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In this paper we compute the cyclic homology groups of a tensor 
product of algebras. From Connes’s long exact sequence 

. ..- H,(A,A)- HC,(A)--S-, HC,p,(A)- H,-,(A,A)-..., 

relating cyclic and Hochschild homology, one can see that any formula for 
HC,(A @A’) will not only involve HC,(A) and HC,(A’), but also the 
“periodicity” operator S and the Hochschild groups. Fortunately, if the 
map S brings in some complications, it also endows HC,(A) with a com- 
odule structure over the cyclic homology of the ground ring k. Actually, the 
comodule structure exists already on the complex level: a convenient com- 
plex on which S has the form of a canonical surjection is Connes’s double 
complex with differentials b and B. 

Now the idea is to view the cyclic homology of an algebra as a com- 
posite functor 

Alg, -% C,,,(k) - Comod 3 Gr(k). 

Here Alg, is the category of k-algebras, Gr(k) is the category of graded k- 
modules, Comod is a category of differential graded comodules, H, stands 
for homology. The objects of C”i,(k) are what we call mixed complexes 
which are both chain and cochain complexes in a compatible way (also 
called complexes with an algebraic circle action by Burghelea). Every 
algebra A gives rise to a mixed complex C(A). 

We detail now the contents of the paper. In the first section we define 
mixed complexes and relate them to classical homological algebra via the 
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observation that a mixed complex is exactly a differential graded module 
over the exterior algebra A generated by a single element in degree 1. 
Moreover cyclic homology appears as a Tor-functor over A and the cyclic 
homology HC,(k) of the ground ring k identifies with the classifying 
coalgebra B(A) as defined by [14]. 

In this framework, Connes’s double complex with differentials h and B 
can be seen as a bar construction. The latter has classically a comodule 
structure over B(A) = HC,(k). 

Finally we prove that the bar construction corresponding to the tensor 
product of two mixed complexes is the cotensor product of the 
corresponding comodules. 

Section 2 originates from the fact that given two algebras A and A’, 
C(A)@ C(A’) and C(A 0 A’) are different mixed complexes; actually, there 
is not even a morphism between them, because Connes’s operator B does 
not commute with the shuffle map. Here again, a classical notion will solve 
the problem. We prove that there exists a strongly homotopy linear map 
(which roughly is a map commuting with B up to higher homotopies) in 
the sense of Gugenheim-Munkholm [ 1 I] between C(A)@ C(A’) and 
C(A @A’). Hence the corresponding long exact sequences (0.1) are 
isomorphic. 

As an immediate consequence, we get in Section 3 a Kiinneth-type exact 
sequence of the form 

O- CotorHC’k’(HC(A), HC(A’))[l] - HC(AOA’) 

- HC(A) q lHcc,,HC(A’)- 0 

under mild flatness assumptions. This formula has a lot of applications. 
Among others, we have (when k contains the field of rational numbers) 

HC,(A[x]) = HC,(A)@ H,(A, A)(NU’, 

HC,(A[x,x~‘])=HC,(A)@HC,~~,(A)@H,(A, A)“‘? 

In these formulas, there is a “good” part which behaves like algebraic K- 
theory or Hochschild homology. The “bad” summands represented by the 
Hochschild groups are unstable, which means that they vanish after 
inverting the map S. As a matter of fact, we prove that periodic cyclic 
homology commutes with tensor products 

HCr’( A 0 A’) = HCr’( A) @ HCr’( A’). 

We end the paper with an Appendix in which we set the foundations for 
a tensor product in the category A(k) of cyclic k-modules in the sense of 
Connes [S, 91. This notion is implicit in [5], but has never appeared with 
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proofs in the literature. We use this construction in Section 1 to prove an 
isomorphism 

Tor;21k’(k, E) E Tor;l(k, 6) 

between the derived functors for a cyclic k-module E and the derived 
functors for the corresponding mixed complex ,?. 

It should be noted that all our constructions and results extend to the 
cyclic homology of differential graded algebras (replace homology by 
hyperhomology). We thus recover Theorem B of [2] by purely algebraic 
methods. 

All modules, algebras (always associative and unital) and tensor 
products are over a fixed commutative ring k. All complexes are non- 
negatively differential graded (d.g.) k-modules with degree - 1 differential. 
Graded modules are considered as d.g. modules with zero differential. 
Given a d.g. module A4 and an integer p, M[p] denotes the d.g. module 
with M[ p],, = M,, p and (- 1)” d, as differential. If an element or a map 
x has a degree, it will be denoted by 1x1. Brackets stand for graded com- 
mutators: [x, 1’1 = XJ - (- 1 )I” “‘y-u. 

After circulation of a first version of this paper, M. Karoubi informed me 
that he could prove a Kiinneth-type formula for cyclic modules and 
D. Burghelea sent me a preprint, Kiinneth ,formula in cyclic homology, in 
which he proves this over a field k of characteristic zero. 

I thank the referee for several valuable suggestions and the Institute for 
Advanced Study in Princeton for their hospitality in 1984-1985 when this 
paper was written. 

