result follows by Yoneda lemma.

2.2 Lax limits

Let C ∈ Catn and I ∈ Catn. The terminal functor I ! pt induces a functor

∆: C ≃ Funlax(pt, C )! Funlax(I, C )

which sends X ∈ C to the constant diagram on X.

Definition 2.2.1. A right adjoint for ∆ at F ∈ Funlax(I, C ) is called the lax limit of F and is
denoted −!limI F .

We call an arrow ∆X ! F in Funlax(I, C ) a lax cone over F . Thus the lax limit of F is a terminal
lax cone over F .

Lemma 2.2.2 (Lax Fubini). Let C ∈ Catn be a category having all small lax limits. Let I, J ∈
Catn and let F : I ×lax J ! C be a diagram. Then

−!lim
I×laxJ

F ≃
−!lim
J

−!lim
I

F.

That is, −!limI×laxJ is isomorphic to the composition

Funlax(I ×lax J , C ) ≃ Funlax(J , Funlax(I, C )) Funlax(J ,
−!limI(−))−−−−−−−−−−−−! Funlax(I, C )

−!limI−−−! C .
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Proof. The composition

C
∆J−−! Funlax(J , C ) Funlax(J ,∆I(−))−−−−−−−−−−−! Funlax(J , Funlax(I, C ))

is equivalent to ∆I×laxJ . The lemma follows by taking right adjoints.

Lemma 2.2.3. Let C be an n-category having all colimits and all lax limits. Let

A B

C D

iB

iC jB

jC

⌟

be a pushout square in Catn and call jA : A ! D the composite map. Let F : D ! C be a functor
of n-categories. Then −!lim

D
F ≃

−!lim
B

(FjB) ×−!limA(F jA)
−!lim

C
(FjC).

Proof. By Lemma 2.1.1, Funlax(−, C ) sends colimits to limits and in particular

Funlax(D, C ) ∼= Funlax(B, C ) ×Funlax(A,C ) Funlax(C, C ).

As the map
D ≃ B ⊔A C ! pt ⊔pt pt ≃ pt

is the terminal map, the functor

∆B ×∆A ∆C : C ≃ C ×C C ! Funlax(B, C ) ×Funlax(A,C ) Funlax(C, C ) ≃ Funlax(D, C )

is identified with ∆D. The result now follows by [HY17, Theorem 5.5].

When C = Catn is the (n+1)-category of n-categories, the lax limit of a functor F : I ! Catn is the
category of sections of the cartesian fibration

∫
I F ! I defined by the Grothendieck construction,

i.e. unstraightening ([Lou24, Construction 4.1.2.5, Proposition 4.2.3.8, Example 4.2.3.13]). In
particular, all lax limits in Catn exist. One can for example compute:

Example 2.2.4 ([Lou24, Example 4.2.3.13]). Let C , I ∈ Catn. Then the lax limit of the constant
functor ∆C : I ! Catn is −!lim

I
∆C ≃ Funlax(I, C ).

Lemma 2.2.3 allows us to compute lax limits using cell decomposition. In the next two subsections
we will use it to compute some lax limits, specifically, of functors from “directed spheres” to Catn.
Let ∂Dk be the maximal (k−1)-subcategory of Dk. We define the directed sphere as S⃗k := Dk/∂Dk.

Remark 2.2.5. The directed sphere is the walking k-endomorphism, that is, a functor S⃗k ! U
chooses an object X ∈ U and an endomorphism f of idid...idX

.

More concretely, for k = 1 it chooses an object X and an endomorphism f : X ! X, for k = 2 it
chooses an object X and an endomorphism f : idX ⇒ idX .
A functor S⃗k ! U chooses an invertible k-endomorphism if and only if it factors through the
groupoidification |S⃗k| ≃ Sk.
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Lax limits along an arrow

The following lemma is well known. See [CDW23, Theorem 2.4.2] for a computation in PrL
st or more

generally in ModModR
(PrL

st). The general method for this computation is described in [CDW24].

Lemma 2.2.6. Let G : [1] ! Catn choosing an n-functor G : C ! D . Then its lax limit sits in a
pullback diagram

−!lim[1] G Funlax([1], D)

C D

src

G

⌟ ,

i.e. it is the category consisting of tuples (X, Y, g) where X ∈ C , Y ∈ D and g : GX ! Y , with lax
squares as morphisms.

Proof. The Grothendieck construction over an arrow is computed in [GHN17, Lemma 3.8]:∫
[1]

G = (C × [1]) ⊔(C×{1}) (D × {1})

with the fibration
∫

[1] G! [1] defined as the projection to the second coordinate. Then the category
of sections [1]! G is exactly as described.

2.3 Lax N-fixed points, or lax limits along S⃗1

Recall that S⃗1 = D1/∂D1 = [1]/∂[1] = BN is the walking endomorphism. Fix a 2-category V
and assume it admits lax limits along S⃗1. In this subsection we will study lax limits along S⃗1, in
particular showing that for a diagram (X, g) : S⃗1 ! V the endomorphism g lifts to an endomorphism
of the lax limit −!limS⃗1(X, g), and that there is a 2-morphism v̂ : g ⇒ id of endomorphisms of the lax
limit. We end the subsection by giving concrete formulas for all construction in the special case
where V = Cat.

Definition 2.3.1. Let (X, g) : S⃗1 = BN ! V be a functor. That is, the data of an object X ∈ V
and an endomorphism g : X ! X, or equivalently a monoid-action of N on X. Define the lax
N-fixed points of X as the lax limit

X h⃗N := −!lim⃗
S1

(X, g).

Remark 2.3.2. We always have a map from the universal cone (when it exists) to the universal
lax cone

lim⃗
S1

(X, g)! −!lim⃗
S1

(X, g) = X h⃗N.

If g is invertible, then the functor (X, g) : S⃗1 ! C factors through S1 = |S⃗1| and this map is
identified with

XhZ = lim
S1

X ≃ lim⃗
S1

X !
−!lim⃗
S1

X = X h⃗N.

12



Definition 2.3.3. The commutative diagram

pt S⃗1

V
X (X,g)

induces, by the functoriality of lax limits, a map

u : X h⃗N = −!lim⃗
S1

(X, g)! −!lim
pt

X = X

which we call the underlying map.

Remark 2.3.4. A lax cone over (X, g) is a map f : Y ! X and a 2-morphism η : gf ⇒ f

Y

X X

f f

g

η
.

A map Y ! X h⃗N is equivalent to such a lax cone and the composition Y ! X h⃗N u−! X agrees with
f : Y ! X.

Corollary 2.3.5. There exists a canonical 2-morphism v : gu ⇒ u.

Proof. The universal lax cone corresponds to the identity map X h⃗N ! X h⃗N and so is given as
u : X h⃗N ! X with a 2-morphism v : gu ⇒ u.

Definition 2.3.6. The map

g : (X, g)! (X, g) ∈ Funlax(S⃗1, V),

given by g : X ! X and the trivial higher cells, induces an arrow

g : X h⃗N = −!lim⃗
S1

(X, g)! −!lim⃗
S1

(X, g) = X h⃗N.

Lemma 2.3.7. There exists a 2-morphism

v̂ : g ⇒ idXh⃗N

of endomorphisms of X h⃗N lifting v of Corollary 2.3.5, i.e. uv̂ ≃ v.

Proof. We use the universal lax cone

X h⃗N

X X

u u

g

v

13



to construct a diagram in Funlax(S⃗1, V) of the form

∆X h⃗N = (X h⃗N, idXh⃗N)

(X, g) (X, g)

u u

g

v

.

Specifically it is the given as the the diagram

X h⃗N X

X

X h⃗N X

X

u

u

v

v g

g

g u

u g

v

v

(with the trivial front 2-cell and interior 3-cell), which gives the required 2-morphism.

The categorical case

We will now look at the special case V = Cat, finding explicit formulas for each of the constructions
above. First, we can describe the lax fixed points as a lax equalizer as in [NS18]:

Lemma 2.3.8. Let (C , G) : S⃗1 ! Cat. Then the lax fixed points C h⃗N agrees with the lax equalizer
−!eq(C

G
−−⇒
id

C ). That is, it sits in a pullback diagram

C h⃗N C [1]

C C × C

p∗

u
⌟

src,trgt

G,id

Proof. S⃗1 is the pushout
{0, 1} [1]

pt S⃗1

⌟

so the result follows by Lemma 2.2.3.
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Corollary 2.3.9. An object of C h⃗N is equivalent to the data of (X, vX), where X ∈ C and
vX : GX ! X. The mapping space between two objects (X, vX), (Y, vY ) is given by

MapC h⃗N((X, vX), (Y, vY )) ≃ eq
(

MapC (X, Y )
−◦vX−−−−−−−−−−⇒

vY ◦G−
MapC (GX, Y )

)
.

The underlying object functor u : C h⃗N ! C is exact, conservative and colimit-preserving.

Proof. This is a special case of [NS18, Proposition II.1.5.].

Remark 2.3.10. Chasing the description of Lemma 2.2.3, the 2-morphism of Corollary 2.3.5,
coming from the universal lax cone of C h⃗N, is (u, v) where v : Gu ⇒ u is given on an object
(X, GX

vX−−! X) by vX .

Remark 2.3.11. Assuming G is invertible, by the description in Lemma 2.3.8, the functor C hZ !

C h⃗N of Remark 2.3.2 sends a tuple (X, GX
∼−! X) to the tuple (X, GX ! X), forgetting that the

map is an isomorphism.

Lemma 2.3.12. The morphism G : C h⃗N ! C h⃗N of Definition 2.3.6 sends (GX
vX−−! X) ∈ C h⃗N to

(G2X
GvX−−−! GX).

Proof. Recall that a lax cone from D over (C , G) : S⃗1 ! Cat is the data of a functor F : D ! C
and a natural transformation η : G ◦ F ⇒ F . The map

G : (C , G)! (C , G) ∈ Funlax(S⃗1, Cat)

sends such a lax cone (D F−! C , η) to the lax cone (D GF−−! C , Gη). In particular, it sends the
universal lax cone (C h⃗N u−! C , v) to (C h⃗N Gu−−! C , Gv) which corresponds to the required functor
C h⃗N ! C h⃗N.

Lemma 2.3.13. The 2-morphism v̂ : G ⇒ idC h⃗N of Lemma 2.3.7 is given on an object (GX
vX−−! X)

by
G2X GX

GX X

GvX

GvX vX

vX

.

Proof. By Lemma 2.3.7 under composition with u it is given by v : Gu! u. The result now follows
by Remark 2.3.10 and its composition with G.
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2.4 Lax limits along S⃗2

We now categorify Section 2.3, finding a natural place where (−)h⃗N lands, remembering the 2-
morphism of Lemma 2.3.7.
Let S⃗2 := D2/∂D2 be the walking endomorphism of the identity, that is S⃗2 consists of one object ⋆
and is generated by a 2-morphism id⋆ ! id⋆.
Fix a 3-category U and assume lax limits of the shape S⃗2 exist in U and lax limits of the shape S⃗1

exist in the mapping 2-categories of U . A diagram

(X, γ) : S⃗2 ! U

chooses X ∈ U and a 2-endomorphism γ : idX ⇒ idX . In this subsection we will consider the lax
limit −!limS⃗2(X, γ).

Remark 2.4.1. As before, we have a map from the universal cone (if it exists) to the universal lax
cone

lim⃗
S2

(X, γ)! −!lim⃗
S2

(X, γ).

If γ is invertible then (X, γ) : S⃗2 ! U factors through S2 = |S⃗2| and this map identifies with

lim
S2

(X, γ) ≃ lim⃗
S2

(X, γ)! −!lim⃗
S2

(X, γ).

Definition 2.4.2. The commutative diagram

pt S⃗2

U
X (X,γ)

induces, by the functoriality of lax limits, a map

U : −!lim⃗
S2

(X, γ)! −!lim
pt

X ≃ X

which we call the underlying map.

Remark 2.4.3. A lax cone over (X, γ) is a map f : Y ! X and a 3-morphism η : γf ⇛ idf :

Y X

f

f

idfγf
η

.

Any map Y !
−!limS⃗2(X, γ) is equivalent to such a lax cone and the composition Y !

