
A NOTE ON THE KERVAIRE INVARIANT

JOHN JONES AND ELMER REES

In [5] M. Kervaire defined an invariant for (4fc+2)-dimensional framed mani-
folds. This invariant depends only on the framed bordism class of the manifold and
lies in Z2. W. Browder [2] (see also E. H. Brown [3]) gave a generalisation of the
invariant that is defined for any even dimensional manifold with a Wu orientation;
in this case it depends only on the Wu bordism class. A framed manifold has a Wu
orientation and using his generalisation Browder showed that the Kervaire invariant
of M" is zero unless n = 2r — 2 for some r > 1.

In this note we reprove the above mentioned result of Browder. We use a
consequence, due to NigeJ Ray [7], of the theorem of D. S. Kahn and S. Priddy [4].
This allows us to avoid the computational part of the proof in [2].

Throughout, all homology and cohomology groups have Z2 coefficients and we
denote the Eilenberg-Maclane space K(Z2, n) by Kn.

1. Wu orientations

Let BO denote the classifying space for stable real vector bundles and
vk+1eHk+1(BO) the (A: + l)-st universal Wu class. Let

n: BO(vk+i)-*BO

be the fibration induced by vk+l from the path space fibration over Kk+i.
If M2k is a manifold and v denotes its stable normal bundle, then yk+i(v) = 0.

Hence there is a lifting v making the following diagram commute.

BO(vk+i)

(Notationally we confuse a bundle with its classifying map.) By general theory, the
liftings are classified, in this case, by Hk(M). Such a lifting is called a Wu orientation
of M. It is clear that a framing of the normal bundle gives rise to a Wu orientation.
All this is thoroughly discussed in [2; §4].

Given a framed manifold M and a map 0 : M -» 0 (0 is the stable orthogonal
group) we may use <j> to change the framing. Conversely, given two framings Fu F2
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of M, they differ by a map
F2/Ft :M ->O.

Analogously two Wu orientations Wu W2 differ by W2/Wi: M -* Kk. If the
framing F( gives the Wu orientation Wit it follows from the naturality of the fibration
sequence that W2/Wl is the composite (Qyfc+1) (F2/Fi) where Clvk+i: 0 -* Kk is
obtained by looping the map vk+l: BO -»Kk + l .

Given a Wu orientation W of M an invariant iC(M, FF) is defined. If W arises
from a framing F then X(M, W) can be identified with the Kervaire invariant

, F).

2. T/ie Kahn-Priddy theorem and framings

Let i '.P™ -+O denote the usual inclusion of real projective space P " in the
stable orthogonal group and let n*s denote stable homotopy. The J homomorphism
n*(O) -> n+(S°) is known (see, e.g. [10]) to factor giving the stabilized J homo-
morphism

Js: n*s(O) -* nt°(S°).

THEOREM (Kahn-Priddy [4], see also [1] and [8]).

is onto the 2-primary component.

By interpreting this theorem in terms of framed bordism, Nigel Ray showed

PROPOSITION. Let M" be a framed manifold with a framing F such that K(M, F) = 1.
Then there exists a manifold N" with framings Fu F2 such that K(N, Fj) = 1,

K(N, F2) = 0 and F2IFX : M -* 0 factors through the map i: Pro -> 0.

3. The vanishing of the Kervaire invariant

We now reprove

THEOREM (Browder [2]).

K{M", F) = 0 for any (Mn, F) if n+2*2r.

We first prove

LEMMA. i*(Ch>k+A) eH*(P°°) is zero unless k + l = 2'.

Proof. It is equivalent to show that the suspension of this cohomology class is
zero, i.e. if £ i : ^ P 0 0 -»BO is the adjoint, that (£0*0*+1 = 0.

Let (r :Hp(Pc o)-*Hi '+ 1(£P0 0) be the suspension isomorphism and £ be the
bundle over £P°° induced by X1 fr°m t n e universal bundle over BO. Denote the
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Thom class of ^ by U and its total Stiefel-Whitney and Wu classes by W, V respec-
tively. Then if x e f l ^ P " ) is non-zero

W = 1 + I *(*")•

We will use induction to show that if V = 1 + X»>i vn t n e n yn = 0 unless n = 2r

for some r > 0.
Clearly t^ = 0 and v2 = o"(x). By the definition of V (e.g. [6])

and
n

£ Sq^i.xSq* = 0 (from [9])

so

U.v =Si

Now Sq" U = Uwn = U(T(X"~1) and by induction

XSq'U = U.v{ = U.a{x2r~i) if i = 2\ r > 0

= 0 otherwise.

If we define s by 2" < n < 2 s + 1 we see that

Since all products vanish in H*(XP00)> the Cartan formula gives

For dimensional reasons this vanishes for ; < s, hence

But

which is non-zero for 2s < n < 2 s + 1 and zero for n = 2S+1. This completes the
induction.

COROLLARY. IfFu F2 are two framings of a manifold M" such that F2lFl : M -> 0
factors through i: P°° -> 0 then the induced Wu orientations are equal if n+2 ^ 2r.

(In fact a more careful analysis shows that the conclusion holds without assuming
such a factorisation.)

The proposition shows that if there is a framed manifold M" with non-zero
Kervaire invariant then there is a manifold N" satisfying the conditions of the
corollary. This proves the result of Browder.
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