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ABSTRACT. We show that complete Segal spaces and Segal categories are 
Quillen equivalent to quasi-categories. 

Introduction 

Quasi-categories were introduced by Boardman and Vogt in their work on ho-
motopy invariant algebraic structures [BV]o They are often called weak Kan com-
plexes in the literature. The category of simplicial sets S admits a Quillen model 
structure in which the fibrant objects are the quasi-categories by a result of the 
first author in [J2]0 We call this model structure, the model structure for quasi-
categories. The theory of quasi-categories has applications to homotopical algebra 
and higher category theory, see [J3], [Lul] and [Lu2]. Complete Segal spaces 
were introduced by Rezk in his work on the homotopy theory of homotopy theories 
[Rez]. The category of bisimplicial sets S(2) admits a Quillen model structure in 
which the fibrant objects are the complete Segal spaces. We call this model struc-
ture the model structure for complete Segal spaces. The main result of this paper is 
to establish a Quillen equivalence between the model category for quasi-categories 
and that for complete Segal spaces: 

P* 0 s +-+ s(2) . •* 1 0 0 "1• 

The functor ii associates to a bisimplicial set X its first row X*0 . The theorem 
implies that the first row of a complete Segal space contains all the homotopy 
information about the space. We also describe a Quillen equivalence in the opposite 
direction, 

t, : S(2) +-+ S : t 1, 

where the functor tr associates to a bisimplicial set X a total simplicial set tr(X)o 
Segal categories were first introduced by Dwyer, Kan and Smith [DKS], where they 
are called special A0 -diagrams of simplicial sets o The theory of Segal categories 
was extensively developed by Hirschowitz and Simpson for application to algebraic 
geometry. They show that the category of precategories admits a model structure 
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in which the fibrant objects are Segal categories. We call this model structure 
the model stmcture for Segal categories. By a theorem of Bergner in [B2], the 
inclusion functor rr* : PCat c S(2) induces a Quillen equivalence between the 
model structure for Segal categories and the model structure for complete Segal 
spaces, 

rr* : PCat ~ 8(2) : rr*. 
By combining these equivalences, we obtain an equivalence between the model 
category for quasi-categories and that for Segal categories: 

q* : S ~ PCat : j*. 

The functor j* associates to a precategory X its first row X*0 . The theorem implies 
that the first row of a fibrant Segal category contains all the homotopy information 
about the Segal category. We also describe a Quillen equivalence in the opposite 
direction, 

d* : PCat ~ S : d*, 
where the functor d* associates to a precategory X its diagonal simplicial set. 

The paper has five sections, one addendum, one appendix and one epilogue. 
In the first section we give a brief description of the relevant aspects of the model 
structure for quasi-categories. The fibrant objects are the quasi-categories and the 
acyclic maps are called weak categorical equivalences. In the second section we 
introduce two Reedy model structures on the category of bisimplicial sets, respec-
tively called the vertical and the horizontal model structures. The acyclic maps are 
the column-wise weak homotopy equivalences in the vertical structure but they are 
the row-wise weak categorical equivalences in the horizontal. The interaction be-
tween the two model structures is one of the main technical tools of the paper. We 
define a total space functor from bisimplicial sets to simplicial sets and show that 
it is a left Quillen functor with values in the model category for quasi-categories 
for both the vertical and the horizontal model structures. In the third section we 
show that every row of a Segal space is a quasi-category. In section four we show 
that the functor which associates to a bisimplicial set its first row induces a Quillen 
equivalence between complete Segal spaces and quasi-categories. We also show that 
the total space functor induces a Quillen equivalence in the opposite direction. In 
section five we show that the functor which associates to a precategory its first row 
induces a Quillen equivalence between Segal categories and quasi-categories. We 
also prove that the functor which associates to a precategory its diagonal induces a 
Quillen equivalence in the opposite direction. In the addendum we show that the 
model category for complete Segal spaces can be obtained from the model category 
for quasi-categories by a method developped by Rezk, Schwede and Shipley in their 
paper on model categories and functors [RSS]. In the epilogue, we discuss other 
models of homotopy theories and other Quillen equivalences. 
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The results of this section are taken from [Jl) and [J2). Quasi-categories were 
introduced by Boardman and Vogt in their work on homotopy invariant algebraic 
structures [BV). The category of simplicial sets S admits a model structure in which 
the fibrant objects are the quasi-categories [J2). We call it the model structure for 
quasi-categories. 

See the appendix for notation, and basic results. We denote by Set the category 
of sets, by S the category of simplicial sets and by Cat the category of small 
categories. 

Recall that an arrow u : A --t B in a category is said to have the left lifting 
property with respect to another arrow f : X --t Y, or that f has the right lifting 
property with respect to u, if every commutative square 

A~X 

u! ///~ !f 
B~Y 

has a diagonal filler d: B --t X (that is, du = x and fd = y). We shall denote this 
relation by u rh f. 

We first recall the classical model structure on the category S. The notion 
of weak homotopy equivalence between simplicial sets is usually defined by using 
the geometric realisation functor S --t Top. An alternative definition uses Kan 
complexes and the homotopy category s1ro introduced by Gabriel and Zisman [GZ). 
Recall that a simplicial set X is called a Kan complex if every horn Ak[n)--t X has 
a filler A[n) --t X. If A, BE S let us put 

7ro(A, B)= 7ro(BA). 
If we apply the functor 7ro to the composition map C 8 X BA --t cA we obtain a 
composition law 

7ro(B, C) x 7ro(A, B) --t 7ro(A, C) 
for a category s1ro, where S11"0 (A, B)= 1r0 (A, B). A map of simplicial sets is called 
a homotopy equivalence if it is invertible in the category s1ro. A map u : A --t B is 
called a weak homotopy equivalence the map 

7ro(u,X): 7ro(B,X) --t 7ro(A,X) 
is bijective for every Kan complex X. This notion of weak equivalence is equivalent 
to the usual notion which is defined via the geometric realisation functor. 
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A map of simplicial sets is called a Kan fibration if it has the right lifting 
property with respect to every horn inclusion Ak[n] C A[n]. The following theorem 
describes the classical model structure on the category S. 

THEOREM 1.1 (Quillen, see [Q]). The category of simplicial sets S admits a 
model structure (Co, Wo, Fo) in which a cofibration is a monomorphism, a weak 
equivalence is a weak homotopy equivalence and a fibration is a K an fibration. The 
model structure is cartesian closed and proper. 

See Definition 7.7 in the appendix for the notion of model structure. See 
[JT2] for a purely combinatorial proof of the theorem. We call a map of simplicial 
sets a trivial fibration if it has the right lifting property with respect to every 
monomorphism. We note that this notion can be defined in any topos, see Definition 
7.2. The acyclic fibrations of the classical model structure are the trivial fibrations. 
For every n ~ 0, we denote by 8n the map 8A[n] --t A[n] defined by the inclusion 
8A[n] C A[n]. 

PROPOSITION 1.2. [GZ] The class of monomorphisms in the category S is 
generated as a saturated class by the set of inclusions 

8n : 8A[n] C A[n], for n ~ 0. 

A map of simplicial sets is a trivial fibration iff it has the right lifting property with 
respect to 8n for every n ~ 0. 

For the notion of a saturated class, see 7.4. 

DEFINITION 1.3. [GZ] A map of simplicial sets is said to be anodyne if it 
belongs to the saturated class generated by the horns Ak[n] C A[n] for n ~ 1 and 
0 ::; k ::; n. 

A map of simplicial set is anodyne iff it is an acyclic cofibration. 

Before describing the model structure for quasi-categories it is good to describe 
a related model structure on Cat. We call a functor p: X --t Y a quasi-fibration if 
for every object a EX and every isomorphism g E Y with source p(a) there exists 
an isomorphism f E X with source a such that p(f) = g. A functor p : X --t Y 
is a quasi-fibration iff it has the right lifting property with respect to the inclusion 
{0} C J, where J is the groupoid generated by one isomorphism 0 --t 1. We say 
that a functor A--t B is monic on objects (resp. surjective on objects) if the induced 
map Ob(A) --t Ob(B) is monic (resp. surjective). 

THEOREM 1.4. [JTl] [Rez] The category Cat admits a model structure in 
which a cofibration is a functor monic on objects, a weak equivalence is an equiv-
alence of categories and a fibration is a quasi-fibration. The acyclic fibrations are 
the equivalences surjective on objects. The model structure is proper and cartesian 
closed. Every object is fibrant and cofibrant. 

We call this model structure the natural model structure on Cat. The notion 
of cartesian closed model category is defined in 7.29. 

The category A is a full subcategory of Cat. The nerve of a category C E Cat 
is the simplicial set NC obtained by putting (NC)n = Cat([n], C) for every n ~ 0. 
The nerve functor N : Cat --t S is full and faithful and we shall regard it as an 
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inclusion N : Cat C S by adopting the same notation for a category and its nerve. 
The functor N has a left adjoint 

r1: S-Cat. 

We say that r1X is the fundamental category of a simplicial set X. The fundamental 
groupoid 1r1X is obtained by inverting the arrows of r1X. 

We shall say that a horn Ak[n] C D.[n] is inner if 0 < k < n. The following 
definition is due to Boardman and Vogt. 

DEFINITION 1.5. [BV] A simplicial set X is called a quasi-category if every 
inner horn Ak[n] -X has a filler D.[n] -X. A map of quasi-categories is a map 
of simplicial sets. 

Quasi-categories are often called weak Kan complexes in the literature. The 
nerve of a category and a Kan complex are examples. We shall denote by QCat 
the category of quasi-categories; it is a full subcategory of S. 

The next step is to introduce an appropriate notion of equivalence for quasi-
categories. If A is a simplicial set, we shall denote by r0 A the set of isomorphism 
classes of objects of the fundamental category r1A. The functor r1 : S - Cat 
preserves finite products [GZ], hence also the functor ro: S- Set. If A, BE S let 
us put 

ro(A, B)= ro(BA). 
If we apply the functor To to the composition map C8 X BA - cA we obtain a 
composition law 

ro(B, C) x ro(A, B) - ro(A, C) 
for a category g-ro, where s-ro(A,B) = r0 (A,B). We shall say that a map of 
simplicial sets is a categorical equivalence if it is invertible in the category g-ro. If X 
and Y are quasi-categories, a categorical equivalence X - Y is called an equivalence 
of quasi-categories. We shall say that a map of simplicial sets u : A - B is a weak 
categorical equivalence if the map 

ro(u,X): ro(B,X)- ro(A,X) 

is bijective for every quasi-category X. 

The notion of equivalence between quasi-categories has another description 
which we don't need but which is good to know. If X be a simplicial set, we shall 
denote by X(a, b) the fiber at (a, b) E Xo x Xo of the projection (po,pt) : X 1 -
X x X defined from the inclusion {0, 1} C I. The simplicial set X(a, b) is a Kan 
complex if X is a quasi-category. 

DEFINITION 1.6. [J2] We shall say that a map between simplicial sets u : A -
B is essentially surjective if the map ro ( u) : roA - roB is surjective. We shall say 
that a map between quasi-categories f : X - Y is fully faithful if the map 

X(a, b) - Y(fa, fb) 

induced by f is a weak homotopy equivalence for every pair a, bE Xo. 

THEOREM 1.7. [J2] A map between quasi-categories is an equivalence iff it is 
fully faithful and essentially surjective. 
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DEFINITION 1.8. [J2] We shall say that a map of simplicial sets is a quasi-
fibration if it has the right lifting property with respect to every monic weak cate-
gorical equivalence. 

THEOREM 1.9. [J2] The category of simplicial sets S admits a model structure 
(C1. W1. F 1) in which a co fibration is a monomorphism, a weak equivalence is a weak 
categorical equivalence and a fibration is a quasi-fibration. The acyclic fibrations 
are the trivial fibrations. The fibrant objects are the quasi-categories. The model 
structure is cartesian closed and left proper. 

We shall say that it is the model structure for quasi-categories. The notion of 
cartesian closed model category is defined in 7.29. The quasi-fibrations between 
quasi-categories have a simple description. It is based on the following notion: 

DEFINITION 1.10. (J2] We shall say that a map of simplicial sets is mid anodyne 
if it belongs to the saturated class generated by the inner horns Ak[n] C ~[n]. We 
shall say that a map is a mid fibration if it has the right lifting property with respect 
to every inner horn Ak[n] c ~[n]. 

For the notion of a saturated class, see 7.4. 

PROPOSITION 1.11. (J2] Every mid anodyne map is a weak categorical equiva-
lence bijective on vertices. The functor T1 : S ~ Cat takes a mid anodyne map to 
an isomorphism of categories. 

PROPOSITION 1.12. (J2] If B is the class of mid fibrations and A is the class 
of mid anodyne maps then the pair (A, B) is a weak factorisation system in the 
category S 

For the notion of weak factorisation system, see 7.1. 

Let us regard the groupoid J as a simplicial set via the nerve functor. 

PROPOSITION 1.13. [J2] Every quasi-fibration is a mid fibration. Conversely, 
a mid fibration between quasi-categories p : X ~ Y is a quasi-fibration iff the 
following equivalent conditions are satisfied: 

• p has the right lifting property with respect to the inclusion { 0} C J 
• the functor TIP: r1X ~ r1Y is a quasi-fibration. 

PROPOSITION 1.14. [J2] The pair of adjoint functors 

r1 : S +-+ Cat : N 

is a Quillen pair between the model structure for quasi-categories and the natural 
model structure on Cat. A functor u: A~ Bin Cat is a quasi-fibration (resp. an 
equivalence) iff the map N u : N A ~ N B is a quasi-fibration (a weak categorical 
equivalence) in S. 

It follows that the functor r 1 : S ~ Cat takes a weak categorical equivalence 
to an equivalence of categories. 

PROPOSITION 1.15. [J2] The classical model structure on S is a Bousfield lo-
calisation of the model structure for quasi-categories. 
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For the notion of Bousfield localisation, see Definition 7.20. Thus, every weak 
categorical equivalence is a weak homotopy equivalence and every Kan fibration is 
a quasi-fibration. Conversely, a map between Kan complexes is a weak homotopy 
equivalence (resp, a Kan fibration) iff it is a weak categorical equivalence (resp. a 
quasi-fibration). 

Let Kan be the category of Kan complexes. 

PROPOSITION 1.16. [J2] The inclusion functor Kan C QCat has a right ad-
joint 

J : QCat ---+ Kan. 
The Kan complex J(X) is the largest sub-Kan complex of a quasi-category X. The 
functor J takes an equivalence of quasi-categories to a homotopy equivalence and a 
quasi-fibration to a K an fibration. 

If X is a simplicial set, then the contravariant functor A ~---+ X A is right adjoint 
to itself. If X is a quasi-category, then so is the simplicial set X A. We shall denote 
by X(A) be the full simplicial subset of X A whose vertices are the maps f : A ---+ X 
such that f(A) ~ J(X). The contravariant functor A~---+ J(XA) is a subfunctor of 
the contravariant functor A ~---+ X A. 

PROPOSITION 1.17. [J2] Let X be a quasi-category. Then the contravariant 
functors A~---+ J(XA) and A~---+ X(A) are mutually right adjoint. The contravariant 
functor A ~---+ X(A) takes a weak homotopy equivalence to an equivalence of quasi-
categories. 

Consider the functor k : ~ ---+ S. defined by putting k[n] = ~'[n] for every 
n ;::: 0, where ~'[n] denotes the (nerve of the) groupoid freely generated by the 
category [n]. We denote by k 1 : S ---+ S the functor defined by putting 

k1(X)n = S(~'[n],X) 
for every simplicial set X and for every n ;::: 0. The functor k' has a left adjoint 
k, : S ---+ S which is the left Kan extension of the functor k : ~ ---+ S along the 
Yoneda functor y: ~---+ S. 

PROPOSITION 1.18. For every XES, we have r1k,X = n1X. 