−!limS⃗2(X, γ) U−! X
is identified with f .
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Corollary 2.4.4. There exists a canonical 3-morphism α : γU ⇛ U

U U

γU

idU

α .

Proof. The universal lax cone over (X, γ) corresponds to the identity morphism −!limS⃗2(X, γ) !
−!limS⃗2(X, γ) therefore it is given by (U, α) where α : γU ⇛ U .

As γ is an endomorphism of idX , it induces a functor

(idX , γ) : S⃗1 ! END(X).

Lemma 2.4.5. The map idh⃗N
X : X ! X lifts to −!limS⃗2(X, γ). That is, there exists a map, which we

also denote by idh⃗N
X : X !

−!limS⃗2(X, γ) rendering the following diagram commutative:

X
−!limS⃗2(X, γ)

X

idh⃗N
X

idh⃗N
X

U
.

Proof. A map X !
−!limS⃗2(X, γ) is the same as a lax cone, i.e. a map f : X ! X and a 3-morphism

f f

γf

idf

η .

Such a lax cone, composed with the underlying map U will agree with f . Therefore to construct
such a lifting we must give a 3-morphism

idh⃗N
X idh⃗N

X

γ

id

v̂ ,

which is exactly Lemma 2.3.7.

The categorical case

We will now look at the special case U = Cat2, finding explicit formulas for each of the constructions
above:
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Lemma 2.4.6. Let (V, γ) : S⃗2 ! Cat2, i.e. a 2-category V and a natural transformation γ : idV ⇒
idV . An object of −!limS⃗2(V, γ) is equivalent to the data of X ∈ V with a 2-morphism αX : γX ⇒ idX .

Proof. We can write S⃗2 = D2/∂D2 also as □□□/∂□□□, where □□□ := [1] ×lax [1] is the lax square

□□□ = [1] ×lax [1] =
• •

• •

and ∂□□□ is its maximal 1-subcategory. To see this, note that by [Cam23b, Corollary 5.12], both
quotients can be computed in strict n-categories, where it is obvious. Thus, by Lemma 2.2.3,−!limS⃗2(V, γ) sits in a pullback diagram

−!limS⃗2(V, γ) −!lim□□□(V, γ)

V
−!lim∂ □□□(V, γ)

U

⌟ .

We can compute −!lim□□□ using Fubini (Lemma 2.2.2):
−!lim
□□□

(V, γ) = −!lim
([1]×lax[1])

(V, γ) ≃
−!lim
[1]

−!lim
[1]

(V, γ)

where the diagram is of the form
V V

V V

id

id id

id

γ .

We first compute the vertical lax limit (along the identity morphism), getting the diagram(
Funlax([1], V) γ−! Funlax([1], V)

)
: [1]! Cat2,

where γ is the functor taking an arrow f : X ! Y to the composition

X
γX−−! X

f−! Y.

Computing the lax limit, using Lemma 2.2.6, we get the category

Funlax([1], Funlax([1], V)) ×Funlax([1],V)2 Funlax([1], V)

with (γ, id) : Funlax([1], V)! Funlax([1], V)2. That is the category of lax squares

X X ′

X

Y Y ′

g

γX

f ′

f

α

h

. (1)
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The lax limit −!lim∂ □□□(V, γ) is taken along the constant functor ∆V : ∂□□□! Cat2. Therefore
−!lim
∂ □□□

(V, γ) ≃ Funlax(∂□□□, V).

It is left showing that the functor −!lim□□□(V, γ) ! −!lim∂ □□□(V, γ) sends a lax square of the form (1) to
the (non-commutative) square

X X ′

Y Y ′

g

f ′f

h

.

To see this, note that a lax cone over (V, γ) : □□□! Cat2 is a diagram of the form

V

D V

V

V

γ

and it is sent to the lax cone over ∆V : ∂□□□! Cat2

V

D V

V

V

forgetting γ and the 3-cell. The universal cone, has as a functors to V, the functors sending a
lax square of the form (1) to X, X ′, Y , Y . The 2-morphisms are given by g, f , f ′, h and the
3-morphism is exactly α. The corresponding lax cone over ∂□□□ represents the functor sending such
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a lax square to
X X ′

Y Y ′

g

f ′f

h

.

Remark 2.4.7. Chasing the description of Lemma 2.2.3, the 3-morphism of Corollary 2.4.4, coming
from the universal lax cone of −!limS⃗2(V, γ), is (U, α) where α : γU ⇛ U is given on an object
(X, αX : γX ⇒ idX) as αX .

Remark 2.4.8. Assuming γ is invertible, by the description Lemma 2.4.6, the functor limS2(V, γ)!
−!limS⃗2(V, γ) of Remark 2.4.1 sends a tuple (X, γX

∼=⇒ idX) to the tuple (X, γX ⇒ idX), forgetting
that the map is invertible.

Reinterpreting Lemma 2.4.5 for the special case V = Cat2, as γ : idV ! idV , any X ∈ V admits a
morphism γX : X ! X. We can then say:

Corollary 2.4.9. Let X ∈ V, then there exists a lift X h⃗N ∈
−!limS⃗2(V, γ). That is, there exists such

an object and U(X h⃗N) ∈ V agrees with the lax fixed points of Section 2.3.

Remark 2.4.10. The 2-morphism v̂ : γXh⃗N ⇒ idXh⃗N , which is part of the data of an object in
−!limS⃗2(V, γ) is the 2-morphism constructred in Lemma 2.3.7.

The functor idh⃗N
V of Lemma 2.4.5 can be thought of as the functor

(−)h⃗N : V !
−!lim⃗
S2

(V, γ)

taking X ∈ V to X h⃗N.

Proposition 2.4.11. The functor (−)h⃗N : V !
−!limS⃗2(V, γ) is right adjoint to the underlying functor

U : −!limS⃗2(V, γ)! V.

Proof. In this proof we will have to distinguish between the lax fixed points landing in V and the
lax fixed points landing in −!limS⃗2(V, γ). We will denote the latter by (−)h⃗N while the former will be
denoted as the composition U((−)h⃗N).
We prove the adjunction by constructing a unit and a counit. The map

u : U ◦ (−)h⃗N = U((−)h⃗N)! idV

defined in Definition 2.3.3 will be a counit for the adjunction1.
1u is an unfortunate name for a counit.
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To construct a unit, we must construct a 2-morphism id−!limS⃗2 (V,γ) ⇒ U h⃗N.2 Equivalently, by the
exponential adjunction, we need to provide a functor

α̂ : −!lim⃗
S2

(V, γ)! (−!lim⃗
S2

(V, γ))[1] ≃
−!lim⃗
S2

(V [1], γ).

Using Remark 2.4.3, it is equivalent to a functor α : −!limS⃗2(V, γ)! V [1] together with a 3-morphism

α α

γ

id

η .

Recall the 3-morphism α : γU ⇛ idU of Remark 2.4.7. This is a lax cone from U over the diagram

(U, γU) : S⃗1 ! MAP(−!lim⃗
S2

(V, γ), V)

and so corresponds (Remark 2.3.4) to a 2-morphism α : U ⇒ U(U h⃗N) ≃ U ◦(−)h⃗N ◦U , which we can
think of as a functor α : −!limS⃗2(V, γ) ! V [1]. Indeed, on an object X, αX : X ! X h⃗N corresponds
by Remark 2.3.4 to a 2-morphism αX : γX ⇒ idX .
Giving a 3-morphism η as above requires to give for any (X, αX) ∈

−!limS⃗2(V, γ) a 2-morphism
γX ⇒ idX in a coherent way, but such 2-morphism is given by αX .
It is now left to check the zig-zag identities of the unit and the counit, i.e. that the compositions

U
id◦α̂===⇒ U ◦ U h⃗N[d] = U(−)h⃗N[d] ◦ U

u◦id===⇒ U

(−)h⃗N[d] α̂◦id===⇒ U h⃗N[d] ◦ (−)h⃗N[d] = (−)h⃗N[d] ◦ U(−)h⃗N[d] id◦u===⇒ (−)h⃗N[d]

are natural isomorphisms. It is therefore sufficient to check that on objects, and this is straightfor-
ward.

3 Categories of (asymptotically defined) self-maps

In this section we introduce a general framework for periodicity phenomena.
Let D be a quotient group of Ẑ. The goal of this section is the construction of the categories
CatD-end

perf , CatD-iso
perf of categories with asymptotically defined natural endomorphisms of the identity

(of specific degrees) and of asymptotically defined natural isomorphisms of the identity (of specific
degrees), along with their relations.
In the next section, we will reformulate the periodicity theorem [HS98, Theorem 9] describing
precisely the existence of an “asymptotically defined vn-natural endomorphism” of the identity of
Spω

≥n, and deduce applications from it to the T (n)-local category.

2The name U h⃗N might be ambiguous, as it could refer to either U ◦ (−)h⃗N or the lax fixed points of U under the
N-action induced by γ. Fortunately, these two definitions coincide.
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In Section 3.1 we describe, for a finite group D ∼= Z/d and a category C ∈ Catperf , the general
construction and attributes of the category of self-maps of C . In Section 3.2 we categorify the
construction and define the category of categories with shifted endomorphism of the identity (i.e.
natural transformations Σd ⇒ id), defined as the lax limit of Catperf along S⃗2 as introduced in
Section 2.4. We then describe its properties and its connection to categories of self-maps. In
Section 3.3 we discuss the connection to the (non-lax) limit — the category of categories with
shifted isomorphism of the identity and the related category of categories with locally nilpotent
shifted endomorphism of the identity. Finally, in Section 3.4, we extend to pro-finite D by taking
the colimit of our constructed categories, defining categories with asymptotically defined self maps
and categories of categories with asymptotically defined endomorphisms of the identity.
As we will work with group actions and (de)categorifications, we will need the following 2 simple
remarks:

Remark 3.0.1. Let V be a 2-category, X ∈ V and A a pointed space. An A-local system A !
END(X) sending the base point to idX , is, by the core-forgetful adjunction, a map of pointed spaces
A! END(X)≃ ≃ ΩXV≃, which in turn is the same as a map of pointed spaces ΣA! V≃ choosing
X. Again, using the core-forgetful adjunction, it is the same as a local system ΣA! V sending the
base point to X.
In particular, a G-action on idX is the same as a functor ΣBG! V choosing X, or equivalently, a
ΩΣBG-action on X.

Remark 3.0.2. Let V be a 2-category and X ∈ V. A G-action on X is the same as a functor
BG ! V choosing X, and therefore induces a local system G ! END(X). When G is connected,
it is equivalent to a ΩG-action on idX .

3.1 Self map categories

Note that lax limits in Catperf agree with lax limits in Cat so we may use the results of Section 2.3
replacing Cat with Catperf . Let C ∈ Catperf and d ∈ N. We will use Section 2.3 for the specific
functor

(C , Σd) : S⃗1 ! Catperf .

Definition 3.1.1. Let C ∈ Catperf and d ∈ N. Define the category C h⃗N[d] of objects with self-maps
of degree d as the lax fixed points

C h⃗N[d] := −!lim(S⃗1 (C ,Σd)−−−−! Catperf).

Equivalently (Lemma 2.3.8) it is the lax equalizer of C
Σd

−−−−⇒
id

C .

Definition 3.1.2. Let C ∈ Catperf and d ∈ N. Define the category C hZ[d] of objects with self-
isomorphism of degree d as the fixed points

C hZ[d] := lim(BZ (C ,Σd)−−−−! Catperf) ≃ lim(S⃗1 (C ,Σd)−−−−! Catperf).

Equivalently, it is the equalizer of C
Σd

−−−−⇒
id

C .
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We summarize the main properties of of this construction from the previous section:

Proposition 3.1.3.

(1) An object of C h⃗N[d] is equivalent to the data of (X, vX), where X ∈ C and vX : ΣdX ! X.
The mapping space between two objects (X, vX), (Y, vY ) is given by

MapC h⃗N[d]((X, vX), (Y, vY )) ≃ eq
(

MapC (X, Y )
−◦vX−−−−−−−−−−⇒

vY ◦Σd−
MapC (ΣdX, Y )

)
.

(2) The underlying object functor u : C h⃗N[d] ! C (induced naturally by pt ! S⃗1) is exact, con-
servative and colimit-preserving.

(3) A functor D ! C h⃗N[d] is equivalent to the data of an exact functor F : D ! C and a natural
transformation ΣdF ⇒ F .

