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The hunt

I We now know that the only dimensions in which there are
framed manifolds with Kervaire invariant one are 2, 6, 14, 30,
62, and possibly 126.

I However there is no known systematic construction which
produces examples in the five dimensions where examples are
known to exist.

I The aim must be to find a systematic construction which
produces examples in each of these six special dimensions.

I Is this list of six special cases related to exceptional Lie
groups ?

I The hunt has begun!



The three problems

I Construct framed manifolds with Kervaire invariant one.

I Construct maps between spheres detected by h2j in the E2 –
term of the classical mod 2 Adams spectral sequence.

I Construct a diffeomorphism of the Kervaire sphere with the
standard sphere.

I In each case there are at most six special cases where these
(as we must now call them) exotic phenomena exist.

I I will summarise what is known about constructing examples
in these special cases, starting with framed manifolds.



Framed manifolds in dimensions 2, 6, 14

I K (S1 × S1,F1 × F1) = 1 where F1 is the complex framing.

I K (S3× S3,F3×F3) = 1 where F3 is the quaternionic framing.

I K (S7 × S7,F7 × F7) = 1 where F7 is the octonionic framing.

I These three examples are the three examples known to
Kervaire and Milnor.

I S1 × S1 and S3 × S3 are Lie groups.

I S7 × S7 is not a Lie group.

I However Spin(8)/G2 = S7 × S7



A framed manifold in dimension 30

I The dihedral group D8 acts on freely on a closed orientable
surface Y 2 of genus 5 with quotient RP2 + (S1 × S1).

I It also acts on (S7)4 via its usual permutation representation
in Σ4

I Now form

M30 = Y 2 ×D8 (S7 × S7 × S7 × S7).

I Any framing of S7 induces a framing of M30.

I Let F be the framing of M30 induced by the octonionic
framing of S7. Then

K (M30,F ) = 1.

I I proved this in my thesis :))



Some comments on the 30 dimensional case

I Note that M30 has an obvious framing with Kervaire invariant
0, this is the framing induced by the framing of S7 as the
boundary of the disc.

I The proof that K (M30,F ) = 1 uses the change of framing
formula.

I For those who know about Toda brackets: this construction is
based on geometrically modelling the Toda bracket

〈σ, 2σ, σ, 2σ〉.

I This seems to be the only known explicit example in
dimension 30.

I I do not know if this is really related to Lie groups but more of
that later.

I There is no known explicit example in dimension 62.



An attempt to generalise

I We can consider 62 dimensional manifolds of the form

M62 = Y 6 ×G (S7)8

where G is a subgroup of Σ8.

I We can choose Y 6 and G so that framings of S7 induce
framings of M62.

I However if we equip such a manifold with a framing induced
by a framing of S7 then it has Kervaire invariant zero.



Another attempt to generalise

I We could try to replace S7 × S7 by a 30 dimensional framed
manifold P with Kervaire invariant 1 and an involution.

I The involution gives an action of D8 on P × P and we can
form

M62 = Y 2 ×D8 (P × P)

where Y 2 is the surfaces used in the 30 dimensional example.

I It is not true that any framing of P induces a framing of M;
only those that are related to the involution in a particular
way do so.

I If F is a framing of P which does induce a framing of M then
K (P,F ) = 0.



The problem with these attempts to generalise

I It is not easy to formulate this precisely.

I However the 30 dimensional construction uses implicitly the
fact that (S1 × S7 × S7,F1 × F7 × F7) is a framed boundary.

I However if (M30,F ) has Kervaire invariant one then
(S1 ×M30,F1 × F ) is never a framed boundary.

I For the cognoscenti: ηθ3 = 0 but ηθ4 6= 0.

I So we turn to the homotopy theory and h2j .



Some homotopy theory

I Let X be a space and

f : S2n+m → X , g : X → Sm

be two maps. Form the mapping cones

Y = X ∪f D2n+m+1, Z = Sm ∪g C (X ).

I Assume both f and g are zero in mod 2 cohomology. Then
there are isomorphisms

H j(Y )→ H j(X )→ H j+1(Z ), for m < j < 2n + m + 1.