1. MIXED COMPLEXES AND CLASSICAL HOMOLOGICAL ALGEBRA 

A midxed complex (M, h, B) is a nonnegatively graded k-module (M,,),, 
endowed with a degree - 1 endomorphism h and a degree + 1 
endomorphism B satisfying the following relations: 

h*=B*=[B,h]=O 

(recall that here [B, h] = Bh + hB). Thus a mixed complex is both a chain 
and a cochain complex. However, for reasons which will appear soon and 
despite the a priori symmetry between h and B, we shall view h as the main 
differential and consider B merely as a device to perturb the complex 
(M, h). 

Mixed complexes arise from the category A(k) of contravariant functors 
from Connes’s category A to the category of k-modules. An object of A(k) 
is called a cyclic k-module and is a simplicial k-module with extra 
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operators which permute cyclically the simplices. To any cyclic k-module 
E, one can associate naturally a mixed complex ($ b, B) where E,, = E,, b 
and B are described explicitly in terms of the face, degeneracy and cyclic 
operators of E (see [ $9, 151). 

The cyclic homology of a cyclic k-module as defined in [S] and in [9], 
can be expressed in terms of appropriate Tor-functors in A(k) (see the 
Appendix). We shall show in the section that cyclic homology can also be 
computed as derived functors in the category of mixed complexes. 

The way to obtain the cyclic homology of a cyclic k-module E via the 
corresponding mixed complex E goes through the following construction. 

To any mixed complex (44, b, B), one associates a chain complex 
($t4, d) where 

and for every (m,, rn,-,, m, -4 ,...) E &t,, 

dh,, mne2, mnp4,... )=(bm,,+Bm,,~,,bm,_,+Bm,,~, ,... ). 

One sees immediately that ,M is related to the chain complex (M, b) by 
the following exact sequence of complexes 

O-M-BMS-,,M[2]-0. (1.1) 

The map S is obtained by dividing BM by its first factor; it is a canonical 
surjection. 

If we call homology (resp. cyclic homology) of M and denote by H,(M) 
(resp. HC,(M)) the homology of (M, b) (resp. of (BM, d)), then the above 
short exact sequence of complexes gives rise to the long exact sequence 

... - H,(M)- HC,(M)L HC ,,.- ,(M)- H,,+,(M)- . . . . 

(1.2) 

This terminology is justified by the fact that for a cyclic k-module E, the 
homology H,(E) is the Hochschild homology of E and HC,(E) is the 
cyclic homology of E [9, Proposition 11.2.53 or [ 15, Proposition 1.51. 

The previous adhoc constructions will become clearer once one makes 
the simple observation that a mixed complex is nothing but a differential 
graded module over the graded exterior k-algebra L! on one generator E of 
degree 1 (with zero differential). 

As a complex, 

A,=k, A, =ks, A,=0 for ib2. 
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Precisely, a d.g. /i-module M is a mixed complex (M, h, B), where h is 
the given differential on M and B corresponds to left multiplication by E. 
The defining relations 

B2=[B,b]=0 

are equivalent to the fact that E’ = 0 and 

b(cm) = ( - 1 )‘“‘sbm = -Ebm. 

The rest of this section is devoted to classical homological algebra 
applied to the algebra /1. We begin with the following 

PROPOSITION 1.3. (a) For every mixed complex (M, b, B) or, equiva- 
lently, any d.g. A-module, 

HC,(M) = Tort(k, M), 

where k is the trivial A-module given by the augmentation. 

(b) The functor E H E from cyclic k-modules to mixed complexes 
induces the following isomorphism: 

Toritk’(k, E) z Tori(k, ,f?). 

This means that the graded algebra /1 is a good approximation to the 
abelian category A(k). 

Proof Part (b) follows from (a) in view of the Appendix and the above 
remarks. To prove (a), one uses as a resolution of k, the following exact 
complex of free n-modules 

L= {...-+ /I[21 -% /I[11 -L /I}. 

It is clear for any /i-module M that the complex &I defined above with 
homology HC,(M), coincides with the total complex of the bicomplex 
LOnM. I 

The above proposition is also a consequence of the fact that &I is a bar- 
construction. In order to see this, recall that Husemoller, Moore and 
Stasheff [ 143 associated a classifying coalgebra B(A ) to any d.g. algebra A. 
This comes with a canonical “twisting cochain” t: B(A) + A. In the very 
simple case of A, B(A) is the graded k-coalgebra k[u] generated by one 
element u in degree 2, with coproduct A, counit F and “twisting cochain” 
given by 

A(u”)= c u’@u’ &( 24”) = 
1 if n=O 

i+/=n 
0 if n#O 
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and 

T( 24”) = 
i 

E if n=l 
0 if n#l 

We follow now [ 111 and define the two-sided bar construction of two A- 
modules M and N by 

the subscript T meaning that the usual tensor product differential is pertur- 
bed by the “twisting cochain” in a canonical way we shall explicit when 
needed. 

Incase N=k, clearly B(M,A,k)=M@,B(A). 

PROPOSITION 1.4. For uny mixed complex (M, h, B), ihe associutrd com- 
p1e.u gM is the same as the hur construction B(M, A, k) 

RM= B(M, A, k)=MO, B(A). 