Proof: The result is obvious if X = ~[n]. The general case follows, since the 
functors X~---+ r 1k,X and X~---+ n1X are cocontinuous. • 

THEOREM 1.19. [J2] The pair of adjoint functors 

k,: s ~ s: k' 

is Quillen pair (Co, Wo,Fo) ~ (Ct, W1,.F1). 

The pair (kr, k 1) is actually a homotopy colocalisation in the sense of 7.16. 
The inclusion ~[n] ~ ~'[n] is natural in [n] E ~. Hence it defines a natural 

transformation y---+ k, where y is the Yoneda functor ~ ---+ S. The transformation 
has a unique extension I d ---+ k,, where I d is the identity functor of S. There is a 
corresponding adjoint transformation k' ---+ I d. It is easy to verify that the map 
X ---+ k,(X) is monic and a weak homotopy equivalence for every X E S. Dually, 
the map k 1(X) ---+ X is a trivial fibration for every Kan complex X. If X is a 
quasi-category, then the map k 1(X)---+ X induces a map k 1(X)---+ J(X). 
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PROPOSITION 1.20. (J2] The natural map k1(X) -+ J(X) is a trivial fibration 
for every quasi-category X. 

Let X be a quasi-category. Then the canonical map xk,(A) - x(A) defined 
from the inclusion A~ k,(A) is a categorical equivalence for every simplicial set A. 

The following combinatorial result will be used in section 4. 

For n > 0, the n-chain In ~ Ll[n] is defined to be the union of the edges 
(i, i + 1) ~ Ll[n] for 0 :::; i :::; n- 1. Let us put I 0 = 1. 

LEMMA 1.21. [J2] The inclusion In ~ Ll[n] is mid anodyne . 

The following notion will be used in section 5. 

Recall that a functor u : A -+ B is said to be conservative if the implication 

u(f) invertible ::::} f invertible 

is true for every arrow f EA. 

DEFINITION 1.22. [J2] We shall say that a map of simplicial sets u: A-+ B is 
conservative if the functor Tt ( u) : Tt A -+ Tt B is conservative. 

THEOREM 1.23. [J2] If X is a quasi-category and A is a simplicial set, then 
the projection 

is conservative. 

PROPOSITION 1.24. [J2] Let p : X -+ Y be a conservative quasi-fibration be-
tween quasi-categories. If Y is a Kan complex, then X is a Kan complex and p is 
a Kan fibration. 

COROLLARY 1.25. [J2] The base change in QCat of a conservative quasi-
fibration between quasi-categories is conservative. 

2. The vertical and horizontal Reedy model structures 

In this section we introduce two model structures which play an important role 
in the paper. They are called the vertical and the horizontal model structures. 
Each is a Reedy model structure on the category of bisimplicial sets associated 
to a model structure on the category of simplicial sets. In the vertical model 
structure the acyclic maps are the column-wise weak homotopy equivalences but 
in the horizontal they are the row-wise weak categorical equivalences. The vertical 
model structure is associated to the classical model structure on the the category 
of simplicial sets while the horizontal is associated to the quasi-category model 
structure. We define a "total space" functor t, : S(2) -+ S and show that it is a left 
Quillen functor with respect to both model structures. 

A bisimplicial set is a contravariant functor Ll x Ll -+ Set. We shall denote 
the category of bisimplicial sets by S(2). A simplicial space is a contravariant 
functor Ll -+ S. We regard a simplicial space X as a bisimplicial set by putting 
Xmn = (Xm)n for every m, n 2:: 0. Conversely, we regard a bisimplicial set X as a 
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simplicial space by putting Xm = Xm* for every m 2: 0. The box product ADB of 
two simplicial sets A and B is the bisimplicial set obtained by putting 

(ADB)mn = Am X Bn 
for every m, n 2: 0. This defines a functor of two variables 0 : S x S ---+ S(2). The 
functor is divisible on both sides. This means that the functor AD(-) : S ---+ S(2) 

admits a right adjoint A\ (-) : S (2) ---+ S for every simplicial set A. If X E S (2), 

then a simplex A[n]-+ A\X is a map ADA[n]-+ X. The simplicial set A[m]\X is 
the mth column Xm* of X. Dually, the functor (-)DB : S---+ S(2) admits a right 
adjoint (-)/ B : S(2) ---+ S for every simplicial set B. If X E S(2), then a simplex 
A[m]---+ X/B is a map A[m]DB---+ X. The simplicial set X/A[n] is the nth row 
X*n of X. If X E S(2) and A, B E S, there is a bijection between the following 
three kinds of maps 

ADB---+ X, B---+ A\X, A---+ X/B. 
Hence the contravariant functors A t---t A \X and B t---t B\X are mutually right 
adjoint. 

If u : A ---+ B and v : S ---+ T are maps of simplicial sets we shall denote by 
uD'v the map 

ADT UAos BDS ~ BOT 
obtained from the commutative square 

ADS-BDS 

l l 
ADT-BDT. 

This defines a functor of two variables 
o': six si---+ (s<2>)I, 

where £1 denotes the category of arrows of a category£. The functor D' is divisible 
on both sides. If u : A---+ B is map inS and f :X ---+ Y is a map in S(2), we denote 
by (u\ f) the map 

B\X---+ B\Y XA\Y A\X 
obtained from the square 

B\X-A\X 

l l 
B\Y-A\Y. 

The functor f t---t (u\f) is right adjoint to the functor v t---t uD'v. Dually, if v: S---+ 
Tis map inS, we shall denote by (! jv) the map 

X/T---+ Y/T xy;s X/S 
obtained from the commutative square 

X/T-X/S 

l l 
Y/T-YjS. 
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The functor f ~ (f\v) is right adjoint to the functor u ~ uO'v. 

PROPOSITION 2.1. For any triple of maps u E S, v E S and f E S(2) we have 

(uD'v) m f -{=:::} u m (f fv) -{=:::} v m (u\f). 

This follows from 7.6. 

Let us denote by 8n the inclusion 8~[n] c ~[n]. Recall that a map of bisim-
plicial sets is said to be a trivial fibration if it has the right lifting property with 
respect to every monorphism. 

PROPOSITION 2.2. [JT2] The class of monomorphisms in the category S(2) is 
generated as a saturated class by the set of inclusions 

8mD'8n: (8~[m]D~[n]) U (~[m]D8~[n]) C ~[m]D~[n], for m,n 2:0. 
A map of bisimplicial sets is a trivial fibration iff it has the right lifting property 
with respect to the map 8mD'8n for every m, n 2: 0. 

PROPOSITION 2.3. A map of bisimplicial sets f :X ~ Y is a trivial fibration 
iff the following equivalent conditions are satisfied: 

• the map (8m \!) is a trivial fibration for every m 2: 0; 
• the map ( u \f) is a trivial fibration for every monomorphism u E S; 
• the map (f f8n) is a trivial fibration for every n 2: 0; 
• the map (f fv) is a trivial fibration for every monomorphism v E S. 

Proof: Let us show that f is a trivial fibration iff the map (8m \f) is a trivial 
fibration for every m 2: 0. But the map (8m \!) is a trivial fibration iff we have 
8n m (8m \f) for every n 2: 0 by 1.2. But the condition 8n m (8m \!) is equivalent to 
the condition (8m0'8n) m f by 2.1. Hence the result follows from 2.2. Let us now 
show that first condition implies the fourth. But the map (f fv) is a trivial fibration 
iff we have 8m m (f fv) for every m 2: 0 by 1.2. But the condition 8m m (f fv) is 
equivalent to the condition v m (8m \!) by 2.1. This proves the result since (8m \f) 
is a trivial fibration by hypothesis and since v is monic. The rest of the equivalences 
are proved similarly. • 

We shall use the following simplicial enrichement of the category of bisimplicial 
sets S(2). The functor i 2 : ~ ~ ~ x ~defined by putting i 2 ([n]) = ([0], [n]) is right 
adjoint to the second projection P2 : ~ x ~ ~ ~. Hence the functor i2 : S(2) ~ S 
is right adjoint to the functor P2. If X is a bisimplicial set, then i2 (X) is the first 
column of X. If A is a simplicial set, then P2(A) =lOA. For any pair ofbisimplicial 
sets X andY, let us put 

Hom2(X, Y) = i2(Yx). 
This defines an enrichment of the category S(2) over the category S. 

PROPOSITION 2.4. The enriched category (S(2), H om2) admits tensor and coten-
sor products. The tensor product of a simplicial space X by a simplicial set A is 
the simplicial space X x 2 A= X x P2(A) and the cotensor product is the simplicial 
space XP;(A) = X 10A. 

We say that a map of bisimplicial sets f : X ~ Y is a column-wise weak 
homotopy equivalence if the map ~[m]\f = fm : Xm ~ Ym is a weak homotopy 
equivalence for every m 2: 0. We say that f : X ~ Y is a vertical fibration, or 
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a v-fibration, if the map (8m \f) is a Kan fibration for every m ~ 0 (a notion of 
horizontal fibration will be considered later). We say that a bisimplicial set X is 
v-fibrant if the map X---+ 1 is a v-fibration. 

Let h~ denotes the inclusion Ak[n] c ~[n]. 

PROPOSITION 2.5. A map of bisimplicial sets f : X ---+ Y is a v-fibration iff it 
satisfies the following equivalent conditions: 

• the map (8m \f) is a Kan fibration for every m ~ 0; 
• the map (u\f) is a Kan fibration for every monomorphism u; 
• the map (! /h~) is a trivial fibration for every n > 0 and 0 ~ k ~ n; 
• the map (! jv) is a trivial fibration for every anodyne map v E S. 

Proof: The equivalences (i){:}(ii){:}(iv) follow from 7.33. The implication (iv)=>(iii) 
is obvious. Let us prove the implication (iii)=>(ii). Let us show that the map 
(8m \f) is a Kan fibration for every m ~ 0. For this, it suffices to show that we 
have h~ rh (8m \f) for every n > 0 and 0 ~ k ~ n. But the condition h~ rh (8m \f) 
is equivalent to the condition 8m rh (! /h~) by 2.1. But we have 8m rh (! /h~) since 
(! /h~) is a trivial fibration by assumption. The implication (iii)=>(ii) is proved . 

• 
The following theorem describes the vertical model structure on S(2). 

THEOREM 2.6. [Ree] The category (S(2), H om2) admits a simplicial model 
structure (C0, W0,F0) in which the cofibrations are the monomorphisms, the weak 
equivalence are the column-wise weak homotopy equivalences and the fibrations are 
the vertical fibrations. The model structure is proper and cartesian closed. The 
acyclic fibrations are the trivial fibrations. 

Proof: The model structure ( C0, W0, :FQ) is the Reedy model structure ( Cb, Wb, Fo) 
associated to the classical model structure (Co, Wo, Fo) of 1.1 on S. The existence of 
the model structure follows directly from Theorem 7.35 except for the identification 
of the Reedy cofibrations with the monomorphismsms. For this, it suffices to show 
that the acyclic v-fibrations are the trivial fibrations. But a map f is an acyclic 
v-fibration iff the map (8m \f) is trivial fibration for every m ~ 0 by 7.35 and by 1.1. 
It then follows by 2.3 that f is an acyclic v-fibration iff it is a trivial fibration. This 
completes the proof that the Reedy cofibrations are the monomorphismsms. The 
model structure is left proper by 7.13 since every object is cofibrant. Let us show 
that it is right proper. Iff: X---+ Y is a v-fibration, then the map fm : Xm---+ Ym 
is a Kan fibration for every m ~ 0 by 7.34. Hence the base change of a column-wise 
weak homotopy equivalence along a v-fibration is a column-wise weak homotopy 
equivalence since the model structure (Co, W0 , F 0 ) is proper. Let us show that the 
model structure (Cb, Wb, Fb) is cartesian. See 7.29 for this notion. By 7.27, it 
suffices to show that the functor A x (-) : S(2) ---+ S(2) takes an acyclic map to 
an acyclic map. But this is clear since since the model structure (C0 , W0 , F 0 ) is 
cartesian closed. Let us show that the model structure is simplicial. The internal 
hom functor (X, Y) t---t yx is a right Quillen functor of two variables (contravariant 
in the first) since the model structure (Cb, Wb, Fb) is cartesian closed. Hence the 
composite (X, Y) t---t Hom2 (X, Y) = i2(Yx) is also a right Quillen functor of two 
variables, since the functor i2 : S(2) ---+ S is a right Quillen functor by 7.37. • 
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Let X be a bisimplicial set. From the map [nJ ----+ [OJ we obtain a canonical map 
between the rows, X*o----+ X*n 

DEFINITION 2.7. We shall say that a bisimplicial set X categorically constant 
if the canonical map X*o ----+ X*n is a weak categorical equivalence for every n ::::>: 0. 

PROPOSITION 2.8. A v-fibrant bisimplicial set is categorically constant. 

Proof: If i denotes the inclusion ~[OJ ~ ~[n], then the map X/i : X/ ~[nJ ----+ 
X/ ~[OJ is a trivial fibration by 2.5, since i is a monic weak homotopy equivalence. 
But we have (X/i)(X/t) = id since we have ti = id, where tis the map ~[nJ ----+~[OJ. 
This shows by three-for-two that the map X/t is a weak categorical equivalence . 

• 
We call a map of of bisimplicial sets f : X ----+ Y a row-wise weak categorical 

equivalence if the map f*n : X*n ----+ Y*n is a weak categorical equivalence for every 
n ::::>: 0. 

PROPOSITION 2.9. A map between v-fibrant simplicial sets f : X ----+ Y is a 
row-wise weak categorical equivalence iff it induces a weak categorical equivalence 
between the first rows. 

Proof: If f*o : X*o ----+ Y*0 is a weak categorical equivalence, let us show that the 
map f*n : X*n ----+ Y*n is a weak categorical equivalence for every n ::::>: 0. Consider 
the commutative square 

where the vertical maps are obtained from the map ~[nJ ----+ ~[0]. The vertical 
maps are weak categorical equivalence by 2.8. It follows by three-for-two that the 
map f*n is a weak categorical equivalence. • 

We shall say that f : X ----+ Y is a horizontal fibration or an h-fibration if the 
map (f /8n) is a quasi-fibration for every n ::::>: 0. We shall say that a bisimplicial 
set X is h-fibrant if the map X ----+ 1 is an h-fibration. 

PROPOSITION 2.10. The category S(2) admits a model structure (Cf, Wf,Ff) 
in which a cofibration is a monomorphism and a weak equivalence is a row-wise 
weak categorical equivalence. A fibration is an h-fibration. The model structure is 
left proper and cartesian closed. The acyclic fibrations are the trivial fibrations. 

We call the model structure, the horizontal model structure on S(2). For the 
notion of trivial fibration, see Definition 7.2. 

Proof: The model structure ( Cf, Wf, Ff) is the Reedy model structure ( C~, W~, F{) 
associated to the model structure (C1 , W1 , Fl) of Theorem 1.9. It is similar to the 
vertical model structure of Theorem 2.6, except that the weak equivalences are now 
defined row-wise and by using weak categorical equivalences. The existence of the 
model structure follows from Theorem 7.35. Let us show that C~ is the class of 
monomorphisms. For this, it suffices to show that the acyclic h-fibrations are the 
trivial fibrations. But a map f is an acyclic h-fibration iff the map (f /8n) is trivial 
fibration for every m ::::>: 0 by 7.35 and by 1.9. It then follows by 2.3 that f is an 
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acyclic h-fibration iff it is a trivial fibration. We have proved that Ci is the class of 
monomorphisms. It follows that every object is cofibrant. Hence the model struc-
ture is left proper by 7.13. It remains to show that the model structure is cartesian 
closed. By 7.27, it suffices to show that the functor A x (-) : s<2) ---+ S(2) takes 
an acyclic map to an acyclic map. But this is clear since since the model structure 
( C1, W1. .1i) is cartesian closed. • 

Recall the pair of adjoint functors k, : S +-+ S : k1 of Proposition 1.19. By 
definition, we have k,(~[n]) = ~'[n] for every n 2: 0, where ~'[n] denotes the 
(nerve of the) groupoid freely generated by the category [n]. Consider the functor 
t : ~ x ~---+ S defined by putting t([m], [n]) = ~[m] x ~'[n] for every m, n 2: 0 
and let t, : S(2) ---+ S be the left Kan extension of the functor t along the Yoneda 
functor ~ 2 c S(2). By definition, we have 

t,(~[m]D~[n]) = ~[m] x ~'[n]. 