(4) There is a natural functor C hZ[d] ! C h⃗N[d] that forgets that the self-map is an isomorphism.

Proof. This follows by Corollary 2.3.9 (which is just [NS18, Proposition II.1.5.]), Remark 2.3.4,
Remark 2.3.11.

Proposition 3.1.4. There exists a natural transformation

v̂ : Σd ⇒ idC h⃗N[d]

of endofunctors of C h⃗N[d]. At an object (X, vX) it is given by

Σ2dX ΣdX

ΣdX X

Σdv

Σdv v

v

Proof. This follows by Lemma 2.3.12 and Lemma 2.3.13.

Power maps

We now focus on the interactions between C h⃗N[d] for different values of d:

Definition 3.1.5. Let m ∈ N. Consider the m-composition map S⃗1 = BN m−! BN = S⃗1 and look
at the commutative diagram

S⃗1 Catperf

S⃗1

(C ,Σmd)

m

(C ,Σd)

.

The functoriality of lax limits induces the “m-power map”

(−)m : C h⃗N[d] ! C h⃗N[md].
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Lemma 3.1.6. (−)m sends a self-map v : ΣdX ! X to its m-power

vm : ΣmdX
Σ(m−1)dv−−−−−−! Σ(m−1)dX

Σ(m−2)dv−−−−−−! · · · Σdv−−! ΣdX
v−! X.

Proof. Let (F, γ) be a lax cone over

(C , Σd) : S⃗1 ! Catperf .

Thus, F : D ! C is an exact functor and γ : ΣdF ⇒ F (Proposition 3.1.3(3)). Composing with
m : S⃗1 ! S⃗1 induces the lax cone (F, γm) over

(C , Σmd) : S⃗1 ! Catperf ,

where
γm : ΣmdF

Σ(m−1)dγ======⇒ Σ(m−1)dF
Σ(m−2)dγ======⇒ · · · γ=⇒ F.

In particular, the universal lax cone (u : C h⃗N[d] ! C , v) is sent to (u : C h⃗N[d] ! C , vm). This
represents the functor C h⃗N[d] ! C h⃗N[md] sending (X, vX) to (X, vm

X ).

3.2 Categories with shifted endomorphisms of the identity

We now categorify the construction of Section 3.1, finding a nice category in which (−)h⃗N[d], along
with the natural transformation v of Proposition 3.1.4, lands.
We will use Section 2.4 with V = Catperf and γ = Σd. We will also replace Cat2 by a presentable
version for applications in Section 3.4.
The functor Σd is an (invertible) endomorphism of each object of Catperf , or equivalently, an
(invertible) endomorphism of idCatperf in Ĉat2. We shall define the category CatZ/d-end

perf to be the
corresponding lax limit along S⃗2. The objects of CatZ/d-end

perf are categories C ∈ Catperf with a
natural transformation Σd ⇒ idC .
Although it is possible to define CatZ/d-end

perf directly, using 3-categories significantly simplifies both
the construction and its universal property. Therefore, we work in the higher categorical framework
to enable more streamlined formal proofs. For better readability, we provide concrete descriptions
of the outcomes of the 3-categorical manipulations throughout the text.

Presentability

It will be important to us in Section 3.4 that Catperf , and our constructed categories, are presentable.
Because we work in 2-categories, we would have liked to use a notion of presentable 2-categories.
Unfortunately, there is not yet such an accepted notion. One candidate was suggested by Stefanich
in [Ste20]. We will take a similar approach, yet simpler to define, as we do not need to require
that the functor categories are also presentable. Thus we will define a 3-category Pr of presentable
categories enriched in categories:
By [Hei23], [BM24] there exists a 2-fully faithful embedding

χ : ModCat(PrL) ↪! (Ĉat2)L.
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from the category of modules over Cat in PrL to the category of (large) categories enriched in
categories, i.e. the category of 2-categories, and left adjoints. We can pull the 3-category structure
on Ĉat2 to ModCat(PrL):

Definition 3.2.1. Let Pr be the 3-full subcategory generated by the embedding χ : ModCat(PrL) ↪!

(Ĉat2)
L
.

Notice that as a 2-category, Catperf is tensored over Cat, thus lies in the 3-category Pr.

Definitions

Definition 3.2.2. A local system S⃗2 ! Pr is equivalent to a choice of a presentable 2-category
U ∈ Pr and an endomorphism γ : idU ⇒ idU .

Let d ∈ N. The d-suspension functor is a natural transformation

Σd : idCatperf ⇒ idCatperf .

Definition 3.2.3. Define the category of stable, idempotent-complete categories with d-shifted
natural endomorphism of the identity as the lax limit

CatZ/d-end
perf := −!lim⃗

S2
(Catperf , Σd)

as discussed in Section 2.4.
Similarly, noting that Σd is invertible, define the category CatZ/d-iso

perf of stable, idempotent-complete
categories with d-shifted natural isomorphism of the identity as the limit

CatZ/d-iso
perf := lim

S2
(Catperf , Σd) ≃ lim⃗

S2
(Catperf , Σd).

Noticing that limits and lax limits in Pr are computed in Ĉat2, we rewrite the results from Sec-
tion 2.4 for this case:

Corollary 3.2.4. An object of CatZ/d-end
perf is equivalent to the data of (C , α) where C ∈ Catperf

and α : Σd ⇒ idC . A map between two objects (C , α)! (D , β) is an exact functor f : C ! D and
a 3-isomorphism

Σdf = fΣd f

fα

βf

∼ .

Proof. This is Lemma 2.4.6.
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Corollary 3.2.5. A functor U ! CatZ/d-end
perf is the data of a functor F : U ! Catperf along with a

3-morphism

F F

Σd

id

η .

Proof. This follows by Remark 2.4.3.

Corollary 3.2.6. The map pt ! S⃗2 induces an underlying category functor U : CatZ/d-end
perf !

Catperf , sending (C , α) to C . There is a natural functor CatZ/d-iso
perf ! CatZ/d-end

perf , forgetting that
the shifted endomorphism is an isomorphism.

Proof. The first part follows from Lemma 2.4.6, the second is Remark 2.4.7.

Corollary 3.2.7. The functor (−)h⃗N[d] : Catperf ! Catperf admits a lift, which by abuse of notations
we denote (−)h⃗N[d] : Catperf ! CatZ/d-end

perf rendering the following diagram commutative:

CatZ/d-end
perf

Catperf Catperf

U
(−)h⃗N[d]

(−)h⃗N[d]

.

Proof. This is Lemma 2.4.5.

Proposition 3.2.8. The functor (−)h⃗N[d] : Catperf ! CatZ/d-end
perf is right adjoint to the underlying

category functor U : CatZ/d-end
perf ! Catperf .

Proof. This is exactly Proposition 2.4.11.

Power maps

Definition 3.2.9. By the functoriality of lax limits, the commutative diagram

S2 Pr

S2

m

Catperf ,Σmd

Catperf ,Σd

induces maps

(−)m : CatZ/d-end
perf ! CatZ/md-end

perf , (−)m : CatZ/d-iso
perf ! CatZ/md-iso

perf

in Pr, which we call the m-power maps.
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Lemma 3.2.10. (−)m sends (C , α) to (C , αm), where

αm : Σmd Σ(m−1)dα−−−−−−! Σ(m−1)d Σ(m−2)dα−−−−−−! · · · Σdα−−−! Σd α−! idC .

Proof. Recall (Corollary 3.2.5) that lax cones over (Catperf , Σd) : S⃗2 ! Pr are the data of U ∈ Pr,
a map F : U ! Catperf in Pr and a 3-morphism

F F

Σd

id

γ .

Composition with m : S2 ! S2, sends such a lax cone to the lax cone

F : U ! Catperf , F F

Σd

id

γm .

In particular, the universal lax cone

U : CatZ/d-end
perf ! Catperf , U U

Σd

id

α

is sent to the lax cone

U : CatZ/d-end
perf ! Catperf , U U

Σd

id

αm

which implies that the corresponding functor CatZ/d-end
perf ! CatZ/md-end

perf sends (C , α) to (C , αm).

Note that as a map in Pr, (−)m : CatZ/d-end
perf ! CatZ/md-end

perf admits a right adjoint

m
√

(−) : CatZ/md-end
perf ! CatZ/d-end

perf .

Proposition 3.2.11. Let (C , α) ∈ CatZ/md-end
perf . Then m

√
(C , α) is equivalent to C h⃗N[d] ×C h⃗N[md] C

— the category of tuples (X, v, γ) where X ∈ C , v : ΣdX ! X and γ is an isomorphism vm ∼−! αX .

Proof. Let (C , α) be a category. Then by Proposition 3.1.3, α defines a functor α : C ! C h⃗N[md]

which is a section of u. Using the m-power map (−)m : C h⃗N[d] ! C h⃗N[md], define

R(C , α) := C h⃗N[d] ×C h⃗N[md] C .
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Then objects of R are self maps ΣdX
v−! X with an isomorphism vm ≃ αX . It is clear that R lifts

to a functor R : CatZ/md-end
perf ! Catperf . Notice moreover, that for every (C , α), R(C , α) admits a

natural transformation v : Σd ⇒ id induced by the natural transformation of Proposition 3.1.4. By
functoriality this lifts to a 3-map

R R

Σd

id

v

which is a lax cone over S⃗2 (Catperf ,Σd)−−−−−−−−! Ĉat2 and therefore induces a functor

R : CatZ/md-end
perf ! CatZ/d-end

perf .

We will show it is right adjoint to (−)m.
We will construct the unit as a map

u : CatZ/d-end
perf ! (CatZ/d-end

perf )
[1]

≃ (Catperf
[1])

Z/d-end
,

which is equivalent to, by Corollary 3.2.5, to a functor u : CatZ/d-end
perf ! Catperf

[1] and a 3-morphism

u u

Σd

id

η .

Let (C , α) ∈ CatZ/d-end
perf . Recall that R(C , αm) ≃ C h⃗N[d] ×C h⃗N[md] C , where the functor C h⃗N[d] !

C h⃗N[md] is the m-power map and the functor C ! C h⃗N[md] is αm. We have a natural functor

u(C ,α) : C ! C h⃗N[d] ×C h⃗N[md] C

X 7! (ΣmX
αX−−! X, X).

More formally, α defines a functor α : C ! C h⃗N[d] and we have a commutative diagram

C C

C h⃗N[d] C h⃗N[md]

α αm

(−)m

which induces a functor u(C ,α) : C ! R(C , αm). Moreover this construction is clearly functorial in
(C , α) and so gives rise to a functor

u : CatZ/d-end
perf ! Catperf

[1].
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For each such (C , α) there is a commutative diagram of natural transformations

C C

R(C , αm) R(C , αm)

Σd

id

u(C,α) u(C,α)

Σd

id

α

v

which is a 2-morphism η(C ,α) in Catperf
[1]. Again, by functoriality, it lifts to a 3-morphism

u u

Σd

id

η

which induces the desired unit functor.
To define the counit we will use similar methods: Let (C , α) ∈ CatZ/md-end

perf . Denote the projection
functor by

c(C ,α) : R(C , α) ≃ C h⃗N[d] ×C h⃗N[md] C ! C ,

which is functorial in (C , α) and so gives rise to a functor CatZ/md-end
perf ! Catperf

[1]. For each such
(C , α) we are given (as part of the data of R(C , α)) a natural transformations

R(C , α) R(C , α)

C C

Σmd

id

c(C,α) c(C,α)

Σmd

id

vm

α

which, by functoriality, lifts to a 3-morphism

c c

Σmd

id

ϵ .

(c, ϵ) is a data of a lax cone so it induces a functor

c : CatZ/md-end
perf ! (Catperf

[1])Z/md-end ≃ (CatZ/md-end
perf )

[1]

which is the counit of the adjunction.
Verifying the zig-zag identities now is simple.
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Corollary 3.2.12. For any C ∈ Catperf , m

√
(C h⃗N[md]) ≃ C h⃗N[d].

Proof. The corollary follows by taking right adjoints of the commutative diagram

CatZ/d-end
perf

CatZ/md-end
perf Catperf

(−)m U

U

.