Proqf: This is clear as graded modules, since 

(BM),,=M,,OM,,mzOM,, 40 ... =(MOkCul),, 

(recall u is of degree 2). The differential on M@, B(A) is the sum of the 
tensor product differential and of a degree - 1 map n,. Let us from now on 
write any element m of (RM),r as a finite sum 

m= C m,Ou’, 
I 2 0 

where m, E M,, 2,. According to [ 111, 

d,(m,@u”)= C mr(u’)Ou’ 
I+,=,’ 

0 = 
if p=O 

Ern@u”- ’ = Bm@up ’ if p3 1. 

Therefore the differential d on M@, B(A) is given by 

d(p@uj 
=(hm,,+Bm,)@l +(hm,+Bmz)@u+ ..., 

which is, by definition, the differential on HM. 1 
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Proposition 1.4 has two consequences. First, it reproves Proposition 1.3 
because of the classical fact (see [6] or [ 11, (2.2)]) that for any d.g. 
modules M and N over a d.g. algebra A, 

Tor$(M, N)? H,(B(M, A, N)). (1.5) 

Second, for any A-module M, the d.g. k-module M 0, B(A) has a 
natural structure of d.g. B(A)-comodule. In view of (1.5) this implies that 
Tor$(M, k) is a natural TorA,(k, k)-comodule. In case A = A, the coaction 
A, on BM=M@,k[~] is given by 

In this simple case, it is easy to see that a d.g. k-module P is a k[u]- 
comodule if and only if there exists a differential graded k-linear map 
S: P+ P[2]. The coaction A,: P@k[u] is then given by 

Ap(x)=x@l +S(x)@u+S2(u)@u2+ . . . . 

Applying [ 10, Sect. 21 or [ 11, Sect. 11, one sees immediately that the 
natural k[u]-comodule structure on MO, B(A)= BM yields the map S 
given by 

S(mOz?)= o 
i 

m@up ’ if ~31 
if p=O 

which is the natural projection S in (1.1). Clearly from (1.2) and the 
isomorphism HC,(k)=k[u], for any mixed complex (M, h, B), the cyclic 
homology HC,(M) is a graded HC,(k)-comodule with respect to Connes’s 
operator S: HC,( M) + HC, 2(M). 

As a matter of fact, the entire long exact sequence (1.2) is a consequence 
of the following proposition which follows immediately from [ 10, 
Proposition 2.61 and from the vanishing of t on k. 

PROPOSITION 1.6. For any d.g. module M over a d.g. algebra A, 

Mz CM@, B(A)1 n.,,,k. 

Here as in [6], the symbol q ,,.I stands for the cotensor product of 
B(A)-comodules. The exact sequence (1.2) is then a consequence of 
Proposition 1.6 applied to A = A and of the spectral sequence of 
Theorem 9.2 of [6]. Note that every k[u]-comodule has an injective 
resolution of length 1 so that the higher Cotork,r”’ vanish and the spectral 
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sequence degenerates. We are left with Cotorir”l which is the cotensor 
product and with Cotorl;C”l which we shall denote without subscript. 

We end this section by investigating the behaviour of the bar construc- 
tion with respect to the tensor product of modules. We make the following 
observation: if (M, 6, B) and (N, b, B) are mixed complexes, then 
(MO N, b, B) is also a mixed complex where b and B are extended over the 
tensor product in the usual way. This is equivalent to the fact that A is a 
Hopf algebra. 

THEOREM 1.7. Let (M, 6, B) and (N, b, B) be mixed complexes. The 
k[u]-comodule associated to (MQ N, 6, B) is the cotensor product of &f 
and gN, 

Proof: Recall from [6, Proposition 2.11, that if P is a (right) comodule 
and k[u] ON is a (left) extended comodule, then the map 

A,@N: P@N-tP@k[u]@N 

is injective and its image is P q kcU7 (k [ u] @ N). Hence as graded modules, 
we have 

t&f0 ,cCul A’= tk[ulO W q i+,, (kCu1 0 NJ 
=k[u]QMON=.(MON). 

To complete the proof, it is enough to check that the map 

j=(T@k[u]@N)o(M@A@N)oT@N 

from .(M@N)=k[u]@M@N into &fOBN=k[u]@M@k[u]ON 
commutes with the differentials. By T we mean the map 
k[u] @M+ M@ k[u] which interchanges factors and transforms the left 
comodule gM into a right one. 

LetmEMy,nEN,andUPOmOnEB(MON)y+,. Weadoptthefollow- 
ing convention: up=0 for p ~0. We have to show that x= y with 
x=dj(up@mQn) and y= jd(uP@m@n), 

x=d 
( 

1 (u’@m)@(u’@n) 
i+j=p > 

= 1 (u’@b(m)@u’@n+(-1)2i+yui@m@uJ~b(n)) 
i+j=p 

+ c (ui-l @B(m)@u’@n+(--1) 2i+qui@m@ui-1@B(n)). 
i+j=p 
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y=j(UP~b(m@n)+UP-‘OB(mOn)) 

=j(UPOb(m)On+(-l)YUPO,Oh(,) 

+UP~‘@B(m)@n+(-1)W ‘OrnOB( 

= 1 (UiOb( JO 0 m x u/x n+(-l)Y~‘@m@ui@b(n)) 
i+j=p 

+j+jgpm, (u’oB(m)OuiOn+(-l)YU’OmO.‘OB(,)) 

= x. 