The functor t, has a right adjoint t1 : S ---+ S(2). If X E S, then 
t 1(X)mn = S(~[m] X ~'[n],X) 

for every m, n 2: 0. 

LEMMA 2.11. There are natural isomorphisms 
t,(ADB) =A X k,(B), A\t1(X) = k1(XA) and t 1(X)/B = xk,(B) 

for A, BE S and X E s<2>. 
Proof: The functor (A, B) ~ t,(ADB) is cocontinuous in each variable and it 
extends the functor ([m], [n]) ~ ~[m] x ~'[n] along the Yoneda functor ~ x ~ ---+ 

s<2>. Similarly for the functor (A, B)~ Axk,(B), since k,(~[n]) = ~'[n]. It follows 
that there is a natural isomorphism t,(ADB) =Ax k,(B). The first statement of 
the proposition is proved. Let us prove the second. The functor X~ A\t1(X) is 
right adjoint to the functor B ~ t,(ADB), since a composite of right adjoints is 
right adjoint to the composite in reverse order. Similarly, the functor X ~ k1 (X A) 
is right adjoint to the functor B ~Ax k,(B). This proves the result by uniqueness 
of adjoint since qADB) =Ax k,(B). Let us prove the third. The functor X~ 
t1(X)/B is right adjoint to the functor A~ t,(ADB), since a composite of right 
adjoints is right adjoint to the composite in reverse order. Similarly, the functor 
X~ Xk,(B) is right adjoint to the functor A~ Ax k,(B). This proves the result 
by uniqueness of adjoints since t,(ADB) =Ax k,(B). • 

THEOREM 2.12. The adjoint pair of functors 
t, : s<2> +-+ S : t1 

is a Quillen pair between the horizontal (resp. vertical) model structure on S(2) and 
the model structure for quasi-categories on S. 

Proof: Let us first show that (t,, t 1) is a Quillen pair between the horizontal model 
structure and the model structure for quasi-categories. We shall use the criteria 
of 7.15. We first verify that t, takes a cofibration to a cofibration. Let A be the 
class of maps u E s<2> such that t,(u) is monic. The class A is saturated since the 
functor t is cocontinuous. Let us show that the map 8mD'8n belongs to A for every 
m,n 2:0. We have t,(8mD'8n) = 8m x' k,(8n)· by Lemma 2.11. But k,(8n) is monic 
since the functor k, takes a monomorphism to a monomorphism by 1.19. Hence 
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the map Om x' k,(on) is monic and this shows that the map 8mD'8n belongs to A. 
It follows by 2.2 that every monomorphism belongs to A. We have proved that t, 
takes a cofibration to a cofibration. Let us now show that t 1 takes a fibration to 
a fibration. For this we have to show that iff : X -t Y is a quasi-fibration then 
the map t 1 (f) : t 1 (X) -t t 1 (Y) is an h-fibration. For this it suffices to show that 
the map (t1(f)/u) is a quasi-fibration for every monomorphism of simplicial sets 
u : A -t B. But the square 

t1(X)jB-- t1(X)/A 

! ! 
t1(Y)/B- t1(Y)/A 

is isomorphic to the square 

by Lemma 2.11. Hence the map (t'(f)ju) is isomorphic to the map (k,(u), f). But 
the map k,(u) is monic. Hence the (k,(u), f) is a quasi-fibration by 1.9 since f is 
a quasi-fibration. We have proved (t~, t 1) is a Quillen pair between the horizontal 
model structure and the model structure for quasi-categories. Let us now show that 
it is a Quillen pair between the vertical model structure and the model structure 
for quasi-categories. We saw that t, takes a cofibration to a cofibration. Let us 
now show that t 1 takes a fibration to a fibration. For this we have to show that if 
f: X -t Y is a quasi-fibration then the map t 1(J): t1(X) -t t1(Y) is a v-fibration. 
For this it suffices to show that the map (u\t1(X)) is a Kan fibration for every 
monomorphism of simplicial sets u : A -t B. But the square 

B\t1(X)-- A\t1(X) 

! ! 
B\t1(Y)- A\t1(Y) 

is isomorphic to the square 

by Lemma 2.11. Hence the map (u\t1(X)) is isomorphic to the map k 1(u, f). But 
(u, f) is a quasi-fibration by Theorem 1.9. Thus, k 1 (u, f) is a Kan fibration by 1.19. 
We have proved that ( t,, t 1) is a Quillen pair between the vertical model structure 
and the model structure for quasi-categories. • 
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3. Segal spaces 

Segal spaces were introduced by Rezk in [Rez]. They are the fibrant objects 
of a model structure on the category of bisimplicial sets. The model structure is 
a Bousfield localisation of the (vertical) Reedy model structure introduced in the 
previous section. 

Let In <;;; ~[n] be then-chain. For any simplicial space X we have a canonical 
bijection 

In \X= xl Xao,al xl X ... xao,al Xt, 
where the successive fiber products are calculated by using the face maps 80 ,81 : 

Xt----tXo. 

DEFINITION 3.1. [Rez] We shall say that a simplicial space X satisfies the 
Segal condition if the map 

in \X : ~[n]\X ~ In \X 
obtained from the inclusion in : In <;;; ~[n] is a weak homotopy equivalence for 
every n ~ 2. A Segal space is a v-fibrant simplicial space which satisfies the Segal 
condition, 

We shall say that a map of simplicial spaces u : A ----t B is a Segal weak 
equivalence if the map 

Hom2(u,X): Hom2(B,X) ----t Hom2(A,X) 
is a weak homotopy equivalence for every Segal space X. 

THEOREM 3.2. [Rez] The category (S(2), Hom2) admits a simplicial model 
structure ( Cs, W s, .1' s) in which Cs is the class of monomorphisms and W s is the 
class of Segal weak equivalences. The model structure is left proper and cartesian 
closed. The acyclic fibrations are the trivial fibrations. The fibrant objects are the 
Segal spaces. 

We shall say that (Cs, Ws,.Fs) is the model structure for Segal spaces. The 
model structure is a Bousfield localisation of the vertical model structure ( C0, W0, .1'0) 
of Theorem 2.6. For the notion of Bousfield localisation, see Definition 7.20. In 
particular, a map between Segal spaces is acyclic (resp. a fibration) iff it is a 
column-wise weak homotopy equivalence (resp. a v-fibration). 

Recall the total space functor t, : S(2) ----t S of Theorem 2.12. 

THEOREM 3.3. The adjoint pair of functors 
t, : S(2) ~ S : t' 

is a Quillen pair between the model category for Segal spaces and the model category 
for quasi-categories. 

Proof: We saw in 2.12 that the pair of adjoint functors (t,, t 1) is a Quillen pair 
between the vertical model category and the model category for quasi-categories. 
Hence it suffices to show by 7.15. that the functor t 1 takes a quasi-category to 
a Segal space. If X is a quasi-category then t 1(X) is v-fibrant by 2.12. Let us 
show that t 1(X) satisfies the Segal condition. For this, it suffices to show that the 
map in \t' (X) is a trivial fibration for every n ~ 0, where in denotes the inclusion 
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In ~ ~[n). But the map in \t'(X) is isomorphic to the map k1(Xin) by Lemma 
2.11. The map in is weak categorical equivalence by 1.11 since it is mid anodyne 
by 1.21. Hence the map Xin is a trivial fibration by 1.9 since in is monic. It follows 
that the map k1(Xin) is a trivial fibration since k* is a right Quillen functor by 
1.19. We have proved that the map in \t1(X) is a trivial fibration. This shows that 
t 1 (X) is a Segal space. • 

PROPOSITION 3.4. Let X be a v-fibrant simplicial space. Then the following 
conditions are equivalent: 

• (i) X is a Segal space 
• (ii) The map h~\X is a trivial fibration for every 0 < k < n; 
• (iii) the map u\X is a trivial fibration for every mid anodyne map u E S; 
• (iv) the map X/8n is a mid fibration for every n ~ 0; 
• (v) the map Xjv is a mid fibration for every monomorphism v E S 

The notion of mid anodyne map was defined in 1.10. The proof depends on 
the following lemma. 

We shall say that a class of monomorphisms A ~ S has the right cancellation 
property if the implication 

vu E A and u E A ::::} v E A 
is true for any pair of monomorphisms u : A ~ B and v : B ~ C. 

Let In~ ~[n) be then-chain. 

LEMMA 3.5. Let A ~ S be a saturated class of monomorphisms having the right 
cancellation property. If the inclusion In ~ ~[n] belongs to A for every n ~ 2, then 
every mid anodyne map belongs to A. 
Proof: We shall first prove that the inclusion In ~ ao~[n] U On~[n] belongs to A 
for every n > 1. This is obvious if n = 2 since we have In = Oo~[n] U On~[n] in 
this case. Let us suppose n > 2. It suffices to show that each inclusion 

In ~ In U On~[n] ~ Oo~[n] U On~[n] 
belongs to A, since A is closed under composition. The square of inclusions 

In-1----In 

!in 

is a pushout since 8n~[n] n In = In-1· Thus, in E A since A is closed under cobase 
change and since the inclusion In-1 C ~[n- 1) = On~[n] belongs to A. It remains 
to show that the inclusion Jn belongs to A. If do : ~[n- 1) ~ ~[n), then we have 
d01(In) = In- 1 and d 0 1 (8n~[n)) = On-1~[n- 1). It follows from this observation 
that the following square is a pushout, 
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where kn-1 is the inclusion and where dti is induced by do. Let us show that 
kn-1 E A. The composite 

In-1 (._ __ in_-- 1 -+-~ In-1 U 8n-1~[n- 1] (.._ __ kn_-- 1 -~ ~[n -1] 

belongs to A by assumption. We have in-1 E A by the same argument as above 
since the inclusion In-2 C ~[n-2] belongs to A. It follows by the right cancellation 
property of the class A that kn-1 belongs to A. Thus, in E A since the class 
A is closed under cobase change. This completes the proof that the inclusion 
In C 8 0 ~[n] U 8n~[n] belongs to A for n > 2, hence also for n > 1. We can 
now prove the lemma. For this it suffices to show that the inclusion Ak[n] C ~[n] 
belongs to the class A for every 0 < k < n, since the class A is saturated. This 
is obvious if n = 2 since A 1 [2] = [z. We shall suppose n > 2. By the cancellation 
property of the class A, it suffices to show that the inclusion In ~ A k [n] belongs to 
A, since the inclusion In~ ~[n] belongs to A. If Sis a subset of [n], let us put 

A8 [n] = U 8i~[n]. 
i¢8 

We shall prove that if n > 2 and Sis a non-empty subset of the interval [1, n- 1], 
then the inclusion In C A 8 [n] belongs to A. We argue by induction on n > 2 and 
s = n-Card(S) > 0. If s = 1, then S = [1, n-1] and A8 [n] = 8 0 ~[n]U8n~[n]. The 
result was proved above in this case. If s > 1let us choose an element bE [1, n-1]\S 
and put T = S U {b}. The inclusion In C AT[n] belongs to A by the induction 
hypothesis since n- Card(T) < s. Let us show that the inclusion AT[n] c A8 [n] 
belongs to A. The square 

8b~[n] nAT[nJ-AT[n] 

l ! 
is a pushout since A8 [n] = ab~[n] u AT[n]. Hence it suffices to show that the 
inclusion8b~[n]nAT[n] C 8b~[n] belongs to A. Let U ~ [n-1] betheinverseimage 
of the subset T by the map db: [n-1] ~ [n]. The inclusion 8b~[n]nAT[n] C 8b~[n] 
is isomorphic to the inclusion AU[n -1] C ~[n- 1]. Hence it suffices to show that 
the latter belongs to A. The subset U is non-empty since it is in bijection with S. 
Moreover, U ~ [1, n- 2] since S ~ [1, n- 1] and 0 < b < n. Hence the inclusion 
In- 1 C Au[n-1] belongs to A by the induction hypothesis on n. It follows that the 
inclusion Au[n-1] c ~[n-1] belongs to A by the cancellation property of the class 
A. Hence the inclusion AT[n] c A8 [n] belongs to A, since A is closed under cobase 
change. It then follows by composing that the inclusion In C A8 [n] belongs to A, 
since the inclusion In C AT[n] belongs to A by the induction hypothesis. We have 
proved that if Sis a non-empty subset of the interval [1, n- 1], then the inclusion 
In C A8 [n] belongs to A. In particular, this shows that the inclusion In ~ Ak[n] 
belongs to A. • 
Proof of proposition 3.4: Let us prove the implication (i)==?(iii). Let A be 
the class of monomorphisms u E S such that the map u \X is a weak homotopy 
equivalence. It is obvious from this definition that A has the right cancellation 
property. Let us verify that A is saturated. A monomorphism u E S belongs to 
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A iff the map u\X is a trivial fibration since it is a Kan fibration by 2.5. But 
u\X is a trivial fibration iff we have c5n rh (u\X) for every n ;:::: 0 by 1.2. But the 
condition c5n rh (u\X) is equivalent to the condition u rh (X/c5n) by 2.1. Thus, a 
monomorphism u belongs to A iff we have u rh (Xfc5n) for every n;:::: 0. This shows 
that the class A is saturated. If X is a Segal space then the inclusion In ~ ~[n] 
belongs to A for every n ;:::: 2. It then follows from 3.5 that every mid anodyne 
map belongs to A. The implication (i):::}(iii) is proved. The converse follows from 
the fact that the inclusion In ~ ~[n] is mid anodyne by 1.21. The implication 
(iii):::}(ii) is obvious. Let us prove the implication (ii):::}(v). If v E S is monic, let 
us show that Xjv is a mid fibration. But the condition h~ rh (Xjv) is equivalent 
to the condition v rh (h~\X) by 2.1. This shows that we have h~ rh (Xjv) for every 
0 < k < n, since the map h~ \X is a trivial fibration in this case. The implication 
(ii):::}(v) is proved. The implication (v):::}(iv) is obvious. The implication (iv):::}(iii) 
follows from 7.33. • 

COROLLARY 3.6. If X is a Segal space, then the simplicial set X/A is a quasi-
category for any simplicial set A. In particular, every row of X is a quasi-category. 

Proof: If iA denotes the inclusion 0 C A, then the map X/iA : X/A-+ X/0 is a 
mid fibration by (v). This shows that X/A is a quasi-category since X/0 = 1. In 
particular, the nth row X*n =X/ ~[n] is a quasi-category. • 

LEMMA 3. 7. Let A ~ S be a saturated class of monomorphisms having the right 
cancellation property. If every face map di : ~[n- 1] C ~[n] belongs to A, then 
every anodyne map belongs to A. 

See 1.3 for the notion of anodyne map. 