I Let a ∈ Hm(Z ) be the cohomology class corresponding to Sm.

I Let b ∈ H2n+m+1(Y ) be the cohomology class corresponding
to the 2n + m + 1 disc.

I Let φ : H j(Y )→ H j+1(Z ) be the above isomorphism.



More homotopy theory

I Are there triples (X , f , g) as above such that

Sqn+1(a) = φ(x), Sqn+1(x) = b.

I Easy to show that if so then n + 1 must be of the form 2j .

I When n + 1 = 2j such a triple exists if and only if h2j is an
infinite cycle in the mod 2 Adams spectral sequence.

I When j = 1, 2, 3 then by Hopf invariant one we can take X to
be the sphere S2n+1.

I When j = 4 there are examples where X has 3 cells.
(Mahowald – Tangora : Some differentials in the Adams
spectral sequence, Topology 1967)

I When j = 5, in the only known example X has 9 cells.
(Barratt – Jones – Mahowald: Relations amongst Toda
brackets and the Kervaire invariant in dimension 62, Journal
of the LMS 1984)

I The case where j = 6 is unknown.



The inductive approach

I We use the notation θj for an element in πs
2j+1−2

detected by

h2j .

I So we know that θj exists for j = 1, 2, 3, 4, 5.

I The inductive approach to the Kervaire invariant problem is to
assume that θj exists and has some more properties and show
that θj+1 exists.

I The most concrete result this gives is this. Suppose θj exists,
2θj = 0 and θ2j = 0. Then θj+1 exists and 2θj+1 = 0.

I This works to construct θ4 since we can take θ3 to be σ2

where σ ∈ πs7 is the class of the Hopf map S15 → S7. Then it
is easy to show that 2θ3 = 0 a little bit more difficult to show
that θ23 = σ4 = 0 and so we see that θ4 exist and has order 2.

I It is known that θ24 = 0 and so 2θ5 = 0. It is not known
whether θ25 = 0.



What does all this have to do with exceptional Lie groups?

I Honest answer: Don’t really know but it is hard to believe
that the answer is nothing!

I There are six special examples of homogeneous spaces with
dimensions

4, 8, 16, 32, 64, 128

I Are these related to the Kervaire invariant in dimensions

2, 6, 14, 30, 62, 126.

I Here are the homogeneous spaces – you will find them playing
a key role in Adams’s book: Lectures on Exceptional Lie
Groups.



The 6 special homogeneous spaces

I P2(C) = U(3)/(U(2)× U(1))

I P2(H) = Sp(3)/(Sp(2)× Sp(1))

I P2(O) = F4/Spin(9)

I P2(C⊗O) = E6/((Spin(10)× U(1))/Z4)

I P2(H⊗O) = E7/((Spin(12)× Sp(1))/Z2)

I P2(O⊗O) = E8/(Spin(16)/Z2)



Bokstedt

I In each of these special homogeneous spaces there is a middle
dimensional cohomology class u such that u2 is the
fundamental class in the top dimension.

I Bokstedt proposes to use this as follows.

I P is the homogeneous space and 2n + 2 = 2j+1 is its
dimension.

I X is the 2n + 1 skeleton of P and f : S2n+1 → X is the
attaching map of the 2n + 2 cell.

I Now suppose X is (stably 2n+ 2 Spanier Whitehead) self dual.

I Then for some (large) m we can form the triple

Σm−1f : S2n+m → Σm−1X , g : Σm−1X → Sm

where g is the Spanier Whitehead dual of f .

I The triple (Σm−1X ,Σm−1f , g) satisfies the conditions
required to show that h2j is an infinite cycle.



Bokstedt

I In the first three cases X is

S2 = P1(C), S4 = P1(H), S8 = P1(O)

and so it is self dual.

I In the next case X is not self dual.

I However by using a combination of Morse theory and
computations in homotopy theory, Bokstedt manages to find a
self-dual complex of X and to compress f to this self dual
complex.

I It is not known whether this approach can be made to work in
dimensions 62 and 126.



The Gromoll – Meyer sphere

I This is work of Duran and Puttmann.