3.3 Locally nilpotent and invertible natural transformations

The canonical map S⃗2 ! |S⃗2| ≃ S2 induces a map in Pr

CatZ/d-iso
perf ! CatZ/d-end

perf ,

forgetting that the natural map is an isomorphism. As a functor in Pr it admits a right adjoint
sending (C , α) to the subcategory of C on which α acts invertibly. In this subsection we construct
a left adjoint L : CatZ/d-end

perf ! CatZ/d-iso
perf , inverting the natural transformation. L is a Bousfield

localization and its kernel is the category of stable, idempotent complete categories with d-shifted,
locally-nilpotent natural transformation of the identity. It will actually be simpler to first construct
the colocalization functor, constructing L as its kernel.
We then show that the category CatZ/d-iso

perf has a natural action of the group ΩS2/d, which is
equivalent to an action of ΩS1/d on any (C , α) ∈ CatZ/d-iso

perf . The identification d ≃ 0 is given by
α. Moreover, the m-power map of Definition 3.2.9 is equivariant with respect to this action.

Definition 3.3.1. Let (C , α) ∈ CatZ/d-end
perf . We say that α is locally-nilpotent if for any X ∈ C the

map αX : ΣdX ! X is nilpotent. That is, there exists k ∈ Z such that αk
X : ΣkdX ! X is null. We

denote by CatZ/d-nil
perf ⊆ CatZ/d-end

perf the full 2-subcategory of CatZ/d-end
perf consisting of locally nilpotent

natural transformations.

Definition 3.3.2. Define Nil : CatZ/d-end
perf ! CatZ/d-nil

perf as the subfunctor of idCatZ/d-end
perf

sending
(C , α) to the full subcategory of C consisting of objects on which α acts nilpotently.
We will write Nilα(C ) := Nil(C , α).

Lemma 3.3.3. Nil : CatZ/d-end
perf ! CatZ/d-nil

perf is right adjoint to the inclusion i : CatZ/d-nil
perf !

CatZ/d-end
perf .

Proof. Note that Nil ◦ i ≃ idCatZ/d-nil
perf

. The counit i ◦ Nil! idCatZ/d-end
perf

is the natural embedding. It
is now simple to verify the zig-zag identities.

As a consequence, Nil is a colocalization functor. By standard abuse of notations, we will usually
denote the composition Nil ◦ i also by Nil.
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Definition 3.3.4. Let L : CatZ/d-end
perf ! CatZ/d-end

perf be the cofiber of the counit map Nil !
idCatZ/d-end

perf
in Fun(CatZ/d-end

perf , CatZ/d-end
perf ).

To understand L better, we will use presentable categories, using the fact we can embed Catperf in
PrL

st via the Ind construction.

Definition 3.3.5. Let C ∈ PrL
st and α : Σd ! idC . Define C [α−1] to be the full subcategory

consisting of objects on which α is invertible.

Remark 3.3.6. The inclusion functor C [α−1] ⊂ C admits an essentially surjective left adjoint

(−)[α−1] : C ! C [α−1]

which on an object X ∈ C is given by

X[α−1] ≃ colim(X α−! Σ−dX
α−! Σ−2dX

α−! · · · ).

Lemma 3.3.7. L is given on objects by

L(C , α) = ((Ind C )[α−1])ω
.

Proof. Denote by PrL
st,ω the category of compactly generated stable presentable categories and

colimit-preserving functors sending compact objects to compact objects. By [Lur, Lemma 5.3.2.9],
there is an equivalence of categories

Ind: Catperf ⇄ PrL
st,ω : (−)ω

and the inclusion functor PrL
st,ω ↪! PrL preserves colimits. In particular

L(C , α) ≃ cofib( Ind(Nilα(C ))! Ind(C ) )ω

and the quotient functor idCatZ/d-end
perf

! L is given as the restrction to compacts of

Ind(C )! cofib( Ind(Nilα(C ))! Ind(C ) )

where the cofiber is computed in PrL
st. The cofiber can be computed as

{X ∈ Ind(C ) | MapInd(C )(Z, X) ≃ pt ∀Z ∈ Ind(Nilα(C ))}
≃ {X ∈ Ind(C ) | MapInd(C )(Z, X) ≃ pt ∀Z ∈ Nilα(C )}.

Any X on which α is invertible satisfies this condition. On the other hand, assume MapInd(C )(Z, X)
is contractible for every Z ∈ Nilα(C ). α2 acts trivially on X/α := cofib(ΣdX

α−! X), and in
particular X/α ∈ Nilα(C ) and the cofiber sequence

ΣX/α
0−! ΣdX

α−! X

splits so X ≃ ΣdX ⊕ X/α. By our assumption the inclusion map X/α! ΣdX ⊕ X/α ≃ X is null,
so X/α ≃ 0 and α is invertible on X.
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Notation 3.3.8. The above lemma justifies denoting L(C , α) by C [α−1].

Remark 3.3.9. By Lemma 3.3.7 and Remark 3.3.6, for a category C ∈ Catperf , the category
C [α−1] = L(C , α) is equivalent to the idempotent completion of the full subcategory

{X[α−1] | X ∈ C } ⊆ Ind(C ).

Corollary 3.3.10. L : CatZ/d-end
perf ! CatZ/d-end

perf lands in CatZ/d-iso
perf and is left adjoint the the inclu-

sion CatZ/d-iso
perf ↪! CatZ/d-end

perf .

Proof. By Lemma 3.3.7, L lands in CatZ/d-iso
perf . Let (C , α) ∈ CatZ/d-end

perf , (D , β) ∈ CatZ/d-iso
perf , then a

map F : (C , α)! (D , β) must satisfy that the composition

(Nilα(C ), α)! (C , α) F−! (D , β)

is null, as on any object X, Fα : ΣdX ! X is both invertible and nilpotent. Thus F factors
uniquely through L(C , α) = cofib((Nilα(C ), α)! (C , α)).

Group action

We next note that CatZ/d-iso
perf has a residual action by the cofiber of the map d : ΩS2 ! ΩS2:

Definition 3.3.11. Let S2/d be the cofiber of the map d : S2 ! S2. Note that in the category of
E1-groups, the cofiber of the map d : ΩS2 ! ΩS2 is Ω(S2/d).

Lemma 3.3.12. CatZ/d-iso
perf is naturally an S2/d-local system, i.e. has a natural action by the group

ΩS2/d.

Proof. Consider the pushout square
S2 S2

pt S2/d

d

πd

e

⌟

and the diagram of local systems

PrS2/d Pr

PrS2 PrS2

e∗

π∗
d (S2)∗(πd)∗

d∗

(S2)∗ .

By Beck–Chevalley, e∗(πd)∗ ≃ S2
∗d∗. In particular, for (Catperf , Σ) ∈ PrS2 ,

e∗(πd)∗(Catperf , Σ) ≃ S2
∗d∗(Catperf , Σ) = S2

∗(Catperf , Σd) = CatZ/d-iso
perf .

The functor e∗ is the underlying category functor, thus (πd)∗(Catperf , Σ) ∈ PrS2/d is a lift of
CatZ/d-iso

perf .
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Remark 3.3.13. By Remark 3.0.1, a presentation of CatZ/d-iso
perf as an S2/d-local system is equivalent

to a local system S1/d! End(CatZ/d-iso
perf ) choosing idCatZ/d-iso

perf
. That is, a Ω(S1/d)-action on every

(C , α) ∈ CatZ/d-iso
perf . Ω(S1/d) is the free E1-group where d = 0. The action is given by the suspension

functor, and α : Σd ∼−! idC gives the required identification.

Recall that we have constructed an m-power map (−)m : CatZ/d-iso
perf ! CatZ/md-iso

perf , and by the
above lemma CatZ/d-iso

perf has a natural Ω(S2/d)-action and CatZ/md-iso
perf has a natural Ω(S2/md)-

action. We have a homomorphism q : Ω(S2/md)! Ω(S2/d). Carefully reviewing the construction
of the action, we can see that the m-power map is equivariant.

Lemma 3.3.14. The m-power map (−)m : CatZ/d-iso
perf ! CatZ/md-iso

perf is Ω(S2/md)-equivariant.

Proof. Look at the commutative diagram

S2 S2

ΣBZ/md ΣBZ/d

πmd πd

q

,

then the Beck–Chevalley map

q∗(−)Z/d-end ≃ q∗(πd)∗ ! (πmd)∗π∗
mdq∗(πd)∗ ≃ (πmd)∗π∗

d(πd)∗ ! (πmd)∗ ≃ (−)Z/md-end

is such a lift.

3.4 Asymptotically defined shifted endomorphisms

We will now use the constructed power maps (Definition 3.1.5, Definition 3.2.9) and take the
colimit of the resulted diagrams, transitioning from a finite quotient group D to a general one. In
the decategorified case, the colimit colimD!!Z/d C h⃗N[d] will be the category of d-self-maps in C for
any d with a surjection D !! Z/d. Two such self-maps are identified if they are the same after
some power. This category has an “asymptotically defined natural endomorphism of the identity
functor” corresponding to the self-map itself.
The categorified colimit colimd CatZ/d-end

perf will be the category of categories with such asymptotically
defined natural endomorphism of the identity. In particular colimd C h⃗N[d] enhances to an object in
there and the functor sending C to colimd C h⃗N[d] is right adjoint to the underlying category functor.
Restricting to categories with asymptotically defined natural isomorphisms, we extend the results
of Section 3.3 and get an action of the group Ω2 limd(S2/d) on this category.

Categories of asymptotically defined self maps

Fix a quotient group D of Ẑ.
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Definition 3.4.1. Let C ∈ Catperf . Define the category of D-asymptotically defined self-maps
C h⃗N[D] as the colimit in Catperf of C h⃗N[d] along the m-power map:

C h⃗N[D] := colim
D!!Z/d

C h⃗N[d].

The underlying object functor u : C h⃗N[d] ! C is compatible with this diagram

u((X, vX)m) ≃ u(X, vX)

and so defines an underlying object functor u : C h⃗N[D] ! C .

Remark 3.4.2. Write D as a sequential limit

D = lim
i

Z/di

of surjections, (in particular di divides di+1). By cofinality, C h⃗N[D] identifies with the sequential
colimit

C h⃗N[D] ≃ colim(C h⃗N[d1] (−)d2/d1
−−−−−−! C h⃗N[d2] (−)d3/d2

−−−−−−! · · · ).

Remark 3.4.3. Using Proposition 3.1.3, an object of C h⃗N[D] is equivalent to the data of X ∈ C

and v : ΣdX ! X for some D !! Z/d. Two such objects (X, ΣdX
v−! X) and (X, Σd′

X
v′

−! X)
are identified if they are asymptotically the same: there exists c, c′ such that cd = c′d′ ∈ D and
vc ≃ (v′)c′

.

Categories of asymptotically defined self maps

Definition 3.4.4. Define the category of stable, idempotent complete categories with D-asymptotically
defined shifted endomorphisms of the identity as the colimit in Pr of CatZ/d-end

perf along the m-power
maps:

CatD-end
perf := colim

D!!Z/d
CatZ/d-end

perf .

Similarly, define the category of stable, idempotent complete categories with D-asymptotically
defined nilpotent endomorphisms and D-asymptotically defined isomorphisms as

CatD-iso
perf := colim

D!!Z/d
CatZ/d-iso

perf

CatD-nil
perf := colim

D!!Z/d
CatZ/d-nil

perf

Remark 3.4.5. As in Remark 3.4.2, CatD-end
perf , CatD-iso

perf , CatD-nil
perf can be defined as sequential

colimits.

Example 3.4.6. If D = Z/d is finite then CatD-end
perf = CatZ/d-end

perf .
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Remark 3.4.7. Write D as a sequential limit of surjections

D = lim
i

Z/di.

The colimit in Pr is computed as the colimit in PrL, which in turn is computed as the limit of the
right adjoints. That is

CatD-end
perf ≃ lim(CatZ/d1-end

perf

d2/d1
√

(−)
 −−−−−−− CatZ/d2-end

perf

d3/d2
√

(−)
 −−−−−−− · · · ).

Therefore, an object in CatD-end
perf is a sequence of categories Ci, natural transformations αi : Σdi !

idCi and identifications (Ci, αi) ≃ di+1/di

√
(Ci+1, αi+1).

Using the power-root adjunction we have a series of maps (Ci, αi)h⃗N[di+1/di] ! (Ci+1, αi+1), and by
the above condition, the image is exactly all elements X such that αi+1 : Σdi+1X ! X admits a
root.