Proof: It suffices to show that every horn h~: Ak[n] c ~[n] belongs to A, since A 
is saturated. More generally, if Sis a proper non-empty subset of [n], let us put 

A8 [n] = U 8i~[n]. 
ifiS 

We shall prove by induction on n ;:::: 1 that the inclusion A8 [n] C ~[n] belongs to 
A. The result is clear if n = 1, since h~ = d1 and hi =do. Let us suppose n > 1. 
It suffices to show that the inclusion ai~[n] c A8 [n] belongs to A for some i ¢ s, 
since the class A has the right cancellation property. We have A8 [n] = 8i~[n] if 
S = (n] \ {i}. Hence it suffices to show that the inclusion AT[n] ~ A8 [n] belongs 
to A for any pair of proper non-empty subsets S C T c (n]. For this it suffices to 
consider the case where T = S U {t} with t ¢ S, since the class A is closed under 
composition. The square 

is a pushout since A8 (n] = 8t~[n] U AT(n]. Hence it suffices to show that the 
inclusion 8t~[n]nAT[n] c 8t~[n] belongs to A. Let U ~ (n-1] be the inverse image 
ofthesubsetTbythemapdt: (n-1]-+ (n]. Theinclusion8t~[n]nAT[n] C 8t~[n] 
is isomorphic to the inclusion Au[n- 1] C ~[n -1]. Hence it suffices to show that 
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the latter belongs to A. The subset U is non-empty since it is in bijection with 
S. Moreover U is proper, since Card(U) = Card(S) < Card(T) and Tis a proper 
subset of [n]. Thus, the inclusion A U[n-1] C ~[n-1] belongs to A by the induction 
hypothesis. This proves that the inclusion AT[n] ~ A8 [n] belongs to A. • 

LEMMA 3.8. A mid fibration between quasi-categories is a trivial fibration iff it 
is a weak categorical equivalence surjective on vertices. 

Proof: The necessity is clear. Conversely, if a mid fibration between quasi-
categories f : X --+ Y is a weak categorical equivalence surjective on vertices, 
let us show that it is a trivial fibration. For this it suffices to show that f is a quasi-
fibration. But for this, it suffices to show that the functor 71 (/) is a quasi-fibration 
by 1.13, since f is a map between quasi-categories. But the functor 71 (/) is an 
equivalence of categories, since f is a weak categorical equivalence by assumption. 
Moreover, the functor 71(/) is a surjective on objects, since the map f is surjective 
on vertices by assumption. Thus, 71 (/) is an acyclic fibration for the natural model 
structure on Cat. It follows that 71 (/) is a quasi-fibration, and hence that f is a 
trivial fibration. • 

PROPOSITION 3.9. A bisimplicial set X is a Segal space iff the following three 
conditions are satisfied: 

• (i) the map X/8n is a mid fibration for every n 2: 0; 
• (ii) X 0 is a Kan complex; 
• (iii) X is categorically constant. 

Proof: ( =?) The simplicial set Xo is a Kan complex by 7.34, since X is v-fibrant by 
assumption. Moreover, X is categorically constant by 2.8. The map X/8n is a mid 
fibration for every n 2: 0 by Proposition 3.4 since X is a Segal space. ( {::::) We shall 
prove that X is vertically fibrant. by showing that the map Xjv is a trivial fibration 
for every anodyne map v E S. Observe first that the map Xjv is a mid fibration 
for every monomorphism v: S--+ T by 7.33, since the map X/8n is a mid fibration 
for every n 2: 0 by assumption. In particular, X/S is a quasi-category for any 
simplicial setS, since the map X/S--+ X/0 = 1 is a mid fibration. Hence the map 
Xjv is a mid fibration between quasi-categories for any monomorphism v: S--+ T. 
We claim that if vis anodyne and X/v is a weak categorical equivalence, then Xjv 
is actually a trivial fibration. For this, it suffices to show that Xjv is surjective 
on vertices by Lemma 3.8. But every mapS--+ Xo can be extended along v to a 
map T--+ Xo, since vis anodyne and Xo is a Kan complex by assumption. Hence 
the map (Xjv) 0 : (X/T)o --+ (X/S)o is surjective on vertices. This shows that 
Xjv is a trivial fibration if vis anodyne and X/v is a weak categorical equivalence. 
Let us now prove that X is vertically fibrant. For this it suffices to show that the 
map Xjv is a trivial fibration for every anodyne map v E S by 2.5. Let A be the 
class of anodyne maps v E S such that the map Xjv is a trivial fibration. We shall 
prove that every anodyne map belongs to A by using Lemma 3.7. An anodyne map 
belongs A iff the map X/v is a weak categorical equivalence by the above. It follows 
by three-for-two that A has the right cancellation property. Let us show that A is 
saturated. The condition 8n rh (X/v) is equivalent to the condition v rh (8n \X) by 
2.1. Thus, an anodyne map v belongs to A iff we have v rh (8n \X) for every n 2: 0. 
This description implies that the class A is saturated. Let us show that every face 
map di : ~[n - 1] --+ ~[n] belongs to A. The canonical maps X*o --+ X*n and 
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X*o ~ X*,n-1 are weak categorical equivalences, since X is categorically constant. 
It follows by three-for-two that the map X/di : X*n ~ X*,n-1 is a weak categorical 
equivalence. This proves that di E A, since di is anodyne. It then follows by Lemma 
3. 7 that every anodyne map belongs to A. Thus, X is v-fibrant by 2.5. Let us now 
show that X satisfies the Segal condition. For this, it suffices to show that the map 
im \X is a trivial fibration for every m 2:: 0, where im denotes the inclusion of the 
m-chain Im ~ ~[m]. But for this it suffices to show that we have c5n rh (im \X) for 
every n 2:: 0. But im is mid anodyne by Lemma 1.21. Hence we have im rh (X/c5n) 
by (i). It follows that we have c5n rh (im \X) by 2.1. This shows that X is a Segal 
space. • 

PROPOSITION 3.10. Let f: X~ Y be a v-fibration between Segal spaces. Then 
the map 

(u\f): B\X----+ B\Y xA\Y A\X 

is a trivial fibmtion for any mid anodyne map u: A~ B. Moreover, the map 

(! jv): X/T----+ Y/T xy;s X/8 

is a mid fibration between quasi-categories for any monomorphism of simplicial sets 
v:8~T. 

Proof: Let us prove the first statement. The map (u\f) is a Kan fibration by 2.5. 
Let us show that it is a weak homotopy equivalence. The horizontal maps in the 
commutative square 

B\X~A\X 

l ! 
B\Y-A\Y 

are trivial fibrations by 3.4 . It follows that (u\f) is a weak homotopy equivalence. 
It is thus a trivial fibration since it is a Kan fibration. Let us prove the second 
statement. The domain of(! jv) is a quasi-category by 3.4. Let us show that its 
codomain is a quasi-category. The projection p2 in the pullback square 

Y/8 xy;sX/T~X/8 

l ! 
Y/T----Y/8 

is a mid fibration since the bottom map is a mid fibration by 3.4. It follows that the 
domain of P2 is a quasi-category since its codomain is a quasi-category by 3.4. Let 
us now show that (! jv) is a mid fibration. By 1.12 it suffices to show that we have 
u rh (! jv) for every mid anodyne map u: A~ B. But the condition u rh (! jv) is 
equivalent to the condition v rh (u\f) by 2.1. But we have v rh (u\/) since (u\/) is 
a trivial fibration by the first part of the proof. • 
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4. Two equivalences with complete Segal spaces 

Complete Segal spaces were introduced by Charles Rezk in [Rez]. They are 
the fibrant objects of a Quillen model structure on the category of simplicial spaces 
[~ 0 , SJ = s<2) • We call this model structure the model structure for complete Segal 
spaces. The goal of the section is to establish two Quillen equivalences 

Pi : S ~ S(2) : ii and t, : S(2) ~ S : t1• 

between the model category for quasi-categories and the model category for com-
plete Segal spaces. The functor ii associates to a bisimplicial set X its first row 
X*o. It shows that a complete Segal space is determined up to equivalence by its 
first row. The functor t, associates to a bisimplicial set X a total simplicial set t,X. 

Let J be the groupoid generated by one isomorphism 0 ----t 1. We shall regard 
J as a simplicial set via the nerve functor. A Segal space X is said to be complete 
if the map 

1\X---+ J\X 
obtained from the map J ----t 1 is a weak homotopy equivalence. 

We shall say that a map of simplicial spaces u : A ----t B is a Rezk weak equiva-
lence if the map 

Hom2(u,X): Hom2(B,X) ----t Hom2(A,X) 

is a weak homotopy equivalence for every complete Segal space X. 

THEOREM 4.1 (Rezk, see [Rez]). The simplicial category (S(2), Hom2 ) admits a 
simplicial model structure (CR, WR, FR) in whichCR is the class ofmonomorphisms 
and WR is the class of Rezk weak equivalences. The model structure is left proper 
and cartesian closed. The acyclic fibrations are the trivial fibrations. The fibrant 
objects are the complete Segal spaces. 

We call (CR, WR, F R) the Rezk model structure or the model structure for com-
plete Segal spaces. For the notion of trivial fibration, see Definition 7.2. The model 
structure is a Bousfield localisation of the Segal space model structure of Theo-
rem 3.2. Hence it is also a Bousfield localisation of the vertical model structure 
(C0, W0, :FQ) of Theorem 2.6. For the notion of Bousfield localisation, see Defini-
tion 7.20. In particular, a map between complete Segal spaces is acyclic (resp. a 
fibration) iff it is a column-wise weak homotopy equivalence (resp. a v-fibration). 

The first projection Pl : ~ x ~ ----t ~ is left adjoint to the functor i 1 : ~ ----t ~ x ~ 
defined by putting i1([n]) = ([n], [OJ) for every n ~ 0. We thus obtain a pair of 
adjoint functors 

P* · s ~ s<2) • •* 1 · · •1· 

If X is a bisimplicial set, then ii(X) is the first row of X. Notice that we have 
pi(A) = AD1 for every simplicial set A. In 4.11 we shall prove that 

Theorem The adjoint pair of functors 

Pi : s ~ s<2) : ii 
is a Quillen equivalence between the model category for quasi-categories and the 
model category for complete Segal spaces. 
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Recall the "total space" functor t, : S(2) -+ S of Theorem 3.3. In 4.12, we shall 
prove that 

Theorem The adjoint pair of functors 

t, : s<2> ~ s : t' 
is a Quillen equivalence between the model category for complete Segal spaces and 
the model category for quasi-categories. 

We have stated the main results of the section. We now proceed to the proofs. 

Let uo be the inclusion {0} c J. 

LEMMA 4.2. (Rez] A Segal space X is complete iff the map 

u0\X: J\X--+ 1\X 

is a trivial fibration. 

Proof: By definition, a Segal space X is complete if the map 

t\X: 1\X--+ J\X 

obtained from the map t : J -+ 1 is a weak homotopy equivalence. But we have 
(u0 \X)(t\X) = id since we have tuo = id. Hence the map t\X is a weak homotopy 
equivalence iff the map uo \X is a weak homotopy equivalence by three-for-two. But 
the map u0 \X is a Kan fibration by 2.5. Hence the map u0 \X is a weak homotopy 
equivalence iff it is a trivial fibration. • 

LEMMA 4.3. Let f : X -+ Y be a Rezk fibration between complete Segal spaces. 
then the map 

(f jv): X/T--+ Y/T xy;s X/S 
is a quasi-fibration for any monomorphism of simplicial sets v: S-+ T. 

Proof: The map (f jv) is a mid fibration between quasi-categories by 3.10. Hence 
it suffices to show that it has the right lifting property with respect to the inclusion 
Uo : {0} c J by 1.13. But the condition Uo m (f jv) is equivalent to the condition 
v m (u0 \f) by 2.1. Hence it suffices to show that the map 

(uo\f): J\X--+ J\Y x 1w 1\X 

is a trivial fibration. But it is a Kan fibration by 2.5. Hence it suffices to show that 
it is a weak homotopy equivalence. But the horizontal maps in the commutative 
square 

J\X-1\X 

! ! 
J\Y--1\Y 

are trivial fibrations by 4.2. It follows that (uo \f) is a weak homotopy equivalence. 
It is thus a trivial fibration. We have proved that (f jv) is a quasi-fibration. • 
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PROPOSITION 4.4. A bisimplicial set X is a complete Segal space iff the follow-
ing two conditions are satisfied: 

• (i) the map Xf~n is a quasi-fibration for every n 2:: 0; 
• (ii) X is categorically constant. 

Proof: (::::}) A complete Segal space X is categorically constant by 3.9. Moreover, 
the map X/~n is a quasi-fibration for every n 2:: 0 by 4.3, since the map X ---7 1 is 
a Rezk fibration. (-¢:::) The bisimplicial set X is h-fibrant by condition (i). Let us 
show that it is v-fibrant. By 2.5 it suffices to show that the map Xfv is a trivial 
fibration for every anodyne map v E S. Let A be the class of monomorphisms 
v E S such that the map Xjv is a trivial fibration. Let us show that A is saturated. 
The condition ~n rh (Xfv) is equivalent to the condition v rh (~n \X) by 2.1. Thus, 
a monomorphism v belongs to A iff we have v rh ( ~n \X) for every n 2:: 0. It 
follows that the class A is saturated. Let us show that A has the right cancellation 
property. The map Xjv is a quasi-fibration for any monomorphism v by 7.33 
since X is h-fibrant. Thus, Xfv is a trivial fibration iff it is a weak categorical 
equivalence. It follows by three-for-two that A has the right cancellation property. 
Let us show that every face map di : ~[n -1] ---7 ~[n] belongs to A. The canonical 
maps X*o ---7 X*n and X*o ---7 X*,n-1 are weak categorical equivalences, since X 
is categorically constant. It follows by three-for-two that the map X/di : X*n ---7 

X*,n-1 is a weak categorical equivalence. This proves that di EA. It then follows 
by Lemma 3. 7 that every anodyne map belongs to A. This shows that X is v-
fibrant. Thus, X 0 is a Kan complex by 7.34. It follows that X is a Segal space by 
3.4. Let us show that the Segal space X is complete. The inclusion uo : {0} C J is 
an equivalence of categories. It is thus a weak categorical equivalence. Hence the 
map u0 \X : J\X --t 1 \X is a trivial fibration by 7.33 since X is h-fibrant. This 
shows that X is a complete Segal space by 4.2. • 

THEOREM 4.5. The Rezk model structure (CR, WR,FR) is a Bousfield localisa-
tion of the horizontal model structure ( Cf, Wf, Ff). An h-fibrant bisimplicial set is 
a complete Segal space iff it is categorically constant. A row-wise weak categorical 
equivalence is a Rezk weak equivalence. 

For the notion of Bousfield localisation, see Definition 7.20. 

Proof: Let us prove the first statement. We have Cf = CR, since Cf is the class of 
monomorphisms by 2.10. Iff: X ---7 Y is a Rezk fibration between complete Segal 
space, then the map (! /~n) E S is a quasi-fibration for every n 2:: 0 by 4.3. This 
means that a Rezk fibration between complete Segal space is an h-fibration. This 
proves the first statement by 7.15. The second statement follows from 4.4. The 
third statement is a consequence of the first and of Proposition 7.11. • 

In particular, a map between complete Segal spaces is a Rezk weak equivalence 
(resp. a Rezk fibration) iff it is a row-wise weak categorical equivalence (resp. an 
h-fibration). 

PROPOSITION 4.6. The box product functor 0 : S x S ---7 S(2) is a left Quillen 
functor of two variables 
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where ( C1, W1 , :F1) is the model structure for quasi-categories on S, (Co, W0 , :F0 ) is 
the classical model structure on S and ( C R, WR, :F R) is the Rezk model structure on 
S(2}. 

Proof: Observe that the cofibrations are the monomorphisms in the three model 
structures, Let u : A -+ B and v : S -+ T be a pair of monomorphisms in S. 
The map uD'v is a cofibration since it is monic. If v E Wo, let us show that 
uD'v E WR. But we have uD'v E W0 by 7.36. The result follows since a column-
wise weak homotopy equivalence is a Rezk weak equivalence. If u E W1, let us 
show that uD'v E WR· For this it suffices to show that we have (uD'v) rh f for 
every Rezk fibration between complete Segal spaces f : X -+ Y by 7.14. But the 
condition (uD'v) rh f is equivalent to the condition u rh (! jv) by 2.1. The map 
(! jv) is a quasi-fibration by 7.33. Hence we have u rh (! jv), since u E C1 n W1 . 

