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Preface

The language of Mathematics has changed drastically since the middle of
the twentieth century, in particular after Grothendieck’s ideas spread from
algebraic geometry to many other subjects. As an enrichment for the notions of
sets and functions, categories and sheaves are new tools which appear almost
everywhere nowadays, sometimes simply in the role of a useful language, but
often as the natural approach to a deeper understanding of mathematics.

Category theory, initiated by Eilenberg and Mac Lane in the forties (see
[19, 20]), may be seen as part of a wider movement transcending mathematics,
of which structuralism in various areas of knowledge is perhaps another facet.
Before the advent of categories, people were used to working with a given
set endowed with a given structure (a topological space for example) and to
studying its properties. The categorical point of view is essentially different.
The stress is placed not upon the objects, but on the relations (the morphisms)
between objects within the category. The language is natural and allows one to
unify various branches of mathematics and to make unexpected links between
seemingly different subjects.

Category theory is elementary in the sense that there are few prerequi-
sites to its study, though it may appear forbiddingly abstract to many people.
Indeed, the usual course of mathematical education is not conducive to such
a conceptual way of thinking. Most mathematicians are used to manipulat-
ing spaces and functions, computing integrals and so on, fewer understand
the importance of the difference between an equality and an isomorphism or
appreciate the beauty and efficiency of diagrams.

Another fundamental idea is that of a sheaf. Sheaves provide a tool for
passing from local to global situations and a good deal of mathematics (and
physics) revolves around such questions. Sheaves allow us to study objects
that exist locally but not globally, such as the holomorphic functions on the
Riemann sphere or the orientation on a Möbius strip, and the cohomology
of sheaves measures in some sense the obstruction to passing from local to
global.



VI Preface

Jean Leray invented sheaves on a topological space in the forties (see [46]
and Houzel’s historical notes in [38]). Their importance, however, became
more evident through the Cartan Seminar and the work of Serre. Subse-
quently, Serre’s work [62] on the local triviality of algebraic fiber bundles led
Grothendieck to the realization that the usual notion of a topological space
was not appropriate for algebraic geometry (there being an insufficiency of
open subsets), and introduced sites, that is, categories endowed with “Gro-
thendieck topologies” and extended sheaf theory to sites.

The development of homological algebra is closely linked to that of cat-
egory and sheaf theory. Homological algebra is a vast generalization of lin-
ear algebra and a key tool in all parts of mathematics dealing with linear
phenomena, for example, representations, abelian sheaves, and so forth. Two
milestones are the introduction of spectral sequences by Leray (loc. cit.) and
the introduction of derived categories by Grothendieck in the sixties.

In this book, we present categories, homological algebra and sheaves in
a systematic and exhaustive manner starting from scratch and continuing
with full proofs to an exposition of the most recent results in the literature,
and sometimes beyond. We also present the main features and key results of
related topics that would deserve a whole book for themselves (e.g., tensor
categories, triangulated categories, stacks).
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Introduction

The aim of this book is to describe the topics outlined in the preface, cat-
egories, homological algebra and sheaves. We also present the main features
and key results in related topics which await a similar full-scale treatment
such as, for example, tensor categories, triangulated categories, stacks.

The general theory of categories and functors, with emphasis on inductive
and projective limits, tensor categories, representable functors, ind-objects
and localization is dealt with in Chaps. 1–7.

Homological algebra, including additive, abelian, triangulated and derived
categories, is treated in Chaps. 8–15. Chapter 9 provides the tools (using trans-
finite induction) which will be used later for presenting unbounded derived
categories.

Sheaf theory is treated in Chaps. 16–19 in the general framework of Gro-
thendieck topologies. In particular, the results of Chap. 14 are applied to the
study of the derived category of the category of sheaves on a ringed site. We
also sketch an approach to the more sophisticated subject of stacks (roughly
speaking, sheaves with values in the 2-category of categories) and introduce
the important notion of twisted sheaves.

Of necessity we have excluded many exciting developments and applications
such as n-categories, operads, A∞-categories, model categories, among others.
Without doubt these new areas will soon be intensively treated in the liter-
ature, and it is our hope that the present work will provide a basis for their
understanding.

We now proceed to a more detailed outline of the contents of the book.

Chapter 1. We begin by defining the basic notions of categories and func-
tors, illustrated with many classical examples. There are some set–theoretical
dangers and to avoid contradictions, we work in a given universe. Universes
are presented axiomatically, referring to [64] for a more detailed treatment.
Among other concepts introduced in this chapter are morphisms of functors,
equivalences of categories, representable functors, adjoint functors and so on.
We introduce in particular the category Fct(I, C) of functors from a small
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category I to a category C in a universe U , and look briefly at the 2-category
U-Cat of all U-categories.

Here, the key result is the Yoneda lemma showing that a category C may
be embedded in the category C∧ of all contravariant functors from C to Set,
the category of sets. This allows us in a sense to reduce category theory to
set theory and leads naturally to the notion of a representable functor. The
category C∧ enjoys most of the properties of the category Set, and it is often
extremely convenient, if not necessary, to replace C by C∧, just as in analysis,
we are lead to replace functions by generalized functions.

Chapters 2 and 3. Inductive and projective limits are the most important
concepts dealt with in this book. They can be seen as the essential tool of
category theory, corresponding approximately to the notions of union and
intersection in set theory. Since students often find them difficult to master,
we provide many detailed examples. The category Set is not equivalent to
its opposite category, and projective and inductive limits in Set behave very
differently. Note that inductive and projective limits in a category are both
defined as representable functors of projective limits in the category Set.

Having reached this point we need to construct the Kan extension of func-
tors. Consider three categories J, I, C and a functor ϕ : J −→ I . The functor ϕ

defines by composition a functor ϕ∗ from Fct(I, C) to Fct(J, C), and we can
construct a right or left adjoint for this functor by using projective or induc-
tive limits. These constructions will systematically be used in our presentation
of sheaf theory and correspond to the operations of direct or inverse images
of sheaves.

Next, we cover two essential tools for the study of limits in detail: cofinal
functors (roughly analogous to the notion of extracted sequences in analysis)
and filtrant1 categories (which generalizes the notion of a directed set). As we
shall see in this book, filtrant categories are of fundamental importance.

We define right exact functors (and similarly by reversing the arrows, left
exact functors). Given that finite inductive limits exist, a functor is right exact
if and only if it commutes with such limits.

Special attention is given to the category Set and to the study of filtrant
inductive limits in Set. We prove in particular that inductive limits in Set
indexed by a small category I commute with finite projective limits if and
only if I is filtrant.

Chapter 4. Tensor categories axiomatize the properties of tensor products
of vector spaces. Nowadays, tensor categories appear in many areas, mathe-
matical physics, knot theory, computer science among others. They acquired
popular attention when it was found that quantum groups produce rich exam-
ples of non-commutative tensor categories. Tensor categories and their appli-
cations in themselves merit an extended treatment, but we content ourselves

1 Some authors use the terms “filtered” or “filtering”. We have chosen to keep the
French word.
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here with a rapid treatment referring the reader to [15, 40] and [59] from the
vast literature on this subject.

Chapter 5. We give various criteria for a functor with values in Set to be
representable and, as a by-product, obtain criteria under which a functor will
have an adjoint. This necessitates the introduction of two important notions:
strict morphisms and systems of generators (and in particular, a generator)
in a category C. References are made to [64].

Chapter 6. The Yoneda functor, which sends a category C to C∧, enjoys
many pleasing properties, such as that of being fully faithful and commuting
with projective limits, but it is not right exact.

The category Ind(C) of ind-objects of C is the subcategory of C∧ consisting
of small and filtrant inductive limits of objects in C. This category has many
remarkable properties: it contains C as a full subcategory, admits small filtrant
inductive limits, and the functor from C to Ind(C) induced by the Yoneda
functor is now right exact. On the other hand, we shall show in Chap. 15 that
in the abelian case, Ind(C) does not in general have enough injective objects
when we remain in a given universe.

This theory, introduced in [64] (see also [3] for complementary material)
was not commonly used until recently, even by algebraic geometers, but mat-
ters are rapidly changing and ind-objects are increasingly playing an impor-
tant role.

Chapter 7. The process of localization appears everywhere and in many
forms in mathematics. Although natural, the construction is not easy in a
categorical setting. As usual, it is easier to embed than to form quotient.

If a category C is localized with respect to a family of morphisms S, the
morphisms of S become isomorphisms in the localized category CS and if
F : C −→ A is a functor which sends the morphisms in S to isomorphisms in
A, then F will factor uniquely through the natural functor Q : C −→ CS . This
is the aim of localization. We construct the localization of C when S satisfies
suitable conditions, namely, when S is a (right or left) multiplicative system.

Interesting features appear when we try to localize a functor F that is
defined on C with values in some category A, and does not map the arrows
in S to isomorphisms in A. Even in this case, we can define the right or left
localization of the functor F under suitable conditions. We interpret the right
localization functor as a left adjoint to the composition with the functor Q,
and this adjoint exists if A admits inductive limits. It is then a natural idea to
replace the category A with that of ind-objects of A, and check whether the
localization of F at X ∈ C is representable in A. This is the approach taken
by Deligne [17] which we follow here.

Localization is an essential step in constructing derived categories. A clas-
sical reference for localization is [24].

Chapter 8. The standard example of abelian categories is the category
Mod(R) of modules over a ring R. Additive categories present a much weaker
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structure which appears for example when considering special classes of mod-
ules (e.g. the category of projective modules over the ring R is additive but
not abelian).

The concept of abelian categories emerged in the early 1950s (see [13]).
They inherit all the main properties of the category Mod(R) and form a nat-
ural framework for the development of homological algebra, as is shown in
the subsequent chapters. Of particular importance are the Grothendieck cate-
gories, that is, abelian categories which admit (exact) small filtrant inductive
limits and a generator. We prove in particular the Gabriel-Popescu theorem
(see [54]) which asserts that a Grothendieck category may be embedded into
the category of modules over the ring of endomorphisms of a generator.

We also study the abelian category Ind(C) of ind-objects of an abelian
category C and show in particular that the category Ind(C) is abelian and that
the natural functor C −→ Ind(C) is exact. Finally we prove that under suitable
hypotheses, the Kan extension of a right (or left) exact functor defined on an
additive subcategory of an abelian category is also exact. Classical references
are the book [14] by Cartan-Eilenberg, and Grothendieck’s paper [28] which
stresses the role of abelian categories, derived functors and injective objects.

An important source of historical information on this period is given in [16]
by two of the main contributors.

Chapter 9. In this chapter we extend many results on filtrant inductive
limits to the case of π -filtrant inductive limits, for an infinite cardinal π . An
object X is π -accessible if HomC(X, • ) commutes with π -filtrant inductive
limits. We specify conditions which ensure that the category Cπ of π -accessible
objects is small and that the category of its ind-objects is equivalent C. These
techniques are used to prove that, under suitable hypotheses, given a family
F of morphisms in a category C, there are enough F-injective objects.

Some arguments developed here were initiated in Grothendieck’s paper
[28] and play an essential role in the theory of model categories (see [56]
and [32]). They are used in Chap. 14 in proving that the derived category of
a Grothendieck category admits enough homotopically injective objects.

Here, we give two important applications. The first one is the fact that
a Grothendieck category possesses enough injective objects. The second one
is the Freyd-Mitchell theorem which asserts that any small abelian category
may be embedded in the category of modules over a suitable ring. References
are made to [64]. Accessible objects are also discussed in [1, 23] and [49].

Chapter 10. Triangulated categories first appeared implicitly in papers on
stable homotopy theory after the work of Puppe [55], until Verdier axiomatized
the properties of these categories (we refer to the preface by L. Illusie of [69] for
more historical comments). Triangulated categories are now very popular and
are part of the basic language in various branches of mathematics, especially
algebraic geometry (see e.g. [57, 70]), algebraic topology and representation
theory (see e.g. [35]). They appeared in analysis in the early 1970s under the
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influence of Mikio Sato (see [58]) and more recently in symplectic geometry
after Kontsevich expressed mirror symmetry (see [43]) using this language.

A category endowed with an automorphism T is called here a category
with translation. In such a category, a triangle is a sequence of morphisms
X −→ Y −→ Z −→ T (X). A triangulated category is an additive category with
translation endowed with a family of so-called distinguished triangles satisfying
certain axioms. Although the first example of a triangulated category only
appears in the next chapter, it seems worthwhile to develop this very elegant
and easy formalism here for its own sake.

In this chapter, we study the localization of triangulated categories and
the construction of cohomological functors in some detail. We also give a
short proof of the Brown representability theorem [11], in the form due to
Neeman [53], which asserts that, under suitable hypotheses, a contravariant
cohomological functor defined on a triangulated category which sends small
direct sums to products is representable.

We do not treat t-structures here, referring to the original paper [4] (see [38]
for an expository treatment).

Chapter 11. It is perhaps the main idea of homological algebra to replace an
object in a category C by a complex of objects of C, the components of which
have “good properties”. For example, when considering the tensor product
and its derived functors, we replace a module by a complex of projective (or
flat) modules and, when considering the global-section functor and its derived
functors, we replace a sheaf by a complex of flabby sheaves.

It is therefore natural to study the category C(C) of complexes of objects
of an additive category C. This category inherits an automorphism, the shift
functor, called the “suspension” by algebraic topologists. Other basic con-
structions borrowed from algebraic topology are that of the mapping cone of
a morphism and that of homotopy of complexes. In fact, in order to be able
to work, i.e., to form commutative diagrams, we have to make morphisms
in C(C) which are homotopic to zero, actually isomorphic to zero. This de-
fines the homotopy category K(C) and the main result (stated in the slightly
more general framework of additive categories with translation) is that K(C)
is triangulated.

Many complexes, such as Čech complexes in sheaf theory (see Chap. 18
below), are obtained naturally by simplicial construction. Here, we construct
complexes associated with simplicial objects and give a criterion for these
complexes to be homotopic to zero.

When considering bifunctors on additive categories, we are rapidly lead to
consider the category C(C(C)) of complexes of complexes (i.e., double com-
plexes), and so on. We explain here how a diagonal procedure allows us, un-
der suitable hypotheses, to reduce a double complex to a simple one. Delicate
questions of signs arise and necessitate careful treatment.

Chapter 12. When C is abelian, we can define the j-th cohomology ob-
ject H j (X) of a complex X . The main result is that the functor H j is
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cohomological, that is, sends distinguished triangles in K(C) to long exact
sequences in C.

When a functor F with values in C is defined on the category of finite sets,
it is possible to attach to F a complex in C, generalizing the classical notion of
Koszul complexes. We provide the tools needed to calculate the cohomology
of such complexes and treat some examples such as distributive families of
subobjects.

We also study the cohomology of a double complex, replacing the Leray’s
traditional spectral sequences by an intensive use of the truncation functors.
We find this approach much easier and perfectly adequate in practice.

Chapter 13. Constructing the derived category of an abelian category is easy
with the tools now at hand. It is nothing more than the localization of the
homotopy category K(C) with respect to exact complexes.

Here we give the main constructions and results concerning derived cate-
gories and functors, including some new results.

Despite their popularity, derived categories are sometimes supposed diffi-
cult. A possible reason for this reputation is that to date there has been no
systematic, pedagogical treatment of the theory. The classical texts on de-
rived categories are the famous Hartshorne Notes [31], or Verdier’s résumé
of his thesis [68] (of which the complete manuscript has been published re-
cently [69]). Apart from these, there are a few others which may be found
in particular in the books [25, 38] and [71]. Recall that the original idea of
derived categories goes back to Grothendieck.

Chapter 14. Using the results of Chap. 9, we study the (unbounded) derived
category D(C) of a Grothendieck category C. First, we show that any complex
in a Grothendieck category is quasi-isomorphic to a homotopically injective
complex and we deduce the existence of right derived functors in D(C). We
then prove that the Brown representability theorem holds in D(C) and discuss
the existence of left derived functors, as well as the composition of (right or
left) derived functors and derived adjunction formulas.

Spaltenstein [65] was the first to consider unbounded complexes and the
corresponding derived functors. The (difficult) result which asserts that the
Brown representability theorem holds in the derived category of a Grothen-
dieck category seems to be due to independently to [2] and [21] (see also [6,
42, 53] and [44]). Note that most of the ideas presented here come from topol-
ogy, in which context the names of Adams, Bousfield, Kan, Thomason among
others should be mentioned.

Chapter 15. We study here the derived category of the category Ind(C) of
ind-objects of an abelian category C. Things are not easy since in the simple
case where C is the category of vector spaces over a field k, the category Ind(C)
does not have enough injective objects. In order to overcome this difficulty, we
introduce the notion of quasi-injective objects. We show that under suitable
hypotheses, there are enough such objects and that they allow us to derive
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functors. We also study some links between the derived category of Ind(C)
and that of ind-objects of the derived category of C. Note that the category
of ind-objects of a triangulated category does not seem to be triangulated.

Most of the results in this chapter are new and we hope that they may be
useful. They are so when applied to the construction of ind-sheaves, for which
we refer to [39].

Chapter 16. The notion of sheaves relies on that of coverings and a Gro-
thendieck topology on a category is defined by axiomatizing the notion of
coverings.

In this chapter we give the axioms for Grothendieck topologies using sieves
and then introduce the notions of local epimorphisms and local isomorphisms.
We give several examples and study the properties of the family of local iso-
morphisms in detail, showing in particular that this family is stable under
inductive limits. The classical reference is [64].

Chapter 17. A site X is a category CX endowed with a Grothendieck topology.
A presheaf F on X with values in a category A is a contravariant functor on
CX with values in A, and a presheaf F is a sheaf if, for any local isomorphism
A −→ U , F(U) −→ F(A) is an isomorphism. When CX is the category of open
subsets of a topological space X , we recover a familiar notion.

Here, we construct the sheaf Fa associated with a presheaf F with values
in a category A satisfying suitable properties. We also study restriction and
extension of sheaves, direct and inverse images, and internal Hom . However,
we do not enter the theory of Topos, referring to [64] (see also [48] for further
exciting developments).

Chapter 18. When OX is a sheaf of rings on a site X , we define the category
Mod(OX ) of sheaves of OX -modules. This is a Grothendieck category to which
we may apply the tools obtained in Chap. 14.

In this Chapter, we construct the unbounded derived functors RHom OX

of internal hom,
L⊗OX

of tensor product, R f ∗ of direct image and L f ∗ of
inverse image (these two last functors being associated with a morphism f of
ringed sites) and we study their relations. Such constructions are well-known
in the case of bounded derived categories, but the unbounded case, initiated
by Spaltenstein [65], is more delicate.

We do not treat proper direct images and duality for sheaves. Indeed, there
is no such theory for sheaves on abstract sites, where the construction in the
algebraic case for which we refer to [17], differs from that in the topological
case for which we refer to [38].

Chapter 19. The notion of constant functions is not local and it is more
natural (and useful) to consider locally constant functions. The presheaf of
such functions is in fact a sheaf, called a constant sheaf. There are however
sheaves which are locally, but not globally, isomorphic to this constant sheaf,
and this leads us to the fundamental notion of locally constant sheaves, or
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local systems. The orientation sheaf on a real manifold is a good example of
such a sheaf. We consider similarly categories which are locally equivalent to
the category of sheaves, which leads us to the notions of stacks and twisted
sheaves.

A stack on a site X is, roughly speaking, a sheaf of categories, or, more
precisely, a sheaf with values in the 2-category of all U-categories of a given
universe U . Indeed, it would be possible to consider higher objects (n-stacks),
but we do not pursue this matter here. This new field of mathematics was first
explored in the sixties by Grothendieck and Giraud (see [26]) and after having
been long considered highly esoteric, it is now the object of intense activity
from algebraic geometry to theoretical physics. Note that 2-categories were
first introduced by Bénabou (see [5]), a student of an independent-minded
category theorist, Charles Ehresmann.

This last chapter should be understood as a short presentation of possible
directions in which the theory may develop.



1

The Language of Categories

A set E is a collection of elements, and given two elements x and y in E there
are no relations between x and y. The notion of a category is more sophis-
ticated. A category C possesses objects similarly as a set possesses elements,
but now for each pair of objects X and Y in C, one is given a set HomC(X, Y )
called the morphisms from X to Y , representing possible relations between X
and Y .

Once we have the notion of a category, it is natural to ask what are the
morphisms from a category to another, and this lead to the notion of functors.
We can also define the morphisms of functors, and as a byproduct, the notion
of an equivalence of categories. At this stage, it would be tempting to define
the notion of a 2-category, but this is out of the scope of this book.

The cornerstone of Category Theory is the Yoneda lemma. It asserts that
a category C may be embedded in the category C∧ of all contravariant functors
from this category to the category Set of sets, the morphisms in Set being
the usual maps. This allows us, in some sense, to reduce Category Theory to
Set Theory. The Yoneda lemma naturally leads to the notion of representable
functor, and in particular to that of adjoint functor.

To a category C, we can associate its opposite category Cop obtained by
reversing the arrows, and in this theory most of the constructions have their
counterparts, monomorphism and epimorphism, right adjoint and left adjoint,
etc. Of course, when a statement may be deduced from another one by re-
versing the arrows, we shall simply give one of the two statements. But the
category Set is not equivalent to its opposite category, and Set plays a very
special role in the whole theory. For example, inductive and projective limits
in categories are constructed by using projective limits in Set.

A first example of a category would be the category Set mentioned above.
But at this stage one encounters a serious difficulty, namely that of manip-
ulating “all” sets. Moreover, we constantly use the category of all functors
from a given category to Set. In this book, to avoid contradictions, we work
in a given universe. Here, we shall begin by briefly recalling the axioms of
universes, referring to [64] for more details.
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1.1 Preliminaries: Sets and Universes

The aim of this section is to fix some notations and to recall the axioms of
universes. We do not intend neither to enter Set Theory, nor to say more
about universes than what we need. For this last subject, references are made
to [64].

For a set u, we denote as usual by P(u) the set of subsets of u : P(u) =
{x ; x ⊂ u}. For x1, . . . xn, we denote as usual by {x1, . . . , xn} the set whose
elements are x1, . . . xn.

Definition 1.1.1. A universe U is a set satisfying the following properties:

(i) ∅ ∈ U ,
(ii) u ∈ U implies u ⊂ U , (equivalently, x ∈ U and y ∈ x implies y ∈ U , or

else U ⊂ P(U)),
(iii) u ∈ U implies {u} ∈ U ,
(iv) u ∈ U implies P(u) ∈ U ,
(v) if I ∈ U and ui ∈ U for all i ∈ I , then

⋃
i∈I ui ∈ U ,

(vi) N ∈ U .

As a consequence we have

(vii) u ∈ U implies
⋃

x∈u x ∈ U ,
(viii) u, v ∈ U implies u × v ∈ U ,
(ix) u ⊂ v ∈ U implies u ∈ U ,
(x) if I ∈ U and ui ∈ U for all i ∈ I , then

∏
i∈I ui ∈ U .

Following Grothendieck, we shall add an axiom to the Zermelo-Fraenkel the-
ory, asking that for any set X there exists a universe U such that X ∈ U . For
more explanations, refer to [64].

Definition 1.1.2. Let U be a universe.

(i) A set is called a U-set if it belongs to U .
(ii) A set is called U-small if it is isomorphic to a set belonging to U .

Definition 1.1.3. (i) An order on a set I is a relation ≤ which is:
(a) reflexive, that is, i ≤ i for all i ∈ I ,
(b) transitive, that is, i ≤ j , j ≤ k ⇒ i ≤ k,
(c) anti-symmetric, that is, i ≤ j , j ≤ i ⇒ i = j .

(ii) An order is directed (we shall also say “filtrant” ) if I is non empty and
if for any i, j ∈ I , there exists k ∈ I such that i ≤ k and j ≤ k.

(iii) An order is total (some authors say “linear” ) if for any i, j ∈ I , one
has i ≤ j or j ≤ i .

(iv) An ordered set I is inductively ordered if any totally ordered subset J
of I has an upper bound (i.e., there exists a ∈ I such that j ≤ a for all
j ∈ J ).

(v) If ≤ is an order on I , < is the relation given by x < y if and only if
x ≤ y and x �= y. We also write x ≥ y if y ≤ x and x > y if y < x.



1.2 Categories and Functors 11

Recall that Zorn’s lemma asserts that any inductively ordered set admits a
maximal element.

Notations 1.1.4. (i) We denote by {pt} a set with one element, and this single
element is often denoted by pt. We denote by ∅ the set with no element.
(ii) In all this book, a ring means an associative ring with unit, and the action
of a ring on a module is unital. If there is no risk of confusion, we simply denote
by 0 the module with a single element. A field is a non-zero commutative ring
in which every non-zero element is invertible.
(iii) We shall often denote by k a commutative ring. A k-algebra is a ring
R endowed with a morphism of rings ϕ : k −→ R such that the image of k is
contained in the center of R. We denote by k× the group of invertible elements
of k.
(iv) As usual, we denote by Z the ring of integers and by Q (resp. R, resp.
C) the field of rational numbers (resp. real numbers, resp. complex numbers).
We denote by N the set of non-negative integers, that is, N = {n ∈ Z ; n ≥ 0}.
(v) We denote by k[x1, . . . , xn] the ring of polynomials in the variables
x1, . . . , xn over a commutative ring k.
(vi) We denote by δi j the Kronecker symbol, δi j = 1 if i = j and δi j = 0
otherwise.

1.2 Categories and Functors

Definition 1.2.1. A category C consists of :

(i) a set Ob(C),
(ii) for any X, Y ∈ Ob(C), a set HomC(X, Y ),
(iii) for any X, Y, Z ∈ Ob(C), a map:

HomC(X, Y )×HomC(Y, Z) −→ HomC(X, Z)

called the composition and denoted by ( f, g) 
→ g ◦ f ,

these data satisfying:

(a) ◦ is associative, i.e., for f ∈ HomC(X, Y ), g ∈ HomC(Y, Z) and h ∈
HomC(Z , W ), we have (h ◦ g) ◦ f = h ◦ (g ◦ f ),

(b) for each X ∈ Ob(C), there exists idX ∈ Hom(X, X) such that f ◦ idX = f
for all f ∈ HomC(X, Y ) and idX ◦g = g for all g ∈ HomC(Y, X).

An element of Ob(C) is called an object of C and for X, Y ∈ Ob(C), an ele-
ment of HomC(X, Y ) is called a morphism (from X to Y ) in C. The morphism
idX is called the identity morphism (or the identity, for short) of X . Note that
there is a unique idX ∈ HomC(X, X) satisfying the condition in (b).

A category C is called a U-category if HomC(X, Y ) is U-small for any
X, Y ∈ Ob(C).

A U-small category is a U-category C such that Ob(C) is U-small.
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Notation 1.2.2. We often write X ∈ C instead of X ∈ Ob(C), and f : X −→ Y
or else f : Y ←− X instead of f ∈ HomC(X, Y ). We say that X is the source
and Y the target of f . We sometimes call f an arrow instead of “a morphism”.

We introduce the opposite category Cop by setting:

Ob(Cop) = Ob(C), HomCop(X, Y ) = HomC(Y, X),

and defining the new composition g
op◦ f of f ∈ HomCop(X, Y ) and g ∈

HomCop(Y, Z) by g
op◦ f = f ◦ g. For an object X or a morphism f in C,

we shall sometimes denote by Xop or f op its image in Cop. In the sequel, we
shall simply write ◦ instead of

op◦ .
A morphism f : X −→ Y is an isomorphism if there exists g : X ←− Y such

that f ◦g = idY , g◦ f = idX . Such a g, which is unique, is called the inverse of
f and is denoted by f −1. If f : X −→ Y is an isomorphism, we write f : X ∼−→ Y .
If there is an isomorphism X ∼−→ Y , we say that X and Y are isomorphic and
we write X � Y .

An endomorphism is a morphism with same source and target, that is, a
morphism f : X −→ X .

An automorphism is an endomorphism which is an isomorphism.
Two morphisms f and g are parallel if they have same source and same

target, visualized by f, g : X ⇒ Y .
A morphism f : X −→ Y is a monomorphism if for any pair of parallel

morphisms g1, g2 : Z ⇒ X , f ◦ g1 = f ◦ g2 implies g1 = g2.
A morphism f : X −→ Y is an epimorphism if f op : Y op −→ Xop is a

monomorphism in Cop. Hence, f is an epimorphism if and only if for any
pair of parallel morphisms g1, g2 : Y ⇒ Z , g1 ◦ f = g2 ◦ f implies g1 = g2.

Note that f is a monomorphism if and only if the map f ◦ : HomC(Z , X) −→
HomC(Z , Y ) is injective for any object Z , and f is an epimorphism if and only
if the map ◦ f : HomC(Y, Z) −→ HomC(X, Z) is injective for any object Z .

Also note that if X
f−→ Y

g−→ Z are morphisms and if f and g are monomor-
phisms (resp. epimorphisms, resp. isomorphisms), then g ◦ f is a monomor-
phism (resp. epimorphism, resp. isomorphism).

We sometimes write f : X�Y or else f : X ↪→ Y to denote a monomor-
phism and f : X�Y to denote an epimorphism.

For two morphisms f : X −→ Y and g : Y −→ X satisfying f ◦ g = idY , f
is called a left inverse of g and g is called a right inverse of f . We also say
that g is a section of f or f is a cosection of g. In such a situation, f is an
epimorphism and g a monomorphism.

A category C ′ is a subcategory of C, denoted by C ′ ⊂ C, if: Ob(C ′) ⊂
Ob(C), HomC′(X, Y ) ⊂ HomC(X, Y ) for any X, Y ∈ C ′, the composition in C ′ is
induced by the composition in C and the identity morphisms in C ′ are identity
morphisms in C. A subcategory C ′ of C is full if HomC′(X, Y ) = HomC(X, Y )
for all X, Y ∈ C ′. A full subcategory C ′ of C is saturated if X ∈ C belongs to C ′
whenever X is isomorphic to an object of C ′.
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A category is discrete if all the morphisms are the identity morphisms.
A category C is non empty if Ob(C) is non empty.
A category C is a groupoid if all morphisms are isomorphisms.
A category C is finite if the set of all morphisms in C (hence, in particular,

the set of objects) is a finite set.
A category C is connected if it is non empty and for any pair of objects

X, Y ∈ C, there is a finite sequence of objects (X0, . . . , Xn), X0 = X , Xn = Y ,
such that at least one of the sets HomC(X j , X j+1) or HomC(X j+1, X j ) is non
empty for any j ∈ N with 0 ≤ j ≤ n − 1.

Remark that a monoid M (i.e., a set endowed with an internal product with
associative and unital law) is nothing but a category with only one object.
(To M , associate the category M with the single object a and morphisms
HomM(a, a) = M .) Similarly, a group G defines a groupoid, namely the
category G with a single object a and morphisms HomG(a, a) = G.

A diagram in a category C is a family of symbols representing objects of
C and a family of arrows between these symbols representing morphisms of
these objects. One defines in an obvious way the notion of a commutative
diagram. For example, consider the diagrams

X
f ��

h

��

Y

g

��
V

k �� Z , X

l

��f �� Y
g �� Z .

Then the first diagram is commutative if and only if g ◦ f = k ◦ h and the
second diagram is commutative if and only if g ◦ f = l.

Notation 1.2.3. We shall also encounter diagrams such as:

Z
g1 ��
g2

�� X
f �� Y .(1.2.1)

We shall say that the two compositions coincide if f ◦ g1 = f ◦ g2.

We shall also encounter diagrams of categories. (See Remark 1.3.6 below.)

Examples 1.2.4. (i) Set is the category of U-sets and maps, Set f the full
subcategory consisting of finite U-sets. If we need to emphasize the universe
U , we write U-Set instead of Set. Note that the category of all sets is not a
category since the collection of all sets is not a set. This is one of the reasons
why we have to introduce a universe U .
(ii) The category Rel of binary relations is defined by: Ob(Rel) = Ob(Set)
and HomRel(X, Y ) = P(X × Y ), the set of subsets of X × Y. The composition
law is defined as follows. If f : X −→ Y and g : Y −→ Z , g ◦ f is the set
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{(x, z) ∈ X × Z ; there exists y such that (x, y) ∈ f, (y, z) ∈ g} .

Of course, idX is the diagonal set of X × X .
Notice that Set is a subcategory of Rel, but is not a full subcategory.

(iii) pSet is the category of pointed U-sets. An object of pSet is a pair (X, x)
with a U-set X and x ∈ X . A morphism f : (X, x) −→ (Y, y) is a map f : X −→ Y
such that f (x) = y.
(iv) Let R be a ring (with R ∈ U). The category of left R-modules be-
longing to U and R-linear maps is denoted Mod(R). Hence, by definition,
HomMod(R)( • , • ) = Hom R( • , • ). Recall that right R-modules are left Rop-
modules, where Rop denotes the ring R with the opposite multiplicative struc-
ture. Note that Mod(Z) is the category of abelian groups.

We denote by End R(M) the ring of R-linear endomorphisms of an R-
module M and by Aut R(M) the group of R-linear automorphisms of M .

We denote by Modf(R) the full subcategory of Mod(R) consisting of finitely
generated R-modules. (Recall that M is finitely generated if there exists a
surjective R-linear map u : R⊕n�M for some integer n ≥ 0.) One also says of
finite type instead of “finitely generated”.

We denote by Modfp(R) the full subcategory of Modf(R) consisting of R-
modules of finite presentation. (Recall that M is of finite presentation if it is
of finite type and moreover the kernel of the linear map u above is of finite
type.)
(v) Let (I,≤) be an ordered set. We associate to it a category I as follows.

Ob(I) = I

HomI(i, j) =

{
{pt} if i ≤ j ,

∅ otherwise .

In other words, the set of morphisms from i to j has a single element if i ≤ j ,
and is empty otherwise. Note that Iop is the category associated to (I,≤op),
where x ≤op y if and only if y ≤ x . In the sequel, we shall often simply write
I instead of I. (See Exercise 1.3 for a converse construction.)
(vi) We denote by Top the category of topological spaces belonging to U and
continuous maps.

The set of all morphisms of a category C may be endowed with a structure
of a category.

Definition 1.2.5. Let C be a category. We denote by Mor(C) the category
whose objects are the morphisms in C and whose morphisms are described as
follows. Let f : X −→ Y and g : X ′ −→ Y ′ belong to Mor(C). Then
Hom Mor(C)( f, g) = {u : X −→ X ′, v : Y −→ Y ′; g ◦ u = v ◦ f }. The composi-
tion and the identity in Mor(C) are the obvious ones.
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A morphism f −→ g in Mor(C) is visualized by the commutative diagram:

X
f ��

u

��

Y

v

��
X ′ g �� Y ′.

Definition 1.2.6. (i) An object P ∈ C is called initial if for all X ∈
C,HomC(P, X) � {pt}. We often denote by ∅C an initial object in C.
(Note that if P1 and P2 are initial, then there is a unique isomorphism
P1 � P2.)

(ii) We say that P is terminal in C if P is initial in Cop, i.e., for all X ∈
C,HomC(X, P) � {pt}. We often denote by ptC a terminal object in C.

(iii) We say that P is a zero object if it is both initial and terminal (see
Exercise 1.1). Such a P is often denoted by 0. If C has a zero object
0, for any objects X, Y ∈ C, the morphism obtained as the composition
X −→ 0 −→ Y is still denoted by 0: X −→ Y . (Note that the composition of
0: X −→ Y and any morphism f : Y −→ Z is 0: X −→ Z .)

Examples 1.2.7. (i) In the category Set, ∅ is initial and {pt} is terminal.
(ii) In the category pSet, the object ({pt}, pt) is a zero object.
(iii) The zero module 0 is a zero object in Mod(R).
(iv) The category associated with the ordered set (Z,≤) has neither initial
nor terminal object.

Notations 1.2.8. (i) We shall denote by Pt a category with a single object and
a single morphism (the identity of this object).
(ii) We shall simply denote by ∅ the empty category with no objects (and
hence, no morphisms).
(iii) We shall often represent by the diagram • −→ • the category which consists
of two objects, say, a and b, and one morphism a −→ b other than ida and idb.
We denote this category by Arr.
(iv) We represent by • �� �� • the category with two objects, say {a, b}, and
two parallel morphisms a ⇒ b other than ida, idb.
(v) We shall denote by Pr a category with a single object c and one morphism
p : c −→ c other than idc, satisfying p2 = p.

Example 1.2.9. Let R be a ring. Let N ∈ Mod(Rop) and M ∈ Mod(R). Define
a category C as follows. The objects of C are the pairs ( f, L) where L ∈ Mod(Z)
and f is a bilinear map from N × M to L (i.e., it is Z-bilinear and satisfies
f (na, m) = f (n, am) for all a ∈ R). A morphism from f : N × M −→ L to
g : N × M −→ K is a linear map h : L −→ K such that h ◦ f = g. Since any
bilinear map f : N×M −→ L (i.e., any object of C) factorizes uniquely through
u : N × M −→ N ⊗R M , the object (u, N ⊗R M) is initial in C.
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Definition 1.2.10. (i) Let C and C ′ be two categories. A functor F : C −→ C ′
consists of a map F : Ob(C) −→ Ob(C ′) and of maps F : HomC(X, Y ) −→
HomC′(F(X), F(Y )) for all X , Y ∈ C, such that

F(idX ) = idF(X) for all X ∈ C ,

F(g ◦ f ) = F(g) ◦ F( f ) for all f : X −→ Y, g : Y −→ Z .

A contravariant functor from C to C ′ is a functor from Cop to C ′. In other
words, it satisfies F(g ◦ f ) = F( f ) ◦ F(g).

(ii) For categories C, C ′, C ′′ and functors F : C −→ C ′, G : C ′ −→ C ′′ their
composition G ◦ F : C −→ C ′′ is the functor defined by (G ◦ F)(X) =
G(F(X)) for all X ∈ C and (G ◦ F)( f ) = G(F( f )) for all morphism f
in C.

If one wishes to put the emphasis on the fact that a functor is not contravari-
ant, one says it is covariant.

It is convenient to introduce the contravariant functor

op: C −→ Cop(1.2.2)

defined by the identity of C.
Note that a functor F : C −→ C ′ naturally induces a functor

Fop : Cop −→ C ′op .(1.2.3)

Definition 1.2.11. Let F : C −→ C ′ be a functor.

(i) We say that F is faithful (resp. full, fully faithful) if

HomC(X, Y ) −→ HomC′(F(X), F(Y ))

is injective (resp. surjective, bijective) for any X, Y in C.
(ii) We say that F is essentially surjective if for each Y ∈ C ′ there exist X ∈ C

and an isomorphism F(X) ∼−→ Y .
(iii) We say that F is conservative if a morphism f in C is an isomorphism

as soon as F( f ) is an isomorphism in C ′.
Note that properties (i)–(iii) are closed by composition of functors. In other

words, if C F−→ C ′ G−→ C ′′ are functors and if F and G satisfy the property (i)
(resp. (ii), resp. (iii)), then so does G ◦ F .

Proposition 1.2.12. Let F : C −→ C ′ be a faithful functor and let f : X −→ Y
be a morphism in C. If F( f ) is an epimorphism (resp. a monomorphism),
then f is an epimorphism (resp. a monomorphism).

Proof. Assume that F( f ) is an epimorphism and consider a pair of parallel
arrows g, h : Y ⇒ Z such that g ◦ f = h ◦ f . Then F(g)◦ F( f ) = F(h)◦ F( f ).
If F( f ) is an epimorphism, we deduce F(g) = F(h) and if F is faithful, this
implies g = h.

The case of a monomorphism is treated similarly. q.e.d.
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Definition 1.2.13. Consider a family {Ci }i∈I of categories indexed by a set I .

(i) We define the product category
∏

i∈I Ci by setting:

Ob(
∏
i∈I

Ci ) =
∏
i∈I

Ob(Ci ) ,

Hom ∏
i∈I Ci

({Xi }i , {Yi }i ) =
∏
i∈I

HomCi
(Xi , Yi ) .

(ii) We define the disjoint union category
⊔

i∈I Ci by setting:

Ob(
⊔
i∈I

Ci ) = {(X, i); i ∈ I, X ∈ Ob(Ci )} ,

Hom ⊔
i∈I Ci

((X, i), (Y, j)) =

{
HomCi

(X, Y ) if i = j ,

∅ if i �= j .

As usual, if I has two elements, say I = {1, 2}, we denote the product by
C1 × C2 and the disjoint union by C1 � C2.

If {Fi : Ci −→ C ′i }i∈I is a family of functors, we define naturally the func-
tor

∏
i∈I Fi from

∏
i∈I Ci to

∏
i∈I C ′i and the functor

⊔
i∈I Fi from

⊔
i∈I Ci to⊔

i∈I C ′i .
A functor F : C×C ′ −→ C ′′ is called a bifunctor. This is equivalent to saying

that for X ∈ C and X ′ ∈ C ′, F(X, • ) : C ′ −→ C ′′ and F( • , X ′) : C −→ C ′′ are
functors, and moreover for any morphisms f : X −→ Y in C, g : X ′ −→ Y ′ in C ′,
the diagram below commutes:

F(X, X ′)

F( f,X ′)
��

F(X,g) �� F(X, Y ′)

F( f,Y ′)
��

F(Y, X ′)
F(Y,g) �� F(Y, Y ′).

Indeed, ( f, g) = (idY , g) ◦ ( f, idX ′) = ( f, idY ′) ◦ (idX , g).

Examples 1.2.14. (i) If C is a U-category, HomC( • , • ) : Cop × C −→ Set is a
bifunctor.
(ii) Let R be a k-algebra. We have the two bifunctors:

• ⊗R • : Mod(Rop)×Mod(R) −→ Mod(k) ,

Hom R( • , • ) : Mod(R)op ×Mod(R) −→ Mod(k) .

(iii) The forgetful functor for : Top −→ Set which associates its underlying set
to a topological space is faithful but not fully faithful.

Notations 1.2.15. (i) Let I and C be two categories, and let X ∈ C. We denote
by ∆I

X , or simply ∆X if there is no risk of confusion, the constant functor from
I to C given by I � i 
→ X and Mor(I ) � (i −→ j) 
→ idX .
(ii) Let C be a category, C ′ a subcategory. The natural functor C ′ −→ C is often
called the embedding functor.
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We end this section with a few definitions.

Definition 1.2.16. Let F : C −→ C ′ be a functor and let A ∈ C ′.
(i) The category CA is given by

Ob(CA) = {(X, s); X ∈ C, s : F(X) −→ A} ,

HomCA
((X, s), (Y, t)) = { f ∈ HomC(X, Y ) ; s = t ◦ F( f )} .

(ii) The category CA is given by

Ob(CA) = {(X, s); X ∈ C, s : A −→ F(X)} ,

HomCA((X, s), (Y, t)) = { f ∈ HomC(X, Y ) ; t = F( f ) ◦ s} .

We define the faithful functors

jA : CA −→ C by setting jA(X, s) = X ,(1.2.4)
jA : CA −→ C by setting jA(X, s) = X .(1.2.5)

For an object (X, s) in CA (resp. in CA), we sometimes write (F(X) −→ A)
(resp. (A −→ F(X)))or simply X .

The categories CA and CA depend on the functor F , but we do not mention F
in the notation. Definition 1.2.16 will be generalized in Definition 3.4.1.

Definition 1.2.17. For a category C, denote by ∼ the equivalence relation on
Ob(C) generated by the relation X ∼ Y if HomC(X, Y ) �= ∅. We denote by
π0(C) the set of equivalence classes of Ob(C).

Regarding π0(C) as a discrete category, there is a natural functor C −→ π0(C).
Then, for a ∈ π0(C), Ca and Ca are equivalent, they are connected, and the set
of their objects is the set of objects in the equivalence class a. In particular,
C is connected if and only if π0(C) consists of a single element.

Two monomorphisms f : Y�X and g : Z�X with the same target are
isomorphic if there exists an isomorphism h : Y −→ Z such that f = g ◦ h.
In other words, f : Y −→ X and g : Z −→ X are isomorphic in CX . Note that
such an h is unique. Similarly, two epimorphisms X −→ Y and X −→ Z are
isomorphic if they are isomorphic in CX .

Definition 1.2.18. Let C be a category and let X ∈ C.

(i) An isomorphism class of a monomorphism with target X is called a sub-
object of X .

(ii) An isomorphism class of an epimorphism with source X is called a quo-
tient of X .

Note that the set of subobjects of X is an ordered set by the relation
( f : Y�X) ≤ ( f ′ : Y ′�X) if there exists a morphism h : Y −→ Y ′ such that
f = f ′ ◦ h. (If such an h exists, then it is unique.)
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1.3 Morphisms of Functors

Definition 1.3.1. Let C and C ′ be two categories and let F1 and F2 be two
functors from C to C ′. A morphism of functors θ : F1 −→ F2 consists of a
morphism θX : F1(X) −→ F2(X) (also denoted by θ(X)) for all X ∈ C such that
for all f : X −→ Y , the diagram below commutes:

F1(X)

F1( f )

��

θX �� F2(X)

F2( f )

��
F1(Y )

θY �� F2(Y ).

(1.3.1)

Example 1.3.2. Assume that k is a field and denote by ∗ the duality functor
from Mod(k)op to Mod(k), which associates V ∗ = Hom k(V, k) to a vector
space V . Then id −→ ∗∗ is a morphism of functors from Mod(k) to itself.

If θ : F1 −→ F2 and λ : F2 −→ F3 are morphisms of functors, we define
naturally the morphism of functors λ ◦ θ : F1 −→ F3 by (λ ◦ θ)X = λX ◦ θX .

Notations 1.3.3. (i) Let C and C ′ be two categories. We shall denote by
Fct(C, C ′) the category of functors from C to C ′. Hence, if F1 and F2 are two
functors from C to C ′, Hom Fct(C,C′)(F1, F2) denotes the set of morphisms from
F1 to F2. If C is small and C ′ is a U-category, then Fct(C, C ′) is a U-category.
(ii) We also use the short notation C I instead of Fct(I, C).

Note that if C, C ′, C ′′ are three categories, the composition of functors defines
a bifunctor

Fct(C, C ′)× Fct(C ′, C ′′) −→ Fct(C, C ′′) .(1.3.2)

A morphism of functors is visualized by a diagram:

C
F1

��

F2

��
�� ��
�� θ C ′.(1.3.3)

Remark 1.3.4. Morphisms of functors may be composed “horizontally” and
“vertically”. More precisely:
(i) Consider three categories C, C ′, C ′′ and functors F1, F2 : C −→ C ′ and
G1, G2 : C ′ −→ C ′′. If θ : F1 −→ F2 and λ : G1 −→ G2 are morphisms of functors,
the morphism of functors λ ◦ θ : G1 ◦ F1 −→ G2 ◦ F2 is naturally defined. It is
visualized by the diagram

C
F1

��

F2

��
�� ��
�� θ C ′

G1

		

G2




�� ��
�� λ C ′′ �������� C

G1◦F1

		

G2◦F2




�� ��
�� λ◦θ C ′′ .
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If λ = idG1 , we write G1 ◦ θ instead of idG1◦ θ : G1 ◦ F1 −→ G1 ◦ F2 and if
θ = idF1 , we write λ ◦ F1 instead of λ ◦ idF1 : G1 ◦ F1 −→ G2 ◦ F1.
(ii) Consider three functors F1, F2, F3 : C −→ C ′, and morphisms of functors
θ : F1 −→ F2 and λ : F2 −→ F3. The morphism of functors λ ◦ θ : F1 −→ F3 is
naturally defined. It is visualized by the diagram

C

F1

��
�� ��
�� θ

��

F3

�� ��
�� λ

F2 �� C ′ �������� C
F1

��

F3

��
�� ��
�� λ◦θ C ′ .

Remark 1.3.5. Consider the category U-Cat whose objects are the small U-
categories and the morphisms are the functors of such categories, that is,

HomU−Cat(C, C ′) = Fct(C, C ′) .

Since HomU-Cat(C, C ′) is not only a set, but is in fact a category, U-Cat is
not only a category, it has a structure of a so-called 2-category. We shall not
develop the theory of 2-categories in this book.

Remark 1.3.6. We shall sometimes use diagrams where symbols represent cat-
egories and arrows represent functors. In such a case we shall abusively say
that the diagram commutes if it commutes up to isomorphisms of functors, or
better, we shall say that the diagram quasi-commutes or is quasi-commutative.

Notation 1.3.7. Let C be a category. We denote by idC : C −→ C the identity
functor of C. We denote by End (idC) the set of endomorphisms of the identity
functor idC : C −→ C, that is,

End (idC) = Hom Fct(C,C)(idC, idC) .

We denote by Aut(idC) the subset of End (idC) consisting of isomorphisms
from idC to idC .

Clearly, End (idC) is a monoid and Aut(idC) is a group.

Lemma 1.3.8. The composition law on End (idC) is commutative.

Proof. Let θ and λ belong to End (idC). Let X ∈ C and consider the morphism
λX : X −→ X . The desired assertion follows from the commutativity of the
diagram (1.3.1) with F1 = F2 = idC , Y = X and f = λX , because F1( f ) =
F2( f ) = λX . q.e.d.

Consider three categories I, C, C ′ and a functor

ϕ : C −→ C ′ .
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Then ϕ defines a functor

ϕ ◦ : Fct(I, C) −→ Fct(I, C ′), F 
→ ϕ ◦ F .(1.3.4)

We shall use the lemma below, whose proof is obvious and left to the reader.

Lemma 1.3.9. If ϕ is faithful (resp. fully faithful ), then so is the functor ϕ ◦
in (1.3.4).

We have the notion of an isomorphism of categories. A functor F : C −→ C ′ is
an isomorphism of categories if there exists G : C ′ −→ C such that G◦F(X) = X
and F ◦ G(Y ) = Y for all X ∈ C, all Y ∈ C ′, and similarly for the morphisms.
In practice, such a situation almost never appears and there is an important
weaker notion that we introduce now.

Definition 1.3.10. A functor F : C −→ C ′ is an equivalence of categories if
there exist G : C ′ −→ C and isomorphisms of functors α : G ◦ F ∼−→ idC, β : F ◦
G ∼−→ idC′ . In such a situation, we write F : C ∼−→ C ′, we say that F and G are
quasi-inverse to each other and we say that G is a quasi-inverse to F. (See
Exercise 1.16.)

Lemma 1.3.11. Consider a functor F : C −→ C ′ and a full subcategory C ′0
of C ′ such that for each X ∈ C, there exist Y ∈ C ′0 and an isomorphism
F(X) � Y . Denote by ι′ the embedding C ′0 −→ C ′. Then there exist a functor
F0 : C −→ C ′0 and an isomorphism of functors θ0 : F ∼−→ ι′ ◦ F0. Moreover, F0 is
unique up to unique isomorphism. More precisely, given another isomorphism
θ1 : F ∼−→ ι′ ◦ F1, there exists a unique isomorphism of functors θ : F1

∼−→ F0

such that θ0 = (ι′ ◦ θ) ◦ θ1.

Proof. Using Zorn’s Lemma, for each X ∈ C, choose Y ∈ C ′0 and an isomor-
phism ϕX : Y ∼−→ F(X), and set F0(X) = Y . If f : X −→ X ′ is a morphism in

C, define F0( f ) : F0(X) −→ F0(X ′) as the composition F0(X) ∼−→
ϕX

F(X)
F( f )−−→

F(X ′) ∼←−
ϕX ′

F0(X ′). The fact that F0 commutes with the composition of mor-

phisms is visualized by

F(X)
F( f ) �� F(X ′)

F(g) �� F(X ′′)

Y = F0(X)

ϕX ∼




F0( f ) �� Y ′ = F0(X ′)

ϕX ′ ∼




F0(g) �� Y ′′ = F0(X ′′) .

ϕX ′′ ∼




The other assertions are obvious. q.e.d.

Lemma 1.3.12. Let C be a category. There exists a full subcategory C0 such
that the embedding functor ι : C0 −→ C is an equivalence of categories and C0

has the property that any two isomorphic objects in C0 are equal.
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Proof. In the set Ob(C), consider the equivalence relation X ∼ Y if and only if
there exists an isomorphism X � Y . By Zorn’s lemma, we may pick an object
in each of the equivalence classes of ∼. The full subcategory C0 of C consisting
of such objects has the required properties. Indeed, denote by ι : C0 −→ C the
embedding functor. Applying Lemma 1.3.11 to idC : C −→ C, there exists a
functor F0 : C −→ C0 such that ι ◦ F0 is isomorphic to idC . Since

ι ◦ (F0 ◦ ι) = (ι ◦ F0) ◦ ι � idC ◦ι � ι � ι ◦ idC0

and ι is fully faithful, F0 ◦ ι is isomorphic to idC0 . q.e.d.

Proposition 1.3.13. A functor F : C −→ C ′ is an equivalence of categories if
and only if F is fully faithful and essentially surjective.

Proof. The necessity of the condition is clear. Let us prove the converse state-
ment. By Lemma 1.3.12, there exists a full subcategory C0 of C such that
ι : C0 −→ C is an equivalence and if two objects of C0 are isomorphic, then they
are equal. Let κ be a quasi-inverse of ι. We proceed similarly with C ′, and
construct C ′0, ι′ and κ ′. Then the composition of functors

κ ′ ◦ F ◦ ι : C0 −→ C ′0

is an isomorphism. Denote by K its inverse and set G = ι ◦ K ◦ κ ′. Clearly, G
is a quasi-inverse to F . q.e.d.

Corollary 1.3.14. Let F : C −→ C ′ be a fully faithful functor. Then there exist
a full subcategory C ′0 of C ′ and an equivalence of categories F ′ : C ∼−→ C ′0 such
that F is isomorphic to ι′ ◦ F ′, where ι′ : C ′0 −→ C ′ is the embedding functor.

Proof. Define C ′0 as the full subcategory of C ′ whose objects are the image by
F of the objects of C and apply Proposition 1.3.13. q.e.d.

Examples 1.3.15. (i) Let k be a field and let C denote the category defined
by Ob(C) = N and HomC(n, m) = Mm,n(k), the space of matrices of type
(m, n) with entries in k. The composition of morphisms in C is given by the
composition of matrices. Define the functor F : C −→ Modf(k) as follows. Set
F(n) = kn, and if A is a matrix of type (m, n), let F(A) be the linear map
from kn to km associated with A. Then F is an equivalence of categories.
(ii) Let C and C ′ be two categories. There is an isomorphism of categories:

(1.3.5) Fct(C, C ′)op � Fct(Cop, C ′op), F 
→ op ◦ F ◦ op .

(iii) Consider a family {Ci }i∈I of categories indexed by a small set I . If I is
the empty set, then

∏
i∈I Ci is equivalent to the category Pt and

⊔
i∈I Ci is

equivalent to the empty category.

Definition 1.3.16. A category is essentially U-small if it is equivalent to a
U-small category.
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Remark that C is essentially U-small if and only if C is a U-category and there
exists a U-small subset S of Ob(C) such that any object of C is isomorphic to
an object in S.

One shall be aware that if F : C −→ C ′ is faithful, it may not exist a sub-
category C ′0 of C ′ and an equivalence F ′ : C ∼−→ C ′0 such that F is isomorphic to
ι′ ◦ F ′, where ι′ : C ′0 −→ C ′ is the embedding functor (see Exercise 1.18). That
is the reason why we introduce Definition 1.3.17 below.

Definition 1.3.17. (i) Let F : C −→ C ′ be a functor. We say that F is half-full
if for any pair of objects X, Y ∈ C such that F(X) and F(Y ) are isomorphic in
C ′, there exists an isomorphism X � Y in C. (We do not ask the isomorphism
in C ′ to be the image by F of the isomorphism in C.)
(ii) We say that a subcategory C0 of C is half-full if the embedding functor is
half-full.

Proposition 1.3.18. Let F : C −→ C ′ be a faithful and half-full functor. Then
there exists a subcategory C ′0 of C ′ such that F(Ob(C)) ⊂ Ob(C ′0), F(Mor(C)) ⊂
Mor(C ′0) and F induces an equivalence of categories C � C ′0. Moreover, the
embedding functor C ′0 −→ C ′ is faithful and half-full.

Proof. Let us define the category C ′0 as follows:

Ob(C ′0) = {F(X); X ∈ Ob(C)} ,

HomC′0(F(X), F(Y )) = F(HomC(X, Y )) ⊂ HomC′(F(X), F(Y )) .

It is immediately checked that the definition of HomC′0(F(X), F(Y )) does not
depend on the choice of X, Y , thanks to the hypothesis that F is half-full,
and hence the family of morphisms in C ′0 is closed by composition. By its
construction, the functor F : C −→ C ′0 is fully faithful and essentially surjective.
It is thus an equivalence. q.e.d.

1.4 The Yoneda Lemma

Convention 1.4.1. We start with a given universe U , and do not mention it
when unnecessary. In this book, a category means a U-category, small means
U-small, and Set denotes the category of U-sets, unless otherwise mentioned.
However, some constructions force us to deal with a category which is not
necessarily a U-category. We call such a category a big category. If this has
no implications for our purpose, we do not always mention it. Note that any
category is V-small for some universe V.

Definition 1.4.2. Let C be a U-category. We define the big categories

C∧U : the category of functors from Cop to U-Set ,

C∨U : the category of functors from Cop to (U-Set)op,
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and the functors

hC : C −→ C∧U , X 
→ HomC( • , X) ,

kC : C −→ C∨U , X 
→ HomC(X, • ) .

Since HomC(X, Y ) ∈ U for all X, Y ∈ C, the functors hC and kC are well-
defined. They are often called the “Yoneda functors”. Hence

C∧U = Fct(Cop,U-Set) ,

C∨U = Fct(Cop,U-Setop) � Fct(C,U-Set)op .

Note that C∧U and C∨U are not U-categories in general. If C is U-small, then C∧U
and C∨U are U-categories.

In the sequel, we shall write C∧ and C∨ for short. By (1.3.5) there is a
natural isomorphism

(1.4.1) C∨ � Cop∧op

and C∨ is the opposite big category to the category of functors from C to Set.
Hence, for X ∈ C, kC(X) = (hCop(Xop))op.

The next result, although it is elementary, is crucial for the understanding
of the rest of the book. In the sequel, we write Set for U-Set.

Proposition 1.4.3. [The Yoneda lemma]

(i) For A ∈ C∧ and X ∈ C, HomC∧(hC(X), A) � A(X).
(ii) For B ∈ C∨ and X ∈ C, HomC∨(B, kC(X)) � B(X).

Moreover, these isomorphisms are functorial with respect to X, A, B, that is,
they define isomorphisms of functors from Cop × C∧ to Set or from C∨op × C
to Set.

Proof. By (1.4.1) is enough to prove one of the two statements. Let us prove
(i).

The map ϕ : HomC∧(hC(X), A) −→ A(X) is constructed by the chain of
maps: HomC∧(hC(X), A) −→ HomSet(HomC(X, X), A(X)) −→ A(X), where the
last map is associated with idX .

To construct ψ : A(X) −→ HomC∧(hC(X), A), it is enough to associate with
s ∈ A(X) and Y ∈ C a map ψ(s)Y : HomC(Y, X) −→ A(Y ). It is defined by the
chain of maps HomC(Y, X) −→ HomSet(A(X), A(Y )) −→ A(Y ) where the last
map is associated with s ∈ A(X). Clearly, ψ(s) satisfies (1.3.1).

It is easily checked that ϕ and ψ are inverse to each other. q.e.d.

The next results will be of constant use.

Corollary 1.4.4. The two functors hC and kC are fully faithful.

Proof. For X and Y in C, we have HomC∧(hC(X),hC(Y )) � hC(Y )(X) =
HomC(X, Y ). q.e.d.
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Hence, it is possible to regard C as a full subcategory of either C∧ or C∨.

Notation 1.4.5. By identifying X ∈ C with hC(X) ∈ C∧, it is natural to set

X(Y ) = HomC(Y, X).(1.4.2)

Similarly, for A and B in C∧, we shall sometimes write A(B) instead of
HomC∧(B, A).

Corollary 1.4.6. Let F : C −→ C ′ be a functor of U-categories and assume
that C is U-small. For A ∈ C ′∧, the category CA associated with C −→ C ′ −→ C ′∧
(see Definition 1.2.16) is U-small.

Similarly, for B ∈ C ′∨, the category CB associated with C −→ C ′ −→ C ′∨ is
U-small.

Proof. By the Yoneda lemma, for a given X ∈ C, the family of morphisms
hC ◦F(X) −→ A is the set A(F(X)). Hence, CA is the category of pairs (X, s)
of X ∈ C and s ∈ A(F(X)). If C is small, then the set

⊔
X∈C A(F(X)) is small.

The case of CB is similar. q.e.d.

Corollary 1.4.7. Let C be a category, f : X −→ Y a morphism in C. Assume

that for each W ∈ C, the morphism HomC(W, X)
f ◦−→ HomC(W, Y ) (resp.

HomC(Y, W )
◦ f−→ HomC(X, W )) is an isomorphism. Then f is an isomor-

phism.

Proof. By hypothesis, hC( f ) : hC(X) −→ hC(Y ) (resp. kC( f ) : kC(Y ) −→ kC(X))
is an isomorphism. Hence, the result follows from the Yoneda lemma (Corol-
lary 1.4.4). q.e.d.

Definition 1.4.8. A functor F from Cop to Set (resp. C to Set) is repre-
sentable if there is an isomorphism hC(X) ∼−→ F (resp. F ∼−→ kC(X)) for some
X ∈ C. Such an object X is called a representative of F.

It follows from Corollary 1.4.4 that the isomorphism F � hC(X) (resp. F �
kC(X)) determines X up to unique isomorphism.

Assume that F ∈ C∧ is represented by X0 ∈ C. Then HomC∧(hC(X0), F) �
F(X0) gives an element s0 ∈ F(X0). Moreover, for any Y ∈ C and t ∈ F(Y ),
there exists a unique morphism f : X0 −→ Y such that t = F( f )(s0). Con-
versely, for X0 ∈ C and s0 ∈ F(X0), (X0, s0) defines a morphism hC(X0) −→ F .
If it is an isomorphism, that is, if the map HomC(Y, X0) −→ F(Y ) given by
f 
→ F( f )(s0) is bijective for all Y ∈ C, then F is representable by X0.

Corollary 1.4.9. Let F : C −→ C ′∧ be a functor. If F(X) is isomorphic to an
object of C ′ for any X ∈ C, then there exists a unique (up to unique isomor-
phism) functor F0 : C −→ C ′ such that F � hC′ ◦F0.

Proof. This follows from Corollary 1.4.4 and Lemma 1.3.11. q.e.d.
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Proposition 1.4.10. Let F ∈ C∧. Then F is representable if and only if CF

has a terminal object.

Proof. Let (X, s) ∈ CF , that is, X ∈ C and s ∈ F(X). For any (Y, t) ∈ CF ,

HomCF
((Y, t), (X, s)) � {u ∈ HomC(Y, X); F(u)(s) = t} .

Hence, (X, s) is a terminal object of CF if and only if HomCF
((Y, t), (X, s)) �

{pt} for any Y ∈ C and t ∈ F(Y ), and this condition is equivalent to saying
that the map HomC(Y, X) −→ F(X) given by u 
→ F(u)(s) is bijective for any
Y ∈ C. q.e.d.

Representable functors is a categorical language to deal with universal
problems. Let us illustrate this by an example.

Example 1.4.11. Consider the situation of Example 1.2.9. Denote by B(N ×
M, L) the set of bilinear maps from N × M to L. Then the functor F : L 
→
B(N × M, L) is representable by N ⊗R M , since F(L) = B(N × M, L) �
HomZ(N ⊗R M, L).

If a functor F : C −→ Set takes its values in a category defined by some
algebraic structure (we do not intend to give a precise meaning to such a
sentence) and if this functor is representable by some object X , then X will
be endowed with morphisms which will mimic this algebraic structure. For
example if F takes its values in the category Group of groups, then X will be
endowed with a structure of a “group-object”. This notion will be discussed
in Sect. 8.1.

We shall see in Chap. 2 that the notion of representable functor allows us
to define projective and inductive limits in categories.

We conclude this section with a technical result which shall be useful in
various parts of this book.

Lemma 1.4.12. Let C be a category and let A ∈ C∧. There is a natural equiv-
alence of big categories (CA)∧ � (C∧)A such that the diagram of big categories
and functors below quasi-commutes:

CA

hCA ����
���

���
���

��
(hC)A �� (C∧)A

∼
��

(CA)∧ .

Proof. (i) We construct a functor λ : (C∧)A −→ (CA)∧ as follows. Let G ∈ C∧
and t : G −→ A. For (X

s−→ A) ∈ CA, we set(
λ(G

t−→ A)
)
(X

s−→ A) = Hom (C∧)A
((X, s), (G, t))

= {u ∈ G(X); tX (u) = s ∈ A(X)} .



1.5 Adjoint Functors 27

(ii) We construct a functor µ : (CA)∧ −→ (C∧)A as follows. Let F ∈ (CA)∧ and
X ∈ C. Set

µ(F)(X) = {(x, s); s ∈ A(X), x ∈ F(X
s−→ A)}

and define (µ(F) −→ A) ∈ (C∧)A by

µ(F)(X) � (x, s) 
→ s ∈ A(X) for X ∈ C .

(iii) It is easily checked that the functors λ and µ are quasi-inverse to each
other. q.e.d.

Remark 1.4.13. One shall be aware that the category C∧ associated with the
U-category C depends on the universe U . Let V be another universe with
U ⊂ V. Since the functor from U-Set to V-Set is fully faithful, it follows from
Lemma 1.3.9 that the functor

ιV,U : C∧U −→ C∧V(1.4.3)

is fully faithful.
Hence F ∈ C∧U is representable if and only if ιV,U (F) is representable.

1.5 Adjoint Functors

Consider a functor F : C −→ C ′. It defines a functor

F∗ : C ′∧ −→ C∧ ,(1.5.1)
F∗(B)(X) = B(F(X)) for B ∈ C ′∧, X ∈ C .

If there is no risk of confusion, we still denote by F∗ : C ′ −→ C∧ the restriction
of F∗ to C ′, that is, we write F∗ instead of F∗ ◦ hC′ . Hence,

F∗(Y )(X) = hC′(Y )(F(X)) = HomC′(F(X), Y ) .

In other words, F∗ is the functor

F∗ : C ′ −→ C∧, Y 
→ HomC′(F( • ), Y ) .

Applying Corollary 1.4.9, we obtain:

Theorem 1.5.1. Assume that the functor F∗(Y ) is representable for each Y ∈
C ′. Then there exists a functor G : C ′ −→ C such that F∗ � hC ◦G, and the
functor G is unique up to unique isomorphism.

The uniqueness of G means the following. Consider two isomorphisms of func-
tors θ0 : F∗ ∼−→hC ◦G0 and θ1 : F∗ ∼−→hC ◦G1. Then there exists a unique iso-
morphism of functors θ : G0 −→ G1 such that θ1 = (hC ◦θ) ◦ θ0.
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Proof. Applying Lemma 1.3.11 to the functor F∗ : C ′ −→ C∧ and the full sub-
category C of C∧, we get a functor G : C ′ −→ C such that F∗ ∼−→hC ◦G, and this
functor G is unique up to unique isomorphism, again by this lemma. q.e.d.

In the situation of Theorem 1.5.1, we get:

HomC(X, G(Y )) � F∗(Y )(X) � HomC′(F(X), Y ) .(1.5.2)

Consider the functor

G∗ : C −→ C ′∨, X 
→ HomC(X, G( • )) .

Then for each X ∈ C, G∗(X) is representable by F(X).
For the reader’s convenience, we change our notations, replacing F with

L and G with R.

Definition 1.5.2. Let L : C −→ C ′ and R : C ′ −→ C be two functors. The pair
(L , R) is a pair of adjoint functors, or L is a left adjoint functor to R, or R
is a right adjoint functor to L, if there exists an isomorphism of bifunctors
from Cop × C ′ to Set:

(1.5.3) HomC′(L( • ), • ) � HomC( • , R( • )) .

We call the isomorphism in (1.5.3) the adjunction isomorphism .
With the language of adjoint functors, we can reformulate Theorem 1.5.1

as follows.

Theorem 1.5.3. Let L : C −→ C ′ and R : C ′ −→ C be two functors. If L (resp.
R)admits a right (resp. left )adjoint functor, this adjoint functor is unique up
to unique isomorphism. Moreover, a functor L admits a right adjoint if and
only if the functor HomC′(L( • ), Y ) is representable for any Y ∈ C ′.

Let X ∈ C. Applying the isomorphism (1.5.3) with X and L(X), we find the
isomorphism HomC′(L(X), L(X)) � HomC(X, R ◦ L(X)) and the identity of
L(X) defines a morphism X −→ R◦L(X). Similarly, we construct L◦R(Y ) −→ Y
and these morphisms are functorial with respect to X and Y . Hence, we have
constructed morphisms of functors

ε : idC −→ R ◦ L ,(1.5.4)
η : L ◦ R −→ idC′ .(1.5.5)

By this construction, we have commutative diagrams for Y, Y ′ ∈ C ′ and X, X ′ ∈
C

HomC′(Y, Y ′) R ��

ηY �����
����

����
���

HomC(R(Y ), R(Y ′))

ad∼
��

HomC′(L R(Y ), Y ′),

(1.5.6)
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HomC(X, X ′) L ��

εX ′ �����
����

����
���

HomC′(L(X), L(X ′))

ad∼
��

HomC(X, RL(X ′)) .

(1.5.7)

It is easily checked that

(η ◦ L) ◦ (L ◦ ε) : L −→ L ◦ R ◦ L −→ L is idL ,(1.5.8)
(R ◦ η) ◦ (ε ◦ R) : R −→ R ◦ L ◦ R −→ R is idR .(1.5.9)

Proposition 1.5.4. Let L : C −→ C ′ and R : C ′ −→ C be two functors and let ε

and η be two morphisms of functors as in (1.5.4) and (1.5.5) satisfying (1.5.8)
and (1.5.9). Then (L , R) is a pair of adjoint functors.

Proof. We leave to the reader to check that the two composite morphisms

HomC′(L(X), Y )
R−→ HomC(R ◦ L(X), R(Y ))

εX−→ HomC(X, R(Y ))

and

HomC(X, R(Y ))
L−→ HomC′(L(X), L ◦ R(Y ))

ηY−→ HomC′(L(X), Y )

are inverse to each other. q.e.d.

In the situation of Proposition 1.5.4, we say that 〈L , R, η, ε〉 is an adjunction
and that ε and η are the adjunction morphisms.

Proposition 1.5.5. Let C, C ′ and C ′′ be categories and let C
L �� C ′

L ′
��

R
�� C ′′

R′
��

be functors. If (L , R) and (L ′, R′) are pairs of adjoint functors, then (L ′◦L , R◦
R′) is a pair of adjoint functors.

Proof. For X ∈ C and Y ∈ C ′′, we have functorial isomorphisms:

HomC′′(L ′L(X), Y ) � HomC′(L(X), R′(Y ))
� HomC(X, R R′(Y )) .

q.e.d.

Proposition 1.5.6. Let 〈L , R, η, ε〉 be an adjunction.

(i) The functor R is fully faithful if and only if the morphism η : L◦R −→ idC′
is an isomorphism.

(ii) The functor L is fully faithful if and only if the morphism ε : idC −→ R◦L
is an isomorphism.

(iii) The conditions below are equivalent
(a) L is an equivalence of categories,



30 1 The Language of Categories

(b) R is an equivalence of categories,
(c) L and R are fully faithful.
In such a case, L and R are quasi-inverse one to each other, and (1.5.4),
(1.5.5) are isomorphisms.

Proof. (i) Let Y, Y ′ ∈ C and consider the diagram (1.5.6). We find that the
map HomC′(Y, Y ′) −→ HomC(R(Y ), R(Y ′)) is bijective if and only if the map
HomC′(Y, Y ′) −→ HomC′(L ◦ R(Y ), Y ′) is bijective. Therefore R is fully faithful
if and only if L ◦ R(Y ) −→ Y is an isomorphism for all Y , and this proves (i).
(ii) is dual, and (iii) follows immediately from (i) and (ii). q.e.d.

Remark 1.5.7. If F : C −→ C ′ is an equivalence of categories and if G is a quasi-
inverse to F , then G is both a right and a left adjoint to F .

Examples 1.5.8. (i) For X, Y, Z ∈ Set, there is a natural isomorphism

HomSet(X × Y, Z) � HomSet(X,HomSet(Y, Z))

and this isomorphism is functorial with respect to X, Y, Z . Hence the functors
• × Y and HomSet(Y, • ) are adjoint.
(ii) Let R be a k-algebra (see Notation 1.1.4). Let K ∈ Mod(k) and M, N ∈
Mod(R). The formula:

Hom R(N ⊗k K , M) � Hom R(N ,Hom k(K , M))

tells us that the functors • ⊗k K and Hom k(K , • ) from Mod(R) to Mod(R)
are adjoint.
In the preceding situation, denote by for : Mod(R) −→ Mod(k) the forgetful
functor which associates the underlying k-module to an R-module M . Apply-
ing the above formula with N = R, we get

Hom R(R ⊗k K , M) � Hom k(K , for(M)) .

Hence, the functor R ⊗k • (extension of scalars) is a left adjoint to f or .
Similarly, the functor Hom k(R, • ) : Mod(k) −→ Mod(R) is a right adjoint

to for .

Exercises

Exercise 1.1. Let C be a category which has an initial object ∅C and a ter-
minal object ptC . Prove that if HomC(ptC,∅C) is not empty, then ptC � ∅C .

Exercise 1.2. Prove that the categories Set and Setop are not equivalent.
(Hint: any morphism X −→ ∅ is an isomorphism in Set.)

Exercise 1.3. Let C be a category such that for any X, Y ∈ Ob(C), the set
HomC(X, Y ) has at most one element. Prove that C is equivalent to the cate-
gory associated with an ordered set.
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Exercise 1.4. (i) Prove that a morphism f in the category Set is a monomor-
phism (resp. an epimorphism) if and only if it is injective (resp. surjective).
(ii) Prove that the morphism Z −→ Q is a monomorphism and an epimorphism
in the category Ring of rings belonging to U and morphisms of rings.
(iii) Prove that Z is an initial object and {0} is a terminal object in the category
Ring.

Exercise 1.5. (i) Let C be a non-empty category such that for any X, Y ∈ C,
X and Y are isomorphic. Let us choose X ∈ C and set M = HomC(X, X).
Prove that C is equivalent to the category associated with the monoid M .
(ii) Let C be a connected groupoid. Prove that C is equivalent to the category
associated with a group.

Exercise 1.6. Let C be a category and let X ∈ C. Prove that the full sub-
category of CX consisting of monomorphisms is equivalent to the category
associated with the ordered set of subobjects of X .

Exercise 1.7. Let C be a category and let f : X −→ Y and g : Y −→ Z be mor-
phisms in C. Assume that g ◦ f is an isomorphism and g is a monomorphism.
Prove that f and g are isomorphisms.

Exercise 1.8. Let C be a category with a zero object denoted by 0 and let
X ∈ C. Prove that if idX = 0 (i.e., idX is the composition X −→ 0 −→ X) then
X � 0.

Exercise 1.9. Let F : C −→ C ′ be an equivalence of categories and let G be a
quasi-inverse. Let H : C −→ Set be a representable functor, X a representative.
Prove that H ◦ G is representable by F(X).

Exercise 1.10. Let F : C −→ C ′ be a functor. Prove that F has a right adjoint
if and only if the category CY has a terminal object for any Y ∈ C ′.

Exercise 1.11. Prove that the category C is equivalent to the opposite cate-
gory Cop in the following cases:

(a) C is the category of finite abelian groups,
(b) C is the category Rel of relations (see Example 1.2.4 (ii)).

Exercise 1.12. (i) Let C = ∅ be the empty category. Prove that C∧ = Pt
(see Notation 1.2.8).
(ii) Let C = Pt. Prove that C∧ � Set.

Exercise 1.13. Let C be a category.
(i) Prove that the terminal object ptC∧ of C∧ is the constant functor with
values {pt} ∈ Set and that the initial object ∅C∧ of C∧ is the constant functor
with values ∅ ∈ Set.
(ii) Prove that Z ∈ C is a terminal object of C if and only if hC(Z) is a terminal
object of C∧.
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Exercise 1.14. Let F : C −→ C ′ be a functor, and assume that F admits a
right adjoint R and a left adjoint L. Prove that R is fully faithful if and only
if L is fully faithful.
(Hint: use Proposition 1.5.6 with the morphisms of functors ε : id −→ F L,
ε′ : id −→ RF , η : L F −→ id and η′ : F R −→ id. Then consider the commutative
diagram below.)

HomC′(X, Y ) HomC′(X, F R(Y ))
η′Y ◦��

HomC′(F L(X), F R(Y ))
η′Y ◦

�������
�����

��

◦εX

��������������

HomC′(F L(X), Y )

◦εX





HomC(L(X), R(Y )).∼��

∼





F
��������������

Exercise 1.15. Let F : C −→ C ′ be a fully faithful functor, let G : C ′ −→ C be
a functor and let ε : idC′ −→ F ◦ G be a morphism of functors. Assume that
ε ◦ F : F −→ F ◦ G ◦ F and G ◦ ε : G −→ G ◦ F ◦ G are isomorphisms. Prove
that G is left adjoint to F .

Exercise 1.16. Assume that F : C −→ C ′ and G : C ′ −→ C are equivalences of
categories quasi-inverse to each other. Prove that there are isomorphisms of
functors α : G ◦ F ∼−→ idC and β : F ◦ G ∼−→ idC′ such that F ◦ α = β ◦ F and
α ◦ G = G ◦ β, that is, F(αX ) = βF(X) in HomC′(F ◦ G ◦ F(X), F(X)), and
αG(Y ) = G(βY ) in HomC(G ◦ F ◦ G(Y ), G(Y )).

Exercise 1.17. Let C be a category and let S be a set. Consider the constant
functor ∆S : Cop −→ Set with values S (see Notations 1.2.15). Prove that if ∆S

is representable by Z ∈ C, then S � {pt} and Z is a terminal object in C.

Exercise 1.18. Let C be a category and S a non empty set. Define the cate-
gory S̃ by setting Ob(S̃) = S and Hom S̃(a, b) = {pt} for any a, b ∈ S.
(i) Prove that the functor θ : C × S̃ −→ C, (X, a) 
→ X is an equivalence.
(ii) Let Arr be the category • −→ • (see Notations 1.2.8 (iii)). Let ϕ : Arr −→
Pr be the natural functor. Prove that ϕ is faithful but there exists no subcat-
egory of Pr equivalent to Arr.
(iii) Let F : C ′ −→ C be a faithful functor. Prove that there exist a non empty
set S, a subcategory C0 of C × S̃ and an equivalence λ : C ′ ∼−→ C0 such that F

is isomorphic to the composition C ′ λ−→ C0 −→ C × S̃
θ−→ C.

Exercise 1.19. Let C, C ′ be categories and Lν : C −→ C ′, Rν : C ′ −→ C be
functors such that (Lν, Rν) is a pair of adjoint functors (ν = 1, 2). Let
εν : idC −→ Rν ◦ Lν and ην : Lν ◦ Rν −→ idC′ be the adjunction morphisms.
Prove that the two maps λ,µ:

Hom Fct(C,C′)(L1, L2)
λ �� Hom Fct(C′,C)(R2, R1)
µ

��
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given by

λ(ϕ) : R2
ε1◦R2−−−→ R1 ◦ L1 ◦ R2

R1◦ϕ◦R2−−−−−→ R1 ◦ L2 ◦ R2
R1◦η2−−−→ R1

for ϕ ∈ Hom Fct(C,C′)(L1, L2),

µ(ψ) : L1
L1◦ε2−−−→ L1 ◦ R2 ◦ L2

L1◦ψ◦L2−−−−−→ L1 ◦ R1 ◦ L2
ε1◦L2−−−→ L2

for ψ ∈ Hom Fct(C′,C)(R2, R1)

are inverse to each other.

Exercise 1.20. Consider three categories J, I, C and a functor ϕ : J −→ I . As-
sume that ϕ is essentially surjective. Prove that the functor ◦ϕ : Fct(I, C) −→
Fct(J, C) is faithful and conservative. (See Lemma 7.1.3 for refinements of this
result.)

Exercise 1.21. The simplicial category ∆ is defined as follows. The objects
of ∆ are the finite totally ordered sets and the morphisms are the order-
preserving maps. Let ∆̃ be the subcategory of ∆ consisting of non-empty sets
and

Hom∆̃(σ, τ ) =⎧⎨⎩u ∈ Hom∆(σ, τ ) ;
u sends the smallest (resp. the largest)
element of σ to the smallest (resp. the
largest) element of τ

⎫⎬⎭ .

For integers n, m denote by [n, m] the totally ordered set {k ∈ Z; n ≤ k ≤ m}.
(i) Prove that the natural functor ∆ −→ Set f is half-full and faithful.
(ii) Prove that the full subcategory of ∆ consisting of objects {[0, n]}n≥−1 is
equivalent to ∆.
(iii) Prove that ∆, as well as ∆̃, admit an initial object and a terminal object.
(iv) For σ ∈ ∆, let us endow S(σ ) := Hom∆(σ, [0, 1]) with a structure of an
ordered set by setting for ξ, η ∈ S(σ ), ξ ≤ η if ξ(i) ≤ η(i) for all i ∈ σ . Prove
that S(σ ) is a totally ordered set.
(v) Prove that the functor ϕ : ∆ −→ ∆̃op given by σ 
→ Hom∆(σ, [0, 1]) and
the functor ψ : ∆̃op −→ ∆ given by τ 
→ Hom∆̃(τ, [0, 1]) are quasi-inverse to
each other and give an equivalence ∆ � ∆̃op.
(vi) Denote by ∆in j (resp. ∆̃sur ) the subcategory of ∆ (resp. of ∆̃) such
that Ob(∆in j ) = Ob(∆), (resp. Ob(∆̃sur ) = Ob(∆̃)) the morphisms being
the injective (resp. surjective) order-preserving maps. Prove that ∆in j and
(∆̃sur )op are equivalent.
(vii) Denote by ι : ∆̃ −→ ∆ the canonical functor and by κ : ∆ −→ ∆̃ the
functor τ 
→ {0} � τ � {∞} (with 0 the smallest element in {0} � τ � {∞} and
∞ the largest). Prove that (κ, ι) is a pair of adjoint functors and the diagram
below quasi-commutes:
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∆
κ ��

∼ ϕ

��

∆̃

∼ ψop

��
∆̃op

ιop �� ∆op.

(Remark: the simplicial category will be used in §11.4.)
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Limits

Inductive and projective limits are at the heart of category theory. They are
an essential tool, if not the only one, to construct new objects and new func-
tors. Inductive and projective limits in categories are constructed by using
projective limits in Set. In fact, if β : Jop −→ C is a functor, its projective
limit is a representative of the functor which associates the projective limit of
HomC(Z , β) to Z , and if α : J −→ C is a functor, its inductive limit is a repre-
sentative of the functor which associates the projective limit of HomC(α, Z)
to Z .

In this chapter we construct these limits and describe with some details
particular cases, such as products, kernels, fiber products, etc. as well as the
dual notions (coproducts, etc.).

Given a functor ϕ : J −→ I and a category C, the composition by ϕ defines
a functor ϕ∗ : Fct(I, C) −→ Fct(J, C). Projective and inductive limits are the
tools to construct a right or left adjoint to the functor ϕ∗. This procedure is
known as the “Kan extension” of functors. When applying this construction
to the Yoneda functor, we get an equivalence of categories between functors
defined on C and functors defined on C∧ and commuting with small inductive
limits.

We pay special attention to inductive limits in the category Set, but the
reader will have to wait until Chap. 3 to encounter filtrant inductive limits,
these limits being often much easier to manipulate.

It is well-known, already to the students, that the limit of a convergent
sequence of real numbers remains unchanged when the sequence is replaced
by a subsequence. There is a similar phenomena in Category Theory which
leads to the notion of cofinal functor. A functor of small categories ϕ : J −→ I
is cofinal if, for any functor α : I −→ C, the limits of α and α◦ϕ are isomorphic.
We prove here that ϕ is cofinal if and only if, for any i ∈ I , the category J i ,
whose objects are the pairs ( j, u) of j ∈ J and u : i −→ ϕ( j), is connected.

We also introduce ind-limits and pro-limits, that is, inductive and projec-
tive limits in the categories C∧ and C∨, respectively.



36 2 Limits

2.1 Limits

Recall Convention 1.4.1.
In this section, I, J, K etc. will denote small categories. Let C be a category.

A functor α : I −→ C (resp. β : I op −→ C) is sometimes called an inductive
system (resp. a projective system) in C indexed by I .

Assume first that C is the category Set and let us consider projective
systems. In other words, β is an object of I∧. Denote by ptI∧ the constant
functor from I op to Set, defined by ptI∧(i) = {pt} for all i ∈ I . Note that ptI∧

is a terminal object of I∧. We define a set, called the projective limit of β, by

lim←−β = Hom I∧(ptI∧ , β) .(2.1.1)

The family of morphisms:

Hom I∧(ptI∧ , β) −→ HomSet(ptI∧(i), β(i)) � β(i), i ∈ I ,

defines the map lim←−β −→∏
i β(i), and it is immediately checked that:

lim←−β �
{
{xi }i ∈

∏
i

β(i) ; β(s)(x j ) = xi for all s ∈ Hom I (i, j)
}

.(2.1.2)

Since I and β(i) are small, lim←−β is a small set. The next result is obvious.

Lemma 2.1.1. Let β : I op −→ Set be a functor and let X ∈ Set. There is a
natural isomorphism

HomSet(X, lim←−β) ∼−→ lim←−HomSet(X, β) ,

where HomSet(X, β) denotes the functor I op −→ Set, i 
→ HomSet(X, β(i)).

Let ϕ : J −→ I and β : I op −→ Set be functors. Denote by ϕop : J op −→ I op

the associated functor. Using (2.1.1), we get a natural morphism:

lim←−β −→ lim←−(β ◦ ϕop) .(2.1.3)

Now let α (resp. β) be a functor from I (resp. I op) to a category C. For
X ∈ C, HomC(α, X) and HomC(X, β) are functors from I op to Set. We can
then define inductive and projective limits as functors from C or Cop to Set
as follows.

Recall that C∧ and C∨ are given in Definition 1.4.2.

Definition 2.1.2. (i) We define lim−→α ∈ C∨ and lim←−β ∈ C∧ by the formulas

lim−→α : X 
→ lim←−HomC(α, X) = lim←−(hC(X) ◦ α) ∈ Set ,(2.1.4)

lim←−β : X 
→ lim←−HomC(X, β) = lim←−(kC(X) ◦ β) ∈ Set .(2.1.5)
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(ii) If these functors are representable, we keep the same notations to denote
one of their representatives in C, and we call these representatives the
inductive or projective limit, respectively.

(iii) If for every functor α from I (resp. I op) to C, lim−→α (resp. lim←−α) is
representable, we say that C admits inductive (resp. projective ) limits
indexed by I .

(iv) We say that a category C admits finite (resp. small ) projective limits if
it admits projective limits indexed by finite (resp. small ) categories, and
similarly, replacing “projective limits” with “inductive limits”.

When C = Set, this definition of lim←−β coincides with the former one, in
view of Lemma 2.1.1.

Remark 2.1.3. The definitions of C∧ and C∨ depend on the choice of the uni-
verse U . However, given a functor α : I −→ C, the fact that lim−→α is representable
as well as its representative does not depend on the choice of the universe U
such that I is U-small and C is a U-category, and similarly for projective
limits.

Notations 2.1.4. (i) We shall sometimes use a more intuitive notation, writing
lim−→
i∈I

α(i) or lim−→
i

α(i) instead of lim−→α. We may also write lim←−
i∈I

β(i) or lim←−
i∈Iop

β(i)

or lim←−
i

β(i) instead of lim←−β.

(ii) Notice that in the literature, lim is sometimes used for the projective limit,
and colim for the inductive limit, and one writes lim β and colim α instead
of lim←−β and lim−→α.

Remark 2.1.5. Let I be a small set and α : I −→ C a functor. It defines a functor
αop : I op −→ Cop and there is a natural isomorphism

(lim−→α)op � lim←−αop .

Hence, results on projective limits may be deduced from results on inductive
limits, and conversely.

Moreover, a functor α : I −→ C defines a functor β : (I op)op −→ C and an
inductive system indexed by I is the same as a projective system indexed by
I op. However one shall be aware that the inductive limit of α has no relation in
general with the projective limit of β. (See the examples below, in particular
when I is discrete.)

By Definition 2.1.2, if lim−→α or lim←−β are representable, we get:

HomC(lim−→α, X) � lim←−HomC(α, X) ,(2.1.6)

HomC(X, lim←−β) � lim←−HomC(X, β) .(2.1.7)
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Note that the right-hand sides are the projective limits in Set.
Assume that lim−→α is representable by Y ∈ C. We get:

lim←−
i

HomC(α(i), Y ) � HomC(Y, Y )

and the identity of Y defines a family of morphisms

ρi : α(i) −→ Y = lim−→α with ρ j ◦ α(s) = ρi for all s : i −→ j .

Consider a family of morphisms fi : α(i) −→ X in C satisfying the natu-
ral compatibility conditions, visualized by the commutative diagram, with
s : i −→ j

α(i)
fi ��

α(s)

��

X

α( j)
f j

����������

This family of morphisms is nothing but an element of lim←−
i

Hom(α(i), X),

hence by (2.1.6) it gives an element of Hom(Y, X). Therefore there exists a
unique morphism g : Y −→ X such that fi = g ◦ ρi .

Similarly, if lim←−β is representable, we obtain a family of morphisms
ρi : lim←−β −→ β(i) and any family of morphisms from X to the β(i)’s sat-
isfying the natural compatibility conditions will factorize uniquely through
lim←−β. This is visualized by the commutative diagrams:

α(i)
fi

����
���

���
���

���
���

ρi ��	
		

		
		

	

α(s)

��

lim−→α �� X,

α( j)

ρ j

��







 f j

�������������������

β(i)

X

fi

������������������� ��

f j
����

���
���

���
���

���
lim←−β

ρi

����������

ρ j

��















β( j).

β(s)





If θ : α −→ α′ is a morphism of functors, it induces a morphism lim−→α −→
lim−→α′ in C∨.

It follows from (2.1.3) that if ϕ : J −→ I , α : I −→ C and β : I op −→ C are
functors, we have natural morphisms:

lim−→ (α ◦ ϕ) −→ lim−→α ,(2.1.8)

lim←− (β ◦ ϕop) ←− lim←−β .(2.1.9)

Proposition 2.1.6. Let I be a category and assume that C admits inductive
limits (resp. projective limits) indexed by I . Then for any category J , the
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big category C J admits inductive limits (resp. projective limits) indexed by I .
Moreover, for j ∈ J , denote by ρ j : C J −→ C the functor which associates γ ( j)
to a functor γ : J −→ C. Then, if α : I −→ C J (resp. β : I op −→ C J ) is a functor,
its inductive (resp. projective) limit is given by

(lim−→α)( j) = lim−→ (ρ j ◦ α) for any j ∈ J

(resp. (lim←−β)( j) = lim←− (ρ j ◦ β) for any j ∈ J ) .

In other words:

(lim−→α)( j) = lim−→ (α( j)) ,

(resp. (lim←−β)( j) = lim←− (β( j))) .

The proof is obvious.
For a small category I and a functor α : I −→ C, lim−→ (kC ◦α) ∈ C∨ exists and

coincides with lim−→α ∈ C∨ given in Definition 2.1.2. Then lim−→α exists if and
only if lim−→ (kC ◦α) is representable, and in this case, lim−→α is its representative.
There is a similar remark for lim←− , replacing C∨ with C∧.

We shall consider inductive or projective limits associated with bifunctors.

Proposition 2.1.7. Let I and J be two small categories and assume that C
admits inductive limits indexed by I and J . Consider a bifunctor α : I× J −→ C
and let αJ : I −→ C J and αI : J −→ C I be the functors induced by α. Then lim−→α

exists and we have the isomorphisms

lim−→α � lim−→(lim−→αJ ) � lim−→(lim−→αI ) .

Similarly, if β : I op × J op −→ C is a bifunctor, then β defines functors
βJ : I op −→ C Jop

and βI : J op −→ C Iop and we have the isomorphisms

lim←−β � lim←−(lim←−βJ ) � lim←−(lim←−βI ) .

In other words:

lim−→
i, j

α(i, j) � lim−→
j

(lim−→
i

α(i, j)) � lim−→
i

(lim−→
j

α(i, j)) ,

lim←−
i, j

β(i, j) � lim←−
j

(lim←−
i

β(i, j)) � lim←−
i

(lim←−
j

β(i, j)) .

The proof is obvious.

Definition 2.1.8. Let F : C −→ C ′ be a functor and I a category.

(i) Assume that C admits inductive limits indexed by I . We say that F com-
mutes with such limits if for any α : I −→ C, lim−→ (F ◦ α) exits in C ′ and is
represented by F(lim−→α).
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(ii) Similarly if C admits projective limits indexed by I , we say that F com-
mutes with such limits if for any β : I op −→ C, lim←− (F ◦ β) exists and is
represented by F(lim←−β).

Note that if C admits inductive (resp. projective) limits indexed by I , there is a
natural morphism lim−→ (F ◦α) −→ F(lim−→α) in C ′∨ (resp. F(lim←−β) −→ lim←− (F ◦β)
in C ′∧). Then (i) (resp. (ii)) means that this morphism is an isomorphism for
any functor α (resp. β).

Example 2.1.9. Let k be a field, C = C ′ = Mod(k), and let X ∈ C. Then
the functor Hom k(X, • ) commutes with small inductive limit if X is finite-
dimensional, and it does not if X is infinite-dimensional. Of course, it always
commutes with small projective limits.

If C admits projective limits indexed by a category I , the Yoneda functor
hC : C −→ C∧ commutes with such projective limits by the definition, but one
shall be aware that even if C admits inductive limits, the functors hC does not
commute with inductive limits in general (see Exercises 2.19 and 3.7).

Proposition 2.1.10. Let F : C −→ C ′ be a functor. Assume that:

(i) F admits a left adjoint G : C ′ −→ C,
(ii) C admits projective limits indexed by a small category I .

Then F commutes with projective limits indexed by I , that is, the natural
morphism F(lim←−β) −→ lim←− F(β) is an isomorphism for any β : I op −→ C.

Proof. For any Y ∈ C ′, there is the chain of isomorphisms

HomC′(Y, F(lim←−β)) � HomC(G(Y ), lim←− β)

� lim←−HomC(G(Y ), β)

� lim←−HomC′(Y, F(β))

� HomC′∧(Y, lim←− F(β)) .

Then the result follows by the Yoneda lemma. q.e.d.

Of course there is a similar result for inductive limits. If C admits inductive
limits indexed by I and F admits a right adjoint, then F commutes with such
limits.

The next results will be useful.

Lemma 2.1.11. Let C be a category and let α : C −→ C be the identity functor.
If lim−→α is representable by an object S of C, then S is a terminal object of C.

Proof. For X ∈ C denote by aX the natural morphism X −→ lim−→α � S. The
family of morphisms aX satisfies:
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(a) for every f : X −→ Y , aY ◦ f = aX ,
(b) if a pair of parallel arrows u, u′ : S ⇒ Z satisfy u ◦ aX = u′ ◦ aX for all

X ∈ C, then u = u′.

First, we shall show that aS = idS. Applying (a) to f = aX , we get aS◦aX = aX .
Hence aS ◦ aX = idS ◦aX , and this implies aS = idS by (b).

We can now complete the proof. Let f : X −→ S. By (i), f = aS ◦ f = aX .
Hence, HomC(X, S) � {aX }. q.e.d.

Recall (see Notations 1.2.15) that ∆X : I −→ C is the constant functor with
values X ∈ C.

Lemma 2.1.12. Let I and C be two categories and assume that I is connected.
Let X ∈ C. Then X ∼−→ lim←−∆X and lim−→∆X

∼−→ X .

Proof. (i) Assume first that C = Set. By (2.1.2), lim←−∆X is the subset of X I

consisting of the {xi }i∈I (with xi ∈ X) such that xi = xi ′ if there exists an
arrow i −→ i ′. Then the xi ’s are equal to one another since C is connected, and
we obtain X ∼−→ lim←−∆X .

(ii) By (i), we have the isomorphisms for Y ∈ C

HomC∨(lim−→∆X , Y ) � lim←−HomC(∆X , Y ) � lim←−∆Hom
C
(X,Y ) � HomC(X, Y ) ,

HomC∧(Y, lim←−∆X ) � lim←−HomC(Y,∆X ) � lim←−∆Hom
C
(Y,X) � HomC(Y, X) .

Hence, the results follow from the Yoneda lemma. q.e.d.

(See Corollary 2.4.5 for a converse statement.)
Let A ∈ C∧, and let CA denote the category associated with the Yoneda

functor hC : C −→ C∧ (see Definition 1.2.16). Hence, CA is the category of pairs
(X, u) of X ∈ C and u ∈ A(X).

Lemma 2.1.13. Let I be a category and assume that C admits inductive limits
indexed by I .

(i) If A : Cop −→ Set commutes with projective limits indexed by I (i.e.,
A(lim−→

i∈I

Xi ) � lim←−
i∈I

A(Xi ) for any inductive system {Xi }i∈I in C), then CA

admits inductive limits indexed by I and jA : CA −→ C commutes with such
limits.

(ii) If a functor F : C −→ C ′ commutes with inductive limits indexed by I ,
then for any Y ∈ C ′, CY admits inductive limits indexed by I and CY −→ C
commutes with such limits.

Proof. (i) Let {(Xi , ui )}i∈I be an inductive system in CA indexed by I . Then
u := {ui }i ∈ lim←−

i

A(Xi ) � A(lim−→
i

Xi ) gives an object (lim−→
i

Xi , u) of CA. It is easily

checked that it is an inductive limit of {(Xi , ui )}i∈I .
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(ii) Let A be the functor from Cop to Set given by A(X) = HomC′(F(X), Y ).
Then A commutes with projective limits indexed by I and CA is equivalent to
CY . q.e.d.

Definition 2.1.14. Let us denote by Mor0(C) the category whose objects
are the morphisms in C and whose morphisms are described as follows. Let
f : X −→ Y and g : X ′ −→ Y ′ belong to Mor(C). Then Hom Mor0(C)( f, g) =
{u : X −→ X ′, v : Y ′ −→ Y ; f = v ◦ g ◦ u}. The composition and the identity in
Mor0(C) are the obvious ones.

A morphism f −→ g in Mor0(C) is visualized by the commutative diagram:

X
f ��

u

��

Y

X ′ g �� Y ′.

v





Lemma 2.1.15. Let I and C be two categories and let α, β ∈ Fct(I, C). Then
(i −→ j) 
→ HomC(α(i), β( j)) is a functor from Mor0(I )op to Set, and there
is a natural isomorphism

Hom Fct(I,C)(α, β) ∼−→ lim←−
(i−→ j)∈Mor0(I)

HomC(α(i), β( j)) .(2.1.10)

Proof. The first statement, as well as the construction of the map (2.1.10) is
clear. This map is obviously injective. Let us show that it is surjective. Let

ϕ := {ϕ(i −→ j)}(i−→ j)∈Mor0(I) ∈ lim←−
(i−→ j)∈Mor0(I)

HomC(α(i), β( j)) .

Then ϕ(i
idi−→ i) defines the morphism θi : α(i) −→ β(i). Let us show that

θ := {θi }i∈I is a morphism of functors from α to β.
Let f : i −→ j be a morphism in I . To f we associate the two morphisms

in Mor0(I ):

i
f ��

idi
��

j

i
idi

�� i,

f



 i
f ��

f
��

j

j
id j

�� j.

id j





In the diagram below

α(i)
θi ��

��
ϕ(i−→ j)
		

	

��	
		

β(i)

��
α( j)

θ j

�� β( j)
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the two triangles commute, and hence the square commutes. Hence, θ ∈
Hom Fct(I,C)(α, β) and ϕ is the image of θ . q.e.d.

2.2 Examples

Empty Limits
If I is the empty category and α : I −→ C is a functor, then lim−→α is repre-
sentable if and only if C has an initial object ∅C , and in this case lim−→α � ∅C .
Similarly, lim←−α is representable if and only if C has a terminal object ptC , and
in this case lim←−α � ptC .

Terminal Object
If I has a terminal object, say ptI , and α : I −→ C (resp. β : I op −→ C) is a
functor, then

lim−→α � α(ptI ) ,

(resp. lim←−β � β(ptI ).)

Sums and Products
Consider a family {Xi }i∈I of objects in C indexed by a set I . We may regard I
as a discrete category and associate to this family the functor α : I −→ C given
by α(i) = Xi .

Definition 2.2.1. Consider a family {Xi }i∈I of objects in C identified with a
functor α : I −→ C.

(i) The coproduct of the Xi ’s, denoted by
∐

i Xi , is given by
∐

i Xi := lim−→α.
(ii) The product of the Xi ’s, denoted by

∏
i Xi , is given by

∏
i Xi := lim←−α.

Hence we have isomorphisms, functorial with respect to Y ∈ C:

HomC(
∐

i

Xi , Y ) �
∏

i

HomC(Xi , Y ) ,(2.2.1)

HomC(Y,
∏

i

Xi ) �
∏

i

HomC(Y, Xi ) .(2.2.2)

The natural morphism X j −→ ∐
i Xi is called the j-th coprojection. Similarly,

the natural morphism
∏

i Xi −→ X j is called the j-th projection.
When Xi = X for all i ∈ I , we simply denote the coproduct by X

∐
I and

we denote the product by X
∏

I . We also write X (I) and X I instead of X
∐

I

and X
∏

I , respectively.
If X

∐
I exists, we have
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HomSet(I,HomC(X, Y )) � HomC(X
∐

I , Y ) .(2.2.3)

If X
∏

I exists, we have

HomSet(I,HomC(Y, X)) � HomC(Y, X
∏

I ) .(2.2.4)

If I = {0, 1}, the coproduct and product (if they exist) are denoted by
X0

∐
X1 and X0

∏
X1, respectively. Moreover, one usually writes X0� X1 and

X0 × X1 instead of X0

∐
X1 and X0

∏
X1, respectively.

The coproduct and product of two objects are visualized by the commu-
tative diagrams:

X0

		���
����

����
����

����

����
���

���
�

X0 � X1
�� Y ,

X1

�����������



�������������������

X0

Y



�������������������� ��

		���
����

����
����

����
� X0 × X1

�����������

����
���

���
�

X1.

In other words, any pair of morphisms from (resp. to) X0 and X1 to (resp.
from) Y factors uniquely through X0� X1 (resp. X0× X1). If C is the category
Set, X0 � X1 is the disjoint union and X0 × X1 is the product of the two sets
X0 and X1.

Cokernels and Kernels
Consider the category I with two objects and two parallel morphisms other
than identities (see Notations 1.2.8 (iv)), visualized by

• ���� •(2.2.5)

A functor α : I −→ C is nothing but two parallel arrows in C:

(2.2.6) f, g : X0
���� X1.

In the sequel we shall identify such a functor with a diagram (2.2.6).

Definition 2.2.2. Consider two parallel arrows f, g : X0 ⇒ X1 in C identified
with a functor α : I −→ C.

(i) The cokernel (also called the co-equalizer) of the pair ( f, g), denoted by
Coker( f, g), is given by Coker( f, g) := lim−→α.

(ii) The kernel (also called the equalizer) of the pair ( f, g), denoted by
Ker( f, g), is given by Ker( f, g) := lim←−α.

(iii) A sequence X0 ⇒ X1 −→ Z (resp. Z −→ X0 ⇒ X1) is exact if Z is
isomorphic to the cokernel (resp. kernel ) of X0 ⇒ X1.
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Hence we have the isomorphisms, functorial with respect to Y ∈ C:

HomC(Coker( f, g), Y ) � {u ∈ HomC(X1, Y ); u ◦ f = u ◦ g} ,(2.2.7)
HomC(Y,Ker( f, g)) � {u ∈ HomC(Y, X0); f ◦ u = g ◦ u} .(2.2.8)

The cokernel L is visualized by the commutative diagram:

X0

���
��

��
��

�

f ��
g

�� X1

h

��

k �� L

��
Y

which means that any morphism h : X1 −→ Y such that h ◦ f = h ◦ g factors
uniquely through k. Note that

k is an epimorphism .(2.2.9)

Dually, the kernel K is visualized by the commutative diagram:

K
k �� X0

f ��
g

�� X1

Y

��

h



 ����������

and

k is a monomorphism.(2.2.10)

Proposition 2.2.3. Let F : C −→ C ′ be a functor.

(i) Assume that F is conservative and assume one of the hypotheses (a) or
(b) below:
(a) C admits kernels and F commutes with kernels,
(b) C admits cokernels and F commutes with cokernels.
Then F is faithful.

(ii) Assume that F is faithful and assume that any morphism in C which is
both a monomorphism and an epimorphism is an isomorphism. Then F
is conservative.

Proof. (i) Assume (a). Let f, g : X ⇒ Y be a pair of parallel arrows such
that F( f ) = F(g). Let N := Ker( f, g). Denote by u : N −→ X the natural
morphism. Then F(N) � Ker(F( f ), F(g)). Hence F(u) is an isomorphism.
Since F is conservative, we get N ∼−→ X and this implies f = g. Hence, F is
faithful.
Assuming (b) instead of (a), the proof is the same by reversing the arrows.

(ii) Let f : X −→ Y be a morphism such that F( f ) is an isomorphism. Then
f is both a monomorphism and an epimorphism by Proposition 1.2.12. It
follows from the hypothesis that f is an isomorphism. q.e.d.
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Fiber Products and Coproducts
Consider the category I with three objects and two morphisms other than the
identity morphisms visualized by the diagram

• •�� �� •
Let α be a functor from I to C. Hence α is characterized by a diagram:

Y0 X
f0�� f1 �� Y1.

The inductive limit of α, if it exists, is called the fiber coproduct of Y0 and Y1

over X and denoted by Y0 �X Y1.
Hence, for any Z ∈ C, HomC(Y0 �X Y1, Z) � {(u0, u1); u0 ∈ HomC(Y0, Z),

u1 ∈ HomC(Y1, Z), u0 ◦ f0 = u1 ◦ f1}.
The fiber coproduct is visualized by the commutative diagram:

Y0

���
��

��
��

��

�����
����

����
����

����
�

X

f1 ���
��

��
��

�

f0
����������

Y0 �X Y1
�� Z .

Y1

�����������

����������������������

This means that if two morphisms from Y0 and Y1 to Z coincide after composi-
tion with f0 and f1 respectively, then they factorize uniquely through Y0�X Y1.
We shall sometimes call the morphism Yi −→ Y0 �X Y1 the i-th coprojection.

The fiber products over Y is defined by reversing the arrows. If β is a
functor from I op to C, it is characterized by a diagram:

X0
g0 �� Y X1.

g1��

The projective limit of β, if it exists, is called the fiber product of X0 and X1

over Y and denoted by X0×Y X1. It is visualized by the commutative diagram:

X0

g0

���
��

��
��

�

Z



���������������������

		���
����

����
����

����
�� �� X0 ×Y X1

�����������

���
��

��
��

��
Y .

X1

g1

����������

We shall sometimes call the morphism X0 ×Y X1 −→ Xi the i-th projection.
Clearly, we have:
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Proposition 2.2.4. (i) Consider morphisms f0 : X −→ Y0 and f1 : X −→ Y1.
If Y0�Y1 and Y0�X Y1 exist in C, then the sequence X ⇒ Y0�Y1 −→ Y0�X Y1

is exact (see Definition 2.2.2).
(ii) Consider morphisms g0 : X0 −→ Y and g1 : X1 −→ Y . If Y0 × Y1 and

Y0 ×X Y1 exist in C, then the sequence X0 ×Y X1 −→ X0 × X1 ⇒ Y is
exact.

Remark 2.2.5. The fiber coproduct (resp. fiber product) may also be formu-
lated using the usual coproduct (resp. product).
(i) Let Y ∈ C and recall that jY denotes the forgetful functor CY −→ C. Assume
that CY admits products indexed by a category I .

Consider a family {Xi
fi−→ Y }i∈I of objects of CY . The fiber product over Y

of the Xi ’s, denoted by
∏

Y,i Xi , is given by∏
Y,i

Xi := jY

(∏
i

(Xi
fi−→ Y )

)
where the product on the right hand side is the product in CY . Clearly one
recovers X0 ×Y X1 when I = {0, 1}.

The natural morphism
∏

Y,i Xi −→ X j is again called the j-th projection.

(ii) One defines similarly the fiber coproduct over Y of a family {Y fi−→ Xi }i∈I

of objects of CY , and one denotes it by
∐

Y,i Xi . The natural morphism X j −→∐
Y,i Xi is again called the j-th coprojection.

Recall that if a category C admits inductive limits indexed by a category I
and Z ∈ C, then CZ admits inductive limits indexed by I . (See Lemma 2.1.13.)

Definition 2.2.6. Let C be a category which admits fiber products and induc-
tive limits indexed by a category I .

(i) We say that inductive limits in C indexed by I are stable by base change
if for any morphism Y −→ Z in C, the base change functor CZ −→ CY given
by CZ � (X −→ Z) 
→ (X ×Z Y −→ Y ) ∈ CY commutes with inductive limits
indexed by I .
This is equivalent to saying that for any inductive system {Xi }i∈I in C
and any pair of morphisms Y −→ Z and lim−→

i∈I

Xi −→ Z in C, we have the
isomorphism

lim−→
i∈I

(Xi ×Z Y ) ∼−→(lim−→
i∈I

Xi )×Z Y .(2.2.11)

(ii) If C admits small inductive limits and (2.2.11) holds for any small cate-
gory I , we say that small inductive limits in C are stable by base change.

The category Set admits small inductive limits and such limits are stable
by base change (see Exercise 2.7), but one shall be aware that in the cate-
gory Mod(Z), even finite inductive limits are not stable by base change. (See
Exercise 2.26.)
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Definition 2.2.7. Let us consider a commutative diagram in C:

Y ��

��

X0

��
X1

�� Z .

(2.2.12)

(i) The square (2.2.12) is co-Cartesian if X0 �Y X1
∼−→ Z .

(ii) The square (2.2.12) is Cartesian if Y ∼−→ X0 ×Z X1.

Assume that C admits finite coproducts. Then (2.2.12) is co-Cartesian if and
only if the sequence below is exact (see Definition 2.2.2):

Y ⇒ X0 � X1 −→ Z .

Assume that C admits finite products. Then (2.2.12) is Cartesian if and only
if the sequence below is exact:

Y −→ X0 × X1 ⇒ Z .

Notations 2.2.8. Let f : X −→ Y be a morphism in a category C.
(i) Assume that C admits fiber coproducts and denote by i1, i2 : Y ⇒ Y �X Y
the coprojections. We denote by σY : Y �X Y −→ Y (or simply σ ) the natural
morphism associated with idY : Y −→ Y , that is, σY ◦ i1 = σY ◦ i2 = idY . We
call σY the codiagonal morphism.
(ii) Assume that C admits fiber products and denote by p1, p2 : X ×Y X ⇒ X
the projections. We denote by δX : X −→ X ×Y X (or simply δ) the natural
morphism associated with idX : X −→ X , that is, p1 ◦ δX = p2 ◦ δX = idX . We
call δX the diagonal morphism.

Consider a category C which admits finite products and let X ∈ C. We
construct a functor

X
∏

: (Set f )op −→ C(2.2.13)

as follows. For I ∈ Set f , we set

X
∏

(I ) := X
∏

I (in particular, X
∏

(∅) = ptC) ,

and for ( f : J −→ I ) ∈ Mor(C),

X
∏

( f ) : X
∏

I −→ X
∏

J

is the morphism whose composition with the j-th projection X
∏

J −→ X is the
f ( j)-th projection X

∏
I −→ X . Equivalently, for any Z ∈ C, we have a map
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HomC(Z , X
∏

I ) � HomSet(I,HomC(Z , X))
◦ f−→ HomSet(J,HomC(Z , X))

� HomC(Z , X
∏

J ) ,

which induces a morphism X
∏

I −→ X
∏

J by the Yoneda Lemma.
When C admits coproducts, we construct similarly a functor

X
∐

: Set f −→ C.(2.2.14)

Thanks to Remark 2.2.5, these constructions extend to fiber coproducts and
fiber products. If C admits fiber products and u : X −→ Y is a morphism in C,
we get a functor

X
∏

Y : (Set f )op −→ C(2.2.15)
Set f � I 
→ X

∏
Y I ,

and similarly with fiber coproducts.

Limits as Kernels and Products
We have seen that coproducts and cokernels (resp. products and kernels) are
particular cases of inductive (resp. projective) limits. We shall show that,
conversely, it is possible to construct inductive (resp. projective) limits using
coproducts and cokernels (resp. products and kernels), when such objects
exist.

Recall that Mor(I ) denote the category of morphisms in I . There are two
natural maps (source and target) from Ob(Mor(I )) to Ob(I ):

σ : Ob(Mor(I )) −→ Ob(I ), (s : i −→ j) 
→ i ,

τ : Ob(Mor(I )) −→ Ob(I ), (s : i −→ j) 
→ j .

For a functor α : I −→ C and a morphism s : i −→ j in I , we get two morphisms
in C∨:

α(i)
idα(i) ��
α(s)

�� α(i) � α( j)

from which we deduce two morphisms in C∨: α(σ (s)) ⇒
∐

i∈I α(i). These
morphisms define the two morphisms in C∨:∐

s∈Mor(I) α(σ (s))
a ��
b

��
∐

i∈I α(i).(2.2.16)

Similarly, if β : I op −→ C is a functor and s : i −→ j , we get two morphisms in
C∧:

β(i)× β( j)
idβ(i) ��
β(s)

�� β(i)
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from which we deduce two morphisms in C∧:
∏

i∈I β(i) ⇒ β(σ (s)). These
morphisms define the two morphisms in C∧:∏

i∈I β(i)
a ��
b

��
∏

s∈Mor(I) β(σ (s)).(2.2.17)

Proposition 2.2.9. (i) lim−→α is the cokernel of (a, b) in (2.2.16),
(ii) lim←−β is the kernel of (a, b) in (2.2.17).

Proof. Replacing C with Cop, it is enough to prove (ii).
When C = Set, (ii) is nothing but the definition of projective limits in

Set. Therefore, for Z ∈ C, the projective limit lim←−HomC(Z , β) in Set is the
kernel of ∏

i∈I HomC(Z , β(i))
a ��
b

��
∏

s∈Mor(I) HomC(Z , β(σ (s))).

The result follows by the Yoneda lemma. q.e.d.

Corollary 2.2.10. A category C admits small projective limits if and only if
it satisfies:

(i) C admits small products,
(ii) for any pair of parallel arrows f, g : X ⇒ Y in C, its kernel exists in C.

Corollary 2.2.11. A category C admits finite projective limits if and only if
it satisfies:

(i) C admits a terminal object,
(ii) for any X, Y ∈ Ob(C), their product X × Y exists in C,
(iii) for any pair of parallel arrows f, g : X ⇒ Y in C, its kernel exists in C.

There is a similar result for finite inductive limits, replacing a terminal object
by an initial object, products by coproducts and kernels by cokernels. (See
also Exercise 2.6.)

2.3 Kan Extension of Functors

Definition 2.3.1. Consider three categories J, I, C and a functor ϕ : J −→ I .

(i) The functor ϕ∗ ∈ Fct
(
Fct(I, C),Fct(J, C)

)
is defined by

ϕ∗α = α ◦ ϕ for α ∈ Fct(I, C) .

(ii) If the functor ϕ∗ admits a left adjoint, we denote it by ϕ†. In such a
case we have ϕ† ∈ Fct

(
Fct(J, C),Fct(I, C)

)
, and for α ∈ Fct(I, C), β ∈

Fct(J, C) there is an isomorphism

Hom Fct(I,C)(ϕ
†β, α) � Hom Fct(J,C)(β, ϕ∗α) .(2.3.1)
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(iii) If the functor ϕ∗ admits a right adjoint, we denote it by ϕ‡. In such
a case we have ϕ‡ ∈ Fct

(
Fct(J, C),Fct(I, C)

)
, and for α ∈ Fct(I, C),

β ∈ Fct(J, C) there is an isomorphism

Hom Fct(I,C)(α, ϕ‡β) � Hom Fct(J,C)(ϕ∗α, β) .(2.3.2)

These functors of big categories are visualized by the diagram

Fct(I, C) ϕ∗ �� Fct(J, C).
ϕ†

��
ϕ‡

��

We have the adjunction morphisms

id −→ ϕ∗ ◦ ϕ† ,(2.3.3)
ϕ∗ ◦ ϕ‡ −→ id .(2.3.4)

For β ∈ Fct(J, C), the functors ϕ†β and ϕ‡β are visualized by the diagram:

J

β

��

ϕ �� I

ϕ†β, ϕ‡β��
C.

The functors ϕ† and ϕ‡ may be deduced one from the other by using
the equivalence Fct(I, C)op � Fct(I op, Cop). Namely, we have the quasi-
commutative diagram (assuming that ϕ† exists):

Fct(J, C)op

∼
��

(ϕ†)op
�� Fct(I, C)op

∼
��

Fct(J op, Cop)
(ϕop)‡

�� Fct(I op, Cop).

(2.3.5)

Definition 2.3.1 may be generalized as follows.

Definition 2.3.2. Let β ∈ Fct(J, C).

(a) If the functor

Fct(I, C) � α 
→ Hom Fct(J,C)(β, ϕ∗α) ∈ Set

is representable, we denote by ϕ†β ∈ Fct(I, C) its representative, and we
say that ϕ†β exists.

(b) Similarly, if the functor

Fct(I, C) � α 
→ Hom Fct(J,C)(ϕ∗α, β) ∈ Set

is representable, we denote by ϕ‡β ∈ Fct(I, C) its representative, and we
say that ϕ‡β exists.
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Here Set should be understood as V-Set for a sufficiently large universe
V.

If ϕ†β (resp. ϕ‡β) exists, the isomorphism (2.3.1) (resp. (2.3.2)) holds
for any α ∈ Mor(I, C). It is obvious that if ϕ†β (resp. ϕ‡β) exists for all
β ∈ Fct(J, C), then the functor ϕ† (resp. ϕ‡) exists.

Theorem 2.3.3. Let ϕ : J −→ I be a functor and β ∈ Fct(J, C).

(i) Assume that lim−→
(ϕ( j)−→i)∈Ji

β( j) exists in C for any i ∈ I . Then ϕ†β exists

and we have

ϕ†β(i) � lim−→
(ϕ( j)−→i)∈Ji

β( j) for i ∈ I .(2.3.6)

In particular, if C admits small inductive limits and J is small, then ϕ†

exists. If moreover ϕ is fully faithful, then ϕ† is fully faithful and there
is an isomorphism idFct(J,C)

∼−→ϕ∗ϕ†.
(ii) Assume that lim←−

(i−→ϕ( j))∈J i

β( j) exists for any i ∈ I . Then ϕ‡β ∈ Fct(I, C)

exists and we have

ϕ‡β(i) � lim←−
(i−→ϕ( j))∈J i

β( j) for i ∈ I .(2.3.7)

In particular, if C admits small projective limits and J is small, then ϕ‡

exists. If moreover ϕ is fully faithful, then ϕ‡ is fully faithful and there
is an isomorphism ϕ∗ϕ‡ ∼−→ idFct(J,C).

Proof. (i) (a) Let us define ϕ†β(i) by (2.3.6). For a morphism u : i −→ i ′, the
morphism ϕ†β(u) : ϕ†β(i) −→ ϕ†β(i ′) is given as follows. Let j ∈ J together
with a morphism ϕ( j) −→ i . It defines ϕ( j) −→ i

u−→ i ′, hence a morphism

β( j) −→ lim−→
(ϕ( j ′)−→i ′)∈Ji ′

β( j ′) = ϕ†β(i ′) .

Passing to the inductive limit with respect to (ϕ( j) −→ i) ∈ Ji , we get the
morphism ϕ†β(u) : ϕ†β(i) −→ ϕ†β(i ′). Thus ϕ†β is a functor.
(i) (b) We shall show that (2.3.1) holds for the functor ϕ†β defined by (2.3.6).
It would be possible to use Lemma 2.1.15 but we prefer to give a direct proof.

First, we construct a map

Φ : Hom Fct(J,C)(β, ϕ∗α) −→ Hom Fct(I,C)(ϕ
†β, α) .

An element u ∈ Hom Fct(J,C)(β, ϕ∗α) gives a morphism β( j) −→ α(ϕ( j)) −→
α(i) for any i ∈ I and ϕ( j) −→ i ∈ Ji . Hence we obtain a morphism

ϕ†β(i) = lim−→
ϕ( j)−→i

β( j) −→ α(i) .
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Clearly, the family of morphisms ϕ†β(i) −→ α(i) so constructed is functorial
in i ∈ I , hence defines Φ(u) ∈ Hom Fct(I,C)(ϕ

†β, α).
Next, we construct a map

Ψ : Hom Fct(I,C)(ϕ
†β, α) −→ Hom Fct(J,C)(β, ϕ∗α) .

An element v ∈ Hom Fct(I,C)(ϕ
†β, α) defines a morphism for j ∈ J :

β( j) −→ lim−→
ϕ( j ′)−→ϕ( j)

β( j ′) � ϕ†β(ϕ( j))
v−→ α(ϕ( j)) .

Clearly, the family of morphisms β( j) −→ ϕ∗α( j) so constructed is functorial
in j ∈ J , hence defines Ψ (v) ∈ Hom Fct(J,C)(β, ϕ∗α).

It is left to the reader to check that the maps Φ and Ψ are inverse to each
other.
(i) (c) Assume that ϕ is fully faithful, C admits small inductive limits and J
is small. Let β ∈ Fct(J,A) and j ∈ J . Since Jj −→ Jϕ( j) is an equivalence of
categories, we have

(ϕ∗ϕ†β)( j) � (ϕ†β)(ϕ( j)) � lim−→
ϕ( j ′)−→ϕ( j)

β( j ′)

� lim−→
j ′−→ j

β( j ′) � β( j) .

We deduce that ϕ† is fully faithful by Proposition 1.5.6.
(ii) is equivalent to (i) by (2.3.5). q.e.d.

Let α : J −→ C and β : J op −→ C be functors. The morphisms (2.1.8) or
(2.1.9) give morphisms

lim−→ϕ∗ϕ†α −→ lim−→ϕ†α ,(2.3.8)

lim←− (ϕop)‡β −→ lim←− (ϕop)∗(ϕ
op)‡β .(2.3.9)

Together with (2.3.3) and (2.3.4) we obtain the morphisms

lim−→α −→ lim−→ϕ†α ,(2.3.10)

lim←− (ϕop)‡β −→ lim←−β .(2.3.11)

Corollary 2.3.4. Let ϕ : J −→ I be a functor of small categories.

(i) Assume that C admits small inductive limits and let α : J −→ C be a
functor. Then (2.3.10) is an isomorphism.

(ii) Assume that C admits small projective limits and let β : Jop −→ C be a
functor. Then (2.3.11) is an isomorphism.



54 2 Limits

More intuitively, isomorphisms (2.3.10) and (2.3.11) may be written as

lim−→
j∈J

α( j) ∼−→ lim−→
i∈I

( lim−→
ϕ( j)−→ i

α( j)) ,

lim←−
j∈J

β( j) ∼←− lim←−
i∈I

( lim←−
ϕ( j)−→ i

β( j)) .

Proof. For X ∈ C, consider the constant functor ∆I
X : I −→ C (see Notation

1.2.15). We have ϕ∗∆I
X � ∆J

X . Using the result of Exercise 2.8 we get the
chain of isomorphisms

HomC(lim−→α, X) � HomC J (α,∆J
X ) � HomC J (α, ϕ∗∆I

X )

� HomC I (ϕ†α,∆I
X ) � HomC(lim−→ϕ†α, X) .

q.e.d.

2.4 Inductive Limits in the Category Set

We have already noticed that the category Set admits small projective limits.
Recall that

⊔
denotes the disjoint union of sets.

Proposition 2.4.1. The category Set admits small inductive limits. More
precisely, if I is a small category and α : I −→ Set is a functor, then

lim−→α � (⊔
i∈I

α(i)
)
/ ∼ ,

where ∼ is the equivalence relation generated by α(i) � x ∼ y ∈ α( j) if there
exists s : i −→ j with α(s)(x) = y.

Proof. Let S ∈ Set. By the definition of the projective limit in Set, we get:

lim←−Hom(α, S) � { {p(i)}i∈I ; p(i) ∈ HomSet(α(i), S), p(i) = p( j) ◦ α(s)

for any s : i −→ j
}

� {
p ∈ HomSet(

⊔
i∈I

α(i), S) ; p(x) = p(y) if x ∼ y
}

.

The result follows. q.e.d.

Notation 2.4.2. In the category Set, the notation
⊔

is preferred to
∐

.

Let C be a category. Applying Proposition 2.1.6 we get:

Corollary 2.4.3. The big category C∧ admits small inductive and small pro-
jective limits. If I is a small category and α : I −→ C∧ is a functor, we have
the isomorphism for X ∈ C
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(lim−→
i

α(i))(X) � lim−→
i

(α(i)(X)) .

Similarly, if β : I op −→ C∧ is a functor, we have the isomorphism

(lim←−
i

β(i))(X) � lim←−
i

(β(i)(X)) .

There is a similar result for C∨.
Recall that the terminal (resp. initial) object ptC∧ (resp. ∅C∧) of C∧ is given

by ptC∧(X) = {pt} (resp. ∅C∧(X) = ∅).
Corollary 2.4.4. (i) The coproduct in Set is the disjoint union.
(ii) The cokernel of f, g : X ⇒ Y in Set is the quotient set Y/ ∼, where ∼

is the equivalence relation generated by y ∼ y′ if there exists x ∈ X such
that f (x) = y and g(x) = y′.

(iii) Let I be a small category, let S ∈ Set, and consider the constant func-
tor ∆S : I −→ Set with values S. Then lim−→∆S � S�π0(I) (see Defini-
tion 1.2.17). In particular, if S = {pt}, then lim−→∆S � π0(I ).

(iv) Let I be a small category and consider a functor α : I −→ Set. Set I (α):=
I {pt}, that is,

Ob(I (α)) = {(i, x); i ∈ I, x ∈ α(i)} ,

Hom I(α)((i, x), ( j, y)) = {s ∈ Hom I (i, j);α(s)(x) = y} .

Then lim−→α � π0(I (α)).

Proof. (i) and (ii) are particular cases of Proposition 2.4.1.
(iii) Consider π0(I ) as a discrete category. Then the functor ∆S decomposes
as

I
θ−→ π0(I )

∆̃S−→ Set ,

where ∆̃S is the constant functor with values S. Since Ia is connected for
a ∈ π0(I ), Lemma 2.1.12 implies that θ†∆S � ∆̃S. Applying Corollary 2.3.4,
we get

lim−→∆S � lim−→ ∆̃S � S�π0(I) .

(iv) By its definition,

π0(I (α)) =
⊔

(i,x)∈I(α)

{(i, x); i ∈ I, x ∈ α(i)}/ ∼

where ∼ is the equivalence relation generated by (i, x) ∼ ( j, y) if there ex-
ists s : i −→ j with α(s)(x) = y. This set is isomorphic to the set given in
Proposition 2.4.1. q.e.d.
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Corollary 2.4.5. Let I be a small category and let ∆{pt} : I −→ Set denote the
constant functor with values {pt}. Then I is connected if and only if lim−→∆{pt} �
{pt}.
Proof. Apply Corollary 2.4.4 (iii). q.e.d.

Corollary 2.4.6. Let F : C −→ C ′ and G : C −→ C ′′ be two functors, let A ∈ C ′
and let B ∈ C ′′. We have the isomorphism

lim−→
(G(X)−→B)∈CB

HomC′(A, F(X)) � lim−→
(A−→F(X))∈CA

HomC′′(G(X), B) .(2.4.1)

Proof. Consider the two functors ϕ : CB −→ Set and ψ : (CA)op −→ Set given
by ϕ(G(X) −→ B) = HomC′(A, F(X)) and ψ(A −→ F(X)) = HomC′′(G(X), B).
Define the category J as follows.

Ob(J ) =
{
(X, s, t) ; X ∈ C, s : A −→ F(X), t : G(X) −→ B

}
,

Hom J ((X, s, t), (X ′, s ′, t ′))
=
{

f : X −→ X ′ ; the diagrams below commute
}

G(X) t ��

G( f )

��

B

G(X ′)
t ′

�����������

A
s ��

s ′ ��	
		

		
		

		
F(X)

F( f )

��
F(X ′).

Using the notations and the result of Corollary 2.4.4 (iv), we have J � (CB)(ϕ),
J op � ((CA)op)(ψ), and lim−→ϕ and lim−→ψ are respectively isomorphic to π0(J )
and π0(J op) � π0(J ). q.e.d.

The next result will be used in the sequel.

Lemma 2.4.7. Let I be a small category and let i0 ∈ I . Let α : I −→ Set be
the functor i 
→ Hom I (i0, i). Then lim−→α � {pt}.
Proof. It is enough to show that the composition

{pt} −→ Hom I (i0, i0) −→ lim−→α ,

pt 
→ idi0

is a surjective map. For i ∈ I and u ∈ α(i) = Hom I (i0, i), we have u =
α(u) ◦ idi0 . Consider the maps:

Hom I (i0, i0)
α(u)−−→ Hom I (i0, i) −→ lim−→α .

The image of u in lim−→α is the image of idi0 . q.e.d.
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2.5 Cofinal Functors

Definition 2.5.1. (i) A functor ϕ : J −→ I is cofinal if the category J i is
connected for any i ∈ I .

(ii) A functor ϕ : J −→ I is co-cofinal if ϕop : J op −→ I op is cofinal, that is, if
the category Ji is connected for any i ∈ I .

We shall also say that J is cofinal to I by ϕ, or that J is cofinal to I .

Proposition 2.5.2. Let ϕ : J −→ I be a functor of small categories. The con-
ditions below are equivalent.

(i) ϕ is cofinal,
(ii) for any functor β : I op −→ Set, the natural map lim←−β −→ lim←− (β ◦ ϕop) is

bijective,
(iii) for any category C and any functor β : I op −→ C, the natural morphism

lim←−β −→ lim←−(β ◦ ϕop) is an isomorphism in C∧,

(iv) for any functor α : I −→ Set, the natural map lim−→ (α ◦ ϕ) −→ lim−→α is
bijective,

(v) for any category C and any functor α : I −→ C, the natural morphism
lim−→(α ◦ ϕ) −→ lim−→α is an isomorphism in C∨,

(vi) for any i ∈ I , lim−→
j∈J

Hom I (i, ϕ( j)) � {pt}.

Proof. (i) ⇒ (v). Let us show that the natural morphism

λ : lim−→ (α ◦ ϕ) −→ lim−→α

is an isomorphism. For i0 ∈ I , let ji0 : J i0 −→ J be the forgetful functor. For
j ∈ J i0 , the morphism i0 −→ ϕ( j) induces a morphism α(i0) −→ α(ϕ( j)).
Hence, identifying α(i0) with the constant functor ∆α(i0) : J i0 −→ C, we obtain
a chain of morphisms

lim−→
j∈J i0

α(i0) −→ lim−→
j∈J i0

α(ϕ( j)) � lim−→α ◦ ϕ ◦ ji0 −→ lim−→α ◦ ϕ .

Since J i0 is connected, lim−→
j∈J i0

α(i0) � α(i0) by Lemma 2.1.12. Hence, we obtain a

morphism α(i0) −→ lim−→α ◦ϕ. Taking the inductive limit with respect to i0 ∈ I ,
we get a morphism µ : lim−→α −→ lim−→α◦ϕ. Hence, for any i ∈ I , the composition

α(i) −→ lim−→α
µ−→ lim−→α ◦ ϕ is given by α(i)

α(u)−−→ α(ϕ( j)) −→ lim−→α ◦ ϕ by taking
j ∈ J and a morphism u : i −→ ϕ( j). It is easily checked that λ and µ are
inverse to each other.

(ii) ⇒ (iii). Let X ∈ C. By the hypothesis, there is an isomorphism
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lim←−HomC(X, β) ∼−→ lim←−HomC(X, β ◦ ϕ) .

To conclude, apply Corollary 1.4.7.

(iii) ⇒ (ii), (iii) ⇔ (v) and (v) ⇒ (iv) are obvious.

(iv) ⇒ (vi) follows from Lemma 2.4.7.

(vi) ⇒ (i). Let i ∈ I . Let β : J −→ Set be the constant functor with values
{pt}. Then J{pt} � J (here, J{pt} is associated to β), and we have

{pt} � lim−→
j∈J

Hom I (i, ϕ( j))

� lim−→
j∈J i

HomSet(β( j), {pt}) � lim−→
j∈J i

β( j) � π0(J i ) .

Here the first isomorphism follows from the hypothesis, the second from Corol-
lary 2.4.6 and the last from Corollary 2.4.4 (iii). q.e.d.

Corollary 2.5.3. Let ϕ : J −→ I be a cofinal functor of small categories. Then
I is connected if and only if J is connected.

Proof. Denote by ∆I
{pt} the constant functor I −→ Set with values {pt}, and

similarly with J instead of I . Then ∆J
{pt} � ∆I

{pt}◦ϕ. Since lim−→∆J
{pt} � lim−→∆I

{pt},
the result follows from Corollary 2.4.5. q.e.d.

Proposition 2.5.4. Let ψ : K −→ J and ϕ : J −→ I be two functors.

(i) If ϕ and ψ are cofinal, then so is ϕ ◦ ψ.
(ii) If ϕ ◦ ψ and ψ are cofinal, then so is ϕ.
(iii) If ϕ is fully faithful and ϕ ◦ ψ is cofinal, then ϕ and ψ are cofinal.

Proof. By taking a larger universe, we may assume that I, J, K are small.
Consider a functor α : I −→ Set. We get functors

K
ψ−→ J

ϕ−→ I
α−→ Set

and maps

lim−→α ◦ ϕ ◦ ψ
aψ (α◦ϕ)−−−−→ lim−→ (α ◦ ϕ)

aϕ(α)−−−→ lim−→α .

(i) Clearly, if aϕ(α) and aψ(α ◦ ϕ) are bijective for all α, then aϕ◦ψ(α) =
aϕ(α) ◦ aψ(α ◦ ϕ) is bijective for all α.
(ii) Assume that aϕ◦ψ(α) and aψ(α ◦ ϕ) are bijective for all α. Then aϕ(α) is
bijective for all α.
(iii) For j ∈ J , K j � K ϕ( j) and this category is connected. Hence, ψ is cofinal.
Then ϕ is cofinal by (ii). q.e.d.
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Definition 2.5.5. (i) A category I is cofinally small if there exist a small
category J and a cofinal functor ϕ : J −→ I .

(ii) A category I is co-cofinally small if I op is cofinally small.

Corollary 2.5.6. Assume that I is cofinally small. Then there exists a small
full subcategory J of I cofinal to I .

Proof. Let θ : K −→ I be a cofinal functor with K small and let J denote the
full subcategory of I whose objects are the images of Ob(K ) by θ . Then J is
small. Denote by ψ : K −→ J the functor induced by θ . Then Proposition 2.5.4
(iii) implies that the embedding functor J −→ I is cofinal. q.e.d.

Note that if C is a category which admits small inductive limits and I is
cofinally small, then C admits inductive limits indexed by I , and similarly for
projective limits.

2.6 Ind-lim and Pro-lim

Let C be a category. Recall that the Yoneda lemma implies that the functor
hC : C −→ C∧ is fully faithful, which allows us to identify C with a full subcat-
egory of C∧. Hence, when there is no risk of confusion, we shall not write the
functor hC .

Recall that in Notation 1.4.5 we have set A(X) = HomC∧(X, A) for A ∈ C∧
and X ∈ C, and more generally, A(B) = HomC∧(B, A) for A, B ∈ C∧. In
particular, we identify an element s ∈ A(X) with a morphism s : X −→ A.

We have already noticed in Corollary 2.4.3 that the big category C∧ admits
small projective and inductive limits. Whenever C admits small projective
limits, the functor hC commutes with such limits, but even when C admits
small inductive limits, the functor hC does not commute with lim−→ .

In order to avoid any confusion, we introduce the following notations.

Notations 2.6.1. (i) We denote by “lim−→” and “
∐

” the inductive limit and the
coproduct in C∧, respectively.
(ii) We sometimes write X “

⊔
” Y instead of X “

∐
” Y .

(iii) If I is small and α : I −→ C∧ is a functor, we sometimes write “lim−→”
i∈I

α(i)

or “lim−→”
i

α(i) instead of “lim−→” α. Recall that (“lim−→”
i

α(i))(X) � lim−→
i

(
(α(i))(X)

)
for any X ∈ C.
(iv) If I is small and α : I −→ C is a functor, we set for short “lim−→” α =
“lim−→”(hC ◦ α).

(v) We call “lim−→” α the ind-lim of α.



60 2 Limits

Notations 2.6.2. (i) Similarly, we denote by “lim←−” and “
∏

” the projective
limit and the product in C∨.
(ii) If I is small and β : I op −→ C∨ is a functor, we sometimes write “lim←−”

i∈Iop
β(i),

“lim←−”
i∈I

β(i) or “lim←−”
i

β(i) instead of “lim←−”β.

(iii) If I is small and β : I op −→ C is a functor, we set for short “lim←−” β =
“lim←−”(kC ◦ β).

(iv) We call “lim←−” β the pro-lim of β.

With these notations, if I is small and α : I −→ C∧ and β : I op −→ C∨ are
functors, we have for X ∈ C

HomC∧(X, “lim−→” α) = lim−→HomC∧(X, α) ,(2.6.1)

HomC∨(“lim←−” β, X) = lim−→HomC∨(β, X) .(2.6.2)

One shall be aware that isomorphism (2.6.1) (resp. (2.6.2)) is no more true
for X ∈ C∧ (resp. X ∈ C∨) in general, even if α (resp. β) takes its values in C.

