Constructing elements with Kervaire invariant one

John Jones

October 25, 2010

(ロ)、(型)、(E)、(E)、 E) の(の)

The hunt

- We now know that the only dimensions in which there are framed manifolds with Kervaire invariant one are 2, 6, 14, 30, 62, and possibly 126.
- However there is no known systematic construction which produces examples in the five dimensions where examples are known to exist.
- The aim must be to find a systematic construction which produces examples in each of these six special dimensions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Is this list of six special cases related to exceptional Lie groups ?
- The hunt has begun!

The three problems

- Construct framed manifolds with Kervaire invariant one.
- ► Construct maps between spheres detected by h²_j in the E₂ term of the classical mod 2 Adams spectral sequence.
- Construct a diffeomorphism of the Kervaire sphere with the standard sphere.
- In each case there are at most six special cases where these (as we must now call them) exotic phenomena exist.
- I will summarise what is known about constructing examples in these special cases, starting with framed manifolds.

Framed manifolds in dimensions 2, 6, 14

- $K(S^1 \times S^1, F_1 \times F_1) = 1$ where F_1 is the complex framing.
- $K(S^3 \times S^3, F_3 \times F_3) = 1$ where F_3 is the quaternionic framing.
- $K(S^7 \times S^7, F_7 \times F_7) = 1$ where F_7 is the octonionic framing.

- These three examples are the three examples known to Kervaire and Milnor.
- $S^1 \times S^1$ and $S^3 \times S^3$ are Lie groups.
- $S^7 \times S^7$ is not a Lie group.
- However $Spin(8)/G_2 = S^7 \times S^7$

A framed manifold in dimension 30

- The dihedral group D₈ acts on freely on a closed orientable surface Y² of genus 5 with quotient ℝP² + (S¹ × S¹).
- It also acts on (S⁷)⁴ via its usual permutation representation in Σ₄
- Now form

$$M^{30} = Y^2 \times_{D_8} (S^7 \times S^7 \times S^7 \times S^7).$$

- Any framing of S^7 induces a framing of M^{30} .
- ► Let F be the framing of M³⁰ induced by the octonionic framing of S⁷. Then

$$K(M^{30},F)=1.$$

I proved this in my thesis :))

Some comments on the 30 dimensional case

- Note that M³⁰ has an obvious framing with Kervaire invariant 0, this is the framing induced by the framing of S⁷ as the boundary of the disc.
- ► The proof that K(M³⁰, F) = 1 uses the change of framing formula.
- For those who know about Toda brackets: this construction is based on geometrically modelling the Toda bracket

 $\langle \sigma, 2\sigma, \sigma, 2\sigma \rangle$.

- This seems to be the only known explicit example in dimension 30.
- I do not know if this is really related to Lie groups but more of that later.
- There is no known explicit example in dimension 62.

An attempt to generalise

We can consider 62 dimensional manifolds of the form

$$M^{62} = Y^6 \times_G (S^7)^8$$

where G is a subgroup of Σ_8 .

- ► We can choose Y⁶ and G so that framings of S⁷ induce framings of M⁶².
- ► However if we equip such a manifold with a framing induced by a framing of S⁷ then it has Kervaire invariant zero.

Another attempt to generalise

- ► We could try to replace S⁷ × S⁷ by a 30 dimensional framed manifold P with Kervaire invariant 1 and an involution.
- The involution gives an action of D₈ on P × P and we can form

$$M^{62} = Y^2 \times_{D_8} (P \times P)$$

where Y^2 is the surfaces used in the 30 dimensional example.

- It is not true that any framing of P induces a framing of M; only those that are related to the involution in a particular way do so.
- If F is a framing of P which does induce a framing of M then K(P, F) = 0.

The problem with these attempts to generalise

- It is not easy to formulate this precisely.
- ► However the 30 dimensional construction uses implicitly the fact that (S¹ × S⁷ × S⁷, F₁ × F₇ × F₇) is a framed boundary.

- ► However if (M³⁰, F) has Kervaire invariant one then (S¹ × M³⁰, F₁ × F) is never a framed boundary.
- For the cognoscenti: $\eta \theta_3 = 0$ but $\eta \theta_4 \neq 0$.
- So we turn to the homotopy theory and h_i^2 .

Some homotopy theory

Let X be a space and

$$f: S^{2n+m} \to X, \quad g: X \to S^m$$

be two maps. Form the mapping cones

$$Y = X \cup_f D^{2n+m+1}, \quad Z = S^m \cup_g C(X).$$

Assume both f and g are zero in mod 2 cohomology. Then there are isomorphisms

$$H^j(Y) o H^j(X) o H^{j+1}(Z), \quad ext{for } m < j < 2n+m+1.$$

• Let $a \in H^m(Z)$ be the cohomology class corresponding to S^m .