• 
We recall that the first projection p1 : ~ x ~ -+ ~ is left adjoint to the functor 

i 1 : ~ -+ ~ x ~ defined by putting i1 ([n]) = ([n], [0]) for every n 2: 0. 

PROPOSITION 4.7. The adjoint pair of functors 

Pi : s -+ s(2) : ii 
is a homotopy localisation between the model category for quasi-categories and the 
model category for complete Segal spaces. 

See Definition 7.16 for the notion of homotopy localisation. 

Proof: We have pi(A) = AD1 for every A E S. The functor A f4 AD1 is a 
left Quillen functor since the box product functor (A, B) f4 ADB is a left Quillen 
functor by 4.6 and since 1 is cofibrant. This proves that the pair (pi, ii) is a 
Quillen pair. Let us show that it is a homotopy localisation. For this, we shall use 
Proposition 7.17. It suffices to show that the adjunction counit E : piii X -+ X 
is a Rezk weak equivalence for every complete Segal space X. For this, it suffices 
to show by Theorem 4.5 that the map E*n : X*o -+ X*n is a weak categorical 
equivalence for every n 2: 0. But En is equal to the map X*o -+ X*n obtained from 
the map [n] -+ [OJ. This proves the result since X is categorically constant by 4.4 . 

• 
If X is a bisimplicial set, then for any pair of simplicial sets A and B there is 

a natural bijection between the maps A-+ X/B and the maps B-+ A\X. This 
means that the contravariant functors 

A f4 A\X and B f4 X/B 

(from S to itself) are mutually right adjoint. 

LEMMA 4.8. Every continuous functor G : so -+ S is of the form G(A) = A \X 
for a simplicial space X E S(2). We have Xm = G(~[m]) for every m 2: 0. 

Proof: Let X be the simplicial space defined by putting Xm = G(~[m]) for every 
m 2: 0. Then we have ~[m]\X = Xm = G(~[m]) for every m 2: 0. It follows that 
we have A\X = G(A) for every simplicial set A, since the functors A f4 A\X and 
A f4 G(A) are both continuous and every simplicial set is a colimit of simplices . 

• 
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If X is a quasi-category, we shall denote by r(X) the simplicial space obtained 
by putting 

r(X)m = J{X<l[ml) 

for every m ~ 0. 

PROPOSITION 4.9. There are canonical isomorphisms 

natural in A E S. 

Proof: The contravariant functors A~ J(XA) and A~ X(A) are mutually right 
adjoint by 1.16. Hence the contravariant functor A ~ J(XA) is continuous. It 
follows by 4.8 that we have A\r{X) = J(XA) for every simplicial set A. But the 
contravariant functors A~ A\r(X) and A~ r(X)/A are mutually right adjoint. 
Hence we have r{X)/A = x<A) for every simplicial set A by the uniqueness of a 
right adjoint. • 

If X is a simplicial set, then we have 

by 4.9. By the adjointness Pi -l ii we obtain a natural map pi(X) ~ r{X). 

PROPOSITION 4.10. If X is a quasi-category, then r{X) is a complete Segal 
space and the natural map pi(X) ~ r{X) is a Rezk weak equivalence. Hence r(X) 
is a fibrant replacement of the simplicial space pi( X) = XOl. 

Proof: Let X be a quasi-category. Let us first show that r(X) is vertically Reedy 
fibrant. Let 8n be the inclusion 8A[n] c A[n]. The map X 0n : X<l[n] ~ XM[n] is 
a quasi-fibration since the model structure for quasi-categories is cartesian closed 
by 1.9. Hence the map J(X8n) : J(X<l[nl) ~ J(X8 Ll[nl) is a Kan fibration by 1.16. 
But J(X8n) is isomorphic to the map 8n \r{X) : A[n]\r{X) ~ 8A[n]\r{X) by 
4.9. This shows that the map 8n \r{X) is a Kan fibration. We have proved that 
r{X) is vertically Reedy fibrant. Let us now show that r(X) is a Segal space. The 
inclusion in : In ~ A[n] is mid anodyne by 1.21. It is thus a weak categorical 
equivalence by 1.11. Hence the map Xin is a trivial fibration by 1.9. It follows that 
the map J(Xin) is a trivial fibration by 1.16. But J(Xin) is isomorphic to the map 
in \r{X) by 4.9. This shows that the map in \r{X) is a trivial fibration. We have 
proved that r(X) is a Segal space. It remains to show that r{X) is a complete 
Segal space. The map p : J ~ 1 is an equivalence of categories. Hence the map 
XP is an equivalence of quasi-categories by 1.9. It follows that the map J(XP) 
is a homotopy equivalence by 1.16. But J(XP) is isomorphic to the map p\r(X) 
by 4.9. This shows that the map p\r(X) is a homotopy equivalence. We have 
proved that r(X) is a complete Segal space. Let us now show that the natural map 
pi(X) ~ r(X) is a Rezk weak equivalence. For this, it suffices to show that the 
natural map pi(X) ~ r{X) is a row-wise weak categorical equivalence by Lemma 
4.5. But the map Pi (X)*n ~ r(X)*n is equal to the map x<tn) : X(1) ~ X(<l[n]), 
where tn : A[n] ~ 1. But x<tn) is an equivalence of quasi-categories by 1.17, since 
tn is a weak homotopy equivalence. • 
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THEOREM 4.11. The adjoint pair of functors 

is a Quillen equivalence between the model category for quasi-categories and the 
model category for complete Segal spaces. 

Proof: We shall use propostion 7.22. We saw in 4. 7 that the pair (Pi, ii) is a 
homotopy localisation. Hence it suffices to show that the pair (pi, ii) is a homotopy 
colocalisation by 7.22. By 7.17, for this it suffices to show that the map A--+ ii Rpi A 
is a weak equivalence for every fibrant-cofibrant object A E S, where Pi A --+ Rpi A 
denotes a fibrant replacement of Pi A. But we can take Rpi A = r(A) by 4.10. In 
this case we have 

iiRpiA = iir(A) =A 

and the canonical map A --+ ii Rpi A is the identity. The result is proved. • 

Recall the "total space" functor t, : S(2) --+ S of Theorem 3.3. 

THEOREM 4.12. The adjoint pair of functors 

t, : s(2l ~ s: t' 
is a Quillen equivalence between the model category for complete Segal spaces and 
the model category for quasi-categories. 

Proof: Let us first show that (t~, t1) is a Quillen pair. We saw in 3.3 that it is a 
Quillen pair between the model category for Segal spaces and the model category 
for quasi-categories. Hence it suffices to show by 7.15. that the functor t 1 takes a 
quasi-category to a complete Segal space. If X is a quasi-category then t 1(X) is 
a Segal space by 2.12. Let us show that the Segal space t 1(X) is complete. For 
this, it suffices to show that the map u0 \t' (X) is a trivial fibration by 4.2, where 
u0 denotes the inclusion {0} C J. But the map uo\t1(X) is isomorphic to the 
map k1(xuo) by Lemma 2.11. Hence it suffices to show that the map k1(xuo) is a 
trivial fibration. But u0 is a weak categorical equivalence since it is an equivalence 
of categories. It follows that the map xuo is a trivial fibration by 1.9 since u0 is 
monic. This shows that the map u0 \ t1 (X) is a trivial fibration. We have proved 
that t1(X) is a complete Segal space. We have proved that (t~, t1) is a Quillen pair 
between the model category for complete Segal spaces and the model category for 
quasi-categories. It remains to show that it is a Quillen equivalence. The composite 
ttPi : S --+ S is isomorphic to the identity functor since we have 

for every simplicial set A by 2.11 and since kt(1) = 1. Hence the composite iit1 : 
S --+ S is also isomorphic to the identity functor by adjointeness. We saw in 4.11 
that the pair (pi, ii) is a Quillen equivalence. It follows by three-for-two in 7.23 
that the pair (t~, t 1) is a Quillen equivalence. • 
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5. Two equivalences with Segal categories 

Segal categories were first introduced by Dwyer, Kan and Smith [DKS], where 
they are called special ~ 0 -diagrams of simplicial sets . The theory of Segal cat-
egories was extensively developed by Hirschowitz and Simpson for application to 
algebraic geometry. A simplicial space X is called a precategory if its first column 
X 0 is discrete. There is a model structure on the category of precategories in which 
the fibrant objects are Segal categories. The goal of the section is to establish two 
Quillen equivalences 

q* : S ~ PCat : j* and d* : PCat ~ S : d* 

between the model category for quasi-categories and the model category for Segal 
categories. The functor j* associates to a precategory X its first row X*0 • The 
functor d* associates to a precategory its diagonal. 

We recall that a simplicial space X : ~ 0 -+ S is called a precategory if X 0 is 
discrete. We shall denote by PCat the full subcategory of S(2 ) spanned by the 
precategories. 

Consider the functor i2 : ~ -+ ~ x ~ defined by putting i2([n]) = ([0], [n]). 
The functor i2 : S(2) -+ S associates to a simplicial space X its first column X 0 • 

The functor i2 has a right adjoint Cosk = ( i 2)* : S -+ S(2). If A is a simplicial set, 
then we have 

Cosk(A)n = A[n]o 
for every n 2: 0, where [n]o denotes the set of vertices on ~[n]. If X is a simplicial 
space, the unit of the adjunction i2 -l (i2)* is a canonical map 

vx : X -+ Cosk(Xo) 
called the vertex map. Let us suppose that X is a precategory. Then the map 
(vx)n: Xn-+ Cosk(Xo)n takes its values in a discrete simplicial set Xbnlo for each 
n 2: 0. We thus have a decomposition 

Xn = U X(a), 
aEX6nlo 

where X(a) = X(ao, a1, ... , an) denotes the fiber of the vertex map (vx)n: Xn-+ 
x6nlo at a = (ao, ab ... 'an)· If u : [m] -t [n] is a map in ~. then the map 
X(u): Xn-+ Xm induces a map 

X(ao, a1, ... , an) -t X(au(O)• au(l)• ... , au(m)) 

for every a E Xbn]o. 
A precategory X is called a Segal category in [HS] if it satisfies the Segal 

condition 3.1. It is easy to verify that we have a decomposition 

In \X= U X(ao, a1) X · · · X X(an-b an)· 
aEX6nlo 

It follows that a precategory X is a Segal category iff the canonical map 

X(ao, a1, ... , an) -+ X(ao, a1) X · · · x X(an-b an) 

is a weak homotopy equivalence for every n 2: 2 and every a E Xbn]o (the condition 
is trivially satisfied if n < 2). 
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DEFINITION 5.1. [HS] A map of Segal categories f: X---+ Y is said to be fully 
faithful if the map 

X(a, b) ---+ Y(fa, fb) 
is a weak homotopy equivalence for every pair a, bE Xo. 

If C is a small category, then the bisimplicial set N(C) 
category. The functor N : Cat ---+ PCat has a left adjoint 

T1 : PCat ---+ Cat. 

COl is a Segal 

We say that r1X is the fundamental category of a precategory X. We shall say 
that a map of precategories f : X ---+ Y is essentially surjective if the functor 
T1 (!) : T1X ---+ T1 Y is essentially surjective. 

DEFINITION 5.2. [HS] A map between Segal categories f : X ---+ Y is called an 
equivalence if it is fully faithful and essentially surjective. 

Hirschowitz and Simpson construct a completion functor Seg: PCat---+ PCat 
which associates to a precategory X a Segal category Seg(X) "generated" by X. 
A map of precategories f : X ---+ Y is called a weak categorical equivalence if the 
map Seg(f) : Seg(X) ---+ Seg(Y) is an equivalence of Segal categories. 

THEOREM 5.3 (Hirschowitz-Simpson, see [HS] ). The category of precategories 
PCat admits a model structure in which a cofibration is a monomorphism and 
a weak equivalence is a weak categorical equivalence. The model structure is left 
proper and cartesian closed. 

We call the model structure, the Hirschowitz-Simpson model structure or the 
model structure for Segal categories. The model structure is cartesian closed by a 
result of Pellisier in [P]. A precategory is fibrant iff it is a Segal space by [B3] and 
[J4]. 

A simplicial set X : ~ 0 ---+ Set is discrete iff it takes every map in ~ to a 
bijection. It follows that a bisimplicial set X : (~ 2 ) 0 ---+ Set is a precategory iff it 
takes every map in [OJ x ~ to a bijection. Let us put 

~12 = ([0] X ~)-1(~ X~) 

and let 11' be the canonical functor ~ 2 ---+ ~1 2 • 

PROPOSITION 5.4. The functor 7r* induces an isomorphism between the presheaf 
category [~1 2 , Set] and the subcategory PCat c s<2l. 

We shall regard the functor 7r* as an inclusion by adopting the same notation 
for a contravariant functor X: ~1 2 ---+ Set and the precategory 7r*(X). The functor 
7r* : PCat c s<2l has a left adjoint 11'! and a right adjoint 11'*. 

THEOREM 5.5 (Bergner, see[B2]). The pair of adjoint functors 

7r* : PCat +-+ s<2l : 11'* 

is a Quillen equivalence between the model structure for Segal categories and the 
Resz model structure on s<2l. A map of precategories X---+ Y is a weak categorical 
equivalence iff the map 7r* ( u) is a Rezk weak equivalence. 
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The functor ii : ~ ---+ ~ x ~ defined by putting i1 ([n]) = ([n], 0) is right 
adjoint to the projection P1 : ~ x ~ ---+ ~- The projection Pl inverts every arrow 
in [OJ x ~- Hence there is a unique functor q : ~1 2 ---+ ~ such that qrr = p1. The 
functor j = rri1 : ~---+ ~1 2 is then right adjoint to the functor q. Hence the functor 
j* : PCat ---+ S is right adjoint to the functor q*. If X is a precategory, then 
j*(X) is the first row of X. If A E S, then q*(A) = ADl. The following result was 
conjectured by Bertrand Toen in [Tl]: 

THEOREM 5.6. The adjoint pair of functors 

q* : S +-+ PCat : j* 

is a Quillen equivalence between the model category for quasi-categories and the 
model category for Segal categories. 

Proof: Let us show that q* is a left Quillen functor. Obviously, q* preserves 
monomorphisms . Let us show that it takes a weak categorical equivalence to a 
weak categorical equivalence. The functor Pi takes a weak categorical equivalence 
to a Rezk weak equivalence by 4.11 (and by Proposition 7.11). Thus, if u E Sis a 
weak categorical equivalence, then Pi ( u) is a Rezk weak equivalence. But we have 
Pi = rr* q*, since we have qrr = Pl· Thus, rr* q* ( u) is a Rezk weak equivalence. It 
follows by 5.5 that q*(u) is a weak categorical equivalence. We have proved that 
q* is a left Quillen functor. It remains to show that the pair (q*,j*) it is a Quillen 
equivalence. But the pair (pi, ii) is a Quillen equivalence by 4.11. Hence also the 
pair (q* ,j*) by three-for-two in 7.23, since the pair (rr*, rr*) is a Quillen equivalence 
by 5.5 and since we have rr*q* =Pi. • 

Let us put d = rr8 : ~ ---+ ~1 2 , where 8 is the diagonal functor~---+ ~ x ~-
The simplicial set d*(X) is the diagonal of a precategory X. The functor 

d* : PCat ---+ S 

admits a left adjoint d, and a right adjoint d* . 

THEOREM 5.7. The adjoint pair of functors 

d* : PCat +-+ S : d* 

is a Quillen equivalence between the model category for Segal categories and the 
model category for quasi-categories. 

The proof is given after Lemma 5.11. Let 8* be the right adjoint of the functor 
8* : S ---+ s<2). 