For A ∈ C∧ and B ∈ C∨, we have

HomC∧(“lim−→” α, A) � lim←−HomC∧(α, A) ,

HomC∨(B, “lim←−” β) � lim←−HomC∨(B, β) .

Notice that the inductive limit of α : I −→ C is an object of C∨ while the
ind-lim of α is an object of C∧, and the projective limit of β : I op −→ C is an
object of C∧ while the pro-lim of β is an object of C∨.

Let β be a contravariant functor from I to C, that is, a functor I op −→ C.
Then we get a functor βop : I −→ Cop, and we have:

“lim←−” β � ξ(“lim−→” (βop)) ,(2.6.3)

where ξ is the contravariant functor (Cop)∧ −→ C∨.
From now on, we shall concentrate our study on “lim−→” , the results on

“lim←−” being deduced using (2.6.3).
Assume that C admits small inductive limits. Then, for a functor α : I −→ C,

the natural map lim−→HomC(X, α) −→ HomC(X, lim−→α) defines the morphism in
C∧:

“lim−→” α −→ hC(lim−→α) .

If α : I −→ C and β : J −→ C are functors defined on small categories, there
are isomorphisms:

HomC∧(“lim−→”
i

α(i), “lim−→”
j

β( j)) � lim←−
i

HomC∧(α(i), “lim−→”
j

β( j))

� lim←−
i

lim−→
j

HomC(α(i), β( j)) .
(2.6.4)
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Proposition 2.6.3. Let C be a category.

(i) Let A ∈ C∧. Then “lim−→”
(V−→A)∈CA

V exists in C∧ and “lim−→”
(V−→A)∈CA

V � A.

(ii) Let I be a small category and α : I −→ C a functor. Set A = “lim−→” α. Then
the functor α̃ : I −→ CA associated with α is cofinal.

Using the functor jA : CA −→ C given in Definition 1.2.16, (i) is translated as:
A � “lim−→” jA. Note that CA is not essentially small in general.

Proof. (i) follows from the fact that, for any B ∈ C∧, the map

HomC∧(A, B) −→ lim←−
(V−→A)∈CA

HomC∧(V, B)

� lim←−
(V−→A)∈CA

B(V )

is bijective by the definition of a morphism of functors.
(ii) The functor hC : C −→ C∧ induces a functor (hC)A : CA −→ (C∧)A. By
Lemma 1.4.12, there exists an equivalence λ : (C∧)A � (CA)∧ such that
hCA � λ ◦ (hC)A, visualized by the diagram

I
α̃ �� CA

(hC)A ��

hCA ����
���

���
���

�� (C∧)A
��

∼ λ

��

C∧

(CA)∧.

By Lemma 2.1.13, the functor (C∧)A −→ C∧ commutes with small inductive
limits. Since “lim−→” (hC ◦α) � A, it follows that λ−1

(
“lim−→” (hCA ◦α̃)

)
is isomor-

phic to (A
id−→ A), the terminal object of (C∧)A. Hence, “lim−→” (hCA ◦α̃) �

pt(CA)∧ , i.e.,
lim−→
i∈I

HomCA

(
(X, s), α̃(i)

) � {pt}

for any (X, s) ∈ CA. This implies that α̃ : I −→ CA is cofinal by Proposition 2.5.2
(i)⇔(vi). q.e.d.

Let us compare the inductive limits “lim−→” in C∧ and lim−→ in C.

Proposition 2.6.4. Let I be a small category and α : I −→ C a functor. As-
sume that “lim−→” (hC ◦α) ∈ C∧ is isomorphic to an object X ∈ C. Then for any
functor F : C −→ C ′, lim−→ (F ◦ α) � F(X).

Proof. It is enough to prove the isomorphism

lim←−HomC′(F ◦ α, Y ) � HomC′(F(X), Y ) ,
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functorially in Y ∈ C ′. Let us define Hom (F, Y ) ∈ C∧ by

Hom (F, Y )(Z) = HomC′(F(Z), Y ) for Z ∈ C .(2.6.5)

Then

lim←−HomC′(F ◦ α, Y ) � lim←−HomC∧(α,Hom (F, Y ))

� HomC∧(“lim−→” α,Hom (F, Y ))

� HomC∧(X,Hom (F, Y ))
� HomC′(F(X), Y ) .

q.e.d.

This shows that “lim−→” α � X implies lim−→α � X , but the first assertion is much
stronger (see Exercise 2.25 and also Proposition 6.2.1).

Remark 2.6.5. Let U ⊂ V be two universes and C a U-category. With the
notations of Remark 1.4.13, we have a fully faithful functor ιV,U : C∧U −→ C∧V .
This functor commutes with inductive and projective limits indexed by U-
small categories.

2.7 Yoneda Extension of Functors

In this section, we apply Theorem 2.3.3 to the particular case where ϕ : J −→ I
is the Yoneda functor hC : C −→ C∧. Hence, we assume

the category C is small .(2.7.1)

Proposition 2.7.1. Let F : C −→ A be a functor, assume (2.7.1) and assume
that A admits small inductive limits. Then the functor h†

C F : C∧ −→ A exists,
commutes with small inductive limits and satisfies h†

C F ◦ hC � F.
Conversely if a functor F̃ : C∧ −→ A satisfies the following two conditions:

(a) F̃ ◦ hC � F,
(b) F̃ commutes with small inductive limits with values in C (i.e., for any

functor α : I −→ C with I small, F̃(“lim−→”α) � lim−→ (F ◦ α)),

then F̃ � h†
C F.

Proof. We set F̃ = h†
C F . By Theorem 2.3.3, this functor exists and we have

F̃(A) = lim−→
(U−→A)∈CA

F(U) for A ∈ C∧ .(2.7.2)

Since hC is fully faithful, the same theorem implies F̃ ◦ hC � F .
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For M ∈ A, recall (see (2.6.5)) that Hom (F, M) ∈ C∧ is given by the
formula

HomC∧(U,Hom (F, M)) = HomA(F(U), M) for U ∈ C .

For A ∈ C∧, we get

HomC∧(A,Hom (F, M)) � HomC∧(“lim−→”
U−→A

U,Hom (F, M))

� lim←−
U−→A

HomC∧(U,Hom (F, M)) � lim←−
U−→A

HomA(F(U), M)

� HomA( lim−→
U−→A

F(U), M) � HomA(F̃(A), M) .

Let I be a small category and α : I −→ C∧ a functor. Set A = “lim−→” α. We get

HomA(F̃(A), M) � HomC∧(A,Hom (F, M)) � lim←−HomC∧(α,Hom (F, M))

� lim←−HomA(F̃(α), M) � HomA(lim−→ F̃(α), M) .

Therefore the natural morphism lim−→ F̃(α) −→ F̃(A) is an isomorphism by
Corollary 1.4.7.

The uniqueness is obvious since (a) and (b) imply (2.7.2) by Proposition
2.6.3. q.e.d.

Notation 2.7.2. If F : C −→ C ′ is a functor of small categories, we shall denote
by

F̂ : C∧ −→ (C ′)∧

the functor h†
C (hC′ ◦F) associated with hC′ ◦F : C −→ (C ′)∧. Hence, for A ∈ C∧

and V ∈ C ′, (
F̂(A)

)
(V ) � lim−→

(U−→A)∈CA

HomC′(V, F(U)) .

By Proposition 2.7.1, F̂ commutes with small inductive limits.

Notation 2.7.3. We denote by Fctil(C∧,A) the full big subcategory of the big
category Fct(C∧,A) consisting of functors which commute with small induc-
tive limits.

Corollary 2.7.4. Assume (2.7.1) and assume that A admits small inductive
limits. Then hC∗ : Fct(C∧,A) −→ Fct(C,A) induces an equivalence of cate-
gories

hC∗ : Fctil(C∧,A) ∼−→Fct(C,A) ,(2.7.3)

and a quasi-inverse is given by h†
C.
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Proof. By Proposition 2.7.1, the functor h†
C takes its values in Fctil(C∧,A)

and any G ∈ Fctil(C∧,A) is isomorphic to h†
C(hC∗G). Hence, h†

C is essentially
surjective. Since h†

C is fully faithful by Theorem 2.3.3, the result follows. q.e.d.

Let F : C −→ C ′ be a functor of small categories. We have defined F̂ : C∧ −→
C ′∧ in Notation 2.7.2 and we have defined (Fop)† : C∧ −→ C ′∧ in Definition 2.3.1
with A = Set.

Proposition 2.7.5. Let F : C −→ C ′ be a functor of small categories. There is
an isomorphism F̂ � (Fop)† in Fct(C∧, (C ′)∧).

Proof. Let A ∈ (C ′)∧ and V ∈ C ′. Applying Corollary 2.4.6, we obtain

(F̂(A))(V ) � lim−→
(U−→A)∈CA

HomC′(V, F(U))

� lim−→
(V−→F(U))∈CV

HomC∧(U, A) � ((Fop)†(A))(V ) .

q.e.d.

Exercises

Exercise 2.1. Let F : C −→ C ′ be an equivalence of categories and let G be a
quasi-inverse. Assume that C admits inductive limits indexed by a category I .
Prove that C ′ has the same property and that if α : I −→ C is a functor, then
lim−→(F ◦ α) � F(lim−→α).

Exercise 2.2. Let f : X�Y be an epimorphism in a category C and let
s1, s2 : Y ⇒ Z be a pair of parallel arrows. Prove that the natural morphism
Coker(s1 ◦ f, s2 ◦ f ) −→ Coker(s1, s2) is an isomorphism in C if these cokernels
exist.

Exercise 2.3. Let f : X −→ Y be a morphism in Set, and set Z = Y �X Y .
Prove that

Z � f (X) � (Y \ f (X)) � (Y \ f (X)) .

Exercise 2.4. Let C be a category which admits fiber products and let
f : X −→ Y be a morphism in C. Denote by p1, p2 the projections X×Y X ⇒ X
and by δ the diagonal morphism X −→ X ×Y X (see Notations 2.2.8).
(i) Prove that δ is a monomorphism and p1, p2 are epimorphisms.
(ii) Prove the equivalences

f is a monomorphism ⇐⇒ δ is an isomorphism
⇐⇒ δ is an epimorphism ⇐⇒ p1 = p2 .
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(iii) Dually, assume that C admits fiber coproducts and denote by i1, i2 the
coprojections Y ⇒ Y �X Y and by σ the codiagonal morphism Y �X Y −→ Y .
Prove the equivalences

f is an epimorphism ⇐⇒ σ is an isomorphism
⇐⇒ σ is a monomorphism ⇐⇒ i1 = i2 .

Exercise 2.5. Let C be a category and consider a pair of parallel arrows
f, g : X ⇒ Y .
(i) Assume that C admits finite inductive limits. Prove that

X �
X�X

Y ∼−→Coker( f, g) .

Here X � X −→ X is the codiagonal morphism and X � X −→ Y is the morphism
associated to f, g.
(ii) Dually, assume that C admits finite projective limits. Prove that

Ker( f, g) ∼−→ X ×
Y×Y

Y .

Here Y −→ Y × Y is the diagonal morphism and X −→ Y × Y is the morphism
associated to f, g.

Exercise 2.6. Let C be a category, and consider the following conditions.

(i) C admits small projective limits,
(ii) C admits finite projective limits,
(iii) C admits small products,
(iv) C admits finite products,
(v) C has a terminal object,
(vi) for every X, Y in C, X × Y exists in C,
(vii) for every pair of parallel arrows f, g : X ⇒ Y in C, Ker( f, g) exists in C,
(viii) for every pair of morphisms X −→ Z and Y −→ Z in C, X ×Z Y exists in C.

Prove the following implications:
(i) ⇔ (iii) + (vii) ⇔ (iii) + (viii),
(ii) ⇔ (iv) + (vii) ⇔ (iv) + (viii) ⇔ (v) + (viii),
(iv) ⇔ (v) + (vi).

Exercise 2.7. Let Z ∈ Set.
(i) Prove that the category SetZ admits products (denoted here by X ×Z Y )
and that the functor • ×Z Y : SetZ −→ SetZ is left adjoint to the functor
Hom Z (Y, • ) given by Hom Z (Y, X) =

⊔
z∈Z HomSet(Yz, Xz), where Xz is the

fiber of X −→ Z over z ∈ Z .
(ii) Deduce that small inductive limits in Set are stable by base change (see
Definition 2.2.6).
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Exercise 2.8. Let I and C be two categories and denote by ∆ the functor
from C to C I which associates to X ∈ C the constant functor ∆X (see Notations
1.2.15). Assume that C admits inductive limits indexed by I .
(i) Prove that lim−→ : C I −→ C is a functor.

(ii) Prove that (lim−→ ,∆) is a pair of adjoint functors, i.e.,

HomC(lim−→α, Y ) � HomC I (α,∆Y ) for α : I −→ C and Y ∈ C .

(iii) Replacing I with the opposite category, deduce the formula (assuming
projective limits exist):

HomC(X, lim←−β) � HomC Iop (∆X , β) .

Exercise 2.9. Let C be a category, X an object of C, and let q : X −→ X be a
projector i.e., a morphism satisfying q2 = q. Prove that the conditions below
are equivalent.

(i) q factorizes as q = g ◦ f with an epimorphism f : X�Y and a monomor-
phism g : Y�X .

(ii) There exist Y ∈ C and morphisms f : X −→ Y , g : Y −→ X such that
g ◦ f = q and f ◦ g = idY .

(iii) Let Z be endowed with its natural order, and let α : Z −→ C be the functor
α(n) = X, α(n −→ m) = q for m > n. Then lim−→α exists in C.

(iv) Let α be as in (iii). Then lim←−α exists in C. (Here, we identify α with a
functor (Zop)op −→ C.)

(v) Let Pr be the category defined in Notations 1.2.8. Let β : Pr −→ C be
the functor β(c) = X, β(p) = q. Then lim−→β exists in C.

(vi) Let β be as in (v). Then lim←−β exists in C.

(A category in which any projector q : X −→ X satisfies the equivalent con-
ditions above is said to be idempotent complete, or else, is called a Karoubi
category.)

Exercise 2.10. Let ϕ : J −→ I be a functor and assume that ϕ admits a right
adjoint ψ . Prove that ϕ† � ψ∗ and ψ‡ � ϕ∗.

Exercise 2.11. Let C be a category. Prove that CX admits finite projective
limits for any X ∈ C if and only if C admits fiber products.

Exercise 2.12. Let C be a category, let X ∈ C and denote as usual by
jX : CX −→ C the canonical functor.
(i) Prove that if C admits inductive limits indexed by a small category I , then
so does CX and jX commutes with such limits. (See Lemma 2.1.13.)
(ii) Prove that if C admits projective limits indexed by a small connected
category I , then so does CX and jX commutes with such limits.
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(iii) Assume now that C admits finite (resp. small) projective limits. Prove that
CX admits finite (resp. small) projective limits, and prove that if jX commutes
with such limits then X is a terminal object.

Exercise 2.13. Let α : I −→ C be a functor, let ϕ1, ϕ2 : J ⇒ I be two functors
and θ : ϕ1 −→ ϕ2 a morphism of functors. Assume that lim−→α, lim−→ (α ◦ ϕ1) and
lim−→ (α ◦ ϕ2) exist. Prove that the diagram below commutes.

lim−→ (α ◦ ϕ1)

����
��

��
��

�
lim−→ (α◦θ)

��
lim−→ (α ◦ ϕ2) �� lim−→α.

Exercise 2.14. Let I be a category and let C be a category which admits
inductive limits indexed by I . Let α : I −→ C and ϕ : I −→ I be two functors
and let θ : idI −→ ϕ be a morphism of functors. Assume that θϕ(i) = ϕ(θi ) as
elements of Hom I (ϕ(i), ϕ(ϕ(i))) for every i ∈ I .

Let us denote by η : lim−→ (α ◦ϕ) −→ lim−→α the natural morphism (see (2.1.8))
and by ξ : lim−→α −→ lim−→ (α ◦ ϕ) the morphism induced by α ◦ θ : α −→ α ◦ ϕ.
Prove that η and ξ are isomorphisms inverse to each other.

Exercise 2.15. Let µ : J −→ I and λ : I −→ J be two functors, and assume
that µ is right adjoint to λ. Denote by θ : idI −→ µ◦λ the canonical morphism
of functors.

Let C be a category which admits inductive limits indexed by I and let
α : I −→ C be a functor. Consider the sequence of morphisms in C:

lim−→α
u−→ lim−→ (α ◦ µ ◦ λ)

v−→ lim−→ (α ◦ µ)
w−→ lim−→α ,

where the morphism u is induced by θ and v,w are the canonical ones (see
(2.1.8)). Prove that:
(i) µ is cofinal,
(ii) the composition w◦v ◦u is the identity, and v ◦u and w are isomorphisms,
(iii) all morphisms u, v, w are isomorphisms if λ(θi ) : λ(i) −→ λ ◦µ ◦ λ(i) is an
isomorphism for all i ∈ I .
(Hint: use the result of Exercise 2.14.)

Exercise 2.16. Let F : C −→ C ′ be a functor. Assume that C has a terminal
objects ptC . Prove that F(ptC) is a terminal object of C ′ if and only if F is
cofinal.

Exercise 2.17. Let I and J be small categories and let α : J −→ I be a
functor. Prove that α is cofinal if and only if the object “lim−→” α of I∧ is a
terminal object.
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Exercise 2.18. Let C be a category, Z ∈ C, ∆Z : Pt −→ C the unique functor
with value Z .
(i) Prove that for X ∈ C, the category PtX is equivalent to the discrete
category associated with the set HomC(X, Z).
(ii) Prove that ∆Z is cofinal if and only if Z is a terminal object.

Exercise 2.19. Let C be a category and let X, Y ∈ C. Prove that X “
⊔

” Y ∈
C∧ is never isomorphic to an object of C. Here, “

⊔
” denotes the coproduct

in C∧.

Exercise 2.20. Let C be a category and denote by D the set Mor(C) �
(Ob(C)× {0, 1}). The set D is endowed with the order ≤ given by f ≤ (X, 0),
f ≤ (Y, 1) for any f : X −→ Y (together with the trivial relation x ≤ x for any
x ∈ D). Denote by D the category associated with the ordered set (D,≤). Let
ϕ : D −→ C be a functor given as follows: ϕ

(
(X, n)

)
= X for n = 0, 1, ϕ( f ) = X

for f : X −→ Y , ϕ( f ) −→ ϕ
(
(X, 0)

)
is idX and ϕ( f ) −→ ϕ

(
(Y, 1)

)
is f . Prove

that ϕ is well-defined and it is a cofinal functor.

Exercise 2.21. Let C be a category admitting small inductive limits and let
I be a small category. Let ϕ : I −→ C be a functor.
(i) Define ψ : Ob(I ) −→ Ob(C) by setting ψ(i) =

∐
(i ′−→ i)∈Ii

ϕ(i ′). Extend ψ

to a functor from I to C.
(ii) Prove that lim−→ψ � ∐

i∈I ϕ(i). (Hint: letting Id be the discrete category

associated with Ob(I ), apply Corollary 2.3.4 to the natural functor θ : Id −→
I .)

Exercise 2.22. Consider a Cartesian square

X ′ f ′ ��

g′

��

Y ′

g

��
X

f �� Y .

Prove that if f is a monomorphism, then f ′ is a monomorphism.

Exercise 2.23. Let C be a category and let ϕ : F −→ G be a morphism in C∧.
Prove that
(i) ϕ is a monomorphism if and only if ϕ(X) : F(X) −→ G(X) is injective for
any X ∈ C,
(ii) ϕ is an epimorphism if and only if ϕ(X) : F(X) −→ G(X) is surjective for
any X ∈ C.
(iii) Deduce that a morphism u : A −→ U in C∧ with U ∈ C is an epimorphism
in C∧ if and only if u admits a section.
(iv) Assume that C is small and denote as usual by ptC∧ a terminal object of
C∧. Prove that “

⊔
”

U∈C
U −→ ptC∧ is an epimorphism in C∧.



Exercises to Chap. 2 69

(Hint: use the isomorphisms

(F ×G F)(X) � F(X)×G(X) F(X), (G �F G)(X) � G(X) �F(X) G(X)

and Exercise 2.4.)

Exercise 2.24. Let C be a small category, and u : A�B an epimorphism in
C∧. Prove that A ×B A ⇒ A −→ B is exact in C∧, that is, the sequence
S(B) −→ S(A) ⇒ S(A ×B A) is exact in Set for any object S of C∧.

Exercise 2.25. Let X
f ��
g

�� Y
h �� Z be a diagram in a category C such

that the two compositions coincide. Prove that the conditions (i) and (ii)
below are equivalent:

(i) the sequence X ⇒ Y −→ Z is exact in C∧,
(ii) there exists s : Z −→ Y which satisfies the two following conditions:

(a) h ◦ s = idZ ,
(b) there exist an integer n ≥ 0 and u0, . . . , un in HomC(Y, X) such that
f ◦ u0 = idY , f ◦ uk = g ◦ uk−1 (1 ≤ k ≤ n), g ◦ un = s ◦ h.

(Hint: use the exact sequence HomC(Z , X) ⇒ HomC(Z , Y ) −→ HomC(Z , Z)
in Set.)

Exercise 2.26. Let C be a category which admits finite inductive limits and
finite projective limits. Assume that finite inductive limits are stable by base
change. Let ∅C be an initial object in C.
(i) Prove that ∅C× X � ∅C for any X ∈ C. (Hint: consider the empty inductive
limit.)
(ii) Prove that any morphism X −→ ∅C is an isomorphism. (Hint: consider

∅C ←− X
idX−−→ X and apply (i) to show that idX factorizes through ∅C .)

Exercise 2.27. Consider two commutative diagrams in a category C:

X
f ��

g

��

Y

��
Z �� U,

X
f ��

g

��

Y

��
Z �� V .

Assume that the left square is Cartesian and the right square is co-Cartesian.
Prove that the right square is Cartesian.

Exercise 2.28. Let C be a category admitting fiber products and let f : X −→
Z , g : Y −→ Z and u : Z −→ Z ′ be morphisms in C. Denote by v : X ×Z Y −→
X ×Z ′ Y the induced morphism. Prove that if u is a monomorphism, then v is
an isomorphism.
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Filtrant Limits

The notion of filtrant categories, which generalizes that of directed ordered
set, plays an essential role in Category Theory and will be used all along this
book. We prove here that a small category I is filtrant if and only if inductive
limits defined on I with values in Set commute with finite projective limits.

We introduce also the IPC-property on a category C, a property which
asserts, in some sense, that filtrant inductive limits commute with small prod-
ucts. This property is satisfied by Set, as well as by C∧ for any small category
C.

We introduce the notion of (right or left) exact (resp. small) functor. For
example, a functor F : C −→ C ′ will be called right exact if, for any Y ∈ C ′, the
category CY (whose objects are the pairs (X, u) of X ∈ C and u : F(X) −→ Y )
is filtrant. When C admits finite inductive limits, we recover the classical
definition: F is right exact if and only if it commutes with finite inductive
limits.

In this chapter, we study the links between various properties of categories
and functors, such as being cofinal, being filtrant, being exact, etc.

We also introduce the category M [I
ϕ−→ K

ψ←− J ] associated with two
functors ϕ : I −→ K and ψ : J −→ K and study its properties with some details.

The notion of a filtrant category will be generalized in Chap. 9 in which
we will study π -filtrant categories, π being an infinite cardinal.

3.1 Filtrant Inductive Limits in the Category Set

If for denotes the forgetful functor from the category Mod(Z) to the category
Set, which associates to a Z-module M the underlying set M , then for com-
mutes with lim←− but not with lim−→ . Indeed, if M0 and M1 are two modules, their
coproduct in the category of modules is their direct sum, not their disjoint
union. The reason is that the functor lim−→ : Fct(I,Set) −→ Set does not com-
mute with finite projective limits for small categories I in general. Indeed, if
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it commuted, then for any inductive system {Mi }i∈I in Mod(Z), the addition
maps would give (lim−→ for(Mi )) × (lim−→ for(Mi )) � lim−→ (for(Mi ) × for(Mi )) −→
lim−→ for(Mi ), and lim−→ for(Mi ) would have a structure of a Z-module.

We shall introduce a property on I such that inductive limits indexed by
I commute with finite projective limits.

Definition 3.1.1. A category I is filtrant if it satisfies the conditions (i)–(iii)
below.

(i) I is non empty,
(ii) for any i and j in I , there exist k ∈ I and morphisms i −→ k, j −→ k,
(iii) for any parallel morphisms f, g : i ⇒ j , there exists a morphism h : j −→ k

such that h ◦ f = h ◦ g.

A category I is cofiltrant if I op is filtrant.

The conditions (ii)–(iii) above are visualized by the diagrams:

i

��
k

j

��

i �� ��

��

j

��
k

Note that an ordered set (I,≤) is directed if the associated category I is
filtrant.

Lemma 3.1.2. A category I is filtrant if and only if, for any finite category J
and any functor ϕ : J −→ I , there exists i ∈ I such that lim←−

j∈J

Hom I (ϕ( j), i) �= ∅.

Proof. (i) Assume that I is filtrant and let J and ϕ be as in the statement.
Since J is finite, there exist i0 ∈ I and morphisms s( j) : ϕ( j) −→ i0 for all
j ∈ J . Moreover, there exist k( j) ∈ I and a morphism λ( j) : i0 −→ k( j) such
that the composition

ϕ( j)
ϕ(t)−−→ ϕ( j ′)

s( j ′)−−→ i0
λ( j)−−→ k( j)

does not depend on t : j −→ j ′. Now, there exist i1 ∈ I and morphisms
ξ( j) : k( j) −→ i1. Finally, take a morphism i1 −→ i2 such that the composi-
tion i0 −→ k( j) −→ i1 −→ i2 does not depend on j . The family of morphisms
u j : ϕ( j) −→ i0 −→ k( j) −→ i1 −→ i2 defines an element of lim←−

j∈J

Hom I (ϕ( j), i2).

(ii) Conversely, let us check the conditions (i)–(iii) of Definition 3.1.1. By
taking for J the empty category we obtain (i). By taking for J the category
Pt�Pt (the category with two objects and no morphisms other than the iden-
tities) we obtain (ii). By taking for J the category • ⇒ • (see Notation 1.2.8
(iv)) we obtain (iii). q.e.d.
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Proposition 3.1.3. Let α : I −→ Set be a functor with I small and filtrant.
Define the relation ∼ on

∐
i α(i) as follows: α(i) � x ∼ y ∈ α( j) if there exist

s : i −→ k and t : j −→ k such that α(s)(x) = α(t)(y). Then

(i) the relation ∼ is an equivalence relation,
(ii) lim−→α �∐

i α(i)/ ∼.

Proof. (i) Assuming that x j ∈ α(i j ) ( j = 1, 2, 3) satisfy x1 ∼ x2 and x2 ∼ x3,
let us show that x1 ∼ x3. There exist morphisms visualized by the solid
diagram:

i1
s1 �� j1

u1
��

i2

s2

���������

t2

���
��

��
��

k

i3
t3 �� j2

u2

  

such that α(s1)x1 = α(s2)x2, α(t2)x2 = α(t3)x3. By Lemma 3.1.2, we can
complete the solid diagram to a commutative diagram with the dotted arrows.

Then α(u1 ◦ s1)x1 = α(u1 ◦ s2)x2 = α(u2 ◦ t2)x2 = α(u2 ◦ t3)x3. Hence
x1 ∼ x3.
(ii) follows from Proposition 2.4.1. q.e.d.

Corollary 3.1.4. Let α : I −→ Set be a functor with I small and filtrant.

(i) Let S be a finite subset in lim−→α. Then there exists i ∈ I such that S is
contained in the image of α(i) by the natural map α(i) −→ lim−→α.

(ii) Let i ∈ I and let x and y be elements of α(i) with the same image in
lim−→α. Then there exists s : i −→ j such that α(s)(x) = α(s)(y) in α( j).

The proof is left as an exercise.
Notice that the result of Corollary 3.1.4 does not hold in general if I is

not filtrant.

Corollary 3.1.5. Let R be a ring and denote by for the forgetful functor
Mod(R) −→ Set. Then the functor for commutes with small filtrant inductive
limits. In other words, if I is small and filtrant and α : I −→ Mod(R) is a
functor, then

for(lim−→
i

α(i)) = lim−→
i

(
for(α(i)

)
.

The proof is left as an exercise.
Inductive limits with values in Set indexed by small filtrant categories

commute with finite projective limits. More precisely:
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Theorem 3.1.6. Let I be a small category. The two conditions below are
equivalent.

(a) I is filtrant,
(b) for any finite category J and any functor α : I × J op −→ Set, the natural

morphism

lim−→
i

lim←−
j

α(i, j) −→ lim←−
j

lim−→
i

α(i, j)(3.1.1)

is an isomorphism. In other words, the functor lim−→ : Fct(I,Set) −→ Set
commutes with finite projective limits .

Proof. (a) ⇒ (b). Assume that I is filtrant. It is enough to prove that lim−→
commutes with kernels and with finite products.

(i) lim−→ commutes with kernels. Let α, β : I −→ Set be two functors and let
f, g : α ⇒ β be two morphisms of functors. Define γ as the kernel of ( f, g),
that is, we have exact sequences

γ (i) −→ α(i) ⇒ β(i) .

Let Z denote the kernel of lim−→
i

α(i) ⇒ lim−→
i

β(i). We have to prove that the

natural map λ : lim−→
i

γ (i) −→ Z is bijective.

(i)(1) The map λ is surjective. Indeed for x ∈ Z , represent x by some xi ∈ α(i).
Then fi (xi ) and gi(xi ) in β(i) having the same image in lim−→β, there exists
s : i −→ j such that β(s) fi (xi ) = β(s)gi (xi ). Set x j = α(s)xi . Then f j (x j ) =
g j (x j ), which means that x j ∈ γ ( j). Clearly, λ(x j ) = x .

(i)(2) The map λ is injective. Indeed, let x, y ∈ lim−→ γ with λ(x) = λ(y). We
may represent x and y by elements xi and yi of γ (i) for some i ∈ I . Since xi

and yi have the same image in lim−→α, there exists i −→ j such that they have
the same image in α( j). Therefore their images in γ ( j) will be the same.

(ii) lim−→ commutes with finite products. The proof is similar to the preceding
one and left to the reader.

(b) ⇒ (a). In order to prove that I is filtrant, we shall apply Lemma 3.1.2.
Consider a finite category J and a functor ϕ : J −→ I . Let us show that there
exists i ∈ I such that lim←−

j∈J

Hom I (ϕ( j), i) �= ∅. By the assumption, we have a
bijection

lim−→
i∈I

lim←−
j∈J

Hom I (α( j), i) ∼−→ lim←−
j∈J

lim−→
i∈I

Hom I (α( j), i) .(3.1.2)

By Lemma 2.4.7, lim−→
i∈I

Hom I (α( j), i) � {pt}, which implies that the right-hand

side of (3.1.2) is isomorphic to {pt}. Hence, there exists i ∈ I such that
lim←−
j∈J

Hom I (α( j), i) �= ∅. q.e.d.
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Applying this result together with Corollary 3.1.5, we obtain:

Corollary 3.1.7. Let R be a ring and let I be a small filtrant category. Then
the functor lim−→ : Mod(R)I −→ Mod(R) commutes with finite projective limits.

Proposition 3.1.8. Let ψ : K −→ I and ϕ : J −→ I be functors. Assume that
ψ is cofinal.

(i) If Jψ(k) −→ Iψ(k) is cofinal for every k ∈ K , then ϕ is cofinal.
(ii) If K is filtrant and Jψ(k) is filtrant for every k ∈ K , then J is filtrant.

Proof. By replacing the universe U with a bigger one, we may assume that I ,
J and K are small categories.
(i) For any functor α : I −→ Set, there is a chain of isomorphisms

lim−→α ◦ ϕ � lim−→
i∈I

lim−→
j∈Ji

α ◦ ϕ( j) � lim−→
k∈K

lim−→
j∈Jψ(k)

α ◦ ϕ( j)

� lim−→
k∈K

lim−→
i∈Iψ(k)

α(i) � lim−→α ◦ ψ � lim−→α .

Here, the first and fourth isomorphisms follow from Corollary 2.3.4, the second
and fifth isomorphisms follow from the fact that ψ is cofinal, and the third
isomorphism follows from the fact that Jψ(k) −→ Iψ(k) is cofinal.
(ii) For any functor α : J −→ Set, we have by Corollary 2.3.4

lim−→
j∈J

α( j) � lim−→
i∈I

lim−→
j∈Ji

α( j)

� lim−→
k∈K

lim−→
j∈Jψ(k)

α( j) .

Since lim−→
j∈Jψ(k)

and lim−→
k∈K

commute with finite projective limits, the functor lim−→ :

Fct(J,Set) −→ Set commutes with finite projective limits. The result then
follows from Theorem 3.1.6. q.e.d.

The IPC Property

Theorem 3.1.6 does not hold anymore when removing the hypothesis that J
is finite. However, when J is small and discrete there is a useful result which
is satisfied by many categories and that we describe now.

We consider a category A and we make the hypothesis:

A admits small products and small filtrant inductive limits .(3.1.3)

Let {Is}s∈S be a family of small and filtrant categories indexed by a small
set S. Consider the product category
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K =
∏
s∈S

Is .(3.1.4)

It is easily checked that K is filtrant (see Proposition 3.2.1 below).
For s ∈ S, denote by πs the projection functor πs : K −→ Is .

Consider a family of functors

α = {αs}s∈S with αs : Is −→ A .(3.1.5)

Define the functor

ϕ : K −→ A ,

ϕ =
∏

s αs ◦ πs,
(3.1.6)

that is, for k = {πs(k)}s ∈ K

ϕ(k) =
∏
s∈S

αs(πs(k)) .

The object
∏

s∈S lim−→
i∈Is

αs(i) is well defined in A, and the family of morphisms

αs(πs(k)) −→ lim−→αs defines the morphism
∏

s∈S αs(πs(k)) −→∏
s∈S lim−→αs , hence

the morphism

lim−→ϕ −→
∏
s∈S

lim−→αs,(3.1.7)

or equivalently,

lim−→
k∈K

(∏
s∈S

αs(πs(k))
) −→∏

s∈S

(lim−→
is∈Is

αs(is)) .(3.1.8)

The morphism of functors (3.1.8) is visualized by the diagram (see (1.3.3)):

Fct(
∏

s∈S Is,A)
lim−→

�����
����

����
����

�

��
∏

s∈S Fct(Is,A)

∏ ��             

lim−→ �����
����

����
����

A

AS

∏
��                  

Example 3.1.9. Assume that Is = I for all s ∈ S. Then K = I S and α is a
functor I × S −→ A. Morphism (3.1.8) may be written as:

lim−→
k∈K

∏
s∈S

α(k(s), s) −→
∏
s∈S

lim−→
i∈I

α(i, s) .(3.1.9)
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Definition 3.1.10. Let A be a category satisfying (3.1.3). We say that A
satisfies the IPC-property (inductive-limit-product commutation property) if
the morphism (3.1.7) is an isomorphism for any family {Is}s∈S of small and
filtrant categories indexed by a small set S and any family of functors αs : Is −→
A indexed by s ∈ S.

Proposition 3.1.11. (i) If categories Ai (i ∈ I ) satisfy the IPC-property,
then so does the product category

∏
i∈I Ai .

(ii) The category Set satisfies the IPC-property.
(iii) Let A be a category satisfying (3.1.3). Assume that there exist a set I

and a functor λ : A −→ SetI such that⎧⎨⎩
λ commutes with small products,
λ commutes with small filtrant inductive limits,
λ is conservative (see Definition 1.2.11).

(3.1.10)

Then A satisfies the IPC-property.

Proof. (i) is obvious.
(ii) Consider a family of functors {αs}s∈S with αs : Is −→ Set. We keep the
notations (3.1.4)–(3.1.6) and we set As = lim−→αs . Let

u : lim−→ϕ −→
∏
s∈S

As

denote the natural map.
(a) u is surjective. Indeed, let x := {xs}s∈S ∈ ∏

s As . For each s ∈ S, there
exist is ∈ Is and xis ∈ αs(is) whose image in As is xs . Set k = {is}s∈S and
yk := {xis }s∈S ∈ ϕ(k). Denote by y the image of yk in lim−→ϕ. Then u(y) = x .
(b) u is injective. Let y, y′ ∈ lim−→ϕ with u(y) = u(y′). Since K is filtrant, there
exist k = {is}s∈S ∈ K and yk := {xis }s∈S ∈ ϕ(k), y′k := {x ′is

}s∈S ∈ ϕ(k) such that
y is the image of yk and y′ is the image of y′k . For each s ∈ S, xis and x ′is

have
the same image in As . Since Is is filtrant, there exists is −→ i ′s such that xis

and x ′is
have the same image in αs(i ′s). Set k ′ = {i ′s}s∈S. Then yk and y′k have

the same image in ϕ(k ′). Hence y = y′.

(iii) Let αs : Is −→ A be a functor (s ∈ S). We consider the functor λ◦αs : Is −→
SetI . Using the hypothesis that λ commutes with small products and small
filtrant inductive limits, we get the isomorphism

λ(lim−→
k∈K

(
∏
s∈S

αs(πs(k)))) ∼−→ λ(
∏
s∈S

(lim−→αs)) ,

because SetI satisfies the IPC-property. The result follows since λ is conser-
vative. q.e.d.

Corollary 3.1.12. Let C be a small category. Then C∧ satisfies the IPC-
property.

Corollary 3.1.13. Let R be a ring. Then Mod(R) satisfies the IPC-property.
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3.2 Filtrant Categories

We have introduced filtrant categories in Definition 3.1.1. We shall now study
their properties.

Proposition 3.2.1. (i) If a category has a terminal object, then it is filtrant.
(ii) If a category admits finite inductive limits, then it is filtrant.
(iii) A product of filtrant categories is filtrant.
(iv) If a category is filtrant, then it is connected.

The proof is obvious.
Proposition 2.5.2 may be formulated slightly differently when J is filtrant.

Proposition 3.2.2. Assume that J is filtrant and let ϕ : J −→ I be a functor.
Then the conditions below are equivalent:

(i) ϕ is cofinal,
(ii) J i is filtrant for every i ∈ I ,
(iii) the following two conditions hold:

(a) for each i ∈ I there exist j ∈ J and a morphism s : i −→ ϕ( j) (i.e., J i

is non empty),
(b) for any i ∈ I , any j ∈ J , and any pair of parallel morphisms s, s ′ : i ⇒

ϕ( j) in I , there exists a morphism t : j −→ k in J such that ϕ(t) ◦ s =
ϕ(t) ◦ s ′ .

Moreover, if these equivalent conditions are satisfied, then I is filtrant.

Proof. (iii)⇒ (ii). Let i ∈ I . Let us check conditions (i)–(iii) of Definition 3.1.1
for J i . First, J i is non empty by (a). Then, consider morphisms s : i −→ ϕ( j)
and s ′ : i −→ ϕ( j ′). Since J is filtrant, there exist t : j −→ k and t ′ : j ′ −→ k.
Applying the hypothesis (b) above to the morphisms ϕ(t) ◦ s and ϕ(t ′) ◦ s ′,
we may assume that ϕ(t) ◦ s = ϕ(t ′) ◦ s ′. Hence, t, t ′ induce morphisms in J i .
Finally, let i −→ ϕ( j1) and i −→ ϕ( j2) be two objects of J i and let ξ, η : j1 ⇒ j2
be two parallel arrows in J i . There exists a morphism j2 −→ j3 in J such
that the two compositions j1 ⇒ j2 −→ j3 coincide. Hence, the composition
i −→ ϕ( j2) −→ ϕ( j3) defines an object of J i , and the two compositions

(i −→ ϕ( j1)) ⇒ (i −→ ϕ( j2)) −→ (i −→ ϕ( j3))

coincide.
(ii) ⇒ (i). If J i is filtrant, then it is connected.
(i) ⇒ (iii). By Definition 2.5.1, J i is connected and in particular non empty.
Hence, (a) is satisfied.

Let us prove (b). For i ∈ I , let α : J −→ Set be the functor j 
→
Hom I (i, ϕ( j)). Then Proposition 2.5.2 implies that lim−→α � {pt}. Consider a
pair of parallel morphisms s, s ′ : i ⇒ ϕ( j). Hence, s, s ′ ∈ α( j) = Hom I (i, ϕ( j)).
Applying Proposition 3.1.3, there exists a morphism t : j −→ k in J such that
s and s ′ have the same image in Hom I (i, ϕ(k)).

The last assertion easily follows from (iii). q.e.d.
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Corollary 3.2.3. Let I be a filtrant category.

(i) For any i ∈ I , I i is filtrant and the functor ji : I i −→ I is cofinal.
(ii) The diagonal functor I −→ I × I is cofinal.

Proof. (i) Applying Proposition 3.2.2 (ii) to id : I −→ I , I i is filtrant. To prove
that ϕ := ji : I i −→ I is cofinal, let us check the conditions in Proposition 3.2.2
(iii).
(a) For any i1 ∈ I , there exist k ∈ I and arrows i −→ k, i1 −→ k. Then we have
a morphism i1 −→ ϕ(i −→ k).
(b) Let i1 ∈ I , u : i −→ i2 and let s, s ′ : i1 ⇒ i2 = ϕ((i

u−→ i2)). There exists a
morphism t : i2 −→ i3 such that the two compositions i1 ⇒ i2 −→ i3 coincide.
The morphism t̃ : (i

u−→ i2) −→ (i
t◦u−→ i3) in I i induced by t satisfies ϕ(̃t) ◦ s =

ϕ(̃t) ◦ s ′.

(ii) For (i1, i2) ∈ I× I , I (i1,i2) � (I i1)i2 . By (i), I i1 as well as (I i1)i2 are filtrant.
This implies that the functor I −→ I × I is cofinal by Proposition 3.2.2. q.e.d.

Proposition 3.2.4. Let ϕ : J −→ I be a functor. Assume that I is filtrant, ϕ

is fully faithful, and for any i ∈ I there exists a morphism i −→ ϕ( j) with
j ∈ J . Then J is filtrant and ϕ is cofinal.

Proof. (a) J is filtrant. Clearly, condition (i) of Definition 3.1.1 is satisfied.
Let us check condition (ii), the proof of (iii) being similar to this case. Let
j1, j2 ∈ J . Since I is filtrant, there exist i ∈ I and morphisms ϕ( j1) −→ i and
ϕ( j2) −→ i . By the assumption there exist j3 ∈ J and a morphism i −→ ϕ( j3).
Since the functor ϕ : J −→ I is fully faithful, the composition ϕ( ja) −→ i −→
ϕ( j3), (a = 1, 2) is the image by ϕ of a morphism ja −→ j3 (a = 1, 2).

(b) ϕ is cofinal. Condition (iii) (a) of Proposition 3.2.2 is satisfied by the
hypothesis. Condition (iii) (b) is proved as in (a) above. q.e.d.

The next technical results will be useful in the sequel.

Proposition 3.2.5. Let I
ϕ−→ J

ψ−→ K be cofinal functors with I , J , K filtrant
categories. Then

(i) for any j ∈ J , I j −→ I is cofinal,
(ii) for any i ∈ I , I i −→ I ϕ(i) is cofinal,
(iii) for any k ∈ K , I k −→ J k is cofinal,
(iv) for any morphism u : k −→ ψ( j) in K , the induced functor u∗ : I j −→ I k

is cofinal.

Proof. (i) It is enough to show that for any i ∈ I , (I j )i is filtrant. By Corol-
lary 3.2.3, the composition I i −→ I −→ J is cofinal, and thus (I i ) j � (I j )i is
filtrant.
(iii) For any object a = (k −→ ψ( j)) ∈ J k , we have (I k)a � I j and this
category is filtrant (since ϕ is cofinal). Hence, by Proposition 3.2.2, I k −→ J k

is cofinal.
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(iv) By (iii), I k −→ J k is cofinal. Regarding u as an object of J k , (I k)u � I j

and (I k)u −→ I k is cofinal by (i).
(ii) is a particular case of (iv). q.e.d.

Proposition 3.2.6. A filtrant category I is cofinally small if and only if there
exists a small subset S of Ob(I ) such that for any i ∈ I there exists a morphism
i −→ j with j ∈ S.

Proof. (i) let ϕ : J −→ I be a cofinal functor with J small, and let S be the
image of Ob(J ) by the functor ϕ. Then S is small, and the condition in the
statement is satisfied since ϕ is cofinal.
(ii) Conversely, consider S as a full subcategory of I . Then S −→ I is cofinal
by Proposition 3.2.4. q.e.d.

Remark 3.2.7. By the result of Exercise 2.20, for any category C, there exists
an ordered set (D,≤) such that, denoting by D the associated category, there
exists a cofinal functor ϕ : D −→ C. There is also a result of Deligne (see [30])
which asserts that if I is small and filtrant, then there exists a small ordered
filtrant set J cofinal to I .

Lemma 3.2.8. Let I be a small ordered set, α : I −→ C a functor. Let J
denote the set of finite subsets of I , ordered by inclusion. To each J ∈ J ,
associate the restriction αJ : J −→ C of α to J . Then J is small and filtrant
and moreover

lim−→α � lim−→
J∈J

(lim−→αJ ) .(3.2.1)

Proof. (i) Clearly, J is small and filtrant.
(ii) Let us prove the isomorphism (3.2.1). Let K be the ordered subset of
the ordered set I × J consisting of pairs (i, J ) with i ∈ J . The projection
I × J −→ I defines a functor ϕ : K −→ I .
(a) ϕ is cofinal. Indeed, for any i0 ∈ I , K i0 � {(i, J ) ∈ K ; i0 ≤ i}. For any
(i, J ) ∈ K i0 , we have (i, J ) ≤ (i, J ∪ {i0}) and (i0, {i0}) ≤ (i, J ∪ {i0}). Hence
K i0 is connected.
(b) Applying Proposition 2.5.2 and Corollary 2.3.4, we obtain

lim−→α � lim−→α ◦ ϕ � lim−→
J∈J

lim−→
k∈K J

α ◦ ϕ(k) .

(c) Let ξJ : J −→ K J be the functor J � j 
→ ( j, J ). The functor ξJ is cofinal.
Indeed, for k = ( j1, J1) ∈ K J , we have j1 ∈ J1 ⊂ J and hence J k � { j ∈
J ; j1 ≤ j} is connected since j1 is the smallest element.
(d) We deduce the isomorphisms

lim−→
k∈K J

α ◦ ϕ(k) � α ◦ ϕ ◦ ξJ � lim−→αJ .

q.e.d.
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By Lemma 3.2.8, inductive limits indexed by small ordered sets can be decom-
posed into filtrant inductive limits and finite inductive limits. Using Exercise
2.20 or Proposition 2.2.9, the same result holds for any small inductive limit.

Hence, many properties on small inductive limits decompose into proper-
ties on small filtrant inductive limits and properties on finite inductive limits.
In particular:

Lemma 3.2.9. If C admits small filtrant inductive limits and finite inductive
limits (resp. finite coproducts), then C admits small inductive limits (resp.
small coproducts). Moreover, if a functor F : C −→ C ′ commutes with small
filtrant inductive limits and finite inductive limits (resp. finite coproducts),
then F commutes with small inductive limits (resp. small coproducts).

Recall that if C admits finite inductive limits and small coproducts, then C
admits small inductive limits and if a functor F : C −→ C ′ commutes with finite
inductive limits and small coproducts, then F commutes with small inductive
limits. This follows from Proposition 2.2.9.

Notation 3.2.10. (i) We shall sometimes use the sketchy terminology “a fil-
trant inductive system”. It means a functor α : I −→ C where the category
I is filtrant. We use similar formulations such as “a small filtrant inductive
system”, etc.
(ii) We shall also use the formulation “a filtrant projective system”. Our con-
vention is

a filtrant projective system is a functor β : J op −→ C with J filtrant .(3.2.2)

3.3 Exact Functors

Let F : C −→ C ′ be a functor. Recall that for U ∈ C ′, CU denotes the category
whose objects are the pairs (X, u) of X ∈ C and u : F(X) −→ U , and CU

denotes the category whose objects are the pairs (X, v) of X ∈ C and v : U −→
F(X). The natural functors jU : CU −→ C and jU : CU −→ C are faithful (see
Definition 1.2.16).

Definition 3.3.1. Let F : C −→ C ′ be a functor.

(i) We say that F is right exact if the category CU is filtrant for any U ∈ C ′.
(ii) We say that F is left exact if Fop : Cop −→ C ′op is right exact or equiva-

lently the category CU is cofiltrant for any U ∈ C ′.
(iii) We say that F is exact if it is both right and left exact.

Proposition 3.3.2. Let F : C −→ C ′ be a left exact functor, let J be a finite
category and let β : J op −→ C be a functor. Assume that lim←−β exists in C. Then

lim←−(F ◦ β) exists in C ′ and is isomorphic to F(lim←−β). In particular, left exact

functors commute with finite projective limits if C admits such limits.
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There is a similar statement for right exact functors and inductive limits.

Proof. Using Corollary 2.4.6, we get the chain of isomorphisms for X ∈ C and
U ∈ C ′

HomC′(U, F(X)) � lim−→
Z−→X

HomC′(U, F(Z))

� lim−→
(U−→F(Z))∈CU

HomC(Z , X) .
(3.3.1)

Hence we have for any U ∈ C ′

lim←−
j

HomC′(U, F(β( j))) � lim←−
j

lim−→
Z∈CU

HomC(Z , β( j))

� lim−→
Z∈CU

lim←−
j

HomC(Z , β( j))

� lim−→
Z∈CU

HomC(Z , lim←−
j

β( j))

� HomC′(U, F(lim←−
j

β( j))) ,

where the second isomorphism follows from Theorem 3.1.6 because Z ranges
over the filtrant category (CU )op. Hence, F(lim←−β) represents the projective
limit of F(β( j)). q.e.d.

The next result is a partial converse to Proposition 3.3.2.

Proposition 3.3.3. Let F : C −→ C ′ be a functor and assume that C admits
finite projective limits. Then F is left exact if and only if it commutes with
such limits.

There is a similar statement for right exact functors and inductive limits.

Proof. (i) Assume that F is left exact. Then it commutes with finite projective
limits by Proposition 3.3.2.
(ii) Assume that F commutes with finite projective limits. Then CU admits fi-
nite projective limits by Lemma 2.1.13, hence is cofiltrant by Proposition 3.2.1
(ii). q.e.d.

Corollary 3.3.4. Assume that C admits finite projective limits. Then F : C −→
C ′ is left exact if and only if it satisfies:

(i) F sends a terminal object of C to a terminal object of C ′,
(ii) for any X, Y ∈ C, F(X)×F(Y ) exists in C ′ and F(X×Y ) ∼−→ F(X)×F(Y ),
(iii) F commutes with kernels, i.e., for any parallel arrows f, g : X ⇒ Y in C,

F(Ker( f, g)) is a kernel of the parallel arrows (F( f ), F(g)).

Moreover, assuming (i), condition (ii) + (iii) is equivalent to

(iv) F commutes with fiber products, i.e., F(X×Z Y ) ∼−→ F(X)×F(Z) F(Y ) for
any pair of morphisms X −→ Z and Y −→ Z in C.
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Proof. The result follows immediately from Propositions 3.3.3 and 2.2.9 and
Exercise 2.6. q.e.d.

Example 3.3.5. Let R be a ring. The forgetful functor for : Mod(R) −→ Set is
left exact, but for is not right exact since it does not respect initial objects.

Proposition 3.3.6. Let F : C −→ C ′ be a functor. If F admits a right (resp.
left) adjoint, then F is right (resp. left) exact.

Proof. Denote by G the right adjoint to F . Let V ∈ C ′. Then for any U ∈
C, there is an isomorphism HomC′(F(U), V ) � HomC(U, G(V )). Hence the
category CV of arrows F(U) −→ V is equivalent to the category CG(V ) of arrows
U −→ G(V ). This last category having a terminal object, namely idG(V ), it is
filtrant. q.e.d.

Proposition 3.3.7. (i) Let C be a category which admits finite inductive
limits and finite projective limits. Then the functor HomC : Cop×C −→ Set
is left exact in each argument.

(ii) Let C be a category admitting inductive limits indexed by a category I .
Then the functor lim−→ : Fct(I, C) −→ C is right exact. Similarly, if C admits
projective limits indexed by a category J , the functor lim←− : Fct(J op, C) −→
C is left exact.

(iii) A small product of left (resp. right) exact functors is left (resp. right)
exact. More precisely, if Fi : Ci −→ C ′i is a family of left (resp. right) exact
functors indexed by a small set I , then the functor

∏
i Fi :

∏
i Ci −→∏

i C ′i
is left (resp. right) exact.

(iv) Let I be a filtrant category. The functor lim−→ : Fct(I,Set) −→ Set as well
as the functor lim−→ : Fct(I,Mod(k)) −→ Mod(k) are exact.

(v) Let I be a small set. Then the functor
∏

: Mod(k)I −→ Mod(k) is exact.

Proof. (i) follows immediately from (2.1.6) and (2.1.7).
(ii) The functor lim−→ admits a right adjoint (see Exercise 2.8).
(iii) follows from Proposition 3.2.1 (iii).
(iv) follows from Proposition 3.1.6 and Corollary 3.1.7.
(v) is well-known and obvious. q.e.d.

Definition 3.3.8. Let C be a category and I a small category. Assume that
C admits inductive limits indexed by I . If the functor lim−→ : C I −→ C is exact,
we say that inductive limits indexed by I are exact in C. If inductive limits
indexed by any small filtrant category are exact in C, we say that small filtrant
inductive limits are exact in C.

Lemma 3.3.9. Let C be a category which admits finite projective limits and
inductive limits indexed by a connected category I . Assume that inductive
limits indexed by I are exact. Then inductive limits indexed by I are stable by
base changes (see Definition 2.2.6).
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Proof. Consider an inductive system {Xi }i∈I and a pair of morphisms Y −→ Z
and lim−→

i∈I

Xi −→ Z in C. Let {Yi }i∈I and {Zi }i∈I denote the constant inductive

systems with Yi = Y and Zi = Z for all i ∈ I (and the identity morphisms
associated with the morphisms in I ). We have the isomorphisms

lim−→
i∈I

(Xi ×Z Y ) � lim−→
i∈I

(Xi ×Zi Yi )

� lim−→
i∈I

Xi ×lim−→
i∈I

Zi lim−→
i∈I

Yi

� (lim−→
i∈I

Xi )×Z Y .

Here, the second isomorphism follows from the hypothesis that lim−→ is exact
and the third isomorphism from the hypothesis that I is connected together
with Lemma 2.1.12. q.e.d.

We shall prove in Corollary 3.4.6 that if a functor F : C −→ C ′ is right exact,
then the associated functor Mor(C) −→ Mor(C ′) is again right exact and we
shall prove in Corollary 3.3.19 that if a functor F : C −→ C ′ is left exact, it
extends to an exact functor C∧ −→ (C ′)∧.

Lemma 3.3.10. Let ϕ : J −→ I be a left exact functor. Then ϕ is cofinal. In
particular, if ϕ admits a left adjoint, then it is cofinal.

Proof. A cofiltrant category is connected. The second assertion then follows
from Proposition 3.3.6. q.e.d.

Proposition 3.3.11. Let ϕ : J −→ I be a functor. Assume that I is filtrant
and ϕ is right exact. Then J is filtrant.

Proof. This follows from Proposition 3.1.8 (ii). q.e.d.

Proposition 3.3.12. Let F : C −→ C ′ and G : C ′ −→ C ′′ be two functors. If F
and G are right exact, then G ◦ F is right exact.

There is a similar result for left exact functors.

Proof. Since G is right exact, C ′Z is filtrant for any Z ∈ C ′′. The functor
CZ −→ C ′Z is again right exact. Indeed, for any Y ∈ C ′Z , (CZ )Y � CY is filtrant
because F is right exact. Hence, Proposition 3.3.11 implies that CZ is filtrant.

q.e.d.

Recall that for a category C and for A ∈ C∧, CA is the category of pairs
(X, u) of X ∈ C and u ∈ A(X).

Proposition 3.3.13. Assume that a category C admits finite inductive limits.
Let A ∈ C∧. Then A : Cop −→ Set is left exact if and only if the category CA is
filtrant.
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Proof. The proof is similar to that of Proposition 3.3.2.
(i) Assume that CA is filtrant. By Proposition 2.6.3,

A(X) � lim−→
(Y−→A)∈CA

HomC(X, Y ) for X ∈ C .

Since the functor from Cop to Set given by X 
→ HomC(X, Y ) commutes with
finite projective limits, and small filtrant inductive limits commute with finite
projective limits in Set (Proposition 3.1.6), A commutes with finite projective
limits.
(ii) Conversely, assume that A is left exact and let us prove that CA is filtrant.
Since A commutes with finite projective limits, CA admits finite inductive
limits by Lemma 2.1.13, hence is filtrant by Proposition 3.2.1 (ii). q.e.d.

Small Functors

Definition 3.3.14. Let F : C −→ C ′ be a functor.

(i) We say that F is right small if for any U ∈ C ′, the category CU is cofinally
small.

(ii) We say that F is left small if Fop : Cop −→ C ′op is right small or equiva-
lently, if the category CU is co-cofinally small.

Note that if a category C is essentially small, then any functor F : C −→ C ′ is
right small and left small.

Proposition 3.3.15. Let F : C −→ C ′ be a right small functor and assume that
C ′ is cofinally small. Then C is cofinally small.

Proof. By Corollary 2.5.6, C ′ contains a small full subcategory S cofinal to C ′.
For any S ∈ S, CS is cofinally small by the assumption, and this implies that
there exists a small full subcategory A(S) of CS cofinal to CS. Let jS : CS −→ C
be the forgetful functor. Denote by A the full subcategory of C such that

Ob(A) =
⋃
S∈S

jS

(
Ob(A(S))

)
.

Then A is small. For S ∈ S, we have functors A(S) −→ AS ↪→ CS, and it follows
from Proposition 2.5.4 (iii) that AS ↪→ CS is cofinal. Hence, Proposition 3.1.8
(i) implies that the functor A −→ C is cofinal. q.e.d.

Proposition 3.3.16. Let F : C −→ C ′ and G : C ′ −→ C ′′ be two functors. If F
and G are right small, then G ◦ F is right small.

There is a similar result for left small functors.

Proof. (i) For any W ∈ C ′′, CW −→ C ′W is right small. Indeed, for any (G(V ) −→
W ) ∈ C ′W , (CW )(G(V )−→W) � CV is cofinally small since F is right small.
(ii) Since G is right small, C ′W is cofinally small, and this implies that CW is
itself cofinally small by (i) and Proposition 3.3.15. q.e.d.
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Proposition 3.3.17. Let F : C −→ C ′ be a functor. If F admits a right (resp.
left) adjoint, then F is right (resp. left) small.

The proof goes as for Proposition 3.3.6

Kan Extension of Functors, Revisited

We shall reformulate Theorem 2.3.3 using the notion of small functors and
we shall discuss the right exactness of the functors we have constructed. For
sake of brevity, we only treat the functor ϕ†. By reversing the arrows, (i.e.,
by using diagram 2.3.5) there is a similar result for the functor ϕ‡.

Theorem 3.3.18. Let ϕ : J −→ I be a functor and let C be a category.

(a) Assume {
ϕ is right small,
C admits small inductive limits,

(3.3.2)

or {
ϕ is right exact and right small,
C admits small filtrant inductive limits.

(3.3.3)

Then a left adjoint ϕ† to the functor ϕ∗ exists and (2.3.6) holds.
(b) Assume (3.3.3) and also

small filtrant inductive limits are exact in C,(3.3.4)
C admits finite projective limits .(3.3.5)

Then the functor ϕ† is exact.

Proof. (a) By Theorem 2.3.3, it is enough to show that

lim−→
(ϕ( j)−→i)∈Ji

β( j)

exists for i ∈ I and β ∈ Fct(J, C). This follows by the assumption.
(b) Since ϕ† admits a right adjoint, it is right exact. By hypothesis (3.3.5),
the big category Fct(J, C) admits finite projective limits, and it is enough to
check that the functor ϕ† commutes with such limits.

Consider a finite projective system {βk}k∈K in Fct(J, C). Let i ∈ I . There
is a chain of isomorphisms:(

ϕ†(lim←−
k

βk)
)
(i) � lim−→

(ϕ( j)−→i)∈Ji

lim←−
k

(βk( j))

� lim←−
k

lim−→
(ϕ( j)−→i)∈Ji

(βk( j))

� lim←−
k

(
(ϕ†βk)(i)

)
,
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where the second isomorphism follows from hypotheses (3.3.4) and (3.3.3).
q.e.d.

Corollary 3.3.19. Let F : J −→ I be a functor of small categories and assume
that F is left exact. Then F̂ : J∧ −→ I∧ (see § 2.7) is exact.

Proof. Apply Propositions 2.7.5 and 3.3.18. q.e.d.

3.4 Categories Associated with Two Functors

It is convenient to generalize Definition 1.2.16. Consider functors

I
ϕ−→ K

ψ←− J .

Definition 3.4.1. The category M [I
ϕ−→ K

ψ←− J ] is given by

Ob(M [I
ϕ−→ K

ψ←− J ]) =
{
(i, j, u) ; i ∈ I, j ∈ J, u ∈ Hom K (ϕ(i), ψ( j))

}
Hom

M[I
ϕ−→K

ψ←−J ]
((i, j, u), (i ′, j ′, u′))

=
{
(v1, v2) ∈ Hom I (i, i ′)×Hom J ( j, j ′) ; the diagram

ϕ(i) u
��

ϕ(v1)

��

ψ( j)

ψ(v2)

��
ϕ(i ′)

u′
�� ψ( j ′)

commutes
}

.

If there is no risk of confusion, we shall write M [I −→ K ←− J ] instead of

M [I
ϕ−→ K

ψ←− J ].
Let F : C −→ C ′ be a functor and let A ∈ C ′. Recall that Pt denote the

category with a single object and a single morphism and denote by ∆A : Pt −→
C ′ the unique functor with values A. Then

CA � M [C F−→ C ′ ∆A←− Pt] ,

CA � M [Pt
∆A−→ C ′ F←− C] .

Suppose that we have a diagram of functors

I1
ϕ1 ��

F

��

K1

H

��

J1
ψ1��

G

��
I2

ϕ2 �� K2 J2
ψ2��

(3.4.1)
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and that this diagram commutes up to isomorphisms of functors, that is,
this diagram is quasi-commutative (see Remark 1.3.6). It allows us to define
naturally a functor

θ : M [I1 −→ K1 ←− J1] −→ M [I2 −→ K2 ←− J2] .(3.4.2)

Proposition 3.4.2. Consider the quasi-commutative diagram of categories
(3.4.1) and the functor θ in (3.4.2).

(i) If F and G are faithful, then θ is faithful.
(ii) If F and G are fully faithful and H is faithful, then θ is fully faithful.
(iii) If F and G are equivalences of categories and H is fully faithful, then θ

is an equivalence of categories.

The proof is left as an exercise.

Proposition 3.4.3. Let I, J, K be three categories and let ϕ : I −→ K and
ψ : J −→ K be two functors.

(i) For any category C and any functor α : M [I −→ K ←− J ] −→ C, we have
lim−→α � lim−→

j∈J

lim−→
i∈Iψ( j)

α((i, j, ϕ(i) −→ ψ( j)).

(ii) If ψ is cofinal, then M [I −→ K ←− J ] −→ I is cofinal.
(iii) If I is connected and ψ is cofinal, then M [I −→ K ←− J ] is connected.

Proof. (i) Set M := M [I −→ K ←− J ]. Then, for every j0 ∈ J , the canonical
functor ξ : Iψ( j0) −→ M j0 admits a left adjoint η given by

M j0 � (i, j, ϕ(i)
t−→ ψ( j), j

s−→ j0) 
→ (i, ϕ(i)
t−→ ψ( j)

ψ(s)−−→ ψ( j0)) ∈ Iψ( j0) .

Hence, ξ is cofinal by Lemma 3.3.10. It remains to apply Corollary 2.3.4.
(ii) For any functor α : I −→ Set, denote by β the composition of functors
M [I −→ K ←− J ] −→ I −→ Set. By Corollary 2.3.4, we have lim−→α � lim−→

k∈K

lim−→
i∈Ik

α(i).

Since ψ : J −→ K is cofinal, we obtain

lim−→α � lim−→
j∈J

lim−→
i∈Iψ( j)

α(i) � lim−→
j∈J

lim−→
i∈Iψ( j)

β((i, j, ϕ(i) −→ ψ( j))) � lim−→β ,

where the last isomorphism follows from (i).
(iii) follows from (ii) and Corollary 2.5.3. q.e.d.

Proposition 3.4.4. Consider the quasi-commutative diagram of categories
(3.4.1) and the functor θ in (3.4.2). Assume

(i) the category Jν is filtrant and the functor ψν is cofinal for ν = 1, 2,
(ii) the functors F and G are cofinal.

Then the functor θ is cofinal.
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Note that the hypotheses imply that Kν is filtrant for ν = 1, 2 by Proposi-
tion 3.2.2 and H is cofinal by Proposition 2.5.4.

Proof. We shall write Mν (ν = 1, 2) instead of M [Iν −→ Kν ←− Jν ] for short.
Let a = (i2, j2, u2) ∈ M2. We shall check that Ma

1 is connected. Let

ϕ′ : (I1)i2 −→ (K1)ϕ2(i2)

denote the canonical functor. The morphism u2 : ϕ2(i2) −→ ψ2( j2) defines the
functor

ψ ′ : (J1) j2 −→ (K1)ϕ2(i2)

by associating to an object ( j2 −→ G( j1)) ∈ (J1) j2 the object (ϕ2(i2) −→
ψ2( j2) −→ ψ2(G( j1)) � H(ψ1( j1))) of (K1)ϕ2(i2). The equivalence

(M1)a � M [(I1)i2 ϕ′−→ (K1)ϕ2(i2) ψ ′←− (J1) j2 ]

is easily checked. The category (I1)i2 is connected. By Proposition 3.4.3, it is
enough to show that ψ ′ is cofinal. The functor ψ ′ decomposes as

(J1) j2 −→ (J1)ψ2( j2) −→ (K1)ϕ2(i2) ,

and these arrows are cofinal by Proposition 3.2.5. q.e.d.

Proposition 3.4.5. Let I, J, K be three categories and let ϕ : I −→ K and
ψ : J −→ K be two functors. Assume that I, J are filtrant and ψ is cofinal.
Then

(i) the category M [I
ϕ−→ K

ψ←− J ] is filtrant,

(ii) the canonical projection functors from M [I
ϕ−→ K

ψ←− J ] to I , J and I × J
are cofinal,

(iii) if I and J are cofinally small, then M [I
ϕ−→ K

ψ←− J ] is cofinally small.

Proof. (i) By Proposition 3.3.11, it is enough to show that the functor M :=
M [I −→ K ←− J ] −→ I is right exact. For every i ∈ I , Mi is equivalent to
M [Ii −→ K ←− J ]. On the other hand, since i ∈ Ii is a terminal object of Ii ,
the functor ξ : Pt −→ Ii , pt 
→ i , is cofinal. Applying Proposition 3.4.4, we get
that the functor θ : M [Pt −→ K ←− J ] −→ M [Ii −→ K ←− J ] is cofinal. Since
M [Pt −→ K ←− J ] � J ϕ(i), this category is filtrant by Proposition 3.2.2, and
this statement also implies that Mi � M [Ii −→ K ←− J ] is filtrant.
(ii) There are natural equivalences of categories

I � M [I −→ Pt ←− Pt], I × J � M [I −→ Pt ←− J ], J � M [Pt −→ Pt ←− J ] .

Hence, the result follows from Proposition 3.4.4.
(iii) By the hypothesis, there exist small filtrant categories I ′, J ′ and cofinal
functors I ′ −→ I and J ′ −→ J . Then M [I ′ −→ K ←− J ′] −→ M [I −→ K ←− J ]
is cofinal by Proposition 3.4.4. Since M [I ′ −→ K ←− J ′] is small, the result
follows. q.e.d.
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Let F : C −→ C ′ be a functor. We denote by

Mor(F) : Mor(C) −→ Mor(C ′)(3.4.3)

the functor naturally associated with F .

Corollary 3.4.6. Let F : C −→ C ′ be a right exact functor. Then

(i) the functor Mor(F) in (3.4.3) is right exact,
(ii) for any morphism f : Y −→ Y ′ in C ′, the canonical projection functors

from Mor(C) f to CY , CY ′ and CY × CY ′ are cofinal,
(iii) if moreover CY and CY ′ are cofinally small, then Mor(C) f is cofinally

small. In particular, if F is right small then Mor(F) is right small.

Proof. It is enough to remark that Mor(C) f � M [CY −→ CY ′
idCY ′←−−− CY ′ ] and to

apply the preceding results. q.e.d.

Exercises

Exercise 3.1. Let C be the category with two objects {a, b} and whose mor-
phisms other than identities are a morphism f : a −→ b, a morphism g : b −→ a
and a morphism p : b −→ b, these morphisms satisfying f ◦ g = p, g ◦ f = ida ,
p◦ p = p. Prove that C admits filtrant inductive and filtrant projective limits.

Exercise 3.2. Let C be a category.
(i) Prove that small filtrant inductive limits commute with finite projective
limits in C∧ (i.e., Proposition 3.1.6 holds with C∧ instead of Set).
(ii) Prove that small inductive limits are stable by base change in C∧ (see
Definition 2.2.6).
(Hint: use Exercise 2.7.)

Exercise 3.3. Let Pt and Pr be the categories introduced in Notations 1.2.8.
Let ϕ : Pt −→ Pr be the unique functor from Pt to Pr.
(i) Prove that Pt and Pr are filtrant.
(ii) Prove that ϕ satisfies condition (a) in Proposition 3.2.2 (iii), but that ϕ

is not cofinal.
(iii) Prove that Ptc � Pt�Pt (a set with two elements regarded as a discrete
category).

Exercise 3.4. Let F : C −→ C ′ be a functor.
(i) Assume that F is left (resp. right) exact and let f : X −→ Y be a monomor-
phism (resp. an epimorphism) in C. Prove that F( f ) is a monomorphism (resp.
an epimorphism).
(ii) Deduce that if C and C ′ are small categories and u : A −→ B is an epi-
morphism in C∧, then F̂(u) : F̂(A) −→ F̂(B) is an epimorphism (the functor
F̂ : C∧ −→ (C ′)∧ is defined in Notation 2.7.2). (Hint: use Proposition 2.7.1.)
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Exercise 3.5. Let F : C −→ C ′ be a functor of small categories. Prove that F
is left exact if and only if F̂ : C∧ −→ C ′∧ is exact.

Exercise 3.6. Assume that C is idempotent complete (see Exercise 2.9).
Prove that the Yoneda functor hC : C −→ C∧ is left exact if and only if C
admits finite projective limits.

Exercise 3.7. Let C be a category admitting an initial object. Denote by ∅C
and ∅C∧ the initial object of C and C∧, respectively.
(i) Show that ∅C∧(X) = ∅ for any X ∈ C and deduce that hC(∅C) and ∅C∧ are
not isomorphic.
(ii) Prove that the Yoneda functor hC : C −→ C∧ is not right exact for any
category C.

Exercise 3.8. Let I be a filtrant category such that Mor(I ) is countable.
Prove that there exists a cofinal functor N −→ I . Here, N is regarded as the
category associated with its natural order.

Exercise 3.9. Let C be a finite filtrant category. Prove that there exists a
cofinal functor Pr −→ C. (See Notations 1.2.8 (v).)
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Tensor Categories

This chapter is devoted to tensor categories which axiomatize the properties
of tensor products of vector spaces. Its importance became more evident when
quantum groups produced rich examples of non commutative tensor categories
and this notion is now used in many areas, mathematical physics, knot theory,
computer sciences, etc. Tensor categories and their applications deserve at
least a whole book, and we shall be extremely superficial and sketchy here.
Among the vast literature on this subject, let us only quote [15, 40].

We begin this chapter by introducing projectors in categories. Then we
define and study tensor categories, dual pairs, braidings and the Yang-Baxter
equations. We also introduce the notions of a ring in a tensor category and a
module over this ring in a category on which the tensor category operates. As
a particular case we treat monads, and finally we prove the Bar-Beck theorem.

Most of the notions introduced in this Chapter (with the exception of
§4.1) are not necessary for the understanding of the rest of the book, and this
chapter may be skipped.

4.1 Projectors

The notion of a projector in linear algebra has its counterpart in Category
Theory.

Definition 4.1.1. Let C be a category. A projector (P, ε) on C is the data of a
functor P : C −→ C and a morphism ε : idC −→ P such that the two morphisms
of functors ε ◦ P, P ◦ ε : P ⇒ P2 are isomorphisms. Here, P2 := P ◦ P.

Lemma 4.1.2. If (P, ε) is a projector, then ε ◦ P = P ◦ ε.

Proof. For any X ∈ C, we have a commutative diagram with solid arrows:
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X
εX ��

εX

��

P(X)

P(εX )

��

u

!!
P(X) ∼

εP(X)
�� P2(X).

(4.1.1)

Since εP(X) is an isomorphism, we can find a morphism u : P(X) −→ P(X) such
that εP(X) ◦ u = P(εX ). Then u ◦ εX = εX and the commutative diagram

P(X)
P(εX ) ��

P(εX )

��

P2(X)

P(u)!!!!!
!!
!!
!!

P2(X)

implies that P(u) = idP2(X). Since εP(X) is an isomorphism, we conclude that
u = idP(X) by the commutative diagram

P(X)

εP(X)

��

u �� P(X)

εP(X)

��
P2(X)

P(u) �� P2(X) .

q.e.d.

Proposition 4.1.3. Let (P, ε) be a projector on C.

(i) For any X, Y ∈ C, the map

HomC(P(X), P(Y ))
◦εX−→ HomC(X, P(Y ))

is bijective.
(ii) The following three conditions on X ∈ C are equivalent:

(a) εX : X −→ P(X) is an isomorphism,
(b) HomC(P(Y ), X)

◦εY−→ HomC(Y, X) is bijective for any Y ∈ C,
(c) the map in (b) is surjective for Y = X .

(iii) Let C0 be the full subcategory of C consisting of objects X ∈ C satisfying
the equivalent conditions in (ii). Then P(X) ∈ C0 for any X ∈ C and P
induces a functor C −→ C0 which is left adjoint to the inclusion functor
ι : C0 −→ C.

Proof. (i) The composition

θ : HomC(X, P(Y )) −→ HomC(P(X), P2(Y )) ∼←−HomC(P(X), P(Y )) ,

where the second map is given by εP(Y ), is an inverse of the map ◦εX . Indeed,
θ ◦ ( • ◦ εX ) and ( • ◦ εX ) ◦ θ are the identities, as seen by the commutative
diagrams below.
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P(X) u ��

εP(X)

��

P(Y )

εP(Y)∼
��

P(X)

idP(X)

�����������

P(εX )
�� P2(X)

P(u)
�� P2(Y ),

X
v ��

εX

��

P(Y )

εP(Y)∼
��

P(X)
P(v)

��

θ(v)

��

P2(Y ).

(ii) (a) ⇒ (b) follows from (i).
(b) ⇒ (c) is obvious.
(c) ⇒ (a). There exists a morphism u : P(X) −→ X such that u ◦ εX = idX .
Since (εX ◦ u) ◦ εX = εX ◦ idX = idP(X) ◦εX , we have εX ◦ u = idP(X) by (i) with
Y = X . Hence, εX is an isomorphism.

(iii) Since εP(X) is an isomorphism, P(X) ∈ C0 for any X ∈ C and P induces
a functor C −→ C0. This functor is a left adjoint to ι : C0 −→ C by (i). q.e.d.

Proposition 4.1.4. Let R : C ′ −→ C be a fully faithful functor and assume that
R admits a left adjoint L : C −→ C ′. Let ε : idC −→ R ◦ L and η : L ◦ R −→ idC′
be the adjunction morphisms. Set P = R ◦ L : C −→ C. Then

(i) (P, ε) is a projector,
(ii) for any X ∈ C, the following conditions are equivalent:

(a) εX : X −→ RL(X) is an isomorphism,
(b) HomC(RL(Y ), X)

◦εY−→ HomC(Y, X) is bijective for any Y ∈ C.
(iii) Let C0 be the full subcategory of C consisting of objects X satisfying the

equivalent conditions in (ii). Then C ′ is equivalent to C0.

Proof. Since R is fully faithful, η is an isomorphism.
(i) The two compositions

P
ε◦P ��
P◦ε

�� P2
RηL �� P

are equal to idP . Since R ◦ η ◦ L : RL RL −→ RL is an isomorphism, it follows
that P ◦ ε and ε ◦ P are isomorphisms.
(ii) follows from Proposition 4.1.3.
(iii) For X ∈ C ′, the morphism R(ηX ) : P R(X) = RL R(X) −→ R(X) is an
isomorphism. Since the composition

R(X)
εR(X)−−−→ P R(X)

R(ηX )−−−→ R(X)

is idR(X), εR(X) is an isomorphism. Hence, R sends C ′ to C0. This functor is
fully faithful, and it is essentially surjective since Y � RL(Y ) for any Y ∈ C0.

q.e.d.
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4.2 Tensor Categories

Definition 4.2.1. A tensor category is the data of a category T , a bifunctor
• ⊗ • : T ×T −→ T and an isomorphism of functors a ∈ Mor(Fct(T ×T ×T , T )),

a(X, Y, Z) : (X ⊗ Y )⊗ Z ∼−→ X ⊗ (Y ⊗ Z)

such that the diagram below is commutative for any X, Y, Z , W ∈ T :

((X ⊗ Y )⊗ Z)⊗W

a(X,Y,Z)⊗W

��

a(X⊗Y,Z ,W)
�� (X ⊗ Y )⊗ (Z ⊗W )

a(X,Y,Z⊗W)

��

(X ⊗ (Y ⊗ Z))⊗W

a(X,Y⊗Z ,W)

��
X ⊗ ((Y ⊗ Z)⊗W )

X⊗a(Y,Z ,W)
�� X ⊗ (Y ⊗ (Z ⊗W )).

(4.2.1)

Examples 4.2.2. The following (T ,⊗, a) (with a the obvious one) are tensor
categories.
(i) k is a commutative ring, T = Mod(k) and ⊗= ⊗k .
(ii) M is a monoid, T is the discrete category with Ob(T ) = M , a ⊗ b = ab
for a, b ∈ M .
(iii) A is a k-algebra, T = Mod(A ⊗k Aop) and ⊗= ⊗A.
(iv) C is a category, T = Fct(C, C) and ⊗= ◦.
(v) T is a category which admits finite products and ⊗= ×.
(vi) T is a category which admits finite coproducts and ⊗= �.
(vii) G is a group, k is a field, T is the category of G-modules over k, that is, the
category whose objects are the pairs (V, ϕ), V ∈ Mod(k), ϕ : G −→ Aut k(V ) is
a morphism of groups, and the morphisms are the natural ones. For V, W ∈ T ,
V ⊗W is the tensor product in Mod(k) endowed with the diagonal action of
G given by g(v ⊗w) = gv ⊗ gw.
(viii) I is a category, T = S(I ) is the category defined as follows. The objects of
S(I ) are the finite sequences of objects of I of length ≥ 1. For X = (x1, . . . , xn)
and Y = (y1, . . . , yp) in S(I ),

HomS(I)(X, Y ) =

{∏n
i=1 Hom I (xi , yi ) if n = p ,

∅ otherwise .

Hence, S(I ) �⊔
n≥1 I n.

For two objects X = (x1, . . . , xn) and Y = (y1, . . . , yp) of S(I ), define X ⊗ Y
as the sequence (x1, . . . , xn, y1, . . . , yp).
(ix) k is a commutative ring and, with the notations of Chap. 11, T =
Cb(Mod(k)) is the category of bounded complexes of k-modules and X ⊗Y is
the simple complex associated with the double complex X ⊗k Y .
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Let (T ,⊗, a) be a tensor category. Then T op has a structure of a ten-
sor category in an obvious way. Another tensor category structure on T is
obtained as follows. For X, Y ∈ T , define

X
r⊗Y := Y ⊗ X .

For X, Y, Z ∈ T , define

ar (X, Y, Z) : (X
r⊗Y )

r⊗Z ∼−→ X
r⊗(Y

r⊗Z)

by

(X
r⊗Y )

r⊗Z = Z ⊗ (Y ⊗ X)
a(Z ,Y,X)−1

−−−−−−→ (Z ⊗ Y )⊗ X = X
r⊗(Y

r⊗Z) .

Then (T ,
r⊗, ar ) is a tensor category. We call it the reversed tensor category

of (T ,⊗, a).

Tensor Functors

Definition 4.2.3. Let T and T ′ be two tensor categories. A functor of tensor
categories (or, a tensor functor) is a pair (F, ξF) where F : T −→ T ′ is a
functor and ξF is an isomorphism of bifunctors

ξF : F( • ⊗ • ) ∼−→ F( • )⊗ F( • )

such that the diagram below commutes for all X, Y, Z ∈ T :

F((X ⊗ Y )⊗ Z)
F(a(X,Y,Z)) ��

ξF (X⊗Y,Z)

��

F(X ⊗ (Y ⊗ Z))

ξF (X,Y⊗Z)

��
F(X ⊗ Y )⊗ F(Z)

ξF (X,Y )⊗F(Z)

��

F(X)⊗ F(Y ⊗ Z)

F(X)⊗ξF (Y,Z)

��
(F(X)⊗ F(Y ))⊗ F(Z)

a(F(X),F(Y ),F(Z))
�� F(X)⊗ (F(Y )⊗ F(Z)).

(4.2.2)

In practice, we omit to write ξF .
For two tensor functors F , G : T −→ T ′, a morphism of tensor functors

θ : F −→ G is a morphism of functors such that the diagram below commutes
for all X, Y ∈ T :

F(X ⊗ Y )
ξF (X,Y ) ��

θX⊗Y

��

F(X)⊗ F(Y )

θX⊗θY

��
G(X ⊗ Y )

ξG(X,Y ) �� G(X)⊗G(Y ) .

Recall that to a category I we have associated a tensor category S(I ) in
Example 4.2.2 (viii). Let us denote by ι : I −→ S(I ) the canonical functor.
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Lemma 4.2.4. let T be a tensor category, let I be a category and let ϕ : I −→
T be a functor. There exists a functor of tensor categories Φ : S(I ) −→ T such
that Φ ◦ ι � ϕ. Moreover, Φ is unique up to unique isomorphism.

Proof. We define by induction on n

Φ
(
(i1, . . . , in)

)
= Φ

(
(i1, . . . , in−1)

)⊗ ϕ(in) .

We define the isomorphism

ξΦ : Φ
(
(i1, . . . , in)⊗ ( j1, . . . , jm)

) ∼−→Φ
(
(i1, . . . , in)

)⊗Φ
(
( j1, . . . , jm)

)
by the induction on m as follows:

Φ
(
(i1, . . . , in)⊗ ( j1, . . . , jm)

)
� Φ

(
(i1, . . . , in, j1, . . . , jm)

)
� Φ

(
(i1, . . . , in, j1, . . . , jm−1)

)⊗ ϕ( jm)
� Φ

(
(i1, . . . , in)⊗ ( j1, . . . , jm−1)

)⊗ ϕ( jm)

�
(
Φ
(
(i1, . . . , in)

)⊗Φ
(
( j1, . . . , jm−1)

))⊗ ϕ( jm)

� Φ
(
(i1, . . . , in)

)⊗ (Φ(( j1, . . . , jm−1)
)⊗ ϕ( jm)

)
� Φ

(
(i1, . . . , in)

)⊗Φ
(
( j1, . . . , jm)

)
.

It is left to the reader to check that this defines a functor of tensor categories.
q.e.d.

Hence, in a tensor category T , it is possible to define the tensor product
X1 ⊗ · · · ⊗ Xn for X1, . . . , Xn ∈ T by the formula

X1 ⊗ · · · ⊗ Xn = (· · · ((X1 ⊗ X2)⊗ X3)⊗ · · · )⊗ Xn

and this does not depend on the order of the parentheses, up to a unique
isomorphism.

In the sequel, we shall often omit the parentheses.

Unit Object

Definition 4.2.5. A unit object of a tensor category T is an object 1 of T
endowed with an isomorphism � : 1⊗1 ∼−→1 such that the functors from T
to T given by X 
→ X ⊗ 1 and X 
→ 1⊗X are fully faithful.

Lemma 4.2.6. Let (1, �) be a unit object of T . Then there exist unique func-
torial isomorphisms α(X) : X ⊗ 1 ∼−→ X and β(X) : 1⊗X ∼−→ X satisfying the
following properties
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(a) α(1) = β(1) = � ,

(b) the two morphisms X ⊗ Y ⊗ 1
α(X⊗Y ) ��
X⊗α(Y )

�� X ⊗ Y coincide,

(c) the two morphisms 1⊗X ⊗ Y
β(X⊗Y ) ��
β(X)⊗Y

�� X ⊗ Y coincide,

(d) the two morphisms X ⊗ 1⊗Y
α(X)⊗Y ��
X⊗β(Y )

�� X ⊗ Y coincide,

(e) the diagram 1⊗X ⊗ 1
1⊗α(X) ��

β(X)⊗1

��

1⊗X

β(X)

��
X ⊗ 1

α(X) �� X

commutes .

Proof. If such α and β exist, then (a) and (d) imply α(X)⊗ 1 = X ⊗ β(1) =
X ⊗ �, α(X) is uniquely determined because X 
→ X ⊗ 1 is fully faithful, and
similarly with β.

Proof of the existence of α, β. Since X 
→ X ⊗1 is fully faithful, there exists a
unique morphism α(X) : X ⊗ 1 −→ X such that α(X)⊗ 1 : X ⊗ 1⊗1 −→ X ⊗ 1
coincides with X ⊗�. Since X ⊗� is an isomorphism, α(X) is an isomorphism.
The morphism β is constructed similarly by 1⊗β(X) = � ⊗ X .

Proof of (b)–(c). The morphism X⊗Y⊗� : X⊗Y⊗1⊗1 −→ X⊗Y⊗1 coincides
with α(X ⊗ Y )⊗1 and also with X ⊗α(Y )⊗1. Hence, α(X ⊗ Y ) = X ⊗α(Y ).
The proof of (c) is similar.

Proof of (e). By the functoriality of α, the diagram in (e) commutes when
replacing 1⊗α(X) in the top row with α(1⊗X). Since α(1⊗X) = 1⊗α(X)
by (b), we conclude.

Proof of (d). Consider the diagram

X ⊗ 1⊗1⊗Y
α(X)⊗1⊗Y

"""""
"""

"""
"""

"
X⊗1⊗β(Y )

��##
###

###
###

##

X ⊗ � ⊗ Y

��
X ⊗ 1⊗Y

X⊗β(Y ) ��##
###

###
###

##
X ⊗ 1⊗Y

id�� id �� X ⊗ 1⊗Y

α(X)⊗Y"""""
"""

"""
"""

"

X ⊗ Y.

Since the upper two triangles commute as well as the big square, we obtain
X ⊗ β(Y ) = α(X)⊗ Y .

Proof of (a). By (d), one has α(1)⊗1 = 1⊗β(1). On the other hand, α(1)⊗1 =
1⊗� by the construction of α. Hence, 1⊗β(1) = 1⊗�. This implies that
β(1) = �. The proof for α is similar. q.e.d.
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Remark 4.2.7. If (1, �) and (1′, �′) are unit objects, then there exists a unique
isomorphism ι : 1 −→ 1′ compatible with � and �′, that is, the diagram

1⊗1

�

��

ι⊗ι
�� 1′ ⊗1′

�′

��
1

ι �� 1′

commutes. Indeed, 1 ∼←−1⊗1′ ∼−→1′ gives ι which satisfies the desired prop-
erties.

Remark that all tensor categories in Examples 4.2.2 except (viii) admit a
unit object.

Definition 4.2.8. Let T be a tensor category with a unit object (1, �). A
tensor functor F : T −→ T ′ is called unital if (F(1), F(�)) is a unit object of
T ′.

More precisely, F(1) ⊗ F(1) ∼−→ F(1) is given as the composition F(1) ⊗
F(1) ∼←−−−−

ξF (1,1)
F(1⊗1) ∼−−→

F(�)
F(1).

Definition 4.2.9. Let T be a tensor category. An action of T on a category
C is a tensor functor F : T −→ Fct(C, C). If T has a unit object and T −→
Fct(C, C) is unital, the action is called unital.

For X ∈ T and W ∈ C, set X ⊗ W := F(X)(W ). To give isomorphisms
ξF(X, Y ) : F(X ⊗ Y ) ∼−→ F(X) ◦ F(Y ) is thus equivalent to give isomorphisms
(X⊗Y )⊗W ∼−→ X⊗(Y⊗W ). Hence, to give an action of T on C is equivalent to
giving a bifunctor ⊗ : T ×C −→ C and isomorphisms a(X, Y, W ) : (X⊗Y )⊗W �
X ⊗ (Y ⊗W ) functorial in X, Y ∈ T and W ∈ C such that the diagram (4.2.1)
commutes for X, Y, Z ∈ T and W ∈ C. In this language, the action is unital
if there exists an isomorphism η(X) : 1⊗X ∼−→ X functorially in X ∈ C such
that the diagram

1⊗1⊗X
�⊗X ��

1⊗η(X)

��

1⊗X

η(X)

��
1⊗X

η(X) �� X

commutes. (See Exercise 4.8.)

Examples 4.2.10. (i) For a category C, the tensor category Fct(C, C) acts on
C.
(ii) If T is a tensor category, then T acts on itself.
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Dual Pairs

We shall now introduce the notion of a dual pair and the reader will notice
some similarities with that of adjoint functors (see Sect. 4.3).

Definition 4.2.11. Let T be a tensor category with a unit object 1. Let X, Y ∈
T be two objects and ε : 1 −→ Y ⊗ X and η : X ⊗ Y −→ 1 two morphisms. We
say that (X, Y ) is a dual pair or that X is a left dual to Y or Y is a right dual
to X if the conditions (a) and (b) below are satisfied:

(a) the composition X � X ⊗1
X⊗ε−−→ X ⊗Y ⊗ X

η⊗X−−→ 1⊗X � X is the identity
of X ,

(b) the composition Y � 1⊗Y
ε⊗Y−−→ Y ⊗ X ⊗ Y

Y⊗η−−→ Y ⊗ 1 � Y is the identity
of Y .

Lemma 4.2.12. If (X, Y ) is a dual pair, then for any Z , W ∈ T , there is an
isomorphisms HomT (Z , W ⊗X) � HomT (Z⊗Y, W ) and HomT (X⊗ Z , W ) �
HomT (Z , Y ⊗ W ).

Proof. We shall only prove the first isomorphism.
First, we construct a map A : HomT (Z , W ⊗ X) −→ HomT (Z ⊗ Y, W ) as

follows. Let u ∈ HomT (Z , W ⊗ X). Then A(u) is the composition Z ⊗ Y
u⊗Y−−→

W ⊗ X ⊗ Y
W⊗η−−→ W ⊗ 1 � W .

Next, we construct a map B : HomT (Z⊗Y, W ) −→ HomT (Z , W⊗X) as follows.

Let v ∈ HomT (Z ⊗ Y, W ). Then B(v) is the composition Z ∼−→ Z ⊗ 1
Z⊗ε−−→

Z ⊗ Y ⊗ X
v⊗X−−→ W ⊗ X .

It is easily checked that A and B are inverse to each other. q.e.d.

Remark 4.2.13. (i) Y is a representative of the functor Z 
→ HomT (X ⊗ Z ,1)
as well as a representative of the functor W 
→ HomT (1, W ⊗ X).
(ii) ( • ⊗ Y, • ⊗ X) is a pair of adjoint functors, as well as (X ⊗ • , Y ⊗ • ).

Braiding

Definition 4.2.14. A braiding, also called an R-matrix, is an isomorphism
X ⊗ Y ∼−→ Y ⊗ X functorially in X, Y ∈ T , such that the diagrams

X ⊗ Y ⊗ Z
R(X,Y )⊗Z ��

R(X,Y⊗Z) ##$$$$
$$$$$

$$$$$
$$$$$

Y ⊗ X ⊗ Z

Y⊗R(X,Z)

��
Y ⊗ Z ⊗ X

(4.2.3)

and
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X ⊗ Y ⊗ Z
X⊗R(Y,Z) ��

R(X⊗Y,Z) ##$$$$
$$$$$

$$$$$
$$$$$

X ⊗ Z ⊗ Y

R(X,Z)⊗Y

��
Z ⊗ X ⊗ Y

(4.2.4)

commute for all X, Y, Z ∈ T .

Consider the diagram

X ⊗ Y ⊗ Z
R(X,Y )⊗Z

"""""
"""

"""
""" X⊗R(Y,Z)

��##
###

###
###

#

R(X,Y⊗Z)

��

Y ⊗ X ⊗ Z

Y⊗R(X,Z)

��

X ⊗ Z ⊗ Y

R(X,Z)⊗Y

��R(X,Z⊗Y )

��

Y ⊗ Z ⊗ X

R(Y,Z)⊗X ��##
###

###
###

# Z ⊗ X ⊗ Y

Z⊗R(X,Y )"""""
"""

"""
"""

Z ⊗ Y ⊗ X.

(4.2.5)

Lemma 4.2.15. If R is a braiding, then the solid diagram (4.2.5) commutes.

The commutativity of this diagram may be translated by the so-called “Yang-
Baxter equation”

(R(Y, Z)⊗ X) ◦ (Y ⊗ R(X, Z)) ◦ (R(X, Y )⊗ Z)
= (Z ⊗ R(X, Y )) ◦ (R(X, Z)⊗ Y ) ◦ (X ⊗ R(Y, Z)) .

(4.2.6)

Proof. Consider the diagram (4.2.5) with the dotted arrows. The triangles
(X ⊗Y ⊗ Z , Y ⊗ X ⊗ Z , Y ⊗ Z ⊗ X) and (X ⊗ Z ⊗Y, Z ⊗ X ⊗Y, Z ⊗Y ⊗ X)
commute by the definition of a braiding. The square (X ⊗ Y ⊗ Z , X ⊗ Z ⊗
Y, Y ⊗ X ⊗ Z , Z ⊗ Y ⊗ X) commutes by the functoriality of R. q.e.d.

Note that if R is a braiding, then

R(Y, X)−1 : X ⊗ Y ∼−→ Y ⊗ X

is also a braiding. We denote it by R−1.

Definition 4.2.16. A tensor category with a braiding R is called a com-

mutative tensor category if R = R−1, i.e., the composition X ⊗ Y
R(X,Y )−−−−→

Y ⊗ X
R(Y,X)−−−−→ X ⊗ Y is equal to idX⊗Y .

Remark 4.2.17. Commutative tensor categories are called “tensor categories”
by some authors and tensor categories are then called monoidal categories.
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4.3 Rings, Modules and Monads

By mimicking the definition of a monoid in the tensor category Set (by Exam-
ple 4.2.2 (v)), or of a ring in the tensor category Mod(Z) (see Example 4.2.2
(i)), we introduce the following notion.

Definition 4.3.1. Let T be a tensor category with a unit 1. A ring in T is
a triplet (A, µA, εA) of an object A ∈ T and two morphisms µA : A ⊗ A −→ A
and εA : 1 −→ A such that the diagrams below commute:

A ⊗ 1
A⊗εA ��

α(A)

∼
��%%

%%%
%%%

%%
A ⊗ A

µA

��
A,

1⊗A
εA⊗A ��

β(A)

∼
��%%

%%%
%%%

%%
A ⊗ A

µA

��
A,

A ⊗ A ⊗ A
µA⊗A ��

A⊗µA

��

A ⊗ A

µA

��
A ⊗ A

µA �� A .

Note that εA is a unit and µA is a composition in the case of rings in Mod(k).

Remark 4.3.2. Some authors call (A, µA, εA) a monoid.

Definition 4.3.3. Let T be a tensor category with a unit 1 acting unitally on
a category C (see Definition 4.2.9). Let (A, µA, εA) be a ring in T .

(i) An A-module in C is a pair (M, µM) of an object M ∈ C and a morphism
µM : A ⊗ M −→ M such that the diagrams below in C commute:

1⊗M
εA⊗M ��

��&&
&&&

&&&
&&&

&&&
A ⊗ M

µM

��
M,

A ⊗ A ⊗ M
µA⊗M ��

A⊗µM

��

A ⊗ M

µM

��
A ⊗ M

µM �� M.

(ii) For two A-modules (M, µM) and (N , µN ), a morphism u : (M, µM) −→
(N , µN ) is a morphism u : M −→ N making the diagram below commuta-
tive:

A ⊗ M
A⊗u ��

µM

��

A ⊗ N

µN

��
M

u �� N .

Clearly, the family of A-modules in C forms a category Mod(A, C) and the
forgetful functor for : Mod(A, C) −→ C is faithful.

Lemma 4.3.4. Let T and C be as in Definition 4.3.3, let (A, µA, εA) be a ring
in T and let (M, µM) be an A-module in C. Then the diagram below is exact
in C∧:

A ⊗ A ⊗ M
µA⊗M ��
A⊗µM

�� A ⊗ M
µM �� M .
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Proof. The morphisms s : M � 1⊗M
εA⊗M−−−→ A ⊗ M and u : A ⊗ M � 1⊗A ⊗

M
εA⊗A⊗M−−−−−→ A ⊗ A ⊗ M satisfy

µM ◦ s = idM , (A ⊗ µM) ◦ u = s ◦ µM , (µA ⊗ M) ◦ u = idA⊗M .

Hence, it is enough to apply the result of Exercise 2.25. q.e.d.

Recall that, for a category C, the tensor category Fct(C, C) acts on C.

Definition 4.3.5. Let C be a category. A ring in the tensor category Fct(C, C)
is called a monad in C.

The following lemma gives examples of monads and A-modules.

Lemma 4.3.6. Let C
L �� C ′
R

�� be functors such that (L , R) is a pair of ad-

joint functors. Let ε : idC −→ R ◦ L and η : L ◦ R −→ idC′ be the adjunction
morphisms.

(a) Set A:=R◦L, εA :=ε and µA :=R◦η◦L. (Hence, µA : A◦A = R◦L◦R◦L −→
R ◦ L = A.) Then (A, µA, εA) is a monad in C.

(b) Let Y ∈ C ′. Set X = R(Y ) ∈ C and µX = R(ηY ) : A(X) = R ◦ L ◦
R(Y )

R(η(Y ))−−−−→ R(Y ) = X . Then (X, µX ) is an A-module and the corre-
spondence Y 
→ (X, µX ) defines a functor Φ : C ′ −→ Mod(A, C).

Proof. Leaving the rest of the proof to the reader, we shall only prove the
associativity of µA, that is, the commutativity of the diagram

A ◦ A ◦ A(X)

A(µA(X))

��

µA(A(X)) �� A ◦ A(X)

µA(X)

��
A ◦ A(X)

µA(X) �� A(X).

We have A(µA(X)) = R ◦L ◦ R(η(L(X))), µA(A(X)) = R(η(L ◦ R ◦L(X))) and
µA(X) = R(η(L(X))). Setting B := L ◦ R and Y := L(X), the above diagram
is the image by R of the diagram below

B ◦ B(Y )

B(η(Y ))

��

η(B(Y )) �� B(Y )

η(Y )

��
B(Y )

η(Y ) �� Y.

The commutativity of this diagram follows from the fact that η : B −→ idC′ is
a morphism of functors. q.e.d.
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Lemma 4.3.7. Let (A, µA, εA) be a monad in C.

(a) For any X ∈ C, (A(X), µA(X)) is an A-module.
(b) The functor C −→ Mod(A, C) given by X 
→ (A(X), µA(X)) is a left adjoint

of the forgetful functor for : Mod(A, C) −→ C.

Proof. (i) is left to the reader.
(ii) We define maps

HomMod(A,C)((A(Y ), µA(Y )), (X, µX ))
α �� HomC(Y, X)
β

��

as follows. To v : (A(Y ), µA(Y )) −→ (X, µX ) we associate α(v), the composition

Y
εA(Y )−−−→ A(Y )

v−→ X .

To u : Y −→ X , we associate β(u), the composition A(Y )
A(u)−−→ A(X)

µX−→ X .
It is easily checked that α and β are well defined and inverse to each other.

q.e.d.

The next theorem is due to Barr and Beck.

Theorem 4.3.8. Let C
L �� C ′
R

�� be functors such that (L , R) is a pair of

adjoint functors. Let (A = R ◦ L , εA, µA) and Φ : C ′ −→ Mod(A, C) be as in
Lemma 4.3.6. Then the following conditions are equivalent.

(i) Φ is an equivalence of categories,
(ii) the following two conditions hold:

(a) R is conservative,
(b) for any pair of parallel arrows f, g : X ⇒ Y in C ′, if Coker(R( f ), R(g))

exists in C and R(X)
R( f ) ��
R(g)

�� R(Y ) �� Coker(R( f ), R(g)) is exact in

C∧ (see Exercise 2.25), then Coker( f, g) exists and Coker
(
R( f ), R(g)

) ∼−→
R(Coker( f, g)).

In particular, if C ′ admits finite inductive limits and R is conservative and
exact, then Φ : C ′ −→ Mod(A, C) is an equivalence of categories.

Proof. (i) ⇒ (ii). We may assume that A is a monad in C and R is the forgetful
functor C ′ = Mod(A, C) −→ C. Hence, L is the functor X 
→ (A(X), µA(X))
by Lemma 4.3.7. Then (a) is obvious. Let us show (b). Let f, g : (X, µX ) ⇒
(Y, µY ) be a pair of parallel arrows and assume that X ⇒ Y −→ Z is exact in
C∧. Then A(X) ⇒ A(Y ) −→ A(Z) as well as A2(X) ⇒ A2(Y ) −→ A2(Z) are
exact by Proposition 2.6.4. By the commutativity of the solid diagram with
exact rows
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A(X) ����

µX

��

A(Y ) ��

µY

��

A(Z)

w

��
X

���� Y �� Z ,

we find the morphism w : A(Z) −→ Z . It is easily checked that (Z , w) is an
A-module and (Z , w) � Coker( f, g) in Mod(A, C).

(ii) ⇒ (i). Let us construct a quasi-inverse Ψ : Mod(A, C) −→ C ′ of Φ. Let
(X, µX ) ∈ Mod(A, C). Applying L to µX : A(X) −→ X , we obtain

L ◦ R ◦ L(X)
L(µX ) ��

η(L(X))
�� L(X).(4.3.1)

Applying R to this diagram we get

R ◦ L ◦ R ◦ L(X)
R◦L(µX ) ��

R(η(L(X)))
�� R ◦ L(X)

which is equal to the diagram A ◦ A(X)
A(µX ) ��
µA(X)

�� A(X) .
The sequence

A ◦ A(X)
A(µX ) ��
µA(X)

�� A(X)
µX �� X(4.3.2)

is exact in C∧ by Lemma 4.3.4. Therefore, (b) implies that (4.3.1) has a cok-
ernel

L ◦ R ◦ L(X)
L(µX ) ��

η(L(X))
�� L(X)

ϕ �� Y,(4.3.3)

and there exists a commutative diagram

A(X) = R ◦ L(X)

R(ϕ)

��

µX �� X

ψ

∼

$$'''
'''

'''
'''

R(Y ).

We set Φ((X, µX )) = Y . Since the following diagram commutes

X
εA(X)=ε(X)

��

idX

##A(X)
µX

��

R(ϕ)

��

X

ψ
""(((

(((
(((

(((
(

R(Y ),
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ϕ and ψ correspond by the adjunction isomorphism HomC′(L(X), Y ) �
HomC(X, R(Y )). This implies that the diagram

A(X)

µX

��

RL(ψ)

∼ ��

R(ϕ)
����

���

�����
����

R ◦ L ◦ R(Y )

R(η(Y ))

��
X

ψ

∼ �� R(Y )

commutes. Hence, ΦΨ ((X, µX )) � (X, µX ).
Conversely, for Y ∈ C ′, let us set (X, µX ) = Φ(Y ) =

(
R(Y ), R(η(Y ))

) ∈
Mod(A, C). Then the two compositions coincide:

L ◦ R ◦ L ◦ R(Y )
L◦R(η(Y )) ��
η(L◦R(Y ))

�� L ◦ R(Y )
η(Y ) �� Y.(4.3.4)

Applying R to this diagram, we find the sequence A ◦ A(X) ⇒ A(X) −→ X
which is exact in C∧ by Lemma 4.3.4. Hence, (b) implies that

R(Y ) = X � R
(
Coker(L ◦ R ◦ L ◦ R(Y ) ⇒ L ◦ R(Y ))

)
.

Then (a) implies that Y � Coker(L ◦ R ◦ L ◦ R(Y ) ⇒ L ◦ R(Y )). Hence,
Ψ (Φ(Y )) � Y . q.e.d.

Exercises

Exercise 4.1. Let Pr be the category given in Notations 1.2.8 (v). Let
F : Pr −→ Pr be the functor given by F(u) = idc for any u ∈ Mor(Pr).
Let ε : idPr −→ F be the morphism of functors given by εc = p.
(i) Prove that F and ε are well-defined.
(ii) Prove that F ◦ ε : F −→ F2 is an isomorphism but ε ◦ F : F −→ F2 is not
an isomorphism.

Exercise 4.2. Let T be a tensor category with a unit object 1. Let X ∈ T
and α : 1 −→ X . Prove that if the compositions X � 1⊗X

α⊗X−−→ X ⊗ X and
X � X ⊗1

X⊗α−−→ X ⊗ X are isomorphisms, then they are equal and the inverse
morphism µ : X ⊗ X −→ X gives a ring structure on X .

Exercise 4.3. Prove that if a tensor category has a unit object, then this ob-
ject is unique up to unique isomorphism. More precisely, prove the statement
in Remark 4.2.7. Also prove that if (1, �) is a unit object, then �⊗1 = 1⊗�.

Exercise 4.4. Let T be a tensor category with a unit 1 and a braiding R.
(i) Prove that the diagram below commutes:
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1⊗ X

β(X) %%)
))

))
))

)
R(1,X) �� X ⊗ 1

α(X)&&**
**
**
**

X.

(ii) Prove that R(1,1) = id1⊗1.

Exercise 4.5. Let k be a field and recall that k× denotes the group of its
invertible elements. Let L be an additive group and denote by C the category
whose objects are the families

Ob(C) = {X = {Xl}l∈L ; Xl ∈ Mod(k), Xl = 0 for all but finitely many l},
the morphisms in C being the natural ones. For X = {Xl}l∈L and Y = {Yl}l∈L ,
define X ⊗ Y by (X ⊗ Y )l = ⊕l=l ′+l ′′ Xl ′ ⊗ Yl ′′ .
(i) Let c : L × L × L −→ k× be a function. For X, Y, Z ∈ C, let

ac(X, Y, Z) : (X ⊗ Y )⊗ Z −→ X ⊗ (Y ⊗ Z)

be the isomorphism induced by

(Xl1 ⊗ Yl2)⊗ Zl3
c(l1,l2,l3)−−−−−→ Xl1 ⊗ (Yl2 ⊗ Zl3) .

Prove that (C,⊗, ac) is a tensor category if and only if c satisfies the cocycle
condition:

c(l1 + l2, l3, l4)c(l1, l2, l3 + l4) = c(l1, l2, l3)c(l1, l2 + l3, l4)c(l2, l3, l4) .(4.3.5)

If c satisfies the cocycle condition (4.3.5), we shall denote by ⊗c the tensor
product in the tensor category (C,⊗, ac).
(ii) Let b and c be two functions from L × L × L to k× both satisfying (4.3.5).
Let ϕ : L×L −→ k× be a function and for X, Y ∈ C, let ξ(X, Y ) : X⊗Y −→ X⊗Y
be the isomorphism in C given by

Xl ⊗ Yl ′
ϕ(l,l ′)−−−→ Xl ⊗ Yl ′ .

Prove that (idC, ξ) is a tensor functor from (C,⊗b, ab) to (C,⊗c, ac) if and only
if

c(l1, l2, l3) =
ϕ(l2, l3)ϕ(l1, l2 + l3)
ϕ(l1, l2)ϕ(l1 + l2, l3)

b(l1, l2, l3) .(4.3.6)

(iii) Assume that c satisfies the cocycle condition (4.3.5) and let ρ : L×L −→ k×
be a function. Let

R(X, Y ) : X ⊗c Y −→ Y ⊗c X

be the isomorphism induced by

Xl ⊗ Yl ′
ρ(l,l ′)−−−→ Yl ′ ⊗ Xl .
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(a) Prove that R satisfies the Yang-Baxter equation (4.2.6) if

c(l1, l2, l3)c(l2, l3, l1)c(l3, l1, l2) = c(l1, l3, l2)c(l3, l2, l1)c(l2, l1, l3) .

(b) Prove that R is a braiding if and only if

c(l1, l2, l3)c(l2, l3, l1)
c(l2, l1, l3)

=
ρ(l1, l2)ρ(l1, l3)

ρ(l1, l2 + l3)
=

ρ(l2 + l3, l1)
ρ(l2, l1)ρ(l3, l1)

.(4.3.7)

(iv) Let ψ : L −→ k be a function. Define θ : idC −→ idC by setting θX |Xl =
ψ(l) idXl . Prove that θ is a morphism of tensor functors if and only if

ψ(l1 + l2) = ψ(l1)ψ(l2) .

(v) Let L = Z/2Z.

(a) Prove that the function c given by

c(l1, l2, l3) =

{
−1 if l1 = l2 = l3 = 1 mod 2 ,

1 otherwise
(4.3.8)

satisfies the cocycle condition (4.3.5).
(b) Assume that there exists an element i ∈ k× such that i2 = −1 and let c

be as in (4.3.8). Prove that the solutions of (4.3.7) are given by

ρ(l, l ′) =

{
±i if l = l ′ = 1 mod 2 ,

1 otherwise.

(vi) Let L = Z/2Z. Prove that two tensor categories (C,⊗c, ac) and (C,⊗b, ab)
with c as in (4.3.8) and b(l1, l2, l3) = 1, are not equivalent when k is a field of
characteristic different from 2.
(vii) Let L = Z/2Z, and b as in (vi). Let R be the braiding given by ρ(l, l ′) =
−1 or 1 according that l = l ′ = 1 mod 2 or not. Prove that (C,⊗b, ab) is a
commutative tensor category. (The objects of C are called super vector spaces.)

Exercise 4.6. Let T be a tensor category with a unit object 1. Prove that if
θ : idT −→ idT is an isomorphism of tensor functors, then θ1 = id1.

Exercise 4.7. Let T be a tensor category with a unit object. Prove that if
(X, Y ) and (X, Y ′) are dual pairs, then Y and Y ′ are isomorphic.

Exercise 4.8. Let T be a tensor category with a unit object 1 and acting
on a category C. Prove that this action is unital if and only if the functor
C � X 
→ 1⊗X ∈ C is fully faithful.

Exercise 4.9. Let ∆ be the category of finite totally ordered sets and order-
preserving maps (see Definition 11.4.1 and Exercise 1.21).
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(i) For σ, τ ∈ ∆, define σ ⊗ τ as the set σ � τ endowed with the total order
such that i < j for any i in the image of σ and j in the image of τ and
σ −→ σ � τ and τ −→ σ � τ are order-preserving. Prove that ∆ is a tensor
category with a unit object.
(ii) Let R(σ, τ ) : σ ⊗ τ −→ τ ⊗ σ denote the unique isomorphism of these two
objects in ∆. Prove that R defines a commutative tensor category structure
on ∆.
(iii) Let T be a tensor category with a unit object. Prove that the category
of rings in T is equivalent to the category of unital tensor functors from ∆ to
T .

Exercise 4.10. Let G be a group and let us denote by G the associated
discrete category. A structure of a tensor category on G is defined by setting
g1 ⊗ g2 = g1g2 (g1, g2 ∈ G). Let C be a category. An action of G on C is a
unital action ψ : G −→ Fct(C, C) of the tensor category G on C.
(i) Let T : C −→ C be an auto-equivalence. Show that there exists an action ψ

of Z on C such that ψ(1) = T .
(ii) Let T1 and T2 be two auto-equivalences of S and let ϕ12 : T1 ◦T2

∼−→ T2 ◦T1

be an isomorphism of functors. Show that there exists an action ψ of Z2 on
C such that ψ((1, 0)) = T1 and ψ((0, 1)) = T2.
(iii) More generally, let T1, . . . , Tn be n auto-equivalences of C for a non-
negative integer n, and let ϕi j : Ti ◦ Tj

∼−→ Tj ◦ Ti be isomorphisms of functors
for 1 ≤ i < j ≤ n. Assume that for any 1 ≤ i < j < k ≤ n, the diagram below
commutes

Ti ◦ Tj ◦ Tk

Ti◦ϕ jk

""(((
(((

(((
(( ϕi j◦Tk

����
���

���
���

Ti ◦ Tk ◦ Tj

ϕik◦Tj

��

Tj ◦ Ti ◦ Tk

Tj◦ϕik

��
Tk ◦ Ti ◦ Tj

Tk◦ϕi j ����
���

���
���

Tj ◦ Tk ◦ Ti

ϕ jk◦Ti""(((
(((

(((
((

Tk ◦ Tj ◦ Ti .

Denote by u1, . . . , un the canonical basis of Zn. Prove that there exists an
action ψ of Zn on C such that ψ(ui ) = Ti and the composition Ti ◦ Tj �
ψ(ui ⊗ u j ) = ψ(u j ⊗ ui ) ∼−→ Tj ◦ Ti coincides with ϕi j .

Exercise 4.11. Let T be a tensor category with a unit object (1, �). Let
a ∈ EndT (1).
(i) Prove that the diagram
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1⊗1
1⊗a ��

�

��

1⊗1

�

��
1

a �� 1

commutes and that 1⊗a = a ⊗ 1.
(ii) Prove that EndT (1) is commutative.
(iii) Define

R : EndT (1) −→ End Fct(T ,T )( • ⊗ 1) ∼←−End Fct(T ,T )(idT ) ,

L : EndT (1) −→ End Fct(T ,T )(1⊗ • ) ∼←−End Fct(T ,T )(idT ) ,

where R(a)X ⊗ 1 = X ⊗ a and 1⊗L(a)X = a ⊗ X . Prove that if T has a
braiding, then R = L.

Exercise 4.12. Let T be a tensor category with a unit object (1, �). Let
X, Y ∈ T and assume that X ⊗ Y � 1 and Y ⊗ X � 1. Prove that there exist
isomorphisms ξ : X⊗Y ∼−→1 and η : Y ⊗X ∼−→1 such that the diagrams below
commute.

X ⊗ Y ⊗ X

X⊗η

��

ξ⊗X �� 1⊗X

��
X ⊗ 1 �� X,

Y ⊗ X ⊗ Y

η⊗Y

��

Y⊗ξ �� Y ⊗ 1

��
1⊗Y �� Y.

Exercise 4.13. Let T be a tensor category with a unit object (1, �). Assume
to be given X ∈ T , a positive integer n and an isomorphism λ : X⊗n ∼−→1.
Consider the diagram

X⊗(n+1)

λ⊗X

��

X⊗λ �� X ⊗ 1

��
1⊗X �� X.

(4.3.9)

(i) Assume that (4.3.9) commutes. Prove that there exists a unital functor
ϕ : Z/nZ −→ T such that ϕ(1) = X . Here, the group Z/nZ is regarded as a
tensor category as in Exercise 4.10.
(ii) Prove that if T has a braiding, the fact that the diagram (4.3.9) commutes
does not depend on the choice of the isomorphism λ : X⊗n ∼−→1. (Hint: use
Exercise 4.11 (iii).)
(iii) Give an example of a braided tensor category T and (X , λ) such that
(4.3.9) does not commute. (Hint: use Exercise 4.5 (v).)
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Generators and Representability

The aim of this chapter is to give various criteria for a functor with values in
Set to be representable, and as a by-product, criteria for a functor to have
an adjoint.

For that purpose, we need to introduce two important notions. The first
one is that of a strict morphism for a category C which admits finite inductive
and finite projective limits. In such a category, there are natural definitions
of the coimage and of the image of a morphism, and the morphism is strict if
the coimage is isomorphic to the image. A crucial fact for our purpose here is
that if C admits a generator (see below), then the family of strict quotients of
any object is a small set.

The second important notion is that of a system of generators (and in
particular, a generator) in a category C. If C admits small inductive limits and
G is a generator, then any object X ∈ C is a quotient of a small coproduct of
copies of G, similarly as any module over a ring A is a quotient of A⊕I for a
small set I .

With these tools in hands, it is then possible to state various theorems
of representability. For example, we prove that if C admits small inductive
limits, finite projective limits, a generator and small filtrant inductive limits
are stable by base change, then any contravariant functor from C to Set is
representable as soon as it sends small inductive limits to projective limits
(Theorem 5.3.9).

Many of these results are classical and we refer to [64].

5.1 Strict Morphisms

Definition 5.1.1. Let C be a category which admits finite inductive and finite
projective limits and let f : X −→ Y be a morphism in C.

(i) The coimage of f , denoted by Coim f , is given by

Coim f = Coker(X ×Y X ⇒ X) .
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(ii) The image of f , denoted by Im f , is given by

Im f = Ker(Y ⇒ Y �X Y ) .

Note that the natural morphism X −→ Coim f is an epimorphism and the
natural morphism Im f −→ Y is a monomorphism.

Proposition 5.1.2. Let C be a category which admits finite inductive and
finite projective limits and let f : X −→ Y be a morphism in C.

(i) There is an isomorphism X �
X×Y X

X ∼−→Coim f .

(ii) There is an isomorphism Im f ∼−→ Y ×
Y�X Y

Y .

(iii) There is a unique morphism

u : Coim f −→ Im f(5.1.1)

such that the composition X −→ Coim f
u−→ Im f −→ Y is f .

(iv) The following three conditions are equivalent:
(a) f is an epimorphism,
(b) Im f −→ Y is an isomorphism,
(c) Im f −→ Y is an epimorphism.

Proof. (ii) Set Z = Y �X Y . We shall prove the isomorphism Ker(i1, i2 : Y ⇒
Z) � Y ×Z Y . For any U ∈ C, we have

HomC(U, Y ×Z Y ) =
{
(y1, y2) ; y1, y2 ∈ Y (U), i1(y1) = i2(y2)

}
.

The codiagonal morphism σ : Z −→ Y satisfies σ ◦ i1 = σ ◦ i2 = idY . Hence,
i1(y1) = i2(y2) implies y1 = σ ◦ i1(y1) = σ ◦ i2(y2) = y2. Therefore we obtain

HomC(U, Y ×Z Y ) � {
y ∈ Y (U) ; i1(y) = i2(y)

}
� HomC(U,Ker(i1, i2 : Y ⇒ Z)) .

(i) follows from (ii) by reversing the arrows.
(iii) Consider the diagram

X ×Y X
p1 ��
p2

�� X
f ��

s

��

Y
i1 ��
i2

�� Y �X Y .

Coim f

f̃

��

u �� Im f





Since f ◦ p1 = f ◦ p2, f factors uniquely as X
s−→ Coim f

f̃−→ Y . Since
i1 ◦ f = i1 ◦ f̃ ◦ s and i2 ◦ f = i2 ◦ f̃ ◦ s are equal and s is an epimorphism,
we obtain i1 ◦ f̃ = i2 ◦ f̃ . Hence f̃ factors through Im f .
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The uniqueness follows from the fact that X −→ Coim f is an epimorphism
and Im f −→ Y is a monomorphism.
(iv) Assume that f is an epimorphism. By the construction, the two mor-
phisms i1, i2 : Y −→ Y �X Y satisfy i1 ◦ f = i2 ◦ f . Since f is an epimorphism,
it follows that i1 = i2. Therefore, Ker(i1, i2) � Y .
Conversely, assume that w : Im f −→ Y is an epimorphism. Since i1◦w = i2◦w,
we have i1 = i2. Consider two morphisms g1, g2 : Y ⇒ Z such that g1 ◦ f =
g2◦ f . These two morphisms define g : Y�X Y −→ Z and g1 = i1◦g = i2◦g = g2.

q.e.d.

Examples 5.1.3. (i) Let C = Set. In this case, the morphism (5.1.1) is an
isomorphism, and Im f � f (X), the set-theoretical image of f .
(ii) Let C denote the category of topological spaces and let f : X −→ Y be a
continuous map. Then, Coim f is the space f (X) endowed with the quotient
topology of X and Im f is the space f (X) endowed with topology induced by
Y . Hence, (5.1.1) is not an isomorphism in general.

Definition 5.1.4. Let C be a category which admits finite inductive limits
and finite projective limits. A morphism f is strict if Coim f −→ Im f is an
isomorphism.

Proposition 5.1.5. Let C be a category which admits finite inductive limits
and finite projective limits and let f : X −→ Y be a morphism in C.

(i) The following five conditions are equivalent
(a) f is a strict epimorphism,
(b) Coim f ∼−→ Y ,
(c) the sequence X ×Y X ⇒ X −→ Y is exact,
(d) there exists a pair of parallel arrows g, h : Z ⇒ X such that f ◦ g =

f ◦ h and Coker(g, h) −→ Y is an isomorphism,
(e) for any Z ∈ C, HomC(Y, Z) is isomorphic to the set of morphisms

u : X −→ Z satisfying u ◦v1 = u ◦v2 for any pair of parallel morphisms
v1, v2 : W ⇒ X such that f ◦ v1 = f ◦ v2.

(ii) If f is both a strict epimorphism and a monomorphism, then f is an
isomorphism.

(iii) The morphism X −→ Coim f is a strict epimorphism.

Proof. (i) (a) ⇒ (b) since Im f ∼−→ Y by Proposition 5.1.2 (iv).

(i) (b) ⇒ (a) is obvious.

(i) (b) ⇔ (c) is obvious.

(i) (d) ⇒ (b). Assume that the sequence Z ⇒ X
f−→ Y is exact. Consider the

solid diagram



116 5 Generators and Representability

Z

��

���� X

��

�� Y

��
X ×Y X ���� X �� Coim f .

We get a morphism Y −→ Coim f which is inverse to the natural morphism
Coim f −→ Y .

(i) (c) ⇒ (d) is obvious.

(i) (c) ⇔ (e). The condition on u in (e) is equivalent to saying that the two
compositions X ×Y X ⇒ X

u−→ Z coincide.

(ii) The morphism f decomposes as X −→ Coim f −→ Y . The first arrow is
an isomorphism by Proposition 5.1.2 (iv) (with the arrows reversed) and the
second arrow is an isomorphism by (i).

(iii) follows from (i) (d) by the definition of Coim f . q.e.d.

Remark that in Proposition 5.1.5, it is not necessary to assume that C admits
finite inductive and projective limits to formulate condition (i) (e).

Definition 5.1.6. Let C be a category. A morphism f : X −→ Y is a strict
epimorphism if condition (i) (e) in Proposition 5.1.5 is satisfied.

Note that condition (i) (e) in Proposition 5.1.5 is equivalent to saying that
the map

HomC(Y, Z) −→ HomC∧(Im hC( f ),hC(Z))

is an isomorphism for any Z ∈ C.
The notion of a strict monomorphism is defined similarly.

Proposition 5.1.7. Let C be a category which admits finite inductive limits
and finite projective limits. Assume that any epimorphism in C is strict. Let
f : X −→ Y be a morphism in C.

(i) The morphism Coim f −→ Y is a monomorphism.
(ii) If f decomposes as X

u−→ I
v−→ Y with an epimorphism u and a monomor-

phism v, then I is isomorphic to Coim f .

Proof. (i) Set I = Coim f and let X
u−→ I

v−→ Y be the canonical morphisms.
Let w denote the composition X −→ I −→ Coim v. Since w is a strict epi-
morphism, Coim w is isomorphic to Coim v. For a pair of parallel arrows
ϕ,ψ : W ⇒ X , the condition u ◦ ϕ = u ◦ ψ is equivalent to the condition
f ◦ ϕ = f ◦ ψ . Indeed, if f ◦ ϕ = f ◦ ψ , then (ϕ,ψ) gives a morphism
W −→ X ×Y X , and the two compositions W −→ X ×Y X ⇒ X −→ I are equal
and coincide with u ◦ ϕ and u ◦ ψ .

Hence, these two conditions are also equivalent to w ◦ ϕ = w ◦ ψ . This
implies X ×Coim v X � X ×Y X , and hence
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I � Coker(X ×Y X ⇒ X) � Coker(X ×Coim v X ⇒ X)
� Coim w � Coim v .

Then Proposition 5.1.2 (iv) (with the arrows reversed) implies that v is a
monomorphism.
(ii) Since v is a monomorphism, the canonical morphism X ×I X −→ X ×Y X
is an isomorphism. Hence,

Coim f � Coker(X ×Y X ⇒ X) � Coker(X ×I X ⇒ X)
� Coim(X −→ I ) � I ,

where the last isomorphism follows from the fact that u is a strict epimor-
phism. q.e.d.

Similarly as in Definition 1.2.18, we set:

Definition 5.1.8. Let C be a category and let X ∈ C.

(i) An isomorphism class of a strict epimorphism with source X is called a
strict quotient of X .

(ii) An isomorphism class of a strict monomorphism with target X is called
a strict subobject of X .

5.2 Generators and Representability

Recall that, unless otherwise specified, a category means a U-category. In
particular, we denote by Set the category of U-sets.

Definition 5.2.1. Let C be a category.

(i) A system of generators in C is a family of objects {Gi }i∈I of C such that
I is small and the functor C −→ Set given by X 
→∏

i∈I HomC(Gi , X) is
conservative, that is, a morphism f : X −→ Y is an isomorphism as soon
as HomC(Gi , X) −→ HomC(Gi , Y ) is an isomorphism for all i ∈ I .
If the family {Gi }i∈I consists of a single object G, G is called a generator.

(ii) A system of cogenerators (resp. a cogenerator) in C is a system of gen-
erators (resp. is a generator) in Cop.

Note that if C admits small coproducts and a system of generators {Gi }i∈I ,
then it admits a generator, namely

∐
i Gi .

Examples 5.2.2. (i) The object {pt} is a generator in Set, and a set consisting
of two elements is a cogenerator in Set.
(ii) Let A be a ring. Then A is a generator in Mod(A).
(iii) Let C be a small category. Then Ob(C) is a system of generators in C∧,
by Corollary 1.4.7.



118 5 Generators and Representability

We shall concentrate our study on categories having a generator. By revers-
ing the arrows, the reader will deduce the corresponding results for categories
having a cogenerator.

For G ∈ C, we shall denote by ϕG the functor

ϕG := HomC(G, • ) : C −→ Set .

Note that for X ∈ C, the identity element of

HomSet(HomC(G, X),HomC(G, X)) � HomC∨(G
∐

Hom (G,X)
, X)

defines a canonical morphism in C∨

G
∐

Hom (G,X) −→ X .(5.2.1)

Proposition 5.2.3. Assume that C admits finite projective limits, small co-
products and a generator G. Then:

(i) the functor ϕG = HomC(G, • ) is faithful,
(ii) a morphism f : X −→ Y in C is a monomorphism if and only if ϕG( f ) :

HomC(G, X) −→ HomC(G, Y ) is injective,
(iii) a morphism f : X −→ Y in C is an epimorphism if ϕG( f ) : HomC(G, X)

−→ HomC(G, Y ) is surjective,
(iv) for any X ∈ C the canonical morphism G

∐
Hom (G,X) −→ X defined in

(5.2.1) is an epimorphism in C,
(v) for any X ∈ C, the family of subobjects (see Definition 1.2.18) of X is a

small set.

Proof. (i) follows from Proposition 2.2.3 and the fact that HomC(G, • ) is left
exact.
(ii)–(iii) follow from (i) and Proposition 1.2.12.
(iv) By (iii) it is enough to check that HomC(G, G

∐
Hom (G,X)) −→ HomC(G, X)

is an epimorphism, which is obvious.
(v) We have a map from the family of subobjects of X to the set of subsets
of ϕG(X). Since ϕG(X) is a small set, it is enough to show that this map is
injective. For two subobjects Y1 ↪→ X and Y2 ↪→ X , Y1 ×X Y2 is a subobject
of X . Assuming that Im(ϕG(Y1) −→ ϕG(X)) = Im(ϕG(Y2) −→ ϕG(X)), we find

ϕG(Y1 ×X Y2) � ϕG(Y1)×ϕG(X) ϕG(Y2) � ϕG(Y1) � ϕG(Y2) .

Hence, Y1×X Y2
∼−→ Yi for i = 1, 2. Therefore, Y1 and Y2 are isomorphic. q.e.d.

Proposition 5.2.4. Let C be a category which admits finite projective limits
and small coproducts, and assume that any morphism which is both an epi-
morphism and a monomorphism is an isomorphism. For an object G of C, the
following conditions are equivalent.

(i) G is a generator,
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(ii) ϕG is faithful,
(iii) for any X ∈ C, there exist a small set I and an epimorphism G

∐
I −→ X .

Proof. We know by Proposition 5.2.3 that (i) ⇒ (ii) & (iii).
(ii) ⇒ (i). Let f : X −→ Y and assume that ϕG( f ) is an isomorphism. By
Proposition 1.2.12, f is a monomorphism and an epimorphism. We conclude
that f is an isomorphism by the third hypothesis.
(iii) ⇒ (ii). Let f, g : X ⇒ Y and assume that ϕG( f ) = ϕG(g). For any small
set I and any morphism u : G

∐
I −→ X , the two compositions G

∐
I −→ X ⇒ Y

are equal. If u is an epimorphism, this implies f = g. q.e.d.

Theorem 5.2.5. Let C be a category which admits small inductive limits and
let F : Cop −→ Set be a functor. Then F is representable if and only if the two
conditions below are satisfied:

(a) F commutes with small projective limits (i.e., F sends inductive limits in
C to projective limits in Set),

(b) the category CF is cofinally small. (The category CF is associated with
F ∈ C∧ and hC : C −→ C∧ as in Definition 1.2.16. In particular, its objects
are the pairs (X, u) of X ∈ C and u ∈ F(X).)

Proof. (i) Condition (a) is obviously necessary. Moreover, if F is representable,
let us say by Y ∈ C, then the category CF � CY admits a terminal object,
namely (Y, idY ).
(ii) Conversely, assume that F satisfies (a) and (b).

By hypothesis (a) and Lemma 2.1.13, CF admits small inductive limits.
By hypothesis (b), CF is cofinally small. Hence the inductive limit of the

identity functor is well-defined in CF . Denote this object of CF by X0:

X0 = lim−→
X∈CF

X .

Since X0 is a terminal object of CF by Lemma 2.1.11, X0 is a representative
of F by Lemma 1.4.10. q.e.d.

We shall give a condition in order that the condition (b) of Theorem 5.2.5
is satisfied.

Theorem 5.2.6. Let C be a category satisfying:

(i) C admits a generator G,
(ii) C admits small inductive limits,
(iii) for any X ∈ C the family of quotients of X is a small set.

Then any functor F : Cop −→ Set which commutes with small projective limits
is representable.

Remark 5.2.7. The hypotheses (iii) is not assumed in [64], but the authors
could not follow the argument of loc. cit.
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Proof. By Theorem 5.2.5, it is enough to check that the category CF is cofi-
nally small. Note that F being left exact, this category is filtrant by Proposi-
tion 3.3.13.

Set Z0 = G
∐

F(G). By the assumption on F , we have

F(Z0) � F(G)F(G) � HomSet(F(G), F(G)) .

Denote by u0 ∈ F(Z0) the image of idF(G). Hence, (Z0, u0) belongs to CF . Let
(X, u) ∈ CF and set X1 = G

∐
Hom (G,X). Then the natural morphism X1 −→ X

is an epimorphism by Proposition 5.2.3 (iv).
Consider the maps HomC(G, X) −→ HomSet(F(X), F(G)) −→ F(G) where

the second one is associated with u ∈ F(X). They define the morphism X1 =
G
∐

Hom (G,X) −→ Z0 = G
∐

F(G) and the commutative diagram in C∧

X1

��

�� Z0

��
X u

�� F .

Define X ′ as X
∐

X1
Z0 and consider the diagram below in which the square

is co-Cartesian:

X1 = G
∐

Hom (G,X) ��

����

Z0

����

''+
++
++
++
++
++
++
++

X ��

u

		���
����

����
����

����
��� X ′

u′

((
F.

Since F commutes with projective limits, the dotted arrow may be completed.
Since X1 −→ X is an epimorphism, Z0 −→ X ′ is an epimorphism by Exercise
2.22. Hence, for any (X, u) ∈ CF we have found a morphism (X, u) −→ (X ′, u′)
in CF such that there exists an epimorphism Z0�X ′. By hypothesis (iii) and
Proposition 3.2.6, CF is cofinally small. q.e.d.

Proposition 5.2.8. Let C be a category which admits small inductive limits.
Assume that any functor F : Cop −→ Set is representable if it commutes with
small projective limits. Then:

(i) C admits small projective limits,
(ii) a functor F : C −→ C ′ admits a right adjoint if and only if it commutes

with small inductive limits.

Proof. (i) Let β : I op −→ C be a projective system indexed by a small category
I . Consider the object F ∈ C∧ given by



5.3 Strictly Generating Subcategories 121

F(X) = lim←−
i

HomC(X, β(i)) .

This functor from Cop to Set commutes with small projective limits in Cop,
and hence it is representable.
(ii) For any Y ∈ C ′, the functor X 
→ HomC′(F(X), Y ) commutes with small
projective limits, and hence it is representable. q.e.d.

Proposition 5.2.9. Assume that C admits finite inductive limits, finite pro-
jective limits, and a generator. Then the family of strict quotients of an object
X ∈ C is a small set.

Proof. Recall that f : X −→ Y is a strict epimorphism if and only if the se-
quence X ×Y X ⇒ X −→ Y is exact. Hence, we may identify the family of strict
quotients of X with a family of subobjects of X × X , and this is a small set
by Proposition 5.2.3 (v).

q.e.d.

Corollary 5.2.10. Assume that the category C admits small inductive limits,
finite projective limits and a generator. Assume moreover that any epimor-
phism in C is strict. Then a functor F : Cop −→ Set is representable if and
only if it commutes with small projective limits.

Examples 5.2.11. The hypotheses of Corollary 5.2.10 are satisfied by the cat-
egory Set as well as by the category Mod(R) of modules over a ring R.

5.3 Strictly Generating Subcategories

In Sect. 5.2 we obtained representability results in a category C when assuming
either that the family of quotients of any object is small or that any epimor-
phism is strict. In this section, we shall get rid of this kind of hypotheses.

Let C be a category and F a small full subcategory of C. Then we have
the natural functor

ϕ : C −→ F∧,(5.3.1)

which associates with X ∈ C the functor F � Y 
→ HomC(Y, X). By the
Yoneda Lemma, we have

HomF∧(ϕ(X), ϕ(Y )) � HomC(X, Y )

for X ∈ F and Y ∈ C.
By the definition, ϕ is conservative if and only if Ob(F) is a system of

generators. If moreover C admits finite projective limits, then ϕ is faithful by
Proposition 2.2.3.
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Definition 5.3.1. Let C be a category and F an essentially small full sub-
category of C. We say that F is strictly generating in C if the functor ϕ in
(5.3.1) is fully faithful.

Note that if F is a strictly generating full subcategory, then Ob(F) is a
system of generators.

Lemma 5.3.2. Let C be a category, and let F and G be small full subcategories
of C. Assume that F ⊂ G and F is strictly generating. Then G is also strictly
generating.

Proof. Let ϕF : C −→ F∧ and ϕG : C −→ G∧ be the natural functors. Then ϕF
is fully faithful and it decomposes as

C ϕG−−→ G∧ ι−→ F∧.

Hence ϕG is faithful. Let us show that the map

HomC(X, Y ) −→ HomG∧(ϕG(X), ϕG(Y ))

is surjective for any X , Y ∈ C. Let ξ ∈ HomG∧(ϕG(X), ϕG(Y )). Since ϕF is
fully faithful, there exists f ∈ HomC(X, Y ) such that

ι(ξ) = ϕF ( f ) as elements of HomF∧(ϕF (X), ϕF (Y )).(5.3.2)

Let us show that ξ = ϕG( f ). It is enough to show that, for any Z ∈ G, the
map induced by ξ

ξZ : HomC(Z , X)−−→HomC(Z , Y )

coincides with the map v 
→ f ◦ v.
Let v ∈ HomC(Z , X). Then for any S ∈ F and s : S −→ Z :

ξZ (v) ◦ s = ξS(v ◦ s) = ι(ξ)S(v ◦ s) = f ◦ v ◦ s ,

where the last equality follows from (5.3.2). Hence ϕF (ξZ (v)) = ϕF ( f ◦ v) as
elements of HomF∧(ϕF (Z), ϕF (Y )), and the faithfulness of ϕF implies ξZ (v) =
f ◦ v. q.e.d.

Lemma 5.3.3. Let C be a category which admits small inductive limits and
let F be a small full subcategory of C. Then the functor ϕ : C −→ F∧ admits a
left adjoint ψ : F∧ −→ C and for F ∈ F∧, we have

ψ(F) � lim−→
(Y−→F)∈FF

Y .
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Proof. For X ∈ C and F ∈ F∧, we have the chain of isomorphisms

HomC( lim−→
(Y−→F)∈FF

Y, X) � lim←−
(Y−→F)∈FF

HomC(Y, X)

� lim←−
(Y−→F)∈FF

HomF∧(ϕ(Y ), ϕ(X))

� HomF∧( lim−→
(Y−→F)∈FF

ϕ(Y ), ϕ(X)) ,

and lim−→
(Y−→F)∈FF

ϕ(Y ) � F by Proposition 2.6.3. q.e.d.

Proposition 5.3.4. Let C be a category which admits small inductive limits
and let F be a small strictly generating full subcategory of C. Let E denote
the full subcategory of F∧ consisting of objects F ∈ F∧ such that the functor
C � X 
→ HomF∧(ϕ(X), F) ∈ Set commutes with small projective limits.
Then C is equivalent to E by ϕ.