- Let b ∈ H^{2n+m+1}(Y) be the cohomology class corresponding to the 2n + m + 1 disc.
- Let $\phi: H^{j}(Y) \to H^{j+1}(Z)$ be the above isomorphism.

More homotopy theory

▶ Are there triples (*X*, *f*, *g*) as above such that

$$Sq^{n+1}(a) = \phi(x), \quad Sq^{n+1}(x) = b.$$

- Easy to show that if so then n+1 must be of the form 2^{j} .
- When n + 1 = 2^j such a triple exists if and only if h_j² is an infinite cycle in the mod 2 Adams spectral sequence.
- When j = 1, 2, 3 then by Hopf invariant one we can take X to be the sphere S²ⁿ⁺¹.
- When j = 4 there are examples where X has 3 cells.
 (Mahowald Tangora : Some differentials in the Adams spectral sequence, Topology 1967)
- When j = 5, in the only known example X has 9 cells. (Barratt – Jones – Mahowald: Relations amongst Toda brackets and the Kervaire invariant in dimension 62, Journal of the LMS 1984)
- The case where j = 6 is unknown.

The inductive approach

- We use the notation θ_j for an element in $\pi_{2^{j+1}-2}^s$ detected by h_i^2 .
- So we know that θ_j exists for j = 1, 2, 3, 4, 5.
- The inductive approach to the Kervaire invariant problem is to assume that θ_j exists and has some more properties and show that θ_{j+1} exists.
- ▶ The most concrete result this gives is this. Suppose θ_j exists, $2\theta_j = 0$ and $\theta_j^2 = 0$. Then θ_{j+1} exists and $2\theta_{j+1} = 0$.
- ► This works to construct θ_4 since we can take θ_3 to be σ^2 where $\sigma \in \pi_7^s$ is the class of the Hopf map $S^{15} \to S^7$. Then it is easy to show that $2\theta_3 = 0$ a little bit more difficult to show that $\theta_3^2 = \sigma^4 = 0$ and so we see that θ_4 exist and has order 2.
- ► It is known that $\theta_4^2 = 0$ and so $2\theta_5 = 0$. It is not known whether $\theta_5^2 = 0$.

What does all this have to do with exceptional Lie groups?

- Honest answer: Don't really know but it is hard to believe that the answer is nothing!
- There are six special examples of homogeneous spaces with dimensions

4, 8, 16, 32, 64, 128

Are these related to the Kervaire invariant in dimensions

2, 6, 14, 30, 62, 126.

 Here are the homogeneous spaces – you will find them playing a key role in Adams's book: Lectures on Exceptional Lie Groups.

The 6 special homogeneous spaces

•
$$\mathbb{P}^2(\mathbb{C}) = U(3)/(U(2) \times U(1))$$

• $\mathbb{P}^2(\mathbb{H}) = Sp(3)/(Sp(2) \times Sp(1))$

•
$$\mathbb{P}^2(\mathbb{O}) = F_4/Spin(9)$$

- $\mathbb{P}^2(\mathbb{C}\otimes\mathbb{O}) = E_6/((Spin(10)\times U(1))/\mathbb{Z}_4)$
- $\mathbb{P}^{2}(\mathbb{H} \otimes \mathbb{O}) = E_{7}/((Spin(12) \times Sp(1))/\mathbb{Z}_{2})$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\mathbb{P}^2(\mathbb{O}\otimes\mathbb{O}) = E_8/(Spin(16)/\mathbb{Z}_2)$

Bokstedt

- In each of these special homogeneous spaces there is a middle dimensional cohomology class u such that u² is the fundamental class in the top dimension.
- Bokstedt proposes to use this as follows.
- ► P is the homogeneous space and 2n + 2 = 2^{j+1} is its dimension.
- ▶ X is the 2n + 1 skeleton of P and $f : S^{2n+1} \rightarrow X$ is the attaching map of the 2n + 2 cell.
- Now suppose X is (stably 2n+2 Spanier Whitehead) self dual.
- ▶ Then for some (large) *m* we can form the triple

$$\Sigma^{m-1}f: S^{2n+m} \to \Sigma^{m-1}X, \quad g: \Sigma^{m-1}X \to S^m$$

where g is the Spanier Whitehead dual of f.

► The triple (Σ^{m-1}X, Σ^{m-1}f, g) satisfies the conditions required to show that h²_j is an infinite cycle.

Bokstedt

In the first three cases X is

$$S^2=\mathbb{P}^1(\mathbb{C}), \quad S^4=\mathbb{P}^1(\mathbb{H}), \quad S^8=\mathbb{P}^1(\mathbb{O})$$

and so it is self dual.

