
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 152, Number 9, September 2024, Pages 3705–3713
https://doi.org/10.1090/proc/16840

Article electronically published on July 1, 2024
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Abstract. In this note, we establish a vanishing result for telescopically local-
ized topological restriction homology TR. More precisely, we prove that T (k)-

local TR vanishes on connective Lp,f
n -acyclic E1-rings for every 1 ≤ k ≤ n

and deduce consequences for connective Morava K-theory and the Thom spec-
tra y(n). The proof relies on the relationship between TR and the spectrum
of curves on K-theory together with fact that algebraic K-theory preserves
infinite products of additive ∞-categories which was recently established by
Córdova Fedeli [Topological Hochschild homology of adic rings, Ph.D. thesis,
University of Copenhagen, 2023].

1. Introduction

In this note, we study the telescopic localizations of TR inspired by the work
of Land–Mathew–Meier–Tamme [25] and Mathew [29]. Our starting point is the
following result which follows from the main result of [25]: If R is an E1-ring with
Lp,f
n R � 0, then

LT (k) K(R) � 0

for every 1 ≤ k ≤ n, where Lp,f
n denotes the Bousfield localization at S[1/p] ⊕

T (1)⊕ · · · ⊕ T (n) for a fixed prime number p. For instance, if R = Z/pn for some
integer n ≥ 1, then LT (1) K(Z/pn) � 0. We consider this result as an extension of
Quillen’s fundamental calculation that K(Fp)

∧
p � HZp which in particular yields

that LT (1) K(Fp) � 0. This particular consequence was also obtained by Bhatt–
Clausen–Mathew [5] by means of a calculation in prismatic cohomology. Addi-
tionally, the vanishing result above for T (k)-local K-theory can be applied to the
Morava K-theories K(n) and to the Thom spectra y(n) considered by Mahowald–
Ravenel–Shick in [28].
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1.1. Results. We will be interested in similar vanishing results for T (k)-local TR1.
The invariant TR plays an instrumental role in the classical construction of topo-
logical cyclic homology in [7, 8, 20], where TC is obtained as the fixedpoints of a
Frobenius operator on TR. In §3, we briefly review the construction of TR follow-
ing [30] which produces TR together with its Frobenius operator entirely in the
Borel–equivariant formalism of Nikolaus–Scholze [31]. Even though TR does not
feature prominently in the construction of TC given in [31], TR remains an im-
portant invariant by virtue of its close relationship to the Witt vectors and the de
Rham–Witt complex [19–22]. In [29], Mathew proves that T (1)-local TR is truncat-
ing on connective HZ-algebras which means that if R is a connective HZ-algebra,
then the canonical map of spectra

LT (1) TR(R) → LT (1) TR(π0R)

is an equivalence. This property was verified for T (1)-local K-theory and T (1)-local
TC in [5, 25]. Our main result is a version of this at higher chromatic heights:

Theorem 1.1. Let n ≥ 1. If R is a connective E1-ring such that Lp,f
n R � 0, then

LT (k)TR(R) � 0

for every 1 ≤ k ≤ n.

We remark that Theorem 1.1 is a consequence of the work of [25] in the case where
R admits a more refined multiplicative structure; If R admits an Em-ring structure
for m ≥ 2, then the refined cyclotomic trace K(R) → TR(R) is a map of E1-rings.
Consequently, the spectrum LT (k)TR(R) admits the structure of a LT (k)K(R)-
module and LT (k)K(R) � 0 by [25, Theorem 3.8]. A similar sort of reasoning has
recently been employed with great success to study redshift phenomena for algebraic
K-theory in [10, 12, 16, 33]. We deduce the following results from Theorem 1.1:

Corollary 1.2. Let n ≥ 1. Then LT (k)TR(Z/p
n) � 0 for every k ≥ 1.

We stress that Corollary 1.2 is a consequence of the work of [5, 25] by the rea-
soning above. For n = 1, Corollary 1.2 can also be deduced from the work of
Mathew [29]. Since T (1)-local TR is truncating on connective HZ-algebra it is in
particular nilinvariant by [26], so

LT (1) TR(Z/p
n) � LT (1) TR(Fp) � 0,

where the final equivalence follows since TR(Fp, p)�HZp by Hesselholt–Madsen [20].
As a consquence of Theorem 1.1 we deduce a new chromatic vanishing result for
the connective Morava K-theories, which we denote by k(n). While k(n) admits
the structure of an E1-ring, it does not admit the structure of an E2-ring so we
cannot argue using the refined cyclotomic trace above.