Proof. It is obvious that ϕ sends C to E . Hence, it is enough to show that any
F ∈ E is isomorphic to the image of an object of C by ϕ. Let ψ denote the left
adjoint to ϕ constructed in Lemma 5.3.3. By Proposition 4.1.4, it is enough
to prove the isomorphism

HomF∧(ϕψ(G), F) ∼−→HomF∧(G, F)

for any G ∈ F∧ and F ∈ E . We have the chain of isomorphisms

HomF∧(ϕψ(G), F) � HomF∧(ϕ( lim−→
(X−→G)∈FG

X), F)

� lim←−
(X−→G)∈FG

HomF∧(ϕ(X), F)

� HomF∧( lim−→
(X−→G)∈FG

ϕ(X), F)

� HomF∧(G, F) ,

where the second isomorphism follows from the hypothesis F ∈ E and the last
isomorphism follows from Proposition 2.6.3 (i). q.e.d.

Proposition 5.3.5. Let C be a category which admits small inductive limits
and assume that there exists a small strictly generating full subcategory of C.
Let F : Cop −→ Set be a functor. If F commutes with small projective limits,
then F is representable.

Proof. Let F be a small strictly generating full subcategory of C. Let F̃ ∈ F∧
be the restriction of F to F . For X ∈ C, we have
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HomF∧(ϕ(X), F̃) � HomF∧( lim−→
(Y−→X)∈FX

ϕ(Y ), F̃)

� lim←−
(Y−→X)∈FX

HomF∧(ϕ(Y ), F̃)

� lim←−
(Y−→X)∈FX

F(Y ) � F( lim−→
(Y−→X)∈FX

Y ) .

Since ϕ is fully faithful, we have lim−→
(Y−→X)∈FX

Y � ψϕ(X) � X . Hence, we obtain

F(X) ∼−→HomF∧(ϕ(X), F̃) for any X ∈ C .(5.3.3)

It follows that the functor C � X 
→ HomF∧(ϕ(X), F̃) sends small inductive
limits to projective limits, and by Proposition 5.3.4 there exists X0 ∈ C such
that F̃ � ϕ(X0). Then (5.3.3) implies that

F(X) � HomF∧(ϕ(X), F̃)
� HomF∧(ϕ(X), ϕ(X0)) � HomC(X, X0)

for any X ∈ C. q.e.d.

We shall give several criteria for a small full subcategory F to be strictly
generating.

Theorem 5.3.6. Let C be a category satisfying the conditions (i)–(iii) below:

(i) C admits small inductive limits and finite projective limits,
(ii) small filtrant inductive limits are stable by base change (see Defini-

tion 2.2.6),
(iii) any epimorphism is strict.

Let F be an essentially small full subcategory of C such that

(a) Ob(F) is a system of generators,
(b) F is closed by finite coproducts in C.

Then F is strictly generating.

Proof. We may assume from the beginning that F is small.
(i) As already mentioned, the functor ϕ in (5.3.1) is conservative and faithful.
(ii) By Proposition 1.2.12, a morphism f in C is an epimorphism as soon as
ϕ( f ) is an epimorphism.
(iii) Let us fix X ∈ C. For a small filtrant inductive system {Yi }i∈I in CX , we
have

lim−→
i

Coim(Yi −→ X) ∼−→Coim(lim−→
i

Yi −→ X) .(5.3.4)
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Indeed, setting Y∞ = lim−→
i

Yi , we have

lim−→
i

(Yi ×X Yi ) � lim−→
i1, i2

(Yi1 ×X Yi2) � lim−→
i1

lim−→
i2

(Yi1 ×X Yi2)

� lim−→
i1

(Yi1 ×X Y∞) � Y∞ ×X Y∞ .

Here the first isomorphism follows from Corollary 3.2.3 (ii), and the last two
isomorphisms follow from hypothesis (ii). Hence we obtain

Coim(Y∞ −→ X) � Coker(Y∞ ×X Y∞ ⇒ Y∞)
� Coker

(
lim−→

i

(Yi ×X Yi ) ⇒ lim−→
i

Yi
)

� lim−→
i

Coker(Yi ×X Yi ⇒ Yi )

� lim−→
i

Coim(Yi −→ X) .

(iv) For Z ∈ FX , set

η(Z) = Coim(Z −→ X) := Coker(Z ×X Z ⇒ Z) .

Then η defines a functor FX −→ CX . For any Y ∈ C, we have

HomC(η(Z), Y ) � Ker
(
HomC(Z , Y ) ⇒ HomC(Z ×X Z , Y )

)
.

We have HomC(Z , Y ) � HomF∧(ϕ(Z), ϕ(Y )) by the Yoneda Lemma. On
the other hand, the map HomC(Z ×X Z , Y ) −→ HomF∧(ϕ(Z ×X Z), ϕ(Y )) �
HomF∧(ϕ(Z)×ϕ(X)ϕ(Z), ϕ(Y )) is injective since ϕ is faithful. Hence we obtain

HomC(η(Z), Y )
� Ker

(
HomF∧(ϕ(Z), ϕ(Y )) ⇒ HomF∧(ϕ(Z)×ϕ(X) ϕ(Z), ϕ(Y ))

)
� HomF∧

(
Coker(ϕ(Z)×ϕ(X) ϕ(Z) ⇒ ϕ(Z)), ϕ(Y )

)
� HomF∧

(
Im(ϕ(Z) −→ ϕ(X)), ϕ(Y )

)
.

(v) Let us denote by I the set of finite subsets of Ob(FX ), ordered by inclusion.
Regarding I as a category, it is small and filtrant. For A ∈ I , ξ(A) := �Z∈A Z
belongs to FX by (b), and ξ defines a functor I −→ FX . Then

lim−→
A∈I

ϕ(ξ(A)) −→ ϕ(X) is an epimorphism .(5.3.5)

Indeed, for any S ∈ F and u ∈ ϕ(X)(S) = HomC(S, X), u is in the image of
ϕ(ξ(A))(S) with A = {(S, u)}.
(vi) Since lim−→

A∈I

ϕ(ξ(A)) −→ ϕ(X) factors through ϕ(lim−→
A∈I

ξ(A)), the morphism

ϕ(lim−→
A∈I

ξ(A)) −→ ϕ(X) is an epimorphism, and (ii) implies that lim−→
A∈I

ξ(A) −→ X
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is an epimorphism, hence a strict epimorphism by the hypothesis. Proposi-
tion 5.1.5 (i) implies Coim(lim−→

A∈I

ξ(A) −→ X) � X . By (iii), we have

lim−→
A∈I

η(ξ(A)) = lim−→
A∈I

Coim(ξ(A) −→ X)

� Coim(lim−→
A∈I

ξ(A) −→ X) � X .

(vii) For any Y ∈ C, we obtain the chain of isomorphisms

HomC(X, Y ) � HomC(lim−→
A∈I

η(ξ(A)), Y )

� lim←−
A∈I

HomC(η(ξ(A)), Y )

� lim←−
A∈I

HomF∧(Im(ϕ(ξ(A)) −→ ϕ(X)), ϕ(Y ))

� HomF∧
(
lim−→
A∈I

(
Im(ϕ(ξ(A)) −→ ϕ(X))

)
, ϕ(Y )

)
� HomF∧(ϕ(X), ϕ(Y )) ,

where the last isomorphism follows from (5.3.5). q.e.d.

Remark 5.3.7. See Exercises 5.5–5.8 which show that it is not possible to drop
conditions (ii), (iii) or (b) in Theorem 5.3.6.

Theorem 5.3.8. Let C be a category and consider the conditions below:

(i) C admits small inductive limits and finite projective limits,
(ii) small inductive limits in C are stable by base change,
(ii)’ small filtrant inductive limits in C are stable by base change.

Let us consider the conditions on an essentially small full subcategory F of C:

(a) Ob(F) is a system of generators,
(b) the inclusion functor F ↪→ C is right exact.

Assume either (i), (ii) and (a) or (i), (ii)’, (a) and (b). Then F is strictly
generating.

Proof. We already know that ϕ : C −→ F∧ is conservative and faithful.
Assuming (i), let ψ : F∧ −→ C be the functor

F∧ � F 
→ lim−→
(X−→F)∈FF

X ∈ C .

Then ψ is left adjoint to ϕ by Lemma 5.3.3. By Proposition 1.5.6 (i), it is
enough to show that ψ ◦ ϕ −→ idC is an isomorphism.

(A) First, we assume (i), (ii) and (a).
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(A1) We begin by proving that⎧⎪⎨⎪⎩
for any X ∈ C and any small inductive system {Xi }i∈I in FX , if
lim−→

i

ϕ(Xi ) −→ ϕ(X) is an isomorphism, then lim−→
i

Xi −→ X is an iso-

morphism.

(5.3.6)

Set X0 = lim−→
i

Xi ∈ C and let u : X0 −→ X be the canonical morphism. Since the

composition lim−→
i

ϕ(Xi ) −→ ϕ(X0) −→ ϕ(X) is an isomorphism, ϕ(u) : ϕ(X0) −→
ϕ(X) is an epimorphism. Since ϕ is conservative by (a), it remains to show
that ϕ(u) is a monomorphism.

For i1, i2 ∈ I , the two compositions Xi1 ×X Xi2 −→ Xiν −→ X0 (ν = 1, 2)
give two morphisms ξ1, ξ2 : Xi1 ×X Xi2 ⇒ X0. Then we have a diagram

ϕ(Xi1 ×X Xi2)
�� �� lim−→

i

ϕ(Xi ) ��

∼
��

ϕ(X0) �� ϕ(X).

Hence, the two arrows ϕ(Xi1 ×X Xi2) ⇒ lim−→
i

ϕ(Xi ) coincide, which implies

ϕ(ξ1) = ϕ(ξ2). Thus we obtain ξ1 = ξ2. It means that

Xi1 ×X0 Xi2 −→ Xi1 ×X Xi2

is an isomorphism for any i1, i2 ∈ I .
On the other hand, the condition (ii) implies that

lim−→
i1,i2

(Xi1 ×X0 Xi2) � lim−→
i1

(Xi1 ×X0 lim−→
i2

Xi2)

� (lim−→
i1

Xi1)×X0 (lim−→
i2

Xi2) ,
(5.3.7)

and similarly,

lim−→
i1,i2

(Xi1 ×X Xi2) � (lim−→
i1

Xi1)×X (lim−→
i2

Xi2) .(5.3.8)

Hence, we obtain the isomorphisms

lim−→
i1,i2

(Xi1 ×X0 Xi2) � X0 ,

lim−→
i1,i2

(Xi1 ×X Xi2) � X0 ×X X0 .

Hence, X0 −→ X0 ×X X0 is an isomorphism, and this means that X0 −→ X is a
monomorphism by Exercise 2.4.

We have proved that ϕ(X0) −→ ϕ(X) is a monomorphism and this com-
pletes the proof of (5.3.6).
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(A2) Finally we shall show that ψ ◦ ϕ −→ idC is an isomorphism. For any
X ∈ C, we have lim−→

(Y−→X)∈FX

ϕ(Y ) ∼−→ϕ(X) by Proposition 2.6.3 (i), and (5.3.6)

implies that ψϕ(X) � lim−→
(Y−→X)∈FX

Y � X .

(B) Now, we assume (i), (ii)’, (a) and (b). The proof is similar to the former
case (A). For X ∈ C, FX is filtrant by (b). Hence, in step (A2), we only
need (5.3.6) when I is filtrant. On the other hand, (5.3.6) in the filtrant case
follows from (ii)’ by the same argument as in (A1). Note that, in case (A),
the condition (ii) is used only in proving (5.3.7) and (5.3.8). q.e.d.

Theorem 5.3.9. Let C be a category satisfying:

(i) C admits small inductive limits and finite projective limits,
(ii) small filtrant inductive limits in C are stable by base change,
(iii) C admits a generator.

Then any functor F : Cop −→ Set which commutes with small projective limits
is representable.

Proof. Let ∅C be an initial object of C and let G be a generator of C. We con-
struct by induction an increasing sequence {Fn}n≥0 of small full subcategories
as follows.

Ob(F0) = {∅C, G}
Ob(Fn) = Ob(Fn−1)

⊔{Y1 �X Y2 ; X −→ Y1 and X −→ Y2 are morphisms

in Fn−1} for n > 0.

Let F be the full subcategory of C with Ob(F) =
⋃

n Ob(Fn). Then F is a
small category, Ob(F) is a system of generators, and F is closed by finite in-
ductive limits. Hence, Proposition 3.3.3 implies that F −→ C is right exact, and
F is strictly generating by Theorem 5.3.8. It remains to apply Corollary 5.3.5.

q.e.d.

Note that if small filtrant inductive limits in C are exact, then such limits
are stable by base change by Lemma 3.3.9.

Exercises

Exercise 5.1. Let C be one of the categories C = Set, C = Mod(R) for a ring
R, or C = D∧ for a small category D. Prove that any morphism in C is strict.
Also prove that, when C = D∧ and f is a morphism in C, Im f is the functor
D � Z 
→ Im( f (Z)).

Exercise 5.2. Assume that a category C admits finite projective limits and
finite inductive limits. Let f : X −→ Y be a morphism in C. Prove the isomor-
phism HomC

(
Coim( f ), Z

) � HomC∧
(
Im(hC( f )),hC(Z)

)
for any Z ∈ C.
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Exercise 5.3. Let C be a category which admits finite inductive limits and
finite projective limits. Consider the following conditions on C:

(a) any morphism is strict,
(b) any epimorphism is strict,
(c) for any morphism f : X −→ Y , Coim f −→ Y is a monomorphism,
(d) any morphism which is both an epimorphism and a monomorphism is an

isomorphism,
(e) for any strict epimorphisms f : X −→ Y and g : Y −→ Z , their composition

g ◦ f is a strict epimorphism.

Prove that (a) ⇒ (b) ⇔ (c) + (d) and that (c) ⇔ (e).
(Hint: (e) ⇒ (c). Adapt the proof of Proposition 5.1.7.
(c) ⇒ (e). Consider W = Coim(g ◦ f ). Using the fact that W −→ Z is a
monomorphism, deduce that Y ×W Y −→ Y ×Z Y is an isomorphism.)

Exercise 5.4. Let C be a category which admits finite inductive limits and
finite projective limits. Let f : X −→ Y be the composition X

g−→ Z
h−→ Y where

g is a strict epimorphism. Prove that h factors uniquely through Coim f −→ Y
such that the composition X −→ Z −→ Coim f coincides with the canonical
morphism.

Exercise 5.5. Let k be a field and set F := Modf(k), the full subcategory of
Mod(k) consisting of finite-dimensional vector spaces. For V ∈ Mod(k), set
V ∗ = Hom k(V, k).
(i) Prove that the functor V 
→ V ∗ induces an equivalence of categories F �
Fop.
(ii) Let V ∈ Mod(k). Prove the isomorphism lim←−

(V−→W)∈FV

W � V ∗∗.

(iii) Prove that F is a strictly generating full subcategory of Mod(k).
(iv) Prove that Mod(k)op and Fop satisfy all hypotheses of Theorem 5.3.6
except condition (ii).
(v) Prove that the functor ϕ : Mod(k)op −→ (Fop)∧ defined in (5.3.1) decom-
poses as Mod(k)op

∗−→ Mod(k) −→ F∧ ∼−→(Fop)∧.
(vi) Prove that the functor ϕ : Mod(k)op −→ (Fop)∧ is not fully faithful.

Exercise 5.6. Let k be a field and denote by F the full subcategory of Mod(k)
consisting of the single object {k}. Prove that Mod(k) −→ F∧ is not fully
faithful.

Exercise 5.7. Let A be a ring and denote by F the full subcategory of
Mod(A) consisting of the two objects {A, A⊕2}. Prove that Mod(A) −→ F∧
is fully faithful.

Exercise 5.8. Let k be a field, let A = k[x, y] and let C = Mod(A). Let a
denote the ideal a = Ax + Ay. (See also Exercises 8.27–8.29.) Let C0 be the full
subcategory of C consisting of objects X such that there exists an epimorphism
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a⊕I �X for some small set I . Let F be the full subcategory of C0 consisting
of the objects

{
a⊕n ; n ≥ 0

}
. Let G be the full subcategory of C consisting of

the objects
{

A⊕n ; n ≥ 0
}
.

(i) Prove that F and G are equivalent.
(ii) Prove that the functor ϕ : C0 −→ F∧ given by

C0 � X 
→ (F � Y 
→ HomC(Y, X))

decomposes as C0
ξ−→ Mod(A)

η−→ F∧ where ξ(X) = Hom A(a, X) and
η(M)(Y ) = Hom A(Y, a) ⊗A M for Y ∈ F . (In other words, η(M) ∈ F∧ is
the functor F � a⊕n 
→ M⊕n.)
(iii) Prove that η is fully faithful. (Hint: use (i) and Theorem 5.3.6.)
(iv) Prove that ϕ is not fully faithful.
(v) Prove that (C0,F) satisfies all the conditions in Theorem 5.3.6 except
condition (iii).
(vi) Prove that any functor F : Cop

0 −→ Set commuting with small projective
limits is representable. (Hint: use Theorem 5.2.6 or Theorem 5.3.9.)

Exercise 5.9. Let C be a category with a generator and satisfying the con-
ditions (i) and (ii) in Theorem 5.3.8. Prove that for any X, Y ∈ C, there
exists an object Hom (X, Y ) in C which represents the functor C � Z 
→
HomC(Z × X, Y ).

Exercise 5.10. (i) Let Arr be the category given in Notations 1.2.8 (iii),
with two objects a and b and one morphism from a to b. Prove that Arr
satisfies the conditions (i) and (ii) in Theorem 5.3.8, and b is a generator.
(ii) Conversely, let C be a category which satisfies the conditions (i) and (ii)
in Theorem 5.3.8. Moreover assume that there exists a generator G such that
EndC(G) = {idG}. Prove that C is equivalent to either Set, or Arr or Pt.
(Hint: apply Theorem 5.3.8.)

Exercise 5.11. Prove that a functor F : Set −→ Set is representable if F
commutes with small projective limits.
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Indization of Categories

In this chapter we develop the theory of ind-objects. The basic reference is [64]
where most, if not all, the results which appear here were already obtained
(see also [3]). Apart from loc. cit., and despite its importance, it seems difficult
to find in the literature a concise exposition of this subject. This chapter is
an attempt in this direction.

6.1 Indization of Categories and Functors

Recall that a universe U is given. When we consider a category, it means a
U-category and Set is the category of U-sets (see Convention 1.4.1). As far
as this has no implications, we will skip this point.

Recall that for a category C, inductive limits in C∧ := Fct(Cop,Set) are
denoted by “lim−→”.

Definition 6.1.1. (i) Let C be a U-category. An ind-object in C is an object
A ∈ C∧ which is isomorphic to “lim−→”α for some functor α : I −→ C with
I filtrant and U-small.

(ii) We denote by IndU (C) (or simply Ind(C) if there is no risk of confusion)
the full big subcategory of C∧ consisting of ind-objects, and call it the in-
dization of C. We denote by ιC : C −→ Ind(C) the natural functor (induced
by hC).

(iii) Similarly, a pro-object in C is an object B ∈ C∨ which is isomorphic to
“lim←−” β for some functor β : I op −→ C with I filtrant and small.

(iv) We denote by ProU (C) (or simply Pro(C)) the full big subcategory of C∨
consisting of pro-objects.

Lemma 6.1.2. The categories Ind(C) and Pro(C) are U-categories.
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Proof. It is enough to treat Ind(C). Let A, B ∈ Ind(C). We may assume that
A � “lim−→”

i∈I

α(i) and B � “lim−→”
j∈J

β( j) for small and filtrant categories I and J .

In this case HomC(A, B) is isomorphic to a small set by (2.6.4). q.e.d.

We may replace “filtrant and small” by “filtrant and cofinally small” in
the above definition.

There is an equivalence

Pro(C) � (Ind(Cop))op .

Hence, we may restrict our study to ind-objects.

Example 6.1.3. Let k be a field and let V denote an infinite-dimensional k-
vector space. Consider the contravariant functor on Mod(k), W 
→ V ⊗
Hom k(W, k). It defines an ind-object of Mod(k) which is not in Mod(k). No-
tice that this functor is isomorphic to the functor V 
→ “lim−→”

V ′⊂V

V ′ where V ′

ranges over the filtrant set of finite-dimensional vector subspaces of V .

Notation 6.1.4. We shall often denote by the capital letters A, B, C , etc. ob-
jects of C∧ and as usual by X, Y, Z objects of C.

Recall that for A ∈ C∧, we introduced the category CA and the forgetful
functor jA : CA −→ C, and proved the isomorphism A � “lim−→” jA (see Proposi-
tion 2.6.3).

Proposition 6.1.5. Let A ∈ C∧. Then A ∈ Ind(C) if and only if CA is filtrant
and cofinally small.

Proof. This follows immediately from Proposition 2.6.3 and Proposition 3.2.2.
q.e.d.

Applying Definitions 3.3.1 and 3.3.14, we get:

Corollary 6.1.6. The functor ιC : C −→ Ind(C) is right exact and right small.

Proposition 6.1.7. Assume that a category C admits finite inductive limits.
Then Ind(C) is the full subcategory of C∧ consisting of functors A : Cop −→ Set
such that A is left exact and CA is cofinally small.

Proof. Apply Propositions 3.3.13 and 6.1.5. q.e.d.

Theorem 6.1.8. Let C be a category. The category Ind(C) admits small fil-
trant inductive limits and the natural functor Ind(C) −→ C∧ commutes with
such limits.

Similarly Pro(C) admits small filtrant projective limits and the natural functor
Pro(C) −→ C∨ commutes with such limits.
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Proof. Let α : I −→ Ind(C) be a functor with I small and filtrant and let
A = “lim−→” α ∈ C∧. It is enough to show that A belongs to Ind(C). We shall
use Proposition 6.1.5.

(i) CA is filtrant. By Lemma 3.1.2, it is enough to show that for any fi-
nite category J and any functor β : J −→ CA, there exists Z ∈ CA such that
lim←−HomCA

(β, Z) �= ∅. For any X ∈ CA, we have

Hom (C∧)A
(X, A) � lim−→

i∈I

Hom (C∧)A
(X, α(i))

� lim−→
i∈I

lim−→
Y∈Cα(i)

HomCA
(X, Y ) .

Since I and Cα(i) are filtrant, lim−→
i∈I

and lim−→
Y∈Cα(i)

commute with finite projective

limits by Theorem 3.1.6. Hence, we obtain

{pt} � lim←−
j∈J

Hom (C∧)A
(β( j), A)

� lim−→
i∈I

lim−→
Y∈Cα(i)

lim←−
j∈J

HomCA
(β( j), Y ) .

Hence, there exist i ∈ I and Y ∈ Cα(i) such that lim←−HomCA
(β, Y ) �= ∅.

(ii) CA is cofinally small. By Proposition 3.2.6, for any i ∈ I , there exists
a small subset Si of Ob(Cα(i)) such that for any X ∈ Cα(i) there exists a
morphism X −→ Y with Y ∈ Si . Let ϕi : Cα(i) −→ CA be the canonical functor.
Then S =

⋃
i∈I ϕi (Si ) is a small subset of Ob(CA) and for any X ∈ CA there

exists a morphism X −→ Y with Y ∈ S. q.e.d.

Proposition 6.1.9. Let F : C −→ C ′ be a functor. There exists a unique func-
tor I F : Ind(C) −→ Ind(C ′) such that:

(i) the restriction of I F to C is F,
(ii) I F commutes with small filtrant inductive limits, that is, if α : I −→

Ind(C) is a functor with I small and filtrant, then we have

I F(“lim−→” α) ∼−→ “lim−→”(I F ◦ α) .

The proof goes as the one of Proposition 2.7.1 and we do not repeat it. The
functor I F is given by

I F(A) = “lim−→”
(U−→A)∈CA

F(U) for A ∈ Ind(C) .

Proposition 6.1.9 (i) may be visualized by the commutative diagram below:

C F ��

��

C ′

��
Ind(C) I F �� Ind(C ′).
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Recall that if A � “lim−→”
i

α(i), B � “lim−→”
j

β( j), then (see (2.6.4))

Hom Ind(C)(A, B) � lim←−
i

lim−→
j

HomC(α(i), β( j)) .

The map I F : Hom Ind(C)(A, B) −→ Hom Ind(C′)(I F(A), I F(B)) is given by

lim←−
i

lim−→
j

HomC(α(i), β( j)) −→ lim←−
i

lim−→
j

HomC′(F(α(i)), F(β( j))) .(6.1.1)

Remark that if C is small, the diagram below commutes.

Ind(C) I F ��

��

Ind(C ′)

��
C∧ F̂ �� C ′∧ .

(The functor F̂ is defined in Proposition 2.7.1 and Notation 2.7.2.)

Proposition 6.1.10. Let F : C −→ C ′. If F is faithful (resp. fully faithful), so
is I F.

Proof. This follows from (6.1.1). q.e.d.

Proposition 6.1.11. Let F : C −→ C ′ and G : C ′ −→ C ′′ be two functors. Then
I (G ◦ F) � I G ◦ I F.

Proof. The proof is obvious. q.e.d.

Let C and C ′ be two categories. By Proposition 6.1.9, the projection func-
tors C × C ′ −→ C and C × C ′ −→ C ′ define the functor

θ : Ind(C × C ′) −→ Ind(C)× Ind(C ′)(6.1.2)

Proposition 6.1.12. The functor θ in (6.1.2) is an equivalence.

Proof. A quasi-inverse to θ is constructed as follows. To A ∈ Ind(C) and
A′ ∈ Ind(C ′), associate “lim−→”

((X−→A),(X ′−→A′))∈CA×CA′

(X, X ′). Since CA×CA′ is cofinally

small and filtrant, it belongs to Ind(C × C ′). q.e.d.

Proposition 6.1.13. Let α : I −→ C and β : J −→ C be functors with I and
J small and filtrant. Let f : “lim−→” α −→ “lim−→” β be a morphism in Ind(C).
Then there exist a small and filtrant category K , cofinal functors pI : K −→ I ,
pJ : K −→ J and a morphism of functors ϕ : α ◦ pI −→ β ◦ pJ making the
diagram below commutative
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“lim−→” (α ◦ pI )
“lim−→”ϕ

��

∼
��

“lim−→” (β ◦ pJ )

∼
��

“lim−→” α f �� “lim−→” β.

(6.1.3)

Proof. Set A = “lim−→” α, B = “lim−→” β, and denote by α̃ : I −→ CA, β̃ : J −→ CB

and f̃ : CA −→ CB the functors induced by α, β and f . Consider the category

K := M [I
f̃ ◦α̃−−→ CB

β̃←− J ] (see Definition 3.4.1).
The functor β̃ is cofinal by Proposition 2.6.3 (ii), and the categories I and

J are small and filtrant by the hypotheses. Proposition 3.4.5 then implies that
the category K is filtrant, cofinally small and the projection functors pI and
pJ from K to I and J are cofinal.

We may identify K with the category whose objects are the triplets (i, j, g)
of i ∈ I, j ∈ J and g : α(i) −→ β( j) such that the diagram below commutes

α(i)
g ��

��

β( j)

����
“lim−→” α f �� “lim−→” β,

and the morphisms are the natural ones. Then g defines a morphism of func-
tors ϕ : α ◦ pI −→ β ◦ pJ such that the diagram (6.1.3) commutes. q.e.d.

Corollary 6.1.14. Let f : A −→ B be a morphism in Ind(C). Then there exist
a small and filtrant category I and a morphism ϕ : α −→ β of functors from I
to C such that A � “lim−→” α, B � “lim−→” β and f = “lim−→”ϕ.

We shall extend this result to the case of a pair of parallel arrows. A more
general statement for finite diagrams will be given in Sect. 6.4.

Corollary 6.1.15. Let f, g : A ⇒ B be two morphisms in Ind(C). Then there
exist a small and filtrant category I and morphisms ϕ,ψ : α ⇒ β of functors
from I −→ C such that A � “lim−→” α, B � “lim−→” β, f = “lim−→” ϕ and g =
“lim−→” ψ.

Proof. Let I and J be small filtrant categories and let α : I −→ C and β : J −→ C
be two functors such that A � “lim−→” α and B � “lim−→” β. Denote by α̃ : I −→
C×C the functor i 
→ α(i)×α(i), and similarly with β̃. Then (A, A) � “lim−→” α̃

and (B, B) � “lim−→” β̃.
By Proposition 6.1.12, the morphism ( f, g) : A × A −→ B × B in Ind(C)×

Ind(C) defines a morphism in Ind(C × C). We still denote this morphism by
( f, g) and apply Proposition 6.1.13. We find a small and filtrant category K ,
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functors pI : K −→ I , pJ : K −→ J and a morphism of functors (ϕ,ψ) from
α̃ ◦ pI to β̃ ◦ pJ such that ( f, g) = “lim−→” (ϕ,ψ). It follows that f = “lim−→” ϕ

and g = “lim−→” ψ . q.e.d.

Proposition 6.1.16. (i) Assume that for any pair of parallel arrows in C,
its kernel in C∧ belongs to Ind(C). Then, for any pair of parallel arrows
in Ind(C), its kernel in C∧ is its kernel in Ind(C).

(ii) Let J be a small set and assume that the product in C∧ of any family
indexed by J of objects of C belongs to Ind(C). Then, for any family
indexed by J of objects of Ind(C), its product in C∧ is its product in
Ind(C).

Proof. (i) Let f, g : A ⇒ B be a pair of parallel arrows in Ind(C). With the
notations of Corollary 6.1.14, we may assume that A = “lim−→” α, B = “lim−→” β

and there exist morphisms of functors ϕ,ψ : α ⇒ β such that f = “lim−→” ϕ

and g = “lim−→” ψ . Let γ denote the kernel of (ϕ,ψ). Then “lim−→” γ is a kernel
of ( f, g) in C∧ and belongs to Ind(C).
(ii) Let A j ∈ Ind(C), j ∈ J . For each j ∈ J , there exist a small and filtrant
category I j and a functor α j : I j −→ C such that A j � “lim−→” α j . Define the
small filtrant category K =

∏
j∈J I j and denote by π j : K −→ I j the natural

functor.
Using Corollary 3.1.12 we get the isomorphisms in C∧∏

j∈J
A j � ∏

j∈J
“lim−→”

i∈I j

α j (i) � “lim−→”
k∈K

∏
j∈J

α j (π j (k)) .

q.e.d.

Corollary 6.1.17. (i) Assume that the category C admits finite projective
limits. Then the category Ind(C) admits finite projective limits. Moreover,
the natural functors C −→ Ind(C) and Ind(C) −→ C∧ are left exact.

(ii) Assume that the category C admits small projective limits. Then the
category Ind(C) admits small projective limits and the natural functors
C −→ Ind(C) and Ind(C) −→ C∧ commute with small projective limits.

Proposition 6.1.18. (i) Assume that the category C admits cokernels, that
is, the cokernel of any pair of parallel arrows exists in C. Then Ind(C)
admits cokernels.

(ii) Assume that C admits finite coproducts. Then Ind(C) admits small co-
products.

(iii) Assume that the category C admits finite inductive limits. Then Ind(C)
admits small inductive limits.

Proof. (i) Let f, g : A ⇒ B be arrows in Ind(C). With the notations of
Corollary 6.1.14, we may assume that A = “lim−→”α, B = “lim−→” β and
there exist morphisms of functors ϕ,ψ : α ⇒ β such that f = “lim−→” ϕ and
g = “lim−→” ψ . Let λi denote the cokernel of (α(i), β(i)) and let L ∈ Ind(C).



6.1 Indization of Categories and Functors 137

Then HomC∧(λ(i), L) is the kernel of HomC∧(β(i), L) ⇒ HomC∧(α(i), L). Ap-
plying the left exact functor lim←− , we conclude that “lim−→” λ is a cokernel of
(“lim−→” ϕ, “lim−→” ψ).

(ii) The proof that Ind(C) admits finite coproducts is similar to the proof in
(i). The general case follows by Lemma 3.2.9.
(iii) follows from (i), (ii) and the same lemma. q.e.d.

Recall that if C admits cokernels (resp. finite coproducts, resp. finite in-
ductive limits), then the functor ιC : C −→ Ind(C) commutes with such limits
by Corollary 6.1.6 and Proposition 3.3.2.

Proposition 6.1.19. Assume that C admits finite inductive limits and finite
projective limits. Then small filtrant inductive limits are exact in Ind(C).

Proof. It is enough to check that small filtrant inductive limits commute with
finite projective limits in Ind(C). Since the embedding Ind(C) −→ C∧ commutes
with small filtrant inductive limits and with finite projective limits, this fol-
lows from the fact that small filtrant inductive limits are exact in C∧ (see
Exercise 3.2). q.e.d.

Remark 6.1.20. (i) The natural functor Ind(C) −→ C∧ commutes with filtrant
inductive limits (Theorem 6.1.8), but it does not commute with inductive
limits in general. Indeed, it does not commute with finite coproducts (see
Exercise 6.3). Hence, when writing “lim−→” for an inductive system indexed by
a non filtrant category I , the limit should be understood in C∧.
(ii) If C admits finite inductive limits, then Ind(C) admits small inductive lim-
its and ιC : C −→ Ind(C) commutes with finite inductive limits (Corollary 6.1.6
and Proposition 6.1.18) but if C admits small filtrant inductive limits, ιC does
not commute with such limits in general. We may summarize these properties
by the table below. Here, “◦” means that the functors commute, and “×”
they do not.

C −→ Ind(C) Ind(C) −→ C∧

finite inductive limits ◦ ×
finite coproducts ◦ ×

small filtrant inductive limits × ◦
small coproducts × ×

small inductive limits × ×

Since the definition of Ind(C) makes use of the notion of being small, it depends
on the choice of the universe. However, the result below tells us that when
replacing a universe U with a bigger one V, the category of ind-objects of C
in U is a full subcategory of that of ind-objects of C in V.
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More precisely, consider two universes U and V with U ⊂ V, and let C
denote a U-category.

Proposition 6.1.21. The natural functor IndU (C) −→ IndV(C) is fully faith-
ful. If C admits finite inductive limits, then this functor commutes with U-small
inductive limits. If C admits finite (resp. U-small) projective limits, then this
functor commutes with such projective limits.

Proof. The first statement follows from isomorphisms (2.6.4). The functor
IndU (C) −→ IndV(C) commutes with finite inductive limits as seen in the proof
of Proposition 6.1.18. Since it commutes with U-small filtrant inductive lim-
its, it commutes with U-small inductive limits. Recall that the natural functor
C∧U −→ C∧V commutes with U-small projective limits (see Remark 2.6.5). Then
the functor IndU (C) −→ IndV(C) commutes with finite (resp. U-small projec-
tive) limits by Proposition 6.1.16 if C admits such limits. q.e.d.

6.2 Representable Ind-limits

Let α : I −→ C be a functor with I small and filtrant. We shall study under
which conditions the functor “lim−→” is representable in C.

For each i ∈ I , let us denote by ρi : α(i) −→ “lim−→” α the natural functor. It
satisfies

ρ j ◦ α(s) = ρi for any s : i −→ j .(6.2.1)

Proposition 6.2.1. Let α : I −→ C be a functor with I small and filtrant and
let Z ∈ C. The conditions below are equivalent:

(i) “lim−→” α is representable by Z ,

(ii) there exist an i0 ∈ I and a morphism τ0 : Z −→ α(i0) satisfying the prop-
erty: for any morphism s : i0 −→ i , there exist a morphism g : α(i) −→ Z
and a morphism t : i −→ j satisfying
(a) g ◦ α(s) ◦ τ0 = idZ ,

(b) α(t) ◦ α(s) ◦ τ0 ◦ g = α(t).

Proof. (i) ⇒ (ii) Let ϕ : Z ∼−→ “lim−→” α be an isomorphism. Since we have

Hom Ind(C)(Z , Z) � lim−→
i

HomC(Z , α(i)), there exist i0 ∈ I and τ0 : Z −→ α(i0)

such that ϕ = ρi0 ◦ τ0. For any i ∈ I , the chain of morphisms α(i) −→
“lim−→” α ∼←− Z defines a morphism gi : α(i) −→ Z with ϕ ◦ gi = ρi . Hence,
for any s : i0 −→ i , we have

ϕ ◦ gi ◦ α(s) ◦ τ0 = ρi ◦ α(s) ◦ τ0 = ρi0 ◦ τ0 = ϕ .

This shows (ii)-(a). Since I is filtrant and
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ρi ◦ idα(i) = ρi = ϕ ◦ gi = ρi ◦ α(s) ◦ τ0 ◦ gi ,

there exists t : i −→ j satisfying α(t) ◦ idα(i) = α(t) ◦ (α(s) ◦ τ0 ◦ gi). This is
visualized by the diagram

Z

τ0

�)

ϕ

��
“lim−→” α

α(i0)

ρi0

�����������

α(s)
�� α(i)

ρi

)*���������

gi

*+

α(t)
�� α( j) .

(ii) ⇒ (i) The morphism τ0 : Z −→ α(i0) defines the morphism

ϕ = ρi0 ◦ τ0 : Z −→ “lim−→” α .

To prove that ϕ is an isomorphism, it is enough to check that ϕ induces an
isomorphism

ϕX : HomC(X, Z) ∼−→ lim−→
i

HomC(X, α(i)) for any X ∈ C .

Injectivity of ϕX . Let u, v ∈ HomC(X, Z) with ϕX (u) = ϕX (v). There exists
s : i0 −→ i such that α(s) ◦ τ0 ◦ u = α(s) ◦ τ0 ◦ v. Then for g ∈ HomC(α(i), Z)
as in (ii),

u = g ◦ α(s) ◦ τ0 ◦ u = g ◦ α(s) ◦ τ0 ◦ v = v .

Surjectivity of ϕX . Let w ∈ HomC(X, α(i)) and let s : i0 −→ i . Take g : α(i) −→
Z and t : i −→ j as in (ii). Then

α(t) ◦ w = α(t) ◦ α(s) ◦ τ0 ◦ g ◦ w .

The image of w in lim−→
j

HomC(X, α( j)) is ϕX (g ◦ w). q.e.d.

6.3 Indization of Categories Admitting Inductive Limits

In this section we shall study Ind(C) in the case where C admits small filtrant
inductive limits. Recall that ιC : C −→ Ind(C) denotes the natural embedding
functor.

Proposition 6.3.1. Assume that C admits small filtrant inductive limits.

(i) The functor ιC : C −→ Ind(C) admits a left adjoint σC : Ind(C) −→ C, and
if A � “lim−→” α, then σC(A) � lim−→α.

(ii) We have σC ◦ ιC � idC.
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Proof. (i) Let A ∈ Ind(C) and let us show that the functor

C � X 
→ Hom Ind(C)(A, ιC(X))

is representable. Let α : I −→ C be a functor with I small and filtrant such
that A � “lim−→” α. Then

Hom Ind(C)(“lim−→” α, ιC(X)) � lim←−
i

HomC(α(i), X)

� HomC(lim−→α, X) .

(ii) is obvious. q.e.d.

Corollary 6.3.2. Assume that C admits small filtrant inductive limits. Then
for any functor F : J −→ C there exists a unique (up to unique isomorphism)
functor J F : Ind(J ) −→ C such that J F commutes with small filtrant inductive
limits and the composition J −→ Ind(J ) −→ C is isomorphic to F.

Indeed, J F is given by the composition Ind(J )
I F−→ Ind(C)

σC−→ C.
The next definition will be generalized in Definition 9.2.7.

Definition 6.3.3. Assume that C admits small filtrant inductive limits. We
say that an object X of C is of finite presentation if for any α : I −→ C with I
small and filtrant, the natural morphism lim−→HomC(X, α) −→ HomC(X, lim−→α)

is an isomorphism, that is, if Hom Ind(C)(X, A) −→ HomC(X, σC(A)) is an
isomorphism for any A ∈ Ind(C).

Some authors use the term “compact” instead of “of finite presentation”.
Note that any object of a category C is of finite presentation in Ind(C).

Proposition 6.3.4. Let F : J −→ C be a functor and assume:

(i) C admits small filtrant inductive limits,
(ii) F is fully faithful,
(iii) for any Y ∈ J , F(Y ) is of finite presentation.

Then J F : Ind(J ) −→ C is fully faithful.

Proof. Let α : I −→ J and β : J −→ J be two functors with I and J both
small and filtrant. Using the hypothesis that F(β( j)) is of finite presentation
for any j ∈ J , we get the chain of isomorphisms

Hom Ind(J )(“lim−→”
j

β( j), “lim−→”
i

α(i)) � lim←−
j

lim−→
i

HomJ (β( j), α(i))

� lim←−
j

lim−→
i

HomC(F(β( j)), F(α(i)))

� lim←−
j

HomC(F(β( j)), lim−→
i

F(α(i)))

� HomC(lim−→
j

F(β( j)), lim−→
i

F(α(i)))

� HomC(J F(“lim−→”
j

β( j)), J F(“lim−→”
i

α(i))) .

q.e.d.
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Let C be a category which admits small filtrant inductive limits. We denote
by Cfp the full subcategory of C consisting of objects of finite presentation
and by ρ : Cfp −→ C the natural functor. The functor ρ induces a fully faithful
functor Iρ : Ind(Cfp) −→ Ind(C) and we have the diagram of functors

(6.3.1)

Cfp
ρ ��

ιC
��

C
ιC

��
Ind(Cfp)

Jρ

�������������

Iρ
�� Ind(C).

σC





Note that the functors Jρ and Iρ are fully faithful. Also note that the diagram
(6.3.1) is not commutative in general. More precisely:

ιC ◦ Jρ �= Iρ(6.3.2)

in general (see Exercise 6.6).

Corollary 6.3.5. Let C be a category admitting small filtrant inductive limits
and assume that any object of C is a small filtrant inductive limit of objects
of finite presentation. Then the functor Jρ : Ind(Cfp) −→ C is an equivalence
of categories.

Indeed, the functor Jρ is fully faithful by Proposition 6.3.4 and is essentially
surjective by the hypothesis.

A related result to Corollary 6.3.5 will be given in Proposition 9.2.19 below
in the framework of π -accessible objects.

Examples 6.3.6. (i) There are equivalences Set f � (Set)fp and Ind(Set f ) �
Set.
(ii) There are equivalences Modfp(R) � (Mod(R))fp and Ind(Modfp(R)) �
Mod(R) for any ring R (see Exercise 6.8).

Corollary 6.3.7. In the situation of Corollary 6.3.5, the functor σC admits a
left adjoint κC : C −→ Ind(C). Moreover:

(i) If ξ : I −→ Cfp is a functor with I small and filtrant and X � lim−→ ξ in C,
then κC(X) � “lim−→” ρ ◦ ξ ,

(ii) we have σC ◦ κC � id,
(iii) κC is fully faithful.

If there is no risk of confusion, we shall write κ instead of κC .

Proof. (i) Denote by κ ′ a quasi-inverse of Jρ and set κ = Iρ ◦ κ ′.
Let X ∈ C and let us show that the functor
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Ind(C) � A 
→ HomC(X, σC(A))

is representable by κ(X). In the sequel we shall not write Iρ for short.
There exists ξ : J −→ Cfp with J small and filtrant such that X � lim−→ ξ .

Then κ(X) � “lim−→” ξ . We get the chain of isomorphisms

Hom Ind(C)(κ(X), A) � Hom Ind(C)(“lim−→”
j

ξ( j), A)

� lim←−
j

Hom Ind(C)(ξ( j), A)

� lim←−
j

HomC(ξ( j), σC(A))

� HomC(lim−→
j

ξ( j), σC(A))

� HomC(X, σC(A)) .

The other assertions are obvious. q.e.d.

6.4 Finite Diagrams in Ind(C)

Let K be a small category. The canonical functor C −→ Ind(C) defines the
functor

Φ0 : Fct(K , C) −→ Fct(K , Ind(C)) .(6.4.1)

Since Fct(K , Ind(C)) admits small filtrant inductive limits, we may apply
Corollary 6.3.2, and extend the functor Φ0 to a functor

Φ : Ind(Fct(K , C)) −→ Fct(K , Ind(C))(6.4.2)

which commutes with small filtrant inductive limits.

Proposition 6.4.1. Assume that K is a finite category. Then the functor Φ

in (6.4.2) is fully faithful.

Proof. We shall apply Proposition 6.3.4 to Φ0. Clearly, the functor Φ0 is fully
faithful and Fct(K , Ind(C)) admits small filtrant inductive limits. Hence, it
remains to check that given a small and filtrant category I , a functor α : I −→
Fct(K , Ind(C)) and an object ψ ∈ Fct(K , C), the map

lim−→
i

Hom Fct(K ,Ind(C))(ψ, α(i)) −→ Hom Fct(K ,Ind(C))(ψ, lim−→
i

α(i))(6.4.3)

is bijective. This follows from Lemma 2.1.15 and the chain of isomorphisms
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lim−→
i

Hom Fct(K ,Ind(C))(ψ, α(i)) � lim−→
i

lim←−
(a−→b)∈Mor0(K )

Hom Ind(C)(ψ(a), α(i)(b))

� lim←−
(a−→b)∈Mor0(K )

lim−→
i

Hom Ind(C)(ψ(a), α(i)(b))

� lim←−
(a−→b)∈Mor0(K )

Hom Ind(C)(ψ(a), lim−→
i

α(i)(b))

� Hom Fct(K ,Ind(C))(ψ, lim−→
i

α(i)) .

Here, we have used the fact that in the category Set, small filtrant inductive
limits commute with finite projective limits (Theorem 3.1.6). q.e.d.

We shall give a condition in order that the functor Φ in (6.4.2) is an
equivalence. We need some preparation.

Consider the category M [C1
F−→ C0

G←− C2] associated with functors C1
F−→

C0
G←− C2 (see Definition 3.4.1). We set for short:

M0 = M [C1 −→ C0 ←− C2] ,

M1 = M [Ind(C1) −→ Ind(C0) ←− Ind(C2)] .

Then M1 admits small filtrant inductive limits, and by Proposition 3.4.2 there
is a canonical fully faithful functor M0 −→ M1 which thus extend to a functor

Ψ : Ind(M0) −→ M1(6.4.4)

commuting with small filtrant inductive limits.

Proposition 6.4.2. The functor Ψ in (6.4.4) is an equivalence of categories.

Proof. (i) Ψ is fully faithful. Since Ψ commutes with small filtrant inductive
limits, it is enough to show that for X ∈ M0 and a small filtrant inductive
system {Yi }I∈I in M0, we have

lim−→
i

Hom M0
(X, Yi ) ∼−→Hom M1

(X, lim−→Ψ (Yi )) .(6.4.5)

Let us write X = (X1, X2, u) with Xν ∈ Cν (ν = 1, 2), u : F(X1) −→ G(X2),
and let Yi = (Y i

1, Y i
2, vi ) with Y i

ν ∈ Cν , vi : F(Y i
1) −→ G(Y i

2).
Define the morphisms

αi : HomC1
(X1, Y i

1) −→ HomC0
(F(X1), G(Y i

2))

f 
→ (F(X1)
F( f )−−→ F(Y i

1)
vi−→ G(Y i

2)) ,

βi : HomC2
(X2, Y i

2) −→ HomC0
(F(X1), G(Y i

2))

g 
→ (F(X1)
u−→ G(X2)

G(g)−−→ G(Y i
2)) .

Then
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Hom M0
(X, Yi ) = HomC1

(X1, Y i
1)×Hom

C0
(F(X1),G(Y i

2))
HomC2

(X2, Y i
2) .

Since filtrant inductive limits commute with fiber products, we have

Hom M1
(X, “lim−→”

i

Yi )

� Hom Ind(C1)
(X1, “lim−→”

i

Y i
1)

×Hom
Ind(C0)

(F(X1),“lim−→”

i

G(Y i
2))

Hom Ind(C2)
(X2, “lim−→”

i

Y i
2)

� lim−→
i

(
HomC1

(X1, Y i
1)×Hom

C0
(F(X1),G(Y i

2))
HomC2

(X2, Y i
2)
)

� lim−→
i

Hom M0
(X, Yi ) .

(ii) Ψ is essentially surjective. Let (X1, X2, u) ∈ M1 with X1 = “lim−→”
i∈I

X i
1,

X2 = “lim−→”
j∈J

X j
2, and u : “lim−→”

i

F(Xi
1) −→ “lim−→”

j

G(X j
2). By Proposition 6.1.13

there exist a filtrant category K , cofinal functors pI : K −→ I and pJ : K −→ J
and a morphism of functors v = {vk}k∈K , vk : F(X pI (k)

1 ) −→ G(X pJ (k)
2 ) such

that “lim−→”
k

vk = u. Define Zk = (X pI (k)
1 , X pJ (k)

2 , vk). Then Zk ∈ M0 and

Ψ (“lim−→”
k

Zk) � (X1, X2, u). q.e.d.

Theorem 6.4.3. Let K be a finite category such that Hom K (a, a) = {ida} for
any a ∈ K . Then the natural functor Φ in (6.4.2) is an equivalence.

Proof. We may assume from the beginning that if two objects in K are iso-
morphic, then they are identical. Then Ob(K ) has a structure of an ordered
set as follows: a ≤ b if and only if Hom K (a, b) �= ∅.

Indeed, if a ≤ b and b ≤ a, then there are morphisms u : a −→ b and
v : b −→ a. Since v ◦ u = ida and u ◦ v = idb, a and b are isomorphic, hence
a = b.

We shall prove the result by induction on the cardinal of Ob(K ). If this
number is zero, the result is obvious. Otherwise, take a maximal element a of
Ob(K ). Then Hom K (a, b) = ∅ for any b �= a. Denote by L the full subcategory
of K such that Ob(L) = Ob(K ) \ {a} and denote by La the category of arrows
b −→ a, with b ∈ L. There is a natural functor F : Fct(L , C) −→ Fct(La, C) as-
sociated with La −→ L and a natural functor G : C � Fct(Pt, C) −→ Fct(La, C)
associated with the constant functor La −→ Pt.

There is an equivalence

Fct(K , C) � M [Fct(L , C)
F−→ Fct(La, C)

G←− C] .(6.4.6)

Replacing C with Ind(C) and applying Proposition 6.4.2 we get the equiva-
lences
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Fct(K , Ind(C)) �(6.4.7)

M [Fct(L , Ind(C))
I F−→ Fct(La, Ind(C))

I G←− Ind(C)] ,

Ind(Fct(K , C)) �(6.4.8)

M [Ind(Fct(L , C))
I F−→ Ind(Fct(La, C))

I G←− Ind(C)] .

Consider the diagram

Ind(Fct(L , C)) ��

θ1

��

Ind(Fct(La, C))

θ0

��

Ind(C)��

idInd(C)

��
Fct(L , Ind(C)) �� Fct(La, Ind(C)) Ind(C) .��

By the induction hypothesis θ1 is an equivalence, and by Proposition 6.4.1, θ0

is fully faithful. It follows that

θ : M [Ind(Fct(L , C)) −→ Ind(Fct(La, C)) ←− Ind(C)]

−−→ M [Fct(L , Ind(C)) −→ Fct(La, Ind(C)) ←− Ind(C)]

is an equivalence of categories by Proposition 3.4.2. The left hand side is
equivalent to Ind(Fct(K , C)) by (6.4.8), and the right hand side is equivalent
to Fct(K , Ind(C)) by (6.4.7). q.e.d.

Corollary 6.4.4. For any category C, the natural functor Ind(Mor(C)) −→
Mor(Ind(C)) is an equivalence.

Proof. Apply Theorem 6.4.3 by taking as K the category • −→ •. q.e.d.

Exercises

Exercise 6.1. (i) Let C be a small category and let A ∈ Ind(C). Prove that
the two conditions below are equivalent.

(a) The functor Hom Ind(C)(A, • ) from Ind(C) to Set commutes with small
filtrant inductive limits, i.e., A is of finite presentation in Ind(C).

(b) There exist X ∈ C and morphisms A
i−→ X

p−→ A such that p ◦ i = idA.

(ii) Prove that any A ∈ C∧ which satisfies (b) belongs to Ind(C).
(iii) Prove that C −→ (Ind(C))fp is an equivalence if and only if C is idempotent
complete (see Exercise 2.9).

Exercise 6.2. Prove that if X is an initial (resp. terminal) object in C, then
ιC(X) is an initial (resp. terminal) object in Ind(C).
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Exercise 6.3. Let C be a small category and denote by ∅C∧ and ptC∧ the
initial and terminal objects of C∧, respectively.
(i) Prove that ∅C∧ /∈ Ind(C). (Hint: see Exercise 3.7.)
(ii) Prove that ptC∧ ∈ Ind(C) if and only if C is filtrant and cofinally small.

Exercise 6.4. Let C be a category which admits finite inductive limits and
denote by α : Ind(C) −→ C∧ the natural functor. Prove that the functor α does
not commute with finite inductive limits (see Exercise 6.3).

Exercise 6.5. Prove that Pro(Set f ) is equivalent to the category of Hausdorff
totally disconnected compact spaces. (Recall that on such spaces, any point
has an open and closed neighborhood system.)

Exercise 6.6. Let k be a field, C = Mod(k). Let V = k⊕Z and Vn = k⊕In

where In = {i ∈ Z ; |i | ≤ n}.
(i) Construct the natural morphism “lim−→”

n

Vn −→ V .

(ii) Show that this morphism is a monomorphism and not an epimorphism.

Exercise 6.7. Let C be a category which admits small filtrant inductive lim-
its. Let us say that an object X of C is of finite type if for any functor α : I −→ C
with I small and filtrant, the natural map lim−→HomC(X, α) −→ HomC(X, lim−→α)
is injective. Prove that this definition coincides with the usual one when
C = Mod(R) for a ring R (see Examples 1.2.4 (iv)).

Exercise 6.8. Let R be a ring.
(i) Prove that M ∈ Mod(R) is of finite presentation in the sense of Defini-
tion 6.3.3 if and only if it is of finite presentation in the classical sense (see
Examples 1.2.4 (iv)), that is, if there exists an exact sequence R⊕n1 −→ R⊕n0 −→
M −→ 0.
(ii) Prove that any R-module M is a small filtrant inductive limit of modules
of finite presentation. (Hint: consider the full subcategory of (Mod(A))M con-
sisting of modules of finite presentation and prove it is essentially small and
filtrant.)
(iii) Deduce that the functor Jρ defined in Diagram (6.3.1) induces an equiv-
alence Jρ : Ind(Modfp(R)) ∼−→Mod(R).

Exercise 6.9. Let C be a small category, F : C −→ C ′ a functor and denote by
F∗ : C ′ −→ C∧ the functor given by F∗(Y )(U) = HomC′(F(U), Y ) for Y ∈ C ′,
U ∈ C. Prove that the functor F is right exact if and only if F∗ sends C ′ to
Ind(C).

Exercise 6.10. Let C be a category and consider the functor

Φ : Ind(C) −→ C∨ given by A 
→ lim−→
(X−→A)∈CA

kC(X) .
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(i) Prove that Φ commutes with small filtrant inductive limits and prove that

the composition C ιC−→ Ind(C)
Φ−→ C∨ is isomorphic to the Yoneda functor kC .

(ii) Assume that C admits filtrant inductive limits. Prove that the functor

Φ factorizes as Ind(C)
σC−→ C kC−→ C∨, where σC is defined in the course of

Proposition 6.3.1.

Exercise 6.11. Let J be a full subcategory of a category C and let A ∈
Ind(C). Prove that A is isomorphic to the image of an object of Ind(J ) if and
only if any morphism X −→ A in Ind(C) with X ∈ C factors through an object
of J .

Exercise 6.12. Let G be a group and let G be the category with one object
denoted by c and morphisms HomG(c, c) = G. A G-set is a set S with an
action of G. If S and S′ are G-sets, a G-equivariant map f : S −→ S′ is a map
satisfying f (gs) = g f (s) for all s ∈ S and all g ∈ G. We denote by G-Set the
category of G-sets and G-equivariant maps.
(i) Prove that Gop is equivalent to G.
(ii) Prove that G∧ is equivalent to G-Set and that the object c of G corresponds
to the G-set G endowed with the left action of G.
(iii) For a G-set X , prove that GX is equivalent to the category C given by
Ob(C) = X and HomC(x, y) = {g ∈ G ; y = gx} for x, y ∈ X .
(iv) Prove that G ∼−→ Ind(G).
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Localization

Consider a category C and a family S of morphisms in C. The aim of localiza-
tion is to find a new category CS and a functor Q : C −→ CS which sends the
morphisms belonging to S to isomorphisms in CS , (CS , Q) being “universal”
for such a property.

In this chapter, we shall construct the localization of a category when S
satisfies suitable conditions. A classical reference is [24].

We discuss with some details the localization of functors. When considering
a functor F from C to a category A which does not necessarily send the
morphisms in S to isomorphisms in A, it is possible to define the right (resp.
the left) localization of F , a functor RS F (resp. LS F) from CS to A. Such a
right localization always exists if A admits filtrant inductive limits.

We also discuss an important situation where a functor is localizable. This
is when there exists a full subcategory I of C whose localization is equivalent
to that of C and such that F sends the morphisms of S belonging to I to
isomorphisms. This is the case that we shall encounter when deriving functors
in derived categories in Chap. 13.

We do not treat in this book the theory of model categories of Quillen
which would allow us to consider the quotient of categories in a more general
framework (cf. [32, 56]).

7.1 Localization of Categories

Let C be a category and let S be a family of morphisms in C.

Definition 7.1.1. A localization of C by S is the data of a big category CS
and a functor Q : C −→ CS satisfying:

(a) for all s ∈ S, Q(s) is an isomorphism,
(b) for any big category A and any functor F : C −→ A such that F(s) is an

isomorphism for all s ∈ S, there exist a functor FS : CS −→ A and an
isomorphism F � FS ◦ Q visualized by the diagram
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C F ��

Q
��

A,

CS
FS

��

(c) if G1 and G2 are two objects of Fct(CS ,A), then the natural map

Hom Fct(CS ,A)(G1, G2) −→ Hom Fct(C,A)(G1 ◦ Q, G2 ◦ Q)(7.1.1)

is bijective.

Note that (c) means that the functor ◦Q : Fct(CS ,A) −→ Fct(C,A) is fully
faithful. This implies that FS in (b) is unique up to unique isomorphism.

Proposition 7.1.2. (i) If CS exists, it is unique up to equivalence of cate-
gories.

(ii) If CS exists, then, denoting by Sop the image of S in Cop by the functor
op, (Cop)Sop exists and there is an equivalence of categories:

(CS)op � (Cop)Sop .

The proof is obvious.

Lemma 7.1.3. Consider three categories C, C ′, A and two functors Q, G :

C
Q �� C ′ G �� A .

Assume the following condition. For any X ∈ C ′, there exist Y ∈ C and a
morphism s : X −→ Q(Y ) which satisfy the following two properties (a) and
(b) :

(a) G(s) is an isomorphism,
(b) for any Y ′ ∈ C and any morphism t : X −→ Q(Y ′), there exist Y ′′ ∈ C and

morphisms s ′ : Y ′ −→ Y ′′ and t ′ : Y −→ Y ′′ in C such that G(Q(s ′)) is an
isomorphism and the diagram below commutes

X
s ��

t

��

Q(Y )

Q(t ′)
��

Q(Y ′)
Q(s ′) �� Q(Y ′′) .

Then Q‡Q∗G exists and is isomorphic to G (see Definition 2.3.2), that is, the
natural map Hom Fct(C′,A)(F, G) −→ Hom Fct(C,A)(F ◦Q, G ◦Q) is bijective for
any functor F : C ′ −→ A.

Remark 7.1.4. Since the conclusion of the lemma still holds when replacing the
categories with the opposite categories, the similar result holds when reversing
the arrows.
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Proof. (i) The map is injective. Let θ1 and θ2 be two morphisms from F to
G and assume θ1(Q(Y )) = θ2(Q(Y )) for all Y ∈ C. For X ∈ C ′, choose a
morphism s : X −→ Q(Y ) such that G(s) is an isomorphism.

Consider the commutative diagram where i = 1, 2:

F(X)
θi (X) ��

F(s)

��

G(X)

G(s)

��
F(Q(Y ))

θi (Q(Y )) �� G(Q(Y )) .

Since G(s) is an isomorphism, we find θ1(X) = θ2(X).
(ii) The map is surjective. Let θ : F◦Q −→ G◦Q be a morphism of functors. For
each X ∈ C ′, choose a morphism s : X −→ Q(Y ) satisfying the conditions (a)
and (b). Then define θ̃(X) : F(X) −→ G(X) as θ̃(X) = (G(s))−1 ◦ θ(Y ) ◦ F(s).
Let us prove that this construction is functorial, and in particular, does not
depend on the choice of the morphism s : X −→ Q(Y ). (Take f = idX in the
proof below.)

Let f : X1 −→ X2 be a morphism in C ′. For any choice of morphisms
s1 : X1 −→ Q(Y1) and s2 : X2 −→ Q(Y2) satisfying the conditions (a) and (b),
apply the condition (b) to s1 : X1 −→ Q(Y1) and s2 ◦ f : X1 −→ Q(Y2). Then,
there are morphisms Y1

t1−→ Y3 and Y2
t2−→ Y3 such that G(Q(t2)) is an isomor-

phism and Q(t1) ◦ s1 = Q(t2) ◦ s2 ◦ f . We get the diagram

F(X1)

F( f )

��

θ̃(X1) ��

F(s1)

���
��

��
��

�
G(X1)

G(s1)

∼
!!!!!

!!
!!
!

G( f )

��

F(Q(Y1))
θ(Y1) ��

F(Q(t1))

����
���

���
�

G(Q(Y1))

G(Q(t1))+,���
���

���

F(Q(Y3))
θ(Y3)�� G(Q(Y3))

F(Q(Y2))
θ(Y2) ��

F(Q(t2))
�����������

G(Q(Y2))

∼
G(Q(t2))

*+���������

F(X2)

F(s2)
����������

θ̃(X2) �� G(X2).

∼
G(s2)

,-%%%%%%%%

Since all the internal diagrams commute, the square with vertices F(X1),
G(X1), F(X2), G(X2) commutes. q.e.d.

Definition 7.1.5. The family S ⊂ Mor(C) is a right multiplicative system if
it satisfies the axioms S1–S4 below.

S1 Any isomorphism in C belongs to S.
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S2 If two morphisms f : X −→ Y and g : Y −→ Z belong to S, then g ◦ f belongs
to S.

S3 Given two morphisms f : X −→ Y and s : X −→ X ′ with s ∈ S, there exist
t : Y −→ Y ′ and g : X ′ −→ Y ′ with t ∈ S and g ◦ s = t ◦ f. This is visualized
by the diagram:

X
f

��

s

��

Y

t

��
X ′

g
�� Y ′ .

S4 Let f, g : X ⇒ Y be two parallel morphisms. If there exists s : W −→ X
in S such that f ◦ s = g ◦ s, then there exists t : Y −→ Z in S such that
t ◦ f = t ◦ g. This is visualized by the diagram:

W
s �� X

f ��
g

�� Y
t �� Z .

Remark 7.1.6. Axioms S1–S2 asserts that there is a half-full subcategory S̃ of
C with Ob(S̃) = Ob(C) and Mor(S̃) = S. With these axioms, the notion of a
right multiplicative system is stable by equivalence of categories.

Remark 7.1.7. The notion of a left multiplicative system is defined similarly
by reversing the arrows. This means that the condition S3 and S4 are replaced
by the conditions S’3 and S’4 below.

S’3 Given two morphisms f : X −→ Y and t : Y ′ −→ Y with t ∈ S, there exist
s : X ′ −→ X and g : X ′ −→ Y ′ with s ∈ S and t ◦g = f ◦s. This is visualized
by the diagram:

X ′ g ��

s

��

Y ′

t

��
X

f �� Y .

S’4 Let f, g : X ⇒ Y be two parallel morphisms. If there exists t : Y −→ Z
in S such that t ◦ f = t ◦ g then there exists s : W −→ X in S such that
f ◦ s = g ◦ s. This is visualized by the diagram

W
s �� X

f ��
g

�� Y
t �� Z .

Remark 7.1.8. In the literature, “a multiplicative system” often means a sys-
tem which is both right and left multiplicative. Moreover, some authors, in
particular [24], call “right” what we call “left” and conversely. In [24], they call
our “right multiplicative system” a left multiplicative system since, as we will
see later, any morphism in the localization CS is written as Q(s)−1 ◦ Q( f )
for some s ∈ S and f ∈ Mor(C). In this book we call it a right multi-
plicative system since HomCS

(Q(X), Q(Y )) is expressed as the inductive limit
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lim−→
Y−→Y ′

HomC(X, Y ′) over the right arrows Y −→ Y ′ in S. The terminology “right

localization of functors” (Definition 7.3.1) comes from the same reason. Its
particular case, “right derived functor” is widely used.

Definition 7.1.9. Assume that S satisfies the axioms S1–S2 and let X ∈ C.
The categories S X , SX and the functors αX : S X −→ C, αX : SX −→ C are defined
as follows.

Ob(S X ) =
{
s : X −→ X ′ ; s ∈ S

}
,

HomSX ((s : X −→ X ′), (s ′ : X −→ X ′′)) =
{
h ∈ HomC(X ′, X ′′) ; h ◦ s = s ′

}
,

Ob(SX ) =
{
s : X ′ −→ X ; s ∈ S

}
,

HomSX
((s : X ′ −→ X), (s ′ : X ′′ −→ X)) =

{
h ∈ HomC(X ′, X ′′) ; s ′ ◦ h = s

}
,

αX ((s : X −→ X ′)) = X ′ ,
αX ((s : X ′ −→ X)) = X ′ .

One should be aware that we do not ask h ∈ S in the definition of the cate-
gories S X and SX . Therefore S X is a full subcategory of CX and SX is a full
subcategory of CX (see Definition 3.4.1).

In the sequel we shall concentrate on right multiplicative systems.

Proposition 7.1.10. Assume that S is a right multiplicative system. Then
the category S X is filtrant.

Proof. (a) Let s : X −→ X ′ and s ′ : X −→ X ′′ belong to S. By S3, there exist
t : X ′ −→ X ′′′ and t ′ : X ′′ −→ X ′′′ such that t ′ ◦ s ′ = t ◦ s, and t ∈ S. Hence,
t ◦ s ∈ S by S2 and (X −→ X ′′′) belongs to S X .
(b) Let s : X −→ X ′ and s ′ : X −→ X ′′ belong to S, and consider two morphisms
f, g : X ′ −→ X ′′ with f ◦ s = g ◦ s = s ′. By S4 there exists t : X ′′ −→ W in
S such that t ◦ f = t ◦ g. Hence t ◦ s ′ : X −→ W belongs to S X and the two

compositions (X ′, s)
f ��
g

�� (X ′′, s ′) t �� (W, t ◦ s ′) coincide. q.e.d.

Definition 7.1.11. Let S be a right multiplicative system and let X, Y ∈
Ob(C). We set

HomCr
S
(X, Y ) = lim−→

(Y−→Y ′)∈SY

HomC(X, Y ′) = lim−→HomC(X, αY ) .

Lemma 7.1.12. Assume that S is a right multiplicative system. Let Y ∈ C
and let s : X −→ X ′ ∈ S. Then s induces an isomorphism

HomCr
S
(X ′, Y ) ∼−→◦s

HomCr
S
(X, Y ) .
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Proof. (i) The map ◦s is surjective. This follows from S3, as visualized by the
diagram in which s, t, t ′ ∈ S:

X
f ��

s
��

Y ′

t ′
��

Y .
t��

X ′ �� Y ′′

(ii) The map ◦s is injective. This follows from S4, as visualized by the diagram
in which s, t, t ′ ∈ S:

X
s �� X ′

f ��
g

�� Y ′ t ′ �� Y ′′ .

Y

t





q.e.d.

Using Lemma 7.1.12, we define the composition

HomCr
S
(X, Y )×HomCr

S
(Y, Z) −→ HomCr

S
(X, Z)(7.1.2)

as

lim−→
Y−→Y ′

HomC(X, Y ′)× lim−→
Z−→Z ′

HomC(Y, Z ′)

� lim−→
Y−→Y ′

(HomC(X, Y ′)× lim−→
Z−→Z ′

HomC(Y, Z ′))

∼←− lim−→
Y−→Y ′

(HomC(X, Y ′)× lim−→
Z−→Z ′

HomC(Y ′, Z ′))

−→ lim−→
Y−→Y ′

lim−→
Z−→Z ′

HomC(X, Z ′)

� lim−→
Z−→Z ′

HomC(X, Z ′) .

Lemma 7.1.13. The composition (7.1.2) is associative.

The verification is left to the reader.

Hence we get a big category Cr
S whose objects are those of C and morphisms

are given by Definition 7.1.11.

Remark 7.1.14. One should be aware that Cr
S is not necessarily a U-category.

It is a U-category if S X is cofinally small for every X ∈ C.

Let us denote by Qr
S : C −→ Cr

S the natural functor associated with

HomC(X, Y ) −→ lim−→
(Y−→Y ′)∈SY

HomC(X, Y ′) .

If there is no risk of confusion, we denote this functor simply by Q.
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Lemma 7.1.15. If s : X −→ Y belongs to S, then Q(s) is invertible.

Proof. For any Z ∈ Cr
S , the map HomCr

S
(Y, Z) −→ HomCr

S
(X, Z) is bijective

by Lemma 7.1.12. q.e.d.

A morphism f : Q(X) −→ Q(Y ) in Cr
S is thus given by an equivalence class

of triplets (Y ′, t, f ′) with t : Y −→ Y ′, t ∈ S and f ′ : X −→ Y ′, that is:

X
f ′

�� Y ′ Y ,
t

��

the equivalence relation being defined as follows: (Y ′, t, f ′) ∼ (Y ′′, t ′, f ′′) if
there exist (Y ′′′, t ′′, f ′′′) (t, t ′, t ′′ ∈ S) and a commutative diagram:

Y ′

��
X

f ′
��,,,,,,,,,,,,, f ′′′ ��

f ′′ ��&&
&&&

&&&
&&&

& Y ′′′ Y.
t ′′��

t
)*)))))))

t ′&&***
**
**

Y ′′



(7.1.3)

Note that the morphism (Y ′, t, f ′) in Cr
S is Q(t)−1 ◦ Q( f ′), that is,

f = Q(t)−1 ◦ Q( f ′) .(7.1.4)

For two parallel arrows f, g : X ⇒ Y in C we have the equivalence

Q( f ) = Q(g) holds in Mor(Cr
S)

⇐⇒ there exits s : Y −→ Y ′ in S such that s ◦ f = s ◦ g.
(7.1.5)

The composition of two morphisms (Y ′, t, f ′) : X −→ Y and (Z ′, s, g′) : Y −→
Z is defined by the diagram below with t, s, s ′ ∈ S:

X
f ′

�� Y ′

h ((

Yt
��

g′
�� Z ′

s ′��

Z .s
��

W

Theorem 7.1.16. Assume that S is a right multiplicative system. Then the
big category Cr

S and the functor Q define a localization of C by S.

Proof. Let us check the conditions of Definition 7.1.1.
(a) follows from Lemma 7.1.15.
(b) For X ∈ Ob(CS) = Ob(C), set FS(X) = F(X). For X, Y ∈ C, we have a
chain of morphisms
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HomCS
(X, Y ) = lim−→

(Y−→Y ′)∈SY

HomC(X, Y ′)

−→ lim−→
(Y−→Y ′)∈SY

HomA(F(X), F(Y ′))

� lim−→
(Y−→Y ′)∈SY

HomA(F(X), F(Y ))

� HomA(FS(X), FS(Y )) .

This defines the functor FS : CS −→ A.
(c) follows from Lemma 7.1.3. Indeed, with the notations of this Lemma,
choose X = Q(Y ) and s = idQ(Y ). Any morphism t : Q(Y ) −→ Q(Y ′) is given

by morphisms Y
t ′−→ Y ′′ s ′←− Y ′ with s ′ ∈ S, and the diagram in Lemma 7.1.3

(b) commutes. q.e.d.

Notation 7.1.17. From now on, we shall write CS instead of Cr
S . This is justified

by Theorem 7.1.16.

Remark 7.1.18. (i) In the above construction, we have used the property of S
of being a right multiplicative system. If S is a left multiplicative system, we
set

HomCl
S
(X, Y ) = lim−→

(X ′−→X)∈SX

HomC(X ′, Y ) = lim−→HomC(αX , Y ) .

Then Cl
S is a localization of C by S.

(ii) When S is both a right and left multiplicative system, the two construc-
tions give equivalent categories. Hence, we have

HomCS
(X, Y ) � lim−→

(X ′−→X)∈SX

HomC(X ′, Y )

∼−→ lim−→
(X ′−→X)∈SX , (Y−→Y ′)∈SY

HomC(X ′, Y ′)

∼←− lim−→
(Y−→Y ′)∈SY

HomC(X, Y ′) .

Definition 7.1.19. We say that a right multiplicative system S is right sat-
urated, or simply saturated, if it satisfies

S5 for any morphisms f : X −→ Y , g : Y −→ Z and h : Z −→ W such that g ◦ f
and h ◦ g belong to S, the morphism f belongs to S.

Proposition 7.1.20. Let S be a right multiplicative system.

(i) For a morphism f : X −→ Y , Q( f ) is an isomorphism in CS if and only if
there exist g : Y −→ Z and h : Z −→ W such that g ◦ f ∈ S and h ◦ g ∈ S.

(ii) The right multiplicative system S is right saturated if and only if S coin-
cides with the family of morphisms f such that Q( f ) is an isomorphism.
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Proof. (i)-(a) Let f : X −→ Y be a morphism in C and assume that Q( f ) is
an isomorphism. Let (X ′, s, g) be the inverse of Q( f ) in CS . Hence we get
g : Y −→ X ′ and s : X −→ X ′ such that s ∈ S and Q(s)−1 ◦ Q(g) is the inverse
of Q( f ). Since Q(g) ◦ Q( f ) = Q(s), there exists t : X ′ −→ X ′′ in S such that
t ◦ g ◦ f = t ◦ s (see (7.1.5)). This is visualized by the diagram

X

s
��

X
f �� Y

g �� X ′

t
��

X ′′ .

Since t ◦ s ∈ S, we have thus proved that, for f : X −→ Y in C, if Q( f )
is an isomorphism, then there exists g : Y −→ Z such that g ◦ f ∈ S. Then
Q(g)◦Q( f ) is an isomorphism, and hence Q(g) is an isomorphism. Therefore,
there exists h : Z −→ W such that h ◦ g ∈ S.
(i)-(b) Conversely, assume that g ◦ f and h ◦ g belong to S. Then Q(g) has a
right inverse and a left inverse, hence is an isomorphism. Since Q(g) ◦ Q( f )
is an isomorphism, it follows that Q( f ) is an isomorphism.
(ii) follows from (i). q.e.d.

Assume that S is a right multiplicative system and let X ∈ C. The functor

θ : S X −→ CQ(X)(7.1.6)

is defined as follows. To s : X −→ Y ∈ S X , associate Q(s)−1 : Q(Y ) −→ Q(X) in
CQ(X).

Lemma 7.1.21. Assume that S is a right multiplicative system and let X ∈ C.
The functor θ in (7.1.6) is cofinal.

Proof. Recall that an object (Y, f ) ∈ CQ(X) is a pair of Y ∈ C and f : Q(Y ) −→
Q(X) ∈ Mor(CS), and a morphism (Y, f ) −→ (Z , g) in CQ(X) is a morphism
h : Y −→ Z in C such that g ◦ Q(h) = f . An object (s, X ′) ∈ S X is a morphism
X

s−→ X ′ ∈ S. Also recall that S X is filtrant.
Let us check that θ in (7.1.6) satisfies the conditions in Proposition 3.2.2 (iii).

(a) Let (Y, f ) ∈ CQ(X). There exist morphisms Y
f ′−→ Y ′ t←− X in C such that

t ∈ S and f = Q(t)−1 ◦ Q( f ′). Therefore f ′ defines a morphism (Y, f ) −→
θ((t, Y ′)).
(b) Let (s, X ′) be an object of S X , (Y, f ) an object of CQ(X), and let h, h′ : Y ⇒
X ′ be a pair of parallel morphisms in C such that f = Q(s)−1 ◦ Q(h) =
Q(s)−1 ◦ Q(h′). Since Q(h) = Q(h′), there exists a morphism t : X ′ −→ X ′′ in
S such that t ◦ h = t ◦ h′. Then t defines a morphism ϕ : (s, X ′) −→ (t ◦ s, X ′′)
in SX and θ(ϕ) ◦ h = θ(ϕ) ◦ h′. q.e.d.
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Let us give some easy properties of the localization functor Q.

Proposition 7.1.22. Let S be a right multiplicative system.

(i) The functor Q : C −→ CS is right exact.
(ii) Let α : I −→ C be an inductive system in C indexed by a finite category

I . Assume that lim−→α exists in C. Then lim−→ (Q ◦ α) exists in CS and is
isomorphic to Q(lim−→α).

(iii) Assume that C admits cokernels. Then CS admits cokernels and Q com-
mutes with cokernels.

(iv) Assume that C admits finite coproducts. Then CS admits finite coproducts
and Q commutes with finite coproducts.

(v) If C admits finite inductive limits, then so does CS .

Proof. (i) Recall that Q is right exact if for any X ∈ C, the category CQ(X) is
filtrant. Therefore the result follows from Lemma 7.1.21, Proposition 7.1.10
and Proposition 3.2.2.
(ii) follows from (i) and Proposition 3.3.2.
(iii) By (ii), it is enough to remark that any pair of parallel arrows in CS is
isomorphic to the image by Q of a pair of parallel arrows in C.
(iv) By (ii), it is enough to remark that a finite family of objects in CS is the
image by Q of a finite family of objects in C.
(v) follows from (iii) and (iv). q.e.d.

7.2 Localization of Subcategories

Proposition 7.2.1. Let C be a category, I a full subcategory, S a right multi-
plicative system in C, and let T be the family of morphisms in I which belong
to S.

(i) Assume that T is a right multiplicative system in I. Then IT −→ CS is
well defined.

(ii) Assume that for every f : X −→ Y with f ∈ S, X ∈ I, there exist g : Y −→
W with W ∈ I and g ◦ f ∈ S. Then T is a right multiplicative system
and IT −→ CS is fully faithful.

Proof. (i) is obvious.
(ii) It is left to the reader to check that T is a right multiplicative system. For
X ∈ I define the category T X as the full subcategory of S X whose objects are
the morphisms s : X −→ Y with Y ∈ I. Then the functor T X −→ S X is cofinal
by Propositions 7.1.10 and 3.2.4, and the result follows from Definition 7.1.11
and Proposition 2.5.2. q.e.d.

Corollary 7.2.2. Let C be a category, I a full subcategory, S a right mul-
tiplicative system in C, T the family of morphisms in I which belong to S.
Assume that for any X ∈ C there exists s : X −→ W with W ∈ I and s ∈ S.
Then T is a right multiplicative system and IT is equivalent to CS .



7.3 Localization of Functors 159

Proof. The natural functor IT −→ CS is fully faithful by Proposition 7.2.1 and
is essentially surjective by the assumption. q.e.d.

7.3 Localization of Functors

Let C be a category, S a right multiplicative system in C and F : C −→ A a
functor. In general, F does not send morphisms in S to isomorphisms in A. In
other words, F does not factorize through CS . It is however possible in some
cases to define a localization of F as follows.

Definition 7.3.1. Let S be a family of morphisms in C and assume that the
localization Q : C −→ CS exists.

(i) We say that F is right localizable if the functor Q†F (see Definition 2.3.2)
exists. In such a case, we say that Q†F is a right localization of F and we
denote it by RS F. In other words, the right localization of F is a functor
RS F : CS −→ A together with a morphism of functors τ : F −→ RS F ◦ Q
such that for any functor G : CS −→ A the map

Hom Fct(CS ,A)(RS F, G) −→ Hom Fct(C,A)(F, G ◦ Q)(7.3.1)

is bijective. (This map is the composition Hom Fct(CS ,A)(RS F, G) −→
Hom Fct(C,A)(RS F ◦ Q, G ◦ Q)

◦τ−−→ Hom Fct(C,A)(F, G ◦ Q).)
(ii) We say that F is universally right localizable if for any functor K : A −→

A′, the functor K ◦ F is localizable and RS(K ◦ F) ∼−→ K ◦ RS F.

Note that if (RS F, τ ) exists, it is unique up to a unique isomorphism.
The notion of a (universally) left localizable functor is similarly defined.

The left localization of F is Q‡F , that is, a functor LS F : CS −→ A together
with σ : LS F ◦ Q −→ F such that for any functor G : CS −→ A, σ induces a
bijection

Hom Fct(CS ,A)(G, LS F) ∼−→Hom Fct(C,A)(G ◦ Q, F) .(7.3.2)

One shall be aware that even if F admits both a right and a left local-
ization, the two localizations are not isomorphic in general. However, when
the localization Q : C −→ CS exists and F is right and left localizable, the
canonical morphisms of functors LS F ◦Q −→ F −→ RS F ◦Q together with the
isomorphism Hom(LS F ◦ Q, RS F ◦ Q) � Hom(LS F, RS F) in (7.1.1) gives
the canonical morphism of functors

LS F −→ RS F .(7.3.3)

From now on, we shall concentrate on right localizations.
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Proposition 7.3.2. Let C be a category, I a full subcategory, S a right mul-
tiplicative system in C, T the family of morphisms in I which belong to S.
Let F : C −→ A be a functor. Assume that

(i) for any X ∈ C, there exists s : X −→ W with W ∈ I and s ∈ S,
(ii) for any t ∈ T , F(t) is an isomorphism.

Then F is universally right localizable and the composition I −→ C Q−→ CS
RS F−−→

A is isomorphic to the restriction of F to I.

Proof. Denote by ι : I −→ C the natural functor. By hypothesis (i) and Corol-
lary 7.2.2, ιQ : IT −→ CS is an equivalence. By hypothesis (ii) the localization
FT of F ◦ ι exists. Consider the solid diagram:

C

QS ���
��

��
��

�
F

		���
����

����
����

����
��

nc

I

ι

����������

QT ���
��

��
��

� CS RF �� A .

IT

ιQ

���������� FT



���������������������

Denote by ι−1
Q a quasi-inverse of ιQ and set RF := FT ◦ ι−1

Q . Then the diagram
above is commutative, except the triangle (C, CS ,A) labeled by nc. Let us
show that RF is the right localization of F . Let G : CS −→ A be a functor.

We have the chain of a morphism and isomorphisms:

Hom Fct(C,A)(F, G ◦ QS)
λ−→ Hom Fct(I,A)(F ◦ ι, G ◦ QS ◦ ι)
� Hom Fct(I,A)(FT ◦ QT , G ◦ ιQ ◦ QT )
� Hom Fct(IT ,A)(FT , G ◦ ιQ)
� Hom Fct(CS ,A)(FT ◦ ι−1

Q , G)
� Hom Fct(CS ,A)(RF, G).

(7.3.4)

The second isomorphism follows from the fact that QT satisfies the hypothesis
(c) of Definition 7.1.1 by Theorem 7.1.16. To conclude, it remains to prove
that the morphism λ is bijective. Let us check that Lemma 7.1.3 applies
to I ι−→ C QS−−→ CS and hence to I ι−→ C G◦QS−−−−→ A. Let X ∈ C. By the
hypothesis, there exist Y ∈ I and s : X −→ ι(Y ) with s ∈ S. Therefore, F(s) is
an isomorphism and condition (a) in Lemma 7.1.3 is satisfied. Condition (b)
follows from the fact that ι is fully faithful together with axiom S3 of right
multiplicative systems.

Hence F is localizable and RS F � FT ◦ ι−1
Q .

If K : A −→ A′ is another functor, K ◦ F(t) will be an isomorphism for any
t ∈ T . Hence, K ◦ F is localizable and we have



7.4 Indization and Localization 161

RS(K ◦ F) � (K ◦ F)T ◦ ι−1
Q � K ◦ FT ◦ ι−1

Q � K ◦ RS F .

q.e.d.

Under suitable hypotheses, all functors from C to A are localizable.
The functor Q : C −→ CS defines the functor

Q∗ : Fct(CS ,A) −→ Fct(C,A) ,

G 
→ G ◦ Q.
(7.3.5)

Proposition 7.3.3. We make the hypotheses⎧⎨⎩
A admits small filtrant inductive limits,
S is a right multiplicative system,
for each X ∈ C, the category SX is cofinally small.

(7.3.6)

Then

(i) CS is a U-category,
(ii) the functor Q∗ in (7.3.5) admits a left adjoint functor Q† : Fct(C,A) −→

Fct(CS ,A),
(iii) any functor F : C −→ A is right localizable and

RS F(Q(X)) = lim−→
(X−→X ′)∈SX

F(X ′) for any X ∈ C .(7.3.7)

Proof. (i) is obvious.
(ii) and (iii) By Lemma 7.1.21, SX is cofinal to CQ(X). Hence, this last category
is cofinally small and filtrant, and we may apply Theorem 2.3.3. q.e.d.

If the category A does not admit small filtrant inductive limits, one method
would be to embed it in the category of its ind-objects. However, one shall
be aware that this embedding does not commute with small filtrant inductive
limits. We discuss this point in the subsequent section.

7.4 Indization and Localization

Let C be a category and S a right multiplicative system. In this section we
shall assume that for every X ∈ C, the category S X is cofinally small. We shall
make the link between localization and ind-objects.

As in Chap. 6, let us denote by ιA the natural functor A −→ Ind(A) and
similarly with ιC .

The natural isomorphism

lim−→
(Y−→Y ′)∈SY

HomC(X, Y ′) ∼−→ lim←−
(X−→X ′)∈SX

lim−→
(Y−→Y ′)∈SY

HomC(X ′, Y ′)

defines the isomorphism
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HomCS
(X, Y ) −→ Hom Ind(C)(“lim−→” αX , “lim−→” αY ) .(7.4.1)

Recall that αX : S X −→ C is the forgetful functor (X −→ X ′) 
→ X ′. It is
easily checked that the isomorphism (7.4.1) commutes with the composition.
Therefore

Proposition 7.4.1. Assume that SX is cofinally small for any X ∈ C. The
functor

αS : CS −→ Ind(C), X 
→ “lim−→” αX = “lim−→”
(X−→X ′)∈SX

X ′

is well defined and fully faithful.

One shall be aware that the diagram

C
Q ��

ιC ��-
--

--
--

-- CS
αS

��
Ind(C)

(where ιC denotes the natural functor) is not commutative in general. However,
there is a natural morphism of functors:

(7.4.2) ιC −→ αS ◦ Q given by ιC(X) −→ “lim−→” αX � (αS ◦ Q)(X).

Let F : C −→ A be a functor. Consider the diagram

C
Q

��

F �� A
ιA

��
CS αS

�� Ind(C)
I F

�� Ind(A)

By (7.3.7), we have

RS(ιA ◦ F) � I F ◦ αS .(7.4.3)

Definition 7.4.2. The functor F is right localizable at X ∈ C if “lim−→” (F ◦
αX ) = “lim−→”

(X−→X ′)∈SX

F(X ′) is representable by an object of A.

Lemma 7.4.3. If G : A −→ A′ is a functor and F is right localizable at X ,
then G ◦ F is right localizable at X .

Proof. This follows from the fact that I G : Ind(A) −→ Ind(A′) sends A to A′.
q.e.d.
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Proposition 7.4.4. Let F : C −→ A be a functor, S a right multiplicative
system in C. We assume that the category S X is cofinally small for any X ∈ C.
The two conditions below are equivalent:

(i) F is right localizable at each X ∈ C,
(ii) F is universally right localizable.

Proof. (i) ⇒ (ii). If F is localizable at each X ∈ C, then for any functor
K : A −→ A′, K ◦ F is localizable at each X ∈ C by Lemma 7.4.3. Hence it
is enough to prove that F is right localizable. By (7.4.3) and the hypothesis,
there exists a functor H : CS −→ A such that RS(ιA ◦ F) � ιA ◦ H . To check
that H is a right localization of F , consider a functor G : CS −→ A. We have
the chain of isomorphisms

Hom Fct(CS ,A)(H, G) � Hom Fct(CS ,Ind(A))(RS(ιA ◦ F), ιA ◦ G)

� Hom Fct(C,Ind(A))(ιA ◦ F, ιA ◦ G ◦ Q)

� Hom Fct(C,A)(F, G ◦ Q) .

(ii) ⇒ (i). The hypothesis implies RS(ιA ◦ F) � ιA ◦ RS F . Therefore, RS(ιA ◦
F)(X) � “lim−→”

(X−→X ′)∈SX

F(X ′) ∈ A. q.e.d.

Remark 7.4.5. Let C (resp. C ′) be a category and S (resp. S ′) a right multi-
plicative system in C (resp. C ′). It is immediately checked that S×S ′ is a right
multiplicative system in the category C × C ′ and (C × C ′)S×S ′ is equivalent to
CS×C ′S ′ . Since a bifunctor is a functor on the product C×C ′, we may apply the
preceding results to the case of bifunctors. For example, let (X, Y ) ∈ CS ×C ′S ′ .
Then F is right localizable at (X, Y ) if

“lim−→”
(X−→X ′)∈SX ,(Y−→Y ′)∈S ′Y

F(X ′, Y ′)

is representable.

Exercises

Exercise 7.1. Let C be a category, S a right multiplicative system. Let T be
the set of morphisms f : X −→ Y in C such that there exist g : Y −→ Z and
h : Z −→ W , with h ◦ g and g ◦ f in S.

Prove that T is the smallest right saturated multiplicative system contain-
ing S and that the natural functor CS −→ CT is an equivalence.

Exercise 7.2. Let C be a category, S a right and left multiplicative system.
Prove that S is right saturated if and only if for any f : X −→ Y , g : Y −→ Z ,
h : Z −→ W , h ◦ g ∈ S and g ◦ f ∈ S imply g ∈ S.
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Exercise 7.3. Let C be a category with a zero object 0, S a right multiplica-
tive system.
(i) Show that CS has a zero object (still denoted by 0).
(ii) Prove that Q(X) � 0 if and only if there exists Y ∈ C such that 0: X −→ Y
belongs to S.

Exercise 7.4. Let C be a category, S a right multiplicative system. Consider
morphisms f : X −→ Y and f ′ : X ′ −→ Y ′ in C and morphisms u : X −→ X ′ and
v : Y −→ Y ′ in CS , and assume that Q( f ′) ◦ u = v ◦ Q( f ). Prove that there
exists a commutative diagram in C

X

f

��

u′ �� X1

��

X ′s��

f ′

��
Y

v′ �� Y1 Y ′t��

with s and t in S, u = Q(s)−1 ◦ Q(u′) and v = Q(t)−1 ◦ Q(v′).

Exercise 7.5. Let F : C −→ A be a functor and assume that C admits finite
inductive limits and F is right exact. Let S denote the set of morphisms s in
C such that F(s) is an isomorphism.
(i) Prove that S is a right saturated multiplicative system.
(ii) Prove that the localized functor FS : CS −→ A is faithful.

Exercise 7.6. Let C
L �� C ′
R

�� be functors and let ε and η be two morphisms

of functors as in (1.5.4) and (1.5.5). Assume that 〈L , R, η, ε〉 is an adjunction
(see § 1.5) and that R is fully faithful (or, equivalently, η : L ◦ R −→ idC′ is an
isomorphism). Set S =

{
u ∈ Mor(C) ; L(u) is an isomorphism

}
.

(i) Prove that ε(X) : X −→ RL(X) belongs to S for every X ∈ C.
(ii) Prove that S is a right saturated multiplicative system.
(iii) Prove that the functor ι : CS −→ C ′ induced by L is an equivalence of
categories.
(iv) Prove that any functor F : C −→ A is universally right localizable with
respect to S and RS F � F ◦ R ◦ ι.

Exercise 7.7. Let C be a category and S a right saturated multiplicative
system. Assume that idC : C −→ C is universally right localizable with respect
to S. Prove that RS idC : CS −→ C is fully faithful and is a right adjoint of the
localization functor Q : C −→ CS .

Exercise 7.8. Give an alternative proof of Lemma 7.1.3 by showing that
G(X) ∼−→ lim←−

(X−→Q(Y ))∈CX

G(Q(Y )) for any X ∈ C ′.

Exercise 7.9. Consider three categories C, C ′,A and a functor Q : C −→ C ′.
Assume
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(i) Q is essentially surjective,
(ii) for any X, Y ∈ C and any morphism f : Q(X) −→ Q(Y ), there exist Y ′ ∈ C

and morphisms t : Y −→ Y ′, s : X −→ Y ′ such that Q(s) = Q(t) ◦ f and
Q(t) is an isomorphism.

Prove that the functor Q∗ : Fct(C ′,A) −→ Fct(C,A) is fully faithful.



8

Additive and Abelian Categories

Many results or constructions in the category Mod(R) of modules over a ring
R have their counterparts in other contexts, such as finitely generated R-
modules, or graded modules over a graded ring, or sheaves of R-modules, etc.
Hence, it is natural to look for a common language which avoids to repeat the
same arguments. This is the language of additive and abelian categories.

In this chapter, we begin by explaining the notion of additive categories.
Then, we give the main properties of abelian categories and the basic results
on exact sequences, injective objects, etc. in such categories. In particular,
we introduce the important notion of a Grothendieck category, an abelian
category which admits exact small filtrant inductive limits and a generator.

Then we study the action of a ring on an abelian category and prove the
Gabriel-Popescu theorem (see [54]) which asserts that a Grothendieck cate-
gory is embedded in the category of modules over the ring of endomorphisms
of a generator.

We study with some details the abelian category Ind(C) of ind-objects
of an abelian category C and show in particular that the category Ind(C) is
abelian and the natural functor C −→ Ind(C) is exact.

Finally we prove that under suitable hypotheses, the Kan extension of a
right (or left) exact functor defined on an additive subcategory of an abelian
category remains exact.

Complementary results on abelian categories will be given in the Exercises
as well as in Sect. 9.6.

8.1 Group Objects

The notion of representable functor allows us to extend various algebraic no-
tions to categories. Let us simply give one example.

We denote by Group the category of groups and we denote by for : Group
−→ Set the forgetful functor.
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Definition 8.1.1. Let C be a category. An object G in C is called a group
object if there is given a functor G̃ : Cop −→ Group such that G represents
for ◦ G̃.

In other words, a group object structure on G is a decomposition of the functor
HomC( • , G) : Cop −→ Set into Cop −→ Group −→ Set.

Let us identify G with G̃. For X ∈ C, we shall write G(X) instead of
HomC(X, G).
(i) Denote by µX : G(X)×G(X) −→ G(X) the multiplication map of the group
G(X). This map is functorial with respect to X , that is, if f : X −→ Y is a
morphism in C, the diagram below commutes:

G(X)× G(X)
µX ��

G( f )×G( f )

��

G(X)

G( f )

��
G(Y )× G(Y )

µY �� G(Y ) .

Since there is a functorial isomorphism G(X) × G(X) � (G × G)(X), we get
a morphism in C∧:

µ : G × G −→ G .

The associativity of the multiplication in groups implies that the diagram
below in C∧ is commutative

G × G × G
id×µ ��

µ×id

��

G × G

µ

��
G × G

µ �� G .

We shall say that the morphism µ is “associative”.
(ii) Denote by e the neutral element in G(X). It gives a map {pt} −→ G(X),
functorial with respect to X . Hence we get a morphism (that we denote by
the same letter) e : ptC∧ −→ G. Here, ptC∧ is the terminal object of C∧. The
identities x · e = x and e · x = x are translated into the commutative diagrams

G
(id,e) ��

id
��##

###
###

###
###

# G × G

µ

��
G

G
(e,id) ��

id
��##

###
###

###
### G × G

µ

��
G .

(iii) Denote by aX : G(X) −→ G(X) the map x 
→ x−1. These maps are func-
torial with respect to X and define a morphism a : G −→ G. The identities
x · x−1 = e and x−1 · x = e are translated into the commutative diagrams
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G
(id,a) ��

��

G × G

µ

��
ptC∧

e �� G

G
(a,id) ��

��

G × G

µ

��
ptC∧

e �� G .

Conversely, the data of (G, µ, e, a) satisfying the above properties endows
G with a structure of a group object.

If C admits finite products, then these diagrams are well defined in C.

Now assume that G represents a functor with values in Mod(Z). In such
a case, we say that G is a commutative group object.

Let us denote by

v : G × G −→ G × G(8.1.1)

the morphism associated to the map (a, b) 
→ (b, a). Then the condition for
the group object to be commutative is µ◦v = µ. In other words, the diagram
below commutes

G × G

µ
����

��
��

��
�

v �� G × G

µ

��
G .

Lemma 8.1.2. Let F : C −→ C ′ be a functor and assume one of the following
conditions

(i) C admits finite products and F commutes with such products,
(ii) F is left exact.

If an object X ∈ C has a structure of a group object, then so does F(X).

Proof. The case (i) is obvious. In case (ii), the functor F̂ : C∧ −→ (C ′)∧ is exact
by Corollary 3.3.19. In particular, F̂ commutes with finite products. q.e.d.

8.2 Additive Categories

Definition 8.2.1. A pre-additive category is a category C such that for any
X, Y ∈ C, HomC(X, Y ) is endowed with a structure of an additive group and
the composition map ◦ is bilinear.

Example 8.2.2. Mod(Z) is a pre-additive category.

Lemma 8.2.3. Let X1 and X2 be objects of a pre-additive category C.
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(i) Assume that X1 × X2 exists in C and denote by pk : X1 × X2 −→ Xk the
projection (k = 1, 2). Let ik : Xk −→ X1 × X2 be the morphism defined by

p j ◦ ik =
{

idXk if j = k ,

0 if j �= k.
(8.2.1)

Then, we have

i1 ◦ p1 + i2 ◦ p2 = idX1×X2 .(8.2.2)

(ii) Conversely, let Z ∈ C and let pk : Z −→ Xk and ik : Xk −→ Z be morphisms
(k = 1, 2) satisfying (8.2.1) and (8.2.2). Then Z is a product of X1 and
X2 by (p1, p2) and a coproduct by (i1, i2).

Proof. (i) We have

p1 ◦ (i1 ◦ p1 + i2 ◦ p2) = (p1 ◦ i1) ◦ p1 + (p1 ◦ i2) ◦ p2 = p1 = p1 ◦ idX1×X2 .

Similarly,

p2 ◦ (i1 ◦ p1 + i2 ◦ p2) = p2 ◦ idX1×X2 .

Hence, i1 ◦ p1 + i2 ◦ p2 = idX1×X2 .
(ii) For any Y ∈ C, write

Z̃ := HomC(Y, Z) ∈ Mod(Z) ,

X̃k := HomC(Y, Xk) ∈ Mod(Z), k = 1, 2 .

The morphisms X̃k
ĩk−→ Z̃

p̃k−→ X̃k satisfy the conditions similar to (8.2.1) and
(8.2.2) and we get an isomorphism Z̃ ∼−→ X̃1 × X̃2 by a classical result of
additive groups. Hence, Z is a product of X1 and X2. By reversing the arrows,
we find that Z is a coproduct of X1 and X2. q.e.d.

We can reformulate Lemma 8.2.3.

Corollary 8.2.4. Let C be a pre-additive category and let X1, X2 ∈ C. If
X1× X2 exists in C, then X1 � X2 also exists. Moreover denoting by i j : X j −→
X1 � X2 and p j : X1 × X2 −→ X j the j-th co-projection and projection, the
morphism

r : X1 � X2 −→ X1 × X2

given by

p j ◦ r ◦ ik =
{

idXk if j = k ,

0 if j �= k .

is an isomorphism
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Notation 8.2.5. (i) The object Z in Lemma 8.2.3 (ii) is denoted by X1 ⊕ X2

and is called a direct sum of X1 and X2. Note that a direct sum of X1 and X2

is also a product as well as a coproduct of X1 and X2.
(ii) For historical reasons, if {Xi }i∈I is a small family of objects of C and the
coproduct

∐
i∈I Xi exists in C, it is denoted by

⊕
i∈I

Xi and still called the direct

sum of the Xi ’s.

Corollary 8.2.6. Let C be a pre-additive category, X, Y ∈ C and f1, f2 ∈
HomC(X, Y ). Assume that the direct sums X ⊕ X and Y ⊕ Y exist. Then
f1 + f2 ∈ HomC(X, Y ) coincides with the composition

X
δX−→ X ⊕ X

f1⊕ f2−−−→ Y ⊕ Y
σY−→ Y .

Here δX : X −→ X × X � X ⊕ X is the diagonal morphism and σY : Y ⊕ Y �
Y � Y −→ Y is the codiagonal morphism.

Proof. Let i j : X −→ X ⊕ X and p j : X ⊕ X −→ X be the j-th co-projection and
projection. Then we have p1 ◦ (i1 + i2) = p1 ◦ i1 + p1 ◦ i2 = idX = p1 ◦ δX and
similarly p2 ◦ (i1 + i2) = p2 ◦ δX . Hence we obtain i1 + i2 = δX . On the other
hand we have σY ◦ ( f1 � f2) ◦ i j = f j , which implies

σY ◦ ( f1 ⊕ f2) ◦ δX = σY ◦ ( f1 � f2) ◦ (i1 + i2)
= σY ◦ ( f1 � f2) ◦ i1 + σY ◦ ( f1 � f2) ◦ i2
= f1 + f2 .

q.e.d.

Definition 8.2.7. Let F : C −→ C ′ be a functor of pre-additive categories. We
say that F is additive if the map HomC(X, Y ) −→ HomC′(F(X), F(Y )) is ad-
ditive for any X, Y ∈ C.

Definition 8.2.8. An additive category is a category C satisfying the condi-
tions (i)–(iv) below.

(i) C has a zero object, denoted by 0.
(ii) For any X1, X2 ∈ C, the product X1×X2 and the coproduct X1�X2 exist.
(iii) For any X1, X2 ∈ C, define the morphism r : X1 � X2 −→ X1 × X2 as

follows: the composition Xk −→ X1 � X2
r−→ X1 × X2 −→ X j is 0 if j �= k

and is idXk if j = k. Then r is an isomorphism.
(Recall that, for X, Y ∈ C, the zero morphism 0: X −→ Y is the composi-
tion X −→ 0 −→ Y ).

(iv) For any X ∈ C, there exists a ∈ HomC(X, X) such that the composition

X
δX �� X × X

(a,idX ) �� X × X X � X
∼
r

�� σX �� X

is the zero morphism. Here, δX is the diagonal morphism and σX is the
codiagonal morphism.
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Note that if C is additive, then so is Cop.

Lemma 8.2.9. Let C be a pre-additive category which admits finite products.
Then C is additive.

Proof. This follows from Lemma 8.2.3 and Corollary 8.2.6. Note that the
morphism a in Definition 8.2.8 (iv) is given by − idX . q.e.d.

Lemma 8.2.10. Let C be an additive category. Then any X ∈ C has a struc-
ture of a commutative group object.

Proof. We define the composition morphism µ : X × X −→ X by the composi-
tion

X × X X � X
∼
r

�� σX �� X .

Then µ satisfies the associative law thanks to the commutative diagram below:

X × X × X (X � X)× X
∼

r×X
�� σX×X �� X × X

X × (X � X)

∼ X×r





X×σX

��

X � X � X
∼��

∼




σX�X ��

X�σX

��

X � X

∼ r





σX

��
X × X X � Xr

∼�� σX �� X .

The inverse morphism a : X −→ X is given by Definition 8.2.8 (iv). It is easily
checked that these data give a commutative group structure on X . q.e.d.

In the sequel, we shall denote by for the forgetful functor Mod(Z) −→ Set.

Lemma 8.2.11. Let C be an additive category and let F : C −→ Mod(Z) be
a functor commuting with finite products. For any X ∈ C, the addition map
F(X)× F(X) −→ F(X) of the additive group F(X) is given by the composition

ξ : F(X)× F(X) F(X × X)∼�� F(X � X)∼
F(r)

�� F(σX ) �� F(X) .

Proof. Let iν : F(X) −→ F(X)× F(X) (ν = 1, 2) be the map given by i1(x) =
(x, 0), i2(x) = (0, x). By the commutative diagram

F(X)

i1
��

F(X × 0)

��

∼�� F(X � 0) ��∼��

��

F(X)

id

��
F(X)× F(X) F(X × X)∼�� F(X � X)∼�� �� F(X) ,

we obtain ξ ◦ i1 = idF(X). Similarly, ξ ◦ i2 = idF(X). Since ξ is a morphism in
Mod(Z), we obtain the result. q.e.d.
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Proposition 8.2.12. Let C be an additive category and let F, F ′ : C −→
Mod(Z) be functors commuting with finite products. Then

Hom Fct(C,Mod(Z))(F, F ′) ∼−→Hom Fct(C,Set)(for ◦ F, for ◦ F ′) .

Proof. The injectivity of the map is obvious since for is faithful. Let us prove
the surjectivity.

Let ϕ : for ◦F −→ for ◦F ′ be a morphism of functors. By Lemma 8.2.11, the
map for ◦ F(X) −→ for ◦ F ′(X) commutes with the addition map, and hence it
gives a morphism ϕ̃(X) : F(X) −→ F ′(X) in Mod(Z). It is easily checked that
the family of morphisms {ϕ̃(X)}X∈C defines a morphism F −→ F ′. q.e.d.

Proposition 8.2.13. Let C be an additive category and let F : C −→ Set be
a functor commuting with finite products. Then there is a functor F̃ : C −→
Mod(Z) such that F is isomorphic to the composition C F̃−→ Mod(Z)

for−→ Set.
Moreover, such an F̃ is unique up to unique isomorphism.

Proof. Any X ∈ C has a structure of a commutative group object. Hence, by
Lemma 8.1.2, F(X) has a structure of a commutative group object, hence
defines an object F̃(X) ∈ Mod(Z). The uniqueness follows from Proposi-
tion 8.2.12. q.e.d.

Theorem 8.2.14. Let C be an additive category. Then C has a unique struc-
ture of a pre-additive category.

Proof. Let X ∈ C. By applying Proposition 8.2.13 and 8.2.12 to the functor
F = HomC(X, • ), we obtain that HomC(X, Y ) has a structure of an addi-
tive group. For f, g ∈ HomC(X, Y ), f + g ∈ HomC(X, Y ) is given by the
composition

X
δX �� X × X

f×g �� Y × Y

X � X

∼




f �g �� Y � Y

∼




σY �� Y .

(8.2.3)

Hence, + is symmetric by reversing the arrows.
For h ∈ HomC(W, X), HomC(X, • )

◦h−→ HomC(W, • ) is a morphism in
Fct(C,Mod(Z)) by Proposition 8.2.13. Hence, ( f + g) ◦ h = f ◦ h + g ◦ h for
f, g ∈ HomC(X, Y ). By reversing the arrows we obtain k◦( f +g) = k◦ f +k◦g
for k ∈ HomC(Y, Z). Thus C has a structure of a pre-additive category.

Conversely, if C has a structure of a pre-additive category, then for f ,
g ∈ HomC(X, Y ), f + g is given by (8.2.3) in virtue of Corollary 8.2.6. q.e.d.

Proposition 8.2.15. Let C and C ′ be additive categories and let F : C −→ C ′
be a functor. Then F is an additive functor if and only if it commutes with
finite products.
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Proof. For any X ∈ C, we have two functors α, β : C −→ Mod(Z) given by
C � Y 
→ α(Y ) := HomC(X, Y ) and C � Y 
→ β(Y ) := HomC′(F(X), F(Y )).
Then α and β commute with finite products and hence the canonical morphism
for ◦ α −→ for ◦ β lifts to a morphism α −→ β by Proposition 8.2.12. q.e.d.

Corollary 8.2.16. Let C and C ′ be additive categories and let F : C −→ C ′ be
a fully faithful functor. Then F is additive.

Proof. Let X, Y ∈ C. We endow the set HomC(X, Y ) with the additive group
structure inherited from the bijection HomC(X, Y ) � HomC′(F(X), F(Y )).
This defines a pre-additive structure on C, and this structure coincides with
the original one by Theorem 8.2.14. Hence F is additive. q.e.d.

Examples 8.2.17. (i) If R is a ring, Mod(R), Modf(R) and Modfp(R) (see Ex-
ample 1.2.4 (iv)) are additive categories.
(ii) Ban, the category of C-Banach spaces and linear continuous maps is
additive.
(iii) Let I be a small category. If C is additive, the category Fct(I, C) of
functors from I to C, is additive.

All along this book we shall encounter sequences of morphisms in additive
categories.

Definition 8.2.18. A complex X• in an additive category C is a sequence of
objects {X j } j∈Z and morphisms d j

X : X j −→ X j+1 such that d j
X ◦ d j−1

X = 0 for
all j .

Remark 8.2.19. We shall also encounter finite sequences of morphisms

X j d j−→ X j+1 d j+1−−→ · · · dk−1−−→ Xk

such that dn ◦ dn−1 = 0 when it is defined. In such a case we also call such a
sequence a (finite) complex. We sometimes identify it with the complex

· · · −→ 0 −→ X j d j−→ X j+1 −→ · · · −→ Xk −→ 0 −→ · · · .

In particular, X ′ f−→ X
g−→ X ′′ is a complex if and only if g ◦ f = 0.

In the subsequent chapters we shall often encounter diagrams in additive
categories which commute up to sign.

Definition 8.2.20. Let ε = ±1. A diagram in an additive category X
f ��

h
��

Y
g
��

V
k �� Z

is ε-commutative if g ◦ f = ε(k ◦ h). If it is (−1)-commutative, we say also
that it is anti-commutative (or anti-commutes).

Convention 8.2.21. All along this book, a diagram in an additive category
with horizontal and vertical arrows will be called a diagram of complexes if
all rows and all columns are complexes.
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8.3 Abelian Categories

From now on, C, C ′ will denote additive categories.

Definition 8.3.1. Let f : X −→ Y be a morphism in C.

(i) The kernel of f , if it exists, is the fiber product of X
f−→ Y ←− 0, that is,

X ×Y 0. It is denoted by Ker f . Equivalently, Ker f is the equalizer of the
parallel arrows f, 0: X ⇒ Y .

(ii) The cokernel of f , if it exists, is the kernel of f in Cop. It is denoted by
Coker f . Equivalently, Coker f is the co-equalizer of the parallel arrows
f, 0: X ⇒ Y .

Note that for a pair of parallel arrows f, g : X ⇒ Y , we have Ker( f, g) =
Ker( f − g) and Coker( f, g) = Coker( f − g).

By its definition, Ker f is a representative of the contravariant functor

Ker(HomC( • , f )) : Z 
→ Ker
(
HomC(Z , X) −→ HomC(Z , Y )

)
.

Here, Ker on the right hand side is the kernel in the category of additive
groups, that is, the inverse image of {0}.

Hence, if Ker f exists, it is unique up to a unique isomorphism, and there
is a morphism h : Ker f −→ X with f ◦ h = 0 and such that any g : W −→ X
with f ◦ g = 0 factorizes uniquely through h. This can be visualized by the
diagram:

W

-.
g

��

0

���
��

��
��

�

Ker f
h �� X

f �� Y .

Recall that

h is a monomorphism.(8.3.1)

Hence Ker h � 0. Also note that Ker f � 0 if and only if f is a monomorphism.
Finally, note that Ker f ∼−→ X if and only if f is the zero morphism.

Similarly, Coker f is a representative of the functor

Ker(HomC( f, • )) : Z 
→ Ker
(
HomC(Y, Z) −→ HomC(X, Z)

)
.

If Coker f exists, it is unique up to a unique isomorphism, and there is a
morphism k : Y −→ Coker f with k ◦ f = 0 and such that any g : Y −→ W with
g ◦ f = 0 factorizes uniquely through k. The cokernel may be visualized by
the diagram:

X

0 ���
��

��
��

�
f �� Y

k ��

g

��

Coker f

!!
W .
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Note that

(8.3.2) k is an epimorphism,

and Coker f � 0 if and only if f is an epimorphism.

Example 8.3.2. Let R be a ring. The kernel of a morphism f : M −→ N in
Mod(R) is the R-module f −1(0) and the cokernel of f is the quotient R-
module N/ f (M). Let I be a left ideal which is not finitely generated and let
M = R/I . Then the natural morphism R −→ M has no kernel in Modf(R).

Let C be an additive category in which every morphism admits a kernel and
a cokernel. Recall that (see Proposition 2.2.4):

Y0 �X Y1 � Coker(i0 ◦ f0 − i1 ◦ f1 : X −→ Y0 ⊕ Y1)
for morphisms f0 : X −→ Y0 and f1 : X −→ Y1 ,

X0 ×Y X1 � Ker(g0 ◦ p0 − g1 ◦ p1 : X0 ⊕ X1 −→ Y )
for morphisms g0 : X0 −→ Y and g1 : X1 −→ Y .

Here, iν : Yν −→ Y0 ⊕ Y1 is the co-projection and pν : X0 ⊕ X1 −→ Xν the
projection (ν = 0, 1).

Notation 8.3.3. We shall often write Y0 ⊕X Y1 instead of Y0 �X Y1.

Also recall the image and coimage of a morphism given in Definition 5.1.1:

Coim f = Coker(X ×Y X ⇒ X) ,

Im f = Ker(Y ⇒ Y ⊕X Y ) .

Proposition 8.3.4. Let C be an additive category which admits kernels and
cokernels. Let f : X −→ Y be a morphism in C. We have

Coim f � Coker h, where h : Ker f −→ X ,

Im f � Ker k, where k : Y −→ Coker f .

Proof. It is enough to treat Coim. Recall that p1, p2 : X ×Y X ⇒ X denote
the two canonical morphisms. Let Z ∈ C. By the definition of Coim, we have

HomC(Coim f, Z) � {u : X −→ Z ; u ◦ p1 = u ◦ p2} .

Using the definition of X ×Y X , we also have

HomC(Coim f, Z) � {u : X −→ Z ; u ◦ ϕ1 = u ◦ ϕ2 for any W ∈ C and
any ϕ1, ϕ2 ∈ HomC(W, X) with f ◦ ϕ1 = f ◦ ϕ2} .

The condition on u is equivalent to

u ◦ ϕ = 0 for any W ∈ C and any ϕ ∈ HomC(W, X) with f ◦ ϕ = 0 .
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Since such a ϕ factors uniquely through h : Ker f −→ X , we obtain

HomC(Coim f, Z) � {u : X −→ Z ; u ◦ h = 0}
� HomC(Coker h, Z)

functorially in Z . Hence, Coim f � Coker h. q.e.d.

Applying Propositions 8.3.4 and 5.1.2, we get a natural morphism Coim f
u−→

Im f. This morphism is described by the diagram (see Proposition 5.1.2):

Ker f
h �� X

f ��

����

Y
k �� Coker f .

Coim f
u �� Im f









Definition 8.3.5. An additive category C is abelian if:

(i) any morphism admits a kernel and a cokernel,
(ii) any morphism f in C is strict (see Definition 5.1.4), i.e., the natural

morphism Coim f −→ Im f is an isomorphism.

Recall that in an additive category, a morphism f is a monomorphism (resp.
an epimorphism) if and only if Ker f � 0 (resp. Coker f � 0). In an abelian
category, a morphism which is both a monomorphism and an epimorphism is
an isomorphism (see Proposition 5.1.5 (ii)).

Note that abelian categories admit finite inductive limits and finite pro-
jective limits.

Remark 8.3.6. The following assertions are easily checked.

(i) If {Ci }i∈I is a small family of abelian categories, then the product category∏
i∈I Ci is abelian.

(ii) Let I be a small category. If C is abelian, the category C I of functors
from I to C is abelian. For example, if F , G : I −→ C are two functors and
ϕ : F −→ G is a morphism of functors, define the functor N by N(X) :=
Ker(F(X) −→ G(X)). Clearly, N is a kernel of ϕ.

(iii) If C is abelian, then the opposite category Cop is abelian. Note that
for a morphism f : X −→ Y in C, we have Ker( f op) � (Coker( f ))op,
Coker( f op) � (Ker( f ))op, Im( f op) � (Coim( f ))op and Coim( f op) �
(Im( f ))op.

Examples 8.3.7. (i) If R is a ring, Mod(R) is an abelian category.
(ii) The category Modf(R) is abelian if and only if R is a Noether ring. If
Modfp(R) is abelian, we say that R is coherent .
(iii) The category Ban of Banach spaces over C admits kernels and cokernels.
If f : X −→ Y is a morphism of Banach spaces, then Ker f = f −1(0) and
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Coker f = Y/Im f where Im f denotes the closure of the vector space Im f .
It is well-known that there exist continuous linear maps f which are injective,
with dense and non closed image. For such an f , Ker f = Coker f = 0,
Coim f � X and Im f � Y , but Coim f −→ Im f is not an isomorphism. Thus
Ban is not abelian. However, Ban is a quasi-abelian category in the sense of
J-P. Schneiders [61].

Unless otherwise stated, C is assumed to be abelian until the end of this
section.

Consider a complex

(8.3.3) X ′ f−→ X
g−→ X ′′ (hence g ◦ f = 0).

Since Im f −→ X −→ X ′′ is zero, Im f −→ X factors through Ker g. Similarly,
X −→ Im g factors through Coker f . We thus have a commutative diagram

Im f
��

��














�� ϕ �� Ker g

./

./��
��
��
�

X ′

/0 /0���������

f
�� X

�� ���
��

��
��

�

-.-.��
��
��
��
� g

�� X ′′ .

Coker f
ψ �� �� Im g

��

����������

Note that ϕ is a monomorphism and ψ is an epimorphism. Let u : Ker g −→
Coker f be the composition Ker g −→ X −→ Coker f . We have the morphisms
Im f � Ker u� Ker(X −→ Coker f ) � Im f . Therefore Ker u � Im f . Simi-
larly, Coker u � Im g. Since Im u � Coim u, we get the isomorphisms

Im u � Coker(Im f −→ Ker g) � Coker(X ′ −→ Ker g)
� Ker(Coker f −→ Im g) � Ker(Coker f −→ X ′′).

(8.3.4)

Therefore the conditions below are equivalent

u = 0 ⇐⇒ Im f ∼−→Ker g ⇐⇒ X ′� Ker g

⇐⇒ Coker f ∼−→ Im g ⇐⇒ Coker f �X ′′.
(8.3.5)

Definition 8.3.8. Consider a complex X ′ f−→ X
g−→ X ′′ as in (8.3.3).

(i) We shall denote by H(X ′ f−→ X
g−→ X ′′) any of the isomorphic objects in

(8.3.4) and call it the cohomology of the complex (8.3.3).
(ii) The complex (8.3.3) is exact if the equivalent conditions in (8.3.5) are

satisfied, that is, if H(X ′ f−→ X
g−→ X ′′) � 0.
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(iii) More generally, a complex X j −→ · · · −→ Xk is exact if any sequence
Xn−1 −→ Xn −→ Xn+1 extracted from this complex is exact.
An exact complex is also often called an exact sequence.

Convention 8.3.9. All along this book, a diagram of complexes in an abelian
category (see Convention 8.2.21) will be called an exact diagram if all rows
and all columns are exact.

Note that the complex (8.3.3) is exact if and only if it is exact in Cop.
Indeed, we have (see Remark 8.3.6 (iii))

H(X ′′op gop−−→ Xop f op−−→ X ′op) � H(X ′ f−→ X
g−→ X ′′)op .

A complex 0 −→ X ′ f−→ X (resp. X
g−→ X ′′ −→ 0) is exact if and only if f is a

monomorphism (resp. g is an epimorphism).

Note that a complex X
u �� Y

v ��
w

�� Z is exact in the sense of Defini-

tion 2.2.2 if and only if the sequence 0 −→ X
u−→ Y

v−w−−→ Z is exact.

Hence, a complex 0 −→ X ′ f−→ X
g−→ X ′′ (resp. X ′ f−→ X

g−→ X ′′ −→ 0) is
exact if and only if X ′ −→ Ker g is an isomorphism (resp. Coker f −→ X ′′ is an
isomorphism). A complex

0 −→ X ′ f−→ X
g−→ X ′′ −→ 0

is exact if and only if X ′ −→ Ker g and Coker f −→ X ′′ are isomorphisms. Such
an exact complex is called a short exact sequence.

Any morphism f : X −→ Y may be decomposed into short exact sequences:

0 −→ Ker f −→ X −→ Im f −→ 0 ,

0 −→ Im f −→ Y −→ Coker f −→ 0.
(8.3.6)

Recalling Definition 2.2.7, we see that a square

(8.3.7)
X ′ f ′ ��

g′

��

Y ′

g

��
X

f �� Y

is Cartesian if and only if the sequence 0 −→ X ′ (g′, f ′)−−−→ X⊕Y ′ ( f,−g)−−−→ Y is exact.

The square is co-Cartesian if and only if the sequence X ′ (g′, f ′)−−−→ X ⊕Y ′ ( f,−g)−−−→
Y −→ 0 is exact.

Notations 8.3.10. Familiar notions for the categories of vector spaces are nat-
urally extended to abelian categories. Let Y�X be a monomorphism. We
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sometimes identify Y with the isomorphism class of such monomorphisms,
say abusively that Y is a subobject of X (see Definition 1.2.18), and write
Y ⊂ X . Similarly, we sometimes abusively call the cokernel of Y −→ X a
quotient of X and denote it by X/Y .

If X1 and X2 are subobjects of X , we sometimes set X1 ∩ X2 = X1 ×X X2,
and X1 + X2 = Im(X1⊕ X2 −→ X). For a finite family of subobjects {Xi }i∈I of
X we define similarly the subobjects

⋂
i∈I Xi and

∑
i Xi .

If f : X −→ Y is a morphism and Z is a subobject of Y , we set f −1(Z) =
X ×Y Z .

We shall now prove some lemmas of constant use.

Lemma 8.3.11. Consider the square (8.3.7).

(a) Assume that (8.3.7) is Cartesian.
(i) We have Ker f ′ ∼−→Ker f ,
(ii) if f is an epimorphism, then (8.3.7) is co-Cartesian and f ′ is an

epimorphism.
(b) Assume that (8.3.7) is co-Cartesian.

(i) We have Coker f ∼−→Coker f ′,
(ii) if f ′ is a monomorphism, then (8.3.7) is Cartesian and f is a

monomorphism.

Proof. (a) (i) Let S ∈ C. There is a chain of isomorphisms

Hom(S,Ker f ′) � Ker
(
Hom(S, X ′) −→ Hom(S, Y ′)

)
� Ker

(
Hom(S, X)×Hom (S,Y ) Hom(S, Y ′) −→ Hom(S, Y ′)

)
� Ker

(
Hom(S, X) −→ Hom(S, Y )

)
� Hom(S,Ker f ) .

(ii) If f is an epimorphism, then the sequence 0 −→ X ′ −→ X ⊕ Y ′ −→ Y −→
0 is exact, hence the square is both Cartesian and co-Cartesian. Therefore
Coker f ′ � Coker f by applying (i) with the arrows reversed.
(b) follows from (a) by reversing the arrows. q.e.d.

Lemma 8.3.12. Let X ′ f−→ X
g−→ X ′′ be a complex (i.e., g ◦ f = 0). Then the

conditions below are equivalent:

(i) the complex X ′ f−→ X
g−→ X ′′ is exact,

(ii) for any morphism h : S −→ X such that g ◦ h = 0, there exist an epimor-
phism f ′ : S′�S and a commutative diagram

S′
f ′ �� ��

��

S

h

��

0

���
��

��
��

�

X ′ f �� X
g �� X ′′ .
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Proof. (i) ⇒ (ii). It is enough to choose X ′ ×Ker g S as S′. Since X ′ −→ Ker g
is an epimorphism, S′ −→ S is an epimorphism by Lemma 8.3.11.
(ii) ⇒ (i). Choose S = Ker g. Then the composition S′ −→ X ′ −→ Ker g is an
epimorphism. Hence X ′ −→ Ker g is an epimorphism. q.e.d.

Lemma 8.3.13. [The “five lemma”] Consider a commutative diagram whose
rows are complexes

X0

f 0

��

�� X1

f 1

��

�� X2

f 2

��

�� X3

f 3

��
Y 0 �� Y 1 �� Y 2 �� Y 3 ,

and assume that X1 −→ X2 −→ X3 and Y 0 −→ Y 1 −→ Y 2 are exact sequences.

(i) If f 0 is an epimorphism and f 1, f 3 are monomorphisms, then f 2 is a
monomorphism.

(ii) If f 3 is a monomorphism and f 0, f 2 are epimorphisms, then f 1 is an
epimorphism.

The classical “five lemma” corresponds to the case of five morphisms f j : X j −→
Y j , j = 0, . . . , 4 and exact complexes. It asserts that if f 0, f 1, f 3, f 4 are
isomorphisms, then f 2 is also an isomorphism. Clearly, this is a consequence
of Lemma 8.3.13.

Proof. (ii) is deduced from (i) by reversing the arrows. Hence, it is enough
to prove (i). Let h : S −→ X2 be a morphism such that h ◦ f 2 = 0. We shall

prove that h = 0. The composition S −→ X2 −→ X3 f 3−→ Y 3 vanishes. Since
f 3 is a monomorphism by the hypothesis, the composition S −→ X2 −→ X3

vanishes. Applying Lemma 8.3.12, there exist an epimorphism S1�S and a
commutative solid diagram

S′0 �� ��

''

S1 �� ��

��

S

h

��
X0 ��

f 0

����

X1 ��
��

f 1

��

X2 ��

f 2

��

X3

��
f 3

��
Y 0 �� Y 1 �� Y 2 �� Y 3 .

Since the composition S1 −→ X1 −→ Y 1 −→ Y 2 vanishes, we find by applying
again Lemma 8.3.12 that there exists an epimorphism S′0�S1 such that S′0 −→
S1 −→ X1 −→ Y 1 factors as S′0 −→ Y 0 −→ Y 1.

Since f 0 : X0 −→ Y 0 is an epimorphism, there exists an epimorphism
S0�S′0 such that S0 −→ S′0 −→ Y 0 factors through S0 −→ X0 −→ Y 0. We
get a diagram
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S0

A

�� ��

��

S1 �� ��

��

S

h

��
X0 ��

��
f 0

��

X1 ��
��

f 1

��

X2 ��

f 2

��

X3

��
f 3

��
Y 0 �� Y 1 �� Y 2 �� Y 3 .

Note that the square diagram labeled “A” commutes since the two composi-

tions S0 −→ S1 −→ X1 f 1−→ Y 1 and S0 −→ X0 −→ X1 f 1−→ Y 1 coincide and f 1 is
a monomorphism. Therefore the composition S0 −→ S1 −→ S −→ X2 vanishes.
Since S0 −→ S1 −→ S is an epimorphism, S −→ X2 vanishes. This shows that
f 2 : X2 −→ Y 2 is a monomorphism. q.e.d.

Proposition 8.3.14. Let 0 −→ X ′ f−→ X
g−→ X ′′ −→ 0 be a short exact sequence

in C. Then the conditions below are equivalent:

(i) there exists h : X ′′ −→ X such that g ◦ h = idX ′′ ,
(ii) there exists k : X −→ X ′ such that k ◦ f = idX ′ ,
(iii) there exist h : X ′′ −→ X and k : X −→ X ′ such that idX = f ◦ k + h ◦ g,
(iv) there exist ϕ = (k, g) and ψ = ( f, h) such that X

ϕ−→ X ′ ⊕ X ′′ and

X ′ ⊕ X ′′ ψ−→ X are isomorphisms inverse to each other,
(v) for any Y ∈ C, the map HomC(Y, X)

g◦−→ HomC(Y, X ′′) is surjective,

(vi) for any Y ∈ C, the map HomC(X, Y )
◦ f−→ HomC(X ′, Y ) is surjective.

Proof. (i) ⇒ (iii). Since g = g◦h ◦g, we get g◦(idX −h ◦g) = 0, which implies
that idX −h ◦ g factors through Ker g, that is, through X ′. Hence, there exists
k : X −→ X ′ such that idX −h ◦ g = f ◦ k.
(iii) ⇒ (i). Since g ◦ f = 0, we find g = g ◦ h ◦ g, that is (g ◦ h − idX ′′) ◦ g = 0.
Since g is an epimorphism, this implies g ◦ h − idX ′′ = 0.
(iii) ⇔ (ii) follows by reversing the arrows.
(iv) ⇔ (iii) is obvious, as well as (i) ⇔ (v) and (ii) ⇔ (vi). q.e.d.

Definition 8.3.15. If the equivalent conditions of Proposition 8.3.14 are sat-
isfied, we say that the short exact sequence splits.

Note that an additive functor of abelian categories sends split short exact
sequences to split short exact sequences.

Definition 8.3.16. An abelian category is called semisimple if all short exact
sequences split.

For another characterization of semisimplicity, see §13.1.

Examples 8.3.17. (i) In the category Mod(Z), the exact sequence 0 −→ Z
2·−→

Z −→ Z/2Z −→ 0 does not split.
(ii) If k is a field, then Mod(k) is semisimple.
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Proposition 8.3.18. Let F : C −→ C ′ be an additive functor of abelian cate-
gories. Then F is left exact if and only if it commutes with kernels, that is,
if and only if, for any exact sequence 0 −→ X ′ −→ X −→ X ′′ in C, the sequence
0 −→ F(X ′) −→ F(X) −→ F(X ′′) is exact.

Proof. Applying Proposition 3.3.3, we find that F : C −→ C ′ is left exact if
and only if it commutes with finite projective limits. Since F is additive, it
commutes with finite products. Therefore, F commutes with finite projective
limits if and only if it commutes with kernels, by Proposition 2.2.9. q.e.d.

Similarly, an additive functor F is right exact if and only if it commutes
with cokernels, that is, if and only if if for any exact sequence X ′ −→ X −→
X ′′ −→ 0 in C, the sequence F(X ′) −→ F(X) −→ F(X ′′) −→ 0 is exact.

Recall that a contravariant functor G : C −→ C ′ is a functor from Cop to
C ′. Hence a contravariant functor G is left (resp. right) exact if and only if it
sends an exact sequence X ′ −→ X −→ X ′′ −→ 0 (resp. 0 −→ X ′ −→ X −→ X ′′) to
an exact sequence 0 −→ G(X ′′) −→ G(X) −→ G(X ′) (resp. G(X ′′) −→ G(X) −→
G(X ′) −→ 0).

Note that F is left exact if and only if for any exact sequence 0 −→ X ′ −→
X −→ X ′′ −→ 0 in C, the sequence 0 −→ F(X ′) −→ F(X) −→ F(X ′′) is exact, and
similarly for right exact functors. Moreover F is exact if and only if for any
exact sequence X ′ −→ X −→ X ′′ in C, the sequence F(X ′) −→ F(X) −→ F(X ′′) is
exact. (See Exercise 8.17.)

Recall (see Proposition 3.3.7) that the functor HomC : Cop × C −→ Mod(Z)
is left exact with respect to each of its arguments. Moreover, if F : C −→ C ′
and G : C ′ −→ C are two functors, and F is a left adjoint to G, then F is right
exact and G is left exact.

Example 8.3.19. Let k be a field and let A = k[x ]. Consider the additive func-
tor F : Mod(A) −→ Mod(A) given by M 
→ x · M . Then F sends a monomor-
phism to a monomorphism and an epimorphism to an epimorphism. On the
other-hand, consider the exact sequence 0 −→ x · A −→ A −→ A/(x · A) −→ 0. Ap-
plying the functor F , we get the sequence 0 −→ x2 ·A −→ x ·A −→ 0 −→ 0. Neither
the sequence 0 −→ x2 ·A −→ x ·A −→ 0 nor the sequence x2 ·A −→ x ·A −→ 0 −→ 0 is
exact. Hence, the functor F is neither left nor right exact. (See Exercise 8.33.)

Example 8.3.20. Let R be a k-algebra.
(i) The bifunctor Hom R : Mod(R)op × Mod(R) −→ Mod(k) is left exact with
respect to each of its argument. If R is a field, this functor is exact.
(ii) The bifunctor • ⊗R

• : Mod(Rop)×Mod(R) −→ Mod(k) is right exact with
respect to each of its argument. If R is a field, this functor is exact.
(iii) Recall that the category Mod(R) admits small inductive and projec-
tive limits. Moreover, if I is small and filtrant, the functor lim−→ : Mod(R)I −→
Mod(R) is exact. If I is discrete, then lim−→ and lim←− are exact.

By Proposition 2.2.9, the abelian category C admits small projective (resp.
inductive) limits if and only if it admits small products (resp. direct sums).



184 8 Additive and Abelian Categories

We shall introduce several notions concerning subcategories, which will be
frequently used later.

Definition 8.3.21. Let J be a full subcategory of C. Denote by J ′ the full
subcategory of C defined as follows: X ∈ J ′ if and only if there exist Y ∈ J
and an isomorphism X � Y .

(i) We say that J is closed by subobjects (resp. by quotients) if for any
monomorphism X�Y (resp. epimorphism Y�X) with Y ∈ J , we have
X ∈ J ′.

(ii) We say that J is closed by kernels (resp. cokernels) if for any morphism
f : X −→ Y in J , Ker f (resp. Coker f ) belongs to J ′.

(iii) We say that J is closed by extensions in C if for any exact sequence
0 −→ X ′ −→ X −→ X ′′ −→ 0 in C with X ′, X ′′ in J , we have X ∈ J ′.

(iv) We say that J is thick in C if it is closed by kernels, cokernels and
extensions.

(v) We say that J is cogenerating in C if for any X ∈ C there exist Y ∈ J
and a monomorphism X�Y .

(vi) We say that J is generating in C if J op is cogenerating in Cop. This
is equivalent to saying that for any X ∈ C there exist Y ∈ J and an
epimorphism Y�X .

(vii) We say that J is a fully abelian subcategory of C if J is an abelian full
subcategory of C and the embedding functor is exact.

Remark 8.3.22. (i) A full subcategory J of C is additive if and only if 0 ∈ J
and X ⊕ Y ∈ J for any X, Y ∈ J (see Corollary 8.2.16).
(ii) A full additive subcategory J of C is a fully abelian subcategory if and
only if J is closed by kernels and cokernels.
(iii) A full additive subcategory J of C is thick if and only if for any exact
sequence X0 −→ X1 −→ X2 −→ X3 −→ X4 in C, Xν ∈ J for ν = 0, 1, 3, 4 implies
that X2 is isomorphic to an object of J .

Let us give a criterion for a fully abelian subcategory to be thick.

Lemma 8.3.23. Let C be an abelian category and J a fully abelian subcate-
gory. Assume that{for any epimorphism X −→ Y with Y ∈ J , there exists a mor-

phism Y ′ −→ X with Y ′ ∈ J such that the composition Y ′ −→ X −→
Y is an epimorphism,

(8.3.8)

Then J is thick in C.

Proof. We may assume that J is saturated. Consider an exact sequence 0 −→
Y ′ −→ X −→ Y ′′ −→ 0 in C with Y ′, Y ′′ in J . We shall show that X ∈ J . By the
hypothesis, there exists an exact commutative diagram with Y ∈ J :
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Y
u ��

��

Y ′′ ��

id
��

0

X �� Y ′′ �� 0 .

Consider the commutative exact diagram:

0

��

0

��
Z

��

ϕ �� W

��
0 �� Y ′ (0,idY ′ ) �� Y ⊕ Y ′ (idY ,0) ��

��

Y ��

u
��

0

0 �� Y ′ �� X ��

��

Y ′′ ��

��

0 .

0 0

Then, ϕ is an isomorphism by Exercise 8.19. Hence, Z ∈ J and this implies
X ∈ J . q.e.d.

If J is cogenerating in C, then for each X ∈ C there exists an exact sequence

0 −→ X −→ Y 0 −→ Y 1 −→ · · ·(8.3.9)

with the Y j ’s in J . Indeed, the Y j ’s are constructed by induction by embed-
ding Coker(Y n−1 −→ Y n) into Y n+1 ∈ J . Similarly, if J is generating, there is
an exact sequence

· · · −→ Y−1 −→ Y 0 −→ X −→ 0(8.3.10)

with the Y j ’s in J .
Recall (see Proposition 5.2.4) that in an abelian category, the conditions

below are equivalent:

(i) G is a generator, that is, the functor ϕG = HomC(G, • ) is conservative,
(ii) The functor ϕG is faithful.

(See Exercise 8.27 for an example in which ϕG is not conservative although
ϕG(X) � 0 implies X � 0.)

Moreover, if C admits small inductive limits, the conditions above are
equivalent to:

(iii) for any X ∈ C, there exist a small set I and an epimorphism G
∐

I �X .

Let us introduce a class of abelian categories which is extremely useful in
practice and to which we shall come back in Sect. 9.6.
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Definition 8.3.24. A Grothendieck U-category C is an abelian U-category
such that C admits a generator and U-small inductive limits, and U-small
filtrant inductive limits are exact.

Hence, the definition depends on the choice of a universe U . However, if there
is no risk of confusion, we do not mention U .

Examples 8.3.25. (i) Let R be a ring. Then Mod(R) is a Grothendieck cate-
gory.
(ii) Let C be a small abelian category. We shall prove in Theorem 8.6.5 below
that Ind(C) is a Grothendieck category.

Corollary 8.3.26. Let C be a Grothendieck category and let X ∈ C. Then the
family of quotients of X and the family of subobjects of X are small sets.

Proof. Apply Proposition 5.2.9. q.e.d.

Proposition 8.3.27. Let C be a Grothendieck category. Then C satisfies the
following properties.

(i) C admits small projective limits,
(ii) if a functor F : Cop −→ Set commutes with small projective limits, then

F is representable,
(iii) if a functor F : C −→ C ′ commutes with small inductive limits, then F

admits a right adjoint.

Proof. Apply Corollary 5.2.10 and Proposition 5.2.8. q.e.d.

8.4 Injective Objects

Let C be an abelian category.

Definition 8.4.1. (i) An object I of C is injective if the functor HomC( • , I )
is exact. The category C has enough injectives if the full subcategory
of injective objects is cogenerating, i.e., for any X ∈ C there exists a
monomorphism X�I with I injective.