Remark. The reader can check that if A is a graded exterior algebra on 
odd-degree generators, then Theorem 1.7 generalizes to the following 
isomorphism 

for any pair of A-modules M and N. 

The following is an immediate consequence of Theorem 1.7, [6, 
Theorem 9.2 and the comments following Proposition 1.61. 

COROLLARY 1.8. Let (M, 6, B) and (N, b, B) be mixed complexes. 
Assume N, and HC,( N) are flat k-modules for all n 2 0. Then there exists a 
functorial Kiinneth-type short exact sequence 

O- CotorkrU1(HC(M), HC(N))[l]- HC(M@N) 

- HC(M) 0 kru, HC(N) - 0. 

2. CONNES'S OPERATOR BAND THE SHUFFLE MAP 

Any associative unital k-algebra A gives rise to a cyclic k-module as 
described in [S] and [9], hence to a mixed complex (C(A), h, B). The 
complex (C(A), 6) is the standard Hochschild complex given by C,,(A) = 
A@(“+ 1) and 

b(a,@ ... @a,)= 1 (-l)‘ao@ ... @aiai+,@ ... @a,, 
,=O 

+(-l)“a,a,@ ... @a,-,. 

The map B has a more complicated expression. Therefore it is convenient 
to use the normalized Hochschild complex c’,(A) = C,(A)/D, where D,, is 
the subcomplex spanned by the elements a, @ . . . @a, such that ai = 1 for 
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some i with 1 d id n. The differentials h and B pass to the quotient so that 
(C(A), h, B) is a mixed complex. The map B is given on c(A ) by 

B(a, 0 . 0 a,,) = i ( - 1 )‘,, 1 @u, 0 ... @a,,@ao@ .” @a, , 
,=O 

and the morphism (C(A), h, B) + (C(A), b, B) is a quasi-isomorphism, in 
the sense that it induces an isomorphism of the corresponding long exact 
sequences (1.2) (see [ 15, Proposition 1.1 1 I). In particular 

HC,(C(A)) = HC,(&4)) = HC,(A) 

is the cyclic homology of the algebra A and 

(2.1) 

H,(C(A)) = H,(C(A 1) = H,(A, A) 

is the Hochschild homology of A. Note that whereas C(A) is a mixed com- 
plex, it is not a cyclic module in the sense of Connes, which shows the com- 
putational advantage of mixed complexes. 

The aim of this section is to study the relationship between 
C(A) @ C(A’) and C(A @A’) for two algebras A and A’. Classically, there 
exist two graded k-linear maps, the Alexander-Whitney map ,f and the 
shuffle map g, 

C(A)@C(A’&C(A@A’) 
P 

both commuting with the differential b and passing to the normalized com- 
plexes; moreover they are quasi-isomorphisms (see [3, IX]). Unfortunately 
they do not commute with the operator B, which means that .f and g are 
not morphisms of d.g. /l-modules. Nevertheless, the classical notion of 
strongly homotopy linear map (see [ 11, 3.33) will enable us to show that the 
shuffle map induces a natural isomorphism between HC,( C(A) 0 C(A’)) 
and HC,(C(A@A’)). 

DEFINITION 2.2. Given two d.g. /i-modules M and N, a strongly 
homotopy n-map from M to N is a collection of graded maps G”‘: M + N 
of degree 2i for all i > 0 such that 

[G”‘, b] = 0 

and 

[G”+ I), b] zz -[G”‘, B] for all i 3 0. 

The reader can easily check that this definition is exactly the one given in 
[ 11, Sect. 31 when specialized to the case of the graded algebra A. Note 
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that the degree 0 map G “) is a morphism of complexes. It commutes with 
B not strictly, but up to higher homotopies. The interest of strongly 
homotopy linear maps for our purposes lies in the following result which is 
a precise reformulation of Theorem 3.5 of [ 111 for A. 

PROPOSITION 2.3. Let (M, h, B) and (N, h, B) he two mixed complexes. 
Assume there exists a strongly homotopy A-map (G”)),aO ,from M to N. 
Then there exists a map of complexes G: gM --t gN such that the ,following 
diagram 

O-M-.MA.M[2]-0 

is commutative. 

Proof: Recall ( BM),l = M,, @ M,, z @ .. . . In matrix notation, the dif- 
ferential d of gM and BN can be written as follows: 

h B 0 0 ‘.. 

d= 
OOhB . 

Define G by G’o’ G”’ (3’2’ . . . 
G= 

0 

i i 
G’o’ G”’ 

0 0 G’o’ 

.I 
The hypotheses verified by the maps G (i) imply immediately [G, A] = 0. 
The rest of the proof is straightforward. m 

We come now to the main result of this section. 

THEOREM 2.4. Given two unital associative k-algebras A and A’, there 
exists a strongly homotopy A-map from c(A) @ c(A’) to C(A @A’) such 
that G(O) is the shuffle map g. 

The theorem has two important consequences. To state the first one, 
define for any k-algebra A, H&(A) as the cohomology of the complex 

... B, H,(A, A)2 H,+I(A, A)- ... 
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This notation is justified by the fact that this complex is isomorphic to the 
de Rham complex (Q;,k, d) when A is a smooth commutative algebra over 
a field of characteristic 0 [ 151. 