Definition 3.4.8. As the underlying functor category U : CatZ/d-end
perf ! Catperf is a left adjoint and

commutes with the power map, it induces an underlying category functor U : CatD-end
perf ! Catperf

in PrL. We will denote its right adjoint R : Catperf ! CatD-end
perf .

Lemma 3.4.9. Using the notations of Remark 3.4.7, U sends the system (Ci, αi) to the col-
imit colimi Ci (induced by the maps (Ci, α

di+1/di

i ) ! (Ci+1, αi+1)) and R sends C to the system
(C h⃗N[di], v). In particular U ◦ R ≃ (−)h⃗N[D].

Proof. R is defined as the limit of the functors (−)h⃗N[di] : Catperf ! CatZ/di-end
perf and so the formula

follows. U is defined as the left adjoint of R. Using (the (−)op version of) [HY17, Corollary 1.3],
we know that U , as a left adjoint to a limit of functors, is the colimit of the left adjoints of the
functors, i.e.

U((Ci, αi)) = colim
i

U(Ci, αi) = colim
i

Ci.

Justified by Lemma 3.4.9, we will continue the abuse of notations of Section 3.2 and denote R by
(−)h⃗N[D].

Remark 3.4.10. Using Remark 3.4.7 together with Lemma 3.4.9, we will think of an object in
CatD-end

perf as the category C = colimi Ci together with an “asymptotically defined natural trans-
formation α”, i.e. an exhausting filtration C1 ! C2 ! · · · ! C and natural transformations
αi : Σdi ! idCi

with the obvious compatibility conditions.

Repeating the argument of Lemma 3.4.9 we deduce the following:

Proposition 3.4.11. The embedding CatD-iso
perf ↪! CatD-end

perf admits a left adjoint L sending (C , α)
to C [α−1] (sending each (Ci, αi) to (Ci[α−1

i ], αi)). Moreover L is a Bousfield localization with kernel
CatD-nil

perf and the colocalization functor is Nil : CatD-end
perf ! CatD-nil

perf sending (C , α) to Nilα(C ).

35



Recall that CatZ/d-iso
perf admits a natural Ω(S2/d)-action (Lemma 3.3.12) and that the m-power map

is Ω(S2/md)-equivariant (Lemma 3.3.14). We deduce immediately:

Corollary 3.4.12. The category CatD-iso
perf admits an action of the group ΩS2

D, where

S2
D := lim

D!!Z/d
S2/d.

Lemma 3.4.13. π2(S2
D) ∼= D.

Proof. Write D as a sequential limit of surjections.

D = lim
i

Z/di.

By cofinality S2
D = limi S2/di. Milnor’s exact sequence for homotopy groups (see e.g. [BK72,

Chapter IX, Theorem 3.1]), says there is an exact sequence

0! lim
i

1 π3(S2/di)! π2(lim
i

S2/di)! lim
i

π2(S2/di)! 0.

S2/di is simply connected and has finite homology groups thus has finite homotopy groups. In
particular, by the Mittag–Leffler criterion (see e.g. [Swi75, Theorem 7.75]), lim1

i π3(S2/di) = 0.
Thus

π2(lim
i

S2/di) ∼= lim
i

π2(S2/di) = lim
i

Z/di = D

as needed.

Corollary 3.4.14. There is an action of Ω2S2
D on idCatD-iso

perf
which induces, for any (C , α) ∈

CatD-iso
perf , a group homomorphism Σ(−) : D ! π0(Aut(C )) lifting the suspension.

Proof. There is such a group action by Corollary 3.4.12 and Remark 3.0.2. Therefore there is a
group homomorphism

π2(S2
D) = π0(Ω2S2

D)! π0(Aut(C )).

By Lemma 3.4.13 π2(S2
D) ∼= D. By Remark 3.3.13, 1 ∈ D acts by Σ.

4 The periodicity theorem

The main goal of this section is constructing a group homomorphism

Zn := lim
k

Z/pk|vn|! π0 Aut(Spω
T (n)).

Our main tool will be Devinatz and Smith’s classical periodicity theorem. We will show that it
implies the existence of a category in CatZn-iso

perf with underlying category Spω
T (n) (Corollary 4.2.7).

Then, using Corollary 3.4.14, we get the required group homomorphism.
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4.1 Telescopic localizations

We start with some preliminary well known introduction to the telescopic categories in chromatic
homotopy theory. All results here are well known, but for some we did not find a proof in the
literature. For a more thorough introduction to chromatic homotopy theory we refer the reader
to [BB20]. For proofs of these facts for the K(n)-local category we refer to [HS19].
Fix a prime p. Let K(n) be the n-th Morava K-theory associated to a formal group law of height
n over Fp. It has homotopy groups given by

π∗K(n) ∼= Fp[v±1
n ]

where vn is of degree |vn| = 2(pn − 1). It is also common to define K(∞) = Fp, K(0) = Q,
K(−1) = 0.

Definition 4.1.1. Let Spω
≥n ⊆ Spω

(p) be the thick subcategory of K(n − 1)-acyclics. That is

Spω
≥n = {X ∈ Spω

(p) | K(n − 1) ⊗ X ≃ 0}

A spectrum in Spω
≥n is said to be of type ≥ n.

Ravenel proved in [Rav84, theorem 2.11] that Spω
≥n+1 ⊆ Spω

≥n, Mitchell proved in [Mit85, The-
orem B] that these inclusions are strict and Hopkins and Smith proved that these are all thick
subcategories of Spω

(p) [HS98, Theorem 7].

Theorem 4.1.2 (Thick subcategory theorem). The thick subcategories of Spω
(p) are exactly Spω

≥n

and they assemble into a strictly ascending filtraion

{0} = Spω
≥∞ ⊊ · · · ⊊ Spω

≥2 ⊊ Spω
≥1 ⊊ Spω

≥0 = Spω
(p).

Definition 4.1.3 ([HS98]). Let X be a p-local spectrum. A map v : ΣdX ! X is said to be a
vn-self-map if

(1) idK(n) ⊗ v : K(n) ⊗ ΣdX ! K(n) ⊗ X is an isomorphism.

(2) idK(m) ⊗ v : K(m) ⊗ ΣdX ! K(m) ⊗ X is nilpotent for m ̸= n.

Hopkins and Smith’s periodicity theorem states that any spectrum of type ≥ n admits an asymp-
totically unique vn-self-map:

Theorem 4.1.4 (Periodicity theorem [HS98, Theorem 9, Corollary 3.7]). A p-local compact spec-
trum X admits a vn-self-map if and only if X ∈ Spω

≥n. If f, g are two vn-self-maps of X then
there exist integers i, j such that f i ≃ gj . Any spectrum admitting a vn-self-map admits also a
vn-self-map of degree pk|vn| = 2pk(pn − 1) for some k.

Proposition 4.1.5 ([HS98, Corollary 3.8]). Let (X, v), (Y, w) be two p-local spectra with a vn-self-
map of degrees d, e respectively. Let f : X ! Y be a morphism. Then there exists i, j such that
di = ej and the following diagram commutes

ΣdiX ΣejY

X Y

Σdif

vi wj

f

.
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Remark 4.1.6. We work under the convention that the v0-self-maps are multiplication by powers
of p.

Section 4.2 is devoted to the reformulation of the periodicity theorem as an equivalence of categories
using the language of Section 3.
Let n < ∞. We let F (n) ∈ Spω

≥n \ Spω
≥n+1 be any compact spectrum of type n. By the periodicity

theorem there exists a vn-self-map v : ΣdF (n) ! F (n). Its corresponding height n telescope is
defined as T (n) := F (n)[v−1].
Now let Sp≥n ⊆ Sp(p) be the subcategory generated by Spω

≥n (or equivalently by F (n)) under
colimits. Denote by Lf

n Sp the Verdier quotient of Sp≥n+1 ! Sp(p). This category is equivalent to
the category of (T (0) ⊕ · · · ⊕ T (n))-local spectra. Denote the corresponding quotient functor by

Lf
n : Sp(p) ! Lf

n Sp

which is a smashing localization.
The category SpT (n) of T (n)-local spectra is identified with the Verdier quotient of Sp≥n+1 ! Sp≥n.
The quotient map is given by the restricted localization

LT (n) = Lf
n ↾Sp≥n

: Sp≥n ! SpT (n).

The category of T (n)-local spectra inherits a symmetric monoidal structure given by the T (n)-
localized tensor product of spectra. Its unit is the T (n)-local sphere ST (n) := LT (n) S.

A related category is the monochromatic category Mf
nSp = ker(Lf

n Sp
Lf

n−1−−−! Lf
n−1 Sp). The inclusion

Mf
nSp ! Lf

n Sp admits a right adjoint Mf
n : Lf

n Sp ! Mf
nSp. If X ∈ Sp≥n, then Lf

n−1(Lf
n X) ≃

Lf
n−1 X ≃ 0, therefore the functor Lf

n : Sp≥n ! Lf
n Sp factors through Mf

nSp.
We will use the following simple fact:

Proposition 4.1.7. The category Sp≥n is compactly generated and its compacts are exactly Spω
≥n.

Proof. As Sp≥n is closed under colimits in spectra, it is clear that any compact spectrum of type ≥ n
is compact in Sp≥n. As Spω

≥n is closed under finite colimits, Sp≥n is generated from Spω
≥n under

filtered colimits. Now let X ∈ Sp≥n be compact. By the previous part, X can be written as a
filtered colimit of compact spectra of type ≥ n:

X ≃ colim
i

Xi.

Then, as X is compact, the identity map

X
id−! X ≃ colim

i
Xi

factors through Xi for some i, so X is a retract of Xi ∈ Spω
≥n whence in Spω

≥n.

Corollary 4.1.8. The monochromatic category Mf
nSp is compactly generated. Its compact objects

are retracts of Lf
n X for X ∈ Spω

≥n.
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Proof. Restricted to Sp≥n, the functors Mf
n, Lf

n coincide. As Lf
n is smashing, the right adjoint

Mf
nSp ↪! Sp≥n preserves colimits. Therefore Lf

n : Sp≥n ! Mf
nSp preserves compact objects. Thus

any Lf
n-localization of a compact type ≥ n spectrum is compact in Mf

nSp, and whence so are their
retracts.
For the other direction, let X ∈ Mf

nSp ⊆ Lf
n Sp be compact. Write X as a filtered colimit X ≃

colimi Lf
n Xi for Xi ∈ Spω

≥n. Then, as X is compact, the identity map

X
id−! X ≃ colim

i
Lf

n Xi

factors through Lf
n Xi for some i, so X is a retract of Lf

n Xi. This also shows that Mf
nSp is compactly

generated.

The functors LT (n) : Mf
nSp ⇄ SpT (n) :Mf

n are inverses, thus we deduce:

Corollary 4.1.9. The category SpT (n) of T (n)-local spectra is compactly generated. Its compact
objects are exactly retracts of T (n)-localization of compact type ≥ n spectra.

Corollary 4.1.10. Any compact T (n)-local spectrum is dualizable.

Proof. The T (n)-localization functor is symmetric monoidal, thus sends dualizable objects to dualiz-
able objects. Any spectrum X ∈ Spω

≥n ⊆ Spω
(p) is dualizable and therefore so is its T (n)-localization.

The claim follows since dualizability is preserved under retracts.

4.2 The periodicity theorem rephrased

We now specialize to the category of compact spectra of type ≥ n, showing the periodicity theorem
is equivalent to the existence of of a lift of Spω

≥n in CatZn-end
perf , corresponding to the asymptotically

defined vn-self-map. We will then show that the the vn-nilpotents gives a lift of Spω
≥n+1 and

inverting vn lifts the category of compact T (n)-local spectra.

Definition 4.2.1. We say that (X, vX) ∈ (Spω
(p))

h⃗N[d] is a vn-self-map if vX is a vn-self-map in the
sense of Definition 4.1.3. We define Spω

vn,k ⊆ (Spω
≥n)h⃗N[pk|vn|] to be the full subcategory consisting of

vn-self-maps. By an abuse of notation we will denote the natural transformation of Proposition 3.1.4
for this category by vn : Σpk|vn| ! id.