(ii) An object P is projective in C if it is injective in Cop, i.e., if the functor
HomC(P, • ) is exact. The category C has enough projectives if the full
subcategory of projective objects is generating, i.e., for any X ∈ C there
exists an epimorphism P�X with P projective.

Example 8.4.2. (i) Let R be a ring. Free R-modules are projective. It follows
immediately that the category Mod(R) has enough projectives. It is a classical
result (see Exercise 8.24) that the category Mod(R) has enough injectives. We
shall prove later that any Grothendieck category has enough injectives.
(ii) If k is a field, then any object of Mod(k) is both injective and projective.
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Proposition 8.4.3. An object I ∈ C is injective if and only if, for any X, Y ∈
C and any solid diagram in which the row is exact

0 �� X
f ��

k
��

Y

h��
I ,

the dotted arrow may be completed, making the whole diagram commutative.

Proof. Consider an exact sequence 0 −→ X
f−→ Y

g−→ Z −→ 0 and apply the
functor HomC( • , I ). Since this functor is left exact, HomC( • , I ) is exact if

and only if the map HomC(Y, I )
f ◦−→ HomC(X, I ) is surjective. q.e.d.

Lemma 8.4.4. Let 0 −→ X ′ f−→ X
g−→ X ′′ −→ 0 be an exact sequence in C, and

assume that X ′ is injective. Then the sequence splits.

Proof. Applying the preceding result with k = idX ′ , we find h : X −→ X ′ such
that h ◦ f = idX ′ . Then apply Proposition 8.3.14. q.e.d.

It follows that if F : C −→ C ′ is an additive functor of abelian categories and
the hypotheses of the lemma are satisfied, then the sequence 0 −→ F(X ′) −→
F(X) −→ F(X ′′) −→ 0 splits and in particular is exact.

Lemma 8.4.5. Let X ′, X ′′ belong to C. Then X ′ ⊕ X ′′ is injective if and only
if X ′ and X ′′ are injective.

Proof. It is enough to remark that for two additive functors of abelian cate-
gories F and G, X 
→ F(X)⊕G(X) is exact if and only if F and G are exact.

q.e.d.

Applying Lemmas 8.4.4 and 8.4.5, we get:

Proposition 8.4.6. Let 0 −→ X ′ −→ X −→ X ′′ −→ 0 be an exact sequence in C
and assume that X ′ and X are injective. Then X ′′ is injective.

Proposition 8.4.7. Let C denote a Grothendieck category and let {Gi }i∈I be
a system of generators. Then an object Z ∈ C is injective if and only if for
any i ∈ I and any subobject W ⊂ Gi , the natural map HomC(Gi , Z) −→
HomC(W, Z) is surjective.

Proof. The necessity of the condition is clear. Let us prove that it is sufficient.
Let f : X ′�X be a monomorphism and let h : X ′ −→ Z a morphism. Consider
a commutative diagram D
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X ′

f

��
�� k ��

h

��

Y

g
./��
��
��
��

�� l �� X

Z

with l ◦ k = f and l is a monomorphism.
In the sequel, we shall write for short D = (Y, g, l). Such diagrams form a

category ∆, a morphism D = (Y, g, l) −→ D′ = (Y ′, g′, l ′) being a commutative
diagram

X ′ �� k ��

h

��

Y

l

%%

g

./��
��
��
��

�� λ �� Y ′

g′
01,,,

,,,
,,,

,,,
,,,

�� l ′ �� Z

Z .

Denote by Σ the set of isomorphism classes of ∆. Since card(Hom∆(D, D′)) ≤
1 for any D, D′ ∈ ∆, Σ is a small ordered set. Moreover ∆ is equivalent to
the category associated with the ordered set Σ .

Since filtrant inductive limits are exact, Σ is inductively ordered. Let D0 =
(Y0, g0, l0) be a maximal element. By the definition of a system of generators,
in order to prove that Y0 = X , it is enough to check that, for each i ∈ I , the
monomorphism HomC(Gi , Y0)�HomC(Gi , X) is surjective. Let ϕ : Gi −→ X
be a morphism. Define Y := Y0 ×X Gi . Since Y0 −→ X is a monomorphism,
Y −→ Gi is a monomorphism. Define Y1 := Y0 ⊕Y Gi . Since we have an exact
sequence 0 −→ Y −→ Y0 ⊕ Gi

u−→ X , we get Y1 � Im u ⊂ X . By the assumption
on Z , the composition Y −→ Y0 −→ Z factorizes through Y�Gi . The morphism
Gi −→ Z factorizes through Y1, as in the diagram:

Y �� ��

��

Gi

��
ϕ

����
���

��

12

Y0
�� ��

		���
����

����
���� Y1

��

�� �� X

Z .

Since Y0 is maximal, Y0 � Y1 and Gi −→ X factorizes through Y0. q.e.d.

8.5 Ring Action

Let k denote a commutative ring.
A category C is a k-pre-additive category if for all X and Y in C,

HomC(X, Y ) is endowed with the structure of a k-module and the compo-
sition of morphisms is k-bilinear. The notion of k-additive functor between
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k-pre-additive categories and that of k-additive category, k-abelian category
are naturally defined. Note that additive categories are Z-additive. Also note
that for X ∈ C, EndC(X) := HomC(X, X) is a k-algebra.

There is an alternative definition. Let C be an additive category. Recall
that End (idC) denotes the set of endomorphisms of the functor idC . Then
End (idC) has a structure of a ring with unit, and it follows from Lemma 1.3.8
that this ring is commutative. Clearly, a structure of a k-additive category on
C is equivalent to the data of a morphism of rings k −→ End (idC).

Definition 8.5.1. Let R be a k-algebra and C a k-additive category. The cat-
egory Mod(R, C) is defined as follows.

Ob(Mod(R, C)) =
{
(X, ξX ) ; X ∈ C and ξX : R −→ EndC(X) is a morphism

of k-algebras
}

,

HomMod(R,C)((X, ξX ), (Y, ξY )) =
{

f : X −→ Y ; f ◦ ξX (a) = ξY (a) ◦ f

for all a ∈ R} .

Clearly, Mod(R, C) is k-additive and the functor for : Mod(R, C) −→ C given by
(X, ξX ) 
→ X is k-additive and faithful. If R is commutative, Mod(R, C) is an
R-additive category. More generally, Mod(R, C) is a Z(R)-additive category,
where Z(R) denotes the center of R.

Note that if X ∈ Mod(R, C) and Y ∈ C, then HomC(Y, X) ∈ Mod(R) and
HomC(X, Y ) ∈ Mod(Rop).

If F : C −→ C ′ is a k-additive functor, it induces a functor FR : Mod(R, C) −→
Mod(R, C ′) and the diagram below quasi-commutes

Mod(R, C)
FR ��

��

Mod(R, C ′)

��
C F �� C ′ .

Proposition 8.5.2. (i) Let C be a k-abelian category. Then Mod(R, C) is
k-abelian and the natural functor for : Mod(R, C) −→ C is faithful and
exact.

(ii) Let F : C −→ C ′ be a right (resp. left) exact functor of k-abelian categories.
Then FR : Mod(R, C) −→ Mod(R, C ′) is right (resp. left) exact.

The proof is obvious.

Notation 8.5.3. Let for denote the forgetful functor Mod(R, C) −→ C. Clearly,
for is faithful, but not fully faithful in general. However, we shall often denote
by the same symbol X an object of Mod(R, C) and its image by for in C. If
F : C −→ C ′ is a functor, we shall often write F instead of FR .

Example 8.5.4. We have Mod(R,Mod(k)) � Mod(R).
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Note that
Mod(R, C)op � Mod(Rop, Cop) ,

where Rop denotes the opposite ring of R.

Proposition 8.5.5. Let C be a k-abelian category and R a k-algebra.

(a) Assume that C admits small inductive limits. Then
(i) for any X ∈ Mod(R, C) and N ∈ Mod(Rop), the functor Y 
→

Hom Rop(N ,HomC(X, Y )) is representable,
(ii) denoting by N ⊗R X its representative, the functor

• ⊗R
• : Mod(Rop)×Mod(R, C) −→ C

is additive and right exact in each variable.
(b) Assume that C admits small projective limits. Then

(i) for any X ∈ Mod(R, C) and M ∈ Mod(R), the functor Y 
→
Hom R(M ,HomC(Y, X)) is representable,

(ii) denoting by Hom R(M, X) its representative, the functor

Hom R( • , • ) : (Mod(R))op ×Mod(R, C) −→ C

is additive and left exact in each variable.

Proof. (a) (i) First, assume that N = R⊕I for a small set I . The hypothesis
implies the isomorphism, functorial with respect to Y ∈ C:

Hom R(R⊕I ,HomC(X, Y )) � HomC(X, Y )I � HomC(X⊕I , Y ) .

In the general case, we may find an exact sequence R⊕J −→ R⊕I −→ N −→ 0,
with I and J small. The sequence

0 −→ Hom R(N ,HomC(X, Y )) −→ Hom R(R⊕I ,HomC(X, Y ))
−→ Hom R(R⊕J ,HomC(X, Y ))

is exact. Hence, Coker(X⊕J −→ X⊕I ) represents N ⊗R X .
(a) (ii) is obvious.
(b) Apply the result (a) to the category Cop. q.e.d.

Remark 8.5.6. In the situation of Proposition 8.5.5, if R is a k-algebra consider
another k-algebra S, and assume that M is an (S⊗k Rop)-module. Then M⊗R X
belongs to Mod(S, C). For an (R ⊗k Sop)-module N , Hom R(N , X) belongs to
Mod(S, C).

Remark 8.5.7. If M ∈ Mod(Rop) or M ∈ Mod(R) is of finite presentation,
the above construction shows that M ⊗R X and Hom R(M, X) are well defined
without assuming that C admits small inductive or projective limits.
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To end this section, let us recall a result of Gabriel-Popescu (see [54]).
Let C be a Grothendieck category and G a generator. Set R = (EndC(G))op.
Hence, G belongs to Mod(Rop, C). Define the functors

ϕG : C −→ Mod(R), ϕG(X) = HomC(G, X) ,

ψG : Mod(R) −→ C, ψG(M) = G ⊗R M .

Theorem 8.5.8. [Gabriel-Popescu] Let C be a Grothendieck category and G
a generator.

(i) The pair (ψG, ϕG) is a pair of adjoint functors,
(ii) ψG ◦ ϕG −→ idC is an isomorphism,
(iii) ϕG is fully faithful,
(iv) ψG is exact.

Proof. We shall write ϕ and ψ instead of ϕG and ψG , respectively.

(i) is obvious, since for X ∈ C and M ∈ Mod(R) we have

HomC(ψ(M), X) = HomC(M ⊗R G, X)
� Hom R(M,HomC(G, X)) = Hom R(M, ϕ(X)) .

(ii) is equivalent to (iii) by Proposition 1.5.6.

(iii) Denote by F the full subcategory of Mod(R) consisting of the products
of finite copies of R. Then ψ |F : F −→ C is fully faithful. By Theorem 5.3.6,
the functor λ : C −→ F∧ (denoted by ϕ in this theorem) is fully faithful. On
the other hand, the functor λ′ : Mod(R) −→ F∧ is fully faithful, again by
Theorem 5.3.6. Then the result follows from the commutative diagram of
categories:

C
ϕ ��

λ

��

Mod(R)

λ′!!!!!
!!
!!
!!

F∧.

(iv) Since ψ is right exact, in order to prove that it is exact, it remains to
prove that it sends a monomorphism M�N in Mod(R) to a monomorphism
ψ(M)�ψ(N) in C. We decompose the proof into several steps.
(iv) (a) Assume that M is finitely generated and N = R⊕J for a small set
J . There exist a finite set I and an epimorphism R⊕I �M . Since ψ is right
exact, ψ(R⊕I ) −→ ψ(M) is still an epimorphism. Hence, it is enough to prove
that the composition Ker

(
ψ(R⊕I ) −→ ψ(R⊕J )

) −→ ψ(R⊕J ) vanishes. Since ϕ is
faithful and left exact, we are reduced to prove the vanishing of the morphism

Ker
(
ϕψ(R⊕I ) −→ ϕψ(R⊕J )

) −→ ϕψ(R⊕J ).(8.5.1)
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Consider the diagram:

R⊕I

∼
��

�� R⊕J

��

��

���
��

��
��

��

ϕψ(R⊕I ) �� ϕψ(R⊕J ) �� R J .

Its commutativity implies the isomorphism

Ker(R⊕I −→ R⊕J ) ∼−→Ker
(
ϕψ(R⊕I ) −→ ϕψ(R⊕J )

)
.

Then the vanishing of the morphism in (8.5.1) follows from the commutative
diagram:

Ker(R⊕I −→ R⊕J ) 0 ��

∼
��

R⊕J

��
Ker

(
ϕψ(R⊕I ) −→ ϕψ(R⊕J )

)
�� ϕψ(R⊕J ).

(iv) (b) Assume that N = R⊕J for a small set J and M is an arbitrary R-
submodule of N . For any finitely generated submodule M ′ of M , the morphism
ψ(M ′) −→ ψ(N) is a monomorphism by (iv) (a). Since M � lim−→ M ′ where M ′

ranges over the filtrant family of finitely generated submodules of M and ψ

commutes with small inductive limits, the result follows. (Recall that by the
hypotheses, filtrant inductive limits are exact in C.)
(iv) (c) Finally, we treat the general case. We choose an epimorphism R⊕J �N ,
where J is a small set. We set K := M ×N (R⊕J ) and L := Ker(K −→ M). We
get the exact commutative diagram

0

��

0

��
0 �� L �� K

��

�� M ��

��

0

0 �� L �� R⊕J �� N �� 0 .

Applying the right exact functor ψ , we get the commutative diagram with
exact rows

0

��

0

��
ψ(L) �� ψ(K )

��

�� ψ(M) ��

��

0

ψ(L) �� ψ(R⊕J ) �� ψ(N) �� 0 .
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By the result of (iv) (b), the middle column is exact. Hence, the right column
is exact. q.e.d.

8.6 Indization of Abelian Categories

Let C be an abelian U-category. Then the big category C∧,add of additive
functors from Cop to Mod(Z) is abelian. By Proposition 8.2.12, we may regard
C∧,add as a full subcategory of C∧. Recall that C and Mod(Z) are U-categories
by the hypothesis and notice that C∧,add may not be a U-category.

Notation 8.6.1. Recall that if C is a category, we denote by “lim−→” the inductive
limit in C∧. If {Xi }i∈I is a small family of objects of an additive category C
indexed by a set I , we write “

⊕
”

i∈I
Xi for “lim−→”

J

(
⊕
i∈J

Xi ), where J ranges over

the set of finite subsets of I . Hence,

HomC∧(Z , “
⊕

”
i∈I

Xi ) �⊕
i∈I

HomC∧(Z , Xi )

for Z ∈ C.

Note that the functor

hC : C −→ C∧,add , X 
→ HomC( • , X)

makes C a full subcategory of C∧,add and this functor is left exact, but not
exact in general.

Recall that an ind-object in C is an object A ∈ C∧ which is isomorphic to
“lim−→” α for some functor α : I −→ C with I filtrant and small. Hence, Ind(C) is

a full pre-additive subcategory of C∧,add . Recall that Ind(C) is a U-category.

Proposition 8.6.2. Let A ∈ C∧,add . Then the two conditions below are equiv-
alent.

(i) The functor A belongs to Ind(C).
(ii) The functor A is left exact and CA is cofinally small.

Proof. This follows from Proposition 6.1.7. q.e.d.

Corollary 8.6.3. Let C be a small abelian category. Then Ind(C) is equiva-
lent to the full additive subcategory C∧,add,l of C∧,add consisting of left exact
functors.

Lemma 8.6.4. (i) The category Ind(C) is additive and admits kernels and
cokernels.
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(ii) Let I be small and filtrant, let α, β : I −→ C be two functors, and let
ϕ : α −→ β be a morphism of functors. Let f = “lim−→” ϕ. Then Ker f �
“lim−→”(Ker ϕ) and Coker f � “lim−→”(Coker ϕ).

(iii) If ϕ : A −→ B is a morphism in Ind(C), the kernel of ϕ in C∧,add is its
kernel in Ind(C).

This is a particular case of Propositions 6.1.16 and 6.1.18.

Theorem 8.6.5. (i) The category Ind(C) is abelian.
(ii) The natural functor C −→ Ind(C) is fully faithful and exact, and the nat-

ural functor Ind(C) −→ C∧,add is fully faithful and left exact.
(iii) The category Ind(C) admits small inductive limits. Moreover, inductive

limits over small filtrant categories are exact.
(iv) Assume that C admits small projective limits. Then Ind(C) admits small

projective limits.
(v) “

⊕
” is a coproduct in Ind(C).

(vi) Assume that C is essentially small. Then Ind(C) admits a generator, and
hence is a Grothendieck category.

Proof. (i) We know by Lemma 8.6.4 that Ind(C) admits kernels and coker-
nels. Let f be a morphism in Ind(C). We may assume f = “lim−→” ϕ as in
Lemma 8.6.4 (ii). Then Coim f � “lim−→” Coim ϕ and Im f � “lim−→” Im ϕ, by
Lemma 8.6.4. Hence Coim f � Im f .
(ii) follows from Lemma 8.6.4.
(iii) follows from Proposition 6.1.19.
(iv) follows from Corollary 6.1.17 (ii).
(v) is obvious.
(vi) Let {Xi }i∈I be a small set of objects of C such that any object of C is
isomorphic to some Xi . Then this family is a system of U-generators in Ind(C)
and “

⊕
”

i∈I
Xi is a generator. q.e.d.

Proposition 8.6.6. Let 0 −→ A′ f−→ A
g−→ A′′ −→ 0 be an exact sequence in

Ind(C) and let J be a full additive subcategory of C.

(a) There exist a small filtrant category I and an exact sequence of functors

from I to C, 0 −→ α′
ϕ−→ α

ψ−→ α′′ −→ 0 such that f � “lim−→” ϕ and g �
“lim−→” ψ.

(b) Assume that A belongs to Ind(J ). Then we may choose the functor α in
(a) with values in J .

(c) Assume that A′ belongs to Ind(J ). Then we may choose the functor α′ in
(a) with values in J .
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Proof. (a) By Proposition 6.1.13, we may assume that there exist I filtrant
and small, functors α, β : I −→ C and a morphism of functor λ : α −→ β such
that A � “lim−→” α, A′′ � “lim−→” β, and g � “lim−→” λ.

Set α′(i) = Ker λ(i), denote by ϕ(i) : α′(i) −→ α(i) the natural morphism,
and set α′′(i) = Coker ϕ(i). Since the sequence of functors 0 −→ α′ −→ α −→ β is
exact, we get A′ � “lim−→” α′. Since the sequences 0 −→ α′(i) −→ α(i) −→ α′′(i) −→
0 are exact, the sequence 0 −→ “lim−→” α′ −→ “lim−→” α −→ “lim−→” α′′ −→ 0 is exact.
Hence, “lim−→” α′′ � A′′.
(b) The proof in (a) shows that if A ∈ Ind(J ), we may assume α with values
in J .
(c) The result will follow from Lemma 8.6.7 below. q.e.d.

Lemma 8.6.7. Let I be a small and filtrant category, α : I −→ C a functor,
A = “lim−→” α and let f : A�B be a monomorphism in Ind(C). Then there
exist a small and filtrant category K , a cofinal functor p : K −→ I , a functor
β : K −→ C and a monomorphism of functor ϕ : α◦p�β such that f � “lim−→” ϕ.

Proof. By Proposition 8.6.6 (a), there exist a small filtrant category J , func-
tors α′, β ′ : J −→ C, and a monomorphism of functors ϕ : α′ −→ β ′ such that
f : A −→ B is isomorphic to “lim−→” ϕ : “lim−→” α′ −→ “lim−→” β ′.

By Proposition 6.1.13 applied to idA : “lim−→” α′ −→ “lim−→” α, there exist a
small and filtrant category K , cofinal functors pI : K −→ I and pJ : K −→ J ,
and a morphism of functors ψ : α′ ◦ pJ −→ α ◦ pI such that “lim−→” ψ � idA.

For k ∈ K , define β(k) as the coproduct of α(pI (k)) and β ′(pJ (k)) over
α′(pJ (k)). In other words, the square below is co-Cartesian:

α′(pJ (k))

ψ(k)

��

�� ϕ(pJ (k)) �� β ′(pJ (k))

��
α(pI (k)) �� ξ(k) �� β(k) .

It follows that the arrow ξ(k) : α(pI (k)) −→ β(k) is a monomorphism by
Lemma 8.3.11. Passing to the inductive limit with respect to k ∈ K , the
square remains co-Cartesian and it follows that B � “lim−→” β, f � “lim−→” ξ .
q.e.d.

Corollary 8.6.8. Let F : C −→ C ′ be an additive functor of abelian categories,
I F : Ind(C) −→ Ind(C ′) the associated functor. If F is left (resp. right) exact,
then I F is left (resp. right) exact.

Proof. Apply Proposition 8.6.6 (a). q.e.d.

Proposition 8.6.9. Let f : A −→ B be a morphism in Ind(C). The two con-
ditions below are equivalent.
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(i) f is an epimorphism,

(ii) for any solid diagram X
g ��

��

Y

��
A

f �� B

in Ind(C) with Y ∈ C, the dotted arrows

may be completed to a commutative diagram with X ∈ C such that g is
an epimorphism.

Proof. We may assume from the beginning that there exist a small and filtrant
category I and a morphism of functors ϕ : α −→ β such that f = “lim−→” ϕ.
(i) ⇒ (ii). Assume that f is an epimorphism. By Proposition 8.6.6 we may
assume that ϕ(i) : α(i) −→ β(i) is an epimorphism for all i ∈ I . The morphism
Y −→ B factors through Y −→ β(i) for some i ∈ I . Hence the result follows from
the corresponding one when replacing Ind(C) by C (see Proposition 8.3.12).
(ii) ⇒ (i). For each i ∈ I we shall apply the hypothesis with Y = β(i). We
find a commutative diagram

X

�� �� ��..
...

...
..

A ×B β(i) ��

��

β(i)

��
A �� B.

Hence, A ×B β(i) −→ β(i) is an epimorphism. Applying the functor “lim−→”, we

find that A � “lim−→”
i

(A ×B β(i)) −→ “lim−→”
i

β(i) � B is an epimorphism. q.e.d.

Corollary 8.6.10. A complex A
f−→ B

g−→ C in Ind(C) is exact if and only if
for any solid commutative diagram in Ind(C) with Y ∈ C

X
h ��

��

Y

��

0

((/
//

//
//

/

A
f

�� B g
�� C ,

the dotted arrows may be completed to a commutative diagram with X ∈ C
such that h is an epimorphism.

Proof. Apply Proposition 8.6.9 to the morphism A −→ Ker g. q.e.d.

Proposition 8.6.11. The category C is thick in Ind(C).

This follows from Proposition 8.6.9 and Lemma 8.3.23.

Proposition 8.6.12. Let C be an abelian category, J ⊂ C an additive subcat-
egory closed by extension in C. Then Ind(J ) is closed by extension in Ind(C).
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Proof. Let A ∈ Ind(C). Remark first that A ∈ Ind(J ) if and only if any
morphism X −→ A with X ∈ C factorizes through an object Y ∈ J (see
Exercise 6.11). Now consider an exact sequence in Ind(C): 0 −→ A′ −→ A −→
A′′ −→ 0 and assume that A′, A′′ belong to Ind(J ). Consider a morphism
X −→ A with X ∈ C. The composition X −→ A −→ A′′ factorizes through an
object Y ′′ ∈ J . Since A −→ A′′ is an epimorphism, there exists an epimorphism
X1 −→ Y ′′ in C such that the composition X1 −→ Y ′′ −→ A′′ factorizes through
A −→ A′′. Hence we get the commutative diagram

X ⊕ X1

��

�� �� Y ′′

��
A �� �� A′′ .

Set X2 = X⊕X1 and define N = Ker(X2 −→ Y ′′) ∈ C. We get the commutative
exact diagram:

0 �� N

��

�� X2

��

�� Y ′′ ��

��

0

0 �� A′ �� A �� A′′ �� 0.

The morphism N −→ A′ factorizes through an object Y ′ ∈ J . Set X3 =
Y ′ ⊕N X2. We get the commutative diagram

0 �� N

��

�� X2

��

�� Y ′′ �� 0

0 �� Y ′

��

�� X3

��

�� Y ′′

��

�� 0

0 �� A′ �� A �� A′′ �� 0.

Since the top square on the left is co-Cartesian, the middle row is exact. Since
Y ′ and Y ′′ belong to J , we get X3 ∈ J . Hence, X −→ A factors through
X3 ∈ J . q.e.d.

8.7 Extension of Exact Functors

Let C be an abelian category, J a full additive subcategory of C, and let
j : J −→ C be the embedding. Let A be another abelian category. Recall that
the functor j∗ : Fct(C,A) −→ Fct(J ,A) is defined by j∗G = G ◦ j .

Notation 8.7.1. (i) We denote by Fctr (C,A) the full additive subcategory of
Fct(C,A) consisting of additive right exact functors.
(ii) We denote by Fctr (J ,A) the full additive subcategory of Fct(J ,A) con-
sisting of additive functors F which satisfy: for any exact sequence Y ′ −→ Y −→
Y ′′ −→ 0 in C with Y ′, Y , Y ′′ in J , the sequence F(Y ′) −→ F(Y ) −→ F(Y ′′) −→ 0
is exact in A.
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Note that j∗ induces a functor (we keep the same notation)

j∗ : Fctr (C,A) −→ Fctr (J ,A) .(8.7.1)

Theorem 8.7.2. Assume that J is generating in C. Then the functor j∗ in-
duces an equivalence of categories Fctr (C,A) ∼−→Fctr (J ,A).

Of course, one can deduce similar results for left exact or for contravariant
functors. We leave the precise formulation to the reader.

The proof here is a toy model of the construction of derived categories
studied in Chapter 11–13. Let us explain the idea of the proof. For A ∈
Fctr (J ,A), we construct A+ ∈ Fctr (C,A) whose image by j∗ is isomorphic
to A as follows. We can define the functor K0 : Mor(J ) −→ C by u 
→ Coker u.
On the other hand, we have the functor A′ : Mor(J ) −→ A given by u 
→
Coker(A(u)). We will show that the diagram below can be completed with a
dotted arrow:

Mor(J )
K0 ��

A′

��

C

A+

$$
A ,

and then prove that A+ belongs to Fctr (C,A) and its image by j∗ is isomorphic
to A.

We set

D := Mor(C) ,

K : D −→ C the functor which associates Coker(u) to u ∈ D.

Note that D is an abelian category.

Lemma 8.7.3. For any u, v ∈ D and any morphism f : K (u) −→ K (v), there
exist w ∈ D and morphisms α : w −→ u and β : w −→ v such that K (α) is an
isomorphism in C and f ◦ K (α) = K (β).

Proof. Let u : Y −→ X and v : Y ′ −→ X ′. Then construct X1, Y1, Y2 ∈ C such
that we have a commutative diagram with the three Cartesian squares marked
by �:

Y2

��

��

�

w

%%

Y1

��

��

�

Y ′

v
��

X1
��

����
�

X ′

����
Y

u �� X �� �� Coker(u)
f �� Coker(v) .

Then w : Y2 −→ X1 satisfies the desired condition. q.e.d.
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Let D′ be the category defined as follows:

Ob(D′) = Ob(D) ,

HomD′(u, v) = Im
(
HomD(u, v) −→ HomC(K (u), K (v))

)
for u, v ∈ D .

Then D′ is an additive category. The functor K decomposes as

D −→ D′ Q−→ C ,

and Q is a faithful additive functor.
Let S be the set of morphisms s in D′ such that Q(s) is an isomorphism.

Since Q is faithful, any morphism in S is a monomorphism by Proposi-
tion 1.2.12.

Lemma 8.7.4. (i) S is a left multiplicative system,
(ii) the functor Q decomposes as D′ −→ D′

S −→ C and the functor D′
S −→ C is

an equivalence of categories.

Proof. (i) Let us check the condition in Definition 7.1.5. The conditions S1
and S2 are obvious. Let us show S’3 (with the notations there). Applying
Lemma 8.7.3 to K (t)−1 ◦ K ( f ) : K (X) −→ K (Y ′), there exist X ′ ∈ D′ and
morphisms s : X ′ −→ X and g : X ′ −→ Y ′ such that K (s) is an isomorphism and
K (g) = K (t)−1 ◦K ( f )◦K (s). The condition S’4 immediately follows from the
fact that any morphism in S is a monomorphism.
(ii) Since Q : D′ −→ C sends the morphisms in S to isomorphisms, Q decom-
poses as D′ −→ D′

S −→ C. For u, v ∈ D′, the map

HomD′
S
(u, v) � lim−→

(u′−→u)∈Su

HomD′(u′, v) −→ HomC(Q(u), Q(v))

is injective because Q is faithful, and is surjective by Lemma 8.7.3. The functor
D′

S −→ C is therefore fully faithful, and it is evidently essentially surjective.
Hence the functor D′

S −→ C is an equivalence of categories. q.e.d.

Let us denote by D0 the category Mor(J ) and by D′
0 the full subcategory

of D′ such that Ob(D′
0) = Ob(D0). Note that D0 is a full additive subcategory

of D. We set T = S ∩Mor(D′
0).

Lemma 8.7.5. (i) For any u ∈ D′, there exists a morphism α : v −→ u in S
such that v ∈ D′

0.
(ii) The family of morphisms T is a left multiplicative system in D′

0 and the
functor (D′

0)T −→ D′
S is an equivalence of categories.

Proof. (i) Let us represent u by an object u : Y −→ X in D. Take an epimor-
phism X ′�X with X ′ ∈ J and then take an epimorphism Y ′�Y ×X X ′ with
Y ′ ∈ J . Then v : Y ′ −→ X ′ belongs to D0 and the morphism v −→ u induces an
isomorphism Coker(v) ∼−→Coker(u).
(ii) then follows from Corollary 7.2.2 (with the arrows reversed). q.e.d.
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Applying Lemmas 8.7.4 and 8.7.5, we obtain that (D′
0)T −→ C is an equivalence

of categories. Let K0 : D0 −→ C be the functor u 
→ Coker(u). Then we have
proved that K0 decomposes as

D0 −→ D′
0 −→ (D′

0)T
∼−→ C .

For A ∈ Fctr (J ,A), we shall first construct A+ ∈ Fctr (C,A) such that
j∗A+ � A. We need two lemmas.

Lemma 8.7.6. Let A′ : D0 −→ A be the functor which associates Coker(A(u))
to u ∈ D0. Then A′ decomposes as D0 −→ D′

0 −→ (D′
0)T

∼−→ C −→ A.

Proof. It is enough to show the following two statements:

if α : u −→ v in Mor(D0) satisfies K (α) = 0, then A′(α) = 0,(8.7.2)

for α : u −→ v in Mor(D0), if K (α) is an isomorphism, then
A′(α) is an isomorphism .

(8.7.3)

Let us first show (8.7.3). Let us represent α : u −→ v by a commutative
diagram in J :

Y

u

��

α1 �� Y ′

v

��
X

α0 �� X ′.

(8.7.4)

The condition that K (α) is an isomorphism is equivalent to the fact that the
sequence Y −→ X ⊕ Y ′ −→ X ′ −→ 0 is exact. This complex remains exact after
applying A. Hence Coker(A(u)) −→ Coker(A(v)) is an isomorphism.

Let us show (8.7.2). Let us represent α as in (8.7.4). The condition K (α) =
0 implies that X1 := X ×X ′ Y ′ −→ X is an epimorphism. Set Y1 = X1 ×X Y
and let u1 : Y1 −→ X1 be the first projection. Then u1 ∈ D and the morphism
β : u1 −→ u belongs to S. By Lemma 8.7.5, there exists a morphism γ : w −→ u1

such that γ belongs to S and w ∈ D0. Thus we obtain a commutative diagram
in C :

Y2
γ1 ��

w

��

Y1
β1 �� ��

u1

��

Y
α1 ��

u

��

Y ′

v

��
X2 γ0

�� X1
β0

�� ��
������

���������

X α0
�� X ′.

Since w −→ u belongs to S, (8.7.3) implies that A′(w) −→ A′(u) is an

isomorphism. Since the composition X2
β0◦γ0−−−−→ X

α0−−→ X ′ in J decom-
poses through v : Y ′ −→ X ′ as seen by the diagram above, the composition

A′(w) ∼−→ A′(u)
A′(α)−−−→ A′(v) vanishes. Hence we obtain the desired result,

A′(α) = 0. q.e.d.
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By Lemma 8.7.6, the functor A′ : D0 −→ A decomposes through C. Let
A+ : C −→ A be the functor thus obtained. By the construction, it is obvious
that A+ commutes with finite products, and hence it is an additive functor
by Proposition 8.2.15.

Lemma 8.7.7. The functor A+ is right exact.

Proof. For an exact sequence X1 −→ X2 −→ X3 −→ 0 in C, we can construct a
commutative diagram in C

X ′′
1

��

u1
��

X ′′
2

��

u2
��

X ′′
3

��

u3
��

0

X ′
1

��

��

X ′
2

��

��

X ′
3

��

��

0

X1
��

��

X2
��

��

X3
��

��

0

0 0 0

with X ′
j , X ′′

j ∈ J ( j = 1, 2, 3). Then A′(u j ) � Coker A(u j ) � A+(X j ). Since
A sends the first two rows to exact sequences, we obtain that A+(X1) −→
A+(X2) −→ A+(X3) −→ 0 is exact. q.e.d.

We can now complete the proof of the theorem. We have obtained the
functor Fctr (J ,A) −→ Fctr (C,A) which associates A+ ∈ Fctr (C,A) to
A ∈ Fctr (J ,A). It is obvious that this functor is a quasi-inverse to the functor
j∗ in (8.7.1).

Exercises

Exercise 8.1. Let C be a category admitting finite products, let Gr(C) denote
the category of group objects in C and denote by for : Gr(C) −→ C the forgetful
functor. Prove that Gr(C) admits finite products and that for commutes with
finite products.

Exercise 8.2. Recall that Group denotes the category of groups and that
for : Group −→ Set is the forgetful functor.
(i) Prove that Group admits small projective limits and for commutes with
such limits.
(ii) Let X ∈ Group and assume that X is a group object in Group. Prove
that the group structure on for(X) induced by the group object structure in
Set (see Lemma 8.1.2) is commutative and coincides with the group structure
on for(X) induced by the fact that X ∈ Group.
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Exercise 8.3. Let C and C ′ be additive categories.
(i) Let X, Y ∈ C. Prove that if the first projection X × Y −→ X is an isomor-
phism, then Y � 0.
(ii) Prove that a functor F : C −→ C ′ is additive as soon as F(X×Y ) ∼−→ F(X)×
F(Y ) for any X, Y ∈ C.

Exercise 8.4. Let C be an additive category and let S be a right multi-
plicative system. Prove that the localization CS is an additive category and
Q : C −→ CS is an additive functor.

Exercise 8.5. Let C be an additive category and assume that C is idempotent
complete. Let X ∈ C.
(i) Let p : X −→ X be an idempotent (i.e., p2 = p). Prove that there exists
an isomorphism X � Y ⊕ Z such that p = g ◦ f where f : X −→ Y is the
projection and g : Y −→ X is the embedding.
(ii) Assume that idX =

∑
i∈I ei , where ei ∈ HomC(X, X), I is finite, ei e j = 0

if i �= j . Prove that X � ⊕i Xi with Xi � Im ei .

Exercise 8.6. Let C be an additive category and N a full additive subcate-
gory of C. For X, Y ∈ C, define N (X, Y ) as the set of morphisms f : X −→ Y
in C which factorize through some Z ∈ N .
(i) Prove that N (X, Y ) is an additive subgroup of HomC(X, Y ).
(ii) Define the category CN by setting Ob(CN ) = Ob(C) and HomCN

(X, Y ) =
HomC(X, Y )/N (X, Y ). Prove that CN is a well-defined additive category.
(iii) Assume that N is idempotent complete. Prove that a pair of objects X ,
Y in C are isomorphic in CN if and only if there exist Z1, Z2 ∈ N and an
isomorphism X ⊕ Z1 � Y ⊕ Z2. (Hint: if f : X −→ Y and g : Y −→ X satisfy
g ◦ f = idX , and if there exists Y

u−→ Z
v−→ Y such that idY = f ◦ g + v ◦ u and

Z ∈ N , then p := (u ◦ v)2 ∈ EndC(Z) satisfies p = p2 and v ◦ u = v ◦ p ◦ u.)

Exercise 8.7. Let I be a small set and let C be an additive category admitting
coproducts indexed by I . Let N be a full additive subcategory of C closed by
coproducts indexed by I . Prove that the category CN defined in Exercise 8.6
admits coproducts indexed by I and the functor C −→ CN commutes with such
coproducts.

Exercise 8.8. Let F : C −→ C ′ be an additive functor of additive categories
and assume that F admits a left (or right) adjoint G. Prove that G is additive.

Exercise 8.9. Let C be a small category and denote by C∧,ab the category of
functors from Cop to Mod(Z). Denote by ϕ : C −→ C∧,ab the functor

ϕ(X) : Y 
→ Z⊕Hom
C
(Y,X)

.

(i) Prove that ϕ is faithful.
(ii) Let C+ denote the full subcategory of C∧,ab consisting of objects which are
finite products of objects of the form ϕ(X) with X ∈ C. Prove that C+ is an
additive category and
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HomC+(ϕ(X), ϕ(Y )) � Z⊕Hom
C
(X,Y )

.

(iii) Let A be an additive category and F : C −→ A a functor. Prove that
there exists an additive functor F ′ : C+ −→ A such that F is isomorphic to the
composition F ′ ◦ ϕ.

Exercise 8.10. Let k be a commutative ring and let C1, C2 be k-additive
categories. Let Φ : C1 × C2 −→ (C1 × C2)∧ be the functor given by

Φ
(
(X1, X2)

)
(Y1, Y2) = HomC1

(Y1, X1)⊗k HomC2
(Y2, X2) .

Let C1⊗k C2 be the full subcategory of (C1×C2)∧ consisting of objects isomor-
phic to finite products of images of objects of C1 × C2 by Φ.
(i) Prove that C1 ⊗k C2 is a k-additive category and prove that the functor
ϕ : C1 × C2 −→ C1 ⊗k C2 induced by Φ is k-bilinear, that is, k-additive with
respect to each argument.
(ii) Let A be a k-additive category and let F : C1 × C2 −→ A be a k-bilinear

functor. Prove that F decomposes as C1 × C2
ϕ−→ C1 ⊗k C2

G−→ A where G is
unique up to unique isomorphism.
(iii) Prove that Cop

1 ⊗k C
op
2 is equivalent to (C1 ⊗k C2)op.

Exercise 8.11. Let C be an abelian category, S a right and left multiplicative
system. Prove that the localization CS is abelian and the functor C −→ CS is
exact.

Exercise 8.12. Let C be an abelian category, N a full additive subcategory
closed by subobjects, quotients and extensions (see Definition 8.3.21). Let S
denote the family of morphisms in C defined by f ∈ S if and only if Ker f and
Coker f belong to N . Prove that S is a right and left saturated multiplicative
system and that the localization CS (usually denoted by C/N ) is an abelian
category.

Exercise 8.13. We keep the notations of Exercise 8.12. Let C be a Grothen-
dieck category, N a full additive subcategory closed by subobjects, quotients,
extensions and small inductive limits.
(i) Prove that for any object X ∈ C, there exists a maximal subobject Y of
X with Y ∈ N , and prove the isomorphism HomC(Z , X/Y ) � HomC/N (Z , X)
for any Z ∈ C.
(ii) Prove that the functor C −→ C/N admits a right adjoint.
(iii) Prove that C/N is a Grothendieck category and the localization functor
C −→ C/N commutes with small inductive limits.

Exercise 8.14. Recall that, for an additive category C, End (idC) denotes the
commutative ring of morphisms of the identity functor on C.
(i) Let R be a ring. Prove that End (idMod(R)) is isomorphic to the center of
R.
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(ii) Let C be the category of finite abelian groups. Prove that End (idC) �∏
p Zp where p ranges over the set of prime integers and Zp := lim←−

n

(Z/Zpn) is

the ring of p-adic integers.

Exercise 8.15. Let C be an abelian category.
(i) Prove that a complex 0 −→ X −→ Y −→ Z is exact if and only if the complex
of abelian groups 0 −→ HomC(W, X) −→ HomC(W, Y ) −→ HomC(W, Z) is exact
for any object W ∈ C.
(ii) By reversing the arrows, state and prove a similar statement for a complex
X −→ Y −→ Z −→ 0.

Exercise 8.16. Let C be an abelian category and let f : X −→ Y and g : Y −→
Z be morphisms in C. Prove that there exists an exact complex

0 −→ Ker( f ) −→ Ker(g ◦ f ) −→ Ker(g)

−→ Coker( f ) −→ Coker(g ◦ f ) −→ Coker(g) −→ 0.

Here, Ker(g) −→ Coker( f ) is given by the composition Ker(g) −→ Y −→
Coker( f ).

Exercise 8.17. Let F : C −→ C ′ be an additive functor of abelian categories.
(i) Prove that F is left exact if and only if for any exact sequence 0 −→ X ′ −→
X −→ X ′′ −→ 0 in C, the sequence 0 −→ F(X ′) −→ F(X) −→ F(X ′′) is exact.
(ii) Prove that the conditions (a)–(c) below are equivalent:

(a) F is exact,
(b) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C, the sequence

0 −→ F(X ′) −→ F(X) −→ F(X ′′) −→ 0 is exact,
(c) for any exact sequence X ′ −→ X −→ X ′′ in C, the sequence F(X ′) −→

F(X) −→ F(X ′′) is exact.

Exercise 8.18. Let F : C −→ C ′ be an additive functor of abelian categories.
(i) Prove that F is left exact if and only if for any monomorphism X�Y in
C, the sequence F(X) −→ F(Y ) ⇒ F(Y ⊕X Y ) is exact.
(ii) Similarly, F is right exact if and only if for any epimorphism X�Y in C,
the sequence F(X ×Y X) ⇒ F(X) −→ F(Y ) is exact.

Exercise 8.19. Let C be an abelian category and consider a commutative
diagram of complexes

0

��

0

��

0

��
0 �� X ′

0
��

��

X0
��

��

X ′′
0

��
0 �� X ′

1
��

��

X1
��

��

X ′′
1

��
0 �� X ′

2
�� X2

�� X ′′
2.
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Assume that all rows are exact as well as the middle and right columns. Prove
that all columns are exact.

Exercise 8.20. Let C be an abelian category. An object X ∈ C is simple if
it is not isomorphic to 0 and any subobject of X is either X or 0. In this
exercise, we write X ⊃ Y or Y ⊂ X to denote a subobject Y of X . A sequence
X = X0 ⊃ X1 ⊃ · · · ⊃ Xn−1 ⊃ Xn = 0 is a composition series if Xi/Xi+1 is
simple for all i with 0 ≤ i < n.
(i) Prove that the conditions below are equivalent:

(a) there exists a composition series X = X0 ⊃ X1 ⊃ · · · ⊃ Xn = 0,
(b) there exists an integer n such that for any sequence X = X0 � X1 � · · · �

Xm = 0, we have m ≤ n,
(c) any decreasing sequence X = X0 ⊃ X1 ⊃ · · · ⊃ Xm ⊃ · · · is stationary

(i.e. Xm = Xm+1 for m � 0) and any increasing sequence X0 ⊂ · · · ⊂
Xm ⊂ · · · ⊂ X is stationary,

(d) for any set S of subobjects of X ordered by inclusion, if S is filtrant then S
has a largest element, and if S is cofiltrant then S has a smallest element.

(ii) Prove that the integer n in (a) depends only on X .
If the equivalent conditions above are satisfied, we say that X has finite length
and the integer n in (a) is called the length of X .

Exercise 8.21. Let C be an abelian category and consider a commutative
exact diagram:

0 �� X0 ��

f 0

��

X1 ��

f 1

��

X2 ��

f 2

��

X3 ��

f 3

��

0

0 �� Y 0 �� Y 1 �� Y 2 �� Y 3 �� 0 .

Prove that the following two conditions are equivalent:

(a) the middle square (X1, X2, Y 1, Y 2) is Cartesian,
(b) f 0 is an isomorphism and f 3 is a monomorphism.

Exercise 8.22. Let C be an abelian category and consider the diagram of
complexes that we assume to be commutative except the two squares marked
by “nc”:
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0

��

0

��

0

��
0 �� X0 ×X1 Z1

��

��

Z1
��

��

Z2
��

��
nc

0

��
0 �� X0

��

��

X1
��

��

X2
��

��

X3
��

��

0

0 �� Y0
��

��
nc

Y1
��

��

Y2
��

��

Y3
��

��

0

0 �� W1
��

��

W2
��

��

Y3 ⊕Y2 W2
��

��

0 .

0 0 0

Assume that the second and third rows, as well as the second and third
columns are exact. Prove that the conditions below are equivalent:

(a) the whole diagram (including the squares marked by “nc”) is commutative
and all rows and columns are exact,

(b) X1 −→ X2 ×Y2 Y1 is an epimorphism,
(c) X2 ⊕X1 Y1 −→ Y2 is a monomorphism.

Exercise 8.23. Let C be an abelian category and J a full additive subcate-
gory. Let X ∈ C. We say that

(a) X is J -finite if there exists an epimorphism Y�X with Y ∈ J ,
(b) X is J -pseudo-coherent if for any morphism Y

ϕ−→ X with Y ∈ J , Kerϕ is
J -finite,

(c) X is J -coherent if X is J -finite and J -pseudo-coherent.

We denote by coh(J ) the full subcategory of C consisting of J -coherent ob-
jects.

(i) Consider an exact sequence 0 −→ W
f−→ X

g−→ Y in C and assume that X is
J -finite and Y is J -pseudo-coherent. Prove that W is J -finite. (Hint: choose
an epimorphism ψ : Z�X with Z ∈ J , then construct an exact commutative
diagram as below with V ∈ J :

V
h

��

ϕ

��

Z ��

ψ����

Y

0 �� W
f �� X

g �� Y

and prove, using Lemma 8.3.13, that ϕ is an epimorphism.)
(ii) Deduce from (i) that coh(J ) is closed by kernels.
(iii) Prove that coh(J ) is closed by extensions. (Hint: for an exact sequence
0 −→ Y ′ −→ Y

v−→ Y ′′ −→ 0 and u : X −→ Y , there is an exact sequence 0 −→
Ker u −→ Ker(v ◦ u) −→ Y ′.)
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(iv) Assume that for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0, if X ′′
belongs to J and X ′ is J -coherent, then X is J -finite. Prove that coh(J ) is
abelian and the inclusion functor coh(J ) ↪→ C is exact. (Hint: it is enough
to check that coh(J ) is closed by cokernels. Consider an exact sequence 0 −→
X ′ −→ X −→ X ′′ −→ 0 and assume that X ′ and X are J -coherent. Clearly, X ′′
is J -finite. Let ϕ : S −→ X ′′ be a morphism with S ∈ J , set Y := X ×X ′′ S and
consider the commutative exact diagram

0

��

0

��
Ker ϕ

��

Ker ϕ

��
0 �� X ′ �� Y ��

��

S
ϕ
��

�� 0

0 �� X ′ �� X �� X ′′ �� 0 .

Show that Kerϕ is J -finite.)
When R is a ring, C = Mod(R) and J is the full subcategory of free modules
of finite rank, the J -coherent objects of C are called coherent R-modules.
Recall that a ring R is left coherent if it is coherent as a left R-module.

Exercise 8.24. In this exercise, we shall prove that the category Mod(R) of
modules over a ring R admits enough injective objects. If M is a Z-module,
set M∨ = HomZ(M, Q/Z).
(i) Prove that a Z-module M is injective in Mod(Z) if and only if nM = M
for every positive integer n.
(ii) Prove that Q/Z is injective in Mod(Z).
(iii) Define a natural morphism M −→ M∨∨ and prove that this morphism is
injective.
(iv) Prove that for M, N ∈ Mod(Z), the map HomZ(M, N) −→ HomZ(N∨, M∨)
is injective.
(iv) Prove that if P is a projective R-module, then P∨ is Rop-injective.
(v) Let M be an R-module. Prove that there exist an injective R-module Z
and a monomorphism M −→ Z .

Exercise 8.25. Let F : C −→ C ′ be an additive functor of abelian categories.
Consider the conditions

(a) F is faithful,
(b) F is conservative,
(c) F(X) � 0 ⇒ X � 0 for any X ∈ C.

Prove that (a) ⇒ (b) ⇒ (c) and that these three conditions are equivalent
when assuming that F is exact. (Hint: use Proposition 2.2.3.)
(See Exercise 8.27 for an example which shows that (c) does not imply (b)
and see Exercise 8.26 for an example which shows that (b) does not imply
(a).)
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Exercise 8.26. Let k be a field and let A = k[x ]. Let F : Mod(A) −→ Mod(A)
be the functor which associates x M ⊕ (M/x M) to M ∈ Mod(A). Prove that
F is conservative but is not faithful.

Exercise 8.27. Let k be a field, let A = k[x, y] be the k-algebra generated by
indeterminates x , y, and let a be the ideal Ax + Ay.
(i) Prove that a is not a generator of the category Mod(A).
(ii) Prove that for any X ∈ Mod(A), Hom A(a, X) � 0 implies X � 0. (Hint:
reduce to the case X = A/I and use Hom A(a, A/ a) � k ⊕ k.)
(iii) Prove that the functor Hom A(a, • ) : Mod(A) −→ Set is neither conserva-
tive nor faithful. (Hint: consider a −→ A −→ A/ a.)

Exercise 8.28. In this exercise and the next one, we shall give an example
of an additive category C0 which is not abelian, although it admits kernels
and cokernels, and any morphism which is both a monomorphism and an
epimorphism is an isomorphism.
Let C be an abelian category which admits small inductive limits, let G ∈ C
and denote by C0 the full subcategory of C consisting of objects X such that
there exists an epimorphism G⊕I �X for some small set I . Let α : C0 −→ C
denote the canonical functor.
(i) Prove that the functor α admits a right adjoint functor β : C −→ C0 and
that for any X ∈ C, αβ(X) −→ X is a monomorphism and idC0 −→ β ◦ α is an
isomorphism of functors.
(ii) Prove that C0 is an additive category which admits kernels and cokernels.
We shall denote by Ker0, Coker0, Im0, and Coim0 the kernel, cokernel, image
and coimage in C0.
(iii) Let f be a morphism in C0. Prove that Coker0 f � Coker f and Ker0 f �
β(Ker f ).
(iv) Let f be a morphism in C0. Prove that f is a strict morphism if and only
if Ker f belongs to C0.

Exercise 8.29. Let k be a field, let A = k[x, y] and let C = Mod(A). Let
a denote the ideal a = Ax + Ay and let a2 denote its square, the ideal gen-
erated by ab with a, b ∈ a. We define C0, α : C0 −→ C and β : C −→ C0 as in
Exercise 8.28, taking a as G. (See also Exercise 5.8.)
(i) Let X be an A-module such that a X = 0. Prove that X belongs to C0.
(ii) Prove that β(X) � 0 implies X � 0 (see Exercise 8.27) and prove that
β(A) � a.
(iii) Prove that a morphism u : X −→ Y in C0 is a monomorphism (resp. an
epimorphism) if and only if α(u) is a monomorphism (resp. an epimorphism)
in C. (Hint: use (ii).)
(iv) Prove that any monomorphism in C0 is strict.
(v) Prove that a morphism in C0 which is both a monomorphism and an
epimorphism is an isomorphism.
(vi) Prove that the canonical morphism u : a −→ a /Ax is a morphism in C0.
Prove also that
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Ker0 u � a x, Coim0 u � a /(a x), Im0 u � a /(Ax) .

In particular, Coim0 u −→ Im0 u is not an isomorphism.
(vii) We shall show that strict epimorphisms are not stable by base changes
in C0. Let v : a −→ a / a2 be the canonical morphism, and let w : A/ a −→ a / a2

be the morphism that sends 1 mod a to x mod a2 .

X ��

��
�

A/ a

w
��

a
v

�� a / a2

Denote by X the fiber product in C0 of a and A/ a over a / a2, that is, X is the
kernel in C0 of v⊕w : a⊕(A/ a) −→ a / a2. Prove that v is a strict epimorphism,
prove that X � a2 and prove that the canonical morphism X −→ A/ a is the
zero morphism.

This shows that the category C0 is not quasi-abelian in the sense of Schnei-
ders [61], since strict epimorphisms are stable by base change in quasi-abelian
categories.

Exercise 8.30. Let C be an abelian category which admits small inductive
limits and such that small filtrant inductive limits are exact. Prove that any
object of finite length (see Exercise 8.20) is of finite type (see Exercise 6.7).

Exercise 8.31. Let k be a field, t an indeterminate, and denote by C the
abelian category Mod(k[t ]). Denote by C0 the fully abelian subcategory con-
sisting of k[t ]-modules M for which there exists some n ≥ 0 with tn M = 0.
Set Zn := k[t ]t−n ⊂ k[t, t−1], and let Xn := Zn/k[t ] ∈ C0.
(i) Show that Xn −→ Xn+1 is a monomorphism but lim−→

n

Xn � 0 in C0 (the limit
is calculated in C0).
(ii) Set Yn = k[t ]/k[t ]tn+1. Show that Yn −→ Yn−1 is an epimorphism but
lim←−

n

Yn � 0 in C0 (the limit is calculated in C0).

Note that neither lim−→
n

Xn nor lim←−
n

Yn vanishes in C when the limits are calculated
in C.

Exercise 8.32. Let C be an abelian category with small projective limits and
let {Xn}n∈N be objects of C.
(i) Prove that lim←−

n∈N

“
⊕

”
m≥n

Xm � 0 in Ind(C). (Recall that “
⊕

” denotes the

coproduct in Ind(C).)
(ii) Deduce that if C �= Pt, filtrant projective limits in Ind(C) are not
exact. (Hint: consider the exact sequences 0 −→ “

⊕
”

m≥n
Xm −→ “

⊕
”

m≥0

Xm −→
“
⊕

”
0≤m<n

Xm −→ 0.)

(iii) Deduce that if C �= Pt, the abelian categories Ind(Pro(C)) and Pro(Ind(C))
are not equivalent.
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Exercise 8.33. Let A be a commutative ring and let a ∈ A. Consider the
additive functor Fa : Mod(A) −→ Mod(A) which associates to a module M the
submodule aM of M .
(i) Prove that Fa sends monomorphisms to monomorphisms and epimorphisms
to epimorphisms.
(ii) Show that the conditions (a)–(d) below are equivalent.

(a) Fa is left exact,
(b) Fa is right exact,
(c) a ∈ Aa2,
(d) there exists c ∈ A such that c = c2 and Ac = Aa.

(Hint: if a = ba2, then ba is an idempotent.)

Exercise 8.34. In this exercise, we shall generalize the notion of split exact
sequences in an abelian category (Definition 8.3.15) to the one in an arbitrary
additive category. Let C be an additive category.

(i) Let 0 −→ X
f−→ Y

g−→ Z −→ 0 be a complex in C. Prove that the following
conditions are equivalent:

(a) there exist h : Z −→ Y and k : Y −→ X such that idY = f ◦ k + h ◦ g,
g ◦ h = idZ and k ◦ f = idX ,

(b) there exits an isomorphism of complexes

0 �� X ��

idX
��

Y
∼
��

�� Z ��

idZ
��

0

0 �� X �� X ⊕ Z �� Z �� 0 ,

where the bottom row is the canonical complex,
(c) for any W ∈ C, the complex

0 −→ HomC(W, X) −→ HomC(W, Y ) −→ HomC(W, Z) −→ 0

in Mod(Z) is exact,
(d) for any W ∈ C, the complex

0 −→ HomC(Z , W ) −→ HomC(Y, W ) −→ HomC(X, W ) −→ 0

in Mod(Z) is exact.

If these equivalent conditions are satisfied, we say that the complex 0 −→ X −→
Y −→ Z −→ 0 splits.
(ii) Assume that C is abelian. Prove that the above notion coincides with that
of Definition 8.3.15.

Exercise 8.35. Let C be an abelian category which admits small inductive
limits and such that small filtrant inductive limits are exact. Let I be a small
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set and f : X −→ ⊕i Yi a morphism in C. For i0 ∈ I , denote by fi0 the compo-
sition X −→ ⊕i Yi −→ Yi0 . Let K ⊂ I and assume that fi = 0 for all i ∈ I \ K .
Prove that f decomposes as X

g−→ ⊕i∈K Yi ↪→ ⊕i∈I Yi . (Hint: use the isomor-
phism ⊕i∈I Yi � lim−→

J

⊕i∈J Yi where J ranges over the filtrant family of finite

subsets of I and write X � lim−→
J

X J .)

Exercise 8.36. Let C be an abelian category and let {Gi }i∈I be a small family
of objects of C. Consider the conditions:

(a) {Gi }i∈I is a system of generators,
(b) for any X ∈ C and any monomorphism f : Z ↪→ X , if HomC(Gi , Z) −→

HomC(Gi , X) is surjective for all i , then f is an isomorphism,
(c) if X ∈ C satisfies HomC(Gi , X) = 0 for all i ∈ I , then X � 0.

Prove that (a) ⇔ (b) ⇒ (c).
(Note that (c) does not implies (a), see Exercise 8.27.)

Exercise 8.37. Let C be an abelian category and let {Xn}n∈N be an inductive
system in C indexed by the ordered set N.
(i) Assume that C admits countable coproducts and countable filtrant induc-
tive limits are exact. Let sh: ⊕n≥0 Xn −→ ⊕n≥0Xn be the morphism in C
associated with Xn −→ Xn+1. Prove that the sequence

0 −→ ⊕
n≥0

Xn
id−sh−−−→ ⊕

n≥0

Xn −→ lim−→
n

Xn −→ 0(8.7.5)

is exact in C. (Hint: 0 −→
m⊕

n=0

Xn
id−sh−−−→

m+1⊕
n=0

Xn −→ Xm+1 −→ 0 is exact.)

(ii) Prove that the sequence 0 −→ “
⊕

”
n≥0

Xn
id−sh−−−→ “

⊕
”

n≥0

Xn −→ “lim−→”
n

Xn −→ 0 is
exact in Ind(C).
(iii) Assume that C admits countable coproducts. Prove that the sequence
(8.7.5) is exact when assuming that “lim−→”

n

Xn belongs to C.

Exercise 8.38. Let C be an abelian category which admits small projective
limits and small inductive limits. Assume that small filtrant inductive limits
are exact. Prove that for any small family {Xi }i∈I of objects of C, the natural
morphism

⊕
i∈I Xi −→∏

i∈I Xi is a monomorphism.

Exercise 8.39. Let k be a field of characteristic 0. The Weyl algebra W :=
Wn(k) in n variables over k, is the k-algebra generated by xi , ∂i (1 ≤ i ≤ n)
with the defining relations:

[xi , x j ] = 0, [∂i , ∂ j ] = 0, [∂i , x j ] = δi j .

We set A = Mod(k). We endow W with the increasing filtration for which
each xi and each ∂ j is of order one.
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Let M be a finitely generated W -module, and let us endow it with a good
filtration M =

⋃
m∈Z Mm , i.e., each Mm is a finite-dimensional vector space,

xi Mm ⊂ Mm+1, ∂i Mm ⊂ Mm+1 for any m and i , and Mm = 0 for m � 0,
Mm+1 = Mm +

∑n
i=1

(
xi Mm + ∂i Mm

)
for m � 0.

(i) Show that “lim−→”
m

Mm belongs to Mod(W, Ind(A)).

(ii) Show that “lim−→”
m

Mm does not depend on the choice of good filtrations.

(iii) Show that if M �= 0, “lim−→”
m

Mm is not isomorphic to the image of

any object of Ind(Mod(W,A)) by the natural functor Ind(Mod(W,A)) −→
Mod(W, Ind(A)). (Hint: otherwise, “lim−→”

m

Mm � “lim−→”
i

Vi with Vi ∈ Mod(W ),

and the W -linear morphisms Vi −→ M would then factorize through finite-
dimensional vector spaces, and this implies they are zero.)

Exercise 8.40. Let C be an abelian category. Assume that finite inductive
limits are stable by base change (see Definition 2.2.6). Prove that C is equiv-
alent to Pt. (Hint: use Exercise 2.26.)

Exercise 8.41. Let k be a field, t an indeterminate, and denote by C the
abelian category Mod(k[t ]) (see Exercise 8.31). Denote by C1 the fully abelian
subcategory consisting of k[t ]-modules M such that for any u ∈ M , there exists
some n ≥ 0 such that tnu = 0.
(i) Prove that C1 admits small inductive limits and that the inclusion functor
C1 ↪→ C commutes with such limits.
(ii) Prove that C1 admits small projective limits and that the inclusion functor
C1 ↪→ C does not commute with such limits.
(iii) Prove that C1 is a Grothendieck category.
(iv) Prove that k[t, t−1]/k[t ] is an injective cogenerator of C1.

Exercise 8.42. Let k be a commutative ring, R a k-algebra. Set C = Mod(R).
Prove that the object F ∈ C∧ given by C � M 
→ Hom k(M, k) is representable
and give its representative.

Exercise 8.43. Let U be a universe, k a U-small field and let I be a set which
is not U-small. Let A be the polynomial ring k[Xi ; i ∈ I ] where the Xi ’s are
indeterminates. (Hence, A is not small.) Let C be the category of A-modules
which are U-small as sets.
(i) Prove that C is an abelian U-category and that C admits U-small inductive
and projective limits.
(ii) Prove that U-small filtrant inductive limits are exact.
(iii) Prove that the set of subobjects of any object of C is U-small.
(iv) Prove that C has no generator.
(v) Prove that any projective object of C is isomorphic to zero.
(vi) Prove that any injective object of C is isomorphic to zero.
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(vii) Prove that the object F ∈ C∧ given by M 
→ Hom k(M, k) commutes
with small projective limits but is not representable.
(Hint: for (iv)–(vii), use the fact that the map A −→ End k(M) is not injective
for any M ∈ C.)
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π-accessible Objects and F-injective Objects

We introduce the notion of π -filtrant categories, where π is an infinite cardinal.
When π is the countable cardinal ℵ0, we recover the notion of filtrant cat-
egories. Then we generalize previous results concerning inductive limits over
small and filtrant categories to π -filtrant categories. For example, we prove
that inductive limits in Set over π -filtrant categories commute with projective
limits over a category J as soon as the cardinal of Mor(J ) is smaller than π .
We define the full subcategory Indπ (C) of Ind(C) of objects which are induc-
tive limits over π -filtrant categories of objects of C and the full subcategory
Cπ of C of π -accessible objects, that is, objects X such that HomC(X, • ) com-
mutes with π -filtrant inductive limits. Then we give sufficient conditions which
ensure that Cπ is small and that lim−→ induces an equivalence Indπ (Cπ ) ∼−→ C.
References are made to [64].

Next, given a family F of morphisms in C, we define the notion of
“F-injective objects” and prove under suitable hypotheses the existence of
“enough F-injective objects”. Some arguments used here were initiated in
Grothendieck’s paper [28] and play an essential role in the theory of model cat-
egories (see [32, 56]). Accessible objects are also discussed in [23], [1] and [49].

In the course of an argument, we need to prove a categorical version of
Zorn’s lemma which asserts that a small category which admits small filtrant
inductive limits has what we call “a quasi-terminal object”. We treat this
technical result in a separate section.

We apply these results to abelian categories. A particular case is the Gro-
thendieck theorem [28] on the existence of “enough injectives” in Grothen-
dieck categories. We shall also apply these techniques in Chap. 13 to prove
the existence of “enough homotopically injective complexes” in the category
of unbounded complexes of a Grothendieck category.

To conclude, we prove the Freyd-Mitchell theorem which asserts that any
small abelian category is equivalent to a full abelian subcategory of the cate-
gory of modules over a suitable ring R. This justifies in some sense the common
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practice which consists in replacing an abelian category by Mod(Z) when chas-
ing diagrams.

This chapter makes an intensive use of the notion of cardinals that we
recall first.

9.1 Cardinals

In this chapter we fix a universe U . As usual, U-Set or simply Set, denotes
the category of U-sets.

Definition 9.1.1. An ordered set I is well ordered if for any non empty subset
A ⊂ I , there exists a ∈ A such that a ≤ b for all b ∈ A (that is, A admits a
smallest element).

In particular, if I is well ordered, then I is totally ordered. Let I be a well
ordered set and let a ∈ I . Let Aa = {x ∈ I ; a < x}. Assuming Aa non empty
(i.e., a is not a largest element of I ), there exists a smallest element x in Aa .
It is called the successor of a and denoted by a + 1.

Let I be a well ordered set and let x ∈ I . Then one and only one of the
properties (a)–(c) below is satisfied.

(a) x is the smallest element in I ,
(b) there exists y ∈ I such that x = y + 1,
(c) x is not the smallest element of I and x = sup{y; y < x}.
Moreover, the element y given in (b) is unique. Indeed, y = sup{z; z < x}.

By the axiom of choice, any set may be well ordered.

Definition 9.1.2. A U-cardinal ω or simply a cardinal ω is an equivalence
class of small sets with respect to the relation X ∼ Y . Here, X ∼ Y if and only
if X and Y are isomorphic in U-Set.

For a small set A, we denote by card(A) the associated cardinal.
We denote by ℵ0 the countable cardinal, that is, card(N) = ℵ0.
If π1 = card(X1) and π2 = card(X2) are two cardinals, we define

π1 · π2 = card(X1 × X2) ,

π
π2
1 = card(HomSet(X2, X1)) .

These cardinals are well defined. Let us list some properties of cardinals.

(i) The set (which is no more small) of cardinals is well ordered. We denote
as usual by ≤ this order. Recall that π1 ≤ π2 if and only if there exist
small sets A1 and A2 and an injective map f : A1 −→ A2 such that
card(A1) = π1 and card(A2) = π2.

(ii) For any cardinal π , 2π > π .
(iii) Let π be an infinite cardinal. Then π · π = π .
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(iv) An infinite cardinal π is said to be regular if it satisfies the condition
that for any family of small sets {Bi }i∈I indexed by a small set I such
that card(I ) < π and card(Bi ) < π , we have card(

⊔
i Bi ) < π . If π is

an infinite cardinal, then its successor π ′ is a regular cardinal. Indeed,
if card(I ) < π ′ and card(Bi ) < π ′, then card(I ) ≤ π , card(Bi ) ≤ π , and
hence card(

⊔
i Bi ) ≤ π · π = π < π ′.

(v) Let π0 be an infinite cardinal. There exists π > π0 such that ππ0 = π .
Indeed, π := 2π0 satisfies π > π0 and ππ0 = 2π0π0 = 2π0 = π .

In this chapter, π denotes an infinite cardinal.

9.2 π-filtrant Categories and π-accessible Objects

Some results of Chap. 3 will be generalized here.

Proposition 9.2.1. Let I be a category. The following conditions (i) and (ii)
are equivalent:

(i) The following two conditions hold:
(a) for any A ⊂ Ob(I ) such that card(A) < π , there exists j ∈ I such

that for any a ∈ A there exists a morphism a −→ j in I ,
(b) for any i, j ∈ I and for any B ⊂ Hom I (i, j) such that card(B) < π ,

there exists a morphism j −→ k in I such that the composition i
s−→

j −→ k does not depend on s ∈ B.
(ii) For any category J such that card(Mor(J )) < π and any functor ϕ : J −→

I , there exists i ∈ I such that lim←−
j∈J

Hom I (ϕ( j), i) �= ∅.

Note that condition (i) (a) implies that I is non empty. Indeed, apply this
condition with A = ∅.

The proof is a variation of that of Lemma 3.1.2.

Proof. (i) ⇒ (ii). Let J and ϕ be as in the statement (ii). Applying (a) to
the family {ϕ( j)} j∈J , there exist i0 ∈ I and morphisms s( j) : ϕ( j) −→ i0.
Moreover, there exist k( j) ∈ I and a morphism λ( j) : i0 −→ k( j) such that the
composition

ϕ( j)
ϕ(t)−−→ ϕ( j ′)

s( j ′)−−→ i0
λ( j)−−→ k( j)

does not depend on t : j −→ j ′. Now, there exist i1 ∈ I and morphisms
ξ( j) : k( j) −→ i1.

Finally, take a morphism t : i1 −→ i2 such that t ◦ ξ( j) ◦ λ( j) does not
depend on j . The family of morphisms u j : ϕ( j) −→ i0 −→ k( j) −→ i1 −→ i2
defines an element of lim←−

j∈J

Hom I (ϕ( j), i2).

(ii) ⇒ (i). By taking as J the discrete category A, we obtain (a). By taking as
J the category with two objects a and b and morphisms ida, idb and a family
of arrows a −→ b indexed by B, we obtain (b). q.e.d.
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Definition 9.2.2. A category I is π -filtrant if the equivalent conditions in
Proposition 9.2.1 are satisfied.

Note that for π = ℵ0, a category is π -filtrant if and only if it is filtrant.
Also note that if π ′ is an infinite cardinal with π ′ ≤ π , then any π -filtrant

category is π ′-filtrant.

Example 9.2.3. Let π be an infinite regular cardinal and let J be a well ordered
set such that card(J ) ≥ π . For x ∈ J , set Jx = {y ∈ J ; y < x}. Define the
subset I of J by

I = {x ∈ J ; card(Jx) < π} .

It is obvious that x ≤ y and y ∈ I implies x ∈ I . Then

(i) I is well ordered,
(ii) I is π -filtrant,
(iii) sup(I ) does not exist in I .

In order to prove (ii), let us check condition (i) of Proposition 9.2.1. Condition
(i) (b) is obviously satisfied. Let A ⊂ I with card(A) < π . Set A′ =

⋃
a∈A Ja .

Since π is regular, card(A′) < π . Hence A′ �= J and b := inf(J \ A) exists.
Then Jb ⊂ A′, and b ∈ I . This shows (i) (a) and I is π -filtrant. Let us check
(iii). If sup(I ) exists in I , then card(I ) < π and sup(I ) + 1 exists in J and
belongs to I , which is a contradiction.

Example 9.2.4. Let π be an infinite regular cardinal and let A be a small set.
Set

I =
{

B ⊂ A ; card(B) < π
}

.

The inclusion relation defines an order on I . Regarding I as a category, I is π -
filtrant. Indeed, condition (i) (b) in Proposition 9.2.1 is obviously satisfied. On
the other hand, for any S ⊂ I with card(S) < π , we have card(

⋃
B∈S B) < π .

This implies (i) (a).

Lemma 9.2.5. Let ϕ : J −→ I be a functor. Assume that J is π-filtrant and
ϕ is cofinal. Then I is π-filtrant.

Proof. By Proposition 3.2.4, I is filtrant. Let us check property (i) of Propo-
sition 9.2.1.
(a) Let A ⊂ Ob(I ) with card(A) < π . For any a ∈ A, there exist j(a) ∈ J
and a morphism a −→ ϕ( j(a)). Let A′ = { j(a); a ∈ A}. There exist j ∈ J and
morphisms j(a) −→ j in J . Therefore there exist morphisms a −→ ϕ( j(a)) −→
ϕ( j) in I .
(b) Let i1, i2 ∈ I and let B ⊂ Hom I (i1, i2) with card(B) < π . There exist
j1 ∈ J and a morphism i1 −→ ϕ( j1). For each s ∈ B, there exist j(s) ∈ J , a
morphism t(s) : j1 −→ j(s) in J , and a commutative diagram
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i1

��

s �� i2

��
ϕ( j1)

ϕ(t(s)) �� ϕ( j(s)).

By property (i) (a), there exist j2 ∈ J and morphisms j(s) −→ j2. By property
(i) (b), there exists a morphism j2 −→ j3 such that the composition j1 −→
j(s) −→ j2 −→ j3 does not depend on s. Hence the composition i1

s−→ i2 −→
ϕ( j(s)) −→ ϕ( j3) does not depend on s ∈ B. q.e.d.

Remark 9.2.6. Let I be a cofinally small π -filtrant category. Then there exist
a small π -filtrant category I ′ and a cofinal functor I ′ −→ I . Indeed, there exists
a small subset S ⊂ Ob(I ) such that for any i ∈ I there exists a morphism
from i to an element of S. Define I ′ as the full subcategory of I such that
Ob(I ′) = S. Then I ′ is π -filtrant and cofinal to I by Proposition 3.2.4.

Definition 9.2.7. Let π be an infinite cardinal and let C be a category which
admits π-filtrant small inductive limits.

(i) An object X ∈ C is π -accessible if for any π-filtrant small category I and
any functor α : I −→ C, the natural map

lim−→
i∈I

HomC(X, α(i)) −→ HomC(X, lim−→
i∈I

α(i))

is an isomorphism.
(ii) We denote by Cπ the full subcategory of C consisting of π-accessible ob-

jects.

Remark 9.2.8. (i) If C is discrete, then C = Cπ , since any functor I −→ C with
I filtrant, is a constant functor.
(ii) If π ′ ≤ π , then Cπ ′ ⊂ Cπ .
(iii) If π = ℵ0, Cπ is the category of objects of finite presentation (see Defini-
tion 6.3.3).
(iv) We shall give later a condition which ensures that Ob(C) �⋃

π Ob(Cπ ).

Proposition 9.2.9. Let π be an infinite cardinal. Let J be a category such
that card(Mor(J )) < π and let I be a small π-filtrant category. Consider a
functor α : J op × I −→ Set. Then the natural map λ below is bijective:

λ : lim−→
i∈I

lim←−
j∈J

α( j, i) −→ lim←−
j∈J

lim−→
i∈I

α( j, i) .(9.2.1)

Proof. (i) Injectivity. Let s, t ∈ lim−→
i∈I

lim←−
j∈J

α( j, i) such that λ(s) = λ(t). We may

assume from the beginning that s, t ∈ lim←−
j∈J

α( j, i0) for some i0 ∈ I . Let s =

{s( j)} j∈J , t = {t( j)} j∈J with s( j), t( j) ∈ α( j, i0). By the hypothesis, for each
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j ∈ J there exists a morphism i0 −→ i( j) in I such that s( j) ∈ α( j, i0) and
t( j) ∈ α( j, i0) have the same image in α( j, i( j)). Since I is π -filtrant and
card(J ) < π , there exist i1 ∈ I and morphisms i( j) −→ i1 such that the
composition i0 −→ i( j) −→ i1 does not depend on j . Since s( j) ∈ α( j, i0) and
t( j) ∈ α( j, i0) have the same image in α( j, i1) for any j ∈ J , s, t ∈ lim←−

j∈J

α( j, i0)
have the same image in lim←−

j∈J

α( j, i1).

(ii) Surjectivity. Let s ∈ lim←−
j∈J

lim−→
i∈I

α( j, i). Then s = {s( j)} j∈J , s( j) ∈ lim−→
i∈I

α( j, i).

For each j ∈ J , there exist i( j) ∈ I and s̃( j) ∈ α( j, i( j)) whose image is s( j).
Since card(J ) < π , there exist i0 ∈ I and morphisms i( j) −→ i0. Hence we
may assume from the beginning that s( j) ∈ α( j, i0) for some i0 which does
not depend on j .

Let u : j −→ j ′ be a morphism in J op. It defines a morphism

ui0 : α( j, i0) −→ α( j ′, i0)

and ui0(s( j)) = s( j ′) in lim−→
i∈I

α( j ′, i). There exist j(u) ∈ I and a morphism

i0 −→ j(u) such that ui0(s( j)) and s( j ′) have the same image in α( j ′, j(u)).
Since card(Mor(J )) < π , there exist i1 ∈ I and morphisms j(u) −→ i1 such
that the composition i0 −→ j(u) −→ i1 does not depend on u.

We now define t( j) ∈ α( j, i1) as the image of s( j). For any morphism
u : j −→ j ′ in J op, we have ui1(t( j)) = t( j ′). Therefore {t( j)} j∈J defines an
element t of lim←−

j∈J

α( j, i1) whose image in lim←−
j∈J

lim−→
i∈I

α( j, i) is s. q.e.d.

Proposition 9.2.10. Assume that C admits small π-filtrant inductive limits.
Let J be a category such that card(Mor(J )) < π . Let β : J −→ Cπ be a functor.
If lim−→

j∈J

β( j) exists in C, then it belongs to Cπ .

Proof. Let I be a π -filtrant category and let α : I −→ C be a functor. There is
a chain of isomorphisms

lim−→
i∈I

HomC(lim−→
j∈J

β( j), α(i)) � lim−→
i∈I

lim←−
j∈J

HomC(β( j), α(i)) ,

HomC(lim−→
j∈J

β( j), lim−→
i∈I

α(i)) � lim←−
j∈J

HomC(β( j), lim−→
i∈I

α(i))

� lim←−
j∈J

lim−→
i∈I

HomC(β( j), α(i)) ,

where the last isomorphism follows from the fact that β( j) ∈ Cπ . Hence, the
result follows from Proposition 9.2.9. q.e.d.

Corollary 9.2.11. Assume that C admits small inductive limits. Then Cπ , as
well as (Cπ )X for any X ∈ C, is π-filtrant.
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Proof. Let us check condition (ii) of Proposition 9.2.1. Let J be a category
such that card(Mor(J )) < π and let ϕ : J −→ Cπ be a functor. By the hypoth-
esis the object Z := lim−→ϕ exists in C and by Proposition 9.2.10 it belongs to
Cπ . Then

lim←−HomCπ
(ϕ, Z) � HomC(lim−→ϕ, Z) � HomC(Z , Z) �= ∅ .

The case of (Cπ )X is similar. q.e.d.

Corollary 9.2.12. Let π be an infinite regular cardinal. Then

Setπ = {A ∈ Set; card(A) < π} .

Proof. (i) Let A ∈ Set with card(A) < π . The set {pt} clearly belongs to
Setπ . By Proposition 9.2.10, A � {pt}�A belongs to Setπ .
(ii) Conversely, let A ∈ Setπ . Set I = {B ⊂ A; card(B) < π}. Then I is π -
filtrant as seen in Example 9.2.4. Consider the functor α : I −→ Set, α(B) = B.
Since A is π -accessible, we obtain

lim−→
B∈I

HomSet(A, B) ∼−→ HomSet(A, lim−→
B∈I

B)

� HomSet(A, A) .

Hence idA ∈ HomSet(A, lim−→
B∈I

B) belongs to HomSet(A, B) for some B ∈ I , that

is, idA : A −→ A factors through B�A, which implies A = B. q.e.d.

Definition 9.2.13. Let C be a category (we do not assume that C admits small
inductive limits). We set

Indπ (C) = {A ∈ Ind(C); CA is π-filtrant} .

Remark 9.2.14. (i) If π = ℵ0, then Indπ (C) = Ind(C).
(ii) For π ′ ≤ π , we have Indπ ′

(C) ⊃ Indπ (C).

Lemma 9.2.15. Let A ∈ C. Then A ∈ Indπ (C) if and only if there exist a
small π-filtrant category I and a functor α : I −→ C with A � “lim−→” α.

Proof. (i) The condition is necessary since A � “lim−→”
X∈CA

X by Proposition 2.6.3

and CA is cofinally small by Proposition 6.1.5 (see Remark 9.2.6).
(ii) Conversely, assume that A � “lim−→” α with α : I −→ C for a small and

π -filtrant category I . Then the natural functor I −→ CA is cofinal by Proposi-
tion 2.6.3. To conclude, apply Lemma 9.2.5. q.e.d.

Lemma 9.2.16. The category Indπ (C) is closed by π-filtrant inductive limits.



222 9 π-accessible Objects and F-injective Objects

Proof. Let α : I −→ Indπ (C) be a functor with I small and π -filtrant and let
A = “lim−→” α ∈ Ind(C). We can prove that CA is π -filtrant as in the proof of
Theorem 6.1.8. q.e.d.

Proposition 9.2.17. Let C be a category and assume that C admits inductive
limits indexed by any category J such that card(Mor(J )) < π . Let A ∈ Ind(C).
Then the conditions (i)–(iii) below are equivalent.

(i) A ∈ Indπ (C),
(ii) for any category J such that card(Mor(J )) < π and any functor ϕ : J −→

C, the natural map

A(lim−→
j∈J

ϕ( j)) −→ lim←−
j∈J

A(ϕ( j))(9.2.2)

is surjective,
(iii) for any category J and any functor ϕ as in (ii), the natural map (9.2.2)

is bijective.

Proof. (ii)⇒ (i). By the hypothesis, any functor ϕ : J −→ CA factorizes through
the constant functor ∆lim−→ϕ . Hence CA is π -filtrant by Proposition 9.2.1 (ii).
(iii) ⇒ (ii) is obvious.
(i) ⇒ (iii). Let A � “lim−→”

i

α(i), where α is a functor I −→ C and I is small and

π -filtrant. We get by Proposition 9.2.9

lim←−
j∈J

A(ϕ( j)) � lim←−
j∈J

lim−→
i∈I

HomC(ϕ( j), α(i)) � lim−→
i∈I

lim←−
j∈J

HomC(ϕ( j), α(i))

� lim−→
i∈I

HomC(lim−→
j∈J

ϕ( j), α(i)) � A(lim−→
j∈J

ϕ( j)) .

q.e.d.

Proposition 9.2.18. Assume that C admits small π-filtrant inductive limits.
Then the functor σπ : Indπ (Cπ ) −→ C, “lim−→” α 
→ lim−→α, is fully faithful.

The proof below is similar to that of Proposition 6.3.4.

Proof. Let I , J be small π -filtrant categories, let α : I −→ Cπ , β : J −→ Cπ

be functors and let A = “lim−→”
i∈I

α(i), B = “lim−→”
j∈J

β( j). There is a chain of

isomorphisms

Hom Indπ (Cπ )(A, B) � lim←−
i∈I

lim−→
j∈J

HomC(α(i), β( j))

� lim←−
i∈I

HomC(α(i), lim−→
j∈J

β( j))

� HomC(lim−→
i∈I

α(i), lim−→
j∈J

β( j)) .

q.e.d.
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Proposition 9.2.19. Let C be a category and assume that

(i) C admits small inductive limits,
(ii) C admits a system of generators {Gν}ν such that each Gν is π-accessible,
(iii) for any object X ∈ C, the category (Cπ )X is cofinally small.

Then the functor σπ : Indπ (Cπ ) −→ C is an equivalence.

Proof. By Proposition 9.2.18 it remains to show that σπ is essentially sur-
jective. For any X ∈ C, (Cπ )X is π -filtrant by Corollary 9.2.11. Hence the
object “lim−→”

(X ′−→X)∈(Cπ )X

X ′ belongs to Indπ (Cπ ). It is then enough to check that

the morphism
λ : lim−→

(X ′−→X)∈(Cπ )X

X ′ −→ X

is an isomorphism. Since {Gν} is a system of generators, this is equivalent to
saying that the morphisms

λν : lim−→
(X ′−→X)∈(Cπ )X

(X ′(Gν)) � ( lim−→
(X ′−→X)∈(Cπ )X

X ′)(Gν) −→ X(Gν)(9.2.3)

are isomorphisms for all ν.
(i) λν is surjective since (Gν

u−→ X) ∈ (Cπ )X for all u ∈ X(Gν).
(ii) Let us show that λν is injective. Let f, g ∈ X ′(Gν), that is, f, g : Gν ⇒ X ′,
and assume that their compositions with X ′ −→ X coincide. Let X ′′ =
Coker( f, g). By Proposition 9.2.10, X ′′ ∈ Cπ . Then the two compositions
Gν ⇒ X ′ −→ X ′′ coincide, which implies that f and g have same image in

lim−→
(X ′−→X)∈(Cπ )X

X ′(Gν). q.e.d.

9.3 π-accessible Objects and Generators

Recall that π is an infinite cardinal. We shall assume that π is regular. Now
we consider the following hypotheses on C.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(i) C admits small inductive limits,
(ii) C admits finite projective limits,
(iii) small filtrant inductive limits are exact,
(iv) there exists a generator G,
(v) any epimorphism in C is strict.

(9.3.1)

Note that under the assumption (9.3.1), C admits small projective limits by
Corollary 5.2.10 and Proposition 5.2.8.



224 9 π-accessible Objects and F-injective Objects

Lemma 9.3.1. Assume (9.3.1) and let π be an infinite regular cardinal. Let
I be a π-filtrant small category, α : I −→ C a functor, and let lim−→α −→ Y be
an epimorphism in C. Assume either card(Y (G)) < π or Y ∈ Cπ . Then there
exists i0 ∈ I such that α(i0) −→ Y is an epimorphism.

Proof. Set Xi = α(i) and Yi = Im(Xi −→ Y ) = Ker(Y ⇒ Y �Xi Y ). Since small
filtrant inductive limits are exact,

lim−→
i

Yi � Ker(Y ⇒ Y �
lim−→

i

Xi

Y ) � Im(lim−→
i

Xi −→ Y ) � Y ,

where the last isomorphism follows from the hypothesis that lim−→
i

Xi −→ Y is
an epimorphism together with Proposition 5.1.2 (iv).
(a) Assume that card(Y (G)) < π . Set S = lim−→

i

Yi (G) ⊂ Y (G). Then card(S) ≤
card(Y (G)) < π . By Corollary 9.2.12, S ∈ Setπ and this implies

lim−→
i∈I

HomSet(S, Yi (G)) � HomSet(S, S) .

Hence, there exist i0 and a morphism S −→ Yi0(G) such that the composition
S −→ Yi0(G) −→ S is the identity. Therefore Yi0(G) = S and hence, Yi0(G) −→
Yi (G) is bijective for any i0 −→ i . Hence Yi0 −→ Yi is an isomorphism, which
implies that Yi0 −→ Y is an isomorphism. Applying Proposition 5.1.2 (iv), we
find that Xi0 −→ Y is an epimorphism.
(b) Assume that Y ∈ Cπ . Then lim−→

i∈I

HomC(Y, Yi ) −→ HomC(Y, Y ) is an isomor-

phism. This shows that idY decomposes as Y −→ Yi −→ Y for some i ∈ I . Hence,
Yi � Y (see Exercise 1.7) and Xi −→ Y is an epimorphism by Proposition 5.1.2
(iv). q.e.d.

Proposition 9.3.2. Assume (9.3.1) and let π be an infinite regular cardinal.
Let A ∈ C and assume that card(A(G)) < π and card(G�A(G)(G)) < π . Then
A ∈ Cπ .

Proof. First, note that Set � E 
→ G�E ∈ C is a well-defined covariant functor.
Also note that card(G

∐
S(G)) < π for any S ⊂ A(G). Indeed, there exist

maps S −→ A(G) −→ S whose composition is the identity. Hence, the composi-
tion G

∐
S(G) −→ G

∐
A(G)(G) −→ G

∐
S(G) is the identity.

Let I be a small π -filtrant category and let α : I −→ C be a functor. Set
Xi = α(i) and X∞ = lim−→

i∈I

α(i). We shall show that the map λ below is bijective:

λ : lim−→
i∈I

HomC(A, Xi ) −→ HomC(A, X∞) .(9.3.2)

(i) λ is injective. (Here, we shall only use card(A(G)) < π .)
Let f, g : A ⇒ Xi0 and assume that the two compositions A ⇒ Xi0 −→ X∞
coincide. For each morphism s : i0 −→ i , set Ns = Ker(A ⇒ Xi ). Since lim−→

s∈I i0

is
exact in C by the hypothesis, we obtain
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lim−→
s∈I i0

Ns � Ker(A ⇒ lim−→
s∈I i0

Xi )

� Ker(A ⇒ X∞) � A .

Since Ns is a subobject of A and card(A(G)) < π , we may apply Lemma 9.3.1
and conclude that there exists i0 −→ i1 such that Ni1 −→ A is an epimorphism.
Hence, the two compositions A ⇒ Xi0 −→ Xi1 coincide.
(ii) λ is surjective.
Let f ∈ HomC(A, X∞). For each i ∈ I define Yi = Xi ×X∞ A. Since lim−→

i

is

exact, lim−→
i

Yi � A. Since card(A(G)) < π , Lemma 9.3.1 implies that there

exists i0 ∈ I such that Yi0 −→ A is an epimorphism. Set

K = Im(Yi0(G) −→ A(G)) ⊂ A(G) .

Consider the commutative diagram below:

G
∐

Yi0 (G)

����

�� G
∐

K ��

��

G
∐

A(G)

+,���
��
��
��
�

Yi0
�� �� A.

The left vertical arrow is an epimorphism by Proposition 5.2.3 (iv). Hence
G
∐

K −→ A is an epimorphism. Choosing a section K −→ Yi0(G), we get a
commutative diagram

G
∐

K ��

����
���

���
��

G
∐

Yi0 (G)

��

�� G
∐

K

����
Yi0

�� �� A

such that the composition G
∐

K −→ G
∐

Yi0 (G) −→ G
∐

K is the identity. Set
B = G

∐
K . The composition B −→ Yi0 −→ A is an epimorphism. We obtain a

commutative diagram

B �� ��

��

�� A

f

��
Xi0

�� X∞ .

Since all epimorphisms are strict, the sequence

B ×A B ⇒ B −→ A(9.3.3)

is exact. On the other hand, since card(B(G)) = card(G
∐

K (G)) < π , we have
card(B ×A B)(G) ≤ card(B(G))2 < π . Then, applying part (i) to B ×A B, the
natural map
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lim−→
i∈I

HomC(B ×A B, Xi ) −→ HomC(B ×A B, X∞)

is injective. Consider the diagram

B ×A B �� �� B ��

��

�� A

f

��
Xi0

�� X∞ .

Since the two compositions B ×A B ⇒ B −→ Xi0 −→ X∞ are equal, there exists
an arrow i0 −→ i such that the two compositions B×A B ⇒ B −→ Xi0 −→ Xi are
equal. Hence, the exactness of (9.3.3) implies that B −→ Xi0 −→ Xi decomposes
into B −→ A −→ Xi . Since B −→ A is an epimorphism, the composition A −→
Xi −→ X∞ coincides with f . q.e.d.

We keep hypothesis (9.3.1) and choose an infinite regular cardinal π0 such
that

card(G(G)) < π0, card(G
∐

G(G)(G)) < π0 .

By Proposition 9.3.2, we get G ∈ Cπ0 . Now choose a cardinal π1 ≥ π0 such that
if X is a quotient of G

∐
A for a set A with card(A) < π0, then card(X(G)) < π1.

(Since the set of quotients of G
∐

A is small, such a cardinal π1 exists.)
Let π be the successor of 2π1 . The cardinals π and π0 satisfy⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a) π and π0 are infinite regular cardinals,
(b) G ∈ Cπ0 ,

(c) π ′π0 < π for any π ′ < π ,

(d) if X is a quotient of G
∐

A for a set A with card(A) < π0,
then card(X(G)) < π .

(9.3.4)

Indeed (c) is proved as follows: if π ′ < π , then π ′ ≤ 2π1 and π ′π0 ≤ (2π1)π0 =
2π0·π1 = 2π1 < π .

Lemma 9.3.3. Assume (9.3.1) and (9.3.4). Let A ∈ Set with card(A) < π

and let X ∈ C be a quotient of G
∐

A. Then card(X(G)) < π .

Proof. Let u : G
∐

A −→ X be an epimorphism. Set I = {B ⊂ A; card(B) < π0}.
Then I is a π0-filtrant ordered set by Example 9.2.4.

By 9.3.4 (c), we have

card(I ) ≤ card(A)π0 < π .

For B ∈ I , set

X B = Coim(G
∐

B −→ G
∐

A −→ X) .
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Then {X B}B∈I is a π0-filtrant inductive system of subobjects of X by Propo-
sition 5.1.7. Since small filtrant inductive limits are exact, lim−→

B∈I

X B −→ X is a

monomorphism. Since lim−→
B∈I

G
∐

B � G
∐

A, the morphism lim−→
B∈I

X B −→ X is also

an epimorphism. It is thus an isomorphism by the hypothesis (9.3.1) (v) and
Proposition 5.1.5 (ii). Since G ∈ Cπ0 and I is π0-filtrant,

X(G) � lim−→
B∈I

X B(G) .

Since card(X B(G)) < π by (9.3.4) (d) and card(I ) < π , we obtain

card(X(G)) ≤ card(
⊔
B∈I

X B(G)) < π .

q.e.d.

Theorem 9.3.4. Assume (9.3.1) and (9.3.4). Then

Cπ �
{

X ∈ C ; card(X(G)) < π
}

.

Proof. Set Sπ =
{

X ∈ C ; card(X(G)) < π
}
.

(i) Sπ ⊂ Cπ . If X ∈ Sπ , then Lemma 9.3.3 implies that card(G
∐

X(G)(G)) < π .
Then Proposition 9.3.2 implies X ∈ Cπ .
(ii) Cπ ⊂ Sπ . Let X ∈ Cπ . Set I =

{
A ⊂ X(G) ; card(A) < π

}
. Then I is

π -filtrant. For A ∈ I we get the morphisms

G
∐

A −→ G
∐

X(G)�X .

Since

lim−→
A∈I

G
∐

A ∼−→G
∐

X(G) −→ X

is an epimorphism, Lemma 9.3.1 implies that G
∐

A −→ X is an epimorphism
for some A ∈ I . Then Lemma 9.3.3 implies that card(X(G)) < π . q.e.d.

Corollary 9.3.5. Assume (9.3.1) and (9.3.4). Then

(i) Cπ is essentially small,
(ii) if f : X�Y is an epimorphism and X ∈ Cπ , then Y ∈ Cπ ,
(iii) if f : X�Y is a monomorphism and Y ∈ Cπ , then X ∈ Cπ ,
(iv) Cπ is closed by finite projective limits.

Proof. (i) Let X ∈ Cπ . There exist a set I with card(I ) < π and an epimor-
phism G

∐
I �X . (Take X(G) as I .) Since the set of quotients of G

∐
I is small,

Cπ is essentially small.
(ii) Since G

∐
X(G) −→ X is an epimorphism, we obtain an epimorphism

G
∐

X(G) −→ Y . Since card(X(G)) < π by Theorem 9.3.4, the result follows
from Lemma 9.3.3 and Theorem 9.3.4.
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(iii) Since X(G) ⊂ Y (G), we have card(X(G)) ≤ card(Y (G)), and the result
follows from Theorem 9.3.4.
(iv) Let {Xi }i∈I be a finite projective system in C and set X = lim←−

i

Xi . We have

X(G) = lim←−
i

(Xi (G)) ⊂∏
i

Xi (G) ,

and card(X(G)) ≤ card(
∏
i

Xi (G)) < π . q.e.d.

Corollary 9.3.6. Assume (9.3.1) and (9.3.4). Then the functor lim−→ : Indπ (Cπ )
−→ C is an equivalence.

Proof. Apply Proposition 9.2.19. q.e.d.

Corollary 9.3.7. Assume (9.3.1). Then for any small subset S of Ob(C),
there exists an infinite cardinal π such that S ⊂ Ob(Cπ ).

Corollary 9.3.8. Assume (9.3.1) and let κ be a cardinal. Then there exist a
full subcategory S ⊂ C and an infinite regular cardinal π > κ such that

(i) S is essentially small,
(ii) if X�Y is an epimorphism and X ∈ S, then Y ∈ S,
(iii) if X�Y is a monomorphism and Y ∈ S, then X ∈ S,
(iv) there exists an object G ∈ S which is a generator in C,
(v) for any epimorphism f : X�Y in C with Y ∈ S, there exist Z ∈ S and a

monomorphism g : Z −→ X such that f ◦ g : Z −→ Y is an epimorphism,
(vi) any X ∈ S is π-accessible in C,
(vii) S is closed by inductive limits indexed by categories J which satisfy

card(Mor(J )) < π .

Proof. Choose cardinals π0 > κ and π as in (9.3.4) and set S = Cπ . We only
have to check (v). Consider the epimorphisms G

∐
X(G)�X�Y and set I ={

A ⊂ X(G) ; card(A) < π
}
. Then I is π -filtrant. Since lim−→

A∈I

G
∐

A � G
∐

X(G),

Lemma 9.3.1 implies that there exists A ∈ I such that G
∐

A −→ Y is an
epimorphism. Hence, it is enough to set Z = Im(G

∐
A −→ X). q.e.d.

9.4 Quasi-Terminal Objects

Definition 9.4.1. Let C be a category. An object X ∈ C is quasi-terminal
if any morphism u : X −→ Y in C admits a left inverse, that is, there exists
v : Y −→ X such that v ◦ u = idX .

Hence, any endomorphism of a quasi-terminal object is an automorphism.
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The aim of this section is to prove Theorem 9.4.2 below, a categorical
variant of Zorn’s lemma.

Theorem 9.4.2. Let C be an essentially small non empty category which ad-
mits small filtrant inductive limits. Then C has a quasi-terminal object.

The proof decomposes into several steps. We may assume that C is small.

Sublemma 9.4.3. There exists an object X ∈ C such that if there exists a
morphism X −→ Y , then there exists a morphism Y −→ X .

Proof of Sublemma 9.4.3. Let F be the set of filtrant subcategories of C. Since
C is non empty, F is non empty, and F is clearly inductively ordered. Let S
be a maximal element of F . Since S is small, X := lim−→

S∈S
S exists in C.

We shall prove that X satisfies the condition of the statement. For S ∈ S,
let us denote by aS : S −→ X the canonical morphism. Let u : X −→ Y be a
morphism in C.
(i) Y ∈ S. Otherwise, define the subcategory S̃ of C by setting

Ob(S̃) = Ob(S) � {Y } ,

Mor(S̃) = Mor(S) � {idY } � {u ◦ aS ∈ HomC(S, Y ); S ∈ S} .

It is easily checked that S̃ is a subcategory of C and Y is a terminal object of
S̃. Hence S̃ is a filtrant subcategory containing S. This contradicts the fact
that S is maximal.
(ii) Since Y ∈ S, there exists a morphism Y −→ X , namely the morphism aY .
q.e.d.

Sublemma 9.4.4. For any X ∈ C, there exists a morphism f : X −→ Y satis-
fying the property:
P( f ) : for any morphism u : Y −→ Z , there exists a morphism v : Z −→ Y such
that v ◦ u ◦ f = f .

Proof of Sublemma 9.4.4. The category CX is non empty, essentially small
and admits small filtrant inductive limits. Applying Sublemma 9.4.3, we find

an object (X
f−→ Y ) ∈ CX such that for any object (X −→ Z) and morphism

u : (X −→ Y ) −→ (X
u◦ f−−→ Z) in CX , there exists a morphism v : (X −→ Z) −→

(X −→ Y ) in CX . q.e.d.

Let us choose an infinite regular cardinal π such that card(Mor(C)) < π .

Sublemma 9.4.5. Let I be a π-filtrant small category and let {Xi }i∈I be an
inductive system in C indexed by I . Then there exists i0 ∈ I such that Xi0 −→
lim−→

i

Xi is an epimorphism.
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Proof of Sublemma 9.4.5. The proof is similar to that of Lemma 9.3.1. Set
X = lim−→

i

Xi and let ai : Xi −→ X denote the canonical morphism. Let F ∈ C∧

denote the image of “lim−→”
i

Xi −→ X , that is,

F(Y ) = Im
(
lim−→

i

HomC(Y, Xi ) −→ HomC(Y, X)
)

.

Since card(HomC(Y, X)) < π , we have F(Y ) ∈ Setπ . Therefore, there exists
iY ∈ I such that HomC(Y, XiY ) −→ F(Y ) is surjective (apply Lemma 9.3.1 with
C = Set). Since card({iY ; Y ∈ Ob(C)}) < π and I is π -filtrant, there exists
i0 ∈ I such that there exists a morphism iY −→ i0 for any Y ∈ Ob(C). Hence
HomC(Y, Xi0) −→ F(Y ) is surjective for any Y ∈ C. In particular, for any i ∈ I ,
there exists a morphism hi : Xi −→ Xi0 such that ai0 ◦ hi = ai .

Let us show that ai0 : Xi0 −→ X is an epimorphism. Let f1, f2 : X ⇒ Y be
a pair of parallel arrows such that f1 ◦ ai0 = f2 ◦ ai0 . Then, for any i ∈ I , we
have

f1 ◦ ai = f1 ◦ ai0 ◦ hi = f2 ◦ ai0 ◦ hi = f2 ◦ ai .

Hence, f1 = f2. q.e.d.

Proof of Theorem 9.4.2. As in Example 9.2.3, let us choose a small π -filtrant
well ordered set I such that sup(I ) does not exist. Let us define an inductive
system {Xi }i∈I in C by transfinite induction. For the smallest element 0 ∈ I ,
we choose an arbitrary object X0 ∈ C. Let i > 0 and assume that X j and
u jk : Xk −→ X j have been constructed for k ≤ j < i .

(a) If i = j + 1 for some j , then take ui j : X j −→ Xi with the property P(ui j )
in Sublemma 9.4.4. Then define uik = ui j ◦ u jk for any k ≤ j .

(b) If i = sup{ j ; j < i}, set Xi = lim−→
j<i

X j and define ui j as the canonical
morphism X j −→ Xi .

We shall prove that X := lim−→
i∈I

Xi is a quasi-terminal object. Let ai : Xi −→ X

denote the canonical morphism. Hence, a j = ai ◦ ui j for j ≤ i . By Sub-
lemma 9.4.5, there exists i0 ∈ I such that ai0 : Xi0 −→ X is an epimor-
phism. Let u : X −→ Y be a morphism. By the property P(ui0+1,i0) applied
to u ◦ ai0+1 : Xi0+1 −→ Y , we find a morphism w : Y −→ Xi0+1 such that
w ◦ u ◦ ai0+1 ◦ ui0+1,i0 = ui0+1,i0 . Set v = ai0+1 ◦ w ∈ HomC(Y, X). Then

(v ◦ u) ◦ ai0 = (ai0+1 ◦ w) ◦ u ◦ (ai0+1 ◦ ui0+1,i0)
= ai0+1 ◦ ui0+1,i0 = ai0 = idX ◦ ai0 .

Since ai0 is an epimorphism, we conclude that v ◦ u = idX . q.e.d.
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9.5 F-injective Objects

Let C denote a U-category.

Definition 9.5.1. (i) Let F ⊂ Mor(C) be a family of morphisms in C. An
object I ∈ C is F-injective if for any solid diagram

X
f ��

�� I

Z

��(9.5.1)

with f ∈ F , there exists a dotted arrow making the whole diagram com-
mutative.
In other words, I is F-injective if the map HomC(Z , I )

◦ f−→ HomC(X, I )
is surjective for any f : X −→ Z in F .

(ii) An object is F-projective in C if it is Fop-injective in Cop.

Example 9.5.2. Let C be an abelian category and let F ⊂ Mor(C) be the family
of monomorphisms. Then the F-injective objects are the injective objects.

We shall consider a subcategory C0 of C and we shall make the hypotheses
below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) C0 admits small filtrant inductive limits and C0 −→ C com-
mutes with such limits,

(ii) for any X, Y, X ′ ∈ C0, any u : X −→ Y in Mor(C0) and any
f : X −→ X ′ in Mor(C), there exists a commutative diagram

X u
��

f ��

Y
g��

X ′
u′
�� Y ′

with u′ ∈ Mor(C0) and g ∈ Mor(C).
(9.5.2)

Lemma 9.5.3. Assume (9.5.2). Then for any X ′ ∈ C0, any small family
{ui : Xi −→ Yi }i∈I in Mor(C0) and any family { fi : Xi −→ X ′}i∈I in Mor(C),
there exist u′ : X ′ −→ Y ′ in Mor(C0) and {gi : Yi −→ Y ′}i∈I in Mor(C) such that
the diagrams Xi ui

��

fi ��

Yi

gi��
X ′

u′
�� Y ′

commute for all i ∈ I .

Proof. When I is empty, it is enough to take idX ′ as u′. Assume that I is non
empty. We may assume that I is well ordered. We shall construct an inductive
system {X ′ −→ Y ′

i }i∈I in C0 and morphisms Yi −→ Y ′
i by transfinite induction.

If i = 0 is the smallest element of I , let us take a morphism X ′ −→ Y ′
0 in

C0 such that X0 −→ X ′ −→ Y ′
0 factors through X0

u0−→ Y0.
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Let i > 0. By (9.5.2) (i), Y ′
<i := lim−→

j<i

Y ′
j exists in C0. Then we take Y ′

i ∈ C0

and a morphism Y ′
<i −→ Y ′

i in C0 such that there exists a commutative diagram

Xi

fi

�� ((/
//

//
//

/
ui �� Yi

��
X ′ �� Y ′

<i
�� Y ′

i .

We have thus constructed an inductive system {Y ′
i }i∈I in C0. Set Y ′ := lim−→

i

Y ′
i .

Then X ′ −→ Y ′ satisfies the desired properties. q.e.d.

Theorem 9.5.4. Assume (9.5.2). Let F ⊂ Mor(C0) be a small set and assume
that there exists an infinite cardinal π such that for any u : X −→ Z in F ,
X ∈ Cπ . Then, for any X ∈ C0, there exists a morphism f : X −→ Y such that
f ∈ Mor(C0) and Y is F-injective in C.

Proof. We may assume from the beginning that π is an infinite regular car-
dinal. Choose a well ordered π -filtrant set I such that sup(I ) does not exist,
as in Example 9.2.3. For i, j ∈ I with j ≤ i , we shall define by transfinite
induction on i :

Yi in C0 and ui j : Y j −→ Yi in Mor(C0)

such that uii = idYi , ui j ◦ u jk = uik for k ≤ j ≤ i .
(9.5.3)

Denote by 0 the smallest element in I . Set Y0 = X , u00 = idX . For i > 0,
assume that Yk and u jk are constructed for k ≤ j < i .
(a) If sup{ j ; j < i} = i , set

Yi = lim−→
j<i

Y j

and define the morphisms Y j −→ Yi as the natural ones.
(b) If i = j + 1 for some j , define the set

Sj = {B v←− A
u−→ Y j ; v ∈ F} .

Then Sj is a small set. For s ∈ Sj , we denote by Bs
vs←− As

us−→ Y j the corre-
sponding diagram. It follows from Lemma 9.5.3 that there exist a morphism
ui j : Y j −→ Yi in C0 and a commutative diagram

As

vs

��

us

�� Y j

ui j

��
Bs ws

�� Yi
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for every s ∈ Sj . For k ≤ j , we define uik as the composition ui j ◦ u jk .
We have thus constructed an inductive system {Yi }i∈I in C0.
Set Y = lim−→

i∈I

Yi . Then the morphism X −→ Y belongs to Mor(C0). Let us

show that Y is F-injective. Consider a diagram

Z1
w ��

f
��

Y

Z2

(9.5.4)

with f ∈ F and w ∈ Mor(C). Since Z1 ∈ Cπ , there is an isomorphism

HomC(Z1, Y ) � lim−→
i∈I

HomC(Z1, Yi )

and there exists j ∈ I such that diagram (9.5.4) decomposes into

Z1

f
��

�� Y j �� Y .

Z2

Now (Z2 ←− Z1 −→ Y j ) is equal to (Bs ←− As −→ Y j ) for some s ∈ Sj and we
get the commutative diagram

Z1
∼ ��

f

��

As
us ��

vs

��

Y j

��

�� Y .

Z2
∼ �� Bs

ws �� Y j+1

��









This completes the proof. q.e.d.

Let C be a category, C0 a subcategory and F ⊂ Mor(C0) a family of mor-
phisms in C0. We introduce the following condition on a morphism f : X −→ Y
in C0.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Any Cartesian square in C U
s ��

u
��

V
v
��

ξ

&&
X

f
�� Y

(without the dotted

arrow) such that s ∈ F can be completed to a commutative
diagram in C with a dotted arrow ξ .

(9.5.5)

Theorem 9.5.5. Let C be a category, C0 a subcategory and F ⊂ Mor(C0) a
family of morphisms in C0. Assume (9.5.2) and also
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for any X ∈ C0, (C0)X is essentially small,(9.5.6)

any Cartesian square X ′ f ′ ��

u
��

Y ′

v
��

X
f �� Y

in C with f, f ′ ∈ Mor(C0)

decomposes into a commutative diagram X ′ f ′ ��

u
��

Y ′

��
v

��0
00

00
A

X g
�� Z

h
�� Y

such

that the square labeled by A is co-Cartesian, g, h ∈ Mor(C0) and
f = h ◦ g,

(9.5.7)

if a morphism f : X −→ Y in C0 satisfies condition (9.5.5),(9.5.8)
then f is an isomorphism.

Then any Y ∈ C which is F-injective is Mor(C0)-injective.

Proof. Let Y be F-injective and consider morphisms Y
h←− X

f−→ Z with
f ∈ Mor(C0). We shall show that h factorizes through f .

Let us denote by D(u, v, w, Z ′) a commutative diagram in C with Z ′ ∈ C0,
u, v ∈ Mor(C0):

X
f ��

u

��..
...

.

h

��

Z

Z ′ v

23111111

w""'''
'''

Y .

Denote by I the category of such diagrams, a morphism D(u1, v1, w1, Z ′
1) −→

D(u2, v2, w2, Z ′
2) being a morphism Z ′

1 −→ Z ′
2 in C0 which satisfies the natural

commutation relations.
By hypothesis (9.5.6), I is essentially small. By hypothesis (9.5.2), I admits

small filtrant inductive limits. Applying Theorem 9.4.2, I has a quasi-terminal
object, which we denote by D(u0, v0, w0, Z0).

It remains to show that v0 is an isomorphism. For that purpose, we shall
use (9.5.8).

Consider a Cartesian square

U
s ��

α

��

V

γ

��
Z0

v0 �� Z

with s ∈ F . Then by (9.5.7), it decomposes into a commutative diagram
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U
s ��

α

��

V

β

��

γ

����
���

���
��

Z0 ϕ
�� Z0 �U V

ψ
�� Z

with ϕ, ψ ∈ Mor(C0) such that v0 = ψ ◦ ϕ. Since Y is F-injective, the com-
position U

α−→ Z0
w0−→ Y factors as U

s−→ V −→ Y , which induces a morphism
w1 : Z0 �U V −→ Y . We thus obtain a commutative diagram

X
f ��

u0

���
��

��
�

h

��

Z

Z0

v0

34((((((((((

w0&&***
***

* ϕ

��..
...

...

Y Z0 �U V .
w1

��

ψ





This defines a morphism ξ in I :

ξ : D(u0, v0, w0, Z0) −→ D(ϕ ◦ u0, ψ,w1, Z0 �U V ) .

Hence, ξ admits a left inverse. We get a morphism η : Z0 �U V −→ Z0 in
C0 such that the two triangles in the diagram below commute

U
s ��

α

��

V

β

��
Z0

ϕ ��

id

��

Z0 �U V

ψ

��
η

!!��
��
��
��
�

Z0 v0
�� Z .

Therefore, the whole diagram commutes, and v0 satisfies condition (9.5.5),
hence is an isomorphism by assumption (9.5.8). q.e.d.

9.6 Applications to Abelian Categories

We shall apply some of the preceding results to abelian categories. Note that
a Grothendieck category (see Definition 8.3.24) satisfies hypothesis (9.3.1).

Let us summarize the principal results that we shall use in the sequel.
These results follow from Corollaries 9.3.7 and 9.3.8.

Theorem 9.6.1. Let C be a Grothendieck category. Then, for any small subset
E of Ob(C), there exist an infinite cardinal π and a full subcategory S of C
satisfying the conditions:
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(i) Ob(S) contains E,
(ii) S is a fully abelian subcategory of C,
(iii) S is essentially small,
(iv) S contains a generator of C,
(v) S is closed by subobjects and quotients in C,
(vi) for any epimorphism f : X�Y in C with Y ∈ S, there exist Z ∈ S and a

monomorphism g : Z −→ X such that f ◦ g : Z −→ Y is an epimorphism,
(vii) S is closed by countable direct sums,
(viii) any object in S is π-accessible.

On the Existence of Enough Injectives and Injective Cogenerators

The next result is due to Grothendieck [28].

Theorem 9.6.2. Let C be a Grothendieck category. Then C admits enough
injectives.

Proof. We shall apply Theorem 9.5.4. Let G be a generator of C. We take
as C0 the category whose objects are those of C, the morphisms in C0 being
the monomorphisms in C. Let F ⊂ Mor(C0) be the set of monomorphisms
N ↪→ G. This is a small set by Corollary 8.3.26. By Proposition 8.4.7, an
object of C is injective if it is F-injective.
Hypothesis (9.5.2) is clearly satisfied (use Lemma 8.3.11). By Theorem 9.6.1,
there exists an infinite cardinal π such that any subobject of G is π -accessible.
Applying Theorem 9.5.4, we obtain that for any X ∈ C there exists a monomor-
phism X ↪→ Y such that Y is F-injective. q.e.d.

Theorem 9.6.3. Let C be a Grothendieck category. Then C admits an injec-
tive cogenerator K .

Proof. Let G be a generator. By the result of Proposition 5.2.9, there exists
a family {G j } j∈J indexed by a small set J such that any quotient of G is
isomorphic to some G j . Let S =

⊕
j∈J G j . By Theorem 9.6.2, there exist an

injective object K and a monomorphism S ↪→ K . We shall show that K is a
cogenerator.

First, let us show that

HomC(X, K ) � 0 implies X � 0 .(9.6.1)

For any morphism u : G −→ X , the map HomC(X, K ) −→ HomC(Im u, K ) is sur-
jective. Hence, HomC(Im u, K ) � 0. Since Im u is isomorphic to some G j , there
exists a monomorphism Im u ↪→ K . Hence, Im u � 0. Thus HomC(G, X) � 0
and X � 0. This prove (9.6.1).

To conclude, consider a morphism f : X −→ Y such that HomC( f, K ) is
bijective, and let us show that f is an isomorphism. It is enough to check that
Ker f � Coker f � 0. This follows from (9.6.1) and the exact sequence
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0 −→ HomC(Coker f, K ) −→ HomC(Y, K )
−→ HomC(X, K ) −→ HomC(Ker f, K ) −→ 0 .

q.e.d.

Corollary 9.6.4. Let C be a Grothendieck category.

(i) A functor F : C −→ Set is representable if F commutes with small pro-
jective limits.

(ii) Let A be another category. If a functor R : C −→ A commutes with small
projective limits, then R admits a left adjoint.

Proof. It is enough to apply Theorem 9.6.3, Theorem 5.2.6 and Proposi-
tion 5.2.8 (with the arrows reversed). q.e.d.

Corollary 9.6.5. Let C be a small abelian category. Then Ind(C) admits an
injective cogenerator.

Proof. Apply Theorem 8.6.5 and Proposition 9.6.3. q.e.d.

Let us give an important application of Theorem 9.6.3.

Corollary 9.6.6. Let C be a Grothendieck category. Denote by Iin j the full
additive subcategory of C consisting of injective objects and by ι : Iin j −→ C
the inclusion functor. Then there exist a (not necessarily additive) functor
Ψ : C −→ Iin j and a morphism of functor idC −→ ι ◦ Ψ such that X −→ Ψ (X) is
a monomorphism for any X ∈ C.

Proof. The category C admits an injective cogenerator K by Proposition 9.6.3
and admits small products by Proposition 8.3.27. Consider the (non additive)
functor

Ψ : C −→ C, X 
→ K Hom (X,K )
.

The identity of

HomSet(HomC(X, K ),HomC(X, K )) � HomC(X, K Hom (X,K ))

defines a morphism X −→ Ψ (X) = K Hom (X,K ), and this morphism is a
monomorphism by Proposition 5.2.3 (iv). q.e.d.

Corollary 9.6.7. Let C be a Grothendieck category and I a small category.
Let α : I −→ C be a functor. Denote by Iin j the full additive subcategory of C
consisting of injective objects. Then there exist a functor β : I −→ Iin j and a
monomorphism α�β in Fct(I, C).

Proof. Take β = Ψ ◦α, where Ψ is the functor given by Corollary 9.6.6. q.e.d.
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The Freyd-Mitchell Theorem

Lemma 9.6.8. Let C be an abelian category which admits a projective gen-
erator G and small inductive limits. Let J ⊂ Ob(C) be a small set. Then
there exists a projective generator P such that any X ∈ J is isomorphic to a
quotient of P.

Proof. For X ∈ C, the morphism G⊕Hom (G,X) −→ X is an epimorphism. Hence,
it is enough to set P =

⊕
X∈J G⊕Hom (G,X). q.e.d.

We set {
RG := the opposite ring of the ring HomC(G, G) ,

ϕG := the functor HomC(G, • ) : C −→ Mod(RG) .
(9.6.2)

Lemma 9.6.9. Let C be an abelian category which admits a projective gener-
ator G. Let X ∈ C be a quotient of a finite direct sum of copies of G. Then
the map

HomC(X, Y ) −→ Hom RG
(ϕG(X), ϕG(Y ))(9.6.3)

is bijective for all Y ∈ C.

Proof. For short, we shall write R and ϕ instead of RG and ϕG , respectively.
By the assumption, ϕ is an exact functor. By Proposition 5.2.3, the functor ϕ

is faithful. Taking an epimorphism G⊕m�X , set N = Ker(G⊕m −→ X).
Then 0 −→ ϕ(N) −→ ϕ(G⊕m) −→ ϕ(X) −→ 0 is exact. Let us consider the

exact commutative diagram (in this diagram, we write Hom instead of HomC
or Hom R for short)

0 �� Hom(X, Y )

��

�� Hom(G⊕m, Y )

��

�� Hom(N , Y )

��
0 �� Hom(ϕ(X), ϕ(Y )) �� Hom(ϕ(G⊕m), ϕ(Y )) �� Hom(ϕ(N), ϕ(Y )).

Since HomC(G, Y ) = ϕ(Y ) � Hom R(ϕ(G), ϕ(Y )), the middle vertical arrow
is an isomorphism. Since ϕ is faithful, the right vertical arrow is a monomor-
phism. Therefore the left vertical arrow is an isomorphism. q.e.d.

The next theorem is due to Freyd and Mitchell.

Theorem 9.6.10. Let C be a small abelian category. There exist a ring R and
an exact fully faithful functor C −→ Mod(R). In other words, C is equivalent
to a fully abelian subcategory of Mod(R).



Exercises to Chap. 9 239

Proof. The category Cop is abelian. Applying Corollary 9.6.5, the abelian cat-
egory Ind(Cop) admits an injective cogenerator. Hence Pro(C) � (Ind(Cop))op

admits a projective generator. We regard C as a full subcategory of Pro(C).
Note that C −→ Pro(C) is an exact functor. By Lemmas 9.6.8 there exists a
projective generator G of Pro(C) such that any object of C is a quotient of
G. Then Lemma 9.6.9 implies that the functor ϕG : C −→ Mod(RG) is fully
faithful, and ϕG is obviously exact. q.e.d.

Exercises

Exercise 9.1. Let C be an abelian category. A monomorphism f : X�Y is
essential if for any subobject W of Y , W ∩ X � 0 implies W � 0. Prove that f
is essential if and only if a morphism g : Y −→ Z is a monomorphism as soon
as g ◦ f is a monomorphism.

Exercise 9.2. Let C be a Grothendieck category and let f : X�Y be a
monomorphism. Prove that there exists an essential monomorphism h : X�Z

which factorizes as X
f−→ Y −→ Z .

(Hint: let Σ denote the set of subobjects W of Y satisfying W ∩ X = 0. Then
Σ is a small set and is inductively ordered.)

Exercise 9.3. Let C be a Grothendieck category and let Z ∈ C. Prove that
Z is injective if and only if any essential monomorphism f : Z�W is an
isomorphism.

Exercise 9.4. Let C be a Grothendieck category and let {X −→ Yi }i∈I be an
inductive system of morphisms in C indexed by a small and filtrant category
I . Assume that all morphisms X −→ Yi are essential monomorphisms. Prove
that f : X −→ lim−→

i

Yi is an essential monomorphism.

Exercise 9.5. Let C be a Grothendieck category and let G be a generator. Set
R = (EndC(G))op. Recall that the category Mod(R) admits enough injectives
by the result of Exercise 8.24.
(i) Prove that if f : X −→ Y is an essential monomorphism in C, then ϕG( f ) is
an essential monomorphism in Mod(R).
(ii) Deduce another proof of Theorem 9.6.2.

Exercise 9.6. Let C be a Grothendieck category and let X ∈ C.
(i) Prove that there exist an injective object I and an essential monomorphism
X�I .
(ii) Let u : X −→ I and u′ : X −→ I ′ be two essential monomorphisms, with I

and I ′ injectives. Prove that there exists an isomorphism g : I ∼−→ I ′ such that
g ◦ u = u′. (Note that such a g is not unique in general.)
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Exercise 9.7. Let π be an infinite cardinal and I a small category. Assume
that for any category J such that card(Mor(J )) < π and any functor α : Jop×
I −→ Set, the morphism λ in (9.2.1) is an isomorphism. Prove that I is π -
filtrant. (Hint: for any ϕ : J −→ I , apply (9.2.1) to α( j, i) = HomC(ϕ( j), i)
and use Lemma 2.4.7.)

Exercise 9.8. Let π be an infinite cardinal and let C be a category which
admits inductive limits indexed by any category J such that card(Mor(J )) <

π . Let F : C −→ C ′ be a functor. Prove that F commutes with such inductive
limits if and only if CY is π -filtrant for any Y ∈ C ′.
Exercise 9.9. Let X and Y be two quasi-terminal objects in a category C.
Prove that any morphism f : X −→ Y is an isomorphism.

Exercise 9.10. Let C be a category and X ∈ C. Assume that (X, idX ) ∈ CX

is a terminal object of CX . Prove that X is a quasi-terminal object.

Exercise 9.11. Let A be a small set and let C be the category defined as
follows.

Ob(C) = {x, y} ,

HomC(x, x) = {idx } ,

HomC(y, y) = {idy} � {pa; a ∈ A} ,

HomC(x, y) = {u} ,

HomC(y, x) = {va; a ∈ A} ,

with the relations pa ◦ pb = pb, va ◦ pb = vb for any a, b ∈ A.
(i) Prove that C is a category.
(ii) Prove that there exists a fully faithful functor F : C −→ SetA.
(iii) Prove that C −→ Ind(C) is an equivalence of categories.
(iv) Prove that C admits filtrant inductive limits.
(v) Prove that x is a quasi-terminal object of C (see Definition 9.4.1) and
observe that a left inverse of u : x −→ y is not unique.

Exercise 9.12. Let C be an abelian category and G a projective object of
C. Assume that any object of C is a quotient of a direct sum of finite copies
of G. Define RG and ϕG as in (9.6.2). Prove that RG is a left coherent ring
(see Exercise 8.23) and that ϕG gives an equivalence C ∼−→Modcoh(RG), where
Modcoh(RG) is the full subcategory of Mod(RG) consisting of coherent RG-
modules.

Exercise 9.13. Let C be a small category which admits small products. Prove
that for any pair of objects X, Y in C, HomC(X, Y ) has at most one element
and that C is equivalent to the category associated with an ordered set I such
that for any subset J of I , inf(J ) exists in I . (Hint: assume there exist X, Y ∈ C
such that HomC(X, Y ) has more than one element and set M = Ob(Mor(C)),
π = card(M). By considering HomC(X, Y M), find a contradiction.)
(The result of this exercise is due to Freyd [22].)
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Triangulated Categories

Triangulated categories play an increasing role in mathematics and this sub-
ject deserves a whole book.

In this chapter we define and give the main properties of triangulated cat-
egories and cohomological functors and prove in particular that the localiza-
tion of a triangulated category is still triangulated. We also show that under
natural hypotheses, the Kan extension of a cohomological functor remains
cohomological.

Then we study triangulated categories admitting small direct sums. Such
categories are studied by many authors, in particular [6] and [53]. Here, we
prove the so-called “Brown representability theorem” [11] in the form due to
Neeman [53], more precisely, a variant due to [44], which asserts that any coho-
mological contravariant functor defined on a triangulated category admitting
small direct sums and a suitable system of generators is representable as soon
as it sends small direct sums to products. (The fact that Brown’s theorem
could be adapted to triangulated categories was also noticed by Keller [42].)

There also exist variants of the Brown representability theorem for trian-
gulated categories which do not admit small direct sums. For results in this
direction, we refer to [8].

We ask the reader to wait until Chap. 11 to encounter examples of tri-
angulated categories. In fact, it would have been possible to formulate the
important Theorem 11.3.8 below before defining triangulated categories, by
listing the properties which become the axioms of these categories. We have
chosen to give the axioms first in order to avoid repetitions, and also because
the scope of triangulated categories goes much beyond the case of complexes
in additive categories.

We do not treat here t-structures on triangulated categories and refer to
the original paper [4] (see also [38] for an exposition). Another important
closely related subject which is not treated here is the theory of A∞-algebras
(see [41, 43]).
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10.1 Triangulated Categories

Definition 10.1.1. (i) A category with translation (D, T ) is a category D
endowed with an equivalence of categories T : D ∼−→D. The functor T is
called the translation functor.

(ii) A functor of categories with translation F : (D, T ) −→ (D′, T ′) is a functor
F : D −→ D′ together with an isomorphism F ◦ T � T ′ ◦ F. If D and D′
are additive categories and F is additive, we say that F is a functor of
additive categories with translation.

(iii) Let F, F ′ : (D, T ) −→ (D′, T ′) be two functors of categories with transla-
tion. A morphism θ : F −→ F ′ of functors of categories with translation
is a morphism of functors such that the diagram below commutes:

F ◦ T

∼
��

θ◦T �� F ′ ◦ T

∼
��

T ′ ◦ F
T ′◦θ �� T ′ ◦ F ′ .

(iv) A subcategory with translation (D′, T ′) of (D, T ) is a category with trans-
lation such that D′ is a subcategory of D and the translation functor T ′
is the restriction of T .

(v) Let (D, T ), (D′, T ′) and (D′′, T ′′) be additive categories with translation.
A bifunctor of additive categories with translation F : D×D′ −→ D′′ is an
additive bifunctor endowed with functorial isomorphisms

θX,Y : F(T X, Y ) ∼−→ T ′′F(X, Y ) and θ ′X,Y : F(X, T ′Y ) ∼−→ T ′′F(X, Y )

for (X, Y ) ∈ D × D′ such that the diagram below anti-commutes (see
Definition 8.2.20):

F(T X, T ′Y )
θX,T ′Y ��

θ ′T X,Y

��
ac

T ′′F(X, T ′Y )

T ′′θ ′X,Y

��
T ′′F(T X, Y )

T ′′θX,Y

�� T ′′2F(X, Y ) .

Remark 10.1.2. The anti-commutativity of the diagram above will be justified
in Chapter 11 (see Proposition 11.2.11 and Lemma 11.6.3).

Notations 10.1.3. (i) We shall denote by T−1 a quasi-inverse of T . Then T n is
well defined for n ∈ Z. These functors are unique up to unique isomorphism.
(ii) If there is no risk of confusion, we shall write D instead of (D, T ) and T X
instead of T (X).
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Definition 10.1.4. Let (D, T ) be an additive category with translation. A
triangle in D is a sequence of morphisms

X
f−→ Y

g−→ Z
h−→ T X .(10.1.1)

A morphism of triangles is a commutative diagram:

X
f ��

α

��

Y

β

��

g �� Z

γ

��

h �� T X

T (α)

��
X ′ f ′ �� Y ′ g′ �� Z ′ h′ �� T X ′ .

Remark 10.1.5. For ε1, ε2, ε3 = ±1, the triangle X
ε1 f−−→ Y

ε2g−→ Z
ε3h−→ T X is

isomorphic to the triangle (10.1.1) if ε1ε2ε3 = 1, but if ε1ε2ε3 = −1, it is not
isomorphic to the triangle (10.1.1) in general.

Definition 10.1.6. A triangulated category is an additive category (D, T )
with translation endowed with a family of triangles, called distinguished tri-
angles (d.t. for short), this family satisfying the axioms TR0 – TR5 below.

TR0 A triangle isomorphic to a d.t. is a d.t.
TR1 The triangle X

idX−→ X −→ 0 −→ T X is a d.t.

TR2 For all f : X −→ Y , there exists a d.t. X
f−→ Y −→ Z −→ T X .

TR3 A triangle X
f−→ Y

g−→ Z
h−→ T X is a d.t. if and only if Y

−g−→ Z
−h−→

T X
−T ( f )−−−→ T Y is a d.t.

TR4 Given two d.t.’s X
f−→ Y

g−→ Z
h−→ T X and X ′ f ′−→ Y ′ g′−→ Z ′ h′−→ T X ′ and

morphisms α : X −→ X ′ and β : Y −→ Y ′ with f ′ ◦ α = β ◦ f , there exists
a morphism γ : Z −→ Z ′ giving rise to a morphism of d.t.’s:

X
f ��

α

��

Y

β

��

g �� Z

γ

��

h �� T X

T (α)

��
X ′ f ′ �� Y ′ g′ �� Z ′ h′ �� T X ′.

TR5 Given three d.t.’s

X
f−→ Y

h−→ Z ′ −→ T X ,

Y
g−→ Z

k−→ X ′ −→ T Y ,

X
g◦ f−−→ Z

l−→ Y ′ −→ T X,

there exists a d.t. Z ′ u−→ Y ′ v−→ X ′ w−→ T Z ′ making the diagram below
commutative:
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(10.1.2) X
f ��

id

��

Y
h ��

g

��

Z ′

u

��

�� T X

id

��
X

g◦ f ��

f

��

Z

id

��

l �� Y ′

v

��

�� T X

T ( f )

��
Y

g ��

h

��

Z
k ��

l

��

X ′

id

��

�� T Y

T (h)

��
Z ′ u �� Y ′ v �� X ′ w �� T Z ′ .

Diagram (10.1.2) is often called the octahedron diagram. Indeed, it can be
written using the vertices of an octahedron.

Y ′

4522
22
22
22
22
22
22
22
22 v

��
Z ′

+1

��

u

23

X ′+1��

+1

333

33
33

��33
33
33
33

X ��

f
��..

...
...

...
.. Z





56444444444444444444

Y

00000000

0000

56000

g

34((((((((((((((

Here, for example, X ′ +1−−→ Y means a morphism X ′ −→ T Y .

Notation 10.1.7. The translation functor T is called the suspension functor by
the topologists.

Remark 10.1.8. The morphism γ in TR4 is not unique and this is the origin
of many troubles. See the paper [7] for an attempt to overcome this difficulty.

Definition 10.1.9. (i) A triangulated functor of triangulated categories F :
(D, T ) −→ (D′, T ′) is a functor of additive categories with translation
sending distinguished triangles to distinguished triangles. If moreover F
is an equivalence of categories, F is called an equivalence of triangulated
categories.

(ii) Let F, F ′ : (D, T ) −→ (D′, T ′) be triangulated functors. A morphism
θ : F −→ F ′ of triangulated functors is a morphism of functors of ad-
ditive categories with translation.

(iii) A triangulated subcategory (D′, T ′) of (D, T ) is an additive subcategory
with translation of D (i.e., the functor T ′ is the restriction of T ) such
that it is triangulated and that the inclusion functor is triangulated.
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Remark 10.1.10. (i) A triangle X
f−→ Y

g−→ Z
h−→ T X is anti-distinguished if

the triangle X
f−→ Y

g−→ Z
−h−→ T X is distinguished. Then (D, T ) endowed

with the family of anti-distinguished triangles is triangulated. If we denote by
(Dant, T ) this triangulated category, then (Dant, T ) and (D, T ) are equivalent
as triangulated categories (see Exercise 10.10).
(ii) Consider the contravariant functor op: D −→ Dop, and define T op = op ◦
T−1 ◦ op−1. Let us say that a triangle X

f−→ Y
g−→ Z

h−→ T op(X) in Dop

is distinguished if its image Zop gop−−→ Y op f op−−→ Xop T (hop)−−−−→ T Zop by op is
distinguished. (Here, we write op instead of op−1 for short.) Then (Dop, T op)
is a triangulated category.

Proposition 10.1.11. If X
f−→ Y

g−→ Z −→ T X is a d.t. then g ◦ f = 0.

Proof. Applying TR1 and TR4 we get a commutative diagram:

X
id ��

id

��

X

f

��

�� 0

��

�� T X

id

��
X

f �� Y
g �� Z �� T X .

Then g ◦ f factorizes through 0. q.e.d.

Definition 10.1.12. Let (D, T ) be a triangulated category and C an abelian
category. An additive functor F : D −→ C is cohomological if for any d.t.
X −→ Y −→ Z −→ T X in D, the sequence F(X) −→ F(Y ) −→ F(Z) is exact in C.

Proposition 10.1.13. For any W ∈ D, the two functors HomD(W, • ) and
HomD( • , W ) are cohomological.

Proof. Let X −→ Y −→ Z −→ T X be a d.t. and let W ∈ D. We want to show
that

Hom(W, X)
f ◦−→ Hom(W, Y )

g◦−→ Hom(W, Z)

is exact, i.e. : for all ϕ : W −→ Y such that g ◦ ϕ = 0, there exists ψ : W −→ X
such that ϕ = f ◦ ψ . This means that the dotted arrows below may be
completed, and this follows from the axioms TR4 and TR3.

W
id ��

��

W

ϕ

��

�� 0

��

�� T W

��
X

f �� Y
g �� Z �� T X .

By replacing D with Dop, we obtain the assertion for Hom( • , W ). q.e.d.

Remark 10.1.14. By TR3, a cohomological functor gives rise to a long exact
sequence:

· · · −→ F(T−1Z) −→ F(X) −→ F(Y ) −→ F(Z) −→ F(T X) −→ · · · .(10.1.3)
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Proposition 10.1.15. Consider a morphism of d.t.’s:

X
f ��

α

��

Y

β

��

g �� Z

γ

��

h �� T X

T (α)

��
X ′ f ′ �� Y ′ g′ �� Z ′ h′ �� T X ′ .

If α and β are isomorphisms, then so is γ .

Proof. Apply Hom(W, • ) to this diagram and write X̃ instead of Hom(W, X),
α̃ instead of Hom(W, α), etc. We get the commutative diagram:

X̃

α̃

��

f̃ �� Ỹ

β̃

��

g̃ �� Z̃

γ̃

��

h̃ �� T̃ X

T̃ (α)

��

T̃ ( f ) �� T̃ Y

T̃ (β)

��
X̃ ′ f̃ ′ �� Ỹ ′ g̃′ �� Z̃ ′ h̃′ �� T̃ X ′ T̃ ( f ) �� T̃ Y ′ .

The rows are exact in view of the Proposition 10.1.13, and α̃, β̃, T̃ (α) and T̃ (β)
are isomorphisms. Therefore γ̃ = Hom(W, γ ) : Hom(W, Z) −→ Hom(W, Z ′) is
an isomorphism by Lemma 8.3.13. This implies that γ is an isomorphism by
Corollary 1.4.7. q.e.d.

Corollary 10.1.16. Let D′ be a full triangulated subcategory of D.

(i) Consider a triangle X
f−→ Y −→ Z −→ T X in D′ and assume that this

triangle is distinguished in D. Then it is distinguished in D′.
(ii) Consider a d.t. X −→ Y −→ Z −→ T X in D with X and Y in D′. Then Z

is isomorphic to an object of D′.

Proof. There exists a d.t. X
f−→ Y −→ Z ′ −→ T X in D′. Then X

f−→ Y −→
Z −→ T X is isomorphic to X

f−→ Y −→ Z ′ −→ T X in D by TR4 and Proposi-
tion 10.1.15. q.e.d.

By Proposition 10.1.15, we obtain that the object Z given in TR2 is unique
up to isomorphism. As already mentioned, the fact that this isomorphism is
not unique is the source of many difficulties (e.g., gluing problems in sheaf
theory). Let us give a criterion which ensures, in some very special cases, the
uniqueness of the third term of a d.t.

Proposition 10.1.17. In the situation of TR4 assume that HomD(Y, X ′) = 0
and HomD(T X, Y ′) = 0. Then γ is unique.

Proof. We may replace α and β by the zero morphisms and prove that in this
case, γ is zero.
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X
f ��

0

��

Y

0

��

g �� Z

γ

��

h �� T X

0

��
X ′ f ′ �� Y ′ g′ �� Z ′ h′ �� T X ′ .

We shall apply Proposition 10.1.13. Since h′ ◦ γ = 0, γ factorizes through g′,
i.e., there exists u : Z −→ Y ′ with γ = g′ ◦ u. Similarly, since γ ◦ g = 0, γ

factorizes through h, i.e., there exists v : T X −→ Z ′ with γ = v ◦ h.
By TR4, there exists a morphism w defining a morphism of d.t.’s:

Y
g �� Z

u

��55
55
55
55

h �� T X
v

./��
��
��
��

−T ( f ) �� T Y
w

&&***
**
**
**

Y ′ g′ �� Z ′ h′ �� T X ′ �� T Y ′ .

By the hypothesis, w = 0. Hence v factorizes through Y ′, and by the hypoth-
esis this implies that v = 0. Therefore, γ = 0. q.e.d.

Proposition 10.1.18. Let T and D be triangulated categories and let F : T −→
D be a triangulated functor. Then F is exact (see Definition 3.3.1).

Proof. (i) Let us show that F is right exact, that is, for any X ∈ D, the
category TX is filtrant.
(a) The category TX is non empty since it contains the object 0 −→ X .
(b) Let (Y0, s0) and (Y1, s1) be two objects in TX with Yi ∈ T and si : F(Yi ) −→
X , i = 0, 1. The morphisms s0 and s1 define s : F(Y0 ⊕ Y1) −→ X . Hence, we
obtain morphisms (Yi , si ) −→ (Y0 ⊕ Y1, s) for i = 0, 1.
(c) Consider a pair of parallel arrows f, g : (Y0, s0) ⇒ (Y1, s1) in TX . Let us

embed f − g : Y0 −→ Y1 in a d.t. Y0
f−g−−→ Y1

h−→ Y −→ T Y0. Since s1 ◦ F( f ) =
s1 ◦ F(g), Proposition 10.1.13 implies that the morphism s1 : F(Y1) −→ X

factorizes as F(Y1) −→ F(Y )
t−→ X . Hence, the two compositions (Y0, s0) ⇒

(Y1, s1) −→ (Y, t) coincide.
(ii) Replacing F : T −→ D with Fop : T op −→ Dop, we find that F is left exact.

q.e.d.