COROLLARY 2.5. Suppose A’ and H,(A’, A’) areflat k-modules. Then for 
any algebra A, there is a spectral sequence converging to H&(A @A’) with 
Tor”(H&(A), H&(A’)) as E2-term. In particular, if k is a field 

H;,(A @A’) g H;,(A)) H;,(A’). 

Proof Under our assumptions, 

HJA, A)@H,(A’, A’)zH.JC(A)@C(A’))rH,(C(A@A’)) 

2 H,(A@A’, A@A’). 

Now Theorem 2.4 shows that g commutes with B on the level of 
Hochschild homology. Hence, the above string of isomorphisms are chain 
isomorphisms for B. We conclude by applying the Kiinneth spectral 
sequence. 1 

COROLLARY 2.6. For any pair of algebras A and A’, one has 

HC,(C(A)@C(A’))~HC,(C(A@A’)). 

Proof: It is an immediate consequence of Theorem 2.4, Proposition 2.3, 
(2.1) the fact that g is a quasi-isomorphism and the five lemma. 1 

Proof of Theorem 2.4. We set A4 = C(A) @ C(A’) and N = C(A @A’). 
We have to construct a family of maps (G’i))jao of degree 2i from M to N 
satisfying the conditions of Definition 2.2; G(O) will be the shuffle map. We 
shall construct the maps G(l) such that 

G(f) = F”jg 

with F”‘: N + N of degree 2i, satisfying the relations 

CF’ '+'I, b]= -Cc"', B]f for all i>O. (2.7) 

Then clearly 

[@+'),b]= [f++"g,b]= [pi+'), b]g= -Cc"', B]fg 

= -Cc"' B] > 2 

since the shuffle map is a strict right inverse to the Alexander-Whitney 
map on the normalized complexes. 
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Since a given N, is the target of only finitely many nonzero F”’ or G”’ 
maps, we shall construct the maps Fi’: N, + N, + Zi (resp. Gil: M, + N, + Zi) 
by induction on p + 2i= n. The method we use was inspired to us by 
Goodwillie’s proof of [9, 1X.4.21. 

For n = 0, we take Fb”) = identity and Gh”) = go. Let us fix now an integer 
n >, 1 and suppose we have constructed maps Fi) and the corresponding 
Gy)= FF)gP such that p + 2i< n and such that the relations (2.7) are 
satisfied. 

We now want to construct 

F;i,: N,,,, =~,~+,(~O~‘)~Np+,+,,=~‘,+,+,,(~O~’) 

such that 

hF~!,=Gj:‘,:‘Bf;,+,-BG~,:‘f,.,+F”’h P 

and such that p + 1 + 2i = n. 
We can use an auxiliary induction on i, which starts with i= 0 

F’,“1 2i = identity. 
Now as in [9, 11.4.21, we note that FF!, , which can be viewed as a mul- 

tilinear map from (A@A’)P+2 into cP + , + 2i(A 0 A’), corresponds 
naturally to an element x E CP+ , + *, (T) where T is the tensor algebra 
generated over k by variables a,, a;, u, , a’, ,..., a,, + , , a;+, . 

The problem is now to find x E c?‘,,+ , +?;(T) such that hx = y, where 

y = G;,; ‘Bf ,+,-BG;+,‘If,,+,+F;‘h. 

Let us prove that y is a cycle in C,, + 2i( T). 

by= hG;+;‘Bf,+, + BbG;,,“.J;,+, + bF;‘h 

= (G;,;)B- BG;+;‘+ G;‘+ ,b) Bf,, , 

+ B(G;,,z’B - BG;, ;’ + G; l’b) f, + , + bF;‘b 

= Gj,‘,, , hBf,+ , + BG; %f,+, + hF;,“b 

= -(Gj,‘;,B-BG;- “)f,b+bFj:‘b 

= -(bFb” - F;’ I b)b + bF;‘b 

= 0. 

By [ 15, Lemma 5.23, all cycles in c,(T) are boundaries provided q 3 2. 
So there exists x such that hx = y when p + 2i> 2. And the 

corresponding representative FFL, can be chosen to be multilinear by the 
same argument as in [9]. The above method does not apply for 
( p, i) = ( - 1, 1 ), so that we have to construct Fo’) by hand. 

481 107 l-14 
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IdentifyingaEA witha@lEA@A’anda’EA’with ~@u’EA@A’, we 
denote an element a 0 a’ in A 0 A ’ by au’. 

We set 

F~‘(u,u;)= 1 @a”@u;. 

The reader will easily check the desired relation for FL’), namely 

hFh”= g,llf,- Bg ,f 0 0. 

by making use of the above expressions for h and B and of the formulas 
given for ,f and g in [3, XI]. 1 

3. APPLICATION TO CYCLIC HOMOLOGY 

As an immediate consequence of Corollaries 1.8 and 2.6, we have 

THEOREM 3.1. Let A and A’ he unitul associative ulgehrus over the com- 
mutative ring k. Assume that A’ and HC,( A’) are flat k-modules. Then the 
following sequence 

O---+ Cotor”““(HC,(A), HC,(A’))[l] - HC,(A@ A’) 

- HC,(A) q k[,,, HC,(A’) - 0 
is exact. 