Corollary 1.3. Let n ≥ 2. Then LT (k)TR(k(n)) � 0 for every 1 ≤ k ≤ n− 1.

Similarly, we obtain a chromatic vanishing result for the Thom spectra y(n)
considered in [28].

1In this note, we will not distinguish between integral TR(R) and p-typical TR(R, p), since

TR(R,Zp) �
∏

(k,p)=1

TR(R, p)

and the p-completion map TR(R) → TR(R,Zp) is a T (k)-local equivalence for every k ≥ 1

(cf. [25, Lemma 2.2]).

Licensed to Univ of Rochester. Prepared on Tue May  6 05:00:11 EDT 2025 for download from IP 128.151.113.25.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CHROMATIC VANISHING RESULT FOR TR 3707

1.2. Methods. We end by explaining the strategy of our proof of Theorem 1.1.
The key input is the close relationship between TR and the spectrum of curves on
K-theory as studied in [4,6,19,30]. For every E1-ring R, the spectrum of curves on
K-theory is defined by

C(R) = lim←−
i

ΩK̃(R[t]/ti),

where K̃(R[t]/ti) denotes the fiber of the map K(R[t]/ti) → K(R) induced by
the augmentation. If we assume that R is connective, then TR(R) � C(R) by [30,
Corollary 4.2.5]. This result was preceded by Hesselholt [19] and Betley–
Schlichtkrull [4] who established the result for associative rings after profinite com-
pletion. Combining the theorem of the weighted heart (cf. [14, 17, 18]) with the
recent result of Córdova Fedeli [13, Corollary 2.11.1] which asserts that algebraic
K-theory preserves arbitrary products of additive ∞-categories, we reduce to prov-
ing that

LT (k) K
⊕ ( ∏

i≥1

ProjωR[t]/ti
)
� 0

provided that Lp,f
n R � 0, where ProjωR[t]/ti denotes the additive ∞-category of

finitely generated projective R[t]/ti-modules and K⊕ denotes additive algebraic K-
theory. This claim can be verified explicitly by using [25, Proposition 3.6].

2. Preliminaries on weight structures and K-theory

The main technical apparatus for deducing our chromatic vanishing result for
TR is the notion of a weight structure on a stable ∞-category in conjunction with
the closely related theorem of the weighted heart (cf. [14, 17]). This will help us
reduce to studying additive algebraic K-theory of additive ∞-categories.

Definition 2.1. A weight structure on a stable ∞-category C consists of a pair
of full subcategories C[0,∞] and C[−∞,0] of C such that the following conditions are
satisfied:

(1) The full subcategories C[0,∞] and C[−∞,0] are closed under retracts in C.
(2) For X ∈ C[−∞,0] and Y ∈ C[0,∞], the mapping spectrum mapC(X,Y ) is

connective.
(3) For every X ∈ C, there is a fiber sequence

X ′ → X → X ′′

with X ′ ∈ C[−∞,0] and X ′′[−1] ∈ C[0,∞].

Let C[a,∞] denote the full subcategory of C spanned by those objects X of C with
X[−a] ∈ C[0,∞], and let C[−∞,b] denote the full subcategory of C spanned by those
objects X with X[−b] ∈ C[−∞,0]. The heart of the weight structure is the subcat-

egory Cht = C[0,0], where C[a,b] = C[a,∞] ∩ C[−∞,b]. The weight structure is said to
be exhaustive if every object is bounded, in the sense that

C =
⋃
n∈Z

C[−n,n].

A weighted ∞-category is a stable ∞-category equipped with a weight structure.