Proposition 10.1.19. Let D be a triangulated category which admits direct
sums indexed by a set I . Then direct sums indexed by I commute with the
translation functor T , and a direct sum of distinguished triangles indexed by
I is a distinguished triangle.

Proof. The first assertion is obvious since T is an equivalence of categories.
Let Di : Xi −→ Yi −→ Zi −→ T Xi be a family of d.t.’s indexed by i ∈ I . Let

D be the triangle

⊕i∈I Di : ⊕i Xi −→ ⊕i Yi −→ ⊕i Zi −→ ⊕i T Xi .
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By TR2 there exists a d.t. D′ : ⊕i Xi −→ ⊕i Yi −→ Z −→ T (⊕i Xi ). By TR3
there exist morphisms of triangles Di −→ D′ and they induce a morphism
D −→ D′. Let W ∈ D and let us show that the morphism HomD(D′, W ) −→
HomD(D, W ) is an isomorphism. This will imply the isomorphism D ∼−→ D′
by Corollary 1.4.7. Consider the commutative diagram of complexes

HomD(T (⊕i Yi ), W ) ��

��

HomD(T (⊕i Xi ), W ) ��

��

HomD(Z , W )

��
HomD(⊕i T Yi , W ) �� HomD(⊕i T Xi , W ) �� HomD(⊕i Zi , W )

�� HomD(⊕i Yi , W ) ��

��

HomD(⊕i Xi , W )

��
�� HomD(⊕i Yi , W ) �� HomD(⊕i Xi , W ).

The first row is exact since the functor HomD is cohomological. The second
row is isomorphic to∏

i
HomD(T Yi , W ) −→∏

i
HomD(T Xi , W ) −→∏

i
HomD(Zi , W )

−→∏
i

HomD(Yi , W ) −→∏
i

HomD(Xi , W ) .

Since the functor
∏

i is exact on Mod(Z), this complex is exact. Since the
vertical arrows except the middle one are isomorphisms, the middle one is an
isomorphism by Lemma 8.3.13. q.e.d.

As particular cases of Proposition 10.1.19, we get:

Corollary 10.1.20. Let D be a triangulated category.

(i) Let X1 −→ Y1 −→ Z1 −→ T X1 and X2 −→ Y2 −→ Z2 −→ T X2 be two d.t.’s.
Then X1 ⊕ X2 −→ Y1 ⊕ Y2 −→ Z1 ⊕ Z2 −→ T X1 ⊕ T X2 is a d.t.

(ii) Let X, Y ∈ D. Then X −→ X ⊕ Y −→ Y
0−→ T X is a d.t.

10.2 Localization of Triangulated Categories

Let D be a triangulated category, N a full saturated subcategory. (Recall that
N is saturated if X ∈ D belongs to N whenever X is isomorphic to an object
of N .)

Lemma 10.2.1. (a) Let N be a full saturated triangulated subcategory of D.
Then Ob(N ) satisfies conditions N1–N3 below.
N1 0 ∈ N ,
N2 X ∈ N if and only if T X ∈ N ,
N3 if X −→ Y −→ Z −→ T X is a d.t. in D and X, Z ∈ N then Y ∈ N .
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(b) Conversely, let N be a full saturated subcategory of D and assume that
Ob(N ) satisfies conditions N1–N3 above. Then the restriction of T and
the collection of d.t.’s X −→ Y −→ Z −→ T X in D with X, Y, Z in N make
N a full saturated triangulated subcategory of D. Moreover it satisfies
N’3 if X −→ Y −→ Z −→ T X is a d.t. in D and two objects among X, Y, Z

belong to N , then so does the third one.

Proof. (a) Assume that N is a full saturated triangulated subcategory of
D. Then N1 and N2 are clearly satisfied. Moreover N3 follows from Corol-
lary 10.1.16 and the hypothesis that N is saturated.
(b) Let N be a full subcategory of D satisfying N1–N3. Then N’3 follows from
N2 and N3.
(i) Let us prove that N is saturated. Let f : X ∼−→ Y be an isomorphism with

X ∈ N . The triangle X
f−→ Y −→ 0 −→ T X being isomorphic to the d.t.

X
idX−→ X −→ 0 −→ T X , it is itself a d.t. Hence, Y ∈ N .

(ii) Let X, Y ∈ N . Since X −→ X ⊕Y −→ Y
0−→ T X is a d.t., we find that X ⊕Y

belongs to N , and it follows that N is a full additive subcategory of D.
(iii) The axioms of triangulated categories are then easily checked. q.e.d.

Definition 10.2.2. A null system in D is a full saturated subcategory N such
that Ob(N ) satisfies the conditions N1–N3 in Lemma 10.2.1 (a).

We associate a family of morphisms to a null system as follows. Define:

(10.2.1)
N Q := { f : X −→ Y ; there exists a d.t. X −→ Y −→ Z −→ T X with Z ∈ N }.
Theorem 10.2.3. (i) N Q is a right and left multiplicative system.
(ii) Denote by DN Q the localization of D by N Q and by Q : D −→ DN Q the

localization functor. Then DN Q is an additive category endowed with an
automorphism (the image of T , still denoted by T ).

(iii) Define a d.t. in DN Q as being isomorphic to the image of a d.t. in D by
Q. Then DN Q is a triangulated category and Q is a triangulated functor.

(iv) If X ∈ N , then Q(X) � 0.
(v) Let F : D −→ D′ be a triangulated functor of triangulated categories such

that F(X) � 0 for any X ∈ N . Then F factors uniquely through Q.

One shall be aware that DN Q is a big category in general.

Notation 10.2.4. We will write D/N instead of DN Q .

Proof. (i) Since the opposite category of D is again triangulated and N op is
a null system in Dop, it is enough to check that N Q is a right multiplicative
system. Let us check the conditions S1–S4 in Definition 7.1.5.

S1: if f : X −→ Y is an isomorphism, the triangle X
f−→ Y −→ 0 −→ T X is a d.t.

and we deduce f ∈ N Q.
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S2: Let f : X −→ Y and g : Y −→ Z be in N Q. By TR3, there are d.t.’s

X
f−→ Y −→ Z ′ −→ T X , Y

g−→ Z −→ X ′ −→ T Y , and X
g◦ f−−→ Z −→ Y ′ −→ T X . By

TR5, there exists a d.t. Z ′ −→ Y ′ −→ X ′ −→ T Z ′. Since Z ′ and X ′ belong to N ,
so does Y ′.
S3: Let f : X −→ Y and s : X −→ X ′ be two morphisms with s ∈ N Q. By
the hypothesis, there exists a d.t. W

h−→ X
s−→ X ′ −→ T W with W ∈ N . By

TR2, there exists a d.t. W
f ◦h−−→ Y

t−→ Z −→ T W , and by TR4, there exists a
commutative diagram

W
h ��

id

��

X
s ��

f

��

X ′

��

�� T W

��
W

f ◦h
�� Y t

�� Z �� T W .

Since W ∈ N , we get t ∈ N Q.
S4: Replacing f by f − g, it is enough to check that if there exists s ∈ N Q
with f ◦ s = 0, then there exists t ∈ N Q with t ◦ f = 0. Consider the diagram

X ′ s �� X

f ���
��

��
��

�
k �� Z

h

��

�� T X ′

Y

t

��
Y ′ .

Here, the row is a d.t. with Z ∈ N . Since s ◦ f = 0, the arrow h, making
the diagram commutative, exists by Proposition 10.1.13. There exists a d.t.
Z −→ Y

t−→ Y ′ −→ T Z by TR2. We thus obtain t ∈ N Q since Z ∈ N . Finally,
t ◦ h = 0 implies that t ◦ f = t ◦ h ◦ k = 0.
(ii) follows from the result of Exercise 8.4.
(iii) Axioms TR0–TR3 are obviously satisfied. Let us prove TR4. With the
notations of TR4, and using the result of Exercise 7.4, we may assume that
there exists a commutative diagram in D of solid arrows, with s and t in N Q

X
f ��

α′

��

Y

β ′

��

g �� Z ��

γ ′

��

T X

T (α′)
��

X1
f1 �� Y1

g1 �� Z1
�� T X1

X ′ f ′ ��

s





Y ′

t





g′ ��

A

Z ′ ��

Bu





T X ′ .

T (s)
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After having embedded f1 : X1 −→ Y1 in a d.t., we construct the commutative
squares labeled by A and B with u ∈ N Q by using the result of Exercise 10.6.
(In diagram (10.5.5) of this exercise, if Z0 and Z1 are in N , then so is Z2.)
Then we construct the morphism γ ′ using TR4.

Let us prove TR5. Consider two morphisms in D/N : f : X −→ Y and
g : Y −→ Z . We may represent them by morphisms in D: f̃ : X̃ −→ Ỹ and
g̃ : Ỹ −→ Z̃ . Then apply TR5 (in D) and take the image in D/N of the octa-
hedron diagram (10.1.2).
(iv) Consider a d.t. 0 −→ X −→ X −→ T (0). The morphism 0 −→ X belongs to
N Q. Hence, Q(0) −→ Q(X) is an isomorphism.
(v) is obvious. q.e.d.

Let N be a null system and let X ∈ D. The categories N Q X and N Q X

attached to the multiplicative system N Q (see Sect. 7.1) are given by:

Ob(N Q X ) = {s : X −→ X ′; s ∈ N Q} ,(10.2.2)
HomN Q X ((s : X −→ X ′), (s ′ : X −→ X ′′)) = {h : X ′ −→ X ′′; h ◦ s = s ′}(10.2.3)

and similarly for N Q X .

Remark 10.2.5. It follows easily from TR5 that the morphism h in (10.2.3)
belongs to N Q. Therefore, by considering N Q as a subcategory of D, the
category N Q X is the category given by Definition 1.2.16 (with respect to the
identity functor id : N Q −→ N Q). The same result holds for N Q X .

By Lemma 7.1.10 the categories (N Q X )op and N Q X are filtrant, and by
the definition of the localization functor we get

HomD/N (X, Y ) � lim−→
(Y−→Y ′)∈N Q

HomD(X, Y ′)

� lim−→
(X ′−→X)∈N Q

HomD(X ′, Y )

� lim−→
(Y−→Y ′)∈N Q,(X ′−→X)∈N Q

HomD(X ′, Y ′) .

Now consider a full triangulated subcategory I of D. We shall write N ∩I
for the full subcategory whose objects are Ob(N ) ∩ Ob(I). This is clearly a
null system in I.

Proposition 10.2.6. Let D be a triangulated category, N a null system, I a
full triangulated subcategory of D. Assume condition (i) or (ii) below:

(i) any morphism Y −→ Z with Y ∈ I and Z ∈ N factorizes as Y −→ Z ′ −→ Z
with Z ′ ∈ N ∩ I,

(ii) any morphism Z −→ Y with Y ∈ I and Z ∈ N factorizes as Z −→ Z ′ −→ Y
with Z ′ ∈ N ∩ I.

Then I/(N ∩ I) −→ D/N is fully faithful.
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Proof. We may assume (ii), the case (i) being deduced by considering Dop. We
shall apply Proposition 7.2.1. Let f : X −→ Y is a morphism in N Q with X ∈ I.
We shall show that there exists g : Y −→ W with W ∈ I and g ◦ f ∈ N Q. The
morphism f is embedded in a d.t. X −→ Y −→ Z −→ T X with Z ∈ N . By the
hypothesis, the morphism Z −→ T X factorizes through an object Z ′ ∈ N ∩ I.
We may embed Z ′ −→ T X in a d.t. in I and obtain a commutative diagram of
d.t.’s by TR4:

X
f ��

id

��

Y ��

g

��

Z ��

��

T X

id

��
X

g◦ f �� W �� Z ′ �� T X .

Since Z ′ belongs to N , we get that g ◦ f ∈ N Q ∩Mor(I). q.e.d.

Proposition 10.2.7. Let D be a triangulated category, N a null system, I a
full triangulated subcategory of D, and assume conditions (i) or (ii) below:

(i) for any X ∈ D, there exists a morphism X −→ Y in N Q with Y ∈ I,
(ii) for any X ∈ D, there exists a morphism Y −→ X in N Q with Y ∈ I.

Then I/(N ∩ I) −→ D/N is an equivalence of categories.

Proof. Apply Corollary 7.2.2. q.e.d.

Proposition 10.2.8. Let D be a triangulated category admitting direct sums
indexed by a set I and let N be a null system closed by such direct sums. Let
Q : D −→ D/N denote the localization functor. Then D/N admits direct sums
indexed by I and the localization functor Q : D −→ D/N commutes with such
direct sums.

Proof. Let {Xi }i∈I be a family of objects in D. It is enough to show that
Q(⊕i Xi ) is the direct sum of the family Q(Xi ), i.e., the map

HomD/N (Q(
⊕
i∈I

Xi ), Y ) −→ ∏
i∈I

HomD/N (Q(Xi ), Y )

is bijective for any Y ∈ D.
(i) Surjectivity. Let ui ∈ HomD/N (Q(Xi ), Y ). The morphism ui is represented

by a morphism u′i : X ′
i −→ Y in D together with a d.t. X ′

i
vi−→ Xi

wi−→ Zi −→ T X ′
i

in D with Zi ∈ N . We get a morphism ⊕i X ′
i −→ Y and a d.t. ⊕i X ′

i −→ ⊕i Xi −→
⊕i Zi −→ T (⊕i X ′

i ) in D with ⊕i Zi ∈ N .

(ii) Injectivity. Assume that the composition Q(Xi ) −→ Q(⊕i ′ Xi ′)
u−→ Q(Y )

is zero for every i ∈ I . By the definition, the morphism u is represented

by morphisms u′ : ⊕i Xi
u′−→ Y ′ s←− Y with s ∈ N Q. Using the result of

Exercise 10.11, we can find Zi ∈ N such that v′i : Xi −→ Y ′ factorizes as
Xi −→ Zi −→ Y ′. Then ⊕i Xi −→ Y ′ factorizes as ⊕i Xi −→ ⊕i Zi −→ Y ′. Since
⊕i Zi ∈ N , Q(u) = 0. q.e.d.
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10.3 Localization of Triangulated Functors

Let F : D −→ D′ be a functor of triangulated categories, N and N ′ null systems
in D and D′, respectively. The right or left localization of F (when it exists)
is defined by mimicking Definition 7.3.1, replacing “functor” by “triangulated
functor”.

In the sequel, D (resp. D′, D′′) is a triangulated category and N (resp.
N ′, N ′′) is a null system in this category. We denote by Q : D −→ D/N (resp.
Q′ : D′ −→ D′/N ′, Q′′ : D′′ −→ D′′/N ′′) the localization functor and by N ′Q
(resp. N ′′Q) the family of morphisms in D′ (resp. D′′) defined in (10.2.1).

Definition 10.3.1. We say that a triangulated functor F : D −→ D′ is right
(resp. left) localizable with respect to (N ,N ′) if Q′ ◦ F : D −→ D′/N ′ is uni-
versally right (resp. left) localizable with respect to the multiplicative sys-
tem N Q (see Definition 7.3.1). Recall that it means that, for any X ∈ D,

“lim−→”
(X−→Y )∈N Q X

Q′F(Y ) (resp. “lim←−”
(Y−→X)∈N Q X

Q′F(Y )) is representable in D′/N ′. If

there is no risk of confusion, we simply say that F is right (resp. left) local-
izable or that RF exists.

Definition 10.3.2. Let F : D −→ D′ be a triangulated functor of triangulated
categories, N and N ′ null systems in D and D′, and I a full triangulated
subcategory of D. Consider the conditions (i), (ii), (iii) below.

(i) For any X ∈ D, there exists a morphism X −→ Y in N Q with Y ∈ I.
(ii) For any X ∈ D, there exists a morphism Y −→ X in N Q with Y ∈ I.
(iii) For any Y ∈ N ∩ I, F(Y ) ∈ N ′.

Then

(a) if conditions (i) and (iii) are satisfied, we say that the subcategory I is
F-injective with respect to N and N ′,

(b) if conditions (ii) and (iii) are satisfied, we say that the subcategory I is
F-projective with respect to N and N ′.

If there is no risk of confusion, we omit “with respect to N and N ′”.

Note that if F(N ) ⊂ N ′, then D is both F-injective and F-projective.

Proposition 10.3.3. Let F : D −→ D′ be a triangulated functor of triangulated
categories, N and N ′ null systems in D and D′, and I a full triangulated
category of D.

(a) If I is F-injective with respect to N and N ′, then F is right localizable
and its right localization is a triangulated functor.

(b) If I is F-projective with respect to N and N ′, then F left localizable and
its left localization is a triangulated functor.

Proof. Apply Proposition 7.3.2. q.e.d.
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Notation 10.3.4. (i) We denote by RN ′
N F : D/N −→ D′/N ′ the right localiza-

tion of F with respect to (N ,N ′). If there is no risk of confusion, we simply
write RF instead of RN ′

N F .
(ii) We denote by LN ′

N F : D/N −→ D′/N ′ the left localization of F with respect
to (N ,N ′). If there is no risk of confusion, we simply write L F instead of
LN ′
N F .

If I is F-injective, RN ′
N F may be defined by the diagram:

D �� D/N

RN ′
N F

��

I

������������� ��

		$$$
$$$$

$$$$
$$$$

$$$$
$$ I/(I ∩N )

∼
34'''''''''

��..
...

...
.

D′/N ′

and

RN ′
N F(X) � F(Y ) for (X −→ Y ) ∈ N Q with Y ∈ I .(10.3.1)

Similarly, if I is F-projective, the diagram above defines LN ′
N F and

LN ′
N F(X) � F(Y ) for (Y −→ X) ∈ N Q with Y ∈ I .(10.3.2)

Proposition 10.3.5. Let F : D −→ D′ and F ′ : D′ −→ D′′ be triangulated func-
tors of triangulated categories and let N , N ′ and N ′′ be null systems in D,
D′ and D′′, respectively.

(i) Assume that RN ′
N F, RN ′′

N ′ F ′ and RN ′′
N (F ′ ◦F) exist. Then there is a canon-

ical morphism in Fct(D/N ,D′′/N ′′):

RN ′′
N (F ′ ◦ F) −→ RN ′′

N ′ F ′ ◦ RN ′
N F .(10.3.3)

(ii) Let I and I ′ be full triangulated subcategories of D and D′, respectively.
Assume that I is F-injective with respect to N and N ′, I ′ is F ′-injective
with respect to N ′ and N ′′, and F(I) ⊂ I ′. Then I is (F ′ ◦ F)-injective
with respect to N and N ′′, and (10.3.3) is an isomorphism.

Proof. (i) By Definition 7.3.1, there are a bijection

Hom(RN ′′
N (F ′ ◦ F), RN ′′

N ′ F ′ ◦ RN ′
N F)

� Hom(Q′′ ◦ F ′ ◦ F, RN ′′
N ′ F ′ ◦ RN ′

N F ◦ Q) ,

and natural morphisms of functors

Q′′ ◦ F ′ −→ RN ′′
N ′ F ′ ◦ Q′, Q′ ◦ F −→ RN ′

N F ◦ Q .
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We deduce the canonical morphisms

Q′′ ◦ F ′ ◦ F −→ RN ′′
N ′ F ′ ◦ Q′ ◦ F −→ RN ′′

N ′ F ′ ◦ RN ′
N F ◦ Q

and the result follows.
(ii) The fact that I is (F ′ ◦ F)-injective follows immediately from the def-
inition. Let X ∈ D and consider a morphism X −→ Y in N Q with Y ∈ I.
Then RN ′

N F(X) � F(Y ) by (10.3.1) and F(Y ) ∈ I ′ by the hypothesis. Hence
(RN ′′

N ′ F ′)(F(Y )) � F ′F(Y ) by (10.3.1) and we find

(RN ′′
N ′ F ′)(RN ′

N F(X)) � F ′F(Y ) .

On the other hand, RN ′′
N (F ′ ◦ F)(X) � F ′F(Y ) by (10.3.1) since I is (F ′ ◦ F)-

injective. q.e.d.

Triangulated Bifunctors

Definition 10.3.6. Let (D, T ), (D′, T ′) and (D′′, T ′′) be triangulated cate-
gories. A triangulated bifunctor F : D × D′ −→ D′′ is a bifunctor of additive
categories with translation (see Definition 10.1.1 (v)) which sends d.t.’s in
each argument to d.t.’s.

Definition 10.3.7. Let D, D′ and D′′ be triangulated categories, N , N ′ and
N ′′ null systems in D, D′ and D′′, respectively. We say that a triangulated
bifunctor F : D × D′ −→ D′′ is right (resp. left) localizable with respect to
(N×N ′,N ′′) if Q′′◦F : D×D′ −→ D′′/N ′′ is universally right (resp. left) local-
izable with respect to the multiplicative system N Q×N ′Q (see Remark 7.4.5).
If there is no risk of confusion, we simply say that F is right (resp. left) lo-
calizable.

Notation 10.3.8. We denote by RN ′′
N×N ′ F : D/N × D′/N ′ −→ D′′/N ′′ the right

localization of F with respect to (N × N ′,N ′′), if it exists. If there is no
risk of confusion, we simply write RF . We use similar notations for the left
localization.

Definition 10.3.9. Let D, D′ and D′′ be triangulated categories, N , N ′ and
N ′′ null systems in D, D′ and D′′, respectively, and I, I ′ full triangulated
subcategories of D and D′, respectively. Let F : D×D′ −→ D′′ be a triangulated
bifunctor. The pair (I, I ′) is F-injective with respect to (N ,N ′,N ′′) if

(i) I ′ is F(Y, · )-injective with respect to N ′ and N ′′ for any Y ∈ I,
(ii) I is F( · , Y ′)-injective with respect to N and N ′′ for any Y ′ ∈ I ′.

These two conditions are equivalent to saying that

(a) for any X ∈ D, there exists a morphism X −→ Y in N Q with Y ∈ I,
(b) for any X ′ ∈ D′, there exists a morphism X ′ −→ Y ′ in N ′Q with Y ′ ∈ I ′,
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(c) F(X, X ′) belongs to N ′′ for X ∈ I, X ′ ∈ I ′ as soon as X belongs to N or
X ′ belongs to N ′.

The property for (I, I ′) of being F-projective is defined similarly.

Proposition 10.3.10. Let D,N , I, D′,N ′, I ′, D′′,N ′′ and F be as in Defi-
nition 10.3.9. Assume that (I, I ′) is F-injective with respect to (N ,N ′). Then
F is right localizable, its right localization RN ′′

NN ′ F is a triangulated bifunctor

RN ′′
NN ′ F : D/N ×D′/N ′ −→ D′′/N ′′ ,

and moreover

RN ′′
NN ′ F(X, X ′) � F(Y, Y ′) for (X −→ Y ) ∈ N Q and(10.3.4)

(X ′ −→ Y ′) ∈ N ′Q with Y ∈ I, Y ′ ∈ I ′.

Of course, there exists a similar result by replacing “injective” with “projec-
tive” and reversing the arrows in (10.3.4).

Corollary 10.3.11. Let D, N , I, D′, N ′, and D′′, N ′′ be as in Proposi-
tion 10.3.10. Let F : D ×D′ −→ D′′ be a triangulated bifunctor. Assume that

(i) F(I,N ′) ⊂ N ′′,
(ii) for any X ′ ∈ D′, I is F( · , X ′)-injective with respect to N .

Then F is right localizable. Moreover,

RN ′′
NN ′ F(X, X ′) � RN ′′

N F( • , X ′)(X) .

Here again, there is a similar statement by replacing “injective” with “projec-
tive”.

10.4 Extension of Cohomological Functors

In this section, we consider two triangulated categories T and D, a triangu-
lated functor ϕ : T −→ D, an abelian category A, and a cohomological functor
F : T −→ A. For X ∈ D, we denote as usual by TX the category whose objects
are the pairs (Y, u) of objects Y ∈ T and morphisms u : ϕ(Y ) −→ X .

We make the hypotheses:{A admits small filtrant inductive limits and such limits are exact ,

TX is cofinally small for any X ∈ D .
(10.4.1)

Note that the functor ϕ : T −→ D is exact by Proposition 10.1.18. Hence,
Theorem 3.3.18 asserts that the functor ϕ∗ : Fct(D,A) −→ Fct(T ,A) admits
a left adjoint ϕ† such that for F : D −→ A we have

ϕ†F(X) = lim−→
(ϕ(Y )−→X)∈TX

F(Y ) ,(10.4.2)
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and there is a natural morphism of functors

F −→ (ϕ†F) ◦ ϕ .(10.4.3)

Theorem 10.4.1. Let ϕ : T −→ D be a triangulated functor of triangulated
categories, let A be an abelian category, and assume (10.4.1). Let F : T −→ A
be a cohomological functor. Then the functor ϕ†F is additive and cohomolog-
ical.

Proof. (i) Let us first show that ϕ†F is additive. By Proposition 8.2.15, it is
enough to show that ϕ†F(X1⊕ X2) −→ ϕ†F(X1)⊕ϕ†F(X2) is an isomorphism
for any X1, X2 ∈ D. Let ξ : TX1 × TX2 −→ TX1⊕X2 be the functor given by(
(ϕ(Y1) −→ X1), (ϕ(Y2) −→ X2)

) 
→ (ϕ(Y1 ⊕ Y2) −→ X1 ⊕ X2). Then ξ has a
left adjoint η : TX1⊕X2 −→ TX1 × TX2 given by (ϕ(Y ) −→ X1 ⊕ X2) 
→

(
(ϕ(Y ) −→

X1 ⊕ X2 −→ X1), (ϕ(Y ) −→ X1 ⊕ X2 −→ X2)
)
. Hence ξ is a cofinal functor by

Lemma 3.3.10. Moreover, the canonical functor TX1 × TX2 −→ TXi (i = 1, 2) is
cofinal. Hence we obtain

ϕ†F(X1 ⊕ X2) � lim−→
Y∈TX1⊕X2

F(Y )

� lim−→
(Y1,Y2)∈TX1⊕TX2

F(Y1 ⊕ Y2)

� lim−→
(Y1,Y2)∈TX1⊕TX2

F(Y1)⊕ F(Y2)

� (
lim−→

Y1∈TX1

F(Y1)
)⊕ (

lim−→
Y2∈TX2

F(Y2)
)

� ϕ†F(X1)⊕ ϕ†F(X2) .

(ii) Let us show that ϕ†F is cohomological. We shall denote by X, Y, Z objects
of D and by X0, Y0, Z0 objects of T .

By Proposition 10.1.18, the functor ϕ is exact. This result together with
Corollary 3.4.6 implies that:

(a) for X ∈ D the category TX is filtrant and cofinally small,
(b) for a morphism g : Y −→ Z in D, the category Mor(T )g is filtrant, cofinally

small, and the two natural functors from Mor(T )g to TY and TZ are cofinal.

By (b), for a morphism g : Y −→ Z in D, we get

ϕ†F(Y ) � lim−→
(Y0−→Z0)∈Mor(T )g

F(Y0), ϕ†F(Z) � lim−→
(Y0−→Z0)∈Mor(T )g

F(Z0) .

Moreover, since small filtrant inductive limits are exact in A,

Ker ϕ†F(g) � Ker
(

lim−→
g0∈Mor(T )g

F(g0)
) � lim−→

g0∈Mor(T )g

(Ker F(g0)).(10.4.4)

Now consider a d.t. X
f−→ Y

g−→ Z −→ T X in D. Let (Y0
g0−→ Z0) ∈ Mor(T )g.

Embed g0 in a d.t. X0
f0−→ Y0

g0−→ Z0 −→ T X0. In the diagram below, we may
complete the dotted arrows in order to get a morphism of d.t.’s:



258 10 Triangulated Categories

ϕ(X0)
ϕ( f0) ��

��

ϕ(Y0)

��

ϕ(g0) �� ϕ(Z0)

��

�� T (ϕ(X0))

��
X

f �� Y
g �� Z �� T X .

Applying the functor ϕ†F , and using the morphism of functors F −→ ϕ†F ◦ ϕ

(see (10.4.3)), we get a commutative diagram in A in which the row in the
top is exact

F(X0)

��

F( f0) �� F(Y0)

��

F(g0) �� F(Z0)

��
ϕ†F(X)

ϕ†F( f )�� ϕ†F(Y )
ϕ†F(g)�� ϕ†F(Z) .

We have a morphism Coker(F( f0)) −→ Coker(ϕ†F( f )). Since F(X0) −→
F(Y0) −→ F(Z0) is exact, the morphism Ker(F(g0)) −→ Coker(F( f0)) van-
ishes and hence Ker(F(g0)) −→ Coker(ϕ†F( f )) vanishes. By (10.4.4), the
morphism Ker(ϕ†F(g)) −→ Coker(ϕ†F( f )) vanishes, which means that the

sequence ϕ†F(X)
ϕ†F( f )−−−−→ ϕ†F(Y )

ϕ†F(g)−−−−→ ϕ†F(Z) is exact. q.e.d.

10.5 The Brown Representability Theorem

In this section we shall give a sufficient condition for the representability
of contravariant cohomological functors on triangulated categories admitting
small direct sums. Recall (Proposition 10.1.19) that in such categories, a small
direct sum of d.t.’s is a d.t.

Definition 10.5.1. Let D be a triangulated category admitting small direct
sums. A system of t-generators F in D is a small family of objects of D
satisfying conditions (i) and (ii) below.

(i) F is a system of generators (see Definition 5.2.1), or equivalently, F is a
small family of objects of D such that for any X ∈ D with HomD(C, X) �
0 for all C ∈ F , we have X � 0.

(ii) For any countable set I and any family {ui : Xi −→ Yi }i∈I of morphisms
in D, the map HomD(C,⊕i Xi )

⊕i ui−−→ HomD(C,⊕i Yi ) vanishes for every
C ∈ F as soon as HomD(C, Xi )

ui−→ HomD(C, Yi ) vanishes for every i ∈ I
and every C ∈ F .

Note that the equivalence in (i) follows from the fact that, for a d.t. X
f−→

Y −→ Z −→ T X , f is an isomorphism if and only if Z � 0 (see Exercise 10.1).

Theorem 10.5.2. [The Brown representability Theorem] Let D be a trian-
gulated category admitting small direct sums and a system of t-generators F .
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(i) Let H : Dop −→ Mod(Z) be a cohomological functor which commutes with
small products (i.e., for any small family {Xi }i∈I in Ob(D), we have
H(⊕i Xi ) ∼−→∏

i H(Xi )). Then H is representable.
(ii) Let K be a full triangulated subcategory of D such that F ⊂ Ob(K) and

K is closed by small direct sums. Then the natural functor K −→ D is an
equivalence.

Similarly to the other representability theorems (see e.g. §5.2), this theo-
rem implies the following corollary.

Corollary 10.5.3. Let D be a triangulated category admitting small direct
sums and a system of t-generators.

(i) D admits small products.
(ii) Let F : D −→ D′ be a triangulated functor of triangulated categories. As-

sume that F commutes with small direct sums. Then F admits a right
adjoint G, and G is triangulated.

Proof. (i) For a small family {Xi }i∈I of objects in D, the functor

Z 
→∏
i

HomD(Z , Xi )

is cohomological and commutes with small products. Hence it is representable.
(ii) For each Y ∈ D′, the functor X 
→ HomD′(F(X), Y ) is representable by
Theorem 10.5.2. Hence F admits a right adjoint. Finally G is triangulated by
the result of Exercise 10.3. q.e.d.

Remark 10.5.4. Condition (ii) in Definition 10.5.1 can be reformulated in
many ways. Each of the following conditions is equivalent to (ii):

(ii)′ for any countable set I and any family {ui : Xi −→ Yi }i∈I of morphisms in
D, the map HomD(C,⊕i Xi )

⊕i ui−−→ HomD(C,⊕i Yi ) is surjective for every
C ∈ F as soon as HomD(C, Xi )

ui−→ HomD(C, Yi ) is surjective for every
i ∈ I and every C ∈ F .

(ii)′′ for any countable set I and any family {ui : Xi −→ Yi }i∈I of morphisms in
D, the map HomD(C,⊕i Xi )

⊕i ui−−→ HomD(C,⊕i Yi ) is injective for every
C ∈ F as soon as HomD(C, Xi )

ui−→ HomD(C, Yi ) is injective for every
i ∈ I and every C ∈ F .

Indeed if we take a d.t. X −→ Y −→ Z −→ T X , then we have an equivalence

HomD(C, X) −→ HomD(C, Y ) vanishes
⇐⇒ HomD(C, Y ) −→ HomD(C, Z) is injective
⇐⇒ HomD(C, T−1Z) −→ HomD(C, X) is surjective .

Condition (ii) is also equivalent to the following condition:
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(iii) for any countable set I , any family {Xi }i∈I in D, any C ∈ F and any
morphism f : C −→ ⊕i∈I Xi , there exists a family of morphisms ui : Ci −→
Xi such that f decomposes into C −→ ⊕i Ci

⊕ui−−→ ⊕i Xi and each Ci is a
small direct sum of objects in F .

Indeed, let S be the full subcategory of D consisting of small direct sums
of objects in F . If a morphism X −→ Y in D satisfies the condition that
HomD(C, X) −→ HomD(C, Y ) vanishes for every C ∈ F , then the same con-
dition holds for every C ∈ S. Hence it is easy to see that (iii) implies (ii).
Conversely assume that (ii)′ is true. For a countable family of objects Xi in
D set Ci = ⊕

C∈F
C⊕Xi (C). Then Ci ∈ S, and the canonical morphism Ci −→ Xi

satisfies the condition that any morphism C −→ Xi with C ∈ F factors through
Ci −→ Xi . Hence (ii)′ implies that HomD(C,⊕i Ci ) −→ HomD(C,⊕i Xi ) is sur-
jective. Hence any morphism C −→ ⊕i Xi factors through ⊕i Ci −→ ⊕i Xi .

Note that condition (iii) is a consequence of the following condition (iii)′,
which is sufficient in most applications.

(iii)′ for any countable set I , any family {Xi }i∈I in D, any C ∈ F and any
morphism f : C −→ ⊕i∈I Xi , there exists a family of morphisms ui : Ci −→
Xi with Ci ∈ F such that f decomposes into C −→ ⊕i Ci

⊕ui−−→ ⊕i Xi .

Summing up, for a small family F of objects of D, we have

(ii) ⇔ (ii)′ ⇔ (ii)′′ ⇔ (iii) ⇐ (iii)′ .

The Brown representability theorem was proved by Neeman [53] under
condition (iii)′, and later by Krause [44] under the condition (ii).

The rest of the section is devoted to the proof of the theorem.

Functors Commuting with Small Products

Let S be an additive U-category which admits small direct sums. Let S∧,add

be the category of additive functors from Sop to Mod(Z). The category S∧,add

is a big abelian category. By Proposition 8.2.12, S∧,add is regarded as a full
subcategory of S∧.

A complex F ′ −→ F −→ F ′′ in S∧,add is exact if and only if F ′(X) −→
F(X) −→ F ′′(X) is exact for every X ∈ S. Let S∧,prod be the full subcategory
of S∧,add consisting of additive functors F commuting with small products,
namely the canonical map F(⊕i Xi ) −→ ∏

i F(Xi ) is bijective for any small
family {Xi }i of objects in S.

Lemma 10.5.5. The full category S∧,prod is a fully abelian subcategory of
S∧,add closed by extension.

Proof. It is enough to show that, for an exact complex F1 −→ F2 −→ F3 −→
F4 −→ F5 in S∧,add, if Fj belongs to S∧,prod for j �= 3, then F3 also belongs to
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S∧,prod (see Remark 8.3.22). For a small family {Xi } of objects in S, we have
an exact diagram in Mod(Z)

F1(⊕i Xi ) ��

∼
��

F2(⊕i Xi ) ��

∼
��

F3(⊕i Xi ) ��

��

F4(⊕i Xi ) ��

∼
��

F5(⊕i Xi )

∼
��∏

i F1(Xi ) �� ∏
i F2(Xi ) �� ∏

i F3(Xi ) �� ∏
i F4(Xi ) �� ∏

i F5(Xi ) .

Since the vertical arrows are isomorphisms except the middle one, the five
lemma (Lemma 8.3.13) implies that the middle arrow is an isomorphism.
q.e.d.

Now assume that

there exists a small full subcategory S0 of S such that any
object of S is a small direct sum of objects of S0.

(10.5.1)

Hence a complex F ′ −→ F −→ F ′′ in S∧,prod is exact if and only if F ′(X) −→
F(X) −→ F ′′(X) is exact for every X ∈ S0. In particular the restriction functor
S∧,prod −→ S∧,add

0 is exact, faithful and conservative. Hence, the category
S∧,prod is a U-category.

Let ϕ : S −→ S∧,prod be the functor which associates to X ∈ S the functor
S � C 
→ HomS(C, X). This functor commutes with small products. Since
S∧,prod −→ S∧ is fully faithful, ϕ is a fully faithful additive functor by the
Yoneda lemma.

Lemma 10.5.6. Assume (10.5.1). Then, for any F ∈ S∧,prod we can find an
object X ∈ S and an epimorphism ϕ(X)�F.

Proof. For any C ∈ S0, set XC = C⊕F(C). Then we have

F(XC) � F(C)F(C) = HomSet(F(C), F(C)) .

Hence idF(C) gives an element sC ∈ F(XC) � HomS∧,prod(ϕ(XC), F). Since the
composition

F(C) −→ HomS(C, C)× F(C) −→ HomS(C, XC) � ϕ(XC)(C) −→ F(C)

is the identity, the map ϕ(XC)(C) −→ F(C) is surjective. Set X = ⊕C∈S0 XC .
Then (sC)C ∈ ∏

C F(XC) � F(X) gives a morphism ϕ(X) −→ F and
ϕ(X)(C) −→ F(C) is surjective for any C ∈ S0. Hence ϕ(X) −→ F is an
epimorphism. q.e.d.

Lemma 10.5.7. Assume (10.5.1).

(i) The functor ϕ : S −→ S∧,prod commutes with small direct sums.
(ii) The abelian category S∧,prod admits small direct sums, and hence it ad-

mits small inductive limits.
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Proof. (i) For a small family {Xi }i of objects in S and F ∈ S∧,prod, we have

HomS∧,prod(ϕ(⊕i Xi ), F) � F(⊕i Xi )
� ∏

i
F(Xi ) �∏

i
HomS∧,prod(ϕ(Xi ), F) .

(ii) For a small family {Fi }i of objects in S∧,prod, there exists an exact sequence
ϕ(Xi ) −→ ϕ(Yi ) −→ Fi −→ 0 with Xi , Yi ∈ S by Lemma 10.5.6. Since ϕ is
fully faithful, there is a morphism ui : Xi −→ Yi which induces the morphism
ϕ(Xi ) −→ ϕ(Yi ). Then we have

Coker(ϕ(⊕i Xi )
⊕i ui−−→ ϕ(⊕i Yi )) � Coker(⊕iϕ(Xi ) −→ ⊕iϕ(Yi ))

� ⊕i Coker(ϕ(Xi ) −→ ϕ(Yi )) � ⊕i Fi .

q.e.d.

Note that, for a small family {Fi }i of objects in S∧,prod and X ∈ S, the map
⊕i (Fi (X)) −→ (⊕i Fi )(X) may be not bijective.

Proof of Theorem 10.5.2

Now let us come back to the original situation. Let D be a triangulated cate-
gory admitting small direct sums and a system of t-generators F . By replacing
F with

⋃
n∈Z T nF , we may assume from the beginning that TF = F . Let S

be the full subcategory of D consisting of small direct sums of objects in
F . Then S is an additive category which admits small direct sums. More-
over, TS = S, and T induces an automorphism T : S∧,prod −→ S∧,prod by
(T F)(C) = F(T−1C) for F ∈ S∧,prod and C ∈ S. By its construction, S
satisfies condition (10.5.1), and hence S∧,prod is an abelian U-category and
Lemmas 10.5.5–10.5.7 hold. Note that a complex F ′ −→ F −→ F ′′ in S∧,prod is
exact if and only if F ′(C) −→ F(C) −→ F ′′(C) is exact for any C ∈ F .

We shall extend the functor ϕ : S −→ S∧,prod to the functor ϕ̃ : D −→ S∧,prod

defined by ϕ̃(X)(C) = HomD(C, X) for X ∈ D and C ∈ S. Then ϕ̃ commutes
with T . Note that although ϕ : S −→ S∧,prod is fully faithful, the functor
ϕ̃ : D −→ S∧,prod is not faithful in general.

In the proof of the lemma below, we use the fact that F satisfies the
condition (ii) in Definition 10.5.1.

Lemma 10.5.8. (i) The functor ϕ̃ : D −→ S∧,prod is a cohomological functor.
(ii) The functor ϕ̃ : D −→ S∧,prod commutes with countable direct sums.
(iii) Let {Xi −→ Yi } be a countable family of morphisms in D. If ϕ̃(Xi ) −→ ϕ̃(Yi )

is an epimorphism for all i , then ϕ̃(⊕i Xi ) −→ ϕ̃(⊕i Yi ) is an epimorphism.

Proof. (i) is obvious.
Let us first prove (iii). For all C ∈ F , the map HomD(C, Xi ) −→ HomD(C, Yi )
is surjective. Hence Remark 10.5.4 (ii)′ implies that HomD(C,⊕i Xi ) −→
HomD(C,⊕i Yi ) is surjective.



10.5 The Brown Representability Theorem 263

Finally let us prove (ii). Let {Xi }i be a countable family of objects of
D. Then we can find an epimorphism ϕ(Yi )�ϕ̃(Xi ) in S∧,prod with Yi ∈ S
by Lemma 10.5.6. Let Wi −→ Yi −→ Xi −→ T Wi be a d.t. Then take an
epimorphism ϕ(Zi )�ϕ̃(Wi ) with Zi ∈ S. Hence ϕ(⊕i Zi ) −→ ϕ̃(⊕i Wi ) and
ϕ(⊕i Yi ) −→ ϕ̃(⊕i Xi ) are epimorphisms by (iii). On the other hand, ⊕i Wi −→
⊕i Yi −→ ⊕i Xi −→ T (⊕i Wi ) is a d.t., and hence ϕ̃(⊕i Wi ) −→ ϕ(⊕i Yi ) −→ ϕ̃(⊕i Xi )
is exact by (i). Hence, ϕ(⊕i Zi ) −→ ϕ(⊕i Yi ) −→ ϕ̃(⊕i Xi ) −→ 0 is exact. By
Lemma 10.5.7, we have ϕ(⊕i Zi ) � ⊕iϕ(Zi ) and similarly for Yi . Since ϕ(Zi ) −→
ϕ(Yi ) −→ ϕ̃(Xi ) −→ 0 is exact for all i , ⊕iϕ(Zi ) −→ ⊕iϕ(Yi ) −→ ⊕i ϕ̃(Xi ) −→ 0 is
also exact, from which we conclude that ϕ̃(⊕i Xi ) � ⊕i ϕ̃(Xi ). q.e.d.

Let H : Dop −→ Mod(Z) be a cohomological functor commuting with small
products. The restriction of H to Sop defines H0 ∈ S∧,prod.

In the lemma below, we regard D as a full subcategory of D∧.

Lemma 10.5.9. Let H and K be as in Theorem 10.5.2. Then there exists a
commutative diagram in D∧

X0
��

##66666
66666

66666
66666

66666
66666

66 X1
��

		$$$
$$$$

$$$$
$$$$

$$$$
$$$$

$ · · · �� Xn
��

���
��

��
��

� · · ·

H

(10.5.2)

such that Xn ∈ K and Im
(
ϕ̃(Xn) −→ ϕ̃(Xn+1)

) ∼−→ H0 in S∧,prod.

Proof. We can take X0 ∈ S and an epimorphism ϕ(X0)�H0 in S∧,prod by
Lemma 10.5.6. We shall construct Xn ∈ K inductively as follows. Assume
that X0 −→ X1 −→ · · · −→ Xn −→ H has been constructed and Im

(
ϕ̃(Xi ) −→

ϕ̃(Xi+1)
) ∼−→ H0 for 0 ≤ i < n. Let us take an exact sequence ϕ(Zn) −→

ϕ̃(Xn) −→ H0 −→ 0 with Zn ∈ S. Then take a d.t. Zn −→ Xn −→ Xn+1 −→ T Zn.
Since Zn and Xn belong to K, Xn+1 also belongs to K. Since Zn −→ Xn −→ H
vanishes and H is cohomological, Xn −→ H factors through Xn −→ Xn+1. Since
ϕ̃(Zn) −→ ϕ̃(Xn) −→ ϕ̃(Xn+1) is exact, we obtain that Im

(
ϕ̃(Xn) −→ ϕ̃(Xn+1)

) �
Coker

(
ϕ̃(Zn) −→ ϕ̃(Xn)

) � H0. q.e.d.

Notation 10.5.10. Consider a functor X : N −→ D, that is, a sequence of mor-

phisms X0
f0−→ X1 −→ · · · −→ Xn

fn−→ Xn+1 −→ · · · in D. Denote by

shX : ⊕n≥0 Xn −→ ⊕n≥0Xn(10.5.3)

the morphism obtained as the composition

⊕n≥0Xn
⊕ fn−−→ ⊕n≥0Xn+1 � ⊕n≥1Xn ↪→⊕n≥0Xn .

Consider a d.t.
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⊕n≥0Xn
id−shX−−−−→ ⊕n≥0Xn −→ Z −→ T (⊕n≥0Xn) .(10.5.4)

In the literature, Z is called the homotopy colimit of the inductive system
{Xn, fn}n and denoted by hocolim(X). Note that this object is unique up to
isomorphism, but not up to unique isomorphism. Hence, {Xn, fn}n 
→ Z is not
a functor.

Consider the functor X : N −→ D given by Lemma 10.5.9 and let shX be as
in (10.5.3). Since H(⊕n≥0Xn) � ∏

n≥0 H(Xn), the morphisms Xn −→ H define
the morphism ⊕n≥0Xn −→ H . The commutativity of (10.5.2) implies that the

composition ⊕n≥0Xn
id−shX−−−−→ ⊕n≥0Xn −→ H vanishes.

Lemma 10.5.11. The sequence

0 −→ ϕ̃(⊕n≥0Xn)
id−shX−−−−→ ϕ̃(⊕n≥0Xn) −→ H0 −→ 0 .

is exact in S∧,prod.

Proof. Note that we have ϕ̃(⊕n≥0Xn) � ⊕n≥0ϕ̃(Xn) by Lemma 10.5.8. Since
Im
(
ϕ̃(Xn) −→ ϕ̃(Xn+1)

) � H0, we have “lim−→”
n

ϕ̃(Xn) � H0. Then lim−→
n

ϕ̃(Xn) �
H0 and the the above sequence is exact by Exercise 8.37. q.e.d.

Lemma 10.5.12. There exist Z ∈ K and a morphism Z −→ H which induces
an isomorphism Z(C) ∼−→ H(C) for every C ∈ F .

Proof. Let Z be as in (10.5.4). Since H is cohomological, ⊕n≥0Xn −→ H factors
through Z . Set X = ⊕n≥0Xn. Since ϕ̃ is cohomological, we have an exact
sequence in S∧,prod:

ϕ̃(X)
id−shX �� ϕ̃(X) �� ϕ̃(Z) �� ϕ̃(T X)

ϕ̃(T (id−shX )) ��

∼
��

ϕ̃(T X)

∼
��

T (ϕ̃(X))
T (ϕ̃(id−shX )) �� T (ϕ̃(X)) .

Applying Lemma 10.5.11, we find that the last right arrows are monomor-
phisms. Hence we have

ϕ̃(Z) � Coker(ϕ̃(X)
id−shX−−−−→ ϕ̃(X)) � H0 ,

where the last isomorphism follows from Lemma 10.5.11. q.e.d.

Lemma 10.5.13. The natural functor K −→ D is an equivalence.

Proof. This functor being fully faithful, it remains to show that it is es-
sentially surjective. Let X ∈ D. Applying Lemma 10.5.12 to the functor
H = HomD( • , X), we get Z ∈ K and a morphism Z −→ X which induces
an isomorphism Z(C) ∼−→ X(C) for all C ∈ F . Since F is a system of genera-
tors, Z ∼−→ X . q.e.d.
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Lemma 10.5.14. Let Z be as in Lemma 10.5.12. Then Z −→ H is an isomor-
phism.

Proof. Let K denote the full subcategory of D consisting of objects Y such
that Z(T nY ) −→ H(T nY ) is an isomorphism for any n ∈ Z. Then K contains
F , is closed by small direct sums and is a triangulated subcategory of D.
Therefore K = D by Lemma 10.5.13. q.e.d.

The proof of Theorem 10.5.2 is complete.

Exercises

Exercise 10.1. Let X
f−→ Y −→ Z −→ T X be a d.t. in a triangulated category.

Prove that f is an isomorphism if and only if Z is isomorphic to 0.

Exercise 10.2. Let D be a triangulated category and consider a commutative
diagram in D:

X
f ��

α

��

Y

β

��

g �� Z

γ

��

h �� T X

T (α)

��
X ′ f ′ �� Y ′ g′ �� Z ′ h′ �� T X ′ .

Assume that α and β are isomorphisms, T ( f ′) ◦ h′ = 0, and the first row is a
d.t. Prove that the second row is also a d.t. under one of the hypotheses:
(i) for any P ∈ D, the sequence below is exact:

Hom(P, X ′) −→ Hom(P, Y ′) −→ Hom(P, Z ′) −→ Hom(P, T X ′) ,

(ii) for any P ∈ D, the sequence below is exact:

Hom(T X ′, P) −→ Hom(Z ′, P) −→ Hom(Y ′, P) −→ Hom(X ′, P) .

Exercise 10.3. Let F : D −→ D′ be a triangulated functor and assume that F
admits an adjoint G. Prove that G is triangulated. (Hint: use Exercise 10.2.)

Exercise 10.4. Let X
f−→ Y

g−→ Z
h−→ T X be a d.t. in a triangulated category.

(i) Prove that if h = 0, this d.t. is isomorphic to X −→ X ⊕ Z −→ Z
0−→ T X .

(ii) Prove the same result by assuming now that there exists k : Y −→ X with
k ◦ f = idX .

Exercise 10.5. Let f : X −→ Y be a monomorphism in a triangulated cate-
gory D. Prove that there exist Z ∈ D and an isomorphism h : Y ∼−→ X ⊕ Z
such that the composition X −→ Y −→ X ⊕ Z is the canonical morphism.
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Exercise 10.6. In a triangulated category D consider the diagram of solid
arrows

X0
u ��

f

��

X1 v ��

��

X2 w ��

��

T X0

T ( f )

��
Y 0 ��

g

��

Y 1 ��

��

Y 2 ��

��

T Y 0

T (g)

��
Z0 ��

h

��

Z1 ��

��

Z2 ��

��

T Z0

−T (h)

��
T X0

T (u)
�� T X1

T (v)
�� T X2

−T (w)
�� T 2X0 .

ac

(10.5.5)

Assume that the two first rows and columns are d.t.’s. Show that the dotted
arrows may be completed in order that all squares are commutative except the
one labeled “ac” which is anti-commutative (see Definition 8.2.20), all rows
and all columns are d.t.’s. (Hint: see [4], Proposition 1.1.11.)

Exercise 10.7. Let D be a triangulated category, C an abelian category,
F, G : D −→ C two cohomological functors and θ : F −→ G a morphism of
functors. Define the full subcategory T of D consisting of objects X ∈ D such
that θ(T k(X)) : F(T k(X)) −→ G(T k(X)) is an isomorphism for all k ∈ Z. Prove
that T is triangulated. (Hint: use Lemma 8.3.13.)

Exercise 10.8. Let D be a triangulated category, A an abelian category and
F : D −→ A a cohomological functor. Prove that F is exact.

Exercise 10.9. Let D be a triangulated category. Denote by F : D −→ D
the translation functor T . By choosing a suitable isomorphism of functors
F ◦T � T ◦ F , prove that F induces an equivalence of triangulated categories.

Exercise 10.10. Let D be a triangulated category and define the triangulated

category Dant as follows: a triangle X
f−→ Y

g−→ Z
h−→ T X is distinguished in

Dant if and only if X
f−→ Y

g−→ Z
−h−→ T X is distinguished in D. Prove that D

and Dant are equivalent as triangulated categories.

Exercise 10.11. Let D be a triangulated category, N a null system, and let
Q : D −→ D/N be the canonical functor.
(i) Let f : X −→ Y be a morphism in D and assume that Q( f ) = 0 in D/N .
Prove that there exists Z ∈ N such that f factorizes as X −→ Z −→ Y .
(ii) For X ∈ D, prove that Q(X) � 0 if and only if there exists Y such that
X ⊕ Y ∈ N and this last condition is equivalent to X ⊕ T X ∈ N .

Exercise 10.12. Let F : D −→ D′ be a triangulated functor of triangulated
categories. Let N be the full subcategory of D consisting of objects X ∈ D
such that F(X) � 0.
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(i) Prove that N is a null system and F factorizes uniquely as D −→ D/N −→
D′.
(ii) Prove that if X ⊕ Y ∈ N , then X ∈ N and Y ∈ N .

Exercise 10.13. Let D be a triangulated category admitting countable direct
sums, let X ∈ D and let p : X −→ X be a projector (i.e., p2 = p). Define the
functor α : N −→ D by setting α(n) = X and α(n −→ n + 1) = p.
(i) Prove that lim−→α exists in D and is isomorphic to hocolim(α). (See Nota-
tion 10.5.10.)
(ii) Deduce that D is idempotent complete. (See [53].)

Exercise 10.14. Let D be a triangulated category and let I be a filtrant

category. Let α
f−→ β

g−→ γ
h−→ T ◦ α be morphisms of functors from I to D

such that α(i)
f (i)−−→ β(i)

g(i)−−→ γ (i)
h(i)−−→ T (α(i)) is a d.t. for all i ∈ I . Prove

that if “lim−→” α and “lim−→” β are representable by objects of D, then so is “lim−→” γ

and the induced triangle “lim−→” α −→ “lim−→” β −→ “lim−→” γ −→ T (“lim−→” α) is a d.t.
(Hint: construct a morphism of d.t.’s

“lim−→” α ��

��

“lim−→” β ��

��

Z ��

��

T (“lim−→” α)

��
α(i) �� β(i) �� γ (i) �� T (α(i))

for some i ∈ I .)

Exercise 10.15. Let D be a triangulated category, N a null system, and let
N⊥r (resp. N⊥l) be the full subcategory of D consisting of objects Y such that
HomD(Z , Y ) � 0 (resp. HomD(Y, Z) � 0) for all Z ∈ N .
(i) Prove that N⊥r and N⊥l are null systems in D.
(ii) Prove that HomD(X, Y ) ∼−→HomD/N (X, Y ) for any X ∈ D and any Y ∈
N⊥r .

In the sequel, we assume that X ⊕ Y ∈ N implies X ∈ N and Y ∈ N .
(iii) Prove that the following conditions are equivalent:

(a) N⊥r −→ D/N is an equivalence,
(b) D −→ D/N has a right adjoint,
(c) ι : N −→ D has a right adjoint R,
(d) for any X ∈ D, there exist X ′ ∈ N , X ′′ ∈ N⊥r and a d.t. X ′ −→ X −→ X ′′ −→

T X ′,
(e) N −→ D/N⊥r is an equivalence,
(f) D −→ D/N⊥r has a left adjoint and N � (N⊥r )⊥l ,
(g) ι′ : N⊥r −→ D has a left adjoint L and N � (N⊥r )⊥l .

(iv) Assume that the equivalent conditions (a)–(g) in (iii) are satisfied. Let
L : D −→ N⊥r , R : D −→ N , ι : N −→ D and ι′ : N⊥r −→ D be as above.
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(a) Prove that there exists a morphism of functors ι′ ◦ L −→ T ◦ ι ◦ R such that
ιR(X) −→ X −→ ι′L(X) −→ T (ιR(X)) is a d.t. for all X ∈ D.
(b) Let D̃ be the category whose objects are the triplets (X ′, X ′′, u) with
X ′ ∈ N , X ′′ ∈ N⊥r and u is a morphism X ′′ −→ T X ′ in D. A morphism
(X ′, X ′′, u) −→ (Y ′, Y ′′, v) in D̃ is a pair (w′ : X ′ −→ Y ′, w′′ : X ′′ −→ Y ′′) making
the diagram below commutative

X ′′ u ��

w′′

��

T X ′

T (w′)
��

Y ′′ v �� T Y ′ .

Define an equivalence of categories D ∼−→ D̃.

Exercise 10.16. (i) Let D be a triangulated category. Assume that D is
abelian.

(a) Prove that D is a semisimple abelian category (see Definition 8.3.16).
(Hint: use Exercise 10.5.)

(b) Prove that any triangle in D is a direct sum of three triangles

X
idX−−→ X −→ 0 −→ T X ,

0 −→ Y
idY−−→ Y −→ T (0), and

T−1Z −→ 0 −→ Z
idZ−−→ T (T−1Z).

(ii) Conversely let (C, T ) be a category with translation and assume that C is
a semisimple abelian category. We say that a triangle in C is distinguished if
it is a direct sum of three triangles as in (i) (b). Prove that C is a triangulated
category.
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Complexes in Additive Categories

As already mentioned in the Introduction, one of the main ideas of homological
algebra is to replace an object in an abelian category C by a complex of objects
of the category, the components of these complexes having “good properties”.
For example, a module is replaced by a complex of projective modules.

In this chapter, we start by studying additive categories with translation,
already encountered in Chapter 10. For such a category, there are natural
notions of a differential object, a complex, the mapping cone of a morphism
and of a morphism homotopic to zero. Identifying morphisms homotopic to
zero with the zero morphism, we get the associated homotopy category.

One of the main result of this chapter is the fact that this homotopy
category, endowed with the family of triangles isomorphic to those associated
with a mapping cone, is a triangulated category.

We apply the preceding results to the category Gr(C) of sequences of ob-
jects of an additive category C. The category Gr(C) is endowed with a natural
translation functor, and we get the category C(C) of complexes of objects
of C as well as the associated triangulated category K(C). We also introduce
the simplicial category ∆, we construct complexes associated to it and give a
criterion in order that such complexes are homotopic to zero.

If F : C −→ C ′ is an additive functor of additive categories, it defines natu-
rally a triangulated functor K(F) : K(C) −→ K(C ′). Things become more del-
icate with bifunctors. Indeed, if F : C × C ′ −→ C ′′ is an additive bifunctor, it
defines naturally a functor from C(C)×C(C ′) to the category C2(C ′′) of double
complexes in C ′′, and it is necessary to construct (under suitable hypotheses)
simple complexes associated with a double complex. As we shall see, signs
should be treated with some care.

Finally, we apply these constructions to the bifunctor Hom .
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11.1 Differential Objects and Mapping Cones

Definition 11.1.1. Let (A, T ) be an additive category with translation (see
Definition 10.1.1).

(i) A differential object in (A, T ) is an object X ∈ A endowed with a mor-
phism dX : X −→ T X , called the differential of X .

(ii) A morphism f : X −→ Y of differential objects, also called a differential
morphism, is a morphism f : X −→ Y such that the diagram below com-
mutes:

X
f
��

dX �� T X
T ( f )
��

Y
dY �� T Y .

We denote by Ad the category of differential objects and differential mor-
phisms.

(iii) A differential object X is a complex if T (dX ) ◦ dX = 0. We denote by Ac

the full additive subcategory of Ad consisting of complexes. A differential
morphism of complexes is also called a morphism of complexes.

Clearly, if F : A −→ A′ is a functor of additive categories with translation, it
induces a functor F : Ad −→ A′

d and a functor F : Ac −→ A′
c.

Definition 11.1.2. Let (A, T ) be an additive category with translation. For
a differential object X ∈ Ad , the differential object T X with the differential
dT X = −T (dX ) is called the shifted object of X .

Note that

• If X is a complex, then so is the shifted object T X .
• The pair (Ad , T ) is an additive category with translation, as well as the

pair (Ac, T ).
• For a differential object X and an integer n, we have dT n X = (−1)nT n(dX ).

Definition 11.1.3. Let (A, T ) be an additive category with translation, let X
and Y be two differential objects and let f : X −→ Y be a morphism in A. The
mapping cone Mc( f ) of f is the object T X ⊕ Y with differential

dMc( f ) :=
(

dT X 0
T ( f ) dY

)
=
(−T (dX ) 0

T ( f ) dY

)
.

Here we have used the column notation for morphisms between direct sums.

Hence the composition T X −→ Mc( f )
dMc( f )−−−→ T (Mc( f )) −→ T Y in A is equal

to T ( f ).

Proposition 11.1.4. Assume that X and Y are complexes. Then Mc( f ) is a
complex if and only if f is a morphism of complexes.
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Proof. Set (
T (dT (X)) 0

T 2( f ) T (dY )

)
◦
(

dT X 0
T ( f ) dY

)
=
(

A B
C D

)
.

Then we have

A = T (dT X ) ◦ dT X = T (−T (dX ) ◦ (−dX )) = 0 ,

D = T (dY ) ◦ dY = 0 ,

B = 0 ,

C = T 2( f ) ◦ dT X + T (dY ) ◦ T ( f ) = T (−T ( f ) ◦ dX + dY ◦ f ) .

Hence, C = 0 if and only if −T ( f ) ◦ dX + dY ◦ f = 0, that is, if and only if f
is a morphism of differential objects. q.e.d.

We have:

• Mc( f ) is not T X ⊕ Y in Ad unless f is the zero morphism,
• Mc is a functor from Mor(Ad) to Ad . Namely for a commutative diagram

X
f
��

u �� X ′

f ′
��

Y
v �� Y ′

in Ad , T (u)⊕ v gives a morphism Mc( f ) −→ Mc( f ′),

• if F : (A, T ) −→ (A′, T ′) is a functor of additive categories with translation,
then F(Mc( f )) � Mc(F( f )).

Let f : X −→ Y be a morphism in Ad . We introduce the differential mor-
phisms

α( f ) : Y −→ Mc( f ), α( f ) = 0 ⊕ idY

and

β( f ) : Mc( f ) −→ T X, β( f ) = (idT X , 0) .

We get a triangle in Ad :

X
f−→ Y

α( f )−−−→ Mc( f )
β( f )−−−→ T X .(11.1.1)

We call such a triangle a mapping cone triangle in Ad .

Remark 11.1.5. Consider a morphism f : X −→ Y in Ad . We have a commuta-
tive diagram (the verification is left to the reader):

T X
T ( f ) ��

id

��

T Y
T (α( f )) ��

id

��

T (Mc( f ))

∼
��

−T (β( f )) �� T 2X

id

��
T X

T ( f ) �� T Y
α(T ( f )) �� Mc(T ( f ))

β(T ( f )) �� T 2X .
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11.2 The Homotopy Category

Lemma 11.2.1. Let (A, T ) be an additive category with translation, let X and
Y be two differential objects and let u : X −→ T−1Y be a morphism in A. (We do
not ask u to be a differential morphism.) Set f = T (u)◦dX +T−1(dY )◦u. Then
f is a differential morphism if and only if dY ◦T−1(dY )◦u = T 2(u)◦T (dX )◦dX .
In particular, if X and Y are complexes, f is always a morphism of complexes.

Proof. One has

dY ◦ f = dY ◦ T (u) ◦ dX + dY ◦ T−1(dY ) ◦ u ,

T ( f ) ◦ dX = T 2(u) ◦ T (dX ) ◦ dX + T (T−1(dY )) ◦ T (u) ◦ dX .

q.e.d.

Definition 11.2.2. Let (A, T ) be an additive category with translation. A
morphism f : X −→ Y in Ad is homotopic to zero if there exists a morphism
u : X −→ T−1Y in A such that:

f = T (u) ◦ dX + T−1(dY ) ◦ u.

Two morphisms f, g : X −→ Y are homotopic if f − g is homotopic to zero.

A morphism homotopic to zero is visualized by the diagram (which is not
commutative):

T−1X �� X

u((
(((

(

""(((
((( f

��

dX �� T X

T (u)
'''

''

""'''
''

T−1Y
T−1(dY )

�� Y �� T Y .

Note that a functor of additive categories with translation sends a morphism
homotopic to zero to a morphism homotopic to zero.

Lemma 11.2.3. Let f : X −→ Y and g : Y −→ Z be morphisms in Ad . If f or
g is homotopic to zero, then g ◦ f is homotopic to zero.

Proof. If f = T (u) ◦ dX + T−1(dY ) ◦ u for some u : X −→ T−1Y , then we have

g ◦ f = g ◦ T (u) ◦ dX + g ◦ T−1(dY ) ◦ u

= g ◦ T (u) ◦ dX + T−1(dZ ) ◦ T−1(g) ◦ u

= T (T−1(g) ◦ u) ◦ dX + T−1(dZ ) ◦ (T−1(g) ◦ u) .

Hence g ◦ f is homotopic to zero. The other assertion is similarly proved.
q.e.d.
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Set:

Ht(X, Y ) =
{

f ∈ HomAd
(X, Y ) ; f is homotopic to 0

}
.

By the lemma above, the composition map induces a bilinear map:

HomAd
(X, Y )/Ht(X, Y )×HomAd

(Y, Z)/Ht(Y, Z)(11.2.1)
−→ HomAd

(X, Z)/Ht(X, Z) .

Definition 11.2.4. The homotopy category Kd(A) is defined by:

Ob(Kd(A)) = Ob(Ad) ,

HomKd(A)(X, Y ) = HomAd
(X, Y )/Ht(X, Y ) ,

and the composition of morphisms is given by (11.2.1).

In other words, a morphism homotopic to zero in Ad becomes the zero mor-
phism in Kd(A).

The category Kd(A) is obviously additive and the translation functor T
on Ad induces a translation functor (we keep the same notation) T on Kd(A).
Hence, (Kd(A), T ) is an additive category with translation, and we have a
functor of additive categories with translation (Ad , T ) −→ (Kd(A), T ).

Two objects in Ad are called homotopic if they are isomorphic in Kd(A).
Hence an object X in Ad is homotopic to 0 if and only if idX is homotopic to
zero.

Definition 11.2.5. A distinguished triangle in (Kd(A), T ) is a triangle iso-
morphic in Kd(A) to a mapping cone triangle (11.1.1).

Recall that we write “a d.t.” instead of “distinguished triangle”, for short.

Theorem 11.2.6. The category Kd(A) endowed with the translation functor
T and the family of d.t.’s is a triangulated category.

Proof. The axioms TR0 and TR2 are obvious and TR1 follows from TR3 and
the d.t. 0 −→ X −→ X −→ T (0) associated with the mapping cone of 0 −→ X .

Proof of TR3. We shall construct a morphism ϕ : T X −→ Mc(α( f )) in Ad such
that:
(i) ϕ is an isomorphism in Kd(A),
(ii) the diagram below commutes in Kd(A):

Y
α( f ) ��

idY

��

Mc( f )

idMc( f )

��

β( f ) �� T X

ϕ

��

−T ( f ) �� T Y

idT Y

��
Y

α( f )
�� Mc( f )

α(α( f ))
�� Mc(α( f ))

β(α( f ))
�� T Y .
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Define ϕ and ψ :

ϕ : T X −→ Mc(α( f )) = T Y ⊕ T X ⊕ Y ,

ψ : Mc(α( f )) = T Y ⊕ T X ⊕ Y −→ T X

by:

ϕ =

⎛⎝−T ( f )
idT X

0

⎞⎠ , ψ = (0, idT X , 0) .

We have to check that:
(a) ϕ and ψ are morphisms of differential objects,
(b) ψ ◦ ϕ = idT X ,
(c) ϕ ◦ ψ is homotopic to idMc(α( f )),
(d) ψ ◦ α(α( f )) = β( f ),
(e) β(α( f )) ◦ ϕ = −T ( f ).
(Note that (c)+(d) ⇒ (d’): ϕ ◦ β( f ) is homotopic to α(α( f )).)

Let us prove (c), the other verifications being straightforward. Define
s : Mc(α( f )) −→ T−1(Mc(α( f ))) by:

s =

⎛⎝ 0 0 idY

0 0 0
0 0 0

⎞⎠ .

Then:

idMc(α( f ))−ϕ ◦ ψ = T (s) ◦ dMc(α( f )) + T−1(dMc(α( f ))) ◦ s .

Indeed:

dMc(α( f )) =

⎛⎝−T (dY ) 0 0
0 −T (dX ) 0

idT Y T ( f ) dY

⎞⎠ ,

ϕ ◦ ψ =

⎛⎝0 −T ( f ) 0
0 idT X 0
0 0 0

⎞⎠ ,

idMc(α( f ))−ϕ ◦ ψ =

⎛⎝ idT Y T ( f ) 0
0 0 0
0 0 idY

⎞⎠ .

Proof of TR4. We may assume Z = Mc( f ), Z ′ = Mc( f ′). Then saying that

X
f ��

u

��

Y

v

��
X ′ f ′ �� Y ′
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commutes in Kd(A) means that there exists a morphism s : X −→ T−1(Y ′) in
A with:

v ◦ f − f ′ ◦ u = T (s) ◦ dX + T−1(dY ′) ◦ s.

Define:
w : Mc( f ) = T X ⊕ Y −→ Mc( f ′) = T X ′ ⊕ Y ′

by

w =
(

T (u) 0
T (s) v

)
.

Then w is a morphism of differential objects and the diagram below commutes:

X
f ��

u

��

Y
α( f ) ��

v

��

Mc( f )
β( f ) ��

w

��

T X

T (u)

��
X ′ f ′ �� Y ′ α( f ′)�� Mc( f ′)

β( f ′) �� T X ′ .

Proof of TR5. We may assume that Z ′ = Mc( f ), X ′ = Mc(g) and Y ′ =

Mc(g ◦ f ). Let us define u : Z ′ −→ Y ′ and v : Y ′ −→ X ′ by

u : T X ⊕ Y −→ T X ⊕ Z , u =
(

idT X 0
0 g

)
,

v : T X ⊕ Z −→ T Y ⊕ Z , v =
(

T ( f ) 0
0 idZ

)
.

We define w : X ′ −→ T Z ′ as the composition X ′ β(g)−−−→ T Y
T (α( f ))−−−−−→ T Z ′. Then

the diagram in TR5 is commutative and it is enough to show that the triangle
Z ′ u−→ Y ′ v−→ X ′ w−→ T Z ′ is distinguished. For that purpose, we shall construct
an isomorphism ϕ : Mc(u) −→ X ′ and its inverse ψ : X ′ −→ Mc(u) in Kd(A)
such that ϕ ◦ α(u) = v and β(u) ◦ ψ = w. We have

Mc(u) = T (Mc( f ))⊕Mc(g ◦ f ) = T 2X ⊕ T Y ⊕ T X ⊕ Z

and X ′ = Mc(g) = T Y ⊕ Z . We define ϕ and ψ by

ϕ =
(

0 idT Y T ( f ) 0
0 0 0 idZ

)
, ψ =

⎛⎜⎜⎝
0 0

idT Y 0
0 0
0 idT X

⎞⎟⎟⎠ .

It is easily checked that ϕ and ψ are morphisms of differential objects, and
ϕ ◦ α(u) = v, β(u) ◦ ψ = w and ϕ ◦ ψ = idX hold in Ad . Define a morphism
in A
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s : Mc(u) −→ T−1(Mc(u)), s =

⎛⎜⎜⎝
0 0 idT X 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ .

Then
idMc(u)−ψ ◦ ϕ = T (s) ◦ dMc(u) + T−1(dMc(u)) ◦ s.

Therefore ψ ◦ ϕ = idMc(u) holds in Kd(A). q.e.d.

Remark 11.2.7. In proving Theorem 11.3.8, we have shown that some dia-
grams were commutative in Kd(A), that is, did commute in Ad up to homo-
topy. One should be aware that some of these diagrams did not commute in
Ad , and in fact, this last category is not triangulated in general.

Let Kc(A) be the full subcategory of Kd(A) consisting of complexes in
(A, T ). Then Kc(A) is an additive subcategory with translation. Since the
mapping cone of a morphism of complexes is also a complex, we obtain the
following proposition.

Proposition 11.2.8. The category Kc(A) endowed with the translation func-
tor T and the family of d.t.’s is a triangulated full subcategory of Kd(A).

Proposition 11.2.9. Let F : (A, T ) −→ (A′, T ′) be a functor of additive
categories with translation. Then F defines naturally triangulated functors
K(F) : Kd(A) −→ Kd(A′) and K(F) : Kc(A) −→ Kc(A′).

Proof. As already noticed, F induces a functor F : Ad −→ A′
d . Moreover F

sends a morphism homotopic to zero in Ad to a morphism homotopic to zero
in A′

d , hence defines an additive functor from Kd(A) to Kd(A′). To conclude,
notice that F sends a mapping cone triangle in Ad to a mapping cone triangle
in A′

d . q.e.d.

When there is no risk of confusion, we shall simply denote by F the functor
K(F).

Let F : (A, T )× (A′, T ′) −→ (A′′, T ′′) be a bifunctor of additive categories
with translation. Then, θX,Y : F(T X, Y ) ∼−→ T ′′F(X, Y ) in Definition 10.1.1 (v)
induces a functorial isomorphism

nθX,Y : F(T n X, Y ) ∼−→ T ′′n F(X, Y )

for n ∈ Z. Similarly, θ ′X,Y : F(X, T ′Y ) ∼−→ T ′′F(X, Y ) induces a functorial iso-
morphism

nθ
′
X,Y : F(X, T ′nY ) ∼−→ T ′′n F(X, Y ) .

We can easily check that the diagram
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F(T n X, T ′mY )
nθX,T ′m Y ��

mθ ′T n X,Y

��
(−1)nm

T ′′n F(X, T ′mY )

T ′′n(mθ ′X,Y )

��
T ′′m F(T n X, Y )

T ′′m(nθX,Y )
�� T ′′n+m F(X, Y ) .

(−1)nm-commutes (see Definition 8.2.20), i.e., it commutes or anti-commutes
according that (−1)nm = 1 or −1. For a differential object X in (A, T ) and Y
in (A′, T ′), we have morphisms in A′′:

F(dX , Y ) : F(X, Y ) −→ F(T X, Y ) � T ′′F(X, Y ) ,

F(X, dY ) : F(X, Y ) −→ F(X, T ′Y ) � T ′′F(X, Y ) .

We set

dF(X,Y ) = F(dX , Y ) + F(X, dY ) : F(X, Y ) −→ T ′′F(X, Y ) .(11.2.2)

Thus we obtain a bifunctor of additive categories with translation F : (Ad , T )×
(A′

d , T ′) −→ (A′′
d , T ′′).

Lemma 11.2.10. (i) For a morphism s : X −→ T n X ′ in A and a morphism
t : Y −→ T ′mY ′ in A′, let us set

F(s, Y ) : F(X, Y ) −→ F(T n X ′, Y ) ∼−−−→
nθX ′,Y

T ′′n F(X ′, Y ) ,

F(X, t) : F(X, Y ) −→ F(X, T ′mY ′) ∼−−−→
mθ ′

X,Y ′
T ′′m F(X, Y ′) .

Then one has

T ′′m(F(s, Y ′)) ◦ F(X, t) = (−1)nm T ′′n(F(X ′, t)) ◦ F(s, Y ) .

(ii) We have

T ′′(F(dX , Y )) ◦ F(X, dY ) = −T ′′(F(X, dY )) ◦ F(dX , Y ) ,

T ′′(dF(X,Y )) ◦ dF(X,Y ) = F(T (dX ) ◦ dX , Y ) + F(X, T ′(dY ) ◦ dY ) .

Proof. (i) We have the diagram in which all the squares commute except the
right bottom square which (−1)nm-commutes:

F(X, Y )

F(s,Y )

��

F(X,t)
�� F(X, T ′mY ′)

F(s,T ′m Y ′)
��

mθ ′
X,Y ′

∼ �� T ′′m F(X, Y ′)

T ′′m(F(s,Y ′))
��

F(T n X ′, Y )

∼ nθX ′,Y
��

F(T n X ′,t) �� F(T n X ′, T ′mY ′)

∼nθX ′,T ′m Y ′
��

∼
mθ ′

T n X ′,Y ′
��

(−1)nm

T ′′m F(T n X ′, Y ′)

∼ T ′′m(nθX ′,Y ′ )
��

T ′′n F(X ′, Y )
T ′′n(F(X ′,t))

�� T ′′n F(X ′, T ′mY ′) ∼
T ′′n(mθ ′

X ′,Y ′ )
�� T ′′n+m F(X ′, Y ′) .
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(ii) The first equality follows from (i) and immediately implies the second one.
q.e.d.

Proposition 11.2.11. Let F : (A, T ) × (A′, T ′) −→ (A′′, T ′′) be a bifunctor
of additive categories with translation. Then F defines naturally triangulated
bifunctors K(F) : Kd(A) × Kd(A′) −→ Kd(A′′) and K(F) : Kc(A) × Kc(A′) −→
Kc(A′′).

Proof. Let us show first that for a morphism f : X −→ X ′ in Ad homotopic to
zero and Y ∈ A′

d , the morphism F( f, Y ) : F(X, Y ) −→ F(X ′, Y ) is homotopic
to zero. By the assumption, there exists a morphism s : X −→ T−1X ′ in A such
that f = T (s)◦dX +T−1(dX ′)◦s. Set s ′′ = F(s, Y ) : F(X, Y ) −→ T ′′−1F(X ′, Y ).
Then we have

T ′′(s) ◦ dF(X,Y ) + T ′′−1(dF(X ′,Y )) ◦ s ′′

= F
(
T (s) ◦ dX + T−1(dX ′) ◦ s, Y

)
+
(

T ′′F(s, Y ) ◦ F(X, dY ) + T ′′−1F(X, dY ) ◦ F(s, Y )
)

,

in which the first term is equal to F( f, Y ) and the second term vanishes by
Lemma 11.2.10 (i). Hence F( f, Y ) is homotopic to zero.

Similarly F sends the morphisms homotopic to zero in A′ to morphisms
homotopic to zero in A′′. Thus F induces a functor K(F) : Kd(A)×Kd(A′) −→
Kd(A′′). By Lemma 11.2.10 (ii), K(F) sends Kc(A)×Kc(A′) to Kc(A′′). Finally
note that K(F) sends the mapping cones to mapping cones. q.e.d.

11.3 Complexes in Additive Categories

In this section, C denotes an additive category.
We introduced the notion of complexes in C in Definition 8.2.18. We re-

formulate this in the language of categories with translation.
Let Zd denote the set Z, considered as a discrete category. Recall that

• an object X of CZd is a family {Xn}n∈Z of objects of C,
• for X = {Xn}n∈Z and Y = {Y n}n∈Z two objects of CZd , a morphism f : X −→

Y is a family of morphisms { f n}n∈Z, f n : Xn −→ Y n.

Definition 11.3.1. Let C be an additive category. The associated graded cate-
gory (Gr(C), T ) is the additive category with translation given by Gr(C) = CZd

and (T X)n = Xn+1 for X = {Xn}n∈Z ∈ Gr(C).

In Gr(C), a differential object X is thus a sequence of objects Xn ∈ C and
morphisms dn

X : Xn −→ Xn+1 (n ∈ Z). It is visualized as

· · · −→ Xn−1 dn−1
X−−→ Xn dn

X−→ Xn+1 −→ · · · .(11.3.1)
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A morphism of differential objects f : X −→ Y is a sequence of morphisms
f n : Xn −→ Y n making the diagram below commutative:

· · · �� Xn−1

f n−1

��

dn−1
X �� Xn

f n

��

dn
X �� Xn+1

f n+1

��

�� · · ·

· · · �� Y n−1

dn−1
Y

�� Y n
dn

Y

�� Y n+1 �� · · · .

A complex in Gr(C) is thus a differential object X of Gr(C) such that

dn
X ◦ dn−1

X = 0 for all n ∈ Z .

It coincides with the notion introduced in Definition 8.2.18.

Notations 11.3.2. (i) For an additive category C, we denote by C(C) the cate-
gory consisting of complexes and morphisms of complexes in Gr(C). In other
words, we set

C(C) := (Gr(C))c.(11.3.2)

An object of C(C) is often called “a complex in C” and sometimes denoted by
X•.
(ii) The translation functor T is also called the the shift functor and denoted
by [1]. We write X [n] instead of T n X (n ∈ Z).

For X ∈ C(C) and n ∈ Z, the object X [n] ∈ C(C) is thus given by:{
(X [n])i = Xi+n ,

di
X [n] = (−1)ndi+n

X .

Definition 11.3.3. A complex X• is bounded (resp. bounded below, resp.
bounded above) if Xn = 0 for |n| � 0 (resp. n � 0, resp. n � 0).

Notations 11.3.4. (i) We denote by C∗(C) (∗ = b,+,−) the full subcategory
of C(C) consisting of bounded complexes (resp. bounded below, resp. bounded
above).
(ii) We set Cub(C) := C(C). (Here, “ub” stands for “unbounded”.)
(iii) Let −∞ ≤ a ≤ b ≤ +∞. We denote by C[a,b](C) the full additive sub-
category of C(C) consisting of complexes whose j-th component is zero for
j /∈ [a, b]. We also write C≥a(C) (resp. C≤a(C)) for C[a,∞](C) (resp. C[−∞,a](C)).

Note that C+(C) (resp. C−(C), resp. Cb(C)) is the union of the C≥a(C)’s (resp.
C≤b(C)’s, resp. C[a,b](C)’s). All these categories are clearly additive.

We consider C as a full subcategory of Cb(C) by identifying an object X ∈ C
with the complex X• “concentrated in degree 0”:

X• := · · · −→ 0 −→ X −→ 0 −→ · · ·
where X stands in degree 0 in this complex.
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Examples 11.3.5. (i) Let f : X −→ Y be a morphism in C. We identify f with
a morphism in C(C). Then Mc( f ) is the complex

· · · −→ 0 −→ X
f−→ Y −→ 0 −→ · · ·

where Y stands in degree 0.
(ii) Consider the morphism of complexes in which X0 and Y 0 stand in degree
0:

0 �� X0

f 0

��

dX �� X1

f 1

��

�� 0

0 �� Y 0
dY �� Y 1 �� 0 .

The mapping cone is the complex

0 �� X0
d−1

�� X1 ⊕ Y 0 d0
�� Y 1 �� 0

where X1 ⊕ Y 0 stands in degree 0, d−1 = (−dX )⊕ f 0 and d0 = ( f 1, dY ).

Applying Definition 11.2.2, we get the notion of a morphism of complexes
homotopic to zero. Hence a morphism f : X −→ Y is homotopic to zero if there
exist sn : Xn −→ Y n−1 such that f n = sn+1 ◦ dn

X + dn−1
Y ◦ sn. Such a morphism

is visualized by the diagram (which is not commutative):

· · · �� Xn−1 �� Xn

sn






-.



 f n

��

dn
X �� Xn+1

sn+1





-.




�� · · ·

· · · �� Y n−1

dn−1
Y

�� Y n �� Y n+1 �� · · ·.

Example 11.3.6. If C is abelian, a complex 0 −→ X ′ −→ X −→ X ′′ −→ 0 is
homotopic to zero if and only if it splits (see Definition 8.3.15).

Notations 11.3.7. (i) Let C be an additive category. We set

K(C) := Kc(Gr(C)) .(11.3.3)

Hence, an object of K(C) is a complex of objects of C, and a morphism in
C(C) homotopic to zero becomes the zero morphism in K(C).
(ii) We define K∗(C) (∗ = ub,b,+,−, [a, b]) as the full subcategory of K(C)
such that Ob

(
K∗(C)

)
= Ob

(
C∗(C)

)
(see Notations 11.3.4).

Applying Theorem 11.2.6, we get:

Theorem 11.3.8. The category K(C) endowed with the shift functor [1] and
the family of d.t.’s is a triangulated category. Moreover, the categories K∗(C)
(∗ = b,+,−) are full triangulated subcategories.
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The last assertion follows from the fact that C∗(C) is closed by the mapping
cones.

Notation 11.3.9. A d.t. X
f−→ Y

g−→ Z
h−→ X [1] is sometimes denoted by

X
f−→ Y

g−→ Z
+1−→

for short.

An additive functor of additive categories F : C −→ C ′ defines naturally an
additive functor C(F) : C(C) −→ C(C ′), by setting

C(F)(X)n = F(Xn), dn
C(F)(X) = F(dn

X ) .

Of course, C(F) commutes with the shift functor. From now on, if there is no
risk of confusion, we shall write F instead of C(F). By Proposition 11.2.9, F
induces a functor K(F) : K(C) −→ K(C ′). If there is no risk of confusion, we
still denote this functor by F .

The next result is obvious.

Proposition 11.3.10. Assume that an additive category C admits direct sums
indexed by a set I . Then so do C(C) and K(C) and the natural functor C(C) −→
K(C) commutes with such direct sums.

Definition 11.3.11. Let C be an additive category and let n ∈ Z. The stupid
truncation functors σ≥n : C(C) −→ C+(C) and σ≤n : C(C) −→ C−(C) are defined
as follows. To X• as in (11.3.1), we associate

σ≥n(X•) = · · · −→ 0 −→ 0 −→ Xn dn
X−→ Xn+1 −→ · · · ,

σ≤n(X•) = · · · −→ Xn−1 dn−1
X−−→ Xn −→ 0 −→ 0 −→ · · · .

We set σ>n = σ≥n+1 and σ<n = σ≤n−1.

See Exercise 11.12 for some properties of the stupid truncation functors.
As we shall see in the next chapter, there are other truncation functors

when C is abelian, and the stupid truncation functors are in fact less useful.

Contravariant Functors

Let C be an additive category. We shall also encounter complexes with differ-
entials which decrease the degree. We shall denote them using subscripts, as
follows:

X• := · · · −→ Xn+1

d X
n+1−−→ Xn

d X
n−→ Xn−1 −→ · · · .

By setting Xn = X−n and dn
X = d X−n, these two notions are equivalent.
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Definition 11.3.12. Let F : Cop −→ C ′ be an additive functor. We define the
functor C(F) : (C(C))op −→ C(C ′) by setting:

C(F)(X•)n = F(X−n), dn
C(F)(X) = (−1)n F(d−n−1

X ) .

With the convention of Definition 11.3.12, we get

F(X [1]) � F(X)[−1] ,

this isomorphism being given by

F(X [1])n = F(X [1]−n)

= F(X1−n)
(−1)n−1

−−−−→ F(X1−n) = F(X)n−1 = (F(X)[−1])n .

Indeed,

dn
F(X [1]) = (−1)n F(d−n−1

X [1] ) = (−1)n F(−d−n
X ) = (−1)n+1F(d−n

X ) ,

and

dn
F(X)[−1] = −dn−1

F(X) = −(−1)n−1F(d−(n−1)−1
X ) = (−1)n F(d−n

X ) .

11.4 Simplicial Constructions

We shall construct complexes and homotopies in additive categories by using
the simplicial category ∆ (see Exercise 1.21). For the reader’s convenience,
we recall its definition and some properties.

Definition 11.4.1. (a) The simplicial category, denoted by ∆, is the category
whose objects are the finite totally ordered sets and whose morphisms are
the order-preserving maps.

(b) We denote by ∆in j the subcategory of ∆ such that Ob(∆in j ) = Ob(∆),
the morphisms being the injective order-preserving maps.

(c) We denote by ∆̃ the subcategory of ∆ consisting of non-empty finite totally
ordered sets, the morphisms being given by

Hom∆̃(σ, τ ) =⎧⎨⎩u ∈ Hom∆(σ, τ ) ;
u sends the smallest (resp. the largest)
element of σ to the smallest (resp. the
largest) element of τ

⎫⎬⎭ .

For integers n, m, denote by [n, m] the totally ordered set {k ∈ Z ; n ≤ k ≤ m}.
The next results are obvious.

• the natural functor ∆ −→ Set f is faithful and half-full,
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• the full subcategory of ∆ consisting of objects {[0, n]}n≥−1 is equivalent to
∆,

• ∆ admits an initial object, namely ∅, and a terminal object, namely {0},
• ∆̃ admits an initial object, namely [0, 1], and a terminal object, namely

{0}.
Let us recall that ∆̃ is equivalent to ∆op (see Exercise 1.21). We define the
functor

κ : ∆ −→ ∆̃

as follows: for τ ∈ ∆, κ(τ ) = {0} � τ � {∞} where 0 (resp. ∞) is the smallest
(resp. largest) element in {0} � τ � {∞}. Note that the functor κ : ∆ −→ ∆̃
sends ∅ to [0, 1], sends {0} to [0, 2], etc.

Let us denote by

dn
i : [0, n]−→ [0, n + 1] (0 ≤ i ≤ n + 1)

the injective order-preserving map which does not take the value i . In other
words

dn
i (k) =

{
k for k < i ,
k + 1 for k ≥ i .

One checks immediately that

dn+1
j ◦ dn

i = dn+1
i ◦ dn

j−1 for 0 ≤ i < j ≤ n + 2 .(11.4.1)

Indeed, each morphism is the unique injective order-preserving map which
does not take the values i and j .

For n > 0, denote by

sn
i : [0, n]−→ [0, n − 1] (0 ≤ i ≤ n − 1)

the surjective order-preserving map which takes the same value at i and i +1.
In other words

sn
i (k) =

{
k for k ≤ i ,
k − 1 for k > i .

One checks immediately that

sn
j ◦ sn+1

i = sn
i−1 ◦ sn+1

j for 0 ≤ j < i ≤ n .(11.4.2)

Moreover,⎧⎪⎨⎪⎩
sn+1

j ◦ dn
i = dn−1

i ◦ sn
j−1 for 0 ≤ i < j ≤ n ,

sn+1
j ◦ dn

i = id[0,n] for 0 ≤ i ≤ n + 1, i = j, j + 1 ,

sn+1
j ◦ dn

i = dn−1
i−1 ◦ sn

j for 1 ≤ j + 1 < i ≤ n + 1 .

(11.4.3)
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Note that the maps dn
i are morphisms in the category ∆in j and the maps sn

i
are morphisms in the category ∆̃.
The category ∆in j is visualized by the diagram below

∅ d−1
0

�� {0} d0
0

��
d0
1

�� {0, 1}
d1
0

��
d1
1

��
d1
2

��
{0, 1, 2}

��
��
��
��

(11.4.4)

Let C be an additive category and F : ∆in j −→ C a functor. We set

Fn =

{
F([0, n]) for n ≥ −1,
0 otherwise,

dn
F : Fn −→ Fn+1 where dn

F =
∑n+1

i=0 (−1)i F(dn
i ) for n ≥ −1.

Consider the differential object F•:

F• := · · · −→ 0 −→ F−1 d−1
F−−→ F0 d0

F−→ F1 −→ · · · .(11.4.5)

Proposition 11.4.2. Let F : ∆in j −→ C be a functor.

(i) The differential object F• is a complex.
(ii) Assume that there exist morphisms sn

F : Fn −→ Fn−1 satisfying:{
sn+1

F ◦ F(dn
0) = idFn for n ≥ −1,

sn+1
F ◦ F(dn

i+1) = F(dn−1
i ) ◦ sn

F for n ≥ i ≥ 0.
(11.4.6)

Then F• is homotopic to zero.

Proof. (i) By (11.4.1), we have

dn+1
F ◦ dn

F =
n+2∑
j=0

n+1∑
i=0

(−1)i+ j F(dn+1
j ◦ dn

i )

=
∑

0≤ j≤i≤n+1

(−1)i+ j F(dn+1
j ◦ dn

i ) +
∑

0≤i< j≤n+2

(−1)i+ j F(dn+1
j ◦ dn

i )

=
∑

0≤ j≤i≤n+1

(−1)i+ j F(dn+1
j ◦ dn

i ) +
∑

0≤i< j≤n+2

(−1)i+ j F(dn+1
i ◦ dn

j−1)

= 0 .

(ii) We have
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sn+1
F ◦ dn

F + dn−1
F ◦ sn

F

=
n+1∑
i=0

(−1)i sn+1
F ◦ F(dn

i ) +
n∑

i=0

(−1)i F(dn−1
i ) ◦ sn

F

= sn+1
F ◦ F(dn

0) +
n∑

i=0

(−1)i+1sn+1
F ◦ F(dn

i+1) +
n∑

i=0

(−1)i F(dn−1
i ) ◦ sn

F

= idFn +
n∑

i=0

(−1)i+1F(dn−1
i ) ◦ sn

F +
n∑

i=0

(−1)i F(dn−1
i ) ◦ sn

F

= idFn .

q.e.d.

Corollary 11.4.3. Let F : ∆in j −→ C be a functor. Assume that there exists
a functor F̃ : ∆̃ −→ C such that F is isomorphic to the composition ∆in j −→
∆

κ−→ ∆̃
F̃−→ C. Then the complex F• is homotopic to zero.

Proof. By identifying κ([0, n]) with [0, n + 2], we have κ(dn
i ) = dn+2

i+1 and
F(dn

i ) = F̃(dn+2
i+1 ). Set sn

F = F̃(sn+2
0 ) : Fn −→ Fn−1. Then (11.4.3) implies

(11.4.6). q.e.d.

11.5 Double Complexes

Let C be an additive category. A double complex X is the data of

{Xn,m, d ′n,m
X , d ′′n,m

X }n,m∈Z

where Xn,m ∈ C and the pair of the “differentials” d ′n,m
X : Xn,m −→ Xn+1,m ,

d ′′n,m
X : Xn,m −→ Xn,m+1 satisfy:

d ′n+1,m
X ◦ d ′n,m

X = 0, d ′′n,m+1
X ◦ d ′′n,m

X = 0 ,

d ′′n+1,m
X ◦ d ′n,m

X = d ′n,m+1
X ◦ d ′′n,m

X .

A double complex may be represented by a commutative diagram:

�� ��· · · �� Xn,m

d ′n,m
X

��

d ′′n,m
X �� Xn,m+1

d ′n,m+1
X

��

�� · · ·

· · · �� Xn+1,m

��

d ′′n+1,m
X

�� Xn+1,m+1

��

�� · · ·
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We shall sometimes write X•,• instead of X to emphasize the fact that we are
dealing with a double complex.

There is a natural notion of a morphism of double complexes, and we
obtain the additive category C2(C) of double complexes.

Notation 11.5.1. The functor

FI (resp. FI I ) : C2(C) −→ C(C(C))(11.5.1)

is defined by associating to a double complex X the complex whose compo-
nents are the rows (resp. the columns) of X .

For example FI (X) is the (simple) complex (X I , dI ) in C(C), where{
Xn

I ∈ C(C) is given by {Xn,•, d ′′n,•
X } and

dn
I : Xn

I −→ Xn+1
I is given by d ′n,•

X .

The two functors FI and FI I are clearly equivalences of categories.

Notation 11.5.2. Denoting by T the shift functor in C(C), we define the trans-
lation functors in C2(C):

Ta = F−1
a ◦ T ◦ Fa (a = I, I I ) .

Hence,

(TI X)n,m = Xn+1,m, d ′n,m
TI X = −d ′n+1,m

X , d ′′n,m
TI X = d ′′n+1,m

X ,

(TI I X)n,m = Xn,m+1, d ′n,m
TI I X = d ′n,m+1

X , d ′′n,m
TI I X = −d ′′n,m+1

X .

Assume that C admits countable direct sums. To a double complex X ∈
C2(C) we associate a differential object tot⊕(X) by setting:

tot⊕(X)k = ⊕m+n=k Xn,m ,

dk
tot⊕(X)|Xn,m = d ′n,m

X ⊕ (−1)nd ′′n,m
X .

(11.5.2)

This is visualized by the diagram:

Xn,m
(−1)nd ′′X ��

d ′X
��

Xn,m+1

Xn+1,m .

If there is no risk of confusion, we shall write dtot(X) instead of dtot⊕(X).

Proposition 11.5.3. Assume that C admits countable direct sums. Then the
differential object {tot⊕(X)k, dk

tot⊕(X)}k∈Z is a complex (i.e., dk+1
tot⊕(X)◦dk

tot⊕(X) =
0),
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Proof. Consider the restriction of dk+1
tot(X) ◦ dk

tot(X) to Xn,m :

dk+1
tot(X) ◦ dk

tot(X) : Xn,m −→ Xn+2,m ⊕ Xn+1,m+1 ⊕ Xn,m+2

dk+1
tot(X) ◦ dk

tot(X) = d ′ ◦ d ′ ⊕ (
d ′ ◦ (−1)nd ′′ + (−1)n+1d ′′ ◦ d ′

)⊕ d ′′ ◦ d ′′

= 0 .

q.e.d.

Assume that C admits countable products. To a double complex X ∈ C2(C)
we associate a differential object totπ (X) by setting:

totπ (X)k =
∏

m+n=k

Xn,m ,

(dtotπ (X))n+m−1 = d ′X
n−1,m + (−1)nd ′′X

n,m−1
.

It means that the composition

totπ (X)n+m−1
dn+m−1
totπ (X)−−−−→ totπ (X)n+m −→ Xn,m

is the sum of totπ (X)n+m−1 −→ Xn−1,m d ′X
n−1,m

−−−−→ Xn,m and totπ (X)n+m−1 −→
Xn,m−1

(−1)nd ′′X
n,m−1

−−−−−−−→ Xn,m . This is visualized by the diagram:

Xn−1,m

d ′X
��

Xn,m−1
(−1)nd ′′X

�� Xn,m .

Proposition 11.5.4. Assume that C admits countable products. Then the dif-
ferential object {totπ (X)k, dk

totπ (X)}k∈Z is a complex (i.e., dk+1
totπ (X)◦dk

totπ (X) = 0).

The proof goes as for Proposition 11.5.3.
Assume that C admits countable direct sums and let X ∈ C2(C). Define

v(X) ∈ C2(C) by setting

v(Xn,m) = Xm,n, v(d ′n,m
X ) = d ′m,n

X , v(d ′′n,m
X ) = d ′′m,n

X .

Now, for each (n, m) ∈ Z× Z, define

rn,m : Xn,m −→ v(X)m,n as (−1)nm idXn,m .(11.5.3)

Proposition 11.5.5. Assume that C admits countable direct sums. Let X ∈
C2(C). The morphisms rn,m define an isomorphism in C(C):

r : tot⊕(X) ∼−→ tot⊕(v(X)) .

If C admits countable products, the same isomorphism holds after replacing ⊕
by π .
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Proof. It is enough to prove that the diagram below commutes, which is ob-
vious:

Xn,m

(−1)nm

��

d ′X⊕(−1)nd ′′X �� Xn+1,m ⊕ Xn,m+1

(−1)(n+1)m⊕(−1)n(m+1)

��
Xn,m

(−1)m d ′X⊕d ′′X �� Xn+1,m ⊕ Xn,m+1 .

q.e.d.

Remark 11.5.6. One trick to treat signs is to introduce the formal notation
X [1] = Z[1]⊗X where Z[1] is Z viewed as a complex of Z-modules concentrated
in degree −1. For two complexes X , Y , let us define formally the differential
of x p ⊗ yq ∈ X p ⊗ Y q (of course, x p ⊗ yq has no meaning) by

d(x p ⊗ yq) = dx p ⊗ yq + (−1)p(x p ⊗ dyq) .

Then, Proposition 11.5.5 implies that the morphism X ⊗Y ∼−→ Y ⊗X given by

X p ⊗ Y q � x p ⊗ yq 
→ (−1)pq yq ⊗ x p ∈ Y q ⊗ X p

commutes with the differential.
With this convention, the morphism

Z[1]⊗ X −→ X ⊗Z[1] ,

1⊗ x 
→ x ⊗ 1

does not commute with the differential, while the morphism defined by

Z[1]⊗ Xn −→ Xn ⊗Z[1] ,

1⊗ x 
→ (−1)n x ⊗ 1

commutes.

Now consider the finiteness condition:

(11.5.4)
{
(n, m) ∈ Z× Z ; n + m = k, Xn,m �= 0

}
is finite for all k ∈ Z.

We denote by C2
f (C) the full subcategory of C2(C) consisting of objects X

satisfying (11.5.4). Of course, if X ∈ C2
f (C), then tot⊕(X) and totπ (X) are

well defined and isomorphic. We simply denote this complex by tot(X).

Example 11.5.7. Let f : X −→ Y be a morphism in C(C). Set:

Z−1,k = Xk, Z0,k = Y k
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and consider the double complex Z :

0

��

0

��
�� Z−1,m

f m

��

dm
X �� Z−1.m+1

f m+1

��

��

�� Z0,m

��

dm
Y

�� Z0,m+1

��

��

0 0

Then tot(Z) is Mc( f ), the mapping cone of f . In other words, if Z•,• is
a double complex such that Z p,• = 0 for p �= −1, 0, then tot(Z•,•) is the
mapping cone of d ′,• : Z−1,• −→ Z0,•.

Definition 11.5.8. A morphism f : X −→ Y in C2(C) is homotopic to zero
if there exist morphisms tn,m

1 : Xn,m −→ Y n−1,m and tn,m
2 : Xn,m −→ Y n,m−1 such

that

d ′′n−1,m
Y ◦ tn,m

1 = tn,m+1
1 ◦ d ′′n,m

X ,

d ′n,m−1
Y ◦ tn,m

2 = tn+1,m
2 ◦ d ′n,m

X ,

f n,m = d ′n−1,m
Y ◦ tn,m

1 + tn+1,m
1 ◦ d ′n,m

X

+d ′′n,m−1
Y ◦ tn,m

2 + tn,m+1
2 ◦ d ′′n,m

X .

It is easily checked that if f is homotopic to zero then tot⊕ or totπ is homotopic
to zero whenever they exist.

11.6 Bifunctors

Let F : C × C ′ −→ C ′′ be an additive bifunctor (i.e., F( • , • ) is additive with
respect to each argument). It defines an additive bifunctor C2(F) : C(C) ×
C(C ′) −→ C2(C ′′). In other words, if X ∈ C(C) and X ′ ∈ C(C ′) are complexes,
then C2(F)(X, X ′) is a double complex. If there is no risk of confusion, we
often write F instead of C2(F).
Assume that C ′′ admits countable direct sums. We define the functor

F•
⊕ : C(C)× C(C ′) −→ C(C ′′)

F•
⊕(X, Y ) = tot⊕(F(X, Y )) .

Similarly, if C ′′ admits countable products, we set

F•
π (X, Y ) = totπ (F(X, Y )) .

Let us denote by the same letter T the shift functors on C(C), C(C ′) C(C ′′).
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Lemma 11.6.1. The functor F•⊕ (resp. F•
π ) induces an additive bifunctor

from C(C)× C(C ′) to C(C ′′).

Proof. This follows immediately from Proposition 11.5.3 (resp. 11.5.4). q.e.d.

The full subcategory (C(C)× C(C ′)) f of C(C)× C(C ′) is defined similarly
as the subcategory C2

f (C) of C2(C). Then the two functors F•⊕ and F•
π are well

defined on (C(C)× C(C ′)) f and are isomorphic. We denote it by F•:

F•(X, Y ) = tot(F(X, Y )), (X, Y ) ∈ (C(C)× C(C ′)) f .

Hence, the functor F induces well defined bifunctors of additive categories,
all denoted by F•:

F• : C+(C)× C+(C ′) −→ C+(C ′′), F• : C−(C)× C−(C ′) −→ C−(C ′′) ,

F• : Cb(C)× C(C ′) −→ C(C ′′), F• : C(C)× Cb(C ′) −→ C(C ′′) .

Examples 11.6.2. (i) Consider the bifunctor HomC : C × Cop −→ Mod(Z),
(Y, X) 
→ HomC(X, Y ). We shall write Hom•,•

C instead of C2(HomC). If X
and Y are two objects of C(C), we have

Hom•,•
C (X, Y )n,m = HomC(X−m, Y n) ,

d ′n,m = HomC(X−m, dn
Y ) ,

d ′′n,m = HomC((−1)nd−n−1
X , Y m) .

Here, the calculation of d ′′ follows from Definition 11.3.12.
Note that Hom•,•

C (X, Y ) is a double complex in the category Mod(Z), which
should not be confused with the group HomC(C)(X, Y ) (see Proposition 11.7.3
below).
(ii) Let R be a k-algebra. The functor • ⊗R • : Mod(Rop)×Mod(R) −→ Mod(k)
defines an additive bifunctor

( • ⊗R • )⊕ : C(Mod(Rop))× C(Mod(R)) −→ C(Mod(k)) .

The functor ( • ⊗R • )⊕ is usually still denoted by • ⊗R • .

The above result may be formulated as follows in terms of a bifunctor of
additive categories with translation.

Assuming that C ′′ admits countable direct sums, let us define the functor

F⊕ : Gr(C)×Gr(C ′) −→ Gr(C ′′)

as above (i.e., F⊕(X, Y )n = ⊕i+ j=n F(Xi , Y j )). We define the functor

θX,Y : F⊕(T X, Y ) ∼−→ T F⊕(X, Y ) and

θ ′X,Y : F⊕(X, T Y ) ∼−→ T F⊕(X, Y )
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as follows. The composition

F((T X)i , Y j ) −→ F⊕(T X, Y )i+ j θX,Y−−−→ (
T F⊕(X, Y )

)i+ j

is given by the canonical embedding F(Xi+1, Y j ) −→ (
F⊕(X, Y )

)i+ j+1 =(
T F⊕(X, Y )

)i+ j , and the composition

F(Xi , (T Y ) j ) −→ F⊕(X, T Y )i+ j
θ ′X,Y−−−→ (

T F⊕(X, Y )
)i+ j

is given by the canonical embedding F(Xi , Y j+1) −→ (
F⊕(X, Y )

)i+ j+1 =(
T F⊕(X, Y )

)i+ j multiplied by (−1)i .

Lemma 11.6.3. The functor F⊕ : Gr(C)×Gr(C ′) −→ Gr(C ′′) is a bifunctor of
additive categories with translation.

Proof. The diagram

F(T X, T ′Y )
θX,T ′Y ��

θ ′T X,Y

��

T ′′F(X, T ′Y )

T ′′θ ′X,Y

��
T ′′F(T X, Y )

T ′′θX,Y

�� T ′′2F(X, Y )

in Definition 10.1.1 (v) reduces to the following diagram when we restrict it
to F(Xi+1, Y j+1) = F((T X)i , (T ′Y ) j ):

F(Xi+1, Y j+1) id ��

(−1)i

��

F(Xi+1, Y j+1)

(−1)i+1

��
F(Xi+1, Y j+1)

id
�� F(Xi+1, Y j+1) ,

and this last diagram is anti-commutative. q.e.d.

Note that the differential of F⊕(X, Y ) for X ∈ C(C) and Y ∈ C(C ′) given
by (11.2.2) coincides with the one given by (11.5.2).

Applying Proposition 11.2.11, we get

Proposition 11.6.4. Let F : C × C ′ −→ C ′′ be an additive bifunctor.

(i) The bifunctor F induces well defined triangulated bifunctors K+(C) ×
K+(C ′) −→ K+(C ′′), K−(C)×K−(C ′) −→ K−(C ′′), Kb(C)×K(C ′) −→ K(C ′′)
and K(C)×Kb(C ′) −→ K(C ′′).

(ii) Assume that C ′′ admits countable direct sums (resp. countable products).
Then F•⊕ (resp. F•

π ) induces a well defined triangulated bifunctor K(C)×
K(C ′) −→ K(C ′′).
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Denote by v the canonical isomorphism C ′ × C � C × C ′, v(Y, X) = (X, Y )
and let G = F ◦ v : C ′ × C −→ C ′′. In other words,

G(Y, X) = F(X, Y ) .

Proposition 11.6.5. Assume that C ′′ admits countable direct sums. Let X ∈
C(C) and Y ∈ C(C ′). For each (n, m) ∈ Z × Z, define r : F(Xn, Y m) −→
G(Y m, Xn) as (−1)nm . Then r defines an isomorphism of complexes in C(C ′′):

r : F•
⊕(X, Y ) ∼−→G•

⊕(Y, X) .

If C ′′ admits countable products, the same isomorphism holds after replacing
⊕ by π .

Proof. This follows from Proposition 11.5.5. q.e.d.

11.7 The Complex Hom•

We shall study the complex (HomC)•π (X, Y ), when X and Y are complexes in
C.

For short, we shall write Hom•
C instead of (HomC)•π . Hence

Hom•
C(X, Y ) = totπ (Hom•,•

C (X, Y )) .

We shall also write for short HomC(X, Y )n instead of (HomC)•π (X, Y )n and dn

instead of dn
Hom•

C
(X,Y ).

Note that Hom•
C defines functors

Hom•
C : C(C)× C(C)op −→ C(Mod(Z)) ,

Hom•
C : K(C)×K(C)op −→ K(Mod(Z)) .

Convention 11.7.1. When considering the bifunctor Hom•
C (or its variants,

such as Hom or RHom , etc. in the subsequent chapters), we shall con-
sider it as defined on C(C) × C(C)op (or K(C) × K(C)op). Hence, to a pair
(X, Y ) ∈ C(C) × C(C)op, this functor associates Hom•

C(Y, X). The reason of
this convention is that, together with Definition 11.3.12, the differential whose
components are given by (11.7.3) will satisfy the formula in Exercise 11.11.
However, by Proposition 11.6.5, we may also regard Hom•

C( • , • ) as a bifunctor
from K(C)op ×K(C) to K(Mod(Z)).

If X and Y are two objects of C(C), we get

HomC(X, Y )n =
∏
k∈Z

HomC(Xk, Y n+k)(11.7.1)

and
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dn
Hom•

C
(X,Y ) : HomC(X, Y )n −→ HomC(X, Y )n+1(11.7.2)

is given as follows. To f = { f k}k ∈∏k∈Z HomC(Xk, Y n+k) we associate dn f =
{gk}k ∈∏k∈Z HomC(Xk, Y n+k+1), with

gk = d ′n+k,−k f k + (−1)k+n+1d ′′k+n+1,−k−1 f k+1 .

In other words, the component of dn f in HomC(X, Y )n+1 will be

(dn f )k = dk+n
Y ◦ f k + (−1)n+1 f k+1 ◦ dk

X ∈ HomC(Xk, Y n+k) .(11.7.3)

Notation 11.7.2. Recall that we write dn instead of dn
Hom•

C
. We set

Z0(Hom•
C(X, Y )) = Ker d0 ,

B0(Hom•
C(X, Y )) = Im d−1 ,

H0(Hom•
C(X, Y )) = (Ker d0)/(Im d−1) .

Proposition 11.7.3. Let C be an additive category and let X, Y ∈ C(C). There
are isomorphisms:

Z0(Hom•
C(X, Y )) � HomC(C)(X, Y ) ,

B0(Hom•
C(X, Y )) � Ht(X, Y ) ,

H0(Hom•
C(X, Y )) � HomK(C)(X, Y ) .

Proof. (i) Let us calculate Z0(Hom•
C(X, Y )). By (11.7.3) the component of

d0{ f k}k in HomC(Xk, Y k+1) will be zero if and only if dk
Y ◦ f k = f k+1 ◦ dk

X ,
that is, if the family { f k}k defines a morphism of complexes.
(ii) Let us calculate B0(Hom•

C(X, Y )). An element f k ∈ Hom•
C(Xk, Y k) will

be in the image of d−1 if it can be written as f k = dk−1
Y ◦ sk + sk+1 ◦ dk

X with
sk ∈ HomC(Xk, Y k−1).
(iii) The last isomorphism follows from the others. q.e.d.

Exercises

Exercise 11.1. Let C be a category and let T : C −→ C be a functor. Let T−1C
be the category defined as follows:

Ob(T−1C) =
{
(X, n) ; X ∈ Ob(C), n ∈ Z

}
,

Hom T−1C
(
(X, n), (Y, m)

)
= lim−→

k≥−n,−m

HomC(T n+k X, T m+kY ) .

(i) Prove that T−1C is a well-defined category.
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(ii) Prove that the functor T̃ which sends (X, n) to (X, n +1) is a well-defined
translation functor.
(iii) Prove that the functor ϕ : C −→ T−1C which sends X to (X, 0) is well
defined and T̃ ◦ ϕ � ϕ ◦ T .
(iv) Prove that the category with translation (T−1C, T̃ ) has the following uni-
versal property: for any category with translation (A, T ′) and any functor
ψ : C −→ A such that T ′ ◦ ψ � ψ ◦ T there exist a functor ψ ′ : (T−1C, T̃ ) −→
(A, T ′) of categories with translation and an isomorphism ψ ′ ◦ ϕ � ψ . More-
over such a ψ ′ is unique up to an isomorphism.

Exercise 11.2. Let (A, T ) be an additive category with translation and as-
sume to be given a morphism of functors η : idA −→ T 2 such that η◦T = T ◦η,
that is, ηT X = T (ηX ) for any X ∈ A. Let Aη be the full subcategory of Ad

consisting of differential objects X such that T (dX ) ◦ dX = ηX .
(i) Let X and Y be objects of Aη, and let u : X −→ T−1Y be a morphism in A.
Prove that T (u) ◦ dX + T−1(dY ) ◦ u : X −→ Y is a morphism in Aη.
(ii) Prove that the mapping cone of any morphism in Aη belongs to Aη.
(iii) Let Kη(A) be the full subcategory of Kd(A) given by Ob(Kη(A)) =
Ob(Aη). Prove that Kη(A) is a full triangulated subcategory of Kd(A).

Exercise 11.3. Let (A, T ) be an additive category with translation. Let B
be the category of pairs (X, e) of X ∈ A and e : X −→ T 2X .
(i) Define a translation functor T ′ on B such that (B, T ′) is an additive cat-
egory with translation and that the functor for : (B, T ′) −→ (A, T ), which
forgets e, is a functor of additive categories with translation.
(ii) Let η : idB −→ T ′2 be the morphism of functors that associates to (X, e) the
morphism e. Prove that η is well defined and satisfies η◦T = T ◦η. Prove also
that for induces an equivalence of triangulated categories Kη(B) ∼−→Kd(A).

Exercise 11.4. Let (A, T ) be an additive category with translation, and let
f , g : X ⇒ Y be two morphisms in Ad . Prove that f and g are homotopic if
and only if there exists a commutative diagram in Ad

Y
α( f )

�� Mc( f )

u

��

β( f )
�� X [1]

Y
α(g)

�� Mc(g)
β(g)

�� X [1] .

In such a case, prove that u is an isomorphism in Ad .

Exercise 11.5. Let (A, T ) be an additive category with translation and
f : X −→ Y a morphism in Ad . By using Theorem 11.2.6, prove that f is
an isomorphism in Kd(A) if and only if Mc( f ), the mapping cone of f , is
homotopic to zero.
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Exercise 11.6. Let (A, T ) be an additive category with translation and let
f : X −→ Y be a morphism in Ad .
(i) Prove that the following conditions are equivalent:

(a) f is homotopic to zero,
(b) f factors through α(idX ) : X −→ Mc(idX ),
(c) f factors through T−1(β(idY )) : T−1Mc(idY ) −→ Y ,
(d) f decomposes as X −→ Z −→ Y with a differential object Z homotopic to

zero.

(ii) Let N be the full subcategory of Ad consisting of differential objects
homotopic to zero. Prove that the category (Ad)N defined in Exercise 8.6 is
equivalent to Kd(A).

Exercise 11.7. Let (A, T ) be an additive category with translation, and con-
sider two morphisms in Ac

X
ϕ �� Y .
ψ

��

Assume that ψ ◦ϕ− idX is homotopic to zero. Prove that there exist an object
Z in Ac and morphisms in Ac

X
α �� Y ⊕ Z
β

��

such that β ◦ α = idX in Ac. (Hint: use Exercise 11.6.)

Exercise 11.8. Let (A, T ) be an additive category with translation and let

0 −→ X
f−→ Y

g−→ Z −→ 0 be a complex in Ac.
(i) Prove that u = (0, g) : Mc( f ) −→ Z is a well-defined morphism in Ac.

(ii) Assume that 0 −→ X
f−→ Y

g−→ Z −→ 0 splits in A (see Exercise 8.34),
i.e., there exist morphisms k : Y −→ X and h : Z −→ Y in A such that idY =
f ◦ k + h ◦ g, g ◦ h = idZ and k ◦ f = idX . Prove that u : Mc( f ) −→ Z is an
isomorphism in Kc(A). (Hint:

(−T (k) ◦ dY ◦ h
h

)
defines a morphism Z −→ Mc( f ).)

Exercise 11.9. Let (A, T ) be an additive category with translation and let
X ∈ Ac be a complex. Assume that there exist morphisms s, t : X −→ T−1X
in A such that idX = T (s) ◦ dX + T−1(dX ) ◦ t . Prove that X is homotopic to
zero. (Hint: consider s ◦ T−1(dX ) ◦ t .)

Exercise 11.10. Let C be an additive category and let X ∈ C(C).
(i) Prove that there exists a morphism of functors ξ : idGr(C) −→ idGr(C) such
that T (ξX )− ξT X = idT X for any X ∈ Gr(C).
(ii) Prove that dX : X −→ X [1] defines a morphism in C(C).
(iii) Prove that dX : X −→ X [1] is homotopic to zero. (Hint: use (i).)
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Exercise 11.11. Let C = Mod(Z) and let X ∈ Cb(C), Y ∈ C(C). Prove that
the family of morphisms

HomC(Xn, Y m)⊗ Xn −→ Y m

f ⊗ u 
→ f (u) .

defines a morphism of complexes Hom•
C(X, Y ) ⊗ X −→ Y . (Remark that the

signs in Definition 11.3.12 are so chosen that the above map is a morphism of
complexes.)

Exercise 11.12. Let C be an additive category, and let X ∈ C(C), a ∈ Z. The
stupid truncation σ≥a X has been defined in Definition 11.3.11.
(i) Show that σ≥a does not induce a functor from K(C) to itself in general.
(ii) Prove that for X ∈ C(C) and f ∈ Mor(C(C)), there exist distinguished
triangles in K(C)

σ>a X −→ X −→ σ≤a X −→ (σ>a X)[1] ,

σ>a X −→ σ≥a X −→ Xa [−a] −→ (σ>a X)[1] ,

Mc(σ>a( f )) −→ Mc( f ) −→ Mc(σ≤a( f )) −→ Mc(σ>a( f ))[1] .
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Complexes in Abelian Categories

In this chapter, we study complexes (and double complexes) in abelian cate-
gories and give tools to compute their cohomology. In particular, we prove the
classical “Snake lemma” and we construct the long exact sequence associated
with a short exact sequence of complexes.

As an application, we discuss Koszul complexes associated to functors
defined on a category of finite subsets of a set S, with values in an abelian
category C. The main result asserts that such a complex may be obtained as
the mapping cone of a morphism acting on a simpler Koszul complex. We
apply these results to the study of distributive families of subobjects of an
object X in C.

We postpone the introduction of derived categories to the next chapter.
Note that we avoid the use of spectral sequences, using instead systemat-

ically the “truncation functors”.

12.1 The Snake Lemma

Let C be an abelian category.

Lemma 12.1.1. [The snake Lemma] Consider the commutative diagram in C
with exact rows:

X ′ f ��

u

��

X
g ��

v

��

X ′′ ��

w

��

0

0 �� Y ′ f ′ �� Y
g′ �� Y ′′ .

It gives rise to an exact sequence:

Ker u
f1−→ Ker v

g1−→ Ker w
ϕ−→ Coker u

f2−→ Coker v
g2−→ Coker w .
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Proof. (a) First, we construct ϕ : Kerw −→ Coker u. Set W = X ×X ′′ Ker w,
Z = Y ⊕Y ′ Coker u and let h : W −→ Ker w be the natural morphism. We get
a commutative diagram

Ker h ��

∼
��

W

��

h �� ��

67

Ker w

��

�� 0

X ′

u
%%�

��
��

��
��

�� �� Ker g ��

��

X

��

g �� �� X ′′

w

��

�� 0

0 �� Y ′ f ′ ��

��

Y
g′ ��

��

Y ′′

��
0 �� Coker u �� Z �� Coker w .

Then the composition W −→ X −→ Y −→ Z uniquely decomposes as

W� Ker w
ϕ−→ Coker u�Z .

Indeed, since the composition W −→ Y −→ Y ′′ vanishes, the morphism W −→ Y
factors uniquely through Y ′. By Lemma 8.3.11, the morphism Ker h −→ Ker g
is an isomorphism. Since X ′ −→ Ker g is an epimorphism, Ker g −→ Y ′ −→
Coker u vanishes. Hence the composition Ker h −→ W −→ Coker u vanishes
and W −→ Coker u factors uniquely as W� Ker w

ϕ−→ Coker u. (Recall that
Ker w � Coker(Ker h −→ W ).)

(b) Let us show that the sequence Ker u
f1−→ Ker v

g1−→ Ker w
ϕ−→ Coker u −→

Coker v −→ Coker w is exact.
(i) The sequence Ker u

f1−→ Ker v
g1−→ Ker w is exact. Choose S ∈ C and a

morphism ψ : S −→ Ker v such that g1 ◦ ψ = 0. Consider the diagram

S

ψ

��
Ker u

��

��f1 �� Ker v

��

g1 �� Ker w

��
X ′ f �� X

g �� X ′′.

The composition S −→ Ker v −→ X −→ X ′′ is 0. Applying Lemma 8.3.12 we find
an epimorphism h : S′ −→ S and the commutative diagram below on the left:
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S′
h �� ��

��

S

��
X ′ �� X

S′ ��

��

Ker v

��
X ′ ��

u

��

X

v

��
0 �� Y ′ �� Y.

By considering the commutative diagram above on the right, we find that

the composition S′ −→ X ′ u−→ Y ′ f ′−→ Y is 0, and therefore, the composition
S′ −→ X ′ u−→ Y ′ is 0. Hence, S′ −→ X ′ factors through Ker u and it remains to
apply Lemma 8.3.12.
(ii) The sequence Ker v

g1−→ Ker w
ϕ−→ Coker u is exact. Let ψ : S −→ Ker w be

a morphism such that ϕ ◦ ψ = 0. Since W −→ Ker w is an epimorphism, we
can find an epimorphism S1�S and a commutative diagram

S0 �� ��

k

��

λ

78

S1 �� ��

��

S

ψ

��
W

h ��

��77
77
77
7

8977
77
77
7

Ker w

ϕ

��

X ′ f ��

u

��

X

v

��
Y ′ f ′ ��

��

Y

Coker u .

Since the composition S1 −→ W −→ Y ′ −→ Coker u vanishes, there exists an
epimorphism S0�S1 such that the composition S0 −→ S1 −→ W −→ Y ′ decom-
poses into S0 k−→ X ′ u−→ Y ′. Denote by λ the composition S0 −→ S1 −→ W −→ X .
Then v ◦ λ = v ◦ f ◦ k. Hence λ − f ◦ k : S0 −→ X factors through Ker v.
Therefore we obtain a commutative diagram

S0 �� ��

λ− f ◦k

��

S

��
Ker v ��

��

��

Ker w
��

��
X

g �� X ′′.

It remains to apply Lemma 8.3.12.
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(iii) The proof that Kerw −→ Coker u −→ Coker v −→ Coker w is exact follows
by reversing the arrows. q.e.d.

12.2 Abelian Categories with Translation

An abelian category with translation (A, T ) is an additive category with trans-
lation (A, T ) (see Definition 10.1.1) such that A is abelian. Hence T is an exact
additive functor.

Proposition 12.2.1. Let (A, T ) be an abelian category with translation. Then
the categories Ad and Ac (see Definition 11.1.1) are abelian categories with
translation.

The proof is straightforward.

Let (A, T ) be an abelian category with translation and let X ∈ Ac. We
define (see Definition 8.3.8):

H(X) := H(T−1X −→ X −→ T X)

� Coker(Im T−1dX −→ Ker dX )

� Coker(T−1X −→ Ker dX ) � Coker(Coker T−2dX −→ Ker dX )

� Ker(Coker T−1dX −→ Im dX )

� Ker(Coker T−1dX −→ T X) � Ker(Coker T−1dX −→ Ker T dX ) .

(12.2.1)

The last isomorphism follows from the fact that Ker T dX −→ T X is a monomor-
phism, and similarly for the third isomorphism.

We shall also make use of the notations

Z(X) := Ker dX ,

B(X) := Im T−1dX .

Hence we have monomorphisms B(X)�Z(X)�X and an exact sequence 0 −→
B(X) −→ Z(X) −→ H(X) −→ 0.

We call H(X) the cohomology of X . If f : X −→ Y is a morphism in Ac, it in-
duces morphisms Z( f ) : Ker dX −→ Ker dY and B( f ) : Im T−1dX −→ Im T−1dY ,
thus a morphism H( f ) : H(X) −→ H(Y ). We have obtained an additive func-
tor:

H : Ac −→ A .

The isomorphisms (12.2.1) give rise to the exact sequence:

0 −→ H(X) −→ Coker(T−1dX )
dX−→ Ker(T dX ) −→ H(T X) −→ 0 .(12.2.2)

Lemma 12.2.2. If f : X −→ Y is a morphism in Ac homotopic to zero, then
H( f ) : H(X) −→ H(Y ) is the zero morphism.



12.2 Abelian Categories with Translation 301

Proof. Let f = T (u) ◦ dX + T−1(dY ) ◦ u. The composition

Ker dX −→ X
T (u)◦dX−−−−→ Y

is the zero morphism. Moreover, T−1(dY ) ◦ u factorizes through Im T−1(dY ).
q.e.d.

Hence the functor H defines a functor (denoted by the same symbol)

H : Kc(A) −→ A .

Definition 12.2.3. A morphism f : X −→ Y in Ac or in Kc(A) is a quasi-
isomorphism (a qis for short), if H( f ) is an isomorphism.

An object X is qis to 0 if the natural morphism X −→ 0 is a qis, or equivalently

if T−1X
T−1dX−−−−→ X

dX−−→ T X is exact.

Theorem 12.2.4. Let 0 −→ X ′ f−→ X
g−→ X ′′ −→ 0 be an exact sequence in Ac.

(i) The sequence H(X ′) −→ H(X) −→ H(X ′′) is exact.
(ii) There exists δ : H(X ′′) −→ H(T (X ′)) making the sequence:

H(X) −→ H(X ′′) δ−→ H(T (X ′)) −→ H(T (X))(12.2.3)

exact. Moreover, we can construct δ functorial with respect to short exact
sequences of Ac.

Proof. The exact sequence in Ac gives rise to a commutative diagram with
exact rows:

Coker T−1dX ′

dX ′
��

f �� Coker T−1dX

dX

��

g �� Coker T−1dX ′′

dX ′′
��

�� 0

0 �� Ker T dX ′
f �� Ker T dX

g �� Ker T dX ′′ .

Applying the snake lemma (Lemma 12.1.1) with u = dX ′ , v = dX and w = dX ′′ ,
the result follows from the exact sequence (12.2.2). q.e.d.

Corollary 12.2.5. Let (A, T ) be an abelian category with translation. Then
the functor

H : Kc(A) −→ A
is cohomological.

It means that, if X −→ Y −→ Z −→ T (X) is a d.t. in Kc(A), then the functor H
sends it to an exact sequence in A:

· · · −→ H(X) −→ H(Y ) −→ H(Z) −→ H(T (X)) −→ · · · .
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Proof. Let X −→ Y −→ Z −→ T (X) be a d.t. in Kc(A). It is isomorphic to

V
α(u)−−−→ Mc(u)

β(u)−−−→ T (U) −→ T (V ) for a morphism u : U −→ V in Ac. Since
the sequence in Ac:

0 −→ V −→ Mc(u) −→ T (U) −→ 0

is exact, it follows from Theorem 12.2.4 that the sequence

H(V ) −→ H(Mc(u)) −→ H(T (U))

is exact. Therefore, H(X) −→ H(Y ) −→ H(Z) is exact. q.e.d.

Corollary 12.2.6. Let 0 −→ X
f−→ Y

g−→ Z −→ 0 be an exact sequence in Ac

and define ϕ : Mc( f ) −→ Z as ϕ = (0, g). Then ϕ is a morphism in Ac and is
a qis.

Proof. The commutative diagram in Ac with exact rows

0 �� X

idX

��

idX �� X

f

��

�� 0

��

�� 0

0 �� X
f �� Y �� Z �� 0

yields an exact sequence in Ac:

0 −→ Mc(idX )
γ−→ Mc( f )

ϕ−→ Mc(0 −→ Z) −→ 0 .

Since H(Mc(idX )) � 0, ϕ is a qis by Theorem 12.2.4. q.e.d.

12.3 Complexes in Abelian Categories

Let C be an abelian category. Recall (see Definition 11.3.1) that the category
with translation (Gr(C), T ) is given by Gr(C) = CZd , and that we set (see
(11.3.2)):

C(C) := (Gr(C))c .

The categories C∗(C) (∗ = ub,+,−,b) are obviously abelian categories with
translation.

Let us translate the definitions and results of §12.2 in the case where
A = Gr(C) and hence, Ac = C(C).

Applying the functors πn : Gr(C) −→ C, which associates Xn to X =
{Xl}l∈Z ∈ Gr(C), we find additive functors:

H n : C(C) −→ C, H n(X) = H(Xn−1 −→ Xn −→ Xn+1) ,

Zn : C(C) −→ C, Zn(X) = Ker dn
X ,

Bn : C(C) −→ C, Bn(X) = Im dn−1
X .
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We call H n(X) the n-th cohomology object of X .
Notice that:

H n(X) � H0(X [n])

by the commutative diagram

Xn−1
dn−1

X ��

(−1)n idXn−1

��

Xn
dn

X ��

idXn

��

Xn+1

(−1)n idXn+1

��
Xn−1

(−1)ndn−1
X

�� Xn
(−1)ndn

X

�� Xn+1.

Then the exact sequence (12.2.2) give rise to the exact sequence:

0 −→ H n(X) −→ Coker(dn−1
X )

dn
X−→ Ker dn+1

X (X) −→ H n+1(X) −→ 0 .(12.3.1)

Definition 12.3.1. Let C be an abelian category and let n ∈ Z. The truncation
functors :

τ̃≤n, τ≤n : C(C) −→ C−(C)
τ̃≥n, τ≥n : C(C) −→ C+(C)

are defined as follows. Let X := · · · −→ Xn−1 −→ Xn −→ Xn+1 −→ · · · . We set:

τ≤n X := · · · −→ Xn−2 −→ Xn−1 −→ Ker dn
X −→ 0 −→ 0 −→ · · ·

τ̃≤n X := · · · −→ Xn−2 −→ Xn−1 −→ Xn −→ Im dn
X −→ 0 −→ · · ·

τ̃≥n X := · · · −→ 0 −→ Im dn−1
X −→ Xn −→ Xn+1 −→ Xn+2 −→ · · ·

τ≥n X := · · · −→ 0 −→ 0 −→ Coker dn−1
X −→ Xn+1 −→ Xn+2 −→ · · · .

There is a chain of morphisms in C(C):

τ≤n X −→ τ̃≤n X −→ X −→ τ̃≥n X −→ τ≥n X,

and there are exact sequences in C(C):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 −→ τ̃≤n−1X −→ τ≤n X −→ H n(X)[−n] −→ 0 ,

0 −→ H n(X)[−n] −→ τ≥n X −→ τ̃≥n+1X −→ 0 ,

0 −→ τ≤n X −→ X −→ τ̃≥n+1X −→ 0 ,

0 −→ τ̃≤n−1X −→ X −→ τ≥n X −→ 0 ,

0 −→ τ≤n X −→ τ̃≤n X −→ Mc(idIm dn
X [−n−1]) −→ 0 .

(12.3.2)

We have the isomorphisms

H j (τ≤n X) ∼−→ H j (̃τ≤n X) �
{

H j (X) j ≤ n ,

0 j > n.

H j (̃τ≥n X) ∼−→ H j (τ≥n X) �
{

H j (X) j ≥ n ,

0 j < n.

(12.3.3)
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The verification is straightforward.

Lemma 12.3.2. (i) If f : X −→ Y is a morphism in C(C) homotopic to zero,
then H n( f ) : H n(X) −→ H n(Y ) is the zero morphism.

(ii) If f : X −→ Y is a morphism in C(C) homotopic to zero, then τ≤n( f ),
τ≥n( f ), τ̃≤n( f ), τ̃≥n( f ) are homotopic to zero.

Proof. (i) is a particular case of Lemma 12.2.2.
(ii) The proof is straightforward. q.e.d.

Hence the functor H n defines a functor (denoted by the same symbol)

H n : K(C) −→ C .

Similarly, the functors τ≤n and τ̃≤n define functors, denoted by the same
symbols, from K(C) to K−(C), and the functors τ≥n and τ̃≥n define functors,
denoted by the same symbols, from K(C) to K+(C).

Note that a morphism f : X −→ Y in C(C) or in K(C) is a qis if and only
if H n( f ) is an isomorphism for all n ∈ Z and a complex X is qis to 0 if and
only the complex X is exact.

There are qis in C(C): {
τ≤n X −→ τ̃≤n X ,

τ̃≥n X −→ τ≥n X .
(12.3.4)

Theorem 12.2.4 and Corollaries 12.2.5 and 12.2.6 are translated as:

Theorem 12.3.3. Let 0 −→ X ′ f−→ X
g−→ X ′′ −→ 0 be an exact sequence in C(C).

(i) For each n ∈ Z, the sequence H n(X ′) −→ H n(X) −→ H n(X ′′) is exact.
(ii) For each n ∈ Z, there exists δn : H n(X ′′) −→ H n+1(X ′) making the se-

quence:

H n(X) −→ H n(X ′′) δn−→ H n+1(X ′) −→ H n+1(X)(12.3.5)

exact. Moreover, we can construct δn functorial with respect to short exact
sequences of C(C).

Corollary 12.3.4. Let C be an abelian category. Then the functor

H n : K(C) −→ C

is cohomological.

Corollary 12.3.5. Let 0 −→ X
f−→ Y

g−→ Z −→ 0 be an exact sequence in C(C)
and define ϕ : Mc( f ) −→ Z as ϕn = (0, gn). Then ϕ is a morphism in C(C)
and is a qis.
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Using Corollaries 12.3.4 and 12.3.5, we find a long exact sequence

· · · −→ H n(Y ) −→ H n(Z)
δ′n−→ H n+1(X) −→ H n+1(Y ) −→ · · · .(12.3.6)

Here H n(Z)
δ′n−→ H n+1(X) is the composition H n(Z) ∼←− H n(Mc( f )) −→

H n(X [1]) � H n+1(X).

Proposition 12.3.6. The morphism δ′n in (12.3.6) is related to the morphism
δn constructed in Theorem 12.3.3 by the relation: δ′n = −δn.

Proof. The morphism δn : H n(Z) −→ H n+1(X) is characterized as follows (see
the proof of the “snake lemma” (12.1.1)). There exists a commutative diagram

W

ψ

��

ϕ

��..
...

...
...

.
η �� �� H n(Z)

��
Coker dn−1

Y
��

a

��

Coker dn−1
Z

Ker dn+1
X

��

b �� Ker dn+1
Y

H n+1(X)

such that η : W −→ H n(Z) is an epimorphism and the composition W
η−→

H n(Z)
δn−→ H n+1(X) is the same as the composition W −→ Ker dn+1

X −→
H n+1(X). On the other hand, δ′n is given by

H n(Z) ∼←− H n(Mc( f )) −→ H n(X [1]) .

Now observe that the diagram below commutes.

Ker dn+1
X ⊕ Coker dn−1

Y
��

(b,a)

��

Coker dn−1
Mc( f )

��
Ker dn+1

Y
�� Ker dn+1

Mc( f ).

Let ξ = (−ψ, ϕ) : W −→ Ker dn+1
X ⊕ Coker dn−1

Y . Then the composition W
ξ−→

Ker dn+1
X ⊕ Coker dn−1

Y −→ Coker dn−1
Mc( f ) −→ Ker dn+1

Mc( f ) vanishes. We get the
diagram



306 12 Complexes in Abelian Categories

W

ξ

��

�����
����

����
����

��
η

9:88888
888888

888888
888888

888888
88888

H n(Mc( f )) ��
��

��

H n(Z)

��
Ker dn+1

X ⊕ Coker dn−1
Y

�� Coker dn−1
Mc( f )

�� Coker dn−1
Z .

Note that the diagram below commutes

Ker dn+1
X ⊕ Coker dn−1

Y
��

��

Coker dn−1
Mc( f )

��
Ker dn+1

X
�� �� H n+1(X) �� �� Coker dn

X .

Hence, the composition W −→ H n(Mc( f ))
δn−→ H n+1(X) is equal to the com-

position W
−ψ−→ Ker dn+1

X −→ H n+1(X). Therefore, we have the commutative
diagram

W
η �� ��

−ψ

��

H n(Z)

H n(Mc( f ))

∼




��
Ker dn+1

X
�� H n+1(X).

This completes the proof. q.e.d.

12.4 Example: Koszul Complexes

We shall give some useful tools which permit us to construct and calculate
the cohomology of some complexes. Such complexes appear in various con-
texts, such as Commutative Algebra (regular sequences of endomorphisms of
a module over a ring) or Sheaf Theory (Čech cohomology of a sheaf associated
with a closed or an open covering).

First of all, we recall that if L is a finite free Z-module of rank n, the module∧n L is free of rank one, and is usually denoted by det L. We understand
det 0 = Z. Let I be a finite set and let {es}s∈I be the corresponding basis of
the free module ZI . If π is a permutation of I , it induces an isomorphism of
ZI , and the isomorphism ± id on det ZI , where ± is the signature of π . Note
that when I is the empty set, ZI = 0.
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If I = {s1, . . . , sn}, then es1 ∧ · · · ∧ esn is a basis of det ZI . If J = I � {s},
es∧ denotes the linear isomorphism

det ZI −→ det ZJ ,

u 
→ es ∧ u .

Recall that if L is a finitely generated Z-module and X is an object of C,
the object X ⊗ L is well defined in C. (See Remark 8.5.7.)