I The Gromoll – Meyer sphere is a Riemannian manifold whose
underlying smooth manifold is Milnor’s exotic 7 sphere W 7.
In other words it is a Riemannian metric on W 7.

I W 7 is the quotient of a free action of S3 on Sp(2) and this
defines the metric on W 7.

I We can identify W 7 with the subspace of C5 defined by the
equations

z21 + z22 + z23 + z34 + z55 = 0.

|z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2 = 1.

I Notice that W 7 contains the Kervaire 5-sphere.



The Gromoll – Meyer sphere

I S7 is a quotient of a different S3 action on Sp(2) and this
quotient also defines the usual metric on S7.

I Let πS : Sp(2)→ S7 and πW : Sp(2)→W 7 be the two
projections.

I It is not true, in general, that fibres of πS are fibres of πW .
However if a fibre of πS contains a matrix A with real entries
then it is also a fibre of πW .

I Choose a real matrix A ∈ Sp(2) with determinant 1.

I Let Q ∈ S7 be the point πS(A) and let γ be a great circle in
S7 passing through Q.

I Duran and Puttmann show how to lift γ to a smooth (but not
necessarily closed) curve γ̃ in Sp(2) such that πW γ̃ is a
geodesic in W that starts and ends at πW (A).

I However the closed curve πW γ̃ is not smooth.



The Gromoll – Meyer sphere

I From these geometric facts Duran and Puttmann construct an
explicit homeomorphism of S7 with W 7 that is smooth in the
complement of a point.

I This diffeomorphism maps a copy of S5 ⊂ S7

diffeomorphically onto the Kervaire sphere K 5 ⊂W 7.

I They then write down a formula for this diffeomorphism using
quaternionic multiplication.

I Their formula with quaternionic multiplication replaced by
octonionic multiplication gives a diffeomorphism of S13 with
the Kervaire sphere K 13.

I Their diffeomorphism is G2 (the symmetry group of the
octonions) invariant.



One final point

I Using the general theory of Browder and Brown it is possible
to define a quadratic form q on Hn(M2n) using a weaker
structure than a framing.

I However, this quadratic form may not be defined for all values
of n.

I When it is defined it will in general take values in Z/4 and
quadratic will mean

q(x + y) = q(x) + q(y) + 2〈x , y〉.

This Z/4 valued quadratic form has a generalised Arf
invariant B(q) ∈ Z/8.

I If q takes values in {0, 2} ⊂ Z/4 then we can identify q with
a Z/2 valued quadratic form.

I In this case B(q) ∈ {0, 4} and B(q) 6= 0 if and only if the Arf
invariant of the corresponding Z2 valued quadratic form is
non – zero.



Codimension 1 immersions

I For example this more general theory applies if the manifold
M comes equipped with an isomorphism of TM ⊕ L with the
trivial bundle; here L is a line bundle over M.

I If L is trivial this is the same as a framing.

I Geometrically, such a structure corresponds to an immersion
of M in codimension 1.

I In this context the generalised Kervaire invariant is defined in
all dimensions of the form 2j+1 − 2 and it is non-zero in all
these dimensions.

I In dimensions 2, 6 this generalised Kervaire invariant can take
any value in Z/8.

I In the other dimensions of the form 2j+1 − 2 it can take any
value in {0, 2, 4, 6, 8} ⊂ Z/8.



Oriented codimension 2 immersions

I The more general theory also applies if the manifold M comes
equipped with an isomorphism of TM ⊕ P with the trivial
bundle; here P is an oriented 2-plane bundle over M.

I This time immersion theory shows that this structure
corresponds to an orientation of M and an oriented immersion
in codimension 2.

I The quadratic form is defined for all dimensions of the form
2j+1 − 2.

I In these dimensions the quadratic from is always Z/2 valued
so the invariant is the Kervaire invariant of a Z/2 valued
quadratic form.

I In each dimension of the form 2j+1 − 2 there is an oriented
codimension 2 immersion with Kervaire invariant one.

I Cohen – Jones – Mahowald 1985: The Kervaire invariant of
immersions (Inventiones Math).



Back to the hunt.

Thank you once more.