Remark 2.2. The heart of a weighted ∞-category is an additive ∞-category ([17,
Lemma 3.1.2]).
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We recall the following terminology which will play an important role throughout
this note. For every connective E1-ring R, let ProjωR denote the full subcategory

of the ∞-category LMod≥0
R spanned by those connective left R-modules which are

finitely generated and projective. Recall that an object of ProjωR can be written as
a retract of a finitely generated free R-module (cf. [27, Proposition 7.2.2.7]). For
any not necessarily connective E1-ring, let PerfR denote the ∞-category of perfect
R-modules defined as the smallest stable subcategory of LModR which contains R
and is closed under retracts. The following is our main example of interest:

Example 2.3. For a connective E1-ring R, let PerfR,≥0 be the full subcategory of
PerfR spanned by those perfect R-modules which are connective, and let PerfR,≤0

denote the full subcategory of PerfR spanned by those perfect R-modules M which
have projective amplitude ≤ 0. This means that every R-linear map M → N
is nullhomotopic provided that N is 1-connective. The pair (PerfR,≥0,PerfR,≤0)
defines an exhaustive weight structure on PerfR whose heart is equivalent to the
additive ∞-category ProjωR of finitely generated projective R-modules (cf. [18, 1.38
& 1.39]); while the proofs therein are stated for connective E∞-rings, the same
arguments work in the E1 case.

The algebraic K-theory of a weighted ∞-category is often determined by the
additive algebraic K-theory of its heart by virtue of the theorem of the weighted
heart first established by Fontes [14] but we also refer the reader to [17, Corollary
8.1.3, Remark 8.1.4]. Let A denote an additive ∞-category regarded as a symmetric
monoidal ∞-category with the cocartesian symmetric monoidal structure, so that
the core A	 inherits the structure of an E∞-monoid. Recall that the additive
algebraic K-theory of A is defined by

K⊕(A) = (A	)grp,

where (A	)grp denotes the group completion of the E∞-monoid A	. We have the
following result which will play an instrumental role below (cf. [14, Theorem 5.1]
and [17, Corollary 8.1.3]):

Theorem 2.4. The canonical map of spectra

K⊕(Cht) → K(C)

is an equivalence for every stable ∞-category C equipped with an exhaustive weight
structure.

3. Chromatic vanishing results

The main goal of this section is to prove Theorem 1.1 from §1 and discuss various
consequences. As explained, our proof of this result relies on the close relationship
between TR and the spectrum of curves in K-theory (cf. [4,19,30]). We will regard
TR as a functor TR : AlgcnE1

→ Sp given by

TR(R) � mapCycSp(T̃HH(S[t]),THH(R))

following [30] and this agrees with the classical construction of TR by [30, Theorem
3.3.12]. By virtue of our assumption that R is connective, there is an equivalence
of spectra

TR(R) � lim←−ΩK̃(R[t]/ti),
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where K̃(R[t]/ti) denotes the fiber of the map K(R[t]/ti) → K(R) induced by the
augmentation. In this generality, the result was obtained by the second author
in [30] preceded by Hesselholt [19] and Betley–Schlichtkrull [4] who proved the
result for associative rings after profinite completion. Recall that Lp,f

n denotes
the Bousfield localization at the spectrum S[1/p] ⊕ T (1) ⊕ · · · ⊕ T (n). With this
equivalence at our disposal, we prove the following result:

Theorem 3.1. Let n ≥ 1. If R is a connective E1-ring such that Lp,f
n R � 0, then

LT (k)TR(R) � 0

for every 1 ≤ k ≤ n.

The limit in the definition of the spectrum of curves on K-theory above does not
commute with T (k)-localization. Instead, the proof of Theorem 3.1 relies on the
following result, which is proved by combining the theorem of the weighted heart
and a recent result which asserts that additive algebraic K-theory preserves infinite
products of additive ∞-categories, due to Córdova Fedeli [13].

Proposition 3.2. Let R be a connective E1-ring such that Lp,f
n R � 0. If {Si}i∈I

is collection of connective E1-rings with a map of E1-rings R → Si for every i ∈ I,
then

LT (k)

( ∏
i∈I

K(Si)
)
� 0

for every 1 ≤ k ≤ n.

Proof. For i ∈ I, the stable ∞-category PerfSi
admits an exhaustive weight struc-

ture whose heart is equivalent to the additive ∞-category ProjωSi
by Example 2.3.