We list now a series of applications of 3.1 in which A’ is a flat k-algebra 
such that HC,( A’) = k[u] 0 UO P’, where U and V’ are flat k-modules, 
k[u] 0 U is an extended comodule and V is a trivial comodule in the sense 
of [6] (this means that for k[u] 0 U the coaction is given by A 0 U and 
the map S corresponding to V is zero). Then using Theorem 1.6 and 
classical properties of Cotor (see also the proof of [2, Theorem B(b)]), one 
concludes immediately that for any k-algebra A, 

HC,(A@A’)=HC,(A)@ U@H,(A, A)@ V. (3.2) 

In the following six examples for which we use (3.2), k is a commutative 
ring containing a field of characteristic zero, A is any unital associative 
k-algebra. 

Examples 

(3.3) In the case of polynomials, HC*(k[x])= k[u] @I. Here I is 
the augmentation ideal of k[u]; it is a trivial comodule concentrated in 
degree 0. Therefore 

HC,,(ACxl)= HC,,(A)OH,,(A, A)OI. 
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(3.4) For Laurent polynomials, we have HC,(k[x, x~-‘I)= 
k[u] 0 (k 0 ku) 0 I’. The module k @ ku is generated by 1 in degree 0 and c’ 
in degree 1; I’ is the augmentation ideal of k[x, x ‘1 and a trivial com- 
odule. Hence 

HC,,(A[x,xP’])=HC,,(A)@HC,, ,(A)@H,,(A,A)@I’. 

This result can be found in [I]. The above two examples are special cases 
of the following one. 

(3.5) Let A’ be a smooth commutative algebra over a field k of 
characteristic 0; then by [ 15, Theorem 2.91, HC,(A’) = k[u] 0 &&(A’) @ 
dQ;,,k where the second summand is a trivial comodule. Then 

HC,,(A@A’)= @ 
( 

HC,(A)@H&(A’) 
p+y=tz > 

0 
i 

0 H,(A,A)OdQY,.,, . 
p+q=e 1 

(3.6) Concerning other affine schemes, a computation by Goodwillie 
(unpublished) and by MasudaaNatsume [t S] shows that if k is a field of 
characteristic zero and P(x) is a degree m polynomial with coefficients in k 
and with r distinct roots in an extension of k, then HC,(k[x]/P(x))= 
k[u]‘Ok[u]“-‘, where the second summand is a trivial comodule. It 
follows immediately that 

HC,(A[,x]/P(x))=HC,,(A)‘@H,,(A, A)” ‘@H,,p2(A, A)” ‘0 . . . . 

(3.7) Let J be the algebra of generalized Jacobi matrices consisting of 
matrices (a,),,,. z with only finitely many nonzero diagonals. Feigin and 
Tsygan [7] proved that HC,(J) = k[u] [ 11. Consequently, 

HC,,(AOJ)= HC,,p ,(A). 

Note that the obvious embedding of k[x, x-- ‘1 into J (given by “counting 
the diagonals”) detects the interesting factor HC, ,(A ) in 
HC,(A[x, x -‘I). 

(3.8) Let A, be the Weyl algebra of polynomial differential operators 
on the mth dimensional affine space. Then HC,(A,)= k[u][2m] (see 
[7]). Hence, for any k-algebra A, 

HC,(A 0 A,) = HC,, ~~ *,,,(A). 

We give also an application which is valid without any restriction on the 
ground ring k. Let us recall (see [21]) that a k-algebra A is separable if it is 
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projective as a module over A 0 A(‘. The following algebras are separable: 
(i) the algebra of n x n-matrices with entries in k, (ii) k[G] where G is a 
finite group with order invertible in k, (iii) a finite product of finite dimen- 
sional simple algebras over a field k whose centres are separable extensions 
of k, (iv) a finitely generated commutative unramilied algebra, (v) an Ctale 
algebra (see [20, Chaps. I and III]). 

PROPOSITION 3.9. Let A’ be a separable flat algebra over a commutative 
ring k. Then ,for any associative k-algebra A, 

HC,(A 0 A’) = HC,(A)@ A’/[A’, A’]. 

Proof: Since A’ is A’@ A”-projective, its Hochschild homology is 
trivial, i.e., H,(A’, A’) = 0 for n #O. By Connes’s long exact sequence, 
HC,(A’) = k[u] @ A’/[A’, A’]. We apply (3.2) to conclude. 1 

We turn now to periodic cyclic homology, which is obtained from cyclic 
homology by inverting the map S. More precisely, given a mixed complex 
(M, b, B), the inverse limit lim, B M[2m] with respect to the natural sur- 
jection S: M + M[2] (cf. Sect. 1) is the Z/2-graded complex 

We denote by HCr’(M) the Z/2-graded k-module H,(c) and call it the 
periodic cyclic homology of M. It is related to cyclic homology by a short 
exact sequence 

0-b’ HC,+,,+,(M)- HCr’(M)- lim HC,+,,(M)- 0. 

When M is the mixed complex C(A) associated to an associative algebra A 
(see Sect. 2), then we write HCP,“(A) for HCr(C(A)). Our definition coin- 
cides with the one given in [9,11.3]. Periodic cyclic homology is of great 
geometric significance, as illustrated in [4, 891 and in [ 1 ] for group rings. 
For instance, when A is the coordinate ring of an afline algebraic variety V 
over a field k of characteristic zero, Feigin and Tsygan [8] proved that 
HCy(A) is isomorphic to the crystalline cohomology of V defined by 
Grothendieck [19] as a generalization of de Rham cohomology for 
singular varieties. 