LEMMA 5.8. For every A, B, X E S we have 

8*(ADB) =A X B, 

Proof: We have 
8*(AD1) = 8*pi(A) = (p18)*(A) =A 

since p18 = id. Similarly, we have 8*(1DB) = B since p28 = id. But 

ADB = (ADl) X (lOB). 
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Thus, 8*(ADB) = 8*(AD1) x 8*(1DB) = A x B, since the functor 8* preserves 
products. Let us show that A\8*(X) = XA. If B is a simplicial set, there is a 
natural bijection between the maps B ---+ A\8*(X), the maps ADB ---+ 8*(X), the 
maps 8*(ADB)---+ X, the maps A X B---+ X and the maps B---+ xA. This shows 
by Yoneda lemma that A\8*(X) = XA. The formula 8*(X)jB = XB is proved 
similarly. • 

PROPOSITION 5.9. If X is a simplicial space, then we have a pullback square 
of bisimplicial sets, 

Cosk(Xoo)- Cosk(Xo), 
where v = vx :X---+ Cosk(Xo) is the vertex map. 

Proof: Let P be the bisimplicial set defined by the pullback square 

P-----x 
! !v 

Cosk(Xoo) - Cosk(Xo). 

The map v induces an isomorphism on the first columns, hence also the map P ---+ 
Cosk(X00 ). Thus, Po = Xoo· This shows that P is a precategory. Let us show 
that the map i : P ---+ X coreflects X in the subcategory PCat. For this, we have 
to show that if Z is a precategory, then every map f : Z ---+ X factors uniquely 
through i. But the map fo : Zo ---+ Xo factors through the inclusion Xoo ~ Xo since 
Z0 is discrete. The result then follows by using the adjunction (i2)* --l (i2k • 

Recall from 4.10 the functor r : QCat ---+ s<2) which associates to a quasi-
category X a complete Segal space r(X). We have 

r(X)*n = r(X)/ ~[n] = X(A[n]) 
for every n ~ 0 by 4.9. 

LEMMA 5.10. If X is a quasi-category, then d*X = rr*r(X). 

Proof: It suffices to show that we have (rr*rX)n = (rr*8*X)n for every n ~ 0. If 
Y is a simplicial space, then we have a pullback square of simplicial sets 

(rr*Y)n-Yn 

! ! 
y;[n]o - y;[n]o 

00 0 

by Lemma 5.9. In particular, if Y = 8*X, we have a pullback square of simplicial 
sets 
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since Yn = .6-[n]\~*X = X~[nl by 5.8. The projection X~[nJ ---+ X[n]o is a conserva-
tive quasi-fibration by 1.23. Hence also the projection (1r*~*X)n ---+ Xbn]o by 1.25. 
It follows that the simplicial set (1r*~*X)n is a Kan complex by 1.24, since Xbn]o is 
a Kan complex. If we apply the functor J to the pullback square above we obtain 
a pullback square 

since the functor J preserves pullbacks by 1.16 and since the vertical map on the 
left hand side is a map between Kan complexes. But we have J(X~[nl) = (rX)n, 
J(X) = (r X)0 and Xo = (r X)oo by 4.9. We thus obtain a pullback square 

( 1l' *~*X)n - (r X)n 

! ! 
(r X)~~lo - (r X)[n]o 

• 
LEMMA 5.11. Iff : X ---+ Y is a quasi-fibration between quasi-categories, then 

the map r(f) : r X ---+ rY is a Rezk fibration between complete Segal spaces. 

Proof: The bisimplicial sets rx and rY are complete Segal spaces by 4.10. Hence 
it suffices to show that r(f) is a v-fibration. For this it suffices to show that the 
map u\r(f) is a Kan fibration for every monomorphism u: A---+ B. But the square 

is isomorphic to the square 

by Lemma 4.9 . Hence the map u\r(f) is isomorphic to the image by the functor 
J of the map 

(u, f} : X 8 --t yB XyA XA 

But (u, f) is a quasi-fibration by Theorem 1.9. It follows that J(u, f) is a Kan 
fibration by 1.16. We have proved that r(f) is a Rezk fibration. • 
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Proof of Theorem 5. 7: Let us first show that the pair ( d*, d*) is a Quillen 
pair. For this, we shall use the criteria of 7.15. Obviously, the functor d* takes a 
monomorphism to a monomorphism. Let us show that its right adjoint d* takes a 
fibration between fibrant objects to a fibration. Iff : X ---t Y is a quasi-fibration 
between quasi-categories, let us show that the map d*(f) : d*(X) ---t d*(Y) is a 
fibration. But we have d*(f) = 1r*r(f) by 5.10. The map r(f) is a Rezk fibration 
by 5.11. Thus, 1r*r(f) is a fibration since 1r* is a right Quillen functor by 5.5. We 
have proved that the pair (d*, d*) is a Quillen pair. It remains to show that it is 
a Quillen equivalence. The composite d*q* : S ---t S is isomorphic to the identity 
functor since qd = id. We saw in 5.6 that the pair (q*, j*) is a Quillen equivalence. 
It follows by three-for-two in 7.23 that the pair (d*, d*) is a Quillen equivalence . 

• 
6. Addendum 

The model structure for quasi-categories in Theorem 1.9 is not simplicial. How-
ever, it is Quillen equivalent to the model category for complete Segal spaces, which 
is simplicial by Theorem 4.1. In their paper Simplicial structures on model cate-
gories and functors [RSSJ Rezk, Schwede and Shipley study the problem of asso-
ciating to a model category £ a Quillen equivalent simplicial model category. A 
simplicial object X : ~ 0 ---t £ is said to be homo topically constant if it takes every 
map in ~ to a weak equivalence in £. For any model category £ there is at most 
one model structure Me= (Cc, we, Fe) on the category [~ 0 , £] such that 

• The model structure Me is a Bousfield localisation of the Reedy model 
structure on [~ 0 ,£]; 

• The fibrant objects are the homotopically constant Reedy fibrant objects. 
For the notion of Bousfield localisation, see Definition 7.20. When it exists, Me 
is called the canonical model structure on [~ 0 ,£]. Under certain conditions, the 
model category Me is shown to be simplicial and the adjoint pair 

p*: £ +-+ [~0,£]: i* 

to be a Quillen equivalence, where p*(A) =lOA and j*(X) = Xo. 

THEOREM 6.1. The Rezk model structure (CR,WR,FR) on S(2) = [~ 0 ,S] is 
the canonical model structure associated to the model structure for quasi-categories 
(C1,W1,F1) on S. 

Proof: The model structure (CR, WR,FR) is a Bousfield localisation of the hori-
zontal model structure ( Cf, Wf, Ff.') by 4.5. Moreover, an h-fibrant simplicial space 
X is a complete Segal space iff it is categorically constant. • 

7. Appendix 

The goal of this appendix is to review the basic homotopical algebra needed in 
the paper and to introduce some notation. 

We shall denote by ObC the class of objects of a category C and by C(A, B) 
the set of arrows between two objects of C. IfF: A---t Band G: B ---t A are two 
functors, we shall write F -1 G, or write 

F: A+-+ B: G, 
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to indicate that the functor F is left adjoint to the functor G. 

We shall denote by Set the category of sets and by Cat the category of small 
categories. If A is a small category and £ is a category (possibly large) we shall 
denote the category of functors A --t £ by [A,£] or by £A. Recall that a presheaf 
on a small category A is a contravariant functors A --t Set. We shall denote by 
A the category [A0 , Set] of presheaves on A. We shall regard the Yoneda functor 
y : A --t A as an inclusion by adopting the same notation for an object a E A and 
the representable functor y(a) = A(-, a). For every functor u : A --t £, we shall 
denote by u1 : £ --t A the functor obtained by putting u1(X)(a) = £(u(a),X) for 
every object X E £ and every object a E A. The functor u1 has a left adjoint u, 
when the category £ is cocomplete. The functor u, : A --t £ is the left Kan extension 
of the functor u along the Yoneda functor A --t A. If B is a small category and 
u : A --t B, we shall denote by u* : B --t A the functor obtained by putting 
u*(X) =Xu for every presheaf X E .B. The functor u* has a left adjoint denoted 
u, and a right adjoint denoted u*. 

We denote by ~ the category whose objects are the finite non-empty ordinals 
and whose arrows are the order preserving maps. The ordinal n + 1 is represented 
by the ordered set [n] = {0, ... , n}, so that Ob~ = {[n] : n ~ 0}. A simplicial set 
is a presheaf on ~. If X is a simplicial set, the set X([n]) is denoted by Xn for 
every n ~ 0. We denote the category of simplicial sets A by S. Recall that the 
simplex ~[n] is defined to be the representable functor~(-, [n]). We shall denote 
its boundary by 8~[n]. A category enriched over S is called a simplicial category. 

Let c : Set --t S be the functor which associate to a set 8 the constant simplicial 
set c8 obtained by putting ( c8)n = 8 for every n ~ 0. The functor c is full and 
faithful and we shall regard it as an inclusion Set C S by adopting the same 
notation for 8 and c8. The functor c has a left adjoint 

1ro : S --t Set, 

where 7ro(X) is the set of connected components of a simplicial set X. 

If u : A --t B and f : X --t Y are two maps in a category £, we write u rh f to 
indicate that f has the right lifting property with respect to u. If 8 is an object 
of£, we write u rh 8 to indicate that the map £(u, 8) : £(B, 8) --t £(A, 8) is 
surjective and we write 8 rh f to indicate that the map £(8, f) : £(8, A) --t £(8, B) 
is surjective. If £ has a terminal object T, the condition u rh 8 is equivalent to the 
condition u rh ts, where ts is the map 8 --t T. If£ has an initial object .l, the 
condition 8 rh f is equivalent to the condition is rh J, where is is the map .l --t 8. 

For any class of maps M ~£,we denote by mM (resp. Mm) the class of maps 
having the left (resp. right) lifting property with respect to every map in M. If A 
and B are two classes of maps in £, we write A rh B to indicate that we have a rh b 
for every a E A and bE B. Then 

A~ mB {=::::} A rh B {=::::} B ~Am. 

If F : U ~ V : G is a pair of adjoint functors, then for an arrow f E U and an 
arrow g E V we have 

f rh G(g) {=::::} F(f) rh g. 
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DEFINITION 7.1. We shall say that a pair (A, B) of classes of maps in a category 
£ is a weak factorisation system if the following conditions are satisfied: 

• every map f E £ admits a factorisation f =pi with i E A and p E B; 
• B=Am andA=mB. 

We call A is the left class and B the right class of the weak factorisation system. 

DEFINITION 7.2. We shall say that a map in a topos is a trivial fibration if it 
has the right lifting property with respect to every monomorphism. 

This terminology is non-standard but it is useful. The trivial fibrations often 
coincide with the acyclic fibrations (which can be defined in any model category). 

PROPOSITION 7.3. [J2] If A is the class of monomorphisms in a topos and B 
is the class of trivial fibrations, then the pair (A, B) is a weak factorisation system. 

Recall that a map u : A ---+ B in a category £ is said to be a retract of a map 
f : X ---+ Y if u is a retract off as objects of the category of arrows £1 . Recall that 
a map u : A ---+ B is called a domain retract of a map v : C ---+ B, if u is a retract of 
v as objects of the category £/B. There is a dual notion of codomain retract. The 
two classes of a weak factorisation system are closed under retracts. 

DEFINITION 7.4. We shall say that a class A of maps in a cocomplete category 
£ is saturated if it contains the isomorphisms and is closed under composition, 
transfinite composition, cobase change and codomain retracts. 

The class m M is saturated for any class M ~ £. In particular, the class A of a 
weak factorisation system (A, B) in£ is saturated. Every class of maps M ~ £ is 
contained in a smallest saturated class M ~ £ called the saturated class generated 
byM. 

The following proposition is a special case of a more general result, see [J2]: 

PROPOSITION 7.5. If E is a set of maps in a presheaf category, then the pair 
(E, Em) is a weak factorisation system. 

We shall say that a functor of two variables 

8 : £1 X £2 ---+ £3 

is divisible on the left if the functor A 8 (-) : £2 ---+ £3 admits a right adjoint 
A\ (-) : £3 ---+ £2 for every object A E £1. In this case we obtain a functor of two 
variables (A, X) t-t A\X, 

£J. X £3 ---+ £2, 
called the left division functor. Dually, we shall say that 8 is divisible on the right 
if the functor (-) 8 B : £1 ---+ £3 admits a right adjoint (-) / B : £3 ---+ £1 for every 
object B E £2. In this case we obtain a functor of two variables (X, B) t-t X/ B, 

£3 X £2---+ £1, 

called the right division functor. When the functor 8 is divisible on both sides, 
there is a bijection between the following three kinds of maps 

A8B---+ X, B---+ A\X, A---+ X/B. 
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Hence the contravariant functors A f---+ A \X and B f---+ B\X are mutually right 
adjoint. It follows that we have 

urh(X/v) {::} vrh(u\X). 
for every map u E £1 and every map v E £2. 
Remark: If a functor of two variables 0 : £1 x £2 --+ £3 is divisible on both sides, 
then so are the left division functor £f x £3 --+ £2 and the right division functor 
£3 x £2 --+ £1. This is called a tensor-hom-cotensor situation in [G]. 

Recall that a monoidal category t: = (£, ®) is said to be closed if the tensor 
product ® is divisible on each side. Let t: = ( t:, ®, a) be a symmetric monoidal 
closed category, with symmetry a: A®B ~ B®A. Then the objects X/A and A\X 
are canonicaly isomorphic; we can identify them by adopting a common notation, 
for example [A, X]. 

Recall that a category with finite products t: is said to be cartesian closed if 
the functor A x - : t: --+ t: admits a right adjoint (-)A for every object A E £. A 
cartesian closed category t: is symmetric monoidal closed. Every presheaf category 
and more generally every topos is cartesian closed. 

Let 0 : £1 x £2 --+ £3 be a functor of two variables with values in a finitely 
cocomplete category £3. If u: A--+ B is map in £1 and v: S--+ Tis a map in £2, 
we shall denote by u 0' v the map 

A 0 T UA0S B 0 S ----+ B 0 T 
obtained from the commutative square 

A0S-B0S 

! ! 
A0T~B0T. 

This defines a functor of two variables 

0' : £{ X ££ --+ £i' 
where £1 denotes the category of arrows of a category£. 

In a topos, if u : A ~ B and v : S ~ T are inclusions of sub-objects then the 
map u x' vis the inclusion of sub-objects 

(A X T) u (B X S) ~ B X T. 

Suppose now that a functor 0 : £1 x £2 --+ £3 is divisible on both sides, that £1 
and £2 are finitely complete and that £3 is finitely cocomplete. Then the functor 
0 1 : t:[ x t:£ --+ t:[ is divisible on both sides. If u : A --+ B is map in £1 and 
f: X--+ Y is a map in £3, let us denote by (u\ f) the map 

B\X--+ B\Y XA\Y A\X 
obtained from the commutative square 

B\X~A\X 

! ! 
B\Y-----. A\Y. 
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Then the functor f ~---> ( u \f) is right adjoint to the functor v ~---> u 8 1 v. Dually, if 
v: S----+ Tis map in e2 and f: X----+ Y is a map in e3, we shall denote by (fjv) 
the map 

X/T----+ YjT xy;s X/S 
obtained from the commutative square 

x;r~x;s 

1 1 
YfT~YfS. 

The functor f ~---> (!\ v) is right adjoint to the functor u ~---> u 8 1 v. 
The verification of the following result is left to the reader. See [J2]. 
PROPOSITION 7.6. Let 8 : e1 X e2 ----+ e3 be a functor of two variables divisible 

on both sides, where ei is a finitely bicomplete category fori = 1, 2, 3. If u E e1, 
v E e2 and f E: e3, then 

(u 8' v) rh f <¢=:::} u rh (f jv) <¢=:::} v rh (u\f). 

Let e = ( f, @) be a bicomplete symmetric monoidal closed category. Then the 
operation @1 gives the category e1 the structure of a symmetric monoidal closed 
category. If n and f are two maps in e, then the maps (f ju) and (u\f) are 
canonically isomorphic. We shall identify them by adopting a common notation 
( u, f). If u : A ----+ B, v : S ----+ T and f : X ----+ Y are three maps in e, then 

(u @1 v) rh f <¢=:::} u rh (v, f) <¢=:::} v rh (u, !). 