Let S be a set and let Σ be a family of finite subsets of S. We shall assume

If I ⊂ J ⊂ K and I, K belong to Σ , then J belongs to Σ .(12.4.1)

In the construction below, if Σ is not finite we have to assume

C admits small projective limits .(12.4.2)

The set Σ is ordered by inclusion, hence defines a category. Recall that

HomΣ(I, J ) =

{
{pt} if I ⊂ J ,

∅ otherwise .

Let F : Σ −→ C be a functor. We shall write X I instead of F(I ) and f J I instead
of F(I −→ J ) (for I ⊂ J , I, J ∈ Σ). Hence f I I = idX I and fK J ◦ f J I = fK I , for
I ⊂ J ⊂ K with I, J, K ∈ Σ .

To these data we associate a complex in C as follows. Let |I | denote the
cardinal of I ∈ Σ . We set

Cn(F) =
∏

|I |=n,I∈Σ

X I ⊗ det ZI .

If J = I � {s}, we have the morphism:

ϕJ I := f J I ⊗ (es∧) : X I ⊗ det ZI −→ X J ⊗ det ZJ .(12.4.3)

Since for any J with |J | = n + 1 there are finitely many I with I ⊂ J , the
family of morphisms (12.4.3) define a morphism

Cn(F) −→
∏

|I |=n,I⊂J,I∈Σ

X I ⊗ det ZI ϕJ I−→ X J ⊗ det ZJ ,(12.4.4)

from which we deduce the morphism

dn
F : Cn(F) −→ Cn+1(F) .(12.4.5)

Lemma 12.4.1. We have dn+1
F ◦ dn

F = 0.
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Proof. Let I, J ∈ Σ , with J = I � {s} � {t}, s, t ∈ J \ I , s �= t , |I | = n. We
shall show that the composition ψJ I : X I ⊗ det ZI −→ X J ⊗ det ZJ induced by
dn+1

F ◦ dn
F is zero. Set for short Iu = I ∪ {u} (u = s, t). We have

ψJ I = f J Is ◦ f Is I ⊗ (et∧) ◦ (es∧) + f J It ◦ f It I ⊗ (es∧) ◦ (et∧)
= f J I ⊗ (et ∧ es ∧+es ∧ et∧)
= 0 .

q.e.d.

We shall denote by C•(F) the complex

C•(F) : 0 −→ C0(F)
d0

F−→ · · · −→ Cn(F)
dn

F−→ Cn+1(F) −→ · · · .(12.4.6)

Example 12.4.2. Let S be a finite set and let Σ be the family of all subsets
of S. Let X ∈ C and let { fs}s∈S be a family of endomorphisms of X satisfying
fs ◦ ft = ft ◦ fs for all s, t ∈ S. Define the functor F : Σ −→ C as follows. For
I ∈ Σ , set X I = X . For I ⊂ J , define f J I : X I −→ X J as f J I =

∏
s∈J\I fs .

In this situation, the complex C•(F) is called the Koszul complex associated
with the family { fs}s∈S. This complex is usually denoted by K•(X, { fs}s∈S). If
H n(K•(X, { fs}s∈S)) � 0 for n �= card(S), we say that { fs}s∈S is a quasi-regular
family.

We shall now give a technique for computing these complexes. Let Σ be
as above, and let Σ0 be a subset of Σ satisfying

(12.4.7) Σ � I ⊂ J ∈ Σ0 =⇒ I ∈ Σ0 .

Set Σ1 = Σ \ Σ0. We have Σ1 � I ⊂ J ∈ Σ =⇒ J ∈ Σ1. Clearly, both Σ0

and Σ1 satisfy hypothesis (12.4.1).
If F : Σ −→ C is a functor, we denote by Fi (i = 0, 1) its restriction to Σi .

Hence, we have the complexes C•(Fi ), i = 0, 1 and Cn(F) � Cn(F0)⊕Cn(F1).
For i = 0, 1 there are natural morphisms Cn(Fi ) −→ Cn(F) and Cn(F) −→
Cn(Fi ). We define ϕn : Cn−1(F0) −→ Cn(F1) as the composition

ϕn : Cn−1(F0) −→ Cn−1(F)
dn−1

F−−→ Cn(F) −→ Cn(F1) .

Theorem 12.4.3. (i) The ϕn’s define a morphism of complexes

ϕ : C•(F0)[−1] −→ C•(F1) .

(ii) The complex C•(F) is isomorphic to Mc(ϕ), the mapping cone of ϕ.
(iii) There is a d.t.

C•(F1) −→ C•(F) −→ C•(F0)
+1−→

and a long exact sequence

· · · −→ H n(C•(F1)) −→ H n(C•(F)) −→ H n(C•(F0)) −→ · · · .
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Proof. (i) Applying Proposition 11.1.4, we obtain that ϕ is a morphism of
complexes if and only if Mc(ϕ) is a complex. Hence (i) follows from (ii).
(ii) We have Mc(ϕ)n = (C•(F0)[−1])n+1⊕Cn(F1) � Cn(F0)⊕Cn(F1) � Cn(F).
The differential dn

Mc(ϕ) : Mc(ϕ)n −→ Mc(ϕ)n+1 is given by the matrix

dn
Mc(ϕ) =

(
dn

F0
0

ϕn+1 dn
F1

)
.

The differential dn
F : Cn(F0)⊕Cn(F1) −→ Cn+1(F0)⊕Cn+1(F1) is given by the

same matrix since dn
F induces the morphism 0 from Cn(F1) to Cn+1(F0).

(iii) follows from (ii). q.e.d.

Example 12.4.4. Let (S,Σ) be as in Example 12.4.2. Let s0 ∈ S. Then Σ0 =
{I ∈ Σ ; s0 /∈ I } and Σ1 = {J ∈ Σ ; s0 ∈ J } satisfy the above conditions.

Let I ∈ Σ0. Then ϕ : Cn(F0) −→ Cn+1(F1) induces the morphism

f(I�{s0})I ⊗ es0∧ : X I ⊗ det ZI −→ X I�{s0} ⊗ det Z I�{s0} .

Recall that X I = X and f(I�{s0})I = fs0 . The morphisms

idX ⊗es0∧ : X I ⊗ det ZI −→ X I�{s0} ⊗ det ZI�{s0}

induce an isomorphism C•(F0) � C•(F1)[1]. Hence, we get a long exact se-
quence

· · · −→ H n(C•(F0))
fs0−→ H n(C•(F0)) −→ H n+1(C•(F)) −→ · · · .

Hence, if { fs}s∈S\s0 is a quasi-regular family and fs0 : X/
∑

s �=s0
Im fs −→

X/
∑

s �=s0
Im fs is a monomorphism, then { fs}s∈S is a quasi-regular family.

Remark 12.4.5. We may also encounter contravariant functors, that is, func-
tors G : Σop −→ C. In such a case if Σ is not finite, we have to assume:

C admits small inductive limits .(12.4.8)

For I ∈ Σ and for I ⊂ J , we set X I = G(I ), gJ I = G(J −→ I ),

Cn(G) =
⊕
|I |=n

X I ⊗ det ZI .

If J = I � {s} we denote by

es" : det ZJ −→ det ZI

the isomorphism inverse to es∧, and we get the morphism:

gJ I ⊗ (es") : X J ⊗ det ZJ −→ X I ⊗ det ZI

from which we deduce the morphism dG
n : Cn(G) −→ Cn−1(G). We have dG

n−1 ◦
dG

n = 0 and denote by C•(G) the complex

C•(G) : · · · −→ Cn(G)
dG

n−→ Cn−1(G) −→ · · · dG−1−−→ C0(G) −→ 0 .(12.4.9)

We leave to the reader the translation of Theorem 12.4.3 in this framework.
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Distributive Families of Subobjects

As an application of Theorem 12.4.3, we shall study distributive families of
subobjects of an object. References are made to [33, 60].

Let C be an abelian category and let X ∈ C. Let {Xs}s∈S be a family of
subobjects (see Notation 8.3.10) of X indexed by a finite subset S. Let Σ be
the set of subsets of S. For I ∈ Σ , set X I =

⋂
s∈I Xs and X∅ = X . Then

I 
→ X I gives a functor from Σop to C. We get a complex

X•(X, {Xs}s∈S):=

· · · −→⊕
|I |=n X I ⊗ det ZI −→ · · · −→⊕

s∈S Xs ⊗Zes −→ X −→ 0,
(12.4.10)

where X stands in degree 0.
Note that

H0

(
X•(X, {Xs}s∈S)

) � X/
(∑

s∈S

Xs
)

.(12.4.11)

Definition 12.4.6. A family {Xs}s∈S of subobjects of X is distributive if
Hn
(
X•(X, {Xs}s∈S′)

) � 0 for any n �= 0 and any subset S′ of S.

Remark that for a subobject Y of X and a finite family {Xs}s∈S of subob-
jects of Y , the family {Xs}s∈S is distributive as a family of subobjects of X if
and only if it is so as a family of subobjects of Y .

Assuming card(S) ≥ 1, let us take s0 ∈ S and set S0 = S \ {s0}. Then for
I ⊂ S0,

X I∪{s0} =
⋂
s∈I

(Xs0 ∩ Xs) .

Applying Theorem 12.4.3, we obtain a d.t.

(12.4.12)

X•(Xs0 , {Xs0 ∩ Xs}s∈S0) −→ X•(X, {Xs}s∈S0) −→ X•(X, {Xs}s∈S)
+1−−→ .

Lemma 12.4.7. Assume that Hn
(
X•(X, {Xs}s∈S0)

) � 0 for n �= 0. Then the
following two conditions are equivalent:

(a) Hn
(
X•(X, {Xs}s∈S)

) � 0 for n �= 0,
(b) Hn

(
X•(Xs0 , {Xs0 ∩ Xs}s∈S0)

) � 0 for n �= 0 and Xs0 ∩
(∑

s∈S0
Xs
)

=∑
s∈S0

(Xs0 ∩ Xs).

Proof. By the d.t. (12.4.12), we have an exact sequence

0 −→ H1

(
X•(X, {Xs}s∈S)

) −→ H0

(
X•(Xs0 , {Xs0 ∩ Xs}s∈S0)

)
−→ H0

(
X•(X, {Xs}s∈S0)

)
and isomorphisms
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Hn
(
X•(X, {Xs}s∈S)

) ∼−→ Hn−1

(
X•(Xs0 , {Xs0 ∩ Xs}s∈S0)

)
for n > 1. Since

Ker
(

Xs0/
∑
s∈S0

(Xs0 ∩ Xs) −→ X/
∑
s∈S0

Xs

)
=
(
Xs0 ∩

∑
s∈S0

Xs
)
/
(∑

s∈S0

(Xs0 ∩ Xs)
)
,

the result follows. q.e.d.

The next result gives a tool to proceed by induction in order to prove that
a finite family of subobjects of X is distributive.

Proposition 12.4.8. Let s0 ∈ S and set S0 = S \ {s0}. Let {Xs}s∈S be a family
of subobjects of X . Then the following conditions are equivalent.

(a) {Xs}s∈S is a distributive family of subobjects of X ,
(b) the conditions (i)–(iii) below are satisfied:

(i) {Xs}s∈S0 is a distributive family of subobjects of X ,
(ii) {Xs0 ∩ Xs}s∈S0 is a distributive family of subobjects of Xs0 ,
(iii) Xs0 ∩ (

∑
s∈I Xs) =

∑
s∈I (Xs0 ∩ Xs) for any subset I of S0.

Proof. (a) ⇒ (b). Condition (b) (i) is clearly satisfied. For any I ⊂ S0,
Hn
(
X•(X, {Xs}s∈I )

)
and Hn

(
X•(X, {Xs}s∈I∪{s0})

)
vanish for n �= 0. Hence (b)

(ii) and (b) (iii) follow from Lemma 12.4.7.

(b) ⇒ (a). Let I ⊂ S. Let us show that Hn
(
X•(X, {Xs}s∈I )

)
vanishes for

n �= 0. If s0 /∈ I , it is obvious since {Xs}s∈S0 is distributive. Assume s0 ∈ I .
Then Hn

(
X•(X, {Xs}s∈I\{s0})

) � 0 for n �= 0 since {Xs}s∈S0 is distributive, and
Hn
(
X•(Xs0 , {Xs0 ∩ Xs}s∈I\{s0})

) � 0 since {Xs0 ∩ Xs}s∈S0 is distributive. More-
over,

Xs0 ∩
( ∑

s∈I\{s0}
Xs
)

=
∑

s∈I\{s0}
(Xs0 ∩ Xs) .

Hence the result follows from Lemma 12.4.7. q.e.d.

Example 12.4.9. (i) If X = Xs for some s, then Hn
(
X•(X, {Xs}s∈S)

) � 0 for
all n by (12.4.12).

(ii) Hn
(
X•(X, {Xs}s∈S)

) � 0 unless 0 ≤ n ≤ |S| − 2.
(iii) If card(S) ≤ 2, the family {Xs}s∈S is distributive.
(iv) {X1, X2, X3} is a distributive family of subobjects of X if and only if

X1 ∩ (X2 + X3) ⊂ (X1 ∩ X2) + (X1 ∩ X3). Of course, the last condition is
equivalent to X1 ∩ (X2 + X3) = (X1 ∩ X2) + (X1 ∩ X3).

(v) {X1, X2, X3, X4} is a distributive family of subobjects of X if and only{
Xi ∩ (X j + Xk) = (Xi ∩ X j ) + (Xi ∩ Xk) for 1 ≤ i < j < k ≤ 4,
X1 ∩ (X2 + X3 + X4) = (X1 ∩ X2) + (X1 ∩ X3) + (X1 ∩ X4).
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Let us give some properties of distributive families.

Proposition 12.4.10. Let {Xs}s∈S be a distributive family of subobjects of X
and let S′ = S � {0}.

(i) Setting X0 = X or X0 = 0, the family {Xs}s∈S′ is distributive.
(ii) Let s0 ∈ S. Setting X0 = Xs0 , the family {Xs}s∈S′ is distributive.
(iii) Let s1, s2 ∈ S. Setting X0 = Xs1 + Xs2 , the family {Xs}s∈S′ is distributive.
(iv) Let s1, s2 ∈ S. Setting X0 = Xs1 ∩ Xs2 , the family {Xs}s∈S′ is distributive.

Proof. (i) In both cases, {X0 ∩ Xs}s∈S is distributive and for any I ⊂ S, X0 ∩(∑
s∈I Xs

)
=
∑

s∈I (X0 ∩ Xs).

(ii) {X0∩Xs}s∈S is distributive by (i) and Proposition 12.4.8 (a)⇒(b)(i). Hence,
it is enough to show that

Xs0 ∩
(∑

s∈I

Xs
)

=
∑
s∈I

(Xs0 ∩ Xs) for any I ⊂ S .(12.4.13)

If s0 /∈ I , it is a consequence of Proposition 12.4.8. If s0 ∈ I , both terms of
(12.4.13) are equal to Xs0 .

(iii) By (ii), we may assume that s1 �= s2. We proceed by induction on n =
card(S). If n ≤ 1, the result is clear.
If n = 2, the result follows from X0 ∩ (Xs1 + Xs2) = (X0 ∩ Xs1) + (X0 ∩ Xs2)
(see Example 12.4.9 (iv)).
Assume n ≥ 3. Take s0 ∈ S\{s1, s2}. Then {Xs}s∈S\{s0} is distributive, and hence
{Xs}s∈S′\{s0} is distributive by the induction hypothesis. Since {X0, Xs1 , Xs2} is
distributive, Xs0 ∩ X0 = (Xs0 ∩ Xs1) + (Xs0 ∩ Xs2). Since {Xs0 ∩ Xs}s∈S\{s0} is
distributive, {Xs0 ∩ Xs}s∈S′\{s0} is distributive by the induction hypothesis. In
order to apply Proposition 12.4.8 and conclude, it remains to show that

Xs0 ∩
(∑

s∈I

Xs
)

=
∑
s∈I

(Xs0 ∩ Xs) for any I ⊂ S′ \ {s0} .(12.4.14)

If 0 �∈ I , this is obvious. If 0 ∈ I , the left hand side of (12.4.14) is equal to

Xs0 ∩
(
Xs1 + Xs2 +

∑
s∈I\0

Xs
)

= Xs0 ∩ Xs1 + Xs0 ∩ Xs2 +
∑

s∈I\0
(Xs0 ∩ Xs)

⊂
∑
s∈I

(Xs0 ∩ Xs) .

(iv) Since {Xs1 ∩ Xs}s∈S is distributive, {Xs1 ∩ Xs2 ∩ Xs}s∈S is distributive. For
any I ⊂ S,

X0 ∩
(∑

s∈I

Xs
)

= X0 ∩
(∑

s∈I

Xs1 ∩ Xs
)

=
∑
s∈I

(X0 ∩ Xs) ,
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where the last equality follows from the distributivity of {Xs1 ∩ Xs}s∈S. Hence,
{Xs}s∈S′ is distributive by Proposition 12.4.8. q.e.d.

Corollary 12.4.11. Let {Xs}s∈S be a finite family of subobjects of X ∈ C. Let
S be the smallest family of subobjects that contains the Xs ’s and closed by the
operations + and ∩. Then the following conditions are equivalent:

(i) {Xs}s∈S is distributive,
(ii) U ∩ (V + W ) = (U ∩ V ) + (U ∩ W ) for any U, V, W ∈ S.

Proof. (i) ⇒ (ii). By Proposition 12.4.10, for any finite subset J of S, the
family {Xs}s∈J is distributive.

(ii) ⇒ (i). We argue by induction on card(S). Take s0 ∈ S. Then {Xs}s∈S\{s0}
and {Xs0 ∩ Xs}s∈S\{s0} are distributive by the induction hypothesis and Xs0 ∩
(
∑

s∈I Xs) =
∑

s∈I (Xs0 ∩ Xs) for any I ⊂ S. Hence, the result follows from
Proposition 12.4.8. q.e.d.

See also Exercises 12.5–12.7 for further properties of distributive families.

12.5 Double Complexes

Let C be an abelian category and consider a double complex in C:

X := (X•,•, dX ) = {Xn,m, d ′n,m
X , d ′′n,m

X ; (n, m) ∈ Z× Z} .

We shall make use of the two functors FI and FI I defined in Notation 11.5.1.
The functors τ

≤n
I , τ̃

≤n
I , τ

≥n
I , τ̃

≥n
I from C2(C) −→ C2(C) and H n

I ( • ) from
C2(C) −→ C(C) are defined by using the functor FI , and similarly τ

≤n
I I , etc.

by using FI I . For example, we set

τ
≤n
I = (F−1

I ) ◦ τ≤n ◦ FI .

Then H n
I (X) is the simple complex

· · · d ′′•,m−1
�� H n

I (X•,m) d ′′•,m �� H n
I (X•,m+1) d ′′•,m+1

�� · · · ,

where H n
I (X•,m) is the n-th cohomology object of the complex

· · · d ′ p−1,m
�� X p,m d ′ p,m

�� X p+1,m d ′ p+1,m
�� · · · .

We denote by HI (X) the double complex whose rows are the H n
I (X)’s and

with zero vertical differentials H n
I (X) −→ H n+1

I (X). Iterating this operation,
we find a complex HI I HI (X) with (vertical and horizontal) zero differentials.

In order to prove Theorem 12.5.4 below, we prepare some lemmas.

Lemma 12.5.1. The functor tot : C2
f (C) −→ C(C) is exact.
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The proof is straightforward.

Lemma 12.5.2. Let (X•,•, d ′, d ′′) ∈ C2
f (C) be a double complex. Then the

natural morphism tot(τ≤q
I (X)) → tot(̃τ≤q

I (X)) is a qis for all q.

Proof. We have an exact sequence in C(C(C))

0 −→ τ
≤q
I (X) −→ τ̃

≤q
I (X) −→ Mc(idIm d ′qX [−q−1]) −→ 0 .

Applying Lemma 12.5.1, we get the exact sequence

0 −→ tot(τ≤q
I (X)) −→ tot(̃τ≤q

I (X)) −→ tot(Mc(idIm d ′qX [−q−1])) −→ 0 .

Since tot(Mc(idIm d ′qX [−q−1])) � Mc(idIm d ′qX [−q−1]) and this complex is exact, we
get the result by Theorem 12.3.3. q.e.d.

Lemma 12.5.3. Let X ∈ C2
f (C) be a double complex. Then for each q, there

is an exact sequence in C(C)

0 → tot(̃τ≤q−1
I (X)) → tot(τ≤q

I (X)) → Hq
I (X)[−q] → 0 .

Proof. Consider the functorial exact sequence in C(C(C)):

0 → τ̃≤q−1(FI (X)) → τ≤q(FI (X)) → Hq(FI (X))[−q] → 0

and apply the exact functor tot ◦ F−1
I . It is immediately checked that (tot ◦

F−1
I )(Hq(FI (X))[−q]) � Hq

I (X)[−q]. q.e.d.

Theorem 12.5.4. Let f : X −→ Y be a morphism in C2
f (C) and assume that

f induces an isomorphism

f : HI I HI (X) ∼−→ HI I HI (Y ) .

Then tot( f ) : tot(X) −→ tot(Y ) is a qis.

Proof. First note that the hypothesis is equivalent to saying that for each q
the morphism of complexes Hq

I ( f ) : Hq
I (X) → Hq

I (Y ) is a qis.
Since H n

I τ
≥q
I (X) is isomorphic to H n

I (X) or 0 depending whether n ≥ q or
not, the hypothesis entails the isomorphisms

HI I HI (τ
≥q
I (X)) ∼−→ HI I HI (τ

≥q
I (Y ))

for all q ∈ Z. For a given k,

H k(tot(X)) � H k(tot(τ≥q
I (X)) for q � 0 ,

and similarly with Y instead of X . Hence, replacing X and Y with τ
≥q
I (X) and

τ
≥q
I (Y ), we may assume from the beginning that τ

≤q
I (X) and τ

≤q
I (Y ) are zero

for q � 0.
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Applying Lemma 12.5.3, we obtain a commutative diagram of exact se-
quences in C(C):

0 �� tot(̃τ≤q−1
I (X)) ��

tot(τ̃
≤q−1
I ( f ))

��

tot(τ≤q
I (X)) ��

tot(τ
≤q
I ( f ))

��

Hq
I (X)[−q] ��

Hq
I ( f )[−q]

��

0

0 �� tot(̃τ≤q−1
I (Y )) �� tot(τ≤q

I (Y )) �� Hq
I (Y )[−q] �� 0.

(12.5.1)

Let us denote by rq , mq , lq the vertical arrow on the right, on the middle, and
on the left in (12.5.1), respectively. By the hypothesis, the arrow rq is a qis
for all q. Assuming that the arrow lq is a qis, we get that the arrow mq is a
qis. By Lemma 12.5.2, we deduce that the arrow lq+1 is a qis. Since lq is the
arrow 0 −→ 0 for q � 0, the induction proceeds and all lq ’s are qis. Then the
result follows from

H k(tot(̃τ≤q
I ( f )) � H k(tot( f )) for q � 0 .

q.e.d.

Corollary 12.5.5. Let X be a double complex in C2
f (C).

(i) Assume that all rows of X are exact. Then tot(X) is qis to 0.
(ii) Assume that the rows X j,• of X are are exact for all j �= p. Then tot(X)

is qis to X p,•[−p].
(iii) Assume that all rows X j,• and columns X•, j of X are exact for j �= 0.

Then H p(X0,•) � H p(X•,0) for all p.

Proof. (i) is obvious.
(ii) We set σ

≥p
I = F−1

I ◦ σ≥p ◦ FI , where σ≥p is the stupid truncation functor
given in Definition 11.3.11 and FI is given in Notation 11.5.1. We define simi-
larly σ

≤p
I . Then the result follows by applying Theorem 12.5.4 to the morphism

σ
≥p
I (X) −→ X , next to the morphism σ

≥p
I (X) −→ σ

≤p
I σ

≥p
I (X) � X p•[−p].

(iii) Both X0,• and X•,0 are qis to tot(X) by (ii). q.e.d.

When C is the category Mod(R) of modules over a ring R and all rows X j,•
and columns X•, j of X are 0 for j < 0, the isomorphism in Corollary 12.5.5
(iii) may be described by the so-called “Weil procedure”.

Let x p,0 ∈ X p,0, with d ′x p,0 = 0 which represents y ∈ H p(X•,0). Define
x p,1 = d ′′x p,0. Then d ′x p,1 = 0, and the first column being exact, there exists
x p−1,1 ∈ X p−1,1 with d ′x p−1,1 = x p,1. This procedure can be iterated until
getting x0,p ∈ X0,p. Since d ′d ′′x0,p = 0, and d ′ is injective on X0,p for p > 0
by the hypothesis, we get d ′′x0,p = 0. The class of x0,p in H p(X0,•) will be
the image of y by the Weil procedure. Of course, it remains to check that
this image does not depend of the various choices we have made, and that it
induces an isomorphism.

This procedure can be visualized by the diagram:
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x0,p

d ′ ��

d ′′ �� 0

x1,p−1 d ′′ ��

��

x1,p

x p−1,1

d ′ ��

��

x p,0

d ′ ��

d ′′ �� x p,1

0.

Exercises

Exercise 12.1. Let C be an abelian category and let X be a double complex
with Xi, j = 0 for i < 0 or j < 0. Assume that all rows and all columns of
X are exact, and denote by Y the double complex obtained by replacing X0, j

and Xi,0 by 0 for all j and all i . Prove that there is a qis X0,0 −→ tot(Y ).

Exercise 12.2. Let C, C ′ and C ′′ be abelian categories, F : C × C ′ −→ C ′′ an
exact bifunctor. Let X −→ I and Y −→ J be two qis in C+(C) and C+(C ′)
respectively. Prove that F•(X, Y ) −→ F•(I, J ) is a qis.

Exercise 12.3. Let k be a field and let X, Y ∈ C−(Mod(k)).
(i) Prove the isomorphism H n(tot(X ⊗ Y )) �⊕

i+ j=n Hi (X)⊗ H j (Y ).
(ii) Denote by v the isomorphism M ⊗ N −→ N ⊗ M in Mod(k). With the
notations and the help of Proposition 11.6.5, prove that the diagram below
commutes:

H n(tot(X ⊗ Y ))

r
��

∼ ��
⊕

i+ j=n Hi (X)⊗ H j (Y )

(−)i j v
��

H n(tot(Y ⊗ X)) ∼ ��
⊕

i+ j=n H j (Y )⊗ Hi (X).

Exercise 12.4. Let C be an abelian category, X ∈ C, and let { fi }i=1,...,n be
a sequence of commuting endomorphisms of X . The sequence { f1, . . . , fn} is
regular if for each i (1 ≤ i ≤ n), fi induces a monomorphism on X/

∑
j<i Im f j .

(Hence, f1 is a monomorphism, f2 induces a monomorphism on X/ Im f1, etc.)
Prove that if ( f1, . . . , fn) is a regular sequence, then it is quasi-regular (see

Example 12.4.2).

Exercise 12.5. Let C be an abelian category, and let Cop be its opposite
category. Let {Xs}s∈S be a finite family of subobjects of an object X of C. Let
Ys be the subobject of Xop ∈ Cop defined as the kernel of Xop −→ Xop

s . Prove
that {Ys}s∈S is distributive if and only if {Xs}s∈S is distributive.



Exercises to Chap. 12 317

Exercise 12.6. Let C be an abelian category. Let {Si }i∈I be a finite family of
non-empty finite sets and S =

⊔
i∈I Si . Let {Xs}s∈S be a family of subobjects of

an object X in C. Assume that for any i ∈ I and any s, s ′ ∈ Si , we have either
Xs ⊂ Xs ′ or Xs ′ ⊂ Xs . Prove that the following two conditions are equivalent:

(a) the family {Xs}s∈S is distributive,
(b) for any si ∈ Si (i ∈ I ), {Xsi }i∈I is distributive.

Exercise 12.7. Let C be an abelian category. An object X ∈ C is semisimple
if for any subobject Y ↪→ X , there exist Z and an isomorphism Y ⊕ Z ∼−→ X .
Equivalently, any monomorphism Y�X admits a cosection, or any epimor-
phism X�W admits a section.

Assume that X is semisimple and let {Xs}s∈S be a finite family of subobjects
of X . Prove that the two conditions below are equivalent:

(a) the family {Xs}s∈S is distributive,
(b) there exists a finite direct sum decomposition X �⊕

a∈A Ya such that each
Xs is a direct sum of some of the Ya ’s (a ∈ A).

Exercise 12.8. We regard the ordered set N as a category. Let A be a
ring and let β be a projective system in Mod(A) indexed by N, that is,
β ∈ Fct(Nop,Mod(A)). Set β(n) = Mn and denote by vnp : Mp −→ Mn the
linear map associated with n ≤ p. The projective system β satisfies the Mittag-
Leffler condition (or M-L condition, for short) if for any n ∈ N, the sequence
{vnp(Mp)}p≥n of submodules of Mn is stationary. Consider an exact sequence
in Fct(Nop,Mod(A)):

0 −→ β ′ −→ β −→ β ′′ −→ 0 .

(i) Prove that if β ′ and β ′′ satisfy the M-L condition, then so does β.
(ii) Prove that if β satisfies the M-L condition, then so does β ′′.
(iii) Prove that if β ′ satisfies the M-L condition, then the sequence 0 −→
lim←−β ′ −→ lim←−β −→ lim←−β ′′ −→ 0 is exact.
(iv) Prove that if β satisfies the M-L condition then Rnπ(“lim←−” β) � 0 for
n �= 0 (see page 335).
(Hint: see [29] or [38, Proposition 1.12.2].)

Exercise 12.9. We regard the ordered set R as a category. Let A be a ring.
Consider a functor β : R −→ Mod(A) and set Xs := β(s) for s ∈ R. Consider
the maps

λs : lim−→
t<s

Xt −→ Xs ,

µs : Xs −→ lim←−
t>s

Xt .

Prove that the maps β(t −→ s) : Xt −→ Xs are injective (resp. surjective) for
all t ≤ s if λs and µs are injective (resp. surjective) for all s ∈ R. (Hint:
see [38, Proposition 1.12.6].)
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Exercise 12.10. Let A be a ring. Consider a functor β
• : R −→ C(Mod(A)).

Set β
•

t := β
• (t) ∈ C(Mod(A)) for t ∈ R. Denote by

an
s : lim−→

t<s

H n(β •
t ) −→ H n(β •

s ) ,

bn
s : H n(β •

s ) −→ lim←−
t>s

H n(β •
t ) .

the natural maps. We assume

(a) βn
s −→ βn

t is surjective for all n ∈ Z and all s ≤ t ∈ R,
(b) βn

s
∼−→ lim←−

t>s

βn
t for all n ∈ Z and all s ∈ R,

(c) an
s is an isomorphism for all n ∈ Z, all s ∈ R.

(i) Prove that bn
s is an epimorphism for all n ∈ Z, all ∈ R.

(ii) Let n0 ∈ Z, and assume that bn0−1
s is an isomorphism for all s ∈ R. Prove

that bn0
s is an isomorphism for all s ∈ R.

(iii) Assume that there exists n0 ∈ Z such that bn
s is an isomorphism for all

s ∈ R and all n ≤ n0. Prove that H n(β •
t ) −→ H n(β •

s ) is an isomorphism for all
n ∈ Z and all t ≤ s.
(Hint: use Exercises 12.8, 12.9 or see [38, Proposition 2.7.2].)
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Derived Categories

In this chapter we study derived categories and derived functors. Most of the
results concerning derived categories bounded form below (or from above)
are well-known, besides perhaps Theorem 13.3.7 which is useful when deriv-
ing abelian categories which do not admit enough injectives, such as abelian
categories of ind-objects.

13.1 Derived Categories

Let (A, T ) be an abelian category with translation. Recall (Corollary 12.2.5)
that the cohomology functor H : Ac −→ A induces a cohomological functor

H : Kc(A) −→ A.(13.1.1)

Let N be the full subcategory of Kc(A) consisting of objects X such that
H(X) � 0, that is, X is qis to 0. Since H is cohomological, the category N is
a triangulated subcategory of Kc(A). We shall localize Kc(A) with respect to
N (see Sects. 7.1 and 10.2).

Definition 13.1.1. We denote by Dc(A) the category Kc(A)/N and call it
the derived category of (A, T ).

Note that Dc(A) is triangulated by Theorem 10.2.3. By the properties of the
localization, a quasi-isomorphism in Kc(A) (or in Ac) becomes an isomorphism
in Dc(A). One shall be aware that the category Dc(A) may be a big category.

From now on, we shall restrict our study to the case where Ac is the
category of complexes of an abelian category.

Let C be an abelian category. Recall that the categories C∗(C) (∗ =
ub, b, +, −, [a, b], ≥ a, ≤ b) are defined in Notations 11.3.4, and we define
similarly the full subcategories K∗(C) of K(C) by Ob(K∗(C)) = Ob(C∗(C)).
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Therefore, C∗(C) −→ K∗(C) is essentially surjective. Note that K∗(C) is a tri-
angulated category for ∗ = ub,+,−,b. For ∗ = ub,+,−,b, define

N ∗(C) =
{

X ∈ K∗(C) ; H k(X) � 0 for all k
}

.

Clearly, N ∗(C) is a null system in K∗(C).

Definition 13.1.2. The triangulated categories D∗(C) (∗ = ub,+,−,b) are
defined as K∗(C)/N ∗(C) and are called the derived categories of C.

Notation 13.1.3. (i) We denote by Q the localization functor K∗(C) −→
D∗(C). If there is no risk of confusion, we still denote by Q the com-
position C∗(C) −→ K∗(C) −→ D∗(C).

(ii) Recall that when dealing with complexes in additive categories, we denote
by [1] the translation functor and we write X [k] instead of T k(X) for k ∈
Z. We shall also write X −→ Y −→ Z

+1−→ instead of X −→ Y −→ Z −→ X [1]
to denote a triangle in the homotopy category associated with an additive
category.

Recall that to a null system N we have associated in (10.2.1) a multiplicative
system denoted by N Q. It will be more intuitive to use here another notation
for N Q when N = Nub(C):

Qis :=
{

f ∈ Mor(K(C)) ; f is a quasi-isomorphism
}

.(13.1.2)

Hence

HomD(C)(X, Y ) � lim−→
(X ′−→X)∈Qis

HomK(C)(X ′, Y ) ,

� lim−→
(Y−→Y ′)∈Qis

HomK(C)(X, Y ′) ,

� lim−→
(X ′−→X)∈Qis,(Y−→Y ′)∈Qis

HomK(C)(X ′, Y ′) .

Remark 13.1.4. (i) Let X ∈ K(C), and let Q(X) denote its image in D(C). It
follows from the result of Exercise 10.11 that:

Q(X) � 0 ⇐⇒ H n(X) � 0 for all n .

(ii) Let f : X −→ Y be a morphism in C(C). Then f = 0 in D(C) if and only if
there exist X ′ and a qis g : X ′ −→ X such that f ◦ g is homotopic to 0, or else,
if and only if there exist Y ′ and a qis h : Y −→ Y ′ such that h ◦ f is homotopic
to 0.

Proposition 13.1.5. (i) For n ∈ Z, the functor H n : D(C) −→ C is well
defined and is a cohomological functor.

(ii) A morphism f : X −→ Y in D(C) is an isomorphism if and only if
H n( f ) : H n(X) −→ H n(Y ) is an isomorphism for all n.
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(iii) For n ∈ Z, the functors τ̃≤n, τ≤n : D(C) −→ D−(C), as well as the functors
τ̃≥n, τ≥n : D(C) −→ D+(C), are well defined and isomorphic.

(iv) For n ∈ Z, the functor τ≤n induces a functor D+(C) −→ Db(C) and τ≥n

induces a functor D−(C) −→ Db(C).

Proof. (i)–(ii) Since H n(X) � 0 for X ∈ N(C), the first assertion holds. The
second one follows from the result of Exercise 10.11.
(iii) If f : X −→ Y is a qis in K(C), then τ≤n( f ) and τ≥n( f ) are qis. Moreover,
for X ∈ K(C), the morphisms τ≤n(X) −→ τ̃≤n(X) and τ̃≥n(X) −→ τ̃≥n(X) are
qis. (See (12.3.3).)
(iv) is obvious. q.e.d.

Notation 13.1.6. We shall sometimes write τ>a and τ<a instead of τ≥a+1 and
τ≤a−1, respectively.

To a d.t. X
f−→ Y

g−→ Z
+1−→ in D(C), the cohomological functor H0 associates

a long exact sequence in C:

· · · −→ H k(X) −→ H k(Y ) −→ H k(Z) −→ H k+1(X) −→ · · · .(13.1.3)

For X ∈ K(C), recall that the categories QisX and QisX are defined in Defi-
nition 7.1.9. They are filtrant full subcategories of K(C)X and K(C)X , respec-
tively. If J is a full subcategory of K(C)X , we denote by QisX ∩ J the full
subcategory of QisX consisting of objects which belong to J . We use similar
notations when replacing QisX and K(C)X with QisX and K(C)X .

Lemma 13.1.7. (i) For X ∈ K≤a(C), the categories QisX ∩ K≤a(C)X and
QisX ∩K−(C)X are co-cofinal to QisX .

(ii) For X ∈ K≥a(C), the categories QisX ∩K≥a(C)X and QisX ∩K+(C)X are
cofinal to QisX .

Proof. The two statements are equivalent by reversing the arrows. Let us
prove (ii).

The category QisX ∩K≥a(C)X is a full subcategory of the filtrant category
QisX , and for any object (X −→ Y ) in QisX there exists a morphism (X −→
Y ) −→ (X −→ τ≥aY ). Hence, the result follows from Proposition 3.2.4. q.e.d.

Proposition 13.1.8. Let a ∈ Z, X ∈ K≤a(C) and Y ∈ K≥a(C). Then

HomD(C)(X, Y ) � HomC(H a(X), H a(Y )) .

Proof. Let X ∈ C≤a(C) and Y ∈ C≥a(C). The map HomC(C)(X, Y ) −→
HomK(C)(X, Y ) is an isomorphism and

HomC(C)(X, Y ) � {
u ∈ HomC(Xa, Y a) ; u ◦ da−1

X = 0, da
Y ◦ u = 0

}
� HomC(Coker da−1

X ,Ker da
Y )

� HomC(H a(X), H a(Y )) .
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Hence, HomK(C)(X, Y ) � HomC(H a(X), H a(Y )).
On the other hand, HomD(C)(X, Y ) � lim−→

(Y−→Y ′)∈Qis

HomK(C)(X, Y ′). Since

QisY ∩K≥a(C)Y is cofinal to QisY by Lemma 13.1.7, we have

HomD(C)(X, Y ) � lim−→
(Y−→Y ′)∈Qis∩K≥a(C)

HomK(C)(X, Y ′)

� HomC(H a(X), H a(Y )) .

q.e.d.

Notation 13.1.9. Let X, Y be objects of C. We set

Extk
C(X, Y ) = HomD(C)(X, Y [k]) .

Remark that the set Extk
C(X, Y ) is not necessarily U-small.

Proposition 13.1.10. Let X and Y be objects of C. Then

(i) Extk
C(X, Y ) � 0 for k < 0,

(ii) Ext0C(X, Y ) � HomC(X, Y ). In other words, the natural functor C −→
D(C) is fully faithful.

Proof. (i) and (ii) follow immediately from Proposition 13.1.8. q.e.d.

Notation 13.1.11. For −∞ ≤ a ≤ b ≤ ∞, we denote by D[a,b](C) the full
additive subcategory of D(C) consisting of objects X satisfying H j (X) � 0 for
j /∈ [a, b]. We set D≤a(C) := D[−∞,a](C) and D≥a(C) := D[a,∞](C).

Proposition 13.1.12. (i) For ∗ = +,−,b, the triangulated category D∗(C)
defined in Definition 13.1.2 is equivalent to the full triangulated subcate-
gory of D(C) consisting of objects X satisfying H j (X) � 0 for j � 0 in
case ∗ = +, H j (X) � 0 for j � 0 in case ∗ = −, and H j (X) � 0 for
| j | � 0 in case ∗ = b.

(ii) For −∞ ≤ a ≤ b ≤ ∞, the functor Q : K[a,b](C) −→ D[a,b](C) is essentially
surjective.

(iii) The category C is equivalent to the full subcategory of D(C) consisting of
objects X satisfying H j (X) � 0 for j �= 0.

(iv) For a ∈ Z and X, Y ∈ D(C), we have

HomD(C)(τ
≤a X, τ≥aY ) � HomC(H a(X), H a(Y )) .

In particular, HomD(C)(τ
≤a X, τ≥a+1Y ) � 0.

Proof. (i) (a) Let us treat the case ∗ = +, the other cases being similar. For
Y ∈ K≥a(C) and Z ∈ N(C), any morphism Z −→ Y in K(C) factors through
τ≥a Z ∈ N(C)∩K≥a(C). Applying Proposition 10.2.6, we find that the natural
functor D+(C) −→ D(C) is fully faithful.
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(b) Clearly, if Y ∈ D(C) belongs to the image of the functor D+(C) −→ D(C),
then H j (X) = 0 for j � 0.
(c) Conversely, let X ∈ K (C) with H j (X) � 0 for j < a. Then τ≥a X ∈ K+(C)
and the morphism X −→ τ≥a X in K (C) is a qis, hence an isomorphism in D(C).
(ii) The proof goes as in (i) (c).
(iii) By Proposition 13.1.10, the functor C −→ D(C) is fully faithful and by the
result in (ii) this functor is essentially surjective.
(iv) follows from (ii) and Proposition 13.1.8. q.e.d.

By Proposition 13.1.12 (iii), we often regard C as a full subcategory of D(C).

Proposition 13.1.13. Let 0 −→ X
f−→ Y

g−→ Z −→ 0 be an exact sequence in

C(C). Then there exists a d.t. X
f−→ Y

g−→ Z
+1−→ in D(C), and Z is isomorphic

to Mc( f ) in D(C).

Proof. Define ϕ : Mc( f ) −→ Z in C(C) by ϕn = (0, gn). By Corollary 12.3.5, ϕ

is a qis, hence an isomorphism in D(C). q.e.d.

Remark 13.1.14. Let 0 −→ X −→ Y −→ Z −→ 0 be an exact sequence in C. We get
a morphism γ : Z −→ X [1] in D(C). The morphism H k(γ ) : H k(Z) −→ H k+1(X)
is 0 for all k ∈ Z although γ is not the zero morphism in D(C) in general
(γ = 0 happens only if the short exact sequence splits). The morphism γ may
be described in K(C) by the morphisms with ϕ a qis:

X [1]
β( f )←−− Mc( f )

ϕ−→ Z i.e. γ = Q(β( f )) ◦ Q(ϕ)−1.

This is visualized by

Z := 0 �� 0 �� Z �� 0

Mc( f ) :=

β( f )

��

qisϕ





0 �� X





f ��

id

��

Y





��

��

0

X [1] := 0 �� X �� 0 �� 0.

Proposition 13.1.15. Let X ∈ D(C).

(i) There are d.t.’s in D(C):

τ≤n X −→ X −→ τ≥n+1X
+1−→ ,(13.1.4)

τ≤n−1X −→ τ≤n X −→ H n(X)[−n]
+1−→ ,(13.1.5)

H n(X)[−n] −→ τ≥n X −→ τ≥n+1X
+1−→ .(13.1.6)

(ii) Moreover, H n(X)[−n] � τ≤nτ≥n X � τ≥nτ≤n X .
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Proof. This follows from (12.3.4) and (12.3.2). q.e.d.

Proposition 13.1.16. The functor τ≤n : D(C) −→ D≤n(C) is a right adjoint to
the natural functor D≤n(C) −→ D(C) and τ≥n : D(C) −→ D≥n(C) is a left adjoint
to the natural functor D≥n(C) −→ D(C). In other words, there are functorial
isomorphisms

HomD(C)(X, Y ) � HomD(C)(X, τ≤nY ) for X ∈ D≤n(C) and Y ∈ D(C) ,

HomD(C)(X, Y ) � HomD(C)(τ
≥n X, Y ) for X ∈ D(C) and Y ∈ D≥n(C) .

Proof. By the d.t. (13.1.4) for Y , we have an exact sequence

HomD(C)(X, τ>nY [−1]) −→ HomD(C)(X, τ≤nY )(13.1.7)

−→ HomD(C)(X, Y ) −→ HomD(C)(X, τ>nY ) .

Since τ>nY [−1] and τ>nY belong to D>n(C), the first and fourth terms in
(13.1.7) vanish by Proposition 13.1.12 (iv).
The second isomorphism follows by reversing the arrows. q.e.d.

Lemma 13.1.17. An abelian category C is semisimple (see Definition 8.3.16)
if and only if Extk

C(X, Y ) = 0 for any k �= 0 and any X, Y ∈ C.

Proof. The condition is sufficient by the result of Exercise 13.5 and necessary
by that of Exercise 13.15. q.e.d.

Definition 13.1.18. An abelian category C is hereditary if Extk
C(X, Y ) = 0

for k ≥ 2 and X, Y ∈ C.

Example 13.1.19. If a ring R is a principal ideal domain (such as a field, or Z,
or k[x ] for a field k), then the category Mod(R) is hereditary.

Corollary 13.1.20. Let C be an abelian category and assume that C is hered-
itary. Let X ∈ Db(C). Then there exists a (non canonical) isomorphism

X � ⊕ j H j (X) [− j ] .

Proof. Arguing by induction on n, we shall prove the existence of an isomor-
phism τ≤n X � ⊕ j≤n H j (X) [− j ]. Consider the d.t. (13.1.5):

τ≤n−1X −→ τ≤n X −→ H n(X) [−n]
+1−→

and assume τ≤n−1X � ⊕ j<n H j (X) [− j ]. By the result of Exercise 10.4, it is
enough to show that

HomDb(C)(H n(X)[−n], H j (X) [− j + 1]) = Extn− j+1

C (H n(X), H j (X)) = 0

for j < n, which follows from the assumption and n − j + 1 ≥ 2. q.e.d.
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13.2 Resolutions

Lemma 13.2.1. Let J be a full additive subcategory of C and let X• ∈ C≥a(C)
for some a ∈ Z. Assume the condition (a) or (b) below:

(a) J is cogenerating in C (i.e., for any Y ∈ C there exists a monomorphism
Y�I with I ∈ J ),

(b) (i) J is closed by extensions and by cokernels of monomorphisms,
(ii) for any monomorphism I ′�Y in C with I ′ ∈ J , there exists a mor-

phism Y −→ I with I ∈ J such that the composition I ′ −→ I is a
monomorphism,

(iii) H j (X•) ∈ J for all j ∈ Z.

Then there exist Y • ∈ C≥a(J ) and a qis X• −→ Y •.

Proof. Let X• ∈ C≥a(C). We shall construct by induction on p a complex Y •≤p
in J and a morphism X• −→ Y •≤p:

X• : = · · · �� X p−1
d p−1

X ��

f p−1

��

X p

f p

��

d p
X �� X p+1

d p+1
X �� · · ·

Y •≤p : = · · ·
d p−2

Y

�� Y p−1

d p−1
Y

�� Y p

such that H k(X•) −→ H k(Y •≤p) is an isomorphism for k < p and is a monomor-
phism for k = p. We assume further that H p(Y •≤p) = Coker d p−1

Y belongs to
J in case (b).

For p < a it is enough to take Y •≤p = 0. Assuming that Y •≤p have been
constructed, we shall construct Y •≤p+1. Set:

Z p = Coker d p−1
Y ⊕Coker d p−1

X
Ker d p+1

X , W p = Coker d p−1
Y ⊕Coker d p−1

X
X p+1 .

There is a monomorphism Z p�W p. Consider the commutative diagram:

0 �� H p(X•) ��

id

��

Coker d p−1
X

��

��

Ker d p+1
X

��

��

H p+1(X•) ��

id

��

0

0 �� H p(X•) �� Coker d p−1
Y

�� Z p �� H p+1(X•) �� 0 .

By the result of Exercise 8.21 and the hypothesis that H p(X•) −→ Coker d p−1
Y is

a monomorphism, the rows are exact. Assuming hypothesis (b), we have Z p ∈
J since H p(X•), Coker d p−1

Y and H p+1(X•) belong to J . Hence, assuming
either (a) or (b), we may find a morphism W p −→ Y p+1 with Y p+1 ∈ J such
that the composition Z p −→ W p −→ Y p+1 is a monomorphism. The above
construction defines naturally f p+1 : X p+1 −→ Y p+1 and d p

Y : Y p −→ Y p+1. Let
Y •≤p+1 be the complex so constructed. Then
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H p(Y •
≤p+1) � Ker(Coker d p−1

Y −→ Y p+1)

� Ker(Coker d p−1
Y −→ Z p) � H p(X•) .

Moreover,

H p+1(X•) � Coker(Coker d p−1
Y −→ Z p)

� Coker(Coker d p−1
Y −→ Y p+1) � H p+1(Y •

≤p+1) .

In case (b),

Im d p
Y � Im(Coker(d p−1

Y ) −→ Z p) � Coker(H p(X•) −→ Coker(d p−1
Y ))

belongs to J , and the exact sequence 0 −→ Im d p
Y −→ Y p+1 −→ H p+1(Y •≤p+1) −→

0 implies that H p+1(Y •≤p+1) belongs to J . q.e.d.

We shall also consider the extra condition:{there exists a non-negative integer d such that, for any exact
sequence Yd −→ · · · −→ Y1 −→ Y −→ 0 with Y j ∈ J for 1 ≤ j ≤ d,
we have Y ∈ J .

(13.2.1)

It is clear that N+(J ) := N(C)∩K+(J ) and Nb(J ) := N(C)∩Kb(J ) are
null systems in K+(J ) and Kb(J ), respectively.

Proposition 13.2.2. (i) Assume that J is cogenerating in C. Then the nat-
ural functor θ+ : K+(J )/N+(J ) −→ D+(C) is an equivalence of cate-
gories.

(ii) If moreover J satisfies (13.2.1), then θb : Kb(J )/Nb(J ) −→ Db(C) is an
equivalence of categories.

Proof. Let X ∈ K+(C). By Lemma 13.2.1, there exist Y ∈ K+(J ) and a qis
X −→ Y .
(i) follows by Proposition 10.2.7 (i).
(ii) Let k ∈ Z and assume that X j � 0 for j ≥ k. Then τ≤ j Y −→ Y is a qis for
j ≥ k and the hypothesis implies that τ≤ j Y belongs to Kb(J ) for j > k + d.
This proves (ii) again by Proposition 10.2.7 (i). q.e.d.

Let us apply the preceding proposition to the full subcategory of injective
objects:

IC = {X ∈ C; X is injective} .

Proposition 13.2.3. Assume that C admits enough injectives. Then the func-
tor K+(IC) −→ D+(C) is an equivalence of categories.

If moreover the category IC satisfies condition (13.2.1), then Kb(IC) −→
Db(C) is an equivalence of categories.

Proof. By Proposition 13.2.2, it is enough to prove that if X• ∈ C+(IC) is qis
to 0, then X• is homotopic to 0. This is a particular case of the lemma below
(choose f = idX• in the lemma). q.e.d.
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Lemma 13.2.4. Let f • : X• −→ I • be a morphism in C(C). Assume that I •
belongs to C+(IC) and X• is exact. Then f • is homotopic to 0.

Proof. Consider the diagram:

Xk−2 �� Xk−1

f k−1

��

dk−1
X ��

sk−1

!!

Xk

sk

-.
f k

��

�� Xk+1

sk+1

-.
I k−2 �� I k−1

dk−1
I

�� I k �� I k+1.

We shall construct by induction morphisms sk : Xk −→ I k−1 satisfying:

f k = sk+1 ◦ dk
X + dk−1

I ◦ sk .(13.2.2)

For k � 0, we set sk = 0. Assume that we have constructed the sk (k ≤ a)
such that (13.2.2) is satisfied for k < a. We have f a ◦ da−1

X = da−1
I ◦ f a−1 =

da−1
I ◦ (sa ◦ da−1

X + da−2
I ◦ sa−1) = da−1

I ◦ sa ◦ da−1
X . Define ga = f a − da−1

I ◦ sa .
Then ga ◦ da−1

X = 0. Hence, ga factorizes through Coker da−1
X , and since the

complex X• is exact, the sequence 0 −→ Coker da−1
X −→ Xa+1 is exact. Consider

0 �� Coker da−1
X

ga

��

�� Xa+1

sa+1

+,
I a .

The dotted arrow may be completed since I a is injective. Then (13.2.2) holds
for k = a. q.e.d.

Corollary 13.2.5. Let C be an abelian U-category with enough injectives.
Then D+(C) is a U-category.

The next result will be useful when dealing with unbounded derived cat-
egories in Sect. 14.3.

Proposition 13.2.6. Let J be a full additive subcategory of C and assume:

(i) J is cogenerating,
(ii) (13.2.1) holds.

Then for any X ∈ C(C), there exist Y ∈ C(J ) and a qis X −→ Y . In particular,
there is an equivalence of triangulated categories K(J )/(K(J )∩N ) ∼−→D(C).

Proof. The second statement follows from the first one by Proposition 10.2.7.
The proof of the first statement decomposes into several steps.
(a) For any X ∈ C(C) and any n ∈ Z, there exists a qis X −→ Z such that
Zi ∈ J for i ≥ n. Indeed, let σ≥n X denote the stupid truncated complex given
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in Definition 11.3.11. By Lemma 13.2.1, there exists a qis σ≥n X −→ Y with
Y ∈ C≥n(J ). Define Z as the complex

Z := · · · −→ Xn−2 −→ Xn−1 −→ Y n −→ Y n+1 −→ · · ·
where the morphism Xn−1 −→ Y n is the composition Xn−1 −→ Xn −→ Y n. Then
X −→ Z is a qis.
(b) Let n′ < n be integers. Let X ∈ C(C) and assume that Xi ∈ J for i ≥ n.
Then there exists a qis X −→ Z such that Zi ∈ J for i ≥ n′ and Xi −→ Zi is
an isomorphism for i ≥ n + d.

Indeed, by (a) there exists a qis f : X −→ Y such that Y i ∈ J for i ≥ n′.
Let M := Mc( f ), the mapping cone of f . Then M is an exact complex and
Mi = Xi+1 ⊕ Y i belongs to J for i ≥ n − 1. Hence, Ker di

M belongs to J for
i ≥ n − 1 + d since there exists an exact sequence Mi−d −→ · · · −→ Mi−1 −→
Ker di

M −→ 0, and Mi−d , . . . , Mi−1 belong to J . We have

Coker di−2
M � Xi ⊕Xi−1 Coker di−2

Y ,

Ker di
M � Ker di+1

X ×Y i+1 Y i ,

and the natural isomorphism Coker di−2
M −→ Ker di

M is an isomorphism. Set
a = n + d and construct a complex Z as follows:

Zi =

⎧⎪⎨⎪⎩
Xi for i > a ,

Ker di
M for i = a ,

Y i for i < a,

the differentials di
Z being defined in an obvious way as seen in the diagram

below.
Xa−1 ��

��

Xa ��

��

Xa+1

id

��

Y a−1 ��

id

��

Coker da−2
M

∼
��

Ker da
M

��

��

Xa+1

��
Y a−1 �� Y a �� Y a+1.

Then we get morphisms of complexes X −→ Z −→ Y , and Zi ∈ J for i ≥ n′.
Let us show that Hi (X) −→ Hi (Z) is an isomorphism for all i ∈ Z. This is
clear for i �= a − 1, a, a + 1. Since Za � Coker da−2

M � Xa ⊕Xa−1 Coker da−2
Y ,

we have Im da
Z � Im da

X and hence H a+1(Z) � Ker da+1
X / Im da

X � H a+1(X).
Since Ker da

Z � Ker(Ker da+1
X ×Y a+1 Y a −→ Xa+1) � Ker da

Y , we have H a(Z) �
H a(Y ) � H a(X). Finally, Ker da−1

Z � Ker da−1
Y implies H a−1(Z) � H a−1(Y ) �

H a−1(X).
(c) We can now complete the proof. Let us take an infinite sequence n0 > n1 >

· · · . By (a), there exists a qis X −→ Y0 such that Y i
0 ∈ J for i ≥ n0. By (b),
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we may construct inductively a chain of quasi-isomorphisms Y0 −→ Y1 −→ · · ·
such that Y i

k ∈ J for all i ≥ nk and Y i
k
∼−→ Y i

k+1 for i > nk +d. Then Y :=lim−→
k

Yk

exists in C(C) and Y i � Y i
k for i > nk + d. Hence, all Y i ’s belong to J and

X −→ Y is a qis. q.e.d.

Derived Category of a Subcategory

Let C ′ be a thick full abelian subcategory of C.

Definition 13.2.7. For ∗ = ub,+,−,b, D∗
C′(C) denotes the full additive sub-

category of D∗(C) consisting of objects X such that H j (X) ∈ C ′ for all j .

This is clearly a triangulated subcategory of D(C), and there is a natural
functor

(13.2.3) δ∗ : D∗(C ′) −→ D∗
C′(C) for ∗ = ub,+,−,b .

Theorem 13.2.8. Let C ′ be a thick abelian subcategory of C and assume that
for any monomorphism Y ′�X , with Y ′ ∈ C ′, there exists a morphism X −→ Y
with Y ∈ C ′ such that the composition Y ′ −→ Y is a monomorphism.

Then the functors δ+ and δb in (13.2.3) are equivalences of categories.

Proof. The result for δ+is an immediate consequence of Proposition 7.2.1 and
Lemma 13.2.1. The case of δb follows since Db(C ′) is equivalent to the full
subcategory of D+(C ′) of objects with bounded cohomology, and similarly for
Db

C′(C). q.e.d.

Note that, by reversing the arrows in Theorem 13.2.8, the functors δ− and
δb in (13.2.3) are equivalences of categories if for any epimorphism X�Y
with Y ∈ C ′, there exists a morphism Y ′ −→ X with Y ′ ∈ C ′ such that the
composition Y ′ −→ Y is an epimorphism.

13.3 Derived Functors

In this section, C, C ′ and C ′′ denote abelian categories. Let F : C −→ C ′ be an
additive functor. It defines naturally a triangulated functor

K∗(F) : K∗(C) −→ K∗(C ′) .

For short, we often write F instead of K∗(F). We shall denote by Q : K∗(C) −→
D∗(C) the localization functor, and similarly with Q′, Q′′, when replacing C
with C ′, C ′′.
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Definition 13.3.1. Let ∗ = ub,+,b. The functor F is right derivable (or
F admits a right derived functor) on K∗(C) if the triangulated functor
K∗(F) : K∗(C) −→ K∗(C ′) is universally right localizable with respect to N ∗(C)
and N ∗(C ′).

In such a case the localization of F is denoted by R∗F and H k ◦ R∗F is
denoted by Rk F. The functor R∗F : D∗(C) −→ D∗(C ′) is called the right derived
functor of F and Rk F the k-th derived functor of F.

We shall also say for short that “R∗F exists” instead of “F is right deriv-
able on K∗(C)”.

By the definition, the functor F admits a right derived functor on K∗(C)
if “lim−→”
(X−→X ′)∈Qis,X ′∈K∗(C)

Q′ ◦K(F)(X ′) exists in D∗(C ′) for all X ∈ K∗(C). In such a case,

this object is isomorphic to R∗F(X).
Note that R∗F is a triangulated functor from D∗(C) to D∗(C ′) if it exists,

and Rk F is a cohomological functor from D∗(C) to C ′.

Notation 13.3.2. In the sequel, we shall often write “lim−→” F(X ′) instead of
“lim−→” Q′ ◦K(F)(X ′) in the above formula.

Corollary 13.3.3. If RF exists, then R+F exists and R+F is the restriction
of RF to D+(C).

Proof. For X ∈ K+(C), the category QisX ∩K+(C)X is cofinal to the category
QisX by Lemma 13.1.7. q.e.d.

Definition 13.3.4. Let J be a full additive subcategory of C. We say for short
that J is F-injective if the subcategory K+(J ) of K+(C) is K+(F)-injective
with respect to N+(C) and N+(C ′) (see Definition 10.3.2). We shall also say
that J is injective with respect to F.

We define similarly the notion of an F-projective subcategory.

By the definition, J is F-injective if and only if for any X ∈ K+(C), there
exists a qis X −→ Y with Y ∈ K+(J ) and F(Y ) is exact for any exact complex
Y ∈ K+(J ).

Proposition 13.3.5. Let F : C −→ C ′ be an additive functor of abelian cate-
gories and let J be a full additive subcategory of C.

(i) If J is F-injective, then R+F : D+(C) −→ D+(C ′) exists and

R+F(X) � F(X ′) for any qis X −→ X ′ with X ′ ∈ K+(J ) .(13.3.1)

(ii) If F is left exact, the following two conditions are equivalent.
(a) J is F-injective,
(b) The following two conditions hold:

(1) the category J is cogenerating in C,
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(2) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0, the sequence
0 −→ F(X ′) −→ F(X) −→ F(X ′′) −→ 0 is exact as soon as X ∈ J and
there exists an exact sequence 0 −→ Y 0 −→ · · · −→ Y n −→ X ′ −→ 0
with the Y j ’s in J .

Proof. (i) follows from Proposition 10.3.3.

(ii) (a) ⇒ (b) (1). For X ∈ C, there exists a qis X −→ Y with Y ∈ K+(J ).
Then, the composition X −→ Ker(d0

Y ) −→ H0(Y ) is an isomorphism and hence
X −→ Y 0 is a monomorphism.
(a) ⇒ (b) (2). By (1) and Lemma 13.2.1, there exists an exact sequence
0 −→ X ′′ −→ Z0 −→ Z1 −→ · · · with Z j ∈ J for all j . Then the sequence

0 −→ Y 0 −→ · · · −→ Y n −→ X −→ Z0 −→ Z1 −→ · · ·
is exact and belongs to K+(J ). Hence F(X) −→ F(Z0) −→ F(Z1) is exact.
Since F is left exact, F(X ′′) � Ker

(
F(Z0) −→ F(Z1)

)
and this implies that

F(X) −→ F(X ′′) is an epimorphism.

(ii) (b) ⇒ (a). By (1) and Lemma 13.2.1, for any X ∈ K+(C) there exists a
qis X −→ Y with Y ∈ K+(J ). Hence, it is enough to show that F(X) is exact
if X ∈ K+(J ) is exact. For each n ∈ Z, the sequences · · · −→ Xn−2 −→ Xn−1 −→
Ker(dn

X ) −→ 0 and 0 −→ Ker(dn
X ) −→ Xn −→ Ker(dn+1

X ) −→ 0 are exact. By (2),
the sequence 0 −→ F(Ker(dn

X )) −→ F(Xn) −→ F(Ker(dn+1
X )) −→ 0 is exact. q.e.d.

Remark 13.3.6. (i) Note that for X ∈ C, Rk F(X) � 0 for k < 0 and assuming
that F is left exact, R0F(X) � F(X). Indeed for X ∈ C and for any qis X −→ Y ,
the composition X −→ Y −→ τ≥0Y is a qis.
(ii) If F is right (resp. left) derivable, an object X of C such that Rk F(X) � 0
(resp. Lk F(X) � 0) for all k �= 0 is called right F-acyclic (resp. left F-acyclic).
If J is an F-injective subcategory, then any object of J is right F-acyclic.
(iii) If C has enough injectives, then the full subcategory IC of injective ob-
jects of C is F-injective for any additive functor F : C −→ C ′. Indeed, any
exact complex in C+(I) is homotopic to zero by Lemma 13.2.4. In particular,
R+F : D+(C) −→ D+(C ′) exists in this case.

We shall give sufficient conditions in order that J is F-injective.

Theorem 13.3.7. Let J be a full additive subcategory of C and let F : C −→ C ′
be a left exact functor. Assume:

(i) the category J is cogenerating in C,
(ii) for any monomorphism Y ′�X with Y ′ ∈ J there exists an exact sequence

0 −→ Y ′ −→ Y −→ Y ′′ −→ 0 with Y, Y ′′ in J such that Y ′ −→ Y factors
through Y ′�X and the sequence 0 −→ F(Y ′) −→ F(Y ) −→ F(Y ′′) −→ 0 is
exact.

Then J is F-injective.



332 13 Derived Categories

Condition (ii) may be visualized as

0 �� Y ′ �� X

��
0 �� Y ′ �� Y �� Y ′′ �� 0 .

Condition (ii) is rather intricate. The following particular case is sufficient for
many applications. It is also an immediate consequence of Proposition 13.3.5.

Corollary 13.3.8. Let J be a full additive subcategory of C and let F : C −→ C ′
be a left exact functor. Assume:

(i) the category J is cogenerating in C,
(ii) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C with X ′, X ∈ J , we

have X ′′ ∈ J ,
(iii) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C with X ′, X ∈ J ,

the sequence 0 −→ F(X ′) −→ F(X) −→ F(X ′′) −→ 0 is exact.

Then J is F-injective.

Example 13.3.9. Let R be a ring and let N be a right R-module. The full
additive subcategory of Mod(R) consisting of flat R-modules is (N ⊗R

• )-
projective.

The proof of Theorem 13.3.7 is decomposed into several lemmas.

Lemma 13.3.10. Let 0 −→ Y ′ −→ X −→ X ′′ −→ 0 be an exact sequence in C
with Y ′ ∈ J . Then the sequence 0 −→ F(Y ′) −→ F(X) −→ F(X ′′) −→ 0 is exact.

Proof. Choose an exact sequence 0 −→ Y ′ −→ Y −→ Y ′′ −→ 0 as in Theorem
13.3.7. We get the commutative exact diagram:

0 �� Y ′ �� X

�
��

�� X ′′

��

�� 0

0 �� Y ′ �� Y �� Y ′′ �� 0

where the square labeled by � is Cartesian. Since F is left exact, it transforms
this square to a Cartesian square and the bottom row to an exact row. Hence,
the result follows from Lemma 8.3.11. q.e.d.

Lemma 13.3.11. Let X• ∈ C+(C) be an exact complex, and assume Xn = 0
for n < a and Xa ∈ J . There exist an exact complex Y • ∈ C+(J ) and a
morphism f : X• −→ Y • such that Y n = 0 for n < a, f a : Xa −→ Y a is an
isomorphism, and Ker dn

Y ∈ J for all n.

Note that the complex F(Y •) will be exact by Lemma 13.3.10.
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Proof. We argue by induction. By the hypothesis, there exists a commutative
exact diagram:

0 �� Xa �� Xa+1

��
0 �� Y a �� Y a+1 �� Za+2 �� 0

with Y a+1, Za+2 in J . Assume that we have constructed

0 �� Xa �� · · · �� Xn

��
0 �� Y a

da
Y �� · · · dn−1

Y �� Y n �� Zn+1 �� 0

where the row in the bottom is exact and belongs to C+(J ), and Im d j
Y belongs

to J for a ≤ j ≤ n − 1.
Define W n+1 = Xn+1 ⊕Coker dn−1

X
Zn+1. In other words, we have a co-

Cartesian exact diagram:

0 �� Coker dn−1
X

��

��

Xn+1

��
0 �� Zn+1 �� W n+1.

By the hypotheses, there exists an exact commutative diagram

0 �� Zn+1 �� W n+1

��
0 �� Zn+1 �� Y n+1 �� Zn+2 �� 0

with Y n+1 and Zn+2 in J . Define dn
Y as the composition Y n −→ Zn+1 −→ Y n+1.

Then Im(dn
Y : Y n −→ Y n+1) � Zn+1 ∈ J . Hence, the induction proceeds. q.e.d.

Now we can prove Theorem 13.3.7, using Proposition 13.3.5.

End of the proof of Theorem 13.3.7. Let X• ∈ C+(J ) be an exact complex.
We have to prove that F(X•) is exact. Let us show by induction on b − a
that H b(F(X•)) � 0 if X ∈ C≥a(J ). If b < a, this is clear. Hence, we assume
b ≥ a.

By Lemma 13.3.11, there exists a morphism of complexes f : X• −→ Y • in
C+(J ) such that Y • ∈ C≥a(J ), Xa ∼−→ Y a and F(Y •) is exact. Let σ>a X• and
σ>aY • denote the stupid truncated complexes given in Definition 11.3.11.

Let W denote the mapping cone of σ>a( f ) : σ>a X• −→ σ>aY •. Then
W n = (σ>a X•)n+1⊕ (σ>aY •)n � 0 for n < a. Let us consider the distinguished
triangle in K(J ) (see Exercise 11.12)
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W −→ Mc( f ) −→ Mc(Xa [−a] −→ Y a [−a])
+1−−→ .

Since Xa −→ Y a is an isomorphism, W −→ Mc( f ) is an isomorphism in K(C).
Applying the functor F , we obtain the isomorphism F(W ) ∼−→ F(Mc( f )) in
K(C ′). Therefore, H j (F(W )) � H j (F(Mc( f ))) for all j . On the other hand,
there is a d.t. in K+(C ′)

F(X) −→ F(Y ) −→ F(Mc( f ))
+1−−→ ,

and H j (F(Y )) � 0 for all j . Hence, H b(F(X)) � H b−1(F(Mc( f ))) �
H b−1(F(W )). Since W is an exact complex and belongs to C≥a(J ), we have
H b−1(F(W )) � 0 by the induction hypothesis. q.e.d.

Lemma 13.3.12. Let F : C −→ C ′ be a left exact functor of abelian categories
and let J be an F-injective full subcategory of C. Denote by JF the full sub-
category of C consisting of right F-acyclic objects. Then JF contains J and
JF satisfies the conditions (i)–(iii) of Corollary 13.3.8. In particular, JF is
F-injective.

Proof. Let us check the conditions (i)–(iii) of Corollary 13.3.8.
(i) Since JF contains J , JF is cogenerating.
(ii)–(iii) Consider an exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C with
X ′, X ∈ JF . The exact sequences R j F(X) −→ R j F(X ′′) −→ R j+1F(X ′) for
j ≥ 0 imply that Rk F(X ′′) � 0 for k > 0. Moreover, there is an exact sequence
0 −→ F(X ′) −→ F(X) −→ F(X ′′) −→ R1F(X ′) and R1F(X ′) � 0. q.e.d.

Hence a full additive subcategory J of C is F-injective if and only if it is
cogenerating and any object of J is F-acyclic (assuming the right derivability
of F). Note that even if F is right derivable, there may not exist an F-injective
subcategory.

Derived Functor of a Composition

Let F : C −→ C ′ and F ′ : C ′ −→ C ′′ be additive functors of abelian categories.

Proposition 13.3.13. (i) Let ∗ = ub,+,b. Assume that the right derived
functors R∗F, R∗F ′ and R∗(F ′ ◦ F) exist. Then there is a canonical
morphism in Fct(D∗(C),D∗(C ′′)) :

R∗(F ′ ◦ F) −→ R∗F ′ ◦ R∗F .(13.3.2)

(ii) Assume that there exist full additive subcategories J ⊂ C and J ′ ⊂ C ′
such that J is F-injective, J ′ is F ′ injective and F(J ) ⊂ J ′. Then J
is F ′ ◦ F-injective and (13.3.2) induces an isomorphism

R+(F ′ ◦ F) ∼−→ R+F ′ ◦ R+F .(13.3.3)
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Proof. Apply Proposition 10.3.5 to the functors K∗(F) : K∗(C) −→ K∗(C ′) and
K∗(F ′) : K∗(C ′) −→ K∗(C ′′). q.e.d.

Note that in many cases (even if F is exact), F may not send injective objects
of C to injective objects of C ′. This is a reason why the notion of an “F-
injective” category is useful.

Remark 13.3.14. The notion of the left derived functor L∗G (∗ = ub,−,b) of
an additive functor G is defined similarly. Moreover, there is a similar result
to Proposition 13.3.13 for the composition of L−G : D−(C) −→ D−(C ′) and
L−G ′ : D−(C ′) −→ D−(C ′′). Note that

L−G(X) � “lim←−”
(X ′−→X)∈Qis

G(X ′) .

Derived Functor of the Projective Limit

As an application of Theorem 13.3.7 we shall discuss the existence of the
derived functor of projective limits.

Let C be an abelian U-category. Recall that Pro(C) is an abelian category
admitting small projective limits, and small filtrant projective limits as well
as small products are exact (see § 8.6). Assume that C admits small projective
limits. Then the natural exact functor C −→ Pro(C) admits a right adjoint

πC : Pro(C) −→ C .(13.3.4)

If β : I op −→ C is a functor with I small and filtrant, then πC(“lim←−” β) � lim←−β.
The functor πC is left exact and we shall give a condition in order that it is
right derivable.

For a full additive subcategory J of C, the full additive subcategory Jpro

of Pro(C) is defined by

Jpro := {X ∈ Pro(C); X � “
∏

”
i∈I

Xi for a small set I and Xi ∈ J } .

Here, “
∏

” denotes the product in Pro(C). Hence for Xi , Y ∈ C,

HomPro(C)(“
∏

”
i∈I

Xi , Y ) �
⊕
i∈I

HomC(Xi , Y ) .

Proposition 13.3.15. Let C be an abelian category admitting small projective
limits and let J be a full additive subcategory of C satisfying:

(i) J is cogenerating in C,
(ii) if 0 −→ Y ′ −→ Y −→ Y ′′ −→ 0 is an exact sequence and Y ′, Y ∈ J , then

Y ′′ ∈ J ,

(iii) if 0 −→ Y ′
i −→ Yi −→ Y ′′

i −→ 0 is a family indexed by a small set I of
sequences in J which are exact in C, then the sequence 0 −→ ∏

i∈I Y ′
i −→∏

i∈I Yi −→∏
i∈I Y ′′

i −→ 0 is exact in C.
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Then

(a) the category Jpro is πC-injective,
(b) the left exact functor πC admits a right derived functor

R+πC : D+(Pro(C)) −→ D+(C) ,

and RkπC(“
∏

”
i

Xi ) � 0 for k > 0 and Xi ∈ J ,

(c) the composition D+(C) −→ D+(Pro(C))
R+πC−−−→ D+(C) is isomorphic to the

identity.

Proof. (a) We shall verify the hypotheses of Theorem 13.3.7.
(i) The category Jpro is cogenerating in Pro(C). Indeed, for A = “lim←−”

i

α(i) ∈
Pro(C), we obtain a monomorphism A� “

∏
”

i∈Ob(I)
Xi by choosing a monomor-

phism α(i)�Xi with Xi ∈ J for each i ∈ I .

(ii) Consider an exact sequence 0 −→ Y −→ A in Pro(C) with A ∈ Pro(C) and
Y = “

∏
”

i
Yi , Yi ∈ J . Applying Proposition 8.6.9 (with the arrows reversed),

for each i , we find Xi ∈ C and a commutative exact diagram

0 �� Y ��

��

A

��
0 �� Yi

�� Xi .

By hypothesis (i) on J , we may assume Xi ∈ J . Let Zi = Coker(Yi −→ Xi ).
Then Zi ∈ J . The functor “

∏
” being exact, we get the exact commutative

diagram

0 �� Y ��

id

��

A

��
0 �� “

∏
”

i
Yi �� “

∏
”

i
Xi �� “

∏
”

i
Zi �� 0.

Applying πC to the second row, we find the sequence 0 −→ ∏
i Yi −→ ∏

i Xi −→∏
i Zi −→ 0 and this sequence is exact by hypothesis (iii).

(b) follows from (a).

(c) By the assumption, J is injective with respect to the exact functor C −→
Pro(C). Since the functor C −→ Pro(C) sends J to Jpro, the result follows from
Proposition 13.3.13 (ii). q.e.d.
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Corollary 13.3.16. Let J be a full additive subcategory of C satisfying the
hypotheses of Proposition 13.3.15. Let {Xn}n∈N be a projective system in J
indexed by N. Then RkπC(“lim←−”

n

Xn) � 0 for k > 1, and

R1πC(“lim←−”
n

Xn) � Coker
(∏

n≥0

Xn
id−sh−−−→

∏
n≥0

Xn
)

,

where sh is the morphism associated with the family of morphisms Xn+1 −→ Xn.

Proof. By Exercise 8.37, there exists an exact sequence in Pro(C)

0 −→ “lim←−”
n

Xn −→ “
∏

”
n

Xn
id−sh−−−→ “

∏
”

n
Xn −→ 0 .

Applying the functor R+πC we get a long exact sequence and the results
follows since RkπC(“

∏
”

n
Xn) � 0 for k �= 0. q.e.d.

Example 13.3.17. (i) If the category C admits enough injectives, then the cat-
egory IC of injective objects satisfies the conditions of Proposition 13.3.15 (see
Exercise 13.6).
(ii) If R is a ring and C = Mod(R), we may choose J = C. Hence πC is right
derivable in this case. (See also Exercise 12.8.)

13.4 Bifunctors

Let us begin the study of derived bifunctors with the functor Hom . Recall
Convention 11.7.1.

Theorem 13.4.1. Let C be an abelian category, let X , Y ∈ D(C). Assume
that the functor Hom•

C : K(C) × K(C)op −→ K(Mod(Z)) given by (Y ′, X ′) 
→
totπHom•,•

C (X ′, Y ′) (see § 11.7) is right localizable at (Y, X). Then

H0RHomC(X, Y ) � HomD(C)(X, Y ) .(13.4.1)

Proof. By the hypothesis,

RHomC(X, Y ) � “lim−→”
(X ′−→X)∈Qis,(Y−→Y ′)∈Qis

totπ (Hom•,•
C (X ′, Y ′)) .

Applying the functor H0 and recalling that “lim−→” commutes with any functor,
we get using Proposition 11.7.3:

H0RHomC(X, Y ) � “lim−→”
(X ′−→X)∈Qis,(Y−→Y ′)∈Qis

H0(totπ (Hom•,•
C (X ′, Y ′)))

� “lim−→”
(X ′−→X)∈Qis,(Y−→Y ′)∈Qis

HomK(C)(X ′, Y ′)

� HomD(C)(X, Y ) .

q.e.d.



338 13 Derived Categories

Notice that in the situation of Theorem 13.4.1, if X , Y ∈ C, then we have

Extk
C(X, Y ) � H k(RHomC(X, Y )) .(13.4.2)

Consider now three abelian categories C, C ′, C ′′ and an additive bifunctor

F : C × C ′ −→ C ′′ .

By Proposition 11.6.3, the triangulated functor:

K+F : K+(C)×K+(C ′) −→ K+(C ′′)

is naturally defined by setting:

K+F(X, X ′) = tot(F(X, X ′)).

Similarly to the case of functors, if the triangulated bifunctor K+F : K+(C)×
K+(C ′) −→ D+(C ′′) is universally right localizable with respect to (N+(C) ×
N+(C ′), N+(C ′′)), F is said to be right derivable and its localization is denoted
by R+F . We set Rk F = H k ◦ R+F and call it the k-th derived bifunctor of F .

Definition 13.4.2. Let J and J ′ be full additive subcategories of C and C ′
respectively. We say for short that (J ,J ′) is F-injective if (K+(J ),K+(J ′))
is K+F-injective (see Definition 10.3.9).

Proposition 13.4.3. Let J and J ′ be full additive subcategories of C and C ′
respectively. Assume that (J ,J ′) is F-injective. Then F is right derivable and
for (X, X ′) ∈ D+(C)×D+(C ′) we have:

R+F(X, X ′) � Q′′ ◦K+F(Y, Y ′)

for (X −→ Y ) ∈ Qis and (X ′ −→ Y ′) ∈ Qis with Y ∈ K+(J ), Y ′ ∈ K+(J ′).

Proof. Apply Proposition 10.3.10 to the functor Q′′◦K+F : K+(C)×K+(C ′) −→
D+(C ′′). q.e.d.

Proposition 13.4.4. Let J and J ′ be full additive subcategories of C and C ′
respectively. Assume:

(i) for any Y ∈ J , J ′ is F(Y, • )-injective,
(ii) for any Y ′ ∈ J ′, J is F( • , Y ′)-injective.

Then (J ,J ′) is F-injective.

Proof. Let (Y, Y ′) ∈ K+(J ) × K+(J ′). If either Y or Y ′ is qis to zero, then
tot(F(Y, Y ′)) is qis to zero by Corollary 12.5.5. q.e.d.

Choosing J ′ = C ′, we get:

Corollary 13.4.5. Let J be a full additive cogenerating subcategory of C and
assume:
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(i) for any X ∈ J , F(X, • ) : C ′ −→ C ′′ is exact,
(ii) for any X ′ ∈ C ′, J is F( • , X ′)-injective.

Then F is right derivable and for X ∈ K+(C), X ′ ∈ K+(C ′)
R+F(X, X ′) � Q′′ ◦K+F(Y, X ′) for any (X −→ Y ) ∈ Qis with Y ∈ K+(J ) .

In particular, for X ∈ C and X ′ ∈ C ′, R+F(X, X ′) is the derived functor of
F( • , X ′) calculated at X , that is, R+F(X, X ′) = (R+F( • , X ′))(X).

Corollary 13.4.6. Let C be an abelian category and assume that there are
subcategories P in C and J in C such that (J ,Pop) is injective with respect
to the functor HomC. Then the functor HomC admits a right derived functor
R+HomC : D+(C)×D−(C)op −→ D+(Z). In particular, Db(C) is a U-category.

Notation 13.4.7. Let R be a ring. We shall often write for short D∗(R) instead
of D∗(Mod(R)), for ∗ = ub,b,+,−.

Remark 13.4.8. Assume that C has enough injectives. Then

R+HomC : D+(C)×D−(C)op −→ D+(Z)

exists and may be calculated as follows. Let X ∈ D−(C), Y ∈ D+(C). There
exists a qis Y −→ I in K+(C), the I j ’s being injective. Then:

R+HomC(X, Y ) � tot(Hom•,•
C (X, I )) .(13.4.3)

If C has enough projectives, then R+HomC exists. For a qis P −→ X in K−(C)
with the P j ’s projective, we have:

R+HomC(X, Y ) � tot(Hom•,•
C (P, Y )) .(13.4.4)

These isomorphisms hold in D+(Z), which means that R+HomC(X, Y ) ∈
D+(Z) is represented by the simple complex associated with the double com-
plex Hom•,•

C (X, I ), or Hom•,•
C (P, Y ).

Example 13.4.9. Let R be a k-algebra. Since the category Mod(R) has enough
projectives, the left derived functor of the functor • ⊗R

• is well defined. It is

denoted by •
L⊗R

• . Hence:

•
L⊗R

• : D−(Rop)×D−(R) −→ D−(k)

may be calculated as follows:

N
L⊗R M � tot(N ⊗R P)

� tot(Q ⊗R M)
� tot(Q ⊗R P),

where P is a complex of projective R-modules quasi-isomorphic to M and Q
is a complex of projective Rop-modules quasi-isomorphic to N .

A classical notation is:

Tor R
n (N , M) := H−n(N

L⊗R M) .(13.4.5)
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Exercises

Exercise 13.1. Let F : C −→ C ′ be a left exact functor of abelian categories.
Let J be an F-injective subcategory of C and let Y • be an object of C+(J ).
Assume that H k(Y •) = 0 for all k �= p for some p ∈ Z, and let X = H p(Y •).
Prove that Rk F(X) � H k+p(F(Y •)).

Exercise 13.2. We consider the situation of Proposition 13.3.13 (ii).
(i) Let X ∈ C and assume that there is q ∈ N with Rk F(X) = 0 for k �= q.
Prove that R j (F ′ ◦ F)(X) � R j−q F ′(Rq F(X)).
(ii) Assume now that R j F(X) = 0 for j �= a, b for a < b. Prove that there
is a long exact sequence: · · · −→ Rk−a F ′(Ra F(X)) −→ Rk(F ′ ◦ F)(X) −→
Rk−b F ′(Rb F(X)) −→ Rk−a+1F ′(Ra F(X)) −→ · · · . (Hint: use τ≤a RF(X) −→
RF(X) −→ τ>a RF(X)

+1−→.)

Exercise 13.3. Let F : C −→ C ′ be a left exact and right derivable functor of
abelian categories. Let X ∈ D+(C) such that H k(X) = 0 for k < p for some
p ∈ Z. Prove that Rn F(X) = 0 for n < p and R p F(X) � F(H p(X)).

Exercise 13.4. In the situation of Proposition 13.3.13 (i), let X ∈ C and
assume that R j F(X) � 0 for j < n. Prove that Rn(F ′ ◦ F)(X) � F ′(Rn F(X)).

Exercise 13.5. Let C be an abelian category and let 0 −→ X ′ −→ X −→ X ′′ −→ 0
be an exact sequence in C. Assuming that Ext1(X ′′, X ′) � 0, prove that the
sequence splits.

Exercise 13.6. Let C be an abelian category.
(i) Prove that if {Xi }i∈I is a small family of injective objects in C, then “

∏
”

i
Xi

is an injective object of Pro(C).
(ii) Prove that if C has enough injectives, then so does Pro(C).
(iii) Deduce that if C has enough injectives and admits small projective limits,
then the functor πC : Pro(C) −→ C (see (13.3.4)) admits a right derived functor
R+πC : D+(Pro(C)) −→ D+(C).

Exercise 13.7. Let C be an abelian category. Prove that the following con-
ditions on X ∈ C are equivalent.
(i) X is injective,
(ii) Ext1C(Y, X) � 0 for all Y ∈ C,
(iii) Extn

C(Y, X) � 0 for all Y ∈ C and all n �= 0.

Exercise 13.8. Let C be an abelian category and consider the following con-
dition on an integer n:

for all X and Y in C, Ext j

C(X, Y ) � 0 for all j > n .(13.4.6)

If such an integer n exists, we say that C has finite homological dimension, and
the smallest n ≥ −1 such that (13.4.6) is satisfied is called the homological
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dimension of C and is denoted by hd(C). (Note that hd(C) = −1 if and only
if C � Pt.)
(i) Prove that hd(C) ≤ n if and only if Extn+1

C (X, Y ) = 0 for all X , Y ∈ C.
(Hint: use Exercise 13.16.)
(ii) Assume that C has enough injectives and let n be a non-negative integer.
Prove that the conditions (a)–(c) below are equivalent:

(a) hd(C) ≤ n,
(b) for all X in C, there exists an exact sequence 0 −→ X −→ X0 −→ · · · −→

Xn −→ 0 with the X j ’s injective,
(c) if X0 −→ · · · −→ Xn −→ 0 is an exact sequence in C and X j is injective for

j < n, then Xn is injective.

(iii) Assume that C has enough projectives. Prove that hd(C) ≤ n if and only if,
for all X in C, there exists an exact sequence 0 −→ Xn −→ · · · −→ X0 −→ X −→ 0
with the X j ’s projective.

Exercise 13.9. Let k be a field of characteristic 0 and let W = Wn(k) be
the Weyl algebra in n variables over k (see Exercise 8.39). Denote by O the
left W -module W/I , where I is the left ideal generated by (∂1, . . . , ∂n) (hence
O � k[x1, . . . , xn]) and denote by Ω the right W -module W/J , where J is the
right ideal generated by (∂1, . . . , ∂n).
(i) Let ·∂i denote the multiplication on the right by ∂i on W . Prove that ϕ =
(·∂1, . . . , ·∂n) is a regular sequence (see Exercise 12.4) and H n(K•(W, ϕ)) � O.
(ii) Calculate the k-vector spaces TorW

j (Ω,O).
(iii) Calculate the k-vector spaces Ext j

W
(O,O).

Exercise 13.10. Let k be a field, let A = k[x1, . . . , xn] and set C = Modf(A).
It is well known that C has enough projectives and finite homological di-
mension. Define the functor ∗ : Db(C)op −→ Db(C) by M∗ = RHom A(M, A).
Prove that the functor ∗ : Db(C)op −→ Db(C) is well defined and satisfies
∗ ◦ ∗ � idDb(C). In particular, it is an equivalence of categories.

Exercise 13.11. Let C be an abelian category with enough injectives and
such that hd(C) ≤ 1. Let F : C −→ C ′ be a left exact functor and let X ∈ D+(C).
(i) Prove that H k(RF(X)) � F(H k(X))⊕ R1F(H k−1(X)).
(ii) Recall that hd(Mod(Z)) = 1. Let X ∈ D−(Mod(Z)), and let M ∈ Mod(Z).

Prove that H k(X
L⊗M) � (H k(X)⊗ M)⊕ Tor1(H k+1(X), M).

Exercise 13.12. Let A be an abelian category, C a thick abelian subcategory
of A. Assume that there is a category J ′ × P ′op (resp. J × Pop) in A×Aop

(resp. C×Cop) injective with respect to the functor HomA (resp. HomC), and
satisfying J ⊂ J ′ and P ⊂ P ′. Prove that the natural functor Db(C) −→ Db

C(A)
is an equivalence.
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Exercise 13.13. (See Deligne [18]). Let C be an abelian category. Let X ∈
Db(C) and let c : X −→ X [2] be a morphism such that cp : X −→ X [2p] induces
an isomorphism

(13.4.7) H−p(X) ∼−→ H p(X) for all p > 0 .

(i) Assume that H j (X) = 0 for | j | > d. By considering the morphisms

τ≤0(X [−d]) −→ X [−d]
cd−→ X [d] −→ τ≥0(X [d]) ,

construct morphisms X
ψ �� H−d(X)[d]⊕ H d(X)[−d]
ϕ

�� such that ψ ◦ϕ is an

isomorphism and deduce that there exists a decomposition X � H−d(X)[d]⊕
Y⊕H d(X)[−d] such that H j (Y ) = 0 for | j | ≥ d and that c induces a morphism
Y −→ Y [2] satisfying (13.4.7).
(ii) Prove that X �⊕

k H k(X)[−k].

Exercise 13.14. Let k be a field and let D = Db(Modf(k)). To X ∈ D,
associate its index χ(X) :=

∑
i (−1)i dim Hi (X). Denote by N the full additive

subcategory of D consisting of objects X such that χ(X) is even.
(i) Prove that N is a null system in D.
(ii) Prove that D/N � 0. (Hint: use the result of Exercise 10.11.)

Exercise 13.15. Let C be an abelian category. To an exact sequence E : 0 −→
Y −→ Z −→ X −→ 0 in C, associate θ(E) ∈ Ext1C(X, Y ), the image of idX by the
morphism HomC(X, X) −→ Ext1C(X, Y ).
(i) Prove that θ(E) : X −→ Y [1] is described by the morphism of complexes (the
complexes are the horizontal arrows) where the first morphism of complexes
(given by the two vertical arrows on the top) is a qis:

0 �� X X

Y ��





��

Z

��





= W

qis




��
Y �� 0 Y [1].

(ii) Prove that θ(E) = 0 if and only if the exact sequence E splits.
(iii) Prove that for any u ∈ Ext1C(X, Y ) there exists an exact sequence E such
that u = θ(E).
(iv) Let us consider two exact sequences E : 0 −→ Y −→ Z −→ X −→ 0 and
E ′ : 0 −→ Y −→ Z ′ −→ X −→ 0. Prove that θ(E) = θ(E ′) if and only if there
exists a commutative diagram

0 �� Y

idY

��

�� Z ′ ��

��

X

idX

��

�� 0

0 �� Y �� Z �� X �� 0 .
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(v) Let E and E ′ be two exact sequences in C. Construct an exact sequence
E ′′ such that θ(E ′′) = θ(E) + θ(E ′).

Exercise 13.16. Let C be an abelian category. Let X, Y ∈ C, let n > 0 and
let u ∈ Extn

C(X, Y ) = HomD(C)(X, Y [n]).
(i) Prove that there exists an exact sequence 0 −→ Y −→ Z1 −→ · · · −→ Zn −→
X −→ 0 such that u is given by the composition

0 �� 0 �� 0 �� · · · �� X �� 0 X

0

��





�� Y





idY��

�� Z1





��

�� · · · �� Zn





��

�� 0





��

= W

qis




��
0 �� Y �� 0 �� · · · �� 0 �� 0 Y [n]

where the vertical arrows on the top define a qis.
(ii) Assume that u ∈ Extn

C(X, Y ) is defined as in (i). Prove that u = 0 if and
only if there exists a commutative diagram with exact rows:

0 ��

��

0 ��

��

Z1

idZ1
��

�� W2

��

�� · · · �� Wn
��

��

X

idX

��

�� 0

0 �� Y �� Z1
�� Z2

�� · · · �� Zn
�� X �� 0.

(iii) Prove that any morphism u : X −→ Y [n] in D(C) decomposes into X −→
Y ′[n − 1] −→ Y [n] for some Y ′ ∈ C.

Exercise 13.17. Let C be an abelian category, C ′ a thick abelian subcategory.
(i) Prove that Extn

C′(X, Y ) −→ Extn
C(X, Y ) is an isomorphism if X, Y ∈ C ′ and

n ≤ 1.
(ii) Prove that the conditions below are equivalent.

(a) Db(C ′) −→ Db
C′(C) is an equivalence of categories,

(b) Db(C ′) −→ Db
C′(C) is fully faithful,

(c) for any X, Y in C ′ and any n > 0, Extn
C′(X, Y ) −→ Extn

C(X, Y ) is an isomor-
phism,

(d) for any X, Y in C ′, n > 0 and u ∈ Extn
C(X, Y ) there exist a monomorphism

Y�Y ′ and an epimorphism X ′�X in C ′ such that the image of u by the
morphism Extn

C(X, Y ) −→ Extn
C(X ′, Y ′) vanishes.

(Hint: for (a) ⇒ (d) use Exercise 13.16, and for (d) ⇒ (c) argue by induction
on n. See [4].)

Exercise 13.18. Let C be an abelian category with enough injectives and let
C ′ be an abelian category. Let F and G be additive functors from C to C ′ and
let λ : F −→ G be a morphism of functors. Construct a functor H : D+(C) −→
D+(C ′) and morphisms of functors R+G

ϕ−→ H
ψ−→ [1] ◦ R+F such that the

triangle R+F(X) −→ R+G(X)
ϕ(X)−−→ H(X)

ψ(X)−−−→ R+F(X)[1] is a d.t. for any
X ∈ D+(C).
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Exercise 13.19. Let C be an abelian category with enough injectives and let

C ′ be an abelian category. Let F ′ ϕ−→ F
ψ−→ F ′′ be a sequence of additive functors

from C to C ′ such that the sequence 0 −→ F ′(X) −→ F(X) −→ F ′′(X) −→ 0
is exact for any injective object X ∈ C. Construct a morphism of functors
ξ : R+F ′′ −→ [1] ◦ R+F ′ such that R+F ′(X) −→ R+F(X) −→ R+F ′′(X)

ξX−→
R+F ′(X)[1] is a d.t. in D+(C ′) for all X ∈ D+(C).

Exercise 13.20. Let C be an abelian category, let a < b ∈ Z and let X ∈
Db(C).
(i) Assume that H j (X) � 0 for j �= a, b. (We say that X is concentrated
in degrees a, b.) By using the d.t. (13.1.4), construct a canonical element
cX ∈ Extb−a+1

C (H b(X), H a(X)) and prove that cX = 0 if and only if X �
H a(X)[−a]⊕ H b(X)[−b].
(ii) Let X, Y ∈ D(C) be concentrated in degrees a, b and let u : X −→ Y be a
morphism. Prove that cY ◦ H b(u) = (H a(u)[b − a + 1]) ◦ cX .
(iii) Let X, Y ∈ D(C) be concentrated in degrees a, b and assume that there are
morphisms ϕ : H a(X) −→ H a(Y ) and ψ : H b(X) −→ H b(Y ) satisfying cY ◦ ψ =
(ϕ[b − a + 1]) ◦ cX . Prove that there exists a morphism f : X −→ Y such that
ϕ = H a( f ) and ψ = H b( f ).

Exercise 13.21. Let k be a commutative ring and set A = k[x, y], C =
Mod(A). Let L0 = A, L = A ⊕ A and let a be the ideal Ax + Ay.
(i) Construct the exact sequence

0 −→ L0
ϕ−→ L

ψ−→ L0 −→ k −→ 0 ,

where ϕ(a) = (xa, ya) and k is identified with A/ a, and deduce that
Ext2C(k, k) � k.
(ii) Let E be the set of isomorphism classes of objects M of Db(C) with
Hi (M) = 0 for i �= 0, 1, H0(M) � H1(M) � k. Prove that E is in bijection
with the quotient k/k×, where k× is the group of invertible elements of k and
acts on k by multiplication. In particular k/k× is N for k = Z, and it consists
of two elements if k is a field. (Hint: use Exercise 13.20 (iii).)

Exercise 13.22. Let C be an abelian category and let X ∈ Db(C). Assume
that Ext j−i+1

C (H j (X), Hi (X)) = 0 for all i, j ∈ Z with i < j . Prove that
X � ⊕ j H j (X) [− j ]. (Hint: adapt the proof of Corollary 13.1.20.)

Exercise 13.23. Let C be an abelian category.
(i) Prove that Mor(C) is an abelian category.
(ii) Prove that Ker : Mor(C) −→ C is an additive left exact functor.
(iii) Let J be the full subcategory of Mor(C) consisting of epimorphisms.
Prove that J is Ker-injective.
(iv) Prove that R+ Ker: D+(Mor(C)) −→ D+(C) exists and that for f ∈
Mor(C), we have
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H k(R+ Ker)( f ) �

⎧⎪⎨⎪⎩
Ker f for k = 0 ,

Coker f for k = 1 ,

0 otherwise .

Exercise 13.24. Let A be a principal ideal domain (that is, a commutative
ring without zero-divisors and such that any ideal admits a generator). For
an A-module M , denote by Mtor its torsion part, that is,

Mtor = {u ∈ M ; au = 0 for some a ∈ A \ {0}} .

(i) Prove that if I is an injective A-module, then I ⊗A M −→ I ⊗A (M/Mtor ) is
an isomorphism.
(ii) Let ϕ : Mod(A) −→ Mod(A) be the functor given by ϕ(X) = X⊗A(M/Mtor ).
Prove that ϕ is exact.
In the sequel, we shall keep the notation ϕ to denote the functor induced by
ϕ on D+(A).
(iii) Let ψ : Mod(A) −→ Mod(A) be the functor given by ψ(X) = X ⊗A M .
Prove that R+ψ : D+(A) −→ D+(A) exists and that R+ψ � ϕ.

Exercise 13.25. Let C be an abelian category with enough injectives, and let
I be the full subcategory of injective objects. Let CI be the additive category
defined in Exercise 8.6.
(i) For X ∈ C, let us take an exact sequence 0 −→ X −→ I −→ S −→ 0 with
I ∈ I. Prove that the functor which associates S to X is a well defined functor
T : CI −→ CI .
(ii) Let T be the category with translation T−1(CI), whose translation functor
is still denoted by the same letter T (see Exercise 11.1). We say that a triangle
in T is a d.t. if it is isomorphic to

T n X
(−1)n T n f−−−−−−→ T nY

(−1)n T n g−−−−−−→ T n Z
(−1)n T n h−−−−−−→ T n S � T (T n X)

for an integer n and a commutative diagram in C

0 �� X
f ��

idX

��

Y

��

g �� Z ��

h

��

0

0 �� X �� I �� S �� 0

with exact rows and I ∈ I. Prove that T is a triangulated category.
(iii) Prove that Kb(I) −→ Db(C) is fully faithful and that T is equivalent to
Db(C)/Kb(I) as a triangulated category. (Hint: embed Db(C) in D+(C) and
consider injective resolutions.)
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Unbounded Derived Categories

In this chapter we study the unbounded derived categories of Grothendieck
categories, using the results of Chap. 9. We prove the existence of enough
homotopically injective objects in order to define unbounded right derived
functors, and we prove that these triangulated categories satisfy the hypothe-
ses of the Brown representability theorem. We also study unbounded derived
functors in particular for pairs of adjoint functors. We start this study in the
framework of abelian categories with translation, then we apply it to the case
of the categories of unbounded complexes in abelian categories.

Many of the results in this Chapter are not new and many authors have
contributed to the results presented here, in particular, Spaltenstein [65] who
first considered unbounded complexes and unbounded derived functors. Other
contributions are due to [2, 6, 21, 41, 44], [53]. Note that many of the ideas
encountered here come from Topology, and the names of Adams, Bousfield,
Kan, Thomason, and certainly many others, should be mentioned.

14.1 Derived Categories of Abelian Categories
with Translation

Let (A, T ) be an abelian category with translation. Recall (Definition 13.1.1)
that, denoting by N the triangulated subcategory of the homotopy category
Kc(A) consisting of objects X qis to 0, the derived category Dc(A) of (A, T ) is

the localization Kc(A)/N . Recall that X is qis to 0 if and only if T−1X
T−1dX−−−−→

X
dX−−→ T X is exact.
For X ∈ Ac, the differential dX : X −→ T X is a morphism in Ac. Hence its

cohomology H(X) is regarded as an object of Ac and similarly for Ker dX and
Im dX . Note that their differentials vanish.

Proposition 14.1.1. Assume that A admits direct sums indexed by a set I
and that such direct sums are exact. Then Ac, Kc(A) and Dc(A) admit such
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direct sums and the two functors Ac −→ Kc(A) and Kc(A) −→ Dc(A) commute
with such direct sums.

Proof. The result concerning Ac and Kc(A) is obvious, and that concerning
Dc(A) follows from Proposition 10.2.8. q.e.d.

For an object X of A, we denote by M(X) the mapping cone of idT−1 X ,
regarding T−1X as an object of Ac with the zero differential. Hence M(X) is
the object X ⊕ T−1X of Ac with the differential

dM(X) =
(

0 0
idX 0

)
: X ⊕ T−1X −→ T X ⊕ X .

Therefore M : A −→ Ac is an exact functor. Moreover M is a left adjoint functor
to the forgetful functor Ac −→ A as seen by the following lemma.

Lemma 14.1.2. For Z ∈ A and X ∈ Ac, we have the isomorphism

HomAc
(M(Z), X) ∼−→HomA(Z , X).(14.1.1)

Proof. The morphism (u, v) : M(Z) −→ X in Ac satisfies dX ◦ (u, v) = T (u, v)◦
dM(X) which reads as dX ◦ u = T v and dX ◦ v = 0. Hence it is determined by
u : Z −→ X . q.e.d.

Proposition 14.1.3. Let A be a Grothendieck category. Then Ac is again a
Grothendieck category.

Proof. The category Ac is abelian and admits small inductive limits, and small
filtrant inductive limits in Ac are clearly exact. Moreover, if G is a generator
in A, then M(G) is a generator in Ac by Lemma 14.1.2. q.e.d.

Definition 14.1.4. (i) An object I ∈ Kc(A) is homotopically injective if
HomKc(A)(X, I ) � 0 for all X ∈ Kc(A) that is qis to 0.

(ii) An object P ∈ Kc(A) is homotopically projective if P is homotopically
injective in Kc(Aop), that is, if HomKc(A)(P, X) � 0 for all X ∈ Kc(A)
that is qis to 0.

We shall denote by Kc,hi(A) the full subcategory of Kc(A) consisting of ho-
motopically injective objects and by ι : Kc,hi(A) −→ Kc(A) the embedding
functor. We denote by Kc,hp(A) the full subcategory of Kc(A) consisting of
homotopically projective objects.

Note that Kc,hi(A) is obviously a full triangulated subcategory of Kc(A).

Lemma 14.1.5. Let (A, T ) be an abelian category with translation. If I ∈
Kc(A) is homotopically injective, then

HomKc(A)(X, I ) ∼−→HomDc(A)(X, I )

for all X ∈ Kc(A).
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Proof. Let X ∈ Kc(A) and let X ′ −→ X be a qis. Then for I ∈ Kc,hi(A), the
morphism HomKc(A)(X, I ) −→ HomKc(A)(X ′, I ) is an isomorphism, since there
exists a d.t. X ′ −→ X −→ N −→ T X with N qis to 0 and HomKc(A)(N , I ) �
HomKc(A)(T−1N , I ) � 0. Therefore, for any X ∈ Kc(A) and I ∈ Kc,hi(A), we
have

HomDc(A)(X, I ) � lim−→
(X ′−→X)∈Qis

HomKc(A)(X ′, I ) � HomKc(A)(X, I ) .

q.e.d.

Let us introduce the notation

QM =
{

f ∈ Mor(Ac) ; f is both a qis and a monomorphism
}

.(14.1.2)

Recall (see Definition 9.5.1) that an object I ∈ Ac is QM-injective if, for

any morphism f : X −→ Y in QM, HomAc
(Y, I )

◦ f−→ HomAc
(X, I ) is surjective.

Proposition 14.1.6. Let I ∈ Ac. Then I is QM-injective if and only if it
satisfies the following two conditions:

(a) I is homotopically injective,
(b) I is injective as an object of A.

Proof. (i) Assume that I is QM-injective.
(a) Recall that for a morphism f : X −→ Y in Ac, we have constructed a
natural monomorphism α( f ) : Y −→ Mc( f ) in Ac. Let X ∈ Ac be qis to 0. Then
u := α(idX ) is a monomorphism and it is also a qis since both X and Mc(idX )
are qis to 0. Hence u ∈ QM, and it follows that any morphism f : X −→ I
factorizes through Mc(idX ). Since Mc(idX ) � 0 in Kc(A), the morphism f
vanishes in Kc(A).
(b) Consider a monomorphism v : U −→ V in A. The morphism v defines the
morphism M(v) : M(U) −→ M(V ) in Ac and M(v) belongs to QM. Consider
the commutative diagram

HomAc
(M(V ), I )

∼
��

�� HomAc
(M(U), I )

∼
��

HomA(V, I ) �� HomA(U, I ).

Since M(v) belongs to QM and I is QM-injective, the horizontal arrow on the
top is surjective. Hence, the horizontal arrow in the bottom is also surjective,
and we conclude that I is injective.

(ii) Assume that I satisfies conditions (a) and (b). Let f : X −→ Y be a mor-
phism in Ac belonging to QM and let ϕ : X −→ I be a morphism in Ac. Since
I is injective as an object of A, there exists a morphism ψ : Y −→ I in A such
that ϕ = ψ ◦ f . Let h : T−1Y −→ I be the morphism in A given by
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h = T−1dI ◦ T−1ψ − ψ ◦ T−1dY

= T−1dI ◦ T−1ψ + ψ ◦ dT−1Y .

Then h : T−1Y −→ I is a morphism in Ac and h ◦ T−1 f = 0.

Let us consider an exact sequence 0 −→ X
f−→ Y

g−→ Z −→ 0 in Ac. Then, Z
is qis to 0. Since h ◦ T−1 f = 0, there exists a morphism h̃ : T−1Z −→ I in Ac

such that h = h̃ ◦ T−1g. Since Z is exact and I is homotopically injective, h̃
is homotopic to zero, i.e., there exists a morphism ξ : Z −→ I in A such that

h̃ = T−1dI ◦ T−1ξ + ξ ◦ dT−1Z .

Then the morphism ψ̃ = ψ − ξ ◦ g gives a morphism ψ̃ : Y −→ I in Ac which
satisfies ψ̃ ◦ f = ϕ. q.e.d.

Now we shall prove the following theorem.

Theorem 14.1.7. Let (A, T ) be an abelian category with translation and as-
sume that A is a Grothendieck category. Then, for any X ∈ Ac, there exists
u : X −→ I such that u ∈ QM and I is QM-injective.

Applying Proposition 14.1.6, we get:

Corollary 14.1.8. Let (A, T ) be an abelian category with translation and as-
sume that A is a Grothendieck category. Then for any X ∈ Ac, there exists a
qis X −→ I such that I is homotopically injective.

The proof of Theorem 14.1.7 decomposes into several steps.

Define a subcategory Ac,0 of Ac as follows:

Ob(Ac,0) = Ob(Ac), Mor(Ac,0) = QM .

We shall apply Theorems 9.5.4 and 9.5.5 to the categories Ac and Ac,0 (de-
noted by C and C0 in these theorems).

Let us check that hypothesis (9.5.2) is satisfied. Hypothesis (9.5.2) (i) is
satisfied since small filtrant inductive limits are exact and hence H : Ac −→ A
commutes with such limits. Hypothesis (9.5.2) (ii) follows from{

if u : X −→ Y belongs to QM and X −→ X ′ is a morphism in Ac,
then u′ : X ′ −→ X ′ ⊕X Y belongs to QM.

(14.1.3)

Set Y ′ = X ′⊕X Y . Then u′ : X ′ −→ Y ′ is a monomorphism. Note that u (resp. u′)
is a qis if and only if Coker(u) (resp. Coker(u′)) is qis to zero. Hence (14.1.3)
follows from Coker(u) � Coker(u′) (Lemma 8.3.11 (b)).

Since Ac is a Grothendieck category by Proposition 14.1.3, Theorem 9.6.1
implies that there exists an essentially small full subcategory S of Ac such
that
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(i) S contains a generator of Ac,
(ii) S is closed by subobjects and quotients in Ac,

(iii) for any solid diagram Y ′ g �� ��

��

Y

��
X ′ f �� �� X

in which f : X ′ −→ X is

an epimorphism in Ac and Y ∈ S, the dotted arrow may be
completed to a commutative diagram with Y ′ ∈ S and g an
epimorphism,

(iv) S is closed by countable direct sums.

(14.1.4)

In particular, S is a fully abelian subcategory of Ac closed by countable in-
ductive limits.

Define the set

F ′ = {u : X −→ Y ; u ∈ QM, X, Y ∈ S} ,

and take F ⊂ F ′ by collecting a representative of each isomorphism class in F ′
(i.e., for the relation of being isomorphic in Mor(Ac)). Since S is essentially
small, F is a small subset of F ′ such that any u ∈ F ′ is isomorphic to an
element of F .

By Theorem 9.6.1, there exists an infinite cardinal π such that if u : X −→ Y
belongs to F , then X ∈ (Ac)π . Applying Theorem 9.5.4, we find that for
any X ∈ Ac there exists a morphism u : X −→ I such that u ∈ QM and
I is F-injective. In order to prove that I is QM-injective, we shall apply
Theorem 9.5.5.

For X ∈ Ac,0, an object of (Ac,0)X is given by a monomorphism Y�X .
Therefore (Ac,0)X is essentially small by Corollary 8.3.26, and hence hypoth-
esis (9.5.6) is satisfied.

Let us check (9.5.7). We have an exact sequence 0 −→ X ′ −→ X ⊕ Y ′ w−→ Y .
Then Im w � X ⊕X ′ Y ′ and h : Imw −→ Y is a monomorphism. Hence (9.5.7)
follows from (14.1.3).

Hypothesis (9.5.8) will be checked in Lemmas 14.1.9–14.1.11 below.

Lemma 14.1.9. Let X ∈ Ac and let j : V �X be a monomorphism with
V ∈ S. Then there exist V ′ ∈ S and a monomorphism V ′�X such that j
decomposes as V �V ′�X and Ker

(
H(V ) −→ H(X)

) −→ H(V ′) vanishes.

Proof. Since V ∩ Im(T−1dX ) belongs to S, there exists W ⊂ T−1X such that
W ∈ S and (T−1dX )(W ) = V ∩ Im(T−1dX ). Set V ′ = V + T W . Then V ′ is a
subobject of X , it belongs to S and satisfies the desired condition. q.e.d.

Lemma 14.1.10. Let X ∈ Ac and let j : V �X be a monomorphism with
V ∈ S. Then there exist V ′ ∈ S and a monomorphism V ′�X such that j
decomposes as V �V ′�X and H(V ′) −→ H(X) is a monomorphism.
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Proof. Set V0 = V . Using Lemma 14.1.9, we construct by induction Vn ∈ S
such that Vn−1 ⊂ Vn ⊂ X and the morphism

Ker
(
H(Vn−1) −→ H(X)

) −→ Ker
(
H(Vn) −→ H(X)

)
vanishes.

Take V ′ = lim−→
n

Vn ⊂ X . Then V ′ ∈ S and

Ker
(
H(V ′) −→ H(X)

) � lim−→
n

Ker
(
H(Vn) −→ H(X)

) � 0 .

q.e.d.

Lemma 14.1.11. Let f : X −→ Y be in QM. If f satisfies (9.5.5), then f is
an isomorphism.

Proof. Let Z = Coker f . We get an exact sequence in Ac

0 −→ X
f−→ Y

g−→ Z −→ 0

and Z is qis to 0.
Since S contains a generator of Ac, it is enough to show that HomAc

(W, Z)
� 0 for any W ∈ S. Moreover, replacing W with its image in Z , it is enough
to check that any W ⊂ Z with W ∈ S vanishes.

For W ⊂ Z with W ∈ S, there exists W ′ ∈ S such that W ⊂ W ′ ⊂ Z and
H(W ′) � 0 by Lemma 14.1.10. Let us take V ⊂ Y with V ∈ S and g(V ) = W ′.
Set U = f −1(V ). Thus we obtain a Cartesian square U

s ��
��
��

V
��
��

X
f �� Y

. We have an

exact sequence 0 −→ U
s−→ V −→ W ′ −→ 0. Since W ′ is qis to zero, U

s−→ V
belongs to F . Since f satisfies (9.5.5), V −→ Y factors through X −→ Y and
hence W ′ = g(V ) � 0. This shows that W � 0. q.e.d.

Thus we have proved hypothesis (9.5.8), and the proof of Theorem 14.1.7
is now complete.

Corollary 14.1.12. Let (A, T ) be an abelian category with translation and
assume that A is a Grothendieck category. Then:

(i) the localization functor Q : Kc(A) −→ Dc(A) induces an equivalence
Kc,hi(A) ∼−→Dc(A),

(ii) the category Dc(A) is a U-category,
(iii) the functor Q : Kc(A) −→ Dc(A) admits a right adjoint Rq : Dc(A) −→

Kc(A), Q ◦ Rq � id, and Rq is the composition of ι : Kc,hi(A) −→ Kc(A)
and a quasi-inverse of Q ◦ ι,

(iv) for any triangulated category D, any triangulated functor F : Kc(A) −→ D
admits a right localization RF : Dc(A) −→ D, and RF � F ◦ Rq .
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Proof. (i) The functor Q : Kc,hi(A) −→ Dc(A) is fully faithful by Lemma 14.1.5
and essentially surjective by Corollary 14.1.8.
(ii)–(iii) follow immediately.
(iv) follows from Proposition 7.3.2. q.e.d.

14.2 The Brown Representability Theorem

We shall show that the hypotheses of the Brown representability theorem
(Theorem 10.5.2) are satisfied for Dc(A) when A is a Grothendieck abelian
category with translation. Note that Dc(A) admits small direct sums and the
localization functor Q : Kc(A) −→ Dc(A) commutes with such direct sums by
Proposition 14.1.1.

Theorem 14.2.1. Let (A, T ) be an abelian category with translation and as-
sume that A is a Grothendieck category. Then the triangulated category Dc(A)
admits small direct sums and a system of t-generators.

Applying Theorem 10.5.2, we obtain

Corollary 14.2.2. Let (A, T ) be an abelian category with translation and as-
sume that A is a Grothendieck category. Let G : (Dc(A))op −→ Mod(Z) be a
cohomological functor which commutes with small products (i.e., G(

⊕
i

Xi ) �∏
i G(Xi ) for any small family {Xi }i in Dc(A)). Then G is representable.

Applying Corollary 10.5.3, we obtain:

Corollary 14.2.3. Let (A, T ) be an abelian category with translation and as-
sume that A is a Grothendieck category. Let D be a triangulated category and
let F : Dc(A) −→ D be a triangulated functor. Assume that F commutes with
small direct sums. Then F admits a right adjoint.

We shall prove a slightly more general statement than Theorem 14.2.1. Let
I be a full subcategory of A closed by subobjects, quotients and extensions in
A, and also by small direct sums. Similarly to Definition 13.2.7, let us denote
by Dc,I(A) the full subcategory of Dc(A) consisting of objects X ∈ Dc(A)
such that H(X) ∈ I. Then Dc,I(A) is a full triangulated subcategory of Dc(A)
closed by small direct sums.

Proposition 14.2.4. The triangulated category Dc,I(A) admits a system of
t-generators.

In proving Proposition 14.2.4, we need preliminary lemmas. Recall that
there exists an essentially small fully abelian subcategory S of Ac satisfying
(14.1.4).

Lemma 14.2.5. Assume that X ∈ Ac satisfies H(X) ∈ S. Then there exists
a morphism j : Y −→ X with Y ∈ S and j ∈ QM.
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Proof. There exists S ∈ S such that S ⊂ Ker dX and that the composition
S −→ Ker dX −→ H(X) is an epimorphism. Since the differential of S van-
ishes, H(S) is isomorphic to S and H(S) −→ H(X) is an epimorphism. By
Lemma 14.1.10, there exists Y ∈ S such that S ⊂ Y ⊂ X and H(Y ) −→ H(X)
is a monomorphism. Hence, H(Y ) −→ H(X) is an isomorphism. q.e.d.

Lemma 14.2.6. Let X ∈ Ac with H(X) ∈ I. If HomDc,I(A)(Y, X) � 0 for all
Y ∈ S such that H(Y ) ∈ I, then X is qis to zero.

Proof. It is enough to show that HomAc
(S, H(X)) � 0 for all S ∈ S. Let

us show that any u : S −→ H(X) vanishes. Replacing S with the image of
u, we may assume that u is a monomorphism. Since Ker dX −→ H(X) is an
epimorphism, there exists S′ ∈ S such that S′ ⊂ Ker dX and that the image of
the composition S′ −→ Ker dX −→ H(X) is equal to S. By Lemma 14.1.10, there
exists V ∈ S such that S′ ⊂ V ⊂ X and H(V ) −→ H(X) is a monomorphism.
Hence H(V ) belongs to I. Since HomDc,I(A)(V, X) � 0 by the assumption,
the morphism V −→ X vanishes in Dc(A). Taking the cohomology, we find that
H(V ) −→ H(X) vanishes. Since the differentials of S′ and S vanish, we have
H(S′) � S′ and H(S) � S. Since the composition H(S′) −→ H(V ) −→ H(X)
vanishes, the composition S′�S

u−→ H(X) vanishes. Hence u = 0. q.e.d.

Proof of Proposition 14.2.4. Denote by T the subset of Dc,I(A) consisting of
the image of objects Y ∈ S such that H(Y ) ∈ I. We shall show that T is a
system of t-generators in Dc,I(A).
(i) T is a system of generators. Indeed, HomDc,I(A)(Y, X) � 0 for all Y ∈ T
implies that X � 0 by Lemma 14.2.6.
(ii) We shall check condition (iii)′ in Remark 10.5.4. Consider a small set I and
a morphism C −→⊕

i∈I
Xi in Dc,I(A), with C ∈ T . This morphism is represented

by morphisms in Ac:

C
u←− Y −→⊕

i∈I
Xi

where Y ∈ Ac and u is a qis. By Lemma 14.2.5, there exists a qis C ′ −→ Y
with C ′ ∈ S. Replacing C with C ′, we may assume from the beginning that we
have a morphism C −→ ⊕

i∈I
Xi in Ac. Set Yi = Im(C −→ Xi ). Then Yi belongs

to S. By Lemma 14.1.10, there exists Ci ∈ S such that Yi ⊂ Ci ⊂ Xi and that
H(Ci ) −→ H(Xi ) is a monomorphism. Then H(Ci ) belongs to I. By the result
of Exercise 8.35, the morphism C −→⊕

i
Xi factorizes through

⊕
i

Yi −→⊕
i

Xi ,

and hence through
⊕

i
Ci −→⊕

i
Xi . q.e.d.

14.3 Unbounded Derived Category

From now on and until the end of this chapter, C, C ′, etc. are abelian categories.
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We shall apply the results in the preceding Sects. 14.1 and 14.2 to the
abelian category with translation A := Gr(C). Then we have Ac � C(C),
Kc(A) � K(C) and Dc(A) � D(C). Assume that C admits direct sums indexed
by a set I and that such direct sums are exact. Then, clearly, Gr(C) has the
same properties. It then follows from Proposition 14.1.1 that C(C), K(C) and
D(C) also admit such direct sums and the two functors C(C) −→ K(C) and
K(C) −→ D(C) commute with such direct sums.

We shall write Khi(C) for Kc,hi(A). Hence Khi(C) is the full subcate-
gory of K(C) consisting of homotopically injective objects. Let us denote by
ι : Khi(C) −→ K(C) the embedding functor. Similarly we denote by Khp(C) the
full subcategory of K(C) consisting of homotopically projective objects. Recall
that I ∈ K(C) is homotopically injective if and only if HomK(C)(X, I ) � 0 for
all X ∈ K(C) that is qis to 0.

Note that an object I ∈ K+(C) whose components are all injective is
homotopically injective in view of Lemma 13.2.4.

Let C be a Grothendieck abelian category. Then A := Gr(C) is also a
Grothendieck category. Applying Corollary 14.1.8 and Theorem 14.2.1, we
get the following theorem.

Theorem 14.3.1. Let C be a Grothendieck category.

(i) if I ∈ K(C) is homotopically injective, then we have an isomorphism

HomK(C)(X, I ) ∼−→HomD(C)(X, I ) for any X ∈ K(C) ,

(ii) for any X ∈ C(C), there exists a qis X −→ I such that I is homotopically
injective,

(iii) the localization functor Q : K(C) −→ D(C) induces an equivalence

Khi(C) ∼−→D(C) ,

(iv) the category D(C) is a U-category,
(v) the functor Q : K(C) −→ D(C) admits a right adjoint Rq : D(C) −→ K(C),

Q ◦ Rq � id, and Rq is the composition of ι : Khi(C) −→ K(C) and a
quasi-inverse of Q ◦ ι,

(vi) for any triangulated category D, any triangulated functor F : K(C) −→ D
admits a right localization RF : D(C) −→ D and RF � F ◦ Rq ,

(vii) the triangulated category D(C) admits small direct sums and a system
of t-generators,

(viii) any cohomological functor G : (D(C))op −→ Mod(Z) is representable as
soon as G commutes with small products (i.e., G(

⊕
i

Xi ) �∏
i G(Xi ) for

any small family {Xi }i in D(C)),
(ix) for any triangulated category D, any triangulated functor F : D(C) −→ D

admits a right adjoint as soon as F commutes with small direct sums.
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Corollary 14.3.2. Let k be a commutative ring and let C be a Grothendieck
k-abelian category. Then

(
Khi(C),K(C)op

)
is HomC-injective, and the functor

HomC admits a right derived functor RHomC : D(C)×D(C)op −→ D(k).
Moreover, H0(RHomC(X, Y )) � HomD(C)(X, Y ) for X, Y ∈ D(C).

Proof. (i) The functor HomC defines a functor Hom•
C : K(C)×K(C)op −→ K(k)

and H0(Hom•
C) � HomK(C) by Proposition 11.7.3. Let I ∈ Khi(C). If X ∈ K(C)

is qis to 0, we find HomK(C)(X, I ) � 0. Moreover, if I ∈ Khi(C) is qis to 0,
then I is isomorphic to 0. Therefore

(
Khi(C),K(C)op

)
is HomC-injective, and

we can apply Corollary 10.3.11 to the functor Hom•
C : K(C)×K(C)op −→ K(k)

and conclude.

(ii) The last assertion follows from Theorem 13.4.1. q.e.d.

Remark 14.3.3. Let I be a full subcategory of a Grothendieck category C
and assume that I is closed by subobjects, quotients and extensions in C,
and also by small direct sums. Then by Proposition 14.2.4, the triangulated
category DI(C) admits small direct sums and a system of t-generators. Hence
DI(C) −→ D(C) has a right adjoint.

We shall now give another criterion for the existence of derived functors
in the unbounded case, when the functor has finite cohomological dimension.

Proposition 14.3.4. Let C and C ′ be abelian categories and F : C −→ C ′ a left
exact functor. Let J be an F-injective full additive subcategory of C satisfying
the finiteness condition (13.2.1). Then

(i) K(J ) is K(F)-injective. In particular, the functor F admits a right de-
rived functor RF : D(C) −→ D(C ′) and

RF(X) � K(F)(Y ) for (X −→ Y ) ∈ Qis with Y ∈ K(J ) .

(ii) Assume that C and C ′ admit direct sums indexed by a set I and such
direct sums are exact. (Hence, D(C) and D(C ′) admit such direct sums by
Proposition 10.2.8.) If F commutes with direct sums indexed by I and
J is closed by such direct sums, then RF : D(C) −→ D(C ′) commutes with
such direct sums.

Note that by Proposition 13.3.5, the conditions on the full additive subcate-
gory J are equivalent to the conditions (a)–(c) below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) J is cogenerating in C,
(b) there exists a non-negative integer d such that if Y 0 −→

Y 1 −→ · · · −→ Y d −→ 0 is an exact sequence and Y j ∈ J
for j < d, then Y d ∈ J ,

(c) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C
with X ′, X ∈ J , the sequence 0 −→ F(X ′) −→ F(X) −→
F(X ′′) −→ 0 is exact.

(14.3.1)
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Proof. (i) By Proposition 13.2.6, it remains to prove that if X ∈ C(J ) is exact,
then F(X) is exact. Consider the truncated complex

Xi−d −→ · · · −→ Xi−1 −→ Coker di−1
X −→ 0 .

By the assumption, Coker di−1
X belongs to J . Hence,

τ≥i X := 0 −→ Coker di−1
X −→ Xi+1 −→ · · ·

belongs to K+(J ) and is an exact complex. Therefore,

0 −→ F(Coker di−1
X ) −→ F(Xi+1) −→ · · ·

is exact.
(ii) Let {Xi }i∈I be a family of objects in C(C). For each i ∈ I , choose a qis
Xi −→ Yi with Yi ∈ C(J ). Since direct sums indexed by I are exact in C(C),⊕
i

Xi −→ ⊕
i

Yi is a qis, and by the hypothesis,
⊕

i
Yi belongs to C(J ). Then

Q(
⊕

i
Xi ) �⊕

i
Q(Xi ) by Proposition 14.1.1 and

RF(
⊕

i
Xi ) � F(

⊕
i

Yi ) �⊕
i

F(Yi ) �⊕
i

RF(Xi )

in D(C ′). q.e.d.

Corollary 14.3.5. Let C and C ′ be abelian categories and let F : C −→ C ′ and
F ′ : C ′ −→ C ′′ be left exact functors of abelian categories. Let J and J ′ be full
additive subcategories of C and C ′ respectively, and assume that J satisfies the
conditions (a)–(c) of (14.3.1) and similarly for J ′ with respect to C ′, C ′′, F ′.
Assume moreover that F(J ) ⊂ J ′. Then R(F ′ ◦ F) � RF ′ ◦ RF.

Remark 14.3.6. Applying Proposition 14.3.4 and Corollary 14.3.5 with C, C ′
and C ′′ replaced with the opposite categories, we obtain similar results for left
derived functors of right exact functors.

By Proposition 14.3.4 together with Theorem 14.3.1, we obtain the follow-
ing corollary.

Corollary 14.3.7. Let C be a Grothendieck category and let F : C −→ C ′ be
a left exact functor of abelian categories which commutes with small direct
sums. Let J be a full additive subcategory of C satisfying the conditions (a)–
(c) of (14.3.1). Assume moreover that J is closed by small direct sums. Then
RF : D(C) −→ D(C ′) admits a right adjoint.

14.4 Left Derived Functors

In this section, we shall give a criterion for the existence of the left derived
functor LG : D(C) −→ D(C ′) of an additive functor G : C −→ C ′ of abelian
categories, assuming that G admits a right adjoint.
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Let C be an abelian category. We shall assume

C admits small direct sums and small direct sums are exact in C.(14.4.1)

Hence, by Proposition 14.1.1, C(C), K(C) and D(C) admit small direct sums.
Note that Grothendieck categories satisfy (14.4.1).

Lemma 14.4.1. Assume (14.4.1) and let P be a full additive generating sub-
category of C. For any X ∈ C(C), there exists a quasi-isomorphism X ′ −→ X
such that X ′ is the mapping cone of a morphism Q −→ P, where P and Q are
countable direct sums of objects of C−(P).

Proof. By Lemma 13.2.1 (with the arrows reversed), for each n ∈ Z, there
exists a quasi-isomorphism pn : Pn −→ τ≤n X with Pn ∈ C−(P). Then there
exists a quasi-isomorphism

Qn −→ Mc
(
Pn
⊕

Pn+1
(pn ,−pn+1)−−−−−−→ τ≤n+1X

)
[−1]

with Qn ∈ C−(P). Hence, we have a commutative diagram in K−(C):

Qn
��

��%%
%%%

%%
Pn

�� τ≤n X

��
Pn+1

�� τ≤n+1X .

By the octahedral axiom of triangulated categories, there exists a d.t. in K(C)

Mc(Pn+1 −→ Pn
⊕

Pn+1) −→ Mc(Pn+1 −→ τ≤n+1X)

−→ Mc(Pn
⊕

Pn+1 −→ τ≤n+1X)
+1−→ .

Since Pn+1 −→ τ≤n+1X is a qis, the morphism

Mc(Pn
⊕

Pn+1 −→ τ≤n+1X
)
[−1] −→ Mc(Pn+1 −→ Pn

⊕
Pn+1)

is an isomorphism in D(C). Hence, Qn −→ Pn is a qis.
Set Q =

⊕
n∈Z

Qn and P =
⊕
n∈Z

Pn. Then Qn −→ Pn and Qn −→ Pn+1 define

morphisms u0, u1 : Q −→ P. Set

R := Mc(Q
u0−u1−−−→ P) .

There is a d.t. Q −→ P −→ R −→ Q[1]. Since the composition Q
u0−u1−−−→ P −→ X

is zero in K(C), P −→ X factors as P −→ R −→ X in K(C). Let us show that
R −→ X is a qis. For i ∈ Z, set ϕi := Hi (u0 − u1). We have an exact sequence

Hi (Q)
ϕi−→ Hi (P) −→ Hi (R) −→ Hi+1(Q)

ϕi+1−−→ Hi+1(P) .

The hypothesis (14.4.1) implies
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Hi (Q) � ⊕
n∈Z

Hi (Qn) �⊕
i≤n

Hi (X) ,

Hi (P) � ⊕
n∈Z

Hi (Pn) �⊕
i≤n

Hi (X) .

Hence, ϕi+1 is a monomorphism by Exercise 8.37. Note that id−σ in Exer-

cise 8.37 corresponds to ϕi and X0 −→ X1 −→ · · · corresponds to Hi (X)
id−→

Hi (X) −→ · · · . Therefore, Coker ϕi � lim−→
n

Hi (Pn)−→ Hi (X) is an isomorphism.

Hence, Hi (R) −→ Hi (X) is an isomorphism. q.e.d.

Lemma 14.4.2. Assume (14.4.1). Let P be the full subcategory of C consisting
of projective objects and let P̃ be the smallest full triangulated subcategory of
K(C) closed by small direct sums and containing K−(P). Then any object of
P̃ is homotopically projective.

Proof. The full subcategory Khp(C) of K(C) consisting of homotopically pro-
jective objects is closed by small direct sums and contains K−(P). Hence, it
contains P̃. q.e.d.

Theorem 14.4.3. Let C be an abelian category satisfying (14.4.1) and admit-
ting enough projectives. Then,

(i) for any X ∈ K(C), there exist P ∈ Khp(C) and a qis P −→ X ,
(ii) for any additive functor G : C −→ C ′, the left derived functor LG : D(C) −→

D(C ′) exists, and LG(X) � G(X) if X is homotopically projective.

Proof. Apply Lemmas 14.4.1 and 14.4.2. q.e.d.

By reversing the arrows in Theorem 14.4.3, we obtain

Theorem 14.4.4. Let C be an abelian category. Assume that C admits enough
injectives, small products exist in C and such products are exact in C. Then

(i) for any X ∈ K(C), there exist I ∈ Khi(C) and a qis X −→ I ,
(ii) for any additive functor F : C −→ C ′, the right derived functor RF : D(C)−→

D(C ′) exists, and RF(X) � F(X) if X is homotopically injective.

Note that Grothendieck categories always admit small products, but small
products may not be exact.

Theorem 14.4.5. Let k be a commutative ring and let G : C −→ C ′ and
F : C ′ −→ C be k-additive functors of k-abelian categories such that (G, F)
is a pair of adjoint functors. Assume that C ′ is a Grothendieck category and
C satisfies (14.4.1). Let P be a G-projective full subcategory of C.

(a) Let P̃ be the smallest full triangulated subcategory of K(C) closed by small
direct sums and containing K−(P). Then P̃ is K(G)-projective.

(b) The left derived functor LG : D(C) −→ D(C ′) exists and (LG, RF) is a pair
of adjoint functors.
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(c) We have an isomorphism in D(k), functorial with respect to X ∈ D(C) and
Y ∈ D(C ′) :

RHomC(X, RF(Y )) � RHomC′(LG(X), Y ) .

Proof. (i) Let us denote by P̃ ′ the full subcategory of K(C) consisting of
objects X such that

HomK(C)(X, F(I )) −→ HomD(C)(X, F(I ))(14.4.2)

is bijective for any homotopically injective object I ∈ C(C ′). Then P̃ ′ is a
triangulated subcategory of K(C) closed by small direct sums.
(ii) Let us show that P̃ ′ contains K−(P). If X ∈ K−(P), then QisX ∩K−(P)X

is co-cofinal to QisX , and hence we have

HomD(C)(X, F(I )) � lim−→
(X ′−→X)∈Qis,X ′∈K−(P)

HomK(C)(X ′, F(I )) .

Let X ′ −→ X be a qis with X ′ ∈ K−(P). Let X ′′ be the mapping cone of
X ′ −→ X . Then X ′′ is an exact complex in K−(P). Hence

HomK(C)(X ′′, F(I )) � HomK(C′)(G(X ′′), I ) � 0 ,

where the second isomorphism follows from the fact that P being G-projective,
G(X ′′) is an exact complex. Hence, for X, X ′ ∈ K−(P) and for a qis X ′ −→ X ,
the map HomK(C)(X, F(I )) −→ HomK(C)(X ′, F(I )) is bijective. It follows that
the map in (14.4.2) is bijective.
(iii) By (ii), P̃ ′ contains P̃.
(iv) We shall prove that if X ∈ P̃ ′ is exact, then G(X) � 0 in D(C ′). Indeed,
for any homotopically injective object I in C(C ′), we have

HomD(C′)(G(X), I ) � HomK(C′)(G(X), I ) � HomK(C)(X, F(I ))

� HomD(C)(X, F(I )) � 0 .

(v) By Lemma 14.4.1, for every X ∈ C(C), there exists a quasi-isomorphism
P −→ X with P ∈ P̃. Hence P̃ is K(G)-projective and LG exists. Moreover,
we have LG(X) � G(X) for any X ∈ P̃. For a homotopically injective object
I ∈ C(C ′) and X ∈ P̃, we have

RHomC(X, RF(I )) � Hom•
C(X, F(I ))

� Hom•
C′(G(X), I ) � RHomC′(LG(X), I ) .

Hence we obtain (c). By taking the cohomologies, we obtain (b). q.e.d.

Corollary 14.4.6. Let C and C ′ be Grothendieck categories and let G : C −→ C ′
be an additive functor commuting with small inductive limits. Assume that
there exists a G-projective subcategory P of C. Then
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(i) LG : D(C) −→ D(C ′) exists and commutes with small direct sums,
(ii) for any small filtrant inductive system α : I −→ C, lim−→ H n(LG(α)) −→

H n(LG(lim−→α)) is an isomorphism for all n ∈ Z.

Proof. (i) By Theorem 8.3.27, G admits a right adjoint functor and we may
apply Theorem 14.4.5.
(ii) Let P ′ be the full subcategory of C consisting of left G-acyclic objects (see
Remark 13.3.6). Then P ′ is also G-projective by Lemma 13.3.12 and closed by
small direct sums by (i). For each i ∈ I , let us take an epimorphism Pi�α(i)
with Pi ∈ P ′. Set p0(i) =

⊕
i ′−→i

Pi ′ . Then p0 : I −→ C is a functor and p0 −→ α

is an epimorphism in Fct(I, C). It is easily checked that lim−→ p0 � ⊕
i∈I

Pi (see

Exercise 2.21). By this procedure, we construct an exact sequence in Fct(I, C)

· · · −→ pn+1 −→ pn −→ · · · −→ p0 −→ α −→ 0(14.4.3)

such that any pk(i) as well as lim−→
i

pk(i) belongs to P ′.

Define the complex in Fct(I, C)

p• := · · · −→ pn+1 −→ pn −→ · · · −→ p0 −→ 0 .

Hence we have

H n(LG(lim−→α)) � H n(G(lim−→ p•)) � lim−→ H n(G(p•)) � lim−→ H n(LG(α)) .

q.e.d.

Proposition 14.4.7. Let C, C ′, C ′′ be Grothendieck categories and let F : C −→
C ′, F ′ : C ′ −→ C ′′, G : C ′ −→ C, G ′ : C ′′ −→ C ′ be additive functors such that
(G, F) and (G ′, F ′) are pairs of adjoint functors. Assume that there exist a
G-projective subcategory P ′ of C ′ and a G ′-projective subcategory P ′′ of C ′′ such
that G ′(P ′′) ⊂ P ′. Then R(F ′ ◦ F) −→ RF ′ ◦ RF and LG ◦ LG ′ −→ L(G ◦ G ′)
are isomorphisms of functors.

Proof. Since R(F ′ ◦ F), RF ′, RF are left adjoint functors to L(G ◦ G ′), LG ′,
LG, it is enough to prove the isomorphism LG◦LG ′ ∼−→ L(G◦G ′). Let P̃ ′′ (resp.
P̃ ′) denote the smallest full triangulated subcategory of K(C ′′) (resp. K(C ′))
closed by small direct sums and containing K−(P ′′) (resp. K−(P ′)). Then
P̃ ′′ (resp. P̃ ′) is projective with respect to the functor K(G ′) (resp. K(G)).
Moreover, K(G ′)(P̃ ′′) ⊂ P̃ ′. Hence LG ◦ LG ′ −→ L(G ◦ G ′) is an isomorphism
by Proposition 10.3.5. q.e.d.