Remark 4.2.2. By Theorem 4.1.4 we could have defined Spω
vn,k as the full subcategory of (Spω

(p))
h⃗N[pk|vn|]

consisting of vn-self-maps.

Lemma 4.2.3. The sequence (Spω
vn,k, vn) lifts to a compatible system (Spω

vn
, vn) ∈ CatZn-end

perf .

Proof. We need to provide isomorphisms p

√
Spω

vn,k+1 ! Spω
vn,k. Recall the isomorphism

F : p

√
(Spω

≥n)h⃗N[pk+1|vn|] ∼−! (Spω
≥n)h⃗N[pk|vn|]
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of Corollary 3.2.12. Recall that p

√
(Spω

≥n)h⃗N[pk+1|vn|] consists of tuples ((X, v), u) of elements
(X, v) ∈ (Spω

≥n)h⃗N[pk+1|vn|] and a self-map u of it of degree pk|vn|, i.e. squares of the form

Σ(pk|vn|+pk+1|vn|)X Σpk+1|vn|X

Σpk|vn|X X

Σpk|vn|u

Σpk+1|vn|v v

u

with an identification up ≃ v. The functor F then sends such a square to (X, u). As up ≃ v is a
vn-self-map, so is u. Thus, restricting F to p

√
Spω

vn,k+1 we get a fully faithful functor

F : p

√
Spω

vn,k+1 ↪! Spω
vn,k.

It is left verifying that F is essentially surjective. Let (ΣkX
u−! X) ∈ Spω

vn,k, then u is the image of

Σpk|vn|+pk+1|vn| Σpk+1|vn|X

Σpk|vn|X X

Σpk|vn|u

Σpk+1|vn|up up

u

∈ p

√
Spω

vn,k+1

under F .

Remark 4.2.4. We could have defined Spω
vn

living in CatẐ-end
perf , as the category of vn-self-maps

of arbitrary degree, and not necessarily p-typical. By Theorem 4.1.4, the underlying categories in
both situations identify.

Theorem 4.2.5. The composition

u : U(Spω
vn,k) ↪! U((Spω

≥n)Zn-end) u−! Spω
≥n

is an isomorphism, where u is the underlying spectrum functor as in Proposition 3.1.3(2).

To prove this theorem we will need the following technical lemma, which proves that a full, conser-
vative exact functor between stable categories is already fully faithful.

Lemma 4.2.6. Let F : C ! D be an exact functor between stable categories. Assume that F is
full3 and conservative. Then F is fully faithful.

Proof. It suffices to prove that for all X, Y ∈ C ,

F : homC (X, Y )! homD(FX, FY )
3A functor F is full if it is surjective on path components of mapping space, i.e. for every X, Y ∈ C the map

π0F : π0 MapC (X, Y ) ! π0 MapD(F X, F Y ) is surjective.
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is an isomorphism. Equivalently

πmF : πm homC (X, Y )! πm homD(FX, FY )

is an isomorphism for all m. By exactness, πmF is given by

πm homC (X, Y ) = π0 homC (ΣmX, Y ) π0F−−! π0 homD(FΣmX, FY )
≃ π0 homD(ΣmFX, FY ) = πm homD(FX, FY )

Thus it is enough to prove that π0F is an isomorphism of groups. As F is full,

π0F : π0 homC (X, Y ) = π0 MapC (X, Y )! π0 MapD(FX, FY ) = π0 homD(FX, FY )

is surjective, so it is left to prove that its kernel is trivial, i.e. for any f : X ! Y , if Ff ≃ 0 then
f ≃ 0. Let f : X ! Y with Ff ≃ 0. Since Ff ≃ 0, the exact sequence

FY ! cofib(Ff) F g−−! ΣFX ≃ FΣX

splits. Let s : FΣX ! cofib(Ff) ≃ F cofib(f) be a splitting and s : ΣX ! cofib(f) a lifting, which
exists as F is full. Denote by g : cofib(f)! ΣX the associated map.

F (g ◦ s) = Fg ◦ s ≃ id

and as F is conservative, g ◦ s is an isomorphism. Choose s′ := s ◦ (g ◦ s)−1. Then

g ◦ s′ = g ◦ s ◦ (g ◦ s)−1 ≃ id.

So Y ! cofib(f)! ΣX splits which proves f ≃ 0.

Proof of Theorem 4.2.5. As u is an exact functor of stable categories, by Lemma 4.2.6 it is enough
to prove u is full, conservative and essentially surjective.
Conservativity follows from Proposition 3.1.3 and as conservative functors are closed under sequen-
tial colimits. The periodicity theorem — Theorem 4.1.4 proves that u is essentially surjective.
Let f : X ! Y be a map between compact spectra of type ≥ n. As u is essentially surjective, there
exist some liftings (X, vX), (Y, vY ) ∈ Spω

vn
. Replacing the maps by large enough powers of them,

we may assume (X, vX), (Y, vY ) ∈ Spω
vn,k for some k. By Proposition 3.1.3

π0 MapSpω
vn,k

((X, vX), (Y, vY )) = {(g, H) | g : X ! Y, H : g ◦ vX ≃ vY ◦ g}

so to show u is full it is enough to show that (maybe for larger k) f commutes with v up to
homotopy. This is exactly Proposition 4.1.5.

Corollary 4.2.7. The isomorphism u of Theorem 4.2.5 induces isomorphisms of categories

U(Nilvn
(Spω

vn
)) ≃ Spω

≥n+1, U(Spω
vn

[v−1
n ]) ≃ Spω

T (n).
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Proof. Recall (Proposition 3.2.8) that U is a left adjoint, therefore

U(Nilvn(Spω
vn

)) ≃ colim
k

U(Nilvn(Spω
vn,k)).

The functor U(Nilvn(Spω
vn,k)) ! Spω

≥n lands in spectra with nilpotent vn-self-maps, therefore of
type ≥ n + 1. Thus, restricting the isomorphism of Theorem 4.2.5 to Nilvn(Spω

vn
) gives a fully

faithful functor
u : U(Nilvn

(Spω
vn

))! Spω
≥n+1.

It is left verifying it is essentially surjective. Let X ∈ Spω
≥n+1, then 0: Σp|vn|X ! X is a vn-self

map and X ≃ u(X, 0).
As cofibers commute with filtered colimits, Spω

vn
[v−1

n ] = L(Spω
vn

, vn) is the cofiber of Nilvn
(Spω

vn
)!

Spω
vn

. Since U commutes with cofibers

U(Spω
vn

[v−1
n ]) ≃ cofib(U(Nilvn

(Spω
vn

))! U(Spω
vn

)) ≃ cofib(Spω
≥n+1 ! Spω

≥n) ≃ Spω
T (n).

Corollary 4.2.8. There is a group homomorphism

Σ(−) : Zn ! π0 Aut(Spω
T (n))

sending the topological generator 1 ∈ limk Z/pk|vn| to the suspension automorphism.

Proof. By Corollary 3.4.14 there is a Ω2S2
Zn

-action on any category in CatZn-iso
perf where 1 acts by

suspension, in particular on Spω
vn

[v−1
n ]. As U is an exact functor, there is such a group action on

Spω
T (n) = U(Spω

vn
[v−1

n ]). Using Lemma 3.4.13, we have a group homomorphism

Zn
∼= π0(Ω2S2

Zn
)! π0 Aut(Spω

T (n)).

5 The telescopic Picard

We describe the T (n)-local Picard group as the group of automorphisms of Spω
T (n) using Section 4.1.

We then use the results of Section 4.2 to construct a large subgroup of Pic(SpT (n)), in particular
finding a subgroup of the form Zp × Z/(pn − 1) in the even Picard group.

5.1 Automorphisms and Picard

We recall the definition of the group of units. Let D ∈ CAlg(PrL). Then D admits a symmetric
monoidal unit map

1[−] : S ! D

which induces a functor in PrL

1[−] : CMon = CAlg(S)! CAlg(D).
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Its right adjoint is corepresented by 1, i.e. it sends R to Map(1, R) which admits a natural com-
mutative monoid structure via the multiplication of R. The right adjoint to the composition

Spcn ≃ CMon gp ⊆ CMon 1[−]−−−! CAlg(D)

is called the group of units and denoted by (−)×. Notice that for R ∈ CAlg(D), the underlying
space of R× consists of the connected components of invertible elements in Map(1, R).
We now apply it to D = Cat:

Definition 5.1.1. The Picard spectrum of C ∈ CAlg(Cat) is defined to be pic(C ) := C ×. The
Picard group is defined to be Pic(C ) = π0pic(C ).

Lemma 5.1.2. For C ∈ CAlg(PrL), the Picard group Pic(C ) is isomorphic to the group of C -linear
automorphisms π0 AutC (C ).

Proof. The Picard spectrum pic(C ) = C × is given as the invertible components of Map(pt, C )
where pt is the terminal category (i.e. the unit in Cat). Now,

C ≃ ≃ Map(pt, C ) ≃ MapL(S, C ) ≃ MapC (C , C ) = EndC (C )

where MapL is the space of colimit-preserving functors (i.e. functors in PrL) and MapC is the space
of C -linear functors in PrL. The isomorphism C ≃ ∼−! EndC (C ) is given by X 7! X ⊗ − and is an
isomorphism of monoids. We thus get

Pic(C ) = π0pic(C ) ∼= π0EndC (C )× = π0 AutC (C ).

Corollary 5.1.3. Pic(SpT (n)) ∼= π0 Aut(Spω
T (n)).

Proof. As SpT (n) is a mode, i.e. an idempotent algebra in PrL (see [CSY21a, § 5]), the category of
SpT (n)-modules sits fully-faithfully inside PrL. Therefore

Pic(SpT (n)) ∼= π0 AutSpT (n)(SpT (n)) = π0 Aut(SpT (n)) ∼= π0 Aut(Spω
T (n)),

where the last isomorphism is true since SpT (n) is compactly generated (Corollary 4.1.9).

5.2 Constructing Picard elements

We use Section 4 to define automorphisms of the compact T (n)-local category. Using Corollary 5.1.3,
we construct telescopic Picard elements. By Corollary 4.2.8 the suspension lifts to a group homo-
morphism

Σ(−) : Zn ! π0 Aut(Spω
T (n))

Note that for p odd, |vn| is prime to p and so

Zn = lim
k

Z/pk|vn| ∼= lim
k

Z/pk × Z/|vn| ∼= Zp × Z/|vn|
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and for p = 2

Zn = lim
k

Z/pk|vn| = lim
k

Z/(2k · 2(2n − 1)) ∼= lim
k

Z/2k+1 × Z/(2n − 1) ∼= Z2 × Z/(2n − 1).

Denoting

ap =
{

2, p is odd
1, p = 2

we write Zn
∼= Zp × Z/(ap(pn − 1)).

Theorem 5.2.1. The group homomorphism Σ(−) : Zn
∼= Zp × Z/(ap(pn − 1)) ! Pic(SpT (n)) is

injective.

To prove this theorem we will look at two functors and the image of Picard elements under them.
Consider the K(n) homology functor

K(n)∗(−) : SpT (n) ! ModK(n)∗(GrAb).

K(n)∗ ∼= Fp[v] is a graded field and satisfies a Künneth isomorphism, i.e. this functor is symmetric
monoidal.

Lemma 5.2.2. A graded K(n)∗-module is invertible if and only if it is of the form K(n)∗−d :=
π∗ΣdK(n) for some d ∈ Z.

Proof. If M = K(n)∗−d then M−1 := K(n)∗+d is an inverse. Assume now that M is invertible. As
K(n)∗ is a graded field, M and its inverse M−1 are free and can be written as

M =
⊕
i∈I

K(n)∗−di
, M−1 =

⊕
j∈J

K(n)∗−ej
.

Therefore
M ⊗K(n)∗ M−1 ≃

⊕
i∈I,j∈J

K(n)∗−(di+ej).

It is isomorphic to K(n)∗ if and only if both I, J consists of a single element I = {i}, J = {j} and
di + ej ≡ 0 modulo 2(pn − 1).

Corollary 5.2.3. The composition

Z/(ap(pn − 1)) ↪! Zp × Z/(ap(pn − 1)) Σ(−)

−−−! Pic(SpT (n))

is injective.

Proof. It is enough to check that this composition is injective after composing with the map

K(n)∗(−) : Pic(SpT (n))! Pic(ModK(n)∗(GrAb)).