We now recall the notion of a Quillen model category: 

DEFINITION 7.7. [Q] Let e be a finitely bicomplete category. A model structure 
one is a triple (C, W, :F) of classes of maps in e satisfying the following conditions: 

• ("thr-ee-for-two") if two of the three maps u : A ----+ B, v : B ----+ C and 
vu : A ----+ C belong to W, then so does the third; 

• the pair ( C n W, :F) is a weak factorisation system; 
• the pair ( C, :F n W) is a weak factorisation system. 

These conditions imply that W is closed under retracts by 7.8 below. A category 
e equipped with a model structure is called a model category. A map in C is called 
a cofibration, a map in :F a fibration and a map in W a weak equivalence. A map 
in W is also said to be acyclic. An object X E e is fibrant if the map X ----+ 1 is a 
fibration, where 1 is the terminal object of e. Dually, an object A E e is cofibrant 
if the map 0----+ A is a cofibration, where 0 is the initial object of e. 

Any two of the three classes of a model structure ( C, W, :F) determine the third. 

A model structure is said to be left proper if the cobase change of an acyclic 
map along a eofibration is aeyclic. Dually, a model structure is said to be right 
proper if the base change of an aeyclic map along a fibration is acyclic. A model 
structure is proper if it is both left and right proper. 

PROPOSITION 7.8. [JT2] The class W of a model structure is closed under 
retracts. 
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Proof: Observe first that the class :F n W is closed under retracts since the pair 
(C, :F n W) is a weak factorisation system. Suppose now that a map f: A~ B is 
a retract of a map g: X~ Yin W. Let us show that fEW. By definition, we 
have a commutative diagram, 

where gf = lx and vu = lB. Let us first consider the case where f is a fibration. 
In this case, let us choose a factorisation g = qj : X ~ Z ~ Y with j E C n W and 
q E :F. We have q E :F n W by three-for-two, since g E W. The square 

X~A j! !! 
Z~B 

has a diagonal filller d : Z ~ A, since f is a fibration. We then have a commutative 
diagram, 

A~Z~A !! q! !! 
B~Y~B. 

Thus, f is a retract of q, since d(js) = ts = lA. This shows that f E W since 
q E :F n W. In the general case, let us choose a factorisation f = pi : A ~ E ~ B 
with i E C n W and p E :F By taking a pushout, we obtain a commutative diagram 

where ki2 = g and ri1 = lE. The map i2 is a cobase change of the map i. Thus, 
i2 E C n W since i E C n W. Thus, k E W by three-for-two since g = ki2 E W by 
hypothesis. Thus, p E W by the first part since p E :F. Thus f = pi E W since 
i E W. • 

The homotopy category of a model category £ is defined to be the category of 
fractions Ho(£) = w-1£. We shall denote by [u] the image of an arrow u E £ 
by the canonical functor£ ~ Ho(£). The arrows [u] is invertible iff u is a weak 
equivalence by a result in [Q]. 

Let £1 (resp. E:c) be the full sub-category of fibrant (resp. cofibrant) objects of 
£and let us put Cfc = £1 n£c. Let us put Ho(£J) = Wj1£J where w, = Wn£1 
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and similarly for Ho(ec) and Ho(eJc)· . Then the diagram of inclusions 

efc-ef 

! ! 
ec-e 

induces a diagram of equivalences of categories 

Ho(e1c)- Ho(e1) 

! ! 
Ho(ec)- Ho(e). 

A fibrant replacement of an object X E e is a weak equivalence X ---+ RX 
with codomain a fibrant object. Dually, a cofibrant replacement of X is a weak 
equivalence LX ---+ X with domain a cofibrant object. 

Recall from [Ho] that a cocontinuous functor F : U ---+ V between two model 
categories is said to be a left Quillen functor if it takes a cofibration to a cofibration 
and an acyclic cofibration to and acyclic cofibration. Dually, a continuous functor 
G : V ---+ U between two model categories is said to be a right Quillen functor if it 
takes a fibration to a fibration and an acyclic fibration to an acyclic fibration. 

PROPOSITION 7.9. [Q] Let F : U t--+ V : G be an adjoint pair of functors 
between two model categories. Then F is a left Quillen functor iff G is a right 
Quillen functor. 

The adjoint pair (F, G) is said to be a Quillen pair if the conditions of 7.9 are 
satisfied. 

The following lemma is due to Ken Brown, see [Ho] and [JT2]. 

LEMMA 7.10. Let e be a model category and F : e ---+ V be a functor with 
values in a category equipped with a class of a weak equivalences W' which satisfies 
three-for-two. IfF takes an acyclic cofibration between cofibrant objects to a weak 
equivalence, then it takes a weak equivalence between cofibrant objects to a weak 
equivalence. 

COROLLARY 7.11. A left Quillen functor takes a weak equivalence between cofi-
brant objects to a weak equivalence. 

The following result is due to Reedy [Ree]. See [Hi] and [JT2]. 

PROPOSITION 7.12. The cobase change along a cofibration of a weak equivalence 
between cofibrant objects is a weak equivalence. 

COROLLARY 7.13. If every object of model category is cofibrant then the model 
structure is left proper. 

LEMMA 7.14. In a model category, a cofibration is acyclic iff it has the left 
lifting property with respect to every fibration between fibrant objects. 
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Proof: The necessity is clear. Conversely, let us suppose that a cofibration u : 
A----+ B has the left lifting property with respect to every fibration between fibrant 
objects. We shall prove that u is acyclic. For this, let us choose a fibrant replace-
ment j : B ----+ B' of the object B together with a factorisation of the composite 
ju: A----+ B' as a weak equivalence i :A----+ A' followed by a fibration p: A'----+ B. 
The square 

A~A' 

u l . lp 
B~B' 

has a diagonal filler d : B ----+ A' since p is a fibration between fibrant objects. 
The arrows i and j are invertible in the homotopy category since they are acyclic. 
The relations pd = j and du = i then implies that d is invertible in the homotopy 
category. It thus acyclic [Q]. It follows by three-for-two that u is acyclic. • 

PROPOSITION 7.15. An adjoint pair of functors F : U ~ V : G between two 
model categories is a Quillen pair iff the following two conditions are satisfied: 

• F takes a cofibration to a cofibration; 
• G takes a fibration between fibrant objects to a fibration. 

Proof: The necessity is obvious. Let us prove the sufficiency. For this it suffices 
to show that F is a left Quillen functor by 7.9. Thus we show that F takes an 
acyclic cofibration u: A----+ B to an acyclic cofibration F(u) : F(A) ----+ F(B). But 
F(u) is acyclic iff it has the left lifting property with respect to every fibration 
between fibrant objects f: X----+ Y by Lemma 7.14. But the condition F(u) rh f is 
equivalent to the condition u rh G(f) by the adjointness F --1 G. We have u rh G(f) 
since G(f) is a fibration by (ii). This proves that we have F(u) rh f. Thus, F(u) is 
~&. • 

A left Quillen functor F : U ----+ V induces a functor Fe : Uc ----+ Vc hence also a 
functor Ho(Fc) : Ho(Uc)----+ Ho(Vc) by Proposition 7.11. A left derived functor is 
a functor 

pL: Ho(U)----+ Ho(V) 
for which the following diagram of functors commutes up to isomorphism, 

Ho(Fc) 
Ho(Uc)--- Ho(Vc) 

l pL l 
Ho(U) -Ho(V), 

The functor pL is unique up to a canonical isomorphism. It can be computed as 
follows. For each object A E U, we can choose a cofibrant replacement AA :LA----+ 
A, with AA an acyclic fibration. We can then choose for each arrow u : A ----+ B an 
arrow L(u): LA----+ LB such that UAA = ABL(u), 

LA~A 

L(u) l .>. l u 

LB~B. 
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Then 
FL([u]) = [F(L(u))]: FLA---> FLB. 

A right Quillen functor G : V ---> U induces a functor G f : V f ---> U f hence 
also a functor Ho(Gt): Ho(Vt)---> Ho(Ut) by Proposition 7.11. The right derived 
functor is a functor 

GR : H o(V) ---> H o(U) 
for which the following diagram of functors commutes up to a canonical isomor-
phism, 

Ho(GJ) 
Ho(Vt) -Ho(Ut) 

l aR l 
H o(V) --- H o(U). 

The functor QR is unique up to a canonical isomorphism. It can be computed as 
follows. For each object X E V let us choose a fibrant replacement px :X---> RX, 
with px an acyclic cofibration. We can then choose for each arrow u: X---> Y an 
arrow R(u): RX---> RY such that R(u)px = pyu, 

X~RX 

u l l R(u) 

Y~RY. 
Then 

GR([u]) = [G(R(u))]: GRX---> GRY. 

A Quillen pair of adjoint functors F : U .._.. V : G induces a pair of adjoint 
functors 

pL: Ho(U) .._.. Ho(V): GR. 
If A E U is cofibrant, the adjunction unit A---> QRFL(A) is obtained by composing 
the maps A---> GF A---> GRF A, where FA---> RF A is a fibrant replacement ofF A. 
If X E Vis fibrant, the adjunction counit FLGR(X)---> X is obtained by composing 
the maps FLGX---> FGX---> X, where LGX---> GX is a cofibrant replacement of 
GX. 

DEFINITION 7.16. We shall say that a Quillen pair F: U .._.. V: G is a homotopy 
localisation U ·-+ V if the right derived functor QR is full and faithful. Dually, we 
shall say that the pair (F, G) is a homotopy colocalisation V---> U if the left derived 
functor pL is full and faithful. 

PROPOSITION 7.17. The following conditions on a Quillen pair F: U .._.. V: G 
are equivalent: 

• The pair (F, G) is a homotopy localisation U ---> V; 
• The map FLGX---> X is a weak equivalence for every fibrant object X E 

V, where LGX---> GX denotes a cofibrant replacement ofGX; 
• The map F LGX ---> X is a weak equivalence for every fibrant-cofibrant 

object X E V, where LGX---> GX denotes a cofibrant replacement ofGX. 
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Proof: The functor eR is full and faithful iff the counit of the adjunction FL -1 eR 
is an isomorphism. But if X E V is fibrant, this counit is obtained by composing the 
maps FLeX---+ FeX---+ X, where LeX---+ ex is a cofibrant replacement of ex. 
This proves the equivalence (i)<=>(ii). The implication (ii)=?(iii) is obvious. Let us 
prove the implication (iii)=?(ii). For every fibrant objet X, there is a an acyclic 
fibration p: Y---+ X with domain a cofibrant object Y. The map ep: eY---+ ex 
is an acyclic fibration, since e is a right Quillen functor. Let q : LeY ---+ eY 
be a cofibrant replacement of eY. Then the map FLeY ---+ FeY ---+ Y is a 
weak equivalence by assumption, since Y is fibrant-cofibrant. But the composite 
e(p)q: LeY---+ eY---+ ex is a cofibrant replacement of ex, since e(p) is a weak 
equivalence. Moreover, the composite FLeY---+ FeX---+ X is a weak equivalence, 
since p is a weak equivalence and the following diagram commutes 

F LeY______,.. FeY - Y 

~! !p 
Fe X______,.. X. 

This proves that condition (ii) is satisfied for a cofibrant replacement of ex. • 

PROPOSITION 7.18. IfF: U <-+ V: e is a homotopy localisation, then the right 
adjoint e preserves and reflects weak equivalences between fibrant objects. 
Proof: The functor eR is equivalent to the functor H o( e f) : H o(V f) ---+ H o(U f) 
induced by the functor e. Thus, H o( e f) is full and faithful since eR is full and 
faithful. This proves the result since a full and faithful functor is conservative . 

• 
PROPOSITION 7.19. Let Mi = (Ci, Wi, :Fi) (i = 1, 2} be two model structures 

on a category £. Suppose that C1 ~ C2 and W1 ~ W2. Then the identity functor 
£ ---+ £ is a homotopy localisation M1 ---+ M2. 

DEFINITION 7.20. Let Mi = (Ci, Wi,:Fi) (i = 1,2) be two model structures 
on a category £. If C1 = C2 and W1 ~ W2, we shall say that M 2 is a Bousfield 
localisation of M1. 

PROPOSITION 7.21. Let M2 = (C2, W2, :F2) be a Bousfield localisation of a 
model structure M1 = ( C1, W1, :Fl) on a category £. Then a map between M2-
fibrant objects is a M2-fibration iff it is a M1 -fibration. 
Proof: By hypothesis, we have C1 = C2 and W1 ~ W2. It follows that we have 
:F2 n W2 = :F1 n W1 and :F2 ~ :F1. Let f : X ---+ Y be a map between two M2-
fibrant objects. Let us show that f is a M2-fibration iff it is a M1-fibration. The 
implication ( =?) is clear, since :F2 ~ :F1. Conversely, if f E :F1, let us show that 
f E :F2. Let us choose a factorisation f =pi :X---+ Z---+ Y with i E C2 n W2 and 
p E :F2. We have i E W1 by Proposition 7.11, since the identity functor is a right 
Quillen functor M2 ---+ M1 and since i is a map between M2-fibrant objects. Thus, 
i E W1 n C1, since C1 = C2. Hence the square 

x~x 

i! !f 
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has a diagonal filler, making f a retract of p and therefore f E :F2 • • 
A Quillen pair (F, G) is said to be a Quillen equivalence if the adjoint pair 

(FL, GR) is an equivalence of categories. 

PROPOSITION 7.22. A Quillen pair F: U f-+ V: G is a Quillen equivalence iff 
the following equivalent conditions are satisfied: 

• The pair (F, G) is a both a homotopy localisation and colocalisation; 
• The pair (F, G) is a homotopy localisation and the functor F reflects weak 

equivalences between cofibrant objects; 
• The pair (F, G) is a homotopy colocalisation and the functor G reflects 

weak equivalences between fibrant objects; 

The composite of two adjoint pairs 

F1 : £1 f-+ E2 : G1 and F2 : £2 f-+ £3 : G2 

is an adjoint pair F2F1 : £1 f-+ £3 : G1 G2. 

PROPOSITION 7.23 (Three-for-two, [Ho]). The composite of two Quillen pairs 
(F1, G1) and (F2, G2) is a Quillen pair (F2F1, G1 G2). Moreover, if two of the pairs 
(F1,G1), (F2,G2) and (F2F1,G1G2) are Quillen equivalences, then so is the third. 

DEFINITION 7.24. [Ho] We shall say that a functor of two variables between 
three model categories 

8 : £1 X £2 --t £3 
is a left Quillen functor if it is cocontinuous in each variable and the following 
conditions are satisfied: 

• u 8 1 v is a cofibration if u E £1 and v E £2 are cofibrations; 
• u 8 1 v is an acyclic cofibration if u E £1 and v E £2 are cofibrations and if 

u or v is acyclic. 
Dually, we shall say that 8 is a right Quillen functor if the opposite functor 8° : 
Ef. x E!] --+ E3 is a left Quillen functor. 

PROPOSITION 7.25. Let 8 : £1 x £2 --+ £3 be a left Quillen functor of two 
variables between three model categories. If A E £1 is cofibrant, then the functor 
B f-+ A 8 B is a left Quillen functor E2 --+ £3. 

Proof: If A E £1 is cofibrant, then the map iA : l_ --+ A is a cofibration, where l_ 
is the initial object. If v : S --+ Tis a map in £2, then we have A 8 v = iA 8 1 v. 
Thus, A 8 v is a cofibration if v is a cofibration and A 8 v is acyclic if moreover v 
is acyclic. • 

PROPOSITION 7.26. Let 8: £1 x E2--+ £3 be a functor of two variables between 
three model categories. If the functor 8 is divisible on the left, then it is a left 
Quillen functor iff the corresponding left division functor Ef. x £3 --+ E2 is a right 
Quillen functor. Dually, if the functor 8 is divisible on the right, then it is a left 
Quillen functor iff the corresponding right division functor E3 x E!] --+ £1 is a right 
Quillen functor. 
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PROPOSITION 7.27. Let 0 : £1 x £2 --+ £3 be a functor of two variables, cocon-
tinuous in each, between three model categories. Suppose that the following three 
conditions are satisfied: 

• If u E £1 and v E £2 are cofibrations, then so is u 0 1 v; 
• the functor (-) 0 B preserves acyclic cofibrations for every object B E £2; 
• the functor A 0 (-) preserves acyclic cofibrations for every object A E £1. 