Given two mixed complexes M and N, there exists a natural chain map 

a@ fi-, MG; but it is not necessarily an isomorphism since infinite 
direct products do not commute with the tensor product. However, we 
shall prove this map is a quasi-isomorphism if M (or N) has the following 
Property (P): 
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(P) M is flat over k and HCJM) is the direct sum of an extended 
comodule k[u] 0 U and of a trivial comodule V where U is a finitely 
generated projective k-module and V is a flat k-module. 

If M satisfies (P), the inverse system {. . . -+ HC,(M) --% HC, z 
(W --) . . . } is Mittag-Leffl er and HCy’(M) = U. By extension, we say that 
a k-algebra A has Property (P) if the associated mixed complex C(A) has 
the same property. Notice that all algebras in Examples (3.3)-(3.9) above 
have this property (provided HC,(A’) is finitely generated and projective 
over k in (3.9)). 

THEOREM 3.10. Let A and A’ be associative algebras over a commutative 
ring k. Assume A’ has Property (P). Then one has an isomorphism 

HCy’(A @A’) = HCr’(A) 0 HC?JA’) 

of Z/Z-graded vector spaces. 

Proof. The theorem is a consequence of the isomorphisms 

which follow from Proposition 2.3 and Theorem 2.4 and of the following 
fact: if A4 and N are mixed complexes, N has Property (P) and HC,(N) = 
k[u] @ U@ V as above, then HC,(M@ N) = HCr(M)@ U. 

In order to prove this assertion, we explicit the map S on B(M@ N) in 
terms of the corresponding maps on gM and gN. Let us resume the 
notations of Section 1 and point out that Theorem 1.7 can be reformulated 
under the following exact sequence of complexes 

When one identifies gM with k[u] @A4 (and similarly for gN and 
B(M@N)), the mapjis given by: j(uiomOn)=Cp+y=iuPOmOuYOn. 
Let us consider the endomorphism S’= id@ S of BM@s N. It commutes 
with S@ id - id @ S and one sees immediately that S’ oj = jo S. Therefore 
in order to understand the inverse system {. + B(M@ N) -% 
AMONK --f . ..>. we look at the inverse system {. . . + gM@ BN --% 
gM@ .N[2] + . ..}. 

Taking the homology of the above exact sequence yields an exact 
sequence as in Corollary 1.8 and passing to the inverse limit gives the 
following six-term exact sequence 
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0 t !ir~~ Cotor(HC(M), HC(N))[ l] - lim HC(M@ N) - 

- lim HC(M) 0 HC(N) - !&I’ Cotor(HC(M), HC(N))[2] 

-+&n’HC(M@N)[l]-li&HC(M)OHC(N)[l]-0. 

Now under the hypotheses, 

Cotor(HC(M), HC(N)) = Cotor(HC(M), V) 

=Coker(HC(M)@ k’[-213 WWO I’) 

on which S’=O. Therefore 

lim Cotor(HC(M), HC(N)) = b’ Cotor(HC(M), HC(N)) = 0. 

Concerning the cotensor product, we have HC(M) 0 HC(N) = 
WN 0 (kCul0 U) 0 HC(M) 0 I’. Now 
Ker(HC(M)@ Vz 

HC(M) 0 V= 
HC(M)@ V[2]) on which S’ = 0. 

We are left with HC(M) 0 (k[u]@ U). We know that 
i: HC(M)@ U+ HC(M) 0 (k[u] @ U) given by i(m@x)= 
C, a 0 S’m @ u’@ x is an isomorphism. Let us show that S’ corresponds to 
S@ id under this isomorphism. 

S’oi(m@x)=S’ C S’ 
( 

0 ‘0 
i20 

m x u ~x)=(id@S)(~OSim@..@x) 

= C S’m@u’ ‘ax= 1 S’+‘m@u’@x=i(Sm@x). 
13-l i 2 0 

One concludes that 

because of the finiteness condition on U. Similarly, hrr~’ HC(M@ N) = 
(b’ HC(M))@ U. By the existence of a natural map HCy’(M)@ U= 
HCr’( M) @ HCr’(N) -+ HCr( A48 N) and the exact sequence relating 
periodic cyclic homology to the !~IJ- and !im ’ -terms, one has 
HCr’(M@N)=HC$=(M)@U. 1 

We list a few immediate applications. 

COROLLARY 3.11. Let k he a field. Then,for any pair of groups G and H 
such that k[G] or k[ H] has Property (P), 

HCy’(k[Gx H])=HC~‘(k[G])@HC~‘(k[H]). 

This result generalizes Corollary IV,, in [ 11. The following one is of 
geometric nature. 
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COROLLARY 3.12. Let O[ V] he the coordinate ring of an q@e algebraic 
variety over a jield k qf characteristic zero. Then .for any associative 
algebra A, 

(a) if V is smooth, 

(where the de Rham cohomology oj‘ Y is given the usuul Z/2-grading). 