By construction, this map sends d ∈ Z/(ap(pn − 1)) to K(n)∗+d if p is odd or to K(n)∗+2d if p = 2
4 and so it is injective (and an isomorphism for p ̸= 2).

4Under the isomorphism limk Z/pk|vn| ∼= Zp × Z/(ap(pn − 1)), the generator of Z/(ap(pn − 1)) is 1 if p is odd
and is 2 if p = 2.
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Let Γn be a formal group of height n and En = En(Γn,Fp) be a Morava E-theory over Fp. En admits
a natural action of the (extended) Morava stabilizer group Gn = Aut(Γn,Fp). Let W(Fp) be the p-
typical Witt vectors ring. Then by Lubin–Tate theory, the local ring π0En = W(Fp)Ju1, . . . , un−1K
corepresents deformations of Γn. The invariant differentials ω of the universal deformation of Γn

forms an invertible π0En-module and π∗En =
⊕

t∈2Z ω⊗t/2, where ω is of degree -2, as commutative
rings with Gn-action.
The Morava stabilizer group splits as Gn = Sn ⋊ Gal where Gal = Gal(Fp/Fp) ∼= Ẑ and Sn =
AutFp

(Γn) is isomorphic to the group of units O×
n of the order

On = Wn⟨S | Sn = p, Sw = wφS ∀w ∈ Wn⟩

where Wn = W(Fpn) is the p-typical Witt vectors ring of Fpn and φ is a lift of the Frobenius to
Wn. The topological generator 1 of Ẑ acts on Sn = O×

n by conjugation with S. In particular we
have an embedding

Zp
1+p·−

↪−−−−! Z×
p ⊆ W×

n ↪! O×
n ↪! Gn.

Consider the symmetric monoidal functor

En ⊗ − : SpT (n)
(BZp)∗

−−−−! SpBZp

T (n)
En⊗−−−−−! ModEn

(SpBZp

T (n))

tensoring with En while remembering the Zp-action. As it is symmetric monoidal, it sends Picard
elements to Picard elements.

Lemma 5.2.4. The group homomorphism

Zp ↪! Zp × Z/(ap(pn − 1)) Σ(−)

−−−! Pic(SpT (n))

is injective.

Proof. By continuity it is enough to check this for Z ⊆ Zp. It is enough to see this after composing
with

En ⊗ − : Pic(SpT (n))! Pic(ModEn
(SpBZp

T (n))).

The composition sends d ∈ Z ⊆ Zp to ΣdEn ∈ Pic(ModEn(SpBZp

T (n))). As ΣEn ̸= En it is enough to
check the injectivity for d even, i.e. that for d even ΣdEn is not isomorphic to En in ModEn(SpBZp

T (n)).
Note that on the level of homotopy groups with Zp-action

π∗ΣdEn ≃ π∗En ⊗ ωd/2 ∈ Modπ∗En(GrAbBZp)

(see e.g. [Hea15, Lemma 1.3.1]) therefore it is not isomorphic to π∗En and in particular ΣdEn is
not isomorphic to En.

Proof of Theorem 5.2.1. The result follows from Corollary 5.2.3, Lemma 5.2.4 and the fact that
Z/(ap(pn − 1)) is torsion while Zp is not.

Remark 5.2.5. All computations done here hold in the K(n)-local category. Thus the constructed
Picard subgroup is preserved under K(n)-localization.
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5.3 Even Picard group

Invertible elements in C are in particular dualizable. Thus every Picard element X has a dimension
dim(X) ∈ π01.

Theorem 5.3.1 ([CSY21b, Corollary 3.21]). Let C be a symmetric monoidal category. For every
X ∈ Pic(C ), we have dim(X)2 = 1. In particular, if π01 is a connected ring (that is, it does not
contain any non-trivial idempotents) and 2 is invertible in π01, then dim(X) = ±1.

Definition 5.3.2 ([CSY21b, Definition 3.22]). The even Picard group of a symmetric monoidal
category C , is the subgroup Picev(C ) ⊆ Pic(C ) given by the kernel of the map Pic(C ) dim−−! π0(1)×.

Corollary 5.3.3. There is an embedding Zp × Z/(pn − 1) ↪! Picev(SpT (n)).

Proof. By Theorem 5.3.1, the dimension of every X ∈ Pic(SpT (n)) squares to 1, thus the subgroup
of squares (Pic(SpT (n)))

2 lies in the even Picard group. By Theorem 5.2.1 there is an embedding
Σ(−) : Zp × Z/(ap(pn − 1)) ↪! Pic(SpT (n)), where

ap :=
{

2, p odd
1, p = 2

.

Therefore we have an embedding of the group of squares:

Σ(−) : 2Zp × 2(Z/(ap(pn − 1))) ↪! (Pic(SpT (n)))
2 ⊆ Picev(SpT (n)). 5

When p is odd 2 ∈ Zp is invertible, thus 2Zp = Zp and 2(Z/(ap(pn − 1))) = 2(Z/(2(pn − 1))) ∼=
Z/(pn − 1). In the case p = 2, 2Z2 ∼= Z2 with generator 2, and 2 ∈ Z/(a2(2n − 1)) = Z/(2n − 1) is
invertible thus 2(Z/(2n − 1)) = Z/(2n − 1).
In both cases the group of squares is isomorphic to Zp × Z/(pn − 1).

6 Galois extensions

In this section we use Kummer theory as introduced in [CSY21b] to find a telescopic lifting of a
specific non-Abelian Galois extensions of SK(n). We start with a brief review of Galois and Kummer
theories, then move to the category of LT (n) SW(Fpn)-modules, which admits a (pn − 1)-st root of
unity, and study its Picard group.

6.1 Kummer theory

Definition 6.1.1 ([Rog05]). Let C ∈ CAlg(PrL), let G be a finite group and let R ∈ CAlg(C BG).
We say that R is a G-Galois extension (of 1) if it satisfies the following two conditions:

(1) The canonical map 1! RhG is an isomorphism in C .
5As the groups Zp and Z/(ap(pn − 1)) are additive, and to avoid confusion, we denote their group of squares by

2Zp and 2(Z/(ap(pn − 1))) = {2x | x ∈ Z/(ap(pn − 1))} respectively.
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(2) The canonical map R ⊗ R!
∏

G R is an isomorphism in C BG.

A Galois extension is called faithful if in addition the functor R ⊗ − is conservative. Denote by
CAlgG-Gal(C ) ⊆ CAlg(C BG)≃ the subspace of G-Galois extensions.

Definition 6.1.2 (Roots of unity, [CSY21b]). Let C be an additive presentably symmetric monoidal
category. Let m ≥ 1. An m-th root of unity of C is a map ω : Cm ! 1

×. We say that ω is primitive
if 1 is m-divisible (i.e. m is divisible in π01) and for every d which strictly divides m, the only
commutative algebra S ∈ CAlg(C ) for which there exists a dotted arrow rendering the diagram of
connective spectra

Cm 1
×

Cd S×

ω

commutative, is S = 0.

Theorem 6.1.3 (Kummer theory, [CSY21b, Proposition 3.23]). Let C be a presentable, additive,
symmetric monoidal category with a primitive m-th root of unity. There is a split short exact
sequence of Abelian groups

0! (π01
×)/(π01

×)m
! π0 CAlgZ/m-Gal(C )! Picev(C )[m]! 0.

6.2 Galois theory of LK(n) SW(Fpn)

Let W be the Witt vectors functor and SW be the spherical Witt vectors functor as defined
in [Lur18, Example 5.2.7], and later in [BSY22, Section 2], [Ant23].

Notation 6.2.1. Denote the Witt vectors of Fpn and the K(n)-localization of the spherical Witt
vectors of Fpn by

Wn := W(Fpn)
SWn := LK(n)(SW(Fpn))

respectively. We will also denote Mod∧
SWn

:= ModSWn
(SpK(n)).

Let En = En(Γn,Fp) be a Morava E-theory.

Proposition 6.2.2 ([DH04, Theorem 5],[BR08] [Mat16, Theorem 10.9]). The map SK(n) ! En

exhibits En as the Galois closure of SK(n) and its Galois group is the Morava stabilizer group Gn.

Proposition 6.2.3 ([CSY21b, Proposition 5.13]). The Galois group of SWn over SK(n) is Z/n,
given as the quotient group of Ẑ ∼= Gal ≤ Gn.

Corollary 6.2.4. The map SWn ! En idenitfies En as the algebraic closure of SWn with Galois
group GW

n := Sn × nẐ ≤ Gn
6.

Using [Mat16, Section 9] we deduce the following:
6It is a product as the action of n ∈ Ẑ on Sn is given by conjugation with Sn = p, which is trivial
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Corollary 6.2.5. Let G be a finite group. Then there is a bijection

{continuous homomorphisms GW
n ! G}/conj. ! {G-Galois extensions of SWn}/iso.

taking a character ρ : GW
n ! G to Cρ(G, En)hGW

n , where

Cρ(G, En) =
∏
G

En ∈ CAlg(SpK(n))SWn/

is equipped with the ρ-twisted GW
n -action: GW

n acts on each En by Galois conjugation and permutes
the coordinates through ρ and the left regular action of G on itself.

Definition 6.2.6. The ring On = Wn ⟨S|Sn = p, Sw = wφS⟩ admits a surjection of rings

π : On
S 7!0−−−!! Fpn

which induces a surjective group homomorphism

GW
n = Sn × nẐ!! Sn = O×

n
π−!! F×

pn .

Let Yn be the F×
pn -Galois extension of SWn corresponding to this homomorphism.

Definition 6.2.7. Let Sn be the kernel of the map π : Sn !! F×
pn .

The multiplicative lifts function F×
pn !W×

n ⊆ Sn splits Sn as Sn = Sn ⋊ F×
pn .

We have now introduced all ingredients used in the classification of the even Picard group of
Mod∧

SWn
, a key step in the lifting of the Galois extension.

Proposition 6.2.8. The group Picev(Mod∧
SWn

)[pn − 1] is a cyclic group of order pn − 1 and is
generated by the image of Yn under the map in Theorem 6.1.3.

To prove this proposition we will need the following two lemmas, which are variants of [CSY21a,
Proposition 2.2.6] and [CSY21b, Proposition 5.17]. The proof of Lemma 6.2.9 is almost identi-
cal, and the proof of Proposition 6.2.8 using these lemmas is the same as the proof of [CSY21b,
Proposition 5.23]. We write the proofs for completeness.

Lemma 6.2.9. The image of the unit map u : π0SWn ! π0En is Wn ⊆ π0En and the kernel is
precisely the nil-radical.

Proof. As SWn = E
hGW

n
n , the map u factors through the fixed points (π0En)GW

n ⊆ π0En. By [BG18,
Lemma 1.33],

(π0En)GW
n = ((π0En)Sn)

nẐ
= W(Fp)nẐ = Wn.

By [BGH22, Corollary 2.3.10], the E∞-page of the descent spectral sequence

Hs
c(GW

n , πtEn) ⇒ πt−s(SWn)

has a horizontal vanishing line. Since the spectral sequence is multiplicative, this implies that all
elements in π0SWn with positive filtration degree are nilpotent. Finally, since SWn admits a ring
map from SW(Fpn), the map u : π0SWn !Wn is surjective.
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Lemma 6.2.10. The Abelianization of Sn is given by

Sab
n

∼= Z×
p ⊕F×

p
F×

pn
∼=
{
Zp × F×

pn , p > 2
Z2 × {±1} × F×

2n , p = 2
.

Proof. For n = 1, Sn = Z×
p is already Abelian and the lemma is trivial. Following [Hen17, §4], let

v : On !
1
nZ≥0 be the valuation defined by v(S) = 1

n and define a 1
nZ≥0-filtration on Sn = O×

n by

F≥iSn = {x ∈ Sn | v(x − 1) ≥ i}.