The canonical composite

K⊕
( ∏

i∈I

ProjωSi

)
→

∏
i∈I

K⊕(ProjωSi
) →

∏
i∈I

K(PerfSi
)

is an equivalence by [13, Corollary 2.11.1] and Theorem 2.4, so we have reduced to
proving that

LT (k)K
⊕

( ∏
i∈I

ProjωSi

)
� 0

for 1 ≤ k ≤ n. By [25, Proposition 3.6], it suffices to prove that the endomorphism
E1-rings of

A =
∏
i∈I

ProjωSi

vanish after Lp,f
n -localization. If P ∈ A, then the endomorphism E1-ring of P is

given by

EndA(P ) �
∏
i∈I

mapSi
(Pi, Pi),

where mapSi
(Pi, Pi) denotes the mapping spectrum in LModSi

. For each i ∈ I, we

may choose a positive integer ni ≥ 1 such that Pi is a retract of S⊕ni
i by virtue of

our assumption that Pi is a finitely generated projective Si-module. Consequently,
we obtain a retract diagram of spectra

EndA(P ) →
∏
i∈I

S
⊕n2

i
i → EndA(P )
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which proves the desired statement since the middle term is a left R-module, hence
vanishes after Lp,f

n -localization by virtue of our assumption that R is Lp,f
n -acyclic.

�
Remark 3.3. In general, E-acyclic spectra are not closed under infinite products; for
each n ≥ 0, the nth Postnikov truncation τ≤nS is K(1)-acyclic, whereas

∏
n≥0 τ≤nS

is not, else LK(1)S � 0. The assumptions of Proposition 3.2 should be viewed as a
uniformity condition on the spectra K(Si), forcing their product to become acyclic.

Proof of Theorem 3.1. Since R is a connective E1-ring, there is an equivalence of
spectra TR(R) � C(R) by [30, Corollary 4.2.5]. Thus, the spectrum ΣTR(R) is
the fiber of a suitable map∏

i≥1

K̃(R[t]/ti) →
∏
i≥1

K̃(R[t]/ti)

which proves the desired statement as these products vanish after T (k)-localization
for 1 ≤ k ≤ n by virtue of Proposition 3.2. �
Remark 3.4. As remarked above, we have used work by Córdova Fedeli [13] in a
crucial way. This result on K-theory of additive ∞-categories is part of a long tra-
dition of examining the interaction of algebraic K-theory and infinite products of
categories. One of the first results of this kind is due to Carlsson, who showed that
K-theory preserves infinite products of exact 1-categories with a cylinder functor
[11]. In [24], Kasprowski–Winges proved that K-theory preserves infinite products
of additive categories. Furthermore, Kasprowski–Winges [23] used a characteri-
zation of Grayson [15] to prove that non-connective algebraic K-theory preserves
infinite products of stable ∞-categories and this was used in [9] with Bunke to
prove the analogous statement of prestable ∞-categories.

Another attempt to prove Proposition 3.2 proceeds by invoking a recent result
of Kasprowski–Winges [23], which asserts that the canonical map of spectra

K
(∏
i∈I

PerfSi

)
→

∏
i∈I

K(Si)

is an equivalence. Proceeding as in the proof of Proposition 3.2, it would suffice to
prove that the endomorphism E1-rings of the product of the stable ∞-categories
PerfSi

vanish after Lp,f
n -localization. Previous (incorrect) attempts by the authors

to prove Theorem 3.1 involved showing that a vn-self map v ∈ π∗(End(V )) induced
a null-homotopic endomorphism of EndSi

(Mi) ⊗ End(V ) as an End(V )-module.
This is closely related to the following assertion:

(∗) Let E denote the endomorphism E1-ring of a finite spectrum V of type n.
If v : ΣkE → E is the associated vn self-map of E, then there is a canonical
lift of v to a map of E-E-bimodules.

By the description of the E1-center as Hochschild cohomology, the statement (∗)
is equivalent to asking for a lift of the class v ∈ π∗(E) to a class ṽ ∈ π∗ZE1

(E)
along the E1-map ZE1

(E) → E. Classes which do lift in this way can be viewed as
“homotopically central” elements of E, and we remark that such lifts exist for all
E2-rings, by the universal property of the E1-center.