Theorem 14.4.8. Let k be a commutative ring and let C1, C2 and C3 be k-
abelian categories. We assume that C3 is a Grothendieck category and that
C1 and C2 satisfy (14.4.1). Let G : C1 × C2 −→ C3, F1 : Cop

2 × C3 −→ C1 and



362 14 Unbounded Derived Categories

F2 : Cop
1 ×C3 −→ C2 be k-additive functors. Assume that there are isomorphisms,

functorial with respect to Xi ∈ Ci (i = 1, 2, 3):

HomC3
(G(X1, X2), X3) � HomC1

(X1, F1(X2, X3))
� HomC2

(X2, F2(X1, X3)) .
(14.4.4)

Let K(G) : K(C1)×K(C2) −→ K(C3) be the triangulated functor associated with
tot⊕G(X1, X2), and let K(F1) : K(C2)op ×K(C3) −→ K(C1) be the triangulated
functor associated with totπ F1(X2, X3) and similarly for K(F2).
Let Pi ⊂ Ci (i = 1, 2) be a full subcategory such that (P1,P2) is K(G)-
projective. Denote by P̃i the smallest full triangulated subcategory of K(Ci )
that contains K−(Pi ) and is closed by small direct sums (i = 1, 2).

Then:

(i) (P̃1, P̃2) is K(G)-projective. In particular LG : D(C1) × D(C2) −→ D(C3)
exists and LG(X1, X2) � K(G)(X1, X2) for X1 ∈ P̃1 and X2 ∈ P̃2.

(ii) (P̃op
2 ,Khi(C3)) is K(F1)-injective. In particular, RF1 : D(C2)op×D(C3) −→

D(C1) exists and RF1(X2, X3) � K(F1)(X2, X3) for X2 ∈ P̃2 and X3 ∈
Khi(C3). Similar statements hold for F2.

(iii) There are isomorphisms, functorial with respect to Xi ∈ D(Ci ) (i =
1, 2, 3)

HomD(C3)
(LG(X1, X2), X3) � HomD(C1)

(X1, RF1(X2, X3))(14.4.5)

� HomD(C2)
(X2, RF2(X1, X3)),

and

RHomC3
(LG(X1, X2), X3) � RHomC1

(X1, RF1(X2, X3))(14.4.6)
� RHomC2

(X2, RF2(X1, X3)) .

(iv) Moreover, if Pi = Ci for i = 1 or i = 2, we can take P̃i = K(Ci ) in (i)
and (ii).

Proof. In the sequel, we shall write for short G and Fi instead of K(G) and
K(Fi ), respectively. The isomorphism (14.4.4) gives rise to an isomorphism

HomK(C3)
(G(X1, X2), X3) � HomK(C1)

(X1, F1(X2, X3))(14.4.7)

functorial with respect to Xi ∈ K(Ci ) (i = 1, 2, 3).
Note also that for any X2 ∈ C2, the functor X1 
→ G(X1, X2) com-

mutes with small direct sums. Indeed this functor has a right adjoint X3 
→
F1(X2, X3).

(a) Let us first prove the following statement:

if X1 ∈ K−(P1) is an exact complex and X2 ∈ P̃2 ,
then G(X1, X2) is exact.

(14.4.8)
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Indeed, for such an X1, the category

P̃ ′
2 =

{
Y ∈ K(C2) ; G(X1, Y ) is exact

}
is a triangulated subcategory of K(C2) which contains K−(P2) and is closed
by small direct sums. Hence, P̃ ′

2 contains P̃2.

(b) Set

P̃ ′
1 = {X1 ∈ K(C1); HomK(C1)

(X1, F1(X2, X3))−→HomD(C1)
(X1, F1(X2, X3))

is an isomorphism for all X2 ∈ P̃2, X3 ∈ Khi(C3)} .

Let us show that P̃1 ⊂ P̃ ′
1.

Since the category P̃ ′
1 is a full triangulated subcategory of K(C1) closed by

small direct sums, it is enough to show that K−(P1) ⊂ P̃ ′
1. If Y1 ∈ K−(P1) is

exact, then

HomK(C1)
(Y1, F1(X2, X3)) � HomK(C3)

(G(Y1, X2), X3) � 0 ,(14.4.9)

where the last isomorphism follows from (14.4.8) and X3 ∈ Khi(C3). Hence, if
X ′

1 −→ X1 is a qis in K−(P1), then

HomK(C1)
(X1, F1(X2, X3)) ∼−→HomK(C1)

(X ′
1, F1(X2, X3)) .

Hence we obtain for any X1 ∈ K−(P1)

HomD(C1)
(X1, F1(X2, X3))

� lim−→
(X ′

1−→X1)∈Qis∩K−(P1)

HomK(C1)
(X ′

1, F1(X2, X3))

� HomK(C1)
(X1, F1(X2, X3)) .

(14.4.10)

Thus K−(P1) ⊂ P̃ ′
1 and hence P̃1 ⊂ P̃ ′

1.

(c) Next let us show

for Xi ∈ P̃i (i = 1, 2) and X3 ∈ Khi(C3), we have
HomD(C3)

(G(X1, X2), X3) � HomD(C1)
(X1, F1(X2, X3)) .

(14.4.11)

There are isomorphisms

HomD(C3)
(G(X1, X2), X3) � HomK(C3)

(G(X1, X2), X3)

� HomK(C1)
(X1, F1(X2, X3))

� HomD(C1)
(X1, F1(X2, X3)) .

Here the first isomorphism follows from X3 ∈ Khi(C3) and the last isomorphism
follows from P̃1 ⊂ P̃ ′

1.
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(d) Let us prove (i). It is enough to show that for Xi ∈ P̃i (i = 1, 2), G(X1, X2)
is exact as soon as X1 or X2 is exact. Assume that X1 is exact. Then, for any
X3 ∈ Khi(C3), we have by (14.4.11)

HomD(C3)
(G(X1, X2), X3) � HomD(C1)

(X1, F1(X2, X3)) � 0 .

This implies that G(X1, X2) is exact. The proof in the case where X2 is exact
is similar.

(e) Let us prove (ii). It is enough to show that for X2 ∈ P̃2 and X3 ∈ Khi(C3),
F1(X2, X3) is exact as soon as X2 or X3 is exact.
(e1) Assume that X2 is exact. For any X1 ∈ P̃1, G(X1, X2) is exact by (i), and
hence HomD(C1)

(X1, F1(X2, X3)) � HomD(C3)
(G(X1, X2), X3) vanishes. This

implies that F1(X2, X3) is exact.
(e2) Assume that X3 ∈ Khi(C3) is exact. Then X3 � 0 in K(C3) and F1(X2, X3)
is exact.

(f) Let us show (iii). The isomorphisms (14.4.5) immediately follow from
(14.4.11). The adjunction morphism X1 −→ RF1(X2, LG(X1, X2)) induces the
morphisms

RHomC3
(LG(X1, X2), X3) −→ RHomC1

(
RF1(X2, LG(X1, X2)), RF1(X2, X3)

)
−→ RHomC1

(X1, RF1(X2, X3)) .

By taking the cohomologies, it induces isomorphisms by (14.4.5) and Theo-
rem 13.4.1.

(g) Let us prove (iv). Assume P1 = K−(C1).
(g1) Let us show that (K(C1), P̃2) is K(G)-projective. For that purpose it is
enough to show that G(X1, X2) is exact for X1 ∈ K(C1) and X2 ∈ P̃2 as soon as
X1 or X2 is exact. Since τ≤n X1 or X2 is exact and (P̃1, P̃2) is K(G)-projective,
G(τ≤n X1, X2) is exact. Hence G(X1, X2) � lim−→

n

G(τ≤n X1, X2) is exact.

(g2) Let us show that (K(C1)op,Khi(C3)) is K(F2)-injective. Let X1 ∈ K(C1)
and X3 ∈ Khi(C3). If X3 is exact, then X3 � 0, and hence F2(X1, X3) is exact.
If X1 ∈ K(C1) is exact, then for any X2 ∈ P̃2 we have

HomK(C2)
(X2, F2(X1, X3)) � HomK(C3)

(G(X1, X2), X3) � 0 ,

where the last isomorphism follows from the fact that G(X1, X2) is exact by
(g1). Hence F2(X1, X3) is exact. q.e.d.

Corollary 14.4.9. Let C1, C2 and C3 be Grothendieck categories. Let G : C1×
C2 −→ C3 be an additive functor which commutes with small inductive limits
with respect to each variable. Let Pi ⊂ Ci (i = 1, 2) be a full subcategory
such that (P1,P2) is G-projective. Denote by P̃i the smallest full triangulated
subcategory of K(Ci ) that contains K−(Pi ) and is closed by small direct sums
(i = 1, 2). Let K(G) : K(C1) × K(C2) −→ K(C3) be the functor associated with
tot⊕G(X1, X2). Then
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(i) (P̃1, P̃2) is K(G)-projective. In particular LG : D(C1) × D(C2) −→ D(C3)
exists and LG(X1, X2) � G(X1, X2) for X1 ∈ P̃1 and X2 ∈ P̃2.

(ii) LG commutes with small direct sums.
(iii) Moreover, if Pi = Ci for i = 1 or i = 2, we can take P̃i = K(Ci ).

Proof. By Theorem 8.3.27, the two functors X1 
→ G(X1, X2) and X2 
→
G(X1, X2) have right adjoints. q.e.d.

Example 14.4.10. Let R denote a k-algebra. The functor • ⊗R
• : Mod(Rop)×

Mod(R) −→ Mod(k) defines a functor

• ⊗R
• : K(Mod(Rop))×K(Mod(R)) −→ K(Mod(k)) ,(14.4.12)

(X•, Y •) 
→ tot⊕(X• ⊗R Y •) .

Then

Hom k(N ⊗R M, L) � Hom Rop(N ,Hom k(M, L))
� Hom R(M,Hom k(N , L))

for any N ∈ Mod(Rop), M ∈ Mod(R) and L ∈ Mod(k).
Let Pproj denote the full additive subcategory of Mod(R) consisting of

projective modules and P̃proj the smallest full triangulated subcategory of
K(Mod(R)) closed by small direct sums and containing K−(Pproj ). We may
apply Theorem 14.4.8 with C1 = Mod(Rop), C2 = Mod(R) and C3 = Mod(k).
Then (K(Mod(Rop)), P̃proj ) is ( • ⊗R

• )-projective and the functor in (14.4.12)
admits a left derived functor

•
L⊗R

• : D(Rop)×D(R) −→ D(k) ,

and

N
L⊗R M � tot⊕(N ⊗R P) for P ∈ P̃proj , (P −→ M) ∈ Qis .

Moreover, the functor

Hom k( • , • ) : K(Mod(R))op ×K(Mod(k)) −→ K(Mod(Rop))

admits a right adjoint functor and we have

RHom k(N
L⊗R M, L) � RHom Rop(N ,RHom k(M, L))

� RHom R(M,RHom k(N , L))

for any N ∈ D(Rop), M ∈ D(R) and L ∈ D(k).
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Exercises

Exercise 14.1. Let C be an abelian category and let a ≤ b be integers.
(i) Prove that for X ∈ D≥b(C) and Y ∈ D≤a(C), any morphism f : X −→ Y in
D(C) decomposes as X −→ U [−b] −→ V [−a] −→ Y for some U, V ∈ C. (Hint: to
prove the existence of V , represent X by an object of C≥b(C) and use σ≥a .)
(ii) Assume that hd(C) < b−a. Prove that HomD(C)(X, Y ) � 0 for X ∈ D≥b(C)
and Y ∈ D≤a(C).

Exercise 14.2. Let C be an abelian category with enough projectives and
which satisfies (14.4.1). Let P denote the full subcategory of C consisting of
projective objects. Denote by P̃ the smallest full triangulated category of K(C)
that contains K−(P) and is closed by small direct sums. Prove that the derived
functor RHomC : D(C)×D(C)op −→ D(Z) exists and prove that if P −→ X is a
qis in K(C) with P ∈ P̃, then RHomC(X, Y ) � totπ (Hom•,•

C (P, Y )).

Exercise 14.3. Let C be an abelian category which admits countable direct
sums and assume that such direct sums are exact. Let X ∈ D(C).
(i) Prove that there is a d.t. in D(C):⊕

n≥0

τ≤n X
id−σ−−−−→ ⊕

n≥0

τ≤n X
w−→ X

v−→ ⊕
n≥0

τ≤n X [1] ,(14.4.13)

where σ is defined in Notation 10.5.10 and w is induced by the canonical
morphisms τ≤n X −→ X .
(ii) Assume further that the cohomological dimension of C is less than or equal
to 1. Prove that any X ∈ D(C) is isomorphic to

⊕
n∈Z

H n(X)[−n]. (Hint: applying

Exercise 14.1 to τ<n X −→ X −→ τ≥n X
+1−→, construct H n(X)[−n] −→ X .)

Exercise 14.4. Let k be a field, A = k[x, y], C = Mod(A) and denote by
Db

coh(C) the full triangulated subcategory of D(C) consisting of objects X
such that H j (X) is finitely generated over A for any j ∈ Z. Let L0 = A,

L = A
⊕

A, and consider the exact sequence 0 −→ L0
ϕ−→ L

ψ−→ L0 −→ k −→ 0 in
Exercise 13.21. Let p := ϕ ◦ ψ : L −→ L and denote by X the object of K(C):

X := 0 −→ L0
ϕ−→ L

p−→ L
p−→ L −→ · · ·

where L0 stands in degree −2.
(i) For Z ∈ Db

coh(C) and Yn ∈ D(C) (n ∈ Z), prove the isomorphism⊕
n

HomD(C)(Z , Yn) ∼−→HomD(C)(Z ,
⊕

n
Yn) .

(ii) Prove that

(a) Hi (X) � k for i ≥ 0 and Hi (X) � 0 for i < 0,
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(b) for i ≥ 0 and the d.t. in D(C)

Hi (X)[−i ] −→ τ≤i+1τ≥i (X) −→ Hi+1(X)[−i − 1]
ui−→ Hi (X)[−i + 1] ,

the morphism ui does not vanish in D(C).

(iii) Prove that the object τ≤n X of K(C) is isomorphic to the complex

0 −→ L0
ϕ−→ L

p−→ L
p−→ L −→ · · · p−→ L −→ L0 −→ 0

where L0 on the right stands in degree n and L0 on the left in degree −2.
(iv) Prove the isomorphism τ≥n X � X [−n] in D(C) for n ≥ 0.
(v) Prove that for any n > 0 and any morphism f : X −→ X [n] in D(C), Hi ( f )
vanishes for all i ∈ Z. (Hint: use the commutative diagram

H k(X)

H k( f )

��

�� H k−1(X)[2]

H k−1( f )

��
H k(X [n]) �� H k−1(X [n])[2]

deduced from (ii) (b).)
(vi) Prove that the morphism v in (14.4.13) does not vanish in D(C) using the
following steps.

(a) If v = 0, then there exists s : X −→⊕
n

τ≤n X such that w ◦ s = idX .

(b) For any a > 0, there exists b such that the composition τ<a X −→ X
s−→⊕

n
τ≤n X factors through

⊕
n<b

τ≤n X −→⊕
n

τ≤n X . (Hint: use (i).)

(c) For any a > 0, there exist b > 0 and morphisms τ≥a X −→ X and X −→ τ≤b X
such that the composition X −→ τ≥a X

⊕
τ≤b X −→ X is idX . (Hint: s is the

sum of two morphisms X −→ ⊕
n<b

τ≤n X and X −→ ⊕
n≥b

τ≤n X .)

(d) For any a > 0, there exists a morphism τ≥a X −→ X such that the compo-
sition τ≥a X −→ X −→ τ≥b X is the canonical morphism for some b > a.

(e) Using (v) and (iv), conclude.

(vii) Prove that τ≤nv = 0 in D(C) for all n ∈ Z.
(viii) Prove that the natural functor D+(C) −→ Ind(Db(C)), given by X 
→
“lim−→”

n

τ≤n X , is not faithful.

Exercise 14.5. Let C be an abelian category and let Gr(C) be the associated
graded category (see Definition 11.3.1). Consider the functor

Θ : Gr(C) −→ D(C)
{Xn}n∈Z 
→ ⊕

n
Xn[−n] .

(i) Prove that Θ is an equivalence if and only if C is semisimple.
(ii) Prove that Θ is essentially surjective if and only if C is hereditary.
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Exercise 14.6. Let C be an abelian category which has enough injectives and
denote by IC the full additive subcategory of injective objects of C. Assume
moreover that C has finite homological dimension (see Exercise 13.8). Prove
that any X ∈ K(IC) is homotopically injective.

Exercise 14.7. Let k be a commutative ring and C = Mod(k). Let x ∈ k be a
non-zero-divisor. Consider the additive functor F : C −→ C given by M 
→ x ·M
(see Example 8.3.19). Prove that RF � idD(C), L F � idD(C) and the canonical
morphism L F −→ RF (see (7.3.3)) is given by the multiplication by x .

Exercise 14.8. Let C be a Grothendieck category. Prove that an object I of
C(C) is an injective object if and only if I is homotopic to zero and all I n are
injective objects of C. (Hint: consider I −→ Mc(idI ).)



15

Indization and Derivation
of Abelian Categories

In this chapter we study the derived category Db(Ind(C)) of the category of
ind-objects of the abelian category C. The main difficulty comes from the fact
that, as we shall see, the category Ind(C) does not have enough injectives in
general. This difficulty is partly overcome by introducing the weaker notion
of “quasi-injective objects”, and these objects are sufficient to derive functors
on Ind(C) which are indization of functors on C.

As a byproduct, we shall give a sufficient condition which ensures that
the right derived functor of a left exact functor commutes with small filtrant
inductive limits.

Finally, we study the relations between Db(Ind(C)) and the category
Ind(Db(C)) of ind-objects of Db(C).

15.1 Injective Objects in Ind(C)

In this chapter, C is an abelian category and recall that by the hypothesis,
C is a U-category (see Convention 1.4.1). It follows that Ind(C) is again an
abelian U-category.

Recall that we denote by “
⊕

” the coproduct in Ind(C) (see Nota-
tion 8.6.1).

As in Chap. 6, we denote by ιC : C −→ Ind(C) the natural functor. This
functor is fully faithful and exact. By Proposition 6.3.1, if C admits small
inductive limits, the functor ιC admits a left adjoint, denoted by σC . It follows
from Proposition 8.6.6 that if the small filtrant inductive limits are exact in
C, then the functor σC is exact.

Proposition 15.1.1. Assume that C admits small inductive limits and that
small filtrant inductive limits are exact. Let X ∈ C. Then

(i) X is injective in C if and only if ιC(X) is injective in Ind(C),
(ii) X is projective in C if and only if ιC(X) is projective in Ind(C).
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Proof. (i) Let X be an injective object of C. For A ∈ Ind(C), we have
Hom Ind(C)(A, ιC(X)) � HomC(σC(A), X) and the result follows since σC is
exact. The converse statement is obvious.
(ii) Let X be a projective object of C, let f : A −→ B be an epimorphism
in Ind(C) and u : X −→ B a morphism. Let us show that u factors through
f . By Proposition 8.6.9, there exist an epimorphism f ′ : Y −→ X in C and a
morphism v : Y −→ A such that u ◦ f ′ = f ◦ v. Since X is projective, there
exists a section s : X −→ Y of f ′. Therefore, f ◦ (v ◦ s) = u ◦ f ′ ◦ s = u. This is
visualized by the diagram

Y
f ′ �� ��

v

��

X

u
��

s
��

A
f

�� �� B .

The converse statement is obvious. q.e.d.

In the simple case where C = Mod(k) with a field k, we shall show that the
category Ind(C) does not have enough injectives. In the sequel, we shall write
Ind(k) instead of Ind(Mod(k)), for short.

Proposition 15.1.2. Assume that k is a field. Let Z ∈ Ind(k). Then Z is
injective if and only if Z belongs to Mod(k).

Proof. Assume that Z ∈ Ind(k) is injective. Any object in Ind(k) is a quotient
of “

⊕
”

i
Mi with Mi ∈ Mod(k), and the natural morphism “

⊕
”

i
Mi −→⊕

i
Mi

is a monomorphism. Since Z is injective, “
⊕

”
i

Mi −→ Z factorizes through⊕
i

Mi . Hence we can assume from the beginning that

Z = X/Y with X ∈ Mod(k), Y ∈ Ind(k).

Since Y −→ X is a monomorphism, σC(Y ) is a sub-object of X . Hence, there
exits a decomposition X = X ′ ⊕ σC(Y ) in Mod(k). Then Z = X ′ ⊕ (σC(Y )/Y )
and σC(Y )/Y is injective. Thus we may assume from the beginning that

Z = X/Y with X ∈ Mod(k), Y ⊂ X and σC(Y ) = X .

Let κC : Mod(k) −→ Ind(k) be the functor introduced in Sect. 6.3, V 
→
“lim−→” W , where W ranges over the family of finite-dimensional vector sub-
spaces of V . Then we have κC(V ) ⊂ Y for any V ∈ Mod(k) with V ⊂ X .

Assuming Y �= X , we shall derive a contradiction. Set

K = {V ; V ∈ Mod(k) , V ⊂ Y } ,

N = k⊕K =
⊕

V∈K
keV ,

Φ = Hom k(N , X) .
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For ϕ ∈ Φ, let Nϕ be a copy of N and let aϕ : N ∼−→ Nϕ be the isomorphism.
We denote by cϕ : N −→ ⊕

ϕ′∈Φ

Nϕ′ the composition N ∼−→
aϕ

Nϕ −→ ⊕
ϕ′∈Φ

Nϕ′ . Set

T = “
⊕

”
V∈K

(⊕
ϕ∈Φ

kcϕ(eV )
) ⊂ ⊕

ϕ∈Φ

Nϕ .

Then, for any finite subset A of Φ, we have

T ∩ (⊕
ϕ∈A

Nϕ

)
= “

⊕
”

V∈K

(⊕
ϕ∈A

kcϕ(eV )
)

=
⊕
ϕ∈A

(
“
⊕

”
V∈K

kcϕ(eV )
)

=
⊕
ϕ∈A

κC(Nϕ) .

Hence, we have a monomorphism

“
⊕

”
ϕ∈Φ

(
Nϕ/κC(Nϕ)

)
↪→ (⊕

ϕ∈Φ

Nϕ

)
/T .

Let f :
⊕
ϕ∈Φ

Nϕ −→ X be the morphism defined by f ◦ cϕ(u) = ϕ(u) for u ∈ N .

It induces a morphism

f̃ : “
⊕

”
ϕ∈Φ

(Nϕ/κC(Nϕ)) −→ Z .

Since Z is injective, the morphism f̃ factors through (
⊕
ϕ∈Φ

Nϕ)/T . Note that

any object in Mod(k) is a projective object in Ind(k) by Proposition 15.1.1.
Hence

⊕
ϕ∈Φ

Nϕ is a projective object of Ind(k), and the composition
⊕
ϕ∈Φ

Nϕ −→
(
⊕
ϕ∈Φ

Nϕ)/T −→ Z factors through X . Thus we obtain the commutative diagram

“
⊕

”
ϕ∈Φ

Nϕ

���
��

��
��

��
�

""(((
(((

(((
(((

((

“
⊕

”
ϕ∈Φ

(
Nϕ/κC(Nϕ)

) �� ��

f̃
��&&

&&&
&&&

&&&
&

(⊕
ϕ∈Φ

Nϕ

)
/T

��

⊕
ϕ∈Φ

Nϕ
����

F

��
Z X.����

A

(15.1.1)

The morphism F :
⊕
ϕ∈Φ

Nϕ −→ X has the following properties:

• Fϕ := F ◦ cϕ : N −→ X satisfies the condition: for any V ∈ K, there exists
K (V ) ∈ K such that Fϕ(eV ) ∈ K (V ) for any ϕ ∈ Φ,

• Gϕ := (Fϕ − ϕ)(N) ⊂ X belongs to K for any ϕ ∈ Φ.
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Indeed, the first property follows from the fact that the composition⊕
ϕ∈Φ

kcϕ(eV ) −→ ⊕
ϕ∈Φ

Nϕ
F−→ X −→ Z = X/Y

vanishes by the commutativity of the square labeled by A in (15.1.1), and

the second follows from the fact that the two compositions N
ϕ ��
Fϕ

�� X �� Z
coincide.

Hence we have

ϕ(eV ) ∈ K (V ) + Gϕ for any V ∈ K and ϕ ∈ Φ .(15.1.2)

Since Y �= X , we have K (V ) + V �= X for any V ∈ K. Hence there exists
x(V ) ∈ X such that x(V ) /∈ K (V )+V . Define ϕ0 ∈ Φ by ϕ0(eV ) = x(V ). Then
for V = Gϕ0 , we have

ϕ0(eV ) = x(V ) �∈ K (V ) + V = K (V ) + Gϕ0 .

This contradicts (15.1.2). q.e.d.

Corollary 15.1.3. The category Ind(k) does not have enough injectives.

Proof. Let us take V ∈ Mod(k) with dim V = ∞ and let U = κC(V ). Define
W ∈ Ind(k) by the exact sequence

0 −→ U −→ V −→ W −→ 0 .

Then, we have σC(W ) � 0, but W does not vanish. Assume that there exists
a monomorphism W�Z with an injective object Z ∈ Ind(k). Then Z belongs
to Mod(k) by Proposition 15.1.2. The morphism of functors id −→ σC (we do
not write ιC) induces the commutative diagram in Ind(k)

W

��

�� �� Z

��
σC(W ) �� σC(Z).

Since Z −→ σC(Z) is an isomorphism, we get W � 0, which is a contradiction.
q.e.d.

15.2 Quasi-injective Objects

Let C be an abelian category. We have seen in Sect. 15.1 that the abelian
category Ind(C) does not have enough injectives in general. However, quasi-
injective objects, which we introduce below, are sufficient for many purposes.
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Definition 15.2.1. Let A ∈ Ind(C). We say that A is quasi-injective if the
functor

C −→ Mod(Z) ,

X 
→ A(X) = Hom Ind(C)(X, A),

is exact.

Clearly, a small filtrant inductive limit of quasi-injective objects is quasi-
injective.

Lemma 15.2.2. Let 0 −→ A′ f−→ A
g−→ A′′ −→ 0 be an exact sequence in Ind(C)

and assume that A′ is quasi-injective. Then

(i) the sequence 0 −→ A′(X) −→ A(X) −→ A′′(X) −→ 0 is exact for any X ∈ C,
(ii) A is quasi-injective if and only if A′′ is quasi-injective.

Proof. (i) It is enough to prove the surjectivity of A(X) −→ A′′(X). Let u ∈
A′′(X). Using Proposition 8.6.9, we get a commutative solid diagram with
exact rows and with Z , Y ∈ C

0 �� Z

w

��

f ′ �� Y

ϕ

��
v

��

g′ �� X ��

ψ

��
u

��

0

0 �� A′ f �� A
g �� A′′ �� 0 .

Since A′ is quasi-injective, there exists a morphism ϕ : Y −→ A′ such that
w = ϕ ◦ f ′. Therefore, (v− f ◦ϕ) ◦ f ′ = v ◦ f ′ − f ◦w = 0, and the morphism
v − f ◦ ϕ factors through Coker f ′ � X . Hence, there exists ψ : X −→ A such
that v − f ◦ ϕ = ψ ◦ g′. Then g ◦ ψ ◦ g′ = g ◦ (v − f ◦ ϕ) = u ◦ g′, and this
implies u = g ◦ ψ .

(ii) The proof is left as an easy exercise. q.e.d.

Proposition 15.2.3. Assume that C has enough injectives and let A ∈
Ind(C). Then the conditions below are equivalent.

(i) A is quasi-injective,
(ii) there exist a small and filtrant category J and a functor α : J −→ C such

that A � “lim−→” α and α( j) is injective in C for all j ∈ J ,
(iii) any morphism a : X −→ A with X ∈ C factorizes through an injective

object Y of C, (i.e., a = b ◦ f with X
f−→ Y

b−→ A).

Proof. Let I denote the full subcategory of C consisting of injective objects.
(i) ⇒ (iii). By the hypothesis, there exists a monomorphism X�Y with Y ∈ I.
Since A is quasi-injective, X −→ A factorizes through Y .
(iii) ⇒ (ii) follows from Exercise 6.11.
(ii) ⇒ (i). Let X ∈ C. We have A(X) � lim−→

j∈J

HomC(X, α( j)). Since α( j) is

injective and the functor lim−→ is exact, A is exact. q.e.d.
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Definition 15.2.4. We say that Ind(C) has enough quasi-injectives if the full
subcategory of quasi-injective objects is cogenerating in Ind(C).

Theorem 15.2.5. Let J be a cogenerating full subcategory of C. Then Ind(J )
is cogenerating in Ind(C).

In order to prove this result, we need a lemma.

Lemma 15.2.6. For any small subset S of Ob(C), there exists a small fully
abelian subcategory C0 of C such that

(i) S ⊂ Ob(C0),
(ii) C0 ∩ J is cogenerating in C0.

Proof. We shall define an increasing sequence {Sn}n≥0 of full subcategories of
C by induction on n. For any X ∈ S, let us take IX ∈ J and a monomorphism
X�IX . We define S0 as the full subcategory of C such that Ob(S0) = S. For
n > 0, let Sn be the full subcategory of C such that

Ob(Sn) = Ob(Sn−1) ∪ {IX ; X ∈ Sn−1} ∪ {X ⊕ Y ; X, Y ∈ Sn−1}
∪ {Ker u ; u ∈ Mor(Sn−1)

} ∪ {Coker u ; u ∈ Mor(Sn−1)
}

.

Then C0 =
⋃

n Sn satisfies the desired conditions. q.e.d.

Proof of Theorem 15.2.5. Let A ∈ Ind(C). There exist a small filtrant category
I and a functor α : I −→ C such that A � “lim−→” α. By Lemma 15.2.6, there
exists a small fully abelian subcategory C0 of C such that α(i) ∈ C0 for all i ∈ I
and J ∩C0 is cogenerating in C0. Then A ∈ Ind(C0), and Ind(C0) admits enough
injectives by Corollary 9.6.5. Hence, there exist an injective object B of Ind(C0)
and a monomorphism A�B. In order to prove that B ∈ Ind(C0 ∩ J ), it is
enough to check that any morphism Z −→ B with Z ∈ C0, factorizes through
an object of C0 ∩ J (see Exercise 6.11). Take a monomorphism Z −→ Y with
Y ∈ C0 ∩ J . Since B is injective, Z −→ B factors through Z −→ Y . q.e.d.

Corollary 15.2.7. Let C be an abelian category which admits enough injec-
tives. Then Ind(C) admits enough quasi-injectives.

15.3 Derivation of Ind-categories

As above, C denotes an abelian category.

Theorem 15.3.1. (i) The natural functor D∗(C) −→ D∗
C(Ind(C)) is an equiv-

alence for ∗ = b,−.
(ii) Assume that C admits small inductive limits and small filtrant inductive

limits are exact. Then D+(C) −→ D+
C (Ind(C)) is an equivalence.
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Proof. (i) By Theorem 13.2.8 (with the arrows reversed), it is enough to show
that for any epimorphism A�Y in Ind(C) with Y ∈ C, there exist X ∈ C and
a morphism X −→ A such that the composition X −→ Y is an epimorphism.
This follows from Proposition 8.6.9.
(ii) Let us apply Theorem 13.2.8 and consider a monomorphism X�A with
X ∈ C and A ∈ Ind(C). Then X � σC(X) −→ σC(A) is a monomorphism and
factors through X −→ A. (Recall that the functor σC is defined in Proposi-
tion 6.3.1.) q.e.d.

Let F : C −→ C ′ be a left exact functor, and let I F : Ind(C) −→ Ind(C ′) be
the associated left exact functor. We shall consider the following hypothesis:

there exists an F-injective subcategory J of C .(15.3.1)

Hypothesis (15.3.1) implies that the right derived functor R+F : D+(C) −→
D+(C ′) exists and Rk F : C −→ C ′ induces a functor I (Rk F) : Ind(C) −→ Ind(C ′).

Proposition 15.3.2. Let F : C −→ C ′ be a left exact functor of abelian cate-
gories and let J be an F-injective subcategory of C. Then

(a) Ind(J ) is I F-injective,
(b) the functor I F admits a right derived functor R+(I F) : D+(Ind(C)) −→

D+(Ind(C ′)),
(c) the diagram below commutes

D+(C)

��

R+F �� D+(C ′)

��
D+(Ind(C))

R+(I F) �� D+(Ind(C ′)),

(d) there is an isomorphism I (Rk F) � Rk(I F) for all k ∈ Z. In particular,
Rk(I F) commutes with small filtrant inductive limits.

Proof. (a) First, note that Ind(J ) is cogenerating by Theorem 15.2.5. Set

J̃ := {A ∈ Ind(C); I (Rk F)(A) � 0 for all k > 0} .

Since J̃ contains Ind(J ), it is cogenerating. Let us check that J̃ satisfies
the conditions (ii) and (iii) in Corollary 13.3.8. Consider an exact sequence
0 −→ A −→ B −→ C −→ 0 in Ind(C). By Proposition 8.6.6 (a), there exist a small
filtrant category I and an exact sequence of functors from I to C

0 −→ α −→ β −→ γ −→ 0(15.3.2)

such that the exact sequence in Ind(C) is obtained by applying the functor
“lim−→” to (15.3.2). Consider the long exact sequence for i ∈ I

0 −→ R0F(α(i)) −→ R0F(β(i)) −→ R0F(γ (i)) −→ R1F(α(i)) −→ · · · .
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Applying the functor “lim−→” , we obtain the long exact sequence

(15.3.3)
0 −→ I (R0F)(A) −→ I (R0F)(B) −→ I (R0F)(C) −→ I (R1F)(A) −→ · · · .

Assuming A, B ∈ J̃ , we deduce C ∈ J̃ . Assuming A ∈ J̃ , we deduce the exact
sequence 0 −→ I F(A) −→ I F(B) −→ I F(C) −→ 0. Therefore, J̃ is I F-injective
and it follows from Proposition 13.3.5 (ii) that Ind(J ) is itself I F-injective.

(b) follows from Proposition 13.3.5 (i).

(c) follows from Proposition 13.3.13. Indeed, R+(ιC′ ◦ F) � ιC′ ◦ R+F since
ιC′ is exact and R+(I F ◦ ιC) � R+(I F) ◦ ιC since Ind(J ) contains J and is
I F-injective.

(d) We construct a morphism I (Rk F) −→ Rk(I F) as follows. For A ∈ Ind(C),

I (Rk F)(A) � “lim−→”
(X−→A)∈CA

Rk F(X) � “lim−→”
(X−→A)∈CA

Rk(I F)(X) −→ Rk(I F)(A) .

The isomorphism in (d) obviously holds for k = 0. We shall prove that it holds
for k = 1, then for all k.
Consider an exact sequence 0 −→ A −→ B −→ C −→ 0 with B ∈ J̃ . Then
I (Rk F)(B) � 0 for all k > 0 by definition and Rk(I F)(B) � 0 for all k > 0
since J̃ is I F-injective. There exists an exact sequence

(15.3.4)
0 −→ R0(I F)(A) −→ R0(I F)(B) −→ R0(I F)(C) −→ R1(I F)(A) −→ · · · .

By comparing the exact sequences (15.3.3) and (15.3.4), we get the result for
k = 1.

We have the isomorphisms I (Rk F)(A) � I (Rk−1F)(C) and Rk(I F)(A) �
Rk−1(I F)(C) for k ≥ 2. By induction on k, we may assume I (Rk−1F)(C) �
Rk−1(I F)(C). Therefore, I (Rk F)(A) � Rk(I F)(A). q.e.d.

Proposition 15.3.3. Let C and C ′ be abelian categories admitting small in-
ductive limits and assume that small filtrant inductive limits are exact in C
and C ′. Let F : C −→ C ′ be a left exact functor commuting with small filtrant
inductive limits and let J be an F-injective additive subcategory of C closed
by small filtrant inductive limits. Then Rk F : C −→ C ′ commutes with small
filtrant inductive limits for all k ∈ Z.

Proof. The functor σC : Ind(C) −→ C is exact and induces a triangulated func-
tor D+(Ind(C)) −→ D+(C) that we still denote by σC , and similarly with C
replaced with C ′. Consider the diagram

D+(Ind(C))

σC

��

R+(I F) �� D+(Ind(C ′))
σC′

��
D+(C) R+F �� D+(C ′).

(15.3.5)
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We shall show that this diagram commutes. Note that σC′ ◦ I F � F ◦ σC by
the assumption, and σC′ ◦ R+(I F) � R+(σC′ ◦ I F). Hence, it is enough to show
that

(R+F) ◦ σC � R+(F ◦ σC) ,(15.3.6)

and this follows from Proposition 13.3.13 since σC sends Ind(J ) to J .
To conclude, consider a small filtrant inductive system {Xi }i∈I in C. We

have the chain of isomorphisms

lim−→
i

Rk F(Xi ) � σC′(“lim−→”
i

Rk F(Xi ))

� σC′ R
k(I F)(“lim−→”

i

Xi )

� (Rk F)σC(“lim−→”
i

Xi ) � Rk F(lim−→
i

Xi ) .

Here, the second isomorphism follows from Proposition 15.3.2 (d) and the
third one from the commutativity of (15.3.5). q.e.d.

Notation 15.3.4. We shall denote by Iqin j the full subcategory of Ind(C) con-
sisting of quasi-injective objects.

Consider the hypothesis

the category Iqin j is cogenerating in Ind(C) .(15.3.7)

This condition is a consequence of one of the following hypotheses

C has enough injectives,(15.3.8)
C is small .(15.3.9)

Indeed, (15.3.8) implies (15.3.7) by Corollary 15.2.7, and (15.3.9) implies
(15.3.7) by Theorem 9.6.2.

Proposition 15.3.5. Assume (15.3.7) and let F : C −→ C ′ be a left exact func-
tor. Then the category Iqin j of quasi-injective objects is I F-injective. In par-
ticular, R+(I F) : D+(Ind(C)) −→ D+(Ind(C ′)) exists.

Proof. (i) We shall verify the hypotheses (i)–(iii) of Corollary 13.3.8. The first
one is nothing but (15.3.7).
(ii) follows from Lemma 15.2.2 (ii).
(iii) Consider an exact sequence 0 −→ A −→ B −→ C −→ 0 in Ind(C) and assume
that A ∈ Iqin j . For any X ∈ C and any morphism u : X −→ C , Lemma 15.2.2
implies that u factors through X

w−→ B −→ C .
This defines a morphism F(w) : F(X) −→ I F(B) such that the composition

F(X) −→ I F(B) −→ I F(C) is the canonical morphism. Therefore, we get the
exact sequence
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I F(B)×I F(C) F(X) −→ F(X) −→ 0

Applying the functor “lim−→”
(X−→C)∈CC

, we find that I F(B) −→ I F(C) is an epimor-

phism by Lemma 3.3.9. q.e.d.

Corollary 15.3.6. Assume (15.3.7). Then for any A ∈ Ind(C) there is a nat-
ural isomorphism

“lim−→”
(X−→A)∈CA

Rk(I F)(X) ∼−→ Rk(I F)(A) .

In particular, Rk(I F) commutes with small filtrant inductive limits.

Proof. Consider the functor I F : Ind(C) −→ Ind(C ′). The subcategory Iqin j of
Ind(C) is closed by small filtrant inductive limits and is I F-injective. Hence,
the result follows from Proposition 15.3.3. q.e.d.

We consider now a right exact functor G : C −→ C ′ of abelian categories.

Proposition 15.3.7. Let G : C −→ C ′ be a right exact functor of abelian cate-
gories and let K be a G-projective additive subcategory of C. Then

(a) the category Ind(K) is I G-projective,
(b) the functor I G admits a left derived functor L−(I G) : D−(Ind(C)) −→

D−(Ind(C ′)),
(c) the diagram below commutes

D−(C)

��

L−G �� D−(C ′)

��
D−(Ind(C))

L−(I G) �� D−(Ind(C ′)),

(d) there is a natural isomorphism I (Lk G) � Lk(I G) for all k ∈ Z. In partic-
ular, Lk(I G) commutes with small filtrant inductive limits.

Proof. The proof is very similar to that of Proposition 15.3.2, but we partly
repeat it for the reader’s convenience.

(a) Set

K̃ = {A ∈ Ind(C); I (Lk G)(A) � 0 for all k < 0} .

Then K̃ contains Ob(Ind(K)). Let us show that K̃ satisfies the conditions
(i)–(iii) (with the arrows reversed) of Corollary 13.3.8.
(i) The category K̃ is generating. Indeed, if A ∈ Ind(C), there exists an epi-
morphism “

⊕
”

i∈I
Xi�A with a small set I and Xi ∈ C. For each i choose an

epimorphism Yi�Xi with Yi ∈ K. Then
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I (Lk G)(“
⊕

”
i

Yi ) � “
⊕

”
i

Lk G(Yi ) � 0

for all k < 0, hence “
⊕

”
i

Yi ∈ K̃.

(ii)–(iii) Consider an exact sequence 0 −→ A −→ B −→ C −→ 0 in Ind(C). We
may assume that this sequence is obtained by applying the functor “lim−→” to
(15.3.2). Consider the long exact sequences for i ∈ I

· · · −→ L−1G(γ (i)) −→ L0G(α(i)) −→ L0G(β(i)) −→ L0G(γ (i)) −→ 0 .

Applying the functor “lim−→” , we obtain the long exact sequence

(15.3.10)
· · · −→ I (L−1G)(C) −→ I (L0G)(A) −→ I (L0G)(B) −→ I (L0G)(C) −→ 0 .

Assuming B, C ∈ J̃ , we deduce A ∈ J̃ . Assuming C ∈ J̃ , we deduce the exact
sequence 0 −→ I G(A) −→ I G(B) −→ I G(C) −→ 0.
(b)–(c) go as in Proposition 15.3.2.
(d) The isomorphism in (d) clearly holds for k = 0. We shall prove that it
holds for k = 1, then for all k.
Consider an exact sequence 0 −→ A −→ B −→ C −→ 0 with B ∈ K̃. Then
I (Lk G)(B) � 0 for all k < 0 by definition and Lk(I G)(B) � 0 for all k < 0
since K̃ is I G-projective. There exists an exact sequence

(15.3.11)
· · · −→ L−1(I G)(C) −→ L0(I G)(A) −→ L0(I G)(B) −→ L0(I G)(C) −→ 0 .

By comparing the exact sequences (15.3.11) and (15.3.10), we get the result
for k = 1. Then the proof goes as in Proposition 15.3.2. q.e.d.

Theorem 15.3.8. Assume (15.3.7).

(i) The bifunctor Hom Ind(C) admits a right derived functor

R+Hom Ind(C) : D+(Ind(C))×D−(Ind(C))op −→ D+(Mod(Z)) .

(ii) Moreover, for X ∈ D−(Ind(C)) and Y ∈ D+(Ind(C)),

H0R+Hom Ind(C)(X, Y ) � HomD(Ind(C))(X, Y ) .

(iii) Db(C) and Db(Ind(C)) are U-categories.

Proof. Let P denote the full additive subcategory of Ind(C) defined by:

P = {A ∈ Ind(C); A � “
⊕

”
i∈I

Xi , I small, Xi ∈ C} .

Clearly, the category P is generating in Ind(C).
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We shall apply Proposition 13.4.4 and Theorem 13.4.1 to the subcategory
Iqin j × Pop of Ind(C)× Ind(C)op.
(A) For B ∈ P, the functor Hom Ind(C)(B, • ) is exact on Iqin j . Indeed, we have

Hom Ind(C)(“
⊕

”
i

Xi , A) �∏
i

Hom Ind(C)(Xi , A) ,

the functor
∏

i is exact on Mod(Z) and the functor Hom Ind(C)(Xi , • ) is exact
on the category Iqin j .
(B) Let A be quasi-injective. In order to see that Pop is injective with respect
to the functor Hom Ind(C)( • , A), we shall apply Theorem 13.3.7.
Consider an epimorphism B�P ′′ with P ′′ ∈ P. We shall show that there
exists an exact sequence 0 −→ P ′ −→ P −→ P ′′ −→ 0 in P such that P −→ P ′′
factorizes through B −→ P ′′. Let P ′′ = “

⊕
”

i
X ′′

i . By Proposition 8.6.9, there

exist an epimorphism Xi�X ′′
i and a morphism Xi −→ B making the diagram

below commutative
Xi

�� ��

��

X ′′
i

��
B �� �� “

⊕
”

i
X ′′

i .

Define X ′
i as the kernel of Xi −→ X ′′

i , and define P ′ = “
⊕

”
i

X ′
i , P = “

⊕
”

i
Xi .

Then the sequence 0 −→ P ′ −→ P −→ P ′′ −→ 0 is exact.
Let us apply the functor Hom Ind(C)( • , A) to this sequence. The formula

Hom(“
⊕

”
i

Xi , A) �∏
i

Hom(Xi , A)

and the fact that the functor
∏

is exact on Mod(Z) show that the sequence
0 −→ Hom Ind(C)(P ′′, A) −→ Hom Ind(C)(P, A) −→ Hom Ind(C)(P ′, A) −→ 0 re-
mains exact.

Hence we have proved (i). The other statements easily follow from (i).
q.e.d.

Corollary 15.3.9. Assume (15.3.7). For any X ∈ C and A ∈ Ind(C), there is
an isomorphism

lim−→
(Y−→A)∈CA

Extk
C(X, Y ) ∼−→Extk

Ind(C)
(X, A) .

Proof. For X ∈ C, let F : Ind(C) −→ Mod(Z) be the functor Hom Ind(C)(X, • ).
Then R+F : D+(Ind(C)) −→ D+(Z) exists and Extk

Ind(C)
(X, • ) � Rk F . On the

other hand, Iqin j being F-injective and closed by small filtrant inductive lim-
its, Proposition 15.3.3 implies the isomorphism lim−→

(Y−→A)∈CA

Rk F(Y ) ∼−→ Rk F(A).
Hence, we obtain
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Extk
Ind(C)

(X, A) � lim−→
(Y−→A)∈CA

Rk F(Y )

� lim−→
(Y−→A)∈CA

Extk
Ind(C)

(X, Y ) .

Finally, Theorem 15.3.1 (i) implies Extk
Ind(C)

(X, Y ) � Extk
C(X, Y ). q.e.d.

15.4 Indization and Derivation

In this section we shall study some links between the derived category
Db(Ind(C)) and the category Ind(Db(C)) associated with an abelian category
C. Notice that we do not know whether Ind(Db(C)) is a triangulated category.

Throughout this section we assume that C satisfies condition (15.3.7). Then
Db(Ind(C)) and Db(C) are U-categories by Theorem 15.3.8.

The shift automorphism [n] : Db(C) −→ Db(C) gives an automorphism of
Ind(Db(C)) that we denote by the same symbol [n].

Let τ≤a and τ≥b denote the truncation functors from Db(C) to itself. They
define functors I τ≤a and I τ≥b from Ind(Db(C)) to itself. If A � “lim−→”

i

Xi with
Xi ∈ Db(C), then I τ≤a A � “lim−→” τ≤a Xi and similarly for τ≥b.

Let Y ∈ Db(C) and let A � “lim−→”
i

Xi ∈ Ind(Db(C)). The distinguished
triangles in Db(C)

τ<a Xi −→ Xi −→ τ≥a Xi −→ (τ<a Xi )[1]

give rise to morphisms

τ<a A −→ A −→ τ≥a A −→ (τ<a A)[1]

and to a long exact sequence

· · · −→ Hom Ind(Db(C))(Y, I τ<a A) −→ Hom Ind(Db(C))(Y, A) −→(15.4.1)

Hom Ind(Db(C))(Y, I τ≥a A) −→ Hom Ind(Db(C))(Y, I τ<a A[1]) −→ · · · .

There are similar long exact sequences corresponding to the other distin-
guished triangles in Proposition 13.1.15.

Lemma 15.4.1. Let A be an additive category and let n0, n1 ∈ Z with n0 ≤
n1. There is a natural equivalence

Ind(C[n0,n1](A)) ∼−→C[n0,n1](Ind(A)) .

Proof. Let K be the category associated with the ordered set

{n ∈ Z ; n0 ≤ n ≤ n1} .
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The natural functors C[n0,n1](A) −→ Fct(K ,A) and C[n0,n1]
(
Ind(A)

) −→
Fct(K , Ind(A)) are fully faithful, and it follows from Proposition 6.4.1 that
Ind(C[n0,n1](A)) −→ C[n0,n1](Ind(A)) is fully faithful.

Let us show that this last functor is essentially surjective. Theorem 6.4.3
implies that Ind(Fct(K ,A)) −→ Fct(K , Ind(A)) is an equivalence of categories,
and we obtain the quasi-commutative diagram:

Ind(C[n0,n1](A))
� �

f.f.

��

� � f.f. �� Ind(Fct(K ,A))

∼
��

C[n0,n1]
(
Ind(A)

) � � f.f. �� Fct(K , Ind(A))

where the arrows labeled by f.f. are fully faithful functors.
Let A ∈ C[n0,n1](Ind(A)), and regard it as an object of Ind(Fct(K ,A)). By

Exercise 6.11, it is enough to show that for X ∈ Fct(K ,A), any morphism
u : X −→ A factors through an object of C[n0,n1](A).

We shall construct by induction on i an object Y = Y n0 −→ · · · −→ Y i in
C[n0,i](A) and a diagram σ≤i X

w−→ Y
v−→ σ≤i A whose composition is equal to

σ≤i (u). Assume that we have constructed the diagram of solid arrows

Xn0 ��

wn0

��

· · · �� Xi−1 ��

wi−1

��

Xi ��

wi

��

Xi+1

��
ui+1

��

Y n0 ��

vn0

��

· · · �� Y i−1

di−1
Y

��

vi−1

��

Y i ��

vi

��

Z

��
Xn0 �� · · · �� Ai−1

di−1
A

�� Ai
di

A

�� Ai+1.

Since the category AAi+1 is filtrant, the dotted arrows may be completed
making the diagram commutative. Since the composition di

A ◦di−1
A is zero, the

composition Y i−1 −→ Y i −→ Z −→ Ai+1 is zero. This implies that the morphism
Z −→ A factorizes through a morphism Z −→ Y i+1 such that the composition
Y i−1 −→ Y i −→ Y i+1 is zero. q.e.d.

Recall that Q : Cb(C) −→ Db(C) denotes the localization functor. We shall de-
note by the same letter Q the localization functor Cb(Ind(C)) −→ Db(Ind(C)).

Proposition 15.4.2. Assume (15.3.7). Consider integers n0, n1 ∈ Z with
n0 ≤ n1 and a small and filtrant inductive system {Xi }i∈I in C[n0,n1](C). Let
Y ∈ Db(C). Then:

lim−→
i

HomDb(C)(Y, Q(Xi )) ∼−→HomDb(Ind(C))(Y, Q(“lim−→”
i

Xi )) .(15.4.2)
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Proof. By dévissage, we may assume Y ∈ C. By using the truncation functors
we are reduced to prove the isomorphisms below for Y, Xi ∈ C:

Extk
Ind(C)

(Y, “lim−→”
i

Xi ) � lim−→
i

Extk
C(Y, Xi ) .(15.4.3)

These isomorphisms follow from Corollary 15.3.9. q.e.d.

We define the functor J : Db(Ind(C)) −→ (Db(C))∧ by setting for A ∈
Db(Ind(C)) and Y ∈ Db(C)

(15.4.4) J (A)(Y ) = HomDb(Ind(C))(Y, A) .

Hence,

J (A) � “lim−→”
(Y−→A)∈Db(C)A

Y .

Theorem 15.4.3. Assume (15.3.7).

(i) Consider integers n0, n1 ∈ Z with n0 ≤ n1 and a small and filtrant induc-
tive system {Xi }i∈I in C[n0,n1](C). Setting A := Q(“lim−→”

i

Xi ) ∈ Db(Ind(C)),

we have J (A) � “lim−→”
i

Q(Xi ).

(ii) The functor J takes its values in Ind(Db(C)). In particular, for any A ∈
Db(Ind(C)), the category Db(C)A is cofinally small and filtrant.

(iii) For each k ∈ Z, the diagram below commutes

Db(Ind(C))
J

��

H k
��99

999
999

99
Ind(Db(C))

I H k
$$:::

:::
:::

:

Ind(C).

Proof. (i) By Proposition 15.4.2, we have for Y ∈ Db(C)

Hom Ind(Db(C))(Y, J (A)) = HomDb(Ind(C))(Y, A)

� lim−→
i

HomDb(C)(Y, Q(Xi ))

� Hom Ind(Db(C))(Y, “lim−→”
i

Q(Xi )) .

Therefore, J (A) � “lim−→”
i

Q(Xi ).

(ii) Let A ∈ Db(Ind(C)). There exists A′ in C[n0,n1](Ind(C)) with A � Q(A′).
Using Lemma 15.4.1 we may write A′ = “lim−→”

i∈I

Xi with a small filtrant inductive

system {Xi }i∈I in C[n0,n1](C). Then J (A) � “lim−→”
i

Q(Xi ) by (i). This object
belongs to Ind(Db(C)).
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(iii) The morphism I H k◦J −→ H k is constructed by the sequence of morphisms

I H k ◦ J (A) � I H k( “lim−→”
(Y−→A)∈Db(C)A

Y )

� “lim−→”
(Y−→A)∈Db(C)A

H k(Y ) −→ H k(A) .

In order to see that it is an isomorphism, let us take an inductive system
{Xi }i∈I as above. By (i) we have J (A) � “lim−→”

i

Q(Xi ). Hence, I H k(J (A)) �
“lim−→”

i

H k(Q(Xi )) � “lim−→”
i

H k(Xi ). On the other hand, we have H k(A) �
H k(Q(“lim−→”

i

Xi )) � H k(“lim−→”
i

Xi ) � “lim−→”
i

H k(Xi ). q.e.d.

Corollary 15.4.4. Assume (15.3.7). Then the functor J : Db(Ind(C)) −→
Ind(Db(C)) is conservative.

Remark 15.4.5. The functor J : Db(Ind(C)) −→ Ind(Db(C)) is not faithful in
general (see Exercise 15.2).

Lemma 15.4.6. Assume (15.3.7). Let A, B ∈ Ind(Db(C)) and let ϕ : A −→ B
be a morphism in Ind(Db(C)) such that I H k(ϕ) : I H k(A) −→ I H k(B) is an
isomorphism for all k ∈ Z. Assume one of the conditions (a) and (b) below:

(a) A � I τ≥a A and B � I τ≥a B for some a ∈ Z,
(b) the homological dimension of C is finite.

Then ϕ is an isomorphism in Ind(Db(C)).

Proof. Let Y ∈ Db(C). It is enough to prove that ϕ induces an isomorphism
Hom Ind(Db(C))(Y, A) ∼−→Hom Ind(Db(C))(Y, B).
(i) Assume (a). By the hypothesis, it is enough to prove the isomorphisms

Hom Ind(Db(C))(Y, I τ≥k A) ∼−→Hom Ind(Db(C))(Y, I τ≥k B)(15.4.5)

for all k ∈ Z, all m ∈ Z and all Y ∈ D≤m(C). Fixing m, let us prove this result
by descending induction on k. If k > m, then both sides vanish. Assume that
Hom Ind(Db(C))(Y, I τ≥k A) −→ Hom Ind(Db(C))(Y, I τ≥k B) is an isomorphism for
all k > n and all Y ∈ D≤m(C). Applying the long exact sequence (15.4.1) we
find a commutative diagram (we shall write Hom instead of Hom Ind(Db(C))

for short)

Hom(Y [1], I τ>n A) ��

��

Hom(Y, I H n(A)[−n]) ��

��

Hom(Y, I τ≥n A)

��
Hom(Y [1], I τ>n B) �� Hom(Y, I H n(B)[−n]) �� Hom(Y, I τ≥n B)

�� Hom(Y, I τ>n A) ��

��

Hom(Y, I H n(A)[1− n])

��
�� Hom(Y, I τ>n B) �� Hom(Y, I H n(B)[1− n]) .
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Since Y [1] and Y belong to D≤m(C), the first and the fourth vertical arrows are
isomorphisms by the induction hypothesis. The second and the fifth vertical
arrows are isomorphisms by the hypothesis. Hence, the third vertical arrow is
an isomorphism, and the induction proceeds.
(ii) Assume (b) and let d denote the homological dimension of C. If Y ∈
D≥n0(C) then Hom Ind(Db(C))(Y, τ≤n A) � 0 for n < n0 − d. We get the isomor-
phism Hom Ind(Db(C))(Y, A) � Hom Ind(Db(C))(Y, τ≥n A), and similarly with A
replaced with B. Then the result follows from the case (i). q.e.d.

Proposition 15.4.7. Assume that C and C ′ satisfy (15.3.7). Consider a tri-
angulated functor ψ : Db(Ind(C)) −→ Db(Ind(C ′)) which satisfies:

H kψ : Ind(C)) −→ Ind(C ′) commutes with small filtrant inductive(15.4.6)
limits,
ψ sends D≥0(Ind(C)) ∩Db(Ind(C)) to D≥n(Ind(C)) for some n .(15.4.7)

Then there exists a unique functor λ : Ind(Db(C)) −→ Ind(Db(C ′)) which com-
mutes with small filtrant “lim−→” and such that the diagram below commutes:

Db(Ind(C))
ψ

��

J

��

Db(Ind(C ′))

J

��
Ind(Db(C)) λ �� Ind(Db(C ′)).

Proof. First, notice that (15.4.6) implies that, for n0, n1 ∈ Z with n0 ≤ n1

and for any small filtrant inductive system {Xi }i∈I in C[n0,n1](C), there is an
isomorphism

“lim−→”
i

H k(ψ ◦ Q(Xi )) � H k(ψ ◦ Q(“lim−→”
i

Xi )) .

Denote by ϕ : Db(C) −→ Ind(Db(C ′)) the restriction of J ◦ ψ to Db(C). The
functor ϕ naturally extends to a functor λ : Ind(Db(C)) −→ Ind(Db(C ′)) such
that λ commutes with small filtrant inductive limits. We construct a natural
morphism of functors

u : λ ◦ J −→ J ◦ ψ

as follows. For A ∈ Db(Ind(C)),

λ ◦ J (A) � λ( “lim−→”
(Y−→A)∈Db(C)A

Y ) � “lim−→”
(Y−→A)∈Db(C)A

J ◦ ψ(Y )

−→ J ◦ ψ(A) .

Let us show that u is an isomorphism. Consider a small filtrant inductive
system {Xi }i∈I in C[n0,n1](C) such that A � Q(“lim−→”

i

Xi ) ∈ Db(Ind(C)). We
have the chain of isomorphisms



386 15 Indization and Derivation of Abelian Categories

I H k(λ ◦ J (A)) � “lim−→”
i

H k(ψ(Q(Xi ))) � H k(ψ(A))

� I H k(J ◦ ψ(A)) .

Since λ ◦ J (A) � I τ≥a(λ ◦ J (A)) and J ◦ ψ(A) � I τ≥a(J ◦ ψ(A)) for a � 0,
the result follows by Lemma 15.4.6. q.e.d.

Let T be a full triangulated subcategory of Db(C). We identify Ind(T ) with a
full subcategory of Ind(Db(C)). For A ∈ Db(Ind(C)), we denote as usual by TA

the category of arrows Y −→ A with Y ∈ T . We know by Proposition 10.1.18
that TA is filtrant.

Notation 15.4.8. Let T be a full triangulated subcategory of Db(C). We denote
by J−1Ind(T ) the full subcategory of Db(Ind(C)) consisting of objects A ∈
Db(Ind(C)) such that J (A) is isomorphic to an object of Ind(T ).

Note that A ∈ Db(Ind(C)) belongs to J−1Ind(T ) if and only if any morphism
X −→ A with X ∈ Db(C) factors through an object of T by Exercise 6.11.

Proposition 15.4.9. Assume (15.3.7). The category J−1Ind(T ) is a trian-
gulated subcategory of Db(Ind(C)).

Proof. Let A
f−→ B

g−→ C −→ A[1] be a d.t. in Db(Ind(C)) with B, C in
J−1Ind(T ). Let us show that A ∈ J−1Ind(T ). Let u : X −→ A be a mor-
phism with X ∈ Db(C). Since B ∈ J−1Ind(T ), the composition X −→ A −→ B
factors through Y ∈ T . We have thus a commutative diagram

X ��

u

��

Y ��

��

Z ��

��

X [1]

��
A

f �� B
g �� C �� A[1]

in which the rows are d.t.’s and X, Z ∈ Db(C), Y ∈ T . Since C ∈ J−1Ind(T ),
the arrow Z −→ C factors through Z ′ ∈ T . Let us embed the composition
Y −→ Z −→ Z ′ into a d.t. X ′ −→ Y −→ Z ′ −→ X ′[1] in T . We thus have a
commutative diagram whose rows are d.t.’s

X ��

v

��

Y ��

id

��

Z ��

��

X [1]

v[1]

��
X ′ ��

w

��

Y ��

��

Z ′ ��

��

X ′[1]

w[1]

��
A

f �� B
g �� C �� A[1] .

Since x := u − w ◦ v satisfies x ◦ f = 0, it factors through C [−1] −→ A. Since
C [−1] ∈ J−1Ind(T ), the morphism X −→ C [−1] factors through X ′′ ∈ T . Thus
x : X −→ A factors through X ′′. It follows that u = x + w ◦ v factors through
X ′ ⊕ X ′′ ∈ T . q.e.d.



Exercises to Chap. 15 387

Exercises

Exercise 15.1. Let C be an abelian category and assume that Db(C) is a
U-category. Let A ∈ Ind(Db(C)) which satisfies the two conditions
(a) there exist a, b ∈ Z such that I τ≤b A ∼−→ A ∼−→ I τ≥a A,
(b) I H n(A) ∈ C for any n ∈ Z.
Prove that A ∈ Db(C). (Hint: argue by induction on b − a and use Exer-
cise 10.14.)

Exercise 15.2. In this exercise, we shall give an example for Remark 15.4.5.
Let k be a field and set C = Mod(k). Let J : Db(Ind(C)) −→ Ind(Db(C)) be the
canonical functor.
(i) Prove that, for any X, Y ∈ Ind(C), Hom Ind(Db(C))

(
J (X), J (Y [n])

) � 0 for
any n �= 0. (Hint: any object of Db(C) is a finite direct sum of Z [m]’s where
Z ∈ C.)
(ii) Let Z ∈ C. Prove that the short exact sequence 0 −→ κC(Z) −→ Z −→
Z/(κC(Z)) −→ 0 splits in Ind(C) if and only if Z is a finite-dimensional vector
space.
(iii) Deduce that J is not faithful.
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Grothendieck Topologies

As already mentioned, sheaves on topological spaces were invented by Leray
and this notion was extended to sheaves on categories by Grothendieck who
noticed that the notion of sheaves on a topological space X essentially relies
on the category OpX of open subsets of X and on the notion of open cover-
ings, nothing else. Hence to define sheaves on a category C, it is enough to
axiomatize the notion of a covering which defines a so-called Grothendieck
topology on C.

Notice that, even in the topological case, if {Ui }i∈I is a covering of an open
subset U , there is no natural object describing it in the category OpX , but
it is possible to consider the coproduct of the Ui ’s in the category (OpX )∧.
Hence, to define the notion of a covering on C, we work in C∧, the category of
presheaves of sets on C.

Here, we first give the axioms of Grothendieck topologies using sieves and
then introduce the notions of local epimorphisms and local isomorphisms.
We give several examples and study in some details the properties of the
family of local isomorphisms, showing in particular that this family is stable
by inductive limits.

Important related topics, such as Topos Theory, will not be approached in
this book.

References are made to [64].

16.1 Sieves and Local Epimorphisms

Let C be a category.

Definition 16.1.1. Let U ∈ Ob(C). A sieve1 S over U is a subset of Ob(CU )
such that the composition W −→ V −→ U belongs to S as soon as V −→ U
belongs to S.

1 “ Un crible” in French
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To a sieve S over U , we associate a subobject AS of U in C∧ by taking

AS(V ) =
{

s ∈ HomC(V, U) ; (V
s−→ U) ∈ S

}
for any V ∈ C .(16.1.1)

If C is small, we have AS = Im
(

“
⊔

”
(V−→U)∈S

V −→ U
)
.

Conversely, to an object A −→ U of (C∧)U we associate a sieve SA by taking

(V −→ U) ∈ SA if and only if V −→ U decomposes as V −→ A −→ U .(16.1.2)

Note that SA = SIm(A−→U). Hence, there is a one-to-one correspondence be-
tween the family of sieves over U and the family of subobjects of U in C∧.

Definition 16.1.2. A Grothendieck topology (or simply a topology) on a
category C is the data of a family {SCovU }U∈Ob(C), where SCovU is a family
of sieves over U , these data satisfying the axioms GT1–GT4 below.

GT1 Ob(CU ) belongs to SCovU .
GT2 If S1 ⊂ S2 ⊂ Ob(CU ) are sieves and if S1 belongs to SCovU , then S2

belongs to SCovU .
GT3 Let U −→ V be a morphism in C. If S belongs to SCovV , then S ×V U

belongs to SCovU . Here,

S ×V U := {W −→ U ; the composition W −→ U −→ V belongs to SCovV } .

GT4 Let S and S′ be sieves over U . Assume that S′ ∈ SCovU and that S ×U

V ∈ SCovV for any (V −→ U) ∈ S′. Then S ∈ SCovU .

A sieve S over U is called a covering sieve if S ∈ SCovU .

Definition 16.1.3. Let C be a category endowed with a Grothendieck topology.

(i) A morphism A −→ U in C∧ with U ∈ C is called a local epimorphism if
the sieve SA given by (16.1.2) is a covering sieve over U .

(ii) A morphism A −→ B in C∧ is called a local epimorphism if for any V ∈ C
and any morphism V −→ B, A ×B V −→ V is a local epimorphism.

Consider a local epimorphism A −→ U as in Definition 16.1.3 (i) and let
V −→ U be a morphism in C. The sieve SA×U V = SA ×U V is a covering
sieve over V by GT3 and it follows that A×U V −→ V is a local epimorphism.
Therefore, if we take B = U ∈ C in Definition 16.1.3 (ii), we recover Definition
16.1.3 (i).

The family of local epimorphisms associated with a Grothendieck topology
will satisfy the following properties (the verification is left to the reader):

LE1 For any U ∈ C, idU : U −→ U is a local epimorphism.
LE2 Let A1

u−→ A2
v−→ A3 be morphisms in C∧. If u and v are local epimor-

phisms, then v ◦ u is a local epimorphism.
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LE3 Let A1
u−→ A2

v−→ A3 be morphisms in C∧. If v ◦ u is a local epimorphism,
then v is a local epimorphism.

LE4 A morphism u : A −→ B in C∧ is a local epimorphism if and only if for
any U ∈ C and any morphism U −→ B, the morphism A ×B U −→ U is a
local epimorphism.

Conversely, consider a family of morphisms in C∧ satisfying LE1–LE4.
Let us say that a sieve S over U is a covering sieve if AS −→ U is a local
epimorphism, where AS is given by (16.1.1). Then it is easily checked that the
axioms GT1–GT4 will be satisfied. In other words, a Grothendieck topology
can alternatively be defined by starting from a family of morphisms in C∧
satisfying LE1–LE4.

Note that a family of morphisms in C∧ satisfies LE1–LE4 if and only if it
satisfies LE2–LE4 and LE1’ below:

LE1’ If u : A −→ B is an epimorphism in C∧, then u is a local epimorphism.

Indeed, LE1’ implies LE1. Conversely, assume that u : A −→ B is an epimor-
phism in C∧. If w : U −→ B is a morphism with U ∈ C, there exists v : U −→ A
such that w = u ◦ v. Hence, idU : U −→ U factors as U −→ A ×B U −→ U .
Therefore A ×B U −→ U is a local epimorphism by LE1 and LE3, and this
implies that A −→ B is a local epimorphism by LE4. This is visualized by:

U ��

%%�
��

��
��

��
� A ×B U

��

�� U
v

&&��
��
��
��
��

w

��
A

u �� B

Definition 16.1.4. Let C be a small category and U ∈ C. Consider two small
families of objects of CU , S1 = {Ui }i∈I and S2 = {Vj } j∈J . The family S1 is a
refinement of S2 if for any i ∈ I there exist j ∈ J and a morphism Ui −→ Vj

in CU . In such a case, we write S1 # S2.

Note that S1 = {Ui }i∈I is a refinement of S2 = {Vj } j∈J if and only if

HomC∧U (“
∐

”
i

Ui , “
∐

”
j

Vj ) �= ∅ .(16.1.3)

Definition 16.1.5. Let C be a small category which admits fiber products.
Assume that C is endowed with a Grothendieck topology and let U ∈ C. A
small family S = {Ui }i∈I of objects of CU is a covering of U if the morphism
“
∐

”
i

Ui −→ U is a local epimorphism.

Denote by CovU the family of coverings of U . The family of coverings will
satisfy the axioms COV1–COV4 below.

COV1 {U } belongs to CovU .
COV2 If S1 ∈ CovU is a refinement of a family S2 ⊂ Ob(CU ), then S2 ∈ CovU .
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COV3 If S = {Ui }i∈I belongs to CovU , then S ×U V := {Ui ×U V }i∈I belongs
to CovV for any morphism V −→ U in C.

COV4 If S1 = {Ui }i∈I belongs to CovU , S2 = {Vj } j∈J is a small family of
objects of CU , and S2 ×U Ui belongs to CovUi for any i ∈ I , then S2

belongs to CovU .

Conversely, to a covering S = {Ui }i∈I of U , we associate a sieve S over U by
setting

S = {ϕ ∈ HomC(V, U); ϕ factors through Ui −→ U for some i ∈ I } .

If the family of coverings satisfies COV1–COV4, it is easily checked that the
associated family of sieves SCovU will satisfy the axioms GT1–GT4.

In this book, we shall mainly use the notion of local epimorphisms. How-
ever, we started by introducing sieves, because this notion does not depend
on the choice of a universe.

In the sequel, C is a category endowed with a Grothendieck topology.

Lemma 16.1.6. Let u : A −→ B be a morphism in C∧. The conditions below
are equivalent.

(i) u is a local epimorphism,
(ii) for any t : U −→ B with U ∈ C, there exist a local epimorphism u : C −→ U

and a morphism s : C −→ A such that u ◦ s = t ◦ u,
(iii) Im u −→ B is a local epimorphism.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (i). Let C −→ U be a local epimorphism. It factorizes through A×B U −→
U by the hypothesis. Therefore A ×B U −→ U is a local epimorphism by LE3
and the result follows from LE4.
(i) ⇒ (iii) follows from LE3.
(iii) ⇒ (i) follows from LE1’ and LE2. q.e.d.

Example 16.1.7. Let X be a topological space, CX := OpX the category of its
open subsets. Note that CX admits a terminal object, namely X , and the
products of two objects U , V ∈ CX is U ∩ V . Also note that if U is an
open subset of X , then (CX )U � OpU . We define a Grothendieck topology by
deciding that a small family S = {Ui }i∈I of objects of OpU belongs to CovU if⋃

i Ui = U .
We may also define a Grothendieck topology as follows. A morphism

u : A −→ B in (CX )∧ is a local epimorphism if for any U ∈ OpX and any
t ∈ B(U), there exist a covering U =

⋃
i Ui and for each i an si ∈ A(Ui )

with u(si ) = t |Ui . (Here, t |Ui is the image of t by B(U) −→ B(Ui ).) Hence, a
morphism A −→ U in (CX )∧ (U ∈ C) is a local epimorphism if there exists an
open covering U =

⋃
i∈I Ui such that Ui −→ U factorizes through A for every

i ∈ I .
These two definitions give the same topology. We shall call this Grothen-

dieck topology the “associated Grothendieck topology” on X .
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Example 16.1.8. For a real analytic manifold X , denote by CXsa the full sub-
category of CX = OpX consisting of open subanalytic subsets (see [38] for
an exposition). We define a Grothendieck topology on the category CXsa by
deciding that a small family S = {Ui }i∈I of subobjects of U ∈ Csa belongs to
CovU if for any compact subset K of X , there is a finite subset J ⊂ I such that⋃

j∈J U j ∩ K = U ∩ K . We call this Grothendieck topology the subanalytic
topology on X . This topology naturally arises in Analysis, for example when
studying temperate holomorphic functions. References are made to [39].

Examples 16.1.9. Let C be a category.
(i) We may endow C with a Grothendieck topology by deciding that the local
epimorphisms in C∧ are the epimorphisms. This topology is called the final
topology.
(ii) We may endow C with a Grothendieck topology by deciding that all mor-
phisms are local epimorphisms. This topology is called the initial topology.
(iii) Recall that Pt denotes the category with one object c and one morphism.
We endow this category with the final topology. Note that this topology is
different from the initial one. Indeed, the morphism ∅Pt∧ −→ c in Pt∧ is a local
epimorphism for the initial topology, not for the final one. In other words, the
empty covering of pt is a covering for the initial topology, not for the final
one.

Examples 16.1.10. The following examples are extracted from [51].
Let G be a finite group and denote by G-Top the category of small G-
topological spaces. An object is a small topological space X endowed with
a continuous action of G, and a morphism f : X −→ Y is a continuous map
which commutes with the action of G. Such an f is said to be G-equivariant.

The category E tG is defined as follows. Its objects are those of G-Top and
its morphisms f : V −→ U are the G-equivariant maps such that f is a local
homeomorphism. Note that f (V ) is open in U .

The category E tG admits fiber products. If U ∈ G-Top, then the category
E tG(U) := (E tG)U admits finite projective limits.

(i) The étale topology on E tG is defined as follows. A sieve S over U ∈ E tG

is a covering sieve if for any x , there exists a morphism f : V −→ U in S
such that x ∈ f (V ).

(ii) The Nisnevich topology on E tG is defined as follows. A sieve S over U ∈
E tG is a covering sieve if for any x ∈ U there exist a morphism V −→ U
in S and y ∈ V such that f (y) = x and y has the same isotropy group as
x . (The isotropy group G y of y is the subgroup of G consisting of g ∈ G
satisfying g · y = y.)

(iii) The Zariski topology on E tG is defined as follows. A sieve S over U ∈ E tG

is a covering sieve if for any x ∈ U , there exists an open embedding
f : V −→ U in S such that x ∈ f (V ).

It is easily checked that the axioms of Grothendieck topologies are satisfied
in these three cases.
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Proposition 16.1.11. (i) Let u : A −→ B be a local epimorphism and let
v : C −→ B be a morphism. Then A ×B C −→ C is a local epimorphism.

(ii) If u : A −→ B is a morphism in C∧, v : C −→ B is a local epimorphism and
w : A ×B C −→ C is a local epimorphism, then u is a local epimorphism.

Property (i) is translated by saying that “local epimorphisms are stable by
base change” and property (ii) by saying that for u : A −→ B to be a local
epimorphism is a local property on B.

Proof. (i) For any U −→ C with U ∈ C, (A ×B C) ×C U � A ×B U −→ U is a
local epimorphism.
(ii) It follows from the hypothesis that v ◦ w is a local epimorphism. Denote
by s : A×B C −→ A the natural morphism. Then v ◦w = u ◦ s, and u is a local
epimorphism by LE3. q.e.d.

Proposition 16.1.12. Let I be a small category and let α : I −→ Mor(C∧) be
a functor. Assume that for each i ∈ I , α(i) : Ai −→ Bi is a local epimorphism.
Let u : A −→ B denote the inductive limit in Mor(C∧) of α. Then u is a local
epimorphism.

Proof. Consider a morphism v : V −→ B with V ∈ C. There exists i ∈ I such
that v factorizes as V −→ Bi −→ B. By the hypothesis, Ai ×Bi V −→ V is a local
epimorphism. Since this morphism factorizes through A ×B V −→ V , this last
morphism is a local epimorphism by LE3. q.e.d.

16.2 Local Isomorphisms

Consider a morphism u : A −→ B in C∧. Recall (see Exercise 2.4) that the
associated diagonal morphism A −→ A ×B A is a monomorphism. It is an
epimorphism if and only if u is a monomorphism. This naturally leads to the
following:

Definition 16.2.1. (i) We say that a morphism u : A −→ B in C∧ is a local
monomorphism if A −→ A ×B A is a local epimorphism.

(ii) We say that a morphism u : A −→ B in C∧ is a local isomorphism if it is
both a local epimorphism and a local monomorphism.

Example 16.2.2. Let X be a topological space and let C = OpX with the
associated Grothendieck topology (see Example 16.1.7). Let A = “

∐
”

i∈I
Ui and

B = “
∐

”
j∈J

Vj , where the Ui ’s and Vj ’s are open in X . Any morphism u : A −→ B

is induced by a map ϕ : I −→ J such that Ui ⊂ Vϕ(i) for all i ∈ I . Notice that

(i) u is a local epimorphism if and only if, for any j ∈ J , Vj =
⋃

i∈ϕ−1( j) Ui ,
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(ii) let U be an open subset, {Ui }i∈I an open covering of U , and for each
i, i ′ ∈ I let {W j } j∈J(i,i ′) be an open covering of Ui ∩Ui ′ . Set

C := Coker
(

“
∐

”
i,i ′∈I, j∈J(i,i ′)

W j ⇒ “
∐

”
i∈I

Ui
)

.

Then C −→ U is a local isomorphism (see Exercise 16.6). Conversely,
for any local isomorphism A −→ U , we can find families {Ui }i∈I and
{W j } j∈J(i,i ′) as above such that C −→ U factors as C −→ A −→ U . It is a
classical result (see [27], Lemma 3.8.1) that if U is normal and paracom-
pact, we can take W j = Ui ×U Ui ′ , i.e., C = Im(“

∐
”

i∈I
Ui −→ U).

Lemma 16.2.3. (i) If u : A −→ B is a monomorphism, then it is a local
monomorphism. In particular, a monomorphism which is a local epimor-
phism is a local isomorphism.

(ii) If u : A −→ B is a local epimorphism, then Im(A −→ B) −→ B is a local
isomorphism.

(iii) For a morphism u : A −→ B, the conditions below are equivalent.
(a) u : A −→ B is a local monomorphism,
(b) for any diagram U ⇒ A −→ B with U ∈ C such that the two composi-

tions coincide, there exists a local epimorphism S −→ U such that the
two compositions S −→ U ⇒ A coincide,

(c) for any diagram Z ⇒ A −→ B with Z ∈ C∧ such that the two com-
positions coincide, there exists a local epimorphism S −→ Z such that
the two compositions S −→ Z ⇒ A coincide.

Proof. (i)–(ii) are obvious.
(iii) Notice first that a morphism U −→ A ×B A is nothing but a diagram
U ⇒ A −→ B such that the two compositions coincide, and then any diagram
S −→ U ⇒ A such that the two compositions coincide factorizes as S −→
A ×

A×B A
U −→ U .

(b) ⇒ (a). Let U −→ A ×B A be a morphism. Let S −→ U be a local
epimorphism such that the two compositions S −→ U ⇒ A coincide. Then
S −→ U factorizes through A ×

A×B A
U −→ U and this morphism will be a local

epimorphism. By LE4, this implies (a).
(a) ⇒ (c). Given Z −→ A ×B A, take A ×

A×B A
Z −→ Z as S −→ Z . q.e.d.

Lemma 16.2.4. (i) Let u : A −→ B be a local monomorphism (resp. local
isomorphism) and let v : C −→ B be a morphism. Then A ×B C −→ C is
a local monomorphism (resp. local isomorphism).

(ii) Conversely, let u : A −→ B be a morphism and let v : C −→ B be a local
epimorphism. If A ×B C −→ C is a local monomorphism (resp. local iso-
morphism), then u is a local monomorphism (resp. local isomorphism).

(iii) Let A1
u−→ A2

v−→ A3 be morphisms in C∧. If u and v are local monomor-
phisms, then v ◦ u is a local monomorphism.
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(iv) Let A1
u−→ A2

v−→ A3 be morphisms in C∧. If v ◦ u is a local epimorphism
and v is a local monomorphism, then u is a local epimorphism.

(v) Let A1
u−→ A2

v−→ A3 be morphisms in C∧. If v◦u is a local monomorphism,
then u is a a local monomorphism.

(vi) Let A1
u−→ A2

v−→ A3 be morphisms in C∧. If v◦u is a local monomorphism
and u is a local epimorphism, then v is a local monomorphism.

(vii) Let A1
u−→ A2

v−→ A3 be morphisms in C∧. If two of the three morphisms
u, v, v ◦ u are local isomorphisms, then all are local isomorphisms.

Proof. (i) (a) Assume that u is a local monomorphism. Let D = A ×B C .
Consider the commutative diagram

D
w′

��

��

D ×C D ��

h

��

C

v

��
A

w �� A ×B A �� B.

(16.2.1)

Since both squares (A, B, C, D) and (A ×B A, B, C, D ×C D) are Cartesian,
the square (A, A×B A, D×C D, D) is Cartesian. Since A −→ A×B A is a local
epimorphism, D −→ D ×C D is also a local epimorphism.
(i) (b) Since both local epimorphisms and local monomorphisms are stable by
base change, the same result holds for local isomorphisms.
(ii) It is enough to treat the case where A ×B C −→ C is a local monomor-
phism. In the diagram (16.2.1), h is a local epimorphism. Since w′ is a local
epimorphism, so is w by Proposition 16.1.11 (ii).
(iii) Consider the diagram

A1
u′ �� A1 ×A2 A1

��

w′
�� A1 ×A3 A1

��
A2

v′ �� A2 ×A3 A2.

Since the square is Cartesian and v′ is a local epimorphism, w′ is also a local
epimorphism. Therefore w′ ◦ u′ is again a local epimorphism.
(iv) Consider the Cartesian squares

A1

��

w1
�� A1 ×A3 A2

��
A2

v′ �� A2 ×A3 A2,

A1 ×A3 A2

��

w2 �� A2

v

��
A1

v◦u �� A3.

Since v′ and v ◦ u are local epimorphisms, w1 and w2 as well as w2 ◦ w1 = u
are local epimorphisms.
(v) Consider the Cartesian square
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A1
w2 ��

��

A1 ×A2 A1

��
A1

w3 �� A1 ×A3 A1.

Since w3 is a local epimorphism so is w2.
(vi) The composition of the local epimorphisms A1 ×A3 A1 −→ A2 ×A3 A1 −→
A2 ×A3 A2 is a local epimorphism. Consider the commutative diagram

A1

u

��

w2 �� A1 ×A3 A1

w3

��
A2

v′ �� A2 ×A3 A2.

Hence, w3 ◦ w2 = v′ ◦ u is a local epimorphism and this implies that v′ is a
local epimorphism.
(vii) (a) Assume that u and v are local isomorphisms. Then v ◦ u is a local
epimorphism by LE2, and a local monomorphism by (iii).
(vii) (b) Assume that v and v ◦ u are local isomorphisms. We know by (iv)
that u is a local epimorphism. It is a local monomorphism by (v).
(vii) (c) Assume that u and v ◦ u are local isomorphisms. We already know
that v is a local epimorphism. It is a local monomorphism by (vi). q.e.d.

Notations 16.2.5. (i) We denote by LI the set of local isomorphisms.
(ii) Following Definition 7.1.9, for A ∈ C∧, we denote by LI A the category
given by

Ob(LI A) = {the local isomorphisms B −→ A} ,

HomLI A
((B

u−→ A), (C
v−→ A)) = {w : B −→ C ; u = v ◦ w} .

Note that such a w is necessarily a local isomorphism.
(iii) The category LI A is defined similarly.

Lemma 16.2.6. The family LI of local isomorphisms in C∧ is a left saturated
multiplicative system.

Proof. Let us check the axioms S1–S5 of Definitions 7.1.5 and 7.1.19. Axiom
S1 is obviously satisfied, S2 follows from Lemma 16.2.4 (iii), and S3 (with the
arrows reversed, as in Remark 7.1.7) follows from Lemma 16.2.4 (i).
S4 Consider a pair of parallel morphisms f, g : A ⇒ B and a local isomorphism
t : B −→ C such that t ◦ f = t ◦ g. Consider the Cartesian square

Ker( f, g) ��

s

��

B

u

��
A �� B ×C B.
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By the hypothesis, u is a local epimorphism, and it is a monomorphism. Hence
u is a local isomorphism. Since local isomorphisms are stable by base change
(Lemma 16.2.4 (i)), s is a local isomorphism.
S5 Consider morphisms

A
f−→ B

g−→ C
h−→ D

and assume that g ◦ f as well as h ◦ g are local isomorphisms. It follows that
g is both a local epimorphism and a local monomorphism. Then both g ◦ h
and g are local isomorphisms, and this implies that h is a local isomorphism.

q.e.d.

Lemma 16.2.7. The category LI A admits finite projective limits. In partic-
ular, LI A is cofiltrant.

Proof. (i) The category LI A admits a terminal object, namely A
id−→ A.

(ii) The category LI A admits fiber products. Indeed, if C −→ B, D −→ B and
B −→ A are local isomorphisms, then C ×B D −→ A is a local isomorphism by
Lemma 16.2.4. q.e.d.

Lemma 16.2.8. Assume that C is small. Then, for any A ∈ C∧, the category
(LI A)op is cofinally small.

Proof. Set I = {(U, s); U ∈ C, s ∈ A(U)}. For i = (U, s) ∈ I , set Ui = U . Note
that I is a small set and there exists a canonical epimorphism

“
∐

”
i∈I

Ui�A.

For a subset J ⊂ I , we set
CJ = “

∐
”

j∈J
U j .

Let us consider the set S of (J, S, v, w) where J is a subset of I , v : CJ −→ S
is an epimorphism and w : S −→ A is a local isomorphism:

CJ
v
� S

w−→ A .

By Proposition 5.2.9 and the result of Exercise 5.1, the set of quotients of any
object of C∧ is small, and hence S is a small set. On the other hand we have
a map

ϕ : S −→ Ob(LI A) ,

(CJ
v
� S

w−→ A) 
→ (S
w−→ A) .

Let us show that ϕ(S) satisfies the condition in Proposition 3.2.6. Let B −→ A
be a local isomorphism. Set B1 = Im(B −→ A). Then we have B1(U) ⊂
A(U) for any U ∈ C. Set J =

{
(U, s) ∈ I ; s ∈ B1(U)

}
. Then CJ −→ B1 is an

epimorphism, and it decomposes into CJ −→ B −→ B1 since B(U) −→ B1(U) is
surjective for any U ∈ C. Thus we obtain the following commutative diagram:
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CJ

./��
��
��
�

����

�� CI

��
B �� �� B1

�� A.

Set S = Im(CJ −→ B). Since B1 −→ A and B −→ A are local isomorphisms,
B −→ B1 is a local isomorphism. Since CJ −→ B1 is an epimorphism, CJ −→ B
is a local epimorphism. Therefore S −→ B is a local epimorphism, hence a local
isomorphism as well as S −→ A. This shows that CJ �S −→ A belongs to S.
q.e.d.

16.3 Localization by Local Isomorphisms

In this section, C is assumed to be a small category endowed with a Grothen-
dieck topology. Recall that LI denotes the set of local isomorphisms. We shall
construct a functor

( • )a : C∧ −→ C∧ .

Since LI is a left multiplicative system and (LI A)op is cofinally small for any
A ∈ C∧, the left localization (C∧)LI is a well-defined U-category. We denote
as usual by

Q : C∧ −→ (C∧)LI

the localization functor. For A ∈ C∧, we define Aa ∈ C∧ by

Aa : C � U 
→ Hom (C∧)LI
(Q(U), Q(A)) .

By the definition of (C∧)LI , we get

Aa(U) � lim−→
(B−→U)∈LIU

HomC∧(B, A) .(16.3.1)

For a morphism U −→ U ′ in C, the map Aa(U ′) −→ Aa(U) is given as follows:

Aa(U ′) � lim−→
(B ′−→U ′)∈LIU ′

HomC∧(B ′, A)

−→ lim−→
(B ′−→U ′)∈LIU ′

HomC∧(B ′ ×U ′ U, A)

−→ lim−→
(B−→U)∈LIU

HomC∧(B, A) � Aa(U) ,

where the first morphism is associated with B ′ ×U ′ U −→ B ′ and the second
one is the natural morphism induced by LIU ′ � (B ′ −→ U ′) 
→ (B ′ ×U ′ U −→
U) ∈ LIU .
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The identity morphism U
id−→ U ∈ LIU defines A(U) −→ Aa(U). We thus

obtain a morphism of functors

ε : idC∧ −→ ( • )a .(16.3.2)

In this section, we shall study the properties of the functor ( • )a . Since we
shall treat this functor in a more general framework in Chap. 17, we restrict
ourselves to the study of the properties that we need later.

Lemma 16.3.1. Let u : B −→ A be a morphism in C∧ and let s : B −→ U be
a local isomorphism with U ∈ C. Denote by v ∈ Aa(U) the corresponding
element (using (16.3.1)). Then the diagram

B
s ��

u
��

U

v

��
A

ε(A)
�� Aa

(16.3.3)

commutes.

Proof. It is enough to show that, for any t : V −→ B with V ∈ C, we have
ε(A) ◦ u ◦ t = v ◦ s ◦ t . The element v ◦ s ◦ t ∈ Aa(V ) is given by the pair
(B ×U V −→ V, B ×U V −→ A) of the local isomorphism B ×U V −→ V and the
morphism B ×U V −→ B

u−→ A.
Let w : V −→ B ×U V be the morphism such that the composition V −→

B ×U V −→ V is idV and V −→ B ×U V −→ B is t . Then w gives a morphism

(V
idV−→ V ) −→ (B ×U V −→ V ) in LIV . Hence, v ◦ s ◦ t is given by the pair

(V
idV−→ V, V

t−→ B
u−→ A), which is equal to ε(A) ◦ u ◦ t . q.e.d.

Lemma 16.3.2. For any A ∈ C∧, the natural morphism ε(A) : A −→ Aa is a
local isomorphism.

Proof. (i) Consider a morphism U −→ Aa. By the definition of Aa, there exist
a local isomorphism B −→ U and a commutative diagram (16.3.3). Therefore,
A −→ Aa is a local epimorphism by Lemma 16.1.6.
(ii) Consider a diagram U ⇒ A −→ Aa such that the two compositions coincide.
The two morphisms U ⇒ A define s1, s2 ∈ A(U) with the same image in
Aa(U). Since LIU is cofiltrant, there exist a local isomorphism B −→ U and
a diagram B −→ U ⇒ A such that the two compositions coincide. Therefore
A −→ Aa is a local monomorphism by Lemma 16.2.3 (iii). q.e.d.

Proposition 16.3.3. Let w : A1 −→ A2 be a local isomorphism. Then wa : Aa
1

−→ Aa
2 is an isomorphism.

Proof. It is enough to show that Aa
1(U) −→ Aa

2(U) is bijective for any U ∈ C.
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(i) Injectivity. Let v1, v2 ∈ Aa
1(U) and assume they have the same image in

Aa
2(U). Since LIU is cofiltrant, there exist a local isomorphism s : B −→ U

and ui : B −→ A1 (i = 1, 2) such that (ui , s) gives vi ∈ Aa
1(U). Since wa(v1) =

wa(v2) ∈ Aa
2(U), there exists a local isomorphism t : B ′ −→ B such that the

two compositions B ′ �� B
u1 ��
u2

�� A1
�� A2 coincide. Since A1 −→ A2 is a local

monomorphism, there exists a local isomorphism B ′′ −→ B such that the two

compositions B ′′ �� B ′ �� B
u1 ��
u2

�� A1 coincide. Hence, v1 = v2.

(ii) Surjectivity. Let v ∈ Aa
2. Then v is represented by a local isomorphism

s : B −→ U and a morphism u : B −→ A2. In the following commutative diagram

A1 ×A2 B

u′

��

w′
�� B

u

��

s �� U

A1
w �� A2

w′ is a local isomorphism and (u′, s ◦ w′) defines an element of Aa
1(U) whose

image in Aa
2(U) coincides with v. q.e.d.

Proposition 16.3.4. Let I be a small category and let α : I −→ Mor(C∧) be a
functor. Assume that for each i ∈ I , α(i) : Ai −→ Bi is a local isomorphism.
Let u : A −→ B denote the inductive limit in Mor(C∧) of α(i) : Ai −→ Bi . Then
u is a local isomorphism.

In other words, LI, considered as a full subcategory of Mor(C∧), is closed by
small inductive limits in Mor(C∧).

Proof. Since Aa
i −→ Ba

i is an isomorphism by Proposition 16.3.3, we get the
following commutative diagram on the left:

Ai
ε(Ai ) ��

α(i)

��

Aa
i

∼
��

�� Aa

ua

��
Bi

����������

ε(Bi )
�� Ba

i
�� Ba,

A

u

��

ε(A) �� Aa

ua

��
B

v

�����������

ε(B)
�� Ba .

Taking the inductive limit with respect to i , we obtain the commutative di-
agram on the right. Since ε(A) = v ◦ u is a local isomorphism, v is a local
epimorphism. Since ua ◦ v = ε(B) is a local monomorphism, v is a local
monomorphism. Hence v as well as u is a local isomorphism. q.e.d.

Exercises

Exercise 16.1. Prove that the axioms LE1–LE4 are equivalent to the axioms
GT1–GT4, and also prove that they are equivalent to the axioms COV1–
COV4 when C is small and admits fiber products.
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Exercise 16.2. Prove that the axioms LE1’, LE2 and LE4 imply LE3.

Exercise 16.3. Let C be a category and C0 a subcategory of C. Let us say
that a morphism u : A −→ B in C∧ is a local epimorphism if for any U ∈ C0

and any morphism U −→ B in C∧, there exist a morphism s : V −→ U in C0

and a commutative diagram V
s ��

��

U

��
A �� B

in C∧.

Prove that the family of local epimorphisms defined above satisfies the axioms
LE1–LE4.

Exercise 16.4. Let C be a category. Let us say that a morphism f : B −→ A
in C∧ is a local epimorphism if for any morphism U −→ A with U ∈ C, there
exist V ∈ C, an epimorphism g : V −→ U in C and a morphism V −→ B such
that the diagram below commutes:

V
g ��

��

U

��
B

f �� A.

(i) Check that the axioms LE1–LE4 are satisfied. We call this topology the
epitopology on C.
(ii) Assume that C admits finite coproducts. Show that it is also possible
to define a topology, replacing V above by “

⊔
”

i∈I
Vi with I finite, under the

condition that
⊔

i∈I Vi −→ U is an epimorphism in C.

Exercise 16.5. Let C be a category. Let LI be a subset of Ob(Mor(C∧))
satisfying:

LI 1 every isomorphism belongs to LI,
LI 2 let A

u−→ B
v−→ C be morphisms in C∧. If two of the morphisms u, v and

v ◦ u belong to LI, then all belong to LI,
LI 3 a morphism u : A −→ B in C∧ belongs to LI if and only if for any U ∈ C

and any morphism U −→ B, the morphism A ×B U −→ U belongs to LI.

Let us say that a morphism u : A −→ B in C∧ is a local epimorphism if the
morphism Im u −→ B belongs to LI.

Prove that the family of local epimorphisms so defined satisfies LE1–LE4
and LI coincides with the set of local isomorphisms for this Grothendieck
topology.

Hence, we have an alternative definition of Grothendieck topologies, using
LI1–LI3.

Exercise 16.6. Let C be a category endowed with a Grothendieck topology.
Let B −→ A and C −→ B ×A B be local epimorphisms. Prove that the induced
morphism Coker(C ⇒ B) −→ A is a local isomorphism.
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Exercise 16.7. Let C be a small category endowed with a Grothendieck topol-
ogy and let A ∈ C∧. Recall the morphism of functors ε of (16.3.2).
(i) Prove that (a, ε) is a projector on C∧ (see Definition 4.1.1).
(ii) Prove that a morphism A1 −→ A2 is a local isomorphism if and only if
Aa

1 −→ Aa
2 is an isomorphism.

(iii) Prove that, for any local isomorphism B1 −→ B2, the induced map
HomC∧(B2, Aa) −→ HomC∧(B1, Aa) is bijective.
(iv) Prove that Aa is a terminal object in LI A.



17

Sheaves on Grothendieck Topologies

Historically, a presheaf was defined as a contravariant functor on the category
of open subsets of a topological space with values in the category Set. By
extension, “a presheaf” is any contravariant functor defined on a category
C with values in another category A. Therefore, presheaves are nothing but
functors, although the two notions play different roles.

A site X is a small category CX endowed with a Grothendieck topology.
The aim of this chapter is to construct presheaves and sheaves on a site with
values in a category A satisfying suitable properties.

A presheaf F on X is a sheaf if F(U) −→ F(A) is an isomorphism for any
local isomorphism A −→ U . This definition is shown to be equivalent to the
classical (and more intuitive) one by using coverings. We construct the sheaf
Fa associated with a presheaf F with values in A, we show that the functor
( • )a is left adjoint to the forgetful functor which associates the underlying
presheaf to a sheaf on X , and we show that the functor ( • )a is exact.

We also study the direct and inverse images functors for sheaves, partic-
ularly for a morphism of sites X −→ A associated with A ∈ (CX )∧ and the
internal Hom functor. We shall glue sheaves in Chap. 19.

Let us mention that when the sites admit finite projective limits, the theory
of sheaves resembles the one on topological spaces, and a concise exposition
in this case may be found in [67].

17.1 Presites and Presheaves

Definition 17.1.1. (i) A presite X is nothing but a category which we de-
note by CX .

(ii) A morphism of presites f : X −→ Y is a functor f t : CY −→ CX .
(iii) A presite X is small if CX is small. More generally, we say that a presite

has a property “P” if the category CX has the property “P”.
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Notation 17.1.2. (i) Let X be a small presite. We denote by X̂ the presite
associated with the category (CX )∧, and we set ht

X := hCX : CX −→ (CX )∧. Hence
we denote by

hX : X̂ −→ X

the associated morphism of presites. If there is no risk of confusion, we write
C∧X instead of (CX )∧.
(ii) Let f : X −→ Y be a morphism of small presites. We denote by f̂ : X̂ −→ Ŷ
the associated morphism of presites given by Proposition 2.7.1 (using Nota-
tion 2.7.2). Hence we have

( f̂ t A)(U) � lim−→
(V−→A)∈(CY )∧A

Hom (CY )∧( f t(V ), U)

� lim−→
(U−→ f t (V ))∈(CY )U

A(V )

for any A ∈ (CY )∧ and U ∈ CX . Note that f̂ t : C∧Y −→ C∧X commutes with small
inductive limits.
(iii) For a presite X , we denote by ptX the terminal object of C∧X .

In all this section, A denotes a category.

Definition 17.1.3. Let X be a presite. We set PSh(X,A) = Fct(Cop
X ,A) and

call an object of this category a presheaf on X with values in A.
We set PSh(X) := PSh(X,U-Set) = C∧X .

Note that when X is U-small and A is a U-category, PSh(X,A) is a U-category.
As already noticed, if A admits small inductive (resp. projective) limits,

then the category PSh(X,A) admits small inductive (resp. projective) limits.
If i 
→ Fi (resp. i 
→ Gi ) is a small inductive (resp. projective) system of
presheaves, then we have for U ∈ CX

(lim−→
i

Fi )(U) � lim−→
i

(Fi (U)) ,

(lim←−
i

Gi )(U) � lim←−
i

(Gi (U)) .

Here, lim−→ and lim←− on the right-hand side are taken in the category A. If
moreover small filtrant inductive limits are exact in A, then these limits are
exact in PSh(X,A).

Example 17.1.4. To a small topological space X we associate the small cat-
egory OpX of its open subsets, the morphisms in OpX being the inclusion
morphisms. Let A = Mod(k), where k is a commutative ring. A presheaf F on
X with values in Mod(k) thus associates to each open subset U of X a k-module
F(U), and to each open inclusion V ⊂ U a k-linear map F(U) −→ F(V ) called
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the restriction map. An element s ∈ F(U) is called a section of F on U . Its
image by the restriction map is often denoted by s|V and called the restriction
of s to V . Let us give elementary explicit examples.
(i) Let C0(U) denote the C-vector space of C-valued continuous functions
on U ∈ OpX . Then U 
→ C0(U), with the usual restriction morphisms, is a
presheaf on X with values in the category Mod(C) of C-vector spaces.
(ii) The constant presheaf with values Z associates Z to each open subset U .
This is the presheaf of constant Z-valued functions on X . A more interesting
presheaf, denoted by ZX , is that of locally constant Z-valued functions on X .

Let us paraphrase Definition 2.3.1 in the framework of presheaves. For
simplicity, we shall assume that all presites are small and also that

A admits small inductive and small projective limits.(17.1.1)

Let f : X −→ Y be a morphism of small presites, that is, a functor f t : CY −→
CX . One has the functors

f t
∗ : PSh(X,A) −→ PSh(Y,A) ,

f t † : PSh(Y,A) −→ PSh(X,A) ,

f t ‡ : PSh(Y,A) −→ PSh(X,A) .

Notation 17.1.5. Let f : X −→ Y be a morphism of small presites. We shall
write for short:

f∗ := f t
∗, f † := f t †, f ‡ := f t ‡ .

Recall that these functors are defined as follows. For F ∈ PSh(X,A), G ∈
PSh(Y,A), U ∈ CX and V ∈ CY :

f∗F(V ) = F( f t(V )) ,(17.1.2)
f †G(U) = lim−→

(U−→ f t (V ))∈(CY )U

G(V ) ,(17.1.3)

f ‡G(U) = lim←−
( f t (V )−→U)∈(CY )U

G(V ) .(17.1.4)

Thus, we get functors

PSh(X,A) f∗ �� PSh(Y,A) .

f †
��

f ‡��

Applying Theorem 2.3.3 we find that ( f †, f∗) and ( f∗, f ‡) are two pairs of
adjoint functors.
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For two morphisms of presites f : X −→ Y and g : Y −→ Z , we have

(g ◦ f )∗ � g∗ ◦ f∗, (g ◦ f )† � f † ◦ g†, (g ◦ f )‡ � f ‡ ◦ g‡ .(17.1.5)

We extend presheaves on X to presheaves on X̂ , as in § 2.7, using the functor
h‡

X associated with the Yoneda functor ht
X = hCX . Hence, for F ∈ PSh(X,A)

and A ∈ C∧X , we have:

h‡
X F(A) � lim←−

(U−→A)∈(CX )A

F(U) .

By Corollary 2.7.4, the functor h‡
X induces an equivalence of categories be-

tween the category PSh(X,A) and the full subcategory of PSh(X̂ ,A) consist-
ing of presheaves which commute with small projective limits.

Convention 17.1.6. In the sequel, we shall identify a presheaf F ∈ PSh(X,A)
and its image by h‡

X in PSh(X̂ ,A). In other words, we shall write F instead
of h‡

X F .

With this convention, we have

( f∗F)(B) � F( f̂ t(B)) for F ∈ PSh(X,A) and B ∈ C∧Y .(17.1.6)

Indeed, we have

( f∗F)(B) � lim←−
V∈(CY )B

f∗F(V ) � lim←−
V∈(CY )B

F( f t(V ))

� F
(

lim−→
V∈(CY )B

f t(V )
) � F( f̂ t(B)) .

Let A ∈ (CX )∧. Recall that jA : (CX )A −→ CX is the forgetful functor.

Notations 17.1.7. We denote by A the presite associated with the category
(CX )A and by

jA−→X : X −→ A(17.1.7)

the morphism of presites associated with the functor jA. Hence

CA := (CX )A, jt
A−→X := jA : (CX )A −→ CX .(17.1.8)

To avoid confusing it with the functor jA : CA −→ CX , we denote by

j Â : (C∧X )A −→ C∧X(17.1.9)

the forgetful functor. By Proposition 2.7.1, the functor jA : CA −→ CX extends
to a functor ĵA : (CA)∧ −→ C∧X . We shall compare these functors.
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Lemma 17.1.8. There is a quasi-commutative diagram of categories

CA
(ht

X )A ��

ht
A ��..

...
...

...
.. (C∧X )A

j Â ��

λ∼
��

C∧X .

(CA)∧
ĵA

����������

Proof. By Lemma 1.4.12, we already know that λ ◦ (ht
X )A � hA. Hence, it

remains to prove that ĵA ◦ λ � j Â. Since ĵA ◦ λ ◦ (ht
X )A � j Â ◦(ht

X )A, by Propo-
sition 2.7.1 it is enough to check that j Â ◦λ−1 commutes with small inductive
limits. This follows from Lemma 2.1.13. q.e.d.

The morphism of presites jA−→X gives rise to the functors

jA−→X ∗ : PSh(X,A) −→ PSh(A,A) ,

j†A−→X : PSh(A,A) −→ PSh(X,A) ,

j‡A−→X : PSh(A,A) −→ PSh(X,A) .

Proposition 17.1.9. Let G ∈ PSh(A,A) and F ∈ PSh(X,A). We have the
isomorphisms

jA−→X ∗(F)(B −→ A) � F(B) for (B −→ A) ∈ C∧A ,(17.1.10)

j†A−→X (G)(U) �
∐

s∈A(U)

G(U
s−→ A) for U ∈ CX ,(17.1.11)

j‡A−→X (G)(B) � G(B × A −→ A) for B ∈ C∧X .(17.1.12)

Proof. (i) Isomorphism (17.1.10) is obvious when B ∈ CA. If B ∈ C∧A , we have

jA−→X ∗(F)(B −→ A) � lim←−
(U−→B)∈CB

jA−→X ∗(F)(U −→ A)

� lim←−
(U−→B)∈CB

F(U) � F(B) .

(ii) Let us check (17.1.11). By (17.1.3), we have

j†A−→X (G)(U) � lim−→
(U−→jA(V−→A))∈(CA)U

G(V −→ A) � lim−→
U−→V−→A

G(V −→ A)

� lim−→
U−→A

G(U −→ A) �
∐

s∈A(U)

G(U
s−→ A) .

Here, we use the fact that the discrete category HomC∧X (U, A) is cofinal in
((CA)U )op.
(iii) Let us check (17.1.12). If B ∈ CX , we have
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(j‡A−→X G)(B) � lim←−
jA(V−→A)−→B

G(V −→ A)

� lim←−
A←−V−→B

G(V −→ A) � G(B × A −→ A) .

In the general case, we have:

(j‡A−→X G)(B) � lim←−
(U−→B)∈CB

(j‡A−→X G)(U)

� lim←−
(U−→B)∈CB

G(U × A −→ A)

� G( “lim−→”
(U−→B)∈CB

U × A −→ A) � G(B × A −→ A) .

q.e.d.

More generally, for a morphism u : A −→ B in C∧X , we have a functor
(j

A
u−→B

)t : C∧A −→ C∧B given by (C −→ A) 
→ (C −→ A −→ B), which induces
a morphism or presites

j
A

u−→B
: B −→ A .

For morphisms A −→ B −→ C in C∧X , we have

jA−→C � jA−→B ◦ jB−→C ,

and hence (17.1.5) implies the isomorphisms:

(jA−→C)∗ � (jA−→B)∗ ◦ (jB−→C)∗,
(jA−→C)† � (jB−→C)† ◦ (jA−→B)†,

(jA−→C)‡ � (jB−→C)‡ ◦ (jA−→B)‡.

(17.1.13)

Internal Hom

Let X be a presite. For F, G ∈ PSh(X,A) and U ∈ CX , we set

Hom PSh(X,A)(F, G)(U) = Hom PSh(U,A)(jU−→X ∗F, jU−→X ∗G) .(17.1.14)

Definition 17.1.10. The presheaf Hom PSh(X,A)(F, G) given by (17.1.14) is
called the internal hom of (F, G).

Note the isomorphism

Hom PSh(X,A)(F, G) � lim←−
U∈CX

Hom PSh(U,A)(F, G)(U) .(17.1.15)

Lemma 17.1.11. For F, G ∈ PSh(X,A) and A ∈ C∧X , there are isomorphisms

(i) jA−→X ∗Hom PSh(X,A)(F, G) � Hom PSh(A,A)(jA−→X ∗F, jA−→X ∗G),
(ii) Hom PSh(X,A)(F, G)(A) � Hom PSh(A,A)(jA−→X ∗F, jA−→X ∗G).



17.2 Sites 411

Proof. (i) Let (U −→ A) ∈ CA. There is a chain of isomorphisms

jA−→X ∗Hom PSh(X,A)(F, G)(U −→ A)

� Hom PSh(X,A)(F, G)(U)

� Hom PSh(U,A)(jU−→X ∗F, jU−→X ∗G)

� Hom PSh(U,A)(jU−→A∗jA−→X ∗F, jU−→A∗jA−→X ∗G)

� Hom PSh(A,A)(jA−→X ∗F, jA−→X ∗G)(U −→ A) .

(ii) There is a chain of isomorphisms

Hom PSh(X,A)(F, G)(A) � lim←−
U−→A

Hom PSh(X,A)(F, G)(U)

� lim←−
U−→A

jA−→X ∗Hom PSh(X,A)(F, G)(U −→ A)

� lim←−
U−→A

Hom PSh(A,A)(jA−→X ∗F, jA−→X ∗G)(U −→ A)

� Hom PSh(A,A)(jA−→X ∗F, jA−→X ∗G) ,

where the third isomorphism follows from (i) and the last one from (17.1.15).
q.e.d.

17.2 Sites

Definition 17.2.1. (i) A site X is a small presite endowed with a Grothen-
dieck topology.

(ii) A morphism of sites f : X −→ Y is a functor f t : CY −→ CX such that
for any local isomorphism B −→ A in C∧Y , f̂ t(B) −→ f̂ t(A) is a local
isomorphism in C∧X .

Clearly the family of sites and morphisms of sites defines a category.
The above definition of morphisms of sites depends on the choice of a

universe in appearance. However it does not as we shall show by the following
lemmas.

Lemma 17.2.2. Let X and Y be sites, and let f : X −→ Y be a morphism of
presites.

(i) If f is a morphism of sites, then f̂ t sends the local epimorphisms in C∧Y
to local epimorphisms in C∧X .

(ii) The following conditions are equivalent.
(a) f is a morphism of sites,
(b) for any V ∈ CY and any morphism B −→ V in C∧Y which is both a

monomorphism and a local isomorphism, f̂ t(B) −→ f t(V ) is a local
isomorphism.
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Proof. The proof of (i) being given in the course of the proof of (ii), we shall
prove (ii). The implication (a)⇒(b) is obvious. Let us prove the converse.
Assume (b).
(1) First, let us show that for any V ∈ CY , f̂ t sends any local epimorphism
u : A −→ V in C∧Y to a local epimorphism in C∧X . The morphism u decomposes
as A −→ Im u −→ V , where A −→ Im u is an epimorphism and Im u −→ V is
both a monomorphism and a local epimorphism. The assumption (b) implies
that f̂ t(Im u) −→ f t(V ) is a local isomorphism. Since f̂ t(A) −→ f̂ t(Im u) is an
epimorphism (see Exercise 3.4), f̂ t(A) −→ f t(V ) is a local epimorphism.
(2) Let us show that f̂ t sends any local epimorphism u : A −→ B in C∧Y to
a local epimorphism in C∧X . Let V −→ B be a morphism in C∧Y with V ∈
CY and set uV : A ×B V −→ V . Then f̂ t(uV ) is a local epimorphism by (1).
Taking the inductive limit with respect to (V −→ B) ∈ (CY )B , the morphism
f̂ t(A) −→ f t(B) is a local epimorphism by Proposition 16.1.12. Note that
“lim−→”

V∈(CY )B

A ×B V � A by Exercise 3.2.

(3) Next, let us show that if a local isomorphism u : A −→ B in C∧Y is either a
monomorphism or an epimorphism, then f̂ t(u) is a local isomorphism in C∧X .
As in (2), let V −→ B be a morphism in C∧Y with V ∈ CY . Then uV : A×B V −→ V
is either a monomorphism or an epimorphism. Let us show that f̂ t(uV ) is a
local isomorphism. If uV is a monomorphism, it follows from (b). Assume
that uV is an epimorphism. Then uV has a section s : V −→ A ×B V . Since
uV is a local isomorphism, s is a local isomorphism. Since f̂ t(uV ) ◦ f̂ t(s) �
id f t (V ) is a local monomorphism and f̂ t(s) is a local epimorphism by (2),
Lemma 16.2.4 (vi) implies that f̂ t(uV ) is a local monomorphism. Since f̂ t(uV )
is an epimorphism by (2), f̂ t(uV ) is a local isomorphism. Thus in the both
cases, f̂ t(uV ) is a local isomorphism. Taking the inductive limit with respect
to V ∈ (CY )B , f̂ t(u) is a local isomorphism by Proposition 16.3.4.
(4) Finally let us show that if u : A −→ B in C∧Y is a local isomorphism, then
f̂ t(u) is a local isomorphism in C∧X . Since A −→ Im u is an epimorphism and
Im u −→ B is a monomorphism and they are local isomorphisms, their images
by f̂ t are local isomorphisms by (3). Therefore their composition f̂ t(u) is also
a local isomorphism. q.e.d.

Lemma 17.2.3. Let U and V be universes such that U ⊂ V. Let f : X −→ Y
be a morphism of U-small presites. Then f̂ t sends the local isomorphisms in
(CY )∧U (see Definition 1.4.2) to local isomorphisms in (CX )∧U if and only if f̂ t

sends the local isomorphisms in (CY )∧V to local isomorphisms in (CX )∧V .

Proof. The assertion follows from the preceding lemma, since any subobject
of V ∈ CY in (CY )∧V is isomorphic to an object of (CY )∧U . Indeed, if A ∈ (CY )∧V is
a subobject of V , then A(U) ⊂ V (U) for any U ∈ C, and since V (U) belongs
to U , we obtain that A(U) belongs to U . q.e.d.
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We shall also encounter not necessarily small presites endowed with a
Grothendieck topology. A big site is a presite endowed with a Grothendieck
topology.

Definition 17.2.4. Let f : X −→ Y be a morphism of presites.

(i) We say that f is left exact if the functor f t : CY −→ CX is left exact.
(ii) We say that f is weakly left exact if the functor CY −→ (CX ) f̂ t (ptY ) induced

by f t is left exact.

Lemma 17.2.5. Let f : X −→ Y be a morphism of presites.

(i) If f : X −→ Y is left exact, then f is weakly left exact.
(ii) If f : X −→ Y is weakly left exact, then f̂ t : C∧Y −→ C∧X commutes with fiber

products and sends the monomorphisms to monomorphisms.
(iii) For any A ∈ C∧X , the morphism jA−→X : X −→ A is weakly left exact.

Proof. (i) Since f is left exact, f̂ t(ptY ) � ptX .
(ii) By Corollary 3.3.19, the functor (CY )∧ −→ ((CX ) f̂ t (ptY ))∧ is left exact and
((CX ) f̂ t (ptY ))∧ � (C∧X ) f̂ t (ptY ) by Lemma 1.4.12. Since the functor (CY )∧ −→
((CX ) f̂ t (ptY ))∧ as well as ((CX ) f̂ t (ptY ))∧ −→ (CX )∧ commutes with fiber products
and sends the monomorphisms to monomorphisms, so does their composition
f̂ t . (See Exercise 17.14 for a converse statement.)
(iii) is translated by saying that the identity functor (CX )A −→ (CX )A is left
exact. q.e.d.

In practice, it is easier to manipulate local epimorphisms than local isomor-
phisms.

Proposition 17.2.6. Let X and Y be two sites and let f : X −→ Y be a mor-
phism of presites. Assume that

(i) f is weakly left exact,
(ii) f̂ t sends local epimorphisms B −→ V with V ∈ CY to local epimorphisms.

Then f is a morphism of sites.

Proof. Since f̂ t sends the monomorphisms to monomorphisms, the condition
(ii) (b) in Lemma 17.2.2 is satisfied. q.e.d.

Examples 17.2.7. (i) Let f : X −→ Y be a continuous map of topological spaces,
identified with the functor of presites f t : OpY −→ OpX given by OpY � V 
→
f −1(V ) ∈ OpX (see Example 16.1.7). Then f is a left exact morphism of sites
by Proposition 17.2.6.
(ii) Consider the topologies defined in Example 16.1.10. We denote by E tG

et ,
E tG

nis , and E tG
zar the category E tG endowed with the étale topology, the Nis-

nevich topology and the Zariski topology, respectively. We obtain the big sites
called the étale site, the Nisnevich site, and the Zariski site, respectively. There
are natural morphisms of big sites
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E tG
et −→ E tG

nis −→ E tG
zar .

(iii) Let CX be a small category. The site obtained by endowing CX with the ini-
tial (resp. final) topology is denoted by Xini (resp. X f in) (see Example 16.1.9).
There are natural morphisms of sites

Xini −→ X −→ X f in .

Definition 17.2.8. Let T and T ′ be two topologies on a presite X and denote
by XT and XT ′ the associated sites. The topology T is stronger than T ′, or the
topology T ′ is weaker than T , if the identity functor on CX induces a morphism
of sites XT −→ XT ′ , that is, if the local isomorphisms with respect to T ′ are
local isomorphisms with respect to T .

By Lemma 16.2.3, T is stronger than T ′ if and only if the local epimorphisms
with respect to T ′ are local epimorphisms with respect to T .

Let {Ti }i∈I be a family of topologies on a presite X . The intersection topol-
ogy ∩iTi is defined as follows: a morphism is a local epimorphism with respect
to ∩iTi if and only if it is a local epimorphism with respect to all the Ti ’s.

The topology
⋃

i Ti on X is the weakest topology among the topologies
stronger than all Ti ’s, i.e., ∪iTi = ∩T where T ranges over the family of
topologies which are stronger than all Ti ’s.

There are morphisms of sites

Xini −→ X∪Ti −→ XTi −→ X∩Ti −→ X f in .(17.2.1)

17.3 Sheaves

Let X be a site and let A be a category admitting small projective limits. Using
Corollary 2.7.4, we shall identify the presheaves on X with the presheaves on
X̂ commuting with projective limits. In the sequel, for a presheaf F on X with
values in A, we write F instead of h‡

X F . Hence we have

F(A) = lim←−
(U−→A)∈CA

F(U) for A ∈ C∧X .

We have thus obtained a functor F : (C∧X )op −→ A which commutes with small
projective limits. In particular, if A −→ B is an epimorphism in C∧X , then
F(B) −→ F(A) is a monomorphism in A (see Exercise 3.4).

Definition 17.3.1. (i) A presheaf F ∈ PSh(X,A) is separated if for any
local isomorphism A −→ U with U ∈ CX and A ∈ C∧X , the morphism
F(U) −→ F(A) is a monomorphism.

(ii) A presheaf F ∈ PSh(X,A) is a sheaf if for any local isomorphism A −→ U
with U ∈ CX and A ∈ C∧X , the morphism F(U) −→ F(A) is an isomor-
phism.
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(iii) We denote by Sh(X,A) the full subcategory of PSh(X,A) consisting of
sheaves on X . We shall simply write Sh(X) instead of Sh(X,Set). We
denote by ι : Sh(X,A) −→ PSh(X,A) the forgetful functor.

Recall that for F ∈ PSh(X,A) and M ∈ A, we have introduced the Set-
valued presheaf Hom A(M, F) ∈ C∧X which satisfies:

HomC∧X (A,Hom A(M, F)) � HomA(M, F(A)) for A ∈ CX .(17.3.1)

Proposition 17.3.2. An A-valued presheaf F is separated (resp. is a sheaf )
if and only if the presheaf of sets Hom A(M, F) is separated (resp. is a sheaf )
for any M ∈ A.

Proof. This follows from (17.3.1). q.e.d.

Proposition 17.3.3. Let F be a separated presheaf (resp. a sheaf ) on X .
Then for any local epimorphism (resp. local isomorphism) A −→ B, the mor-
phism F(B) −→ F(A) is a monomorphism (resp. an isomorphism).

Proof. (i) Let F be a separated presheaf and let A −→ B be a local epimor-
phism. Assume first that B = U ∈ CX . Set S := Im(A −→ U). Then S −→ U
is a local isomorphism. Therefore, F(U) −→ F(S) is a monomorphism, and F
being left exact, F(S) −→ F(A) is a monomorphism.
(ii) In the general case, B � “lim−→”

U−→B

U (here and in the sequel, U ∈ CX ), and

A � A ×B B � “lim−→”
U−→B

A ×B U . If F is a presheaf, we get F(B) � lim←−
U−→B

F(U)

and F(A) � lim←−
U−→B

F(A×B U). If A −→ B is a local epimorphism (resp. isomor-

phism), then so is A ×B U −→ U . If F is a separated presheaf (resp. a sheaf),
then F(U) −→ F(A×B U) is a monomorphism (resp. an isomorphism). Taking
the projective limit with respect to U −→ B, the result follows. q.e.d.

Proposition 17.3.4. (i) Let F be a sheaf and let B −→ A be a local epi-
morphism in C∧X . Then the sequence F(A) −→ F(B) ⇒ F(B ×A B) is
exact.

(ii) Conversely, let F be a presheaf and assume that for any local isomorphism
B −→ U with U ∈ CX , the sequence F(U) −→ F(B) ⇒ F(B×U B) is exact.
Then F is a sheaf.

Proof. (i) Set Z := Im(B −→ A) � Coker(B ×A B ⇒ A). Since F is left exact
on C∧X , the sequence below is exact

F(Z) −→ F(B) ⇒ F(B ×A B) .

Since Z −→ A is a local isomorphism, F(A) −→ F(Z) is an isomorphism.
(ii) For any local isomorphism B −→ U , F(U) −→ F(B) is a monomorphism.
This implies that F is separated. Let B −→ U be a local isomorphism with
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U ∈ CX . Then B −→ B ×U B is a local epimorphism. Since F is separated, the
morphism q : F(B ×U B) −→ F(B) is a monomorphism. The two morphisms
(p1, p2) : F(B) ⇒ F(B ×U B) coincide since q ◦ p1 = q ◦ p2 = idF(B). This
implies F(B) � Ker

(
F(B) ⇒ F(B ×U B)

)
. Hence F(B) � F(U). q.e.d.

Using Definition 16.1.5, we shall give a more intuitive criterion to recognize
sheaves.

Proposition 17.3.5. Assume that CX admits fiber products. A presheaf F is
a sheaf if and only if, for any covering {Ui }i∈I of U , the sequence below is
exact:

F(U) −→ ∏
i∈I

F(Ui ) ⇒
∏

j,k∈I
F(U j ×U Uk) .(17.3.2)

Proof. (i) Set S′ = “
∐

”
i∈I

Ui . Then S′ ×U S′ � “
∐

”
j,k∈I

U j ×U Uk , F(S′) � ∏
i∈I

F(Ui )

and F(S′ ×U S′) � ∏
j,k∈I

F(Ui ×U U j ). Hence (17.3.2) is exact if F is a sheaf.

(ii) Conversely, for any local epimorphism S −→ U , there exists an epimorphism
S′ −→ S with S′ as above. We get the monomorphism

Ker
(
F(S) ⇒ F(S ×U S)

)
� Ker

(
F(S′) ⇒ F(S′ ×U S′)

)
.

Therefore the isomorphism F(U) ∼−→Ker
(
F(S′) ⇒ F(S′ ×U S′)

)
entails the

isomorphism F(U) ∼−→Ker
(
F(S) ⇒ F(S ×U S)

)
(see Exercise 1.7). q.e.d.

Example 17.3.6. Let X f in be a small category CX endowed with the final topol-
ogy (see Example 16.1.9). Then any presheaf on X f in is a sheaf and the nat-
ural functor Sh(X f in,A) −→ PSh(X,A) is an equivalence. Indeed, any local
isomorphism in C∧X f in

is an isomorphism.

Example 17.3.7. Let X be a topological space. By choosing CX = OpX endowed
with the Grothendieck topology given in Example 16.1.7 (i), we regard X as
a site. By Proposition 17.3.5, a presheaf F with values in Set is separated if
and only if it satisfies the property S1 below, and F is a sheaf if and only if
it satisfies the properties S1 and S2 below.

S1 For any open subset U ⊂ X , any open covering U =
⋃

i Ui , any s, t ∈
F(U) satisfying s|Ui = t |Ui for all i , we have s = t .

S2 For any open subset U ⊂ X , any open covering U =
⋃

i Ui , any family
{si ∈ F(Ui )}i∈I satisfying si |Ui j = s j |Ui j for all i, j , there exists s ∈ F(U)
such that s|Ui = si for all i . Here, Ui j = Ui ∩U j .

Roughly speaking, S1 is translated by saying that uniqueness is a local prop-
erty, and S2 by saying that natural patching conditions give existence.
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Let us give some explicit examples.

(a) The presheaf C0
X of C-valued continuous functions on a topological space

X is a sheaf with values in the category Mod(C) of C-vector spaces. The
presheaf U 
→ C0,b

X (U) of continuous bounded functions is not a sheaf in
general, to be bounded being not a local property and axiom S2 is not
satisfied.

(b) Let M ∈ Mod(k). The presheaf of locally constant functions on a topo-
logical space X with values in M is a sheaf, called the constant sheaf with
stalk M and denoted MX . Note that the constant presheaf with stalk M
is not a sheaf in general.

(c) On a real manifold X of class C∞, the presheaf C∞X of complex valued
functions of class C∞ is a sheaf with values in Mod(C). On a complex
manifold X , the presheaf OX of holomorphic functions is a sheaf with
values in Mod(C).

(d) Let X = C, the complex line, denote by z a holomorphic coordinate
and by ∂

∂z the holomorphic derivation. Consider the presheaf F given by
U 
→ O(U)/ ∂

∂zO(U). For U any open disc, F(U) = 0 since the equation
∂
∂z f = g is always solvable. However F(U) �= 0 for a punctured disk
U = {z ∈ X ; 0 < |z − a| < c} for a ∈ X and c > 0. Hence the presheaf F
does not satisfy axiom S1.

17.4 Sheaf Associated with a Presheaf

From now on and until the end of this chapter, we shall assume that the
category A satisfies:⎧⎪⎨⎪⎩

A admits small projective and small inductive limits,
small filtrant inductive limits are exact,
A satisfies the IPC-property (see Definition 3.1.10).

(17.4.1)

For example, the category Set, the category Group of groups, the category
k-Alg of algebras over a commutative ring k, or the category Mod(R) of
modules over a ring R satisfies these conditions.

Let X be a site, let A, A′ ∈ C∧, and let u : A′ −→ A be a morphism. For
a local isomorphism B −→ A, B ×A A′ −→ A′ is a local isomorphism. We thus
obtain a functor

λu : LI A −→ LI A′ , (B −→ A) 
→ (B ×A A′ −→ A′) .(17.4.2)

If moreover u is a local isomorphism, we define by

µu : LI A′ −→ LI A, (B −→ A′) 
→ (B −→ A′ u−→ A)(17.4.3)

the functor associated with u. In such a case, (µu, λu) is clearly a pair of
adjoint functors.
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Recall that we identify PSh(X,A) with the full subcategory of PSh(X̂ ,A)
consisting of presheaves commuting with small projective limits.

Let F ∈ PSh(X̂ ,A) and let A ∈ C∧X . We set

Fb(A) = lim−→
(B−→A)∈LI A

F(B) .(17.4.4)

(Recall that (LI A)op is cofinally small by Lemma 16.2.8.) Equivalently, the
presheaf F defines a functor α : (LI A)op −→ A and

Fb(A) � lim−→α .

For a morphism u : A′ −→ A, we define the morphism Fb(A) −→ Fb(A′) by the
chain of morphisms

Fb(A) = lim−→
(B−→A)∈LI A

F(B) −→ lim−→
(B−→A)∈LI A

F(B ×A A′)

−→ lim−→
(B ′−→A′)∈LI A′

F(B ′) = Fb(A′) .

The second arrow is given by λu . Hence, Fb ∈ PSh(X̂ ,A).

Definition 17.4.1. We denote by ( • )b : PSh(X̂ ,A) −→ PSh(X̂ ,A) the functor
given by (17.4.4).

Note that there is a natural morphism of functors

εb : id −→ ( • )b .(17.4.5)

Lemma 17.4.2. Let F ∈ PSh(X̂ ,A) and let u : A′ −→ A be a local isomor-
phism. Then Fb(A) −→ Fb(A′) is an isomorphism.

Proof. The morphism Fb(A) −→ Fb(A′) is obtained as the composition

lim−→α −→ lim−→α ◦ µop
u ◦ λop

u −→ lim−→α ◦ µop
u .

Since (λop
u , µ

op
u ) is a pair of adjoint functors, the composition is an isomor-

phism by the result of Exercise 2.15. q.e.d.

Lemma 17.4.3. The pair (b, εb) is a projector on PSh(X̂ ,A) (see Defini-
tion 4.1.1). Namely, for any F ∈ PSh(X̂ ,A), εb(Fb) = (εb(F))b in
Hom PSh(X̂ ,A)(Fb, Fbb) and this morphism is an isomorphism.

Proof. (i) The morphism (εb(F))b is obtained by

lim−→ εb(F)(B) : lim−→
(B−→A)∈LI A

F(B) −→ lim−→
(B−→A)∈LI A

Fb(B) .

On the other hand, we have the isomorphism
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lim−→
(B−→A)∈LI A

Fb(B) ∼−→ lim−→
(B−→A)∈LI A

lim−→
(B ′−→B)∈LIB

F(B ′) .(17.4.6)

Hence, applying Corollary 2.3.4 to θ = idLI A : LI A −→ LI A, the right hand
side of (17.4.6) is isomorphic to lim−→

(B ′−→A)∈LI A

F(B ′). This shows that (εb(F))b

is an isomorphism.

(ii) The morphism εb(Fb)(A) : Fb(A) −→ Fbb(A) is obtained as the composi-
tion

Fb(A) ∼−→ lim−→
(B−→A)∈LI A

Fb(A) −→ lim−→
(B−→A)∈LI A

Fb(B) .

This morphism is an isomorphism by Lemma 17.4.2.
Hence, (b, εb) is a projector and εb(Fb) = (εb(F))b by Lemma 4.1.2. q.e.d.

In the proof of the following proposition, we need the assumption that A
satisfies the IPC property.

Proposition 17.4.4. Let F ∈ PSh(X̂ ,A). If F commutes with small projec-
tive limits, then so does Fb ∈ PSh(X̂ ,A).

Proof. It is enough to check that Fb commutes with small products and with
fiber products.

(i) Fb commutes with small products. Let {Ai }i∈I be a small family of objects
in (CX )∧ and set A := “

∐
”

i∈I
Ai . We shall show the isomorphism

Fb(A) � ∏
i∈I

Fb(Ai ) .

Set K =
∏
i∈I

LI Ai . Then K op is cofinally small and filtrant. Let ξ : K −→ LI A

be the functor

K � {(Bi −→ Ai )}i∈I 
→
(
“
∐

”
i∈I

Bi −→ A
) ∈ LI A .(17.4.7)

Since an inductive limit of local isomorphisms is a local isomorphism by Propo-
sition 16.3.4, the functor ξ is well-defined.

The functor ξ has a right adjoint, namely the functor

LI A � C 
→ {C ×A Ai }i∈I ∈ K .

By Lemma 3.3.10, ξ is co-cofinal. We get the isomorphisms (using the fact
that A satisfies the IPC property):∏

i
Fb(Ai ) � ∏

i
lim−→

(Bi−→Ai )∈LI Ai

F(Bi ) � lim−→{(Bi−→Ai )}i∈I∈K

∏
i

F(Bi )

� lim−→{(Bi−→Ai )}i∈I∈K

F(“
∐

”
i

Bi ) � lim−→
(B−→A)∈LI A

F(B) � Fb(A) .
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(ii) Fb commutes with fiber products. Let A
u−→ B and A

v−→ C be morphisms
in (CX )∧. We shall show the isomorphism

Fb(B “
⊔

”
A

C) ∼−→ Fb(B)×Fb(A) Fb(C) .

Consider the category E whose objects are the commutative diagrams

B ′

β

��

A′u′��

α

��

v′ �� C ′

γ

��
B A

u�� v �� C

(17.4.8)

with α, β, γ local isomorphisms. The morphisms in E are the natural ones. Set
D = B “

⊔
”

A
C . For e = A, B, C, D, we have functors pe : E −→ LIe. Here, pD

associates to the object (17.4.8) the morphism B ′ “
⊔

”
A′

C ′ −→ B “
⊔

”
A

C , which
is a local isomorphism by Proposition 16.3.4.

Set I = (LIB)op, J = (LIC)op and K = (LI A)op. Then I, J and K are

cofinally small and filtrant. The morphisms u and v induce functors I
ϕ−→ K

ψ←−
J , ϕ(B ′ −→ B) = B ′ ×B A and ψ(C ′ −→ C) = C ′ ×C A. Then Eop is equivalent
to the category of {(i, j, k, ξ, η)} with i ∈ I , j ∈ J , k ∈ K , ξ : ϕ(i) −→ k,
η : ψ( j) −→ k. Hence Eop is equivalent to the category

M [J −→ K ←− M [I
ϕ−→ K

id←− K ]] .

Applying Proposition 3.4.5, the category Eop is cofinally small and filtrant, and
the three functors from Eop to I, J and K are cofinal. The functor pD : E −→
LID admits a right adjoint

LID � (D′ −→ D) 
→ (A ×D D′, B ×D D′, C ×D D′) ∈ E .

Hence, pop
D : Eop −→ LIop

D is cofinal by Lemma 3.3.10. Therefore,

Fb(B “
⊔

”
A

C) � lim−→
x∈E

F(pD(x)) � lim−→
x∈E

F
(

pB(x) “
⊔

”
pA(x)

pC(x)
)

� lim−→
x∈E

F(pB(x))×F(pA(x))F(pC(x))

� (
lim−→
x∈E

F(pB(x))
)×lim−→

x∈E
F(pA(x))

(
lim−→
x∈E

F(pC(x))
)

� Fb(B)×Fb(A)Fb(C) .

Here, the third isomorphism follows from the fact that the functor F is left
exact and the fourth isomorphism follows from the fact that filtrant inductive
limits are exact in A. q.e.d.

Definition 17.4.5. We define the functor

( • )a : PSh(X,A) � F 
→ hX ∗
(
(h‡

X F)b
) ∈ PSh(X,A) .
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Hence, for F ∈ PSh(X,A) and U ∈ CX , we have

Fa(U) � lim−→
A∈LIU

F(A) .

Note that this definition agrees with (16.3.1) when A = Set. Proposi-
tion 17.4.4 together with Proposition 2.7.1 implies

(h‡
X F)b � h‡

X (Fa) .(17.4.9)

Hence, we have

Fa(A) � lim−→
(B−→A)∈LI A

F(B) for any A ∈ C∧X .(17.4.10)

The morphism of functors (17.4.5) gives rise to the morphism of functors

ε : idPSh(X,A) −→ ( • )a .(17.4.11)

Lemma 17.4.6. Let F ∈ PSh(X,A).

(i) If F is separated, then F −→ Fa is a monomorphism.
(ii) If F is a sheaf, then F −→ Fa is an isomorphism.

Proof. (i) For any local isomorphism A −→ U with U ∈ CX , F(U) −→ F(A) is
a monomorphism by the definition. Since LIU is cofiltrant, F(U) −→ Fa(U)
is a monomorphism.
(ii) For any local isomorphism A −→ U , F(U) −→ F(A) is an isomorphism.
Hence F(U) −→ Fa(U) is an isomorphism. q.e.d.

Theorem 17.4.7. Let F ∈ PSh(X,A).

(i) We have (h‡
X F)b � h‡

X (Fa), and Fa ∈ Sh(X,A), that is, Fa is a sheaf.
(ii) (a, ε) is a projector, namely ε(Fa) = ε(F)a in Hom PSh(X,A)(Fa, Faa)

and this morphism is an isomorphism.
(iii) The functor ( • )a : PSh(X,A) −→ Sh(X,A) is left adjoint to the functor

ι : Sh(X,A) −→ PSh(X,A). In other words, if F ∈ PSh(X,A) and G ∈
Sh(X,A), the morphism F −→ Fa induces the isomorphism:

(17.4.12) Hom Sh(X,A)(Fa, G) ∼−→Hom PSh(X,A)(F, G) .

(iv) The functor ( • )a : PSh(X,A) −→ Sh(X,A) is exact.

Proof. (i) The first statement has already been obtained in (17.4.9). The sec-
ond statement follows from Lemma 17.4.2.
(ii) follows from Lemma 17.4.3.
(iii) By (i) and Lemma 17.4.6, F ∈ PSh(X,A) is a sheaf if and only if F −→ Fa

is an isomorphism. Hence, (iii) follows from Proposition 4.1.3.
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(iv) The functor PSh(X,A) � F 
→ F(B) ∈ A is left exact for B ∈ (CX )∧. Since
filtrant inductive limits are exact in A, F 
→ Fa(U) � lim−→

A∈LIU

F(A) is left exact

for any U ∈ CX . This implies that the functor ( • )a : PSh(X,A) −→ PSh(X,A)
is left exact. Since this functor admits a right adjoint, it is right exact. q.e.d.

We shall give a converse statement to Lemma 17.4.6.

Corollary 17.4.8. Let F ∈ PSh(X,A). Then

(i) F is separated if and only if F −→ Fa is a monomorphism,
(ii) F is a sheaf if and only if F −→ Fa is an isomorphism.

Proof. (i) Assume that F −→ Fa is a monomorphism. Let A −→ U be a local
isomorphism. Since the composition F(U) −→ Fa(U) −→ Fa(A) is a monomor-
phism and is equal to the composition F(U) −→ F(A) −→ Fa(A), we conclude
that F(U) −→ F(A) is a monomorphism. The converse statement follows from
Lemma 17.4.6 (i).
(ii) Assume that F −→ Fa is an isomorphism. Then Fa is a sheaf by Theo-
rem 17.4.7 (i). The converse statement follows from Lemma 17.4.6 (ii). q.e.d.

Theorem 17.4.9. (i) The category Sh(X,A) admits small projective limits
and the functor ι : Sh(X,A) −→ PSh(X,A) commutes with such limits.

(ii) The category Sh(X,A) admits small inductive limits and the functor
a : PSh(X,A) −→ Sh(X,A) commutes with such limits. Moreover, the
inductive limit of an inductive system {Fi }i∈I in Sh(X,A) is the sheaf
associated with the inductive limit in PSh(X,A).

(iii) Filtrant inductive limits in Sh(X,A) are exact.
(iv) Assume that A has the following property:{

any morphism u is strict, i.e., the natural morphism
Coim u −→ Im u is an isomorphism (see Definition 5.1.4).(17.4.13)

Then Sh(X,A) satisfies (17.4.13). In particular if A is abelian, then
Sh(X,A) is abelian.