With this filtration Sn = F≥0Sn and Sn = F≥ 1
n

Sn. The group commutator and p-th power map
endows

⊕
i>0 griSn with the structure of a graded mixed Lie algebra in the sense of Lazard [Laz65]

(see [Hen17, § 4.2]). As Henn, denote the corresponding operations by [−, −] : griSn ⊗ grjSn !
gri+jSn and P : griSn ! grϕ(i)Sn where ϕ(i) = min{i + 1, pi}.
The mod S reduction maps

gr0Sn ! F×
pn griSn ! Fpn (2)

[x] 7! x mod S [1 + xSk] 7! x mod S

are isomorphisms, and it is a straightforwatd calculation to show that for 1+x ∈ griSn, 1+y ∈ grjSn,

[1 + x, 1 + y] ≡ 1 + xy − yx ∈ gri+jSn. (3)

For every k ∈ 1
nZ≥0, we get a natural filtration on (F≥kSn)ab = F≥kSn/[F≥kSn, F≥kSn] given by

filt≥i(F≥kSn)ab := F≥iSn/⟨[F≥aSn, F≥bSn] | k ≤ a, b, a + b = i⟩

which simply induces the equalities:

gri(F≥kSn)ab = gri(F≥k+ 1
n

Sn)ab/[grkSn, gri−kSn].

In particular, assigning k = 0:

griSab
n = griS

ab
n /[gr0Sn, griSn] for all i > 0.

In the proofs of [Hen17, Proposition 5.2 and Propsition 5.3], it is shown that for any p,

griS
ab
n =


Fpn , i = 1

n

Fp, i ∈ Z≥1

0, otherwise

and that the p-th power map P is

a) an isomorphism on the integral grades for p odd;

b) and an isomorphism on intergral grades greater than 1 and trivial for the first grade for p = 2.
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Let j ∈ Z≥1. Using Equation (2), we may choose representatives for grjSn of the form 1 + ωpj ,
ω ∈ Fpn , and F×

pn represent gr0Sn. Let 1 + ωpj ∈ grjSn, ω′ ∈ F×
pn

∼= gr0Sn. Then by Equation (3):

[ω′, 1 + ωpj ] = [1 + (ω′ − 1), 1 + ωpj ] ≡ 1 + (ω′ − 1)ωpj − ωpj(ω′ − 1) = 1.

Therefore [gr0Sn, grjSn] = 0. Again, using Equation (2), we can choose representatives for gr 1
n

Sn

of the form 1 + ωS for ω ∈ Fpn . Let ω′ ∈ F×
pn

∼= gr0Sn and 1 + ωS ∈ gr 1
n

Sn, then

[ω′, 1 + ωS] = [1 + (ω′ − 1), 1 + ωS] ≡ 1 + (ω′ − 1)ωS − ωS(ω′ − 1) = 1 + ω(ω′ − ω′φ)S.

Choosing ω′ /∈ F×
p , varying over all ω we see that [gr0Sn, gr 1

n
Sn] = gr 1

n
Sn. We get

griSab
n =


F×

pn , i = 0
Fp, i ∈ Z≥1

0, otherwise

and the p-th power map is

a) an isomorphism on positive grades for p odd;

b) and an isomorphism on grades greater than 1 and trivial for the first grade for p = 2.

The claim then follows.

Corollary 6.2.11. The Abelianization of GW
n is given as

(GW
n )ab ∼= (Z×

p ⊕F×
p
F×

pn) × Ẑ

Proof. Indeed, we have

(GW
n )ab = (Sn × nẐ)ab = Sab

n × nẐ ∼= (Z×
p ⊕F×

p
F×

pn) × Ẑ.

Proof of Proposition 6.2.8. Using Theorem 6.1.3 and its naturality with respect to the functor

LK(n) : ModSW(Fpn )(Spp)! Mod∧
SWn

,
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we obtain the following morphism of short exact sequences of abelain groups

0 0

(π0SW(Fpn)×)/(π0SW(Fpn)×)pn−1 (π0SW×
n )/(π0SW×

n )pn−1

π0 CAlgF×
pn -Gal(ModSW(Fpn )(Spp)) π0 CAlgF×

pn -Gal(Mod∧
SWn

)

Picev(ModSW(Fpn )(Spp))[pn − 1] Picev(Mod∧
SWn

)[pn − 1]

0 0

f

g

In the top left corner we have

(π0SW(Fpn)×)/(π0SW(Fpn)×)pn−1 = (W×
n )/(W×

n )pn−1 ∼= F×
pn .

The top horizontal map f is an isomorphism: Indeed, by Lemma 6.2.9, the map

Wn = π0SW(Fpn)! π0SWn

admits a retract r : π0SWn ! Wn whose kernel consists of nilpotent elements. In particular
every element in the kernel of r× : π0SW×

n ! W×
n is of the form x = (1 + ε) for some nilpotent

ε ∈ π0SWn. As pn − 1 is invertible in π0SWn, every such element x has a (pn − 1)-st root, and
hence r× induces an isomorphism after modding out the (pn − 1)-st powers. Since this induced
isomorphism is a left-inverse of f it follows that f is an isomorphism as well.
Next, by Corollary 6.2.5, Corollary 6.2.11 and using that the absolute Abelian Galois group of
SW(Fpn) is Ẑ (e.g. [Mat16, Theorem 6.17]), g can be identified with the inclusion

hom(Ẑ,F×
pn) ↪! hom(Ẑ,F×

pn) ⊕ hom(Z×
p ⊕F×

p
F×

pn ,F×
pn).
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Since hom(Ẑ,F×
pn) ∼= F×

pn , the entire diagram can be identified with

0 0

F×
pn F×

pn

F×
pn F×

pn ⊕ hom(Z×
p ⊕F×

p
F×

pn ,F×
pn)

0 Picev(Mod∧
SWn

)[pn − 1]

0 0

thus the bottom-right veritcal map restricts to an isomorphism

hom(Z×
p ⊕F×

p
F×

pn ,F×
pn) ∼= Picev(Mod∧

SWn
)[pn − 1].

Moreover, hom(Z×
p ⊕F×

p
F×

pn ,F×
pn) ∼= F×

pn (this can be checked separately for odd and even primes,
using the formula in Lemma 6.2.10), so Picev(Mod∧

SWn
)[pn − 1] ∼= F×

pn .
Now, Yn was chosen in Definition 6.2.6 as corresponding to the character

GW
n !! (GW

n )ab ∼= Ẑ × (Z×
p ⊕F×

p
F×

pn)!! Z×
p ⊕F×

p
F×

pn ! F×
pn

which generates a cyclic subgroup of hom(Z×
p ⊕F×

p
F×

pn ,F×
pn) of order pn − 1, and so the same holds

also in Picev(Mod∧
SWn

)[pn − 1].

Proposition 6.2.12. Picev(SpK(n))[pn − 1] is a cyclic group of order pn − 1.

Proof. Using Corollary 5.3.3 and Remark 5.2.5, there is an injective homomorphism

Z/(pn − 1) ↪! Picev(SpK(n))[pn − 1].

Consider the composition

Z/(pn − 1) ↪! Picev(SpK(n))[pn − 1] SWn⊗−−−−−−−! Picev(Mod∧
SWn

)[pn − 1].

We will show it is injective, thus finishing by Proposition 6.2.8. It is enough to show that before
moving to even Picard elements, i.e. to show that the composition

Z/(ap(pn − 1)) ↪! Pic(SpK(n))
SWn⊗−−−−−−−! Pic(Mod∧

SWn
)
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is injective. Assume d ∈ Z/(ap(pn − 1)) is in the kernel and let X be the corresponding Picard
spectrum. Then SWn ⊗X ≃ SWn in Mod∧

SWn
. Composing with the forgetful functor Mod∧

SWn
!

SpK(n), remembering that as a spectrum SW(Fpn) ≃ S⊕n we get that X⊕n ≃ S⊕n
K(n) in SpK(n).

Tensoring now with K(n) we get that K(n) ⊗ X⊕n ≃ K(n)⊕n, therefore K(n) ⊗ X ≃ K(n). But
we showed in the proof of Corollary 5.2.3 that the composition

Z/(ap(pn − 1)) ↪! Pic(SpT (n))
K(n)⊗−−−−−−! Pic(BiModK(n))

is injective, and it is equivalent to the composition

Z/(ap(pn − 1)) ↪! Pic(SpT (n))
LK(n)−−−−! Pic(SpK(n))

K(n)⊗−−−−−−! Pic(BiModK(n)).

Thus, as X ⊗ K(n) ≃ K(n), d is in the kernel of the above injective map and so is trivial as
required.

6.3 Telescopic lifting

In Corollary 5.3.3 we constructed a (pn−1)-cyclic subgroup of Picev(SpT (n)). Let SWf
n := LT (n)(SW(Fpn))

and denote also by Mod∧
SWf

n
:= ModSWf

n
(SpT (n)). By [CSY21b, Theorem 5.9 and Theorem 5.27]

SWf
n is a faithful Z/n-Galois extension of ST (n), and SWn = LK(n)(SWf

n) is classified as a Galois
extension of SK(n) by the character

Gn !! Ẑ!! Z/n.

Using Remark 5.2.5, Proposition 6.2.8 Proposition 6.2.12 we get a commutative diagram of groups

Picev(SpT (n))[pn − 1] Picev(Mod∧
SWf

n
)[pn − 1]

F×
pn

Picev(SpK(n))[pn − 1] Picev(Mod∧
SWn

)[pn − 1]

SWf
n⊗−

∼
j

LK(n)

∼
SWn⊗−

LK(n) .

Let Pn ∈ Picev(SpK(n))[pn −1] be such that SWn ⊗Pn ∈ Picev(Mod∧
SWn

)[pn −1] is the image of Yn

under the Kummer map Theorem 6.1.3. Let P f
n be the image of j−1(Pn) in Picev(SpT (n))[pn −1], so

LK(n)(P f
n ) = Pn. Using Theorem 6.1.3 again choose a lifting Yn

f of SWf
n⊗P f

n ∈ Picev(Mod∧
SWf

n
)[pn−

1] in
CAlgZ/(pn−1)-Gal(Mod∧

SWf
n
) = CAlgF×

pn -Gal(Mod∧
SWf

n
).

Then the image of LK(n) Yn
f in Picev(Mod∧

SWn
) is a generator of the embedded cyclic group. Thus

by Proposition 6.2.8 we can assume LK(n)(Yn
f ) ≃ Yn.

To summarize:
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Theorem 6.3.1. There exists a (F×
pn ⋊ Z/n)-Galois extension Yn

f of ST (n), lifting the Galois
extension Yn of SK(n) corresponding to the character

Gn = Sn ⋊ Ẑ π⋊id−−−!! F×
pn ⋊ Ẑ!! F×

pn ⋊ Z/n.

Corollary 6.3.2. There exists an ((F×
pn ⊕F×

p
Z×

p )⋊Ẑ)-pro-Galois extension Y f
n of ST (n), lifting the

Galois extension Yn of SK(n) corresponding to the character

Gn = Sn ⋊ Ẑ
(det ⊕

F×
p

π)⋊id
−−−−−−−−−!! (Z×

p ⊕F×
p
F×

pn) ⋊ Ẑ.

Proof. We saw in Corollary 6.2.11 that the Abelianization of GW
n is (GW

n )ab ∼= (Z×
p ⊕F×

p
F×

pn) × nẐ.
The quotient map

GW
n ! (Z×

p ⊕F×
p
F×

pn) × nẐ!! Z×
p × nẐ

corresponds to the the maximal Abelian pro-Galois extension of SK(n), thought of as an extension
of SWn:

SWn ! LK(n) SW(Fp)[ω(n)
p∞ ],

see [CSY21b, Proposition 5.17]. The quotient

GW
n ! (Z×

p ⊕F×
p
F×

pn) × nẐ!! F×
pn

is the character π of Yn. That means the maximal Abelian pro-Galois extension Yn of SWn,
corresponding to the quotient map

GW
n ! (Z×

p ⊕F×
p
F×

pn) × nẐ

is obtained by adding all roots of unity and higher roots of unity to Yn, or euqivalently:

Yn := Yn ⊗SWn LK(n) SW(Fp)[ω(n)
p∞ ].

We can lift it to a pro-Galois extension of SWf
n, using that LK(n) SW(Fp)[ωn

p∞ ] lifts to an extension
of ST (n) ([CSY21b, Theorem 5.31]):

Y f
n := Yn

f ⊗SWf
n

LT (n) SW(Fp)[ω(n)
p∞ ].

Yn
f is a ((Z×

p ⊕F×
p
F×

pn) ⋊ Ẑ)-pro-Galois extension of ST (n) lifting the claimed character.
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