2

2Additionally, we note that for R an E1-ring with a central nilpotent element x ∈ π∗(R),
iterates of the R-module map Σ−kx : M → Σ−kM will typically fail to be nullhomotopic as a
map of R-modules unless x lifts to the E1-center.
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However, the assertion (∗) is false as we learned from Maxime Ramzi, and we
thank him for help with the following argument. In what follows, let SpK(n) de-

note the category of K(n)-local spectra, where K(n) denotes the Morava K-theory
spectrum for some prime p and natural number n. Similarly, we let mapK(n)(−,−)
denote the internal hom in this symmetric monoidal category. If such a lift of a
vn-self map exists, then we obtain an equivalence of LK(n)E-LK(n)E-bimodules

ϕ : ΣkLK(n)E → LK(n)E,

and there is an equivalence of E1-rings EndK(n)(LK(n)V ) � LK(n)E since V is
a finite spectrum. The ∞-category of K(n)-local spectra is equivalent to the ∞-
category ModLK(n)E(SpK(n)) since LK(n)V is a compact generator of SpK(n). As a

consequence, for everyK(n)-local spectrumX, we obtain an equivalence ΣkX → X
by base-changing along ϕ. This is a contradiction since the homotopy groups of
a K(n)-local spectrum are in general not periodic, as illustrated for instance by
the K(n)-local sphere. The homotopy groups of LK(1)S for p > 2 were completely
calculated in unpublished work by Adams–Baird and independently by Ravenel
in [32]. More recently, the homotopy of (LK(n)S)Q was completely calculated by
Barthel–Schlank–Stapleton–Weinstein in [2] for all primes p and all natural numbers
n. These computations show that LK(n)S is not periodic.

Finally, we explore some immediate consequences of Theorem 3.1.

Corollary 3.5. Let R be a connective E1-algebra over Z/pj. If n ≥ 1, then
LT (n) TR(R) � 0.

Proof. Note that Lp,f
n R is a module over Lp,f

n Z/pj � 0, so the assertion follows
from Theorem 3.1. �

Recall that Corollary 3.5 above also follows from [5, 25, 29] as discussed in the
introduction. We deduce some consequence for connective Morava K-theory. Let
k(n) denote the connective cover of the nth Morava K-theory K(n). The spectrum
k(n) carries the structure of an E1-ring but not the structure of an E2-ring. We
have the following:

Corollary 3.6. If n ≥ 2, then LT (k)TR(k(n)) � 0 for every 1 ≤ k ≤ n− 1.

Proof. For n ≥ 2, the canonical map k(n) → Fp is a Lp,f
n−1-local equivalence by [25,

Lemma 2.2], so the assertion follows from Theorem 3.1. �

Remark 3.7. There is a fiber sequence of spectra

K(Fp) → K(k(n)) → K(K(n)),

by [1, Proposition 4.4] preceded by [3]. We consider this as an analogue of Quillen’s
dévissage theorem for algebraic K-theory of ring spectra. One might ask whether
we can establish a similar fiber sequence for TR. In particular, this would allow us
to deduce an analogue of Corollary 3.6 for the non-connective Morava K-theory.

Let y(n) denote the Thom spectrum considered in [28, Section 3]. This is the
Thom spectrum associated to the map of E1-spaces

ΩJpn−1S2 ↪→ Ω2S3 → BGL1(S
∧
p ),

where Jpn−1S2 is the 2(pn−1)-skeleton of ΩS3, which has a single cell in each even
dimension. The map Ω2S3 → BGL1(S

∧
p ) is the spherical fibration constructed by
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3712 LIAM KEENAN AND JONAS MCCANDLESS

Mahowald (for p = 2) and Hopkins (for p odd) whose Thom spectrum is HFp. We
have the following:

Corollary 3.8. If n ≥ 2, then LT (k)TR(y(n)) � 0 for every 1 ≤ k ≤ n− 1.