Proof. (i) It is enough to show that, for a small projective system {Fi }i∈I in
Sh(X,A), its projective limit lim←−

i

Fi in PSh(X,A) is a sheaf. For A ∈ C∧X , we

have (lim←−
i

Fi )(A) � lim←−
i

(Fi (A)). Let B −→ A be a local isomorphism. The family

of isomorphisms
Fi (A) ∼−→ Fi (B)

defines a similar isomorphism with Fi replaced with lim←−
i

Fi .

(ii) Since the functor a : PSh(X,A) −→ Sh(X,A) admits a right adjoint, it
commutes with small inductive limits. The other statements follow.
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(iii) Filtrant inductive limits are exact in PSh(X,A) and the functor ( • )a is
exact.
(iv) Let u : F −→ G be a morphism in Sh(X,A). Let us prove that its im-
age and coimage are isomorphic. Let L and K be the presheaves defined
by L(U) = Im(F(U) −→ G(U)) = Ker

(
G(U) ⇒ G(U) �F(U) G(U)

)
and

K (U) = Coim(F(U) −→ G(U)) = Coker
(
F(U)×G(U) F(U) ⇒ F(U)

)
. Then L

and K are the image and coimage of u in PSh(X,A). Since K (U) −→ L(U) is
an isomorphism for any U ∈ CX by the hypothesis, K −→ L is an isomorphism
of presheaves. Therefore, it is enough to remark that

La � Im(F −→ G) = Ker
(
G ⇒ G �F G

)
in the category Sh(X,A),

K a � Coim(F −→ G) = Coker(F ×G F ⇒ F) in the category Sh(X,A),

which follow from (i), (ii) and the exactness of the functor a . q.e.d.

Remark that the functor ι : Sh(X,A) −→ PSh(X,A) does not commute with
inductive limits in general.

17.5 Direct and Inverse Images

Let f : X −→ Y be a morphism of sites. Recall that the direct image functor
for presheaves f∗ : PSh(X,A) −→ PSh(Y,A) satisfies

( f∗F)(A) = F( f̂ t(A)) for A ∈ C∧Y and F ∈ PSh(X,A)

by (17.1.6).

Proposition 17.5.1. Let f : X −→ Y be a morphism of sites and let F ∈
Sh(X,A). Then f∗F ∈ Sh(Y,A).

The functor f∗ : Sh(X,A) −→ Sh(Y,A) is called the direct image functor for
sheaves.

Proof. Let A −→ B be a local isomorphism in C∧Y . Since f is a morphism of
sites, f̂ t(A) −→ f̂ t(B) is a local isomorphism and F being a sheaf, F( f̂ t(A)) �
F( f̂ t(B)). We get the chain of isomorphisms

( f∗F)(B) � F( f̂ t(B)) ∼−→ F( f̂ t(A)) � ( f∗F)(A) .

q.e.d.

The functor f † : PSh(Y,A) −→ PSh(X,A) is defined in Sect. 17.1. Recall
that

( f †G)(U) � lim−→
(U−→ f t (V ))∈(CY )V

G(V ) for G ∈ PSh(Y,A), U ∈ CX .

The inverse image functor for sheaves f −1 : Sh(Y,A) −→ Sh(X,A) is defined
by setting for G ∈ Sh(Y,A)

f −1G = ( f †G)a .
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Theorem 17.5.2. Let f : X −→ Y be a morphism of sites.

(i) The functor f −1 : Sh(Y,A) −→ Sh(X,A) is left adjoint to the functor
f∗. In other words, we have an isomorphism, functorial with respect to
F ∈ Sh(X,A) and G ∈ Sh(Y,A):

Hom Sh(X,A)( f −1G, F) � Hom Sh(Y,A)(G, f∗F) .

(ii) The functor f∗ is left exact and commutes with small projective limits.
(iii) The functor f −1 is right exact and commutes with small inductive limits.
(iv) Assume that f : X −→ Y is left exact. Then the functor f −1 is exact.

Proof. (i) The functor f † : PSh(Y,A) −→ PSh(X,A) is left adjoint to f∗ by
Proposition 2.3.3. Hence we have the chain of isomorphisms

Hom Sh(Y,A)(G, f∗F) � Hom PSh(Y,A)(G, f∗F)

� Hom PSh(X,A)( f †G, F)

� Hom Sh(X,A)(( f †G)a, F)

= Hom Sh(X,A)( f −1G, F) .

(ii)–(iii) are obvious by the adjunction property.
(iv) The functor f † is left exact by Theorem 3.3.18. Since the functor ( • )a is
exact, the result follows. q.e.d.

Consider morphisms of sites X
f−→ Y

g−→ Z .

Proposition 17.5.3. There are natural isomorphisms of functors{
g∗ ◦ f∗ � (g ◦ f )∗ ,

f −1 ◦ g−1 � (g ◦ f )−1.

Proof. The first isomorphism follows from Proposition 17.5.1. The second one
is deduced by adjunction. q.e.d.

17.6 Restriction and Extension of Sheaves

Let A ∈ C∧X . We follow the notations and the results in Proposition 17.1.9. In
particular, A is regarded as a presite and the forgetful functor (jA−→X )t : CA :=
(CX )A −→ CX gives a morphism of presites jA−→X : X −→ A.

Definition 17.6.1. We endow the presite A with the following topology: a
morphism C −→ B in C∧A is a local epimorphism if and only if ĵA−→X

t(C) −→
ĵA−→X

t(B) is a local epimorphism in C∧X .

It is easily checked that we obtain a Grothendieck topology on CA. The mor-
phism of presites jA−→X : X −→ A is weakly left exact by Lemma 17.2.5. It is a
morphism of sites by Proposition 17.2.6.
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Proposition 17.6.2. Let G ∈ Sh(A,A). Then j‡A−→X G ∈ Sh(X,A). In
other words, the presheaf j‡A−→X G is a sheaf. Moreover, j‡A−→X : Sh(A,A) −→
Sh(X,A) is a right adjoint to jA−→X ∗.

Proof. Let C −→ B be a local isomorphism in C∧X . There is a chain of isomor-
phisms

j‡A−→X G(B) � G(B × A) ∼−→G(C × A) � j‡A−→X G(C) .

The last assertion follows from its counterpart for presheaves. q.e.d.

Proposition 17.6.3. Assume that A is an additive category which satisfies
(17.4.1). Let f : X −→ Y be a weakly left exact morphism of sites. Then
f −1 : Sh(Y,A) −→ Sh(X,A) is exact.

In particular, for A ∈ (CX )∧, the functor j−1
A−→X : Sh(A,A) −→ Sh(X,A) is

exact.

Proof. (i) First, we treat the case of jA−→X . Since small coproducts are exact
in A by the assumption, the functor j†A−→X is exact by (17.1.11). Since ( • )a is
exact, j−1

A−→X is exact.

(ii) Set A = f̂ t(ptY ) ∈ C∧X . Then f factors as X
jA−→X−−−→ A

g−→ Y . Since g is left
exact, the functor g−1 is exact by Theorem 17.5.2 (iv) and j−1

A−→X is exact by
(i). Hence, f −1 � j−1

A−→X ◦ g−1 is exact. q.e.d.

Remark 17.6.4. In Proposition 17.6.3, we have assumed that A is additive
since we need the condition that small coproducts are exact.

Example 17.6.5. Let X be a topological space identified with the site associ-
ated with OpX and let iU : U ↪→ X be an open embedding. The map iU defines
a morphism of sites, and iU

t : OpX −→ OpU is given by iU
t(V ) = V ∩ U . On

the other hand, we have the morphism of sites jU−→X : X −→ U . There are
isomorphisms of functors

jU−→X ∗ � i−1
U and j‡U−→X � iU ∗ .

The functor j−1
U−→X is isomorphic to a functor usually denoted by iU ! in the

literature.

Hence, we have two pairs of adjoint functors (j−1
A−→X , jA−→X ∗), (jA−→X ∗, j

‡
A−→X ):

Sh(A,A)
j−1

A−→X ��

j
‡
A−→X

�� Sh(X,A) .jA−→X ∗��(17.6.1)

Proposition 17.6.6. The functor jA−→X ∗ : Sh(X,A) −→ Sh(A,A) is exact.
Moreover it commutes with small inductive limits and small projective limits.
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Proof. The functor jA−→X ∗ has both a right and a left adjoint. q.e.d.

Now consider a morphism in C∧X

u : A1 −→ A2 .

The functor u : CA1 −→ CA2 given by (U −→ A1) 
→ (U −→ A1 −→ A2) defines a
morphism of sites by

ju : A2 −→ A1 .

Next consider morphisms u : A1 −→ A2 and v : A2 −→ A3 in C∧X . Then the

composition A3
jv−→ A2

ju−→ A1 is a morphism of sites, and we have

jv◦u � ju ◦ jv .

We have the isomorphisms:

(i) jv◦u∗ � ju∗ ◦ jv∗ : Sh(A3,A) −→ Sh(A1,A),
(ii) j−1

v◦u � j−1
v ◦ j−1

u : Sh(A1,A) −→ Sh(A3,A),
(iii) j‡v◦u � j‡v ◦ j‡u : Sh(A1,A) −→ Sh(A3,A).

Let f : X −→ Y be a morphism of sites and let B ∈ C∧Y . Set A := f̂ t(B). We
get a diagram of sites:

X

f

��

jA−→X �� A

fB

��
Y

jB−→Y �� B .

(17.6.2)

This diagram of sites clearly commutes. We deduce the isomorphisms of func-
tors:

(i) f −1 ◦ j−1
B−→Y � j−1

A−→X ◦ f −1
B ,

(ii) jB−→Y ∗ ◦ f∗ � fB∗ ◦ jA−→X ∗.

Proposition 17.6.7. Let f : X −→ Y be a left exact morphism of sites. Then,
using the notations in diagram (17.6.2), we have the isomorphisms of functors

(i) j‡B−→Y ◦ fB∗ � f∗ ◦ j‡A−→X ,
(ii) jA−→X ∗ ◦ f −1 � f −1

B ◦ jB−→Y ∗.

Proof. (i) Let G ∈ Sh(A,A). Then for any V ∈ CY , the hypothesis implies the
isomorphism f̂ t(V × B) � f t(V )× f̂ t(B). Hence,

(j‡B−→Y ◦ fB∗G)(V ) � fB∗(G)(V × B −→ B)
� G

(
f̂ t(V × B) −→ f̂ t(B)

)
� G

(
f t(V )× A −→ A

)
,
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and

( f∗ ◦ j‡A−→X G)(V ) � (j‡A−→X G)( f t(V ))
� G( f t(V )× A −→ A) .

(ii) follows by adjunction. q.e.d.

Recall that ptX denotes the terminal object of C∧X .

Proposition 17.6.8. Let A ∈ C∧X and assume that A −→ ptX is a local iso-
morphism. Then the functor jA−→X ∗ : Sh(X,A) −→ Sh(A,A) is an equivalence
of categories.

Proof. (i) Let us first show that G −→ j‡A−→X ◦ jA−→X ∗G is an isomorphism for
any G ∈ Sh(X,A). For any U ∈ CX , we have

j‡A−→X ◦ jA−→X ∗G(U) � jA−→X ∗G(U × A −→ A)
� G(U × A) .

Since p : U×A −→ U is a local isomorphism by the hypothesis, G(U) ∼−→G(U×
A).
(ii) Let us show that jA−→X ∗ ◦ j‡A−→X F −→ F is an isomorphism for any F ∈
Sh(A,A). For any u : V −→ A in CA, we have

(jA−→X ∗ ◦ j‡A−→X F)(V −→ A) � (j‡A−→X F)(V ) � F(V × A −→ A) .

The morphism s = (idV , u) : (V −→ A) −→ (V × A −→ A) is a local isomorphism
by the hypothesis. Hence, F(V × A −→ A) −→ F(V −→ A) is an isomorphism.
q.e.d.

Corollary 17.6.9. Let A ∈ C∧X and assume that A −→ ptX is a local epimor-
phism. Then the functor jA−→X ∗ : Sh(X,A) −→ Sh(A,A) is conservative and
faithful.

Proof. By Proposition 2.2.3, it is enough to prove that jA−→X ∗ is conservative.
We decompose the morphism A −→ ptX as A

u−→ B
v−→ ptX , with B =

Im(A −→ ptX ). Then v is a local isomorphism, and by Proposition 17.6.8
it remains to show that the epimorphism u induces a conservative functor
ju∗ : Sh(B,A) −→ Sh(A,A).

Let ϕ : F −→ G be a morphism in Sh(B,A), and assume that ju∗ϕ : ju∗F −→
ju∗G is an isomorphism. Let (U −→ B) ∈ CB . Since u : A −→ B is an epi-
morphism and U ∈ CX , the morphism U −→ B factorizes as U −→ A

u−→ B.
Therefore,

F(U −→ B) � (ju∗F)(U −→ A) ∼−→(ju∗G)(U −→ A) � G(U −→ B) .

q.e.d.
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Definition 17.6.10. Let X be a site, let A ∈ C∧X and let F ∈ Sh(X,A). We
set

(i) FA = j−1
A−→X jA−→X ∗(F),

(ii) ΓA(F) = j‡A−→X jA−→X ∗(F).

These two functors ( • )A and ΓA( • ) are functors from Sh(X,A) to itself,
and

(
( • )A,ΓA( • )

)
is a pair of adjoint functors. When A is additive the functor

( • )A is exact by Propositions 17.6.3 and 17.6.6.
Note that the adjunction morphisms j−1

A−→X ◦ jA−→X ∗ −→ idSh(X,A) and
idSh(X,A) −→ j‡A−→X ◦ jA−→X ∗ give morphisms

FA −→ F −→ ΓA(F) .(17.6.3)

Moreover, if A
u−→ B is a morphism in C∧X , the adjunction morphisms j−1

u ju∗ −→
idSh(B,A) and idSh(B,A) −→ j‡u ju∗ give the natural morphisms

FA −→ FB, ΓB(F) −→ ΓA(F) .(17.6.4)

Applying Proposition 17.1.9 and Proposition 17.6.2, we obtain:

Lemma 17.6.11. (i) The sheaf FA is the sheaf associated with the presheaf
U 
→ F(U)

∐
A(U).

(ii) We have ΓA(F)(B) � F(A × B) for B ∈ C∧X .

Remark 17.6.12. Recall that Pt is endowed with the final topology (see Ex-
ample 16.1.9). Let us denote by c the unique object of Pt. There is a natural
equivalence

Sh(Pt,A) ∼−→A, F 
→ F(c) .

In the sequel, we shall identify these two categories.

Notations 17.6.13. (i) Let X be a site and let A ∈ C∧X . For M ∈ A, let us
denote by MA the sheaf associated with the constant presheaf CX � U 
→ M .
We define the object MX A of Sh(X,A) by j−1

A−→X (MA). (See Exercise 17.11.)

(ii) For A ∈ C∧X , we set

• |A := jA−→X ∗ .(17.6.5)

In other words, we shall often write F |A instead of jA−→X ∗F for F ∈ Sh(X,A).

(iii) We introduce the functor

Γ(X ; • ) : Sh(X,A) −→ A, F 
→ Γ(X ; F) := F(ptX ) = lim←−
U∈CX

F(U) .

For A ∈ C∧X and F ∈ Sh(X,A), we set
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Γ(A; F) = Γ(A; F |A) .

Hence,

Γ(A; F) � lim←−
(U−→A)∈CA

F(U) � F(A) .

With these notations, we get for F ∈ Sh(X,A):

Γ(X ; F) = F(ptX ) = Γ(ptX ; F) = lim←−
U∈CX

F(U) .

Proposition 17.6.14. Let X be a site, let A, B ∈ C∧X and let F ∈ Sh(X,A).
There are natural isomorphisms

(FA)B � FA×B ,(17.6.6)
ΓB(ΓA(F)) � ΓA×B(F) ,(17.6.7)
Γ(X ; ΓA(F)) � Γ(A; F) .(17.6.8)

Proof. (i) Let us first prove (17.6.7). For U ∈ CX , we have

ΓB(ΓA(F))(U) � ΓA(F)(B ×U) � F(A × B ×U)
� ΓA×B(F)(U) .

(ii) (17.6.6) follows from (17.6.7) by adjunction.
(iii) We have the isomorphisms

Γ(X ; ΓA(F)) � F(A × ptX ) � F(A) .

q.e.d.

17.7 Internal Hom

Recall that, for F , G ∈ PSh(X,A), we have defined Hom PSh(X,A)(F, G) ∈
PSh(X) which satisfies (see Lemma 17.1.11)

Hom PSh(X,A)(F, G)(A) � Hom PSh(A,A)(jA−→X ∗F , jA−→X ∗G) for A ∈ C∧X .

Proposition 17.7.1. (i) Let F, G be objects of Sh(X,A). Then the presheaf
Hom PSh(X,A)(F, G) is a sheaf on X .

(ii) Let F ∈ PSh(X,A) and let G ∈ Sh(X,A). The morphism F −→ Fa

gives the isomorphism Hom PSh(X,A)(Fa, G) ∼−→Hom PSh(X,A)(F, G). In
particular, this last presheaf is a sheaf.
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Proof. (i) For a local isomorphism A −→ U in C∧X with U ∈ CX , Sh(U,A) −→
Sh(A,A) is an equivalence by Proposition 17.6.8. Therefore, we have

Hom PSh(X,A)(F, G)(U) = Hom Sh(U,A)(jU−→X ∗F, jU−→X ∗G)

� Hom Sh(A,A)(jA−→X ∗F, jA−→X ∗G)

� Hom PSh(X,A)(F, G)(A) .

(ii) Let U ∈ CX . Then

Hom PSh(X,A)(F, G)(U) = Hom PSh(X,A)(jU−→X ∗F, jU−→X ∗G)

� Hom PSh(X,A)(F, j‡U−→X jU−→X ∗G) .

Since j‡U−→X jU−→X ∗G is a sheaf by Proposition 17.6.2, we also have

Hom PSh(X,A)(F, j‡U−→X jU−→X ∗G) � Hom Sh(X,A)(Fa, j‡U−→X jU−→X ∗G)

� Hom Sh(A,A)(jU−→X ∗Fa, jU−→X ∗G)

� Hom PSh(X,A)(Fa, G)(U) .

q.e.d.

Notation 17.7.2. For F, G in Sh(X,A), we shall write Hom Sh(X,A)(F, G) in-
stead of Hom PSh(X,A)(F, G).

Proposition 17.7.3. Let f : X −→ Y be a left exact morphism of sites, let
F ∈ Sh(X,A) and let G ∈ Sh(Y,A). There is a natural isomorphism in Sh(Y ):

f∗Hom Sh(X,A)( f −1G, F) � Hom Sh(Y,A)(G, f∗F) .(17.7.1)

Proof. Let V ∈ CY and set U = f t(V ). Denote by f t
V : CU −→ CV the functor

induced by f t . We have the chain of isomorphisms:

( f∗Hom Sh(X,A)( f −1G, F))(V ) � Hom Sh(X,A)( f −1G, F)(U)

� Hom Sh(U,A)(jU−→X ∗ f −1G, jU−→X ∗F)

� Hom Sh(U,A)( f −1
V jV−→Y ∗G, jU−→X ∗F)

� Hom Sh(V,A)(jV−→Y ∗G, fV ∗jU−→X ∗F)

� Hom Sh(V,A)(jV−→Y ∗G, jV−→Y ∗ f∗F)

� Hom Sh(Y,A)(G, f∗F)(V ) .

The third isomorphism follows from Proposition 17.6.7. These isomorphisms
being functorial with respect to V , the isomorphism (17.7.1) follows. q.e.d.
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Exercises

In these exercises, A is a category satisfying (17.4.1).

Exercise 17.1. Let X be a small presite and let F , G, H ∈ PSh(X) = C∧X
and U ∈ CX . Prove the isomorphisms

Hom (F, G)(U) � HomC∧(F ×U, G) ,

Hom (F × H, G) � Hom (F,Hom (H, G)) ,

HomC∧(F × H, G) � HomC∧(F,Hom (H, G)) .

Exercise 17.2. Let X be a site and F ∈ PSh(X,A). Assume that F |A is a
sheaf on A for some local epimorphism A −→ ptX . Prove that F is a sheaf.

Exercise 17.3. Let X be a site and let A ∈ C∧X . Assume that U × A is repre-
sentable in CX for any U ∈ CX . Denote by i A : A −→ X the morphism of presites
given by CX � U 
→ U × A ∈ CA.
(i) Prove that i A is a morphism of sites.
(ii) Prove the isomorphisms of functors j‡A−→X � i A∗ and jA−→X ∗ � i−1

A .

Exercise 17.4. Let X be a site and let X f in be the site CX endowed with the
final topology. Recall that Sh(X f in,A) ∼−→PSh(X,A) (Example 17.3.6). De-
note by f : X −→ X f in the natural morphism of sites. Prove that the following
diagrams quasi-commute:

Sh(X,A)

f∗
��

ι

����
���

���
���

Sh(X f in,A) ∼ �� PSh(X,A),

Sh(X f in,A)

f −1

��

∼ �� PSh(X,A)

a
""(((

(((
(((

((

Sh(X,A).

Exercise 17.5. (i) Let f : X −→ Y be a morphism of sites and let G ∈
PSh(Y,A). Prove that f −1(Ga) � ( f †G)a .
(ii) Let X be a site, A ∈ C∧X and let G ∈ PSh(X,A). Prove that (jA−→X ∗G)a �
jA−→X ∗(Ga).

Exercise 17.6. Let C be a small category and let F ∈ PSh(C). Let us say
that a morphism u : A −→ B in C∧ is an F-epimorphism if for any morphism
U −→ B with U ∈ C, we have F(U) ∼−→ F

(
Im(A ×B U −→ U)

)
.

(i) Prove that the family of F-epimorphisms defines a topology on C. Let us
call it the F-topology.
(ii) Prove that a morphism u : A −→ B in C∧ is a local isomorphism with
respect to the F-topology if and only if it satisfies:

(a) F(U) ∼−→ F(A ×B U) for any U −→ B with U ∈ C,
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(b) for any pair of arrows U ⇒ A in C∧ such that U ∈ C and the two
compositions U ⇒ A −→ B coincide, there is a natural isomorphism
F(U) ∼−→ F(Ker(U ⇒ A)).

(iii) Prove that F is a sheaf for the F-topology.
(iv) Prove that the F-topology is the strongest topology with respect to which
F is a sheaf.
(v) Let F be a family of presheaves on C. Prove that there exists a strongest
topology for which all presheaves in F are sheaves.
(vi) Let T be a Grothendieck topology on C. Prove that T is the strongest
among the topologies T ′ such that all sheaves with respect to T are sheaves
with respect to T ′.

When F is the set of all representable functors, the topology in (v) is called
the canonical Grothendieck topology.

Exercise 17.7. Let X be a site. Prove that Sh(X,A) is equivalent to the full
subcategory of Fct(Sh(X)op,A) consisting of objects which commute with
small projective limits.

Exercise 17.8. Let f : X −→ Y be a morphism of sites and assume that
f∗ : Sh(X) −→ Sh(Y ) is an equivalence of categories. Prove that the functors
f∗ : Sh(X,A) −→ Sh(Y,A) and f −1 : Sh(Y,A) −→ Sh(X,A) are equivalences
of categories.

Exercise 17.9. Let X be a site and let A ∈ C∧X . We consider a local epi-
morphism u : B −→ A and F ∈ Sh(A,A). Let p1 and p2 be the projections
B×A B ⇒ B and let v := u ◦ p1 = u ◦ p2. For i = 1, 2, consider the morphisms

j‡u ju∗F −→ j‡u j‡pi
jpi ∗ ju∗F � j‡v jv∗F .

Prove that the sequence of sheaves below is exact:

F −→ j‡uju∗F ⇒ j‡vjv∗F.

Exercise 17.10. Consider two sites X and Y and a morphism of presites
f : X −→ Y . Assume that for any F ∈ Sh(X), the presheaf f∗F on Y is a sheaf.
Prove that f is a morphism of sites.

Exercise 17.11. We follow the Notations 17.6.13. Let A ∈ C∧X , M ∈ A and
F ∈ Sh(X,A). Prove the isomorphism

Hom Sh(X,A)(MX A, F) � HomA(M, F(A)) .(17.7.2)

Exercise 17.12. Let X be a site.
(i) Prove that the terminal object ptX̂ of PSh(X) is a sheaf.
(ii) Let ∅X̂ be the initial object of C∧X . Prove that the associated sheaf (∅X̂ )a

is an initial object in Sh(X) and that (∅X̂ )a(U) � {pt} if ∅X̂ −→ U is a local
epimorphism and (∅X̂ )a(U) � ∅ otherwise.



Exercises to Chap. 17 433

Exercise 17.13. Denote by Top the big category of topological spaces and
continuous maps. Let X be a topological space. Prove that the category Sh(X)
is equivalent to the full subcategory of TopX consisting of pairs (Y, p) such
that p : Y −→ X is a local homeomorphism.

Exercise 17.14. Let ϕ : C −→ C ′ be a functor of small categories. Prove that ϕ

is weakly left exact if and only if ϕ̂ : C∧ −→ C ′∧ commutes with fiber products.
(Hint: use Exercise 3.5.)

Exercise 17.15. Let A and B be categories satisfying (17.4.1), and θ : A −→ B
a functor which commutes with small projective limits and small inductive
limits.
(i) Let X be a site. Prove that θ induces a functor θX : Sh(X,A) −→ Sh(X,B)
and that θX commutes with small projective limits and small inductive limits.
(ii) Let f : X −→ Y be a morphism of sites. Prove that the following diagrams
quasi-commute:

Sh(X,A)

f∗
��

θX �� Sh(X,B)

f∗
��

Sh(Y,A)
θY �� Sh(Y,B),

Sh(Y,A)

f −1

��

θY �� Sh(Y,B)

f −1

��
Sh(X,A)

θX �� Sh(X,B) .
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Abelian Sheaves

In this chapter we introduce sheaves of R-modules, where R is a sheaf of rings
on X . We prove that the category Mod(R) of R-modules is a Grothendieck
category and we construct in this framework the functors of internal hom,
tensor product, inverse image and direct image.

Then we prove that Mod(R) has enough flat objects, and we derive the
previous functors in the unbounded derived categories by applying the tools
obtained in Chap. 14. In particular, we prove adjunction formulas for the
derived functors of the internal hom and the tensor product as well as for the
direct and inverse image functors.

For the sake of simplicity, when treating the derived categories we mainly
consider the case where R is commutative, although many results extend to
the non commutative case.

We end this chapter by constructing complexes associated to a local epi-
morphism (these complexes are classically known as “Čech complexes”) and
by proving in this framework the classical “Leray’s acyclic covering theorem”.

Such results are (almost) classical for bounded derived categories. The
unbounded case was first considered by Spaltenstein [65].

We follow the notations introduced in Chap. 17.

18.1 R-modules

As in the previous chapters, X denotes a site and CX the underlying category.
As usual k denotes a commutative unital ring.

A sheaf of k-algebras on X is an object R ∈ Sh(X) such that for each
U ∈ CX , R(U) is a k-algebra and for any morphism U −→ V in CX , the map
R(V ) −→ R(U) is a k-algebra morphism. The notion of a morphism of sheaves
of k-algebras is naturally defined. Hence, a sheaf of k-algebras is nothing but a
sheaf with values in the category k-Alg of k-algebras. A sheaf of Z-algebras is
simply called a sheaf of rings. A sheaf of k-algebras is also called a kX -algebra.
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Example 18.1.1. The constant sheaf kX on a site X is a sheaf of k-algebras.

If R is a kX -algebra, the opposite kX -algebra Rop is defined by setting for
U ∈ CX

Rop(U) := R(U)op .

Let R be a kX -algebra. A presheaf F of R-modules is a presheaf F such
that for each U ∈ CX , F(U) has a structure of a left R(U)-module and for
any morphism U −→ V in CX , the morphism F(V ) −→ F(U) commutes with
the action of R. A morphism ϕ : F −→ G of presheaves of R-modules is a
morphism of presheaves such that for each U ∈ CX , ϕ(U) : F(U) −→ G(U) is
R(U)-linear.

A presheaf of R-modules which is a sheaf is called a sheaf of R-modules,
or simply, an R-module. A right R-module is a left Rop-module.

If O is a sheaf of commutative rings on X , an O-algebra is a sheaf of
rings R with a morphism of sheaves of rings O −→ R such that the image of
O(U) −→ R(U) is contained in the center of R(U) for any U ∈ CX , i.e., R(U)
is an O(U)-algebra.

Example 18.1.2. On a complex manifold X , the sheaf OX of holomorphic func-
tions is a CX -algebra and the sheaf DX of holomorphic differential operators is
a CX -algebra. The sheaf OX is a left DX -module and the sheaf ΩX of holomor-
phic forms of maximal degree is an OX -module and also a right DX -module.
(See [37].)

Notations 18.1.3. (i) Let R be a sheaf of rings on X . We denote by PSh(R) the
category of presheaves of R-modules and by Mod(R) the category of sheaves
of R-modules.
(ii) We write HomR instead of HomMod(R).

In particular, we have

Mod(kX ) = Sh(X,Mod(k)) .

Note that if R is a kX -algebra, the forgetful functor

for : Mod(R) −→ Mod(kX )(18.1.1)

is faithful and conservative but not fully faithful in general.
Form now on, we denote by R a sheaf of k-algebras on X .

Lemma 18.1.4. The functor a : PSh(kX ) −→ Mod(kX ) in Definition 17.4.5
induces a functor (we keep the same notation)

( • )a : PSh(R) −→ Mod(R) ,

and this functor is left adjoint to the canonical inclusion functor Mod(R) −→
PSh(R).



18.1 R-modules 437

The proof follows easily from Theorem 17.4.7. Details are left to the reader.
Recall that we have set in Notations 17.6.13:

• |A := jA−→X ∗ .

Clearly, R|A is a sheaf of k-algebras on A.

Lemma 18.1.5. The functors jA−→X ∗ : Mod(kX ) −→ Mod(kA) and j−1
A−→X ,

j‡A−→X : Mod(kA) −→ Mod(kX ) induce well-defined functors (we keep the same
notations)

jA−→X ∗ : Mod(R) −→ Mod(R|A) ,(18.1.2)
j−1

A−→X : Mod(R|A) −→ Mod(R) ,(18.1.3)

j‡A−→X : Mod(R|A) −→ Mod(R) .(18.1.4)

Proof. (i) The assertion concerning jA−→X ∗ is obvious.
(ii) Let us treat j−1

A−→X . It is enough to check that j†A−→X induces a well-defined
functor from PSh(R|A) to PSh(R). By (17.1.11), one has j†A−→X (G)(U) �∐

s∈A(U) G(U
s−→ A) for U ∈ CX and G ∈ PSh(R|A). Since R|A(U

s−→ A) �
R(U), G(U

s−→ A), as well as j†A−→X (G)(U), is an R(U)-module.
(iii) The case of the functor j‡A−→X is similar to that of j−1

A−→X . q.e.d.

Theorem 18.1.6. Let R be a kX -algebra.

(i) The category Mod(R) is an abelian category and the forgetful functor
for : Mod(R) −→ Mod(kX ) is exact.

(ii) The functor a : PSh(R) −→ Mod(R) is exact.
(iii) The category Mod(R) admits small projective limits and the functor

ι : Mod(R) −→ PSh(R) commutes with such limits.
(iv) The category Mod(R) admits small inductive limits, and the functor

a : PSh(R) −→ Mod(R) commutes with such limits. Moreover, filtrant
inductive limits in Mod(R) are exact.

(v) The category Mod(R) is a Grothendieck category.

Proof. (i)–(iv) follow easily from Theorems 17.4.7 and 17.4.9. Details are left
to the reader.
(v) For U ∈ CX , recall that RU = j−1

U−→X jU−→X ∗R = j−1
U−→X (R|U ) (see Defini-

tion 17.6.10). For F ∈ Mod(R), we have

HomR(RU , F) � F(U) .

Hence, the family {RU }U∈CX is a small system of generators in Mod(R). q.e.d.

Lemma 18.1.7. Let A ∈ C∧X .

(i) (j−1
A−→X , jA−→X ∗) and (jA−→X ∗, j

‡
A−→X ) are pairs of adjoint functors. In par-

ticular, jA−→X ∗ is exact.
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(ii) Let F ∈ Mod(R|A). Then the morphism F −→ jA−→X ∗ j−1
A−→X F is a

monomorphism.
(iii) The functor j−1

A−→X : Mod(R|A) −→ Mod(R) is exact and faithful.

Proof. (i) By Proposition 17.5.1, there are natural maps, inverse to each others

Hom kX
(j−1

A−→X G, F)
Φ ��
Ψ

�� Hom kA
(G, F |A) .(18.1.5)

An element of Hom kX
(j−1

A−→X G, F) is given by a family of kX -linear maps
{∐U−→A G(U −→ A) −→ F(U)}U∈CX compatible with the restriction mor-
phisms. To such a family, Φ associates a family of k-linear maps {G(U −→
A) −→ F(U)}(U−→A)∈CA compatible with the restriction morphisms. Clearly,
if all maps

∐
U−→A G(U −→ A) −→ F(U) are R(U)-linear, then all maps

G(U −→ A) −→ F(U) will be R(U)-linear. Hence, Φ sends HomR(j−1
A−→X G, F)

to HomR|A(G, F |A). One checks similarly that Ψ sends HomR|A(G, F |A) to
HomR(j−1

A−→X G, F).
(ii) By the result of Exercise 17.5, we have an isomorphism

jA−→X ∗ j−1
A−→X F � (jA−→X ∗ j†A−→X F)a .

Since the functor a is exact, it is enough to prove that the morphism F −→
jA−→X ∗ j†A−→X F is a monomorphism. For (U

t−→ A) ∈ (CX )A, we have

jA−→X ∗ j†A−→X F(U
t−→ A) �

⊕
s∈A(U)

F(U
s−→ A) .

(iii) The functor j−1
A−→X : Mod(kA) −→ Mod(kX ) is exact by Proposition 17.6.3.

It follows that the functor j−1
A−→X : Mod(R|A) −→ Mod(R) is exact. Then it is

faithful by (ii). q.e.d.

In Definition 17.6.10 and Notations (17.6.13) we have introduced the func-
tors F 
→ FA, F 
→ ΓA F and F 
→ Γ(A; F). They induce functors

( • )A : Mod(R) −→ Mod(R) ,

ΓA : Mod(R) −→ Mod(R) ,

Γ(A; • ) : Mod(R) −→ Mod(R(A)) .

Note that ( • )A is exact by Lemma 18.1.7 and ΓA, Γ(A; • ) are left exact.
Proposition 17.6.14 remains true in the category Mod(R).

18.2 Tensor Product and Internal Hom

For F, G ∈ PSh(R), we define the presheaf of kX -modules Hom R(F, G) simi-
larly as in Definition 17.1.10. More precisely, we set

Hom R(F, G)(U) = Hom PSh(R|U )(F |U , G|U ) for U ∈ CX .(18.2.1)

If R is a sheaf of commutative rings, then Hom R(F, G) ∈ PSh(R).
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Lemma 18.2.1. Let F ∈ PSh(R) and let G ∈ Mod(R). Then

(i) the presheaf Hom R(F, G) is a sheaf,
(ii) the natural morphism Hom R(Fa, G) −→ Hom R(F, G) is an isomor-

phism.

The proof goes as for Proposition 17.7.1.
Note that

HomR(F, G) � Γ(X ;Hom R(F, G)) for F , G ∈ Mod(R).(18.2.2)

Also note that for F ∈ Mod(R), G ∈ Mod(Rop) and K ∈ Mod(kX ), we have
Hom kX

(K , F) ∈ Mod(R) and Hom kX
(G, K ) ∈ Mod(R).

If R is a sheaf of commutative rings, then Hom R(F, G) ∈ Mod(R).

Let F ′ be a presheaf of Rop-modules and F a presheaf of R-modules. The

presheaf F ′psh⊗RF of kX -modules is defined by the formula

(F ′psh⊗RF)(U) := F ′(U)⊗R(U) F(U) for U ∈ CX .

If R is commutative, F ′psh⊗RF is a presheaf of R-modules.

Definition 18.2.2. For F ′ ∈ Mod(Rop) and F ∈ Mod(R), we denote by

F ′ ⊗R F the sheaf associated with the presheaf F ′psh⊗RF and call this sheaf the
tensor product of F ′ and F.

Hence, we have constructed a bifunctor

• ⊗R • : Mod(Rop)×Mod(R) −→ Mod(kX ) .

If R is commutative, we get a bifunctor

• ⊗R • : Mod(R)×Mod(R) −→ Mod(R) .

Note that for F ∈ Mod(R) and K ∈ Mod(kX ), we have K ⊗kX
F ∈ Mod(R).

Proposition 18.2.3. (i) There are isomorphisms, functorial with respect to
F ∈ PSh(Rop), G ∈ PSh(R) and H ∈ PSh(kX ):

Hom PSh(kX )(F
psh⊗RG, H) � Hom PSh(R)(G,Hom kX

(F, H)) ,

Hom kX
(F

psh⊗RG, H) � Hom R(G,Hom kX
(F, H)) .

(ii) There are isomorphisms, functorial with respect to F ∈ Mod(Rop), G ∈
Mod(R) and H ∈ Mod(kX ):

Hom kX
(F ⊗R G, H) � HomR(G,Hom kX

(F, H)) ,(18.2.3)
Hom kX

(F ⊗R G, H) � Hom R(G,Hom kX
(F, H)) .(18.2.4)
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(iii) Let F ′ be a presheaf of Rop-modules and F a presheaf of R-modules. Then

the natural morphism (F
psh⊗RF ′)a −→ F ′a ⊗R Fa is an isomorphism.

(iv) The functor ( • ⊗R • ) : Mod(R)op ×Mod(R) −→ Mod(kX ) is right exact.

Proof. (i) Since the second isomorphism follows from the first one, we prove
only the first isomorphism. Let us define a map

λ : Hom PSh(R)(G,Hom kX
(F, H)) −→ Hom PSh(kX )(F

psh⊗RG, H) .

For U ∈ CX , we have the chain of morphisms

Hom PSh(R)(G,Hom kX
(F, H))

−→ HomR(U)(G(U),Hom kX
(F, H)(U))

−→ HomR(U)(G(U),Hom k(F(U), H(U)))

� HomR(U)(G(U)⊗k F(U), H(U)) .

Since these morphisms are functorial with respect to U , they define λ.
Let us define a map

µ : Hom PSh(kX )(F
psh⊗RG, H) −→ Hom PSh(R)(G,Hom kX

(F, H)) .

For V −→ U in CX , we have the chain of morphisms

Hom PSh(kX )(F
psh⊗RG, H) −→ Hom k(F(V )

psh⊗R(V )G(V ), H(V ))

� HomR(V )(G(V ),Hom k(F(V ), H(V )))

−→ HomR(U)(G(U),Hom k(F(V ), H(V ))) .

Since these morphism are functorial with respect to (V −→ U) ∈ CU , they
define µ.

It is easily checked that λ and µ are inverse to each other.

(ii) follows from (i) since Hom kX
(F

psh⊗RG, H) � Hom kX
(F ⊗R G, H) by

Lemma 18.2.1 (ii).
(iii) Let G ∈ Mod(kX ). Using Lemma 18.2.1, we obtain the chain of isomor-
phisms

Hom kX
((F

psh⊗RF ′)a, G) � Hom kX
(F

psh⊗RF ′, G)
� Hom kX

(F,Hom R(F ′, G))
� Hom kX

(Fa,Hom R(F ′a, G))
� Hom kX

(Fa ⊗R F ′a, G) .

(iv) The functor •
psh⊗R • : Mod(R)op ×Mod(R) −→ PSh(X,Mod(k)) is clearly

right exact. Its composition with the exact functor a remains right exact.
q.e.d.
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Lemma 18.2.4. Let F ′ ∈ Mod(Rop), F ∈ Mod(R) and let A ∈ C∧X . Then

(F ′ ⊗R F)|A � F ′|A ⊗R|A F |A .(18.2.5)

Proof. The isomorphism

jA−→X ∗(F ′psh⊗RF) � F ′|A
psh⊗R|A F |A

is clear. The result follows by applying the functor a which commutes with
jA−→X ∗ (Exercise 17.5). q.e.d.

Proposition 18.2.5. Let G be an (Rop|A)-module and F an R-module. There
is a natural isomorphism

j−1
A−→X (G ⊗R|A (F |A)) � (j−1

A−→X G)⊗R F in Mod(kX ) .(18.2.6)

Proof. The right hand side of (18.2.6) is the sheaf associated with the presheaf

CX � U 
→ ( ⊕
s∈A(U)

G(U
s−→ A)

)⊗R(U) F(U)

and the left hand side is the sheaf associated with the presheaf

CX � U 
→ ⊕
s∈A(U)

(
G(U

s−→ A)⊗R(U) F(U)
)

.

q.e.d.

Remark 18.2.6. There are general formulas using various sheaves of rings on
X . Here, we state the main results, leaving the proofs to the readers. Consider
a commutative sheaf of rings OX , four OX -algebras Rν (ν = 1, . . . , 4), and
for i, j ∈ {1, . . . , 4}, denote by i M j an object of Mod(Ri ⊗OX

Rop
j ). Then the

functors below are well defined:

• ⊗R2
• : Mod(R1⊗OX

Rop
2 )×Mod(R2 ⊗OX

Rop
3 )(18.2.7)

−→ Mod(R1 ⊗OX
Rop

3 ),

Hom R1
: Mod(R1 ⊗OX

Rop
2 )op ×Mod(R1 ⊗OX

Rop
3 )(18.2.8)

−→ Mod(R2 ⊗OX
Rop

3 ),

HomR1
: Mod(R1 ⊗OX

Rop
2 )op ×Mod(R1 ⊗OX

Rop
3 )(18.2.9)

−→ Mod
(
(R2 ⊗OX

Rop
3 )(X)

)
.

Moreover, there are natural isomorphisms in Mod(R1 ⊗OX
Rop

4 ):

(18.2.10)
(1M2 ⊗R2 2M3)⊗R3 3M4 � 1M2 ⊗R2

(2M3 ⊗R3 3M4),
(18.2.11)

Hom R2
(2M1,Hom R3

(3M2, 3M4)) � Hom R3
(3M2 ⊗R2 2M1, 3M4) .
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Proposition 18.2.7. Let F ∈ Mod(R) and let A ∈ C∧X . There are natural
isomorphisms in Mod(R):

FA � RA ⊗R F � kX A ⊗kX
F ,(18.2.12)

ΓA(F) � Hom R(RA, F) � Hom kX
(kX A, F) .(18.2.13)

Proof. (i) By Proposition 18.2.5, we have

FA � j−1
A−→X (F |A) � j−1

A−→X (R|A ⊗R|A F |A)

� (
j−1

A−→X (R|A)
)⊗R F � RA ⊗R F .

The second isomorphism in (18.2.12) is similarly proved.
(ii) By (18.2.11), we have the isomorphisms Hom R(RA, F) � Hom R(R ⊗
kX A, F) � Hom kX

(kX A,Hom R(R, F)) � Hom kX
(kX A, F). On the other hand,

using (18.2.12), we get the chain of isomorphisms, functorial with respect to
G ∈ Mod(R):

HomR(G,Hom kX
(kX A, F)) � HomR(G ⊗kX

kX A, F)

� HomR(j−1
A−→X jA−→X ∗G, F)

� HomR(G, jA−→X ! j
−1
A−→X F)

= HomR(G,ΓA(F)) .

Then the result follows from the Yoneda lemma. q.e.d.

18.3 Direct and Inverse Images

Lemma 18.3.1. Let R be a kX -algebra.

(i) Let f : X −→ Y be a morphism of sites. Then f∗R is a kY -algebra.
(ii) Let g : Z −→ X be a left exact morphism of sites. Then

(a) g−1R is a sheaf of rings on Z ,
(b) for any R-module F, g−1F is a g−1R-module,
(c) for an Rop-module F ′ and an R-module F,

g−1(F ′ ⊗R F) � g−1F ′ ⊗g−1R g−1F ,

(d) the functor g−1 : Mod(R) −→ Mod(g−1R) is exact.

Proof. (i) is obvious.
(ii) (a)–(b) Since g−1 : Sh(X) −→ Sh(Z) is exact by Theorem 17.5.2, the action
of R on F induces a morphism g−1R×g−1F � g−1(R×F) −→ g−1F in Sh(Z).
Taking R as F , it induces a structure of a kZ -algebra on g−1R. Moreover, g−1F
has a structure of a g−1R-module.
(ii) (c) Let K be a kZ -module. We have the chain of isomorphisms
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Hom kZ
(g−1(F ′ ⊗R F), K ) � Hom kX

(F ′ ⊗R F, g∗K )
� HomR(F,Hom kX

(F ′, g∗K ))

� HomR(F, g∗Hom kX
(g−1F ′, K ))

� Hom g−1R(g−1F,Hom kX
(g−1F ′, K ))

� Hom kZ
(g−1F ′ ⊗g−1R g−1F, K ) ,

where the third isomorphism follows from Proposition 17.7.3. Then the result
follows from the Yoneda lemma.
(ii) (d) By Proposition 17.6.3, the functor g−1 : Mod(kX ) −→ Mod(kZ ) is exact
and the result follows. q.e.d.

Remark that if g : Z −→ X is not left exact (e.g., jA−→X ), g−1R is not
necessarily a ring.

Lemma 18.3.2. Let f : X −→ Y be a left exact morphism of sites and let RY be
a kY -algebra. There are isomorphisms, functorial with respect to G ∈ Mod(RY )
and F ∈ Mod( f −1RY ):

Hom f −1RY
( f −1G, F) � HomRY

(G, f∗F) ,(18.3.1)

f∗Hom f −1RY
( f −1G, F) � Hom RY

(G, f∗F) .(18.3.2)

In particular, the functor f −1 : Mod(RY ) −→ Mod( f −1RY ) is a left adjoint to
the functor f∗ : Mod( f −1RY ) −→ Mod(RY ).

Proof. (i) By Theorem 17.5.2, we have an isomorphism

Hom kX
( f −1G, F) � Hom kY

(G, f∗F) .

One checks easily that for G ∈ Mod(RY ) and F ∈ Mod( f −1RY ), this isomor-
phism induces (18.3.1).
(ii) follows from (i) similarly as Proposition 17.7.3 is deduced from Theo-
rem 17.5.2. q.e.d.

If a site X (resp. Y ) is endowed with a kX -algebra RX (resp. a kY -algebra
RY ) and one is given an (RX ⊗kX

f −1(Rop
Y ))-module K X−→Y , we can pass from

RY -modules to RX -modules, and conversely.

Proposition 18.3.3. Let f : X −→ Y be a left exact morphism of sites. Let RY

be a kY -algebra, RX a kX -algebra and K X−→Y an (RX ⊗kX
f −1(Rop

Y ))-module.
Let F ∈ Mod(RX ) and G ∈ Mod(RY ). There are natural isomorphisms

HomRX
(K X−→Y ⊗f −1RY

f −1G, F)(18.3.3)
� HomRY

(G, f∗Hom RX
(K X−→Y , F)) ,

f∗Hom RX
(K X−→Y ⊗f −1RY

f −1G, F)(18.3.4)
� Hom RY

(G, f∗Hom RX
(K X−→Y , F)) .
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In particular, the functor

K X−→Y ⊗f −1RY
f −1( • ) : Mod(RY ) −→ Mod(RX )

is left adjoint to the functor

f∗Hom RX
(K X−→Y , • ) : Mod(RX ) −→ Mod(RY ) .

Proof. By (18.2.11) and (18.3.1), we have the isomorphisms:

HomRX
(K X−→Y ⊗f −1RY

f −1G, F)

� Hom f −1RY
( f −1G,Hom RX

(K X−→Y , F))
� HomRY

(G, f∗Hom RX
(K X−→Y , F)) .

The proof of (18.3.4) is similar. The last statement follows from (18.3.3).
q.e.d.

18.4 Derived Functors for Hom and Hom

Notation 18.4.1. Let R be a sheaf of k-algebras. We shall often write for short
D∗(R) instead of D∗(Mod(R)) for ∗ = ub,b,+,−. In particular, we set D(k) =
D(Mod(k)). We also write K∗(R), K∗

hi(R), etc. for short.

By Theorem 18.1.6, we may apply the results of Chap. 14. In particular,
we may consider the derived category D(R) to Mod(R) and construct the
right derived functor to any additive functor defined on Mod(R).

We shall follow the notations of § 11.7. For F1, F2 ∈ K(R), we set

Hom•
R(F1, F2) := totπHom••

R(F1, F2),

an object of K(k).

Proposition 18.4.2. The pair (Khi(R),K(R)op) is Hom•
R-injective and the

functor HomR admits a right derived functor

RHomR( • , • ) : D(R)×D(R)op −→ D(k) .

Note that for F1 ∈ K(R) and F2 ∈ Khi(R), RHomR(F1, F2) � Hom•
R(F1, F2).

Lemma 18.4.3. Let A ∈ C∧X . Then F |A ∈ Khi(R|A) for any F ∈ Khi(R).

Proof. By the hypothesis, HomK(R)(F ′, F) � 0 for all F ′ ∈ K(R) qis to zero.
Let G ∈ K(R|A) be qis to zero. We have by Lemma 18.1.7 (i)

HomK(R|A)(G, F |A) � HomK(R)(j
−1
A−→X G, F) ,

and the right hand side vanishes since j−1
A−→X is exact. q.e.d.
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Similarly as for the functor Hom•
R, for F1, F2 ∈ K(R) we set

Hom•
R(F1, F2) := totπHom••

R(F1, F2) ,

an object of K(kX ).

Lemma 18.4.4. Let F1, F2 ∈ K(R) with F2 homotopically injective and F1

qis to 0. Then Hom•
R(F1, F2) ∈ K(kX ) is qis to 0.

Proof. Let U ∈ CX . Applying Lemma 17.1.11 (ii), we obtain

Hom•
R(F1, F2)(U) � Hom•

R(F1|U , F2|U ) .

Since F1|U is qis to 0 by Lemma 18.1.7 and F2|U is homotopically injective by
Lemma 18.4.3, the result follows. q.e.d.

Hence we have the following proposition.

Proposition 18.4.5. The pair (Khi(R),K(R)op) is Hom•
R-injective and the

functor Hom R admits a right derived functor

RHom R( • , • ) : D(R)×D(R)op −→ D(kX ) .

Moreover, if R is commutative, this functor takes its values in D(R).

Note that for F1 ∈ K(R) and F2 ∈ Khi(R), RHom R(F1, F2) � Hom•
R(F1, F2).

Proposition 18.4.6. For F1, F2 ∈ D(R) and A ∈ C∧X , we have the isomor-
phism

RHom R(F1, F2)|A � RHom R|A(F1|A, F2|A) .

Proof. By Proposition 18.4.5, we may assume that F1 ∈ K(R) and F2 ∈
Khi(R). Then RHom R(F1, F2) � Hom•

R(F1, F2). We then have

RHom R(F1, F2)|A � Hom•
R(F1, F2)|A

� Hom•
R|A(F1|A, F2|A)

� RHom R|A(F1|A, F2|A) ,

where the last isomorphism follows from the fact that F2|A ∈ Khi(R|A) by
Lemma 18.4.3. q.e.d.

18.5 Flatness

In this section, R denotes a sheaf of rings.
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Definition 18.5.1. (i) An R-module F is locally free (resp. locally free of
finite rank) if there exists a local epimorphism A −→ ptX such that for
any U −→ A with U ∈ CX , F |U is isomorphic to a direct sum (resp. a
finite direct sum) of copies of R|U .

(ii) An R-module F is locally of finite presentation if there exists a local
epimorphism A −→ ptX such that for any U ∈ CA, there exists an exact
sequence

(R|U )⊕m −→ (R|U )⊕n −→ F |U −→ 0 .

(iii) An R-module F is flat if the functor Mod(Rop) � F ′ 
→ F ′ ⊗R F ∈
Mod(ZX ) is exact.

We shall study the properties of flat modules.

Proposition 18.5.2. (i) If P is a flat R-module, then P|A is a flat (R|A)-
module for any A ∈ C∧X .

(ii) Let P be an R-module and let A ∈ C∧X . Assume that A −→ ptX is a
local epimorphism and P|U is a flat (R|U )-module for any U −→ A with
U ∈ CX . Then P is a flat R-module.

(iii) If Q is a flat R|A-module, then j−1
A−→X Q is a flat R-module.

(iv) Small direct sums of flat R-modules as well as small filtrant inductive
limits of flat R-modules are flat.

Proof. (i) Let 0 −→ F ′ −→ F −→ F ′′ be an exact sequence in Mod(Rop|A). Let
us show that the sequence

0 −→ F ′ ⊗R|A (P|A) −→ F ⊗R|A (P|A) −→ F ′′ ⊗R|A (P|A)(18.5.1)

is exact. Since the functor j−1
A−→X is faithful and exact, it is enough to check that

the image of (18.5.1) by j−1
A−→X is exact. This follows from Proposition 18.2.5

and the fact that the sequence below is exact

0 −→ (j−1
A−→X F ′)⊗R P −→ (j−1

A−→X F)⊗R P −→ (j−1
A−→X F ′′)⊗R P .

(ii) Let 0 −→ F ′ −→ F −→ F ′′ be an exact sequence in Mod(Rop). Let us show
that the sequence

0 −→ F ′ ⊗R P −→ F ⊗R P −→ F ′′ ⊗R P(18.5.2)

is exact. The functor • |A is exact and it is faithful by Corollary 17.6.9. Hence,
it is enough check that the image of (18.5.2) by • |A is exact. This follows from
the hypothesis and Lemma 18.2.4.
(iii) follows from the fact that the functor • ⊗R j−1

A−→X Q is isomorphic to the
exact functor j−1

A−→X (( • )|A ⊗R|A Q) by (18.2.6).
(iv) Small direct sums and small filtrant inductive limits are exact, and the
functor ⊗R commutes with these limits. q.e.d.
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Properties (i) and (ii) above may be translated by saying that flatness is
a local property.

Lemma 18.5.3. Let P be an R-module. Assume that for any U ∈ CX and
any morphism u : (R|U )⊕m −→ (R|U )⊕n, the sequence

0 −→ Ker(u)⊗R|U (P|U ) −→ (R|U )⊕m ⊗R|U (P|U ) −→ (R|U )⊕n ⊗R|U (P|U )

is exact. Then P is a flat R-module.

Proof. Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be an exact sequence in Mod(Rop). Let
us show that M ′ ⊗R P −→ M ⊗R P is a monomorphism. For U ∈ CX , set

K (U) := Ker
(
M ′(U)⊗R(U) P(U) −→ M(U)⊗R(U) P(U)

)
.

Then K is a presheaf and K a � Ker(M ′ ⊗R P −→ M ⊗R P). Hence, it is
enough to check that the morphism K (U) −→ (M ′ ⊗R P)(U) vanishes for any
U ∈ CX . Let s ∈ K (U) ⊂ M ′(U) ⊗R(U) P(U). Then, there exist a morphism

Rop(U)⊕n f−→ M ′(U) and s1 ∈ Rop(U)⊕n⊗R(U) P(U) whose image by f ⊗P(U)
is s. Since its image in M(U)⊗R(U) P(U) vanishes, there exists a commutative
diagram whose right column is a complex (i.e., q ◦ g = 0)

Rop(U)⊕m

g

��
Rop(U)⊕n

f

��

h �� Rop(U)⊕l

q

��
0 �� M ′|U �� M |U

(18.5.3)

and there exists t2 ∈ Rop(U)⊕m⊗R(U) P(U) whose image by g⊗P(U) coincides
with the image of s1 by h ⊗ P(U) in Rop(U)⊕l ⊗R(U) P(U). Consider the
diagram below, in which the square labeled � is Cartesian. .

N ��

��
�

(Rop|U )⊕m

g

��
(Rop|U )⊕n

f

��

h �� (Rop|U )⊕l

q

��
0 �� M ′|U �� M |U .

(18.5.4)

The composition N −→ (Rop|U )⊕n −→ M ′|U vanishes and the sequence in
Mod(Rop|U )
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0 −→ N −→ (Rop|⊕m
U )⊕ (Rop|⊕n

U ) −→ (Rop|⊕l
U )

is exact. By the hypothesis, this sequence remains exact after applying the
functor • ⊗R|U P|U . Since the functor Γ(U ; • ) is left exact, we obtain an exact
sequence:

0 −→ (N ⊗R|U P|U )(U)

−−→ (
(Rop|U )⊕m ⊗R|U P|U

)
(U)⊕ (

(Rop|U )⊕n ⊗R|U P|U
)
(U)

−−→ (
(Rop|U )⊕l ⊗R|U P|U

)
(U) .

Hence s1 ∈ ((Rop)⊕m ⊗R P)(U) lifts to an element of (N ⊗R|U P|U )(U). Since
the composition

N ⊗R|U (P|U ) −→ (Rop|U )⊕n ⊗R|U (P|U ) −→ (M ′|U )⊗R|U (P|U )
� (M ′ ⊗R P)|U

vanishes, the image of s ∈ K (U) in (M ′ ⊗R P)(U) vanishes. q.e.d.

Let P be the full subcategory of Mod(R) consisting of flat R-modules.
Clearly, P is closed by small direct sums.

Proposition 18.5.4. (i) For any N ∈ Mod(Rop), the category P is (N ⊗R
• )-projective. More precisely, the category P satisfies properties (i)–(iii)
of Corollary 13.3.8.

(ii) Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be an exact sequence in Mod(R) and
assume that M ′′ is flat. Then, for any N ∈ Mod(Rop), the sequence
0 −→ N ⊗R M ′ −→ N ⊗R M −→ N ⊗R M ′′ −→ 0 is exact .

Proof. (a) The object G :=
⊕

U∈CX
RU is a generator in Mod(R) and a flat

module by Proposition 18.5.2. Hence, for any M ∈ Mod(R), there exist a small
set I and an epimorphism G⊕I �M . Therefore the category P is generating
in Mod(R).
(b) Let us prove (ii). Applying (a) to Rop, there exists an exact sequence
0 −→ K −→ Q −→ N −→ 0 with a flat Rop-module Q. Consider the commutative
exact diagram in Mod(ZX ):

0

��
K ⊗R M ′ ��

��

K ⊗R M ��

��

K ⊗R M ′′ ��

��

0

0 �� Q ⊗R M ′ ��

��

Q ⊗R M ��

��

Q ⊗R M ′′ ��

��

0

N ⊗R M ′ ��

��

N ⊗R M ��

��

N ⊗R M ′′ ��

��

0

0 0 0
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It follows from the snake lemma (Lemma 12.1.1) that N ⊗R M ′ −→ N ⊗R M
is a monomorphism.
(c) Let us complete the proof of (i). It remains to prove that if 0 −→ M ′ −→
M −→ M ′′ −→ 0 is an exact sequence in Mod(R) with M and M ′′ flat, then M ′
is flat. Consider an exact sequence 0 −→ N ′ −→ N −→ N ′′ −→ 0 in Mod(Rop).
We get the commutative diagram

0

��

0

��

0

��
0 �� N ′ ⊗R M ′ ��

��

N ⊗R M ′ ��

��

N ′′ ⊗R M ′ ��

��

0

0 �� N ′ ⊗R M ��

��

N ⊗R M ��

��

N ′′ ⊗R M ��

��

0

0 �� N ′ ⊗R M ′′ ��

��

N ⊗R M ′′ ��

��

N ′′ ⊗R M ′′ ��

��

0

0 0 0

The middle and the bottom rows are exact, and so are all the columns by (ii).
It follows that the top row is exact. q.e.d.

18.6 Ringed Sites

Definition 18.6.1. (i) A ringed site (X,OX ) is a site X endowed with a
sheaf of commutative rings OX on X .

(ii) Let (X,OX ) and (Y,OY ) be two ringed sites. A morphism of ringed sites
is a left exact morphism of sites f : X −→ Y together with a morphism of
sheaves of rings f −1OY −→ OX (or equivalently, a morphism of sheaves
of rings OY −→ f∗OX ).

Note that f −1OY is a sheaf of rings by Lemma 18.3.1.
For a ringed site (X,OX ), we have functors

HomOX
: Mod(OX )×Mod(OX )op −→ Mod(OX (X)) ,

Hom OX
: Mod(OX )×Mod(OX )op −→ Mod(OX ) .

For a ringed site (X,OX ) and A ∈ C∧X , we regard A as a ringed site (A,OA) :=
(A,OX |A). The functor • |A gives an exact functor Mod(OX ) −→ Mod(OA).

Note that for A ∈ C∧X , the morphism jA−→X : X −→ A is not a morphism of
ringed sites in general (even for A ∈ CX ).

Proposition 18.6.2. There are isomorphisms, functorial with respect to F,
G, H ∈ Mod(OX ):

HomOX
(F ⊗OX

G, H) � HomOX
(F,Hom OX

(G, H)) ,(18.6.1)
Hom OX

(F ⊗OX
G, H) � Hom OX

(F,Hom OX
(G, H)) .(18.6.2)



450 18 Abelian Sheaves

In particular, the functors • ⊗OX
G and Hom OX

(G, • ) are adjoint.

This follows immediately from Proposition 18.2.3 (see Remark 18.2.6).

The direct image functor f∗ induces a functor (we keep the same notation)

f∗ : Mod(OX ) −→ Mod(OY ) .(18.6.3)

The inverse image functor

f ∗ : Mod(OY ) −→ Mod(OX )(18.6.4)

is given by

G 
→ OX ⊗f −1OY
f −1G .

As a particular case of Proposition 18.3.3, we obtain:

Proposition 18.6.3. There are isomorphisms, functorial with respect to F ∈
Mod(OX ) and G ∈ Mod(OY ):

HomOX
( f ∗G, F) � HomOY

(G, f∗F) ,(18.6.5)
f∗Hom OX

( f ∗G, F) � Hom OY
(G, f∗F) .(18.6.6)

In particular, the functors f ∗ and f∗ are adjoint.

It follows that the functors HomOX
and f∗ are left exact and the functors

⊗OX
and f ∗ are right exact.

Derived Functors for ⊗
Let PX be the full subcategory of Mod(OX ) consisting of flat OX -modules and
let P̃X be the smallest full triangulated subcategory of K(OX ) stable by small
direct sums and containing K−(PX ).

For F1, F2 ∈ K(OX ), we shall write for short:

F1 ⊗OX
F2 := tot⊕(F1 ⊗OX

F2) .

The hypotheses of Theorem 14.4.8 with Ci = Mod(OX ) (i = 1, 2, 3), G =
⊗OX

and F1 = F2 = Hom OX
, are satisfied with P2 = PX , P1 = Mod(OX ) by

Proposition 18.5.4.

Theorem 18.6.4. (i) (P̃X ,K(OX )) is ( • ⊗OX
• )-projective,

(ii) the derived functor •
L⊗OX

• : D(OX )×D(OX ) −→ D(OX ) exists and for F1

or F2 in P̃X we have F1

L⊗OX
F2 � F1 ⊗OX

F2,
(iii) (Khi(OX ),K(OX )op) is Hom OX

-injective,
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(iv) the derived functor RHom OX
: D(OX ) × D(OX )op −→ D(OX ) exists and

for F2 ∈ K(OX ) and F3 ∈ Khi(OX ), we have RHom OX
(F2, F3) �

Hom•
OX

(F2, F3),
(v) for F2 ∈ P̃X and F3 ∈ Khi(OX ), Hom•

OX
(F2, F3) ∈ Khi(OX ),

(vi) for F1, F2 ∈ P̃X , F1 ⊗OX
F2 ∈ P̃X ,

(vii) for F1, F2, F3 ∈ D(OX ), we have the isomorphisms

HomD(OX )(F1

L⊗OX
F2, F3) � HomD(OX )(F1, RHom OX

(F2, F3)) ,(18.6.7)

RHomOX
(F1

L⊗OX
F2, F3) � RHomOX

(F1, RHom OX
(F2, F3)) ,(18.6.8)

RHom OX
(F1

L⊗OX
F2, F3) � RHom OX

(F1, RHom OX
(F2, F3)) .(18.6.9)

Proof. (i)–(iv) as well as (18.6.7) and (18.6.8) follow from Theorem 14.4.8 and
Proposition 18.6.2.
(v) Assume that F1 ∈ K(OX ) is qis to 0. Then F1 ⊗OX

F2 is qis to 0 by (i).
Hence, we have

HomK(OX )(F1,Hom•
OX

(F2, F3)) � HomK(OX )(F1 ⊗OX
F2, F3) � 0 .

(vi) is obvious.
(vii) Let us prove the isomorphism (18.6.9). For any K ∈ D(OX ), we have

HomD(OX )

(
K , RHom OX

(F1

L⊗OX
F2, F3)

)
� HomD(OX )

(
K

L⊗OX
F1

L⊗OX
F2, F3

)
� HomD(OX )

(
K

L⊗OX
F1, RHom OX

(F2, F3)
)

� HomD(OX )

(
K , RHom OX

(F1, RHom OX
(F2, F3))

)
,

from which (18.6.9) follows by the Yoneda lemma. q.e.d.

Notation 18.6.5. The functor Γ(A; • ) : Mod(OX ) −→ Mod(OX (X)) defined in
Notations 17.6.13 (with A ∈ C∧X ) is clearly left exact. The right derived functor
of Γ(A; • ) is denoted by RΓ(A; • ). Hence,

RΓ(A; • ) : D(OX ) −→ D(OX (X)) .

Proposition 18.6.6. There is an isomorphism RΓ(X ; RHom OX
(F1, F2)) �

RHomOX
(F1, F2) in D(OX (X)) for F1, F2 ∈ D(OX ).

Proof. We may assume that F1 ∈ P̃X and F2 ∈ Khi(OX ). By Theorem 18.6.4
(v), Hom•

OX
(F1, F2) belongs to Khi(OX ), and we obtain

RΓ(X ; RHom OX
(F1, F2)) � Γ(X ;Hom•

OX
(F1, F2))

� Hom•
OX

(F1, F2) � RHomOX
(F1, F2) .

q.e.d.
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Derived Functors for Direct and Inverse Images

Lemma 18.6.7. Let f : X −→ Y be a morphism of ringed sites.

(i) If P is a flat OY -module, then f ∗P is a flat OX -module,
(ii) the functor f ∗ sends P̃Y to P̃X .

Proof. (i) (a) Assume first that OX = f −1OY . Then f ∗P = f −1 P. By
Lemma 18.5.3, it is enough to show that for any U ∈ CX and any exact
sequence

0 −→ N −→ O⊕n
U

u−→ O⊕m
U

in Mod(OU ), the sequence

(18.6.10)
0 −→ N ⊗OU

( f −1 P)|U −→ O⊕n
U ⊗OU

( f −1 P)|U −→ O⊕m
U ⊗OU

( f −1 P)|U
is exact. The morphism u is given by an element of

O⊕nm
X (U) � f −1(O⊕nm

Y )(U) � lim−→
A∈LIU

f †(O⊕nm
Y )(A) .

Hence, there exist A ∈ LIU and an element s ∈ f †(O⊕nm
Y )(A) whose image is

u. Let W ∈ (CX )A. Then

f †(O⊕nm
Y )(W ) � lim−→

V∈(CY )W

O⊕nm
Y (V ) .

Hence, there exists V ∈ (CY )W and s ′ ∈ O⊕nm
Y (V ) such that the image of s ′

coincides with s. Then s ′ gives a morphism O⊕n
V

u1−→ O⊕m
V . Let fW : W −→ V be

the morphism of sites induced by f . Then f −1
W (u1) : O⊕n

U
u−→ O⊕m

U is equal to
u|W . Let N1 be the kernel of u1. Since f −1

W is exact, N |W � f −1
W N1. Then the

sequence

0 −→ N1 ⊗OY |V (P|V ) −→ O⊕n
V ⊗OY |V (P|V ) −→ O⊕m

V ⊗OY |V (P|V )

is exact. Applying f −1
W and recalling that this functor commutes with ⊗

(Lemma 18.3.1), we find that the sequence (18.6.10) in which U is replaced
with W is exact. Since this property holds for any W ∈ (CX )A and A −→ U is
a local isomorphism, the sequence (18.6.10) is exact.
(i) (b) We have seen that f −1 P is a flat ( f −1OY )-module. Hence, the functor

Mod(OX ) � M 
→ M ⊗OX
f ∗P � M ⊗f −1OY

f −1 P

is exact.

(ii) obviously follows from (i). q.e.d.
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Lemma 18.6.8. Let f : X −→ Y be a morphism of ringed sites. Then the
category PY of flat OY -modules is f ∗-projective.

Proof. By Proposition 18.5.4 and Corollary 13.3.8, it is enough to check that
if 0 −→ G ′′ −→ G −→ G ′ −→ 0 is an exact sequence in Mod(OY ) and G ′ is OY -flat,
then the sequence remains exact after applying f ∗.

Since f −1 is exact, the sequence 0 −→ f −1G ′′ −→ f −1G −→ f −1G ′ −→ 0
is exact in Mod( f −1OY ). Since f −1G ′ is f −1OY -flat by Lemma 18.6.7, this
sequence remains exact after applying the functor OX ⊗f −1OY

• by Proposi-
tion 18.5.4 (ii). q.e.d.

By Theorem 18.1.6, the functor f∗ admits a right derived functor

R f ∗ : D(OX ) −→ D(OY ) .

Theorem 18.6.9. Let f : X −→ Y be a morphism of ringed sites.

(i) The functor f ∗ has a left derived functor

L f ∗ : D(OY ) −→ D(OX )

and for G ∈ P̃Y , we have L f ∗G � f ∗G,
(ii) for G, G ′ ∈ D(OY ) we have an isomorphism

L f ∗(G
L⊗OY

G ′) � L f ∗G
L⊗OX

L f ∗G ′ ,

(iii) there are isomorphisms, functorial with respect to F ∈ D(OX ) and G ∈
D(OY )

HomD(OY )(G, R f ∗F) � HomD(OX )(L f ∗G, F) ,(18.6.11)

RHomOY
(G, R f ∗F) � RHomOX

(L f ∗G, F) ,(18.6.12)
RHom OY

(G, R f ∗F) � R f ∗RHom OX
(L f ∗G, F) ,(18.6.13)

RΓ(Y ; R f ∗F) � RΓ(X ; F) .(18.6.14)

In particular, (L f ∗, R f ∗) is a pair of adjoint functors.

Proof. (i) By Lemma 18.6.8, the category PY is f ∗-projective. Hence, we may
apply Theorem 14.4.5.
(ii) We may assume that G, G ′ ∈ P̃Y . Then

L f ∗G
L⊗OX

L f ∗G ′ � f ∗G ⊗OX
f ∗G ′

� f ∗(G ⊗OY
G ′) � L f ∗(G

L⊗OY
G ′) .

Here, the first isomorphism follows from Lemma 18.6.7 (ii) and Lemma 18.6.8,
the second isomorphism follows from Lemma 18.3.1 (ii) (c) and the third one
follows from Theorem 18.6.4 (vi).
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(iii) The isomorphisms (18.6.11) and (18.6.12) follow from Theorem 14.4.5.
Setting G = OY in (18.6.12), we obtain (18.6.14). Let us prove (18.6.13). For
K ∈ D(OY ), we have the chain of isomorphisms

HomD(OY )(K , R f ∗RHom OX
(L f ∗G, F))

� HomD(OX )(L f ∗K , RHom OX
(L f ∗G, F))

� HomD(OX )(L f ∗K
L⊗OX

L f ∗G, F)

� HomD(OX )(L f ∗(K
L⊗OY

G), F)

� HomD(OY )(K
L⊗OY

G, R f ∗F)

� HomD(OY )(K , RHom OY
(G, R f ∗F)) .

Then the Yoneda lemma implies (18.6.13). q.e.d.

Proposition 18.6.10. Let f : (X,OX ) −→ (Y,OY ) and g : (Y,OY ) −→ (Z ,OZ )
be two morphisms of ringed sites. Set h := g ◦ f . Then

(i) h : (X,OX ) −→ (Z ,OZ ) is a morphism of ringed sites,
(ii) Rh∗ � Rg∗ ◦ R f ∗ and Lh∗ � L f ∗ ◦ Lg∗.

Proof. (i) is obvious.
(ii) Apply Proposition 14.4.7 and Lemma 18.6.7. q.e.d.

For F ∈ D(OX ), A ∈ C∧X and j ∈ Z, we set

H j (A; F) := H j (RΓ(A; F)).(18.6.15)

Remark 18.6.11. Many results of this section may be generalized to the case
of sheaves of not necessarily commutative rings. Following the notations in
Remark 18.2.6, we have the results below whose proofs are left to the readers.
Consider four OX -algebras Rν (ν = 1, . . . , 4), and for i, j ∈ {1, . . . , 4}, denote
by i M j an object of D(Ri ⊗OX

Rop
j ). We make the assumption:

Rν is a flat OX -module for all ν = 1, . . . , 4 .(18.6.16)

Then the functors below are well-defined

L⊗R2
: D(R1 ⊗OX

Rop
2 )×D(R2 ⊗OX

Rop
3 ) −→ D(R1 ⊗OX

Rop
3 ) ,

RHom R1
: D(R1 ⊗OX

Rop
3 )×D(R1 ⊗OX

Rop
2 )op −→ D(R2 ⊗OX

Rop
3 ) ,

RHomR1
: D(R1 ⊗OX

Rop
3 )×D(R1 ⊗OX

Rop
2 )op −→ D((R2 ⊗OX

Rop
3 )(X)) ,

and there are natural isomorphisms in D(R1 ⊗OX
Rop

4 ):

(1M2

L⊗R22M3)
L⊗R33M4 � 1M2

L⊗R2
(2M3

L⊗R33M4),

RHom R2
(2M1, RHom R3

(3M2, 3M4)) � RHom R3
(3M2

L⊗R22M1, 3M4) .
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Note that the hypothesis (18.6.16) implies that a flat (resp. injective) module
1M2 over R1 ⊗OX

Rop
2 is flat (resp. injective) over R1. Indeed, the functors

• ⊗
R1

1M2 � ( • ⊗OX
R2) ⊗

R1⊗OX
Rop

2

1M2 and HomR1
( • , 1M2) � HomR1⊗OX

Rop
2

( • ⊗
OX

R2, 1M2) are exact on Mod(Rop
1 ) and Mod(R1), respectively.

18.7 Čech Coverings

We end this chapter with a classical construction, known as Čech cohomology
or Čech coverings. In order to calculate the cohomology of a sheaf on a site
X , we shall replace X with a local epimorphism A −→ ptX with A ∈ C∧X (which
corresponds in the classical theory to an open covering), the sheaf F having
nice properties on A.

In this section, we consider again sheaves of k-modules.
Let u : A −→ B be a morphism in C∧X . In the sequel, we shall often use the

restriction of the functor A
∏

B : (Set f )op −→ C∧B constructed in (2.2.15) to the
simplicial category ∆in j constructed in §11.4.

Recall that the objects of the category ∆ are the finite totally ordered sets
and the morphisms are the order-preserving maps.

The category ∆in j is the subcategory of ∆ whose objects are those of ∆,
but the morphisms are the injective ones.

Notation 18.7.1. If u : A −→ B is a morphism in C∧X , we denote by

λu : ∆op
in j −→ C∧B(18.7.1)

the composition of the functor A
∏

B in (2.2.15) with the embedding ∆op
in j −→

(Set f )op.

The functor λu is visualized by the diagram

��
��

��
�� A ×B A ×B A

p12 ��
p13 ��
p23 �� A ×B A p1 ��

p2 �� A
u �� B .(18.7.2)

Here, pi corresponds to the i-th projection and pi j to the (i, j)-th projection.
Recall that ∆̃ is the subcategory of ∆ consisting of non-empty sets, the

morphisms u : σ −→ τ of ∆̃ being those of ∆ sending the smallest (resp. the
largest) element of σ to the smallest (resp. the largest) element of τ .

In §11.4, we have constructed the functor

κ : ∆ −→ ∆̃(18.7.3)
τ 
→ {0} � τ � {∞}

where {0} is the smallest element of κ(τ ) and {∞} the largest. The functor κ

is left adjoint to the embedding functor ι : ∆̃ −→ ∆. We shall still denote by
κ its restriction to ∆in j .
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We shall also encounter the situation where u : A −→ B admits a section
v : B −→ A (i.e., v ◦ u = idB). In such a case, the functor λu extends to the
category ∆̃.

Lemma 18.7.2. Assume that the morphism u : A −→ B admits a section
v : B −→ A. Then there exists a functor λu,v : ∆̃op −→ C∧B such that λu,v◦κ = λu.

Proof. Let τ ∈ ∆̃. Let us denote by 0τ the smallest element of τ and by ∞τ

the largest. Also set

ξ(τ ) = τ \ {0τ ,∞τ } .

We define

λu,v(τ ) = A
∏

B ξ(τ) .

Let f : τ −→ σ be a morphism in ∆̃. In order to define λu,v( f ) : A
∏

B ξ(σ) −→
A
∏

B ξ(τ), it is enough to define for all i ∈ ξ(τ ) its composition with the i-th
projection pi : A

∏
B ξ(τ) −→ A. We set

pi ◦ λu,v( f ) =

{
the composition A

∏
B ξ(τ) −→ B

v−→ A if f (i) /∈ ξ(σ ) ,

the projection p f (i) if f (i) ∈ ξ(σ ) .

It is easily checked that λu,v is a functor, and this functor extends λu . q.e.d.

Let F ∈ Mod(kX ) and let u : A −→ B be a morphism in C∧X . We have a
functor C∧X −→ Mod(kX ) given by C 
→ FC (see (17.6.4)). Hence we obtain a
functor

λF
u : ∆op

in j −→ Mod(kX )(18.7.4)

as the composition ∆op
in j

λu−−→ C∧B −→ C∧X −→ Mod(kX ). As in §11.4, we can
construct a complex Fu• in C−(Mod(kX )). Recall its construction. Set

A
∏

B n = A ×B · · · ×B A︸ ︷︷ ︸
n

, in particular A
∏

B 0 = B .

For n ≥ −1, set

Fu
n := λF

u ([0, n]) = FA
∏

B n+1 = FA ×B · · · ×B A︸ ︷︷ ︸
n+1

.

Denote by pi : A
∏

B n+1 −→ A
∏

B n the projection which forgets the i-th compo-
nents (1 ≤ i ≤ n + 1). This projection induces a morphism δi

n : Fu
n −→ Fu

n−1,
which coincides with λF

u (dn
i−1). We define
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du
n : Fu

n −→ Fu
n−1, du

n =
n+1∑
i=1

(−1)i−1δi
n .

By Proposition 11.4.2 (i), we have

du
n−1 ◦ du

n = 0 for n > 0.

(Note that the notations here slightly differ from those in Proposition 11.4.2.)
Hence, we have constructed a complex

Fu
• := · · · −→ Fu

n

du
n−→ · · · du

1−→ Fu
0

du
0−→ Fu

−1 −→ 0 .(18.7.5)

By adjunction, we also have a complex

F•
u := 0 −→ F−1

u

d−1
u−−→ F0

u

d0
u−→ · · · −→ Fn

u

dn
u−→ · · · ,(18.7.6)

with

Fn
u = ΓA

∏
B n+1(F) = ΓA ×B · · · ×B A︸ ︷︷ ︸

n+1

(F) .

Note that

Fu
• ∈ C−(Mod(kX )), F•

u ∈ C+(Mod(kX )) .

More intuitively, we may write

Fu
• := · · · −→ FA×B A −→ FA −→ FB −→ 0 ,

F•
u := 0 −→ ΓB F −→ ΓA F −→ ΓA×B A F −→ · · · .

Proposition 18.7.3. Assume that the morphism u : A −→ B has a section v

(i.e., u ◦ v = idB). Then the complexes Fu• and F•
u are homotopic to 0.

Proof. This follows immediately from Lemma 18.7.2 and Corollary 11.4.3.
q.e.d.

Theorem 18.7.4. Let F ∈ Mod(kX ). Assume that the morphism u : A −→ ptX

is a local epimorphism. Then

(i) the complexes ju∗Fu• and ju∗F•
u are homotopic to 0 in C(Mod(kA)),

(ii) the complexes Fu• and F•
u are exact.

Roughly speaking, (i) means that the complexes Fu• and F•
u are locally homo-

topic to 0, “locally” meaning “after a base change by a local epimorphism”.
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Proof. (i) Let us treat the complex ju∗Fu• . Denote by w the second projection
A × A −→ A. Then w = u × A, and Proposition 17.6.14 implies

j−1
u ju∗Fu

• � (Fu
• )A � (F |A)w

• .

Since w admits a section (namely, the diagonal morphism A −→ A × A), the
complex (F |A)w• is homotopic to 0. Since the composition ju∗ −→ ju∗ j−1

u ju∗ −→
ju∗ is the identity, the identity of ju∗Fu• factorizes through ju∗(F |A)w• . It follows
that ju∗Fu• is homotopic to 0.

The proof for ju∗F•
u is similar.

(ii) follows from (i) since ju∗ is exact and faithful by Lemma 17.6.9. q.e.d.

The stupid truncated complex σ≥0F•
u is the complex obtained by replacing

F−1
u with 0 in F•

u :

σ≥0F•
u = 0 −→ F0

u

d0
u−→ F1

u

d1
u−→ · · · −→ Fn

u

dn
u−→ · · · .(18.7.7)

Then we have a d.t.

ΓB F −→ σ≥0F•
u −→ F•

u
+1−−→ .

Hence Theorem 18.7.4 asserts that ΓB F −→ σ≥0F•
u is a qis if u is a local

epimorphism.

Corollary 18.7.5. (Leray’s acyclic covering theorem) Let u : A −→ ptX be a
local epimorphism and let F ∈ Mod(kX ). Assume that H j (RΓ(An; F)) � 0 for
all j > 0 and all n > 0. Then there is a natural isomorphism

RΓ(X ; F) � Γ(X ; σ≥0F•
u ) .

Proof. Let us take an injective resolution F −→ I • in Mod(kX ). Theorem 18.7.4
implies that I n −→ σ≥0(I n)•u is a qis, and hence I • −→ tot(σ≥0(I •)•u) is a qis
by Theorem 12.5.4. Thus F −→ I • −→ tot(σ≥0(I •)•u) are qis’s, and ΓAn I m are
injective by Exercise 18.2. Hence RΓ(X ; F) is represented by the complex
Γ(X ; tot(σ≥0(I •)•u)).

On the other hand, there is an isomorphism (see Exercise 18.2):

RΓ(X ; RΓAn (F)) � RΓ(An; F) ,(18.7.8)

and RΓ(An; F) is represented by the complex Γ(An; I •) for any n > 0. Hence
the assumption implies that Γ(An; F) −→ Γ(An; I •) is a qis. Applying Theo-
rem 12.5.4 again, it follows that Γ(X ; σ≥0F•

u ) −→ Γ(X ; tot(σ≥0(I •)•u)) is a qis.
q.e.d.
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Exercises

Exercise 18.1. Prove that Lemma 18.5.3 remains true when assuming n = 1
in the hypothesis.

Exercise 18.2. Let X be a site, let A ∈ C∧X and let R be a kX -algebra.
(i) Let F ∈ Khi(R). Prove that ΓA(F) ∈ Khi(R).
(ii) Prove the isomorphism RΓ(X ; RΓA(F)) � RΓ(A; F) for F ∈ D(R).

Exercise 18.3. Let X be a topological space. For a subset Z of X , we endow
Z with the induced topology and we denote by iZ : Z −→ X the embedding.
In the sequel, we work in the category Mod(kX ) of kX -modules on X . For
x ∈ X and F ∈ Mod(kX ), let us write Fx instead of i−1

{x} F . Recall (see Remark
17.6.12) that we have identified Mod(k{x}) with Mod(k). Hence, Fx ∈ Mod(k).
The k-module Fx is called the germ of F at x .

(i) Prove that Fx � lim−→
U

F(U), where U ranges over the ordered set of open

neighborhoods of x .
(ii) Prove that a complex F ′ −→ F −→ F ′′ in Mod(kX ) is exact if and only if

the sequence F ′
x −→ Fx −→ F ′′

x is exact in Mod(k) for any x ∈ X .
(iii) Let Z be a subset of X . Prove that the functor i t

Z : OpX −→ OpZ , V 
→
V ∩ Z , defines a left exact morphism of sites iZ : Z −→ X .

(iv) Let U be an open subset of X . Prove that the composition of morphisms

of sites U
iU−→ X

jU−→X−−−→ U is isomorphic to the identity and that i−1
U �

jU−→X ∗, iU ∗ � j‡U−→X . Set iU ! :=j−1
U−→X . Prove that i−1

U iU ! � idMod(kU ) and
i−1
U iU ∗ � idMod(kU ).

(v) Let S be a closed subset of X and let U = X \ S. Prove that the functors
i−1

S and iS∗ are exact. Define the functor ( • )S : Mod(kX ) −→ Mod(kX ) by
( • )S = iS∗ ◦ i−1

S . Prove that there is an exact sequence 0 −→ FU −→ F −→
FS −→ 0 for F ∈ Mod(kX ).

(vi) Let S and U be as in (v). Prove that the functor ( • )S admits a left
adjoint. Denoting it by ΓS, prove that ΓS( • ) � Hom kX

((kX )S, • ) and
prove that there is an exact sequence 0 −→ ΓS(F) −→ F −→ ΓU (F) for
F ∈ Mod(kX ). Prove moreover that F −→ ΓU (F) is an epimorphism
when F is injective.

(vii) Let S and U be as in (v). Prove that the functor Mod(kX ) −→ Mod(kU )×
Mod(kS) given by F 
→ (i−1

U F, i−1
S F) is exact, faithful and conservative.

(viii) Let S and U be as in (v). Prove that the triangulated functor D(kX ) −→
D(kU ) × D(kS) given by F 
→ (i−1

U F, i−1
S F) is conservative but is not

faithful in general.
(ix) Let S and U be as in (v). Prove that D(kX ) is equivalent to the category

of triples (F, G, u) where F ∈ D(kS), G ∈ D(kU ) and u : RiS∗F −→ RiU !G
is a morphism in D(kX ). (Hint: use Exercise 10.15.)
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Exercise 18.4. Let X be a Hausdorff compact space and let {Fi }i∈I be an
inductive system in Mod(ZX ) indexed by a small filtrant category I . Prove
the isomorphism lim−→

i

Γ(X ; Fi ) ∼−→Γ(X ; lim−→
i

Fi ).

Exercise 18.5. Let X be the topological space R.
(i) Prove that small products are not exact in Mod(ZX ).
(ii) Prove that Mod(ZX ) satisfies the IPC-property. (Hint: use Exercise 18.4.)
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Stacks and Twisted Sheaves

Roughly speaking, a stack is a sheaf of categories. However, when replacing
a set with a category, we have to replace the equalities with isomorphisms.
This creates new difficulties, since these isomorphisms are not unique and it
is necessary to control compatibility conditions among them.

Here, we define prestacks on a presite X and various associated notions. In
particular, for a prestack S and A ∈ C∧X , we define S(A) as a projective limit in
the 2-category Cat. In the course of this study, we need a higher dimensional
analogue of the notions of connected categories and cofinal functors, and we
introduce 1-connected categories and 1-cofinal functors.

A prestack S on a site X is a stack if for any local isomorphism A −→ U
in C∧X , S(A) −→ S(U) is an equivalence of categories. We give equivalent
definitions and prove in particular that the prestack CX � U 
→ Sh(U,A) of
sheaves with values in a category A (satisfying hypothesis (17.4.1)) is a stack.

As an application of the general theory of stacks, we study twisted sheaves.
We start by proving a “Morita equivalence” in the framework of stacks. It
asserts that for two sheaves of algebras R1 and R2, any equivalence of stacks
Mod(R1) � Mod(R2) is associated to a suitable module over R1 ⊗Rop

2 . On
a site X , a twisted sheaf is an object of a stack locally equivalent to the stack
of sheaves on X .

The theory presented here is rather sketchy, and may be thought of as
a first introduction to a vast subject which certainly should deserve further
developments.

References are made to [26, 34, 63], [10, 12, 36].

19.1 Prestacks

A general definition of a prestack would be a contravariant 2-functor S from
a category to a 2-category. However, we shall not develop here such a general
theory, and restrict ourselves to 2-functors with values in the 2-category Cat.
As already noticed, the notion of isomorphism of categories is not natural
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and has to be weakened to that of equivalence of categories. In other words,
the notion of equality of functors has to be replaced by that of isomorphism.
For example, for two morphisms U1

u−→ U2
v−→ U3 in C, we have to replace

the equality of functors S(v) ◦ S(u) = S(v ◦ u) in Cat with the data of
an isomorphism S(v) ◦ S(u) ∼−→S(v ◦ u). Moreover. we have to control the
compatibility of such isomorphisms when considering three morphisms in C.
More precisely:

Definition 19.1.1. Let X be a presite. A prestack S on X consists of the
following data:

(a) for any U ∈ CX , a category S(U),
(b) for any morphism u : U1 −→ U2 in CX , a functor ru : S(U2) −→ S(U1),

called the restriction functor,
(c) for any morphisms u : U1 −→ U2 and v : U2 −→ U3 in CX , an isomorphism

of functors cu,v : ru ◦ rv
∼−→ rv◦u, called the composition isomorphism,

these data satisfying:

(i) ridU = idS(U) and cidU ,idU = ididS(U) for any U ∈ CX ,

(ii) for any U1
u−→ U2

v−→ U3
w−→ U4, the following diagram of functors com-

mutes:

ru ◦ rv ◦ rw

cu,v

��

cv,w �� ru ◦ rw◦v
cu,v◦w
��

rv◦u ◦ rw
cv◦u,w �� rw◦v◦u .

(19.1.1)

Note that cu,idU2
= idru by setting U3 = U4 = U2 and v = w = idU2 in (19.1.1).

Similarly, cidU1 ,u = idru .
An additive prestack is a prestack such that every S(U) is an additive

category and ru is an additive functor. An additive prestack is called an abelian
prestack if every S(U) is an abelian category and every ru is an exact functor.
For a commutative ring k, we define in an obvious way the notions of k-additive
and k-abelian prestacks.

If S is a prestack, the opposite prestack Sop is given by Sop(U) =
(S(U))op with the natural restriction functors and the natural composition
isomorphisms of such functors.

Examples 19.1.2. (i) Let X be a small presite and let A be a category.
Then CX � U 
→ PSh(U,A) together with the natural restriction functors
PSh(U2,A) −→ PSh(U1,A) is a prestack. If X is endowed with a topology
and A satisfies the hypothesis (17.4.1), then CX � U 
→ Sh(U,A) is also a
prestack. If A is abelian, these prestacks are abelian.
(ii) Let G be a sheaf of groups on a site X . To G we associate a prestack S on
X by setting for U ∈ CX , Ob(S(U)) = {pt} and HomS(U)({pt}, {pt}) = G(U).
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Definition 19.1.3. Let S be a prestack on a presite X and let f : X −→ Y
be a morphism of presites, that is, a functor f t : CY −→ CX . We define f∗ S,
the direct image of S, as the prestack on Y given as follows. For V ∈ CY ,
set ( f∗ S)(V ) = S( f t(V )), for u : V1 −→ V2, set ru = r f t (u) : S( f t(V2)) −→
S( f t(V1)) and for u : V1 −→ V2, v : V2 −→ V3, set cu,v = c f t (u), f t (v) : r f t (u) ◦
r f t (v)

∼−→ r f t (v◦u).
For A ∈ C∧X , we write S|A instead of jA−→X ∗ S.

Hence, S|A is the prestack which associates S(U) with (U −→ A) ∈ CA.

Definition 19.1.4. Let Sν (ν = 1, 2) be prestacks on X with the restriction
functors r ν

u and the composition isomorphisms cν
u,v. A functor of prestacks

Φ : S1 −→ S2 is the data of:

(i) for any U ∈ CX , a functor Φ(U) : S1(U) −→ S2(U),
(ii) for any morphism u : U1 −→ U2, an isomorphism Φu of functors from

S1(U2) to S2(U1)

Φu : Φ(U1) ◦ r1
u
∼−→ r2

u ◦Φ(U2) ,

these data satisfying: for any morphisms U1
u−→ U2

v−→ U3 the following dia-
gram commutes in Fct(S1(U3),S2(U1))

Φ(U1) ◦ r1
u ◦ r1

v

Φu ��

c1u,v

��

r2
u ◦Φ(U2) ◦ r1

v

Φv �� r2
u ◦ r2

v ◦Φ(U3)

c2u,v

��
Φ(U1) ◦ r1

v◦u
Φv◦u �� r2

v◦u ◦Φ(U3) .

(19.1.2)

Note that for any U ∈ CX , ΦidU = idΦ(U) (set U1 = U2 = U3 = U and
u = v = idU in (19.1.2)).

Definition 19.1.5. Let Φν : S1 −→ S2 (ν = 1, 2) be two functors of prestacks
on X . A morphism of functors of prestacks θ : Φ1 −→ Φ2 is the data for any
U ∈ CX of a morphism of functors θ(U) : Φ1(U) −→ Φ2(U) such that for any
morphism u : U1 −→ U2 in C, the following diagram commutes

Φ1(U1) ◦ r1
u

θ(U1) ��

��
Φ1

u

��

Φ2(U1) ◦ r1
u

Φ2
u

��
r2

u ◦Φ1(U2)
θ(U2) �� r2

u ◦Φ2(U2) .

(19.1.3)

The set of functors and morphisms of functors forms a category Fct(S1,S2)
on X , and U 
→ Fct(S1|U ,S2|U ) is a prestack on X that we denote by
Fct(S1,S2).
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We denote by End (idS) the set of endomorphisms of the identity functor
idS : S −→ S, that is,

End (idS) = Hom Fct(S,S)(idS, idS) .

We denote by End(idS) the presheaf on X given by CX � U 
→ End (idS |U ).
We denote by Aut (idS) the subset of End (idS) consisting of isomorphisms

from idS to idS and by Aut(idS) the presheaf on X given by CX � U 
→
Aut (idS |U ).

A functor of prestacks Φ : S1 −→ S2 is called an equivalence of prestacks if
there exists a functor Ψ : S2 −→ S1 such that Ψ ◦Φ � idS1 and Φ ◦Ψ � idS2 .

It is easily checked that a functor of prestacks Φ : S1 −→ S2 is an equiv-
alence if and only if Φ(U) : S1(U) −→ S2(U) is an equivalence of categories
for all U ∈ CX .

Definition 19.1.6. Let S be a prestack on X . We denote by lim←−
U∈CX

S(U) the
category defined as follows.

(a) An object F of lim←−
U∈CX

S(U) is a family {(FU , ϕu)}U∈CX ,u∈Mor(CX ) where:

(i) for any U ∈ CX , FU is an object of S(U),
(ii) for any morphism u : U1 −→ U2 in CX , ϕu : ru FU2

∼−→ FU1 is an iso-
morphism such that for any sequence U1

u−→ U2
v−→ U3 of morphisms

in CX , the following diagram commutes (this is a so-called cocycle
condition):

rurv FU3

ru(ϕv) ��

cu,v

��

ru FU2

ϕu

��
rv◦u FU3

ϕv◦u �� FU1 .

(19.1.4)

(Note that ϕidU = idFU for any U ∈ CX . Indeed, set U1 = U2 = U3 = U
and u = v = idU in (19.1.4).)

(b) For two objects F = {(FU , ϕu)} and F ′ = {(F ′
U , ϕ′u)} in lim←−

U∈CX

S(U),

Homlim←−
U∈CX

S(U)(F, F ′) is the set of families f = { fU }U∈CX such that fU ∈
Hom S(U)(FU , F ′

U ) and the following diagram commutes for any u : U1 −→
U2

ru FU2

ϕu ��

ru( fU2 )

��

FU1

fU1

��
ru F ′

U2

ϕ′u �� F ′
U1

.
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Therefore,

Hom lim←−
U∈CX

S(U)(F, F ′) � lim←−
U∈CX

Hom S |U (FU , F ′
U ) .

For any A ∈ C∧X , we set

S(A) = lim←−
(U−→A)∈CA

(S|A)(U) = lim←−
(U−→A)∈CA

S(U) .

Hence, lim←−
U∈CX

S(U) = S(ptX ), where ptX denotes as usual the terminal object

of C∧X . Similarly as in Notations 17.6.13 (iii), we set

S(X) := S(ptX ) = lim←−
U∈CX

S(U).(19.1.5)

A morphism v : A −→ A′ in C∧X defines a functor

rv : S(A′) = lim←−
U−→A′

S(U) −→ lim←−
U−→A

S(U) = S(A)

and it is easily checked that the conditions in Definition 19.1.1 are satisfied.
Therefore

Proposition 19.1.7. Let S be a prestack on the small presite X . Then S
extends naturally to a prestack on X̂ .

Note that, for a small family of objects {Ai }i∈I of C∧X , we have

S(“
⊔

”
i

Ai ) �∏
i

S(Ai ) .(19.1.6)

For F ∈ S(X), we denote by F |U its image in S(U) by the morphism associ-
ated with the unique morphism U −→ ptX . For u : A −→ A′, we sometimes use
the notation

u∗ := ru : S(A′) −→ S(A),(19.1.7)

where ru is the restriction functor of the stack S on X̂ .

Definition 19.1.8. For F1, F2 ∈ S(X), the presheaf of sets that associates
HomS(U)(F1|U , F2|U ) with U ∈ CX is denoted by Hom S(F1, F2).

Note that we have

Hom S(F1, F2)(A) � HomS(A)(F1|A, F2|A),(19.1.8)

since A � “lim−→”
(U−→A)∈CA

U and the both-hand-sides of (19.1.8) are isomorphic to

lim←−
(U−→A)∈CA

HomS(U)(F1|U , F2|U ).
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19.2 Simply Connected Categories

The notions of connected category and cofinal functor were sufficient to treat
inductive or projective limits in a category. However, when working with
stacks, that is, essentially with 2-categories, we need a higher dimensional
analogue of these notions.

Definition 19.2.1. Let I be a small category. We say that I is simply con-
nected if it satisfies:

(i) I is non empty,
(ii) for any category C and any functor α : I −→ C such that α(u) is an iso-

morphism for any u ∈ Mor(I ), lim−→α exists in C and α(i) −→ lim−→α is an
isomorphism for any i ∈ I .

We also say “1-connected” instead of “simply connected”.

We remark the following facts whose proofs are similar to those of Proposi-
tion 2.5.2 and left to the reader:

• a small category I is 1-connected if and only if I op is 1-connected,
• a 1-connected category I is connected by Corollary 2.4.5,
• condition (ii) in Definition 19.2.1 is equivalent to the similar condition

with “any functor α : I −→ C” replaced by “any functor α : I −→ Set” or
else “any functor α : I −→ Setop ”.

Similarly as in Definition 2.5.1, we set:

Definition 19.2.2. (i) We say that a functor ϕ : J −→ I is 1-cofinal if the
category J i is 1-connected for any i ∈ I .

(ii) We say that a functor ϕ : J −→ I is co-1-cofinal if the functor ϕop : J op −→
I op is 1-cofinal, or equivalently, if the category Ji is 1-connected for any
i ∈ I .

We shall not develop here a systematic study of 1-connected categories
and 1-cofinal functors, but only give the following result which will be used
later.

Proposition 19.2.3. Let f : X −→ Y be a 1-cofinal morphism of presites (i.e.,
f t : CY −→ CX is 1-cofinal ). Then, for any prestack S on X , the canonical
functor Φ : S(X) −→ ( f∗ S)(Y ) is an equivalence of categories.

Proof. We shall construct a quasi-inverse to the functor Φ. Recall that an
object of ( f∗ S)(Y ) is a family G = {(GV , ϕv)}V∈CY ,v∈Mor(CY ) with GV ∈
( f∗ S)(V ) = S( f t(V )) and for v : V ′ −→ V , ϕv : r f t (v)GV

∼−→GV ′ , such that
the diagram (19.1.4) (with suitable modifications) commutes. Let us define
Ψ (G) = F := {(FU , ψu)}U∈CX ,u∈Mor(CX ) as follows.

For U ∈ CX , the category (CY )U is simply connected by the hypothesis.
For (V, u) = (U

u−→ f t(V )) ∈ (CY )U , we have the functor ru : S( f t(V )) −→
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S(U). Let β : (CY )U −→ S(U) be the contravariant functor which associates
ruGV ∈ S(U) to (V, u) ∈ (CY )U . Then, for any morphism v : (V, u) −→ (V ′, u′)
in (CY )U , β(v) : β((V ′, u′)) −→ β((V, u)) is an isomorphism. Indeed,

ru′GV ′ � ru ◦ r f t (v)GV .

Hence FU := lim←−β exists in S(U). For a morphism u : U −→ U ′ in CX , we
construct similarly a morphism ψu : ru(FU ′) −→ FU and F := {(FU , ψu)} defines
an object Ψ (G) ∈ S(X). It is easy to check that the functors Φ and Ψ are
quasi-inverse to each other. q.e.d.

19.3 Simplicial Constructions

We follow the notations introduced in §11.4 (see also § 18.7). For 0 ≤ n ≤ m,
we denote by ∆[n,m]

in j the full subcategory of ∆in j consisting of objects τ with
n ≤ card(τ ) ≤ m.

The category ∆[1,3]
in j is equivalent to the category with three objects {1},

{1, 2}, {1, 2, 3} and morphisms other than identities visualized by the diagram

{1} p1 ��
p2 �� {1, 2}

p12 ��
p13 ��
p23 ��

{1, 2, 3}(19.3.1)

where pi is the map which sends 1 to i (i = 1, 2) and pi j is the map which
sends (1, 2) to (i, j) (1 ≤ i < j ≤ 3). Hence, we have the relations:⎧⎨⎩

p12 ◦ p2 = p23 ◦ p1 ,

p23 ◦ p2 = p13 ◦ p2 ,

p12 ◦ p1 = p13 ◦ p1 .

(19.3.2)

We shall also make use of the category ∆[0,3]
in j , visualized by

∅ p �� {1} p1 ��
p2 �� {1, 2}

p12 ��
p13 ��
p23 ��

{1, 2, 3} .

with the same relations (19.3.2) together with the new relation:

p1 ◦ p = p2 ◦ p.(19.3.3)

Convention 19.3.1. In the sequel, we shall employ the same notations ∆,
∆[n,m]

in j etc, for the associated presites.

A prestack S on (∆[1,3]
in j )op is thus the data of:

• categories C0, C1, C2,
• functors r1, r2 : C0 −→ C1, and r12, r13, r23 : C1 −→ C2,
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• isomorphisms of functors ⎧⎨⎩
r12 ◦ r2 � r23 ◦ r1 ,

r23 ◦ r2 � r13 ◦ r2 ,

r12 ◦ r1 � r13 ◦ r1 .

(19.3.4)

It is sometimes visualized by a diagram of categories

C0
r1 ��
r2 �� C1

r12 ��
r13 ��
r23 ��

C2 .(19.3.5)

A prestack S on (∆[0,3]
in j )op is a prestack on (∆[1,3]

in j )op together with a
category C, a functor r : C −→ C0 and an isomorphism of functors

u : r1 ◦ r ∼−→ r2 ◦ r(19.3.6)

such that the diagram of functors below (corresponding to diagram 19.1.1)
commutes:

r12r1r
r12u ��

∼
��

r12r2r ∼ �� r23r1r

r23u

��
r13r1r

r13u �� r13r2r ∼ �� r23r2r.

(19.3.7)

It is sometimes visualized by a diagram of categories

C r �� C0
r1 ��
r2 �� C1

r12 ��
r13 ��
r23 ��

C2 .(19.3.8)

Notation 19.3.2. Consider a prestack S on (∆[1,3]
in j )op. With the notations of

Diagram 19.3.5, we set

Kern(C0, C1, C2) := S((∆[1,3]
in j )op).(19.3.9)

To be more precise, we may write

Kern
(
C0

r1 ��
r2 �� C1

r12 ��
r13 ��
r23 ��

C2

)
instead of Kern(C0, C1, C2) .

By Definition 19.1.6, we get

(i) An object of Kern(C0, C1, C2) is a pair (F, u) of F ∈ C0 and an isomor-
phism u : r1F ∼−→ r2F such that the diagram below commutes:

r12r1F
r12u ��

∼
��

r12r2F
∼ �� r23r1F

r23u

��
r13r1F

r13u �� r13r2F
∼ �� r23r2F.

(19.3.10)
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(ii) A morphism (F, u) −→ (G, v) in Kern(C0, C1, C2) is a morphism ϕ : F −→
G such that the diagram below commutes:

r1F
u ��

r1(ϕ)

��

r2F

r2(ϕ)

��
r1G

v �� r2G.

By its construction, there exists a faithful functor r : Kern(C0, C1, C2) −→ C0

and an isomorphism of functors r1 ◦ r � r2 ◦ r such that (19.3.7) is sat-
isfied. If S is a prestack on (∆[0,3]

in j )op as in (19.3.8), we have a functor
C −→ Kern(C0, C1, C2).

Definition 19.3.3. Consider a prestack S on (∆[0,3]
in j )op. If the functor C −→

Kern(C0, C1, C2) is an equivalence, then we say that (19.3.8) is an exact se-
quence of categories.

Now consider a morphism u : A −→ B in C∧X . We follow Notation 18.7.1.
Let S be a prestack on C∧X . We denote by Su the direct image of S by the
functor of presites λu : (∆in j )op −→ C∧B . Hence,

Su :=λu∗(S |B)

is a prestack on ∆op
in j . We denote by S[n,m]

u the direct image of Su by the

inclusion functor (∆[n,m]
in j )op −→ (∆in j )op.

For example, S[1,3]
u is visualized by the diagram of categories:

S(A) p1
∗ ��

p2
∗ �� S(A ×B A)

p12
∗ ��

p13
∗ ��

p23
∗ ��

S(A ×B A ×B A) .(19.3.11)

Here pi : A×B A −→ A and pi j : A×B A×B A −→ A×B A are the i-th projection
and the (i, j)-the projection respectively, and we used the notation pi

∗ in
(19.1.7).

Assume that u : A −→ B has a section v : B −→ A (that is, v ◦ u = idB).
Let S be a prestack on C∧X . We denote by Su,v the direct image of S by the
functor of presites λu,v : ∆̃op −→ C∧B (see Lemma 18.7.2). Hence,

Su,v :=λu,v∗(S |B)

is a prestack on ∆̃op. We denote by S[n,m]
u,v the direct image of Su,v by the

natural functor (∆[n,m]
in j )op −→ ∆̃op.

Since {0, 1} is a terminal object of ∆̃op, we have:

Su,v(∆̃op) � S(λu,v({0, 1})) � S(B).(19.3.12)

The next statement is an analogue of an easy result on presheaves (see
Exercise 2.24) in the framework of prestacks.
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Proposition 19.3.4. Let S be a prestack on a presite X and let u : A −→ B
be an epimorphism in C∧X . Then the sequence of categories below is exact.

S(B) u∗ �� S(A) p1
∗ ��

p2
∗ �� S(A ×B A)

p12
∗ ��

p13
∗ ��

p23
∗ ��

S(A ×B A ×B A) .(19.3.13)

In other words, S(B) � S[1,3]
u ((∆[1,3]

in j )op).

Proof. By replacing CX with CB , we may assume that B is the terminal object
of C∧X . Let K be the prestack on X

CX � U 
→ Kern(S(U × A),S(U × A × A),S(U × A × A × A)).

Then the category Kern(S(A),S(A × A),S(A × A × A)) is equivalent to
K(B). It is thus enough to show that the functor of prestacks S −→ K is an
equivalence. Hence it is enough to show that S(U) −→ K(U) is an equivalence
of categories for any U ∈ S. Replacing CX with CU , it is enough to prove the
result when B = U ∈ CX . Then A −→ B has a section v : B −→ A.

The functor κ : ∆[1,3]
in j −→ ∆̃ is co-1-cofinal by the result of Exercise 19.6.

Applying Proposition 19.2.3 to κ and the stack Su,v, we obtain the equivalence
Su,v(∆̃op) � S[1,3]

u ((∆[1,3]
in j )op). Since Kern

(
S(A),S(A ×B A),S(A ×B A ×B

A)
)

= S[1,3]
u ((∆[1,3]

in j )op), the result follows from the isomorphisms (19.3.12)
q.e.d.

19.4 Stacks

Let X be a site and let CX be the associated small category.

Definition 19.4.1. A prestack S on X is separated if for any U ∈ CX and
any F1, F2 ∈ S(U), Hom S|U (F1, F2) is a sheaf on U .

Lemma 19.4.2. Let S be a separated prestack. For A ∈ C∧X and F1, F2 ∈
S(A), the presheaf on A:

Hom S|A(F1, F2) : (U −→ A) 
→ HomS(U)(F1|U , F2|U ),

is a sheaf on A.

Proof. For any U ∈ CA, Hom S|A(F1, F2)|U � Hom S|U (F1|U , F2|U ) is a sheaf.
q.e.d.

Proposition 19.4.3. A prestack S is separated if and only if for any local
isomorphism A −→ A′ in C∧X , S(A′) −→ S(A) is fully faithful.
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Proof. (i) Assume that S is separated. For F1, F2 ∈ S(A′), there are isomor-
phisms by (19.1.8)

HomS(A′)(F1, F2) � Hom S|A′ (F1, F2)(A′)
� Hom S|A′ (F1, F2)(A)
� HomS(A)(F1|A, F2|A) .

(ii) Let U ∈ CX and let F1, F2 ∈ S(U). For any local isomorphism A −→ V in
C∧U , the map HomS|V (F1|V , F2|V ) −→ HomS|A(F1|A, F2|A) is an isomorphism,
and hence the presheaf Hom S|U (F1, F2) is a sheaf. q.e.d.

Definition 19.4.4. A prestack is a stack if for any U ∈ CX and any local
isomorphism A −→ U in C∧X , S(U) −→ S(A) is an equivalence of categories.

Proposition 19.4.5. (i) A stack is a separated prestack.
(ii) If S is a stack on X , then for any A ∈ C∧X , S|A is a stack on A.

Proof. (i) follows from Proposition 19.4.3.
(ii) is obvious. q.e.d.

Clearly, if S is a stack, then so is Sop.

Proposition 19.4.6. The conditions below are equivalent.

(i) S is a stack,
(ii) for any local epimorphism A −→ U with A ∈ C∧X and U ∈ CX , the sequence

below is exact:

S(U) �� S(A) �� �� S(A ×U A)
�� ���� S(A ×U A ×U A) ,

(iii) for any local epimorphism A −→ B in C∧X , the sequence below is exact:

S(B) �� S(A) �� �� S(A ×B A)
�� ���� S(A ×B A ×B A) ,

(iv) for any local isomorphism A −→ B in C∧X , S(B) −→ S(A) is an equiva-
lence.

Moreover, if CX admits fiber products, these conditions are equivalent to

(v) for any covering {Ui }i∈I of U ∈ CX , setting Ui j = Ui ×U U j and Ui jk =
Ui ×U U j ×U Uk , the sequence below is exact:

S(U) �� ∏
i S(Ui ) �� ��

∏
i j S(Ui j )

�� ����
∏

i jk S(Ui jk) .
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Proof. (iii) ⇒ (ii) is obvious as well as (iv) ⇒ (i).
(i) ⇒ (iv). Since U ×A B −→ U is a local isomorphism for any (U −→ A) ∈ CA,
we have

S(A) � lim←−
(U−→A)∈CA

S(U) � lim←−
(U−→A)∈CA

S(U ×A B) .

Hence, U ×A B −→ B defines the functor S(B) −→ lim←−
(U−→A)∈CA

S(U ×A B) � S(A).

On the other hand, B −→ A defines S(A) −→ S(B). Clearly, these two functors
are quasi-inverse to each other.
(iv) ⇒ (iii). Set S = Im(A −→ B). Since S −→ B is a local isomorphism,
S(B) −→ S(S) is an equivalence. It remains to apply Proposition 19.3.4 (with
B replaced by S).
(ii) ⇒ (i). Since the proof is similar to the case (v) ⇒ (i) (assuming that CX

admits fiber products), we shall prove this last implication.
(a) Given F, F ′ ∈ S(V ), U −→ V and a covering “

⊔
”

i
Ui −→ U , the sequence

below is exact:

Hom (F, F ′)(U) −→∏
i
Hom (F, F ′)(Ui ) ⇒

∏
j,k
Hom (F, F ′)(U jk) .

Therefore, Hom (F, F ′) is a sheaf and S is a separated prestack.
(b) Let U ∈ CX and let S −→ U be a local isomorphism in C∧X . There exists
an epimorphism A := “

⊔
”

i
Ui −→ S with Ui ∈ CX . Then {Ui }i is a covering of

U . Note that S(A) �∏
i S(Ui ), S(A×S A) �∏

i j S(Ui ×S U j ), etc. Consider
the following diagram:

S(U) ��

��

S(A) ����

id
��

S(A ×U A)
�� ����

��

S(A ×U A ×U A)

��
S(S) �� S(A) ���� S(A ×S A)

������ S(A ×S A ×S A) .

The row in the top is exact by the assumption and the row in the bottom is
exact by Proposition 19.3.4. On the other hand, the third and fourth vertical
arrows are fully faithful by (a), because A×S A −→ A×U A and A×S A×S A −→
A ×U A ×U A are local isomorphisms. Hence the first vertical arrow is an
equivalence of categories. q.e.d.

Proposition 19.4.7. (a) Let A be a category satisfying (17.4.1) and denote
by S the prestack : U 
→ Sh(U,A). Then

(i) for any A ∈ C∧X , S(A) is equivalent to the category Sh(A,A),
(ii) S is a stack.

(b) Let R be a sheaf of rings on X . Then the prestack U 
→ Mod(R|U ) is a
stack.
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Proof. (a) (i) We shall first construct a functor θ1 : S(A) −→ Sh(A,A).
Let F = {FU , ϕu}U∈CA,u∈Mor(CA) ∈ Ob(S(A)) (see Definition 19.1.6). Hence,
FU ∈ Sh(U,A) and ϕu : ru FU2 −→ FU1 is an isomorphism, where ru = ju∗ is
the restriction morphism Sh(U2,A) −→ Sh(U1,A). We define F ′ = θ1(F) ∈
PSh(A,A) as follows. For U ∈ CA, set F ′(U) = FU (U). For u : U1 −→ U2,
define the morphism F ′(U2) −→ F ′(U1) by the sequence of morphisms:

F ′(U2) = FU2(U2) −→ ru(FU2)(U1) ∼−→
ϕu

FU1(U1) = F ′(U1) .

Since F ′|U � FU for any U ∈ CA, the presheaf F ′ is a sheaf.
Next we construct a functor θ2 : Sh(A,A) −→ S(A) by associating to F ∈

Sh(A,A) the family {F |U } with the obvious isomorphisms ϕu : (F |U2)|U1 �
F |U1 .

It is easily checked that the functors θ1 and θ2 are quasi-inverse to each
other.

(a) (ii) By Proposition 17.6.8, if u : A −→ A′ is a local isomorphism, then
Sh(A′,A) −→ Sh(A,A) is an equivalence. Hence, S is a stack.

(b) The proof is similar. q.e.d.

Notation 19.4.8. For a sheaf R of rings on X , we denote by Mod(R) the stack
U 
→ Mod(R|U ).

Let us denote by Sh X the stack on X : U 
→ Sh(U). Let S be a prestack
on X . For any F ∈ S(X), let us denote by hX (F) : Sop −→ Sh X the functor
of prestacks which associates Hom S |U (F ′, F |U ) ∈ Sh X (U) to U ∈ CX and
F ′ ∈ S(U).

Similarly to Yoneda’s lemma, we have

Hom Fct(Sop,Sh X )(hX (F), hX (F ′)) � Hom S(X)(F, F ′)

for any F, F ′ ∈ S(X) .
(19.4.1)

Definition 19.4.9. Let Φ : Sop −→ Sh X be a functor of prestacks. If there
exists an object F ∈ S(X) such that Φ is isomorphic to hX (F), we say that
Φ is representable and F represents Φ. If there exists a local epimorphism
A −→ ptX such that Φ|U : (S |U )op −→ ShU is representable for any U ∈ CX

and U −→ A, then we say that Φ is locally representable.

Proposition 19.4.10. Let S be a stack on X . If a functor Φ : Sop −→ Sh X

is locally representable, then Φ is representable.

Proof. By replacing A with “
⊔

”
U∈(CX )A

U , we may assume from the beginning

that Φ|A is representable. Let F0 ∈ S(A) be its representative. Let p : A −→
ptX be a canonical morphism and let pi : A1 := A × A −→ A be the i-th
projection (i = 1, 2). Then we have Φ|A1 � p∗i Φ, and isomorphism (19.4.1)
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induces an isomorphism u : p∗1F0
∼−→ p∗2F0. By the same argument, u satisfies

(19.3.10). Hence it gives an object of Kern(S(A),S(A × A),S(A × A × A)).
By Proposition 19.4.5 (iii), there exists F ∈ S(X) such that p∗F � F0. It is
easily checked that F represents Φ. q.e.d.

19.5 Morita Equivalence

Let (X,OX ) be a ringed site (see Definition 18.6.1) and let S be an additive
stack on X . We call S an OX -stack if for any U ∈ CX , S(U) has a structure
of an OX (U)-category, i.e., S(U) is endowed with a ring morphism OX (U) −→
End(idS(U)) and for any morphism u : U1 −→ U2 and any F ∈ S(U2), the
diagram below commutes

OX (U2) ��

��

End idS(U2)
(F)

ru
��

OX (U1) �� End idS(U1)
(ru F).

Using Lemma 1.3.8, we see that End(idS) is a sheaf of commutative rings.
Saying that S is an OX -stack is equivalent to saying that one is given a
morphism of sheaves of rings OX −→ End(idS).

For two OX -stacks S1 and S2, a functor of OX -stacks Φ : S1 −→ S2 is a
functor of stacks such that, for any U ∈ CX and F ∈ S1(U), the composition
OX |U −→ EndS1(F) −→ EndS2(Φ(U)(F)) coincides with the one given by the
OX -stack structure on S2.

Let X be a site and let R be a sheaf of (not necessarily commutative)
rings on X . For an R-module F , we have introduced in Definition 18.5.1 the
property of being locally free or of being locally of finite presentation. We
define similarly other “local” properties such as of being a direct summand,
or of having sections with a given property. The precise formulation is left to
the reader.

Let us recall that an R-module M is flat if the functor

• ⊗R M : Mod(Rop) −→ Mod(ZX )

is exact. If this functor is exact and faithful, we say that M is faithfully flat.
It is a local property.

Lemma 19.5.1. Let P be a flat R-module locally of finite presentation. Then

(i) P is locally a direct summand of R⊕n for some n.
(ii) For any R-module M,

Hom R(P,R)⊗R M −→ Hom R(P, M)

is an isomorphism.
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Proof. (i) Locally there exists an exact sequence: L1 −→ L0 −→ P −→ 0 where
Lν � R⊕mν . Then we have a commutative diagram with exact rows

0 �� Hom R(P,R)⊗R P

��

�� Hom R(L0,R)⊗R P

��

�� Hom R(L1,R)⊗R P

��
0 �� Hom R(P, P) �� Hom R(L0, P) �� Hom R(L1, P).

Since the middle and the right arrows are isomorphisms, Hom R(P,R) ⊗R
P −→ Hom R(P, P) is an isomorphism. Hence there exists locally a section∑n

i=1 ti ⊗ si ∈ Hom R(P,R)⊗R P which corresponds to id ∈ Hom R(P, P). It

means that P
id−→ P decomposes into P

(ti )−→ R⊕n (si )−−→ P.
(ii) easily follows from (i). q.e.d.

Let (X,OX ) be a ringed site and let now Ri (i = 1, 2) be a sheaf of
OX -algebras on X .

Proposition 19.5.2. Let P be an (R1 ⊗OX Rop
2 )-module. Then the following

conditions are equivalent.

(i) There is an (R2 ⊗OX Rop
1 )-module Q such that P ⊗R2 Q � R1 as an

R1 ⊗OX Rop
1 -module and Q ⊗R1 P � R2 as an R2 ⊗OX Rop

2 -module.
(ii) For Q0 :=Hom R1

(P,R1) ∈ Mod(R2 ⊗OX
Rop

1 ), the canonical morphism
P ⊗R2 Q0 −→ R1 is an isomorphism and Q0 ⊗R1 P � R2 as an R2 ⊗OX

Rop
2 -module.

(iii) P is a faithfully flat R1-module of locally finite presentation and Rop
2

∼−→
EndR1(P).

(iv) P is a faithfully flat Rop
2 -module of locally finite presentation and R1

∼−→
EndRop

2
(P).

(v) • ⊗R1
P : Mod(Rop

1 ) −→ Mod(Rop
2 ) is an equivalence of OX -stacks.

(vi) P ⊗R2
• : Mod(R2) −→ Mod(R1) is an equivalence of OX -stacks.

(vii) Hom R1
(P, • ) : Mod(R1) −→ Mod(R2) is an equivalence of OX -stacks.

(viii) Hom Rop
2

(P, • ) : Mod(Rop
2 ) −→ Mod(Rop

1 ) is an equivalence of OX -stacks.

Moreover, under the condition of (i), Q is isomorphic to Hom R1
(P,R1) and

to Hom Rop
2

(P,R2) as an (R2 ⊗OX
Rop

1 )-module.

Proof. (i) ⇒ (v) is obvious.
(v) ⇒ (i). By the hypothesis, P is faithfully flat over R1. Take Q ∈ Mod(Rop

1 )
such that Q ⊗R1

P � R2 as an Rop
2 -module. The isomorphisms of sheaves of

rings

R2 � EndRop
2

(R2) � EndRop
1

(Q)

give a structure of R2-module over Q. Hence Q is an (R2 ⊗OX
Rop

1 )-module
and we have an isomorphism Q ⊗R1

P � R2 in Mod(R2 ⊗OX
Rop

2 ). We have
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P ⊗R2
Q ⊗R1

P � P ⊗R2
R2 � R1 ⊗R1

P ,(19.5.1)

and hence there is an isomorphism ψ : P ⊗R2
Q ∼−→R1 in Mod(Rop

1 ). Since
(19.5.1) is R1-linear, ψ is also R1-linear. Hence ψ is an isomorphism of R1⊗OX

Rop
1 -modules.
We have thus proved that (i) and (v) are equivalent. By replacing (R1,R2)

with (Rop
2 ,Rop

1 ), these properties are also equivalent to (vi).
(iii) ⇒ (ii). Set Q0 = Hom R1

(P,R1). By Lemma 19.5.1, we have the isomor-
phisms

Q0 ⊗R1 P ∼−→ EndR1(P) � Rop
2 .

We get the isomorphisms

P ⊗R2 Q0 ⊗R1 P � P ⊗R2 R2 � R1 ⊗R1 P .

Therefore P ⊗R2 Q0 −→ R1 is an isomorphism.
(i)+(v)+(vi) ⇒ (iii). By the hypothesis (v), P is faithfully flat over R1. Let
us show that P is of finite presentation. There exist locally finitely many
sections si ⊗ ti ∈ Q ⊗R1 P (i = 1, . . . , m) which generate Q ⊗R1 P as a left
R2-module. Set P ′ =

∑
i R1ti . Then Q⊗R1 P ′ −→ Q⊗R1 P is an epimorphism.

Applying the functor P⊗R2
• , we get that P ′ −→ P is an epimorphism. Hence

P is locally finitely generated. Let L := Rm
1 −→ P be an epimorphism of R1-

modules. Since the R2-linear morphism Q ⊗R1 L −→ Q ⊗R1 P � R2 is an
epimorphism, it has locally a section. Hence, tensoring P from the left, the
R1-linear morphism L � P ⊗R2 Q ⊗R1 L −→ P ⊗R2 Q ⊗R1 P � P has also
locally a section. Hence P is locally of finite presentation.
(v)⇔(viii) follows from the fact that • ⊗R1 P : Mod(Rop

1 ) −→ Mod(Rop
2 ) is a

left adjoint to Hom Rop
2

(P, • ) : Mod(Rop
2 ) −→ Mod(Rop

1 ).
The other implications are now obvious. q.e.d.

Definition 19.5.3. If an (R1⊗OX R
op
2 )-module P satisfies the equivalent con-

ditions (i)–(viii) in Proposition 19.5.2, we say that P is invertible. An OX -
module is called invertible if it is invertible as an (OX ⊗OX Oop

X )-module.

Theorem 19.5.4. (Morita equivalence.) Let Φ : Mod(R2) −→ Mod(R1) be an
equivalence of OX -stacks. Then there exists an invertible (R1⊗OX R

op
2 )-module

P such that P ⊗R2
• is isomorphic to Φ and Hom R1

(P, • ) is isomorphic to
Φ−1.

Proof. For any U ∈ CX , Φ(U) commutes with inductive limits and projective
limits, and Φ commutes with jU−→X ∗. Hence Φ commutes with j−1

U−→X , a left
adjoint of jU−→X ∗. Set P = Φ(R2). Then the Rop

2 -module structure of R2

induces OX -algebra morphisms Rop
2 −→ EndR2(R2) −→ EndR1(P). Hence P is

an (R1 ⊗OX Rop
2 )-module. Consider the functor



19.6 Twisted Sheaves 477

Φ ′ := P ⊗R2
• : Mod(R2) −→ Mod(R1) .

Let U ∈ CX and let M ∈ Mod(R2|U ). For any V ∈ CU and s ∈ M(V ), we
have a morphism R2|V −→ M |V . Hence we have a morphism P|V = Φ(R2)|V −→
Φ(M)|V . We have thus defined a morphism P(V )⊗R1(V ) M(V ) −→ Φ(M)(V ),
functorial with respect to V ∈ CU . This gives a morphism P|U ⊗R1|U M −→
Φ(M). Thus we obtain a morphism Φ ′ −→ Φ.

Let us show that Φ ′(M) −→ Φ(M) is an isomorphism for any M ∈
Mod(R2). By the construction, this is true for M = R2. Since any M is iso-
morphic to the cokernel of morphisms of R2-modules of the form ⊕ν(R2)Uν

,
we may assume that M = ⊕ν(R2)Uν

. Since Φ ′ and Φ commute with direct
sum, we may assume that M = (R2)U for some U ∈ CX . Since Φ ′ and Φ

commute with the functor j−1
U−→X , Φ ′((R2)U ) −→ Φ((R2)U ) is an isomorphism.

The other assertions are obvious by the preceding proposition. q.e.d.

19.6 Twisted Sheaves

Let (X,OX ) be a ringed site.

Definition 19.6.1. An OX -stack S on X is called an OX -stack of twisted
sheaves, or else a stack of twisted OX -modules, if S is locally equivalent to
Mod(OX ), that is, if there is a local epimorphism A −→ ptX such that for
any U −→ A with U ∈ CX , there is an equivalence ΦU : S|U ∼−→Mod(OX )|U ,
or equivalently, there exists a local epimorphism A −→ ptX in C∧X such that
S|A ∼−→Mod(OX )|A.

For a stack S of twisted OX -modules, an object of S(X) is called a twisted
OX -module.

Let S be an OX -stack of twisted sheaves. Then for any M ∈ Mod(OX ) and
F ∈ S(X), the functor

S(X) � L 
→ HomOX
(M,Hom S(F, L))

is representable. Indeed, it is obvious that the functor from S to Sh X given
by U 
→ Hom OU

(M |U ,Hom S |U (F, • )) is locally representable, and hence it
is representable by Proposition 19.4.10 (applied to Sop). We shall denote a
representative of this functor by M ⊗OX F . Then it defines a bifunctor

• ⊗OX
• : Mod(OX )×S −→ S .

In the sequel, we write ⊗ instead of ⊗OX
for simplicity.

Lemma 19.6.2. Let S be an OX -stack of twisted sheaves. Then, any equiv-
alence of OX -stacks Φ : S −→ S is isomorphic to P ⊗ • for some invertible
OX -module P.
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Proof. Set P = Hom (idS, Φ). This sheaf is an OX -module. Then P is an
invertible OX -module and we have a morphism P ⊗ M −→ Φ(M). Moreover
this morphism is an isomorphism. Indeed, this fact is a local property which
holds when S � Mod(OX ) by Theorem 19.5.4. q.e.d.

Let p : A −→ ptX be a local epimorphism in C∧X . Set A0 = A, A1 = A×X A,
A2 = A×X A×X A and A3 = A×X A×X A×X A. Denote by pi : A1 −→ A the i-th
projection (i = 1, 2), by pi j : A2 −→ A1 the (i, j)-th projection (i, j = 1, 2, 3, 4)
by pi jk : A3 −→ A2 the (i, j, k)-th projection (i, j, k = 1, 2, 3). This is visualized
by a diagram similar to (18.7.2)

A3
p134 ��p234 ��

p123 ��p124 �� A2

p23 ��
p13 ��
p12 �� A1

p2 ��
p1 �� A p �� X .(19.6.1)

We also introduce qi j : A3 −→ A1 the (i, j)-th projection (i, j = 1, 2, 3, 4),
and qi : A2 −→ A the i-th projection (i = 1, 2, 3). Let L be an invertible
OA1-module, and let

ϕ : p12
∗L ⊗ p23

∗L ∼−→ p13
∗L(19.6.2)

be an isomorphism in Mod(OA2) satisfying the chain condition given by the
commutativity of the diagram:

q12
∗L ⊗ q23

∗L ⊗ q34
∗L ∼ ��

��

p123
∗(p12

∗L ⊗ p23
∗L)⊗ q34

∗L
ϕ��

q12
∗L ⊗ p234

∗(p12
∗L ⊗ p23

∗L)
ϕ��

p123
∗ p13

∗L ⊗ q34
∗L

��
q12

∗L ⊗ p234
∗ p13

∗L

��

q13
∗L ⊗ q34

∗L

��
q12

∗L ⊗ q24
∗L

��

p134
∗(p12

∗L ⊗ p23
∗L)

ϕ
��

p124
∗(p12

∗L ⊗ p23
∗L)

ϕ��

p134
∗ p13

∗L

��
p124

∗ p13
∗L ∼ �� q14

∗L .

These conditions are paraphrased as follows. For U ∈ C and x, y ∈ A(U), let

L(x, y) be L(U
(x,y)−−→ A1). Then ϕ gives ϕ(x1, x2, x3) : L(x1, x2)⊗ L(x2, x3) −→

L(x1, x3) for x1, x2, x3 ∈ A(U). The commutativity of the diagram above is
equivalent to the commutativity of the following diagram
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L(x1, x2)⊗ L(x2, x3)⊗ L(x3, x4)
ϕ(x1,x2,x3) ��

ϕ(x2,x3,x4)

��

L(x1, x3)⊗ L(x3, x4)

ϕ(x1,x3,x4)

��
L(x1, x2)⊗ L(x2, x4)

ϕ(x1,x2,x4) �� L(x1, x4)

for x1, x2, x3, x4 ∈ A(U).
With these data, we define the stack S as follows. To U ∈ CX we associate

S(U) = Kern
(

Mod(OX |A×U ) ���� Mod(OX |A1×U )
������ Mod(OX |A2×U )

)
�
⎧⎨⎩(F, s) ;

F ∈ Mod(OA|A×U ) and s : L ⊗ p2
∗F ∼−→ p1

∗F is an iso-
morphism in Mod(OX1 |A1×U ) satisfying the following
chain condition (19.6.3)

⎫⎬⎭
p12

∗L ⊗ p23
∗L ⊗ q3

∗F ��

ϕ
��

p12
∗L ⊗ p23

∗(L ⊗ p2
∗F)

s��
p13

∗L ⊗ q3
∗F

��

p12
∗L ⊗ p23

∗ p1
∗F

��
p13

∗(L ⊗ p2
∗F)

s
��

p12
∗L ⊗ q2

∗F

��
p13

∗ p1
∗F

��

p12
∗(L ⊗ p2

∗F)
s��

q1
∗F �� p12

∗ p1
∗F

commutes.(19.6.3)

Proposition 19.6.3. S is an OX -stack of twisted sheaves.

Proof. It is obvious that S is an OX -stack. We shall show that S is locally
equivalent to Mod(OX ). We may assume that p : A −→ ptX has a section s.
Then s defines morphisms s0 : A −→ A1 and s1 : A1 −→ A2 by s0(x) = (x, spx)
and s1(x1, x2) = (x1, x2, spx2). Then p12◦s1 = idA1 , s0◦p2 = p23◦s1 : A1 −→ A,
p13 ◦ s1 = s0 ◦ p1. Let r1 : A1 −→ X be the projection. For any G ∈ Mod(OX ),
define F = s0∗L ⊗ p∗G. Then

L ⊗ p2
∗F � L ⊗ p2

∗(s0∗L ⊗ p∗G)
� s1

∗ p12
∗L ⊗ s1

∗ p23
∗L ⊗ r1

∗G

� s1
∗(p12

∗L ⊗ p23
∗L)⊗ r1

∗G

� s1
∗ p13

∗L ⊗ p1
∗ p∗G � p1

∗(s0∗L ⊗ p∗G) .

We can easily see that the chain condition (19.6.3) is satisfied. Hence G 
→ F
defines a functor S −→ Mod(OX ). Conversely F 
→ s∗F defines a functor
S −→ Mod(OX ). We can easily check that they are quasi-inverse to each
other. q.e.d.
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Moreover any OX -stack of twisted sheaves is obtained in this way.

Remark 19.6.4. Let X be a site and let OX be a sheaf of commutative rings on
X . Assume that any invertible OX -module is locally isomorphic to OX . (This
assumption is satisfied when OX is a local ring, see Exercise 19.2.) Denote by
O×

X the abelian sheaf of invertible sections of OX .
(i) For a stack S of twisted OX -modules, there is an isomorphism of abelian
groups Aut (idS) � Γ(X ;O×

X ).
(ii) The set of equivalence classes of invertible OX -modules is isomorphic to
H1(X ;O×

X ).
(iii) The set of equivalence classes of stacks of twisted OX -modules is isomor-
phic to H2(X ;O×

X ).
We shall not give the proofs of these facts here and refer to Breen [10] (see

also [34]). Note that (i) is clear and (ii) implies by Lemma 19.6.2 that for a
stack S of twisted OX -modules, the set of isomorphism classes of equivalences
of stacks from S to itself is isomorphic to H1(X ;O×

X ).

Example 19.6.5. Let X be a complex manifold, and denote by ΩX the sheaf
of holomorphic forms of maximal degree. Take an open covering X =

⋃
i∈I Ui

such that there are nowhere vanishing sections ωi ∈ ΩUi . Let ti j ∈ O×
Ui j

be
the transition functions given by ω j |Ui j = ti jωi |Ui j . Choose determinations
si j ∈ O×

Ui j
for the multivalued functions t1/2

i j . Since si j s jk and sik are both

determinations of t1/2
ik , there exists ci jk ∈ {−1, 1} such that si j s jk = ci jksik .

By choosing A = “
⊔

” Ui and L = ZX |A×X A, ϕ = (ci jk) in (19.6.2), we
obtain a ZX -stack S of twisted sheaves on X . The twisted sheaf of holomorphic
half-forms is given by

Ω
1/2
X = ({OUi }i∈I , {si j }i, j∈I ),

which is regarded as an object of S(X). (See [34] for more explanation.)

Exercises

Exercise 19.1. Let S1 be a prestack on a site X and let S2 be a stack on X .
Prove that Fct(S1,S2) is a stack on X .

Exercise 19.2. Let OX be a sheaf of commutative rings on a site X . We say
that OX is a local ring if for any U ∈ CX and any a ∈ OX (U), there exists
a covering sieve S ∈ SCov(U) such that for any V ∈ S, at least one of the
sections a|V and (1 − a)|V is invertible in OX (V ). Prove that any invertible
module over a local ring OX is locally isomorphic to OX .
(Hint: prove that if 1 =

∑n
k=1 ai with ai ∈ OX , then one of the OX ai ’s is

locally equal to OX .)
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Exercise 19.3. Let X be a topological space and assume that X is locally
arcwise connected. To X , we associate a category CX as follows: Ob(CX ) = X ,
and for x, y ∈ X , a morphism x −→ y in CX is a homotopy class of paths from x
to y. Prove that the category CX is simply connected (see Definition 19.2.1) if
and only if the topological space X is simply connected in the classical sense.

Exercise 19.4. Prove that if a groupoid C (i.e., a category in which all mor-
phisms are isomorphisms) is simply connected, then C is equivalent to Pt.

Exercise 19.5. Prove that any filtrant category is simply connected.

Exercise 19.6. We shall follow the notations in §19.3 (see also Exercise 1.21).
(i) Prove that the natural functor ∆[1,n]

in j −→ ∆[1,∞] is co-1-cofinal for n ≥ 3.
Here ∆[1,∞] is the full subcategory of ∆ consisting of non-empty finite totally
ordered sets.
(ii) Prove that the functor κ : ∆[1,n]

in j −→ ∆̃ (the composition ∆[1,n]
in j −→ ∆ −→ ∆̃)

is co-1-cofinal for n ≥ 3.
(iii) Show that the natural functor ∆[1,2]

in j −→ ∆ is not co-1-cofinal.

Exercise 19.7. Let S be a prestack on a site X . Define the prestack Sa by
setting:

Sa(U) =
{
(F, A) ; A −→ U is a local isomorphism and F ∈ S(A)

}
,

HomSa(U)((F, A), (G, B)) = Γ(A ×U B ; Hom S|A×U B
(F |A×U B, G|A×U B)a) .

(i) Prove that Sa is a well-defined stack and construct a natural functor of
prestacks S −→ Sa .
(ii) Prove that Fct(Sa,S′) −→ Fct(S,S′) is an equivalence of categories for
any stack S′ on X .

Exercise 19.8. Let G be a group and denote by Γ the category with one
object g and such that HomΓ (g, g) = G. Let C be a category. Prove that
giving an action of G on C (see Exercise 4.10) is equivalent to giving a prestack
S on Γ such that S(g) = C.
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