(b) if V is arbitrary, 

HCr’(A @ O[ I’]) = HCr’(A) @ H,*,,,( V) 

where H$,,( V) is the crystulline cohomology of V (see [ 191). 

ProojI It results from Theorem 3.10 and from [ 15, Theorem 2.91 (for 
part (a)) and from [S, Theorem 51 (for part (b)). By [19], (a) is a special 
case of(b). 1 

Corollary 3.12 implies the following isomorphisms (k containing the field 
of rational numbers) 

HCy’( A[x]) = HCr’( A). (3.13) 

HC~‘(A[x,.u ‘])=HCy’(A)@HCy’,(A). (3.14) 

If the polynomial P(x) is as in (3.6), then HCr’(k[x]/P(x)) = k’ counts 
the roots of P. Hence 

HCr’(A[x]/P(x)) = HCr’(A)‘. (3.15) 

Finally, corresponding to (3.7) and (3.8), one has (with the same 
notations as above) 

HCr’(A8.l) = HCr;er,(A). (3.16) 

HCr’(A @A,,) = HCp’(A). (3.17) 

This last isomorphism was also proved by Masuda [ 173. 

Remark. Theorem 3.10 is related to the following classical result of 
equivariant homotopy theory (see [13]). Let G be the circle group. If G 
acts on a space X, let X’; be the set of all points of X with finite isotropy 
subgroup and let Hz(X) denote the rational G-equivariant cohomology of 
X. If u is a generator of H2(BG), let us denote IfF(X)[uP’] by I?:(X). 
Then if X is a finite G-space, there is a natural isomorphism 

A$(X) r A;(P) E Ii*( A;(p). 

Consequently, fiz(Xx Y) is the tensor product of k;(X) and fiz( Y) over 
fiZr(PO 



214 CHRISTIAN KASSEL 

APPENDIX: DERIVED FUNCTORS IN THE CATEGORY A(k) 

This section is devoted to some homological algebra on the abelian 
category A(%) of contravariant functors from Connes’s category A (see 
[S]) into a given abelian category ‘$I. When 2l is the category of modules 
over a commutative ring k, we denote the above functor category by A(k) 
and the opposite category by A(k)‘. 

Our aim is to define cyclic homology as derived functor of an 
appropriate tensor product in A(k). This is implicit in [S, IV] and was 
used in [2] and [9], but has never appeared explicitly in the literature. 

LEMMA A.l. Zf 91 has enough projective objects, then so has A(‘%). 

Proof This is a general statement resulting from the theory of Kan 
extensions (see for instance [ 121, Chap. 9). We recall that the functor 
I: A(‘%)+‘%” defined by Z(E),= E, has a left adjoint given by 

where for any object 2 in A, the functor J, : ‘U + A(‘%) is given by 

J,(Wp= 0 M, where M, = M. 
1:,1-a 

The adjointness relation is given by 

This proves immediately that if (P,,),, is a family of projective objects in 2l, 
then J((P,),) is projective in A(%). 

To prove the lemma, we have only to show that for any object E in 
A(%), there exists an epimorphism J( (Pi)A) -+ E. For each 2 E A, we choose 
a projective P, in ‘?I mapping epimorphically onto El. The map 
J((P,),), + E, given for each p by adjointness factors obviously by two 
epimorphisms through the summand P, corresponding to the identity of p. 
This finishes the proof. 1 

It results also from this proof that any projective object in A(2f) is a 
retract of a direct sum of objects of the form J,(P,) where PA is projective 
in 2L 

We define now the desired tensor product of cyclic k-modules as a 
functor 

A(k)’ x A(k) -+ (k). 



CYCLICHOMOLOGYAND COMODULES 215 

DEFINITION A.2. Given E in A(K)” and Fin A(k), their tensor product 
is the k-module 

“Cf F=(,Ei@F;.)/‘y 

where V is the sub-k-module generated by all elements of the form 
a,(e)@f-e@cc*(f) where eE Ej., f~ F,, and c( is a map from I. to p in A. 

Notice that in the category A(k)‘, one has 

J;(M),,= MOkCHom,,(k ~11. 

Then one has immediately 

J;(M) @ FE MO F;.. (A.3) 

LEMMA A.4. The functor aA is right exact and is lqft balanced in the 
sense of Cartan-Eilenherg [3]. 

ProofY The right-exactness comes from the fact that @ ,, is a quotient of 
a direct sum and the ordinary tensor product is right exact. We have now 
to prove that if E is projective in A(k)‘, then FH E@,, F is left exact. By 
previous remarks, it is enough to prove it for E = J,(P) and a projective 
module P. Which is true because of (A.3) and of the flatness of P. 1 

It follows from [3, Chap. V, Sect. S] that a,, has derived functors 
Tori’k)(P, -) h’ h w IC can be computed by resolutions of either variable. 

PROPOSITION A.5. Let E be a cyclic k-module, i.e., an object of A(k), 
then its cyclic homology is isomorphic to 

HC,(E) g Tor$‘k’(k, E), 

where k is the constant.finctor in A(k)‘. 

Proof. In [S, IV], Connes constructs a projective resolution of k in 
A’(k) with the objects J,(k). Using (A.3) one sees immediatement that the 
tensor product of Connes’s resolution with E over A gives the bicomplex 
defining cyclic homology in [9] or in [15]. 1 
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