Proof. This follows immediately by combining Theorem 3.1 with [25, Lemma 4.14].
�

Remark 3.9. If R is a connective HZ-algebra, then the canonical map

LT (1) K(R) → LT (1) K(R[1/p])

is an equivalence by [5, 25]. The analogue of this result does not hold for TC as
explained in [25, Remark 4.28], which in particular means that the result also does
not prolong to TR. However, at chromatic heights n ≥ 2, TC does satisfy a version
of chromatic purity (cf. [25, Corollary 4.5]). In particular, if A → B is an Lp,f

n -local
equivalence of E1-rings, then the induced map

LT (n) TC(τ≥0A)
	−→ LT (n) TC(τ≥0B)

is an equivalence. One can wonder whether such a statement is true of T (n)-local
TR, but our methods here do not seem to shed light on this problem.

Acknowledgments

The authors are grateful to Akhil Mathew for discussions about and interest in
this project. The first author would also like to thank Tyler Lawson for a number
of helpful conversations.

References

[1] Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic obstructions to bounded
t-structures, Invent. Math. 216 (2019), no. 1, 241–300, DOI 10.1007/s00222-018-00847-0.
MR3935042

[2] Tobias Barthel, Tomer M. Schlank, Nathaniel Stapleton, and Jared Weinstein, On the ratio-
nalization of the K(n)-local sphere, arXiv:2402.00960, 2024.

[3] Clark Barwick and Tyler Lawson, Regularity of structured ring spectra and localization in
K-theory, arXiv:1402.6038 (2014).

[4] Stanislaw Betley and Christian Schlichtkrull, The cyclotomic trace and curves on K-theory,
Topology 44 (2005), no. 4, 845–874, DOI 10.1016/j.top.2005.02.004. MR2136538

[5] Bhargav Bhatt, Dustin Clausen, and Akhil Mathew, Remarks on K(1)-local K-theory, Se-
lecta Math. (N.S.) 26 (2020), no. 3, Paper No. 39, 16, DOI 10.1007/s00029-020-00566-6.
MR4110725

[6] Spencer Bloch, Algebraic K-theory and crystalline cohomology, Inst. Hautes Études Sci. Publ.
Math. 47 (1977), 187–268 (1978). MR488288

[7] Andrew J. Blumberg and Michael A. Mandell, The homotopy theory of cyclotomic spectra,
Geom. Topol. 19 (2015), no. 6, 3105–3147, DOI 10.2140/gt.2015.19.3105. MR3447100

[8] M. Bökstedt, W. C. Hsiang, and I. Madsen, The cyclotomic trace and algebraic K-theory of
spaces, Invent. Math. 111 (1993), no. 3, 465–539, DOI 10.1007/BF01231296. MR1202133

[9] Ulrich Bunke, Daniel Kasprowski, and Christoph Winges, Split injectivity of A-theoretic as-
sembly maps, Int. Math. Res. Not. IMRN 2 (2021), 885–947, DOI 10.1093/imrn/rnz209.
MR4201957

[10] Robert Burklund, Tomer M Schlank, and Allen Yuan, The chromatic nullstellensatz,
arXiv:2207.09929, 2022.

[11] Gunnar Carlsson, On the algebraic K-theory of infinite product categories, K-Theory 9
(1995), no. 4, 305–322, DOI 10.1007/BF00961467. MR1351941

[12] Dustin Clausen, Akhil Mathew, Niko Naumann, and Justin Noel, Descent and vanishing in
chromatic algebraic K-theory via group actions, arXiv:2011.08233, 2020.

Licensed to Univ of Rochester. Prepared on Tue May  6 05:00:11 EDT 2025 for download from IP 128.151.113.25.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://mathscinet.ams.org/mathscinet-getitem?mr=3935042
https://arxiv.org/abs/2402.00960
https://mathscinet.ams.org/mathscinet-getitem?mr=2136538
https://mathscinet.ams.org/mathscinet-getitem?mr=4110725
https://mathscinet.ams.org/mathscinet-getitem?mr=488288
https://mathscinet.ams.org/mathscinet-getitem?mr=3447100
https://mathscinet.ams.org/mathscinet-getitem?mr=1202133
https://mathscinet.ams.org/mathscinet-getitem?mr=4201957
https://arxiv.org/abs/2207.09929
https://mathscinet.ams.org/mathscinet-getitem?mr=1351941
https://arxiv.org/abs/2011.08233


A CHROMATIC VANISHING RESULT FOR TR 3713
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