- ▶ In the next case X is not self dual.
- However by using a combination of Morse theory and computations in homotopy theory, Bokstedt manages to find a self-dual complex of X and to compress f to this self dual complex.
- It is not known whether this approach can be made to work in dimensions 62 and 126.

The Gromoll – Meyer sphere

- This is work of Duran and Puttmann.
- The Gromoll Meyer sphere is a Riemannian manifold whose underlying smooth manifold is Milnor's exotic 7 sphere W⁷.
 In other words it is a Riemannian metric on W⁷.
- ► W⁷ is the quotient of a free action of S³ on Sp(2) and this defines the metric on W⁷.
- ► We can identify W⁷ with the subspace of C⁵ defined by the equations

$$\begin{aligned} & z_1^2+z_2^2+z_3^2+z_4^3+z_5^5=0.\\ & |z_1|^2+|z_2|^2+|z_3|^2+|z_4|^2+|z_5|^2=1. \end{aligned}$$

▶ Notice that *W*⁷ contains the Kervaire 5-sphere.

The Gromoll – Meyer sphere

- S⁷ is a quotient of a different S³ action on Sp(2) and this quotient also defines the usual metric on S⁷.
- Let π_S : Sp(2) → S⁷ and π_W : Sp(2) → W⁷ be the two projections.
- It is not true, in general, that fibres of π_S are fibres of π_W.
 However if a fibre of π_S contains a matrix A with real entries then it is also a fibre of π_W.
- Choose a real matrix $A \in Sp(2)$ with determinant 1.
- Let $Q \in S^7$ be the point $\pi_S(A)$ and let γ be a great circle in S^7 passing through Q.
- Duran and Puttmann show how to lift γ to a smooth (but not necessarily closed) curve γ̃ in Sp(2) such that π_W γ̃ is a geodesic in W that starts and ends at π_W(A).
- However the closed curve $\pi_W \tilde{\gamma}$ is not smooth.

The Gromoll – Meyer sphere

- From these geometric facts Duran and Puttmann construct an explicit homeomorphism of S⁷ with W⁷ that is smooth in the complement of a point.
- ► This diffeomorphism maps a copy of S⁵ ⊂ S⁷ diffeomorphically onto the Kervaire sphere K⁵ ⊂ W⁷.
- They then write down a formula for this diffeomorphism using quaternionic multiplication.
- Their formula with quaternionic multiplication replaced by octonionic multiplication gives a diffeomorphism of S¹³ with the Kervaire sphere K¹³.
- ► Their diffeomorphism is *G*₂ (the symmetry group of the octonions) invariant.

One final point

- ► Using the general theory of Browder and Brown it is possible to define a quadratic form q on Hⁿ(M²ⁿ) using a weaker structure than a framing.
- However, this quadratic form may not be defined for all values of n.
- ▶ When it is defined it will in general take values in Z/4 and quadratic will mean

$$q(x+y) = q(x) + q(y) + 2\langle x, y \rangle.$$

This $\mathbb{Z}/4$ valued quadratic form has a generalised Arf invariant $B(q) \in \mathbb{Z}/8$.

- If q takes values in {0,2} ⊂ Z/4 then we can identify q with a Z/2 valued quadratic form.
- In this case B(q) ∈ {0,4} and B(q) ≠ 0 if and only if the Arf invariant of the corresponding Z₂ valued quadratic form is non zero.

Codimension 1 immersions

- For example this more general theory applies if the manifold M comes equipped with an isomorphism of $TM \oplus L$ with the trivial bundle; here L is a line bundle over M.
- If L is trivial this is the same as a framing.
- Geometrically, such a structure corresponds to an immersion of *M* in codimension 1.
- ► In this context the generalised Kervaire invariant is defined in all dimensions of the form 2^{j+1} 2 and it is non-zero in all these dimensions.
- In dimensions 2, 6 this generalised Kervaire invariant can take any value in Z/8.
- In the other dimensions of the form 2^{j+1} − 2 it can take any value in {0, 2, 4, 6, 8} ⊂ Z/8.

Oriented codimension 2 immersions

- ▶ The more general theory also applies if the manifold M comes equipped with an isomorphism of $TM \oplus P$ with the trivial bundle; here P is an oriented 2-plane bundle over M.
- ▶ This time immersion theory shows that this structure corresponds to an orientation of *M* and an oriented immersion in codimension 2.
- The quadratic form is defined for all dimensions of the form $2^{j+1} 2$.
- ► In these dimensions the quadratic from is always Z/2 valued so the invariant is the Kervaire invariant of a Z/2 valued quadratic form.
- ► In each dimension of the form 2^{j+1} 2 there is an oriented codimension 2 immersion with Kervaire invariant one.
- Cohen Jones Mahowald 1985: The Kervaire invariant of immersions (Inventiones Math).

Back to the hunt.

Thank you once more.

<□ > < @ > < E > < E > E のQ @