Then 0 is a left Quillen functor. 

Proof: Let u : A --+ B be a cofibration in £1 and v : S --+ T be a cofibration in 
£2. Let us show that u 0 1 v is acyclic if u or v is acyclic. We only consider the case 
where v is acyclic. Consider the commutative diagram 

u0S 
A0S~B0S 

A0v! i2! ~ 
i1 u0'v 

A0T Z B0T 

where Z = A0TUA0 s B 0 Sand where (u0' v)i1 = u0T. The map A0v is an 
acyclic cofibration since vis an acyclic cofibration. Similarly for the map B 0 v. It 
follows that i2 is an acyclic cofibration by co base change. Thus, u 0 1 v is acyclic by 
three-for-two since ( u 0 1 v )i2 = B 0 v is acyclic. 

DEFINITION 7.28. [Ho] A model structure (C, W, F) on a monoidal closed 
category £ = ( £, ®) is said to be monoidal if the tensor product ® : £ x £ --+ £ is 
a left Quillen functor of two variables and if the unit object of the tensor product 
is cofibrant. 

In a monoidal closed model category, if f is a fibration then so are the maps 
(u\f) and (! ju) for any cofibration u. Moreover, the fibrations (u\f) and (! ju) 
are acyclic if the cofibration u is acyclic or the fibration f is acyclic. 

DEFINITION 7.29. We shall say that a model structure (C, W, F) on a cartesian 
closed category £ is cartesian closed if the cartesian product x : £ x £ --+ £ is a left 
Quillen functor of two variables and if the terminal object 1 is cofibrant. 

In a cartesian closed model category, if f is a fibration and u is a cofibration, 
then the map (u, f) is a fibration, which is acyclic if u or f is acyclic. 

We recall a few notions of enriched category theory [K]. Let V = (V, ®, cr) 
a bicomplete symmetric monoidal closed category. A category enriched over V is 
called a V-category. If A and B are V-categories, there is a notion of a strong 
functor F :A--+ B; it is an ordinary functor equipped with a strength which is a 
natural transformation A( X, Y) --+ B(F X, FY) preserving composition and units. 
A natural transformation a : F --+ G between strong functors F, G : A --+ B is said 
to be strong if the following square commutes 

A(X,Y)---~B(GX,GY) ! ! B(ax,GY) 
B(FX,av) 

B(F X, FY) B(F X, GY). 
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for every pair of objects X, Y E A. A strong adjunction () : F -1 G between strong 
functors F : A ~ B and G : B ~ A is a strong natural isomorphism 

Oxy: A(FX, Y) ~ B(X, GY). 
A strong functor G : B ~ A has a strong left adjoint iff it has an ordinary left 
adjoint F : A ~ B and the map 

B(FX,Y)-A(GFX,GY) A(rJx,GY) A(X,GY) 

obtained by composing with the unit 'T/X of the adjunction is an isomorphism for 
every pair of objects X E A and Y E B. Recall that a V-category £ is said to admit 
tensor products if the functor Y ~--t £(X, Y) admits a strong left adjoint A ~--t A®X 
for every object X E £. A V-category is said to be (strongly) cocomplete if it 
cocomplete as an ordinary category and if it admits tensor products. These notions 
can be dualised. A V-category £ is said to admit cotensor products if the opposite 
V-category £ 0 admits tensor products. This means that the (contravariant) functor 
X ~--t £(X, Y) admits a strong right adjoint A ~--t y[A] for every object Y E £. A 
V-category is said to be (strongly) complete if it complete as an ordinary category 
and if it admits cotensor products. We shall say that a V-category is (strongly) 
bicomplete if it is both V-complete and cocomplete. 

DEFINITION 7.30. [Q] Let£ be a strongly bicomplete simplicial category. We 
shall say that a model structure (C, W, :F) on£ is simplicial if the tensor product 

®:Sx£~£ 

is a left Quillen functor of two variables, where S is equipped with the model 
structure (Co, Wo, :Fo) of 1.1. 

A simplicial category equipped with a simplicial model structure is called a 
simplicial model category. 

PROPOSITION 7.31. Let£ be a simplicial model category. Then a map between 
cofibrant objects u : A ~ B is acyclic iff the map of simplicial sets 

£(u,X): £(B,X) ~£(A, X) 

is a weak homotopy equivalence for every fibrant object X. 

Proof: The functor A ~--t £(A, X) takes an (acyclic) cofibration to an (acyclic) Kan 
fibration if X is fibrant. It then follows by Proposition 7.11 that it takes an acyclic 
map between cofibrant objects to an acyclic map. Conversely, let u : A ~ B be 
a map between cofibrant objects in£. If the map £(u,X) : £(B,X) ~£(A, X) 
is a weak homotopy equivalence for every fibrant object X, let us show that u 
is acyclic. Let us first suppose that A and B are fibrant. Let Ecf be the full 
subcategory of fibrant and cofibrant objects of £. We shall prove that u is acyclic 
by showing that u is invertible in the homotopy category H o( Ecf). But if S, X E Ecf, 
then we have Ho(EcJ)(S,X) = 1r0£(S,X) by [Q]. Hence the map Ho(EcJ)(u,X): 
Ho(Ecf )(B, X) ~ Ho(Ecf )(A, X) is equal to the map 7ro£(u, X) : 7ro£(B, X) ~ 
1ro£ (A, X). But the map 1ro£ ( u, X) is bijective since the map £ ( u, X) is a weak 
homotopy equivalence. This shows that the map H o( Ecf) ( u, X) is bijective for 
every X E Ecf. It follows by the Yoneda lemma that u is invertible in H o( Ecf). 
Thus, u is acyclic by [Q]. In the general case, let us choose a fibrant replacement 
iA : A ~ A' with iA an acyclic cofibration. Similarly, let us choose a fibrant 
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replacement iB : B---+ B' with iB an acyclic cofibration. Then there exists a map 
u': A'---+ B' such that u'iA = iBu. We then have a commutative square 

e(B',X) -e(A',X) 

1 1 
e(B,X) -e(A,X) 

for every object X. If X is fibrant, then the vertical maps of the square are 
weak homotopy equivalences by the first part of the proof. Hence also the map 
e( u', X) : e(B', X) ---+ e(A', X) by three-for-two. This shows that u' is an acyclic 
map since A' and B' are fibrant. It follows by three-for-two that u is acyclic. • 

Let e be a bicomplete category. The box product of a simplicial set A by an 
object B E e is defined to be the simplicial object AOB E [~ o, e] obtained by 
putting 

(ADB)n = An X B 
for every n ;::: 0, where An x B denotes the coproduct of An copies of the object 
B. The functor 0 : S x e ---+ [ ~ 0 , e] is divisible on both sides. If X E [ ~ 0 , e] and 
A E S, then 

A\X = f X~n. 
J[n]EL). 

If BEe, then (X/B)n = e(B,Xn) for every n 2:0. 
To a map u : A ---+ B in S and a map v : S ---+ T in e, we can associate the map 

uO'v: AOT UAos BOS----+ BOT 

in [~ 0 ,e]. Iff: X---+ Y is a map in [~ 0 ,e] we then have a map 

(u\f): B\X----+ B\Y xA\Y A\X 
in e and a map 

(f jv): X/T----+ Y/T xy;s X/S 
in S. 

In Reedy theory [Ho], the object a~[n]\X is the matching space MnX. If c5n 
denotes the inclusion a~[n] c ~[n], then c5n \X is the canonical map Xn---+ MnX. 
If f : X ---+ Y is a map in [ ~ o, e] then ( c5n \f) is the matching map 

Xn ----+ Yn X Mn Y MnX 
obtained from the square 

These constructions can be dualised. Recall that a cosimplicial set is a covariant 
functor ~ ---+ Set. If A is a cosimplicial set and X E [ ~ o, e] we shall put 

/
[n]EL). 

A~X= An xXn. 
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Let us denote by ~c[n] the cosimplicial object ~([n],-) : ~ -+ Set. Its boundary 
is defined to be the maximal proper sub-object a~c[n] c ~c[n]. In Reedy theory 
[Ho], the object a~c[n]®X is the latching space LnX. If 8~ denotes the inclusion 
a~c[n] c ~c[n], then 8~ 0 X is the canonical map LnX-+ Xn. Iff: X-+ Y is a 
map in [ ~ 0 , £], then the map 8~ 0 1 f is the latching map 

obtained from the square 

LnX-Xn 

! ! 
Let (A, B) be a weak factorisation system in a finitely bicomplete category £. 

We shall say that a map f : X -+ Yin [~ 0 ,£] is a Reedy A-cofibration if the 
latching map 8~ ®1 f belongs to A for every n ~ 0. We shall say that f is a Reedy 
B-fibration if the matching map (8n \f) belongs to B for every n ~ 0. 

THEOREM 7.32. Let (A, B) be a weak factorisation system in a finitely bicom-
plete category £. If A' is the class of Reedy A-cofibrations in [~ 0 , £] and B' is the 
class of Reedy B-fibrations, then the pair (A', B') is a weak factorisation system. 

PROPOSITION 7.33. Let (A, B) be a weak factorisation system in a bicomplete 
category£. Then the following conditions on a map f E [~ 0 , £] are equivalent: 

• f is a Reedy B-fibration; 
• the map (u\f) belongs to B for every monomorphism u E S; 
• the map (! / v) is a trivial fibration for every v E A. 

Proof: The implication (ii)::::}(i) is obvious. Let us prove the implication (i)::::}(iii). 
By 1.2 it suffices to show that we have 8m rh (! fv) for every m ~ 0. But the 
condition 8m rh (! fv) is equivalent to the condition v rh (8m \f) by 2.1. We have 
(8m \f) E B since f is a Reedy B-fibration by assumption. Thus, v rh (8m \f) since 
v E A. This proves that (! fv) is a trivial fibration. Let us prove the implication 
(iii)::::}(ii). It suffices to show that we have v rh (u\f) for every v E A. But the 
condition v rh (u\f) is equivalent to the condition u rh (! fv) by 2.1. This proves 
the result since (! fv) is a trivial fibration by hypothesis. • 

COROLLARY 7.34. Let (A, B) be a weak factorisation system in a finitely bi-
complete category £. If a map f : X -+ Y is a Reedy B-fibration, then the map 
f n : Xn -+ Yn belongs to B for every n ~ 0 

Proof: For any simplicial set A, we have A\f = (iA \!), where iA denotes the 
inclusion 0 ~ A. Thus, A \f E B by 7.33. This proves the result if we take 
A=~[n]. • 
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Let e be a model category with model structure (C, W, :F). We shall say that 
a map f : X ---+ y in (D-0 , e] is level-wise acyclic if the map In : Xn ---+ Yn is 
acyclic for every n ~ 0. We shall say that f is a Reedy cofibration if it is a Reedy 
C-cofibration. We shall say that f is a Reedy fibration if it is a Reedy :F-fibration. 

THEOREM 7.35 (Reedy, see (Reel). Let (C, W, :F) be a model structure on a 
category e. Then the category [D-0 , e] admits a model structure (C', W', :F') in which 
C' is the class of Reedy cofibrations, W' is the class of level-wise acyclic maps and 
:F' is the class of Reedy fibrations. A map u : A ---+ B in [D. o, e] is an acyclic Reedy 
cofibration iff the latching map 8:i_ ®' u is an acyclic cofibration for every n ~ 0. 
Dually, a map f : X ---+ Y is an acyclic Reedy fibration iff the map (8n \f) is an 
acyclic fibration for every n ~ 0. 

We call (C', W',:F') the Reedy model structure associated to (C, W,:F). 

PROPOSITION 7.36. Let e be a bicomplete model category. If u E S is monic 
and v E e is a co fibration, then uO' v is a Reedy co fibration which is acyclic if v is 
acyclic. 

Proof: If u is monic and v is a cofibration, let us show that the map uO' v is a 
Reedy cofibration. For this, it suffices to show that we have ( uO' v) rh f for every 
acyclic Reedy fibration f. Let (C, W, :F) be the model structure on e. The map 
f is a Reedy :F n W-fibration by 7.35. Hence the map (! jv) is a trivial fibration 
by 7.33, since v E C and since the pair (C, :F n W) is a weak factorisation system. 
Hence we have u rh (! jv), since u is monic. It follows that we have (uO'v) rh f 
by 2.1. Let us now show that uO'v is acyclic if moreover v is acyclic. For this, it 
suffices to show that we have ( uO' v) rh f for every Reedy fibration f. The map 
(ffv) is a trivial fibration by 7.33, since v E CnW and since the pair (CnW,:F) is 
a weak factorisation system. Hence we have u rh (! jv), since u is monic. It follows 
that we have (uO'v) rh f by 2.1. • 

The object (0] is terminal in the category D.. Hence the functor i : 1 ---+ D. 
defined by putting i(l) = (OJ is right adjoint to the constant functor p: D. ---+ 1. It 
follows that the functor i* : [D. 0 ' e] ---+ e is right adjoint to the functor p* : e ---+ 

(D.0 ,e]. If X E (D.0 ,e], then i*(X) = X 0 ; if A E e, then p*(A) = lOA is the 
constant simplicial object with value A. 

PROPOSITION 7.37. Let e be a model category. Then the pair of adjoint functors 
p*: e t-t (D-0 ,e]: i* 

is a Quillen pair, where (D. o, e] is given the Reedy model structure. 

Proof: It suffices to show that the functor p* is a left Quillen functo:r by 7.9. This 
follows from 7.36 since p*(A) =lOA. 

8. Epilogue 

A Quillen model category is the primary example of an "abstract homotopy 
theory" [Q]. It permits the construction of homotopy pullbacks and pushouts, 
of fiber and cofiber sequences, etc. Dwyer and Kan have proposed using general 
simplicial categories to model general homotopy theories, see (DKl] and (DK2]. 
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Recently, Bergner [Bl] has established a model structure on the category of sim-
plicial categories. In [B2], she introduces a new model structure Segal cat' on the 
category of Segal precategories and she obtains a chain of Quillen equivalences: 

Simp.cat-+ Segal cat'+- Segal cat+- Comp. Segal sp 

(in this chain, a Quillen equivalence is represented by the right adjoint functor). 
See [B4] for a survey. It follows from her results combined the result proved in the 
present paper that the model structure for simplicial categories is indirectly Quillen 
equivalent to the model structure for quasi-categories. We shall see in [J4] that the 
coherent nerve functor defined by Cordier [C] and studied in Cordier-Porter [CP] 
defines a direct Quillen equivalence 

Simp.cat -+ Quasicat 

between the model structure for simplicial categories and the model structure for 
quasi-categories. See Lurie [Lul] for another proof. An axiomatic approach to 
proving all the equivalences above was proposed by Ti:ien in [T2]. 

There are other important notions of homotopy theories, for example the A00 -

spaces of Stasheff [MSS]. See also Batanin for A00-categories [Ba]. A theory 
of homotopical categories was developed by Dwyer, Hirschhorn, Kan and Smith 
[DHKS]. Dugger studies universal homotopy theories in [D]. The model structure 
for quasi-categories belongs to a class of model structures in presheaf categories 
studied by Cisinski [Ci]. A quite different notion of homotopy theory was in-
troduced by Heller [He] based on the idea of hyperdoctrine of Lawvere [La]. A 
similar notion called derivateur was later introduced by Grothendieck and studied 
by Maltsiniotis [Ml]. See [M2] for an extension. 
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